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ELECTRON-POSITRON PAIR-PRODUCTION AND NEUTRINO ENERGY-

LOSS FROM THE INSTABILITY REGIONS OF VERY-MASSIVE STARS 

ABSTRACT 

Understanding the end fates of very-massive stars has been very exciting and essential in 

Astrophysics. Electron-positron pairs and neutrinos are very critical on this important 

astrophysical process. Neutrinos are produced in large numbers from exploding massive 

stars and are extremely important probes of processes involve in supernovae before its 

explosion. In spite of tremendous developments recorded in recent times, state-of-the-art 

stellar evolution models would provide many information about instability of very-

massive stars arising from eminent production of electron-positron pairs. The ambient 

photons in the interior of very-massive stars are sufficiently energetic to create electron-

positron pairs just before ignition of any element heavier than oxygen during evolution 

of the stars. Realising importance of pair-production and neutrino energy-loss in 

determining end fates of very-massive stars, this work investigate adiabatic effects of 

pair-production on dynamical instability of very-massive stars with carbon-oxygen cores, 

within the range of 60 M⊙< MCO < 133 M⊙. Thermal energy, pressure, and entropy of 

pair-production from instability regions of these stars are also evaluated. Models with 

rotation in Small Magellanic Cloud (SMC) as well as those with and without rotation in 

Large Magellanic Cloud (LMC) are considered. Similarly, pair-neutrino emission which 

is the dominant cooling process in the instability regions of these stars is computed. On 

the other hand, the neutrino energy-loss through thermal processes is calculated from 

stellar models of 120, 150, 200, 300, 500 M⊙, with rotation and 120, 150 and 500 M⊙ 

without rotation at LMC with metallicity 𝑍 = 0.006. The results of this work showed that 

adiabatic index of pair-productions, which create disturbance in the instability region, is 

fundamentally positive with central temperature and density for all models under 

consideration. The non-rotating model may not be suitable for inducing instability due to 
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large mass-loss. On the other hand, effects of rotation to reduce mass of oxygen core has 

increased the thermal energy of pairs within the threshold of instability regions, and non-

rotating model in LMC has low electron-positron thermal energy, which almost die before 

reaching the region. In rotating models, electron-positron pairs are annihilated and rate of 

pair neutrino energy-loss increases within the instability region. The neutrino energy-loss 

in the instability regions will continue to increase until density rises when the neutrino 

emission began to decline. The thermal energy of electron-positron pairs and neutrino 

energy-loss are fundamentally responsible to overcome contraction of massive star and 

cool its core. The significance of these results on the end fates of very-massive stars, 

especially on stars’ explosion as Pair-Instability Supernova (PISN), is discussed and most 

of the results showed reasonable agreement with existing predictions. This study would 

help in improving the literature for better understanding of end fates of very-massive 

stars.   

Keywords: energy-loss, instabilities, neutrinos, pair-production, very-massive stars  
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PENGELUARAN PASANGAN ELEKTRON-POSITRON DAN KEHILANGAN 

TENAGA NEUTRINO DARIPADA KAWASAN KETIDAKSTABILAN 

BINTANG-BINTANG BERJISIM BESAR 

ABSTRAK 

Model evolusi cemeelang bintang-bintang nenek moyank yang sangat besar memberikan 

maklumat kualitatif tentang ketidakstabilan bintang-bintang. Pada suhu yang sangat 

tinggi dan ketumpatan rendah; pengeluaran pasangan di pusat bintang besar membawa 

indeks adiabatik di bawah 4/3. Penghasilan pasangan dan neutrino yang unik dari 

kawasan ketidakstabilan bintang bermetaliti yang sangat besar dipercayai pada dasarnya 

mencetuskan nasib akhir mereka sama ada Pair-Ketidakstabilan Supernova (PISN) atau 

sebaliknya. Kerja ini menyiasat kesan adiabatik pasangan elektron-positron pada 

ketidakstabilan dinamik bintang-bintang yang sangat besar dengan teras karbon-oksigen, 

dalam lingkungan 60 M⊙< MCO < 133 M⊙, untuk model berputar dan tidak berputar. 

Tenaga terma elektron-positron, tekanan dan entropi dari kawasan ketidakstabilan 

bintang-bintang ini juga dinilai. Kedua-dua objektif ini dicapai dengan membina satu 

model ke dalam persamaan elektron-positron termodinamik (Helmholtz EoS) jadual 

persamaan. Di bahagian terakhir kerja ini, kehilangan tenaga neutrino dari bintang-

bintang yang sangat besar itu dikira. Pelepasan pasangan-neutrino menguasai proses 

penyejukan di kawasan ketidakstabilan bintang-bintang. Kehilangan tenaga neutrino 

dikira melalui model yang dibina ke dalam kod SNEUT4. Adalah diperhatikan bahawa 

indeks adiabatik yang menimbulkan gangguan di kawasan pasangan-pengeluaran pada 

dasarnya positif dengan suhu dan ketumpatan pusat untuk semua model yang 

dipertimbangkan. Begitu juga, dalam model berputar; jisim teras oksigen dalam rantau 

ketidakstabilan telah mempercepatkan indeks adiabatik untuk memampatkan bintang, 

manakala untuk model tidak berputar dengan cepat mengurangkan indeks adiabatik. 

Pengurangan kehilangan jisim dalam model berputar juga mengurangkan jumlah haba di 
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rantau ini dan hanya haba kecil, yang bebas dari kelimpahan kimia, diperlukan untuk 

meningkatkan suhu pusat untuk letupan atau keruntuhan bintang besar-besaran. Dinamik 

kebanyakan kuantiti adiabatik menunjukkan corak yang sama untuk semua model 

berputar. Model tidak berputar mungkin tidak sesuai untuk mendorong ketidakstabilan 

disebabkan oleh kehilangan jisim yang tinggi ke haba. Sebaliknya, kesan putaran untuk 

mengurangkan jisim teras oksigen akan meningkatkan tenaga haba pasangan dalam 

ambang kawasan ketidakstabilan, dan model tidak berputar dalam Large Magellanic 

Cloud (LMC) mempunyai haba elektron-positron rendah tenaga dan hampir mati sebelum 

sampai ke kawasan ketidakstabilan. Dalam model berputar, pasangan elektron-positron 

dihapuskan dan kehilangan tenaga neutrino meningkat di dalam kawasan ketidakstabilan. 

Peningkatan dalam kehilangan tenaga neutrino ini berterusan sehingga ketumpatan 

meningkat apabila pelepasan neutrino pasangan mula menurun. Tenaga terma pasangan 

elektron-positron dan kehilangan tenaga neutrino diperlukan untuk mengatasi 

penguncupan bintang besar dan menyejukkan teras masing-masing. Kesan adiabatik yang 

dinilai dari pengeluaran elektron-positron-pasangan pada ketidakstabilan dinamik 

bintang-bintang ini, dan tenaga termal, tekanan dan entropi berpasangan yang dihasilkan, 

serta pasangan tenaga neutrino yang dihasilkan dari bintang-bintang ini akan membantu 

lebih baik pemahaman mengenai nasib akhir bintang-bintang yang sangat besar. 

Kata kunci: persamaan keadaan, ketidakstabilan, neutrinos, pasangan-pengeluaran, 

bintang-bintang berjisim besar 
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CHAPTER 1: INTRODUCTION 

 

1.1 Introduction  

The production of electron-positron pairs in the cores of massive stars at high 

temperature and relatively low density is vital in the evolution, collapse, death and end 

fates of not only massive stars but many Astrophysical objects, such as in mass-loss from 

black hole mergers (Belczynski et al., 2016) and in some models of the Universe which 

predicted that first stars at Dark Ages might form massive stars and become subject to 

pair-instability (Abel et al., 1998; Abel et al., 2000; Bromm et al., 2002; Bromm & 

Larson, 2004; Chatzopoulos & Wheeler, 2012a). Very-massive stars that have carbon-

oxygen core within the range of 60 M⊙ < MCO < 133 M⊙ are expected to end their lives 

as either PISN or other type of supernova. This is achieved through production of 

electron-positron pairs and neutrino emission from their instability regions. It is 

fascinating to say that most of the heavier elements in human bodies were created in 

thermonuclear burning of massive stars. During the lifetime of a star, starting from 

hydrogen gas until it reached a point in its evolution, at about 107 years, an iron core is 

evolve, which begin to collapse in seconds time scale, such that the gravitational energy 

released ignites an enormous explosion and the overlying layers explode very quickly and 

completely. The importance of massive stars cannot be over quantified because they are 

very fundamental to sequence of processes after Big Bang (BB) which as a result, life 

become possible on Earth. The immense abundance of heavy elements and Ultra-Violet 

(UV) radiation are principally originated from massive stars. Through supernova 

explosions, massive stars provide a significant source of energy balance and turbulence 

in Interstellar Medium (ISM) of galaxies (Yorke, 2004). In Milky Way galaxy (our 

galaxy), for example, stars ranges in mass from hundredth mass of the Sun to about a 

thousand solar masses. The least massive stars have lifetimes as long as age of the 
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Universe: which is tens of billions of years, after which they slowly fade to become cold 

cinders. Whereas, very massive stars have lifetimes of only a few million, to tens of 

millions of years, after which they catastrophically explode as supernova. Despite 

prominent and outstanding contribution of these relatively short-lived stars to properties 

and evolution of galaxies, our understanding of their evolution and final fate is still not 

complete.  This is because they are low in number and are theoretically very complex to 

deal with. And therefore, improving our understanding of massive stars is crucial for 

addressing fundamental questions such as: 

I. Since the first stars were massive of about ~30 - 300 M⊙ and contribute to re-

ionization in interstellar medium, a question comes; when did first stars in the 

Universe forms and how did they influence their environments? 

II. The massive stars produced most cosmic elements like Oxygen O, Carbon C, 

Iron Fe, Calcium Ca etcetera, as such, we need to know the cosmic origins of 

all chemical elements, especially those fundamental to life on earth? 

III. How the exchanges of mass and momentum between massive stars and 

environment configured the origin and evolution of galaxies? 

In evolution of very-massive stars; pressure-supporting photons are converted into 

electron-positron pairs before ignition of oxygen, which leads to violent contraction that 

induces a catastrophic nuclear explosion (Barkat et al., 1967; Heger & Woosley, 2002; 

Rakavy & Shaviv, 1967). As a result of the explosion, energies are emitted, which 

completely unbind the star in pair-instability supernova without any remnant (Gal-Yam 

et al., 2009). The central cores of these stars become dynamically unstable as a result of 

production of electron-positron pairs which occur immediately after the central carbon 

burning (Fraley, 1968; Rakavy & Shaviv, 1967; Rakavy et al., 1967). When pairs of free 

electrons and positrons are produced during a high energy photons’ collision with atomic 

nuclei in a massive star, the internal pressure of the massive star, which supports against 
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its gravitational collapse, reduces temporarily and leads to its partial collapse. The energy 

absorbed in creating the rest mass of electron-positron pairs also reduce the value of 

adiabatic index at low densities. However, this energy become significantly less at high 

temperature, while, pair density increases at low temperature (Fraley, 1968). The pair-

production instability resembles ionization since a fraction of energy is spent not to 

increase the temperature, but to create pairs. The result should be development of 

dynamical instability and consequent implosion because the pressure gradient is not able 

to compensate the gravitational attraction. The dynamical collapse of oxygen core occurs 

if large fraction of the core enter the instability region, and according to (Kippenhahn et 

al., 1990), 40% of the star mass will enter the instability region in the density-temperature-

diagram. Thus, the fundamental property for this region of instability in the star evolution 

is the oxygen-core mass. 

1.2 Problem Statement 

Inside cores of massive stars, the absorption of energy to create rest mass of electron-

positron pairs lowers the adiabatic index to below 4/3, at low densities. The pair-

production and neutrino cooling are paramount in determining end fates of these stars. 

Figure 1.1, showed the instability region in which pairs are produced and adiabatic index 

is less than 4/3. In this region, number of pairs decreases exponentially at low 

temperature. At high temperature, the energy absorbed in creating rest mass become less 

significant. This shows that the boundary of the unstable area where adiabatic index is 

below 4/3 reached a maximum density of about 7x105 g/cm3 at a temperature of about 

2.85x109 K. This instability will basically trigger the end fate of the star involved. Even 

though  the fundamental mechanisms involved in the end fates of very-massive stars is 

still not fully understood (Kotake et al., 2006), owing to insufficient information 

pertaining to; how a star attains a state of explosion (Wright et al., 2017), at what mass a 
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stellar progenitor encounter the instability regime and its corresponding zero-age main 

sequence (ZAMS) mass (Woosley, 2017). Similarly, the metallicity at which a stellar 

progenitor explode as PISN is still under debate (Langer et al., 2007). The current 

understanding of physics responsible for these exotic processes have drawn the attention 

of many researchers in astrophysics community.  
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Figure 1.1: The electron-positron pair-instability region. Adiabatic index is below 4/3 

only within this unstable area (the red-dashed area) at maximum central density and 

temperature of about 7x105 g cm-3 and 2.85x109 K respectively.  

 

In recent times, many authors have computed realistic light curves for PISNe models at 

very near-solar metallicities (Kasen et al., 2011; Kozyreva et al., 2016; Whalen et al., 

2013; Whalen et al., 2014a; Whalen et al., 2014b), and most of these studies have 

discovered that the luminosity of already observed super-luminous supernovae can be 

compared to maximum luminosity in their models. Certainly, this might be true, because 
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a few of detected super-luminous supernovae are considered to originate from PISN 

(Cooke et al., 2012; Gal-Yam et al., 2009; Lunnan et al., 2016; Smith et al., 2007), due to 

production of substantial amounts of radioactive nuclei in them (Wright et al., 2017). 

Therefore, the prevalent models of very-massive stellar evolutions would provide 

qualitative information about this important astrophysical phenomenon. In 2013,  Yusof 

et al. (2013), find that 150 M⊙ and 200 M⊙ rotating stellar progenitor models in SMC 

metallicities and 500 M⊙ rotating and non-rotating models in LMC metallicities, are 

expected to undergo a gigantic explosions known as PISN. While those predictions were 

made based on estimate of carbon-oxygen core in the range of 60 M⊙< MCO < 130 M⊙, 

they do not consider effects of electron-positron pair productions (at least in equation of 

state) and the dominant pair neutrino cooling from the instability regions of the stars 

involved. In massive stars, however, very energetic photons are converted into electron-

positron pairs just before ignition of any element heavier than oxygen and the star will 

enter a region (Figure 1.1) in which the energy needed to create rest mass of electron-

positron pairs (at high entropy) softens the equation of state and reduce adiabatic index 

to below 4/3 (Fraley, 1968). This will subsequently leads to a violent contraction that 

activates a nuclear explosion (Barkat et al., 1967; Bond et al., 1984; Carr et al., 1984; 

Chatzopoulos & Wheeler, 2012a; El Eid & Hilf, 1977; El Eid et al., 1983; Fraley, 1968; 

Ober et al., 1983; Rakavy & Shaviv, 1967; Stringfellow & Woosley, 1988; Wheeler, 

1977). The thermal concentration of these pairs occur during the advanced burning phase 

of the stars’ evolution and causes a dynamic instability in the star (Woosley & Heger, 

2015). This instability results in explosion of the massive star as PISN. However, the pair-

instability is a vital process in explosion and collapse, of not only massive stars but also 

in many astrophysical objects, such as in mass-loss from black hole mergers (Belczynski 

et al., 2016) and in some models of the Universe which predicted that first stars at Dark 

Ages might form massive stars and become subject to pair-instability (Abel et al., 1998; 
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Abel et al., 2000; Bromm et al., 2002; Bromm & Larson, 2004; Chatzopoulos & Wheeler, 

2012a). On the other hand, since neutrino emission process in PISN is similar to the one 

in Type Ia supernovae (Kunugise & Iwamoto, 2007; Odrzywolek & Plewa, 2011; 

Seitenzahl et al., 2015; Wright et al., 2017; Wright et al., 2016), the best method to 

differentiate different types of stellar explosions from others is by neutrino emission 

signal (Wright et al., 2017). Thus, we can say that neutrino emission and its energy-loss 

are equally important quantities in determining various types of supernova explosion 

(Odrzywolek & Plewa, 2011). For example, most of energy emitted from long detected 

LMC supernovae are neutrinos (Spergel et al., 1987). 

1.3 Research Objectives 

Very-massive stars with carbon-oxygen core within the range of 60 M⊙ < MCO < 133 

M⊙ become dynamically unstable due to pair-production when their central temperature 

is high. In line with lack of adequate knowledge about the pair-production and neutrino 

cooling in the instability regions of very-massive stars, this work is aimed at investigating 

three important aspects that strongly influence the end fates of very-massive stars as a 

results of pair-production and neutrino cooling from the stars. Specifically, progenitor 

models with carbon-oxygen cores, within the range of 60 M⊙< MCO < 133 M⊙ are 

considered as well as models for 120, 150, 200, 300, 500 M⊙, with rotation and 120, 150 

and 500 M⊙ without rotation at LMC that has a metallicity 𝑍 = 0.006. 

The main objectives of this research work can be itemise as follows: 

I. To investigate adiabatic effects of electron-positron pair-production on dynamical 

instability of very-massive stars with carbon-oxygen cores, within the range of 60 

M⊙< MCO < 133 M⊙. 

II. To compute thermal energy, pressure, and entropy due to electron-positron pair-

production from the instability regions of very massive stars with carbon-oxygen 

cores, within the range of 60 M⊙< MCO < 133 M⊙. 
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III. To evaluate neutrino energy-loss from instability regions of very massive stars 

with carbon-oxygen cores, within the range of 60 M⊙< MCO < 133 M⊙. 

IV. To calculate neutrino energy-loss from stellar models of 120, 150, 200, 300, 500 

M⊙, with rotation and 120, 150 and 500 M⊙ without rotation at LMC that has a 

metallicity 𝑍 = 0.006. 

 

1.4 Thesis Organization 

This thesis is divided into six chapters. Chapter 1 (this chapter) provides background of 

the research work. A general introduction, statement of problems intended to solve and 

objectives of research are also presented in this chapter. Chapter 2, is for Literature review 

relating to very-massive stars, their evolution and end fates. Nuclear reactions involved 

in massive stars, production of electron-positron pairs in massive stars, neutrinos in 

massive stars and mass of progenitor star expected to reach instability region and explode 

as PISN. Discussions on methodology employed in carrying out this work is provided in 

Chapter 3. While Chapter 4 presents results and discussions; this include; adiabatic effects 

of pair-production on dynamical instability of very-massive stars. Thermal energy, 

pressure, and entropy of electron-positron pairs in the instability regions, and results of 

numerical calculations for neutrino-energy loss from the instability regions of the 

progenitor models, and thermal neutrino processes from selected stellar models. Chapter 

5 is recommendation for future work, which described kinetics of non-equilibrium 

electron-positron pair plasma. And finally, Chapter 6 summarizes and conclude findings 

of the research. Recommendations for future work are fully provided in Chapter 5 & 6. 

1.5 Chapter Summary 

This chapter discusses background of this research work.  General introduction of the 

thesis and problems intended to address are clearly defined. Similarly, objectives of the 

research are outlined. 
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CHAPTER 2: LITERATURE REVIEW  

2.1 Introduction 

Very long ago, Barkat et al. (1967) postulates that dynamical instability caused by pair-

production occur in massive star prior to formation of any elements heavier than oxygen. 

In 2012; Chatzopoulos and Wheeler (2012a) found that the criteria for any star to enter 

instability regime in density- temperature region; is dependent on mass of oxygen cores,  

main sequence mass that produce a given oxygen core mass which in turn is dependent 

on; metallicity, mass loss, convective and rotationally induced mixing. Woosley and 

Heger (2015), believed that only very-massive stars that have sufficient entropy would 

encounter this instability. However, in another development, observations revealed that 

there is greater energy release from oxygen burning, and so explosion of stars after 

collapse is of greater intensity (Takahashi et al., 2016). In this chapter, we review the 

phenomenology of massive stars; their formation, evolution, and death etc. We similarly 

review nuclear reaction processes involved in the evolution of massive stars, and 

neutrinos in massive stars. 

2.2 Massive Stars 

Stars are gravitationally confined thermonuclear reactors whose composition evolves 

as energy is emitted into radiation (as photons), and neutrinos, in hydrostatic equilibrium. 

During a clear night, several stars in the sky are seeing, for example; in the northern 

hemisphere, the brightest stars includes Sirius, Vega, Betelguese, Caopus, Arcturus, 

Rigel, Altair, Antares, Polaris, Achemar, and Cotar etc., which are all seeing with our 

naked eyes. Massive stars are stars that reached or will reach a mass greater than ~10 M⊙  

(Martins, 2015) which are scattered in Galactic plane and confined within a disk 

subtending an angle below 0.8o with mid-plane. The term massive star and very-massive 

star may be used in this work interchangeably. However, in many works, very massive 
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stars are stars in the mass range of 100 𝑀⊙  ≤  𝑀𝑆  ≤  1000 𝑀⊙ . They typically have 

high luminosity 104 – 106 L⊙, and are essentially the major producers of alpha particles, 

since they go beyond carbon burning phase, and produces several elements heavier than 

oxygen. Due to their high luminosity, they released a material as fresh wind in their cores, 

and transport it to its surface which is subsequently released to the immediate 

surroundings. They are massive enough to explode as supernova and are primordially 

central to evolution of the Universe. Massive stars spends about 90% of their life burning 

hydrogen and most of the rest burning helium. They have very complex nuclear network, 

which generally ends their lives after silicon burning. Their interiors are unique physical 

laboratories for nuclear physics, magnetohydrodynamics, particle physics, and general 

relativity, conditionally not found elsewhere in the Universe. They are excited by 

radiation which stir the ISM and may even affect evolution of galaxies. Their explosions 

teach astronomers a great information about the origins of much of the materials that 

makes up our Universe. In fact, many Astrophysicists believe that, a supernova explosion 

might be the agent that triggered formation of our own solar system. However, about 75% 

of these supernova explosions results from massive stars (Kozyreva, 2014). Massive stars 

are not many in number but they make a large impact to the properties of galaxies. They 

are essential in the heavy elements productions and to the energy balance in the 

interstellar medium. They are also vital in regulating rate of star formation on large scales 

through intense winds, radiation and supernova explosions. One important role of 

massive stars is that they are progenitors of blue supergiant (BSG), red supergiant (RSG), 

Wolf-Rayet (WR) and luminous blue variable (LBV) stars. The cores of massive stars 

also become neutron stars (NS) or black holes (BH) after their collapse. They are major 

sites for nucleosynthesis, which takes place during pre-supernova (hydrostatic) burnings 

as well as during explosive burnings. Many numerical simulation results show that the 

first generation stars were predominantly massive or very massive (Bromm, 2005). It is 
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important to note that, on main sequence, and due to strong ionizing fluxes that produce 

HII regions, massive stars have high effective temperature that exceeds 2.5 × 104 K and 

they are very cool (3500 K) in their latest phase of evolution which is the red supergiant 

phase. However, depending on their initial mass, they also become hot (105 K) in Wolf-

Rayet stars. In the main sequence stars, the nuclear energy is provided by the remaining 

hydrogen over a timescale of 𝜏𝑁~ 7 × 10
9yr (MS/ M⊙)(L⊙/LS), which means that all 

massive stars have short lives, spanning only ~ 2 − 20 million years and ends their lives 

as supernova (Martins, 2015). This, can be visualise when thermal (Kelvin-Helmholtz) 

timescale , which is the ratio of thermal energy to luminosity, is considered and after 

applying Virial theorem, we get the lifetime as given in Equation 2.1 below

 𝑡𝐾𝐻 =
𝐺𝑀𝑆

2

(𝑅𝑆𝐿𝑆)
           

where G is the gravitational constant, MS the mass of the star, RS radius of the star and its 

luminosity is LS. This equation quantifies the time of the collapse of massive star in the 

absence of a nuclear energy which is about 3 × 107 yr for the Sun. 

2.2.1 Formation of Massive Stars 

Although they are key in astrophysics, the physical processes responsible for the birth 

of massive stars still remain a mystery. Some people argued that massive stars should not 

even exist based on basic theory. And how do/long a massive star is formed? Are questions 

afflicted by confusion. The simple reason for this is that they are formed in a distant and 

highly obscured regions, and exists in dense clusters which hinders the understanding of 

their properties individually. Generally, a star formation is kick-start by condensation of a 

collapsing gas inside a large compact mass of molecular cloud, then a proto-star is form, 

which increase the mass from the neighbouring gas, while at the same time mass is loss 

through an escape and paralleled atmospheric burst. The many processes acting 

simultaneously in massive stars make them difficult to be theoretically analysed. Hot 
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molecular core observation suggested a formation time of about 100, 000 years, due to 

their formation in rich clusters emitting copious amounts of photon ionization which alter 

the neighbouring environment. It is almost not possible to resolve the forming cluster with 

current telescopes. This, however, make it difficult to deduce the primordial configuration 

of the molecular cloud which represents the initial conditions for massive star formation. 

However, with modern observational techniques, such as modern telescopes which are 

powerful enough, a number of very massive stars have been observed. The following Table 

2.1, lists few of the observed very massive stars with an estimated initial mass. The 

majority of stars thought to be 150 M⊙ or greater are shown.  The method used to 

determine the mass is included in order to give idea about the uncertainty. Most of these 

stars that have higher masses greater than 100 M⊙ are located in the Magellanic Clouds 

(Martins, 2015). For example, all the R136 stars are in the LMC where the metallicity is 

almost half the solar metallicity and is located at about 163,000ly from the Earth. Because 

luminosity is the first criterion to distinguish very-massive stars; various examples of very-

massive stars based on luminosity in the Magellanic Cloud are postulated. For example, 

in 1983 Humphreys (1983), reported the brightest blue and red supergiant of six galaxies 

(MW, SMC, LMC, M33, NGC6822, and IC1613) in the local group. The 

atmosphere/luminosity method of stellar mass determination is the most often quoted and 

it compares the predictions of evolutionary method simply by Hertzsprung-Russel 

diagram. 

2.2.2 Evolution and Fate of Massive Stars 

The life of a massive star is governed by a simple principle. A pressure, which is a 

combination of an ideal gas, radiation, and in the end, partially degenerate electrons, keep 

up the star against gravitational force. However, the star still evolves due to radiation 

(Woosley et al., 2002). 
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Table 2.1: List of some observed very-massive stars with current-evolved mass, name of 

star, method of mass estimate, and location based on references in last column. Only stars 

greater than or equal to 150 M⊙ are given. 
 

Evolved 

mass 

[M⊙] 

Name Method of mass estimate Location-

(Distance 

from 

earth)  

Reference 

150 VFTS 682 

(WR) 

Atmosphere/Luminosity LMC  Bestenlehner et al. 

(2011) 

150 R136a6 Evolutionary LMC Crowther et al. (2016) 

150 HD269810 Evolutionary LMC  Walborn et al. (2004) 

152±51 HD15558 Binary MW 

 

De Becker et al. 

(2006); (Garmany & 

Massey, 1981) 

175 Peony star 

(WR 

102ka) 

Atmosphere/Luminosity MW  Barniske et al. (2008) 

179 Melnick 34 Atmosphere/Luminosity LMC  Zwart et al. (2002) 

180 R136a3 Evolutionary LMC  Crowther et al. (2016) 

189 Melnick 42 Atmosphere/Luminosity LMC  Bestenlehner et al. 

(2014) 

195 R136a2 Evolutionary LMC  Crowther et al. (2010) 

226 BAT99-98 Atmosphere/Luminosity LMC Hainich et al. (2014) 

230 R136c Evolutionary LMC  Crowther et al. (2016) 

315  R136a1 Evolutionary LMC  Crowther et al. (2016) 

 

 

Massive stars evolve very quickly, and most of the important evolutionary phases lived 

very shortly, in order to immensely contribute to the chemical evolution of the Universe. 

The convective cores of the massive stars is powered by Carbon-Nitrogen-Oxygen (CNO) 

cycle. While their surface is not convective, in the end of hydrogen burning, the helium 

burning is ignited, beyond which, the evolution is accelerated by thermal neutrino losses, 

especially from electron-positron pair annihilation. Furthermore, the final fate of very 

massive stars differs according to their mass. The hydrogen burning process ends only 

within million years, and the star continuously evolve far beyond helium burning. In their 

evolutionary trends, massive stars follow similar events to those in lower-mass stars; first 

a hydrogen shell, then a core burning helium to carbon, surrounded by helium-and 
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hydrogen burning shells. After exhausting the hydrogen fuel in the cores, they leave the 

main sequence. In the late stages of the evolution of the massive stars, and when the core 

passes carbon burning stage, the temperature becomes high to about 109 K, and photons 

are emitted in accordance to Planck’s law, such that high energy photons in the end of 

energy distribution exceeds the rest-mass energy of an electron-positron pair 

(𝑚𝑒𝑐
2~0.5𝑀𝑒𝑉) (Kozyreva, 2014). And the structural adiabatic index 𝛾 =

𝑑(𝑙𝑛𝑝)

𝑑(𝑙𝑛𝜌)
 falls 

below dynamical stability threshold of 4/3, which leads to dynamical instability in the 

core. In Blinnikov et al. (1996), it is demonstrated how the photon gas at 109 K kick-starts  

the creation of pairs and the adiabatic index sharply drops below 4/3. 

  

2.2.3 Death of Massive Stars 

Massive stars are very fascinating when they die. Their death is marked by either black 

hole production or encountering pair instability, for helium cores heavier than 35 M⊙. 

There are many other possible outcomes depending on the initial compositions of the star, 

rotation, and the models’ physical parameters used during the evolution. In essence, the 

product of the death of a massive star is associated with four physical quantities- the mass, 

metallicity, and rate of mass loss and rotation. For further details on this, Woosley and 

Heger (2015) defined five outcomes and give approximate mass ranges for which each 

result falls. The pair-instability is within the helium core mass range of 63 to 133 M⊙. 

The dynamical instability that lead to collapse of oxygen cores also results to explosion 

when temperature increases. This produces more energy from nuclear burnings, and then 

the collapse of stars terminates and reversed into explosion. The results of these 

explosions is PISN. 
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2.2.4 Rotation in Massive Stellar Models 

Stellar evolution is strongly affected by rotation, which is why it is included in most of 

the stellar evolution codes. Stars rotate, because it is actually quite hard for them not to, 

and in practical terms, all-stars rotate around their axis. In particular, the chemical 

evolution of stars and, in general, galaxies are interestingly affected by rotational effects. 

One of the most important effects of rotating stellar models is the output of the models, 

such as their evolutionary tracks and lifetimes, the nature of supernova explosions and of 

other stellar remnants. As a consequence, the output of many rotating models have shown 

different properties from the non-rotating models. For a detail review about effect of 

rotation in massive stars, see Maeder and Meynet (2012).  Massive stars are often rapid 

rotators, with a different equatorial velocities of about 200 km s-1 in main sequence, which 

is a very significant fraction of their breakup rotational velocity (Woosley et al., 2002). 

In the review work by Maeder and Meynet (2011), the consequence of rotational effects 

in stellar models are broadly classified into four groups, these are; 

I. The equilibrium configuration of rotating stars resulting from the centrifugal 

force acting on the stellar equilibrium 

II. The rotational effects on mass loss or accretion 

III. The rotational mixing 

IV. The interactions with magnetic field  

Figures 2.1 & 2.2, illustrates change in HR diagram due to rotation effect in the evolution 

of very massive stars of 120, 150, 200, 300 and 500 M⊙ models with solar metallicities 

of 0.006 respectively. In both figures, the track of the models including rotation effects is 

shifted to slightly lower effective temperature and luminosity and the nucleosynthesis 

altered the rotation occurring in the stars. These changes is due to reduction in effective 

gravity of centrifugal force during the rotation and also due to hydrogen burning core 

when the main sequence becomes enlarged with rotationally-induced chemical mixing. 
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The increase in rotation brings about a chemically homogeneous evolution and produce 

higher oxygen core mass, which is necessary for pair-production in the core of massive 

stars. Thus higher degrees of rotation in massive stars brings the star much closer to 

density-temperature plane, where the adiabatic index is below 4/3. 

2.2.5 Mass-Loss from Massive Stars 

Massive stars loses mass through different triggering processes. For example, in post-

main-sequence evolution, the mass of a star is lost through ejection of stellar winds. The 

mass loss in massive stars is an important process that cannot be disregarded and is mostly 

efficient during hydrogen burning phase. It increases substantially with luminosity of a 

massive star (Andriesse, 2000). It also lead to a significant reduction of total mass of a 

star. The mass loss does not only affects the star’s luminosity but also He-core mass and 

its entire burning lifetime which consequently, has impact on the end fate of a star. Smith 

(2014), provides complete review about effects of mass loss on the evolution and fate of 

massive stars. During most of the lifetimes of massive stars; mass loss is essential in 

finding the resulting supernova explosions. As such, mass loss is adamantly associated 

with evolution and end fate of massive stars. 

2.2.6 Evolution Equations 

The fundamental physical quantities that describe stellar structure, in general, are radius 

and time(𝑟, 𝑡). Other variables of particular importance are density 𝜌, temperature  𝑇, and 

chemical composition 𝑋𝑖 or abundances of elements in stellar medium. The hydrostatic 

pressure 𝑃 which balances gravitational force towards centre of stars and prevents it from 

collapse is given from; 

𝑑2𝑟

𝑑𝑡2
= −(

1

𝜌
∇𝑃 + ∇𝑉)        (2.2) 

And the gravitational potential satisfies Poisson’s equation given by; 

∇2𝑉 = 4𝜋𝐺𝜌         (2.3) 
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where 𝐺 is gravitational constant. 

4.8 4.4 4.0
6.2

6.3

6.4

6.5

6.6

lo
g
 L

/L
S

u
n

 non-rot

 rot

lo
g

 L
/L

S
u

n

log Teff [K]

4.8 4.4 4.0
6.3

6.4

6.5

6.6

6.7
150 MSun

 non-rot

 rot

log Teff [K]

120 MSun

 
 

 

Figure 2.1: Evolution of 120, 150 M⊙ massive stars in Hertzsprung-Russel (HR) 

diagram. Data taken from Yusof et al. (2013). 
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Figure 2.2: Evolution of 200, 300 & 500 M⊙ massive stars in Hertzsprung-Russel (HR) 

diagram. Data taken from Yusof et al. (2013). 
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Assuming the star is spherical, the star will depend only on distance 𝑟 from centre and 

the gravitational potential ∇𝑉 =
𝜕𝑉

𝜕𝑟
=
𝐺𝑀𝑟

𝑟2
 , 𝑀𝑟 is the mass conservation within stellar 

radius and can be given by; 

𝑀𝑟 = 4𝜋𝜌 ∫ 𝑟2𝑑𝑟
𝑟

0
         (2.4) 

 

By differentiating this equation with respect to distance from centre gives “continuity of 

mass equation” given by; 

𝑑𝑀𝑟

𝑑𝑟
= 4𝜋𝑟2𝜌 𝑜𝑟 

𝑑𝑟

𝑑𝑀𝑟
= 

1

4𝜋𝑟2𝜌
       (2.5) 

 

From these equations, we can rewrite Equation 2.2, as 

𝑑𝑃

𝑑𝑟
= −𝜌(𝑟) [

𝐺𝑀𝑠

𝑟2
+
𝑑2𝑟

𝑑𝑡2
]        (2.6) 

 

However, the time derivative in Equation 2.6, is negligible for a hydrostatic equilibrium 

(
𝑑2𝑟

𝑑𝑡2
= 0). As thermonuclear reactions begins, the star loses energy through radiation, and 

total heat flux (luminosity) flowing the star is given by; 

𝑑𝐿(𝑟)

𝑑𝑟
= 4𝜋𝜌𝑟2𝜀(𝑟)         (2.7) 

 

where 𝜀(𝑟) is heat flux which is proportional to temperature gradient: 

𝜀(𝑟) = −𝜎
𝑑𝑇(𝑟)

𝑑𝑟
         (2.8) 

 

𝜎 is Stefan-Boltzmann constant. Equation 2.7 can be rewritten in terms of 𝑀𝑟  as; 

𝑑𝐿(𝑟)

𝑑𝑀𝑟
= 𝜀(𝑟)         (2.9) 
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which is the conservation of energy equation. When heat transport is through radiation, 

the local thermodynamics equilibrium provides 𝑃𝑟𝑎𝑑 = 𝑎
𝑇4

3
 and hence; 

 
𝑑𝑇(𝑟)

𝑑𝑟
= −

3𝜅𝑟𝑎𝑑𝜌

4𝑎𝑐𝑇3
𝐹𝑟𝑎𝑑         (2.10) 

 

This is radiative transport equation in the interior of stars when energy is carried by 

photons.  𝜅𝑟𝑎𝑑 is radiative opacity (Rosseland opacity) per unit mass in stellar interiors, 

and can be defined by 

𝜅𝑟𝑎𝑑 =
4𝑎𝑐𝑇3

3𝜌𝜎
         (2.11) 

 

where 𝑐 is speed of light and 𝑎 is radiation constant. It can be seen from Equation 2.10 

that for every temperature gradient, there is a radiative flux 𝐹𝑟𝑎𝑑, which may not be total 

outgoing flux. However, when total energy flux is transported by photons, then Equation 

2.10, becomes; 

𝑑𝑇(𝑟)

𝑑𝑟
= −

3𝜅𝑟𝑎𝑑𝜌

4𝑎𝑐𝑇3
𝐿𝑟

4𝜋𝑟2
        (2.12) 

 

Which represent processes of absorption and re-emission of photons in the interior of 

stars through a mean opacity coefficient 𝜅𝑟𝑎𝑑. Meanwhile, for conductive transport, i.e. 

when energy is transported by constituent of the stellar matter (free non-degenerate 

electrons), the energy flux is approximately given by; 

𝐹𝑒 ≅ −𝑁𝑒𝑣̅𝑙
𝑑𝐸

𝑑𝑟
         (2.13) 

 

where 𝑁𝑒 is electron number per unit volume, 𝑙 and 𝑣̅ are mean free path and average 

velocity of electrons respectively and 𝐸 ∝ 𝑘𝐵𝑇 is electrons average kinetic energy. This 

equation can be written as;  
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𝐹𝑒 ≅ −𝑁𝑒𝑘𝐵𝑣̅𝑙
𝑑𝑇

𝑑𝑟
         (2.14) 

 

This equation represent the approximate relation for energy transport due to heavier 

constituents of stellar gas. However, studies on processes of interaction between 

constituents of stellar gas shows that radiation transport dominate over electron 

(conduction) transport. Perhaps, heavy particles energy transport is by far less efficient, 

because ions are mainly outnumbered by electrons and at a given temperature, the ions 

move very slowly. On the other hand, when electrons are degenerate, they can transport 

energy efficiently due to their long mean free path (contrary to non-degenerate case). In 

this later case, the total energy flux is, therefore, 

𝐹 = 𝐹𝑟𝑎𝑑 + 𝐹𝑒         (2.15) 

 

Hence, the general equation of radiative and conductive energy transports in stellar 

interior is given from Equation 2.12; 

𝑑𝑇

𝑑𝑟
= −

3𝜅𝜌

4𝑎𝑐𝑇3
𝐿𝑟

4𝜋𝑟2
         (2.16) 

 

It is worth to note that, the opacity here, 𝜅 is given by; 

1

𝜅
=

1

𝜅𝑟𝑎𝑑
+

1

𝜅𝑒
         (2.17) 

 

where 𝜅𝑒 is electron opacity, such that for an effective electron conduction 𝜅𝑒 ≪ 𝜅𝑟𝑎𝑑, 

and hence, Equation 2.16, becomes 

𝑑𝑇

𝑑𝑀𝑟
= −

3𝜅

64𝜋2𝑎𝑐𝑇3
𝐿𝑟

𝑟4
        (2.18) 
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The next energy transport in the stellar interior, which serves as a process of energy and 

chemical elements transport, is convection. In the interior of stars, matter are dynamic, 

such that the gas elements are in small random motion around their equilibrium positions. 

This motion may trigger large-scale motions involving total stellar mass, just like water 

motion in a container heated from its underneath. In the stellar interior, hot gas elements 

are rise up, such that energy is transported from high temperature to low temperature 

regions and then cool and fall down as cold material. However, this process is extremely 

complicated to be treated in stellar interiors and therefore needs many physical 

assumptions. Detail discussion about convection transport in the stellar interior can be 

found in chapter three of the book authored by Maurizio and Santi (2005). The convective 

energy flux at a given layer within the convective region can be defined as total flux 

energy minus flux carried by radiation 

𝐹𝑐𝑜𝑛𝑣 = 𝐹 − 𝐹𝑟𝑎𝑑         (2.19) 

 

where 𝐹 =
𝐿𝑟

4𝜋𝑟2
 is the total energy flux and 𝐹𝑟𝑎𝑑 is given by Equation 2.10. Whence, the 

energy flux transported by matter elements in terms of average speed 𝑣 of the convective 

elements, can be given, after imposing various conditions, as 

𝐹𝑐𝑜𝑛𝑣 =
1

2
𝜌𝑣𝑐𝑝𝑇 ∝𝑚𝑙 (∇ − ∇𝑎𝑑)       (2.20) 

 

where ∝𝑚𝑙=
Λ
𝐻𝑃
⁄  is a constant free parameter, and Λ is the mean free path (or the mixing 

length), 𝐻𝑃 is a multiple of local pressure scale height defined by (𝐻𝑃)
−1 =

−𝑑𝑙𝑛𝑃 𝑑𝑙𝑛𝑟⁄ , ∇𝑎𝑑 is an adiabatic gradient and ∇ is an unknown temperature gradient in 

the convective region, while, 𝑐𝑝 is a specific heat per unit mass at constant pressure. 

Similarly, the term 
1

2
𝜌𝑣 provides the flux of mass per square centimetre per second. While 

the factor (1/2) takes into account the fact that at each layer approximately half of the 
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matter is rising and half is moving downwards. It is interesting here to note that the 

convective flux depends on free parameter ∝𝑚𝑙. Finally, the total flux from Equation 2.19, 

is equal to sum of the radiative plus the convective fluxes, given by; 

𝐹 =
𝐿𝑟

4𝜋𝑟2
= 𝐹𝑟𝑎𝑑 + 𝐹𝑐𝑜𝑛𝑣 =

4𝑎𝑐𝑔𝑇4

3𝜅𝑃
∇ +

1

2
𝜌𝑣𝑐𝑝𝑇 ∝𝑚𝑙 (∇ − ∇𝑎𝑑)   (2.21) 

 

where 
𝑑𝑇

𝑑𝑟
= −

𝑇

𝐻𝑃
∇ and for hydrostatic equilibrium with 𝑔 been local acceleration of 

gravity, 𝐻𝑃 =
𝑃

𝑔𝜌
.1. These Equations 2.2 - 2.21, described the time evolution of a star with 

a chemical composition of 𝑋𝑖(𝑀𝑟), under specified boundary conditions.  

2.3 Nuclear Reactions in Massive Stars 

The source of most of the elements heavier than helium in todays’ Universe is believed 

to originate from nuclear processes occurring in massive stars. In general, different 

nuclear processes take place simultaneously in stellar plasma and nuclides created by 

fusion reactions are destroyed by another reaction. Meanwhile, the nuclear burning 

phases that are important in massive stars, are Carbon (C), to Neon (Ne), Oxygen (O), 

and finally Silicon (Si) burnings. In a typical main sequence stars, the chemical 

compositions are given by 𝑋 + 𝑌 + 𝑍 = 1, such that 𝑋 = 0.7 is the hydrogen mass 

fraction, 𝑌 = 0.28 is the helium mass fraction and 𝑍 = 0.002 is the fraction of mass in 

elements heavier than hydrogen and helium, which are misleadingly called “metals” in 

astrophysics, with most of the elements being C, N, and O. However, the Z is usually 

called metallicity of the star. Figure 2.3, is a temperature-density evolution for centres of 

massive stars showing different compositions of massive stars with initial masses of 120, 

                                                 

1 The equation for the convective velocity is given by 𝑣2 =
1

8
𝑔
Λ2

𝐻𝑃
𝑄(∇ − ∇𝑎𝑑), where in special case of perfect gas with negligible 

radiation 𝑄 = 1 − (
𝑑𝑙𝑛𝜇

𝑑𝑙𝑛𝑇
⁄ )

𝑃
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150, 200, 300 and 500 M⊙ and metallicity 𝑍 = 0.006. Different representations of 

particular burning stage in the core is shown. These nuclear burning stages have different 

influence on the structure and evolution of the star. They are, for example, responsible 

for internal pressure preventing the stars from collapsing gravitationally. Only less than 

10% of massive stars’ life is spent for helium burning and rest, while mostly 90% of its 

life is use for burning hydrogen, and this is only because reactions with smallest Coulomb 

barriers will proceed most rapidly and account for most of the nuclear energy generation. 

Massive stars are the ultimate recyclers; they use the ashes of the previous stage as fuel 

for the next. The exhaustion of one fuel leads to ignition of the next until finally an inert 

core of iron is formed, from which no further energy can be gained by the nuclear burning 

(Woosley et al., 2002).  These nuclear burning phases are basically classified into two; 

Major nuclear burning and advanced nuclear burning. 
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Figure 2.3: Evolution of the core of 120, 150, 200 300, and 500 M⊙ rotating models 

showing central temperature-density plane at Z = 0.006. Hydrogen-burning until silicon-

burning phases are shown in circles. Data taken from Yusof et al (2013). 
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2.3.1 Major Nuclear Burnings 

The hydrogen and helium burnings are referred to major burnings. These two phases of 

burning contribute almost entire nuclear reactions in massive stars. The hydrogen burning 

releases more energy per unit fuel consumed -about 1019 erg g-1- compared to helium 

burning -of about 1018 erg g-1- and also of advanced burning stages, which is about 5 ×

1017 erg g-1 for carbon and oxygen burnings. This signifies that the hydrogen fuel is 

mostly consumed by a star more slowly than the other fuels in order to balance both 

gravity and energy radiated from its surface. Moreover, the nuclear energy released from 

hydrogen and helium burnings is mostly radiated as photons. In the following subsections, 

details of these burning stages is discussed. 

2.3.1.1 Hydrogen Burning 

This is the most important burning phase in any stellar evolution, as it is the longest 

nuclear burning phase occurring in the evolution of any star. The energy released by this 

burning process depends upon the initial composition; while for a 70% hydrogen by mass, 

the energy is about 26.731 MeV (4.51 × 1018  erg g-1) (Woosley et al., 2002). Perhaps, 

this makes H-burning stars mostly observed than in any other phase. Nuclear fusion 

reaction of 4 protons into one 4He nucleus is essentially the mechanism involve in the H-

burning phase. This fusion reaction of H nucleus is achieved in two different but 

simultaneous chain reactions; namely the proton-proton (pp-chain) and the carbon-

nitrogen-oxygen (CNO)-cycle. However, the relative efficiencies of these reactions is 

dependent on mass of the star. 

(a) The CNO Cycle  

This combine two independent cycles; carbon-nitrogen (CN)-cycle and nitrogen-

oxygen (NO)-cycle. There must be some isotopes of C, N or O in either of these cycles. 

The elements here are just acting as catalyst because they are both produced and destroyed 
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during the same cycle. Table 2.2, shows nuclear burning reactions involve in CNO-cycle. 

In the CN, the cycle begins from any reaction provided the isotope responsible is found, 

and at a complete round of cycle, the isotope is consumed and reproduced again. The 

isotopes are abundantly equal when the temperature is high (about 15 × 106 𝐾), such that 

production rate is equal to rate of destruction. On the other hand, the NO cycle, is 

significant when temperature is higher to about approximately 20 × 106 𝐾. This clearly 

shows that, the temperature sensitivity of the CNO cycle is larger than that of the PP 

chain. Because of small dependence on temperature during the P-P chain, the H-burning 

involves a relatively large fraction of the stellar mass. In low main sequence, the lifetimes, 

which is a function of stellar mass during central H-burning phase, are very long and 

decrease as stellar mass increases. The effect of the stellar mass increase, is that the 

temperature significantly increase, which also make CNO cycle the dominant energy 

producer. This eventually ensures that the nuclear burning process is concentrated in the 

centre such that the energy production causes a steep increase of radiative gradient 

towards the centre. The core contracts much faster for massive stars, and the temperature 

required for He-burning is reached sooner. Furthermore, the core of the stars expands due 

to energy input as the CNO cycle activates, and in consequence, the central density 

decreases. The development and evolution of convective core during H-burning phase is 

also as result of activation of the CNO cycle. As can be seen in Figure 2.4, the convective 

cores, in the case of low mass star, appears temporarily with H-burning occurrence in 

radiative region but when the CNO cycle becomes dominant H-burning, the complete 

convective core appears. This is in contrary to more massive stars in which the transition 

from convective and radiative and back again, does not occur. 
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Table 2.2: CNO-cycle for H-burning phase in stars. The half- life for 13N, 15O, 17F and 
18F are respectively 9.965 min, 122.24 s, 64.49 s and 109.77 min. 

 

Cycles Reactions 
CNO I 12C(p,)13N 

13N(+)13C 13C(p,)14N 14N(p,)15O 15O(+)15N 15N(p,)12C 

CNO II 14N(p,)15O 
15O(+)15N 15N(p,)16O 16O(p, )17F 17F(+)17O 17O(p,)14N 

CNO III 15N(p,)16O 16O(p,)17F 17F(+)17O 17O(p, )18F 18F(+)18O 18O(p,)15N 

CNO IV 16O(p,)17F 17F(+)17O 17O(p, )18F 18F(+)18O 18O(p,)19F 19F(p,)16O 

 

2.3.1.2 Helium Burning 

The most abundant isotope produced after H-burning by a star is helium. When all 

hydrogen is consumed in the core, the star will contract and the central temperature 

increases. The helium burning, which is strong and under a partially relativistic electron 

degeneracy, is kick-started when central density and temperature are around 106 g cm-3 

and 8× 106 𝐾 respectively, which is appreciably higher than those for hydrogen burning 

due to higher Coulomb barriers. The electron degeneracy is only removed with help of 

initial temperature rise at constant density during the ignition of He-burning. The physical 

process working during main core He-burning stage is almost similar irrespective of the 

stellar mass. The helium in the core of the star undergoes a nuclear transformation at a 

certain point of ignition and the end products of the He-burning process is transformation 

of He nucleus into a mixture of 12C and 16O and some traces of 20Ne, which are 

respectively the third and fourth most abundant nuclides in the universe. In massive stars, 

the helium burning is main source of 16O and 18O and amounts to the cosmic 12C 

abundance. The density-temperature range during this burning, in massive stars, is 102 – 

105 g cm-3 and 1 – 4 × 108 𝐾 respectively. The nuclear reactions taken place in He-

burning are given in Table 2.3. The first and fundamental reaction is formation of 12C 

from alpha-nucleus, which is called triple alpha reaction (3). The 3 reaction involves 

a two sequential steps. The first step is for two alpha-particles interaction to temporarily 

produce 8Be in an endothermic process and within a very short time (~ 10-16 s), the 8Be 

disintegrates back into two alpha-particles. 
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Figure 2.4: Mass of convective core as function of central abundance of H for various 

stellar masses and with metallicity z = 0.006. M represent solar mass M⊙. Data taken 

from Yusof et al. (2013). 

 

However, as the interior temperature increases, the probability of the second reaction to 

occur is enhanced, and over time, small concentration of 8Be is sufficiently builds up to 

about 10-9 in the stellar matter, until the formation rate of 8Be is equal to its decay rate. 

The increase in density then ensures a third-alpha interaction with the 8Be to form 12C 

nuclei via the second reaction. However, a temperature of the order of ~  1.2 × 108 𝐾  is 

required before 3reactions produce a sizeable amount of energy. The amount of energy 

released per 12C nucleus production is about 7.275 MeV, as can be seen in Table 2.3. It is 

shown that, for a given stellar mass, the life time of a core He-burning is almost 100 times 

less than that of H-burning. Similarly, it is expected that, during the core He-burning 

phase, the stars have extended convective cores. After the build-up of a sufficient 12C 

abundance by 3 reaction, the other nuclear reactions proceeds, and the energy release 

per 12C(, )16O reaction is 7.162 MeV. 
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Table 2.3: Nuclear reactions of He-burning phase in stars with Q values. The Q value 

contain all available energy by a particular reaction in stellar matter. 
 

Reactions Q-value [MeV] 
4He()8Be +7.275 

8Be(, )12C +7.275 
12C(, )16O +7.162 

16O(, )20Ne +4.730 

20Ne(, )24Mg +9.317 

24Mg(, )28Si Not available 

 

In the end, only 3 and subsequent first two reactions are really relevant in the 

computations of stellar evolutions.  Therefore, the final end products of helium burning 

are mainly 12C and 16O, and their abundance ratio depends on the He-burning conditions 

(i.e. temperature-density), which in turn, are determined by the stellar mass. The more 

massive a star is, the more 16O is produced relative to 12C. Overall, the outcome of helium 

burning is C / O ≈ 1:1 to 1:2. This precise abundance ratio (12C/16O) is influenced by rate 

of 12C(, )16O reaction. The Neon, Magnesium and Silicon productions are comparably 

less important in this burning stage. 

2.3.2 Advanced Nuclear Burning

Although the star’s life is mostly spent in the hydrogen and helium burning stages, it 

is the later burning stages that account for synthesis of the majority of heavy nuclides.  

Low and massive stars undergo different evolution scenarios and end their lives very 

differently.  Due to inadequate temperature to overcome Coulomb repulsion in low mass 

stars, the thermonuclear reactions stops after He-burning. However, this is contrary to 

massive stars, where nuclear network is complex and continue to end after silicon 

burning. For a massive star, after exhaustion of helium burning, the core contracts such 

that temperature and density of the star increases, entering into a region of temperature-

density plane where neutrino energy released at this stages is radiated as neutrino-

antineutrino pairs, produced via electron-positron pair annihilation or photo-neutrino 
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process. The rise of temperature, from one advanced stage to another, induces rapid 

acceleration of fuel consumption during this nuclear burning stages. Arising from this, 

the luminosity- effective temperature of a massive star can appear until the end of 

hydrostatic silicon burning. Therefore, observing a star in its advanced stages of evolution 

becomes probably difficult. Table 2.4, show nuclear reactions of the advanced burning 

stages in a star. In these nuclear burning stages, the reactions proceeds from carbon, neon, 

oxygen until silicon with respect to temperature rise. The ashes of a consumed burning 

nuclide become the fuel for next set of nuclear burnings. 

Table 2.4: C-burning processes in massive stars and their respective Q value in MeV. 
 

Reaction Q-value [MeV] 
12C(12C,p)23Na +2.241 
12C(12C,)20Ne +4.617 
12C(12C,n)23Mg -2.599 
12C(12C,)24Mg +13.931 
12C(12C,2)16O -0.114 
16O(16O,p)31P +7.678 
16O(16O,2p)30S +0.381 
16O(16O,n)31S +1.499 
16O(16O,)28Si +9.594 
16O(16O,2)24Mg -0.393 
16O(16O,d)30P -2.409 
20Ne(,)16O -4.730 
20Ne(,)24Mg +9.316 
20Ne(,p)23Mg +1.821 
24Mg(,)28Si +9.984 
26Mg(,n)29Si +0.034 

 

2.3.2.1 Carbon Burning 

When the core temperature exceeds 7 × 108 𝐾, Carbon burning takes place. Due to its 

lowest Coulomb barriers, 12C-12C fusion reaction is the first process that triggered this 

burning stage. The core abundance of carbon in massive stars is a key quantity which 

strongly affects all successive evolutionary stages (Arnett, 1972). This is because, carbon 

abundance essentially determines the availability of carbon for the core and shell C-
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burning. However, the magnitude of carbon abundance is dependent on nuclear cross 

section for 12C()16O reaction, which is why nuclear reaction rates of this reaction that 

is commonly used in stellar computations, affects the predictions of  their final 

nucleosynthesis. The fundamental reactions at astrophysical energies of interest from this 

burning stage are the first three reactions in Table 2.4. The remaining processes from C-

burning are of less important in this regard.  Moreover, there are significant amount of 

elements produced particularly during shell burning, which is a result of carbon 

exhaustion and subsequent shifts of the burning process to a shell. However, the most 

efficient neutron source during this shell C-burning is 22Ne(n)25Mg.  

2.3.2.2 Neon Burning 

After the C-burning phase and when most of the 12C nuclei have been consumed, the 

proceeding burning stages in the core of the star are mainly 16O, 20Ne, and 28Si. As 

mentioned earlier, the gravitational contraction of the core of the star induces an increase 

of central temperature and density, which triggered ignition of subsequent burning 

phases. Due to small Coulomb barrier of the oxygen, the immediate reaction is 

photodisintegration of 20Ne nuclei (particularly 20Ne(, )16O)  at a temperature of about 

(1.2 – 1.9)109 K which is an endothermic reaction. However, this burning phase always 

produces a convective core, irrespective of stellar mass and lasts only for a short period 

of time. 

2.3.2.3 Oxygen Burning and Beyond 

At the end of neon fuel consumption, 16O, 24Mg and 28Si are main chemical 

composition in the core. The first reaction induced by combinations of these nuclides is 

fusion of 16O due to the lowest Coulomb barrier of oxygen nucleus. This reaction 

produces a 32S compound nucleus which is highly excited. This burning stage ignites 

when the core temperature is around (1.5 – 2.7)109 K and the most commonly reactions 
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are given Table 2.4. This nuclear burning is able to overcome the neutrino losses as it 

always occur in convective cores of massive stars. As mass of the star increases, the 

lifetime of this burning phase decreases so that very massive stars born oxygen at higher 

core temperatures. However, when the central temperature attains (2.8 – 4.1)109 K, the 

Si-burning starts. This is the dominant process at end of the O-burning, and according to 

numerical simulations (Limongi et al., 2000), it can be divided into a radiative and 

convective different phases. The schematic diagram of these nuclear reaction processes 

is shown in Figure 2.5. The Si-burning gradually build up heavier nuclei, until 56Fe, which 

at temperature ≥ 5 × 109 𝐾 break up due to photodisintegration into 4He-particles and 

reverses the effect of all earlier burnings, thus a Nuclear Statistical Equilibrium (NSE) 

has been achieved. These processes, however, occur during explosions of supernovae. 

 

 
 

Figure 2.5: Schematic illustration of sequence of nuclear burning phases, showing all 

major and advanced burning stages. Picture taken from Kozyreva (2014). 
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2.4 Progenitor Mass of Pair-Instability Supernovae  

A star could only experience pair-instability and explode as PISN when it is massive 

enough. The explosion of PISN is first identified by Barkat et al. (1967) in a detailed 

analysis of some relevant equation of states for very massive stars at the end of their 

lifetimes. It is generally originated when central temperature and density of a star are 

relatively high, (Arnett, 1996; Barkat et al., 1967; Fraley, 1968; Phillips, 2013; Rakavy 

& Shaviv, 1967) and then reach a region (as is shown in Figure 1.1) where the energy 

needed to create the rest mass of electron-positron pairs (at high entropy) softens the 

equation of state and reduce the adiabatic index below 4/3 (Fraley, 1968). The mass range 

required to undergo this process has been postulated by many researchers in astrophysics 

community. Many evolutionary calculations found that stars with oxygen core mass 

greater than 60 M⊙ are dynamically unstable due to pair-production and instability set in 

when central temperature is high (Barkat et al., 1967). In 2002, Woosley et al. (2002) 

emphasized that pair-production is induced by an instability occurring only in massive 

stars with initial mass from around 120 M⊙ and higher. However, for zero-age main 

sequence mass (ZAMS), the long-existing prediction was that, only non-rotating and 

zero-metallicity stars within the range of 140 M⊙< MZAMS < 260 M⊙ of  ZAMS mass 

would explode as PISN (Heger & Woosley, 2002). While, Chatzopoulos and Wheeler 

(2012b), investigated about the minimum ZAMS mass of a star capable of reaching the 

instability region and demonstrates that stars with 65 M⊙ would encounter full PISN and 

40 M⊙ would encounter Pulsational Pair-Instability Supernova (PPISN). Those results 

established a criteria for a ZAMS mass to enter the pair-instability region, which states 

that the instability region is controlled by mass of oxygen core, which in particular is 

highly dependent on mass loss, metallicity, and rotationally induced mixing, as well as 

convective and semi-convective instability. In the case of metallicity, Heger et al. (2003) 

found that there is a threshold of metallicity below which instability can occur, on account 
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of strong metallicity dependence on massive star winds. However, this threshold is 

investigated by Langer et al. (2007). To emphasize on this, let consider Figure 2.6  which 

was taken from Heger et al. (2003). The figure show different types of supernova due to 

metallicity. The green line represent a separation regimes where stars keep hydrogen 

envelop from regimes where hydrogen envelop is lost. Similarly, the dashed blue line in 

this figure, represents boundary of regime of direct black hole formation (in black) which 

is only disrupted by a strip of PISNe that has no remnant. 

 

 
 

 

Figure 2.6: Types of supernova as functions of initial metallicity against initial mass. 

Picture taken from Heger et al. (2003). 

 

It is also postulated that large metallicities produces low oxygen cores and therefore, 

stars on this range try to avoid instability regions (Chatzopoulos & Wheeler, 2012a; 

Kozyreva et al., 2014; Vink et al., 2011). And this condition is the most likely reason why 

instability does not exit at solar metallicity (Woosley et al., 2002; Yusof et al., 2013). 

Whereas, low metallicities reduces mass loss, and relatively allow lower mass main-

sequence stars to encounter the instability (Chatzopoulos & Wheeler, 2012a). However, 
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for mass loss effects, stars loose mass at all evolutionary phases and rate of mass loss 

varies depending on initial mass of the star. Thus, evolution of massive stars is strongly 

affected by mass loss and there are various mass loss prescriptions that are used for better 

understanding of different mass loss rates in stellar evolution models. The effects of 

rotation can be seen from comparison of rotating and non-rotating models. The rotating 

models live longer than non-rotating due to decrease in the rate of mass loss and rotation, 

which also reduce the final mass of the star. Effect of this can be verified by plotting 

mass-loss against final mass for rotating and non-rotating models, which also affects 

explosion mechanism of the stars by reducing threshold of pair-instability (Woosley, 

2017). In another perspective, to determine the appropriate mass of a star expected to 

undergo the instability, Heger and Woosley (2002), established that mass range of 

massive stars with a helium-core mass that could explodes as PISN is within ~ 64-133 

M⊙. The helium-core mass greatly affects the nucleosynthesis in PISNe. Meanwhile, in 

stellar evolution models by Yusof et al. (2013); stellar progenitors that are expected to 

enter the instability region and explode as PISNe are found to be between about 100 M⊙  

and 290 M⊙ rotating models in SMC metallicities and above 450 M⊙ rotating and about 

300 M⊙ non-rotating models in LMC metallicities. The advantage in that later discovery 

is that many effects have been put into consideration before final conclusion. For instance, 

the benchmark for helium core mass given by Heger and Woosley (2002) is included. 

Similarly, metallicity factor, as highlighted in Vink et al. (2011) and others, is considered 

and finally, rotation effects, which facilitate a more chemically homogenous evolution, 

and produce higher oxygen-core that is necessary for instability, is also considered and 

compared with non-rotation. Perhaps, the progenitors need to retain higher mass, to 

maintain their helium-core mass above ~65 M⊙. However, this condition is not 

guaranteed at high metallicities where stellar wind, mass-loss dominates evolution of very 

massive stars (Vink et al., 2011). 
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2.5 Neutrinos in Massive Stars 

Neutrinos are produced either naturally or artificially. They are just produced 

everywhere; as there are still neutrino left over from the Big Bang around us. The natural 

sources are atmospheric neutrinos, high energy neutrinos, solar neutrinos, cosmic 

neutrino background and supernova neutrinos. These neutrinos and photons are believed 

to be produced in astrophysical beams of cosmic-ray particles interacting with matter at 

source object (Aartsen et al., 2017). They can, however, be made in nuclear reactors 

(reactor neutrinos) and particle accelerators (proton-accelerator neutrinos). Many 

information, both on general physics of neutrinos and particularly, on important 

astrophysical phenomena, can be provided from astrophysical neutrinos. They are very 

critical in determining the end fate of massive stars. Neutrinos are produced in large 

numbers from exploding massive stars and are extremely important probes of processes 

involve in supernovae before its explosion. Different neutrino processes and their 

reactions in massive stars are shown in Table 2.6. The three flavours of neutrinos are 

electron neutrinos(𝜈𝑒), muon neutrinos(𝜈𝜇), and tau neutrinos(𝜈𝜏) and each of these 

flavours is associated with a corresponding antineutrino. The neutrino and antineutrino 

emissions of different flavours from massive stars drives its gravitational binding energy 

away of compact remnant and brings the star to a cold final state through its initial hot 

phase (Janka, 2017). In principle, neutrino energy distribution from massive stars could 

provide great information about their explosion and, generally about neutrino physics. 

2.5.1 Neutrino-electron interactions 

Neutrinos and antineutrinos might interact with stellar matter such as neutrino-electron 

interactions. At low-energy neutrinos, this interactions may be assumed to go through 

elastic scattering process which has no regional boundary such that the initial and final 

states are equal. There are basically two interaction channels through which neutrinos 

interact with stellar matter; 
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I. Charge-current (CC) interaction channel 

II. Neutral-current (NC) interaction channel 

The neutrino-electron interactions is a free leptonic process with its amplitude easily 

calculated using Feynman rules of Standard Model (SM). Therefore, two channels 

propagates via exchange of W and Z bosons respectively, as is shown in the two Feynman 

diagrams, Figure 2.7. 

 

Table 2.5: Neutrino processes in massive stars, taken from Janka (2016). The N 

represents nucleons (either neutron ‘n’ or proton ‘p’), 𝜈 ∈ (𝜈𝑒 , 𝜈̅𝑒 , 𝜈𝜇, 𝜈̅𝜇, 𝜈𝜏, 𝜈̅𝜏) and 𝜈𝑥 ∈

(𝜈𝜇, 𝜈̅𝜇, 𝜈𝜏, 𝜈̅𝜏). 
 

Process Reaction 

Beta-process 

Electron and 𝜐𝑒 absorption by nuclei 𝑒− + (𝐴, 𝑍) ⟷ (𝐴, 𝑧 − 1) + 𝜐𝑒 

Electron and 𝜐𝑒captures by nucleons 𝑒− + 𝑝 ⟷ 𝑛 + 𝜐𝑒 

Positron and 𝜈̅𝑒captures by nucleons 𝑒+ + 𝑛 ⟷ 𝑝 + 𝜈̅𝑒 

Thermal pair production and annihilation processes 

Nucleon-nucleon bremsstrahlung 𝑁 + 𝑁 ⟷ 𝑁 +𝑁 + 𝜈 + 𝜈̅ 

Electron-Positron pair process 𝑒− + 𝑒+⟷ 𝜈 + 𝜈̅ 

Plasmon pair-neutrino process 𝛾̃ ⟷ 𝜈 + 𝜈̅ 

Photo-neutrino process 𝛾 + 𝑒±⟷ 𝑒± + 𝜈 + 𝜈̅ 

Reactions between neutrinos 

Neutrino-pair annihilation 𝜈𝑒 + 𝜈̅𝑒 ⟷ 𝜈𝑥 + 𝜈̅𝑥 

Neutrino scattering 𝜈𝑥 + (𝐴, 𝑍) ⟷ 𝜈𝑥 + (𝜈𝑒 , 𝜈̅𝑒) 

Scattering processes with medium particles 

Neutrino scattering with nuclei 𝜈 + (𝐴, 𝑍) ⟷ 𝜈 + (𝐴, 𝑍) 

Neutrino scattering with nucleons 𝜈 + 𝑁 ⟷ 𝜈 + 𝑁 

Neutrino scattering  with electrons and 

positrons 
𝜈 + 𝑒±⟷ 𝜈 + 𝑒± 

 

We can see from this figure that charge-current channel contribute to elastic scattering 

given by; 

𝜈𝑒 + 𝑒
− → 𝜈𝑒 + 𝑒

−        (2.22) 

 

While neutral-current contribution is;  
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𝜈𝑟 + 𝑒
− → 𝜈𝑟 + 𝑒

−         (2.23) 

The r in Equation 2.23 stands for 𝑟 = 𝜇, 𝜏. And according to Giunti and Kim (2007), for 

low-energy neutrinos, the effective Lagrangian for the above Feynman diagrams which 

described the two Equations 2.22 and 2.23 can be expressed as; 

 
 

Figure 2.7: Feynman diagrams for neutrino-electron interactions through Charge-current 

(left) & Neutral-current (right) via W & Z propagators respectively. 

 

ℒ𝑒𝑓𝑓(𝜈𝑒𝑒
− → 𝜈𝑒𝑒

−) = −
1

√2
𝐺𝐹{[𝜈𝑒̅𝛾

𝜌(1 − 𝛾5)𝑒][𝑒̅𝛾𝜌(1 − 𝛾
5)𝜈𝑒] +

     [𝜈𝑒̅𝛾
𝜌(1 − 𝛾5)𝜈𝑒][𝑒̅𝛾𝜌(𝑔𝑉

𝑙 − 𝑔𝐴
𝑙 𝛾5)𝑒]}      (2.24) 

 

The Fermi constant 𝐺𝐹 = 1.16637 × 10
−5𝐺𝑒𝑉−2 and the two coefficients  

𝑔𝑉
𝑙  𝑎𝑛𝑑 𝑔𝐴

𝑙 = 1 2⁄  as constant values (Giunti & Kim, 2007). From this equation, it is clear 

that the second part of the right side represents NC contributions while the first part of 

the right side accounts for CC channel. However, considering only NC process, Equation 

2.23, the effective Lagrangian for neutral-current terms becomes; 

ℒ𝑒𝑓𝑓(𝜈𝑟𝑒
− → 𝜈𝑟𝑒

−) = −
1

√2
𝐺𝐹{[𝜈𝑟̅𝛾

𝜌(1 − 𝛾5)𝜈𝑟][𝑒̅𝛾𝜌(𝑔𝑉
𝑙 − 𝑔𝐴

𝑙 𝛾5)𝑒]}       (2.25) 
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It is important to note that these two processes and their effective Lagrangian are similar 

in structure and have some common quantities; for example, their cross-sections are 

proportional to Fermi constant (𝜎 ∝ 𝐺𝐹
2𝑠). In principle, the differential cross-section, as 

given by Giunti and Kim (2007) is; 

𝑑𝜎

𝑑𝑄2
=
1

𝜋
𝐺𝐹

2 [𝑔1
2 − 𝑔2

2 (1 −
𝑄2

2𝑝𝑣𝑖.𝑝𝑒𝑖
)
2

− 𝑔1𝑔2𝑚𝑒
2 𝑄2

2(𝑝𝑣𝑖.𝑝𝑒𝑖)
2]   (2.26) 

 

However, in laboratory frame, the momentum 𝑝⃗𝑒𝑖 = 0 and assuming kinetic energy of a 

recoil electron 𝑇𝑒, the quantity of energy released is define by; 

𝑄2 = 2𝑚𝑒𝑇𝑒         (2.27) 

 

Thus, the differential cross-section, Equation 2.26, becomes; 

𝑑𝜎

𝑑𝑇𝑒
(𝐸𝜈 , 𝑇𝑒) =

𝜎0

𝑚𝑒
[𝑔1
2 + 𝑔2

2 (1 −
𝑇𝑒

𝐸𝜈
)
2

− 𝑔1𝑔2𝑚𝑒
𝑇𝑒

𝐸𝜈
2]    (2.28) 

 

where 𝑔1and 𝑔2 are different values which depend on the flavour of the neutrino, 𝑚𝑒 is 

electron mass, 𝜎0 ≃ 88.06 × 10
−46𝑐𝑚2 and 𝐸𝜈is the energy of the incoming neutrino. 

We can go further to prove that for any given neutrino energy 𝐸𝜈,  there exist a maximum 

kinetic energy of the recoil electron 𝑇𝑒
𝑚𝑎𝑥, and there also a minimum neutrino energy 

𝐸𝜈
𝑚𝑖𝑛 that produces a given kinetic energy. This maximum kinetic and minimum neutrino 

energies are respectively given by the following two equations; 

𝑇𝑒
𝑚𝑎𝑥(𝐸𝜈) =

2𝐸𝜈
2

𝑚𝑒+2𝐸𝜈
        (2.29) 

𝐸𝜈
𝑚𝑖𝑛(𝑇𝑒) =

1

2
𝑇𝑒 (√1 +

2𝑚𝑒
𝑇𝑒
⁄ + 1)      (2.30) 
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However, the minimum neutrino energy takes two different values; for 𝑇𝑒 ≪ 𝑚𝑒, 𝐸𝜈
𝑚𝑖𝑛 ≃

√2𝑚𝑒𝑇𝑒
2⁄  while for 𝑇𝑒 ≫ 𝑚𝑒; 𝐸𝜈

𝑚𝑖𝑛 ≃ 𝑇𝑒 +
𝑚𝑒

2⁄ . We can simply integrate Equation 

2.28 to get the total cross-section as follows; 

𝜎 =
𝜎0

𝑚𝑒
∫ [𝑔1

2 + 𝑔2
2 (1 −

𝑇𝑒

𝐸𝜈
)
2

− 𝑔1𝑔2𝑚𝑒
𝑇𝑒

𝐸𝜈
2] 𝑑𝑇𝑒     (2.31) 

We could, however, notice that it is impossible to calculate the neutrino-electron 

interactions without an initial value of kinetic energy of the recoil electron manifested. 

Hence, the total cross-section can be measured as a function of both initial kinetic energy 

of the recoil electron as well as neutrino energy. Assuming the initial kinetic energy is 

𝑇𝑒
𝑖𝑛𝑖, Equation 2.31 can be rewritten as follows; 

𝜎(𝐸𝜈 , 𝑇𝑒
𝑖𝑛𝑖  ) =

𝜎0

𝑚𝑒
[(𝑔1

2 + 𝑔2
2)(𝑇𝑒

𝑚𝑎𝑥 − 𝑇𝑒
𝑖𝑛𝑖) − (𝑔2

2 + 𝑔1𝑔2
𝑚𝑒

2𝐸𝜈
) (

𝑇𝑒
𝑚𝑎𝑥2−𝑇𝑒

𝑖𝑛𝑖2

𝐸𝜈
) +

    
𝑔2
2

3
(
𝑇𝑒
𝑚𝑎𝑥3−𝑇𝑒

𝑖𝑛𝑖3

𝐸𝜈
2 )]         (2.32) 

 

where 𝑇𝑒
𝑚𝑎𝑥is similar to Equation 2.30 and 𝑇𝑒

𝑖𝑛𝑖 takes different initial values of the kinetic 

energy. 

2.5.2 Neutrino oscillations 

A neutrino flavour might change from its originally generated flavour to a different 

flavour by travelling certain distance; this phenomenon is called neutrino oscillation. 

Neutrino oscillations is remarked as a quantum mechanical phenomenon, which is 

described as dependant on the wave nature of neutrinos (Fantini et al., 2018). The 

interference of different massive neutrinos give rise to this oscillations and due to their 

very small mass difference they are produced and detected consistently (Giunti & Kim, 

2007). Interest in neutrino oscillations has been intensified especially due to recent big 

discovery of its peculiar properties such as neutrino mixing and non-zero neutrino mass 
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which actuated major change to standard model of particle physics in the last two decade 

and half. It is also among the hottest topics in elementary particle physics today. 

Observations of solar and atmospheric neutrinos over many years revealed the existence 

of neutrino oscillations and there has been many experiments which significantly 

improved the discovery of this important phenomenon. Examples of such experiments 

are Sudbury Neutrino Observatory (SNO) and Super-Kamiokande which their results 

provided revolutionary insight into the properties of neutrinos and in 2015 noble prize 

was given to Takaaki Kajita and Arthur B. McDonald for the discovery of neutrino 

oscillations, which shows that neutrinos have mass. The two types of neutrino oscillations 

are explained in the following sub-sections. A neutrino oscillations involving mixing of 

neutrino flavours is best described in the following equations (Mikheyev & Smirnov, 

1986); 

𝜈𝑒 = 𝜈1 cos 𝜃 + 𝜈2 sin 𝜃        (2.33) 

𝜈𝑟 = −𝜈1 sin 𝜃 + 𝜈2 cos 𝜃        (2.34) 

 

where 𝜈𝑒 is the electron-neutrino and   𝜈𝑟 = 𝜈𝜇 𝑜𝑟 𝜈𝜏 represents muon and tau neutrinos 

respectively. 𝜈1 and 𝜈2 are definite eigenstates with masses 𝑚1and 𝑚2 respectively. And 

𝜃 is a mixing angle. 

2.5.2.1 Vacuum Neutrino oscillations  

Around the year 1976, the theory of plane-wave neutrino oscillations was introduced 

ably by Fritsch and Minkowski (1976), Bilenky and Pontecorvo (1976) and Eliezer and 

Swift (1976), which was later reviewed by Bilenky and Pontecorvo (1978) and Bilenky 

et al. (1999). According to these established theory, when a particular flavour of neutrino 

(𝛼) having momentum 𝑝⃗, is created in a weak interaction by charged-current process 

from a charged lepton or antilepton, the eigenstates of the Hamiltonian of a massive 

neutrino states is given by; 
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𝐻|𝜈𝑘⟩ = 𝐸𝑘|𝜈𝑘⟩         (2.35) 

 

with the energy eigenvalues for ultra-relativistic approximation defined as; 

𝐸𝑘 = (𝑝⃗
2 +𝑚𝑘

2)
1
2⁄ ≃ 𝐸 +

𝑚𝑘
2

2𝐸
⟹ 𝐸𝑘 − 𝐸𝑗 =

∆𝑚𝑘𝑗
2

2𝐸
    (2.36) 

 

The neutrino with a given mass will propagate with a Hamiltonian given by Equation 2.35 

and evolve in time 𝑡 as plane waves which can be describe by Schrödinger equation as; 

𝐻|𝜈𝑘(𝑡)⟩ = 𝑖
𝑑

𝑑𝑡
|𝜈𝑘(𝑡)⟩ = 𝐸𝑘|𝜈𝑘(𝑡)       (2.37) 

 

And the consequent time evolution of the plane wave’s equation takes the form; 

|𝜈𝑘(𝑡)⟩ = 𝑒
−𝐸𝑘𝑡|𝜈𝑘⟩.        (2.38) 

 

When, for example, a particular neutrino flavour (say|𝜈𝑒⟩) is created at time 𝑡, the 

transition probability of this neutrino to oscillate into another (say into |𝜈𝜇⟩) can be given 

by;  

𝑃𝜈𝑒→𝜈𝜇(𝑡) = |⟨𝜈𝜇|𝜈𝑒(𝑡)⟩|
2
=
sin2 2𝜃[1−cos(𝐸2−𝐸1)𝑡]

2
.    (2.39) 

 

By Equation 2.36, the transition probability becomes; 

𝑃𝜈𝑒→𝜈𝜇(𝑡) =
sin2 2𝜃[1−cos

∆𝑚12
2

2𝐸
𝑡]

2
       (2.40) 

 

But in neutrino oscillation experiments, the propagation time 𝑡 cannot be measured, but 

it is represented by a source-detector distance 𝐿_(in metre), and hence for ultra-relativistic 

limit 𝑡 ≃ 𝐿 such that 𝑐 = 1, which leads to the standard oscillation probability; 

𝑃𝜈𝑒→𝜈𝜇(𝐿, 𝐸) =
sin2 2𝜃[1−cos

∆𝑚12
2

2𝐸
𝐿]

2
       (2.41) 
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This is called neutrino oscillation with transition probability as periodic function of 𝐿 𝐸⁄ , 

which shows that the source-detector distance and neutrino energy are quantities that 

depend on experiment that determine the phases of neutrino oscillations. While the phases 

are equally determined by neutrino squared-mass differences ∆𝑚𝑘𝑗
2  (in 𝑒𝑉2),  where 

sin2 2𝜃 is amplitude of oscillations, and 𝐸 is neutron energy measured in MeV or GeV. 

However, the oscillation length in vacuum can be define by; 

𝐿𝜈 =
4𝜋𝐸

∆𝑚12
2           (2.42) 

 

Meanwhile, this oscillation length is 𝐿𝝂 ≾ 𝐿, which shows that neutrino oscillations can 

be observed when oscillation length is not much greater than distance between the source 

and detector (Bilenky et al., 1999). 

2.5.2.2 Neutrino oscillations in matter 

Vacuum oscillations can be modified by matter, particularly for different amplitudes 

of neutrino flavours of forward elastic scattering on electrons and nucleons (Mikheyev & 

Smirnov, 1986). In 1978, Wolfenstein showed that massless neutrinos could also oscillate 

when it passed through matter. This happens due to change in potential and mixing angle 

which is, as the result of forward scattering of neutrinos with matter. The effective mixing 

angle in matter depends solely on density of matter and can therefore replace the vacuum 

mixing angle (Wolfenstein, 1987). Wu et al. (2016) provided that inside the Sun, for 

example, the propagation of neutrinos will experience a potential that grow out of the 

coherent forward scattering with particles in the medium which leads to what is now 

called Mikheyev-Smirnov-Wolfenstein (MSW) mechanism (Mikheyev & Smirnov, 

1986; Wolfenstein, 1978). Today it is known that vacuum mixing angle which are suitable 

for neutrino oscillations in the sun is large although not to maximum level and it is also 

known that the transitions of flavour for solar neutrinos occur by this famous mechanism 
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(Giunti & Kim, 2007). It is worthy to note that neutrinos in matter are affected by both 

coherent and incoherent forward elastic scatterings, but the latter is extremely negligible 

in most situations. The evolution equation of a propagating neutrino in matter is affected 

by effective potentials resulting from interactions with medium by means of two weak; 

CC and NC scatterings processes. Let assume in the case of CC, the potential is 𝑉𝐶𝐶 when 

an electron neutrino propagates in an isotropic and homogeneous gas, the effective 

Hamiltonian for the CC scattering process can be defined by; 

𝐻𝑒𝑓𝑓
𝐶𝐶 =

1

2
𝐺𝐹[𝜈̅𝑒(𝑥)𝛾

𝜌(1 − 𝛾5)𝑒(𝑥)][𝑒̅(𝑥)𝛾𝜌(1 − 𝛾
5)𝜈𝑒(𝑥)],   (2.43) 

 

And the charge-current potential, after some physical approximations, is given as 

functions of electron density of the medium, by; 

𝑉𝐶𝐶 = √2𝐺𝐹𝑁𝑒.         (2.44) 

 

while, on the other hand, when in a low density and temperature astrophysical 

environment in which mainly electrons, protons and neutrons are dominated; the number 

of electrons and protons are equal and their NC potentials cancels, leaving only neutron 

contributions given by 

𝑉𝑁𝐶 = −
1

2
√2𝐺𝐹𝑁𝑛.        (2.45) 

 

The constant √2𝐺𝐹 ≃ 7.63 × 10
−14 𝑒𝑉𝑐𝑚

3

𝑁𝐴
 will rendered the two potentials very small, 

where 𝐺𝐹 is Fermi constant and 𝑁𝐴 is Avogadro’s number. The transition probability is 

density dependant and changes with time. For constant matter density, the transition 

probability changes from that of the vacuum oscillations with only replacing the mixing 

angle and squared-mass difference from the vacuum case to matter. However, for non-
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constant density of matter, the transition is adiabatic and the oscillation length in matter 

changes to: 

𝐿𝑀
𝑜𝑠𝑐 =

4𝜋𝐸

∆𝑚𝑀
2 =

(

 
 𝐿𝜈

√(1−2(
𝐿𝜈
𝐿0
⁄ cos2𝜃)+(

𝐿𝜈
𝐿0
⁄ )

2
)

)

 
 

,     (2.46) 

 

 

However, 𝐿0 = 2𝜋 √2𝐺𝐹𝑛𝑒⁄ . Thus, we can see that the MSW effect is described based 

on the ratio 𝐿𝜈 𝐿0⁄   and the oscillations length in matter affects the survival probability as 

follows; for 𝐿𝜈 𝐿0⁄ = cos 2𝜃𝑀, the maximum mixing is called MSW resonance, while for 

𝐿𝜈 𝐿0⁄ ≪ 1, matter effects are in-essential and the probability is similar to the vacuum 

transition probability. 

2.5.3 Stopping power of matter for Neutrino 

In the calculations of total neutrino energy-loss in a massive star, the radius of the star 

can be multiplied by stopping power which is a function of neutrino energy and can be 

assumed constant. Assuming the neutrino-electron cross-sections with effect of neutrino 

oscillations is known, as given by Sulaksono and Simanjuntak (1994), we can integrate 

the cross-section to get the stopping power of matter for neutrinos as follows; 

−(
𝑑𝐸

𝑑𝑠
) =

𝐺𝐹
2𝑚𝑒𝑁𝑒

2𝜋
[𝑃𝑒 [𝐴𝑒

(𝑄𝑚𝑒
2 −𝜂2)

2
+ 𝐵𝑒

(𝑄𝑚𝑒
3 −𝜂3)

3
+ 𝐶𝑒

(𝑄𝑚𝑒
4 −𝜂4)

4
] − (𝑃𝑒 − 1) [𝐴𝜏

(𝑄𝑚𝜏
2 −𝜂2)

2
+

       𝐵𝜏
(𝑄𝑚𝜏
3 −𝜂3)

3
+ 𝐶𝜏

(𝑄𝑚𝜏
4 −𝜂4)

4
]]        (2.47) 

 

where 𝐴𝑖 , 𝐵𝑖 and 𝐶𝑖(𝑖 = 𝑒, 𝜏) are constants, with their values depending on whether effect 

of neutrino oscillations or neutrino mass is considered. For simplicity, we refer the reader 

to Sulaksono and Simanjuntak (1994) for explicit expressions of these constants. In the 

above Equation 2.47; 𝑁𝑒is electron density, 𝜂 = (2𝑁𝑒𝑒
2 𝑚𝑒⁄ ) is the Plasmon energy of 
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electrons in the star and 𝑄𝑚 = 2𝑚𝑒(𝐸𝜈
2 −𝑀𝜈

2) (𝑀𝜈
2 +𝑚𝑒

2 + 2𝑚𝑒𝐸𝜈)⁄ , is the maximum 

energy transferred to electron from neutrino of mass 𝑀𝜈(which was set to be zero in 

Equation 2.47). 

 

2.5.4 Neutrino flavour transformation 

Neutrinos can undergo flavour oscillations in both vacuum and material medium. The 

phenomena of neutrino flavour transformation is a link of two exciting developments: the 

successful achievements in experimental neutrino physics and magnificent progress of 

both astronomy and astrophysics (Duan et al., 2010). The propagation of a particular 

flavour of neutrinos through a medium (vacuum or matter) to reach the Earth, will affect 

the neutrino spectra by transitional change of the initial flavour into an entirely different 

one, and has potential of mixing the spectral features and time of one flavour with those 

of another (Wright et al., 2017). This transformations is mainly caused due to oscillations 

of neutrino flavour as neutrinos propagates through stellar atmosphere and due to neutrino 

vacuum propagation between supernova and Earth, which resulted in quantum de-

coherence on neutrino journey to the Earth (Wright et al., 2017a; Wright et al., 2017b; 

Wright et al., 2016). However, this de-coherence is caused as a result of large propagation 

distance which is greater than coherence length (Giunti et al., 1998). The  key quantities 

for this flavour transformations are material density and electron fraction of the medium 

by which neutrinos propagates (Wolfenstein, 1978). 

Let us consider a system of 3-flavour neutrino oscillations (𝜈𝑒 , 𝜈𝜇, 𝜈𝜏) having neutrino 

mass squared differences(∆𝑚𝑒𝑎
2 ), the evolution matrix 𝑆(𝑥) which described the neutrino 

oscillations can be given, in form of (𝑋) basis, by a Schrödinger equation 

𝑖
𝑑𝑆(𝑋𝑋)

𝑑𝑟
= 𝐻(𝑋)𝑆(𝑋𝑋)        (2.48) 

 

Where the Hamiltonian 𝐻(𝑋) is defined by; 
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𝐻(𝑋) =
𝑉

2
(
1 0
0 −1

) + 𝛿 (
− cos 2𝜃 sin 2𝜃
sin 2𝜃 cos 2𝜃

)     (2.49) 

 

In this term, the matter-induced potential is 𝑉(𝑋) = √2𝐺𝐹𝑁𝑒(𝑥). And 𝛿 = ∆𝑚2 4𝐸⁄ . 

Therefore, the evolution matrix relating state of neutrinos in basis (𝑋) at some initial 

position 𝑟1 to another state with possibly different basis (𝑌) at 𝑟2, can be denoted by 

𝑆(𝑌𝑋)(𝑟1, 𝑟2). This defines the transition probability as probability for state 𝑥 in the (𝑋) 

basis which is positioned at 𝑟1, to be in a different basis (𝑌) which is positioned at 𝑟2, this 

can be expressed as; 

𝑃𝑦𝑥
(𝑌𝑋) = |𝑆𝑦𝑥

(𝑌𝑋)|
2

        (2.50) 

 

The only difference in the transition probability of antineutrinos to that of neutrinos is by 

denoting the transition probability with an over bar. The bases (𝑋) and (𝑌) stands for 

flavour basis which contains basis states (𝜈𝑒 , 𝜈𝜇, 𝑎𝑛𝑑 𝜈𝜏) and matter bases or simply 

referred to mass basis in vacuum that has (𝜈1, 𝜈2, 𝜈3) basis states (Bethe, 1986). Hence, 

we can expressed neutrino transition probability, for example, by 𝑃𝑖𝑗
(𝑚𝑚) = 𝑃(𝜈𝑗 → 𝜈𝑖), 

which is for a particular neutrino at state 𝑗 in matter basis to be detected at state 𝑖. 

However, the mixing matrix 𝑈𝑉 is given by Maki-Nakagawa-Sakata (MNS) matrix U, 

given by: 

|𝜈∝⟩ = ∑ 𝑈𝛼𝑖
∗

𝐼 |𝜈𝑖⟩         (2.51) 

 

where 𝛼 = 𝑒, 𝜇, 𝜏 and 𝑖 = 1,2,3 are flavour states and mass eigenvalues respectively, 𝑈𝛼𝑖 

are elements of unitary transformation matrix which has four free parameters, namely; 

three mixing angles, 𝜃12, 𝜃23, 𝜃13 and a CP-violating phase 𝛿𝐶𝑃. The mixing angles 

defines a unitary matrix for mixing of states,𝑈𝑖𝑗, with 𝑐𝑖𝑗 and 𝑠𝑖𝑗 are cosine and sine of 

the appropriate mixing angle 𝜃𝑖𝑗. The individual matrices can be given as; 
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𝑈12 = (
𝑐12 𝑠12 0
−𝑠12 𝑐12 0
0 0 1

),        (2.52) 

𝑈13 = (
𝑐13 0 𝑠13𝑒

−𝑖𝛿𝑐𝑝

0 1 0
−𝑠13𝑒

−𝑖𝛿𝑐𝑝 0 𝑐13

),      (2.53) 

𝑈23 = (
1 0 0
0 𝑐23 𝑠23
0 −𝑠23 𝑐23

),        (2.54) 

 

These three equations can be used to describe mixing between neutrino flavours 

consisting of two mass states (Cherry, 2012), and they can also form a full MNS matrix 

(Duan & Kneller, 2009) given by the following parameterisation; 

𝑈𝑉 = 𝑈23𝑈13𝑈12 =

          (

𝑐12𝑐13 𝑠12𝑐13 𝑠13𝑒
−𝑖𝛿𝑐𝑝

−𝑠12𝑐23 − 𝑐12𝑠23𝑠13𝑒
𝑖𝛿𝑐𝑝 𝑐12𝑐23 − 𝑠12𝑠23𝑠13𝑒

𝑖𝛿𝑐𝑝 𝑐13𝑠23
𝑠12𝑠23 − 𝑐12𝑠13𝑐23𝑒

𝑖𝛿𝑐𝑝 −𝑐12𝑠23 − 𝑠12𝑠13𝑐23𝑒
𝑖𝛿𝑐𝑝 𝑐13𝑐23

) (2.55) 

 

However, in Equation 2.48, the Hamiltonian represent the sum of two terms: a vacuum 

term 𝐻𝑉 and a matter term 𝐻𝑀. These are explained in the following subsections. 

2.5.4.1 Vacuum Hamiltonian 

The oscillations of neutrino flavour in vacuum originate from the fact that weak 

interaction or flavour eigenstates for neutrinos are not concurrent with their mass or 

energy eigenstates. The neutrino is created in a pure flavour state by weak interaction and 

is in a superposition of mass eigenstates. The different eigenstates which is arising from 

neutrino propagation via space will build up a quantum mechanical phase at different 

rates, which is a manifestations of distinct momenta with respect to each mass eigenstates 

for a single neutrino (Cherry, 2012). These eigenstates are expressed by MNS matrix U, 

which is given in Equation 2.55. In solving the Schrödinger equation, the Hamiltonian in 

vacuum for flavour basis is a single matrix 𝐻𝑉 which is dependent on particular basis and 
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neutrino energy𝐸. Assuming the three neutrino states has masses 𝑚1, 𝑚2, 𝑚3, the vacuum 

Hamiltonian in the flavour basis can be determined by; 

𝐻𝑉
𝑓
=

1

2𝐸
𝑈𝑉 (

𝑚1
2 0 0

0 𝑚2
2 0

0 0 𝑚3
2

)𝑈𝑉
†
       (2.56) 

 

However, for corresponding antineutrinos, the vacuum Hamiltonian 𝐻̅𝑉 is by taken a 

simple complex conjugates of 𝐻𝑉. 

2.5.4.2 Matter Hamiltonian 

The Hamiltonian in matter comes because of a difference between electron flavour 

neutrinos/antineutrinos interaction with medium, with that of muon and tau flavours. The 

vacuum Hamiltonian 𝐻𝑉 is added with matter Hamiltonian 𝐻𝑀: 

𝐻 = 𝐻𝑉 + 𝐻𝑀         (2.57) 

And the interaction is best described by an effective potential that leads to Hamiltonian 

given by; 

𝐻𝑀
𝑓
= √2𝐺𝐹𝑛𝑒 (

1 0 0
0 0 0
0 0 0

)       (2.58) 

 

where 𝑛𝑒is electron number density which can be expressed as 𝑛𝑒 = 𝑌𝑒𝑛𝑁, for which 𝑌𝑒 

is electron fraction and 𝑛𝑁 is nucleon density which are both provided by simulation. 

Hence, we can say that neutrino flavour transformation is dependent on the density of the 

material and its electron fraction. However, the antineutrino matter Hamiltonian is 𝐻̅𝑀 =

−𝐻𝑀. Meanwhile, the density of the high-density MSW resonance, 𝜌ℎ𝑖𝑔ℎ
𝑀𝑆𝑊, can be 

determined from, assuming two-flavour approximation; 

𝜌𝑀𝑆𝑊 =
𝑚𝑁

√2𝐺𝐹𝑌𝑒
|
𝛿𝑚2 cos2𝜃

2𝐸
|        (2.59) 
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where 𝑚𝑁 is nucleon mass. From this equation, in high-density MSW, 𝛿𝑚32
2  is used for 

mass splitting 𝛿𝑚2 in the formula and 𝜃13 for mixing angle 𝜃. While in case of low-

density MSW resonance, 𝜌𝑙𝑜𝑤
𝑀𝑆𝑊, we use 𝛿𝑚12

2  for mass splitting 𝛿𝑚2 and 𝜃12 for the 

mixing angle 𝜃. 

2.5.4.3 Neutrino self-interaction potential 

During the supernova explosions, neutrino emission become very intense such that 

interactions between neutrinos begin to manifest a substantial impact in their flavour 

evolutions. Hence, the need to include the contribution of neutrino self-interaction to the 

Hamiltonian of neutrino flavour oscillations is sought. The Hamiltonian of neutrino self-

interaction possesses the same order of magnitude as in matter potential. In 1992, 

Pantaleone (1992) derived the correct neutrino forward coherent scattering, or neutrino 

self-interaction Hamiltonian which was then applied to the study of neutrino 

transformations in early universe (Pantaleone, 1995). However, this flavour 

transformation was later found to be significant in supernova and may have greater 

influence on electron fraction in neutrino driven wind (Yang & Kneller, 2018). A details 

review on neutrino self-interaction has been provided by many authors (Duan et al., 2010; 

Duan & Kneller, 2009; Mirizzi, 2016). Meanwhile, in PISN the neutrino densities are 

very low, and the matter density is much less than the one finds in CCSNe, and hence, 

the neutrino self-interaction is obviously doubtful and might be ignored. This situation 

that self-interaction potentials becomes many orders of magnitude lower than the matter 

or vacuum Hamiltonian, was later confirmed by Wright et al. (2017a), and can therefore 

be ignored in calculating neutrino flavour evolution. It is now clear that neutrino self-

interaction potential is strongly dependent on position and direction of propagation of the 

test neutrino. On this note, two important conditions are proposed (Yang, 2018) to be 

sought for in determining neutrino self-interaction potential; 
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I. The momentum vector and spatial coordinates of the test neutrino be identified.         

II. The content of the neutrino flavour and fluxes of all neutrino beams emanating 

from surface of the neutronsphere which is captured by the test neutrino are 

known. 

Another constraint to determination of neutrino self-interaction potential is due to self-

consistency requirement where evolution history of the neutrinos are expected to be on 

record and should be evolved simultaneously. This is perhaps, almost impracticable due 

to computational limits (Yang, 2018). To address these weighty challenges, Duan et al. 

(2006) proposed a “BULB model” that can solve the self-consistent neutrino flavour 

transformations, especially in supernova environments. 

(a) Neutrino bulb model 

The neutrino bulb model has been widely used in various supernova problems and has 

provided an important insights on the change of perception of supernova neutrinos. The 

model is an approximation of physical and geometrical conditions found in the after-

shock supernova. It comprises of a neutrino emission source in spherical geometry (the 

neutrino bulb) and neutrino beams originating from the bulb. The characteristic properties 

of the bulb model can be summarised as follows: 

I. The model is spherically symmetric. 

II. The neutrino flux observed at any point is cylindrically symmetric. 

III. The neutrino flavour eigenstates are stationary on the surface of the neutron 

sphere. 

With these numerous symmetries, as illustrated in Figure 1 by Duan et al. (2006), the 

neutrino self-interaction Hamiltonian can be derived. For simplicity, we would like to 

refer the reader to Equation 1.80, by Yang (2018), for complete expression of neutrino 

self-interaction Hamiltonian. 
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2.5.4.4 Matter basis transformation probabilities 

The basis where eigenvalues of the Hamiltonian 𝐻 = 𝐻𝑉 + 𝐻𝑀 appears on the 

diagonal is referred to as matter basis. To remove the trivial mixing in flavour basis, the 

neutrino transformation calculations must be undertaken in matter basis (Wright et al., 

2017b). This is achieved by arranging the eigenvalues in a manner by which the masses 

appear in vacuum Hamiltonian, this ordering is also similar for antineutrinos (Wright et 

al., 2017a). Matter basis is significantly important to use over others because in adiabatic 

evolution, the evolution matrix is close to diagonal with constant transition probabilities. 

The transition probabilities for a neutrino which is in matter basis and initially at j state 

to be detected after neutrinos have propagated through the SN, at i state, will be a function 

of neutrino mass orderings,  line of sight and the epoch. This can be given by: 

𝑃𝑖𝑗
(𝑚)

= 𝑃(𝜈𝑗
𝑚 → 𝜈𝑖

𝑚)        (2.60) 

 

where the transition probabilities between states 𝜈𝑗 and 𝜈𝑖 are approximately one for 𝑗 =

𝑖 and zero for 𝑗 ≠ 𝑖, which is also similar in the case of antineutrinos (Wright et al., 

2017a). 

2.5.4.5 Flavour basis transition probabilities at Earth 

The de-coherence of neutrino wave packet are accounted for after propagation of 

neutrinos through the star as they embark their journey to the earth and, once, the 

oscillation probabilities of the matter basis are known(Wright et al., 2017a; Wright et al., 

2017b). For a neutrino which emitted as a particular flavour (𝛼) in the SN, to be detected 

as another flavour (𝛽) at the Earth, the probability is given by:  

𝑃𝛽𝛼 = ∑ |𝑈𝑉,𝛽𝐽|
2
𝑃𝐽𝛼
(𝑚𝑓)(𝑅∗, 𝑅0)𝑗 .       (2.61) 

In this equation, 𝑅0 stands for radius of neutrino production near the centre of the SN, 𝑅∗ 

is radius of outer edge of the SN. Similarly, the survival probabilities of the antineutrino 
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favour basis is 𝑃̅𝛽𝛼. These two probabilities are from evolution matrix and as such, they 

are different from transition probabilities earlier discussed. 

2.5.4.6 The neutrino flux at Earth 

A neutrino detector at Earth will see the neutrino flux: 

𝐹𝛼 =
1

4𝜋𝑑2
∑ 𝑃𝛼𝛽(𝐸)Φ𝛽(𝐸)𝛽 .       (2.62) 

 

where Φ𝛽(𝐸) is flavour 𝛽 differential spectrum at point of emission, and 𝑑 is the 

supernova distance. These neutrino flux is calculated by combination of particular flavour 

basis oscillation probabilities and neutrino emission spectra (Wright et al., 2017a). 

2.6 Chapter Summary 

This chapter begins with review on phenomenology of massive stars; from formation, 

evolution and fate to their ultimate death. Modules of stellar evolution is reviewed in 

section two of this chapter. This include evolution equations, rotation in stellar evolution 

and mass loss. In the proceeding sections, detail review on nuclear reactions involve in 

stellar evolution is given, with emphasis on reactions taking place in massive stars. The 

section that followed, reviewed the initial mass of progenitor stellar models that would 

encounter instability region. And finally, the chapter conclude with review on neutrino 

processes in massive stars. In the last subsections, we discuss neutrino-electron 

interactions, neutrino oscillations in massive stars. And closed the chapter with neutrino 

flavour transformation. 
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CHAPTER 3: METHODOLOGY OF RESEARCH 

 

3.1 Introduction 

In accordance with objectives of this research, this work is intended to investigate the 

characteristic dynamics of electron-positron pair-production and neutrino cooling 

processes involved in the instability regions of some selected mass range of very-massive 

stars. This processes which are threshold mechanisms that appear as a result of photon-

photon, photon-particle, and particle-particle interactions are vital in understanding the 

final fates of massive stars. Of course, as a theoretical work, this research does not involve 

any experimental activity. 

3.2 Stellar Models and Input Physical Parameters 

Since electron-positron pairs are produced in late stages of stellar evolution (Woosley 

et al., 2002), this work focuses on all burnings beyond core hydrogen and helium 

(advanced burning stage). The data grids of evolutionary progenitor models considered 

are 120, 150, 200, 300 and 500M⊙ which are taken from Yusof et al. (2013).  From the 

work by Yusof et al. (2013), the 120, 150, 200, 300 M⊙ and 500 M⊙ models at  𝑍 =

0.006 (LMC) evolved with rotation, while 120, 150, 500 M⊙ models evolved without 

rotation. These models were evolved from  zero-age main-sequence (ZAMS), through at 

least oxygen burning, using Geneva evolution code (GENEC) (Eggenberger et al., 2009), 

which is used to solve most massive stars (R136a1) observed today (Crowther et al., 

2010). This code, in its latest developments, has prescription for both rotating and 

magnetic fields included (Eggenberger et al., 2009; Ekström et al., 2012). According to 

Yusof et al. (2013) the explosion phase of these progenitors are followed by end of core 

helium burning through explosions, using KEPLER Code (Weaver et al., 2017). The 

KEPLER code is a stellar evolution/explosion code containing detailed treatment of 

nuclear burning processes incorporated with an implicit hydrodynamics and is capable of 
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completely studying the evolution of massive and supermassive stars, supernovae, 

hydrostatic and explosive nucleosynthesis (Weaver et al., 2017). Additional details of 

evolution, physical input parameters and explosion calculations are reported by Yusof et 

al. (2013). However, Yusof et al. explained that the final fates of these models is predicted 

from outcomes of simulations with the KEPLER code and the simulations showed that 

indeed 150 M⊙ and 200 M⊙ rotating models in SMC and the 500M⊙ rotating and non-

rotating models in LMC produced electron-positron pairs and ended as PISNe (Whalen 

et al., 2014b) . This further indicates that carbon-oxygen (CO) core mass is very suitable 

to make an estimate of whether these models produce PISNe or not? (Which is a method 

that has been used in various studies of very-massive stars for similar demonstration of 

fates of stars with same CO core (Bond et al., 1984; Chatzopoulos & Wheeler, 2012a; 

Heger & Woosley, 2002)). Carbon-oxygen core masses of the rotating models are 32.67, 

38.44, 42.36, 44.96 and 73.12 M⊙ for 120, 150, 200, 300 500 M⊙ respectively. While for 

non-rotating models the Carbon-oxygen core masses are 43.85, 47.56 and 92.55 M⊙ for 

120, 150 and 500 M⊙ respectively. However, the helium-core masses for the rotating 

models are 39.25, 45.58, 51.02, 54.04 and 74.75 M⊙ respectively, while for non-rotating 

models, the helium-core masses are 54.11, 59.59 and 94.56 M⊙ for 120, 150 and 500M⊙ 

respectively, which shown in Tables 3.1 and 3.2.  This clearly shows that these models 

are either at near end or lower end of the instability mass range. Radiative line-driven 

winds from Vink et al. (2001) was used in the work by Yusof et al.(2013) for mass loss 

prescription. The nuclear reaction rates are taken from Nuclear Astrophysics Compilation 

of Reaction Rates (NACRE) database (Angulo et al., 1999), and effects of these rates in 

stellar evolution are well explained in literature, see for example Ekström et al. (2012).  

The models were evolved with critical rotation (0.4) and rotation set to zero at ZAMS. 
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Table 3.1: Properties of stellar models used in this work and compared with others, showing initial mass, final mass, initial metallicity, 

velocity, c
max & Tc

max maximum central density and temperature, and finally He-core and O-core mass. 
 

Mi [M⊙] Mf [M⊙] Zini Vini/Vcrit log c
max [g 

cm-3] 

log Tc
max 

[K] 

He-core 

[M⊙] 

CO-core   

[M⊙] 

Fate 

With rotation (Yusof et al., 2013) 

120 39.25 0.006 0.4 7.99 9.76 39.25 32,67 BH/CCSN 

150 45.58 0.006 0.4 6.17 9.44 45.58 38.44 BH/CCSN 

200 51.02 0.006 0.4 7.90 9.79 51.02 42.36 BH/CCSN 

300 54.04 0.006 0.4 6.02 9.39 54.04 44.96 BH/CCSN 

500 74.75 0.006 0.4 5.92 9.35 74.75 73.12 PISN 

150 106.74 0.002 0.4 5.53 9.29 107 93 PISN 

200 128.91 0.002 0.4 5.48 9.30 129 124 PISN 

Without rotation (Yusof et al., 2013) 

120 54.11 0.006 00 5.59 9.22 54.11 43.85 BH/CCSN 

150 59.59 0.006 00 5.35 9.17 59.59 47.56 BH/CCSN 

500 94.56 0.006 00 4.52 9.01 94.56 9.55 PISN 

Ref. (Wright et al., 2017a) 

150 - 0.001 00 - - - 65.7 PISN 

250 - 0.001 00 - - - 126.7 PISN 

Ref.(Kozyreva et al., 2014) 

150 94 0.001 00 6.25 9.54 72 64 PISN 

250 169 0.001 00 6.69 9.71 121 110 PISN 

Ref.(Chatzopoulos & Wheeler, 2012a) 

200 - 0.014 00 6.54 9.70 - 120 PISN 
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Summary of these selected models with their key properties are given in Table 3.1, and 

are compared with other reported results (Heger & Woosley, 2002; Kozyreva et al., 2014; 

Langer et al., 2007; Wright et al., 2017a). The first two columns in this table are initial 

masses and final masses (in M⊙), third, fourth, fifth and sixth columns are initial 

metallicities, velocity, log of maximum central density (g cm-3) and maximum central 

temperature (K) encountered due to the pair-production instability respectively. The 

remaining columns seventh, eighth and ninth represents helium core mass (M⊙), oxygen 

core mass (M⊙) and finally, fates of the models observed by various hydrodynamic codes. 

The increase in rotation brings about a chemically homogeneous evolution and produced 

higher oxygen core mass, which is necessary for pair-production in the core of the stars. 

Thus higher degrees of rotation brings a star much closer to density-temperature region, 

where adiabatic index is below 4/3, this trend was noted by Chatzopoulos and Wheeler 

(2012a). The 150 M⊙, 200 M⊙, and 500 M⊙ rotating models fully entered the pair-

instability region except for non-rotating 500 M⊙ only its final mass almost collapses 

before reaching the pair-instability region, this might be due to non-rotational effects 

which are explained in chapter five. In all the induced rotating models, mass of oxygen 

core is shrinking by degrees of rotation, such that rotating models are more luminous than 

non-rotating and nucleosynthesis alter the rotation occurring in the stars. This may be due 

to reduction in the effective gravity of centrifugal force during the rotation, and due to 

hydrogen burning core, when main sequence becomes enlarged with rotationally-induced 

chemical mixing. 

Electron-positron pairs are produced in late stages of stellar evolution (Woosley et al., 

2002), this is why in this work, we focus on burnings beyond core hydrogen and helium. 

In Table 3.2, we summarized the main properties of the models, after been induced by 

pair-production instability. From this table, Eddington limit (Edd) in the pair-production 

region of all models are within theoretical limit at which radiation pressure of photon-
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emitting star would exceed its gravitational attraction. The maximum Eddington recorded 

values for 120, 150, 200, 300 and 500 M⊙ rotating models at LMC are 0.83, 0.86, 0.87, 

0.88 and 0.92 respectively. While for non-rotating models, these values are 0.97, 0.97 and 

0.98 for the 120, 150 and 500 M⊙ non-rotating models respectively, as shown in Table 

3.2. There are several factors that affect this values; for example, the Eddington factor in 

rotating models depends on metallicity of the star, such that increase in metallicity reduce 

the value of the Edd and this induces low metallicity models to become unstable. Other 

factors that affect the Eddington parameters are rotation and mass loss. The succeeding 

evolution, after the helium burning as finished off by helium cores, is very rapidly such 

that the mass loss is insignificant. Subsequently, the cores of the stars are mostly 16O, and 

some amount of 12C and 20Ne. the fact that the 12C is abundantly low and the energy 

release from the 20Ne burning which is negligible, rendered their burning fuels to have 

insignificant effects, and hence, the stars are fundamentally oxygen cores. 

3.3 Equation of State 

Every stellar model require the construction of a thermodynamic variables (equation of 

state) which relate the internal energy and pressure as functions of density, temperature, 

and composition. Similarly, several thermodynamic derivatives are required for evolving 

these models realistically. The equation of state (Henceforth EoS) is a generalized-

mathematical thermodynamic relation describing the state of matter under a given set of 

physical conditions. The most common physical quantities in stellar models are absolute 

temperature 𝑇, density 𝜌, and chemical composition 𝑋𝑖. However, only by means of EoS, 

the rest of the useful functions of thermodynamic consequence are known, such as 

pressure 𝑃(𝑇, 𝜌, 𝑋𝑖), specific energy 𝐸(𝑇, 𝜌, 𝑋𝑖), or entropy 𝑆(𝑇, 𝜌, 𝑋𝑖) .
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Table 3.2: Models’ physical properties (taken from Yusof et al. (2013)) showing maximum values of initial mass Mini, metallicity zini and 

the third column is final mass followed by age, luminosity, mass loss and central density and temperature respectively. The 9th, 10th and 11th 

columns are ZAMS effective temperature, equitorial velocity, and Eddington factor respectively. 

M [M⊙] Zini [Z⊙]  Mfin 

[M⊙]  

Age  

x106[yr] 

log [L⊙] 

 

Mass 

loss 

[M⊙/yr]  

logc [g 

cm-3] 

Log Tc 

[K] 

log Teff 

[K] 

Veq 

[Kms-1] 
Edd 

With Rotation 

120 0.006 39.25 3.48 6.33 -4.48 7.99 9.75 4.89 39.35 0.83 

150 0.006 45.58 3.17 6.40 -4.44 6.17 9.44 4.90 36.30 0.86 

200 0.006 51.02 2.91 6.46 -4.42 7.90 9.79 4.90 95.12 0.87 

300 0.006 54.04 2.63 6.49 -4.42 6.02 9.39 4.91 0.00 0.88 

500 0.006 74.75 2.39 6.65 -4.21 5.92 9.35 4.87 0.02 0.92 

Without Rotation 

120 0.006 54.11 3.00 6.53 -4.48 5.59 9.22 3.99 0.00 0.97 

150 0.006 59.59 2.85 6.58 -4.41 5.35 9.17 4.32 0.00 0.97 

500 0.006 94.56 2.18 6.78 -4.28 4.52 9.01 4.44 0.00 0.98 Univ
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In massive stars and at the end of the Fe-burning, there is no nuclear burning that can 

proceed to create the pressure needed to hold the star against gravitational collapse. The 

star at this situation, will begin to implode its core into a dense mater within a second into 

a neutron star. Hence, the EoS of the central region during the stellar collapse is obviously 

important in determining the characteristics and the outcomes of the implosion. Only at 

extreme densities (> 1011 g cm-3), the equation of states describing the relations of energy 

and pressure in massive stars, to temperature, density, and composition is straightforward 

(Woosley et al., 2002).  The state of matter in massive stars, and in most of astrophysical 

objects, are described by the ideal gas law; 𝑃𝑉 =  𝑁𝑘𝐵𝑇 . In this equation, P is the gas 

pressure, V the volume occupied by the gas, N is the total number of particles in the centre 

of the massive star, and kB is Boltzmann’s constant. However, the number density is 𝜌 =

𝑁𝜇𝑚

𝑉
, where is the mean molecular weight in unit of the particles’ mass 𝑚. Thus, the 

EoS can be given by 𝑃 =  
𝑘𝐵𝑇

𝜇𝑚
𝜌. 

3.3.1 Distribution Functions 

The distribution function for different forms of particles determines number density of 

the particles in dimensional coordinates and momenta. Knowing this function for a 

particular gas, all other thermodynamic variables may be derived with respect to density, 

temperature, and composition of the gas. In quantum statistics, when a group of 

indistinguishable particles is in thermal equilibrium, there is a momentum of distribution 

given by; 

𝑓(𝑝⃗)𝑑3𝑝⃗   =
𝑔

ℎ3
[𝑒𝑥𝑝 (

𝐸(𝑝)−𝜇

𝑘𝐵𝑇
) ± 1]

−1

𝑑3𝑝⃗       (3.1) 

 

However, the average number of particles is  

𝑛𝑎𝑣 =
𝑔

exp[
𝐸(𝑝)−𝜇

𝑘𝐵𝑇
]±1

         (3.2) 

Univ
ers

iti 
Mala

ya



 

59 

 

where 𝐸(𝑝) = (𝑚2𝑐4 + 𝑝2𝑐2)
1
2⁄   is the kinetic energy of the particle, the upper sign 

(positive) refer to fermions (half-integer spin particles), and is called Fermi-Dirac 

distribution, and the lower sign (negative) is for bosons (zero or integer spin particles), 

and is called Bose-Einstein distribution. 𝑔 is a degeneracy factor, which is the number of 

spin states, the particle can have (1 for neutrinos, 2 for charged particles and photons, and 

6 for quarks). is the chemical potential and is related to the number density and 

temperature of the particles, and 𝑐 = 3 × 105 𝑘𝑚𝑠−1 is the speed of light, 𝑘𝐵 = 1.38 ×

10−16 𝑒𝑟𝑔 𝐾−1 is Boltzmann constant, 𝑇 is temperature and ℎ = 2𝜋 × ℏ = 6.63 ×

10−27 𝑔 𝑐𝑚2 𝑠−1 is Planck’s constant. And the physical number density of particles in 

unit volume is; 

𝑛(𝑝)𝑑𝑝 =
4𝜋𝑔𝑝2

ℎ3exp[
𝐸(𝑝)−𝜇

𝑘𝐵𝑇
]±1
𝑑𝑝       (3.3) 

 

This is between the momenta 𝑝 and 𝑝 +  𝑑𝑝, with a surface 4𝜋𝑝2 and thickness 𝑑𝑝. Hence 

the number density of particles with all momenta is defined by integrating over all 

momentum space; 

𝑛 = ∫ 𝑛(𝑝)𝑑𝑝
∞

0
         (3.4) 

 

Since the particles can be relativistic, ultra-relativistic and non-relativistic, the correct 

form of the total energy of the particle must be equal to the sum of the rest mass energy 

and the kinetic energy of the particle, given by; 

𝐸 = 𝐸(𝑝) + 𝐸0 = (𝑚
2𝑐4 + 𝑝2𝑐2)

1
2⁄ −𝑚𝑐2     (3.5) 

 

Which when in non-relativistic limit (𝑝𝑐 ≪ 𝑚𝑐2), this equation becomes 𝐸 =
𝑝2

2𝑚
 and 

ultra-relativistic limit (𝑝𝑐 ≫ 𝑚𝑐2), it becomes 𝐸 = 𝑝𝑐. 
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Another physical quantity of importance here is particle velocity which is given by; 

𝑣 =
𝑑𝐸

𝑑𝑝
=

𝑝

𝑚[1+(
𝑝

𝑚𝑐
)
2
]

1
2⁄
        (3.6) 

 

Such that, the two asymptotic limits gives, 𝑣 ≈
𝑝

𝑚
 and 𝑣 ≈ 𝑐 = 1 for non-relativistic and 

ultra-relativistic respectively. For an isotropic gas, the pressure, which is a flux of 

momentum across a unit surface, and integrated over all particles moving in all directions, 

can be given by; 

𝑃 =
1

3
∫ 𝑣(𝑝)𝑛(𝑝)𝑑𝑝
∞

0
        (3.7) 

 

Similarly, the internal energy of all particles in a unit volume can be calculated as; 

𝐸 = ∫ 𝐸(𝑝)𝑛(𝑝)𝑑𝑝
∞

0
        (3.8) 

 

These Equations 3.1 – 3.8, described the generalized sets of relations needed in the 

construction of any form of equation of state. 

3.3.2 Adiabatic Processes and Thermodynamic Functions 

There are different processes taken place at a very high temperature and relatively low 

densities. An adiabatic process is one in which no heat is exchanged between a system 

and its surroundings. That is, the gain or loss of heat by conduction or radiation can be 

ignored in an adiabatic process. A measure of this process is the adiabatic index 

𝛾 = 𝐶𝑝 𝐶𝑣⁄           (3.9) 

The adiabatic index 𝛾 takes values from 5/3, 7/5 to 4/3, for an ideal monoatomic, diatomic 

and polyatomic gas respectively. 
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Using laws of thermodynamics, and a similar equation for the internal energy, we can 

derive from the EoS the thermodynamic properties that are needed to describe the 

structure of a star, such as the specific heats, 𝐶𝑣 and 𝐶𝑝, the adiabatic exponent and the 

adiabatic temperature gradient (Pols, 2011). As stated earlier, a stellar model require 

thermodynamic variables, such as pressure and internal energy, as functions of density, 

temperature and, composition to realistically evolve. Similarly, the thermodynamic 

derivatives are equally important for the evolution of not only the massive stars but many 

astrophysical events. However, the calculation of the thermodynamic derivatives is 

particularly difficult in situations where the relative concentrations of the stellar chemical 

composition does not change with respect to temperature and density of the stellar 

medium. 

3.3.2.1 Specific Heats 

The specific heats are the first derivatives encountered in thermodynamics and can be 

given by; 

𝐶𝛼 = (
𝑑𝑄

𝑑𝑇
)
𝛼

         (3.10) 

 

where 𝑄 is amount of heat released by the star (in erg g-1), such that specific heats are 

measured in units of (erg g-1 K-1). However, the specific heats can be with respect to 𝛼 =

𝑃, 𝑉. From the thermodynamic law, the amount of heat is given by; 

𝑑𝑄 = 𝑑𝐸 −
𝑃

𝜌2
𝑑𝜌         (3.11) 

 

Hence, Equation 3.10, becomes;   

𝐶𝑉 = (
𝑑𝑄

𝑑𝑇
)
𝜌
= (

𝜕𝐸

𝜕𝑇
)
𝜌

        (3.12) 

While the other specific heat at constant pressure can be known from the thermodynamic 

relation; 
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𝐶𝑝 = (
𝑑𝑄

𝑑𝑇
)
𝑝
= (

𝜕𝐸

𝜕𝑇
)
𝑝
+ 𝑃 (

𝜕𝑉

𝜕𝑇
)
𝑝
       (3.13) 

 

and these two properties of stellar structure (Equation 3.12 and 3.13) are related by; 

𝐶𝑝 − 𝐶𝑣 = [(
𝜕𝐸

𝜕𝑉
)
𝑇
+ 𝑃] (

𝜕𝑉

𝜕𝑇
)
𝑝
       (3.14) 

 

However, for an ideal gas 𝑃𝑉 = 𝑛𝑅𝑇 and the first law 𝑑𝑄 = 𝑑𝐸 + 𝑃𝑑𝑉 Equation 3.14 

transform to;  

𝐶𝑝 − 𝐶𝑣 = 𝑛𝑅         (3.15) 

 

3.3.2.2 Adiabatic Derivatives 

The requirement for the adiabatic condition, 𝑑𝑄 = 0 imposes, through the first law of 

thermodynamics, some relation between the pressure, P, temperature, T, and the volume, 

V, and the thermodynamic response of a system to this adiabatic changes is measured by 

adiabatic derivatives. Two of these have special importance for stellar structure: 

I. The adiabatic exponents 𝛾𝑎𝑑 which measure the response of the pressure to 

adiabatic compression or expansion, or to a change in the density. It is defined as  

Γ1 = (
𝑑 ln𝑃

𝑑 𝑙𝑛 𝜌
) = 𝛾𝑎𝑑        (3.16) 

 

If 𝛾𝑎𝑑 is constant then 𝑃 𝛼 𝜌𝛾𝑎𝑑  for adiabatic changes. This adiabatic exponent 

is however related to the dynamical stability of stars. 

II. The adiabatic temperature gradient is defined as  

Γ2

(Γ2−1)
= (

𝑑 ln𝑃

𝑑 ln𝑇
) =

1

∇𝑎𝑑
        (3.17) 

It is, in fact, another exponent that describes the behavior of the temperature 

under adiabatic compression or expansion (𝑇 𝛼 𝑃∇𝑎𝑑  𝑖𝑓 ∇𝑎𝑑 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡), 

which turns out to be important for stability against convection. and 
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Γ3 − 1 = (
𝑑 ln𝑇

𝑑 ln𝜌
)         (3.18) 

 

The general identity for the relationship between these adiabatic exponents is given by 

Γ3−1

Γ1
=
Γ2−1

Γ2
= ∇𝑎𝑑         (3.19) 

 

In general, Γ1 is important for determining the conditions of the dynamical instability of 

stars, similarly, Γ2 and Γ3 are important, respectively, in determining the conditions of the 

convective and Pulsational instability of stars. Unlike the exponent 𝛾 in the case of perfect 

gas, the Γ𝑖 are not equal to the ratio 𝐶𝑝 𝐶𝑣⁄ . The Γ𝑖 depend on the equation of Degenerate 

gasses (Maeder, 2008).  

3.4 Fermi-Dirac Equation of State 

In massive stars, when the central temperature is very high, 𝑘𝑇 >= 𝑚𝑐2, electrons 

become relativistic and an energetically electron-positron pairs is produced. The 

distribution function of these electron-positron pairs is therefore given by Fermi-Dirac 

distribution. The thermodynamic variables of these relativistic fermions and anti-

fermions are greatly important not only in massive stars, but many astrophysical 

situations. For example, the cores of the massive stars are supported in mechanical 

equilibrium by the pressure of relativistic electrons (Blinnikov et al., 1996). The prime 

motivation of this equation of state in massive stars, is electron-positron pair-production 

in the centres of the massive stars which together with neutrino energy-loss triggered an 

explosion that result to PISN. In general, for an ideal Fermi gas, the pressure equation for 

the fermions (electrons) can be define by 

𝑃𝑒− =
𝑚𝑒𝑐

2

3𝜋2𝛼4
(
𝑚𝑒𝑐

ℏ
)
3

∫
𝑥4(𝑥2−𝛼2)

−1 2⁄ 𝑑𝑥

𝑒𝑥𝑝[(𝑥2+𝛼2)
1
2⁄ −𝜑]+1

 
∞

0
     (3.20) 
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where 𝛼 =
𝑚𝑒𝑐

2

𝑘𝐵𝑇
 is relativity parameter and 𝜑 =  

𝜇

𝑘𝐵𝑇
. And the integral is generalized a 

form of Fermi-Dirac integral which can be numerically approximated for any 

astrophysical application. For details about the numerical and analytic approximations of 

Fermi-Dirac integrals, see the references (Blinnikov et al., 1996; Chabrier & Potekhin, 

1998; Johns et al., 1996; Potekhin & Chabrier, 2010). However, the number density for 

the fermions (electrons) is define by 

𝑛𝑒− = (
𝜕𝑃𝑒−

𝜕𝜇
)
𝑇
         (3.21) 

 

And the energy and entropy are given by 

𝐸𝑒− = −
1

𝜌
[𝑃𝑒− + 𝛼 (

𝜕𝑃𝑒−

𝜕𝛼
)
𝜑
]       (3.22) 

𝑆𝑒− =
1

𝜌
(
𝜕𝑃𝑒−

𝜕𝑇
)
𝜇

         (3.23) 

 

The expressions for pressure, number density, energy, and entropy for anti-fermions 

(positrons) are quite similar to these relations. 

3.4.1 Degenerate Electrons 

Since electrons are fermions; they must, therefore, obey the Pauli Exclusion Principle, 

for which they shall be distributed in such a way that each quantum state is fully occupied 

by one electron. This is limited up to certain energy level because for higher energies the 

quantum states are unoccupied. This type of electron distribution represents the zero 

temperature limit of the Fermi-Dirac distribution. The degenerate electrons are, therefore, 

cold gas electrons which have fallen into a lowest energy quantum states. 

The number of electrons in a degenerate gas can be given by; 

𝑛 = ∫ 𝑔𝑠
𝑛

ℎ3
4𝜋𝑝2𝑑𝑝

𝑝𝐹

0
=
8𝜋𝑛

3ℎ3
𝑝𝐹
3       (3.24) 
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For two independent spin states of electrons; 𝑔𝑠 = 2. While the Fermi momentum pF can 

be expressed in terms of electron density as; 

𝑝𝐹 = (
3𝑛

8𝜋
)
1
3⁄

ℎ         (3.25) 

 

These two equations can simply prove the fact that; the de Broglie wavelength 𝜆 = ℎ 𝑝𝐹⁄  

of most energetic electrons in a degenerate gas is comparable with the inverse of the cube-

square of the number density 1 𝑛3⁄ . At a very high temperature  𝑘𝑇 ≥ 𝑚𝑐2, the electrons 

are relativistic and an electron-positron pairs is produced by creating a new particle 

(positron-the anti-electron). Therefore, the distribution functions for both types of 

electrons must be written down. Having knowing the total number of electrons in the 

degenerate gas, the equation of state of this gas can be found from the expression of the 

internal energy. In the next section, we shall describe the equation of state for the electron-

positron degenerate gas. 

3.4.2 Equations of State for Relativistic Electron-Positron Pairs 

In the relativistic limit, the photons inside the stars have Bose-Einstein distribution, 

while their chemical potential is zero. However, the pairs of electron-positron are in 

thermal equilibrium with the photons due to the annihilation and pair-production 

reactions. This must satisfy the equilibrium condition 𝜇 = 𝜇𝑒− = −𝜇𝑒+ where e- and e+ 

are electron and positron chemical potentials respectively. The chemical potential for the 

electrons and positrons only differ by two rest mass energies 

𝜇𝑒− = 𝑚𝑐
2 𝑎𝑛𝑑    𝜇𝑒+ = 𝜇𝑒− − 2𝑚𝑐

2 = −𝜇𝑒−       (3.26) 

However, this condition does not mean that the electron and positron concentrations are 

equal, perhaps, at a lower temperature, the positron number is exponentially lower than 

the electrons by almost 𝑒𝑥𝑝 (
−𝜇

𝑘𝐵𝑇
). Furthermore, the total pressure of the electrons and 

positrons, both in equilibrium with matter and radiation is  
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𝑃 = 𝑃𝑒− + 𝑃𝑒+         (3.27) 

 

The number densities of the electrons and positrons (Timmes & Swesty, 2000) are given 

by; 

𝑛𝑒± =
64𝜋4√2

ℏ3
(𝑚𝑒𝑐)

3 ∝
3
2⁄ 𝐹𝑛(𝜑,𝛼)      (3.28) 

 

where; 

𝐹𝑛(𝜑, 𝛼) = ∫
𝑦𝑛(1+0.5𝛼𝑦)

1
2⁄

1+𝑒(𝑦−𝜑)
𝑑𝑦

∞

0
       (3.29) 

 

is a special case of Fermi-Dirac integral. The values of this integral are calculated using 

an analytic approximation by Potekhin and Chabrier (2010). However, since high 

accuracy is needed, the values of the integral are also calculated (Timmes & Arnett, 1999) 

and the algorithm that preserves the thermodynamic consistency are interpolated, which 

are available at MESA (Paxton et al., 2010). So, the individual number density for free 

electron (Arnett, 1996; Fowler & Hoyle, 1964; Timmes & Arnett, 1999) can be; 

𝑛𝑒− =
64𝜋4√2

ℏ3
(𝑚𝑒𝑐)

3 ∝
3
2⁄ [𝐹1

2⁄
(𝜑,𝛼)+𝐹3

2⁄
(𝜑,𝛼)]    (3.30) 

 

While for positron, the chemical potential must have the rest mass terms which was 

subtracted in the case of electrons, and therefore it is given by 

𝑛𝑒+ =
64𝜋4√2

ℏ3
(𝑚𝑒𝑐)

3 ∝
3
2⁄ [𝐹1

2⁄
(−𝜑− 2 𝛼⁄ , 𝛼)+ 𝛼𝐹3

2⁄
(−𝜑− 2 𝛼⁄ , 𝛼)]  (3.31) 

The chemical potential 𝜇  (which is the only unknown in this equation) can be found by 

applying the boundary condition for complete ionization of the matter present, 

𝑛0 = 𝑛𝑒− − 𝑛𝑒+ = 𝑁𝑎
𝜌𝑍

𝐴
= 𝑍𝑛𝑖𝑜𝑛       (3.32) 
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where 𝑁𝑎 is Avogadro’s number and 𝜌, Z and A are the mass density, atomic number and 

atomic weight of the matter excluding electron-positron pairs. However, many methods 

can be used for this one-dimensional root finding. While absolute accuracy and 

thermodynamic consistency are primarily the major concern, Timmes EoS evaluated the 

Fermi-Dirac integrals and their derivatives with respect to the chemical potential and 

relativity parameter, whereas, the chemical potential was calculated using Newton-

Raphson scheme to at least 15 significant figures (Timmes & Arnett, 1999). After finding 

the value for the chemical potential by the use of Newton-Raphson iteration method, the 

electron positron pressure,  

𝑃𝑒− =
128𝜋4√2

3ℏ3
𝑚4𝑒𝑐

5𝛼
5
2⁄ [𝐹3

2⁄
(𝜑,𝛼)+

1

2
𝛼𝐹5

2⁄
(𝜑,𝛼)]    (3.33) 

 

Similarly, the positron pressure is 

𝑃𝑒+ =
128𝜋4√2

3ℏ3
𝑚4𝑒𝑐

5𝛼
5
2⁄ [𝐹3

2⁄
(−𝜑− 2 ∝⁄ , 𝛼)+

1

2
𝛼𝐹5

2⁄
(−𝜑− 2 ∝⁄ , 𝛼)] (3.34) 

 

And the specific thermal energy of the electron can be given as 

𝐸𝑒− =
64𝜋4√2

𝜌ℏ3
𝑚4𝑒𝑐

5𝛼
5
2⁄ [𝐹3

2⁄
(𝜑,𝛼)+ 𝛼𝐹5

2⁄
(𝜑,𝛼)]    (3.35) 

 

While the specific thermal energy of the positron is  

𝐸𝑒+ =
64𝜋4√2

𝜌ℏ3
𝑚4𝑒𝑐

5𝛼
5
2⁄ [𝐹3

2⁄
(−𝜑 − 2 ∝⁄ , 𝛼) + 𝛼𝐹5

2⁄
(−𝜑 − 2 ∝⁄ , 𝛼)] +

2𝑚𝑒𝑐
2

𝜌
𝑛𝑒+ (3.36) 

 

 

For the electron entropy; 

𝑆𝑒− =
𝑃𝑒−

𝜌⁄ +𝐸𝑒−

𝑇
+
𝜇𝑘𝑁𝑒−

𝜌
        (3.37) 

 

While the positron entropy is  
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𝑆𝑒+ =

𝑃
𝑒+ 

𝜌⁄ +𝐸
𝑒+ 

𝑇
+
(
𝜇+2

𝛼⁄ )𝑘𝑁
𝑒+ 

𝜌
        (3.38) 

 

The total pressure is given by Blinnikov et al. (1996),  which is used conveniently in 

relativistic electron-positron gas is, 

𝑃 = 𝑃𝑒− + 𝑃𝑒+ =
𝑚𝑒𝑐

2

12𝜋2
(
𝑚𝑒𝑐

ℏ
)
3
[
1

𝛼4
(
7𝜋4

15
+ 2𝜋2𝜑2 + 𝜑4) −

1

𝛼2
(𝜋2 + 3𝜑2) +

     
3

2
(𝑙𝑛

4𝜋

𝛼
+
3

4
) +

2

𝜋
∫ (1 − 𝑥2)

3
2⁄ Ψ𝐹(𝜑 + 𝛼𝑥)𝑑𝑥

1

−1
]     (3.39) 

 

where Ψ𝐹(𝜑 + 𝛼𝑥) =  ∑ Ψ𝐹
𝑘(𝜑)∞

𝑘=0
𝛼𝑘𝑥𝑘

𝑘!
. Therefore, substituting this into Equation 3.39, 

and integrating over x, we get; 

𝑃 =
𝑚𝑒𝑐

2

12𝜋2
(
𝑚𝑒𝑐

ℏ
)
3

[
1

𝛼4
(
7𝜋4

15
+ 2𝜋2𝜑2 + 𝜑4) −

1

𝛼2
(𝜋2 + 3𝜑2) +

3

2
(𝑙𝑛

4𝜋

𝛼
+
3

4
) +

    
3

2
∑

𝛼2𝑗

22𝑗𝑗!(𝑗+2)!
Ψ𝐹
2𝑗(𝜑)∞

𝑗=0 ]        (3.40) 

 

However, the entire integral in this equation is has a very negligible contribution to the 

leading terms in the relativistic region, and so has negligible accuracy. The accurate 

expression is achieved by assuming the Chebyshev quadrature formula as ideal, and the 

exact relativistic formula is; 

𝑃 = 𝑃𝑒− + 𝑃𝑒+ =
𝑚𝑒𝑐

2

12𝜋2
(
𝑚𝑒𝑐

ℏ
)
3

[
1

𝛼4
(
7𝜋4

15
+ 2𝜋2𝜑2 + 𝜑4) −

1

𝛼2
(𝜋2 + 3𝜑2) +

     
3

2
(𝑙𝑛

4𝜋

𝛼
+
3

4
) +

2

5
∑ (1 − 𝑋𝑛

2)2Ψ𝐹(𝑌𝑛)
5
𝑛=1 ]      (3.41) 

 

where 𝑋𝑛 = cos [
(2𝑛−1)𝜋

10
] and 𝑌𝑛 = 𝜑 + 𝛼𝑋𝑛. 

This total expression for the electron-positron pressure is accurate for an ideal Fermi gas 

and is true for any values of 𝜑 and and any temperature and density, but it is practically 

acceptable in the relativistic region. It gives the complete expression for pressure in mass 

powers. The total number density of electron-positron pairs is 
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𝑛𝑒− − 𝑛𝑒+ =
𝛼

𝑚𝑒𝑐2
(
𝜕𝑃

𝜕𝜑
)
𝛼

        (3.42) 

 

and the total energy of the electron-positron pairs is;  

𝐸 = 𝐸𝑒− + 𝐸𝑒+ = −𝛼 (
𝜕𝑃

𝜕𝛼
)
𝜑
− 𝑃 −𝑚𝑒𝑐

2𝑁𝑎𝑌      (3.43) 

 

while the total entropy of the pairs is 

𝑆 = 𝑆𝑒− + 𝑆𝑒+ =
1

𝑇
[𝑃 + 𝐸 − (𝑛𝑒− − 𝑛𝑒+)𝜇]     (3.44) 

 

The derivatives -to the first order- with respect to density and temperature, of the above 

equations for pressure, energy, and entropy must satisfy some thermodynamic identities 

(Equations 3.52 – 3.54) given in the section below. However, these thermodynamic 

derivatives are essentially needed in implementing a complete iteration scheme for 

solving thermodynamic convergence of various stellar evolution models. Meanwhile, the 

evaluation of these set of equations is confronted by extreme complexities. This is due to 

the excessive time consuming, the instability and lack of suitability of many computer 

codes that are commonly used in the direct calculation of the electron-positron physics in 

the EoS. One particular difficulty is the complexity that often arises when solving the 

many-body problems which describe the interactions between the constituents of the gas, 

and also, the behavior of the EoS with respect to the range of temperature and density, 

which evidently shows discontinuities in thermodynamic variables at the phase transitions 

and coexistence boundaries (Swesty, 1996). To this extent, a viable solution is sought; a 

tabular equation of state is highly desirable in addressing these complexities. A tabular 

interpolation scheme of this type of EoS can remove the difficulties in the implicit 

solution of hydrodynamic equations involved in various numerical hydrodynamic codes. 
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3.5 Electron-Positron Equation of State Model based on Table Interpolation of 

Helmholtz Free Energy 

 

Conditions found in instability regions of very massive stars requires not only accurate 

and efficient but thermodynamically consistent equation of state tables. However, there 

are many stellar EoS routines that can be useful for solving thermodynamic conditions in 

this regime. In 1999, Timmes and Arnett (1999) compared the consistencies of 

thermodynamic properties as well as the execution speed of five different independent 

equations of state routines, with the aim to finding the most accurate in the regions where 

electrons are randomly degenerate and have an arbitrary speed close to the setting 

boundary conditions. Furthermore, the comparison provides a benchmark value for the 

accuracy and speeds of the EoS routines commonly used in stellar models.   Among the 

five EoS considered, Timmes EoS shows a high degree of precision in thermodynamic 

consistency and was designed for maximum accuracy. It evaluates the Fermi-Dirac 

integrals (Equation 3.29) and their derivatives to high accuracy (at least 18 significant 

figures), such that the uncertainty in the value of 𝜑  is avoided. Similarly, the chemical 

potential is obtained from Newton-Raphson iteration to at least 15 significant figures. 

However, a special case of the Timmes EoS is the Helmholtz equation of state 

(Henceforth Helm-EoS) which was constructed only for electron-positron plasma based 

on table interpolation of Helmholtz free energy (Timmes & Swesty, 2000). The Helm-

EoS evaluates the electron-positron EoS with accurate temperature-density grid, and 

displays thermodynamic consistency at the floating point, it also executes faster than any 

other stellar EoS. It is the stellar EoS of choice in many hydrodynamic and stellar 

evolution codes. The Helm-EoS is developed such that an isotope i having Zi and Ai as its 

protons and nucleon number respectively, the total isotope 𝑖 has a mass and number 

densities to be  (g cm-3) and ni (cm-3) respectively and a temperature T (K). For this, the 

dimensionless mass fraction for individual isotope 𝑖 is 
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𝑋𝑖 =
𝐴𝑖𝑛𝑖

𝜌𝑁𝐴
          (3.45) 

 

And the dimensionless number density is 

𝑌𝑖 =
𝑋𝑖

𝐴𝑖
=

𝑛𝑖

𝜌𝑁𝐴
         (3.46) 

 

where 𝑁𝐴 is the Avogadro’s number (Timmes & Swesty, 2000; Woosley et al., 2002). 

However, constructing a tabular equation of state requires that the constraints for 

thermodynamic consistency and assurance of accuracy are satisfied. These constraints are 

I. The first law of thermodynamics be defined by an exact differential equation, 

which, for reversible system requires; 

𝑑𝐸 = 𝑇𝑑𝑆 +
𝑃

𝜌2
𝑑𝜌         (3.47) 

 

Since temperature and density are the variables, here, the most suitable thermodynamic 

potential is the Helmholtz free energy, which is defined by; 

𝐹 = 𝐸 − 𝑇𝑆          (3.48) 

Therefore, from Equation 3.47, the relationship between F, T and is given by; 

𝑑𝐹 =
𝑃

𝜌2
𝑑𝜌 − 𝑆𝑑𝑇         (3.49) 

 

where the pressure and entropy are defined as 

𝑃 = 𝜌2
𝜕𝐹

𝜕𝜌
|
𝑇
         (3.50) 

 

And;  

𝑆 = −
𝜕𝐹

𝜕𝑇
|
𝜌

          (3.51) 
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II. The exactness of Equation 3.47, is achieved, if the following Maxwell 

relations (Callen, 1985) are satisfied; 

𝑃 = 𝜌2
𝜕𝐸

𝜕𝜌
|
𝑇
+ 𝑇

𝜕𝑃

𝜕𝑇
|
𝜌

        (3.52) 

𝜕𝐸

𝜕𝜌
|
𝑇
= 𝑇

𝜕𝑆

𝜕𝑇
|
𝜌

         (3.53) 

𝜕2𝐹

𝜕𝑇𝜕𝜌
= −

𝜕𝑆

𝜕𝜌
|
𝑇
=

𝜕2𝐹

𝜕𝜌𝜕𝑇
= 𝜌−2

𝜕𝑃

𝜕𝑇
|
𝜌

       (3.54) 

 

However, the first Maxwell Equation 3.52 relations is automatically satisfied by 

substituting Equations 3.47 & 3.48 into Equation 3.50. While the second Maxwell 

(Equation 3.53) relations is satisfied by substituting Equations 3.47 & 3.48 into Equation 

3.51. And finally, the Maxwell (Equation 3.54) relation, which ensures commutivity of 

the mixed partial derivatives, is satisfied by Substituting Equations 3.47 & 3.48, into 

Equation 3.54. Failure to satisfy these thermodynamic constraints in any numerical 

simulations leads to an adiabatic flow owing to an unphysical decay of the entropy or 

temperature, which as a result, the stellar models experienced inaccuracies over a 

significant number of time steps (Swesty, 1996). For complete details on the interpolation 

of the Helmholtz free energy 𝐹(𝜌, 𝑇) see references (Swesty, 1996; Timmes & Swesty, 

2000). 

3.6 Neutrino Energy-Loss in Massive Stars 

A fast moving particle passing through matter will transfer certain energy Q per unit 

time to the matter. This estimated energy is called energy-loss and can be expressed from 

collision limit (Kirzhnits et al., 1990); 

𝑄 = 𝑛𝑣 ∫
𝑑𝜎

𝑑𝜔
𝑑𝜔𝜔

𝜔0

0
        (3.55) 
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where  is the scattering cross section of the particle,  is the energy transfer and 𝜔0 =

2𝐸2

(2𝐸+𝑚)
 is the energy transfer kinetic limit; E and 𝑣, are the energy, velocity of the particle 

in the rest frame of the medium; and the mass and number density of the particles are 

represented by 𝑚 and 𝑛 respectively. Neutrinos are produced in massive stars via two 

main processes; the weak process which occur in the nuclear network of the star and the 

thermal neutrino process which is from leptonic processes in the stellar plasma. This 

neutrino production is vital in the stars’ late evolution such that instead of been dominated 

by photon diffusion the star is dominated by neutrino-cooling. The neutrino energy-loss 

could be large enough to cool the core of massive stars, as demonstrated by many 

researches (Jing-Jing & Zhi-Quan, 2009). 

3.6.1 Processes of thermal neutrino energy-loss 

As mentioned earlier, there are various methods of neutrino energy-loss and unlike 

many complicated neutrino processes, energy-loss rates of emitted neutrinos can be 

calculated very accurately from thermodynamic properties of matter; such as density-

temperature regime (Esposito et al., 2003; Itoh et al., 1989; Itoh et al., 1996; Janka, 2016; 

Munakata et al., 1985; Wright et al., 2017a; Wright et al., 2017b). However, for different 

density-temperature regions, which described the endpoints of stellar evolutions, only 

thermal processes dominate (Esposito et al., 2002). There are however, four thermal 

neutrino processes which do not involve nuclear reactions but are product of very hot and 

dense plasma (Odrzywolek et al., 2004). These processes are; pair neutrino, plasma 

neutrino, photo neutrino and Bremsstrahlung neutrino processes (Itoh et al., 1989). Table 

3.3, give details of temperature-density regions where each of these thermal neutrino 

processes dominate under different circumstances. At central temperatures, below 𝑇 ≈

5 × 108𝐾, a star cools through photo-neutrino process (𝛾 + 𝑒− → 𝑒− + 𝜈𝑒,𝜇,𝜏 + 𝜈̅𝑒,𝜇,𝜏 +

𝑒±), which only depend on conditions in nearby regions. However, since nuclei in the 
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instability regions are fully ionized and has density  and temperature T in 

thermodynamic equilibrium, the temperature increases to 𝑇 ≥ 109𝐾, and the density is 

relatively low 𝜌 ≤ 105𝑔 𝑐𝑚−3, and as a result, pair neutrino become the most efficient 

cooling process in this region. Details on dominant thermal processes in the density-

temperature regions of very-massive stars can be found in the work by Esposito et al. 

(2002).  

Table 3.3: Density-temperature regions of thermal neutrino processes in very massive 

stars. 
 

S/N Thermal process Reaction Temperature-Density 

1 Pair neutrino 𝑒+ + 𝑒− → 𝜈𝑒,𝜇,𝜏 + 𝜈̅𝑒,𝜇,𝜏 𝑇 ≥ 109𝐾, 𝜌 ≤ 105𝑔𝑐𝑚−3 

2 Photo neutrino 𝛾 + 𝑒± → 𝜈𝑒,𝜇,𝜏 + 𝜈̅𝑒,𝜇,𝜏 + 𝑒
± 108 ≤ 𝑇 ≤ 109𝐾,

𝜌 ≤ 105𝑔𝑐𝑚−3 
3 Plasma neutrino 𝛾∗ → 𝜈𝑒,𝜇,𝜏 + 𝜈̅𝑒,𝜇,𝜏 108 ≤ 𝑇 ≤ 1010𝐾,

𝜌 ≥ 106𝑔𝑐𝑚−3 
4 Bremsstrahlung 

neutrino 
𝑒± + 𝑍 → 𝜈𝑒,𝜇,𝜏 + 𝜈̅𝑒,𝜇,𝜏 + 𝑒

± 108 ≤ 𝑇 ≤ 1010𝐾,
𝜌 ≥ 109𝑔𝑐𝑚−3 

 

3.6.1.1 Pair neutrino 

In stellar evolution theory, when temperature and density are relatively high, the 

dominant neutrino emission is by pair neutrino process. A specific example is the recent 

simulations which revealed that pair neutrino dominate over photo-neutrino process in 

150 M⊙ and 250 M⊙ progenitors (Wright et al., 2017a). For details on emissivity and 

spectra of neutrinos in supernovae, see references (Itoh et al., 1996; Lunardini, 2015; 

Odrzywolek & Plewa, 2011; Wright et al., 2017a; Wright et al., 2017b). The pair neutrino 

energy-loss has been generally investigated based on Weinberg-Salam theory (Itoh et al., 

1989; Itoh et al., 1996; Munakata et al., 1985) and specifically investigated by Esposito 

et al. (2003) at a wide density-temperature region for late stages of stellar evolutions. In 

the analytic fitting formulae, the energy-loss rate per unit volume due to pair neutrino 

process is expressed in the following form (Itoh et al., 1989; Munakata et al., 1985): 

𝑄𝑝𝑎𝑖𝑟 =
1
2⁄ [(𝑥2 + 𝑦2) + 𝑛(𝑧2 + 𝑘2)]𝑄𝑝𝑎𝑖𝑟

+ + 1 2⁄ [(𝑥2 − 𝑦2) + 𝑛(𝑧2 − 𝑘2)]𝑄𝑝𝑎𝑖𝑟
−   (3.56) 
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where 𝑥 = 1 2⁄ + 2𝑠𝑖𝑛2𝜃𝑊; 𝑦 =
1

2
; 𝑧 = 1 − 𝑥; 𝑘 = 1 − 𝑦 and 𝑠𝑖𝑛2𝜃𝑊 = 0.2319 +

0.0005. 𝜃𝑊 is the Weinberg angle and 𝑛 is the number of neutrino flavours other than 

electron neutrino which is practically massless at high temperature. However, 𝑄𝑝𝑎𝑖𝑟
+  is 

calculated by (Beaudet et al., 1967), and 𝑄𝑝𝑎𝑖𝑟
−  is given by Munakata et al. (1985). These 

two quantities are almost equal at temperature 𝑇 ≤ 109 K, and 𝑄𝑝𝑎𝑖𝑟
+ ≫ 𝑄𝑝𝑎𝑖𝑟

−  at 𝑇 ≥

1010 K. Different values of these quantities for different density-temperature regions can 

be found in Itoh et al. (1996). However, Equation 3.56 can be explicitly expressed in units 

of 𝑒𝑟𝑔𝑠 𝑐𝑚−3𝑠−1 as; 

𝑄𝑝𝑎𝑖𝑟 =
1
2⁄ [(𝑥2 + 𝑦2) + 𝑛(𝑧2 + 𝑘2)] × [1 +

(𝑥2−𝑦2)+𝑛(𝑧2−𝑘2)

(𝑥2+𝑦2)+𝑛(𝑧2+𝑘2)
𝑞𝑝𝑎𝑖𝑟] × 𝑔(𝜆)𝑒

−2 𝜆⁄ 𝑓𝑝𝑎𝑖𝑟 (3.57) 

 

where; 

𝑞𝑝𝑎𝑖𝑟 = (10.7480𝜆
2 + 0.3967𝜆0.5 + 1.0050)−1.0 × [1 + (

𝜌
𝜇𝑒⁄ )(7.692 × 107𝜆3 +

     9.715 × 106𝜆0.5)−1.0]
−0.3

        (3.58) 

𝑓𝑝𝑎𝑖𝑟 =
(𝑎0+𝑎1𝜉+𝑎2𝜉

2)𝑒−𝑐𝜉

𝜉3+𝑏1𝜆−1+𝑏2𝜆−2+𝑏3𝜆−3
       (3.59) 

𝑔(𝜆) = 1 − 13.04𝜆2 + 133.5𝜆4 + 1534𝜆6 + 918.6𝜆8    (3.60) 

𝜉 = (
(
𝜌
𝜇𝑒⁄ )

109𝑔𝑐𝑚−3
) 𝜆−1        (3.61) 

𝜆 =  
𝑘𝐵𝑇

𝑚𝑐2
= (

𝑇

5.9302×109𝐾
)        (3.62) 

where 
𝜌
𝜇𝑒⁄ is in density unit. And the natural unit ℏ = 𝑐 = 1 is used. The numerical 

values of the coefficients 𝑎0, 𝑎1, 𝑎2, 𝑏1, 𝑏, 𝑏3 𝑎𝑛𝑑 𝑐 are defined (Itoh et al., 1989; Jing-

Jing & Zhi-Quan, 2009) for different temperature values. 
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3.6.1.2 Photo neutrino 

In the temperature range 108 ≤ 𝑇 ≤ 109𝐾, and density 𝜌 ≤ 105𝑔𝑐𝑚−3, only photo 

neutrino process dominates and the energy-loss rate per unit volume due to this process 

of neutrino can be given by: 

𝑄𝑝ℎ𝑜𝑡𝑜 =
1
2⁄ [(𝑥2 + 𝑦2) + 𝑛(𝑧2 + 𝑘2)]𝑄𝑝ℎ𝑜𝑡𝑜

+ − 1 2⁄ [(𝑥2 − 𝑦2) + 𝑛(𝑧2 − 𝑘2)]𝑄𝑝ℎ𝑜𝑡𝑜
−  (3.63) 

All quantities in this equation are similar to Equation 3.56. And according to 

modifications made by Itoh et al. (1989) this can further be expressed as: 

𝑄𝑝ℎ𝑜𝑡𝑜 =
1
2⁄ [(𝑥2 + 𝑦2) + 𝑛(𝑧2 + 𝑘2)] [1 −

(𝑥2−𝑦2)+𝑛(𝑧2−𝑘2)

(𝑥2+𝑦2)+𝑛(𝑧2+𝑘2)
𝑞𝑝ℎ𝑜𝑡𝑜] 𝑓𝑝ℎ𝑜𝑡𝑜  (3.64) 

where; 

𝑞𝑝ℎ𝑜𝑡𝑜𝑛 = 0.666(1 + 2.045𝜆)
−2.066[1 + (

𝜌
𝜇𝑒⁄ )(1.875 × 108𝜆3 + 1.653 ×

    108𝜆2 + 8.499 × 108𝜆3 − 1.604 × 108𝜆4)−1.0]
−1.0

    (3.65) 

 

And other constant remain same as above, except; 

𝑓𝑝ℎ𝑜𝑡𝑜 =
(𝑎0+𝑎1𝜉+𝑎2𝜉

2)𝑒−𝑐𝜉

𝜉3+𝑏1𝜆−1+𝑏2𝜆−2+𝑏3𝜆−3
       (3.66) 

 

3.6.1.3 Plasma neutrino 

The plasma neutrino process becomes important at the temperature-density region 

108 ≤ 𝑇 ≤ 1010𝐾 𝑎𝑛𝑑 𝜌 ≥ 106𝑔𝑐𝑚−3. The energy-loss rate per unit volume  in the 

Weinberg-Salam theory for plasma neutrino process can be define by: 

𝑄𝑝𝑙𝑎𝑠𝑚𝑎 = (𝑥
2 + 𝑛𝑧2)𝑄𝑉        (3.67) 

The contributions of the vector 𝑄𝑉 has been explicitly defined by Kohyama et al. (1994) 

and by Itoh et al. (1996). For exact calculations (particularly at low-temperature), 

Equation 3.67 can be given by a fitted formula as: 

𝑄𝑝𝑙𝑎𝑠𝑚𝑎 = (𝑥
2 + 𝑛𝑧2)(𝜌 𝜇𝑒⁄ )3𝑓𝑝𝑙𝑎𝑠𝑚𝑎      (3.68) 
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Where; 

𝑓𝑝𝑙𝑎𝑠𝑚𝑎 =
(𝑎0+𝑎1𝜉+𝑎2𝜉

2)𝑒−𝑐𝜉

𝜉3+𝑏1𝜆−1+𝑏2𝜆−2+𝑏3𝜆−3
       (3.69) 

 

3.6.1.4 Bremsstrahlung neutrino 

In Bremsstrahlung neutrino process, the density-temperature region is between 108 ≤

𝑇 ≤ 1010𝐾 𝑎𝑛𝑑  𝜌 ≥ 109𝑔𝑐𝑚−3. However, for accurate calculations of the energy-loss 

rate influenced by this process, this region can be dived into: region of strongly degenerate 

electrons and region of weakly degenerate electrons. This has been investigated by many 

researchers (Itoh & Kohyama, 1983; Itoh et al., 1984; Munakata et al., 1987), but 

simplicity we refer to Itoh et al. (1996) for complete analysis of the expressions of both 

weakly and strongly degenerate electrons. 

3.6.2 Energy-loss by neutrino oscillations in massive stars 

Most stellar models calculate energy-loss of the neutrinos that are produced through 

thermal processes in the star without considering effects of neutrino oscillations. This 

might be due to the fact that effect of neutrino oscillations on the energy-loss is very small 

and is mostly neglected. However, in 2014, results from Super-Kamiokande experiments 

confirmed that terrestrial matter indeed has effects on solar neutrino oscillations 

(Renshaw et al., 2014). This latest observations warrants the consideration of the effects 

of oscillations on neutrino-energy loss in massive stars. This is because, during the 

evolution of massive stars large amount of neutrinos are released and the temperature-

density grid is high compared to solar-like models. Neutrinos can only interact through 

weak interactions with matter, and are massless, as emphasized by standard model of 

particles. As such this work will only consider weak interactions of neutrinos with 

electrons by including effects of neutrino oscillations. The total energy loss (∆𝐸𝜈) 

through oscillations for a neutrino consisting of an initial energy 𝐸𝜈
𝑖  in the centers of 
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massive stars, can be calculated by integration of the modified stopping power equation 

(SPE) using relevant properties which are taken from the massive stellar evolution models 

under consideration. When the neutrino travels through a distance R (radius of the stars), 

the neutrino energy that will escape from the star is given by; 

𝐸𝜈
𝑓
= ∫

𝑅
(
𝑑𝐸

𝑑𝑅
) 𝑑𝑅         (3.70) 

 

And therefore, the total neutrino-energy loss is obtained from; 

∆𝐸𝜈 = 𝐸𝜈
𝑖 − 𝐸𝜈

𝑓
         (3.71) 

 

𝐸𝜈
𝑖  and 𝐸𝜈

𝑓
are the initial and final neutrino energies in the star. In all neutrino flavors, 

except electron neutrinos, the scattering with electron has neutral bosons as mediator. The 

latter is mediated by 𝑊± and 𝑍𝑜 bosons, according to Feynman diagram which we have 

shown in Figure 2.6. 

3.7 Chapter Summary 

Chapter three represents methodology employed in carrying out this research. In this 

chapter, the post-processed stellar models are described; which include physical 

properties of the progenitor models and methods and codes used for stellar evolution. A 

generalized description of equation of states (EoS) involved in stellar models is presented. 

The distribution functions and adiabatic processes are discussed in subsection two of this 

chapter. The chapter is narrowed to the scope of this research, by describing relativistic 

electron-positron EoS, arising from pair-production in centres of the stars and at high 

temperature. Specific EoS routines used in this work is described in section 4 of this 

chapter. A model constructed into this EoS is also discussed. Finally, the method used for 

neutrino energy-loss is presented in last part of this chapter. In this work, thermal neutrino 

processes from the selected progenitor models of very-massive star is calculated. 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

4.1 Adiabatic Properties from the Instability Regions of Very-Massive Stars 

Models of very-massive stellar evolutions provides qualitative information about the 

instability of the progenitor stars. The dynamical instability of any star is determined by 

its adiabatic indices (Bond et al., 1984), such that a star is dynamically unstable when the 

ratio of its adiabatic index is less than 4/3 (Ledoux, 1946). In 1990, Kippenhahn et al. 

(1990), maintained that due to hydrodynamic instability; the radial structure of stars is an 

adiabatic dependent. Whence, adiabatic properties are greatly important in massive 

objects such as stars and in many astrophysics and plasma research (Beule et al., 1997).  

However, Pols (2011), confirmed that pair-production leads to low adiabatic index which 

triggered explosion of massive stars. For this reason, there is need to identify the adiabatic 

effects of pair-production from any particular stellar model. A stellar model may not be 

beautiful if its stability and/or instability is unknown. This is why many cases were 

considered and the stability of many models was investigated. Consequently, effects of 

adiabatic changes due to pair-production in massive stars, appeared worth-while to be 

examined and studied, considering its role in the stability and/or instability, collapse, and 

explosion of massive stars.  For this reason, the discovery of a super-luminous supernova 

(SLSN), has rapidly increased the interest in pair-instability explosion of massive stars. 

Nuclear adiabatic process, considered in this work, is defined by Beule et al. (1997) as a 

thermonuclear process which is characterized by a rapid change of state without heat 

exchange between the system and its surrounding In massive stars, however, pairs of 

electrons and positrons are produced as a result of high energy photons in their core 

(Barkat et al., 1967; Bond et al., 1984; Carr et al., 1984; El Eid & Hilf, 1977; Fraley, 

1968; Ober et al., 1983; Rakavy & Shaviv, 1967; Stringfellow & Woosley, 1988; 

Wheeler, 1977). Meanwhile, different magnitude of adiabatic index could make a star 
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unstable,  or in general term, stability of a star could be affected by decrease in its 

adiabatic index (Ledoux, 1946). Once any collapsing star enter the electron-positron pair-

production region (Figure 1.1), it will become destabilized by pair-production through a 

decrease in adiabatic index (Montero et al., 2012). One of significant role of this pair-

production (inside the core of massive stars) is its effect on instability and subsequent 

explosion of the star, which occur during advanced nuclear burning stages of evolution.  

In general, when abundance of degenerate electrons and positrons in the centres of 

massive stars are comparable to each other, there exist a region, in temperature-density 

plane where adiabatic index is <1.33. The adiabatic exponents and their derivatives are, 

therefore, a major event in stellar evolution; ranging from stellar formation, pulsation, 

convection to core collapse and supernova explosions. In particular, adiabatic derivatives 

(exponent and temperature gradient) measures the thermodynamic response such as 

expansion and/or compression, characterized by dynamic instability as well as convection 

instability of stars (Hansen et al., 2004; Kippenhahn et al., 1990; Maeder, 2008). 

Similarly, the behaviour of a star after it is adiabatically expanded or compressed depends 

on the numerical value of the adiabatic index (𝛾𝑎𝑑). Thus, we know that the stars’ internal 

energy derivatives with respect to pressure, temperature and density are relevant for its 

stability against convection and dynamical motion. This section investigates roles of 

adiabatic processes inside the region where electron-positron pairs are created in the 

centres of massive stars, which is originated at high central temperature and relatively 

low density (Phillips, 2013). The adiabatic quantities due to pair-production in 150 M⊙ 

and 200 M⊙ rotating models at Small Magellanic Cloud (SMC) and rotating and non-

rotating 500 M⊙ models at Low Magellanic Cloud (LMC), is numerically evaluated and 

analysed. The non-rotating model experienced least instability by achieving a maximum 

central temperature Tc = 1.02x109 K and density c = 3.29x104 g cm-3. On the other hand, 

rotating models for 150 M⊙, 200 M⊙ and 500 M⊙ achieved maximum central 
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temperature and density given by Tc = 1.94x109 , 1.99x109 , and 2.25x109 [K], and c = 

3.42x105 , 3.02x105, and 8.25x105 [g cm-3] respectively. However, the initial central 

temperature and density of the instability regions are shown in table 3.3 (columns 7th and 

8th). The equation of state chosen for this part of work is HELM-EoS which is described 

in chapter three. The input of the routines (as explained in previous chapters) are central 

mass fractions of individual compositions, average charge per isotope and its average 

nucleons number, under a particular central temperature (K) and density (g cm-3).  The 

result of this routine produced many physical properties ranging from pressure, specific 

thermal energies to most relevant, in this section, the adiabatic quantities such as adiabatic 

index and specific heats of the species involved. In centres of massive stars, many 

processes occur, particularly, at high temperature and relatively low density.  One such 

important process is photon disintegration into electron-positron pairs when the photons’ 

energy (h) is higher than the rest-mass energy of the pairs (h> 2mec
2), this only occur 

during collision with nucleus (Pols, 2011). The electron-positron pairs are created just 

before formation of any element heavier than oxygen, and therefore, various physical 

quantities due to pair-production in centres of massive stars requires understanding of the 

adiabatic effects, such as heat capacities, adiabatic indices etc., in order to describe their 

phenomenology. The thermodynamic coefficients that described pair-production process 

in massive stars are derived from electron-positron EoS using thermodynamic laws, 

together with internal energy equations; the most important of such thermodynamic 

coefficients are specific heat capacities, adiabatic indices and adiabatic temperature 

gradient (Pols, 2011). We have discussed all of these extensively in chapter two and three. 

In Table 4.1 the adiabatic properties obtained from progenitor models under consideration 

are shown. As we can see in this table only advanced burning flues that are used in the 

production of electron-positron thermal energy in the instability region, possesses low 
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adiabatic index below 4/3. In the next sections, we discuss result of these quantities and 

its significance on the dynamical instability of massive stars.  

4.1.1 Heat Capacities 

The heat capacities of rotating progenitor models are found to be decreased when 

central temperature increases within the pair-production region. And it increased with 

central density. Thus, the central temperature required for explosion and collapse of 

massive star (with rotation) can be attained at small amount of heat within the pair-

production region. In the following sections, physical dynamic of heat capacities in the 

models under consideration is discussed. 

4.1.1.1 150 M⊙ Progenitor Model 

The heat capacities of 150 M⊙ model in the instability regions, shown in Table 4.1, 

are independent of the stars’ composition. In Figure 4.1, we show the behaviour of heat 

capacities with respect to constant pressure plotted against temperature and density in the 

instability region. At onset of pair-production, the compressed star speedily rise the 

temperature of the instability region until it produced more electron-positron thermal 

energies. As a result of this, the region become completely disturbed by many thermal 

processes and the quantity of heat required to raise the temperature reduces the density of 

pair-production. The manifestation of this dynamic is that the star cools down 

immediately after pair-production is ignited. 

4.1.1.2 200 M⊙ Progenitor Model 

While heat capacities at constant volume show similar dynamic with respect to central 

mass fractions, it, however, differ in magnitude. In Figure 4.2 the heat capacity with 

respect to temperature and density is shown. However, it is observed that the amount of 

heat required to rise a unit temperature necessary for pair- production is very small. This 

also follows same physical argument with previous 150 M⊙ model.  
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Table 4.1: Adiabatic properties from instability region of 150 M⊙ progenitor model, showing few chemical abundance within which adiabatic 

index is below 4/3. 
 

Den 
[g cm-3] 

T 
[K] 

He3 C13 O17 

Cv 

[erg K-1] 
Cp 

[ erg K-1] 
ad ad Cv 

[ erg K-1] 
Cp 

[ erg K-1] 
ad ad Cv 

[ erg K-1] 
Cp 

[ erg K-1] 
ad ad 

3.2386E+04 1.0487E+09 1.2581E+07 1.4882E+15 1.2264 1.3026 1.9091E+04 1.6477E+12 1.2268 1.3026 5.8230E+06 6.8732E+14 1.2264 1.3026 

3.8143E+04 1.0935E+09 1.2518E+07 1.4408E+15 1.2233 1.2992 1.8997E+04 1.6302E+12 1.2237 1.2992 5.7938E+06 6.6564E+14 1.2233 1.2992 

4.2581E+04 1.1252E+09 1.2506E+07 1.4179E+15 1.2219 1.2969 1.8980E+04 1.6256E+12 1.2223 1.2969 5.7882E+06 6.5517E+14 1.2219 1.2969 

4.5910E+04 1.1478E+09 1.2511E+07 1.4060E+15 1.2213 1.2953 1.8987E+04 1.6368E+12 1.2217 1.2954 5.7903E+06 6.4975E+14 1.2213 1.2953 

4.9125E+04 1.1686E+09 1.2522E+07 1.3976E+15 1.2210 1.2939 1.9005E+04 1.6484E+12 1.2213 1.2940 5.7955E+06 6.4593E+14 1.2210 1.2939 

5.1996E+04 1.1864E+09 1.2535E+07 1.3918E+15 1.2210 1.2928 1.9025E+04 1.6587E+12 1.2213 1.2928 5.8014E+06 6.4328E+14 1.2210 1.2928 

5.5059E+04 1.2047E+09 1.2546E+07 1.3861E+15 1.2211 1.2916 1.9043E+04 1.6680E+12 1.2214 1.2916 5.8067E+06 6.4070E+14 1.2211 1.2916 

5.8099E+04 1.2220E+09 1.2555E+07 1.3809E+15 1.2213 1.2906 1.9057E+04 1.6761E+12 1.2216 1.2906 5.8110E+06 6.3835E+14 1.2213 1.2906 

6.1385E+04 1.2399E+09 1.2560E+07 1.3750E+15 1.2217 1.2895 1.9064E+04 1.6824E+12 1.2220 1.2895 5.8129E+06 6.3565E+14 1.2217 1.2895 

6.5010E+04 1.2586E+09 1.2558E+07 1.3680E+15 1.2223 1.2885 1.9062E+04 1.6872E+12 1.2225 1.2885 5.8122E+06 6.3248E+14 1.2223 1.2885 

6.8629E+04 1.2764E+09 1.2548E+07 1.3603E+15 1.2229 1.2875 1.9047E+04 1.6893E+12 1.2232 1.2875 5.8077E+06 6.2894E+14 1.2229 1.2875 

7.2523E+04 1.2946E+09 1.2532E+07 1.3515E+15 1.2237 1.2865 1.9022E+04 1.6894E+12 1.2240 1.2866 5.8000E+06 6.2487E+14 1.2237 1.2865 

7.6806E+04 1.3137E+09 1.2509E+07 1.3417E+15 1.2246 1.2856 1.8988E+04 1.6877E+12 1.2249 1.2856 5.7896E+06 6.2039E+14 1.2246 1.2856 

8.0015E+04 1.3275E+09 1.2490E+07 1.3345E+15 1.2254 1.2849 1.8960E+04 1.6859E+12 1.2256 1.2849 5.7809E+06 6.1708E+14 1.2254 1.2849 

8.2829E+04 1.3391E+09 1.2474E+07 1.3284E+15 1.2261 1.2844 1.8935E+04 1.6843E+12 1.2263 1.2844 5.7731E+06 6.1428E+14 1.2261 1.2844 

8.5660E+04 1.3506E+09 1.2457E+07 1.3227E+15 1.2267 1.2839 1.8910E+04 1.6823E+12 1.2270 1.2839 5.7656E+06 6.1166E+14 1.2267 1.2839 

8.8794E+04 1.3630E+09 1.2438E+07 1.3164E+15 1.2275 1.2833 1.8881E+04 1.6797E+12 1.2278 1.2833 5.7567E+06 6.0876E+14 1.2275 1.2833 

9.2360E+04 1.3766E+09 1.2417E+07 1.3097E+15 1.2284 1.2828 1.8849E+04 1.6771E+12 1.2287 1.2828 5.7469E+06 6.0567E+14 1.2284 1.2828 

9.6488E+04 1.3920E+09 1.2393E+07 1.3025E+15 1.2295 1.2822 1.8813E+04 1.6740E+12 1.2297 1.2822 5.7359E+06 6.0235E+14 1.2295 1.2822 

1.0178E+05 1.4109E+09 1.2363E+07 1.2939E+15 1.2309 1.2814 1.8768E+04 1.6702E+12 1.2311 1.2814 5.7221E+06 5.9839E+14 1.2309 1.2814 

1.0825E+05 1.4332E+09 1.2329E+07 1.2845E+15 1.2325 1.2806 1.8716E+04 1.6662E+12 1.2328 1.2806 5.7061E+06 5.9405E+14 1.2325 1.2806 

1.1472E+05 1.4546E+09 1.2297E+07 1.2763E+15 1.2342 1.2799 1.8668E+04 1.6629E+12 1.2344 1.2799 5.6916E+06 5.9029E+14 1.2342 1.2799 

1.2168E+05 1.4768E+09 1.2268E+07 1.2690E+15 1.2360 1.2792 1.8624E+04 1.6606E+12 1.2362 1.2792 5.6780E+06 5.8693E+14 1.2360 1.2792 

1.2922E+05 1.4999E+09 1.2242E+07 1.2629E+15 1.2380 1.2785 1.8585E+04 1.6596E+12 1.2382 1.2785 5.6661E+06 5.8411E+14 1.2380 1.2785 

1.3743E+05 1.5244E+09 1.2224E+07 1.2588E+15 1.2401 1.2779 1.8557E+04 1.6612E+12 1.2403 1.2779 5.6577E+06 5.8224E+14 1.2401 1.2779 

1.4633E+05 1.5502E+09 1.2217E+07 1.2574E+15 1.2423 1.2772 1.8546E+04 1.6664E+12 1.2425 1.2772 5.6542E+06 5.8159E+14 1.2423 1.2772 

1.5593E+05 1.5774E+09 1.2225E+07 1.2598E+15 1.2447 1.2767 1.8559E+04 1.6768E+12 1.2449 1.2767 5.6582E+06 5.8272E+14 1.2447 1.2767 

1.6295E+05 1.5970E+09 1.2244E+07 1.2644E+15 1.2465 1.2763 1.8588E+04 1.6882E+12 1.2467 1.2763 5.6668E+06 5.8487E+14 1.2465 1.2763 

1.6895E+05 1.6136E+09 1.2266E+07 1.2698E+15 1.2480 1.2760 1.8621E+04 1.6999E+12 1.2482 1.2760 5.6771E+06 5.8740E+14 1.2480 1.2760 

1.7419E+05 1.6280E+09 1.2289E+07 1.2755E+15 1.2493 1.2757 1.8657E+04 1.7113E+12 1.2495 1.2757 5.6879E+06 5.9003E+14 1.2493 1.2757 

1.7925E+05 1.6416E+09 1.2312E+07 1.2811E+15 1.2505 1.2755 1.8691E+04 1.7223E+12 1.2507 1.2755 5.6983E+06 5.9264E+14 1.2505 1.2755 

1.8418E+05 1.6545E+09 1.2332E+07 1.2863E+15 1.2517 1.2753 1.8722E+04 1.7324E+12 1.2519 1.2753 5.7076E+06 5.9504E+14 1.2517 1.2753 

1.8899E+05 1.6668E+09 1.2348E+07 1.2906E+15 1.2528 1.2751 1.8746E+04 1.7411E+12 1.2530 1.2751 5.7150E+06 5.9704E+14 1.2528 1.2751 

1.9418E+05 1.6797E+09 1.2359E+07 1.2941E+15 1.2540 1.2750 1.8763E+04 1.7487E+12 1.2541 1.2750 5.7201E+06 5.9865E+14 1.2540 1.2750 
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Den 
[g cm-3] 

T 
[K] 

He3 C13 O17 

Cv 

[erg K-1] 
Cp 

[ erg K-1] 
ad ad Cv 

[ erg K-1] 
Cp 

[ erg K-1] 
ad ad Cv 

[ erg K-1] 
Cp 

[ erg K-1] 
ad ad 

1.9935E+05 1.6921E+09 1.2364E+07 1.2963E+15 1.2551 1.2748 1.8770E+04 1.7543E+12 1.2552 1.2748 5.7225E+06 5.9969E+14 1.2551 1.2748 

2.0492E+05 1.7049E+09 1.2362E+07 1.2971E+15 1.2562 1.2747 1.8767E+04 1.7579E+12 1.2564 1.2747 5.7214E+06 6.0008E+14 1.2562 1.2747 

2.1052E+05 1.7173E+09 1.2354E+07 1.2967E+15 1.2573 1.2745 1.8754E+04 1.7595E+12 1.2575 1.2745 5.7176E+06 5.9988E+14 1.2573 1.2745 

2.1658E+05 1.7303E+09 1.2338E+07 1.2949E+15 1.2585 1.2744 1.8731E+04 1.7592E+12 1.2586 1.2744 5.7105E+06 5.9907E+14 1.2585 1.2744 

2.2267E+05 1.7428E+09 1.2318E+07 1.2922E+15 1.2596 1.2743 1.8701E+04 1.7574E+12 1.2598 1.2743 5.7013E+06 5.9780E+14 1.2596 1.2743 

2.2930E+05 1.7560E+09 1.2292E+07 1.2882E+15 1.2607 1.2742 1.8661E+04 1.7540E+12 1.2609 1.2742 5.6891E+06 5.9599E+14 1.2607 1.2742 

2.3665E+05 1.7701E+09 1.2259E+07 1.2830E+15 1.2620 1.2741 1.8610E+04 1.7487E+12 1.2622 1.2741 5.6736E+06 5.9357E+14 1.2620 1.2741 

2.5007E+05 1.7948E+09 1.2192E+07 1.2723E+15 1.2641 1.2739 1.8510E+04 1.7373E+12 1.2643 1.2739 5.6429E+06 5.8864E+14 1.2641 1.2739 

2.7504E+05 1.8381E+09 1.2071E+07 1.2531E+15 1.2678 1.2737 1.8326E+04 1.7158E+12 1.2680 1.2737 5.5868E+06 5.7976E+14 1.2678 1.2737 

3.0652E+05 1.8890E+09 1.1935E+07 1.2324E+15 1.2720 1.2736 1.8119E+04 1.6926E+12 1.2722 1.2736 5.5237E+06 5.7019E+14 1.2720 1.2736 

3.4167E+05 1.9418E+09 1.1802E+07 1.2133E+15 1.2762 1.2736 1.7918E+04 1.6710E+12 1.2764 1.2736 5.4625E+06 5.6138E+14 1.2762 1.2736 
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The compression must have increased pair-production energy and pressure. This thermal 

energy is necessary for annihilation of the pairs. In both models, rotation increased mass 

loss and mass of oxygen cores such that more pairs are produced and later annihilated.  

4.1.1.3 500 M⊙ Progenitor Model  

The heat, at constant volume and pressure, is, however, independent of chemical 

abundance within the instability region, and is steadily uniform at final mass of explosion. 

In Figures 4.3 & 4.4, the manifestation of this physical behaviour is shown. These figures 

compares rotating and non-rotating models. The rotation affects the nucleosynthesis of 

the stellar evolution, and in the productions of pairs, temperature and density play key 

role on the instability of the region. The nuclear burnings affect not only the heat 

capacities but also rotation of the stars. In Figure 4.5 it can be seen that, as mass loss 

continue to increase in rotating models, heat capacities slow down, so that it induces high 

central temperature and density for production of pairs and subsequent annihilations and 

explosion of the stars. The non-rotating model experienced greater heat capacities and 

possesess low mass loss which drives the star further away from pair-production region. 

This also confirms that non-rotating models are not good for pair-production, due to the 

fact that most of its mass is lost to heat, and therefore, the star must collapse before its 

explosions. 

 

4.1.2 Adiabatic Index 

The adiabatic index ad (𝛾𝑎𝑑 = (
𝜕 ln𝑃

𝜕 ln𝜌
)
𝑎𝑑

) as a measure of pressure to adiabatic 

compression or expansion, is found to be proportional to central temperature in the 

instability region (as in Figure 4.6) and is constant when pressure is proportional to 

density (i.e. 𝑃 𝛼 𝜌𝛾𝑎𝑑). This adiabatic index is however, related to dynamical stability of 

stars, it describe whether the star is dynamically unstable when pressure average of ad is 

less than 4/3, (Bond et al., 1984).   
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Figure 4.1: Heat capacity at constant pressure due to pair-production for 150 M⊙ 

progenitor model. Upper graph represents heat capacity with temperature, while lower 

with density.  

 

The numerical values of the adiabatic indices for 150 M⊙ and for all models under 

consideration are shown in Table 4.1. These values shows that, indeed these models 

possesses adiabatic indices below 4/3 at late burning stages of their evolution. Figure 4.7, 

shows adiabatic indices with mass loss from the models under consideration.
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Table 4.2: Adiabatic quantities at minimum and maximum temperature and density in the centres of massive stars with respect to selected 

chemical abundance. R & NR represents rotating and non-rotating models respectively. 

 

 

 

 

 

 

 

Adiabatic 

Quantity 

13C 18O 8B 

150  

[M⊙]-

R 

200  

[M⊙]-

R 

500  

[M⊙]-

R 

500  

[M⊙]-

NR 

150  

[M⊙]-

R 

200  

[M⊙]-

R 

500 

[M⊙]-

R 

500  

[M⊙]-

NR 

150  

[M⊙]-

R 

200  

[M⊙]-

R 

500  

[M⊙]-

R 

500  

[M⊙]-

NR 

Cv[erg 
K-1] 

1.91E4 

 

1.80E4 

1.94E4 

 

1.89E4 

3.30E03 

 

2.93E03 

 

2.58E4 

 

2.52E4 

3.08E04 

 

2.89E4 

3.93E04 

 

3.82E4 

7.80E03 

 

6.85E03 

 

2.96E03 

 

2.91E3 

6.26E14 

 

5.85E14 

9.52E14 

 

9.25E14 

1.12E15 

 

9.78E14 

 

5.40E15 

 

5.30E15 

 

Cp[erg 
K-1] 

1.65E12 

 

1.67E12 

1.93E12 

 

2.19E12 

8.88E10 

 

1.43E11 

 

2.04E12 

 

1.97E12 

2.53E12 

 

2.68E12 

3.99E12 

 

4.49E12 

2.42E11 

 

3.64E11 

 

5.91E10 

 

5.88E10 

7.37E22 

 

6.03E22 

1.35E23 

 

1.19E23 

 

9.95E22 

 

7.14E22 

 

5.96E23 

 

5.58E23 

 

ad 1.23 

 

1.28 

1.23 

 

1.28 

1.24 

 

1.30 

 

1.23 

 

1.23 

1.23 

 

1.28 

1.23 

 

1.28 

1.23 

 

1.30 

 

1.25 

 

1.25 

1.22 

 

1.28 

1.23 

 

1.30 

1.23 

 

1.28 

 

1.24 

 

1.23 

 

ad 1.30 

 

1.27 

1.31 

 

1.27 

1.31 

 

1.28 

 

1.31 

 

1.31 

1.30 

 

1.27 

1.31 

 

1.27 

1.31 

 

1.28 

 

1.31 

 

1.31 

1.30 

 

1.27 

1.31 

 

1.27 

1.30 

 

1.28 

 

1.31 

 

1.31 
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Figure 4.2: Heat capacity at constant volume due to pair-production in 200 M⊙ 

progenitor model. Upper graph represents heat capacity with temperature, while lower is 

for density. M represents M⊙. 

 

We observed that rotation reduced mass loss and increase adiabatic index. The non-

rotating model possesses lowest adiabatic index which is the manifestation of its quick 

collapse as it lost most of its mass very quickly in the instability region. Similarly, oxygen 

core in rotating models induces an increase of adiabatic indices such that rotating stars 

produces pairs of electrons and positrons. In Figure 4.6, effects of electron-positron pairs, 

in which the adiabatic indices are less than 4/3, are plotted against temperature within the 
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instability regions. However, in this figure, we show that the adiabatic index due to pair-

production is almost independent of nuclear burning taking place in the instability region, 

as predicted by Rakavy and Shaviv (1967). This adiabatic index which represents pressure 

derivatives create disturbance in the region and is fundamentally positive with 

temperature for all rotating models but decreases in case of the non-rotating, as can be 

seen in Figure 4.6. This scenario, in rotating model, keeps the instability in the region and 

the star produces more pairs which later annihilate into neutrinos. Therefore, pair-

production leads to a dynamical instability which is responsible for rapid explosion of the 

star immediately after creation of electron-positron pairs. Meanwhile, sudden decrease of 

the adiabatic index in non-rotating model and its quick collapse is basically due to its low 

mass loss and less oxygen core mass that is necessary for production of the pairs. 

4.1.3 Adiabatic Temperature Gradients 

The temperature gradient ∇𝑎𝑑= (
𝜕 log𝑇

𝜕 log𝑃
)
𝑎𝑑

 is another adiabatic derivative which 

determines characteristics of temperature under adiabatic compression or expansion of a 

star and is evaluated as flow rate of energy in relation to surface of the star. This quantity 

is only important for convective stability of a particular star. In Table 4.2, minimum and 

maximum evaluated values of this quantity is presented in last rows for all models under 

consideration. However, we noticed equal values for all models which clearly shows that 

all the models are convectively unstable and finally explode as PISNe. The convective 

instability, which is described by adiabatic temperature gradients, is out of scope of this 

work. It is interesting to note that the adiabatic quantities show similar dynamics in all 

the rotating models within the pair-production regions. Non-rotating model has different 

pattern of instability. The quantity of heat required to rise central temperature necessary 

for explosions of the star to occur is found to be decreasing. 
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Figure 4.3: Evolution of specific heat capacities at constant volume against temperature 

for rotating (left) and non-rotating (right) 500 M⊙ model. M represents M⊙ while R and 

NR represent rotation and non-rotation. 
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Figure 4.4: Evolution of specific heat capacities with density at constant pressure for 

rotating (left) and non-rotating (right) 500 M⊙ model. M represents M⊙ while R and NR 
represent rotation and non-rotation.  
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Figure 4.5: Track of heat capacities with mass loss for all models. Non-rotating model 

loses less mass and acquires higher heat capacities. 
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Figure 4.6: Effect of Pair-production instability on adiabatic index. M represents mass 

of the star in [M⊙], while, R & NR stands for rotating and non-rotating models. 
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Figure 4.7: Adiabatic index with respect to mass loss for 150 M⊙ 200 M⊙ rotating 

models in SMC and 500 M⊙ rotating and non-rotating models in LMC. 

 

4.1.4 Results Summary 

Generally, the stability and/or instability of a star is determined by magnitude of its 

adiabatic index ad (index). Any star predominantly occupied by an ideal gas or by 

classically degenerate electrons have adiabatic index 𝛾𝑎𝑑 =
5

3
= 1.6667 and are therefore 

dynamically stable. However, for relativistic electron and positron, the adiabatic index is 

𝛾𝑎𝑑 =
4

3
= 1.33333 and such stars extend to neutral instability condition. Any further 

disturbance of such a star could results to its collapse and/or explosion. At very high 

temperature; the 𝛾𝑎𝑑 <
4

3
 at core of the star and during pair production, this is a condition 

sufficient for generating instability in massive stars. However, since massive stars are 

dominated by radiation and gas of photon has 𝛾𝑎𝑑 =
4

3
, the instability is only important 
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for stars with MS/RS << 1 (Fowler, 1966). If 𝛾𝑎𝑑 >
4

3
  the excess pressure leads to re-

expansion so that high energy is restored. If however, 𝛾𝑎𝑑 <
4

3
, the increase of pressure is 

insufficient to gain high energy. The compression will therefore reinforce itself and the 

situation is unstable on dynamical timescale, thus we have a criterion for dynamical 

stability; that is; 𝛾𝑎𝑑 >
4

3
. It can be shown that a star that has 𝛾𝑎𝑑 >

4

3
 everywhere is 

dynamically stable, and if 𝛾𝑎𝑑 =
4

3
 it is neutrally stable and the compression leads to 

hydrostatic equilibrium. . If 𝛾𝑎𝑑 is not constant within a star, the stability take place at an 

average value of 𝛾𝑎𝑑 through which the star has a critical value 4/3. The radiation pressure 

brings 𝛾𝑎𝑑 near this critical value, and as such very-massive stars are in neutral 

equilibrium, or attain a marginal stability. If on the other hand, a star approaches 

dynamical instability, there will be a point at which the usual method of perturbation used 

to obtain the condition of vibrational stability will cease to be applicable. However, in the 

case when the adiabatic index is 𝛾𝑎𝑑 <
4

3
  in centres of massive stars, require further 

investigation, because the burden of the adiabatic change on the star increases stronger 

than pressure and hence the star after going through a gigantic instability would finally 

collapse. 

In this section, we presents adiabatic effects of pair-production on the dynamical 

instability of selected progenitor models. Adiabatic quantities are evaluated by 

constructing a model into a thermodynamically consistent electron-positron equation of 

state (EoS) routines. At very high temperature and relatively low density; the production 

of electron-positron pairs in the centres of massive stars led the adiabatic index to below 

4/3. It is observed that the adiabatic index, which creates disturbances in pair-production 

region is fundamentally positive with central temperature and density for all rotating 

models under consideration. Similarly, mass of oxygen cores in rotating models within 

the pair-production region has increased the adiabatic indices such that stars compresses, 
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and whence induces an explosion to PISN, while mass loss and adiabatic index in non-

rotating model exponentially decay. The increase of mass loss in rotating models and 

decrease of heat capacities in their instability regions show that only small quantity of 

heat energy, which is independent of chemical abundance, is required to keep the central 

temperature high. This high temperature is required for explosion and collapse of massive 

stars. The dynamic of many adiabatic quantities show similar pattern for rotating models. 

While, non-rotating model may, however, not be suitable for inducing the instability due 

to large mass loss to heat. Various effects of adiabatic properties on the dynamical 

instability of massive stars due to pair-production is examined in this section. 

4.2 Electron-Positron Thermal Energy. Pressure and Entropy from the 

Instability Regions of Very-Massive Stars 

In massive stars, very energetic photons are converted into electron-positron pairs just 

before ignition of any element heavier than oxygen and the star will enter a region (Figure 

1.1) whereby energy needed to create rest mass of electron-positron pairs (at high 

entropy) softens the equation of state and reduce the adiabatic index to below 4/3 (Fraley, 

1968), which subsequently leads to a violent contraction that activates nuclear explosion 

(Barkat et al., 1967; Bond et al., 1984; Carr et al., 1984; Chatzopoulos & Wheeler, 2012a; 

El Eid & Hilf, 1977; El Eid et al., 1983; Fraley, 1968; Ober et al., 1983; Rakavy & Shaviv, 

1967; Stringfellow & Woosley, 1988; Wheeler, 1977). The thermal concentration of these 

pairs occur during advanced burning phase of the stars’ evolution and causes a dynamic 

instability in the star (Woosley & Heger, 2015). This instability results in explosion of 

massive star as PISN. In this section, the thermal energies, pressure, and entropy of 

electron-positron gas produced in the instability regions of selected progenitor models is 

presented, discussed and analysed. As mentioned in previous chapters, any massive star 

that enter the instability region will be dynamically unstable and will eventually be 

disrupted by a powerful PISN explosion. At the explosion of the PISN and after a 
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sufficient portion of the star passed out from unstable region, the pressure increases faster 

than gravitational forces, which reverse its collapse and the energy released in oxygen 

burning again disrupt the star and eject all materials with high velocity (Fraley, 1968), 

this energy, which obviously, increased the temperature and provide more pressure, is 

diverted into creation of electron-positron pairs. The thermal energy of these relativistic 

electron-positron pairs increases both temperature and density of the region through 

contraction of the star and indirectly triggered its explosion. This energy is, therefore, 

crucial to understanding the stellar cores and explosions (Blinnikov et al., 1996). 

Similarly, explosion disrupts the core of helium and other heavier nuclei and energy of 

this explosion increases with mass (Woosley et al., 2002). On the other hand, the 

dynamically unstable stars at certain core temperature also have an entropy which greatly 

affects its explosion (Fraley, 1968). In the following sub-section, we analyse those results 

one-after-another. 

4.2.1 Electron-Positron Thermal Energy from Instability Regions of Massive 

Stars 

In Table 4.3, results of maximum pair-production thermal energies from progenitor 

models under consideration is shown; first column is initial mass of star (M⊙), second, 

third, fourth and fifth columns represents initial metallicity, critical rotational ratio, 

maximum central density (g cm-3) and temperature (K) respectively, while last columns 

are maximum values of electron-positron thermal energies (erg g-1) recorded against 

chemical abundances in the instability regions of the progenitor models respectively. The 

thermonuclear reactions began at core of the star with hydrogen and helium burnings 

which require low energy for nuclear fusion. The main focus-point here is where electron-

positron pairs are produced at high energy, especially in late stages. At this region, 

however, nuclear reaction rates increases by a certain amount such that an energy is 
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released due to oxygen mass consumption.  This energy, by pairs of electron and positron, 

produced an oscillatory vibration within the instability region and is large enough to cause 

annihilation of pairs into neutrinos. The oscillations will soon die and the star evolves 

again slowly and enter the instability region. The process continues until all oxygen is 

completely exhausted from centre of the star. The stellar implosion got to higher density 

and temperature, and pair-production proceeds, such that generation of specific thermal 

energy inside the massive star is only poised by neutrino emission. Finally, as energy is 

spent by pair-production, the core loses its stability and begin to contract. This is evident, 

on account that, pair-production contributes only during advanced nuclear burning phases 

and production of electron-positron pairs in the instability region induces contraction of 

the stars and increases density-temperature of the region, which triggers quick 

annihilation of pairs. Electron-positron thermal energy is emitted during this contraction 

and is necessary and sufficient for release of the stars from contraction to its subsequent 

explosion. This energy is almost same for all nuclei beyond helium burning in the 

instability region. However, this later finding was predicted long ago by (Rakavy & 

Shaviv, 1967). The contraction of the star is overcome through increase of electron-

positron thermal energy in the instability region. Figure 4.8, shows the increase of thermal 

energy when temperature of the region rises. It is shown here, that the progenitors are 

able to overcome their contraction through increase of thermal energy within the 

instability region. Figure 4.9 and Figure 4.10, is a comparison between electron-positron 

thermal energy with respect to central temperature and density from the progenitor 

models. Rotating models at SMC exhibits higher energies arising from higher temperature 

and density. This is, however, due to abundance of electron-positron pairs, that are 

produced in their centres. The thermal energy induced ability of star to reach the 

instability region as a result of low mass-loss and higher oxygen cores, which is contrary 

to models in LMC that loses more mass. This evidently affects the fates of the stars, such 
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that electron-positron in centres of SMC models will fully annihilate into pair neutrinos, 

which may spark off their explosion as PISNe without remnant. As strong mass-loss 

drives stars further away from the instability region; adversely, thermal energy of pairs is 

reduced due to mass-loss and low oxygen cores as can be seen in Figure 4.11. However, 

metallicity also affects the thermal energy in a way that SMC models with lower 

metallicity than LMC suppresses the mass loss with greater amount of energy, and since 

200 M⊙ has greater mass of oxygen cores, it must have greater thermal energy in the 

instability-region to corresponds with its low metallicity and low mass loss. On the other 

hand, non-rotating 500 M⊙ might have only reached the instability region due to low 

metallicity (only when compared with solar metallicity), which is capable of suppressing 

the mass-loss, such that thermal energy would be large enough for contraction of the star 

to convert electron-positron pairs into neutrinos. The graph in Figure 4.9 and Figure 4.10, 

indicates that instability is set in at temperature of around 1.01x109 K, 1.02x109, 1.02x109 

K and 1.00x109 K corresponding to density 4.56x104 g cm-3, 2.44x104 g cm-3, 3.99x104 g 

cm-3 and 3.06x104 g cm-3 respectively for 150 M⊙, 200 M⊙  rotating and 500 M⊙  rotating 

and non-rotating progenitor models. Inside the instability region, however, nuclear 

reaction rates increased by certain quantity; such that energy is released due to production 

of high mass oxygen-cores that is necessary for pair production.
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Table 4.3: Maximum electron-positron thermal energy Emax[ergs g-1] recorded from instability regions of very-massive stars. 

Massive 

stars 

    [M⊙] 

Zin Crit rot Density 

[g cm-3] 

T 

[K] 

Thermal Energy Emax[ergs g-1]   

 

He3 

 

C13 

 

O17 

 

O18 

 

Be7 

 

B8 

150 0.002 0.40 3.42E+05 1.94E+09 2.57E+17 2.54E+17 2.57E+17 2.55E+17 2.57E+17 2.57E+17 

200 0.002 0.40 3.02E+05 1.99E+09 3.29E+17 3.26E+17 3.29E+17 2.83E+17 3.29E+17 3.29E+17 

500 0.006 0.40 8.25E+05 2.25E+09 2.31E+17 2.21E+17 2.31E+17 2.25E+17 2.32E+17 2.31E+17 

500 0.006 0.00 3.29E+04 1.02E+09 4.01E+16 3.83E+16 4.01E+16 2.78E+16 4.01E+16 4.01E+16 
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Figure 4.8: Electron-positron thermal energy with respect to temperature for 150 M⊙ 

(top-left) 200 M⊙ (top-right), 500 M⊙ non-rotating (down-left) and 500 M⊙ rotating 

(down-right) progenitor models.  
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Figure 4.9: Electron-positron thermal energy for 150 M⊙ (black), 200 M⊙ (magenta) 

and 500 M⊙ rotating (blue) and non-rotating (red) models with respect to temperature. 
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Figure 4.10: Electron-positron thermal energy for 150 M⊙ (black), 200 M⊙ (magenta) 

and 500 M⊙ rotating (blue) and non-rotating (red) models with respect to density.  
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Figure 4.11: Electron-positron thermal energy [in erg g-1] with respect to mass loss 

(in M⊙ yr-1]. 
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Figure 4.12: Thermal energies of electron-positron pairs with respect to final mass for 

200 M⊙.   
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In Figure 4.12 effect of mass of helium cores on electron-positron energy is examined. 

Bearing in mind that, helium mass directly affects explosion mechanism such that higher 

helium core mass reduce the instability threshold. In this figure (Figure 4.12) thermal 

energy decays when star approaches its final explosive mass (helium core mass), and it is 

interesting to note that, all rotating models show similar dynamic, differing only with 

non-rotating model (Figure 4.13). In case of non-rotating model; thermal energy is small 

compared to rotating models, and is almost uniform within the instability region until 

final mass of the star, where star will probably die or collapse. Models with highest helium 

mass (200 M⊙) maintained greater stability and produced grater thermal energy. In low 

helium core mass (500 M⊙) the thermal energy is steady and suddenly decay with respect 

to fractional rotation. The electron-positron thermal energy produced vibrational 

instability in density-temperature region and is sufficient enough to untie the stars from 

contraction and annihilate the electron-positron pairs into neutrinos, which drives 

explosion of the star. This vibration dies very quickly and the star evolves back to the 

instability region. The process continues until all oxygen is completely exhausted from 

center of the star and it is completely exploded without any remnant.  

4.2.2 Relativistic Electron-Positron Pressure from Instability Regions of Very-

Massive Stars 

 

The total pressure, as a combination of ideal gas, radiation, and in the end partially 

degenerate electrons, keep up the star against gravitational force. However, at end of Fe-

burning during evolution of the stars, there is no nuclear burning that could proceed to 

create pressure needed to keep the star against gravitational collapse. The star at this 

situation is dominated by pair-production and therefore begins to implode. In Figure 4.14 

evaluated pressure with temperature for 200 M⊙ and 500 M⊙ rotating progenitor models 

is shown.   

Univ
ers

iti 
Mala

ya



 

103 

 

94.564178 94.564180 94.564182
2.4x10

16

2.6x10
16

2.8x10
16

Final mass of star [M]

T
he

rm
al

 e
ne

rg
y 

[e
rg

 g
-1

]

500M - rot

 
 

 

Figure 4.13: Thermal energy of electron-positron pairs with final mass for non-rotating 

500 M⊙ model.  

 

It is important to note that, although electron-positron pressure in all models increases at 

high temperature, it is, however, insignificant in density-temperature range. This is 

because only electron degeneracy and radiation are important for pressure in the evolution 

process. The pressure increase within the instability region could only signify the ideal 

property of the Fermi gas inside the region. The pressure increase, which is arising from 

increase in temperature of the instability region, is also manifested from increase in 

nuclear force striking boundaries of the region. In Table 4.4, maximum values of electron-

positron pressure from models under consideration are summarized; the first column is 

initial mass (M⊙), second, third, fourth and fifth columns represents metallicity, critical 

rotational ratio, maximum central density (g cm-3) and temperature (109 K) respectively, 

while last columns are maximum pressure (erg cm-3) of electron-positron pairs against 

nuclear abundances in the instability region. The low pressure indicates where 

temperature and density are relatively inside the instability region of pair- production 

range near advanced nuclear reactions. This table also shows that electron-positron 

pressure is also independent of nuclear abundance inside the region. 
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Figure 4.14: Electron-positron pressure with temperature within the instability regions 

of 200 M⊙ (up) and 500 M⊙ (bottom) rotating progenitor models 

Univ
ers

iti 
Mala

ya



 

105 

 

4.2.3 Entropy due to Pair-Production from the Instability Regions of Massive 

Stars 

The electron-positron entropy, as presented in Table 4.5, is uniform within the 

instability regions of the stars irrespective of nuclear abundance. Entropy is the 

microscopic uncertainties in the nuclei to avoid instability region. There is no steep 

decrease in density around the centre nor a sharp increase in entropy which is usually 

associated with oxygen-burning shell. The entropy in the core and its surrounding are 

unnaturally large and changes by rising in response to burning, but decline when neutrino 

loss is reached. This pattern is repeated until fuels are exhausted causing mass to reduce 

below a critical value. The final contraction phase followed, and stellar core settled into 

stable silicon shell burning with no more instability pulses. However, uncertainties 

affecting many of the nuclei at early evolution of stars is caused by low thermal energy 

to reach pair-production limit. 

4.2.4 Results Summary 

This section discussed electron-positron thermal energies, pressure, and entropy from 

instability regions of very-massive stars with carbon-oxygen cores in the range of 60 M⊙< 

MCO < 133 M⊙. Rotating 200M⊙ model recorded highest electron-positron thermal 

energy of about 3.29x1017 [erg g-1] while non-rotating 500M⊙ model almost lose all its 

electron-positron energy and collapse before reaching the instability region.Univ
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Table 4.4: Maximum relativistic electron-positron pressure Pmax [erg cm-3] recorded against chemical composition within the instability 

regions of very-massive stars. 

 

Table 4.5: Maximum relativistic electron-positron entropy Smax[erg g-1 K-1]   recorded against chemical composition within the instability 

regions of very-massive stars. 

Massive 

stars[M⊙] 

Zin Crit rot Density 

[g cm-3] 

T 

[K] 

Smax[erg g-1 K-1]    

He3 C13 O17 O18 Be7 B8 

150 0.002 0.40 3.42E+05 1.94E+09 1.59E+08 1.59E+08 1.59E+08 1.59E+08 1.59E+08 1.59E+08 

200 0.002 0.40 3.02E+05 1.99E+09 1.99E+08 1.99E+08 1.99E+08 1.87E+08 1.99E+08 1.99E+08 

500 0.006 0.40 8.25E+05 2.25E+09 1.25E+08 1.25E+08 1.25E+08 1.25E+08 1.25E+08 1.25E+08 

500 0.006 0.00 3.29E+04 1.02E+09 4.46E+07 4.46E+07 4.46E+07 5.12E+07 4.46E+07 4.46E+07 

Massive 

stars 

[M⊙] 

Zin Crit rot Density 

[g cm-3] 

T 

[K] 

Pmax [erg cm-3] 

He3 C13 O17 O18 Be7 B8 

150 0.002 0.40 3.42E+05 1.94E+09 1.76E+22 1.76E+22 1.76E+22 1.76E+22 1.76E+22 1.76E+22 

200 0.002 0.40 3.02E+05 1.99E+09 2.02E+22 2.02E+22 2.02E+22 1.20E+22 2.02E+22 2.02E+22 

500 0.006 0.40 8.25E+05 2.25E+09 4.14E+22 4.15E+22 4.14E+22 4.14E+22 4.14E+22 4.14E+22 

500 0.006 0.00 3.29E+04 1.02E+09 1.73E+20 1.74E+20 1.73E+20 2.07E+20 1.73E+20 1.73E+20 
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This energy is needed to overcome contraction of the stars and for complete annihilation 

of electron-positron into pair neutrinos. The electron-positron pressure is insignificant in 

density-temperature range because only electron degeneracy and radiation are contributes 

immensely for pressure during the evolution process. 

4.3 Pair Neutrino Energy-Loss from the Instability Regions of Very-Massive 

Stars 

Stellar evolutions and fates are equally and strongly affected by many other physical 

quantities, such as cooling neutrino energy-loss. The emission of neutrinos from massive 

stars is an important energy-loss mechanism at high temperature and density. When 

interior of a massive star is sufficiently hot, nuclear reactions provide energy-loss as 

radiation and neutrinos, which will modify the composition, such that the structure of the 

star changes with time (Woosley et al., 2002). Stellar evolution, beyond helium burning, 

is greatly accelerated by electron-positron pair annihilation, and energy generation by 

thermonuclear reactions at centre of the star is only balanced by emission of neutrinos 

mainly from pair-production process (Arnett, 1996). The neutrinos at different flavours 

sways the remnant gravitational energy of the star and drives its evolution from initially 

hot to finally cold state (Janka, 2016; Janka, 2017). Neutrinos emission unlocks key issues 

in the explosion of massive stars and serve as proven sources of information about 

astrophysical objects and phenomena (Odrzywolek & Plewa, 2011). Irrespective of its 

mass, a star during its late evolutionary stages lose energy through neutrinos. For instance, 

large amount of neutrinos and antineutrinos are emitted in proto-neutron star of a core-

collapse supernova, and then quickly disperse in ~10s long burst which then carriers most 

of energies liberated in collapse of the star, and then lead to a neutrino-driven wind that 

propagates through the star and induces a supernova explosion (Lunardini, 2015). 

Although, Arnett (1996) argued that neutrino emission from supernovae is negligible in 

many explosion models due to slow timescale of weak interaction rates compared to 
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hydrodynamic timescales, but on contrary, Odrzywolek and Plewa (2011) suggests that 

it is possible that certain amount of energy emitted via neutrinos is significant compared 

to energy produced in thermonuclear burning, and in such case, neutrino energy-loss play 

an important role in explosion dynamics, and in very-massive star, neutrino signals could 

unequivocally ascertain its explosion. And hence, in either case, neutrinos provide 

important insights into supernova explosion mechanism. Pair neutrino emission is the 

dominant cooling process for massive stars and is very essential in their explosion, and 

therefore adequate information about neutrinos spectra and energy-loss at endpoints of 

stellar evolution models would help in addressing supernova research and may allow for 

distinguishing the triggering mechanisms involve in PISN explosions. The energy-loss 

rate due to neutrino emission attracts attention from both weak nuclear reactions and 

thermal processes. This method of cooling differs basically from radiative, convective or 

conductive cooling in massive stars. The basic differences between them is the fact that 

neutrino emission from core of stars immediately carries all of its energy completely out 

of the star. Neutrino emission is just like having a local refrigerator that cools stars’ core. 

In this sections, we present results obtained from numerical calculations of neutrino 

energy-loss emitted from very-massive stars under consideration. 

In Table 4.6, summary of evaluated neutrino energy-loss is presented together with 

temperature and density from the instability regions of 150 M⊙, 200 M⊙ rotating and 500 

M⊙ rotating and non-rotating progenitor models. In this table, first three-columns 

represent neutrino energy-loss, temperature, and density within the instability regions 

from 150 M⊙ model respectively. The remaining columns are from 200 M⊙, 500 M⊙ 

rotating and non-rotating models. In the instability region and after contraction of stars, 

electron-positron pairs completely annihilate into pair neutrinos, and the star cools by 

neutrino emission, which ignites its explosion in the end of carbon-oxygen core mass. 

The dynamic of these annihilation processes with respect to neutrino energy-loss can be 
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seen in Figure 4.15 below. This figure shows that pairs converts their thermal energies 

into neutrino emissions in rotating models.  Non-rotating model which has lowest 

electron-positron thermal energy is unable to emit many neutrinos, and as such, it 

collapses before explosion. The neutrino energy-loss within the instability regions of 

rotating SMC and LMC models increases rapidly with central temperature of the region, 

as can be seen in Figure 4.16, this is as a result of their high electron-positron thermal 

energies which is induced by rotation that subsequently reduced mass-loss from the stars. 

Neutrino energy-loss increase with respect to density in the instability region as can be 

seen in Figure 4.18, this trend will continue until end of pair neutrino emission range; 

when density is higher and pair neutrino emission begin to decline. However, this is only 

depicted in rotating models, non-rotating model differs slightly from this scenario, as can 

be seen in Figure 4.17. It is found that neutrino energy-loss in non-rotating model stayed 

almost constant before final collapse of the star.  Low metallicity, which suppresses mass 

loss, coupled with non-rotation effects in 500 M⊙ non-rotating models prevents the 

electron-positron pairs to significantly overcome contraction of the star and to converts 

pairs into neutrinos. This is also manifested in track of neutrino energy-loss with mass 

loss, as shown in Figure 4.17 (whereby non-rotating model lacks energy and collapses 

before neutrinos).  On mass-loss effects; recalling that rotating models loses less mass 

than non-rotating, and electron-positron thermal energies of rotating models are much 

greater than non-rotating, so also neutrino energy-loss appeared to be in same pattern of 

evolution. In Figure 4.17, rotating models would emits more neutrinos than non-rotating, 

and as such, they could be able to explode as PISNe. It should be stressed here that non-

rotating models are in-adequate to explode as PISN, and should either die or collapse 

prior to reaching the instability region.
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Table 4.6: Neutrino energy-loss rates from instability regions of 150 M⊙, 200 M⊙ rotating and 500 M⊙ rotating and non-rotating progenitor 

models arising from electron-positron pair annihilation. 

  

 

 

 

 

150 M⊙ 200 M⊙ 500 M⊙-R 500 M⊙-NR 

Log
[g cm-3] 

Log T 

[K] 

Energy-loss 
[erg cm-3 s-1] 

Log
[g cm-3] 

Log T 

[K] 
Energy-loss 
[erg cm-3 s-1] 

Log
[g cm-3] 

Log T 

[K] 
Energy-loss 
[erg cm-3 s-1] 

Log
[g cm-3] 

Log T 

[K] 
Energy-loss 
[erg cm-3 s-1] 

4.510363 9.020669 2.71E+09 4.386771 9.007146 2.19E+09 4.600555 9.010304 1.51E+09 4.486165 9.00036 1.35E+09 

4.581409 9.038801 4.43E+09 4.448804 9.022925 3.39E+09 4.652342 9.023318 2.16E+09 4.499222 9.003263 1.46E+09 

4.629216 9.051245 6.15E+09 4.481885 9.03142 4.28E+09 4.68869 9.03262 2.77E+09 4.508188 9.005278 1.54E+09 

4.661907 9.059858 7.69E+09 4.507014 9.037934 5.09E+09 4.718137 9.040263 3.40E+09 4.516695 9.007229 1.63E+09 

4.691303 9.067665 9.39E+09 4.529402 9.043764 5.95E+09 4.742177 9.046544 4.02E+09 4.516695 9.007229 1.63E+09 

4.71597 9.074245 1.11E+10 4.547442 9.04848 6.74E+09 4.763921 9.052259 4.67E+09 4.516695 9.007229 1.63E+09 

4.74083 9.080866 1.31E+10 4.563423 9.052696 7.52E+09 4.785843 9.058022 5.42E+09 4.516695 9.007229 1.63E+09 

4.764172 9.087067 1.53E+10 4.577332 9.05637 8.28E+09 4.806014 9.063314 6.21E+09 4.516695 9.007229 1.63E+09 

4.788061 9.093374 1.78E+10 4.589417 9.059577 9.00E+09 4.826248 9.068597 7.10E+09 4.516695 9.007229 1.63E+09 

4.812978 9.099897 2.08E+10 4.600967 9.062654 9.74E+09 4.846852 9.073935 8.12E+09 4.516695 9.007229 1.63E+09 

4.836507 9.105995 2.40E+10 4.61208 9.065621 1.05E+10 4.867887 9.07933 9.28E+09 4.516695 9.007229 1.63E+09 

4.860476 9.112145 2.77E+10 4.622823 9.068501 1.13E+10 4.889423 9.084792 1.06E+10 4.516695 9.007229 1.63E+09 

4.885395 9.118502 3.21E+10 4.632123 9.071003 1.21E+10 4.909202 9.089754 1.19E+10 4.516695 9.007229 1.63E+09 

4.903172 9.123018 3.56E+10 4.641631 9.073558 1.29E+10 4.928962 9.094661 1.34E+10 4.516695 9.007229 1.63E+09 

4.918183 9.126825 3.88E+10 4.65088 9.076055 1.37E+10 4.948953 9.099577 1.51E+10 4.516695 9.007229 1.63E+09 
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Figure 4.15: Neutrino energy-loss plotted with electron-positron thermal energy in the 

instability regions of 150 M⊙, 200 M⊙ rotating models (top - left & right) and 500 M⊙ 

rotating and non-rotating models (down - left & right).  
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Figure 4.16: Track of neutrino energy-loss with respect to temperature in the pair-

instability regions of 150 M⊙ (dotted line), 200 M⊙ (green line), rotating 500 M⊙ 

(dashed-blue) and non-rotating 500 M⊙ (red line).  
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Figure 4.17: Neutrino energy loss against mass loss from 150 M⊙ (magenta), 200 M⊙ 

(green), 500 M⊙ rotating (blue), and nonrotating (red) models.  
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Figure 4.18: Neutrino energy-loss with central density from 150 M⊙ and 200 M⊙ (top-

1st & 2nd) and 500 M⊙ rotating and non-rotating (down-1st & 2nd) model.  

Univ
ers

iti 
Mala

ya



 

114 

 

Figure 4.18, represents dynamics of neutrino energy-loss within the instability regions of 

the stars. Rotating models show clear instability and explosion process take place before 

the star die. The density and temperature of the region keep rising until the star is able to 

turn into explosion when its core has been cooled by neutrino emission. The non-rotating 

model failed to attain to density and temperature that will enable it to undergo full 

instability so as to generate enough electron-positron thermal energy needed to trigger 

annihilation of pairs into neutrinos which cools its core. 

4.3.1 Results Summary 

This section discussed numerical results obtained from calculations of energy-loss 

rates due to pair neutrino process in the instability regions of very-massive stars with 

carbon-oxygen cores within the range of 60 M⊙< MCO < 133 M⊙. High thermal energy 

of pair-production is needed to overcome contraction of stars and for complete 

annihilation of electron-positrons into pair neutrinos. The section analyses results found 

from this calculation, especially as it affects end fates of the stars. 

4.4 Temperature and Density profiles for 120, 150, 200, 300 and 500 M⊙ stellar 

models 

The neutrino energy loss from thermal processes is 100% dependent on temperature 

and density of the star. We must therefore understand the profiles of these two important 

quantities, especially as it influence production of neutrino flux which is necessary for 

calculations of energy-loss of neutrinos via oscillations. The density is however, 

dependent on radius of the star, such that at the surface of the star, the density is low and 

increases towards the centre of the star for both rotating and non-rotating models. In 

Figure 4.19, we have shown graphs of temperature and normalised radius of the stars 

against a normalised mass of the particular star.  
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Figure 4.19: Normalised radius (cm) & temperature (K) of star against mass (M/ M⊙) 

for 120 M⊙ (upper-left), 150 M⊙ (upper-right) and 500 M⊙ (down-right), and 200 M⊙ 

(down-left) and 300 M⊙ (down-right). 
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In both rotating and non-rotating models, the dynamics of both temperature and radius 

profiles are similar in pattern for all models under consideration. In Figure 4.19, the 

temperature and radius of rotating model 120 M⊙ is higher than the non-rotating. And by 

implications of high radius in rotating model, the density of the rotating 120 M⊙ model 

at centre is higher than at the centre of the non-rotating model, and similarly the surface 

density of this particular model is lower in rotating model than in non-rotating. However, 

this might be due to recorded high temperature of the rotating model at centre which affect 

the chemical abundance and subsequently other properties of the star.  

4.5 Profiles of electron density from evolution of 120, 150, 200, 300 and 500 M⊙ 

models 

The emissivity and spectra of neutrinos are uniquely determined by temperature and 

electron density. However, neutrino flavors which are produced from processes of 

neutrinos are 𝜈𝑒 , 𝜈̅𝑒 , 𝜈𝜇, 𝜈̅𝜇, 𝜈𝜏, 𝜈̅𝜏. And from standard theory of electroweak interactions, 

fluxes for these flavors are similar, but some differences exist between electron and 

muon/tau flavors. Due to significant contribution of the electron density (ne) on total 

energy-loss, we must evaluate its values before we calculate the neutrino energy loss 

through oscillations. As explained in previous chapters, the existence of different values 

of electron density and density of matter in massive stars arises due to rotation effect on 

many quantities, such as mass loss, during the evolution process of massive stars. To 

examine this effect, we showed, in Figure 4.20, dynamics of electron density with respect 

to radius of the stars and make comparison with density of matter. The electron density 

is normalised to Avogadro constant (𝑁𝐴), according to the relation given by:𝑛𝑒 =
𝜌𝑁𝐴

𝜇𝑒
  

where 𝜇𝑒 = ∑
𝐴𝑖
𝑋𝑖𝑍
⁄  is the mean molecular weight in unit of electron mass and 𝑁𝐴 =

6.023 × 1023 𝑚𝑜𝑙−1 is Avogadro constant.  Also, 𝐴𝑖 is atomic weight of the atomic 

charge 𝑍 and 𝑋𝑖 is its abundance by weight. 
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Figure 4.20: Graphs of density of matter , electron density ne (normalised to Avogadro 

constant, NA) with respect to radius (cm) of star, for 120 & 150, 500 M⊙, and 200 & 

300 M⊙. 

Univ
ers

iti 
Mala

ya



 

118 

 

We can see from Figure 4.20, that there are different values of both density of matter and 

electron density in both rotating and non-rotating model.  For example, in 120 M⊙ model, 

the rotation effect, which caused contraction of the stars, also shrink the values of the two 

densities of both matter and electrons. The non-rotating models recorded higher values of 

both density of matter and electron density. Similarly, in both rotating and non-rotating 

models, the density of matter is higher than electron density, this might not be 

unconnected with the fact that most electrons are annihilated. In 120 M⊙, the values of 

density of matter and electron density for non-rotating models are greater than rotating 

model. The centrifugal force acting on the stars, during rotation, also influenced the 

densities of matter and electron density. 

4.6 Thermal neutrino energy-loss from 120, 150, 200, 300 and 500 M⊙ stellar 

models 

The variations in the evolution track of these models is responsible for different and 

independent values of thermal neutrino energy, as we can see in Figures 4.21, 4.22, 4.23 

and 4.24. In Figure 4.21 the energy-loss from neutrino thermal processes for non-rotating 

(up) and rotating (down) 120 M⊙ model is shown. In non-rotating model, the total energy 

is similar to pair neutrino and has the highest value as compared to all other processes. 

While, plasma neutrino recorded lowest value of neutrino energy-loss.  The other two 

processes (photo and bremsstrahlung) are relatively the same and have greater value than 

plasma neutrino. However, on the contrary, in rotating model, pair neutrino has lowest 

value of neutrino energy loss. While total, photo and bremsstrahlung are almost similar 

and possesses highest values. Plasma neutrino has medium value in the rotating 120 M⊙ 

model. This shows a major contribution effect of rotation in the energy loss. For both 

non-rotating and rotating 150 M⊙ model in Figure 4.22, the total and pair neutrino energy 

are similar and have the highest values compared to other three processes. Photo and 
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bremsstrahlung processes are similar and greater than plasma process. This clearly 

indicate that the dominant process is pair neutrino. 

 

 
 

Figure 4.21: The Energy-Loss from neutrino thermal processes against radius (cm) of 

star for 120 M⊙ non-rotating (up-graph) and rotating (down-graph) model. 
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Figure 4.22: The Energy-Loss from neutrino thermal processes against radius (cm) of 

star for 120 M⊙ non-rotating (up-graph) and rotating (down-graph) model. 
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Figure 4.23: The Energy-Loss from neutrino thermal processes against radius (cm) of 

star for 200 M⊙ (up) and 300 M⊙ (down) rotating models. 
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Figure 4.24: The Energy-Loss from neutrino thermal processes against radius (cm) of 

star for 500 M⊙ non-rotating model. 

 

 

For both 200 M⊙ and 300 M⊙ rotating models, Figure 4.23 (up-graph & down-graph) 

respectively, the major contributor of neutrino energy loss is by pair neutrino and is 

similar to total neutrino energy loss. In these models, we see that plasma neutrino is the 

lowest thermal neutrino energy loss. Whereas, other processes of thermal neutrino, photo 

and bremsstrahlung neutrinos, are both less than pair neutrino and greater than plasma 

process, in both 200 M⊙ and 300 M⊙ rotating models. In Figure 4.24, which showed 500 

M⊙ non-rotating model, photo neutrino and bremsstrahlung processes are the major 

contributors and are similar to total energy loss. The lowest energy loss is by pair neutrino 

and is greater than plasma neutrino. The plasma neutrino is averagely the lowest thermal 

neutrino process in this massive star.  
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On the other hand, since rotation minimizes the effective temperature, we could see 

that thermal neutrino processes involving lesser temperature range are higher in 120 M⊙ 

rotating model. The degree of rotation similarly shrink the amount of total neutrino energy 

loss. The pair neutrino is averagely the dominant process in all the models (except for 120 

M⊙ rotating and 500 M⊙ non-rotating models), which is a clear manifestation of the 

effect of interaction with magnetic field especially for rotating models that also produced 

higher oxygen cores and more production of pairs that will later annihilate into neutrinos. 

The total energy loss as a function of radius varies due to contraction of the stars. We 

know that the stars are contracted more with increase in degrees of rotation, so also the 

total neutrino energy loss differ as contraction causes change in range of densities. For 

example, pair neutrino energy loss is dominant at relatively low density when the star 

contracts, but plasma process requires higher density when the star is free from any effect 

of contraction. 

4.7 Chapter Summary 

Generally, this chapter present results obtained from different models constructed into 

electron-positron equation state and SNEUT4 code. The first part of the chapter addresses 

objective one of the research. While second and third parts focusses on second and third 

objectives of this research respectively. We have presented full description of the results 

obtained. We also discussed effects of these results on end fates of very-massive stars 

with emphasis on PISN explosion. In the last part of this chapter, the thermal neutrino 

processes and the total neutrino energy-loss from 120, 150, 200, 300 and 500 M⊙ stellar 

models is presented. 

 

fgffgb ffg  

Univ
ers

iti 
Mala

ya



 

124 

 

CHAPTER 5: KINETICS OF NON-EQUILBRIUM PAIR PLASMAS 

This chapter is devoted for future work which could be useful in understanding the 

pair-production processes involved in very-massive stars. A lot of work could be done to 

investigate the roles of these processes in the evolution and final fates of very-massive 

stars. 

5.1 Introduction 

There has been growing evidence for emission of high-energy radiation from many 

astrophysical objects. An annihilation lines has been observed from galactic centre 

(Leventhal et al., 1978). Several gamma ray bursts have 400-500keV feature which is 

probably an annihilation line (Mazets et al., 1982), and Cygnus X-1 may also show one 

(Nolan & Matteson, 1983). Jets from Active Galactic Nuclei (AGN) shows evidences of 

existence of relativistic plasmas of electron-positron pair in dense radiation fields of the 

AGN. These radiation from AGN possesses characteristics properties of non-thermal 

plasma, when the emitted power is uniform with respect to photon energy within the range 

of infrared to hard X-rays (Svensson, 1987). Pair production is also confirmed to be 

important in galactic black hole sources, if the primary radiation mechanism produces 

more than 1 per cent of an Eddington luminosity above 1 MeV (Guilbert et al., 1983). 

The annihilation of electrons and anti-electrons (the positron) pair into two photons and 

its reverse process- the production of positron-electron pair by interaction of two photons- 

were first studied in the frame work of quantum mechanics by P.A.M. Dirac and by 

G.Breit and J.A. Wheeler in 1930s respectively. At high temperature and relatively low 

density electron-positron pair production from cores of massive stars is crucial for 

evolution, collapse, death and end fates of not only massive stars but many Astrophysical 

objects, such as in mass-loss from black hole mergers (Belczynski et al., 2016) and in 

some models of the universe which predicted that first stars at Dark Ages might form 
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massive stars and become subject to pair-instability (Abel et al., 1998; Abel et al., 2000; 

Bromm et al., 2002; Bromm & Larson, 2004; Chatzopoulos & Wheeler, 2012a). Pairs 

increase the cooling rates and opacity of the source object, they also affect the radiation 

transport since annihilation acts as a hard photon source and production as a photon sink. 

So, to interpret the observed hard spectra of active nuclei, gamma-ray busters and 

particularly end fates of very-massive stars, we need to understand details of pair 

production and radiative transfer in very hot plasmas. However, these relativistic pair 

plasmas which envisage of both thermodynamic equilibria and non-equilibria, have been 

both investigated thoroughly in literature.  

Most of works on this focuses on thermal equilibrium, examples which can be found 

in Svensson (1982a), while Pilla and Shaham (1997) provides detail information on non-

equilibrium case by addressing time evolution of non-equilibrium electron-positron pair 

plasmas by means of kinetic theory approach (Coppi, 1992; Fabian et al., 1986; Ghisellini, 

1987; Svensson, 1987). This time evolution is determined by numerically solving 

Boltzmann equations of the non-equilibrium pair plasma which contain high-energy 

photons, and distribution functions of the particles and photons are discretised in energy 

and spatial coordinates (Pilla & Shaham, 1997). This approach is significantly important 

due to its good resultant photon statistics at higher energies. However, analysing the non-

equilibrium pair plasmas has been having problems due to some computational 

difficulties, but this difficulty seems to be resolved with the work of Pilla and Shaham 

(1997), in which the Boltzmann equations are solved based on an adaptive Monte Carlo 

(MC) sampling scheme. This scheme is, however having two advantages over previous 

conventional MC methods (like Phase-Space Density PSD, and Large-Particle LP 

representations). Number one of such advantages is that it is faster than the conventional 

MC and, two it is more flexible than previously used numerical methods. Meanwhile, it 

could easily accept anisotropic distributions (Pilla & Shaham, 1997).  
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5.2 Processes of pair Plasma 

The theoretical, experimental and observational evidences originating from pair 

producing and photon producing processes have extremely synthesized the correlation 

between Physics and astrophysics in recent years. These processes; initially introduced 

by Dirac, Breit and Wheeler as well as by Sauter etc., have been continually followed by 

efforts from experimental verifications on earth-based facilities. Dirac process has been 

by far most successful and Breit and Wheeler process despite been generally simple, as 

the reverse of Dirac process, but is one of experimentally toughest to be confirmed, 

whereas, vacuum process of polarization in strong electromagnetic field, which 

championed by Sauter et al. proposes the concept of critical electric field.  The processes 

of electron-positron pair production and annihilation has been playing great role in the 

evolution and decaying of highly energetic astrophysical plasmas, such as supernovae, 

gamma-ray bursts and early universe (Wolf, 1974). However, the physical processes of 

heating and cooling mechanisms, thermal equilibrium and ionization equilibrium 

occurring in tenuous astrophysical plasmas are well understood (Svensson, 1982a). 

Observations of properties like gamma-ray emission from various object indicate that 

astrophysical plasma may achieve relativistic temperatures. At this relativistic 

temperature, a number of threshold processes appear associated with creation of electron-

positron pairs. The electron-positron pairs are produced through photo-photon, photon-

particle and particle-particle interactions. The created pairs either annihilate into photons 

or participate in other photon and pair producing process. The Quantum Electrodynamical 

processes occurring in relativistic plasma are listed in table below. The photon and pair 

generating processes treated here are pair annihilation and pair production processes, 

which are very relevant microscopic processes in a pair plasma. Adopting the model 

developed by (Pilla & Shaham, 1997), for a stationary, neutral un-magnetised pair plasma 

of protons(𝑃), electrons(𝑒−), Positrons (𝑒+) and Photons (𝛾) with densities 
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𝑁, 𝑛−, 𝑛+ 𝑎𝑛𝑑 𝑛𝛾 respectively. 𝑛𝛾 Represents the density of Photons with 

energy𝜖(𝑖𝑛 𝑚𝑐2). In the following subsections, we will presents the physical quantities 

of the kinetic equations of this processes. 

5.2.1 Electron-Positron Pair Annihilation 

The existence of positive and negative energy states in theoretical account of 

relativistic quantum theory was predicted by Dirac. The electron was considered under 

the concurrent influence of two incident beams of radiation which induce modulation of 

electron to the state of negative energy. This self-generated process occur independently 

of the energy for any pair of electron and positron. Meanwhile, this procedure may not 

need an existing radiation before it take place. The process of an electron-positron pair 

annihilation into two photons is given in a reaction equation as 

𝑒+ + 𝑒− → 𝛾 + 𝛾         (5.1) 

 

And there are two Feynman diagrams for this process, as can be shown in the figure 

below; 

 
Figure 5.1: Feynman diagram for electron-positron pair annihilation. 

 

The annihilation of an electron with four-momentum 𝑃− and spin 𝑆− and a positron with 

four-momentum 𝑃+ and spin 𝑆+ into two photons with four-momenta and polarisations 

𝐾1 and 𝐾2 could have a transition amplitude for the accelerated transition process given 

by; 

𝑀𝑒++𝑒−→𝛾+𝛾 =
16𝑒2|𝑎1|

2|𝑎2|
2

|𝜀′|𝑚𝑒𝑐
𝐾1,2

1−cos(𝛿𝜀
′

ℏ⁄ )

(𝛿𝜀′)2
     (5.2) 
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Where 𝜖′ = 𝑚𝑒𝑐
2 − 𝜈1 − 𝜈2  and 𝜈1, 𝜈2 are the photon frequencies. 

 

𝐾1,2 = −(𝑚1.𝑚2)
2 +

1

4
[1 − (𝑚1.𝑚2)(𝑛1. 𝑛2) + (𝑚1. 𝑛2)(𝑚1. 𝑛2)]

𝜈1+𝜈2

𝑚𝑒𝑐2
 (5.3) 

 

is a dimensionless number which depend on the unit vectors in the directions of the two 

photons polarization vectors 𝑚1 and 𝑚2. 𝑛1& 𝑛2 are respectively defined by 𝑛1,2 =

𝐼1,2𝑚1,2. And the intensities of the photons is   𝐼1,2 =
𝜈1,2

2

2𝜋𝑐
|𝐾1,2|

2
.  

Table 5.1: Quantum electro dynamical processes in pair plasmas. 
 

Basic two body 

Interactions 
Radiative Variant Pair Production Variant 

Moller and Bhaba Scattering 

𝑒𝑒 → 𝑒𝑒 

Bremsstrahlung 

𝑒𝑒 ↔ 𝑒𝑒𝛾 
𝑒𝑒 ↔ 𝑒𝑒𝑒+𝑒− 

Compton Scattering 

𝛾𝑒 → 𝛾𝑒 

Double Compton scattering 

𝛾𝑒 ↔ 𝛾𝑒𝛾 
𝛾𝑒 ↔ 𝑒𝑒+𝑒− 

Pair annihilation 

𝑒+𝑒− → 𝛾𝛾 

Three Quantum annihilation 

𝑒+𝑒− ↔ 𝛾𝛾𝛾 
Not available 

Photon-photon 

Pair production 

𝛾𝛾 → 𝑒+𝑒− 

Radiative pair production 

𝛾𝛾 ↔ 𝑒+𝑒−𝛾 
Not available 

Processes Involving Protons 

Coulomb scattering 

𝑒𝑝 → 𝑒𝑝 

Bremsstrahlung 

𝑒𝑝 ↔ 𝑒𝑝𝛾 

 𝑒𝑝 ↔ 𝑒𝑝𝑒+𝑒− 

 𝛾𝑝 ↔ 𝑝𝑒+𝑒− 
 

 

5.2.2 Electron-Positron Pair Production 

The electron-positron pair production is an important cooling mechanism for plasmas 

at relativistic temperature. The pair production in the interaction of two photons was given 

by Breit-Wheeler, which according to Dirac’s theory of electron, is influenced by a 

transition of an electron from negative energy state to a positive energy state under the 

influence of two light quanta on a vacuum. In contrary to Dirac’s process, the pair 

production of electron-positron has a threshold because of its non-zero mass nature. This 

implies that ample amount of energy is required to create electron-positron pair at centre 

of mass of the system, the energy must be twice greater than the electron mass energy. 

The reaction equation can be written as 
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𝛾 + 𝛾 → 𝑒+ + 𝑒−         (5.4) 

And the two Feynman diagrams for the two photon pair production as depicted in the 

figure below: 

 
Figure 5.2: Feynman diagram for electron-positron pair production. 

 

The transition amplitude of this important process is given by; 

𝑀𝛾+𝛾→𝑒++𝑒− = (
𝛼ℏ

𝑚𝑒𝑐
)
2

2|𝑎1|
2|𝑎2|

2𝐾1,2
|1−cos(𝛿𝜖

′

ℏ⁄ )|
2

(𝛿𝜖′)2
    (5.5) 

 

where 𝐾1,2 is the dimensionless number obtained by Dirac. The squared amplitudes |𝑎1|
2 

and |𝑎2|
2 are determined by intensities 𝐼1,2 of the two photons as 

|𝑎1,2|
2
=

2𝜋𝑐

𝜔1,22
𝐼1,2         (5.6) 

 

𝛿𝜀 is energy difference between initial light states and final electron-positron states. 

𝜖1 = −𝑐(𝑃1
2 +𝑚𝑒

2𝑐2)
1

2        (5.7) 

𝜖2 = −𝑐(𝑃2
2 +𝑚𝑒

2𝑐2)
1

2        (5.8) 

 

where 𝑃1, 𝑃2 are the four-momentum of the positron and electron respectively. Therefore, 

𝑑(𝛿𝜖) = 𝑐(𝑃2
2 +𝑚𝑒

2𝑐2)
1

2 + 𝜖1 − ℏ𝜔1 − ℏ𝜔2     (5.9) 
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where 𝑃2 = −𝑃1 + 𝐾1 + 𝐾2 the final momentum of the electron. Thus, from the energy 

and momentum conservations, we get; 

𝑑(𝛿𝜖) = 𝑐2 [
|𝑃1|

𝜖1
−

𝑃1𝑃2

(|𝑃1|𝜖2)
] 𝑑𝑃1       (5.10) 

 

The effective collision area (cross section area) for the head-on collision of two light 

quanta was shown by Bret-Wheeler to be  

𝜎𝛾𝛾 = 2(
𝛼ℏ

𝑚𝑒𝑐
)
2

∫
𝑐|𝑃1|

2

ℏ𝜔1ℏ𝜔2
𝐾1,2 [

|𝑃1|

𝜖1
−

𝑃1𝑃2

(|𝑃1|𝜖2)
]
−1

𝑑Ω1    (5.11) 

 

where Ω1 is the solid angle matching the total energy conservation 𝛿𝜖 = 0. In the centre-

of-mass of the system, the momenta of the electron and the positron are equal and 

opposite 𝑃1 = −𝑃2 also the momenta of the photons are 𝐾1 = −𝐾2. Corollary, the 

energies of the electron and the positron are equal: 𝜖1 = 𝜖2 = 𝜖 and so, the energies of 

the photons: ℏ𝜔1 = ℏ𝜔2 = 𝜖𝛾 = 𝜖. 

5.2.3 Compton Scattering 

This process involves an incoming photon absorption by an electron with four-

momentum and polarisation vector. The Feynman diagram of this process can be shown 

in the figure below: 

 
Figure 5.3: Feynman diagram for Compton scattering. 
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5.3 Kinetic theory equations 

In general description of kinetic theory approach, energy can be added or subtracted 

by means of absorption and/or emission of the ray passing through matter and will 

therefore change the specific intensity of the ray. Meanwhile, photons scattered into or 

out of the beam may also cause effects on the intensity. In the next sub-sections, we 

generally defined the physical quantities due to any form of radiation transfer. 

5.3.1 Emission coefficient 

The emission coefficient 𝑗 is the energy emitted per unit time per unit solid angle per 

unit volume 𝑗 =
𝑑𝐸

𝑑𝑡𝑑𝑉𝑑Ω
, While the monochromatic emission coefficient can be given as; 

𝑗𝑣 =
𝑑𝐸

𝑑𝑡𝑑𝑉𝑑Ω𝑑𝑣
           (5.12) 

 

Therefore the coefficient of emission is dependent on the direction of the emission. In the 

case of anisotropic emitter, for which most astrophysical object are, when randomly 

distributed, then 

𝑗𝑣 =
1

4𝜋
𝑃𝜈          (5.13) 

 

𝑃𝜈 is the radiation power per unit volume per unit frequency. If the spontaneous emission 

is defined by the (angle integrated) emissivity 𝜖𝜈, which is defined as emitted energy per 

unit frequency per unit time per unit mass, then the isotropic emission is 

𝑑𝐸 = 𝜖𝜈𝜌𝑑𝑉𝑑𝑡𝑑𝜈
𝑑Ω

4𝜋
        (5.14) 

 

𝜌 is the mass density of the emitting medium and the last factor takes into account the 

fraction of energy radiation into 𝑑Ω. Hence, the relation between 𝜖𝜈 and 𝑗𝑣 for isotropic 

emission, is 𝑗𝑣 =
𝜖𝜈𝜌

4𝜋
. 
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This shows that the beam propagation in distance 𝑑𝑠 and cross sectional area 𝑑𝐴 through 

a volume𝑑𝑉 = 𝑑𝐴𝑑𝑠, has an additional intensity to the beam by spontaneous emission 

given as; 

𝑑𝐼𝜈 = 𝑗𝑣𝑑𝑠          (5.15) 

 

5.3.2 Absorption Coefficient 

When a beam as it travels a distance 𝑑𝑠, the loss of intensity is given by; 

𝑎𝜈 =
−𝑑𝐼𝜈

𝐼𝜈𝑑𝑠
          (5.16) 

 

The absorption coefficient 𝑎𝜈(𝑐𝑚
−1) is positive when energy is taken out of the beam. 

In a microscopic model, particles with density n each present an effective absorbing area, 

or cross section, of magnitude𝜎𝜈(𝑐𝑚
2). These absorbers are may be randomly distributed. 

Now, considering the effect of these absorbers on radiation through 𝑑𝐴 within solid angle 

𝑑Ω, the elemental number of absorbers equals 𝑛𝑑𝐴𝑑𝑠. The total absorbing area presented 

by absorbers equals to 𝑛𝜎𝜈𝑑𝐴𝑑𝑠. And the absorbed energy out of the beam is; 

−𝑑𝐼𝜈𝑑𝐴𝑑ΩdtdV = 𝐼𝜈(𝑛𝜎𝜈𝑑𝐴𝑑𝑠)𝑑ΩdtdV      (5.17) 

 

And hence, 

𝑑𝐼𝜈 = −𝑛𝜎𝜈𝐼𝜈𝑑𝑠         (5.18) 

 

which is the above phenomenological law, where 𝑎𝜈 = 𝑛𝜎𝜈 or 𝑎𝜈 = 𝜌𝑂𝜈. Where 

𝑂𝜈(𝑐𝑚
2𝑔−1) is the mass absorption coefficient or the opacity. However, the paramount 

conditions of validity for this microscopic picture are; 

I. The linear scale of the cross section must be small in comparison to the inter-

particle distance 

Univ
ers

iti 
Mala

ya



 

133 

 

II. The absorbers are independent and randomly distributed. 

Fortunately, these conditions are always met for Astrophysical problems. 

5.3.3 Radiative transfer equation 

Incorporating the two equations above, that is the effect of absorption and emission 

into one single equation, we have 
𝑑𝐼𝜈

𝑑𝑠
= 𝑗𝜈 = −𝑎𝜈𝐼𝜈 

⟹
𝑑𝐼𝜈

𝑑𝑠
= 𝑗𝜈 − 𝑎𝜈𝐼𝜈         (5.19) 

 

This provides a useful way for solving the intensity in an emitting and absorbing medium. 

In the case of emission only, 𝛼𝜈 = 0 the above equation has solution given by; 

𝐼𝜈(𝑠) = 𝐼𝜈(𝑠0) + ∫ 𝑗𝜈(𝑠
′)𝑑𝑠′

𝑠

𝑠0
       (5.20) 

 

Which shows that the increase in brightness is equal to the emission coefficient integrated 

along the line of sight. However, for absorption only, 𝑗𝜈 = 0; 

𝐼𝜈(𝑠) = 𝐼𝜈(𝑠0)𝑒
(−∫ 𝑎𝜈(𝑠

′)𝑑𝑠′
𝑠
𝑠0

)
       (5.21) 

 

And the brightness decrease on the ray by absorption coefficient exponential integrated 

along the line of sight. 

5.3.4 Optical depth 

The optical depth is defined by 𝑑𝜏𝜈 = 𝑎𝜈𝑑𝑠 

⇒ 𝜏𝜈(𝑠) = ∫ 𝑎𝜈(𝑠
′)𝑑𝑠′

𝑠

𝑠0
        (5.22) 

 

This optical depth is measured along the path of a traveling ray, occasionally, 𝜏𝜈 can be 

measured backward along the ray and a minus sign appear. In the above equation, the 

point 𝑠0 is arbitrary, which set the zero point for the optical depth scale. Optically thick 
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medium or opaque is when 𝜏𝜈, integrated along a typical path through the medium, 

satisfies  𝜏𝜈 > 1. On the other hand, when 𝜏𝜈 < 1, the medium is said to be optically thin 

or transparent. Essentially, an optically thin medium is one in which the typical photon 

of frequency 𝜈 can traverse the medium without being absorbed, whereas, an optically 

thick medium is one in which the average photon of frequency 𝜈 cannot traverse the entire 

medium without being absorbed. 

5.3.5 Mean free path 

This is the average distance a photon can travel through an absorbing material without 

being absorbed. It is sometimes related to the absorption coefficient of a homogeneous 

material. From the exponential absorption law, the probability of a photon travelling at 

least an optical depth 𝜏𝜈, is simply 𝑒−𝜏𝜈. The mean optical depth travelled is equal to 

unity. 

〈𝜏𝜈〉 = ∫ 𝜏𝜈𝑒
−𝜏𝜈𝑑𝜏𝜈

∞

0
= 1        (5.23) 

 

The mean physical distance travelled in a homogeneous medium is defined as the mean 

free path 𝑙𝜈 and is determine by 〈𝜏𝜈〉 = 𝑎𝜈𝑙ν = 1; 

⇒ 𝑙𝜈 =
1

𝑎𝜈
=

1

𝑛𝑎𝜈
         (5.24) 

 

Therefore, the mean free path 𝑙𝜈 is the reciprocal of the absorption coefficient for 

homogeneous material. 

5.3.6 Radiation force 

When a medium absorbs radiation, then the radiation must have exerted a force on the 

medium since radiation carries momentum. The radiation flux vector is 𝐹𝜈 = ∫ 𝐼𝜈𝒏𝑑Ω. 

Where n is a unit vector along the direction of the ray. Since photon has momentum 
𝐸

𝑐
, 
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the vector momentum per unit area per unit time per unit length absorbed by the medium 

is 𝑓 =
1

𝑐
∫𝑎𝜈𝐹𝜈𝑑𝑉. Where𝑑𝑉 = 𝑑𝐴𝑑𝑠, 𝑓 is the force per unit volume imparted onto the 

medium by the radiation field. Hence, the force per unit mass of the material is given by 

𝐹 =
𝑓

𝜌
=
1

𝑐
∫𝑂𝜈𝐹𝜈𝑑𝑉        (5.25) 

 

These two equations are based on the assumptions that; the absorption coefficient is 

isotropic and no momentum is imparted by the emission of the radiation as is true for 

isotropic emission. 

5.4 General Kinetic equations of Plasma 

In an un-magnetized, non-equilibrium, neutral and stationary pair plasma, which has 

number densities of photons, electrons and positrons given by: 𝑛𝛾 , 𝑛−, 𝑎𝑛𝑑 𝑛+ 

respectively, and assuming homogeneous and isotropic plasma, the distribution functions 

is energy and time dependant. the equilibrium spectral functions for photons, which are 

independent of time given by Pilla and Shaham (1997) is; 

𝐹𝛾(𝜖) =
1

2ξ(3)ϑ3
𝜖2

𝑒𝑥𝑝(𝜖 𝜗⁄ )−1
        (5.26) 

 

This equation resulted from Planck function for photons, and 𝜉 is Riemann zeta function. 

However, an equilibrium density of photons given by the expression is used;  

𝑛𝛾 = 16𝜋𝜉(3) (
𝑚𝑐

ℎ
𝜗)

3

        (5.27) 

 

Assuming that electrons and positrons have equal spectral functions, the relativistic 

electron Maxwell-Boltzmann distribution can be given by; 

𝐹𝑒(𝛾) =
1

ϑ𝐾2(
1
𝜗⁄ )
𝛽𝛾2𝑒𝑥𝑝(−

𝛾
ϑ⁄ )       (5.28) 
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In this equation 𝐾2 is modified Bessel function of second kind of order 2, and 𝛽 =
√(𝛾2−1)

𝛾
  

is velocity in unit of c, 𝜀 is the photon energy. The dimensionless temperature of the 

plasma is defined by ϑ = 𝑘𝐵𝑇 𝑚𝑐2⁄ . Where T is the temperature and kB is Boltzmann 

constant. The plasma charge neutrality condition is 𝑛− = 𝑁 + 𝑛+. Similarly, m and c are 

electron rest mass and speed of light respectively. While h is Planck’s’ constant. The 

photons could be studied from radiative transfer equation, while the pairs proceeds from 

relativistic Boltzmann equations. However, due to homogeneity and isotropy of the 

plasma, the Boltzmann equation will turn to simple rate equations in co-moving frame 

and can be expressed as; 

𝜕𝑓𝑗

𝜕𝑡
= ∑ (𝜂𝑗 − 𝑓𝑗𝜒𝑗)𝑥𝑥         (5.29) 

 

where t is coordinate for the co-moving time and j represents either photons or electrons 

and 𝑥 is the collision process (which could be pair process, bremsstrahlung, Compton 

scattering or coulomb collisions). 𝜂𝑗 is the emission coefficients for production of particle 

j and 𝜒𝑗 is the corresponding absorption coefficient. These three parameters; 𝑓𝑗 ,

𝜂𝑗  𝑎𝑛𝑑 𝜒𝑗are energy and time dependant. Binary reaction rates in relativistic plasma is 

required in order to find the collision kernels; emissivity (𝜂𝑗) and absorption 𝜒𝑗 of the 

collision process. However, after several physical and mathematical assumptions, the 

emission coefficient for electrons or photons, which has been used previously by many 

authors, can be expressed as; 

𝜂(𝜖) = ∫∏ [𝑑𝜖𝑖𝐹𝑖(𝜖𝑖)]𝑅(𝜖1, 𝜖2)𝑃(𝜖1, 𝜖2; 𝜖)
2
𝑖=1      (5.30) 

 

Where 𝑅(𝜖1, 𝜖2) is total reaction rate between two particles of energies 𝜖1 𝑎𝑛𝑑 𝜖2 and P 

is probability which is integrated over all incident and emergent angles of the particles. 

Univ
ers

iti 
Mala

ya



 

137 

 

Meanwhile, the absorption coefficient of particles 𝑖 𝑎𝑛𝑑 𝑗 can be expressed in terms of 

spectral functions, given by; 

𝜒𝑖(𝜖𝑖) =
𝑐𝑛𝑗

4𝜋(1+𝛿𝑖𝑗)
∫𝑑𝜖𝑗𝑑Ω𝑗𝐹𝑗(𝜖𝑗)ℊ𝑖𝑗𝜎𝑡𝑜𝑡𝑎𝑙     (5.31) 

 

where 𝜎𝑡𝑜𝑡𝑎𝑙 is total scattering cross section for the process under consideration, ℊ𝑖𝑗 is 

kinetic factor for a binary collision. From this equation, the region of integration is 

determined by energy momentum conservation. The above method of writing emission 

and absorption coefficients can be conveniently used in Monte Carlo evaluations (Pilla & 

Shaham, 1997). 

5.5 Photon Collision Integrals 

In this section, the integral expressions for emission, absorption and cross section 

coefficients of photons due to pair plasma processes is presented. 

5.5.1 Photons emissivity due to pair annihilation: 

The emission of photons arising from relativistic electron-positron pair annihilation 

has been studied by many authors(Pilla & Shaham, 1997). This has been explicitly 

derived by Svensson (1982b) and the final result, as presented by Pilla and Shaham 

(1997), can be expressed as; 

𝜂(𝜖) =
𝑐𝑛+𝑛−

4𝜋𝜖2
∫𝑑𝜇𝑑𝜙∏ [𝐹𝑒(𝛾𝑖)𝑑𝛾𝑖]

𝛽𝑐𝑚𝛾𝑐𝑚

𝛽𝑐𝛾𝑐𝛾1𝛾2
(
𝑑𝜙

𝑑Ω
)
𝑐𝑚

2
𝑖=1     (5.32) 

 

the domain of this integration is under the 𝛾𝑚𝑖𝑛 ≤ 𝛾1,2 ≤ 𝛾𝑚𝑎𝑥, −1 ≤ 𝜇 ≤ 1 and 0 ≤ 𝜙 ≤

2𝜋 which is subject to condition −1 ≤ 𝑧 ≤ 1. 
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5.5.2 Photons cross sections due to pair annihilation: 

The differential cross section in the centre of mass frame can be expressed by; 

(
𝑑𝜙

𝑑Ω
)
𝑐𝑚
=

𝑟𝑒
2

4𝛽𝑐𝑚𝛾𝑐𝑚
2 [

3−𝛽𝑐𝑚
4

2
(𝜉+ + 𝜉−) −

1

2𝛾𝑐𝑚
4 (𝜉+

2 + 𝜉−
2) − 1]   (5.33) 

 

where 𝜉± = 1 (1 ± 𝛽𝑐𝑚𝑥)⁄  and = 𝑦𝑧 + √(1 − 𝑦2)(1 − 𝑧2) cos 𝜙 .  

5.5.3 Photons absorption coefficient due to pair creation 

When an electron-positron pair is created (or produced), the electron Lorentz factor in 

the centre-of-mass frame becomes 𝛾𝑐𝑚 = √[(1 − 𝜇)𝜖𝜖′ 2⁄ ] where 𝜇 is the cosine of the 

angle between the two vectors. The absorption coefficient of the pairs can be expressed 

in form of spectral function as follows; 

𝜒(𝜖) =
𝑐𝑛𝛾

4
∫𝑑𝜇𝑑𝜖′𝐹𝛾(𝜖

′)𝜎𝑡𝑜𝑡𝑎𝑙(𝛾𝑐𝑚)(1 − 𝜇)     (5.34) 

 

The domain of this integration is −1 ≤ 𝜇 ≤ 1 and 𝜖∗ ≤ 𝜖′ ≤ 𝜖𝑚𝑎𝑥 such that 𝜖∗ is defined 

as the pair production threshold energy 𝜖∗ = 2 [(1 − 𝜇)𝜖]⁄ , and 𝜖𝑚𝑎𝑥 is the plasma 

maximum photon energy. 

5.5.4 Photons cross section due to pair creation 

The photon scattering cross section due to pair creation can be found by integrating 

that of pair annihilation. This is related as 𝜎(𝛾𝛾 → 𝑒𝑒) = 2𝛽𝑐𝑚
2 𝜎(𝑒𝑒 → 𝛾𝛾). And 

therefore the total photon cross section due to pair production can be expressed by; 

𝜎𝑡𝑜𝑡𝑎𝑙(𝛾𝑐𝑚) =
𝜋𝑟𝑒

2𝛽𝑐𝑚

𝛾𝑐𝑚
2 [

(3−𝛽𝑐𝑚
4)

𝛽𝑐𝑚
𝑙𝑛 (

1+𝛽𝑐𝑚

1−𝛽𝑐𝑚
) − 2 (1 −

1

𝛾𝑐𝑚
2 )]   (5.35) 

 

 

Univ
ers

iti 
Mala

ya



 

139 

 

5.5.5 Photons emission, absorption and cross section coefficients due to Compton 

scattering 
 

The integral expressions for photons emissivity, absorption and cross section arising 

from comptonization are respectively presented as follows; 

𝜂(𝜖) =
𝑐(𝑛++𝑛−)𝑟

2
𝑒

8𝜋𝜖2
∫𝐹𝛾(𝜖1̃)𝐹𝑒(𝛾) (

Δ

2𝛾2𝑎𝜉
) (𝑑𝛾𝑑𝜇𝑑𝜇′𝑑𝜙)    (5.36) 

𝜒(𝜖) =
𝑐(𝑛++𝑛−)

2
∫𝐹𝑒(𝛾)(1 − 𝛽𝜇)𝜎𝑡𝑜𝑡𝑎𝑙(𝑥)𝑑𝜇𝑑𝛾     (5.37) 

 

And the total cross section can be expressed as; 

𝜎𝑡𝑜𝑡𝑎𝑙(𝑥) = 2𝜋𝑟𝑒
2 [
1+𝑥

𝑥3
(
2𝑥(1+𝑥)

1+2𝑥
− 𝑙𝑛(1 + 2𝑥)) +

𝑙𝑛(1+2𝑥)

2𝑥
−

1+3𝑥

(1+2𝑥)2
]  (5.38) 

 

In both equations, the domain of integration is between𝛾𝑚𝑖𝑛 ≤ 𝛾 ≤ 𝛾𝑚𝑎𝑥, 0 ≤ 𝜙 ≤ 2𝜋 

and  −1 ≤ 𝜇 ≤ 1. where Δ = 𝜉2 − 𝜉𝑠𝑖𝑛2𝜃′ + 1, 𝜃′ is the scattering angle of photons in 

the rest frame of incident electron, such that 𝜉 =
𝑎1𝛾

(𝑎1𝛾 − 𝑏𝜖)
⁄ , while classical radius 

of the electron is 𝑟𝑒
2. The 𝛾𝑚𝑖𝑛 and 𝛾𝑚𝑎𝑥 denote the electron/positron limiting energies in 

the plasma. 

5.5.6 Photons emission coefficients due to Bremsstrahlung 

For pair-proton bremsstrahlung, assuming that the protons are at rest, can be given as; 

𝜂𝑝𝑟𝑜𝑡𝑜𝑛(𝜖) =
𝑐𝑛𝑝(𝑛++𝑛−)

4𝜋𝜖2
∫ 𝑑𝛾𝐹𝑒(𝛾)𝛽 (

𝑑𝜎

𝑑𝜖
)
𝑝𝑟𝑜𝑡𝑜𝑛

𝛾𝑚𝑎𝑥

1+𝜖
    (5.39) 

 

5.6 Pairs Collision Integrals 

Collision integrals of pairs can be determined in same way as for the photons collision 

integrals. In the following sub-sections, integrals for emission, absorption and cross 

sections coefficients of pairs due to the pair processes is presented. 
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5.6.1 Pair emissivity due to pair production 

Adopting similar analogous to that for the pair annihilation emissivity presented in 

section 5.3.3.1, the pair creation emissivity due to electron-positron pair production can 

be expressed as; 

𝜂(𝛾) =
𝑐𝑛𝛾
2

16𝜋𝛽𝛾2
∫𝑑𝜇𝑑𝜙∏ [𝐹𝛾(𝜖𝑖)𝑑𝜖𝑖]

1−𝜇

Δ
(
𝑑𝜎

𝑑Ω
)
𝑐𝑚

2
𝑖=1     (5.40) 

 

where Δ = 𝛽𝑐𝛽𝑐𝑚𝛾𝑐𝛾𝑐𝑚. 

5.6.2 Pair cross section due to pair creation 

The differential cross section of the electron-positron pairs due to pair creation can be 

determined by multiplying equation (5.33) by 𝛽𝑐𝑚
2 . This can be expressed as; 

(
𝑑𝜙

𝑑Ω
)
𝑐𝑚
=

𝑟𝑒
2

4𝛽𝑐𝑚𝛾𝑐𝑚
2 [

3−𝛽𝑐𝑚
4

2
(𝜉+ + 𝜉−) −

1

2𝛾𝑐𝑚
4 (𝜉+

2 + 𝜉−
2) − 1] × 𝛽𝑐𝑚

2   (5.41) 

 

The domain of integration remain same with the previous one.  

5.6.3 Pair cross section due to pair annihilation 

The pair cross section due to pair annihilation is related to the photon cross section due 

to pair creation by 𝜎(𝛾𝛾 → 𝑒𝑒) = 2𝛽𝑐𝑚
2 𝜎(𝑒𝑒 → 𝛾𝛾) (Pilla & Shaham, 1997), Therefore 

total pair cross section due pair annihilation can be given by dividing the photon cross 

section due to pair creation with 2𝛽𝑐𝑚
2 . This can be expressed as; 

𝜎𝑡𝑜𝑡𝑎𝑙(𝛾𝑐𝑚) =
𝜋𝑟𝑒

2𝛽𝑐𝑚

𝛾𝑐𝑚
2 [

(3−𝛽𝑐𝑚
4)

𝛽𝑐𝑚
𝑙𝑛 (

1+𝛽

1−𝛽
) − 2 (1 −

1

𝛾𝑐𝑚
2 )] ×

1

2𝛽𝑐𝑚
2    (5.42) 
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5.6.4 Pair absorption coefficient due to pair creation 

The absorption coefficient due to pair creation can be found by considering an electron 

momentum 𝑝′ = 𝛾(1, 𝛽) which annihilate with a positron of momentum𝑝′ = 𝛾(1, 𝛽′). In 

the centre-of-mass frame, their Lorentz factor is given by; 𝛾𝑐𝑚 = √[𝛾𝛾′(1 − 𝛽𝛽′𝜇) 2⁄ ]. 

Therefore, the absorption coefficient is expressed as; 

𝜒±(𝛾) =
𝑐𝑛∓

2
∫𝑑𝛾′𝑑𝜇𝐹𝑒(𝛾

′)
𝛽𝑐𝑚𝛾𝑐𝑚

2

𝛾𝛾′
𝜎𝑡𝑜𝑡𝑎𝑙(𝛾𝑐𝑚)     (5.43) 

 

Here, also the domain of integration is over the range 𝛾𝑚𝑖𝑛 ≤ 𝛾
′ ≤ 𝛾𝑚𝑎𝑥 and −1 ≤ 𝜇 ≤

1 but here is without any restriction. 

5.6.5 Pair emission, absorption and cross sections coefficients due Compton 

Scattering 

 

The pair emission coefficient due to Compton scattering is defined by; 

𝜂(𝛾) = 𝑐𝑛𝛾(𝑛+ + 𝑛−)𝑟
2
𝑒 ∫𝐹𝛾(𝜖1̃)𝐹𝑒(𝛾1) ×

𝑎+𝑌

16𝜋𝜖𝛾𝜌1
|
𝑑𝜖̃1

𝑑𝛾⁄

1+𝑑𝜖 𝑑𝛾⁄
| (𝑑𝜇𝑑𝜇′𝑑𝜙𝑑𝛾1) (5.44) 

 

In this equation,  

𝑌 =
𝜌1

𝜌2
+
𝜌2

𝜌1
+ 2(

1

𝜌1
−

1

𝜌2
) + (

1

𝜌1
−

1

𝜌2
)
2

      (5.45) 

 

Such that 𝜌1 = 𝑎1𝜖1̃𝛾1 and 𝜌2 = 𝑎𝜖1̃𝛾 and the region of integration is 𝛾𝑚𝑖𝑛 ≤ 𝛾1 ≤ 𝛾𝑚𝑎𝑥 

and −1 ≤ 𝜇, 𝜇′ ≤ 1 and 0 ≤ 𝜙 ≤ 2𝜋. However, this only holds when 𝜖𝑚𝑖𝑛 ≤ 𝜖1 ≤ 𝜖𝑚𝑎𝑥. 

On the other hand, the absorption coefficient of pairs due to Compton scattering is defined 

by; 

𝜒(𝛾) =
𝑐𝑛𝛾

2
∫𝐹𝑒(𝜖)(1 − 𝛽𝜇)𝜎𝑡𝑜𝑡𝑎𝑙(𝑥)𝑑𝜇𝑑𝜖     (5.46) 
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The cross section 𝜎𝑡𝑜𝑡𝑎𝑙 is similar to the total photon cross section due to Compton 

scattering, which is given in Equation 5.35. In the above integrations (Equation 5.43 & 

5.44), the region of integration is −1 ≤ 𝜇 ≤ 1 and 𝜖𝑚𝑖𝑛 ≤ 𝜖1 ≤ 𝜖𝑚𝑎𝑥. 

5.7 Cooling functions for Bremsstrahlung processes 

The nature of the Bremsstrahlung process necessitate that, this process be treated as 

continuous in momentum and energy by using the common continuity equation (Pilla & 

Shaham, 1997). After some physical assumptions, the average cooling rate of these 

processes takes the following form; 

|𝛾̇| = 𝐸𝑒𝑝(𝛾) + ∫ [𝐸𝑒𝑒(𝛾, 𝛾
′) + 𝐸𝑒𝑒̅(𝛾, 𝛾

′)]𝑑𝛾′𝐹𝑒(𝛾
′)

∞

1
    (5.47) 

 

The radiated energy per unit time (cooling rates) involved in this equation, is given as 

follows; 

5.7.1 Electron (or positron)-proton collisions (𝑬𝒆𝒑):  

The cooling rates for colliding electron (positron-proton) process, assuming proton at 

rest, can be expressed as function of energy 𝜖 of the emitted photons and cross section 
𝑑𝜎

𝑑𝜖
, 

as follows; 

𝐸𝑒𝑝(𝛾) = 𝑐𝑛𝑝 ∫ 𝜖 (
𝑑𝜎

𝑑𝜖
)
𝑝𝑟𝑜𝑡𝑜𝑛

𝑑𝜖
𝛾−1

0
      (5.48) 

 

5.7.2 Positron-positron collision (𝑬𝒆𝒆):  

The cooling rate for process is given by; 

𝐸𝑒𝑒(𝛾, 𝛾
′) =

𝑐(𝑛−
2+𝑛+

2)(𝛾+𝛾′)

2𝑛𝑒𝛾𝛾′
∫ 𝑝𝑐𝑄𝑒𝑒(𝜖𝑐, 𝑝𝑐)𝑑𝜇
1

−1
    (5.49) 
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The cosine angle of this collision is; 𝜇. 𝑝𝑐 = √(
𝜉 − 1

2⁄ )  And the energy of the emitted 

photons is 𝜖𝑐 = √
𝜉 + 1

2⁄  such that 𝜉 = 𝛾𝛾′(1 − 𝛽𝛽′𝜇). However this process will have 

the following cooling function; 

𝑄𝑒𝑒 ≈ 8𝛼𝑟𝑒
2 𝑝𝑐

2

𝜖𝑐
[1 −

4

3

𝑝𝑐

𝜖𝑐
+
2

3
(2 +

𝑝𝑐
2

𝜖𝑐2
) 𝑙𝑛(𝜖𝑐 + 𝑝𝑐)]    (5.50) 

 

5.7.3 Positron (electron)-electron (positron) collision process (𝑬𝒆𝒆̅):  

The cooling rate for this interaction is given by; 

𝐸𝑒𝑒̅(𝛾, 𝛾
′) =

𝑐𝑛+𝑛−(𝛾+𝛾
′)

2𝑛𝑒𝛾𝛾′
∫ 𝑝𝑐𝑄𝑒𝑒̅(𝜖𝑐, 𝑝𝑐)𝑑𝜇
1

−1
     (5.51) 

 

And the cooling function of this process is expressed as; 

𝑄𝑒𝑒̅ = {

32

2
𝛼𝑟𝑒

2∑ 𝑎𝑖𝑝𝑐
𝑖4

𝑖=0 , 𝑓𝑜𝑟 𝐸𝑐 ≤ 300𝐾𝑒𝑉  

16𝛼𝑟𝑒
2 [𝜖𝑐𝑙𝑛(𝜖𝑐 + 𝑝𝑐) −

1

6
𝜖𝑐 +∑ 𝑏𝑖𝜖𝑐

−𝑖2
𝑖=0 ]   , 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

  (5.52) 

 

where  𝐸𝑐 = 𝑚𝑐
2𝜖𝑐 , and the values of a’s are given in Pilla and Shaham (1997). 

 

 

5.8 Collision integral for Coulomb collision 

The combine effect of Moller and Bhabha collisions which collectively referred to 

Coulomb collision on the spectrum has been proposed by many researchers. Let the 

electrons has two different distribution functions; 𝑓1 𝑎𝑛𝑑 𝑓2. The corresponding 

distribution equation (Boltzmann) for 𝑓1 is given by; 

𝜕𝑓1(𝑝)

𝜕𝑡
= −

𝜕𝑆𝑖1(𝑝)

𝜕𝑝𝑖
         (5.53) 

 

The momentum space flux vector 𝑆𝑖1 can be given as; 

𝑆𝑖1(𝑝) = ∑ ∫ [𝑓1(𝑝)
𝜕

𝜕𝑝𝑖𝑗
𝑓𝑠(𝑝

𝑖) − 𝑓𝑠(𝑝
𝑖)

𝜕

𝜕𝑝𝑖
𝑓1(𝑝)]𝐵

𝑖𝑗𝑑3𝑝𝑖2
𝑠=1    (5.54) 

Univ
ers

iti 
Mala

ya



 

144 

 

 

where i, j are three-vector or tensor components. However, substituting this equation into 

the rate equations (Equation 2.8 of (Pilla & Shaham)), we get; 

[𝜂(𝛾) − 𝜒(𝛾)𝑓(𝛾)]1 = 𝐶11(𝛾) + 𝐶12(𝛾)      (5.55) 

Such that 𝐶1𝑠 is defined as; 

𝐶1𝑠(𝛾) = 4𝜋
2𝑐𝑟2𝑒𝑙𝑛Λ𝐶𝐵

𝜕

𝜕𝛾
∫𝛽𝛽′𝛾′2𝑄(𝛾, 𝛾′)𝑑𝛾′    (5.56) 

 

However, 𝐶11 is due to electrons collision for 𝑓1 distribution and 𝐶12 is responsible for 

collision of electrons for 𝑓1 distribution with 𝑓2. And the cooling function is given by: 

𝑄(𝛾, 𝛾′) = [𝑓1(𝛾)
𝜕𝑓𝑠(𝛾

′)

𝜕𝛾′
− 𝑓𝑠(𝛾

′)
𝜕

𝜕𝛾
𝑓1(𝛾)] ∫ 𝐵0(𝛾, 𝛾

′, 𝜇)𝑑𝜇
1

−1
   (5.57) 

 

Where; 

𝐵0 =
𝜉2

𝛾𝛾′(𝜉2−1)
3
2⁄
(𝜉2 − 1 − 𝛽2𝛾2 − 𝛽′2𝛾′2𝜇2 + 2𝛽𝛽′𝛾𝛾′𝜇𝜉)   (5.58) 

 

After many physical and mathematical assumptions and substitutions, Equation 5.53 

becomes; 

𝜕

𝜕𝑡
𝑓1(𝛾) = −𝛽

𝜕

𝜕𝛾
∫2𝜋𝛽𝛽′𝛾′2𝐵𝔇1(𝛾, 𝛾

′)𝑑𝜇𝑑𝛾′     (5.59) 

 

Such that; 

𝔇1(𝛾, 𝛾
′) = ∑ [𝑓1(𝛾)

𝜕

𝜕𝛾′
𝑓𝑠(𝛾

′) − 𝑓𝑠(𝛾
′)

𝜕

𝜕𝛾
𝑓1(𝛾)]

2
𝑠=1     (5.60) 
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5.9 Kinetic and Thermal equilibria of pair plasma: The Temperature and 

Densities 

 

The description of the analytical expressions for the pair plasma equilibrium states can 

be derive from boundary conditions presented in previous sections. Assuming an 

isotropic, stationary, non-magnetized and homogeneous system of pair plasma with zero 

hydrodynamic and radiative transfer effects; the kinetics can be derive from the simple 

rate equations, given by Equation 5.18, assuming that the system is on a short timescales 

given by; 

𝑡 ≈ 𝑡𝑇ℎ =
1

(𝑛+𝜎𝑇ℎ𝑐)
         (5.61) 

 

To determine the time evolution of the distributions, let assume a system of pair plasma 

consisting of protons(𝑃), electrons(𝑒−), Positrons (𝑒+) and Photons (𝛾) with densities 

𝑛𝑝, 𝑛−, 𝑛+ 𝑎𝑛𝑑 𝑛𝛾 respectively, and having time-dependent spectral functions 

𝐹𝑒(𝛾) 𝑎𝑛𝑑 𝐹𝛾(𝜖) . Here the number density of the electron takes the form; 𝑛− = 𝑛+ + 𝑛𝑝. 

However, for simplified kinetic equations, we assume that the particle number is 

conserved, such that 𝑛− = 𝑛+ = 𝑛𝑒  and 𝐹−(𝛾) = 𝐹+(𝛾) = 𝐹𝑒(𝛾). The photons, positron 

and electron spectral functions are generally defined by; 

𝐹𝛾(𝜖) =
4𝜋𝜖2

𝑛𝛾
𝑓𝛾(𝜖) and 𝐹±(𝛾) =

4𝜋𝛽𝛾2

𝑛±
𝑓±(𝛾)     (5.62) 

 

The initial state of the system is defined at 𝑡 = 0, and the total particle density and total 

energy density can be, respectively, given by; 

𝑛̃ = 𝑛𝛾 + 2𝑛+ + 𝑛𝑝 and 𝑢̃ = 𝑢𝛾 + 𝑢− + 𝑢+     (5.63) 
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where 𝑢𝛾 = 𝑛𝛾 ∫ 𝜖𝐹𝛾(𝜖)𝑑𝜖
∞

0
 and 𝑢± = 𝑛± ∫ 𝛾𝐹±(𝛾)𝑑𝛾

∞

1
, such that the average energy 

per particle is 𝜖̅ = 𝑢̃ 𝑛̃⁄ . This system of pair plasma will approach equilibrium state in two 

different phases(Pilla & Shaham, 1997), which are discussed as follows; 

5.9.1 Kinetic equilibrium phase: 

The Compton scattering, pair annihilation and creation operates on a shorter timescales 

(faster phase), such that both total particle density 𝒏̃ and total energy density 𝒖̃ are 

constants. This will lead to a Kinetic equilibrium which is achieved by separate 

disappearance of the total reaction rates for the Compton scattering and the pair 

annihilation. This equilibrium phase is defined by a temperature Θ̃ and the chemical 

potentials 𝜇𝛾 and 𝜇±. 

The total reaction rate for Compton scattering which disappears, we can then have; 

𝑓(𝛾)𝑓𝛾(𝜖) [1 +
𝜆0
3

2
𝑓𝛾(𝜖

′)] = 𝑓(𝛾′)𝑓𝛾(𝜖
′) [1 +

𝜆0
3

2
𝑓𝛾(𝜖)]    (5.64) 

 

where 𝛾 and 𝜖 and 𝛾′and 𝜖′ are electron and photon energies before and after scattering 

respectively. And 𝜆0 =
ℎ
𝑚𝑐⁄ . However, the distribution functions are defined by; 

𝑓±(𝛾) =
2

𝜆0
3 𝑒

(
𝜇±−𝛾

Θ±
⁄ )

 and  𝑓𝛾(𝜖) =
2

𝜆0
3𝑒
(
𝜖−𝜇𝛾

Θ𝛾
⁄ )

−1

    (5.65) 

 

      

Similarly, the total reaction rate for the pair creation and annihilation should disappear 

and hence, we get; 

𝑓𝛾(𝜖1)𝑓𝛾(𝜖2) = 𝑓+(𝛾+)𝑓−(𝛾−) [1 +
𝜆0
3

2
𝑓𝛾(𝜖1)] [1 +

𝜆0
3

2
𝑓𝛾(𝜖2)]   (5.66) 
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where 𝜖1,2 and 𝛾1,2 are the photons and pairs energies respectively. And the distribution 

functions in the kinetic equilibrium becomes; 

𝑓𝛾(𝜖) =
2

𝜆0
3 𝑒𝑥𝑝 (

𝜇̃𝛾−𝜖

Θ̃
) and 𝑓±(𝛾) =

2

𝜆0
3 𝑒𝑥𝑝 (

𝜇̃±−𝛾

Θ̃
)    (5.67) 

 

In this equation, we assume that Θ+ = Θ𝛾 = Θ− which is represented by Θ̃, and 𝜇̌− +

𝜇̌+ = 2𝜇̌𝛾. The photon density would therefore become; 

𝑛̃𝛾 = ∫ 4𝜋𝜖2𝑓𝛾(𝜖)𝑑𝜖 = 16𝜋 (
Θ̃

𝜆0
)
3

exp (
𝜇̃𝛾

Θ̃
)

∞

0
     (5.68) 

 

And 

𝑛̃± = ∫ 4𝜋𝛾√𝛾2 − 1𝑓±(𝛾)𝑑𝛾 =
8𝜋

𝜆0
3 Θ̃𝐾2 (

1

Θ̃
) exp (

𝜇̃±

Θ̃
)

∞

1
    (5.69) 

 

where 𝐾2 is the second-order modified Bessel function. However, in the absence of ions 

in the plasma  𝑛𝑝 = 0, we have 𝜇− = 𝜇+ = 𝜇𝛾 such that; 

𝑛̃− = 𝑛̃+ =
𝐾2(

1
Θ̃
⁄ )

2[Θ̃2+𝐾2(
1
Θ̃
⁄ )]

𝑛̃        (5.70) 
 

And 

𝑛̃𝛾 =
Θ̃2

Θ̃2+𝐾2(
1
Θ̃
⁄ )
𝑛̃         (5.71) 

 

However, the energy equations will be required in the temperature relations. These 

different energies are given by; 

𝜇𝛾 = ∫ 4𝜋𝜖3𝑓𝛾(𝜖)𝑑𝜖
∞

0
= 3Θ̃𝑛̃𝛾       (5.72) 
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And 

𝜇± = ∫ 𝛾2√𝛾2 − 1𝑓±(𝛾)𝑑𝛾
∞

1
=
3Θ̃𝐾2(

1
Θ̃
⁄ )+𝐾1(

1
Θ̃
⁄ )

𝐾2(
1
Θ̃
⁄ )

𝑛̃±    (5.73) 

 

Thus, for non-ion plasma (𝑛𝑝 = 0), using conservation of energy (𝜇 = 𝜇𝛾 + 𝜇− + 𝜇+), 

Equations 5.72 and 5.73, becomes; 

𝜇𝛾 =
3Θ̃3

Θ̃2+𝐾2(
1
Θ̃
⁄ )
𝑛̃         (5.74) 

 

And 

𝜇+ + 𝜇− =
3Θ̃𝐾2(

1
Θ̃
⁄ )+𝐾1(

1
Θ̃
⁄ )

Θ̃2+𝐾2(
1
Θ̃
⁄ )

𝑛̃       (5.75) 

 

The temperature relations as function of total energy and density, can be given as; 

3Θ̃3 + 3Θ̃𝐾2 (
1
Θ̃
⁄ ) + 𝐾1 (

1
Θ̃
⁄ ) = 𝜖̃ (Θ̃2 + 𝐾2 (

1
Θ̃
⁄ ))    (5.76) 

 

Equation 5.76 describes the temperature equation in Kinetic equilibrium phase of pair 

plasma which is applicable to all ranges of energy (both relativistic and otherwise) and 

density (but only for non-degenerate plasma). Where 𝝐̃ stands for average energy per 

particle and can be determined by the initial conditions. 

5.9.2 Thermal equilibrium phase: 

Processes that operates on a longer timescales (slower phase) 𝑡 ≈
𝑡𝑇ℎ

𝛼⁄  (𝛼 is constant) 

such that only the total energy density 𝑢̃ is constant, but the total particle density 𝑛̃ 

changes. This is primarily due to Bremsstrahlung and other radiative processes, and the 

system is finally in thermal equilibrium which is defined by a density 𝑛0 and a 

temperature Θ0. For Θ0 < Θ̃, the density is n0 > 𝑛̃, and the system is cooled by plasma 
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by means of Bremsstrahlung and other similar processes. But when Θ0 > Θ̃, then the 

system is heated up by a plasma process consisting only of inverse Bremsstrahlung and 

other radiative processes. In this phase, we have 𝜇− + 𝜇+ = 2𝜇𝛾 such that 𝜇− = 𝜇+ = 𝜇0, 

and let 𝑥 = exp (
𝜇0
Θ0
⁄ ), hence, the densities becomes; 

𝑛± =
8𝜋

𝜆0
3Θ0𝐾2 (

1

Θ0
) 𝑥±   and  𝑛𝛾 =

16𝜋Θ0
3

𝜆0
3      (5.77) 

 

However, the sum of the electron and positron densities, assuming𝑛− = 𝑛𝑝 + 𝑛+,  can be 

given as; 

𝑛− + 𝑛+ =
16𝜋

𝜆0
3 Θ0𝐾2 (

1

Θ0
)√1 + 𝑦2      (5.78) 

 

This is the relativistic pair density equation, such that 𝑦 =
𝜆0
3𝑛𝑝

[16Θ0𝐾2 (
1

Θ0
)]

⁄ . 

whereas, for non-relativistic limit, this equation becomes; 

𝑛− + 𝑛+ =
4

𝜆0
3 (2𝜋Θ0)

3 2⁄ exp(−1 Θ0⁄ ) × [1 +
15

8
Θ0 +

105

128
Θ0

2]√1 + 𝑦2 (5.79) 

 

However, the energy density of the pairs is given by; 

𝑢− + 𝑢+ =
16𝜋

𝜆0
3 [3Θ0

2𝐾2 (
1
Θ0
⁄ ) + Θ0𝐾1 (

1
Θ0
⁄ )]√1 + 𝑦2   (5.80) 

 

And with the conservation of energy, we get the analytical expression for the thermal 

equilibrium phase, as follows; 

𝜆0
3𝜇 = 16𝜋 [3Θ0

2𝐾2 (
1
Θ0
⁄ ) + Θ0𝐾1 (

1
Θ0
⁄ )]√1 + 𝑦2 +

8𝜋5Θ0
4

15
  (5.81) 

Univ
ers

iti 
Mala

ya



 

150 

 

The second term on the right-hand side of this equation is the contribution due to photons 

effect. This method is exact and applicable for energies, both relativistic and otherwise, 

and for all non-degenerate plasma densities. 

 

 

 

 

 

 

Univ
ers

iti 
Mala

ya



 

151 

 

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

The goal of this chapter is to appraise on conclusive summary and contributions of this 

work as well as provide possible recommendations (in addition to Chapter 5) for future 

work.  

6.1 Conclusion 

In this work, models are constructed into two different routines (namely Helm-EoS 

and SNEUT4 code). These models are used to post-process already established grids of 

stellar evolution models which are predicted to explode as PISN. Specifically these 

routines are; first, a thermodynamically consistent equation of state table (Helm-EoS) 

which is used to addressed number one and two objectives of this research. And secondly, 

an SNEUT4 code for calculations of neutrino energy-loss rates. The progenitor models 

considered are those predicted to be within carbon-oxygen cores, in the range of 60 M⊙< 

MCO < 130 M⊙. These Grids of models are applied into a constructed model of HELM-

EoS routine for calculation of first and second objectives, namely; 

1. The electron-positron adiabatic properties, such as heat capacities and 

adiabatic indices  

2. The thermal energies, pressure, and entropy of the electron-positron pairs. 

These calculations were carried out within the instability regions of the progenitor 

models.  Furthermore, the third objective is addressed by calculating neutrino energy-

losses due to pair neutrino process from same progenitor models using model constructed 

into the SNEUT4 code. The last objective was to evaluate the neutrino energy loss from 

120, 150, 200, 300, 500 M⊙, with rotation and 120, 150 and 500 M⊙ with no rotation, 

with 𝑍 = 0.006 at LMC. 
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It is interesting to note that pair-productions’ adiabatic quantities show similar 

dynamics in all rotating models within the instability regions, while non-rotating model 

possess different pattern of instability. The amount of heat required to raise central 

temperature high, which is necessary for PISN explosion is found to decrease. Moreover, 

effects of electron-positron thermal energies, pressure, and entropy on endpoints of the 

progenitor models under consideration are evaluated and analysed. Rotating 200 M⊙ 

model showed highest electron-positron thermal energy of about 3.29x1017 [erg g-1] while 

non-rotating 500 M⊙ model almost lose its electron-positron thermal energy and die 

before reaching the instability region. This energy is needed to overcome contraction of 

the stars and for complete annihilation of electron-positron pairs. Finally, neutrino 

energy-loss rates from same progenitors is calculated and its effect is analysed as it affects 

end fates of the progenitor models.  

6.2 Implication of the Research 

The implication of this work is that; it provides additional information which could 

help for better understanding of final fates of the selected massive star models. 

Furthermore, the energy loss through neutrino processes is important, especially when 

the determination of the impacts of these energies in high mass stars is still on going. 

6.3 Contributions to Knowledge 

Summarily, the current study showed that effects of electron-positron pair-production 

and neutrino cooling serves as main triggering processes for understanding end fates of 

very-massive stars and are significantly imperative for better predictions of the fates of 

any massive star. However, these two mechanisms which are paramount in explosion of 

massive stars are particularly ongoing in astrophysics community and in neutrino physics. 

Our results would, therefore, contribute in search for full understanding of end fates of 

the selected stellar models. 
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6.4 Limitations of the Research 

This work is limited to post-processing the already established grids of stellar models 

which were predicted to explode as PISN. Specifically, those progenitors that are within 

carbon-oxygen cores, in the range of 60 M⊙< MCO < 130 M⊙. Only stellar evolution 

properties within the instability regions of those progenitor models are post-processed 

using thermodynamically consistent Helm-EoS. In the last part of the work, dominant 

neutrino energy-loss (which is pair neutrino energy-loss rate) within the instability 

regions is calculated using SNEUT4 code. All other neutrino energy-loss rates of less 

important in the instability region is ignored. We also evaluated neutrino energy loss 

from stellar models of 120, 150, 200, 300, 500 M⊙, with rotation and 120, 150 and 500 

M⊙ with no rotation, for 𝑍 = 0.006 at LMC. 

6.5 Recommendations for Further Work 

Chapter five is for full recommendation of future work. Meanwhile, in this work, 

production of electron-positron pairs and neutrino cooling from the instability regions of 

very-massive stars have been examined for better understanding of their end fates. The 

calculation for energy loss through thermal neutrino processes is also investigated for the 

selected stellar models. Based on the results obtained, further works could be suggested 

as follows: 

1. For complete understanding of final fates of massive stars, thermal energy, 

pressure and entropy contributions from fundamental species; photons, nuclei, 

electrons, and positron could be very important. 

2. Considering effects of convective stability of these massive stars, contribution of 

the convective instability could give more information about the stability and fates 

of these massive stars. 

Univ
ers

iti 
Mala

ya



 

154 

 

3. Complete investigations of Chapter 5 is recommended. The overall effects of all 

plasma processes in massive stars will contribute in understanding the exact final 

fates of these very-massive stars. 

4. Finally, in case of 120, 150, 200, 300 and 500 M⊙ models, as we have shown in 

section (2.5.3) that neutrino energy-loss by neutrino oscillations could be 

calculated by considering the modified stopping power equation and using other 

properties of the stellar evolution involved, such as electron density and 

temperature of the star. The electron density, in particular, is significantly 

important due to its effect on total energy-loss. For example, the following cases 

of three survival probabilities of electron neutrinos for neutrino transformations, 

could be chosen, in order to calculate the energy-loss through neutrino 

oscillations. These probabilities are: 

a. Case I (𝑃𝜈𝑒→𝜈𝑒 = 0.0): In this case, electron neutrinos are completely 

transformed into another flavour; either muon or tau neutrinos. 

b. Case II (𝑃𝜈𝑒→𝜈𝑒 = 0.5): This is where only half of electron neutrino will be 

transformed into another flavour. 

c. Case III (𝑃𝜈𝑒→𝜈𝑒 = 1.0): Here none of electron neutrino is transformed into 

another. All electron neutrinos in this case will remain as electron neutrinos. 

In all of these cases, the calculated energy-loss per neutrino is measured in (𝑀𝑒𝑉) 

while the total energy-loss ∆𝐸𝜈 is in (𝑀𝑒𝑉 𝑐𝑚3 𝑠⁄⁄ ).  
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