
GRAPHICAL USER INTERFACE TEST CASE
GENERATION FOR ANDROID APPS USING Q-LEARNING

HUSAM N. S. YASIN

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

 2021Univ

ers
iti

Mala
ya

GRAPHICAL USER INTERFACE TEST CASE
GENERATION FOR ANDROID APPS USING

Q-LEARNING

HUSAM N. S. YASIN

THESIS SUBMITTED IN FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF
PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2021

Univ
ers

iti
Mala

ya

i

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Husam N. S. Yasin

Matric No: WHA130069

Name of Degree: Doctor of Philosophy (PhD)

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):
Graphical User Interface Test Case Generation for Android Apps using Q-Learning.

Field of Study: Software Quality

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Wоrk;
(2) This work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

Candidate’s Signature Date: 27 April 2021

Subscribed and solemnly declared before,

Witness’s Signature Date: 27 April 2021

Name:

Designation:

Univ
ers

iti
Mala

ya

ii

GRAPHICAL USER INTERFACE TEST CASE GENERATION FOR ANDROID

APPS USING Q-LEARNING

ABSTRACT

Software testing is an effective means for assuring the quality of applications. Android

applications (or mobile apps) have become an essential part of our daily life. Statistics

affirm that 85% of smartphones worldwide are Android-based. Unfortunately, 17% of

Android apps are still considered low-quality apps due to app crashes that can be avoided

through intensive and extensive testing. Recently, Graphical User Interface (GUI) testing

of Android app has gained considerable interest from the industries and research

community due to its excellent capability to verify the operational requirements of GUI

components. In the related literature, GUI test generation tools focus on generating tests

and exploring app functions using different approaches. These tools are used to make the

testing process more effective by finding faults; more comprehensive by achieving better

code coverage and faster by producing the smallest possible event sequences. However,

a common limitation of these tools is the low code coverage because of the tools' inability

to find the right combination of actions that can drive the application into new and

important states. Exploring the app's state extensively requires long event sequences to

find the correct combination of actions, leading to excessively long transitions and wasted

time. Such tools must choose not only which user interface element to interact with, but

also which type of action to be performed to increase the percentage of code coverage

and to detect faults with a limited time budget. This research addresses the problem of

generating an effective test for Android apps that maximizes the instruction, method, and

activity coverage by minimizing redundant execution of events. Hence, it proposes a

Q-Learning-based test coverage approach developed in DroidbotX to generate GUI test

cases for Android apps. It is a fully automated black-box testing approach that uses Upper

Confidence Bound (UCB) exploration-exploitation strategy to generate actions that visit

Univ
ers

iti
Mala

ya

iii

unexplored states of the app and uses the execution of the app on the generated actions to

construct a state-transition model. Instead of randomly selecting the inputs, the test

generator learns how to act in an optimal way that explores new states by using new

actions to gain more rewards. Thus, the never selected actions can present a higher reward

when compared to already executed actions. This reduces the redundant execution of

events and increases coverage. The overall performance of DroidbotX was compared to

five state-of-the-art test generation tools on 30 Android apps. DroidbotX achieved 51.5%

accuracy for instruction coverage, 57% for method coverage, and 86.5% for activity

coverage. It triggered 18 crashes within the time limit and shortest event sequence length

compared to the other tools. The results demonstrate that the adaptation of Q-Learning

with UCB exploration can significantly improve the effectiveness of the generated test

cases. The computation time complexity of the Q-Learning-based test coverage algorithm

was also analyzed. The results showed that time complexity was reduced significantly

from 𝑂(𝑛3) to 𝑂(𝑛2). It is based on the average case scenario by randomly considering

some of the events, states, and actions, and using the probabilistic distribution of states,

actions, and events, and average them over time.

Keywords: Android, GUI Testing, Test case Generation, Reinforcement Learning,

Q-Learning.

Univ
ers

iti
Mala

ya

iv

PENGHASILAN KES UJIAN GRAPHICAL USER INTERFACE UNTUK

APLIKASI ANDROID MENGGUNAKAN Q-LEARNING

ABSTRAK

Pengujian perisian adalah kaedah yang berkesan untuk menjamin kualiti sistem-sistem

aplikasi. Aplikasi Android (atau aplikasi mudah alih) telah menjadi sebahagian penting

dalam kehidupan harian kita. Statistik mengesahkan 85% telefon pintar di seluruh dunia

adalah berlandas-Android. Malangnya, 17% dari aplikasi Android boleh dianggap

bekualiti rendah berpunca daripada keranapan aplikasi yang dapat dielakkan melalui

pengujian intensif dan ektensif. Baru-baru ini, pengujian Antara Muka Grafik Pengguna

(AGP) bagi aplikasi Anroid telah mendapat banyak perhatian dari komuniti industri dan

penyelidikan berpunca dari keserlahan kemampuan untuk mengesahkan keperluan

operasi untuk komponen AGP. Di dalam kajian kesusasteraan berkaitan, peralatan

pengujian AGP tertumpu kepada penjanaan pengujian dan menerokai fungsian aplikasi

melalui beberapa pendekatan. Peralatan ini digunakan untuk membina proses pengujian

yang lebih efektif dengan mengenalpasti kesalahan; lebih menyeluruh untuk mencapai

liputan kod yang lebih baik dan pantas dengan meminimumkan perlaksanaan peristiwa

berurutan. Walaubagaimanapun, kelemahan am peralatan ialah liputan kod yang rendah

kerana ketidakbolehan peralatan mencari kombinasi yang tepat bagi aksi yang boleh

memandu aplikasi kepada keberadaan baru dan penting. Penerokaan keberadaan aplikasi

secara meluasnya memerlukan urutan peristiwa yang panjang untuk mencari kombinasi

aksi-aksi yang tepat, mengheret secara meluasnya transisi panjang dan pembaziran masa.

Peralatan ini perlu memilih bukan saja antara muka grafik pengguna tetapi juga aksi yang

perlu dilaksana untuk menambah peratusan kod liputan dan untuk mengesan kesalahan

dalam masa yang terhad. Penyelidikan ini bertujuan untuk menangani masalah dalam

menghasilkan ujian yang berkesan untuk aplikasi Android yang memaksimumkan liputan

arahan, aktiviti dan kaedah dengan meminimumkan pelaksanaan peristiwa yang

Univ
ers

iti
Mala

ya

v

berlebihan. Justeru itu, ia mencadangkan pendekatan liputan ujian berasaskan

Pembelajaran-Q yang dibangunkan dalam DroidbotX untuk menghasilkan kes-kes ujian

untuk aplikasi Android. Pendekatan ini adalah pedekatan pengujian kotak hitam

automatik yang menggunakan strategi Batasan Keyakinan Atas (BKA) eksplorasi-

eksplotasi untuk menghasilkan aksi yang dapat memeriksa keberadaan aplikasi yang

belum diterokai dan menggunakan pelaksanaan aplikasi pada aksi yang dihasilkan untuk

membina model peralihan-keberadaan. Sebalik memilih input secara rawak, penjana

pengujian belajar untuk bertindak optimum untuk meneroka keberadaan baru

menggunakan aksi baru untuk mendapat lebih ganjaran. Justeru, aksi yang tidak dipilih

dipertengahkan dengan ganjaran yang lebih tinggi berbanding aksi yang telah dijana.

Pendekatan ini dibina menjadi alat ujian yang dinamakan DroidbotX. Prestasi

keseluruhan DroidbotX telah dibandingkan dengan lima peralatan pengujian yang

canggih pada 30 aplikasi Android. DroidbotX telah mencapai ketepatan 51.5% untuk

liputan arahan, 57% untuk liputan kaedah, dan 86.5% untuk liputan aktiviti. Ia telah

mencetuskan 18 keranapan dalam had masa dan urutan peristiwa terpendek berbanding

dengan peralatan lain. Keputusan ini menunjukkan bahawa penyesuaian Q-Learning

dengan penerokaan UCB dapat meningkatkan keberkesanan kes ujian yang dijalankan

secara ketara. Komputasi masa kerumitan berdasarkan pengujian liputan Q-Learning juga

telah dianalisiss. Keputusan menunjukkan masa kerumitan dikurangkan secara signifikan

dari 𝑂(𝑛3) kepada 𝑂(𝑛2). Ia berdasarkan scenario kes purata secara rawak mengambil

kira beberapa peristiwa, keberadaan, dan aksi, dan menggunakan kebarangkalian taburan

keberadaan, aksi, dan peristiwa dan purata dengan masa.

Kata kunci: Android, Pengujian AGP, Penjanaan kes ujian, Pembelajaran Pengukuhan,

Q-Learning.

Univ
ers

iti
Mala

ya

vi

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful

Alhamdulillah, all praises to Allah for the strength and His blessing in completing this

thesis painstaking work.

My most sincere gratitude goes out to my supervisors, Dr. Siti Hafizah Ab Hamid, and

Dr. Raja Jamilah Raja Yusof for their invaluable support, encouragement, supervision,

and useful suggestions throughout this research.

I would also like to thank the Faculty of Computer Science and Information

Technology, especially the department of software engineering for the many and various

means of support offered, and the University of Malaya for providing resources and a

stimulating intellectual atmosphere.

To the beacons of my life, my beloved family, thank you for always having faith in

me. I dedicate this research to my Father, Prof. Naseem Yasin, and my mother. The values

they have instilled in me and their love for me had made me what I am today. Special

thanks to my wife for always being with me and encouraging me. It would be a miss on

my part if I do not thank my friends who have always supported me throughout the years

of my study. Univ
ers

iti
Mala

ya

vii

TABLE OF CONTENTS

Abstract ... ii

Abstrak ... iv

Acknowledgements ... vi

Table of Contents .. vii

List of Figures .. xi

List of Tables... xii

List of Abbreviations.. xiii

CHAPTER 1: INTRODUCTION .. 1

1.1 Background .. 1

1.2 Motivation.. 4

1.3 Problem Statement ... 5

1.4 Research Objectives... 7

1.5 Research Questions .. 7

1.6 Research Scope .. 8

1.7 Research Methodology .. 8

1.8 Conclusion ... 12

CHAPTER 2: LITERATURE REVIEW .. 13

2.1 Android .. 13

2.1.1 Android Platform Architecture ... 14

2.1.2 Android Application Components .. 17

2.1.3 Android Activity Lifecycle... 20

2.2 Graphical User Interface (GUI) Testing .. 22

2.2.1 GUI Testing on Android Application ... 24

Univ
ers

iti
Mala

ya

viii

2.2.2 Faults in Android GUI Testing ... 24

2.2.3 GUI Testing Frameworks for Android ... 25

2.3 State-of-the-Art GUI Testing Tools for Android... 28

2.3.1 Taxonomy of GUI Testing Tools for Android ... 28

2.3.1.1 Automated Testing Activity .. 30

2.3.1.2 Approach ... 30

2.3.1.3 Evaluation Methods ... 34

2.3.1.4 Characteristics ... 35

2.3.2 Comparison of GUI Testing Tools for Android 36

2.3.2.1 Automated Testing Activities .. 36

2.3.2.2 Approach ... 38

2.3.2.3 Evaluation Methods of GUI Testing Tools for Android 44

2.3.2.4 Characteristics of GUI Testing Tools for Android 44

2.4 Comparison of Test Case Generation Approaches for Android 49

2.4.1 Record and Replay ... 49

2.4.2 Random based .. 50

2.4.3 Model-based ... 52

2.4.4 Active Learning .. 56

2.4.5 Systematic based .. 58

2.4.6 Search based ... 60

2.4.7 Reuse based .. 60

2.5 Research Gaps and Limitations ... 61

2.5.1 Reproducible Test Cases .. 61

2.5.2 Test Oracle ... 62

2.5.3 Test Input Generation ... 62

2.5.4 Test Coverage ... 63

Univ
ers

iti
Mala

ya

ix

2.5.5 Crashes Diagnose ... 63

2.5.6 Fragmentation ... 64

CHAPTER 3: EXPERIMENTAL ANALYSIS ON TEST CASE GENERATION

TECHNOLOGIES .. 65

3.1 Case Study Design ... 65

3.1.1 Case Study Objectives .. 66

3.1.2 Case Study Criteria ... 66

3.1.3 Apps Selection .. 67

3.2 Case Study Execution .. 68

3.3 Results and Discussion .. 72

3.4 Research Problems Found ... 87

3.4.1 Events Sequence Redundancy .. 87

3.4.2 Events Sequence Length .. 88

3.4.3 System Events .. 88

3.4.4 Access Control ... 89

3.4.5 Ease of Use ... 90

3.5 Threats to Validity ... 90

3.6 Conclusion ... 91

CHAPTER 4: PROPOSED SOLUTION .. 92

4.1 Reinforcement Learning .. 92

4.1.1 Deep Q Network ... 96

4.1.2 Actor-Critic .. 96

4.1.3 State-Action-Reward-State-Action (SARSA) .. 97

4.1.4 Q-Learning ... 97

4.2 Automated GUI Testing with Reinforcement Learning .. 98

Univ
ers

iti
Mala

ya

x

4.3 Justification of the Proposed Approach ... 102

4.4 Implementation of the Proposed Approach ... 103

4.4.1 States and Action Representation ... 106

4.4.2 Exploration Strategy ... 107

4.4.2.1 Observer and Rewarder ... 108

4.4.2.2 Action Selector .. 109

4.4.3 Test Case Generation .. 112

4.5 Significance of the Proposed Approach .. 114

4.6 Conclusion ... 115

CHAPTER 5: EVALUATION OF THE PROPOSED APPROACH 116

5.1 Case Study Design ... 116

5.1.1 Research Questions for the Proposed Approach Evaluation 116

5.1.2 Case Study Criteria ... 117

5.1.3 Apps Selection .. 118

5.2 Case Study Execution .. 120

5.3 Results and Discussion .. 121

5.4 Threats to Validity ... 143

5.5 Conclusion ... 144

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 145

6.1 Restatement of Research Objectives ... 145

6.2 Research Contributions .. 148

6.3 Significance of the Work ... 151

6.4 Limitation and Future Work .. 152

6.5 List of Scholarly Publications .. 154

References ... 155

Univ
ers

iti
Mala

ya

xi

LIST OF FIGURES

Figure 1.1: Research Methodology ... 11

Figure 2.1: Android Architecture for System Application Software Stack 15

Figure 2.2: Android application package structure ... 18

Figure 2.3: Android Activity Lifecycle ... 21

Figure 2.4: Taxonomy of GUI testing tools for Android Applications........................... 29

Figure 3.1: Variance of method coverage achieved across apps and three runs. 75

Figure 3.2: Progressive method coverage achieved across apps and three runs. 76

Figure 3.3: Variance of activity coverage achieved across apps and three runs. 78

Figure 3.4: Progressive activity coverage achieved across apps and three runs. 79

Figure 3.5: Distribution of Crashes Discovered. ... 81

Figure 4.1: Reinforcement learning mechanism ... 95

Figure 4.2: Overview of DroidbotX .. 105

Figure 4.3: An example of state and actions representation from Android app 107

Figure 4.4: A UI state transition graph from a real-world Android app. 113

Figure 5.1: Variance of instruction coverage achieved across apps and five runs. 123

Figure 5.2: Variance of method coverage achieved across apps and five runs. 126

Figure 5.3: Variance of activity coverage achieved across apps and five runs. 128

Figure 5.4: Distribution of crashes discovered. .. 130

Figure 5.5: Progressive coverage .. 134

Figure 5.6: Time Complexity Analysis ... 141

Univ
ers

iti
Mala

ya

file:///D:/Drive%20Husam/PhD%20viva/Thesis%20final/Thesis%20print.docx%23_Toc69947421
file:///D:/Drive%20Husam/PhD%20viva/Thesis%20final/Thesis%20print.docx%23_Toc69947422
file:///D:/Drive%20Husam/PhD%20viva/Thesis%20final/Thesis%20print.docx%23_Toc69947423
file:///D:/Drive%20Husam/PhD%20viva/Thesis%20final/Thesis%20print.docx%23_Toc69947424
file:///D:/Drive%20Husam/PhD%20viva/Thesis%20final/Thesis%20print.docx%23_Toc69947425
file:///D:/Drive%20Husam/PhD%20viva/Thesis%20final/Thesis%20print.docx%23_Toc69947430
file:///D:/Drive%20Husam/PhD%20viva/Thesis%20final/Thesis%20print.docx%23_Toc69947431
file:///D:/Drive%20Husam/PhD%20viva/Thesis%20final/Thesis%20print.docx%23_Toc69947432
file:///D:/Drive%20Husam/PhD%20viva/Thesis%20final/Thesis%20print.docx%23_Toc69947434
file:///D:/Drive%20Husam/PhD%20viva/Thesis%20final/Thesis%20print.docx%23_Toc69947435
file:///D:/Drive%20Husam/PhD%20viva/Thesis%20final/Thesis%20print.docx%23_Toc69947436
file:///D:/Drive%20Husam/PhD%20viva/Thesis%20final/Thesis%20print.docx%23_Toc69947437
file:///D:/Drive%20Husam/PhD%20viva/Thesis%20final/Thesis%20print.docx%23_Toc69947438
file:///D:/Drive%20Husam/PhD%20viva/Thesis%20final/Thesis%20print.docx%23_Toc69947439
file:///D:/Drive%20Husam/PhD%20viva/Thesis%20final/Thesis%20print.docx%23_Toc69947440

xii

LIST OF TABLES

Table 2.1: Comparison of Automated testing activities .. 37

Table 2.2: Comparison of GUI test case generation tools .. 41

Table 2.3: Type of evaluation method of GUI testing tools ... 45

Table 2.4: Characteristics of GUI testing tools ... 48

Table 3.1: Overview of Android applications selected for testing.................................. 69

Table 3.2: Overview of Android test generation tools .. 72

Table 3.3: Statistics of results on apps by test generation tools understudy 73

Table 3.4: Statistics of crash results on apps by test generation tools understudy 84

Table 3.5: Experimental results to answer research questions .. 86

Table 4.1: Overview of Android test generation tools adopted RL 100

Table 5.1: Overview of Android apps selected for testing.. 119

Table 5.2: Results on instruction coverage by test generation tools 122

Table 5.3: Results on method coverage by test generation tools 125

Table 5.4: Results on activity coverage by test generation tools 127

Table 5.5: Statistics of crash results on apps by test generation tools understudy 131

Table 5.6: Experimental results to answer case study questions. 132

Table 5.7: Statistics of models built by Droidbot, Humanoid, and DroidbotX 135

Table 5.8: Q-Learning-based test generation algorithm corresponds to time. 137

Table 5.9: Action selector function corresponds to time. ... 138

Table 5.10: Q-Learning-based test generation algorithm corresponds to time for average
time analysis. ... 140

Univ
ers

iti
Mala

ya

xiii

LIST OF ABBREVIATIONS

A2C : Advantage Actor-Critic

A3C : Asynchronous Advantage Actor-Critic

AAPT : Android Asset Packaging Tool

ADB : Android Debug Bridge

API : Application Program Interface

APK : Android Application Package

ART : Adaptive random testing

AUT : Application Under Test

BFS : Breadth-first search

DFS : Depth-first search

DQN : Deep Q Network

DVM : Dalvik Virtual Machine

GUI : Graphical User Interface

JVM : Java Virtual Machine

MBT : Model-Based Testing

RL : Reinforcement Learning

SARSA : State-Action-Reward-State-Action

SDK : Android Software Development Kit

SBSE : Search-Based Software Engineering

UCB : Upper Confidence Bound

URI : Uniform Resource Identifier

UTG : User Interface Transition Graph

VM : Virtual Machine

XML : еXtеnѕіblе Markup Language

Univ
ers

iti
Mala

ya

1

CHAPTER 1: INTRODUCTION

This chapter is an overview of in-depth research undertaken in this thesis. It presents

GUI testing for Android apps and the associated research problem. Herein, this study's

aim and objectives are clarified and, as such, describes the methodology proposed to

achieve the aim and objectives.

In this chapter, the outline is organized as follows: Section 1.1 introduces the study's

background for undertaking this research. It also highlights the significance of the work.

Section 1.2 is an introduction to the research motivation. The identified research problems

to be addressed in this thesis are highlighted in Section 1.3. Section 1.4 presents the aim

and objectives of this study. Section 1.5 presents research questions, followed by Section

1.6, which outlines the research scope. While Section 1.7 presents the proposed

methodology. The chapter is concluded in Section 1.8.

1.1 Background

Software testing is an important and major area of software reliability. It deals with

the probability that the software will not cause system failure for a specific time under

the specified condition (Musa, 1987). Reliability is an important attribute of software

quality in addition to other attributes such as usability, fault prediction, and performance

(Taylor-Sakyi, 2016). Mobile app reliability is crucial in apps development. Mobile apps

are everywhere and operate in complex environments. These mobile apps are developed

under market pressure over time. Mobile apps work on a variety of platforms. Such

platforms include Windows, iOS, and Android.

Over the years, Android, in particular, has gone through rapid growth and frequent

updates. According to a previous report (Chaffey, 2018), the number of Android apps

downloaded is increasing drastically over the years. Android has over 2 billion active

devices monthly. It dominates over 85% of the global market share (IDC, 2019). Google

Univ
ers

iti
Mala

ya

2

Play Store is an Android apps' official market with more than 3.3 million apps, covering

more than 30 categories, such as entertainment and personalization apps to education and

financial apps. Concurrently, Android apps are updated on average every 60 days. A

previous study (Statista, 2019) indicated that a mobile device, on average, has between

60 and 90 apps installed. Besides, an Android user, on average, spends 2 hours and 15

minutes on apps every day. With these statistics, unfortunately, in December 2019, it was

reported by AppBrain that about 17% of the Android apps were low-quality apps

(TheAppBrain, 2019). Furthermore, it was also reported that 53% of users would avoid

using an app if the app crashed (Packard, 2015). The inferior quality of Android apps can

be attributed to insufficient testing due to its rapid development practice and the

fragmentation of mobile devices that have different hardware characteristics and use

various releases of the Android framework (Canfora et al., 2016). Android developers

tend to disregard good testing practices as it is considered time-consuming, expensive,

and with a lot of repetitive tasks. The quality of apps depends on both functional (e.g.,

app crashes and unresponsive apps) and non-functional requirements such as the absence

of failures and performance. Some of the major issues that heavily disrupt users'

experience include app crashes and unresponsive apps, as reported by users review

(Khalid et al., 2014). Mobile app crashes are evitable and avoidable by intensive and

extensive testing of mobile apps. Android apps can be tested with a graphical user

interface (GUI) testing tools to verify the app's functionality, usability, and consistency

before they are released to the market (Ammann & Offutt, 2016; Joorabchi et al., 2013).

To start Android apps testing, test cases will be generated with a series of events sequence

on the GUI components to reveal faults. By faults, it means the inability of the app to

perform required functions, which may or may not lead to a crash. The sequences of

events (or test input) can be either from user interaction or system interaction. For

example, a user interaction (or actions) usually involves clicking, scrolling, or typing texts

Univ
ers

iti
Mala

ya

3

into a GUI element like a button, image, or text block. While interaction with system

includes receiving SMS notifications, app notifications, or phone calls.

The development of GUI test cases usually takes a lot of time and effort because of

their non-trivial structures and the highly interactive nature of GUIs (Banerjee et al.,

2013). Android apps usually possess numerous states and transitions, which can lead to

an arduous testing process and poor testing performance. For the past decade, Android

test generation tools have been developed to automate user interaction and allow system

interaction as inputs (Amalfitano, Fasolino, Tramontana, De Carmine, & Memon, 2012;

Amalfitano et al., 2014; Machiry et al., 2013; K. Mao et al., 2016; Su et al., 2017; Zhu et

al., 2015). The focus of these tools is to generate test cases and explore the app’s functions

by employing different techniques. These techniques can be distinguished according to

the way they generate tests (Linares-Vásquez et al., 2017); Random testing generates a

randomized series of events sequence to trigger crashes; Model-based testing technique

uses a directed graph-based model to correlate the relationship of the user interaction and

the GUI of the apps; Record and replay testing record user interactions to generate

repeatable scripts; Systematic based generates guided tests based on program analysis,

and Q-Learning based. These techniques are implemented in sophisticated approaches

(Koroglu et al., 2018; Machiry et al., 2013; K. Mao et al., 2016; Su et al., 2017) which

are well presented in chapter 2.

Q-Learning is a type of model-free technique of reinforcement learning (Kaelbling et

al., 1996). It was used in software testing in the past and has shown its ability to improve

random-based techniques (Adamo, Khan, et al., 2018; Koroglu et al., 2018; Mariani et

al., 2011; Vuong & Takada, 2018). It uses trial-and-error interactions to experience the

consequences of actions. Initially, the Q-Learning agent interacts with the App Under

Test (AUT) to identify the best action (from a set of actions available in the current state)

that are most likely to discover unexplored app’s states (Watkins & Dayan, 1992). Actions

Univ
ers

iti
Mala

ya

4

never selected can present a higher reward than actions already executed, which reduces

the redundant execution of events and increases coverage. Accordingly, the knowledge

of AUT is updated to find a policy that facilitates systematic exploration to make efficient

future action selection decisions. This exploration interacts with AUT to construct a state

transition model and generates test cases. These test cases follow the sequences of events

that are the most likely to explore the app’s functionalities. To conclude, for an effective

test case, it is vital to generate effective actions first that reach new and important app

states, which in turn leads to an increase in the coverage and fault detection.

1.2 Motivation

According to a dimensional research survey (Packard, 2015), 61 percent of users

expect mobile apps to start in four seconds, while 49 percent want input responses within

two seconds. Besides, if an app freezes, crashes, or has errors, 53 percent of users will

uninstall it. Hence, effective approaches for testing Android apps are needed. GUI test

case generation can be demanding because of many competing properties that developers

care about such as code coverage, test sequence length, and the ability to detect faults (K.

Mao et al., 2016). An analysis reveals that out of 600 open-source Android app projects

hosted on the F-Droid repository (F-Droid, 2010), only 14 percent contain test cases, and

about 9 percent have executable test cases with code coverage of over 40 percent

(Kochhar et al., 2015). Coverage is an important metric to measure the effectiveness of

testing (Memon et al., 2001). High code coverage is necessary for automated testing for

the sake of minimizing human efforts and maximizing effectiveness (Wang et al., 2014).

Due to the low code coverage of current approaches, there is still a need for continued

study (Amalfitano, Fasolino, Tramontana, De Carmine, & Imparato, 2012; Choi et al.,

2013; Hu & Neamtiu, 2011; Machiry et al., 2013).

Univ
ers

iti
Mala

ya

5

1.3 Problem Statement

Regardless of the widespread use of Android apps, software reliability problems

remain prevalent. Mobile apps developers heavily rely on user reviews to get reports on

software crashes (Khalid et al., 2014; Linares-Vasquez et al., 2015; Palomba et al., 2015).

The most common problems reported by mobile app users are app crashes (Khalid et al.,

2014). App crashes give users an unsatisfactory experience, and negatively impact the

app's overall rating (Khalid et al., 2014; Martin et al., 2016). An app is tested with an

automatically generated sequence of events that simulates user interaction with the GUI

which serves as test cases for executing system tests. Given unlimited time, to achieve

high code coverage, all possible event sequences interaction and combinations can be

tested. In practical situations where testing time is often limited, and the AUT contains a

large number of possible combinations of interactions in each state and transitions

between them, testing all possible scenarios is time-consuming and ineffective for large

systems. Automated testing tools often choose a small subset of interaction sequences to

explore, leaving many app functions unexplored. Thus, such tools must choose not only

which GUI component to interact with, but also which type of action to perform. Each

type of action on each GUI component is likely to improve the percentage of code

coverage and fault detection. Automated testing tools are used to make the testing process

more effective by finding faults; more comprehensive by achieving better code coverage

and faster by producing the smallest possible event sequences (Dashevskyi et al., 2018).

Even though there are existing studies to achieve these goals (Choi et al., 2013; Machiry

et al., 2013; K. Mao et al., 2016; Su et al., 2017; Wang et al., 2014), however, these

research tools encounter two major problems.

The first problem is low code coverage, existing tools are still insufficient to exercise

the app thoroughly and thus cannot achieve high code coverage in automated testing

(Choudhary et al., 2015; Wang et al., 2018). In particular, existing tools cannot effectively

Univ
ers

iti
Mala

ya

6

manage the exploration of states and as well minimize unnecessary transitions between

them. Besides, existing tools cannot effectively explore a wide range of app

functionalities because some of the app’s functions can only be explored through a

specific sequence of events. For instance, Android Monkey is the most commonly used

tool for numerous industrial apps. It is regarded as the current state of practice for

automated Android testing (Mahmood et al., 2014; Wang et al., 2018). However, Android

Monkey requires more time to generate a long sequence of events. These events include

redundant events that are repeatedly jumping between app activities and non-relevant to

the current state that clicks on a non-interactive area on the screen (Clapp et al., 2016).

These redundant events have no consistent pattern and cannot keep track of executed

events.

For the second problem, the desired goal of software testing is to detect fault using the

shortest possible event sequences within the shortest time and using the minimum efforts.

Minimizing the total number of events in a test suite will reduce the testing time, effort,

and the number of steps required to replicate a crash significantly. Developers may reject

longer sequences because it is impractical to debug and less likely it will occur in practice

(K. Mao et al., 2016). However, test generation tools tend to generate large test suites

with thousands of test cases. Each test case usually holds tens to thousands of events. The

length of the test case is generally defined as the number of events in it. Such test suites

are challenging to be incorporated into regression testing due to the long run time

required. Regression testing should be fast, so that allows the same test suite to be used

repeatedly during the development. The generation of long event sequences in GUI

testing usually leads to an increase in the testing space. For example, for a 10-еvеnt GUI,

the number of all possible length-10 test cases is 1010. Even when considering possible

restrictions on the combinations, the number might still be large.

Univ
ers

iti
Mala

ya

7

1.4 Research Objectives

This research aims to generate effective GUI test cases for Android apps. Hence, this

research proposes an approach that dynamically produces GUI test cases based on a Q-

Learning technique. This approach systematically selects events and guides the

exploration to explore the functionalities of an AUT to maximize instruction, method,

and activity coverage by minimizing redundant event execution. The aim is accomplished

by achieving the following objectives:

• To review the current state-of-the-art GUI testing tools to generate test cases

for Android apps.

• To examine the effectiveness of test generation tools for Android apps in terms

of method coverage, activity coverage, and crash detection.

• To develop an approach using Q-Learning to optimize test case generation that

maximizes instruction coverage, method coverage, and activity coverage.

• To evaluate the ability of the proposed approach to generate effective test cases

that detect crashes and maximize instruction coverage, method coverage, and

activity coverage on real-world Android apps.

1.5 Research Questions

For this research, the main research questions are:

RQ1: What are the trends and future direction in state-of-the-art GUI testing tools for

Android apps?

RQ2: How is the performance of state-of-the-art GUI test generation tools for Android

apps in terms of event sequence length on the overall activity coverage, method coverage,

and crash detection?

Univ
ers

iti
Mala

ya

8

RQ3: How can Q-Learning be used to improve event sequence selection for optimizing

test case generation?

RQ4: What is the effectiveness of the proposed approach in terms of instruction

coverage, method coverage, activity coverage, and crash detection?

1.6 Research Scope

The scope of this research is to maximize instruction coverage, method coverage, and

activity coverage by minimizing redundant execution of events. Meanwhile, this research

excludes text prediction when sending text input and fault revelation, which requires

generating an automated oracle.

1.7 Research Methodology

To achieve the aim and objective of this research, the steps shown in Figure 1.1 were

followed.

A comprehensive review of the state-of-the-art GUI testing tools for Android apps was

undertaken to analyze their strengths and weaknesses; a taxonomy was proposed to

explore shared traits and contrasts among studied tools. The taxonomy was created by

analyzing 45 different studies from 2011 to 2019. The studies were collected from five

known data sources include ACM, IEEE Xplore, springer, science direct, and google

scholar. The taxonomy contains four prominent parameters including (i) automated

testing activities, (ii) GUI testing tools approach, (iii) evaluation methods (iv), and

characteristics. Moreover, a comparison of GUI testing tools for Android apps was

discussed and classified based on seven main approaches include (record and replay,

random based, model-based, active learning, systematic based, search-based, and reuse

based). Furthermore, several research issues in GUI testing for Android apps were

identified through literature. The problems to be addressed in this thesis were also

Univ
ers

iti
Mala

ya

9

identified through literature. The research issues include reproducible test cases, test

oracle, test input generation, test coverage, crash diagnosis, and fragmentation.

The problems identified were investigated, and their significance was thoroughly

verified through empirical evaluation. This analysis employs the empirical case study

method that is used in software engineering. The effectiveness of the test generation tools,

especially in the event sequence length of the overall code coverage and crash detection,

was evaluated on 50 Android apps. The event sequence length generally shows the

number of steps required by the test generation tools to detect a crash. It is critical to

highlight its effectiveness due to its significant effects on time, testing effort, and

computational cost. The test generation tools were evaluated and compared based on the

activity coverage, method coverage, and capability in detecting crashes. Furthermore,

several research problems in test generation tools for Android apps were identified. The

issues to be addressed in this thesis were also investigated. The research issues include

events sequence redundancy, event sequence length, system events, access control, and

ease of use.

To alleviate the identified problems, a fully automated black-box testing approach

based on the Q-Learning technique was proposed. A Q-Learning-based test coverage

approach uses Upper Confidence Bound (UCB) exploration-exploitation as a learning

policy, to create an efficient exploration strategy for GUI testing. The exploration strategy

systematically selects events and guides the exploration toward revealing the

functionalities of an AUT. It interacts and explores the app’s functionalities following the

strategy of observe-select-execute, where all the GUI actions of the current state of AUT

are observed; one action is selected based on the selection strategy under consideration,

and the selected action is executed on the AUT. Instead of randomly selecting the actions,

the proposed approach learns how to act in an optimal way that explores new states by

Univ
ers

iti
Mala

ya

10

using new actions to gain more rewards. Thus, actions never selected can present a higher

reward when compared to already executed actions, which reduce the redundant

execution of events and increase instruction coverage, method coverage, and activity

coverage. The proposed approach was implemented into a test tool named DroidbotX.

DroidbotX constructs a state-transition model of the app and generates test cases. These

test cases follow the sequences of events that are the most likely to explore the app’s

functionalities.

The performance of the proposed approach was evaluated via an empirical case study

analysis. The overall performance of the proposed approach was compared to five state-

of-the-art test generation tools. Five tools with different techniques have been chosen for

the experiment as follows Sapienz (search-based), Stoat (model-based), Droidbot (model-

based), Humanoid (deep Q network), and Android Monkey (random-based). These tools

are the most recent techniques for Android testing. Thirty real-world Android apps were

used in this evaluation chosen from the F-Droid repository. Instruction coverage, method

coverage, activity coverage, crash detection, and time to run have been opted as

performance metrics in this evaluation. The standard setup of the experiments was

applied. The performance evaluation results were validated in comparison with the five

state-of-the-art test generation tools results. Moreover, the computation time complexity

of the Q-Learning test coverage algorithm was analyzed. The results show the significant

performance of the proposed approach.

Univ
ers

iti
Mala

ya

11

Fi
gu

re
 1

.1
: R

es
ea

rc
h

M
et

ho
do

lo
gy

Univ
ers

iti
Mala

ya

12

1.8 Conclusion

This chapter provides an overview of software testing and the difficulties that

developers encounter to meet the users' demands. Thus, the app quality is often

compromised due to poor app testing. This research proposed a Q-Learning-based test

coverage approach developed as a tool called DroidbotX. The proposed approach aims to

generate GUI test cases for Android apps to achieve maximum instruction coverage,

method coverage, and activity coverage while minimizing redundant execution of event

sequences. Chapter two provides comprehensive literature on Android apps, existing GUI

testing tools, and its taxonomic parameters. In chapter three, the empirical evaluation of

existing tools was conducted. The remaining chapter focuses on the in-depth explanation

of the proposed approach for the effective generation of test cases.

Univ
ers

iti
Mala

ya

13

CHAPTER 2: LITERATURE REVIEW

This chapter reviews the state-of-the-art GUI testing tools comprehensively for

Android apps to analyze their strengths and weaknesses. A comprehensive thematic

taxonomy is proposed based on an extensive review of the existing GUI testing tools for

Android apps. The critical features and related aspects of these tools are thoroughly

examined to evolve the proposed taxonomy. The tools are exhaustively analyzed

according to the taxonomy parameters to explore shared traits and contrasts among

existing tools. Finally, several research issues in Android app GUI testing are put forward

that require further consideration to enhance the tools.

The chapter is organized: Section 2.1 presents an overview of the Android platform,

its architecture, and its components. Section 2.2 discusses GUI testing, its faults, and

frameworks. Section 2.3 proposes the thematic taxonomy of GUI testing tools for

Android apps and compares the GUI testing tools for Android apps based on taxonomy

parameters. Section 2.4 discusses the test case generation approaches for Android apps.

Last, section 2.5 presents research gaps and limitations.

2.1 Android

Android is a mobile operating system that was released in 2008 to the market. It was

developed by Google Inc. thenceforth, there had been a steady increase in the success rate

of the Android platform. With its design, it has become the most popular mobile system

in 2011, which has an open-source framework, a Linux-based layered software as

compared to its competitors such as іOS (Apple) and Windows Phone (Microsoft).

According to the market research report from Statista (Statista, 2019), nearly 2.2

million apps are available in the Apple App Store, while Google Play remains the largest

app store with accessible 3.3 million apps to its consumer. The popularity of Android

Univ
ers

iti
Mala

ya

14

among developer communities can be attributed to its open Java programming language-

based development framework, as well as the availability of libraries with various

functionalities (Li et al., 2016).

2.1.1 Android Platform Architecture

Android is an open-source OS built based on a consolidated Linux kernel created for

an increasingly wide range of hardware and devices. Figure 2.1 illustrates the high-level

architecture of the Android platform, the modified Linux kernel acts as a Hardware

Abstraction Layer (HAL) and offers device driver, process and memory management,

and networking capabilities, respectively. The library layer is configured with Java

(which deviates from the conventional Linux design). It is in this layer that the special

libc (bionic) for Android is located. The surface manager controls the user interface (UI)

windows. Additionally, the Android runtime layer contains both the Dalvik Virtual

Machine (DVM) and the core libraries (such as Java or IO). The core libraries provide

the majority of the functionalities available in Android.

Android is focused on improving technology based on minimal resources available on

mobile devices. Besides, the Android-specific application framework was developed and

used to enhance the operating environment. The architectural framework behind Android

is called the Android software stack, which consists of layers (Google, 2019h). They are

as follows.

Linux Kernel. This layer is the core of the architecture of Android. It is founded on

the Linux kernel with special additions for a model embedded platform. It provides the

following functions: power management, memory management, process management,

Hardware drivers, and security. It is used for better communication in software and

hardware binding.

Univ
ers

iti
Mala

ya

15

Hardware abstraction Layer. HAL consists of multiple library modules and is

developed using native technology (C/C++ and shared libraries), each of which

implements an interface for a specific type of hardware component. HAL lays out the

standard interfaces which reveal the capabilities of the device's hardware to the higher-

level Java API (Application Programming Interface) framework. The Android system

downloads the library module for that hardware component when the API framework

calls for hardware device access.

Figure 2.1: Android Architecture for System Application Software Stack

Univ
ers

iti
Mala

ya

16

Dalvik Virtual Machine (DVM). Generally, Android-based systems employ their

virtual machine (VM) known as a DVM that utilizes a unique bytecode. Therefore, native

Java bytecode cannot be launched on Android systems directly. The Android community

provides a tool (dx) that permits the substitution of Java class files into Dalvik executables

(dex). The DVM implementation is optimized to improve efficiency and effectiveness on

mobile devices that are configured with a slow (single) Processor, battery capacity,

limited memory, and no swap space for the operating system. Also, the DVM was

implemented such that it allows a device to execute VM's effectively. It depends on the

revised Linux kernel for any possible threading and low-level memory features. DVM

was replaced with ART (Android Runtime). ART was made official with Android 5.0 but

candidly limited in its compatibility with all applications that are already on the market.

ART introduces the concept of AOT (ahead-of-time) compilation, i.e., it compiles the

whole application code into the native machine code, without interpreting the bytecode.

Thus, enabling the application code to be executed directly by the device's runtime

environment as compared to Dalvik's JIT (just-in-time) execution. AOT profiles the

application while they are being executed and dynamically compiles the most used

segments of the bytecode into native machine code.

Native C/C++ Libraries. Most main Android system infrastructures, such as DVM /

ART and HAL, are native code-based, requiring native libraries compiled in C and C++.

Android OS provides java framework APIs that display the capabilities of these core

features to applications.

Libraries. The Library layer supports functionality such as 3D rendering using SGL

(Scene Graph Library) and connects to databases using SQLite for Android to function

effectively with its core features.

Univ
ers

iti
Mala

ya

17

Application Framework. Developers can reuse and extend the components already

presented in the API. This layer has managers, which enable Android applications to

access data. These include; Activity manager, which controls the application's lifecycle

and enables proper management of all the activities. Resource manager gives access to

non-code resources. Notification manager allows the applications to show custom alerts

in the status bar. Location manager notifies when a user enters or exits a specific

geographical location. Package manager collects information about installed packages on

the device. Window manager creates views and layouts. Telephony manager handles the

structure of network connection and the information about services on the device. The

Application Framework layer handles the API calls made by applications.

Applications. It is the most layer in android architecture that controls all installed apps

on the device. For example, native applications include all pre-installed apps, such as

camera, browser, SMS, calendars, contacts.

2.1.2 Android Application Components

The Android software development kit (SDK) is a set of tools needed to develop an

Android app. Android apps are packed into an Android package (.apk) files through the

Android Asset Packaging Tool (AAPT). AAPT has all the assets and compiled source

code required to install an application on a device (Google, 2019b) based on Dalvik

specifications. Figure 2.2 shows the Android app package structure. Google supplies the

Android Development Tools (ADT) to streamline the development process. The ADT

assembles the conversion from class to dex files and creates .apk during deployment.

Univ
ers

iti
Mala

ya

18

Android manifest file. This is an indispensable XML (еXtеnѕіblе Markup Language)

file that is located at the root directory of the application's sources as

AndroidManifest.xml. The manifest file is transformed into a binary format when the

application is compiled. The binary manifest file has the essential Android system details

of the device such as the package name, App ID, the minimum level of API needed, the

list of permissions required, and the hardware specifications. In a very simplified manner,

the four major components of an Android application are; Activities, Services, Broadcast

Receivers, and Content Providers (Google, 2019b).

Activity is the main interface for user interaction, and each activity represents a group

of layouts. For example, a linear layout organizes the screen items horizontally or

vertically. The interface has GUI elements, also known as widgets or controls (Google,

2019a). These widgets include buttons, text boxes, search bars, switches, and number

pickers which allow the users to interact with the apps. As a whole, it can be categorized

into four attributes: type (e.g., class), appearance (e.g., text), functionalities (e.g.,

Figure 2.2: Android application
package structure

Univ
ers

iti
Mala

ya

19

clickable and scrollable), and the designated order of the sibling widgets (i.e., index).

These widgets are handled as the task stacks in the system. The user can switch between

tasks by clicking the Home button and starting a new stack of activities on the mobile

device. Activity manager is involved in the management of stacks and the activity

lifecycle. Once the activity stops due to the launch of a new activity, a callback method

is notified that allows the smooth transitioning of the activity. The layouts and widgets

are described in the manifest file of Android apps, where each layout and widget have a

unique identifier. Activity provides a platform for user's interaction with the application,

creating a loop called windows, thus creating a space for the application to interact with

the UI. This window is typically a full screen that floats on top of other windows but may

be smaller than the screen. Each activity comprises a set of Views and Fragments that

presents information to the user while interacting with the application. Fragments were

introduced to address the issue of screen size and represent behaviors of a user interface

in an activity.

Services are classes that do not provide the user with a screen for interaction as

compared to Activity, and so can be executed in the background (for example playing

music in the background; this is a long-running task). An app’s activities must be properly

registered in the manifest for this component to function well. The three different types

of services are (i) Scheduled which is characterized by jobs and requirements for network

and timing. (ii) Started, it operates in the background indefinitely, even when the

component that started it is no longer executing. (iii) Bound provides a client-server

interface that permits the components to interact with the service. This is done by sending

requests, receiving results, and processing with Inter-process Communication (IPC). All

services must be declared in the application’s manifest file, just as activities and other

components.

Univ
ers

iti
Mala

ya

20

Broadcast Receiver is a component of an application that receives Intents from other

applications that own the needed permissions. It listens and handles events related to

particular states, either the system or other applications, similar to when a new message

has been received or the OS has finished its initialization.

Content Provider oversees the structured data enclosed in the database. It permits the

application to share information with other applications. Broadcast Receiver responds to

messages from other applications or the system i.e., the application can initiate broadcasts

to notify another app about the downloaded data to the device and its availability for use.

This broadcast receiver intercepts the communication and will initiate appropriate action.

Intent messages activate Services, Activities, and Broadcast Receivers. It has an inter-

application message-passing framework. It is widely used in Android to transfer access

from one activity to another, allowing late run-time binding between components, where

the call codes are implicit and linked via the event messaging, an important feature of

event-driven systems.

2.1.3 Android Activity Lifecycle

Activities on Android apps are components that are displayed for the users to interact

with. They are usually composed of several loosely coupled activities bound to each other,

and these activities can change the interface between different areas of application or

perform different actions. For example, database accesses. Activities can call other

activities using intents, which are used as links between the activities in the app. Intents

are messages between the different components that are used to perform an activity

(intention). The most common use for intents is starting a new activity and enabling the

user to send extra data to the newly started activity, a bundle can be used, which acts as

secondary storage when transferring data between activities.

Univ
ers

iti
Mala

ya

21

An activity can have several different states, and the developer can override a

corresponding method for each state in the source code i.e. if an activity has just been

launched, the onCreate() method is invoked (Google, 2019k). This is called the activity

lifecycle and can be the source of errors in Android apps. Figure 2.3 shows the Android

activity lifecycle. The app's underlying process type is adjusted when the app components

change their states. The basic individual unit begins when the app starts operation, while

the following hooks are named sequential in activity: onCreate(), оnStаrt(), оnRеѕumе().

The first hook is called once in the lifetime of activity, but others get called more often.

The оnPаuѕе() method gets called when an activity loses its focus and when the activity

is no longer visible, оnStор() gets called. Also, before disabling an activity, the

onDеѕtrоу() method continues to operate until the halt of the activity's lifetime. Every

hook gets called specially, thus enabling the activity to maintain its state or restart

correctly.

Figure 2.3: Android Activity Lifecycle

Univ
ers

iti
Mala

ya

22

2.2 Graphical User Interface (GUI) Testing

The Graphical User Interface (GUI) is an app interface that provides a massive way

for the user to communicate with the software in a modern software system and applies

to more than half of the source code (Memon, 2003). The user interacts with software

GUI by performing events such as click, long click, swipe, scroll, and adding text.

Subsequently, the GUI engages with the runtime environment through message and

callback methods. GUI is characterized into graphical orientation, event-driven input, the

component they contain, and the attributes of those components.

GUI testing is a way to validate GUI components and the functionalities accessible

through them. GUI testing is categorized into two namely usability testing which is not

covered in this study, but mainly assesses how usable the interface is by using the tenets

from user interface design and functional testing involves the assessment of an interface

to test its workability, this is necessary to find out if the user interface works as intended

(Ammann & Offutt, 2016). In general, GUI testing involves executing a task and

comparing the outcome with the expected output. This is executed using test cases. GUI

testing can be done either manually by humans and/or automatically. Memon published

that GUI testing is manually operated (Memon, 2002). Additionally, testing GUI's can be

difficult because the number of available GUI permutation actions are great, and each

action may change the state of the program, and all of the action may need to be tested,

and it is almost impossible to test all the states a graphical user interface can have (Kropp

& Morales, 2010). GUI testing can be much work if performed manually, errors can be

difficult to reproduce, and the process is infeasible (Kropp & Morales, 2010; Wang et al.,

2014) while automated GUI testing is more accurate, reliable, efficient, and cost-effective

than manual GUI testing (Li & Wu, 2004). GUI testing is not a single test activity; rather

it is a collection of activities that test the app from various viewpoints, including test

coverage, test case generation, test oracle, and regression testing. Test case generation is

Univ
ers

iti
Mala

ya

23

the major demanding task. Automated testing tools cannot substitute human intelligence

for testing, but it would never be possible to test complex systems at a fair cost without

them (Fewster & Graham, 1999).

Even though there is a variation between conventional software testing to GUI testing,

both undergo similar testing steps that follow the pattern, respectively (Memon, 2001;

Muccini et al., 2012). The first step is known as coverage criteria; these are guidelines

used to assess what to test in software; this demands that each event be implemented and

executed to determine its functionality and usability. The second step is the most

important part of the test case, which is known as test input generation. Test inputs

comprise events such as clicks, scroll, and object manipulations and are constructed based

on software specifications or its structure. The third step is known as expected output

generation; test oracles is a mechanism that helps generate the expected outputs which

determine if the software was successfully executed or otherwise. The fourth step

involves the execution of test cases and verification of outputs, here, test cases are

executed, and the output generated is compared to its expected result.

A test case consists of an input, output, expected outcome, and the actual outcome.

Lastly, this step determines if the GUI was properly and adequately tested. This step

usually requires analyzing the software to check the parts that were tested and those that

were missed during the testing exercise. Problems identified after testing are usually

modified and corrected. This modification leads to regression testing, simply put re-

testing the modified software.

Regression test shows the accuracy of the modified software component and assesses

that the changes had not significantly impacted the previously tested parts.

Univ
ers

iti
Mala

ya

24

2.2.1 GUI Testing on Android Application

Testing Android GUI application has special requirements compared to desktop GUI

applications. Due to some factors; Android applications run on heterogeneous devices,

where different manufacturers use different technologies, there are a number of bugs

derived from the heterogeneous aspect (Amalfitano et al., 2011). Also, as compared to

the monolithic and independent desktop application, the ubiquitous nature of the Android

framework and its code execution pose difficulties (Mirzaei et al., 2015). Android

applications can be customized on different types of devices by providing different

layouts and functionality, depending on the device running the application. Moreover, the

Android activity lifecycle (This includes testing the activities respond to the user, system,

and its lifecycle events), Service testing, Content provider (testing shared resources). An

example of such a shared resource is a database. Broadcast receiver tests the component

listening to a message from an intent (Amalfitano, Fasolino, Tramontana, & Robbins,

2013). According to Google (Google, 2019f) stated that Android applications can have

numerous entry points since the activities act as independent modules that are connected.

This means that testing becomes more difficult since the transition between every activity

needs to be tested as well (Zhauniarovich et al., 2015).

2.2.2 Faults in Android GUI Testing

Generally, Android application GUI testing aims to execute applications using a

combination of inputs and states to reveal a fault. A fault is defined as a coding error in

an application, also known as a Defect or Bug. Faults cause an application to crash during

use, which may or may not lead to failure. Failure here means a system's inability to

perform a necessary function within specified performance requirements (Maji et al.,

2010). The source of failures includes faults in the application implementation, the

running environment, and the interface between the application and its environment

(Amalfitano, Fasolino, Tramontana, & Robbins, 2013).

Univ
ers

iti
Mala

ya

25

An Android application crashes when there is an unexpected exit caused by an

unhandled exception (Google, 2019d). Crashes typically result in termination of the

application's processes, and a dialog is displayed to the user to notify them of the crash.

Some crashes do not impact the execution visually, but the screen remains unresponsive.

Once the crash is observed, the tester investigates the crash to find the fault that caused it

and correct that fault. Android faults are categorized as activity errors and event errors

(Hu & Neamtiu, 2011). Activities are the major GUI features of an Android application;

an activity error happens due to inaccurate implementation of the Activity class. Event

errors arise when an application refuses to respond as a result of getting an event. By

configuration, Android applications are expected to be ready to receive and respond to

events at any stage of activity in which they occur, e.g., an application must be able to

manage the intrusion caused by an incoming phone call in any state. If developers do not

provide the effective implementation of event handlers associated with certain states, the

application may enter an erroneous state or crash as a result of an event.

2.2.3 GUI Testing Frameworks for Android

There are varied GUI testing tools and frameworks for Android applications include

Android Monkey (Google, 2019j), Appium (Sauce, 2013), Espresso (Google, 2019e),

Robotium (Reda & Josefson, 2014), UiAutomator (Google, 2019i), and Monkeyrunner

(Google, 2019g). These frameworks are not limited to the stated frameworks but were

identified based on their popularity in the software marketplace (Gunasekaran & Bargavi,

2015). Automated GUI testing frameworks have been used to compile and execute test

cases for Android applications and make the testing activity easier.

Android Monkey (Google, 2019j), also known as UI/App Exerciser Monkey is a black-

box GUI testing tool in the Android SDK. Among the existing test generation tools, this

random testing tool gained considerable popularity from society. Other than its simplicity,

Univ
ers

iti
Mala

ya

26

it has demonstrated good compatibility with a myriad of Android platforms which made

it the most commonly used tool for numerous industrial applications. It is a command-

line tool used directly in the device/emulator. It can generate pseudo-random events with

unexpected scenarios to an AUT. It produces randomly generated events that serve as the

test input in the absence of any guidance. Thus, the test exploration can be uniformly

traversed throughout the GUIs (i.e., low activity coverage) and it cannot incorporate user-

defined rules such as inserting a password or preventing logging out. Also, the generated

events are low level with hard-coded coordinates, which complicates the reproduction

and debugging processes (Choudhary et al., 2015). Moreover, Android Monkey is unable

to turn the sequence of events into test cases.

Appium (Sauce, 2013) is an open-source black box testing, cross-platform mobile app

automation testing framework developed by Sauce Labs to automate native, hybrid, and

mobile web applications. It is OS independent, but not a device-independent that uses

UiAutomator or Selendroid for running the tests in the background. Aрріum interacts

with multiple applications once the Android API level on the test device is greater than

what is required by UiAutomator. Appium is best known for its accuracy during

automation testing and test repeats and also can be developed on any language because it

is not directly paired to Android. Appium has limited support for hybrid testing and

cannot be used on Android version lower 4.2.

Espresso (Google, 2019e) is a user іntеrfасе-tеѕtіng frаmеwоrk fоr tеѕtіng android app

dеvеlореd іn Jаvа / Kоtlіn lаnguаgе uѕіng Andrоіd SDK. It is an open-source project used

mаjоrlу tо wrіtе a funсtіоnаl UI test whose fосuѕ іѕ оn thе nаvіgаtіоn of AUT. Eѕрrеѕѕо

is highly reliant оn thе іnѕtrumеntаtіоn frаmеwоrk of Andrоіd, аnd thеrеfоrе, lіmіtеd bу

іtѕ іnаbіlіtу to nаvіgаtе оutѕіdе thе AUT. Thе tеѕt is ѕіmрlе tо compile, ѕіnсе Eѕрrеѕѕо

еnѕurеѕ thаt thе аррlісаtіоn іѕ аt a stable bеfоrе proceeding wіth thе tеѕt ѕсrірt. Stаblе

Univ
ers

iti
Mala

ya

27

ѕtаtе means thаt thе аррlісаtіоn іѕ nоt wаіtіng fоr аn аnіmаtіоn оr network саll tо end

(Nolan, 2015). Onсе thе іntеnt hаѕ bееn ѕtаtеd, Espresso tаkеѕ саrе оf tіmіngѕ. Thіѕ tооl

rеquіrеѕ ассеѕѕ tо thе аррlісаtіоn’ѕ ѕоrсе соdе whісh mау іnhіbіt thе рrосеѕѕ оf tеѕtіng

аnd it hаѕ a narrow fосuѕ ѕuсh thаt tеѕt are wrіttеn twice fоr twо different ѕуѕtеmѕ if UI

tests are needed for both Android and іOS.

UiAutomator (Google, 2019i) is a UI testing framework produced by Google as part

of Android SDK. It uses for cross-app functional testing on apps and across the platform.

This is similar to Espresso, because іt соmеѕ with Tеѕtіng Suрроrt Lіbrаrу included as a

раrt оf thе tеѕt package but іt dоeѕ nоt uѕе thе Instrumentation frаmеwоrk. It іѕ a blасk

bоx tеѕtіng thаt nееdѕ tо bе іn a highly stable bеfоrе the continuation of tеѕt еxесutіоn аѕ

соmраrеd tо Espresso.

Robotium (Reda & Josefson, 2014) is аn ореn-ѕоurсе рrоjесt, bу Rеnаѕ Rеdа. It was

designed to abstract the structure of instrumentation that is hard to use. The tеѕt

dеvеlорmеnt language is Jаvа. Sіmіlаrlу tо thе previously mеntіоnеd tооlѕ, Eѕрrеѕѕо аnd

UіAutоmаtоr, Rоbоtіum have ассеѕѕ to the сlаѕѕеѕ аnd mеthоdѕ рublісlу аvаіlаblе іn thе

AUT since the test code and AUT’ѕ ѕоurсе соdе are included in the same project

("Robotium" 2016). Like Espresso, as it is based on the instrumentation system,

Robotium is restricted to traversing within the AUT. Thе tооl is іn асtіvе dеvеlорmеnt.

In соntrаѕt, Robotium іѕ a thіrd раrtу tооl and so requires the lіbrаrу іѕ ѕіmрlу loaded to

the Android app project.

Monkeyrunner (Google, 2019g) is used for GUI testing. Thе lаnguаgе uѕеd hеrе іѕ

Jуthоn, а Pуthоn іmрlеmеntаtіоn thаt uѕеѕ Jаvа. Google designed it and includes Andrоіd

SDK. This tool sends inputs, such as tоuсh events or kеу ѕtrоkеѕ, to the AUT аnd tаkes

ѕсrееn ѕhоtѕ оf thе аррlісаtіоn аѕ соmраrеd tо оthеr tеѕtѕ. It possesses the capability to

input tеѕt ѕuіtеѕ into numerous еmulаtеd devices аnd bооt uр ѕаіd emulators.

Univ
ers

iti
Mala

ya

28

Monkeyrunner is effective in automating the execution of the test suite. Mоnkеуrunnеr

works on all Android versions, and functions on a level lower than the Android

Framework. Compared to other tools, it lacks high-level methods for searching and

asserting items.

Most of the above solutions focus on automating manual efforts in the GUI testing

process instead of improving the test efficiency of the complex modern application GUI

(Septian & Alianto, 2018). Frameworks such as Robotium, UiAutomator, and

MonkeyRunner provide a set of APIs for the tester to write test scripts based on their test

requirements. They do not provide a way for generating the test cases automatically;

hence the test cases have to be developed manually. Moreover, writing the test cases using

these frameworks and scripts for all the available and upcoming applications is

impractical and non-effective in terms of time, effort, and cost. In contrast, the main focus

of this dissertation is on implementing an approach for generating test cases

automatically.

2.3 State-of-the-Art GUI Testing Tools for Android

This section highlights and discusses a thematic taxonomy for the classification of

Android application GUI testing tools. The taxonomy was created by analyzing 45

different studies from 2011 to 2019. The studies were from five known data sources:

springer, IEEE Xplore, ACM, science direct, and google scholar.

2.3.1 Taxonomy of GUI Testing Tools for Android

The taxonomy contains four prominent parameters, which are (i) automated testing

activities, (ii) GUI testing tools approach, (iii) evaluation methods, (iv) and

characteristics, as illustrated in Figure 2.4.

Univ
ers

iti
Mala

ya

29

Fi
gu

re
 2

.4
: T

ax
on

om
y

of
 G

U
I t

es
tin

g
to

ol
s f

or
 A

nd
ro

id
 A

pp
lic

at
io

ns

Univ
ers

iti
Mala

ya

30

2.3.1.1 Automated Testing Activity

Automation is a key factor for any Android application testing. Automated testing

includes test case implementation and design, test execution, and test oracle definition

and evaluation that verify the test by comparing the output results with the expected

results (Shahamiri et al., 2009).

2.3.1.2 Approach

GUI testing tools applied different techniques to design and implement test cases and

test oracle by using different inputs such as source code, bytecode, inferred model,

existing test cases, and user session.

Testing process input is the source of information required by the tool to derive test

cases such as (1) Source code when the tool requires source code of the Android

application; (2) Bytecode when the tool requires the executable code to derive test cases;

(3) Inferred model uses AUT model that generates automatically or manually to derive

test cases; (4) User session uses record and replay techniques to record and re-execute

user sessions that can be transformed to executable test cases; (5) Existing test cases have

been created by changing existing sessions, often in the form of executable Junit test cases

for Android applications, into executable test cases.

Test case generation is one of the most attention-demanding testing activities because

of its strong impact on the overall testing process efficiency (Anand et al., 2012). The

total cost, time, and effort required for the overall testing will depend on the total number

of test cases. The effort depends on the size of the application and the number of test

cases. The test case comprises input, output, expected result, and actual results. A set of

test cases is referred to as a suite. The test suite provides detailed guidelines or goals for

every test case collection (Memon, 2019). Test generation techniques include:

Univ
ers

iti
Mala

ya

31

(1) Record and replay, which records user interactions with GUI components into a

test script that can replay automatically on AUT to mimic user usage. Test cases

are generated and executed based on the scenarios recorded. Also, test data from

the scenarios can be modified as per requirement during the execution.

(2) Random is based on probability and distinct events generated by the GUI

application to trigger faults and crashes (Liu et al., 2010). The set of all GUI

actions available in the current state is identified, yet another GUI action is chosen

from the set and sent to the AUT for execution.

(3) Model-based uses a graph-based model to represent the user interaction with the

app's GUI. The model is designed either manually or automatically by adopting

the AUT's specifications, such as code or XML configuration files, or through

direct interaction with the apps. Test cases are produced based on a model

abstraction according to specific test selection criteria, such as coverage (Utting

et al., 2012).

(4) Active Learning is a combination of GUI testing and model learning technique

(Amalfitano et al., 2015a). Developers will generate user event sequences based

on the model of the Android application GUI. This technique may exploit the

known graph exploration algorithms like Breadth-first search (BFS) or Depth-first

search (DFS), or a combination of both, to test the Android application GUI.

(5) Systematic approach uses more sophisticated techniques such as program

analysis. These techniques can explore some of the app’s behavior with specific

inputs. The main benefit of this technique is it can leverage the source code to

reveal previously uncovered app behavior. Symbolic execution was introduced by

(King, 1975), which is a program analysis technique where symbolic values are

used as program inputs instead of concrete values. Then the output of the program

is transformed into a function of the symbolic inputs. Symbolic execution is

Univ
ers

iti
Mala

ya

32

computationally expensive, and it is difficult to reason about all paths of a

significantly large program symbolically. Therefore, concolic execution has been

proposed to alleviate the path explosion problem. Concolic execution is known as

dynamic symbolic execution, is a combination of symbolic and concrete

execution techniques.

(6) Search-based uses meta-heuristic search algorithms (Saeed et al., 2017) such as

genetic algorithms (GA) for testing. This technique generates test cases driven by

an objective function that is specified according to a desirable test goal.

Evolutionary algorithms (Zitzler & Thiele, 1999) have been used to test programs

(Sharma et al., 2014). However, the limitation of the evolutionary algorithm-based

approach that maximizes test coverage is that it takes a long time to produce a test

suite.

(7) Reuse based techniques rely on existing test cases manually written or

automatically generated for deriving new tests that may be executed in various

background conditions.

Test input is the data used to execute test cases, which include UI user events, system

events, hardware events, and external events. UI events are user interactions with the

system through the user interface, such as touch, text, and scrolls inputs. User interactions

over the touchscreen are the primary source of input for Android applications. Android

describes UI events using MotionEvent and KeyEvent classes, each extending the

InputEvent class. MotionEvent specifies the user input in terms of an action code (e.g.,

ACTION_Up, ACTION_DOWN) and screen coordinates. A sequence of MotionEvents

can describe any user gesture such as long-press, fling, and pinch. KeyEvents describe a

key that has been pressed (e.g., volume, virtual keyboard). Android framework provides

a variety of GUI elements, also known as widgets or controls. These widgets include

TextViews, ImageViews, or ScrollViews which allow the users to interact with the apps.

Univ
ers

iti
Mala

ya

33

System events are a messaging system across apps and outside of the regular user flow,

such as receiving SMS notification, application notification, or phone calls. For example,

Android apps enable us to send or receive broadcast messages from the Android system

and other Android apps. The broadcast messages are usually enclosed in an intent object.

The action string of the intent object will identify and store the event data. Hardware

events are generated from the device hardware like a battery or peripheral port such as

USB, headphone, network receiver/sender. External events are generated by the external

environment and sensed by device sensors such as temperature, pressure, GPS, and

geomagnetic field sensor. Many methods to identify event inputs such as Dumрѕуѕ, event

patterns, and permission-based. Dumрѕуѕ is a tool that runs on Android devices, which

provides information about system services. To obtain a diagnostic output from all system

services running on a connected device, a command-line can be called using the Android

Debug Bridge (ADB) through a dynamic analysis approach. Event patterns are a sequence

of system events used to exercise the app. The sequence is defined manually with proper

regular expressions like optional, mandatory, and iterative events. Besides, Android

Operating System (OS) uses a permission-based approach to control the behavior of

Android apps and the accessibility of sensitive data (e.g., photo gallery, calls log,

contacts) and components (e.g., GPS, Camera) on Android devices. The permission

required within the Android apps is declared in the Android manifest file and the dynamic

approach analyzes the Android manifest file to identify the system events.

Test oracle is considered a challenging activity of the testing process to be automated

(Barr et al., 2014; Shahamiri et al., 2009). The following is a brief explanation of the

techniques used for the validation: (1) Bitmap Comparison: the process of verifying test

execution by comparing visual object state using screenshots and images of widgets, with

the expected state of the object. (2) Expected GUI States: when states of the GUI extracted

during the first execution of the AUT are used to verify further execution of test cases.

Univ
ers

iti
Mala

ya

34

(3) Widgets via API technique: capture widgets of the Android application GUI and

compares them with the widgets captured with the help of API's on the same GUI to verify

the correctness (Amalfitano, Fasolino, Tramontana, & Robbins, 2013). (4) Crash

detection or exceptions: the distinctive implicit way to assess the results of the test case.

Test case is marked as failed if the AUT crashes during execution else it is considered a

pass. (5) Manually design oracle: a process of verifying the output results of test execution

manually.

Test Artifacts are the outputs generated by the tool during testing, which include test

reports such as coverage reports or testing output and executable test cases that are

executed outside the context of the generated process, for example, Junit test case.

2.3.1.3 Evaluation Methods

Evaluation methods are criteria used to evaluate the success and performance of the

tool, such as (1) Coverage is an important metric to measure the effectiveness of testing

(Memon et al., 2001). Coverage criteria include code coverage and activity coverage.

Code coverage evaluates statement coverage, line coverage, block coverage, instruction

coverage, branch coverage, and method coverage. It provides a measurement of how

much source code was executed during the tests. Activity coverage is defined as the ratio

of activities explored during the execution to the total number of activities present in the

application. Activities provide the main interfaces for interaction with the end-user. (2) A

fault is the capability of the tool to detect faults such as application crashes during real-

time execution. Crashes lead to termination of the app's processes, and dialogue is

displayed to notify the user about the app crash. The more code the tool explores, the

higher the chances it discovers a potential crash. (3) Time criteria are used to evaluate the

tool by calculating the duration of the test process.

Univ
ers

iti
Mala

ya

35

2.3.1.4 Characteristics

The characteristics of the GUI testing tools in terms of the techniques to generate test

cases (i.e., static analysis, dynamic analysis, or hybrid), testing environment (i.e.,

emulator and real device), source code availability, and tools basis.

Techniques applied in the test case generation process are used to analyze the Android

application to identify GUI components and event-driven behavior. Dynamic analysis

explores the GUI of AUT to extract all possible event sequences. It executes the AUT by

using different techniques to observe the external behavior of AUT. Static analysis

techniques generate tests based on data such as source code or high-level models of AUT.

It analyzes the Android app's events handler statically and triggers events on the basis of

AUT's source code without executing the app. The static analysis reviews and detects

faults that could potentially serve as a failure cause in the source code. However, it is only

limited in the design and implementation phases and offers support for the Dаlvіk

bytecode analysis. The hybrid analysis combines dynamic and static analysis.

Testing Environment is a platform that supports hardware and software test execution.

The test environment is typically designed according to the specifications of the

application under test. There are two main options for Android apps to conduct GUI tests:

(1) Real device, and (2) Emulator. A real device refers to a mobile device (phone or

tablet). The real device is the ultimate way to understand the users' experience on the app.

Real devices produce real results and live network performance defects. An emulator is a

virtual mobile device that runs on a computer to mimic some hardware and software

features of a real device. It can be used to test the app against the massive device

fragmentation of the Android domain. Developers often use on-screen Android emulators

to test Android apps in a digital environment. An emulator is a part of the Android

Univ
ers

iti
Mala

ya

36

software development kit (SDK). However, the emulator is not able to emulate events

like battery issues, network connectivity, and gestures.

Availability in this context refers to the availability of the tool's source code to be

accessed by the public.

2.3.2 Comparison of GUI Testing Tools for Android

This section addresses the overview of the current state-of-the-art GUI testing tools

for Android applications. Tables 2.1, Table 2.2, Table 2.3, and Table 2.4 classify GUI

testing tools based on categories of the thematic taxonomy presented in section 2.3.1.

2.3.2.1 Automated Testing Activities

GUI testing is classified into three main activities, test case generation, test execution,

and test oracle definition and evaluation. As illustrated in Table 2.1, most of the

literature's tools focus on test case generation and execution but do not support test oracle.

An automated test generation technique alone is not sufficient because a human tester

must manually determine whether each test case diverges from the expectation. An

automated test oracle is a technique that will help to mitigate this problem. To implement

an automated test oracle, you will have to export test cases to executable test scripts.

Immediately the test case is materialized as a script. Moreover, a human tester can

implement a test oracle. This is done by adding assertions to the script.

Univ
ers

iti
Mala

ya

37

Table 2.1: Comparison of Automated testing activities

Attribute GUI Testing Tools

Fully Automated

Test case generation, Test

execution, and Test oracle

definition and evaluation

Droidbot (Li et al., 2017), AimDroid (Gu et al., 2017), Stoat (Su et al.,

2017), Barista (Fazzini et al., 2017), Sapienz (K. Mao et al., 2016),

Crashscope (Moran et al., 2016), Thor (Adamsen et al., 2015), Cadage

(Zhu et al., 2015), MobiGuitar (Amalfitano et al., 2014), SlumDroid

(Imparato, 2015), AppDoctor (Hu et al., 2014), PUMA (Hao et al., 2014),

ACRT (Liu et al., 2014), Dynodroid (Machiry et al., 2013),

AndroidRipper (Amalfitano, Fasolino, Tramontana, De Carmine, &

Memon, 2012), Tema (Takala et al., 2011).

Test Case Generation and

Execution

APE (Gu et al., 2019), Amoga (Salihu et al., 2019), SmartMonkey

(Haoyin, 2017), (Zeng et al., 2016), TrimDroid (Mirzaei et al., 2016),

FSMdroid (Su, 2016), T+ (Linares-Vásquez, 2015), MonkeyLab

(Linares-Vásquez et al., 2015), PATS (Wen et al., 2015), Sig-Droid

(Mirzaei et al., 2015), EvoDroid (Mahmood et al., 2014), DroidCrawle

(Wang et al., 2014), ORBIT (Yang et al., 2013), A3E (Azim & Neamtiu,

2013), RERAN (Gomez et al., 2013), SwiftHand (Choi et al., 2013),

Collider (Jensen et al., 2013), Extended Ripper (Amalfitano, Fasolino,

Tramontana, & Amatucci, 2013), ACTEve (Anand et al., 2012), GUI

Ripper (Amalfitano, Fasolino, Tramontana, De Carmine, & Imparato,

2012), Testdroid (Kaasila et al., 2012), A2T2 (Amalfitano et al., 2011),

(Hu & Neamtiu, 2011).

Test Case Generation (Zheng et al., 2017).

Test Execution and Oracle

definition and evaluation

GUICC (Baek & Bae, 2016), iMPAcT (Morgado & Paiva, 2015),

SPAG-C (Lin et al., 2014).

Univ
ers

iti
Mala

ya

38

2.3.2.2 Approach

Testing process inputs. The studied tools exploit one or two source information to

generate a test case. White box approach applied in thirteen tools is reliant on the analysis

of the source code of AUT. Black-box approach requires the executable code that is

applied in nineteen tools. Grey box approach uses source code and executed code, which

is applied in six tools. The inferred model is analyzed to derive test cases. Models are

designed manually, FSMdroid (Su, 2016) design finite state machines for Android

application under test. DroidCrawle (Wang et al., 2014) and PATS (Wen et al., 2015)

automatically design GUI trees by reverse engineering process. User sessions transform

into executable test cases by using record and replay techniques.

Test case generation is a key feature for most literature tools. Several techniques have

been used for generating test cases, namely Model-based technique, Active learning

technique, Random based technique, Search-based technique, Systematic based, and

Record and Replay. However, the most popular technique is the Model-based technique.

This technique is dependent on two models, the high-level models, and low-level models.

The high level is composed of behavioral models such as finite state machines, sequence

diagrams, activity diagrams, event flow graphs, and GUI trees, and low-level models that

relate directly to the AUT code, such as control flow graphs or call graphs. The model is

used in GUI testing to guide the exploitation of an application, circumnavigate the model

which uses specific instructions to generate action sequences systematically, and then

playback action sequences of the test application. GUI testing tools adopted active

learning techniques; the models generate test cases automatically at runtime during the

testing process. Although other existing test cases such as reuse-based, for example, Thor

and Extendedripper have infused specific sequences of events in existing replicate test

cases.

Univ
ers

iti
Mala

ya

39

The existing test cases test the AUT robustness with respect to system events, i.e.,

sending an intent to start and restart the app or on/off WiFi. Random-based techniques

use uniform random techniques, for example, Dynodroid and AppDoctor, and smarter

random techniques such as SmartMonkey for test case generation. Finally, search-based

testing techniques rely on using an evolutionary algorithm.

Test input is the main activity to generate test cases. Generally, all tools generate test

inputs but vary. While all the tools generate UI event inputs, some generate system events

and few text inputs. Text inputs can be generated automatically or manually, and the input

types are concrete, predefined, contextual, and random. Pieces of literature, such as

Droidbot, fill in text input fields by searching for a sequence of predefined inputs. When

none of the predefined inputs can satisfy the input restraints, these predefined inputs may

fail to exercise beyond the input. Sapienz, Stoat, and Android Monkey produced random

text input. Dynodroid paused the test for manual input when encountering a text input

field, such as the login password. System events can effectively expose app faults from

context events. Android apps are context-aware because of their ability to sense and react

with a great number of different events that come from the user or system interactions.

However, most of the recent testing tools for Android apps focus on UI events. Thus, they

make it difficult to identify other defects in the changes that can be preferred by the

context in which an app runs.

Test Oracles determine the executed test case result. Test oracle has been proposed in

seventeen of the studied GUI testing tools. In eleven tools, crash detection represents the

unique implicit way to evaluate the result of executed test cases. Crashscope (Moran et

al., 2016), MobiGUITAR (Amalfitano et al., 2014), Dynodroid (Machiry et al., 2013),

TestDroid (Kaasila et al., 2012), and (Hu & Neamtiu, 2011) manually verify test cases by

analyzing execution log and/or crash reports. Moreover, Barista (Fazzini et al., 2017),

Univ
ers

iti
Mala

ya

40

EHBDroid (Song et al., 2017), ACRT (Liu et al., 2014), and Collider (Jensen et al., 2013)

inspect crashes and confirm their validity manually. Manual oracle is resource-intensive

because the testers interact with the GUI manually to generate events and visually detect

the error. Bitmap comparison techniques compare the actual state screenshot with the

expected state image used in SPAG-C (Lin et al., 2014) that snapped a photo of the actual

state with an external camera. The studies checked the value or the condition of the widget

using the Android API, A2T2 (Amalfitano et al., 2011), and AppDoctor (Hu et al., 2014)

by verifying states or values of a widget using Android API. GUI verification through an

API has a high degree of maintainability. Moreover, APIs sometimes are not available,

and API access is that the gathered data from the API might be slightly different when

seen through the GUI. Droidbot (Li et al., 2017) assesses the invariants obtained from the

assessment of common application bugs.

Test Artifacts are obtained during the test case generation process. The test artifacts

generated are grouped into the following categories: test execution outputs such as test

reports, test coverage, and executable test cases. The most common type of test artifact is

the executable test case. These tests can only be tested by the same tools that generate

them. However, few tools can traverse the generated test cases, allowing them to be

executed outside the tool of the test generation process. Test execution can also be

presented as output, which provides reports of crashes, logs, and code coverage. For

example, Dynodroid replicates test case reports when the tool crashes, Android Ripper

creates executable JUnit test cases, RERAN replicates the same user sessions that have

been captured, and Sapienz generates event sequences for the easy derivation of the test

case, such as crash and code coverage.

Univ
ers

iti
Mala

ya

41

Table 2.2: Comparison of GUI test case generation tools

Tools Testing Process
Inputs

Test Case
Generation
Techniques

Test
Inputs

Test oracle Test
Artifacts

APE Bytecode
Executable
Automatically
Inferred Model

Model-based User events - Test Reports
(crash &
coverage)

Amoga Bytecode
Executable,
Automatically
Inferred Model

Model-based User events - Executable
test cases

AutoDroid Bytecode
Executable,

Random User events - -

AimDroid Bytecode
Executable

Model-based User events -

DroidBot Bytecode
Executable,
Automatically
Inferred Model

Active learning User and
System

Invariant
Conditions

Test Reports
Activity
coverage and
log)

SmartMonkey

Bytecode
Executable

Random User and
System

- -

EHBDroid

Source code User and
System

- -

Barista User session Record and
Replay

User events Manually
design

Executable
test cases

Stoat Source code,
Bytecode execution

Model-based User and
System

- Test reports
(crash,
coverage &
log),
Executable
test cases

(Zheng et al.,
2017)

Source code Random User events - Coverage
report

Sapienz Source code,
Bytecode execution

Search based User and
System

Crashes /
Exceptions

Executable
test cases,
(crash,
coverage &
log)

(Zeng et al.,
2016)

Source code Model-based

User events - Test output,
Executable
test cases

Crashscope Bytecode
Executable

Model Learning User and
System

Crashes Test output,
Executable
test cases

Univ
ers

iti
Mala

ya

42

Table 2.2: Continued

Tools Testing Process
Inputs

Test Case
Generation
Techniques

Test
Inputs

Test oracle Test Artifacts

TrimDroid Source code,
Automatically
Inferred Model

Model-based User events - Test output,
Executable test
cases

FSMdroid Source code,
Manually
Inferred Model

Model-based User events - Coverage report

Thor Existing test case Reuse Test case User and
System

Crashes Test output,
Executable test
cases

T+ Bytecode
Executable,
User session

Model-based,
User session

User events - Test output,
Executable test
cases

Cadage Bytecode
Executable,
Automatically
Inferred Model

Model Learning User events Crashes -

MobiGuitar Source code Model-based User events Crashes Test output,
Executable test
cases

MonkeyLab Bytecode
Executable,
user session

Model-based,
User session
based

User events - Test output,
Executable test
cases

PATS Bytecode
Executable

Model-based User events - Test output,
Executable test
cases

Sig-Droid Source code,
Automatically
Inferred Model

Systematic User events - Test output,
Executable test
cases

SlumDroid Source code Model learning

User events Crashes Test output,
Executable test
cases

EvoDroid Source code,
Automatically
Inferred Model

Search-based User events - Coverage and
crash report

SPAG-C User session Record and
Replay

User events Expected
Bitmap

-

AppDoctore Bytecode
Executable,
Existing Test
cases

Random testing User events Expected
GUI state.
Crashes

Test report (log),
Executable test
case

DroidCrawle Source code Model Learning User events - Coverage report

PUMA Bytecode
Executable

Model-based

User events Expected
GUI state,
Crashes

Test report (log)

ACRT Bytecode
Executable,
user session

Record and
Replay

User events Manually
Designed

Test outputs,
Executable test
case

Univ
ers

iti
Mala

ya

43

Table 2.2: Continued

Tools Testing Process
Inputs

Test Case
Generation
Techniques

Test
Inputs

Test oracle Test Artifacts

Dynodroid Source code Random

User and
System

Crashes Test report
(Coverage &
Crash report)

ORBIT Source code,
Automatically
Inferred Model

Model-based User events - -

A3E Bytecode
Executable,
Automatically &
Manually
Inferred Model

Model-based,
Active learning

User and
System

- Test output,
executable test
cases

RERAN Bytecode
Executable,
user events

Record and
replay, User
session based

User and
System

- Test output,
executable test
cases

SwiftHand Bytecode
Executable

Active learning User events - Test output,
executable test
cases

Collider Manually
Inferred Model

Systematic User events - Branch coverage

Extended
Ripper

Bytecode
Executable,
Source code

Reuse Test case User and
System

- Test output,
executable test

cases
Android
Ripper

Bytecode
Executable,
Source code

Model-based User events Crashes Test output,
executable test
cases

ACTEve Source code Systematic User and
System

- Test output,
executable test
cases

GUI Ripper Bytecode
Executable,
Source code

Model-based User events Crashes Test output,
executable test
cases

Troyd Bytecode
Executable

Record and
Replay

User events - -

Testdroid Bytecode
Executable,
Existing Test
cases

User session
based

User events - Test report (log)

A2T2 Bytecode
Executable

Model-based User events - -

(Hu &
Neamtiu,
2011)

Source code Random User events Crashes Test reports (log)

TEMA Bytecode
Executable

Model-based User events Crashes Test reports
(Crash report)

PUMA Bytecode
Executable

Model-based

User events Expected
GUI state,
Crashes

Test report (log)

Univ
ers

iti
Mala

ya

44

2.3.2.3 Evaluation Methods of GUI Testing Tools for Android

Evaluation methods are used to measure the effectiveness of tools. The most frequently

considered effectiveness metric is the number of faults that have been found (i.e., crashes

or exceptions). Besides, coverage criteria (such as line coverage, statement coverage,

branch coverage, method coverage, block coverage, Instruction coverage, and activity

coverage) have been measured. Most of the tools combine different granularities of

coverage metrics that can be beneficial for achieving better results in testing the Android

app. Table 2.3 illustrates the evaluation methods of GUI testing tools.

2.3.2.4 Characteristics of GUI Testing Tools for Android

The GUI testing tools have several features that ensure the successful evaluation of the

Android application. Table 2.4 reports a summary of the characteristics of the GUI testing

tools for Android applications.

Techniques have been categorized by differentiating between static and dynamic

analysis techniques. Many of the tools have been based on static analysis, while others

use dynamic analysis, as shown in Table 2.4. Dynamic analysis can provide additional

information that is not available statically, for example, whether certain UI widgets are

disabled in a particular state. The static analysis exposes behaviors that are only possible

under complex run time conditions that are unlikely to be triggered by automated dynamic

exploration. The most natural direction to pursue is a hybrid static and dynamic analysis.

Existing works by Amoga (Salihu et al., 2019), Stoat (Su et al., 2017), Sapienz (K. Mao

et al., 2016), CrashScope (Moran et al., 2016), TrimDroid (Mirzaei et al., 2016),

FSMdroid (Su, 2016), MonkeyLab (Linares-Vásquez et al., 2015), EvoDroid (Mahmood

et al., 2014), AppDoctor (Hu et al., 2014), A3E (Azim & Neamtiu, 2013), ACTEve

(Anand et al., 2012) have already considered this possibility. With the information

inferred by static analysis (e.g., the events supported by a UI widget, or the possible GUI

Univ
ers

iti
Mala

ya

45

transition related to a widget), the dynamic analysis can be made more efficient and

complete.

Table 2.3: Type of evaluation method of GUI testing tools

Evaluation Method GUI Testing Tools

Line Coverage Stoat (Su et al., 2017), TrimDroid (Mirzaei et al., 2016), MobiGuitar

(Amalfitano et al., 2014), SlumDroid (Imparato, 2015), Sig-Droid (Mirzaei et

al., 2015), EvoDroid (Mahmood et al., 2014), Dynodroid (Machiry et al.,

2013), Extended Ripper (Amalfitano, Fasolino, Tramontana, & Amatucci,

2013), AndroidRipper GUI Ripper (Amalfitano, Fasolino, Tramontana, De

Carmine, & Memon, 2012).

Statement coverage Amoga (Salihu et al., 2019), Sapienz (K. Mao et al., 2016), Crashscope (Moran

et al., 2016), TrimDroid (Mirzaei et al., 2016), FSMdroid (Su, 2016),

MonkeyLab (Linares-Vásquez et al., 2015), ORBIT (Yang et al., 2013).

Block Coverage Cadage (Zhu et al., 2015)

Method coverage APE (Gu et al., 2019), AimDroid (Gu et al., 2017), Sapienz (K. Mao et al.,

2016), A3E (Azim & Neamtiu, 2013)

Instruction

coverage

APE (Gu et al., 2019), AimDroid (Gu et al., 2017)

Branch coverage SwiftHand (Choi et al., 2013), Collider (Jensen et al., 2013), ACTEve (Anand

et al., 2012).

Activity coverage APE (Gu et al., 2019), AimDroid (Gu et al., 2017), Sapienz (K. Mao et al.,

2016), AppDoctor (Hu et al., 2014), DroidCrawle (Wang et al., 2014), A3E

(Azim & Neamtiu, 2013).

Faults

APE (Gu et al., 2019), Droidbot (Li et al., 2017), AimDroid (Gu et al., 2017),

SmartMonkey (Haoyin, 2017), Stoat (Su et al., 2017), Barista (Fazzini et al.,

2017), Sapienz (K. Mao et al., 2016), Crashscope (Moran et al., 2016), Thor

(Adamsen et al., 2015), Cadage (Zhu et al., 2015), SlumDroid (Imparato,

2015), MobiGuitar (Amalfitano et al., 2014), SPAG-C (Lin et al., 2014),

AppDoctor (Hu et al., 2014), PUMA (Hao et al., 2014), Dynodroid (Machiry

et al., 2013), RERAN (Gomez et al., 2013), AndroidRipper (Amalfitano,

Fasolino, Tramontana, De Carmine, & Memon, 2012), GUI Ripper

(Amalfitano, Fasolino, Tramontana, De Carmine, & Imparato, 2012), (Hu &

Neamtiu, 2011), Tema (Takala et al., 2011)

Time Amoga (Salihu et al., 2019), SmartMonkey (Haoyin, 2017), Sig-Droid

(Mirzaei et al., 2015), EvoDroid (Mahmood et al., 2014), AppDoctor (Hu et

al., 2014), ORBIT (Yang et al., 2013).

Univ
ers

iti
Mala

ya

46

Testing Environment. To execute the test case, the studies run the test on the emulator

increase the risk of missing important bugs that occur only on real devices. Emulators are

not the same as a real devices, which is a tremendous disadvantage. However, they offer

diversity in terms of the different devices, operating systems, and adaptations of the user

interface. Other tools support both real devices and emulators to consider heterogeneous

devices, which may enhance the reliability of the testing. Moreover, testing activity uses

cloud services infrastructure like TestDroid (Kaasila et al., 2012) and AppDoctor (Hu et

al., 2014). TestDroid operates as a mobile devices cluster connected to the internet that

allows users to upload their AUT to the system; thus, receiving the results from their

system's web page account.

Availability in this context refers to the availability of the tool’s source code to be

publicly accessible. The source code of twenty GUI testing tools is available in the context

of GitHub projects. In contrast, three of these tools are available only in executable form

or in the demo version (i.e., Barista, TrimDroid, and AndroidRipper). Moreover, Sapienz

source code is available on GitHub. However, it is outdated and not supported. At the

same time, other tools like APE, Stoat, Droidbot, AimDroid, Thor, SlumDroid,

AppDoctor, PUMA, Sig-Droid, Dynodroid, RERAN, SwiftHand, ACTEve, and GUI

Ripper source code are easily accessible. Contrarily to the above tools, Android Monkey

is available with Android SDK. Crashscope source code is not available, but the tool is

obtainable on the internet. Also, the available version of ExtеndеdRірреr only supports

the Windows operating system. A3E is partially available.

BASIS is the underlying tool to design and build new tools. GUI testing tools usually

rely on existing tools and/or libraries. The commonly used library is the Robotium (Reda

& Josefson, 2014) library, which supports the compilation of Junit test cases. Other

Univ
ers

iti
Mala

ya

47

similar libraries are UIAutmator. Hierarchyviewer and Emma. The Emma library can be

easily accessed in the Android framework. It is used to measure code coverage. Other

relevant tools provided by the Android framework are Android Monkey and

MonkeyRunner. Tools such as SmartMonkey (Haoyin, 2017) were built on top of

Android Monkey and such configuration was more efficient in detecting GUI bugs and

valid events. As Android Monkey is not limited to Smart-Monkey, several tools have

advanced versions of Android Monkey, such as APE (Gu et al., 2019), Sаріеnz (K. Mao

et al., 2016), (Zheng et al., 2017) and (Hu & Neamtiu, 2011). Dynodroid (Machiry et al.,

2013) is based on MonkeyRunner. Other tools Sig-droid (Mirzaei et al., 2015), EvoDroid

(Mahmood et al., 2014), and Collider (Jensen et al., 2013) are based on Java PathFinder.

The JavaPath Finder performs a symbolic analysis of the java source code of Android

applications. GUIRірреr served as a base tool for ExtеndеdRірреr (Amalfitano, Fasolino,

Tramontana, & Amatucci, 2013), which was used to restart the exploration from the initial

state. It also generates system events and covers a wider code coverage than its bases tool.

Besides, Stoat (Su et al., 2017) is an upgraded version of the A3E (Azim & Neamtiu,

2013), and is used due to its unavailability to the public repository. However, Stoat has

an enhanced UI exploration strategy and static analysis.

Univ
ers

iti
Mala

ya

48

Table 2.4: Characteristics of GUI testing tools

Attribute GUI Testing Tools

Techniques

Static Analysis (Zheng et al., 2017), Thor, Sig-droid, Collider

Dynamic

Analysis

APE, DroidBot, AimDroid, SmartMonkey, Barista, (Zeng et al.,

2016), GUICC, iMPAcT, T+, Cadage, MobiGuitar, PATS,

SlumDroid, SPAG-C, DroidCrawle, PUMA, ACRT, Dynodroid,

ORBIT, RERAN, SwiftHand, Extended Ripper, AndroidRipper,

GUI Ripper, Testdroid, A2T2, Hu et al., Tema

Hybrid Amoga, Stoat (Su et al., 2017), Sаріеnz (K. Mao et al., 2016),

CrashScope, TrimDroid, FSMdroid, MonkeyLab, EvoDroid

(Mahmood et al., 2014), AppDoctore, A3E (Azim & Neamtiu,

2013), ACTEve (Anand et al., 2012)

Testing

Environment

Emulator Amoga, Sаріеnz (K. Mao et al., 2016), TrimDroid, FSMdroid,

Thor, T+, Cadage, MobiGuitar, MonkeyLab, PATS, Sig-Droid,

SlumDroid, EvoDroid, DroidCrawle, ACRT, Dynodroid,

SwiftHand, Collider, ExtеndеdRірреr (Amalfitano, Fasolino,

Tramontana, & Amatucci, 2013), AndroidRipper, ACTEve, GUI

Ripper, A2T2, (Hu & Neamtiu, 2011), Tema

Real Device (Zheng et al., 2017), Barista, SPAG-C, AppDoctore, RERAN,

Testdroid (Kaasila et al., 2012)

Emulator and

Real device

APE, DroidBot, AimDroid, Stoat, CrashScope, (Zeng et al., 2016),

GUICC, iMPAcT, PUMA, ORBIT, A3E

Availability Open-source APE, Barista, DroidBot, AimDroid, Stoat, Sapienz, TrimDroid,

Thor, SlumDroid, AppDoctore, PUMA, Sig-Droid, Dynodroid,

A3E-Dynamic, RERAN, SwiftHand, ExtеndеdRірреr,

AndroidRipper, ACTEve, GUI Ripper

Commercial Testdroid (Kaasila et al., 2012)

Univ
ers

iti
Mala

ya

49

2.4 Comparison of Test Case Generation Approaches for Android

This section compares the state-of-the-art GUI test generation approaches and

corresponding tools for Android applications.

2.4.1 Record and Replay

In this technique, user interactions with AUT components are recorded and converted

into a test script, which is replayed automatically. User interaction is captured either on a

GUI component level, e.g., via direct references to the GUI components, or a GUI bitmap

level, with coordinates to the location of the component on the AUT’s GUI. However,

this technique requires testing scripts to be re-recorded if the GUI changes since scripts

are regularly coupled to screen coordinates, and the effectiveness of the script relies on

the ability to represent complex gestures. Besides, the record and replay technique

requires a significant effort for the collection of adequate numbers and various user

interactions to acquire effective test suites (Singh et al., 2014).

SPAG-C (Lin et al., 2014) and SPAG (Lin et al., 2013) implement a record and replay

approach, which depends on the image comparison of screen-shots to generate accurate

and reusable tests oracles. However, the replay process needs manual operations.

RERAN (Gomez et al., 2013) primarily focuses on the record and replay task, records

low-level system events by leveraging the Android get events utility, and generates a

replay script for the same device. However, generated scripts are not appropriate for

replay on multiple devices due to the dependence of recorded interactions on-screen

coordinates.

ACRT (Liu et al., 2014) extends Robotium to execute the recorded test scripts. ACRT

generates tests that are dependent on sleep commands, making the tests slow and

Univ
ers

iti
Mala

ya

50

inaccurate. Besides, there is limited support for interactions and oracles, and the tool does

not take into cognizance how GUI elements can be identified.

TestDroid (Kaasila et al., 2012) records user actions by tracking the UI components

and automatically generates test scripts with calls to Robotium API. However, TestDroid

is limited when the AUT depends on speech, movement, or gesture input.

Barista (Fazzini et al., 2017) generates tests in a visual and intuitive way. It records

user interactions with any Android application based on screen coordinates, element ID,

and text, and then automatically generates oracles. Those interactions and oracles convert

into Espresso typescript for later execution. Barista requires the tester to manually write

down test code, creating sequences of interactions with the components of the GUI.

2.4.2 Random based

The state of practice in automated Android app GUI testing is random-based. Random

based approach explores AUT by generating random actions. There is a strong probability

that the actions already selected will be selected again, which could eventually lead to

lower code coverage. Random testing could generate test cases that are redundant,

inefficient, and very difficult to comprehend and manage (e.g., for debugging purposes).

Recent empirical studies of current GUI testing tools by (Choudhary et al., 2015; Wang

et al., 2018) claim Android Monkey, a random testing tool for Android is the best among

the existing test generation tools. However, it generates a large number of inputs

efficiently, which can flood the AUT's GUI. Also, it does not generate inputs that need

human intelligence (e.g., constructing valid passwords, playing and winning a game), and

it does not generate highly specific inputs that control the application's functionality.

Besides, it does not keep track of part of the application that has already been covered

and is likely to generate redundant events. To overcome these limitations, Dynodroid

(Machiry et al., 2013) uses three different heuristic exploration strategies, including two

Univ
ers

iti
Mala

ya

51

different random techniques and an Active Learning technique aiming at the execution of

all the different events. Dynodroid selects relevant events to the application's current

states and repeats the process in the observe-select-execute cycle. The advantages of

Dynodroid are allowing both automated and manual input generation. However,

Dynodroid uses instrumentation to infer relevant events to guide exploration.

PUMA (Hao et al., 2014) includes a generic UI Automator that uses a similar approach

as an Android monkey but differs in its design, which uses dynamic analysis to trigger

changes in the environment during app execution. It redefines the state pattern to generate

events, but they are highly incompatible with the recent Android framework.

SmartMonkey (Haoyin, 2017) is an upgraded version of the Android Monkey tool,

which is used to test Android apps and generate new test cases by combining both event-

based testing elements and automatic random tests. It employs an extended FSCS-ART

technique proposed by (Chen et al., 2010). Test cases consist of a sequence of user events

and system events based on the distance from the event sequence and ART (Adaptive

Random Testing) used in other event-driven software. The strategy can reduce the number

of test cases and the time required to identify the first fault. Smart-Monkey creates a

transition model of the app by using the random exploration approach before generating

the test cases through the random walk.

AutoDroid (Adamo, Nurmuradov, et al., 2018) uses a combinatorial based testing

approach through a greedy algorithm for selection and execution events.

Hu et al. (Hu & Neamtiu, 2011) developed an approach based on Android monkey for

automatically detecting UI crashes. It instruments AUT’s source code and then

automatically generates and performs test cases that are shown in a collection of log files

Univ
ers

iti
Mala

ya

52

for subsequent analysis. It does not use a structured approach to write test cases and relies

on the pseudo-random user events created by Android Monkey.

Amalfitano et al. (Amalfitano et al., 2011) describe a GUI crawling-based approach

that leverages completely random inputs to generate unique test cases.

AppDoctor (Hu et al., 2014) uses an approximate execution approach, which performs

random testing by generating low-level event handlers in the code to simulate high-level

user events. AppDoctor focuses on specific bugs that may cause crashes. It targets

applications that use standard widgets and support standard actions. AppDoctor speeds

up testing and automatically classifies most reports into bugs or false positives.

2.4.3 Model-based

Model-based testing is the most populous approach used for automating GUI testing.

The GUI of the AUT is modeled, and appropriate tests are generated from the model. The

generated test cases are used to validate if the AUT met the functional requirements (Su,

2016). A model-based exploration can be guided to specific unexplored parts using a

systemic strategy such as depth-first exploration, breadth-first exploration, or hybrid

(Azim & Neamtiu, 2013), or a stochastic model (Su et al., 2017). The model-based

technique has encountered difficulties in inaccurate modeling. More specifically,

dynamic behaviors in GUIs can generate inaccurate model or state explosion issues due

to non-deterministic changes in GUIs. Hence, the model-based approach ignores the

changes, finds the event unimportant, and then proceeds with the discovery differently.

Explicitly, a GUI model that includes only a limited range of possible behavioral spaces

can decrease the effectiveness of tests.

Stoat (Su et al., 2017) performs stochastic model testing in the following steps: (1) it

creates a probabilistic model by exploring and analyzing the apps GUI interactions

Univ
ers

iti
Mala

ya

53

dynamically. (2) it optimizes the state model by performing Gibbs sampling and directs

test generation from the optimized model to achieve a higher code and activity coverage

performance. Stoat randomly includes system events in the state model. The disadvantage

of Stoat is that both steps need considerable time to execute.

FSMdroid (Su, 2016) constructs an initial stochastic model automatically for the AUT

by using the static and dynamic analysis to identify UI events. GUICC (Baek & Bae,

2016) conducted a study of multi-level state representations to show that different levels

of abstraction have an impact on the effectiveness of a modeling-based tool.

Amoga (Salihu et al., 2019) generates GUI models by using static and dynamic

analysis for Android applications. It explores application behavior by implementing a

crawling technique that uses the event list of the UI elements related to each event to

exercise the event order at runtime dynamically. Amoga uses an augmented Dijkstra

algorithm to reduce model crawling time.

APE (Gu et al., 2019) is built on top of Android monkey. It dynamically optimizes the

statically defined state model to increase the effectiveness of Android Monkey. APE

incorporates the application’s behaviors by using a decision tree-based abstraction model

that in each interaction depends on the feedback obtained at runtime during testing. An

abstraction model can effectively balance the size and precision of the model.

TrimDroid (Mirzaei et al., 2016) uses the combinatorial testing approach. TrimDroid

has four components: First, Model Extraction, which generates an Interface model that

represents the app’s GUI inputs, and Activity model that represents the app’s GUI

activities with its event handler. Second, Dependency Extraction, which identifies

dependency between the GUI component and event handler. Third, Sequence Generation

Univ
ers

iti
Mala

ya

54

utilizes the Alloy Analyzer to generate event sequences that preserve the paths in the

activity model. Fourth, Test-Case Generation which generates test cases.

PATS (Wen et al., 2015) conducts its test in a fine-grained framework on a set of

parallel test nodes. The testing nodes use the black-box approach to create a section of

the testing sequence. The slave nodes analyze the designated UI interface and

dynamically decide on short-term test event sequences. The coordinator gathers these

short-term event sequences and sends them to the slave nodes for further testing and

generation of new short-term event sequences.

MonkeyLab (Linares-Vásquez et al., 2015) extracts events from the source code,

traverses them, and generates GUI-based event scenarios. The event logs representing

scenarios that are recorded and executed by the testers. These logs are mined to obtain

event sequences described at the GUI level instead of low-level events; language models

are derived using the vocabulary of feasible events. MonkeyLab uses two approaches,

namely Back-off (BO) and interpolation (INTERP), for computing probabilities. The

derived models are used to generate event sequences; the sequences are validated on the

target device where infeasible events are removed for generating actionable scenarios.

MobiGUITAR (Amalfitano et al., 2014) is an enhanced version of AndroidRipper

(Amalfitano, Fasolino, Tramontana, De Carmine, & Imparato, 2012) that dynamically

reverse engineers the state-machine model from the executing application. MobiGUITAR

implements a breath-based algorithm to pass through an application to create a task list

composed of event sequences. The tasks generate UI events in a state model that can be

used to generate a test case. MobiGUITAR can use either random or predefined constant

input values during the exploration. However, it uses simple breadth-first exploration that

restarts the app from the initial state to backtrack to previous states, which is time-

consuming for most or real-world android apps.

Univ
ers

iti
Mala

ya

55

A3E-Targeted (Azim & Neamtiu, 2013) prioritizes the exploration of activities that

can be reached from the initial activity of a static activity transition graph. The strategy

is based on high-level control flow graphs that captured the activity transitions. It is

constructed from the static dataflow analysis on the app’s bytecode. It lists all of the

activities before calling them in the absence of user intervention. However, it represents

each activity as an individual state without considering its different states. This misleads

the apps since not all states of the activities are explored. Moreover, it does not revisit old

activities explicitly and may affect the exploration of new code which should be reached

by different sequences.

ORBIT (Yang et al., 2013) includes an action detector module and a dynamic crawler.

It uses a static analytic approach for inferring the actions from the source code. Orbit

follows three main steps: (1) Identify the place where an action is instantiated or

registered; (2) Locate the component on which the action is fired; (3) Extract the

component identifier that can be used later by the crawler to identify the corresponding

entity and fire the action. The crawling stage uses the dynamic GUI crawling built on

Robotium (Reda & Josefson, 2014). Orbit has a well-defined crawling algorithm for the

crawling stage, which is much better than the depth-first search on the UI states.

A2T2 (Amalfitano et al., 2011) builds a model of the AUT’s GUI, based on a crawling-

based approach. A2T2 contains three phases, which are the instrumentation phase used

to instrument the Java code and detect the Java crashes during runtime. The GUI crawler

phase extracts information regarding the GUI components’ activity, the event handlers

trigger events and intercept the application’s crashes, then creates a GUI tree based on all

this information. The test case generator phase generates test cases from the GUI tree for

crash and regression testing, and they can be executed in the Android emulator.

Univ
ers

iti
Mala

ya

56

TEMA (Takala et al., 2011) model the AUT’s GUI by state machines model that

generated manually, each model abstracts an individual view of the GUI with two

separate state machines: an action machine which presents the high-level functionality

with action words and state verifications; and a refinement machine implements action

words and state verifications using keywords. Then, TEMA generates and executes test

cases automatically.

2.4.4 Active Learning

This technique is used to tackle the shortfalls of the model-based testing technique. In

this technique, an active learning algorithm is employed with a testing engine to learn the

GUI application model. The active learning algorithm will guide the generation of user

input sequences concerning the model (Amalfitano et al., 2015a).). However, this

technique does not reach good coverage levels (Amalfitano et al., 2015b). Active learning

may exploit the GUI's systematic exploration strategies, such as those emulating well-

known graph exploration algorithms such as Breadth-first search (BFS), Depth-first

search (DFS), or both. The following tools adopted the model learning technique.

SwiftHand (Choi et al., 2013) adopted dynamic analysis and machine learning to infer

an application model. The model then uses the inputs to execute the application and

explore unexplored states without restarting the application to reach all the screens.

Thereby minimizes the restart overhead. SwiftHand learns an approximate GUI model

from the execution traces generated during the testing process. It then uses the learned

model to select user inputs, which applies to previously unexplored states. Then the

learned model is expanded and refined when it identifies discrepancies between the

previously learned models.

A3E-Depth-First (Azim & Neamtiu, 2013) allows Android applications to be analyzed

progressively while running on the actual devices and without needing access to the

Univ
ers

iti
Mala

ya

57

source code. A “Depth-First Exploration” strategy is applied in a way that imitates a

user’s actions to explore activities. The main challenge of using A3E is its dynamic

approach of representing activities since it represents every activity as an individual state

without considering that the activity can exist in different states. This leads to missing

some behaviors of the app since not all states of the activities are not explored.

DroidCrawle (Wang et al., 2014) automatically traverses the GUIs with a depth-first

traversal algorithm. DroidCrawle communicates with the Android device to realize the

raw information of the current GUI for recognizing the GUI components of the

application. DroidCrawle sends user events to the device to cause GUI transitions

automatically, which can reduce human labor.

Cadage (Zhu et al., 2015) dynamically constructs a GUI model with the GUI state for

the AUT. Cadage uses a breadth-first algorithm to analyze unexecuted GUI event

handlers and accepts a probabilistic algorithm to select a GUI input as a test event. Cadage

has four parts. (1) The Inference obtains enabled events from the current screen according

to the properties of the GUI widgets. (2) The Selector chooses the test event from the fire

event. (3) The Executor sends the test cases selected by the Selector. (4) The modeler

retains its GUI model by retrieving the current status of the GUI or by making a new state.

CrashScope (Moran et al., 2016) can be used to discover, report, and reproduce crashes

in Android apps. It uses a combination of static and dynamic analysis. Crashscope

examines the Android app using a systematic input generation to detect a crash. As a

result, it produces an HTML crash report which consists of screenshots, detailed crash

reproduction steps, and a replay-able script.

Droidbot (Li et al., 2017) is an open-source testing tool that utilizes a depth-first

exploration strategy to generate user events and system events under a black-box

Univ
ers

iti
Mala

ya

58

approach. It generates and executes test cases based on the state transition model

constructed on the fly. Furthermore, it can be executed on the device or emulator. It also

allows users to customize their test scripts for a particular UI. The user can generate UI-

guided test inputs based on a state transition model generated on-the-fly.

2.4.5 Systematic based

The systematic technique focuses on the problem execution of generating complex

sequences of events through concolic testing. Concolic requires constructing a symbolic

model for the program execution environment. It is a white box and requires heavily

instrumenting the application in addition to the framework. It is used to check the

properties of the Android GUI application, and concrete execution identifies the

conditions (logic) of a real application, and this avoids reaching unreachable states during

the usage of the Android application (Sen, 2007). Symbolic execution automatically

partitions the input domain such that each partition corresponds to the unique scenario of

the program (e.g., execution of a unique program path). It, therefore, prevents redundant

inputs from being generated and can generate extremely unique inputs. Concolic testing

is applied to Android GUI testing in Collider (Jensen et al., 2013), ACTEve (Anand et

al., 2012), and SIG-Droid (Mirzaei et al., 2015). However, some key factors are

responsible for limiting the technique of the tools. First, the modeling of a real-world

execution environment for Android applications is difficult because it contains sensors,

networks, and cloud services. Secondly, Collider (Jensen et al., 2013) and ACTEve

(Anand et al., 2012) are not scalable as in black-box testing to real-world applications

because of the notorious path explosion problem (Ravindranath et al., 2014). Thirdly,

ACTEve explores the application from its entry point, without targeting specific parts of

the application code, in contrast to Collider, which detects event sequences that reach a

given target line in the application code. Finally, Symbolic execution techniques are

Univ
ers

iti
Mala

ya

59

instances of white box testing which often require access to the application source code

and thus not applicable for many proprietary applications.

ACTEve (Anand et al., 2012) generates a sequence of events from single events using

concolic testing. The idea is to track events from the beginning to the point where they

are finally handled. ACTEve has four components: Instrumenter, Runner, Concolic

testing engine, Subsumption analyzer. The advantages of ACTEve are resolving the Path-

explosion problem of the ALLSEQs algorithm. However, that may not be sufficient to

handle apps that have significantly more paths such as if the app has many widgets (e.g.,

a virtual keyboard). Besides, ACTEve is easily portable to different versions of Android

but still not cross-platform compatible.

Collider (Jensen et al., 2013) generates event sequences that can reach a given target

line in the application, which was not reachable with other automated testing techniques

like a simple crawler and the Android Monkey. Collider includes two phases. First, the

target agnostic symbolic summarization phase provides the summary for each event

handler by performing the Concolic execution to infer the path conditions and symbolic

states. Secondly, the sequence generation phase with the event handler, together with the

application's UI model, builds an event sequence that leads from the entry state of the

application to the target. Each path is extended incrementally by searching for an event

handler that can be triggered in front of the path to satisfy some of the path constraints.

SIG-Droid (Mirzaei et al., 2015) was built based on Java Pathfinder and used the byte-

code interpretation of AUT. SIG-Droid relied on symbolic execution and combining

inputs with an automatically extracted GUI model from the source code. SIG-Droid

includes three components. First, Model Generator analyzes the source code of AUT and

builds two models; the Interface model presents the app’s GUI input and the widgets, and

the behavior model captures App’s event-driven behavior and the relationships among

Univ
ers

iti
Mala

ya

60

the event generators with handlers. The second component is the Symbolic Execution

Engine, and the third component is the Test Case Generator.

2.4.6 Search based

This approach has been applied in EvoDroid (Mahmood et al., 2014) and Sapienz (K.

Mao et al., 2016). The limitation of this approach has a high computational cost. Search-

based tools are computationally expensive and do not scale in practice (Choudhary et al.,

2015).

EvoDroid (Mahmood et al., 2014) is the first testing tool that uses an evolutionary

algorithm. It combines model-based with search-based techniques for generating high

coverage GUI test cases from the extracted model. The extracted model is based on a

static analysis of the manifest and XML configuration files, and a call graph model is

based on a code analysis using MoDisco (Eclipse, 2010). It uses these models to guide

the process of computational search.

Sapienz (K. Mao et al., 2016) uses a multi-objective search-based testing approach to

explore and optimize the test sequences automatically, minimize the test sequence length,

and maximize the code coverage and fault detection. Sapienz combines search-based,

random fuzzing, systematic exploration, and multi-level instrumentation. To explore the

app components, it uses the specific GUIs and complex sequences of input events with a

pre-defined pattern. This pre-defined pattern is termed as motif genes that capture the

experience of the testers. Thus, it produces a higher code coverage by concatenating the

atomic events.

2.4.7 Reuse based

Reused based technique does not generate test cases and relies on injecting existing

test cases with event sequences that do not affect the outcome of the original test cases.

Univ
ers

iti
Mala

ya

61

Thor (Adamsen et al., 2015) executes test cases from Robotium (Reda & Josefson,

2014) or Espresso (Google, 2019e) on Android apps in adverse conditions. However,

Thor does not generate test cases and relies on injecting existing test cases with event

sequences, which do not affect the outcome of the original test cases. Thor event

sequences include (1) Activity state changes (Pause-Resume, Pause-Stop-Restart, and

Pause-Stop-Destroy-Create), (2) manipulation of the audio manager.

ExtendedRipper (Amalfitano, Fasolino, Tramontana, & Amatucci, 2013) is an

exploration-based technique that uses a dynamic analysis in Android apps. In this

technique, the event pattern includes many context events such as location change, GPS

enable or disable, screen orientation, acceleration changes, and incoming calls or SMS.

These event patterns are manually defined to generate test cases.

2.5 Research Gaps and Limitations

This section presents open research issues and challenges in the Android GUI testing

domain that include reproducible test cases, test oracle, test input generation, test

coverage, crashes diagnosis, and fragmentation.

2.5.1 Reproducible Test Cases

The ability to create a reproducible test is essential for test case generation tools

because a developer needs to reproduce the test cases. When a crash is detected, the

developers usually need to reproduce the crash at least twice before the fault is fixed.

Since several tools are based on stochastic test case generation approaches, one cannot

assure that the tests can be re-generated by the tools. Some tools like Android Monkey

produce excessively long test sequences that are infeasible to be reproduced by a human,

which makes them the least favorable option (Arcuri, 2011). Thus, app developers are

unable to reproduce the crash during the exploration, to conduct a regression test after

fixing the bug, or to execute the same test under different environments. More research

Univ
ers

iti
Mala

ya

62

efforts are still required to reproduce the intended bug described in a crash report

effectively and faithfully.

2.5.2 Test Oracle

Test automation increases the overall effectiveness of the testing process by increasing

the coverage and reducing the testing time and cost. Extensive research focuses on

developing tools and techniques in order to support automated GUI testing of Android

apps. However, these studies mainly target the generation of test cases and do not include

test oracle to the automation process, thus leaving the testers to add test oracles to those

test cases manually. This is considered an intensive and insufficient process. All of that

can compromise the efficiency of test cases (Barr et al., 2014; Zaeem et al., 2014).

2.5.3 Test Input Generation

Test case generation tools produce relevant inputs to exercise apps behavior (Memon,

2002). Android apps can sense and respond to numerous inputs from system interactions

(Rubinov & Baresi, 2018; Yu & Takada, 2016). Interaction with system events includes

receiving SMS notifications, app notifications, or events coming from sensors. These

experiences are events that must be addressed in testing Android apps, which effectively

increases the complexity of testing an app. Most of the recent testing tools for Android

apps focus on UI events. Thus, they make it difficult to identify other defects in the

changes that can be preferred by the context in which an app runs.

Moreover, tools should allow inputs to be manually provided, such as text data input.

Specific inputs like logins and passwords can only explore certain behaviors. However,

these behaviors may be challenging to reproduce randomly or using systematic

techniques. Tools like Dynodroid and GUIRipper allow users to manually input values

the tool can use during its analysis. This research argues that human knowledge for

manual input should be integrated into test automation for a more effective test.

Univ
ers

iti
Mala

ya

63

2.5.4 Test Coverage

Test coverage is another challenging factor for researchers during the automation of

Android app testing. Researchers cannot effectively attain high code coverage to

maximize test efficiency. For Android applications, there are a vast number of potential

combinations of functions and transitions between them. This makes testing all potential

combinations time-consuming and ineffective for large systems. Moreover, existing GUI

testing tools cannot effectively explore too many app functionalities. The reason is that

some functionality can only be reached through a particular sequence of events. For

instance, random based are likely to detect more faults because of their unexpected nature,

while systematic based tools may not expose the same number of faults unless they

coverage 100%. Model-based tools have worse coverage performance than random

approaches due to their difficulties in constructing a precise model and state explosion

issues (Choudhary et al., 2015). For example, a finite state model that includes system

events may not even exist for real-world apps (Baek & Bae, 2016). Code coverage is

useful means of effectiveness evaluation for automated GUI testing tools. However, it is

practically impossible to give an absolute estimation of tools' effectiveness in terms of

code coverage since all testing tools are evaluated on a different set of Android

applications and testing environment. Thus, there is a need to empirically analyze and

compare existing GUI testing tools in terms of code coverage.

2.5.5 Crashes Diagnose

Test case generation tools are unable to provide a comprehensive, comprehensible

crashes report which made the fault hard to reproduce. Since most of the tools were based

on non-deterministic algorithms, rerunning the tool may not catch the same crashes. The

crash report contains a captured stack trace which indicates the location of the crash from

the source code of the AUT. Moreover, screenshots, natural language reproduction steps,

and replay-able scripts are provided as well. The report is presented in the form of a log,

Univ
ers

iti
Mala

ya

64

image, or text. Both Crashscope (Moran et al., 2016) and DroidWalker (Hu et al., 2017)

were the tools that can generate reproducible test scenarios. These tools can generate a

detailed test report which informs the interacted elements. This feature allows the

developers to fix the faults since the test case can be reproduced manually and also

allowing an easier debug. Crashscope records more contextual information about bug-

triggering event sequences. However, it still cannot handle exception bugs caused by

inter-app communications (Su et al., 2020).

2.5.6 Fragmentation

One of the significant problems faced by Android developers is fragmentation. The

term fragmentation has been used to describe variability due to the diversity of mobile

device vendors. Test generation tools for Android should support a variety of devices

with different hardware characteristics and use various releases of the Android framework

(API versions) so that developers could assure the proper functioning of their applications

on nontrivial sets of configurations. Thus, Droidbot and Android Monkey can be run on

different versions of the Android framework.

One can represent configuration sets as a testing matrix that combines several

variations of devices and APIs. Other aspects have been shown to impact testing beyond

those associated with fragmentation. These include orientation of the device (e.g.,

landscape or portrait), localization (which may load different resources), and permissions

(Kowalczyk et al., 2018). More studies are required to study the non-deterministic app

behaviors.

Univ
ers

iti
Mala

ya

65

CHAPTER 3: EXPERIMENTAL ANALYSIS ON TEST CASE GENERATION

TECHNOLOGIES

This chapter investigates the effectiveness of the test generation tools, especially in the

events sequence length of the overall test coverage and crash detection. The event

sequence length generally shows the number of steps required by the test generation tools

to detect a crash. It is critical to highlight its effectiveness due to its significant effects on

testing time, effort, and computational cost. There are a number of test generation tools

for Android apps available in the literature. These tools share the common goal of

exploring apps' behavior to discover potential faults by generating user and system events.

Thus, this chapter evaluates the effectiveness of six test input generation tools for Android

apps on 50 apps downloaded from the repositories of F-Droid and AppBrain. The tools

were evaluated and compared based on the activity coverage, method coverage, and

capability in detecting crashes. The empirical case study method was adopted.

The remainder of this chapter is divided as follows: Section 3.1 highlights the followed

case study design, while section 3.2 enumerates the execution steps outlined in the case

study. Section 3.3 analyzes and discusses the findings. Section 3.4 presents research

problems found. The possible threats to the validity of the results are discussed in Section

3.5, before concluding the findings in section 3.6.

3.1 Case Study Design

This analysis employs the empirical case study method that is used in software

engineering, as reported in (Kitchenham et al., 2002; Perry et al., 2004). The method

involves three major steps: (1) specify case study objectives, (2) select a case study that

has data collection, and (3) a case study design for execution and evaluation.

Univ
ers

iti
Mala

ya

66

3.1.1 Case Study Objectives

The main question to answer from this experiment is how effective Android test input

generation tools in detecting crashes? To answer the main question, the case study

questions of this study are as follow:

RQ 1. What is the method and activity coverage achieved by the test input generation

tools?

RQ 2. How is the performance of the test input generation tools in detecting unique

crashes?

RQ 3. How does the event sequence length affect the coverage and crash detection of

the test input generation tools?

3.1.2 Case Study Criteria

Coverage criterion is one of the critical testing requirements that some elements of the

app should be covered (Morrison et al., 2012). A combination of different granularities

from method and activity coverage is essential to achieve better testing results for Android

apps. The activities and methods are the central building elements of the apps, thus the

numeric values of the activity and method coverage are intuitive and informative (Azim

& Neamtiu, 2013). Activity is the primary interface for user interaction. An activity

consists of several methods and underlying code logic. Hence, improvement of method

coverage ensures most of the app's functionalities associated with each activity are

explored and tested (Azim & Neamtiu, 2013; Koroglu et al., 2018). Moreover, activity

coverage is a prerequisite condition to reveal crashes that might happen during the

interaction with the app’s UI. The more coverage a tool explores, the higher the chances

a potential crash can be found (Dashevskyi et al., 2018). In this study, the number of

inputs generated by a tool within a time limit was measured.

Univ
ers

iti
Mala

ya

67

C1. Method Coverage (MC): MC is the ratio of the number of methods called during

execution of the AUT to the total number of methods in the source code of the app. By

improving the method coverage, it is envisaged that most of the app's functionalities are

explored and tested (Azim & Neamtiu, 2013; Choudhary et al., 2015; Dashevskyi et al.,

2018; Koroglu et al., 2018).

C2. Activity Coverage (AC): AC is defined as the ratio of activities explored during

the execution to the total number of activities present in the app. A high activity coverage

value indicates a greater number of screens have been explored, and thus it will be more

exhaustive for the app exploration (Azim & Neamtiu, 2013; Hu et al., 2014; Koroglu et

al., 2018).

C3. Crash detection: Crashes lead to termination of the app's processes and dialogue

is displayed to notify the user about the app crash. The more code the tool explores, the

higher the chances it discovers a potential crash.

3.1.3 Apps Selection

For the experimental analysis, 50 Android apps were chosen from F-Droid (F-Droid,

2010) and AppBrain (AppBrain, 2009). Table 3.1 lists the type of apps according to the

app category, the number of activities, methods, and line of code in the app (which offers

a rough estimate of the app size). These apps were earmarked from the repositories based

on three features:

1) The app's number of activities: the apps were categorized by a small (number of

activities less than five), medium (number of activities less than ten), and a large

(number of activities more than ten). 27 apps were selected for the small group,

while 17 apps were screened for the medium group. Lastly, six apps were added to

Univ
ers

iti
Mala

ya

68

the large group. The app's activities were determined in the Android manifest file

of the app.

2) App permissions required: In this study, only apps that require at least two of the

permissions were selected to evaluate how the tools react to different system

events. These permissions include access to contacts, call logs, Bluetooth, Wi-Fi,

location, and camera of the device. The app permissions were determined either

by checking the manifest file of the app or by launching the app for the first time

and viewing the permissions request(s) that popped up.

3) Version: Only apps that are compatible with Android version 1.5 and higher were

selected in this study.

3.2 Case Study Execution

The selected tools for the experiment are Sapienz (K. Mao et al., 2016), Stoat (Su et

al., 2017), Droidbot (Li et al., 2017), Humanoid (Li et al., 2019), Dynodroid (Machiry et

al., 2013), and Android Monkey (Google, 2019j). These tools were selected due to their

excellent ability in generating user and system events, which aim to increase the

possibility of finding faults in system events. Moreover, Sapienz, Stoat, Android Monkey,

and Dynodroid possessed the best code coverage and fault detection in continuous mode

as compared to AndroidRipper, A3E, PUMA, and ACTEve in previous evaluation

(Choudhary et al., 2015), (Wang et al., 2018). Table 3.2 provides an overview of the

existing test input generation tools that support system events generation in the literature.

The table reports all these tools and classifies them according to their features. All the

tools were installed on a dedicated machine before starting the experiments.

Univ
ers

iti
Mala

ya

69

 Table 3.1: Overview of Android applications selected for testing

No App name Package name Version Category Activity Method LOC

1 Aard aarddict.android 1.5 Books 6 438 65511

2 Open Document at.tomtasche.reader 1.6 Books 3 446 13796

3 Bubble com.nkanaev.comics 4.1 Books 2 463 58397

4 Book Catalogue com.eleybourn.bookc
atalogue

2.1 Books 21 1548 11264

5 Klaxon org.nerdcircus.androi
d.klaxon

1.6 Communication 6 162 5733

6 Sanity cri.sanity 2 Communication 28 1398 44215

7 WLAN Scanner org.bitbatzen.wlansca
nner

4 Communication 1 141 5441

8 Contact Owner com.appengine.paran
oid_android.lost

1.5 Communication 2 79 2502

9 Divide com.khurana.apps.div
ideandconquer

2.1 Education 2 195 25284

10 Raele
concurseiro

raele.concurseiro 3 Education 2 92 1309

11 LolcatBuilder com.android.lolcat 2.3 Entertainment 1 79 578

12 MunchLife info.bpace.munchlife 2.3 Entertainment 2 39 163

13 Currency org.billthefarmer.curr
ency

4 Finance 5 148 5202

14 Mileage com.evancharlton.mil
eage

1.6 Finance 50 2486 92548

15 TimeSheet com.tastycactus.times
heet

2.1 Finance 6 198 7126

16 Boogdroid me.johnmh.boogdroi
d

4 Game 3 398 3726

17 Hot Death com.smorgasbork.hot
death

2.1 Game 3 365 28104

18 Resdicegame com.ridgelineapps.res
dicegame

1.5 Game 4 144 2506

19 DroidWeight de.delusions.measure 2.1 Health & Fitness 8 411 13215

20 OSM Tracker me.guillaumin.androi
d.osmtracker

1.6 Health & Fitness 8 346 49335

21 Pedometer name.bagi.levente.pe
dometer

1.6 Health & Fitness 2 244 6695

22 Pushup Buddy org.example.pushupb
uddy

1.6 Health & Fitness 7 165 4602

23 Mirrored de.homac.Mirrored 2.3 Magazines 4 219 825

24 A2DP Volume a2dp.Vol 2.3 Navigation 8 641 23294

25 Car cast com.jadn.cc 1.5 Music & Audio 12 459 18127

Univ
ers

iti
Mala

ya

70

Table 3.1: Continued

No App name Package name Version Category Activity Method LOC

26 Ethersynth net.sf.ethersynth 2.1 Music & Audio 8 168 1208

27 Jamendo com.teleca.jamendo 1.6 Music & Audio 13 1046 30444

28 Adsdroid hu.vsza.adsdroid 2.3 Productivity 2 1215 5080

29 Maniana com.zapta.apps.mania
na

2.2 Productivity 4 891 28526

30 Tomdroid org.tomdroid 1.6 Productivity 8 840 29147

31 Talalarmo trikita.talalarmo 4 Productivity 3 387 1350

32 Unit info.staticfree.android.
units

1.6 Productivity 3 547 22993

33 Alarm
Clock

com.angrydoughnuts.a
ndroid.alarmclock

2.7 Productivity 5 676 2453

34 World
Clock

ch.corten.aha.worldclo
ck

2.3 Productivity 4 315 1156

35 Blockinger org.blockinger.game 2.3 Puzzle 6 356 2000

36 OpenSudok
u

cz.romario.opensudok
u

1.5 Puzzle 10 444 24601

37 Application
s info

com.majeur.applicatio
nsinfo

4.1 Tools 3 323 3614

38 Dew Point de.hoffmannsgimmick
staupunkt

2.1 Tools 3 75 4791

39 drhoffmann de.drhoffmannsoftwar
e

1.6 Tools 9 164 896

40 FindMypho
ne

se.erikofsweden.findm
yphone

1.6 Tools 1 2969 4056

41 List my
Apps

de.onyxbits.listmyapps 2.3 Tools 4 96 4262

42 Sensors2Pd org.sensors2.pd 2.3 Tools 4 621 16625

43 Terminal
Emulator

jackpal.androidterm 1.6 Tools 8 994 24930

44 Timeriffic com.alfray.timeriffic 1.5 Tools 7 709 28956

45 Addi com.addi 1.1 Tools 4 2133 133448

46 Alogcat org.jtb.alogcat 2.3 Tools 2 199 846

47 Android
Token

uk.co.bitethebullet.and
roid.token

2.2 Tools 6 288 3674

48 Battery
Circle

ch.blinkenlights.batter
y

1.5 Tools 1 81 251

49 Sensor
readout

de.onyxbits.sensorread
out

2.3 Tools 3 683 6596

50 Weather ru.gelin.android.weath
er.notification

2.3 Weather 7 695 19837

Univ
ers

iti
Mala

ya

71

The experiment conducts on a 64-bit Ubuntu 16.04 physical machine with eight-cores

(3.50 Gigahertz Intel Xeon ® CPU) and eight Gigabytes of RAM and uses an Android

emulator x86 ABI image (KVM powered). Android emulator was used due to its

compatibility with Sapienz and Dynodroid. In contrast, Stoat, Droidbot, Humanoid, and

Android Monkey support both emulators and real devices. Moreover, Android SDK

version 4.4.2 (Android KitKat, API level 19) was used in the experiment for Sapienz,

Stoat, Droidbot, Humanoid, and Android Monkey because Sapienz supports Android

KitKat only. For Dynodroid, SDK version 2.43 (Android Gingerbread, API level 10) was

used. The Android emulators were configured with 2 Gigabytes of RAM and 1 Gigabyte

of SD card.

To achieve a fair comparison, a new Android emulator was configured for each run to

avoid any potential side-effects that may occur between the tools and apps. As Dynodroid

(Machiry et al., 2013) was reported in the study, Android Monkey was set up to produce

20,000 inputs/hour. To avoid biased findings, other tools were run with their respective

default configurations without any fine-tuning of the parameters. Each test input

generation tool was allowed to run and execute tests for 60 minutes on each specified app.

To compensate for the possible impact of randomness during testing, the test was run

for triplicates (with each test consisting of one test generation tool and one applicable app

that is being tested). Lastly, the final coverage and progressive coverage were recorded

separately. An average value was calculated from the three tests and presented as the final

results.

Univ
ers

iti
Mala

ya

72

Table 3.2: Overview of Android test generation tools

3.3 Results and Discussion

This section examines the results based on the case study's objectives outlined in

section 3.1.1. Case study questions were answered by measuring and comparing the

number of crashes detected, the method coverage, and activity coverage achieved by each

testing tool on selected apps in the experiments. Table 3.3 shows the results obtained from

the six testing tools. Cells with a grey background indicate the maximum value achieved

during the test. The percentage value is an average rounded-up value from the three tests

iterations on each AUT.

No Tool Approach Exploration
Strategy

Events Crash
Report

Replay
Scripts

Emulator/
Device

Available

1 Humanoid
(Li et al., 2019)

Black-box Deep Q
Network

UI, System, No Both Both Yes

2 AndroFrame
(Koroglu et al.,
2018)

Black-box Q-Learning-
Based

UI, System,
Context

- Yes Both No

3 DroidBot
(Li et al., 2017)

Black-box Model-based UI, System No Yes Both Yes

4 SmartMonkey
(Haoyin, 2017)

Black-box Random-based UI, System,
Context

- - - No

5 Stoat (Su et al.,
2017)

Black-box Model-based UI, Text,
System,
Context

Text Yes Both Yes

6 Sapienz
(K. Mao et al.,
2016)

Grey-box Search-based/
Random

UI, Text,
System,
Context

Text,
Video

Yes Emulator Yes

7 Crashscope
(Moran et al.,
2016)

Grey-box Systematic UI, Text,
System,
Context

Text,
Image

Yes Both No

8 Dynodroid
(Machiry et al.,
2013)

Black-box Guided/Random UI, Text,
System,
Context

Text,
Image

Yes Emulator Yes

9 ExtendedRipper
(Amalfitano,
Fasolino,
Tramontana, &
Amatucci, 2013)

Black-box Model-based UI, Text,
System,
Context

No No Emulator No

10 A3E-Targeted
(Azim & Neamtiu,
2013)

Grey-box Systematic UI, System,
Context

- No Both No

11 Android Monkey
(Google, 2019j)

Black-box Random-based UI, System No No Both Yes

Univ
ers

iti
Mala

ya

73

Table 3.3: Statistics of results on apps by test generation tools understudy

Keywords: Sa: Sapienz, St: Stoat, Dr: Droidbot, Hu: Humanoid, M: Android Monkey, Dy: Dynodroid.

Apps Under Test
Method coverage (%) Activity coverage (%)

Sa St Dr Hu M Dy Sa St Dr Hu M Dy

A2DP Volume 53.6 55.8 49.7 60.3 39.3 0.0 100 100 100 100 71 0
Aard 17.4 16.4 16.4 16.2 17.4 17.4 33 33 33 33 33 33
Addi 10.1 9.5 9.6 9.6 4.6 4.7 50 50 50 50 50 25
Adsdroid 56.0 56.0 56.0 56.3 56.1 56.0 100 100 100 100 100 100
Alarm Clock 24.6 64.5 43.9 62.7 24.9 17.9 60 60 60 60 20 40
Alogcat 72.9 75.9 52.8 72.9 67.3 46.2 100 100 100 100 100 100
Android Token 54.5 57.6 54.5 49.5 51.4 50.0 67 67 50 67 50 50
applicationsinfo 64.5 64.3 64.4 64.7 44.3 44.3 100 100 100 100 67 67
Battery Circle 81.5 81.5 81.5 84.0 79.0 79.0 100 100 100 100 100 100
Blockinger game 77.5 81.7 81.5 80.1 16.6 11.2 100 100 100 100 67 50
Boogdroid 13.0 10.1 13.0 16.7 15.6 15.3 100 33 67 67 56 33
Book Catalogue 31.7 4.0 33.0 32.9 43.4 32.7 41 5 48 38 43 29
Bubble 54.9 55.9 36.9 30.5 67.6 0.0 100 100 100 50 100 0
Car cast 44.9 46.2 41.6 43.2 34.0 29.8 75 67 67 67 47 72
Contact Owner 54.4 54.4 57.0 57.0 51.1 51.9 50 50 50 50 50 50
Currency 58.8 64.0 40.3 56.8 42.6 40.5 100 100 80 100 100 60
Dew Point 75.6 73.3 76.4 77.3 58.7 58.7 100 100 100 100 67 67
Divide 52.8 47.2 52.8 52.8 74.4 46.2 100 100 100 100 100 100
DroidWeight 74.1 62.9 69.8 70.6 72.7 72.7 50 38 67 75 58 38
drhoffmann 55.9 59.8 51.2 59.1 43.3 36.6 85 100 93 93 93 78
Ethersynth 66.7 65.1 50.0 57.7 66.7 64.3 100 100 100 100 88 63
FindMyphone 0.1 0.1 0.1 0.1 0.1 0.1 100 100 100 100 100 100
Hot Death 74.6 59.4 65.8 70.4 76.8 55.6 100 100 100 100 100 100
Jamendo 53.1 34.7 43.9 43.9 24.4 0.0 62 31 38 38 46 0
Klaxon 44.4 38.3 36.6 35.8 39.9 41.4 83 83 83 83 83 78
List my Apps 76.4 75.3 46.9 72.9 72.9 72.9 50 100 25 100 100 25
LolcatBuilder 32.9 27.8 32.9 32.9 25.3 25.3 100 100 100 100 100 100
Maniana 75.4 58.4 54.1 54.0 72.8 66.9 75 75 75 75 75 50
Mileage 30.7 16.0 25.6 25.5 25.0 27.6 44 25 38 40 22 27
Mirrored 33.3 39.7 47.0 47.0 32.4 30.1 75 75 75 75 50 50
MunchLife 66.7 66.7 66.7 66.7 59.0 59.0 100 100 100 100 100 100
Open Document Reader 54.4 42.2 45.3 45.3 70.6 36.8 33 33 33 33 33 33
OpenSudoku 62.5 54.5 40.3 40.3 42.2 38.1 50 30 30 30 50 50
OSM Tracker 44.2 62.9 48.1 48.3 50.6 43.1 75 71 83 88 92 50
Pedometer 70.1 69.7 61.5 61.5 83.2 70.4 100 100 50 100 100 50
Pushup Buddy 48.5 48.9 48.9 56.4 44.2 43.0 57 57 43 71 57 43
Raele.concurseiro 41.7 42.1 41.7 41.7 41.7 41.7 100 100 100 100 100 100
Resdicegame 62.5 48.6 62.5 53.5 47.9 47.9 100 100 100 100 100 100
Sanity 28.4 18.6 24.9 24.3 30.4 14.2 48 29 48 46 61 21
Sensor read out 30.2 30.0 30.0 30.0 27.8 30.0 100 100 67 67 67 67
Sensors2Pd 17.1 20.0 20.5 21.7 20.5 20.5 100 100 100 100 100 100
Talalarmo 88.1 88.1 82.2 88.9 90.4 71.9 100 100 100 100 100 100
Terminal Emulator 55.2 44.2 51.3 51.7 52.3 49.5 38 38 38 38 38 25
Timeriffic 63.8 50.5 57.1 57.1 59.8 54.9 86 52 57 57 71 29
TimeSheet 59.4 33.5 27.8 27.8 20.7 20.2 100 67 50 50 50 56
Tomdroid 36.1 51.9 37.5 37.0 40.8 0.0 63 63 75 75 63 0
Unit 69.9 55.6 52.5 52.5 69.1 54.8 33 33 33 33 67 33
Weather notifications 59.4 50.0 41.7 37.4 74.2 67.6 71 52 57 57 71 43
WLAN Scanner 66.0 63.1 65.2 65.2 61.7 61.7 100 100 100 100 100 100
World Clock 43.8 56.8 29.2 29.2 22.9 22.9 100 100 75 75 50 50
Overall average 39.8 35.1 36.1 36.8 36.9 28.8 66.3 55.3 60.7 62.8 58.1 42.0

Univ
ers

iti
Mala

ya

74

RQ1: What is the method and activity coverage achieved by the test input

generation tools?

1) Method coverage: the method coverage was collected from Ella (Saswat, 2015). Ella

is a binary instrumentation tool for Android apps. From Table 3.3, it can be seen that

Sapienz achieved the best method coverage on 14 out of the 50 apps. It is also important

to mention that our result matches that reported by Mao et al., (K. Mao et al., 2016) in

2016. It outperformed the other tools due to its multi-level instrumentation approach that

provided the traditional white-box coverage and Android user interface coverage. The

instrumentation refers to the technique that modifies the source code or the bytecode at

the compile time to track the execution of the code at runtime. Sapienz used EMMA

(Roubtsov, 2005) white-box instrumentation tool to achieve full statement coverage,

while Ella (Saswat, 2015) exploited a black-box instrumentation tool for method

coverage. Next, Android Monkey had the second-best performance with the highest

method coverage in nine out of the 50 apps. Android Monkey adopted a random

exploratory strategy that allowed more inputs to be generated. On the contrary, Humanoid

achieved a lower coverage value of 36.8% as compared to Android Monkey with a

coverage value of 36.9%. This can be ascribed to the ability of Humanoid in prioritizing

critical UI elements. On average, other tools like Droidbot, Stoat, and Dynodroid

achieved a method coverage of 36.1%, 35.1%, and 28.8%, respectively. Droidbot can

quantify the efficacy of the test without the source code or instrumentation. An outlier

was observed in an AUT (Book catalog app had a total method number of 1548, in which

Stoat only recorded an average of 4%) during testing, which was believed to have

gradually affected its overall average method coverage.

Univ
ers

iti
Mala

ya

75

Figure 3.1: Variance of method coverage achieved across apps and three runs.

To further investigate experiment findings, Figure 3.1 shows the boxplots where the

subscript x indicates the mean value of the final method coverage across the target apps.

The boxes offer the minimum, mean, and maximum coverage achieved by the tools. This

analysis revealed that all the tools were unable to cover more than 51% of the mean

method coverage values. On average, both Sapienz and Android Monkey were observed

to perform better than other tools. The other tools achieved a reasonably low level of

method coverage. There are apps for which all the tools, including the best-performed

tool, achieved shallow coverage, i.e., lower than 5%. An example FindMyPhone app. It

was highly dependent on several external factors, such as the availability of a valid

account. Furthermore, these inputs were almost impossible to generate automatically, and

every tool stalled at the beginning of the exploration. Moreover, Dynodroid tools provide

an initial option to manually interact with an app and allow the tool to perform the

successive test input generation. Nonetheless, the features were excluded for two reasons:

(1) poor scalability, and (2) an unfair advantage.

Univ
ers

iti
Mala

ya

76

Figure 3.2: Progressive method coverage achieved across apps and three runs.

Figure 3.2 reports the progressive coverage of each tool over the time threshold of 60

minutes. The progressive average coverage of each of the test input generation tool was

calculated across all 50 apps for every 20 minutes. The final coverage achieved was

compared and reported. In the first 20 minutes, the coverage for all testing tools was

observed to be increased rapidly as the apps were just started. At 40 minutes, the method

coverage of many testing tools had been increased except for Android Monkey. The

random approach of Android Monkey generated many redundant events, and these

redundant events produced insignificant coverage when the time budget increased. In the

end, Sapienz attained the highest method coverage after approximately 60 minutes of

execution.

2) Activity coverage: the activity coverage was measured intermittently by observing

the activity stack of the AUT and recording all of the activities that have been listed down

in the Android manifest file. The test input generation tools demonstrated much better

activity coverage than the method coverage. From the results, Sapienz outperformed the

other tools, which was similar to the previous experiment on method coverage. Due to its

0

10

20

30

40

50

60

70

0 2 0 3 0 4 0 5 0 6 0

M
ET

H
O

D
 C

O
V

E
R

A
G

E
 A

C
H

IE
V

E
D

TIME IN MINUTES

METHOD COVERAGE

Sapienz Stoat Droidbot Humanoid Monkey Dynodroid

Univ
ers

iti
Mala

ya

77

ability to explore and optimize the test sequences as reported by (K. Mao et al., 2016),

Sapienz achieved the best mean activity coverage in six out of the 50 apps with an overall

average activity coverage value of 66.3%. Following, Humanoid was the second-best test

input generation tool in the context of activity coverage. Humanoid performed a sequence

of meaningful actions, which was opposite to Android Monkey's inability to test new core

functionality. Therefore, activity coverage was prioritized in Android Monkey. Despite

Android Monkey produced more inputs than other approaches, it was highly limited in

its random approach. Sapienz, Stoat, and Humanoid were able to achieve 100% activity

coverage in 20 apps. Droidbot demonstrated the best coverage in the Book catalog app as

compared to other tools in the present study. It integrated a simple and yet effective depth-

first exploration algorithm, which pruned the UI components to have an event. In contrast,

Stoat and Dynodroid achieved much lower coverages than the other tools, with an overall

average of 55.3% and 42.0%, respectively. This is because Stoat had an internal null

intent fuzzing, which directly started the activities with empty intents. There was an

outlier in one of the AUT (Mileage) among the F-Droid apps, whose total activity was 50

activities. Therefore, the causes of such uncovered app’s activities were manually

investigated from the test input generation tools. Mileage app contains activities that

required text inputs to fill up the text fields before allowing access to the next activity.

During execution, Sapienz, Stoat, and Android Monkey produced random text inputs.

While Droidbot and Humanoid created text input fields by searching for a sequence of

predefined inputs. Dynodroid paused the test for manual inputs after a text input field like

logging in password is required. However, none of the test tools was able to explore more

than 44% of activity coverage on the Mileage app.

Univ
ers

iti
Mala

ya

78

Figure 3.3 reports the variance of the mean coverage of three runs across all 50 apps.

The horizontal axis shows the tools used and the vertical axis indicates the percentage of

coverage. The boxes show the minimum, mean, and maximum coverage achieved by the

tools.

Figure 3.3: Variance of activity coverage achieved across apps and three runs.

From Figure 3.3, one can observe that the activity coverage was higher than the method

coverage. Sapienz, Stoat, Droidbot, Humanoid, Android Monkey, and Dynodroid

obtained a coverage percentage increase of 100% with a mean coverage of 79%, 74%,

73%, 76%, 72%, and 57%, respectively. All tools were able to cover more than 50% of

the activity coverage. From the results, it was found out that 25 out of the 50 apps were

not fully covered. In some apps, reaching activity requires a unique path of activity

transitions from the root to the target activity or the activity that requires the filling of

correct text inputs. Thus, it is recommended to support predefined test inputs as

implemented in Droidbot and Humanoid. Moreover, some activities require a particular

system event, such as connecting to Bluetooth. Hence, it is essential to generate guided

system events instead of random generation of system events. To overcome such a

Univ
ers

iti
Mala

ya

79

problem, one possible solution is to instrument an Android system event related to the

AUT. One can conclude that the guided test input generation approaches implemented in

Sapienz, Stoat, Droidbot, and Humanoid were more effective than the random approaches

as the latter requires a longer time to cover all activities which could be impractical in

large apps with complex GUIs. Furthermore, more sophisticated test generation

approaches are more effective due to the built model heuristics that generate high

coverage tests.

Figure 3.4: Progressive activity coverage achieved across apps and three runs.

As shown in Figure 3.4, the activity coverage for all testing tools increased with time

until a point of convergence. The average convergence time of the tools was about 50

minutes, but the fastest convergence of each tool was different. From the results, Android

Monkey, Humanoid, and Sapienz had the highest coverage at 20 minutes, 40 minutes,

and 50 minutes, respectively. Other tools such as Stoat, Droidbot, and Dynodroid did not

achieve the highest coverage before the final convergence time of 60 minutes. Stoat

required more execution time because it has an initial phase to construct an app state-

model for the generation of the test case. This indicated the significance of each tool in

0

10

20

30

40

50

60

70

0 2 0 3 0 4 0 5 0 6 0

A
C

TI
V

IT
Y

C
O

V
ER

A
G

E
A

C
H

IE
V

ED

TIME IN MINUTES

ACTIVITY COVERAGE

Sapienz Stoat Droidbot Humanoid Monkey Dynodroid

Univ
ers

iti
Mala

ya

80

measuring the activity coverage of an AUT and synonymously checking the capacity to

detect a crash. Our test evaluation also revealed that there were no significant variations

between the Android Monkey random approach and other tools. Thus, the tools required

a longer execution time to improve their coverage. Android Monkey explored the same

activities repeatedly for a long time since it triggered events on random coordinates of the

screen, and it has no knowledge of the location of widgets on a screen. As compared to

Humanoid and Droidbot, both tools explored all of the components available in the

activity. Therefore, both did not reach the deep activities in one of the AUTs (Jamendo)

within the time budget.

RQ2. How is the performance of the test input generation tools in detecting

unique crashes?

During testing, AUT entered a new state, i.e., the app encountered a fatal exception or

became non-responsive. App crashes are usually interpreted as the end state/last state

because the app fails to proceed with the execution. This section aims to detect and record

all of the unique app crashes encountered by each test tool during the testing process.

Each unique app crash has a different error stack that defines the error location. The data

logs of the six tools were evaluated, collected, and compared to evaluate the effectiveness

of each test tool.

For the testing process, LogCat (Google, 2019c) was used to check the crashes

encountered repeatedly during the execution of the AUT. LogCat is a tool that uses the

command-line interface to dump a log of all system-level messages. The system-level

messages include error messages, warnings, system information, and debugging

information. Each unique crash exception of the tool was recorded and the execution

process was repeated three times to prevent randomness in the results. The number of

unique app crashes was used as a measure of the tool's performance in detecting the

Univ
ers

iti
Mala

ya

81

crashes. To identify the unique crashes from the error stack, the logs were analyzed

manually by following the Su et al. (Su et al., 2017) protocol. To exclude the crashes that

were unrelated to the app's execution, only the app's package name, filter crashes of the

tool themselves, and the initialization errors of the apps in the Android emulator were

retained. Next, a hash was computed over the sanitized stack trace of the crash to identify

the unique crashes. Different crashes have different stack traces and thus a different hash.

A recent study (Moran et al., 2016) has highlighted that crashes caused by the Android

system or the test harness itself should not be counted because most of them were false

positives. Thus, such crashes can be identified by checking the corresponding stack traces.

In the literature, different studies have used the number of unique crashes detected as the

primary evaluation criteria. The higher the crash number detected (in comparison to other

testing tools), the better the tool performance in detecting app crashes (Dashevskyi et al.,

2018).

Figure 3.5 shows the distribution of crashes in each testing tool. Among all the six

testing tools, Sapienz detected the highest number of unique app crashes. Sapienz

Figure 3.5: Distribution of Crashes Discovered.

Univ
ers

iti
Mala

ya

82

outperformed the other tools because it used a Pareto-optimal Search-Based Software

Engineering (SBSE) approach (Harman et al., 2012). However, Sapienz used the Android

Monkey input generation, which continuously generated events without waiting for the

effect of the previous event. Sapienz triggered many Class-Cast-Exception and

Concurrent-Modification-Exception. All of them were found through trackball and

directional pad events. However, these crashes were insignificant. The reason is that

trackballs and directional pads were unavailable on new Android phones. Besides,

Sapienz triggered numerous SQLite Exceptions on the Jamendo app for all three runs.

The exceptions majorly concern querying on multiple non-existent tables in the app's

SQLite database. Because the apps depend majorly on the SQLite database and do not

adequately deal with related exceptions, these destructive SQL queries are frequently

triggered by the app's multiple locations. In effect, the fatal SQL queries cause multiple

stack traces. During the testing, none of the other tools triggered SQLite exceptions,

reflecting the several mistakes of using Android's default database. The only possible

explanation is that initiating such crashes requires specific preconditions. A good example

of such specific preconditions is forcibly terminating the app during initialization, which

involves SQL operations for creating these tables, which the other tools might not create.

Moreover, Android Monkey detected some stress testing bugs such as Illegal State

Exceptions from the synchronizations between List Views and their data adapters, Illegal

Argument Exceptions from the mismatches that result from service binding or nonbinding

as a result of the rapid switches of activity lifecycle callbacks, and Out-Of-Memory-

Errors (Su et al., 2017). Out-Of-Memory-Errors may occur when the app attempts to load

a large-size located on the SD card without user permission. Some exceptions can be

detected under special configurations depending on the granted permissions, such as

granting permission to access the SD card (Su et al., 2020). Stoat was the second-best test

input generation tool as it detected 25 unique app crashes. It used a Gibbs sampling

Univ
ers

iti
Mala

ya

83

method as a guide for model-based testing. As compared to Android Monkey, Stoat

demonstrated better crash detection performance by injecting system events during

testing. Stoat also used optimization techniques to guide the test generation by capturing

all possible events arrangement, which allowed it to reveal faults. Stoat triggered many

NullPointerExceptions on the app like "Car cast" during the starting of activities that took

an Intent as input. Moreover, Stoat detected many exceptions that did not terminate the

app processes, e.g., window leaked exceptions. Meanwhile, Humanoid, Droidbot,

Sapienz, and Android Monkey triggered NumberFormatException in the “Droid weight”

app, by inputting invalid text value. Dynodroid triggered other types of exceptions like

ArrayIndexOutOfBoundsException and NullPointerException.

Table 3.4 shows the statistics of crash results on apps by test generation tools. Sapienz

triggered on average 32 unique crashes in 26 apps, followed by Stoat detected 25 unique

crashes in 19 apps. Droidbot and Humanoid triggered 19 and 20 unique crashes

respectively, on the17 apps.

Univ
ers

iti
Mala

ya

84

Table 3.4: Statistics of crash results on apps by test generation tools understudy

Apps Under Test # of Unique Crashes

Sapienz Stoat Droidbot Humanoid Monkey Dynodroid
A2DP Volume 1 0 2 2 0 0
Aard 1 0 1 1 0 0
Addi 1 1 1 1 1 1
Adsdroid 1 1 0 0 1 0
Alarm Clock 1 0 2 2 0 0
Alogcat 0 0 0 0 0 0
Android Token 0 0 0 0 0 0
applicationsinfo 0 0 0 0 0 0
Battery Circle 0 0 0 0 0 0
Blockinger game 0 0 0 0 0 0
Boogdroid 1 0 1 1 1 1
Book Catalogue 1 1 1 1 1 1
Bubble 2 2 0 0 1 0
Car cast 2 3 1 1 2 1
Contact Owner 1 1 1 1 1 1
Currency 1 1 0 0 0 0
Dew Point 2 1 1 1 0 1
Divide 0 0 0 0 0 0
DroidWeight 1 0 0 0 0 0
drhoffmann 2 2 1 2 2 1
Ethersynth 1 1 0 0 0 0
FindMyphone 0 0 0 0 0 0
Hot Death 0 1 0 0 0 0
Jamendo 2 1 1 1 0 0
Klaxon 0 0 0 0 0 0
List my Apps 0 0 0 0 0 0
LolcatBuilder 0 0 1 1 1 0
Maniana 0 0 1 1 0 0
Mileage 1 1 1 1 1 1
Mirrored 1 0 0 0 0 0
MunchLife 0 0 0 0 0 0
Open Document Reader 0 0 0 0 0 0
OpenSudoku 1 1 1 1 1 1
OSM Tracker 1 2 1 1 1 1
Pedometer 1 2 0 0 1 0
Pushup Buddy 0 0 0 0 0 0
Raele.concurseiro 0 0 0 0 0 0
Resdicegame 0 0 0 0 0 0
Sanity 1 1 0 0 0 0
Sensor read out 1 0 0 0 0 1
Sensors2Pd 2 1 1 1 1 0
Talalarmo 0 0 0 0 0 0
Terminal Emulator 1 1 0 0 0 0
Timeriffic 0 0 0 0 0 0
TimeSheet 0 0 0 0 0 0
Tomdroid 0 0 0 0 0 0
Unit 0 0 0 0 0 0
Weather notifications 1 0 0 0 1 0
WLAN Scanner 0 0 0 0 0 0
World Clock 0 0 0 0 0 0

Overall average 32 25 19 20 17 11

Univ
ers

iti
Mala

ya

85

RQ3. How does the event sequence length affect the coverage and crash detection

of the test input generation tools?

Minimizing the total number of events in a test suite will reduce the testing time, effort,

and the number of steps required to replicate a crash significantly. However, test input

generation tools tend to produce large test suites with thousands of test cases. Each test

case usually contains tens to thousands of events (e1, e2,.., en). The length of test case is

generally defined as the number of events in it. Such test suites are challenging to be

incorporated into regression testing due to the long run time required. Regression testing

should be fast so that allows the same test suite to be used repeatedly during the

development.

In this work, Android Monkey generated 20,000 input data in an hour and explored

the same activities repeatedly with no new coverage. An example of AUTs (A2DP

Volume) is presented in Table 3.1. Android Monkey clicked the back button to return to

the main activity and the cycle repeats. Such repeated actions caused redundant

explorations and occupied much of the exploration time and number of events.

On the other hand, Humanoid and Droidbot explored all activities in the A2DP Volume

app within a time limit and produced a smaller number of events (1000 inputs). The

approach from these tools guided the input and thus meaningful input events were

generated. Besides, Sapienz coverage increased with the number of events during the

initiation of the apps. While all UI states were new, they could not exceed the peak point

at 40 minutes as seen in Figure 3.2 and Figure 3.4. Hence, Sapienz explored visited states

and generated more event sequences.

Univ
ers

iti
Mala

ya

86

Table 3.5: Experimental results to answer research questions

Tools Activity
Coverage (%)

Method
Coverage (%)

Number of crashes Max Events Number

Sapienz 66.3 39.8 32 6000

Stoat 55.3 35.1 25 3000

Droidbot 60.7 36.1 19 1000

Humanoid 62.8 36.8 20 1000

Monkey 58.1 36.9 17 20,000

Dynodroid 42.0 28.8 11 2000

Table 3.5 shows the maximum number of event sequences required by each tool to

achieve the results. On average, Stoat, Droidbot, Humanoid, and Dynodroid generated a

total of 3000, 1000, 1000, and 2000 events in an hour, respectively. Sapienz produced

6000 events in an hour and optimized the events sequence length through the generation

of 500 inputs per AUT state. Nevertheless, it created the largest number of inputs. Thus,

one can conclude that a longer event sequence length did not improve the coverage.

Moreover, Sapienz, Stoat, and Android Monkey attained the highest number of events.

However, the coverage improvement was similar to Humanoid and Droidbot, which

generated a smaller number of events. Both Humanoid and Droidbot generated 1000

events in an hour but achieved better activity coverage of Stoat, Android Monkey, and

Dynodroid.

The results showed that the sequence of long events performed better than the shorter

events sequence. However, long events sequence offered a small positive effect on the

coverage and crash detection. That was confirmed in the previous study by Xie and

Memon (Xie & Memon, 2006). Xie and Memon concluded that there was no significant

difference between the long and short tests, but more extended tests can find additional

faults that shorter tests cannot. Likewise, Bae et al. (Baek & Bae, 2016) showed that more

Univ
ers

iti
Mala

ya

87

extended tests performed better than shorter tests. However, longer event length only had

a small positive effect on code coverage. As a whole, longer event sequences increased

the coverage and crash detection, however, more extended event sequences have many

disadvantages such as high redundancy, high computational costs, and are difficult to

interpret manually.

3.4 Research Problems Found

From the result, one can deduce that the relationship between three primary parameters

tested (method coverage, activity coverage, and crash detection) was not linear, i.e., more

activities and methods explored did not reflect more app crashes will be detected.

Moreover, the experiment results revealed that a combination of a search-based approach

and a random approach is promising to achieve thorough app exploration. Lastly, some

of the functions that should be considered by other tools were highlighted.

3.4.1 Events Sequence Redundancy

Event sequence redundancy refers to test cases with similar steps. In many cases, it

may have tests contained in other tests or tests with loops. A high redundancy affects the

method coverage and activity coverage efficiency negatively as the testing tool will take

a longer time to obtain the same coverage than that with low redundancy. Also, the

capability to find faults will be reduced since the test suite tends to re-execute the same

steps. It is essential to highlight that experiment specifically to verify redundancy in tests

generated by these tools were exclude in this work.

To avoid the execution of the same steps, Sapienz runs an optimization process with

the highest number of crashes. Humanoid prioritizes critical UI elements to determine the

inputs to execute and construct a state transition model to avoid re-entry of visited UI

states. Stoat generates relevant inputs from a static and dynamic analysis by inferring

events from the UI hierarchy and events listeners in the app code. Droidbot generates UI-

Univ
ers

iti
Mala

ya

88

guided test inputs based on the position and type of the UI elements that defined the static

information which is extracted from APK (e.g., list of system events) and dynamic

analysis to avoid re-entry of explored UI states. From the results, Android Monkey

presented excellent results in the activity and method coverage. However, it presented a

low number of crashes. This tool uses a random exploration strategy and is more prone

to redundancy. On the contrary, Dynodroid uses a guided and random exploratory

approach, in which most of the unacceptable events are discarded based on the GUI

structure and registered event listeners in an app.

3.4.2 Events Sequence Length

The desired goal of software testing is to detect fault using the shortest possible event

sequences within the shortest time and using the minimum efforts (K. Mao et al., 2016).

Developers may reject longer sequences because it is impractical to debug and also

unlikely to occur in practice. The longer the event sequence, the less likely it will occur

in practice. The generation of long event sequences in GUI testing usually leads to an

increase in the testing space. Sapienz optimizes event sequence length at the testing time

by detecting the highest number of crashes. However, it could not detect serious crashes

because it needs to return the app to a new clean state before starting a new testing script.

3.4.3 System Events

Android apps are context-aware because they can integrate contextual data from a

variety of system events. Context-aware testing is an important issue, mobile devices

usually enable rich user interaction inputs. These inputs are either UI user events or

system events. This brings many difficulties in generating test inputs that can expose the

app’s faults from the user and system events effectively. It is important to discover the

faults that are often reported in the bug reports of Android apps and appear when the app

is impulsively solicited by system events. Android Monkey and Stoat generate random

system events, while Humanoid and Droidbot send guided events. Even though the testing

Univ
ers

iti
Mala

ya

89

tools in this experiment generated system events such as click on home or back buttons

by sending intent messages, one should include all systems events (e.g., Wi-Fi, GPS,

Sensors). For future works, experiment tools with other apps will be attempted by

checking the ability of these tools in detecting the crashes caused by various conditions

of system events.

3.4.4 Access Control

One of the key aspects of software security is Access Control (Kayes et al., 2020).

There are many mechanisms of Access Control in the literature. These Access Control

mechanisms exist to restrict access to a software system's security-sensitive resources and

functionalities (Borges & Zeller, 2019; Sadeghi et al., 2017; Shebaro et al., 2014). Mobile

device resources can collect sensitive data, and they may expose the user to security and

privacy risks if apps misuse them without the user's prior knowledge. For instance,

Android apps may access resources that are not needed for their primary function, for

example, using the Internet, GPS, camera, or access sensitive data such as location,

photos, notes, contacts, or emails. Android employs a permission-based security

mechanism to tackle access to sensitive data and potentially dangerous device

functionalities. However, the process is not always a straightforward task to properly use

this permission-based security mechanism. The behavior of the Android app may change

depending on the granted permissions. It needs to be tested under a wide range of

permission combinations (Sadeghi et al., 2017). Test generation tools are used to generate

inputs that trigger actual app behavior (e.g., crash). Though, these tools could be

improved to consider the behavior of user interface elements that access sensitive user

data and device resources. More context-based access control mechanisms are required

to restrict apps from accessing specific data or resources based on the user context.

Univ
ers

iti
Mala

ya

90

3.4.5 Ease of Use

Based on the author’s experience in setting up each of the tools, the tools that required

extra effort in terms of configuration were described. Android Monkey required the least

effort during the configuration. It is the most widely used tool due to its high compatibility

with different Android platforms. Followed by Dynodroid, whose running version was

obtained from a virtual machine found on the tool's page. Dynodroid was designed to

operate with a standard version of an Android emulator. It can perform an extensive setup

before the exploration. Like Android Monkey, both Droidbot and Humanoid were easy

to use and provided much-advanced features. On the other hand, Stoat and Sapienz

required considerable effort to operate because both tools demanded hours for a

configuration with an Android emulator. Moreover, test generation tools for Android apps

in the literature are typically impractical for developers to use due to the instrumentation

and the platform required.

3.5 Threats to Validity

In this study, there are internal and external threats to the validity associated with the

results of our empirical evaluation. In terms of internal validity, the default emulator used

was proposed by Sapienz and Dynodroid. The publicly available versions of Sapienz and

Dynodroid were designed to operate with a standard version of the Android emulator.

Another threat to the internal validity of our study was Ella's instrumentation effect, which

may affect the integrity of the results. These could be due to the errors triggered by the

incorrect handling of the binary code or by errors in our experimental scripts. To mitigate

such risk, the traces of the sample apps were inspected manually.

External validity was threatened by the representativeness of the study to the real

world. In other words, representativeness means how closely the apps and tools used in

this study reflect the real world. Moreover, the generalizability of the results used a

Univ
ers

iti
Mala

ya

91

limited number of subject apps. To mitigate these, a standard set of subject apps was used

in the experiment with different domains, including fitness, entertainment, and tool apps.

The subject apps were selected carefully from F-Droid and AppBrain repositories, which

are commonly used in Android GUI testing studies. Section 3.1.3 explains the details of

the selection process. Therefore, the test was not prone to selection bias. To reduce the

aforementioned threats, experimental works with broad types of subjects should be

performed on a larger scale in the future.

3.6 Conclusion

This chapter presents an empirical analysis of the effectiveness of test input generation

tools for Android testing that supported system events generation on 50 Android apps.

An experimental analysis was performed to investigate the effect of events sequence

length on the method coverage, activity coverage, and crashes detection. The testing tools

were evaluated and compared based on three criteria: method coverage, activity coverage,

and their ability to detect crashes. From this chapter, it was concluded that a long events

sequence led to a small positive effect on coverage and crash detection. Both Stoat and

Android Monkey attained the highest number of events. However, coverage performance

was similar to Humanoid and Droidbot which generated a smaller number of events.

Moreover, this study showed that Sapienz was the best-performing tool that satisfies all

three criteria. Despite Sapienz optimized events sequence length, it generated the highest

number of events and it is unable to detect crashes that can only be reached from a long

events sequence. Besides, Android Monkey was able to reveal stress testing crashes.

However, it was limited to generate inputs relevant to the app, mainly due to its

randomness in generating unreproducible events with long sequences. Moreover, most of

the tools were able to find a fault in the user events and none of them was able to find a

fault in a system event.

Univ
ers

iti
Mala

ya

92

CHAPTER 4: PROPOSED SOLUTION

This chapter presents an overview of the proposed approach for generating GUI test

cases for Android Apps. The proposed solution is derived from the review between

reinforcement learning, and test case generation approaches explained in chapter 2 to take

advantage of both the randomly based approach and model-based approach. This

approach generates user and system inputs that discover unexplored states of the app and

uses the execution of the app on the generated inputs to construct a state-transition model.

Instead of randomly selecting the actions, the test generator learns how to act in an

optimal way that explores new states by using new actions to gain more rewards to

maximize instruction coverage, method coverage, and activity coverage with minimizing

redundant execution of events sequence.

The remains of this chapter are organized as follows: Section 4.1 presents the

background of reinforcement learning, its technologies, and techniques. Section 4.2

introduces the adaptation of reinforcement learning techniques in GUI testing for Android

apps. Section 4.3 justifies the reason for adopting the Q-Learning technique. Section 4.4

presents the implementation of the proposed approach while Section 4.5 highlights the

significance of the proposed approach. Finally, Section 4.6 concludes this chapter.

4.1 Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning. Unlike other branches

like supervised and unsupervised learning, its algorithms are trained using reward and

punishment to interact with the environment. It is based on the concept of behavioral

psychology that works on interacting directly with an environment which plays a key

component in Artificial Intelligence. As represented by the Markov Decision Process

(MDPs), RL is a problem emerging in many real-world scenarios and provides

mathematical frameworks that allow for modeling decision-making. It defines an

Univ
ers

iti
Mala

ya

93

environment's state, the action that the agent can take, the reward, and its expectation for

the action and the next state after executing the action. However, the most important

characteristic of an MDP is that the states' transition and reward function depend only on

the current state and executed action. In an actual situation, the agent cannot precisely

predict those functions (reward and state transition). If these functions are not known, the

use of valued-based methods like Q-Learning is used to measure actions and predict them

without knowing how good the actions are.

The major components of RL are the agent and the environment. The agent serves as

an independent entity that performs unconstrained actions within an environment to

achieve a specific goal. The agent performs an activity on the environment and uses trial-

and-error interactions to gain information about the environment. There are four other

basic concepts in the RL system along with agent and environment: (i) a policy, (ii) a

reward, (iii) action, and (iv) state. The state describes the present situation of the

environment and mimics the environment's behavior. For example, this gives rise to a

current situation and action. The model might predict the resultant next state and the next

reward. Models are used to plan and decide on a course of action by considering possible

future situations before they are experienced. Similarly, the reward is an abstract concept

to evaluate actions. Reward refers to immediate feedback after acting. The policy defines

the agent approach to select an action from a given state. It is the core of the RL agent

and sufficient to determine behavior. In general, policies may be stochastic. An action is

a possible move in a particular state.

An analysis by McKinsey Global Institute Research (Chui et al., 2018) on the

application of RL revealed that there are about 400 use cases across 19 industries and

nine business functions highlight the significance and the broad use of advanced RL

techniques ranging from advanced electronics/semiconductors, aerospace and defense,

Univ
ers

iti
Mala

ya

94

agriculture, automobile and assembly, banking, healthcare system, high tech, oil and gas,

pharmaceuticals, public and social sectors, telecommunication, transport and logistics,

travel and insurance companies.

The application of RL in the present world cannot be overemphasized. Mао et аl.,

(2016) designed RL algorithms that allocate and schedule limited computer resources to

different tasks that seem challenging and require human-generated heuristics. Arel еt аl.

(2010) used the RL framework to obtain an efficient traffic signal control policy targeted

to minimize average delay, congestion, and the likelihood of intersection cross-blocking.

Bu еt аl., (2009) proposed RL for the autonomic configuration of a multi-tier web system;

however, it adopted other policy initialization techniques to remedy the large state space.

RL has been applied in optimizing chemical reactions that outperform a state-of-the-art

algorithm, and this study optimized chemical reactions using Markov Decision Process

(Zhou et al., 2017).

RL is a mainstream technique used to solve different games and sometimes achieve

super-human performance. Researchers have adopted RL techniques to developed

approaches for testing Android apps. Figure 4.1 presents the mechanism RL in the context

of Android app testing. In the automated GUI testing, AUT is the environment; the state

is the set of actions available on the AUT activity. The GUI actions are the set of actions

available in the current state of the environment, and the testing tool is the agent. Initially,

the testing tool does not know the AUT. As the tool generates and executes test event

input based on trial-and-error interaction, the knowledge about AUT is updated to find a

policy that facilitates systematic exploration to make efficient future action selection

decisions. This exploration generates event sequences that can be used as test cases.

Univ
ers

iti
Mala

ya

95

There are two primary directions in solving RL problems: algorithms based on value

functions/ Q-value 𝑄(𝑠, 𝑎) and algorithms based on policy search (Arulkumaran et al.,

2017). Q-Value-based algorithms update the value function based on an equation.

Whereas the policy-based estimates the value function with a greedy policy obtained from

the last policy improvement. Most RL technique follows a step-by-step pattern. At each

time step 𝑡, it observes the environment's state 𝑆𝑡 and takes action 𝐴𝑡 based on its policy

𝜋. The environment then transitions to a new state 𝑆𝑡+1 based on 𝑆𝑡 and 𝐴𝑡, and it also

outputs a scalar reward 𝑅𝑡+1 as feedback that the agent then uses to update its knowledge.

The agent learns a policy that maximizes the expected cumulative reward of a sequence

of actions in the environment that are finally used as test cases.

Several exploration strategies have been proposed by integrating mathematical

approaches, such as Epsilon-greedy (∈ −𝑔𝑟𝑒𝑒𝑑𝑦) policy and Upper confidence bound

(UCB). The epsilon-greedy policy aims to identify a possible way and keep on exploiting

it greedily. The agent randomly explores with probability ∈ and selects the action with

the highest Q-value in the current state with probability 1− ∈. The random action is useful

for exploration, but it might also lead the agent to try out actions that will not give a good

reward. Moreover, it explores too much because even when selected action seems to be

Figure 4.1: Reinforcement learning mechanism

Univ
ers

iti
Mala

ya

96

the optimal one, the policy keeps allocating a fixed ratio of the time for exploration, thus

missing opportunities and increasing total regret. UCB policy proposed by Auer et al

(2002) for multi-armed bandit that achieves regret that grows only logarithmically with

the number of actions taken. It enhances the exploration and minimizes the total regret. It

explores more to reduce uncertainty systematically, but its exploration reduces over time.

Thus, UCB attains greater reward on average than the Epsilon-greedy policy. There are

several techniques of Reinforcement learning include Deep Q Network (DQN), Actor-

critic, State-Action-Reward-State-Action (SARSA), and Q-Learning.

4.1.1 Deep Q Network

Deep Q Network (DQN) combined Q-Learning with a flexible deep neural network.

It was tested on a varied and large set of deterministic Atari 2600 games, reaching human-

level performance on many games. DQN uses the Neural Network to estimate the Q-value

function. The network's input is the current state, while the output is the corresponding

Q-value for each action. Although DQN has achieved huge success in higher-dimensional

problems, such as the Atari game, the action space is still discrete. With many tasks of

interest, especially physical control tasks, the action space can be continuous.

4.1.2 Actor-Critic

An Actor-Critic uses both the value function and the policy function, where the

"Critic" estimates the value function. This could be the Action-value (The Q value) or

State-value (the V value), and the "Actor" updates the policy distribution in the direction

suggested by the Critic (such as with policy gradients). Actor-Critic's variants, namely

the Asynchronous Advantage Actor-Critic (A3C) and the Advantage Actor-Critic (A2C).

In essence, A3C implements parallel training where multiple workers in parallel

environments independently update a global value function hence "asynchronous." One

important benefit of having asynchronous actors is an effective and efficient exploration

Univ
ers

iti
Mala

ya

97

of the state space. A2C is synchronous as compared to A3C; it is a single worker variant

of the A3C. A2C produces a comparable performance to A3C while being more efficient,

although researchers are unsure if or how the asynchrony benefits learning.

4.1.3 State-Action-Reward-State-Action (SARSA)

State-Action-Reward-State-Action (SARSA), an on-policy Temporal Difference (TD)

control method. A policy is a state-action pair tuple that maps the action to be taken at

each state. This on-policy control method chooses each state's action during learning by

following a certain policy (mostly the one it is evaluating itself, like in policy iteration).

SARSA and Q-Learning are both policy control methods that evaluate the optimal Q-

value for all action pairs. SARSA resembles Q-Learning to a lot of extents. The only

difference between the two is that SARSA learns the Q-value based on the current policy's

action compared to Q-Learning's use of the greedy policy. Equation (4.1) shows the

update rule for SARSA:

4.1.4 Q-Learning

Q-Learning is also known as one of the most popular reinforcement learning

techniques (Kaelbling et al., 1996). The "Q" in Q-Learning stands for quality representing

how useful a given action is in gaining some future reward. It is an off-policy temporal

difference control method. It is precisely like SARSA with the only difference that Q-

Learning does not follow a policy to find the next action but instead chooses the action

greedily. Similar to SARSA, it aims to evaluate the Q-values based on equation (4.2).

𝑸∗(𝒔𝒕, 𝒂𝒕) = 𝐦𝐚𝐱

𝝅
∑(𝜸𝒕𝒓𝒕|𝒔 = 𝒔𝒕, 𝒂 = 𝒂𝒕, 𝝅)

𝒕>𝟎

 (4.2)

𝑸(𝑺𝒕, 𝑨𝒕) ← 𝑸(𝑺𝒕, 𝑨𝒕) + 𝒂[𝑹𝒕+𝟏
+ 𝜸𝑸(𝑺𝒕+𝟏, 𝑨𝒕+𝟏) − 𝑸(𝑺𝒕, 𝑨𝒕)] (4.1)

Univ
ers

iti
Mala

ya

98

Q-Learning uses its Q-values to resolve RL problems. For each policy 𝛱, the action-

value function or quality function (Q-function) should be properly defined. Nonetheless,

the value 𝑄 𝛱 (𝑠𝑡; 𝑎𝑡) is the expected cumulative reward that can be achieved by

executing a sequence of actions that starts with action 𝑎𝑡 from 𝑠𝑡; and then follows the

policy 𝛱. The optimal Q-function 𝑄∗ is the maximum 𝑄 expected cumulative reward

achievable for a given (state, action) pair over all possible policies. This is known as the

Bellman equation. The Q-Learning algorithm uses equation (4.2) to estimate the value

iteratively. Intuitively, if 𝑄∗ is known, the optimal strategy at each step 𝑠𝑡 is to take action

that maximizes the sum: 𝑟 + 𝑄 ∗ (𝑠𝑡 + 1, 𝑎𝑡 + 1), where 𝑟 is the immediate reward of

the current step, while 𝑡 stands for the current time step, hence 𝑡 + 1 denotes the next

one. The discount value (γ) is introduced to control the long-term rewards’ relevance with

the immediate one.

Q-Learning is used to find an optimal action-selection policy for the given AUT using

greedy policy and behaves using other policies such as Epsilon-greedy policy and UCB,

where the policy sets out the rule that the agent must follow when choosing a particular

action from a set of actions (Watkins & Dayan, 1992). There is an action execution that

is immediately preceded to choose each action, which moves the agent from the current

state to a new state. This agent is provided with a reward 𝑟 upon executing the action 𝑎.

The value of the reward is then measured using the reward function 𝑅. For the agent, the

main aim of Q-Learning is to learn how to act in an optimal way that maximizes the

cumulative reward. Thus, a reward is granted when an entire sequence of actions is carried

out.

4.2 Automated GUI Testing with Reinforcement Learning

Researchers have developed approaches to automate test generations for Android apps.

This section highlights the existing tools with corresponding approaches.

Univ
ers

iti
Mala

ya

99

Mariani et al. (Mariani et al., 2012) proposed AutoBlackTest, the first Q-Learning-

based GUI testing tool for Java desktop software. AutoBlackTest initially extracts an

abstract representation of the current state of the GUI and generates a behavioral model.

This model is updated according to the current state reached and the immediate utility of

the action. Then the behavioral model is used to select the next action to be executed, and

then to restart the loop. TESTAR (Esparcia-Alcázar et al., 2016), another Q-Learning-

based tool, is used to generate GUI test sequences based on web applications. The Q-

Learning algorithm provided significant performance with an adequate set of parameters.

GunPowder (Kim et al., 2018) is a test input generation tool for search-based test data

generation using deep RL. GunPowder has been specifically developed for C applications

and consists of three phases: (i) instrumentation, (ii) execution, and (iii) fitness evaluation.

In the instrumentation phase, in the first step, it adds instrumentation codes that allow the

tool to control and monitor the execution of the program. Subsequently, in the second

step, the tool builds and executes the program, and in the third phase, the machine learning

algorithm was applied to generate test inputs. Currently, the fitness function supported by

GunPowder aims to improve branch coverage. Although not suitable for Android app

testing, other studies that have adopted RL techniques for Android testing are shown in

Table 4.1.

Univ
ers

iti
Mala

ya

100

Table 4.1: Overview of Android test generation tools adopted RL

Vuong & Takada (Vuong & Takada, 2018) proposed a Q-Learning-based automated

test case generation tool designed for Android apps using the Markov model to describe

the AUT. The tool learns the most relevant behavioral model of the AUT and generates

test cases based on this model. The tool executes a sequence of a fixed number of events,

also called an episode. After finishing an episode, the tool selects a random state from

those that have already been visited and starts a new episode in the next phase. However,

this tool has multiple limitations. For example, it only generates UI events and does not

cover activities triggered by system events.

Adamo, Khan, Koppula, & Bryce (Adamo, Khan, et al., 2018) introduced a Q-

Learning-based automated test case generation tool designed for Android apps built on

the top of Appium and UI Automator. During the process of test case generation, the tool

chooses an event with the highest Q-value from the set of available events in each state.

The test case generation process is quite similar to previous work (Vuong & Takada,

2018), and this generation process is divided into episodes where the states used in

No Tool Action
Selections

State
Representation

Test Input
generation

Coverage
Criteria

Basis

1 Humanoid
(Li et al.,
2019)

Best 10 actions Number of
actions in
activity

DQN Line Droidbot

2 Androfram
(Koroglu et al.,
2018)

Trained action Activity ID &
UI components

Q-learning Activity -

3 (Adamo,
Khan, et al.,
2018)

Action with
highest Q-value

Number of
actions in
activity

Q-learning Block Appium

4 (Vuong &
Takada, 2018)

Action with
highest Q-value

Activity ID &
UI components

Q-learning Code UI
Automator

5 AimDroid
(Gu et al.,
2017)

Best first action Activity ID &
UI components

SARSA Activity Monkey &
UI
Automator

Univ
ers

iti
Mala

ya

101

previous episodes are employed as a basis for beginning a new episode. The authors

define the state to be the set containing the unique actions available.

QBE (Koroglu et al., 2018) Q-Learning-based exploration approach generates test

cases. Instead of using a random exploration approach, the GUI is explored based on a

pre-approximated probability distribution that satisfied a test objective. It creates a Q-

matrix that shows the probabilities of reaching the test objective, which is used to select

the next action. However, QBE has inconsistent activity coverage and only works with

single-objective fitness functions, where each run has only one objective to increase the

activity coverage or search crashes.

AimDroid (Gu et al., 2017) is a model-based test case generation tool for Android

apps. AimDroid implements an RL-guided random approach. AimDroid is composed of

two activities: it runs a breadth-first search to discover unexplored activities and insulates

the discovered activity in a "cage" and intensively exploits such activity using RL-guided

fuzzing algorithms. This tool divides the tests into episodes; each episode generates a

bounded number of events and focuses on a single activity by disabling activity

transitions. Furthermore, AimDroid uses an RL algorithm called SARSA to learn about

the capability of events that can explore new activities, to "look ahead" and to select

events that are more likely to trigger new activities and crash greedily. AimDroid also has

some limitations. For example, it disables the activity transition, which may drop some

faults caused by the Activity life cycle. Moreover, AimDroid does not learn the second-

best event to choose from, it only knows the best SARSA-based event, and for all other

events, it chooses randomly.

Humanoid (Li et al., 2019) was implemented along with Droidbot (Li et al., 2017)

which was developed to learn how users interact with Android apps. Humanoid uses a

GUI model to comprehend and analyze the behavior of AUT. Nonetheless, Humanoid

Univ
ers

iti
Mala

ya

102

prioritizes human interacted UI elements. Humanoid operates in two phases; (1) offline

learning phase which is a deep neural network model used to master the relationship

between GUI contexts and user-performed interactions, and (2) online testing phase

where Humanoid developed a GUI model for the AUT. In the second phase, it uses the

GUI model and the interaction model to determine the type of test input to send. The GUI

model directs Humanoid on the navigation of explored UI states, while the interaction

model guides the discovery of the new UI states. As a limitation, this tool does not present

an increment in coverage when compared to other tools. It is unable to use textual

information available in the app to generate test cases.

4.3 Justification of the Proposed Approach

There are several techniques of reinforcement learning explained in section 4.1, Q-

Learning is the most suitable for GUI testing, among other reinforcement learning

techniques, since other techniques require many actions to be generated during the

learning process, which is costly (Koroglu et al., 2018). The idea behind using Q-Learning

is that the tabular Q-function is rewarded with each selection of possible actions over the

app. However, this reward may vary according to the test objective. Thus, events that are

never selected can present a higher reward than events that have already been executed,

which reduces the redundant execution of events and increases coverage.

Q-Learning has been used in software testing in the past and has shown better results

to improve the random exploration strategy (Adamo, Khan, et al., 2018; Koroglu et al.,

2018; Mariani et al., 2011; Vuong & Takada, 2018). However, a common limitation to

all these tools is that the reward function assigns the highest reward when the event is

executed for the first time to maximize coverage or locate crashes. Nonetheless, in the

proposed approach, the environment does not offer direct rewards to the agent. The agent

itself tries to visit all states to collect more rewards. The proposed approach uses tabular

Univ
ers

iti
Mala

ya

103

Q-Learning like other approaches but uses an effective exploration strategy that reduces

actions redundant execution and uses different states and action spaces. Action selection

is the main part of Q-Learning in finding an optimal policy. The policy is a process that

decides on the next action 𝑎 from the set of current actions. Unlike previous studies, the

proposed approach utilizes the upper confidence bound (UCB) exploration-exploitation

strategy as a learning policy to create an efficient exploration strategy for GUI testing.

UCB tries to ensure that each action is explored well and is the most widely used solution

for multi-armed bandit problems (Lonza, 2019). The UCB strategy is based on the

principle of optimism in the face of uncertainty.

4.4 Implementation of the Proposed Approach

Q-Learning technique with UCB exploration strategy was adopted to generate a GUI

test case for Android apps to improve coverage and crash detection. This approach was

built in a test tool named DroidbotX. Moreover, the main idea of using DroidbotX was to

evaluate the practical usefulness and applicability of the proposed approach. DroidbotX

works with Droidbot (Li et al., 2017). Droidbot is a UI-guided input generation tool used

mainly for malware detection and compatibility testing. Droidbot was chosen because it

is open-source and can test apps without having access to the apps’ source code.

Moreover, it can be used on an emulator or real device without instrumentation and is

compatible with all Android APIs.

The DroidbotX algorithm tries to visit all states because it assumes “optimism in the

face of uncertainty”. The principle of optimism in the face of uncertainty is known as a

heuristic in sequential decision-making problems, which is a common point in exploration

methods. The agent believes that it can obtain more rewards by reaching the unexplored

parts of the state’s space (Kamiura & Sano, 2017). In this principle, actions are selected

greedily, but strong optimistic prior beliefs are put on their payoffs so that strong contrary

Univ
ers

iti
Mala

ya

104

evidence is needed to eliminate the action from consideration. This technique has been

used in several RL algorithms, including the interval exploration method (Sutton & Barto,

1998). In other words, it means that visiting new states and making new actions would

bring the agent more reward than visiting old states and making old actions. Therefore, it

starts from an empty Q-function matrix and assumes that every state and action reward

an agent with +1. When it visits the state 𝑠 and makes an action 𝑎, the Q-function

𝑄 (𝑠, 𝑎) decreases, and the priority of the action 𝑎 for the state 𝑠 becomes lower. Our

DroidbotX approach generates sequences of test inputs for Android apps that do not have

an existing GUI model. The overall DroidbotX architecture is shown in Figure 4.2.

In Figure 4.2, the adapter acts as a bridge between the test environment and the test

generation algorithm. The adapter is connected to an Android device or an emulator via

the Android Debug Bridge (ADB). The adapter observer monitors the AUT and sends the

current state to the test generator. Simultaneously, the executor receives the test inputs

generated by the algorithm and translates them to commands. Furthermore, the test

generator interacts and explores the app’s functionalities following the observe-select-

execute strategy, where all the GUI actions of the current state of AUT are observed; one

action is selected based on the selection strategy under consideration, and the selected

action is executed on the AUT. Similar to other test generators, DroidbotX uses a GUI

model to save the memory of transitions called a UI transition graph (UTG). The UTG

guides the tool to navigate between the explored UI states. The UTG is dynamically

constructed at runtime, which is a directed graph whose nodes are UI states, and the edges

between the two nodes are actions that lead to UI state transitions. The state node contains

the GUI information and the running process information, and the methods are triggered

by the action. DroidbotX uses Q-Learning-based test coverage approach shown in

algorithm 1 and constructs a UI transition graph in algorithm 2.

Univ
ers

iti
Mala

ya

105

Fi
gu

re
 4

.2
: O

ve
rv

ie
w

 o
f D

ro
id

bo
tX

Univ
ers

iti
Mala

ya

106

4.4.1 States and Action Representation

In the Android app, all the UI widgets of an app activity are organized in a GUI view

tree (Baek & Bae, 2016). The GUI tree can be extracted via UI Automator, which is a

tool provided by the Android SDK. UI widgets include buttons, text boxes, search bars,

switches, and number pickers. Users interact with the app using click, long-click, scroll,

swipe up, swipe down, input text, and other gestures collectively called as GUI actions or

actions. Every action is represented by its action type and target location coordinates. The

GUI action is either (1) widget-dependent such as click and text, or (2) widget-

independent such as the back that presses the hardware back button. A 5-tuple denotes an

action: 𝑎 = (𝑤, 𝑡, 𝑣, 𝑘, 𝑖), where 𝑤 is a widget on a particular state, 𝑡 is a type of action

that can be performed on the widget (e.g., click, scroll, swipe), and 𝑣 holds arbitrary text

if widget 𝑤 is a text field. For all non-text field widgets, the 𝑣 value is empty. Moreover,

𝑘 is the key event that includes back, menu, and home buttons on the device, and 𝑖 is a

widget ID. Note that DroidbotX sends an intent action that installs, uninstalls, and restarts

the app.

State abstraction refers to the procedure that identifies equivalent states. In this

approach, state abstraction determines two states as equivalent if (1) they have similar

GUI content which includes package, activity, widget’s type, position, and widgets

parent-child relationship, and (2) they have the same set of actions on all interactive

widgets, which is widely used in previous GUI testing techniques (Bauersfeld & Vos,

2014; Choi et al., 2013; Gu et al., 2017). GUI state or state 𝑠 ∈ 𝑆 describes the attributes

of the current screen out of the Android device where 𝑆 denotes the set of all states. A

content-based comparison and a set of actions to decide state equivalence, where two

states with different UI contents and different enabled actions are assumed to be different

states.

Univ
ers

iti
Mala

ya

107

For simplifying states and actions representation, take an example of the Hot death

app. Hot death is a variation of the classic card game. The main page includes a new

game, settings, help, about, and exit buttons. Figure 4.3 shows a screenshot of the app’s

main activity, initial state, and related widgets with a set of enabled actions. Widget-

dependent action is detected when a related widget exists on the screen. For example, a

click-action exists only if there is a related widget with the attribute clickable true.

Widget-independent action is available in all states because the user can press on device

hardware buttons such as the home all the time.

Figure 4.3: An example of state and actions representation from Android app

4.4.2 Exploration Strategy

Android apps can have complex interactions between the events that can be triggered

by UI widgets, and states that can be reached, and the resulting coverage achieved. In

automated testing, the test generator must choose not only which widget to interact with,

but also what type of action to perform. Each type of action on each widget is likely to

improve coverage. Our goal is to interact with the app’s widgets by sending relevant

Univ
ers

iti
Mala

ya

108

actions for each widget dynamically. This reduces the number of ineffective actions

performed and explores as much app state as possible. Thus, UCB was used as an

exploration policy to explore the app for new states and try out new actions. For each

state, all potential widgets are extracted with their IDs and location coordinates, and then

systematically choose be-tween five different actions (i.e., click, long-click, scroll, swipe

left/right/up/down, and in-put text data) to interact with each widget. Next, whether the

action brings the app to a new state by comparing its contents with all other states in the

state model. If the agent identifies a new state, the exploring policy on the new state is

recursively applied to discover unexplored actions. The exploration policy does not know

about the consequences of each action, and the decision is made based on the Q-function.

When exploration of this state terminates, the intent was executed to restart the AUT.

Android intent is the message that passed between Android app components such as the

start activity method to invoke activity. Examples of termination, an action that cause the

AUT to crash, an action that switches to another app, or a clicks home button. The home

action always closes the AUT, while the back action often closes the AUT. The

exploration passes the login screen by searching in a set of pre-defined inputs. Some

existing tools such as Android Monkey will stop at the login screen, failing to exercise

the app beyond the login page.

4.4.2.1 Observer and Rewarder

The goal of the observer is to monitor the results of actions on the AUT. The Q-

function then rewards the actions based on the results. Algorithm 1 uses the input

parameters to explore the GUI and produces a set of event sequences as a test case for

AUT. The Q-function 𝑄(𝑠, 𝑎) takes state 𝑠 and action 𝑎. The Q-function matrix is

constructed based on the current state. Each row in the matrix represents the expected Q-

values for a particular state. The row size is equal to the number of possible actions for

the state. The 𝑔𝑒𝑡𝐸𝑣𝑒𝑛𝑡𝑓𝑟𝑜𝑚𝐴𝑐𝑡𝑜𝑟 function at lines 23–26 obtains all the GUI actions

Univ
ers

iti
Mala

ya

109

of the current state of AUT. The actions’ initial values on the current state are assigned

as 1 at line 26. The 𝑈𝑝𝑑𝑎𝑡𝑒𝑄𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 function at lines 13–21 decreases the value of the

action to 0.99 when the test generator conducts this action in the state. When all action

value is 0.99, the maximum value becomes 0.99, and the test generator starts to choose

some actions again. Then one action is selected and executed, and when a new state is

found, the Q-function trainer receives the next state and updates the Q-function matrix to

the previous state. The test generator sends KeyEvents such as back button at lines 27–

28, if the state is the last or if there are no new actions in the current state.

𝑄(𝑆, 𝐴) = 𝑄(𝑆, 𝐴) + 𝑎 ∗ (𝛾 ∗ 𝑚𝑎𝑥𝑄(𝑆′, 𝑎) − 𝑄(𝑆, 𝐴)) (4.3)

 The Q-Learning algorithm uses equation (4.3) to estimate the value of 𝑄(𝑠, a)

iteratively. The Q-function is initialized by a default value. Whenever an agent executes an

action a from state 𝑠 to reach 𝑠′ and receives a reward 𝑟 + 1, the Q-function is updated as

equation (4.3) where 𝛼 is a learning rate parameter between 0 and 1 and γ is a discount rate.

4.4.2.2 Action Selector

Action selection strategy is a crucial feature of DroidbotX. Right actions can improve

the likelihood and decrease the time necessary to navigate to various app execution states.

In the initial state, the test generator chooses the first action based on a randomized

exploration policy to avoid the systematic handling of GUI layouts in each state. Then,

the test generator selects actions from the new states and generates event sequences in a

way that attempts to visit all states. The Q-function calculates the expected future rewards

for actions based on the set of states it visited. In each state, the test generator chooses an

action that has the highest expected Q-value from the set of available actions using

𝑔𝑒𝑡𝑆𝑜𝑓𝑡𝐴𝑟𝑔𝑚𝑎𝑥𝐴𝑐𝑡𝑖𝑜𝑛 function at lines 32–36, then the predicted Q-value for that

Univ
ers

iti
Mala

ya

110

action is reduced. Therefore, the test generator will not choose it again until all other

actions have been tried. Formalizing this mathematically, the selected action is picked by

Equation (4.4).

𝒂𝒄𝒕𝒊𝒐𝒏 = argmax
𝒂

 ⌈𝑸𝒕(𝒔𝒕, 𝒂𝒊) + √
𝑰𝒐𝒈𝑵𝒔𝒕

𝑵(𝒔𝒕,𝒂𝒊)

𝒄
⌉

(4.4)

 Equation (4.4) depicts the basic idea of UCB strategy, the expected overall reward of

action 𝑎 is 𝑄𝑡(𝑠𝑡, 𝑎𝑖), 𝐼𝑜𝑔𝑁𝑠𝑡
 denotes how often action has been selected in 𝑠𝑡, while

𝑁(𝑠𝑡, 𝑎𝑖) is the number of times the action 𝑎𝑖 was selected in state 𝑠𝑡, and 𝑐 is a confidence

value that controls the level of exploration (set to 1). This method is known as

“exploration through optimism,” and it gives less-explored action a higher value and

encourages the test generator to select them. The test generator uses the Q-function

learned by equation (4.3) and UCB strategy to select each action intelligently, which

balances the exploration and the exploitation of AUT.

Univ
ers

iti
Mala

ya

111

Algorithm 1: Q-learning based Test Generation

, Application under test
, set of states;

 , q-function for all the state-action pairs;
 , transition matrix, epsilon;

-exploration parameter

1 (S, Q, P) ← (Ø, Ø, Ø)
2 launch(A)

3

4 true
5 Event ← getEventfromActor(Q)
6 Update P[old_state, new_state, :] #adjusting P[old_state, new_state, Event]

7 Q← UpdateQFunction(Q, P)
8 Execute(Event)

9 enable:
10
11 (S, Q, P)
12

13 UpdateQFunction(Q, P)
14 Q_target ← (Ø)
15 for index in [0, 1, …, 9] do

16 for s in S do

17 Q_target[s] ← maximum of Q[s, event] for all events
18 for s in S do

19 for a in all events that was ever made do

20 Q[s, a] ← 0.99 * sum Q_target[:] * P[s, :, a])
21 return Q

22
23 getEventfromActor(Q)
24 state ← getCurrentState()
25 if state is not in S:

26 Q[state, :] ←1 # For all possible events from state
27 if RANDOM([0; 1]) < epsilon do

28 event ←KeyEvent
29 else

30 event ←getSoftArgmaxAction(Q[state])
31 return event

32

33 getSoftArgmaxAction(Q_state)
34 max_qvalue ← max(Q_state)

36 best_actions ← all events where Q_state[event] == max_qvalue
36 event ← choose randomly from best_actions
37 return event

Univ
ers

iti
Mala

ya

112

4.4.3 Test Case Generation

Test case 𝑇𝐶 is defined as a sequence of transitions. 𝑇𝐶 =

 (𝑠1, 𝑎1, 𝑠2), (𝑠2, 𝑎2, 𝑠3), . . . , (𝑠𝑛, 𝑎𝑛, 𝑠𝑛 + 1), where 𝑛 is the length of the test case. Each

episode is considered to be a test case, and each test suite 𝑇𝑆 is a set of test cases. The

transition is defined as a 3-tuple (start-state, 𝑠𝑠; action, 𝑎; end-state, 𝑠𝑒). Algorithm 2

dynamically constructs a UI transition graph to navigate between the explored UI states.

It takes three input parameters: (1) the app under test, (2) Q-function for all the state-

action pairs generated by algorithm 1, and (3) test suite completion criterion. The criterion

for test suite completion is a fixed number of event sequences (set to 1000). DroidbotX’s

test generator explores a new state 𝑠𝑖, and adds a new edge < 𝑠𝑖 − 1; 𝑎𝑖 − 𝑖; 𝑠𝑖 > to the

UI transition graph, where 𝑠𝑖 − 1 is the last observed UI state and 𝑎𝑖 − 𝑖 is the action

performed in 𝑠𝑖 − 1. For instance, consider generation of a test suite for Hot death

Android app. DroidbotX creates an empty UI transition graph 𝐺 (line 1), explores the

current state of AUT (line 3), observes all the GUI actions of the current state (line 5),

and constructs a Q-function matrix. Then one action is selected and executed based on

getSoftArgmaxAction function (line 7), when a new state is found, the UpdateQFunction

function receives the next state and updates the Q-function matrix to the previous state.

The transition of executed action, next state, and previous state are added to the graph

(line 15). The Q-value of executed action is decreased to avoid using the same action of

the current state. The process is repeated until completing the target number of actions.

Figure 4.4 shows an example of UTG from the Hot death Android app.

Univ
ers

iti
Mala

ya

113

Algorithm 2: DroidbotX Test Suite Generation

App under test

, Q-function for all the state-action pairs

, Test suite completion criterion
, Test Suite

Create an empty UI transition graph 𝑮 =< 𝑺, 𝑬 >

Run the AUT

Observe current UI state and add to

Get All unexplored actions in as

 is not empty then

Select as action from based on

Extract a state in that has unexplored actions

 Get the shortest path from to in

 Select the first action in as

Perform action

Observe the new UI state new and add new to

Add the edge to

Until all actions in all states in have been explored

Until length of is equal

Figure 4.4: A UI state transition graph from a real-world Android app.

Univ
ers

iti
Mala

ya

114

4.5 Significance of the Proposed Approach

There are some significant features to the proposed approach that are discussed as

follows.

• Coverage: The Q-Learning test coverage approach minimizes event sequences

redundancy to maximize code coverage by using a Q-function matrix, where each

action is executed once in each state.

• Modeling: The Q-Learning test coverage approach can explore more app

functionalities and construct a more complete model without state explosion. The

proposed approach uses two layers of state similarity and considers system events

in the model.

• Compatibility: DroidbotX can be used on an emulator or real device without

instrumentation and is compatible with all Android APIs. Compatibility testing is

the capability of evaluating the app's correctness and robustness when running on

different devices.

• Test Artifacts: DroidbotX generates log reports, activity coverage reports, and

state transition models during the testing process.

• Ease of use: DroidbotX is easy to use because it is configurable and flexible

enough to cater to various devices. Usability is a primary concern for tool

developers; it affects reuse, research collaboration, and ultimately research

impact.

• Extendable: DroidbotX integrated Gym, a toolkit for developing and comparing

reinforcement learning algorithms. It further allows developers to customize the

test exploration strategy using gym algorithms such as Deep Q Network, A2C,

and SARSA.

Univ
ers

iti
Mala

ya

115

4.6 Conclusion

This research aims to present a Q-Learning-based test coverage approach to generate

GUI test cases for Android apps. This approach adopted a UCB exploration strategy to

minimize redundant execution of events that improve coverage and crash detection. The

proposed approach generates inputs that visit unexplored app states and uses the

execution of the application on the generated inputs to construct a state-transition model

generated during runtime. It visits all states in the face of uncertainty through the

exploration of the new AUT states that generate new action that automatically produces

more reward than visiting old states. This approach was implemented into the test tool

named DroidbotX and it is publicly available.

Univ
ers

iti
Mala

ya

116

CHAPTER 5: EVALUATION OF THE PROPOSED APPROACH

This chapter provides an evaluation of the DroidbotX approach using thirty Android

apps collected from F-Droid. It is for this purpose that the empirical case study method

was adopted. It was used in (Kitchenham et al., 2002; Perry et al., 2004) to analyze the

effectiveness of DroidbotX. This comparison used four main metrics: instruction

coverage, method coverage, activity coverage, and ability to detect crashes. In this

chapter, the proposed approach's empirical evaluation compared to the existing

frameworks and tools is also discussed. In the end, the evaluation results were compared

with the results of the already existing tools.

In this chapter, the outline is organized as follows: Section 5.1 discusses the case study

design. Section 5.2 describes the execution of the case study. The general discussion and

statistical testing results are all presented in section 5.3. In section 5.4, the threats to

validity are highlighted explicitly. Section 5.5 is the conclusion of the chapter.

5.1 Case Study Design

This evaluation adopts a similar case study method, just like the one described in

section 3.1.

5.1.1 Research Questions for the Proposed Approach Evaluation

The major first step required in the empirical case study evaluation is to construct the

research question that aligns and fulfills the evaluation purpose. Five questions were

developed by embodying the evaluation objective:

RQ 1. What are the instructions, methods, and activity coverage achieved by

DroidbotX compared to the state-of-the-art tools?

Univ
ers

iti
Mala

ya

117

RQ.2. How effective is DroidbotX to detect unique app crashes compared to other

state-of-the-art tools?

RQ.3. How does DroidbotX compare to the state-of-the-art tools in terms of test

sequence length?

RQ.4. How effective is the model constructed by DroidbotX compared to the state-of-

the-art tools?

RQ.5. What is the time complexity of DroidbotX algorithm?

5.1.2 Case Study Criteria

The effectiveness of the proposed approach compared to state-of-the-art tools was

evaluated based on four criteria:

C1. Instruction Coverage (IC) refers to the Smali (Freke, 2013) code instructions

through decompiling the APK installation package. It is the ratio of triggered instruction

in the Java instruction code of the app to the total number of instructions. Huang et al.

(2015) first proposed the concept of instruction coverage, which is used in many studies

as an indicator to evaluate test efficiency (Choi et al., 2013; Gu et al., 2017; Gu et al.,

2019; Koroglu et al., 2018). It is a more accurate and valid test coverage criterion that

reflects the adequacy of testing results for closed-source apps (Yang et al., 2019).

C2. Method Coverage (MC) is the ratio of the number of methods called during the

execution of the AUT to the total number of methods used in the source code of the app.

By improving the method coverage, more functionalities of the app were explored and

tested (Azim & Neamtiu, 2013; Choudhary et al., 2015; Dashevskyi et al., 2018).

C3. Activity Coverage (AC) is defined as the ratio of activities explored during

execution to the total number of activities existing in the app. A high activity coverage

Univ
ers

iti
Mala

ya

118

value indicates that more screens have been explored and will therefore be more

exhaustive for the app exploration.

C4. Crash detection: An Android app crashes when there is an unexpected exit caused

by an unhandled exception. Crashes will result in the termination of the app's processes,

and dialogue is displayed to notify the user about the app crash. The further code the tool

explores, the more likely it is to discover potential crashes.

5.1.3 Apps Selection

For the experimental analysis, 30 Android apps were chosen from the F-Droid

repository. These apps were earmarked from the repository based on two features:

1) the app's number of activities: the apps were categorized as small (number of

activities less than five), medium (number of activities less than ten), and large

(number of activities more than ten). The app’s activities were determined in the

Android manifest file of the app.

2) app permissions required: In this study, only apps that require at least two of the

permissions were selected to evaluate how tools react to different system events.

These permissions include access to contacts, call logs, Bluetooth, Wi-Fi, location,

and camera of the device. App permissions were determined either by checking

the manifest file of the app or by launching the app for the first time and viewing

the permissions request(s) that popped up.

Table 5.1 lists the apps by app type, along with the package name, the number of

activities, methods, and instructions in the app (which offers a rough estimate of the

app size). Acvtool (Pilgun et al., 2020) was used to collect instruction coverage and

method coverage. This tool does not require the source code of the app. Acvtool code

coverage is based on Smali representation of the bytecode.

Univ
ers

iti
Mala

ya

119

 Table 5.1: Overview of Android apps selected for testing.

No APP name Package name Version Category Instruction Methods Activity

1 Bubble com.nkanaev.comics 4.1 Books 5208 463 2

2 WLAN Scanner org.bitbatzen.wlanscanner 4 Communication 2484 141 1

3
Divide

com.khurana.apps.dividean

dconquer
2.1 Education 2306 195 2

4 Raele.concurseiro raele.concurseiro 3 Education 1299 444 2

5 LolcatBuilder com.android.lolcat 2.3 Entertainment 2497 79 1

6 MunchLife info.bpace.munchlife 2.3 Entertainment 551 39 2

7 Currency org.billthefarmer.currency 4 Finance 5461 148 5

8 Boogdroid me.johnmh.boogdroid 4 Game 3984 398 3

9 Hot Death com.smorgasbork.hotdeath 2.1 Game 17679 365 3

10 Resdicegame com.ridgelineapps.resdiceg

ame
1.5 Game 6853 144 4

11 Pushup Buddy
org.example.pushupbuddy 1.6

Health &

Fitness
1985 165 7

12 Mirrored de.homac.Mirrored 2.3 Magazines 3803 219 4

13 A2DP Volume a2dp.Vol 2.3
Maps &

Navigation
13452 600 8

14 Ethersynth net.sf.ethersynth 2.1 Music & Audio 4056 168 8

15 Adsdroid hu.vsza.adsdroid 2.3 Productivity 488 199 2

16 Talalarmo trikita.talalarmo 4 Productivity 5122 658 3

17
Alarm Clock

com.angrydoughnuts.andro

id.alarmclock
2.7 Productivity 5207 334 5

18 World Clock ch.corten.aha.worldclock 2.3 Productivity 5200 315 4

19 Blockinger org.blockinger.game 2.3 Puzzle 7090 356 6

20
Applications info

com.majeur.applicationsinf

o
4.1 Tool 4806 315 6

21 Dew Point de.hoffmannsgimmickstau

punkt
2.1 Tools 2282 75 3

22 drhoffmann de.drhoffmannsoftware 1.6 Tools 5171 164 9

23 List my Apps de.onyxbits.listmyapps 2.3 Tools 1930 96 4

24 Sensors2Pd org.sensors2.pd 2.3 Tools 1346 149 4

25 Terminal Emulator jackpal.androidterm 1.6 Tools 16098 994 8

26 Alogcat org.jtb.alogcat 2.3 Tools 2344 199 3

27
Android Token

uk.co.bitethebullet.android.

token
2.2 Tools 4658 288 6

28 Battery Circle ch.blinkenlights.battery 1.5 Tools 963 79 1

29 Sensor readout de.onyxbits.sensorreadout 2.3 Tools 994 683 3

30 Weather
notifications

ru.gelin.android.weather.no

tification
2.3 Weather 8927 667 7

Univ
ers

iti
Mala

ya

120

5.2 Case Study Execution

The experiments were executed on a 64-Bit Octa-Core machine with a 3.50 Gigahertz

Intel Xeon® CPU running on Ubuntu 16.04 and 8 Gigabytes of RAM. The state-of-the-

art GUI testing tools for Android apps were installed on the dedicated machine for

running the experiments. Five tools with different techniques have been chosen for the

experiment as follows Sapienz (K. Mao et al., 2016), Stoat (Su et al., 2017), Droidbot (Li

et al., 2017), Humanoid (Li et al., 2019), and Android Monkey (Google, 2019j). These

tools are the most recent techniques for Android test generation. Sapienz and Stoat have

been adequately tested and are standard baselines in literature.

The Android emulator x86 ABI image (KVM powered) was used for the experiments.

All comparative experiments ran on emulators because the publicly available version of

Sapienz only supports emulators. In contrast, DroidbotX, Droidbot, Humanoid, Stoat, and

Android Monkey support both emulators and real devices. Moreover, Sapienz and Stoat

ran on the same version of Android 4.4.2 (Android KitKat, API level 19) because of their

compatibility as described in previous studies (Choudhary et al., 2015; Gu et al., 2019);

DroidbotX, Droidbot, Humanoid, and Android Monkey ran on Android 6.0.1 (Android

Marshmallow, API level 23).

To achieve a fair comparison, a new Android emulator was used for each run to avoid

any potential side-effects that may occur between the tools and apps. All tools were used

with their default configurations. According to previous studies (Choudhary et al., 2015;

Gu et al., 2019), Sapienz and Android Monkey were set to 200 milliseconds delay for

GUI state updates. All testing tools were provided an hour to test each app, similar to

other studies (Choudhary et al., 2015; Gu et al., 2017; K. Mao et al., 2016). To compensate

for possible influence brought by randomness during testing, each test was repeated five

times (with each test consisting of one testing tool and one applicable app being tested).

Univ
ers

iti
Mala

ya

121

The final coverage and the progressive coverage were recorded after each action.

Subsequently, the average value of the five tests was calculated as the final result.

5.3 Results and Discussion

In this section, the case study questions were answered by measuring and comparing

four aspects: (i) instruction coverage, (ii) method coverage, (ii) activity coverage, and (iv)

the number of detected crashes achieved by each testing tool on selected apps in our

experiments. Table 5.2, Table 5.3, Table 5.4, and Table 5.5 show the results obtained

from the six testing tools. The gray background cells in the tables indicate the maximum

value achieved during the test. The percentage value is the rounded-up value obtained

from the average of the five iterations of the tests performed on each AUT.

RQ.1: What are the instructions, methods, and activity coverage achieved by

DroidbotX compared to the state-of-the-art tools?

The overall comparison results of the instruction coverage, method coverage, and activity

coverage achieved by Android Monkey (M), Sapienz (Sa), Stoat (St), Droidbot (Dr),

Humanoid (Hu), and DroidbotX (Q) on each subject Android apps are given in Table 5.2,

Table 5.3 and Table 5.4.

1) Instruction coverage: The overall comparison of instruction coverage achieved by

testing tools on selected Android apps is shown in Table 5.2. On average, DroidbotX

achieves 51.5% instruction coverage, which is the highest across the compared tools. It

achieved the highest value on 9 of 30 apps (including four ties, i.e., where DroidbotX

covered the same number of instructions as another tool) compared to other tools. Sapienz

achieved 48.1% followed by Android Monkey (46.8%), Humanoid (45.8%), Stoat (45%),

and Droidbot (45%).

Univ
ers

iti
Mala

ya

122

Table 5.2: Results on instruction coverage by test generation tools

Figure 5.1 presents the boxplots, where x indicates the mean of the final instruction

coverage results across target apps. The boxes provide the minimum, mean, and

maximum coverage achieved by the tools. It also shows that DroidbotX achieves the

highest instruction coverage for all three app size groups. Better results from DroidbotX

can be explained as it accurately identifies which parts of the app are inadequately

explored. The DroidbotX approach is used to explore the UI components by checking all

actions available in each state and avoiding the use of the explored action to maximize

coverage. In comparison, Humanoid achieved a 45.8% average value and had the highest

Apps Under Test Instruction coverage (%)
DroidbotX Droidbot Humanoid Sapienz Stoat Monkey

Bubble 27.9 28.0 25.4 28.2 29.8 30.3
WLAN Scanner 59.4 59.2 58.6 61.3 57.2 58.9
Divide 59.1 56.5 57.4 57.4 55.4 60.8
Raele concurseiro 34.8 34.3 34.2 35.4 39.1 35.5
LolcatBuilder 24.9 24.5 24.6 23.2 21.6 23.2
MunchLife 75.1 72.8 76.5 75.0 75.7 73.6
Currency 49.0 38.6 45.4 49.1 50.3 47.0
Boogdroid 34.5 34.4 34.5 29.8 29.7 29.8
Hot Death 53.7 49.1 49.1 54.2 49.6 51.4
Resdicegame 72.9 66.2 61.6 71.5 64.9 67.2
Pushup Buddy 33.0 27.0 28.5 25.3 21.9 20.2
Mirrored 36.1 36.1 36.0 27.5 25.4 27.5
A2DP Volume 39.1 35.6 26.9 29.5 31.2 25.6
Ethersynth 82.7 47.9 64.8 77.4 55.7 71.5
Adsdroid 34.1 23.0 28.7 30.8 29.6 30.8
Applications info 68.3 57.7 45.7 45.7 38.9 29.4
Blockinger 69.3 67.0 67.9 66.4 66.5 66.0
Dew Point 72.8 67.0 72.9 71.9 68.9 68.2
drhoffmann 36.7 24.8 32.9 36.7 28.2 36.7
List my Apps 58.7 44.5 60.9 64.3 60.0 64.2
Sensors2Pd 70.4 71.1 74.2 73.6 71.3 74.1
Talalarmo 74.4 64.8 74.9 74.1 69.3 76.0
Terminal Emulator 40.9 35.6 36.2 41.4 34.1 40.0
Alarm Clock 64.1 66.3 61.8 49.1 48.5 59.6
Alogcat 70.1 50.6 51.1 62.7 74.8 56.7
Android Token 44.2 37.6 45.1 40.6 37.6 38.0
Battery Circle 81.3 74.0 81.3 78.1 78.1 77.6
Sensor readout 80.1 79.1 79.9 81.5 60.8 79.7
World Clock 46.1 24.8 33.8 41.3 42.5 44.4
Weather
notifications 44.2 37.6 37.9 42.4 41.8 45.8

Overall average 51.5 45.0 45.8 48.1 45.0 46.8

Univ
ers

iti
Mala

ya

123

coverage on 4 out of 30 apps due to its ability to prioritize critical UI components.

Humanoid chooses from ten actions available in each state that are likely to interact with

human users.

As seen in Figure 5.1, Android Monkey's coverage was close to Sapienz's coverage

during a one-hour test. Sapienz uses Android Monkey to generate events and uses an

optimized evolutionary algorithm to increase coverage. Stoat and Droidbot achieved

lower coverage than the other four tools. Droidbot explores UI components in depth-first

order. Although this greedy strategy can reach deep UI pages at the beginning, it may get

stuck because the order of the event execution is fixed at runtime. Droidbot does not

explicitly revisit the previously explored states, and this may fail to cover a new code that

should be reached by different sequences.

Figure 5.1: Variance of instruction coverage achieved across apps and five runs.

Univ
ers

iti
Mala

ya

124

2) Method coverage: DroidbotX significantly outperformed state-of-the-art tools in

method coverage with an average value of 57%. The highest value on 9 out of 30 apps

(including three ties where the tool covered the same method coverage as another tool).

Table 5.3 shows that the coverage of app instructions obtained by the tools is lower than

that of the method. This indicates that the method coverage cannot fully cover all the

statements in the app’s method. On average, Sapienz, Android Monkey, Humanoid, Stoat,

and Droidbot achieved 53.7%, 52.1%, 51.2%, 50.9%, and 50.6% of method coverage,

respectively. Stoat and Droidbot did not obtain the highest coverage of 50% on 10 of the

30 apps after five rounds of testing. In contrast, DroidbotX achieved the highest coverage

of 50% in the twenty-four apps that were tested. In comparison, Android Monkey

obtained less than 50% method coverage in eight apps. Sapienz displayed the best method

coverage on 5 out of the 30 apps (including four ties where the tool covered the same

method coverage as another tool). Sapienz’s coverage was significantly higher for some

apps such as “WLAN Scanner,” “HotDeath,” “ListMyApps,” “SensorReadout,” and

“Terminal emulator”. These apps have functionality that requires complex interactions

with validated text input fields. Sapienz uses the Android Monkey input generation,

which continuously generates events without waiting for the effect of the previous event.

Moreover, Sapienz and Android Monkey can generate several events, broadcasts, and text

that have not been supported by other tools. DroidbotX obtained the best results for

several other apps, especially “A2DPVolume”, “Blockinger”, “Ethersynth”,

“Resdicegame”, “Weather Notification”, and “World Clock”. DroidbotX approach

assigns Q-values to encourage the execution of actions that lead to new or partially

explored states. This enables the approach to repeatedly execute high-value action

sequences and revisit the subset of GUI states that provides access to most of the AUT’s

functionality.

Univ
ers

iti
Mala

ya

125

Table 5.3: Results on method coverage by test generation tools

Figure 5.2 presents the boxplots, where x indicates the mean of the final method

coverage results across target apps. DroidbotX had the best performance compared to

state-of-the-art tools, and Android Monkey was used for evaluation in most Android

testing tools. Android Monkey can be considered a baseline because it comes with an

Android SDK and is popular among developers. Android Monkey obtained a lower

coverage comparing to DroidbotX because of its redundancy and random exploratory

approach.

Apps Under Test Method coverage (%)
DroidbotX Droidbot Humanoid Sapienz Stoat Monkey

Bubble 29.1 33.0 28.0 42.8 44.5 49.0
WLAN Scanner 65.5 65.4 64.4 66.0 59.3 63.5
Divide 63.9 54.5 54.5 52.8 47.2 71.7
Raele concurseiro 36.6 36.6 36.6 41.9 42.3 41.6
LolcatBuilder 32.9 32.9 32.9 32.9 27.8 29.9
MunchLife 66.2 66.2 66.7 66.7 66.7 62.1
Currency 58.1 40.4 53.8 58.8 61.5 55.8
Boogdroid 16.0 14.1 15.5 13.0 12.4 14.6
Hot Death 72.5 66.7 66.4 72.8 63.4 71.9
Resdicegame 66.8 60.6 53.6 62.4 51.3 52.6
Pushup Buddy 57.1 52.2 53.8 51.0 49.7 34.9
Mirrored 47.1 48.5 47.0 44.1 39.7 40.5
A2DP Volume 66.9 60.7 57.8 58.9 59.2 37.2
Ethersynth 85.2 61.8 68.1 78.5 67.1 68.8
Adsdroid 73.4 52.2 63.9 72.9 51.6 72.9
Applications info 65.1 61.6 53.8 58.8 51.8 40.5
Blockinger 82.0 79.1 79.2 77.3 78.5 62.5
Dew Point 75.7 74.9 75.7 75.7 73.9 61.9
drhoffmann 58.0 48.8 57.0 58.0 56.0 58.0
List my Apps 69.4 48.1 71.9 76.0 72.8 72.7
Sensors2Pd 80.7 81.6 90.6 81.9 83.2 86.6
Talalarmo 57.4 48.4 58.0 56.3 51.8 61.3
Terminal Emulator 53.9 52.2 51.2 54.4 46.2 50.7
Alarm Clock 79.9 81.0 66.8 49.7 50.2 52.8
Alogcat 80.9 73.2 75.5 78.9 92.2 69.4
Android Token 58.1 53.9 58.8 55.3 53.9 51.7
Battery Circle 83.5 76.5 85.6 84.1 83.5 83.5
Sensor readout 30.0 30.0 30.0 30.1 28.7 29.2
World Clock 57.5 39.5 39.1 43.8 54.9 54.5
Weather
notifications 66.6 40.2 40.1 53.6 48.3 69.3

Overall average 57.0 50.6 51.2 53.7 50.9 52.1

Univ
ers

iti
Mala

ya

126

3) Activity coverage: The activity coverage is measured by intermittent observation

of the activity stack on the AUT and recording all activities listed down in the android

manifest file. The activity coverage metric was chosen because, once DroidbotX has

reached an activity, it can explore most of the activity’s actions. The results determine

activity coverage differences between DroidbotX and other state-of-the-art tools. The

resulting average value of the tools revealed that the activity coverage performed better

than instruction and method coverage, as shown in Table 5.4.

Figure 5.2: Variance of method coverage achieved across apps and five runs.

Univ
ers

iti
Mala

ya

127

Table 5.4: Results on activity coverage by test generation tools

DroidbotX outperformed the other tools in its activity coverage, such as instruction

and method coverage. DroidbotX has an average coverage of 86.5%, which was best

achieved by the “Alarm Clock” app (including 28 ties, i.e., whereby DroidbotX covered

the same number of activities as another tool). DroidbotX outperformed other tools

because it did not explicitly revisit previously explored states due to its reward function.

This was followed by Sapienz and Humanoid, with the average mean value of activity

coverage at 84% and 83.3%, respectively. Stoat successfully outperformed Android

Monkey in activity coverage with an average activity coverage of 83% due to an intrusive

null intent fuzzing that can start an activity with empty intents. All tools under study were

Apps Under Test Activity coverage (%)
DroidbotX Droidbot Humanoid Sapienz Stoat Monkey

Bubble 50.0 50.0 50.0 50.0 50.0 50.0
WLAN Scanner 100 100 100 100 100 100
Divide 100 100 100 100 100 100
Raele concurseiro 100 100 100 100 100 100
LolcatBuilder 100 100 100 100 100 100
MunchLife 100 100 100 100 100 100
Currency 100 92.0 96.0 100 100 88.0
Boogdroid 86.7 66.7 80.0 100 40.0 46.7
Hot Death 100 100 100 100 100 73.3
Resdicegame 100 100 100 100 100 100
Pushup Buddy 71.4 68.6 71.4 62.9 62.9 62.9
Mirrored 75.0 75.0 75.0 75.0 75.0 85.0
A2DP Volume 95.0 90.0 85.0 100 100 97.5
Ethersynth 100 100 100 100 100 92.5
Adsdroid 100 100 100 100 100 100
Applications info 100 100 100 100 100 100
Blockinger 100 100 100 100 100 100
Dew Point 100 100 100 100 100 100
drhoffmann 97.8 91.1 93.3 93.3 95.6 86.7
List my Apps 100 55.0 100 100 100 100
Sensors2Pd 100 100 100 100 100 100
Talalarmo 100 100 100 100 100 100
Terminal Emulator 37.5 37.5 37.5 37.5 37.5 35.0
Alarm Clock 100 96.0 64.0 60.0 92.0 76.0
Alogcat 66.7 66.7 66.7 66.7 66.7 66.7
Android Token 66.7 53.3 60.0 66.7 50.0 66.7
Battery Circle 100 100 100 100 100 100
Sensor readout 66.7 66.7 66.7 66.7 66.7 66.7
World Clock 100 85.0 95.0 95.0 95.0 70.0
Weather
notifications 57.1 57.1 57.1 45.7 42.9 37.1

Overall average 86.5 82.1 83.3 84.0 83.0 80.0

Univ
ers

iti
Mala

ya

128

able to cover more than 50% of coverage on 25 apps, and four testing tools covered 100%

activity coverage on 15 apps. Android Monkey, however, achieved less than 50% activity

coverage of about three apps. Android Monkey achieved the least activity coverage with

an average mean value of 80%.

Figure 5.3 shows the variance of the mean activity coverage of 5 runs across all 30

apps of the tool. The horizontal axis shows the tools used for the comparison. The vertical

axis shows the percentage of activity coverage. Activity coverage was higher than the

instruction and method coverage. DroidbotX, Droidbot, Humanoid, Sapienz, Stoat, and

Figure 5.3: Variance of activity coverage achieved across apps and five runs. Univ
ers

iti
Mala

ya

129

Android Monkey obtained a 100% coverage increased from a mean coverage of 89%,

85%, 86.6%, 87.3%, 85.8%, and 83.4%, respectively. All tools were able to cover above

50% of the activity coverage. Although Android Monkey implemented more types of

events than other tools, it achieved the least activity coverage. Android Monkey generates

random events at random positions in the App activities. Therefore, its activity coverage

can differ significantly from app to app and may be affected by the number of events

sequences generated. To sum up, the high coverage of DroidbotX was mainly due to the

ability of DroidbotX to perform a meaningful sequence of actions that could drive the app

into new activities.

RQ.2: How effective is DroidbotX to detect unique app crashes compared to other

state-of-the-art tools?

A crash is uniquely identified by the error message and the crashing activity. LogCat

(Google, 2019c) is used to repeatedly check the crashes encountered during the AUT

execution. LogCat is a tool that uses the command-line interface to dump logs of all the

system-level messages. Log reports were manually analyzed to identify unique crashes

from the error stack following Su et al. (Su et al., 2017) protocol. First, crashes unrelated

to the app's execution by retaining only exceptions containing the app's package name

and filter crashes of the tool itself, or initialization errors of the apps in the Android

emulator. Second, compute a hash over the sanitized stack trace of the crash to identify

unique crashes. Different crashes should have a different stack trace and thus a different

hash. Each unique crash exception is recorded per tool, and the execution process is

repeated five times to prevent randomness in the results. The number of unique app

crashes is used as a measure of the performance of the crash detection tool. Crashes

detected by tools on a different version of Android via normalized stack traces were not

compared because different versions of Android have different framework code. In

Univ
ers

iti
Mala

ya

130

particular, Android 6.0 uses the ART runtime while Android 4.4 uses Dalvik VM,

different runtime environments have different thread entry methods. Based on Figure 8,

each of the tools compared complements the others in crash detection and has its

advantages. DroidbotX triggered an average of 18 unique crashes in 14 apps, followed by

Sapienz (16), Stoat (14), Droidbot (12), Humanoid (12), and Android Monkey (11). Like

activity coverage, Android Monkey remains the same as it has the least capacity to detect

crashes due to its exploratory approach that generates a lot of ineffective and redundant

events.

Figure 5.4 summarizes the distribution of crashes by the six testing tools. Most of the

bugs are caused by accessing null references. Common reasons are that developers forget

to initialize references, access references that have been cleaned up, skip checks of null

references, and fail to verify certain assumptions about the environments (Hu et al., 2014).

DroidbotX is the only tool to detect IllegalArgumentException on the ''World Clock'' app,

because it is capable to manage the exploration of states, and systematically sends back

button events that may change the activity life cycle. This bug is caused by an incorrect

redefinition of the onPause method of activity. Android apps may have incorrect behavior

Figure 5.4: Distribution of crashes discovered.

Univ
ers

iti
Mala

ya

131

due to mismanagement of the activity’s lifecycle. Sapienz uses Android Monkey to

generate an initial population of event sequences (including both user and system events)

prior to genetic optimization. This allows Sapienz to trigger other types of exceptions,

including ArrayIndexOutOfBoundsException, and ClassCastException. For the “Alarm

Clock” app, DroidbotX and Droidbot detected a crash on an activity that was not

discovered by other tools in the five runs. Manually inspected several randomly selected

crashes to confirm that they do appear in the original APK as well, and not found no

discrepancy between the original and the instrumented APK behaviors.

Table 5.5: Statistics of crash results on apps by test generation tools understudy

Apps Under Test # of Unique Crashes

DroidbotX Droidbot Humanoid Sapienz Stoat Monkey
A2DP Volume 1 0 0 1 0 0
Alarm Clock 2 2 2 2 1 1
Alogcat 0 0 0 0 0 0
Adsdroid 1 1 1 1 1 1
Android Token 0 0 0 0 0 0
Applicationinfo 0 0 0 0 0 0
Battery Circle 0 0 0 0 0 0
Blockinger 0 0 0 0 0 0
Boogdroid 1 1 1 1 0 1
Bubble 1 1 1 1 1 1
Currency 0 0 0 1 1 1
Dew Point 2 1 1 2 2 1
Divide 0 0 0 0 0 0
Drhoffmann 2 1 2 2 2 2
Ethersynth 1 1 0 1 1 0
Hot Death 0 1 0 0 1 0
List my Apps 0 0 0 0 0 0
Lolcat Builder 1 1 1 0 0 1
Mirrored 0 0 0 1 0 1
MunchLife 0 0 0 0 0 0
Pushup Buddy 1 1 1 0 1 0
Raele.concurseiro 1 0 0 1 0 0
Resdicegame 0 0 0 0 0 0
Sensor readout 0 0 0 1 0 0
Sensors2Pd 1 1 1 1 1 1
Talalarmo 1 0 1 0 1 0
Terminal 1 0 0 0 1 0
Weather 0 0 0 0 0 0
World Clock 1 0 0 0 0 0
WLAN Scanner 0 0 0 0 0 0
Overall average 18 12 12 16 14 11

Univ
ers

iti
Mala

ya

132

RQ.3: How does DroidbotX compare to the state-of-the-art tools in terms of test

sequence length?

The cost of the proposed approach was measured as its running time and the number

of inputs. First, the effectiveness of event sequence length on test coverage and crash

detection was investigated. The event sequence length generally presents the number of

steps required by the test generation tools to detect a crash. It is critical to highlight its

effectiveness due to its significant effects on time, testing effort, and computational costs.

Table 5.6: Experimental results to answer case study questions.

Tools INSTRUCTION
COVERAGE

(%)

METHOD
COVERAGE

(%)

ACTIVITY
COVERAGE

(%)

Number of
crashes

Max
Events

Number
DroidbotX 51.5 57 86.5 18 1000

Droidbot 45 50.6 82.1 12 1000

Humanoid 45.8 51.2 83.3 12 1000

Sapienz 48.1 53.7 84 16 6000

Stoat 45 50.9 83 14 3000

Monkey 46.8 52.1 80 11 20,000

Table 5.6 shows that the Q-Learning approach implemented in DroidbotX achieved

51.5% instruction coverage, 57% method coverage, 86.5% activity coverage, and

triggered 18 crashes within the shortest event sequence length compared to other tools.

The results show that adapting Q-Learning with the UCB strategy can significantly

improve the effectiveness of the generated test cases. DroidbotX generated a sequence

length of 50 events per AUT state with an average of 623 events per run across all apps

(which is smaller than the default maximum sequence length of Sapienz). DroidbotX

completed exploration before reaching the maximum number of events (set to 1000)

within the time limit. Sapienz produced 6,000 events and optimized events sequence

Univ
ers

iti
Mala

ya

133

lengths through the generation of 500 events per AUT state. Nevertheless, it created the

largest number of events after Android Monkey. However, the coverage improvement

was closer to Humanoid and Droidbot, which generated a smaller number of events. Both

Humanoid and Droidbot generated 1,000 events per hour. Sapienz uses Android Monkey

that re-quires many events, which may include many redundant events to achieve high

coverage. Hence, the coverage gained by Android Monkey only increases slightly as the

number of events increases. Thus, a long events sequence length led to a minor positive

effect on coverage and crash detection.

Second, the cost of the proposed approach was measured as its running time. Figure

5.5 depicts the progressive coverage of each tool over the threshold time used (i.e., 60

minutes). The progressive average coverage for all 30 apps was calculated every 10

minutes for each of the test generation tools in the study and a direct comparison of the

final coverage was published. In the first 10 minutes, the coverage for all testing tools in-

creased rapidly, as the apps had just started. At 30 minutes, DroidbotX achieved the

highest coverage value compared to other tools. The reason is that the UCB exploration

strategy implemented in DroidbotX finds events based on their reward and Q-value,

which eventually tries to select and execute the previously unexecuted or less executed

events, thus aiming for high coverage. Sapienz coverage increased rapidly, as the apps

had just started, whereas all UI states were new but could not exceed the peak reached

after 40 minutes. Sapienz has a high tendency to explore visited states, which could

generate more event sequences. Stoat, Droidbot, and Humanoid had almost the same

result and had better activity coverage than Android Monkey. Android Monkey could not

exceed the peak reached after 50 minutes. The reason is that a random approach generates

the same set of redundant events leading to a fall in its activity exploration ability. It is

essential to highlight that these redundant events produced insignificant coverage

improvement as the time budget increased.

Univ
ers

iti
Mala

ya

134

Figure 5.5: Progressive coverage

Univ
ers

iti
Mala

ya

135

RQ.4. How effective is the model constructed by DroidbotX compared to the

state-of-the-art tools?

The graph model enables DroidbotX to manage the exploration of states systematically

to avoid being trapped in a certain state, which also can help to minimize unnecessary

transitions. DroidbotX can achieve higher coverage than the other tools as indicated in

Table 5.6, and its models are more compact without state explosion as shown in Table

5.7.

Table 5.7: Statistics of models built by Droidbot, Humanoid, and DroidbotX

Droidbot Humanoid DroidbotX

Min Mean Max Min Mean Max Min Mean Max

Actions (#) 676 969 997 320 926 995 133 623 950

States (#) 9 69 306 8 60 304 10 75 304

Transition (#) 19 171 476 16 127 473 13 177 662

Table 5.7 shows the statistics of models built by Droidbot, Humanoid, and DroidbotX.

These tools use the UI transition graph to save the memory of state transitions. DroidbotX

generates an average of 623 events to construct the graph model, while Droidbot and

Humanoid generate 969 and 926 average events, respectively. Droidbot cannot

exhaustively explore app functions due to its simple exploration strategies. The depth-

first systematic strategy used in Droidbot is surprisingly much less effective than the

random strategy since it visits UIs in a fixed order and spends much time on restarting the

app when no new UI components are found. Stoat requires more time for test execution

due to its model construction in the initial phase which consumes time. Model-free tools

such as Android Monkey and Sapienz can easily mislead exploration because of the lack

of connectivity information between GUIs (Gu et al., 2019).

Univ
ers

iti
Mala

ya

136

The results presented in Table 5.7 indicate that DroidbotX explores more app

functionality and produces more comprehensive models. The evaluation results show that

two-level state representation is appropriate to identify an app state. This state abstraction

generates an acceptable number of states for an app, at the same time sufficiently captures

functions.

RQ.5. What is the time complexity of DroidbotX algorithm?

In this section, the computation time complexity of the Q-learning test coverage

algorithm was analyzed. Different Q-learning algorithms have different orders of

complexity for the generation of a test case, ranging from the highest order of 𝑛2, 𝑛 log 𝑛,

to 𝑛, where 𝑛 denotes the number of executed test cases. Intuitively, test case generation

algorithms with higher complexity orders are supposed to have a stronger capability for

fault detection. Normally, such an expectation exists, but not always (Anand et al., 2013).

Assuming the total number of events possible for the system is 𝑂(𝐸) = 𝑚, and the

total number of possible states is 𝑂(𝑆) = 𝑛. Each system has its variable for computation

so for average we will be taking computation time as 𝑐, 𝑐1, 𝑘, 𝑘1, 𝑘2, 𝑘3, 𝑘4 depending

upon the system functionality and operations thrust. Table 5.8 shows Q-Learning-based

test generation algorithm corresponds to the time it takes to run each line of code.

 Univ
ers

iti
Mala

ya

137

Table 5.8: Q-Learning-based test generation algorithm corresponds to time.

Q-learning based test generation Computation cost/time per action

, Application under test

, set of states;

, q-function for all the state-action pairs;

, transition matrix, epsilon;

-exploration parameter

(S, Q, P) ← (Ø, Ø, Ø) 𝑘1

launch(A) 𝑘2

true max number of times it will go through =

𝒏

 Event ← getEventFromActor(Q) refer to the function, time=

𝒄 + 𝒏 ∗ 𝒌 + 𝒄𝟏 + 𝒌𝟏 + 𝟐 ∗ 𝒏 + 𝒌 + 𝒄

 Update P[old_state,new_state] (order of the matrix)

 Q← UpdateQFunction(Q, P) 𝒌 + 𝟗(𝒏[𝒎]) + 𝒏([𝒎] + [𝒎]))

 Execute(Event) 𝒌𝟑

 enable: 𝒌𝟒

 𝒄

(S, Q, P) 𝒄

 UpdateQFunction(Q, P)

 Q_target ← (Ø) 𝒌

 For index in[0,1,2..9] do no of loops it will go through=

 For s in S do no of loops it will traverse = 𝑶(𝑺) = 𝒏

 Q__target[s]<-- maximum of Q[s,event]

 for all events

time = order of Event = 𝑶(𝑬) = 𝒎

 For s in S do time=order of states= 𝑶(𝑺) = 𝒏

 For a in all events that was ever made do no of loops to be iterated = 𝑶(𝑬)

 q[s,a]<--0.99*sum(Q_target[:]*P[s,:,a]) time = 𝑶(𝑺) = 𝒏

 Q 𝒄

getEventFromActor(Q)

 state← getCurrentState() 𝒄

 If state is not in S: 𝑶(𝑺) = 𝒏

 Q[state,:]<--1

 If Random[0,1]<epsilon do 𝒄𝟏

 Key ← keyEvent 𝒌𝟏

 else

 Event ← getSoftArgmaxAction(Q_state) (𝑶(𝑺) + 𝑶(𝑺) + 𝒌 + 𝒄)

 event

getSoftArgmaxAction(Q_state)

 max _qvalue← max(Q_state) 𝑶(𝑺) = 𝒏

 best_actions ← all events where

 Q_state[event]= maxqvalue

𝑶(𝑺) = 𝒏

 event ← choose randomly from best actions 𝒌

 event 𝒄

Univ
ers

iti
Mala

ya

138

Assuming the total number of events possible for the system is 𝑚 and the total number

of possible states is 𝑛 . Each system has its own variable for computation so for average

we will be taking computation time as 𝑐, 𝑐1, 𝑘, 𝑘1, 𝑘2, 𝑘3, 𝑘4 depending upon the system

functionality and operations thrust. Table 5.9 shows the action selector function

corresponds to time.

Table 5.9: Action selector function corresponds to time.

Q-learning based test generation Computation cost/time per action

 true

max number of times it will go through = 𝒏

 Event ← getEventFromActor(Q) refer to the function, time =

𝒄 + 𝒏 ∗ 𝒌 + 𝒄𝟏 + 𝒌𝟏 + 𝟐 ∗ 𝒏 + 𝒌 + 𝒄

 Update P[old_state,new_state] (order of the matrix)

 Q← UpdateQFunction(Q, P) 𝒌 + 𝟗(𝒏[𝒎]) + 𝒏([𝒎] + [𝒎]))

 Execute(Event) 𝒌𝟑

 enable: 𝒌𝟒

 (S, Q, P)

The total time for running the algorithm is calculated as follows

 𝑘1 + 𝑘2 + 𝑛[(𝑐 + 𝑛 ∗ 𝑘 + 𝑐1 + 𝑘1 + 2 ∗ 𝑛 + 𝑘 + 𝑐) + 𝑂[𝑃] + 𝑘 + 9(𝑛[𝑚]) +

𝑛([𝑚] + [𝑚])) + 𝑘3 + 𝑘4 + 𝑐)] + 𝑐

Assuming all constants to be average of 𝑐 for the simplicity of the solution we have, the

total time for running the algorithm is as follows

= 2 ∗ 𝑐 + 𝑛[𝛴𝑃 + 𝑐 ∗ 𝑛 + 2 ∗ 𝑛 + 4 ∗ 𝑐 + 𝑐 + 9(𝑛 ∗ 𝑚 + 2 ∗ 𝑛 ∗ 𝑚) + 3𝑐] + 𝑐

= 2 ∗ 𝑐 + 𝑛[27𝑛 ∗ 𝑚 + 𝑐 ∗ 𝑛 + 2 ∗ 𝑛 + 4 ∗ 𝑐 + 3 ∗ 𝑐] + 𝑐

= 2 ∗ 𝑐 + 𝑛[27𝑛 ∗ 𝑛 ∗ 𝑚 + 𝑐 ∗ 𝑛 + 2 ∗ 𝑛 + 7 ∗ 𝑐] + 𝑐

Univ
ers

iti
Mala

ya

139

= 𝐾 + 𝑛[27𝑛 ∗ 𝑚]

= 27𝑛 ∗ 𝑛 ∗ 𝑚 + 𝐾

= 𝑂(27 𝑛 ∗ 𝑛 ∗ 𝑚) , 𝑛 and 𝑚 being equivalent

for very high boundaries = 𝑂(𝑛 ∗ 𝑛 ∗ 𝑛) = 𝑂(𝑛3)

For calculating the average time analysis, Table 5.10 shows Q-Learning-based test

generation algorithm corresponds to time, we used the probabilistic distribution of the

states and test cases and integrate them over time to find out the average value. As we

have assumed, there is 𝑛 number of states, probability of start state is 1/𝑛, probability of

end state is 1/(𝑛 − 1) , probability of action between the transition of states 1/𝑘 .

Therefore, the probability of getting a test case is 1/𝑛 ∗ 1/(𝑛 − 1) ∗ 1/𝑘. Let at any

given point of time, there is 𝑟 number of states in our matrix, therefore, the probability of

the state not being in the matrix is 1 − 𝑟/𝑛. The average time for running the algorithm

is calculated as follows = 𝑛 ∗ [5𝑐 + 𝑛 + 𝑟 + 𝐾 + 9[𝑟 ∗ 𝑚/𝑛 + 𝑟 ∗ 𝑟 𝑎] + 𝑐]. Taking

all the constants to be equal to 𝜃 and the coefficient of 𝑟 ∗ 𝑟 be 𝛼 ,

= 𝑛 ∗ [𝑛 + 𝛼 ∗ 𝑟. 𝑟 + 𝜃] (5.1)

Where 𝑟 is the range from 1 to 𝑛 , therefore averaging 𝑟 ∗ 𝑟 over the sample

= (𝑛)(2𝑛 + 1)(𝑛 + 1)/6/𝑛 ∗ 𝑛 (5.2)

Using equation (5.2) in equation (5.1)

= 𝑛 ∗ (𝑛 + 𝑛 ∗ 𝛽)

= 𝑂(𝑛 ∗ 𝑛)

Thus, the average running time is in order of 𝑂(𝑛2).

Univ
ers

iti
Mala

ya

140

Table 5.10: Q-Learning-based test generation algorithm corresponds to time for
average time analysis.

Q-learning based test generation Computation cost/time per action
, Application under test

, set of states;

, q-function for all the state-action pairs;

, transition matrix, epsilon;

-exploration parameter

(S, Q, P) ← (Ø, Ø, Ø) 𝒌𝟏

launch(A) 𝒌𝟐

true max number of times it will go through

= 𝒏

 Event ← getEventFromActor(Q) refer to the function, time=

𝟓𝒄 + 𝒏 + 𝒓

 Update P[old_state,new_state] (order of the matrix)

 Q← UpdateQFunction(Q, P) 𝑲 + 𝟗(𝒓 ∗ 𝒎/𝒏 + 𝒓 ∗ 𝒓 𝒂) + 𝒄

 Execute(Event) 𝒌𝟑

 enable: 𝒌𝟒

 𝒄

(S, Q, P) 𝒄

 UpdateQFunction(Q, P)

 Q_target ← (Ø) 𝒌

 For index in[0,1,2..9] do no of loops it will go through=

 For s in S do no of loops it will traverse=

 Q__target[s]<-- maximum of Q[s,event]

 for all events

time = order of Event = 𝑶(𝑬) = 𝒎 ∗ 𝒓/𝒏

 For s in S do time=order of states= 𝑶(𝑺) = 𝒏 ∗ 𝒓/𝒏

 For a in all events that was ever made do no of loops to be iterated = 𝑶(𝑬) = 𝒏 ∗

𝒓/𝒏

 q[s,a]<--0.99*sum(Q_target[:]*P[s,:,a]) time =𝑶(𝑺) = 𝒏 ∗ 𝒓/𝒏

 return Q 𝒄

getEventFromActor(Q)

 state← getCurrentState() 𝒄

 If state is not in S: 𝑶(𝑺) = 𝒓/𝒏 ∗ 𝒏

 Q[state,:]<--1 𝒌

 If Random[0,1]<epsilon do 𝒄𝟏

 Key ← keyEvent 𝒌𝟏

 else

 Event ← getSoftArgmaxAction(Q_state) (𝒓/𝒏 ∗ 𝒏 + 𝒓/𝒏 ∗ 𝒏 + 𝒌 + 𝒄)

return event

getSoftArgmaxAction(Q_state)

 max _qvalue← max(Q_state) 𝑶(𝑺) = 𝒏 ∗ 𝒓/𝒏

 best_actions ← all events where

 Q_state[event]= maxqvalue

𝑶(𝑺) = 𝒏 ∗ 𝒓/𝒏

 event ← choose randomly from best actions 𝒌

 return event 𝒄

Univ
ers

iti
Mala

ya

141

Figure 5.6 represents the running time of the algorithm under worst-case scenarios and

average case scenarios. The worst-case scenario 𝑂(𝑛3) is the corresponding time for the

execution when action, event, and states are all worst-case that is they take permutation

of all the possible outcomes. While the average case scenarios 𝑂(𝑛2), i.e., the time is

calculated using the probability distribution of action, event, and states.

In a vast number of real-world problems, there are desired states to be reached through n-

number of possible states by performing 𝑘 number of actions. The initial matrix of the

state space is unknown in such problems. Previous approaches for solving these kinds of

problems required traversing all the possible paths or some of the paths were eliminated

on some initial conditions, such types of solutions. The feasibility of using such solutions

becomes very limited as the space size 𝑛 increases took exponential time for the

execution. In this research, however, it is shown that there are possible improvements in

the structure and solutions of such problems. First, we can create a graph out of such

problems and try to find out the shortest path, which will bring down the algorithm time

analysis to 𝑂(𝑛3), and then further we can use the probabilistic distribution of states and

Figure 5.6: Time Complexity Analysis

Univ
ers

iti
Mala

ya

142

actions, considering some of the random combinations of states, action, and events, the

test cases can be largely populated, and the time complexity is gradually reduced to

𝑂(𝑛2). The same is proved in this research.

The complexity of the Q-learning test coverage algorithm is 𝑂(𝑛3) when all the state,

actions, and events are taken into account and these variables are accounted for the

maximum number of occurrences, i.e., we assume that all these states, actions, and events

will appear at some point in time. The complexity of the algorithm can be reduced

significantly by randomly considering some of the events, states, and actions, we use

some of the instances of the probabilistic distribution of states, actions, and events and

average them over time. For instance, the probability of an event = 1/𝑛 out of 𝑛 events,

probability of an action = 1/𝑘 out of 𝑘 action, and the probability of state = 1/𝑛 .

Averaging the probabilities over time and using them in our equation, we find out that the

average time of the algorithm reduces to 𝑂(𝑛2).

Koenig and Simmons (1993) analyze the time complexity of the Q-Learning approach.

They show that if the agent has initial knowledge of the state space or the state space has

additional properties, the 𝑂(𝑛3) bound can be decreased further. In the Q-Learning

approach, the task of reaching a goal state for the first time is reduced from exponential

time 𝑂(𝑒𝑛) to 𝑂(𝑛3), by using the depth search method and finding out the shortest path

between the source and the final destination, the complexity of the Q-Learning algorithm

can be further decreased by considering duplicate values.

Our algorithm reduces the time complexity of 𝑂(𝑛3) to 𝑂(𝑛2) for the average case

scenario as compared to the Q-Learning algorithm baseline (Koenig & Simmons, 1993).

Here also we are using the depth search algorithm, each time a favorable state is reached

we award the path matrix with the reward or incentive and comparing all the paths we

Univ
ers

iti
Mala

ya

143

come to our conclusion, but we randomize the probabilities and average them over time,

this gives us randomized sets of outputs with optimized time complexity of 𝑂(𝑛2).

5.4 Threats to Validity

There are threats and limitations to the validity of our study. Threats to internal

validity, the non-deterministic approach of the tools results in obtaining different

coverage for each run. Thus, multiple runs were executed to reduce this threat and to

remove outliers that could affect the study critically. Each testing tool was allowed to run

five times, and the test results were recorded and then computed to yield an average result

of final coverage and progressive coverage of the tools. Another threat to the internal

validity of our study is Acvtool’s instrumentation effect, which affects the integrity of the

results obtained. These may be caused by errors triggered by Acvtool’s incorrect handling

of the binary code or by errors in our experimental scripts. To mitigate this risk, the traces

of our experiments for the subject apps were manually inspected.

External validity was threatened by the representativeness of the study to the real

world. This means how closely the apps and tools were used in this study to reflect the

real world. Moreover, the generalizability of the results was limited as we used a limited

number of subject apps. To mitigate these, a standard set of subject apps was used in our

experiment from various domains, including fitness, entertainment, and tools

applications. The subject apps from F-Droid, which is commonly used in Android GUI

testing studies, were carefully selected and the details of the selection process were

explained in Section 5.1.3. Therefore, our test is not prone to selection bias.

Univ
ers

iti
Mala

ya

144

5.5 Conclusion

This chapter provided an empirical evaluation of the effectiveness of DroidbotX and a

comparison with GUI test generation tools for Android apps using 30 Android apps. Four

criteria (i) instruction coverage, (ii) method coverage, (iii) activity coverage, and (iv)

number of detected crashes, were set to evaluate and compare GUI test generation tools.

Five tools with different techniques have been chosen for the experiment as follows

Sapienz (search-based), Stoat (model-based), Droidbot (model-based), Humanoid (deep

Q network), and Android Monkey (random-based). These tools are the most recent

techniques for Android testing. Moreover, the computation time complexity of the Q-

Learning test coverage algorithm was analyzed. The results showed that time complexity

was reduced significantly from 𝑂(𝑛3) to 𝑂(𝑛2) for the average case scenario by randomly

considering some of the events, states, and actions, and using the probabilistic distribution

of states, actions, and events and average them over time. The experimental results reveal

the capacity of the approach to achieve 51.5% instruction coverage, 57% method

coverage, 86.5% activity coverage, and triggered 18 crashes within the shortest event

sequence length over the five tools. The results show that the adaptation of Q-Learning

with the UCB strategy can significantly improve the generated test cases' effectiveness.

The study confirmed that the approach fulfilled its objective, and its aim was realized.

 Univ
ers

iti
Mala

ya

145

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

From the presentation and evaluation of the proposed approach, it is evident that the

proposed approach can efficiently and effectively maximize instruction coverage, method

coverage, and activity coverage within the shortest event sequences and time limit. This

chapter highlights the conclusions of this thesis and outlines the possible directions for

future works. The chapter further explains how to fulfill this research's aim and objectives

(in chapter 1). It presents this thesis's contributions and highlights the importance of the

work carried out in this study. Lastly, the limitations of this study are highlighted, and the

possible future works concluded.

In this chapter, the outline is organized as follows: Section 6.1 shows how this study's

aim and objectives are attained, while section 6.2 describes this thesis's contributions.

Section 6.3 highlights the significance of this work. This study's publications are listed in

section 6.5, while the limitations and future works are shown in section 6.4.

6.1 Restatement of Research Objectives

This research aims to generate effective GUI test cases for Android apps that maximize

coverage by minimizing redundant event execution. The full explanation of how to attain

this research aims by realizing each objective which is stated in section 1.4.

• To review the current state-of-the-art GUI testing tools to generate test cases

for Android Apps.

This research's objective was fulfilled, and the most credible works reported in articles

and conferences were reviewed accordingly. The relatively new GUI testing tools for

Android apps were comprehensively reviewed to analyze their strengths and weaknesses.

A comprehensive thematic taxonomy was proposed based on an extensive review of

Android apps' existing GUI testing tools. The critical features and related aspects of these

Univ
ers

iti
Mala

ya

146

tools are thoroughly examined to evolve the proposed taxonomy. According to the

taxonomy parameters, the tools are exhaustively analyzed to explore shared traits and

contrasts among existing tools. Finally, several research issues in Android app GUI

testing are put forward that require further consideration to enhance Android app testing

tools. This review is presented in chapter 2.

• To examine the effectiveness of test generation tools for Android apps in

terms of method coverage, activity coverage, and crash detection.

To fulfill this objective, all the identified research problems (low coverage and events

sequence length) were verified and addressed in this research. To analyze the significance

of these research problems, an analytical-based analysis was carried out by using an

empirical case study on 50 different Android apps downloaded from the F-Droid and

AppBrain repositories. The test generation tools' effectiveness, especially in the events

sequence length of the overall test coverage and crash detection, were evaluated against

three criteria, method coverage, activity coverage, and many detected crashes. The

findings indicate that a long events sequence performed better than the shorter events

sequence. However, long events sequence led to a minor positive effect on the coverage

and crash detection. Moreover, the results showed that the tools achieved less than 40%

of the method coverage and 67% of the activity coverage. Furthermore, most of the tools

find a fault in the user events, and none could find a fault in a system event. Besides, test

generation tools generate text inputs randomly, which affects their coverage performance.

This analysis is presented in chapter 3.

• To develop an approach using Q-Learning to optimize test case generation

that maximizes instruction coverage, method coverage, and activity coverage.

This study's objective was achieved by proposing an efficient test case generation

approach that maximizes instruction, method, and activity coverage with minimizing

Univ
ers

iti
Mala

ya

147

redundant execution of events. The proposed solution is derived from the review between

reinforcement learning and test case generation approaches to take advantage of both a

randomly based approach and a model-based approach. Q-Learning technique with UCB

exploration strategy was adopted to generate GUI test cases for Android apps to improve

coverage and crash detection. This approach systematically selects events and guides the

exploration to expose the functionalities of an AUT. It generates user and system inputs

that target new states of the app and deploys the app's execution on the generated inputs

to construct a state-transition model. Instead of randomly selecting the actions, the test

generator learns how to explore new states by using new actions to gain more rewards.

Thus, events never selected can present a higher reward than already executed events,

which reduces the redundant execution of events and increase coverage. This approach

was implemented into a test tool named DroidbotX. The tool was used to evaluate the

practical usefulness and applicability of the approach. DroidbotX constructs a state-

transition model of the app and generates test cases. These test cases follow the sequences

of events that are the most likely to explore the app's functionalities. This was described

in chapter 4.

• To evaluate the ability of the proposed approach to generate effective test

cases that detect crashes and maximize instruction coverage, method coverage, and

activity coverage on real-world Android Apps.

This objective was fulfilled by evaluating and analyzing the proposed approach using an

empirical case study. The proposed approach was evaluated in comparison with top-

quality test generation tools. DroidbotX was compared with Android Monkey, Sapienz,

Stoat, Droidbot, Humanoid on 30 Android apps from the F-Droid repository. In the

experiment, instruction coverage, method coverage, activity coverage, crash detection,

running time, and test sequence length were analyzed to assess the approach's

Univ
ers

iti
Mala

ya

148

performance. All tools were tested and configured on a new emulator; each tool was run

five times to avoid randomness during testing. The empirical data were validated by

statistical analysis. Acvtool instrumented all the apps and collected the statistics of

instruction and method coverage during testing. Acvtool does not require the source code

of the app. Simultaneously, LogCat dumps a log of all the system-level messages and

collects all fatal exceptions encountered during the AUT's execution for crash detection.

The results show the significant performance of the proposed approach. The Q-Learning-

based test coverage approach achieved (51.5%) instruction coverage, (57%) method

coverage, (86.5%) activity coverage, and triggered (18) crashes within the time limit and

shortest event sequence length compared to the other tools. The results show that Q-

Learning adaptation with UCB exploration can significantly improve the generated test

cases' effectiveness. The study confirmed that the approach fulfilled its objective, and its

aim was realized.

6.2 Research Contributions

This study produces multiple contributions to the body of knowledge as follows.

• Taxonomy of GUI testing tools for Android applications

The taxonomy of GUI testing tools for Android applications was produced based on

an extensive review of existing GUI testing tools for Android applications to analyze their

strengths and weaknesses. The proposed taxonomy presents significant testing aspects

such as automated activity testing, testing approach, type of evaluation method, and

characteristics of the technologies used in state-of-the-art GUI testing tools. The

taxonomy focused on test case generation as it is one of the most demanding testing

activities tasks because of its strong impact on the whole testing process efficiency. The

proposed taxonomy can serve as a basic tool to differentiate existing GUI testing tools.

The taxonomy also helps researchers differentiate all GUI test case generation concepts

Univ
ers

iti
Mala

ya

149

for Android applications and explore the existing tools and techniques. The classification

aims to be a guideline for researchers, testers, and test tool developers. This research's

findings were presented in chapter 2.

• Empirical Analysis of test generation tools for Android Applications

The additional contribution has been inputted to the body of knowledge by empirically

analyzing the effectiveness of six test generation tools for Android applications. The tools

can generate user events and some of the system events that increase the possibility of

finding faults on system events. Three criteria, methods coverage, activity coverage, and

their ability to detect crashes were used to evaluate the testing tools. This study shows

that longer events sequence led to a small positive effect on coverage and crash detection;

Stoat and Android Monkey attained the highest number of events. Meanwhile, coverage

performance was similar to Humanoid and Droidbot, which generated a smaller number

of events. Moreover, this study showed that Sapienz was the best-performing tool that

satisfies all three criteria. Despite Sapienz optimized events sequence length, it generated

the highest number of events, and it is unable to detect crashes that can only be reached

from a long events sequence. Besides, Android Monkey was able to reveal stress testing

crashes. However, it was limited to generate inputs relevant to the app, mainly due to its

randomness in generating unreproducible events with long sequences. Moreover, most of

the tools were able to find a fault in the user events, and none of them was able to find a

fault in a system event. Besides, test input generation tools generate random text inputs

that impact their coverage performance, which could be fixed in the future by supporting

text prediction or incorporating other text input generation methodologies. This study

appeared in chapter 3 and published in the literature in due time.

Univ
ers

iti
Mala

ya

150

• An effective approach for generating test for Android application based on

Q-learning

A novel approach was designed and implemented to overcome the shortcomings of the

existing approaches lacking in the literature. The proposed solution is derived from the

review between reinforcement learning, and test case generation approaches explained in

chapter 2 to take advantage of both randomly based and model-based approaches. The

proposed approach adopted the Q-Learning technique to generate an optimal GUI test

case for Android applications to improve coverage, and crash detection. This approach

was implemented into a test tool named DroidbotX and used the tool to evaluate the

approach's practical usefulness and applicability. It generates user and system inputs that

visit unexplored states of the app and uses the app's execution on the generated inputs to

construct a state-transition model. Instead of randomly selecting the actions, the test

generator learns how to act in an optimal way that explores new states by using new

actions to gain more rewards. Thus, events never selected can present a higher reward

than already executed events, which reduces the redundant execution of events and

increase coverage. The proposed approach was highlighted in chapter 4 and made

available in the literature for developers to use.

• Empirical Analysis for the proposed approach

The empirical and analytical evaluation techniques of the proposed approach were

created using an empirical-based case study approach. The effectiveness of the proposed

approach was performed and compared to the state-of-the-art tools. The approach was

described in chapter 4, and the results are made available in chapter 5. Compared to the

other approaches, the results' test reveals the capacity of the approach to achieve 51.5%

instruction coverage, 57% method coverage, 86.5% activity coverage, and triggered 18

crashes within the shortest event sequence length over the five tools. The results show

Univ
ers

iti
Mala

ya

151

that the adaptation of Q-Learning with the UCB strategy can significantly improve the

generated test cases' effectiveness. The study confirmed that the approach fulfilled its

objective, and its aim was realized.

6.3 Significance of the Work

This section describes the significance of the proposed approach concerning the

research problems found in section 3.4. The features are as follow

• Events sequence length: An important feature of the proposed approach is

producing the shortest possible event sequence length while increasing the fault-finding

probability. The proposed approach achieved the shortest event sequence by configuring

the event inputs to 1000 to satisfy varying instruction, method, and activity coverage

criteria and crashes detection. The configuration implemented revealed that the approach

is practical for debugging and automatically reduces the testing space.

• Events sequence redundancy: The proposed approach generates test cases that are

not redundant with no interaction. Test cases have similar steps where test cases may

contain other tests or other tests with loops. A high redundancy negatively affects

coverage efficiency since the testing tool has to generate many events to achieve the same

coverage as one with low redundancy. Also, the capability to find crashes is reduced since

the test suite tends to re-execute the same steps. The proposed approach generates

effective GUI test cases. It uses an effective exploration strategy that reduces actions

redundant execution. It tries to ensure that each action is well explored. The proposed

approach reduces the number of ineffective actions performed and explores as much app

state as possible by sending relevant actions for each widget.

Univ
ers

iti
Mala

ya

152

6.4 Limitation and Future Work

Although DroidbotX has shown to be significantly better than existing tools for GUI

test case generation of Android applications, there are several avenues of future research

and improvement.

• Test Oracle: Currently, DroidbotX test coverage approach focuses on generating

test cases, rather than constructing a test oracle that results in oracles that determine

whether test cases pass or fail. Automated test oracle construction is a significant

challenge beyond this research scope, but certainly as an avenue of future research

interests. A test oracle is necessary to have the user in the loop to generate oracles that

assess intended app behaviors. Hence, reducing the number of test cases to be inspected

is certainly beneficial. To achieve fully automated testing of the Android app, the

automated test generation technique alone is insufficient. A human tester must manually

ascertain whether each test case diverges from the expectation. An automated test oracle

is a technique used to prevent or solve this problem. Oracle is used to export test cases to

executable test scripts during the implementation stage. A test case has been immediately

materialized as a script; a human tester can initiate a test oracle simply by including

assertions to the script.

• More improvement in coverage: DroidbotX can improve coverage significantly

from state-of-the-art tools for GUI test case generation of Android applications, the test

coverage is still relatively low. Specifically, the coverage is below 30% for some apps.

This reason is that many apps need specific inputs such as login forms that are difficult

or even impossible to generate automatically without being pre-programmed to behave

optimally when confronting this form. The pre-programming approach cannot scale

because different apps' login forms will appear different and function differently. The

more effective approach is to provide an interface via which a human tester can pass

Univ
ers

iti
Mala

ya

153

knowledge about such special cases to an automated test generation tool. It is easy for a

human tester to recognize a login form during testing and quickly pass it through by

providing a proper credential. A possible solution is to incorporate human knowledge to

offer the automatic tool's needed guidance with little effort. Moreover, the ability to

generate tests that can achieve high code coverage has applications beyond testing for

functional defects: Energy issues, latent malware, and portability problems are important

concerns in the context of mobile devices that are often effectively detected by executing

the code. This study's future work is to modify the approach to increase the coverage

capacity and detect crashes and exploit the poor action discovered in test case generation

to improve crash detection.

• Support more forms of inputs: Some forms of inputs, like system broadcasts, and

sensor events, were not considered in our approach. This is a limitation that is peculiar to

DroidbotX because the inputs require a special event generation strategy. However, it is

not much of a huge problem at the moment. Most of the apps can be well-tested without

involving these actions. Although DroidbotX does not predict the text when sending text

input actions, there is the possibility that it could be fixed in the future by extending the

model to support text prediction. Alternatively, it can be solved by integrating other text

input generation techniques. Moreover, the model constructed by DroidbotX is still not

complete since it cannot capture all possible behaviors during exploration, which is still

an important research goal on GUI testing. All the events would introduce

nondeterministic behavior if they were not properly modeled such as system events and

events coming from motion sensors (e.g., accelerometer, gyroscope, and magnetometer).

DroidbotX will be extended in the future to include more system events.

Univ
ers

iti
Mala

ya

154

6.5 List of Scholarly Publications

The list of publications related to the research undertaken in this thesis is as follows:

Yasin, H.N.; Hamid, S.H.A.; Yusof, R.J.R.; Hamzah, M. An Empirical Analysis of

Test Input Generation Tools for Android Apps through a Sequence of Events. Symmetry

2020, 12,

Yasin, H.N.; Hamid, S.H.A.; Raja Yusof, R.J. DroidbotX: Test Case Generation Tool

for Android Applications Using Q-Learning. Symmetry 2021, 13, 310.

Yasin, H. N., Hamid S. H., & Raja-Yusof, R. J., (2021) GUI Testing Frameworks for

Android apps: Taxonomy and Open Research Issues. (draft)

Univ
ers

iti
Mala

ya

155

REFERENCES

Adamo, D., Khan, M. K., Koppula, S., & Bryce, R. (2018). Reinforcement learning for
Android GUI testing. Proceedings of the 9th ACM SIGSOFT International
Workshop on Automating TEST Case Design, Selection, and Evaluation,

Adamo, D., Nurmuradov, D., Piparia, S., & Bryce, R. (2018). Combinatorial-based event
sequence testing of Android applications. Information and Software Technology,
99, 98-117.

Adamsen, C. Q., Mezzetti, G., & Møller, A. (2015). Systematic execution of android test
suites in adverse conditions. Proceedings of the 2015 International Symposium on
Software Testing and Analysis,

Amalfitano, D., Amatucci, N., Fasolino, A. R., & Tramontana, P. (2015a). A conceptual
framework for the comparison of fully automated gui testing techniques. 2015
30th IEEE/ACM International Conference on Automated Software Engineering
Workshop (ASEW),

Amalfitano, D., Amatucci, N., Fasolino, A. R., & Tramontana, P. (2015b). AGRippin: a
novel search based testing technique for Android applications. Proceedings of the
3rd International Workshop on Software Development Lifecycle for Mobile,

Amalfitano, D., Fasolino, A. R., & Tramontana, P. (2011). A gui crawling-based
technique for android mobile application testing. 2011 IEEE fourth international
conference on software testing, verification and validation workshops,

Amalfitano, D., Fasolino, A. R., Tramontana, P., & Amatucci, N. (2013). Considering
context events in event-based testing of mobile applications. 2013 IEEE sixth
international conference on software testing, verification and validation
workshops,

Amalfitano, D., Fasolino, A. R., Tramontana, P., De Carmine, S., & Imparato, G. (2012).
A toolset for GUI testing of Android applications. 2012 28th IEEE International
Conference on Software Maintenance (ICSM),

Amalfitano, D., Fasolino, A. R., Tramontana, P., De Carmine, S., & Memon, A. M.
(2012). Using GUI ripping for automated testing of Android applications.
Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering,

Amalfitano, D., Fasolino, A. R., Tramontana, P., & Robbins, B. (2013). Testing android
mobile applications: Challenges, strategies, and approaches. In Advances in

Computers (Vol. 89, pp. 1-52). Elsevier.

Amalfitano, D., Fasolino, A. R., Tramontana, P., Ta, B. D., & Memon, A. M. (2014).
MobiGUITAR: Automated model-based testing of mobile apps. IEEE software,
32(5), 53-59.

Ammann, P., & Offutt, J. (2016). Introduction to software testing. Cambridge University
Press.

Univ
ers

iti
Mala

ya

156

Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen, M. B., Grieskamp, W., Harman,
M., Harrold, M. J., Mcminn, P., & Bertolino, A. (2013). An orchestrated survey
of methodologies for automated software test case generation. Journal of Systems

and Software, 86(8), 1978-2001.

Anand, S., Naik, M., Harrold, M. J., & Yang, H. (2012). Automated concolic testing of
smartphone apps. Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering,

AppBrain. (2009). Monetize, advertise and analyze Android apps | AppBrain.
TheAppBrain. Retrieved 20 December 2019 from https://www.appbrain.com/

Arcuri, A. (2011). A theoretical and empirical analysis of the role of test sequence length
in software testing for structural coverage. IEEE Transactions on Software

Engineering, 38(3), 497-519.

Arel, I., Liu, C., Urbanik, T., & Kohls, A. G. (2010). Reinforcement learning-based multi-
agent system for network traffic signal control. IET Intelligent Transport Systems,
4(2), 128-135.

Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep
reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6),
26-38.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2), 235-256.

Azim, T., & Neamtiu, I. (2013). Targeted and depth-first exploration for systematic
testing of android apps. In Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages &
Applications, Indianapolis; pp. 641–660.

Baek, Y.-M., & Bae, D.-H. (2016). Automated model-based Android GUI testing using
multi-level GUI comparison criteria. Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering,

Banerjee, I., Nguyen, B., Garousi, V., & Memon, A. (2013). Graphical user interface
(GUI) testing: Systematic mapping and repository. Information and Software

Technology, 55(10), 1679-1694.

Barr, E. T., Harman, M., McMinn, P., Shahbaz, M., & Yoo, S. (2014). The oracle problem
in software testing: A survey. IEEE Transactions on Software Engineering, 41(5),
507-525.

Bauersfeld, S., & Vos, T. E. (2014). User interface level testing with TESTAR; what
about more sophisticated action specification and selection? SATToSE,

Borges, N. P., & Zeller, A. (2019). Why Does this App Need this Data? Automatic
Tightening of Resource Access. 2019 12th IEEE Conference on Software Testing,
Validation and Verification (ICST),

Univ
ers

iti
Mala

ya

https://www.appbrain.com/

157

Bu, X., Rao, J., & Xu, C.-Z. (2009). A reinforcement learning approach to online web
systems auto-configuration. 2009 29th IEEE International Conference on
Distributed Computing Systems,

Canfora, G., Di Sorbo, A., Mercaldo, F., & Visaggio, C. A. (2016). Exploring mobile user
experience through code quality metrics. International Conference on Product-
Focused Software Process Improvement,

Chaffey, D. (2018). Mobile marketing statistics compilation | Smart Insights. S. Insights.
Retrieved 20 December 2019, from https://www.smartinsights.com/mobile-
marketing/mobile-marketing-analytics/mobile-marketing-statistics/

Chen, T. Y., Kuo, F.-C., Merkel, R. G., & Tse, T. (2010). Adaptive random testing: The
art of test case diversity. Journal of Systems and Software, 83(1), 60-66.

Choi, W., Necula, G., & Sen, K. (2013). Guided gui testing of android apps with minimal
restart and approximate learning. Acm Sigplan Notices,

Choudhary, S. R., Gorla, A., & Orso, A. (2015). Automated test input generation for
android: Are we there yet?(e). 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE),

Chui, M., Manyika, J., Miremadi, M., Henke, N., Chung, R., Nel, P., & Malhotra, S.
(2018). Notes from the AI frontier: Applications and value of deep learning.
McKinsey global institute discussion paper, April.

Clapp, L., Bastani, O., Anand, S., & Aiken, A. (2016). Minimizing GUI event traces.
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering,

Dashevskyi, S., Gadyatskaya, O., Pilgun, A., & Zhauniarovich, Y. (2018). The influence
of code coverage metrics on automated testing efficiency in android. Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications
Security,

Eclipse. (2010). Eclipse MoDisco | The Eclipse Foundation. Eclipse Foundation.
Retrieved 20 December 2019, from https://www.eclipse.org/MoDisco/

Esparcia-Alcázar, A. I., Almenar, F., Martínez, M., Rueda, U., & Vos, T. (2016). Q-
learning strategies for action selection in the TESTAR automated testing tool. 6th

International Conferenrence on Metaheuristics and nature inspired computing

(META 2016), 130-137.

F-Droid. (2010). F-Droid - Free and Open Source Android App Repository. Retrieved 10
December 2019, from https://f-droid.org/

Fazzini, M., Freitas, E. N. D. A., Choudhary, S. R., & Orso, A. (2017). Barista: A
technique for recording, encoding, and running platform independent android
tests. 2017 IEEE International Conference on Software Testing, Verification and
Validation (ICST),

Fewster, M., & Graham, D. (1999). Software test automation. Addison-Wesley Reading.

Univ
ers

iti
Mala

ya

https://www.eclipse.org/MoDisco/
https://f-droid.org/

158

Freke, J. (2013). Smali, an assembler/disassembler for Android’s dex format. Retrieved
26 December 2020, from https://github.com/JesusFreke/smali.

Gomez, L., Neamtiu, I., Azim, T., & Millstein, T. (2013). Reran: Timing-and touch-
sensitive record and replay for android. Proceedings of the 2013 International
Conference on Software Engineering,

Google. (2019a). Activities | Android Developers. Google Inc. Retrieved 16 December
2019, from https://developer.android.com/guide/components/activities.html

Google. (2019b). Application Fundamentals | Android Developers. Google Inc.
Retrieved 20 December 2019, from
https://developer.android.com/guide/components/fundamentals?hl=en

Google. (2019c). Command line tools | Android Developers. Google Inc. Retrieved 16
December 2019, from https://developer.android.com/studio/command-line

Google. (2019d). Crashes | Android Developers. Google. Retrieved 25 December 2019,
from https://developer.android.com/topic/performance/vitals/crash

Google. (2019e). Espresso | Android Developers. Google. Retrieved 10 December 2019,
from https://developer.android.com/training/testing/espresso

Google. (2019f). Introduction to Activities | Android Developers. Google. Retrieved 25
2019, December from
https://developer.android.com/guide/components/activities/intro-activities?hl=en

Google. (2019g). monkeyrunner | Android Developers. Google. Retrieved 10 December
2019, from https://developer.android.com/studio/test/monkeyrunner

Google. (2019h). Platform Architecture | Android Developers. Retrieved 22 December
2019, from https://developer.android.com/guide/platform/

Google. (2019i). UI Automator | Android Developers. Google. Retrieved 10 December
2019, from https://developer.android.com/training/testing/ui-automator

Google. (2019j). UI/Application Exerciser Monkey | Android Developers. Google.
Retrieved 10 December 2019, from
https://developer.android.com/studio/test/monkey

Google. (2019k). Understand the Activity Lifecycle | Android Developers. Google.
Retrieved 25 December 2019, from
https://developer.android.com/guide/components/activities/activity-
lifecycle.html

Gu, T., Cao, C., Liu, T., Sun, C., Deng, J., Ma, X., & Lü, J. (2017). Aimdroid: Activity-
insulated multi-level automated testing for android applications. 2017 IEEE
International Conference on Software Maintenance and Evolution (ICSME),

Gu, T., Sun, C., Ma, X., Cao, C., Xu, C., Yao, Y., Zhang, Q., Lu, J., & Su, Z. (2019).
Practical GUI testing of Android applications via model abstraction and

Univ
ers

iti
Mala

ya

https://developer.android.com/guide/components/activities.html
https://developer.android.com/guide/components/fundamentals?hl=en
https://developer.android.com/studio/command-line
https://developer.android.com/topic/performance/vitals/crash
https://developer.android.com/training/testing/espresso
https://developer.android.com/guide/components/activities/intro-activities?hl=en
https://developer.android.com/studio/test/monkeyrunner
https://developer.android.com/guide/platform/
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/studio/test/monkey
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/guide/components/activities/activity-lifecycle.html

159

refinement. 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE),

Gunasekaran, S., & Bargavi, V. (2015). Survey on automation testing tools for mobile
applications. International Journal of Advanced Engineering Research and

Science, 2(11), 2349-6495.

Hao, S., Liu, B., Nath, S., Halfond, W. G., & Govindan, R. (2014). PUMA: programmable
UI-automation for large-scale dynamic analysis of mobile apps. Proceedings of
the 12th annual international conference on Mobile systems, applications, and
services,

Haoyin, L. (2017). Automatic android application GUI testing—A random walk
approach. 2017 International Conference on Wireless Communications, Signal
Processing and Networking (WiSPNET),

Harman, M., Mansouri, S. A., & Zhang, Y. (2012). Search-based software engineering:
Trends, techniques and applications. ACM Computing Surveys (CSUR), 45(1), 11.

Hu, C., & Neamtiu, I. (2011). Automating GUI testing for Android applications.
Proceedings of the 6th International Workshop on Automation of Software Test,

Hu, G., Yuan, X., Tang, Y., & Yang, J. (2014). Efficiently, effectively detecting mobile
app bugs with appdoctor. Proceedings of the Ninth European Conference on
Computer Systems,

Hu, Z., Ma, Y., & Huang, Y. (2017). DroidWalker: Generating Reproducible Test Cases
via Automatic Exploration of Android Apps. arXiv preprint arXiv:1710.08562.

Huang, C.-Y., Chiu, C.-H., Lin, C.-H., & Tzeng, H.-W. (2015). Code coverage
measurement for Android dynamic analysis tools. 2015 IEEE International
Conference on Mobile Services,

IDC. (2019). IDC - Smartphone Market Share - OS. IDC. Retrieved 16 December 2019,
from https://www.idc.com/promo/smartphone-market-share

Imparato, G. (2015). A combined technique of GUI ripping and input perturbation testing
for Android apps. 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering,

Jensen, C. S., Prasad, M. R., & Møller, A. (2013). Automated testing with targeted event
sequence generation. Proceedings of the 2013 International Symposium on
Software Testing and Analysis,

Joorabchi, M. E., Mesbah, A., & Kruchten, P. (2013). Real challenges in mobile app
development. 2013 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement,

Kaasila, J., Ferreira, D., Kostakos, V., & Ojala, T. (2012). Testdroid: automated remote
UI testing on Android. Proceedings of the 11th International Conference on
Mobile and Ubiquitous Multimedia,

Univ
ers

iti
Mala

ya

https://www.idc.com/promo/smartphone-market-share

160

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A
survey. Journal of artificial intelligence research, 4, 237-285.

Kamiura, M., & Sano, K. (2017). Optimism in the face of uncertainty supported by a
statistically-designed multi-armed bandit algorithm. Biosystems, 160, 25-32.

Kayes, A., Kalaria, R., Sarker, I. H., Islam, M., Watters, P. A., Ng, A., Hammoudeh, M.,
Badsha, S., & Kumara, I. (2020). A Survey of Context-Aware Access Control
Mechanisms for Cloud and Fog Networks: Taxonomy and Open Research Issues.
Sensors, 20(9), 2464.

Khalid, H., Shihab, E., Nagappan, M., & Hassan, A. E. (2014). What do mobile app users
complain about? IEEE software, 32(3), 70-77.

Kim, J., Kwon, M., & Yoo, S. (2018). Generating test input with deep reinforcement
learning. 2018 IEEE/ACM 11th International Workshop on Search-Based
Software Testing (SBST),

King, J. C. (1975). A new approach to program testing. Acm Sigplan Notices, 10(6), 228-
233.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., El Emam,
K., & Rosenberg, J. (2002). Preliminary guidelines for empirical research in
software engineering. IEEE Transactions on Software Engineering, 28(8), 721-
734.

Kochhar, P. S., Thung, F., Nagappan, N., Zimmermann, T., & Lo, D. (2015).
Understanding the test automation culture of app developers. 2015 IEEE 8th
International Conference on Software Testing, Verification and Validation
(ICST),

Koenig, S., & Simmons, R. G. (1993). Complexity analysis of real-time reinforcement
learning. AAAI,

Koroglu, Y., Sen, A., Muslu, O., Mete, Y., Ulker, C., Tanriverdi, T., & Donmez, Y.
(2018). QBE: QLearning-based exploration of android applications. 2018 IEEE
11th International Conference on Software Testing, Verification and Validation
(ICST),

Kowalczyk, E., Cohen, M. B., & Memon, A. M. (2018). Configurations in Android
testing: they matter. Proceedings of the 1st International Workshop on Advances
in Mobile App Analysis,

Kropp, M., & Morales, P. (2010). Automated GUI testing on the Android platform. on

Testing Software and Systems: Short Papers, 67.

Li, K., & Wu, M. (2004). Effective GUI test automation: developing an automated GUI

testing tool.

Li, L., Bissyandé, T. F., Klein, J., & Le Traon, Y. (2016). An investigation into the use
of common libraries in android apps. 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER),

Univ
ers

iti
Mala

ya

161

Li, Y., Yang, Z., Guo, Y., & Chen, X. (2017). DroidBot: a lightweight UI-guided test
input generator for Android. 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C),

Li, Y., Yang, Z., Guo, Y., & Chen, X. (2019). A Deep Learning based Approach to
Automated Android App Testing. arXiv preprint arXiv:1901.02633.

Lin, Y.-D., Chu, E. T.-H., Yu, S.-C., & Lai, Y.-C. (2013). Improving the accuracy of
automated GUI testing for embedded systems. IEEE software, 31(1), 39-45.

Lin, Y.-D., Rojas, J. F., Chu, E. T.-H., & Lai, Y.-C. (2014). On the accuracy, efficiency,
and reusability of automated test oracles for android devices. IEEE Transactions

on Software Engineering, 40(10), 957-970.

Linares-Vasquez, M., Vendome, C., Luo, Q., & Poshyvanyk, D. (2015). How developers
detect and fix performance bottlenecks in Android apps. 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME),

Linares-Vásquez, M. (2015). Enabling testing of android apps. 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering,

Linares-Vásquez, M., Moran, K., & Poshyvanyk, D. (2017). Continuous, evolutionary
and large-scale: A new perspective for automated mobile app testing. 2017 IEEE
International Conference on Software Maintenance and Evolution (ICSME),

Linares-Vásquez, M., White, M., Bernal-Cárdenas, C., Moran, K., & Poshyvanyk, D.
(2015). Mining android app usages for generating actionable gui-based execution
scenarios. 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories,

Liu, C. H., Lu, C. Y., Cheng, S. J., Chang, K. Y., Hsiao, Y. C., & Chu, W. M. (2014).
Capture-replay testing for android applications. 2014 International Symposium on
Computer, Consumer and Control,

Liu, Z., Gao, X., & Long, X. (2010). Adaptive random testing of mobile application. 2010
2nd International Conference on Computer Engineering and Technology,

Lonza, A. (2019). Reinforcement learning algorithms with Python: learn, understand,

and develop smart algorithms for addressing AI challenges. Packt Publishing.

Machiry, A., Tahiliani, R., & Naik, M. (2013). Dynodroid: An input generation system
for android apps. Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering,

Mahmood, R., Mirzaei, N., & Malek, S. (2014). Evodroid: Segmented evolutionary
testing of android apps. Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering,

Maji, A. K., Hao, K., Sultana, S., & Bagchi, S. (2010). Characterizing failures in mobile
oses: A case study with android and symbian. 2010 IEEE 21st International
Symposium on Software Reliability Engineering,

Univ
ers

iti
Mala

ya

162

Mao, H., Alizadeh, M., Menache, I., & Kandula, S. (2016). Resource management with
deep reinforcement learning. Proceedings of the 15th ACM Workshop on Hot
Topics in Networks,

Mao, K., Harman, M., & Jia, Y. (2016). Sapienz: Multi-objective automated testing for
Android applications. Proceedings of the 25th International Symposium on
Software Testing and Analysis,

Mariani, L., Pezze, M., Riganelli, O., & Santoro, M. (2012). Autoblacktest: Automatic
black-box testing of interactive applications. 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation,

Mariani, L., Pezzè, M., Riganelli, O., & Santoro, M. (2011). AutoBlackTest: a tool for
automatic black-box testing. 2011 33rd International Conference on Software
Engineering (ICSE),

Martin, W., Sarro, F., & Harman, M. (2016). Causal impact analysis for app releases in
google play. Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,

Memon, A. (2001). Comprehensive Framework for Testing Graphical User Interfaces.
University of Pittsburgh Pittsburgh.

Memon, A. (2002). GUI testing: Pitfalls and process. Computer(8), 87-88.

Memon, A. (2019). Advances in Computers (Vol. 112). Academic Press.

Memon, A., Soffa, M. L., & Pollack, M. (2001). Coverage criteria for GUI testing. ACM

SIGSOFT Software Engineering Notes, 26(5), 256-267.

Memon, A. M. (2003). Advances in GUI testing. Advances in Computers, 58, 149-201.

Mirzaei, N., Bagheri, H., Mahmood, R., & Malek, S. (2015). Sig-droid: Automated
system input generation for android applications. 2015 IEEE 26th International
Symposium on Software Reliability Engineering (ISSRE),

Mirzaei, N., Garcia, J., Bagheri, H., Sadeghi, A., & Malek, S. (2016). Reducing
combinatorics in GUI testing of android applications. 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE),

Moran, K., Linares-Vásquez, M., Bernal-Cárdenas, C., Vendome, C., & Poshyvanyk, D.
(2016). Automatically discovering, reporting and reproducing android application
crashes. 2016 IEEE international conference on software testing, verification and
validation (icst),

Morgado, I. C., & Paiva, A. C. (2015). Testing approach for mobile applications through
reverse engineering of UI patterns. 2015 30th IEEE/ACM International
Conference on Automated Software Engineering Workshop (ASEW),

Morrison, G. C., Inggs, C. P., & Visser, W. (2012). Automated coverage calculation and
test case generation. Proceedings of the South African Institute for Computer
Scientists and Information Technologists Conference,

Univ
ers

iti
Mala

ya

163

Muccini, H., Di Francesco, A., & Esposito, P. (2012). Software testing of mobile
applications: Challenges and future research directions. Proceedings of the 7th
International Workshop on Automation of Software Test,

Musa, J. (1987). Software Quality and Reliabitity Basics. AT&T Bell Laboratories, 1(1),
114-115.

Nolan, G. (2015). Agile Android. Apress.

Packard, H. (2015). Failing to meet mobile app user expectations: a mobile user survey
(Tech. rep., Issue.

Palomba, F., Linares-Vasquez, M., Bavota, G., Oliveto, R., Di Penta, M., Poshyvanyk,
D., & De Lucia, A. (2015). User reviews matter! tracking crowdsourced reviews
to support evolution of successful apps. 2015 IEEE international conference on
software maintenance and evolution (ICSME),

Perry, D. E., Sim, S. E., & Easterbrook, S. M. (2004). Case studies for software engineers.
Proceedings. 26th International Conference on Software Engineering,

Pilgun, A., Gadyatskaya, O., Zhauniarovich, Y., Dashevskyi, S., Kushniarou, A., &
Mauw, S. (2020). Fine-grained code coverage measurement in automated black-
box Android testing. ACM Transactions on Software Engineering and

Methodology (TOSEM), 29(4), 1-35.

Ravindranath, L., Nath, S., Padhye, J., & Balakrishnan, H. (2014). Automatic and scalable
fault detection for mobile applications. Proceedings of the 12th annual
international conference on Mobile systems, applications, and services,

Reda, R., & Josefson, H. (2014). RobotiumTech/robotium: Android UI Testing.
RobotiumTech. Retrieved 10 December 2019, from
https://github.com/RobotiumTech/robotium

Rubinov, K., & Baresi, L. (2018). What Are We Missing When Testing Our Android
Apps? Computer, 51(4), 60-68.

Sadeghi, A., Jabbarvand, R., & Malek, S. (2017). Patdroid: permission-aware gui testing
of android. Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering,

Saeed, A., Ab Hamid, S. H., & Sani, A. A. (2017). Cost and effectiveness of search-based
techniques for model-based testing: an empirical analysis. International Journal

of Software Engineering and Knowledge Engineering, 27(04), 601-622.

Salihu, I.-A., Ibrahim, R., Ahmed, B. S., Zamli, K. Z., & Usman, A. (2019). AMOGA: a
static-dynamic model generation strategy for mobile apps testing. IEEE Access,
7, 17158-17173.

Sauce. (2013). Appium | Automation for iOS, Android, and Windows Apps. Retrieved 16
December 2019, from http://appium.io/

Univ
ers

iti
Mala

ya

https://github.com/RobotiumTech/robotium
http://appium.io/

164

Sen, K. (2007). Concolic testing. Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering,

Septian, I., & Alianto, R. S. (2018). Comparison Analysis of Android GUI Testing
Frameworks by Using an Experimental Study. Procedia Computer Science, 135,
736-748.

Shahamiri, S. R., Kadir, W. M. N. W., & Mohd-Hashim, S. Z. (2009). A comparative
study on automated software test oracle methods. 2009 Fourth International
Conference on Software Engineering Advances,

Sharma, C., Sabharwal, S., & Sibal, R. (2014). A survey on software testing techniques
using genetic algorithm. arXiv preprint arXiv:1411.1154.

Shebaro, B., Oluwatimi, O., & Bertino, E. (2014). Context-based access control systems
for mobile devices. IEEE Transactions on Dependable and Secure Computing,
12(2), 150-163.

Singh, S., Gadgil, R., & Chudgor, A. (2014). Automated Testing of mobile applications
using scripting Technique: A study on Appium. International Journal of Current

Engineering and Technology (IJCET), 4(5), 3627-3630.

Song, W., Qian, X., & Huang, J. (2017). EHBDroid: Beyond GUI testing for Android
applications. Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering,

Statista. (2019). App stores: number of apps in leading app stores 2019 | Statista.
Retrieved 14 December 2019, from
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-
app-stores/

Su, T. (2016). FSMdroid: guided GUI testing of android apps. 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-C),

Su, T., Fan, L., Chen, S., Liu, Y., Xu, L., Pu, G., & Su, Z. (2020). Why my app crashes
understanding and benchmarking framework-specific exceptions of android apps.
IEEE Transactions on Software Engineering. on, pp. 557-568, 2020

Su, T., Meng, G., Chen, Y., Wu, K., Yang, W., Yao, Y., Pu, G., Liu, Y., & Su, Z. (2017).
Guided, stochastic model-based GUI testing of Android apps. Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering,

Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning (Vol. 135).
MIT press Cambridge.

Takala, T., Katara, M., & Harty, J. (2011). Experiences of system-level model-based GUI
testing of an Android application. 2011 Fourth IEEE International Conference on
Software Testing, Verification and Validation,

Taylor-Sakyi, K. (2016). Reliability Testing Strategy-Reliability in Software
Engineering. arXiv preprint arXiv:1605.01097.

Univ
ers

iti
Mala

ya

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/

165

TheAppBrain. (2019). Number of Android applications on the Google Play store |

AppBrain. TheAppBrain. Retrieved 16 December 2019 from
https://www.appbrain.com/stats/number-of-android-apps

Utting, M., Pretschner, A., & Legeard, B. (2012). A taxonomy of model‐based testing
approaches. Software Testing, Verification and Reliability, 22(5), 297-312.

Vuong, T. A. T., & Takada, S. (2018). A reinforcement learning based approach to
automated testing of Android applications. Proceedings of the 9th ACM
SIGSOFT International Workshop on Automating TEST Case Design, Selection,
and Evaluation,

Wang, P., Liang, B., You, W., Li, J., & Shi, W. (2014). Automatic Android GUI traversal
with high coverage. 2014 Fourth International Conference on Communication
Systems and Network Technologies,

Wang, W., Li, D., Yang, W., Cao, Y., Zhang, Z., Deng, Y., & Xie, T. (2018). An empirical
study of android test generation tools in industrial cases. Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering,

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8(3-4), 279-292.

Wen, H.-L., Lin, C.-H., Hsieh, T.-H., & Yang, C.-Z. (2015). Pats: A parallel gui testing
framework for android applications. 2015 IEEE 39Th annual computer software
and applications conference,

Xie, Q., & Memon, A. M. (2006). Studying the characteristics of a" Good" GUI test suite.
2006 17th International Symposium on Software Reliability Engineering,

Yang, S., Huang, S., & Hui, Z. (2019). Theoretical Analysis and Empirical Evaluation of
Coverage Indictors for Closed Source APP Testing. IEEE Access, 7, 162323-
162332.

Yang, W., Prasad, M. R., & Xie, T. (2013). A grey-box approach for automated GUI-
model generation of mobile applications. International Conference on
Fundamental Approaches to Software Engineering,

Yu, S., & Takada, S. (2016). Mobile application test case generation focusing on external
events. Proceedings of the 1st International Workshop on Mobile Development,

Zaeem, R. N., Prasad, M. R., & Khurshid, S. (2014). Automated generation of oracles for
testing user-interaction features of mobile apps. 2014 IEEE Seventh International
Conference on Software Testing, Verification and Validation,

Zeng, X., Li, D., Zheng, W., Xia, F., Deng, Y., Lam, W., Yang, W., & Xie, T. (2016).
Automated test input generation for android: Are we really there yet in an
industrial case? Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,

Zhauniarovich, Y., Philippov, A., Gadyatskaya, O., Crispo, B., & Massacci, F. (2015).
Towards black box testing of android apps. 2015 10th International Conference
on Availability, Reliability and Security,

Univ
ers

iti
Mala

ya

https://www.appbrain.com/stats/number-of-android-apps

166

Zheng, H., Li, D., Liang, B., Zeng, X., Zheng, W., Deng, Y., Lam, W., Yang, W., & Xie,
T. (2017). Automated test input generation for android: Towards getting there in
an industrial case. 2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP),

Zhou, Z., Li, X., & Zare, R. N. (2017). Optimizing chemical reactions with deep
reinforcement learning. ACS central science, 3(12), 1337-1344.

Zhu, H., Ye, X., Zhang, X., & Shen, K. (2015). A context-aware approach for dynamic
gui testing of android applications. 2015 IEEE 39th Annual Computer Software
and Applications Conference,

Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative
case study and the strength Pareto approach. IEEE transactions on Evolutionary

Computation, 3(4), 257-271.

Univ
ers

iti
Mala

ya

