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GRAPHICAL USER INTERFACE TEST CASE GENERATION FOR ANDROID 

APPS USING Q-LEARNING  

ABSTRACT 

Software testing is an effective means for assuring the quality of applications. Android 

applications (or mobile apps) have become an essential part of our daily life. Statistics 

affirm that 85% of smartphones worldwide are Android-based. Unfortunately, 17% of 

Android apps are still considered low-quality apps due to app crashes that can be avoided 

through intensive and extensive testing. Recently, Graphical User Interface (GUI) testing 

of Android app has gained considerable interest from the industries and research 

community due to its excellent capability to verify the operational requirements of GUI 

components. In the related literature, GUI test generation tools focus on generating tests 

and exploring app functions using different approaches. These tools are used to make the 

testing process more effective by finding faults; more comprehensive by achieving better 

code coverage and faster by producing the smallest possible event sequences. However, 

a common limitation of these tools is the low code coverage because of the tools' inability 

to find the right combination of actions that can drive the application into new and 

important states. Exploring the app's state extensively requires long event sequences to 

find the correct combination of actions, leading to excessively long transitions and wasted 

time. Such tools must choose not only which user interface element to interact with, but 

also which type of action to be performed to increase the percentage of code coverage 

and to detect faults with a limited time budget. This research addresses the problem of 

generating an effective test for Android apps that maximizes the instruction, method, and 

activity coverage by minimizing redundant execution of events. Hence, it proposes a       

Q-Learning-based test coverage approach developed in DroidbotX to generate GUI test 

cases for Android apps. It is a fully automated black-box testing approach that uses Upper 

Confidence Bound (UCB) exploration-exploitation strategy to generate actions that visit 
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unexplored states of the app and uses the execution of the app on the generated actions to 

construct a state-transition model. Instead of randomly selecting the inputs, the test 

generator learns how to act in an optimal way that explores new states by using new 

actions to gain more rewards. Thus, the never selected actions can present a higher reward 

when compared to already executed actions. This reduces the redundant execution of 

events and increases coverage. The overall performance of DroidbotX was compared to 

five state-of-the-art test generation tools on 30 Android apps. DroidbotX achieved 51.5% 

accuracy for instruction coverage, 57% for method coverage, and 86.5% for activity 

coverage. It triggered 18 crashes within the time limit and shortest event sequence length 

compared to the other tools. The results demonstrate that the adaptation of Q-Learning 

with UCB exploration can significantly improve the effectiveness of the generated test 

cases. The computation time complexity of the Q-Learning-based test coverage algorithm 

was also analyzed. The results showed that time complexity was reduced significantly 

from 𝑂(𝑛3) to 𝑂(𝑛2). It is based on the average case scenario by randomly considering 

some of the events, states, and actions, and using the probabilistic distribution of states, 

actions, and events, and average them over time. 

Keywords: Android, GUI Testing, Test case Generation, Reinforcement Learning,      

Q-Learning. 
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PENGHASILAN KES UJIAN GRAPHICAL USER INTERFACE UNTUK 

APLIKASI ANDROID MENGGUNAKAN Q-LEARNING 

ABSTRAK 

Pengujian perisian adalah kaedah yang berkesan untuk menjamin kualiti sistem-sistem 

aplikasi. Aplikasi Android (atau aplikasi mudah alih) telah menjadi sebahagian penting 

dalam kehidupan harian kita. Statistik mengesahkan 85% telefon pintar di seluruh dunia 

adalah berlandas-Android. Malangnya, 17% dari aplikasi Android boleh dianggap 

bekualiti rendah berpunca daripada keranapan aplikasi yang dapat dielakkan melalui 

pengujian intensif dan ektensif.  Baru-baru ini, pengujian Antara Muka Grafik Pengguna 

(AGP) bagi aplikasi Anroid telah mendapat banyak perhatian dari komuniti industri dan 

penyelidikan berpunca dari keserlahan kemampuan untuk mengesahkan keperluan 

operasi untuk komponen AGP. Di dalam kajian kesusasteraan berkaitan, peralatan 

pengujian AGP tertumpu kepada penjanaan pengujian dan menerokai fungsian aplikasi 

melalui beberapa pendekatan. Peralatan ini digunakan untuk membina proses pengujian 

yang lebih efektif dengan mengenalpasti kesalahan; lebih menyeluruh untuk mencapai 

liputan kod yang lebih baik dan pantas dengan meminimumkan perlaksanaan peristiwa 

berurutan. Walaubagaimanapun, kelemahan am peralatan   ialah liputan kod yang rendah 

kerana ketidakbolehan peralatan mencari kombinasi yang tepat bagi aksi yang boleh 

memandu aplikasi kepada keberadaan baru dan penting. Penerokaan keberadaan aplikasi 

secara meluasnya memerlukan urutan peristiwa yang panjang untuk mencari kombinasi 

aksi-aksi yang tepat, mengheret secara meluasnya transisi panjang dan pembaziran masa. 

Peralatan ini perlu memilih bukan saja antara muka grafik pengguna tetapi juga aksi yang 

perlu dilaksana untuk menambah peratusan kod liputan dan untuk mengesan kesalahan 

dalam masa yang terhad.  Penyelidikan ini bertujuan untuk menangani masalah dalam 

menghasilkan ujian yang berkesan untuk aplikasi Android yang memaksimumkan liputan 

arahan, aktiviti dan kaedah dengan meminimumkan pelaksanaan peristiwa yang 

Univ
ers

iti 
Mala

ya



v 

berlebihan. Justeru itu, ia mencadangkan pendekatan liputan ujian berasaskan 

Pembelajaran-Q yang dibangunkan dalam DroidbotX untuk menghasilkan kes-kes ujian 

untuk aplikasi Android. Pendekatan ini adalah pedekatan pengujian kotak hitam 

automatik yang menggunakan strategi Batasan Keyakinan Atas (BKA) eksplorasi-

eksplotasi untuk menghasilkan aksi yang dapat memeriksa keberadaan aplikasi yang 

belum diterokai dan menggunakan pelaksanaan aplikasi pada aksi yang dihasilkan untuk 

membina model peralihan-keberadaan. Sebalik memilih input secara rawak, penjana 

pengujian belajar untuk bertindak optimum untuk meneroka keberadaan baru 

menggunakan aksi baru untuk mendapat lebih ganjaran. Justeru, aksi yang tidak dipilih 

dipertengahkan dengan ganjaran yang lebih tinggi berbanding aksi yang telah dijana. 

Pendekatan ini dibina menjadi alat ujian yang dinamakan DroidbotX. Prestasi 

keseluruhan DroidbotX telah dibandingkan dengan lima peralatan pengujian yang 

canggih pada 30 aplikasi Android. DroidbotX telah mencapai ketepatan 51.5% untuk 

liputan arahan, 57% untuk liputan kaedah, dan 86.5% untuk liputan aktiviti. Ia telah 

mencetuskan 18 keranapan dalam had masa dan urutan peristiwa terpendek berbanding 

dengan peralatan lain. Keputusan ini menunjukkan bahawa penyesuaian Q-Learning 

dengan penerokaan UCB dapat meningkatkan keberkesanan kes ujian yang dijalankan 

secara ketara. Komputasi masa kerumitan berdasarkan pengujian liputan Q-Learning juga 

telah dianalisiss. Keputusan menunjukkan masa kerumitan dikurangkan secara signifikan 

dari 𝑂(𝑛3) kepada 𝑂(𝑛2). Ia berdasarkan scenario kes purata secara rawak mengambil 

kira beberapa peristiwa, keberadaan, dan aksi, dan menggunakan kebarangkalian taburan 

keberadaan, aksi, dan peristiwa dan purata dengan masa. 

Kata kunci: Android, Pengujian AGP, Penjanaan kes ujian, Pembelajaran Pengukuhan, 

Q-Learning. 
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CHAPTER 1: INTRODUCTION  

This chapter is an overview of in-depth research undertaken in this thesis. It presents 

GUI testing for Android apps and the associated research problem. Herein, this study's 

aim and objectives are clarified and, as such, describes the methodology proposed to 

achieve the aim and objectives. 

In this chapter, the outline is organized as follows: Section 1.1 introduces the study's 

background for undertaking this research. It also highlights the significance of the work. 

Section 1.2 is an introduction to the research motivation. The identified research problems 

to be addressed in this thesis are highlighted in Section 1.3. Section 1.4 presents the aim 

and objectives of this study. Section 1.5 presents research questions, followed by Section 

1.6, which outlines the research scope. While Section 1.7  presents the proposed 

methodology. The chapter is concluded in Section 1.8. 

1.1 Background 

Software testing is an important and major area of software reliability. It deals with 

the probability that the software will not cause system failure for a specific time under 

the specified condition (Musa, 1987). Reliability is an important attribute of software 

quality in addition to other attributes such as usability, fault prediction, and performance 

(Taylor-Sakyi, 2016). Mobile app reliability is crucial in apps development. Mobile apps 

are everywhere and operate in complex environments. These mobile apps are developed 

under market pressure over time. Mobile apps work on a variety of platforms. Such 

platforms include Windows, iOS, and Android. 

Over the years, Android, in particular, has gone through rapid growth and frequent 

updates. According to a previous report (Chaffey, 2018), the number of Android apps 

downloaded is increasing drastically over the years. Android has over 2 billion active 

devices monthly. It dominates over 85% of the global market share (IDC, 2019). Google 
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Play Store is an Android apps' official market with more than 3.3 million apps, covering 

more than 30 categories, such as entertainment and personalization apps to education and 

financial apps. Concurrently, Android apps are updated on average every 60 days. A 

previous study (Statista, 2019) indicated that a mobile device, on average, has between 

60 and 90 apps installed. Besides, an Android user, on average, spends 2 hours and 15 

minutes on apps every day. With these statistics, unfortunately, in December 2019, it was 

reported by AppBrain that about 17% of the Android apps were low-quality apps 

(TheAppBrain, 2019). Furthermore, it was also reported that 53% of users would avoid 

using an app if the app crashed (Packard, 2015). The inferior quality of Android apps can 

be attributed to insufficient testing due to its rapid development practice and the 

fragmentation of mobile devices that have different hardware characteristics and use 

various releases of the Android framework (Canfora et al., 2016). Android developers 

tend to disregard good testing practices as it is considered time-consuming, expensive, 

and with a lot of repetitive tasks. The quality of apps depends on both functional (e.g., 

app crashes and unresponsive apps) and non-functional requirements such as the absence 

of failures and performance. Some of the major issues that heavily disrupt users' 

experience include app crashes and unresponsive apps, as reported by users review 

(Khalid et al., 2014). Mobile app crashes are evitable and avoidable by intensive and 

extensive testing of mobile apps. Android apps can be tested with a graphical user 

interface (GUI) testing tools to verify the app's functionality, usability, and consistency 

before they are released to the market (Ammann & Offutt, 2016; Joorabchi et al., 2013). 

To start Android apps testing, test cases will be generated with a series of events sequence 

on the GUI components to reveal faults. By faults, it means the inability of the app to 

perform required functions, which may or may not lead to a crash. The sequences of 

events (or test input) can be either from user interaction or system interaction. For 

example, a user interaction (or actions) usually involves clicking, scrolling, or typing texts 

Univ
ers

iti 
Mala

ya



3 

into a GUI element like a button, image, or text block. While interaction with system 

includes receiving SMS notifications, app notifications, or phone calls. 

The development of GUI test cases usually takes a lot of time and effort because of 

their non-trivial structures and the highly interactive nature of GUIs (Banerjee et al., 

2013). Android apps usually possess numerous states and transitions, which can lead to 

an arduous testing process and poor testing performance. For the past decade, Android 

test generation tools have been developed to automate user interaction and allow system 

interaction as inputs (Amalfitano, Fasolino, Tramontana, De Carmine, & Memon, 2012; 

Amalfitano et al., 2014; Machiry et al., 2013; K. Mao et al., 2016; Su et al., 2017; Zhu et 

al., 2015). The focus of these tools is to generate test cases and explore the app’s functions 

by employing different techniques. These techniques can be distinguished according to 

the way they generate tests (Linares-Vásquez et al., 2017); Random testing generates a 

randomized series of events sequence to trigger crashes; Model-based testing technique 

uses a directed graph-based model to correlate the relationship of the user interaction and 

the GUI of the apps; Record and replay testing record user interactions to generate 

repeatable scripts; Systematic based generates guided tests based on program analysis, 

and Q-Learning based. These techniques are implemented in sophisticated approaches 

(Koroglu et al., 2018; Machiry et al., 2013; K. Mao et al., 2016; Su et al., 2017) which 

are well presented in chapter 2.  

Q-Learning is a type of model-free technique of reinforcement learning (Kaelbling et 

al., 1996). It was used in software testing in the past and has shown its ability to improve 

random-based techniques (Adamo, Khan, et al., 2018; Koroglu et al., 2018; Mariani et 

al., 2011; Vuong & Takada, 2018). It uses trial-and-error interactions to experience the 

consequences of actions. Initially, the Q-Learning agent interacts with the App Under 

Test (AUT) to identify the best action (from a set of actions available in the current state) 

that are most likely to discover unexplored app’s states (Watkins & Dayan, 1992). Actions 
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never selected can present a higher reward than actions already executed, which reduces 

the redundant execution of events and increases coverage. Accordingly, the knowledge 

of AUT is updated to find a policy that facilitates systematic exploration to make efficient 

future action selection decisions. This exploration interacts with AUT to construct a state 

transition model and generates test cases. These test cases follow the sequences of events 

that are the most likely to explore the app’s functionalities.  To conclude, for an effective 

test case, it is vital to generate effective actions first that reach new and important app 

states, which in turn leads to an increase in the coverage and fault detection. 

 

1.2 Motivation  

According to a dimensional research survey (Packard, 2015), 61 percent of users 

expect mobile apps to start in four seconds, while 49 percent want input responses within 

two seconds. Besides, if an app freezes, crashes, or has errors, 53 percent of users will 

uninstall it. Hence, effective approaches for testing Android apps are needed. GUI test 

case generation can be demanding because of many competing properties that developers 

care about such as code coverage, test sequence length, and the ability to detect faults (K. 

Mao et al., 2016). An analysis reveals that out of 600 open-source Android app projects 

hosted on the F-Droid repository (F-Droid, 2010), only 14 percent contain test cases, and 

about 9 percent have executable test cases with code coverage of over 40 percent 

(Kochhar et al., 2015). Coverage is an important metric to measure the effectiveness of 

testing (Memon et al., 2001). High code coverage is necessary for automated testing for 

the sake of minimizing human efforts and maximizing effectiveness (Wang et al., 2014). 

Due to the low code coverage of current approaches, there is still a need for continued 

study (Amalfitano, Fasolino, Tramontana, De Carmine, & Imparato, 2012; Choi et al., 

2013; Hu & Neamtiu, 2011; Machiry et al., 2013). 
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1.3 Problem Statement  

Regardless of the widespread use of Android apps, software reliability problems 

remain prevalent. Mobile apps developers heavily rely on user reviews to get reports on 

software crashes (Khalid et al., 2014; Linares-Vasquez et al., 2015; Palomba et al., 2015). 

The most common problems reported by mobile app users are app crashes (Khalid et al., 

2014). App crashes give users an unsatisfactory experience, and negatively impact the 

app's overall rating (Khalid et al., 2014; Martin et al., 2016). An app is tested with an 

automatically generated sequence of events that simulates user interaction with the GUI 

which serves as test cases for executing system tests. Given unlimited time, to achieve 

high code coverage, all possible event sequences interaction and combinations can be 

tested. In practical situations where testing time is often limited, and the AUT contains a 

large number of possible combinations of interactions in each state and transitions 

between them, testing all possible scenarios is time-consuming and ineffective for large 

systems. Automated testing tools often choose a small subset of interaction sequences to 

explore, leaving many app functions unexplored. Thus, such tools must choose not only 

which GUI component to interact with, but also which type of action to perform. Each 

type of action on each GUI component is likely to improve the percentage of code 

coverage and fault detection. Automated testing tools are used to make the testing process 

more effective by finding faults; more comprehensive by achieving better code coverage 

and faster by producing the smallest possible event sequences (Dashevskyi et al., 2018). 

Even though there are existing studies to achieve these goals (Choi et al., 2013; Machiry 

et al., 2013; K. Mao et al., 2016; Su et al., 2017; Wang et al., 2014), however, these 

research tools encounter two major problems. 

The first problem is low code coverage, existing tools are still insufficient to exercise 

the app thoroughly and thus cannot achieve high code coverage in automated testing 

(Choudhary et al., 2015; Wang et al., 2018). In particular, existing tools cannot effectively 
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manage the exploration of states and as well minimize unnecessary transitions between 

them. Besides, existing tools cannot effectively explore a wide range of app 

functionalities because some of the app’s functions can only be explored through a 

specific sequence of events. For instance, Android Monkey is the most commonly used 

tool for numerous industrial apps. It is regarded as the current state of practice for 

automated Android testing (Mahmood et al., 2014; Wang et al., 2018). However, Android 

Monkey requires more time to generate a long sequence of events. These events include 

redundant events that are repeatedly jumping between app activities and non-relevant to 

the current state that clicks on a non-interactive area on the screen (Clapp et al., 2016). 

These redundant events have no consistent pattern and cannot keep track of executed 

events. 

For the second problem, the desired goal of software testing is to detect fault using the 

shortest possible event sequences within the shortest time and using the minimum efforts. 

Minimizing the total number of events in a test suite will reduce the testing time, effort, 

and the number of steps required to replicate a crash significantly. Developers may reject 

longer sequences because it is impractical to debug and less likely it will occur in practice 

(K. Mao et al., 2016). However, test generation tools tend to generate large test suites 

with thousands of test cases. Each test case usually holds tens to thousands of events. The 

length of the test case is generally defined as the number of events in it. Such test suites 

are challenging to be incorporated into regression testing due to the long run time 

required. Regression testing should be fast, so that allows the same test suite to be used 

repeatedly during the development. The generation of long event sequences in GUI 

testing usually leads to an increase in the testing space. For example, for a 10-еvеnt GUI, 

the number of all possible length-10 test cases is 1010. Even when considering possible 

restrictions on the combinations, the number might still be large. 
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1.4 Research Objectives  

This research aims to generate effective GUI test cases for Android apps. Hence, this 

research proposes an approach that dynamically produces GUI test cases based on a Q-

Learning technique. This approach systematically selects events and guides the 

exploration to explore the functionalities of an AUT to maximize instruction, method, 

and activity coverage by minimizing redundant event execution. The aim is accomplished 

by achieving the following objectives:  

• To review the current state-of-the-art GUI testing tools to generate test cases 

for Android apps. 

• To examine the effectiveness of test generation tools for Android apps in terms 

of method coverage, activity coverage, and crash detection. 

• To develop an approach using Q-Learning to optimize test case generation that 

maximizes instruction coverage, method coverage, and activity coverage.  

• To evaluate the ability of the proposed approach to generate effective test cases 

that detect crashes and maximize instruction coverage, method coverage, and 

activity coverage on real-world Android apps. 

1.5 Research Questions 

For this research, the main research questions are: 

RQ1: What are the trends and future direction in state-of-the-art GUI testing tools for 

Android apps? 

RQ2: How is the performance of state-of-the-art GUI test generation tools for Android 

apps in terms of event sequence length on the overall activity coverage, method coverage, 

and crash detection? 
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RQ3: How can Q-Learning be used to improve event sequence selection for optimizing 

test case generation? 

RQ4: What is the effectiveness of the proposed approach in terms of instruction 

coverage, method coverage, activity coverage, and crash detection? 

1.6 Research Scope 

The scope of this research is to maximize instruction coverage, method coverage, and 

activity coverage by minimizing redundant execution of events. Meanwhile, this research 

excludes text prediction when sending text input and fault revelation, which requires 

generating an automated oracle. 

1.7 Research Methodology  

To achieve the aim and objective of this research, the steps shown in Figure 1.1 were 

followed. 

A comprehensive review of the state-of-the-art GUI testing tools for Android apps was 

undertaken to analyze their strengths and weaknesses; a taxonomy was proposed to 

explore shared traits and contrasts among studied tools. The taxonomy was created by 

analyzing 45 different studies from 2011 to 2019. The studies were collected from five 

known data sources include ACM, IEEE Xplore, springer, science direct, and google 

scholar. The taxonomy contains four prominent parameters including (i) automated 

testing activities, (ii) GUI testing tools approach, (iii) evaluation methods (iv), and 

characteristics. Moreover, a comparison of GUI testing tools for Android apps was 

discussed and classified based on seven main approaches include (record and replay, 

random based, model-based, active learning, systematic based, search-based, and reuse 

based). Furthermore, several research issues in GUI testing for Android apps were 

identified through literature. The problems to be addressed in this thesis were also 
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identified through literature. The research issues include reproducible test cases, test 

oracle, test input generation, test coverage, crash diagnosis, and fragmentation. 

The problems identified were investigated, and their significance was thoroughly 

verified through empirical evaluation. This analysis employs the empirical case study 

method that is used in software engineering. The effectiveness of the test generation tools, 

especially in the event sequence length of the overall code coverage and crash detection, 

was evaluated on 50 Android apps. The event sequence length generally shows the 

number of steps required by the test generation tools to detect a crash. It is critical to 

highlight its effectiveness due to its significant effects on time, testing effort, and 

computational cost. The test generation tools were evaluated and compared based on the 

activity coverage, method coverage, and capability in detecting crashes. Furthermore, 

several research problems in test generation tools for Android apps were identified. The 

issues to be addressed in this thesis were also investigated. The research issues include 

events sequence redundancy, event sequence length, system events, access control, and 

ease of use. 

To alleviate the identified problems, a fully automated black-box testing approach 

based on the Q-Learning technique was proposed. A Q-Learning-based test coverage 

approach uses Upper Confidence Bound (UCB) exploration-exploitation as a learning 

policy, to create an efficient exploration strategy for GUI testing. The exploration strategy 

systematically selects events and guides the exploration toward revealing the 

functionalities of an AUT. It interacts and explores the app’s functionalities following the 

strategy of observe-select-execute, where all the GUI actions of the current state of AUT 

are observed; one action is selected based on the selection strategy under consideration, 

and the selected action is executed on the AUT. Instead of randomly selecting the actions, 

the proposed approach learns how to act in an optimal way that explores new states by 
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using new actions to gain more rewards. Thus, actions never selected can present a higher 

reward when compared to already executed actions, which reduce the redundant 

execution of events and increase instruction coverage, method coverage, and activity 

coverage. The proposed approach was implemented into a test tool named DroidbotX. 

DroidbotX constructs a state-transition model of the app and generates test cases. These 

test cases follow the sequences of events that are the most likely to explore the app’s 

functionalities. 

The performance of the proposed approach was evaluated via an empirical case study 

analysis. The overall performance of the proposed approach was compared to five state-

of-the-art test generation tools. Five tools with different techniques have been chosen for 

the experiment as follows Sapienz (search-based), Stoat (model-based), Droidbot (model-

based), Humanoid (deep Q network), and Android Monkey (random-based). These tools 

are the most recent techniques for Android testing. Thirty real-world Android apps were 

used in this evaluation chosen from the F-Droid repository. Instruction coverage, method 

coverage, activity coverage, crash detection, and time to run have been opted as 

performance metrics in this evaluation. The standard setup of the experiments was 

applied. The performance evaluation results were validated in comparison with the five 

state-of-the-art test generation tools results. Moreover, the computation time complexity 

of the Q-Learning test coverage algorithm was analyzed. The results show the significant 

performance of the proposed approach. 
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1.8 Conclusion  

This chapter provides an overview of software testing and the difficulties that 

developers encounter to meet the users' demands. Thus, the app quality is often 

compromised due to poor app testing. This research proposed a Q-Learning-based test 

coverage approach developed as a tool called DroidbotX. The proposed approach aims to 

generate GUI test cases for Android apps to achieve maximum instruction coverage, 

method coverage, and activity coverage while minimizing redundant execution of event 

sequences. Chapter two provides comprehensive literature on Android apps, existing GUI 

testing tools, and its taxonomic parameters. In chapter three, the empirical evaluation of 

existing tools was conducted. The remaining chapter focuses on the in-depth explanation 

of the proposed approach for the effective generation of test cases. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter reviews the state-of-the-art GUI testing tools comprehensively for 

Android apps to analyze their strengths and weaknesses. A comprehensive thematic 

taxonomy is proposed based on an extensive review of the existing GUI testing tools for 

Android apps. The critical features and related aspects of these tools are thoroughly 

examined to evolve the proposed taxonomy. The tools are exhaustively analyzed 

according to the taxonomy parameters to explore shared traits and contrasts among 

existing tools. Finally, several research issues in Android app GUI testing are put forward 

that require further consideration to enhance the tools. 

The chapter is organized: Section 2.1 presents an overview of the Android platform, 

its architecture, and its components. Section 2.2 discusses GUI testing, its faults, and 

frameworks. Section 2.3 proposes the thematic taxonomy of GUI testing tools for 

Android apps and compares the GUI testing tools for Android apps based on taxonomy 

parameters. Section 2.4 discusses the test case generation approaches for Android apps. 

Last, section 2.5 presents research gaps and limitations. 

2.1 Android 

Android is a mobile operating system that was released in 2008 to the market. It was 

developed by Google Inc. thenceforth, there had been a steady increase in the success rate 

of the Android platform. With its design, it has become the most popular mobile system 

in 2011, which has an open-source framework, a Linux-based layered software as 

compared to its competitors such as іOS (Apple) and Windows Phone (Microsoft). 

According to the market research report from Statista (Statista, 2019), nearly 2.2 

million apps are available in the Apple App Store, while Google Play remains the largest 

app store with accessible 3.3 million apps to its consumer. The popularity of Android 
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among developer communities can be attributed to its open Java programming language-

based development framework, as well as the availability of libraries with various 

functionalities (Li et al., 2016).  

2.1.1 Android Platform Architecture 

Android is an open-source OS built based on a consolidated Linux kernel created for 

an increasingly wide range of hardware and devices. Figure 2.1 illustrates the high-level 

architecture of the Android platform, the modified Linux kernel acts as a Hardware 

Abstraction Layer (HAL) and offers device driver, process and memory management, 

and networking capabilities, respectively. The library layer is configured with Java 

(which deviates from the conventional Linux design). It is in this layer that the special 

libc (bionic) for Android is located. The surface manager controls the user interface (UI) 

windows. Additionally, the Android runtime layer contains both the Dalvik Virtual 

Machine (DVM) and the core libraries (such as Java or IO). The core libraries provide 

the majority of the functionalities available in Android. 

Android is focused on improving technology based on minimal resources available on 

mobile devices. Besides, the Android-specific application framework was developed and 

used to enhance the operating environment. The architectural framework behind Android 

is called the Android software stack, which consists of layers (Google, 2019h). They are 

as follows. 

Linux Kernel. This layer is the core of the architecture of Android. It is founded on 

the Linux kernel with special additions for a model embedded platform. It provides the 

following functions: power management, memory management, process management, 

Hardware drivers, and security. It is used for better communication in software and 

hardware binding.  
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Hardware abstraction Layer. HAL consists of multiple library modules and is 

developed using native technology (C/C++ and shared libraries), each of which 

implements an interface for a specific type of hardware component. HAL lays out the 

standard interfaces which reveal the capabilities of the device's hardware to the higher-

level Java API (Application Programming Interface) framework. The Android system 

downloads the library module for that hardware component when the API framework 

calls for hardware device access. 

Figure 2.1: Android Architecture for System Application Software Stack 
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Dalvik Virtual Machine (DVM). Generally, Android-based systems employ their 

virtual machine (VM) known as a DVM that utilizes a unique bytecode. Therefore, native 

Java bytecode cannot be launched on Android systems directly. The Android community 

provides a tool (dx) that permits the substitution of Java class files into Dalvik executables 

(dex). The DVM implementation is optimized to improve efficiency and effectiveness on 

mobile devices that are configured with a slow (single) Processor, battery capacity, 

limited memory, and no swap space for the operating system. Also, the DVM was 

implemented such that it allows a device to execute VM's effectively. It depends on the 

revised Linux kernel for any possible threading and low-level memory features. DVM 

was replaced with ART (Android Runtime). ART was made official with Android 5.0 but 

candidly limited in its compatibility with all applications that are already on the market. 

ART introduces the concept of AOT (ahead-of-time) compilation, i.e., it compiles the 

whole application code into the native machine code, without interpreting the bytecode. 

Thus, enabling the application code to be executed directly by the device's runtime 

environment as compared to Dalvik's JIT (just-in-time) execution. AOT profiles the 

application while they are being executed and dynamically compiles the most used 

segments of the bytecode into native machine code. 

Native C/C++ Libraries. Most main Android system infrastructures, such as DVM / 

ART and HAL, are native code-based, requiring native libraries compiled in C and C++. 

Android OS provides java framework APIs that display the capabilities of these core 

features to applications. 

Libraries. The Library layer supports functionality such as 3D rendering using SGL 

(Scene Graph Library) and connects to databases using SQLite for Android to function 

effectively with its core features. 
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Application Framework. Developers can reuse and extend the components already 

presented in the API. This layer has managers, which enable Android applications to 

access data. These include; Activity manager, which controls the application's lifecycle 

and enables proper management of all the activities. Resource manager gives access to 

non-code resources. Notification manager allows the applications to show custom alerts 

in the status bar. Location manager notifies when a user enters or exits a specific 

geographical location. Package manager collects information about installed packages on 

the device. Window manager creates views and layouts. Telephony manager handles the 

structure of network connection and the information about services on the device. The 

Application Framework layer handles the API calls made by applications. 

Applications. It is the most layer in android architecture that controls all installed apps 

on the device. For example, native applications include all pre-installed apps, such as 

camera, browser, SMS, calendars, contacts. 

2.1.2 Android Application Components  

The Android software development kit (SDK) is a set of tools needed to develop an 

Android app. Android apps are packed into an Android package (.apk) files through the 

Android Asset Packaging Tool (AAPT). AAPT has all the assets and compiled source 

code required to install an application on a device (Google, 2019b) based on Dalvik 

specifications. Figure 2.2 shows the Android app package structure. Google supplies the 

Android Development Tools (ADT) to streamline the development process. The ADT 

assembles the conversion from class to dex files and creates .apk during deployment. 
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Android manifest file. This is an indispensable XML (еXtеnѕіblе Markup Language) 

file that is located at the root directory of the application's sources as 

AndroidManifest.xml. The manifest file is transformed into a binary format when the 

application is compiled. The binary manifest file has the essential Android system details 

of the device such as the package name, App ID, the minimum level of API needed, the 

list of permissions required, and the hardware specifications. In a very simplified manner, 

the four major components of an Android application are; Activities, Services, Broadcast 

Receivers, and Content Providers (Google, 2019b). 

Activity is the main interface for user interaction, and each activity represents a group 

of layouts. For example, a linear layout organizes the screen items horizontally or 

vertically. The interface has GUI elements, also known as widgets or controls (Google, 

2019a). These widgets include buttons, text boxes, search bars, switches, and number 

pickers which allow the users to interact with the apps. As a whole, it can be categorized 

into four attributes: type (e.g., class), appearance (e.g., text), functionalities (e.g., 

Figure 2.2: Android application 
package structure 
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clickable and scrollable), and the designated order of the sibling widgets (i.e., index). 

These widgets are handled as the task stacks in the system. The user can switch between 

tasks by clicking the Home button and starting a new stack of activities on the mobile 

device. Activity manager is involved in the management of stacks and the activity 

lifecycle. Once the activity stops due to the launch of a new activity, a callback method 

is notified that allows the smooth transitioning of the activity. The layouts and widgets 

are described in the manifest file of Android apps, where each layout and widget have a 

unique identifier. Activity provides a platform for user's interaction with the application, 

creating a loop called windows, thus creating a space for the application to interact with 

the UI. This window is typically a full screen that floats on top of other windows but may 

be smaller than the screen. Each activity comprises a set of Views and Fragments that 

presents information to the user while interacting with the application. Fragments were 

introduced to address the issue of screen size and represent behaviors of a user interface 

in an activity.  

Services are classes that do not provide the user with a screen for interaction as 

compared to Activity, and so can be executed in the background (for example playing 

music in the background; this is a long-running task). An app’s activities must be properly 

registered in the manifest for this component to function well. The three different types 

of services are (i) Scheduled which is characterized by jobs and requirements for network 

and timing. (ii) Started, it operates in the background indefinitely, even when the 

component that started it is no longer executing. (iii) Bound provides a client-server 

interface that permits the components to interact with the service. This is done by sending 

requests, receiving results, and processing with Inter-process Communication (IPC). All 

services must be declared in the application’s manifest file, just as activities and other 

components.  
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Broadcast Receiver is a component of an application that receives Intents from other 

applications that own the needed permissions. It listens and handles events related to 

particular states, either the system or other applications, similar to when a new message 

has been received or the OS has finished its initialization.  

Content Provider oversees the structured data enclosed in the database. It permits the 

application to share information with other applications. Broadcast Receiver responds to 

messages from other applications or the system i.e., the application can initiate broadcasts 

to notify another app about the downloaded data to the device and its availability for use. 

This broadcast receiver intercepts the communication and will initiate appropriate action. 

Intent messages activate Services, Activities, and Broadcast Receivers. It has an inter-

application message-passing framework. It is widely used in Android to transfer access 

from one activity to another, allowing late run-time binding between components, where 

the call codes are implicit and linked via the event messaging, an important feature of 

event-driven systems. 

2.1.3 Android Activity Lifecycle  

Activities on Android apps are components that are displayed for the users to interact 

with. They are usually composed of several loosely coupled activities bound to each other, 

and these activities can change the interface between different areas of application or 

perform different actions. For example, database accesses. Activities can call other 

activities using intents, which are used as links between the activities in the app. Intents 

are messages between the different components that are used to perform an activity 

(intention). The most common use for intents is starting a new activity and enabling the 

user to send extra data to the newly started activity, a bundle can be used, which acts as 

secondary storage when transferring data between activities.  
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An activity can have several different states, and the developer can override a 

corresponding method for each state in the source code i.e. if an activity has just been 

launched, the onCreate() method is invoked (Google, 2019k). This is called the activity 

lifecycle and can be the source of errors in Android apps. Figure 2.3 shows the Android 

activity lifecycle. The app's underlying process type is adjusted when the app components 

change their states. The basic individual unit begins when the app starts operation, while 

the following hooks are named sequential in activity: onCreate(), оnStаrt(), оnRеѕumе().  

The first hook is called once in the lifetime of activity, but others get called more often. 

The оnPаuѕе() method gets called when an activity loses its focus and when the activity 

is no longer visible, оnStор() gets called. Also, before disabling an activity, the 

onDеѕtrоу() method continues to operate until the halt of the activity's lifetime. Every 

hook gets called specially, thus enabling the activity to maintain its state or restart 

correctly. 

 

Figure 2.3: Android Activity Lifecycle 
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2.2 Graphical User Interface (GUI) Testing 

The Graphical User Interface (GUI) is an app interface that provides a massive way 

for the user to communicate with the software in a modern software system and applies 

to more than half of the source code (Memon, 2003). The user interacts with software 

GUI by performing events such as click, long click, swipe, scroll, and adding text. 

Subsequently, the GUI engages with the runtime environment through message and 

callback methods. GUI is characterized into graphical orientation, event-driven input, the 

component they contain, and the attributes of those components. 

GUI testing is a way to validate GUI components and the functionalities accessible 

through them. GUI testing is categorized into two namely usability testing which is not 

covered in this study, but mainly assesses how usable the interface is by using the tenets 

from user interface design and functional testing involves the assessment of an interface 

to test its workability, this is necessary to find out if the user interface works as intended 

(Ammann & Offutt, 2016). In general, GUI testing involves executing a task and 

comparing the outcome with the expected output. This is executed using test cases. GUI 

testing can be done either manually by humans and/or automatically. Memon published 

that GUI testing is manually operated (Memon, 2002). Additionally, testing GUI's can be 

difficult because the number of available GUI permutation actions are great, and each 

action may change the state of the program, and all of the action may need to be tested, 

and it is almost impossible to test all the states a graphical user interface can have (Kropp 

& Morales, 2010). GUI testing can be much work if performed manually, errors can be 

difficult to reproduce, and the process is infeasible (Kropp & Morales, 2010; Wang et al., 

2014)  while automated GUI testing is more accurate, reliable, efficient, and cost-effective 

than manual GUI testing (Li & Wu, 2004). GUI testing is not a single test activity; rather 

it is a collection of activities that test the app from various viewpoints, including test 

coverage, test case generation, test oracle, and regression testing. Test case generation is 
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the major demanding task. Automated testing tools cannot substitute human intelligence 

for testing, but it would never be possible to test complex systems at a fair cost without 

them (Fewster & Graham, 1999). 

Even though there is a variation between conventional software testing to GUI testing, 

both undergo similar testing steps that follow the pattern, respectively (Memon, 2001; 

Muccini et al., 2012). The first step is known as coverage criteria; these are guidelines 

used to assess what to test in software; this demands that each event be implemented and 

executed to determine its functionality and usability. The second step is the most 

important part of the test case, which is known as test input generation. Test inputs 

comprise events such as clicks, scroll, and object manipulations and are constructed based 

on software specifications or its structure. The third step is known as expected output 

generation; test oracles is a mechanism that helps generate the expected outputs which 

determine if the software was successfully executed or otherwise. The fourth step 

involves the execution of test cases and verification of outputs, here, test cases are 

executed, and the output generated is compared to its expected result.  

A test case consists of an input, output, expected outcome, and the actual outcome. 

Lastly, this step determines if the GUI was properly and adequately tested. This step 

usually requires analyzing the software to check the parts that were tested and those that 

were missed during the testing exercise. Problems identified after testing are usually 

modified and corrected. This modification leads to regression testing, simply put re-

testing the modified software. 

Regression test shows the accuracy of the modified software component and assesses 

that the changes had not significantly impacted the previously tested parts. 

Univ
ers

iti 
Mala

ya



24 

2.2.1 GUI Testing on Android Application  

Testing Android GUI application has special requirements compared to desktop GUI 

applications. Due to some factors; Android applications run on heterogeneous devices, 

where different manufacturers use different technologies, there are a number of bugs 

derived from the heterogeneous aspect (Amalfitano et al., 2011). Also, as compared to 

the monolithic and independent desktop application, the ubiquitous nature of the Android 

framework and its code execution pose difficulties (Mirzaei et al., 2015). Android 

applications can be customized on different types of devices by providing different 

layouts and functionality, depending on the device running the application. Moreover, the 

Android activity lifecycle (This includes testing the activities respond to the user, system, 

and its lifecycle events), Service testing, Content provider (testing shared resources). An 

example of such a shared resource is a database. Broadcast receiver tests the component 

listening to a message from an intent (Amalfitano, Fasolino, Tramontana, & Robbins, 

2013). According to Google  (Google, 2019f) stated that Android applications can have 

numerous entry points since the activities act as independent modules that are connected. 

This means that testing becomes more difficult since the transition between every activity 

needs to be tested as well (Zhauniarovich et al., 2015). 

2.2.2 Faults in Android GUI Testing  

Generally, Android application GUI testing aims to execute applications using a 

combination of inputs and states to reveal a fault. A fault is defined as a coding error in 

an application, also known as a Defect or Bug. Faults cause an application to crash during 

use, which may or may not lead to failure. Failure here means a system's inability to 

perform a necessary function within specified performance requirements (Maji et al., 

2010). The source of failures includes faults in the application implementation, the 

running environment, and the interface between the application and its environment 

(Amalfitano, Fasolino, Tramontana, & Robbins, 2013). 
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An Android application crashes when there is an unexpected exit caused by an 

unhandled exception (Google, 2019d). Crashes typically result in termination of the 

application's processes, and a dialog is displayed to the user to notify them of the crash. 

Some crashes do not impact the execution visually, but the screen remains unresponsive. 

Once the crash is observed, the tester investigates the crash to find the fault that caused it 

and correct that fault. Android faults are categorized as activity errors and event errors 

(Hu & Neamtiu, 2011). Activities are the major GUI features of an Android application; 

an activity error happens due to inaccurate implementation of the Activity class. Event 

errors arise when an application refuses to respond as a result of getting an event. By 

configuration, Android applications are expected to be ready to receive and respond to 

events at any stage of activity in which they occur, e.g., an application must be able to 

manage the intrusion caused by an incoming phone call in any state. If developers do not 

provide the effective implementation of event handlers associated with certain states, the 

application may enter an erroneous state or crash as a result of an event. 

2.2.3 GUI Testing Frameworks for Android 

There are varied GUI testing tools and frameworks for Android applications include 

Android Monkey (Google, 2019j), Appium (Sauce, 2013), Espresso (Google, 2019e), 

Robotium (Reda & Josefson, 2014), UiAutomator (Google, 2019i), and Monkeyrunner 

(Google, 2019g). These frameworks are not limited to the stated frameworks but were 

identified based on their popularity in the software marketplace (Gunasekaran & Bargavi, 

2015). Automated GUI testing frameworks have been used to compile and execute test 

cases for Android applications and make the testing activity easier.  

Android Monkey (Google, 2019j), also known as UI/App Exerciser Monkey is a black-

box GUI testing tool in the Android SDK. Among the existing test generation tools, this 

random testing tool gained considerable popularity from society. Other than its simplicity, 
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it has demonstrated good compatibility with a myriad of Android platforms which made 

it the most commonly used tool for numerous industrial applications. It is a command-

line tool used directly in the device/emulator. It can generate pseudo-random events with 

unexpected scenarios to an AUT. It produces randomly generated events that serve as the 

test input in the absence of any guidance. Thus, the test exploration can be uniformly 

traversed throughout the GUIs (i.e., low activity coverage) and it cannot incorporate user-

defined rules such as inserting a password or preventing logging out. Also, the generated 

events are low level with hard-coded coordinates, which complicates the reproduction 

and debugging processes (Choudhary et al., 2015). Moreover, Android Monkey is unable 

to turn the sequence of events into test cases. 

Appium (Sauce, 2013) is an open-source black box testing, cross-platform mobile app 

automation testing framework developed by Sauce Labs to automate native, hybrid, and 

mobile web applications. It is OS independent, but not a device-independent that uses 

UiAutomator or Selendroid for running the tests in the background. Aрріum interacts 

with multiple applications once the Android API level on the test device is greater than 

what is required by UiAutomator. Appium is best known for its accuracy during 

automation testing and test repeats and also can be developed on any language because it 

is not directly paired to Android. Appium has limited support for hybrid testing and 

cannot be used on Android version lower 4.2.  

Espresso (Google, 2019e) is a user іntеrfасе-tеѕtіng frаmеwоrk fоr tеѕtіng android app 

dеvеlореd іn Jаvа / Kоtlіn lаnguаgе uѕіng Andrоіd SDK. It is an open-source project used 

mаjоrlу tо wrіtе a funсtіоnаl UI test whose fосuѕ іѕ оn thе nаvіgаtіоn of AUT. Eѕрrеѕѕо 

is highly reliant оn thе іnѕtrumеntаtіоn frаmеwоrk of Andrоіd, аnd thеrеfоrе, lіmіtеd bу 

іtѕ іnаbіlіtу to nаvіgаtе оutѕіdе thе AUT. Thе tеѕt is ѕіmрlе tо compile, ѕіnсе Eѕрrеѕѕо 

еnѕurеѕ thаt thе аррlісаtіоn іѕ аt a stable bеfоrе proceeding wіth thе tеѕt ѕсrірt. Stаblе 
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ѕtаtе means thаt thе аррlісаtіоn іѕ nоt wаіtіng fоr аn аnіmаtіоn оr network саll tо end 

(Nolan, 2015). Onсе thе іntеnt hаѕ bееn ѕtаtеd, Espresso tаkеѕ саrе оf tіmіngѕ. Thіѕ tооl 

rеquіrеѕ ассеѕѕ tо thе аррlісаtіоn’ѕ ѕоrсе соdе whісh mау іnhіbіt thе рrосеѕѕ оf tеѕtіng 

аnd it hаѕ a narrow fосuѕ ѕuсh thаt tеѕt are wrіttеn twice fоr twо different ѕуѕtеmѕ if UI 

tests are needed for both Android and іOS.  

UiAutomator (Google, 2019i) is a UI testing framework produced by Google as part 

of Android SDK. It uses for cross-app functional testing on apps and across the platform. 

This is similar to Espresso, because іt соmеѕ with Tеѕtіng Suрроrt Lіbrаrу included as a 

раrt оf thе tеѕt package but іt dоeѕ nоt uѕе thе Instrumentation frаmеwоrk. It іѕ a blасk 

bоx tеѕtіng thаt nееdѕ tо bе іn a highly stable bеfоrе the continuation of tеѕt еxесutіоn аѕ 

соmраrеd tо Espresso.  

Robotium (Reda & Josefson, 2014) is аn ореn-ѕоurсе рrоjесt, bу Rеnаѕ Rеdа. It was 

designed to abstract the structure of instrumentation that is hard to use. The tеѕt 

dеvеlорmеnt language is Jаvа. Sіmіlаrlу tо thе previously mеntіоnеd tооlѕ, Eѕрrеѕѕо аnd 

UіAutоmаtоr, Rоbоtіum have ассеѕѕ to the сlаѕѕеѕ аnd mеthоdѕ рublісlу аvаіlаblе іn thе 

AUT since the test code and AUT’ѕ ѕоurсе соdе are included in the same project 

("Robotium" 2016). Like Espresso, as it is based on the instrumentation system, 

Robotium is restricted to traversing within the AUT. Thе tооl is іn асtіvе dеvеlорmеnt. 

In соntrаѕt, Robotium іѕ a thіrd раrtу tооl and so requires the lіbrаrу іѕ ѕіmрlу loaded to 

the Android app project.  

Monkeyrunner (Google, 2019g) is used for GUI testing. Thе lаnguаgе uѕеd hеrе іѕ 

Jуthоn, а Pуthоn іmрlеmеntаtіоn thаt uѕеѕ Jаvа. Google designed it and includes Andrоіd 

SDK. This tool sends inputs, such as tоuсh events or kеу ѕtrоkеѕ, to the AUT аnd tаkes 

ѕсrееn ѕhоtѕ оf thе аррlісаtіоn аѕ соmраrеd tо оthеr tеѕtѕ. It possesses the capability to 

input tеѕt ѕuіtеѕ into numerous еmulаtеd devices аnd bооt uр ѕаіd emulators. 
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Monkeyrunner is effective in automating the execution of the test suite. Mоnkеуrunnеr 

works on all Android versions, and functions on a level lower than the Android 

Framework. Compared to other tools, it lacks high-level methods for searching and 

asserting items. 

Most of the above solutions focus on automating manual efforts in the GUI testing 

process instead of improving the test efficiency of the complex modern application GUI 

(Septian & Alianto, 2018). Frameworks such as Robotium, UiAutomator, and 

MonkeyRunner provide a set of APIs for the tester to write test scripts based on their test 

requirements. They do not provide a way for generating the test cases automatically; 

hence the test cases have to be developed manually. Moreover, writing the test cases using 

these frameworks and scripts for all the available and upcoming applications is 

impractical and non-effective in terms of time, effort, and cost. In contrast, the main focus 

of this dissertation is on implementing an approach for generating test cases 

automatically.  

2.3 State-of-the-Art GUI Testing Tools for Android 

This section highlights and discusses a thematic taxonomy for the classification of 

Android application GUI testing tools. The taxonomy was created by analyzing 45 

different studies from 2011 to 2019. The studies were from five known data sources: 

springer, IEEE Xplore, ACM, science direct, and google scholar.  

2.3.1 Taxonomy of GUI Testing Tools for Android 

The taxonomy contains four prominent parameters, which are (i) automated testing 

activities, (ii) GUI testing tools approach, (iii) evaluation methods, (iv) and 

characteristics, as illustrated in Figure 2.4. 
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2.3.1.1 Automated Testing Activity  

Automation is a key factor for any Android application testing. Automated testing 

includes test case implementation and design, test execution, and test oracle definition 

and evaluation that verify the test by comparing the output results with the expected 

results (Shahamiri et al., 2009). 

2.3.1.2 Approach 

GUI testing tools applied different techniques to design and implement test cases and 

test oracle by using different inputs such as source code, bytecode, inferred model, 

existing test cases, and user session.   

Testing process input is the source of information required by the tool to derive test 

cases such as (1) Source code when the tool requires source code of the Android 

application; (2) Bytecode when the tool requires the executable code to derive test cases; 

(3) Inferred model uses AUT model that generates automatically or manually to derive 

test cases; (4) User session uses record and replay techniques to record and re-execute 

user sessions that can be transformed to executable test cases; (5) Existing test cases have 

been created by changing existing sessions, often in the form of executable Junit test cases 

for Android applications, into executable test cases. 

Test case generation is one of the most attention-demanding testing activities because 

of its strong impact on the overall testing process efficiency (Anand et al., 2012). The 

total cost, time, and effort required for the overall testing will depend on the total number 

of test cases. The effort depends on the size of the application and the number of test 

cases. The test case comprises input, output, expected result, and actual results. A set of 

test cases is referred to as a suite. The test suite provides detailed guidelines or goals for 

every test case collection (Memon, 2019). Test generation techniques include:  
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(1) Record and replay, which records user interactions with GUI components into a 

test script that can replay automatically on AUT to mimic user usage. Test cases 

are generated and executed based on the scenarios recorded. Also, test data from 

the scenarios can be modified as per requirement during the execution.  

(2) Random is based on probability and distinct events generated by the GUI 

application to trigger faults and crashes (Liu et al., 2010). The set of all GUI 

actions available in the current state is identified, yet another GUI action is chosen 

from the set and sent to the AUT for execution. 

(3) Model-based uses a graph-based model to represent the user interaction with the 

app's GUI. The model is designed either manually or automatically by adopting 

the AUT's specifications, such as code or XML configuration files, or through 

direct interaction with the apps. Test cases are produced based on a model 

abstraction according to specific test selection criteria, such as coverage (Utting 

et al., 2012). 

(4) Active Learning is a combination of GUI testing and model learning technique 

(Amalfitano et al., 2015a). Developers will generate user event sequences based 

on the model of the Android application GUI. This technique may exploit the 

known graph exploration algorithms like Breadth-first search (BFS) or Depth-first 

search (DFS), or a combination of both, to test the Android application GUI. 

(5) Systematic approach uses more sophisticated techniques such as program 

analysis. These techniques can explore some of the app’s behavior with specific 

inputs. The main benefit of this technique is it can leverage the source code to 

reveal previously uncovered app behavior. Symbolic execution was introduced by 

(King, 1975),  which is a program analysis technique where symbolic values are 

used as program inputs instead of concrete values. Then the output of the program 

is transformed into a function of the symbolic inputs. Symbolic execution is 
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computationally expensive, and it is difficult to reason about all paths of a 

significantly large program symbolically. Therefore, concolic execution has been 

proposed to alleviate the path explosion problem. Concolic execution is known as 

dynamic symbolic execution, is a combination of symbolic and concrete 

execution techniques. 

(6) Search-based uses meta-heuristic search algorithms (Saeed et al., 2017) such as 

genetic algorithms (GA) for testing. This technique generates test cases driven by 

an objective function that is specified according to a desirable test goal. 

Evolutionary algorithms (Zitzler & Thiele, 1999)  have been used to test programs 

(Sharma et al., 2014).  However, the limitation of the evolutionary algorithm-based 

approach that maximizes test coverage is that it takes a long time to produce a test 

suite. 

(7) Reuse based techniques rely on existing test cases manually written or 

automatically generated for deriving new tests that may be executed in various 

background conditions. 

Test input is the data used to execute test cases, which include UI user events, system 

events, hardware events, and external events. UI events are user interactions with the 

system through the user interface, such as touch, text, and scrolls inputs. User interactions 

over the touchscreen are the primary source of input for Android applications. Android 

describes UI events using MotionEvent and KeyEvent classes, each extending the 

InputEvent class. MotionEvent specifies the user input in terms of an action code (e.g., 

ACTION_Up, ACTION_DOWN) and screen coordinates. A sequence of MotionEvents 

can describe any user gesture such as long-press, fling, and pinch. KeyEvents describe a 

key that has been pressed (e.g., volume, virtual keyboard). Android framework provides 

a variety of GUI elements, also known as widgets or controls. These widgets include 

TextViews, ImageViews, or ScrollViews which allow the users to interact with the apps. 
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System events are a messaging system across apps and outside of the regular user flow, 

such as receiving SMS notification, application notification, or phone calls. For example, 

Android apps enable us to send or receive broadcast messages from the Android system 

and other Android apps. The broadcast messages are usually enclosed in an intent object. 

The action string of the intent object will identify and store the event data. Hardware 

events are generated from the device hardware like a battery or peripheral port such as 

USB, headphone, network receiver/sender. External events are generated by the external 

environment and sensed by device sensors such as temperature, pressure, GPS, and 

geomagnetic field sensor. Many methods to identify event inputs such as Dumрѕуѕ, event 

patterns, and permission-based. Dumрѕуѕ is a tool that runs on Android devices, which 

provides information about system services. To obtain a diagnostic output from all system 

services running on a connected device, a command-line can be called using the Android 

Debug Bridge (ADB) through a dynamic analysis approach. Event patterns are a sequence 

of system events used to exercise the app. The sequence is defined manually with proper 

regular expressions like optional, mandatory, and iterative events. Besides, Android 

Operating System (OS) uses a permission-based approach to control the behavior of 

Android apps and the accessibility of sensitive data (e.g., photo gallery, calls log, 

contacts) and components (e.g., GPS, Camera) on Android devices. The permission 

required within the Android apps is declared in the Android manifest file and the dynamic 

approach analyzes the Android manifest file to identify the system events. 

Test oracle is considered a challenging activity of the testing process to be automated 

(Barr et al., 2014; Shahamiri et al., 2009). The following is a brief explanation of the 

techniques used for the validation: (1) Bitmap Comparison: the process of verifying test 

execution by comparing visual object state using screenshots and images of widgets, with 

the expected state of the object. (2) Expected GUI States: when states of the GUI extracted 

during the first execution of the AUT are used to verify further execution of test cases. 
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(3) Widgets via API technique: capture widgets of the Android application GUI and 

compares them with the widgets captured with the help of API's on the same GUI to verify 

the correctness (Amalfitano, Fasolino, Tramontana, & Robbins, 2013). (4) Crash 

detection or exceptions: the distinctive implicit way to assess the results of the test case. 

Test case is marked as failed if the AUT crashes during execution else it is considered a 

pass. (5) Manually design oracle: a process of verifying the output results of test execution 

manually.  

Test Artifacts are the outputs generated by the tool during testing, which include test 

reports such as coverage reports or testing output and executable test cases that are 

executed outside the context of the generated process, for example, Junit test case.   

2.3.1.3 Evaluation Methods 

Evaluation methods are criteria used to evaluate the success and performance of the 

tool, such as (1) Coverage is an important metric to measure the effectiveness of testing 

(Memon et al., 2001). Coverage criteria include code coverage and activity coverage. 

Code coverage evaluates statement coverage, line coverage, block coverage, instruction 

coverage, branch coverage, and method coverage. It provides a measurement of how 

much source code was executed during the tests. Activity coverage is defined as the ratio 

of activities explored during the execution to the total number of activities present in the 

application. Activities provide the main interfaces for interaction with the end-user. (2) A 

fault is the capability of the tool to detect faults such as application crashes during real-

time execution. Crashes lead to termination of the app's processes, and dialogue is 

displayed to notify the user about the app crash. The more code the tool explores, the 

higher the chances it discovers a potential crash. (3) Time criteria are used to evaluate the 

tool by calculating the duration of the test process. 
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2.3.1.4 Characteristics 

The characteristics of the GUI testing tools in terms of the techniques to generate test 

cases (i.e., static analysis, dynamic analysis, or hybrid), testing environment (i.e., 

emulator and real device), source code availability, and tools basis. 

Techniques applied in the test case generation process are used to analyze the Android 

application to identify GUI components and event-driven behavior. Dynamic analysis 

explores the GUI of AUT to extract all possible event sequences. It executes the AUT by 

using different techniques to observe the external behavior of AUT. Static analysis 

techniques generate tests based on data such as source code or high-level models of AUT. 

It analyzes the Android app's events handler statically and triggers events on the basis of 

AUT's source code without executing the app. The static analysis reviews and detects 

faults that could potentially serve as a failure cause in the source code. However, it is only 

limited in the design and implementation phases and offers support for the Dаlvіk 

bytecode analysis. The hybrid analysis combines dynamic and static analysis.  

Testing Environment is a platform that supports hardware and software test execution. 

The test environment is typically designed according to the specifications of the 

application under test. There are two main options for Android apps to conduct GUI tests: 

(1) Real device, and (2) Emulator. A real device refers to a mobile device (phone or 

tablet). The real device is the ultimate way to understand the users' experience on the app. 

Real devices produce real results and live network performance defects. An emulator is a 

virtual mobile device that runs on a computer to mimic some hardware and software 

features of a real device. It can be used to test the app against the massive device 

fragmentation of the Android domain. Developers often use on-screen Android emulators 

to test Android apps in a digital environment. An emulator is a part of the Android 
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software development kit (SDK). However, the emulator is not able to emulate events 

like battery issues, network connectivity, and gestures. 

Availability in this context refers to the availability of the tool's source code to be 

accessed by the public. 

2.3.2 Comparison of GUI Testing Tools for Android 

This section addresses the overview of the current state-of-the-art GUI testing tools 

for Android applications. Tables 2.1, Table 2.2, Table 2.3, and Table 2.4 classify GUI 

testing tools based on categories of the thematic taxonomy presented in section 2.3.1. 

2.3.2.1 Automated Testing Activities 

GUI testing is classified into three main activities, test case generation, test execution, 

and test oracle definition and evaluation. As illustrated in Table 2.1, most of the 

literature's tools focus on test case generation and execution but do not support test oracle. 

An automated test generation technique alone is not sufficient because a human tester 

must manually determine whether each test case diverges from the expectation. An 

automated test oracle is a technique that will help to mitigate this problem. To implement 

an automated test oracle, you will have to export test cases to executable test scripts. 

Immediately the test case is materialized as a script. Moreover, a human tester can 

implement a test oracle. This is done by adding assertions to the script. 
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Table 2.1: Comparison of Automated testing activities 

Attribute GUI Testing Tools 

Fully Automated 

Test case generation, Test 

execution, and Test oracle 

definition and evaluation   

Droidbot (Li et al., 2017), AimDroid (Gu et al., 2017), Stoat (Su et al., 

2017), Barista (Fazzini et al., 2017), Sapienz (K. Mao et al., 2016), 

Crashscope (Moran et al., 2016), Thor (Adamsen et al., 2015), Cadage 

(Zhu et al., 2015), MobiGuitar (Amalfitano et al., 2014), SlumDroid 

(Imparato, 2015), AppDoctor (Hu et al., 2014), PUMA (Hao et al., 2014), 

ACRT (Liu et al., 2014), Dynodroid (Machiry et al., 2013), 

AndroidRipper (Amalfitano, Fasolino, Tramontana, De Carmine, & 

Memon, 2012), Tema (Takala et al., 2011). 

Test Case Generation and 

Execution  

APE (Gu et al., 2019), Amoga (Salihu et al., 2019), SmartMonkey 

(Haoyin, 2017), (Zeng et al., 2016), TrimDroid (Mirzaei et al., 2016), 

FSMdroid (Su, 2016), T+ (Linares-Vásquez, 2015), MonkeyLab 

(Linares-Vásquez et al., 2015), PATS (Wen et al., 2015), Sig-Droid 

(Mirzaei et al., 2015), EvoDroid (Mahmood et al., 2014), DroidCrawle 

(Wang et al., 2014), ORBIT (Yang et al., 2013), A3E (Azim & Neamtiu, 

2013), RERAN (Gomez et al., 2013), SwiftHand (Choi et al., 2013), 

Collider (Jensen et al., 2013), Extended Ripper (Amalfitano, Fasolino, 

Tramontana, & Amatucci, 2013), ACTEve (Anand et al., 2012), GUI 

Ripper (Amalfitano, Fasolino, Tramontana, De Carmine, & Imparato, 

2012), Testdroid (Kaasila et al., 2012), A2T2 (Amalfitano et al., 2011), 

(Hu & Neamtiu, 2011). 

Test Case Generation (Zheng et al., 2017). 

 

Test Execution and Oracle 

definition and evaluation 

GUICC (Baek & Bae, 2016), iMPAcT (Morgado & Paiva, 2015),     

SPAG-C (Lin et al., 2014). 
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2.3.2.2 Approach 

Testing process inputs. The studied tools exploit one or two source information to 

generate a test case. White box approach applied in thirteen tools is reliant on the analysis 

of the source code of AUT. Black-box approach requires the executable code that is 

applied in nineteen tools. Grey box approach uses source code and executed code, which 

is applied in six tools. The inferred model is analyzed to derive test cases. Models are 

designed manually, FSMdroid (Su, 2016) design finite state machines for Android 

application under test. DroidCrawle (Wang et al., 2014) and PATS (Wen et al., 2015) 

automatically design GUI trees by reverse engineering process. User sessions transform 

into executable test cases by using record and replay techniques. 

Test case generation is a key feature for most literature tools. Several techniques have 

been used for generating test cases, namely Model-based technique, Active learning 

technique, Random based technique, Search-based technique, Systematic based, and 

Record and Replay. However, the most popular technique is the Model-based technique. 

This technique is dependent on two models, the high-level models, and low-level models. 

The high level is composed of behavioral models such as finite state machines, sequence 

diagrams, activity diagrams, event flow graphs, and GUI trees, and low-level models that 

relate directly to the AUT code, such as control flow graphs or call graphs. The model is 

used in GUI testing to guide the exploitation of an application, circumnavigate the model 

which uses specific instructions to generate action sequences systematically, and then 

playback action sequences of the test application. GUI testing tools adopted active 

learning techniques; the models generate test cases automatically at runtime during the 

testing process. Although other existing test cases such as reuse-based, for example, Thor 

and Extendedripper have infused specific sequences of events in existing replicate test 

cases.  
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The existing test cases test the AUT robustness with respect to system events, i.e., 

sending an intent to start and restart the app or on/off WiFi. Random-based techniques 

use uniform random techniques, for example, Dynodroid and AppDoctor, and smarter 

random techniques such as SmartMonkey for test case generation. Finally, search-based 

testing techniques rely on using an evolutionary algorithm.  

Test input is the main activity to generate test cases. Generally, all tools generate test 

inputs but vary. While all the tools generate UI event inputs, some generate system events 

and few text inputs. Text inputs can be generated automatically or manually, and the input 

types are concrete, predefined, contextual, and random. Pieces of literature, such as 

Droidbot, fill in text input fields by searching for a sequence of predefined inputs. When 

none of the predefined inputs can satisfy the input restraints, these predefined inputs may 

fail to exercise beyond the input. Sapienz, Stoat, and Android Monkey produced random 

text input. Dynodroid paused the test for manual input when encountering a text input 

field, such as the login password. System events can effectively expose app faults from 

context events. Android apps are context-aware because of their ability to sense and react 

with a great number of different events that come from the user or system interactions. 

However, most of the recent testing tools for Android apps focus on UI events. Thus, they 

make it difficult to identify other defects in the changes that can be preferred by the 

context in which an app runs. 

Test Oracles determine the executed test case result. Test oracle has been proposed in 

seventeen of the studied GUI testing tools. In eleven tools, crash detection represents the 

unique implicit way to evaluate the result of executed test cases. Crashscope (Moran et 

al., 2016), MobiGUITAR (Amalfitano et al., 2014), Dynodroid (Machiry et al., 2013), 

TestDroid (Kaasila et al., 2012), and (Hu & Neamtiu, 2011) manually verify test cases by 

analyzing execution log and/or crash reports. Moreover, Barista (Fazzini et al., 2017), 
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EHBDroid (Song et al., 2017), ACRT (Liu et al., 2014), and Collider (Jensen et al., 2013) 

inspect crashes and confirm their validity manually. Manual oracle is resource-intensive 

because the testers interact with the GUI manually to generate events and visually detect 

the error. Bitmap comparison techniques compare the actual state screenshot with the 

expected state image used in SPAG-C (Lin et al., 2014) that snapped a photo of the actual 

state with an external camera. The studies checked the value or the condition of the widget 

using the Android API, A2T2 (Amalfitano et al., 2011), and AppDoctor (Hu et al., 2014) 

by verifying states or values of a widget using Android API. GUI verification through an 

API has a high degree of maintainability. Moreover, APIs sometimes are not available, 

and API access is that the gathered data from the API might be slightly different when 

seen through the GUI. Droidbot (Li et al., 2017) assesses the invariants obtained from the 

assessment of common application bugs.  

Test Artifacts are obtained during the test case generation process. The test artifacts 

generated are grouped into the following categories: test execution outputs such as test 

reports, test coverage, and executable test cases. The most common type of test artifact is 

the executable test case. These tests can only be tested by the same tools that generate 

them. However, few tools can traverse the generated test cases, allowing them to be 

executed outside the tool of the test generation process. Test execution can also be 

presented as output, which provides reports of crashes, logs, and code coverage. For 

example, Dynodroid replicates test case reports when the tool crashes, Android Ripper 

creates executable JUnit test cases, RERAN replicates the same user sessions that have 

been captured, and Sapienz generates event sequences for the easy derivation of the test 

case, such as crash and code coverage. 
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Table 2.2: Comparison of GUI test case generation tools 

 

 

 

Tools Testing Process 
Inputs 

Test Case 
Generation 
Techniques  

Test 
Inputs 

Test oracle  Test 
Artifacts 

APE Bytecode 
Executable 
Automatically 
Inferred Model 
 

Model-based User events - Test Reports 
(crash & 
coverage) 

Amoga Bytecode 
Executable, 
Automatically 
Inferred Model 

Model-based User events - Executable 
test cases 

AutoDroid Bytecode 
Executable, 
 

Random  User events - - 

AimDroid Bytecode 
Executable 
 

Model-based User events -  

DroidBot  Bytecode 
Executable, 
Automatically 
Inferred Model 
 

Active learning User and 
System 

Invariant 
Conditions 

Test Reports 
Activity 
coverage and 
log) 

SmartMonkey   
 

Bytecode 
Executable 

Random User and 
System 

- -  

EHBDroid 
 

Source code  User and 
System 

- -  

Barista User session Record and 
Replay 

User events Manually 
design 

Executable 
test cases 
 

Stoat Source code, 
Bytecode execution 

Model-based User and 
System 

- Test reports 
(crash, 
coverage & 
log), 
Executable 
test cases 

(Zheng et al., 
2017) 
 

Source code Random User events  - Coverage 
report 

Sapienz Source code, 
Bytecode execution 

Search based User and 
System 

Crashes / 
Exceptions 

Executable 
test cases, 
(crash, 
coverage & 
log) 

(Zeng et al., 
2016) 

Source code Model-based 
 

User events  - Test output, 
Executable 
test cases 

Crashscope  Bytecode 
Executable 

Model Learning User and 
System 

Crashes Test output, 
Executable 
test cases 
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Table 2.2: Continued 

 

  

Tools Testing Process 
Inputs 

Test Case 
Generation 
Techniques  

Test 
Inputs 

Test oracle  Test Artifacts 

TrimDroid Source code, 
Automatically 
Inferred Model 

Model-based User events  - Test output, 
Executable test 
cases 

FSMdroid Source code, 
Manually 
Inferred Model 

Model-based User events - Coverage report 

Thor  Existing test case Reuse Test case User and 
System 

Crashes Test output, 
Executable test 
cases 

T+  Bytecode 
Executable, 
User session 

Model-based,  
User session 

User events - Test output,  
Executable test 
cases 

Cadage  Bytecode 
Executable, 
Automatically 
Inferred Model 

Model Learning User events Crashes - 

MobiGuitar  Source code  Model-based User events Crashes Test output,  
Executable test 
cases 

MonkeyLab  Bytecode 
Executable, 
user session 

Model-based, 
User session 
based 

User events - Test output,  
Executable test 
cases 

PATS  Bytecode 
Executable 

Model-based User events - Test output,  
Executable test 
cases 

Sig-Droid  Source code, 
Automatically 
Inferred Model 

Systematic User events - Test output,  
Executable test 
cases 

SlumDroid  Source code Model learning 
 

User events Crashes Test output,  
Executable test 
cases 

EvoDroid  Source code, 
Automatically 
Inferred Model 

Search-based User events - Coverage and 
crash report 

SPAG-C  User session Record and 
Replay 

User events Expected 
Bitmap 

- 

AppDoctore Bytecode 
Executable, 
Existing Test 
cases 

Random testing User events Expected 
GUI state. 
Crashes 

Test report (log), 
Executable test 
case 

DroidCrawle Source code Model Learning User events - Coverage report 
 

PUMA Bytecode 
Executable 

Model-based  
 

User events Expected 
GUI state, 
Crashes 

Test report (log) 

ACRT  Bytecode 
Executable, 
user session 

Record and 
Replay 

User events Manually 
Designed 

Test outputs,  
Executable test 
case 

Univ
ers

iti 
Mala

ya



43 

Table 2.2: Continued 

 

 

Tools Testing Process 
Inputs 

Test Case 
Generation 
Techniques  

Test 
Inputs 

Test oracle  Test Artifacts 

Dynodroid Source code  Random 
 

User and 
System 

Crashes Test report 
(Coverage & 
Crash report) 

ORBIT  Source code, 
Automatically 
Inferred Model 

Model-based User events - - 

A3E  Bytecode 
Executable, 
Automatically & 
Manually 
Inferred Model 

Model-based, 
Active learning 

User and 
System 

- Test output,  
executable test 
cases 

RERAN Bytecode 
Executable, 
user events 

Record and 
replay, User 
session based 
 

User and 
System 

- Test output,  
executable test 
cases 

SwiftHand Bytecode 
Executable 

Active learning User events - Test output,  
executable test 
cases 

Collider  Manually 
Inferred Model 

Systematic User events - Branch coverage 

Extended 
Ripper 

Bytecode 
Executable, 
Source code 

Reuse Test case User and 
System 

- Test output,  
executable test 

cases 
Android 
Ripper  

Bytecode 
Executable, 
Source code 

Model-based User events Crashes Test output,  
executable test 
cases 

ACTEve  Source code Systematic User and 
System 

- Test output,  
executable test 
cases 

GUI Ripper Bytecode 
Executable, 
Source code 

Model-based User events Crashes Test output,  
executable test 
cases 

Troyd Bytecode 
Executable 
 

Record and 
Replay 

User events - - 

Testdroid  Bytecode 
Executable, 
Existing Test 
cases 

User session 
based 

User events - Test report (log) 

A2T2 Bytecode 
Executable 

Model-based User events - - 

(Hu & 
Neamtiu, 
2011) 

Source code Random  User events Crashes Test reports (log) 
 

TEMA  Bytecode 
Executable 

Model-based User events Crashes Test reports 
(Crash report) 

PUMA Bytecode 
Executable 

Model-based  
 

User events Expected 
GUI state, 
Crashes 

Test report (log) 
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2.3.2.3 Evaluation Methods of GUI Testing Tools for Android 

Evaluation methods are used to measure the effectiveness of tools. The most frequently 

considered effectiveness metric is the number of faults that have been found (i.e., crashes 

or exceptions). Besides, coverage criteria (such as line coverage, statement coverage, 

branch coverage, method coverage, block coverage, Instruction coverage, and activity 

coverage) have been measured. Most of the tools combine different granularities of 

coverage metrics that can be beneficial for achieving better results in testing the Android 

app. Table 2.3 illustrates the evaluation methods of GUI testing tools. 

2.3.2.4 Characteristics of GUI Testing Tools for Android 

The GUI testing tools have several features that ensure the successful evaluation of the 

Android application. Table 2.4 reports a summary of the characteristics of the GUI testing 

tools for Android applications. 

Techniques have been categorized by differentiating between static and dynamic 

analysis techniques. Many of the tools have been based on static analysis, while others 

use dynamic analysis, as shown in Table 2.4. Dynamic analysis can provide additional 

information that is not available statically, for example, whether certain UI widgets are 

disabled in a particular state. The static analysis exposes behaviors that are only possible 

under complex run time conditions that are unlikely to be triggered by automated dynamic 

exploration. The most natural direction to pursue is a hybrid static and dynamic analysis. 

Existing works by Amoga (Salihu et al., 2019), Stoat  (Su et al., 2017), Sapienz  (K. Mao 

et al., 2016), CrashScope (Moran et al., 2016), TrimDroid (Mirzaei et al., 2016),  

FSMdroid (Su, 2016), MonkeyLab (Linares-Vásquez et al., 2015),  EvoDroid (Mahmood 

et al., 2014), AppDoctor (Hu et al., 2014),  A3E (Azim & Neamtiu, 2013), ACTEve  

(Anand et al., 2012) have already considered this possibility. With the information 

inferred by static analysis (e.g., the events supported by a UI widget, or the possible GUI 
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transition related to a widget), the dynamic analysis can be made more efficient and 

complete.  

Table 2.3: Type of evaluation method of GUI testing tools 

Evaluation Method GUI Testing Tools 

Line Coverage Stoat (Su et al., 2017), TrimDroid (Mirzaei et al., 2016), MobiGuitar 

(Amalfitano et al., 2014), SlumDroid (Imparato, 2015), Sig-Droid (Mirzaei et 

al., 2015), EvoDroid (Mahmood et al., 2014), Dynodroid (Machiry et al., 

2013), Extended Ripper (Amalfitano, Fasolino, Tramontana, & Amatucci, 

2013), AndroidRipper GUI Ripper (Amalfitano, Fasolino, Tramontana, De 

Carmine, & Memon, 2012). 

Statement coverage  Amoga (Salihu et al., 2019), Sapienz (K. Mao et al., 2016), Crashscope (Moran 

et al., 2016), TrimDroid (Mirzaei et al., 2016), FSMdroid (Su, 2016), 

MonkeyLab (Linares-Vásquez et al., 2015), ORBIT (Yang et al., 2013). 

Block Coverage Cadage (Zhu et al., 2015) 

Method coverage  APE (Gu et al., 2019), AimDroid (Gu et al., 2017), Sapienz (K. Mao et al., 

2016), A3E (Azim & Neamtiu, 2013) 

Instruction 

coverage 

APE (Gu et al., 2019), AimDroid (Gu et al., 2017) 

Branch coverage  SwiftHand (Choi et al., 2013), Collider (Jensen et al., 2013), ACTEve (Anand 

et al., 2012). 

Activity coverage  APE (Gu et al., 2019), AimDroid (Gu et al., 2017), Sapienz (K. Mao et al., 

2016), AppDoctor (Hu et al., 2014), DroidCrawle (Wang et al., 2014), A3E 

(Azim & Neamtiu, 2013). 

Faults 

 

APE (Gu et al., 2019), Droidbot (Li et al., 2017), AimDroid (Gu et al., 2017), 

SmartMonkey (Haoyin, 2017), Stoat (Su et al., 2017), Barista (Fazzini et al., 

2017), Sapienz (K. Mao et al., 2016), Crashscope (Moran et al., 2016), Thor 

(Adamsen et al., 2015), Cadage (Zhu et al., 2015), SlumDroid (Imparato, 

2015), MobiGuitar (Amalfitano et al., 2014), SPAG-C (Lin et al., 2014), 

AppDoctor (Hu et al., 2014), PUMA (Hao et al., 2014), Dynodroid (Machiry 

et al., 2013), RERAN (Gomez et al., 2013), AndroidRipper (Amalfitano, 

Fasolino, Tramontana, De Carmine, & Memon, 2012), GUI Ripper 

(Amalfitano, Fasolino, Tramontana, De Carmine, & Imparato, 2012), (Hu & 

Neamtiu, 2011), Tema (Takala et al., 2011) 

Time  Amoga (Salihu et al., 2019), SmartMonkey (Haoyin, 2017), Sig-Droid 

(Mirzaei et al., 2015), EvoDroid (Mahmood et al., 2014), AppDoctor (Hu et 

al., 2014), ORBIT (Yang et al., 2013). 
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Testing Environment. To execute the test case, the studies run the test on the emulator 

increase the risk of missing important bugs that occur only on real devices. Emulators are 

not the same as a real devices, which is a tremendous disadvantage. However, they offer 

diversity in terms of the different devices, operating systems, and adaptations of the user 

interface. Other tools support both real devices and emulators to consider heterogeneous 

devices, which may enhance the reliability of the testing. Moreover, testing activity uses 

cloud services infrastructure like TestDroid (Kaasila et al., 2012) and AppDoctor (Hu et 

al., 2014). TestDroid operates as a mobile devices cluster connected to the internet that 

allows users to upload their AUT to the system; thus, receiving the results from their 

system's web page account.  

Availability in this context refers to the availability of the tool’s source code to be 

publicly accessible. The source code of twenty GUI testing tools is available in the context 

of GitHub projects. In contrast, three of these tools are available only in executable form 

or in the demo version (i.e., Barista, TrimDroid, and AndroidRipper). Moreover, Sapienz 

source code is available on GitHub. However, it is outdated and not supported. At the 

same time, other tools like APE, Stoat, Droidbot, AimDroid, Thor, SlumDroid, 

AppDoctor, PUMA, Sig-Droid, Dynodroid, RERAN, SwiftHand, ACTEve, and GUI 

Ripper source code are easily accessible. Contrarily to the above tools, Android Monkey 

is available with Android SDK. Crashscope source code is not available, but the tool is 

obtainable on the internet. Also, the available version of ExtеndеdRірреr only supports 

the Windows operating system. A3E is partially available. 

BASIS is the underlying tool to design and build new tools. GUI testing tools usually 

rely on existing tools and/or libraries. The commonly used library is the Robotium (Reda 

& Josefson, 2014) library, which supports the compilation of Junit test cases. Other 
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similar libraries are UIAutmator. Hierarchyviewer and Emma. The Emma library can be 

easily accessed in the Android framework. It is used to measure code coverage. Other 

relevant tools provided by the Android framework are Android Monkey and 

MonkeyRunner. Tools such as SmartMonkey (Haoyin, 2017) were built on top of 

Android Monkey and such configuration was more efficient in detecting GUI bugs and 

valid events. As Android Monkey is not limited to Smart-Monkey, several tools have 

advanced versions of Android Monkey, such as APE (Gu et al., 2019), Sаріеnz (K. Mao 

et al., 2016), (Zheng et al., 2017) and (Hu & Neamtiu, 2011). Dynodroid (Machiry et al., 

2013) is based on MonkeyRunner. Other tools Sig-droid (Mirzaei et al., 2015), EvoDroid 

(Mahmood et al., 2014), and Collider (Jensen et al., 2013) are based on Java PathFinder. 

The JavaPath Finder performs a symbolic analysis of the java source code of Android 

applications. GUIRірреr served as a base tool for ExtеndеdRірреr (Amalfitano, Fasolino, 

Tramontana, & Amatucci, 2013), which was used to restart the exploration from the initial 

state. It also generates system events and covers a wider code coverage than its bases tool. 

Besides, Stoat (Su et al., 2017) is an upgraded version of the A3E (Azim & Neamtiu, 

2013), and is used due to its unavailability to the public repository. However, Stoat has 

an enhanced UI exploration strategy and static analysis. 
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Table 2.4: Characteristics of GUI testing tools 

 
Attribute GUI Testing Tools 

Techniques 

 

Static Analysis  (Zheng et al., 2017), Thor, Sig-droid, Collider  

Dynamic 

Analysis 

APE, DroidBot, AimDroid, SmartMonkey, Barista, (Zeng et al., 

2016), GUICC, iMPAcT, T+,  Cadage, MobiGuitar, PATS, 

SlumDroid, SPAG-C, DroidCrawle, PUMA, ACRT, Dynodroid, 

ORBIT, RERAN, SwiftHand, Extended Ripper, AndroidRipper, 

GUI Ripper, Testdroid, A2T2, Hu et al., Tema 

Hybrid Amoga,  Stoat (Su et al., 2017),  Sаріеnz (K. Mao et al., 2016), 

CrashScope, TrimDroid, FSMdroid, MonkeyLab,  EvoDroid 

(Mahmood et al., 2014), AppDoctore,  A3E (Azim & Neamtiu, 

2013), ACTEve  (Anand et al., 2012) 

Testing 

Environment  

 

Emulator Amoga,  Sаріеnz (K. Mao et al., 2016), TrimDroid, FSMdroid, 

Thor, T+, Cadage, MobiGuitar, MonkeyLab, PATS, Sig-Droid, 

SlumDroid, EvoDroid, DroidCrawle, ACRT, Dynodroid, 

SwiftHand, Collider,  ExtеndеdRірреr (Amalfitano, Fasolino, 

Tramontana, & Amatucci, 2013), AndroidRipper, ACTEve, GUI 

Ripper, A2T2, (Hu & Neamtiu, 2011), Tema 

Real Device  (Zheng et al., 2017), Barista, SPAG-C, AppDoctore, RERAN,  

Testdroid  (Kaasila et al., 2012) 

Emulator and 

Real device  

APE, DroidBot, AimDroid, Stoat, CrashScope, (Zeng et al., 2016), 

GUICC, iMPAcT, PUMA, ORBIT, A3E 

Availability  Open-source APE, Barista, DroidBot, AimDroid, Stoat, Sapienz, TrimDroid, 

Thor, SlumDroid, AppDoctore, PUMA, Sig-Droid, Dynodroid, 

A3E-Dynamic, RERAN, SwiftHand, ExtеndеdRірреr, 

AndroidRipper, ACTEve, GUI Ripper 

Commercial Testdroid  (Kaasila et al., 2012)  

Univ
ers

iti 
Mala

ya



49 

2.4 Comparison of Test Case Generation Approaches for Android 

This section compares the state-of-the-art GUI test generation approaches and 

corresponding tools for Android applications. 

2.4.1 Record and Replay  

In this technique, user interactions with AUT components are recorded and converted 

into a test script, which is replayed automatically. User interaction is captured either on a 

GUI component level, e.g., via direct references to the GUI components, or a GUI bitmap 

level, with coordinates to the location of the component on the AUT’s GUI. However, 

this technique requires testing scripts to be re-recorded if the GUI changes since scripts 

are regularly coupled to screen coordinates, and the effectiveness of the script relies on 

the ability to represent complex gestures. Besides, the record and replay technique 

requires a significant effort for the collection of adequate numbers and various user 

interactions to acquire effective test suites (Singh et al., 2014). 

SPAG-C (Lin et al., 2014) and SPAG (Lin et al., 2013) implement a record and replay 

approach, which depends on the image comparison of screen-shots to generate accurate 

and reusable tests oracles. However, the replay process needs manual operations.  

RERAN (Gomez et al., 2013) primarily focuses on the record and replay task, records 

low-level system events by leveraging the Android get events utility, and generates a 

replay script for the same device. However, generated scripts are not appropriate for 

replay on multiple devices due to the dependence of recorded interactions on-screen 

coordinates.  

ACRT (Liu et al., 2014) extends Robotium to execute the recorded test scripts. ACRT 

generates tests that are dependent on sleep commands, making the tests slow and 
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inaccurate. Besides, there is limited support for interactions and oracles, and the tool does 

not take into cognizance how GUI elements can be identified.  

TestDroid (Kaasila et al., 2012) records user actions by tracking the UI components 

and automatically generates test scripts with calls to Robotium API. However, TestDroid 

is limited when the AUT depends on speech, movement, or gesture input.  

Barista (Fazzini et al., 2017) generates tests in a visual and intuitive way. It records 

user interactions with any Android application based on screen coordinates, element ID, 

and text, and then automatically generates oracles. Those interactions and oracles convert 

into Espresso typescript for later execution. Barista requires the tester to manually write 

down test code, creating sequences of interactions with the components of the GUI. 

2.4.2 Random based  

The state of practice in automated Android app GUI testing is random-based. Random 

based approach explores AUT by generating random actions. There is a strong probability 

that the actions already selected will be selected again, which could eventually lead to 

lower code coverage. Random testing could generate test cases that are redundant, 

inefficient, and very difficult to comprehend and manage (e.g., for debugging purposes). 

Recent empirical studies of current GUI testing tools by (Choudhary et al., 2015; Wang 

et al., 2018) claim Android Monkey, a random testing tool for Android is the best among 

the existing test generation tools. However, it generates a large number of inputs 

efficiently, which can flood the AUT's GUI. Also, it does not generate inputs that need 

human intelligence (e.g., constructing valid passwords, playing and winning a game), and 

it does not generate highly specific inputs that control the application's functionality. 

Besides, it does not keep track of part of the application that has already been covered 

and is likely to generate redundant events. To overcome these limitations, Dynodroid 

(Machiry et al., 2013) uses three different heuristic exploration strategies, including two 
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different random techniques and an Active Learning technique aiming at the execution of 

all the different events. Dynodroid selects relevant events to the application's current 

states and repeats the process in the observe-select-execute cycle. The advantages of 

Dynodroid are allowing both automated and manual input generation. However, 

Dynodroid uses instrumentation to infer relevant events to guide exploration.  

PUMA (Hao et al., 2014) includes a generic UI Automator that uses a similar approach 

as an Android monkey but differs in its design, which uses dynamic analysis to trigger 

changes in the environment during app execution. It redefines the state pattern to generate 

events, but they are highly incompatible with the recent Android framework.  

SmartMonkey (Haoyin, 2017) is an upgraded version of the Android Monkey tool, 

which is used to test Android apps and generate new test cases by combining both event-

based testing elements and automatic random tests. It employs an extended FSCS-ART 

technique proposed by (Chen et al., 2010). Test cases consist of a sequence of user events 

and system events based on the distance from the event sequence and ART (Adaptive 

Random Testing) used in other event-driven software. The strategy can reduce the number 

of test cases and the time required to identify the first fault. Smart-Monkey creates a 

transition model of the app by using the random exploration approach before generating 

the test cases through the random walk. 

AutoDroid (Adamo, Nurmuradov, et al., 2018) uses a combinatorial based testing 

approach through a greedy algorithm for selection and execution events.  

Hu et al. (Hu & Neamtiu, 2011) developed an approach based on Android monkey for 

automatically detecting UI crashes. It instruments AUT’s source code and then 

automatically generates and performs test cases that are shown in a collection of log files 
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for subsequent analysis. It does not use a structured approach to write test cases and relies 

on the pseudo-random user events created by Android Monkey.  

Amalfitano et al. (Amalfitano et al., 2011) describe a GUI crawling-based approach 

that leverages completely random inputs to generate unique test cases.  

AppDoctor (Hu et al., 2014) uses an approximate execution approach, which performs 

random testing by generating low-level event handlers in the code to simulate high-level 

user events. AppDoctor focuses on specific bugs that may cause crashes. It targets 

applications that use standard widgets and support standard actions. AppDoctor speeds 

up testing and automatically classifies most reports into bugs or false positives. 

2.4.3 Model-based 

Model-based testing is the most populous approach used for automating GUI testing. 

The GUI of the AUT is modeled, and appropriate tests are generated from the model. The 

generated test cases are used to validate if the AUT met the functional requirements (Su, 

2016). A model-based exploration can be guided to specific unexplored parts using a 

systemic strategy such as depth-first exploration, breadth-first exploration, or hybrid 

(Azim & Neamtiu, 2013), or a stochastic model (Su et al., 2017). The model-based 

technique has encountered difficulties in inaccurate modeling. More specifically, 

dynamic behaviors in GUIs can generate inaccurate model or state explosion issues due 

to non-deterministic changes in GUIs. Hence, the model-based approach ignores the 

changes, finds the event unimportant, and then proceeds with the discovery differently. 

Explicitly, a GUI model that includes only a limited range of possible behavioral spaces 

can decrease the effectiveness of tests. 

Stoat (Su et al., 2017) performs stochastic model testing in the following steps: (1) it 

creates a probabilistic model by exploring and analyzing the apps GUI interactions 
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dynamically. (2) it optimizes the state model by performing Gibbs sampling and directs 

test generation from the optimized model to achieve a higher code and activity coverage 

performance. Stoat randomly includes system events in the state model. The disadvantage 

of Stoat is that both steps need considerable time to execute.  

FSMdroid (Su, 2016) constructs an initial stochastic model automatically for the AUT 

by using the static and dynamic analysis to identify UI events. GUICC (Baek & Bae, 

2016) conducted a study of multi-level state representations to show that different levels 

of abstraction have an impact on the effectiveness of a modeling-based tool.  

Amoga (Salihu et al., 2019) generates GUI models by using static and dynamic 

analysis for Android applications. It explores application behavior by implementing a 

crawling technique that uses the event list of the UI elements related to each event to 

exercise the event order at runtime dynamically. Amoga uses an augmented Dijkstra 

algorithm to reduce model crawling time. 

APE (Gu et al., 2019) is built on top of Android monkey. It dynamically optimizes the 

statically defined state model to increase the effectiveness of Android Monkey. APE 

incorporates the application’s behaviors by using a decision tree-based abstraction model 

that in each interaction depends on the feedback obtained at runtime during testing. An 

abstraction model can effectively balance the size and precision of the model. 

TrimDroid (Mirzaei et al., 2016) uses the combinatorial testing approach. TrimDroid 

has four components: First, Model Extraction, which generates an Interface model that 

represents the app’s GUI inputs, and Activity model that represents the app’s GUI 

activities with its event handler. Second, Dependency Extraction, which identifies 

dependency between the GUI component and event handler. Third, Sequence Generation 
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utilizes the Alloy Analyzer to generate event sequences that preserve the paths in the 

activity model. Fourth, Test-Case Generation which generates test cases.  

PATS (Wen et al., 2015) conducts its test in a fine-grained framework on a set of 

parallel test nodes. The testing nodes use the black-box approach to create a section of 

the testing sequence. The slave nodes analyze the designated UI interface and 

dynamically decide on short-term test event sequences. The coordinator gathers these 

short-term event sequences and sends them to the slave nodes for further testing and 

generation of new short-term event sequences.  

MonkeyLab (Linares-Vásquez et al., 2015) extracts events from the source code, 

traverses them, and generates GUI-based event scenarios. The event logs representing 

scenarios that are recorded and executed by the testers. These logs are mined to obtain 

event sequences described at the GUI level instead of low-level events; language models 

are derived using the vocabulary of feasible events. MonkeyLab uses two approaches, 

namely Back-off (BO) and interpolation (INTERP), for computing probabilities. The 

derived models are used to generate event sequences; the sequences are validated on the 

target device where infeasible events are removed for generating actionable scenarios.  

MobiGUITAR (Amalfitano et al., 2014) is an enhanced version of AndroidRipper 

(Amalfitano, Fasolino, Tramontana, De Carmine, & Imparato, 2012) that dynamically 

reverse engineers the state-machine model from the executing application. MobiGUITAR 

implements a breath-based algorithm to pass through an application to create a task list 

composed of event sequences. The tasks generate UI events in a state model that can be 

used to generate a test case. MobiGUITAR can use either random or predefined constant 

input values during the exploration. However, it uses simple breadth-first exploration that 

restarts the app from the initial state to backtrack to previous states, which is time-

consuming for most or real-world android apps.  
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A3E-Targeted (Azim & Neamtiu, 2013) prioritizes the exploration of activities that 

can be reached from the initial activity of a static activity transition graph. The strategy 

is based on high-level control flow graphs that captured the activity transitions. It is 

constructed from the static dataflow analysis on the app’s bytecode. It lists all of the 

activities before calling them in the absence of user intervention. However, it represents 

each activity as an individual state without considering its different states. This misleads 

the apps since not all states of the activities are explored. Moreover, it does not revisit old 

activities explicitly and may affect the exploration of new code which should be reached 

by different sequences. 

ORBIT (Yang et al., 2013) includes an action detector module and a dynamic crawler. 

It uses a static analytic approach for inferring the actions from the source code. Orbit 

follows three main steps: (1) Identify the place where an action is instantiated or 

registered; (2) Locate the component on which the action is fired; (3) Extract the 

component identifier that can be used later by the crawler to identify the corresponding 

entity and fire the action. The crawling stage uses the dynamic GUI crawling built on 

Robotium (Reda & Josefson, 2014). Orbit has a well-defined crawling algorithm for the 

crawling stage, which is much better than the depth-first search on the UI states.  

A2T2 (Amalfitano et al., 2011) builds a model of the AUT’s GUI, based on a crawling-

based approach. A2T2 contains three phases, which are the instrumentation phase used 

to instrument the Java code and detect the Java crashes during runtime. The GUI crawler 

phase extracts information regarding the GUI components’ activity, the event handlers 

trigger events and intercept the application’s crashes, then creates a GUI tree based on all 

this information. The test case generator phase generates test cases from the GUI tree for 

crash and regression testing, and they can be executed in the Android emulator.  
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TEMA (Takala et al., 2011) model the AUT’s GUI by state machines model that 

generated manually, each model abstracts an individual view of the GUI with two 

separate state machines: an action machine which presents the high-level functionality 

with action words and state verifications; and a refinement machine implements action 

words and state verifications using keywords. Then, TEMA generates and executes test 

cases automatically. 

2.4.4 Active Learning  

This technique is used to tackle the shortfalls of the model-based testing technique. In 

this technique, an active learning algorithm is employed with a testing engine to learn the 

GUI application model. The active learning algorithm will guide the generation of user 

input sequences concerning the model (Amalfitano et al., 2015a). ). However, this 

technique does not reach good coverage levels (Amalfitano et al., 2015b). Active learning 

may exploit the GUI's systematic exploration strategies, such as those emulating well-

known graph exploration algorithms such as Breadth-first search (BFS), Depth-first 

search (DFS), or both. The following tools adopted the model learning technique.  

SwiftHand (Choi et al., 2013) adopted dynamic analysis and machine learning to infer 

an application model. The model then uses the inputs to execute the application and 

explore unexplored states without restarting the application to reach all the screens. 

Thereby minimizes the restart overhead. SwiftHand learns an approximate GUI model 

from the execution traces generated during the testing process. It then uses the learned 

model to select user inputs, which applies to previously unexplored states. Then the 

learned model is expanded and refined when it identifies discrepancies between the 

previously learned models.  

A3E-Depth-First (Azim & Neamtiu, 2013) allows Android applications to be analyzed 

progressively while running on the actual devices and without needing access to the 
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source code. A “Depth-First Exploration” strategy is applied in a way that imitates a 

user’s actions to explore activities. The main challenge of using A3E is its dynamic 

approach of representing activities since it represents every activity as an individual state 

without considering that the activity can exist in different states. This leads to missing 

some behaviors of the app since not all states of the activities are not explored. 

DroidCrawle (Wang et al., 2014) automatically traverses the GUIs with a depth-first 

traversal algorithm. DroidCrawle communicates with the Android device to realize the 

raw information of the current GUI for recognizing the GUI components of the 

application. DroidCrawle sends user events to the device to cause GUI transitions 

automatically, which can reduce human labor.  

Cadage (Zhu et al., 2015) dynamically constructs a GUI model with the GUI state for 

the AUT. Cadage uses a breadth-first algorithm to analyze unexecuted GUI event 

handlers and accepts a probabilistic algorithm to select a GUI input as a test event. Cadage 

has four parts. (1) The Inference obtains enabled events from the current screen according 

to the properties of the GUI widgets. (2) The Selector chooses the test event from the fire 

event. (3) The Executor sends the test cases selected by the Selector. (4) The modeler 

retains its GUI model by retrieving the current status of the GUI or by making a new state. 

CrashScope (Moran et al., 2016) can be used to discover, report, and reproduce crashes 

in Android apps. It uses a combination of static and dynamic analysis. Crashscope 

examines the Android app using a systematic input generation to detect a crash. As a 

result, it produces an HTML crash report which consists of screenshots, detailed crash 

reproduction steps, and a replay-able script. 

Droidbot (Li et al., 2017) is an open-source testing tool that utilizes a depth-first 

exploration strategy to generate user events and system events under a black-box 
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approach. It generates and executes test cases based on the state transition model 

constructed on the fly. Furthermore, it can be executed on the device or emulator. It also 

allows users to customize their test scripts for a particular UI. The user can generate UI-

guided test inputs based on a state transition model generated on-the-fly. 

2.4.5 Systematic based 

The systematic technique focuses on the problem execution of generating complex 

sequences of events through concolic testing. Concolic requires constructing a symbolic 

model for the program execution environment. It is a white box and requires heavily 

instrumenting the application in addition to the framework. It is used to check the 

properties of the Android GUI application, and concrete execution identifies the 

conditions (logic) of a real application, and this avoids reaching unreachable states during 

the usage of the Android application (Sen, 2007). Symbolic execution automatically 

partitions the input domain such that each partition corresponds to the unique scenario of 

the program (e.g., execution of a unique program path). It, therefore, prevents redundant 

inputs from being generated and can generate extremely unique inputs. Concolic testing 

is applied to Android GUI testing in Collider (Jensen et al., 2013), ACTEve (Anand et 

al., 2012), and SIG-Droid (Mirzaei et al., 2015). However, some key factors are 

responsible for limiting the technique of the tools. First, the modeling of a real-world 

execution environment for Android applications is difficult because it contains sensors, 

networks, and cloud services. Secondly, Collider (Jensen et al., 2013) and ACTEve 

(Anand et al., 2012) are not scalable as in black-box testing to real-world applications 

because of the notorious path explosion problem (Ravindranath et al., 2014). Thirdly, 

ACTEve explores the application from its entry point, without targeting specific parts of 

the application code, in contrast to Collider, which detects event sequences that reach a 

given target line in the application code. Finally, Symbolic execution techniques are 
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instances of white box testing which often require access to the application source code 

and thus not applicable for many proprietary applications. 

ACTEve (Anand et al., 2012) generates a sequence of events from single events using 

concolic testing. The idea is to track events from the beginning to the point where they 

are finally handled. ACTEve has four components: Instrumenter, Runner, Concolic 

testing engine, Subsumption analyzer. The advantages of ACTEve are resolving the Path-

explosion problem of the ALLSEQs algorithm. However, that may not be sufficient to 

handle apps that have significantly more paths such as if the app has many widgets (e.g., 

a virtual keyboard). Besides, ACTEve is easily portable to different versions of Android 

but still not cross-platform compatible.  

Collider (Jensen et al., 2013) generates event sequences that can reach a given target 

line in the application, which was not reachable with other automated testing techniques 

like a simple crawler and the Android Monkey. Collider includes two phases. First, the 

target agnostic symbolic summarization phase provides the summary for each event 

handler by performing the Concolic execution to infer the path conditions and symbolic 

states. Secondly, the sequence generation phase with the event handler, together with the 

application's UI model, builds an event sequence that leads from the entry state of the 

application to the target. Each path is extended incrementally by searching for an event 

handler that can be triggered in front of the path to satisfy some of the path constraints. 

SIG-Droid (Mirzaei et al., 2015) was built based on Java Pathfinder and used the byte-

code interpretation of AUT. SIG-Droid relied on symbolic execution and combining 

inputs with an automatically extracted GUI model from the source code. SIG-Droid 

includes three components. First, Model Generator analyzes the source code of AUT and 

builds two models; the Interface model presents the app’s GUI input and the widgets, and 

the behavior model captures App’s event-driven behavior and the relationships among 
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the event generators with handlers. The second component is the Symbolic Execution 

Engine, and the third component is the Test Case Generator. 

2.4.6 Search based 

This approach has been applied in EvoDroid (Mahmood et al., 2014) and Sapienz (K. 

Mao et al., 2016). The limitation of this approach has a high computational cost. Search-

based tools are computationally expensive and do not scale in practice (Choudhary et al., 

2015). 

EvoDroid (Mahmood et al., 2014) is the first testing tool that uses an evolutionary 

algorithm. It combines model-based with search-based techniques for generating high 

coverage GUI test cases from the extracted model. The extracted model is based on a 

static analysis of the manifest and XML configuration files, and a call graph model is 

based on a code analysis using MoDisco (Eclipse, 2010). It uses these models to guide 

the process of computational search. 

Sapienz (K. Mao et al., 2016) uses a multi-objective search-based testing approach to 

explore and optimize the test sequences automatically, minimize the test sequence length, 

and maximize the code coverage and fault detection. Sapienz combines search-based, 

random fuzzing, systematic exploration, and multi-level instrumentation. To explore the 

app components, it uses the specific GUIs and complex sequences of input events with a 

pre-defined pattern. This pre-defined pattern is termed as motif genes that capture the 

experience of the testers. Thus, it produces a higher code coverage by concatenating the 

atomic events. 

2.4.7 Reuse based 

Reused based technique does not generate test cases and relies on injecting existing 

test cases with event sequences that do not affect the outcome of the original test cases.  
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Thor (Adamsen et al., 2015) executes test cases from Robotium (Reda & Josefson, 

2014) or Espresso (Google, 2019e) on Android apps in adverse conditions. However, 

Thor does not generate test cases and relies on injecting existing test cases with event 

sequences, which do not affect the outcome of the original test cases. Thor event 

sequences include (1) Activity state changes (Pause-Resume, Pause-Stop-Restart, and 

Pause-Stop-Destroy-Create), (2) manipulation of the audio manager. 

ExtendedRipper (Amalfitano, Fasolino, Tramontana, & Amatucci, 2013) is an 

exploration-based technique that uses a dynamic analysis in Android apps. In this 

technique, the event pattern includes many context events such as location change, GPS 

enable or disable, screen orientation, acceleration changes, and incoming calls or SMS. 

These event patterns are manually defined to generate test cases. 

2.5 Research Gaps and Limitations 

This section presents open research issues and challenges in the Android GUI testing 

domain that include reproducible test cases, test oracle, test input generation, test 

coverage, crashes diagnosis, and fragmentation. 

2.5.1 Reproducible Test Cases 

The ability to create a reproducible test is essential for test case generation tools 

because a developer needs to reproduce the test cases. When a crash is detected, the 

developers usually need to reproduce the crash at least twice before the fault is fixed. 

Since several tools are based on stochastic test case generation approaches, one cannot 

assure that the tests can be re-generated by the tools. Some tools like Android Monkey 

produce excessively long test sequences that are infeasible to be reproduced by a human, 

which makes them the least favorable option (Arcuri, 2011). Thus, app developers are 

unable to reproduce the crash during the exploration, to conduct a regression test after 

fixing the bug, or to execute the same test under different environments. More research 
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efforts are still required to reproduce the intended bug described in a crash report 

effectively and faithfully. 

2.5.2 Test Oracle 

Test automation increases the overall effectiveness of the testing process by increasing 

the coverage and reducing the testing time and cost. Extensive research focuses on 

developing tools and techniques in order to support automated GUI testing of Android 

apps. However, these studies mainly target the generation of test cases and do not include 

test oracle to the automation process, thus leaving the testers to add test oracles to those 

test cases manually. This is considered an intensive and insufficient process. All of that 

can compromise the efficiency of test cases (Barr et al., 2014; Zaeem et al., 2014). 

2.5.3 Test Input Generation 

Test case generation tools produce relevant inputs to exercise apps behavior (Memon, 

2002). Android apps can sense and respond to numerous inputs from system interactions 

(Rubinov & Baresi, 2018; Yu & Takada, 2016). Interaction with system events includes 

receiving SMS notifications, app notifications, or events coming from sensors. These 

experiences are events that must be addressed in testing Android apps, which effectively 

increases the complexity of testing an app. Most of the recent testing tools for Android 

apps focus on UI events. Thus, they make it difficult to identify other defects in the 

changes that can be preferred by the context in which an app runs.  

Moreover, tools should allow inputs to be manually provided, such as text data input. 

Specific inputs like logins and passwords can only explore certain behaviors. However, 

these behaviors may be challenging to reproduce randomly or using systematic 

techniques. Tools like Dynodroid and GUIRipper allow users to manually input values 

the tool can use during its analysis. This research argues that human knowledge for 

manual input should be integrated into test automation for a more effective test.  
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2.5.4 Test Coverage 

Test coverage is another challenging factor for researchers during the automation of 

Android app testing. Researchers cannot effectively attain high code coverage to 

maximize test efficiency. For Android applications, there are a vast number of potential 

combinations of functions and transitions between them. This makes testing all potential 

combinations time-consuming and ineffective for large systems. Moreover, existing GUI 

testing tools cannot effectively explore too many app functionalities. The reason is that 

some functionality can only be reached through a particular sequence of events. For 

instance, random based are likely to detect more faults because of their unexpected nature, 

while systematic based tools may not expose the same number of faults unless they 

coverage 100%. Model-based tools have worse coverage performance than random 

approaches due to their difficulties in constructing a precise model and state explosion 

issues (Choudhary et al., 2015). For example, a finite state model that includes system 

events may not even exist for real-world apps (Baek & Bae, 2016). Code coverage is 

useful means of effectiveness evaluation for automated GUI testing tools. However, it is 

practically impossible to give an absolute estimation of tools' effectiveness in terms of 

code coverage since all testing tools are evaluated on a different set of Android 

applications and testing environment. Thus, there is a need to empirically analyze and 

compare existing GUI testing tools in terms of code coverage.  

2.5.5 Crashes Diagnose 

Test case generation tools are unable to provide a comprehensive, comprehensible 

crashes report which made the fault hard to reproduce. Since most of the tools were based 

on non-deterministic algorithms, rerunning the tool may not catch the same crashes. The 

crash report contains a captured stack trace which indicates the location of the crash from 

the source code of the AUT. Moreover, screenshots, natural language reproduction steps, 

and replay-able scripts are provided as well. The report is presented in the form of a log, 
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image, or text. Both Crashscope (Moran et al., 2016) and DroidWalker (Hu et al., 2017) 

were the tools that can generate reproducible test scenarios. These tools can generate a 

detailed test report which informs the interacted elements. This feature allows the 

developers to fix the faults since the test case can be reproduced manually and also 

allowing an easier debug. Crashscope records more contextual information about bug-

triggering event sequences. However, it still cannot handle exception bugs caused by 

inter-app communications (Su et al., 2020). 

2.5.6 Fragmentation 

One of the significant problems faced by Android developers is fragmentation. The 

term fragmentation has been used to describe variability due to the diversity of mobile 

device vendors. Test generation tools for Android should support a variety of devices 

with different hardware characteristics and use various releases of the Android framework 

(API versions) so that developers could assure the proper functioning of their applications 

on nontrivial sets of configurations. Thus, Droidbot and Android Monkey can be run on 

different versions of the Android framework.  

One can represent configuration sets as a testing matrix that combines several 

variations of devices and APIs. Other aspects have been shown to impact testing beyond 

those associated with fragmentation. These include orientation of the device (e.g., 

landscape or portrait), localization (which may load different resources), and permissions 

(Kowalczyk et al., 2018). More studies are required to study the non-deterministic app 

behaviors. 
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CHAPTER 3: EXPERIMENTAL ANALYSIS ON TEST CASE GENERATION 

TECHNOLOGIES  

This chapter investigates the effectiveness of the test generation tools, especially in the 

events sequence length of the overall test coverage and crash detection. The event 

sequence length generally shows the number of steps required by the test generation tools 

to detect a crash. It is critical to highlight its effectiveness due to its significant effects on 

testing time, effort, and computational cost. There are a number of test generation tools 

for Android apps available in the literature. These tools share the common goal of 

exploring apps' behavior to discover potential faults by generating user and system events. 

Thus, this chapter evaluates the effectiveness of six test input generation tools for Android 

apps on 50 apps downloaded from the repositories of F-Droid and AppBrain. The tools 

were evaluated and compared based on the activity coverage, method coverage, and 

capability in detecting crashes. The empirical case study method was adopted. 

The remainder of this chapter is divided as follows: Section 3.1 highlights the followed 

case study design, while section 3.2 enumerates the execution steps outlined in the case 

study. Section 3.3 analyzes and discusses the findings. Section 3.4 presents research 

problems found. The possible threats to the validity of the results are discussed in Section 

3.5, before concluding the findings in section 3.6. 

3.1 Case Study Design  

This analysis employs the empirical case study method that is used in software 

engineering, as reported in (Kitchenham et al., 2002; Perry et al., 2004). The method 

involves three major steps: (1) specify case study objectives, (2) select a case study that 

has data collection, and (3) a case study design for execution and evaluation. 

Univ
ers

iti 
Mala

ya



66 

3.1.1 Case Study Objectives 

The main question to answer from this experiment is how effective Android test input 

generation tools in detecting crashes? To answer the main question, the case study 

questions of this study are as follow: 

RQ 1. What is the method and activity coverage achieved by the test input generation 

tools? 

RQ 2. How is the performance of the test input generation tools in detecting unique 

crashes? 

RQ 3. How does the event sequence length affect the coverage and crash detection of 

the test input generation tools? 

3.1.2 Case Study Criteria  

Coverage criterion is one of the critical testing requirements that some elements of the 

app should be covered (Morrison et al., 2012). A combination of different granularities 

from method and activity coverage is essential to achieve better testing results for Android 

apps. The activities and methods are the central building elements of the apps, thus the 

numeric values of the activity and method coverage are intuitive and informative (Azim 

& Neamtiu, 2013). Activity is the primary interface for user interaction. An activity 

consists of several methods and underlying code logic. Hence, improvement of method 

coverage ensures most of the app's functionalities associated with each activity are 

explored and tested (Azim & Neamtiu, 2013; Koroglu et al., 2018). Moreover, activity 

coverage is a prerequisite condition to reveal crashes that might happen during the 

interaction with the app’s UI. The more coverage a tool explores, the higher the chances 

a potential crash can be found (Dashevskyi et al., 2018). In this study, the number of 

inputs generated by a tool within a time limit was measured.  
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C1. Method Coverage (MC): MC is the ratio of the number of methods called during 

execution of the AUT to the total number of methods in the source code of the app. By 

improving the method coverage, it is envisaged that most of the app's functionalities are 

explored and tested (Azim & Neamtiu, 2013; Choudhary et al., 2015; Dashevskyi et al., 

2018; Koroglu et al., 2018). 

C2. Activity Coverage (AC): AC is defined as the ratio of activities explored during 

the execution to the total number of activities present in the app. A high activity coverage 

value indicates a greater number of screens have been explored, and thus it will be more 

exhaustive for the app exploration (Azim & Neamtiu, 2013; Hu et al., 2014; Koroglu et 

al., 2018). 

C3. Crash detection: Crashes lead to termination of the app's processes and dialogue 

is displayed to notify the user about the app crash. The more code the tool explores, the 

higher the chances it discovers a potential crash. 

3.1.3 Apps Selection 

For the experimental analysis, 50 Android apps were chosen from F-Droid (F-Droid, 

2010) and AppBrain (AppBrain, 2009). Table 3.1 lists the type of apps according to the 

app category, the number of activities, methods, and line of code in the app (which offers 

a rough estimate of the app size). These apps were earmarked from the repositories based 

on three features:  

1) The app's number of activities: the apps were categorized by a small (number of 

activities less than five), medium (number of activities less than ten), and a large 

(number of activities more than ten). 27 apps were selected for the small group, 

while 17 apps were screened for the medium group. Lastly, six apps were added to 
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the large group. The app's activities were determined in the Android manifest file 

of the app. 

2) App permissions required: In this study, only apps that require at least two of the 

permissions were selected to evaluate how the tools react to different system 

events. These permissions include access to contacts, call logs, Bluetooth, Wi-Fi, 

location, and camera of the device. The app permissions were determined either 

by checking the manifest file of the app or by launching the app for the first time 

and viewing the permissions request(s) that popped up.  

3) Version: Only apps that are compatible with Android version 1.5 and higher were 

selected in this study. 

3.2 Case Study Execution  

The selected tools for the experiment are Sapienz (K. Mao et al., 2016), Stoat (Su et 

al., 2017), Droidbot (Li et al., 2017), Humanoid (Li et al., 2019), Dynodroid (Machiry et 

al., 2013), and Android Monkey (Google, 2019j). These tools were selected due to their 

excellent ability in generating user and system events, which aim to increase the 

possibility of finding faults in system events. Moreover, Sapienz, Stoat, Android Monkey, 

and Dynodroid possessed the best code coverage and fault detection in continuous mode 

as compared to AndroidRipper, A3E, PUMA, and ACTEve in previous evaluation 

(Choudhary et al., 2015), (Wang et al., 2018). Table 3.2 provides an overview of the 

existing test input generation tools that support system events generation in the literature. 

The table reports all these tools and classifies them according to their features. All the 

tools were installed on a dedicated machine before starting the experiments.  
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 Table 3.1: Overview of Android applications selected for testing 

 

 

No App name Package name Version Category Activity Method LOC 

1 Aard aarddict.android 1.5 Books 6 438 65511 

2 Open Document  at.tomtasche.reader 1.6 Books 3 446 13796 

3 Bubble com.nkanaev.comics 4.1 Books 2 463 58397 

4 Book Catalogue com.eleybourn.bookc
atalogue 

2.1 Books 21 1548 11264 

5 Klaxon org.nerdcircus.androi
d.klaxon 

1.6 Communication 6 162 5733 

6 Sanity cri.sanity 2 Communication 28 1398 44215 

7 WLAN Scanner org.bitbatzen.wlansca
nner 

4 Communication 1 141 5441 

8 Contact Owner com.appengine.paran
oid_android.lost 

1.5 Communication 2 79 2502 

9 Divide com.khurana.apps.div
ideandconquer 

2.1 Education 2 195 25284 

10 Raele 
concurseiro 

raele.concurseiro 3 Education 2 92 1309 

11 LolcatBuilder com.android.lolcat 2.3 Entertainment 1 79 578 

12 MunchLife info.bpace.munchlife 2.3 Entertainment 2 39 163 

13 Currency org.billthefarmer.curr
ency 

4 Finance 5 148 5202 

14 Mileage com.evancharlton.mil
eage 

1.6 Finance 50 2486 92548 

15 TimeSheet com.tastycactus.times
heet 

2.1 Finance 6 198 7126 

16 Boogdroid me.johnmh.boogdroi
d 

4 Game 3 398 3726 

17 Hot Death com.smorgasbork.hot
death 

2.1 Game 3 365 28104 

18 Resdicegame com.ridgelineapps.res
dicegame 

1.5 Game 4 144 2506 

19 DroidWeight de.delusions.measure 2.1 Health & Fitness 8 411 13215 

20 OSM Tracker me.guillaumin.androi
d.osmtracker 

1.6 Health & Fitness 8 346 49335 

21 Pedometer name.bagi.levente.pe
dometer 

1.6 Health & Fitness 2 244 6695 

22 Pushup Buddy org.example.pushupb
uddy 

1.6 Health & Fitness 7 165 4602 

23 Mirrored de.homac.Mirrored 2.3 Magazines 4 219 825 

24 A2DP Volume a2dp.Vol 2.3 Navigation 8 641 23294 

25 Car cast com.jadn.cc 1.5 Music & Audio 12 459 18127 
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Table 3.1: Continued 

 

No App name Package name Version Category Activity Method LOC 

26 Ethersynth net.sf.ethersynth 2.1 Music & Audio 8 168 1208 

27 Jamendo com.teleca.jamendo 1.6 Music & Audio 13 1046 30444 

28 Adsdroid hu.vsza.adsdroid 2.3 Productivity 2 1215 5080 

29 Maniana com.zapta.apps.mania
na 

2.2 Productivity 4 891 28526 

30 Tomdroid org.tomdroid 1.6 Productivity 8 840 29147 

31 Talalarmo trikita.talalarmo 4 Productivity 3 387 1350 

32 Unit info.staticfree.android.
units 

1.6 Productivity 3 547 22993 

33 Alarm 
Clock 

com.angrydoughnuts.a
ndroid.alarmclock 

2.7 Productivity 5 676 2453 

34 World 
Clock 

ch.corten.aha.worldclo
ck 

2.3 Productivity 4 315 1156 

35 Blockinger org.blockinger.game 2.3 Puzzle 6 356 2000 

36 OpenSudok
u 

cz.romario.opensudok
u 

1.5 Puzzle 10 444 24601 

37 Application
s info 

com.majeur.applicatio
nsinfo 

4.1 Tools 3 323 3614 

38 Dew Point de.hoffmannsgimmick
staupunkt 

2.1 Tools 3 75 4791 

39 drhoffmann de.drhoffmannsoftwar
e 

1.6 Tools 9 164 896 

40 FindMypho
ne 

se.erikofsweden.findm
yphone 

1.6 Tools 1 2969 4056 

41 List my 
Apps 

de.onyxbits.listmyapps 2.3 Tools 4 96 4262 

42 Sensors2Pd org.sensors2.pd 2.3 Tools 4 621 16625 

43 Terminal 
Emulator 

jackpal.androidterm 1.6 Tools 8 994 24930 

44 Timeriffic com.alfray.timeriffic 1.5 Tools 7 709 28956 

45 Addi com.addi 1.1 Tools 4 2133 133448 

46 Alogcat org.jtb.alogcat 2.3 Tools 2 199 846 

47 Android 
Token 

uk.co.bitethebullet.and
roid.token 

2.2 Tools 6 288 3674 

48 Battery 
Circle 

ch.blinkenlights.batter
y 

1.5 Tools 1 81 251 

49 Sensor 
readout 

de.onyxbits.sensorread
out 

2.3 Tools 3 683 6596 

50 Weather ru.gelin.android.weath
er.notification 

2.3 Weather 7 695 19837 
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The experiment conducts on a 64-bit Ubuntu 16.04 physical machine with eight-cores 

(3.50 Gigahertz Intel Xeon ® CPU) and eight Gigabytes of RAM and uses an Android 

emulator x86 ABI image (KVM powered). Android emulator was used due to its 

compatibility with Sapienz and Dynodroid. In contrast, Stoat, Droidbot, Humanoid, and 

Android Monkey support both emulators and real devices. Moreover, Android SDK 

version 4.4.2 (Android KitKat, API level 19) was used in the experiment for Sapienz, 

Stoat, Droidbot, Humanoid, and Android Monkey because Sapienz supports Android 

KitKat only. For Dynodroid, SDK version 2.43 (Android Gingerbread, API level 10) was 

used. The Android emulators were configured with 2 Gigabytes of RAM and 1 Gigabyte 

of SD card. 

To achieve a fair comparison, a new Android emulator was configured for each run to 

avoid any potential side-effects that may occur between the tools and apps. As Dynodroid 

(Machiry et al., 2013) was reported in the study, Android Monkey was set up to produce 

20,000 inputs/hour. To avoid biased findings, other tools were run with their respective 

default configurations without any fine-tuning of the parameters. Each test input 

generation tool was allowed to run and execute tests for 60 minutes on each specified app. 

To compensate for the possible impact of randomness during testing, the test was run 

for triplicates (with each test consisting of one test generation tool and one applicable app 

that is being tested). Lastly, the final coverage and progressive coverage were recorded 

separately. An average value was calculated from the three tests and presented as the final 

results. 
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Table 3.2: Overview of Android test generation tools 

 

 

3.3 Results and Discussion  

This section examines the results based on the case study's objectives outlined in 

section 3.1.1. Case study questions were answered by measuring and comparing the 

number of crashes detected, the method coverage, and activity coverage achieved by each 

testing tool on selected apps in the experiments. Table 3.3 shows the results obtained from 

the six testing tools. Cells with a grey background indicate the maximum value achieved 

during the test. The percentage value is an average rounded-up value from the three tests 

iterations on each AUT. 

No Tool Approach Exploration 
Strategy 

Events Crash 
Report 

Replay 
Scripts 

Emulator/ 
Device 

Available 

1 Humanoid         
(Li et al., 2019) 

Black-box Deep Q 
Network 

UI, System, No Both Both Yes 

2 AndroFrame 
(Koroglu et al., 
2018) 

Black-box Q-Learning-
Based 

UI, System, 
Context 

- Yes Both No 

3 DroidBot           
(Li et al., 2017) 

Black-box Model-based UI, System No Yes Both Yes 

4 SmartMonkey 
(Haoyin, 2017) 

Black-box Random-based UI, System, 
Context 

- - - No 

5 Stoat (Su et al., 
2017) 

Black-box Model-based UI, Text, 
System, 
Context 

Text Yes Both Yes 

6 Sapienz             
(K. Mao et al., 
2016) 

Grey-box Search-based/ 
Random 

UI, Text, 
System, 
Context 

Text, 
Video 

Yes Emulator Yes 

7 Crashscope 
(Moran et al., 
2016) 

Grey-box Systematic UI, Text, 
System, 
Context 

Text, 
Image 

Yes Both No 

8 Dynodroid 
(Machiry et al., 
2013) 

Black-box Guided/Random UI, Text, 
System, 
Context 

Text, 
Image 

Yes Emulator Yes 

9 ExtendedRipper 
(Amalfitano, 
Fasolino, 
Tramontana, & 
Amatucci, 2013) 

Black-box Model-based UI, Text, 
System, 
Context 

No No Emulator No 

10 A3E-Targeted 
(Azim & Neamtiu, 
2013)  

Grey-box Systematic UI, System, 
Context 

- No Both No 

11 Android Monkey 
(Google, 2019j) 

Black-box Random-based UI, System No No Both Yes 
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Table 3.3: Statistics of results on apps by test generation tools understudy 

Keywords: Sa: Sapienz, St: Stoat, Dr: Droidbot, Hu: Humanoid, M: Android Monkey, Dy: Dynodroid. 

 

 

Apps Under Test 
Method coverage (%) Activity coverage (%) 

 
Sa St Dr Hu M Dy Sa St Dr Hu M Dy 

A2DP Volume 53.6 55.8 49.7 60.3 39.3 0.0 100 100 100 100 71 0 
Aard 17.4 16.4 16.4 16.2 17.4 17.4 33 33 33 33 33 33 
Addi 10.1 9.5 9.6 9.6 4.6 4.7 50 50 50 50 50 25 
Adsdroid 56.0 56.0 56.0 56.3 56.1 56.0 100 100 100 100 100 100 
Alarm Clock 24.6 64.5 43.9 62.7 24.9 17.9 60 60 60 60 20 40 
Alogcat 72.9 75.9 52.8 72.9 67.3 46.2 100 100 100 100 100 100 
Android Token 54.5 57.6 54.5 49.5 51.4 50.0 67 67 50 67 50 50 
applicationsinfo 64.5 64.3 64.4 64.7 44.3 44.3 100 100 100 100 67 67 
Battery Circle  81.5 81.5 81.5 84.0 79.0 79.0 100 100 100 100 100 100 
Blockinger game 77.5 81.7 81.5 80.1 16.6 11.2 100 100 100 100 67 50 
Boogdroid 13.0 10.1 13.0 16.7 15.6 15.3 100 33 67 67 56 33 
Book Catalogue 31.7 4.0 33.0 32.9 43.4 32.7 41 5 48 38 43 29 
Bubble 54.9 55.9 36.9 30.5 67.6 0.0 100 100 100 50 100 0 
Car cast 44.9 46.2 41.6 43.2 34.0 29.8 75 67 67 67 47 72 
Contact Owner 54.4 54.4 57.0 57.0 51.1 51.9 50 50 50 50 50 50 
Currency 58.8 64.0 40.3 56.8 42.6 40.5 100 100 80 100 100 60 
Dew Point 75.6 73.3 76.4 77.3 58.7 58.7 100 100 100 100 67 67 
Divide 52.8 47.2 52.8 52.8 74.4 46.2 100 100 100 100 100 100 
DroidWeight 74.1 62.9 69.8 70.6 72.7 72.7 50 38 67 75 58 38 
drhoffmann 55.9 59.8 51.2 59.1 43.3 36.6 85 100 93 93 93 78 
Ethersynth 66.7 65.1 50.0 57.7 66.7 64.3 100 100 100 100 88 63 
FindMyphone 0.1 0.1 0.1 0.1 0.1 0.1 100 100 100 100 100 100 
Hot Death 74.6 59.4 65.8 70.4 76.8 55.6 100 100 100 100 100 100 
Jamendo 53.1 34.7 43.9 43.9 24.4 0.0 62 31 38 38 46 0 
Klaxon 44.4 38.3 36.6 35.8 39.9 41.4 83 83 83 83 83 78 
List my Apps 76.4 75.3 46.9 72.9 72.9 72.9 50 100 25 100 100 25 
LolcatBuilder  32.9 27.8 32.9 32.9 25.3 25.3 100 100 100 100 100 100 
Maniana 75.4 58.4 54.1 54.0 72.8 66.9 75 75 75 75 75 50 
Mileage 30.7 16.0 25.6 25.5 25.0 27.6 44 25 38 40 22 27 
Mirrored 33.3 39.7 47.0 47.0 32.4 30.1 75 75 75 75 50 50 
MunchLife 66.7 66.7 66.7 66.7 59.0 59.0 100 100 100 100 100 100 
Open Document Reader 54.4 42.2 45.3 45.3 70.6 36.8 33 33 33 33 33 33 
OpenSudoku 62.5 54.5 40.3 40.3 42.2 38.1 50 30 30 30 50 50 
OSM Tracker 44.2 62.9 48.1 48.3 50.6 43.1 75 71 83 88 92 50 
Pedometer  70.1 69.7 61.5 61.5 83.2 70.4 100 100 50 100 100 50 
Pushup Buddy 48.5 48.9 48.9 56.4 44.2 43.0 57 57 43 71 57 43 
Raele.concurseiro 41.7 42.1 41.7 41.7 41.7 41.7 100 100 100 100 100 100 
Resdicegame 62.5 48.6 62.5 53.5 47.9 47.9 100 100 100 100 100 100 
Sanity 28.4 18.6 24.9 24.3 30.4 14.2 48 29 48 46 61 21 
Sensor read out 30.2 30.0 30.0 30.0 27.8 30.0 100 100 67 67 67 67 
Sensors2Pd 17.1 20.0 20.5 21.7 20.5 20.5 100 100 100 100 100 100 
Talalarmo 88.1 88.1 82.2 88.9 90.4 71.9 100 100 100 100 100 100 
Terminal Emulator 55.2 44.2 51.3 51.7 52.3 49.5 38 38 38 38 38 25 
Timeriffic  63.8 50.5 57.1 57.1 59.8 54.9 86 52 57 57 71 29 
TimeSheet 59.4 33.5 27.8 27.8 20.7 20.2 100 67 50 50 50 56 
Tomdroid 36.1 51.9 37.5 37.0 40.8 0.0 63 63 75 75 63 0 
Unit 69.9 55.6 52.5 52.5 69.1 54.8 33 33 33 33 67 33 
Weather notifications 59.4 50.0 41.7 37.4 74.2 67.6 71 52 57 57 71 43 
WLAN Scanner 66.0 63.1 65.2 65.2 61.7 61.7 100 100 100 100 100 100 
World Clock  43.8 56.8 29.2 29.2 22.9 22.9 100 100 75 75 50 50 
Overall average 39.8 35.1 36.1 36.8 36.9 28.8 66.3 55.3 60.7 62.8 58.1 42.0 
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RQ1: What is the method and activity coverage achieved by the test input 

generation tools? 

1) Method coverage: the method coverage was collected from Ella (Saswat, 2015). Ella 

is a binary instrumentation tool for Android apps. From Table 3.3, it can be seen that 

Sapienz achieved the best method coverage on 14 out of the 50 apps. It is also important 

to mention that our result matches that reported by Mao et al., (K. Mao et al., 2016) in 

2016. It outperformed the other tools due to its multi-level instrumentation approach that 

provided the traditional white-box coverage and Android user interface coverage. The 

instrumentation refers to the technique that modifies the source code or the bytecode at 

the compile time to track the execution of the code at runtime. Sapienz used EMMA 

(Roubtsov, 2005) white-box instrumentation tool to achieve full statement coverage, 

while Ella (Saswat, 2015) exploited a black-box instrumentation tool for method 

coverage. Next, Android Monkey had the second-best performance with the highest 

method coverage in nine out of the 50 apps. Android Monkey adopted a random 

exploratory strategy that allowed more inputs to be generated. On the contrary, Humanoid 

achieved a lower coverage value of 36.8% as compared to Android Monkey with a 

coverage value of 36.9%. This can be ascribed to the ability of Humanoid in prioritizing 

critical UI elements. On average, other tools like Droidbot, Stoat, and Dynodroid 

achieved a method coverage of 36.1%, 35.1%, and 28.8%, respectively. Droidbot can 

quantify the efficacy of the test without the source code or instrumentation. An outlier 

was observed in an AUT (Book catalog app had a total method number of 1548, in which 

Stoat only recorded an average of 4%) during testing, which was believed to have 

gradually affected its overall average method coverage. 
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Figure 3.1: Variance of method coverage achieved across apps and three runs. 

 

To further investigate experiment findings, Figure 3.1 shows the boxplots where the 

subscript x indicates the mean value of the final method coverage across the target apps. 

The boxes offer the minimum, mean, and maximum coverage achieved by the tools. This 

analysis revealed that all the tools were unable to cover more than 51% of the mean 

method coverage values. On average, both Sapienz and Android Monkey were observed 

to perform better than other tools. The other tools achieved a reasonably low level of 

method coverage. There are apps for which all the tools, including the best-performed 

tool, achieved shallow coverage, i.e., lower than 5%. An example FindMyPhone app. It 

was highly dependent on several external factors, such as the availability of a valid 

account. Furthermore, these inputs were almost impossible to generate automatically, and 

every tool stalled at the beginning of the exploration. Moreover, Dynodroid tools provide 

an initial option to manually interact with an app and allow the tool to perform the 

successive test input generation. Nonetheless, the features were excluded for two reasons: 

(1) poor scalability, and (2) an unfair advantage. 
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Figure 3.2: Progressive method coverage achieved across apps and three runs. 

 

Figure 3.2 reports the progressive coverage of each tool over the time threshold of 60 

minutes. The progressive average coverage of each of the test input generation tool was 

calculated across all 50 apps for every 20 minutes. The final coverage achieved was 

compared and reported. In the first 20 minutes, the coverage for all testing tools was 

observed to be increased rapidly as the apps were just started. At 40 minutes, the method 

coverage of many testing tools had been increased except for Android Monkey. The 

random approach of Android Monkey generated many redundant events, and these 

redundant events produced insignificant coverage when the time budget increased. In the 

end, Sapienz attained the highest method coverage after approximately 60 minutes of 

execution. 

2) Activity coverage: the activity coverage was measured intermittently by observing 

the activity stack of the AUT and recording all of the activities that have been listed down 

in the Android manifest file. The test input generation tools demonstrated much better 

activity coverage than the method coverage. From the results, Sapienz outperformed the 

other tools, which was similar to the previous experiment on method coverage. Due to its 
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ability to explore and optimize the test sequences as reported by (K. Mao et al., 2016), 

Sapienz achieved the best mean activity coverage in six out of the 50 apps with an overall 

average activity coverage value of 66.3%. Following, Humanoid was the second-best test 

input generation tool in the context of activity coverage. Humanoid performed a sequence 

of meaningful actions, which was opposite to Android Monkey's inability to test new core 

functionality. Therefore, activity coverage was prioritized in Android Monkey. Despite 

Android Monkey produced more inputs than other approaches, it was highly limited in 

its random approach. Sapienz, Stoat, and Humanoid were able to achieve 100% activity 

coverage in 20 apps. Droidbot demonstrated the best coverage in the Book catalog app as 

compared to other tools in the present study. It integrated a simple and yet effective depth-

first exploration algorithm, which pruned the UI components to have an event. In contrast, 

Stoat and Dynodroid achieved much lower coverages than the other tools, with an overall 

average of 55.3% and 42.0%, respectively. This is because Stoat had an internal null 

intent fuzzing, which directly started the activities with empty intents. There was an 

outlier in one of the AUT (Mileage) among the F-Droid apps, whose total activity was 50 

activities. Therefore, the causes of such uncovered app’s activities were manually 

investigated from the test input generation tools. Mileage app contains activities that 

required text inputs to fill up the text fields before allowing access to the next activity. 

During execution, Sapienz, Stoat, and Android Monkey produced random text inputs. 

While Droidbot and Humanoid created text input fields by searching for a sequence of 

predefined inputs. Dynodroid paused the test for manual inputs after a text input field like 

logging in password is required. However, none of the test tools was able to explore more 

than 44% of activity coverage on the Mileage app. 
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Figure 3.3 reports the variance of the mean coverage of three runs across all 50 apps. 

The horizontal axis shows the tools used and the vertical axis indicates the percentage of 

coverage. The boxes show the minimum, mean, and maximum coverage achieved by the 

tools.  

 

Figure 3.3: Variance of activity coverage achieved across apps and three runs. 

 

From Figure 3.3, one can observe that the activity coverage was higher than the method 

coverage. Sapienz, Stoat, Droidbot, Humanoid, Android Monkey, and Dynodroid 

obtained a coverage percentage increase of 100% with a mean coverage of 79%, 74%, 

73%, 76%, 72%, and 57%, respectively. All tools were able to cover more than 50% of 

the activity coverage. From the results, it was found out that 25 out of the 50 apps were 

not fully covered. In some apps, reaching activity requires a unique path of activity 

transitions from the root to the target activity or the activity that requires the filling of 

correct text inputs. Thus, it is recommended to support predefined test inputs as 

implemented in Droidbot and Humanoid. Moreover, some activities require a particular 

system event, such as connecting to Bluetooth. Hence, it is essential to generate guided 

system events instead of random generation of system events. To overcome such a 
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problem, one possible solution is to instrument an Android system event related to the 

AUT. One can conclude that the guided test input generation approaches implemented in 

Sapienz, Stoat, Droidbot, and Humanoid were more effective than the random approaches 

as the latter requires a longer time to cover all activities which could be impractical in 

large apps with complex GUIs. Furthermore, more sophisticated test generation 

approaches are more effective due to the built model heuristics that generate high 

coverage tests. 

 

Figure 3.4: Progressive activity coverage achieved across apps and three runs. 

 

As shown in Figure 3.4, the activity coverage for all testing tools increased with time 

until a point of convergence. The average convergence time of the tools was about 50 

minutes, but the fastest convergence of each tool was different. From the results, Android 

Monkey, Humanoid, and Sapienz had the highest coverage at 20 minutes, 40 minutes, 

and 50 minutes, respectively. Other tools such as Stoat, Droidbot, and Dynodroid did not 

achieve the highest coverage before the final convergence time of 60 minutes. Stoat 

required more execution time because it has an initial phase to construct an app state-

model for the generation of the test case. This indicated the significance of each tool in 
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measuring the activity coverage of an AUT and synonymously checking the capacity to 

detect a crash. Our test evaluation also revealed that there were no significant variations 

between the Android Monkey random approach and other tools. Thus, the tools required 

a longer execution time to improve their coverage. Android Monkey explored the same 

activities repeatedly for a long time since it triggered events on random coordinates of the 

screen, and it has no knowledge of the location of widgets on a screen. As compared to 

Humanoid and Droidbot, both tools explored all of the components available in the 

activity. Therefore, both did not reach the deep activities in one of the AUTs (Jamendo) 

within the time budget. 

RQ2. How is the performance of the test input generation tools in detecting 

unique crashes? 

During testing, AUT entered a new state, i.e., the app encountered a fatal exception or 

became non-responsive. App crashes are usually interpreted as the end state/last state 

because the app fails to proceed with the execution. This section aims to detect and record 

all of the unique app crashes encountered by each test tool during the testing process. 

Each unique app crash has a different error stack that defines the error location. The data 

logs of the six tools were evaluated, collected, and compared to evaluate the effectiveness 

of each test tool. 

For the testing process, LogCat (Google, 2019c) was used to check the crashes 

encountered repeatedly during the execution of the AUT. LogCat is a tool that uses the 

command-line interface to dump a log of all system-level messages. The system-level 

messages include error messages, warnings, system information, and debugging 

information. Each unique crash exception of the tool was recorded and the execution 

process was repeated three times to prevent randomness in the results. The number of 

unique app crashes was used as a measure of the tool's performance in detecting the 
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crashes. To identify the unique crashes from the error stack, the logs were analyzed 

manually by following the Su et al. (Su et al., 2017) protocol. To exclude the crashes that 

were unrelated to the app's execution, only the app's package name, filter crashes of the 

tool themselves, and the initialization errors of the apps in the Android emulator were 

retained. Next, a hash was computed over the sanitized stack trace of the crash to identify 

the unique crashes. Different crashes have different stack traces and thus a different hash. 

A recent study  (Moran et al., 2016) has highlighted that crashes caused by the Android 

system or the test harness itself should not be counted because most of them were false 

positives. Thus, such crashes can be identified by checking the corresponding stack traces. 

In the literature, different studies have used the number of unique crashes detected as the 

primary evaluation criteria. The higher the crash number detected (in comparison to other 

testing tools), the better the tool performance in detecting app crashes (Dashevskyi et al., 

2018). 

 

Figure 3.5 shows the distribution of crashes in each testing tool. Among all the six 

testing tools, Sapienz detected the highest number of unique app crashes. Sapienz 

Figure 3.5: Distribution of Crashes Discovered. 
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outperformed the other tools because it used a Pareto-optimal Search-Based Software 

Engineering (SBSE) approach (Harman et al., 2012). However, Sapienz used the Android 

Monkey input generation, which continuously generated events without waiting for the 

effect of the previous event. Sapienz triggered many Class-Cast-Exception and 

Concurrent-Modification-Exception. All of them were found through trackball and 

directional pad events. However, these crashes were insignificant. The reason is that 

trackballs and directional pads were unavailable on new Android phones. Besides, 

Sapienz triggered numerous SQLite Exceptions on the Jamendo app for all three runs. 

The exceptions majorly concern querying on multiple non-existent tables in the app's 

SQLite database. Because the apps depend majorly on the SQLite database and do not 

adequately deal with related exceptions, these destructive SQL queries are frequently 

triggered by the app's multiple locations. In effect, the fatal SQL queries cause multiple 

stack traces. During the testing, none of the other tools triggered SQLite exceptions, 

reflecting the several mistakes of using Android's default database. The only possible 

explanation is that initiating such crashes requires specific preconditions. A good example 

of such specific preconditions is forcibly terminating the app during initialization, which 

involves SQL operations for creating these tables, which the other tools might not create. 

Moreover, Android Monkey detected some stress testing bugs such as Illegal State 

Exceptions from the synchronizations between List Views and their data adapters, Illegal 

Argument Exceptions from the mismatches that result from service binding or nonbinding 

as a result of the rapid switches of activity lifecycle callbacks, and Out-Of-Memory-

Errors (Su et al., 2017). Out-Of-Memory-Errors may occur when the app attempts to load 

a large-size located on the SD card without user permission. Some exceptions can be 

detected under special configurations depending on the granted permissions, such as 

granting permission to access the SD card (Su et al., 2020). Stoat was the second-best test 

input generation tool as it detected 25 unique app crashes. It used a Gibbs sampling 
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method as a guide for model-based testing. As compared to Android Monkey, Stoat 

demonstrated better crash detection performance by injecting system events during 

testing. Stoat also used optimization techniques to guide the test generation by capturing 

all possible events arrangement, which allowed it to reveal faults. Stoat triggered many 

NullPointerExceptions on the app like "Car cast" during the starting of activities that took 

an Intent as input. Moreover, Stoat detected many exceptions that did not terminate the 

app processes, e.g., window leaked exceptions. Meanwhile, Humanoid, Droidbot, 

Sapienz, and Android Monkey triggered NumberFormatException in the “Droid weight” 

app, by inputting invalid text value. Dynodroid triggered other types of exceptions like 

ArrayIndexOutOfBoundsException and NullPointerException.  

Table 3.4 shows the statistics of crash results on apps by test generation tools. Sapienz 

triggered on average 32 unique crashes in 26 apps, followed by Stoat detected 25 unique 

crashes in 19 apps. Droidbot and Humanoid triggered 19 and 20 unique crashes 

respectively, on the17 apps.  
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Table 3.4: Statistics of crash results on apps by test generation tools understudy 

 

  

Apps Under Test # of Unique Crashes  
 

Sapienz Stoat Droidbot Humanoid Monkey Dynodroid 
A2DP Volume 1 0 2 2 0 0 
Aard 1 0 1 1 0 0 
Addi 1 1 1 1 1 1 
Adsdroid 1 1 0 0 1 0 
Alarm Clock 1 0 2 2 0 0 
Alogcat 0 0 0 0 0 0 
Android Token 0 0 0 0 0 0 
applicationsinfo 0 0 0 0 0 0 
Battery Circle  0 0 0 0 0 0 
Blockinger game 0 0 0 0 0 0 
Boogdroid 1 0 1 1 1 1 
Book Catalogue 1 1 1 1 1 1 
Bubble 2 2 0 0 1 0 
Car cast 2 3 1 1 2 1 
Contact Owner 1 1 1 1 1 1 
Currency 1 1 0 0 0 0 
Dew Point 2 1 1 1 0 1 
Divide 0 0 0 0 0 0 
DroidWeight 1 0 0 0 0 0 
drhoffmann 2 2 1 2 2 1 
Ethersynth 1 1 0 0 0 0 
FindMyphone 0 0 0 0 0 0 
Hot Death 0 1 0 0 0 0 
Jamendo 2 1 1 1 0 0 
Klaxon 0 0 0 0 0 0 
List my Apps 0 0 0 0 0 0 
LolcatBuilder  0 0 1 1 1 0 
Maniana 0 0 1 1 0 0 
Mileage 1 1 1 1 1 1 
Mirrored 1 0 0 0 0 0 
MunchLife 0 0 0 0 0 0 
Open Document Reader 0 0 0 0 0 0 
OpenSudoku 1 1 1 1 1 1 
OSM Tracker 1 2 1 1 1 1 
Pedometer  1 2 0 0 1 0 
Pushup Buddy 0 0 0 0 0 0 
Raele.concurseiro 0 0 0 0 0 0 
Resdicegame 0 0 0 0 0 0 
Sanity 1 1 0 0 0 0 
Sensor read out 1 0 0 0 0 1 
Sensors2Pd 2 1 1 1 1 0 
Talalarmo 0 0 0 0 0 0 
Terminal Emulator 1 1 0 0 0 0 
Timeriffic  0 0 0 0 0 0 
TimeSheet 0 0 0 0 0 0 
Tomdroid 0 0 0 0 0 0 
Unit 0 0 0 0 0 0 
Weather notifications 1 0 0 0 1 0 
WLAN Scanner 0 0 0 0 0 0 
World Clock  0 0 0 0 0 0 

Overall average 32 25 19 20 17 11 
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RQ3. How does the event sequence length affect the coverage and crash detection 

of the test input generation tools? 

Minimizing the total number of events in a test suite will reduce the testing time, effort, 

and the number of steps required to replicate a crash significantly. However, test input 

generation tools tend to produce large test suites with thousands of test cases. Each test 

case usually contains tens to thousands of events (e1, e2,.., en). The length of test case is 

generally defined as the number of events in it. Such test suites are challenging to be 

incorporated into regression testing due to the long run time required. Regression testing 

should be fast so that allows the same test suite to be used repeatedly during the 

development.  

In this work, Android Monkey generated 20,000 input data in an hour and explored 

the same activities repeatedly with no new coverage. An example of AUTs (A2DP 

Volume) is presented in Table 3.1. Android Monkey clicked the back button to return to 

the main activity and the cycle repeats. Such repeated actions caused redundant 

explorations and occupied much of the exploration time and number of events. 

On the other hand, Humanoid and Droidbot explored all activities in the A2DP Volume 

app within a time limit and produced a smaller number of events (1000 inputs). The 

approach from these tools guided the input and thus meaningful input events were 

generated. Besides, Sapienz coverage increased with the number of events during the 

initiation of the apps. While all UI states were new, they could not exceed the peak point 

at 40 minutes as seen in Figure 3.2 and Figure 3.4. Hence, Sapienz explored visited states 

and generated more event sequences.  
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Table 3.5: Experimental results to answer research questions 

Tools Activity 
Coverage (%) 

Method 
Coverage (%) 

Number of crashes Max Events Number 

Sapienz 66.3 39.8 32 6000  

Stoat 55.3 35.1 25 3000 

Droidbot 60.7 36.1 19 1000 

Humanoid 62.8 36.8 20 1000 

Monkey 58.1 36.9 17 20,000 

Dynodroid 42.0 28.8 11 2000 

 

Table 3.5 shows the maximum number of event sequences required by each tool to 

achieve the results. On average, Stoat, Droidbot, Humanoid, and Dynodroid generated a 

total of 3000, 1000, 1000, and 2000 events in an hour, respectively. Sapienz produced 

6000 events in an hour and optimized the events sequence length through the generation 

of 500 inputs per AUT state. Nevertheless, it created the largest number of inputs. Thus, 

one can conclude that a longer event sequence length did not improve the coverage. 

Moreover, Sapienz, Stoat, and Android Monkey attained the highest number of events. 

However, the coverage improvement was similar to Humanoid and Droidbot, which 

generated a smaller number of events. Both Humanoid and Droidbot generated 1000 

events in an hour but achieved better activity coverage of Stoat, Android Monkey, and 

Dynodroid. 

The results showed that the sequence of long events performed better than the shorter 

events sequence. However, long events sequence offered a small positive effect on the 

coverage and crash detection. That was confirmed in the previous study by Xie and 

Memon (Xie & Memon, 2006). Xie and Memon concluded that there was no significant 

difference between the long and short tests, but more extended tests can find additional 

faults that shorter tests cannot. Likewise, Bae et al. (Baek & Bae, 2016) showed that more 
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extended tests performed better than shorter tests. However, longer event length only had 

a small positive effect on code coverage. As a whole, longer event sequences increased 

the coverage and crash detection, however, more extended event sequences have many 

disadvantages such as high redundancy, high computational costs, and are difficult to 

interpret manually. 

3.4 Research Problems Found  

From the result, one can deduce that the relationship between three primary parameters 

tested (method coverage, activity coverage, and crash detection) was not linear, i.e., more 

activities and methods explored did not reflect more app crashes will be detected. 

Moreover, the experiment results revealed that a combination of a search-based approach 

and a random approach is promising to achieve thorough app exploration. Lastly, some 

of the functions that should be considered by other tools were highlighted. 

3.4.1 Events Sequence Redundancy 

Event sequence redundancy refers to test cases with similar steps. In many cases, it 

may have tests contained in other tests or tests with loops. A high redundancy affects the 

method coverage and activity coverage efficiency negatively as the testing tool will take 

a longer time to obtain the same coverage than that with low redundancy. Also, the 

capability to find faults will be reduced since the test suite tends to re-execute the same 

steps. It is essential to highlight that experiment specifically to verify redundancy in tests 

generated by these tools were exclude in this work.  

To avoid the execution of the same steps, Sapienz runs an optimization process with 

the highest number of crashes. Humanoid prioritizes critical UI elements to determine the 

inputs to execute and construct a state transition model to avoid re-entry of visited UI 

states. Stoat generates relevant inputs from a static and dynamic analysis by inferring 

events from the UI hierarchy and events listeners in the app code. Droidbot generates UI-
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guided test inputs based on the position and type of the UI elements that defined the static 

information which is extracted from APK (e.g., list of system events) and dynamic 

analysis to avoid re-entry of explored UI states. From the results, Android Monkey 

presented excellent results in the activity and method coverage. However, it presented a 

low number of crashes. This tool uses a random exploration strategy and is more prone 

to redundancy. On the contrary, Dynodroid uses a guided and random exploratory 

approach, in which most of the unacceptable events are discarded based on the GUI 

structure and registered event listeners in an app. 

3.4.2 Events Sequence Length 

The desired goal of software testing is to detect fault using the shortest possible event 

sequences within the shortest time and using the minimum efforts (K. Mao et al., 2016). 

Developers may reject longer sequences because it is impractical to debug and also 

unlikely to occur in practice. The longer the event sequence, the less likely it will occur 

in practice. The generation of long event sequences in GUI testing usually leads to an 

increase in the testing space. Sapienz optimizes event sequence length at the testing time 

by detecting the highest number of crashes. However, it could not detect serious crashes 

because it needs to return the app to a new clean state before starting a new testing script. 

3.4.3 System Events 

Android apps are context-aware because they can integrate contextual data from a 

variety of system events. Context-aware testing is an important issue, mobile devices 

usually enable rich user interaction inputs. These inputs are either UI user events or 

system events. This brings many difficulties in generating test inputs that can expose the 

app’s faults from the user and system events effectively. It is important to discover the 

faults that are often reported in the bug reports of Android apps and appear when the app 

is impulsively solicited by system events. Android Monkey and Stoat generate random 

system events, while Humanoid and Droidbot send guided events. Even though the testing 
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tools in this experiment generated system events such as click on home or back buttons 

by sending intent messages, one should include all systems events (e.g., Wi-Fi, GPS, 

Sensors). For future works, experiment tools with other apps will be attempted by 

checking the ability of these tools in detecting the crashes caused by various conditions 

of system events. 

3.4.4 Access Control 

One of the key aspects of software security is Access Control (Kayes et al., 2020). 

There are many mechanisms of Access Control in the literature. These Access Control 

mechanisms exist to restrict access to a software system's security-sensitive resources and 

functionalities (Borges & Zeller, 2019; Sadeghi et al., 2017; Shebaro et al., 2014).  Mobile 

device resources can collect sensitive data, and they may expose the user to security and 

privacy risks if apps misuse them without the user's prior knowledge. For instance, 

Android apps may access resources that are not needed for their primary function, for 

example, using the Internet, GPS, camera, or access sensitive data such as location, 

photos, notes, contacts, or emails. Android employs a permission-based security 

mechanism to tackle access to sensitive data and potentially dangerous device 

functionalities. However, the process is not always a straightforward task to properly use 

this permission-based security mechanism. The behavior of the Android app may change 

depending on the granted permissions. It needs to be tested under a wide range of 

permission combinations (Sadeghi et al., 2017). Test generation tools are used to generate 

inputs that trigger actual app behavior (e.g., crash). Though, these tools could be 

improved to consider the behavior of user interface elements that access sensitive user 

data and device resources. More context-based access control mechanisms are required 

to restrict apps from accessing specific data or resources based on the user context. 
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3.4.5 Ease of Use 

Based on the author’s experience in setting up each of the tools, the tools that required 

extra effort in terms of configuration were described. Android Monkey required the least 

effort during the configuration. It is the most widely used tool due to its high compatibility 

with different Android platforms. Followed by Dynodroid, whose running version was 

obtained from a virtual machine found on the tool's page. Dynodroid was designed to 

operate with a standard version of an Android emulator. It can perform an extensive setup 

before the exploration. Like Android Monkey, both Droidbot and Humanoid were easy 

to use and provided much-advanced features. On the other hand, Stoat and Sapienz 

required considerable effort to operate because both tools demanded hours for a 

configuration with an Android emulator. Moreover, test generation tools for Android apps 

in the literature are typically impractical for developers to use due to the instrumentation 

and the platform required. 

3.5 Threats to Validity 

In this study, there are internal and external threats to the validity associated with the 

results of our empirical evaluation. In terms of internal validity, the default emulator used 

was proposed by Sapienz and Dynodroid. The publicly available versions of Sapienz and 

Dynodroid were designed to operate with a standard version of the Android emulator. 

Another threat to the internal validity of our study was Ella's instrumentation effect, which 

may affect the integrity of the results. These could be due to the errors triggered by the 

incorrect handling of the binary code or by errors in our experimental scripts. To mitigate 

such risk, the traces of the sample apps were inspected manually.   

External validity was threatened by the representativeness of the study to the real 

world. In other words, representativeness means how closely the apps and tools used in 

this study reflect the real world. Moreover, the generalizability of the results used a 
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limited number of subject apps. To mitigate these, a standard set of subject apps was used 

in the experiment with different domains, including fitness, entertainment, and tool apps. 

The subject apps were selected carefully from F-Droid and AppBrain repositories, which 

are commonly used in Android GUI testing studies. Section 3.1.3 explains the details of 

the selection process. Therefore, the test was not prone to selection bias. To reduce the 

aforementioned threats, experimental works with broad types of subjects should be 

performed on a larger scale in the future. 

3.6 Conclusion 

This chapter presents an empirical analysis of the effectiveness of test input generation 

tools for Android testing that supported system events generation on 50 Android apps. 

An experimental analysis was performed to investigate the effect of events sequence 

length on the method coverage, activity coverage, and crashes detection. The testing tools 

were evaluated and compared based on three criteria: method coverage, activity coverage, 

and their ability to detect crashes. From this chapter, it was concluded that a long events 

sequence led to a small positive effect on coverage and crash detection. Both Stoat and 

Android Monkey attained the highest number of events. However, coverage performance 

was similar to Humanoid and Droidbot which generated a smaller number of events. 

Moreover, this study showed that Sapienz was the best-performing tool that satisfies all 

three criteria. Despite Sapienz optimized events sequence length, it generated the highest 

number of events and it is unable to detect crashes that can only be reached from a long 

events sequence. Besides, Android Monkey was able to reveal stress testing crashes. 

However, it was limited to generate inputs relevant to the app, mainly due to its 

randomness in generating unreproducible events with long sequences. Moreover, most of 

the tools were able to find a fault in the user events and none of them was able to find a 

fault in a system event.  
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CHAPTER 4: PROPOSED SOLUTION 

This chapter presents an overview of the proposed approach for generating GUI test 

cases for Android Apps. The proposed solution is derived from the review between 

reinforcement learning, and test case generation approaches explained in chapter 2 to take 

advantage of both the randomly based approach and model-based approach. This 

approach generates user and system inputs that discover unexplored states of the app and 

uses the execution of the app on the generated inputs to construct a state-transition model. 

Instead of randomly selecting the actions, the test generator learns how to act in an 

optimal way that explores new states by using new actions to gain more rewards to 

maximize instruction coverage, method coverage, and activity coverage with minimizing 

redundant execution of events sequence. 

The remains of this chapter are organized as follows: Section 4.1 presents the 

background of reinforcement learning, its technologies, and techniques. Section 4.2 

introduces the adaptation of reinforcement learning techniques in GUI testing for Android 

apps. Section 4.3 justifies the reason for adopting the Q-Learning technique. Section 4.4 

presents the implementation of the proposed approach while Section 4.5 highlights the 

significance of the proposed approach. Finally, Section 4.6 concludes this chapter. 

4.1 Reinforcement Learning  

Reinforcement Learning (RL) is a branch of machine learning. Unlike other branches 

like supervised and unsupervised learning, its algorithms are trained using reward and 

punishment to interact with the environment. It is based on the concept of behavioral 

psychology that works on interacting directly with an environment which plays a key 

component in Artificial Intelligence. As represented by the Markov Decision Process 

(MDPs), RL is a problem emerging in many real-world scenarios and provides 

mathematical frameworks that allow for modeling decision-making. It defines an 
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environment's state, the action that the agent can take, the reward, and its expectation for 

the action and the next state after executing the action. However, the most important 

characteristic of an MDP is that the states' transition and reward function depend only on 

the current state and executed action. In an actual situation, the agent cannot precisely 

predict those functions (reward and state transition). If these functions are not known, the 

use of valued-based methods like Q-Learning is used to measure actions and predict them 

without knowing how good the actions are.  

The major components of RL are the agent and the environment. The agent serves as 

an independent entity that performs unconstrained actions within an environment to 

achieve a specific goal. The agent performs an activity on the environment and uses trial-

and-error interactions to gain information about the environment. There are four other 

basic concepts in the RL system along with agent and environment: (i) a policy, (ii) a 

reward, (iii) action, and (iv) state. The state describes the present situation of the 

environment and mimics the environment's behavior. For example, this gives rise to a 

current situation and action. The model might predict the resultant next state and the next 

reward. Models are used to plan and decide on a course of action by considering possible 

future situations before they are experienced. Similarly, the reward is an abstract concept 

to evaluate actions. Reward refers to immediate feedback after acting. The policy defines 

the agent approach to select an action from a given state. It is the core of the RL agent 

and sufficient to determine behavior. In general, policies may be stochastic. An action is 

a possible move in a particular state. 

An analysis by McKinsey Global Institute Research (Chui et al., 2018) on the 

application of RL revealed that there are about 400 use cases across 19 industries and 

nine business functions highlight the significance and the broad use of advanced RL 

techniques ranging from advanced electronics/semiconductors, aerospace and defense, 
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agriculture, automobile and assembly, banking, healthcare system, high tech, oil and gas, 

pharmaceuticals, public and social sectors, telecommunication, transport and logistics, 

travel and insurance companies. 

The application of RL in the present world cannot be overemphasized. Mао et аl., 

(2016) designed RL algorithms that allocate and schedule limited computer resources to 

different tasks that seem challenging and require human-generated heuristics. Arel еt аl. 

(2010) used the RL framework to obtain an efficient traffic signal control policy targeted 

to minimize average delay, congestion, and the likelihood of intersection cross-blocking. 

Bu еt аl., (2009) proposed RL for the autonomic configuration of a multi-tier web system; 

however, it adopted other policy initialization techniques to remedy the large state space. 

RL has been applied in optimizing chemical reactions that outperform a state-of-the-art 

algorithm, and this study optimized chemical reactions using Markov Decision Process 

(Zhou et al., 2017).  

RL is a mainstream technique used to solve different games and sometimes achieve 

super-human performance. Researchers have adopted RL techniques to developed 

approaches for testing Android apps. Figure 4.1 presents the mechanism RL in the context 

of Android app testing. In the automated GUI testing, AUT is the environment; the state 

is the set of actions available on the AUT activity. The GUI actions are the set of actions 

available in the current state of the environment, and the testing tool is the agent. Initially, 

the testing tool does not know the AUT. As the tool generates and executes test event 

input based on trial-and-error interaction, the knowledge about AUT is updated to find a 

policy that facilitates systematic exploration to make efficient future action selection 

decisions. This exploration generates event sequences that can be used as test cases.  
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There are two primary directions in solving RL problems: algorithms based on value 

functions/ Q-value 𝑄(𝑠, 𝑎) and algorithms based on policy search (Arulkumaran et al., 

2017). Q-Value-based algorithms update the value function based on an equation. 

Whereas the policy-based estimates the value function with a greedy policy obtained from 

the last policy improvement. Most RL technique follows a step-by-step pattern. At each 

time step 𝑡, it observes the environment's state 𝑆𝑡 and takes action 𝐴𝑡 based on its policy 

𝜋. The environment then transitions to a new state 𝑆𝑡+1 based on 𝑆𝑡 and 𝐴𝑡, and it also 

outputs a scalar reward 𝑅𝑡+1  as feedback that the agent then uses to update its knowledge. 

The agent learns a policy that maximizes the expected cumulative reward of a sequence 

of actions in the environment that are finally used as test cases. 

Several exploration strategies have been proposed by integrating mathematical 

approaches, such as Epsilon-greedy (∈ −𝑔𝑟𝑒𝑒𝑑𝑦) policy and Upper confidence bound 

(UCB). The epsilon-greedy policy aims to identify a possible way and keep on exploiting 

it greedily. The agent randomly explores with probability ∈  and selects the action with 

the highest Q-value in the current state with probability 1− ∈. The random action is useful 

for exploration, but it might also lead the agent to try out actions that will not give a good 

reward. Moreover, it explores too much because even when selected action seems to be 

Figure 4.1: Reinforcement learning mechanism 
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the optimal one, the policy keeps allocating a fixed ratio of the time for exploration, thus 

missing opportunities and increasing total regret. UCB policy proposed by Auer et al 

(2002) for multi-armed bandit that achieves regret that grows only logarithmically with 

the number of actions taken. It enhances the exploration and minimizes the total regret. It 

explores more to reduce uncertainty systematically, but its exploration reduces over time. 

Thus, UCB attains greater reward on average than the Epsilon-greedy policy. There are 

several techniques of Reinforcement learning include Deep Q Network (DQN), Actor-

critic, State-Action-Reward-State-Action (SARSA), and Q-Learning. 

4.1.1 Deep Q Network  

Deep Q Network (DQN) combined Q-Learning with a flexible deep neural network. 

It was tested on a varied and large set of deterministic Atari 2600 games, reaching human-

level performance on many games. DQN uses the Neural Network to estimate the Q-value 

function. The network's input is the current state, while the output is the corresponding 

Q-value for each action. Although DQN has achieved huge success in higher-dimensional 

problems, such as the Atari game, the action space is still discrete. With many tasks of 

interest, especially physical control tasks, the action space can be continuous. 

4.1.2 Actor-Critic  

An Actor-Critic uses both the value function and the policy function, where the 

"Critic" estimates the value function. This could be the Action-value (The Q value) or 

State-value (the V value), and the "Actor" updates the policy distribution in the direction 

suggested by the Critic (such as with policy gradients). Actor-Critic's variants, namely 

the Asynchronous Advantage Actor-Critic (A3C) and the Advantage Actor-Critic (A2C). 

In essence, A3C implements parallel training where multiple workers in parallel 

environments independently update a global value function hence "asynchronous." One 

important benefit of having asynchronous actors is an effective and efficient exploration 
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of the state space. A2C is synchronous as compared to A3C; it is a single worker variant 

of the A3C. A2C produces a comparable performance to A3C while being more efficient, 

although researchers are unsure if or how the asynchrony benefits learning. 

4.1.3 State-Action-Reward-State-Action (SARSA) 

State-Action-Reward-State-Action (SARSA), an on-policy Temporal Difference (TD) 

control method. A policy is a state-action pair tuple that maps the action to be taken at 

each state. This on-policy control method chooses each state's action during learning by 

following a certain policy (mostly the one it is evaluating itself, like in policy iteration). 

SARSA and Q-Learning are both policy control methods that evaluate the optimal Q-

value for all action pairs. SARSA resembles Q-Learning to a lot of extents. The only 

difference between the two is that SARSA learns the Q-value based on the current policy's 

action compared to Q-Learning's use of the greedy policy. Equation (4.1) shows the 

update rule for SARSA: 

 

4.1.4 Q-Learning  

Q-Learning is also known as one of the most popular reinforcement learning 

techniques (Kaelbling et al., 1996). The "Q" in Q-Learning stands for quality representing 

how useful a given action is in gaining some future reward. It is an off-policy temporal 

difference control method. It is precisely like SARSA with the only difference that Q-

Learning does not follow a policy to find the next action but instead chooses the action 

greedily. Similar to SARSA, it aims to evaluate the Q-values based on equation (4.2).  

       
𝑸∗(𝒔𝒕, 𝒂𝒕) = 𝐦𝐚𝐱

𝝅
∑(𝜸𝒕𝒓𝒕|𝒔 = 𝒔𝒕, 𝒂 = 𝒂𝒕, 𝝅)

𝒕>𝟎

 (4.2) 

 

𝑸(𝑺𝒕, 𝑨𝒕) ← 𝑸(𝑺𝒕, 𝑨𝒕) + 𝒂[𝑹𝒕+𝟏 
+  𝜸𝑸(𝑺𝒕+𝟏, 𝑨𝒕+𝟏) − 𝑸(𝑺𝒕, 𝑨𝒕)]               (4.1) 
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Q-Learning uses its Q-values to resolve RL problems. For each policy 𝛱, the action-

value function or quality function (Q-function) should be properly defined. Nonetheless, 

the value 𝑄 𝛱 (𝑠𝑡;  𝑎𝑡) is the expected cumulative reward that can be achieved by 

executing a sequence of actions that starts with action 𝑎𝑡 from 𝑠𝑡; and then follows the 

policy 𝛱. The optimal Q-function 𝑄∗ is the maximum 𝑄 expected cumulative reward 

achievable for a given (state, action) pair over all possible policies. This is known as the 

Bellman equation. The Q-Learning algorithm uses equation (4.2) to estimate the value 

iteratively. Intuitively, if 𝑄∗ is known, the optimal strategy at each step 𝑠𝑡 is to take action 

that maximizes the sum: 𝑟 +  𝑄 ∗ (𝑠𝑡 + 1, 𝑎𝑡 + 1), where 𝑟 is the immediate reward of 

the current step, while 𝑡 stands for the current time step, hence 𝑡 + 1 denotes the next 

one. The discount value (γ) is introduced to control the long-term rewards’ relevance with 

the immediate one. 

Q-Learning is used to find an optimal action-selection policy for the given AUT using 

greedy policy and behaves using other policies such as Epsilon-greedy policy and UCB, 

where the policy sets out the rule that the agent must follow when choosing a particular 

action from a set of actions (Watkins & Dayan, 1992). There is an action execution that 

is immediately preceded to choose each action, which moves the agent from the current 

state to a new state. This agent is provided with a reward 𝑟 upon executing the action 𝑎. 

The value of the reward is then measured using the reward function 𝑅. For the agent, the 

main aim of Q-Learning is to learn how to act in an optimal way that maximizes the 

cumulative reward. Thus, a reward is granted when an entire sequence of actions is carried 

out.  

4.2 Automated GUI Testing with Reinforcement Learning  

Researchers have developed approaches to automate test generations for Android apps. 

This section highlights the existing tools with corresponding approaches.  
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Mariani et al. (Mariani et al., 2012) proposed AutoBlackTest, the first Q-Learning-

based GUI testing tool for Java desktop software. AutoBlackTest initially extracts an 

abstract representation of the current state of the GUI and generates a behavioral model. 

This model is updated according to the current state reached and the immediate utility of 

the action. Then the behavioral model is used to select the next action to be executed, and 

then to restart the loop. TESTAR (Esparcia-Alcázar et al., 2016), another Q-Learning-

based tool, is used to generate GUI test sequences based on web applications. The Q-

Learning algorithm provided significant performance with an adequate set of parameters.     

GunPowder (Kim et al., 2018) is a test input generation tool for search-based test data 

generation using deep RL. GunPowder has been specifically developed for C applications 

and consists of three phases: (i) instrumentation, (ii) execution, and (iii) fitness evaluation. 

In the instrumentation phase, in the first step, it adds instrumentation codes that allow the 

tool to control and monitor the execution of the program. Subsequently, in the second 

step, the tool builds and executes the program, and in the third phase, the machine learning 

algorithm was applied to generate test inputs. Currently, the fitness function supported by 

GunPowder aims to improve branch coverage. Although not suitable for Android app 

testing, other studies that have adopted RL techniques for Android testing are shown in 

Table 4.1. 
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Table 4.1: Overview of Android test generation tools adopted RL 

 

Vuong & Takada (Vuong & Takada, 2018) proposed a Q-Learning-based automated 

test case generation tool designed for Android apps using the Markov model to describe 

the AUT. The tool learns the most relevant behavioral model of the AUT and generates 

test cases based on this model. The tool executes a sequence of a fixed number of events, 

also called an episode. After finishing an episode, the tool selects a random state from 

those that have already been visited and starts a new episode in the next phase. However, 

this tool has multiple limitations. For example, it only generates UI events and does not 

cover activities triggered by system events.  

Adamo, Khan, Koppula, & Bryce (Adamo, Khan, et al., 2018) introduced a Q-

Learning-based automated test case generation tool designed for Android apps built on 

the top of Appium and UI Automator. During the process of test case generation, the tool 

chooses an event with the highest Q-value from the set of available events in each state. 

The test case generation process is quite similar to previous work (Vuong & Takada, 

2018), and this generation process is divided into episodes where the states used in 

No Tool Action 
Selections 

State 
Representation  

Test Input 
generation 

Coverage 
Criteria 

Basis 

1 Humanoid 
(Li et al., 
2019) 

Best 10 actions Number of 
actions in 
activity 
 

DQN Line Droidbot 

2 Androfram 
(Koroglu et al., 
2018) 

Trained action  Activity ID & 
UI components 

 

Q-learning Activity -  

3 (Adamo, 
Khan, et al., 
2018) 

Action with 
highest Q-value 

Number of 
actions in 
activity 
 

Q-learning Block Appium 

4 (Vuong & 
Takada, 2018) 

Action with 
highest Q-value 

Activity ID & 
UI components 

 

Q-learning Code UI 
Automator 

5 AimDroid 
(Gu et al., 
2017) 

Best first action  Activity ID & 
UI components 

SARSA Activity Monkey & 
UI 
Automator 
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previous episodes are employed as a basis for beginning a new episode. The authors 

define the state to be the set containing the unique actions available. 

QBE (Koroglu et al., 2018) Q-Learning-based exploration approach generates test 

cases. Instead of using a random exploration approach, the GUI is explored based on a 

pre-approximated probability distribution that satisfied a test objective. It creates a Q-

matrix that shows the probabilities of reaching the test objective, which is used to select 

the next action. However, QBE has inconsistent activity coverage and only works with 

single-objective fitness functions, where each run has only one objective to increase the 

activity coverage or search crashes. 

AimDroid (Gu et al., 2017) is a model-based test case generation tool for Android 

apps. AimDroid implements an RL-guided random approach. AimDroid is composed of 

two activities: it runs a breadth-first search to discover unexplored activities and insulates 

the discovered activity in a "cage" and intensively exploits such activity using RL-guided 

fuzzing algorithms. This tool divides the tests into episodes; each episode generates a 

bounded number of events and focuses on a single activity by disabling activity 

transitions. Furthermore, AimDroid uses an RL algorithm called SARSA to learn about 

the capability of events that can explore new activities, to "look ahead" and to select 

events that are more likely to trigger new activities and crash greedily. AimDroid also has 

some limitations. For example, it disables the activity transition, which may drop some 

faults caused by the Activity life cycle. Moreover, AimDroid does not learn the second-

best event to choose from, it only knows the best SARSA-based event, and for all other 

events, it chooses randomly. 

Humanoid (Li et al., 2019) was implemented along with Droidbot (Li et al., 2017) 

which was developed to learn how users interact with Android apps. Humanoid uses a 

GUI model to comprehend and analyze the behavior of AUT. Nonetheless, Humanoid 
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prioritizes human interacted UI elements. Humanoid operates in two phases; (1) offline 

learning phase which is a deep neural network model used to master the relationship 

between GUI contexts and user-performed interactions, and (2) online testing phase 

where Humanoid developed a GUI model for the AUT. In the second phase, it uses the 

GUI model and the interaction model to determine the type of test input to send. The GUI 

model directs Humanoid on the navigation of explored UI states, while the interaction 

model guides the discovery of the new UI states. As a limitation, this tool does not present 

an increment in coverage when compared to other tools. It is unable to use textual 

information available in the app to generate test cases. 

4.3 Justification of the Proposed Approach  

There are several techniques of reinforcement learning explained in section 4.1, Q-

Learning is the most suitable for GUI testing, among other reinforcement learning 

techniques, since other techniques require many actions to be generated during the 

learning process, which is costly (Koroglu et al., 2018). The idea behind using Q-Learning 

is that the tabular Q-function is rewarded with each selection of possible actions over the 

app. However, this reward may vary according to the test objective. Thus, events that are 

never selected can present a higher reward than events that have already been executed, 

which reduces the redundant execution of events and increases coverage. 

Q-Learning has been used in software testing in the past and has shown better results 

to improve the random exploration strategy (Adamo, Khan, et al., 2018; Koroglu et al., 

2018; Mariani et al., 2011; Vuong & Takada, 2018). However, a common limitation to 

all these tools is that the reward function assigns the highest reward when the event is 

executed for the first time to maximize coverage or locate crashes. Nonetheless, in the 

proposed approach, the environment does not offer direct rewards to the agent. The agent 

itself tries to visit all states to collect more rewards. The proposed approach uses tabular 
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Q-Learning like other approaches but uses an effective exploration strategy that reduces 

actions redundant execution and uses different states and action spaces. Action selection 

is the main part of Q-Learning in finding an optimal policy. The policy is a process that 

decides on the next action 𝑎 from the set of current actions. Unlike previous studies, the 

proposed approach utilizes the upper confidence bound (UCB) exploration-exploitation 

strategy as a learning policy to create an efficient exploration strategy for GUI testing. 

UCB tries to ensure that each action is explored well and is the most widely used solution 

for multi-armed bandit problems (Lonza, 2019). The UCB strategy is based on the 

principle of optimism in the face of uncertainty. 

4.4 Implementation of the Proposed Approach  

Q-Learning technique with UCB exploration strategy was adopted to generate a GUI 

test case for Android apps to improve coverage and crash detection. This approach was 

built in a test tool named DroidbotX. Moreover, the main idea of using DroidbotX was to 

evaluate the practical usefulness and applicability of the proposed approach. DroidbotX 

works with Droidbot (Li et al., 2017). Droidbot is a UI-guided input generation tool used 

mainly for malware detection and compatibility testing. Droidbot was chosen because it 

is open-source and can test apps without having access to the apps’ source code. 

Moreover, it can be used on an emulator or real device without instrumentation and is 

compatible with all Android APIs.  

The DroidbotX algorithm tries to visit all states because it assumes “optimism in the 

face of uncertainty”. The principle of optimism in the face of uncertainty is known as a 

heuristic in sequential decision-making problems, which is a common point in exploration 

methods. The agent believes that it can obtain more rewards by reaching the unexplored 

parts of the state’s space (Kamiura & Sano, 2017). In this principle, actions are selected 

greedily, but strong optimistic prior beliefs are put on their payoffs so that strong contrary 
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evidence is needed to eliminate the action from consideration. This technique has been 

used in several RL algorithms, including the interval exploration method (Sutton & Barto, 

1998). In other words, it means that visiting new states and making new actions would 

bring the agent more reward than visiting old states and making old actions. Therefore, it 

starts from an empty Q-function matrix and assumes that every state and action reward 

an agent with +1. When it visits the state 𝑠 and makes an action 𝑎, the Q-function 

𝑄 (𝑠, 𝑎)  decreases, and the priority of the action 𝑎 for the state 𝑠 becomes lower. Our 

DroidbotX approach generates sequences of test inputs for Android apps that do not have 

an existing GUI model. The overall DroidbotX architecture is shown in Figure 4.2. 

In Figure 4.2, the adapter acts as a bridge between the test environment and the test 

generation algorithm. The adapter is connected to an Android device or an emulator via 

the Android Debug Bridge (ADB). The adapter observer monitors the AUT and sends the 

current state to the test generator. Simultaneously, the executor receives the test inputs 

generated by the algorithm and translates them to commands. Furthermore, the test 

generator interacts and explores the app’s functionalities following the observe-select-

execute strategy, where all the GUI actions of the current state of AUT are observed; one 

action is selected based on the selection strategy under consideration, and the selected 

action is executed on the AUT. Similar to other test generators, DroidbotX uses a GUI 

model to save the memory of transitions called a UI transition graph (UTG). The UTG 

guides the tool to navigate between the explored UI states. The UTG is dynamically 

constructed at runtime, which is a directed graph whose nodes are UI states, and the edges 

between the two nodes are actions that lead to UI state transitions. The state node contains 

the GUI information and the running process information, and the methods are triggered 

by the action. DroidbotX uses Q-Learning-based test coverage approach shown in 

algorithm 1 and constructs a UI transition graph in algorithm 2. 
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4.4.1 States and Action Representation 

In the Android app, all the UI widgets of an app activity are organized in a GUI view 

tree (Baek & Bae, 2016). The GUI tree can be extracted via UI Automator, which is a 

tool provided by the Android SDK. UI widgets include buttons, text boxes, search bars, 

switches, and number pickers. Users interact with the app using click, long-click, scroll, 

swipe up, swipe down, input text, and other gestures collectively called as GUI actions or 

actions. Every action is represented by its action type and target location coordinates. The 

GUI action is either (1) widget-dependent such as click and text, or (2) widget-

independent such as the back that presses the hardware back button. A 5-tuple denotes an 

action: 𝑎 =  (𝑤, 𝑡, 𝑣, 𝑘, 𝑖), where 𝑤 is a widget on a particular state, 𝑡 is a type of action 

that can be performed on the widget (e.g., click, scroll, swipe), and 𝑣 holds arbitrary text 

if widget 𝑤 is a text field. For all non-text field widgets, the 𝑣 value is empty. Moreover, 

𝑘 is the key event that includes back, menu, and home buttons on the device, and 𝑖 is a 

widget ID. Note that DroidbotX sends an intent action that installs, uninstalls, and restarts 

the app. 

State abstraction refers to the procedure that identifies equivalent states. In this 

approach, state abstraction determines two states as equivalent if (1) they have similar 

GUI content which includes package, activity, widget’s type, position, and widgets 

parent-child relationship, and (2) they have the same set of actions on all interactive 

widgets, which is widely used in previous GUI testing techniques (Bauersfeld & Vos, 

2014; Choi et al., 2013; Gu et al., 2017).  GUI state or state 𝑠 ∈  𝑆 describes the attributes 

of the current screen out of the Android device where 𝑆 denotes the set of all states. A 

content-based comparison and a set of actions to decide state equivalence, where two 

states with different UI contents and different enabled actions are assumed to be different 

states. 
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For simplifying states and actions representation, take an example of the Hot death 

app. Hot death is a variation of the classic card game. The main page includes a new 

game, settings, help, about, and exit buttons. Figure 4.3 shows a screenshot of the app’s 

main activity, initial state, and related widgets with a set of enabled actions. Widget-

dependent action is detected when a related widget exists on the screen. For example, a 

click-action exists only if there is a related widget with the attribute clickable true. 

Widget-independent action is available in all states because the user can press on device 

hardware buttons such as the home all the time. 

 

 

Figure 4.3: An example of state and actions representation from Android app 

 

4.4.2 Exploration Strategy  

Android apps can have complex interactions between the events that can be triggered 

by UI widgets, and states that can be reached, and the resulting coverage achieved. In 

automated testing, the test generator must choose not only which widget to interact with, 

but also what type of action to perform. Each type of action on each widget is likely to 

improve coverage. Our goal is to interact with the app’s widgets by sending relevant 
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actions for each widget dynamically. This reduces the number of ineffective actions 

performed and explores as much app state as possible. Thus, UCB was used as an 

exploration policy to explore the app for new states and try out new actions. For each 

state, all potential widgets are extracted with their IDs and location coordinates, and then 

systematically choose be-tween five different actions (i.e., click, long-click, scroll, swipe 

left/right/up/down, and in-put text data) to interact with each widget. Next, whether the 

action brings the app to a new state by comparing its contents with all other states in the 

state model. If the agent identifies a new state, the exploring policy on the new state is 

recursively applied to discover unexplored actions. The exploration policy does not know 

about the consequences of each action, and the decision is made based on the Q-function. 

When exploration of this state terminates, the intent was executed to restart the AUT. 

Android intent is the message that passed between Android app components such as the 

start activity method to invoke activity. Examples of termination, an action that cause the 

AUT to crash, an action that switches to another app, or a clicks home button. The home 

action always closes the AUT, while the back action often closes the AUT. The 

exploration passes the login screen by searching in a set of pre-defined inputs. Some 

existing tools such as Android Monkey will stop at the login screen, failing to exercise 

the app beyond the login page. 

4.4.2.1 Observer and Rewarder 

The goal of the observer is to monitor the results of actions on the AUT. The Q-

function then rewards the actions based on the results. Algorithm 1 uses the input 

parameters to explore the GUI and produces a set of event sequences as a test case for 

AUT. The Q-function 𝑄(𝑠, 𝑎) takes state 𝑠 and action 𝑎. The Q-function matrix is 

constructed based on the current state. Each row in the matrix represents the expected Q-

values for a particular state. The row size is equal to the number of possible actions for 

the state. The 𝑔𝑒𝑡𝐸𝑣𝑒𝑛𝑡𝑓𝑟𝑜𝑚𝐴𝑐𝑡𝑜𝑟 function at lines 23–26 obtains all the GUI actions 
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of the current state of AUT. The actions’ initial values on the current state are assigned 

as 1 at line 26. The 𝑈𝑝𝑑𝑎𝑡𝑒𝑄𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 function at lines 13–21 decreases the value of the 

action to 0.99 when the test generator conducts this action in the state. When all action 

value is 0.99, the maximum value becomes 0.99, and the test generator starts to choose 

some actions again. Then one action is selected and executed, and when a new state is 

found, the Q-function trainer receives the next state and updates the Q-function matrix to 

the previous state. The test generator sends KeyEvents such as back button at lines 27–

28, if the state is the last or if there are no new actions in the current state. 

𝑄(𝑆, 𝐴) = 𝑄(𝑆, 𝐴) + 𝑎 ∗ (𝛾 ∗ 𝑚𝑎𝑥𝑄(𝑆′, 𝑎) − 𝑄(𝑆, 𝐴)) (4.3) 

 

     The Q-Learning algorithm uses equation (4.3) to estimate the value of 𝑄(𝑠, a) 

iteratively. The Q-function is initialized by a default value. Whenever an agent executes an 

action a from state 𝑠 to reach 𝑠′ and receives a reward 𝑟 + 1, the Q-function is updated as 

equation (4.3) where 𝛼 is a learning rate parameter between 0 and 1 and γ is a discount rate. 

 

4.4.2.2 Action Selector 

Action selection strategy is a crucial feature of DroidbotX. Right actions can improve 

the likelihood and decrease the time necessary to navigate to various app execution states. 

In the initial state, the test generator chooses the first action based on a randomized 

exploration policy to avoid the systematic handling of GUI layouts in each state. Then, 

the test generator selects actions from the new states and generates event sequences in a 

way that attempts to visit all states. The Q-function calculates the expected future rewards 

for actions based on the set of states it visited. In each state, the test generator chooses an 

action that has the highest expected Q-value from the set of available actions using 

𝑔𝑒𝑡𝑆𝑜𝑓𝑡𝐴𝑟𝑔𝑚𝑎𝑥𝐴𝑐𝑡𝑖𝑜𝑛 function at lines 32–36, then the predicted Q-value for that 
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action is reduced. Therefore, the test generator will not choose it again until all other 

actions have been tried. Formalizing this mathematically, the selected action is picked by 

Equation (4.4). 

𝒂𝒄𝒕𝒊𝒐𝒏 = argmax
𝒂

 ⌈𝑸𝒕(𝒔𝒕, 𝒂𝒊) + √
𝑰𝒐𝒈𝑵𝒔𝒕

𝑵(𝒔𝒕,𝒂𝒊)

𝒄
⌉                                

(4.4) 

   

  Equation (4.4) depicts the basic idea of UCB strategy, the expected overall reward of 

action 𝑎 is 𝑄𝑡(𝑠𝑡, 𝑎𝑖), 𝐼𝑜𝑔𝑁𝑠𝑡
 denotes how often action has been selected in 𝑠𝑡, while 

𝑁(𝑠𝑡, 𝑎𝑖) is the number of times the action 𝑎𝑖 was selected in state 𝑠𝑡, and 𝑐 is a confidence 

value that controls the level of exploration (set to 1). This method is known as 

“exploration through optimism,” and it gives less-explored action a higher value and 

encourages the test generator to select them. The test generator uses the Q-function 

learned by equation (4.3) and UCB strategy to select each action intelligently, which 

balances the exploration and the exploitation of AUT. 
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Algorithm 1: Q-learning based Test Generation  

, Application under test 
, set of states;  

   , q-function for all the state-action pairs;  
   , transition matrix, epsilon;  

-exploration parameter 
     

1 (S, Q, P) ← (Ø, Ø, Ø) 
2 launch(A) 

3 

4 true  
5         Event ← getEventfromActor(Q) 
6         Update P[old_state, new_state, :] #adjusting P[old_state, new_state, Event] 

7         Q← UpdateQFunction(Q, P) 
8         Execute(Event) 

9          enable: 
10                  
11 (S, Q, P)    
12  

13 UpdateQFunction(Q, P) 
14   Q_target ← (Ø) 
15  for index in [0, 1, …, 9] do 

16   for s in S do 

17    Q_target[s] ← maximum of Q[s, event] for all events 
18   for s in S do 

19    for a in all events that was ever made do 

20     Q[s, a] ← 0.99 * sum Q_target[:] * P[s, :, a]) 
21  return Q 

22  
23 getEventfromActor(Q) 
24  state ← getCurrentState() 
25  if state is not in S: 

26   Q[state, :] ←1 # For all possible events from state 
27  if RANDOM([0; 1]) < epsilon do 

28   event ←KeyEvent 
29  else 

30 event ←getSoftArgmaxAction(Q[state]) 
31 return event 

32  

33       getSoftArgmaxAction(Q_state)   
34  max_qvalue ← max(Q_state) 

36  best_actions ← all events where Q_state[event] == max_qvalue 
36  event  ← choose randomly from best_actions 
37  return event 
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4.4.3 Test Case Generation  

Test case 𝑇𝐶 is defined as a sequence of transitions. 𝑇𝐶 =

 (𝑠1, 𝑎1, 𝑠2), (𝑠2, 𝑎2, 𝑠3), . . . , (𝑠𝑛, 𝑎𝑛, 𝑠𝑛 + 1), where 𝑛 is the length of the test case. Each 

episode is considered to be a test case, and each test suite 𝑇𝑆 is a set of test cases. The 

transition is defined as a 3-tuple (start-state, 𝑠𝑠; action, 𝑎; end-state, 𝑠𝑒). Algorithm 2 

dynamically constructs a UI transition graph to navigate between the explored UI states. 

It takes three input parameters: (1) the app under test, (2) Q-function for all the state-

action pairs generated by algorithm 1, and (3) test suite completion criterion. The criterion 

for test suite completion is a fixed number of event sequences (set to 1000). DroidbotX’s 

test generator explores a new state 𝑠𝑖, and adds a new edge < 𝑠𝑖 − 1;  𝑎𝑖 − 𝑖;  𝑠𝑖 > to the 

UI transition graph, where 𝑠𝑖 − 1 is the last observed UI state and 𝑎𝑖 − 𝑖 is the action 

performed in 𝑠𝑖 − 1. For instance, consider generation of a test suite for Hot death 

Android app. DroidbotX creates an empty UI transition graph 𝐺 (line 1), explores the 

current state of AUT (line 3), observes all the GUI actions of the current state (line 5), 

and constructs a Q-function matrix. Then one action is selected and executed based on 

getSoftArgmaxAction function (line 7), when a new state is found, the UpdateQFunction 

function receives the next state and updates the Q-function matrix to the previous state. 

The transition of executed action, next state, and previous state are added to the graph 

(line 15). The Q-value of executed action is decreased to avoid using the same action of 

the current state. The process is repeated until completing the target number of actions. 

Figure 4.4 shows an example of UTG from the Hot death Android app. 
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Algorithm 2: DroidbotX Test Suite Generation 

 

App under test 

, Q-function for all the state-action pairs 

, Test suite completion criterion 
, Test Suite 

 

Create an empty UI transition graph 𝑮 =< 𝑺, 𝑬 > 

Run the AUT

Observe current UI state  and add  to  

Get All unexplored actions in  as  

 is not empty then  

Select as action  from  based on  

Extract a state  in  that has unexplored actions 

            Get the shortest path  from to  in  

            Select the first action in  as 

Perform action 

Observe the new UI state  new and add  new to 

Add the edge  to 

Until all actions in all states in  have been explored

Until length of  is equal 

 

Figure 4.4: A UI state transition graph from a real-world Android app. 
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4.5 Significance of the Proposed Approach 

There are some significant features to the proposed approach that are discussed as 

follows. 

• Coverage: The Q-Learning test coverage approach minimizes event sequences 

redundancy to maximize code coverage by using a Q-function matrix, where each 

action is executed once in each state.  

• Modeling: The Q-Learning test coverage approach can explore more app 

functionalities and construct a more complete model without state explosion. The 

proposed approach uses two layers of state similarity and considers system events 

in the model.  

• Compatibility: DroidbotX can be used on an emulator or real device without 

instrumentation and is compatible with all Android APIs. Compatibility testing is 

the capability of evaluating the app's correctness and robustness when running on 

different devices.   

• Test Artifacts: DroidbotX generates log reports, activity coverage reports, and 

state transition models during the testing process. 

• Ease of use: DroidbotX is easy to use because it is configurable and flexible 

enough to cater to various devices. Usability is a primary concern for tool 

developers; it affects reuse, research collaboration, and ultimately research 

impact. 

• Extendable: DroidbotX integrated Gym, a toolkit for developing and comparing 

reinforcement learning algorithms. It further allows developers to customize the 

test exploration strategy using gym algorithms such as Deep Q Network, A2C, 

and SARSA.  
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4.6 Conclusion  

This research aims to present a Q-Learning-based test coverage approach to generate 

GUI test cases for Android apps. This approach adopted a UCB exploration strategy to 

minimize redundant execution of events that improve coverage and crash detection. The 

proposed approach generates inputs that visit unexplored app states and uses the 

execution of the application on the generated inputs to construct a state-transition model 

generated during runtime. It visits all states in the face of uncertainty through the 

exploration of the new AUT states that generate new action that automatically produces 

more reward than visiting old states. This approach was implemented into the test tool 

named DroidbotX and it is publicly available.  

Univ
ers

iti 
Mala

ya



116 

CHAPTER 5: EVALUATION OF THE PROPOSED APPROACH  

This chapter provides an evaluation of the DroidbotX approach using thirty Android 

apps collected from F-Droid. It is for this purpose that the empirical case study method 

was adopted. It was used in (Kitchenham et al., 2002; Perry et al., 2004) to analyze the 

effectiveness of DroidbotX. This comparison used four main metrics: instruction 

coverage, method coverage, activity coverage, and ability to detect crashes. In this 

chapter, the proposed approach's empirical evaluation compared to the existing 

frameworks and tools is also discussed. In the end, the evaluation results were compared 

with the results of the already existing tools.  

In this chapter, the outline is organized as follows: Section 5.1 discusses the case study 

design. Section 5.2 describes the execution of the case study. The general discussion and 

statistical testing results are all presented in section 5.3. In section 5.4, the threats to 

validity are highlighted explicitly. Section 5.5 is the conclusion of the chapter. 

5.1 Case Study Design  

This evaluation adopts a similar case study method, just like the one described in 

section 3.1. 

5.1.1 Research Questions for the Proposed Approach Evaluation  

The major first step required in the empirical case study evaluation is to construct the 

research question that aligns and fulfills the evaluation purpose. Five questions were 

developed by embodying the evaluation objective: 

RQ 1. What are the instructions, methods, and activity coverage achieved by 

DroidbotX compared to the state-of-the-art tools? 
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RQ.2. How effective is DroidbotX to detect unique app crashes compared to other 

state-of-the-art tools? 

RQ.3. How does DroidbotX compare to the state-of-the-art tools in terms of test 

sequence length? 

RQ.4. How effective is the model constructed by DroidbotX compared to the state-of-

the-art tools? 

RQ.5. What is the time complexity of DroidbotX algorithm?  

5.1.2 Case Study Criteria 

The effectiveness of the proposed approach compared to state-of-the-art tools was 

evaluated based on four criteria: 

C1. Instruction Coverage (IC) refers to the Smali (Freke, 2013) code instructions 

through decompiling the APK installation package. It is the ratio of triggered instruction 

in the Java instruction code of the app to the total number of instructions. Huang et al. 

(2015) first proposed the concept of instruction coverage, which is used in many studies 

as an indicator to evaluate test efficiency (Choi et al., 2013; Gu et al., 2017; Gu et al., 

2019; Koroglu et al., 2018). It is a more accurate and valid test coverage criterion that 

reflects the adequacy of testing results for closed-source apps (Yang et al., 2019). 

C2. Method Coverage (MC) is the ratio of the number of methods called during the 

execution of the AUT to the total number of methods used in the source code of the app. 

By improving the method coverage, more functionalities of the app were explored and 

tested (Azim & Neamtiu, 2013; Choudhary et al., 2015; Dashevskyi et al., 2018). 

C3. Activity Coverage (AC) is defined as the ratio of activities explored during 

execution to the total number of activities existing in the app. A high activity coverage 
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value indicates that more screens have been explored and will therefore be more 

exhaustive for the app exploration. 

C4. Crash detection: An Android app crashes when there is an unexpected exit caused 

by an unhandled exception. Crashes will result in the termination of the app's processes, 

and dialogue is displayed to notify the user about the app crash. The further code the tool 

explores, the more likely it is to discover potential crashes. 

5.1.3 Apps Selection  

For the experimental analysis, 30 Android apps were chosen from the F-Droid 

repository. These apps were earmarked from the repository based on two features: 

1) the app's number of activities: the apps were categorized as small (number of 

activities less than five), medium (number of activities less than ten), and large 

(number of activities more than ten). The app’s activities were determined in the 

Android manifest file of the app. 

2) app permissions required: In this study, only apps that require at least two of the 

permissions were selected to evaluate how tools react to different system events. 

These permissions include access to contacts, call logs, Bluetooth, Wi-Fi, location, 

and camera of the device. App permissions were determined either by checking 

the manifest file of the app or by launching the app for the first time and viewing 

the permissions request(s) that popped up.  

Table 5.1 lists the apps by app type, along with the package name, the number of 

activities, methods, and instructions in the app (which offers a rough estimate of the 

app size). Acvtool (Pilgun et al., 2020) was used to collect instruction coverage and 

method coverage. This tool does not require the source code of the app. Acvtool code 

coverage is based on Smali representation of the bytecode. 
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 Table 5.1: Overview of Android apps selected for testing. 

 

 

 

No APP name Package name Version Category Instruction Methods Activity 

1 Bubble com.nkanaev.comics 4.1 Books 5208 463 2 

2 WLAN Scanner org.bitbatzen.wlanscanner 4 Communication 2484 141 1 

3 
Divide 

com.khurana.apps.dividean

dconquer 
2.1 Education 2306 195 2 

4 Raele.concurseiro raele.concurseiro 3 Education 1299 444 2 

5 LolcatBuilder  com.android.lolcat  2.3 Entertainment 2497 79 1 

6 MunchLife info.bpace.munchlife 2.3 Entertainment 551 39 2 

7 Currency org.billthefarmer.currency 4 Finance 5461 148 5 

8 Boogdroid me.johnmh.boogdroid 4 Game 3984 398 3 

9 Hot Death com.smorgasbork.hotdeath 2.1 Game 17679 365 3 

10 Resdicegame com.ridgelineapps.resdiceg

ame 
1.5 Game 6853 144 4 

11 Pushup Buddy 
org.example.pushupbuddy 1.6 

Health & 

Fitness 
1985 165 7 

12 Mirrored de.homac.Mirrored  2.3 Magazines 3803 219 4 

13 A2DP Volume a2dp.Vol 2.3 
Maps & 

Navigation 
13452 600 8 

14 Ethersynth net.sf.ethersynth 2.1 Music & Audio 4056 168 8 

15 Adsdroid hu.vsza.adsdroid 2.3 Productivity 488 199 2 

16 Talalarmo trikita.talalarmo 4 Productivity 5122 658 3 

17 
Alarm Clock 

com.angrydoughnuts.andro

id.alarmclock 
2.7 Productivity 5207 334 5 

18 World Clock  ch.corten.aha.worldclock 2.3 Productivity  5200 315 4 

19 Blockinger org.blockinger.game 2.3 Puzzle 7090 356 6 

20 
Applications info 

com.majeur.applicationsinf

o 
4.1 Tool 4806 315 6 

21 Dew Point de.hoffmannsgimmickstau

punkt 
2.1 Tools 2282 75 3 

22 drhoffmann de.drhoffmannsoftware 1.6 Tools 5171 164 9 

23 List my Apps de.onyxbits.listmyapps 2.3 Tools 1930 96 4 

24 Sensors2Pd org.sensors2.pd 2.3 Tools 1346 149 4 

25 Terminal Emulator jackpal.androidterm 1.6 Tools 16098 994 8 

26 Alogcat org.jtb.alogcat 2.3 Tools 2344 199 3 

27 
Android Token 

uk.co.bitethebullet.android.

token 
2.2 Tools 4658 288 6 

28 Battery Circle  ch.blinkenlights.battery  1.5 Tools 963 79 1 

29 Sensor readout de.onyxbits.sensorreadout 2.3 Tools 994 683 3 

30 Weather 
notifications 

ru.gelin.android.weather.no

tification 
2.3 Weather 8927 667 7 
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5.2 Case Study Execution  

The experiments were executed on a 64-Bit Octa-Core machine with a 3.50 Gigahertz 

Intel Xeon® CPU running on Ubuntu 16.04 and 8 Gigabytes of RAM. The state-of-the-

art GUI testing tools for Android apps were installed on the dedicated machine for 

running the experiments. Five tools with different techniques have been chosen for the 

experiment as follows Sapienz (K. Mao et al., 2016), Stoat (Su et al., 2017), Droidbot (Li 

et al., 2017), Humanoid (Li et al., 2019), and Android Monkey (Google, 2019j). These 

tools are the most recent techniques for Android test generation. Sapienz and Stoat have 

been adequately tested and are standard baselines in literature.   

The Android emulator x86 ABI image (KVM powered) was used for the experiments. 

All comparative experiments ran on emulators because the publicly available version of 

Sapienz only supports emulators. In contrast, DroidbotX, Droidbot, Humanoid, Stoat, and 

Android Monkey support both emulators and real devices. Moreover, Sapienz and Stoat 

ran on the same version of Android 4.4.2 (Android KitKat, API level 19) because of their 

compatibility as described in previous studies (Choudhary et al., 2015; Gu et al., 2019); 

DroidbotX, Droidbot, Humanoid, and Android Monkey ran on Android 6.0.1 (Android 

Marshmallow, API level 23).  

To achieve a fair comparison, a new Android emulator was used for each run to avoid 

any potential side-effects that may occur between the tools and apps. All tools were used 

with their default configurations. According to previous studies (Choudhary et al., 2015; 

Gu et al., 2019), Sapienz and Android Monkey were set to 200 milliseconds delay for 

GUI state updates. All testing tools were provided an hour to test each app, similar to 

other studies (Choudhary et al., 2015; Gu et al., 2017; K. Mao et al., 2016). To compensate 

for possible influence brought by randomness during testing, each test was repeated five 

times (with each test consisting of one testing tool and one applicable app being tested). 
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The final coverage and the progressive coverage were recorded after each action. 

Subsequently, the average value of the five tests was calculated as the final result. 

5.3 Results and Discussion  

In this section, the case study questions were answered by measuring and comparing 

four aspects: (i) instruction coverage, (ii) method coverage, (ii) activity coverage, and (iv) 

the number of detected crashes achieved by each testing tool on selected apps in our 

experiments. Table 5.2, Table 5.3, Table 5.4, and Table 5.5 show the results obtained 

from the six testing tools. The gray background cells in the tables indicate the maximum 

value achieved during the test. The percentage value is the rounded-up value obtained 

from the average of the five iterations of the tests performed on each AUT. 

RQ.1: What are the instructions, methods, and activity coverage achieved by 

DroidbotX compared to the state-of-the-art tools? 

The overall comparison results of the instruction coverage, method coverage, and activity 

coverage achieved by Android Monkey (M), Sapienz (Sa), Stoat (St), Droidbot (Dr), 

Humanoid (Hu), and DroidbotX (Q) on each subject Android apps are given in Table 5.2, 

Table 5.3 and Table 5.4.  

1) Instruction coverage: The overall comparison of instruction coverage achieved by 

testing tools on selected Android apps is shown in Table 5.2. On average, DroidbotX 

achieves 51.5% instruction coverage, which is the highest across the compared tools. It 

achieved the highest value on 9 of 30 apps (including four ties, i.e., where DroidbotX 

covered the same number of instructions as another tool) compared to other tools. Sapienz 

achieved 48.1% followed by Android Monkey (46.8%), Humanoid (45.8%), Stoat (45%), 

and Droidbot (45%). 

  

Univ
ers

iti 
Mala

ya



122 

Table 5.2: Results on instruction coverage by test generation tools 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 presents the boxplots, where x indicates the mean of the final instruction 

coverage results across target apps. The boxes provide the minimum, mean, and 

maximum coverage achieved by the tools. It also shows that DroidbotX achieves the 

highest instruction coverage for all three app size groups. Better results from DroidbotX 

can be explained as it accurately identifies which parts of the app are inadequately 

explored. The DroidbotX approach is used to explore the UI components by checking all 

actions available in each state and avoiding the use of the explored action to maximize 

coverage. In comparison, Humanoid achieved a 45.8% average value and had the highest 

Apps Under Test Instruction coverage (%) 
DroidbotX Droidbot Humanoid Sapienz Stoat Monkey 

Bubble 27.9 28.0 25.4 28.2 29.8 30.3 
WLAN Scanner 59.4 59.2 58.6 61.3 57.2 58.9 
Divide 59.1 56.5 57.4 57.4 55.4 60.8 
Raele concurseiro 34.8 34.3 34.2 35.4 39.1 35.5 
LolcatBuilder 24.9 24.5 24.6 23.2 21.6 23.2 
MunchLife 75.1 72.8 76.5 75.0 75.7 73.6 
Currency 49.0 38.6 45.4 49.1 50.3 47.0 
Boogdroid 34.5 34.4 34.5 29.8 29.7 29.8 
Hot Death 53.7 49.1 49.1 54.2 49.6 51.4 
Resdicegame 72.9 66.2 61.6 71.5 64.9 67.2 
Pushup Buddy 33.0 27.0 28.5 25.3 21.9 20.2 
Mirrored 36.1 36.1 36.0 27.5 25.4 27.5 
A2DP Volume 39.1 35.6 26.9 29.5 31.2 25.6 
Ethersynth 82.7 47.9 64.8 77.4 55.7 71.5 
Adsdroid 34.1 23.0 28.7 30.8 29.6 30.8 
Applications info 68.3 57.7 45.7 45.7 38.9 29.4 
Blockinger 69.3 67.0 67.9 66.4 66.5 66.0 
Dew Point 72.8 67.0 72.9 71.9 68.9 68.2 
drhoffmann 36.7 24.8 32.9 36.7 28.2 36.7 
List my Apps 58.7 44.5 60.9 64.3 60.0 64.2 
Sensors2Pd 70.4 71.1 74.2 73.6 71.3 74.1 
Talalarmo 74.4 64.8 74.9 74.1 69.3 76.0 
Terminal Emulator 40.9 35.6 36.2 41.4 34.1 40.0 
Alarm Clock 64.1 66.3 61.8 49.1 48.5 59.6 
Alogcat 70.1 50.6 51.1 62.7 74.8 56.7 
Android Token 44.2 37.6 45.1 40.6 37.6 38.0 
Battery Circle 81.3 74.0 81.3 78.1 78.1 77.6 
Sensor readout 80.1 79.1 79.9 81.5 60.8 79.7 
World Clock 46.1 24.8 33.8 41.3 42.5 44.4 
Weather 
notifications 44.2 37.6 37.9 42.4 41.8 45.8 

Overall average 51.5 45.0 45.8 48.1 45.0 46.8 
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coverage on 4 out of 30 apps due to its ability to prioritize critical UI components. 

Humanoid chooses from ten actions available in each state that are likely to interact with 

human users. 

As seen in Figure 5.1, Android Monkey's coverage was close to Sapienz's coverage 

during a one-hour test. Sapienz uses Android Monkey to generate events and uses an 

optimized evolutionary algorithm to increase coverage. Stoat and Droidbot achieved 

lower coverage than the other four tools. Droidbot explores UI components in depth-first 

order. Although this greedy strategy can reach deep UI pages at the beginning, it may get 

stuck because the order of the event execution is fixed at runtime. Droidbot does not 

explicitly revisit the previously explored states, and this may fail to cover a new code that 

should be reached by different sequences. 

Figure 5.1: Variance of instruction coverage achieved across apps and five runs. 
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2) Method coverage: DroidbotX significantly outperformed state-of-the-art tools in 

method coverage with an average value of 57%. The highest value on 9 out of 30 apps 

(including three ties where the tool covered the same method coverage as another tool). 

Table 5.3 shows that the coverage of app instructions obtained by the tools is lower than 

that of the method. This indicates that the method coverage cannot fully cover all the 

statements in the app’s method. On average, Sapienz, Android Monkey, Humanoid, Stoat, 

and Droidbot achieved 53.7%, 52.1%, 51.2%, 50.9%, and 50.6% of method coverage, 

respectively. Stoat and Droidbot did not obtain the highest coverage of 50% on 10 of the 

30 apps after five rounds of testing. In contrast, DroidbotX achieved the highest coverage 

of 50% in the twenty-four apps that were tested. In comparison, Android Monkey 

obtained less than 50% method coverage in eight apps. Sapienz displayed the best method 

coverage on 5 out of the 30 apps (including four ties where the tool covered the same 

method coverage as another tool). Sapienz’s coverage was significantly higher for some 

apps such as “WLAN Scanner,” “HotDeath,” “ListMyApps,” “SensorReadout,” and 

“Terminal emulator”. These apps have functionality that requires complex interactions 

with validated text input fields. Sapienz uses the Android Monkey input generation, 

which continuously generates events without waiting for the effect of the previous event. 

Moreover, Sapienz and Android Monkey can generate several events, broadcasts, and text 

that have not been supported by other tools. DroidbotX obtained the best results for 

several other apps, especially “A2DPVolume”, “Blockinger”, “Ethersynth”, 

“Resdicegame”, “Weather Notification”, and “World Clock”. DroidbotX approach 

assigns Q-values to encourage the execution of actions that lead to new or partially 

explored states. This enables the approach to repeatedly execute high-value action 

sequences and revisit the subset of GUI states that provides access to most of the AUT’s 

functionality. 
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Table 5.3: Results on method coverage by test generation tools 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 5.2 presents the boxplots, where x indicates the mean of the final method 

coverage results across target apps. DroidbotX had the best performance compared to 

state-of-the-art tools, and Android Monkey was used for evaluation in most Android 

testing tools. Android Monkey can be considered a baseline because it comes with an 

Android SDK and is popular among developers. Android Monkey obtained a lower 

coverage comparing to DroidbotX because of its redundancy and random exploratory 

approach. 

Apps Under Test Method coverage (%) 
DroidbotX Droidbot Humanoid Sapienz Stoat Monkey 

Bubble 29.1 33.0 28.0 42.8 44.5 49.0 
WLAN Scanner 65.5 65.4 64.4 66.0 59.3 63.5 
Divide 63.9 54.5 54.5 52.8 47.2 71.7 
Raele concurseiro 36.6 36.6 36.6 41.9 42.3 41.6 
LolcatBuilder 32.9 32.9 32.9 32.9 27.8 29.9 
MunchLife 66.2 66.2 66.7 66.7 66.7 62.1 
Currency 58.1 40.4 53.8 58.8 61.5 55.8 
Boogdroid 16.0 14.1 15.5 13.0 12.4 14.6 
Hot Death 72.5 66.7 66.4 72.8 63.4 71.9 
Resdicegame 66.8 60.6 53.6 62.4 51.3 52.6 
Pushup Buddy 57.1 52.2 53.8 51.0 49.7 34.9 
Mirrored 47.1 48.5 47.0 44.1 39.7 40.5 
A2DP Volume 66.9 60.7 57.8 58.9 59.2 37.2 
Ethersynth 85.2 61.8 68.1 78.5 67.1 68.8 
Adsdroid 73.4 52.2 63.9 72.9 51.6 72.9 
Applications info 65.1 61.6 53.8 58.8 51.8 40.5 
Blockinger 82.0 79.1 79.2 77.3 78.5 62.5 
Dew Point 75.7 74.9 75.7 75.7 73.9 61.9 
drhoffmann 58.0 48.8 57.0 58.0 56.0 58.0 
List my Apps 69.4 48.1 71.9 76.0 72.8 72.7 
Sensors2Pd 80.7 81.6 90.6 81.9 83.2 86.6 
Talalarmo 57.4 48.4 58.0 56.3 51.8 61.3 
Terminal Emulator 53.9 52.2 51.2 54.4 46.2 50.7 
Alarm Clock 79.9 81.0 66.8 49.7 50.2 52.8 
Alogcat 80.9 73.2 75.5 78.9 92.2 69.4 
Android Token 58.1 53.9 58.8 55.3 53.9 51.7 
Battery Circle 83.5 76.5 85.6 84.1 83.5 83.5 
Sensor readout 30.0 30.0 30.0 30.1 28.7 29.2 
World Clock 57.5 39.5 39.1 43.8 54.9 54.5 
Weather 
notifications 66.6 40.2 40.1 53.6 48.3 69.3 

Overall average 57.0 50.6 51.2 53.7 50.9 52.1 
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3) Activity coverage: The activity coverage is measured by intermittent observation 

of the activity stack on the AUT and recording all activities listed down in the android 

manifest file. The activity coverage metric was chosen because, once DroidbotX has 

reached an activity, it can explore most of the activity’s actions. The results determine 

activity coverage differences between DroidbotX and other state-of-the-art tools. The 

resulting average value of the tools revealed that the activity coverage performed better 

than instruction and method coverage, as shown in Table 5.4.  

Figure 5.2: Variance of method coverage achieved across apps and five runs. 
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Table 5.4: Results on activity coverage by test generation tools 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DroidbotX outperformed the other tools in its activity coverage, such as instruction 

and method coverage. DroidbotX has an average coverage of 86.5%, which was best 

achieved by the “Alarm Clock” app (including 28 ties, i.e., whereby DroidbotX covered 

the same number of activities as another tool). DroidbotX outperformed other tools 

because it did not explicitly revisit previously explored states due to its reward function. 

This was followed by Sapienz and Humanoid, with the average mean value of activity 

coverage at 84% and 83.3%, respectively. Stoat successfully outperformed Android 

Monkey in activity coverage with an average activity coverage of 83% due to an intrusive 

null intent fuzzing that can start an activity with empty intents. All tools under study were 

Apps Under Test Activity coverage (%) 
DroidbotX Droidbot Humanoid Sapienz Stoat Monkey 

Bubble 50.0 50.0 50.0 50.0 50.0 50.0 
WLAN Scanner 100 100 100 100 100 100 
Divide 100 100 100 100 100 100 
Raele concurseiro 100 100 100 100 100 100 
LolcatBuilder 100 100 100 100 100 100 
MunchLife 100 100 100 100 100 100 
Currency 100 92.0 96.0 100 100 88.0 
Boogdroid 86.7 66.7 80.0 100 40.0 46.7 
Hot Death 100 100 100 100 100 73.3 
Resdicegame 100 100 100 100 100 100 
Pushup Buddy 71.4 68.6 71.4 62.9 62.9 62.9 
Mirrored 75.0 75.0 75.0 75.0 75.0 85.0 
A2DP Volume 95.0 90.0 85.0 100 100 97.5 
Ethersynth 100 100 100 100 100 92.5 
Adsdroid 100 100 100 100 100 100 
Applications info 100 100 100 100 100 100 
Blockinger 100 100 100 100 100 100 
Dew Point 100 100 100 100 100 100 
drhoffmann 97.8 91.1 93.3 93.3 95.6 86.7 
List my Apps 100 55.0 100 100 100 100 
Sensors2Pd 100 100 100 100 100 100 
Talalarmo 100 100 100 100 100 100 
Terminal Emulator 37.5 37.5 37.5 37.5 37.5 35.0 
Alarm Clock 100 96.0 64.0 60.0 92.0 76.0 
Alogcat 66.7 66.7 66.7 66.7 66.7 66.7 
Android Token 66.7 53.3 60.0 66.7 50.0 66.7 
Battery Circle 100 100 100 100 100 100 
Sensor readout 66.7 66.7 66.7 66.7 66.7 66.7 
World Clock 100 85.0 95.0 95.0 95.0 70.0 
Weather 
notifications 57.1 57.1 57.1 45.7 42.9 37.1 

Overall average 86.5 82.1 83.3 84.0 83.0 80.0 
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able to cover more than 50% of coverage on 25 apps, and four testing tools covered 100% 

activity coverage on 15 apps. Android Monkey, however, achieved less than 50% activity 

coverage of about three apps. Android Monkey achieved the least activity coverage with 

an average mean value of 80%. 

 

Figure 5.3 shows the variance of the mean activity coverage of 5 runs across all 30 

apps of the tool. The horizontal axis shows the tools used for the comparison. The vertical 

axis shows the percentage of activity coverage. Activity coverage was higher than the 

instruction and method coverage. DroidbotX, Droidbot, Humanoid, Sapienz, Stoat, and 

Figure 5.3: Variance of activity coverage achieved across apps and five runs. Univ
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Android Monkey obtained a 100% coverage increased from a mean coverage of 89%, 

85%, 86.6%, 87.3%, 85.8%, and 83.4%, respectively. All tools were able to cover above 

50% of the activity coverage. Although Android Monkey implemented more types of 

events than other tools, it achieved the least activity coverage. Android Monkey generates 

random events at random positions in the App activities. Therefore, its activity coverage 

can differ significantly from app to app and may be affected by the number of events 

sequences generated. To sum up, the high coverage of DroidbotX was mainly due to the 

ability of DroidbotX to perform a meaningful sequence of actions that could drive the app 

into new activities. 

RQ.2: How effective is DroidbotX to detect unique app crashes compared to other 

state-of-the-art tools? 

A crash is uniquely identified by the error message and the crashing activity. LogCat 

(Google, 2019c) is used to repeatedly check the crashes encountered during the AUT 

execution. LogCat is a tool that uses the command-line interface to dump logs of all the 

system-level messages. Log reports were manually analyzed to identify unique crashes 

from the error stack following Su et al. (Su et al., 2017) protocol. First, crashes unrelated 

to the app's execution by retaining only exceptions containing the app's package name 

and filter crashes of the tool itself, or initialization errors of the apps in the Android 

emulator. Second, compute a hash over the sanitized stack trace of the crash to identify 

unique crashes. Different crashes should have a different stack trace and thus a different 

hash. Each unique crash exception is recorded per tool, and the execution process is 

repeated five times to prevent randomness in the results. The number of unique app 

crashes is used as a measure of the performance of the crash detection tool. Crashes 

detected by tools on a different version of Android via normalized stack traces were not 

compared because different versions of Android have different framework code. In 
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particular, Android 6.0 uses the ART runtime while Android 4.4 uses Dalvik VM, 

different runtime environments have different thread entry methods. Based on Figure 8, 

each of the tools compared complements the others in crash detection and has its 

advantages. DroidbotX triggered an average of 18 unique crashes in 14 apps, followed by 

Sapienz (16), Stoat (14), Droidbot (12), Humanoid (12), and Android Monkey (11).  Like 

activity coverage, Android Monkey remains the same as it has the least capacity to detect 

crashes due to its exploratory approach that generates a lot of ineffective and redundant 

events. 

 

Figure 5.4 summarizes the distribution of crashes by the six testing tools. Most of the 

bugs are caused by accessing null references. Common reasons are that developers forget 

to initialize references, access references that have been cleaned up, skip checks of null 

references, and fail to verify certain assumptions about the environments (Hu et al., 2014). 

DroidbotX is the only tool to detect IllegalArgumentException on the ''World Clock'' app, 

because it is capable to manage the exploration of states, and systematically sends back 

button events that may change the activity life cycle. This bug is caused by an incorrect 

redefinition of the onPause method of activity. Android apps may have incorrect behavior 

Figure 5.4: Distribution of crashes discovered. 
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due to mismanagement of the activity’s lifecycle. Sapienz uses Android Monkey to 

generate an initial population of event sequences (including both user and system events) 

prior to genetic optimization. This allows Sapienz to trigger other types of exceptions, 

including ArrayIndexOutOfBoundsException, and ClassCastException. For the “Alarm 

Clock” app, DroidbotX and Droidbot detected a crash on an activity that was not 

discovered by other tools in the five runs. Manually inspected several randomly selected 

crashes to confirm that they do appear in the original APK as well, and not found no 

discrepancy between the original and the instrumented APK behaviors. 

Table 5.5: Statistics of crash results on apps by test generation tools understudy 

  
Apps Under Test # of Unique Crashes 

DroidbotX Droidbot Humanoid Sapienz Stoat Monkey 
A2DP Volume 1 0 0 1 0 0 
Alarm Clock 2 2 2 2 1 1 
Alogcat 0 0 0 0 0 0 
Adsdroid 1 1 1 1 1 1 
Android Token 0 0 0 0 0 0 
Applicationinfo 0 0 0 0 0 0 
Battery Circle  0 0 0 0 0 0 
Blockinger  0 0 0 0 0 0 
Boogdroid 1 1 1 1 0 1 
Bubble 1 1 1 1 1 1 
Currency 0 0 0 1 1 1 
Dew Point 2 1 1 2 2 1 
Divide 0 0 0 0 0 0 
Drhoffmann 2 1 2 2 2 2 
Ethersynth 1 1 0 1 1 0 
Hot Death 0 1 0 0 1 0 
List my Apps 0 0 0 0 0 0 
Lolcat Builder  1 1 1 0 0 1 
Mirrored 0 0 0 1 0 1 
MunchLife 0 0 0 0 0 0 
Pushup Buddy 1 1 1 0 1 0 
Raele.concurseiro 1 0 0 1 0 0 
Resdicegame 0 0 0 0 0 0 
Sensor readout 0 0 0 1 0 0 
Sensors2Pd 1 1 1 1 1 1 
Talalarmo 1 0 1 0 1 0 
Terminal  1 0 0 0 1 0 
Weather  0 0 0 0 0 0 
World Clock  1 0 0 0 0 0 
WLAN Scanner 0 0 0 0 0 0 
Overall average 18 12 12 16 14 11 
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RQ.3: How does DroidbotX compare to the state-of-the-art tools in terms of test 

sequence length? 

The cost of the proposed approach was measured as its running time and the number 

of inputs. First, the effectiveness of event sequence length on test coverage and crash 

detection was investigated. The event sequence length generally presents the number of 

steps required by the test generation tools to detect a crash. It is critical to highlight its 

effectiveness due to its significant effects on time, testing effort, and computational costs.  

Table 5.6: Experimental results to answer case study questions. 

Tools INSTRUCTION 
COVERAGE 

(%) 

METHOD 
COVERAGE 

(%) 

ACTIVITY 
COVERAGE 

(%) 

Number of 
crashes 

Max 
Events 

Number 
DroidbotX 51.5 57 86.5 18 1000 

Droidbot 45 50.6 82.1 12 1000 

Humanoid 45.8 51.2 83.3 12 1000 

Sapienz 48.1 53.7 84 16 6000 

Stoat 45 50.9 83 14 3000 

Monkey 46.8 52.1 80 11 20,000 

 

Table 5.6 shows that the Q-Learning approach implemented in DroidbotX achieved 

51.5% instruction coverage, 57% method coverage, 86.5% activity coverage, and 

triggered 18 crashes within the shortest event sequence length compared to other tools. 

The results show that adapting Q-Learning with the UCB strategy can significantly 

improve the effectiveness of the generated test cases. DroidbotX generated a sequence 

length of 50 events per AUT state with an average of 623 events per run across all apps 

(which is smaller than the default maximum sequence length of Sapienz). DroidbotX 

completed exploration before reaching the maximum number of events (set to 1000) 

within the time limit. Sapienz produced 6,000 events and optimized events sequence 
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lengths through the generation of 500 events per AUT state. Nevertheless, it created the 

largest number of events after Android Monkey. However, the coverage improvement 

was closer to Humanoid and Droidbot, which generated a smaller number of events. Both 

Humanoid and Droidbot generated 1,000 events per hour. Sapienz uses Android Monkey 

that re-quires many events, which may include many redundant events to achieve high 

coverage. Hence, the coverage gained by Android Monkey only increases slightly as the 

number of events increases. Thus, a long events sequence length led to a minor positive 

effect on coverage and crash detection.  

Second, the cost of the proposed approach was measured as its running time. Figure 

5.5 depicts the progressive coverage of each tool over the threshold time used (i.e., 60 

minutes). The progressive average coverage for all 30 apps was calculated every 10 

minutes for each of the test generation tools in the study and a direct comparison of the 

final coverage was published. In the first 10 minutes, the coverage for all testing tools in-

creased rapidly, as the apps had just started. At 30 minutes, DroidbotX achieved the 

highest coverage value compared to other tools. The reason is that the UCB exploration 

strategy implemented in DroidbotX finds events based on their reward and Q-value, 

which eventually tries to select and execute the previously unexecuted or less executed 

events, thus aiming for high coverage. Sapienz coverage increased rapidly, as the apps 

had just started, whereas all UI states were new but could not exceed the peak reached 

after 40 minutes. Sapienz has a high tendency to explore visited states, which could 

generate more event sequences. Stoat, Droidbot, and Humanoid had almost the same 

result and had better activity coverage than Android Monkey. Android Monkey could not 

exceed the peak reached after 50 minutes. The reason is that a random approach generates 

the same set of redundant events leading to a fall in its activity exploration ability. It is 

essential to highlight that these redundant events produced insignificant coverage 

improvement as the time budget increased. 
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Figure 5.5: Progressive coverage 
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RQ.4. How effective is the model constructed by DroidbotX compared to the 

state-of-the-art tools? 

The graph model enables DroidbotX to manage the exploration of states systematically 

to avoid being trapped in a certain state, which also can help to minimize unnecessary 

transitions. DroidbotX can achieve higher coverage than the other tools as indicated in 

Table 5.6, and its models are more compact without state explosion as shown in Table 

5.7.  

Table 5.7: Statistics of models built by Droidbot, Humanoid, and DroidbotX 

 

 

Droidbot Humanoid DroidbotX 

Min Mean Max Min Mean Max Min Mean Max 

Actions (#) 676 969 997 320 926 995 133 623 950 

States (#) 9 69 306 8 60 304 10 75 304 

Transition (#) 19 171 476 16 127 473 13 177 662 

 

Table 5.7 shows the statistics of models built by Droidbot, Humanoid, and DroidbotX. 

These tools use the UI transition graph to save the memory of state transitions. DroidbotX 

generates an average of 623 events to construct the graph model, while Droidbot and 

Humanoid generate 969 and 926 average events, respectively. Droidbot cannot 

exhaustively explore app functions due to its simple exploration strategies. The depth-

first systematic strategy used in Droidbot is surprisingly much less effective than the 

random strategy since it visits UIs in a fixed order and spends much time on restarting the 

app when no new UI components are found. Stoat requires more time for test execution 

due to its model construction in the initial phase which consumes time. Model-free tools 

such as Android Monkey and Sapienz can easily mislead exploration because of the lack 

of connectivity information between GUIs (Gu et al., 2019).  
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The results presented in Table 5.7 indicate that DroidbotX explores more app 

functionality and produces more comprehensive models. The evaluation results show that 

two-level state representation is appropriate to identify an app state. This state abstraction 

generates an acceptable number of states for an app, at the same time sufficiently captures 

functions.  

RQ.5. What is the time complexity of DroidbotX algorithm?  

In this section, the computation time complexity of the Q-learning test coverage 

algorithm was analyzed. Different Q-learning algorithms have different orders of 

complexity for the generation of a test case, ranging from the highest order of 𝑛2, 𝑛 log 𝑛, 

to 𝑛, where 𝑛 denotes the number of executed test cases. Intuitively, test case generation 

algorithms with higher complexity orders are supposed to have a stronger capability for 

fault detection. Normally, such an expectation exists, but not always (Anand et al., 2013).  

Assuming the total number of events possible for the system is 𝑂(𝐸) = 𝑚, and the 

total number of possible states is 𝑂(𝑆) =  𝑛. Each system has its variable for computation 

so for average we will be taking computation time as 𝑐, 𝑐1, 𝑘, 𝑘1, 𝑘2, 𝑘3, 𝑘4 depending 

upon the system functionality and operations thrust. Table 5.8 shows Q-Learning-based 

test generation algorithm corresponds to the time it takes to run each line of code.  
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Table 5.8: Q-Learning-based test generation algorithm corresponds to time.  

 

 

Q-learning based test generation Computation cost/time per action 

, Application under test 

, set of states;  

, q-function for all the state-action pairs;  

, transition matrix, epsilon;  

-exploration parameter 

 

(S, Q, P) ← (Ø, Ø, Ø) 𝑘1 

launch(A)                                                                                                               𝑘2 

true  max number of times it will go through =

𝒏 

      Event ← getEventFromActor(Q)                                             refer to the function, time=  

𝒄 +  𝒏 ∗ 𝒌 +  𝒄𝟏 +  𝒌𝟏 +  𝟐 ∗ 𝒏 +  𝒌 +  𝒄 

      Update P[old_state,new_state]                                                                (order of the matrix) 

      Q← UpdateQFunction(Q, P) 𝒌 + 𝟗(𝒏[𝒎])  +  𝒏([𝒎] + [𝒎]))

      Execute(Event) 𝒌𝟑

        enable:                                                                                                           𝒌𝟒

       𝒄

(S, Q, P)  𝒄

  

 UpdateQFunction(Q, P)  

        Q_target ← (Ø) 𝒌

        For index in[0,1,2..9] do                                                                        no of loops it will go through=  

        For s in S do no of loops it will traverse = 𝑶(𝑺) = 𝒏 

        Q__target[s]<-- maximum of Q[s,event]        

        for all events 

time = order of Event = 𝑶(𝑬) = 𝒎 

        For s in S do time=order of states= 𝑶(𝑺) = 𝒏 

        For a in all events that was ever made do no of loops to be iterated = 𝑶(𝑬) 

        q[s,a]<--0.99*sum(Q_target[:]*P[s,:,a]) time = 𝑶(𝑺) = 𝒏 

         Q 𝒄

  

getEventFromActor(Q)                                                      

         state← getCurrentState()                                                                                     𝒄

          If state is not in S:                                                                                              𝑶(𝑺) = 𝒏 

                Q[state,:]<--1                                                                                                      

         If Random[0,1]<epsilon do 𝒄𝟏

                Key ← keyEvent                                                                                              𝒌𝟏

          else  

              Event ← getSoftArgmaxAction(Q_state) (𝑶(𝑺) + 𝑶(𝑺) + 𝒌 + 𝒄)  

 event  

  

getSoftArgmaxAction(Q_state)  

           max _qvalue← max(Q_state)                                                               𝑶(𝑺) = 𝒏 

           best_actions ← all events where  

           Q_state[event]= maxqvalue 

𝑶(𝑺) = 𝒏 

           event ← choose randomly from best actions                                                      𝒌

            event                                                                                                            𝒄
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Assuming the total number of events possible for the system is 𝑚 and the total number 

of possible states is 𝑛 . Each system has its own variable for computation so for average 

we will be taking computation time as 𝑐, 𝑐1, 𝑘, 𝑘1, 𝑘2, 𝑘3, 𝑘4 depending upon the system 

functionality and operations thrust. Table 5.9 shows the action selector function 

corresponds to time.  

Table 5.9: Action selector function corresponds to time. 

Q-learning based test generation Computation cost/time per action 

 true                                                              

 

max number of times it will go through = 𝒏 

     Event ← getEventFromActor(Q)                                              refer to the function, time =                                                                                                                 

𝒄 +  𝒏 ∗ 𝒌 +  𝒄𝟏 +  𝒌𝟏 +  𝟐 ∗ 𝒏 +  𝒌 + 𝒄 

           

     Update P[old_state,new_state]                                                                (order of the matrix) 

     Q← UpdateQFunction(Q, P)                                                                    𝒌 + 𝟗(𝒏[𝒎])  +  𝒏([𝒎] + [𝒎]))

     Execute(Event)                                                                                                        𝒌𝟑

       enable:                                                                                                           𝒌𝟒

          

       (S, Q, P)                                                                              

 

The total time for running the algorithm is calculated as follows 

 𝑘1 + 𝑘2 +  𝑛[ (𝑐 + 𝑛 ∗ 𝑘 + 𝑐1 + 𝑘1 + 2 ∗ 𝑛 + 𝑘 + 𝑐) + 𝑂[𝑃] + 𝑘 + 9(𝑛[𝑚]) +

𝑛([𝑚]  + [𝑚]))   + 𝑘3 + 𝑘4 + 𝑐)] + 𝑐   

Assuming all constants to be average of 𝑐 for the simplicity of the solution we have, the 

total time for running the algorithm is as follows 

=  2 ∗ 𝑐 + 𝑛[𝛴𝑃 + 𝑐 ∗ 𝑛 + 2 ∗ 𝑛 + 4 ∗ 𝑐 + 𝑐 + 9(𝑛 ∗ 𝑚 + 2 ∗ 𝑛 ∗ 𝑚) + 3𝑐] + 𝑐 

= 2 ∗ 𝑐 + 𝑛[27𝑛 ∗ 𝑚 + 𝑐 ∗ 𝑛 + 2 ∗ 𝑛 + 4 ∗ 𝑐 + 3 ∗ 𝑐]  +  𝑐 

= 2 ∗ 𝑐 + 𝑛[27𝑛 ∗ 𝑛 ∗ 𝑚 + 𝑐 ∗ 𝑛 + 2 ∗ 𝑛 + 7 ∗ 𝑐] +  𝑐 
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= 𝐾 +  𝑛[27𝑛 ∗ 𝑚] 

=  27𝑛 ∗ 𝑛 ∗ 𝑚 +  𝐾 

= 𝑂(27 𝑛 ∗ 𝑛 ∗ 𝑚) , 𝑛 and 𝑚 being equivalent  

for very high boundaries = 𝑂(𝑛 ∗ 𝑛 ∗ 𝑛)  =   𝑂(𝑛3) 

For calculating the average time analysis, Table 5.10 shows Q-Learning-based test 

generation algorithm corresponds to time, we used the probabilistic distribution of the 

states and test cases and integrate them over time to find out the average value. As we 

have assumed, there is 𝑛 number of states, probability of start state is 1/𝑛, probability of 

end state is  1/(𝑛 − 1) , probability of action between the transition of states  1/𝑘 . 

Therefore, the probability of getting a test case is 1/𝑛 ∗  1/(𝑛 − 1)  ∗  1/𝑘. Let at any 

given point of time, there is 𝑟 number of states in our matrix, therefore, the probability of 

the state not being in the matrix is  1 − 𝑟/𝑛.  The average time for running the algorithm 

is calculated as follows  = 𝑛 ∗ [5𝑐 + 𝑛 + 𝑟 + 𝐾 + 9[𝑟 ∗ 𝑚/𝑛 +  𝑟 ∗ 𝑟 𝑎] + 𝑐 ]. Taking 

all the constants to be equal to 𝜃 and the coefficient of 𝑟 ∗ 𝑟  be 𝛼 ,

= 𝑛 ∗ [𝑛 + 𝛼 ∗ 𝑟. 𝑟 + 𝜃]       (5.1)

Where 𝑟  is the range from 1 to 𝑛 , therefore averaging 𝑟 ∗ 𝑟 over the sample 

= (𝑛)(2𝑛 + 1)(𝑛 + 1)/6/𝑛 ∗ 𝑛        (5.2) 

Using equation (5.2) in equation (5.1) 

= 𝑛 ∗ (𝑛 + 𝑛 ∗ 𝛽) 

= 𝑂(𝑛 ∗ 𝑛)   

Thus, the average running time is in order of 𝑂(𝑛2). 
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Table 5.10: Q-Learning-based test generation algorithm corresponds to time for 
average time analysis. 

Q-learning based test generation Computation cost/time per action 
, Application under test 

, set of states;  

, q-function for all the state-action pairs;  

, transition matrix, epsilon;  

-exploration parameter 

 

(S, Q, P) ← (Ø, Ø, Ø) 𝒌𝟏 

launch(A)                                                                                                               𝒌𝟐

true  max number of times it will go through 

= 𝒏 

      Event ← getEventFromActor(Q)                                             refer to the function, time=  

𝟓𝒄 + 𝒏 + 𝒓 

      Update P[old_state,new_state]                                                                (order of the matrix) 

      Q← UpdateQFunction(Q, P) 𝑲 + 𝟗(𝒓 ∗ 𝒎/𝒏 +  𝒓 ∗ 𝒓 𝒂) + 𝒄

      Execute(Event) 𝒌𝟑

        enable:                                                                                                           𝒌𝟒

       𝒄

(S, Q, P)  𝒄

  

 UpdateQFunction(Q, P)  

        Q_target ← (Ø) 𝒌

        For index in[0,1,2..9] do                                                                        no of loops it will go through=  

        For s in S do no of loops it will traverse=  

        Q__target[s]<-- maximum of Q[s,event]        

        for all events 

time = order of Event = 𝑶(𝑬) = 𝒎 ∗ 𝒓/𝒏 

        For s in S do time=order of states= 𝑶(𝑺) = 𝒏 ∗ 𝒓/𝒏 

        For a in all events that was ever made do no of loops to be iterated = 𝑶(𝑬) = 𝒏 ∗

𝒓/𝒏 

        q[s,a]<--0.99*sum(Q_target[:]*P[s,:,a]) time =𝑶(𝑺) = 𝒏 ∗ 𝒓/𝒏 

        return Q 𝒄

  

getEventFromActor(Q)                                                      

         state← getCurrentState()                                                                                     𝒄

          If state is not in S:                                                                                              𝑶(𝑺) = 𝒓/𝒏 ∗ 𝒏 

                Q[state,:]<--1                                                                                                      𝒌

         If Random[0,1]<epsilon do 𝒄𝟏

                Key ← keyEvent                                                                                              𝒌𝟏

          else  

              Event ← getSoftArgmaxAction(Q_state) (𝒓/𝒏 ∗ 𝒏 + 𝒓/𝒏 ∗ 𝒏 + 𝒌 + 𝒄)                                   

return event  

  

getSoftArgmaxAction(Q_state)  

           max _qvalue← max(Q_state)                                                               𝑶(𝑺) = 𝒏 ∗ 𝒓/𝒏 

           best_actions ← all events where  

           Q_state[event]= maxqvalue 

𝑶(𝑺) = 𝒏 ∗ 𝒓/𝒏 

           event ← choose randomly from best actions                                                      𝒌

           return event                                                                                                            𝒄
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Figure 5.6 represents the running time of the algorithm under worst-case scenarios and 

average case scenarios. The worst-case scenario 𝑂(𝑛3) is the corresponding time for the 

execution when action, event, and states are all worst-case that is they take permutation 

of all the possible outcomes. While the average case scenarios 𝑂(𝑛2), i.e., the time is 

calculated using the probability distribution of action, event, and states. 

In a vast number of real-world problems, there are desired states to be reached through n-

number of possible states by performing 𝑘 number of actions. The initial matrix of the 

state space is unknown in such problems. Previous approaches for solving these kinds of 

problems required traversing all the possible paths or some of the paths were eliminated 

on some initial conditions, such types of solutions. The feasibility of using such solutions 

becomes very limited as the space size 𝑛 increases took exponential time for the 

execution. In this research, however, it is shown that there are possible improvements in 

the structure and solutions of such problems. First, we can create a graph out of such 

problems and try to find out the shortest path, which will bring down the algorithm time 

analysis to 𝑂(𝑛3), and then further we can use the probabilistic distribution of states and 

Figure 5.6: Time Complexity Analysis 
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actions, considering some of the random combinations of states, action, and events, the 

test cases can be largely populated, and the time complexity is gradually reduced to 

𝑂(𝑛2). The same is proved in this research.  

The complexity of the Q-learning test coverage algorithm is 𝑂(𝑛3) when all the state, 

actions, and events are taken into account and these variables are accounted for the 

maximum number of occurrences, i.e., we assume that all these states, actions, and events 

will appear at some point in time. The complexity of the algorithm can be reduced 

significantly by randomly considering some of the events, states, and actions, we use 

some of the instances of the probabilistic distribution of states, actions, and events and 

average them over time. For instance, the probability of an event = 1/𝑛 out of 𝑛 events, 

probability of an action = 1/𝑘 out of 𝑘 action, and the probability of state = 1/𝑛 . 

Averaging the probabilities over time and using them in our equation, we find out that the 

average time of the algorithm reduces to 𝑂(𝑛2).  

Koenig and Simmons (1993) analyze the time complexity of the Q-Learning approach. 

They show that if the agent has initial knowledge of the state space or the state space has 

additional properties, the 𝑂(𝑛3) bound can be decreased further. In the Q-Learning 

approach, the task of reaching a goal state for the first time is reduced from exponential 

time 𝑂(𝑒𝑛) to 𝑂(𝑛3), by using the depth search method and finding out the shortest path 

between the source and the final destination, the complexity of the Q-Learning algorithm 

can be further decreased by considering duplicate values.  

Our algorithm reduces the time complexity of 𝑂(𝑛3) to 𝑂(𝑛2) for the average case 

scenario as compared to the Q-Learning algorithm baseline (Koenig & Simmons, 1993). 

Here also we are using the depth search algorithm, each time a favorable state is reached 

we award the path matrix with the reward or incentive and comparing all the paths we 
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come to our conclusion, but we randomize the probabilities and average them over time, 

this gives us randomized sets of outputs with optimized time complexity of 𝑂(𝑛2). 

5.4 Threats to Validity  

There are threats and limitations to the validity of our study. Threats to internal 

validity, the non-deterministic approach of the tools results in obtaining different 

coverage for each run. Thus, multiple runs were executed to reduce this threat and to 

remove outliers that could affect the study critically. Each testing tool was allowed to run 

five times, and the test results were recorded and then computed to yield an average result 

of final coverage and progressive coverage of the tools. Another threat to the internal 

validity of our study is Acvtool’s instrumentation effect, which affects the integrity of the 

results obtained. These may be caused by errors triggered by Acvtool’s incorrect handling 

of the binary code or by errors in our experimental scripts. To mitigate this risk, the traces 

of our experiments for the subject apps were manually inspected. 

External validity was threatened by the representativeness of the study to the real 

world. This means how closely the apps and tools were used in this study to reflect the 

real world. Moreover, the generalizability of the results was limited as we used a limited 

number of subject apps. To mitigate these, a standard set of subject apps was used in our 

experiment from various domains, including fitness, entertainment, and tools 

applications. The subject apps from F-Droid, which is commonly used in Android GUI 

testing studies, were carefully selected and the details of the selection process were 

explained in Section 5.1.3. Therefore, our test is not prone to selection bias. 
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5.5 Conclusion  

This chapter provided an empirical evaluation of the effectiveness of DroidbotX and a 

comparison with GUI test generation tools for Android apps using 30 Android apps. Four 

criteria (i) instruction coverage, (ii) method coverage, (iii) activity coverage, and (iv) 

number of detected crashes, were set to evaluate and compare GUI test generation tools. 

Five tools with different techniques have been chosen for the experiment as follows 

Sapienz (search-based), Stoat (model-based), Droidbot (model-based), Humanoid (deep 

Q network), and Android Monkey (random-based). These tools are the most recent 

techniques for Android testing. Moreover, the computation time complexity of the Q-

Learning test coverage algorithm was analyzed. The results showed that time complexity 

was reduced significantly from 𝑂(𝑛3) to 𝑂(𝑛2) for the average case scenario by randomly 

considering some of the events, states, and actions, and using the probabilistic distribution 

of states, actions, and events and average them over time. The experimental results reveal 

the capacity of the approach to achieve 51.5% instruction coverage, 57% method 

coverage, 86.5% activity coverage, and triggered 18 crashes within the shortest event 

sequence length over the five tools. The results show that the adaptation of Q-Learning 

with the UCB strategy can significantly improve the generated test cases' effectiveness. 

The study confirmed that the approach fulfilled its objective, and its aim was realized. 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

From the presentation and evaluation of the proposed approach, it is evident that the 

proposed approach can efficiently and effectively maximize instruction coverage, method 

coverage, and activity coverage within the shortest event sequences and time limit. This 

chapter highlights the conclusions of this thesis and outlines the possible directions for 

future works. The chapter further explains how to fulfill this research's aim and objectives 

(in chapter 1). It presents this thesis's contributions and highlights the importance of the 

work carried out in this study. Lastly, the limitations of this study are highlighted, and the 

possible future works concluded. 

In this chapter, the outline is organized as follows:  Section 6.1 shows how this study's 

aim and objectives are attained, while section 6.2 describes this thesis's contributions. 

Section 6.3 highlights the significance of this work. This study's publications are listed in 

section 6.5, while the limitations and future works are shown in section 6.4. 

6.1 Restatement of Research Objectives  

This research aims to generate effective GUI test cases for Android apps that maximize 

coverage by minimizing redundant event execution. The full explanation of how to attain 

this research aims by realizing each objective which is stated in section 1.4. 

•  To review the current state-of-the-art GUI testing tools to generate test cases 

for Android Apps. 

This research's objective was fulfilled, and the most credible works reported in articles 

and conferences were reviewed accordingly. The relatively new GUI testing tools for 

Android apps were comprehensively reviewed to analyze their strengths and weaknesses. 

A comprehensive thematic taxonomy was proposed based on an extensive review of 

Android apps' existing GUI testing tools. The critical features and related aspects of these 
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tools are thoroughly examined to evolve the proposed taxonomy. According to the 

taxonomy parameters, the tools are exhaustively analyzed to explore shared traits and 

contrasts among existing tools. Finally, several research issues in Android app GUI 

testing are put forward that require further consideration to enhance Android app testing 

tools. This review is presented in chapter 2.  

• To examine the effectiveness of test generation tools for Android apps in 

terms of method coverage, activity coverage, and crash detection.  

To fulfill this objective, all the identified research problems (low coverage and events 

sequence length) were verified and addressed in this research. To analyze the significance 

of these research problems, an analytical-based analysis was carried out by using an 

empirical case study on 50 different Android apps downloaded from the F-Droid and 

AppBrain repositories. The test generation tools' effectiveness, especially in the events 

sequence length of the overall test coverage and crash detection, were evaluated against 

three criteria, method coverage, activity coverage, and many detected crashes. The 

findings indicate that a long events sequence performed better than the shorter events 

sequence. However, long events sequence led to a minor positive effect on the coverage 

and crash detection. Moreover, the results showed that the tools achieved less than 40% 

of the method coverage and 67% of the activity coverage. Furthermore, most of the tools 

find a fault in the user events, and none could find a fault in a system event. Besides, test 

generation tools generate text inputs randomly, which affects their coverage performance. 

This analysis is presented in chapter 3. 

• To develop an approach using Q-Learning to optimize test case generation 

that maximizes instruction coverage, method coverage, and activity coverage. 

This study's objective was achieved by proposing an efficient test case generation 

approach that maximizes instruction, method, and activity coverage with minimizing 
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redundant execution of events. The proposed solution is derived from the review between 

reinforcement learning and test case generation approaches to take advantage of both a 

randomly based approach and a model-based approach. Q-Learning technique with UCB 

exploration strategy was adopted to generate GUI test cases for Android apps to improve 

coverage and crash detection. This approach systematically selects events and guides the 

exploration to expose the functionalities of an AUT. It generates user and system inputs 

that target new states of the app and deploys the app's execution on the generated inputs 

to construct a state-transition model. Instead of randomly selecting the actions, the test 

generator learns how to explore new states by using new actions to gain more rewards. 

Thus, events never selected can present a higher reward than already executed events, 

which reduces the redundant execution of events and increase coverage. This approach 

was implemented into a test tool named DroidbotX. The tool was used to evaluate the 

practical usefulness and applicability of the approach. DroidbotX constructs a state-

transition model of the app and generates test cases. These test cases follow the sequences 

of events that are the most likely to explore the app's functionalities. This was described 

in chapter 4.  

•  To evaluate the ability of the proposed approach to generate effective test 

cases that detect crashes and maximize instruction coverage, method coverage, and 

activity coverage on real-world Android Apps. 

This objective was fulfilled by evaluating and analyzing the proposed approach using an 

empirical case study. The proposed approach was evaluated in comparison with top-

quality test generation tools. DroidbotX was compared with Android Monkey, Sapienz, 

Stoat, Droidbot, Humanoid on 30 Android apps from the F-Droid repository. In the 

experiment, instruction coverage, method coverage, activity coverage, crash detection, 

running time, and test sequence length were analyzed to assess the approach's 
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performance. All tools were tested and configured on a new emulator; each tool was run 

five times to avoid randomness during testing. The empirical data were validated by 

statistical analysis. Acvtool instrumented all the apps and collected the statistics of 

instruction and method coverage during testing. Acvtool does not require the source code 

of the app. Simultaneously, LogCat dumps a log of all the system-level messages and 

collects all fatal exceptions encountered during the AUT's execution for crash detection. 

The results show the significant performance of the proposed approach. The Q-Learning-

based test coverage approach achieved (51.5%) instruction coverage, (57%) method 

coverage, (86.5%) activity coverage, and triggered (18) crashes within the time limit and 

shortest event sequence length compared to the other tools. The results show that Q-

Learning adaptation with UCB exploration can significantly improve the generated test 

cases' effectiveness. The study confirmed that the approach fulfilled its objective, and its 

aim was realized. 

6.2 Research Contributions  

This study produces multiple contributions to the body of knowledge as follows. 

• Taxonomy of GUI testing tools for Android applications 

The taxonomy of GUI testing tools for Android applications was produced based on 

an extensive review of existing GUI testing tools for Android applications to analyze their 

strengths and weaknesses. The proposed taxonomy presents significant testing aspects 

such as automated activity testing, testing approach, type of evaluation method, and 

characteristics of the technologies used in state-of-the-art GUI testing tools. The 

taxonomy focused on test case generation as it is one of the most demanding testing 

activities tasks because of its strong impact on the whole testing process efficiency. The 

proposed taxonomy can serve as a basic tool to differentiate existing GUI testing tools. 

The taxonomy also helps researchers differentiate all GUI test case generation concepts 

Univ
ers

iti 
Mala

ya



149 

for Android applications and explore the existing tools and techniques. The classification 

aims to be a guideline for researchers, testers, and test tool developers. This research's 

findings were presented in chapter 2. 

• Empirical Analysis of test generation tools for Android Applications 

The additional contribution has been inputted to the body of knowledge by empirically 

analyzing the effectiveness of six test generation tools for Android applications. The tools 

can generate user events and some of the system events that increase the possibility of 

finding faults on system events. Three criteria, methods coverage, activity coverage, and 

their ability to detect crashes were used to evaluate the testing tools. This study shows 

that longer events sequence led to a small positive effect on coverage and crash detection; 

Stoat and Android Monkey attained the highest number of events. Meanwhile, coverage 

performance was similar to Humanoid and Droidbot, which generated a smaller number 

of events. Moreover, this study showed that Sapienz was the best-performing tool that 

satisfies all three criteria. Despite Sapienz optimized events sequence length, it generated 

the highest number of events, and it is unable to detect crashes that can only be reached 

from a long events sequence. Besides, Android Monkey was able to reveal stress testing 

crashes. However, it was limited to generate inputs relevant to the app, mainly due to its 

randomness in generating unreproducible events with long sequences. Moreover, most of 

the tools were able to find a fault in the user events, and none of them was able to find a 

fault in a system event. Besides, test input generation tools generate random text inputs 

that impact their coverage performance, which could be fixed in the future by supporting 

text prediction or incorporating other text input generation methodologies. This study 

appeared in chapter 3 and published in the literature in due time. 
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• An effective approach for generating test for Android application based on 

Q-learning 

A novel approach was designed and implemented to overcome the shortcomings of the 

existing approaches lacking in the literature. The proposed solution is derived from the 

review between reinforcement learning, and test case generation approaches explained in 

chapter 2 to take advantage of both randomly based and model-based approaches. The 

proposed approach adopted the Q-Learning technique to generate an optimal GUI test 

case for Android applications to improve coverage, and crash detection. This approach 

was implemented into a test tool named DroidbotX and used the tool to evaluate the 

approach's practical usefulness and applicability. It generates user and system inputs that 

visit unexplored states of the app and uses the app's execution on the generated inputs to 

construct a state-transition model. Instead of randomly selecting the actions, the test 

generator learns how to act in an optimal way that explores new states by using new 

actions to gain more rewards. Thus, events never selected can present a higher reward 

than already executed events, which reduces the redundant execution of events and 

increase coverage. The proposed approach was highlighted in chapter 4 and made 

available in the literature for developers to use.  

• Empirical Analysis for the proposed approach  

The empirical and analytical evaluation techniques of the proposed approach were 

created using an empirical-based case study approach. The effectiveness of the proposed 

approach was performed and compared to the state-of-the-art tools. The approach was 

described in chapter 4, and the results are made available in chapter 5. Compared to the 

other approaches, the results' test reveals the capacity of the approach to achieve 51.5% 

instruction coverage, 57% method coverage, 86.5% activity coverage, and triggered 18 

crashes within the shortest event sequence length over the five tools. The results show 
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that the adaptation of Q-Learning with the UCB strategy can significantly improve the 

generated test cases' effectiveness. The study confirmed that the approach fulfilled its 

objective, and its aim was realized. 

6.3 Significance of the Work  

This section describes the significance of the proposed approach concerning the 

research problems found in section 3.4. The features are as follow 

• Events sequence length: An important feature of the proposed approach is 

producing the shortest possible event sequence length while increasing the fault-finding 

probability. The proposed approach achieved the shortest event sequence by configuring 

the event inputs to 1000 to satisfy varying instruction, method, and activity coverage 

criteria and crashes detection. The configuration implemented revealed that the approach 

is practical for debugging and automatically reduces the testing space. 

• Events sequence redundancy: The proposed approach generates test cases that are 

not redundant with no interaction. Test cases have similar steps where test cases may 

contain other tests or other tests with loops. A high redundancy negatively affects 

coverage efficiency since the testing tool has to generate many events to achieve the same 

coverage as one with low redundancy. Also, the capability to find crashes is reduced since 

the test suite tends to re-execute the same steps. The proposed approach generates 

effective GUI test cases. It uses an effective exploration strategy that reduces actions 

redundant execution. It tries to ensure that each action is well explored. The proposed 

approach reduces the number of ineffective actions performed and explores as much app 

state as possible by sending relevant actions for each widget. 
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6.4 Limitation and Future Work 

Although DroidbotX has shown to be significantly better than existing tools for GUI 

test case generation of Android applications, there are several avenues of future research 

and improvement.  

• Test Oracle: Currently, DroidbotX test coverage approach focuses on generating 

test cases, rather than constructing a test oracle that results in oracles that determine 

whether test cases pass or fail. Automated test oracle construction is a significant 

challenge beyond this research scope, but certainly as an avenue of future research 

interests. A test oracle is necessary to have the user in the loop to generate oracles that 

assess intended app behaviors. Hence, reducing the number of test cases to be inspected 

is certainly beneficial. To achieve fully automated testing of the Android app, the 

automated test generation technique alone is insufficient. A human tester must manually 

ascertain whether each test case diverges from the expectation. An automated test oracle 

is a technique used to prevent or solve this problem. Oracle is used to export test cases to 

executable test scripts during the implementation stage. A test case has been immediately 

materialized as a script; a human tester can initiate a test oracle simply by including 

assertions to the script.  

• More improvement in coverage: DroidbotX can improve coverage significantly 

from state-of-the-art tools for GUI test case generation of Android applications, the test 

coverage is still relatively low. Specifically, the coverage is below 30% for some apps. 

This reason is that many apps need specific inputs such as login forms that are difficult 

or even impossible to generate automatically without being pre-programmed to behave 

optimally when confronting this form. The pre-programming approach cannot scale 

because different apps' login forms will appear different and function differently. The 

more effective approach is to provide an interface via which a human tester can pass 
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knowledge about such special cases to an automated test generation tool. It is easy for a 

human tester to recognize a login form during testing and quickly pass it through by 

providing a proper credential. A possible solution is to incorporate human knowledge to 

offer the automatic tool's needed guidance with little effort. Moreover, the ability to 

generate tests that can achieve high code coverage has applications beyond testing for 

functional defects: Energy issues, latent malware, and portability problems are important 

concerns in the context of mobile devices that are often effectively detected by executing 

the code. This study's future work is to modify the approach to increase the coverage 

capacity and detect crashes and exploit the poor action discovered in test case generation 

to improve crash detection. 

• Support more forms of inputs: Some forms of inputs, like system broadcasts, and 

sensor events, were not considered in our approach. This is a limitation that is peculiar to 

DroidbotX because the inputs require a special event generation strategy. However, it is 

not much of a huge problem at the moment. Most of the apps can be well-tested without 

involving these actions. Although DroidbotX does not predict the text when sending text 

input actions, there is the possibility that it could be fixed in the future by extending the 

model to support text prediction. Alternatively, it can be solved by integrating other text 

input generation techniques. Moreover, the model constructed by DroidbotX is still not 

complete since it cannot capture all possible behaviors during exploration, which is still 

an important research goal on GUI testing. All the events would introduce 

nondeterministic behavior if they were not properly modeled such as system events and 

events coming from motion sensors (e.g., accelerometer, gyroscope, and magnetometer). 

DroidbotX will be extended in the future to include more system events. 
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