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EVALUATION OF OUTLIER FILTERING ALGORITHMS FOR ACCURATE 

MEASUREMENT OF TRAVEL TIME RELIABILITY INCORPORATING 

LANE-SPLITTING SITUATIONS 

ABSTRACT 

Most developed and developing countries, including Malaysia, experience high traffic 

congestion, especially in urban areas. When congestion occurs, traffic moves at a lower 

speed which increases travel time and in consequence, people spend considerable time 

fulfilling their daily journeys. Measuring Travel Time Reliability (TTR) helps traffic 

professionals to quantify congestion based on travel time parameter, thus, adopting 

suitable strategies to mitigate traffic congestion. On the other hand, motorcycles are 

significantly high in Malaysia and other Association of Southeast Asian Nations 

(ASEAN) countries. As such, detection of travel time based on the media access control 

(MAC) address is not straightforward. Raw travel times data does not represent the actual 

traffic condition of passenger cars since motorcycles travel faster than cars during 

congestion using the gap between two parallel rows of cars. This situation is called lane-

splitting. In the past, many travel time filtration algorithms were established. However, 

there is a real need to determine which algorithms can produce the most accurate results 

when considering actual and large datasets from lane-splitting situations. Therefore, this 

study aims to investigate the best algorithm for data filtration and how to use it to obtain 

accurate data for measuring TTR. In order to find the best filtration algorithm, two stages 

were adopted in this study. The first stage was the validation of the performance of the 

previous algorithms. The assessment was conducted by observing the performance of 

each algorithm and comparing its performance with other algorithms when lane-splitting 

data were applied. The second stage was to investigate the sensitivity of the algorithm 

parameters for different days. To analyse TTR, Travel Time Index (TTI), Planning Time 

Index (PTI), and Buffer Time Index (BTI) were calculated with respect to the time of day 
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(TOD), day of week (DOW), holidays, and election days. This study used travel time 

datasets collected from three routes in Kuala Lumpur via Wi-Fi detectors during May 

2018. The results showed that the Jang algorithm was found to have the best performance 

for two of the three routes, whereas the TransGuide algorithm was the best algorithm for 

one route. The parameters of the Jang algorithm and TransGuide algorithm were sensitive 

for different days. Thus, the Jang algorithm and TransGuide algorithm could be used after 

calibrating their parameters for each day. After the filtration, TTR measures were 

calculated. The analysis of TTR measures showed that on weekdays and weekends, the 

three routes suffered from high variability in travel time. On election days and holidays, 

the road network operates near to free-flow condition for most of the time with low 

variability in travel time. The findings and contribution of this research are beneficial for 

transportation companies and authorities that depend on MAC addresses to collect travel 

time data in Malaysia and ASEAN countries. Furthermore, this research introduced the 

concept of TTR, demonstrating its importance to Malaysian traffic researchers. 

Accordingly, Malaysian transportation authorities need to adopt TTR measures in their 

studies, reports, and guidelines to maintain reliable travel time. 

Keywords: Travel Time, Travel Time Reliability, Lane-Splitting, MAC Address, 

Outlier Filtering Algorithm. 

Univ
ers

iti 
Mala

ya



v 

PENILAIAN ALGORITMA PENAPISAN OUTLIER UNTUK 

KEBOLEHPERCAYAAN PENGUKURAN TEPAT MASA PERJALANAN 

YANG MENYERTAKAN SITUASI PEMISAHAN LORONG 

ABSTRAK 

Sebilangan besar negara maju dan sedang membangun, termasuk Malaysia, 

mengalami kesesakan lalu lintas yang tinggi, terutamanya di kawasan bandar. Apabila 

kesesakan berlaku, lalu lintas bergerak pada kelajuan yang lebih rendah lalu 

meningkatkan masa perjalanan dan akibatnya, orang menghabiskan banyak masa dalam 

perjalanan harian mereka. Mengukur Kebolehpercayaan Masa Perjalanan (KMP) boleh 

membantu profesional lalu lintas untuk mengukur kesesakan berdasarkan parameter masa 

perjalanan, dengan demikian, berupaya menerapkan strategi yang sesuai untuk 

mengurangkan masalah yang berkaitan dengan kesesakan. Sebaliknya, jumlah motosikal 

juga sangat tinggi di Malaysia dan negara-negara Persatuan Negara-negara Asia Tenggara 

(ASEAN) yang lain. Oleh kerana itu, pengesanan masa perjalanan berdasarkan alamat 

kawalan akses media (MAC) adalah tidak mudah. Data mentah masa perjalanan tidak 

menunjukkan keadaan lalu lintas sebenar kerana motosikal bergerak lebih pantas daripada 

kereta semasa kesesakan, di mana mereka menggunakan jurang antara dua barisan kereta 

selari. Keadaan ini disebut lane-splitting. Pada masa lalu, banyak algoritma penapisan 

masa perjalanan telah dibuat. Walau bagaimanapun, ada keperluan sebenarnya untuk 

menentukan algoritma mana yang dapat menghasilkan hasil yang paling tepat ketika 

mempertimbangkan set data yang sebenar dan besar dari situasi lane-splitting. Kajian ini 

bertujuan untuk menyelidik algoritma terbaik untuk penyaringan data dan 

menggunakannya untuk mendapatkan data yang tepat untuk mengukur KMP. Untuk 

mencari algoritma penapisan terbaik, dua peringkat telah dilaksanakan. Tahap pertama 

adalah pengesahan prestasi algoritma sebelumnya. Penilaian dilakukan dengan 

memerhatikan prestasi setiap algoritma dan membandingkan prestasinya dengan 
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algoritma lain ketika data lane-splitting digunakan. Tahap kedua adalah untuk menyiasat 

kepekaan parameter algoritma untuk hari yang berbeza. Untuk menganalisis KMP, Indeks 

Masa Perjalanan (IMP), Indeks Waktu Perancangan (IWP), dan Indeks Waktu Penampan 

(IWPen) telah dikira dengan mengambil kira waktu dalam hari (WDH), hari dalam 

seminggu (HDS), hari cuti, dan hari mengundi. Dataset masa perjalanan, pada bulan Mei 

2018, dari tiga laluan di Kuala Lumpur yang dikumpulkan oleh pengesan Wi-Fi telah 

digunakan dalam analisis. Hasil kajian menunjukkan bahawa algoritma Jang didapati 

mempunyai prestasi terbaik untuk dua dari tiga laluan tersebut. Manakala, algoritma 

TransGuide adalah algoritma terbaik untuk satu laluan. Parameter algoritma Jang dan 

algoritma TransGuide adalah sensitif untuk hari yang berbeza. Oleh itu, algoritma Jang 

dan algoritma TransGuide dapat digunakan setelah menukar parameternya untuk setiap 

hari. Selepas penapisan, langkah-langkah KMP telah dikira. Analisis langkah-langkah 

KMP menunjukkan bahawa pada hari kerja dan hujung minggu, ketiga-tiga laluan 

mengalami kebolehubahan yang tinggi dalam masa perjalanan. Pada hari pilihan raya dan 

hari cuti, rangkaian jalan raya beroperasi dengan keadaan aliran bebas hampir sepanjang 

masa dengan kebolehubahan masa perjalanan yang rendah. Hasil kajian ini bermanfaat 

bagi syarikat pengangkutan dan pihak berkuasa yang bergantung pada alamat MAC untuk 

mengumpulkan data masa perjalanan di Malaysia dan negara-negara ASEAN. 

Selanjutnya, penyelidikan ini memperkenalkan konsep KMP dan menunjukkan 

kepentingannya kepada penyelidik trafik Malaysia. Pihak berkuasa pengangkutan 

Malaysia harus mengambil langkah-langkah KMP dalam kajian, laporan, dan panduan 

mereka untuk mengekalkan masa perjalanan yang dipercayai. 

Kata kunci: Masa Perjalanan, Kebolehpercayaan Masa Perjalanan, Lane-splitting, 

Alamat MAC, Algoritma Penapisan Outlier 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Transportation has been important throughout the ages, given its direct benefit to 

humanity and life in general. Transportation has also been closely associated with the 

civilisational development of societies (Fenelon, 2017). As a result of the importance of 

transportation and its link to the economy, governments, universities and research centres 

continue to develop more updated transportation systems and alleviate problems that arise 

from it. The development strategies have three directions: effective management of 

existing transportation facilities, building new facilities, and the invention of new modes 

of transportation, for example, autonomous vehicles. 

Nowadays, traffic congestion is one of the most common issues faced by road users 

and traffic consultants, and given the rising population in most countries worldwide, this 

problem will continue to become an issue in the future. Wang, Guo, and Yu (2018) stated 

that to mitigate the congestion problem, the first step is to study the current situation using 

the traffic congestion index (TCI) to reflect the traffic flow status. After that, traffic 

engineers can use the TCI for planning and managing road networks. Nowadays, people 

spend considerable time travelling each day due to increased traffic demand and limited 

road capacities. The journey’s time varies, especially in urban areas, given many factors 

such as road accidents, weather conditions, changing traffic demands, traffic control, and 

road types. 

While travel time is a key parameter used to evaluate traffic congestion, it is also more 

understandable for travellers to comprehend than other traffic parameters such as traffic 

density and traffic flow because travel time represents travellers' experience. The 

variability in travel time is a major problem for travellers. They would rather travel a 

route with higher mean travel times and smaller variability than routes with lower mean 
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travel times and larger variability (Lyman & Bertini, 2008; Van Lint & van Zuylen, 2005). 

Therefore, quantifying the variability suitably helps operators and travellers make better-

informed decisions (Xu, Jabari, & Prassas, 2020). However, doing so requires collecting 

travel time data extensively. 

Due to the development of advanced traffic sensing technologies, travel time data can 

be collected via various data sources, such as the automatic licence plate identification 

technique, probe vehicles technique, media access control (MAC) address-based 

technique and Radio-Frequency Identification (RFID) technique (Z. Chen & Fan, 2020; 

Guo et al., 2019). These technologies assist researchers to conduct studies to investigate 

variability in travel time. 

Each data source is affected by sources of error. For instance, MAC address detectors 

are affected by (a) en route stops, (b) nonauto observations, and (c) the presence of 

multiple devices in a single-vehicle (Moghaddam & Hellinga, 2013). These error sources 

generate outliers in travel time datasets. Some situations generate abnormal data, which, 

in turn, lead to inaccuracy in travel time datasets. The lane-splitting situation is an 

example. The outliers and lane-splitting data need to be removed from datasets to obtain 

accurate travel time data 

Lane splitting is defined as “the practice of passing slower moving traffic by riding a 

motorcycle in the gap between two parallel lanes of traffic heading in the same direction” 

(Ouellet, 2012). The United States, except for California, prohibits this practice (Rice, 

Troszak, & Erhardt, 2015). However, it is legal in several European countries 

(Kurlantzick & Krosner, 2016). In 2014, the state of New South Wales in Australia 

allowed lane-splitting at a speed less than 30 km/h (Rice et al., 2015). The 30 km/h 

restriction was imposed for safety concerns (Vanessa Beanland, 2018). Some researchers 

recommended governments consider legalizing lane-splitting for motorcycles riding in 
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only slow-moving or stopped traffic (V Beanland, Pammer, Sledziowska, & Stone, 2015; 

Kurlantzick & Krosner, 2016). 

Allowing motorcycles to travel freely through traffic reduces the level of congestion. 

In addition, it encourages people to use motorcycles because the travel time is less than 

cars, especially at peak periods (Sperley & Pietz, 2010). A study in Paris, France, showed 

that the average lane-splitting speed of motorcycle riders in stopped traffic on a ring road 

is 38 km/h (Aupetit, Espié, & Bouaziz, 2015), indicating a big difference in the travel 

time of lane-splitting motorcycles and passenger vehicles. The frequency of motorcycles 

lane-splitting decreases as traffic speed increases (Ouellet, 2012). However, there are 

important safety concerns relating to lane-splitting. Unexpected vehicles opening doors 

and changing lanes without indicating lead to safety hazards for motorcycles that travel 

between rows of vehicles (Sperley & Pietz, 2010). In certain countries where the number 

of motorcycle riders is high, the lane-splitting situation is obvious, affecting the accuracy 

of travel time measurement, especially during congestion. 

1.2 Statement of Problem 

Kuala Lumpur (KL) is one of many congested capitals globally. In fact, it is the 46th 

most congested city from 416 cities based on the TomTom traffic index for 2019. This 

index shows an increase in traffic congestion levels in KL from 36% in 2018 to 37% in 

2019 (TomTom International BV, n.d.). Between 2010 and 2014, there was a 28% 

increment in total motor vehicles in KL, which signifies a rapid increase in traffic 

demand. The congestion problem will continue to become a more serious issue because 

the increase in road capacity does not match the rise in traffic demand (Abdullah, Ramli, 

& Mohamad, 2017). Traffic congestion leads to economic and healthy issues. The 

estimated total cost of congestion in Malaysia was around RM 13.09 billion per year, 

where (RM 10.82 billion/year) represents the total wage loss, (RM 1.08 billion/year) 

Univ
ers

iti 
Mala

ya



4 

represents the total fuel loss, and (RM 1.19 billion/year) represents the total loss on 

environmental impact (Ministry of works Malaysia, 2019). 

Notably, travel time is a significant parameter to assess traffic conditions and 

congestion on roadways (Martchouk, Mannering, & Bullock, 2011). Furthermore, 

accurate travel time is pivotal for road operators to evaluate, monitor, and manage the 

performance of road networks and for road users to plan for their journeys (Liu, Xia, & 

Phatak, 2020). 

In Malaysia, the percentage of motorcycles using our roads is very high. For example, 

in mid-2017, the number of registered motorcycles was 12,933,042, around 46% of the 

total registered vehicles (Lee, 2017). The significant difference in the travel time of lane-

splitting motorcycles and passenger vehicles means that it is essential to remove lane-

splitting observations from the travel time data when developing travel time measures 

(e.g., average travel time and travel time index) for passenger vehicles. Retaining the 

lane-splitting observations in the travel time data causes incorrect passenger vehicle travel 

time measures. Given Malaysia's high percentage of motorcycles, lane-splitting 

significantly impacts travel time measurement, particularly at peak periods. Thus, 

exploring the best filtering algorithm is crucial to minimise errors, thus, obtaining 

accurate travel time measurements. 

1.3 Research Gap 

Malaysia and other ASEAN countries have unique traffic patterns, given the high 

percentage of motorcycle users on our roads. On the other hand, this traffic pattern does 

not exist in other developed countries due to the low percentage of motorcycle users 

travelling on main roads. For this reason, the effectiveness of most published travel time 

filtration algorithms needs to be verified when deploying actual empirical data from 

ASEAN countries. 
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The aim of measuring travel times using MAC addresses is to obtain accurate results 

of the passenger vehicles. In Malaysia and other ASEAN countries, the error in the 

datasets is due to the motorcycles data during congestion (lane-splitting data) and the 

outliers. Because of the significant difference in the travel time of lane-splitting 

motorcycles and passenger vehicles, it is essential to filter out the lane-splitting data using 

a filtering algorithm to obtain an accurate travel time pattern for passenger vehicles. 

Several researchers have developed algorithms for filtering outliers. At present, there is 

no evaluation of the algorithms using travel time datasets that contain lane-splitting 

observations. Therefore, it is essential to evaluate the well-known filtering algorithms to 

identify the best algorithm for filtering outliers and lane-splitting observations. 

Many algorithms have been proposed to identify and minimise outliers in travel time 

datasets (Clark, Grant-Muller, & Chen, 2002; Dion & Rakha, 2006; Jang, 2016; 

Southwest Research Institute, 1998). However, the proposed algorithms were not 

validated using empirical data, representing actual lane-splitting situations. 

Further to the issue related to the filtration algorithms, it is also important to highlight 

the concept of travel time reliability (TTR) since it is a relatively recent term in traffic 

engineering. It has gained much attention due to the development of travel time collection 

technologies, where accurate and vast travel time data can be gathered. The Federal 

Highway Administration (FHWA) has adopted a formal definition of TTR, that is, “the 

consistency or dependability in travel times, as measured from day-to-day and/or across 

different times of the day” (Texas Transportation Institute  & Cambridge Systematics 

Inc., 2005). Travel Time Reliability (TTR) measures are “the tools used to evaluate the 

extent of unreliability or variability in travel time for specific parts of the road network” 

(Tsolakis, Tan, & Makwasha, 2011). Examples of these measures include the travel time 
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index (TTI), planning time index (PTI), and buffer time index (BTI). These measures are 

calculated using travel time data. 

Having said that, there is no published report for TTR in Malaysia. Unlike Malaysia, 

most developed countries publish TTR measures reports. For example, the United States 

(US) Department of Transportation periodically publishes urban mobility and urban 

congestion reports (UCR) to communicate recent trends in congestion and strategies to 

manage congestion and improve mobility. The reports contain TTR measures that gauge 

progress toward meeting transportation system management and operations objectives 

(Federal Highway Administration (FHWA), 2020). Malaysia could acquire better 

planning, management, and operations for its transportation system by adopting TTR 

measures. 

1.4 Research Questions 

The research questions that arise from the problem statement include the following: 

1- What is the best algorithm that can filtrate outliers and lane splitting observations? 

2- Are parameters of the best algorithms sensitive for different days? 

3- Is it possible to measure TTR on Malaysian roads? 

4- How do TTR measures vary concerning TOD, DOW, holidays and election days? 

1.5 Research Objectives 

The main objectives of this research include the following: 

1- To evaluate the previously established filtration algorithms in terms of accurate 

representation of the actual situation and the sensitivity of the parameters using 

travel time data with lane-splitting observations and outliers; 

2- To identify the best filtration algorithm with certain calibration procedures when 

incorporating lane-splitting situations; and 
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3- To produce accurate travel time reliability measures based on filtered data on 

selected routes in Kuala Lumpur (KL). 

1.6 Research Significance 

The output from this research is anticipated to mainly benefit traffic consultants, road 

and local authorities, logistics companies, and road users at large since the research 

provides valuable insight in calculating and measuring travel time for congestion measure 

purposes. 

So far, TTR measures have not appeared in transportation research in Malaysia and, 

consequently, are not used by Malaysian road authorities. The potential reasons include 

the following: 

1. Given that TTR had only recently been introduced as a performance measure, it may 

not have received much attention from the authorities. 

2. Special data sources are needed to measure travel time, unlike traffic flow and density 

data sources. 

3. Historically, authorities have focused on construction and maintenance and less 

operations focused, performance-driven, and aspects associated with user experience. 

It is anticipated that this research will help Malaysian authorities to overcome the first 

two reasons. In order to overcome the first reason, this research introduces the concept of 

TTR, demonstrating its importance to Malaysian traffic researchers. Also, to overcome 

the second reason, using MAC address sensors, travel time can be collected and filtered 

out using the best algorithm as discussed in the results. 
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1.7 Dissertation Structure 

This dissertation is organised into five chapters: 

Chapter 1: Presents the background of the research, statement of the problem, 

research gap, research questions, research objectives, research 

significance, and dissertation structure. 

Chapter 2: Presents the literature review related to the research and includes three 

main sections: traffic congestion, travel time filtration algorithms, and 

travel time reliability. 

Chapter 3: Presents the research methodology flowchart, study area, data collection, 

data description, and data analysis. 

Chapter 4: Presents the results and discussion on filtration of travel time data and 

analysis of travel time reliability measures for the area under study. 

Chapter 5: Presents a summary of the entire research where the main findings and 

conclusions are highlighted. In addition, research limitations and 

recommendations for future research are presented. 
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CHAPTER 2: LITERATURE REVIEW  

This chapter systematically reviews the literature on traffic congestion, travel time 

filtration algorithms and travel time reliability (TTR). The review focuses on defining and 

measuring traffic congestion and traffic problems in ASEAN countries in the traffic 

congestion section. In the travel time filtration algorithms section, the review focuses on 

the percentile algorithm, mean absolute deviation algorithm, TransGuide algorithm, Dion 

and Rakha algorithm, and Jang algorithm. In the TTR section, the review focuses on TTR 

definitions and measures, factors affecting reliability, recurrent and non-recurrent 

congestion, travel time variability, and the importance of TTR. 

2.1 Traffic Congestion 

2.1.1 Defining and Measuring Traffic Congestion 

Traffic congestion is one of the significant problems that threaten our societies leading 

to time and energy wastage, pollution, stress, and decreased productivity (Bertini, 2006; 

Rao & Rao, 2012). Although researchers have proposed various definitions of traffic 

congestion, they have failed to provide a universally accepted definition (Aftabuzzaman, 

2007). Many studies have attempted to paraphrase the following definition: “Congestion 

is a situation in which demand for road space exceeds supply” (Transportation 

Association of Canada, 2017). While other studies defined traffic congestion based on 

user’s expectation as in the following definition: Congestion refers to an excess of 

vehicles on a section of road at a particular time, resulting in slower or much slower 

speeds than normal or "free flow" speeds. Moreover, the term is related to stopped or 

stop-and-go traffic (Cambridge Systematics Inc., 2005). 

To select effective congestion mitigation measures, the identification of congestion 

characteristics is a crucial primary step (Rao & Rao, 2012). Thus, for road agencies, the 

development of congestion measures to alleviate congestion is a high priority task. 
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However, congestion is not always quantified uniformly since traffic congestion directly 

affects the speed, travel time, quality of services, delay, travel cost, fuel consumption, and 

emission of pollutants. These effects are widely considered in the literature to understand 

the implications of traffic congestion. Based on the aspects affected by congestion, there 

are seven groups of traffic congestion measures: travel time, TTR, speed, delay, level of 

service (LOS), cost, and environmental measures (Transportation Association of Canada, 

2017). 

2.1.2 Traffic Congestion and Traffic Problems in ASEAN. 

In the ASEAN region, economic growth has led to rapid traffic growth. Since 2000, 

the motorisation growth has increased rapidly. In ASEAN countries like Vietnam, 

Indonesia, Myanmar, and Cambodia, between 2000 and 2010, the number of automobiles 

more than doubled. However, this increment was not accompanied by the corresponding 

expansion in infrastructure and road services leading to traffic congestion, especially in 

ASEAN’s major cities. (ERIA Study Team, 2010). 

Traffic congestion, high rates of traffic accidents, air pollution from transport sources, 

and inadequate access to transport facilities are serious problems many cities face because 

of rapidly growing motorisation. Indeed, major cities and capital cities in ASEAN 

countries suffer from the most rapid increase in motorisation. Two and three-wheeler 

vehicles are the dominant transport mode in cities like Ho Chih Minh and Hanoi. Here, 

the central areas of the capitals are highly congested, with the traffic speeds reported to 

be extremely low during weekday peak hours, resulting in longer travel times. As a result, 

the cities' liveability and productivity are threatened by the deteriorating urban 

environment. (ERIA Study Team, 2010). 

In developing countries, studies quantifying congestion are limited due to the lack of 

traffic datasets. Congestion indexes (travel time indexes) have been calculated for 278 
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Asian cities using trip data from Google Maps. In 2016, about 24 of the cities had 

populations above 5 million; these cities were the largest. After calculating the congestion 

index for the largest cities, the most three congested cities were Metro Manila, Kuala 

Lumpur (KL), and Yangon City, respectively, which fall within the ASEAN region. This 

means that the mitigation of traffic congestion in the ASEAN region requires greater 

effort (Asian Development Bank, 2019). 

In Malaysia, the total number of registered motorcycles in 2016 was 12.68 million, 

accounting for 45.9% of the total number of registered road motor vehicles. Across all 

ASEAN countries, in 2016, the total number of registered motorcycles was 199 million, 

representing about 76.4% of the total number of registered road motor vehicles (ASEAN 

Statistics Division, 2018). These statistics imply that motorcycles were the major means 

of transport in ASEAN. A contributing factor to this figure is because motorcycles are 

relatively affordable for most people in the ASEAN region. Furthermore, the proportion 

of youth in the ASEAN population is enormous. However, on the other hand, the 

motorcycle regulatory framework in ASEAN is underdeveloped. Moreover, the place or 

position of motorcycles in traffic facilities design and urban transportation planning is not 

equal to the very high use of motorcycles. Motorcycles were also a significant factor in 

accidents and traffic congestion (Kitamura, Hayashi, & Yagi, 2018). 

Since effective transportation systems are critical for promoting international trade 

with and within the ASEAN region, it is important to remove the barriers to trade in the 

land transport sector. The unprecedented commitment of skills and resources and new 

levels of cooperation are required to remove the barriers in ways that protect the natural 

environment, promote growth, and meet the complex demands arising from new safety 

requirements. So, to maintain a sustainable environment, public transport services need 

to be improved and developed. It is also necessary to improve street furniture and 
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pedestrian facilities and promote bicycles for short-distance travel (ERIA Study Team, 

2010). 

2.1.2.1 Lane-splitting 

In the Asian countries, lane-splitting is a common practice among motorcycle riders 

(Maulina, Danilasari, Nazhira, & Jufri, 2022). Lane-splitting is defined as “the practice 

of passing slower moving traffic by riding a motorcycle in the gap between two parallel 

lanes of traffic heading in the same direction” (Ouellet, 2012). Some researchers 

differentiate between lane-splitting and lane-filtering, while others use them 

interchangeably. Those who use them differently consider lane-filtering as the practice of 

riding a motorcycle between stopped or nearly stopped traffic, and they consider lane-

splitting where the traffic is moving (higher than 30 km/h) (V Beanland et al., 2015; 

Kelly, 2016; Mulvihill et al., 2013). 

The United States, except for California, prohibits this practice (Rice et al., 2015). 

However, it is legal in several European countries (Kurlantzick & Krosner, 2016). In 

2014, the state of New South Wales in Australia allowed lane-splitting at a speed less 

than 30 km/h (Rice et al., 2015). The 30 km/h restriction was imposed for safety concerns 

(Vanessa Beanland, 2018). Some researchers recommended governments consider 

legalizing lane-splitting for motorcycles riding in only slow-moving or stopped traffic (V 

Beanland et al., 2015; Kurlantzick & Krosner, 2016). 

Allowing motorcycles to travel freely through traffic reduces the level of congestion. 

In addition, it encourages people to use motorcycles because the travel time is less than 

cars, especially at peak periods (Sperley & Pietz, 2010). A study in Paris, France, showed 

that the average lane-splitting speed of motorcycle riders in stopped traffic on a ring road 

is 38 km/h (Aupetit et al., 2015), indicating a big difference in the travel time of lane-
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splitting motorcycles and passenger vehicles. The frequency of motorcycles lane-splitting 

decreases as traffic speed increases (Ouellet, 2012).  

There are safety concerns relating to lane-splitting. Unexpected vehicles opening doors 

and changing lanes without indicating lead to safety hazards for motorcycles that travel 

between rows of vehicles (Sperley & Pietz, 2010). However, surprisingly, lane-splitting 

provides safety benefits to motorcyclists. In California, where lane-splitting is legal, the 

rate of rear-end collisions between motorcycles and cars is unusually low comparing to 

the other states that prohibit lane-splitting. In addition, the injuries are less severe if 

crashes occur during lane-splitting. As such, lane-splitting is safer than waiting in traffic 

if it is practiced at a low speed (Kurlantzick & Krosner, 2016).  

2.2 Travel Time Filtration Algorithms 

Many algorithms and approaches found in the literature addressed the filtration of 

outliers in travel time data. Each algorithm has some assumptions and levels of 

complexity. In this section, the algorithms appropriate for travel time data collected by 

MAC addresses were reviewed. 

2.2.1 Percentile Algorithm 

This algorithm uses percentiles to define the validity range. Clark et al. (2002) 

proposed to use the 10th percentile as a lower limit and the 90th percentile as an upper 

limit. These limits are applied after dividing the times into small equal time windows, 

usually 5 min or 15 min. This method is simple, easy to be applied, and can be used in 

real-time applications. However, it does not consider the comparison with the previous 

time window. Therefore, the filter will not work correctly if the number of outliers is more 

than the number of true observations, or all the observations are outliers. 
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2.2.2 Mean Absolute Deviation Algorithm 

The validity range in this algorithm is defined based on the median and mean absolute 

deviation (𝑀𝐴𝐷). Usually, 5 min or 15 min is appropriate for time windows (Clark et al., 

2002). 

𝑀𝐴𝐷 =
∑ |(𝐽𝑇𝑖 − 𝑀𝑒)|
𝑛
𝑖=1

𝑛
                                                                                                         (1) 

where, 𝐽𝑇𝑖 is the travel time for vehicle 𝑖; 𝑀𝑒 is the median of travel times in the time 

window, and 𝑛 is the number of travel time observations in the time window. 

The lower limit of the validity range is 𝑀𝑒 − 3 𝑀𝐴𝐷 and the upper limit is 𝑀𝑒 +

3 𝑀𝐴𝐷. 

The method can be readily applied, where it is simple. The usage of this algorithm in 

real-time applications is also possible. However, it does not consider the comparison with 

the previous time window. Thus, it has similar shortcomings of the percentile algorithm 

if the number of outliers is more than the number of true observations, or all observations 

are outliers. 

2.2.3 TransGuide Algorithm 

The TransGuide algorithm was one of the earliest algorithms proposed by the 

Southwest Research Institute for automatic vehicle identification (AVI) data. The 

algorithm defines travel time observation as valid if it rests inside pre-defined travel time 

limits based on the previous average travel time. These limits represent a validity range 

(Southwest Research Institute, 1998). The following equations describe this rolling 

average algorithm: 

𝑆𝑡𝑡𝐴𝐵 𝑡 = {𝑡𝐵𝑖 − 𝑡𝐴𝑖|𝑡 − 𝑡𝑊 ≤ 𝑡𝐵𝑖 ≤ 𝑡  𝑎𝑛𝑑  𝑡𝑡′𝐴𝐵 𝑡(1 − 𝑙𝑡ℎ) ≤ 𝑡𝐵𝑖 − 𝑡𝐴𝑖

≤ 𝑡𝑡′𝐴𝐵 𝑡(1 + 𝑙𝑡ℎ)}                                                                                           (2) 
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𝑡𝑡𝐴𝐵 𝑡 = 
∑ (𝑡𝐵𝑖 − 𝑡𝐴𝑖)
|𝑆𝑡𝑡𝐴𝐵 𝑡|
𝑖=1

|𝑆𝑡𝑡𝐴𝐵 𝑡|
                                                                                                    (3) 

Eq. (2) defines 𝑆𝑡𝑡𝐴𝐵 𝑡, which is a set of valid travel times from point A to point B at 

time t; these travel times will be used in Eq. (3) to calculate 𝑡𝑡𝐴𝐵 𝑡, that is the average 

travel time for the corresponding set of observations. 𝑡𝐴𝑖 represents the detection time of 

a vehicle i at point A; 𝑡𝐵𝑖 represents the detection time of a vehicle i at point B; t is the 

time at which the travel time estimation occurs; 𝑡𝑊 is time window; 𝑡𝑡′𝐴𝐵 𝑡 is the previous 

average travel time from A to B, and 𝑙𝑡ℎ is the link threshold travel time parameter. The 

time window 𝑡𝑊 and the link threshold travel time 𝑙𝑡ℎ are the main parameters of the 

TransGuide algorithm. Here, 𝑡𝑊 defines the period of time to be considered when 

estimating the current average travel time, while 𝑙𝑡ℎ is used to identify and remove outlier 

observations. The proposed values for these parameters are 2 min for 𝑡𝑊 and 0.2 for 𝑙𝑡ℎ. 

This means that any travel time observations between a pair of readers that differs by 

more than 20% from the average travel time associated with the observations made in the 

previous 2 min would be considered outliers and not considered in the calculation of the 

current interval average travel time (Dion & Rakha, 2006). This algorithm has a low 

complexity level. Also, it is relatively easy to understand its mechanism, that is, dividing 

the time into small windows then making comparisons between the observations in the 

current window with the average travel time of the previous window. This algorithm can 

also be applied in real-time applications. 

2.2.4 Dion and Rakha Algorithm 

Dion and Rakha (2006) contended that the TransGuide algorithm could not track 

abrupt changes in observed travel times with a low sampling rate. So, to address this 

shortcoming, an enhanced filtering algorithm was proposed, which applies a series of 

filters to the collected travel times to remove invalid observations, assuming that travel 
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times in a time window follow the lognormal distribution. Furthermore, this algorithm 

considers any travel time observation that falls outside a validity range defined using the 

mean and standard deviation as the outlier. The developers of this algorithm proposed 

several versions as follows: 

2.2.4.1 Version 1 

𝑡𝑡𝑠𝐴𝐵 𝑘 = {
𝑒[(𝛼).ln(𝑡𝑡𝐴𝐵 𝑘−1)+(1−𝛼).ln(𝑡𝑡𝑠𝐴𝐵 𝑘−1)]   , 𝑛𝑣𝑘−1 > 0
𝑡𝑡𝐴𝐵 𝑘−1                                                                     , 𝑛𝑣𝑘−1 = 0

                                        (4) 

𝜎𝑠𝑡𝑡𝐴𝐵 𝑘
2 = {

𝛼 . (𝜎𝑡𝑡𝐴𝐵 𝑘−1
2 ) + (1 − 𝛼).  ( 𝜎𝑠𝑡𝑡𝐴𝐵 𝑘−1

2 ) , 𝑛𝑣𝑘−1 > 1

𝜎𝑠𝑡𝑡𝐴𝐵 𝑘−1
2                                                        , 𝑛𝑣𝑘−1 = {0,1}

                      (5) 

𝛼 = 1 − (1 −  𝛽)𝑛𝑣𝑘                                                                                                                    (6) 

𝑡𝑡𝐴𝐵min𝑘 = 𝑒
[ln(𝑡𝑡𝑠𝐴𝐵 𝑘)−𝑛𝜎.(𝜎𝑠𝑡𝑡𝐴𝐵 𝑘)]                                                                                      (7) 

𝑡𝑡𝐴𝐵max𝑘 = 𝑒
[ln(𝑡𝑡𝑠𝐴𝐵 𝑘)+𝑛𝜎.(𝜎𝑠𝑡𝑡𝐴𝐵 𝑘)]                                                                                      (8) 

𝑆𝑡𝑡𝐴𝐵 𝑘 = {𝑡𝐵𝑖 − 𝑡𝐴𝑖|𝑡𝑘 − 𝑡𝑘−1 < 𝑡𝐵𝑖 ≤ 𝑡𝑘  𝑎𝑛𝑑  𝑡𝑡𝐴𝐵min𝑘 ≤ 𝑡𝐵𝑖 − 𝑡𝐴𝑖  

≤  𝑡𝑡𝐴𝐵max𝑘}                                                                                                      (9) 

𝑡𝑡𝐴𝐵 𝑘 = 
∑ (𝑡𝐵𝑖 − 𝑡𝐴𝑖)
𝑛𝑣𝑘
𝑖=1

𝑛𝑣𝑘
                                                                                                        (10) 

𝜎𝑡𝑡𝐴𝐵 𝑘
2 =

{
 
 

 
 
0                                                                  , 𝑛𝑣𝑘 = 0

[ln(𝑡𝐵𝑖 − 𝑡𝐴𝑖)𝑘 − ln(𝑡𝑡𝑠𝐴𝐵 𝑘)]
2

𝑛𝑣𝑘
          , 𝑛𝑣𝑘 = 1

∑ [ln(𝑡𝐵𝑖 − 𝑡𝐴𝑖)𝑘 − ln(𝑡𝑡𝑠𝐴𝐵 𝑘)]
2𝑛𝑣𝑘

𝑖=1

𝑛𝑣𝑘 − 1
 , 𝑛𝑣𝑘 ≥ 2

                                    (11) 

where, 𝑘 is the time of the end of the current time window. 𝑘 − 1 is the time of the end 

of the previous time window; 𝑡𝑡𝑠𝐴𝐵 𝑘 is the predicted smoothed mean of travel times from 

A to B for time k; 𝜎𝑠𝑡𝑡𝐴𝐵 𝑘
2  is the predicted smoothed variance of travel times from A to B 

for time k; 𝑡𝑡𝐴𝐵 𝑘 is the mean of travel times from A to B at time k; 𝜎𝑡𝑡𝐴𝐵 𝑘
2  is the variance 

of travel times from A to B at time k; 𝑆𝑡𝑡𝐴𝐵 𝑘 is a set of valid travel times from point A to 

point B at time k; 𝑡𝑡𝐴𝐵min𝑘 is the minimum of valid travel time from A to B at time k; 
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𝑡𝑡𝐴𝐵max𝑘 is the maximum of valid travel time from A to B at time k; 𝑛𝑣𝑘 is the number 

of valid travel times from A to B at time k; 𝛼 is an exponential smoothing factor; 𝛽 is a 

sensitivity parameter, and 𝑛𝜎is the number of standard deviations that defines the size of 

the validity window. 

Eq. (4) and Eq. (5) describe how to derive 𝑡𝑡𝑠𝐴𝐵 𝑘 and 𝜎𝑠𝑡𝑡𝐴𝐵 𝑘
2  based on the values of 

the previous sampling interval and 𝛼. Eq (6) is used to calculate 𝛼 based on 𝛽 and 𝑛𝑣𝑘. 

Eq. (7) and Eq. (8) are used to define the lower and upper limits for the validity range 

based on the results of Eq. (4), Eq. (5) and 𝑛𝜎. Eq. (9) uses the results of Eq. (7) and Eq. 

(8) to determine the valid travel time observation. Eq. (10) and Eq. (11) exhibit how to 

calculate 𝑡𝑡𝐴𝐵 𝑘 and 𝜎𝑡𝑡𝐴𝐵 𝑘
2  based on the valid travel time observation, using them in the 

calculations of the next time window. 𝛽, 𝑛𝜎 and the size of the time window are user-

defined parameters. The recommended values for these parameters are, 0.2 – 0.5 for 𝛽, 2 

or 3 for 𝑛𝜎, 2 min for the size of the time window (Dion & Rakha, 2006). 

2.2.4.2 Version 2 

The differences between version 2 and version 1 are calculating 𝛼 and 𝜎𝑡𝑡𝐴𝐵 𝑘
2  in Eq. 

(14) and Eq. (19), whereas other equations are the same. 

𝑡𝑡𝑠𝐴𝐵 𝑘 = {
𝑒[(𝛼).ln(𝑡𝑡𝐴𝐵 𝑘−1)+(1−𝛼).ln(𝑡𝑡𝐴𝐵 𝑘−1)]   , 𝑛𝑣𝑘−1 > 0
𝑡𝑡𝐴𝐵 𝑘−1                                                                   , 𝑛𝑣𝑘−1 = 0

                                       (12) 

𝜎𝑠𝑡𝑡𝐴𝐵 𝑘
2 = {

𝛼 . (𝜎𝑡𝑡𝐴𝐵 𝑘−1
2 ) + (1 − 𝛼).  ( 𝜎𝑠𝑡𝑡𝐴𝐵 𝑘−1

2 ) , 𝑛𝑣𝑘−1 > 1

𝜎𝑠𝑡𝑡𝐴𝐵 𝑘−1
2                                                        , 𝑛𝑣𝑘−1 = {0,1}

                    (13) 

𝛼 = {
1 − (1 −  𝛽)𝑛𝑣𝑘                       , 𝑛𝑎 < 3 𝑎𝑛𝑑  𝑛𝑏 < 3

max(0.5, 1 − (1 −  𝛽)𝑛𝑣𝑘)  , 𝑛𝑎 ≥ 3 𝑜𝑟     𝑛𝑏 ≥ 3
                                        (14) 

𝑡𝑡𝐴𝐵min𝑘 = 𝑒
[ln(𝑡𝑡𝑠𝐴𝐵 𝑘)−𝑛𝜎.(𝜎𝑠𝑡𝑡𝐴𝐵 𝑘)]                                                                                    (15) 

𝑡𝑡𝐴𝐵max𝑘 = 𝑒
[ln(𝑡𝑡𝑠𝐴𝐵 𝑘)+𝑛𝜎.(𝜎𝑠𝑡𝑡𝐴𝐵 𝑘)]                                                                                   (16) 
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𝑆𝑡𝑡𝐴𝐵 𝑘 = {𝑡𝐵𝑖 − 𝑡𝐴𝑖|𝑡𝑘 − 𝑡𝑘−1 < 𝑡𝐵𝑖 ≤ 𝑡𝑘  𝑎𝑛𝑑  𝑡𝑡𝐴𝐵min𝑘 ≤ 𝑡𝐵𝑖 − 𝑡𝐴𝑖  

≤  𝑡𝑡𝐴𝐵max𝑘}                                                                                                   (17) 

𝑡𝑡𝐴𝐵 𝑘 = 
∑ (𝑡𝐵𝑖 − 𝑡𝐴𝑖)
𝑛𝑣𝑘
𝑖=1

𝑛𝑣𝑘
                                                                                                        (18) 

𝜎𝑡𝑡𝐴𝐵 𝑘
2

=

{
  
 

  
 
0                                                                  , 𝑛𝑣𝑘 = 0 𝑎𝑛𝑑 𝑛𝑎 < 3 𝑎𝑛𝑑  𝑛𝑏 < 3

[ln(𝑡𝐵𝑖 − 𝑡𝐴𝑖)𝑘 − ln(𝑡𝑡𝑠𝐴𝐵 𝑘)]
2

𝑛𝑣𝑘
         , 𝑛𝑣𝑘 = 1 𝑎𝑛𝑑 𝑛𝑎 < 3 𝑎𝑛𝑑  𝑛𝑏 < 3

∑ [ln (𝑡𝐵𝑖 − 𝑡𝐴𝑖)𝑘 −  ln (𝑡𝑡𝑠𝐴𝐵 𝑘)]
2𝑛𝑣𝑘

𝑖=1

𝑛𝑣𝑘 − 1
,      𝑛𝑣𝑘 ≥ 2 𝑎𝑛𝑑 𝑛𝑎 < 3 𝑎𝑛𝑑  𝑛𝑏 < 3

0.01 . (𝑡𝑡𝐴𝐵 𝑘)                                           ,    𝑛𝑎 ≥ 3 𝑜𝑟      𝑛𝑏 ≥ 3                        
 

 (19) 

These changes have been proposed to track sudden variations in traffic conditions. In 

particular, the amendments enable the algorithm to consider as valid the third of three 

successive observations outside the validity limits, as long as all three observations are 

either above or below the validity limits. 𝑛𝑎 and 𝑛𝑏 have been introduced in this version, 

𝑛𝑎 is the number of consecutive observations above the validity limits, and 𝑛𝑏 is the 

number of consecutive observations below the validity limits. 

However, this algorithm is more complex than other algorithms, given that it has many 

assumptions that made it complicated. This complexity makes understanding and 

application more difficult. In addition, the multiplicity of parameters that need to be 

calibrated makes it impractical. However, it can be used in real-time applications. 

2.2.5 Jang Algorithm 

Jang (2016) proposed a new outlier filtering algorithm consisting of two parts based 

on the number of observations in the time window. In this algorithm, if the number is less 

than 3, which is insufficient to generate an effective measure of location, it utilises a 

validity range based on the previous time window. However, if the number of 

observations is more than or equal to 3, the current time window’s observations are used 

to determine the validity range. In the second part of this algorithm, given that the median 

Univ
ers

iti 
Mala

ya



19 

is the best measure of central tendency for skewed variables, the median is adopted to 

measure location. The minimum sample size for generating an effective median is three 

observations since the median can detect the discordant value if two travel time 

observations are true and one is discordant, though the mean may not. The median 

absolute deviation is utilised to define the validity range. If the number of valid 

observations is less than the outliers or all the travel times are outliers, the comparison 

between the median of the current time window and the mean of the previous time 

window is adopted to address and overcome this issue. 

𝐼𝐹 𝑛 < 3 𝑡ℎ𝑒𝑛 

𝑆1𝐴𝐵(𝑡) = {𝑘|𝑡 − 𝑇𝑤 < 𝑡𝐵,𝑘 ≤ 𝑡  } ⋂ {𝑚| |
𝑡𝐵,𝑚 − 𝑡𝐴,𝑚 − 𝑇𝐴𝐵(𝑡 − 𝑇𝑤)

𝑇𝐴𝐵(𝑡 − 𝑇𝑤)
|  ≤  𝛼}      (20) 

𝑇𝐴𝐵(𝑡) =
∑ (𝑡𝐵,𝑖 − 𝑡𝐴,𝑖)𝑖

𝑁(𝑆1𝐴𝐵(𝑡))
        , where   𝑖 ∈ 𝑆1𝐴𝐵(𝑡)                                                    (21) 

𝐼𝐹 𝑛 ≥ 3 𝑡ℎ𝑒𝑛 

𝑀𝑡 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑡𝐵,𝑚 − 𝑡𝐴,𝑚)                                                                                                   (22) 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛|(𝑡𝐵,𝑚 − 𝑡𝐴,𝑚) − 𝑀𝑡|                                                                                   (23) 

𝐼𝐹 |
𝑀𝑡 − 𝑇𝐴𝐵(𝑡 − 𝑇𝑤)

𝑇𝐴𝐵(𝑡 − 𝑇𝑤)
|  ≥  𝛾 , then apply (20) and (21)                                             (24) 

𝑆2𝐴𝐵(𝑡) = {𝑘|𝑡 − 𝑇𝑤 < 𝑡𝐵,𝑘 ≤ 𝑡  } ⋂ {𝑚|(𝑀𝑡 − 𝛽𝑀𝐴𝐷) ≤  (𝑡𝐵,𝑚 − 𝑡𝐴,𝑚)  

≤  (𝑀𝑡 + 𝛽𝑀𝐴𝐷)}                                                                                            (25) 

𝑇𝐴𝐵(𝑡) =
∑ (𝑡𝐵,𝑖 − 𝑡𝐴,𝑖)𝑖

𝑁(𝑆2𝐴𝐵(𝑡))
 , where  𝑖 ∈ 𝑆2𝐴𝐵(𝑡)                                                            (26) 
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where, 𝑇𝑤 is a time window or collection interval; 𝑛 is the number of travel time 

observations in 𝑇𝑤; 𝑆1𝐴𝐵(𝑡) and 𝑆2𝐴𝐵(𝑡) are the sets of valid travel times from A to B at 

time 𝑡; 𝑁(𝑆1𝐴𝐵(𝑡)) and 𝑁(𝑆2𝐴𝐵(𝑡)) are the numbers of valid travel times from A to B at 

time 𝑡; 𝑇𝐴𝐵(𝑡) is the average travel time of valid observations from A to B at time 

𝑡;  𝑇𝐴𝐵(𝑡 − 𝑇𝑤) is the average travel time of valid observations from A to B at time 

(𝑡 − 𝑇𝑤); 𝑡𝐴,𝑖 is the detection time of vehicle 𝑖 that has a valid travel time at point A; 𝑡𝐴,𝑚 

is the detection time of vehicle 𝑚 at point A; 𝑡𝐵,𝑖 is the detection time of vehicle 𝑖 that 

has a valid travel time at point B; 𝑡𝐵,𝑚 is the detection time of vehicle 𝑚 at point B. 𝑀𝑡 is 

the median of the travel time observations in the current time window. 𝑀𝐴𝐷 is the median 

absolute deviation of travel time observations in the current time window. 𝛼, 𝛽, and 𝛾 are 

parameters. 

Eq. (20) and Eq. (21) represent the first part of this algorithm. They are applied when 

the number of observations in the current time window is less than 3. Eq. (20) defines the 

valid travel time based on the comparison of each travel time observation in the time 

window with the average travel time of the previous time window 𝑇𝐴𝐵(𝑡 − 𝑇𝑤). If the 

absolute difference divided by 𝑇𝐴𝐵(𝑡 − 𝑇𝑤) exceeds 𝛼, the observation will be considered 

as an outlier; otherwise, it will be valid. Eq. (21) is utilised to calculate 𝑇𝐴𝐵(𝑡) and to use 

it as the average travel time of the previous time window for the next time window 

calculations. Notably, this part is similar to the TransGuide algorithm. Eq. (22) to Eq. 

(26) are the second part of this algorithm. Eq. (22) and Eq. (23) are employed to calculate 

𝑀𝑡 and 𝑀𝐴𝐷 respectively; Eq. (24) is used to deal with the situation that the number of 

valid observations is less than the outliers or all the travel times are outliers; Eq. (25) 

determines the valid travel time by defining a validity range based on 𝑀𝑡, 𝑀𝐴𝐷 𝑎𝑛𝑑 𝛽. 

Eq. (26) is used to calculate 𝑇𝐴𝐵(𝑡). The recommended values for the parameters are 5 

min for 𝑇𝑤, 0.35 for 𝛼, 3 for 𝛽, and 0.3 for 𝛾 (Jang, 2016). 
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It is noticeable that this algorithm is different from the other filtration algorithms 

presented in this study. The other algorithms depend on determining the validity range 

based on either the previous time window or the current time window, while the Jang 

algorithm consists of both. However, it has a medium level of complexity and can be 

employed in real-time applications. 

2.3 Travel Time Reliability 

2.3.1 Travel Time Reliability Definitions 

The literature has many definitions of TTR introduced in early studies. The Federal 

Highway Administration (FHWA) defines TTR as “the consistency or dependability in 

travel times, as measured from day-to-day and/or across different times of the day” (Texas 

Transportation Institute  & Cambridge Systematics Inc., 2005). This definition is 

commonly found in the literature, where many researchers consider it as a formal 

definition of TTR (P. Chen, Sun, & Qi, 2017; Z. Chen & Fan, 2019; Lyman & Bertini, 

2008). 

Traffic researchers addressed the concept of TTR from many aspects. Tsolakis et al. 

(2011) classified the definitions of TTR into five classifications: 

1) Reaching the destination in an acceptable time 

• “Percent of trips no longer than expected travel time plus a certain acceptable 

additional time” (Florida Department of Transportation, 2000).  

• “Percent of the same trips by time of day and trip purpose, within a specific range 

of travel time” (Elefteriadou & Cui, 2007). 

2) Consistency and dependability in travel time 

• “the consistency or dependability in travel times, as measured from day-to-day 

and/or across different times of the day” (Texas Transportation Institute  & 

Cambridge Systematics Inc., 2005). 
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3) Variability in journey time 

• “Measure of the variability of travel time” (Cambridge Systematics Inc., 1998). 

• “The variability of travel times that occur on a facility or a trip over the course of 

time” (Vandervalk, Louch, Guerre, & Margiotta, 2014). 

4) Travelling with non-recurrent congestion 

• “A measure of the amount of congestion that users of the transportation system 

experience at a given time” (Lyman & Bertini, 2008; Tsolakis et al., 2011). 

5) Transport system ability and performance 

• “The ability of the transport system to provide the expected level of 

service/quality, upon which users have organized their activities” (Tsolakis et al., 

2011). 

2.3.2 Travel Time Reliability Measures 

Travel time reliability (TTR) measures are the tools used to estimate the degree of 

unreliability or variability in travel time for particular sections of the road network. They 

can be used to understand how much travel time variability or unreliability road users 

experience. The different definitions mentioned above of TTR lead to various TTR 

measures (Tsolakis et al., 2011). As such, many researchers placed much effort in 

developing TTR measures to advantage road users and transportation professionals 

(Florida Department of Transportation, 2000; Kaparias, Bell, & Belzner, 2008; Lomax & 

Margiotta, 2003; Lyman & Bertini, 2008; Texas Transportation Institute  & Cambridge 

Systematics Inc., 2005). 

Lomax and Margiotta (2003) classified TTR measures into three types: 1) statistical 

range measures; 2) buffer time measures; 3) tardy trip indicators. However, there are 

differences noted between these types on the calculation part but are most evident on the 

communication side of the issue. 
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2.3.2.1 Statistical Range Measures 

These measures use standard deviation statistics to estimate the variety of transport 

conditions that passengers might encounter. Usually, they consider the form of an average 

value plus or minus a value that covers the expectations for 68% to 95% of the trips. Here, 

68% and 95% represent 1 and 2 standard deviations on each side of the mean. Typically, 

this type of measure is characterised by the information given in a relatively unprocessed 

format and based on concepts familiar to statisticians. Some of the statistical range 

measures are quite challenging to explain to non-statisticians and individual travellers to 

make travel decisions (Lomax & Margiotta, 2003). 

Three TTR measures were reported based on the standard deviation statistic, that 

includes the following (Lomax & Margiotta, 2003): 

1- Travel time window: is a combination between the standard deviation and 

the average using a “plus or minus” expression. One standard deviation will 

represent 68% of the trips. 

𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 𝑊𝑖𝑛𝑑𝑜𝑤 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 ± 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛             (27) 

2- Percent variation: is also known as the coefficient of variation, a 

combination between the standard deviation and the average in a ratio. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒
 × 100%                                                (28) 

3- Variability index: is a ratio of the difference in the upper and lower 95% 

confidence intervals between the peak period and the off-peak period. 

Usually, the variability index value is greater than 1 because the interval 

differences in the peak periods are larger than in the off-peak. 
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      𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =

(𝑢𝑝𝑝𝑒𝑟 95% 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑣𝑎𝑙𝑢𝑒−𝑙𝑜𝑤𝑒𝑟 95% 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑣𝑎𝑙𝑢𝑒) 𝑓𝑜𝑟 𝑃𝑒𝑎𝑘 𝑝𝑒𝑟𝑖𝑜𝑑

(𝑢𝑝𝑝𝑒𝑟 95% 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑣𝑎𝑙𝑢𝑒−𝑙𝑜𝑤𝑒𝑟 95% 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑣𝑎𝑙𝑢𝑒)𝑓𝑜𝑟 𝑜𝑓𝑓−𝑃𝑒𝑎𝑘 𝑝𝑒𝑟𝑖𝑜𝑑
    (29)  

2.3.2.2 Buffer Time Measures 

The concept of buffer time may correlate to the way travellers think. Conceptually, 

travellers endeavour to answer questions such as How far is the destination?; When do I 

have to arrive?; How bad is the traffic?; How much time do I need to allow for this?; 

When am I going to leave?. In the time allocation stage, an estimate is made on how much 

additional time should be required for any uncertainty in travel conditions since incidents, 

weather, work zones, special event, holiday, and other disruptions affect the decisions of 

travellers. Buffer time measures indicate the impact of irregular conditions in the amount 

of extra time that travellers must consider to achieve their destination. (Lomax & 

Margiotta, 2003). Three buffer time measures are presented below: 

1- Buffer time index (BTI): illustrates the extra buffer time (or time cushion) that 

most travellers add to their average travel time to ensure on-time arrival when 

scheduling trips. To account for any unforeseen delay, this extra period is added. 

This index is expressed as a percentage in that as reliability becomes worse, its 

value increases. For example, a buffer index of 50 per cent means that, for a 10-

minute average travel time, a traveller should budget an additional 5 minutes (10 

minutes × 50 per cent = 5 minutes) to ensure on-time arrival in most cases. The 5 

extra minutes is called the buffer time. BTI is calculated as the difference between 

the 95th percentile travel time and average travel time, divided by the average 

travel time. Here, 95th percentile travel time is used to represent a near-worst case 

scenario for travel time. A simple analogy is that only one weekday per month 

would account for being late for a commuter or driver who uses a 95th percentile 

reliability measure. (Texas Transportation Institute  & Cambridge Systematics 
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Inc., 2005). Notably, some references use BTI as an index, not as a percentage 

(Higatani et al., 2009). 

 

𝐵𝑇𝐼 =  
95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 
 × 100%    (30) 

Or 

𝐵𝑇𝐼 =  
95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 
                     (31) 

2- Planning time index (PTI): reflects the total travel time that should be planned 

when an adequate buffer time is included. The difference between PTI and BTI is 

that PTI includes typical delay and unexpected delay, while BTI includes simply 

unexpected delay. PTI is near-worst case travel time to free-flow travel time. For 

example, a PTI of 1.80 means that, for a 10-minute trip in free-flow traffic, the 

total time that should be planned for the trip is 18 minutes (10 minutes × 1.80 = 18 

minutes). PTI is useful as it can be directly compared to the TTI (a measure of 

average congestion) on similar numeric scales. PTI is calculated as the 95th 

percentile travel time divided by the free-flow travel time (Texas Transportation 

Institute  & Cambridge Systematics Inc., 2005). 

𝑃𝑇𝐼 =  
95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒

𝐹𝑟𝑒𝑒 𝑓𝑙𝑜𝑤 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒
                                                                     (32) 

3- Travel time index (TTI): is the ratio of average travel time observed during peak 

periods compared to free-flow travel time. This measure implies how much longer 

travel time is during congested conditions relative to free-flow traffic conditions 

(Culotta, Fang, Habtemichael, & Pape, 2019). Some references consider TTI a 

measure of congestion and do not consider TTI a measure of reliability (Texas 

Transportation Institute  & Cambridge Systematics Inc., 2005). Notably, TTI can 
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be calculated for any time of the day and not only for peak periods, as shown in 

Figure 2.1. 

𝑇𝑇𝐼 =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 

𝐹𝑟𝑒𝑒 𝑓𝑙𝑜𝑤 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒
                                                                                (33) 

Figure 2.1 describes the relationship between TTI, BTI, and PTI. TTI represents the 

average extra time required, as compared to the times of free-flow traffic conditions. BTI 

signifies the extra time needed above the average travel time, whereas PTI represents the 

total travel time necessary (Texas Transportation Institute  & Cambridge Systematics 

Inc., 2005).  

 

Figure 2.1: The relationship between the travel time index, the buffer time 
index, and the planning time index  (Texas Transportation Institute  & Cambridge 

Systematics Inc., 2005). 

2.3.2.3 Tardy Trip Indicators 

These measures assess how often travellers will unacceptably be late. A threshold to 

identify an acceptable late arrival time is used in these measures, where the average travel 

time is not adopted. The time can be increased in minutes above the average, a percentage 
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of the trip time, or some absolute value in minutes. The examples of these measures are 

reflected below: (Lomax & Margiotta, 2003) 

1- Florida Reliability Method: is used to estimate the limit of the acceptable extra 

travel time range; this measure uses a percentage of the average travel time in the 

peak and is calculated as follow: 

𝐹𝑙𝑜𝑟𝑖𝑑𝑎 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐

= 100 − (𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝑡𝑟𝑖𝑝𝑠 𝑤𝑖𝑡ℎ 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑)  (34) 

2- On-time arrival: has a concept similar to the Florida method. To indicate the 

percentage of trip travel times that can be termed reliable, it uses an acceptable 

“lateness threshold” of some percentage. It can be calculated as follows: 

𝑂𝑛 − 𝑡𝑖𝑚𝑒

𝑎𝑟𝑟𝑖𝑣𝑎𝑙
= 100 − (

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝑡𝑟𝑎𝑣𝑒𝑙 𝑟𝑎𝑡𝑒𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 110% 

𝑜𝑓 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑟𝑎𝑡𝑒
)        (35) 

3- Misery Index: describes the negative aspect of trip reliability and can be examined 

by the average number of minutes that the worst trips exceed the average. It can be 

calculated as follows: 

𝑀𝑖𝑠𝑒𝑟𝑦 𝐼𝑛𝑑𝑒𝑥 =  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑟𝑎𝑡𝑒𝑠 𝑓𝑜𝑟
𝑡ℎ𝑒 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 20% 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑖𝑝𝑠

− 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑟𝑎𝑡𝑒𝑠
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡𝑟𝑖𝑝𝑠

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑟𝑎𝑡𝑒 
               (36) 

2.3.3 Factors Affecting Reliability 

TTR is affected by many factors (Culotta et al., 2019; Kittelson, Associates, & 

Program, 2013; Margiotta et al., 2013): 

1- Bottlenecks: referring to road sections showing decreased traffic capacity 

compared to the capacity of upstream road sections. Typical bottlenecks include 

changes in alignment (e.g., horizontal curves), lane drops, changes in physical road 

characteristics (e.g., tunnels), presence of weave and merge sections, geometric 
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changes, interchanges, and access points to residential or commercial 

developments (Culotta et al., 2019). 

2- Traffic-control devices: are used to inform, guide, and control traffic flow (both 

pedestrians and vehicles). Any problems in traffic-control devices lead to 

disruption in traffic flow, which lead to delays and unreliable travel time. Such 

problems include the use of inappropriate devices, improper device placement, 

wrong colour, shape, and size, poor timing devices, and device failure (Culotta et 

al., 2019). 

3- Weather: environmental conditions trigger changes in driver behaviour. Severe 

weather conditions like fog, snow, and heavy rain, cause drivers to drive more 

cautiously, slowing down and leaving more space between vehicles to maintain 

safety, thus reducing roadway throughput (Kittelson et al., 2013; Margiotta et al., 

2013). 

4- Incidents: traffic incidents are events that disrupt traffic flow, usually due to 

physical impedance in travel lanes. Vehicular crashes and breakdowns, and debris 

on the roadway reduce the capacity either by blocking lanes physically or by 

creating visual distractions causing motorists to slow down, resulting in reduced 

roadway throughput (Kittelson et al., 2013; Margiotta et al., 2013). 

5- Work zones: are areas where roadway construction activities lead to tentative 

physical changes to the highway environment. Lane closures, lane width 

reductions, type and duration of work, work intensity, pavement condition, and 

work zone length are factors that can cause delays in work zones. Short-term work 

zones tend to have more effect on disrupting traffic than long-term work zones. In 

long-term work zones, road users tend to become more familiar with the new traffic 

pattern (Culotta et al., 2019). 
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6-  Travel demand fluctuations: are the daily and seasonal changes in the demand that 

contribute to increased travel. For example, seasonal changes might be due to 

holidays, part-year residents moving out or tourists coming in, or school-related 

traffic during the school year at the beginning and end of the school day (Culotta 

et al., 2019) . 

7- Special events: are a unique case of travel demand fluctuations where traffic flow 

in the proximity of the event will be radically different from normal patterns. 

Sometimes, Special events lead to surges in traffic demand that overwhelm the 

system (Kittelson et al., 2013). 

Most Likely, factors that cause fluctuations in either demand or supply have inter-

relationships, where they are not independent. For example, extreme weather can be 

deemed a factor in reducing the road network capacity, also affecting travel demand. 

Moreover, accidents may increase given this situation (Hojati, 2014). 

2.3.4 Recurrent and Non-Recurrent Congestion 

Congestion can be divided into recurrent and non-recurrent. Recurrent congestion 

includes delays that are foreseeable in frequency and extent (e.g., peak-hour traffic), 

whereas in contrast, non-recurrent congestion is caused by unanticipated delays resulting 

from a temporary decline in road capacity (e.g. blocked lane(s) due to accidents) or 

sudden increases in demand (e.g. special events). Lack of TTR is related to delays caused 

by congestion, especially delays caused by non-recurrent events. Consequently, 

improvements in congestion can also increase the reliability of travel times (Culotta et 

al., 2019). 

In a study conducted in the US to estimate congestion by source, recurrent congestion 

represented 40%, whereas non-recurrent congestion accounted for 60%. In this study, 

non-recurrent congestion is higher than recurrent congestion. Estimation of congestion 
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by source for individual highways is instrumental in developing mitigation strategies. 

Figure 2.2 displays the sources of congestion for the study mentioned above. Bottlenecks, 

that is, recurrent congestion, represents 40%, while traffic incidents represent the highest 

source of non-recurrent congestion (Cambridge Systematics Inc., 2005). 

 

Figure 2.2: The sources of congestion (Cambridge Systematics Inc., 2005). 

Four components describe the concerns of travellers concerning congestion: duration, 

extent, intensity, and variation. Duration is the length of time the transportation system is 

under congestion, measured by congested hours. Extent is the number of vehicles or 

people affected by congestion. Indeed, it can be measured by person-miles of travel and 

by per cent, route-miles, or lane-miles of the transportation system affected by congestion. 

The third component, namely intensity, depicts the severity of the congestion, measured 

by TTI, PTI and BTI. The variation in the first three components is the fourth component 

of congestion which can be considered an indicator of the system's reliability. It can be 

measured by PTI and BTI (Cambridge Systematics Inc., 2008). 
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2.3.5 Travel Time Variability 

Travel Time Variability (TTV) relates to the uncertainty in trip journey times. TTV 

can be considered from three different perspectives: the day-to-day variability, the period-

to-period variability, and the vehicle-to-vehicle variability (Noland & Polak, 2002). 

The day-to-day (or inter-day) variability shows the variability between similar trips 

during the same time period on various days. Day-to-day variability is illustrated in Figure 

2.3 below. This figure shows the travel time of the same road segment on different 

working days in a probability distribution function. Travel demand fluctuations, weather 

conditions, incidents, and driving behaviour can lead to day-to-day variability. (Büchel 

& Corman, 2020). 

 
Figure 2.3: Typical representation explaining of day-to-day variability (Büchel 

& Corman, 2020). 

Period-to-period variability (also known as inter-period) is the second type of TTV. It 

explains the variability between vehicles making similar trips at different times on the 

same day. Figure 2.4 shows a representation of period-to-period variability. In this case, 

travel times are longer during peak periods than during off-peak periods. Short-term 

changes in travel demand, weather conditions, and incidents can result in period-to-period 

variability (Büchel & Corman, 2020). 
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Figure 2.4: Typical representation explaining of period-to-period variability 

(Büchel & Corman, 2020). 

Lastly, vehicle-to-vehicle variability (also known as inter-vehicle) is the third type of 

variability. It illustrates the variability between travel times that different vehicles travel 

at similar times over the same road segment. Figure 2.5 shows this type of variability. For 

instance, at 14:00, travel times are around 100 to 150 seconds. This range represents 

vehicle-to-vehicle variability. Different delay times at traffic signals, types of vehicles, 

conflict with pedestrians, and differences in driving behaviour can lead to vehicle-to-

vehicle variability (Büchel & Corman, 2020). 

 

Figure 2.5: Typical representation explaining of vehicle-to-vehicle variability. 

The terms TTR and TTV are frequently used interchangeably (Fosgerau, Hjorth, 

Brems, & Fukuda, 2008; Tsolakis et al., 2011). As revealed in the TTR definition section 

of this study, some researchers consider TTR as a measure of TTV (Cambridge 
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Systematics Inc., 1998; Fosgerau et al., 2008). However, TTV indicates the variance of 

travel time over time, while TTR includes variance and predictability (Fosgerau et al., 

2008; Hojati, 2014). Travellers and operators prefer to use TTR, where it is more easily 

conceptualised and understood (Lomax & Margiotta, 2003). 

2.3.6 Importance of Travel Time Reliability 

TTR is important to transportation system users, whether they are vehicle drivers, 

freight shippers, transit riders, or air travellers. TTR allows personal and business 

travellers to better utilise their own time. Shippers and freight carriers require predictable 

travel times to remain competitive. Given the importance of TTR, decision-makers and 

transportation professionals should consider using it as a key performance measure 

(Texas Transportation Institute  & Cambridge Systematics Inc., 2005). 

Many studies have shown that, in general, travellers would rather use the routes with 

higher mean travel times and smaller TTV in place of routes having lower mean travel 

times and larger TTV (Lyman & Bertini, 2008; Van Lint & van Zuylen, 2005). Therefore, 

providing confidence intervals around the average travel time is beneficial to minimise 

the level of anxiety and stress induced by uncertainty. It will also assist road users in 

making better decisions regarding departure time and route choice (Hojati, 2014). 

TTR is better than simple averages in quantifying the benefits of traffic management 

and operation activities. For instance, consider a typical before-and-after study that 

attempts to quantify the benefits of an incident management program. The improvement 

in average travel time may seem to be modest, as shown in Figure 2.6a. While Figure 

2.6b, on the other hand, indicates that reliability measures show a more significant 

improvement. They demonstrate the effect of improving the worst few days of an 

unexpected delay (Texas Transportation Institute  & Cambridge Systematics Inc., 2005). 
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                                 (a)                                                               (b) 

Figure 2.6: Benefits of an incident management program: (a) improvement in 
average travel time, (b) improvement in travel time reliability (Texas 

Transportation Institute  & Cambridge Systematics Inc., 2005). 
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CHAPTER 3: METHODOLOGY 

This chapter describes the methodology adopted in this research. The methodology 

employed to achieve the objectives of this research is described in the following sections: 

research methodology flowchart, study area, data collection, data description, and data 

analysis. 

3.1 Research Methodology Flowchart 

In order to achieve the research objectives, the appropriate methods and analyses were 

selected after reviewing the literature relevant to the subject under study. These analyses 

were carefully organised to ensure consistency between them. So as to facilitate 

understanding the outlines of the procedures and analyses, a research flowchart was 

developed, as illustrated in Figure 3.1. Here in this figure, four phases are adopted to 

achieve the research objectives. The literature review is the first phase to understand the 

research problem and to identify the research gap. The second phase is collecting the data, 

where all required data is gathered before commencing the analysis. After that, filtration 

of travel time data constitutes the third phase consisting of two stages. The first stage is 

the validation of the previous travel time filtration algorithms, applying these algorithms 

to travel time data for one day. The second stage is the examination of the sensitivity of 

the algorithm parameters for different days. The two stages set out to evaluate the 

previously established filtration algorithms and identify the most appropriate algorithm 

and parameters able to filter lane-splitting observations and outliers. The fourth phase is 

the empirical analysis of TTR measures based on filtered data. The results and discussions 

constitute the fifth phase, which reveals the answers to the research questions. The last 

phase includes the conclusions and recommendations based on the results of the analysis. 
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Figure 3.1: Research Methodology Flowchart 

3.2 Study Area 

An urban roads network at the heart of KL was selected for carrying out the data 

analysis. The network is located near Kuala Lumpur city centre (KLCC), where numerous 

skyscrapers such as Petronas Twin Towers and many shopping centres, hotels, and 

businesses offices are located. Four units of MAC address sensors were installed at this 

network to measure travel time. The locations of the sensors were as follow: 

• Sensor 1 at KL-Seremban Highway. 

• Sensor 2 at Jalan Istana. 

• Sensor 3 at Jalan Tun Razak (near the U.S. Embassy). 

• Sensor 4 at Jalan Yew.  

These sensors were utilised to collect travel time data from three routes. Figure 3.2 

presents the locations of the sensors and the routes. These three routes were selected 

because they are at the heart of KL. Also, they have different lengths and variation in the 

number of collected observations. 

In order to facilitate the discussion in this section of the research, the routes were 

named, A for the route that reaches between sensor 1 and sensor 2, B for the route that 
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reaches between sensor 1 and sensor 4, and C for the route that reaches between sensor 4 

and sensor 3. The routes information is presented in Table 3.1. 

  
(a) (b) 

 
(c) 

Figure 3.2: Maps of the routes: (a) route A, (b) route B, and (c) route C (Google, 
n.d.) 

As shown in the above figure, route A consists of two segments; one is part of the KL-

Seremban Expressway, and the other is part of Jalan Istana. Route B consists of three 

segments: a portion of the KL-Seremban Expressway, Jalan Sungai Besi, and Jalan Yew, 

while the last route consists of one segment, which forms a part of Jalan Tun Razak. 
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Table 3.1: Routes information 

Route Length (m) Segments Connected 
sensors 

No. of travel time 
observations 

during May 2018 
Route A 3880 2 1 and 2 89225 
Route B 5690 3 1 and 4 37320 
Route C 1410 1 4 and 3 117114 
 

3.3 Data Collection 

Integrated Transportation Solutions Sdn. Bhd. (ITSSB) collected the traffic data used 

in this study under the Pilot Project of Advanced Traffic Information System (ATIS) in 

2018. The project was conducted in collaboration with the Integrated Transport 

Information System (ITIS) DBKL. As shown in Figure 3.3, ITSSB developed a system 

that uses the MAC address to collect traffic data. The system anonymously detects, 

transmits, records, matches and analyses MAC addresses that smartphones periodically 

transmit via Wi-Fi to measure TTR. Millions of MAC address data were collected during 

the pilot project period. The data used in this study was collected during May 2018, 

consisting of 18 weekdays, eight weekends, three general election days and two public 

holidays. The analysis was carried out inclusive of these days. 

 

Figure 3.3: MAC address sensors 
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The percentage of mobile devices and vehicles equipped with Wi-Fi technology is 

vast. The MAC address can be captured using sensors at strategic key points on road 

networks and transmitted to the back-end server for precise travel time measurement. The 

sensor at a specified location first logs the time stamp of the mobile device that enters its 

zone. When another sensor logs the device again at a different location, the difference in 

time stamps is utilised to estimate the vehicle's travel time between the two locations 

equipped with that particular mobile device (Abdullah et al., 2017). 

3.4 Data Description 

Data description using MAC Address data for lane-splitting, based on the actual 

situation, incorporating a high percentage of motorcycles have never been reported. This 

section presents actual MAC Address datasets in Malaysia to show the impact of lane-

splitting on travel time patterns. The presented datasets had raw matched MAC address 

data before any filtration algorithm was applied. 

The travel time datasets for the study area were grouped into three categories of 

observations: valid, outlier, and lane-splitting. Lane-splitting observations represent the 

motorcycle observations at peak periods. The method adopted to observe lane-splitting 

was manual classification based on the experience of the researcher as Moghaddam and 

Hellinga (2014) did in their research. After revising many travel time patterns from 

different studies the researcher understood how to manually classify the dataset. Valid 

observations pattern is clear, where usually there are morning peak and evening peak. In 

addition, lane-splitting observations are clear because they are existed only during peak 

hours.  

To classify travel time datasets into valid, lane-splitting, and outlier, first, the travel 

time dataset for a whole day for one route was presented using a graph. Second, using the 

graph, for each hour, the classification was done. Third, for the second day for the same 
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route the first two steps were repeated. Fourth, after the whole route were classified, the 

first three steps were repeated for the next route. 

Figure 3.4 presents the travel time datasets of routes A, B, and C on 28th May 2018 for 

24 hours. In this figure, the blue points are valid observations, whereas the grey points 

are outliers, and the orange points are lane-splitting observations. Figure 3.4a displays the 

travel times for route A. The differences between the three categories are evident for this 

route. Figure 3.4b exhibits the datasets of route B, where the number of valid observations 

is relatively small compared to outliers and lane-splitting data since this route is longer 

with numerous intersections. Figure 3.4c demonstrates the travel time observations for 

route C.  

To notice the difference in travel time between passenger vehicles and motorcycles, 

Tables 3.2, 3.3, and 3.4 present average travel time for passenger vehicles and 

motorcycles during morning peak period from 8:00 to 9:00. It is clear that the difference 

between passenger vehicles and motorcycles is very high for all routes. 
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(b) 

Figure 3.4: Travel time datasets for 28th May 2018: (a) route A, (b) route B, and 
(c) route C. 

 

 
(c) 

‘Figure 3.4, continued’ 

Table 3.2: Average travel time for passenger vehicles and motorcycles for route A 

Time Average travel time (Second) % Difference Passenger vehicles motorcycles 
8:00 - 8:09 697 309 55.65 
8:10 - 8:19 669 270 59.64 
8:20 - 8:29 616 273 55.59 
8:30 - 8:39 571 248 56.64 
8:40 - 8:49 505 272 46.07 
8:50 - 8:59 411 229 44.34 
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Table 3.3: Average travel time for Passenger vehicles and motorcycles for route B 

Time Average travel time (Second) % Difference Passenger vehicles motorcycles 
8:00 - 8:09 909 381 58.09 
8:10 - 8:19 950 375 60.48 
8:20 - 8:29 1018 423 58.46 
8:30 - 8:39 1217 436 64.17 
8:40 - 8:49 1203 412 65.76 
8:50 - 8:59 860 320 62.79 

 

Table 3.4: Average travel time for Passenger vehicles and motorcycles for route C 

Time Average travel time (Second) % Difference Passenger vehicles motorcycles 
8:00 - 8:09 250 154 38.31 
8:10 - 8:19 274 151 44.89 
8:20 - 8:29 265 158 40.45 
8:30 - 8:39 281 156 44.45 
8:40 - 8:49 303 154 48.98 
8:50 - 8:59 297 169 42.97 

 

3.5 Data Analysis 

3.5.1 Filtration of Travel Time Data 

To evaluate the performance of the filtration algorithms to detect the outliers in the 

travel time datasets, the main approach used in the literature was by applying the filtration 

algorithms to field data and using graphs to present the algorithm performance (S. Chen, 

Wang, & van Zuylen, 2010; Clark et al., 2002; Dion & Rakha, 2006; Jang, 2016; Wu, 

Wu, & Rilett, 2020). 

Regarding the current study, extensive empirical travel time data from three routes 

were used to validate the performance of the selected algorithms, as discussed in Chapter 

2 for detecting outliers and lane splitting observations. These algorithms included the 

percentile algorithm, mean absolute deviation algorithm, TransGuide algorithm, Dion and 

Rakha algorithm (version 1 and version 2), and Jang algorithm. The equations for each 

algorithm were presented in Chapter 2. Two stages were adopted to evaluate the 

previously established filtration algorithms and identify each route's most appropriate 
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algorithm and parameters. R software was used to analyse the effectiveness of the 

algorithms and calculations in this study. R software is an open-source programming 

language that highly used by statisticians for statistical computing and graphics 

(Venables, Smith, & R Development Core Team, 2009). It was used in this research 

because it is excellent for statistical computing and analysis, and it supports various data 

types. 

Stage 1: Validation of the Previous Filtration Algorithm 

The travel time datasets from 00:00 to 23:59 on 28th May 2018 for the three routes 

were used to validate the abovementioned algorithms. This day was selected because it is 

a weekday, and there are considerable amounts of lane-splitting observations. To reach 

the best performance for each algorithm, the values of algorithm parameters were 

calibrated using a trial-and-error method. In order to identify the best algorithm, the 

assessment was undertaken by observing the performance of each algorithm and 

comparing its performance with the other algorithms using graphs. In addition, the mean 

absolute relative error (MARE) was used as a numerical indicator to compare the 

algorithms’ performances. 

𝑀𝐴𝑅𝐸 =  
1

𝑛
∑

|𝑥(𝑡) − 𝑦(𝑡)|

𝑥(𝑡)

𝑛

𝑡=1

                                                                                                (37) 

where n is the number of samples. x(t) is the average travel time from ground truth 

data (the valid observations in Figure 3.4) at collection interval t (five minutes), and y(t) 

is the average travel time from a filtering algorithm at the collection interval t (five 

minutes). 

Travel time data collected by MAC addresses can be used as ground truth for 

intelligent transportation system applications (Haghani, Hamedi, Sadabadi, Young, & 
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Tarnoff, 2010). In this study, the ground truth was extracted manually as Moghaddam 

and Hellinga (2014) did in their study. 

Stage 2: Sensitivity Analysis of the Algorithm Parameters 

The best-selected algorithm for each route was applied on other ten-day datasets to 

check the sensitivity of the algorithm parameters for different days. After that, for the 

days that showed unaccepted results, the calibration of the parameters was performed to 

check the capability of the best algorithm to filter data from all days. The calibration of 

parameters was carried out using a trial-and-error method. The mean absolute relative 

error (MARE) was used as a numerical indicator to compare the algorithms’ performance 

before and after calibration. The ground truth used to calculate the MARE in this stage is 

presented in Appendix A. 

3.5.2 Analysis of Travel Time Reliability Measures  

Following filtration of the datasets, TTI, PTI, and BTI were adopted as TTR 

measures in this study. The following equations were used to calculate these measures 

with respect to TOD, DOW, holidays, and election days (Culotta et al., 2019; Texas 

Transportation Institute & Cambridge Systematics Inc., 2005). Accordingly, TTI, PTI, 

and BTI were selected for several reasons; first, they are used by numerous authorities 

worldwide, and second, the concepts of these measures are easily understood than 

other TTR measures.  TOD, DOW, holidays, and election days were selected because 

each category has different travel time pattern, and the researchers usually calculate 

travel time reliability measures for each category separately. Travel time datasets for 

the entire month (May 2018) were utilised for this analysis. 

TTI =  
Average travel time 

Free flow travel time
                                                                                            (38) 

PTI =  
95th percentile travel time

Free flow travel time
                                                                                (39) 
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BTI =  
95th percentile travel time − Average travel time 

Average travel time 
                                    (40) 

Free flow travel time =  
length of route 

Free flow speed 
                                                                   (41) 

The free-flow speed is defined as the 85th percentile speed during overnight hours 

between 10:00 p.m. and 5 a.m. (Z. Chen & Fan, 2020; Fan & Gong, 2017; Florida 

Department of Transportation, 2011; Schrank, Eisele, Lomax, & Bak, 2015).  

It is also important to mention that travel time data were aggregated at 5 minutes  

intervals by calculating the average of the observations to avoid fluctuations in travel time 

(Yang & Wu, 2016). 
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CHAPTER 4: RESULTS AND DISCUSSION 

This chapter presents the results from analysing the data. As discussed in Chapter 3 

(the methodology chapter), data analysis consisted of two main stages: (1) filtration of 

travel time data and (2) analysis of TTR measures (TTI, PTI and BTI) for the area under 

study. In this chapter, the first section presents the filtration results of travel time data and 

includes validating the previous filtration algorithm and checking the sensitivity of the 

algorithm parameters for different days. The second section discusses the results of the 

analysis of TTR measures (TTI, PTI and BTI) for the study area. 

4.1 Filtration of Travel Time Data 

4.1.1 Validation of the Previous Filtration Algorithm 

The outlier detection algorithms presented in the literature review chapter were applied 

for the travel time datasets for routes A, B, and C. These included the percentile algorithm, 

mean absolute deviation algorithm, TransGuide algorithm, Dion and Rakha algorithm 

and, Jang algorithm. The travel time dataset from 00:00 to 23:59 during 28th May 2018 

was used in the validation. 

4.1.1.1 Validation of the Previous Filtration Algorithm for Route A 

Figure 4.1 shows the performance of the filtration algorithms for route A. Figure 4.1a 

presents the valid data after applying the percentile algorithm using the 25th percentile as 

the lower limit and the 75th percentile as the upper limit. The algorithm detects lane-

splitting observations and most outliers but removed a significant number of valid 

observations. In contrast, Clark et al. (2002) proposed using the 10th percentile as a lower 

limit and the 90th percentile as an upper limit. However, these limits did not give a good 

performance. The mean absolute deviation algorithm with a validity range 𝑀𝑒 ± 3 𝑀𝐴𝐷 

proposed by Clark et al. (2002) was not able to remove the lane-splitting data at the 

morning peak period and evening peak period and failed to detect many outliers. Thus, 
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the validity range was modified to 𝑀𝑒 ± 0.8 𝑀𝐴𝐷. This modification had a positive effect 

on the performance of the algorithm, as shown in Figure 4.1b, but it removed a significant 

number of valid observations. 

Figure 4.1c shows the performance of the TransGuide algorithm with 𝑙𝑡ℎ = 0.5, 

however, it is not 0.2 as proposed by (Southwest Research Institute, 1998). This algorithm 

does not have the ability to detect lane-splitting data at the onset of the morning peak 

period and in the middle of the evening peak period. Figure 4.1d reveals the behaviour of 

Dion and Rakha’s version 1 algorithm. The values of the parameters that gave the best 

results are 𝛽 = 0.5, 𝑛𝜎 = 2.5, and size of the time window = 5 minutes. However, the 

algorithm cannot eliminate a few lane-splitting observations at the morning and evening 

peak periods and failed to detect many outliers at the evening peak period. Dion and 

Rakha’s version 2 algorithm performance is presented in Figure 4.1e. Here, the adopted 

values of parameters are 𝛽 = 0.5, 𝑛𝜎 = 2.5, size of the time window = 5 minutes, n skips 

= 10. Notably, the performance of version 2 is worse than version 1. Jang (2016) proposed 

using the parameters as follow: 𝛼 = 0.35, 𝛽 = 3, and 𝛾 = 0.3 in his algorithm. However, 

these values did not provide good results. Thus, modifications were proposed, where 𝛼 = 

1, 𝛽 = 1.5, and 𝛾 = 0.3. The performance of the modified parameters algorithm is 

promising, as reflected in Figure 4.1f. The best algorithm for route A is the Jang 

algorithm.    
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.1: Performance of filtration algorithms of route A: (a) Percentile 
algorithm, (b) Mean absolute deviation, (c) TransGuide algorithm, (d) Version 1 

Dion and Rakha algorithm, (e) Version 2 Dion and Rakha algorithm, and (f) Jang 
algorithm 
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4.1.1.2 Validation of the Previous Filtration Algorithm for Route B 

The performances of the algorithms for route B are presented in Figure 4.2. Figure 

4.2a illustrates applying the percentile test using the 25th percentile as a lower limit and 

the 75th percentile as an upper limit. However, the result is not good. The mean absolute 

deviation algorithm with a validity range 𝑀𝑒 ± 0.3 𝑀𝐴𝐷 cannot detect all lane-splitting 

observations at the morning peak period, as shown in Figure 4.2b. Figure 4.2c displays 

the result using the TransGuide algorithm with 𝑙𝑡ℎ = 0.3. Noticeablly, the performance of 

this algorithm is the best for route B, where it efficiently detects the lane-splitting data 

and outliers. Figure 4.2d and Figure 4.2e display the behaviour of Dion and Rakha’s 

version 1 and version 2 algorithms, respectively. Here, both algorithms exhibited a bad 

performance to detect outliers. Figure 4.2f illustrates the behaviour of the Jang algorithm 

using the following values of the parameters 𝛼 = 0.3, 𝛽 = 1, and 𝛾 = 0.3. However, the 

algorithm cannot remove all of the lane-splitting observations at the morning peak period, 

as a significant number of valid travel time observations are removed. 

  
(a) (b) 

Figure 4.2: Performance of filtration algorithms of route B: (a) Percentile 
algorithm, (b) Mean absolute deviation, (c) TransGuide algorithm, (d) Version 1 

Dion and Rakha algorithm, (e) Version 2 Dion and Rakha algorithm, and (f) Jang 
algorithm 
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(c) (d) 

  
(e) (f) 

‘Figure 4.2, continued’ 

4.1.1.3 Validation of the Previous Filtration Algorithm for Route C 

The results for route C are shown in Figure 4.3. Figure 4.3a shows the result of 

applying the percentile algorithm using the 25th percentile as a lower limit and the 75th 

percentile as the upper limit. The algorithm showed a good performance detecting lane-

splitting data and outliers but removed a significant number of valid observations. Figure 

4.3b shows that the mean absolute deviation algorithm with a validity range of 𝑀𝑒 ±

0.5 𝑀𝐴𝐷 showed good performance detecting lane-splitting data and outliers but 

removed a significant number of valid observations. Figure 4.3c shows that the 

TransGuide algorithm with 𝑙𝑡ℎ = 0.6 does not have the ability to detect the splitting lane 

data. Dion and Rakha’s version 1 and version 2 algorithms failed to remove lane-splitting 
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data at the morning peak and were unable to detect a considerable number of outliers, as 

shown in Figure 4.3d and Figure 4.3e, respectively. Figure 4.3f exhibits the performance 

of Jang algorithm with 𝛼 = 0.5, 𝛽 = 1, and 𝛾 = 0.3. The performance of this algorithm is 

excellent for detecting lane-splitting observations and outliers. The best algorithm for 

route C is the Jang algorithm.    

  
(a) (b) 

  
(c) (d) 

   Figure 4.3: Performance of filtration algorithms of route C: (a) Percentile 
algorithm, (b) Mean absolute deviation, (c) TransGuide algorithm, (d) Version 1 

Dion and Rakha algorithm, (e) Version 2 Dion and Rakha algorithm, and (f) Jang 
algorithm 
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(e) (f) 

‘Figure 4.3, continued’ 

Table 4.1 presents the MARE values for the three routes for 28th May 2018. The 

algorithm with the smallest MARE value indicates the best performance, which means 

that this algorithm has minimum error relative to the ground truth data. The table shows 

that the Jang algorithm is the best algorithm for Routes A and C, while the TransGuide 

algorithm is the best for Route B. This finding affirmed the conclusions drawn from the 

discussion of Figures 4.1-4.3. 

Table 4.1: MARE values for the three routes for 28th May 

Filtering Algorithm Mean absolute relative error (MARE) 
Route A Route B Route C 

Percentile algorithm 0.132 0.392 0.158 
Mean absolute deviation algorithm 0.123 0.386 0.140 
TransGuide algorithm 0.050 0.129 0.078 
Dion and Rakha algorithm Version 1 0.049 0.313 0.082 
Dion and Rakha algorithm Version 2 0.052 0.226 0.083 
Jang algorithm 0.028 0.153 0.050 

 

4.1.2 Check of the Sensitivity of the Algorithm Parameters for Different Days 

Travel time datasets from ten days are used to check whether there is a need to calibrate 

the parameters of the best algorithm for each day to obtain the best performance or 

whether the parameters used in the previous section are suitable for all days. These days 

are the 2nd, 5th, 8th, 11th, 14th, 17th, 20th, 23rd, 26th, and 29th of May 2018. It was 

found that the 2nd, 8th, 14th, 17th, and 23rd of May were weekdays. While, 5th, 20th, 
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and 26th of May were weekends. The 11th of May was an election day, and the 29th of 

May was a holiday. However, only the algorithm that gave the best performance for each 

route is tested in this section. 

When any of the days mentioned above show unaccepted performance, it indicates that 

the algorithm's parameters are sensitive for different days. Thus, calibration of the 

algorithm’s parameters is required for the days showing unaccepted performance. 

Calibration means modifying the values of the algorithm’s parameters using the trial-and-

error method to obtain the algorithm's best performance. This step aims to check the 

ability of the algorithm to filter data from all days. For example, if an algorithm has three 

user-defined parameters X, Y, and Z. Usually, the developers of the filtration algorithms 

propose values for each parameter. First, the proposed values are used. If the performance 

is acceptable, adjusting the values will be not necessary to carry out, while if the 

performance is unacceptable, the parameters need to be calibrated. Parameter X is the 

first parameter to be calibrated by increasing and decreasing the value until reaching to 

the best performance. After that, parameter Y is the second parameter to be calibrated by 

increasing and decreasing the value until reaching to the best performance. Finally, 

parameter Z is the last parameter to be calibrated by increasing and decreasing the value 

until it reaches the best performance condition. 

4.1.2.1 Check of the Sensitivity of the Algorithm Parameters for Different Days for 

Route A 

The Jang algorithm with 𝛼 = 1, 𝛽 = 1.5, 𝛾 = 0.3, and 𝑡𝑊 = 5 exhibited the best 

performance for route A for the 28th May travel time dataset. The performance of the 

Jang algorithm with these parameters is applied for the ten days. Figure 4.4 shows the 

performance of the Jang algorithm for route A for the days mentioned above. Five datasets 

have poor performance (refer to Figures 4.4a, 4.4c, 4.4e, 4.4f, and 4.4h) because 
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considerable amounts of lane-splitting observations during morning peak period 

remained after filtration. Interestingly, all these figures represent weekdays. Thus, the 

parameters of the Jang algorithm for route A are sensitive for datasets from different days. 

Therefore, it is crucial to calibrate the parameters for each day to gain acceptable results. 

Employing the trial-and-error method, the parameters of the Jang algorithm for the 

datasets showing unacceptable results in Figure 4.4 are calibrated. Figure 4.5 displays the 

performance of the Jang algorithm before and after calibration of the parameters. 

Undoubtedly, the performance of the algorithm after calibration outperforms the 

performance of the algorithm before calibration. This indicates that the travel time dataset 

for each day needs to be calibrated. 

The Jang algorithm has four parameters: 𝛼, 𝛽, 𝛾, and 𝑡𝑊. Table 4.2 shows the values 

of the parameters after calibration for the days showing unacceptable performance before 

calibration for route A. Here, 𝛼, 𝛽, and 𝑡𝑊 are sensitive, while 𝛾 is insensitive. Indeed, 

four of five days have the same parameters. This indicates that, after calibration, there are 

two different new parameters sets, namely 𝛼 = 0.5, 𝛽 = 0.5, 𝛾 = 0.3, and 𝑡𝑊 = 1 are for 

the 8th of May. While, another parameters set, namely, 𝛼 = 0.5, 𝛽 = 0.5, 𝛾 = 0.3, and 𝑡𝑊 

= 1, is for the 2nd, 14th, 17th, and 23rd of May. 𝑡𝑊 is different for just one day. This 

means that the sensitivity of 𝑡𝑊 is less than 𝛼 and 𝛽. 

  
(a) (b) 
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(c)  (d) 

Figure 4.4: Performance of Jang algorithm of route A for ten days: (a) 2nd 
May, (b) 5th May (c) 8th May, (d) 11th May, (e) 14th May, (f) 17th May (g) 20th 

May, and (h) 23rd May 

  
(e) (f) 

  
(g) (h) 
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(i) (j) 

‘Figure 4.4, continued’ 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 4.5: Performance of Jang algorithm of route A for some days before and 
after calibration: (a) 2nd May – before calibration, (b) 2nd May – after calibration, 

(c) 8th May – before calibration, (d) 8th May – after calibration (e) 14th May – 
before calibration, (f) 14th May – after calibration, (g) 17th May – before 

calibration, (h) 17th May – after calibration, (i) 23rd May – before calibration, and 
(j) 23rd May – after calibration 

 

  
(g) (h) 
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(i) (j) 

‘Figure 4.5, continued’ 

Table 4.2: Values of the parameters after calibration for route A 

Date 𝛼 𝛽 𝛾 𝑡𝑊 
2nd May 0.5* 1* 0.3 5 
8th May 0.5* 0.5* 0.3 1* 
14th May 0.5* 1* 0.3 5 
17th May 0.5* 1* 0.3 5 
23rd May 0.5* 1* 0.3 5 

Value before 
calibration 1 1.5 0.3 5 

      Note: * means different from the value before calibration 

Table 4.3 presents the MARE values for route A before and after calibration for the 

days that need to be calibrated. The MARE values for entire day after calibration were 

less than before calibration for all days, indicating that the calibration of the parameters 

improved the performance of Jang algorithm. For the morning peak period, the amounts 

of lane-splitting observations before calibration were considerable for all days as shown 

in Figures 4.5a, 4.5c, 4.5e, 4.5g, and 4.5i. As such, the MARE values for 8:00 - 9:00 

before calibration were high as presented in Table 4.3. The MARE values for 8:00 - 9:00 

after calibration were much less than before calibration for all days. This indicates that 

the calibration of the parameters highly improved the performance of Jang algorithm 

during this period. 

Table 4.3: MARE values for route A 

Date 

Mean absolute relative error (MARE) 
Entire Day 8:00 - 9:00 

Before 
calibration 

After 
calibration 

Before 
calibration 

After 
calibration 

2nd May 0.051 0.040 0.319 0.069 
8th May 0.100 0.063 0.779 0.027 
14th May 0.040 0.033 0.205 0.031 
17th May 0.050 0.039 0.181 0.038 
23rd May 0.037 0.029 0.207 0.042 
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4.1.2.2 Check of the Sensitivity of the Algorithm Parameters for Different Days for 

Route B 

The TransGuide algorithm with 𝑙𝑡ℎ = 0.3, and 𝑡𝑊 = 5 was the best algorithm for route 

B for the dataset of 28th May. The ten days, as mentioned earlier, are filtered using the 

TransGuide algorithm with 𝑙𝑡ℎ = 0.3, and 𝑡𝑊 = 5. Figure 4.6 presents the performance of 

the TransGuide algorithm for route B for the ten days. Figures 4.6a, 4.6b, 4.6c, 4.6e, 4.6h, 

and 4.6i show the datasets with poor performance. These six figures represent the data of 

4 weekdays and 2 weekends. Indeed, the parameters of the TransGuide algorithm for 

route B are sensitive for datasets from different days. Thus, the algorithm needs to be 

calibrated for each day. Figure 4.7 illustrates the performance of the days having 

unacceptable results using the TransGuide algorithm with 𝑙𝑡ℎ = 0.3, and 𝑡𝑊 = 5. In 

addition, it presents the performance of these days after calibration of the parameters. 

Thus, the calibrated parameters positively affect the performance of the algorithm. 

Table 4.4 shows the values of the parameters after calibration for the days that showed 

unacceptable performance before calibration for route B. Here, both parameters, 𝑙𝑡ℎ and 

𝑡𝑊 are sensitive. After calibration, there are five different new parameters sets. 𝑙𝑡ℎ = 0.5, 

and 𝑡𝑊 = 5 are the best parameters for the 2nd and 5th of May. In contrast, each day for 

the rest of the days has a different parameter set. 

  
(a) (b) 
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(c) (d) 

Figure 4.6: Performance of TransGuide algorithm of route B for ten days: (a) 
2nd May, (b) 5th May, (c) 8th May, (d) 11th May, (e) 14th May, (f) 17th May, (g) 20th 

May, (h) 23rd May, (i) 26th May, and (j) 29th May 

 

  
(e) (f) 

  
(g) (h) 
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(i) (j) 

‘Figure 4.6, continued’ 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 4.7: Performance of TransGuide algorithm of route B for some days 
before and after calibration: (a) 2nd May – before calibration, (b) 2nd May – after 
calibration, (c) 5th May – before calibration, (d) 5th May – after calibration, (e) 8th 

May – before calibration, (f) 8th May – after calibration, (g) 14th May – before 
calibration, (h) 14th May – after calibration, (i) 23rd May – before calibration, (j) 
23rd May – after calibration, (k) 26th May – before calibration , and (l) 26th May – 

after calibration. 

 

  
(g) (h) 

  

Univ
ers

iti 
Mala

ya



63 

(i) (j) 

  
(k) (l) 

‘Figure 4.7, continued’ 

 

 

 

 

Table 4.4: Values of the parameters after calibration for route B 

Date 𝑙𝑡ℎ 𝑡𝑊 
2nd May 0.5* 5 
5th May 0.5* 5 
8th May 0.35* 4* 
14th May 0.45* 5 
23rd May 0.3 6* 
26th May 0.5* 4* 

Value before 
calibration 0.3 5 

        Note: * means different from the value before calibration  

Table 4.5 presents the MARE for route B for the days that need to be calibrated. The 

values of MARE for all days after calibration were less than before calibration, indicating 

that the calibration of the parameters improved the performance of TransGuide algorithm.  

Table 4.5: MARE values for route B 

Date 
Mean absolute relative error (MARE) 
Before Calibration After Calibration 
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2nd May 0.318 0.081 
5th May 0.227 0.036 
8th May 0.301 0.067 
14th May 0.329 0.030 
23rd May 0.137 0.069 
26th May 0.357 0.034 

 

4.1.2.3 Check of the Sensitivity of the Algorithm Parameters for Different Days for 

Route C 

For route C, the Jang algorithm with 𝛼 = 1, 𝛽 = 1, 𝛾 = 0.3, and 𝑡𝑊 = 5 was the best 

algorithm for the 28th May travel time dataset. The Jang algorithm with these parameters 

is applied for the ten days. Figure 4.8 illustrates the performance of the Jang algorithm on 

route C for the days mentioned above. On the other hand, Figure 4.8h shows the poor 

performance for the data for 23rd May because considerable lane-splitting observations 

during evening peak period remained after filtration. So, given that one dataset showed 

unacceptable performance, the parameters of the Jang algorithm for route C are sensitive 

and needed to be calibrated for each day to gain accurate performance. Figure 4.9 shows 

the Jang algorithm's performance before calibration of the parameters and after 

calibration for 23rd May. Here, the performance after the calibration is highly improved. 

Table 4.6 shows the values of Jang algorithms’ parameters after calibration for the day 

showing unacceptable performance before calibration for route C. Here, only 𝛼 is 

sensitive, while other parameters are insensitive. For this route, only one parameter of 

one day is sensitive. Therefore, the sensitivity of route C is less than the other routes. 
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(a) (b) 

  
(c) (d) 

Figure 4.8: Performance of Jang algorithm of route C for ten days: (a) 2nd 
May, (b) 5th May, (c) 8th May, (d) 11th May, (e) 14th May, (f) 17th May, (g) 20th May, 

(h) 23rd May, (i) 26th May, and (j) 29th May 

 

  
(e) (f) 
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(g) (h) 

  
(i) (j) 

‘Figure 4.8, continued’ 

  
(a) (b) 

Figure 4.9: Performance of Jang algorithm of route C for 23rd May before and 
after calibration: (a) before calibration, and (b) after calibration 

Table 4.6: Values of the parameters after calibration for route C 

Date 𝛼 𝛽 𝛾 𝑡𝑊 
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23rd May 0.5* 1 0.3 5 
Value before 
calibration 

1 1 0.3 5 

    Note: * means different from the value before calibration  

Table 4.7 presents the MARE for route C before and after calibration for 23rd May. 

The MARE value after calibration was less than before calibration, indicating that the 

calibration of Jang algorithm parameters improved the performance of Jang algorithm. 

For the evening peak period, the number of lane-splitting observations before calibration 

was considerable as shown in Figure 4.9a. As such, the MARE value for 17:00 - 18:00 

before calibration (0.544) was very high as presented in Table 4.7. The MARE value for 

17:00 - 18:00 after calibration (0.039) was much less than before calibration (0.544). This 

indicates that the calibration of the parameters highly improved the performance of Jang 

algorithm during this period. 

Table 4.7: MARE values for route C 

Date 

Mean absolute relative error (MARE) 
Entire Day 17:00 - 18:00 

Before 
calibration 

After 
calibration 

Before 
calibration 

After 
calibration 

23rd May 0.104 0.077 0.544 0.039 
4.1.3 Summary of Filtration of Travel Time Data 

The summary of the evaluation of filtration algorithms and the sensitivity of the 

algorithms’ parameters are depicted in Table 4.8. The Jang algorithm is the best for routes 

A and C, while the TransGuide algorithm is the best for route B. In order to compare the 

routes concerning the sensitivity of the algorithm’s parameters, the number of days with 

unacceptable performance before calibration and the number of new parameter sets after 

calibration are used. Noticeably, route C is less sensitive, where only one day showed 

unacceptable performance before calibration. In contrast, route B is more sensitive since 

it has the highest number of days with unacceptable performance before calibration and 

the highest number of new parameters sets after calibration. Lastly, given that routes A 
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and C are less sensitive than route B, it can be concluded that the Jang algorithm is less 

sensitive than the TransGuide algorithm. 

Table 4.8: Summary of filtration of travel time analysis 

Route Best algorithm 

No. of days with 
unacceptable 
performance 

before calibration 

No. of parameters 
sets after calibration  

A Jang 5 2 
B TransGuide 6 5 
C Jang 1 1 

 

The route length is the distance between the two Wi-Fi sensors at the start and the end 

of the route. In order to test the relationship between the distance between the sensors and 

the number of travel time observations, Pearson correlation coefficient, effect size, and 

coefficient of determination are calculated. Table 4.9 shows that the effect size (d) is 

compatible with the Coefficient of Determination (R2) since R2 (0.93) and d (-7.47) are 

very large based on Cohen’s standard (Cohen, 2013). In addition, the slope of the trend 

line in Figure 4.10 and the sign of d are negative. Thus, there is a very large negative 

correlation between the distance between the sensors and the number of observations. 

This indicates that the distance between the sensors has to be shortened to obtain more 

observations. As depicted in Table 4.8 and Figure 4.10, it can be concluded that an 

increment in the number of observations makes the Jang algorithm the best filtration 

algorithm since the Jang algorithm was the best algorithm for routes A and C, having 

more observations than for route B. 

Table 4.9: Results of correlation test 

Pearson correlation coefficient 
(r) 

Effect Size 
(d) 

Coefficient of Determination 
(R2) 

-0.966 -7.47 0.93 
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Regarding the sensitivity of the algorithms’ parameters, route C is less sensitive than 

the other routes, having the highest number of observations. Route B is more sensitive, 

having the lowest number of observations. However, route A is more sensitive than route 

C and less sensitive than route B. Route A has fewer observations than route C and more 

than route B. Thus, it can be concluded that the algorithms’ parameters’ sensitivity is in 

inverse proportion to the number of observations. Given the inverse proportion between 

the distance between the sensors (or the length of the route) and the number of 

observations, the sensitivity of the algorithms’ parameters is directly proportional to the 

distance between the sensors. 

Figure 4.10: The relationship between the length of routes and the number of 
observations 

4.2 Analysis of Travel Time Reliability Measures for Weekdays, Weekends, 

Election Days, and Holidays 

There were 18 weekdays, 8 weekends, 3 general election days and 2 holidays during 

May 2018. The analysis was undertaken inclusive of these days. 

4.2.1 Travel Time Reliability Measures Patterns for Route A  

Figure 4.11a presents the patterns of TTI for route A. On weekdays, there are morning 
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route A. For weekdays, PTI is about 10 in the evening peak and about 7 in the morning 

peak. As such, TTI is higher in the morning peak, and PTI is higher in the evening. This 

indicates that the traffic congestion in the morning peak period is more stable than traffic 

congestion in the evening peak period. The peaks in PTI patterns are similar to the peak 

in TTI. Figure 4.11c displays the patterns of BTI for route A. For weekdays, BTI is about 

0.5 in the morning peak period and about 2 in the evening peak period. This measure 

confirms that the traffic congestion in the morning peak period is more stable than traffic 

congestion in the evening peak period. The BTI pattern of weekends shows that there is 

a high variation in travel time during the daytime. From 12:00 to 16:00, the values of BTI 

for weekends are higher than the values of BTI for weekdays. This means that from 12:00 

to 16:00, the variation in travel time during weekends is higher than the variation in travel 

time during weekdays. 

Notably, the difference between TTI and PTI is increased at the peak period compared 

to the off-peak period, as shown in Figure 4.12. This figure presents TTI and PTI patterns 

of weekdays for route A. This implies that TTV at the peak period is higher than the 

variability of travel time at the off-peak period. 
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(b) 

 
(c) 

Figure 4.11: TTR measures for route A: (a) TTI, (b) PTI, and (c) BTI 

 
Figure 4.12: TTI and PTI patterns of weekdays for route A 
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4.2.2 Travel Time Reliability Measures Patterns for Route B 

Figure 4.13a presents the patterns of TTI for route B. The weekdays have a single 

peak, which is in the morning. This indicates that there is no congestion in the evening. 

Notably, there are two peaks for weekends, the first peak at 12:00 and the second peak at 

15:00. The peak for holidays is at 14:00, and the pattern for election days is close to free-

flow travel time. Figure 4.13b displays the patterns of PTI for route B. For the weekdays, 

the values of PTI from 10:00 to 11:00 are high. It could be due to the instability of the 

length of congestion hours in the morning. For the weekends, the value of PTI at the 

second peak is higher than the first peak indicating that the uncertainty at the second peak 

is higher than the uncertainty at the first peak. Figure 4.13c shows the patterns of BTI for 

route B. Here, the peaks times of BTI are different from the peaks times of TTI. For the 

weekdays, the highest value of BTI is 1.45 at 11:00, which is less than the highest value 

for weekends. On the other hand, the variation of travel time during election days and 

holidays is low. 

Figure 4.14 presents the TTI and PTI patterns of weekdays for route B. PTI pattern is 

not smoothed as TTI pattern. TTI pattern shows that there is only one peak period, that is 

the morning peak. However, PTI pattern shows morning peak period and evening peak 

period from 14:00 to 19:00. 
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(a) 

 
(b) 

Figure 4.13: TTR measures for route B: (a) TTI, (b) PTI, and (c) BTI 
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(c) 

‘Figure 4.13, continued’ 

 
Figure 4.14: TTI and PTI patterns of weekdays for route B 
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in travel time and the congestion level were high at this peak. For weekends, from 11:00 

to 18:00, the values of PTI are between 4 and 6. Figure 4.15c displays the patterns of BTI 

for route C. For weekends, the variability in the morning is low, increasing in the 

afternoon and the evening. For weekdays, the variability is very high in the afternoon. 

Figure 4.16 presents TTI and PTI patterns of weekdays for route C. The difference 

between TTI and PTI is increased at the evening peak period. This implies that, for route 

C, TTV at the evening peak period is higher than the variability of travel time at the off-

peak and morning peak. 

 
(a) 

 
(b) 

Figure 4.15: TTR measures for route C: (a) TTI, (b) PTI, and (c) BTI 
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(c) 

‘Figure 4.15, continued’ 

 
Figure 4.16: TTI and PTI patterns of weekdays for route C 
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PTI, and average BTI are the least compared to the other days. The least reliable day is 

different for each route. For route A, the least reliable day is Monday. Whereas for route 

B, the least reliable day is Tuesday, and for route C, the least reliable day is Friday. It is 

noticeable that all of the least reliable days are weekdays. However, weekends are more 

reliable compared to weekdays. 

For route A, the ranking of average TTI for Monday is 6, whereas the ranking of 

average PTI and average BTI for Monday is 7. This shows inconsistency between TTR 

measures due to the different formulation of the associated equations. Each TTR measure 

describes a different aspect of congestion. Mainly, TTI describes typical delays, while 

PTI describes typical delays and unexpected delays, and BTI describes unexpected 

delays. 

Table 4.10: Ranking of weekdays and weekends based on TTR measures 

    Monday Tuesday Wednesday Thursday Friday Saturday Sunday 
Route A        
 Average TTI 2.21 2.04 1.87 1.96 2.32 1.67 1.22 
 Ranking 6 5 3 4 7 2 1 
 Average PTI 4.12 3.03 2.74 3.02 3.59 2.74 1.38 
 Ranking 7 5 3 4 6 2 1 
 Average BTI 0.70 0.45 0.41 0.46 0.46 0.48 0.13 
 Ranking 7 3 2 5 4 6 1 
Route B        
 Average TTI 1.82 2.22 1.86 1.75 1.82 1.81 1.34 
 Ranking 4 7 6 2 5 3 1 
 Average PTI 2.98 3.41 2.76 2.21 2.61 2.72 1.79 
 Ranking 6 7 5 2 3 4 1 
 Average BTI 0.51 0.49 0.40 0.23 0.40 0.40 0.28 
 Ranking 7 6 5 1 4 3 2 
Route C        
 Average TTI 2.37 2.43 2.40 2.25 2.75 1.81 1.35 
 Ranking 4 6 5 3 7 2 1 
 Average PTI 4.06 3.98 4.11 3.71 4.91 2.76 2.05 
 Ranking 5 4 6 3 7 2 1 
 Average BTI 0.60 0.54 0.55 0.56 0.57 0.47 0.41 
  Ranking 7 3 4 5 6 2 1 
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Tables 4.11, 4.12, and 4.13 present TTR measures during morning and evening peak 

periods for weekdays. The analysis considered the morning peak period from 7:00 to 

10:00, while the evening peak period considered periods between 16:00 to 19:00. Here, 

route C is the most reliable route at the morning peak; however, route B is the most 

reliable route at the evening peak. On the other hand, it is difficult to determine which 

route is least reliable because the rankings of TTI, PTI, and BTI are different. For 

example, at the morning peak, route A is the least reliable route based on average TTI, 

while route B is the least reliable route based on average PTI and average BTI. This is 

because each TTR measure describes a different aspect of congestion. Mainly, TTI 

describes typical delays, while PTI describes typical delays and unexpected delays, and 

BTI describes unexpected delays. 

Table 4.11: Ranking of the routes based on TTI 

 
Average TTI during 

Morning Peak Ranking Average TTI during 
Evening Peak Ranking 

Route A 3.92 3 2.61 2 
Route B 3.63 2 1.80 1 
Route C 2.77 1 4.89 3 

 

Table 4.12: Ranking of the routes based on PTI 

  
Average PTI during 

Morning Peak Ranking Average PTI during 
Evening Peak Ranking 

Route A 6.08 2 7.16 2 
Route B 6.34 3 3.43 1 
Route C 3.72 1 10.96 3 

 

Table 4.13: Ranking of the routes based on BTI 

  
Average BTI during 

Morning Peak Ranking Average BTI during 
Evening Peak Ranking 

Route A 0.57 2 1.73 3 
Route B 0.77 3 0.91 1 
Route C 0.34 1 1.38 2 
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CHAPTER 5: CONCLUSION AND RECOMMENDATION 

5.1 Summary of Research 

Travel time reliability (TTR) is an important measure of traffic congestion. It is 

significant for road users, while TTR is important to manage and operate road networks 

for transportation agencies. One of the main advantages of travel time is that it describes 

the experience of road users. This allows road users to understand travel time better than 

other traffic parameters like traffic volume and density. Also, providing road users with 

accurate travel times will help them make more informed decisions regarding departure 

times. 

While travel time data can be collected using various techniques, each technique has 

its own source of errors, generating outliers in the travel time dataset. Also, given lane-

splitting situations, collecting travel time using MAC addresses needs to be handled 

carefully. As mentioned earlier in this study, the percentage of motorcycles in Malaysia 

and ASEAN is exceptionally high. Therefore, lane-splitting has a significant effect on 

travel time patterns. Outliers and lane-splitting observations have to be removed from 

travel time datasets to obtain accurate travel time measurement. In the past, many travel 

time filtration algorithms were utilised to filter outliers. However, there is a real need to 

determine which algorithm can generate the most precise results when considering actual 

and large datasets from lane-splitting situations. This study investigated the best 

algorithm for data filtration to obtain accurate data for measuring TTR. The objectives of 

this study were accomplished by employing an appropriate methodology. 

Based on the findings of this study, the following conclusions are presented: 

• Jang algorithm and TransGuide algorithm effectively filtrated the outliers and lane 

splitting data. The Jang algorithm is the best algorithm for routes A and C, while 

the TransGuide algorithm is the best algorithm for route B. 
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• The parameters of the Jang algorithm and TransGuide algorithm are sensitive for 

different days. Accordingly, this indicates that both algorithms can be used after 

the calibration process has been undertaken. 

• It is indicated that routes C and A were less sensitive than route B. Therefore, it 

can be concluded that the Jang algorithm is less sensitive than the TransGuide 

algorithm. 

• After comparing the three routes, an increase in the distance between sensors 

(route length) led to a decrease in detected travel time observations. 

• It can be concluded that an increase in the number of observations makes the Jang 

algorithm the best filtration algorithm. The Jang algorithm was the best algorithm 

for routes A and C, having more observations than route B. 

• It can be concluded that the sensitivity of the algorithms’ parameters is in inverse 

proportion to the number of travel time observations. 

• On weekdays and weekends, the three routes suffered from high variability in 

travel time. In addition, the peak hours are different for weekdays and weekends. 

• On election days and holidays, the road network, except for one route, operates 

near free-flow conditions for most of the day with low variability in travel time. 

• Each TTR measure describes a different aspect of congestion. Primarily, TTI 

describes typical delays, while PTI describes typical delays and unexpected 

delays, while BTI describes delays. When these measures are used for the ranking 

of routes, there is the probability that the results are not precisely the same for 

each measure since each one describes a different aspect of congestion. 

5.2 Contribution of Research 

The study's findings indicated that the travel time dataset collected by MAC addresses 

can be filtered out, thus obtaining accurate travel time patterns. This research will be 

beneficial for traffic consultant companies and authorities that depend on MAC address 
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to collect travel time data in Malaysia and other countries that have lane-splitting 

situations on their roads. Even though there are many published filtering algorithms so 

far, the usage of the algorithms is completely depending on the characteristics of the travel 

time data. Specifically for this research, among the main five prominent algorithms that 

have been tested, it is found that two of them can produce promising results. Even though 

the best two algorithms can filter out the outliers and lane-splitting observations, but they 

required a lot of improvement to reduce the sensitivity issue. 

Regarding TTR, the findings indicated that TTR measures can be calculated in 

Malaysia, and the study area suffered from high variability in travel time on weekdays 

and weekends. This will be beneficial for Malaysian traffic authorities since that show 

them the importance of TTR and how TTR describes the variability in traffic. 

5.3 Research Limitations 

The limitations of this study include the following: 

• Due to Covid-19, the researcher could not collect recent traffic data due to 

Malaysia's full and partial lockdowns. Undoubtedly traffic is highly affected by 

these lockdowns. This was the main reason why the data in this research was 

archived data of the actual traffic condition of May 2018. 

• The other traffic parameters, such as traffic volume and density, were not 

collected in the study area during May 2018. Therefore, the relationships between 

travel time and the other traffic parameters could not be quantified. 

5.4 Future Research 

This research addressed how to filter out travel time data on Malaysian roads, which 

commonly experienced lane-splitting situations and how to use filtered data to calculate 
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TTR measures. In order to extend this study, there are several opportunities for further 

research to be undertaken as follow: 

• As the established algorithms are sensitive, a new insensitive outlier filtrating 

algorithm is recommended. This will help traffic professionals to avoid the 

calibration process for each day. 

• The calculation of TTR measures for KL using data from many years will be 

beneficial to understand the variability in travel time in KL. This will also help 

the Malaysian authorities to develop suitable congestion mitigation strategies. 

• The sources of congestion include bottlenecks, traffic incidents, weather 

conditions, work zones, poor signal timing, and special events. Estimating 

congestion by source should be further studied in the context of Malaysia to 

understand the extent of recurrent congestion and non-recurrent congestion. No 

doubt, this will be very useful in developing mitigation strategies. 

 

 

Univ
ers

iti 
Mala

ya



83 

REFERENCES 

Abdullah, A. S., Ramli, R., & Mohamad, F. F. (2017). Real-time and Automated Traffic 
Data Inventory and Monitoring System (TDIM). In S. Yusoff (Ed.), University of 
Malaya Living Labs: Transforming Research into Action (Vol. 1, pp. 113-124). 
Kuala Lumpur, Malaysia: Sustainability Science Research Cluster. 

Aftabuzzaman, M. (2007). Measuring traffic congestion-a critical review. Paper 
presented at the 30th Australasian Transport Research Forum. 

ASEAN Statistics Division. (2018). Transports Statistics. Retrieved from 
https://data.aseanstats.org/ 

Asian Development Bank. (2019). Asian development outlook 2019 update: fostering 
growth and inclusion in Asia’s cities. Retrieved from 
https://www.adb.org/publications/asian-development-outlook-2019-update 

Aupetit, S., Espié, S., & Bouaziz, S. (2015). Naturalistic study of riders’ behaviour in 
lane-splitting situations. Cognition, Technology & Work, 17(2), 301-313.  

Beanland, V. (2018). Evaluation of the ACT Motorcycle Lane Filtering Trial. Retrieved 
from https://www.justice.act.gov.au/sites/default/files/2019-
09/Lane_Filtering_Evaluation_Report.pdf 

Beanland, V., Pammer, K., Sledziowska, M., & Stone, A. (2015). Drivers’ attitudes and 
knowledge regarding motorcycle lane filtering practices. Paper presented at the 
Proceedings of the 2015 Australasian Road Safety Conference. 

Bertini, R. L. (2006). You are the traffic jam: an examination of congestion measures. 
Paper presented at the The 85th annual meeting of transportation research board. 

Büchel, B., & Corman, F. (2020). Review on Statistical Modeling of Travel Time 
Variability for Road-Based Public Transport. Frontiers in Built Environment, 6.  

Cambridge Systematics Inc. (1998). NCHRP Report 399: Multimodal corridor and 
capacity analysis manual. Retrieved from 
http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_399.pdf 

Cambridge Systematics Inc. (2005). Traffic congestion and reliability: Trends and 
advanced strategies for congestion mitigation. Retrieved from 
https://ops.fhwa.dot.gov/congestion_report/ 

Cambridge Systematics Inc. (2008). Cost-effective performance measures for travel time 
delay, variation, and reliability (Vol. 618): Transportation Research Board. 

Chen, P., Sun, J., & Qi, H. (2017). Estimation of delay variability at signalized 
intersections for urban arterial performance evaluation. Journal of Intelligent 
Transportation Systems, 21(2), 94-110.  

Chen, S., Wang, W., & van Zuylen, H. (2010). A comparison of outlier detection 
algorithms for ITS data. Expert Systems with Applications, 37(2), 1169-1178.  

Univ
ers

iti 
Mala

ya

https://data.aseanstats.org/
https://www.adb.org/publications/asian-development-outlook-2019-update
https://www.justice.act.gov.au/sites/default/files/2019-09/Lane_Filtering_Evaluation_Report.pdf
https://www.justice.act.gov.au/sites/default/files/2019-09/Lane_Filtering_Evaluation_Report.pdf
http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_399.pdf
https://ops.fhwa.dot.gov/congestion_report/


84 

Chen, Z., & Fan, W. (2019). Data analytics approach for travel time reliability pattern 
analysis and prediction. Journal of Modern Transportation, 27(4), 250-265.  

Chen, Z., & Fan, W. D. (2020). Analyzing travel time distribution based on different 
travel time reliability patterns using probe vehicle data. International Journal of 
Transportation Science and Technology, 9(1), 64-75.  

Clark, S. D., Grant-Muller, S., & Chen, H. (2002). Cleaning of matched license plate data. 
Transportation research record, 1804(1), 1-7.  

Cohen, J. (2013). Statistical power analysis for the behavioral sciences: Academic press. 

Culotta, K., Fang, V., Habtemichael, F., & Pape, D. (2019). Does Travel Time Reliability 
Matter? (Report No. FHWA-HOP-19-062). Retrieved from Federal Highway 
Administration website: 
https://ops.fhwa.dot.gov/publications/fhwahop19062/fhwahop19062.pdf 

Dion, F., & Rakha, H. (2006). Estimating dynamic roadway travel times using automatic 
vehicle identification data for low sampling rates. Transportation Research Part 
B: Methodological, 40(9), 745-766.  

Elefteriadou, L., & Cui, X. (2007). A framework for defining and estimating travel time 
reliability. Paper presented at the Transportation Research Board 86th Annual 
Meeting.  

ERIA Study Team. (2010). Current status of ASEAN transport sector. ASEAN Strategic 
Transport Plan 2011-2015, 3-1.  

Fan, W., & Gong, L. (2017). Developing a systematic approach to improving bottleneck 
analysis in North Carolina. Retrieved from 
https://connect.ncdot.gov/projects/research/RNAProjDocs/2016-
10%20Final%20Report.pdf 

Federal Highway Administration (FHWA). (2020). Urban Congestion Trends and 
Related Reports. Retrieved from 
https://ops.fhwa.dot.gov/perf_measurement/reliability_reports.htm 

Fenelon, K. G. (2017). The economics of road transport (Vol. 9): Routledge. 

Florida Department of Transportation. (2000). The Florida Reliability Method in 
Florida’s Mobility Performance Measures Program. Florida Department of 
Transportation.  

Florida Department of Transportation. (2011). SIS bottleneck study (Technical 
Memorandum No. 2—Methodology to identify bottlenecks). Retrieved from 
https://www.fdot.gov/docs/default-
source/planning/systems/programs/mspi/pdf/Executive-Summary-letter-2-15-
13.pdf 

Fosgerau, M., Hjorth, K., Brems, C., & Fukuda, D. (2008). Travel time variability: 
Definition and valuation. Retrieved from 

Univ
ers

iti 
Mala

ya

https://ops.fhwa.dot.gov/publications/fhwahop19062/fhwahop19062.pdf
https://connect.ncdot.gov/projects/research/RNAProjDocs/2016-10%20Final%20Report.pdf
https://connect.ncdot.gov/projects/research/RNAProjDocs/2016-10%20Final%20Report.pdf
https://ops.fhwa.dot.gov/perf_measurement/reliability_reports.htm
https://www.fdot.gov/docs/default-source/planning/systems/programs/mspi/pdf/Executive-Summary-letter-2-15-13.pdf
https://www.fdot.gov/docs/default-source/planning/systems/programs/mspi/pdf/Executive-Summary-letter-2-15-13.pdf
https://www.fdot.gov/docs/default-source/planning/systems/programs/mspi/pdf/Executive-Summary-letter-2-15-13.pdf


85 

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.453.1202&rep=rep1
&type=pdf 

Google. (n.d.). Kuala Lumpur Roads. Retrieved from 
https://www.google.com/maps/@3.1310283,101.7046947,14.32z 

Guo, J., Li, C., Qin, X., Huang, W., Wei, Y., & Cao, J. (2019). Analyzing distributions 
for travel time data collected using radio frequency identification technique in 
urban road networks. Science China Technological Sciences, 62(1), 106-120.  

Haghani, A., Hamedi, M., Sadabadi, K. F., Young, S., & Tarnoff, P. (2010). Data 
collection of freeway travel time ground truth with bluetooth sensors. 
Transportation Research Record, 2160(1), 60-68.  

Higatani, A., Kitazawa, T., Tanabe, J., Suga, Y., Sekhar, R., & Asakura, Y. (2009). 
Empirical analysis of travel time reliability measures in Hanshin expressway 
network. Journal of Intelligent Transportation Systems, 13(1), 28-38.  

Hojati, A. T. (2014). Modelling the impact of traffic incidents on travel time reliability. 
(PhD Thesis). The University of Queensland, Australia. Retrieved from 
https://doi.org/10.14264/uql.2014.492  

Jang, J. (2016). Outlier filtering algorithm for travel time estimation using dedicated 
short-range communications probes on rural highways. IET Intelligent Transport 
Systems, 10(6), 453-460.  

Kaparias, I., Bell, M. G., & Belzner, H. (2008). A new measure of travel time reliability 
for in-vehicle navigation systems. Journal of Intelligent Transportation Systems, 
12(4), 202-211.  

Kelly, T. (2016). Lane Filtering Submission. Retrieved from  

Kitamura, Y., Hayashi, M., & Yagi, E. (2018). Traffic problems in Southeast Asia 
featuring the case of Cambodia's traffic accidents involving motorcycles. IATSS 
research, 42(4), 163-170.  

Kittelson, Associates, & Program, S. S. H. R. (2013). Evaluating Alternative Operations 
Strategies to Improve Travel Time Reliability: Transportation Research Board. 

Kurlantzick, A., & Krosner, B. (2016). Motorcycle Lane Splitting: A Literature Review. 
Retrieved from 
http://ridetowork.org/files/docs/MotorcycleLaneSplittingLiteratureReviewRev1.
0.pdf 

Lee, J. (2017). Vehicle registrations in Malaysia hit 28.2 million units. Retrieved from 
https://paultan.org/2017/10/03/vehicle-registrations-in-malaysia-hit-28-2-
million-units/ 

Liu, Y., Xia, J. C., & Phatak, A. (2020). Evaluating the Accuracy of Bluetooth-Based 
Travel Time on Arterial Roads: A Case Study of Perth, Western Australia. Journal 
of Advanced Transportation, 2020.  

Univ
ers

iti 
Mala

ya

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.453.1202&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.453.1202&rep=rep1&type=pdf
https://www.google.com/maps/@3.1310283,101.7046947,14.32z
https://doi.org/10.14264/uql.2014.492
http://ridetowork.org/files/docs/MotorcycleLaneSplittingLiteratureReviewRev1.0.pdf
http://ridetowork.org/files/docs/MotorcycleLaneSplittingLiteratureReviewRev1.0.pdf
https://paultan.org/2017/10/03/vehicle-registrations-in-malaysia-hit-28-2-million-units/
https://paultan.org/2017/10/03/vehicle-registrations-in-malaysia-hit-28-2-million-units/


86 

Lomax, T., & Margiotta, R. (2003). Selecting travel reliability measures. Retrieved from 
https://static.tti.tamu.edu/tti.tamu.edu/documents/TTI-2003-3.pdf 

Lyman, K., & Bertini, R. L. (2008). Using travel time reliability measures to improve 
regional transportation planning and operations. Transportation Research Record, 
2046(1), 1-10.  

Margiotta, R. A., Lomax, T. J., Hallenbeck, M. E., Dowling, R. G., Skabardonis, A., 
Turner, S., & Systematics, C. (2013). Analytical procedures for determining the 
impacts of reliability mitigation strategies (0309129265). Retrieved from 
https://www.nap.edu/catalog/22806/analytical-procedures-for-determining-the-
impacts-of-reliability-mitigation-strategies 

Martchouk, M., Mannering, F., & Bullock, D. (2011). Analysis of freeway travel time 
variability using Bluetooth detection. Journal of transportation engineering, 
137(10), 697-704.  

Maulina, D., Danilasari, K. R., Nazhira, F., & Jufri, S. S. (2022). Why riders perform 
risky riding behavior in Jakarta: The effects of hazardous situations and gender on 
risk perception. Psychological Research on Urban Society, 1(1), 12.  

Ministry of works Malaysia. (2019). Malaysian ITS Blueprint (2019-2023). Retrieved 
from Ministry of works Malaysia website: 
http://www.kkr.gov.my/public/Malaysian%20ITS%20Blueprint.pdf 

Moghaddam, S. S., & Hellinga, B. (2013). Evaluating the performance of algorithms for 
the detection of travel time outliers. Transportation research record, 2338(1), 67-
77.  

Moghaddam, S. S., & Hellinga, B. (2014). Algorithm for detecting outliers in Bluetooth 
data in real time. Transportation Research Record, 2442(1), 129-139.  

Mulvihill, C., Salmon, P., Filtness, A., Lenne, M., Walker, G., Cornelissen, M., & Young, 
K. (2013). Lane filtering and situation awareness in motorcyclists: An on-road 
proof of concept study. Paper presented at the Proceedings of the 2013 
Australasian Road Safety Research, Policing and Education Conference. 

Noland, R. B., & Polak, J. W. (2002). Travel time variability: a review of theoretical and 
empirical issues. Transport reviews, 22(1), 39-54.  

Ouellet, J. V. (2012). Lane splitting on California freeways. Paper presented at the 
Proceedings of the Transportation Research Board 91st Annual Meeting. 

Rao, A. M., & Rao, K. R. (2012). Measuring urban traffic congestion-a review. 
International Journal for Traffic & Transport Engineering, 2(4).  

Rice, T., Troszak, L., & Erhardt, T. (2015). Motorcycle lane-splitting and safety in 
California. Retrieved from https://www.carbuyer.com.sg/cb-
content/uploads/2015/06/Motorcycle-Lane-Splitting-and-Safety-2015-1.pdf 

Schrank, D., Eisele, B., Lomax, T., & Bak, J. (2015). 2015 urban mobility scorecard. 
Retrieved from 

Univ
ers

iti 
Mala

ya

https://static.tti.tamu.edu/tti.tamu.edu/documents/TTI-2003-3.pdf
https://www.nap.edu/catalog/22806/analytical-procedures-for-determining-the-impacts-of-reliability-mitigation-strategies
https://www.nap.edu/catalog/22806/analytical-procedures-for-determining-the-impacts-of-reliability-mitigation-strategies
http://www.kkr.gov.my/public/Malaysian%20ITS%20Blueprint.pdf
https://www.carbuyer.com.sg/cb-content/uploads/2015/06/Motorcycle-Lane-Splitting-and-Safety-2015-1.pdf
https://www.carbuyer.com.sg/cb-content/uploads/2015/06/Motorcycle-Lane-Splitting-and-Safety-2015-1.pdf


87 

https://static.tti.tamu.edu/tti.tamu.edu/documents/umr/archive/mobility-
scorecard-2015-wappx.pdf 

Southwest Research Institute. (1998). Automatic vehicle identification model deployment 
initiative - system design document. Retrieved from Bureau of Transportation 
Statistics, U.S. Department of Transportation website: 
https://rosap.ntl.bts.gov/view/dot/48800 

Sperley, M., & Pietz, A. J. (2010). Motorcycle lane-sharing: literature review. Retrieved 
from 
https://www.oregon.gov/ODOT/Programs/ResearchDocuments/Motorcycle_Lan
e_Sharing.pdf 

Texas Transportation Institute , & Cambridge Systematics Inc. (2005). Travel Time 
Reliability: Making It There On Time, All The Time (Report No. FHWA-HOP-06-
070). Retrieved from Federal Highway Administration website: 
https://ops.fhwa.dot.gov/publications/tt_reliability/brochure/ttr_brochure.pdf 

TomTom International BV. (n.d.). TomTom traffic index. Retrieved from 
https://www.tomtom.com/en_gb/traffic-index/ranking 

Transportation Association of Canada. (2017). Primer on Defining and Measuring Urban 
Congestion Retrieved from Transportation Association of Canada Website: 
https://www.tac-atc.ca/sites/default/files/site/doc/Bookstore/defining-measuring-
congestion.pdf 

Tsolakis, D., Tan, F., & Makwasha, T. (2011). Valuation of travel time reliability: a 
review of current practice (1921709960). Retrieved from 
https://www.onlinepublications.austroads.com.au/items/AP-R391-11 

Van Lint, J., & van Zuylen, H. J. (2005). Monitoring and predicting freeway travel time 
reliability: Using width and skew of day-to-day travel time distribution. 
Transportation Research Record, 1917(1), 54-62.  

Vandervalk, A., Louch, H., Guerre, J., & Margiotta, R. (2014). Incorporating Reliability 
Performance Measures Into the Transportation Planning and Programming 
Processes: Technical Reference (SHRP 2 Report S2-L05-RR-3,). Retrieved from 
https://www.nap.edu/catalog/22594/incorporating-reliability-performance-
measures-into-the-transportation-planning-and-programming-processes-
technical-reference 

Venables, W. N., Smith, D. M., & R Development Core Team. (2009). An introduction 
to R. In: Citeseer. 

Wang, W.-X., Guo, R.-J., & Yu, J. (2018). Research on road traffic congestion index 
based on comprehensive parameters: Taking Dalian city as an example. Advances 
in Mechanical Engineering, 10(6), 1687814018781482.  

Wu, Z., Wu, Z., & Rilett, L. R. (2020). Innovative nonparametric method for data outlier 
filtering. Transportation research record, 2674(10), 167-176.  

Univ
ers

iti 
Mala

ya

https://static.tti.tamu.edu/tti.tamu.edu/documents/umr/archive/mobility-scorecard-2015-wappx.pdf
https://static.tti.tamu.edu/tti.tamu.edu/documents/umr/archive/mobility-scorecard-2015-wappx.pdf
https://rosap.ntl.bts.gov/view/dot/48800
https://www.oregon.gov/ODOT/Programs/ResearchDocuments/Motorcycle_Lane_Sharing.pdf
https://www.oregon.gov/ODOT/Programs/ResearchDocuments/Motorcycle_Lane_Sharing.pdf
https://ops.fhwa.dot.gov/publications/tt_reliability/brochure/ttr_brochure.pdf
https://www.tomtom.com/en_gb/traffic-index/ranking
https://www.tac-atc.ca/sites/default/files/site/doc/Bookstore/defining-measuring-congestion.pdf
https://www.tac-atc.ca/sites/default/files/site/doc/Bookstore/defining-measuring-congestion.pdf
https://www.onlinepublications.austroads.com.au/items/AP-R391-11
https://www.nap.edu/catalog/22594/incorporating-reliability-performance-measures-into-the-transportation-planning-and-programming-processes-technical-reference
https://www.nap.edu/catalog/22594/incorporating-reliability-performance-measures-into-the-transportation-planning-and-programming-processes-technical-reference
https://www.nap.edu/catalog/22594/incorporating-reliability-performance-measures-into-the-transportation-planning-and-programming-processes-technical-reference


88 

Xu, Z., Jabari, S. E., & Prassas, E. (2020). Applying Finite Mixture Models to New York 
City Travel Times. Journal of Transportation Engineering, Part A: Systems, 
146(5), 05020001.  

Yang, S., & Wu, Y.-J. (2016). Mixture models for fitting freeway travel time distributions 
and measuring travel time reliability. Transportation Research Record, 2594(1), 
95-106.  

 

Univ
ers

iti 
Mala

ya




