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PREVALENCE, DIVERSITY AND  

RISK ASSESSMENT OF ANTIBIOTIC RESISTANT  

E. COLI FROM ANTHROPOGENIC IMPACTED  

LARUT RIVER AND SANGGA BESAR RIVER 

 

 

ABSTRACT 

The rising emergence of rapidly evolving, multi-antibiotic 

resistant Escherichia coli (E. coli) remained a global public health concern. Aquatic 

ecosystems under frequent anthropogenic influence could serve as reservoirs that 

provide an ideal condition for the acquisition and dissemination of antibiotic resistant 

genetic determinants. To better understand the impact of anthropogenic wastewater 

towards the occurrence, genetic diversity and virulence of antimicrobial resistant E. coli 

as well as their resistance genes, surface waters from riverine estuarine waters of 

Larut River and Sangga Besar River were studied. Six sampling sites situated upstream 

and downstream of the Larut River including wastewater from zoo, hospital, and 

slaughterhouse, along with three sites from neighbouring Sangga Besar River were 

studied. Concentrations and ecological risk of 22 antibiotics from surface water samples 

were quantified by solid phase extraction and high performance liquid chromatography 

tandem mass chromatography. Total coliform and E. coli were isolated and enumerated 

by membrane filtration technique. Antibiogram was profiled using 

antimicrobial susceptibility test (AST), whereas phylogeneticity, virulence gene, and 

antibiotic resistance gene were determined by multiplex PCR assays. 

Canonical correlation analysis (CCA) was then performed to analyse the E. coli 

phylogenetic groups against resistance genes sul and tet, physicochemical parameters, 

and antibiotic residue concentrations.  Sixteen antibiotic residues were detected, with 

concentrations ranging from limit of detection (LOD) to 1,262.3 ng l-1 with residues of 
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erythromycin, clarithromycin, and ofloxacin in hospital and zoo effluents posing a high 

risk to algae while tetracycline had low to medium ecological risks toward all the 

relevant organisms from aquatic environments (algae, invertebrate Daphnia magna, and 

fish). E. coli abundance at Larut River ranged from EST 1 to 4.1 × 105 CFU 100 ml-1, 

whereas Sangga Besar River ranged from EST 1 to 2.5 × 103 CFU 100 ml-1. All 

phylogenetic groups except B1 had non-homogenous distribution, with phylogenetic 

group A, found significantly higher in effluents of hospital (58.57 %) and 

slaughterhouse (49.18 %) followed by S1b (51.67 %). Also, more than half of 

the E. coli isolates from Larut and Sangga Besar River have multiple antibiotic 

resistances. The prevalence of multiple antibiotic resistance phenotypes of E. coli with 

the presence of tet and sul resistance genes was higher in wastewater effluents 

compared to river waters. The phylogenetic composition of E. coli and resistance genes 

were associated with physicochemical properties and antibiotic residues. Findings 

conclude that sites impacted by wastewater effluents along with antibiotic residues had 

affected E. coli phylogenetic composition, antibiotic resistance phenotype 

diversifications, and resistance genes distribution in Larut River.  

 

Keywords: Escherichia coli, diversity, antibiotic resistance, anthropogenic, virulence. 
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PREVALENS, KEPELBAGAIAN DAN  

PENILAIAN RISIKO E. COLI YANG MERINTANG ANTIBIOTIK 

DARI SUNGAI LARUT YANG MENERIMA KESAN 

ANTROPOGENIK DAN SUNGAI SANGGA BESAR 

 

 

ABSTRAK 

Peningkatan kemunculan Escherichia coli (E. coli) berevolusi pesat dan berbagai 

rintangan masih merupakan isu kesihatan awam global yang membimbangkan. 

Ekosistem akuatik di bawah pengaruh antropogenik yang berterusan akan menjadi 

takungan umum untuk pemerolehan dan penyebaran penentu genetik rintangan 

antibiotik. Untuk lebih memahami kesan air sisa antropogenik terhadap kejadian, 

kepelbagaian genetik, dan virulensi E. coli berbagai rintangan antibiotik serta gen 

rintangannya, air permukaan daripada perairan muara Sungai Larut dan Sungai Sangga 

Besar telah disiasat. Enam tapak persampelan di hulu dan hilir Sungai Larut termasuk 

sisa air dari zoo, hospital, dan rumah sembelih serta tiga lagi tapak dari Sungai 

Sangga Besar yang berdekatan telah disiasat. Kepekatan dan risiko ekologi sampel 

permukaan air bagi 22 jenis antibiotik telah diukur dengan kaedah pengekstrakan fasa 

pepejal (SPE) diikuti oleh kromatografi cecair berprestasi tinggi jisim gabungan 

(HPLC–MS/MS). Jumlah koliform dan E. coli telah diasingkan dan dikira dengan 

teknik penapisan membran. Profil antibiogram ditentu melalui ujian kerentanan 

antimikrob (AST), manakala filogenetik, gen virulensi, dan gen rintangan antibiotik 

diperolehi dengan ujian multiplex PCR. Analisis korelasi kanonik lalu dilaksanakan 

untuk menganalisis kumpulan filogenetik E. coli terhadap gen rintangan sul dan tet, 

parameter fizikokimia, dan kepekatan sisa antibiotik. Bilangan koliform dan E. coli di 

Sungai Larut merangkumi EST 1 hingga 4.1 × 105 CFU 100 ml-1, manakala Sungai 

Sangga Besar merangkumi EST 1 hingga 2.5 × 103 CFU 100 ml-1. Kesemua kumpulan 
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filogenetik kecuali B1 memiliki taburan yang tidak homogen, dimana kumpulan 

filogenetik A (34.39 %), dikesan jauh lebih tinggi dari efluen hospital (58.57 %) dan 

rumah sembelih (49.18 %) diikuti oleh S1b (51.67 %). Selain itu, lebih daripada separuh 

isolat E. coli dalam Sungai Larut dan Sangga Besar memiliki rintangan antibiotik yang 

berbagai. Kelaziman fenotip E. coli rintangan antibiotik yang berbagai serta pemilikan 

gen rintangan tet dan sul adalah lebih tinggi di tapak air sisa berbanding dengan perairan 

sungai. Komposisi filogenetik E. coli dan gen rintangan dikaitkan dengan ciri 

fizikokimia dan sisa antibiotik. Kesimpulannya, tapak yang terjejas oleh air sisa 

bersama dengan sisa antibiotik jelas mengubahsuai komposisi filogenetik E. coli, 

kepelbagaian fenotip rintangan antibiotik, dan taburan gen rintangan di Sungai Larut. 

 

Kata kunci: Escherichia coli, kepelbagaian, rintangan antibiotik, antropogenik, virulen. 
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1 

CHAPTER 1: INTRODUCTION  

Escherichia coli (E. coli) is ubiquitous in faeces, therefore it has been favoured as an 

indicator of faecal contamination and as an indicator of hygiene and food safety. 

However, studies have revealed that there is strong evidence showing trends of 

increasing ubiquity of E. coli in aquatic environments (Byappanahalli et al., 2003; 

Berthe et al., 2013; Perini et al., 2015). Most E. coli strains are harmless but some 

serotypes could be pathogenic, which may lead to intestinal and extra-intestinal 

infections. This risk of infection could be significantly increased if the bacterium is 

resistant to antibiotics (Pereira et al., 2013).  

River pollution is a severe problem in Malaysia. Among 638 rivers, there were 231 

rivers classified as slightly polluted while 50 were polluted (DOE 2019a, Figure 1.1). 

The water quality index (WQI) serves as the basis for river assessment in relation to 

pollution categorisation, health risk, and the designation of classes of beneficial uses as 

providers under the Interim National Water Quality Standards (INWQS) for Malaysia. 

The assessment of the WQI conducted by the Malaysian DOE is physicochemical based 

on six main parameters: biochemical oxygen demand (BOD), dissolved oxygen (DO), 

chemical oxygen demand (COD), suspended solids, ammonia nitrogen, and pH. It does 

not include coliform-based indicators. Sewage has been identified as the major source 

of river pollution in Malaysia (Department of Environment, 2018). The discharge of 

domestic, animal, sewage treatment plants and industrial wastewaters usually consists of 

organic matter, inorganic salts, nitrogen, heavy metals, and a wide diversity of 

microorganisms (bacteria, viruses, and protozoa). E. coli is one of the pollutants that 

affect the water quality in rivers and may pose a serious threat to public health risk. 

Antibiotic resistant (AR) bacteria are increasing and are expected to become a global 

health emergency that could cause 10 million deaths by 2050 
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(World Health Organisation [WHO], 2019). Thus, the rising emergence of rapid 

evolution and multiple antibiotic-resistant (MAR) environmental E. coli is of great 

concern (Djordjevic et al., 2013; Harwood et al., 2013). AR E. coli may enter the 

aquatic environment through discharge from livestock production, hospital waste 

material, and municipal wastewater (Pruden et al., 2006; Pereira et al., 2013). 

Consequently, rivers could become efficient disseminators of these MAR bacteria and 

antibiotic resistance genes (ARGs). Furthermore, numerous types of anthropogenic 

activity, including antibiotic use in hospitals, agriculture, and aquaculture, along with 

other non-human applications of antibiotics may intensify the spread of ARGs in the 

environment. 

Antibiotics have received increased attention as an emergent micropollutant that 

diminishes water quality regardless of the compound’s concentrations 

(Sarmah et al., 2006; Allen et al., 2009; Grenni et al., 2018). Under low concentrations, 

exposure to antibiotics could exert strong selection pressure for ARG adoption among 

bacteria through lateral gene transfer (LGT) (Stokes & Gillings, 2011) which is also 

known as horizontal gene transfer (HGT) (Martínez, 2009a; Partridge, 2011; 

Berendonk et al., 2015). In turn, this promotes the dissemination of resistant bacterial 

clones that ultimately aids the overall dissemination of resistance genes 

(Gillings & Stokes, 2012). 
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Despite that, gaps in monitoring data in many East and Southeast Asian countries are 

apparent (Anh et al., 2020), with few Malaysian studies contributing surveys on 

antibiotic resistance in the environment (Rathi et al., 2010; Ghaderpour et al., 2015), A 

past study did detect antibiotic concentrations in three major rivers in the state of 

Selangor (Praveena et al., 2018), however, the antibiotics sampled were less 

comprehensive. To fill this gap, this is the first study in Malaysia that will more 

comprehensively elucidate the level of contamination caused by commonly used 

antibiotics towards environmental surface waters, while having their effects on 

ecological risks and AR E. coli distribution characterised. The riverine estuarine water 

continuum of Larut River which received anthropogenic wastewaters from hospital, 

zoo, and poultry slaughterhouse was studied. Meanwhile, the less impacted sites from 

Sangga Besar River were used as a comparison. Twenty—two antibiotics comprising 

six antibiotic groups (sulphonamides, fluoroquinolones, macrolides, tetracyclines, 

amphenicols, and diaminopyrimidine) were screened using high-performance liquid 

chromatography-tandem mass spectrometry (HPLC—MS/MS). Ecological risk 

quotients were established to assess the degree of ecological impact. Following that, 

environmental E. coli was isolated from each site using selective media and 

characterised according to phylogenetic group, antibiotic susceptibility, antibiotic 

resistance genes, and virulence gene to understand prevalence and abundance. Thus, the 

main objectives of this study were to investigate the anthropogenic impact on 

(i) occurrence, concentration, and ecological risk of antibiotic residue and 

(ii) prevalence of a genetically diverse population of E. coli with varying antibiotic 

susceptibility, antibiotic resistance genes, and virulence in Larut River, as compared to 

Sangga Besar River.  
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Figure 1.1: Trend of river water quality from 2008-2019 in Malaysia 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Enterobacteriaceae 

Enterobacteriaceae is a family of Gram-negative bacteria. According to Bergey’s 

Manual of Systematics of Archaea and Bacteria, Enterobacteriaceae consists of 44 

genera and more than 170 named species of bacteria found inhabiting a multitude of 

hosts and habitats worldwide (Brenner & Farmer, 2015). Phenotypic similarities shared 

among Enterobacteriaceae include (i) having a straight rod shape, (ii) does not require 

sodium, heme and/or nicotinamide adenine dinucleotide for growth, and (iii) likely 

contains enterobacterial common antigen (Brenner & Farmer, 2015). However, certain 

taxa are non-motile while motile taxa rely on peritrichous or polar flagella for motion 

(Jorgensen & Pfaller, 2015). Many members of this family regularly inhabit the 

gastrointestinal microbiota in humans and other animals, while the remainders also 

inhabit soil, water, fruits, meats, eggs, vegetables, grain, flowering plants, and trees. 

DNA relatedness is important in defining the relationships of many Enterobacteriaceae 

members (Wayne et al., 1987; Fox et al., 1992; Stackebrandt and Goebel, 1994). A 

prominent member of the Enterobacteriaceae family is E. coli. Thus, DNAs from 

species within most genera of Enterobacteriaceae are at least 20 % related to E. coli and 

one another (Brenner & Farmer, 2015). 

 

2.2 E. coli and its Importance  

E. coli is a gram-negative, facultative anaerobic, oxidase-negative, non-sporulating, 

rod-shaped, lactose positive, and motile enteric bacillus. The genus Escherichia along 

with its first species E. coli had been recognised over a century ago. Since then, the 

genus underwent considerable reclassification efforts due to advances in genotypic and 
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genomic diagnostic tools. Escherichia once had seven species but now only four species 

were recognised, which consist of E. coli, E. fergusonii, E. albertii, and E. marmotae 

(Yu et al., 2021). 

E. coli was initially believed to mainly inhabit the lower intestinal tract of warm-

blooded animals, including humans, and be discharged to the environment through 

faeces and wastewater treatment plants (Berthe et al. 2013). Thus, E. coli is often 

characterised as a coliform, an informal category of bacteria that includes the genera of 

non-faecal origin and of faecal origin. Designated as faecal coliform, thermotolerant 

coliform, or faecal indicator bacteria (FIB), these culturable bacteria were used as an 

assay for over 150 years to diagnose the potability of water through the detection of 

faecal contamination (Leclerc et al., 2001; Garrity, 2007; Teaf et al., 2018; 

Holcomb & Stewart, 2020).  

Numerous important advances in the characterisation of E. coli genotype and 

phenotype were on clinical isolates, where emphasis were given to virulence in a few 

clinically significant lineages infecting human and animal hosts (Hazen et al., 2016; 

Shah et al., 2018; Jørgensen et al., 2019).  That is because E. coli is an important 

causative agent of some intestinal and extraintestinal diseases in humans 

(Nataro & Kaper, 1998; Blount, 2015). Selective pressure in the gut likely promoted the 

emergence and maintenance of virulence factors, indicating that commensal strains may 

function as reservoirs for the evolution of pathogenic E. coli (Tenaillon et al., 2010). 

Most strains of E. coli strains are harmless, some strains are indeed beneficial to their 

host, e.g. certain strains exhibit substantial probiotic features towards its host by 

producing vitamin K and vitamin B12, ensuring healthy microbiome development, and 

playing a role in infection prevention (Bentley & Meganathan, 1982; 

Lawrence & Roth, 1996; Chang et al., 2004; Tomas et al., 2015). Through indirect 
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antagonistic effects, E. coli Nissle 1917 is one such example of a probiotic that inhibits 

the invasion by enteroinvasive pathogens (Sonnenborn, 2016). 

E. coli is a gram-negative, facultative anaerobic, oxidase-negative, non-sporulating, 

rod-shaped, lactose positive, and motile enteric bacillus. The genus Escherichia along 

with its first species, E. coli, had been recognised over a century ago. Since then, the 

genus underwent considerable reclassification efforts due to advances in genotypic and 

genomic diagnostic tools. Escherichia once had seven species, but now only four 

species were recognised, which consist of E. coli, E. fergusonii, E. albertii, and 

E. marmotae (Yu et al., 2021). 

E. coli was initially believed to mainly inhabit the lower intestinal tract of  

warm-blooded animals, including humans, and be discharged into the environment 

through faeces and wastewater treatment plants (Berthe et al. 2013). Thus, E. coli is 

often characterised as a coliform, an informal category of bacteria that includes genera 

of non-faecal origin and of faecal origin. Designated as faecal coliform, thermotolerant 

coliform, or faecal indicator bacteria (FIB), these culturable bacteria were used as an 

assay for over 150 years to diagnose the potability of water through the detection of 

faecal contamination (Leclerc et al., 2001; Garrity, 2007; Teaf et al., 2018; 

Holcomb & Stewart, 2020). Routine water quality assessments still prioritised FIB 

detection using E. coli and intestinal enterococci culture methods because of their 

relative affordability and straightforwardness (Leclerc et al., 2001; Tallon et al., 2005; 

Bain et al., 2012; WHO, 2017). The drinking-water quality guidelines set by WHO and 

the national water quality standards for Malaysia had set E. coli or thermotolerant 

coliform (i.e. faecal coliform) to not be detectable per 100 ml of water sample or 

contain no more than 10 MPN 100 ml-1 of water sample respectively (WHO, 2017; 

Department of Environment, 2019b). 
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Numerous important advances in the characterisation of E. coli genotype and 

phenotype were on clinical isolates, where emphasis was given to virulence in a few 

clinically significant lineages infecting human and animal hosts (Hazen et al., 2016; 

Shah et al., 2018; Jørgensen et al., 2019).  That is because E. coli is an important 

causative agent of some intestinal and extraintestinal diseases in humans 

(Nataro & Kaper, 1998; Blount, 2015). Selective pressure in the gut likely promoted the 

emergence and maintenance of virulence factors, indicating that commensal strains may 

function as reservoirs for the evolution of pathogenic E. coli (Tenaillon et al., 2010). 

Most strains of E. coli strains are harmless, but some strains are indeed beneficial to 

their host, e.g. certain strains exhibit substantial probiotic features towards its host by 

producing vitamin K and vitamin B12, ensuring healthy microbiome development, and 

playing a role in infection prevention (Bentley & Meganathan, 1982; 

Lawrence & Roth, 1996; Chang et al., 2004; Tomas et al., 2015). Through indirect 

antagonistic effects, E. coli Nissle 1917 is one such example of a probiotic that inhibits 

the invasion by enteroinvasive pathogens (Sonnenborn, 2016). 

 

2.3 Diversity of E. coli 

E. coli has diverse phenotypic and genotypic classifications. Initially, E. coli 

population structure was classified into serotypes: somatic (O), capsular (K), and 

flagellar (H) antigens (Ørskov et al., 1976). Now with the existence of molecular 

methods, E. coli sensu stricto can be classified into one of eight phylogenetic groups 

(phylogroups) (A, B1, B2, C, D, E, F, and cryptic clade I) (Luo et al., 2011; 

Clermont et al., 2013). Two additional groups: Phylogroup G and H were recently 

discovered (Lu et al., 2016; Clermont et al., 2019; Gonzalez-Alba et al., 2019).  

Two categorical E. coli groups exist in accordance to frequency: (i) the major 
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phylogroups (i.e. A, B1, B2, and D) which are common and (ii) the minor phylogroups 

(i.e. C, E, F, and cryptic clade I) described to be less common (Clermont et al., 2013; 

Touchon et al., 2020). E. coli strains belonging to different phylogroups have different 

associations with phenotypic and genotypic traits, metabolic properties, ecotype, 

lifestyle, and pathogenicity (Clermont et al., 2000; Gordon, 2004; Tenaillon et al., 2010; 

Méric et al., 2012), i.e. unknown strains are labelled a phylogroup with its 

accompanying characteristics.  

Different E. coli strains express different phenotypic characteristics. These 

phenotypic variations could be influenced by ecological factors as evidenced by the 

fitness of E. coli towards its primary and secondary habitats, i.e. host-associated 

(Macfarlane & Macfarlane, 1997) and extra-host (Savageau, 1983) respectively. The 

diversity of E. coli can be explained by the genomic structure of the microorganism as a 

result of adaptation to the environment (van Elsas et al., 2011). Genetically, only 20 % 

of the genes in a typical E. coli genome are shared among all strains, making it one of 

the most genetically diverse bacterial species (Lukjancenko et al., 2010; 

Tenaillon et al., 2010). In some studies, approximately half of the average genome is 

conserved across most E. coli strains (i.e. core genome) while the rest 

(i.e. accessory genome) are sporadically found in certain strains, thus the pan-genome 

(core genome and accessory genome) greatly exceeds the size of the typical genome 

(Rasko et al., 2008; Touchon et al., 2009; Lukjancenko et al., 2010; Land et al., 2015). 

Only 2,000 genes from an average of 4,700 genes found in the E. coli genome are 

conserved at the core genome while the remainder belongs to a set of accessory genes 

(Tenaillon et al., 2010). Overall, the pan-genome in E. coli has a high level of plasticity 

that can only be described as vast, open, and continually growing, provided new strains 

continually appear (Rasko et al. 2008).  
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External stresses trigger various genes that encode proteins with specific roles in 

protecting the cell (Nyström, 2004). From the E. coli genome, accessory genes represent 

a part of the genome that enable adaptations through the acquisition and loss of genes 

related to cell motility, intracellular trafficking and secretion, carbohydrate transport and 

metabolism, and secondary metabolism via mobile genetic elements (MGEs) 

(Touchon et al., 2020). MGEs consist of plasmids, transposons, insertion sequences, 

integrative and conjugative elements, integrons, prophages, gene cassettes, etc. MGEs 

promote evolution through HGT (Wiedenbeck & Cohan, 2011) that subsequently 

provide a range of new functions and capabilities for E. coli strains to exploit and 

survive in certain ecotypes (Lukjancenko et al. 2010). E. coli isolates were observed to 

share genetic compositions reflective of their environmental challenges. E. coli isolated 

from separate wastewater treatment plants from Canada, Switzerland and the U.S. had 

all shared similar patterns of antibiotic AR genes and virulence genes, and possessed 

stress-related genes that enhance survivability against wastewater treatment 

(Zhi et al., 2019). Thus, divergent populations can share an adaptation through HGT 

which transcends differences in physiological capabilities, cellular structures, and 

ecological niches (Wiedenbeck & Cohan, 2011). 

Virulence is driven by the acquisition of novel genes among pathogenic strains 

(Touchon et al., 2009; Dobrindt et al., 2010; Leimbach et al., 2013; Juhas, 2015). 

Presently, molecular methods are used to type the virulence factor, along with the 

identification of the host’s clinical symptoms, E. coli strains are classified into 

pathotypes of diarrhoeagenic/intestinal pathogenic E. coli (IPEC) or extraintestinal 

pathogenic E. coli (ExPEC) (Lindstedt et al., 2018). Briefly, IPEC E. coli strains are 

major diarrhoeagenic pathogens that cause gastroenteritis with six well-established 

intestinal pathotype subgroups: enterohemorrhagic E. coli (EHEC) or Shiga toxin-

producing E. coli (STEC) or verocytotoxic E. coli (VTEC)  associated with 
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haemorrhagic colitis and haemolytic-uremic syndrome in humans, enteropathogenic 

E. coli (EPEC) associated with diarrhoea in children, enteroaggregative E. coli (EAEC)  

associated with persistent diarrhoea in humans, enterotoxigenic E. coli (ETEC)  

associated with traveller’s diarrhoea, enteroinvasive E. coli (EIEC)  associated with 

dysentery in humans and various animals, and diffusely adherent E. coli (DAEC) 

associated with acute diarrhoea, particularly in young children  (Scaletsky et al., 2002; 

Kaper et al., 2004; Daniels, 2006; Van Den Beld & Reubsaet, 2012). Meanwhile, 

ExPEC consists of three human pathotype subgroups: neonatal-meningitis E. coli 

(NMEC) causing meningitis in newborn infants, uropathogenic E. coli (UPEC) causing 

urinary tract infections, and sepsis-associated pathogenic E. coli (SePEC) causing 

septicemia (Johnson & Russo, 2002; Kaper et al., 2004; Moriel et al., 2010; 

Wijetunge et al., 2015; Yu et al., 2021). Finally, the non-human pathotype avian 

pathogenic E. coli (APEC) is a strain similar to human ExPEC strains as they share a 

common repertoire of virulence genes (Mokady et al., 2005;  

Rodriguez-Siek et al., 2005), the subgroup causes a range of diseases in birds including 

colibacillosis (Nolan et al., 2013). 
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Figure 2.1: The schematic diagram of the current taxonomy of the Escherichia genus 

and the type of phylogenetic lineages under the faecal coliform E. coli 

Overall, E. fergusonii, E. albertii, and E. marmotae were found to be genotypically 

similar to E. coli and new lineages like the cryptic Escherichia clades have been 

discovered (Figure 2.1). The great genetic and biological diversity of E. coli may 

consist of several distinct ecotypes largely divided into primary and secondary habitats. 

Well-established phylogenetic groups included A, B1, B2, C, D, E, and F along with 

clade I closely related to E. coli whereas phylogroups G and H were the most recently 

discovered groups. Pathogenic E. coli can be classified as IPEC or ExPEC. IPECs can 

be subdivided into EHEC, EPEC, EAEC, ETEC, EIEC, and DAEC. Similarly, the 

ExPEC can be subdivided into NMEC, UPEC, SePEC, and APEC. 
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2.4 Identification and Classification Methods of E. coli 

E. coli population structure was formed by observing serotypes (O), (K), and (H) 

antigens using the agglutination technique (Ørskov & Ørskov, 1975; 

Ørskov et al., 1976). Among all pathotypes, EHEC serotype O157 was the strain of 

interest that gave rise to 390 outbreaks from 2003-2012 (Heiman et al., 2015). 

Consequently, species subtyping and identification of E. coli phylogeny became a 

growing priority as it is a major pathogen (Nataro & Kaper, 1998; Blount, 2015) and a 

FIB for water quality (Leclerc et al., 2001; Tallon et al., 2005; Bain et al., 2012; 

WHO, 2017). Other methods of E. coli strain classification were also applied.  

Microbiologists once heavily relied on biochemical and structural phenotypes 

(i.e. metabolic pathways) for bacterial classification. For instance, the indole,  

methyl-red, Voges-Proskauer and citrate reaction (IMViC) tests are standard tests used 

to profile the biochemical properties of E. coli (Leclerc, 1962). Advances in genomic 

and genotypic diagnostic tools have since brought greater discriminative power and 

helped elucidate the remarkable diversity of E. coli. 

Early studies on metabolic-enzyme polymorphisms by multilocus enzyme 

electrophoresis (MLEE) enabled the measurement of variation in the electrophoretic 

mobility of enzymes of different E. coli strains to discern phylogeny (Milkman, 1973; 

Selander & Levin, 1980). From the pioneering MLEE data, the major phylogenetic 

groups (A, B1, B2, D), were later identified from the E. coli reference (ECOR) 

collection and validated across studies using different methods such as restriction 

fragment length polymorphisms (RFLP) (Desjardins et al., 1995) followed by the more 

recent multilocus sequence typing (MLST) method. Complex DNA fingerprint data 

(Lim et al., 2009; Ghaderpour et al., 2015; Osińska et al., 2017) soon emerged from a 

large collection of E. coli isolates that could be used to infer genetic diversity. DNA 
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fingerprint images (i.e. band images) were first generated and then differentiated by 

comparing the change in spatial location of densitometric curves between each 

fingerprint before determining the genetic similarity within bacterial populations. 

Similarity of population structures could be analysed by Pearson’s, curve-based, 

product-moment correlation coefficient, multidimensional scaling (MDS), multivariate 

analysis of variance (MANOVA), and other forms of discriminant and cluster analyses 

(Ishii et al., 2006; Ishii & Sadowsky, 2009; Unno et al., 2009). The library-based 

repetitive element sequence-based PCR (rep-PCR) DNA fingerprinting technique was 

one such genotypic tool used to identify, track and examine genetic diversity among 

environmentally important E. coli populations (Kon et al., 2009; Lyautey et al., 2010). 

To produce an array of fingerprints for the characterisation of a bacterial isolate, rep-

PCR DNA fingerprinting amplifies conserved intergenic palindromic DNA sequences 

that are stable, non-coding, and scattered genomewide. Bacterial genome has four such 

conserved repetitive DNA sequences: (i) enterobacterial repetitive intergenic consensus 

(ERIC), (ii) BOX, (iii) poly-trinucleotide (GTG) 5, and (iv) repetitive extragenic 

palindromic (REP) (Versalovic et al., 1994; Mohapatra & Mazumder, 2008). Past 

literature had successfully applied fingerprinting methods to depict considerable 

genotypic distinction between E. coli strains from aquatic and faecal sources 

(Goto & Yan, 2011) and also demonstrated spatial and seasonal changes within the 

bacteria population (Chandran & Mazumder, 2015). Most recently, whole genome 

sequencing (WGS) was developed and could provide higher discrimination and 

resolution compared to other methods (Gordon et al., 2008; Touchon et al., 2009; 

Holmes et al., 2015). Each method has its advantages; a combination of multiple 

molecular methods is the best approach for a truly robust phylogenetic analysis.  

 Apart from other recent classifications, the “iterative” quadruplex PCR method by 

Clermont et al. (2013) was most useful at rapidly assigning E. coli strains to specific 
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phylogenetic groups (phylogroups). Presently, E. coli may be classified into eight 

phylogroups: seven (A, B1, B2, C, D, E, and F) belong to E. coli sensu stricto, with the 

eighth being Escherichia cryptic clade I, a phenotypically indistinguishable strain but 

genetically distinct from E. coli (Luo et al., 2011; Clermont et al., 2013). More recently, 

phylogroup G could be rapidly identified using PCR (Clermont et al., 2019), and H was 

validated using WGS (Lu et al., 2016; Gonzalez-Alba et al., 2019), increasing species 

members of E. coli sensu stricto to nine main phylogenetic groups. This is followed by 

the remaining four E. coli cryptic clades (II, III, IV, and V) (Walk et al., 2009; 

Luo et al., 2011; Clermont et al., 2013). The term cryptic clade was used due to the 

inability of standard phenotypic methods to distinguish novel E. coli from existing 

strains. The relationships of E. coli sensu stricto strains were summarised as Phylogroup 

B2 having almost exclusively intracladed recombination, whereas strains of 

phylogroups A, B1, and C showed the highest rate of homoplasy (Figure 2.2). 

Specifically, the B2 phylogroup is located a distance apart from the other phylogroups 

and had the lowest intergroup recombination frequencies (1.6 %), at the opposing end is 

phylogroup B1 which was highly recombinant (17.7 %). Concurrently, phylogroups 

C, E, and F probably emerged in relatively modern times by recombination between 

other phylogenetic lineages, e.g. phylogroup C arises from phylogroups A and B1 while 

phylogroup F maintains promiscuous interactions with phylogroup D 

(Turrientes et al., 2014). In comparison, cryptic clades relate distantly to E. coli 

sensu stricto (Gordon, 2013). Univ
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Figure 2.2: Phylogenetic trees of E. coli showing the relationship between phylogroups 

(Turrientes et al., 2014) 
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2.5 E. coli in Environment 

By the early 2000s, a growing number of reports found E. coli populations persisting 

and replicating for extended periods in diverse environmental matrices. Some matrices 

include soil/sediment from subtropical and temperate regions (Lee et al., 2006; 

Ishii & Sadowsky, 2008; Ishii et al., 2009; Pote et al., 2009; Byappanahalli et al., 2012; 

Jang et al., 2015), algal mats (Badgley et al., 2011), water column from freshwater 

(Jang et al., 2011, 2015), marine water (Lee et al., 2006), estuary water 

(Berthe et al., 2013), and even treated drinking water (Blyton & Gordon, 2017). Each 

environment would affect the distribution and diversity of E. coli differently. 

Touchon et al. (2020) conducted a continent-scale genomic study of E. coli in Australia 

from 1993–2015, although they have observed that all phylogroups recovered could be 

isolated from multiple sources, certain phylogroups are, however, over-represented in 

some while under-represented in others. 

In the overall aquatic environments, the factors that influence the predominance of 

certain phylogroups are generally categorised under current land use, hydrological 

conditions, and a potential site of contamination (Hamelin et al., 2007; 

Sabaté et al., 2008; Ratajczak et al., 2010; Mokracka et al., 2011). A change in 

phylogroup distribution after rainfall at a small rural watershed containing pasture and 

human occupation has been found to be related to increased faecal contamination. The 

change in E. coli phylogroup population structure (e.g. ratio of phylogroup A to B1) 

was thus proposed to represent a change in land use and natural hydrological conditions 

(Ratajczak et al., 2010). Wastewater effluent contains faecal coliform. A worldwide 

database on E. coli phylogroup frequency isolated from wastewater had established a 

strong positive correlation between E. coli phylogroup distribution in wastewater and in 

human hosts (Stoppe et al., 2017). Thus, studies have compared wastewater effluent 

impacted sites to non-impacted sites to identify patterns in the distribution of E. coli 
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phylogroups (Zhi et al., 2016; Martak et al., 2020). Strong spatial modification in E. coli 

phylogroup structure was observed when sampling sites transitioned from rural to urban 

areas along an aquatic continuum (Petit et al., 2017). Although phylogroups A and B1 

are generally predominant and prevalent among water isolates (Walk et al., 2007; 

Ratajczak et al., 2010; Petit et al., 2017; Bong et al., 2020), studies that focused on 

bacterial communities in urban streams had shown that urbanisation had an impact on 

bacterial population structure (Wang et al., 2011; Hosen et al., 2017). Notably, 

phylogroup A was likely over-represented in waters near urban areas or from 

wastewater. Studies supporting this trend include the Rhine River (Stange et al., 2016), 

Tagus Estuary (Pereira et al., 2013), municipal wastewater and urban surface water of 

the Porto region (Figueira et al., 2011), waters of Rio de Janeiro 

(De Luca Rebello & Regua-Mangia, 2014), and a coastal lagoon of Venice 

(Perini et al., 2015). In comparison, phylogroup B1 strains were reported to survive and 

persist better in natural water environments compared to other phylogroups 

(Walk et al., 2007; Ratajczak et al., 2010; Berthe et al., 2013; Touchon et al., 2020;). 

Studies that support this included blooms from lakes (Power et al., 2005), a water 

catchment with mixed land use (Cho et al., 2018), a rural watershed composed of 

pasture and human occupation (Ratajczak et al., 2010), water canals of food crops 

irrigation (Jokinen et al., 2019), mangrove estuaries (Ghaderpour et al., 2015), water 

from the river and adjacent marine coast (Bong et al., 2020), and wetland waters with a 

dominant crow population (Sen et al., 2019). Conversely, phylogroups B2, and to a 

lesser extent, D were normally under-represented in aquatic environments 

(Walk et al., 2007; Petit et al., 2017; Ratajczak et al., 2010). Finally, cryptic clade 

strains cover 8.5 % and 14 % of the total surface water samples of an estuary 

(Berthe et al., 2013) and wetlands (Martak et al., 2020). Early data suggests cryptic 

clades are environmentally adapted (Luo et al., 2011; Oh et al., 2012). More studies are 

Univ
ers

iti 
Mala

ya



 

19 

needed to further verify the ecological distinction of cryptic clades along with minor 

phylogroups C, E, and F. 

Among the E. coli population found in natural environments, certain strains are 

potentially pathogenic. A case of waterborne gastroenteritis outbreak by diarrhoeagenic 

O157:H7 E. coli was suspected to be caused by sewage contamination in drinking water 

(Swerdlow et al., 1992). Generally, strains harbouring virulent factors concentrate in 

phylogroups B2, D, E, and F, while the least abundant belong to A 

(Touchon et al., 2020; Nowicki et al., 2021). Therefore, phylogroup identification could 

be a simple but useful tool to narrow down the identity of a pathogenic strain 

(Anastasi et al., 2010) due to a relationship formed between the genetic background and 

virulence factors (Escobar-Páramo et al., 2004a).  

 

2.6 Survival of E coli in Environment  

The survival of E. coli is influenced by biotic and abiotic factors in natural 

environments (Rochelle-Newall et al., 2015). The abiotic factors include solar 

insolation, hydrologic conditions, suspended solids, temperature, pH, oxygen 

availability, general water chemistry, and nutrient availability. Biotic factors include 

predation and competition from microbiota, biofilm formation, and differential 

growth/survival ability among phylogroup. Factors to be discussed are as follows: 

Solar insolation is the predominant abiotic factor causing a decrease in E. coli count 

on surface waters of freshwater (Jozi et al., 2014) and marine environments 

(Whitman et al., 2004). Light in the lower wavelengths, such as ultraviolet (UV) light, 

directly causes DNA damage to cells (photobiological mechanism) and/or oxidation of 

cellular contents (photooxidative mechanism). However, light is only effective in 
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surface waters where it can reach (Whitman et al. 2004). As such, turbidity of the water 

environment plays a significant role.To counteract UV radiation and desiccation from 

insolation at water surface. Light in the lower wavelengths, such as ultraviolet (UV) 

light, directly causes DNA damage to cells through a photobiological mechanism. To 

counteract UV radiation and desiccation from insolation, E. coli could enhance 

production of group 1 capsule to improve survivability (Power et al., 2005). 

Hydrologic conditions, such as stormwater discharge, cause increased pollutant 

transport into aquatic environments. Surface water quality would subsequently 

deteriorate through increased turbidity, suspended solid concentrations, organic matter, 

and faecal contamination. Compared to baseflow, stormflow condition recorded higher 

E. coli concentrations (Rochelle-Newall et al., 2016) and modified the phylogenetic 

composition among E. coli population to promote adaptive strains 

(Ratajczak et al., 2010) in watersheds. 

Suspended solids, not only do they provide organic and inorganic nutrients but also 

protect against environmental factors such as UV radiation, metal toxicity, grazing, and 

attack by bacteriophages (Medema et al., 2003) to microbes. E. coli adjusts its cell 

surface properties for better attachment to these suspended solids, namely through a 

complex process involving outer membrane proteins, hydrophobicity, and surface 

charge (Goulter et al., 2009). To support this, Bong et al. (2020) observed E. coli 

abundance had correlated positively with total suspended solids, suggesting that E. coli 

were distributed in rivers bounded to particulate matter while under indirect influence 

from precipitation.  

Temperature, such that the environment experiences generally lower temperature 

with wider fluctuations. For example, E. coli isolates from bodies of water generally 

maintain growth at 20 °C, but a minority could still tolerate low temperatures of 7 °C 
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(Berthe et al., 2013). As such, a significant difference in survival rate between 

environmental compartments was observed, including rivers and agricultural waters, 

wastewaters and agricultural waters, rivers and lakes, and wastewater and lakes 

(Blaustein et al., 2013). To explain this, water adaptation among E. coli population thus 

varies by genotype, i.e. strains with better temperature tolerance likely harbour the 

genomic island locus of heat resistance (LHR) (Zhi et al., 2016) and/or the cold shock 

protein (Csp) superfamily (Yu et al., 2019).  

pH, where the range between 6 and 8 does not inhibit E. coli 

(Foppen & Schijven, 2006). However, growth is limited at approximately pH 4, while 

survival at pH 2 to 3 only lasts several hours at stationary phase (Small et al., 1994). 

E. coli were thus suggested to possess a strong ability to survive in alkaline water due to 

a positive correlation found between pH and bacterial abundance according to a study 

on an aquatic environment with submerged vegetation (Gu et al., 2020). However, there 

are exceptions among E. coli strains. For example, several E. coli O157:H7 strains 

survive better at lower pH than higher pH, similar to acidophiles (van Elsas et al. 2011). 

This suggests that specific E. coli strains survive selectively depending on the local pH 

of the environment.  

Oxygen availability, E. coli is a facultative anaerobe that can adapt to anoxic and 

oxic natural environments. The transition between anaerobic and aerobic respiration is 

driven by extensive changes in gene expression and protein synthesis, resulting in 

changes in metabolic fluxes and metabolite concentrations. The oxygen response of E. 

coli is mainly controlled by the global transcriptional regulators FNR and ArcA 

(Bettenbrock et al., 2014). 

Water chemistry, various inorganic and organic chemicals present in the aquatic 

environment could inhibit E. coli growth at varying concentrations. The two major 
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factors to consider are salinity and chlorine concentrations for E. coli. Salinity influence 

desiccation/hydration of E. coli and is a type of common stress the bacteria face when in 

natural environments (Evans and Wallenstein 2012; van Elsas et al. 2011). The general 

minimum growth inhibitory concentrations are 20 % NaCl in nutrient-rich media and 

3.5 % NaCl in nutrient-depleted media for salinity (Hrenovic & Ivankovic, 2009), 

whereas chlorine is 1.5 mg l-1 (Owoseni et al., 2017). Nearly every wastewater 

treatment plant uses chlorination to disinfect wastewater, followed by a dechlorination 

process before the water is safely sent back into the environment. 

Nutrient availability, i.e. concentration of carbon, nitrogen, and phosphorus affects 

the survival and growth of E. coli in the environment. Specifically, under  

nutrient-starved conditions, such as low nitrogen (Chubukov & Sauer, 2014) and 

phosphorus (Juhna et al., 2007) levels, E. coli normally experience low metabolic rate 

with greater expression of stress defence genes while entering longer durations of 

stationary growth (Vital et al., 2015). The sigma factor (σs) is one such central regulator 

for stress in E. coli, which is strongly expressed during stationary phase 

(Lange & Hengge-Aronis, 1991; Patten et al., 2004). Under long-term stressful survival 

conditions, the common phenotypic characteristic of a (σs) dependent E. coli strain is an 

adhesive extracellular matrix comprising cellulose, curli fimbriae, and other 

polysaccharides (Zogaj et al., 2001; Römling, 2005), which can be identified by the 

formation of ‘red, dry, and rough (rdar) morphotype’ multicellular colonies on solid 

media dyed with Congo red (White et al., 2011).  

Predation and competition from microbiota, E. coli population interacts with other 

microbes in nature. The decline in E. coli persistence in water is influenced by 

interactions like predation, lysis, and competition by protozoa, phages, and indigenous 

microbiota respectively. Generally, studies found E. coli survival was enhanced when 
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river water sample was sterilised before inoculation (Flint, 1987), indicating a potential 

influence of indigenous microbiota (van Elsas et al. 2011). Generally, studies found 

enhanced E. coli survival in a sterile river water sample (Flint, 1987). In contrast, 

survival in a sample containing a diverse indigenous microbiota was observed to be 

inversely proportional (van Elsas et al., 2011), indicating that species diversity may 

inhibit the dissemination of E. coli strains. 

Biofilms serve to protect bacteria from hostile environmental factors such as UV 

radiation, desiccation, protozoan predation, and chemical exposures 

(McDougald et al., 2012). Protection can be due either to physical inhibition in 

antimicrobial diffusion or direct binding of the antibiotics in the biofilm, thus allowing 

most bacteria in nature to persist in coordinated, spatially organized, and metabolically 

integrated biofilm communities (Dufour et al., 2010). The heat resistant agglutination 

(hra1) gene harboured by E. coli encodes an accessory intestinal epithelial cell 

colonisation factor responsible for conferring biofilm formation characteristics 

(Bhargava et al., 2009). 

Differential survival/growth ability among phylogroup, where certain phylogroups 

within the E. coli species were over-represented for several adaptation processes. 

Notably, B1 phylogroup likely facilitates survival in stressful environmental niches and 

possess adaptions towards aromatic compound utilisation for aquatic plant colonisation 

(Méric et al., 2012), salinity tolerance (Bong et al., 2020), growth in low temperatures 

(Berthe et al., 2013), and formation of an extracellular matrix, i.e. biofilm 

(Di Sante et al., 2018). In agreement with these observations, prevalence of the 

aforementioned rdar morphotype, a phenotype associated with survival, was 

significantly higher among B1 isolates (White et al., 2011; Di Sante et al., 2018). In 

comparison, Bong et al. (2020) suggest that phylogroup A adapts better in deteriorated 
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water quality with high ammonium and nitrite concentrations, phylogroup B appears to 

thrive in water with higher dissolved oxygen, while phylogroup D is abundant in waters 

with nitrate. Whereas the Escherichia cryptic clade strains (excluding clade I) have 

phenotypes showing the rdar morphology, enhanced abilities to form biofilms, and 

tolerate low growth temperatures (Ingle et al., 2011; Di Sante et al., 2018). 

  

2.7 Antibiotic Resistant E. coli 

Antibiotic resistant bacteria (ARB) could be defined as extensively resistant 

(broadly resistant or susceptible to only one or two categories of antibiotic agents), 

multidrug resistant (resistant to ≥ 3 therapeutic groups each with ≥ 1 agent), and 

pandrug resistant (resistant to all available antibiotic agents) (Magiorakos, 2012). 

Antibiotic resistance genes (ARGs) are auto-replicating elements and are spread among 

various bacterial species and habitats (Grenni et al., 2018). Although AR is mostly a 

clinical problem, evidence points toward an environmental origin (Allen et al., 2010; 

Forsberg et al., 2012). The presence of native ARGs in environmental bacteria 

communities found within pristine, remote, or extreme environments 

(e.g. caves or springs) with zero anthropogenic influence constitutes a prime example of 

the ubiquity of genes conferring AR naturally (Brown & Balkwill, 2009). An 

environmental setting (e.g. water) can influence the cycling of AR in nature through AR 

mechanisms either introduced by environmental bacteria or by contamination from 

human and animal commensals and pathogens (Riesenfeld et al., 2004; 

Baquero et al., 2008; Zhang et al., 2009; Allen et al., 2010;  Perry & Wright, 2013). For 

the latter, the emergence of ARB in the environment mainly began with the overuse and 

misuse of antibiotics or co-selecting agents such as biocides, metals, and nanomaterial 

stressors (Taylor et al., 2011; Qiu et al., 2012). Therefore, ARGs are only considered a 
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pollutant when the fraction of resistant microorganisms increases above the normal AR 

levels of a given environment under the following proposed conditions:  

(i) Gene-transfer units integrated with ARGs are observed to disseminate in natural 

ecosystems due to the presence of antibiotic selective pressure or (ii) residues from 

locations under the anthropogenic influence are observed to contain bacteria that carry 

AR determinants (Martínez, 2009b).  

Studies have shown that anthropogenic activities could exacerbate the acquisition of 

AR by microbial communities. Environments were generally more contaminated by 

antibiotics, resistant microorganisms, and resistance genes the closer to the 

anthropogenic source (Oberlé et al., 2012; Xu et al., 2015; Lye et al., 2019). To support 

this, a study on the trend of antibiotic usage found its application as supplements in 

livestock had increased over the years, which resulted in higher antibiotic residue 

detection in faecal and meat samples (Nisha, 2008; Zhao et al., 2010; 

Bakar et al., 2013), while another study found consistently rising levels of ARG 

abundance in soil samples over 68 years from the Netherlands (Knapp et al., 2010). 

Also, studies had reported significant positive correlations between ARGs, MGEs, 

concentrations of antibiotics, and severity of anthropogenic pollution 

(Pruden et al., 2012; Chen et al., 2013; Tao et al., 2016). Thus, AR hotspots are likely to 

be found in aquatic environmental compartments that are subjected to heavy 

anthropogenic pressure, e.g. municipal wastewater systems, medical facilities, 

pharmaceutical manufacturing effluents, aquaculture facilities, slaughterhouses, and 

animal husbandry facilities (Cabello, 2006; Adelowo et al., 2014; Penders et al., 2013;  

Berendonk et al., 2015; Economou & Gousia, 2015; Lien et al., 2017). An exemplary 

study focused on determining ARG sources in a river system in rural Nova Scotia, 

Canada, had categorised tertiary-level WWTP as a point source pollution while land use 

activities were categorised as a nonpoint source pollution (McConnell et al., 2018). 
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Predictably, the therapeutic management of AR E. coli infections has become 

challenging. For example, a 2013 survey data consisting of 17 European countries 

showed that 85 %–100 % of E. coli strains were resistant (Gelband et al., 2015). In 

addition, an increasing trend in AR E. coli detection in local natural environments is 

becoming a significant concern. For example, Ghaderpour et al. (2015) had reported the 

prevalence of diverse nonpathogenic AR E. coli in estuarine waters of the largest 

mangrove forest in Malaysia and postulated that neighbouring anthropogenic sources 

were the major contributor to antibiotic resistance. To mitigate evolution and acquisition 

of resistance from escalating in the environment, high risk antibiotic classes should be 

targeted for surveillance. ARGs conferring resistance to older first-line antibiotic classes 

broadly have high abundances across various works, with tetracyclines and 

sulphonamides widely reported globally across various aquatic environments 

(Table 2.1). The trend of increased resistance to older antibiotics such as tetracycline 

has been well understood for the past 30 yr (Roberts & Schwarz, 2016). Also, aquatic 

environments that were impacted by anthropogenic activities had an abundance of these 

ARGs, e.g. discharged livestock wastewater reported by Biao Chen et al. (2015) had 

expectedly high quantities of tetracyclines and sulphonamides genes compared to other 

ARGs, 1.92 x 101 copies/16S rRNA and 2.10 x 102 copies/16S rRNA respectively. Other 

studies also corroborated this trend, making these ARGs evidently important for 

monitoring purposes.   Univ
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Table 2.1: Range of normalized concentration of ARGs (relative to the total 16S rRNA 

gene copy number) detected from surface waters adjacent to various sources using 

quantitative RT-PCR 

Major antibiotic 
Class 

Antibiotic 
resistance 
genes 

Water Source Antibiotic resistance 
genes range 
(copies/16srRNA gene) 

Reference 

Tetracyclines tetA, tetC, 
tetE, tetG, 
tetM, tetO, 
tetQ, tetT, 
and tetW 

Discharged Livestock 
wastewater 

2.52 x 10-2–1.92 x 101 (Biao Chen et al., 
2015) 

  tetA, tetC 
tetG, tetO, 
tetM, tetQ, 
and tetX 

River water receiving 
urban aquaculture and 
agricultural effluent 

9.65 x 10-7–1.32 x 101 (Ling et al., 2013) 

  tetA, tetC, 
tetG, tetM, 
tetL, tetO, 
tetQ, tetW, 
tetX 

Pharmaceutical 
industries wastewater 
(antibiotic) 

5.20 x 10-5–3.70 x 100 (Liu et al., 2014) 

  tetM Aquaculture farms 10-7–100 (Thiang et al., 2021) 

  tetQ Hospital wastewater 2.80 x 10-1–7.47 x 10-1 (Li et al., 2016) 

  tetC, tetG, 
tetM, tetW, 
and tetO 

Discharged Livestock 
wastewater 

5.76 x 10-6–6.49 x 10-1 (Ben et al., 2017) 

  tetA, tetB, 
tetC, tetG, 
tetM,and 
tetQ 

River water receiving 
effluent from 
wastewater treatment 
plant, hospitals, 
husbandry, and 
industrial area of 
machinery 
manufacturing 

3.90 x 10-5–4.60 x 10-2 (Yan et al., 2018) 

  tetA, tetB, 
tetC, tetO, 
and tetW 

Hospital wastewater 2.32 x 10-7–1.09 x 10-2 (Szekeres et al., 2017) 

  tetM, tetO, 
tetW, tetS, 
tetQ, tetX, 
and tetBP 

Aquaculture farms 2.10 x 10-5–3.10 x 10-3 (Xiong et al., 2014) 

  tetM, tetO, 
tetW, tetS, 
tetQ, tetX, 
and tetBP 

River water receiving 
urban and agricultural 
effluent 

1.60 x 10-5–3.10 x 10-3 (Xiong et al., 2014) 

  tetB, tetM, 
tetO, tetW, 
and tetX 

River estuary receiving 
aquaculture and tourism 

1.93 x 10-5–2.87 x 10-4 (Niu et al., 2016) 

  tetA, tetB, 
tetC, tetG, 
tetM,and 
tetQ 

Urban lake water 10-6–10-4 (Yang et al., 2017) 
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Table 2.1, continued 

Sulphonamides sul1, sul2, 
and sul3 

Discharged Livestock 
wastewater 

4.64 x 10-2–2.10 x 102 (Biao Chen et al., 
2015) 

  sul1, sul2, 
and sul3 

Aquaculture farms 10-7–100 (Thiang et al., 2021) 

  sul1 and  
sul2 

River water receiving 
effluent from 
wastewater treatment 
plant, hospitals, 
husbandry, and 
industrial area of 
machinery 
manufacturing 

8.60 x 10-4–7.00 x 10-1 (Yan et al., 2018) 

  sul1, sul2, 
and sul3 

Hospital wastewater 7.33  x 10-2–6.67 x 10-1 (Li et al., 2016) 

  sul1 and  
sul2 

River water receiving 
WWTPs, agricultural 
feedlots, dairies, and 
fishponds 

4.62 x 10-4–2.69 x 10-1 (Luo et al., 2010) 

  sul1, sul2, 
and sul3 

Rural river water 6.90 x 10-10–2.00 x 10-1 (Jiang et al., 2021) 

  sul1, sul2, 
and sul3 

River estuary receiving 
urban and industrial, 
agricultural and 
aquaculture 

2.01 x 10-4–1.58 x 10-1 (Baowei Chen et al., 
2015) 

  sul1 and  
sul2 

Hospital wastewater 8.60  x 10-5–1.94 x 10-1 (Szekeres et al., 2017) 

  sul1 and 
sul2 

Coastal seawater 7.14 x 10-5–1.16 x 10-1 (Na et al., 2014) 

  sul1 and  
sul2 

Discharged Livestock 
wastewater 

6.63 x 10-4–1.14 x 10-1 (Ben et al., 2017) 

  sul1 WWTP influent and 
effluent 

5.13 x 10-3–7.59 x 10-2 (Rafraf et al., 2016) 

  sul1 and 
sul2 

Urban lake water 1.40 x 10-4–2.79 x 10-2 (Yang et al., 2017) 

  sul1, sul2, 
and sul3 

Aquaculture farms 3.40 x 10-4–7.50 x 10-3 (Xiong et al., 2015) 

  sul1 and 
sul2 

River water receiving 
urban aquaculture and 
agricultural effluent 

2.60 x 10-4–7.09 x 10-3 (Ling et al., 2013) 

  sul1, sul2, 
and sul3 

River water receiving 
urban and agricultural 
effluent 

1.20 x 10-4–6.90 x 10-3 (Xiong et al., 2014) 

  sul1 and 
sul2 

River estuary receiving 
aquaculture and tourism 

2.42 x 10-5–3.83 x 10-3 (Niu et al., 2016) 
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Table 2.1, continued 

Plasmid-mediated 
quinolone 
resistance 

oqxA, oqxB, 
aac(6’)-Ib, 
qnrS, and 
qepA 

Aquaculture farms 1.30 x 10-5–7.30 x 10-2 (Xiong et al., 2015) 

  oqxB, 
qnrS,and 
qnrD 

Discharged Livestock 
wastewater 

7.41 x 10-5–5.45 x 10-1 (Biao Chen et al., 
2015) 

  qnrA and 
qnrS 

WWTP influent and 
effluent 

9.55 x 10-6–1.45 x 10-2 (Rafraf et al., 2016) 

  oqxA, oqxB, 
aac(6’)-Ib, 
qnrS, and 
qepA 

River water receiving 
urban and agricultural 
effluent 

4.40 x 10-5–7.30 x 10-3 (Xiong et al., 2014) 

  qnrD River water receiving 
effluent from 
wastewater treatment 
plant, hospitals, 
husbandry, and 
industrial area of 
machinery 
manufacturing 

5.0 x 10-5–3.90 x 10-3 (Yan et al., 2018) 

  qnrA and 
qnrD 

Rural river water 3.50 x 10-9–2.70 x 10-3 (Jiang et al., 2021) 

  qnrS River estuary receiving 
urban and industrial, 
agricultural and 
aquaculture 

9.74 x 10-5–9.23 x 10-4 (Baowei Chen et al., 
2015) 

  qnrD Urban lake water 1.52 x 10-5–7.33 x 10-5 (Yang et al., 2017) 

  qeqA, qnrA, 
qnrD, and 
qnrS 

Hospital wastewater 
(treated and untreated) 

2.25 x 10-9–1.75 x 10-5 (Yao et al., 2021) 

Macrolide-
lincosamide- 
streptogramin B 

ermB and 
ermC 

Discharged Livestock 
wastewater 

1.15 x 10-2–3.60 x 100 (Biao Chen et al., 
2015) 

  ermB WWTP influent and 
effluent 

5.13 x 10-4–5.62 x 10-2 (Rafraf et al., 2016) 

  ermA, ermB 
and ermC 

Rural river water 1.7 x 10-9–5.00 x 10-3 (Jiang et al., 2021) 

  ermA and 
mefA 

Hospital wastewater 1.89 x 10-6–1.67 x 10-3 (Szekeres et al., 2017) 

  ermB River estuary receiving 
urban and industrial, 
agricultural and 
aquaculture 

3.00 x 10-4–1.27 x 10-3 (Baowei Chen et al., 
2015) 

  ermB River estuary receiving 
aquaculture and tourism 

3.46 x 10-6–7.76 x 10-5 (Niu et al., 2016) 
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Table 2.1, continued 

β-lactams blaVIM and 
blaSHV 

Hospital wastewater 3.86 x 10-3–4.39 x 10-3 (Szekeres et al., 2017) 

  blaTEM-1 
and blaCTX-M 

WWTP influent and 
effluent 

1.74 x 10-6–5.75 x 10-3 (Rafraf et al., 2016) 

  blaOXA-1,   
blaTEM-1, 
blaGES-1, 
blaOXA-10, 
blaSHV-1, and 
blaDHA-1 

Hospital wastewater 
(treated and untreated) 

2.00 x 10-9–1.60 x 10-3 (Yao et al., 2021) 

  blaOXA-58 Coastal seawater 2.80 x 10-6–2.46 x 10-4 (Xin et al., 2019) 

Phenicol cfR and floR Rural river water 6.20 x 10-9–5.00 x 10-3 (Jiang et al., 2021) 

 catA1 and 
floR 

Hospital wastewater 1.97 x 10-5–2.63 x 10-3 (Szekeres et al., 2017) 

Amino-glycosides aph, 
aadD,and 
aac 

Discharged Livestock 
wastewater 

9.90 x 10-4–1.43 x 100 (Biao Chen et al., 
2015) 

  aac Hospital wastewater 1.34 x 10-3–9.42 x 10-3 (Szekeres et al., 2017) 

Mobile genetic 
elements 

intI1 and 
Tn916/1545 

Pharmaceutical 
industries wastewater 
(antibiotic) 

6.70 x 10-4–1.70 x 100 (Liu et al., 2014) 

  intI1 Rural river water 4.10 x 10-5–7.00 x 10-2 (Jiang et al., 2021) 

 intI1 WWTP influent and 
effluent 

2.88 x 10-3–5.89 x 10-2 (Rafraf et al., 2016) 

 intI1 River water receiving 
WWTPs, agricultural 
feedlots, dairies, and 
fishponds 

2.40 x 10-6–2.00 x 10-3 (Luo et al., 2010) 

  intI1 Hospital wastewater 
(treated and untreated) 

2.65 x 10-5–2.25 x 10-4 (Yao et al., 2021) 

Transposon-related 
element 

tnpA Hospital wastewater 1.75 x 10-3–3.55 x 10-2 (Szekeres et al., 2017) 

  tnpA Rural river water 5.40 x 10-7–1.70 x 10-3 (Jiang et al., 2021) 

Quaternary 
ammonium 
compounds 

qacEΔ1 Hospital wastewater 1.94 x 10-2–4.96 x 10-2 (Szekeres et al., 2017) 

Multidrug 
resistance 

acrA and 
acrB 

Discharged Livestock 
wastewater 

1.95 x 10-6–9.62 x 10-2 (Biao Chen et al., 
2015) 
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Among E. coli strains, the class 1 integrase gene was commonly carried, whereby 

the gene contains ARG cassettes for antibiotics groups such as sulphonamide, 

aminoglycosides, and trimethoprim were in the same genetic element. Furthermore, 

tetracycline resistant E. coli carry this gene on plasmids or transposons 

(Roberts, 2005). Given tetracyclines and sulphonamides’ long historical use in human 

and veterinary clinics, these antibiotics are foreseeably located in MGEs  

(Garcillán-Barcia et al., 2011; Partridge, 2011); a segment of the genome where a 

diverse combination of AR tend to be co-selected from a single antibiotic  

(Fernández-Alarcón et al., 2010; Ou et al., 2015). A meta-analysis study covering 

human and animal samples by Tadesse et al. (2012) supports this, they found E. coli 

resistance towards tetracyclines and sulphonamides showed a significant upward trend 

from 1950–2002. By using sulphonamide resistance genes as a model, sul1 was 

usually the most abundant gene in well-zoned and pristine Poudre River 

(Pei et al., 2006; Pruden et al., 2006), while sul2 gene is most abundant in fish farms in 

various locations in China (Gao et al., 2012) whereas sul3 is found in high frequencies 

in porcine E. coli populations in North America (Boerlin et al., 2005). In comparison, 

genes encoding resistance to tetracyclines are not as straightforward in their 

deconstruction. For example, certain tetracycline resistance genes code for certain tet 

resistance mechanisms: efflux protein tet [(A), (B), (C), (D), (E), (G), (K), (L), 

and A(P)], ribosomal protection protein tet [(M), (O), (S), and (Q)] and enzyme 

inactivation tet(X). Yet, 22 out of 38 tetracycline resistance genes were detected in 

bacterial isolates from aquatic environments (Dancer et al., 1997; 

Thompson et al., 2007).  

Some authors pointed out that AR phenotype of E. coli strains can also be influenced 

by phylogenetic background, regardless of acquisition of resistance 

(Ghaderpour et al., 2015); while others found AR patterns to be phylogenetically 
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unrelated (Mokracka et al., 2011; De Luca Rebello & Regua-Mangia, 2014). For 

example, phylogroups A and B1 were described as most frequently resistant to 

antibiotics (Escobar-Páramo et al., 2004a; Anssour et al., 2016). Conversely, B2 strains 

are less resistant to antibiotics, regardless of the molecular mechanism involved in the 

acquisition of resistance (Ochman & Selander, 1984; Johnson et al., 1994).  

Multidrug resistance in E. coli had shown an increasing trend from 7.2 % during the 

1950s to 63.6 % in the 2000s (Tadesse et al., 2012). MAR index was used to distinguish 

between E. coli originating from high-AR-risk environments as per Krumperman’s 

(1983) method. This is done by dividing the aggregate antibiotic score of all the isolates 

from a particular site by the number of antibiotics tested multiplied by the number of 

isolates from a site. The MAR index is a useful tool to analyse the relative prevalence of 

resistant bacteria found in the environment. Isolates that are exposed to high-risk 

sources of contamination indicate frequent use of antibiotics, usually identified with a 

MAR index value of > 0.2, whereas infrequent use of antibiotics will be ≤ 0.2 

(Scott et al., 2002; Poonia et al., 2014). According to Kaneene et al. (2007) and 

Poonia et al. (2014), the water sources with a MAR index of more than 0.4 are usually 

from human faecal origin while MAR index of less than 0.4 is of non-human faecal 

sources. Most MAR E. coli were incidentally isolated in waters likely contaminated by 

faecal bacteria of human origin (Berthe et al., 2013). Prevalence of AR E. coli 

phenotypes reflected the particularities of geographical regions, sources of faecal 

contamination, and expected exposure of bacteria to antibiotic selective pressure 

(Mokracka et al., 2011; Ghaderpour et al., 2015; Hernández et al., 2019). 

Adoption of AR in pathogenic E. coli is common (Koczura et al., 2013; 

Pereira et al., 2013) due to virulence and AR properties both being encoded on 

plasmids, bacteriophages, or pathogenicity islands (Djordjevic et al., 2013). E. coli 
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resistance to carbapenem, a last-resort antibiotic, was relatively uncommon before 2000 

but has since doubled its prevalence over the years among healthcare-associated 

infections (Gupta et al., 2011). Without an alternative treatment for infected patients, the 

mortality rate could increase dramatically. As such, the accidental release of MAR 

pathogenic E. coli harbouring virulence traits into water bodies could be the making of a 

devastating public health disaster (De Luca Rebello & Regua-Mangia, 2014). 

Establishing these resistance baseline data in aquatic ecosystems can be an indicator of 

resistance evolution in different ecosystems (Alexander et al., 2010). Although much 

was done to suppress AR infections in clinics via AR action plans 

(European Commission, 2011; WHO, 2015, 2018), there is still a significant lack of 

environmental focus (O’Neill, 2016). It can be said that current AR action plans do not 

consider all potentially relevant pathways and drivers of AR in the environment 

(Singer et al., 2016). For example, Ghaderpour et al. (2015) reported the prevalence of 

diverse AR E. coli in estuarine waters of the largest mangrove forest in Malaysia and 

suspected anthropogenic sources as the major contributor to antibiotic resistance. Thus, 

research activities should focus on nonpathogenic environmental microorganisms, such 

as aquatic environments, that could be potential sources for these ARGs. 
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2.8 Antibiotic Contamination in River Water and Their Ecological and Public 

Health Risks 

Water bodies featuring rivers, lakes, wetlands, and oceans form a part of a larger 

system: a river basin, where precipitation and groundwater on land are drained by the 

main river and its tributaries into a shared outlet. The outermost limit that divides 

neighbouring river basins is known as a watershed. Surface water source from a river 

basin often starts from a higher altitude location, e.g. highlands that are either fed by an 

underground spring, runoff from rain, snowmelt, or glacial melt. This natural boundary 

classification led to the longstanding and widespread acknowledgement of river basins 

as important natural units for natural resource management (White, 1957; Teclaff, 1967; 

Montgomery et al., 1995; McGinnis, 1999; Koehler & Koontz, 2008; Newson, 2009). 

As such, river basins are usually viewed as a convenient scale for analysis of region-

wide social-ecological systems (Biggs et al., 2010; March et al., 2012). So, their 

boundaries and flow paths organise hydrological and biogeochemical processes that 

underpin ecosystem services, e.g. water supply, flood protection, and food production 

(Carpenter et al., 2015). Historically, human settlements were located in sites around 

water reservoirs, generating anthropogenic. These adverse or persistent anthropogenic 

disturbances could impact ecosystems negatively (Palmer & Filoso, 2009; 

Bullock et al., 2011). Water pollution is the presence of excessive pollutants where 

water becomes unsuitable for drinking, bathing, cooking, or other uses (Owa, 2013) 

within domestic, agricultural, and industrial sectors (Puri et al., 2008). Asia’s rivers are 

amongst the most polluted, with up to three times as much bacteria from human waste 

and a faecal count 50 times above the WHO guidelines (ESCAP, UN, 2000). In 

Malaysia, pollution in rivers is mainly related to anthropogenic activities and the 

sources of contamination are largely from industrial areas, sewages, workshops, 

residential areas, animal and agricultural farming activities 
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(Department of Environment, 2018, 2019a). Anthropogenic factors were linked to a 

decrease in water quality, i.e. higher concentrations of heavy metals, mercury, 

coliforms, and nutrient loads (Khatri and Tyagi, 2015). 

One such pollutant is antibiotic waste. By the 1950s, chemotherapy became the 

forefront method to treat communicable diseases caused by bacteria infections, the 

development of the earliest commercially viable antibiotic had ushered in the golden 

age of the modern “antibiotic era”. Antibiotics were primarily used in clinical 

therapeutic treatment for humans but also enjoyed notable applications in (i) growth 

promoters and prophylaxis for animal husbandry, (ii) veterinary, (iii) agriculture, 

(iv) aquaculture, and (v) biocide in domestic cleaning products (Nisha, 2008; 

Davies & Davies, 2010; Meek et al., 2015). Antibiotics are thus grouped into classes 

depending on their mode of action, chemical structure, and mechanism of treating 

infectious bacteria, classes include Beta-lactam, tetracyclines, macrolide, 

aminoglycosides, quinolones, glycopeptides, lincosamides, oxazolidinones, and 

sulphonamides. Time has proven the commercial success of antibiotics, where they 

have become cheaper, plentiful, and extensively accessible. In 2015, a study with 76 

participating countries found that antibiotic consumption is at 42 billion Defined Daily 

Doses (DDDs), and by 2030 it is projected that consumption will increase by 200 % as 

driven by gross domestic product per capita growth (Klein et al., 2018). Due to the 

popularity of antibiotics, they were quickly abused, misused, and overused with little to 

no regulation across industries by many nations over many years 

(Davidson et al., 2008). Antibiotic pollution shares some aspects to heavy metal 

pollution, which like heavy metals; they are natural compounds present across different 

ecosystems but having their bioavailability expanded from human overuse 

(Martínez, 2009b), i.e. excessive manufacture emission paired with consumption of 

antibiotics contributed to the contamination of antibiotic residues 
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(Lundborg & Tamhankar, 2017). Analytical methods were developed to detect 

antibiotic residues contaminating the environment, which include Liquid 

chromatography with mass spectrometer (LC−MS) (Karthikeyan & Meyer, 2006; 

Fatta et al., 2007; Van Boeckel et al., 2015), simple direct sample injection by high 

performance liquid chromatography (HPLC) using diode array detection (DAD) 

(Teixeira et al., 2008), and by enzyme-linked immunosorbent assay (ELISA) 

(Praveena et al., 2018). 

According to conservative estimates, up to half of the still biologically active 

antibiotics consumed by humans were released into sewage effluent through excretion 

(Pei et al., 2006; Dolliver & Gupta, 2008; Ashbolt et al., 2013). For aquatic 

environments, both high concentrations and low concentrations of antibiotics were 

detected (Table 2.2). Tetracycline and sulphonamide classes were again the majority 

detected antibiotics residues. Many studies chose sulphonamides due to their 

widespread use, high excretion rate, high solubility, and persistence in the environment 

(Lamshöft et al., 2007). As synthetic antibiotics, sulphonamides detected in aquatic 

compartments are unlikely to originate from natural sources (Ou et al., 2015). A study 

found maximum concentrations ranging between 0.63 μg l-1 and 211 μg l-1 for 

different sulphonamides in animal wastewater and surface water around farms 

(Wei et al., 2011). Another study found that approximately 12 tons of 

sulphamethoxazole per year were released to the sea and that sulphonamides were 

predominant in rivers and coastal waters across five tropical Asian countries 

(Shimizu et al., 2013). Compared to sulphonamides, tetracyclines are weak persistors 

(Boreen et al., 2003; Oka et al., 1989; Pils & Laird, 2007; Sanderson et al., 2005; 

Sassman & Lee, 2005). Even so, tetracycline is a reliable indicator given its strong 

affinity to soils and sediments, where its detection correlates well with its respective 

antibiotic contamination sources (Huang et al., 2001). However, these antibiotics are 
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still prevalent in human and veterinary medicine due to their broad-spectrum activity, 

relative safety, and low cost (Harnisz et al., 2011). Unsurprisingly, high concentrations 

ranging from 3.79 μg l-1 to 72.9 μg l-1 were still detected in surface waters 

(Wei et al., 2011). Having concentrations of antibiotics corresponding to their respective 

ARGs indicates that the fate of ARGs is related to the presence of particular antibiotics 

in the environment (Larsson, 2014). Overall, the largest amount of antibiotic residues 

are frequently found in areas with high anthropogenic pressures, such as hospital 

effluents, and wastewater influents and effluents (Patrolecco et al., 2015; 

Verlicchi et al., 2015; Ory et al., 2016). A European Commission study conducted 

across 13 countries worldwide found that among 45 antibiotics, sulfamethoxazole, 

trimethoprim, and ciprofloxacin were the three most frequently detected in waters that 

flow out of wastewater treatment plants (WWTPs) (Sanseverino et al., 2018). 

Meanwhile, certain Asian nations recorded antibiotic concentrations up to several mg l-1 

in WWTP receiving pharmaceutical waste effluents for single compounds whereby 

normal levels are supposedly < 1 ng l-1 to a few μg l-1 (Larsson et al., 2007; 

Li et al., 2008a, 2008b; Shimizu et al., 2013). 
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Table 2.2: Maximum concentrations of antibiotic residue from water sources found in 

past literature 

Major Groups Antibiotic Name Water Source 
Maximum 
Concentration 
(ng l-1) 

Reference 

Penicillin Penicillin G Wastewater 
treatment 153 (Li et al., 2008b) 

β-Lactams Lincomycin Surface water 248.9 (Calamari et al., 2003) 
Amino-
glycosides Gentamicin Sewage plant export 1,300 (Löffler & Ternes, 2003) 

Macrolides Azithromycin Sewage plant export 130 (Shimizu et al., 2013) 

 Erythromycin-H2O Surface water 1,700 (Kolpin et al., 2002) 

 Clarithromycin Surface water 260 (Hirsch et al., 1999) 

 Roxithromycin Surface water 560 (Hirsch et al., 1999) 

Tetracyclines Tetracycline Livestock farm 
export 10,300 (Wei et al., 2011) 

  Underground water 3.8 (Tong et al., 2009) 

 Oxytetracycline Wastewater 
treatment 920,000 (Li et al., 2008a) 

  
Livestock farm 
export 72,900 (Wei et al., 2011) 

  Surface water 340 (Kolpin et al., 2002) 

 Chlortetracycline Livestock farm 
export 3,670 (Wei et al., 2011) 

  Surface water 690 (Kolpin et al., 2002) 
Sulphonamides Sulfacetamide Surface water 7.92 (Ou et al., 2015) 

 Sulphamethoxazole Livestock farm 
export 63,600 (Wei et al., 2011) 

  Sewage plant export 4,330 (Shimizu et al., 2013) 

  Surface water 1,900 (Kolpin et al., 2002) 

  Underground water 470 (Hirsch et al. 1999) 

 Sulfathiazole Surface water 0.92 (Prasanna et al. 2015) 

 Sulphapyridine Wastewater 
treatment 1.4 (Hanna et al., 2018) 

  Surface water 1.45 (Hanna et al., 2018) 

 Sulphamethizole Surface water 130 (Kolpin et al., 2002) 

 Sulphadimethoxine Livestock farm 
export 11,000 (Watanabe et al. 2010) 

 Sulphadimidine Livestock farm 
export 211,000 (Wei et al., 2011) 

  Surface water 4,660 (Wei et al., 2011) 

  Underground water 160 (Hirsch et al., 1999) 

 Sulphadoxine Livestock farm 
export 17,000 (Wei et al., 2011) 

  Surface water 460 (Wei et al., 2011) 

 Sulphadiazine Aquaculture surface 
water 108 (Nguyen Dang Giang et al., 

2015) 
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Table 2.2, continued 

Quinolones Ciprofloxacin Wastewater 
treatment 29,500,000 (Larssonet al., 2007) 

  Sewage plant export 260 (Kostich et al., 2014) 

  Surface water 185 (Bai et al., 2014) 

 Norfloxacin Wastewater 
treatment 405,000 (Larsson et al., 2007) 

  Surface water 208 (Xu et al., 2007) 

 Ofloxacin Wastewater 
treatment 155,000 (Larsson et al., 2007) 

  Surface water 89 (Xu et al., 2007) 

  Sewage plant export 210 (Guerra et al., 2014) 

 Enrofloxacin Wastewater 
treatment 840,000 (Larsson et al., 2007) 

  
Livestock farm 
export 680 (Andrieu et al., 2015) 

  Underground water 3 (Tong et al., 2009) 

 Enoxacin Wastewater 
treatment 200,000 (Larsson et al., 2007) 

2,4-Diamino-
pyrimidine Trimethoprim Sewage plant export 1,808 (Shimizu et al., 2013) 

  AquaC surface water 330 (Nguyen Dang Giang et al., 
2015) 

Phenicol Chloramphenicol Sewage plant export 75 (Choi et al., 2008) 

  Sewage plant export 0.99 (Hanna et al., 2018) 

 Florfenicol Wastewater 
treatment 3.9 (Hanna et al., 2018) 

  Surface water 3.9 (Hanna et al., 2018) 

At initial high concentration (e.g. > μg l-1), antibiotics produce bactericidal and 

bacteriostatic effects on susceptible microorganisms. This raises major concerns 

regarding the toxicity of antibiotics to non-target organisms, e.g. several studies found 

tetracycline to be toxic to green algae (González-Pleiter et al., 2013; 

Havelkova et al., 2016). The direct risk of antibiotic residue as a micropollutant entering 

natural aquatic environments concerns its ability, as an ecological factor, to influence 

change in the structure of natural communities via the antibiotic’s ability to typically 

remove or inhibit microorganisms; some of these microorganisms could potentially be 

involved in key ecosystem functions (Sarmah et al., 2006; Allen et al., 2009; 

Grenni et al., 2018). Therefore, this concerns the ecotoxicological effects of antibiotics 

on different levels of the biological hierarchy, from bacteria (target organism) to the 

entire biosphere (non-target organisms such as algae, invertebrates, and fish). 
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Also, antibiotics were observed to degrade, albeit at different rates according to the 

types of antibiotic group by process of sorption (Li & Zhang, 2010), hydrolysis 

(Dolliver & Gupta, 2008; Kümmerer, 2009), chlorination (Dodd & Huang, 2007), 

oxidation (Hubicka et al., 2013; Li et al., 2014), catalytical degradation 

(Chatzitakis et al., 2008), photodegradation (Leal et al., 2016), and biodegradation 

(Jiang et al., 2010; Gros et al., 2014) which are temperature, salinity, moisture, chemical 

and microbiota dependent. Subsequently, the antibiotic residues would exist in low 

concentrations (e.g. ng l-1 – μg l-1) as metabolites that remain bioactive in the 

environment (Huang et al., 2014). Selection of antibiotic resistance would then happen 

under these sub-lethal (Gullberg et al., 2011; Andersson & Hughes, 2012; 

Hughes & Andersson, 2012; Martínez, 2017) and sub-inhibitory concentrations 

(Martínez, 2017). Importantly, having concentrations of antibiotics corresponding to 

their respective ARGs indicates that the fate of ARGs is related to the presence of 

particular antibiotics in the environment (Larsson, 2014). Unsurprisingly, antibiotic 

concentrations below the minimal inhibitory concentration (MIC) have long been 

known to naturally select for antibiotic resistance since the 1940s, e.g. β-lactamase-

producing strain of Staphylococcus aureus (Levy, 2002; French, 2006; Goodman et al., 

2011). Resistance mechanisms such as enzymatic drug modification, alteration of drug 

targets, reduced cell membrane permeability, and transporters-mediated drug efflux 

were selected (Blair et al., 2015). Apart from that, exposure to low-level antibiotics 

exposes negative impacts on the bionts inhabiting aquatic ecosystems 

(Sarmah et al., 2006). 
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2.9 Consideration of Antibiotics and AR E. coli as a Routine Water Quality 

Monitoring Standard 

As mentioned insufficient environmental focus in AR infection control exists 

(O’Neill, 2016) with strategies specifically designed for clinical environments via AR 

action plans (European Commission, 2011; WHO, 2015, 2018). Basically, AR action 

plans of the past had not consider all potentially relevant pathways and drivers of AR in 

the environment (Singer et al., 2016). As such, a consensus on the potential dangers 

(WHO, 2014) and the need to limit AR presence in the environment have since been 

established (Berendonk et al., 2015; Williams-Nguyen et al., 2016; Allen et al., 2010; 

Pruden et al., 2013). More recently, WHO had proposed an integrated surveillance 

system that applies a ‘One Health’ approach to monitoring extended-spectrum-beta-

lactamase (ESBL)-E. coli in the environment along with humans and the food chain. It 

is the first significant collective endeavour that pushes the implementation of a truly 

comparable, statistically valid, and robust AR database (WHO, 2021).   

The research effort in AR characterisation is ongoing, with recent developments 

showing a positive trend. For example, sulphamethazine and sulphachlorpyridazine had 

both demonstrated location specificity and were proposed as suitable indicators for 

aquatic environments contaminated by livestock sources using various liquid 

chromatography methods (Jiang et al., 2013; Luo et al., 2011; Managaki et al., 2007). 

Apart from that, culture-based methods are still being used. Bacterial targets for water 

quality typically avoid pathogens because pathogen concentrations equivalent to 

tolerable levels of risk are usually < 1 organism per 104–105 litres (WHO, 2017). As 

such, bacterial indicators that are already in use and on a subset of resistance 

determinants were recommended (Berendonk et al., 2015). The absolute number of 

ARB present in a particular aquatic sample were not overlooked as its importance in 
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evaluating human health risks as a contamination indicator still remains 

(Amarasiri et al., 2020). Specifically, current routine water quality monitoring still 

prioritised FIB detection using  intestinal enterococci culture methods because of their 

relative affordability and straightforwardness (Leclerc et al., 2001; Tallon et al., 2005; 

Bain et al., 2012; WHO, 2017) which could be used to complement AR phenotype 

detection strategies. In comparison, standards for molecular indicators and methods are 

currently being improved and require contributions toward a more comprehensive ARG 

data. Common molecular methods used to characterise AR includes PCR, quantitative 

PCR (qPCR), digital PCR (dPCR), loop-mediated isothermal amplification (LAMP), 

microarrays, and metagenomics. Notably, more robust ARG indicators need to be 

identified because there is no one-size-fits-all solution. Similarly, established ARG 

detection and quantification methods require additional refinement and environmental 

testing to increase their accuracy and reliability else routine monitoring remains 

impractical (Amarasiri et al., 2020). 

Admittedly, more considerations are needed to further justify the implementation of 

AR prevalence as a valid process to further characterise microbial water quality 

(Pachepsky et al., 2018). One of the current challenges with AR lies in the absence of an 

agreed set of antibiotics, ARB and/or ARGs, which can act as a molecular/chemical 

indicator that could consistently evaluate a contamination incident for each AR 

contaminant type (antibiotics, ARB, and ARGs) in aquatic environments 

(Amarasiri et al., 2020). Types and concentrations of antibiotics used in different 

countries and geographical regions also vary, and as a consequence, detectable 

antibiotics, ARB and ARGs in aquatic environments will also be location-specific with 

varying compositions (Shimizu et al., 2013). Routine monitoring should be rapid, 

specific, sensitive, economical, and easy to use. Hence a suitable AR contamination 

indicator needs to meet those requirements.   
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Nevertheless, current routine data collection on ARGs could still help reveal factors 

driving resistance and subsequently form conceptual models for how resistance emerges 

and is disseminated (Bengtsson-Palme et al., 2017). These may include distribution, 

prevalence, temporal trends and geographical trends (Berendonk et al., 2015). The 

establishment of AR baseline data in an aquatic ecosystem from various studies could at 

least contribute as an indicator of resistance evolution among different ecosystems 

(Maal-Bared et al., 2013; Alexander et al., 2010; Mudryk et al., 2010). As such, the 

effectiveness of environmental management and mitigation practices could still be 

measured even though the source of individual bacteria or genes may not have been 

identified (Durso & Cook, 2019). For example, a year-long microbial monitoring period 

by Vivant et al. (2016) had demonstrated that a decrease in concentration and diversity 

of AR E. coli and the bla ARG were attributed to the design of their constructed (man-

made) wetland. This shows that when expanded to include a more robust analysis of 

ARGs, traditional FIB monitoring methods could still help ascertain the particular 

effectiveness of a mitigation strategy. Continual routine water quality monitoring of 

ARB and ARGs could fill gaps in the literature. In time, this will lead to the 

establishment of a more formal risk-based water safety management framework such as 

the quantitative microbial risk assessment (QMRA) to better support water safety 

management decisions (WHO, 2016).  
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CHAPTER 3: METHODOLOGY 

 

3.1 Study Site 

Larut River and Sangga Besar River belong in part to two distinct major river basin 

systems located within the Larut, Matang, and Selama District of the state of Perak 

(population: 352,600) (Department of Survey and Mapping Perak, 2016) (Figure 3.1). 

The climate of the area is characterised by uniform temperature (average 32 °C), high 

humidity (80–90 %), and high average annual rainfall (4,000 mm year-1) 

(Samuding et al., 2012). Larut River is approximately 20.9 km long, draining a basin 

area of approximately 125 km2 flowing from the Larut Hill Forest Reserve with a steep 

upper catchment (elevation: 1,250 m) towards a flat middle catchment made up of the 

Larut, Matang, and Selama district before entering the Straits of Malacca through the 

low lying Larut Estuary towards the southwest (Ahmad & Abu, 2011). Passing through 

the river is the Taiping township, which has a population of 245,182 based on a 2013 

census and is the second largest town in the state of Perak, with a total area of 

186.46 km2. In regards to land use, Larut River is exposed to various anthropogenic 

activities in Taiping near the midstream, which includes a zoo, poultry slaughterhouse, 

and a public hospital that houses 176 beds (Tan et al., 2013). In comparison, 

Sangga Besar River is located northwest of Larut River with a length of approximately 

10 km and a catchment area of 58 km2 flowing past Kuala Sepetang, a coastal township 

(population: 31,800) (Forestry Department of Perak, 2010), towards a mangrove forest 

reserve to similarly meet at the Straits of Malacca to the northwest. Apart from serving 

as a waterway for fishing boats, Sangga Besar River has cage aquaculture and 

prominent fishing activities (Annual Fisheries of Perak, 2000). Similarities shared by 

both rivers include being nestled around the 21,069 ha Kuala Sepetang Forest 
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Management Zone within the 40,466 ha protected Matang Mangrove Forest Reserve 

(MMFR) downstream. The MMFR is described as a crescent-shaped embayment that 

stretches for approximately 52 km along the coast bordering the Strait of Malacca and 

has a maximum width of 13 km (Gan, 1995). The MMFR clearly received minimal 

anthropogenic pressure due to the exemplary forestry management system that was put 

in place (Muda et al., 2005).  

 

Figure 3.1: Map of Perak with several major river basins where study area falls under 

the two major basins above 

Study area 
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3.2 Sample Collection 

Water samples were taken from six sites located upstream, midstream, and 

downstream of Larut River and three sites from Sangga Besar River over three sampling 

dates. Surface water was collected using an acid-washed bucket into sterile glass bottles 

for culture-based and PCR assays, while acid-cleaned plastic bottles were used for other 

assays. Samples were stored in an ice-filled chest for no more than 24 hours prior to 

being processed in the laboratory. Larut River receives greywater effluents from 

hospital, zoo, and poultry slaughterhouse, whereas Sangga Besar River is less polluted 

(Figure 3.2). Sampling was conducted at nine sampling sites located in the upstream, 

middle, and downstream of Larut River and Sangga Besar River. At Larut river, water 

samples were collected from upstream (S1a, 04°51.158’N, 100°45.737’E), at the reserve 

forest Larut Hill (elevation: 1,250 m) followed by the middle where the river water 

received wastewater discharges from a zoo (04°51.101’N, 100°45.045’E), a public 

hospital (04°51.149’N, 100°44.018’E), and a slaughterhouse (04°50.238’N, 

100°44.709’E) before passing through downstream Larut (S1b, 04°50.535’N, 

100°43.925’E) and finally reaching the Larut Estuary (S1c, 04°50.140’N, 

100°37.583’E). Based on data collected in 2018 by the Taiping municipality 

(Table 3.1), about 2,699.93 km2, or half of the total study area, is covered by forest, 

these consisted of sites S1, S2a, S2b, and S2c. By land use, a combination of housing 

with institutions and public services together covered 296.27 km2 (5.48 %) which 

included hospital site. Meanwhile, industry only makes up 30.18 km2 (0.56 %), whereby 

slaughterhouse belonged. Finally, parks and recreation is only 14.05 km2 (0.26 %) that 

consisted of zoo. 
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Table 3.1: Land use category in 2018 within the municipality of Taiping, Perak 

Land Use Category Land use area (km2) % 

Forest 2,699.93 49.94 

Agriculture 1,763.60 32.62 

Unused Land 98.98 1.83 

Parks and Recreation 14.05 0.26 

Housing 242.81 4.49 

Institutions and Public Services 53.46 0.99 

Industrial 30.18 0.56 

Commercial 12.10 0.22 

Mixed Development 0.00 0.00 

Transport 138.81 2.57 

Infrastructure and Utility 44.10 0.82 

Water 308.19 5.70 

Beaches 99.00 0.00 

Sum 5,406.22 100.00 

 

 

Figure 3.2: Land use map of Taiping, Perak 
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3.3 In-situ Water Physicochemical Parameters 

Temperature, salinity, pH, turbidity, dissolved oxygen (DO), and water depth were 

recorded in triplicates for each sampling point. A handheld multiparameter probe 

(model: YSI 556 MPS) was placed just below the surface water to measure the above 

parameters.  

 

3.4 Inorganic Nutrient Concentrations 

For each sampling point, dissolved inorganic nutrients, including ammonium (NH4), 

nitrate (NO3), nitrite (NO2), silicate (SiO4), and phosphate (PO4) concentrations were 

measured in triplicates using a spectrophotometer in accordance with 

Parsons et al. (1984) and Lee et al. (2009). 

To determine NH4, 5 ml water sample was added into a glass vial cleaned with 

dichromate acid and rinsed thoroughly with distilled water. First, 0.2 ml phenol solution 

was added, followed in sequence by 0.2 ml of sodium nitroprusside and 0.5 ml of 

sodium hypochlorite solution as an oxidising solution; swirl the vial to mix after the 

addition of each solution. Allow the vial to stand at room temperature between 20–

27 °C for 1 h in the dark. During this period, parafilm was used to cover the top of the 

vial. Colour change was noted. The absorbance of the solution was measured in 

triplicates at 640 nm using a spectrophotometer using a 10 cm cell length. Meanwhile, a 

standard was carried out using 0.535 g analytical grade ammonium sulphate dissolved 

in 1,000 ml of deionised water, and 1 ml chloroform was subsequently added as a 

preservative. A volumetric flask was filled with 1 ml solution and topped up with 

ammonium-free seawater to a volume of 500 ml. The diluted standard was processed 

similarly to the water sample. The measured extinction for the reagent blank was 

corrected, and the NH4 value was calculated from the following expression: 
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µg-at N/l = F x E     (3.1) 

where E is the corrected extinction and F is the factor as determined below: 

ܨ =  ଷ.଴
ாೞ

     (3.2) 

where Es is the corrected extinction. The F value should be about 6.5. 

To determine NO3, 0.5 ml of concentrated ammonium chloride was added to a 25 ml 

sample in a flask. The solution was mixed and approximately a 20 ml was poured onto 

the top of a cadmium column and allowed to pass through. The remainder of the sample 

was added to the column and drained into a flask under the collection tube. 

Approximately 10 ml was collected and subsequently discarded; 5 ml was collected in a 

measuring cylinder and dispensed into the flask, which contained the original sample. 

Before the following 5 ml sample was added, the column was drained. Then, 0.1 ml 

sulphanilamide solution was added to the sample, and the reagent was mixed to allow 

reaction between 2 min to 8 min. Next, 0.1 ml naphthylethylenediamine solution was 

added and mixed immediately. Let stand for at least 10 min, but no longer than 2 h. The 

absorbance of the solution was measured in triplicates at 543 nm using a 

spectrophotometer using a 1 cm cuvette against distilled water. The observed extinction 

was corrected by that of the reagent blank, and nitrate was calculated from the following 

expression: 

µg-at N/l = (corrected extinction x F) -0.95 C   (3.3) 

where C is the concentration of nitrite in the sample. 

To determine NO2, 0.1 ml of sulphanilamide solution was added to a 5 ml sample, 

and the reagent was mixed and allowed to stand for more than 2 min but less than 10 
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min. Next, 0.1 ml of naphthylethylenediamine reagent was added and immediately 

mixed. The extinction of the solution was measured between 1 min and 2 h afterwards 

using a 10 cm cuvette at a wavelength of 543 nm. Meanwhile, standard nitrite was 

prepared using 0.345 g anhydrous dried analytical grade sodium nitrite dissolved in 

1,000 ml distilled water preserved with 1 ml chloroform. Diluted standards were 

prepared using 10 ml of standard solution diluted with 1,000 ml distilled water. 

Triplicate 2 ml dilute standards were transferred to volumetric flasks; volume was 

topped up to 50 ml with distilled water, mixed, and transferred to 3 glass vials. The 

diluted standards were processed similar to the water sample. Finally, the measured 

extinction was corrected for the reagent blank, and the nitrite concentration was 

calculated from the following expression: 

µg-at N/l = corrected extinction x F    (3.4) 

F is the factor as determined below: 

ܨ =  ଶ.଴
ாೞ

     (3.5) 

where Es is the mean extinction of 3 standards, corrected for the blank. The F value 

should be about 2. 

To determine PO4, water sample was first allowed to stand at room temperature of 

15–30 °C. Turbidity of the water sample was measured, a value greater than 0.01 would 

have the final extinction value corrected. A 20 ml sample was prepared, followed by 2 

ml of mixed reagent added and immediately mixed. After the sample mixture was 

allowed to stand for 20 min, extinction was measured in a 10 cm cell against distilled 

water at 880 nm. Meanwhile, standard phosphate was prepared using 0.816 g anhydrous 

potassium dihydrogen phosphate dissolved in 1,000 ml distilled water preserved with 
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1 ml chloroform. Diluted standards were prepared using 10 ml of standard solution 

diluted with 1,000 ml distilled water. Triplicate 5 ml dilute standards were transferred to 

volumetric flasks. Volume was topped up to 100 ml with distilled water, mixed, and 

transferred to 3 glass vials. The diluted standards were processed similar to the water 

sample. The extinction was corrected with the reagent blank (and turbidity blank if 

needed), and phosphate concentration was calculated from the following expression: 

µg-at P/l = corrected extinction x F    (3.6) 

F is the factor as determined below: 

ܨ =  ଷ.଴
ாೞିா್

     (3.7) 

where Es is the mean extinction of 3 standards and Eb is the mean extinction of the 

reagent blank. The F value should be about 5. 

To determine SiO4, the water sample was first allowed to stand at room temperature 

of 18–25 °C. Plastic vials containing 10 ml molybdate solution were prepared. Then, a 

25 ml water sample was added to the vial, stoppered, mixed, and allowed to let stand for 

10–30 min. A reducing reagent was added rapidly to make 50 ml and immediately 

mixed. The solution was allowed to stand for 2–3 h. The extinction was measured at 

810 nm using a 1 cm cell for concentrations >15 µg-at/l. Meanwhile, standard silicate 

was prepared using 0.960 g silicofluoride dissolved in 100 ml distilled water. Diluted 

standards were prepared in a polyethylene container by having the solution further 

diluted with distilled water up to a volume of 1,000 ml and mixed. The diluted standards 

were processed similar to the water sample. The measured extinction for the blank using 

either 1 or 10 cm cell length was measured, and reactive silicate was measured from the 

following expression: 
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µg-at Si/l = corrected extinction x F    (3.8) 

F is the factor as determined below: 

ଵ ௖௠ܨ =  ଵ଴଴
ாೞିா್

    (3.9) 

where Es is the extinction of the standard and Eb is the extinction of the blank. The F1cm 

value should be about 100 while F10 cm value should be about 10. 

 

3.5 Antibiotic Residues Measurement 

Twenty-two target antibiotics were obtained from Sigma-Aldrich 

(Saint Louis, Missouri, USA), consisting of six major antibiotic classes: macrolides 

(roxithromycin, RTM; clarithromycin, CTM; azithromycin, AZM; erythromycin-H2O, 

ETM-H2O), fluoroquinolones (enoxacin, ENX; enrofloxacin, ENRO; 

norfloxacin, NOX; ofloxacin, OFX; ciprofloxacin, CIX), tetracyclines 

(chlortetracycline, CTC; oxytetracycline, OTC; tetracycline, TC), amphenicols 

(florfenicol, FF; chloramphenicol, CAP),  diaminopyrimidine (trimethoprim, TMP), 

sulphonamides (sulfacetamide, SAAM; sulfathiazole, STZ; sulfadimethoxine, SDM; 

sulfadimidine, SMA; sulfapyridine, SPD; sulfadiazine, SDZ; sulfamethoxazole, SMX). 

The surrogate standard, 13C3-caffeine solution (1 mg ml-1 with methanol), from  

Sigma-Aldrich was dissolved in methanol before cold storage at -20 °c. 

All solvents used in this work were in HPLC grade. Erythromycin-H2O standard 

stock was prepared by acidifying erythromycin with 3 M H2SO4 in accordance with 

McArdell et al. (2003). As such, erythromycin in its dehydration product was detected, 

ETM-H2O, due to it being readily dehydrated by the loss of one water molecule 
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(Göbel et al., 2005). Methanol, acetonitrile, and ethylenediamine tetraacetic acid 

disodium (Na2EDTA) were obtained from Merck (Darmstadt, Germany). Formic acid 

was obtained from CNW (Germany). Water was deionized using the Milli-Q water 

purification system (Millipore, Bedford, Massachusetts, USA). 

The internal standard curve was applied to calculate the concentrations of the  

twenty-two antibiotics, i.e. concentrations of the analytes were plotted against the peak 

area ratio. For each compound, concentrations with a signal to noise (S/N) ratio of 10 

were set to be the limits of quantification (LQ). The range of LQs for the selected 

antibiotic was between 0.02–36.50 ng l-1, while limits of detection (LOD) were between 

0.01–10.95 ng l-1. The recoveries of 13C3-caffeine were in the range of 0.0–176.7 % in 

all the water samples. 

 

3.6 Detection and Quantification of Antibiotic Residues 

For antibiotic detection and quantification, two litres of water samples from each 

sampling site were filtered using precombusted 0.7 µm glass fibre filters 

(GF/F, Sartorius, Gӧttingen, Germany). Filtrates were adjusted to pH 3 using 3.0 mol l-1 

sulphuric acid to avoid oxidation of antibiotics with the addition of 0.2 g of Na2EDTA 

as a chelating agent before 100 ng of 13C3-caffeine was used as a surrogate standard to 

monitor the recovery rate as described by Zhang et al. (2013). Briefly, Oasis 

Hydrophilic-lipophilic balance (HLB) cartridges (500 mg, Waters, UK) were pre-treated 

with 6 ml of deionized water, 6 ml of 10 mmol l-1 acidified Na2EDTA buffer and 6 ml 

of methanol. Target antibiotics were then concentrated by solid-phase extraction (SPE) 

by the Visiprep SPE system (Bellefonte, Pennsylvania, USA). The loading rate for each 

filtrate that passed through a cartridge was set at 10 min ml-1.  Cartridges loaded with 

filtrate were washed using 10 ml of acidified deionized water before vacuum dried for 
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10 min. The analytes were then eluted three times using 2 ml of methanol, concentrated 

to a volume of about 20 μl using nitrogen gas, and finally dissolved to a final volume of 

1.0 ml with 90 % aqueous methanol. 

Analysis of the twenty-two extracted antibiotics was completed using Agilent 1200 

series (Palo Alto, California, USA) connected to Thermo Scientific Hypersil GOLD 

columns (2.1 mm x 100 mm, 1.9 μm). Binary mobile phase was made by combining 

mobile phase A, which included 5 mmol l-1 ammonium acetate aqueous solution and 

0.2 % (v/v) formic acid, with mobile phase B which contained methanol. The following 

mobile phase gradient program was applied: 10 % to 60 % in 15 min, 60 % to 95 % 

within the following 5 min and held for 5 min, then returned to 10 % in 1 min and held 

for 1 min. The flow rate was maintained at 0.3 ml min-1, the column temperature was 

held at 40 °C, and the injection volume of samples was at 5 μl. Parameters for MS/MS 

conditions were summarized in Appendix A. All the analyses were carried out in 

duplicates. 

 

3.7 Antibiotic Residue Risk Assessment 

Ecological risk quotients (RQs) were calculated based on the European technical 

guidance document on risk assessment (European Commission, 2003) for the evaluation 

of potential ecological effects of antibiotic presence in the environment.  RQs were 

calculated by the equation: 

  RQ = MEC
PNEC

     (3.10) 

where MEC was the “measured environmental concentration” and PNEC was the 

“predicted no-effect concentration” for the respective antibiotics. PNEC was the 

division of lethal concentration or effective concentration for 50 % of the exposed 
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population (EC50/LC50) against assessment factor (AF) based on toxicity data value on 

non-target aquatic organisms: algae, invertebrate Daphnia magna, and fish 

(Appendix B). RQs for all the above formulas were defined according to 

Xue et al. (2013): low risk (0.01 < RQs < 0.1), medium risk (0.1 < RQs < 1), and high 

risk (RQs > 1). 

 

3.8 Isolation and Enumeration of Total Coliform and E. coli 

Membrane filtration technique was used to isolate and enumerate total coliforms and 

E. coli. Briefly, 1 ml surface water sample was aliquoted into 9 ml of sterile 0.85 % 

saline water with three times serial dilution followed by filtration through a  

pre-sterilised 0.45 mm nitrocellulose filter in duplicates, whereby water sample was 

drawn through a sterile funnel assembly using a vacuum pump. The filters were then 

transferred onto CHROMagarTM ECC media (CHROMagar Inc., Paris, France). 

Incubation was performed at 37 ± 0.5 °C for 24 h.  

Colonies were enumerated and confirmed visually with an unaided eye. Blue 

colonies were enumerated as E. coli, whereas mauve colonies were enumerated as total 

coliform. Presumptive E. coli isolates were further purified with Luria Bertani medium 

and preserved in stab and glycerol solution in a -80 °C freezer for further testing. The 

abundance of total coliform and E. coli were reported as colony forming unit per 100 ml 

(CFU 100 ml-1).  
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3.9 E. coli Gram-stain 

Gram stain was performed to further confirm the identity of isolates. First, a test 

bacterial colony was transferred into a drop of distilled water on a microscope slide. The 

bacterial suspension on the slide was dried by quickly passing it through the flame of a 

bunsen burner to create a thin smear. The smear was flooded with methyl violet 

followed by 2–3 drops of NaHCO3 solution and stained for 1 min. Excess stains were 

rinsed with water. Iodine solution was applied for 1 min, and excess stains were rinsed 

with water. Next, the smear was decolourised with a decolourising agent for 2–3 s and 

rinsed with water. Lastly, the smear was flooded with safranin for 30–45 s and rinsed 

with water. The slide was blot dried and observed under a microscope. Gram-positive 

bacteria appear purple and Gram-negative bacteria appear red. 

 

3.10 Deoxyribonucleic Acid (DNA) Template Preparation 

Boiling lysis extraction method was applied to extract crude DNA from E. coli 

isolates. Briefly, pure presumptive E. coli isolates were sub-cultured on Nutrient Agar 

plates and incubated at 37 °C for 24 h. A single pure colony was picked and 

resuspended in 100 μl sterile water in a 1.5 ml microcentrifuge tube. The cell 

suspension was then heated up to 94 °C with a dry bath incubator 

(model: Major Science MD–01N) followed by rapid cooling at -20 °C for 10 min. 

Crude DNA produced from the bacterial suspension was diluted to an optical density of 

0.1 at OD 600, vortexed for 1 min, and centrifuged at 5,000 rpm for 10 s. The crude 

DNA preparations were stored at 4 °C until used. 
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3.11 Gel Electrophoresis and Gel Imaging 

PCR products were separated by horizontal gel electrophoresis in a 1.5 % agarose gel 

stained by nucleic acid stain (iNtRON Red SafeTM, #21141) while using 

tris/borate/EDTA (TBE)  as a running buffer.  Base pair size comparisons were made 

with the DNA size marker 100 bp DNA ladder (New England Biolabs, #N3231S) and 

1 kb DNA ladder (New England Biolabs, #B7025), where appropriate. DNA was 

viewed under UV light and its image captured with a gel image documentation device 

(SASTEC, ST–GD1500). 

 

3.12 E. coli Identification using phoA as a Housekeeping Gene 

As described by Kong et al. (1999), the monoplex PCR assay that targets the phoA 

gene was adopted to further validate the presumptive E. coli isolates. The phoA gene 

used is an alkaline phosphatase precursor that is regarded as a housekeeping gene in 

E. coli. Briefly, the PCR reaction involves carrying out a total reaction volume of 25 μl. 

The reaction mixture consisted 5 µl DNA, 1× Green GoTaq buffer (pH 8.5), 0.5 U of 

Taq DNA polymerase (Promega, USA), 1.0 mM of MgCl2, 140 µM dNTP, and 0.1 µM 

of each primer. Each PCR run includes a reaction mixture that has its DNA template 

replaced with sterile distilled water, which acts as a negative control. While positive 

control used was a reaction mixture that contained purified DNA extract from a known 

E. coli strain, ATCC E. coli 25922 (American Type Culture Collection, Virginia, USA). 

Primer sequences for the detection of target genes paired with PCR thermo-cycling 

conditions (Applied biosystems, 2720) and the master mixture concentration are all 

described in Appendix C and Appendix D respectively. 
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3.13 E. coli Phylogenetic Typing 

The PCR assay used to assign E. coli isolates into phylogroups was developed and 

validated by Clermont et al. (2013), which enables an E. coli isolate to be rapidly 

assigned to either one of the seven phylogroups (A, B1, B2, C, D, E, and F) which 

belongs to E. coli sensu stricto, or to one of the five cryptic clades (I, II, III, IV, and V). 

The assay involves a multistep approach. Initially, a quadruplex PCR reaction was 

performed to assign phylogroup B1, B2, and F into confirmed groupings while 

phylogroup A, C, D, E, and cryptic clades (I–V) into temporary groupings. Generally, 

the combination of presence or absence of the genes arpA, chuA, yjaA, TspE4.C2 was 

used to determine the phylogenetic groups. Following that, ibeA gene was screened 

using monoplex PCR reaction as described by Johnson & Stell (2000) to confirm the 

identity of phylogroup B2. Then, phylogroup C-specific monoplex PCR reaction was 

performed in accordance with Lescat et al. (2009) to differentiate phylogroup C isolates 

from phylogroup A isolates. Next, phylogroup E-specific monoplex PCR reaction was 

also performed in accordance with Lescat et al. (2009) to differentiate isolates under 

phylogroup E from phylogroup D and cryptic clade I. Internal control was added for 

both C- and E-specific monoplex PCR named C-E-specific internal control. Finally, 

clade-specific multiplex PCR reactions from Clermont et al. (2011), clade (I–II), and 

clade (III–IV–V), were performed to determine the specific cryptic clade an isolate 

belongs to. Groupings not known to fall under any suggested groups by this iterative 

assay shall be identified using multi-locus sequence typing (MLST). The multistep 

procedure in assigning E. coli isolates to a phylogroup, or cryptic clade is summarised 

in table 3.2. For each quadruplex reaction, 20 µl reaction volume was carried out 

containing 3 µl DNA template, 2 µM each dNTP, 1x PCR buffer, 2 U Taq polymerase, 

1 mM MgCl2, 1 µM for primers except for Acek-F (2 µM), ArpA1-R (2 µM), trpBA-F 

(0.6 µM), and trpBA-R (0.6 µM).  
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Table 3.2: Quadruplex genotypes and steps required for assigning E. coli isolates to 

phylogroups 

Initial step: Quadruplex genotype    
arpA   

(400 bp) 
chuA  

(288 bp) 
yjaA  

(211 bp) 
TspE4.C2  
(152 bp) 

Temporary 
Phylogroup 

Next step Confirmed  
Phylogroup 

+ - - -   A 
+ - - +   B1 
- + - -   F 
- + + -   B2 
- + + +   B2 
- + - + B2 Confirm with ibeA 

primers 
If ibeA+ then B2, 
else perform MLST  

+ - + - A or C Screen with C-specific 
primers 

If C+ then C, else A 

+ + - - D or E Screen with E-specific 
primers  

If E+ then E, else D 

+ + - + D or E Screen with E-specific 
primers 

If E+ then E, else D 

+ + + - E or clade I Screen with E-specific 
primers 

If E- then clade I 

- - + - Clade I or II Confirm with cryptic 
clade primers 

 

Presence of single 476 bp product  Clade III, IV  
or V 

Confirm with cryptic 
clade primers 

 

- - - + Unknown Perform MLST  

- - + + Unknown Perform MLST  

+ - + + Unknown Perform MLST  

+ + + + Unknown Perform MLST  

- - - - Unknown Confirm with cryptic 
clade primers/ Perform 
MLST  

 

 

3.14 E. coli Antimicrobial Susceptibility Test (AST) 

E. coli isolates were tested for antibiotic resistance by standard agar disc diffusion 

technique (Bauer et al., 1966) through commercial disc (Oxoid, UK) placement on 

Mueller Hinton agar (Difco, USA). Briefly, a sterile inoculation loop was used to 

isolate, transfer, and suspend E. coli colonies in a test tube containing 2 ml of sterile 

saline. The saline inoculum tube was vortexed until suspension appeared homogenised. 

Turbidity of the suspension was adjusted to 0.5 McFarland standard either by adding 

more E. coli colonies if suspensions had lower turbidity or diluting with sterile saline if 

the suspension had higher turbidity. Immediately, a sterile swab was dipped into the 

Univ
ers

iti 
Mala

ya



 

60 

inoculum tube, pressed against the side of the tube at above fluid level, and then to be 

inoculated onto a Mueller Hinton agar plate. To ensure even distribution of the 

inoculum, the swab was streaked multiple times while the plate was rotated about 60 

degrees frequently. The swab was used to rim the plate before being discarded into a 

biohazard bag. A multidisc dispenser (Oxoid Antimicrobial Susceptibility disc 

Dispenser, ST6090) was used to dispense multiple antibiotic discs onto the surface of 

the inoculum plate at once. The antibiotic discs were applied to the inoculated plates 

and incubated at 37 ± 0.5 ˚C overnight. The following 11 antibiotic groups consisting of 

20 antibiotics were used: sulphonamides (sulphafurazole 300 µg, SF;  

and sulphamethoxazole/trimethoprim 25 µg, SXT), macrolides 

(azithromycin 15 µg, AZM), quinolones (nalidixic acid 30 µg, NA; oxolinic acid 2 µg, 

OA; and ofloxacin 5 µg, OFX), fluoroquinolones (ciprofloxacin 5 µg, CIP; and 

enrofloxacin 5 µg, ENR), tetracyclines (tetracycline 30 µg, TE), penicillins 

(ampicillin 10 µg, AMP; amoxicillin/clavulanic acid 30 µg, AMC), cephalosporins 

(cephazolin 30 µg, KZ; and ceftriaxone 30 µg, CRO), Aminoglycoside 

(streptomycin 10 µg, S; gentamicin 10 µg, CN; and neomycin 30 µg, N) carbapenems 

(imipenem 10 µg, IPM), phenicols (chloramphenicol 30 µg, C; and 

florfenicol 30 µg, FFC), and nitrofurans (nitrofurantoin 100 µg, F). The zone of 

inhibition will be analysed according to the standards and interpretive criteria of the 

Clinical and Laboratory Standards Institute (CLSI, 2020). Briefly, E. coli plate was 

placed on a black, nonreflecting surface illuminated with reflected light. While viewing 

the plate directly above in a vertical line of sight, sizes of the zone of inhibitions for 

each antibiotic disc were measured and rounded to the nearest millimetre using a ruler. 

The diameter of the disc was used as a measurement; if the diameter could not be 

discerned, the radius will be measured and multiplied by 2 to determine an estimated 

diameter. E. coli ATCC 25922, which is a recommended reference strain for 
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antimicrobial susceptibility testing, was used as a control. The multiple antibiotic 

resistance (MAR) index was calculated by the equation: 

   MAR = ୟ 
(௕ ୶ ௖) 

     (3.11) 

Where a is the aggregate resistance score of all isolates from a sample, b is the 

number of antibiotics tested, and c is the number of E. coli isolated per sample 

(Krumperman, 1983). 

 

3.15 E. coli Virulence Gene 

The first and second reaction of the three reactions 'three-sample multiplex PCR' 

assay designed and validated by Gómez-Duarte et al. (2009) was used. The assay could 

screen for nine virulent genes for the differentiation of six E. coli pathotypes, including 

enterohaemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), 

enteroaggregative E. coli (EAEC), enterotoxigenic E.coli (ETEC), diffuse adherent 

E. coli (DAEC), and enteroinvasive E. coli (EIEC). E. coli isolate assignment to a 

specific pathotype is summarised in table 3.3. E. coli 2060-004, E2348/69, JM221, 

E9034A, C1845, and EC-12 were used as positive controls for EHEC, EPEC, EAEC, 

ETEC, DAEC, and EIEC respectively, whereas sterile water was used as the negative 

control. 
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Table 3.3: E. coli isolate assignment to pathotypes 

 Target genes   

Reaction   eae VT bfpA aggR ipaH virF daaE LT ST Pathotype 

First   + + - -      EHEC 
   + - + -      EPEC 
   - - - +      EAEC 

 

Second       - - - + + ETEC 

       - - + - - DAEC 

       + + - - - EIEC 

The first reaction from the multiplex PCR assay that targets eae, VT, bfpA, and aggR 

genes was used to identify EHEC, EPEC, and EAEC. The second reaction in the 

multiplex PCR assay targeting ipaH, virF, daaE, LT, and ST genes was used to identify 

ETEC, DAEC, and EIEC. Both multiplex PCR assays had total reaction volumes of 

25 μl. 

 

3.16 tet Antibiotic Resistance Gene Screening 

Screening of fourteen tet resistance genes was modified from Ng et al. (2001), a total 

reaction volume of 25 μl where the genes were separated into four groupings, 

i.e.  group I consisted of tet[(B), (C), and (D)], group II were tet[(A), (E), and (G)], 

group III covered tet[(K), (L), (M), (O), and (S)], and group IV included 

tet[P(A), (Q), and (X)].  
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3.17 sul Antibiotic Resistance Gene Screening 

Screening of sul resistance genes was separated into a duplex PCR assay for sul1 and 

sul2 based on Kozak et al. (2009a), while a monoplex was performed for sul3 based on 

Pei et al. (2006). Both PCR had a total reaction volume of 25 μl.  

 

3.18 Genetic Diversity by Repetitive Element Sequence-Based PCR  

(rep-PCR) 

 

As described by Lim et al. (2009), rep-PCR is a DNA fingerprinting method that was 

utilised to amplify repetitive elements from purified E. coli isolates in the determination 

of genetic diversity among said isolates. Briefly, rep-PCR reaction involves performing 

a total reaction volume of 25 μl. While positive control used was a reaction mixture that 

contained purified DNA extract from a known E. coli strain (ATCC, E. coli 25922). The 

rep-PCR fingerprint patterns were managed and analysed with the bioinformatics 

software: BioNumerics Seven (APPLIED MATHS, Kortrijk, Belgium). DICE 

coefficient was performed to determine the similarity between profiles, while cluster 

analysis was performed with the unweighted pair group method using arithmetic 

averages (UPGMA). Shannon diversity index (H’) was calculated using the following 

equation: 

H’ = –Σ Pi log Pi    (3.12) 

Pi = ni / N     (3.13) 

Whereby ni is the number of strains having each band pattern, N is the total number of 

isolate applied for rep-PCR.  
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3.19 Statistical Analysis 

Statistical analysis was performed with Statistical Package for the Social Sciences 

(SPSS) version 21.0 (IBM, Chicago, USA). The criterion for statistical significance for 

all the following analyses was at p-value ≤ 0.05. Pearson’s chi-square (goodness of fit) 

test was performed to determine the significant difference among phylogenetic groups, 

sul resistance genes, and tet resistance mechanism types according to frequency data, 

whereas the chi-square test for independence was applied to determine any association 

between phylogroups and antibiotic resistance. Prevalence of antibiotic resistance was 

defined as the proportion of resistant E. coli isolates over total tested isolates. 

Correlation and linear regression analyses were performed to establish any association 

between water quality towards E. coli and total coliform abundance. Cluster analysis for 

sampling sites was performed based on the antibiotic susceptibility profile and antibiotic 

residue through the Bray-Curtis similarity index using PAST version 3.22 

(Hammer et al., 2001). Besides that, canonical correlation analysis (CCA) was 

performed using PAST Statistics version 3.22 to analyse the following square root 

transformed variables: E. coli phylogenetic groups among sampling sites with respect to 

resistance genes sul and tet, water quality parameters, and antibiotic residue 

concentrations.  
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CHAPTER 4: RESULTS 

 

4.1 Water Physicochemical Parameters 

Among surface water from all sampling sites, the water physicochemical properties 

were summarised in table 4.1. The average water temperatures ranged from 22.7 °C to 

31.8 °C, the pH ranged from 4.7 to 8.3, and the salinity increased significantly 

(ANOVA: F = 3.315, p < 0.05) from upstream to the estuary and are 0 ppt and 

22.56 ppt respectively, while the DO ranged from 3.56 to 8.35 mg l−1 with the exception 

of the wastewater effluent from slaughterhouse that recorded values lower than the LQ. 

 

Table 4.1: Water physicochemical parameters of Larut River compared to Sangga 

Besar 

Sampling 
Stations S1a Zoo Hospital Slaughter 

house S1b S1c S2a S2b S2c 

Temp (°C) 28.66 26.75 28.93 26.99 22.70 31.18 31.56 31.78 31.46 

Salinity 
(ppt) 0.07 0.00 0.06 0.73 9.07 18.72 16.44 22.56 12.42 

pH 6.95 7.87 8.30 7.71 4.79 7.86 7.57 7.57 7.54 

Dissolved 
Oxygen 
(mg l−1) 

3.56 7.41 6.09 < LOD 6.31 7.17 8.31 8.31 8.35 

Turbidity 
(NTU) 16.10 28.93 43.03 125.03 3.03 114.27 252.02 252.02 143.87 

 

4.2 Inorganic Nutrient Parameters 

For inorganic nitrogens, NH₄ was most abundant in Larut River followed by NO3 and 

NO2
 (Table 4.2). NH₄ mean concentrations ranged from 0.004–0.513 mg L−1 with low 

concentrations at upstream S1a, and effluents from the three anthropogenic sites  

(0.003–0.067 mg l−1), however higher concentration was observed at midstream S1b 

(0.513 mg l−1) before decreasing at downstream S1c (0.213 mg l−1). Both NO3 and NO2 
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had observed a similar trend, where each ranged from 0.0058–0.584 mg l-1 and  

0.011–0.254 mg l-1 respectively, where both mean concentrations increased at 

midstream S1b at 0.493 mg l-1 and 0.213 mg l-1 before decreasing at downstream S1c at 

0.271 mg l-1 and 0.086 mg l-1. NH4, NO3, and NO2 in Sangga Besar River have mean 

concentrations that were relatively higher than the effluent but lower than midstream 

S1b of Larut River, excluding NO3
 and NO2 at S2a, which was higher than S1b. PO₄ 

concentrations were mostly ≤ 0.180 except for 2 sites, hospital and zoo, each recording 

0.795 mg l−1 and 0.780 mg l−1 respectively.  

Table 4.2: Mean inorganic nutrient concentrations  (mg l−1) of Larut River compared to 

Sangga Besar River 

Sampling Stations S1a Zoo Hospital Slaughter 
house S1b S1c S2a S2b S2c 

Silicate (SiO4) 2.190 2.797 1.713 3.753 2.820 1.840 1.713 1.310 1.040 

Ammonium (NH₄) 0.013 0.007 0.067 0.003 0.517 0.217 0.110 0.143 0.230 

Nitrite (NO2) 0.037 0.030 0.013 0.037 0.213 0.087 0.250 0.103 0.087 

Nitrate (NO3) 0.370 0.203 0.057 0.093 0.493 0.270 0.587 0.307 0.320 

Phosphate (PO₄) 0.030 0.793 0.793 0.000 0.100 0.183 0.147 0.067 0.057 

 

4.3 Detection, Concentration and Ecological Risk of Antibiotic Residues 

Of the 22 antibiotics screened, 16 types of antibiotic residues were positively 

detected among the sites except for S2b farm in Sangga Besar River. Overall, the total 

antibiotic concentration ranged from LQ to 1,262.30 ng l-1 and showed a mean of 

13.05 ng l-1 (Table 4.3). The total antibiotic detection frequency was 88.89 %, whereby 

ETM-H2O (77.78 %) and CIX (55.56 %) were the most prevalent antibiotics detected. 

The detection frequency of antibiotic residues in Larut River was higher in comparison 

to Sangga Besar, with concentrations ranging from LQ–18.28 ng l-1. The upstream site 
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S1a of Larut River generally had a lower antibiotic detection frequency (9.09 %) 

compared to other positively detected sampling sites. Of the antibiotics examined, only 

ENRO (0.93 ng l-1) and SMX (0.21 ng l-1) were detected. Hospital, zoo, and 

slaughterhouse effluents from the midstream of Larut River were important contributors 

to antibiotic contamination along Larut River. Among the wastewater effluents, hospital 

wastewater effluent had the highest antibiotic detection frequency and the highest total 

concentration of antibiotics (54.55 %; 2,227.94 ng l-1). For the downstream sites 

(S1b and S1c) fewer antibiotics were generally detected, with ETM-H2O being detected 

for both sites with 6.42 ng l-1 and LQ–3.61 ng l-1 respectively. Similarly, at Sangga 

Besar River sites, low antibiotic residues were detected for S2a and S2c with a total 

concentration of 5.14 ng l-1 and 23.16 ng l-1 respectively.  
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In this study, PNEC of algae, invertebrate Daphnia magna, and fish were analyzed to 

assess the RQs. RQ for ENX was not calculated, as the toxicology data were 

unavailable for these aquatic organisms. The degree of sensitivity of the aquatic 

organisms towards antibiotics in surface waters of Larut and Sangga Besar Rivers was 

in the following descending order: Algae > Daphnia magna > fish. In figure 4.1, the 

risk assessment showed that among the macrolides detected, ETM-H2O posed low to 

high ecological risk to algae among the study sites except for S1a and S2b, conversely, 

low risk was detected for invertebrates, whereas AZM posed a low to medium risk to 

algae. CTM detected in hospital was found to have a high risk for algae, contrastingly, 

algae in S2c of Sangga River was exposed to low ecological risk. For fluoroquinolones, 

OFX detected at zoo, hospital, and S2c posed a high ecological risk to algae, whereas at 

S2c only medium risk was found. CIX detected in hospital had a low risk for algae. 

Among tetracyclines, OTC detected in hospital, slaughterhouse and S2a posed low to 

medium risk for algae, whereas TC detected in hospital posed a medium risk for algae, 

medium risk for invertebrates, and low risk for fish. Among the sulphonamides 

compounds tested, only SMX and SMA detected in hospital and slaughterhouse posed 

medium and low risk respectively to algae. 
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Antibiotic  
Class 

Compound 
Abbr. 

Sites 

Hospital Zoo 
Slaughter 

house S1b S1c S2c S1a S2a S2b 

I RTM          
CTM          
AZM          

ETM-H2O a*         
II ENRO          

NOX          
OFX          
CIX          

III CTC          
OTC          
TC a** b*         

IV FF          
CAP          

V TMP          
VI SAAM          

STZ          
SDM          
SMA          
SPD          

  SDZ          
  SMX          

 

Figure 4.1: Calculated RQs for the 22 antibiotics in surface waters of 9 sampling sites 

in Larut River and Sangga Besar River towards algae, invertebrates, and fish  

I: Macrolide; II: Fluoroquinolone; III: Tetracycline; IV: Amphenicol; V: Trimethoprim; 

VI: Sulphonamide; Roxithromycin: RTM; clarithromycin: CTM; azithromycin: AZM; 

erythromycin-H2O: ETM-H2O; enoxacin: ENX; enrofloxacin: ENRO; norfloxacin: 

NOX; ofloxacin: OFX; ciprofloxacin: CIX; chlortetracycline: CTC; oxytetracycline: 

OTC; tetracycline: TC; florfenicol: FF; chloramphenicol: CAP; trimethoprim: TMP; 

sulfacetamide: SAAM; sulfathiazole: STZ; sulfadimethoxine: SDM; sulfadimidine: 

SMA; sulfapyridine: SPD; sulfadiazine: SDZ; sulfamethoxazole: SMX; a*: Invertebrate 

low risk; a**: Invertebrate medium risk; b*: Fish low risk 

  

 : Algae RQ < 0.01  : Algae Low Risk;  : Algae Medium Risk;  : Algae High Risk;  
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4.4 Abundance of Coliform and E. coli 

Coliform and E. coli were detected at all sampling sites, where both concentrations 

were higher at Larut River (up to 4.7 × 105 CFU 100 ml-1; up to 4.1 × 105 CFU 100 ml-1, 

respectively) than Sangga Besar River (up to 4.3 × 103 CFU 100 ml-1; up to 

2.5 × 103 CFU 100 ml-1) (Figure 4.2). Overall, higher coliform and E. coli 

concentration (2–3 log CFU 100 ml-1 difference) were detected in the effluent sites 

compared to river waters (p ≤ 0.05). According to site, the highest total coliform and 

E. coli concentration were observed in wastewater effluent from slaughterhouse. Mean 

total coliform in slaughterhouse, hospital, and zoo were approximately 2 log order 

higher than upstream (S1a) and 0.4 logs higher than downstream S1b while mean E. coli 

count were approximately 3 log order higher and about 1 log higher at S1b respectively.  

 

Figure 4.2: Total coliform and E. coli counts from each site  

EST, estimation. Sampling sites: Z, Zoo; H, Hospital; SH, Slaughterhouse 
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4.5 Distribution of E. coli Phylogenetic Groups 

Each phylogenetic group (A, B1, B2, C, D, E, and F) was assigned to the 503 E. coli 

isolates, whereas no cryptic clades were detected among them (Figure 4.3). Overall, 

phylogroup B1 (46.72 %) and phylogroup A (34.39 %) was the most prevalent 

phylogroup in this study. For the 6 sites in the Larut River along with 3 sites in the 

Sangga Besar River, the distribution of all phylogroups except phylogroup B1 was not 

homogenous according to Pearson’s chi-square test. Nevertheless, phylogroup B1 was 

still higher at the effluents from zoo, slaughterhouse, and S1c from Larut River. 

Phylogroup A (34.39 %), the second most prevalent phylogroup in this study were 

found significantly higher (χ2 = 55.314, df = 8, p = 0.000) in effluents of hospital 

(58.57 %) and slaughterhouse (49.18 %) followed by S1b (51.67 %). In contrast, the 

remaining phylogroups only account for 18.89% of the total isolates, where phylogroup 

B2 and D was found to be significantly higher (B2: χ2 = 134.94, df = 9, p = 0.00; 

D: χ2 = 32.87, df = 9, p = 0.00) in upstream S1a.  Remarkably, a distinct shift in 

phylogroup distribution was observed between the upstream S1a and anthropogenically 

impacted zoo, e.g. E. coli strains from zoo had phylogroup A and B1 as the predominant 

strains while phylogroup B2 representation is only at 2.63 %.  

 

Figure 4.3: Distribution of E. coli phylogenetic groups by sites in Larut and Sangga 

Besar Rivers 
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4.6 Antimicrobial Susceptibility Profile 

From the 11 antibiotic classes that covered 20 antibiotics, all except imipenem had 

positive resistance among the 503 E. coli isolates tested. According to antibiotic class, 

antibiotic resistance ranges were: tetracycline (10.34–86.84 %) > quinolones  

(3.45–80.33 %) > penicillins (0–75.00 %) > sulphonamides (0–65.79 %) > amphenicols 

(2.00–60.53 %) > fluoroquinolones (0–57.38 %) > aminoglycosides (0–47.37 %) > 

macrolides (0–19.74 %) > cephalosporins (0–18.57 %) > nitrofurans (0–3.45 %). From 

the total E. coli isolates, 339 (67.40 %) were resistant to ≥ 1 antibiotic whereby 53.08 % 

were MAR isolates (i.e. resistant to ≥ 3 different antibiotic classes). Among the MAR 

isolates, frequency was higher in wastewater effluents (zoo > slaughterhouse > hospital) 

than river waters (S1b > S2a > S1c > S2c > S1a > S2b) (Figure 4.4). Specifically, 

24.45 % showed resistances to 3–5 classes, 27.24 % resisted against 6–8 classes, and 

seven isolates (1.39 %) were resistant to nine classes by which two MAR isolates 

carried 16 types of AR, each recovered from slaughterhouse and hospital effluent. 

Between sites, cluster analysis showed the distribution of AR E. coli phenotype from 

zoo and slaughterhouse effluents was more similar than hospital effluent and S1b. The 

highest prevalence of antibiotic-resistant E. coli strains was observed in effluents from 

zoo (97.37 %) and slaughterhouse (90.16 %), along with S1b (75.00 %), with respective 

MAR isolate prevalence of 84.21 %, 72.13 %, and 56.67 %. In contrast, upstream S1a 

had the lowest prevalence of AR strains (44.23 %) and MAR strains (25.00 %). The 

MAR index of ≥ 0.20 was observed at S1a, zoo, hospital, slaughterhouse, and S1b. 

Greater risk of MAR E. coli detection was found in Larut River (MAR index: 0.28) 

where the prevalence of antibiotic-resistant and MAR isolates were 74.86 % and 

59.61 % against Sangga Besar River (MAR index: 0.13) with 49.66 % and 37.58 % 

respectively.  
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Sampling site antibiotic resistance phenotype  

 

 

 
  
  

Antibiotic  
class 

Compound 
 abbr. 

 H S1b Z SH S1a S1c S2a S2b S2c           
(%) 

I TE            
II OA            
 NA            

III AMP            
 AMC            

IV SF            
 SXT            

V ENR            
 OFX            
 CIP            

VI C            
 FFC            

VII N            
 S            
 CN            

VIII AZM            
IX KZ            

 CRO            
X F            
XI IPM            

            
 No. of isolates 70 60 76 61 52 35 50 50 49  
 MAR Index 0.26 0.27 0.38 0.39 0.13 0.15 0.15 0.09 0.14  
 Total Resistant isolates (%) 71.43 75.00 97.37 90.16 44.23 51.43 60.00 44.00 67.40  

 

Figure 4.4: Antibiogram of antibiotic resistance phenotype detected in surface water 

among sampling sites in Larut River and Sangga Besar River organised by similarity 

Abbr, abbreviation. Antibiotic class: I, Tetracycline; II, Quinolone; III, Penicillin; IV, 

Sulphonamide; V, Fluoroquinolone; VI, Amphenicol; VI, Aminoglycoside; VIII, 

Macrolide; XI, Cephalosporin; X, Nitrofuran; XI, Carbapenem.  Antibiotic type: TE, 

Tetracycline; OA, Oxolinic acid; NA, Nalidixic acid; AMP, Ampicilin; 

AMC, Amoxycillin/Clavulanic acid; SF, Sulfafurazole; 

SXT, Sulfamethoxazole/trimethoprim; ENR, Enrofloxacin; OFX, Ofloxacin; 

CIP, Ciprofloxacin; C, Chloramphenicol; FFC, Florfenicol; N, Neomycin; 

S, Streptomycin; CN, Gentamicin; AZM; Azithromycin; KZ, Cephazolin; CRO, 

Ceftriaxone; F, Nitrofurantion; IPM, Imipenem. Sampling sites: Z, Zoo; H, Hospital; 

SH, Slaughterhouse 
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Among phylogroups, A showed the highest resistance prevalence of 81.50 % with 

76.9 % MAR isolates. Moreover, phylogroup F and B1 had shown associated resistance 

towards tetracycline (TE, χ2 = 14.119, df = 6, p = 0.028), quinolones (OA, χ2 = 67.221, 

df = 6, p = 0.000; NA, χ2 = 48.444, df = 6, p = 0.000), fluoroquinolones 

(CIP, χ2 = 19.858, df = 6, p = 0.001), sulphonamides (SF, χ2 = 22.283, df = 6, 

p = 0.001; SXT, χ2 = 26.879, df = 6, p = 0.000), amphenicols (C, χ2 = 29.923, df = 6, 

p = 0.000; FFC, χ2 = 26.073, df = 6, p = 0.000), and macrolides (AZM, χ2 = 28.443, 

df = 6, p = 0.000). Although phylogroup C had 100 % antibiotic resistance, it is 

important to note that only four isolates belonging to this group were isolated in this 

study. Notably, phylogroups F and B1 each carried a single isolate with 16 types of 

antibiotic resistance. Lower percentage of antibiotic resistance was observed in 

phylogenetic groups B2 and D. These phylogroups were detected more in upstream 

(S1a) which was associated with animal origin. Phylogroup B2 was found to have 

higher resistance against penicillin, quinolones/fluoroquinolones, sulphonamides and 

aminoglycosides whereas Phylogroup D was detected to have higher resistance against 

tetracycline, penicillin, and sulphonamides. In terms of MAR, phylogroups with a MAR 

index of greater than 2.0 were phylogroups A, B1, C, and F. 

 

4.7 Pathotypes of E. coli 

Eleven E. coli isolates (2.19 %) harboured ≥ 1 intestinal pathogenic E. coli (IPEC) 

associated virulence gene (Table 4.4). The virulence factor aggR, which indicates a 

positive EAEC pathotype was the most prevalent gene (n=5) and was detected in 

effluents of zoo and hospital. Importantly, these EAEC isolates collectively 

demonstrated MAR profiles of 5–16 antibiotics, with combinations of sul2 and sul3 

genes, and tet(B), tet(A), tet(L), tet(M), and tet(X) genes. Additionally, bfpA (n=3), 
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ST (n=2), and eae (n=1) virulence genes were also detected along the river continuum 

with high susceptibility to antibiotics, except for a single phylogroup F isolate from zoo 

effluent. In terms of phylogroup, the phylogroup F strains (n=4/11] were found to carry 

virulent genes. 

Table 4.4: Profiles of virulent gene carrying E. coli isolates 

Profile 

Virulence 
gene Isolate River Site Phylogroup 

No. of 
antibiotic  
resistance 
phenotype 

Antibiotic  
resistance 

sul 
gene tet gene 

ST 1WF1 Larut S1a D 0 N/A N/A N/A 

ST 1WF11 Larut S1a B2 0 N/A N/A N/A 

bfpA 1Z1B5 Larut Zoo F 10 TE-OA-NA-AMP-SF-
SXT-ENR-C-S-AZM N/A tet(A) 

bfpA 2AQ7 Sangga Besar S2b B1 0 N/A N/A tet(E)(G)(L) 

bfpA 2RM2 Sangga Besar S2c B1 1 AMP N/A tet(G)(L) 

eae 2BP6 Larut S1a B2 0 N/A N/A tet(A) 

aggR 1Z1B11 Larut Zoo F 5 TE-OA-NA-AMP-FFC sul3 tet(B)(L) 

aggR 1Z2 1 Larut Zoo B1 13 
TE-OA-NA-AMP-SF-

SXT-ENR-OFX-CIP-C-
N-S-CN 

sul3 tet(A)(L)(M) 

aggR 1Z2 4 Larut Zoo F 12 
TE-OA-NA-SF-SXT-

ENR-OFX-CIP-C-N-S-
CN 

sul23 tet(A)(L)(M) 

aggR 1HB11 Larut Hospital F 16 
TE-OA-NA-SF-SXT-

ENR-OFX-CIP-C-FFC-N-
S-CN-KZ-CRO 

sul3 tet(A) 

aggR 1HN31 Larut Hospital B1 13 
TE-OA-NA-AMP-AMC- 
SF-SXT-ENR-OFX-CIP-

C-N-S 
N/A tet(X) 

 

4.8 tet and sul Genes Distribution in E. coli 

Overall, 394 (78.33 %) E. coli isolates harboured at least one of the tested tet genes 

except for tet(S) which codes for tet resistance mechanisms: efflux protein 

tet [(A), (B), (C), (D), (E), (G), (K), (L), and A(P)], ribosomal protection protein 

tet [(M), (O), and (Q)] and enzyme inactivation tet(X). The majority of the resistance 

genes were found in the zoo (93.42 %) effluents followed by slaughterhouse (85.25 %) 

effluents. There were 109 E. coli isolates that did not harbour any of the tested 
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resistance genes. The predominant tet genes carried by E. coli were tet(A) (46.32 %), 

tet(L) (31.01 %), tet(M) (9.54 %), and tet(X) (Figure 4.5). Among sites, tet(A) followed 

by tet(M) was the dominant gene in zoo effluent, tet(L) was abundant in S2b, and tet(X) 

was in hospital effluent. Efflux genes were prevalent among all sites, indicating that 

active efflux via membrane associated proteins was the main mechanism for resistance 

in E. coli that resided in Larut River and Sangga Besar River. Both tet(A) and tet(L) 

belonged to the active efflux resistant mechanism. Meanwhile, resistance mechanisms 

of active efflux along with ribosomal protection proteins (RPP) were found in zoo 

wastewater effluent, as evidenced by the dominance of tet(A) and tet(M) respectively. 

Certain E. coli (35.98 %) in this study were found to carry multiple tet resistance genes 

with a high variation of tet gene combination. Among the 57 different tet combinations 

harboured by E. coli isolates, the most prevalent multiple tet resistance genes 

tet(A)(L) (7.36%),  tet(A)(M) (4.97 %), and tet(A)(L)(M) (3.18 %) were significantly 

dominant (p ≤ 0.05) in wastewater effluents from hospital Notably, the presence of all 

three tet resistance mechanisms that includes enzyme inactivation, tet(X), in E. coli 

isolates isolated from hospital effluent were detected. In contrast, E. coli isolates that 

harboured significantly fewer resistance genes were observed at less polluted sites. 

Results indicated that tetracycline resistant E. coli acquired multiple mechanisms to 

confer resistance. 
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Figure 4.5: Prevalence of tet antibiotic resistance gene type categorised by resistance 

mechanism carried by E. coli isolated from sites in Larut River compared to Sangga 

Besar River 

There were 149 (29.62 %) E. coli isolates which harboured ≥ 1 sulphonamide 

resistance gene, resulting in a gene-frequency distribution of 

sul3 (17.10 %) > sul2 (4.97 %) > sul1 (2.58 %) (Figure 4.6). Among sites, sul gene 

carrying E. coli was significantly higher with prevalence of 52.46 % in midstream 

slaughterhouse (χ2 = 22.375, df = 5, p = 0.000) and 46.05 % at zoo (χ2 = 6.000, df = 4, 

p = 0.000). In comparison, upstream S1a had the lowest detection frequency (3.45 %). 

Among rivers, greater prevalence was expectedly found in Larut River (35.31 %) 

compared to Sangga Besar River (16.11 %). The highest prevalence of sul3 was 

detected in wastewater effluent from zoo. Among the multiple sul gene combinations, 

the sul13 combination was most frequently detected. Furthermore, three isolates with 

combination sul123 were detected (0.60 %); specifically, two from slaughterhouse and 

one from hospital.  
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Figure 4.6: Cumulative sul resistance gene distribution of E. coli isolates by site 

 

4.9 Relationship Between Physicochemical and Antibiotic Residues on E. coli 

Phylogenetic Distribution 

CCA analysis was used to discern the possible relationships between E. coli 

phylogenetic groups and the variables for physicochemical and antibiotic residues in the 

water samples among sites. Variables were square root transformed within the CCA. A 

total of 78.41 % of the variance was explained from the CCA, where the horizontal axis 

(CCA 1) and the vertical axis (CCA 2) respectively explained 52.60 % and 25.81 % of 

the explanatory variables.  

CCA analysis revealed that the E. coli phylogroups A and C were greater in 

deteriorating water quality with high NH4 and PO4 (Figure 4.7 A). In comparison, 

phylogroup B1 seemed to grow well in turbid water, with NO2, and have better 

tolerance to salinity, and pH. While the other lower frequency phylogroups 

(B2, D, E, F) were associated with SiO4, temperature, and NO3. Results also showed that 

the distribution of different phylogroups and antibiotic resistance genes were also 

affected by antibiotic use. The antibiotics detected in hospital, slaughterhouse, and S1b 

exhibited a significant correlation with phylogenetic groups A, C, sul, and tet genes, 

while oxytetracycline (OTC), fluoroquinolones (ENRO and ENX) detected in zoo 

showed positive associations with phylogroup B1 (Figure 4.7 B). However, no 

correlation was observed in the lower frequency phylogroups (B2, D, E, and F).  
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FIGURE 4.7: Square root normalised CCA ordination showing the distribution of E. 

coli phylogenetic groups by sampling sites in Larut River and Sangga Besar River with 

respect to their phylogenetic group and resistance genes tet and sul 

(A) Relationship between E. coli and water physicochemical parameters of Larut River 

and Sangga Besar River collected. (B) Relationship between E. coli and water antibiotic 

residue detected in Larut River and Sangga Besar River 

Water physicochemical factors abbreviation: Temp (°C), salinity (ppt), pH, dissolved 

Oxygen (DO), turbidity and concentrations (μM) of Silicate (SiO4), Ammonium (NH₄), 

Nitrite (NO2), Nitrite (NO2), Nitrate (NO3), Phosphate (PO₄) Antibiotic resistance gene: 

sul, sulphonamide resistance gene; tet, tetracycline resistance gene Antibiotic residue: 

RTM, Roxithromycin; CTM, clarithromycin, AZM, azithromycin; ETM-

H2O, erythromycin-H2O; ENX, enoxacin; ENRO, enrofloxacin; NOX, norfloxacin; 

OFX, ofloxacin, CIX, ciprofloxacin; CTC, chlortetracycline; OTC, oxytetracycline; 

TC, tetracycline; FF, florfenicol; CAP, chloramphenicol; TMP, trimethoprim; 

SAAM, sulfacetamide; STZ, sulfathiazole; SDM, sulfadimethoxine; 

SMA, sulfadimidine; SPD, sulfapyridine; SDZ, sulfadiazine; SMX, sulfamethoxazole 
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4.10 Genetic Diversity of E. coli Through DNA Fingerprinting Method 

A total of 503 band patterns of variable band numbers with amplicon sizes ranging 

from 100 bp–2000 bp were generated by rep-PCR from all the E. coli isolates identified 

from the nine sites. Among sites, the highest diversity was observed in slaughterhouse 

(H’, 3.53), followed by zoo (H’, 3.38), whereas the lowest H’ was detected in S2c 

(H’, 2.60) (Table 4.5). In contrast, hospital effluent had a low E. coli genetic diversity 

(H’: 2.91) among effluent sites. Among rivers, Larut River showed higher diversity 

(H’, 4.58%) in comparison with Sangga Besar River (H’, 3.79). 

Due to the large population size (n = 503), only non-repeating genotypes 

(< 85% similarity, n = 90) were selected to have the genetic relationships of E. coli in 

this study analysed. By calculating the DNA band patterns using band-based DICE 

coefficient of similarity and generated by unweighted pair group method with arithmetic 

mean (UPGMA), a dendrogram representing seven major clusters at 55 % cut-off value 

was constructed (Figure 4.8). The highest number of isolates were in Cluster I (n = 40), 

with isolates found with nearly equal distribution at all sites along Larut River. The only 

exception is hospital effluent, which contained isolates (85.00 %) characterised under 

the generalist phylogroups A and B1 with phenotypic resistance (67.50 %). Similar to 

cluster I, cluster VI (n = 13) were phylogroup A and B1 strains with high antibiotic 

resistance but differed spatially. In contrast, low antibiotic-resistant phylogroup B2 

isolates were distinctively associated with clusters IV, V, and VII. The aforementioned 

clusters collectively contained isolates (n = 15) that were isolated at non-anthropogenic 

sites except for two strains from zoo and hospital separately. The remaining clusters II 

and III had a diverse phylogeny similar to that of cluster I but instead had intermediate 

antibiotic resistance. 
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Table 4.5: Non-repeating genotypes and genetic diversity of  E. coli isolates 

River Site  No. of Isolates No. of non-repeating genotype 
(< 85 % similarity) Diversity index (H') 

Larut River S1a  52 19 3.30 

 Zoo  76 10 3.38 

 Hospital  70 7 2.91 

 Slaughterhouse  61 8 3.53 

 S1b  60 16 3.22 

 S1c  35 7 2.66 

 Sum  354 67 4.58 
Sangga  
Besar River S2a  50 7 3.06 

 S2b  50 11 2.86 

 S2c  49 5 2.60 

 Sum  149 24 3.79 

 Total  503 90 4.76 
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Figure 4.8: Dendrogram showing similarity of E. coli strains isolated from different 

sampling sites as determined by rep-PCR fingerprint analysis using REP primer  

I, Tetracycline; II, Quinolone; III, Penicillin; IV, Sulphonamide; V, Fluoroquinolone; VI, 

Amphenicol; VII, Aminoglycoside; VIII, Macrolide; IX, Cephalosporin; X, Nitrofuran; 

XI, Carbapenem 
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CHAPTER 5: DISCUSSION 

 

5.1 Occurrence of Antibiotics in Water 

Sites from Sangga Besar River generally had low antibiotic detections and 

concentrations likely attributed to the ten times lower population density of Sangga 

Besar compared to Larut River (Ghaderpour et al., 2015). Studies have shown 

significant correlations between population density and antibiotic compounds in the 

surface waters of a river (Osorio et al., 2016). However, no correlation between 

antibiotic concentrations and water parameters measured was found (Lye et al. 2019), 

even though some studies have shown that physicochemical properties of antibiotics 

were affected by the local environment parameters (e.g. temperature, pH, salinity, 

moisture, oxygen level, etc) (Luo et al., 2011; Lu et al., 2015; Yang et al., 2015). A 

possible explanation is hydrodynamics and microbiological activity of community 

bacteria instead played a larger role in the degradation and persistence of antibiotics in 

this environment (Gauthier et al., 2010; García-Galán et al., 2011; Tappe et al., 2013; 

Topp et al., 2013). 

This study identified hospital, zoo, and slaughterhouse effluents from Larut River as 

likely sources of antibiotic contamination along Larut River, which was consistent with 

Lye et al. (2019). Cluster analysis showed that antibiotic contamination in hospital 

effluent was unlike other effluent sites, i.e. zoo and slaughterhouse were more similar to 

one another (69.00 %) than hospital. The high prevalence of antibiotic residues in 

hospital concurred with other studies (Verlicchi et al., 2012; Ory et al., 2016). Among 

antibiotics detected, ETM-H2O was found to be the most prevalent, verifying a more 

recent report that identified it as the second most commonly prescribed antibiotic in 

Malaysia (22.4 %, Ministry of Health, 2017b) because of its use in bacterial infection 
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treatment and/or as a motility agent in critically ill patients in clinical 

(Ministry of Health, 2014b; Shamsuddin et al., 2016). This is followed by 

fluoroquinolones, where CIX was the second-most common expenditure in Malaysian 

public hospitals between 2009 and 2010 and are commonly used as systemic medication 

and to treat bacterial eye infection with utilisation of 0.365 defined daily dose 

(DDD) 1,000 inhabitants-1 day-1 and 0.022 DDD 1,000 inhabitants-1 day-1, respectively 

whereas the usage in livestock reached 4,615 kg year-1 (Ministry of Health, 2014b; 

Marzuki, 2017). The third most prevalent was tetracycline, where its usage was the 

second-most commonly used veterinary antibiotic in Malaysia and had reportedly 

reached 73,910 kg year-1 (Marzuki, 2017). Together, the use of erythromycin, 

ciprofloxacin, and tetracycline was reportedly common in Malaysian hospitals back in 

2007 (Ministry of Health, 2008), and evidence of antibiotic contamination in hospital 

effluent from the current environmental study could still corroborate this earlier report 

from more than a decade ago. 

Antibiotic practices and doses applied in both humans and animals vary between 

regions and countries, which may greatly influence the type, distribution, and variation 

of antibiotic residues in aquatic environments (Managaki et al., 2007; 

Shimizu et al., 2013). Among the three major antibiotic residues in this study, 

Tan et al. (2017) revealed that the macrolide ETM-ethylsuccinate was one of the 

antibiotics that were inappropriately prescribed in a Malaysia hospital for upper 

respiratory tract infections, as most of the prescribers were unaware of the removal of 

this drug from Malaysia’s National Antibiotic Guideline due to the resistance developed 

by Streptococci. Besides, ETM usage is legally permitted in Malaysia for poultry and 

cattle farming (Hassali et al., 2018), the total amount used in 2015 was  

218,290 kg year-1 (Marzuki. 2017). Furthermore, ETM has good stability in the aquatic 

environment (Li et al., 2018). The detected concentrations in this study were 
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comparable to the levels from Pearl River (not detected–1,540 ng l-1, Li et al., 2018) but 

higher than Tamagawa River, Japan (21.0–120.0 ng l-1, Managaki et al., 2007),  

Lake Taihu (not detected–624.80 ng l-1, Xu et al., 2014), and South Yellow Sea 

(not detected–138.90 nd l-1, Du et al., 2017). Yet, lower than WWTPs in Brazil 

(not detected –1,586.0 ng l-1, Jank et al., 2014) and hospital effluents from Romania 

Hospital (not detected–7,520.00 ng l-1, Szekeres et al., 2017).  

The use of fluoroquinolones has increased substantially globally due to their  

broad-spectrum antibiotic properties against Gram-negative pathogens, especially those 

resistant to other antibiotic classes (Pham et al., 2019). Among the fluoroquinolone 

compounds examined, second-generation CIX and OFX were the most prevalent. OFX 

is for systemic use and to treat outer ear infections. According to Malaysian Statistic 

Medicines 2011–2014, an increasing trend was observed for the usage of anti-infective 

OFX ear drop from 0.015 DDD 1,000 inhabitants-1 day-1 in 2011 to 

0.018 DDD 1,000 inhabitants-1 day-1 in 2014 (Ministry of Health, 2017a). Generally, 

NOX is less potent than CIX, therefore, their usage rate as systemic medication 

(0.024 DDD 1,000 inhabitants-1 day-1) and for bacterial eye infection treatment 

(0.001 DDD 1,000 inhabitants-1 day-1) was much lower. For ENRO, it was detected in 

S1a, zoo, slaughterhouse, and S1a, whereas ENX was only detected in the zoo. The 

usage of these two antibiotics was legally permitted in animal feed for preventive 

measures in Malaysia (Marzuki, 2017). Overall, the fluoroquinolone concentrations 

detected in this work were below the global mean. However, CIX showed an increasing 

systemic utilisation and was the drug with the second highest expenditure in Malaysian 

public hospitals between 2009 and 2010 (Ministry of Health, 2014b). CIX levels in this 

study (not detected–577.97 ng l-1) were higher if not similar to rivers and basins from 

Lui, Gombak, and Selangor Rivers, Malaysia (52.50 -299.88 ng l-1, 

Praveena et al. 2018), DongJiang River, China (not detected–442.10 ng l-1, 
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Chen et al., 2018), ChongQing, China (not detected–458.00 ng l-1, Chang et al., 2010), 

and WWTP near a hospital in Lake Victoria Basin, Kenya (not detected–420.00 ng l-1, 

Kimosop et al., 2016), but were several order lower compared to WWTPs from 

Ter River, Spain (4.7–13,779.70 ng l-1, Rodriguez-Mozaz et al., 2015), New York, USA 

(not detected–5,600.00 ng l-1, Batt et al., 2006), and sewage treatment plants (STP)s 

from Okhla, India (2,900.00–45,400.00 ng l-1, Mutiyar and Mittal, 2014), hospitals from 

Ujjain, India (not detected–236,600 ng l-1, Diwan et al., 2010). 

Tetracyclines were one of the considerably cheaper classes of antibiotics available, 

making it attractive to be used for human and veterinary drugs in developing countries 

like Malaysia (Michalova et al., 2004; Roberts et al., 2011; Ministry of Health, 2014b). 

The concentrations of tetracyclines detected in this work (LOD –1,092.49 ng l-1, 

Figure 5.1) were higher than the global mean concentrations for surface waters  

(1.01–254,820 ng l-1), rivers in HuangPu, China (not detected –135.50 ng l-1, 

Jiang et al., 2011) and Cache La Poudre River, USA (not detected–1,210.00 ng l-1, 

Kim and Carlson, 2006), lakes in Taihu, China (not detected–142.50 ng l-1, 

Xu et al., 2014), and Choptank Basin, USA (not detected–388.00 ng l-1, 

Arikan et al., 2008) but lower than hospital effluents from XinXiang, China  

(1,147.83–1,727.05 ng l-1, Wang et al., 2018) and Romania  

(not detected–1,340.00 ng l-1, Szekeres et al., 2017).  

Apart from the three major antibiotic residues in this study, TMP was detected in 

locations including hospital, zoo, and slaughterhouse. Due to TMP being used in 

combination with sulphonamides for their synergistic antibacterial properties 

(Ministry of Health, 2014b, 2017a), sulphonamide detection was a near match with 

TMP. For sulphonamides, SMX was the most abundant and frequently detected residue 

type in this work, which is in agreement with Lye et al. (2019). Sulphonamides were 

Univ
ers

iti 
Mala

ya



 

88 

reported as ubiquitous in tropical Asian countries (Shimizu et al., 2013), yet the 

concentrations in this study were below the mean antibiotic concentration in surface 

waters for the Asia region. Sulphonamides in this study (not detected–93.15 ng l-1) had 

low levels comparable to the Choptank watershed (not detected–9.00 ng l-1, 

Arikan et al., 2008) and Bohai Sea (not detected–96.00 ng l-1, Zhang et al., 2013). 

Specifically, SMX in this study had levels similar to Taihu lake 

(not detected–114.70 ng l-1, Xu et al., 2014). In contrast, CAP was the only amphenicol 

compound detected in hospital and zoo. CAP was used as a systemic medicine and a 

topical ear drop to treat ear infections in Malaysia (Mohamad et al., 2014) while 

commonly used in veterinary for horses (McElligott et al., 2017). Malaysia has banned 

the usage of CAP for food use in food-producing animals since 1998  

(Malaysia Food Act 1983 (Act 281) and Regulations) (Ministry of Health, 2014a). The 

concentration levels of CAP (LOD–4.92 ng l-1) in the current work were lower than 

HuangPu River, China (4.18–2.36 ng l-1, Jiang et al., 2011), Taff and Ely River, 

South Wales (not detected–40.00 ng l-1, Kasprzyk-Hordern et al., 2008), 

Owo River, Nigeria (not detected–360.00 ng l-1, Olarinmoye et al., 2016), WWTP in 

Lake Victoria Basin, Nigeria (not detected–60.00 ng l-1, Kimosop et al., 2016), 

South Yellow Sea (not detected –73.20 ng l-1, Du et al., 2017) and hospitals in 

Lake Victoria Basin, Nigeria (70.00–80.00 ng l-1, Kimosop et al., 2016).  
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Figure 5.1: Countries with antibiotic residue detected in surface waters over this work 

and reported literature totaling 68 sites 

Box plots show the concentrations (ng l-1) of six antibiotic classes: Macrolides (ML); 

Fluoroquinolones (FQL); Tetracylines (TC); Amphenicols (AP); Trimethoprim (TRI); 

Sulphonamides (SA). Red lines show concentrations detected in Larut River and 

SanggaBesar River, Malaysia in this study 

 

5.2 Risks Posed by Antibiotic Residues in Surface Waters 

Individual antibiotic residue could be a risk to aquatic organisms according to the 

calculated RQs. Hospital and zoo had been categorised as risk sites in this study.  

ETM-H2O, CTM, and OFX specifically posed high risks to algae ecology. Although 
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algae’s sensitivity towards antibiotics in the aquatic environment had been verified by 

other studies (Halling-Sørensen, 2000; Ando et al., 2007; Magdaleno et al., 2015;  

Li et al., 2018), it affected 78 % of the studied sites, and this suggests ecological risks 

posed is still important. Environmental toxicology data for concentrations of antibiotics 

in river waters indicates that most antibiotics except ETM-H2O, TC, CTM, and OFX 

were not high enough to cause acute effects on more complex aquatic organisms. To 

support this, similar high risks for OFX were present in sites from Laizhou Bay, China 

(Zhang et al., 2012), Korean aquatic environment (Lee et al., 2008), and 

Hong Kong sewage (Deng et al., 2016). 

The assessment indicates that the risk of promoting antibiotic resistance selection for 

ETM-H2O, CTM, and OFX from hospital effluent is significant in the environment 

(Kemper, 2008). Antibiotics in the environment could increase the prevalence of 

resistance after a period by selecting resistant phenotypes via inhibition of sensitive 

strains (Ågerstrand et al., 2015). In the absence of selective pressure from 

sulphonamide, sulphonamide-resistant bacteria still remained stable in the environment 

for at least 5 to 10 years longer than sulphonamide itself (Gao et al., 2012). Therefore, 

high-risk antibiotics should be used minimally and monitored to control any detrimental 

effects. 

 

5.3 Abundance of Coliform and E. coli 

The abundance of coliform and E. coli serves as indicators of water quality. Similar 

to past studies on polluted rivers from Malaysia and other locations around the globe, 

coliform and E. coli concentrations in this study were within the categorical range of 

poor water quality (Chatterjee et al., 2010; Lyautey et al., 2010; Pereira et al., 2013;  

Al-Badaii & Shuhaimi-Othman, 2015; Bong et al., 2020). To demonstrate, the standard 
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maximum 100 CFU 100 ml-1 limit was exceeded for this study according to the 

National Water Quality Standards (NWQS) class II for rivers set by the DOE Malaysia 

and the Malaysia Interim Marine Water Quality Standards 

(Department of Environment, 2019b). Of which, mean total coliform and E. coli count 

in sites receiving effluents from zoo, hospital, and slaughterhouse were reportedly 

higher than riverine sites S1a, S1b, and S2c. Thus, reaffirming a difference among the 

aforementioned sites. 

Apart from anthropogenic factors, natural factors such as salinity 

(R2 = 0.26, df = 16, n = 18) negatively impacted coliform and E. coli concentration in 

this study. Where the inhibitory effect of salinity (> 16 ppt) likely affected bacterial 

survival and growth rates for sites S1c, S2a, and S2b with low colony counts 

(Rozen & Belkin, 2001; Lye et al., 2019). 

 

5.4 Distribution of E. coli Phylogenetic Groups 

The phylogenetic distribution of E. coli isolates was not homogenous between the 

nine sites. In aquatic environments, phylogroups A and B1 are broadly more 

predominant than B2 and D (Figueira et al., 2011; Ghaderpour et al., 2015). Compared 

to phylogroup A, B1 was frequently the more prevalent phylogroup in environmental 

waters (Garcia-Aljaro et al., 2009; Hu et al., 2013; Pereira et al., 2013; 

Ghaderpour et al., 2015). Past studies have shown an association between the site of 

contamination and the predominance of a certain phylogroup in the aquatic environment 

(Hamelin et al., 2007; Sabaté et al., 2008; Mokracka et al., 2011). The varied 

survivability of E. coli and its ability to overcome stresses in water contribute to 

community distribution and diversity (Berthe et al., 2013). Land use, sources of 

pollution, availability of nutrients, in situ physicochemical parameters 
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(dissolved oxygen, pH, salinity, etc.), protozoan and bacterial predators, and 

hydrological conditions constitute the multiple factors influencing distribution 

(Lyautey et al., 2010; van Elsas et al., 2011). Interestingly, human commensal E. coli 

population structure had been observed to differ significantly from wildlife, even if 

certain dominant strains could be shared between hosts in contact (Mercat et al. 2016). 

Among the two studied rivers, Larut River, which was consistent with a higher human 

population, had recorded a greater abundance in phylogroup A (Massot et al., 2016; 

Stoppe et al., 2017). In contrast, Sangga Besar River contained predominantly 

phylogroup B1, where each sampling site was closer to the sea, suggesting possible 

natural influence such as a salinity gradient towards these isolates (Bong et al., 2020). 

To support this, B1 expressed longer persistency in saline estuarine and coastal waters 

compared to other phylogroups (Ratajczak et al., 2010; Berthe et al., 2013; 

Bong et al., 2020). Likewise, B1 was also found abundantly in wastewaters of zoo and 

slaughterhouse. As B1 tends to be isolated from animal faeces, particularly herbivorous 

animals, this may indicate that the effluents discharged in these sites contained elevated 

animal waste (Carlos et al., 2010). In contrast, phylogroups B2, C, D, E, and F were less 

abundant and rarely detected in Larut River and Sangga Besar River (Sen et al., 2019; 

Giacometti et al., 2021). Higher detection frequencies of B2 

(χ2 = 134.94, df = 9, p = 0.00) and D (χ2 = 32.87, df = 9, p = 0.00) were observed at 

upstream S1a, probably resulting from commensal isolates from birds 

(Nakhaee et al., 2015) and wild mammals (Lu et al., 2016; Alonso et al., 2017) from 

Larut Hill Forest Reserve that shelters a rich biodiversity of 227 bird and 27 mammal 

species (World Wildlife Fund Malaysia, 2001). A shift in phylogroup predominance 

along the riverine continuum, from phylogroup B2 and D to phylogroup A and B1, was 

observed along with the anthropogenically impacted sites just downstream from S1a. 

Demonstrating a shift from natural E. coli population towards an anthropogenically 

Univ
ers

iti 
Mala

ya



 

93 

influenced population. This finding is in agreement with Petit et al. (2017) and 

Ghaderpour et al. (2015) where they too similarly found a significantly higher 

abundance of B2 and D at a less-populated upstream site located near a forest. 

Among MAR E. coli, results were consistent with other studies that found 

phylogroups A and B1 to be dominant (Ghaderpour et al., 2015; Vignaroli et al., 2016) 

and, to a certain extent, phylogroup C. Despite phylogroup C being rare in this study 

(n = 4), the isolates were characterised by a high prevalence of AR. In support of this, 

phylogroup C strains in commensal E. coli from human stool samples were also 

reportedly higher than those of the A, B1, B2, E, and F strains (Massot et al., 2016). 

Whilst phylogroup A was often described to resist antibiotics, the same strain had also 

been observed to undergo a trade-off between AR (e.g. ciprofloxacin) and virulence 

(Anssour et al., 2016). In contrast, phylogroup B2 and D isolates showed relatively 

lower resistance (Picard & Goullet, 1989; Johnson et al., 1991;  

Garcia-Aljaro et al., 2009; Ghaderpour et al., 2015). Both phylogroups were more 

prevalent in upstream S1a, a site associated with animal origin. Phylogroup B2 has 

greater resistance toward penicillin, quinolones/fluoroquinolones, and sulphonamides, 

while Phylogroup D has greater resistance towards tetracycline, penicillin, and 

sulphonamides. Studies support the occurrence of both phylogroups in wild, companion, 

and food animals, suggesting diet may be the main factor introducing animals to 

MAR bacteria (Vredenburg et al., 2014; Manges et al., 2015; Hertz et al., 2016; 

Alonso et al., 2017; Borges et al., 2017). The emergence of MAR bacteria in animals 

through the food chain is likely a result of rapid urbanisation that led to habitat loss and 

concurrent exposure of animals to various environmental pollutants 

(Literak et al., 2010; Smith et al., 2014; Borges et al., 2017). Thus, the genotype of 

E. coli population could be used as an indicator, as there appears to be a relationship 
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between sites and the predominance of a certain E. coli phylogenetic group in the 

aquatic environment (Hamelin et al., 2007; Sabaté et al., 2008; Mokracka et al., 2011).  

 

5.5 Antimicrobial Susceptibility Profile  

The development of AR in the environment is a global problem, with growing 

evidence pointing at water bodies becoming potential reservoirs for AR microorganisms 

and ARGs (Hoa et al., 2011; Zhang et al., 2013). This study demonstrated that about 

two in three E. coli isolates were resistant to ≥ 1 antibiotic tested, while approximately 

half were MAR strains. Among which, older antibiotic classes that were widely used in 

human and veterinary medicine were observed to be widely resisted by E. coli strains in 

aquatic environments (Watkinson et al., 2007; Agwu & Oluwagunke, 2014; 

Alves et al., 2014; Ghaderpour et al., 2015; Divya & Hatha, 2019), including 

tetracyclines introduced in 1948 and sulphonamides introduced in 1936. In this study, 

significant association were found among the resistance phenotypes TE against C 

(χ2 = 117.937, df = 1, p < 0.000) or CIP (χ2 = 35.307, df = 1, p < 0.000) as supported by 

other studies (Chen et al., 2017), indicating co-selection for resistance among 

environmental E. coli (Dang et al., 2006). When compared to similar aquatic systems, 

the prevalence of environmental AR E. coli in this study was similar to Kat River in 

South Africa (Nontongana et al., 2014) and Cochin Estuary in India 

(Sukumaran et al., 2012) while higher than Matang Estuary in Malaysia 

(Ghaderpour et al., 2015), Tagus Estuary in Spain (Pereira et al., 2013), Kshipra River 

in India (Diwan et al., 2018), San Pedro River in Mexico (Ramírez Castillo et al., 2013), 

and generally lower than DongJiang River in China (88.00 %) (Su et al., 2012). 

It was expected that the more populated Larut River was observed to possess a 

higher prevalence of AR isolates compared to the less populated Sangga Besar River. 
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Among sites, the high prevalence of MAR E. coli isolates was mainly attributed to 

surface waters of anthropogenic sites in Larut River with the order of descending 

prevalence: zoo, slaughterhouse, and hospital, along with S1b. Of which zoo peaked at 

the highest MAR prevalence of 84.21 %, while S1b isolates were remarkably resistant 

to 19/20 of the tested antibiotics. Whilst not designated an anthropogenic site, AR E. 

coli phenotype from S1b do cluster closely with effluent from hospital, zoo, and 

slaughterhouse, hence indicating possible pollution from non-point source(s). For MAR 

index, all three anthropogenic sites along with S1b had predictably exceeded an index of 

0.2 (Krumperman, 1983). This suggests that these sites received various inputs that 

contained contaminants capable of influencing the prevalence of MAR E. coli. Other 

studies had likewise found AR E. coli to be detected in aquatic environments near 

anthropogenic sources such as hospital (Korzeniewska et al., 2013), 

wastewater treatment plant (Mokracka et al., 2011), municipal sewage 

(Osińska et al., 2017), agricultural farm (Araújo et al., 2017), livestock pen 

(Gao et al., 2015), recreational water body (De Luca Rebello & Regua-Mangia, 2014) 

and aquaculture farm (Ng et al., 2014). Elevated resistance towards common clinical 

drugs such as tetracycline, quinolones, penicillins, sulphonamides, and fluoroquinolones 

was prevalent in all anthropogenic sites and S1b. Besides, they were also characterised 

to have high coliform and E. coli count, high E. coli genetic diversity, and high sul and 

tet resistance gene prevalence. Conversely, a majority of E. coli isolates that had 

susceptibility towards all 20 antibiotics tested were likely isolated from sites such as 

S1a, S2b, and S2c instead. This is in agreement with Berto et al. (2009), where numbers 

of AR bacteria isolated in polluted waters were higher than unpolluted waters. For 

instance, lower antibiotic resistance was recorded from upstream S1a for all tested 

antibiotic groups, whereby E. coli isolates were suspected to be of wildlife origin 

(Sayah et al., 2005; Edge & Hill, 2007).  
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This is then followed by downstream sites such as S1c, S2b, and S2c with a slightly 

lower prevalence of MAR E. coli isolates, likely from water dilution effect and/or being 

inactivated by high salinity levels (Gao et al., 2013). MAR prevalence pattern in this 

study was similarly observed by Petit et al. (2017) where they had similarly reported a 

significant increase in MAR E. coli moving from upstream sites to downstream sites in 

Seine River, France. Results here indicate that sites under anthropogenic pressure 

contribute to the spatial change of AR E. coli population along Larut River.  

 

5.6 Pathotypes of E. coli 

Faecal pollution could pose pathogenic E. coli infection risks. Certain regions along 

the Larut River were used for recreational activities, it may constitute a source of 

bacterial contamination that could infect humans or animals through direct contact, 

aerosol, or incidental consumption. Approximating the major contributors of faecal 

pollution in environmental waters could support pollution control and sustainable water 

quality management. Hence, virulence factors were evaluated as risk indicators in the 

environment, due to their association with pathogenicity among E. coli isolates 

(Pereira et al., 2007). Results revealed an overall scarcity of virulence genes present 

where only 11 virulence gene carrying E. coli was detected in this study, which 

concurred with other aquatic environments with non-point source contamination 

(Hamelin et al., 2007; Ghaderpour et al., 2015; Bong et al., 2020) but contrasted with 

waters impacted by a sewage treatment plant (Anastasi et al., 2012). Discharge from 

sewage overflows likely transported these E. coli isolates with virulent factors from 

faeces of animals and humans into environmental waters. Among which, 6 isolates 

showed MAR characteristics that carry varying tet and sul resistance genotypes. 

Antibiotic resistance is common in pathogenic E. coli due to the presence of virulence 
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and antibiotic resistance determinants being encoded on plasmids, bacteriophages, 

and/or pathogenicity islands (Djordjevic et al., 2013; Koczura et al., 2013; 

Pereira et al., 2013). Among virulent E. coli isolated in this study, the highest resistance 

frequency of 54.55 % was shared by tetracycline, oxolinic acid, nalidixic acid, and 

ampicillin. Although these 11 E. coli isolates each carried virulence genes, it is 

noteworthy that six of them do not correspond to a specific pathotype and are thus not 

considered as pathotypes. Namely, the observation of virulence factors itself does not 

necessarily lead to pathogenicity (Rehman et al., 2017). They consisted of virulence 

genes bfpA (n = 3), ST (n = 2), and eae (n = 1). Nevertheless, these detected virulence 

genes still contributed to lesion attachment, adherence, ion outflow induction, etc. 

(Osińska et al., 2017). Detection of single virulence gene patterns in E. coli isolates 

could be explained by HGT between cells (Sidhu et al., 2013). Specifically, the 

diarrhoeagenic enteroaggregative E. coli (EAEC) was the only pathotype detected in 

this study and was isolated from midstream surface waters of hospital and zoo effluents. 

As emerging diarrhoeal pathogens, EAEC causes acute diarrhoea in developing 

countries (Savarino, 1993). This study reaffirmed the observation made by 

Ghaderpour et al. (2015), whereby EAEC isolates in their study had similarly originated 

from anthropogenic sources from a village. The pathogenic isolates were characterised 

as belonging to phylogroups B1 and F, possessed MAR profiles of 5–16 antibiotics, 

with combinations of sul2 and sul3 genes, and tet(B), tet(A), tet(L), tet(M), and tet(X) 

genes. Studies have revealed similar findings on EAEC strains to be associated with 

water surfaces (Müller et al., 2016) and MAR EAEC belonging to phylogroup F from a 

stream with poor water quality (Furlan et al., 2020). Results suggest that the 

dissemination of both virulence and resistance determinants could occur in the same 

anthropogenic site and therefore pose a health risk. Through HGT, either pathogenic or 

resistant isolates, when in contact with autochthonous bacteria, could then disseminate 

Univ
ers

iti 
Mala

ya



 

98 

resistance and virulence determinants among natural ecosystems (Calhau et al., 2015). 

A study between environmental and clinical E. coli strains found that environmental 

isolates which harboured virulence genes were located, interestingly, in B1 groups 

while the newly described phylogroups such as phylogroup F were also not inferior to 

B2 and D phylogroups in their virulence potential (El-shaer et al., 2018). In this work, 

one such isolate (1HB11) belonging to phylogroup F is detected in hospital effluent 

water with resistance to 16 types of antibiotics. Interestingly, 4/11 (36.36 %) 

phylogroup F strains are found to carry virulent genes in this study. Arguably, this was 

not always the case, as an Australian study found that only a minority of phylogroup F 

strains possess virulence traits, albeit with extra-intestinal infection 

(Vangchhia et al., 2016). Likely, a relationship between the genetic background of a 

strain and its virulence factors could be present in this study  

(Escobar-Páramo et al., 2004a). Perhaps given sufficient sampling efforts, distribution 

and prevalence data of a certain phylogroup may gain predictive power in risk 

identification for pathogenic E. coli contamination events.  

 

5.7 tet and sul Genes Distribution in E. coli 

For tetracycline, 394 (78.33 %) E. coli isolates harboured ≥ 1 tet resistance genes. 

Generally, findings concurred with past studies that tet resistant genes are ubiquitous in 

aquatic environments (Jia et al., 2014; Chen et al., 2015). Among a diverse collection of 

11 sole tet gene types and 57 tet gene combinations detected among E. coli isolates in 

this study, tet(A) was the most predominant (46.32 %), which was also reported in 

aquatic waters from other aquatic environments (Hu et al., 2008; Tacão et al., 2012; 

Pereira et al., 2013; Divya & Hatha, 2019). Many E. coli studies generally screened tet 

resistance genes under efflux pump (Tao et al., 2010; Adefisoye & Okoh, 2016; 
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Cho et al., 2019), in which this study found tet(A) and tet(L) active efflux resistant 

mechanism abundant. The predominance of tet(A) and tet(L) could be caused by the 

low concentrations of tetracycline (mean: 64.4 ng l-1) in the surrounding, as the 

expression of these genes were mainly induced at low tetracycline level 

(Wang et al., 2019). Conversely, the expression of ribosomal protection protein tet(M) 

is mainly induced at high tetracycline levels (Ammor et al., 2008), which possibly 

explained the relatively low abundance of tet(M) in this study. Certain isolates 

(35.98 %) contained combinations of two or more tet genes, of which 15.51 % could be 

explained by tet(A)(L), tet(L)(M), and tet(A)(L)(M). E. coli isolates that harboured 

significantly fewer resistance genes were observed at less polluted sites. In contrast, 

hospital effluent in this study carried a significantly higher 

(χ2 = 26.966, df = 6, p < 0.001) number of E. coli isolates (22.86 %) that carried all 

three tet resistance mechanisms, inclusive of tet(X), an ARG commonly isolated from 

environmental sources (Roberts & Schwarz, 2016) which possessed the ability to resist 

the last-resort antibiotic tigecycline (Volkers et al., 2011). Additionally, high levels of 

tetracycline resistant strains with co-resistance towards erythromycin and ciprofloxacin 

were reported in Staphylococcus aureus strains from a tertiary hospital in Malaysia from 

2003 to 2008 (Lim et al., 2012). Again, HGT from other bacteria communities probably 

explains the high prevalence of tet genes (Chopra & Roberts, 2001). The difference in 

ARG prevalence among various geospatial locations may reflect different antibiotic 

usage activities and different compositions of microflora in various environmental 

compartments. To demonstrate, Osińska et al. (2017) found E. coli isolates from 

wastewater samples, whether treated or untreated, had harboured greater diversity of tet 

ARG compared to isolates from both upstream and downstream portions of the river.  

For sulphonamides, the principal resistance mechanism is via acquisition of an 

alternative Deoxyhypusine Synthase (DHPS) gene, consisting of three identified sul 
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genes (sul1, sul2, and sul3) (Perreten & Boerlin, 2003; Wu et al., 2010; 

Ben et al., 2017). From 149 (29.62 %) E. coli isolates that harboured ≥ 1 sul resistance 

gene, a gene-frequency distribution of sul3 > sul2 > sul1 were constructed, which 

incidentally was not consistent with literature that commonly depicted sul2 dominance 

(Su et al., 2012; Wang et al., 2013; Zhang et al., 2015). This unexpected result instead 

concurred with a recent study on urban freshwater aquatic recipients of Sweden 

(Lai et al., 2021). The origin of sul3 was initially suspected to be human 

(Grape et al., 2003), however numerous studies have since reported their prevalence in 

E. coli isolated from wildlife and livestock (Guerra et al., 2003; 

Perreten & Boerlin, 2003; Hammerum et al., 2006). Perhaps the trend in the emergence 

of sul3 in animals indicated potential selective pressure for sulphonamide resistance due 

to the presence of trimethoprim/sulphamethoxazole and/or other veterinary antibiotics 

(Liu et al., 2009). Thus, the widespread distribution of sul3 among E. coli isolates in 

this work was potentially due to the consumption of sulphonamide by a combination of 

humans and veterinary use (Lye et al., 2019; Thiang et al., 2021). To support this, 

sulphonamides were indeed widely used in Asian countries. For Malaysia, the usage in 

veterinary medicine was approximately 18,000 kg year-1 (Marzuki, 2017), whereas for 

healthcare, the usage ranged from 0.0982-5.9900 DDD 1,000 population-1 day-1 

(Ministry of Health, 2017a). Among sites, sul gene carrying E. coli was significantly 

higher with prevalence of 52.46 % in midstream slaughterhouse 

(χ2 = 22.375, df = 5, p < 0.001) and 46.05 % at zoo (χ2 = 6.000, df = 4, p < 0.001). In 

comparison, upstream S1a had the lowest detection frequency (3.45 %). Again, findings 

from zoo effluent were consistent with pollution from animal sources, this is supported 

by past studies on commensal E. coli, which found food animals such as porcine 

(Perreten & Boerlin, 2003; Hammerum et al., 2006), poultry (Kozak et al., 2009b), and 

cattle (Guerra et al., 2003) to possess a higher prevalence of sul3 genes. Furthermore, a 
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minority of the isolates simultaneously harboured multiple sul combinations, of which 

the sul13 combination was predominant (2.58 %). Three isolates with a sul123 

combination were detected (0.60 %); specifically, two from slaughterhouse and one 

from hospital. Past studies had also isolated E. coli isolates carrying sul123 within 

poultry (Kozak et al., 2009b) and porcine (Hammerum et al., 2006; Fazel et al., 2019). 

Sixty-seven E.coli isolates (32.52 %) expressed sulphonamide phenotype resistance yet 

carried none of the tested sul gene. The ability to acquire other resistance mechanisms 

(e.g., mutations in the chromosomal DHPS gene flop) more frequently among 

environmental E. coli may contribute to the sulphonamide resistant phenotypes that 

carried no resistant determinants (Changkaew et al., 2014; Ogura et al., 2020). 

Alternatively, the putative sulphonamide resistance gene sul4 could potentially fill the 

gap in this study as it was also found widespread across Asia and Europe 

(Razavi et al., 2017).  

 

5.8 Relationship Between Physicochemical and Antibiotic Residues on E. coli 

Phylogenetic Distribution 

The relationship between physicochemical and antibiotic residues in E. coli 

phylogenetic distribution studies has shown that E. coli phylogenetic groups are 

adaptable and genotypically affected by environmental changes (Jang et al., 2014). In 

this study, the correlation coefficient has shown that salinity explained 26.00 % of the 

variation in coliform abundance, specifically in Larut River. Other factors in 

combination may also contribute to the distribution of E. coli and their activity in the 

environment. Phylogroups A, B1, and C generally correlate better in deteriorating water 

quality in Larut River. Findings were consistent with Jang et al. (2014) and 

Bong et al. (2020), who reported that the occurrence and distribution of E. coli 
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phylogenetic distribution can be affected by environmental variables. Collectively, 

better adaptation to environmental drivers paired with a high turnover of gene 

repertoires made phylogroup B1 exquisitely versatile in the environment compared to 

other phylogenetic groups (Touchon et al., 2020). Findings were in line with previous 

studies that nutrient concentrations (C, N, P) are one of the important factors 

influencing the growth and survival of E. coli in the environment (Jang et al., 2017; 

Taabodi et al., 2019). The addition of nutrient concentrations could also enhance the 

horizontal transfer of genetic resistance materials (Blanco et al., 2009), which further 

enhances the adaptive ability and plasticity of E. coli in a variety of environments. 

Lye et al. (2019) detected a positive correlation between PO4 with sulfonamide resistant 

heterotrophic bacteria and sulfonamide enteric bacteria in Larut River. They had found 

that on four occasions, exceptionally high PO4 concentration but low nitrogen 

concentration was observed in wastewater effluents from both zoo and hospital. 

However, further studies are still required to understand the nature of these 

anthropogenic stressors and the exact mechanisms in shaping the E. coli prevalence, 

diversity, and dissemination of antibiotic resistance in this river.  

No correlation was observed in the lower frequency phylogroups (B2, D, E, and F). 

This observation of correlations concurred with Varela et al. (2014), Lye et al. (2019), 

and Low et al. (2021), who have revealed that the wastewater effluents from zoo, 

slaughterhouse, and hospital are important antibiotic pollutant sources to the Larut 

River. Thus, the antibiotic residues in these effluents are expected to have a strong 

impact of selective pressure on antibiotic resistance in environmental E. coli compared 

to river waters. The variation in the response of different phylogenetic groups of E. coli, 

including resistant genes to different antibiotic residues, might be attributed to types of 

antibiotics detected, physiochemical properties and persistence of antibiotics in water 

(Diwan et al., 2018), water quality (Berthe et al., 2013), acquired resistance mechanisms 
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(Kawamura-Sato et al., 2010; Smet et al., 2010), environmental fitness of E. coli and 

indigenous microflora (van Elsas et al., 2011). 

 

5.9 Genetic Diversity of E. coli Through Rep-PCR Fingerprint 

The relationship of Larut River with the less impacted Sangga Besar River concurred 

with Jang et al. (2011), where diversity of E. coli genotypes tends to be greater with 

increasing proximity to anthropogenic urban sites. However, genetic heterogeneity 

between isolates from the natural environment may be caused by differences between 

sampling sites (e.g., sampling sites were probably subjected to high pollution from 

various sources) (Dos Anjos Borges et al., 2003). In contrast, hospital effluent had a low 

E. coli genetic diversity (H’: 2.91) among effluent sites even though Low et al. (2021) 

observed elevated antibiotic concentrations. A similar observation was found by 

McLellan (2004), who reported lower diversity of E. coli in contaminated surface 

waters in which environmental survival may be the factor that influence the recovery of 

the composition of strains from contaminated waters. 

From the 90 non-repeating E. coli genotypes, isolates from cluster I were described 

as phenotypically (67.50 %) resistant strains and were found in roughly equal 

distribution at all sites at this study. This cluster constituted the prevalence of 

background antibiotic resistance in this study (Davies and Davies, 2010; 

D’Costa et al., 2011; Tamminen et al., 2011). Similar to cluster I, cluster VI (n = 13) 

included phylogroup A and B1 strains with high AR, but differed in terms of site 

isolated. Conversely, the remaining clusters were generally susceptible to antibiotics 

except cluster III, affirming a genetic link in antibiotic resistance for E. coli in this 

study. Cluster III (n = 13) had phenotypically resistant B1 strains (76.92 %) where most 

strains from downstream sites S1c, S2b, and S2c co-clustered with one isolate from 
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hospital, thus suggesting a potential contamination source. Similar to 

Liang et al. (2016), there was no clear pattern of E. coli clustering according to sites in 

this study. It is important to note that the main aim of this study is not to trace the exact 

host sources of commensal E. coli in a complex aquatic environment. E. coli genotypic 

and phenotypic diversity is very large. According to literature, a collection of more than 

20,000 isolates had only captured 27.00 % of the predicted genotypes as estimated by 

rarefaction analysis (Lyautey et al., 2010). This was evidenced by hospital and zoo 

isolates consisting of a diverse population with five and four different clades, 

respectively, which were also observed by Ghaderpour et al. (2015). Given the 

limitation, this study did, however, demonstrate that AR E. coli population diversity in 

riverine estuarine water was instead related to the proximity of source contamination, 

stream order, and the land use as observed by other studies (Hamelin et al., 2007; 

Lyautey et al., 2010).  
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CHAPTER 6: CONCLUSION 

 

The present study affirmed the prevalence and diversification of antibiotic resistant 

E. coli in Larut River were intensified by wastewater effluent from zoo, hospital, and 

slaughterhouse as sources of antibiotic residues. Sixteen antibiotic residues with 

concentrations ranging from LOD to 1,262.3 ng l-1 were detected in Larut River and 

Sangga Besar River. Results showed a wide prevalence of antibiotics in the sampling 

site, where fluoroquinolones and macrolides were detected frequently in the water 

samples. RQs identified ETM-H2O, CTM, and OFX detected from hospital and zoo had 

posed a high risk to algae, while TC had low to medium ecological risk towards all 

tested aquatic organisms: algae, invertebrate Daphnia magna, and fish. The 

phylogroups B1 and A were predominant with the presence of resistance genes. The 

cluster analysis revealed that antibiotic resistance phenotype distribution of E. coli 

isolates from the zoo and the slaughterhouse effluents were more similar than hospital 

effluent and downstream site (S1b). The tet efflux genes were detected in the majority 

of the E. coli isolates, suggesting E. coli may be an important carrier and/or reservoir of 

tetracycline resistance genes conferring resistance. The prevalence of sul3 gene in 

E. coli isolates might be attributed to the consumption of sulfonamide for humans and 

veterinary use. CCA analysis revealed a significant association between phylogroup and 

resistance genes with physicochemical properties and antibiotic residues on the 

environmental persistence of antibiotic resistant E. coli. All these findings are important 

to provide information on the global comparison of the persistence of antibiotic resistant 

E. coli in different aquatic ecosystems and the need to have surveillance and monitoring 

of virulence and antibiotic resistance in fresh river water to mitigate emerging resistance 

and dissemination through water and environment. The wastewater effluents from 
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hospital, zoo, and slaughterhouse introduced into the Larut River should be closely 

monitored. 
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