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DEEP LEARNING-BASED CLASSIFICATION OF BREAST TUMORS IN 

ULTRASOUND IMAGES 

ABSTRACT 

The use of ultrasound imaging techniques to diagnose breast cancer at an early stage 

is a popular and effective method. The issue with traditional breast ultrasound 

diagnosis is that, unlike magnetic resonance imaging (MRI) and mammography, it is 

prone to making a mistake due to its subjectivity, which could result in a missed 

diagnosis and an unnecessary biopsy. In this research project, recent breast tumor 

classification model algorithms are investigated and analyzed, and then the limitations 

and gaps in previous techniques are highlighted. The Breast Ultrasound Images 

Dataset (BUID) has been prepared and preprocessed in order to train both the U-Net 

and Convolutional neural network (CNN) classifier models. The U-Net model is used 

to locate tumor growth in original medical images because of its capacity to do 

classification on each pixel in the input image and produce input and output images 

that are the same size. Then, a CNN classifier model is built to classify the U-Net 

model's generated mask images as benign, malignant, or normal. The accuracy 

performance matrices and Dice loss function are used to evaluate the performance of 

both U-Net and CNN classifier models. The U-Net model have achieved an accuracy 

of 93% and a dice loss value of 0.4391. Whereas the CNN classifier model has 

achieved an accuracy of 85%. 

Keywords: Breast ultrasound image, Convolutional neural networks, mass 

classification. 
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KLASIFIKASI BERASASKAN PEMBELAJARAN MENDALAM TUMOR 

PAYUDARA DALAM IMEJ ULTRABUNYI 

ABSTRAK 

Penggunaan teknik pengimejan ultrasound untuk mendiagnosis kanser payudara pada 

peringkat awal adalah kaedah yang popular dan berkesan. Isu dengan diagnosis 

ultrasound payudara tradisional ialah, tidak seperti pengimejan resonans magnetik (MRI) 

dan mamografi, ia terdedah kepada kesilapan kerana subjektivitinya, yang boleh 

mengakibatkan diagnosis terlepas dan biopsi yang tidak perlu. Dalam projek penyelidikan 

ini, algoritma model klasifikasi tumor payudara baru-baru ini disiasat dan dianalisis, dan 

kemudian batasan dan jurang dalam teknik sebelumnya diserlahkan. Set data Imej 

Ultrasound Payudara telah disediakan dan diproses terlebih dahulu untuk melatih kedua-

dua model pengelas U-Net dan rangkaian neural Convolutional. Model U-Net digunakan 

untuk mengesan pertumbuhan tumor dalam imej perubatan asal kerana kapasitinya untuk 

melakukan klasifikasi pada setiap piksel dalam imej input dan menghasilkan imej input 

dan output yang mempunyai saiz yang sama. Kemudian, model pengelas CNN dibina 

untuk mengklasifikasikan imej topeng yang dihasilkan oleh model U-Net sebagai jinak, 

malignan atau normal. Metrik prestasi ketepatan dan fungsi kehilangan Dadu digunakan 

untuk menilai prestasi kedua-dua model pengelas U-Net dan CNN. Model U-Net telah 

mencapai ketepatan 93% dan nilai kehilangan dadu sebanyak 0.4391. Manakala model 

pengelas CNN telah mencapai ketepatan 85%.Univ
ers
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

Despite advancements in cancer treatment, cancer is still regarded as a major public 

health concern worldwide because of its ability to arise almost anywhere in the human 

body where cells start to multiply uncontrollably. Various factors such as the aging 

population and the prevalence of certain lifestyle habits have been identified as 

contributing factors to the cancer rate (Dronkers et al. 2002). Deaths caused by cancer are 

on the rise globally. In 2015, around 8.8 million people died due to the disease (World 

Health Organization 2018) and according to the World Cancer Research Fund (2014), 

there has been a 20% increase in the past decade, and it is estimated that 27 million new 

cases will occur globally by 2030.  

Breast cancer has an extremely high mortality rate when compared to other cancers 

where it is considered the second most common type among women after skin cancer. 

According to the International Agency for Research on Cancer, in 2012, breast cancer 

mortality increased by 14% whereas cancer mortality climbed only by 8% (Ferlay et al. 

2013).  In addition, the World Health Organization (WHO) stated that breast cancer is 

considered the main cause of cancer-related deaths among women in Malaysia. In 2018, 

the organization noted that the mortality rate for breast cancer was 11.0% in Malaysia, 

which is the highest among the other types of cancer. 

Studies have shown that early detection of breast cancer can lead to a reduction in 

mortality rates by 38% from 1989 to 2014 (Siegel et al. 2017). Currently, biopsy is the 

gold standard for detecting breast tumors (Qu et al. 2019). However, it is considered an 

invasive technique that has poor repeatability and can cause bruising and infection (Byra 

et al. 2016). In addition, less than 30% of the breast tumors detected using a biopsy are 

malignant (Huang et al. 2019). The use of mammography and ultrasound imaging 

technology is a popular and successful way for detecting breast cancer early (Akin et al. 
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2012). However, mammography imaging is commonly unsuitable for women with dense 

breasts in 20-50% of cases (Eisenbrey et al. 2016). Furthermore, women with glandular 

breast tissue are significantly more likely of being diagnosed with breast cancer than 

women that have fatty breast tissue (Piotrzkowska et al. 2016).  

Instead of using a traditional procedure, opting for ultrasound imaging can help 

improve the detection of breast cancer by 17% and also reduce the unnecessary biopsies 

performed on patients by 40% (Cheng et al. 2010). Ultrasound is a non-ionizing, low-

cost, real-time medical imaging modality that is safer, more versatile, and sensitive to 

tumor cells in dense areas (Stavros et al. 1995). However, the issue with conventional 

breast ultrasound diagnosis is that it is prone to making a mistake due to its subjectivity, 

unlike magnetic resonance imaging (MRI) and mammography, which could result in a 

missed diagnosis and an unnecessary biopsy (Huang et al. 2019). Due to the difficulties 

and the appearance of speckle noise in ultrasound images, it requires specialist 

radiologists to explain them properly. As a consequence, Computer Aided Diagnosis 

(CAD) is used to help radiologists in the classification and diagnosis of breast cancer 

using ultrasound.  

Various studies conducted on ultrasound breast imaging revealed that the use of CAD 

systems provides strong diagnostic performance and low observer variability (Singh et 

al. 2011). Feature extraction, selection, and classification are all considered standard 

CAD procedures where having a good feature extraction technique can help to increase 

the overall performance (Newell et al. 2010). However, the process of extracting and 

selecting the relevant image features from the data is very time-consuming and requires 

a lot of manual work and resources such as pre-processing procedures. In addition, 

because of the speckle and noise in ultrasound imaging as well as the employment of 

numerous algorithms, the fine-tuning of traditional CAD systems becomes more 

challenging. These issues prompted the creation of new techniques, such as deep learning 
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algorithms, which can automatically learn features and extract non-linear features from 

the input data. Deep learning techniques are shown to be effective and promising in in 

terms of pattern recognition and classification of ultrasound images where it is difficult 

to achieve by hand (Singh et al. 2020). Furthermore, deep learning techniques can extract 

complex higher-level attributes by layer and learn straight from raw input which allows 

them to perform better in terms of pattern recognition and segmentation. 

 

1.2 Problem Statement 

The use of mammography and ultrasound imaging techniques to detect breast cancer 

early is considered a popular and efficient approach. However, because breast density has 

no effect on ultrasound waves in the breast, ultrasound imaging is considered a safe and 

effective procedure for women. The problem with conventional breast ultrasound 

diagnosis is that, unlike magnetic resonance imaging (MRI) and mammography, it is 

prone to making a mistake due to its subjectivity, which could lead to a missed diagnosis 

and an unnecessary biopsy. In ultrasound imaging, the radiologist's skill is essential for 

feature extraction, which is a challenging and time-consuming task that requires multiple 

pre-processing procedures and is often dependent on human work, resulting in subject 

diagnosis. Furthermore, due of speckle and noise in ultrasound imaging, as well as the 

use of multiple algorithms, fine-tuning conventional CAD systems becomes more 

difficult, necessitating the need of specialized radiologists to correctly explain them. 

1.3 Objectives 

1. To conduct a critical analysis and comparative study on the existing and 

recent algorithms of Breast tumors classification systems. 

2. To propose a deep learning image classification model that classifies breast 

tumors into benign, malignant, or normal. 

3. To evaluate and measure the accuracy of the proposed model. 
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1.4 Methodology 

Initially, the existing and recent algorithms of breast tumor classification models are 

investigated and analyzed, then the problems and gaps existed in previous approaches are 

identified. Next, the Breast Ultrasound Images Dataset is prepared and preprocessed in 

order to train both U-Net and the CNN classifier models. The U-Net model is used in this 

project to localize areas that contains tumor growth in the original medical images, 

because of it is ability to perform classification on each pixel in the input image, 

producing input and output images that are the same size. Then, a CNN classifier model 

is constructed in order to classify the generated mask images from the U-Net model into 

benign, malignant or normal. The network architectures of both U-Net and CNN classifier 

model are explained in detail in Chapter 3. Lastly, the performance of both U-Net and 

CNN classifier models is evaluated by using Dice loss function and accuracy performance 

matrices. Figure 1.1 shows the flowchart of this research project approach. 

 

1.5 Report Organization 

The body of this research project is composed of five chapters and one appendix.  

The current chapter reviews the background information, all main issues related 

to breast tumor classification, and provides an overview on the problem statement, 

objectives, and the methodology of this research project. 

In chapter 2, a critical review on related works to breast tumor classification in 

ultrasound images is presented. The analysis, research papers and studies on the existing 

techniques are discussed by comparing the strength, weaknesses, and performance of 

each study. 
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Chapter 3 presents the methodology of this research project.  The collection of the 

dataset, the network architecture of both U-Net and CNN classifier models are discussed 

in this chapter.  

In chapter 4, the dataset preparation and the implementation details are presented 

as well as the results and evaluation of the proposed U-Net and CNN classifier models. 

The summary of this research project is presented in chapter 5 as well as the future 

work where the extension of the current approaches and evaluations are discussed.  

Lastly, Appendix A shows the source code used for classifying breast tumors in 

ultrasound images.  
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Figure 1.1: Flowchart of the research project approach 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Overview 

In an effort to automate the diagnosis of breast lesions and reduce the need on operators 

in ultrasound imaging, various algorithms including CAD tools were used by researchers 

to classify and localize the lesions. The results of these research revealed that the CAD 

systems used for the classification and localization of the lesions performed well where 

it had a strong diagnostic performance and low observer variability. Deep learning 

approaches have recently gained a lot of attention due to their ability to interpret large 

data sets and their high discriminability power. These techniques including deep CNNs 

have improved performance significantly and been widely used in image classification 

and object detection. Although there are various approaches that have been developed to 

automatically classify breast lesions, most of these involve small datasets and require 

additional evaluation. In addition, some of these methods rely on the texture features 

extracted from a single image, which is usually speckled and has low contrast. These 

factors can affect the performance of the proposed texture methods. In order to provide a 

broad overview of breast ultrasound image classification, this chapter reviews recent 

breast ultrasound image classification approaches as well as potential difficulties that may 

arise during the classification process. In addition, the available gaps in related studies 

are reviewed in this chapter. 

2.2 Medical Imaging Modalities 

Medical imaging modalities are used more commonly and are considered to be more 

efficient than other testing techniques for the detection of breast cancer. Mammography, 

MRI, ultrasound imaging, computed tomography (CT), and histopathology images are 

common medical imaging modalities that applied for diagnosing breast cancer.  
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2.2.1 Mammogram 

Mammograms allow radiologists to detect for abnormalities in the breast tissues. 

Mammograms have already been researched over the past 20 years and are generally 

recommended in the early stages of breast cancer, referred to as Mammogram screening 

which can be seen in Figure 2.1a. A radiologist examines a mammography for the 

existence of a mass (lump or cyst), as seen in Figure 2.2, as well as small calcium deposits 

known as micro-calcifications, which appears as tiny flecks or white spots as shown in 

Figure 2.1b. 

 

Figure 2.1: a) Masses with variable densities reflecting the presence of soft-
tissue density and fat elements. b) On the left is a mammography image; on the 

right is a magnified view of clustered microcalcifications (James et al. 2016). 

 

Due to the advancements in medical imaging technology, breast examinations have 

been categorized into three categories: screen film mammography (SFM), digital breast 

tomosynthesis (DBT), and full field digital mammography (FFDM). digital 

mammography (DMs) and SFMs are considered two-dimensional grayscale images, 
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whereas DBT gives several frames of two-dimensional grayscale image sequences that 

looks like black-and-white video. 

 

Figure 2.2: Mammogram with well-defined rounded mass 

 

In many studies, the traditional SFM images have been used to classify breast cancer. 

For instance, Dhungel et al. (2017) developed an integrated model that could detect and 

classify breast cancer into malignant or benign masses utilizing SFM. Likewise, 

Emperumal and Duraisamy (2017) presented a unique approach that combines the 

features of the traditional SFM images with the Chan-Vese level set method to classify 

breast cancer into different types.  

The second category of digital mammograms, known as DM, is commonly used for 

breast cancer classification by numerous researchers. Carneiro et al. (2017) proposed a 
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comprehensive method in order to classify unregistered digital mammograms into benign, 

malignant, and normal lesions. In addition, Qiu et al. (2017) have presented an approach 

that could classify tumors by using DM without feature selection, feature extraction, or 

lesion segmentation. As for the third category, 3D mammography, or DBT, is considered 

the most sophisticated mammography technique used. This technology takes multiple 

images and combines them into a single video. However, because of the limited number 

of available image datasets, only few studies are conducted by using DBT for breast 

cancer classification. Kim et al. (2016) presented a model that can classify breast cancer 

by discovering the latent bilateral representations of tumors using volume of interest in 

DBT.  

A follow-up study conducted by Samala et al. (2018) proposed an effective model that 

can perform binary classification of breast cancer using various types of digital 

mammograms including DBT, FFDM, and SFM, by minimizing the number of 

computations. Most studies on image classification rely on either SFM or DM. SFM is 

more commonly used due to its ability to produce images directly on large sheets of film. 

Moreover, compared to other imaging technologies, such as DBT and FFDM, SFM is 

more cost-effective and easier to use. FFDM images, on the other hand, are much easier 

to store, print, view, and edit on a computer. As a result, because of the processing power 

of digital images, they are viewable on a computer screen with various features such as 

zooming and contrast enhancement. Therefore, the majority of current public datasets 

used by academics are digital mammograms rather than SFMs because of the processing 

efficiency in digital images (Murtaza et al. 2020).  

Nevertheless, researchers began to employ DBT for a variety of reasons. For example, 

as compared to FM or DM, DBT could provide a clear picture of the breast from many 

angles, allowing for a more confident diagnosis and reducing the need for follow-up 
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examination (Radiological Society of North America 2018). In addition, DBT is capable 

of reducing the false negative in mammograms because of its ability to analyze a vast 

number of pictures in video form for each subject. Despite the popularity of 

mammography diagnosis, certain cases could have dense breast tissue or thick skin, 

making the malignant area nearly unnoticeable. This issue can increase the false negative 

rate and cause the cancer to remain undetected. When image analysis is suspicious, it is 

usually suggested that a comprehensive evaluation be conducted, which includes various 

tests such as MRI, CT, and positron emission tomography (PET). 

2.2.2  Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) is a type of imaging that uses radio waves and 

magnetic fields to visualize the soft tissues of the body, such as liver, lung, or breast as 

seen in Figure 2.3. Thus, breast MRI can provide clear images of the breast compared to 

other medical imaging methods such as ultrasound, CT, or mammograms images (Tessa 

and Keith 2018). 

 

Figure 2.3: Breast MRI image samples 

 

In addition, MRI can help identify areas of concern during a breast biopsy which can 

be used for MRI-guided biopsy of the breast. MRI machine works by capturing several 
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breast images of one subject and then combined into a thorough representation. Therefore, 

it can provide detailed information about the disease, and it is generally requested after 

the cancer is diagnosed (MFMER 2018). Unfortunately, few studies are conducted on the 

use of MRI to classify breast cancer (Bevilacqua et al. 2016; Amit et al. 2017; Rasti et al. 

2017) due to the lack of accessible datasets. 

Moreover, Bevilacqua et al. (2016) used an Artificial neural network (ANN) to identify 

benign and malignant breast cancer by extracting and using features from MRI images. 

On the other hand, in a study conducted by Amit et al. (2017), they used CNN to classify 

the breast MRI images into various classes after extracting regions of interest (ROI) from 

the images. They also injected a contrast agent into the body before dynamic contrast 

enhanced MRI (DCE-MRI) in order to improve the quality of the images. This method 

can yield colorful parametric views as well as grayscale images with improved contrast 

to give specific details about malignant tissues (Moon et al. 2009). Nevertheless, only one 

research was able to benefit from DCE-MRI for the classification of breast cancer. In this 

study, Rasti et al. (2017) utilized an exclusive dataset in order to train a CNN framework 

that classifies the breast tumor using DCE-MRI images. 

2.2.3 Histopathologic Images 

Histopathologic (HP) biopsy imaging is performed using a microscope by collecting 

and analyzing tissue samples from a region of the breast. The specimens are stained using 

hematoxylin-eosin, which is a substance commonly used in medical procedures in order 

to examine for malignant tissues. Later, the stained slides are digitized and transformed 

into WSIs, which are digitally colored images as shown in Figure 2.4.  Most of the time, 

expert pathologists use whole-slide imaging (WSI) to extract region of interest patches 

by using different zooming factors to diagnose different types of cancer, such as breast 

cancer and non-invasive cancer as shown in Figure 2.5. 
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Figure 2.4: Histopathology WSI is presented at low magnification on the left, 
whereas the right side displays the cropped section at high magnification (Liu et al. 

2017) 

 

 

Figure 2.5: Patches of histopathology image displaying eight kinds of breast 
cancer 

 

With the exception of breast cancer detection, biopsy imaging is considered the gold 

standard for several forms of malignancies, such as liver cancer, and lung, thanks to tissue 

level image analysis (Rubin et al. 2008). Many studies have shown that using HP images 

can help accurately classify breast cancer into multiple classes. For example, Han et al. 

(2017) employed the images in order to classify the cancer into eight categories. Araujo 

et al. (2017) conducted another study revealed that using HP images with the developed 

model can help classify breast cancer into four different types. According to the studies 
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cited above, using HP images could help with particular subtypes of malignant or benign 

breast cancer. Compared to mammograms and other imaging modalities, HP images offer 

several advantages. For example, they can automatically classify breast cancer into many 

classes rather than binary classes because WSI imagery allows to create a lot of ROI 

images that needed for training deep neural networks (DNN) models, which can be 

utilized for monitoring treatment effects and reporting on the status of the disease.  

In addition, these images could be uploaded online to receive an expert pathologist's 

opinion from afar and therefore establish an accurate diagnosis. However, despite the 

advantages of HP images, they can still be problematic for automatic image classification 

due to the nature of the procedure involved (Murtaza et al. 2020). Furthermore, creating 

digital images from gathered biopsy samples takes a long time, and distinguishing 

between breast cancer subtypes necessitates a high level of competence. In addition, color 

variation is substantial in the production of HP images due to the various steps involved 

in the development of these images such as lab protocols, and staining process making it 

difficult to train a multi-class DNN model quickly, mainly when employing borderline 

situations. 

2.2.4 Ultrasound 

An ultrasound image (sonogram) is a type of imaging test which uses high-frequency 

sound waves to visualize the internal organs of a patient as seen in Figure 2.6. Unlike 

MRI and mammograms, ultrasound does not involve radiation exposure. Ultrasound 

imaging can also help diagnose various conditions such as pain and swelling in the body. 

In addition, ultrasound can be used to assist with breast needle biopsy for the analysis of 

breast tissues. Ultrasound imaging is not used as a standalone test for breast screening. 

Instead, it can be utilized to find abnormalities in the breast that are not cancerous where 
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it could be in the form of fluid-filled regions (cysts) or solid lump (mass) (Murtaza et al. 

2020). 

 

Figure 2.6: Identification of a lump, mass, or cyst by the absence of internal 
echoes and the posterior enhancement of the ultrasound beam (James et al. 2016) 

 

However, ultrasound has difficulties in telling the difference between a malignant 

tumor and calcifications. Breast ultrasound, according to some studies, is a preferable 

choice for diagnosing breast cancer in young women that have fat, bulky, or thick breast 

skin, especially when a mammogram is unable to properly identify breast cancer tumors. 

Cheng et al. (2016) designed a method that automatically extracts different features from 

ultrasound breast images in order to accurately classify malignant and benign breast 

lesions. Nascimento et al. (2016), on the other hand, extracted and fed hand-engineered 

morphological features of breast ultrasound images into an ANN system for binary 

classification of breast cancer. Furthermore, as a result of improved imaging methods, the 
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ultrasound was equipped with various advanced features, such as Nakagami images as 

shown in Figure 2.8, and shear-wave elastography (SWE) as shown in Figure 2.7. 

 

Figure 2.7: Ultrasound image on the left (B-Mode). Heterogeneous elasticity is 
represented by the irregular red mass in the shear-wave elastography image on the 
right. Calculations are made to determine the statistical parameters of ROI, such 

as mean, maximum, and minimum (Youk et al. 2017). 

 

 

Figure 2.8: Lesion reconstruction in the US image (B-mode) on the left and 
corresponding Nakagami map on the right 

 

These new features were able to improve the performance of the system. For example, 

Elastography, recently developed ultrasound method, is commonly utilized to measure 
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and visualize the tissue elasticity of various organs such as the liver and breast and can 

also distinguish between malignant and benign tumors (Youk et al. 2017). It is a helpful 

metric for ultrasound, and it's used to measure tumor grade with a consistent color 

scheme. As a result, Zhang et al. (2016) utilized SWE images in order to learn features 

that can help accurately classify breast cancer (malignant or benign) with the help of a 

deep belief network. Furthermore, for breast cancer analysis, ultrasound images are 

combined with Nakagami images.  

In addition, by combining Nakagami distribution with Nakagami parametric 

ultrasound images, Tsui et al. (2016) represented tissue characteristics by modelling echo 

amplitude distribution.  Radiologists can use theses color-coded ultrasound images to 

measure the tissues' stiffness or hardness. As a result, Nakagami and SWE features help 

to improve the classification of breast cancer. Although the use of Nakagami and SWE 

techniques has been studied extensively, very few studies have used them to improve 

breast cancer classification. Byra et al. (2017) presented a model that utilizes CNN to 

perform a classification of breast cancer by extracting the scattering characteristics breast 

tissues that been taken from parametric maps of Nakagami images.  

However, the new ultrasound technology was only used in a few research. Byra et al. 

(2017) used a CNN to create a model and extract the scattering features of breast tissues 

using parametric maps of Nakagami images in order to perform breast cancer 

classification. One of the causes for the limited publications could be data collection, 

specifically the difficulties of gathering a big number of medical photos from each 

medical institution. 

2.3 Datasets for Breast Cancer Classification 

In order to evaluate the effectiveness of different breast cancer classification models, 

it is necessary to have a well-defined dataset. The Wisconsin Breast Cancer Dataset 
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(WBCD), the Digital Database for Screening Mammography (DDSM), the 

Mammography Image Analysis Society (MIAS), and the Breast Cancer Digital 

Repository (BCDR) are all public databases for breast cancer diagnosis. As deep learning 

is getting popular for its ability to handle images in hierarchical form using nonlinear 

transformations, researchers frequently use ultrasound images in their work. 

(Rezaeilouyeh et al. 2016).  

In general, exclusive datasets have fewer annotated images than public datasets. As a 

result, by evaluating the efficiency of established classification models, experts can 

develop breast cancer classification techniques. As a consequence, the models that has 

been evaluated on public datasets are considered more dependable than the models that 

has been evaluated on exclusive datasets. However, on the level of abstraction, grayscale 

images such as ultrasound, MRI, and mammogram or colored images such as HP images 

are applied for breast cancer classification, regardless of the database type whether it is 

public or exclusive. 

The analysis of datasets shows that most previous studies employed mammogram 

datasets and focused on either binary or tertiary breast cancer classification. BCDR, 

DDSM, and Breast Cancer Histopathological Database (BreakHis) are considered the 

most commonly used and authenticated datasets in ultrasound, mammogram, and HP 

imaging modalities, respectively, since they include a significant amount of data of many 

subjects, which are essential for training deep neural network classification models with 

accuracy and confidence. Contrary to popular belief, there are no public datasets that been 

used for MRI, PET, or CT modalities maybe because of the lack of accessible datasets 

which is a big factor, or the public datasets did not contain sufficient images to train a 

breast cancer classification model that based in DNN. Table 2.1 shows an overview of 

some publicly available datasets used to classify breast tumors. 
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Table 2.1: Review of publicly available datasets used for breast cancer 
classification 

Imaging 
modality 

Dataset 
name 

# 
Patients 

# 
Images 

Class labels Study 

Mammograms BCDR-
F03 

344 736 Benign, 
Malignant 

Duraisamy 
and 

Emperumal 
(2017) 

DDSM 2620 10480 Benign, 
Malignant 

Kumar et al. 
(2017) 

INBreast 115 419 Normal, 
Benign, 

Malignant 

Kumar et al. 
(2017) 

MIAS 161 322 Benign, 
Malignant 

Duraisamy 
and 

Emperumal 
(2017) 

Mammograms 
and Ultrasound 

images 

BCDR 1010 3703 Benign, 
Malignant 

Bakkouri and 
Afdel (2017) 

Histopathology 
Images 

BreakHis 82 7909 Benign, 
Malignant 

Bardou et al. 
(2018) 

 

2.4 Breast Cancer Image Classification using Deep Learning 

Previously, conventional machine learning approaches such like Naive Bayes (Kharya 

et al. 2014), Support Vector Machine (SVM) (Asri et al. 2016), and Random Forest 

(Octaviani et al. 2018) were used to classify breast cancer images. Machine learning 

entails designing and implementation of algorithms that evaluate data and associated 

attributes in the absence of any previous task which is based on specified inputs out from 

the environment (Komura et al. 2018). Conventional machine learning approaches focus 

on feature extraction quality, which is limited to several problems due to the shallow 

classifier (Rezaeilouyeh et al. 2016).  

Deep learning algorithms have recently been shown to produce more encouraging 

results, particularly on huge and complicated datasets (LeCun et al. 2015). DNNs are a 

machine learning (ML) technique and AI approach that allows automatic feature 

extraction used in deep learning. Generally, if more than one hidden layer is used between 
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the output and input layers of a neural network (NN), the term "deep" is used (Svozil et 

al. 1997). Unlike conventional ML algorithms, that use hand-engineered features (HEFs) 

in order to provide optimal results, DNNs utilize representation learning in order to 

automatically identify complicated feature representation.  DNN's mathematical formulas 

are the main key for its empirical success (Goceri 2018).  

DNNs have mostly been employed for face recognition (Parkhi et al. 2015), speech 

recognition (Amodei et al. 2016), medical image diagnosis, and natural language 

processing over the years (Lakhani and Sundaram 2017). The capabilities of deep learning 

to extract important features from unprocessed breast cancer images without depending 

on generated HEF has driven the growth of deep learning research. In comparison to 

machine learning that has hand-crafted features, feature learning techniques in deep 

learning allows to cut computing time while still achieving considerable accuracy (Wang 

et al. 2014). Due to the automatic learning feature which has been established in order to 

directly assess the complexity and diversity of images, deep learning surpassed the 

conventional technique in CAD systems. As a result, the CNN is considered the most 

popular model being used for diagnosis of breast cancer (Fujita, 2019). 

 Modern computational power has the ability to help solving the related challenges and 

the enhancement of community health and quality of life. Deep learning is considered a 

well-known and still-developing technique among machine learning researchers. The 

major goal of using deep learning in image identification and is to find several levels of 

representations based on learning algorithms that are focused on higher-level features 

(LeCun et al. 2015). It is primarily concerned with learning algorithms that can develop, 

learn, and improve on their own in order to process data. Internal representation can be 

extracted using deep learning methods from high-dimensional images (Kiambe et al. 

2018).  
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Conventional Machine learning performs effectively with structured data that has lots 

of characteristics or features. However, the analysis procedure for unstructured data will 

become complicated, if not impossible. Unstructured data, such as text data, images, 

media, and audio, are stored in an unstructured format that is not dictated by data models. 

Deep learning uses a model architecture made up of several non-linear variations and 

processing layers to model distinct fundamental or desired features in data (LeCun et al. 

2015)].  

Deep learning has recently gotten a lot of interest from researchers because of its 

success in handling challenges with unstructured data. Deep learning can help radiologists 

make an early diagnosis of breast cancer using ultrasound images in the medical field. 

Deep learning methods have recently successfully helped in image analysis, signal 

processing, and breast cancer classification (Khairi et al. 2021). 

The CNN is a type of deep learning model which could be used to accurately classify 

images and extract features. Zuluaga-Gomez et al. (2021) developed a CNN-based deep 

learning architecture in 2021 to visually recognize and detect patterns using the thermal 

images from DMR-IR database. The researchers developed Tree Parzen Estimator (TPE), 

a Bayesian optimization, as the hyper-parameter for optimizing the algorithm. The CNN 

technique demonstrated a competitive improvement of 92% accuracy in experimental 

results. The research also showed that data augmentation and data pre-processing can 

improve model performance. Moreover, Alom et al. (2019) presented a unique CNN 

model for multi-classification of breast cancer with various data augmentation strategies 

that relies on inception and residual networks. When compared to models which have 

been built on data-driven and learning for multi-classification, the studies revealed an 

increase in accuracy of about 0.55% (Patient-level) and 1.05 %(image-level).  
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Hijab et al. (2019) used Transfer Learning to fine-tune the VGG16 network and to 

diagnose breast cancers using a database of 1300 ultrasound images.  In addition, to avoid 

overfitting, image augmentation has been employed by the author to enlarge the dataset 

and create a new one with 21,600 photos, which was divided into 15120 images used for 

training and 6480 images used for testing. Then, the updated training set has been utilized 

to fine-tune the weights on the VGG16 network's final convolutional layer and assess the 

system's performance in classifying the images in the testing set. The researchers attained 

accuracy and AUC values of 0.97 and 0.98, respectively. Although the findings were 

excellent, only a small percentage of the dataset was tested, and some image augmentation 

methods, like shearing, are not advised for these types of images (Zhou et al. 2017). 

The authors of (Byra et al. 2019) employed transfer learning in order to adjust and 

train a well-known CNN network for breast tumor classification using ultrasound images. 

A total of 882 images were used in their research where they created a training and testing 

set from the dataset. Furthermore, the grayscale images pixel intensities were rescaled 

and converted to three independent RGB channels using a matching layer throughout the 

training stage. After some fine-tuning, the VGG19 network has been adapted for training 

where an AUC value of 0.936 was obtained. The authors claim that this performance 

outperformed radiologist readings in terms of classification accuracy. 

The authors of (Wang et al. 2020) employed transfer learning in order to adapt an 

Inception-v3 CNN, which is considered GoogLeNet’s 3rd generation, for classification 

of breast tumor using ultrasound images. 316 breast lesions were used to train and assess 

the proposed CNN (181 benign and 135 malignant). With five-folder cross validation, the 

presented CNN obtained an AUC of 0.9468, whereas the sensitivity and specificity were 

found to be 0.886 and 0.876, respectively. 
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Despite the fact that CNNs are quite good at automatically extracting features and 

classifying objects, the authors of (Sakr et al. 2019) argue that they cannot generalize well 

because there is not enough labelled data. As previously stated, only few publicly 

available labeled databases of breast lesions on ultrasound images are available. As a 

result, most of studies only used a small number of labelled data to train the network. In 

some of these studies, the sensitivity and AUC value obtained were insufficient for 

clinical usage, while in other studies, there is no reason for utilizing a deep neural network 

for image classification with a limited dataset. 

 

Univ
ers

iti 
Mala

ya



24 

CHAPTER 3: METHODOLOGY 

3.1 Overview 

The use of a variety of methodologies and methods have been highlighted in this 

chapter to meet the pre-processing goals for the Breast Ultrasound Images Dataset 

(BUID) in order to train and test the proposed model where various pre-processing 

methods for the BUID been investigated.  

Cropping the original images, manually examining the images, and resizing the images 

have all been explored as techniques of processing the image input size. Next, the U-Net 

model is employed in this study to locate tumor growth in the original medical images 

since it can classify each pixel in the input image, which results in input and output images 

of the same size. The generated mask images from the U-Net model are then classified as 

benign, malignant, or normal using a CNN classifier model. In this chapter, a thorough 

explanation of the network architectures of the U-Net and CNN classifier models is 

presented where both models hyperparameters such as momentum and learning rate are 

examined to determine the project's baseline parameters.  

In addition, the neural network layers of the CNN are fine-tuned and optimized. 

Finally, the accuracy and loss for each epoch trained are measured, and the best results 

for each model are used. Figure 3.1 illustrates the overall framework of this research 

project. Physical materials are not used for the proposed deep learning model. Instead, 

Python has been selected as the programming language and associated libraries. Univ
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Figure 3.1: The proposed framework of this research project 

 

3.2 Dataset Description 

One of the main elements to develop an effective model for detecting and 

classifying breast tumor is to collect and process a sufficient number of breast ultrasound 

images. Therefore, in this project the BUID (Al-Dhabyani et al. 2020) is used which is 

available publicly. The BUID contains 780 greyscale images in the format of PNG with 

an average image size of 500 x 500 pixels. Al-Dhabyani et al. (2020) have collected 

Breast ultrasound images from 600 female patients aged 25 to 75 years old for their 

project in 2018. The dataset is divided into three classes: malignant (210 images), benign 

(437 images), and normal (133 images), with each image having its own mask image and 

the ground truth images are presented with original images. Samples of the dataset are 

shown in Figure 3.2. 
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Figure 3.2:Normal, malignant, and benign lesion samples in BUID dataset 

 

3.3 Image Pre-processing 

In order to perform the classification process, the Breast Ultrasound Images 

Dataset must be preprocessed before they can be used. Preprocessing is the process of 

modifying images so that they can be used in the model. Because the model does not 

recognize images of variable sizes, preprocessing is required to ensure that all the images 

are of the same size. The images must be of the same dimensions. There are numerous 
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techniques to alter the images in this way so that the model can interpret them easier and 

produce better results. 

3.3.1 Image Resizing 

The most critical stage in pre-processing is modifying the dataset in a way that keeps 

the original content of each image as much as possible while keeping the entire dataset 

consistent in terms of image size. This could involve resizing to maintain the original 

aspect ratio, cropping to focus on critical sections of the image, or modifying the color 

dimensions of each datapoint, such as contrast, brightness, and more.  Cropping is the 

method of reducing the size of an image to a smaller size. This usually entails removing 

a portion of a border in order to reduce the size. Zero-padding is the inverse of cropping, 

in which a border is added to the image, usually black, to make it larger. Both of these 

methods are the simplest ways to ensure that all images are the same size. Cropping, on 

the other hand, may remove essential elements from the image, causing the model to 

provide an incorrect answer, whereas zero padding may throw the model off because of 

the unwanted black border around images. In well-known and recent CNN architectures, 

grid sizes of 128x128, 224x224, or 320x320 pixels are the most prevalent options (Pal et 

al. 2016). In this project, all the images were resampled to 128 x 128 pixels as seen in 

Figure 3.3. In addition, to train the U-Net model the dataset is split into 95% for training 

and 5% for testing, whereas for the CNN classifier the dataset is split into 90% for training 

and 10% for testing. 

3.3.2 Normalization 

In image processing, normalization is used to adjust the intensity level of pixels. It is 

used to improve the contrast of images that have low contrast because of glare. In this 

project, image normalization was performed on all of the images in the datasets to produce 
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a constant dynamic range, where the dataset has been divided by 255 because of the fact 

that it contains gray scale images as seen in Figure 3.4. 

 

Figure 3.3: The process of resizing and splitting the images into training and 
testing sets 

 

Figure 3.4: Applying normalization to the dataset 

 

3.3.3 Data Augmentation 

Whenever a small number of datasets is used to train the model, transformation of the 

training images is essential. Data augmentation is one of the methods used in order to 

Univ
ers

iti 
Mala

ya



29 

transform the images. Image data augmentation is a technique for artificially increasing 

the size of a training dataset by modifying images in the dataset. Because the dataset only 

contains limited images, data augmentation prevents a neural network from learning 

irrelevant features which leads to improved model performance. Cropping, horizontal 

flipping, color shifting, rotation, and other techniques can be used to modify the training 

data. The augmentation techniques used in this research is to randomly flip the training 

images horizontally to modify the input images. In this project a function a function is 

defined to do simple augmentation techniques such as rotation, flipping, zooming, and so 

forth as shown in Figure 3.5. As a result of transforming the images, more new and diverse 

training samples are created, which improves the training results. 

 

Figure 3.5: Applying data augmentation techniques to the dataset 

 

3.4 U-Net Architecture 

In 2015, U-Net, which evolved from the standard CNN, was designed, and used to 

process biomedical images for the first time (Ronneberger et al. 2015). Convolutional 

networks are frequently employed for classification tasks in where the output is usually a 

single class label. However, localization should be part of the desired output in many 

visual tasks, particularly in biomedical image processing, where each pixel has to be given 

a class name. U-Net is committed to resolving this issue. It has the ability to localize and 

discern borders since it performs classification on each pixel in the input image, resulting 

in the input and output having the same size.  
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 As illustrated in Figure 3.6, the U-Net is made up of both an expansive path 

(shown on the right) and a contracting path (shown on the left). The convolutional 

network's contracting path has the conventional architecture of convolutional network. It 

made up of two 3 x 3 convolutions which are applied repeatedly, each one followed by 

one rectified linear unit (ReLU) and 2 x 2 max pooling operation that has stride 2 used 

for down sampling. In addition, the feature channels numbers are doubled with each down 

sampling step. 

 

Figure 3.6: U-Net architecture (Ronneberger et al. 2015) 

 

Each stage in the expansive path begins with an upsampling of the feature map, then 

it is followed by a 2x2 convolution layer which cuts the feature channels numbers in half, 

then a concatenation with the correspondingly cropped feature map from the contracting 

path, and lastly, two 3 x 3 convolutions layers where each layer reinforced by a ReLU. 

Because of the loss of border pixels throughout all convolution layers, cropping is 
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considered an important process. A 1x1 convolution has been applied at the final layer in 

order to map each 64-component feature vector to the appropriate number of classes. To 

ensure that the output segmentation map tiles seamlessly as shown in Figure 3.7, the input 

tile size should be chosen so that all 2x2 max-pooling actions are performed to a layer 

with an even x- and y-size. The empty context is extrapolated through mirroring the input 

image in order to predict the pixels within border region of the image. Since the GPU 

memory would otherwise be a constraint on the resolution, this tiling technique is 

essential for using the network on large images (Ronneberger et al. 2015). 

 

Figure 3.7: Overlap-tile segmentation strategy for arbitrary large photos. Image 
data from the blue area is required for segmentation prediction in the yellow area. 

 

In the project, small modifications are made to the U-Net architecture. The padding is 

kept the same in order to obtain a mask with the exact same dimensions as the original 

image. In addition, the Adam gradient descent method was applied, with a learning rate 

of 0.00005. Furthermore, the BatchNormalization, which was found after U-net, is 

introduced in order to normalize the contributions to a layer for each mini-batch, which 

has the effect of settling the learning process and substantially reducing the number of 

training epochs needed to train deep neural networks. 
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3.4.1 Loss Function 

The loss function calculates the difference between the algorithm's current output and 

its predicted output. This is a technique for assessing how well the algorithm fits the data. 

The Dice loss function is employed in the project to evaluate how well the U-Net 

prediction model predicts the expected result. In the field of computer vision, the Dice 

coefficient is a popular statistic for determining how similar two images are (Carole et al. 

2017). Dice loss takes both local and global loss information into account, which is 

essential for high accuracy. Unlike the cross-entropy loss, where the loss is determined 

as the average of per-pixel loss, and the per-pixel loss is discretely calculated without 

taking into account whether or not its neighboring pixels are borders. Cross entropy loss, 

which only takes into account loss in a micro sense instead of globally, is insufficient for 

image level prediction as a result. The Dice loss function is represented by the following: 

𝐷 =
2∑ 𝑃𝑖𝐺𝑖𝑁

𝑖

∑ 𝑃𝑖2+∑ 𝐺𝑖2𝑁
𝑖

𝑁
𝑖

       (1) 

Pi and Gi are corresponding prediction and ground truth pixel values where these 

values in the boundary detection scenario are either 0 or 1, indicating whether the pixel 

is a boundary (1) or not (0). Since the sum increases only when Gi and Pi match, the 

numerator is the total of boundary pixels that were successfully predicted (both of value 

1), whereas the denominator is the total of all boundary pixels from both the prediction 

and the ground truth. 

3.5 CNN Classifier Architecture 

The proposed CNN architecture which used for classifying breast tumor images is 

shown in Figure 3.5.  The CNN architecture is made up of four convolutional layers where 

every convolutional layer has a distinct number of filters with the same size (3x3). The 

following are number of filters in the convolutional layers:   
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• 32 filters have been used in the first convolutional layer.  

• 64 filters have been used in the second convolutional layer.  

• 128 filters have been used filters in the third convolution layer.  

• 256 filters have been used in the fourth convolutional layer. 

 

 

Figure 3.8: The CNN classifier model architecture 

 

A zero-padding and a stride of 1 have been used in all convolutional processes. The 

LeakyReLU (Leaky Rectifier Linear Unit) function has been used as an activation 
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function for all convolutional layers. The use of the ReLU in deep neural networks has a 

number of benefits over other non-linear functions like the sigmoid because it lowers the 

probability of vanishing gradients and signifies a sparse representation for each layer 

which can enhance performance and speed up the learning process (Khan et al. 2018). A 

2x2 max-pooling layer has been used after the LeakyReLU function has been applied. 

The max-pooling operation aims to reduce CNN dimensionality and increase input object 

position insensitivity. Lastly, there are two fully connected layers follow the fourth 

convolutional layer. A LeakyReLU and a softmax activation function are used with the 

1st and 2nd fully connected layers where the LeakyReLU function provides nonlinearity 

and the softmax activation function yields a binary classification or a binary logistic 

regression with cross-entropy loss (Khan et al. 2018). 

3.6 Software Implementation Tools 

The following software has been used in order to develop the proposed model: 

• Kaggle: is a Google LLC subsidiary, is a data scientist and machine learning 

user online community. Users can use Kaggle to search and upload datasets, 

investigate, and construct models in a web-based data-science environment, 

collaborate with other data scientists and machine learning experts, and 

compete to solve data science challenges. 

• TensorFlow: an open-source and free machine learning and artificial 

intelligence software library. It can be used for a variety of applications, but it 

focuses on deep neural network training and inference. TensorFlow can be 

utilised with a broad range of programming languages, including Python, 

C++, and Javascript. This adaptability gives itself to a variety of applications 

in a variety of fields. 
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• OpenCV: a programming function library focused mostly at real-time 

computer vision. 

• NumPy:  an open-source Python library that adds support for wide, multi-

dimensional arrays and matrices, as well as a wide variety of high-level 

mathematical operations to work on these arrays. 

• Sklearn: a free machine learning software package for Python. It includes 

random forests, support-vector machines, k-means, gradient boosting, and 

DBSCAN as regression, classification, and clustering techniques, and is 

designed to work with the Python numeric and scientific libraries such 

as NumPy and SciPy. 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Data Preparation 

The collection of a well-defined dataset of ultrasound images is essential to the 

classification of breast lesions research. As a result, the publicly available BUID (Al-

Dhabyani et al. 2020) is used in this project. The BUID includes 780 PNG greyscale 

images with an average image size of 500 x 500 pixels. The dataset is categorized into 

three groups: malignant, benign, and normal, with each image having its own mask image 

where the ground truth images matched by original images. There are 437 images in the 

benign, 133 in the normal, and 210 in the malignant classes. The Figure 4.1 shows the 

original images along with their mask images. 

 

Figure 4.1: Visualization of original and mask images in BUID dataset 
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The BUID must be preprocessed before being used in the classification procedure. The 

most important stage of pre-processing is adjusting the dataset in such a manner that the 

original content of each image is preserved to the greatest extent possible while keeping 

the entire dataset constant in terms of image size. As a result, at the start of the project, 

all of the images were resampled to 128 × 128 pixels with a 95-5 train-test split for the 

U-Net model and 90-10 train-test split for the CNN classifier model. 

The dataset has been split in order to perform fivefold cross-validation, with 90% of 

the dataset used for training and 10% for testing. By performing this procedure five times, 

choosing a different set each time as the testing set, it was assured that all of the subsets 

were used in both testing and training. Furthermore, image normalization was utilized, 

where the dataset was divided by 255 due to the presence of grayscale images. This has 

been done to increase the contrast of images with low contrast due to glare and to establish 

a consistent dynamic range throughout the datasets. Furthermore, data augmentation is 

used to improve model performance by preventing the neural network from learning 

irrelevant features due to the limited size of the training dataset. A function is defined in 

this project to do simple augmentation techniques such as rotation, flipping, zooming, and 

so on. 

4.2 Implementation Details 

After the dataset is prepared, the creation of the U-Net model has been established. U-

Net has been used for localization because of its ability to locate and distinguish borders 

by performing classification on each pixel in the input image, producing input and output 

images that are the same size. As previously stated, the U-Net is divided into two paths: 

contracting and expanding. Therefore, firstly, the contracting path network is constructed 

as shown in Figure 4.2. 
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Figure 4.2: Code for building the contracting path network 

 

The network is made up of two 3 x 3 convolutional layers where each layer is followed 

by a 2 x2 max-pooling layer that has stride of 2 utilized for down sampling and one ReLU. 

Furthermore, the number of feature channels is doubled with each down sampling step. 

BatchNormalization has been added to the model to settle the learning process and reduce 

the number of training epochs. Next, the expanding path is constructed as shown in Figure 

4.3. 

 

Figure 4.3: Code for building the expanding path network 

Univ
ers

iti 
Mala

ya



39 

The network consists of two 3x3 convolutions where every stage the feature map is 

upsampled and a 2x2 convolution layer is followed by to cut the feature channels numbers 

in half, then it is followed by a concatenation with the correspondingly cropped feature 

map from the contracting path, each followed by a ReLU. Cropping is necessary because 

to the loss of border pixels in each convolution. Finally, each 64-component feature vector 

is mapped to the required number of classes using a 1x1 convolution at the final layer.  

 Furthermore, the Adam gradient descent optimization algorithm has been applied 

with a learning rate of 0.00005 in order to help the model learn over time. Lastly, a loss 

function is used to assess how well the prediction model performs in terms of predicting 

the expected outcome. The loss function used to evaluate model performance in semantic 

segmentation is Dice loss function as shown in Figure 4.4. 

 

Figure 4.4: Code for defining the Dice loss function 

 

Next, a convolution neural network (CNN) is constructed in order to classify the 

generated mask images into benign, malignant or normal. The mask images in the BUID 

dataset, which is shown in Figure 4.5, is used for training the CNN classifier model.  First, 
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the mask images are split into 90% for training and 10% for testing in order to perform 

fivefold cross-validation.  

Despite the fact that there is an uneven distribution in the dataset, a model that 

performs well in classification tasks can be simply created due to significant distinctions 

between these images. In addition, because of the limited size of the generated mask 

images dataset, data augmentation is employed to improve model performance by helping 

the neural network to avoid learning irrelevant features. Therefore, a function is defined 

to do simple augmentation techniques like as rotation, flipping, zooming. 

 

Figure 4.5: Random samples of mask images from the BUID dataset 
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Next, the construction of the CNN began by building of four convolutional layers 

where each convolutional layer has a distinct number of filters with the same size (3x3) 

as seen in Figure 4.6. In all convolutional layers, zero padding and a stride of 1 were 

employed. As an activation function for all convolutional layers, the LeakyReLU (Leaky 

Rectifier Linear Unit) function was utilized. In addition, a 2x2 max-pooling layer was 

used after using the LeakyReLU function. Following the fourth convolutional layer, two 

fully connected layers are added. With the first and second fully connected layers, a 

LeakyReLU and a softmax activation function are applied, where the LeakyReLU 

function provides nonlinearity and the softmax activation function generates a binary 

logistic regression with cross-entropy loss or a binary classification. 

 

Figure 4.6: Code for building the CNN classifier network 

 

4.3 U-Net Model Results and Evaluation 

In order to assess the performance of the U-Net model in localizing the breast tumors, 

the Dice loss function is used.  A high loss number typically implies that the model is 

producing incorrect output, whereas a low loss value shows that the model contains less 
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errors. Training loss and validation loss over time are one of the most commonly used 

metric combinations. The training loss is a metric that measures how well a deep learning 

model fits the training data. Validation loss, on the other hand, is a metric used to evaluate 

the performance of a deep learning model on the validation set. As can be seen in Figure 

4.7, the model produced low training and validation loss values (0.6774 and 0.6476 

respectively) which indicates that were only few errors in the model. 

 

 

Figure 4.7: The evaluation results of U-Net model 

 

The validation loss and the training loss both decrease and stabilize at a certain point 

which indicates that the model has an optimal fit which means it does not underfit or 

overfit. In addition, the training accuracy and dice loss values achieved were 0.9285 and 

0.4391 respectively, which indicates that the model performed very well, has high 
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accuracy, and have great ability in predicting mask images. Figure 4.8 illustrates the 

results of the U-Net model predicting the location of area which contains tumor growth. 

The first column shows the real medical images whereas the second column shows the 

ground truth mask images. The third column of images display the predicted mask images 

by the U-Net model. 

 

 

Figure 4.8: Results of U-Net predictions of breast tumor location 
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4.4 CNN Classifier Results and Evaluation 

The proposed CNN model is evaluated to classify ultrasound breast images into 

malignant, benign, or normal based on the mask shape. In particular, accurate 

classification of malignant and benign lesions in ultrasound images is difficult due to 

artefacts such as shape variation, a low signal-to-noise ratio, ill-defined borders, and poor 

contrast. The resultant performance metrics of the proposed CNN model are shown in 

Figure 4.9. 

 

Figure 4.9: Evaluation results of the CNN classifier model 

 

From the Figure, it can be seen that the model achieved an accuracy equal to 0.85, and 

the precision of benign, malignant and normal images were 0.86, 0.74, and 0.94 

respectively, demonstrating the classification ability and robust feature extraction of the 

proposed CNN model.  

Accuracy is the most evident performance metric because it is simply the ratio of 

correctly predicted observations to total observations. Whereas precision is defined as the 

ratio of correctly predicted positive observations to all predicted positive observations. 

The ratio of accurately predicted positive observations to all observations in the actual 

class is referred to as recall. The F1 Score is calculated as the weighted average of 
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Precision and Recall. As a result, this score considers both false positives and false 

negatives.  

In addition, a confusion matrix is applied in order to evaluate the performance of the 

CNN classification model on a set of test data for which the true values are known and to 

have a better understanding of what the CNN classification model achieves right and what 

types of errors it makes.  A confusion matrix is simply a technique for summarizing a 

classification algorithm's performance. Figure 4.10 illustrates the confusion matrix for the 

proposed CNN classification model. As can be seen, almost all the actual target values 

match those predicted by the CNN classification model. 

 

Figure 4.10: The confusion matrix results of the CNN classifier model 

 

Lastly, the overall task is tested where the mask image is firstly predicted using the U-

Net model and then based on the mask shape, the tumor is classified to either benign, 

malignant, or normal.  Figure 4.11 illustrates the predicted results of the overall task using 

the two models. 
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Figure 4.11: Results of classifying the generated mask images from the U-Net 
model. 
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The first column of displays the original medical images from the dataset, whereas the 

second column displays the predicted mask images labelled with its predicted 

classification using U-Net and CNN models.  As can be seen from the figure, it is notable 

that proposed U-Net and CNN models produced great results with great accuracies.

Univ
ers

iti 
Mala

ya



48 

CHAPTER 5: CONCLUSION 

5.1 Conclusion 

Because breast density has no effect on ultrasound waves in the breast, ultrasound 

imaging is considered a safe and effective procedure for women. However, contrary to 

MRI and mammography, conventional breast ultrasound is prone to uncertainty, which 

can result in a missed diagnosis and an unneeded biopsy.  The ability of the radiologist is 

crucial for feature extraction in ultrasound imaging, a difficult and time-consuming 

activity that frequently depends on human intervention and demands for many pre-

processing steps and leads to subject diagnosis. Therefore, in this research project, a 

detailed analysis and comparative review of existing and recent breast tumor 

classification algorithms has been carried out and the problems and gaps existed in 

previous approaches are identified. Then, a deep learning image classification model is 

proposed to classify breast tumors into benign, malignant, or normal. U-Net and CNN 

classifier model have been trained using the BUID dataset, where the dataset is prepared 

and preprocessed appropriately. Because of its ability to perform classification on each 

pixel in the input image and produce input and output images that are the same size, the 

U-Net model is used in this project to localize areas that contains tumor growth in the 

original medical images The generated mask images from the U-Net model are then 

classified using a CNN classifier model as benign, malignant, or normal. The Dice loss 

function and accuracy performance matrices are used to assess the performance of both 

U-Net and CNN classifier models. The evaluation results of both U-Net and CNN 

classifier models have shown a great capability of localizing and classifying breast tumors 

accurately. 
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5.2 Future work 

Investigating other various CNN architectures is one of the future works. There is no 

doubt that some more effective networks will be offered in the near future given the 

acceleration of developments in this field. Generally, the innovation of CNN network 

architectures and the improvement of the network training method or optimization 

method benefits and improves image classification results.  

A single classifier usually considered to be not sufficient, and therefore developing a 

strategy to combine or choose the classifiers based on an input image could improve 

accuracy. Because, to some extent, creating a monolithic classifier in order to cover all of 

the variability inherent in most pattern recognition problems is difficult. 
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