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ABSTRACT 

Retinal fundus image registration (RIR) is performed to align two or more fundus 

images. A general framework of a feature-based RIR technique comprises of pre-

processing, feature extraction, feature descriptor, matching and estimating geometrical 

transformation. The RIR is mainly performed for super-resolution, image mosaicking and 

longitudinal study applications to assist diagnosis and monitoring retinal diseases. 

Registering image pair from these applications involve a combination of challenges such 

as overlapping area and rotation between images. The challenges of the overlapping area 

and rotation can be addressed at feature extraction and feature descriptor stages of the 

feature-based RIR technique, respectively. To address the overlapping area, a reliable and 

repeatable anatomical information such as retinal vessels is required.  However, finding 

the feature points on retinal vessels can be challenging due to noises with similar structure 

representation as the vessels. For rotation, a distinctive descriptor is necessary to 

characterise the feature points on retinal vessels that are lack of textural information and 

exhibit repetitive patterns in the local patches of fundus image. Therefore, this study 

proposed new feature extraction and feature descriptor methods for feature-based RIR 

technique to address these issues. The proposed feature extraction method extracts the 

feature points on retinal vessels by considering the characteristics of the retinal vessels 

and noises. The proposed feature descriptor method characterises the feature points with 

statistical properties obtained from the surrounding region of the feature points. The 

proposed work is tested on five public datasets, namely, CHASE_DB1, DRIVE, HRF, 

STARE and FIRE. Aspects of the evaluation include evaluating the extraction accuracy 

of the proposed feature extraction method and the registration accuracy of the proposed 

feature-based RIR technique. Experimental results show that the proposed feature 

extraction method attained the highest overall extraction accuracy (86.021%) and 
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outperformed the existing feature extraction methods; Harris corner (41.613%), SIFT 

(16.164%), SURF (18.929%), Ghassabi’s (28.280%) and D-Saddle (20.509%). The 

registration success rate of the proposed feature-based RIR technique (67.164%) is also 

outperformed the existing feature-based RIR techniques; Harris-PIIFD (3.731%), GDB-

ICP (27.612%), Ghassabi’s-SIFT (12.687%), H-M 16 (16.418%), H-M 17 (19.403%) and 

D-Saddle-HOG (11.940%). The influence of the overlapping area and rotation on the 

proposed feature-based RIR technique are significant but the weakest among the 

evaluated feature-based RIR techniques. 

 

Keywords: Feature-based image registration, fundus image, feature extraction, feature 

descriptor. 
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ABSTRAK 

Pendaftaran imej retina (RIR) dilakukan untuk menyelaraskan dua atau lebih imej 

fundus. Rangka umum teknik RIR berasaskan ciri terdiri daripada pra-pemprosesan, 

pengekstrakan ciri, deskriptor ciri, padanan dan penganggaran transformasi geometri. 

RIR dilaksanakan terutamanya bagi aplikasi resolusi super, imej mosaik dan kajian 

membujur untuk membantu diagnosis dan pemantauan penyakit retina. Mendaftar 

pasangan imej dari aplikasi-aplikasi ini melibatkan gabungan beberapa cabaran seperti 

kawasan pertindihan dan putaran antara imej. Cabaran kawasan pertindihan dan putaran 

dapat ditangani pada peringkat pengekstrakan ciri dan descriptor bagi teknik RIR 

berasaskan ciri. Untuk menangani kawasan pertindihan, maklumat anatomi yang boleh 

dipercayai dan berulang seperti saluran darah retina diperlukan. Walau bagaimanapun, 

mencari titik ciri yang terletak pada saluran darah retina adalah sukar kerana pencemaran 

yang mempunyai struktur yang hampir sama dengan saluran darah retina. Bagi putaran, 

deskriptor tersendiri diperlukan untuk mencirikan titik ciri pada saluran darah retina yang 

kekurangan maklumat tekstural dan mempamerkan corak berulang dalam petak tempatan 

imej fundus. Oleh itu, kajian ini mencadangkan kaedah pengekstrakan ciri dan deskriptor 

ciri yang baharu bagi teknik RIR berasaskan ciri untuk menangani isu-isu ini. Kaedah 

pengekstrakan ciri yang dicadangkan mengekstrak titik ciri pada saluran darah retina 

dengan mempertimbangkan ciri-ciri pencemaran dan saluran darah retina yang 

diperhatikan pada profil intensiti. Kaedah deskriptor ciri yang dicadangkan mencirikan 

titik ciri dengan sifat statistik yang diperoleh dari kawasan sekitar titik ciri. Kerja yang 

dicadangkan diuji pada lima dataset awam, iaitu, CHASE_DB1, DRIVE, HRF, STARE 

and FIRE. Aspek penilaian termasuk menilai ketepatan pengekstrakan bagi kaedah 

pengekstrakan ciri yang dicadangkan dan ketepatan pendaftaran teknik RIR berasaskan 

ciri yang dicadangkan. Keputusan eksperimen menunjukkan bahawa kaedah 

pengekstrakan ciri yang dicadangkan mencapai ketepatan pengekstrakan keseluruhan 
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yang tertinggi (86.021%) dan mengatasi kaedah pengekstrakan ciri terdahulu; Harris 

(41.613%), SIFT (16.164%), SURF (18.929%), Ghassabi’s (28.280%) and D-Saddle 

(20.509%). Kadar kejayaan pendaftaran teknik RIR berasaskan ciri yang dicadangkan 

(67.164%) juga mengatasi teknik RIR berasaskan ciri yang terdahulu; Harris-PIIFD 

(3.731%), GDB-ICP (27.612%), Ghassabi-SIFT (12.687%), H-M 16 (16.418%), H-M 17 

(19.403%) dan D-Saddle-HOG (11.940%). Pengaruh kawasan penindihan dan putaran 

pada teknik RIR berasaskan ciri yang dicadangkan adalah signifikan tetapi paling lemah 

di antara teknik RIR berasaskan ciri yang dinilai. 

 

Kata kunci: Pendaftaran imej berasaskan ciri, imej fundus, pengekstrakan ciri, deskriptor 

ciri. 
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CHAPTER 1: INTRODUCTION 

1.1 INTRODUCTION 

Ocular and systemic diseases manifest in the retina in various form of abnormalities 

such as retinal detachment, cupping of the optic disc, cotton wool spots, narrowed arteries 

and thickened veins (Abràmoff, Garvin, & Sonka, 2010). These abnormalities can be 

documented and observed through retinal fundus imaging. Fundus imaging is widely 

employed in documenting retinal abnormalities because it is safe, feasible and cost-

effective. 

There are three main applications of retinal fundus image registration (RIR), namely, 

super-resolution, image mosaicking and longitudinal study applications. The super-

resolution application combines multiple fundus images to increase the density of the 

spatial sampling. This can resolve the blur edges of the retinal vessels caused by the 

patient movements or improper imaging setup. The image mosaicking application aligns 

multiple fundus images to generate an image with a wider view of the retina. The wide 

view image of the retina can be used to view a full extent of the retinal disease in one big 

picture during diagnosis (Bontala, Sivaswamy, & Pappuru, 2012; D. M. Brown & 

Ciardella, 2005) and during preparation of eye laser treatment for diabetic retinopathy (B. 

H. Lee, Xu, Gopalakrishnan, Ong, Li, Wong, & Lim, 2015). The longitudinal study 

application combines multiple fundus images that are acquired at different screening 

sessions. This application is essential in monitoring the progression of the retinal diseases 

which usually undergoes a long degeneration process such as glaucoma and age-related 

macular degeneration (Adal, van Etten, Martinez, van Vliet, & Vermeer, 2015). 

A general approach in performing image registration is to establish correspondences 

between a pair of images. These images are referred as fixed and moving images. Then, 

the established correspondences are used to estimate geometrical transformation. The 
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geometrical transformation is composed of operations such as scaling, rotation and 

translation to align the moving image to the orientation of the fixed image. Existing RIR 

techniques can be grouped as area-based and feature-based. These groups are according 

to the type of correspondence utilised in the image registration process.  

The area-based RIR technique finds correspondences of intensity pattern between 

fixed and moving images. These correspondences are established using similarity metrics 

such as mutual information (Legg, Rosin, Marshall, & Morgan, 2015) and phase 

correlation (Kolar, Sikula, & Base, 2010). The process of establishing correspondences 

is repeated while optimising the geometrical transformation until an optimum registration 

or a maximum number of the iteration is achieved. However, the area-based RIR 

technique considers the intensity pattern from all part of the retina in fundus image. This 

cause the intensity from the non-overlapping area to mislead the similarity metric to 

establish incorrect correspondences. Accordingly, the estimated geometrical 

transformation from the incorrect correspondences will result in inaccurate registration.  

Generally, the feature-based RIR technique is more robust in registering fundus images 

compared to area-based RIR technique. This is because of the feature-based RIR 

technique only considers significant local information between images during the 

registration process. Therefore, the feature-based RIR technique is chosen in this study. 

A general framework of the feature-based RIR technique comprises of five main 

stages. These stages are pre-processing, feature extraction, feature descriptor, matching 

and estimating geometrical transformation. The pre-processing stage involves the process 

of converting input images to the desired colour space or improving the quality of the 

input images. The feature extraction stage extracts local information such as feature points 

from local patches throughout fixed and moving images. The feature points can be 

extracted based on anatomical information or invariant feature. The examples of the 



 

3 

anatomical related information are retinal vessels and vessel bifurcations whereas 

invariant feature includes scale-invariant feature transform (SIFT) (Lowe, 2004) and 

speeded up robust features (SURF) (Bay, Ess, Tuytelaars, & Van Gool, 2008; Bay, 

Tuytelaars, & Van Gool, 2006). Then, feature descriptor is computed for each feature 

point to describe their surrounding region. The computed feature descriptor will be used 

to find the corresponding feature points or matches between the images. Finally, the 

geometrical transformation between images is estimated according to the established 

matches. 

Registering image pair from super-resolution, image mosaicking and longitudinal 

study applications involve a combination of several challenges, namely, overlapping area, 

rotation and image quality between images. Among these challenges, addressing 

overlapping area and rotation between images will be our main focused in this thesis. 

a) Overlapping area – The overlapping area is an intersection region between fixed and 

moving images. A small overlapping area limits the amount of common region 

available between images, which can be insufficient to estimate an accurate 

geometrical transformation. The example of the overlapping area between fixed and 

moving images is visualised in Figure 1.1. 

b) Rotation – The rotation in fundus image is introduced to access part of the retina or 

due to involuntary movement by the patient. The rotation alters the orientation of the 

common region between images. This alteration can be challenging for feature-based 

RIR technique to establish correspondences. The example of the rotation between 

fixed and moving images is depicted in Figure 1.2, where the moving image is rotated 

at the angle of 30° anti-clockwise. 

c) Image quality – The variation of the image quality between images can be caused by 

inconsistent imaging setup, uneven absorption of light due to the spherical shape of  
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Figure 1.1: Example of overlapping area between fixed and moving images. 

 

 

Figure 1.2: Example of rotation where a moving image is rotated at the angle of 

30° anti-clockwise. 

 

  
(a) (b) 

 
(c) 

Figure 1.3: Examples of image quality: (a) intensity difference (b) difference of 
structure similarity (c) difference of intensity distribution where the white arrows 

pointing the non-uniform intensity region obscuring the visibility of the retinal 

vessels. 
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the retina or the progression of the diseases. The variation of the image quality as 

depicted in Figure 1.3, can affect the image pair in many ways. For example, a 

significant difference in intensity and structure similarity between images reduce the 

similarity level of the overlapping area. Other than that, the non-uniform intensity 

distribution can potentially obscure the visibility of anatomical information in the 

overlapping area. Thus, a high difference of the intensity distribution between images 

can limit the amount of the common region in the overlapping area, which yields the 

same challenge as small overlapping area. 

1.2 RESEARCH PROBLEMS 

The challenges of the overlapping area and rotation can be addressed at different stages 

of the feature-based RIR technique. The overlapping area can be addressed at the feature 

extraction stage, whereas rotation can be addressed at the feature descriptor stage. 

Therefore, the feature-based RIR technique requires a reliable feature extraction and 

feature descriptor methods to address the mentioned challenges. 

A reliable feature extraction method extracts feature points that are distributed 

throughout the image and repeatable between images. In fundus image, anatomical related 

information of retinal vessels can be found throughout the fundus image and repeatable 

between images (Deng, Tian, Zheng, Zhang, Dai, & Xu, 2010; S. K. Saha, Xiao, Frost, 

& Kanagasingam, 2016). Furthermore, the position of the retinal vessels is generally static 

over a short period of time even in a diseased eye (Xiao, Vignarajan, Lock, Frost, Tay-

Kearney, & Kanagasingam, 2012). Therefore, in this study, the feature points are 

extracted on retinal vessels to ensure sufficient matches can be established to estimate an 

accurate geometrical transformation. There are two major concerns of existing feature 

extraction methods in extracting feature points on retinal vessels as follows: 
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RP1: The lack of existing studies examining the characteristics of the retinal vessels and 

noises in local patches of fundus image. 

RP2: Most of the existing feature extraction methods are unable to accurately extract 

feature points on retinal vessels of various sizes and without a proper selection 

module to accurately distinguish between retinal vessels and noises. 

 
For a reliable feature descriptor method, the feature points are characterised in a way 

that allows it to be distinguishable from other feature points but comparable between 

corresponding feature points. The feature descriptor in the existing feature-based RIR 

techniques are mainly based on gradient direction computed from grids within a local 

square patch. The rotation invariance is achieved by rotating the square patch according 

to the dominant orientation of the local patch. The feature descriptor that based on 

gradient direction is well known for its rotation invariance in object and scene images. 

However, it can be indistinctive when describing feature points on structure with lack of 

textural information (Hinterstoisser, Cagniart, Ilic, Sturm, Navab, Fua, & Lepetit, 2012) 

and repetitive patterns (Fang, Yu, Ma, & An, 2019; Kushnir & Shimshoni, 2014). The 

lack of textural information and repetitive patterns are commonly observed in the local 

patches of fundus image (Abràmoff et al., 2010; Deng et al., 2010). Particularly, when 

the local patches contain bifurcation, low contrast or narrowed vessels. Therefore, the 

feature descriptor based on gradient direction can be unsuitable to describe feature points 

on retinal vessels. This concern can be summarised as follows: 

RP3: Most of the existing feature descriptor methods characterise the feature points 

based on gradient direction, which can be indistinctive in local patches with retinal 

vessels as the patches lack of textural information and exhibit repetitive patterns. 
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1.3 RESEARCH QUESTIONS 

Given the research problems presented in Section 1.2, the research questions 

constituted in this thesis are: 

RQ1: What is the general characteristic of the retinal vessels in local patches of fundus 

image? 

RQ2: What are the unique characteristics of the retinal vessels in local patches that set it 

apart from the noises? 

RQ3: How to extract feature points from various sizes of retinal vessels?   

RQ4: How to extract feature points that only located on retinal vessels and exclude those 

on noises? 

RQ5: How to distinctively characterise the feature points to establish matches between 

images? 

RQ6: How the proposed feature extraction method improves the performance of other 

feature extraction methods from existing feature-based RIR techniques in 

extracting feature points on retinal vessels? 

RQ7: How the proposed feature-based RIR technique improves the performance of the 

existing feature-based RIR techniques in registering fundus images? 

1.4 RESEARCH OBJECTIVES 

The primary aim of this research is to propose a retinal image registration technique 

for fundus image. The primary aim is achieved with the following objectives: 

RO1: To investigate the general and unique characteristics of the retinal vessels in local 

patches of fundus image. 

RO2: To propose a feature extraction method based on the characteristics of the retinal 

vessels. 
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RO3: To propose a feature descriptor method that characterises the feature points based 

on distinctive information. 

The objectives RO1 and RO2 are presented in Chapter 4: Feature Extraction, whereas 

objective RO3 is presented in Chapter 5: Feature Descriptor. The objectives RO1, RO2 

and RO3 can be mapped to the research problems (Section 1.2) and research questions 

(Section 1.3) as provided in Table 1.1.  

1.5 RESEARCH SCOPES AND LIMITATIONS 

The scopes and limitations of this research are outlined as follows: 

1) This research focuses on the feature-based RIR technique.  

2) The modality of the retinal images in the datasets used during the experiments is 

limited to colour fundus images. 

3) The target registration applications for the proposed feature-based RIR technique are 

limited to super-resolution, image mosaicking and longitudinal study applications. 

1.6 RESEARCH CONTRIBUTIONS 

The first main contribution of this thesis is to propose a novel feature extraction 

method for feature-based RIR technique. The existing feature extraction methods are 

mainly without a proper feature selection module to distinguish between retinal vessels 

and noises. Contrarily, the proposed feature extraction method is composed of feature 

detection and feature selection modules that consider the characteristics of the retinal 

vessels and noises. This allows the extraction of the feature points on retinal vessels and 

excludes those on noises with similar structure representation as retinal vessels.  

The second main contribution is to propose a novel feature descriptor method for 

feature-based RIR technique. The existing works mainly utilised gradient direction 

surrounding the square region of the feature points as feature descriptor. In contrast, the 
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proposed feature descriptor method describes the circular region of the feature points 

based on statistical properties to distinctively characterise the feature points on retinal 

vessels even in the presence of rotation between images. 

The proposed feature extraction method and the proposed feature descriptor method 

are evaluated in registering fundus images from super-resolution, image mosaicking and 

longitudinal study applications. These registration applications are mainly performed in 

clinical settings. Thus, demonstrates the capability of the proposed work in a real-world 

application.  

1.7 THESIS ORGANIZATION 

This thesis is divided into six chapters. Chapter 2 gives a brief background related to 

retinal fundus image and introduces the existing feature-based RIR techniques. Chapter 

3 explains the general framework of the proposed feature-based RIR technique. The 

proposed feature extraction method and its evaluation are presented in Chapter 4. Chapter 

5 describes the proposed feature descriptor method. Also, the performance of the 

proposed feature-based RIR technique is evaluated and discussed in this chapter. Finally, 

Chapter 6 summarises and concludes the research findings. 
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Table 1.1: Mapping between research problems (Section 1.2), research questions (Section 1.3) and research objectives (Section 1.4). 

RESEARCH PROBLEMS RESEARCH QUESTIONS RESEARCH OBJECTIVES 

 CHAPTER 4: FEATURE EXTRACTION  

RP1: The lack of existing studies examining the 

characteristics of the retinal vessels and noises in 

local patches of fundus image. 

RQ1: What is the general characteristic of the 

retinal vessels in local patches of fundus image? 
RO1: To investigate the general and unique 

characteristics of the retinal vessels in local 

patches of fundus image. 

(Section 4.3 Characteristics of Retinal Vessels 

and Noises) 

RQ2: What are the unique characteristics of the 

retinal vessels in local patches that set it apart from 

the noises? 

RP2: Most of the existing feature extraction 

methods are unable to accurately extract feature 

points on retinal vessels of various sizes and 

without a proper selection module to accurately 

distinguish between retinal vessels and noises. 

RQ3: How to extract feature points from various 

sizes of retinal vessels? 

RO2: To propose a feature extraction method 

based on the characteristics of the retinal vessels. 

(Section 4.4 Proposed Feature Extraction) 

RQ4: How to extract feature points that only located 

on retinal vessels and exclude those on noises? 

RQ6: How the proposed feature extraction method 

improves the performance of other feature 

extraction methods from existing feature-based RIR 
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RESEARCH PROBLEMS RESEARCH QUESTIONS RESEARCH OBJECTIVES 

techniques in extracting feature points on retinal 

vessels? 

CHAPTER 5: FEATURE DESCRIPTOR 

RP3: Most of the existing feature descriptor 

methods characterise the feature points based on 

gradient direction, which can be indistinctive in 

local patches with retinal vessels as the patches 

lack of textural information and exhibit repetitive 

patterns. 

RQ5: How to distinctively characterise the feature 

points to establish matches between images? RO3: To propose a feature descriptor method 

that characterises the feature points based on 

distinctive information. 

(Section 5.3 Proposed Feature Descriptor) 

RQ7: How the proposed feature-based RIR 

technique improves the performance of the existing 

feature-based RIR techniques in registering fundus 

images? 
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CHAPTER 2: LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter presents the essential aspects of retinal fundus image registration (RIR). 

First, the modalities of retinal imaging that regularly used during the screening session 

are briefly introduced in Section 2.2. Then, the type of the retinal vessels found in fundus 

image and its appearance in pathology retina are explained in Section 2.3. Finally, the 

related works are highlighted in Section 2.4 according to the stages in the feature-based 

RIR technique. 

2.2 RETINAL IMAGING 

Fundus imaging and optical coherence tomography (OCT) are the most commonly 

used modalities in retinal imaging for the detection and management of ocular and 

systemic diseases (Abràmoff et al., 2010). These modalities are briefly introduced in the 

following sub-sections. 

2.2.1 Fundus Imaging 

Fundus image is acquired using an ophthalmoscope or a fundus camera to depict the 

back of an eye in 2-dimensional. There are three primary structures of the retina visualised 

in fundus image, namely, optic disc, retinal vessels and macula as shown in Figure 2.1. 

The optic disc is circular in shape and appears as clearer and brighter than the 

surrounding region. The network of the retinal vessels is distributed throughout the 

fundus image and converged at the optic disc. The retinal vessels are diverse in terms of 

size and contrast. The macula is a dark and an oval-shaped region located near the centre 

of the retina where the vessels are scarce. 

The specifications of the fundus camera, such as resolution and field of view (FOV) 

varies according to the requirement of the tasks or diagnosis. For example, a high-

resolution image is required to perform vascular measurements (Pauli, Gangaputra, 
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Hubbard, Thayer, Chandler, Peng, Narkar, Ferrier, & Danis, 2012). The ranges of FOV 

or also known as external angle view of the fundus camera are often reported from 35° to 

60° in the literature for the diagnosis of various eye conditions (Bernardes, Serranho, & 

Lobo, 2011). The screening program for disease documentation and clinical studies 

frequently utilise fundus image due to the sensitivity and specificity of the modality. 

Furthermore, fundus imaging is safe, feasible and cost-effective, which make it a realistic 

screening approach. Despite these advantages, fundus imaging presents three main issues 

describe below. 

First, acquiring a clear fundus image with crisp edges of anatomical feature relies on 

cooperation from the patient and a proper imaging setup by the ophthalmic photographer 

(Ryan, Sadda, Hinton, Schachat, Wilkinson, & Wiedemann, 2012). Second, fundus image 

has a limited FOV of the retina. A fundus image with a smaller FOV covers a smaller part 

of the retina with minimal distortion. Thus, multiple images are required to be captured 

at different viewing angles to fully visualise the retina. In opposite, a fundus image with 

a larger FOV covers a larger part of the retina, but at the cost of distorting the image due 

to the spherical shape of the retina (DeHoog & Schwiegerling, 2009). Third, the fundus 

images acquired at different screening sessions often result in a slight variation of the 

viewpoint on the retina (Noyel, Thomas, Bhakta, Crowder, Owens, & Boyle, 2017). This 

 

Figure 2.1: The primary structures of the retina visualised in fundus image (Budai, 
Bock, Maier, Hornegger, & Michelson, 2013). 



 

14 

variation can be challenging for the ophthalmologist to examine and compare the fundus 

images in monitoring the progression of retinal diseases or treatments. Therefore, fundus 

image registration is employed to assist the ophthalmologist in managing these issues. 

There are several types of fundus images such as colour fundus imaging, fluorescein 

angiography and scanning laser ophthalmoscope (SLO) as depicted in Figure 2.2. The 

colour fundus image consists of a full-colour image in red, green and blue composites 

(see Figure 2.2(a)). The image is captured by illuminating the back of the retina with 

white light through cornea, pupil and lens (Abràmoff et al., 2010). The colour fundus 

imaging has been employed in the majority of the screening program for detecting 

cataracts, glaucoma, diabetic retinopathy and age-related macular degeneration (Khouri, 

Szirth, Salti, & Fechtner, 2007; Pirbhai, Sheidow, & Hooper, 2005; Yogesan, Constable, 

Eikelboom, & van Saarloos, 1998). 

The fluorescein angiography captures the fluorescence emitted by a contrast agent 

when the retina is illuminated with blue light (see Figure 2.2(b)) (Johnson, Fu, McDonald, 

Jumper, Ai, Cunningham, & Lujan, 2013). The emission of the fluorescence allows the 

observation of the pathological changes such as vessel occlusion, leakage, diabetic 

retinopathy or tumours. However, the fluorescein angiography is an invasive technique 

where the contrast agent is administered into the systemic circulation. Administering the 

    
(a) (b)  (c) (d) 

Figure 2.2: Types of fundus image (a) colour fundus image (b) fluorescein 
angiography (Katherine Hu, 2017) (c) single-wavelength SLO (Bennett, 2019) and 

(d) true colour SLO (Optomap, 2015). 
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contrast agent into the systemic circulation can result in adverse effects such as nausea, 

vomiting and allergic reaction. 

The SLO uses a confocal imaging technique to acquire a monochromatic image (see 

Figure 2.2(c)) or a true colour image of the retina (see Figure 2.2(d)). The monochromatic 

image is produced when a single-wavelength laser is used while the true colour image is 

produced when the images acquired using blue, green, and red lasers are combined 

(Fleckenstein, Schmitz-Valckenberg, & Holz, 2013). The SLO is capable of visualising 

retinal structures at a fined detailed and high contrast. The SLO has been used in 

diagnosing glaucoma and macular degeneration. 

2.2.2 Optical Coherence Tomography (OCT) 

OCT is based on low-coherent light interferometry to produce a cross-sectional image 

of the targeted area on the retina. The cross-sectional image visualises distinctive layers 

of the targeted area as shown in Figure 2.3. OCT generally have better precision than 

fundus image in diagnosing diabetic macular edema, age-related macular degeneration 

and glaucoma (Walsh, Wildey, Lara, Ouyang, & Sadda, 2010). However, OCT has a 

limited field of view, requires a highly trained ophthalmic photographers to operate the 

equipment, a long acquisition time and the cost of the equipment is substantially higher 

than a colour fundus camera (de Amorim Garcia Filho et al., 2013; Podoleanu, 2012; 

  

Figure 2.3: Example of (A) Colour fundus image (B) OCT image of cross-sectional 
region on foveal indicated by the horizontal white line in (A). These images are 

obtained from (de Amorim Garcia Filho, Yehoshua, Gregori, Puliafito, & 
Rosenfeld, 2013). 
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Spaide, Fujimoto, Waheed, Sadda, & Staurenghi, 2018; Wei, Jia, Tan, Potsaid, Liu, Choi, 

Fujimoto, & Huang, 2013). For these reasons, the utilisation of the OCT in the clinical 

setting remains limited. 

2.3 RETINAL VESSELS 

The retinal vessels can be divided into arteries and veins as shown in Figure 2.4(a). 

The arteries are brighter in colour compared to veins because the blood rich in oxygen is 

transported through the arteries. In opposite, the veins are darker because the blood 

transported is lacked in oxygen. Furthermore, the veins are larger and central light reflex 

is more visible in the veins than the arteries. The central light reflex is the bright region 

or “silver wire” appearance at the centre part of the veins as shown in Figure 2.4(b). 

In the pathological retina, the abnormalities of the retinal vessels in fundus image can 

be observed in terms of thickened (increased in width), narrowed (decreased in width) 

and tortuosity (twist and turns) (MacGillivray, Trucco, Cameron, Dhillon, Houston, & 

van Beek, 2014; Rousso & Sowka, 2017). These abnormalities are vital diagnostic 

information to identify and manage systemic diseases during clinical examination. The 

thickened and tortuous retinal veins typically indicate the vein occlusion where the blood 

flow within the vein is obstructed. The blood flow obstruction can build up the pressure 

  
(a) (b) 

Figure 2.4: Example of (a) artery and vein, (b) central light reflex. 

 

Vein

Artery
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within the vein and potentially lead to leakage. This condition can be caused by diabetes, 

hypertension, cardiovascular disease, hyperviscosity states, arteriosclerosis, collagen 

vascular disease and sickle cell disease. The thickened and non-tortuous retinal veins can 

be observed when the blood flow to the retinal veins are decreased due to atherosclerosis, 

giant cell arteritis and fibrovascular dysplasia. Retinal arteriole macroaneurysms caused 

by systemic hypertension present the retinal arteries as thickened, whereas the tortuous 

retinal arteries may indicate the systemic vascular diseases. The narrowed appearance of 

the retinal arteries can occur due to atherosclerosis and hypertension. 

2.4 RELATED WORKS 

As previously introduced in Section 1.1, the feature-based RIR technique is generally 

comprised of five main stages; pre-processing, feature extraction, feature descriptor, 

matching and estimating geometrical transformation. In this section, the existing feature-

based RIR techniques that best relate to our work are summarised in Table 2.1, Table 2.2, 

Table 2.3 and Table 2.4 according to their main contributions either in feature extraction, 

feature descriptor, matching and geometrical transformation stages, respectively. 

2.4.1 Feature Extraction 

The feature extraction in the existing feature-based RIR techniques mainly based on 

scale-invariant feature transform (SIFT) detector (Lowe, 2004), a popular feature 

extraction method in the computer vision field. The initial extraction process of SIFT 

detector involves finding extrema within local patches throughout the hierarchical 

difference of Gaussian (DoG) scale space. A hierarchical scale space is a representation 

of an image over a large range of scales in a “pyramid-like” approach, which allows 

feature points to be found on structure of various sizes. Therefore, the utilisation of the 

hierarchical DoG scale space in SIFT detector allows the feature points to be found on 

retinal vessels of various sizes. 
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Then, the extrema that are low contrast and located on the edges are rejected to ensure 

the final feature points are distinctive and repeatable. However, the contrast of the retinal 

vessels within a fundus image are varied from low to high and inconsistent between 

images due to the variation of the image quality. Consequently, SIFT detector may 

mistakenly reject the extrema on retinal vessels. 

To overcome the issue above, Ghassabi, Shanbehzadeh, Sedaghat, and Fatemizadeh 

(2013) proposed the utilisation of uniform robust scale-invariant feature transform (UR-

SIFT) (Sedaghat, Mokhtarzade, & Ebadi, 2011) in extracting feature points on retinal 

vessels. UR-SIFT improves the standard SIFT detector by ensuring the extracted feature 

points are distributed throughout the hierarchical DoG scale space. The distribution is set 

in a decreasing manner or reverse from the scale coefficients of the scale space. 

Specifically, more feature points are extracted in the lower part of the hierarchical DoG 

scale space where the images are larger and finer. In opposite, fewer feature points are 

extracted in the upper part of the hierarchical DoG scale space where the images are 

smaller and coarser. Other than that, UR-SIFT selects feature points according to the 

strength of the texture surrounding the points. This approach enables UR-SIFT to be more 

efficient in extracting feature points on retinal vessels compared to the standard SIFT 

detector. Their work is further improved in (Ghassabi, Shanbehzadeh, Mohammadzadeh, 

& Ostadzadeh, 2015) by introducing stability score as part of the selection criterion. The 

stability score incorporates Frangi’s vesselness measure (FVM) (Frangi, Niessen, 

Vincken, & Viergever, 1998), a vessel enhancement filter that suppresses noises in the 

medical image. By incorporating FVM as part of the selection criterion, Ghassabi et al. 

(2015) increases the ability of the method to discriminate between noises and retinal 

vessels. 
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Extracting feature points on retinal vessels from the underexposed region due to non-

uniform intensity distribution is addressed in (Ramli, Idris, Hasikin, & A. Karim, 2017a). 

In their work, the illumination invariant Difference of Gaussian (iiDoG) operator is 

incorporated in the hierarchical scale space (Vonikakis, Chrysostomou, Kouskouridas, & 

Gasteratos, 2013). The iiDoG operator is composed of normalised difference of Gaussian 

(nDoG) and DoG operators based on piecewise function. The combination of these 

operators increases the visibility of the underexposed region while left the correctly 

exposed region unchanged in the hierarchical scale space. This work utilised a similar 

approach as in SIFT detector to extract extrema from the hierarchical iiDoG scale space. 

Then, a threshold is introduced to discard the extrema on the retinal surface before being 

selected as feature points. The threshold is set according to the distribution of the pixels 

value in the local patch of the extrema. 

Another approach to improve the extraction of the feature points on retinal vessels is 

presented in (S. K. Saha et al., 2016; Sajib K. Saha, Xiao, Frost, & Kanagasingam, 2018). 

The approach involves detecting the feature points based on invariant feature all over the 

fundus image using Harris corner (Harris & Stephens, 1988), SIFT, speeded up robust 

features (SURF) (Bay et al., 2008; Bay et al., 2006), binary robust invariant scalable 

keypoints (BRISK) (Leutenegger, Chli, & Siegwart, 2011) and UR-SIFT methods. Then, 

the feature points on retinal vessels are identified using the binary mask representing the 

vasculature map of the retina. The vasculature map is obtained by segmenting the retinal 

vessels according to (Nguyen, Bhuiyan, Park, & Ramamohanarao, 2013). 

Ramli, Idris, Hasikin, A. Karim, Abdul Wahab, Ahmedy, Ahmedy, Kadri, and Arof 

(2017b) introduced D-Saddle detector to extract feature points on retinal vessels from the 

low-quality region. The feature points are extracted based on structural information. 

Other feature points employed in the existing feature-based RIR techniques (Addison 
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Lee, Cheng, Hai Lee, Ping Ong, Xu, Wing Kee Wong, Liu, Laude, & Han Lim, 2015; 

Hernandez-Matas, Zabulis, & Argyros, 2017a; S. K. Saha et al., 2016; Sajib K. Saha et 

al., 2018; Zheng, Daniel, Hunter, Xiao, Gao, Li, Maguire, Brainard, & Gee, 2014) include 

geometric corner (J. A. Lee, Lee, Xu, Ong, Wong, Liu, & Lim, 2014), vascular-landmark 

(Can, Stewart, Roysam, & Tanenbaum, 2002), bifurcation and cross-over points. The 

issues in the existing feature extraction methods highlighted above will be discussed in 

Section 4.2. 

2.4.2 Feature Descriptor 

The existing feature-based RIR techniques summarised in Table 2.1, Table 2.2, Table 

2.3 and Table 2.4 characterise the feature points with gradient direction descriptor and 

binary descriptor. For the registration of single modality between colour fundus images, 

the feature descriptor methods such as SIFT, SURF, BRISK, binary robust independent 

elementary features (BRIEF) (Calonder, Lepetit, Ozuysal, Trzcinski, Strecha, & Fua, 

2012), histogram of oriented gradients (HOG) (Dalal & Triggs, 2005) and an efficient 

binary descriptor based on Haar features (ALOHA) (S. Saha & Démoulin, 2012) are 

employed without any improvement or modification. Among these methods, SIFT 

descriptor is highly employed in the existing feature-based RIR techniques. 

SIFT descriptor is a local descriptor where the square local patch is aligned to the 

dominant orientation around the given feature point to achieve rotation invariance. The 

dominant orientation is determined from the histogram of 36 bins where the angular 

resolution is 10°. Then, the orientation of the gradient direction for each feature points is 

computed at the respective Gaussian scale space level to form a descriptor of 128 

elements.  

The ambiguity of SIFT descriptor can be probable in the presence of nonlinear 

illumination changes that often observe between multi-modality retinal images. 
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Accordingly, Tsai, Li, Yang, and Lin (2010) proposed a combination of SIFT descriptor 

with shape context descriptor to improve the distinctiveness of SIFT descriptor between 

multi-modality retinal images. 

Another issue that can be observed between multi-modality retinal images is the 

inverse intensity. Therefore, J. Chen, Tian, Lee, Zheng, Smith, and Laine (2010) proposed 

partial intensity invariant feature descriptor (PIIFD), which inspired by SIFT descriptor. 

The PIIFD aligns the square local patch to the dominant orientation around the given 

feature point to achieve rotation invariance. The dominant orientation is computed by 

averaging squared gradients. Then, the orientation of the gradient direction for each 

feature point is computed as in SIFT descriptor, but normalised between 0 to π. This 

approach allows the corresponding feature points with opposite gradient orientation being 

characterised with a similar descriptor of 128 elements. 

Other than SIFT-based descriptor, Addison Lee et al. (2015) proposed low-

dimensional step pattern analysis (LoSPA) to characterise the feature points with patterns 

of gradient direction in multi-modality retinal images. The LoSPA offers a low 

dimensional descriptor either with 58 elements or 86 elements. This low dimensional 

descriptor is capable of speeding up the registration process without compromising the 

distinctiveness and effectiveness of the descriptor. The issues in the existing feature 

descriptor methods highlighted above will be discussed in Section 5.2. 

2.4.3 Matching 

The matching process establishes correspondences or matches between feature points 

in fixed and moving images. The process begins by establishing putative matches where 

it may include ambiguous matches or outliers. Then, the ambiguous matches or outliers 

are removed with outlier removal algorithm. 
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The putative matching method in the existing feature-based RIR techniques as outlined 

in Table 2.1, Table 2.2, Table 2.3 and Table 2.4 can be grouped into two methods of 

proximity search namely, minimum distance and nearest-neighbour search (NNS). The 

minimum distance method establishes the putative matches according to the minimum 

function of a pairwise distance matrix. The pairwise distance matrix is exhaustively 

computed between the descriptors in the fixed and moving images using a distance metric 

such as Euclidean distance (Sajib K. Saha et al., 2018). Multiple distance metrics such as 

Euclidean with Hamming distances (S. K. Saha et al., 2016) and Euclidean with chi-

squared distances (Tsai et al., 2010) are reported to compute the pairwise distance when 

multiple feature descriptor methods are employed. The approach to compute the pairwise 

distance matrix using multiple distance metrics are differed between these two studies. 

Specifically, S. K. Saha et al. (2016) compute a separate pairwise distance matrix for each 

SIFT and BRIEF descriptors using Euclidean and Hamming distances, respectively. In 

opposite, Tsai et al. (2010) compute the pairwise distance matrix from the summation of 

the Euclidean and chi-squared distances for SIFT and shape context descriptors. The 

advantages of the minimum distance method are it systematically enumerate all possible 

candidates for the putative matches (from the exhaustive search) and its simplicity as no 

initialisation of the threshold is required (from selecting match according to minimum 

function). However, the minimum distance method often results in the putative matches 

with a high number of outliers. 

Therefore, Ghassabi et al. (2013) employed bilateral minimum distance method in 

their work to reduce the number of outliers in the putative matches. The bilateral 

minimum distance method considers the minimum function of a pairwise distance matrix 

that satisfies in both directions for the selection of putative matches. For example, a match 

is identified when its distances are minimum from fixed to moving images and vice versa. 
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The putative matching method based on NNS is commonly employed in the existing 

feature-based RIR techniques. Mainly, Lowe’s nearest-neighbour search (LNNS) (Lowe, 

2004) is preferred among the existing feature-based RIR techniques (J. Chen et al., 2010; 

Ghassabi et al., 2015; Hernandez-Matas, Zabulis, & Argyros, 2015, 2016; Hernandez-

Matas, Zabulis, Triantafyllou, Anyfanti, & Argyros, 2017b; Ma, Jiang, Liu, & Li, 2017; 

Ramli et al., 2017a; Ramli et al., 2017b; Tang, Pan, Yang, Yang, Luo, Zhang, & Ong, 

2018; Wang, Wang, Chen, & Zhao, 2015; Yang, Stewart, Sofka, & Tsai, 2007). The 

LNNS establishes the putative matches according to the ratio between the best match 

(minimum distance) to the second-best match (second minimum distance). If the ratio 

which yields a value between [0,1] is below the desired threshold, the respective pair of 

the feature point is accepted as a match. The ratio that is larger than the defined threshold 

indicates that the match is ambiguous or outliers and will be discarded. This reduces the 

amount of outliers in the putative matches compared to the minimum distance method. 

Among the metrics employed to compute the distances are the sum of squared distance 

(SSD) and Euclidean distance. The number of outliers in the putative matches of LNNS 

is further reduced in (J. Chen et al., 2010; Ghassabi et al., 2015; Tang et al., 2018; Wang 

et al., 2015) by implementing the bilateral approach. The bilateral LNNS selects the 

matches according to the ratio that satisfies the defined threshold in both directions from 

fixed to moving images and vice versa. 

In the existing feature-based RIR techniques, the LNNS is estimated using exhaustive 

search, best-bin-first (BBF) (Beis & Lowe, 1997) and fast approximate nearest neighbour 

search with automatic algorithm configuration (Fast-NNS) (Muja & Lowe, 2009). The 

exhaustive search can provide the exact nearest neighbours but, it can be computationally 

expensive when a high quantity and high dimensional spaces of the descriptors are 

involved. Alternatively, the approximation algorithm of BBF and Fast-NNS can speed 

the process and returns the closest neighbour with high probability.  



 

24 

The NNS approximated by k-d tree (Bentley, 1975) with Euclidean distance is 

employed in (Addison Lee et al., 2015). The approximation using k-d tree can be fast 

compared to the exhaustive search if the dimensional spaces of the descriptor remain 

below than 10 (Lowe, 2004). Other than minimum distance and NNS methods, Zheng et 

al. (2014) proposed the softassign strategy (Chui & Rangarajan, 2003) and enforcing 

sparsity properties to perform the matching process. 

The outliers removal algorithms based on geometric verification in the existing 

feature-based RIR techniques (Addison Lee et al., 2015; J. Chen et al., 2010; Ghassabi et 

al., 2013; Ramli et al., 2017a; Ramli et al., 2017b) eliminates the outliers by examining 

the geometrical constraint of the matches in affine transformation. Example of the 

geometric verification based algorithms employed are RANdom SAmple Consensus 

(RANSAC) (Fischler & Bolles, 1981) and M-estimator SAmple and Consensus (MSAC) 

(Torr & Zisserman, 2000). The geometric verification based algorithms identify a match 

as outliers if the distance between the match from the fixed and projected moving images 

exceeding a defined threshold. In the case of large viewpoint difference between fundus 

images such as small overlapping area, the affine transformation unable to model an 

accurate alignment between the images due to the curvature of the eyeball. Consequently, 

the correct match may yield a large projected distance than the defined threshold and 

mistakenly eliminated. Therefore, Ramli et al. (2017a) and Ramli et al. (2017b) employed 

multiple values for the distance threshold to minimise the issue. 

To address the limitation of the geometric verification based algorithm in curved 

object, Wang et al. (2015), Ma et al. (2017) and Tang et al. (2018) proposed the 

improvements of the robust point matching method. Wang et al. (2015) proposed a single 

Gaussian robust point matching model. The correct matches are assumed to satisfy a 

single Gaussian distribution where optimal mapping function is searched in reproduced 
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kernel Hilbert space with a Gaussian radial basis kernel function. Ma et al. (2017) 

generalize the Gaussian mixture model (GMM) formulation with the descriptors of the 

putative matches while Tang et al. (2018) proposed the combination of mixture feature 

and structure preservation. 

2.4.4 Geometrical Transformation 

There are a variety of transformation models employed in the existing feature-based 

RIR techniques such as similarity, affine, reduced quadratic, second-order polynomial 

and non-rigid models. The low-order models such as similarity and affine require a 

minimum of three matches to perform the registration, but these models only emulate a 

limited number of transformations to register the images. For example, the similarity 

model includes rotation, translation and scaling, whereas the affine model includes 

rotation, translation, scaling and shearing. 

As the retina is spherical in shape, a higher-order transformation model such as 

reduced quadratic and second-order polynomial models offer better flexibility to project 

the curved object. These models require a minimum of six matches to perform the 

registration. The higher-order transformation models are sensitive in the presence of the 

outliers, wherein the outliers can drive the model to estimate inaccurate transformation. 

Therefore, the removal of the outliers is mainly performed in the existing feature-based 

RIR techniques that utilised a high-order transformation model as described in Section 

2.4.3.  

Typically, multiple transformation models are employed in the existing feature-based 

RIR techniques. The works presented in (J. Chen et al., 2010; Ghassabi et al., 2015; Ramli 

et al., 2017b; Wang et al., 2015) performed the registration using similarity, affine and 

second-order polynomial models. The model is chosen according to the number of 

matches available. In opposite, a hierarchy transformation model of generalized dual-
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bootstrap iterative closest point (GDB-ICP) was proposed in (Yang et al., 2007). GDB-

ICP performed the registration by applying three transformation models starting from 

low-order to higher-order models. These models are similarity, reduced quadratic and 

second-order polynomial models. 

 To address the issues of projecting the curved object, thin-plate spline (TPS) and non-

rigid models are employed in (Ma et al., 2017; Tang et al., 2018; Wang et al., 2015; Zheng 

et al., 2014). Hernandez-Matas et al. (2015) proposed a 3-dimensional transformation 

model, which considers the spherical shape of the retina. This work is further improved 

in (Hernandez-Matas et al., 2016; Hernandez-Matas et al., 2017b) by adding and 

improving the initialisation of the pose estimation to their earlier work. 

2.5 CHAPTER SUMMARY 

This chapter described the essential aspects of retinal image registration such as the 

modalities of the retinal imaging and the primary structures of the retina found in fundus 

image. The types of the retinal vessel and its abnormalities in pathology retina are also 

described in Section 2.3. Furthermore, this chapter highlighted the existing feature-based 

RIR techniques that best relate to our work. These techniques were highlighted according 

to the stages in the feature-based RIR technique.
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Table 2.1: Existing feature-based retinal image registration techniques with main contribution on feature extraction. 

Author(s) Input Image Pre-
processing Feature Extraction Feature 

Descriptor Matching Geometrical 
Transformation 

Sajib K. 
Saha et al. 
(2018) 

Colour fundus Not reported 

Compare performance: 
- Harris corner, SIFT, SURF, 
BRISK, UR-SIFT on retinal 
vessels 

- Bifurcation with cross-over 
points 

SIFT, SURF, 
BRISK, 
BRIEF, 

ALOHA and 
PIIFD 

- PM: Minimum distance - Second order 
polynomial 

Ramli et al. 
(2017b) Colour fundus 

Convert input 
images to 
grayscale 

Proposed D-Saddle detector to 
extract feature points from the 
low-quality region 

HOG 
- PM: Fast-NNS 
- DM: SSD  
- OR: MSAC 

- Similarity 
- Affine 
- Second order 

polynomial 

Ramli et al. 
(2017a) Colour fundus 

Convert input 
images to 
grayscale 

Proposed iiDoG-SIFT detector 
with Histogram Threshold to 
extract feature points on retinal 
vessels 

HOG 
- PM: LNNS (Exhaustive) 
- DM: SSD  
- OR: MSAC 

- Similarity 

Hernandez-
Matas et al. 
(2017a) 

Colour fundus Not reported 

Compare performance: 
- SIFT 
- SURF 
- Harris 
- Bifurcations 

 
- SIFT 
- SURF 
- PIIFD 
- SIFT 

Not reported 

- 3D transformation 
model (considers 
spherical shape of 
retina3) 

S. K. Saha 
et al. (2016) Colour fundus Not reported 

Proposed two step registration: 
- SURF points on retinal vessels 
(use vasculature map)1  

- Bifurcation points2  

- SURF 
- BRIEF 

- PM: Minimum distance 
- DM: Euclidean and 

Hamming 

- Affine 
- Second order 

polynomial 
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Author(s) Input Image Pre-
processing Feature Extraction Feature 

Descriptor Matching Geometrical 
Transformation 

Ghassabi et 
al. (2015) Colour fundus Not reported 

Proposed UR-SIFT detector with 
FVM to extract feature points on 
retinal vessels 

SIFT 

- PM: Bilateral LNNS 
- DM: Euclidean 
- OR: Graph 

transformation matching 
(GTM) 

- Similarity 
- Affine 
- Second order 

polynomial 

Ghassabi et 
al. (2013) 

- Red-free fundus 
- Auto-fluorescence 
- Fluorescein 
angiographic  

Not reported 
Proposed using UR-SIFT from 
(Sedaghat et al., 2011) to extract 
feature points on retinal vessels 

PIIFD 

- PM: Bilateral minimum 
distance 

- DM: Euclidean 
- OR: Geometric verification 

- Second order 
polynomial 

PM  : Putative matching method 
DM : Distance metric 
OR  : Outliers removal algorithm 
1(Nguyen et al., 2013), 2(L. Chen, Xiang, Chen, & Zhang, 2011), 3(Hernandez-Matas et al., 2017b) 
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Table 2.2: Existing feature-based retinal image registration techniques with main contribution on feature descriptor. 

Author(s) Input Image Pre-processing Feature 
Extraction 

Feature 
Descriptor Matching Geometrical 

Transformation 

Addison 
Lee et al. 
(2015) 

- Colour fundus 
- Fluorescein 
angiographic 

Not reported Geometric 
corner1 

Proposed low-
dimensional step 
pattern analysis 
(LoSPA) 

- PM: k-d tree 
- DM: Euclidean 
- OR: RANSAC 

- Affine 

J. Chen et 
al. (2010) 

- Red-free fundus 
- Auto-fluorescence 
- Infrared 

- Convert input images to 
grayscale 

- Scale input image to the 
full 8-bit intensity range 

- Scale images to a fixed 
size (1000×1000 pixels) 

Harris corner Proposed PIIFD 

- PM: Bilateral LNNS (BBF) 
OR: Use main orientations of 
feature point candidates’ and 
geometrical distribution of 
matches 

- Similarity 
- Affine 
- Second order 
polynomial 

Tsai et al. 
(2010) 

- Red-free fundus 
- Fluorescein 
angiographic  

Not reported SIFT 
Proposed SIFT 
with shape context 
descriptor 

- PM: Minimum distance 
- DM: The sum of Euclidean 
and chi-squared distances 

Edge-Driven DB-ICP 
Hierarchy model: 
- Similarity 
- Reduced quadratic 
- Second order 
polynomial  

PM  : Putative matching method 
DM : Distance metric 
OR  : Outliers removal algorithm 
1(J. A. Lee et al., 2014) 
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Table 2.3: Existing feature-based retinal image registration techniques with main contribution on matching. 

Author(s) Input Image Pre-processing Feature 
Extraction 

Feature 
Descriptor Matching Geometrical 

Transformation 

Tang et al. 
(2018) 

Multi-modality 
retinal images Not reported SURF PIIFD 

- PM: Bilateral LNNS (BBF) 
- OR: Proposed the combination of 
mixture feature and structure 
preservation 

- TPS model 

Ma et al. 
(2017) 

- Red-free fundus 
- Fluorescein 
angiographic 

- Equalize the intensity 
histogram 

- Denoise with a non-
local mean filter 

- Edge map 
- SIFT SIFT - PM: LNNS 

- OR: Proposed feature guided GMM - Non-rigid model 

Wang et al. 
(2015) 

- Red-free fundus 
- Auto-fluorescence 

- Obtain green channel of 
input images 

- Scale input image to the 
full 8-bit intensity range 

SURF PIIFD 
- PM: Bilateral LNNS (BBF) 
- OR: Proposed single Gaussian 
robust point matching model 

- Similarity 
- Affine 
- Second order 
polynomial 

Zheng et al. 
(2014) 

- Colour fundus 
- Angiogram Not reported - Vascular-

landmark1 

- Reinforced 
self-similarities 
(SS) descriptor 

- Proposed the used of both 
softassign strategy and enforcing 
sparsity properties 

- TPS model 

PM  : Putative matching method 
DM : Distance metric 
OR  : Outliers removal algorithm 
1(Can et al., 2002) 
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Table 2.4: Existing feature-based retinal image registration techniques with main contribution on geometrical transformation. 

Author(s) Input Image Pre-processing Feature 
Extraction 

Feature 
Descriptor Matching Geometrical Transformation 

Hernandez-Matas 
et al. (2017b) Colour fundus Not reported SIFT SIFT - PM: LNNS 

- DM: Euclidean 
Add initialization of pose estimation to 
(Hernandez-Matas et al., 2015), a 3D 
transformation model that considers 
spherical shape of retina  Hernandez-Matas 

et al. (2016) Colour fundus Not reported SIFT SIFT Not reported 

Hernandez-Matas 
et al. (2015) Colour fundus Obtain green 

channel SURF SURF - PM: LNNS 
- DM: Euclidean 

Proposed 3D transformation model that 
considers spherical shape of retina 

Yang et al. (2007) 
- Red-free fundus 
- Fluorescein 
angiographic 

Not reported SIFT SIFT - PM: LNNS 

Proposed GDB-ICP (refine using corner 
and face points). Hierarchy model: 
- Similarity 
- Reduced quadratic 
- Second order polynomial 

PM  : Putative matching method 
DM : Distance metric 
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CHAPTER 3: OVERVIEW OF METHODOLOGY 

3.1 INTRODUCTION 

This chapter describes the general methodology of the proposed feature-based retinal 

fundus image registration (RIR) technique in five sections. First, the system requirements 

in developing the proposed work are described in Section 3.2. Then, the general 

framework of the proposed feature-based RIR technique is explained in Section 3.3. The 

overview of the pre-processing, proposed feature extraction method and proposed feature 

descriptor method are presented in the remaining sections. 

3.2 SYSTEM REQUIREMENTS 

The proposed feature-based RIR technique was developed and implemented in Matlab 

R2016b with Image Processing toolbox, Computer Vision toolbox and Signal Processing 

toolbox. The MATLAB R2016b is running on a virtual machine from Google Cloud 

Engine with specifications of Intel Xeon® E5 2.6GHz (24 vCPUs) and 40GB of RAM. 

3.3 GENERAL FRAMEWORK 

A general framework of the proposed feature-based RIR technique comprises of five 

main stages as shown in Figure 3.1. These stages are pre-processing, feature extraction, 

feature descriptor, matching and estimating geometrical transformation. The pre-

processing stage converts the input fundus images to the grayscale images. The second 

stage of the proposed feature extraction method detects and selects feature points on 

retinal vessels throughout fixed and moving images. The proposed feature descriptor 

method in the third stage computes the descriptor to describe the surrounding circular 

region for each feature point. The fourth stage finds the putative matches and removes 

the outliers between the feature points on fixed and moving images. Finally, the inliers 

from the putative matches are used to estimate the geometrical transformation between 
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the images. The estimated geometrical transformation is applied to the moving image, 

where the moving image is aligned to the orientation of the fixed image. 

3.4 PRE-PROCESSING 

The proposed feature-based RIR technique processes the input fundus images in 

grayscale. The conversion of the input images from red, green and blue composites (RGB) 

to the grayscale is performed through the summation of the weighted R, G, and B 

components. The weightages for the R, G, B components are according to the calculation 

of luminance in Recommendation ITU-R BT.601-7 (International Telecommunication 

Union, 2011) as follows: 

!"#$%&'()*+(,- = 0.29894 + 0.5878 + 0.1140; (3.1) 

where, 4 is the red channel, 8 is the green channel and ; is the blue channel.  

3.5 FEATURE EXTRACTION 

The main aim of the proposed feature extraction method is to extract feature points on 

retinal vessels from fundus image. The proposed feature extraction method is evaluated 

in terms of its accuracy to extract feature points on retinal vessels. Its performance is 

compared with five existing feature extraction methods, namely, Harris corner (Harris & 

Stephens, 1988), SIFT (Lowe, 2004), SURF (Bay et al., 2008; Bay et al., 2006), 

Ghassabi's (Ghassabi et al., 2015) and D-Saddle (Ramli et al., 2017b). These feature 

extraction methods were previously employed in the existing feature-based RIR 

techniques as highlighted in Section 2.4. 

All the feature extraction methods are evaluated on four public datasets containing 

fundus images with various pathological cases; CHASE_DB1 (CHASE_DB1 Retinal 

Image Database; Fraz, Remagnino, Hoppe, Uyyanonvara, Rudnicka, Owen, & Barman, 

2012), DRIVE (DRIVE: Digital Retinal Images for Vessel Extraction; Staal, Abràmoff, 
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Niemeijer, Viergever, & Van Ginneken, 2004), HRF (Budai et al., 2013; HRF: High-

Resolution Fundus Image Database) and STARE (Hoover, Kouznetsova, & Goldbaum, 

2000; STARE: Structured Analysis of the Retina). These feature extraction methods are 

evaluated in terms of extraction accuracy of the feature points on the retinal vessels. 

Factors influencing the performance of the feature extraction methods are also 

investigated and discussed. The details of the proposed feature extraction method and its 

evaluation are presented in Chapter 4: Feature Extraction. The work presented in this 

chapter can be summarised as shown in Figure 3.2. 

3.6 FEATURE DESCRIPTOR 

The proposed feature descriptor characterises the circular region of the feature points 

based on distinctive information. For the evaluation, the proposed feature-based RIR 

technique is evaluated, which includes five main stages of pre-processing, proposed 

feature extraction as presented in Chapter 4, proposed feature descriptor, matching and 

estimating geometrical transformation. The performance of the proposed feature-based 

RIR technique is compared with five existing feature-based RIR techniques; GDB-ICP 

(Yang et al., 2007), Harris-PIIFD (J. Chen et al., 2010), Ghassabi’s-SIFT (Ghassabi et al., 

2015), H-M 16 (Hernandez-Matas et al., 2016), H-M 17 (Hernandez-Matas et al., 2017a) 

 

Figure 3.2: An overview of the work presented in Chapter 4: Feature Extraction. 

Input Image

Datasets:
• CHASE_DB1
• DRIVE
• HRF
• STARE

Pre-Processing

Convert input images 
to grayscale

STAGE 1

Feature Extraction

STAGE 2

Existing methods:
• Harris corner
• SIFT
• SURF
• Ghassabi’s
• D-Saddle

Evaluation

• Extraction accuracy
• Factors influencing 

performance 

Proposed feature 
extraction method

Feature Extraction
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and D-Saddle-HOG (Ramli et al., 2017b). All the feature-based RIR techniques are 

evaluated on Fundus Image Registration (FIRE) dataset (Hernandez-Matas et al., 2017c). 

Their registration performance is measured in terms of target registration error (TRE). 

Factors influencing the registration performance for these techniques are also assessed 

and discussed. The details of the proposed feature descriptor method and the evaluation 

of the proposed feature-based RIR technique are presented in Chapter 5: Feature 

Descriptor. The work presented in this chapter can be summarised as shown in Figure 

3.3. 

3.7 CHAPTER SUMMARY 

The system requirements in developing and evaluating the proposed feature-based RIR 

technique were described in this chapter. Then, the general methodology of the proposed 

feature-based RIR technique was presented. The datasets and benchmark methods that 

used during the evaluation of the proposed feature extraction method and the proposed 

feature-based RIR technique were also outlined.



 

37 
 

 

 

F
ig

u
r
e
 3

.3
: 

A
n

 o
v
e
r
v
ie

w
 o

f 
th

e
 w

o
r
k

 p
r
e
s
e
n

te
d

 i
n

 C
h

a
p

te
r
 5

: 
F

e
a
tu

r
e
 D

e
s
c
r
ip

to
r
. 



 

38 

CHAPTER 4: FEATURE EXTRACTION 

4.1 INTRODUCTION 

This chapter presents the proposed feature extraction method for Stage 2 of the feature-

based retinal fundus image registration (RIR) technique. First, the issues in the existing 

feature extraction methods are discussed in Section 4.2. Then, Section 4.3 examines the 

characteristics of the retinal vessels and noises in the local patches of fundus image. This 

section is crucial in this work, where a fundamental understanding of the retinal vessels 

and noises characteristics provide an assistant in the development of the proposed feature 

extraction method. The proposed feature extraction method is presented in Section 4.4, 

where the feature detection and feature selection modules are described in Section 4.4.1 

and Section 4.4.2, respectively. The details of the experimental setup such as existing 

feature extraction methods and datasets employed in evaluating the proposed feature 

extraction method are presented in Section 4.5. The experimental results are reported and 

discussed in Section 4.6. Finally, the presented work is summarised and concluded in 

Section 4.7 and Section 4.8, respectively. The mathematical symbols and notation used 

in this chapter can be found in Appendix A. 

4.2 ISSUES IN EXISTING FEATURE EXTRACTION METHODS 

There are several issues that can be outlined from the highlighted feature extraction 

methods in Section 2.4.1. First, the majority of the feature extraction methods 

incorporated feature enhancement algorithm such as DoG and iiDoG operators in 

building the hierarchical scale space. The feature enhancement algorithm is incorporated 

to increase the visibility of the retinal vessels that varies in terms of sizes and contrast. 

However, at the same time, it also increases the visibility of the noises such as retinal 

nerve fibre layer, underlying choroidal vessels, microaneurysm, exudates and edge of the 

optic disc. This makes it more challenging for the feature extraction methods to 

discriminate between retinal vessels and noises. The proposed feature extraction method 
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avoids this issue by building the hierarchical scale space only from Gaussian smoothing 

operator without the feature enhancement algorithm as presented in Section 4.4.1. 

Second, the feature extraction methods from the existing feature-based RIR techniques 

are mainly without a proper selection module to select feature points on retinal vessels. 

A proper feature selection module should consider both retinal vessels and noises 

characteristics as the noises may appear similarly as the retinal vessels within a local 

patch. Therefore, the proposed feature extraction method considers both retinal vessels 

and noises characteristics in the feature selection module to allow robust discrimination 

between these two. The feature selection module of the proposed feature extraction 

method is described in Section 4.4.2.  

4.3 CHARACTERISTICS OF RETINAL VESSELS AND NOISES IN LOCAL 

PATCHES 

This section examines the characteristics of the retinal vessels and noises within the 

local patches. It is important to understand the similarity and differences of the retinal 

vessels and noises within the local patches because their appearance can be similar due 

to the limited information present in the patch. The retinal vessels considered in this 

examination are the vessels with and without central light reflex whereas the noises 

considered are retinal nerve fibre layer, underlying choroidal vessels, microaneurysm, 

exudates and edge of the optic disc. The characteristics of the retinal vessels and noises 

are examined on the local gradient and binary patches with the size of 80 × 80 pixels. 

The retinal vessels either with or without central light reflex are generally appeared as 

continuous curvature structure that visible across the 3-dimensional gradient patch. The 

continuous curvature structure for the vessel without central light reflex has a U-shape as 

shown in Figure 4.1(a)(vi) whereas for the vessel with central light reflex has a W-shape 

as shown in Figure 4.1(b)(vi). The retinal vessels with the variation of size and contrast 
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attain the similar continuous curvature structure but differ in terms of width and depth. 

Therefore, the information of the curvature structure without specifying its width and 

depth is considered in the proposed feature extraction method as it can be a reliable 

characteristic to detect feature points on the retinal vessels of various sizes and contrast. 

Furthermore, the proposed feature extraction method considers the curvature structure of 

concave and convex to allow the extraction of the feature points on the valley of the 

vessels and on the peak of the central light reflex. However, the noises in the 3-

dimensional gradient patches as depicted in Figure 4.1(c)(vi) – Figure 4.1(g)(vi) also 

exhibit curvature structure of concave and convex with varying intensity. For example, 

single and multiple underlying choroidal vessels appear as continuous curvature structure 

across the 3-dimensional patch whereas retinal nerve fibre layer, microaneurysm and 

exudates exhibit a short continuous curvature structure. 

The unique characteristics of the retinal vessels and noises are examined through 

intensity profiles extracted from the gradient and binary patches. The intensity profile is 

the intensity value of pixels extracted from a cross-sectional line running through the 

patch. The intensity profile for the retinal vessel has been reported in the literature to 

identify edges (Bankhead, Scholfield, McGeown, & Curtis, 2012) and estimate width 

(Araújo, Mendonça, & Campilho, 2018) as it is consistent between fundus images. The 

intensity profiles shown in columns of Figure 4.1(vi) and Figure 4.1(v) are extracted from 

the cross-sectional lines running through the centre of the gradient and binary patches, 

respectively. The cross-sectional lines are positioned along and perpendicular to the main 

orientation of the patches. 

The retinal vessels within the gradient and binary patches appear as a continuous 

straight line structure. This straight line structure is represented by a long horizontal 

intensity profile when the cross-sectional line is positioned along the main orientation of  
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for (iv) (vi) Gradient patch in 3-D 
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 (i) Colour patch   (ii) Gradient patch (iii) Intensity profile 
for (ii) (iv) Binary patch (v) Intensity profile 

for (iv) (vi) Gradient patch in 3-D 
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 (i) Colour patch   (ii) Gradient patch (iii) Intensity profile 
for (ii) (iv) Binary patch (v) Intensity profile 

for (iv) (vi) Gradient patch in 3-D 
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(h) Edge of optic 
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Figure 4.1: Characteristics of retinal vessels and noises in local patches (blue square). Red lines in (ii) and (iv) are cross-sectional line to 
extract intensity profiles in (iii) and (v).

0 20 40 60 80
Pixel

102
104
106
108
110
112

In
te

ns
ity

0 20 40 60 80
Pixel

0

0.5

1

In
te

ns
ity

0 20 40 60 80
Pixel

100

110

120

130

In
te

ns
ity

0 20 40 60 80
Pixel

0

0.5

1

In
te

ns
ity

0 20 40 60 80
Pixel

125

130

135

In
te

ns
ity

0 20 40 60 80
Pixel

0

0.5

1

In
te

ns
ity

0 20 40 60 80
Pixel

120

140

160

180

200

In
te

ns
ity

0 20 40 60 80
Pixel

0

0.5

1

In
te

ns
ity



 

45 

the binary patch as depicted in Figure 4.1(a.M)(v) and Figure 4.1(b.M)(v). The 

characteristic of a long horizontal intensity profile is consistent between retinal vessels of 

various sizes and contrast. The similar horizontal intensity profile is also observed in the 

binary patch with edge of optic disc as depicted in Figure 4.1(h.M)(v). Other noises such 

as retinal nerve fibre layer, multiple underlying choroidal vessels, microaneurysm and 

exudates exhibit intensity profile with a shorter horizontal intensity profile. However, in 

a smaller patch, these horizontal intensity profiles may appear as a long horizontal 

intensity profile. The intensity profile of the retinal vessels when the cross-sectional line 

is positioned perpendicular to the main orientation of the binary patch appear as a singular 

bar for vessel without central light reflex and double bars for vessel with central light 

reflex. The width of these bars represents the width of the vessel in the patch. 

The intensity profile of the retinal vessels extracted perpendicular to the main 

orientation of the gradient patch typically resembles an inverse Gaussian-like shape, 

where the width and depth of this shape depict the size of the vessel. In the presence of 

central light reflex, the bright region at the vessel introduced a higher intensity at the 

centre of the intensity profile as depicted in Figure 4.1(a.P)(iii). A similar inverse 

Gaussian-like shape but with a weaker intensity value can also be found in the intensity 

profile extracted from the gradient patch with retinal nerve fibre layer, microaneurysm 

and exudates. Discriminating between the noises and retinal vessels based on the intensity 

value may be inadequate because non-uniform intensity distribution often observed in 

fundus image. The non-uniform intensity distribution can lower the intensity value of the 

affected region. This can result in the intensity profile of the retinal vessel from the 

affected region to have a similar value and shape as the noises from the unaffected region. 

The intensity profile of the retinal vessels and noises can be distinguished by 

examining the position of its valley with the maximum depth. For retinal vessels, the 
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valley with the maximum depth is global minimum on the y-axis. This valley occurs 

approximately at the centre of the intensity profile as the retinal vessel is positioned at the 

centre of the patch. Contrarily, the position of the valley with the maximum depth for the 

noises is inconsistent. Based on the above explanation, we utilise the characteristics of 

the retinal vessels and noises observed in 3-dimensional patch and intensity profiles as 

part of the proposed feature extraction method presented in the following section. 

4.4 PROPOSED FEATURE EXTRACTION 

The proposed feature extraction method is composed of feature detection and feature 

selection modules. The feature detection module considers the general characteristic of 

the retinal vessels observed in 3-dimensional patch where candidate feature points are 

detected within the curvature structure. However, the detected candidate feature points 

are located on retinal vessels as well as noises. The candidate feature points associated 

with the noises are removed in the feature selection module based on the unique 

characteristics of the retinal vessels and noises observed in the intensity profiles. Then, 

the remaining candidate feature points are chosen as final feature points according to the 

strength of the retinal vessel attributes describing the size and contrast of the vessels 

within the patch. It should be noted that in the proposed feature extraction method, we do 

not discriminate between arteries and veins. The term of the retinal vessels used in this 

thesis refers to either arteries or veins, or both of them. The overview of the steps in the 

feature detection and feature selection modules is depicted in Figure 4.2. 

4.4.1 Feature Detection 

4.4.1.1 STEP 1: Build hierarchical Gaussian scale space 

The initial step of the feature detection module involves building a hierarchical 

Gaussian scale space as in (Burger & Burge, 2013; Lowe, 2004). The proposed feature 

extraction method utilised the hierarchical Gaussian scale space (") containing a total of 
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three octaves ($ = 3) with index ' = 0,⋯ , $ − 1 and six levels (- = 6) per octave with 

index / = −1,⋯ , - − 2. The hierarchical Gaussian scale space allows candidate feature 

points being detected on various sizes of structures. For example, the candidate feature 

points are detected on various sizes of retinal vessels at the lower octave of the scale space 

as the images are larger and finer with detailed information. At the higher octave of the 

scale space, the candidate feature points are detected on thicker retinal vessels as the 

images are smaller and coarser with prominent information.  

The main procedure in building the hierarchical Gaussian scale space involves creating 

the initial Gaussian image "1,2 at ' = 0 and / = −1. To create the initial Gaussian image 

"3,45, the input image 6 is convolved with the initial width of absolute Gaussian kernel 

71,2 at ' = 0 and / = −1 as follows: 

"3,45 = 6 ∗ 73,45 (4.1) 

 
The initial width of the absolute Gaussian kernel, 73,45 is denoted by 

 
Figure 4.2: Overview of the steps in the feature detection module and feature 

selection module. 
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73,45 = 73 ∙ 245 :4;⁄  (4.2) 

 
where, 73 = 1.6 is the base width of the Gaussian kernel and - = 6 is the total level per 

octave in the scale space. The absolute Gaussian kernel assumes the ideal scenario where 

the input image 6 is free from the blur effect. However, in the real-world application, the 

input image 6 contains various artefacts. For that reason, the input image 6 is convolved 

with relative Gaussian kernel (7>1,2) to build the hierarchical Gaussian scale space. The 

relative Gaussian kernel assumes that the input image 6 is pre-filtered with a sampling 

Gaussian kernel, 7? ≥ 0.5 (Lowe, 2004). Accordingly, the initial width of the relative 

Gaussian kernel 7>3,45 can be expressed as 

7>3,45 = B73,45C − 7?C (4.3) 

 
To obtain the Gaussian image of the initial level in the higher octave "1,45 at ' ∈

[1, … , $ − 1], the Gaussian image "145,:4H is down-sampled by half. The subsequent 

levels "1,2 at ' ∈ [0, … , $ − 1] and / ∈ [0, … , - − 2], can be obtained from the 

convolution between the initial Gaussian image in the respective octave "1,45 with the 

relative Gaussian kernel of width 7>2 that is given by 

7>2 = 73 ∙ I2C2 :⁄ 4; − 1 (4.4) 

 
Note that, the relative Gaussian kernel is independent of the octave index. Therefore, 

the similar kernel width at a particular level can be used on another octave as depicted in 

Figure 4.3. An example of the hierarchical Gaussian scale space and their kernel widths 

for a retinal image is shown in Figure 4.4. 
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Figure 4.3: Procedures to build the hierarchical Gaussian scale space. 

 

 
 
Figure 4.4: Example of the hierarchical Gaussian scale space and the kernel widths 

for a retinal image. 
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4.4.1.2 STEP 2: Detect local extrema 

The process of the feature detection module continues with the detection of extrema 

throughout the Gaussian images in the hierarchical Gaussian scale space. An extremum 

is determined from the intensity value of the pixel at the centre of the local patch of 3×3 

pixels as shown in Figure 4.5(a). The centre pixel patch is taken as extremum if its 

intensity value is maximum or minimum than its eight immediate neighbours in the patch. 

The patches throughout the image are overlapped by 1 3⁄  of its size as illustrated in Figure 

4.5(b). Only the extrema found within the region of interest (ROI) are considered for 

further processing. The ROI is identified using a mask image to remove the extrema found 

on the border of the field of view (FOV). 

4.4.1.3 STEP 3: Test extrema if within curvature structure 

The retinal vessels in fundus image can be represented as a curvature structure in 3-

dimensional as depicted in Figure 4.1(a)(iv) and Figure 4.1(b)(iv). Therefore, the extrema 

in the scale space are tested if they are within the curvature structure either concave or 

convex to allow the feature points being extracted on the valley of the vessels and on the 

peak of the central light reflex. The local curvature structure on an image can be found 

by performing two tests as reported in (Aldana-Iuit, Mishkin, Chum, & Matas, 2016). 

These tests are test for inner ring patterns and test for outer ring patterns. 

The inner ring test considers eight pixels surrounding an extremum as shown in Figure 

4.6(a). The inner ring pixels denoted by KL	, N ∈ [1, … , 8] are tested for four patterns in the 

shape of × and + as depicted in Figure 4.6(b). Each pattern only involves four out of 

eight inner ring pixels. The patterns are formed when the intensity of two pixels in one 

direction are brighter than the other two pixels in the orthogonal direction. The four 

patterns of inner ring test can be expressed as 
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Pattern 1 : Q6RS > 6RUV ∧ Q6RS > 6RXV ∧ Q6RY > 6RUV ∧ Q6RY > 6RXV 
Pattern 2 : Q6RU > 6RSV ∧ Q6RU > 6RYV ∧ Q6RX > 6RSV ∧ Q6RX > 6RYV 
Pattern 3 : Q6RZ > 6R[V ∧ Q6RZ > 6R\V ∧ Q6R] > 6R[V ∧ Q6R] > 6R\V 
Pattern 4 : Q6R[ > 6RZV ∧ Q6R[ > 6R]V ∧ Q6R\ > 6RZV ∧ Q6R\ > 6R]V 

 

(4.5) 

where, 6R^ is the intensity of an inner ring pixel KL. The extrema can pass the inner ring 

test with one or both shapes. The extrema that failed the test are eliminated. Then, the 

  
(a) (b) 

Figure 4.5: (a) The centre pixel, C (yellow square) is taken as an extremum if its 
intensity value is maximum or minimum than its eight immediate neighbour (grey 

square). (b) The patches in the image are overlapped by 1/3 of its size. 

 

 

 

 

 

 

(a) Inner ring pixels  (c) Outer ring pixels 

  

 

  

  

 

  
(b) Patterns for the inner ring test (d) Example of patterns for the outer ring test 

Figure 4.6: (a) – (b) Inner ring test. (c) – (d) Outer ring test. 
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central intensity value _ is estimated for each extremum that passes the inner ring test. 

The central intensity value _ is a median value of four pixels if the extremum passes the 

inner ring test with one shape and eight pixels if the extremum passes the inner ring test 

with two shapes. 

A circle with a circumference of 16 pixels surrounding an extremum that passes the 

inner ring test forms the outer ring pixels `a	, b ∈ [1, … , 16] as shown in Figure 4.6(c). 

The intensity of an outer ring pixel denoted by 6cd can be divided into three groups, 

namely, low, middle and high. These groups represent the intensity level of the outer ring 

pixels according to the central intensity value _ and offset e as follows: 

Group low (red dot) : 6cd < _ − e 
Group middle (purple dot) : _ − e ≤ 6cd ≤ _ + e 
Group high (green dot) : 6cd > _ + e 

 

(4.6) 

 
 
The value of the offset e is set to 0.0010 as the intensity values of the pixels are in the 

range of [0,1] where a black pixel has a value of zero and a white pixel as one (Ramli et 

al., 2017b). After the outer ring pixels of an extremum are categorised according to the 

groups defined above, they are tested for the outer ring patterns. 

The outer ring patterns consist of consecutive and alternating arcs from group low and 

high. The length of the arc can be in between 2 to 8 pixels. The arcs from group low and 

high can also be separated by pixels from group middle up to 2 pixels. Examples of these 

patterns are depicted in Figure 4.6(d). The extrema that pass this test are assigned as 

candidate feature points and included in the feature selection module. The examples of 

the candidate feature point where the extrema at the top and bottom of the curvature 

structure are shown in Figure 4.7. 
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4.4.2 Feature Selection 

The candidate feature points from the feature detection module are extrema found at 

the top and bottom of the curvature structure. The curvature structure in the gradient patch 

represents the retinal vessels of various sizes and contrast but it also represents noises 

such as retinal nerve fibre layer, underlying choroidal vessels, microaneurysm and 

exudates. Therefore, the feature selection module identifies and selects the candidate 

points located on retinal vessels and discard the others. 

The feature selection module includes two components of exclusion and selection 

processes. The exclusion process discards the candidate feature points associated with the 

noises while the selection process selects the candidate feature points on retinal vessels 

based on the strength of the retinal vessel attributes describing the size and contrast of the 

vessel. The exclusion and selection processes will require gradient and binary interpolated 

patches for each candidate feature point as inputs. 

4.4.2.1 STEP 4: Prepare interpolated patches 

The initial step of the feature selection module is to prepare the gradient and binary 

interpolated patches. A square patch for each candidate feature point is extracted from the 

Gaussian image "1,2 of the scale space where the candidate feature point is detected. The 

  

(a) Extremum: Maximum (b) Extremum: Minimum 

Figure 4.7: Examples of the extremum at (a) the top and (b) bottom of the 
curvature structure found in the scale space. 
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size of the patch (h1 × h1) is varied depending on the octave position ' of the candidate 

feature point. This is to ensure that the size of the patch is proportioned to the retinal 

vessels at the respective octave and allows the selection of the feature points on retinal 

vessels of various sizes and contrast. The side length (h1) of the patch is an odd number 

and determined as follows: 

h1 = hijikiRa − 4(' + 1) (4.7) 

 
where, h1 is the side length of the patch at ' ∈ [0…$ − 1], hijikiRa is the initial side length 

and ' is the octave index. The value for the initial side length hijikiRa is determined by 

observing the width of the thickest vessels on five datasets; CHASE_DB1 (CHASE_DB1 

Retinal Image Database; Fraz et al., 2012), DRIVE (DRIVE: Digital Retinal Images for 

Vessel Extraction; Staal et al., 2004), HRF (Budai et al., 2013; HRF: High-Resolution 

Fundus Image Database), STARE (Hoover et al., 2000; STARE: Structured Analysis of 

the Retina) and Fundus Image Registration (FIRE) dataset (Hernandez-Matas et al., 

2017c). From the observations, the width of the thickest vessels is approximately 25 

pixels on fundus images with a resolution larger than 1000×1000 pixels, 12 pixels on 

fundus images with resolutions in between 1000×1000 pixels to 600×600 pixels and 8 

pixels on fundus images with resolutions smaller than 600×600 pixels. Considering the 

scale or zoom in the clinical practice is usually less than 1.5 (Ghassabi et al., 2015), and 

to ensure the retinal vessel can be fully captured within the patch, the following values 

for the initial side length hijikiRa are deduced: 

hijikiRa

⎩
⎪
⎨

⎪
⎧
35	pixels if	"3,45

	
> 1000 × 1000	pixels

	

25	pixels if	"3,45
	

≤ 1000 × 1000	pixels
> 600 × 600	pixels		

	 			

21	pixels if	"3,45 ≤ 600 × 600	pixels					

 (4.8) 
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The extracted patch is up-sampled using cubic interpolation with the refinement factor 

of 2 to smooth the region around the edges of the retinal vessels. Then, the gradient 

interpolated patch is converted to a binary image. Examples of the gradient and binary 

interpolated patches are shown in Figure 4.8. These patches are used as inputs for the 

exclusion and selection processes. The details of these processes are explained in the 

following sub-sections. 

4.4.2.2 STEP 5: Exclusion process 

The exclusion process discards the candidate feature points associated with the noises 

based on five exclusion criteria as shown in Figure 4.9. These criteria are the 

characteristics of the retinal vessels and noises observed on the intensity profile as 

described in Section 4.3. The examined intensity profiles as shown in Figure 4.1 are 

extracted from a single cross-sectional line running through the patch, which can be 

unstable to distinguish between retinal vessels and noises. Therefore, the intensity profiles 

extracted from multiple cross-sectional lines are considered in the exclusion process to 

provide a robust representation of the retinal vessels and noises characteristics. 

The cross-sectional lines are positioned along or perpendicular to the main orientation 

of the interpolated patch which is set according to the exclusion criteria. The main 

orientation is the angle between x-axis and major axis of the ellipse on the prominently 

    
(a) (b) (c) (d) 

Figure 4.8: Examples of the gradient and binary interpolated patches extracted 
from (a) – (b) retinal vessel and (c) – (d) noise. The ‘×’ represents the position of 

the candidate feature point on the patch. 
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connected region of the binary interpolated patch. The ellipse has the same normalised 

second central moments as the binary interpolated patch. These cross-sectional lines are 

positioned parallel to each other with an identical length. The length of the cross-sectional 

lines used in the feature selection module is determined in a way that it will not exceed 

the size of the interpolated patch in any orientation as follows:  

yazj{k| = hcij − (y}i?kRj~z. yk�kRa) (4.9) 

where, yazj{k| is the length of the cross-sectional lines, hcij is the side length of the binary 

interpolated patch on x-axis, y}i?kRj~z is the distance between the parallel cross-sectional 

lines, and yk�kRa is the total of the cross-sectional lines.  

Then, the extracted intensity profiles are summed to highlight the characteristics of the 

retinal vessels and noises. The characteristics observed on the sum of the intensity profiles 

constitute of five criteria to exclude the candidate feature points on noises. 

 
 

Figure 4.9: Overview of the exclusion process. 
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 STEP 5(a): Exclusion criterion 1 

A retinal vessel in a binary interpolated patch forms as a nearly straight and wide 

connected region going through the candidate feature point as shown in Figure 4.10(a) 

whereas for the noise the connected region is inconsistent as depicted in Figure 4.10(b). 

These characteristics can be distinguished by extracting the intensity profiles from five 

cross-sectional lines (yk�kRa = 5) with yazj{k| length. The distance between the cross-

sectional lines is set to three pixels (y}i?kRj~z = 3) and positioned along the main 

orientation of the connected region. This setting is empirically chosen to express the 

straight connected region of various sizes found in the interpolated binary patch with a 

retinal vessel. The extracted intensity profiles are then summed and results in a horizontal 

line for a retinal vessel (see Figure 4.11) and the detection of peaks for a noise (see Figure 

4.12). From these characteristics, a candidate feature point with peaks on its sum of 

intensity profiles is discarded. 

 STEP 5(b): Exclusion criterion 2 

The sum of the intensity profiles extracted from the interpolated gradient patch is 

examined in STEP 5(b)–(d) of exclusion criterion 2–4 for the resemblance of the inverse 

 
(a) (b) 

Figure 4.10: Exclusion criterion 1. Examples of cross-sectional lines in the binary 
interpolated patch of (a) retinal vessel and (b) noise. The cross-sectional lines are 

position along the main orientation of the patch. 
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Gaussian-like shape. The inverse Gaussian-like shape of the intensity profile can be a 

reliable characteristic to distinguish between the retinal vessels and noises. This is 

because the intensity profile is expected to exhibit the inverse Gaussian-like shape when 

it is extracted from any part of the vessel in the patch as the curvature structure of the 

retinal vessel is continuous. Contrarily, the shape of the intensity profile for noises can be 

inconsistent when it is extracted from various part of the noise in the patch. 

Considering the continuous curvature structure of the retinal vessel in the gradient 

interpolated patch, the sum of the intensity profiles is extracted from seven cross-sectional 

lines (yk�kRa = 7) with yazj{k| length. These cross-sectional lines are positioned 

perpendicular to the main orientation of the gradient interpolated patch and separated by 

 
 

Figure 4.11: Exclusion criterion 1. Sum of intensity profiles appear as a horizontal 
line for a retinal vessel. The intensity profiles are extracted from cross-sectional 

line 1–5 in Figure 4.10(a). 

 

 
 

Figure 4.12: Exclusion criterion 1. Sum of intensity profiles consists of various 
peaks for a noise. The intensity profiles are extracted from cross-sectional line 1–5 

in Figure 4.10(b). 
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five pixels (y}i?kRj~z = 5). The cross-sectional lines are expected to intersect the vessel 

at various part of the vessel as shown in Figure 4.13(a). Therefore, the summation of the 

extracted intensity profiles will highlight the characteristic of the continuous curvature 

structure. The sum of the intensity profiles from the defined cross-sectional lines forms 

an inverse Gaussian-like shape with at least a valley as depicted in Figure 4.14. In 

opposite, the cross-sectional lines from interpolated patch with a noise such as the edge 

of the retinal vessel only intersect parts of the vessel as shown in Figure 4.13(b). The sum 

of the intensity profiles extracted from these cross-sectional lines will have no valley due 

 
(a) (b) 

Figure 4.13: Exclusion criterion 2. Examples of cross-sectional lines on (a) retinal 
vessel and (b) noise in gradient interpolated patch. The cross-sectional lines are 

positioned perpendicular to the main orientation. 

  
(a) (b) 

Figure 4.14: Exclusion criterion 2. Sum of intensity profiles for (a) retinal vessel 
and (b) noise from cross-sectional line 1–7 in Figure 4.13. 

 

 

Cross-sectional line 1
Cross-sectional line 2
Cross-sectional line 3
Cross-sectional line 4
Cross-sectional line 5
Cross-sectional line 6
Cross-sectional line 7
Candidate feature point
Border of patch

7 5 3 1 42 6

Cross-sectional line 1
Cross-sectional line 2
Cross-sectional line 3
Cross-sectional line 4
Cross-sectional line 5
Cross-sectional line 6
Cross-sectional line 7
Candidate feature point
Border of patch

7
5
3
1
2
4
6

1 10 20 30 40 50 60 70
Pixel

2.6

2.8

3

3.2

3.4

In
te

ns
ity

Sum of intensity profiles
Valley

1 10 20 30 40 50 60 70
Pixel

2.2
2.3
2.4
2.5
2.6
2.7
2.8

In
te

ns
ity

Sum of intensity profiles



 

60 

to incomplete information of the retinal vessel. Accordingly, this candidate feature point 

is discarded from further processing. 

 STEP 5(c): Exclusion criterion 3 

The valleys found on the sum of the intensity profiles from exclusion criterion 2 are 

further examined for its depth and positioned on Å-axis. The sum of the intensity profiles 

with inverse Gaussian-like shape consists a valley where its depth is maximum and at the 

lowest positioned of Å-axis or global minimum as shown Figure 4.15(d) – (e). Contrarily, 

the noise with the similar straight and wide connected region as the retinal vessel in the 

interpolated patch as shown in Figure 4.15(c) failed to exhibit the same characteristic on 

the sum of the intensity profiles as depicted in Figure 4.15(f). Based on these 

characteristics, a candidate feature point is discarded if the valley with the maximum 

depth is not a global minimum. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 4.15: Exclusion criterion 3. Cross-sectional lines on (a) – (b) retinal vessels 
and (c) noise in the gradient interpolated patch. (d) – (e) Sum of intensity profiles 

for retinal vessels. Valley 1 is global minimum and has maximum depth. (f) Sum of 
intensity profiles for a noise. Valley 3 is global minimum but valley 2 has the 

maximum depth. 
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 STEP 5(d): Exclusion criterion 4 

Next, the valley with maximum depth and global minimum is analysed for their 

position on the x-axis. The sum of the intensity profiles is divided into four sections of 

equal size. The valley with maximum depth and global minimum is expected to be at the 

second or third section on the x-axis if a candidate feature point located on a retinal vessel 

as shown in Figure 4.16(a)–(b). For a candidate feature point on noise, the sum of the 

intensity profiles will have the valley with maximum depth and global minimum either at 

the first or last section on the x-axis as depicted in Figure 4.16(c). This candidate feature 

point is therefore excluded from further processing. 

 STEP 5(e): Exclusion criterion 5 

This criterion requires the sum of the intensity profiles to be extracted from both 

gradient and binary interpolated patches. The cross-sectional lines are set similar to the 

exclusion criterion 2 where, seven cross-sectional lines (yk�kRa = 7) with yazj{k| length 

are positioned perpendicular to the main orientation of the interpolated patches. The 

distance separating the lines is set to five pixels (y}i?kRj~z = 5). 

Then, the intensity profiles are extracted from the gradient and binary interpolated 

patches and summed. The sum of the intensity profiles from the gradient and binary 

   
(a) (b) (c) 

Figure 4.16: Exclusion criterion 4. Position of the valley with the maximum depth 
on x-axis. (a) – (b) The valley with the maximum depth is on the 2nd or 3rd section 

for retinal vessels. (c) The valley with the maximum depth is on the 1st or 4th section 
for noise. 
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interpolated patches are overlaid on each other to find the intersection between them. The 

intersection can be observed if a candidate feature point located on a retinal vessel as 

shown in Figure 4.17(c). Contrarily, the sums of the intensity profiles from the gradient 

and binary interpolated patches are separated from each other if the candidate feature 

point is on noise as shown in Figure 4.18(c). Thus, this candidate feature point is 

discarded from further processing. The settings to extract the intensity profiles and details 

of the exclusion criteria (STEP 5(a)–STEP 5(e)) are summarized in Table 4.1. 

   

   
(a) (b) (c) 

Figure 4.17: Exclusion criterion 5. Cross-sectional lines on retinal vessel of (a) 
gradient and (b) binary interpolated patches. (c) The intersection between the sum 

of the intensity profiles from binary and gradient interpolated patches. 

 

   
(a) (b) (c) 

Figure 4.18: Exclusion criterion 5. Cross-sectional lines on noise of (a) gradient 
and (b) binary interpolated patch. (c) No intersection can be found between the 

sum of the intensity profiles from binary and gradient interpolated patches. 
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Table 4.1: Settings and details of STEP5: Exclusion criteria. 

 
STEP 5(a): 

Exclusion criterion 1 

STEP 5(b): 

Exclusion criterion 2 

STEP 5(c): 

Exclusion criterion 3 

STEP 5(d): 

Exclusion criterion 4 

STEP 5(e): 

Exclusion criterion 5 

Settings to extract sum of intensity profiles from interpolated patches 

Interpolated Patch Binary Gradient – – Binary and gradient 

C
ro

s
s
-s

e
c
ti

o
n
a
l 

li
n
e
s
 

Length !"#$%&' !"#$%&' – – !"#$%&' 

!&(&)" 5 7 – – 7 

!*+,&)$-# 3 pixels 5 pixels – – 5 pixels 

Orientation Along main orientation 
Perpendicular to main 

orientation 
– – 

Perpendicular to main 

orientation 

Details of exclusion criteria 

Input 

Sum of intensity 

profiles from binary 

interpolated patch 

Sum of intensity 

profiles from gradient 

interpolated patch 

Valley from STEP 5(b) 

Valley with maximum 

depth and global minimum 

from STEP 5(c) 

Sums of intensity profiles 

from binary and gradient 

interpolated patches 

C
h
a
ra

c
te

ri
s
ti

c
s
 

Vessel 
A horizontal line. 

Figure 4.11. 

Consists at least a 

valley. Figure 4.14(a). 

Valley with maximum 

depth is global minimum. 

Figure 4.15(d)–(e). 

At 2
nd

 or 3
rd

 section on .-

axis. Figure 4.16(a)–(b). 

Intersected when overlaid. 

Figure 4.17(c). 

Noise 
Consists at least a peak. 

Figure 4.12. 

Without valley. 

Figure 4.14(b). 

Valley with maximum 

depth is local minimum. 

Figure 4.15(f). 

At 1st or 4th section on 

.-axis. Figure 4.16(c). 

Apart from each other 

when overlaid. 

Figure 4.18(c). 
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4.4.2.3 STEP 6: Selection process 

The exclusion process described in Section 4.4.2.2 removes the majority of the 

candidate feature points detected on noises. However, the remaining candidate feature 

points may include points detected on noises with a high structural similarity as the retinal 

vessels in the interpolated patches. Therefore, the selection process is introduced to select 

the final feature points according to the strength of the retinal vessel attributes and 

distributed throughout the image. The selection process can be summarised as shown in 

Figure 4.19. 

 STEP 6(a): Distribution 

The distribution of the feature points throughout the fundus image is important to 

ensure a high registration accuracy (S. K. Saha et al., 2016). There are two procedures 

involved in distributing feature points. First, the feature points are distributed throughout 

the hierarchical Gaussian scale space. Then, the second procedure involves distributing 

the feature points throughout the partitioned grids in each image of the scale space. 

 

 

Figure 4.19: Overview of the selection process. 
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• STEP 6(a)(i): Distribute feature points throughout the hierarchical Gaussian scale 

space 

The first procedure of STEP 6(a) is to distribute feature points throughout the 

hierarchical Gaussian scale space. The feature points can be distributed by setting the 

maximum number of the feature point for each image in the hierarchical Gaussian scale 

space. The maximum number is set proportionally inverse to the scale of the Gaussian 

kernels used when building the scale space. This is to obtain more feature points on the 

finer images at the lower part of the scale space and fewer feature points on the coarser 

images at the higher part of the scale space. The maximum number of the feature point 

(!",$) for an image in the hierarchical Gaussian scale space is computed as described in 

(Ghassabi et al., 2015; Ghassabi et al., 2013; Sedaghat et al., 2011): 

 !",$ = !'(')*. ,",$ 
(4.10) 

with, - - ,",$ = 1

/01

$203

403

"25

 (4.11) 

 
where, !'(')* is the total feature points in the scale space, ,",$ is the proportion of the 

feature points at octave 6 and level 7, 6 is the octave index with 6 ∈ [0…< − 1], and 7 

is the level index with 7 ∈ [−1…? − 2]. 

The proportion of the feature points ,",$ is proportionally inverse to the scale 

coefficient of the Gaussian kernel A",$. ,",$ can be determined from the proportion in the 

initial image of the scale space (,5,03). Assuming ,5,03 = B5, ,",$ can be defined as 

,",$ =
A5,03
A",$

B5 (4.12) 

 
The scale coefficient of the Gaussian kernel A",$ is denoted by 
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A",$ = C(/)"E$ (4.13) 

 
and the proportion in the initial image of the scale space B5 is given by 

B5 =
C4(/)03

∑ CG034(/)
G23

 (4.14) 

 
where, the constant factor C can be expressed as 

C = 23// (4.15) 

 
Substituting Equation (4.13) into Equation (4.12), ,",$ can be written as 

,",$ =
C03

C(/)"E$
B5	

=
B5

C(/)"E$E3
 

(4.16) 

 
Accordingly, the proportion of the feature points ,",$ is approximately reduced by half 

from its proportion in the previous octave ,"03,$ as shown in Figure 4.20. This proportion 

is inverse from the scale of the Gaussian kernels that is increased twice from its scale in 

the previous octave. 

In this study, the total feature points in the hierarchical Gaussian scale space (!'(')*) 

is set to 4500 points, which shows empirically to provide a reasonable amount of feature 

points to perform image registration. If the candidate feature points are detected less than 

4500 points, !'(')* is set to 90% of the total candidate feature points detected in the scale 

space. The maximum number of the feature points !",$ throughout the hierarchical 

Gaussian scale space with !'(')* = 4500 points are depicted in Figure 4.21. 
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• STEP 6(a)(ii): Distribute feature points throughout the partitioned grids in each 

image of the hierarchical Gaussian scale space 

Next, !",$ feature points are distributed throughout the partitioned grids within the 

Gaussian image L",$. The image L",$ is partitioned into rectangle grids with the size of 

150×150 pixels as shown in Figure 4.22. The partitioning process originates at the top 

left of the image. This cause the grids at the right and bottom sides of the image to be 

smaller than the defined size. In the case where the grid is smaller than half of the defined 

grid size, the grid is merged with the previous grid. Otherwise, the grid remains as it is. 

 
Figure 4.20: Proportion of feature points Fp,q in the hierarchical Gaussian scale 

space. 

 
Figure 4.21: Maximum number of feature points Np,q set in the hierarchical 

Gaussian scale space with Ntotal	= 4500 points. 
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The maximum number of the feature points in a grid of index V denoted by !",$,W is 

computed from the distribution coefficient (XY",$,W) as follows: 

!",$,W = XY",$,W. !",$ (4.17) 

 
The distribution coefficient XY",$,W represents a combination of three factors to describe 

each grid. The factors considered in this study are entropy (ZL) (Gonzalez, Woods, & 

Eddins, 2009), peak deviation nonuniformity ([!) (Goerner, Duong, Stafford, & Clarke, 

2013) and total candidate feature points detected (\).  

The first factor is entropy (ZL) describing the texture of the grayscale image. The grid 

image that contains high contrast retinal vessels regardless of their sizes will yield a large 

value of entropy and vice versa. The entropy in a grid of index V denoted by ZL",$,W can 

be computed as 

ZL",$,W = −-]ℓ_`a1]ℓ

ℒ

ℓ

 (4.18) 

 
where, ℓ is the grayscale level of the grid image with ℓ ∈ [0,⋯ , ℒ] and ]ℓ is the 

occurrence of the grayscale level ℓ. However, the grid image that contains low contrast 

 

   
L5,1 

2912×2912 pixels 
L3,1 

1456×1456 pixels 
L1,1 

728×728 pixels 

Figure 4.22: Examples of partitioned grids in the images of the hierarchical 
Gaussian scale space. 
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retinal vessels will yield a similar entropy value as the grid image with only noises or 

retinal surface. 

To compensate for this similarity, the second factor of the peak deviation 

nonuniformity ([!) is included in the computation of the distribution coefficient. The 

peak deviation nonuniformity measures the uniformity of the grayscale level of an image. 

It is sensitive to the non-uniformities and beneficial in distinguishing between the grid 

image that contains low contrast vessels and the grid image with only noises. The peak 

deviation nonuniformity for a grid of index V denoted by [!",$,W can be defined as 

[!",$,W = 100 d1 −
max	(L",$,W) − min	(L",$,W)
max	(L",$,W) + min	(L",$,W)

j (4.19) 

 
where, L",$,W is the grayscale level of the grid image. 

In the coarser grid image, the probability of the candidate feature points being detected 

is low compared to the finer grid image. However, the values of the entropy and peak 

deviation nonuniformity measured from the coarser and finer grid images only show a 

minimal difference. To compensate with these factors in the coarser grid image, the total 

of candidate feature points detected in each grid is considered as the third factor in 

computing the distribution coefficient (\).  

The distribution coefficient for a grid of index V in a Gaussian image L",$ can be 

expressed as the integration of three mentioned factors. The distribution coefficient 

denoted by XY",$,W is calculated as 

XY",$,W = Xkl
ZL",$,W

∑ ZL",$,Wm
W

+Xmn
[!",$,W

∑ [!",$,Wm
W

+Xop
\",$,W

∑ \",$,Wm
W

 (4.20) 
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where, Xkl  is the weight factor for the entropy, Xop is the weight factor for the total of 

the candidate feature points, Xmn is the weight factor for the peak deviation 

nonuniformity, 6 is the octave index with 6 ∈ [0,⋯ , < − 1], 7 is the level index with 7 ∈

[−1,⋯ , ? − 2], V is the grid index with V ∈ [1,⋯ , [] and [ is the total grids in a 

Gaussian image L",$. The values of the weight factors are empirically set to Xkl =

0.3,Xmn = 0.3	and	Xop = 0.4 to give a distinctive representation in describing the grid 

image. 

 STEP 6(b): Selection weightage 

• STEP 6(b)(i): Compute selection weightage to depict the strength of the retinal vessel 
attributes 

The selection process is continued by computing selection weightage for each 

candidate feature point. The selection weightage is composed of three attributes to 

highlight the characteristics of the retinal vessels in the interpolated patch. The attributes 

considered are entropy (Z<), area of the intersected region (st) and mean histogram of 

the gradient direction at the edges of the vessel (uZ). 

The entropy (Z<) computed for each candidate feature point defines the texture of the 

local gradient interpolated patch. The interpolated patch with a high contrast retinal vessel 

will yields a high value of entropy and vice versa. The entropy for v-th candidate feature 

points denoted by Z<",$,v can be determined similar to the Equation (4.18) as follows 

Z<",$,v = −-]ℓ_`a1]ℓ

ℒ

ℓ

 (4.21) 

 
where, ℓ is the grayscale level of the gradient interpolated patch with ℓ ∈ [0,⋯ , ℒ], ]ℓ is 

the occurrence of the grayscale level ℓ, 6 is the octave index with 6 ∈ [0,⋯ , < − 1] and 

7 is the level index with 7 ∈ [−1,⋯ , ? − 2]. 



 

71 

Next, the area of the intersected region is computed as part of the selection weightage. 

The intersection region is obtained from the intersection between the sum of the intensity 

profiles from the gradient and binary interpolated patches as described in the exclusion 

criterion 5. The lowest intersection point on w-axis is used as the reference level to 

measure the area of the intersected region as shown in Figure 4.23. The area of the 

intersected region highlights the strength of the retinal vessels in terms of size and 

contrast. For example, the intersected region has a larger area for a thicker and high 

contrast vessel while a smaller area for a narrower and low contrast vessel. 

The area of the intersected region is approximated using trapezoidal rule where the 

intersected region is partitioned into a total of xy trapezoids as shown in Figure 4.24(a). 

By considering an equal width of trapezoids, the area of the intersected region (st) can 

be expressed as 

 
 

Figure 4.23: Area of the intersected region. 

  
(a) (b) 

Figure 4.24: Trapezoids in approximating the area of the intersected region. 
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st = sz + sz+1 + ⋯+ sx{
 

=
∆}
2
-(ℎz + ℎzE3)

x�

z23

 
(4.22) 

 
where, sz is the area of the trapezoid of index z, xy is the total trapezoids approximating 

the intersected region, ∆} is the width of the trapezoid, ℎz and ℎzE3 are the heights of 

the trapezoid. The width of the trapezoids can be defined by 

∆} =
}x�E3 − }3

xÄ
 (4.23) 

 
where, the width of each trapezoid is set to ∆} = 1. 

The third attribute in the selection weightage is the mean histogram of the gradient 

orientation at the edges of the retinal vessel. This attribute is estimated using both gradient 

and binary interpolated patches. Initially, partial derivative is performed on the pixels in 

the gradient interpolated patch to obtain the vector magnitude of the gradient direction. 

The central difference approximation is chosen to estimate the partial derivative as it gives 

a more accurate approximation compared to other techniques such as forward and 

backward approximations. 

The central difference of the gradient interpolated patch is estimated with a unit spaced 

pixel. Therefore, the horizontal central difference along the }-axis (∆ÄÇ) on the gradient 

interpolated patch can be written as 

∆ÄÇ = 0.5ÉMÖ(} + 1, w) − MÖ(} − 1, w)Ü (4.24) 

 
with, } and w representing the pixel position on the gradient interpolated patch MÖ. The 

value of } in Equation (4.24) varies between } = 2 and } = áàG" − 1, whereas the value 

of w in Equation (4.24) and Equation (4.25) varies between w = 1 and w = áàG". áàG" is 
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the side length of the interpolated patch. For the pixels that located at the edges of the 

patch (} = 1 and } = áàG"), ∆ÄÇ is obtained with single sided differences as follows 

∆ÄÇ(1, w) = MÖ(2, w) − MÖ(1, w) 

∆ÄÇ(áàG", w) = MÖÉáàG", wÜ − MÖÉáàG" − 1, wÜ 
(4.25) 

 
Similar to Equation (4.24) and Equation (4.25), the vertical central difference along 

the w-axis (∆Äâ) on the gradient interpolated patch can be defined as in Equation (4.26). 

∆Äâ = 0.5ÉMÖ(}, w + 1) − MÖ(}, w − 1)Ü (4.26) 

 
The value of w in Equation (4.26) varies between w = 2 and w = áàG" − 1 whereas the 

value of } in Equation (4.26) and Equation (4.27) varies between } = 1 and } = áàG". 

For the pixels located at the edges of the patch (w = 1 and w = áàG"), ∆Äâ is obtained 

with single sided differences as in Equation (4.27). 

∆Äâ(}, 1) = MÖ(}, 2) − MÖ(}, 1) 

∆Äâ(}, áàG") = MÖÉ}, áàG"Ü − MÖÉ}, áàG" − 1Ü 
(4.27) 

 
The elements of the resulted ∆ÄÇ and ∆Äâ represent the vector magnitude of the 

gradient direction for the pixels in the patch. The central differences of ∆ÄÇ and ∆Äâ for 

the ä-th pixel can be visualised as a right triangle as shown in Figure 4.25. Accordingly, 

the gradient orientation for the ä-th pixel (ãå) can be expressed as 

 
Figure 4.25: The right triangle to compute gradient orientation for the ç-th pixel. 
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ãå = tan03
∆Äâ,å
∆ÄÇ,å

 (4.28) 

 
The gradient orientation ãå is estimated in degree and pointing towards a brighter area as 

shown in Figure 4.26(b). 

Then, the edges of the retinal vessel are identified on the binary interpolated patch. 

The dilation is performed on the binary interpolated patch to increase the thickness of the 

edges. Once the pixels on the edges of the retinal vessel are identified, the gradient 

orientation of the pixels are extracted. For a high contrast retinal vessel, the edges are 

thicker and the gradient orientation at the edges are more uniformed. Contrarily, the edges 

of the low contrast retinal vessel are thinner and the gradient orientation at the edges are 

less uniformed. Therefore, the uniformity of the gradient orientation at the edges can be 

a reliable indicator for the strength of the retinal vessels. 

To measure the uniformity of the gradient orientation, a histogram of 36 bins is 

generated for each candidate feature point. Each of the bin represents a 10° orientation 

that ranged between -180° to 180° as shown in Figure 4.26(c). The frequency in the 

histogram signifies the total occurrence of the gradient orientation within the respective 

bin. Pixels at the edges with high uniformity of the gradient orientation will have a higher 

   
(a) (b) (c) 

Figure 4.26: (a) Example of the gradient orientation at the edges of the retinal 
vessel. (b) Close-up from the red rectangle region. (c) Histogram of 36 bins 

generated for the gradient orientation in (a). 
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frequency and smaller count of bins. Considering this observation, the mean of the non-

zero frequency in the histogram (uZ) is designated as indicator of gradient orientation 

uniformity. The value of the uZ increases as the uniformity of the gradient orientation 

increases. 

The selection weightage denoted by	Xé is computed for each candidate feature point 

(v) in a Gaussian image L",$. The selection weightage highlights the characteristics of 

the retinal vessels through three attributes. The combination of these attributes can be 

expressed as 

Xé",$,v = Xk4
Z<",$,v

∑ Z<",$,v
oè,ê
v

+Xëí
st",$,v

∑ st",$,v
oè,ê
v

+Xìk
uZ",$,v

∑ uZ",$,v
oè,ê
v

 (4.29) 

 
where, Xk4 is the weight factor for the entropy, Xëí is the weight factor for the area of 

the intersected region, Xìk is the weight factor for the mean histogram of the gradient 

orientation at the vessel edges, 6 is the octave index with 6 ∈ [0,⋯ , < − 1], 7 is the level 

index with 7 ∈ [−1,⋯ , ? − 2], v is the candidate feature point index with v ∈

[1,⋯ , \",$] and \",$ is the total candidate feature point in a Gaussian image L",$. The 

values of the weight factors are empirically set to Xk4 = 0.3,Xëí = 0.4 and Xìk = 0.3 

to distinctively highlights the strength of the retinal vessel attributes. 

• STEP 6(b)(ii): Select a maximum number of the feature points in each grid according 
to the strength of the retinal vessel attributes 

Finally, in each grid of a Gaussian image L",$, a total of !",$,W candidate feature points 

with the highest value of the selection weightage Xé",$,v are selected as feature points 

(Y",$,W). The positions of these feature points are then refined to the sub-pixel accuracy 

at the respective Gaussian image L",$ using a similar approach as in (M. Brown & Lowe, 

2002; Lowe, 2004). After that, the refined spatial positions of the feature points in the 
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coordinate system at the respective scale space are converted to the coordinate system of 

the input image (equivalent to Gaussian image in the initial octave, L5,$) as follows: 

YG = 2". Y",$ (4.30) 

 
where,	YG is the feature point of index î in the coordinate system of the input image and 

YG,",$ is the feature point of index î in the coordinate system of the respective octave 6 

and level 7. 

4.5 EXPERIMENTAL SETUP 

The performance of the proposed feature extraction method is compared with five 

feature extraction methods that previously used in the existing feature-based RIR 

techniques. These feature extraction methods are Harris corner (Harris & Stephens, 

1988), SIFT (Lowe, 2004), SURF (Bay et al., 2008; Bay et al., 2006), Ghassabi's 

(Ghassabi et al., 2015) and D-Saddle (Ramli et al., 2017b). Harris corner and SURF are 

implemented using MATLAB built-in functions, whereas SIFT is implemented using the 

open-source VLFeat library (Vedaldi & Fulkerson, 2010). The feature extraction methods 

of Ghassabi's and D-Saddle are developed following the original settings of the studies. 

4.5.1 Datasets 

There are four public datasets employed to evaluate the performance of the feature 

extraction methods, namely, CHASE_DB1 (CHASE_DB1 Retinal Image Database; Fraz 

et al., 2012), DRIVE (DRIVE: Digital Retinal Images for Vessel Extraction; Staal et al., 

2004), HRF (Budai et al., 2013; HRF: High-Resolution Fundus Image Database) and 

STARE (Hoover et al., 2000; STARE: Structured Analysis of the Retina). These datasets 

contain fundus images that are affected by various pathological cases as described in 

Table 4.2. These datasets also provide the ground truth images of the manually segmented  
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Table 4.2: Descriptions of datasets used for evaluating extraction accuracy. 

Descriptions 
Datasets 

CHASE_DB1 DRIVE HRF STARE 
Total images 28 40 45 20 
Resolution (pixels) 999×960 564×584 3504×2336 605×700 
Total patients 14 40 45 20 
Age 9 – 10 years 25 – 90 years Not available Not available 

Pathological cases Vessel tortuosity 
• 33 images - no sign of diabetic retinopathy 
• 7 images - signs of mild early diabetic 
retinopathy 

• 15 images of healthy patients 
• 15 images of diabetic retinopathy 
• 15 images of glaucomatous  

Abnormalities that obscure or 
the blood vessel appearance 
such as haemorrhaging etc. 

Field of view 30º 45º 45º 35º 
Year 2012 2004 2009 2000 
Ground truth images 56 60 45 40 
Intensity distribution1 22.6136 49.3307 34.9433 49.5126 
Author(s) Fraz et al. (2012) Staal et al. (2004) Budai et al. (2013) Hoover et al. (2000) 

Examples  
(Fundus) 

    

Examples  
(Ground truth) 

    
1Described by peak deviation nonuniformity intensity (Goerner et al., 2013). Value close to 0 indicates non-uniform intensity distribution in the image. 
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vessels performed by experts. These ground truth images enable the accuracy 

measurement of the extracted feature points on retinal vessels. 

4.5.2 Evaluation Metrics 

4.5.2.1 Extraction Accuracy 

All feature extraction methods are evaluated in terms of its ability to extract feature 

points on retinal vessels. This ability is expressed as an extraction accuracy, a ratio 

between the total of the extracted feature points on retinal vessels to the total of the feature 

points extracted: 

!"#$%&#'()	%&&+$%&,	(%) = #(#%1	23%#+$3	4(')#5	()	6355315
#(#%1	3"#$%&#37	23%#+$3	4(')#5 × 100% (4.31) 

 
The feature points on retinal vessels are determined by referencing the extracted 

feature points to the ground truth images of the manually segmented vessels. The 

extraction accuracy is set to 0% when the total feature points extracted for a particular 

image is less than 3, due to the minimum requirement to perform a transformation. The 

statistical test of one-way Analysis of Variance (ANOVA) with Tukey’s post hoc is 

performed to compare the extraction accuracy between the feature extraction methods. 

4.5.2.2 Factors 

All the feature extraction methods are further evaluated by investigating factors 

influencing their extraction accuracy. The factors investigated are changes in image size 

and intensity distribution throughout the image. The intensity distribution in fundus image 

can be affected by the spherical shape of the retina, a low light reflection of the macula 

and the progression of the diseases. The peak deviation nonuniformity (Goerner et al., 

2013) as expressed in Equation (4.19) is computed to describe the intensity distribution 

of the image. A higher value of the peak deviation nonuniformity indicates the intensity 
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distribution of the image is more uniform while a lower value indicates the image is less 

uniform. 

The relation between the factors and extraction accuracy are investigated using 

Spearman's rank-order correlation. The value of the Spearman's rho (rs) is ranged between 

–1 to +1. The factor is highly influenced the extraction accuracy or the correlation is 

strong when the Spearman's rho (rs) is close to ±1. In opposite, the Spearman's rho that 

closes to 0 indicates the factors has minimal influence or the correlation is weak. The one-

way ANOVA and Spearman's rank-order correlation are significant at the 0.05 level 

identified by a single asterisk or at the 0.01 level identified by two asterisks. These 

statistical tests are conducted using IBM SPSS Statistics (Version 24) software. 

4.6 RESULTS & DISCUSSION 

4.6.1 Extraction Accuracy 

The proposed feature extraction method extracted an average of 2482 feature points 

from each fundus image in the datasets with 2149 of the points are accurately associated 

with retinal vessels as summarised in Table 4.3. Furthermore, the proposed feature 

Table 4.3: Average of feature points extracted for each dataset. 

Feature Extraction 
Methods 

Feature points 
extracted  

Datasets 
Overall1 

CHASE DRIVE HRF STARE 

Harris 
All 986 116 3445 69 1419 

Vessel 180 64 1550 27 586 

SIFT 
All 2656 745 36415 1432 13320 

Vessel 518 140 3699 272 1444 

SURF 
All 1860 1548 5358 1741 2932 

Vessel 350 251 1195 281 596 

Ghassabi’s 
All 4142 4071 8277 3164 5373 

Vessel 955 1175 2337 1039 1502 

D-Saddle 
All 18846 5977 83153 6892 34936 

Vessel 2775 1332 17445 1547 7120 

Proposed 
All 2143 1349 4011 1780 2482 

Vessel 1553 1214 3586 1620 2149 
1Computed from the summation of all image at once rather than the mean of each dataset to minimize 
the accumulation of rounding error. 
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extraction method successfully met the minimum requirement of 3 feature points 

extracted from each image in the datasets as presented in Table 4.3. The extracted feature 

points on four datasets constitute for an average extraction accuracy of 86.021%. The 

highest extraction accuracy of the proposed feature extraction method is observed on 

STARE dataset (89.963%) and the lowest on CHASE_DB1 dataset (72.462%) as outlined 

in Table 4.5. Also, the extraction accuracy of the proposed feature extraction method 

varies approximately 9% between the images in the datasets. This variation is represented 

by the standard deviation computed from the extraction accuracy of all images as given 

in Table 4.6 and visualised in Figure 4.27. 

Table 4.4: Total image in the dataset with at least 3 extracted feature points, due 
to the minimum requirement to perform a transformation. 

Feature Extraction 
Methods 

Datasets 
CHASE DRIVE HRF STARE 

Harris 28 37 45 17 
SIFT 28 40 45 20 
SURF 28 40 45 20 
Ghassabi’s 28 40 45 20 
D-Saddle 28 40 45 20 
Proposed 28 40 45 20 

 
 

Table 4.5: Extraction accuracy (%) of feature points on retinal vessels for each 
dataset. 

Feature Extraction  
Methods 

Datasets 
Overall2 

CHASE1 DRIVE1 HRF1 STARE1 

Harris 19.792% 54.379% 47.393% 33.623% 41.613% 
SIFT 19.615% 19.204% 10.085% 18.930% 16.164% 
SURF 18.888% 16.390% 22.310% 16.462% 18.929% 
Ghassabi’s 23.340% 29.106% 28.604% 32.813% 28.280% 
D-Saddle 14.737% 22.432% 21.451% 22.622% 20.509% 
Proposed 72.462% 89.763% 89.378% 89.963% 86.021% 

1Computed from the extraction accuracy of individual image. The extraction accuracy for an image 
is set to 0% when the feature points are extracted less than 3. 
2Computed from the summation of all image at once rather than the mean of each dataset to 
minimize the accumulation of rounding error. 
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Examples of the extracted feature points with the highest and lowest extraction 

accuracy in each dataset for the proposed feature extraction method are depicted in Figure 

4.28 and Figure 4.29, respectively. From these figures, the proposed feature extraction 

method mainly extracts the feature points located on retinal vessels. The extracted feature 

points that associated with noise are observed to be on nerve retinal fibre layer, underlying 

choroidal vessels, microaneurysm and exudates as shown in Figure 4.29(b), (d), (f) and 

(h). These feature points are extracted because the noises depict similar characteristics as 

the retinal vessels within the local patches during the processes in feature detection and 

feature selection modules. 

Table 4.6: Descriptive statistics of extraction accuracy (%) for all dataset. 

Feature Extraction 
Methods 

Total 
Image Mean Std. 

Dev. 
Std. 

Error 

95% Confidence 
Interval for Mean 

Min Max 
Lower 
Bound 

Upper 
Bound 

Harris 133 41.613 21.317 1.848 37.956 45.269 0.000 92.857 
SIFT 133 16.164 5.411 0.469 15.236 17.092 5.241 30.299 
SURF 133 18.929 4.206 0.365 18.208 19.651 9.502 30.412 
Ghassabi's 133 28.280 5.975 0.518 27.255 29.305 17.055 44.197 
D-Saddle 133 20.509 4.791 0.415 19.687 21.330 12.221 31.273 
Proposed 133 86.021 9.199 0.798 84.443 87.599 59.677 97.842 
Std. Dev. : Standard deviation. 
Std. Error : Standard error. 
 
 

 
 

Figure 4.27: Boxplots of extraction accuracy (%) for all images in CHASE_DB1, 
DRIVE, HRF and STARE datasets. 
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Figure 4.28: Extracted feature points for the image with the highest extraction 

accuracy in the datasets. 
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CHASE DRIVE HRF STARE 

    
(a) CHASE20 (59.68%) (c) DRIVE23 (67.86%) (e) DR1 (70.76%) (g) STARE3 (69.534%) 

    
(b) (d) (f) (h) 

 

Figure 4.29: Extracted feature points with the lowest extraction accuracy for the proposed feature extraction method in the datasets. The 
black arrow point to the extracted feature points on noise: (b) retinal nerve fibre layer, (d) underlying choroidal vessels, (f) microaneurysm 

and (h) exudates. 
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Table 4.7: Comparisons of extraction accuracy (%) using one-way ANOVA and 
Tukey’s post hoc. 

Feature Extraction Mean 
Difference 

(I-J) 

Std. 
Error p 

95% Confidence Interval 
Methods Lower Bound Upper Bound (I) (J) 

Proposed Harris 44.408 1.271 <0.001* 40.777 48.039 

  SIFT 69.857 1.271 <0.001* 66.226 73.488 

  SURF 67.091 1.271 <0.001* 63.460 70.722 

  Ghassabi's 57.741 1.271 <0.001* 54.110 61.372 

  D-Saddle 65.512 1.271 <0.001* 61.881 69.143 

* 

p 

Std. Error 

: 

: 

: 

The mean difference is significant at the 0.05 level. 

Statistical significance. 

Standard error. 

 

 

Specifically, these noises appear as continuous curvature structure in 3-dimensional, 

which results in a nearly straight and wide connected region in the binary interpolated 

patch. Therefore, the sum of the intensity profiles extracted along the connected region in 

the patch appears as a horizontal line. Furthermore, the sum of the intensity profiles from 

the gradient interpolated patch for these noises resemble the inverse Gaussian-like shape 

with unique characteristics that similar to retinal vessels. These unique characteristics 

described in Section 4.3 are presented as exclusion criteria of STEP 5. In the selection 

module, these noises also exhibit high similarity as the retinal vessel described by three 

attributes highlighting the size and contrast of the vessel (see STEP 6(b)). Thus, these 

noises are mistakenly selected as the final feature points. 

Nevertheless, the amount of the feature points on noises mistakenly extracted by the 

proposed feature extraction method is smaller compared to other methods. This can be 

observed in the analysis of one-way ANOVA performed between the extraction accuracy 

of all feature extraction methods. The performed one-way ANOVA analysis shows that 

the proposed feature extraction method is significantly outperformed the others (p = 

<0.001*) as presented in Table 4.7. The average extraction accuracy of the proposed 
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feature extraction method has the biggest difference with SIFT (69.857%) and the 

smallest difference with Harris (44.408%). 

The high extraction accuracy of the proposed feature extraction method on four 

datasets compared to other methods demonstrates its ability to discriminate between 

retinal vessels and noises. This is because the proposed feature extraction method 

considers the characteristics that are unique and similar between retinal vessels and noises 

in extracting the feature points. Contrarily, Ghassabi’s and D-Saddle focuses their 

attention on enhancing the image to increase the visibility of the retinal vessel. However, 

this enhancement also increases the visibility of the noises in the image. Other than that, 

they performed the extraction without considering the noises with similar characteristics 

as the retinal vessels. Consequently, led both of the feature extraction methods to have a 

low extraction accuracy wherein Ghassabi’s attained an average of 28.280% while D-

Saddle attained an average of 20.509%. The extracted feature points from these methods 

that located on noises are observed to be on edge of optic disc, retinal nerve fibre layer, 

underlying choroidal vessels and macula. 

The other feature extraction methods such as Harris, SIFT and SURF have no specific 

feature selection module for extracting retinal vessels in their scheme. These feature 

extraction methods were used in the existing feature-based RIR techniques (J. Chen et al., 

2010; Hernandez-Matas et al., 2016; Yang et al., 2007) where the authors focused their 

work on the development of the descriptor and transformation model. Among them, SIFT 

obtained the lowest average extraction accuracy. SIFT is not associated with any 

prominent structure during the extraction process, which leads to a high amount of feature 

points being extracted on the retinal surface. A similar issue is also observed in SURF 

method. In contrast, Harris corner attained the second highest of the average extraction 
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accuracy among all the feature extraction methods because the corner structure is 

considered in their scheme. 

4.6.2 Factors 

Factors such as image size and intensity distribution can affect the performance of the 

feature extraction method. The Spearman's rank-order correlation is computed between 

the factors and the extraction accuracy to measure their relationship as presented in Table 

4.8. The changes in image size have the weakest influence on the extraction accuracy of 

the proposed feature extraction method compared to others (rs = -0.032, p = 0.712). The 

key to this performance is that the proposed feature extraction method has minimal usage 

of rigid threshold or rigid variables. In opposite, SIFT is very sensitive to the changes in 

image size with the strongest correlation among the methods (rs = -0.649, p = <0.001**). 

The correlation shows that the extraction accuracy of SIFT decreases when the image size 

is larger. 

The extraction accuracy of the proposed feature extraction method is significantly 

correlated to the intensity distribution in the image (rs = 0.342, p = <0.001**) indicating 

its performance decreases in the image with less uniform intensity distribution. The 

proposed feature extraction method is highly dependent on the intensity changes to locate 

Table 4.8: Correlations between extraction accuracy (%) and factors. 

Factors 
 Extraction Accuracy 
 Harris SIFT SURF Ghassabi’s D-Saddle Proposed 

Image size 
rs -0.178 -0.649 0.590 -0.142 -0.138 -0.032 

p 0.041* <0.001** <0.001** 0.104 0.114 0.712 

Intensity 

distribution 

rs 0.360 0.138 -0.398 0.314 0.386 0.342 

p <0.001** 0.113 <0.001** <0.001** <0.001** <0.001** 

rs 
 

p 
** 

*  

: 

 

: 

: 

: 

Spearman's rho. Value closes to 0 indicates that the correlation is weak, where the factor 

has minimal influence on the success rate. 

Statistical significance. 

Correlation is significant at the 0.01 level (2-tailed). 

Correlation is significant at the 0.05 level (2-tailed). 
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the curvature structure of the retinal vessels in the feature detection module. Furthermore, 

the proposed feature extraction method does not incorporate any feature enhancement 

algorithm in building the hierarchical scale space. For these reasons, the performance of 

the proposed feature extraction method is affected in the presence of the non-uniform 

intensity distribution in the image. The feature enhancement algorithm such as DoG and 

iiDoG operators can suppress the non-uniform intensity distribution in the image and 

increases the visibility of the retinal vessels. However, at the cost increasing the visibility 

of the noises, thus, it is avoided in the proposed feature extraction method. Contrarily, the 

correlation between SIFT and the intensity distribution is not significant and the weakest 

among all the methods (rs = 0.138, p = 0.113). 

4.7 SUMMARY 

The proposed feature extraction method finds and selects feature points on retinal 

vessels. The retinal vessel is chosen as a feature because it can be found throughout the 

fundus image, repeatable between images and reliable in the unhealthy fundus image. The 

proposed feature extraction method finds the extrema on the curvature structure as 

candidate feature points by comparing the intensity values within the local patches. The 

curvature structure in fundus image represents the shape of the retinal vessel in 3-

dimensional as well as noises such as nerve retinal fibre layer, underlying choroidal 

vessels and exudates. Therefore, the feature selection module is introduced to distinguish 

between the retinal vessels and noises. 

The feature selection module is composed of exclusion and selection processes. The 

exclusion process removes the candidate feature points on noises based on five criteria. 

These criteria are inferred from the sum of the pixel intensity profiles of the retinal vessels 

and noises. Then, the selection process is performed on the remaining candidate feature 

points. The distribution coefficient and selection weightage are calculated for each 
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candidate feature point in the selection process. The selection process is responsible for 

ensuring the selected feature points are distributed throughout the image and selected 

according to the strength of the retinal vessel attributes. 

The proposed feature extraction method is evaluated in terms of its accuracy in 

extracting feature points on retinal vessels. There are four public datasets employed in 

this evaluation, namely, CHASE_DB1, DRIVE, HRF and STARE. These datasets 

include fundus images of various pathological cases with the ground truth of manually 

segmented vessels performed by experts. The performance of the proposed feature 

extraction method is evaluated in these datasets and compared with five feature extraction 

methods that were used in the existing feature-based RIR techniques. These methods are 

Harris corner, SIFT, SURF, Ghassabi’s and D-Saddle. 

The one-way ANOVA analysis performed between the extraction accuracy of all 

feature extraction methods shows that the proposed feature extraction method is 

significantly outperformed the others with the highest average extraction accuracy of 

86.021% (p = <0.001*). Also, the accuracy difference between the proposed feature 

extraction method and the others ranges from 44.408% to 69.857%. Other than that, 

factors such as changes in image size and intensity distribution are investigated for their 

influence on the extraction accuracy. The proposed feature extraction method has shown 

the weakest correlation with the changes in image size among all the methods (rs = -0.032, 

p = 0.712). The weakest influence of the image size on the proposed method is contributed 

by the minimal usage of rigid threshold or rigid variables. However, the performance of 

the proposed feature extraction method is affected in the presence of the non-uniform 

intensity distribution in the image (rs = 0.342, p = <0.001**). The proposed feature 

extraction method is sensitive to the non-uniform intensity distribution because its highly 

dependent on the intensity changes in a local patch to locate the curvature structure. 
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Furthermore, the feature enhancement algorithm such as DoG and iiDoG operators is not 

incorporated in building the hierarchical scale space. 

4.8 CONCLUSIONS 

This chapter presents the proposed feature extraction method for feature-based RIR 

technique to achieve objectives RO1 and RO2. The proposed feature extraction method 

is composed of feature detection module and feature selection module, which considers 

the general and unique characteristics of the retinal vessels as well as noises. The average 

extraction accuracy of the proposed feature extraction method on four datasets is 

significantly outperformed Harris corner, SIFT, SURF, Ghassabi’s and D-Saddle.  
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CHAPTER 5: FEATURE DESCRIPTOR 

5.1 INTRODUCTION 

This chapter presents the proposed feature descriptor method for Stage 3 of the feature-

based fundus image registration (RIR) technique. Section 5.2 discusses the issues in the 

existing feature descriptor methods. Section 5.3 explains the proposed feature descriptor 

method characterising the circular region of the extracted feature points with statistical 

properties. The processes of matching (Stage 4) and estimating geometrical 

transformation (Stage 5) are also explained in Section 5.4 and Section 5.5, respectively. 

The evaluation presented in Section 5.7 focuses on the assessment of the proposed 

feature-based RIR technique that combines all five main stages as previously shown in 

Figure 3.1. Finally, the presented work is summarised and concluded in Section 5.8 and 

Section 5.9, respectively. The mathematical symbols and notation used in this chapter can 

be found in Appendix A. 

5.2 ISSUES IN EXISTING FEATURE DESCRIPTOR METHODS 

From the highlighted feature descriptor methods in Section 2.4.2, the new feature 

descriptor methods are mainly proposed to address various issues in registering multi-

modality retinal images as shown in Table 2.2. In our work, we focus on the registration 

of single modality between colour fundus images. For registering single modality 

between colour fundus images, Sajib K. Saha et al. (2018), Ramli et al. (2017b), Ramli et 

al. (2017a), Hernandez-Matas et al. (2017a), Hernandez-Matas et al. (2017b), Hernandez-

Matas et al. (2016), S. K. Saha et al. (2016), Hernandez-Matas et al. (2015) and Ghassabi 

et al. (2015) employed feature descriptor methods such as SIFT (Lowe, 2004), HOG 

(Dalal & Triggs, 2005), SURF (Bay et al., 2008; Bay et al., 2006), PIIFD (J. Chen et al., 

2010), BRISK (Leutenegger et al., 2011), BRIEF (Calonder et al., 2012) and ALOHA (S. 

Saha & Démoulin, 2012) without any improvement or modifications. The majority of 

these feature descriptor methods are mainly based on the local gradient direction. The 
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local gradient direction is computed from grids within a square patch that is rotated 

according to the dominant orientation surrounding the feature point. Rotating the patch 

allows the assigned descriptor to achieve rotation invariance.  

The local patches with retinal vessels especially in the presence of bifurcation, low 

contrast or narrowed vessels often lack of textural information and exhibit repetitive 

patterns (Abràmoff et al., 2010; Deng et al., 2010). These properties of the retinal vessels 

can hinder from the feature descriptor methods based on local gradient direction to 

distinctively characterise the feature points on retinal vessels (Fang et al., 2019; 

Hinterstoisser et al., 2012; Kushnir & Shimshoni, 2014). The lack of distinctive descriptor 

computed to characterise the feature points will cause a high number of mismatches, 

which can lead to inaccurate estimation of geometrical transformation. For this reason, 

the feature descriptor method based on the local gradient direction can be insufficient to 

characterise the feature points on retinal vessels. Therefore, the proposed feature 

descriptor method considers statistical properties to distinctively characterise the circular 

region of the extracted feature points. 

5.3 PROPOSED FEATURE DESCRIPTOR 

The proposed feature descriptor method describes the feature points with information 

from circumferences of circles surrounding the feature points. Example of the 

circumferences with radiuses of !", !$, !% … !' surrounding (-th feature point (*+) is 

depicted in Figure 5.1. Computing the proposed feature descriptor includes two main 

steps. First, pixels that lie on circumferences surrounding a feature point are located using 

the midpoint circle algorithm. Second, the descriptor is computed from the pixels that lie 

on the circumferences. 
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5.3.1 Locating Pixels on Circumferences 

Generally, the position of a pixel on a circumference for a circle with known radius 

and centre can be determined based on circle function, -(., /) as follows 

-(., /) = (. − .2)$ + (/ − /2)$ − !$ (5.1) 

 

where,  .2 and /2 are the centre coordinate of the circle, . and / are the coordinate of a 

pixel, ! is the radius of the circle. The coordinate of the initial pixel on the circumference, 

45 = (.5, /5) can easily be found at the quadrant of the circle. There are four possible 

initial pixels can be chosen on the circumference as given in Equation (5.2) and visualised 

in Figure 5.2. 

First quadrant : .5 = .2 + ! , /5 = /2 
Second quadrant : .5 = .2 , /5 = /2 + ! 

Third quadrant : .5 = .2 − ! , /5 = /2 
Fourth quadrant : .5 = .2 , /5 = /2 − ! 

 

(5.2) 

 

 

Lets assume the initial pixel of the circumference is at 45 = (.2, /2 + !). The 

coordinate for the next pixel 4" = (.", /") in the clockwise direction can be chosen either 

from the pixel at position (.5 + 1, /5) or (.5 + 1, /5 − 1) as shown in Figure 5.3. To 

  

Figure 5.1: Circumferences 
surrounding a feature point Dn with 

radiuses of r1,	r2,	r3…	rn. 

Figure 5.2: Four possible positions for the 
initial pixel c0	on the circumference. 
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choose one of these pixels, the decision parameter denoted by 7 is computed. The 

decision parameter is inferred from the midpoint coordinate between these two pixels i.e. 

(.5 + 1, /5 −
8
9
) as given below:  

7" = - :.5 + 1, /5 −
"
$
; = (.5 + 1)$ + (/5 −

"
$
)$ − !$ (5.3) 

 

The value of the decision parameter 7 indicates the position of the midpoint coordinate 

between the two candidate pixels relative to the circumference. For example, the decision 

parameter with the value of 7" ≤ 0 indicates that the midpoint coordinate is within the 

circle. Accordingly, the pixel at position (.5 + 1, /5) will be chosen as the next pixel 4" 

as it is closer to the circumference. If the decision parameter 7" > 0, the midpoint 

coordinate between the two candidate pixels is outside the circle. Thus, the pixel at 

position (.5 + 1, /5 − 1) will be chosen as the next pixel (.", /") because it is closer to 

the circumference. The same processes of calculating decision parameter and choosing 

the next pixel are repeated to find the subsequent pixels on the circumference. These 

processes can be simplified as follows: 

  

Figure 5.3: Two possible positions 
for the next pixel c1. 

 Figure 5.4: Eight-way symmetry 
approach. 
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where,	4@A" is the pixel of index B + 1 on a circumference and B is the index of the 

pixel on a circumference. 

To speed up the computation, eight-way symmetry approach is used to allow the 

identification of the pixels on the circumference only from an octant of the circle. The 

eight-way symmetry approach is performed by dividing the circle into eight octants of 

identical size. By calculating the position of a pixel 4@ = (.@, /@) in the second octant 

(shown by the red circle), the position of the corresponding pixels in other octants (shown 

by the green circle) can be found as illustrated in Figure 5.4. 

5.3.2 Computing Feature Descriptor 

After the pixels on the circumferences of all radiuses are obtained, their grayscale 

levels are extracted. Then, the summation, mean and standard deviation are calculated for 

each circumference. These values are concatenated according to the summation, mean 

and standard deviation values to form a descriptor as follows: 

C+ = [EFB", EFB$ … EFB',BGH(",BGH($ …BGH(', EIC", EIC$ … EIC'] (5.5) 

 

where, C+ is the feature descriptor representing the (-th feature point,  K is the total radius, 

EFB' is the summation of the grayscale levels from circumference with radius !', BGH(' 

is the mean of the grayscale levels from the circumference with radius !' and EIC' is the 

standard deviation of the grayscale levels from the circumference with radius !'.  

The radiuses to find the circumferences are empirically set from 1 to 55 with an 

increment of 1. These radiuses are chosen by carefully examining the width of the retinal 

4@A" = L
(.@ + 1, /@)	, 7@ ≤ 0

(.@ + 1, /@ − 1)	, 7@ > 0 

7@A" = L
7@ + (2.@ + 3)	, 7@ ≤ 0

7@ + 2(.@ − /@) + 5	, 7@ > 0
 

(5.4) 
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vessels as in Section 4.4.2.2 and assuming the scale or zoom difference is minimal. The 

concatenated values of summation, mean and standard deviation results in a descriptor 

with a size of P = 165 to represent a feature point as depicted in Figure 5.5. 

5.4 MATCHING 

The matches are obtained by establishing the pairwise distance between the feature 

descriptors in the fixed and moving images. The distances between the feature descriptors 

are computed using the sum of squared differences (SSD) defined as follows: 

RR*(CS+, C@+) = TUCS+(V) − C@+(V)W
$
,

X

YZ"

						V = 1,2,3…P (5.6) 

 

where,	RR*(CS+, C@+) is the sum of squared differences between the feature descriptor 

CS+ and C@+, CS+ is the feature descriptor representing [(-th feature point in the fixed 

image, CB+ is the feature descriptor representing B(-th feature point in the moving 

image, V is the index of the element in the feature descriptor and P is the size of the 

feature descriptor. 

The estimated SSD between the feature descriptors are organised in a FN-by-MN 

correspondence matrix. FN is the total feature points extracted from the fixed image and 

MN is the total feature points extracted from the moving image. Each column of the 

correspondence matrix represents the distances between a feature descriptor CS+ in the 

fixed image to all feature descriptors in moving image, C@+, C@+A", C@+A$ …C\]. The 

smallest SSD value in each column represent the putative matches between the feature 

 
 

Figure 5.5: The proposed feature descriptor represents the concatenated 
information of the summation, mean and standard deviation for each 

circumference. 
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points in the fixed image to their correspond feature points in the moving images as shown 

in Figure 5.6. However, these putative matches contain a high percentage of outliers. 

The outliers are eliminated from the putative matches using M-estimator SAmple 

Consensus (MSAC) algorithm (Torr & Zisserman, 2000). MSAC eliminates the outliers 

when the square root for the sum of squares distance between the matches exceeded a 

specified maximum distance. The matches in the moving image are projected based on 

the nonreflective similarity transformation estimated from two randomly selected 

putative matches. In this study, the maximum distance is set to values that ranged between 

3 and 60 with an increasing step of 3. The random trial is repeated 5000 times while the 

desired confidence to find the maximum number of inliers is set to 99%. 

5.5 GEOMETRICAL TRANSFORMATION 

The inliers obtained during the matching process are used in estimating geometrical 

transformation between fixed and moving images. This study utilised local weighted 

mean transformation to estimate the geometrical transformation. The local weighted 

mean transformation is inferred from a second-degree polynomial transformation within 

a radius of influence across the image  (Goshtasby, 1988). The radius of influence for an 

inlier is calculated from the inlier itself to the furthest neighbouring ^ inliers. The value 

of ^ is ranged between 10 and the total inliers with an increasing step of 10. Then, the 

 

Figure 5.6: Example of the smallest SSD value in a column (highlighted) of the 
correspondence matrix that represents the putative match. 
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moving image is transformed to the orientation of the fixed image according to the 

estimated geometrical transformation. 

5.6 EXPERIMENTAL SETUP 

The performance of the proposed feature-based RIR technique is evaluated in this 

chapter, which includes five main stages as previously depicted in Figure 3.1. These 

stages are pre-processing (Section 3.4),  proposed feature extraction method (Section 4.4), 

proposed feature descriptor method (Section 5.3), matching (Section 5.4) and estimating 

geometrical transformation (Section 5.5). The performance of the proposed feature-based 

RIR technique is compared with existing feature-based RIR techniques, namely, GDB-

ICP (Yang et al., 2007), Harris-PIIFD (J. Chen et al., 2010), Ghassabi’s-SIFT (Ghassabi 

et al., 2015), H-M 16 (Hernandez-Matas et al., 2016), H-M 17 (Hernandez-Matas et al., 

2017a) and D-Saddle-HOG (Ramli et al., 2017b). The feature-based RIR techniques of 

Ghassabi’s-SIFT and D-Saddle-HOG are developed according to its original settings, 

whereas the performances for GDB-ICP, Harris-PIIFD, H-M 16 and H-M 17 are obtained 

from (FIRE: Fundus Image Registration Dataset). The dataset and the metrics used in 

evaluating all the feature-based RIR techniques are explained in the following sub-

sections. 

5.6.1 Datasets 

The proposed and existing feature-based RIR techniques are evaluated on FIRE: 

Fundus Image Registration dataset (Hernandez-Matas et al., 2017c). This dataset is the 

only retinal fundus image registration dataset with ground truth annotation that available 

publicly. The fundus images were acquired using a Nidek AFC-210 fundus camera. The 

images are acquired at the resolution of 2912×2912 pixels and 45° field of view (FOV). 

The FIRE dataset consists of 134 image pairs wherein each pair comprises of fixed and 

moving images. The ground truth annotations are in the form of corresponding points 



 

98 

between fixed and moving images. A total of 10 corresponding points identified by the 

experts are provided for each image pair in the dataset. Examples of the image pairs and 

its ground truth annotation are given in Table 5.1. 

Table 5.1: Descriptions of FIRE dataset. 

Descriptions Category _ Category ` Category a 

Application Super-resolution Image Mosaicking Longitudinal Study 

Total image pairs 71 49 14 

Resolution (pixels) 2912×2912 2912×2912 2912×2912 

Total patients  39  

Age  19 – 67  

Pathological case Diabetic retinopathy 

Anatomical differences 

between fixed and 

moving images 

No No 

Yes (increased of vessel 

tortuosity, microaneury-

sms, cotton-wool, spots) 

Field of view  45º  

Year  2006 to 2015  

Ground truth 10 corresponding points for each image pair 

Author(s) 
Hernandez-Matas, Zabulis, Triantafyllou, Anyfanti, Douma, and 

Argyros (2017c) 

Examples 

(Fundus) 

 

 

 

 

 

Examples  

(Ground truth) 
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The image pairs in FIRE dataset are grouped into three registration applications i.e., 

super-resolution (Category _), image mosaicking (Category `) and longitudinal study 

(Category a). All the image pairs are affected by diabetic retinopathy. The presence of 

the vessel tortuosity, microaneurysms and cotton-wool are also visible on the images. The 

anatomical changes due to progression or remission of retinopathy can be observed 

between fixed and moving images in the longitudinal study application. However, the 

anatomical appearance between fixed and moving images remains unchanged in the 

super-resolution and image mosaicking applications. Other than that, the image pairs in 

the image mosaicking application have a smaller overlapping area that ranges between 

17% to 89% and a larger range of rotation between 6° to 52° compared to other categories. 

Detailed properties of the image pairs in FIRE dataset can be found in Table 5.2. 

5.6.2 Evaluation Metrics 

5.6.2.1 Target Registration Error (TRE) 

The proposed and existing feature-based RIR techniques are evaluated by measuring 

the target registration error (TRE). TRE is an average distance measured in pixel from 10 

corresponding ground truth annotations between fixed image and transformed moving 

image. TRE can be computed as expressed below: 

bKc =
1

defegh
T i(.jklmnopqlr − .jpstuv)

$−(/jklmnopqlr − /jpstuv)
$

jkqkmw

jZ"

 (5.7) 

 

where, d is the index of the corresponding ground truth annotations, defegh is the total of 

the corresponding ground truth annotations, .jpstuv and /jpstuv are the coordinate of the 

d-th ground truth annotation on the fixed image, .jklmnopqlr and /jklmnopqlr are the 

coordinate of the d-th ground truth annotation on the transformed moving image. As 

described in Section 5.4 and Section 5.5, multiple values are assigned for the maximum 
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distance of MSAC and neighbouring ^ inliers of local weighted mean transformation to 

register an image pair. For each combination of these values, TRE is measured and the 

best (minimum) TRE value is selected as the final result for the respective image pair. 

5.6.2.2 Success Rate 

The registration of an image pair is considered successful if the TRE value is below 

than 1 pixel for super-resolution application and 5 pixels for image mosaicking and 

longitudinal study applications (Matsopoulos, Asvestas, Mouravliansky, & Delibasis, 

2004). The registration with TRE larger than these values for the respective application 

is considered as failed. Then, the success rate is computed from the successful registration 

given as follows 

RF44GEE	!HIG(%) =
IyIHz	EF44GEE[Fz	!G-{EI!HI{y(

IyIHz	{BH-G	|H{!E
× 100% (5.8) 

 

The success rate expressed the ability of a feature-based RIR technique to register image 

pairs and meet the specified TRE requirement for a particular application. The statistical 

tests of one-way Analysis of Variance (ANOVA) with Tukey’s post hoc are performed 

to compare the registration success rate between the feature-based RIR techniques. 

5.6.2.3 Factors 

Factors influencing the performance of the feature-based RIR techniques are 

investigated by establishing the Spearman’s rank-order correlation between the factors 

and success rate. The factors investigated are rotation, overlapping area and image 

quality. As these factors are not initially provided by the FIRE dataset, the factors are 

measured as follows. 

The rotation for an image pair is measured from the average angle between 

corresponding ground truth annotations. The overlapping area perceives in percentage is 
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obtained from the overlap area between fixed image and transformed moving image. The 

moving image is transformed to the orientation of the fixed image using affine 

transformation inferred from the corresponding ground truth annotations. 

Three metrics are employed to perceive the image quality of FIRE dataset; mean 

squared error (MSE), difference of peak deviation non-uniformity (UNdiff) and structure 

similarity index (SSIM). MSE represents the intensity difference to describe if the 

intensity on one of the images in the pair is brighter than the other. UNdiff signifies if the 

intensity distribution on one of the images in the pair is more uniformed than the other. 

UNdiff is an absolute value and quantified by subtracting UN measurements between fixed 

and moving images. SSIM describes the similarity of the structure component, which 

indicates if the vessel edges on one of the images in the pair have a higher level of blurring 

effect compared to the other. The blurring effect on the vessel edges can be caused by 

motion or improper focusing. 

The measurement of these factors for each category in FIRE dataset are summarised 

as in Table 5.2. A value of SSIM that close to 1 indicates a high similarity of the structure 

component between images, whereas a high similarity of intensity and intensity 

distribution between images are approximated by a smaller value of MSE and UNdiff. All 

Table 5.2: Properties of image pairs in FIRE dataset. 

Properties/Factors 

(Average) 

Category _	
(Super-resolution) 

Category `	
(Image Mosaicking) 

Category a	
(Longitudinal Study) 

Scale »1 »1 »1 

Overlapping Area (%) 86 – 100 17 – 89 95 – 100 

Rotation (°) 0° – 12° 6° – 52° 1° – 4° 

Image Quality:    
• Intensity difference (MSE)1 17 – 1558 117 – 1069 47 – 1740 
• Difference of intensity 

distribution (UNdiff)
3 0 – 36 0 – 23 1 – 26 

• Structure similarity (SSIM)2 0.779 – 0.940 0.834 – 0.925 0.823 – 0.918 
1Larger value indicates a higher intensity difference between images in the pair. 
2Value close to 1 indicates higher structure similarity between images in the pair. 
3Value close to 0 indicates a similar intensity distribution between images in the pair. 
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the factors are measured on grayscale images at the original resolution. Also, it should be 

noted that the values of the image quality metrics are subjected to image size, conversion 

of coloured image to grayscale, image filtering and image enhancement. Thus, the values 

may be varied between studies. The presented measurements of the image quality metrics 

are obtained from the grayscale images without any image filtering and image 

enhancement. The conversion to the grayscale image is performed as in Equation (3.1). 

Factors influencing the registration success rate of the feature-based RIR techniques 

are investigated using Spearman’s rank-order correlation. The explanation of the 

Spearman’s rho (rs) value can be found in Section 4.5.2.2. The one-way ANOVA and 

Spearman’s rank-order correlation are significant at the 0.05 level identified by a single 

asterisk or at the 0.01 level identified by two asterisks. 

5.7 RESULTS & DISCUSSION 

This section presents and discusses the registration performance of the proposed and 

existing feature-based RIR techniques in FIRE dataset. The registration performance of 

the proposed and existing feature-based RIR techniques were evaluated and measured at 

the original resolution of the FIRE dataset. The performance of the feature-based RIR 

techniques in registering image pairs for super-resolution, image mosaicking and 

longitudinal study applications are compared and discussed in Section 5.7.1. Then, the 

factors influencing the registration performance are presented in Section 5.7.2. 

5.7.1 Registration Accuracy 

Overall, the proposed feature-based RIR technique successfully registered 67.164% of 

the image pairs in the FIRE dataset as presented in Table 5.3. By application, the proposed 

feature-based RIR technique successfully registered 75.510% of the image pairs in the 

image mosaicking application, 66.197% of the image pairs in the super-resolution 

application and 42.857% of the image pairs in the longitudinal study application. The 
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example of the successfully registered image pair in each application for the proposed 

feature-based RIR technique is depicted in Figure 5.7. 

Table 5.3: Descriptive statistics of the registration accuracy for FIRE dataset. The 
highest success rate is marked with bold and italic font. 

Feature-based 
RIR Techniques 

Success rate (%)  TRE of successful registration (pixels) 

Total 
Image1 Mean Mean Std. 

Dev. 
95% Confidence 

Interval for Mean Min Max 
Lower Upper 

Overall 
GDB-ICP 37 27.612  1.988 1.268 1.566 2.411 0.486 4.952 

Harris-PIIFD 5 3.731  2.573 1.613 0.571 4.576 0.785 4.244 

Ghassabi's-SIFT   17 12.687  1.529 1.352 0.834 2.225 0.665 4.917 

H-M 16 22 16.418  1.232 0.865 0.849 1.616 0.554 3.315 

H-M 17 26 19.403  1.399 1.162 0.929 1.868 0.489 4.754 

D-Saddle-HOG 16 11.940  2.166 1.736 1.240 3.091 0.748 4.738 

Proposed 90 67.164  1.892 1.301 1.619 2.164 0.444 4.797 

 Category _ (Super-resolution) 
GDB-ICP 17 23.944  0.783 0.155 0.703 0.863 0.486 0.988 

Harris-PIIFD 2 2.817  0.846 0.086 0.071 1.621 0.785 0.907 

Ghassabi's-SIFT   13 18.310  0.834 0.134 0.753 0.915 0.665 0.996 

H-M 16 18 25.352  0.839 0.118 0.780 0.897 0.554 0.995 

H-M 17 20 28.169  0.800 0.145 0.732 0.868 0.489 0.988 

D-Saddle-HOG 10 14.085  0.895 0.090 0.831 0.960 0.748 0.999 

Proposed 47 66.197  0.818 0.143 0.776 0.860 0.444 0.998 

 Category ` (Image Mosaicking) 
GDB-ICP 16 32.653  3.068 0.840 2.620 3.516 1.946 4.952 

Harris-PIIFD 0 0  N/A2 N/A2 N/A2 N/A2 N/A2 N/A2 

Ghassabi's-SIFT    0 0  N/A2 N/A2 N/A2 N/A2 N/A2 N/A2 

H-M 16 0 0  N/A2 N/A2 N/A2 N/A2 N/A2 N/A2 

H-M 17 1 2.041  3.327 N/A2 N/A2 N/A2 3.327 3.327 

D-Saddle-HOG 2 4.082  3.532 0.636 -2.186 9.250 3.082 3.982 

Proposed 37 75.510  3.067 0.965 2.745 3.388 1.094 4.797 

 Category a (Longitudinal Study) 
GDB-ICP 4 28.571  2.792 0.558 1.903 3.680 2.354 3.603 

Harris-PIIFD 3 21.429  3.725 0.473 2.551 4.899 3.319 4.244 

Ghassabi's-SIFT    4 28.571  3.789 0.882 2.386 5.191 3.082 4.917 

H-M 16 4 28.571  3.004 0.214 2.664 3.343 2.857 3.315 

H-M 17 5 35.714  3.408 0.758 2.467 4.349 2.920 4.754 

D-Saddle-HOG 4 28.571  4.658 0.070 4.546 4.769 4.583 4.738 

Proposed 6 42.857  3.060 0.725 2.299 3.821 2.352 3.927 

Std. Dev. : Standard deviation. 
1Total image pairs with successful registration. 
2Not available. Insufficient number of image pairs with TRE of successful registration available to 

compute the respective measurement. 
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The proposed feature-based RIR technique attained the lowest success rate in the 

longitudinal study application. This is because the anatomical appearance differs between 

images in the pair as the images are taken separated over a long period of time.  

Particularly, the proposed feature-based RIR technique failed to register image pairs when 

a substantial difference in vessel tortuosity and thickness are visible between fixed and 

  
(i) Fixed Image (ii) Moving Image (iii) Registered Image 

(a) Super-resolution Application (Pair _12) 

  
(i) Fixed Image (ii) Moving Image (iii) Registered Image 

(b) Image Mosaicking Application (Pair `7) 

  
(i) Fixed Image (ii) Moving Image (iii) Registered Image 

(c) Longitudinal Study Application (Pair a4) 

Figure 5.7: Example of successfully registered image pair in each application for 
the proposed feature-based technique. The yellow lines indicate the inliers between 
(i) fixed and (ii) moving images. The green ‘o’ and red ‘+’ in (iii) registered image 

indicate the ground truth annotations. 
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moving images. The vessel tortuosity is a vascular anomaly that can affect either the small 

part or entire vascular tree (Ramos, Novo, Rouco, Romeo, Álvarez, & Ortega, 2018). The 

affected part of the retinal vessel appears as twisted or curved compared to its normal 

version in which, straight or gently curved. Furthermore, the vessel tortuosity can shift 

the physical position of the affected vessel on the retina as depicted in Figure 5.8. This 

condition can cause the correctly established inliers on retinal vessels to have 

incomparable physical position. The inliers with incomparable physical position can lead 

to inaccurate estimation of the geometrical transformation particularly, when the local 

transformation is employed. The local transformation applies a different transformation 

to a different part of the image and offers a high degree of flexibility to project the curved 

object such as the retina. 

The proposed feature-based RIR technique employed the local weighted mean 

transformation in its framework. The local weighted mean transformation is a local 

transformation, which computes the second-degree polynomial transformation for each 

inlier within a radius of influence from the inlier itself to the furthest neighbouring ^ 

inliers. As the distances between the neighbouring ̂  inliers of the proposed feature-based 

RIR technique are not too close or sparse, the effect of the incomparable physical position 

can be minimized when the tortuosity difference is small. Therefore, the proposed feature-

based RIR technique successfully registered image pairs with small difference in vessel 

tortuosity but failed when the tortuosity difference is substantial. 

Other than vessel tortuosity, a substantial difference of vessel thickness between fixed 

and moving images also affecting the registration performance of the proposed feature-

based RIR technique. The proposed feature descriptor method relies heavily on the 

structure of the retinal vessel to compute a descriptor. Accordingly, the feature point that 

lies on a thicker vessel in fixed image is represented by different descriptor than its 
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corresponding feature point on a thinner vessel in moving image. The lack of similarity 

between the corresponding descriptors caused a sparse and insufficient amount of the 

inliers being established. The geometrical transformation estimated from these inliers is 

inaccurate and lead to failed registration of the image pairs with a substantial difference 

in the vessel thickness.   

The proposed feature-based RIR technique yields a higher success rate in the image 

mosaicking and super-resolution applications compared to its performance in the 

longitudinal study application. Mainly because of the anatomical appearance remain 

unchanged between the images for these two applications as they were acquired during 

the same examination period. However, registering image pairs from these applications 

exhibit other forms of challenges.  

For example, the super-resolution application that consists of image pairs with a large 

overlapping area and a small rotation requires a very accurate registration with an error 

less than 1 pixel. Due to the requirement of a very accurate registration, the proposed 

feature-based RIR technique failed to register 33.803% of the image pairs from the super-

resolution application. The TRE obtained for the failed image pairs are in between 1.034 

pixels to 3.866 pixels. 

   
(a) Fixed image (b) Moving image (c) Registered image 

Figure 5.8: Difference of vessel tortuosity observed in the image pair of the 
longitudinal study application. 
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Contrarily, registering image pairs from the image mosaicking application is the most 

challenging among the applications due to the combination of small overlapping area and 

a large rotation. Despite the challenge, the proposed feature-based RIR technique 

successfully register 75.510% of the image pairs in the image mosaicking application. 

The proposed feature-based RIR technique failed to register 24.490% of the image pairs 

with the failed TRE ranged between 5.213 pixels to 273.91 pixels. 

Table 5.4: Comparisons of success rate (%) between the proposed feature-based 
RIR technique and others using one-way ANOVA and Tukey’s post hoc. 

Feature-based RIR Mean 
Difference 

(I-J) 

Std. 
Error p 95% Confidence Interval Techniques 

(I) (J) Lower Bound Upper Bound 
Overall 

Proposed GDB-ICP 39.552 4.555 <0.001* 26.090 53.010 

  Harris-PIIFD 63.433 4.555 <0.001* 49.970 76.890 

  Ghassabi's-SIFT 54.478 4.555 <0.001* 41.020 67.940 

  H-M 16 50.746 4.555 <0.001* 37.290 64.210 

  H-M 17 47.761 4.555 <0.001* 34.300 61.220 

 D-Saddle-HOG 55.224 4.555 <0.001* 41.760 68.680 

Category _ (Super-resolution) 
Proposed GDB-ICP 42.254 6.687 <0.001* 22.46 62.05 

  Harris-PIIFD 63.380 6.687 <0.001* 43.58 83.18 

  Ghassabi's-SIFT 47.887 6.687 <0.001* 28.09 67.68 

  H-M 16 40.845 6.687 <0.001* 21.05 60.64 

  H-M 17 38.028 6.687 <0.001* 18.23 57.82 

 D-Saddle-HOG 52.113 6.687 <0.001* 32.32 71.91 

Category ` (Image Mosaicking) 
Proposed GDB-ICP 42.857 5.255 <0.001* 27.269 58.446 

  Harris-PIIFD 75.510 5.255 <0.001* 59.922 91.099 

  Ghassabi's-SIFT 75.510 5.255 <0.001* 59.922 91.099 

  H-M 16 75.510 5.255 <0.001* 59.922 91.099 

  H-M 17 73.469 5.255 <0.001* 57.881 89.058 

 D-Saddle-HOG 71.429 5.255 <0.001* 55.840 87.017 

Category a (Longitudinal Study) 
Proposed GDB-ICP 14.286 17.908 0.985 -39.71 68.28 

  Harris-PIIFD 21.429 17.908 0.894 -32.57 75.43 

  Ghassabi's-SIFT 14.286 17.908 0.985 -39.71 68.28 

  H-M 16 14.286 17.908 0.985 -39.71 68.28 

  H-M 17 7.143 17.908 1.000 -46.86 61.14 

 D-Saddle-HOG 14.286 17.908 0.985 -39.71 68.28 

* 

p 

Std. Error 

: 

: 

: 

The mean difference is significant at the 0.05 level. 

Statistical significance. 

Standard error. 
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The proposed feature-based RIR technique is further evaluated by comparing its 

performance with six existing feature-based RIR techniques using one-way ANOVA 

analysis as presented in Table 5.4. The analysis shows that the overall success rate of the 

proposed feature-based RIR technique is significantly outperformed the others (p = 

<0.001*). Among the existing feature-based RIR techniques, GDB-ICP obtained the 

highest overall success rate of 27.612% while Harris-PIIFD attained the lowest overall 

success rate with only 3.731%. 

Image pairs from the image mosaicking application are the most challenging to register 

for Harris-PIIFD, Ghassabi’s-SIFT, H-M 16, H-M 17 and D-Saddle-HOG. All of them 

obtained the lowest success rate in this application compared to their performance in the 

super-resolution and longitudinal study applications. Furthermore, Harris-PIIFD, 

Ghassabi’s-SIFT and H-M 16 failed to register any of the image pairs from the image 

mosaicking application whereas H-M 17 and D-Saddle-HOG only obtained success rate 

of 2.041% and 4.082%, respectively. However, GDB-ICP exhibits a contrast performance 

where its success rate of 32.653% in image mosaicking application is the highest 

compared to its performance in other applications.  

H-M 17 outperformed the other existing feature-based RIR techniques in the super-

resolution and longitudinal study applications with success rate of 28.169% and 35.714%, 

respectively. In the longitudinal study application, all feature-based RIR techniques faced 

a similar challenge to register image pairs with a difference in vessel tortuosity and vessel 

thickness. However, the existing feature-based RIR techniques failed to register these 

image pairs including those with a small difference in vessel tortuosity and vessel 

thickness. In contrast, the proposed feature-based RIR technique only failed to register 

image pairs with a substantial difference of vessel tortuosity and thickness. 
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5.7.2 Factors 

There are three factors considered in this section; overlapping area, rotation and image 

quality between fixed and moving images. The influences of the factors on the success 

rate are investigated by examining their relations as illustrated in Figure 5.9 and 

computing the Spearman’s rank-order correlation as outlined in Table 5.5. The 

Spearman’s rho (rs) and statistical significance (p) are discussed and compared between 

the feature-based RIR techniques. For this evaluation, the successful registration is set at 

TRE less than 5 pixels despite their registration application and the success rate of all the 

image pairs in the FIRE dataset are considered in the analysis. 

5.7.2.1 Overlapping Area 

Registering an image pair with a small overlapping area can be challenging due to a 

limited intersected region available between images and prior knowledge of the 

overlapping area is unavailable. To successfully register a retinal image pair with a small 

overlapping area, it is crucial to extract feature points located on retinal vessels and 

distributed throughout the image. This will increase the chance of the inliers being 

established between images and then accurately estimate the geometrical transformation. 

  
(a) (b) 

Figure 5.9: Relations between success rate and (a) overlapping area (b) rotation. 
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Table 5.5: Correlations between success rate (%) and factors. The weakest correlation for each factor is marked with bold and italic font. 

Factors 
 Success Rate 
  GDB-ICP Harris-PIIFD Ghassabi’s-SIFT H-M 16 H-M 17 D-Saddle-HOG Proposed 

Overlapping Area (%) 
rs 0.443 0.732 0.795 0.785 0.773 0.769 0.286 
p <0.001** <0.001** <0.001** <0.001** <0.001** <0.001** 0.001** 

Rotation (°) 
rs -0.380 -0.723 -0.766 -0.763 -0.765 -0.745 -0.261 
p <0.001** <0.001** <0.001** <0.001** <0.001** <0.001** 0.002** 

Im
ag

e 
qu

al
ity

1 Intensity difference (MSE) 
rs -0.117 -0.244 -0.187 -0.197 -0.257 -0.235 -0.261 
p 0.177 0.004** 0.031* 0.022* 0.003** 0.006** 0.002** 

Difference of intensity 
distribution (UNdiff) 

rs 0.172 0.178 0.206 0.208 0.210 0.199 0.011 
p 0.047* 0.039* 0.017* 0.016* 0.015* 0.021* 0.896 

Structure similarity (SSIM) 
rs -0.103 -0.018 -0.085 -0.057 -0.017 -0.027 0.074 
p 0.238 0.837 0.331 0.512 0.849 0.760 0.396 

 

rs 
p 
** 
* 

 

: 
: 
: 
: 

 

Spearman’s rho. Value closes to 0 indicates that the correlation is weak, where the factor has minimal influence on the success rate.  
Statistical significance. 
Correlation is significant at the 0.01 level (2-tailed). 
Correlation is significant at the 0.05 level (2-tailed). 

1Image quality between fixed and moving images. 
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The overlapping area between fixed and moving images in the FIRE dataset ranges 

from 17% to 100%. Generally, the success rate of all feature-based RIR techniques are 

positive and significantly influenced by the presence of the overlapping area (rs > 0, p = 

<0.001**). The positive correlation specifies that the success rate increases with the 

increment of the overlapping area. 

As presented in Section 4.6, the proposed feature extraction method has demonstrated 

the ability to accurately extract feature points on retinal vessels of various datasets. This 

ability explains the weakest correlation between the success rate of the proposed feature-

based RIR technique and the overlapping area compared to the existing feature-based RIR 

techniques (rs = 0.286, p = 0.001**). Additionally, the success rate of the proposed feature-

based RIR technique decreases at a slower rate than the existing feature-based RIR 

techniques as the overlapping area becoming smaller as shown in Figure 5.9(a). The 

registration ability of the proposed feature-based RIR technique is limited when the 

overlapping area is smaller than 41%.  

A similar limitation is also observed on the performance of GDB-ICP but with a more 

sensitive relation with the overlapping area (rs = 0.443, p = <0.001**). GDB-ICP utilises 

SIFT detector as feature extraction in their scheme. The matches established from the 

feature points initiate the iterative registration process. The registration process expands 

surrounding the initial matches by mapping the “corner” or “face” points. However, the 

established initial matches can be incorrect as the SIFT feature points are extracted from 

various part of the retina. The incorrect initial matches can falsely initiate the iterative 

registration process which results in inaccurate estimation of the geometrical 

transformation. Nevertheless, the success rate of GDB-ICP declines at a slower rate as 

the overlapping area becoming smaller compared to the other existing feature-based RIR 

techniques. This performance is contributed by their unique iterative registration process. 
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The other existing feature-based RIR techniques of Harris-PIIFD, Ghassabi’s-SIFT, 

H-M16, H-M 17 and D-Saddle-HOG performed similarly when the overlapping area 

becoming smaller given by close Spearman’s rho values that ranged between rs = 0.732 

and rs = 0.795, (p = <0.001**). These feature-based RIR techniques are very sensitive in 

the presence of the small overlapping area when failed to register image pairs that are 

approximately smaller than 87%. 

5.7.2.2 Rotation 

The correlation computed between success rate and rotation express two capabilities 

of the feature descriptor method. First is the capability to assign distinctive information 

representing the corresponded feature points. A descriptor with distinctive information 

allows correct matches or inliers to be established and results in an accurate estimation of 

the geometrical transformation. This capability is studied in this section by examining the 

success rate when the rotation between images is minimal (≤ 1°). Second is the capability 

to assign similar descriptor to the corresponded feature points even in the presence of the 

rotation. This capability is presented by examining the success rate when the angle of the 

rotation varies between images. 

The feature descriptor methods in the existing feature-based RIR techniques are 

generally based on the gradient direction computed from the grids within a square patch. 

These feature descriptor methods are HOG, SIFT and PIIFD. Both HOG and PIIFD 

compute the descriptor from a square patch with a fixed size of 16-by-16 pixels and 40-

by-40 pixels, respectively. In contrast, SIFT employed a varying size of the square patch 

to compute the descriptor. The size of the square patch, which ranges between 8-by-8 

pixels to 14-by-14 pixels is varied according to the octave position of the feature point. 

For the first evaluation of the feature descriptor capability to assign distinctive 

information, the existing feature-based RIR techniques achieved a much lower success 
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rate than the proposed feature-based RIR technique when the rotation is minimal as 

depicted in Figure 5.9(b). The success rates of the existing feature-based RIR techniques 

are led by GDB-ICP (59.701%) and followed by H-M 17 (56.716%), D-Saddle-HOG 

(55.970%), H-M 16 (53.731%) and Harris-PIIFD (47.761%). These performances 

demonstrate that the descriptor based on the gradient direction information is insufficient 

and indistinguishable to represent corresponded feature points on fundus images. 

Particularly, when the descriptor is computed for the feature points on the noises with a 

similar characteristic as the vessels, which can lead to a high amount of the incorrect 

matches. 

Obtaining distinctive information from the retinal vessels in fundus image to represent 

the corresponded feature points can be challenging as the retinal vessels are lack of 

textural information and comprise of repetitive patterns (Abràmoff et al., 2010; Deng et 

al., 2010). For those reasons, we concatenate statistical properties of summation, mean 

and standard deviation derived from the pixels on circumferences surrounding the feature 

point. The concatenated statistical properties are calculated from circumferences with 

radiuses ranged between 1 to 55 pixels, which helps to distinguish the feature points on 

retinal vessels with various thickness. These statistical properties are chosen as they are 

repeatable and distinguishable between corresponded feature points. The proposed 

feature-based RIR technique achieved the highest success rate (85.075%) among all when 

the rotation is minimal. The highest success rate proves that the proposed feature 

descriptor method assigns highly distinctive information to represent the corresponded 

feature points. 

In the second evaluation, the capability of the feature descriptor in assigning similar 

descriptor to corresponded feature points in the presence of various rotation is studied. 

The rotation between fixed and moving images in FIRE dataset ranges between 0° to 52°. 
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A negative and significant correlation between the success rate and the rotation is 

observed for all feature-based RIR techniques as presented in Table 5.5. The negative 

correlation implies that the success rate decreases as the rotation is larger.  

The rotation has the weakest impact on the proposed feature-based RIR technique 

represented by the smallest Spearman’s rho compared to others (rs = -0.261, p = 0.002**). 

This performance is contributed by the ability of the proposed feature descriptor method 

to assign similar descriptor representing the corresponded feature points in the presence 

of rotation between images. The proposed feature-based RIR technique outperformed the 

others up to the rotation angle of 33° as depicted in Figure 5.9(b). Beyond the angle of 

33°, the proposed feature-based RIR technique attained a similar performance as GDB-

ICP. Both the proposed feature-based RIR technique and GDB-ICP capable of registering 

image pairs with rotation between 0° to 48° but failed to register when the rotation is 

larger than 49°. However, GDB-ICP is more sensitive (rs = -0.380, p = <0.001**) to the 

presence of the rotation indicated by a steeper trendline in Figure 5.9(b) compared to the 

proposed feature-based RIR technique. The other existing feature-based RIR techniques 

performed similarly in the presence of the rotation with close Spearman’s rho values that 

ranged between rs = -0.723 and rs = -0.766. 

5.7.2.3 Image Quality 

Components of image quality investigated in this study are intensity difference, 

difference of intensity distribution and similarity of structure component. These 

components are perceived by mean squared error (MSE), difference of peak deviation 

non-uniformity (UNdiff) and structure similarity index (SSIM), respectively. Details 

measurement of these components on FIRE dataset is summarised in Table 5.2. 

First, Spearman’s correlation is computed between the success rate and MSE to 

investigate the influence of the intensity difference on the registration performance. 
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Particularly, to investigate the ability of the feature descriptor method to similarly 

describe the corresponded regions with a difference in intensity. Among the feature-based 

RIR techniques, intensity difference has a minimal impact on the success rate of GDB-

ICP expressed by the smallest Spearman’s rho and insignificant correlation (rs = -0.117, 

p = 0.177) as listed in Table 5.5. In contrast, the proposed feature-based RIR technique 

has a significant and the strongest correlation with intensity difference compared to others 

(rs = -0.261, p = 0.002**). This is because of the proposed feature descriptor method is 

highly dependent on the grayscale level to describe the circular region surrounding the 

feature point. Thus, dissimilar descriptors are assigned to represent the corresponded 

feature points which lead to incorrect matches. For this reason, we employed MSAC 

algorithm in our feature-based RIR technique to remove the incorrect matches or outliers. 

Removing the outliers reduces the sensitivity of the proposed feature-based RIR 

technique towards the intensity difference. 

The second component of the image quality investigated is the difference of the 

intensity distribution between fixed and moving images perceived by UNdiff. The non-

uniform intensity distribution in fundus image is generally caused by human error or 

uneven absorption of light due to the spherical retina. The examples of the non-uniform 

intensity distribution found in fundus image are excessive light exposure near the frame 

boundary and dark or white spot. The non-uniform intensity distribution can obscure the 

visibility of the retinal vessels in the affected area. This condition limits the intersected 

region available between images which present a similar challenge as registering image 

pair with a small overlapping area. 

Therefore, it is crucial for the feature extraction method to extract feature points that 

are distributed all over the image. A highly distributed feature points will ensure a high 

number of matches to be established between the unaffected area. The success rate of the 
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proposed feature-based RIR technique has the weakest and insignificant correlation with 

UNdiff among the feature-based RIR techniques (rs = 0.011, p = 0.896). The correlation 

signifies the ability of the proposed feature extraction method to extract feature points 

that are distributed throughout the image. Contrarily, the existing feature-based RIR 

techniques are significantly affected by UNdiff with Spearman’s rho values ranged 

between rs = 0.172 to rs = 0.210. 

Next, we investigate the correlation between the success rate and the similarity of the 

structure component. The similarity of the structure component measured by SSIM 

describes the clarity or sharpness of the vessel edges between fixed and moving images. 

The similarity of the structure component has a minimal impact on the registration 

performance of all feature-based RIR techniques represented by the insignificant 

correlations between the success rate and SSIM. Mainly, because the feature descriptor 

methods in the feature-based RIR techniques do not rely on the vessel edges to compute 

the descriptor. 

5.8 SUMMARY 

The proposed feature descriptor method describes the extracted feature points with 

concatenated values of summation, mean and standard deviation. These statistical 

properties are calculated from the pixels on circumferences surrounding the feature 

points. The radiuses to find the circumferences are set from 1 to 55 pixels with an 

increment of 1. In the evaluation, the proposed feature-based RIR technique is evaluated, 

which include pre-processing (Section 3.4), proposed feature extraction method (Section 

4.4), proposed feature descriptor method (Section 5.3), matching (Section 5.4) and 

estimating geometrical transformation (Section 5.5). The proposed feature-based RIR 

technique was tested on FIRE dataset and compared with six existing feature-based RIR 

techniques, namely, Harris-PIIFD, GDB-ICP, Ghassabi’s-SIFT, H-M 16, H-M 17 and D-
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Saddle-HOG. The evaluation is conducted in two parts. The first part of the evaluation 

investigates the performance of the feature-based RIR techniques in registering image 

pairs from super-resolution, image mosaicking and longitudinal study applications. Then, 

factors influencing the registration performance of the feature-based RIR techniques were 

investigated. 

In the first part of the evaluation, the proposed feature-based RIR technique obtained 

the lowest success rate in the longitudinal study application (42.857%) compared to its 

performance in other applications. The proposed feature-based RIR technique failed to 

register the image pairs in this application when a substantial difference in vessel 

tortuosity and thickness are present between images. The vessel tortuosity is a vascular 

anomaly that causes the vessels to twist or curve over a period of time. Furthermore, the 

physical position of the affected vessels shifts from its previous position as the tortuosity 

increased. This causes the established inliers to be on the corresponded vessels with an 

incomparable position on the retina. As the local transformation is employed in the 

proposed feature-based RIR technique, the individual transformation applied to these 

inliers lead to inaccurate registration of the image pair with a substantial difference in 

vessel tortuosity. Other than that, a substantial difference in vessel thickness between 

images in the pair can lead to dissimilar descriptor being computed for the corresponded 

feature points. This is because the proposed feature descriptor method relies heavily on 

the structure of the retinal vessel to compute a descriptor. 

The proposed feature-based RIR technique yielded the highest success rate in the 

image mosaicking application (75.510%) and followed by the super-resolution 

application (66.197%) as the anatomical appearance remain unchanged between images. 

However, registering image pairs from super-resolution application requires a very 

accurate registration with an error less than 1 pixel whereas registering image pairs from 
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image mosaicking application requires the ability to register image pairs with a 

combination of small overlapping area and large rotation. The analysis of one-way 

ANOVA shows that the proposed feature-based RIR technique is significantly 

outperformed the others with an overall success rate of 67.164% (p = <0.001*). Among 

the existing feature-based RIR techniques, GDB-ICP obtained the highest overall success 

rate (27.612%) while Harris-PIIFD attained the lowest overall success rate (3.731%). 

In the second part of the evaluation, three factors are investigated, namely, overlapping 

area, rotation and image quality between fixed and moving images. The components of 

the image quality include intensity difference, difference of intensity distribution and 

similarity of structure component. The influences of these factors on the success rates are 

investigated by computing the Spearman’s rank-order correlations. 

The factor of the overlapping area has the weakest impact on the performance of the 

proposed feature-based RIR technique indicated by the smallest Spearman’s rho value (rs 

= -0.286, p = 0.001**). This demonstrates the ability of the proposed feature extraction 

method to extract feature points on retinal vessels and distributed throughout the image. 

Extracting feature points throughout the image is crucial to ensure sufficient inliers can 

be established between the overlapping area. However, the registration ability of the 

proposed feature-based RIR technique is limited when the overlapping area is smaller 

than 41%. The existing feature-based RIR techniques are more sensitive in the presence 

of the small overlapping area represented with a larger Spearman’s rho values that ranged 

between rs = 0.443 and rs = 0.795 (p = <0.001**). 

The proposed feature-based RIR technique outperformed the others in registering 

image pair with various rotation (rs = -0.261, p = 0.002**). Particularly, the proposed 

feature-based RIR technique capable of registering image pairs with a rotation ranges 

between 0° to 48°. This evaluation presents the ability of the proposed feature descriptor 
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method to assign distinctive information representing the corresponded feature point and 

to assign similar descriptor even in the presence of various rotation. The existing feature-

based RIR techniques exhibit a more sensitive correlation with rotation perceived by a 

larger Spearman’s rho values between rs = -0.380 and rs = -0.766 (p = <0.001**).  

The proposed feature descriptor method is highly dependent on the grayscale level to 

describe the circular region surrounding the feature point. Consequently, the proposed 

feature-based RIR technique is sensitive to the changes of intensity between images (rs = 

-0.261, p = 0.002**). In contrast, intensity difference between images has minimal impact 

on the success rate of GDB-ICP as its correlation is not significant with the smallest 

Spearman’s rho among all (rs = -0.261, p = 0.002**).  

The non-uniform intensity distribution in fundus image can obscure the visibility of 

the vessels at the affected area. Registering image pair with a difference of intensity 

distribution present a similar challenge as registering image pair with a small overlapping 

area. To register this image pair, the geometrical transformation is estimated between the 

inliers from the unaffected area. This will require a sufficient number of inliers being 

established between the unaffected correspondence area. From the computed correlations, 

the difference of intensity distribution has the weakest impact on the proposed feature-

based RIR technique compared to the others with insignificant correlation (rs = 0.011, p 

= 0.896). Contrast correlations are observed between the success rates of the existing 

feature-based RIR techniques and the difference of intensity distribution. Their 

correlations are significantly correlated to the difference of intensity distribution with 

Spearman’s rho values ranged between rs = 0.172 to rs = 0.210.  

The similarity of structure component, which describes the clarity or sharpness of the 

vessel edges between fixed and moving images shows minimal impact on the registration 

performance of all feature-based RIR techniques. Mainly because the feature descriptor 
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method in the feature-based RIR techniques do not rely on the vessel edges to compute 

the descriptor. 

5.9 CONCLUSIONS 

This chapter presents the proposed feature descriptor method to achieve objective 

RO3. The proposed feature-based RIR technique is evaluated in this chapter, which 

includes pre-processing (Section 3.4),  proposed feature extraction method (Section 4.4), 

proposed feature descriptor method (Section 5.3), matching (Section 5.4) and estimating 

geometrical transformation (Section 5.5). The overall success rate of the proposed 

feature-based RIR technique on FIRE datasets is significantly outperformed GDB-ICP, 

Harris-PIIFD, Ghassabi’s-SIFT, H-M 16, H-M 17 and D-Saddle-HOG. 
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CHAPTER 6: CONCLUSIONS & FUTURE WORKS 

6.1 ACHIEVEMENT OF OBJECTIVES 

The primary aim of this research is to propose a feature-based retinal image 

registration (RIR) technique for fundus image. To achieve the primary aim, several 

objectives are outlined as presented in Section 1.4. The achievements of these objectives 

are summarised as follows. 

The first objective (RO1) of this research is to investigate the general and unique 

characteristics of the retinal vessels in local patches of fundus image. The descriptions of 

these characteristics are presented in Section 4.3 Characteristics of Retinal Vessels and 

Noises in Local Patches. In this section, the characteristics of the retinal vessels and noises 

observed in the gradient and binary patches are examined for their similarity and 

differences. From our observation on these patches, the retinal vessels are generally 

appeared as a continuous curvature structure across the 3-dimensional gradient patch. The 

continuous curvature structure is consistent between the retinal vessels but differed in 

terms of width and depth depending on the size and contrast of the vessels. Therefore, the 

curvature structure without specifying its width and depth is employed in the feature 

detection module (Section 4.4.1.2 STEP 2: Detect local extrema and Section 4.4.1.3 STEP 

3: Test extrema if within curvature structure) of the proposed feature extraction method 

as it can be a reliable characteristic in detecting feature points on the retinal vessels. 

However, the noises such as single and multiple underlying choroidal vessels, retinal 

nerve fibre layer, microaneurysm and exudates also exhibit continuous curvature 

structure in 3-dimensional gradient patch. The retinal vessels and noises can be further 

distinguished by examining their unique characteristics in the intensity profiles extracted 

from the 2-dimensional gradient and binary patches. The binary patch with a retinal vessel 

exhibits a continuous straight line structure that is represented by a long horizontal 

intensity profile when it is extracted along the straight line structure. The intensity profile 
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extracted from the cross-sectional line intersecting the similar continuous straight line 

structure in the gradient patch resembles an inverse Gaussian-like shape. The inverse 

Gaussian-like shape with weaker intensity can also be observed in the intensity profile of 

the noises from the gradient patch. The intensity profiles of the retinal vessels and noises 

can be distinguished by examining the position of its valley with the maximum depth on 

y-axis and x-axis. These unique characteristics observed in the intensity profiles extracted 

from the 2-dimensional gradient and binary patches are incorporated as part of the feature 

selection module (Section 4.4.2.2 STEP 5: Exclusion process) of the proposed feature 

extraction method. 

The second objective (RO2) of this research is to propose a feature extraction method 

based on the characteristics of the retinal vessels. The development of the proposed 

feature extraction method is described in Section 4.4: Proposed Feature Extraction. The 

proposed feature extraction method is composed of feature detection (Section 4.4.1 

Feature Detection) and feature selection (Section 4.4.2 Feature Selection) modules. The 

feature detection module finds extrema within the curvature structure throughout the 

hierarchical Gaussian scale space as candidate feature points. The curvature structure is 

generally observed in 3-dimensional gradient patch with retinal vessels. The utilisation 

of the hierarchical Gaussian scale space allows the candidate feature points being 

extracted on various sizes of the retinal vessels. Then, the exclusion and selection 

processes in the selection module remove the candidate feature points on noises and select 

the final feature points. The exclusion process removes the candidate feature points on 

noises according to five criteria. These criteria are the unique characteristics of the retinal 

vessels and noises observed on the sum of intensity profiles extracted from the gradient 

and binary patches. The remaining candidate feature points are selected as the final 

feature points in the selection process according to the strength of the retinal vessel 

attributes. Furthermore, the selection process ensures that the selected feature points are 
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distributed throughout the image. The performance of the proposed feature extraction 

method is evaluated on four public datasets. These datasets consist of fundus images with 

ground truth of the manually segmented vessels performed by experts. The extraction 

accuracy of the proposed feature extraction method is compared with five feature 

extraction methods previously used in the existing feature-based RIR techniques, namely, 

Harris corner, SIFT, SURF, Ghassabi’s and D-Saddle. From the experiments, the 

proposed feature extraction method obtained an overall extraction accuracy of 86.021% 

on four datasets. This extraction accuracy is significantly outperformed the existing 

feature extraction methods (p = <0.001*). Furthermore, the performance of the proposed 

feature extraction method is unaffected by the changes of the image size (rs = -0.032, p = 

0.712) but significantly affected by the presence of non-uniform intensity distribution in 

the image (rs = 0.342, p = <0.001**). 

The third objective (RO3) of this research is to propose a feature descriptor method 

that characterises the feature points based on distinctive information. The proposed 

feature descriptor method describes the extracted feature points with concatenated 

statistical properties of summation, mean and standard deviation as described in Section 

5.3 Proposed Feature Descriptor. These statistical properties are calculated from the 

pixels on circumferences surrounding the feature points. Then, the performance of the 

proposed feature-based RIR technique in registering fundus images is evaluated. The 

proposed feature-based RIR technique comprises of five main stages, namely, pre-

processing, proposed feature extraction method (RO2), proposed feature descriptor 

method (RO3), matching and estimating geometrical transformation. The proposed 

feature-based RIR technique is evaluated on FIRE dataset and compared against six 

existing feature-based RIR techniques; GDB-ICP, Harris-PIIFD, Ghassabi’s-SIFT, H-M 

16, H-M 17 and D-Saddle-HOG. The first part of the evaluation investigates the 

performance of the proposed feature-based RIR techniques in super-resolution, image 
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mosaicking and longitudinal study applications. The overall success rate of the proposed 

feature-based RIR technique is the highest (67.164%) among the feature-based RIR 

techniques and significantly outperformed the others. The proposed feature-based RIR 

technique yields the highest success rate in the image mosaicking application (75.510%) 

followed by super-resolution application (66.197%). The proposed feature-based RIR 

technique obtained the lowest success rate in longitudinal study application (42.857%) 

due to changes in the anatomical appearance between images such as the substantial 

difference in vessel tortuosity and thickness. The second part of the evaluation examines 

the influences of the overlapping area, rotation and image quality on the success rate. 

Among these factors, only the overlapping area and rotation will be described here to 

reflect our objectives RO2 and RO3. The registration performance of the proposed 

feature-based RIR technique is significantly affected by the presence of the overlapping 

area (rs = -0.286, p = 0.001**) and rotation (rs = -0.261, p = 0.002**) between images. 

However, the impact of these factors on the proposed feature-based RIR technique are 

the weakest compared to the existing feature-based RIR techniques.  

6.2 CONTRIBUTIONS 

There two main contributions of this research to the body of knowledge. The first main 

contribution of this research is the development of a novel feature extraction method for 

feature-based RIR technique. The existing feature extraction methods are mainly without 

a proper feature selection module to accurately extract feature points on retinal vessels. 

In opposite, the proposed feature extraction method is composed of feature detection and 

feature selection modules that consider the characteristics of the retinal vessels and noises. 

This allows the proposed feature extraction method to remove the feature points on noises 

with similar structure representation as retinal vessels while extracts feature points on the 

vessels with varying sizes and contrast.  
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The second main contribution of this research is the development of a novel feature 

descriptor method for feature-based RIR technique. The existing feature descriptor 

methods are mainly utilised gradient direction surrounding the square region of the 

feature points as the descriptor. Contrarily, the proposed feature descriptor method 

characterised a feature point with concatenated statistical properties surrounding the 

point. This descriptor is distinctive in characterising the corresponded feature points on 

retinal vessels with the presence of rotation compared to the traditional feature descriptor 

method that mainly utilised the information of the gradient direction. 

The proposed feature extraction method and the proposed feature descriptor method 

are evaluated on a total of five public datasets. Four of the datasets evaluate the 

performance of the proposed feature extraction method and the other one evaluates the 

performance of the proposed feature-based RIR technique. The proposed feature-based 

RIR technique was evaluated in registering fundus images from super-resolution, image 

mosaicking and longitudinal study applications, which mainly performed in clinical 

settings. 

6.3 FUTURE WORK 

There are several aspects of the proposed feature-based RIR technique that can be 

improved in the future. First, the proposed feature extraction method is highly dependent 

on the intensity changes in the local patch to locate the curvature structure. Therefore, 

improving the approach in locating the curvature structure with less dependency on the 

intensity changes can increase the performance of the proposed feature extraction method 

in fundus image with non-uniform intensity distribution. Second, the proposed feature 

descriptor method is highly susceptible in the presence of the anatomical changes between 

image. Addressing this issue can improve the usability of the proposed feature-based RIR 

technique in the longitudinal study application. Third, employing a hierarchy 
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transformation model can further improve the registration performance of the proposed 

RIR technique. The hierarchy transformation model project the image by iteratively 

performed the registration from the low-order transformation to the higher-order 

transformation.  This transformation model reduces the error of over transformation that 

mainly observed when a local transformation is applied to the image pair with minimal 

distortion such as in super-resolution application. Finally, the proposed feature-based RIR 

technique can be expanded for other modality of the retinal images. 
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