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FUSION-FEATURES AND VISUAL-DICTIONARY IMAGE RECOGNITION 

METHODS FOR APPLE CLASSIFICATION IN SMART MANUFACTURING 

ABSTRACT 

Smart manufacturing enables an efficient manufacturing process to optimize 

production. The optimization is performed through data analytics that requires reliable 

and informative data as input. Therefore, in this research, two image recognition feature 

extraction methods namely Curvelet Wavelet-Gray Level Co-occurrence Matrix (CW-

GLCM) and Fuzzy-Spatial Pyramid Matching (F-SPM) are proposed to provide reliable 

inputs for vision-based apple classification in smart manufacturing. Feature extraction is 

one of the major steps that could influent the efficiency of the manufacturing process. 

The CW-GLCM method is a feature extraction of fusion-features with Decision Tree 

classifier, while the F-SPM method uses a visual-dictionary based method to extract 

features of visual pattern and the output is process by Support Vector Machine (SVM) 

classifier. To evaluate the performance of the proposed methods, they are compared with 

five existing methods, which are Bag of Words (BOW), Spatial Pyramid Matching 

(SPM), Gray Level Co-occurrence Matrix (GLCM) Texture analysis, Convolutional 

Neural Network (CNN) and Contrast‐Limited Adaptive Histogram Equalization + GLCM 

+ Extreme Learning Machine (CLAHE+GLCM+ELM). Three datasets which are NDDA, 

NDDAW and DA datasets with a total of 1310 apple images are collected to test the 

proposed methods. The NDDA and NDDAW datasets are both binary-class of defective 

and non-defective apple dataset, with NDDAW contains more low-quality region images 

compared to the NDDA. Conversely, the DA dataset comprised of five different types of 

defective apples to be used in multi-class tests. The proposed methods are trained and 

evaluated using 10-fold cross-validation. Their classification accuracy, precision and 

recall rate are then measured. Training and testing times are also recorded. From the 

evaluation, the proposed F-SPM method attained 98.15% classification accuracy, 96.30% 
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precision and 100% recall for NDDA, 91.07% for accuracy, 100% precision and 84.85% 

recall for NDDAW, 86.33% for accuracy, 91.43% precision and 85.00% recall for DA 

dataset.  The F-SPM method outperformed the existing methods especially for NDDAW 

and DA datasets. Alternatively, the CW-GLCM method able to obtain 98.15% accuracy, 

96.30% precision and 100% recall for NDDA, 89.11% accuracy, 86.79% precision and 

91.01% recall for NDDAW, 85.20% of accuracy, 88.33% precision and 85.00% recall for 

DA dataset. The proposed CW-GLCM also shows the highest percentage (100%) for all 

measurements (accuracy, precision and recall) and it even outperform others in 

recognizing the Bruise defect. These results indicate that both proposed methods are 

reliable and have the potential to be used for vision classification in smart manufacturing.  

 

Keywords: Image recognition; feature extraction; classification; smart manufacturing; 

data analytics. 
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KAEDAH PENGECAMAN IMEJ BERASASKAN CIRI-GABUNGAN (FUSION-

FEATURES) DAN KAMUS-VISUAL (VISUAL-DICTIONARY) BAGI 

PENGELASAN EPAL DI DALAM PENGILANGAN PINTAR 

ABSTRAK 

Pengilangan pintar mampu membantu meningkatkan kecekapan dan 

mengoptimumkan pengeluaran. Pengoptimuman dapat dilakukan melalui data analisis 

yang memerlukan maklumat data yang boleh dipercayai sebagai input. Oleh itu, dalam 

kajian ini, dua kaedah pengekstrakan ciri pengecaman imej iaitu Curvelet Wavelet-Gray 

Level Co-occurrence Matrix (CW-GLCM) dan Fuzzy-Spatial Pyramid Matching (F-

SPM) dicadangkan bagi proses pengelasan epal berasaskan visi mesin di dalam 

pengilangan pintar. Pengekstrakan ciri adalah salah satu langkah utama yang dapat 

mempengaruhi kecekapan proses pembuatan.  Kaedah CW-GLCM adalah pengekstrakan 

ciri-gabungan (fusion-features) dan menggunakan pengelas Pepohon Keputusan 

(Decision Tree), manakala kaedah F-SPM menggunakan kaedah berasaskan kamus-

visual (visual-dictionary) untuk mengekstrak ciri-ciri corak visual dan menggunakan 

pengelas Support Vector Machine (SVM). Untuk menilai prestasi kaedah-kaedah yang 

dicadangkan, kaedah-kaedah tersebut dibandingkan dengan lima kaedah yang sedia ada 

iaitu Bag of Words (BOW), Spatial Pyramid Matching (SPM), Gray Level Co-occurrence 

Matrix (GLCM) Texture analysis, Convolutional Neural Network (CNN) and Contrast‐

Limited Adaptive Histogram Equalization + GLCM + Extreme Learning Machine 

(CLAHE+GLCM+ELM). Tiga set data iaitu NDDA, NDDAW dan DA set data yang 

berjumlah 1310 imej epal dikumpulkan bagi menilai kaedah yang dicadangkan. NDDA 

dan NDDAW adalah set data bagi kelas perduaan imej epal yang berpenyakit atau rosak 

(defective) dan imej epal yang tidak menunjukkan sebarang penyakit atau rosak (non-

defective), dimana set data bagi NDDAW mengandungi lebih banyak rantau berkualiti 

rendah berbanding NDDA. Sebaliknya, set data DA terdiri daripada lima jenis imej epal 
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berpenyakit atau rosak yang akan digunakan dalam ujian multi-kelas. Kaedah yang 

dicadangkan dilatih dan dinilai menggunakan 10-fold cross-validation. Kadar ketepatan 

pengelasan, kejituan dan perolehan kembali (recall) bagi kaedah-kaedah tersebut 

kemudiannya diukur. Jumlah masa yang diambil bagi proses latihan dan ujian juga 

direkodkan. Berdasarkan penilaian yang dijalankan, kaedah F-SPM mencapai ketepatan 

pengelasan sebanyak 98.15%, 96.30% kejituan dan 100% perolehan kembali (recall) bagi 

NDDA, 91.07% ketepatan, 100% kejituan dan 84.85% perolehan kembali (recall) bagi 

NDDAW, 86.33% ketepatan, 91.43% kejituan dan 85.00% perolehan kembali (recall) 

bagi set data DA. Kaedah cadangan F-SPM melebihi ketepatan pengelasan semua kaedah 

yang lain terutamanya bagi set data NDDAW dan DA. Kaedah CW-GLCM pula 

memperoleh ketepatan sebanyak 98.15%, 96.30% kejituan dan 100% perolehan kembali 

(recall) bagi  NDDA, 89.11% ketepatan, 86.79% kejituan dan 91.01% perolehan kembali 

(recall) bagi NDDAW, 85.20% ketepatan, 88.33% kejituan dan 85.00% perolehan 

kembali (recall) bagi set data DA. CW-GLCM yang dicadangkan juga menunjukkan 

peratusan tertinggi (100%) terhadap semua pengukuran (ketepatan, kejituan dan 

perolehan kembali (recall)) serta dapat mengatasi semua kaedah yang lain dalam 

mengenal pasti epal lebam (Bruise). Keputusan-keputusan ini menunjukkan bahawa 

kedua-dua kaedah yang dicadangkan boleh dipercayai dan mempunyai potensi untuk 

digunakan bagi pengelasan visi mesin di dalam pengilangan pintar. 

 

Kata kunci: Pengecaman imej; pengekstrakan ciri; pengelasan; pengilangan pintar; 

data analisis. 
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1 

CHAPTER 1: INTRODUCTION 

This chapter presents a brief introduction to smart manufacturing, image recognition 

and motivation behind this research work. Then, problem statement, research questions, 

research objectives and the research scopes are outlined. The contribution and 

significance of this research are also explained. Finally, the overview structure of this 

thesis is presented. 

 

1.1 Introduction 

Smart manufacturing employs a high level adaptability of computer control and 

various technologies into the existing manufacturing process in optimizing the 

productivity. A huge volume, variety and velocity of data in smart manufacturing or 

referred to as big data, offers an opportunity not only for managing large amount of 

information, but also to improved diagnostics and prognostics capabilities (Moyne & 

Iskandar, 2017; Nagorny, Lima-Monteiro, Barata, & Colombo, 2017). The analytics in 

the manufacturing process can shift from a reactionary to a predictive practice by 

improving the existing capabilities such as product defect detection and supporting new 

capabilities for future planning and prediction (Raghupathi & Raghupathi, 2014; Wan et 

al., 2017). In delivering high quality predictive solution for future planning, the data 

quality is the most important big data factor (Moyne & Iskandar, 2017). The effective and 

accurate method is required to provide reliable information as the input for analytics 

models to make a better decision (Shin, Woo, & Rachuri, 2014). 

Therefore, in this research, the reliability of image recognition method to classify 

between defective and non-defective apple including types of defect for automated 

inspection and sorting processes is investigated. The defective and non-defective effect 
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including types of the defective information can be further used as the input for analytics 

model for future prediction. The research focuses on the detection of suitable features and 

feature extraction method that able to increase the classification accuracy of binary-class 

defective and non-defective apple including multi-class classification types of defects 

apple. The apple classification is challenging due to the physical and biological influence 

such as the presence of low-quality regions of bright features or flecks features on the 

apple skin and the appearances of the defects can be similar to the stem ends or calyxes 

that are the natural part of the apple. As agriculture product, apples have different colors 

depending on its cultivar as well as various types of defect and severity, which makes 

detecting between defective and non-defective challenging. 

 In fruit production of agriculture industry, apple have the highest production rate and 

had steadily increase over the year as reported by United States Department of Agriculture 

(USDA) (USDA, 2017) (see Figure 1.1). The proposed method could be beneficial to 

help on the production productivity and improving the product quality of apple. This is 

possible since the proposed method can be implemented in the inspection process of the 

manufacturing for automatic inspection and sorting processes. Further data analytics can 

also be performed based on the current production data of the defective and non-defective 

including types of the defect in apple production to improve the apple growth and 

processing efficiency as illustrate in Figure 1.2. However, this requires accurate and 

reliable informative data as input for analytics. The detection and extraction of important 

features such as low-quality region and the spatial information is crucial to differentiate 

between defective and non-defective apples, including types of the defect. Failure to 

detect these features may reduce the classification accuracy. 

For this reason, two new image recognition feature extraction methods are proposed. 

The first proposed method called Curvelet Wavelet-Gray Level Co-occurrence Matrix 
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(CW-GLCM) is the feature extraction method of fusion-features based on Gray Level Co-

occurrence Matrix (GLCM) method and used the Decision Tree as classifier. The second 

proposed method called Fuzzy-Spatial Pyramid Matching (F-SPM) is the feature 

extraction of visual-dictionary features inspired from Spatial Pyramid Matching (SPM) 

method and use the Support Vector Machine (SVM) classifier.  

The GLCM method is selected since it can analyze and describe the spatial relationship 

of a neighboring pixels on the surface structure of the images properties. However, this 

method is dependent on the images texture information (Maule, Shete, Wani, & Dawange, 

2015), which can be unstable on the low-quality region. Thus, the features may not be 

effectively extracted from the low-quality region images.  

Alternatively, the SPM is chosen due to the spatial layout information included in the 

method that will help in distinguishing between the defect or natural part of stem end or 

calyx of the apple. However, the limitation of the SPM method is that it generates large 

numbers of unnecessary and redundant high dimensionality features (Chanti & Caplier, 

2018; Lin, Tsai, Chen, & Ke, 2016; Penatti, Silva, Valle, Gouet-Brunet, & Torres, 2014). 

These irrelevant features may affects the stability of the method and reduce performance 

on apple classification. Therefore, it is important to propose new image method for 

defective and non-defective apple even with low-quality region images including types 

of the defect to suite the problem stated previously. 
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Figure 1.1: Fruits production recorded between 2005-2016. The graph is 
obtained from Ministry of Agriculture (USDA, 2017). 
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Figure 1.2: Illustration for smart manufacturing which employ visual sensors that enable automated inspection, sorting and advanced 
further analytics to improve productivity (defective (D), non-defective (N), Scab (Sb), Rot (Rt), Cork Spot (Ct), Blotch (Bh) and Bruise (Be))1. 

 

1 Ismail, A., Idris, M. Y. I., Ayub, M. N., & Por, L. Y. (2018). Vision-Based Apple Classification for Smart Manufacturing. Sensors, 18, 4353.  
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1.2 Problem Statement 

In image recognition, attaining the capability of human recognition remains a 

challenge (Ying Zhang, Chen, Huang, & Gao, 2019). It is become more challenging for 

defective and non-defective apple classification including types of defects. It requires 

image recognition method that is capable to detect and extract low-quality region features 

and the spatial information in the images to precisely classify between defective with non-

defective apple. However, the existing image recognition methods may not be feasible to 

detect these kinds of features and subsequently, poses a great research problem. 

The detection performance of the image recognition method behaves differently with 

respect to the type of object and the image’s information complexity. The existing image 

recognition methods reported in the literature focus on the use of the texture, keypoint 

and visual-dictionary features. The texture based image recognition method such as 

GLCM can analyze and describes the spatial relationship of neighboring pixels on the 

surface structure of the image. The GLCM method is an effective method to recognize 

the object with texture information but ineffective when different objects exhibit a similar 

texture and low-quality regions (Fahrurozi, Madenda, & Kerami, 2016; Maule et al., 

2015). 

The keypoint features extensively used in image recognition due to their various 

advantages. It is initially designed for matching between two images (Fan, Jin, Wang, 

Zhang, & Li, 2019). However, the ability of solely dependent on keypoint feature is 

limited to the classification of the same object from the same images. This is due to 

difficulties to match the keypoint between the same object for a different image. Other 

than that, exclusively dependent on keypoint feature unable to define a shape or images 

due to non-uniform distribution. Thus, the keypoint feature requires a complementary 
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method to encode the information of the neighborhood keypoint for the classification 

task. 

The visual-dictionary based image recognition method utilizes keypoint patches or 

Dense regular grid patches to extract visual patterns (visual words) from the images. 

Examples of the well-known visual-dictionary based method are Bag of Words (BOW) 

and SPM. However, the visual-dictionary based method generates a large number of 

unnecessary and redundant high dimensionality features (Chanti & Caplier, 2018; Q. Li, 

Peng, Li, & Ren, 2017; Lin et al., 2016; Penatti et al., 2014; Yan, Xu, Xu, Lin, & Li, 

2012). These irrelevant features can reduce the stability and performance of the method. 

From the issues mentioned above, the features utilized in the existing image 

recognition methods are limited in the classification of apple images which contains low-

quality region and requires spatial information. There are two major concerns of the 

existing image recognition methods for apple classification. These concerns can be 

summarized as follows: 

i. Texture based image recognition methods such as GLCM have difficulty to 

distinguish different object with quite similar texture and images with low-

quality region.  

ii. Visual-dictionary based methods (i.e. BOW and SPM) generates large numbers 

of unnecessary and redundant high dimensionality features, therefore these 

irrelevant features can reduce the stability and performance of the method. 

Therefore, this thesis proposed two feature extraction methods for image 

recognition to extract features from the low-quality region and spatial information that 

reduce irrelevant features so that only significant features are selected for further 

classification. These methods are proposed for binary-class classification of defective and 
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non-defective apples including low-quality region images. In this research, apart from 

investigating between the binary-class defective and non-defective apple, the second 

problem concentrate on investigating the defective apple and extended to multi-class type 

of defects. The multi-class classification between types of defects allows the recognition 

of the specific defective type. This include various severity of defects whether they are 

obvious or unobvious defect.  

 

1.3 Research Questions 

The research questions for this thesis include: 

i. What are the characteristics of the apple images? 

ii. What does the effect of low-quality region and spatial information on apple 

images? 

iii. How to extract low-quality region on apple images? 

iv. How to extract spatial information on apple images? 

v. How the proposed method improves the performance of other existing image 

recognition methods in extracting low-quality region on apple images? 

vi. How the proposed method include spatial information and selects only significant 

features for further classification to reduce unnecessary features for apple 

classification? 

vii. How the proposed method improves the classification performance of the existing 

image recognition methods? 

 



9 

1.4 Research Objectives 

The main aim of this research is to propose feature extraction image recognition 

methods to detect and classify defective and non-defective apples even in the presence of 

the low-quality region images including types of defects. This aim is achieved with the 

following objectives: 

i. To investigate the suitability of the existing image recognition methods for apple 

classification. 

ii. To propose a set of fusion-features that able to effectively classify between 

defective and non-defective apple images including images with low-quality 

region.  

iii. To propose visual-dictionary features that eliminate unnecessary high 

dimensionality features, where the elimination of the unnecessary features can 

increase the accuracy performance of the apple classification methods including 

their types of defects. 

iv. To evaluate the classification performance of the proposed image recognition 

methods. 

 

In the first objective, the main focus is to investigate the strength and limitations of the 

existing image detection and recognition methods that can be applied to apple 

classification. On the other hand, the second objective is looking into methods for 

detecting and extracting suitable features for classifying images with low-quality region. 

It is believed that the introduction of highly informative fusion-features able to enhance 

the feature detection on low-quality image region, which will lead to the increase of 

classification accuracy between defective and non-defective apple. In the third objective, 

a method to extract only significant features from spatial layout information is devised. 
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For this objective, unnecessary and redundant high dimensionality features from the 

spatial layout information (extracted using SPM method) is reduced or eliminated.  These 

irrelevant features can reduce the accuracy performance in apple classification. Therefore, 

a visual-dictionary feature extraction method is proposed to reduce unnecessary features 

produced by the SPM method.  The selection of only reliable and significant features is 

expected to increase the accuracy performance in apple classification including their types 

of defects. In the fourth objective, the performance of the proposed image recognition 

methods on apple classification will be evaluated and analyzed. The performances of the 

proposed image recognition methods are also compared with the existing image 

recognition methods. 

 

1.5 Research Scopes and Limitations 

The scope and limitation of this research are outlined as follows:  

i.  This research focuses on the image recognition method for apple classification. 

ii. The datasets used in the experiments is limited to apple images. 

 

1.6 Thesis Contributions 

This research proposed two image recognition methods of CW-GLCM and F-

SPM. These methods are proposed to detect and classify binary-class classification of 

defective and non-defective apples including low-quality region images and multi-class 

classification between types of defects. The CW-GLCM is a fusion-features based on the 

GLCM Texture analysis method whereas the F-SPM is a visual-dictionary feature based 

on the SPM method. The performances of CW-GLCM and F-SPM are evaluated and 
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compared with the existing image recognition methods on three datasets. Additional 

contributions of this thesis are outlined as follows: 

i. The limitations of the existing image recognition methods are identified 

from the conducted literature review. 

ii. The limitations of the existing image recognition methods on apple 

classification are established through performance evaluation and 

analysis. 

iii. A new image recognition method based on the GLCM Texture analysis 

method is implemented using a proposed fusion-features for the detection 

on the low-quality region of apple images. 

iv. A new image recognition method of the visual-dictionary features is 

proposed by incorporating the spatial layout information of the SPM. The 

method concentrates on reduces unnecessary SPM features through Fuzzy 

logic detection to include only significant features for classification and 

improving the detection of the defective apple. 

v. Finally, the directions of the future research are presented. 

 

1.7 Significance of Research 

This research proposed new image recognition methods for binary-class 

classification of defective and non-defective apple images including low-quality region 

image and multi-class classification between types of defects. The proposed methods are 

tested on three newly created apple datasets, namely NDDA, NDDAW and DA. The 

effectiveness and reliability of the proposed methods in the binary-class and multi-class 

classifications of the apple images will benefit the manufacturing industry in optimizing 

the productivity. The proposed method can be used for automatic inspection and sorting 
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processes. Other than that, further data analytics can also be performed based on the 

current production data of the defective and non-defective apple including the types of 

defective in apple production. The data analytics identifies and learns the patterns for 

future planning and prediction, which would help in improving the apple growth and 

processing efficiency. 

 

1.8 Thesis Overview 

This thesis is divided into six chapters as summarised in Figure 1.3. The summary of 

each chapter is briefly described as follows: (The thesis interpolates materials from the 

article’s title “Vision-Based Apple Classification for Smart Manufacturing” and 

“Investigation of Fusion Features for Apple Classification in Smart Manufacturing” 

written by Ismail et al., (Ismail, Idris, Ayub, & Por, 2018; Ismail, Idris, Ayub, & Yee, 

2019); the first author is the author of this thesis). 
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Figure 1.3: Overview and organization of this thesis. Arrow shows the chapters 
are combined to achieve the thesis goal. 

 
 

Chapter 1  
(Introduction)  

Smart Manufacturing and Image 
Recognition 

Research Problems & Objectives 

Chapter 2  
(Literature Review)  

Smart Manufacturing for Machine 
Vision Background 

Related Work on Machine Vision 
Classification and Problem 

Identifications 

Chapter 3  
(Research Methodology)  

Data Collection & Proposed 
Methods Design 

Chapter 4  
(CW-GLCM Method) 

Proposed image recognition method based 
on fusion-features for defective and non-
defective apple classification including 

images with low-quality region 

Chapter 5 
(F-SPM Method)  

Proposed image recognition method 
based on visual-dictionary features for 
binary classification of defective and 
non-defective apple including multi-
class classification types of defects  

Chapter 6 
(Conclusion)  

Conclusion and future work direction 
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Chapter 1 introduces the image recognition technologies in smart manufacturing. The 

related problems of image recognition in the apple classification are clearly defined. 

Then, the research questions, objectives, research scopes and the motivation of this 

research are presented. 

Chapter 2 presents the overview of the smart manufacturing. Then, the related image 

recognition methods for machine vision classification in the literature are reviewed and 

analyzed for their strength and limitation. The related image recognition methods include 

statistical, morphology and spectral, model-based and deep learning approaches.  

Chapter 3 describes the overall methodology in this research. The chapter contains plans, 

structure and strategy of investigation, data acquisition and explanation of the proposed 

methods. 

Chapter 4 explains the proposed CW-GLCM method which based on the GLCM method 

incorporating Curvelet and Wavelet transform. The CW-GLCM method is demonstrated 

in binary-class classification of defective and non-defective apple images including 

images with low-quality region. 

Chapter 5 presents the second proposed method of F-SPM. The F-SPM method improves 

the drawbacks of the proposed CW-GLCM method in detecting defective apples by 

incorporating spatial layout information of SPM. The F-SPM method also reduces the 

unnecessary SPM features through Fuzzy logic detection to include only significant 

features for further classification. The effectiveness of the F-SPM method in the binary-

class classification of defective and non-defective apple images is also extended to 

recognizing the types of defective apples in the multi-class classification. The multi-class 

classification between types of defects allows the recognition of the specific defective 

type when the testing images belong to the certain defective category. 
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Chapter 6 summarizes the findings of the proposed CW-GLCM and F-SPM methods. 

Then, the direction for future research is suggested. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter introduces the smart manufacturing and machine vision using image 

recognition method for classification. First, the overview of smart manufacturing and 

machine vision classification are presented. Then, the image recognition methods 

covering the statistical, morphology and spectral, model-based and deep learning 

approaches are reviewed. The review discusses the strength and limitation of these 

methods in the defective and non-defective classification. Furthermore, the potential of 

these methods in the classification of the defective and non-defective apple images 

including the types of defects are presented. Finally, brief discussions of the methods 

utilized in the proposed methods are provided. 

 

2.1 Smart Manufacturing 

The smart manufacturing representing the manufacturing revolution which integrates 

high level adaptability of computer control and various technologies into the existing 

manufacturing process. The integration offers the manufacturing intelligence that can 

increase flexibility, quality of the production process and optimize productivity 

(Rüßmann et al., 2015; J. Wang, Ma, Zhang, Gao, & Wu, 2018). The statistics had 

reported 82% of the companies that employ smart manufacturing experienced increase in 

efficiency and 45% of the companies experienced increase in customer satisfaction (J. 

Wang et al., 2018). There are two important concepts in smart manufacturing which are 

data and automation (L. Li, Ota, & Dong, 2018). The data can be acquired via sensors at 

any level of the manufacturing process. These sensory data can be learned and analyzed 

using computational intelligence. The computational intelligence is an important part of 

the manufacturing intelligence to enable accurate decision making for automation in the 

manufacturing process. The computational intelligence has been widely investigated at 



17 

different lifecycle stages of the manufacturing industry covering the concept 

development, design, evaluation, production, operation and sustainment as shown in 

Figure 2.1. 

 

Figure 2.1: Integration of computational intelligent in smart manufacturing 
lifecycle (J. Wang et al., 2018). 

 

This research emphasizes the importance of computational intelligence in smart 

manufacturing. Particularly, the implementation of the machine vision through vision-

based classification in the manufacturing lifecycle stages. The vision sensor data collected 

across the manufacturing level can be used for vision-based classification to enable 

automatic inspection, sorting processes and further data analytics based on the current 

production data. The analytics process will identify and learn the patterns for future 

planning and prediction to improve production and processing efficiency. 



18 

2.2 Machine Vision 

The technological advances in sensors, machines and internet system have driven 

interest for machine vision system in many industries such as agriculture, food processing 

industry, medical devices technology, environmental monitoring, security surveillance 

and others (Da Xu, He, & Li, 2014; Mehdizadeh, Minaei, Hancock, & Torshizi, 2014; 

Neves, Mehdizadeh, Tscharke, de Alencar Nääs, & Banhazi, 2015; Semeniuta, Dransfeld, 

Martinsen, & Falkman, 2018; B. Zhang et al., 2014). The implementation of the machine 

vision system in smart manufacturing can potentially optimize productivity by exploiting 

visual sensing technologies with the evaluation of big data (Ebrahimi, Khoshtaghaza, 

Minaei, & Jamshidi, 2017; Koch, Georgieva, Kasireddy, Akinci, & Fieguth, 2015). The 

visual sensing technologies acquire the data at any level of the manufacturing process that 

can be transmitted, shared and exchanged to improve the product quality and the 

production productivity. While the evolution of big data which refers to a huge volume, 

variety and velocity of data in smart manufacturing offers an opportunity not only for 

managing large amount of information, but also offers improvement on the diagnostics 

and prognostics capabilities (Moyne & Iskandar, 2017; Nagorny et al., 2017). The 

analytics in the manufacturing process can shift from a reactionary to a predictive practice 

by improving the existing capabilities such as product defect detection and supporting 

new capabilities for future planning and prediction (Raghupathi & Raghupathi, 2014; 

Wan et al., 2017). 

In general, the machine vision for the defect detection and classification use vision 

sensors to acquire images and computer vision solution to detect and classify the desired 

features (Ebrahimi et al., 2017; Semeniuta et al., 2018). The computer vision extracts 

important features from the images to facilitate the computer understanding and 

interpretation of the contents in the images (K. K. Patel, Kar, Jha, & Khan, 2012; B. Zhang 
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et al., 2018). Basically, the image processing method use for machine vision to automate 

the defect detection and classification are built upon image recognition method. 

 

2.3 Image Recognition Method for Machine Vision Classification 

This section presents the image recognition method for machine vision classification 

of defective and non-defective as well as other classification tasks. In any classification 

tasks, identifying relevant and important features is an essential first step to accurately 

represent the image information. Then, the extracted features are learned using the 

classifier in the classification process to identify the object (Koch et al., 2015). The 

defective classification presents a unique challenge. In contrast to other classification 

task, there are some criterions that makes defective classification is more challenging. In 

defective classification, the types of defects and its severity influence the outcome of the 

classification. Thus, a further strategy is required to precisely detect the defective region 

and classify between the defective and non-defective. 

The general workflow of the image recognition method as presented in Figure 2.2 

consists of two main phases, namely feature extraction and feature classification. These 

phases represent the image in a way that the computer can understand and perform the 

classification task on those representations. The feature extraction phase extracts relevant 

or important features from an image and use it for recognizing the object (X. Chen, 

Kopsaftopoulos, Wu, Ren, & Chang, 2019). The features are the measurable 

characteristic of the object such as color, shape, edge, texture, keypoint and visual-

dictionary features. The similarity between objects can also be determined through these 

features.  
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The classification phase assigns the extracted features to probability classes based on 

their similarity then be classified into its classes using a classifier (Antonucci & Corani, 

2017; Zhao, Zheng, Xu, & Wu, 2019). The classifiers compare the input features with the 

stored pattern to find the best matching class. 

 

 

Figure 2.2: Image recognition workflow. 

 

This research focuses on the effective feature extraction method and suitable feature 

selection in classifying between defective and non-defective apple images including low-

quality region images and recognizing the types of defects. The image recognition method 

for classification can be categorized into statistical, morphology and spectral, model-

based and deep learning approaches as depicted in Figure 2.3. Each category and related 

classification that suits this research are discussed in the following subsections. 
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Figure 2.3: Categories of image recognition method for classification. 

 

2.3.1 Statistical  

The statistical approach image recognition method is widely adopted in many 

classification areas especially in the defect detection and classification of the agricultural 

product (L. Li et al., 2018). The statistical method is preferred because its capabilities to 

measure the spatial distribution of the pixel values in the image. Various statistical 

approaches were proposed to extract features from the image ranging from first order 

statistics to higher order statistics such as Histogram, Local Binary Patterns (LBP) and 

GLCM. 

Histogram method is a simple and low-level statistical based image recognition 

method that invariant to translation, rotation, and insensitive to the exact spatial 

distribution of the color pixels. The histogram method is widely used to capture the color 

features of the image in HIS (hue, saturation, intensity) color space. The histogram 

represents the distribution of the color in a region of an image by counting the pixels with 

a given set of color values. 
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Kazmi et al. utilized Histogram with Linear Discriminant Analysis (LDA) classifier 

for weed detection and classification in sugar beet fields (Kazmi, Garcia-Ruiz, Nielsen, 

Rasmussen, & Andersen, 2015). The work addresses the weed detection in sugar beet 

field under natural, outdoor conditions using color features. The color features are defined 

based on the color space in the image (Singha & Hemachandran, 2012). Kazmi et al. 

reported high classification accuracy for their work in between 94.05% to 97.83%. 

However, this work is limited in the consideration of only color features. Solely 

dependent on color features can be challenging to classify between defective and non-

defective apple as the apple varies depending on its cultivar and maturity level. 

Therefore, B. Zhang et al. (B. Zhang et al., 2015) proposed automatic lightness 

correction with GLCM, RGB (red, green, blue) and HIS methods to extract color, texture 

and other statistical features from Fuji apple. The extracted features are classified as 

defective and non-defective Fuji apple using weighted Relevance Vector Machine (RVM) 

classifier. This work is intended to improve the detection of the defect region in Fuji 

apple. For selecting relevant features, I-RELIEF algorithm is used. However, the I-

RELIEF algorithm introduces blind selection problem and increases the complexity in 

the method.  

Mokhtar et al. (Mokhtar et al., 2015) introduced the defective and non-defective 

classification of tomato leaves based on the texture features. The texture features are 

properties representing the surface and structure of an image (ping Tian, 2013). Mokhtar 

et al. used the GLCM method to extract texture features and the SVM classifier with 

different kernel functions for classification. In the GLCM method, the texture features are 

extracted from a co-occurrence matrix based on the selection of the GLCM features to be 

observed depending on the texture data encountered (Fahrurozi et al., 2016).  
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The combination of Local Binary Pattern (LBP) with the GLCM method to extract 

features is presented in (Chowdhury, Verma, & Stockwell, 2015). The LBP (Ojala, 

Pietikäinen, & Harwood, 1996) is a texture descriptor where the texture in the image is 

described using histogram of label obtained from thresholding the neighborhood pixels 

with the centre  pixel (Al-Hammadi, Muhammad, Hussain, & Bebis, 2013; Silva, 

Bouwmans, & Frélicot, 2015). Although the LBP operator was initially intended for 

texture descriptor, various modifications have been proposed to extend its applicability 

in various recognition fields (Papakostas, Koulouriotis, Karakasis, & Tourassis, 2013). 

However, the capability of the LBP operator is limited in capturing dominant features of 

large scale structures (Abdulrahman, Gwadabe, Abdu, & Eleyan, 2014; Ojala, 

Pietikäinen, & Mäenpää, 2002). 

Though there are many LBP and its variants (Silva et al., 2015) such as Moment-Based 

Local Binary Patterns, Classic LBP, Elliptical Local Binary Pattern (ELBP), Uniform 

ELBP, Local Directional Pattern (LDP), Mean-ELP (M-ELBP) and others have shown 

the potential in many applications, the LBP method captures the pattern in the image 

based on the circular pattern of the neighborhood. This can limit the performance of the 

LBP and its variants to detect the low-quality region on the apple skin for defective and 

non-defective apple classification. To detect the low-quality region on apple images, a 

more specific spatial directional method is required to extract texture at different 

directions and orientation covering the low-quality region on the apple skin. 

The GLCM is an effective method to extract texture information (Mondal, Kole, & 

Roy, 2017; Sthevanie & Ramadhani, 2018) where it can describe the relationship of the 

neighboring pixels in the image. Thus, Kurtulmuş et al. (Kurtulmuş & Ünal, 2015) 

incorporated GLCM with Gray Level Run Length Matrix (GLRLM) on the LBP method 

to improve its capabilities in capturing the color texture features. The GLRLM was 
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proposed by Galloway (Galloway, 1974) to describe texture features. To extract color 

texture features, the images are converted to HSI and luminance-chrominance in blue-

chrominance in red (YCbCr) color models. The YCbCr space is chosen in their work 

because of its coordinate system that sensitive to the depth value (Oni, Ojo, Alabi, 

Adebayo, & Amoran, 2018). Then, sets of feature models are optimized with Principal 

Component Analysis (PCA), Stepwise Discriminant Analysis (SDA) and Recursive 

Feature Elimination (RFE) feature selections. However, the PCA can completely overlap 

the data from different classes (Cong & Duan, 2015), consequently, reduces the 

classification accuracy. Similarly, Capizzi et al. (Capizzi, LO SCIUTO, Napoli, 

Tramontana, & WOŹNIAK, 2016) also includes the color features in addition to the 

texture features to improve the detection of the orange dataset. The color information of 

the images is represented by hue, saturation and value (HSV) space whereas texture by 

the GLCM. These features are classified using Radial Basis Probabilistic Neural Network 

(RBPNN) classifier. Despite promising results in the classification of the defective 

oranges, the method can be ineffective in the presence of low-quality image region. 

Moallem et al. (Moallem, Serajoddin, & Pourghassem, 2017) proposed statistical, 

textural and geometric features for golden delicious apple classification using the SVM 

classifier. The GLCM method is used to extract textural features, which are contrast, 

correlation, energy, homogeneity and entropy. The method achieved convincing accuracy 

(89.20%–92.50%) for grading the golden delicious apple but the accuracy decreases when 

the defective region is close to the stem ends area. 

The selection of the textural features is further extended in (Olaniyi, Adekunle, 

Odekuoye, & Khashman, 2017). Olaniyi et al. proposed a Texture analysis method based 

on eight features from first order statistic and second order statistic, which is, the GLCM. 

The first order features are mean, variance and standard deviation, whereas the second 
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order are contrast, correlation, energy, homogeneity and entropy. The method was tested 

using three classifiers of Radial Basis Function (RBF) model, SVM and Backpropagation 

Neural Network. The method achieved the classification accuracy of 96.25% up to 100% 

and improved the performance in (Moallem et al., 2017) by utilizing the first order 

statistic features. However, utilizing the texture based method alone limits the capability 

of the method to distinguish between different object with similar texture representation  

and images with low-quality region (Fahrurozi et al., 2016; Y. Li, Wang, Tian, & Ding, 

2015). 

 Recently, W.Li et al. (W. Li et al., 2019) proposed Contrast‐Limited Adaptive 

Histogram Equalization+GLCM+Extreme Learning Machine (CLAHE+GLCM+ELM) 

method using Contrast-Limited Adaptive Histogram Equalization (CLAHE) and GLCM 

with Extreme Learning Machine (ELM) classifier to address the limitations of the GLCM. 

The CLAHE is used to depress the noises and improve the local contrast while the ELM 

classifier is used to reduce the time complexity. However, their method unable to perform 

well in terms of sensitivity, specificity and accuracy (W. Li et al., 2019). 

A summary of the highlighted studies in this section with their classification area, 

feature extraction method, feature exploited, classifier and success rate are listed in Table 

2.1.   
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Table 2.1: Highlighted studies on machine vision classification using statistical approach.  

Author (s) Classification Area Feature Extraction 
Method 

Features 
Exploited Classifier Success Rate 

(Kazmi et al., 2015) 
Sugar beet weed 
classification 

Histogram Color LDA 

The classification 
accuracy achieved 
between 94.05% to 
97.83% 

(B. Zhang et al., 2015) 
Defective and non-
defective Fuji apple 

RGB, HIS and 
GLCM 

Color, 
statistical 

and texture 
RVM 

The overall classification 
accuracy achieved is 
95.63% 

(Mokhtar et al., 2015) 

Defective and non-
defective 
classification of 
tomato leaves 

GLCM Texture SVM 
The highest classification 
accuracy achieved is up 
to 99.83%  

(Chowdhury et al., 
2015) 

Classification of 
Vegetation 

GLCM and LBP Texture 

SVM, Feed Forward 
Back-Propagation 

Neural Network (FF-
BPNN) and K-Nearest 

Neighbor (KNN) 

The classification 
accuracy achieved in 
between 70.00% to 
91.82% 

(Kurtulmuş & Ünal, 
2015) 

Classification of 
seed 

HSI and YCbCr 
GLCM, GLRLM 

and LBP 

Color and 
texture 

KNN, Stochastic 
Gradient Descent 
(SGD) and SVM 

The best classification 
accuracy scores of 
99.24% was achieved for 
the SVM classifier 
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(Capizzi et al., 2016) 
Defective and non-
defective orange 

HSV color 
histogram and 

GLCM 

Color and 
texture 

Radial Basis 
Probabilistic Neural 
Network (RBPNN) 

The classification 
accuracy achieved is up 
to 88.00% 

(Moallem et al., 2017) 
Defective and non-
defective golden 
delicious apple 

GLCM 
Statistical, 
texture and 
geometric 

SVM, Multi-Layer 
Perceptron (MLP), 

Neural Network and 
KNN 

The highest classification 
accuracy achieved by 
SVM in between 89.20% 
to 92.50% 

(Olaniyi et al., 2017) 
Defective and non-
defective banana 
classification 

Texture analysis 
GLCM 

Texture 

Radial Basis Function 
(RBFN), SVM and 
Backpropagation 
Neural Network  

The classification 
accuracy achieved in 
between 96.25% to 100% 

(W. Li et al., 2019) 
Healthy and non-
healthy gum 

CLAHE and 
GLCM 

Texture 
Extreme Learning 
Machine (ELM) 

The classification 
accuracy achieved is 
74.00% 
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2.3.2 Morphology and Spectral  

Morphology approach is the mathematical morphology feature extraction method 

based on preliminary geometry information of the object (Solomon & Breckon, 2011). A 

morphological approach examines the image set using a small cluster known as 

configuration element. It used the basic mathematical morphology operations of 

expansion, erosion, opening and closing. Spectral approach removes the basic structure 

in the images and then generalizes the basic structure with spatial layout rules (Hanbay, 

Talu, & Özgüven, 2016). In the defective and non-defective apple classification, the 

spatial domain information is important to identify the location of the defect. This will 

help to distinguish between defective and non-defective region. The studies conducted on 

the defective classification that based on morphology and spectral approaches are mainly 

used Morphological operation, Wavelet, Curvelet and Fuzzy logic. 

Chung et al. (Chung et al., 2016) proposed HSV and Morphological operator with 

SVM classifier for the classification of defective and non-defective rice seedlings. First, 

thresholding in HSV color space component is implemented to remove the background 

from the rice seedlings. Subsequently, the Morphological operations are applied to the 

identified seedlings based on the shape features. However, the method relies on the 

preprocessing step of the boundary detection and segmentation to remove the background 

from the rice seedlings and capture the shape of the seeding. 

To improve this limitation, Mondal et al. (Mondal et al., 2017) proposed a 

Morphological operation with Pearson Correlation Coefficient method. The work finds 

dominating texture feature for defective and non-defective classification including the 

severity of the defect. The dominating texture feature is selected according to the 

specified criterion of the correlation, in which high, moderate, low and very low.  Thus, 

the effectiveness of the method depends on the threshold value. Ganganagowder et al. 
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(Ganganagowder & Kamath, 2017) improved the detection through morphological 

features of size and shape with color and texture features using the combination of 

CIEL*a*b*, Morphological, GLCM and Correlation-based Feature Selection (CFS) 

method. In their work, 35 features of morphological, color and texture are extracted for 

the classification. However, the large number of features tends to overfitting, thus, reduce 

the classification model interpretability (Dougherty, Hua, & Sima, 2009; Guyon & 

Elisseeff, 2003; Kurtulmuş & Ünal, 2015; Saeys, Inza, & Larrañaga, 2007).  

Therefore, a smaller number of features is considered in (J. Zhang, Wang, Yuan, Chen, 

& Wu, 2017). The work extracts six wavelet features using continues Wavelet analysis 

for defective and non-defective classification. Similarly, Zolfaghari et al. (Zolfaghari, 

Noor, Rezazadeh Mehrjou, Marhaban, & Mariun, 2018) proposed a combination of five 

most significant features extracted using Wavelet transform for defective and non-

defective classification including the defective severity. The Wavelet transform projects 

an image into spaces in multiple scales (resolutions) which enhance the characteristics 

and composition for efficient representation. The Wavelet is a spectral approach that 

capable to provide spatial resolution and frequency (P. Patel & Bhandari, 2019). The 

information in spatial and frequency domains are important for defect detection (Hanbay 

et al., 2016). The frequency domain information can identifies the presence of the defect 

while the spatial domain information can identifies its location. The Wavelet transform 

ensures a good frequency resolution at lower frequencies and good spatial resolution at 

higher frequencies (P. Patel & Bhandari, 2019; Wu, Liu, & Jiang, 2014). Using Wavelet 

in their work, the spatially localized details of the defect region can be obtained. The 

defect region can be described as the discontinuities in intensity from one pixel to another. 

The difference in the intensity of the pixels forms edges describing boundaries or outline 

of the defect region on the surface object (Jain & Kaur, 2017). The Wavelet transform 
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can isolate a singularity point i.e., the discontinuity well across an edge pixel (Ganesan & 

Sajiv, 2017; Shukla & Changlani, 2013). However, its limitation lies in the curved region. 

The limitation of the Wavelet in the curved region is addressed in the Curvelet 

transform (Candes, Demanet, Donoho, & Ying, 2006). The Curvelet is capable of 

capturing directional edges of curves, corners and profiles (Agarwal & Bedi, 2015; J. 

Luo, Song, Xiu, Geng, & Dong, 2014). Furthermore, the Curvelet offers a high dimension 

of Wavelet transform for richer information in both spatial and spectral domains (Hagargi 

& Shubhangi, 2018; Tunio, Memon, Khuhawar, & Abro, 2019). In comparison to other 

transforms, the Curvelet is effective and accurate at capturing edges and other 

singularities along the curves (Acharya et al., 2016). Therefore, the Curvelet transform 

can generally be used as filtering, image enhancement and detection of edges in image 

recognition. The filtering is a process to reduce the quantity of the data (pixel) while keep 

the essential structural assets of an image by reducing the noise and filters out the futile 

information in the images. Noise is the corrupted random variations in intensity values of 

the image. The common types of the noise in the images are impulse noise, Gaussian 

noise, salt and pepper noise.  

Riyadi et al. employed Discrete Curvelet Transform (DCT) (Riyadi, Azizah, 

Damarjati, & Hariadi, 2018) as image enhancement to improve the quality and clarity of 

the images. Then, the statistical features of mean, standard deviation, entropy and energy 

are extracted for defective and non-defective mangosteen classification. Conversely, 

Tunio et al. (Tunio et al., 2019) used k-mean filtering with Curvelet transform to extract 

Curvelet features for defective classification. The Curvelet transform is a multivariable 

function that map into space spanned by curvelets in multiple scales and orientations. 

This gives an efficient representation of curved singularities and smoothest away from 

discontinuities across the curves. The Curvelet transform captures the curve segments in 
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an image of varying coefficients strength over all discrete orientations. The strong 

coefficients represent the meaningful edges while the weak coefficients describe the very 

blurred boundaries. Then, the prominent edges or curved elements are packed into a small 

number of coefficients in the Curvelet domain.  

Other works as presented in (Mohammed & Alhamdani, 2019) and (Prabuwono et al., 

2019) use other methods such as Gabor filter and Prewitt edge detection to capture edge 

points and edge lines for classification. Edge feature is among the important geometric 

primitive features for the classification task (Vijayakumar & Durai, 2017). There are 

variety of edge detection methods such as Sobel, Canny and Fuzzy logic. These methods 

respond differently to the same gray levels image due to the image’s information 

complexity (Anas, 2016). Therefore, require the researchers to utilize different method to 

reach the performance needed. 

  In image classification, most researchers considered the edge detection method of 

Sobel and Canny in their work due to its accuracy and not the computation time 

(Vijayakumar & Durai, 2017). The Sobel method detects the edges by performing a 2-D 

spatial gradient quantity on an image to highlight the regions with high spatial frequency. 

However, it less capable in the spatial domain (Vijayakumar & Durai, 2017). The Canny 

method detects the edges based on adjustable parameters including the size of the 

Gaussian filter and thresholds. These parameters can affect the effectiveness and the 

computation time of the method (Jain & Kaur, 2017). The upper and lower threshold 

values in Canny method are set to extract strong edge pixels and weaker edge pixels, 

respectively. However, both Sobel and Canny methods have limitations in removing 

noise in the images (J. Song, Wang, & Li, 2019). Noise in the images is inevitable, thus, 

its important to remove the noise from the input image to achieve more relevant 

information in extracting the edges in the image. 
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A more accurate and powerful edge detection method that been used in many areas of 

digital image processing including image recognition is Fuzzy logic (Aborisade, 2010; 

Anas, 2016; C. Liu, Shirowzhan, Sepasgozar, & Kaboli, 2019; Vijayakumar & Durai, 

2017). In contrast to Sobel and other edge detection methods, the Fuzzy logic method 

improves the quality of the edges (Aborisade, 2010; Kaur, Chawla, Khiva, & Ansari, 

2018). The Fuzzy logic method is very good at handling edge detection problem decision 

making of partially true and partially false values between completely true and completely 

false values (J. Song et al., 2019).This method is suitable to determine the boundaries of 

a specific region for further image analysis (Aborisade, 2010). Generally, the Fuzzy logic 

method detects the edges in the image by dividing the gray level into three values. These 

values are the entropy maxima that describe the image and used to build the membership 

function in the Fuzzy logic. The membership function of the Fuzzy logic operates based 

on the membership degrees that assigned in the fuzzy rules according to the image 

information (Jain & Kaur, 2017; J. Song et al., 2019). This concept offers high flexibility 

to accurately discriminate between neighboring pixels at the edge lines or curves. 

However, the edges are defined as a sudden change in the gray level of the adjacent pixels. 

Thus, the performance of all edge detection methods may be affected by many factors 

related to image properties such as sensitive to noise, lighting, blurred images and 

dynamic background (Anas, 2016; Lakshmi & Sankaranarayanan, 2010; J. Song et al., 

2019). 

Despite various morphological and spectral approaches available for the classification 

task, these approaches require a high degree of periodicity of the defect structure to 

provide image geometry to obtain better results (Hanbay et al., 2016; J. Song et al., 2019). 

A summary of the highlighted studies in this section along with their classification area, 

feature extraction method, features exploited, classifier and success rate are listed in Table 

2.2. 
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Table 2.2: Highlighted studies on machine vision classification using morphology and spectral approach. 

Author (s) Classification Area Feature Extraction 
Method 

Features 
Exploited Classifier   Success Rate 

(Chung et al., 2016) 
Defective and non-
defective classification 
of rice seedlings 

HSV and 
Morphological operator 

Color and 
shape SVM 

The overall 
classification 
accuracy achieved 
is 87.90% 

(Mondal et al., 2017) 
Defective classification 
on plant leaves 

Morphological operation 
with Pearson Correlation 

Coefficient 
Texture Naive Bayes 

The classification 
accuracy achieved 
in between 82.67% 
to 95.00% 

(Ganganagowder & 
Kamath, 2017) 

Food product 
classification 

CIEL*a*b* color space, 
Morphological, GLCM 
and Correlation-based 

Feature Selection (CFS) 

Color, size, 
shape and 

texture 

Multilayer Perceptron 
(MLP), SVM, 

Random Forest (RF), 
Simple Logistic 

(SLOG) and 
Sequential Minimal 
Optimization (SMO)  

The classification 
accuracy achieved 
in between 70.00% 
to 73.00% 

(J. Zhang et al., 2017) 
Defective and non-
defective classification 
of crop 

Wavelet 
wavelet 
features 

Fisher's Linear 
Discriminant 

Analysis (FLDA) 

The classification 
accuracy achieved 
is 77.00% 

(Zolfaghari et al., 
2018) 

Defective and non-
defective rotor bar 
classification 

Discrete Wavelet 
Transforms and statistical 

statistical 
features 

Feed-Forward 
Neural Network 

(FFNN) 

The average 
classification 
accuracy achieved 
is 98.80% 
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(Riyadi et al., 2018) 
Defective and non-
defective mangosteen 
classification 

DCT and statistical 

Mean, 
standard 

deviation, 
entropy and 

energy 

LDA 

The classification 
accuracy achieved 
in between 83.75% 
to 92.50% 

(Tunio et al., 2019) 
Defective leaves 
classification Curvelet 

Curvelet 
features SVM 

The classification 
accuracy achieved 
is 93.50% 

(Mohammed & 
Alhamdani, 2019) 

Defective and non-
defective fabric 
classification 

Gabor filters 
Statistical 

and 
geometry  

Fuzzy Back 
Propagation Neural 
Network (FBPNN) 

The classification 
accuracy achieved 
is 91.43% 

(Prabuwono et al., 
2019) 

Classification of bottle 
caps 

Mathematical 
Morphology and Prewitt  Edge Fuzzy logic  

The classification 
accuracy achieved 
in between 96.66% 
to 97.91% 
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2.3.3 Model-Based  

Model-based approach is based on the construction of the image recognition method 

that adopts a combination of feature extraction methods to extract features. A combination 

of the feature extraction methods is constructed by considering the condition of the 

classification task. The recognition is then performed from the model built using the 

classifier (Z. X. Zhang, Tan, Huang, & Wang, 2012). The model-based approach can 

offer a powerful recognition in terms of detection, parameter estimation, interpretation, 

learning and generalization (Affonso, Sassi, & Barreiros, 2015). In defective 

classification, the most commonly used model-based approaches are Fractal model, 

Autoregressive model and Visual-dictionary based model. 

The Fractals model (Mandelbrot, 1983) used the concept of geometric primitives that 

are self-similar and irregular in nature. A fractal is infinitely complex patterns created by 

repeating a process in an ongoing feedback loop. The different between fractals and 

geometric is the way they are scale. Fractals exhibit similar patterns at increasingly small 

scales which is called “self-similarity”. In (Al-Kadi, 2015), the Fractal model was 

proposed with wavelet decomposition in medical device technology for brain tumour 

classification. The fractal dimension is used for guiding the sub-band tree-structure 

decomposition to extract textural fractal characteristic for detecting the brain tumours. 

The texture measure is chosen in the work due to its scale invariance, capable to 

investigate self-similarity and its roughness surface estimation. These characteristics can 

be used to detect variance in structure orientation and the size of the cell for brain tumour 

classification. The limitation of (Al-Kadi, 2015) is the lacunarity of fractal features is 

ignored. In the Fractal model, the most important measurements are the fractal dimension 

and lacunarity. The fractal dimension is the measure of complexity and irregularity while 

lacunarity is the structural variation or inhomogeneity measures. Therefore, exclusively 
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depends on the fractal dimension limits the ability to quantify all the characteristic of a 

fractal object (Z. Ma, Zhou, Hepburn, & Cowan, 2016).  

To address this limitation,  Z.Ma et al. (Z. Ma et al., 2016) suggested the fractal 

dimension and lacunarity for defective types partial discharge classification within the 

rotating machine. The fractal dimension is used to describe the surface roughness of the 

polar defective pattern while the lacunarity is used to quantify the density of the defective 

pattern. In their work, three types of defective partial discharge geometries were built and 

tested to validate the methods. However, the Fractal model method unable to perform 

efficiently on several defective patterns because the similarity of the fractal dimension 

although the fractals are completely different (Karbauskaitė & Dzemyda, 2016).  

Alternatively, Autoregressive (AR) model offers more stable performance for pattern 

variations. The AR model is invariant to rotation, low complexity and fast computation 

(Hanbay et al., 2016). The AR model used a linear equation system solution to express 

the degree of linear dependence between different pixels of an image. Han et al. (Han & 

Jiang, 2016) use the AR model with Variational Mode Decomposition (VMD) for 

defective and non-defective classification of rolling bearing. The VMD decomposed 

vibration signals and a series of stationary component signals. For each component mode, 

the AR model is established to extract the feature vector from the AR model parameter. 

The VMD is used because it handles the mixing mode effectively. However, the problem 

with mixing mode arises when the number of the decomposed modes is too small or too 

large that will cost computational time. Additionally, their method is limited for the linear 

model to detect the defect. The defect condition signals are not always in linear behaviour 

and certain defect characteristics, may contain nonlinear and non-stationary behaviours. 

These lead to difficulty to detect the defect effectively, thus reduces the classification 

accuracy. 
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Consequently, J.Ma et al.  (J. Ma, Xu, Huang, & Huang, 2017) introduced a hybrid 

model based on the AR model to resolve the nonlinearity issue for defective bearing 

detection. The method combines the general expression for linear and nonlinear 

autoregressive (GNAR) model and a Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) model. The main advantage of this method is its capability 

in both linear and nonlinear signals. However, the AR model parameters are very sensitive 

to the change of the condition such as noise and lighting. Thus, can be challenging to 

correctly detect the defect. 

To overcome this limitation, a visual-dictionary based model is used for defective and 

non-defective classification. The BOW is a well-known method in the visual-dictionary 

based model and widely used for various classification task (Chanti & Caplier, 2018). 

The BOW method describes the images by counting the occurrence frequency of each 

visual pattern (visual words) and used it as a feature to train the classifier. The keypoint 

approach was introduced in the BOW method by Csurka et al. (Csurka, Dance, Fan, 

Willamowski, & Bray, 2004) to extract the visual patterns (visual words) from the images.  

The widely used keypoint methods are Harris corner detection (Harris & Stephens, 

1988), Scale Invariant Feature Transform (SIFT) (Lowe, 2004), Speeded up Robust 

Features (SURF) (Bay, Ess, Tuytelaars, & Van Gool, 2008; Bay, Tuytelaars, & Van Gool, 

2006) and Features from Accelerated Segment Test (FAST) (Rosten, Porter, & 

Drummond, 2010). The Harris corner detection extracts keypoints on corners and edges 

based on local auto-correlation function. Its performance is consistent in natural images, 

robust in matching, good stability and repeatability (M. Idris, Arof, Tamil, Noor, & 

Razak, 2009; Warif et al., 2016). However, it sensitive to the scale changes.  

SIFT detector and descriptor (Lowe, 2004) provide unique features with high 

repeatability and accuracy. This makes SIFT robust to affine distortion, translation, 
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illumination changes, scale changes and rotation changes (Agaian et al., 2016; Lowe, 

2004). However, SIFT descriptor is computationally high cost (Lee, Cho, & Park, 2015). 

Therefore, SURF (Bay et al., 2008) was proposed to reduce the computational cost of 

computing gradients for encoding descriptors. SURF is faster than SIFT without 

degrading the quality and more robust to noise (M. Y. I. Idris et al., 2019; Panchal, 

Panchal, & Shah, 2013). To further reduce the computational time of the earlier methods, 

Rosten et al. (Rosten et al., 2010) introduced FAST in which, faster than both SURF and 

SIFT but sensitive to the scale changes (Loncomilla, Ruiz-del-Solar, & Martínez, 2016). 

 Among the local descriptor methods, SIFT is the most robust with the best 

performance in the presence of the geometrical changes (Agaian et al., 2016; Mikolajczyk 

& Schmid, 2005; Sachdeva et al., 2017). SIFT descriptor combines the interest region 

detector of Difference of Gaussians (DoG) and a corresponding feature descriptor. SIFT 

extracts local extrema of DoG interest point from the scale space as keypoints. Then, the 

local neighboring information around the keypoints or patches are utilized for computing 

the descriptors. SIFT and other keypoint methods demonstrate high performance in image 

detection but unable to define a shape or images due to non-uniform distribution (Warif 

et al., 2016). The main limitation of the keypoint method is the patches of the keypoints 

can have a similar descriptors for completely different contexts in the images. A similar 

keypoint patches can also be represented by different descriptors due to noise or distortion 

(Sachdeva et al., 2017). This is because the keypoint method was initially designed for 

matching between two images (Fan et al., 2019). 

 The matching between two images using keypoints includes three stages, namely 

detecting the keypoint, calculating the descriptor and matching the keypoint with their 

associated descriptor. Examples of the matching between apple images are illustrated in 

Figure 2.4. The examples show the keypoints matching between the same apple images 
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can result in a successful matching of 100% as depicted in Figure 2.4 (a) but failed to 

match any of the keypoints when two different apple images are involved as depicted in 

Figure 2.4 (b). The issue of keypoints matching between different images of the same 

object requires a complementary technique to encode and pool the neighborhood 

information of the keypoint features for the classification task. 

 

Figure 2.4: Examples the SIFT keypoint matching of (a) same apple images (b) 
different apple images. 

 

The mentioned limitation of the keypoint method can be addressed with BOW method 

which easy to implement, robust to object occlusion, image clutter, non-rigid deformation 

and also robust to viewpoint changes (Y. Liu, Zhang, Zhang, & Liu, 2016; Kejriwal, 

Kumar, & Shibata, 2016; H.-L. Luo, Wei, & Lai, 2011). The implementation of the BOW 

involves extracting the visual pattern (visual words) patches from the images using 

keypoint method. The patches are coded in the detected point to compute the descriptor 

and extract the features from an image. Then, these huge features extracted are clustered 

and build frequency histogram. The images are represented by counting the number of 

occurrences patches of each visual words in the images and used it as a feature to train 

the classifier as illustrated in Figure 2.5.  



40 

 

Figure 2.5: Architecture of BOW for image classification. 

 

Nasirahmadi et al. (Nasirahmadi & Ashtiani, 2017) used five keypoint detectors along 

with SIFT descriptor in BOW method which also known as Bag-of-features (BOF) to find 

the best detector for defective and non-defective almond classification. The method 

achieved convincing classification accuracy (79.00% – 91.00%) for the combination of 

the Harris-Laplace detector with SIFT descriptor and SVM classifier. However, the BOW 

method disregards the spatial layout information in the visual words that lead to the 

missing spatial arrangement features on the image composition (Kejriwal et al., 2016; Lin 

et al., 2016). Consequently, reduce the performance of the BOW method.  

Therefore, the spatial layout information is included in the SPM method (Lazebnik, 

Schmid, & Ponce, 2006) to improve image representation for image classification. The 

spatial layout information is important to discriminate between objects because different 

objects can have the same visual appearance but in different spatial arrangement 
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(Aldavert, Rusinol, Toledo, & Llados, 2015). The SPM method works by partitioning the 

images into sub-regions on dense regular grids and compute the histogram of local 

features found in each grid. This method recorded a significant performance improvement 

over the BOW method but generates a large number of unnecessary and redundant high 

dimensionality features (Chanti & Caplier, 2018; Q. Li et al., 2017; Lin et al., 2016; 

Penatti et al., 2014; Yan et al., 2012). These irrelevant features can reduce the stability 

and performance of the method. 

 To eliminate the redundancies and select the representative keypoints, Lin et al. (Lin 

et al., 2016) and Q. Li et al. (Q. Li et al., 2017) proposed a keypoint selection technique 

to resolve this issue. Similarly, Xie et al. (Xie et al., 2018) proposed a new spatial 

partitioning scheme to avoid feature redundancy by modifying the pyramid matching 

kernel. The method proposed new pyramid matching kernel and spatial partition scheme 

instead of calculating the distribution of local visual descriptor histogram on each region. 

However, this modification of the spatial pyramid requires computational complexity to 

calculate the mid-level features.  

There are various studies attempted to embed the spatial orders but the Spatial Pyramid 

Matching representation (Lazebnik et al., 2006) is the most popular and effective in 

encoding the spatial distribution for the classification task. The capability of the SPM 

method was successfully demonstrated in both scene and object recognition (B.-D. Liu et 

al., 2019). Recently, X. Wei et al. (X. Wei et al., 2019) investigated the performance of 

the BOW and SPM methods for defective classification of railway fastener. In their work, 

the BOW method is applied to the fastener classification by constructing dictionary 

construction of bag of words of the fastener. The experiment is also carried out for the 

SPM method that includes the spatial location information of the fastener image using 

Spatial Pyramid Matching representation (Lazebnik et al., 2006) for defective 
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classification of fastener. In the SPM method, the Dense-SIFT (Fei-Fei & Perona, 2005) 

feature extraction is used instead of SIFT because SIFT less sensitive to illumination 

changes and lacks global features. These SIFT issues can lead to misclassification and 

reduce the classification accuracy. In the study, the classification accuracy of the SPM 

method (99.26%) successfully improved the classification accuracy of the BOW method 

(96.30%). This proved that the spatial layout information using the Spatial Pyramid 

Matching representation in the SPM method (Lazebnik et al., 2006) can improve the 

detection of the defect. A summary of the highlighted studies in this section along with 

their classification area, feature extraction method, features exploited, classifier and 

success rate are listed in Table 2.3.  
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Table 2.3: Highlighted studies on machine vision classification using model-based approach. 

Author (s) Classification Area Feature 
Extraction Method 

Features 
Exploited Classifier Success Rate 

(Al-Kadi, 2015) 
Classification of brain 
tumour Fractal and Wavelet 

Fractal 
dimension 

SVM, Naïve 
Bayes and KNN 

The classification 
accuracy achieved by 
SVM classifier is 
98.76%, Naïve Bayes 
92.90% and KNN 
79.70% 

(Z. Ma et al., 2016) 

Classification of 
defective partial 
discharge in rotating 
machine 

Fractal  
Fractal 

dimension and 
lacunarity 

Centour Score 
Algorithms 

The classification 
accuracy achieved for 
average centour score 
in between 47.75% to 
60.25% 

(Han & Jiang, 2016) 
Defective and non-
defective classification of 
rolling bearing 

VMD and AR  

Feature vectors 
from AR 

model 
parameters 

Random Forest 
(RF) and SVM 

The classification 
accuracy achieved in 
between 81.97% to 
98.63% 

(J. Ma et al., 2017) 
Defective rolling bearing 
classification 

Combination GNAR 
model and GARCH 

model 

Statistical 
data 

KNN 

Mean classification 
accuracy achieved is 
88.43% and the 
maximum accuracy 
achieved up to 93.33% 
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(Nasirahmadi & 
Ashtiani, 2017) 

 

Defective and non-
defective classification of 
almond 

 

BOW 

 

Visual-
dictionary 

 

KNN and 
SVM 

 

Classification accuracy 
achieved for KNN 
classifier in between 
67.00% to 79.00% and 
SVM in between 
79.00% to 91.00% 

(X. Wei et al., 2019) 
Defective classification 
of railway fastener 

BOW 

SPM 

Visual-
dictionary 

SVM 

Classification accuracy 
achieved for BOW is 
96.30% and SPM 
99.26% 
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2.3.4 Deep Learning  

The recent development of deep learning approach has received considerable attention 

in computer vision. The deep learning approach is unique as it learns the important 

features automatically over training without the need for feature engineering through 

instructed algorithm (Kamilaris & Prenafeta-Boldú, 2018; H.-B. Zhang et al., 2019). The 

features or representation for the detection, distinguishing and classifying are 

automatically discovered by feeding the raw data or pixel values into the deep learning 

method. This approach is useful in learning and discovering complex structure data. The 

deep learning approach that commonly used for analyzing visual images is Convolutional 

Neural Network (CNN) (Kahraman, Karas, & Akay, 2018; Zhao et al., 2019). 

In CNN method, the convolutional layers act as a feature extractor to extract important 

features from the input and the pooling layers reduce the dimensionality of the input 

image. Various convolutions are performed on the network at some layers, which create 

different representations of the learning dataset. Starting from the larger layers that consist 

general image representation, then become more specific at deeper layers. Multiple 

features from the lower-level into more discriminative features are encoded in the 

convolutional layers in the spatial-context aware. It may be understood as bank of filters 

that transform input images into another form which highlight the specific pattern. In 

many cases, the fully connected layers are placed near the model output which act as a 

classifier (Kamilaris & Prenafeta-Boldú, 2018). The structure of the CNN for apple 

images is given in Figure 2.6.  

 



46 

 

Figure 2.6: Structure of the CNN for apple image. 

 

The CNN method has been implemented in various fields of the classification task 

including defective and non-defective classification as presented in Table 2.4. The high 

performance of the CNN method is consistently observed on different classifiers reported 

in (dos Santos Ferreira, Freitas, da Silva, Pistori, & Folhes, 2017) with accuracy ranged 

between 98.00% to 99.50%. However, there are several limitations in the structure of the 

CNN method. One of the major issues is the requirement for the fixed-size input image 

(He, Zhang, Ren, & Sun, 2015; Qayyum et al., 2017). If the images with arbitrary sizes 

are applied, the CNN method will resize the input images to a fixed size via cropping or 

warping the images (Donahue et al., 2014; Girshick, Donahue, Darrell, & Malik, 2014; 

He et al., 2015; Krizhevsky, Sutskever, & Hinton, 2012). To address this issue, He et al. 

(He et al., 2015) proposed a network structure (SPP-net) method that generates a fixed-

length representation regardless of the image size or scale (X. Cheng, Zhang, Chen, Wu, 

& Yue, 2017; He et al., 2015; Krizhevsky et al., 2012).  
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Another issue in the CNN method is the difficulties to train the neural network when 

the network depth in the structure increases (X. Cheng et al., 2017; He, Zhang, Ren, & 

Sun, 2016). To improve training for a deeper network, a residual learning framework  (He 

et al., 2016) was proposed that reformulates the network layers as learning residual 

functions. Other than that, the CNN features lose a lot of detailed information in the 

images due to multiple levels of abstraction through various convolutions in the method 

(Y. Zhang et al., 2019). This makes defective and non-defective apple classification task 

including the types of defects become more challenging. Apple images also consist of 

low-quality regions such as bright features or flecks features on the apple skin which can 

be difficult to detect with the lost information on CNN features. The detection on the low-

quality region is important to differentiate between defective and non-defective apples. 

Failure to detect these features may reduce the classification accuracy.  

Table 2.4: Image classification using CNN method of deep learning approach. 

Author (s) Classification Area Classifier Success Rate 
(Sladojevic, 
Arsenovic, 
Anderla, Culibrk, 
& Stefanovic, 
2016) 

Defective and non-
defective 
classification of leaf 

Softmax 
The overall classification 
accuracy achieved is 
96.30% 

(Pinto, Furukawa, 
Fukai, & Tamura, 
2017) 

Defective 
classification of 
coffee 

Softmax 

The classification 
accuracy achieved in 
between 67.50% to 
98.75% 

(Lu, Yi, Zeng, 
Liu, & Zhang, 
2017) 

Defective 
classification of rice 
crop 

Softmax 
The classification 
accuracy achieved is 
95.48% 

(dos Santos 
Ferreira et al., 
2017) 

Classification of 
weed in soybean 
crop 

ConvNets, 
Adaboost, RF 

and SVM 

The classification 
accuracy achieved in 
between 98.00% to 
99.50% 

(X. Cheng et al., 
2017) 

Classification of 
pests 

SVM, BP 
Neural 

Network and 
Deep 

Convolutional 
Neural 

Network 

The classification 
accuracy achieved for 
SVM is 44.00%, BP 
Neural Network 42.67% 
and Deep Convolutional 
Neural Network achieved 
in between 86.67% to 
98.67% 
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(Z. Wang, Hu, & 
Zhai, 2018) 

Defective 
classification of 
blueberry 

ResNet, 
ResNeXt, 
Sequential 
Minimal 

Optimization 
(SMO), 
Linear 

Regression 
(LR), RF, 

Bagging and 
Multilayer 
Perceptron 

(MLP) 

The classification 
accuracy achieved for 
ResNet is 88.44%, 
ResNeXt 87.84%, SMO 
80.82%, LR 76.06%, RF 
73.14%, Bagging 71.13% 
and MLP 78.27%  

(Yan Zhang, Cui, 
Liu, & Yu, 2018) 

Defective 
classification of tire 

CNN Caffe 
framework 

The classification 
accuracy achieved is 
96.51% 

(D. Li, Cong, & 
Guo, 2019) 

Defective 
classification of 
sewer 

Deep learning 
multi-class 

The classification 
accuracy achieved is 
64.80% 

 

Other main issues of the deep learning approach is it computationally expensive. The 

deep learning approach consists of various parameters that required large dataset such as 

ImageNet dataset to automatically learn from these large number of training images to 

avoid over-fitting in order to achieve the desired result. However, there is limited dataset 

available publicly in the domain of the agriculture industry for researchers to work with. 

Moreover, the available datasets do not completely describe the targeted problem, thus 

required researchers to develop their own sets of images (Kamilaris & Prenafeta-Boldú, 

2018; X. Song et al., 2016). The optimization issues might arise when using a small 

dataset for pre-trained models of deep learning approach that is significantly different in 

models’ complexity and hardware restrictions (Chaturvedi, Ragusa, Gastaldo, Zunino, & 

Cambria, 2018; X. Cheng et al., 2017; He et al., 2015; Kamilaris & Prenafeta-Boldú, 

2018; Krizhevsky et al., 2012; Y. Zhang et al., 2019). Thus, there is a need for effective 

and accurate image recognition method that works on a small dataset with limited 

computing power consumption especially for apple classification that consists of low-

quality region on the apple skin. 
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2.4 Discussion 

Researchers have proposed many image recognition methods for machine vision 

classification in industry, especially for defect detection and classification. From the 

highlighted studies in this chapter, the defective classification is mainly performed using 

GLCM, BOW, SPM or CNN image recognition methods. The GLCM performs the 

detection through texture features representing the surface and structure of the image 

while the BOW and SPM use visual-dictionary features for image classification. On the 

other hand, the CNN method use deep CNN features. Each method performs differently 

due to the features employed for the detection and the image’s information complexity. 

The strength and limitations of these methods are summarized in Table 2.5.  

Table 2.5: List of commonly used image recognition methods including their 
strengths and limitations. 

Method Strengths Limitations 

GLCM 

- Effective to recognize the 
object with texture information 

- Extracting spatial relationships 
with different statistical 
computation 

- Produces features that describe 
the relationship of the 
neighboring pixels in the image 

- Dependent on the rotation 
and scaling 

- Have difficulty to 
distinguish different object 
with quite similar texture 
representation and images 
with low-quality region 

BOW 

- Easy to implement 
- Robust to several parameters 

such as occlusion, clutter, non-
rigid deformation and viewpoint 
changes 

- High computational in 
vector quantization step 

- Disregards the spatial layout 
information 

SPM 

- Include spatial information to 
improve the image 
representation and better 
distinguish objects 

- Generates large numbers of 
unnecessary and redundant 
high dimensionality features  

CNN 

Learns the important features 
automatically over training 
without the need for feature 
engineering through instructed 
algorithm (abstracted features 
are learned by stack 
convolutional and sampling 
layer) 

- Requirement for the fixed-
size input image 

- Lose detailed information in 
the images due to multiple 
levels of abstraction through 
various convolutions 

- High computational 
complexity for model 
training 
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- Computationally expensive 
and consists of many 
parameters that required 
large dataset 

 

The critical foundations in image recognition are the images used for the classification 

task (Cui, 2019). In this research, three dataset of apple images are used to test the 

proposed methods for defective and non-defective classification including types of 

defects. The challenges in apple classification due to physical and biological influences 

include the presence of the low-quality regions of bright or flecks features on the apple 

skin and the similarity of the appearance between defects and stems ends or calyxes which 

are the natural part of the apple. The detection of the low-quality region can be 

challenging due to low contrast and unclear boundary. On the other hand, the 

discrimination between the defect and the natural part of the apple requires the 

information on its location to precisely classify between the defective and non-defective 

region. 

After considering the strength and applicability of the image recognition methods on 

apple images as presented in the previous sections, the GLCM and SPM methods are the 

most suitable methods for classifying defective and non-defective apple including the 

types of defects. The GLCM capable of analyzing and describing the spatial relationship 

of neighboring pixels on the surface structure of the image properties. While the SPM 

method includes the spatial layout information that is important to discriminate between 

defect with natural parts of the non-defective apple.  

However, there are several limitations of the GLCM and SPM methods. The GLCM 

method is dependent on the images texture information which ineffective to extract 

features from the low-quality region images. On the other hand, the SPM method 
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generates a large number of unnecessary and redundant high dimensionality features. 

These irrelevant features can reduce the stability and performance of the method. To 

address these limitations on apple classification, the first proposed method aims to 

improve the ability of the GLCM method in detecting features on the low-quality region 

of the apple image. The second proposed method focuses on the selection of significant 

features to reduce unnecessary SPM features for classification. The binary-class 

classification of defective and non-defective apple images is also extended to the multi-

class classification between types of defects. The details for each method are presented 

in the following chapters. 

 

2.5 Summary 

In this chapter, the overview of the image recognition methods on feature extraction and 

classification were presented. The strength and limitations of the image recognition 

methods were also analyzed in terms of detection and recognition. Finally, the challenges 

and potential improvement of the presented image recognition methods on apple 

classification were also discussed. 
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CHAPTER 3: RESEARCH METHODOLOGY 

This chapter describes the details of the research methodology to address the research 

problems and achieve the outlined objectives. The details include plans, structure and 

strategy of investigation, data acquisition, existing methods and proposed methods. 

Lastly, the proposed methods are compared with the existing image recognition methods 

to discuss the final results. The links between chapter 4 and chapter 5 are also explained. 

 

3.1 Introduction 

The effectiveness of any image classification is strongly dependent on the features 

extracted from the images as highlighted in the reviewed literature of Chapter 2. The 

existing image recognition methods are mainly focused on general defective and non-

defective image recognition problems. Thus, the detection and extraction of the features 

to recognize and classify the image with low-quality region become essential. Particularly 

for classification of non-defective and defective apple including the types of defects. 

Therefore, this research focuses on the detection of suitable features to increase the 

accuracy in small sample binary-class classification of defective and non-defective apple 

images including the low-quality region images and multi-class classification between 

types of defects. Figure 3.1 illustrates the research design or methodology summarizing 

all the processes to achieve the research objectives.  

The first step in the research methodology is conducting a comprehensive literature 

review to identify and formulates the research problems and objectives. In the second 

step, the required apple datasets are created. In the next step, five existing image 

recognition methods, which are BOW (Csurka et al., 2004), SPM (Lazebnik et al., 2006), 

CNN (dos Santos Ferreira et al., 2017), GLCM Texture analysis (Olaniyi et al., 2017) and 
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CLAHE+GLCM+ELM (W. Li et al., 2019) are replicated to evaluate and compare the 

performance of each method on apple classification. These five methods are chosen due 

to their popularity and stability to represent the visual-dictionary based method, deep-

learning and texture based method. To evaluate the performances of the image recognition 

methods on apple datasets, 10-fold cross-validation is implemented. Based on the 

performances and analysis of the existing image recognition methods, two new image 

recognition methods are proposed to improve the accuracy for binary-class classification 

of defective and non-defective apple including the low-quality region images and multi-

class classification between types of defects. Finally, the performances of two proposed 

methods are evaluated using 10-fold cross-validation on apple datasets. Then, these 

results are compared with five existing image recognition methods. 

 

 

Figure 3.1: Research methodology and design. 
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3.2 Data Collection 

This research focuses on the binary-class classification of defective and non-defective 

apple including images with low-quality region and multi-class classification between 

types of defects. The evaluation of the binary-class and multi-class classifications are 

performed on three new apple image datasets, namely NDDA, NDDAW and DA. These 

datasets are created due to the shortage of public agriculture image datasets on defective 

and low-quality region (Kamilaris & Prenafeta-Boldú, 2018; X. Song et al., 2016). The 

NDDA and NDDAW are both binary-class datasets containing defective and non-

defective apple images, with NDDAW contains more images with low-quality region 

compared to the NDDA. Conversely, the DA dataset contains five types of defective apple 

images, which are Scab, Rot, Cork Spot, Blotch and Bruise. These categories are verified 

by the agriculture practitioners from Malaysian Agricultural Research and Development 

Institute (MARDI) and Pahang Agriculture Department.  

The apple images in the datasets are collected using vision sensors and via the Google 

search engine with several keywords as listed in Table 3.1. The apple images from the 

Google search engine are included due to the difficulties in obtaining various types of 

defective apples. Majority of the apple images from the Google search engine are 

centered, cleaned and occupied most of the image without or very few cluttered 

environments. This is similar to the apple images captured via the vision sensor where 

the apples are placed on the conveyor belt as illustrated in Figure 3.2. To reduce the 

shadow and glare effects, the light sources are placed near to the vision sensor and 

uniformly distributed. The resolution of all the images captured using vision sensor are 

set at 900 × 700 pixels. However, the resolution of the images obtained via the Google 

search engine are varied from 205 × 220 pixels to 552 × 512 pixels. Therefore, the images 

obtained from the Google search engine are rescaled to 900 × 700 pixels following the 

resolution of the images captured via vision sensor. The image rescaling have no effect 
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on the classification performance but would effect the computational time. This is due to 

the image recognition methods used in this thesis (i.e. visual-dictionary, deep learning 

and texture based method) are invariance to scale changes (Arya, Singh, Kumar, & 

Mandoria, 2018; Chan et al., 2015; Csurka et al., 2004; Graham, 2014; Hashemi, 2019; 

W. Li, Dong, Xiao, & Zhou, 2016; Sachdeva et al., 2017).  

The first dataset created in this research is the NDDA dataset, a binary-class 

dataset containing defective and non-defective apple images. The NDDA dataset is 

created to evaluate the capability of the image recognition method to detect defective 

and non-defective apples. Based on the performance analysis of the existing image 

recognition methods on NDDA dataset, this research creates another new dataset of 

binary-class defective and non-defective apple images called NDDAW. This dataset 

is used to further evaluate the effectiveness of the proposed method against low-quality 

region. The NDDAW dataset consists more images with low-quality region intended 

address the limitation of classifying low-quality region images.  

The third dataset namely, DA dataset is a new multi-class dataset consisting five 

types of defective apple. This dataset aims to evaluate the multi-class classification 

performances of the image recognition methods. The construction diagram of the 

datasets is illustrated in Figure 3.3 and the details of each dataset are described in the 

following subsections. 
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Table 3.1: Keywords used for collected images via the Google search engine. 

Keywords 
fresh+apple 

healthy+apple 
apple+disease 
damage+apple 
defect+apple 

low+grade+apple+fruit 
Scab+apple 
Rot+apple 

Rotten+apple 
Cork+Spot+apple 

Blotch+apple 
Bruise+apple 

 

 

Figure 3.2: Illustration of the data acquisition process using vision sensors2. 

 

 

2 Ismail, A., Idris, M. Y. I., Ayub, M. N., & Yee, L. (2019). Investigation of Fusion Features for Apple Classification in Smart 
Manufacturing. Symmetry, 11(10), 1194. 
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Figure 3.3: Datasets construction diagram. 

 

3.2.1 Binary-Class Datasets 

The binary-class datasets of the NDDA and NDDAW datasets contain 1110 apple 

images from defective and non-defective categories. The NDDA dataset is created to 

evaluate the capability to detect various defective and non-defective apple types, while 

the NDDAW is created particularly to include more apple images with low-quality region 

on its skin. The details of each dataset are described in the following subsection. 

 

3.2.1.1 NDDA 

This dataset consists of 550 apple images; 275 of the images are non-defective apples 

and 275 of the images are defective apples. Also, the natural parts of the apple are visible 

on 370 images for the stem end and 61 images for the calyx. Other than that, the low-

quality region on the apple skin can be found on 76 images. The properties of this dataset 

are listed in Table 3.2. The apple images for the non-defective category were collected 

from five apple cultivars; Red Delicious, Gala, Fuji, Honeycrisp and Granny Smith. 

While the defective category was collected from five groups of defects which are Scab, 

Rot, Cork Spot, Blotch and Bruise. The defective category includes the external defects 
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on the apple skin with varying severity. These defects are visible to the naked eyes and 

found at different location, region and size. Examples of apple images in the dataset are 

shown in Figure 3.4. 

Table 3.2: Details of the characteristics in NDDA dataset. 

Non-Defective Defective 
Cultivars Total Types Total 

Red Delicious 53 Scab 71 
Gala 57 Rot 79 
Fuji 58 Cork Spot 61 

Honeycrisp 56 Blotch 32 
Granny Smith 51 Bruise 32 

Total 275 Total 275 
 

 
Figure 3.4: Examples of apple images in the NDDA dataset (a) non-defective (b) 

defective1. 

 

3.2.1.2 NDDAW 

The NDDAW dataset contains a total of 560 apple images. These images are 

categorized into non-defective and defective categories wherein each category is 

composed of 280 images. The overall setup of this dataset follows the NDDA dataset. 

However, the main difference between the NDDAW and NDDA datasets is that the 

NDDAW dataset have more apple images with low-quality region on its skin (159 
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images) which intended to address the limitation of classifying low-quality image region. 

In the dataset, the stem end is visible on 248 apple images whereas calyx on 130 apple 

images. The properties and samples of the NDDAW dataset are shown in Table 3.3 and 

Figure 3.5, respectively. 

Table 3.3: Details of the characteristics in NDDAW apple dataset. 

Non-Defective Defective 
Cultivars Total Types Total 

Red Delicious 44 Scab 42 
Gala 16 Rot 55 
Fuji 26 Cork Spot 27 

Honeycrisp 59 Blotch 7 
Granny Smith 135 Bruise 149 

Total 280 Total 280 
 
 

 
Figure 3.5: Examples of apple images in the NDDAW dataset (a) non-defective 
(b) defective. The low-quality regions on the apple skin are indicated by the 

arrows. 

 

3.2.2 Multi-Class Dataset 

The DA multi-class dataset is created to further evaluate the performance of the 

proposed methods for multi-class classification. This dataset contains five types of 

defective apples. The types of defective apples are Scab, Rot, Cork Spot, Blotch and 

Bruise. Each of the type consists of 40 images. The natural parts of the apple such as stem 
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end (75 images) and calyx (53 images) are also visible in this dataset. The defective 

category includes variations of obvious and unobvious defects with different types, 

severity, region and size. The properties and sample of DA dataset are shown in Table 

3.4 and Figure 3.6, respectively.  

Table 3.4: Details of the characteristics in DA dataset. 

Defective 
Types Total 
Scab 40 
Rot 40 

Cork Spot 40 
Blotch 40 
Bruise 40 
Total 200 

 
 

 
Figure 3.6: Examples of defective images in the DA dataset (a) Scab (b) Rot (c) 

Cork Spot (d) Blotch (e) Bruise. 

 

3.3 Materials and Methods 

This research replicates five existing image recognition methods for comparison 

purpose in the evaluation. The selected existing image recognition methods are BOW 

(Csurka et al., 2004), SPM (Lazebnik et al., 2006), CNN (dos Santos Ferreira et al., 2017), 

Texture analysis (Olaniyi et al., 2017) and CLAHE+GLCM+ELM (W. Li et al., 2019). 

These methods are chosen due to their popularity and stability in visual-dictionary based 

method, deep learning and texture based method. The existing methods are tested on the 

created NDDA, NDDAW and DA datasets. The overall scheme of the five replicated 
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existing methods are shown in Figure 3.7. Each method is briefly described in the 

following subsections. 

 

Figure 3.7: Overall scheme of five existing image recognition methods (BOW, 
SPM, CNN, Texture analysis and CLAHE+GLCM+ELM). 

 

3.3.1 BOW 

The BOW (Csurka et al., 2004) method use keypoint to extract visual pattern 

(visual words) patches from the images. In the BOW method, the images are described 

by visual patterns (visual words). The first step in the method is to detect keypoint features 

from the images. Then, the patches are coded in the detected point, compute the descriptor 

and extract the features from an image. Next, these huge extracted features are clustered 

into “similar looking” regions using k-means algorithm in the clustering step of the BOW 
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method. Once the descriptors are assigned to clusters forming feature vector, the 

classification is performed using a classifier to predict its probability classes. 

 

3.3.2 SPM 

The SPM (Lazebnik et al., 2006) method includes the spatial layout information to 

improve image representation in the BOW method for image classification. The SPM 

method partitions the image into increasingly fine sub-regions and computes the 

histograms of local features found inside each sub-region. In the feature extraction stage, 

the Dense regular grid with SIFT descriptor is used to extract feature vectors from all over 

the image on a regular grid. Each grid represents a patch of 16 × 16 pixels and overlaps by 

8 pixels with its neighbors. The patch is further divided into 4 × 4 cells wherein the gradient 

orientation of 8-bins histogram is computed for each cell. Then, the features extracted 

from the entire cell grid are concatenated forming the feature vector. Next, the extracted 

feature vectors are clustered into a visual word vocabulary to create a codebook using the 

k-means clustering algorithm. The features are then fed to classifier for the classification 

task. 

 

3.3.3 CNN 

The CNN deep learning method is composed of a method that automatically discovers 

the features. The CNN (dos Santos Ferreira et al., 2017) method extracts the features by 

feeding the raw data of each image into the CNN deep learning method. Then, it 

automatically discovers the features. The CNN structure consists of input layer, 

convolutional and pooling layers, full connected layers, output layer and classification. 

The convolutional layers act as a feature extractor to extract important features from input 
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and the pooling layers reduce the dimensionality of the input image. Various convolutions 

are performed on the network layers, which create different representations of the learning 

dataset. Starting from the larger layer that consists of general image representation, then 

become more specific at the deeper layers. Multiple features from the lower-level into 

more discriminative features are encoded in the convolutional layers in spatial-context 

aware. It also acts as a bank of filters that transform input images into another form which 

highlights specific pattern in the images. Then, the extracted deep features are sent to 

classifiers for the classification task.  

 

3.3.4 Texture Analysis 

Texture analysis (Olaniyi et al., 2017) based on the GLCM method extracts textural 

features from the image. The gray comatrix function of GLCM is used to characterize the 

texture in the image by determining the number of a pixel of a specific gray level intensity 

value. This will create a GLCM matrix. Then, eight features are extracted from the gray 

level co-occurrence matrixes, namely contrast, correlation, energy, homogeneity, 

entropy, mean, variance and standard deviation. Next, the features are normalized and fed 

to the classifier for the classification task. 

 

3.3.5 CLAHE+GLCM+ELM 

The CLAHE+GLCM+ELM (W. Li et al., 2019) method is the combination of 

CLAHE, GLCM and ELM. The CLAHE is an image enhancement method which 

enhances the edges and improves the local contrast in the images. Then, the GLCM 

method extracts the texture features from the images. In the classification phase, the ELM 
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is used as a classifier to reduce the time complexity of the method since its a fast learning 

classifier. 

 

3.4 Proposed Methods 

Based on the limitations identified from the performance analysis of the existing image 

recognition methods for apple classification, two image recognition feature extraction 

methods called CW-GLCM and F-SPM are proposed. These proposed methods are aimed 

to increase the accuracy of binary-class classification of defective and non-defective apple 

images including images with low-quality region and multi-class classification between 

types of defects. Specifically, the CW-GLCM is proposed to improve the ability of the 

GLCM Texture analysis method in detecting features on the low-quality region of the 

apple image for binary-class classification while the F-SPM concentrates on improving 

the drawbacks of the proposed CW-GLCM method by including the spatial layout 

information of the SPM. The proposed F-SPM method also reduces the unnecessary SPM 

features through Fuzzy logic detection to include only significant features for further 

classification. The capability of the F-SPM is also extended to the multi-class 

classification. Each of the proposed method consists of two main phases. These phases 

are feature extraction and feature classification as shown in Figure 3.8 and Figure 3.9, 

which will be discussed in the following subsections. 
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Figure 3.8: Proposed CW-GLCM image recognition method. 

 

 

Figure 3.9: Proposed F-SPM image recognition method. 
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3.4.1 Feature Extraction 

This section briefly describes the feature extraction phase of the proposed 

methods. The feature extraction phase extracts important elements of an object while the 

feature classification phase classifies the object into classes based on their similarity. 

Therefore, it is important to define and select useful features to recognize the object in 

the feature extraction phase (X. Chen et al., 2019). The proposed CW-GLCM method is 

developed to improve the detection of the GLCM Texture analysis method on low-quality 

region images. The F-SPM method, on the other hand, is developed to select significant 

features to reduce unnecessary high dimensionality features of the SPM and improve the 

detection in apple classification. The description of the two methods are presented as 

follows: 

 

3.4.1.1 CW-GLCM (Proposed Method I) 

The CW-GLCM is a feature extraction of fusion-features that inspired by GLCM 

Texture analysis method (Olaniyi et al., 2017). The GLCM Texture analysis method is 

chosen since it achieved high accuracy of 96.25%-100% in defective and non-defective 

classification as shown in (Olaniyi et al., 2017). However, the GLCM method presents 

limited capability in detecting images with low-quality region. For this reason, Wavelet 

and Curvelet transform is introduced in the proposed method. The Wavelet transform is 

used to improve the quality of the texture at the low-quality region in the GLCM method. 

However, its limitation lies in the curved region areas. To address this limitation, Curvelet 

transform is added to the proposed method because of its ability in capturing the 

directional edges of curves, corners and profiles. The Curvelet transform also provides 

richer information in both spatial and spectral domains. In the CW-GLCM method, the 

features from the Curvelet transform are fused with five GLCM features which are 
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entropy, contrast, correlation, homogeneity and energy that extracted based on the 

Wavelet coefficients to produce a highly informative fusion-features. The details of the 

proposed CW-GLCM method and its specific contribution is further described in Chapter 

4. 

 

3.4.1.2 F-SPM (Proposed Method II) 

The second proposed method called F-SPM improves the classification accuracy of 

the proposed CW-GLCM method in detecting defective apples. The F-SPM method is a 

visual-dictionary feature extraction that includes spatial orders information of the SPM 

method (Lazebnik et al., 2006) to improve image representation for classification. The 

SPM method is chosen to encode the spatial distribution in the proposed method because 

it achieved excellent performance in the classification task and defective classification as 

reported in (X. Wei et al., 2019). The spatial layout information is important in the apple 

classification to discriminate between the defect and the natural parts of the stem end and 

calyx. To ensure the proposed F-SPM method is stable and reliable for apple 

classification, the existing SPM method is modified to reduce unnecessary SPM features 

through Fuzzy logic detection to include only significant features for further 

classification. The existing SPM method (Lazebnik et al., 2006) extracts feature vectors 

from all over the image using Dense regular grid. This generates a large number of 

unnecessary and redundant high dimensionality features (Chanti & Caplier, 2018; Lin et 

al., 2016; Penatti et al., 2014). These irrelevant features can reduce the accuracy 

performance in apple classification. The Fuzzy logic detection is introduced in the 

proposed method to improve the detection and reduce the unnecessary SPM features by 

selecting only the significant features to resolve the limitation on the SPM method. The 



68 

details of the proposed F-SPM method and contribution are further described in Chapter 

5. 

 

3.4.2 Classification 

The classification phase classifies the extracted features into the relevant categories 

using classifier. Thus, an accurate image recognition method requires not only a good 

feature extraction method but also a good classifier (R. Chen, 2018). There are several 

properties of a good classifier such as generalization and compactness. The generalization 

is the ability of the classifier to learn the pattern based on the input data and accurately 

predict the unseen data. The compactness is related to simplicity and ability of the 

classifier model to make fast predictions. 

In the learning structure of a classifier, the dataset is split into training set and 

validation set. The training set is used to learn the classifier and the validation set is 

reserved for evaluation (Kumar, Selvam, & Kumar, 2018; Singh, Thakur, & Sharma, 

2016). There are two problems potentially occur during the training phase, which are high 

bias and high variance. The high bias is the overfitting situation where the classifier 

successfully learns the training set but fails to generalize. Thus, produces a high 

misclassification on a validation set. The high variance is the underfitting situation where 

the classifier fails to learn the training data because the model is too simple. Therefore, in 

the apple classification, complementing the proposed feature extraction with a suitable 

classifier is important to achieve optimal performance. One of the major challenges is to 

determine the suitable classifier that able to achieve better classification accuracy (H.-D. 

Cheng et al., 2006).  
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The suitable classifier to ensure the optimal performance for each proposed feature is 

identified by testing six classifiers in the classification phase. These classifiers are KNN, 

Bayesian Network, Naïve Bayes, Decision Tree, Softmax and SVM. They are selected 

based on their specific advantage.  

The KNN classifier is among widely used classifier for image recognition task because 

of its simplicity and easy to implement (Avila, 2013; Duda, Hart, & Stork, 2001; Jadhav 

& Channe, 2016; Syaliman, Nababan, & Sitompul, 2018). It  is an instance-based learning 

classifier where the hypotheses are constructed directly from the training instances. KNN 

classifies an object by referring to the feature similarity based on its nearest neighbors in 

the training instances (Singh et al., 2016). The object is assigned to the class based on the 

majority vote among its k nearest neighbors, where the k value determine the class and 

typically is a small positive integer. In finding the nearest neighbors, the Euclidean 

distance technique is normally used.  

In contrast, the Bayesian Network is the classifier that based on bias-variance trade-

off network structure. The network structure models will allow the Bayesian Network to 

precisely capture the fine details in the data (Petitjean, Buntine, Webb, & Zaidi, 2018). 

Bayesian Network able to interpret problem using a structural relationship among 

predictors. In Bayesian Network, no free parameters to be set and the training data are 

learned without having to hold the data in the main memory (Petitjean et al., 2018; Singh 

et al., 2016). It used a graphical model to represents probabilities distribution for set of 

variable via a directed acyclic graph (Chaturvedi et al., 2018). The acyclic graph of 

Bayesian Network structure consists of nodes that represents variables which can be 

observed or measured. The variable can take many distinctives value within a node, in 

which each of it has its special probability.  
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The Naïve Bayes is also an efficient and effective machine learning classifier 

(Domingos; Duda, Hart, & Stork, 2012; Karandikar, McLeay, Turner, & Schmitz, 2015) 

that derived from Bayesian Network theory.  It is a simple probability that can be 

implemented with a linear complexity efficiently. This learning algorithm is based on 

Bayes theorem where it consist only one parent and several child nodes (Kumar et al., 

2018; Langarizadeh & Moghbeli, 2016). It applies a naïve assumption that assumes 

features in a class are completely independent. This simplistic assumption enables 

efficient calculation and resulting highly scalable classifier. 

Another simple and fast classifier that can achieve accurate result in most cases is the 

Decision Tree classifier (Jadhav & Channe, 2016). Furthermore, it also works well with 

the noisy data (Jadhav & Channe, 2016). The Decision Tree composed of the decision 

rules that predict an outcome based on optimal feature cutoff values that  split independent 

variables into different groups  recursively in a hierarchical manner (W. Wei, Polap, Li, 

Woźniak, & Liu, 2018). The tree structure made of root node, internal node and leaf 

nodes. The tree design starts with a root node which contains all set of input samples. 

When each time a rule is applied, the set is divided into two child nodes (internal node). 

If the internal node contains instances from a single class, the decision is readily made 

and it became a leaf; otherwise, the splitting process is continued. The analogy of 

applying the rules imposed on the internal nodes through certain attribute is called tree 

edges or branches and a class decision is called leaves (Kumar et al., 2018).  The longer 

or shorter the tree structure is depending on the selection of priority features. The structure 

of tree grows until the terminal nodes or leaves obtained, which determine the class 

probability. 

The Softmax classifier is one of the most commonly-used logistic regressions classifier 

for multi-class classification (Le & Mikolov, 2014; Pellegrini, 2015) especially in deep 
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learning method (Girshick et al., 2014; Qi, Wang, & Liu, 2017). The Sofmax classifier 

provides flexible approach in classification process. The learning framework of the 

Softmax classifier offer flexibility where it is trained on a reference dataset using spectral 

and spatial information. The classification process in Softmax classifier used the logical 

regression method, which judge the input and then outputs the result as single label class 

(Qi et al., 2017).  

Finally, the SVM classifier is selected because of it is well established technique in 

many image recognition tasks and its high accuracy performance (Attamimi, Araki, 

Nakamura, & Nagai, 2013; Auria & Moro, 2008; Danades, Pratama, Anggraini, & 

Anggriani, 2016; Ozkan, Ergin, Isik, & Isikli, 2015; Syaliman et al., 2018). In the SVM 

classifier, the Kernel function is used to model a higher dimensional data by adding the 

additional dimensions to draw the higher dimensional data. The used of kernel function 

in the SVM classifier also helps in reducing the time complexity of high dimensional data 

as it capable to compute faster.   

All the mentioned classifiers are evaluated with the proposed feature extraction and a 

test decision of the best performing classifier on the proposed feature extraction determine 

the suitable classifier for the proposed method. 

 

3.5 Performance Evaluation 

This section describes the performance evaluation and the evaluation metrics used in 

this research.  To demonstrate the reliability of the proposed methods, a series of 

comprehensive experiments are conducted in VLSI laboratory Faculty of Computer 

Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia. 

All the experiments are conducted using MATLAB R2017b on a computer with the 
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following specification: Windows 10 Pro and an Intel Core i7-4770 CPU (3.4GHz) 

processor with 8.00 GB RAM. 

In the experiments, the training and testing sets are specified using K-fold cross-

validation technique. The value of K strongly depends on the quantity of the data and 

suggested between 5 to 10 folds (Hastie, Tibshirani, Friedman, & Franklin, 2005; Roberts 

et al., 2017). Based on the experiment conducted on the NDDA dataset that evaluates the 

number of folds in connection with the classification accuracy (see Appendix A), the K 

parameter of 10 yields the highest classification accuracy. The experiment shows that the 

classification accuracy increased with the increment of folds. This is because the number 

of training images is also increased when the number of folds increased, thus increases 

the classification accuracy. Therefore, the 10-fold cross-validation is employed in this 

research. Also, the 10-fold cross-validation is mostly employed in the work related to this 

domain for evaluating the performance (Chui & Lytras, 2019; de Haan et al., 2017; 

George & Zwiggelaar, 2019; Roberts et al., 2017). The 10-fold cross-validation randomly 

partitioned the dataset into ten folders, in which each folder has virtually the same number 

of class distribution. Nine of the folders are used for training and one folder for validation. 

This process is repeated ten times until each folder is used exactly once as a validation 

set. Finally, the results from the ten experiments are averaged. Figure 3.10 illustrates the 

K-fold cross-validation, where ! = 10. 
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Figure 3.10: Illustration of 10-fold cross-validation. 

 

The classification performances in the experiments are measured in terms of precision, 

recall and accuracy. These measurements are calculated from TP (true positive), TN (true 

negative), FP (false positive) and FN (false negative). The TP, TN, FP and FN identify 

the amount of correctly or incorrectly classified instances to the positive or the negative 

classes. The accuracy score is considered in this research to describe the correct rate of a 

classifier. The accuracy score often used as a statistic performance score measure when 

dealing with classifier. Several different score which are precision and recall also 

considered and calculated. The precision is measured to depict a prediction of the possible 

true positive value which is the proportion ratio of the positive instances that are correctly 

classified. Finally, the recall is included to represent the proportion of the negative 

instances that are correctly classified by the classifier. Other than that, the computational 

time is also recorded and reported. The details of the evaluation for binary-class and 

multi-class classifications are described in the following subsections. 
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3.5.1 Binary-Class Evaluation 

The positive and negative classes can clearly define in the binary-class classification 

(Sokolova & Lapalme, 2009). The measurement of the precision, recall and accuracy can 

be computed as follows: 

Precision = 	TP/(TP + FP), (1) 

Recall	 = TP/(TP	 + FN), (2) 

Accuracy = (TN	 + TP)	/	(TP	 + 	FN	 + 	FP	 + TN), (3) 

where the terminology and derivations of TP, TN, FP and FN are given in Table 3.5. 

Table 3.5: Terminology and derivations of the evaluation metrics. 

Terminology Derivations 
TP (true positive) Defective apple is correctly classified as defective apple 

TN (true negative) Non-defective apple correctly classified as non-defective 
apple 

FP (false positive) Defective apple incorrectly classified as non-defective 
apple 

FN (false negative) Non-defective apple is incorrectly classified as defective 
apple 

 

3.5.2 Multi-Class Evaluation 

The assessment of the multi-class classification performance is defined by 

TP!, FN!, TN!, FP!	of the individual class C!. The 	Precision!,	Recall!,	Accuracy! are 

calculated from the counts for C! (Sokolova & Lapalme, 2009).  The overall classification 

are calculated from the summation of the cumulative TP!, FN!, TN!, FP!	and then the 

average performance of precision, recall and accuracy are calculated as shown in Table 

3.6. 
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Table 3.6: Measures precision, recall and accuracy for multi-class classification 
based on evaluation metrics for five defect classes >#: ?@# are true positive for >#,  
A@# are false positive, AB# are false negative and ?B# are true negative counts 

respectively. 

Measure Formula Evaluation Focus 

Precision ∑ TP!
TP! + FP!

$
!%&

5  

An average per-class agreement of 
the data class labels with those of a 
classifier 

Recall ∑ TP!
TP! + FN!

$
!%&

5  

An average per-class effectiveness 
of a classifier to identify class 
labels 

Accuracy ∑ TP! + TN!
TP! + FN!+FP! + TN!

$
!%&

5  
The average per-class 
effectiveness of a classifier 

 

3.6 Chapter Summary 

This chapter explained the research methodology conducted to answer the research 

questions and meet the objectives. The design and implementation of the proposed CW-

GLCM and F-SPM were briefly presented. The details of the design and performance for 

each proposed method will be elaborated in chapter 4 and chapter 5, respectively. 
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CHAPTER 4: CW-GLCM METHOD 

This chapter presents the first proposed method, namely CW-GLCM. The CW-GLCM 

is proposed to improve the ability of the GLCM method in detecting features on the low-

quality region of the apple image for binary-class classification of defective and non-

defective apple images. The proposed method inspired by the Texture analysis of GLCM 

method (Olaniyi et al., 2017) since it presented high accuracy for defective and non-

defective classification. However, the limitation of the method is it dependent on the 

texture information features provided in the images. Utilizing the GLCM method alone 

limits the capability of the method to distinguish object with quite similar texture and 

images with low-quality region (Fahrurozi et al., 2016; Y. Li et al., 2015). In apple 

classification, the accuracy of the method degrades due to the presence of low-quality 

image region features on the apple skin. Thus, the proposed CW-GLCM method improve 

and enhance the detection of features on the low-quality image region by incorporate the 

Curvelet and Wavelet transform with GLCM method. The CW-GLCM method fused the 

features of Curvelet and five GLCMs features based on Wavelet coefficient to produce 

highly informative fusion-features that able to effectively classify between defective and 

non-defective apple images including images with low quality region in which, the key 

contribution of this research. To evaluate the performance of the proposed CW-GLCM 

method, two datasets binary-class of defective and non-defective apple images, which are 

NDDA and NDDAW are considered. These binary-class datasets contain 1110 apple 

images from defective and non-defective categories. The NDDA dataset is used to 

evaluate the capability to detect various defective and non-defective apple types, while 

the NDDAW particularly to evaluate the effectiveness of the proposed method against 

low-quality region. The chapters are divided into six main sections: the first section 

(section 4.1) briefly introduced the method. The second section (section 4.2) described 

the process flow of the proposed CW-GLCM method. The third section (section 4.3) 
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presented the experimental results and analysis; followed by the discussion in fourth 

section (Section 4.4). Whereas the last section (Section 4.5) summarized the whole 

chapter.  

 

4.1 Introduction 

Texture features is one of the suitable features for defective and non-defective 

classification as it can represent the surface and structure of the image. The GLCM is an 

effective method to extract texture information (Mondal et al., 2017; Sthevanie & 

Ramadhani, 2018) where it can describe the relationship of the neighboring pixels in the 

image. However, the method is dependent on the images texture information which 

ineffective to extract features from the low-quality region images. In apple classification, 

the detection and extraction of features on low-quality region is important to differentiate 

between defective and non-defective apples. Failure to detect these features may reduce 

the classification accuracy. 

For this reason, a new image recognition method of CW-GLCM method to effectively 

classify defective and non-defective apple images including images with low quality 

region is proposed. The CW-GLCM is a feature extraction of fusion-features based on 

the GLCM method. The proposed method improve the detection on the existing GLCM 

Texture analysis (Olaniyi et al., 2017)  method in detecting on low-quality region images. 

In GLCM Texture analysis, the features were extracted from a co-occurrence matrix 

based on the selection of GLCM features. In contrast, the proposed CW-GLCM method 

incorporate the Curvelet and Wavelet transform with GLCM method to enhance the apple 

images especially on low-quality region by improving their texture information. The 

proposed CW-GLCM method fused the features of Curvelet and five GLCMs features 
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extracted based on Wavelet coefficient forming a set of fusion-features to improve the 

detection.  

 

4.2 CW-GLCM Method 

This section describes the phases involved in the proposed CW-GLCM method. The 

proposed CW-GLCM method focuses to improve the detection on low-quality region 

image. The proposed method introduces the Curvelet and Wavelet transform in the 

modified GLCM method to improve the detection. The Wavelet transform is used in the 

GLCM method to improve the quality of the texture on the low-quality region images. 

Due to Wavelet transform limitation that lies in the curved region areas, the Curvelet 

transform are also used in the proposed method to effectively deals with a low-quality 

region area since it has a better ability in capturing the directional edges of curves, corners 

and profiles (Agarwal & Bedi, 2015; J. Luo et al., 2014). The Curvelet transform also 

provides richer information in both spatial and spectral domains (Hagargi & Shubhangi, 

2018). These will enhance the apple images especially on low-quality region by 

improving their texture information.  

The proposed CW-GLCM method consist of two main phases, feature extraction and 

feature classification as shown in Figure 4.1. The feature extraction phase concentrate on 

the selection of fusion-features that able to increase the classification accuracy for 

defective and non-defective apple including low-quality region images. For this reason, 

the Curvelet and Wavelet transform is introduced to enhance the detection of features on 

the low-quality image region by improving their texture information. In the feature 

extraction phase, the images are subjected to the Curvelet transform to obtain the Curvelet 

features. The images are also subjected to the Wavelet transform in order to obtain the 

Wavelet coefficient. From these Wavelet coefficients, five GLCMs features which is 
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entropy, contrast, correlation, homogeneity and energy are extracted. In this phase, there 

are six different features in total which is Curvelet, entropy, contrast, correlation, 

homogeneity and energy that are fused together forming a set of fusion-features. The 

fusion-features obtained in the feature extraction phase are then transferred to the feature 

classification phase. In the classification phase, six classifiers are utilized to select the 

most suitable classifier for the proposed fusion-features in classifying defective or non-

defective apple images. With the use of the proposed fusion-features in feature extraction 

phase, the classification is expected to be more accurate than solely dependent on GLCMs 

features especially with the presence of low-quality regions in the apple images. The 

output from the classifier can be used for the data analytics and visualization to identify 

the patterns and learn for future decision making and actions. The proposed CW-GLCM 

method that comprises of two phases, will be discussed in the following subsections. 

 

Figure 4.1: Process flow of the proposed CW-GLCM method for apple 
classification2.  
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4.2.1 Feature Extraction 

The phase of the proposed method feature extraction comprises of three major 

methods, which are Curvelet, Wavelet and GLCM method. The proposed method 

combines the Curvelet features with five GLCMs features extracted based on the Wavelet 

coefficient. To retain the image information, the image normalization step is skipped in 

the proposed method to deal with the low-quality region on the apple skin images. This 

is to avoid misclassification between defective and non-defective apple. 

 

4.2.1.1 Curvelet Transform 

The main reason that the proposed method fuses the Curvelet features is to detect the 

low-quality apple images region for curves, corners and profiles. As compared with other 

transforms, the Curvelet is effective and accurate at capturing the edges and other 

singularities along the curves (Acharya et al., 2016). The Curvelet features will provide 

more information on low-quality regions in the apple images. In the proposed method, 

the Curvelet transform based on wrapping of specially selected Fourier samples (FDCT-

Wrap) is used because it is the fastest and well-adapted Curvelet transform algorithm to 

represent edges (Abdullah, Hazem, & Reham, 2017; Candes et al., 2006; curvelet.org). 

The FDCT-Wrap is applied to enhance the image contrast of the low-quality region. The 

two consecutive regions between the low-quality regions that has a different pixel value 

with the nearby region are likely to form “edges” as illustrated in Figure 4.2. This edges 

are formed based on the variation of pixel values allowing the FDCT-Wrap in the 

proposed method to detect this edges information. In order to obtain the dominant 

features, the LL sub-bands filter is applied to set the intensity elements of the FDCT-

Wrap coefficient. Then, the inverse transformation is performed on the extracted features 

from the FDCT-Wrap coefficient to produce the Curvelet transform value. 
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Figure 4.2: Representation of edges in Curvelet transform. 

 

The steps of FDCT-wrap are as follows: 

Step 1. Input the image; 

Step 2. Apply 2D Fast Fourier Transform (2DFFT) on the image; produce a set of 

Fourier sample EF[H&, H']; 

Step 3. Resample a set of Fourier sample EF[H&, H'] at each pair of scale J and angle 

direction K in frequency domain. The scale is from finest to coarsest scale with the angle 

direction start from the top-left corner increases clockwise. This will produce the new 

sampling function as expressed in (4). 

EF[H&, H' − H& tan N(],			(	H&, H')Î	O(H&, H'), H&,) ≤ H& ≤ H&,) + Q&,* , H',) ≤ H'

< H',) + Q',*S, 
(4)  

where H&,) and H',) are the initial position of window function TU*,([H&, H'], Q&,* and 

Q',* are parameter of length 2* and width 2*/' components of window function support 

interval. The window function formula is defined in (5). 
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TU*,([H&, H'] = 	W&	(W&, W'	)X* YZ- 	.
(2[*/']W')

W&
[, 

W&(W&, W'	) = 	\]*0&	' (W') − ]*'(W'), 

]*(W&, W'	) = ]^21*W&_]^21*W'_, 

Z-! = ` 1 0
− tan N( 1a, 

tan N( = K × 2⌊1*/'⌋ , K = −2⌊1*/'⌋, . . . , 2⌊1*/'⌋ − 1 

(5) 

where W& is a vertical axis but located near the horizontal axis of W'; 

Step 4. The new sampling function of EF[H&, H' − H&, tan N(] are multiplied with the 

window function TU*,([H&, H']: 

E4,(c[H&, H'] = EF[H&, H' − H& tan N(]TU*,([H&, H']; (6) 

Step 5. Then, the inverse 2DFFT is applied to each of E4,(c  obtained in the previous step 

to produce Curvelet transform value. 

Finally, feature vector of the Curvelet transform value are extracted and then fused 

them with the GLCMs features calculate based on the Wavelet transform in the following 

step to accomplish defective and non-defective apple classification. 

 

4.2.1.2 Wavelet Transform 

To improve the texture information extracted from the GLCM method, the proposed 

method also modifies the existing GLCM method by extracting the GLCMs features 

based on the Daubechies 4 Wavelet coefficient. Daubechies 4 Wavelet is chosen as it is 

suitable for texture classification due to their relations to multiresolution. The Wavelet 
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coefficient will enhance the visibility of the low-quality region in the apple images, 

especially on the apple skin by capturing the directional edges in different resolution 

levels preserving the low and high frequency information. This leads the proposed method 

to extract better texture information from the apple images. The edges representation in 

Wavelet transform are shown in Figure 4.3. 

 

Figure 4.3: Representation of edges in Wavelet transform. 

 

The Wavelet transform are calculated using the wavelet function as follows: 

!"∫ (%, ')) = 〈∫ , ,",$% 〉 (7) 

where Z ∈ e is parameter of scale resolution level, f is translation,	! ∈ {ℎ, X, i}	is the 

orientation and k5,67 = ( &√5)	k
7(9165 ) is a wavelet family. The orientation ℎ, X and i 

parameter represent horizontal, vertical and diagonal direction. The wavelet 

decomposition is achieved when the value of Z = 2* and f = 2* . H, J, H ∈ e. 

The wavelet and scaling family are constructed using wavelet function k(l) and 

scaling function m(l) as expressed in (8). 

,&,'% (.) = (
)*!

	,% 0+,*
!.'

*! 1       and									2&,'% (.) = (
)*!
	2% 0+,*

!.'
*! 1 (8) 
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The two dimensional Wavelet transform are constructed based on the combination of 

high-pass and low-pass digital filter banks and down-samplers. As the images is in 2D 

signal, separable function Discrete Wavelet Transform is used in the configuration of 

DWT structure. The rows and columns of the images are subjected to the 1D Wavelet 

Transform separately to produce the 2D-DWT. The output of the decomposed images in 

2D orthogonal wavelet representation resulting four orthogonal sub-bands component 

which are Low-Low (LL), Low-High (LH), High-Low (HL) and High-High (HH) as 

presented in Figure 4.4. The results shown in the figure is for one level decomposition. 

Every stage of DWT requires high-pass and low-pass digital filter with two down 

sampling (Sarala & Sivanantham, 2014). This process is further continued and 

decomposed to another four sub-band components, forming two-level decomposition. 

The wavelet decomposition at two resolution levels as illustrates in Figure 4.5. 

 

Figure 4.4: Image decomposition using analysis filter banks. Note that no  is low-
pass filter and pU  is high-pass filer and ↓2 is keeping one sample out of two (down 

sampling) 2. 
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Figure 4.5: 2D-DWT wavelet decomposition at two resolution levels (a) the 
structure diagram (b) apple image via wavelet decomposition at two resolution 

levels2. 

 

4.2.1.3 GLCM 

The GLCMs texture features are extracted from GLCM based on the computed 

Wavelet coefficient from the prior process in section 4.2.1.2. The GLCMs features are 

included in the proposed method to estimate the apple images texture properties. Instead 

of calculating the GLCMs features from GLCM coefficient, the proposed method 

modifies the original GLCM implementation by using Wavelet coefficient to calculate 

five of the GLCMs feature. The features are entropy, contrast, correlation, homogeneity 

and energy. The entropy is a measure of levels disorderliness and randomness in the 

images. It is the most dominant statistical features and widely used to measure variations 

between pixel intensities (Acharya et al., 2016). This is important to symbolize texture 

that appear in the apple images. The contrast measures the variation values and intensity 

contrast of the neighboring pixel in the gray level. The correlation features are also 

selected since it measures the correlated pixels to the neighbors over the whole image and 
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determined the linear dependencies of the gray levels. Homogeneity features are 

important to measure the uniform region in the images according to its gray level 

difference and the energy returns the sum value of the squared elements in the GLCM. 

To extract the texture features from GLCM, the matrix must be symmetric (Girisha, 

Chandrashekhar, & Kurian, 2013). In order to get a symmetric matrix, the GLCM is 

transposed and added to the original GLCM. From the symmetrical GLCM, the texture 

features are extracted. To compute the GLCM, the spatial relationship between two pixels 

is establish. The first one is the reference pixel which is pixel-of-interest and the other 

pixel is a neighbor pixel. This process forming the GLCM that contains different 

combination of pixel gray values. The number of gray levels (q) is ranging from 0 to 

q − 1. The GLCM is highly dependent on two parameters which are distance between 

the pixel pair (r) and their angular relationship (N). In the proposed method, the GLCM 

is computed based on the predefine distance of one pixel (r = 1) and N are quantized in 

four parameter directions which are 0°, 45°, 90	°and 135°. The directionality of GLCM 

used in the proposed method illustrated as in Figure 4.6. This forms four co-occurrences 

matrix. The GLCM are calculated in the corresponding matrix by taking the absolute 

value of each resolution level of the Wavelet coefficient matrix obtained using 2D-DWT 

in the prior section. Then, each of the GLCMs texture features are computed from the 

details of the Wavelet coefficient matrix for various resolution level in the corresponding 

matrix. 
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Figure 4.6: Directionality of GLCM2. 

 

The procedure of the extraction of GLCMs features based on the Wavelet coefficient 

are as follows: 

Step 1. Input the original image; 

Step 2. Compute GLCM from the Wavelet coefficient and calculate based on five 

GLCMs. The formulations for each of the GLCMs features are computed as follows: 

Entropy = 	∑ ∑ x(y, J) ∗ log(x(y, J));1&
*%)

;1&
<%) , (9) 

Contrast =| H' }||x(y, J)
;

*%&

;

<%&
~

;1&

<%)
, |y − J| = H,	 (10) 

Correlation = ||
Oy ∗ J} ∗ x(y, J) − {Ä9 ∗ Ä=S

Å9 ∗ Å=

;1&

*%)

;1&

<%)
,	 (11) 

Homogeneity = 	||Ñ
x(y, J)

1 + |y − J|Ö
;1&

*%)

;1&

<%)
, (12) 
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Energy = ||x(y, J)'
;1&

*%)

;1&

<%)
,	 (13) 

where x is a pixel, y is row, J is column,	H is line of neighborhood, q represents the 

number of gray levels used, Ä9 , Ä= , Å9 , Å= are the mean and standard deviation value 

obtained from x9 and x= respectively. The x9 and x= are the results obtained after 

summing the rows x(y, J); 

Step 3. Acquire texture features according to (9), (10), (11), (12) and (13). 

Finally, the Curvelet features obtained from the prior process in section 4.2.1.1 are 

fused in the texture features obtained in step 3 to produce highly informative fusion- 

features. The parameter settings of Curvelet, Wavelet and GLCM used in the proposed 

method are summarized in Table 4.1. 

Table 4.1: Parameters setting of Curvelet, Wavelet and GLCM. 

Algorithm Parameters Settings 

Curvelet 

scale (J) 3 
number of angles at the 

second coarsest level (K) 16 

fine 2 

Wavelet 

level of decomposition (Z) 2 
number of minimum scale 7 

number of vanishing 
moments 4 

gray levels (q) 0	to	q − 1 
total number of directions 3 

GLCM 

angle (N) 0°, 45°, 90	°and 135° 
distance	pixel	(r)	 1 

texture features entropy, contrast, correlation, 
homogeneity and energy 
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4.2.2 Classification 

In the classification phase, the fusion-features extracted in the previous phase are 

classified into the defective and non-defective apples using classifier. Six classifiers 

which are KNN, Bayesian Network, Softmax, Decision Tree, Naïve Bayes and SVM have 

been utilized comparatively to select the most suitable classifier for the proposed fusion- 

features. Their performances are evaluated and compared.  

 

4.3 Experimental Results and Analysis 

This section presents the experimental results of the proposed CW-GLCM method on 

binary-class of NDDA and NDDAW datasets. To demonstrate the reliability performance 

of the proposed CW-GLCM method, a series set of comprehensive experiments was 

conducted. In apple classification, it is crucial to detect on the low-quality region in the 

apple images to enable the classifier to differentiate and classify between defective and 

non-defective. The results shown in this section prove the success of the proposed CW-

GLCM method in detecting features on the low-quality region of the apple image and 

significantly improve the ability of GLCM method. 

 

4.3.1 Performance Measure for Fusion-Features 

As highlighted in Section 4.2, the fusion-features are the combination of Curvelet 

features and five GLCMs features based on the Wavelet coefficient. This forming a set 

of fusion-features which consist of six features. They are the Curvelet features, entropy, 

contrast, correlation, homogeneity and energy. In searching for the best fusion-features, 

the fusion-features are compared with the Curvelet features and each of the GLCMs 

features calculated from GLCM coefficient. Their performances are evaluated and 
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compared with the proposed fusion-features on NDDA dataset using SVM classifier as 

shown in Table 4.2. Based on the table, the results show that the proposed fusion-features 

outperformed others with 88.89% precision, 85.71% recall and 87.04% accuracy. 

Although the fusion-features require the longest time for training and testing, the results 

proved that the Curvelet and Wavelet transform can improve the detection of the GLCM 

texture features. 

Table 4.2: Comparative results (precision, recall, accuracy, training time and 
testing time) for the proposed fusion-features using SVM classifier on NDDA. 

Features Precision 
(%) 

Recall 
(%) 

Accuracy 
(%) 

Training 
Time (s) 

Testing 
Time (s) 

Curvelet 77.78 75.00 75.93 317.34 2.97 
Contrast 58.57 54.67 55.00 103.29 1.51 

Correlation 53.57 52.26 52.32 107.91 0.72 
Energy 67.14 58.02 59.29 101.09 0.32 

Homogeneity 56.07 55.28 55.36 100.73 0.37 
Entropy 78.21 57.94 60.71 101.35 0.32 

Fusion-Features 
(Proposed Features) 88.89 85.71 87.04 364.51 3.12 

 

A graphical comparison performance between the proposed fusion-features with 

contrast, correlation, energy, homogeneity, entropy and Curvelet using SVM classifier on 

NDDA dataset are presented in Figure 4.7. Based on the Figure 4.7 (a), the proposed 

fusion-features is shown to be able to obtain the highest percentage for all measurement 

of precision, recall and accuracy compared to other features with a minimum value of 

85.71% on recall. However, it requires the longest time for the training and testing as 

shown in Figure 4.7 (b). This is due to the reason that the fusion-features incorporate three 

major methods which is the Curvelet, Wavelet and the GLCM method. In addition, the 

normalization step is skipped in the feature extraction phase to retain the information of 

a low-quality region on the apple skin images. This will increase the time complexity and 

reduce the speed. Although the fusion-features show high computational time, from these 

results it can be seen that the fusion-features of Curvelet features with five GLCMs 
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features calculated based on the Wavelet coefficient outperformed others in term of the 

precision, recall and accuracy. 

 

Figure 4.7: Comparative results for the proposed fusion-features using SVM 
classifier on NDDA dataset (a) precision, recall and accuracy (b) training and 

testing time. 

 

To obtain the most suitable classifier, the fusion-features utilize six classifiers and are 

tested on NDDA dataset. The selections of classifiers are KNN, Bayesian Network, 

Softmax, Decision Tree, Naïve Bayes and SVM. The results for each classifier are 

presented in Table 4.3. 

Table 4.3: Comparison of the proposed fusion-features with different classifiers 
on NDDA dataset. 

Fusion-Features (Proposed Features) 

Classifier Precision 
(%) 

Recall 
(%) 

Accuracy 
(%) 

Training 
Time (s) 

Testing 
Time (s) 

KNN 70.37 73.08 72.73 386.19 23.55 
Bayesian Network 70.37 76.00 74.07 385.97 0.57 

Softmax 79.31 71.88 73.21 372.24 1.10 
Decision Tree 96.30 100.00 98.15 344.17 0.25 
Naïve Bayes 59.26 76.19 70.37 390.18 0.98 

SVM 88.89 85.71 87.04 364.51 3.12 
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Correlation 53.57 52.26 52.32
Energy 67.14 58.02 59.29
Homogeneity 56.07 55.28 55.36
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From the Table 4.3, the fusion-features with Decision Tree classifier give the best 

performance for all for the measurement of precision, recall and accuracy including the 

computational time. The comparative results for different classifier are presented in 

Figure 4.8. 

 

Figure 4.8: Comparative results of fusion-features for different classifier on 
NDDA dataset (a) precision, recall and accuracy (b) training and testing time. 

 

Based on Figure 4.8, the Decision Tree classifier outperformed others with 96.30% of 

precision, recall 100% and accuracy 98.15%. In contrast, Naïve Bayes classifier shows 

the lowest performance for precision (59.26%) and accuracy (70.37%). This is because 

Naïve Bayes classifier make a very strong assumption that all variables are mutually 

correlated and contribute towards classification. Due to this assumption, it degrades the 

classification performance (Jadhav & Channe, 2016). The lowest recall is observed in 

Softmax classifier with 71.88%. The performance decrease in term of recall rate in the 

Softmax classifier is due to overfitting from high-variance structure (Pellegrini, 2015). 

Precision Recall Accuracy
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Bayesian Network 70.37 76.00 74.07
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0

10

20

30

40

50

60

70

80

90

100
Percentage (%)

Training Testing

KNN 386.19 23.55
Bayesian Network 385.97 0.57
Softmax 372.24 1.10
Decision Tree 344.17 0.25
Naïve Bayes 390.18 0.98
SVM 364.51 3.12

0

50

100

150

200

250

300

350

400 Time (s)

(a) (b)



93 

 In terms of computational time among the classifiers, Naïve Bayes takes the longest 

time for training (390.18 s), whereas KNN for testing (23.55 s). The Naïve Bayes 

classifier is based on probabilistic that requires the knowledge of prior probability 

distribution of the class and also data to be classified. This increased the training time in 

Naïve Bayes classifier. Conversely, the KNN classifier is computationally intensive as it 

stores all the training data and compares the extracted features on the test images with 

each training data for classification (Syaliman et al., 2018). In contrast, the Decision Tree 

classifier is the fastest classifier during the training (344.17 s) and testing (0.25 s).  

The results also show that the Decision Tree classifier able to achieve the highest 

performance for all measurements. This is due to the reason that different ranges of 

features in the proposed fusion-features does not affect the Decision Tree. The Decision 

Tree is a non-parametric classifier where it can deal with linearly inseparable data and 

capable to handle variety of data either nominal, numeric or textual even with noisy data, 

redundant attributes or missing values (Jadhav & Channe, 2016; Singh et al., 2016). 

While in the SVM and other classifiers, each of the data instances is represented in the 

form of real numbers vectors. This transformation may affect the classification 

performance. Since the data normalization step is skipped in the feature extraction stage, 

the Decision Tree classifier is found to be more suitable to classify the proposed fusion-

features since the Decision Tree classifier good at handling variety data (Jadhav & 

Channe, 2016). Therefore, in the proposed method, the Decision Tree classifier is chosen. 
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4.3.2 Comparison with Existing Methods 

To further evaluate the performance of the proposed method, five existing methods for 

image recognition are compared with the proposed method. They are BOW (Csurka et 

al., 2004), SPM (Lazebnik et al., 2006), CNN (dos Santos Ferreira et al., 2017), Texture 

analysis (Olaniyi et al., 2017) and CLAHE+GLCM+ELM (W. Li et al., 2019). The 

average results for 10-fold cross-validation of each method are presented in Table 4.4. 

Table 4.4: Comparison of confusion matrix for BOW (Csurka et al., 2004), SPM 
(Lazebnik et al., 2006), CNN (dos Santos Ferreira et al., 2017), Texture analysis 

(Olaniyi et al., 2017), CLAHE+GLCM+ELM (W. Li et al., 2019) and the proposed 
CW-GLCM method on NDDA dataset: Defective (D) and Non-defective (N). 

 Methods 

 BOW SPM CNN Texture 
analysis 

CLAHE+ 
GLCM+ 

ELM 

CW-GLCM 
(Proposed 
Method) 

Class D N D N D N D N D N D N 
D 24 3 26 1 25 2 20 7 22 5 26 1 
N 4 23 0 27 1 26 4 23 11 16 0 27 

Precision (%) 88.89 96.30 92.59 74.07 81.48 96.30 
Recall (%) 85.71 100.00 96.15 83.33 66.67 100.00 

Accuracy (%) 87.04 98.15 94.44 79.63 70.37 98.15 
Training time (s) 402.94 150.97 149.13 135.12 1323.58 344.17 
Testing Time (s) 3.92 0.13 0.08 1.38 0.02 0.25 

 

Following the 10-fold cross-validation experiment on NDDA dataset, a total number 

of 275 images from the defective class and 275 images from the non-defective class are 

divided into ten equal parts. Each part consists of 28 or 27 images of the defective and 

non-defective classes. Nine parts are used for training and one for testing. This process is 

repeated ten times until each of the folders is used exactly once as a validation set. Then, 

the average value for all ten experiment are taken. In Table 4.4, the classification 

performance is led by the proposed CW-GLCM and SPM method with 98.15% 

classification accuracy. Both methods correctly classified all 27 images of non-defective 

apples followed by CNN (26 images), BOW and Texture analysis (23 images), while the 

lowest goes to CLAHE+GLCM+ELM (16 images). For the defective images, the 
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proposed CW-GLCM and SPM method correctly classified 26 out of 27 images of 

defective apples while CNN, BOW, CLAHE+GLCM+ELM and Texture analysis 

correctly classified 25, 24, 22 and 20 respectively. 

Overall, the proposed CW-GLCM and SPM method outperformed others in NDDA 

dataset with the classification accuracy of 98.15%. This is followed by CNN with 94.44%, 

BOW 87.04%, Texture analysis 79.63% and CLAHE+GLCM+ELM 70.37% as presented 

in Table 4.4. The proposed CW-GLCM and SPM method also outperformed others with 

96.30% precision and 100% recall rate. Among the methods, CLAHE+GLCM+ELM take 

the longest time for training (1323.58 s) and the fastest during testing (0.02 s). The 

CLAHE+GLCM+ELM method required the longest time for training due to the 

computationally extensive of CLAHE approach in the method. The CLAHE approach are 

usually used for image enhancement in off-line application (Reza, 2004). In contrast to 

the training time, the CLAHE+GLCM+ELM able to classify the dataset faster compared 

to other methods because of the extremely fast learning speed of the ELM classifier used 

in the method (W. Li et al., 2019). This is followed by the CNN method with 0.08 s, SPM 

0.13 s, proposed CW-GLCM 0.25 s, Texture analysis 1.38 s and BOW 3.92 s. The BOW 

requires the longest time for testing the NDDA dataset because of the high computational 

cost in vector quantization step in BOW method. In contrast to BOW, the CNN method 

able to classify faster because of the input images to the CNN method were rescaled from 

the original of 900 × 700 pixels to 227 × 227 pixels. This is due to the CNN requirement 

of having fixed-size input images (He et al., 2015; Krizhevsky et al., 2012). If the arbitrary 

sizes of the images are applied, the CNN method will fit the images input to its fixed size 

via either cropping or warping the images (Donahue et al., 2014; Girshick et al., 2014; 

He et al., 2015; Krizhevsky et al., 2012). Although the proposed CW-GLCM requires a 

longer time to classify the dataset than the SPM method, the results are still acceptable as 

it takes only less than 0.23 s longer than the CLAHE+GLCM+ELM, which is the fastest 
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method during testing to successfully classify all the non-defective apple images. Other 

than that, the proposed CW-GLCM only misclassified one out of 27 defective apples. 

These results indicate that the proposed method able to effectively classify between 

defective and non-defective apple including the apple with a low-quality region on its 

skin. The examples of the low-quality region on the non-defective apple images can be 

found in bright-skinned apple and apple with yellow-white flecks as shown in Figure 4.9. 

In other methods, these types of apple may be misclassified as defective. 

 

Figure 4.9: Examples of misclassified apple images with a low-quality region. 
The low-quality regions on apple skin images are pointed by the arrows2. 

 

4.3.3 Analysis of Classification Performance against Low-Quality Region 

Based on the analysis of the proposed method on the NDDA dataset, the results were 

further explored. The proposed method is tested with NDDAW dataset in which the 

dataset was created particularly to include more low-quality apple image region. This 

dataset consists of 159 apple images with a low-quality region on its skin. The comparison 

average results for 10-fold cross-validation with other methods are presented in Table 4.5. 

 

 

 



97 

Table 4.5: Confusion matrix for BOW (Csurka et al., 2004), SPM (Lazebnik et 
al., 2006), CNN (dos Santos Ferreira et al., 2017), Texture analysis (Olaniyi et al., 

2017), CLAHE+GLCM+ELM (W. Li et al., 2019) and proposed CW-GLCM 
method on NDDAW dataset: Defective (D) and Non-defective (N). 

 Methods 

 BOW SPM CNN Texture 
analysis 

CLAHE+ 
GLCM+ 

ELM 

CW-
GLCM 

(Proposed 
Method) 

Class D N D N D N D N D N D N 
D 21 7 20 8 22 6 20 8 14 14 24 4 
N 5 23 9 19 6 22 13 15 11 17 2 26 

Precision (%) 75.00 71.43 78.57 71.43 50.00 86.79 
Recall (%) 80.65 68.97 78.57 60.61 56.00 91.01 

Accuracy (%) 78.50 69.64 78.57 62.50 53.36 89.11 
Training time (s) 275.61 149.92 146.89 131.32 2075.93 386.63 
Testing Time (s) 3.84 0.47 0.34 1.41 0.02 0.31 

 

Following the 10-fold cross-validation for NDDAW dataset, a total number of 280 

images from the defective class and 280 images from the non-defective class are divided 

into ten equal parts. Each part consists of 28 images of the defective and non-defective 

classes. Nine parts are used for training and one for testing. This process is repeated ten 

times until each of the folders is used exactly once as a validation set. Then, the average 

value for all ten experiment are taken. From Table 4.5, the classification performance is 

led by the proposed CW-GLCM method with 89.11% classification accuracy. This is 

followed by CNN 78.57%, BOW 78.50%, SPM 69.64%, Texture analysis 62.50% and 

CLAHE+GLCM+ELM 53.36%. The proposed CW-GLCM correctly classified 26 

images out of 28 non-defective apples while CNN (22 images), BOW (23 images), SPM 

(19 images), Texture analysis (16 images) and CLAHE+GLCM+ELM (17 images). For 

the defective images, the proposed CW-GLCM method correctly classified 24 images of 

defective apples followed by CNN (22 images), BOW (21 images), SPM and Texture 

analysis (20 images) while CLAHE+GLCM+ELM (14 images). In this dataset, the 

proposed CW-GLCM outperformed others whereas the CLAHE+GLCM+ELM method 

recorded the lowest classification accuracy followed by Texture analysis method. 
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Overall, the CLAHE+GLCM+ELM method recorded the lowest classification 

accuracy performance in both datasets tested. This is due to the drawbacks of the CLAHE 

approach that sometimes may produce unwanted gray level artifact and creates an equal 

density in all the histogram bins during the image enhancement process (Hassan, Kasim, 

Jafery, & Shah, 2017). Furthermore, the ELM classifier is a single-hidden-layer, feed-

forward neural networks that in the learning procedure of ELM classifier, one may require 

to tackle few major issues which is free parameters setting, convergence speed and 

overfitting (Chaturvedi et al., 2018). These reasons may reduce the classification accuracy 

in the methods. In contrast, the obvious accuracy performance difference can be observed 

from the SPM method between NDDA and NDDAW dataset. Although the SPM method 

achieved high percentage for the measurement of precision, recall and accuracy in NDDA 

dataset, it presents lower performance in NDDAW dataset. This is because the NDDAW 

dataset contains more apple images with low-quality region compared to NDDA dataset. 

The result shows that the SPM method is less sensitive in detecting features in the low-

quality region. On the other hand, the proposed CW-GLCM method achieved the highest 

classification accuracy, precision and recall in both datasets. This indicates that the 

proposed method is more robust in detecting features on low-quality region. Figure 4.10 

(a) and Figure 4.10 (b) depicts the performance of precision, recall and accuracy for 

NDDA and NDDAW. The training and testing time tested on each dataset are presented 

in Figure 4.10 (c) and  Figure 4.10 (d). 
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Figure 4.10: Comparative results of precision, recall and accuracy in (a) NDDA 
dataset (b) NDDAW dataset (c) training time and (d) testing time for BOW 

(Csurka et al., 2004), SPM (Lazebnik et al., 2006), CNN (dos Santos Ferreira et al., 
2017), Texture analysis (Olaniyi et al., 2017), CLAHE+GLCM+ELM (W. Li et al., 

2019) and proposed CW-GLCM method. 
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4.3.4 Performance Evaluation with Different Image Resolution 

To evaluate the efficiency of the proposed method against different image resolution, 

the test with three different image resolution (i.e. original, small and large) is conducted. 

The small and large images are created by rescaling them with two parameters, 0.5 and 

1.5. The comparative results of their precision, recall, accuracy, training and testing time 

are presented in Table 4.6. 

Table 4.6: Comparative results (precision, recall, accuracy, training time and 
testing time) of the proposed method for different resolution images. 

Rescale Resolution 
(Pixel) 

Precision 
(%) 

Recall 
(%) 

Accuracy 
(%) 

Training 
Time (s) 

Testing 
Time (s) 

0.5 450 × 350 96.30 100.00 98.15 102.76 0.12 
Original 900	×	700 96.30 100.00 98.15 344.15 0.25 

1.5 1350	×	1050 96.30 100.00 98.15 550.74 0.31 
 

From the results, it can be seen that the performance of the proposed CW-GLCM is 

not affected by the resolution change. The only difference observed is in the 

computational time. The time taken for training and testing is getting higher as the number 

of pixels increased. The results proved that the image resolution does not influence the 

precision, recall and accuracy of the proposed CW-GLCM. Although the training and 

testing time are increased with the increment of image resolution, the 10-fold cross-

validation experiment on the dataset shows that the proposed method are able to process 

27 images within 0.25 s during testing on the original resolution (900 × 700 pixel). These 

results indicate that the proposed CW-GLCM method can be used in real-time systems. 
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4.4 Discussion 

Overall, the proposed CW-GLCM method outperformed others in detecting important 

features on the low-quality apple image region. The proposed method performance 

exceeds 86.79% for all the performance measures in both datasets tested. In contrast, a 

lower precision, recall and accuracy are observed in the other five methods on NDDAW 

dataset with the maximum recall of 80.65% in BOW method. The classification accuracy 

of BOW in NDDAW dataset is 78.50%, SPM 69.64%, CNN 78.57%, Texture analysis 

62.50% and CLAHE+GLCM+ELM 53.36%. The lower classification accuracy of the 

BOW, SPM, Texture analysis and CLAHE+GLCM+ELM methods is influenced by the 

presence of low-quality region on the apple images in NDDAW dataset. While the 

reasons that reduce the classification accuracy of the CNN method is due to the small 

sample dataset utilized in the experiment. The CNN deep learning method requires a large 

number of images for training in order to obtain a desired classification accuracy result 

(X. Cheng et al., 2017; He et al., 2015; Krizhevsky et al., 2012; Z. Xiao et al., 2019). 

 In contrast, the proposed CW-GLCM are able to achieve more than 86.79% for 

precision, 91.01% recall and 89.11% accuracy for both datasets tested. This indicates that 

the introduction of Curvelet features and Wavelet Coefficient in the GLCM method can 

improve the results even with low quality region images. This is possible since the 

Curvelet and Wavelet transform able to enhance the apple images, especially on the low-

quality region. However, the misclassification can still be observed on the defective apple 

that had been misclassified as non-defective apple. The example of the false positive 

classification in which defective apple incorrectly classified as non-defective apple is 

shown in Figure 4.11.  This defect region may be misclassified as stem ends or calyxes 

which are the natural parts of the apple that located at the top and bottom of the apple. 

This is due to similarities exist between these features. 



102 

 

Figure 4.11: Examples misclassification images of the proposed CW-GLCM on 
(a) NDDA and (b) NDDAW 2. 

 

4.5 Summary 

This chapter discusses and present the contribution of the CW-GLCM method in 

detecting on low-quality region in the images. The proposed methods incorporate the 

Curvelet and Wavelet Transform with the GLCM method to improve its ability in 

detecting on the low-quality region in the apple images. In apple classification, it is crucial 

to detect these features to enable the classifier to differentiate and classify between 

defective and non-defective. Comparative experiments are performed between the 

proposed CW-GLCM method with other five existing methods namely BOW (Csurka et 

al., 2004), SPM (Lazebnik et al., 2006), CNN (dos Santos Ferreira et al., 2017),Texture 

analysis (Olaniyi et al., 2017) and CLAHE+GLCM+ELM (W. Li et al., 2019). 
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Experimental results show that the proposed CW-GLCM and SPM method attained 

higher classification accuracy in NDDA dataset with the same precision (96.30%), recall 

(100%) and accuracy (98.15%). However, lower classification accuracy is observed in 

SPM method when tested with NDDAW dataset with 71.43% precision, 68.97% recall 

and 69.64% accuracy. In contrast, the proposed CW-GLCM able to achieve 86.79% 

precision, 91.01% recall and 89.11% accuracy. In comparison with other methods, the 

proposed method presents the highest precision, recall and accuracy results in both 

datasets tested. Though the proposed CW-GLCM method is superior to other existing 

methods, more robust and achieves more accurate classification in both datasets tested, 

the method was shown to be less effective in detecting defective apples as shown in 

section 4.4. This is due to similarities exist between the detect region features with the 

stem ends or calyxes which are the natural parts of the apple. 
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CHAPTER 5: F-SPM METHOD 

This chapter presents the second proposed method, namely F-SPM. The F-SPM 

concentrates on improving the drawbacks of the proposed CW-GLCM method in 

detecting defective apples of binary-class classification between defective and non-

defective apple images. The capability of the F-SPM is also extended to the multi-class 

classification between types of defects. The F-SPM method is based on the SPM method 

(Lazebnik et al., 2006) which includes the spatial layout information. The spatial layout 

information is important to discriminate the defect with the natural parts of the non-

defective apple. However, the existing SPM method generates a large number of 

unnecessary and redundant high dimensionality features (Chanti & Caplier, 2018; Lin et 

al., 2016; Penatti et al., 2014). These irrelevant features can reduce the stability and 

performance of the method. Therefore, the F-SPM method focuses on reducing 

unnecessary SPM features by detecting significant features of visual-dictionary through 

Fuzzy logic. To evaluate the performance of the F-SPM method, three datasets of apple 

images are considered. Two of the datasets are for evaluating the binary-class 

classification of defective and non-defective apple images, which are NDDA and 

NDDAW. The proposed methods of F-SPM and CW-GLCM are also evaluated on DA 

dataset for multi-class classification between types of defects. This test allows the 

recognition of the specific defective type on the apple images. The above works are 

organized as follows: the first section (section 5.1) explains the importance of the spatial 

layout information in apple image. The proposed F-SPM method is described in section 

5.2.  The performance evaluation and discussion are presented in Section 5.3 and Section 

5.4. A summary of this chapter is provided in Section 5.5. 
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5.1 Introduction 

 
The spatial layout information is a very important element to improve the classification 

between the defective and non-defective apple images. Specifically, the stem ends or 

calyxes that are the natural parts of the apple may be misclassified as defects due to similar 

visual patterns (L. Jiang, Zhu, Cheng, Luo, & Tao, 2009; B. Zhang et al., 2014) as shown 

in Figure 5.1. The stem ends and calyxes that are the natural parts of the apple are 

consistently located at the top and bottom of the apple with a consistent size. In opposite, 

the defects are located at various positions on the apple with varying sizes. Therefore, the 

spatial layout information can be the key in resolving this issue because the stem end, 

calyx or defects can yield a similar visual pattern but in a different spatial arrangement. 

The feature with spatial layout information is included in the SPM method (Lazebnik 

et al., 2006). The SPM is a visual-dictionary based method that adds spatial information 

in the unstructured BOW model to improve image representation and better at 

distinguishing objects. For this reason, a new image recognition method of F-SPM for 

apple classification is proposed based on the SPM method to include spatial layout 

information.  However, the SPM method generates a large number of unnecessary and 

redundant high dimensionality features (Penatti et al., 2014). These irrelevant features 

can reduce the stability and performance of the method. Therefore, the proposed F-SPM 

method introduces Fuzzy logic detection to select only reliable and significant features 

for apple classification. This is to increase the accuracy performance in apple 

classification. The Fuzzy logic detection detects the edges or contours to highlight the 

high-frequency components. The detection is performed by comparing the intensity 

between the neighboring pixels. The spatial layout information is obtained by subdividing 

the images into finer regions according to spatial pyramid representation of SPM. Then, 

the bag of features is computed within each of the sub-regions.  
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Figure 5.1: (a) Calyx (b) stem end (c) defect1. 

 

5.2 F-SPM Method 

This section describes the stages involved in the proposed F-SPM method. The 

proposed F-SPM method focuses on addressing the SPM method that generates a large 

number of unnecessary and redundant high dimensionality features that affect the stability 

and performance of the method. In the SPM method, the feature vectors are extracted 

from the image using Dense regular grid by repeatedly subdividing the image into regular 

grids. Then, histograms of local features are computed for each regular grid. This 

generates a large number of feature vectors with high dimensionality where some of them 

are irrelevant for the classification of apple images. Therefore, the proposed F-SPM 

method is introduced to address this issue by selecting only significant features for 

classification. The proposed F-SPM method consists of two main phases, namely, feature 

extraction and feature classification as outlined in Figure 5.2. 

 

 

 

(a) (b) (c)
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Figure 5.2: The proposed F-SPM method for apple classification. 

 

5.2.1 Feature Extraction 

The feature extraction phase selects the significant features from apple image in which, 

the key contribution of this research. The feature extraction phase is composed of three 

major methods. These methods are SPM, SIFT and Fuzzy logic. The SPM method is 

employed in the proposed F-SPM method to include the spatial layout information of the 

features while the SIFT method computes the descriptors. The Fuzzy logic detection is 

introduced in the proposed F-SPM method to reduce irrelevant SPM features and only 
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selects the significant features for classification. The proposed F-SPM method also 

modifies the existing SPM method by computing the SIFT descriptor at each location of 

the detected edginess from Fuzzy logic. Also, the normalization step in the SIFT 

descriptor is skipped to deal with the low-quality region image. The feature extraction 

phase of the proposed F-SPM method consists of four main stages; Fuzzy logic detection, 

SIFT descriptor, spatial pyramid pooling and clustering. These stages are discussed in the 

following subsections.  

 

5.2.1.1 Fuzzy Logic Detection 

The Fuzzy logic is introduced in the proposed F-SPM methods to select significant 

features of high-frequency components in the image. The Fuzzy logic detects the abrupt 

or sudden changes of any characteristic including the alteration in the texture, color, 

shades or light absorption in the images at the pixel level (Haq, Anwar, Shah, Khan, & 

Shah, 2015). The abrupt changes can indicate the defect region on the apple skin when 

“edges” or “contours” are formed by comparing the intensity between the neighboring 

pixels. However, in the apple image, the small intensity difference between two 

neighboring pixels might represents unobvious defect or a low-quality region such as 

bright or flecks and shading effect. For this reason, the proposed F-SPM method used the 

Fuzzy logic instead of other edge detection because of the flexibility in defining the 

degree of membership function for a pixel either belongs to an edge or a uniform non-

defective region (Wright & Marwala, 2008).This is because in apple images, the uniform 

regions of the apple skin are not crisply defined, small intensity differences between two 

neighboring pixels do not always represent an edge of the defective region. The Fuzzy 

logic detection relies on the image gradient to locate the breaks in the uniform region as 

shown in Figure 5.3. The membership function in Fuzzy logic captures a curve of any 
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shape that maps the input space variable to a number between 0 and 1 that represent the 

degree of a specific input variable belongs to an edge or a uniform region. The Gaussian 

membership function is used and the value of the edginess strength for each pixel in the 

apple image is calculated using three (3) 3l3 linear spatial filters of low-pass, high-pass 

and edge enhancement filters. These filters are performed through a spatial convolution 

process with scaling factor 255 along the l-axis and	à-axis. Nine convolution coefficients 

(convolution mask) are defined and labeled to form the 3l3 kernel convolution as shown 

in Figure 5.4. The associated membership functions with the input and output of Fuzzy 

logic are shown in Figure 5.5 and Figure 5.6 respectively. 

 

Figure 5.3: Fuzzy logic detection (a) original image (b) grayscale (c) Fuzzy logic. 

 

 

Figure 5.4: âäâ Kernal used for Fuzzy logic detection. 
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Figure 5.5: (a) Grayscale image (b) ãä	(c) ãå	(d) Fuzzy logic. 

 

 

Figure 5.6: Membership functions of the inputs/outputs of edge. 
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5.2.1.2 SIFT Descriptor 

In the second phase, the SIFT descriptor is computed for the detected edges. The SIFT 

descriptor is chosen due to high repeatability and accuracy which improves the chances 

of the correct match in the large features database. The SIFT descriptor is computed from 

the patches of 16 × 16 pixels and overlap by 8 pixels with its neighbors on each edginess 

detected by Fuzzy logic. The patch is subdivided into 4 × 4 cells wherein the gradient 

orientation of 8-bin histogram is computed for each cell. The 8-bin histograms from all 

cells in a patch are then combined and represented by a vector. This vector contains a 

total of 128-elements. The SIFT descriptor for an image ç can be obtained through feature 

extraction as expressed in (14). 

3(4): 4 → {(8(	, .(, 9(), (8*	, .*, 9*)… ;(8'.	, .'. , 9'.)<, (14) 
where, ∅< is the local image descriptor and (l< , à<)	is a pixel location of the centre feature 

of ç. 

The computed SIFT descriptors are robust to affine distortion, illumination changes, 

invariant to scale, orientation and rotation changes (Lee et al., 2015; Lowe, 2004; Warif, 

Wahab, Idris, Salleh, & Othman, 2017). In the proposed F-SPM method, the 

normalization step in the SIFT descriptor is skipped to deal with the low-quality region 

when the patch has a weak gradient magnitude. This is to avoid misclassification between 

defective and non-defective apple. 

 

5.2.1.3 Spatial Pyramid Pooling 

The pyramid in the proposed F-SPM method is built using spatial pooling in two-

dimensional image space. Spatial pyramid is the multi-level recursive image 

decomposition. The image is divided into a sequence of grid according to the pyramid 

level. This approach gives the advantage in maintaining continuity with the “visual 
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vocabulary” paradigm. The proposed F-SPM method utilized the spatial pooling with two 

pyramid levels to partition the pyramid level. The utilization of these two pyramid levels 

(Q = 2)	are accordance to the experimental setup from the previous studies (Harada, 

Ushiku, Yamashita, & Kuniyoshi, 2011; Lazebnik et al., 2006; Yan et al., 2012; Yan, Xu, 

Xu, Lin, & Li, 2015). The settings of the existing SPM  (Lazebnik et al., 2006) method 

used Q = 2	with vocabulary size of è = 200 and only tested on small resolution images 

of about 300 × 250 pixels. However, the datasets in this research contain high-resolution 

images of 900 × 700 pixels. Therefore, the proposed F-SPM method utilized two pyramid 

levels with the settings of Q = 2,è = 500 and the patch size of 1500. The schematic 

illustration for 2 level pyramid representations is shown in Figure 5.7.  

 

Figure 5.7: Feature histogram of level 2 pyramid. 

 

As depicted in Figure 5.7, the decomposition of the image consists of a single cell at 

level 0. The image representation at level 0 is equal to the standard BOW method. The 

image is further divided into four quadrants at level 1 and then nine grid cells at level 2. 

The feature extracted from the entire grid cell is concatenated forming the feature vector. 

Each spatial grid cell consists of a feature vector and produces one feature histogram. 

Thus, each feature vector is the collection of the feature histograms that being computed 

over grid cells. Specifically, all the feature vectors are quantized into M discrete types. 

Each of the m channels gives two sets of two-dimensional vectors which is Xm and Ym.  
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The Xm and Ym represent the features of type m coordinates found in the respective 

images. Then, the final kernel sums the separate channel kernels as in Equation (15). 

ê>(ë, í) = 	∑ ê>?
@%& (ë@, í@), (15) 

 

5.2.1.4 Clustering 

The extracted feature vectors from the prior stage are encoded using the vector 

quantization technique. This is followed by the creation of the visual codebook using k-

means algorithm. The k-means algorithm is a clustering technique (Kanungo et al., 2002; 

Rahim et al., 2018). The clustering process of the k-means algorithm is performed 

according to distances measured between the feature to each centre of the ! clusters. 

Initially, the position for the centre of the ! clusters are randomly selected. Then, the 

features are assigned to the respective cluster based on their minimum distance to the 

initial centre of the cluster. The mean value calculated from the current members of each 

cluster yields as the new centre. These processes are repeated for 100 iterations to form a 

codebook. The steps above can be summarized as follows: 

Step 1: Assign a value to !, the total clusters. 

Step 2: Randomly select the initial centre of !  

Step 3: Calculate the centre or mean value of ! 

Step 4: Determine the distance between each pixel from centre 

Step 5: Assign the cluster to the pixels based on the minimum distance to a particular 

centre of the cluster. Re-estimate the position of the centre by calculating the mean value 

from the current members. 
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Then, the features are coded into the codebook using coding function defined in (16). 

ì^(]< , l< , à<)_ = (ìî(]<), l< , à<) , (16) 
 

This function converts the extracted feature vectors into a coded version of visual-

dictionary features in the codebook associated with the original spatial information. 

 

5.2.2 Classifier 

The classification phase classifies the visual-dictionary features into binary-class of 

defective and non-defective apple. The classification also includes the multi-class 

between types of defects. For these classifications, six classifiers, namely the KNN, 

Bayesian Network, Softmax, Decision Tree, Naïve Bayes and SVM are employed to find 

the most suitable classifier for the proposed visual-dictionary features. Their 

performances are evaluated and a test decision of the best performing classifier on the 

proposed visual-dictionary features determine the suitable classifier for the proposed 

method. 

 

5.3 Experimental Result 

This section presents the experimental results of the proposed F-SPM method on 

NDDA, NDDAW and DA datasets. These datasets are used in the experiments to evaluate 

the capability and effectiveness of the F-SPM method on different aspects of the 

classification performances. The NDDA dataset evaluates the detection of various 

defective and non-defective apple images. The NDDAW dataset consists of 159 images 

to evaluate the classification capability on apple images with low-quality region on its 
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skin. The DA dataset is composed of five types of defective apples to evaluate the multi-

class classification between types of defects.  

The results are analyzed to select the most significant features for apple classification 

and address the SPM method limitation of generating a large number of unnecessary and 

redundant high dimensionality features. The results shown in this section prove the 

success of the proposed F-SPM method in selecting the significant features for binary-

class classification of defective and non-defective apple images including low-quality 

region images and multi-class classification between types of defects. 

 
5.3.1 Performance Evaluation  

This section compares the performances of the SPM method between two feature 

detectors, which are Dense regular grid and keypoint detection. The Dense regular grid is 

originally employed in the SPM method while for keypoint detection, the SIFT detector 

is employed due to high repeatability and accuracy (Lee et al., 2015). The comparison of 

the SPM method between two feature detectors are performed on the NDDA dataset to 

detect various defective and non-defective apple types. The evaluation results are 

summarized in Table 5.1. 

Table 5.1: Comparison of SPM method performances between two feature 
detectors on NDDA dataset. 

Feature 
Detector 

Precision 
(%) 

Recall 
(%) 

Accuracy 
(%) 

Training 
Time (s) 

Testing 
Time (s) 

Dense regular 
grid 100.00 96.30 98.15 150.97 0.13 

keypoint (SIFT) 92.59 100.00 96.30 833.78 0.54 
 

The overall performance of the SPM method using Dense regular grid shows higher 

accuracy and faster than the keypoint detection for classification of defective and non-
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defective apple images. The Dense regular grid recorded the highest precision (98.15%) 

and accuracy (100%) while its recall rate is 3.7% less than the keypoint detection. In terms 

of computational time, the Dense regular grid is also the fastest during training (150.97 

s) and testing (0.13 s). In opposite, a lower precision (92.59%) and accuracy (96.30%) 

with longer training (833.78 s) and testing time (0.54 s) are observed in keypoint 

detection. This high computational result is expected since the keypoint detection is high 

computational time (Lee et al., 2015). The keypoint detection requires a longer time to 

detect the salient keypoints in each of the image but many of the detected keypoints are 

insignificant for the recognition (Lin et al., 2016). Thus, reduces the classification 

accuracy of the method. The higher accuracy is observed on the Dense regular grid as the 

method extracts features from all over the image on a regular grid. This direct approach 

allows the uniform region in apple images been effectively captured compared to the 

keypoint detection. The example of these two feature detection technique for apple image 

classification as shown in Figure 5.8 to clearly illustrate the difference between the two 

techniques.  Figure 5.8 (a) show the example of feature detector using Dense regular grid, 

whereas the example of keypoint (SIFT) feature detector is shown in Figure 5.8 (b).  

 

Figure 5.8: Example of two feature detection techniques for apple image 
classification (a) feature detector using Dense regular grid (b) feature detector 

using keypoint (SIFT). 

(a) (b)
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The findings presented in this section justifies the need for a reliable method to detect 

significant features and reduce the unnecessary features of the SPM method without 

decreasing its classification accuracy. 

 

5.3.2 Performance Measure for Edge Detection 

As highlighted in section 5.2, the F-SPM method focuses on reducing the unnecessary 

SPM features through selection of significant features for further classification. The 

selection of the significant features begins with edges or contours detection to highlight 

high-frequency components of the defective region and neglect the unnecessary features 

in the background region of the apple image. The detection of the edges or contours is 

performed by comparing the intensity between the neighboring pixels. To search the best 

edge detection technique for the proposed method, the Fuzzy logic is compared with two 

established edge detection techniques of Canny and Sobel. Their performances in the 

modified SPM method were tested on NDDA dataset using the SVM classifier.  

Table 5.2: Comparison of edge detection techniques in modified SPM method 
on NDDA dataset. 

Edge Detection Precision           
(%) 

Recall 
(%) 

Accuracy 
(%) 

Training 
Time (s) 

Testing 
Time (s) 

Canny    89.29 100.00 94.55 700.95 0.20 
Sobel    88.89 100.00 94.44 753.70 0.44 

Fuzzy logic 
(Proposed)    96.30 100.00 98.15 658.07 0.46 

 

The Fuzzy logic detection obtained the highest precision (96.30%) and accuracy 

(98.15%) with the fastest training time (658.07 s) compared to Canny and Sobel 

techniques as shown in Table 5.2. These performances demonstrate the capability of the 

Fuzzy logic detection to effectively capture the abrupt or sudden changes of texture, color, 

shades or light absorption in the images characteristic at the pixel level (Haq et al., 2015). 
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The Fuzzy logic detection relies on the image gradient to locate the breaks and flexible in 

defining the membership of the pixel either belong to an edge or a uniform region (Wright 

& Marwala, 2008). This is an important aspect in apple classification because the small 

intensity difference between two neighboring pixels can indicate an edge of the defective 

region as well as a low-quality region such as bright or flecks on the apple skin. On the 

other hand, the ability of Canny and Sobel techniques are limited in dealing with noises 

in the image which lead to low classification accuracy (J. Song et al., 2019). The presented 

results show that the Fuzzy logic detection can reduce the unnecessary SPM features 

without degrading its classification accuracy. Thus, the Fuzzy logic detection is employed 

in the design of the proposed F-SPM method to extract visual-dictionary features. 

 

5.3.3 Comparison of Different Classifier 

To select the most suitable classifier for the proposed visual-dictionary features, six 

classifiers were tested on NDDA dataset.  These classifiers are KNN, Bayesian Network, 

Softmax, Decision Tree, Naïve Bayes and SVM.  The results for each classifier are 

presented in Table 5.3 and depicted in Figure 5.9. 

Table 5.3: Comparison of the proposed visual-dictionary features with different 
classifiers on NDDA dataset. 

Classifier Precision 
(%) 

Recall 
(%) 

Accuracy 
(%) 

Training 
Time (s) 

Testing 
Time (s) 

KNN 96.30 74.29 81.41 674.81 37.44 
Bayesian Network 88.89 96.00 92.59 674.82 0.01 

Softmax 100.00 90.00 94.44 674.43 2.31 
Decision Tree 88.89 100.00 94.44 675.52 0.72 
Naïve Bayes 92.59 100.00 96.30 675.74 0.11 

SVM 96.30 100.00 98.15 658.07 0.46 
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Figure 5.9: Comparative results of the proposed visual-dictionary features with 
different classifier on NDDA dataset (a) precision, recall and accuracy (b) training 

and testing time. 

 

From the evaluation, the combination of the proposed visual-dictionary features with 

SVM classifier achieved the best performance for recall (100%) and accuracy (98.15%) 

including the fastest training time (658.07 s). This is because the SVM classifier is more 

suitable in classifying a small sample data with high feature vectors dimensionality (M. 

Xiao, Jiang, Li, Xie, & Yi, 2017; J. H. Zhang, Meng, Wang, & Hou, 2014) compared to 

the others. Furthermore, the high dimensionality of the feature vectors has a low impact 

on the effectiveness of the SVM classifier (Penatti et al., 2014) For this reason, the SVM 

classifier is a popular classifier for visual-dictionary based method that generates high 

dimensionality of feature vectors (Lin et al., 2016). The SVM classifier is a complex 

algorithm but its complexity remains unaffected by high dimensionality features. Other 

than that, the SVM classifier has a good generalization ability without depending on the 

size of the data (Petitjean et al., 2018). This prevents the classifier from overfitting on a 
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0

10

20

30

40

50

60

70

80

90

100
Percentage (%)

Training Testing
KNN 674.81 37.44
Bayesian Network 674.82 0.01
Softmax 674.43 2.31
Decision Tree 675.52 0.72
Naïve Bayes 675.74 0.11
SVM 658.07 0.46

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00
Time (s)

(a) (b)



120 

small sample data. Additionally, the SVM classifier does not require the prior probability 

distribution of the classes and data to be classified. Thus, contributes to the success of the 

classification on the proposed visual-dictionary feature in this experiment. 

In contrast, the KNN classifier obtained the lowest performance for accuracy (81.41%) 

and recall (74.29%). The KNN classifier determines the classes by calculating distance 

between the data based on the simple vote majority system (Duneja & Puyalnithi, 2017). 

However, the distance of the data from different classes can be similar (Syaliman et al., 

2018), thus, increases the misclassification. Also, the performance of the KNN classifier 

is adversely affected by noise, irrelevant features, unstable in high dimensionality features 

and small sample data (Hinneburg, Aggarwal, & Keim, 2000; Singh et al., 2016). The 

lowest precision is observed in Bayesian Network and Decision Tree classifier with both 

obtained 88.89%. Although the Decision Tree is one of the successful classifiers for most 

cases, the performance of this classifier is affected when dealing with high dimensionality 

data (Do, Lenca, Lallich, & Pham, 2010). The high dimensionality data tends to overfit 

each of the node, which affecting the classification performance (Singh et al., 2016). The 

low precision in the Bayesian Network is due to its less sensitive to noise (Druzdzel & 

Onisko, 2008; Onisko & Druzdzel, 2003; Oniśko & Druzdzel, 2013). Furthermore, the 

performance of the Bayesian Network is affected by high dimensional data in this 

experiment. The Bayesian Network is ineffective in handling high dimensionality data 

(Singh et al., 2016). A large network of the Bayesian Network did not feasible in time 

and space (Petitjean et al., 2018).  Another issue that affecting the precision of the 

Bayesian Network is its network structure which is based on their bias-variance trade-off 

that is more suitable to be used for a large dataset. The large dataset can provide sufficient 

examples for the Bayesian Network classifier to learn with precision and precisely capture 

the fine details in the data (Petitjean et al., 2018). However, the dataset with a limited 
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number of images (550 images) was utilized in this experiment. This reduces the precision 

of the Bayesian Network classifier. 

In terms of computational time, the SVM classifier is the fastest classifier during 

training (658.07 s) whereas the Bayesian Network is the fastest during testing (0.01 s). 

The SVM classifier is the fastest during training because it does not require the prior 

probability distribution of the classes and data to be classified. This also due to the data 

scaling in the SVM package that avoids the attribute with the greater numeric range 

dominating a smaller one (Hsu, Chang, & Lin, 2003); which reduces the time complexity.  

Among the classifiers, the Naïve Bayes takes the longest time for training (675.74 s), 

whereas the KNN for testing (37.44 s). The Naïve Bayes classifier is based on 

probabilistic that requires the knowledge of prior probability distribution of the class and 

data to be classified. This increases the training time in Naïve Bayes classifier. The KNN 

classifier is computationally intensive as it stores all the training data and compares the 

extracted features on the test images with each training data for classification (Syaliman 

et al., 2018). Finally, the experimental results show that the SVM classifier is the most 

suitable and effective classifier for the proposed F-SPM method. 

 

5.3.4 Effectiveness of the Proposed F-SPM Method 

The proposed F-SPM method is evaluated on NDDA, NDDAW and DA datasets for 

binary-class and multi-class classifications. The NDDA and NDDAW datasets are 

intended for the evaluation of the binary-class classification. These datasets include a total 

of 1110 defective and non-defective apple images. However, the NDDAW dataset 

contains more low-quality region images compared to the NDDA dataset. For the 

evaluation of the multi-class classification, the DA dataset is employed containing a total 

of 200 apple images with five types of defects.  
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The performances of the F-SPM method on NDDA, NDDAW and DA datasets are 

compared with five existing methods. These methods are BOW (Csurka et al., 2004), 

SPM (Lazebnik et al., 2006), CNN (dos Santos Ferreira et al., 2017), Texture analysis 

(Olaniyi et al., 2017) and CLAHE+GLCM+ELM (W. Li et al., 2019). Also, the proposed 

CW-GLCM method from chapter 4 which improved the GLCM Texture analysis is 

included in the comparison. The performances of all methods are compared in terms of 

precision, recall, accuracy and computational time using 10-fold cross-validation.  

 

5.3.4.1 Binary-Class Classification Performance 

The evaluation of the binary-class classification is divided into two experiments. The 

first experiment of the binary-class classification is performed on the NDDA dataset.  In 

the first experiment, the CW-GLCM, F-SPM and SPM methods recorded similar 

performances in precision (96.30%), recall (100%) and accuracy (98.15%) as presented 

in Table 5.4. The accuracy of the CW-GLCM, F-SPM and SPM methods are also the 

highest compared to other methods. This is followed by the accuracy of the CNN 

(94.44%), BOW (87.04%), Texture analysis (79.63%) and CLAHE+GLCM+ELM 

(70.37%).  
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Table 5.4: Comparison of confusion matrix for BOW (Csurka et al., 2004), SPM 
(Lazebnik et al., 2006), CNN (dos Santos Ferreira et al., 2017), Texture analysis 
(Olaniyi et al., 2017), CLAHE+GLCM+ELM (W. Li et al., 2019), CW-GLCM 

(Proposed Method I) and F-SPM (Proposed Method II) on NDDA dataset: 
Defective (D) and Non-defective (N). 

 Methods 

 BOW SPM CNN 
Texture 

analysis 

CLAHE

+ 

GLCM+

ELM 

CW-

GLCM 

(Proposed 

Method I) 

F-SPM 

(Proposed 

Method 

II) 

Class D N D N D N D N D N D N D N 

D 24 3 26 1 25 2 20 7 22 5 26 1 26 1 
N 4 23 0 27 1 26 4 23 11 16 0 27 0 27 

Precision (%) 88.89 96.30 92.59 74.07 81.48 96.30 96.30 

Recall (%) 85.71 100.00 96.15 83.33 66.67 100.00 100.00 

Accuracy (%) 87.04 98.15 94.44 79.63 70.37 98.15 98.15 

Training Time (s) 402.94 150.97 149.13 135.12 1323.58 344.17 658.07 

Testing Time (s) 3.92 0.13 0.08 1.38 0.02 0.25 0.46 

 

The second experiment focuses on the challenge of the low-quality region images 

in the binary-class classification. The experiment is performed on the NDDAW dataset 

using a 10-fold cross-validation approach. To implement the 10-fold cross-validation, 

280 images from the defective class and 280 images from the non-defective class are 

divided into ten equal parts. Each part consists of 28 images from the defective and 

non-defective classes. Nine parts are used for training and one for testing. This process 

is repeated ten times until each part is used exactly once as a validation set. Then, the 

average value for all ten experiments is taken and presented in Table 5.5.  
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Table 5.5: Comparison confusion matrix for BOW (Csurka et al., 2004), SPM 
(Lazebnik et al., 2006), CNN (dos Santos Ferreira et al., 2017), Texture analysis 
(Olaniyi et al., 2017), CLAHE+GLCM+ELM (W. Li et al., 2019), CW-GLCM 
(Proposed Method I) and F-SPM (Proposed Method II) on NDDAW dataset:  

Defective (D) and Non-defective (N). 

 

Methods 

BOW SPM CNN Texture 

analysis 

CLAHE

+ 

GLCM 

+ELM 

CW-

GLCM 

(Proposed 

Method I) 

F-SPM 

(Proposed 

Method 

II) 

Class D N D N D N D N D N D N D N 

D 21 7 20 8 22 6 20 8 14 14 24 4 28 0 
N 5 23 9 19 6 22 13 15 11 17 2 26 5 23 

Precision (%) 75.00 71.43 78.57 71.43 50.00 86.79 100.00 

  Recall (%) 80.65 68.97 78.57 60.61 56.00 91.01 84.85 

Accuracy (%) 78.50 69.64 78.57 62.50 53.36 89.11 91.07 

Training time (s) 275.61 149.92 146.89 131.32 2075.93 386.63 675.23 

Testing Time (s) 3.84 0.47 0.34 1.41 0.02 0.31 0.48 

 

In this experiment, the classification accuracy of the proposed F-SPM method 

outperformed the others whereas the CLAHE+GLCM+ELM method recorded the 

lowest classification accuracy. Specifically, the proposed F-SPM method obtained an 

accuracy of 91.07% followed by the proposed CW-GLCM (89.11%), CNN (78.57%), 

BOW (78.50%), SPM (69.64%), Texture analysis (62.50%) and 

CLAHE+GLCM+ELM (53.36%). The F-SPM method correctly classified all 28 

defective apple images followed by the proposed CW-GLCM (24 images), CNN (22 

images), BOW (21 images), SPM (20 images), Texture analysis (20 images) and 

CLAHE+GLCM+ELM (14 images). For non-defective, the F-SPM method correctly 

classified 23 images out of 28 non-defective apple images while the CW-GLCM (26 

images), CNN (22 images), BOW (23 images), SPM (19 images), Texture analysis (16 

images) and CLAHE+GLCM+ELM (17 images). Figure 5.10 (a) and Figure 5.10 (b) 

visualize the comparison of the precision, recall and accuracy for each binary-class 

dataset of NDDA and NDDAW, respectively. The time recorded during training and 

testing for each dataset are shown in Figure 5.10 (c) and Figure 5.10 (d). 
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Figure 5.10: Comparative results of precision, recall and accuracy in (a) NDDA 
dataset (b) NDDAW dataset (c) training time (d) testing time for BOW (Csurka et 

al., 2004), SPM (Lazebnik et al., 2006), CNN (dos Santos Ferreira et al., 2017), 
Texture analysis (Olaniyi et al., 2017), CLAHE+GLCM+ELM (W. Li et al., 2019), 

CW-GLCM (Proposed method I) and F-SPM (Proposed method II). 
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From Figure 5.10 (a), all the methods achieved the classification accuracy above 

70.37% on the NDDA dataset. The proposed methods (CW-GLCM and F-SPM) and the 

SPM method outperformed the others on NDDA dataset with a similar classification 

accuracy of 98.15%. This is followed by the CNN with 94.44%, BOW (87.04%), Texture 

analysis (79.63%) and CLAHE+GLCM+ELM (70.37%). Although the SPM method 

works effectively on the NDDA dataset, its performance on the NDDAW dataset 

decreases due to low-quality regions images. Contrarily, the proposed F-SPM method 

maintained its high performance on the NDDAW dataset and achieved the highest 

classification accuracy of 91.07% among the methods. This is followed by the proposed 

CW-GLCM (89.11%), CNN (78.57%), BOW (78.50%), SPM (69.64%), Texture analysis 

(62.50%) and CLAHE+GLCM+ELM (53.36%).  

The high performance of the proposed F-SPM method on the NDDAW dataset 

demonstrates the ability of the Fuzzy logic detection to select significant features even in 

the low-quality region images. This is possible since the Fuzzy logic detection capable of 

capturing the abrupt or sudden change of any alteration in texture, color, shades or light 

absorption characteristic in the images at the pixel level. On the other hand, the proposed 

CW-GLCM method achieved the highest recall (91.01%) on the NDDAW dataset as 

depicted in Figure 5.10 (b). However, the misclassification can still be observed on the 

defective apple that had been misclassified as non-defective apple as highlighted in 

section 4.4. The misclassification occurs due to similarity between the defective region 

and the stem ends or calyxes which are the natural parts of the apple. In the proposed F-

SPM method, the spatial layout information and Fuzzy logic detection of the significant 

features are included which helps in distinguishing between the defect and the stem end 

or calyx. This is demonstrated in the performance of the proposed F-SPM method on the 

NDDAW dataset where all 28 defective images from the 10-fold cross-validation are 

successfully classified as summarized in Table 5.5.  
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In terms of training and testing time, the CLAHE+GLCM+ELM recorded the longest 

training time and the fastest testing time on both datasets. The CLAHE+GLCM+ELM 

method required a long time to train due to the computationally extensive of the CLAHE 

approach but fast testing time due to extremely fast learning speed of the ELM classifier 

used in the method (W. Li et al., 2019). For the proposed methods, the training and testing 

time of the CW-GLCM are slightly faster than the F-SPM on both datasets. The F-SPM 

method processed all 28 images on NDDAW dataset within 0.48 s during testing which 

constitute less than 0.02 s per image. This indicates that the CW-GLCM and F-SPM 

methods have the potential to be implemented in real-time system. 

 

5.3.4.2 Performance on Multi-Class Classification 

The previous section evaluates the performance of the proposed F-SPM method for 

binary-class of defective and non-defective apple including low-quality region images. In 

this section, the performances of the proposed methods is further evaluate on the multi-

class classification. The multi-class classification allows the recognition of the specific 

type of defect. The experiments are performed on the DA dataset consisting five types of 

defects. The defects are Blotch, Bruise, Cork Spot, Scab and Rot. The similar 

experimental setups including the 10-fold cross-validation as in the binary-class 

classification are repeated in this experiment.  The experimental results from the 10-fold 

cross-validation for all methods are compared in Table 5.6. The graphical presentation 

for the precision, recall and accuracy in individual class of Blotch, Bruise, Cork Spot, 

Scab and Rot are also presented in Figure 5.11.  
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Table 5.6: Comparison results for BOW (Csurka et al., 2004), SPM (Lazebnik et 
al., 2006), CNN (dos Santos Ferreira et al., 2017), Texture analysis (Olaniyi et al., 
2017), CLAHE+GLCM+ELM (W. Li et al., 2019), CW-GLCM (Proposed Method 

I) and F-SPM method (Proposed Method II) on DA dataset. 

 Methods 
 BOW 

Class Blotch Bruise Cork Spot Scab Rot 
TP! (%) 50.00 100.00 50.00 75.00 25.00 
FP! (%) 50.00 75.00 25.00 50.00 0.00 
FN! (%) 50.00 0.00 50.00 25.00 75.00 
TN! (%) 100.00 50.00 75.00 25.00 50.00 

Precision! (%) 50.00 57.14 66.67 60.00 100.00 
Recall! (%) 50.00 100.00 50.00 75.00 25.00 
Accuracy! (%) 60.00 66.67 62.50 57.14 50.00 

Average Precision (%) 66.76 
Average Recall (%) 60.00 

Average Accuracy (%) 59.26 
Training Time (s) 143.19 
Testing Time (s) 1.33 

 SPM 
Class Blotch Bruise Cork Spot Scab Rot 
TP! (%) 75.00 75.00 75.00 100.00 75.00 
FP! (%) 50.00 0.00 0.00 50.00 0.00 
FN! (%) 25.00 25.00 25.00 0.00 25.00 
TN! (%) 75.00 75.00 100.00 75.00 75.00 

Precision! (%) 60.00 100.00 100.00 66.67 100.00 
Recall! (%) 75.00 75.00 75.00 100.00 75.00 

Accuracy! (%) 66.67 85.71 87.50 77.78 85.71 
Average Precision (%) 85.33 

Average Recall (%) 80.00 
Average Accuracy (%) 80.67 

Training Time (s) 223.04 
Testing Time (s) 1.27 

 CNN 
Class Blotch Bruise Cork Spot Scab Rot 
TP! (%) 50.00 75.00 50.00 25.00 100.00 
FP! (%) 25.00 25.00 75.00 50.00 25.00 
FN! (%) 50.00 25.00 50.00 75.00 0.00 
TN! (%) 75.00 50.00 25.00 100.00 50.00 

Precision! (%) 66.67 75.00 40.00 33.33 80.00 
Recall! (%) 50.00 75.00 50.00 25.00 100.00 

Accuracy! (%) 62.50 71.43 37.50 50.00 85.71 
Average Precision (%) 59.00 

Average Recall (%) 60.00 
Average Accuracy (%) 61.43 

Training Time (s) 49.94 
Testing Time (s) 0.27 
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 Texture analysis 
Class Blotch Bruise Cork Spot Scab Rot 
TP! (%) 50.00 100.00 0.00 0.00 0.00 
FP! (%) 75.00 150.00 75.00 25.00 25.00 
FN! (%) 50.00 0.00 100.00 100.00 100.00 
TN! (%) 100.00 0.00 0.00 0.00 50.00 

Precision! (%) 40.00 40.00 0.00 0.00 0.00 
Recall! (%) 50.00 100.00 0.00 0.00 0.00 

Accuracy! (%) 54.55 40.00 0.00 0.00 28.57 
Average Precision (%) 16.00 

Average Recall (%) 30.00 
Average Accuracy (%) 24.62 

Training Time (s) 20.16 
Testing Time (s) 0.87 

 CLAHE+GLCM+ELM 
Class Blotch Bruise Cork Spot Scab Rot 
TPA (%) 100.00 50.00 75.00 25.00 75.00 
FPA (%) 25.00 50.00 75.00 0.00 25.00 
FNA (%) 0.00 50.00 25.00 75.00 25.00 
TNA (%) 50.00 75.00 25.00 75.00 100.00 

Precision! (%) 80.00 50.00 50.00 100.00 75.00 
Recall! (%) 100.00 50.00 75.00 25.00 75.00 

Accuracy! (%) 85.71 55.56 50.00 57.14 77.78 
Average Precision (%) 71.00 

Average Recall (%) 65.00 
Average Accuracy (%) 65.24 

Training Time (s) 681.80 
Testing Time (s) 0.32 

 CW-GLCM (Proposed Method I) 
Class Blotch Bruise Cork Spot Scab Rot 
TP! (%) 75.00 100.00 100.00 75.00 75.00 
FP! (%) 0.00 0.00 50.00 25.00 0.00 
FN! (%) 25.00 0.00 0.00 25.00 25.00 
TN! (%) 100.00 100.00 75.00 75.00 75.00 

Precision! (%) 100.00 100.00 66.67 75.00 100.00 
Recall! (%) 75.00 100.00 100.00 75.00 75.00 

Accuracy! (%) 87.50 100.00 77.78 75.00 85.71 
Average Precision (%) 88.33 

Average Recall (%) 85.00 
Average Accuracy (%) 85.20 

Training Time (s) 188.27 
Testing Time (s) 0.15 

 F-SPM (Proposed Method II) 
Class Blotch Bruise Cork Spot Scab Rot 
TP! (%) 100.00 75.00 75.00 75.00 100.00 
FP! (%) 0.00 0.00 0.00 0.00 75.00 
FN! (%) 0.00 25.00 25.00 25.00 0.00 
TN! (%) 75.00 75.00 75.00 100.00 100.00 
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Precision! (%) 100.00 100.00 100.00 100.00 57.14 
Recall! (%) 100.00 75.00 75.00 75.00 100.00 

Accuracy! (%) 100.00 85.71 85.71 87.50 72.73 
Average Precision (%) 91.43 

Average Recall (%) 85.00 
Average Accuracy (%) 86.33 

Training Time (s) 360.31 
Testing Time (s) 0.61 

 

Overall, the proposed F-SPM method outperformed others in multi-class classification 

with an average accuracy of 86.33%. This is followed by the accuracy of the proposed 

CW-GLCM (85.20%), SPM (80.67%), CLAHE+GLCM+ELM (65.24%), CNN 

(61.43%), BOW (59.26%) and Texture analysis (24.62%).  



131 

 

Figure 5.11: Comparative results of precision, recall and accuracy between the 
proposed methods with the existing image recognition methods for each individual 
class (a) Blotch, (b) Bruise, (c) Cork Spot, (d) Scab and (e) Rot on DA dataset. 
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For individual class defect, the proposed F-SPM method outperformed others in 

classifying the Blotch defect and scored a 100% for all the performance measures of 

precision, recall and accuracy.  The proposed F-SPM method also outperformed others in 

classifying the Scab defect with an accuracy of 87.50%. These high performances are 

enabled by the Fuzzy logic detection that successfully captures the presence of the Blotch 

and Scab defective characteristic on the apple skin. The Fuzzy logic detection offers 

flexible membership function when defining the degree to which a pixel belongs to either 

on an edge of the Botch defective region or a uniform region of the non-defective. 

Furthermore, the spatial layout information in the proposed F-SPM method helps in 

distinguishing a Scab defect with stem end or calyx. These lead to the success of the 

defect detection on the apple skin images. On the other hand, the proposed CW-GLCM 

method outperformed others in the classification of the Bruise defect with a score of 100% 

for all the performance measures (precision, recall and accuracy). The proposed CW-

GLCM method also able to obtain high classification accuracy in classifying the Rot 

defect with an accuracy of 85.71%. The main reason for the low classification accuracy 

of the Bruise defect in other methods is because the similarity in appearance between 

Bruise and Rot defects. However, this similarity has minimal impact on the performances 

of the proposed CW-GLCM method as the normalization step is skipped in the method. 

This will retain the image information for each type of the defects and consequently 

minimizing the misclassification between these defects.  

Although score of 100% for all precision, recall and accuracy is observed in classifying 

the Bruise defect, these high classification results are not affected by overfitting. The 

overfitting situation might happen when the learning classifier tightly fits the training data 

given and it could be inaccurate when predicting the untrained data. It produces highly 

accurate output on the training data, but low accuracy when predicting samples that are 

not part of the training set.  
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In this research, the training and testing sets are specified using K-fold cross-validation 

technique in all the experiments. The K-fold cross-validation technique is one of a 

technique to prevent overfitting situation (Anguita, Ghelardoni, Ghio, Oneto, & Ridella, 

2012). The K-fold cross-validation randomly partitioned a dataset into k number folders, 

in which each folder has virtually the same number of class distribution. k-1 of the folders 

are used for training and one folder for validation. This process is repeated k times until 

each folder is used exactly once as a validation set. Thus, there is no overlap between 

training sets and testing data in the experiments conducted.  

The score of 100% in precision, recall and accuracy for CW-CLCM method is only 

observed on the individual Bruise defect classification for the DA dataset. There is also a 

possibility these results may be decreased if different input images are used. The reasons 

for the proposed CW-GLCM method able to obtain high performance measure for Bruise 

defect lies in the introduction of Curvelet and Wavelet transform in the proposed CW-

GLCM. The proposed method able to enhance the texture information on unobvious 

Bruise defect region in DA dataset. This leads to a 100% score for precision, recall and 

accuracy on Bruise defect classification. Examples of the images of unobvious Bruise on 

the apple skin defect in DA dataset are shown in Figure 5.12. The unobvious Bruise defect 

region appears as a darker pigmented area compared to the healthy region as pointed by 

the arrow.  
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Figure 5.12: Examples of unobvious Bruise defects (a) red skin apple and (b) green 
skin apple. 

 

Despite obtaining 100% score in Bruise defect classification, the average classification 

performance of the proposed CW-GLCM on five defect classes of DA dataset on the other 

hand, only able to obtain 88.33% for precision, 85.00% recall and  85.20% accuracy as 

presented in Table 5.6 and also summarized in Figure 5.13 (a).  

In the classification of Cork Spot defect, the SPM method outperformed others with a 

classification accuracy of 87.50% as shown in Figure 5.11 (c). However, the average 

classification accuracy of the SPM method on five defect classes remain lower than both 

proposed methods as summarized in Figure 5.13 (a). The proposed F-SPM obtained the 

best average performances in precision, recall and accuracy compared to others with a 

minimum value of 85.00% on recall. In contrast, the Texture analysis method recorded 

the lowest average performances with precision (16.00%), recall (30.00%) and accuracy 

(24.62%). The Texture analysis method is highly depended on the texture information 

that can be ineffective when extracting the feature from the less texture of the defective 

region. Consequently, lead to the failed classification of the defect classes. 

(b)(a)
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Figure 5.13: Comparative results of precision, recall and accuracy for each 
method on DA dataset (a) average performance (b) training and testing time. 
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line application (Reza, 2004). Although the Texture analysis is the fastest method during 

training, it obtained the lowest average performances for precision, recall and accuracy 

compared to others. The testing time of the proposed CW-GLCM is the fastest (0.15 s) 

and followed by the CNN (0.27 s), CLAHE+GLCM+ELM (0.32 s), the proposed F-SPM 
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5.4 Discussion 

A new image recognition method based on SPM method for apple classification 

namely, F-SPM has been presented. In comparison with other image recognition methods, 

the proposed F-SPM method presents the most promising results in the binary-class 

classification of defective and non-defective apples and multi-class classification between 

types of defects. The proposed F-SPM method achieved the highest accuracy on the 

NDDAW and DA datasets. For the NDDA dataset, the proposed F-SPM, CW-GLCM and 

SPM methods outperformed others with similar precision (96.30%), recall (100%) and 

accuracy (98.15%). However, lower classification accuracy is observed in the SPM 

method when tested on NDDAW dataset with 71.43% precision, 68.97% recall and 

69.64% accuracy. In contrast, the proposed F-SPM achieved more than 91.43% precision, 

84.85% recall and 86.33% accuracy on all datasets. The results indicate that the proposed 

F-SPM is the most accurate among all the methods including the proposed CW-GLCM. 

The accuracy difference between the F-SPM and CW-GLCM is 1.96% on NDDAW 

dataset and 1.13% on DA dataset. Meanwhile, the proposed CW-GLCM is the most 

suitable method to recognize the Bruise defect as it obtained the perfect measurement 

(100%) of precision, recall and accuracy on DA dataset. 

 

5.5 Summary 

This chapter described the proposed F-SPM method, one of the contributions in this 

thesis. The F-SPM method is proposed to improve the detection of the defective apples 

and reduce the unnecessary SPM features. The proposed F-SPM method is evaluated for 

binary-class and multi-class classifications. The experimental results demonstrated that 

the proposed F-SPM method improves the classification accuracy of the SPM method for 

both binary-class and multi-class classifications especially in classifying the defective 
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apple. The proposed methods also able to classify the binary-class of defective and non-

defective apple images including the low-quality region images. In light of the outcomes, 

the proposed methods have the potential to be implemented in real-time systems for vision 

classification in smart manufacturing. 
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CHAPTER 6: CONCLUSION 

This chapter concludes the research work presented in this thesis and relates the 

findings to the objectives presented in the first chapter. The contributions of the research 

work are also discussed. Finally, the limitations of this research work are outlined and 

future directions are suggested. 

 

6.1 Conclusion 

This thesis presents two new image recognition methods for apple classification. These 

methods are proposed to increase the classification accuracy for the binary-class 

classification of defective and non-defective apples even with low-quality region images 

and multi-class classification between types of defects. The contribution of each proposed 

method is individual, but associated with the feature extraction stage on the image 

recognition methods. 

The first proposed method is CW-GLCM. The CW-GLCM is a feature extraction of 

fusion-features with Decision Tree classifier. The CW-GLCM is proposed to improve the 

ability of the GLCM Texture analysis method in detecting features on the low-quality 

region of the apple image. To achieve this, the proposed method introduces the fusion- 

features using the Curvelet and Wavelet transform based on the GLCM method. The 

Curvelet and Wavelet transform are introduced to enhance the low-quality region in the 

apple image by improving their texture information. The main reason for fusing the 

Curvelet features is to detect curves, corners and profiles at the low-quality region of the 

apple image. In addition, the original GLCM method is also modified using the Wavelet 

coefficient to enhance the detection of the texture information in the low-quality region 

by capturing the directional edges in different resolution levels preserving the low and 



139 

high frequency information. This leads the proposed method to extract better texture 

information from the low-quality region of the apple image. 

The second proposed method of F-SPM concentrates on improving the drawbacks of 

the proposed CW-GLCM method in classifying defective apples. From the binary-class 

classification of defective and non-defective, the apple classification is extended to multi-

class classification between types of defects. The proposed F-SPM method is a visual-

dictionary feature extraction with SVM classifier. The proposed method includes the 

spatial layout information of the SPM for encoding the spatial distribution features. This 

spatial layout information is important to discriminate between defects and natural parts 

of stem end or calyx. The key contribution in the second proposed method is the detection 

and selection only significant features for further classification to reduce the unnecessary 

SPM features through Fuzzy logic detection. The Fuzzy logic detection highlights the 

high-frequency components of the defect region on the apple skin images.  

The proposed methods are tested on three new apple datasets. These datasets are 

created due to shortage of defective and non-defective datasets that comprise low-quality 

region for agriculture product. Each dataset focuses on different aspect of classification. 

The NDDA and NDDAW are both binary-class datasets containing defective and non-

defective apple images, with NDDAW contains more low-quality region images 

compared to the NDDA. Conversely, the DA dataset contains five types of defective apple 

images, which are Scab, Rot, Cork Spot, Blotch and Bruise. The evaluations of the 

proposed methods on these datasets used a similar experimental setup and compared with 

five existing image recognition methods.  

In the binary-class classification of defective and non-defective apple including the 

low-quality region images, the proposed CW-GLCM method outperformed the existing 

methods with at least 86.79% precision, 91.01% recall and 89.11% accuracy as presented 
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in section 4.3.3. For the multi-class classification between types of defects, the proposed 

CW-GLCM method outperformed others in classifying the Bruise defect with a perfect 

score of 100% in precision, recall and accuracy as discussed in section 5.3.4.2. The 

proposed F-SPM method also scored 100% in precision, recall and accuracy for 

classifying the Blotch defect and outperformed the other methods. For classifying the 

Scab defect, the proposed F-SPM method outperformed the others with 100% precision 

and 87.50% accuracy. The method also attained the highest precision, recall and accuracy 

compared to other methods with a minimum value of 85.00% on recall for overall 

classification performance from five defect classes in the DA dataset. 

Finally, the presented results confirm the achievement of the outlined research 

objectives in detecting and classifying apple images. The apple classification includes for 

binary-class classification of defective and non-defective apples even with the low-

quality region images and multi-class classification between types of defects. Also, the 

results indicate that both proposed methods have the potential to be implemented for 

vision classification in smart manufacturing. 

 

6.2 Future Work Direction 

There are several future directions and gaps can be explored to further improve and 

validate the proposed methods. In this research, the proposed methods are evaluated on 

small sample datasets of apple images (550 images of NDDA, 560 images of NDDAW 

and 200 images of DA). This is due to limited apple image datasets available publicly  

despite apple having the highest production rate and steadily increase over the year as 

reported by USDA (USDA, 2017). Moreover, the available datasets insufficient to 

describe the targeted problem highlighted in this research (Kamilaris & Prenafeta-Boldú, 

2018; X. Song et al., 2016).  Therefore, small datasets of apple images are mainly sampled 
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to classify defective and non-defective apple including low-quality region and also multi-

class between types of defects. 

In this research, it is challenging to meet the large-scale dataset requirement of deep 

learning method such as ImageNet dataset. ImageNet dataset consists of 3.2 million 

cleanly labelled images and aim to contain 50 million images in the dataset (Deng et al., 

2009). The large-scale datasets or big data are normally harvested automatically from 

large users or crowds population using crawling techniques, crowd source or application 

programming interface that provided by social media providers (B. Jiang, 2015). The 

optimization issues might arise when using deep learning approach of the pre-trained 

models on a small dataset that is significantly different due to the models’ complexity and 

hardware restrictions (Chaturvedi et al., 2018; X. Cheng et al., 2017; He et al., 2015; 

Kamilaris & Prenafeta-Boldú, 2018; Krizhevsky et al., 2012; Y. Zhang et al., 2019). 

Therefore, future research can consider increasing the diversity of apple image dataset 

using data augmentation technique for more advanced deep learning method. However, 

the key challenge for data augmentation is its computationally expensive to generate 

enough samples for training on a large neural network. Furthermore, due to the 

particularities of the low-quality region, various types of defects, severity and cultivar of 

apple images in this research, it will become a major challenge for the data augmentation. 

The overly augmented and redundant augmentation may also introduce biases into the 

dataset and can slow down the training (Graham, 2014; Ho, Liang, Stoica, Abbeel, & 

Chen, 2019). The potential of the data augmentation and more advance deep learning 

method to optimize the performance deserve further study.  

Second, the proposed F-SPM method is highly dependent on Fuzzy logic detection to 

select significant features for apple classification. The selection is performed by detecting 

edges or contours in apple images to highlight only the high frequency components. The 
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edges are detected by comparing the intensity between two neighboring pixels. However, 

the small intensity differences between two neighboring pixels do not always represent 

the edge due to the image complexity. Other factors related to the image properties such 

as noise, lighting, blurred images and dynamic background may also influence the edge 

detection, which consequently can reduce the classification accuracy (Anas, 2016; 

Lakshmi & Sankaranarayanan, 2010; J. Song et al., 2019). Addressing this issue may 

improve the performance of the proposed method. The aforementioned issues can be 

addressed by using feature selection technique. Feature selection technique allows the 

elimination of noisy features, irrelevant and redundant features (Adegoke, Ola, Omotayo, 

& No, 2014). In future research, feature selection technique such as Relief, Fisher score 

and Information Gain based methods can be employed in the proposed method to improve 

the current results. This is possible since feature selection technique can improve the 

quality of the data for classification (G.-Z. Li, Yang, Liu, & Xue, 2004; Tang, Alelyani, 

& Liu, 2014).  

Finally, considering the achievement of the proposed methods for apple classification 

discussed in this thesis, it is also believed that the output from the classifier can be further 

explored. The output from the classifier which is defective and non-defective including 

types of defects in apple production has the potential to be used as the input for data 

analytics and visualization. The analytics process can identify the patterns based on the 

current production data and learns for future planning and prediction; which potentially 

helps improving the apple growth and processing efficiency. 
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