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IMPROVING ROBOT DARWINIAN PARTICLE SWARM OPTIMIZATION 

USING QUANTUM-BEHAVED SWARM THEORY FOR ROBOT 

EXPLORATION AND COMMUNICATION 

ABSTRACT 

Despite the significance of the Robotic Darwinian Particle Swarm Optimization 

(RDPSO) algorithm on swarm-robot exploration and communication, there remain 

notable gaps such as premature and slow convergence, collisions between robots, and 

communication breaks and constraints. The quantum computing theory has several 

advantages that can improve the searching capabilities of PSO-based algorithms. 

However, there has yet an attempt to adopt quantum behaviour onto robot-based system 

such as the RDPSO. In this study, a new algorithm called the Quantum Robot Darwinian 

Particle Swarm Optimization (QRDPSO) is contributed with the hypothesis that quantum 

behaving particles can address the RDPSO main gaps; i.e. to improve the exploration and 

communication performance of a swarm robotic system. In terms of convergence time, 

the experiment done shows the QRDPSO algorithm is faster to reach an optimal solution 

than the RDPSO algorithm. The QRDPSO algorithm also shows tolerance to premature 

convergence compared to RDPSO. This study also contributed a distributed swarm 

navigation strategy that allows the QRDPSO robots to communicate directly with other 

robots in the swarm. Two popular communication schemas over wireless sensor network 

have been adopted and tested on the QRDPSO, the Multi-hop Routing Algorithm with 

Low Energy Adaptive Clustering Hierarchy (MR-LEACH) and the mobile ad hoc 

communication network (MANET). The QRDPSO algorithm with MR-LEACH 

consumes less power with energy consumption at 48% compared to the QRDPSO with 

MANET at 63%. Less power allows the MR-LEACH to increase lifetime for the nodes 

more than MANET while reducing interruptions between robots but not faster to reach 
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the optimal solution than the QRDPSO algorithm with MANET. The QRDPSO with 

MANET needs 180 iterations, while the QRDPSO with MR-LEACH needs 202 

iterations. The predecessor, RDPSO, needs 210 iterations for comparison to reach a 

victim. Given the importance of a swarm’s sustainability; swarm not losing robots, able 

to conserve energy and explore farther, the MR-LEACH schema is proposed to 

complement the QRDPSO communication. 

 

Keywords: Swarm robotics, particle swarm optimization (PSO), quantum behaving 

particles, robot exploration, robot communication 
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MEMPERBAIKI ROBOT DARWINIAN PARTICLE SWARM OPTIMIZATION 

MENGGUNAKAN TEORI KAWANAN DENGAN KELAKUAN KUANTUM 

UNTUK PENJELAJAHAN DAN KOMUNIKASI ROBOT 

ABSTRAK 

Walaupun algoritma Robotic Darwinian Particle Swarm Optimization (RDPSO) 

berkepentingan dalam penjelajahan dan komunikasi kawanan robot, masih terdapat 

jurang-jurang yang ketara seperti penumpuan pramatang dan lembab, perlanggaran 

sesama robot, serta kekangan dan gangguan komunikasi. Teori pengkomputeran 

kuantum mempunyai beberapa kelebihan yang dapat meningkatkan keupayaan 

pencarian bagi algoritma berasaskan PSO, namun kini masih tiada percubaan untuk 

menyesuaikan perilaku kuantum ke atas sistem berdasarkan robot seperti RDPSO. Dalam 

kajian ini, satu algoritma baru yang dikenali sebagai Quantum Robot Darwinian Particle 

Swarm Optimization (QRDPSO) telah disumbangkan dengan hipotesis bahawa zarah 

berkelakuan kuantum dapat menangani jurang utama RDPSO; iaitu untuk meningkatkan 

prestasi penjelajahan dan komunikasi satu sistem kawanan robotik. Dari segi masa 

penumpuan, eksperimen yang telah dilakukan menunjukkan algoritma QRDPSO lebih 

pantas untuk mencapai penyelesaian yang optimum berbanding algoritma RDPSO. 

Algoritma QRDPSO juga menunjukkan toleransi kepada penumpuan pramatang 

berbanding dengan RDPSO. Kajian ini juga turut menyumbang satu strategi navigasi 

yang mengagihkan kawanan robot supaya robot-robot QRDPSO dapat berkomunikasi 

secara langsung dengan robot-robot lain di dalam kawanan. Dua skema komunikasi 

popular untuk rangkaian sensor tanpa wayar, Multi-hop Routing Algorithm with Low 

Energy Adaptive Clustering Hierarchy (MR-LEACH) dan mobile ad hoc communication 

network (MANET) telah diterima pakai dan diuji ke atas QRDPSO. Algoritma QRDPSO 

dengan MR-LEACH menunjukkan penggunaan tenaga yang lebih rendah iaitu sebanyak 
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48% berbanding algoritma QRDPSO dengan MANET sebanyak 63%. Penjimatan kuasa 

ini membenarkan MR-LEACH memanjangkan jangka-hayat nod-nod berbanding 

MANET, serta pengurangan gangguan komunikasi antara robot tetapi lebih lembab untuk 

mencapai penyelesaian yang optimum berbanding algoritma QRDPSO dengan MANET. 

Algoritma QRDPSO dengan MANET memerlukan 180 lelaran, sementara QRDPSO 

dengan MR-LEACH memerlukan 202 lelaran. Sebagai perbandingan, algoritma RDPSO 

yang terdahulu memerlukan 210 lelaran. Memandangkan pentingnya kemampanan satu 

kawanan; kawanan tidak kehilangan robot, dapat menjimatkan tenaga dan berupaya 

menjelajah lebih jauh, skema MR-LEACH adalah dicadangkan untuk melengkapi 

komunikasi QRDPSO. 

 

Kata kunci: Kawanan robot, particle swarm optimization (PSO), zarah dengan kelakuan 

quantum, penjelajahan robot, komunikasi robot 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Over the past decades, many scientists and engineers have studied nature’s best and time-

tested patterns and strategies. Within the existing biological architectures, swarm 

societies revealed that relatively unsophisticated agents with limited capabilities, such as 

ants or birds, could accomplish complex tasks necessary for their survival cooperatively. 

Those simplistic systems embrace all the conditions necessary to survive, thus embodying 

cooperative, competitive and adaptive behaviours. In the never-ending battle to advance 

artificial human-made mechanisms, computer scientists simulated the first swarm 

behaviour designed to mimic birds’ flocking behaviour in the late eighties. 

 

Ever since, many other fields, such as robotics, have benefited from the fault-tolerant 

mechanism inherent to swarm intelligence. Flocks and swarms are intrinsically 

cooperative and even competitive, behaviours observed in birds and most insects which 

survives natural evolution. The way flocks and swarms cope and adapt to social life 

difficulties has fascinated robotics researchers to embrace biologically inspired 

computational algorithms into robot evolution. One common observation which inspires 

the fascination includes how birds worked together to spot food. The probability is high 

for the flock of birds to find a location with the highest amount of food in the area 

following a trajectory which combines three directions (Floreano & Mattiussi, 2008): 

a) flying in the same way, 

b) Return to the location where the bird found a lot amount of food, and 

c) Move towards the neighbouring bird that cries when food is abundance.  
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Those principles and how nature copes with life’s difficulties brought forth the research 

towards nature-inspired, more widely known as biologically inspired, humanmade 

designs. From biologically inspired robots mimicking birds’ kinematics (Couceiro et al., 

2012) to complex collective aggregation of robots mimicking swarms of insects, robotics 

has benefitted the most from biologically inspired evolution over the past few years. 

Kennedy & Eberhart (1995) proposed the PSO as a population-based algorithm which 

contributes to global optimisation over continuous search spaces.  

 

In real life, global optimisation could mean how swarms conform a cooperative way to 

find food, by imitating a member or another that reaches the food during a particular 

search. The swarms move around and create a dynamic search pattern with each member 

changing speed and direction to emulate a particular swarm member that became the 

optimal solution. Each PSO swarm member is represented as a particle, where its velocity 

and position updated at each iteration. Therefore, the changes to a particle within the 

swarm are influenced by its interconnected neighbours’ learning and experiences. 

 

The PSO gained popularity among the robotics community due to ease of implementation 

as the algorithm has few parameters to adjust. It is also computationally inexpensive 

because the spatial ordering of particles in the neighbourhood is not required. Two 

versions of the PSO algorithm are usually discussed: the global best PSO (gbest) and the 

local best PSO (lbest). For the gbest PSO, each particle’s neighbourhood is the entire 

swarm, which leads to high interconnectivity between particles. For the lbest PSO, 

smaller neighbourhoods are defined for each particle, offering diversity to the swarm. The 

gbest and lbest PSOs differ mainly due to their convergence characteristics. 
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Due to larger interconnectivity in gbest PSO, the swarm may converge faster than 

the lbest PSO, albeit with less diversity, leading to the immature selection of a less 

accurate solution. With more considerable diversity and careful attention given to the 

search space sub-parts, the lbest PSO is less susceptible to being trapped in local minima 

like the gbest PSO but takes longer time to converge. Figure. 1.1 and Figure. 1.2 show 

illustrations of gbest and lbest PSOs and Figure. 1.3 shows the PSO general process.  

 

 

1. At time 𝑡 = 0 2. At time 𝑡 = 1 

Figure 1.1: Global best PSO illustration. Taken from Engelbrecht (2007) 
 

 

1. Initial swarm 2. Second swarm 

Figure 1.2: Local best PSO illustration. Taken from Engelbrecht (2007) 
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Figure 1.3: Flowchart of the PSO algorithm 
 

The PSO consequently is a representation of the symbiotic cooperative model. It is 

stochastic by nature and by optimizing the mathematical functions, propose a fast 

convergence rate. The PSO is, however, limited in several crucial areas. The PSO is most 

likely to fall into one local extreme for problems with several local extremes and achieve 

the inaccurate result. According to Wang et al. (2018), this premature convergence 

happens when two factors appear, the swarm having less optimized functions, and losing 

particles’ diversity quickly. The PSO will also achieve an inaccurate result when 

historical information calculated for the individual and swarm is not fully considered 

during updates. There is no guarantee the PSO will always achieve global optimization, 

although fundamentally, the algorithm provides the probability of global search.  

 

The most significant limitation of the PSO for adoption into robotic applications has to 

be the nature of the particles’ motion themselves. In theory, the particles are allowed 

movement in any direction and with any velocity permitted. The particles’ 

interconnectivity also posed high communication traffic for the swarm. On the other hand, 

the robots have a limited range of mobility and individually, requires the capacity to 

perform a different kind of measurements according to their sensors. In terms of 
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communication traffic, handling excess messages (broadcasts from each robot to all other 

robots in the swarm) at every time interval will not propose a practical update. Therefore, 

adjusted versions of the PSO have been proposed by robotics researchers focusing on 

various areas including modification of various parameters configurations, studying the 

topological structures to improve communication, and studying the discrete or multi-

objective optimization within the PSO algorithm. 

 

1.2 Motivation  

The robotics community benefitted from modifying the PSO algorithm to suit many 

applications such as finding robot search paths, optimizing robot localization, and motion 

planning (Tang et al., 2017; Collinsm & Shen, 2017). In the industry, the PSO is used to 

find the optimal movement of robotic arms to improve productivity while in aerial 

robotics, swarms of drones are controlled to reach specific target using the PSO (Tarmizi 

et al., 2016; Djaneye-Boundjou et al., 2016; Spanogianopoulos et al., 2017; Alejo et al., 

2014). One widespread impact of a swarm robotic system is in search and rescue (SaR) 

problems where the swarm is deployed to find the global best (victim), and the swarm 

performance is measured on how fast the victim is discovered.  

 

Central to SaR are two key components, (1) a platform for distributed architecture and 

(2) a venue for exclusive inter-robot communication. A distributed architecture redefines 

the robotics swarms without a central task allocator. Gasser & Huhns (2014) proposed 

that swarm architectures are expensive computationally in a real-world application due to 

the central task allocator having to handle the number of dynamic behaviours generated 

by the high number of robots. In terms of inter-robot communication, the paradigm to use 

wireless communication as a medium so robots can openly exchange information within 

a network path is recommended (Farooq et al., 2010).  
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In particular, the SaR problem can happen in a hostile environment, disaster recovery, 

battlefields and space, for example, where communication infrastructure may be damaged 

or missing. Communication protocols such as the Mobile Ad Hoc Network (MANET) 

and Multi-hop Routing with Low Energy Adaptive Clustering Hierarchy (MR-LEACH) 

can reduce interruptions to reduce team performance risk. 

 

One extension to the PSO algorithm that conforms to SaR systems’ requirements is the 

Darwinian PSO (DSPO) algorithm (Tillet et al., 2005). In DPSO, the Darwinian’s 

survival of the fittest principle defines how the lbest PSO is organized. When a sub-group 

of the swarm gets stuck in a local optimum during a search, that sub-area is discarded. 

Another sub-area is searched instead. A reward and punish system is proposed to 

reinforce the swarms’ learning. At every interval, sub-groups with increasing mobility 

get rewarded with new particles or an extra life. Sub-groups that are stagnant have the 

risk of losing particles or reduced swarm life. Fitness of all sub-group particles is 

calculated before the neighbourhood, and each particle’s individual best positions are 

updated. Internally, particle teammates from the same sub-group cooperate while 

externally, different sub-groups compete to achieve global optimization, a concept termed 

as coopetition (Tsai, 2002).  

 

What is missing from the DPSO are parameters that can handle the swarm robots’ 

physical characteristics, i.e. for obstacle avoidance and maintaining communication, 

during real-time exploration. A series of articles discussed how the DPSO is extended to 

develop and test the Robotic Darwinian PSO (RDPSO) (Couceiro et al., 2011; Couceiro 

et al., 2012; Couceiro et al., 2015; Dadgar et al., 2017; Kumar et al., 2017; Sanchez et al., 

2018).  
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The RDPSO is reported to overcome the limitation of convergence on multiple targets. 

Unlike the PSO and DPSO with its particles falling into sub-optimal solutions and 

unlikely to escape, the RDPSO has a mean to push its particles to wander and avoid the 

trapping altogether in the first place. An allocator is required in the PSO and DPSO to 

divide particles into sub-groups. In the RDPSO, a mechanism to generate sub-groups 

within the swarm is enabled. Traffic control is then introduced, so the number of messages 

shared between the robots is not overwhelming.  

 

In a SaR scenario, the robots are released to explore the search space at random. 

Depending on the swarm initialization parameters, the robots move in different directions 

until a signal is received. A signal means a robot has found a potential victim. The higher 

the intensity of the signal, the closer a robot is to a potential victim. When the robot 

receives a signal, it checks the list of broadcasted signals to single out a signal with the 

highest intensity. The robot with maximum intensity is considered the best performing 

robot at that interval and gets rewarded by other robots in the swarm. For robots that 

cannot broadcast signal or transmitted only weak signal, they may face exclusion by the 

RDPSO algorithm.  

 

The RDPSO has been tested on the Robot Operating System (ROS) framework to 

simulate a swarm of autonomous mobile robots for exploration and communication in 

SaR situation. Each robot is pre-programmed with initial position and initial velocity and 

information about the search space to be explored. The robots do not have prior 

knowledge regarding the location of the victims. The environment setup includes multiple 

static targets and obstacles. A universal grid map library is utilized to compute an intensity 

map to guide the robots’ navigation autonomously. The swarm’s performance for the SaR 

use case with multiple targets is measured in terms of speed and convergence accuracy. 
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The main aim of the RDPSO algorithm is to improve the efficiency of the PSO algorithm 

to allow the search to take place at a faster rate. The RDPSO extends the PSO algorithm 

using evolution to reduce overlapping search area, so the robots move away from 

provincial (local) optima. Despite the significance of the RDPSO algorithm for multi-

robot exploration, there remain essential gaps for ideal searching. The RDPSO shows the 

fastest convergence in the global best search than the PSO or the DPSO, but the technique 

is not free of premature convergence (Couceiro et al., 2011; Couceiro et al., 2012). When 

obstacle avoidance and social inclusion/exclusion are introduced, the RDPSO can choose 

to reduce the number of robots dividing the whole swarm population into multiple sub-

groups. The division means the RDPSO is scalable to large populations of robots in the 

search space. However, collisions between robots still pose an issue (Couceiro et al., 

2015).  

 

Regarding reducing overlapping search area (and avoid local optima), Dadgar et al. 

(2017) proposed the repulsion mechanism between similar robots. This method keeps the 

robot search more stable, but it compensated a much slower convergence rate. The robots 

can escape from sub-optimal solutions; however, the ROS framework test shows the 

RDPSO inability to detect multiple targets and avoid collisions (Kumar et al., 2017). 

Recently, in an underwater exploration use case, the RDPSO shows a higher level of 

robustness and enhanced exploration speeds. Still, there is a high dependency on factors 

such as swarm size and the rate of commands (Sanchez et al., 2018).  
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For the RDPSO performance for swarm inter-communication, several works have 

reported strategies to decrease information exchange and reduce the communication 

overhead within swarm sub-groups. For example, the MANET communication protocol 

is applied to prevent network splits so each RDPSO robot gets multi-hop connected 

MANET over time (Couceiro et al., 2014). The researchers focused on analysing the data 

packet structure shared between teammates (Couceiro et al., 2013). Nevertheless, 

communication breaks and constraints remain challenging to the RDPSO algorithm 

towards smooth swarm interconnectivity.  

 

For optimized inter-communication, the critical feature is to lower the energy 

consumption in creating and maintaining network clusters and improving the wireless 

sensor network (WSN). Introducing methods to partition the network into different layers 

of clusters could be key to improve interconnectivity. Cluster heads in each layer 

collaborate with adjacent layers to transmit sensors’ data to the base station. Ordinary 

sensor nodes can join the cluster head based on the Received Signal Strength Indicator 

(RSSI).  

 

The MR-LEACH single-hop implementation (Farooq et al., 2010) could be an exciting 

adaptation which shows the cluster heads (sources) directly communicate with the sink. 

Multi-hop implementation is also interesting. However, if unequal clustering is proposed 

(Gong et al., 2008), such implementation will risk energy wastage because the Time 

Division Multiple Access (TDMA) is not present at the network level. Figure. 1.4 shows 

illustrations of single-hop and multi-hop communication. 
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Figure 1.4: The single-hop and multi-hop source-to-sink wireless sensor network 

 

In summary, revisiting the PSO algorithm and modifying the optimization (mathematical) 

functions could be key to improve any PSO-based algorithms for swarm robotics 

exploration. Interestingly, quantum computing theory has several advantages that can 

improve the searching capabilities of these PSO-based algorithms. Regarding inter-robot 

communication in the swarms sub-groups, communication protocols such as the MR-

LEACH have shown promising results for node-based source-to-sink wireless sensor 

networks, but suitable for sinkless communication such as the swarm robotics, in which 

robots communicates directly with other robots.  

 

1.3 Theoretical Considerations 

In the PSO, the state of particles is described by their position and velocity, which 

eventually inadequate in avoiding premature convergence or local minima traps in all 

situations. The PSO also poses fast convergence problems in the early stage, slow 

convergence in the later stage, and randomness in parameter selection. A new paradigm 

to focus at the state of particles as wave function rather than position and velocity, 

inspired regulation of speed and direction, is proposed by the quantum mechanics. Sun et 

al. (2004) used a strategy based on a quantum delta potential well model to sample around 

the previous best points and introduced mean best position to the PSO algorithm. This 
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innovative methodology is termed the Quantum-behaved PSO or in short QPSO. The core 

modification between the PSO and the QPSO is the iterative equation, besides describing 

states of particles using wave function. Interestingly, the QPSO has lesser parameters to 

adjust that the PSO, making it easier to implement.  

 

Supplanting the particle descriptors of the PSO with wave function in the QPSO has 

significant consequences. With the wave function, the probability of a particle showing 

up in a particular position can be calculated from the partial differential equation 

corresponding to the potential field where the particle currently is. The individual 

particle’s position can be updated by employing the Monte Carlo method. This 

exponential distribution usage to feed the delta potential well, rather than the normal 

distribution for the PSO, is an important characteristic that allows the QPSO to search in 

the broader space. Most importantly, the exponential distribution is less prone to 

premature convergence.  

 

The other important characteristic of the QPSO implementation is the concept of wait 

mechanism. Implementing the mean best position (mbest), i.e. the average best position 

of the swarms’ sub-groups, is essential to execute the concept. The mbest does not allow 

particles to converge to the global best (gbest) position until the position of neighbouring 

particles, or teammates, have been considered. In the QPSO, the distance between a 

particle’s position (pbest) and mbest determines the particles’ position distribution in the 

sub-group for the next iteration. When particles with respective pbest are far from 

the gbest position (often called lagged particles) while other particles are nearer, then 

the mbest position serves an innovative function.  
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The mbest position now becomes a landmark, so the lagged particles do not 

target gbest (too far) and have a way to catch up to their teammates. At each interval, the 

lagged particles will converge towards the mbest while the other particles proceed on 

course towards gbest. Slowly, the lagged particles will converge towards the gbest and 

particles which have converged explore globally around the gbest temporarily. The wait 

mechanism is intuitive, and in theory, the QPSO never have to abandon lagged particles 

behind. Most importantly, the utility of the mbest position enhances the QPSO global 

search ability over the PSO. In comparison, each of the PSO particles converges 

independently towards the global optima. There is no mechanism in the PSO to conserve 

the size of the swarm. Particles trapped in local optima are lost and removed from the 

swarm.  

 

The QPSO algorithm has shown superior convergence speed and solution accuracy in 

continuous optimization problems. Researchers recently implemented the QPSO 

algorithm to solve the optimal power flow problem in a chaotic artificial bee colony 

algorithm (Yuan et al., 2015). The QPSO shows good performance in improving the 

global searchability in the practical application such as financial forecasting, except in a 

few instances where it falls in a local optimum. In another work, the QPSO is 

implemented to solve particle distribution and true pose (localization) in FastSLAM 

problems (Zuo et al., 2018). The estimated pose of a particle is reportedly closer to the 

true pose (accurate localization), and the QPSO can overcome particle depletion. The 

overall time consumption of the QPSO-FastSLAM is less than that of PSO-FastSLAM.  
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It is important to note that these works, however, are particle-based and not robot-based. 

One robot-based work implemented the QPSO to solve the searching process in mobile 

robots’ path selection (Xue et al., 2017). Their results show high convergence speed and 

solution accuracy; nevertheless, the work focused on a free environment (without any 

obstacles) and likely unsuitable for SaR simulations.  

 

1.4 Problem Statement  

Despite the significance of RDPSO algorithm on multi-robot exploration and 

communication, there remain significant gaps such as: 

•       Premature and slow convergence. 

•       Collisions between robots. 

•       Communication breaks and constraints. 

•       power consumption  

 

The quantum computing theory has several advantages that can improve the PSO-based 

algorithm’s searching capabilities; however, reformulating the RDPSO is not a 

straightforward task. The MR-LEACH schema enhances a communication (robot 

communicate directly with other robots) such as lower power consumption to improve 

robot lifetime and reduce interrupt between robots. 
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1.5 Objectives of the Study 

The objectives of this study are described as follows: 

 1. To formulate a searching strategy to reach global best in shorter time in existing 

RDPSO algorithm 

2. To reduce the energy consumption of sensor (robot) nodes by using clustering 

hierarchy design 

3. To test the performance of QRDPSO swarm with MR-LEACH schema in 

avoiding local optima and finding global best 

 

1.6 Contribution 

In this thesis, I proposed a new quantum-behaving model for swarm robotics to optimize 

the swarm behaviour in a simulation with SaR as the use case. This research’s main 

contribution revolves around the extension of the RDPSO to enhance the swarm robots 

searching capabilities using the quantum aspects of the QPSO. This novel extension is 

denoted as the Quantum Robotic Darwinian PSO (QRDPSO). In theory, the proposed 

QRDPSO can be used to devise swarm robotics’ applicability in various applications.  

 

The following sub-areas are given careful attention in this work in deriving the algorithm 

to completion: 

a)    Individual robot-obstacle susceptibility rate, 

b)    Communication rate between the robots, 

c)    Individual robot connectivity rate, 

d)    Formulation of the QRDPSO, 

e)    Control architecture design, and  

f)     Parameters control 
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To maintain unbroken inter-robot communication in the swarm in solving SaR missions, 

the QRDPSO is also designed with a communication protocol such as the Low Energy 

Adaptive Clustering Hierarchy (MR-LEACH). The MR-LEACH is the most popular 

energy-efficient algorithms for wireless sensor network and its evolutionary properties. 

In this thesis, I designed the MR-LEACH with a sink less approach, making the QRDPSO 

the first algorithm for swarm robotics with a distributed network platform that takes 

advantage of the constant active partitioning of the entire robot swarm.  

 

Central to the MR-LEACH implementation in this work are the following study: 

a)    The MR-LEACH interconnectivity between robots, 

b)    The MR-LEACH interruption handling throughout SaR mission, 

c)    Establishing multi-hop paths on a distributed network, 

d)    Fault-tolerance strategies to prolong MR-LEACH lifetime, and 

e)    Fault-tolerance strategies to prevent loss of connectivity 

 

Despite the RDPSO algorithm’s significance on swarm robotics exploration and 

communication, there remain significant gaps, including premature and slow 

convergence, collisions between robots and communication breaks and constraints. I 

hypothesize that the proposed QRDPSO algorithm with MR-LEACH has superiority over 

these gaps. Also, I believe that quantum-behaved swarm robots for exploration with 

enhanced communication will help researchers uncover critical areas in the robot 

dynamics and new strategies for efficient obstacle avoidance and improved swarm 

coordination.   
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1.7 A Guide to this Thesis  

There are in total of five chapters to this thesis. Chapter 2 presents a thorough assessment 

of the relevant literature for the work done in the thesis. The review opens with a brief 

analysis of concepts supporting swarm robotics for search and rescue problems. Then, the 

review continues with the concept and formulation of the PSO, RDPSO and the QPSO. 

The review ends with discussing a few current methods from the robotic fields that use 

PSO in their systems for completeness.  

 

Chapter 3 concentrates on the computation and implementation of the QRDPSO 

algorithm. Three research questions anchor the chapter: 

1. How can one improve the maturity and rate of convergence for RDPSO 

during swarm-robot exploration? 

2. How can one enhance the swarm communication for robot energy 

conservation and prolonged lifetime during exploration? 

3. How does the MR-LEACH schema perform in avoiding local optima and 

finding global best compared to benchmark protocol such as MANET? 

 

Answering these research questions lead to the following outcomes, respectively:  

1. A novel QRDPSO algorithm improves convergence maturity and rate 

during swarm-robot exploration over RDPSO algorithm. 

2. A coordinated swarm movement strategy conserves the robot’s energy and 

extends the robot’s lifetime during exploration. 

3. The MR-LEACH schema performs better time over benchmark protocol 

such as MANET to avoid local optima and find global best (victims). 
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To show the algorithm’s robustness, I examine the global best convergence and robot 

collision occurrences for different quantities of robots in a MATLAB simulation. Chapter 

4 presents the results from these experiments. The discussion surrounding the results and 

an in-depth analysis of their implication is also presented for completion. Chapter 5 

summarizes the thesis contributions emphasizing the lessons learned and ends with 

propositions for future work.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Overview 

In various existing societies attributed to cooperation, humans make researchers insert a 

lot of effort into the generation of robots that can do tasks. In this chapter, societies 

attributed to cooperation are evaluated based on their benefits, and multi-robots systems 

are presented with advancement models. Bio-logically inspired cooperative systems are 

where most of the interest is focused. The chapter presents the concept and formulation 

of the PSO series from the classical PSO, DPSO, RDPSO and the quantum behaving 

QPSO.  

 

This review’s attention is on the curiosity towards nature-inspired cooperative systems 

and how PSO series perform when challenged with tasks to optimize search, avoid 

obstacles, and maintain inter-communication in swarms, with or without robot. A 

comparison table depicting essential works in the PSO series is provided for completion. 

Insights from this comparison study provide a backdrop to work in this thesis. Partial to 

the chapter are reviews on two important communication protocols, the Mobile Ad Hoc 

Networks (MANETs) and the Multi-hop Routing Algorithm with Low Energy Adaptive 

Clustering Hierarchy (MR-LEACH) and their impact on enhancing swarm robotics 

communication. In the work of research, the key concepts will be used to enhance 

effectiveness. 
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2.2 Darwin Theory  

Central to past discussion has always focused on “man is a natural animal and, inevitably, 

selfish”. The notion is considered since the science of “survival for the fittest” was 

introduced (Darwin, 1872). It shows how greed and power influence man’s survival since 

the early stages. Capitalism is another factor that man considers the most in is reign while 

in power. It turned out to be one of the essential concepts that Charles Darwin defended. 

The theory states that not all animals such as birds, insects, animals, or human being had 

the same survival ability.  

 

Capitalism became a theory that Darwin reinforced in natural selection. Those who had 

high adaptive ability had high chances of surviving than those who do not possess the 

potential to do that in the new environment. Darwin uses the “law of the jungle” to refer 

to most of the attributes among animals, birds, insects, and humans. The law elaborated 

that only the brightest could survive and evolve in harsh environmental conditions. 

Darwin’s theory was applied at biological levels, which was done over the years and 

turned to be applied even social and economic competition (Maslow, 1943). 

 

It is shown by the Darwinism that every hierarchy has the potential of dividing man’s 

need basing on the characteristics that the theory portrayed. The theory of motivation was 

developed by psychologist Abraham Maslow, who demonstrated a hierarchy of needs that 

a man needs to satisfy. Maslow’s pyramid is used to represent the requirements. 

Psychological and safety needs are to be satisfied by a man when illustrated by the 

previous model before entering the level of intergroup or interpersonal relations.  
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There are certain analogues in nature, and the attributes are overseen to be true. To get 

enough food, wolves’ hunts in groups enhance their performance and supplement other 

groups with food. If the process of something dangerous occurs, the wolves disappear on 

their own so has they can survive. Before we can complete the tasks that we are assigned 

within our societies, human needs to recharge themselves by eating.  

 

 
Figure 2.1: The Maslow’s Pyramid 

 

In the hierarchy of beings, men are considered to have needs that are divided by different 

anxieties. They have needs that are chronic, competitive and recurrent. Their needs tend 

to compete with each other to be satisfied first. Motivation theory is used in the most 

scenario to address the need for satisfying human needs (Maslow, 1943). The 

requirements for satisfying the needs were presented by Maslow using Maslow’s 

pyramid, as shown in Figure 2.1. 
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Every level of Maslow’s Pyramid has its requirement before the needs are satisfied. Most 

of the need is considered natural, such as the need to get water and food to satisfy the 

required tropic level. According to the model, men must meet their physiological and 

safety needs before interring the level of interpersonal and intergroup relations. There is 

a particular analogue in nature, and we can see that this makes senses. Existence of wild 

animals in a different environment is influenced by warmth, water and food. During the 

migration period of wild animals such as antelope, the migration leaves the group of 

wolves with the stand that only the strong will survive. Most of the wolves will undergo 

emaciation and most probably the little remaining flock will continue to survive when the 

migration is back.  

2.3 The Summary of Cooperation 

Darwin and Maslow might have faced a time difference as the main feature in their 

theories. Cooperation with others may be the key attribute to the survival of particular 

members in society. There are attributes of cooperation that do not fit within Darwin’s 

concepts, and this aspect was brought in by Martin (Martin et al., 2013). He argues that 

assets are found in nature. Cooperation is considered to be every as shown vindicated by 

Grotuss in the year 2011. In multicellular organisms, cells are considered to work together 

and animals in society. Also, the genes have joined the in the genomes.  

 

How cooperation can be essential is demonstrated in various societies in the world. The 

humble was studied by King Solomon, who was a student of nature in thousand years 

ago. He noted that “go the ant, it has not commanded, you sluggard; consider its ways 

and be wise, yet it stores its provision in summer has it has no overseer or ruler, and you 

gathers your food at harvest” (Dean, 1913) a perfect example of diligence, cooperation 

and order are portrayed by the ants. Ants seem to be able to find their paths regardless of 

their cooperation at work. Pathfinding can be going around an object or the nest where 
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food is located and back. The ants can find the path despite being virtually blind. 

Chemical communication is used in this scenario, as indicated by several studies between 

the ants and the emergent caused by many ants. Stigmergy concept is portrayed in this 

scenario. There are computational logarithms that use this concept in most of the sceneries 

to evaluate the mechanism.  

 

The case is showed by the heuristic principle Ant System used to control and stimulate 

the behaviours portrayed by the ant. Solving problems by ants is done based on a group 

of ants working in close conduct using simple communications (Dorigo et al., 2011). A 

swarm of robots uses brood sorting to effect on their activities. In the optimization 

logarithm, those and similar principles are implemented, including the well-known PSO, 

genetic algorithms, and the evolutionary theory proposed by Kennedy and Eberhart 

(Kennedy and Eberhart, 1995).  

 

 

Figure 2.2: Ants’ stigmergic behaviour to find the shortest path between food and nest a) 
travel an ants path directly, b) an obstacle interrupts the ant’s path, c) the ants create two 
different paths to overcome the obstacle; d) a new ant’s shortest path is created around 
the obstacle. 
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In the light of pelican is where another exciting engineering example is portrayed based 

on biological cooperation. It is evidenced that pelicans when flying in a group have high 

boost power compared to flying alone. A 15% reduction in the fly potential is portrayed 

when flying alone. Electronic equipment was used in an experiment that aimed to prove 

pelican flight’s concept by enabling the pilot to keep the plane at a distance of 90m 

behind. In the concept of robotics, the plane experienced resistance of 20% lower and 

consumed 18 % of the fuel.  

 

The concept becomes essential to be implemented in the military to improve the dynamics 

of flying robots used to govern forest fires. Biological spying robots are modified using 

this attribute (Couceiro M.S. et al., 2012). We can see mutual support from 

microorganisms to man or on related or different species or same species at all life levels. 

When cooperation is being addressed, we might link them to cooperation systems where 

some of the contributions cannot be classified quickly and the perception of all the 

contributions (Colman, 1995). The 3C Model of communication, coordination and 

cooperation adapted from Ellis et al. presented in Figure 2.3 (Ellis et al., 1991) shows an 

exemplary schematic of cooperative systems. 

 

 
Figure 2.3: Adapted 3C Model  
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One of the essential tools included in a cooperation system requires cooperation as the 

primary attribute, leading to collaboration between different group members. Between 

the group members, cooperation, communication is considered the main focus to the 

group’s success, and the communication strategies must be familiar with all the members. 

In cooperative systems, also coordination is considered to play an important role. It 

ensures that the task is performed together by eliminating communication barriers and 

losing efforts towards a task. It also helps to meet the constraints and objectives on time. 

In fields such as computer science have applied this model related to dynamics and 

cooperation (Andriessen et al., 2012). 

2.3.1 Robots of a new society 

In several biological societies, the results are inspired from this perspective of existing 

cooperation, i.e. humans, plants, bees, and ants. The need for creating robots that 

collaborate becomes a critical attribute that researchers and scientists consider. Can it be 

essential to evaluate the group of robots as a cooperate system or even society? Is the 

question that mostly arises in most of the scenarios? Therefore, communication will be a 

vital attribute required by the group of robots to ensure that they coordinate well to 

perform a task effectively.  

 

The Multi-Robot System is a cooperative system to ensure that countless advantages are 

obtained as it is considered a key factor of success. Since the early days to the present, 

the time has any doubt, the most relevant variables to every singles earthling.  Careful 

management is required because time doesn’t stop; in the present societies, the loss of 

time is considered the greatest fear. The limitation related to the concept of time can be 

circumvented by performing simultaneous parallelism. This attribute is widely applied 

for both non-biological such as robots and biological creatures. Simultaneously, we can 
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have multiple robots performing different tasks, and multiple tasks can be performed 

simultaneously, such as temporal distribution.  

 

For robots to belong to MRS, they must pose a specific characteristic (Rocha et al. 2013). 

Some of the characteristics include; they should have the ability to interact with the 

dynamic environment, take deliberate action after reacting, without supervision tasks 

need to be done, and have features such as learning, adapting, and being sociable. The 

next view is examining of MRS as a society. The state at which individuals can interact, 

share tasks, and have some form of organization when interacting with each other can be 

described as a society. Figure 2.4 shows an example of cooperation concept in robotics 

where more than one robot work to build a 3D map of the environment.  

 

 
 

Figure 2.4: 3D mapping cooperation in robotics 
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Different societies can be represented by groups such as wolves, men, birds, ants, or 

robots. Isaac’s fiction book brought about the concept of robot society and the robot living 

in society (Asimov, 1982). It was considered it gained its popularity in real-world and 

roboticists believe that the robots could emerge in the next few years maybe 5 or 10. The 

cooperation between humans and robots as a concept has been central to many scientific 

studies. The likes of research include human-robot interaction and human-machine 

interaction. The science also focused on SaR operations that were good at showing HMI 

potentialities within the human-interaction framework.  

 

Suppose the heterogeneous primary human team’s deployment in a SaR task consists of 

human robots (legs), UGV, and UAV, as shown in Figure 2.5. Different levels of mobility 

allow multiple platforms to achieve a greater degree of freedom. Mobility significantly 

increases mission success. For example, human robots can walk over the debris identified 

by the large number of low-cost UGVs. On the other hand, the swarms can interact 

directly with the first responders through HMI (right portion of the image).  

 

Drones can increase the rescue operation’s coverage area and reach places as high as 

buildings (left portion of the image). However, for collaboration to emerge, a shared 

wireless medium like WiFi is required between all agents. Furthermore, this medium 

cannot rely on a pre-existing communications infrastructure, as it may be absent, or it 

may not exist in such scenarios. In other words, all agents, robots, and humans must 

simultaneously act as MANET end nodes and routers. Figure 2.5 shows an example of an 

application that uses a heterogeneous robot team to accomplish a SaR mission with the 

first responders. 
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Electronic payment robots allow low-cost micro-robots to explore the environment taking 

advantage of automated robot algorithms. Human robots represented by NAO platforms 

can walk on rubble due to their high movement on wheeled platforms and build bridges 

between human first responders and robotic factors using HMI algorithms (Baca et al., 

2011). The drone operating as a quadcopter can dramatically increase the rescue 

operation’s coverage area. Drones can reach places where UGV vehicles cannot enter, 

increasing the mission’s success (Julian et al., 2012). 

 

 

Figure 2.5: HMI potentialities within the human-interaction framework 

 

A better sense of the impact of technological changes on the environment, the need of 

studying the market on how frothy robotic speculation will be used in the future to attain 

human goals being set by different individuals becomes an essential measure to be 

considered. Their responsibility needs to be higher than a human; they need to have the 

ability to differentiate between their colleagues’ enemies. The fact that collaborative and 

independent mobile robot teams can provide human teams with an extension of detection, 

inference, and operational capabilities in hazardous areas is motivating.  
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Hazardous areas are where human activity should be avoided (for example, response areas 

to accidents, contaminated areas, dismantling of nuclear facilities, among others). 

Darwin’s law seems to apply in this scenario due to competition between human beings 

and robots in different sectors. Most of the work required to be done by humans will be 

substituted by robots, leading to increased competition in the labour market (Kuswadi et 

al., 2017). 

 

2.3.2 The role of communication 

The act of sharing and receiving information is done through communication means 

among or between individuals. For our lives to run more smoothly, we need 

communication as we live in a more complex society. The glue that holds the society 

together can be referred to as communication. The nature of biological societies is 

considered different, such as for flocks of birds or insects’ swarms. Communication can 

involve signal use as it comes in different forms, including motion, look, and sound. 

Every animal is attributed to a sense of communication as the ability to share information 

that will propel their cooperation which is considered a survival tool.  

 

The lifestyles that humans portray is considered to be a very different animal. Also, 

animals communicate to obtain food, protect a territory, stay safe, or find a mate. In MRS, 

the main aim of communication is considered to accomplish specific tasks. Therefore for 

any sensation that is taking place, robots should share that information. More resources 

are required to cater for the attribute of information sharing. The coordination among 

member groups is determined by the amount of shared information when coordinating a 

task (Mukhija et al., 2010).  
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It is considered that interaction between two robots requires a joint action which may 

exist from different mechanisms and social process. Human has served a biological 

inspiration for robotic systems for many decades through the existence of natural capacity 

to solve various tasks. In the robotic manipulation of tasks, joint action is considered 

another human behaviour that effectively coordinates how different tasks are being 

conducted (Zieliński et al., 2014). Efficient solutions can sometimes be achieved through 

the interaction of robots lacking the complete data about the world, which is an attribute 

that is considered a fundamental assumption in MRS research.  

 

Robots are required to obtain minimal information concerning their team members to 

ensure that they cooperate accordingly. At this end, robots need to benefit from each end. 

Three most techniques can be used to communicate among robots; implicit 

communication through the world, the effect of being teammates, is felt in robots’ 

organization (Chen et al., 2013). Passive action recognition through robot sensors can 

observe the action of teammates. Direct communication is considered robots directly and 

intentionally communicate relevant information to their teammates. 

 

Direct communication is the most effective technique due to its attribute of directness. 

Each robot can become aware of the reflex action conducted by teammates (Ahmad, 

2014). Synchronizing action becomes the primary use of direct communication; it 

determines the ability to negotiate between robots and exchange information. The use of 

explicit communication evaluates hidden state problems has limited sensors cannot 

distinguish between different states of the world for the tasks to be done effectively.  
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Some of the limitations shown by explicit communication theory include fault-tolerance 

and reliability. It depends on a noisy communication that is limited-bandwidth the channel 

connecting with other team members of the robot crew becomes a problem (Shannon, 

1949). All lost messages and communication failures need to be addressed by the use of 

the explicit model. A direct channel is essential at ensuring that all the sort of voice and 

other communication mechanisms are highly required under this model. Most robots are 

designed with Bluetooth like a system used with communication with others, increasing 

the communication model’s effectiveness. Most of the systems that are developed in 

robots are meant to function on a one stand task as they have integrated in a task-

dependent adaptive manner.  

 

Key mechanisms are established for robots to collaborate when performing different 

tasks. The interaction is used to determine the foundation of future cooperation object 

manipulation approach. In conclusion, effective communication and cooperation between 

robots are meant to achieve different tasks that are considered to exist in a dynamic 

environment. The use of joint action does objective manipulation in the cooperative 

robotic system. In humans, the cooperation of robots related to the growth of automated 

warehouses is used in the establishment cooperative mechanism based on human 

behaviour (Potkonjak et al., 2012). 

 

2.3.3 The particular domain of swarm robotics 

The range of MRS applicability is increased in cases where robots are endowed with 

communication capabilities. Sustaining cooperation improves MRS architecture for 

practical SaR application (Kuchwa et al., 2018). The swarm robotics have gained 

popularity after MRS has begun to branch into several other domains potentially. Swarm 

robotics is widely treated as a grave computational problem called swarm intelligence. 
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Optimization problems such as MRS within SaR application requires the attributes to face 

the same dilemma; exhaustive techniques. Exhaustive techniques are fitting for robots 

performing searching imitating biological agents (Kuchwa, 2018). The birds, bees, or ants 

societies have local control rules to stochastically search the scenario (Kar et al., 2016).  

 

The use of MRS to overcome real-world issues are considered over the years as a common 

trend. One wonders if it is possible to achieve the required biological behaviour in the 

real world mission? This is the question that areas in more sceneries. A final decision 

hasn’t been reached even though the amount of research being conducted to answer the 

question. Murphy and Suarez presented more than 50 papers on animal foraging, making 

SaR application an analogue (Murphy & Suarez, 2011).  

 

The whole environment needs to be divided into patches by robots whenever compared 

to animals such as bees. An environment that fires can occur becomes challenging to 

define patches with unknown sceneries as animal foraging is different from the 

motivation model. At first, for SaR robots, using a biologically inspired optimization 

method is considered unsuitable. The use like can be foreseen by implementing several 

applications that can be used to control the situation in fire areas (Figure 2.6). 

 

 
Figure 2.6: SaR real application in monitoring a) a basement garage, and b) underground 
fire of a shopping centre. 
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The most popular catastrophe in urban areas is considered urban fires that need immediate 

response due to life endangerment for densely populated areas. It can spread to parked 

cars and buildings. The SaR application becomes challenged in a state whereby fire in 

urban centres spread to rooms that contain inflammable materials such as a garage of has 

shopping mall. SaR is challenged due to the existence of a confined environment nature. 

The spaces become rapidly filled with smoke as fire evolves as the following attributes 

arise, first, the toxic atmosphere is generated, an unbreathable situation occurs, and 

visibility is reduced. Both the responders and victims at the scene are endangered. In less 

than 20 minutes, victims in such a scenario may be unable to survive.  

 

Regardless of the biological situation, two domains can be obtained after obtaining 

alternatives: swarm algorithm and non-swarm algorithms. As observed in non-swarm 

societies, the difference between the concepts is considered to have the same differences 

(Dorigo, et al., 2011). Individuals from non-swarm societies have complex agents, 

making them be independent most sceneries. There is a limitation in swarm agents. The 

communication systems are considered flawed in a scenario where there are robotic 

differences in sensory and actuation.  

 

The population of non-swarms is considered smaller compared to swarm societies (Kar 

et al., 2016). The significant performance outcome is not affected by the attribute of 

addition or removal of members from the group. Collective performance might be 

reduced when a member of non-swarm society is reduced, such as robotics. Architecture-

simple local control rules are used to coordinate swarms as they lack a centralized agent 

to command others on several tasks that are to be conducted by the group. Centralization 

results in the emergence of the global behaviour of the system. In swarm strategies, the 

principle is not considered part of the distributed architecture (Dorigo, et al., 2011). 
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Within the application itself, the choice itself falls in either of the domains. Under 

practical application, the loss of robots as stated before due to harsh conditions interferes 

with the model. The use of rescue robots can be attributed to a rule of simpler is better. 

The case tries to elaborate that one agent of thegroup’s failure shouldn’t affect the 

performance of other members to achieving the stated mission (Julian et al 2012). As a 

real fulfilment of applications such as SaR, the work settles under swarm intelligence. 

Most of the phenomena are abounds in a collective swarm environment that ensures the 

need for increasing movement coordination to nest building.  

 

All the collective biological phenomena are considered under principles of self-

organization. They are considered as resulting functionalities and structures greatly 

exceeded in the cognitive, physical, and perceptual abilities to participate in specific tasks 

by organisms. Construction of beehives can be considered biological self-organization. It 

can also be seen in the regulation of colony life by some social insects and foraging 

strategies in ants. The collective works are emerging structures for an individual that 

exhibits simple behaviour as they don’t possess a global plan for their actions. For 

swarming operations, they adapt to the principles of an army. Most of the properties in 

the real-world robotic applications are intended to be emulated from biological properties.  

 

Obstacle avoidance-in the swarm robot society, obstacle avoidance is also considered to 

be an essential task. Most researchers have argued that the need for incorporating all sort 

of function within a robot becomes a key attribute that needs to be considered to ensure 

that all robots can detect obstacles on the way. The concept of real obstacle avoidance 

was introduced in 1986 by Khatib, whereby he used a time-varying artificial potential in 

the field of moving objects. The traditionally high-level planning was converted by the 
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solution of robots being in the ability to detect objectives in a complex environment (Kar 

et al., 2016).  

 

Schemes are some of the examples that are used. Several controllers have been developed 

with the robot system to perform different functions and interact with each other. The 

robots play a role in flying around the nucleus due to the generation of a virtual repulsive 

force similar to the mechanism in the atomic nucleus. A potential function is applied to 

avoid collision with the swarm. The formation and transition features are considered to 

be associated with geometrical features present in Delaunay diagrams. By using the 

proposed strategies, robots can select their neighbours by forming a topology that can 

connect the individuals.  

 

The algorithm shows some flexibility as it is vulnerable to some robustness (Kadry, 

2018). A new method for avoiding obstacles by robots based on the second-order motion 

model in a dynamic environment. The proposed model focused on velocity, destination, 

and direction of the robot, which was consistent in applying a mathematical-based model, 

which was better than the use of PSO. Inspired from swarm intelligence algorithms-

swarm robotic searching and swarm optimization algorithms share a lot of similarities. 

For instance, they are using a swarm of individuals to search the best points.  

 

In the swarm robotic, particle swarm intelligence is mostly used to create similarity with 

the searching and flocking schemes. Great ability in scalability robustness and flexibility 

are considered attributes related to the use of a swarm intelligence approach that shows 

the ability to be applied in real-life situations. Introduction of these algorithms is done at 

the same time which becomes a limitation. RDPSO was proposed by Cruceiro et al. 

(2012) for solving issues related to the robotic configurations. Topologies are updated in 
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several ways, hence encouraging several iterations based on a punishment mechanism 

and reward. Distance metrics are ignored due to the sub-swarm division as they can easily 

escape the local minimum at the cost of the global coordinating and communication 

system. Swarm intelligence is accompanied by three methods; optimizing the parameters, 

modelling the individual behaviours and mixing the two methods (Cruceiro, 2014). 

 

Optimizing the parameters is considered the first type of searching algorithm used in 

inspiring strategies from other related approaches with several parameters that are 

considered challenging to optimise. The optimization of these parameters is done through 

the implementation of swarm intelligence algorithms. The searching of the random 

building block is considered adequate as part of a collective construction task. 

Information exchange is done based on employing virtual pheromone responsible for task 

allocation for cooperative transportation in swarm robotic. The implementation of PSO 

model does the noisy problem of unsupervised learning in robots. Modelling individual 

behaviours is done regarding particle or agent response to swarm intelligence algorithm 

(Stirling et al., 2012).  

 

To attain the target, the swarm uses fitness values after obtaining the searching 

environment. The use of PSO in a robotic environment is used to design practical 

algorithms that allow the swarm of robots to carry tasks together. At the abstracted level 

is where the analysis of the parameters and robotic setups are presented. Mixing of the 

two models-optimizing the parameters and using the swarm intelligence is sometimes 

combined with the use of different algorithms that control unmanned mobile robots in a 

target tracking application. In the inner layers of PSO is where schemas control the robots. 

A force-based algorithm determines every robot’s behaviour under a level of threats of 

hostile attacks (Conner et al. 2012). 
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2.4 Swarm Robots 

Swarm robots, or sometimes known as multi-robot systems (MRS) represent a collection 

of assembling robots that associate themselves with tackling a task such as locating and 

navigating towards a target, as a group. The key concept in the MRS development 

proposition is to organize and instruct a team of numerous autonomous robots in 

situations that could be tricky or dangerous for the human (Al-Khawaldah et al., 2014). 

In performing such a task, a task allocator will distribute the load for each of the swarm 

robots.  

 

If the swarm is controlled by an algorithm that singles out a robot to carry out the task for 

the swarm, then the entire swarm community risk failure if that particular robot does not 

perform. Therefore, to ensure swarm success, every robot in the swarm should be 

equipped with similar fitness (i.e. sensors, devices, and/or protocols) to insist cooperation 

and competency in task completion (Dai et al., 2016). When each of the swarm 

community robots is competent, the swarm can thrive in active exploration and 

consequently minimize searching time. Collectively, the swarm becomes flexible and 

robust against failures (Deng et al., 2017; Ducatelle et al., 2010). 

  

Realizing the benefit of the swarm robot concept, one can diagram the typical pattern in 

the search and rescue operation for robotic research. Figure. 2.7 shows the procedures. In 

general, there are three significant activities expected to prepare SaR robotic teams (Li et 

al., 2014):  

1. The initial deployment of swarm robot in the unknown environment, 

2. The execution of mission like target searching by the swarm of 

autonomous agents, and 
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3. The open communication for information gathering to update each robot 

in the swarm regarding the swarm’s progress on the task. The information 

should also be aggregated externally to human operators such as first 

responders. 

 

 

Figure 2.7: General flowchart of a SaR (robotic) operation 

 

The growth of swarm robotics is attributed mainly to the popularity and influence of bio-

inspired algorithms such as the genetic algorithm and ant colony optimization. These 

algorithms, taking inspiration from how ants, birds and bees flock and forage for food, 

execute target search by calculating approximate target position towards optimized 

solutions (Hereford et al., 2010). One other important algorithm that inspires an exchange 

to this domain is the particle swarm optimization (PSO).  
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The PSO algorithm’s contribution is the proposition towards stochastic optimization, i.e. 

the notion of having a random probability distribution or pattern that may be analysed 

statistically. Still, it may not be predicted precisely (Kadry, 2018), which drove the social 

characteristics in foraging bees and schooling fish (de Sá et al., 2016). Apart from the 

exchange with nature’s optimization, the PSO benefits too from the humanmind’s theory 

(Dadgar et al., 2016). The PSO has attracted a large number of widespread researchers. 

The following sections describe how researchers execute swarm missions to optimize 

target searching, avoid obstacles and conserve inter-robot communication. 

 

2.5 Particle Swarm Optimization (PSO) 

The PSO has various improvements to further searching convergence and safeguards 

against communication as an algorithm that spreads swarm particles to optimize target 

searching (Cecconi et al., 2011). For instance, one robotic practice proposed a technique 

that listens and picks up periodic messages from the swarm to get position updates from 

each of the robots in the swarm. Thus, at each step, it happened that a robot can send and 

receive messages with only another robot from different sub-group of the swarm, creating 

a dynamic neighbourhood topology (Akat et al., 2010;). It is also common for swarm 

robotics to pursue searching tasks while interacting with its teammates or neighbours 

under limited local communication ability (Smith et al., 2018). 

 

To describe the PSO equation, consider candidate solutions (e.g., ants and bees) as 

particles. These swarm of particles are spread through a multidimensional space for target 

searching, by continually listening and picking up information from their neighbour 

particles, in the hope that one of them obtains an individual best (local best solution). So, 

at each time step of the search, one individual best solution is updated as the global best 

solution, so the entire swarm always has the best solution.  
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This way, particles can always have information about the potential field locations where 

success (e.g. food) is likely found. These successes then guide the swarm search pattern. 

Algorithm 2.1 shows how a fitness function is used to evaluate particle success. Each 

particle 𝑛 moves in a multidimensional space according to the position (𝑥𝑡𝑛) and velocity 

(𝑣𝑡𝑛) values which are highly dependent on the local best (𝑥̆𝑡𝑛) and global best (𝑔̆𝑡𝑛) 

information (Dadgar et al., 2016): 

 

𝑣𝑡+1𝑛=𝑤𝑣𝑡𝑛+𝜌1𝑟1(𝑔 𝑡𝑛−𝑥𝑡𝑛) + 𝜌2𝑟2(𝑥 𝑡𝑛−𝑥𝑡𝑛) (2.1) 

𝑥𝑡+1𝑛=𝑥𝑡𝑛+𝑣𝑡+1𝑛 (2.2) 

 

Coefficients 𝑤, 𝜌1, 𝜌2, it is assigned weights to the inertial influence, the global best and 

the local best when determining the new velocity, respectively. By default, the inertial 

influence is set to a value lesser than 1. 𝜌1, 𝜌2 are constant integer values, representing 

the cognitive and social components. However, different results can be obtained by 

assigning different influences for each component. For example, many works do not think 

about neighbour best. The parameters 𝑟1, 𝑟2 are random vectors with each component 

generally a uniform random number between 0 and 1 (Couceiro et al., 2010). According 

to Cai et al. (2013a), the aim is to “multiply a new random component per velocity 

dimension, rather than multiplying the same component with each particle’s velocity 

dimension”. Tuning these parameters towards specific problem or application is required 

to increase the odds towards better performance.  

 

At the swarm initialization, particles’ velocities are defined as zero. They are given 

random positions as long as they remain within the search space. The complexity of the 

task influences the local, neighbours, and global bests’ parameterisations. The more 

complicated the situation, the worst their values are set. An example would in designing 
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the parameters for a cost problem where the aim is to minimize the fitness function. The 

algorithm also requires modification to several other parameters such as: 

1. Population size. This is important to optimize to achieve overall 

reasonable solutions within an acceptable time 

2. Stopping criteria. One way is to pre-program the number of iterations 

when the swarm stopped getting better results or other criteria depending 

on the problem  

 

Three outstanding works describe the PSO algorithm’s utility to optimize target searching 

for the swarm. The first work proposed an intelligent method for swarm robotic by 

adjusting parameters to manage premature convergence to reduce the swarm searching 

time (Cai et al., 2013a). In the second work, the researchers adopt parameterizations from 

the genetic algorithm (GA) and combine with the PSO for improved algorithm 

performance (Shi et al., 2013). The third work, focuses on a decentralized approach, with 

a strategy to solve path planning by coordinating the numerous robots at the global level 

(Cai et al., 2013b). These works paved the way for variation of extension to the PSO 

algorithm emphasizing on swarm coordination.   

 

Wang et al. (2015) were interested with a self-organizing approach to study the direction 

and angle of moving target based on information perceived through the inter-robot local 

communication. They introduce and promote the concept of cooperative hunting by the 

robotic swarm. Nakisa et al. (2015) showed how local search solves premature 

convergence for robots tested in an unknown environment with static obstacles. Another 

work showed how PSO improves the localization problem for robots’ swarm (de Sá et 

al., 2016). For Dadgar et al., (2015), they showed how the PSO with distributed algorithm 

perform target searching and successful obstacle avoidance. The PSO is also tested in a 
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dynamic environment where the robots are challenged with multiple targets (Couceiro et 

al., 2012). More recently, Cai et al. (2016), introduce fuzzy logic to improve swarm 

cooperation towards better convergence. 

 

The PSO method’s popularity in solving swarm target searching and intercommunication 

is immense because of ease of implementation where only a few parameters require 

adjustment. However, the approach poses disadvantages such as the inability to resolve 

particle scattering and premature convergence. It is also prone to inexact regulation of 

speed and direction (Cai et al., 2013b; Cai et al., 2016). In short, the main problem of 

PSO is being stuck in local best. In some cases, the PSO technique is ideal to avoid sub-

optimal solutions but interestingly perform poorly in others. The Darwinian PSO (DPSO) 

as an enhancement to the PSO can improve with sub-optimal solution problem and is 

discussed next. 

  

2.6 Darwinian Particle Swarm Optimization (DPSO) 

Tillett et al. (2005) first introduced the Darwinian Particle Swarm Optimization (DPSO) 

as an extension to the PSO algorithm to improve the natural selection model. The DPSO 

is inspired by the notion that the swarm can have as many sub-groups (mini swarms) 

existing at any given time. These sub-groups represent clusters of robots which populate 

the entire swarm. Each sub-group can have members depending on the maximum 

allocation defined before the search.  

 

In the DPSO, each mini can have similar competency just like any sub-group in classical 

PSO, except for several rules designed to simulate the Darwinian’s nature principle, the 

survival-of-the-fittest. The goal is to allow the PSO to escape from sub-optimality, an 

issue discussed in Section 2.3. The idea with the DPSO is to treat each sub-group like a 
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mini swarm, in which each mini swarm runs their own PSO algorithms, on the same test 

problem. Sub-grouping means the DPSO runs multiple parallel PSO algorithms for a 

single search problem. A simple selection cooperative competition mechanism has to be 

applied to organize the search. For example, the swarm should pay attention to the area 

where sub-groups progress well in avoiding sub-optimal solution and discard areas where 

sub-groups get stuck (Couceiro et al., 2012).  

 

To reinforce the learning, at each step, sub-groups that are not stagnant and show active 

movement get rewards such as extra life (new particles) or an extended lifetime. On the 

contrary, sub-groups that are slow and not progressing face punishments such as losing a 

life (delete particle) or reduced life extension. The state of each sub-group can be analysed 

by evaluating the fitness or cost function of all particles. The individual best position of 

each of the particles can be updated. Whenever a new global best is discovered, a new 

particle is spawned. A particle is removed whenever a sub-group gets trapped, even after 

many iterations are executed. Algorithm 2 describes this process. Some rules are followed 

in deciding when to remove a sub-group or particles, and when a sub-group or particles 

can have a new spawn (Couceiro et al., 2013): 

1. When the sub-group population falls under a minimum bound, the sub-

group is removed, and 

2. The worst performing particle in the subgroup is removed, when a 

maximum search counter (maximum threshold number of steps) without 

improving the fitness function is reached.  
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After a particle is removed, the counter resets to a value that has the threshold value, 

instead of defaulting to zero, according to: 

 
𝑆𝐶𝑠=𝑆𝐶𝑚𝑎𝑥[1−1/𝑁𝑠𝑘𝑖𝑙𝑙+1] (2.3) 

 
where 𝑁𝑠𝑘𝑖𝑙𝑙 holds the number of particles removed from the sub-group 𝑠 over a period in 

which there was no progress in the fitness value. In the case of a successful sub-group, 

the sub-group must not have removed any particle prior and the maximum number of 

members must accord to the pre-defined value before a spawn is rewarded.  

 

Similar to the PSO algorithm, the DPSO also require adjustment to a few parameters so 

the algorithm runs efficiently: 

1. Initial subgroup population 𝑁𝐼;  

2. Maximum and minimum subgroup population 𝑁𝑚𝑎𝑥, 𝑁𝑚𝑖𝑛;  

3. The initial number of subgroups 𝑁𝑠𝐼;  

4. Maximum and minimum number of subgroups 𝑁𝑠𝑚𝑎𝑥, 𝑁𝑠𝑚𝑖𝑛;  

5. Stagnancy threshold 𝑆𝐶𝑚𝑎𝑥.  

 

The DPSO has achieved progress over the PSO; however, to realistically adapt the 

method onto robot architecture, the DPSO lacks parameters to avoid obstacles and 

maintain uninterrupted communication. A series of articles proposed how the DPSO is 

extended to develop and test the Robotic Darwinian PSO (RDPSO) and their 

contributions are discussed next. 
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2.7 Robot Darwinian Particle Swarm Optimization (RDPSO) 

The RDPSO is an evolutionary algorithm benefitting from the DPSO algorithm’s 

extension designed to augment the ability to avoid sub-optimal solutions. The RDPSO 

does so without significantly increasing the computational cost of the DPSO. In the DPSO 

simulation, sub-groups of interacting robots are deployed to perform optimized target 

searching. However, the MRS presents environmental constraints that need to be 

attended. For example, obstacles are unavoidable. In robot missions, the environment is 

often unstructured, and communication devices may risk damaged or missing. Therefore, 

communication protocol plays a vital addition to interconnected robots.  

 

A series of articles between 2011 and 2014 by Couceiro et al. discussed the 

implementation and testing done on the RDPSO algorithm. Fundamentally, four general 

features are proposed to adapt the DPSO into RDPSO (Couceiro et al., 2013):  

1. A punish and reward techniques, that used to delete and create the robots, 

2. An obstacle avoidance algorithm to avoid static and dynamic obstacles, 

3. An enforcing multi-hop network connectivity algorithm to ensure that the 

Mobile Ad-Hoc Networks continue connected throughout between robots, 

and 

4.  RDPSO methodology to build up the initial planar deployment of robots 

with the Mobile Ad-Hoc Networks connectivity while distributing the 

robots as much as possible. 
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In a robotic swarm, each robot moves in a multidimensional space. The discrete equation 

(DE) system is used to model the RDPSO. First, the equations from (2.1) and (2.2) need 

to be rearranged into the following equation (2.4) and (2.5) respectively: 

 

𝑣𝑛[𝑡+1] = 𝑤𝑛[𝑡]𝑣𝑛[𝑡]+Σ4
𝑖=1𝜌𝑖𝑟𝑖(𝜒𝑖[𝑡]−𝑥𝑛[𝑡]), (2.4) 

𝑥𝑛[𝑡+1] = 𝑥𝑛[𝑡] + 𝑣𝑛[𝑡+1], (2.5) 

 

wherein 𝑤𝑛[𝑡] and 𝜌𝑖, 𝑖=1,2,3,4, assign weights to the inertial influence, the local best 

(cognitive component), the global best (social component), the obstacle avoidance 

component and the enforcing communication component when determining the new 

velocity, with 𝜌𝑖>0. Similarly, 𝑟𝑖 are random vectors where each component is a uniform 

random number between 0 and 1. [𝑡] and [𝑡] represents the velocity and position vector 

of robot 𝑛, respectively. While ‖[𝑡]‖ is limited to the maximum allowed velocity of 𝑣𝑚𝑎𝑥 

for robots, i.e., ‖𝑣𝑛[𝑡]‖≤𝑣𝑚𝑎𝑥, 𝑥𝑛[𝑡] depends on the scenario dimensions. [𝑡] represents the 

best position of the cognitive, social, obstacle and the communication protocol (e.g. 

MANET) matrix components.  

 

The cognitive 𝜒1[𝑡] and social components 𝜒2[𝑡] are commonly presented in the classical 

PSO algorithm, as seen in equation (2.1). 𝜒1[𝑡] represents the local best position of robot 

𝑛, while 𝜒2[𝑡] represents the global best position of robot 𝑛. The size of the vectors (𝜛) 

depends on the dimensionality ℝ𝜛 of the physical space being explored, e.g., 𝜛=2 for 

planar problems.  
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Couceiro et al. (2013) presented a stability analysis of the RDPSO to understand the 

relationship between the algorithm parameters and the robot’s convergence. It is reported 

that the RDPSO algorithm converges to the optimal solution faster and more accurately 

than the other approaches, particularly over the traditional PSO. They argued that 

dynamic enhancement to the communication system’s architecture and characteristics 

could increase the scalability and applicability of the RDPSO. Couceiro et al. (2014) 

integrate MANETs is a fault-tolerant distributed search to prevent communication 

network splits, to ensure full connectivity. Analysis of the data packet structure shared 

between communicating teammates shows communication overhead within the swarms 

of robots is reduced. When put under communication constraints, Couceiro et al. (2013) 

argued that to ensure stable ad hoc connectivity, the number of robots in the exploration 

task needs to be increased. 

 

Before 2013, the RDPSO has also been analysed from several mathematical perspectives. 

For example, the fractional calculus theory supports the RDPSO as a distributed foraging 

algorithm evaluated on real low-cost mobile robots (Couceiro et al., 2012). The fractional-

order RDPSO presents a significant influence in the convergence time because of its 

inherent memory property. Fuzzy techniques have also been introduced to improve the 

coefficient function making the RDPSO converge faster and susceptible to obstacles and 

communication constraints. This result further researchers’ progress in considering 

obstacle avoidance and social exclusion and inclusion concepts first introduced in 

Couceiro et al. (2011).  
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More recently, Kumar et al., (2017) tested the RDPSO on a ROS framework by 

identifying victim using voice and locating fire source using temperature. They 

highlighted that the RDPSO was unable to detect multiple targets or avoid locations 

collisions. Sànchez et al. (2018) applied the RDPSO algorithm on a multi-robot strategy 

to explore unknown underwater environments. In their report, the RDPSO observes a 

higher level of robustness and enhanced exploration speeds.  

 

In summary, the advantages of the RDPSO algorithm are interesting. It is scalable to large 

populations of robots, it can decrease the amount of required information exchange 

among robots, and it poses faster convergence with higher accuracy. However, revisiting 

the mathematical functions of the RDPSO is inevitable as several disadvantages, for 

example, collisions between robots and instability of the swarm movement can still occur. 

The RDPSO algorithm also faces communication issues, including connection ruptures 

between robots leading to premature convergence.  

 

This section shows how the RDPSO is a useful algorithm for swarm robotics with 

potential for expansion as a concept and at a technical level, for the work proposed in this 

thesis. However, to further complete the understanding of the RDPSO, it is essential to 

include here several key features borrowed by observing the evolution of the society 

which inspired the shaping and derivation of the algorithm. Behaviourism of human and 

animal in the social hierarchy, particularly the punish-reward mechanism, the 

organization of groups and the emergence of sub-groups, and the exclusion of sub-groups 

are considered in the development of the RDPSO and are discussed next.   
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2.8 The punish-reward mechanism  

The intention behind the punish-reward mechanism is attributed to the notion that good 

conduct leads to desirable results in the long run. In contrast, bad conducts will eventually 

accumulate to unfitting results. In robotics, the punishment-reward mechanism’s adoption 

is on the rise (Elfwing & Seymour, 2017; Chen et al., 2018; Kobayashi et al., 2019; 

Keijsers et al., 2019). In swarm robotics, the punish-reward mechanism is favourable for 

collective learning and optimizing strategies and handling challenges for example in robot 

coordination, locomotion and navigation (Couceiro et al., 2013; Wang et al., 2016; 

Clayton & Abbass, 2019).  

 

The common DPSO formulated by Tillet et al. (2005) defines the punishment mechanism 

as deleting particles and shrinking of swarms. In contrast, the reward mechanism as the 

spawning of new particles and swarms follows the order of natural selection. The RDPSO 

(Couceiro et al., 2013) adopted the DPSO onto mobile robotics by adjusting the 

parameterizations regarding the punish-reward mechanism. This is because robots, unlike 

particles, are complex and real-time swarm robotics tasks often require a searching 

capability which considers higher-dimensional problems. A distributed approach such as 

the RDPSO would outline that each robot in the swarm is obligated to share its current 

velocity with all other members in the swarm. Thus, the social exclusion-inclusion 

concept becomes appealing to model the punish-reward mechanism for swarm robotics.  

 

The social exclusion-inclusion concept is essential in defining the subgroups behaviour 

when members in the group perform or underperform for particular robot tasks or 

objective functions. Improved objective functions and vice versa define robotic subgroups 

that are performing. The tracking of underperforming subgroups is done by counting the 

number of times a subgroup 𝑠 had evolved when the subgroup did not have any improved 
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objective. The 𝑆𝐶𝑠, as defined in equation (2.3) is an example of the search counter. In 

equation (2.3), the 𝑁𝑠𝑘𝑖𝑙𝑙 represents the robot count in subgroup 𝑠 if the subgroup fails to 

increase its objective function after some duration. To optimize their search strategy, a 

maximum dangerous threshold, 𝑆𝐶𝑚𝑎𝑥, is often defined. Whenever the 𝑆𝐶𝑚𝑎𝑥 is reached, 

the subgroup 𝑠 executes the punish mechanism by rejecting the lowest-performing robot. 

 

The punished robot is then forced to join a socially excluded subgroup, a category of a 

subgroup that hosts underperforming robots, usually a lower-ranking subgroup. The 

function for members in the socially excluded subgroup is to wander in the searching 

environment aimlessly. This differs than when they were in subgroup 𝑠, where their main 

objective is to search for the global optimum. Having them wander and move again makes 

it less susceptible for the individual robot to get trapped at local optima, which improves 

the overall performance of the algorithm. Nevertheless, their solution and the socially 

excluded group’s global solution remain with them, so if they accidentally moved to a 

potential solution, they may inform the swarm of their discovery.  

 

The cycle for each subgroup 𝑠 is repeated with every subgroup in the ranking system re-

evaluates each member robot by comparing their objective function values, either 

increasing or, stagnant/decreasing. If the desired outcome is to minimize the fitness 

function, the subgroup will punish or reject the robot with the lower fitness value. There 

could likely be an underperforming subgroup that keeps losing a member due to the 

punishing mechanism. When it is no longer relevant to maintain a subgroup 𝑁, for 

example, the robot count has fallen lower than the minimum acceptable member, and the 

punish mechanism also dictates that the subgroup should be deleted. When a subgroup is 

deleted, all remaining members are forced to join the lower-ranked socially excluded 

subgroup.  
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The reward mechanism reverses the situation for these subgroups. The reward mechanism 

defines that if the subgroup 𝑠 keep improving its objective function, over time, the 

subgroup deserves to expand with new members. Each new member is to be selected from 

the socially excluded subgroup, in which the best performing robot is nominated. 

Consequently, if the subgroup 𝑠 receives more reward than punishment, the subgroup 

may get overpopulated. It could be promoted to spawn a new subgroup, a predefined 

number of robots 𝑁𝐼 is required, which makes the probability 𝑝𝑠𝑝 of spawning, in the 

original punish-reward model such as in the DPSO algorithm, not very high.  

 

To improve the chances of spawning, the RDPSO recommends that the probability 𝑝𝑠𝑝 

should not be dependent on the total count of active subgroups. Taking into consideration 

that there is only intra-communication permissible between members of the same 

subgroup (i.e. inter-connectivity between neighbouring subgroups is cut off), the RDPSO 

proposed redefining the equation for 𝑝𝑠𝑝 as follows; 

 

 

Where 𝑟𝑠𝑝 takes in any random number between 0 and 1, 𝑁𝑠 is the total count of robots 

inside the same subgroup 𝑠, and 𝑁𝑚𝑎𝑥 controls the ceiling of total robot count allowed per 

subgroup. Equation (2.6) is designed so that when a socially productive subgroup shows 

steady progress and becomes over-populated (i.e. 𝑁𝑠=𝑁𝑚𝑎𝑥), it can decide to spawn. The 

subgroup ensures the new spawn to consist only strong well-performing candidates 

among members of the socially excluded subgroup.  

 

 

𝑝𝑠𝑝 = 𝑟𝑠𝑝  𝑁𝑠

𝑁𝑚𝑎𝑥
                                                     (2.6) 

Univ
ers

iti 
Mala

ya



51 

The DPSO algorithm thrives on an approach in which the parameterizations define the 

network based on the behaviour of the entire population of particles, concentrated as a 

swarm. The RDPSO, on the other hand, proposed governance of multiple numbers of 

swarms using multiple numbers of networks respectively, a distributed approach, as more 

superior. For instance, the RDPSO network now only has to consider intra-

communication between nodes or robots of the same network, a much smaller traffic 

constraint than the DPSO.  

 

With the distributed approach, the RDPSO becomes scalable to handle larger robots’ 

redefining communication for swarm robotics to avoid the sub-optimal solution. Table 

2.1 shows a summary of the RDPSO model for their punish-reward rules.  

 

Table 2.1: RDPSO “Punish-Reward” Rules (Couceiro et al., 2013) 

PUNISH REWARD 
Suppose a socially active subgroup does 

not improve during a specific threshold 

𝑆𝐶𝑚𝑎𝑥 (stagnancy counter 𝑆𝐶𝑠 =

 𝑆𝐶𝑚𝑎𝑥), and the number of robots is 

superior to 𝑁𝑚𝑖𝑛 (𝑁𝑠 > 𝑁𝑚𝑖𝑛). In that 

case, the subgroup is punished by socially 

excluding the worst-performing robot. 

 

If a socially active subgroup improves and 

its current number of robots is inferior to 

𝑁𝑚𝑎𝑥 (𝑁𝑠 <  𝑁𝑚𝑎𝑥) and there is, at 

least, one socially excluded robot, then it 

is rewarded with the best performing 

socially excluded robot. 

If a socially active subgroup does not 

improve during a specific threshold 

𝑆𝐶𝑚𝑎𝑥(stagnancy counter 𝑆𝐶𝑠 =

 𝑆𝐶𝑚𝑎𝑥) and the number of robots is 

𝑁𝑚𝑖𝑛 (𝑁𝑠 =  𝑁𝑚𝑖𝑛), then the subgroup 

are social. 

If a socially active subgroup is not 

stagnated (stagnancy counter 𝑆𝐶𝑠 =  0) 

and there are, at least, 𝑁𝑖 socially excluded 

robots, then it has a small probability 𝑃𝑠𝑝 

of spawning a new socially active 

subgroup. 
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The RDPSO consider three scenarios for the new socially excluded robot when wandering 

and broadcasting its whereabouts: 

1. If no robot picks up its broadcast, the socially excluded robot will continue 

to explore randomly and resume broadcasting its location. 

2. If an active robot picks up its broadcast, the message will be forwarded to 

any available robot from the same sub-group in the surrounding vicinities. 

3. If another socially excluded robot picks up its broadcast, the wandering 

robot will answer by sending its current location. 

 

In case (b), the act of message forwarding by the active robot to its subgroup will signal 

the new excluded robot to counter with a message containing its current location. Message 

forwarding triggers the active subgroup to update the excluded robot of their whereabouts. 

In case (c), the act of message forwarding by the other excluded robot to its excluded 

subgroup will signal the new excluded robot to counter with a message containing its 

current location. The new excluded robot is then invited to join the excluded subgroup 

that responded to its message. It is worthy to note that this excluded subgroup may not 

have all excluded robots in the swarm. However, this is not an important issue as even 

though all excluded robots are connected, they are powerless to make any decision. The 

only robots that can make any decision belong to the active subgroups.  

 

For the active subgroups, when the opportunity to spawn arrives, one of its members, 

likely the highest performing robot, has to announce or broadcasts its reward to earn a 

new member or spawn to a new subgroup following guidelines as presented in Table 2.1. 

In this case, three scenarios are considered: 
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1. If no robot picks up its broadcast, the socially active robot will continue 

its mission and resume broadcasting its reward. 

2. If an active robot picks up its broadcast, the reward’s message is forwarded 

to any available robot from the same sub-group in the surrounding 

vicinities. 

3. If one of the socially excluded robots picks up its broadcast, the wandering 

robot will forward the message regarding the reward to other socially 

excluded robots. 

 

In the case of the case (b), and an excluded robot reaches the message regarding the 

reward, case (c) is assumed. What comes next are highly determined by the condition of 

the reward. Suppose the reward is regarding the active subgroup looking for a new 

member. In that case, the highest performing robot from the socially excluded robot will 

become the new addition to the active subgroup. If the reward is regarding spawning into 

a new subgroup, then several of the highest performing robots 𝑁𝐼 from the excluded 

subgroup will join for that particular purpose. However, the other condition needs 

verification. Only when the total count of excluded robots is the same or exceed 𝑁𝐼 that 

spawning several of the excluded robots into the new subgroup will be considered.  

 

Due to the distributed approach where messages are usually forwarded to others in the 

neighbouring areas, the highest performing lot from the excluded subgroup does not 

represent the best performing robots from all socially excluded subgroup. Consequently, 

in the event where an active subgroup advertising for new member gets punished at the 

same time for some reason, then the reward is considered null and void.   
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Despite the advantages over the DPSO algorithm in terms of susceptibility to avoiding 

local optima and the capacity to scale over many robots, the RDPSO poses issues in the 

communication parameterizations. Nevertheless, the entire robot population’s dynamic 

partitioning into smaller subgroups and network is an exciting model for swarm robotics 

and should be explored further. The next section shows how quantum behaving particles 

can influence optimization algorithms such as the RDPSO. 

 

2.9 Quantum Delta Potential Well Model of PSO (QPSO) 

The QPSO derives the PSO algorithm with the differential equation that does not need 

velocity to lead a best global position for the swarm robots. The QPSO describes the state 

of particles, in a specific way to increase the odds for better global searchability. In 

quantum space-time, the quantum state of a particle is shown by wave function Ψ(𝑥̅, 𝑡) 

rather than position 𝑥̅ and velocity 𝑣̅. The wave function describes dynamism of the 

particles’ behaviours developing in a different direction from that in PSO, that the exact 

values of 𝑥̅ and 𝑣̅ cannot be determined.  

 

It is estimated that the probability of particle 𝑠 showing up in the position 𝑥̅ from the 

partial differential equation |Ψ(𝑥̅, 𝑡)|2 is dependent on the potential field where the 

particle is (Sun et al., 2004): 

 

𝑋𝑖,𝑛+1
𝑗

= 𝑝𝑖,𝑛
𝑗
±  𝛼|𝑋𝑖,𝑛

𝑗
− 𝑝𝑛

𝑗
| ln (

1

𝑢𝑖,𝑛+1
𝑗

) (2.6) 

𝑋𝑖,𝑛+1
𝑗

= 𝑝𝑖,𝑛
𝑗
±  𝛼|𝑋𝑖,𝑛

𝑗
− 𝐶𝑛

𝑗
| ln (

1

𝑢𝑖,𝑛+1
𝑗

) (2.7) 
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In equation 2.6 and 2.7, 𝐶 is the 𝑚 best positions vector, and 𝑛 is defined as the number 

of iterations. 𝑗 is the component of the position of particle 𝑖 where 𝑗𝑡ℎ(1 ≤ 𝑗 ≤ 𝑁) for the 

particle 𝑖(1 ≤ 𝑖 ≤ 𝑀) at the (𝑛 + 1) position, where 𝑁 is space dimensions, and 𝑀 refers 

to the number of particles. 𝑃𝑛
𝑗
 is the centre of the 𝑁-dimension Hilbert space with a δ 

potential well. It is the best previous position, the position giving the best objective 

function value of fitness value, of the particle 𝑖 (also refers to as Personal Best). 

 

𝑝𝑖,𝑗 = 𝜑. 𝑝𝑖,𝑗(𝑡) + (1 − 𝜑). 𝐺𝑗(𝑡) (2.8) 

 

In equation 2.8, 𝐺(𝑡) = (𝐺1(𝑡), (𝐺2(𝑡),… , (𝐺𝐷(𝑡)) describes the optimal position vector 

of the group’s particle in space with dimension 𝐷 (also refers to as Global Best). The 

𝜑 refers to population size, 𝑝𝑖,𝑗 is the local attractor of each particle, and 𝜇 is a uniformly 

distributed random number between 0 and 1, (Sun et al., 2016). Equation 2.8 can be 

rewritten as: 

𝑝𝑖,𝑗(𝑡 + 1) = 𝐺𝑗(𝑡) + 𝜑.(𝑝𝑖,𝑗(t)−𝐺𝑗(𝑡)) 

where (1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝐷) 

(2.9) 

 

It can be observed from equation 2.6 and 2.9 that the local attractor 𝑝𝑖,𝑗(𝑡 + 1) is 

associated with the difference between the best position in the swarm 𝐺𝑗(𝑡) and the best 

position of the current particle 𝑃𝑖,𝑗(𝑡). Its position 𝑥𝑖,𝑗(𝑡 + 1) is associated with the 

difference between the average positions of current particles 𝑐𝑖(𝑡) and the position of the 

particle itself  𝑥𝑖,𝑗(𝑡). The usage of these position vectors ensures the QPSO a stable 

convergence between particles, promoting faster and stronger searchers.  
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This quantum behaved PSO algorithm is observed to solve premature convergence and 

improve global optimisation performance when applied in mangroves classification (Li 

et al., 2015). Extension to the QPSO such as the new artificial bee colony algorithm with 

quantum PSO theory (QCABC) is reported to solve optimal power flow problem (Yuan 

et al., 2015). In Yueqiang et al. (2014), a QPSO-based algorithm is applied on welding 

manipulator path planning to expand the search range of particles and keep the PSO 

algorithm’s good operability.  

 

In mobile robot path planning, the QPSO algorithm performed well to get high efficiency 

of the searching process and successful obstacle avoidance using first the local than the 

global path planning strategy (Tokgo et al., 2014a; Tokgo et al., 2014b). The robot visual 

measurement system also benefitted from the QPSO. In 2013, Wang et al. used the QPSO 

to calibrate the robot twist angles obtained from laser tracker. The faster convergence rate 

of the QPSO minimized travelling time and distance and optimized robot trajectory (Guo 

et al., 2010; Guo et al., 2012).  

 

Although the QPSO offers stable and ideal convergence of the swarm particles, the QPSO 

is not equipped to describe multi-robot applications, unlike the RDPSO. For completion, 

the following section shows a comparison between PSO-based works, the testing 

environment and their performances. 

 

2.10 Comparison between the PSO-based works 

Table 2.2 lists attributes of the PSO-based works in the literature, including the RDPSOs 

and the QPSOs. The list includes a description of the environment setup where the PSO-

based methods are tested and its purpose. A performance measurement describing the 

achievement of each work completes the list.  
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Table 2.2: Comparison between PSO-based works 

No 
Authors & 

Year 
Methods 

Testing 
Environment 

Task 
Performance Measurement 

1 
Couceiro 

et al., 2011 
PSO/ 

RDPSO 

complex 
environment 

(30 x 30 
meters) 

search/ 
avoid 

obstacles 

the RDPSO can converge 
faster, robust and more 
effectively in the searching 
task than PSO 

 
2 

Wang et 
al., 2018 

PSO 
 

grid 
environment 

Communic
ation 

effectively improve coverage 
rate and reduce energy 
consumption 

3 
Tang & 

Eberhard, 
2011 

PSO 
complex 

environment 

Search/ 
avoid 

obstacles/ 
communica

tion 

the PSO creates search 
behaviour well and 
investigates the feature of 
fault tolerance 

4 
Song et al., 

2017 
PSO/ 

MDPSO 

a smooth 
global path 
for mobile 

robots 

search 

the MDPSO achieved the best 
performance enable a particle 
search behaviour to adaptively 
adjust during a search process 
and reduce trap in the local 
optima 

 
 
 
5 

Cai  et al., 
2013 

PSO 
unknown env
ironments 50 

× 50 units 

avoid 
obstacles 

the effectiveness of the fuzzy 
obstacle-avoidance strategy 
which the robot 
trajectory smoothness in search 
space 

 
6 
 

Masehian 
& 

Sedighiza-
deh, 2013 

PSO 
dynamic 

environment 
10 × 10 grids 

search 
 

the new method better 
performance, robustness, and 
scalability in searching task 
compare with a traditional 
PSO 

 
7 
 

de Sá et al., 
2014 

PSO/ 
BSA 

without 
obstacles in 

the 
environment 

100×100 
units 

search/com
munication 

the BSA solve the localization 
problem is effective that 
require no more than 5.75% of 
processing time than the PSO 
algorithm 

8 Islam et al., 
2014 

PSO 

Dynamic/ 
static environ

ment 
20x20 meters 

avoid 
obstacles 

the method is flexible that you 
can change any parameters 
and improved performance to 
control avoiding or moving 
toward the goal. 

9 
 

de Sa et al., 
2016 

PSO 
100×100 

measurement 
units 

communica
tion 

the method entirely distributed 
nodes with a low number of 
anchors that reduce the 
average localization error by 
84%. 
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10 Dadgar et 
al., 2016 

PSO 
/ARPSO 

complex, 
with/without 
obstacle in 

environments 
250 x 250 
squares 

search/avoi
d obstacles 

the ARPSO increase 
convergence rate and 
increases exploration 
rate in the large 
environments and good 
performance for the small 
population 

11 
 

Couceiro et 
al., 2011 

RDPSO 

complex envi
ronment 
300x300 
meters 

communica
tion 

the RDPSO performance 
decreased under 
communication constraints 
when the number of robots 
increases, and the maximum 
communication range is 
decreased. 

12 
Couceiro et 

al., 2012 RDPSO 

large environ
ment 

2.55 m × 
2.45 m real, 
600 × 600 m 
simulation 

Search/ 
avoid 

obstacles/ 
communica

tion 

the adaptive RDPSO is 
achieved a higher exploration 
behaviour keeping a high 
level of exploitation compare 
with nonadoptive RDPSO 

13 Couceiro et 
al., 2012 

RDPSO 

larger 
environment 

2.45m to 
2.55 m 

real,300 x 
300 meters 
simulation 

control 

when changing the frictional 
coefficient between .632 and 0 
the RDPSO stable but if it > 
.632 and < 1 the algorithm 
unstable 

 
14 
 

Couceiro et 
al., 2012 

RDPSO 

dynamic 
environment 

2.45m to 
2.55 m 

real,300 x 
300 meters 
simulation 

communica
tion 

the optimal solution is 
achieved in approximately 
90% of the experiments that 
show some situation interrupt 
communication between 
robots 

 
 

15 
 
 
 

Couceiro et 
al., 2013 

RDPSO 

complex envi
ronment 
10 × 20 
meters 

communica
tion 

in this algorithm, each robot 
ensures a multi-connected 
MANET over time but is less 
susceptible to robot failures. 

16 Couceiro et 
al.,2 013 

RDPSO 

indoor enviro
nments 
20 × 10 
meters 

communica
tion 

the methodology reduces the 
communication that 
improving the scalability and 
applicability of the RDPSO 
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17 Couceiro et 
al., 2014 

RDPSO 

dynamic and 
unstructured 
environments 

2000 m2 
simulation/ 
2.0×1.8m 

real 

search/avoi
d obstacles 

the RDPSO successfully 
exploring "faster and more 
accurately " approximately 
80% than the (EPSO, PPSO, 
GSO and AFS) approaches 

 
18 
 

Couceiro et 
al., 2014 

RDPSO 

complex envi
ronment2.55 

× 2.45 m 
real,300 × 

300 m 
simulation 

Search/ 
avoid 

obstacles/ 
communica

tion 

the RDPSO improved 
converges faster and more 
accurately, but the algorithm 
exhibits some collisions and 
communication ruptures 
between robots 

19 
Couceiro et 

al., 2014 
RDPSO 

outdoor/ 
indoor enviro

nment 
300x300 
meters 

simulation 

Search/ 
communica

tion 

the algorithm converges faster 
and more accurately using 
75% of the experiments under 
the EST approach over 50% 
under the random deployment 
strategy 

 
20 
 

Couceiro et 
al., 2014 RDPSO 

 
 
 

indoor 
environment 

20× 10 m 
 
 

communica
tion 

the RDPSO-based AODV 
reduces around 20% the 
number of required hops to 
deliver a packet that 
improving the scalability and 
applicability of the RDPSO 
algorithm 

21 Wang et 
al., 2015) 

RDPSO/ 
FRDPSO 

unknown env
ironment 

50m x 22m 

Search/ 
avoid 

obstacles/ 
communica

tion 

the fuzzy adaptive FORDPSO 
was the better effect   on the 
multi-robot environment 
exploration compared with 
other PSO algorithms 

22 
Meng et al., 

2010 
QPSO/ 
PSO 

static environ
ments 

search 

the QPSO improved accuracy 
and efficiency quicker 
convergence speed in 
searching task compared with 
PSO 

23 
Guo et 

al.,2010 QPSO 
environment 

with 
obstacles 

Search/ 
avoid 

obstacles 

the QPSO realized obstacle 
avoidance and fast 
convergence ability of mobile 
robots compared with GA 
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24 Wang et 
al., 2013 

QPSO 
unknown env
ironment600 

mm 
search 

this method improved the 
accuracy of the Calibrate 
robot visual measurement 
system 

25 Guo et al., 
2012 

QPSO flying space 
Search/ 
avoid 

obstacles 

the QPSO is efficiency 
improved to minimizing 
travelling time and distance 
without collision in the flying 
workspace 

26 Yang et al., 
2015 

QPSO static environ
ments 

search 
the algorithm improve 
efficiency in the industry 

27 Tokgo et 
al., 2014 

QPSO 
complex 

environment 
16m×16m 

Search/ 
avoid 

obstacles 

the QPSO is better 
performance in convergence 
speed for trajectory planning 
in random obstacles 
environments. 

28 
Li et al., 

2017 
QPSO/ 
PSO 

outdoor envir
onments              

(earthquake, 
rainfall) 

search 

QPSO-LSSVM has quickest 
search velocity and the best 
convergence performance 
compared with the PSO-
LSSVM 

29 
Yuan et al., 

2015 
PSO-

QCABC 
static environ

ments search 

the QCABC can effectively 
solve the OPF problem, the 
stability and optimization 
results are all the better than 
(PSO, GA, ABC) 

30 
Huang et 
al., 2016 

AQPSO/ 
QPSO/ 
PSO 

environment 
without 

obstacles 
320 × 320 

search 

SNN+AQPSO better 
performance global exploration 
ability and faster convergence 
speed compared with QPSO and 
PSO 

 
Table 2.3: Features and gaps of the classical PSO, RDPSO and the QPSO algorithm 

 
 

 

 

 

 

Features Classical 
PSO RDPSO QPSO 

Collision Free X X ✓ 

Avoid obstacles X ✓ X 

Communication X ✓ X 

Coverage region X X ✓ 

Stability ✓ ✓ ✓ 

Run time X X ✓ 
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Table 2.2 describes works utilizing the PSO-based algorithm. Significant gaps are elicited 

from Table 2.2 and summarized in Table 2.3. Next, the review on two communication 

protocols, i.e. MANETs and MR-LEACH, is presented.  

 

2.11 Communication Protocols for Swarm Robotics 

Effective cooperation in swarm robotics stems from maintaining the communication 

network among robots in the swarm. With communication protocol an important utility 

for the RDPSO algorithm, it is not surprising that only the RDPSO checks the obstacle 

avoidance and communication features in Table 2.3. For tasks such as the SaR mission, 

the swarm robots’ requirement includes preserving interconnectivity even when the 

communication infrastructure risk interruptions. Preserving interconnectivity is important 

so that the robots can guarantee the continuous exchange of information within the multi-

hop network paths to not unnecessarily restrict the team’s range.  

 

Communication networks are useful for coordination and cooperation between agents 

belonging to a given MRS. Communication networks do not require particular 

infrastructure for the setup and can be fixed anytime and anywhere. The flexible setup 

makes communication networks popular for unstructured situations such as military 

missions where soldiers communicate for instructions, autonomous robots dispatched and 

organized in unmanned space exploration, and situations requiring remote data collection. 

A communication network’s key feature includes many distributed nodes (e.g. robots) 

that organize themselves into multi-hop wireless networks (Couceiro et al., 2014). These 

nodes are allowed to cooperate and direct messages to each other and perform the dual 

roles hosts and routers.  
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There are several characteristics required in the design and development of a 

communication network. A node often corresponds to a robot through an embedded 

processor or low-power radio, usually, battery operated. For the communication network 

to be cost-effective, the on-board processing, wireless communication capabilities and 

the battery supply of each robot are minimal. Subsequently, external conditions from the 

environment can factor in physical damage to the nodes, or internally, the battery can fail 

or die.  

 

It is also observed that in real-world MRS applications, some robots are commonly 

dispatched in dangerous or environments with less access, making battery replacements 

very difficult. It is then near impossible to repair the robots or renew their energy. In 

exploring mobile robots, the distributed networks’ architecture depends on time, and the 

connection strength can fluctuate, with intermittent signals or loss entirely over time 

(Couceiro et al., 2011). 

 

In this section, two communication protocols are reviewed. One is the MANETs, 

popularly used on the RDPSO architecture by Couceiro’s team and the other is the MR-

LEACH. This review covers fundamentals and the characteristics of the protocols to 

support swarm robots in SaR mission.  

2.11.1 Mobile Ad Hoc Network (MANET) 

 The MANET supports coordination and cooperation between MRS agents, contributing 

to the protocol’s popularity in maintaining network interconnectivity. The MANET 

follows the design and architecture of a communication protocol and offers specific 

advantages as follows: 
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1. Flexibility: installation is easy and can set up in any place and situation, 

depending on the need (Bang et al., 2013), thus providing a significant 

advantage over other types of networks that need a prior infrastructure for 

correct operation.  

2. Movement of the nodes: to fit into numerous situations in which this type 

of network is useful, it is recommended that the nodes have a free 

movement within its coverage to allow users to perform other tasks and 

remain connected (Bernal et al., 2017). 

3. Decentralization: the devices within the network are autonomous nodes, 

which allows anyone to play the role of a router without the need for any 

device to rout the messages, as long as the failure to any link does not 

disrupt or collapse the setting of the communication as a whole (Kaur et 

al., 2013). 

4. Scalability: adding new nodes to the network does not risk failure to 

establish communication for this type of network, since the nodes are in 

constant movement (Helen et al., 2014).  

5. Economy: its installation cost is low because it does not depend on traffic 

administrators, such as switches and routers. Also, it does not need wiring 

nor a centralized administration (Bang et al., 2013).  

6. Multi-hop: each of the nodes is attached with low power antennas, which 

limit coverage range. The MANET’s multi-hop feature takes care of this 

problem by sending acknowledgement messages to their adjacent nodes 

until the message reaches a teammate within reach of the target device and 

achieves total communication (Kaur et al., 2013).  

7. Autonomous formation: a peer-to-peer (P2P) standard allows the nodes to 

form their dynamic topology when connecting with the MANET. This 
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feature removes the need for human intervention since the nodes can 

always establish communication as long as they are within the coverage 

area (Singh et al., 2010). 

8. Autonomous organization: with the availability of such a dynamic 

topology, organizing the nodes becomes plausible to the devices, and the 

devices are not affected by the entry or exit of terminals in the network 

(Bernal et al., 2017). 

 

The MANET has been used widely in application with potential communication breaks 

and constraints. To maintain full network connectivity, Tardioli et al., (2010) proposed a 

multi-robot cooperative motion control technique based on a virtual spring-damper model 

to prevent communication network splits. They implemented a task allocation algorithm 

that takes advantage of the network link information to ensure autonomous mission and 

a network layer capable of sustaining hard real-time traffic and changing topologies.  

 

Another solution to maintain full connectivity is intermittent connectivity, where the 

networks must get online at a pre-defined interval (Hollinger et al., 2018). The periodic 

connectivity strategy benefit in situations where it may be desirable to temporarily break 

the connectivity, consequently decreasing the number of robots and the explicit 

information exchanged between robots of the same sub-network. It is also observed that 

it is plausible to direct messages gathered by the sub-networks when the network regains 

connectivity. The periodic connectivity algorithm performs better than other MANET 

designs that require a continuous connection. However, in the experimentation, for 

example, in Singh (2010), the performance is not extended to unknown or dynamic 

environments. 
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Researchers are working to further MANET capacity by focusing on improving the 

nodes’ connectivity resilience in the network. Their investigation includes:  

1. Energy: power conservation is always an issue when deploying devices on 

batteries. With time, the nodes of the MANETs will have a reduced 

lifetime leading to broken communication links which affect connectivity 

(Bang et al., 2013). 

2. New protocols: since the MANET proposed a dynamic topology, new 

protocols to discover and maintain communication routes, and to eliminate 

routes that are no longer feasible or favourable to the communication can 

be the solution to control CPU consumption and improve energy 

conservation (Singh et al., 2010). 

3. Broken links: with constant random movement of the nodes within the 

network, it is likely that some may enter or leave the MANET coverage 

area, ultimately destroying established routes or the routes needs 

recalculation to re-establish connection (Helen et al., 2014). 

 

Thus, the MANET can be considered a temporary self-organizing network of wireless 

mobile nodes that can stand on its own without pre-existing infrastructure, unlike 

conventional communication networks. This section covered the current state of 

MANET’s art, including some challenges relating to routing, power management, 

location management, and multimedia over ad hoc networks. Since there is no fixed 

infrastructure available for MANET with mobile devices, routing becomes a critical 

issue. The following section describes another communication protocol, the MR-LEACH, 

including its applications and gaps for future work.  
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2.11.2 Multi-hop Routing Algorithm with Low Energy Adaptive Clustering 

Hierarchy (MR-LEACH)  

Like MANET, the MR-LEACH offers communication protocol towards coordination and 

cooperation between agents belonging to the MRS. The MR-LEACH follows the design 

and architecture of a communication protocol described in Section 2.8. For example, it is 

also based on many distributed nodes, forming multi-hop wireless networks. Routing 

messages from one location to another, robots as nodes in MR-LEACH applications can 

act as hosts and routers. The MR-LEACH behaves differently over other communication 

networks because we cannot determine the connectivity and robustness as early as it is in 

MR-LEACH.  

 

For this reason, enforcing the MR-LEACH protocol on the communication network can 

provide prevention from loss of connectivity. The protocol also serves well as a fault 

tolerance strategy. Most significantly, the MR-LEACH allows node redundancy which 

consequently turns the topology dynamics to multi-connectivity strategy. The definition 

of 𝑘-connectivity, or 𝑘-fault tolerance, 𝑘 ∈  𝑁, is the exclusive communication pairing 

of one robot to another robot. Each robot should be connected to at least 𝑘 disjoint robot 

paths.  

 

The availability of this bi-connectivity means that in the worst-case scenario, a 𝑘 

connected MR-LEACH requires the failure of 𝑘 robots to get disconnected. Multi-

connectivity is highly favourable for fault tolerance and boosts communication capacity. 

Establishing bi-connectivity is a critical contribution of MR-LEACH regarding MRS 
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application and the approach is gaining popularity (Casteigts et al., 2010; Abdulla et al., 

2012; Mahapatra & Yadav, 2015; Salem & Shudifat, 2019). 

 

Development teams require autonomous communication between robots for surveillance 

missions. With MR-LEACH as protocol, the robots can maintain the direct exchange of 

messages in the multi-hop network, without restricting the team’s range. In Baroudi et al. 

(2017), a wirelessly energy-charged (WINCH) protocol is proposed to maintain 

communication links with battery maintenance, combining low-energy adaptive 

clustering hierarchy-centralized protocol (LEACH-C) and the routing process wireless 

networks. The experimental results show the WINCH protocol has better energy 

consumption performance, network throughput and coverage, demonstrating 

effectiveness than traditional protocols. 

 

The multi-hop routes are established and used between the nodes (Tardioli et al., 2010) 

to maintain the network's full connection. This way, the communication link’s quality can 

be measured, useful in restricting the robot’s movement. Afsar et al. (2014) introduced a 

LEACH upgrade to the communication protocol where at initialization nodes are 

randomly selected to become a cluster head (CH). When a node becomes CH, it is 

responsible for performing broadcasting advertisement message. Upon receiving this 

advertisement message, other non-cluster nodes will decide to join a specific CH 

depending on the Received Signal Strength (RSS).  

 

The CH creates time-division multiple access (TDMA), i.e. a roster table, to transmit 

schedule for each node in the cluster. The CH then compiles or aggregates the data from 

various nodes inside the cluster and sends it to the base station. At every other step, a 

different node is selected as CH. Except for the beginning where nodes are randomly 
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selected as CH, at every other step, the node with the highest energy concentration wins 

the selection. Equation 2.10 is the formula used by the CH to distribute load among all 

participating nodes. 

𝑝𝑖,𝑗(𝑡 + 1) = 𝐺𝑗(𝑡) + 𝜑.(𝑝𝑖,𝑗(t)−𝐺𝑗(𝑡)) (2.10) 

where  (1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝐷)  

𝑇(𝑛) = {

𝑝

1 − 𝑝 ∗ (𝑟 𝑚𝑜𝑑
1
𝑝)

 𝑖𝑓 𝑛 ∈  𝐺

0                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.11) 

 

Where, 

𝑃 is the percentage of nodes to be elected as cluster heads in the whole network,  

𝑟 is the current round (or step), and  

𝐺 is the set of nodes that have not been cluster heads in the last 1/𝑃 rounds. 

 

Clustering is essential for wireless sensor networks, and in MR-LEACH, it is termed the 

multi-hop clustered algorithm. Jiang et al. (2016) proposed an energy-balanced unequal 

clustering (EBUC) communication protocol able to partition the sensor network and turns 

them into many uneven clusters. Hence, one source communicates to the base station via 

the multi-hop channel. This way, any node with the highest energy level can promote 

itself to become a CH. About equation 2.10, nodes which are CH in round 𝑟 is limited 

from the selection in the next 1of 𝑃 rounds. One issue associated with LEACH is that all 

CH must reach the base station in a single hop.  

 

Depending on the signal transfer range between a sensor node and its receiver, a node can 

select a CH from the broadcasted list of available candidates. After the formation of CHs, 

different clusters will choose their base stations. The cycle is repeated until the 

completion of it. The varying size of clusters and the various cluster hierarchy levels in 
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the same network are challenging for scheduling. It is observed that the absence of TDMA 

leads to wastage of energy.  

For improvement, Lee et al. (2011) discussed the utility of an energy-efficient scheme 

call the Location-based Unequal Clustering Algorithm (LUCA). LUCA localizes the 

nodes and forms CHs depending on the cluster’s distance from the targeted sink. The 

farther a cluster from its sink, the larger is the cluster size. Far clusters take more energy 

than those nearer to the base station.  

 

Protocols such as the Hybrid Energy-Efficient Distributed (RHEED) is introduced 

(Mardini et al., 2014) to support efficient clustering routing. The main objective of 

RHEED is to spread out the energy consumption so the network lifetime can be extended 

and to minimize energy wastage during CH selection. RHEED can also reduce the control 

overhead of the network to a minimum. RHEED outperforms the HEED protocol by more 

than 20% in term of network lifetime and residual energy.  

 

To summarize, the following are MR-LEACH advantages: 

1. Scalability: CHs are supposed to manage the network by listening and 

picking up data from the neighbourhood’s communication traffic. 

Clustering topology can improve CHs performance by first dividing the 

sensor nodes into different classes of clusters, each with a particular 

assignment. In a clustering routing scheme, the clustering topology can set 

up a route from inside the cluster so that the routing table in each node are 

not overwhelmed. In comparison to flat topology, the clustering topology 

is more compact and more comfortable to sustain. It is also more scalable 

with larger node community is present (Tan et al., 2017). 
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2. Data Aggregation/Fusion: The CHs are responsible for aggregate data 

from within its clusters and other CHs. So internally, a member in the 

cluster only have to direct messages to its CH. The CHs will compile the 

data and transmit to the sink or base station. Such organization removes 

redundancy immensely and highly effective in saving network energy. 

With the introduction of this clustering data aggregation technique, the 

CHs multi-hop, and form a tree structure for data transmission, 

significantly reducing energy wastage (Yuea et al., 2012).  

3. Less Load: With the elimination of redundant data transmissions, the 

network is given a new vantage point of view to review the problem 

(target) from other perspectives (Izadi et al., 2015). The network can trace 

and make a better estimation as data is cleaner with less noise.   

4. Less Energy Consumption: Performing clustering with intra-cluster and 

inter-cluster communications reduces the number of sensor nodes 

performing the task in long-distance communications, thus allowing less 

energy consumption for the entire network. To further save and conserve 

energy, Lee et al. (2011) allow only CHs to perform data transmission in 

the clustering routing scheme. 

5. More Robustness: Clustering routing scheme is useful for network 

topology control and corresponds to network changes such as node 

increment, node mobility and unpredicted failures. A clustering routing 

scheme only needs to react with these changes locally leaving the entire 

network more robust and more convenient to manage. CHs are generally 

rotated among all the sensor nodes to avoid single point failure in 

clustering routing algorithms to share the CH task. 
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6. Load Balancing: Load balancing can prolong the network lifetime in 

WSNs. Even distribution of sensor nodes among the clusters helps 

accomplish cluster construction where CHs must perform data processing 

and intra-cluster management. Generally, equal-sized clusters can sustain 

the CHs and prevent premature energy exhaustion. For an alternative, the 

multi-path routing can also lead to achieving load balancing. 

7. Fault-Tolerance: In dynamic scenarios, sensor nodes may suffer from 

energy depletion, transmission errors, hardware malfunction and 

malicious attacks. In some applications like hurricane modelling and 

vision tracking, many small sensor nodes are deployed with each sensor 

node’s cost constrained. The cost constraints, quality of sensor nodes, and 

considering the hostile environment, the sensor networks are prone to 

failure. Fault tolerance is crucial to reduce data loss from key sensor nodes. 

Re-clustering is the most intuitive fault-tolerant method to recover from a 

cluster failure, albeit the mess created during on-going operation. 

Assignment of CH backup is a crucial aspect for recovery from a CH 

failure. 

8. Latency Reduction: When a WSN is divided into clusters, only CHs 

perform data transmissions out of the cluster, avoiding collisions between 

the nodes. Collision avoidance subsequently reduces latency. Usually, 

data transmission is performed hop by hop and flooding in a flat routing 

scheme, but in clustering routing scheme, only CHs perform data 

transmission. This decrease hops from data source to the base station, 

leading to decrease latency. 
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Researchers have proposed many protocols such as LEACH, HEED, MR-LEACH to 

explore the energy-efficient protocol technology, and we had gone through different 

research papers. Few of them are given below  

Table 2.4: Comparison between Hierarchical protocols 

Authors  Protocols Advantages  
Lin, et al. 
(2015) 

LEACH It is a clustering-based technique, and the cluster head in 
the network directly communicates with the base station 
in a single hop. It has two phases, set-up and steady-state 
phase.  

Mishra et al. 
(2012) 

CTPA It is a tree-based technique; it has a low consumption of 
energy compared to LEASE. It has two phases, Chain 
formation phase, Broadcasting phase. The lifetime of 
PEGASIS would be more if we compared it with 
LEACH  

AnandRao, 
et al. (2018) 

HEED It is a clustering-based technique suitable for 
heterogeneous WSN It has three phases: initialisation, 
set-up, and steady. The lifetime of HEED is more 
compared to CTPA.  

Vijayvargiya, 
et al. (2012) 

TCDGP The length of path form end, leaf node to root/chain 
node in TREEPSI is shorter than CTPA. The data will 
not send data for a long path. For In TREEPSI power 
consumption is less if we compared it with PEGASIS  

Kim et al. 
(2010) 

TBC Nodes in a cluster form a tree with the root as the cluster-
head, while the height of the tree is decided based on the 
distance of the member nodes to the cluster-head  

Han, et al. 
(2014) 

GSTEB A General Self- Organized Tree-Based Energy- Balance 
routing protocol is used to achieve a more extended 
network lifetime. Each round BS assigns a root node and 
broadcasts this selection to all sensor nodes. each node 
selects its parent by considering only itself and its 
neighbour’s details thus making a dynamic protocol  
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Table 2.5: Comparison between Communication protocols 

Performance 
Metrics 

MANET Leach Leach-C MR-Leach 

Routing principle  Flat Hierarchical Hierarchical Hierarchical 

Save Energy 
Consumption Less Limited Maximum Maximum 

Efficiency  Poor Medium Poor High 

Network lifetime  Good Good Good Very good 

Mobility  Supported Fixed BS Fixed BS Fixed BS 

Clustering 
Method N/A Distributed Centralized Hybrid 

 

Finally, this research focuses on swarm robotics, a domain that embodies swarm 

intelligence mechanisms into robotics. More specifically, this research proposes a 

complete, swarm robotic solution applied to real-world missions. The search and rescue 

(SaR) missions were considered a case study due to their inherent complexity level to test 

the proposed solution. Such operations often occur in highly dynamic and large scenarios, 

with harsh and faulty conditions, that pose several problems to swarm robot applicability.  

This study focuses on these problems raising new challenges that cannot be handled 

appropriately by a simple adaptation of state-of-the-art swarm algorithms, planning, 

control and decision-making techniques. 
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In summary, the advantages of the RDPSO algorithm are threefold. First, the RDPSO is 

scalable to large populations of robots. Second, RDPSO can decrease the amount of 

required information exchange among robots. Thirds, the RDPSO has faster convergence 

and more accurately than the other approaches. Additionally, the RDPSO takes 

advantages of the QPSO used position vector to guarantee stable convergence to 

stationary between robots, to avoid collisions, so it’s fast and robust searchability. The 

disadvantages of RDPSO include collisions occurring between robots, communication 

ruptures between robots, and premature convergence.  

 

This research’s contribution revolves around extending the Robotic Darwinian Particle 

Swarm Optimization (RDPSO) to swarm robotics, using the Quantum-PSO (QPSO) 

features to enhance the searching capabilities of RDPSO. This novel extension is denoted 

as Quantum Robotic Darwinian Particle Swarm Optimization (QRDPSO). The QRDPSO 

is a distributed swarm robotic architecture that benefits from the dynamical partitioning 

of robots’ whole swarm. The QRDPSO is proposed and can be used to devise the 

applicability of novel approaches.  

The other contribution from this study is the utility of the Multi-hop Routing Algorithm 

with Low Energy Adaptive Clustering Hierarchy (MR-LEACH) schema to enhance the 

communication of the QRDPSO. The MR-LEACH is the most popular energy-efficient 

algorithms for Wireless sensor network and its evolutionary properties. Significantly, a 

quantum-behaved swarm robot for exploration with enhanced communication will help 

researchers to uncover critical areas in robot dynamics and investigate new strategies for 

obstacle avoidance and swarm coordination.   
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2.12 Chapter Summary 

This chapter presented a review on the PSO series and two necessary communication 

protocols towards swarm optimization. Despite significant progress and achievements, 

there is still scoped to deliver a more efficient PSO variation with accurate search, 

obstacle avoidance without collision and communication ruptures between robots. 

Chapter 3 will show how I adapted the QPSO onto the RDPSO to derive a new PSO-

based algorithm for swarm robotics application. Included in the chapter is adopting the 

MR-LEACH schema for free collisions full interconnectivity between robots.  
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CHAPTER 3: METHODOLOGY 

3.1 Overview 

This chapter is organized to present this thesis’s central aim by methodically describing 

the Quantum Robotic Darwinian Particle Swarm Optimization (QRDPSO) and adopting 

the MR-LEACH schema as a communication protocol. However, it is important to 

acknowledge that even though the discussions are exclusive around the idea of QRDPSO, 

its approach, parameterization, and insights can, and should, be applied to other swarm 

robotic algorithms.  

 

This thesis proposed three main contributions: 

1. A novel QRDPSO algorithm that improves convergence speed rate during 

swarm-robot exploration over RDPSO algorithm, 

2. A coordinated swarm movement strategy which conserves the robot’s 

energy and extends the robot’s lifetime during exploration, and 

3. Adoption of the MR-LEACH schema towards robot interconnectivity and 

mobility. 

 

The first contribution revolves around the derivation of the QRDPSO and is presented in 

Section 3.2. Contribution two and three are results from the adoption of the MR-LEACH 

schema onto the QRDPSO and are presented in Section 3.3.  
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3.2 Derivation of the QRDPSO 

This algorithm aims to propose a new fitness or cost function that can drive robots towards 

global best and successfully perform obstacle avoidance. Maintaining communication is 

critical, so when a robot moves from any position to the target position, it can avoid both 

static and dynamic obstacles in the environment. In this work, the proposed QRDPSO 

approach is inspired by the success of the RDPSO contribution to mobile robots, mainly 

the adoption of three general features (from RDPSO) as follows:  

1. To formulate a searching strategy to reach global best in shorter time in 

existing RDPSO algorithm, 

2. Integration of an obstacle avoidance behaviour to avoid collisions, and 

3.  A way to enforce multi-hop clustering network connectivity to ensure that 

the MR-LEACH remains connected throughout the mission to enhance 

robots’ lifetime.  

 

Based on the inertia-weighted parameters for the QPSO algorithm which have been 

defined in equation (2.7), including new parameters 𝑖𝑠𝑖𝑗(𝑡) and 𝑖𝑚𝑖𝑗(𝑡) into the original 

term (𝑋𝑖,𝑛
𝑗
− 𝐶𝑛

𝑗
) of (2.7), will derive the QRDPSO as follows: 

 

𝑋𝑖,𝑛+1
𝑗 (𝑡 + 1) = 𝑃𝑖,𝑛

𝑗
± (𝛼1|𝑋𝑖,𝑛

𝑗
− 𝐶𝑛

𝑗
| + 𝛼2|𝑋𝑖,𝑛

𝑗
− 𝑖𝑚𝑛

𝑗
| +

𝛼3|𝑋𝑖,𝑛
𝑗
− 𝑖𝑠𝑛

𝑗
|) ln (

1

𝑢
𝑖,𝑛+1
𝑗 )  

(3.1) 

 

From equation (3.1), it can be observed that the values of 𝑖𝑚 determine the robot’s 

movement. Given the mounted sensors’ readings and the communication signals’ strength 

between the robots, each one of these robots has the option to move in search for a better 
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objective function. Nevertheless, that movement is bounded within the limitations of 

communication constraints.  

 

It is observed that, benefiting from the quantum-behaving particles’ searching capabilities 

in QPSO, hypothetically speaking, the robots can avoid any optimal local solution and 

reach the optimal global solution within a shorter time with quantum behaviour. For 

obstacle avoidance, it is assumed in QRDPSO that every robot is equipped with sensors 

suitable for finding obstacle location within a finite sensing radius 𝑟𝑠. The sensing 

function 𝑖𝑠 can now be defined in equation (3.1). This function describes the sensor data 

such as the distance from the robot to obstacles or detected objects from the surrounding.  

 

3.2.1 Obstacle Avoidance Function 

The significant numerical modification that differs the QRDPSO compared with the 

RDPSO is the proposition of having a cost or fitness function that can be minimized or 

maximized depending on the mission objective. Given a scenario, for instance, a gas 

leaking situation, the swarm of robots running the QRDPSO algorithm must try, at each 

time step, to maximize the sensed gas. At the same time, minimize the distance between 

the robot and the location of the leak.  

 

In another situation where the objective function is to locate the fire outbreak, the 

QRDPSO robots must maximize the fire’s visual and work to minimize the distance 

between the robot and the outbreak’s location. Conceptually, this is how the cost or fitness 

function determines the QRDPSO swarm’ behaviour.  
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During a search exploration, the swarm of robots dispersed in the search area at random. 

Each with an assignment to fulfil a target searching task. The robot intends always to 

move closer to an identified solution. However, depending on the situation, it is often the 

environment has obstacles. The complexity of the environment can drastically change to 

worst when dynamic obstacles are involved. These robots must not get stuck at any 

obstacles to ensure success in target searching. Such behaviour can be defined 

numerically. One can assume that each robot has sensors sufficient to perceive the 

environment, including obstacles, within a finite sensing radius 𝑟𝑠. In the QRDPSO, the 

perceiving or sensing function 𝑞(𝑥𝑖[𝑡]) can be defined. Sensor data feed the function with 

distance information between each robot and the obstacle(s) in their vicinity, respectively.  

 

In the case of robots equipped with range finders such as the sonar and the laser, the range 

finders can provide the time-of-flight value recorded when they bounce between its 

transmitter and receiver. Each bounce will carry signal either in sound waves for the sonar 

or light for the laser. According to the speed=distance/time equation, the reflected signal 

can estimate the distance value between the robot and any solid objects (i.e. obstacles) 

from the robot surrounding. The value is updated through the sensing function to the 

QRDPSO equation at every interval.  

 

The robot then adjusts its movement bearing its distance to an obstacle(s). When there is 

an obstacle occluding a robot to a target, the robot needs to get closer to the obstacle 

(consequently the target) while keeping out from impact by altering its angle. Depending 

on the number and distance of the obstacle(s), a robot may have to perform several 

turnings overtime to keep away at a safe distance. If there are no near obstacle(s) 

obstructing the robot’s line of sight, the robot should maintain its direction in drive 

forward towards the target.  
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To model a robot’s susceptibility for the obstacle avoidance scenarios, the QRDPSO 

requires standard deviations. Two values are proposed, one is for obstacle 

susceptibility 𝜎(𝑞𝑖(𝑡)), and the other is to keep track of the current position of the 

robot 𝜎(𝑥𝑖(𝑡)). Together, these standard deviation values can be used to calculate each 

robot’s trajectories in the swarm, including when a robot is passing an obstacle. At any 

interval, the individual robot’s susceptibility is defined as follows: 

 

𝑖𝑠𝑖,𝑗(𝑡) = 𝑖𝑠𝑖,1(𝑡), 𝑖𝑠𝑖,2(𝑡), … , 𝑖𝑠𝑖,𝐷(𝑡) (3.2) 

=
𝜎 (𝑞𝑖,1(𝑡))

𝜎 (𝑥𝑖,1(𝑡))
,
𝜎 (𝑞𝑖,2(𝑡))

𝜎 (𝑥𝑖,2(𝑡))
, … 

𝜎(𝑞𝑖,𝐷(𝑡))

𝜎(𝑥𝑖,𝐷(𝑡))
(1 ≤ 𝑖 ≤ 𝑁) (3.3) 

 

In modelling obstacle avoidance, ideally the value of 𝑖𝑠𝑖(𝑡) and the susceptibility should 

be directly proportional to each other, where (0 < 𝑖𝑠𝑖(𝑡) ≤ 1). If the value of 𝑖𝑠𝑖(𝑡) is 

always equals to 1, it means the robot successfully avoided all obstacles. In other words, 

when the robot 𝑖 reaches  𝜎 (𝑞𝑖,1(𝑡)) 𝜎 (𝑥𝑖,1(𝑡))⁄ = 1, it means the robot has been 

updating its positions while managing to avoid impact with any solid object in the 

vicinity. Readings from the sensors are joined on one robot during its movement and 

compared to the output value with a predefined threshold to improve the obstacle 

avoidance. Thus, the final value of (3.3) may lie in the interval (0,1), which helps 

determine the robots’ trajectories.  

 

Obstacle avoidance is an important consideration in the derivation of the QRDPSO for 

practical swarm robotics applications. Another critical factor in improving the odds for 

successful swarm missions is the inter-robot communication quality. The following 

subsection presents a method to achieve inter-communication between one robot to 

another. 

Univ
ers

iti 
Mala

ya



81 

3.2.2 Communication rate between the robots 

For the swarm robot to maintain communication, the connectivity between robots is 

described as a link matrix 𝐿 = {𝑙𝑖,𝑓} which can be calculated as functions of either 

distance 𝑑𝑚𝑎𝑥 or signal quality 𝑧𝑚𝑖𝑛 or both. Together, they form the adjacency matrix 

𝐴 = {𝑎𝑖𝑓} and can be defined as follows: 

 

𝑎𝑖𝑗 = {
1, 𝑛𝑜𝑑𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

0, 𝑛𝑜 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛
 (3.4) 

 

In the QRDPSO, the multi-hop concept is applied where nodes can represent robots. In 

multi-hop routing, to exchange messages between the nodes, other nodes can be used as 

relays. A connectivity matrix can be defined to construct the multi-hop connectivity for 

the network of robots. This matrix’s values, an adjacency matrix, can represent the hop 

distances, a strategy in WSNs to reduce long hop for node energy conservation. To 

calculate how many hops needed so a node can transmit a message to a particular node in 

the network, i.e. hop distance, any diagonal entries in the adjacency matrix with value 

zero can be modified. Nonadjacent values in the matrix denote a robot communicating 

with another that is far away.  

 

According to Couceiro et al. (2011), a connectivity matrix can be defined as 𝐶𝑘 = {𝑐𝑖,𝑓
𝑘 }, 

where the entry (𝑖, 𝑓) denote the minimum number of hop count required to perform the 

connection between the nodes 𝑖 and 𝑓. The parameter 𝑘 is used to denote the iteration, 

which can change according to the amount of hop count the network can manage. The 

connectivity matrix can be defined as follows: 

𝑐𝑖𝑗
𝑘 = {

ℎ, 𝑖 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑓 𝑏𝑦 ℎ ≤ 𝑘 ℎ𝑜𝑝𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.5) 
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Some limits are required to control the positioning of each robot 𝑋𝑖,𝑛+1
𝑗  within the 

boundaries of the communication, range not to affect the link matrix. Apart from 

safeguarding the boundaries, an alternative towards total connection is to force each robot 

always to hop an adjacent neighbour that, exclusively, has not selected it as its nearest 

neighbour. This way, at each time step, total connectivity among exclusive pairs of robots 

can be promoted.  

 

Due to the inter-communication between robots highly dependent on signal range and 

quality, defining the minimum or maximum value of each line of the adjacency matrix 𝐴, 

after excluding zeros and if the (𝑖, 𝑓) pairs have been previously chosen, can enforce the 

link to be active. A connectivity function 𝑚(𝑥𝑖(𝑡)) Can be defined. The connectivity rate 

of individual robots within a swarm is given by the standard deviation value of the 

connectivity function 𝜎(𝑚𝑖(𝑡)) and the standard deviation value of the current position 

of the robot 𝜎(𝑥𝑖(𝑡)), respectively. At any point, the individual robot connectivity can be 

determined according to: 

 

𝑖𝑚𝑖,𝑗(𝑡) − (𝑖𝑚𝑖,1(𝑡), 𝑖𝑚𝑖,2(𝑡), … , 𝑖𝑚𝑖,𝐷(𝑡)) 

=
𝜎 (𝑚𝑖,1(𝑡))

𝜎 (𝑥𝑖,1(𝑡))
,
𝜎 (𝑚𝑖,2(𝑡))

𝜎 (𝑥𝑖,2(𝑡))
, … ,

𝜎(𝑚𝑖,𝐷(𝑡))

𝜎(𝑥𝑖,𝐷(𝑡))
(1 ≤ 𝑖 ≤ 𝑁) 

(3.6) 

 

For optimization, ideally the value of 𝑖𝑚𝑖(𝑡) and the susceptibility should be directly 

proportional to each other, where (0 < 𝑖𝑚𝑖(𝑡) ≤ 1). If the value of 𝑖𝑚𝑖(𝑡)  remains 1, it 

means the swarm of robots successfully connected. In other words, when the particle 𝑖 

reaches  𝜎 (𝑚𝑖,1(𝑡)) 𝜎 (𝑥𝑖,1(𝑡))⁄ = 1, it means the robot is in a position where it has 

connectivity with its neighbour.   
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The position sets the connectivity constraints of the robots’ movements, while at the same 

time reducing the calculation overhead so that the robots can plan their movements 

considering the communication constraint, based on one value only. Moreover, this 

equation is adaptable with different communication techniques to permit the robots to 

correspond. 

3.2.3 QRDPSO Equation Numerical Evaluation  

Following Sun et al. (2004 (December)), seven benchmark functions are applied to test 

the performance of the QRDPSO against the classical PSO algorithms. The algorithms, 

SPSO, QDPSO, RQPSO1 and RQPSO2 are used for comparison with all minimization 

functions defined with a minimum value of zero. The first function is called the Sphere, 

which has local minima. It is continuous, convex and unimodal and described by: 

 

𝑓(𝑥) =∑𝑥𝑖
2

𝑑

𝑖=1

 (3.7) 

 

Where its global minimum is 𝑓(𝑥) = 0, at 𝑥 = 0 and was used within the range 

(−100, 100). The second function is the De Jong’s, multimodal, with very sharp drops 

on a mainly flat surface. It is described by: 

 

𝑓(𝑥) =∑𝑖 × 𝑥𝑖
4

𝑑

𝑖=1

 (3.8) 

 

Where its global minimum is given 𝑓(𝑥) = 0, at 𝑥 = (0,… ,0) and is used within the 

range (−100, 100). 
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The third function is the Rosenbrock which is unimodal, and the global minimum lies in 

a narrow, parabolic valley. However, even though this valley is easy to find, convergence 

to the minimum is difficult (Sun et al., 2011). It is described by: 

 

𝑓(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥1 − 1)2]

𝑑−1

𝑖=1

      (3.9) 

 

Where its global minimum is defined as 𝑓(𝑥) = 0, at 𝑥 = (1,… , 1) and is used within the 

range (−5.12, 5.12). The fourth function is the Griewank which has many widespread 

local minima that are regularly distributed and described by: 

 

𝑓(𝑥) =∑
𝑥𝑖
2

4000
−

𝑑

𝑖=1

∏cos (
𝑥𝑖

√𝑖
) + 1

𝑑

𝑖=1

      (3.10) 

 

Where its global minimum is 𝑓(𝑥) = 0, at 𝑥 = (0,… , 0) and is used within the range 

(−5.12, 5.12). The fifth function is the Rastrigin function. It is an example of a non-linear 

multimodal function. Finding the minimum of this function is a somewhat difficult 

problem due to its large search space and its large number of local minima. 

 

𝑓(𝑥) = An +∑ [𝑥𝑖
2 −  𝐴 𝑐𝑜𝑠(2𝜋𝑥𝑖)]

𝑑

𝑖=1
                                                (3.11) 

 

Where its global minimum is A=10, 𝑓(𝑥) = 0, at 𝑥 = (0,… , 0) and is used within the 

range (−5.12, 5.12). Finally, the Schaffer function is shown on a smaller input domain 

in the second plot to show detail. 
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𝑓(𝑥, 𝑦) = 0.5 +
𝑠𝑖𝑛2(𝑥2 − 𝑦2 ) − 0.5

[1 + 0.001(𝑥2 + 𝑦2 )]2
 

 

The function is usually evaluated on the square xi ∈ [-100, 100], for all i = 1, 2. with 

global minimum 𝑓(𝑥, y) = (0,0). 

 

For the numerical evaluation, the test conditions for the used benchmarks set the 

population’s size to 20, 40 and 80, while maximum generation is 1000, 1500 and 2000, 

corresponding to particle dimension set to 10, 20, and 30. When the 𝛼 minimum values 

are set to 1.5, and the 𝛼 maximum values are set to 2, it is observed that the 𝜇 decreases 

linearly from 1.5 to 1, when the algorithm is running. Under a similar test condition, the 

fitness functions are measured for every single accessible set of models and the proposed 

four benchmark functions. The mean of the best fitness values and the standard deviations 

for 50 times iteration for each function are shown in Tables 3.1 to Table 3.7.  

 

Table 3.1: The Mean Fitness Value for the Sphere Function 

𝑀 𝐷 𝐺𝑚𝑎𝑥 SPSO QDPSO RQPSO1 RQPSO2 QRDPSO 

20 
10 1000 1e-20 1e-25 1e-31 1e-40 1e-76 
20 1500 1e-11 1e-15 1e-20 1e-23 1e-32 
30 2000 1e-06 1e-08 1e-11 1e-16 1e-35 

40 
10 1000 1e-23 1e-41 1e-62 1e-64 1e-86 
20 1500 1e-14 1e-23 1e-32 1e-37 1e-43 
30 2000 1e-10 1e-14 1e-23 1e-26 1e -25 

80 
10 1000 1e-28 1e-61 1e-82 1e-85 1e-94 
20 1500 1e-17 1e-32 1e-50 1e-55 1e-50 
30 2000 1e-12 1e-19 1e-38 1e-38 1e-32 

 

 

 

 

(3.12) 
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Table 3.2: The Mean Fitness Value for De Jong’s Function 

𝑀 𝐷 𝐺𝑚𝑎𝑥 SPSO QDPSO RQPSO1 RQPSO2 QRDPSO 

20 
10 1000 0.0000 0.0000 0.0000 0.0000 0.0000 
20 1500 0.0000 0.0000 0.0000 0.0000 0.0000 
30 2000 0.0000 0.0000 0.0000 0.0000 0.0000 

40 
10 1000 0.0000 0.0000 0.0000 0.0000 0.0000 
20 1500 0.0000 0.0000 0.0000 0.0000 0.0000 
30 2000 0.0000 0.0000 0.0000 0.0000 0.0000 

80 
10 1000 0.0000 0.0000 0.0000 0.0000 0.0000 
20 1500 0.0000 0.0000 0.0000 0.0000 0.0000 
30 2000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Table 3.3: The Mean Fitness Value for Rosenbrock Function 

𝑀 𝐷 𝐺𝑚𝑎𝑥 SPSO QDPSO RQPSO1 RQPSO2 QRDPSO 

20 
10 1000 96.1715 14.2221 13.8377 10.8643 5.2111 
20 1500 214.6764 175.3186 116.0543 97.9443 35.4802 
30 2000 316.4468 242.3770 152.1783 135.8685 94.3286 

40 
10 1000 70.2139 15.8623 12.9653 10.2468 4.1218 
20 1500 180.9671 112.4612 52.9421 80.3842 74.0324 
30 2000 299.7061 76.4273 75.6933 69.2908 48.7336 

80 
10 1000 36.2954 36.3405 11.8327 9.8421 5.2525 
20 1500 52.2802 23.5443 19.7310 17.6420 15.6642 
30 2000 205.5596 71.9221 58.5165 53.6345 31.1417 

 

Table 3.4: The Mean Fitness Value for Griewank Function 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑀 𝐷 𝐺𝑚𝑎𝑥 SPSO QDPSO RQPSO1 RQPSO2 QRDPSO 

20 
10 1000 0.0919 0.1003 0.0078 0.0051 0.0000 
20 1500 0.0303 0.0051 0.0002 0.0002 0.0000 
30 2000 0.0182 0.0544 0.0011 0.0009 0.0000 

40 
10 1000 0.0512 0.0484 0.0009 0.0006 0.0000 
20 1500 0.0251 0.0004 0.0002 0.0002 0.0000 
30 2000 0.0127 0.0009 0.0001 0.0000 0.0000 

80 
10 1000 0.0760 0.0000 0.0000 0.0000 0.0000 
20 1500 0.0288 0.0000 0.0000 0.0000 0.0000 
30 2000 0.0128 0.0000 0.0000 0.0000 0.0000 

Univ
ers

iti 
Mala

ya



87 

Table 3.5: The Mean Fitness Value for Rastrigin Function 

M D Gmax SPSO QDPSO RQPSO1 RQPSO2 QRDPSO 
q 10 1000 5.5572 4.9698 4.5712 4.5823 3.5632 

20 1500 22.8892 17.0789 16.0244 15.2001 14.6727 
30 2000 47.2941 48.6199 35.2052 33.5101 30.6121 

40 10 1000 3.5623 2.0328 2.0489 2.1459 1.9727 
20 1500 16.3504 10.9453 10.2717 9.2517 9.7568 
30 2000 38.5250 21.3712 23.4756 20.8164 18.8761 

80 10 1000 2.5379 0.9232 0.8871 0.7298 0.6352 
20 1500 13.4263 6.9554 7.2781 6.4174 6.1462 
30 2000 29.3063 18.130 19.9324 17.3473 16.4763 

 

Table 3.6: The Mean Fitness Value for Shaffers Function 

M D Gmax SPSO QDPSO RQPSO1 RQPSO2 QRDPSO 
20 2 2000 0.0012 0.0051 7.9437-e4 2.9951-e5 1.8524-e3 
40 2 2000 0.0006 0.0018 1.5385-e5 2.8818-e7 1.5693-e4 
80 2 2000 0.0002 0.0004 8.5111-e7 7.2959-e8 6.6832-e8 

 
Table 3.7: The Mean Fitness Value for Rosenbrock valley Function 

M D Gmax SPSO QDPSO RQPSO1 RQPSO2 QRDPSO 
20 2 2000 0.0000 0.0000 0.0000 0.0000 0.0000 
40 2 2000 0.0000 0.0000 0.0000 0.0000 0.0000 
80 2 2000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Table 3.1 demonstrates that the QRDPSO is the best for precision, and it is significantly 

steadier than the other four models regardless of the used values of 𝑁, 𝐷 and the 

maximum iteration. Since the Sphere function is unimodal, it is usually used to test the 

algorithm’s local search capabilities. The results show that the local search capabilities of 

the QRDPSO are superior to those of the SPSO, QDPSO, RQPSO1 and RQPSO2. The 

De Jong’s function from Table 3.2 has a similar property with the Sphere function, so it 

can be noticed that applying the De Jong’s function on the QRDPSO is much improved 

than that of the Sphere function.  
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On the other hand, for the Rosenbrock, the performance of the QRDPSO is measured 

lower than the performance of the other benchmark algorithms. Although the difference 

is relatively too small, the proposed QRDPSO algorithm proves to be more efficient and 

stable than the other benchmark algorithms. As for the Griewank function in Table 3.2, 

the proposed QRDPSO algorithm is observed as the only one of all the benchmark 

algorithms to reach the global best solution, which is zero in this case, for all the selected 

scenarios in a very stable behaviour. From these experimental results, it can be noticed 

that the performance of the QRDPSO is much better than the performance of the SPSO, 

QDPSO, RQPSO1 and RQPSO2 in both unimodal and multimodal test functions. 

 

Analysis of quantum behaved PSO series performance such as the SPSO, QDPSO, 

RQPSO1 and RQPSO2 against the proposed algorithm QRDPSO using seven benchmark 

functions, the Sphere, De Jong’s, Rosenbrock, Rosenbrock valley, Shaffers, Rastrigin and 

Griewank is presented. The experiment result shows the QRDPSO has the best 

convergence of individual particles of the whole swarm population. The global search of 

the QRDPSO also reaches the global best solution, which is zero, for all the selected 

scenarios, which indicates very stable behaviour. The result shows that the QRDPSO is 

much better than the SPSO, QDPSO, RQPSO1 and RQPSO2 in both unimodal and 

multimodal test functions. To minimize distance value between robots and victim to 
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Figure 3.1: The exploration ratio over the 100 iteration for each method. (a) (NT , dmax) = 
(10, 30 m); (b) (NT , dmax) = (10, 100 m); (c) (NT , dmax) = (20, 30 m).(d) (NT , dmax) = 
(20, 100 m); 

 
As Figure 3.1 depicts, the median of the best solution over the 100 trials was taken as the 

final output for each (𝑁𝑇,𝑥) combination. As it is possible to observe, the QRDPSO 

outperforms the other methods for all (𝑁𝑇,𝑥) configurations tested. Nevertheless, the 

performance of RQPSO1 and the RQPSO2 decreases as robots population increases. For 

instance, for the configuration of (𝑁𝑇,𝑑𝑚𝑎𝑥)=(20,100), i.e., Figure 3.1d, the RQPSO1 

presents better performance than the RDPSO during the first iterations while the RQPSO2 

closely follows the same performance as the QRDPSO. Table 3.8 shows the results when 

the QRDPSO is compared with the benchmark function that minimizes the robot and 

victim’s distance. 
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Table 3.8: The QRDPSO against benchmark functions 

M D Gmax QRDPSO 

20 
10 1000 0.0000 
20 1500 0.0000 
30 2000 0.0000 

40 
10 1000 0.0000 
20 1500 0.0000 
30 2000 0.0000 

80 
10 1000 0.0000 
20 1500 0.0000 
30 2000 0.0000 

 

 

As shown in Table 3.8, the test conditions for the experiment include swarm population 

of varying size of 20, 40 and 80, while the maximum iteration is 1000, 1500 and 2000, 

corresponding to particle dimension which is set to 10, 20, and 30, all of them are 

minimized to zero. Consideration of an excellent control architecture is proposed in the 

following subsection to apply the QRDPSO in practice. 

 

3.2.4 The QRDPSO control architecture design 

Control architecture usually defines the performance of an algorithm when being tested 

practically. In robotics application, in particular, works involving navigation and 

exploration, how the robot moves from one point to another can influence how the control 

architecture is designed in the first place. Studying a robot kinematic and dynamic 

features is important for any robot control design. Often, mobile robots are classified into 

either holonomic or non-holonomic. An omnidirectional drive system is an example of a 

holonomic robot that can drive in any given direction directed. Driving allows continuous 

translation and rotation when tracking the robot position from one point to another.  
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In the case of a non-holonomic robot, such as one with a differential drive system, the 

robot must often turn to face a target (i.e. rotation) first before driving forward (i.e. 

translation) to reach a searching target. A Low-Level Control (LLC) is selected to design 

the control architecture for the proposed QRDPSO to conceptualize the hardware control 

at a general level. In this work, it is assumed that all robots are non-holonomic for the 

LLC control architecture design. Each turn and move by the robots can be tracked.  

 

Figure 3.2 shows the proposed control architecture design for the QRDPSO. In the 

architecture, the low-level control (LLC) receives the desired position 𝑥𝑛𝑑[𝑡 + 1] and 

computes the kinematic model. The rotation turn represents the output of the LLC 

𝜃𝑛[𝑡 + 1] and the move forward distance ℎ𝑛[𝑡 + 1]. These outputs are useful so the robot 

can turn to face the target (robot-target spatial alignment) and move the distance 

calculated towards it. Whenever a new position is calculated, the current robot position 

𝑥𝑛[𝑡 + 1] is updated. At each iteration, information on the updated position as well as the 

corresponding value from the objective function 𝑓(𝑥𝑛[𝑡 + 1]) needs to be shared between 

connected robots in the swarm so cooperation can emerge.   

 

 

Figure 3.2: The proposed QRDPSO control architecture 
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Where 𝑣𝑛1[𝑡+1] and 𝑣𝑛2[𝑡+1] are elements which describe the vector 𝑣𝑛[𝑡+1] in equation 

(3.1). In equation (3.13), the function atan2 returns the angle whose tangent is a given 

number and determines in which quadrant that angle [𝑡+1] is in the trigonometry. It can 

be observed that [𝑡] returns a value relative to equation (3.14) which at the beginning of 

the exploration initialized as zero (i.e. when the robot has yet to move). Finally, rotation 

[𝑡+1] and distance ℎ[𝑡+1] return the values of the inverse kinematics (rotation and 

translation), so the robot can fix its orientation and cover the forward distance towards 

next ideal position.  

 

In Figure 3.2, updates from the current robot position and objective function ([𝑡+1]) must 

be communicated throughout the entire swarm (see Figure 3.2) through the multi-hop 

routing. Each robot pairs up with another based on the minimum hop distance denoted by 

the adjacency matrix. Repeating this activity at each iteration allows the robots to relay 

to other robots and cooperate towards swarm convergence. The rotation 𝜏𝑛𝑑1[𝑡+1] and the 

forward movement 𝜏𝑛𝑑2[𝑡+1] of the differential-drive robot are defined by: 

 

𝜏𝑛
𝑑1[𝑡 + 1] = 𝜏𝑟𝑒𝑣.

𝜃𝑛[𝑡+1]

2𝜋
.
𝑅𝑟𝑜𝑏𝑜𝑡

𝑅𝑤ℎ𝑒𝑒𝑙
                                         (3.16) 

𝜏𝑛
𝑑2[𝑡 + 1] = 𝜏𝑟𝑒𝑣.

ℎ𝑛[𝑡+1]

2𝜋
.

1

𝑅𝑤ℎ𝑒𝑒𝑙
                                                 (3.17) 

 

Where 𝜏𝑟𝑒𝑣 is the total number of steps or pulses per revolution. The radius of the robot 

and the wheels are defined by 𝑅𝑟𝑜𝑏𝑜𝑡 and 𝑅𝑤ℎ𝑒𝑒𝑙, respectively. A rotational threshold 𝜃𝑇 

was introduced to improve the time response of the robot and the smoothness of its 

movement. Rotations [𝑡+1] inferior to 𝜃𝑇 are then ignored, and only the forward distance 

ℎ[𝑡+1] is considered. Bearing in mind this assumption, and since a possible loss of steps 

or pulses may occur while executing the commands, i.e., 𝜏𝑛1[𝑡+1]≠𝜏𝑛𝑑1[𝑡+1] or 
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𝜏𝑛2[𝑡+1]≠𝜏𝑛𝑑2[𝑡+1], a new real position is then recalculated and considered as the current 

position 𝑥𝑛[𝑡+1] of the robot.  

 

This new position and the corresponding value of the objective function ([𝑡+1]) defined 

in this position (i.e., sensed by the sensory system) needs to be shared between robots 

(see Figure 3.2) so that cooperation can emerge. To that end, this information is sent 

directly to the robots in the neighbourhood (one-hop nodes) and relayed to other robots 

based on a multi-hop ad hoc networking paradigm. 

 

3.2.5 Parameterization and Adaptability Behaviour  

When facing dynamic complex problems, some draws arises when using parameterized 

algorithms. There is a change that is exhibited when problems related to sub-optimal 

issues arise. The QRDPSO and PSO are considered the main variants in adjusting and 

setting the parameters under challenging sceneries. They also ensure that the search 

capability is maintained and improved for constrained problems or higher-dimensional 

problems. Persistence should be portrayed in search of victims when using SaR 

applications which must use a chance for rescuing them.  

 

Punish-reward rules have been applied in various sceneries to avoid stagnation in most 

circumstances. A sub-optimal solution can detect when robots are stuck or a transition of 

the solution over a certain period.  Setting and adjusting PSO parameters are considered 

one of the solutions that can be used to solve issues in stabilising analysis regarding 

algorithm. A generalized model was developed by Blum et al. (2012). They analysed 

individual particle trajectory which was useful has it contained a set of coefficients to 

control convergence that occurs in a different system.  
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Absolute stability is the only attribute presented by the author’s analysis, hence the aspect 

of ignorance in optimizing the optimal solution not considered (Liu et al. 2011). The 

numerical stability analysis model was presented, which focused on the feedback and 

reflex activities used to control intensification and diversification during a search. By 

employing the stable and unstable PSO regions, the author stated it is controlling the 

swarm. In the real world, robots are designed to operate where their obstacles and 

dynamics need to be accounted for missing communication infrastructure in specific 

systems. The need to consider the self-spreading of automates mobile nodes becomes 

difficult as it will increase the problem’s complexity.  

 

Basing on the contextual information within the surrounding should be used to change a 

robot’s behaviour. Adopting swarms and robot behaviour requires contextual knowledge 

while considering agent-based, environmental context, and mission-related context 

(Turner, 2013). Hence, a robotic system’s performance in a search, Li et al. presented a 

context-based approach used to enhance rescue missions (Li et al., 2012). The difficulty 

levels attained in the process are used to set metrics levels used as inputs concerning 

victim detection and mobility. Based on the set of context-based evaluation metrics, the 

algorithm adapting the robots’ behaviour is what was proposed by the authors.  

 

To adjust the RDPSO parameters, the need for metrics to input a fuzzy system becomes 

critical. The metrics are used to determine communication constraints, improve 

convergence rates of the system, and susceptibility to obstacles (Cueceiro et al., 2012). 

The threshold is considered as the area where QRDPSO parameters are used to group 

robots when looking for an optimal solution when considering or avoiding any obstacle 

that will come on the way and ensure that connectivity is attained for effective 

communication.  
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To calculate the parameters, influence within the QRDPSO algorithm, we used a swarm 

robot in MATLAB simulator to understand the relation between the coefficient’s and 

robot’s convergence behaviour within the QRDPSO. As described in Figure. 3.2, the 

behaviour of the swarm is susceptible to changes in µ. When µ = 2, (in 248 positions it 

takes 788 iterations), the swarm path is linear and presents good exploration behaviour. 

It indicates that the swarm is stable and converges to an optimal solution.  

 

When µ is high, i.e. µ = 2.5, (in 270 positions it takes 788 iterations), the trajectory of the 

swarm is represented by linear convergence toward the global solution. Thus, having a 

high exploration but instability extends the time required to find the optimal solution. 

Moreover, when µ is small, i.e. µ =1.5, (in 250 positions it takes 550 iterations) the swarm 

moves slowly, finds it difficult to converge on a solution and gets stuck in a sub-optimal 

solution. In Figure 3.3, the best value is 2 to reach the optimal solution. 

 
Figure 3.3: Analysis of trajectory swarm robots in MATLAB to evaluate µ 
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In Figure 3.4(a), the cognitive coefficient α1 = 1.5 is the best value (250 robot positions 

stop in 780 iterations to reach the optimal solution). It gives a superior performance of 

speed of convergence and sub-optimal solution avoidance. When increasing the (α1), i.e. 

α1=2, (in 260 robot position) the robots take times to find the victim (optimal solution) 

because of unstable robot movement. It completes the mission but not directly. When 

decreasing the (α1), i.e. α1=1, (280 robot positions stop at 850 iterations) the robots might 

be unable to complete their mission as it takes time to find a victim.  

 

Figure 3.3(b) shows that when (α2 =2.5), it is the worst-performing robot with an 

inadequate trajectory. It takes time to reach the victims (optimal solution) or not reach it 

because it is trapped in a sub-optimal solution. When (α2 =1.5), the robot is moving 

chaotically and cannot avoid obstacles. However, when (α2 =2), the robot can surround 

the obstacles, thus reaching the optimal solution directly. So, it is the best value. 

 

 
(a) 
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(b) 

Figure 3.4: Evaluating the robot’s trajectory to reach optimal solution a) to convergence 
α1, and b) to avoid obstacles α2 

 

In between the swarm, the robots should distribute around the area to augment the 

algorithm’s convergence rate. Hence, we need to find a suitable coefficient (α3) to move 

and maintain the MANET connectivity between robots. Regarding the MANET 

connectivity wherein each robot is a network node, to overcome the lack of interaction 

among them, the required position, i.e., 𝑥𝑛 [𝑡 + 1], must be controlled influences the 

adjacency matrix A. The adjacency matrix depends on the maximum interaction range 

𝑑𝑚𝑎𝑥 or minimum signal quality represented by the link matrix 𝐿 =  {𝑙𝑖𝑗 } for an N-node 

network. Each entry represents the link between robot i and j. So, when (α3 = 2.5), the 

robots take time reaching the optimal solution. It is close to the solution but cannot reach 

it. Figure 3.5 shows the robot’s trajectory in finding optimal solution. 
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Figure 3.5: Evaluating the robot’s trajectory to find a suitable coefficient (α3) when 
reaching the optimal solution 
 

Moreover, when (α3 = 1.5), robots have an unstable trajectory and are stuck in a sub-

optimal solution. When (α3 = 2) (in 260 robot positions and stop in 780 iterations to reach 

the optimal solution), the robots move directly to the optimal solution with connectivity 

between them. Thus, it is the best value. However, given the above convergence analysis, 

the QRDPSO can be extended to control the primary mission’s swarm susceptibility, 

obstacle avoidance, and communication constraint. In this line of thought, it is based on 

the fuzzy approach (Couceiro et al. 2012), introduced in this section, that I will evaluate 

the performance and adaptively adjust the parameters of the QRDPSO. Algorithm 3 

describes the QRDPSO base mechanisms.  
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# Algorithm 3: The QRDPSO Algorithm 

Wait for information about initial pose 〈[0],𝜑𝑛[0]〉 and 𝑠𝑤𝑎𝑟𝑚𝐼𝐷  

Loop:  

              If 𝑠𝑤𝑎𝑟𝑚𝐼𝐷≠0 // it is not an excluded robot  

                Evaluate its individual solution ℎ[𝑡]  

               If ℎ(𝑥𝑛[𝑡])>ℎ𝑏𝑒𝑠𝑡 // robot has improved  

                     ℎ𝑏𝑒𝑠𝑡=ℎ(𝑥𝑛[𝑡])  

                    𝜒1[𝑡]=𝑥𝑛[𝑡]  

         Exchange information with teammates about the individual solution ℎ[𝑡] and 

current position 𝑥𝑛[𝑡].  

           Build a vector [𝑡] containing the individual solution of all robots within 

𝑠𝑤𝑎𝑟𝑚𝐼𝐷  

       If max[𝑡]>𝐻𝑏𝑒𝑠𝑡 // subgroup has improved  

               𝐻𝑏𝑒𝑠𝑡=max[𝑡]  

                𝜒2[𝑡]=𝑥𝑛[𝑡]  

        If 𝑆𝐶𝑠>0  

           𝑆𝐶𝑠=𝑆𝐶𝑠−1 // stagnancy counter  

            If 𝑆𝐶𝑠=0 // the subgroup can be rewarded  

            If 𝑁𝑆<𝑁𝑚𝑎𝑥 and ( )1/𝑁𝑠𝑘𝑖𝑙𝑙+1>𝑟𝑎𝑛𝑑( ) // small probability of calling a new robot  

           Broadcast the need for a new robot to any available excluded robot  

    If 𝑁𝑠𝑘𝑖𝑙𝑙>0  

           𝑁𝑠𝑘𝑖𝑙𝑙=𝑁𝑠𝑘𝑖𝑙𝑙−1 // excluded robots counter  

            If ( )*𝑁𝑠/𝑁𝑚𝑎𝑥>𝑟𝑎( ) // small probability of creating a new subgroup  

           Broadcast the possibility of creating a new subgroup to any available excluded 

robot  
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      If 𝑁𝑠𝑘𝑖𝑙𝑙>0  

               𝑁𝑠𝑘𝑖𝑙𝑙=𝑁𝑠𝑘𝑖𝑙𝑙−1 // excluded robots counter  

Else // subgroup has not improved  

          𝑆𝐶𝑠=𝑆𝐶𝑠+1 // stagnancy counter  

If 𝑆𝐶𝑠=𝑆𝐶𝑚𝑎𝑥 // punish subgroup  

    If 𝑁𝑆>𝑁𝑚𝑖𝑛 // it is possible to exclude the worst-performing robot  

       𝑁𝑠𝑘𝑖𝑙𝑙=𝑁𝑠𝑘𝑖𝑙𝑙+1 // excluded robots counter  

       𝑆𝐶𝑠=𝑆𝐶[1−1/𝑁𝑠𝑘𝑖𝑙𝑙+1] // reset search counter  

If ℎ𝑏𝑒𝑠𝑡=min[𝑡] // this is the worst-performing robot  

    𝑠𝑤𝑎𝑟𝑚𝐼𝐷=0 // exclude this robot  

Else // delete the entire subgroup  

     𝑠𝑤𝑎𝑟𝑚𝐼𝐷=0 // exclude this robot  

If ([𝑡])≥𝑔𝑏𝑒𝑠𝑡) // maximize distance to obstacle  

     𝑔𝑏𝑒𝑠𝑡=𝑔(𝑥𝑛[𝑡])  

     𝜒3[𝑡]=𝑥𝑛[𝑡] 

 𝑖𝑠𝑖,𝑛(𝑡) = 𝑔(𝑥𝑖[𝑡]) =
𝜎(𝑔𝑖,1(𝑡))

𝜎(𝑥𝑖,1(𝑡))
,  
𝜎(𝑔𝑖,2(𝑡))

𝜎(𝑥𝑖,2(𝑡))
,  … ,  

𝜎(𝑔𝑖,𝑛(𝑡))

𝜎(𝑥𝑖,𝑛(𝑡))
 // represented as the relation 

between the analogy output voltage of distance sensors and the distance to the 

detected object. 

[𝐿𝑛,𝑖𝑛𝑑𝑒𝑥𝑛]=𝑠𝑜𝑟𝑡_𝑎𝑠𝑐(𝐿𝑛,1:𝑁𝑆) // sort the elements of line 𝑛 from link matrix 𝐿 in 

ascending order  

For 𝑖=1:𝑁𝑆  

      If 𝑖𝑛𝑑(𝑖) has not yet chosen it as its nearest neighbour  

      𝜒4[𝑡]=𝑥𝑖[𝑡]+𝑑𝑚𝑎𝑥 𝑥𝑖[𝑡]−𝑥𝑛[𝑡]/‖𝑥𝑖[𝑡]−𝑥𝑛[𝑡]‖ // the position of the nearest neighbour   

increased by 𝑑𝑚𝑎𝑥 toward 𝑥𝑛[𝑡]  

     Communicate to robot 𝑖 that it was chosen by robot 𝑛  
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𝑖𝑚 i,n= 𝑚(𝑥𝑖[𝑡]) =
𝜎(𝑚𝑖,1(𝑡))

𝜎(𝑥𝑖,1(𝑡))
,  
𝜎(𝑚𝑖,2(𝑡))

𝜎(𝑥𝑖,2(𝑡))
,  … ,  

𝜎(𝑚𝑖,𝑛(𝑡))

𝜎(𝑥𝑖,𝑛(𝑡))
 // standard deviation value of the 

connectivity function and the standard deviation value of the current position of the 

current particle 

break from For  

𝑋𝑖,𝑛+1
𝑗 (𝑡 + 1) = 𝑃𝑖,𝑛

𝑗
± (𝛼1|𝑋𝑖,𝑛

𝑗
− 𝐶𝑛

𝑗
| + 𝛼2|𝑋𝑖,𝑛

𝑗
− 𝑖𝑚𝑛

𝑗
| + 𝛼3|𝑋𝑖,𝑛

𝑗
− 𝑖𝑠𝑛

𝑗
|) ln (

1

𝑢𝑖,𝑛+1
𝑗

) 

Else // it is an excluded robot  

  Wandering algorithm  

   Evaluate its individual solution ℎ[𝑡]  

If ℎ(𝑥𝑛[𝑡])>ℎ𝑏𝑒𝑠𝑡 // robot has improved  

    ℎ𝑏𝑒𝑠𝑡=ℎ(𝑥𝑛[𝑡])  

    Exchange information with teammates about the individual solution ℎ𝑛[𝑡] and 

current position 𝑥𝑛[𝑡]  

    Build a vector 𝐻[𝑡] containing the individual solution of all 𝑁𝑋 robots within 

the excluded subgroup (𝑠𝑤𝑎𝑟𝑚𝐼𝐷=0)  

If max𝐻[𝑡]>𝐻𝑏𝑒𝑠𝑡  

   𝐻𝑏𝑒𝑠𝑡=max𝐻[𝑡]  

 If ℎ𝑏𝑒𝑠𝑡=max𝑁𝐼 𝐻[𝑡] // this is one of the best 𝑁𝐼 performing robots of the excluded 

subgroup  

  If 𝑁𝑋≥𝑁𝐼 and 𝑟𝑎𝑛𝑑( )𝑁𝑋/𝑁𝑇>𝑟𝑎𝑛𝑑( ) // small probability of creating a new 

subgroup 

    𝑠𝑤𝑎𝑟𝑚𝐼𝐷=𝑠𝑤𝑎𝑟𝑚𝐼𝐷_𝑛𝑒𝑤 // include this robot in the new active subgroup  

Broadcast the need of 𝑁𝐼−1 robots to any available excluded robot  

   Else  

If receives information about the need for a new robot  
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𝑠𝑤𝑎𝑟𝑚𝐼𝐷=𝑠𝑤𝑎𝑟𝑚𝐼𝐷_𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 // include this robot in the active subgroup  

  𝑁𝑆=𝑁𝑆+1  

Exchange information with teammates about 𝑁𝑆  

If receives information about the need of creating a new subgroup  

  𝑠𝑤𝑎𝑟𝑚𝐼𝐷=𝑠𝑤𝑎𝑟𝑚𝐼𝐷_𝑛𝑒𝑤 // include this robot in a new active subgroup  

   𝑁𝑆=𝑁𝐼 // reset number of robots in the subgroup  

   𝑁𝑠𝑘𝑖𝑙𝑙=0 // reset number of excluded robots  

   𝑆𝐶𝑠=0 // reset search counter  

until stopping criteria (convergence/time)  

  

3.3 Communication Optimization via MR-LEACH 

The MANET is utilized as a pervasive communication schema in the RDPSO. 

Nevertheless, the MANET is an example of brute communication where all nodes 

broadcast messages to all other nodes in the swarm where some communication is long 

hops. Long transmission distance and multiple relays contribute to heavy communication 

traffic and do not encourage efficiency. The communication schema must follow a 

mission-related design to enhance the communication of the QRDPSO, i.e., based on the 

behaviour that one should expect from the swarm robotics. In this work, the MR-LEACH 

schema is selected, and the implementation has the following steps: 

1. Validation of the proposed QRDPSO model with simulation using 

MATLAB 

2. The comparison between the QRDPSO model uses a routing protocol for 

MANET such as the Ad Hoc on-demand Distance Vector (AODV), 

against the MR-LEACH. 

3. Validation of the stability of the QRDPSO with enhanced communication 

under various conditions.  

Univ
ers

iti 
Mala

ya



103 

Briefly, enhancing QRDPSO communication requires a strategy to handle the 

communication traffic in a more sustainable method. One strategy to avoid brute 

communication is to look into clustering of the swarm into multiple smaller groups. The 

next subsection describes this strategy.  

 

3.3.1 Sharing information in the QRDPSO 

The QRDPSO ensures connectivity of the network from 𝑚(𝑥𝑖[𝑡]) a term described in 

section 3.2.2. Nevertheless, brute communication and long hops create more traffic which 

can overwhelm the network. Packet data structure shared between robots is defined to 

send messages (see Figure 3.6). The number of bytes necessary for the main message, 

i.e., Data byte(s), will depend on the message itself. For instance, if a robot wants to share 

its position and consider a planar scenario, then two bytes may be enough to represent 

each axis’s coordinates. 

 

 

Figure 3.6: General communication packet structure for a subgroup of 𝑁𝑠 robots 

 

A strategy to cluster the swarm network is introduced to the QRDPSO. The strategy 

includes labelling each robot with a robot ID and each swarm division with cluster head 

ID. For the swarm robot to maintain communication, the connectivity between robots 

(cluster head, non-cluster) using MR-LEACH as a communication protocol, is described 

as the following steps: 
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1. Each node randomly decides to become a cluster head (CH), where each node 𝑛 

(robots) chooses a random number between zero and one. If the obtained number 

is less than a threshold 𝑇(𝑛), the node becomes cluster-head, 

2. A cluster head broadcasts the advertisement “Hello” message to all the nodes 

around it, 

3. Upon reception of this message each non-cluster node will decide to join a specific 

CH depending on the smallest distance, 

4. CH creates a TDMA (Time Division Multiple Access) based transmission 

schedule for each node in the cluster. The cluster head allocates the 

communication time slot for each member node in the cluster based on TDMA 

cluster heads, and these members can receive transceiver signal only on the given 

time slot to effective use of power, 

5. CH aggregates the data received from nodes inside the cluster and sends it to the 

CHs to get the best solution between them. 

 

Applying equation (3.4), the link matrix 𝐿 = {𝑙𝑖,𝑓} can be calculated as functions of either 

distance 𝑑𝑚𝑎𝑥 between a cluster head and a non-cluster. Together, they form the 

adjacency matrix 𝐴 = {𝑎𝑖𝑓}. Equation (3.5) can be adopted, and the connectivity matrix 

can be defined similarly to calculate the cluster head hop distance. A connectivity 

function 𝑚(𝑥𝑖(𝑡)) is then defined. A higher 𝛼2 will enhance the ability to maintain a 

network connection. To further understand how the QRDPSO maintains the MR-LEACH 

connectivity considers the topology in Figure 3.7.  

Univ
ers

iti 
Mala

ya



105 

 
(a) 

 
(b) 

Figure 3.7: (a) The MR-LEACH connectivity topology, and (b) the clustering hierarchy 
for MR-LEACH connectivity (bottom) 

 

Figure 3.7(a) shows an illustration of the MR-LEACH schema with multi-hop clustering 

routing. Smaller swarm divisions are possible as long as a CH is appointed, and all robots 

are labelled with an ID. However, each pair of nodes must be at least two disjoint routes 

between the network. The distance means the failure of a single node does not influence 

the network partition. In this work, a clustering hierarchy fault-tolerant system is 

proposed for autonomous mobile robots, so at any time CHs can use an exclusive channel 

to send messages.  
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As shown in Figure 3.7(b), CH robot 2 is the nearest neighbour to CH robot 1. The nearest 

neighbour of CH robot 2 is CH robot 3. However, the distance between them is smaller 

than CH robot 2 and CH robot 4. Finally, the nearest, not previously chosen, a neighbour 

of CH robot 4 is robot 1 and 3. If a robot fails due to energy depletion, for example, CH 

2 fails, robot 1 will be unable to communicate with robot 3, but robot 3 can connect to 

another channel with robot 4. The bi-connectivity 𝑘 = 2 gets the desired performance in 

simple exploration like finding a gas leak in a room. A more complex exploration requires 

a higher 𝑘 >  2 MR-LEACH connectivity. Algorithm 4 is the MR-LEACH algorithm for 

cluster formation. 

 

Algorithm 4: MR-LEACH Algorithm (Farooq et al. (2010)). 

 

Node = Sensing Node  

S= Set of all Sensing Nodes in the Network 

Neighboring Nodes = Null; // No neighbors discovered 

 for ∀ Nodes ∈ S 

   Broadcast _ HELLO (nodeID, Energy);  // nodeID = Robot ID  

 for ∀ Nodes ∈ S 

 begin 

     Re cv _ BroadCast _ MSG(nodeID, energy) 

     ID= NeighbouringNode.searchNodeID(nodeID) 

if (ID≠ nodeID) 

    NeighbouringNode.insert(nodeID, energy) 

   end 

   for ∀ Nodes ∈ S 

   begin 

     nodeWithHigestEnergy = neighbouringNodes.getHighestEnergy() 

 if (nodeWithHighestEnergy < nodesEnergy) 

      BROADCAST _ HEAD _ MSG(nodeID) 

 end 
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 for ∀ Nodes ∈ S 

     begin 

       Re v _ Head _ MSG(ID) 

       Cluster _ Head.insert(ID, ReceivedSignalStrength) 

end 

 for ∀ Nodes ∈ S 

     begin 

   Select Cluster Head ; // non-cluster node will decide to join a CH     

depending on the smallest distance . 

         Send _ Cluster _ Join _ MSG(ID); 

  end 

for ∀ ClusterHeads ∈ S 

    Re cv _ Join _ MSG(ID) 

 

 

3.3.2 Converging to the Optimal Solution 

In section 3.2, 𝑃𝑖,𝑛
𝑗

 represents the best positions of the robot. Therefore, robots from the 

same active sub-group, i.e. not in the socially excluded sub-group, need to share their best 

cognitive solution [𝑡] and current position [𝑡], to compute the position of the robot that 

has the best social solution. For instance, if one wishes to find a victim, the best 

performing robot will have the highest solution. Suppose a robot from the active sub-

group was unable to improve. In that case, the information about its position and solution 

is irrelevant to the group, i.e. the collective behaviour will not change. Therefore, and as 

a rule of thumb, a robot only needs to share its current solution and position if it can 

improve its best cognitive solution, i.e., 𝑓𝑛[𝑡+𝑗]>𝑓𝑛[𝑡], 𝑗∈ℕ. Otherwise, the robots must 

memorize the best solution of the sub-group and corresponding position. This data needs 

to be exchanged between all teammates, by broadcasting to the whole sub-group via MR-

LEACH, consequently reducing the robots’ energy and increasing its lifetime. 
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Figure 3.8: Communicating the packet structure to a robot to get the best solution 

 

Figure 3.8 represents the packet structure sent from a robot that was able to improve its 

solution. This communication packet structure allows robots from active sub-groups to 

cooperatively converge to the solution. The packet is only sent if a robot improves its best 

cognitive solution. The following sub-section evaluates the MR-LEACH communication 

using the MR LEACH Simulator. 

 

3.3.3 Experimental Results 

Testing the nodes’ energy consumption by adaptively increasing the clustering hierarchy 

and testing nodes’ lifetime can be done in three steps. Using the MR-LEACH simulator, 

the steps are: 

1- Facilitate the MR-LEACH to deal with mobile nodes. 

• Remove the single hop sink  

➢ It needs multi-hop to continue searching for another group (fault 

tolerance system) in the swarm. 

➢ Cooperation between robots and detect the victim in shorter time no 

need a delay. 

➢ Avoid failure when a sink is dead or crash. 

• The nodes fixed in the simulator, so it should be change fixed nodes to 

dynamic.  
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2- Constitute dynamic neighbouring criteria to tie the mobile nodes with the mobile 

cluster heads. 

➢ After that, connect each node with neighbour CH, and CH with 

neighbour CH depend on calculating the distance to each CH and finding 

the smallest distance. 

➢ In figure 3.9, the experiment shows five dynamic cluster heads, with each 

cluster head possibly to connect to 25 dynamic nodes (non-cluster): 

3- Test the MR-LEACH control with the new evolutions, see Figure 3.10: 

➢ The first test shows which round that the nodes are dead.  

➢ The second test shows the nodes energy consumption when the number 

of round increases. 

 

 

Figure 3.9: MR-LEACH simulator 100 x100 Area 
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Figure 3.10: MR-LEACH control with new evolutions 

 

 
 
Figure 3.11: The number of messages sent from static CHs (left), and dynamic CHs (right) 
to respective non-CHs 
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Figure 3.10 shows the first experiment (left) with three dead nodes reported at around 

300. The number of dead nodes keeps increasing until round 450 where all the nodes are 

reportedly dead. In the second experiment (see right), the nodes energy consumed were 

decreasing when the number of round increases; at round 0, all the nodes were at 50 

indicating full energy. The nodes consumed energy so much that at around 450, all nodes’ 

energy level is depleted (dead). Also, that reduces the communication complexity as 

information needs to be exchanged between all teammates, i.e., broadcasted to the whole 

subgroup using multi-hop communication.  

 

A topology with five dynamic CHs can connect to 25 static non-CHs, and the information 

shared through the topology is useful to the collective performance. Figure 3.11 (left) shows 

3000 packets sent to CH at round 200. The number of packets keeps increasing until round 

430 where all the nodes are reportedly dead with 11900 packets. Figure 3.11 (right) shows 

3500 packets sent to CH at round 200. The number of packets increases reaching round 

1000, which shows messages flooding through the subgroups even though all the nodes 

are reportedly dead. The continuous messaging shows static non-CHs sends useful and 

useless information to the CHs. For this reason, dynamic CH routing should control the 

messaging for the topology so only useful information is shared. As the number of nodes 

decreases, the probability that a robot has to improve also decreases.  

 

Optimization of the communication procedure between nodes under the MR-LEACH was 

presented in this chapter. Moreover, the dynamic MR-LEACH was improved, considering 

nodes motion compare with static nodes. Such improvements were motivated by the need to 

use large robots without significantly increasing the communication overhead. It is 

noteworthy that the amount of useful information will vary depending on several 

conditions (e.g., number of robots, scenario, mission objectives, among others). 
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The number of local and global broadcasts is evaluated within each subgroup. For 50 

trials, the QRDPSO with MR-LEACH and AODV are tested to understand better how 

robots develop within the QRDPSO. Figure 3.12 represents, for each subgroup, the total 

number of local (see Figure 3.12(a)) and global broadcasts (see Figure 3.12(b)). Local 

broadcasts increase over time, almost proportionally to the number of robots. The pattern 

is observed in both QRDPSO using AODV and QRDPSO using MR-LEACH.  

 

The critical difference between the two protocols is in the number of global broadcasts 

between robots belonging to various social statuses. Only the improvement of socially 

active subgroups depends on such communication. Therefore, as the total number of 

socially active robots decreases, the number of socially excluded robots increases, and 

the possibility of success also decreases (i.e. enhancing the current solution). 

Consequently, this decreases the necessary number of global broadcasts from excluded 

subgroups. 

 

In general, as one observes, socially active robots using AODV usually have a higher 

amount of messages flooding through the whole subgroup than MR-LEACH. The CH 

collected the data obtained from the same cluster nodes and sends it to the CHs. This is 

interesting because global broadcast is connected to enhancing subgroups that need the 

population’s global consent. As a result, such global broadcasts diminish over time. It 

appears that this kind of global message is. This kind of global message seems to be 

significantly less recurrent in socially excluded subgroups. Notice that this dramatically 

decreases communication difficulty as this data needs to be shared between all teammates, 

i.e. broadcast using multi-hop communication to the entire subgroup. Consider a setup of 

4, 8 and 12 robots with one optimal and one sub-optimal solution in a small scenario. 
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(a) 

 

 
(b) 

Figure 3.12: The normalized average number of (a) local, and (b) global broadcasts. 

 

 

Figure 3.13: The ratio between the number of useful messages and the total number of 
messages received from the experimental evaluation 
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As Figure 3.13 depicts, 12 robots represent the most crucial condition tested to the 

chances that the subgroup has to improve. Even with under 80 trials, it was possible to 

observe that a robot could only improve in approximately 15% of the iterations. 

Therefore, only about 15 % of the shared information is useful for collective success. If 

the number of robots decreases, the possibility of a robot improving also decreases 

slightly, thereby reducing the amount of useful information slightly. 

 

3.4 Chapter Summary 

In this chapter, I presented the methodology to achieve three novel contributions from 

this work. The following chapter describes the setup and experiment done considering 

the scope of the search and rescue task and the control parameters proposed to compare 

the performance of QRDPSO against its predecessor, the RDPSO. Partial to Chapter 4 is 

the performance of the QRDPSO swarm for exploration compared to its predecessor, the 

RDPSO. Chapter 4 also discusses the performance of the QRDPSO internal swarm 

communication. Two protocols are examined; the AODV and MR-LEACH through a 

series of experiments that determine their interrupts and power consumptions.  
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Overview 

This work focuses on the utility of swarm robotic strategies into real-world operations, 

such as search and rescue (SaR). This chapter presents the results and analysis of the 

QRDPSO performance for swarm robotic exploration and communication. The chapter 

begins by introducing the simulation setup followed by evaluating the results of QRDPSO 

against its predecessor, the RDPSO. The chapter continues with examining the 

performance of the AODV and MR-LEACH communication protocols to enhance the 

QRDPSO internal swarm communication.  

 

4.2 Environment setup 

For the experiment, the definition of a swarm of robots if given in a MATLAB simulator 

running on a high-performance workstation Lenovo W530 with Intel iCore7, 2.67GHz 

processor and 16GB of RAM. The experiment aims to measure the performance of the 

proposed QRDPSO compared to its predecessor, the RDPSO in terms of a swarm’s 

cooperation in searching optimal solution while performing obstacle avoidance and 

maintaining robot connectivity. The analysis revolves around the observation of the 

convergence time and number of robots lost for a search and rescue task.  

 

The following scopes are defined for the experimental setup: 

• The obstacles’ locations are unknown for the robots and are randomly spread in 

the environment. 

• The shape and the occupied area of each obstacle are random and vary between 

the obstacles. 

• There is only one target in the environment. 

• The location of the target is unknown to robots. 
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Figure 4.1: A 300x300m environment used in the experiment with random obstacles and 
a single target (victim) 

 

Figure 4.1 shows the environmental setup used for the experiment. In Figure 4.1, the 

rectangular blocks represent random obstacles generated. The triangular markers 

represent robots. The triangular-shaped in yellow represents the victim at a random 

location unknown to the robots. The green triangles denote robots which successfully 

located the victim and are proceeding towards it. In blue and red, the robots face some 

trouble navigating around obstacles with the potential to get stuck in local optima.  

 

In this example, several black triangles are depicted as far away from other robots (on 

their own at random positions, respectively). These robots have lost communication with 

the swarm and are moving randomly in the hope to regain the communication range with 

the swarm. These robots may get back on track towards the victim if they can receive 

signals from other robots. 
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4.3 The QRDPSO exploration and communication performance  

The proposed QRDPSO algorithm is tested from swarm robot exploration and 

communication carefully addressing all research questions as described in chapter 1. 

Table 4.1 revisits the research mapping and highlight the completion of all research 

objectives:  

  Table 4.1: The research mapping revisited 

Research Questions 
Research 

Objectives 
Methodology 

Outcome / 
Contribution 

1. How can one 
improve the 
maturity and rate 
of convergence 
for RDPSO 
during swarm-
robot exploration? 

To formulate a 
searching strategy to 
reach global best in 
shorter time in 
existing RDPSO 
algorithm 

Application of 
quantum 
computing 
theory (QPSO) 
to extend the 
RDPSO 
algorithm 

A novel QRDPSO 
algorithm that 
improves convergence 
maturity and rate 
during swarm-robot 
exploration over 
RDPSO algorithm 

2. How can one 
enhance the swarm 
communication for 
robot energy 
conservation and 
prolonged lifetime 
during exploration? 

To reduce the 
energy 
consumption of 
sensor (robot) 
nodes by adaptively 
increasing the 
clustering hierarchy 

Application of 
MR-LEACH 
schema that 
partition the 
(robot) network 
into different 
layers of clusters 

A coordinated swarm 
movement strategy 
which conserves the 
robot’s energy and 
extends the robot’s 
lifetime during 
exploration 

3. How does the MR-
LEACH schema 
perform in avoiding 
local optima and 
finding global best 
in comparison to 
benchmark protocol 
such as MANET? 

To test the 
performance of 
QRDPSO swarm 
with MR-LEACH 
schema in avoiding 
local optima and 
finding global best 

Application of 
search and 
rescue problems 
in testing the 
performance of 
MR-LEACH in 
comparison to 
benchmark 
protocol such as 
MANET 

The MR-LEACH 
schema performs better 
time over benchmark 
protocol such as 
MANET in avoiding 
local optima and 
finding global best 
(victims) 
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4.3.1 The QRDPSO swarm exploration performance 

For robot exploration, the convergence time of the swarm remains the most significant 

investigation. This subsection describes the performance of QRDPSO over RDPSO in a 

search and rescue mission in terms of two critical factors. First, the time needed by each 

algorithm in finding the victims, and second, the number of robots lost. Figure 4.2 shows 

that when increasing the number of 5, 10, 15 and 20 robots decreases the time needed to 

find the optimal solution over maintaining the Ad-Hoc On-Demand Distance Vector 

Routing (AODV) connectivity and obstacles avoidance for both QRDPSO and RDPSO. 

 

 

Figure 4.2: Comparison of the time required by QRDPSO over RDPSO in finding the 
optimal solution 

 
Figure 4.3: The number of robots lost after completing the mission 
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When 20 robots are deployed to search the victim (optimal solution) in Figure 4.2, the 

QRDPSO requires 180 iterations, and the RDPSO needs 230 iterations to reach a victim. 

These results show that robots with lower energy consumption can rescue the victim 

faster. Another significant attribute to robot exploration is to avoid robot loss.  

 

Figure 4.3 shows the number of robot loss after completing a search and rescue mission. 

When the number of robots is increased, the number of robot loss increases, which 

decreases the overall time needed to find the optimal solution. These robots are out of 

communication range, so there are no messages between robots, leading to no objective 

function improvement. However, it is observed that these lost robots may move on to 

other regions and resume their task towards an optimal solution. 

 

The ratio between the area covered by the robots and the total area of the scenario 

compares both RDPSO and QRDPSO. Figure 4.4 depicts the ratio of the covered area for 

each different team size. The charts’ vertical lines represent the range retrieved from the 

20 trials of each different team size. The chart shows that QRDPSO provides broader 

coverage immediately after the initial deployment. Furthermore, the differences in the 

covered area of both algorithms are more apparent with larger populations because of the 

high number of intersection in the robots’ sensed areas, when these are deployed using a 

random deployment. 

 

Figure 4.5 show the outcome when running the QRDPSO to investigate robot loss. The 

simulation runtime takes about 10mins to capture the swarm progression from 

initialization until convergence. The black triangle represents a sample of robot loss in 

the experiment. Figure 4.6 repeats a similar experiment with the QRDPSO predecessor, 

the RDPSO, for comparison.  
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Figure 4.4: Ratio of covered area for a population of 5, 15, 20 and 25 robots grouped into 
three subgroups 
 

 

(a) The QRDPSO at t=0 (initialization) 

 

(b) The QRDPSO at t = 1 min 
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(c) The QRDPSO at t = 2 min 

 

(d) The QRDPSO at t = 4 min 

 

(e) The QRDPSO at t = 6 min 
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(f) The QRDPSO at t = 7 min 

 

 

(g) The QRDPSO at t = 9 min 

 

(h) The QRDPSO at t = 10 min (3 robot loss) 

 
Figure 4.5: The QRDPSO simulation at initialization and several intervals 
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(a) The RDPSO at t=0 (initialization) 

 

 

(b) The RDPSO at t=1 min 

 

 

(c) The RDPSO at t=2 min 
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(d) The RDPSO at t=4 min 

 

 

(e) The RDPSO at t=6 min 

 

 
(f) The RDPSO at t=7 min 
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(g) The RDPSO at t=9 min 

 

 
(h) The RDPSO at t=10 min (8 robots are loss) 

Figure 4.5: The RDPSO simulation at initialization and several intervals 

 

The QRDPSO exploration is superior to its predecessor, the RDPSO in terms of robot 

loss. After 10 minutes of simulation in the same experimental setup, the RDPSO started 

to lose robots and eventually ends with eight robot loss (see Figure 4.5 (h)). On the other 

hand, the QRDPSO shows lesser communication disruption and can connect to all robots 

in the swarm for most of the time. The QRDPSO ends with three robot loss at 10 minutes. 

Each robot is an asset to a swarm. They are significant for the exploration task because 

they increase the odds at improving searching chances. This study shows improving the 

RDPSO with quantum behaviour boost the searching performance of the swarm robots.  
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4.3.2 The QRDPSO communication performance 

This research explores two communication protocols for QRDPSO. The first protocol 

under examination in this subsection is the AODV communication protocol, and the 

second one is the MR-LEACH proposed by Farooq et al. (2010). In the AODV protocol, 

the communication between robots shows interrupts. Figure 4.6(a) shows robot no. 1 

receives no communication with robot no.4 but connects with robots no. 2, 3 and 5. In 

comparison, Figure 4.6(b) shows the communication in QRDPSO using MR-LEACH 

shows no interrupt between robots, so all robots maintain fully connected. 

 

Quality of inter-robot communication can influence swarm convergence. Figure 4.7 

shows that increasing the number of populations of robots to 5, 10, 15 and 20 decreases 

the time needed to find the optimal solution over maintaining the AODV and the MR-

LEACH connectivity as well as the obstacles avoidance for the QRDPSO. In QRDPSO 

with AODV, five robots can reach the optimal solution in 366 iterations, and the 

QRDPSO with MR-LEACH needs 375 iterations, but the RDPSO requires 418 iterations 

to reach a victim. For ten robots, the QRDPSO with AODV can reach the optimal solution 

in 319 iterations, and QRDPSO with MR-LEACH needs 329 iterations, but in RDPSO, 

368 iterations are required to reach a victim.  

 

Fifteen robots are deployed in QRDPSO with AODV search to find the victim, it needs 

207 iterations, and QRDPSO with MR-LEACH needs 220 iterations, but the RDPSO 

requires 252 iterations. Finally, when 20 robots are deployed to search the victim (optimal 

solution), the QRDPSO with AODV requires 180 iterations and QRDPSO with MR-

LEACH needs 202 iterations. Still, RDPSO needs 230 iterations to reach a victim. These 

results show that robots with lower energy consumption can rescue the victim faster.  
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(a) 

 

 
(b) 

Figure 4.6: The QRDPSO communication with (a) AODV and using (b) MR-LEACH  
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Figure 4.7: Comparison between QRDPSO using AODV and MR-LEACH 

 

 
Figure 4.8: A 300x300m environment used in the experiment to compare 
QRDPSO(AODV) & QRDPSO (MR-LEACH) 
 

Figure 4.8 shows the environmental setup used to compare the QRDPSO with AODV 

and the QRDPSO with MR-LEACH to investigate the number of robot kills. The 

triangular markers represent robots. The triangular-shaped in the red circle represents the 

victim at a random location unknown to the robots. A rectangular block represents a 

random obstacle hiding the victim.  
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In Figure 4.9, the environment which the robots are running the QRDPSO using AODV, 

green triangles denote robots which successfully located the victim and is proceeding 

towards it. One robot (marked by the blue circle) faces some trouble navigating and 

getting stuck in local optima. In this example, several black triangles are scattered far 

away from other robots (black circle). These robots lost communication with the swarm 

and are moving randomly in the hope to regain the communication range with the swarm. 

These robots may get back on track towards the victim if they can receive signals from 

other robots. 

 

 
Figure 4.9: A QRDPSO algorithm using (AODV) protocol 

 

 
 

Figure 4.10: A QRDPSO algorithm using (MR-LEACH) 
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In Figure 4.10, when the robots use QRDPSO with MR-LEACH, it is observed that the 

communication is not lost with the swarm, and the robots successfully locate the victim 

and able to avoid getting stuck in local optima. Even the robot marked in the blue circle 

is not lost. The robot is separated but receives information to update its position and join 

the rest of the swarm.  

 

Figure 4.11 shows a comparison between the QRDPSO running AODV and the QRDPSO 

with MR-LEACH. It is observed that increasing the number of populations of robots to 

5, 10, 15 and 20 increases the number of robots lost when QRDPSO with AODV is used. 

When the MR-LEACH is used, the QRDPSO swarm can find the optimal solution without 

significant robot loss. 

 

 

Figure 4.11: Several robot kills when the QRDPSO applies AODV and the MR-Leach 
protocol 
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Another attribute which is investigated in the experiment is channel availability for fault 

tolerance. Autonomous mobile robots have difficulty in carrying out the complex mission 

in a dynamic environment. In this study, a fault-tolerant system is designed for 

autonomous mobile robots using channel availability. The CHs can exchange messages 

between each other by using any channel. The QRDPSO robots were connected meaning 

they may continue sending messages without interruption even when one or more 

clustering hierarchy components fail.  

 

The robot’s communication performance is tested and analysed using two network 

protocols, the AODV and the MR-LEACH. For the QRDPSO, the performance of the 

swarm communication is optimum (not interrupted). However, the QRDPSO with AODV 

shows interrupts and communication break downs. Figure 4.12 shows an experiment’s 

progression where the simulation runtime is about 5 minutes for QRDPSO with AODV. 

The same experimental setup is performed for QRDPSO with MR-LEACH in Figure 

4.13. 

 

 
(a) The QRDPSO (AODV) at t=0 min (initialization) 
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(b) The QRDPSO (AODV) at t=1 min (initialization) 

 

 
(c) The QRDPSO (AODV) at t=2 min 

 

 
(d) The QRDPSO (AODV) at t=3 min 

 

 
(e) The QRDPSO (AODV) at t=4 min 
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(f) The RDPSO (AODV) at t=5 min (4 robots lost communication) 

  
Figure 4.12: The QRDPSO swarm with the AODV communication protocol 

 
(a) The QRDPSO (MR-LEACH) at t=0 min  

 
(b) The QRDPSO (MR-LEACH) at t=1 min  Univ
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(c) The QRDPSO (MR-LEACH) at t=2 min  

 

 
(d) The QRDPSO (MR-LEACH) at t=3 min  

 
(e) The QRDPSO (MR-LEACH) at t=4 min  

 

 
(f) The QRDPSO (MR-LEACH) at t=5 min (no robot loss detected 
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Figure 4.13: The QRDPSO swarm with the MR-LEACH communication protocol  

The simulator indicates the messaging happening inside the QRDPSO swarm through 

publishing the adjacency matrix. The adjacency matrix denotes 0 when an interruption 

occurs. Otherwise, the matrix publishes 1 to indicate connectivity. When MR-LEACH is 

running, the QRDPSO adjacency matrix is fully connected. Figure 4.14 shows two 

examples when MR-LEACH is running at t=1 and t=4.  

 

 
(a) 

 

(b) 
Figure 4.14: The QRDPSO (MR-LEACH) adjacency matrix  at (a) t=1, and (b) t=4 
showing full connectivity among the swarm robots 
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4.4 Energy consumption 

The energy consumption of nodes should be minimized to increase the nodes’ lifetime. 

Figure 4.16 shows the different energy consumed by 20 nodes concerning the simulation 

time between two protocols, the AODV and the MR LEACH. Based on the results 

obtained, it is shown that the QRDPSO running MR-LEACH consumes less energy than 

the QRDPSO running AODV. The result also showed that the power consumption kept 

increasing in both protocols when the simulation time increases.  

 

This behaviour means the MR-LEACH can increase the lifetime for the nodes more than 

the AODV. Figure 4.16 shows the difference in the energy consumed by a node 

concerning the simulation time, showing that MR-LEACH consumes less than AODV. 

And the power consumption is increasing in both protocols when the simulation time 

increases. So, the MR leach increase lifetime for the nodes more than AODV. For 

Example, in 900 iteration the AODV consumed energy 63 % and MR LEACH 48%. So, 

the MR LEACH increase lifetime for the nodes more than AODV. 

 

 

Figure 4.15: Comparison Energy Consumption between AODV & MR- LEACH   
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4.5 Discussion 

This chapter presented a comparative study of the QRDPSO and the RDPSO algorithm’s 

predecessor on a MATLAB simulator. Following similar experimental setup for both 

algorithms, the experiment showed that the QRDPSO model has a linear convergence of 

the whole population (robots) when reaching the global best solution and showing fewer 

robots lost than the RDPSO. Also, the QRDPSO performs better in both speed and energy 

consumption in comparison to the RDPSO. When twenty robots are deployed to search 

the victim (optimal solution), the RDPSO requires 20 min: 23 sec and QRDPSO used 10 

mins: 01 sec to reach a victim. The capacity to keep resources helps the QRDPSO swarm 

to rescue the victim faster than RDPSO. 

 

Communication is vital for the swarm to maintain cooperation. It can be reported that 

there is an improvement in terms of connectivity among individual robots in the QRDPSO 

swarm over the RDPSO. Nevertheless, there is still much to explore regarding enhancing 

the QRDPSO swarm communication for robot energy conservation and prolonged 

lifetime during search and rescue exploration. In this work, adopting a multi-hop 

clustering routing protocol using the MR-LEACH minimizes the entire sensor nodes 

(robots). MR LEACH consumed energy 48%, and ADOV consumed energy 63 % in 900 

iterations. So, the MR LEACH increase lifetime for the nodes more than AODV. 

 

Interestingly, the performance analysis shows that even though the QRDPSO with MR-

LEACH performs well compared to the QRDPSO with AODV in terms of the increased 

lifetime of robots and reduce interrupt communication, the QRDPSO with AODV can 

reach the optimal solution faster than QRDPSO with MR Leach.  
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4.6 Chapter summary 

This chapter shows the experimental setup and discusses the performance of the 

QRDPSO on two main aspects; exploration and communication. For exploration, the 

experimental setup and simulation compare the performance of the QRDPSO to its 

predecessor, the RDPSO. The result shows that the QRDPSO has a superior attribute, i.e. 

significant reduction of robot loss during swarm exploration.   

 

For communication, the experimental setup and simulation dive into protocols to enhance 

the QRDPSO internal messaging. Two communication protocols have been evaluated; 

the AODV and the MR-LEACH. Results show that the AODV is more robust in speed 

but consumes too much energy and at times cause communication interruption. The MR-

LEACH has a better pace and power management, which promotes swarm endurance. 

Swarm endurance is vital; thus, the MR-LEACH is advantageous in supporting 

exploration tasks. The next chapter concludes the thesis. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

This thesis begins with a notion: the quantum behaving particle agents in the QPSO show 

ideal searching capabilities, avoidance of premature convergence and faster convergence 

speed. Hypothetically, its adoption to practical swarm robotics algorithms such as the 

RDPSO can boost the searching capabilities, help robots avoid local optimal solutions 

and converge to reach the optimal global solution within a shorter time. Further 

investigation shows the notion is valid, with some conditions, and thus constitutes the 

most significant contribution of this work: discovering an ideal and practical quantum 

behaving algorithm for swarm robotics exploration and communication, in short, the 

QRDPSO.  

 

The QRDPSO algorithm's success is attributed to the foundation of the QPSO equation. 

The particle movement in the QPSO is not based on velocity parameters but defined as 

wave (i.e. quantum-like), consequently offering stability and convergence speed. 

However, the QPSO lacks two properties limiting it from making waves onto practical 

robotics swarm applications. Namely, a communication function, because unlike 

particles, robots are supposed to communicate with other robots. Therefore, an obstacle 

avoidance function is required so a robot can use its sensors to navigate safely in its 

environment.  

 

Having an obstacle avoidance function is where conceptually, the QRDPSO resemblance 

to the QPSO begins and ends. It begins by taking the QPSO form but reforms it by adding 

the two new functions using standard deviations. Even though the two new functions are 

available in RDPSO, it is noteworthy to claim that the two new functions’ 

parameterisations, communication, and the obstacle avoidance functions used in this 
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work are nowhere similar to the RDPSO’s in practice. An innovative approach to impose 

a cost function or objective function to minimize the distance between the robot and 

victim to approach zero have been introduced in this work.  

 

From there on, an in-depth analysis of distributed approach and the Darwinian paradigm 

shows why such combination is distinct for a real-time swarm robotics algorithm like the 

RDPSO. In practice, the RDPSO algorithm’s insights over the likes of other PSO-based 

algorithms are threefold. One, the RDPSO is the only algorithm scalable to large 

populations of robots. Two, the RDPSO is traffic-savvy as it proposed reducing the 

amount of mandatory knowledge exchange among one robot to another. Three, the 

RDPSO can show higher speed convergence with better accuracy.  

 

To capitalize on the strengths of the RDPSO for practical swarm robotics exercise, four 

methods forwarded by the RDPSO are adopted in the implementation of the QRDPSO as 

follows: 

 

1. Inclusion of a punish and reward mechanism to mimic the deletion and creation 

of robots, keeping the Darwinian principles of survival-of-the-fittest and 

extending the swarms ability in avoiding sub-optimal solutions, 

2. Inclusion of an obstacle avoidance algorithm to avoid collisions in static and 

dynamic environments, particularly unavoidable for practical use cases such as 

the SaR missions, 

3. Inclusion of an enforcing multi-hop network connectivity algorithm to ensure that 

the network communication protocol remains connected throughout the mission 

with no interruptions between the robots, and 
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4. Inclusion of architecture to construct a planar deployment of robots using a 

network communication protocol to distribute the swarm robots as much as 

possible at the same time. 

 

Where the RDPSO used MANET as the network communication protocol, the QRDPSO 

algorithm is completed with the MR-LEACH schema to control the robotics swarms’ 

communication traffic. It is interesting to observe that with the MR-LEACH as the 

communication protocol, the interconnectivity in the QRDPSO remains uninterrupted. 

Full connectivity is mainly due to the MR-LEACH schema set as sink-less, which allows 

the robots to communicate directly to other robots without reporting individually to the 

base station. Such setup cuts transmission time, so messaging between the robots becomes 

instant, and the communication traffic is much less hectic, appealing to achieve the SaR 

missions' goals. In the implementation of the MR-LEACH schema, each node (or robot) 

is redefined as dynamic and not a static, mimicking the active behaviour of robots in the 

swarm. Choosing a distributed, multi-hop strategy over single-hop also significantly 

improves fault tolerance in the QRDPSO.  

 

The MR-LEACH protocols the robots more flexible movement that can cover broad areas 

by using clustering hierarchy design. The robot’s movement is freer than AODV and no 

interruption between robots. The information exchange between robots without interrupt 

can avoid local optima and find global best (victims) compared with AODV. A 

communication schema such as MR-LEACH optimizes the QRDPSO swarm for search 

and rescue mission. Most significantly, the QRDPSO swarm covers a wide area, without 

falling into local optima and promoting fast global best search.  
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In conclusion, this work shows how the QPSO, a quantum-based particle behaving 

algorithm is extended with a distributed Darwinian approach to producing a novel PSO 

derivation for swarm robotics application, coined the QRDPSO. This thesis showcased in 

length the details on the formulation and specific parameterization conditioning for the 

QRDPSO algorithm to overcome communication constraints and avoid robots from 

getting trapped in local solution in search and rescue simulations.  

 

5.2 Future work 

It is without reservation that some questions are raised from this work which provides 

motivations for future work. In particular, the RDPSO has shown success in simulation 

and after much investigation, found some success recently in real-time. How would the 

QRDPSO fare in the real world? Can the QRDPSO swarm robots cooperate and perform 

search and rescue in hostile environments? Would the MR-LEACH schema sustain the 

integrity and no-interruption policy of inter-robot communication? How far or large is the 

search space before the QRDPSO swarm robots lost communication? Further research 

needs to be done to understand the nature of the real world.  

 

From a practical standpoint, the new QRDPSO with MR-LEACH could be useful as an 

approach for robot exploration and communication. A practical QRDPSO could lead to a 

new paradigm for swarm robotics. However, a more robust algorithm is due before 

performing tests in the real world and different environments, such as multiple targets.  

 

Finally, the approach developed here is not restricted, and the QRDPSO algorithm 

proposed, their methods, tools and insights can, and should, be applied to other swarm 

robotic algorithms and applications.  
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