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BIDIRECTIONAL AND SEMI-BIDIRECTIONAL RAPIDLY-EXPLORING

RANDOM TREE-BASED VARIANTS FOR ROBOT MOTION PLANNING

ABSTRACT

Motion planning is involved in various applications such as Unmanned Aerial Vehicles

(UAVs), Autonomous Underwater Vehicles (AUVs), driver-less cars, virtual prototyping,

biology, and computer graphics. Planners need to find collision-free paths for movable

agents from one point to another in state spaces. Path planning is mostly about finding

paths in continuous spaces, which is considered as an Np-hard problem. In order to

avoid this complexity, planners discretize continuous spaces into discrete spaces to limit

the number of states that planners need to check to release paths. There are two types

of motion planners: graph-based planners and sampling-based planners. Graph-based

methods, such as A*, are efficient. Nonetheless, they need to use a priori approximation

of the state space. If these approximations are not chosen accurately, they are not able to

provide appropriate solutions. If the selected resolution is low, the output would be low

quality. If the selected resolution is high, it is computationally expensive to solve. On

the other hand, sampling-based methods do not need to have any resolution for solving

planning problems. They use random sampling to avoid prior discretization of state spaces.

Rapidly-exploring Random Tree (RRT) is one of the most popular sampling-based methods

for single-query planning problems due to its ability to find solutions efficiently. Informed

RRT* is an optimized version of RRT, which not only implements the rewiring process

to optimize the tree but also limits the search area to a subset of the state space to return

near-optimal solutions faster. However, before finding an initial solution, the planner is not

able to shrink the problem domain. Therefore, it searches all over the problem domain

to be able to find an initial solution. Moreover, unidirectional RRTs, such as Informed
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RRT*, take more time to find initial solutions in comparison to the bidirectional RRTs.

This thesis proposes two new motion planners, one is a bidirectional motion planner

(Informed RRT*-Connect), and another one is a semi-bidirectional motion planner (Hybrid

RRT). Informed RRT*-Connect is the informed version of RRT*-Connect that uses direct

sampling after an initial solution is found. Unlike RRT*-Connect, the proposed method

checks only the states that can potentially provide better solutions than the current solution.

On the other hand, Hybrid RRT divides the planning process into three parts: finding

initial solutions by a dual-tree search, combining two trees into one, and optimizing the

solution. Hybrid RRT implements a dual-tree search to obtain its initial solution, which

helps it find solutions faster than unidirectional searches. Then, it combines the start tree

and the goal tree of the dual-tree search into one to implement informed sampling on a

single tree to optimize the current solution. The simulation has been carried out in the

Open Motion Planning Library (OMPL). Planners have been compared in terms of finding

initial solutions, success rate, and path length. The simulations show that the proposed

methods surpass state-of-the-art motions planners in terms of the success rate and the path

length.

Keywords: RRT, Motion Planning, Robotics, Informed sampling.
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VARIAN PENJELAJAHAN-PANTAS POHON RAWAK DWI ARAH DAN

SEMI-DWI ARAH UNTUK PERANCANGAN PERGERAKAN ROBOT

ABSTRAK

Perancangan pergerakan (motion planning) boleh didapti dalam pelbagai aplikasi seperti

Kenderaan Udara Tanpa Manusia (UAVs), Kenderaan Bawah Permukaan Air Berautonomi

(AUVs), kereta tanpa kenderaan, pemprototaipan maya, biologi, dan grafik komputer.

Perancang perlu mencari jalan bebas perlanggaran untuk agen bergerak dari satu titik ke

titik lain di ruang keadaan. Perancangan laluan kebanyakannya mencari laluan dalam

ruang yang berterusan, yang dianggap sebagai masalah Np-hard untuk diselesaikan. Untuk

mengelakkan masalah ini, para perancang membezakan ruang yang berterusan kepada

ruang diskret untuk mengehadkan bilangan keadaan yang perancang perlu semak untuk

melepaskan laluan. Terdapat dua jenis perancangan pergerakan: perancangan berdasarkan

graf (graph-based planners) dan perancangan beradasarkan pensampelan (sampling-based

planners). Kaedah berdasarkan graf seperti A* adalah efisyen. Walaupun begitu, ia perlu

menggunakan pendekatan penaakulan ruang keadaan. Sekiranya pendekatan ini tidak

dipilih dengan tepat, ia tidak akan dapat memberikan penyelesaian yang sesuai. Sekiranya

resolusi dipilih terlalu rendah, penyelesaiannya boleh dijumpai dengan pantas, tetapi

berkualiti rendah. Sekiranya resolusi dipilih terlalu tinggi, laluan dipilih akan berkualiti

tinggi, tetapi cara penyelesaian graf sedemikian akan menjadi mahal secara komputasi.

Sebaliknya, kaedah berasaskan pensampelan tidak perlu mempunyai resolusi untuk penye-

lesaian masalah perancangan. Ia menggunakan persampelan rawak untuk mengelakkan

diskretisasi ruang keadaan sebelumnya. Rapidly-exploring Random Tree (RRT) adalah

salah satu kaedah berasaskan pensampelan yang paling popular untuk menyelesaikan

masalah perancangan pertanyaan tunggal (single-query), yang telah banyak digunakan
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untuk masalah perancangan gerakan kerana keupayaannya untuk mencari penyelesaian

dengan cekap. Informed RRT* adalah versi RRT yang dioptimalkan, yang tidak hanya

mengimplementasikan proses pewayaran semula (rewiring) untuk mengoptimalkan pohon

tetapi juga membatasi kawasan pencarian kepada subset ruang keadaan untuk mendapatkan

solusi yang hampir-optimal (near-optimal) dengan lebih cepat. Walau bagaimanapun,

sebelum menjumpai penyelesaian awal, perancang tidak mampu untuk mengecilkan

domain masalah. Disamping itu, RRT satu arah, seperti Informed RRT*, mengambil

lebih banyak masa untuk mencari penyelesaian awal berbanding dengan RRT dwi arah.

Tesis ini mencadangkan dua perancangan pergerakan baru, pertama, adalah perancang

pergerakan dwi arah (Informed RRT*-Connect), dan satu lagi adalah perancang pergerak-

an semi dwi arah (Hybrid RRT). Informed RRT*-Connect adalah versi RRT*-Connect

yang menggunakan persampelan langsung selepas penyelesaian pertama ditemui. Tidak

seperti RRT*-Connect, kaedah yang dicadangkan hanya memeriksa keadaan-keadaan

yang berpotensi memberikan penyelesaian yang lebih baik daripada penyelesaian sema-

sa. Sebaliknya, Hybrid RRT membahagikan proses perancangan menjadi tiga bahagian:

mencari penyelesaian awal dengan carian dwi-pohon (dual-tree search), menggabungkan

dua pokok menjadi satu, dan mengoptimumkan penyelesaiannya. Untuk mendapatkan

penyelesaian awal, Hybrid RRT menerapkan carian dwi-pohon, yang membantu ia mencari

penyelesaian lebih cepat daripada carian satu arah (unidirectional search). Kemudian,

ia menggabungkan pohon permulaan dan pohon matlamat carian dwi-pohon ke dalam

satu untuk melaksanakan pensampelan yang dimaklumkan (informed sampling) pada satu

pohon untuk mengoptimumkan penyelesaian semasa. Simulasi dijalankan menggunakan

Open Motion Planning Library (OMPL). Perancang-perancang dibandingkan dengan

masa untuk mencari penyelesaian awal, kadar kejayaan untuk mencari penyelesaian dalam

masa terhad, dan jarak laluan. Simulasi menunjukkan bahawa kaedah yang dicadangkan
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mencapai penambahbaikan berbanding kaedah sedia ada.

Kata kunci: RRT, Perancangan Pergerakan, Robotik, Persampelan bermaklumat.
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CHAPTER 1: INTRODUCTION

This chapter provides an overview of this research including a background of motion

planning (Section 1.1), the problem statement (Section 1.2), the research objectives

(Section 1.3), the research scope (Section 1.4), and an overview of the following chapters

(Section 1.5).

1.1 Research Background

Autonomous robots have become one of the most demanding fields of research due to

their applications in many fields in which they would work better and safer than humans to

accomplish tasks. Autonomous robots have many applications such as self-driving cars

(Fulgenzi et al., 2008; González et al., 2015; Klemm et al., 2015; Kuwata et al., 2009;

Lan & Di Cairano, 2015; Paden et al., 2016; Yoon & Crane, 2011), Unmanned Aerial

(a) (b)

(c) (d)

Figure 1.1: (a) CoCar, a vehicle modified for autonomous driving, (b) Google Self-Driving
Car, (c) Universal Robots industrial collaborative robot arm, UR10e, (d) GreyOrange
warehouse robots.
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Vehicles (UAVs) (Zammit & Van Kampen, 2018), warehouse automation (Wohlsen, 2014),

industrial robots (Ellekilde & Petersen, 2013), welding multi-degree of freedom (DOF)

robots (Olsen & Petersen, 2007), and domestic robots (Srinivasa et al., 2010) (Srinivasa et

al., 2012), (Figure 1.1).

One of the most important parts of autonomous robots is motion planning (LaValle,

2006). Motion planning is about finding a sequence of configurations which helps a robot

start moving from an initial location, the start location, and reach within the desired region,

the goal location. This set of connected configurations, the path, has to be collision-free.

In other words, motion planners must provide a set of motions that allow robots to avoid

collisions with the obstacles around them. Moreover, the path must be feasible, which

means that the configurations must be performable by the robot.

Motion planning is mostly about finding paths in continuous state spaces. Finding

paths in continuous state spaces is a challenging task. Therefore, motion planners need to

simplify their searches in order to return their solutions in an appropriate amount of time.

There are several approaches to limit the number of states, such as limiting the search to a

subset of the state space, reducing the number of samples by making a grid (Graph-based

methods), or randomly sampling the state space (Sampling-based methods).

1.1.1 Graph-based Approaches

Graph-based methods create maps from continuous state spaces in order to have a

finite number of states to check. There are several graph-based methods, such as Dijkstra

(Dijkstra et al., 1959) and A* (Hart et al., 1968). These methods are able to return optimal

solutions in the given resolution. Therefore, they are considered as resolution-optimal

planners. They will return failure if there is no solution to the problem. Moreover, these

algorithms guarantee to find a solution to a given problem, if one exists. Thus, they are

also categorized as resolution complete planners.
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Informed graph-based searches, such as A* (Hart et al., 1968), are able to find resolution-

optimal solutions as well as guarantees on their efficient searches. Therefore, they are

successful in many continuous planning problems. In spite of their benefits, they need to

discretize the problem domain with a predefined resolution. Low-resolution graphs will

lead to solving the problem quickly, but the result would be low-quality. High-resolution

graphs will result in high-quality solutions (Bertsekas, 1975), but they may lead to complex

graphs, which could be computationally expensive. This problem will be getting worse

with the increase of the problem dimension and size, which is known as the curse of

dimensionality (Bellman, 1954; Bellmann, 1957). In other words, graph-based algorithms

have problems with scaling with the problem dimension and size (Gammell et al., 2014).

1.1.2 Sampling-based Approaches

In spite of graph-based methods, Sampling-based methods are not creating a priori

graph from state spaces. They incrementally search the problem domain by taking random

samples. This process increases the resolution incrementally until an appropriate solution

is found. There are many well-known sampling-based approaches, such as Probabilistic

Roadmaps (Kavraki et al., 1996) and Rapidly-exploring Random Tree (RRT) (LaValle,

1998).

Sampling-based methods are able to return solutions when the number of samples goes

to infinity. This is the definition of Probabilistic complete. It means that the probability of

returning a solution if one exists will go to one if the number of samples goes to infinity.

RRT is a single-query motion planner that explores state spaces by taking random

samples and then grow its tree toward the random samples. It stops searching the state

space once it could add a sample from the goal area to its tree. Although RRT could find

solutions relatively fast, its solutions remain suboptimal (Karaman et al., 2011).

RRTs are anytime approaches, which means that they can be stopped at any time during
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their exploration process and return their best-obtained results. However, if they are

stopped before finding an initial solution, they will return no solution, which is not an

appropriate result for anytime searches. Therefore, it is important to find an initial solution

as fast as possible to be able to have at least a feasible path to return whenever the planner

is stopped.

RRT* (Karaman & Frazzoli, 2011) is an asymptotically optimal version of RRT,

which incrementally optimize its solutions. It has the unity probability of returning the

near-optimal solutions when the number of samples goes to infinity. Planners like RRT*

are called almost-surely asymptotically optimal. The accuracy of this method increases

proportionally to the number of samples. In other words, RRT* is able to return optimal

solutions, if the number of samples goes to infinity. Unlike RRT, RRT* will not stop

exploring the state space after an initial solution is found. It keeps sampling the state space

not only for finding other solutions but also for improving the existing solution with future

samples.

RRT* could return near-optimal solutions. However, it is inefficient to sample all over

the state space in order to improve the quality of the existing solution due to its nature,

single-query planner (Gammell et al., 2014). It is better to shrink the state space into

different areas and then prioritize them. Then, look through the areas based on their

priorities. Many works have been published to solve this problem. They prioritize different

parts of a state space, and then start sampling the areas that have more possibility to improve

their solutions, such as RRT*-Smart (Nasir et al., 2013) and Tropistic RRT* (Wang et al.,

2018). Although these planners could solve some problems faster than other RRT-based

methods, their sampling methods are nonuniform. Nonuniform sample distributions divide

a state space to different regions and search the region that has a higher possibility of

having a solution. However, in many scenarios, the only solution may lie in the region with
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lower possibility. Therefore, their reduced sampling probability can decrease performance

or even preclude finding a solution.

Informed RRT* (Gammell et al., 2018, 2014) is a version of RRT*, which not only

prioritizes the state space based on the cost of the existing solution but also keep uniformly

sampling state spaces.

Informed RRT* acts similarly to RRT* before any solution is found. Unlike nonuniform

sampling-based methods, Informed RRT* go through all over the state space to be able to

find an initial solution by uniformly sampling the state space.

After finding an initial solution, Informed RRT* limits the search area into an ellipsoidal

subset of the state space, which has the start and goal locations as its focal points, and its

eccentricity is determined according to the minimum cost of the existing solution. This

subset is an admissible estimation of all possible solutions better than the current one. In

other words, there is no better solution than the existing one, which lies outside of the

ellipsoidal subset. Limiting the state space to one of its areas helps the planner to be able

to return near-optimal solutions faster than other planners that keep sampling the whole

area of the state space.

1.2 Problem Statements

Although Informed RRT* can return near-optimal solutions faster than RRT*, it is

required to find an initial solution to shrink the state space to a subset. Informed RRT*

samples all over the state space to find initial solutions similarly to RRT* before an initial

solution is found.

Informed RRT* can only expedite the optimization process, but not the process of

finding initial solutions. It is because that Informed RRT* and RRT* act similarly before

an initial solution is found.

Moreover, nonoptimized RRTs are expanding over state spaces faster than asymptotically
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optimal RRTs such as RRT* and Informed RRT*. It is because that optimized versions

run their optimization processes in each iteration, which are time-consuming procedures.

Therefore, the optimization process makes optimized versions slower than nonoptimized

versions, which do not need to spend time on optimization. The problem statements of

this research are listed below:

• Unidirectional RRTs such as RRT* and Informed RRT* are relatively slow planners

in terms of finding initial solutions.

• Asymptotically optimal versions RRT are taking time for optimizing processes,

which makes them slow to find initial solutions.

1.3 Research Objectives

The objectives of this study can be identified as follows:

• To investigate the existing single-query sampling-based approaches.

• To design and develop an asymptotically optimal bidirectional RRT, which uses

informed sampling after finding initial solutions.

• To design and develop a semi-bidirectional version of RRT that uses nonoptimized

bidirectional RRT to find an initial solution and then uses asymptotically optimal

unidirectional RRT for optimization.

• To compare the performance of the proposed methods with the existing ones.

The proposed methods should be more successful planners than state-of-the-art motion

planners, such as RRT* and Informed RRT*, in terms of anytime capability.

1.4 Research Scope

This study focuses on single-query sampling-based methods. The proposed methods

are new versions of RRT, which are asymptotically optimal RRTs. The proposed methods
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will be developed in the Open Motion Planning Library (OMPL), which gives the ability

to compare them with the existing methods.

OMPL App offers several scenarios, including 2D, 3D, and 6D. In order to show a

comprehensive overview of the abilities of the proposed method in solving motion planning

problems, scenarios from all types are selected for comparison of the proposed methods

with state-of-art motion planners.

1.5 Overview of the Chapters

Chapter 2 provides the necessary background and literature review for the existing

motion planners, including graph-based and sampling-based approaches. The research

methodology is presented in Chapter 3.

Chapter 4 introduces Informed RRT*-Connect (Mashayekhi, Idris, Anisi, Ahmedy, &

Ali, 2020), which is a bidirectional RRT-based motion planner. It has two trees, one rooted

in the start location, while another is rooted in the goal location. Informed RRT*-Connect

is an almost-surely asymptotically optimal motion planner, which focuses its search to

a subset of the problem domain to be able to return near-optimal solutions faster than

other optimized versions of RRT that look through all possible states after finding initial

solutions.

Chapter 5 presents another almost-surely asymptotically optimal planner, Hybrid RRT

(Mashayekhi, Idris, Anisi, & Ahmedy, 2020). Hybrid RRT uses a dual-tree search to be

able to find an initial solution as fast as possible. It then combines these two trees into

one with the aim of optimizing only one tree, which is faster than optimizing two trees.

Chapter 6 provides the conclusion of the thesis.
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CHAPTER 2: LITERATURE REVIEW

This chapter is a background of path planning, feasible paths, and optimal paths for

robots in continuous state spaces (Section 2.1). Motion planning is about searching for a

sequence of motions that robots could perform to go from one location to another while

avoiding any collisions with the obstacles in their ways. A path is considered feasible when

all its parts could be performable for the robot due to the different constraints. Optimal

path planning is about searching for a path within several feasible paths, which minimizes

a particular path cost function.

Motion planning problems aremostly about finding paths in continuous spaces. However,

looking for a path in a continuous space will be complex and difficult. Therefore, motion

planners normally discretize state spaces then searching through the states. Discretization

helps planners have a limited number of states to check to release their outputs. The

discretization of state spaces is mostly divided into two groups: graph-based methods

(Section 2.2) and sampling-based methods (Section 2.3).

This work concentrates on motion planning problems that use sampling-based methods.

It implements informed sampling (Gammell et al., 2018, 2014), which limits the search

area to a subset in order to return solutions faster due to having a smaller number of states

to be checked in comparison to the whole state space. This thesis implemented informed

sampling on sampling-based methods, which provides two new motion planners that act

better than state-of-the-art algorithms (Section 2.4).

2.1 Planning Problems

Motion planning problems in robotics is about finding paths in state spaces to allow

robots tomove from one location to another. The definitions of feasible motion planning and

optimal motion planning are represented in Definition 2.1 and Definition 2.2, respectively.
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Definition 2.1 The feasible motion planning problems. Let - ⊆ R= be the n-dimensional

planning environment, ->1B ⊂ - be the states that occupied by obstacles, and - 5 A44 =

2; (-\->1B) be the set that are collision-free, where 2; (·) represents the closure of a set.

Let GBC0AC ∈ - 5 A44 be the start state that a robot is standing at the begging of planning and

-6>0; ⊂ - 5 A44 be a set of states that the robot needs to reach there to accomplish its task.

Let f : [0, 1] → - 5 A44 be a sequence of states that robot could perform, and Σ be the set

of all such nontrivial paths.

The motion planning will be defined as looking for any solution from this set, f′ ∈ Σ,

that connects GBC0AC to G6>0; ∈ -6>0; ,

f′ ∈ {f ∈ Σ | f(0) = GBC0AC , f(1) ∈ -6>0;}.

Definition 2.2 The optimal planning problem. The optimal motion planning is about

searching among the feasible path to minimize a given path cost function, f∗ ∈ Σ.

f∗ = argf∈Σ min{2(f) | f(0) = GBC0AC , f(1) ∈ -6>0;}.

Motion planning problems can be categorized into two groups, multi-query and single-

query problems. Multi-query problem is about finding solutions between several start

locations, GBC0AC , and goal locations, G6>0; . Multi-query problems use the same information

to connect several points in the same search space together so that they often perform a

calculation before performing any motions to obtain a map from the search space.

Single-query problems, on the other hand, are about finding a solution between a single

start location and a single goal location so that it is not appropriate to create a map from

the state space, which can connect almost all parts of the state space. It is necessary to find

the solution as efficiently as possible without consuming the time for any preprocessing.
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2.2 Graph-based Searches

Graph-based methods usually create a graph from the state space to have a limited

number of states, vertices, that are connected via edges. Many robotics cost functions such

as path length satisfy Bellman’s principle of optimality (Bellman, 1954; Bellmann, 1957),

and the resulting discrete problem can be solved with dynamic programming (Bellman,

1954; Larson, 1967).

Their performance is depended on the a priori discretization. If a graph-based algorithm

guarantees to find a solution to a given problem at the chosen resolution, if one exists, it is

considered as resolution complete. If the algorithm guarantees to find the optimal solution

at a given resolution, if one exists, it is considered as resolution optimal. By definition,

resolution optimality implies resolution completeness.

Dynamic programming techniques solve optimal planning problems by iteratively

calculating vertices’ costs. Some of the graph-based methods calculate costs between

every pair of vertices in their graphs (Floyd, 1962; Ingerman, 1962; Roy, 1959; Warshall,

1962). They use this information to find optimal solutions, especially for multi-query

problems. On the other hand, some other graph-based methods calculate the costs for a

single vertex to every other vertex in the graph (Bellman, 1958; Ford Jr, 1956; Moore,

1959). These methods are used in multi-query problems that have a start location but

several goal locations.

These two groups of graph-based methods keep searching all over the graph in order to

return resolution-optimal solutions. However, this approach is inefficient for single-query

problems. In other words, it is unnecessary to look through all over the graph to find only

one path to connect a start location to a goal location. In such cases, the resolution-optimal

solution could be found as soon as a solution is found, and all potentially better solutions

are infeasible. These methods, ordered searches, guarantee that solutions would be found
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only after checking all the possibly better solutions. Therefore, it avoids searching all

over the graph to return resolution-optimal solutions for single-query motion planning

problems.

Dijkstra’s algorithm (Dijkstra et al., 1959) finds the resolution-optimal solutions by

calculating the cost-to-come to vertices from the start location. Dijkstra’s algorithm

will stop searching once it found a solution. In other words, Dijkstra’s algorithm finds

resolution-optimal solutions by looking through the vertices with lower costs-to-come.

This method creates a queue from the vertices sorted by cost-to-come. During each

iteration, it removes the lowest-cost vertex in the queue and calculates the costs-to-come of

the descendants of the removed vertex. This process will be continued until the goal is

reached.

A* algorithm (Hart et al., 1968) avoids the low-cost vertices, which are not able to

provide better paths. This method combines the cost-to-come of a vertex with its estimated

cost-to-go, which is the estimated cost of going from a vertex to the goal. This heuristic

allows A* to use the obtained information so as to find a resolution-optimal solution by

checking vertices that potentially capable of providing better solutions.

2.2.1 Near-resolution-optimal Search

The algorithms like A* expand a large number of vertices to find a solution, which

may not be suitable for many practical motion planning problems. It would be acceptable

to reduce the time and effort of searching by relaxing optimality. An algorithm is called

near-resolution-optimal if it could find a solution near the optimal solution if one exists.

Weighted A* (Pohl, 1970, 1973) is a version of A* that is near-resolution-optimal. It

prioritizes the vertices that are closer to the goal to find solutions with fewer vertices.

Another version of Weighted A* called Lazy Weighted A* (Cohen et al., 2015). This

method postpones the cost calculation until it is necessary to reduce the number of

11

Univ
ers

iti 
Mala

ya



calculations and find solutions faster than the standard version of Weighted A*.

Multi-Heuristic A* (Aine et al., 2016) is another version of A* that is able to find

near-resolution-optimal solutions by combining a single admissible heuristic with multiple

arbitrarily inadmissible heuristics. This will provide some information to be incorporated

into searches, including dynamically generated heuristics (Islam et al., 2015), while

maintaining a bound on resolution quality.

These methods may be able to find solutions faster A* in some scenarios, but they are

not able to return resolution-optimal solutions. Instead, they return near-resolution-optimal

solutions.

2.2.2 Incremental Search

In many motion planning problems, it is normal that the environment changes during the

planning time and/or motion execution. Therefore, A* has to restart planning to find a new

solution for the recently changed environment. This is a drawback of A*, which results in

extensive calculation whenever a single change occurred in the state space. In order to

solve this problem, some methods have been proposed to use information from previous

planning for the next round of planning. These methods are categorized as incremental

searches.

Dynamic A* (Stentz, 1997) and derived methods (Ferguson & Stentz, 2005; Koenig &

Likhachev, 2005; Stentz et al., 1995) are incremental searches that are suitable for motion

planning problems in unknown environments. This method starts planning by considering

the obstacle-free environment wherever it is unknown. Then, it will update the plan once

it receives updated information about the unknown part of the environment. Therefore, the

robot could plan and move in an unknown environment efficiently by performing a series

of paths. Although each path is resolution-optimal, the whole path from the start to the

goal is suboptimal.
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Another incremental search A*-based method is Lifelong Planning A* (LPA*) (Koenig

et al., 2004). This algorithm adapts A* to handle the graphs with changing edge weights.

This method can adapt to changes without recalculating the whole graph. LPA* guarantees

to be resolution completeness and resolution-optimality even some changes happen to the

graph. LPA* uses the information of the unchanged part of the graph after some changes

happen to the graph.

D* and LPA* maintain resolution optimality by spread changes through their searches,

which leads to a time-consuming process. It would be better to decrease the planning

time by relaxing optimality. Therefore, some other methods have been proposed, such

as Truncated D* and Truncated LPA* (Aine & Likhachev, 2016). These methods find

near-resolution-optimal solutions instead of resolution-optimal. As a result, they can

reduce the planning time.

Although the methods like LPA* may need fewer vertices than A* to find a solution to a

changeable environment, they are only able to return resolution-optimal paths. Moreover,

in unchanged environments, they need the same number of vertices as A* to return their

solutions.

2.2.3 Anytime Search

In many motion planning problems, planners have a limited amount of time to return

solutions. A* method needs to have enough time to be able to find its solutions, which are

the resolution-optimal ones. Therefore, before finding resolution-optimal solutions, it does

not have any solution to return. As a result, this characteristic is not acceptable in many

applications in which planners must be able to return the best possible solution in a limited

time. In order to achieve this goal, planners should be able to find an initial solution which

is suboptimal and then spend the remaining time of planning to improve the quality of the

path. Such methods would be able to stop at any time to return an intermediate solution.
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These methods are called anytime searches.

Some variations of A* have been proposed, combining near-resolution-optimal and

incremental search techniques to overcome this limitation. Anytime Repairing A*

(Likhachev et al., 2008, 2004) and Anytime Dynamic A* (Likhachev et al., 2005) are two

examples of this combination. They first find an initial suboptimal solution and then try to

improve the quality of their solutions. These methods not only able to return resolution-

optimal solutions eventually but also can return near-resolution-optimal solutions whenever

the planning time is finished.

Although thesemethods can find initial suboptimal solutions with fewer vertex expansion

in comparison to A*, they need more vertices to be able to return resolution-optimal

solutions than A*.

2.2.4 The problem of graph-based methods

The performance of graph-based methods is heavily related to the accuracy of the

approximation graphs that they generate from state spaces. There have been many works

on this part to obtain different types of techniques from the discretization of a continuous

space into a graph. These methods include regular graphs (Lozano-Pérez & Wesley,

1979), graphs with random perturbations (Sallaberger & D’Eleuterio, 1995), graphs with

Kinodynamic velocity and acceleration constraints (Donald et al., 1993), hierarchical,

nonuniform, and multi-resolution graphs (Chen & Hwang, 1998).

In order to discrete the environment, a resolution required to be defined. Figure 2.1

shows a continuous space, which discretized by several resolutions. If a low-resolution

graph is selected for discretization, it then finds the solution quickly, but it would be a

low-quality solution. If a high-resolution graph is selected, the motion planner can solve

the problem accurately (Bertsekas, 1975), but it needs a complex graph that is generally

expensive to be explored. These effects would be intensified by the state dimension and
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Figure 2.1: (a) The continuous state space, (b), Low-resolution graph, (c), Appropriate
resolution graph, (d), High-resolution graph.

the graph size (Bellman, 1954).

Figure 2.2 shows the obstacles that mapped in different graph resolutions. It can be seen

that the problem offers solutions with the high-resolution (Figure 2.2a) and an appropriate

resolution graphs (Figure 2.2b), while for low-resolution graph (Figure 2.2c), it does not
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(a)
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(b)

S G

(c)

Figure 2.2: (a) High-resolution graph has solutions for graph-based methods, (b), Appro-
priate resolution graph has offered solution, (c), Low-resolution graph provides no solution
for this problem.

have any solution.

As a result, one of the most critical decisions of graph-based planners is to select an

appropriate resolution, which should be low enough to be searched quickly as well as high

enough to provide an acceptable result. The appropriate resolution is different from one

space to another so that it is a time-consuming process to find a proper resolution for a

specific problem.

2.3 Sampling-based Planners

Sampling-based approaches are other methods to solve continuous planning problems,

which are simpler than graph-based methods in many scenarios. The accuracy of these

methods will be increased with more samples they take. The anytime ability let them avoid

a priori discretization as well as reducing the curse of dimensionality. They are also able

to improve the performance of systems with differential constraints (LaValle & Kuffner Jr,

2001).

These methods are often categorized as probabilistic complete, which means that the

probability of a finding a solution goes to one, if one exists, and if the number of sampler

goes to infinity (Definition 2.3).
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Definition 2.3 Probabilistic completeness. Motion planners will be considered proba-

bilistically completeness, when with an infinite number of sampling, the probability of

finding a solution goes to one, if one exists.

lim inf
@→∞

%(f@ ∈ Σ, f@ (0) = GBC0AC , f@ (1) ∈ -6>0;) = 1,

where q is the number of samples, f@ is the path that the planner returned by using all the

samples, and Σ is the set of all collision-free and feasible paths.

Definition 2.4 Almost-sure asymptotic optimality. Motion planners will be considered

Almost-sure asymptotic optimal, when with an infinite number of sampling, the probability

of converging asymptotically to optimum, if one exists.

%

(
lim sup
@→∞

2(f@) = 2(f∗)
)
= 1,

where q is the number of samples, f@ is the path that the planner returned by using all the

samples, and f∗ is the optimal solution of the planning problem, and c(·) is the path cost.

Sampling-based methods are very popular due to their ability to solve high-dimensional

problems faster than graph-based methods. The sampling-based methods are usually

categorized into two groups,Multi-query problems, and Single-query problems.

2.3.1 Multi-query problems

If a motion planning problem has several starts and goal locations, while the robot and

obstacles are not changed, it leads to multi-query planning problems.

In this case, a roadmap is required to be obtained from the problem domain in order to

be used several times. The roadmap should be able to solve several multiple-goal queries

efficiently. Therefore, before solving the problem, a roadmap must be created from the

problem domain. As a result, a time before start finding solutions is required to be specified

for creating the roadmap, which is called preprocessing phase.
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After creating an appropriate roadmap from the problem domain, it is time for solving

phase. In this phase, planners receive several starts and goal locations, and then they

attempt to connect them to their roadmaps. Once a set of start and goal locations is

connected to the roadmap, it is solved. The general framework presented here was mainly

introduced in (Kavraki et al., 1996) under the name probabilistic roadmaps (PRMs).

PRM divides the planning time into two phases: learning and query phases. In the

learning phase, it makes a roadmap from the state space by sampling it and then connect

them if they are collision-free. The second phase, the query, is about solving a specific

problem by using the roadmap information. In this phase, the planner has a start location

and goal location, which must be connected to the roadmap. Once the connections between

the start location and the goal location with the roadmap are found, the planner can connect

them via the roadmap and then release the path. PRM is a probabilistically complete

motion planner (Kavraki et al., 1998), and with an appropriate connection, the scheme is

also almost-surely asymptotically optimal (Karaman & Frazzoli, 2011).

The obtained roadmap can be reused for many times as needed to solve the different

problems with different start locations and goal locations. It is due to that the roadmap has

already made a graph from the collision-free portion of the state space. This characteristic

makes PRM a suitable motion planner for multi-query motion planning problems.

Although PRM can work efficiently in multi-query planning problems, it is an inefficient

method for single-query motion planning problems. In order to alleviate this problem, some

versions of PRM such as Lazy PRM (Bohlin & Kavraki, 2000), and Quasi-random Lazy

PRM (Branicky et al., 2001) have been proposed, which try to reduce the computational

cost of the unused roadmap. However, it is not as efficient as incremental searches that

continue their search until a solution is found.
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2.3.2 Single-query problems

Single-query planning problems include a set of single start and single goal locations.

For solving single-query problems, planners are required to search the problem domain

until an appropriate solution is found, if at least one exists. Otherwise, it needs to return

failure, if no solution exists, or time of planning is over.

Most single-query sampling-based motion planning algorithms grow a tree from the

start locations and try to expand it toward random samples.

2.3.2.1 Rapidly-exploring Random Trees (RRTs)

RRT solve motion planning problems by growing a tree from the start location and

expanding it toward random samples. The random sampling guides the tree to the

unexplored portion of the planning problem domain through Voronoi bias (Voronoi, 1908).

RRT returns the solution once it could sample the goal area. RRT is a probabilistically

complete planner. RRT-based motion planners’ algorithms have several common steps,

which are listed below:

1. Initialization: In this step, the planner adds the start location to an empty tree as its

first vertex.

2. Sampling method: A sample from the state space needs to be taken in order to

grow the tree toward it.

3. Local planning method: In this step, the planner needs to find an appropriate

vertex in its tree to connect it to the sampled point. Moreover, it should take several

considerations into account, such as the feasibility of the connection.

4. Insert an edge in the graph: After finding an appropriate connection to the sample

point, it is time to add it to the tree.

5. Check for a solution This step checks whether an appropriate solution is found. An
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Initial solution will be found once a sample within the goal area has been added to

the tree. If an initial solution is found, the algorithm will stop checking the state

space and returning the solution.

6. Return to step 2

RRT (LaValle, 1998), has shown an outstanding performance in practice. There are

several types of RRT:

• Nonoptimized RRTs

• Asymptotically Optimal RRTs

• Unidirectional RRTs

• Bidirectional RRTs

2.3.2.2 Nonoptimized RRT

Nonoptimized versions of RRT have no procedure to optimize the exploring tree.

Their goal is to find a feasible path that connects the start location to the goal location.

These planners normally start exploring state spaces and stop once an initial solution is

found. There have been several proposed nonoptimal RRTs such as the standard version

of RRT (LaValle, 1998; LaValle & Kuffner Jr, 2001), RRT-Connect (Kuffner & LaValle,

2000), Safe-RRT (Pepy & Lambert, 2006), RRT-Plan (Burfoot et al., 2006), Particle

RRT (Melchior & Simmons, 2007), Transition-based RRT (Jaillet et al., 2008), T-RRT

(Aguinaga et al., 2008), Metric Adaptive RRT (Lee et al., 2008), Closed-loop RRT (Kuwata

et al., 2008, 2009), and Retraction-Based RRT (Pan et al., 2010). This type of RRT can

explore state spaces efficiently. However, their solutions remain considerably nonoptimal.

2.3.2.3 Asymptotically optimal RRT

Asymptotically optimal RRTs include a process that improves the quality of their

solutions. The accuracy of their solutions increases proportionally to the number of
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samples. In other words, by increasing the number of samples, planners are able to produce

better solutions. Therefore, the optimized versions of RRT keep searching the state space

after a solution is found in order to find asymptotically optimal solutions. Some of the

well-known asymptotically optimal RRTs are RRT* (Karaman et al., 2011), BT+RRT*

(Perez et al., 2011), Kinodynamic RRT* (Webb & Van Den Berg, 2013), RRT# (Arslan

& Tsiotras, 2013), T-RRT* (Devaurs et al., 2015), BIT* (Gammell et al., 2015), Lower

Bound Tree-RRT (Salzman & Halperin, 2016), HARRT* (Qureshi & Ayaz, 2016), SST

(Li et al., 2016), RABIT* (Choudhury et al., 2016), Informed RRT* (Gammell et al., 2018,

2014), RRT* GL (Aguilar et al., 2017), and Neural RRT* (Wang et al., 2020).

Although asymptotically optimal versions of RRT are able to return near-optimal

solutions, they are slower than the nonoptimized versions due to the time required for the

optimization process in each iteration.

2.3.2.4 Unidirectional RRT

Unidirectional RRTs explore state spaces by a single tree. This tree is rooted in the

start location, and then it grows toward the samples. An initial solution will be found,

once a sample that is located within the goal area is added to the tree. As a result, this

sample can connect the goal area to the start location. There are many Unidirectional

RRTs such as RRT (LaValle, 1998; LaValle & Kuffner Jr, 2001), RRT* (Karaman et al.,

2011), RRT*-Smart (Nasir et al., 2013), Informed RRT* (Gammell et al., 2018, 2014),

RRT* FN (Tong et al., 2019), and Optimized RRT-A* (Ayawli et al., 2019).

Unidirectional RRTs may take a long time to have a vertex located within the goal area,

especially when the goal is hidden beyond several narrow passages, such as bug-trap-like

state spaces.
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2.3.2.5 Bidirectional RRT

Bidirectional RRTs implement two trees for exploring state spaces, one tree is rooted

in the start location, while another one is rooted in the goal location. In each iteration, a

sample is taken, then the planner grows one of its trees toward the sampled point. If the

sample can be added to the tree, then the newly added vertex will be considered as a sample

for another tree. Then, the planner swaps the trees for the next iteration. An initial solution

will be found, once a connection between two trees are established. There are several

bidirectional RRTs including RRT-Connect (Kuffner & LaValle, 2000), RET (Martin et

al., 2007), CellBiRRT (Fragkopoulos & Graeser, 2010), RRT*-Connect (Klemm et al.,

2015), Intelligent Bidirectional-RRT* (Qureshi & Ayaz, 2015), Bidirectional Spline-RRT*

(Sudhakara et al., 2017), Bidirectional Potential Guided RRT* (Xinyu et al., 2019), and

Goal-biased Bidirectional RRT (Liu et al., 2019).

2.3.2.6 RRT*

RRT takes a random sample from the state space at each iteration. It then uses this

sample to expand its tree toward the sample. RRT has a predefined parameter, RRT step.

The planner finds the nearest tree vertices to the sample, and then if the distance between

the nearest vertex and the sample is lesser than the RRT step and it is collision-free, it will

be added to the tree as a new vertex. If the distance between the sample and the nearest

vertex is bigger than the RRT step, then another point in the direction of the sample but

with an RRT step away from the nearest vertex will be added to the tree. An illustration

of the RRT algorithm is presented in Figure 2.3. Although RRT is a simple single-query

planner, in practice, it has a small likelihood of directly sampling the goal to bias the search

toward a solution.

To solve the problem of sampling the goal area, Kuffner and LaValle proposed another

version of RRT, RRT-Connect (Kuffner & LaValle, 2000). RRT-Connect is a bidirectional
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Figure 2.3: (a) The state space in which RRT needs to find a solution. (b) A sample is
taken but it is far from the GBC0AC; therefore, another point in the same direction with one
RRT step away from GBC0AC is added. (c)(d) The expansion of RRT tree in the state space.
(e) The tree could sample -6>0; . (f) The solution, which RRT could find for this problem.

version of RRT, which has two trees for exploring the state space. These trees are rooted in

the start location and the goal location. They are growing alternately toward the newest

taken sample and the newest vertex in the other tree. RRT-Connect stops searching once a

connection between the two trees is established. Having two trees helps RRT-Connect

be able to solve many problems faster than RRT. Similarly to RRT, RRT-Connect is

probabilistically complete, and it is not almost-surely asymptotically optimal.

RRT and RRT-Connect can expand their trees quickly into unexplored regions of state

spaces. However, during the expansion, the costs-to-come of vertices is not going to be

changed. Therefore, the solutions provided by them are suboptimal (Karaman & Frazzoli,
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2011). RRT solution quality can be improved by modifying existing connections during

the search to improve the costs-to-come of vertices incrementally.

RRT* and Rapidly-exploring Random Graph (RRG) (Karaman & Frazzoli, 2011)

change RRT to check incoming and outgoing edges of new vertices in order to improve the

costs-to-come of existing vertices. RRG uses all these edges to build a graph while RRT*

finds those that locally minimize cost-to-come and maintains a tree. Both algorithms are

probabilistically complete and almost-surely asymptotically optimal (Karaman & Frazzoli,

2011).

RRT* implements a local rewiring method in order to optimize its tree. When it gets

a sample, it will connect it to the nearest vertex, which has the lowest cost-to-come in

comparison to other near vertices. Then, the newly added vertex will be considered as

a potential parent for nearby vertices. In other words, if near vertices can reduce their

costs-to-comes by replacing their parents with the newly added vertex, then they will switch

their parents. This method helps the existing vertices to benefit from future sampling.

There is a parameter that influences the performance of RRT*, which is the neighborhood

size. The neighborhood should be small enough in order to be easily searched as well

as large enough to be able to improve the tree quality. Karaman and Frazzoli (Karaman

& Frazzoli, 2011) proposed two different methods for defining the neighborhood, one is

k-nearest vertices, and another is the vertices that are located within a distance, r.

These incremental searches have the ability to search the continuous planning problems

and stop when an appropriate solution is found. Therefore, they avoid unnecessary

computational efforts. However, the methods such as RRT* will find asymptotically

optimal solutions to every state in the state space so that it is an inefficient way due to their

single-query nature. In order to solve this problem, several methods have been proposed,

such as different sampling methods, ordered approximation, and ordered searches. These
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methods could improve performance, but they do so without addressing all the challenges

of simultaneous approximation and searching for a continuous planning problem.

2.3.2.7 Sample Distributions

Sampling-based methods explore state spaces by taking samples from them and

then connecting the samples together. Therefore, their performance is affected by the

methodology of sample distributions. There are several sample distributions such as

uniform distribution (Karaman&Frazzoli, 2011), which are easy to analyze and appropriate

for many scenarios. However, in some scenarios, it is better to sample the state space

sections based on their prioritizes, which help improve the real-time performance of the

motion planner. These types of sampling are known as nonuniform distributions.

There are many sampling distributions, such as:

• Medial axis: This sampling method increases the probability of sampling around

the Voronoi graph so as to guide the roadmap generation to capture the shape of

state spaces (Guibas et al., 1999; Holleman & Kavraki, 2000; Wilmarth et al., 1999).

• Boundary: The sampling is guided toward obstacles boundaries as opposed to

collision-free part of the state space (Amato & Wu, 1996).

• Gaussian: This method is acting similarly to the boundary method, which means

that it increases the probability of sampling near obstacles. In other words, the

vertices are scattered according to obstacles and collision information (Boor et al.,

1999).

• Bridge-test: This sampling method has been proposed to improve the ability of

sampling-based methods in sampling narrow passages. It detects narrow passages

by taking to configurations from the state space as well as their midpoint. If both

configurations are located within the obstacle-occupied portion of the state space
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and the midpoint is in the collision-free part of the state space so that a narrow

passage is detected (Z. Sun et al., 2005).

• Hybrid: This sampling is about combining different sampling methods to benefit

from their upsides. Adaptive hybrid sampling (Hsu & Sun, 2004) combines narrow

passage detection with uniform sampling to be able to increase sampling probability

in narrow passages. Uniform sampling allows it to maintain Randomization, which

is an advantage in solving several planning problems. Another version of hybrid

sampling has been proposed, which combines the Medial axis and narrow sampling

(Thomas et al., 2007).

• Goal Biasing: This method tries to connect the goal location to the tree. It works

in the way that after getting several random samples, the goal location will be

considered as a new sample. Therefore, there are some predefined parameters, such

as the number of random samples in each iteration before considering the goal

configuration as a sample.

There are some other methods that guide the exploration, including:

• Dynamic-Domain RRT (Yershova et al., 2005), this method limits the sampling

domain of the boundary nodes to a predetermined radius ball to consider it as an

alternative to the visibility region.

• Adaptive Dynamic-Domain RRT (Jaillet et al., 2005), ADD RRT is an updated

version of DDT RRT, in which the planner decides the size of the ball’s radius

according to the extension success rate of each boundary node.

• Utility-RRT (Burns & Brock, 2007), this method influences the direction and length

of extension.

• Obstacle-based RRT collects obstacles information and then select the growth

direction based on the gathered information (Rodriguez et al., 2006; Yeh et al.,
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2012).

• There are some other proposed techniques that sample the different sections of the

state space by prioritizing them (Akgun & Stilman, 2011; Jaillet et al., 2008; Kim et

al., 2014; Nasir et al., 2013; Zucker et al., 2013).

Although nonuniform sampling techniques could solve some scenarios faster, it may

not be able to find useful solutions in many scenarios. For example, if the solution lies in

undersampled areas so that these methods may not even find a solution to the problem.

In order to solve this issue, nonzero sampling methods have been proposed, which is the

combination of nonuniform and uniform sampling methods. It helps planners guarantee

their probabilistic completeness. However, it will result in reducing nonuniformity by

increasing sampling from the less prioritized areas of state spaces. This ratio is a

user-defined parameter, which can vary from one problem to another.

Nonuniform sampling is affecting the almost-surely optimality of planners. Planners

such as RRT* proof their optimality and rewiring neighborhoods based on uniform

sampling so that violating this will invalidates their claim about being almost-surely

optimal planners.

2.3.2.8 Heuristic-based Approaches

Sampling-based methods incrementally search state spaces and discretize them by

random samples. They are able to stop the search anytime and return their best-obtained

results. In other words, they can keep exploring the state space until the desired solution is

found. In single-query motion planning problems, it is inefficient to keep searching all

over the state space to be able to return the desired solution.

As a result, other motions planners have been proposed, using heuristic concepts to

reduce the computational complexity of optimizing the obtained solution. Heuristically
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Guided RRT (Urmson & Simmons, 2003) implements a method for sample rejection so as

to simulate the heuristic search concept in RRT-based algorithms. This planner accepts

or rejects the samples based on their values relative to the obtained tree. This method

tries to scan a portion of the state space that has more changes for high-quality solutions.

Moreover, it is often able to return better solutions faster than the standard version of RRT.

Several other techniques incrementally create trees by using some heuristics, such

as Randomized A* (Diankov & Kuffner, 2007), Hybrid Randomized A* (Teniente &

Andrade-Cetto, 2013), and sampling-based A* (Persson & Sharf, 2014). These methods

are prioritizing state spaces based on their heuristics, aiming to first sampling the problem

domain regions in which high-quality solutions are more likely to be found.

Using heuristics helps predict potential high-quality solutions. However, there is a

challenge to balance between the solution quality and time of planning. This problem can

be solved in many ways such as defining minimum sampling probability for each region

(e.g., hRRT (Urmson & Simmons, 2003)), a maximum local sample density (e.g., RA*

(Diankov & Kuffner, 2007) and HRA* (Teniente & Andrade-Cetto, 2013)), and an inverse

correlation between local sample density and expansion priority (e.g., SBA* (Persson &

Sharf, 2014)).

Theminimum sampling probability approach searches formultiple independent solutions

without considering their costs by allowing exploratory states to be sampled in each iteration.

Unlike A*, methods such as hRRT, HRA*, and SBA* may keep searching other regions of

the problem domain even when there is a possibility to be connected to the goal, which is

an inefficient approach.

Maximum local sample density, on the other hand, expediting the planning process by

limiting the number of children for the vertices. However, it will affect the anytime ability

of planners in comparison to RRT (LaValle, 1998), which could sample the state space
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until an appropriate solution is found. RA*-like methods get samples from the state space

until a priori maximum resolution has reached, and then they restart their planning process

if the resolution is insufficient.

These methods that use heuristics to limit the problem domain. They have, however,

several parameters to be defined by the user. Consequently, their performance will vary

from one scenario to another and/or from one user to another.

Gammell et al. (Gammell et al., 2014) introduced the subset of the problem domain,

depending on the path length of the obtained solution. This subset is a function of the

obtained solution cost. It is proven that better solutions than the existing ones are lying

within the subset if there is any. Therefore, it is needed to explore the subset to find better

solutions than the existing one. This subset cannot be obtained without having an initial

solution. Moreover, this subset does not have any parameter to be tuned by a user. They

proposed Informed RRT* (Gammell et al., 2018, 2014), which implements this subset.

Although this planner can limit the problem domain to a subset, it requires finding an initial

solution to focus its searching in a subset of the problem domain. Moreover, Informed

RRT* is not the fastest RRT-based method in terms of finding initial solutions. In fact,

there are several versions of RRT, which can establish their initial solutions faster than

Informed RRT*.

This thesis seeks to efficiently implement informed sampling that benefits from uniform

sampling on other RRT-based methods and combines their abilities so as to propose better

motion planners, which are able to return near-optimal solutions faster than the-state-of-arts

algorithms.

2.4 Discussion

Motion planning is one of the fundamental tasks for autonomous robots that need to

plan their movement to accomplish their duties without having any collision with other
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nearby obstacles. Therefore, a successful motion planner can be defined as a planner that

is able to provide near-optimal and feasible (e.g., collision-free) solutions in a short period

of time. Almost all planners make either a graph from the problem domain or randomly

sample the problem domain. Each approach has its pros and cons.

Graph-based methods, which create a graph from the state space before start planning,

need to have a resolution for their graphs. If the resolution is selected too low, then it may

lose solutions. If the resolution is selected too high, it will be a time-consuming process to

check all possible states. Therefore, the resolution is a problem-specific parameter that

needs to be defined based on the problem requirements.

In spite of their limitations, graph-based methods are effective in many scenarios due

to the efficiency of their searches. Informed graph-based searches, such as A*, search in

order of potential solution quality. Moreover, they are optimally efficient in the number

of expanded vertices (Hart et al., 1968). Therefore, they are appropriate choices for the

problems in which an appropriate resolution can be selected.

On the other hand, sampling-based methods approximate the problem domain by taking

a random sample from it. Their approximation can improve by getting more samples and

more connections between samples. However, having many samples and their connections

can lead to expensive computation to solve the problem. Although sampling-based methods

avoid a priori discretization of the problem domain, they need to expand their samples

incrementally. Searching all over the problem domain gives the ability to find a solution

from the start location to any other vertices in the tree, but it is computationally expensive

and inefficient for single-query planning problems.

In spite of their limitations, they are efficient due to their anytime characteristics. Incre-

mental sampling-based methods, such as RRT*, can return almost-surely asymptotically

optimal solutions in an anytime manner (Karaman & Frazzoli, 2011). Consequently, they
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are suitable choices for planning problems that have an unknown amount of time for finding

an appropriate solution without choosing any resolution.

Several works combine sampling-based with graph-based to benefit from the advantages

of both approaches. Informed RRT* (Gammell et al., 2018, 2014) implements a heuristic

to limit problem domain to a subset of it in order to expedite the process of returning

near-optimal solutions. However, this subset can be formed after an initial solution is

found. Informed RRT* is not a fast planner in terms of finding initial solutions due to

its nature, which is a unidirectional search, and it includes the rewiring process, which

consumes time.

This thesis proposes two new motion planners (Informed RRT*-Connect and Hybrid

RRT) that shrink the problem domain so as to limit the search area and return near-optimal

solutions in less time compared with other state-of-the-art motion planners.

InformedRRT*-Connect firstly implements a dual-tree version of RRT*, RRT*-Connect,

to be able to find initial solutions faster then RRT* and then limit the search area to a

subset according to the length of obtained solutions. Informed RRT*-Connect works faster

than Informed RRT*.

Hybrid RRT is another motion planner that works faster than Informed RRT*-Connect

in terms of finding initial solutions. It divides the planning time into three different phases.

The first phase is to find an initial solution. In order to find the initial solution as fast as

possible, Hybrid RRT implements RRT-Connect, which is a dual-tree version of RRT.

Therefore, it can find initial solutions faster than RRT. Moreover, RRT-Connect does

not have any procedure for optimizing the tree so that it helps the planner return initial

solutions faster than planners that include the optimization process. The second phase

is to combine the two trees of phase one into one tree so as to make it easier and faster

to optimize. The third phase is to optimize the obtained tree from phase two and keep

31

Univ
ers

iti 
Mala

ya



searching the problem domain until the desired solution is found.
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CHAPTER 3: METHODOLOGY

This chapter introduces the methodology of the presented research. The methodology

of this research has been divided into four different phases, which are mentioned below:

• The Literature Review

• The First Proposed Method

• The Second Proposed Method

• The Evaluation

These four phases have been thoroughly discussed in Section 3.1.

3.1 Methodology

The research workflow has been illustrated in Figure 3.1, which includes four main

phases. Phase one (Section 3.1.1) is the literature review. Phase two (Section 3.1.2) is about

the first proposed method, which is a bidirectional RRT*-based method that implements

informed sampling after an initial solution is found. In phase three (Section 3.1.3), another

RRT-based method has been proposed. This method combines all types of sampling-based

methods categories to benefits from their advantages. Finally, phase four (Section 3.1.4) is

about evaluating the proposed methods by comparing them with the existing methods as

well as comparing them with each other.

3.1.1 Phase One (Literature Review)

A literature review of motion planning has been carried out in this phase. Motion

planning is a crucial task of robotic systems operating in unknown environments. Any

robot that needs to accomplish a task by changing its position from one configuration

to another needs to have a motion planner to provide a feasible and collision-free set

of configurations. This path could guide the robot from its initial configuration to the
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target configuration. Different types of motion planners offer various paths for a particular

motion planning problem. Therefore, it is necessary to have some criteria to compare their

performances against each other. Some of these criteria are the planning time and the cost

of the path. Successful motion planners can return high-quality paths (e.g. low-cost paths)

in a reasonable amount of time.

Most motion planning problems are about finding paths in continuous state spaces.

Therefore, planners have infinite states to check so as to release their solutions. In order

to solve this problem, planners discretize state spaces by either making a priori graph or

random sampling.

Using a priori discretization requires defining the graph resolution before performing

the search. Creating a predefined graph from a state space makes the problem easier to be

solved. However, finding an appropriate resolution is not an easy task to be accomplished.

If the chosen resolution is too low, then obtained solution will have an insufficient quality.

Moreover, some narrow passages may not be found due to low resolution. On the other

hand, if the chosen resolution is too high, then the output would be high-quality. However,

the resulting representation will be prohibitively expensive to search in. Therefore, it is

challenging to find an appropriate resolution, which could be high enough to be able to

return high-quality solutions, as well as low enough to be searched quickly. The appropriate

resolution is problem specific. In other words, it is different from one problem to another.

Therefore, it is not possible to define the same resolution for a wide range of problems. It

means that the planners need to have a new resolution for each problem that they are going

to solve. As a result, it is a time-consuming process to find an appropriate resolution for

each motion planning scenario. Another problem with graph-based methods is that their

efficiency diminishes with the increase of problem dimension.

Sampling-based methods, on the other hand, avoid defining a priori approximations.
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They usually discretize state spaces by random samples. Their resolutions will be increased

by the increase in the number of samples accordingly. There are two types of sampling-

based methods, multi-query, and single-query. Multi-query planning problems require to

solve several problems in a state space. Therefore, they normally create a roadmap from

the state space and then try to connect different parts of the state space by going through

the roadmap. For that reason, they need to have a learning phase in which they create

their roadmaps from state spaces. After creating the roadmap, the planner receives several

start locations and goal locations. It then tries to connect these locations to its roadmap.

Once these locations are connected to the roadmap, they are connected together via the

roadmap. Single-query problems, On the other hand, are about finding a path between

a start location and a goal location. It means that single-query planners are not required

to create a roadmap from the state space to solve several problems. As a result, they can

avoid spending time on the learning curve. They normally expand a tree from the start

location and stop searching once they can get within the goal area. This thesis focuses on

single-query motion planning problems.

Among single-query planners, RRT has shown a significant improvement over other

single-query planners due to its success in practice. RRTs can be categorized into four

groups, nonoptimal, asymptotically optimal, unidirectional, and bidirectional. Nonoptimal

versions are designed to find initial solutions. They do not have any procedure for

optimizing their solutions so that they can be expanded rapidly over the collision-free

portion of the state space. However, their solutions are suboptimal. On the other hand,

asymptotically optimal versions improve the quality of their paths by rewiring the edges of

their trees. In each iteration, they first get a sample and then expand their trees toward

the sample, and then they call the rewiring process to optimize the trees around the newly

added tree vertex. Unidirectional RRTs grow a tree from the start location and expend it
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toward random samples. Their initial solution is found when they could sample the goal

area. Although they can rapidly explore state spaces, it may spend time to sample goal areas

hidden beyond narrow passages. Bidirectional RRTs grow two trees simultaneously, one

from the start location, and another from the goal location. They try to make a connection

between their two trees to release solutions. A random sample is taken in each iteration;

then, the planner expands one of its trees (Treea) toward it. If the planner could add a new

vertex to Treea, it then tries to make a connection between its two trees, by considering

the newly added vertex of Treea as a sample for its other tree (Treeb). At the end of each

iteration, the planner swaps its two trees. In other words, it gets a sample and then expand

Treeb toward it. Afterward, it considers the newly added vertex of Treeb as a sample for

Treea.

The performance of RRT-based methods is dependent on their sampling techniques.

Most of them use unordered sampling methods. Unordered sampling-based planners

simultaneously search for every state in the problem domain. This becomes prohibitively

expensive as state dimension increases and eventually outweighs the advantages of anytime

representations in incremental sampling-based planners. In order to solve this issue, many

methods have been proposed that use heuristics to improve the anytime capability of their

methods. However, they could achieve it by using nonuniform sampling approaches.

Informed RRT* uses heuristics to improve sampling-based planners without sacrificing

the benefits of either informed search or anytime approximation. It does so by carefully

applying techniques from graph-based searches to the sampling-based method. However,

Informed RRT* needs to have an initial solution to be able to shrink the state space into

a subset. In other words, it works like other unordered sampling-based methods before

finding an initial solution. Informed RRT* could limit the state space into one of its

subsets only after finding an initial solution. Before finding initial solutions, Informed
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RRT* works like RRT*.

3.1.2 Phase Two (The First Proposed Method, Informed RRT*-Connect)

In this phase, the first proposed method, Informed RRT*-Connect, has been designed.

This planner is an asymptotically optimal version of RRT. It is a bidirectional RRT, which

helps it find initial solutions faster than unidirectional asymptotically optimal versions of

RRT.

Informed RRT*-Connect starts exploring state spaces by implementing two trees, one

from the start location and one form the goal location. Informed RRT*-Connect keeps

rewiring its two trees so as to improve their qualities. After finding an initial solution, the

planner limits the state space into a subset, which includes states that could potentially

improve the quality of the current solution. Limiting the state space into a smaller space

helps planners to improve its solution quality in lesser time. Informed RRT*-Connect will

stop searching the state space when either an appropriate solution is found or planning

time is over. Informed RRT*-Connect has three main parts that are listed below:

1. The planner starts exploring state spaces by two RRT* trees, one rooted in the start

location and another one in the goal location.

2. After an initial link between the two trees is found, the planner must calculate the

solution cost, then limits the state space to a subset to be able to return near-optimal

solutions faster. The size of the subset is defined based on the current shortest path.

3. At the end of each iteration, the minimum cost must be recalculated to adjust the

eccentricity of the subset.

3.1.3 Phase Three (The Second Proposed Method, Hybrid RRT)

RRTs are either nonoptimal or optimal. Moreover, they are either unidirectional or

bidirectional. Each group has its benefits over others. In this phase, a planner has been
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proposed that combines these groups to benefit from their advantages.

The proposed method, Hybrid RRT, starts exploring state spaces by a nonoptimal,

bidirectional RRT, which helps it find initial solutions faster than not only unidirectional

RRT but also optimal RRTs.

Afterward, it combines its two trees into one tree and then shrinks the state space into a

subset, which its size is based on the length of the initial solution. It then keeps searching

for better solutions. Hybrid RRT idea has several parts that are mentioned below:

1. Nonoptimized RRTs are faster than optimized versions in terms of finding an initial

solution. The planner finds initial solutions by implementing a nonoptimized method.

Moreover, bidirectional RRTs are faster than unidirectional ones in terms of finding

initial solutions.

2. After finding an initial solution, the planner improves the quality of the existing

solutions by implementing the optimization process.

3. Single tree optimization is less computationally expensive than two trees, so that the

planner integrates its two trees into one so as to optimize only one tree.

4. The planner shrinks state spaces into their subsets so as to return near-optimal

solutions faster.

3.1.4 Phase Four (Evaluation)

For the evaluation, the proposed methods must be developed in a framework in which

other benchmarking sampling-based approaches have already been developed in order to

be able to compare them with the proposed methods.

There are several packages for motion planning that can be used for this purpose, such

as VIZMO++ (Estrada et al., 2006), Object-Oriented Programming System (OOPSMP)

(Plaku et al., 2007), OpenRAVE (Diankov, 2010), and Open Motion Planning Library
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(OMPL) (Sucan et al., 2012). VIZMO++ and OOPSMP are no longer maintained so

that they are not suitable for recent planners to be developed in them. OpenRAVE is

an open-source library, which is designed to be a complete package for robotics. It

has geometry representation, collision checking, grasp planning, forward and inverse

kinematics for several roots, controllers, motion planning algorithms, simulated sensors,

and visualization tools. OMPL, on the other hand, has been designed to focus totally on

sampling-based methods. It is a clear mapping between theoretical concepts and abstract

classes in the implementation. Therefore, it is convenient to integrate OMPL with a variety

of front-ends and other libraries. OMPL is the main motion planning library for the Robot

Operating System (ROS) (Quigley et al., 2009) and MoveIt! (Chitta et al., 2012). OMPL

has more resources on implementing a much broader variety of sampling-based algorithms

than other packages.

OMPL is a C++ library, which is thread-safe. It offers not only Python bindings, but also

tools for benchmarking of different sampling-based methods. OMPL represents the search

space in a generic way so as to maximize the range of applications for the included planning

problems. OMPL state spaces include operations on states such as distance evaluation, test

for equality, interpolation, as well as memory management for states ((de)allocation and

copying). Moreover, every state spaces have their own format to store states. This format

is not exposed outside the implementation of the state space. For operating on the states,

the planners rely on the generic functions offered by state spaces. Therefore, this approach

makes OMPL be functional to any state space that may be defined, as long as the expected

generic functionality is provided.

OMPL has a graphical user interface, which is known as OMPL.app. It is a software

that is an excellent introduction to OMPL. Moreover, it is an example of the integration of

OMPL with a third-party library for collision checking and loading of 3D meshes, and a
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GUI toolkit. Additionally, it allows users to benchmark their new and existing planners on

rigid body motion planning problems using a command-line tool. OMPL.app has three

different parts:

• A C++ library that contains the binding to third-party libraries.

• A set of command-line demos that highlight significant features of this library.

• A graphical user interface.

The library has the functionality to load meshes in a wide variety of formats using the

Open Asset Importer Library (Assimp). Therefore, users can create models of robots

and environments in programs like 3DS Max, Blender, SolidWorks, and SketchUp, and

then use them in OMPL.app. The collision checking in the OMPL.app is supported by

using PQP library (Larsen et al., 2000) and FCL library (Pan et al., 2012). OMPL.app is

completely developed in Python.

3.1.4.1 Conceptual Overview of OMPL

This section comes from OMPL paper (Sucan et al., 2012). The intention of OMPL is

to be used for various purposes, including industry, research, and education. Therefore,

the most important criteria of OMPL were:

a) Clarity of concepts: OMPL has been designed to have a set of components that

corresponding to known concepts in sampling-based motion planning, which is

indicated in Figure 3.2.

b) Efficiency: OMPL has been developed totally in C++ and is thread-safe.

c) Integration with other robotic software: OMPL offers abstract interfaces, which can

be implemented in other software. The dependencies of OMPL are minimal. It only

needs Boost C++ libraries. Another feature of OMPL is that it can be integrated

with Python modules.
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Figure 3.2: Overview of OMPL structure.

d) Straightforward integration of external contributions: OMPL developers tried to

make minimalist API constraints for planning algorithms. Therefore, new methods

and contributions could be conveniently possible.
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OMPL does not have any representation of robots’ configuration spaces. Therefore,

it does not offer any built-in collision checker or any visualization. OMPL only offers

sampling-based algorithms. This approach gives the ability to OMPL to be used for generic

searches in high-dimensional continuous state spaces. The collision checking and other

geometric representations have been left to the user. As a result, it gives the user freedom

to define different types of collision checking so that the sampling-based methods can be

used in various scenarios.

3.1.4.2 Implementation of Core Concepts

A comprehensive overview of the core concept of OMPL has been shown in Figure 3.2,

which is a high-level overview of OMPL classes and their relationships. This section is

quoted from OMPL paper (Sucan et al., 2012).

3.1.4.2.1 States, Controls, and Spaces

As it is mentioned earlier, OMPL generically defines state spaces. The state spaces

consist of interpolation, memory management, distance evaluation, as well as equality test.

Moreover, the configuration spaces have their format to store their states. These formats

are not exposed outside the configuration spaces. In order to implement actions on states,

the OMPL algorithms use only the generic functionalities offered by configuration spaces.

This methodology helps OMPL be useable in any configuration spaces that could provide

generic functionality.

Additionally, OMPL is also able to mix configuration spaces. Furthermore, OMPL

includes a means of combining state spaces using the class CompoundStateSpace. A

combined state space implements the functionality of a regular state space on top of the

corresponding functionality from the maintained set of state spaces. This allows trivial

construction of more complex state spaces from simpler ones. For example SE3StateSpace
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(the space of rigid body transformations in 3D) is just a combination of SO3StateSpace

(the space of rotations) and RealVectorStateSpace (the space of translations). Instances of

CompoundStateSpace can be constructed at run time, which is necessary for constructing

a state space from an input file specification, as is done, for example, in ROS. For a

mobile manipulator one could construct a CompoundStateSpace with the two arms and

the mobile base as sub-state spaces. An arm typically has a number of rotational joints

and can be modeled by either a RealVectorStateSpace (if the joints have limits) or a

CompoundStateSpace with copies of SO(2). The state space for the base can simply be

SE(2) (the space rigid body transformations in the plane).

State spaces optionally include specifications of projections to Euclidean spaces

(ProjectionEvaluator). Several sampling-based planning algorithms use Low-dimensional

Euclidean projections to guide their search for a feasible path, as it is much easier to keep

track of coverage (i.e., which areas have been sufficiently explored and which areas should

be explored further) in such low-dimensional spaces.

In addition to states and state spaces, some algorithms in OMPL require a means to

represent controls. Control spaces (ControlSpace) mirror the structure of state spaces and

provide functionality specific to controls so that planning algorithms can be implemented

in a generic way. The only available implementations of control spaces are the Euclidean

space and a space for discrete modes because so far, there has not been a need for control

spaces with more complex topologies. However, the API allows one to define such control

spaces.

3.1.4.2.2 State Validation and Propagation

Whether a state is valid or not depends on the planning context. In many cases state

validity simply means that a robot is not in collision with any obstacles, but in general

any condition on a state can be used. Based on a given state validity checker, a default
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MotionValidator is constructed that checks whether the interpolation between two states

at a certain resolution produces states that are all valid. However, it possible to plug in a

different MotionValidator. For example, one might want to add support for continuous

collision checking, which can adaptively check for collisions and provide exact guarantees

for state validity.

3.1.4.2.3 Samplers

The fundamental operation that sampling-based planners perform is sampling the space

that is explored. Additionally, when considering controls in the planning process, sampling

controls may be performed as well.

To support sampling functionality, OMPL includes four types of samplers: state

space samplers (StateSampler), valid state samplers (ValidStateSampler), control samplers

(ControlSampler), and directed control samplers (DirectedControlSampler).

State space samplers are implemented as part of the StateSpace they can sample

since they need to be aware of the structure of the states in that space. For instance,

uniformly sampling 3D orientations is dependent on their parametrization. Three sampling

distributions are implemented by every state space sampler: uniform, Gaussian, and

uniform in the vicinity of a specified point. This first sampler is necessary to sample

over the entire space, while the latter two are used for sampling states near a previously

generated state. This is the most basic level of sampling.

Valid state samplers provide the interface for implementing different sampling strategies.

The probability distribution of these samplers depends on the algorithm used and is not

imposed as part of the API. The implementation of valid state samplers relies on the

existence of a state space sampler and a state validator (StateValidityChecker). A common

approach to constructing valid state samplers is to repeatedly call a state space sampler

until the state validator returns true. Several valid state samplers have been implemented
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in OMPL: e.g., a uniform valid state sampler (UniformValidStateSampler), two samplers

(GaussianValidStateSampler, ObstacleBased- ValidStateSampler) that generate valid

samples near invalid ones (which is often helpful in finding paths through narrow passages).

When considering controls in the planning process, a means to generate controls is also

necessary. This functionality is attained using control samplers, which are implemented as

part of the control spaces (ControlSpace) they represent. Additionally, a notion of direction

is also important in some planners: controls that take the system towards a particular state

are desired, rather than simply random controls. This functionality is achieved through the

use of directed control samplers (derived from the DirectedControlSampler class).

3.1.4.2.4 Goal Representations

OMPL uses a hierarchical representation of goals. In the most general case, a Goal

can be defined by an isSatisfied() function that when given a state, reports whether that

state is a goal state or not. While this very general implicit representation is possible, it

offers planners no indication of how to reach the goal region. For this reason, isSatisfied()

optionally reports a heuristic distance to the goal region, which is not required to be a

metric.

GoalRegion is a refinement of the general Goal representation, one that explicitly

specifies the distance to the goal using a distanceGoal() function. The isSatisfied() function

is then defined to return true when distanceGoal() reports distances smaller than a user set

threshold. GoalRegion is still a very general representation but allows planners to bias

their search towards the goal. A refinement of GoalRegion is GoalSampleableRegion, one

which additionally allows drawing samples from the goal region. GoalState andGoalStates

are concrete implementations of GoalSampleableRegion.

For practical applications it is often possible to sample the goal region, but the sampling

process may be relatively slow (e.g., when using numerical inverse kinematics solvers).
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For this reason a refinement of GoalStates is defined as well: GoalLazySamples. This

refinement continuously draws samples in a separate sampling thread, and allows planners

to draw samples from the goal region without waiting, after at least one sample has been

produced by the sampling thread.

3.1.4.2.5 Planning Algorithms

OMPL includes two types of motion planners: ones that do not consider controls when

planning and ones that do. If a planning algorithm can be used to plan both types of

motions, with and without controls (e.g., RRT), two separate implementations are provided

for that algorithm, one for each type of computed motion. This choice was made for

efficiency reasons. With additional levels of abstraction in the implementation it would

have been possible to avoid separate implementations. The downside would have been that

the implementation of planners would have had to follow a strict structure, which makes

the implementation of new algorithms more difficult and possibly less efficient.

For purely geometric planning (i.e., controls are not considered), the solution path is

constructed from a finite set of segments, and each segment is computed by interpolation

between a pair of sampled states (PathGeometric). Several geometric planning algorithms

are implemented in OMPL.

When controls are considered, the solution path is constructed from a sequence of

controls (PathControl). Control-based planners are typically used when motion plans need

to respect differential constraints as well. Several algorithms for planning with differential

constraints are implemented in OMPL as well, including RRT.

3.1.4.3 benchmarking in OMPL

OMPL offers benchmarking tools to compare the abilities of different motion planning

algorithms together. In order to do it, OMPL includes a class, which enables users to solve
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a particular motion planning problem repeatedly with different conditions such as various

motion planners, different types of state space samplers, and different parameters.

3.1.4.3.1 Benchmark Configuration File

In order to start benchmarking, OMPL.app has a command-line program called

ompl_benchmark. This command reads a text-based configuration file using an ini style

format with sets of Key-Value pairs. This format is the same as the format that OMPL.app

Graphical User Interface (GUI) uses. Currently, the functionality of the ompl_benchmark

class is only for geometric motion planning problems in SE(2) and SE(3), as well as

kinodynamic planning problems for certain systems.

There are several parameters that need to be defined for benchmark scenarios, which

are listed below:

• name: This is an identifying name for the motion planning problem to be solved.

• robot: Robots in OMPL.app are represented by mesh files, which are the geometry

descriptions of robots. This item is the path to the mesh file of the robot.

• start.[x|y|z|theta], start.axis.[x|y|z]: These values are describing the start location

of the robot in the state space. In two-dimensional state spaces, the orientation

is only specified with a start.theta, while in three-dimensional state spaces, the

axis-angle orientation will be used.

• goal.[x|y|z|theta], goal.axis.[x|y|z]: These values are representing the goal location

in the state space. They act similarly to the start location in 2D and 3D environments.

• world: Like the robot, the state space is represented by a mesh file describing the

state space geometry. This parameter consists of the path to the mesh file. If this

parameter is not defined, OMPL assumes that the robot will operate in an empty

workspace.
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• objective: Some motion planning algorithms in OMPL have more than one path

optimization function. Therefore, it is necessary to define which optimization

criterion needs to be selected. This parameter defines the type of optimization,

which could have one of these values:

– length

– max_min_clearance

– mechanical_work

If this parameter is not defined, OMPL considers the length as its optimization

parameter for paths.

• objective.threshold: This parameter is related to the previous one, objective. This

is the threshold of the defined optimization parameter. When the planners achieve

a path with a better cost than the threshold, it then stops exploring the state space

and returns the solution. If this parameter is unspecified, OMPL considers the best

possible solution to be found. For example, if the length is the optimization criterion,

OMPL sets the threshold on zero, which means that the planner keeps searching the

state space until the planning time is finished.

• control: OMPL.app has some built-in kinodynamic systems, which are listed below:

– kinematic_car

– dynamic_car

– blimp

– quadrotor

If the parameter is unspecified, OMPL uses rigid-body planning.

• sampler: OMPL offers several sampling methods, which are:

– uniform
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– gaussian

– obstacle_based

– max_clearance

If this parameter is not defined, uniform will be selected for sampling state spaces.

• volume.[min|max].[x|y|z]: This parameter is used to define the boundary of the

state space. OMPL.app assumes a tight bounding box around the workspace, start

location, and goal location if this parameter is undefined.

• time_limit: This is the amount of time that each motion planner has for planning.

• mem_limit: This parameter determines the maximum amount of memory that each

planner has during planning. This amount is in MegaByte (MB).

• run_count: This is the number of runs each planner in the same scenario. In other

words, it is the repeat time of the experiment.

• output: This is the path for the benchmark log file. If unspecified, the log file will

be saved in the same folder as the configuration file.

• save_paths: This is an optional parameter with different values:

– none: It saves no solution at all.

– all: It saves all solutions, including approximate solutions.

– shortest: It only saves the shortest obtained solution.

• planner: It includes all motion planning algorithms that are targeted for benchmark-

ing.

The proposed methods have been developed in OMPL. The OMPL benchmarking tools

give the ability to compare the proposed methods with existing methods. For benchmarking

purposes, the proposed methods must be added to the OMPL framework.

The first proposed method, Informed RRT*-Connect, was compared to RRT*, RRT*-
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Connect, and Informed RRT* using the benchmarking tools of OMPL. The second

proposed method, Hybrid RRT, was compared to RRT, RRT-Connect, RRT*, Informed

RRT*, and BIT*. After comparing each proposed method with the existing methods, the

proposed methods were compared together. In each scenario, the planners were run for

100 times, and then their obtained results were compared. The planners were compared in

terms of path length as well as planning time.

3.2 Summary

This chapter described the Methodology of this research, which includes the literature

review, proposing new methods, and comparing the proposed methods with the existing

method. The methodology flowchart is shown in Figure 3.1, which includes four main

phases.

Open Motion Planning Library (OMPL) has been implemented as the framework of this

research. The proposed methods have been developed in C++, and they are integrated with

the OMPL framework. The benchmarking tools of OMPL have been used for comparing

the capability of the proposed methods in comparison with the existing methods in terms

of path length and planning time.
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CHAPTER 4: INFORMED RRT*-CONNECT

This chapter introduces Informed RRT*-Connect, which is a dual-tree, almost-surely

asymptotically optimal RRT-based motion planner. It implements two RRT* trees, one

rooted in the start location, while another is rooted in the goal location. These two trees

try aggressively to establish a connection with each other. Once a link is established, an

initial solution is found. The first solution consists of two parts, one part from the start

tree, and another part is from the goal tree. Afterward, the planner shrinks the state space

to an ellipsoidal subset according to the length of the initial solutions. The subset is an

estimation of the states that can potentially improve the solution quality. Searching a subset

of the state space instead of the whole state space helps planners find optimal solutions

faster. Informed RRT*-Connect keeps searching the subset of the state space in order to

improve the quality of the solution. It will stop searching either the planning time is over,

or an appropriate solution is found.

Section 4.1 reviews the existing works related to Informed RRT*-Connect, including

the standard version of RRT, one of the well-known almost-surely asymptotically optimal

version of RRT, RRT*, and Informed RRT*, which is a version of RRT* than uses informed

sampling. Section 4.2 presents the necessary background for this chapter, including the

problem definition, the informed set of sampling, and the algorithms of related works.

Section 4.3 introduces Informed RRT*-Connect approach and the related subroutines of

informed sampling. Section 4.4 provides some simulations that compare Informed RRT*-

Connect performance against RRT*, RRT*-Connect, and Informed RRT* Section 4.5

evaluates the simulation’s results as well as concluding the chapter.
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4.1 Introduction

Sampling-based methods such as Probabilistic Roadmap (PRMs) (Kavraki et al., 1996)

and Rapidly-exploring Random Trees (RRTs) (LaValle, 1998; LaValle & Kuffner Jr, 2001)

use random sampling to avoid constructing a graph of the configuration space. They

have shown practically a significant impact upon the high-dimensional state spaces. Most

of them are probabilistically complete, which indicates that the planner will return a

solution with a sufficient number of iterations if any solution exists. In other words, the

probabilistically complete planners keep searching the state spaces, and they do not have

any criteria to stop searching. If a given state space offers no solution, the planner cannot

detect it, so that it keeps searching the state space so as to find a solution. In order to solve

this issue, the probabilistic searches have other limitations such as planning time and/or

the number of iterations. Time-limited searches start exploring state spaces, and if they

could not find an initial solution within the given time, they stop searching the state spaces

and return failure. Iteration-limited searches act similarly to time-limited ones. They keep

searching a given state space. They will stop searching if they iterate themselves to the

maximum number of iteration. If they could not find any solution before the iterations

reach their maximum number, they will return failure. It is because the sampling-based

methods have an infinite number of samples to check. Therefore, in practice, it is not

possible to check an infinite number of samples to return solutions, so that they should be

limited to a limited number of samples.

Among randomized methods, RRTs (LaValle, 1998; LaValle & Kuffner Jr, 2001) have

shown a significant performance for single-query planning problems. The standard version

of RRT grows as an incremental tree rooted in the start configuration over the collision-free

portion of the state space. It stops growing the exploring tree once it spotted one vertex in

the goal configuration.
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Algorithm 1 presents RRT in which + , � , and � stand for the vertices set, the edges set,

and the tree, respectively. Line 1 initializes the vertex set and the edge set. The vertex set

gets the start location as its first vertex, and the edge set gets null. It is because there are no

edges in the tree yet. Line 2 is where the vertex set and the edge set union is considered as

the tree, �. The next line, Line 3, is a loop that can have several stoppage criteria. It can

be stopped after a limited number of iterations, such as in this algorithm, it will go through

for = iterations. However, there are other stoppage criteria, such as the planning time. For

example, the loop could potentially run for infinite iterations, and stop whenever its time is

up. Line 4 calls the (0<?;4 function. The (0<?;4 function returns a random state, and

then stores it in GA0=3 . In the next line, Line 5, the returned sample, GA0=3 , and the tree

will be passed to the �GC4=3 function in order to extend the tree toward the GA0=3 . �GC4=3

function gets the tree and GA0=3 as its input arguments. It should first find the nearest vertex

to GA0=3 in order to consider it as a potential parent for GA0=3 . If the connection between the

potential parent and GA0=3 is collision-free (being collision-free could be different from one

planning problem to another), it then adds a new edge to the tree. The new edge connects

GA0=3 to its parent. Therefore, the tree gets expanded toward the newly taken sample, GA0=3 .

Finally, when the iterations are completed, the obtained tree will be returned (Line 7).

Algorithm 1 RRT Algorithm, '') (GBC0AC)
1: + ← {GBC0AC}; � ← ∅;
2: � ← (+, �);
3: for 8 = 1 C> = do
4: GA0=3 ← (0<?;4;
5: �GC4=3 (� = (+, �), GA0=3);
6: end for
7: return �

Algorithm 2 outlines the �GC4=3 function, which first finds the nearest tree’s vertex to

GA0=3 (Line 2). #40A4BC function goes through all the tree’s vertices to find the nearest one
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to G. Line 3 implements different constraints via the (C44A function. In other words, (C44A

function examines the validity of the given edge regarding externally given constraints by

what is usually called a local planner. It then stores the output in G=4F. For example, if

the distance between G and the nearest vertex is more than one '')BC4?, then the BC44A

returns another sample in the direction of G, which is only one '')BC4? away from the

nearest vertex. In other words, the function takes one '')BC4? toward the new sample

and then adds that step to the tree. Line 4 calls the 8B�>;;8B8>=�A44 function in order to

check whether the connection between G=40A4BC and G=4F is collision-free. This function

normally checks the validity of the potential edge against all the obstacles of the state space.

Therefore, this function has information about all the obstacles in the state space in order

to check the validity of the new potential edge. If the link is collision-free, the algorithm

continues from Line 5. Otherwise, the algorithm goes to Line 13 to return )A0??43 so

that RRT algorithm, Algorithm 1, ignores the sample, and it needs to have another sample

to process. Therefore, it continues with its next iteration to look for another random sample.

Line 5 adds G=4F to the vertex set, and the connection between G=4F and G=40A4BC will be

added to the edge set in Line 6. Line 7 checks whether G=4F and G are the same. If they

are the same, it means that G was not out of the tree reach. Therefore, G has been added

to the tree. As a result, the �GC4=3 function return '402ℎ43 as its output (Line 8). In

contrast, if G and G=4F are not the same, it means that G was out of the tree’s reach and

another vertex in the same direction but nearer to the tree has been added. Therefore, the

�GC4=3 function return �3E0=243 as its output (Line 10). In other words, this function

returns three different outputs due to the status of the new vertex. If GA0=3 is added to the

tree, the function output will be '402ℎ43. If GA0=3 is out of tree’s reach and another vertex

in the direction of GA0=3 but nearer to the tree is added to the tree, the function’s output

will be �3E0=243. If, due to the presence of an obstacle, GA0=3 cannot be added to the
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tree, the function output will be )A0??43.

Algorithm 2 Extend Function
1: function �GC4=3 (� = (+, �), G)
2: G=40A4BC ← #40A4BC (�, G);
3: G=4F ← (C44A (G=40A4BC , G);
4: if 8B�>;;8B8>=�A44(G=40A4BC , G=4F) then
5: + ← +

⋃ {G=4F};
6: � ← �

⋃ {G=40A4BC , G=4F};
7: if (G=4F = G) then
8: return '402ℎ43;
9: else
10: return �3E0=243;
11: end if
12: end if
13: return )A0??43;
14: end function

RRT explores the collision-free part of the state space rapidly so that this simple but

efficient method is successful for many practical applications. However, RRT may take

time to spot a sample in the goal area due to the random sampling process, especially in

bug-trap-like problems. Therefore, RRT-Connect (Kuffner & LaValle, 2000) has been

proposed to address this problem. It is a bidirectional version of RRT, which grow two

trees simultaneously, one from the start location and another one from the goal location.

RRT-Connect is able to find solutions faster than RRT, especially when the goal location

is challenging to reach regarding the presence of tight passages that the planner has to

pass through them to find solutions. RRT-Connect is incrementally growing two trees

simultaneously, one from the start location, while another from the goal configuration.

These two trees try aggressively to find a connection. The planner stops exploring the state

space when a connection between its two trees established.

Algorithm 3 demonstrates the RRT-Connect approach. Line 1 initializes the first tree

of RRT-Connect, which is rooted in the start location. Therefore, its vertex set gets GBC0AC
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as its first vertex, and the edge set gets null, which means that the start tree has no edge

yet. The second tree, which is rooted in the goal area, is initialized in Line 2. Similar

to Line 1, the goal tree vertex set get G6>0; as its first vertex, and the edge set gets null.

�0 stands for the first tree, and �1 stands for the second tree (Line 3). Line 4 makes a

loop for the iterations of RRT-Connect, which is acting similarly to RRT’s. The algorithm

gets a random sample, GA0=3 , from the state space in Line 5. After that, RRT-Connect

calls the �GC4=3 function to add GA0=3 to its first tree, �0, in Line 6. If the function return

)A0??43, it means that it cannot add GA0=3 to �0, otherwise it added a new vertex to �0,

which is G=4F. Once the algorithm comes to Line 7, it means that �0 has a newly added

vertex, G=4F. Therefore, the planner calls the �>==42C function (Algorithm 4) in order to

make a connection between G=4F and �1. if the �>==42C function could add G=4F to �1,

then both tree has G=4F as one of their vertices so that they are now connected via G=4F . As

a result, the planner has already found a solution, and it should return its trees (Line 8).

But if either the �>==42C function could not add G=4F to �1, or the �GC4=3 function could

extend �0 toward GA0=3 , the planner needs to go to the next iteration. For the next iteration,

the planner swaps its two trees (Line 11). Therefore, in the next iteration, it is the goal tree,

which will be extended toward GA0=3 , and the start tree will be trying to be connected to

the newly added vertex of the goal tree.

Algorithm 4 outlines the�>==42C function. It keeps calling �GC4=3 function in order to

link )A441 and G=4F of )A440. The�>==42C function will be stopped when the connection

is found, or an obstacle blocks the connection. If the �>==42C function returns '402ℎ43,

it means that the trees are now connected. Therefore, exploring is finished, and the planner

will return the trees.

Although RRT and RRT-Connect can work efficiently to find initial solutions, they

cannot return optimized solutions due to the lack of optimization process. In order to solve
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Algorithm 3 RRT-Connect Algorithm, '') − �>==42C (GBC0AC , G6>0;)
1: +0 ← {GBC0AC}; �0 ← ∅;
2: +1 ← {G6>0;}; �1 ← ∅;
3: �0 ← (+0, �0); �1 ← (+1, �1);
4: for 8 = 1 C> = do
5: GA0=3 ← (0<?;4();
6: if �GC4=3 (�0, GA0=3) ≠ )A0??43 then
7: if �>==42C (�1, G=4F) = '402ℎ43 then
8: return �0, �1;
9: end if
10: end if
11: (F0?(�0, �1);
12: end for
13: return �0, �1;

Algorithm 4 Connect Function
1: function �>==42C (�, G)
2: repeat
3: ( ← �GC4=3 (�, G);
4: until ( ≠ �3E0=243;
5: return (;
6: end function

this problem, Karaman and Frazzoli introduced RRT* (Karaman & Frazzoli, 2011), which

explores the state space similar to RRT, but it optimizes the tree by rewiring its branches

to achieve near-optimal solutions. RRT* keeps searching the state space after the first

solution has been found to return better paths. RRT* is an almost-surely asymptotically

optimal motion planner.

RRT* is incrementally rewiring the tree based on the newly added state to the tree. The

newly added states are considered as replacement parents for other existing nearby states

in the tree. Algorithm 5 outlines RRT* procedure, which is similar to RRT, but it calls the

�GC4=3∗ function that is the optimized version of the �GC4=3 function.

The �GC4=3∗ function includes the rewiring procedure, which tries to optimize the tree

vertices near the newly added vertex. Algorithm 6 outlines the �GC4=3∗ function. The
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Algorithm 5 RRT* Algorithm, '')∗(GBC0AC)
1: + ← {GBC0AC}; � ← ∅;
2: � ← (+, �);
3: for 8 = 1 C> = do
4: GA0=3 ← (0<?;4();
5: �GC4=3∗(�, GA0=3);
6: end for
7: return �

�GC4=3∗ function receives the tree, �, and a random sample from the state space, GA0=3 ,

which is shown by G in the �GC4=3∗ function. It finds the nearest vertex of the tree to G, and

stores it in G=40A4BC (Line 2). Line 3 calls the (C44A function so as to implement different

constraints, and keeps the output in G=4F. Line 4 checks whether the connection between

G=40A4BC and G=4F is collision-free. If so, then G=4F can be added to the tree, � (Line 5). In

the �GC4=3 function, the next step was to add the connection between G=40A4BC and G=4F

as a new edge to the edge set. However, this is different here in the �GC4=3∗ function. It

saves G=40A4BC in G<8= (Line 6). Then, #40A function returns all near vertices to G=4F, and

they will be stored in -=40A (Line 7). This function can have two different methodologies,

either :-nearest vertices, or vertices within A-disk. The :-nearest is about getting the first

: nearest vertices to the random sample, while the A-disk considers the random sample as

the center of a ball, which its radius is A, and then returns all vertices within the ball. It

depends on the application and the user that which methodology should be selected. Line 8

calculates 2<8=, which is the cost of coming from the root to G=4F via G<8=. Afterward, the

planner starts to go through all the near vertices, stored in -=40A , to find a vertex that can

offer better cost, and its connection with G=4F is collision-free. Therefore, the planners

makes a loop to go through all collision-free vertices of -=40A so as to find better parent for

G=4F (Line 9 to Line 14). �>BC (0, 1) function returns the cost of going from vertex 0 to

vertex 1. After finding the best possible parent for G=4F, the planner adds an edge to the
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edge set. The new edge connects G=4F and its parent in the tree (Line 15). In this stage, the

tree gets a new vertex so that it is time to rewire the other vertices near the newly added

vertex by considering G=4F as their potential parents. Thus, the planner makes another

loop to go through all the near vertices to G=4F with the aim of comparing their own cost

with their cost if they were connected to the tree via G=4F. Line 17 checks whether the

connection between the near vertex, G=40A , and G=4F is collision-free, as well as checking

whether G=40A cost is getting better if it is connected to the tree via G=4F or its previous

parent. If G=4F is a better parent for G=40A so that the edge of G=40A and its parent will be

removed from the edge set (Line 19), and another edge, in which G=40A is connected to

G=4F as a child, will be added to the edge set (Line 20).

Finally, the algorithm checks whether it added a new vertex to the tree. If it cannot add

any vertex to the tree, it will return )A0??43, which means that the connection between

G=40A4BC and G=4F is not collision-free (Line 29). If the connection is collision-free, but

GA0=3 is out of reach of the tree, and another vertex, which is nearer to the tree and in the

direction of GA0=3 , is added to the tree the output will be �3E0=243 (Line 26). Finally, if

the GA0=3 , itself is added to the tree so that the algorithm return '402ℎ43 (Line 24).

RRT* is returning near-optimal solutions. Nonetheless, it still holds the problem of

unidirectional searches, which is about finding initial solutions by consuming time in

comparison with bidirectional methods.

RRT*-Connect (Klemm et al., 2015) combines RRT-Connect with RRT* to have a

bidirectional method which returns near-optimal solutions. Like RRT*, RRT*-Connect

keeps searching all over the area in order to return a better solution than the current one.

RRT*-Connect is maintaining both trees during their growth like RRT*. It is faster than

RRT* in finding solutions. Moreover, it optimizes its solutions while exploring the state

space like RRT*.
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Algorithm 6 Extend* Function
1: function �GC4=3∗ (� = (+, �), G)
2: G=40A4BC ← #40A4BC (�, G);
3: G=4F ← (C44A (G=40A4BC , G);
4: if 8B�>;;8B8>=�A44(G=40A4BC , G=4F ) then
5: + ← +

⋃ {G=4F };
6: G<8= ← G=40A4BC ;
7: -=40A ← #40A (�, G=4F , A'') ∗ );
8: 2<8= ← �>BC (G=40A4BC , �) + �>BC (!8=4(G=40A4BC , G=4F ));
9: for each G=40A ∈ -=40A \G=40A4BC do
10: if 8B�>;;8B8>=�A44(G=40A , G=4F ) & (�>BC (G=40A , �) + �>BC (!8=4(G=40A , G=4F )) < 2<8=) then
11: G<8= ← G=40A ;
12: 2<8= ← �>BC (G=40A , �) + �>BC (!8=4(G=40A , G=4F ));
13: end if
14: end for
15: � ← �

⋃ {G<8=, G=4F };
16: for each G=40A ∈ -=40A \G<8= do
17: if 8B�>;;8B8>=�A44(G=40A , G=4F ) & (�>BC (G=4F , �) + �>BC (!8=4(G=4F , G=40A )) <

�>BC (G=40A , �)) then
18: G?0A4=C ← %0A4=C (G=40A , �);
19: � ← � \ {(G?0A4=C , G=40A )};
20: � ← �

⋃ {(G=4F , G=40A )};
21: end if
22: end for
23: if (G=4F = G) then
24: return '402ℎ43;
25: else
26: return �3E0=243;
27: end if
28: end if
29: return )A0??43;
30: end function

Algorithm 7 presents RRT*-Connect. Line 1, Line 2, and Line 3 initialize the start tree

and the goal tree. Each tree has only one vertex, which is its root, and no edges. After

initializing the trees, the planner starts to iterate its trees in order to expand them over

the collision-free portion of the state space. It does so by creating a loop (Line 4). In

each iteration, the planner gets a random sample from the state space and keeps it in GA0=3

(Line 5). It then calls the �GC4=3∗ function in order to expand �0 toward GA0=3 (Line 6).

If the �GC4=3∗ function could add a new vertex to �0, then it is time for �1 to make a

connection between itself and the newly added vertex of �0. Therefore, Line 7 calls the

�>==42C∗ function, which tries to make a connection between the tree and the sample. At

the end of each iteration, �0 and �1 will be swapped (Line 9), which means that in the

next iteration, another sample, GA0=3 , will be considered as a sample for �1 to be expanded
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toward. Then, �0 tries to connect itself to the newly added vertex of �1. Finally, when the

iterations are finished, Line 11 will return the trees.

Algorithm 7 RRT*-Connect Algorithm, '')∗ − �>==42C (GBC0AC , G6>0;)
1: +0 ← {GBC0AC}; �0 ← ∅;
2: +1 ← {G6>0;}; �1 ← ∅;
3: �0 ← (+0, �0); �1 ← (+1, �1);
4: for 8 = 1 C> = do
5: GA0=3 ← (0<?;4();
6: if �GC4=3∗(�0, GA0=3) ≠ )A0??43 then
7: �>==42C∗(�1, G=4F);
8: end if
9: (F0?(�0, �1);

10: end for
11: return �0, �1;

The �>==42C∗ function, Algorithm 8, is like the �>==42C function, but the �>==42C∗

function calls the �GC4=3∗ function instead of the �GC4=3 function. Therefore, it tries to

connect the tree to the sample and rewires the tree during the process.

Algorithm 8 Connect* Function
1: function �>==42C∗(�, G)
2: repeat
3: ( ← �GC4=3∗(�, G);
4: until ( ≠ �3E0=243;
5: return (;
6: end function

Although RRT*-based methods, such as RRT* and RRT*-Connect, obtain near-optimal

paths, they are not consistent according to their single-query nature. Moreover, they

become expensive in high dimensions (Gammell et al., 2014). In order to minimize the

path cost, it is better to look through the states that can achieve the less path cost. However,

it is computationally expensive to find the states that can provide better solutions than the

first one.
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Gammell et al. (Gammell et al., 2018, 2014) demonstrated that the effectiveness of

the existing approaches diminishes factorially with the dimension of the configuration

space. Therefore, they introduced Informed RRT*, which uses informed sampling on

RRT* after a first solution is found. Informed sampling goes through an ellipsoidal subset

of the configuration space that can provide better solutions. However, Informed RRT*

has the problem of other unidirectional tree planners, which is taking time to reach goal

configuration, especially when the goal configuration hidden behind narrow passages.

In this chapter, Informed RRT*-Connect is presented, which is a single-query bidirec-

tional planning method for optimal motion planning problems. Informed RRT*-Connect

behaves as RRT*-Connect until a first path is found, after which the proposed method

only takes samples from the subset of states that may improve the solution. Like other

almost-surely asymptotically optimal versions of RRT, Informed RRT*-Connect and

RRT*-Connect keep exploring the state space to return near-optimal solutions after the

first solution found. However, they are acting differently after a first solution is found.

RRT*-Connect look through all over the collision-free part of the state space, while

Informed RRT*-Connect search is limited to an ellipsoid subset of the state space which

its eccentricity depends on the length of the shortest current solution. Limiting states to a

subset gives the ability to the planner to return near-optimal solutions with fewer iterations.

4.2 Background

In this section, the necessary background for the chapter is presented. It first explains

the problem definition. Then, the description of the informed set is presented. Afterward,

all RRT-based methods that are related to this work are explored.
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4.2.1 Problem Definition

This thesis defines the optimal motion planning problem similarly to (Gammell et al.,

2014; Karaman & Frazzoli, 2011; Klemm et al., 2015). Let X be the state space, the

states that have collisions with obstacles is named ->1B ⊂ - . Complement of ->1B is

- 5 A44 = 2; ( ->1B), all member states of - 5 A44 are permissible, where 2; (.) is a closed set.

Let GBC0AC ∈ - 5 A44 be the start location and -6>0; ⊂ - 5 A44 be the goal configuration. A

path defined as a set f [0, 1] → - 5 A44 such that f (0) = GBC0AC and f (1) ∈ -6>0; .

Let 2 : Σ- 5 A44
→ R≥0 be a cost function that assigns a cost value to all collision-free

paths. The cost value is the parameter of path optimality. Therefore, the optimal motion

planning definition is to search for a path that connects GBC0AC to G6>0; ∈ -6>0; , while

minimizing the cost function. Therefore, the optimized path definition will be defined in

Equation 4.1.

f∗ = argf∈Σ<8={2 (f) | f (0) = GBC0AC , f (1) ∈ -6>0; ,

∀B ∈ [0, 1], f(B) ∈ - 5 A44}
(4.1)

- 5 ⊆ - is a subset of the state space which can provide better solution cost than the

existing one, 214BC ,

- 5 = {G ∈ - | 5 (G) < 214BC}. (4.2)

Therefore, planners can increase their convergence rate by limiting their search on states

that belong to - 5 .

However, 5 (·) in Equation 4.2 is unknown, and it is computationally complicated to

be found. Instead, a heuristic function, 5̂ (·), can be considered as an estimation which
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must not overestimate the actual cost of the path (Section 4.2.2). The definition of 5̂ (·) is

similar to Equation 4.2.

4.2.2 Informed Set

The definition of the informed set comes from (Gammell et al., 2014), as a subset of the

configuration space that includes states which could improve the optimality of paths. The

cost of the path from GBC0AC to G6>0; , 5 (G), can be divided into two parts. One is the cost

of the path from GBC0AC to G, 6(G), while another is the path cost from G to G6>0; , ℎ(G). In

order to have an estimation of 5 (·), it is needed to define the estimation of cost-to-come,

6̂(·), and the estimation of cost-to-go, ℎ̂(·).

Euclidean distance is the heuristic for problems that are looking for the minimum length

of paths. Therefore, the informed subset that can improve the current solution cost, 214BC ,

can be defined as

- 5̂ = {G ∈ - | ‖ GBC0AC − G ‖2 + ‖ G − G6>0; ‖2≤ 214BC}, which is the general equation

of an =-dimensional prolate hyperspheroid. Figure 4.1 shows an ellipse with GBC0AC and

G6>0; as its focal points, the transverse diameter is 214BC , and the conjugate diameter is√
22
14BC
− 22

<8=
, where 2<8= is the Euclidean distance between GBC0AC and G6>0; .

4.3 Informed RRT*-Connect (The first proposed method)

This section presents the proposedmethod, Informed RRT*-Connect, which is an almost-

surely asymptotically optimal dual-tree RRT-based planner. Informed RRT*-Connect acts

like RRT*-Connect to explore the configuration space before the first solution is found.

Afterward, it limits the search within an ellipsoidal subset to return better solutions than the

current one by fewer iterations in comparison to the standard version of RRT*-Connect.

Informed RRT*-Connect first initializes its variables such as its both trees and then

starts iterating both of them. It starts exploring the configuration space similarly to
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Figure 4.1: The estimated subset, - 5̂ , is an ellipse with GBC0AC , and G6>0; , as its focal points.
The ellipse’s size is defined based on the minimum cost between GBC0AC and G6>0; , 2<8=, and
the cost of the current solution, 214BC . The ellipse’s eccentricity is calculated via 2<8=/214BC .

RRT*-Connect until a solution is found. After a solution found, the cost of the shortest

path is calculated. If the solution cost is getting smaller, the tree will be pruned based

on the best-obtained solution cost. Then, the obtained solution cost will be passed to the

sampling function to limit the search within the informed subset. After taking a sample,

the planner starts to extend CA440 and try to make a connection between the newly added

vertex and CA441. Afterward, the two trees will be swapped for the next iteration. If a new

solution is found, it will be added to the solution set.

Algorithm 9 outlines the steps of the Informed RRT*-Connect method. The planner

first initializes its two trees by giving the start location as the root to the start tree and

the goal location to the goal location as its root (Line 1 ~ Line 3). Line 4 initializes the

solution set, which keeps all the connection vertices. Thus, it is initialized by getting

null at the beginning, because there is no connection between the two trees yet. The next

initialization is about the best-obtained path cost, which should be infinity at the beginning

of the planning due to having no solution yet. Therefore, the cost of going from the start

location to the goal location is infinity (Line 5). After the initialization is finished, Line 6

starts the iterations by making a loop. In each iteration, the best cost, 214BC , is stored
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Algorithm 9 (Informed RRT*-Connect Algorithm, �= 5 >A<43'')∗ − �>==42C (GBC0AC , G6>0;))
1: +0 ← {GBC0AC}; �0 ← ∅;
2: +1 ← {G6>0;}; �1 ← ∅;
3: �0 ← (+0, �0); �1 ← (+1, �1);
4: -B>;= ← ∅;
5: 214BC ←∞;
6: for 8 = 1 C> = do
7: ?A4E8>DB_214BC ← 214BC ;
8: 214BC ← �0;2D;0C4(ℎ>AC4BC%0Cℎ!4=6ℎ(-B>;=);
9: if 214BC < ?A4E8>DB_214BC then

10: %AD=4)A44(+, �, 214BC);
11: end if
12: GA0=3 ← �= 5 >A<43(0<?;4(GBC0AC , G6>0; , 214BC);
13: if �GC4=3∗(�0, GA0=3) ≠ )A0??43 then
14: �>==42C∗(�1, G=4F);
15: end if
16: (F0?(�0, �1);
17: if 8B(>;DC8>=�>D=3 (G=4F) then
18: -B>;= ← -B>;=

⋃{G=4F}
19: end if
20: end for
21: return �0, �1;

in another variable called ?A4E8>DB_214BC (Line 7). Line 8 recalculates 214BC to update

it. It may get better during the previous iteration. Then, 214BC and ?A4E8>DB_214BC are

compared together to find out whether a better solution has been found (Line 9). If so,

Line 10 will prune the tree, which means that the unnecessary vertices, which could not

potentially improve the solution, will be removed from the tree. Afterward, the planner

gets an informed sample (Line 12). The �= 5 >A<43(0<?;4 function provides a random

sample from the state space before an initial solution is found, and then, it returns random

samples within a subset of the state space. Line 13 calls the �GC4=3∗ function in order

to extend �0 toward GA0=3 . If �0 gets extended, the planner calls the �>==42C∗ function

so as to try to connect �1 to the newly added vertex of �0 (Line 14). Line 16 swaps the

trees for the next iteration. At the end of each iteration, the planner checks whether a new

67

Univ
ers

iti 
Mala

ya



solution is found (Line 17). If so, the connection point, G=4F will be added to the solution

set (Line 18). Finally, Line 21 return both trees.

4.3.1 Graph Pruning

Graph pruning is a method that removes some vertices from the tree in order to make it

smaller so that the planning process will be carried out faster. This is important to keep the

tree as small as possible. It is because the planner needs to check all tree’s vertices so as to

for different purposes such as finding an appropriate parent for the new sample. Karaman

et al. (Karaman et al., 2011) implemented a graph pruning technique on a version of RRT*,

which is able to improve paths. They calculate the estimated cost of each vertex as the sum

of cost-to-come and estimated cost-to-go. If the estimated cost is higher than the shortest

path’s length, then the vertex must be removed from the tree; otherwise, the vertex will

remain in the tree. However, the cost-to-come of the vertices may be getting smaller due to

the rewiring process. As a result, this method may remove vertices that could potentially

provide better solutions.

Gammell et al. (Gammell et al., 2018) uses another heuristic for pruning the tree. The

cost-to-come of a vertex estimated as the Euclidean distance between GBC0AC and the vertex.

Similarly, the cost-to-go estimated as the Euclidean distance between the vertex and G6>0; .

If the estimated cost is smaller than the shortest path length, then the vertex will not be

removed from the tree. In other words, this method keeps only the vertices that either itself

or one of its children located inside the informed set.

The %AD=4)A44 function removes the vertices of the tree which are not parent of any

other vertices and their estimated cost, 5̂ (E) = 6̂(E) + ℎ̂(E), is greater 214BC . These vertices

are not able to provide better solutions than the existing one. In other words, this function

removes the leaves of the tree that have the estimated cost more than 214BC .

Algorithm 10 presents the %AD=4)A44 function. The algorithm makes a loop, which
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is continued until there no vertex that can be removed from the tree. It first creates a set,

+?AD=4, from all vertices that their estimated cost is higher than the best solution cost, 214BC ,

and they are not parents of any vertex (Line 2). In other words, the set is included all

vertices that are the leaves of the tree, which are not able to be part of a solution that can

offer a shorter path to the current one. Therefore, these vertices should be removed from

the tree. Line 3 remove all edges, which are the connections between the vertices in +?AD=4

and the tree. After cleaning up the edge set, the function removes +?AD=4 from the vertex

set.

Algorithm 10 %AD=4)A44(+ ⊆ -, � ⊆ + ×+, 214BC ∈ R>0)
1: do
2: +?AD=4 ← {E ∈ + | 5̂ (E) > 214BC , 0=3 ∀F ∈ +, (E, F) ∉ �};
3: �

−← {(D, E) ∈ � | E ∈ +?AD=4};
4: +

−← +?AD=4;
5: while +?AD=4 ≠ ∅;

4.3.2 Direct Sampling of An Ellipsoidal Subset

The idea of direct sampling of an ellipsoidal subset comes from (Gammell et al.,

2014). In order to achieve uniformly distributed sampling inside the ellipsoidal subset

-4;;8?B4 ∼ U(-4;;8?B4), it can been transformed uniformly distributed samples from unit

=-ball to ellipsoidal subset. -10;; ∼ U(-10;;),

G4;;8?B4 = !G10;; + G24=C4A ,

where -24=C4A = (G 5 1 + G 5 2)/2 is the center of the hyperellipsoid with its two focal points,

G 5 1 and G 5 2, and

-10;; = {G ∈ - | ‖ G ‖2≤ 1} (H. Sun & Farooq, 2002).

This transformation will be calculated by Cholesky decomposition of the hyperellipsoid

matrix, ( ∈ R=×=,

!!) ≡ (,
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(G − G24=C4A))((G − G24=C4A) = 1,

( having eigenvectors corresponding to the axes of the hyperellipsoid, {08}, and eigenvalues

corresponding to the squares of its radii, {A2
8
}. The transformation, L, maintains the uniform

distribution in -4;;8?B4 (Gammell & Barfoot, 2014).

Therefore, the transformation of - 5̂ can be achieved just by transverse the radii and

axis. The diagonal matrix of the transverse axis is

( = 3806{ 2
2
14BC

4 ,
22
14BC
−22

min
4 , ...,

22
14BC
−22

min
4 }

and decomposition

! = 3806{ 214BC2 ,

√
22
14BC
−22

min
2 , ...,

√
22
14BC
−22

min
2 }

where 3806{.} stands for a diagonal matrix.

In order to rotate the hyperellipsoid to the world frame, the Wahba problem (Wahba,

1965) can solve it. The rotation matrix is calculated by

� = * 3806{1, ..., 1, 34C (*)34C (+)}+) ,

where 34C (.) stands for matrix determinant. * ∈ R=×= and + ∈ R=×= are unitary matrices

of*Σ+) ≡ " through singular value decomposition. The matrix " is calculated via the

outer product of the first column of the identity matrix, 11, and the transverse axis on the

world frame, 01,

" = 011)1 ,

where

01 = (G6>0; − GBC0AC)/‖ G6>0; − GBC0AC ‖2 .

Thus, the below formula will calculate the states that belong to the informed subset.

G 5̂ = �!G10;; + G24=C4A ,

Algorithm 11 presents the informed sampling procedure.

�= 5 >A<43(0<?;4 function is for sampling the configuration space. If the 214BC is not

infinity, it means that a path between GBC0AC and G6>0; has already been found. Therefore,
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�= 5 >A<43(0<?;4 must return samples within the ellipsoid subset. If no path is found, the

function does not limit the configuration space and returns a sample over the configuration

space.

Algorithm 11 �= 5 >A<43(0<?;4(GBC0AC , G6>0; , 2<0G)
1: if 2<0G < ∞ then
2: 2<8= ←‖ G6>0; − GBC0AC ‖2;
3: G24=C4A ← (GBC0AC + G6>0;)/2;
4: C← '>C0C8>=)>,>A;3�A0<4(GBC0AC , G6>0;);
5: A1 ← 2<0G/2;
6: {A8}8=2,...,= ← (

√
22
<0G − 22

<8=
)/2;

7: L← 3806{A1, A2, ..., A=};
8: G10;; ← (0<?;4*=8C�0;;;
9: GA0=3 ← (CLG10;; + G24=C4A)

⋂
-;

10: else
11: GA0=3 ∼ U(-);
12: end if
13: return GA0=3;

4.3.3 Rewiring Neighborhood

Optimized versions of RRT use some procedures to rewire the near vertices to the

newly added vertex in order to optimize the cost of existing vertices. RRT*-Connect

is also rewiring the neighbor vertices of new states so that it almost-surely converges

asymptotically to the optimum solution. It is needed to define the near vertices to the newly

added vertex. There are two types of definitions for the neighborhood in a tree structure:

A-disc variant and :-nearest variant.

4.3.3.1 A-disc variant

In this definition, all vertices which are located within a radius, A∗
'')∗−�>==42C will be

considered as the neighbors.

A∗'')∗−�>==42C B

(
2
(
1 + 1

=

) (
_(-)
Z=

) (
log( |+ |)
|+ |

)) 1
=

(4.3)
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where | · | is the cardinality of a set, the Lebesgue measure of an =-dimensional unit

ball and the Lebesgue measure of a set are shown by Z= and _(·), respectively.

Informed RRT*-Connect searches the state space to find a solution. Then, the search

will be limited to a subset of the configuration space so that the rewiring will be a function

of the number of vertices in the informed set, |+ ∩ - 5̂ |, and its measure,

_

(
- 5̂

)
≤ min{_(-), _(-BD1B4C)}.

Thus, A∗
'')∗−�>==42C will be updated as

A∗'')∗−�>==42C ≤
(
2
(
1 + 1

=

) (
min{_(-), _(-BD1B4C)}

Z=

)
©«
log

(���+ ∩ - 5̂ ���)���+ ∩ - 5̂ ���
ª®®¬
ª®®¬

1
= (4.4)

4.3.3.2 :-nearest variant

In this definition, the near neighbor set includes : closest vertices to the new vertex.

:∗'')∗−�>==42C B 4

(
1 + 1

=

)
log( |+ |). (4.5)

Similar to A-disc for Informed RRT*-Connect, the :∗
'')∗−�>==42C will be updated as

:∗'')∗−�>==42C B 4

(
1 + 1

=

)
log

(���+ ∩ - 5̂ ���) . (4.6)

If the subset contains less number of vertices in comparison to the whole configuration

space, then the rewiring neighborhoods of the Informed RRT*-Connect, Equation 4.4 and

Equation 4.6 will be smaller than Equation 4.3 and Equation 4.5. Therefore, the planner

requires less computational time for the rewiring process. As a result, its performance
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will be improved. However, if the distance between GBC0AC and G6>0; be relatively big, then

the informed set is not limiting the rewiring neighborhoods considerably so that Informed

RRT*-Connect and RRT*-Connect act similarly.

RRT*-Connect is a probabilistic complete and almost-sure asymptotically optimal

planner. Informed RRT*-Connect acts exactly like RRT*-Connect before finding an

initial solution so that it is probabilistically complete. Moreover, Informed RRT*-Connect

maintains a uniform sample distribution over the ellipsoid subset, in which it implements

rewiring that satisfies the bound mentioned in (Karaman & Frazzoli, 2011). Therefore, it

is also an almost-surely asymptotically optimal motion planner.

4.4 Simulation

Informed RRT*-Connect was evaluated on simulated problems in R2, R3, and R6

using Open Motion Planning Library (OMPL) (Sucan et al., 2012). OMPL is a motion

planning library written in C++, which is integrated with the Robot Operating System

(ROS) (Quigley et al., 2009). OMPL App is the front-end for OMPL, which has several

rigid bodies and state spaces.

Informed RRT*-Connect has been compared with RRT*-Connect, RRT*, and Informed

RRT* on different scenarios in order to demonstrate the significance of the proposed

method over the existing planners.

The first two simulations configuration spaces are shown in Figure 4.2. These two

simulations are simple which designed for 2 Degree of Freedoms (DoFs) problems. The

rest of the simulations are the configuration spaces provided by OMPL App. They are

shown in Figure 4.7. Maze Planar configuration space, shown in Figure 4.7a, is a 3D

problem, while Home (Figure 4.7b), and Apartment Hard (Figure 4.7c), are 6D problems.

The planners were run 100 times in each scenario in order to get the median of their

results.
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Figure 4.2: Single Cube configuration space, (a), has an obstacle located at the center
of the configuration space, and the width of the obstacle is a random variable uniformly
distributed over the range [0.25, 0.5]. (b) shows Multiple Narrow Passages configuration
space, which only offers planners to pass through three gaps between GBC0AC and G6>0; to
produce solutions.
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Figure 4.3: One run of RRT*-Connect and Informed RRT*-Connect in the Single Cube
scenario shown when the obstacle width is 0.5, and 1/36>0; = 2. (a), (b), and (c) show
RRT*-Connect’s trees, while (d), (e), and (f) demonstrate the trees obtained from Informed
RRT*-Connect.

4.4.1 Single Cube

The idea of this simulation comes from (Gammell et al., 2014), which has been designed

to examine the impact of informed sampling in relation to the size of the map and distance
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Figure 4.4: The median time required by Informed RRT*-Connect and RRT*-Connect to
find solution cost within 2% of the optimal path cost for different amounts of ;/36>0; in
Single Cube scenario obtained from 100 runs. Error bars demonstrate a nonparametric
95% confidence interval for the median time. It can be seen that Informed RRT*-Connect
performs best comparatively when the distance between GBC0AC and G6>0; , 36>0; , is much
shorter than the size of the configuration space, ;.

between GBC0AC and G6>0; . This simulation includes an obstacle located in the center of the

configuration space, which is a square with a randomly selected width between [0.25, 0.5].

The Single Cube map is shown in Figure 4.2a, in which the distance between GBC0AC and

G6>0; is shown as 36>0; , and the length of map is shown as ;. The simulation has been

carried out for different values of ;/36>0; . Figure 4.3 demonstrates the trees obtained from

RRT*-Connect and Informed RRT*-Connect in this scenario.

Each planner has solved this scenario for a hundred times, and then the obtained results

are compared together. The results obtained from 100 independent runs in Figure 4.4,

shows that Informed RRT*-Connect and RRT*-Connect, both found solutions at almost the

same time when 36>0; was equal to ;, while at the smallest ratio, 4, Informed RRT*-Connect

was about ten times faster than RRT*-Connect. When the subset covers almost all over
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the state space, RRT*-Connect and Informed RRT*-Connect have the same amount of

space to search. Therefore, they will get an almost similar amount of time to be able to

return a near-optimal solution. In contrast, when the subset size is considerably smaller

than the state space, Informed RRT*-Connect has a smaller space to search in comparison

to RRT*-Connect. As a result, Informed RRT*-Connect is able to return near-optimal

solutions faster than RRT*-Connect. The experiment specifications are listed below:

• Dimension X axis: (-10, 10)

• Dimension Y axis: (-10, 10)

• start state: (-2, 0)

• goal state: (2, 0)

• memory_limit: 100MB

• runtime_limit: 20s

• run_count: 100

4.4.2 Multiple Narrow Passages

This simulation has been carried out to examine the ability of planners in finding paths

in the problems that offer only narrow passages. Figure 4.2b shows the configuration

space of Multiple Narrow Passages, in which there are three barriers in the middle of

the configuration space. Each barrier has a slight passage with the height that shows as

360?. All these passages have the same height. In order to solve this problem, the planner

has to pass through all the three gaps to connect the start location, GBC0AC , and the goal

location, G6>0; , together. This simulation has been carried out on the different heights of

the passages so as to examine the effect of the passage height on the planners. The gap

height in this simulation starts from 2% of the map height, ;, and getting smaller until

0.001325% of ;. One run of each planner is shown in Figure 4.5.

76

Univ
ers

iti 
Mala

ya



-10

-5

 0

 5

 10

-10 -5  0  5  10

Tree
Goal
Start

Solution

(a) RRT*

-10

-5

 0

 5

 10

-10 -5  0  5  10

Tree
Goal
Start

Solution

(b) Informed RRT*

-10

-5

 0

 5

 10

-10 -5  0  5  10

Goal Tree
Start Tree

Goal
Start

Solution

(c) RRT*-Connect

-10

-5

 0

 5

 10

-10 -5  0  5  10

Goal Tree
Start Tree

Goal
Start

Solution

(d) Informed RRT*-Connect

Figure 4.5: One example of the trees and solution paths obtained by the planners inMultiple
Narrow Passages scenario. (a) and (b) are unidirectional searches. Therefore, their trees
density are higher on the left side of the obstacles, while (c) and (d) are bidirectional
searches, and their trees’ densities are almost the same on both sides of the obstacles.

For each gap height, the planners solved the problem 100 times, and their obtained

results are shown in Figure 4.6. It can be seen that the four planners needed approximately

the same time to solve the problem when the gap percentage is equal to or bigger than

0.25%. However, they needed a different amount of time to find solutions for smaller gap

height. Informed RRT*-Connect took the least time to return solutions among all planners.

Informed RRT* was the second-fastest until the gap percentage was bigger than 0.001325%

in which RRT*-Connect acted faster than Informed RRT* to return near-optimal solutions.

The experiment specifications are listed below:

• Dimension X axis: (-10, 10)
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Figure 4.6: The median time required by the planners to find solution cost within 2% of
the optimal path cost for different gap sizes in Multiple Narrow Passages scenario obtained
from 100 runs. Error bars denote a nonparametric 95% confidence interval for the median
time.

• Dimension Y axis: (-10, 10)

• start state: (-5, 0)

• goal state: (5, 0)

• memory_limit: 100MB

• runtime_limit: 1000s

• run_count: 100

4.4.3 OMPL App simulations

OMPL App is a front-end for OMPL, contains several configuration spaces and rigid

body robots. They have been designed to use for benchmarking different planners. Some

of OMPL’s configuration spaces have been used in this simulation, including 3D and 6D

problems. The selected configuration spaces that have been tested in this chapter are shown

in Figure 4.7.
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(a) Maze planar (b) Home (c) Apartment Hard

Figure 4.7: The three OMPL App scenarios which have been tested in the simulation
section. (a) is a 3DoFs configuration space, while (b) and (c) are 6DoFs problems. (c)
is the most challenging scenario, especially for unidirectional searches. It is because the
robot start pose is in the hall, and the goal location is located in the kitchen, which offers
narrow doors to pass.

4.4.3.1 Maze Planar

Maze Planar, shown in Figure 4.7a, is one of the OMPL App configuration spaces that

has been designed for problems with 3DoFs, two real vectors (x-axis and y-axis) and the

rotation. The rigid body on the left side is the start pose, the red-colored shape, while

the rigid body on the right side is the goal pose. The experiment specifications are listed

below:

• robot: car2_planar_robot

• environment: Maze_planar_env

• start state (x, y, yaw): (0.01, -0.15, 0.00)

• goal state (x, y, yaw): (41.01, -0.15, 0.00)

• memory_limit: 1000MB

• runtime_limit: 3s

• run_count: 100

4.4.3.2 Home

Home is a configuration space that has been designed for problems with 6DoFs (3

coordinate planes (x, y, z) and their rotations (roll, pitch, yaw)). Figure 4.7b shows this
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configuration space in which the table on the right side is the start pose, while the table

on the left side shows the goal pose. In order to find near-optimal solutions, the planners

have to pass through the windows located between the start pose and the goal pose. The

experiment specifications are listed below:

• robot: Home_robot

• environment: Home_env

• start state (x, y, z): (252.95, -214.95, 46.19)

• goal state (x, y, z): (2.95, -100.00, 46.19)

• memory_limit: 1000MB

• runtime_limit: 15s

• run_count: 100

4.4.3.3 Apartment Hard

The last simulation is named “Apartment Hard” by OMPL App developers, shown in

Figure 4.7c. This scenario has 6 degrees of freedom, including three coordinate planes (x,

y, z) and their rotations (roll, pitch, yaw). In this scenario, the start pose is the piano on

the left side of the map in the hall, while the goal location is the piano hidden beyond the

kitchen walls on the right side of the map. To find near-optimal solutions, the planners

need to pass the piano through the kitchen door. The experiment specifications are listed

below:

• robot: Apartment_robot

• environment: Apartment_env

• start state (x, y, z): (-31.19, -99.85, 36.46)

• goal state (x, y, z): (246.81, -48.85, 36.46)

• memory_limit: 1000MB
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• runtime_limit: 100s

• run_count: 100

4.5 Discussion

This section presented the evaluation of simulation in this section. First simulation,

Single Cube scenario’s goal is to show how the informed set acts on different map

sizes. Figure 4.4 shows that when the distance between GBC0AC and G6>0; is equal to the

configuration space length, ;, both planner acts similarly. It is due to the fact that when

the distance between GBC0AC and G6>0; is relatively big and the subset almost covers all over

the configuration space so that Informed RRT*-Connect search area is not limited to a

small portion of the configuration space. Therefore, Informed RRT*-Connect is acting

like RRT*-Connect in these kinds of scenarios. In contrast, when the distance of GBC0AC and

G6>0; is getting smaller, the time taken for the Informed version is significantly smaller (up

to 10 times) than the standard version of RRT*-Connect.

The second simulation, which is about finding paths in a configuration space that only

offers narrow passages to connect GBC0AC and G6>0; , shows that dual-tree searches work

better than the single-tree methods. It is shown that Informed RRT*-Connect acts better

than Informed RRT*. Similarly, RRT*-Connect found paths faster than RRT*. Moreover,

when the gap size was only 0.001325% of the map length, the tightest gap, RRT*-Connect

worked faster than not only RRT* but also Informed RRT*. It is because RRT*-Connect is

a bidirectional RRT-based method, which helps it solve the problems with narrow passages

faster than unidirectional RRT-based methods. Informed RRT*-Connect worked as the

fastest motion planner in all the gap sizes. It is due to the fact that Informed RRT*-Connect

is not only a bidirectional approach but also it uses informed sampling, which let it to have

a smaller space to look for near-optimal solutions.
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Figure 4.8: The success rate versus time of the four planners on OMPL App configuration
spaces.
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Figure 4.9: The path length versus time of planners for different OMPL App configuration
spaces. Error bars denote a nonparametric 95% confidence interval for the median path
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OMPL Apps configuration spaces’ results are shown in Figure 4.8 and Figure 4.9.

The obtained results of these simulations are presented in Table 4.1. For the first OMPL

App scenario, Maze Planar, the planning time was three seconds. The median path

cost of Informed RRT*-Connect was 75.8, which is the shortest obtained path among all

the planners. The second successful planner in terms of path length is Informed RRT*,

which could obtain around 76. RRT* is the least successful planner, which could reach

78.9. In terms of success rate, both bidirectional methods, Informed RRT*-Connect and

RRT*-Connect, could achieve total success, 100%, while RRT* and Informed RRT* could

achieve 93% and 97%, respectively. In Home scenario, the planning time was 15 seconds.

Similar to the previous scenario, Maze Planar, Informed RRT*-Connect could obtain

the best median cost among all the planners, which is approximately 293. The second

successful planner was Informed RRT* by offering 294 as its solution cost. RRT* and

RRT*-Connect could achieve 314 and 309, respectively. In terms of success rate, the

bidirectional methods were acting very better than the unidirectional ones. Informed

RRT*-Connect could achieve 97%, while Informed RRT* could only achieve 64%, which

makes it the least successful planner in this scenario. For the most challenging scenario,

Apartment Hard, the time was 100 seconds. The unidirectional RRTs were not successful

in these scenarios. It is due to the fact that unidirectional searches cannot find initial

solutions as fast as bidirectional searches when the solution is offered via narrow passages.

The success rates of RRT* and Informed RRT* were 6% and 1%, respectively. Therefore,

the median path length for both of them is infinity. In contrast, Informed RRT*-Connect

and RRT*-Connect could achieve 93% and 90%, respectively. In terms of the median of

path length, Informed RRT*-Connect could be more successful that RRT*-Connect.

The success rate graphs, as depicted in Figure 4.8, show that the bidirectional searches,

RRT*-Connect and Informed RRT*-Connect, are more successful than the unidirectional
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Table 4.1: The results of 100 independent runs of each planner in OMPL App scenarios.
In Apartment Hard scenario, the success rates of RRT* and Informed RRT* are too low
so that the Median Path Length would be infinity for these two planners. The Average
Path Length is obtained based on the average path lengths of the runs in which an initial
solution is found.

State Space Planning
Time (s) Planner Median

Path Length
Average
Path Length

Success
Rate (%)

Maze Planar 3

RRT* 78.910043 87.47247314 93
Informed RRT* 76.071604 79.1632481 97
RRT*-Connect 78.122722 84.72135242 100
Informed
RRT*-Connect 75.807805 80.26087762 100

Home 15

RRT* 314.1974135 433.2467386 75
Informed RRT* 294.049977 475.1392283 64
RRT*-Connect 309.479064 339.1374932 94
Informed
RRT*-Connect 293.751639 310.8836259 97

Apartment
Hard 100

RRT* - 589.1352524 6
Informed RRT* - 598.4161133 1
RRT*-Connect 447.3513745 459.9981966 90
Informed
RRT*-Connect 444.5581695 456.1922001 93

searches, RRT* and Informed RRT*. It is the significance of bidirectional planners over

the unidirectional planners that are able to find solutions faster than unidirectional planners.

It is also noticeable that Informed version of each planner work similar to the standard

version in terms of success rate. It is due to the fact that the informed version and the

standard version act similarly before the first solution is found.

Informed RRT*-Connect and RRT*-Connect were able to achieve above 90% success

in all three simulations, while Informed RRT* and RRT* were only able to achieve

approximately 85%, 70%, and 5% in Maze Planar, Home, and Apartment Hard scenarios,

respectively. Therefore, bidirectional searches are preferable for motion planning problems

in which success in a limited time is essential.

Figure 4.9 demonstrates the path length vs. time in OMPL App configuration spaces

achieved by the planners. In Figure 4.9a and Figure 4.9b, it can be seen that Informed

versions of the planners produced better results in comparison with the standard versions.
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RRT* and Informed RRT* were not able to find solutions in Apartment Hard scenario so

that for the path length graph (Figure 4.9c), RRT*-Connect, and Informed RRT*-Connect

were shown. Informed RRT*-Connect was the most successful planner in terms of success

rate and path length.

This chapter presented a new motion planner that combines the ability to quickly finding

the first solutions from RRT*-Connect with the capability of quickly returning near-optimal

solutions from Informed RRT*. Although RRT*-Connect is a fast path planner in terms of

finding solutions, it scans all over the configuration space to return better solutions than the

existing one like RRT*, which is not efficient, especially in high-dimensional problems.

The proposed method, Informed RRT*-Connect, not only find its first solutions as fast

as RRT*-Connect, which is faster than single-tree based methods but also it returns near-

optimal solutions quicker than RRT*-Connect. It is achieved by limiting the configuration

space into an ellipsoid subset, which depends on the location of the start configuration, the

goal configuration, and the length of the shortest path.

In other words, the proposed method, Informed RRT*-Connect, is a bidirectional

asymptotically optimal RRT-based method that uses informed sampling. Informed RRT*-

Connect starts exploring state spaces by growing two trees from the start location and the

goal location. It expands its two trees toward random samples from all over the state space.

After finding a connection between its two trees, it has an initial solution for the given

problem. It then limits the state space into one subset of the state space. It gets random

samples from the subset instead of all over the state space in order to improve the quality

of its solutions faster than methods which do not implement the informed sampling.

It has been successfully demonstrated that the proposed method found first solutions

similar to RRT*-Connect in the simulations, and it returns near-optimal solutions faster

than the existing planners.

86

Univ
ers

iti 
Mala

ya



These properties make the proposed method suitable for the motion planning problems

in which optimal solutions must be obtained with a limited number of iterations and/or in

a limited time slot.
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CHAPTER 5: HYBRID RRT

RRT-based methods can be divided into two categories, nonoptimized and optimized.

Nonoptimized RRT-based motion planners such as RRT and RRT-Connect have been

designed to find initial solutions. They will be stopped soon after finding their initial

solutions. On the other hand, optimized RRT-based motion planners like RRT*, Informed

RRT*, and Informed RRT*-Connect have been designed to return near-optimal solutions

so that they keep working after an initial solution is found in order to optimize their trees.

The optimization process includes rewiring trees to minizine the solution cost. The

optimization process will be run in each iteration so that it is a time-consuming process.

As a result, the optimization processes make the optimized versions of RRT slower than

nonoptimized versions. Consequently, nonoptimized versions of RRT can expand their

trees in the state space faster than optimized versions, which helps them find initial solutions

faster than optimized versions.

In many scenarios, there is a limited amount of time for motion planning. Therefore,

designers mostly sacrifice the path quality and select nonoptimized motion planners to be

able to increase the change of having at least one feasible solution at the end of planning

time. However, if the solution is found before planning time is over, then the planner cannot

benefit from the remaining time to optimize the solution due to the lack of optimization

process. This problem limits using optimized versions of RRT to the problem specifics.

In Addition to these two categories, most RRT-based methods are also categorized into

two groups, unidirectional and bidirectional methods. Unidirectional methods explore the

state space by growing a tree rooted in the start location and expand the tree toward random

samples. Bidirectional approaches, on the other hand, grow two trees simultaneously,

one is originated from the start location, and another one is originated from the goal
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location. These two trees try aggressively to find a link between themselves, which would

be a solution to the problem. Having two trees makes bidirectional methods faster than

unidirectional searches for finding initial solutions. However, maintaining two trees would

be more computationally expensive than single-tree maintenance.

This chapter introduces a single-query semi-bidirectional planning method for optimal

motion planning problems called Hybrid RRT, which is not only a combination of

unidirectional and bidirectional methods but also is a combination of nonoptimized and

optimized versions of RRT. The goal of these combinations is to benefit from the advantages

of these types of planners in a single planner.

Hybrid RRT starts exploring state spaces with a nonoptimized dual-tree RRT-based

motion planner to be able to find an initial solution as fast as possible. Afterward, it wants

to optimize the solution so that it implements an optimized single-tree RRT-based motion

planner, which helps it optimize the solution in a short period of time.

Hybrid RRT divides the planning time into three phases. Phase one is to find an initial

solution, the second phase is to combine two trees of phase one into one tree, and phase

three is to optimize the solution. Hybrid RRT implements a dual-tree search to achieve the

first solutions faster than unidirectional methods. After finding the first solution, Hybrid

RRT needs to merge its two trees into one. Then, it optimizes the tree to find near-optimal

solutions.

In order to get near-optimal solutions fast from the optimization process, Hybrid RRT

limits the state space into a subset of the state space like Informed RRT*. Therefore, it

needs to combine two trees of phase one into one tree to be able to implement Informed

sampling on a single tree.

Hybrid RRT is neither an entirely unidirectional method nor a fully bidirectional one.

It is a combination of both groups. Moreover, it is neither a nonoptimized version nor an
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optimized version. It uses a nonoptimized search for finding initial solutions, which makes

it faster than optimized versions of RRT. Moreover, it implements an optimization process

to be able to return near-optimal solutions. Hybrid RRT can find first solutions as fast as

RRT-Connect and return the near-optimal solutions as quickly as Informed RRT*.

Section 5.1 reviews the existing works related to Hybrid RRT. Section 5.2 introduces

Hybrid RRT method. Section 5.3 provides some simulations that compare Hybrid RRT

performance against some of the state-of-the-art motion planners. Section 5.4 evaluates

the simulation’s results.

5.1 Introduction

There are two types of sampling-based methods, multi-query, and single-query methods.

Multi-query planners such as Probabilistic Road Map (PRM) (Kavraki et al., 1996) can

solve several problems with different start locations and goal locations in the state space.

They first create a roadmap by taking random samples, then connect different locations of

the map through the created roadmap.

Single-query planners such as Rapidly-exploring Random Tree (RRT) (LaValle, 1998)

do not make a roadmap like multi-query planners. Instead, they construct a tree rooted in

the start location and explore the state space by growing the tree toward random samples.

Once the goal location is sampled, the exploring process will be stopped.

Unidirectional sampling-based methods, such as RRT, could have a problem to sample

the goal area due to their random sampling scheme. RRT-Connect (Kuffner & LaValle,

2000) has been proposed to minimize the time to find solutions. RRT-Connect has two

RRT trees, one from the start location and another one from the goal location. Exploring

the state space with two trees makes RRT-Connect a faster planner in comparison to RRT,

especially when the goal location is challenging to be sampled by using unidirectional

searches.
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Although RRT-based methods can solve the motion planning problems efficiently, they

provide non-optimal solutions (Karaman & Frazzoli, 2011). It is due to the fact that they

explore the state space with the random walk so that their outputs would be a sequence of

random samples, and they do not have any procedure for optimizing their trees.

RRT* (Karaman & Frazzoli, 2011) implements a rewiring operation, which leads to

near-optimal solutions. These types of planners called asymptotically optimal, which

means that they will return near-optimal solutions by increasing the number of samples.

RRT* does not stop exploring state spaces after a solution is found. It continues exploring

the state space with the aim of returning better solutions than the current one. RRT* keeps

sampling all over the state space to optimize the current solution so that it is an inefficient

way due to its single-query nature (Gammell et al., 2014).

Informed RRT* (Gammell et al., 2018, 2014) solves this problem of RRT* by limiting

the search area to a subset of the state space so as to return near-optimal solutions faster

than the standard version of RRT*. The subset is a function of the current solution, which

means that Informed RRT* cannot limit the state space to a subset before a solution

is found. In other words, Informed RRT* acts similarly to RRT* before a solution is

found. Therefore, Informed RRT* only expedites the optimization process. It still has the

problems of other unidirectional methods, which is spotting a sample in the goal area,

especially when the goal area is hidden beyond the narrow passages.

There are some other RRT-based methods, which try to find initial solutions faster than

the standard version of RRT* (Gammell et al., 2015; Wang et al., 2019, 2018). Wang et

al. (Wang et al., 2019, 2018) modified the sampling process to find solutions faster than

standard RRT*. However, these methods resulted in nonuniform sample distributions.

Batch Informed Trees (BIT*) (Gammell et al., 2015) limits the state space to a subset of it,

which including the start location and the goal location in order to return initial solutions
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faster. Although BIT* could return first solutions faster than RRT* in many scenarios, it

requires more time to find the first solutions in Bug-Trap-like scenarios in comparison to

methods that do not limit the exploring area.

5.2 Hybrid RRT (The second proposed method)

This section presents the proposed method, Hybrid RRT, which is a semi-dual-tree

RRT-based method. Hybrid RRT divides the planning process into three sub-processes:

finding-an-initial-solution, combining-two-trees, and optimizing-the-current-solution.

For finding an initial solution, Hybrid RRT implements a dual-tree search to be able to

find the first solutions faster than the unidirectional searches. For the optimization process,

it applies informed sampling on a single-tree, which helps it return near-optimal solutions

more quickly than other methods that do not limit their search area for the optimization

process. In other words, it uses a bidirectional search in finding-an-initial-solution sub-

process and uses a unidirectional search for optimizing-the-current-solution sub-process.

Therefore, it needs to convert the two trees of the first sub-process into one to be able

to pass it the third sub-process. Thus, the second sub-process duty is to transform the

bidirectional trees into a unidirectional tree.

5.2.1 Hybrid RRT Algorithm

Algorithm 12 outlines the steps of the Hybrid RRT method. The planner first initializes

its parameters. Line 1 initializes the start tree so that it takes the start location as its root

and null for its edge set. Similarly, Line 2 gives the goal location as the first vertex to

the goal tree and an empty set as the edge set. The solution set is set to be null at the

beginning of the planning, because there is no solution yet (Line 4). -B>;= keeps all the

vertices located within the goal region. Moreover, the best cost of the obtained path, 214BC ,

should be set to infinity before iterations are started (Line 5). In other words, 214BC keeps
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the cost of the shortest path. After initializing the parameter, the planner starts to find an

initial solution with a bidirectional nonoptimized RRT. It calls the �8=3�8ABC(>;DC8>=

function, Algorithm 13, in order to find its initial solution (Line 6). This function returns

two arguments, one is its status, and another one is the connections point. If the function

was successful in finding an initial solution, it then returns (D224BB as its status, and G2G=

as the connection point of the two trees. In contrast, if it could not find any solutions

for the given problem, it returns �08;DA4 as its status and =D;; as its connection point.

Line 7 checks whether the �8=3�8ABC(>;DC8>= function was successful. If so, the planner

starts combining its two trees into one. Line 8 calls the �><18=4)F>)A44B function so

as to merge the two trees. After combining two trees, the planner optimizes its solution

by a unidirectional asymptotically optimal RRT method (Line 9). Finally, it returns the

obtained tree in Line 11.

Algorithm 12 Hybrid RRT Algorithm, �H1A83'') (GBC0AC , G6>0;)
1: +0 ← {GBC0AC}; �0 ← ∅;
2: +1 ← {G6>0;}; �1 ← ∅;
3: �0 ← (+0, �0); �1 ← (+1, �1);
4: -B>;= ← ∅;
5: 214BC ←∞;
6: [BC0CDB, G2G=] ← �8=3�8ABC(>;DC8>=(�0, �1);
7: if BC0CDB ≠ �08;DA4 then
8: [�0, 214BC , -B>;=] ← �><18=4)F>)A44B(�0, �1, 214BC , -B>;=, G2G=);
9: �0 ← $?C8<8I4)A44(�0, GBC0AC , G6>0; , 214BC , -B>;=);
10: end if
11: return �0;

5.2.1.1 FindFirstSolution Function

The �8=3�8ABC(>;DC8>= function, Algorithm 13, gets two trees (�0 and �1) as its input

arguments (Line 1). Then, the function creates loop to start exploring the state space

(Line 2). It gets a random sample, GA0=3 , (Line 3), then it expands �0 toward GA0=3 by
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calling the �GC4=3 function (Line 4). If the �GC4=3 function could all a new vertex, G=4F ,

to�0, then�1 must try to make a connection to the newly added vertex of�0. Line 5 calls

the �>==42C function so as to make a connection between �1 and G=4F. If the �>==42C

could add G=4F as a vertex to �1, it means a connection between the two trees has already

been found. Therefore, it is time to return the solution. Thus, the function returns (D224BB

as its status (Line 7) as well as G=4F as the connection point (Line 6), G2G=. If neither the

�GC4=3 function nor the �>==42C function is successful, then another iteration must be

started. For the next iteration, the trees should be swapped (Line 11). If the number of

iterations reaches its maximum and no link between trees is found, the function needs to

return =D;; as the connection point (Line 13), and �08;DA4 as its status (Line 14).

Algorithm 13 �8=3�8ABC(>;DC8>= Function
1: function �8=3�8ABC(>;DC8>=(�0, �1)
2: for 8 = 1 C> = do
3: GA0=3 ← (0<?;4();
4: if �GC4=3 (�0, GA0=3) ≠ )A0??43 then
5: if �>==42C (�1, G=4F) = '402ℎ43 then
6: G2G= ← G=4F;
7: BC0CDB← (D224BB;
8: return [BC0CDB, G2G=];
9: end if
10: end if
11: (F0?(�0, �1);
12: end for
13: G2G= ← =D;;;
14: BC0CDB← �08;DA4;
15: return [BC0CDB, G2G=];
16: end function

The �GC4=3 function gets the tree and the random sample, it then finds the nearest

vertex of the tree to the sample. Afterward, it implements the required constraints via

the (C44A function. Finally, it adds the sampled point to the tree if this connection is

collision-free.
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The�GC4=3 function provides three different status, '402ℎ43,)A0??43, and �3E0=243.

'402ℎ43 is when the sample is added to the tree, and )A0??43 is when the sample cannot

be added to the tree due to the presence of an obstacle. Finally, if the sample is far from

the tree reach and then another vertex in the direction of the sample but nearer to the tree

is added to the tree, the function will return �3E0=243 Algorithm 14 outlines the �GC4=3

function.

Algorithm 14 �GC4=3 Function
1: function �GC4=3 (� = (+, �), G)
2: G=40A4BC ← #40A4BC (�, G);
3: G=4F ← (C44A (G=40A4BC , G);
4: if 8B�>;;8B8>=�A44(G=40A4BC , G=4F) then
5: + ← +

⋃ {G=4F};
6: � ← �

⋃ {G=40A4BC , G=4F};
7: if (G=4F = G) then
8: return '402ℎ43;
9: else
10: return �3E0=243;
11: end if
12: end if
13: return )A0??43;
14: end function

�>==42C function duty is to connect two trees. It gets the newly added vertex of �0,

G=4F, and �1, and then try to add G=4F to �1 by calling �GC4=3 function repeatedly. It

stops calling �GC4=3 function when �GC4=3 function returns either '402ℎ43 or)A0??43.

When �>==42C function receives '402ℎ43 from �GC4=3 function, it means that the

connection between the two trees is found. Algorithm 15 presents this procedure.
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Algorithm 15 �>==42C Function
1: function �>==42C (�, G)
2: repeat
3: ( ← �GC4=3 (�, G);
4: until ( ≠ �3E0=243;
5: return (;
6: end function

5.2.1.2 CombineTwoTrees Function

After �8=3�8ABC(>;DC8>= function finds a path, it is time to merge the two trees into

one. Therefore, all vertices and edges of the goal tree must be added to the start tree.

�BC0AC)A44 = �BC0AC)A44 ∪ �6>0;)A44

+BC0AC)A44 = +BC0AC)A44 ∪+6>0;)A44

where �BC0AC)A44 and �6>0;)A44 stand for edges of the start tree and the goal tree, respectively.

Similarly, +BC0AC)A44 and +6>0;)A44 are the vertices of the start tree and the goal tree,

respectively. For simplicity �BC0AC)A44 and +BC0AC)A44 will be shown by � and + .

At this stage, all vertices and edges of the goal tree are added to the start tree. However,

some modifications are needed to connect these two trees correctly. The two trees work

similarly to a single tree when all of their vertices have a path to the start tree root. The

start tree vertices have already had their paths to the root. So, it is only the goal tree

vertices, which need to find their paths to the start tree root. In other words, all vertices of

the goal tree must be directed to the GBC0AC instead of G6>0; . Therefore, the root of all the

goal tree vertices must be changed from G6>0; to GBC0AC . The start tree and the goal tree are

connected together via the obtained path. In other words, the path is the only connection

between these two trees so that the path is the starting stage of merging these two trees.

In problem definition section of Chapter 4, Section 4.2.1, path defined as f[0, 1] →
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- 5 A44 such that f (0) = GBC0AC and f (1) ∈ -6>0; . The �8=3�8ABC(>;DC8>= function

implements a bidirectional search to find initial solutions. Therefore, the path has two

different parts; one part is from the start tree, while another is from the goal tree. Let G2G= be

the connection vertex that is in both trees. Therefore, the path defined as f = fBC0AC∪f6>0;

such that

fBC0AC [0, 1] → - 5 A44 | fBC0AC (0) = GBC0AC , fBC0AC (1) = G2G=,

and

f6>0; [0, 1] → - 5 A44 | f6>0; (0) = G6>0; , f6>0; (1) = G2G=.

Let = + 1 be the number of vertices in fBC0AC , and < + 1 be the number of vertices in

f6>0; . So, fBC0AC can be defined such

fBC0AC = fBC0AC (0) ∪ fBC0AC (
1
=
) ∪ fBC0AC (

2
=
) ∪ ... ∪ fBC0AC (

= − 1
=
)

∪fBC0AC (1) =
=⋃
8=0
fBC0AC (

8

=
)

Similarly, f6>0; can be defined such

f6>0; = f6>0; (0) ∪ f6>0; (
1
<
) ∪ f6>0; (

2
<
) ∪ ... ∪ f6>0; (

< − 1
<
)

∪f6>0; (1) =
<⋃
8=0
f6>0; (

8

<
)

fBC0AC is already part of the start tree, while f6>0; needs to be modified to be part of the

start tree. The first step is to remove the edge of G2G= and its parent in the goal tree and add

it to the start tree. In other words, the rule of child and parent must be exchanged, G2G=

must be parent of its parent in the goal tree, f6>0; (<−1
<
).

Therefore, the edge in which f6>0; (<−1
<
) was the parent and G2G= was the child must be
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removed from � . Let show an edge with its two vertices as (G?0A4=C , G2ℎ8;3). So,

� ← �\(f6>0; (
< − 1
<
), G2G=)

Then, the new edge in which G2G= is the parent of f6>0; (<−1
<
) must be added to � .

� ← � ∪ (G2G=, f6>0; (
< − 1
<
))

As a result, the two trees connection is no longer G2G=. They are now connected via the

previous parent of G2G=, f6>0; (<−1
<
). In other words, G2G= gets one edge closer to G6>0; .

This process must be continued until G6>0; added to the start tree. It means that all the

edges of f6>0; must be removed from � .

� ← �\(
0⋃
8=<

(f6>0; (
8 − 1
<
), f6>0; (

8

<
)))

Instead of the removed edges, the reversed version of them must be added to � .

� ← �

0⋃
8=<

(f6>0; (
8

<
), f6>0; (

8 − 1
<
))

After changing the directions of all edges of f6>0; , the vertices of the path have their

way back to GBC0AC , which means that they are connected to the start tree correctly.

All vertices of the goal tree can be categorized into three groups from the viewpoint of

f6>0; , the first group is the vertices located on the path, the second group is the vertices

that pass from at least one of the path vertices to reach their root, G6>0; , and finally, the

third group is the vertices that in their way to G6>0; , they do not pass from any of the path

vertices. The third group is connected to G6>0; via other branches of the goal tree than the
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: An example of combining two trees together.

path.

By reversing the path edges in the goal tree part, the vertices of the first group are now

connected to the start tree correctly. The second group, which are connected to their roots

via at least one of the path vertices, they are now connected to GBC0AC instead of G6>0; . It is

due to the fact that when they are going back to their root, they need to pass via at least one

of the path vertices; once they reached the path vertices, they will be directed to GBC0AC . The

third group, which are connected to G6>0; without passing from any of the path vertices,

they are also connected to the GBC0AC . When they start going back to their root, they will

reach G6>0; , which is now a part of the start tree. Therefore, all the vertices of the goal tree

are connected to the start tree correctly.

Figure 5.1 shows an example of merging two trees by implementing the presented

99

Univ
ers

iti 
Mala

ya



methodology. Figure 5.1a shows the two trees before start merging them. The start tree

highlighted by blue, and the goal tree highlighted by orange. The vertex � is connection

vertex, G2G=. The path between vertex �, as GBC0AC , and ! as G6>0; , is shown in Figure 5.1b,

in which the vertices and the edges of the path are highlighted by green color.

The first step is to remove the edge of G2G=, � , and its parent, �, in the goal tree, and

add another edge in which G2G=, � , will be the parent of � (Figure 5.1c).

Similar to the first step, all other path edges that belong to the goal tree must be removed

from the edge set, and their new versions in which the rule of child and parent are swapped

must be added. Therefore, the next change is to remove � from its parent,  , and connect

it as a child to � (Figure 5.1d). By replacing the parent of �, vertex � is now connected

to the start tree correctly, because, in its way back to the root, it comes to vertex � so that

it will be directed to GBC0AC , vertex �, instead of going to G6>0; , vertex !.

Similarly,  must be disconnected from ! and then connected to� as one of its children.

By doing so, � will be connected to the start tree, too (Figure 5.1e).

The final step is to add !, G6>0; , as a child to  (Figure 5.1f). As a result, all other

vertices that are connected to G6>0; , such as �, have their path back to GBC0AC , vertex �.

The�><18=4)F>)A44B function is presented in Algorithm 16. At the first, the function

creates a union of both trees into one (Line 2, Line 3, and Line 4). The function saves the

goal tree parent of the connection point in 2ℎ8;3 (Line 5), and stores the connection point

itself in =4F%0A4=C (Line 6). It then creates a loop, which its condition is to be in run until

2ℎ8;3 is pointing to =D;; (Line 7). During this loop, the child will be removed from its

old parent in the goal tree, >;3%0A4=C, and then it should be connected to its new parent,

=4F%0A4=C. So, in Line 8, the child’s parent is stored in >;3%0A4=C. Then, the edge, which

connects the >;3%0A4=C and the 2ℎ8;3 is removed from the edge set (Line 9). Instead,

another edge, which is connecting the 2ℎ8;3 to its new parent, =4F%0A4=C, will be added
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Algorithm 16 �><18=4)F>)A44B Function
1: function �><18=4)F>)A44B(�0, �1, 214BC , -B>;=, G2G=)
2: � ← �0

⋃
�1;

3: + ← +0
⋃
+1;

4: � = (+, �);
5: 2ℎ8;3 = G2G=.%0A4=C�=�>0;)A44;
6: =4F%0A4=C = G2G=;
7: while 8B#>C#D;; (2ℎ8;3) do
8: >;3%0A4=C = 2ℎ8;3.?0A4=C;
9: � ← � \ {(>;3%0A4=C, 2ℎ8;3)};

10: � ← �
⋃ {(=4F%0A4=C, 2ℎ8;3)};

11: =4F%0A4=C = 2ℎ8;3;
12: 2ℎ8;3 = >;3%0A4=C;
13: end while
14: -B>;= ← {E ∈ + | E ∈ -6>0;};
15: 214BC ← <8=GB>;= ∈ -B>;={�>BC (GB>;=)};
16: return [�, 214BC , -B>;=];
17: end function

to the edge set (Line 10). So, the 2ℎ8;3 is now connected to the start tree properly. For the

next iteration, the 2ℎ8;3 will be considered as the parent for its >;3%0A4=C. Therefore, in

Line 11, the 2ℎ8;3 will be stored in the =4F%0A4=C, and in Line 12, the >;3%0A4=C will be

stored in the 2ℎ8;3. It loop continues until the root of the goal tree is added to the start tree

properly. Afterward, the function updates the solution set by adding all vertices, which are

located within the goal location (Line 14), and it also updates the best cost by checking the

shortest path cost (Line 15). Finally, it returns the tree, the solution set, and the best cost.

5.2.1.3 OptimizeTree Function

In this stage, the planner has found a solution by using the dual-tree search and then

merge the two trees into one. Therefore, it is time to optimize the solution. There are

several methods for optimizing the current solution of RRT-based methods. Among them,

informed sampling has shown a significant impact by limiting the state space to one of

its subsets to make exploring area smaller, which helps the planner return near-optimal
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solutions faster than other methods.

Algorithm 17 $?C8<8I4)A44 Function
1: function $?C8<8I4)A44(�, GBC0AC , G6>0; , 214BC , -B>;=)
2: for 8 = 1 C> = do
3: GA0=3 ← �= 5 >A<43(0<?;4(GBC0AC , G6>0; , 214BC);
4: if �GC4=3∗(�, GA0=3) ≠ )A0??43 then
5: if G=4F ∈ -6>0; then
6: -B>;= ← -B>;=

⋃{G=4F}
7: end if
8: ?A4E8>DB_214BC ← 214BC ;
9: 214BC ← <8=GB>;= ∈ -B>;={�>BC (GB>;=)};
10: if 214BC < ?A4E8>DB_214BC then
11: %AD=4)A44(+, �, 214BC);
12: end if
13: end if
14: end for
15: return �;
16: end function

Algorithm 17 outlines the steps of the $?C8<8I4)A44 function, which uses Informed

sampling to optimize the tree. This function gets the tree, the start location, GBC0AC , the goal

location, G6>0; , the best solution cost, 214BC , and the solution set, -(>;= (Line 1). Line 2

creates a loop for a limited number of iterations. This loop can have several stoppage

criteria, such as a limited number of iterations, a limited amount of time, or a targeted

solution cost. The �= 5 >A<43(0<?;4 function is called to return a sample within the

subset, and then the returned value will be stored in the GA0=3 (Line 3). Line 4 calls the

�GC4=3∗ function and pass the tree and the GA0=3 to it so as to extend the tree toward the

GA0=3 . If the �GC4=3∗ function returns )A0??43, then the GA0=3 cannot be added to the

tree so that the $?C8<8I4)A44 function should get another sample to be able to expend

the tree. Otherwise, the tree gets new vertex, G=4F. In Line 5, the newly added vertex,

G=4F, will be checked to find out whether it is located within the goal location. If so, the

G=4F is added to the solution set, -B>;= (Line 6). Before updating the 214BC , its previous
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value needs to be stored to be able to be compared with the updated one (Line 8). Line 9

recalculates the 214BC . Afterward, the previous 214BC , ?A4E8>DB_214BC , and the updated one,

214BC , are compared together (Line 10). If its value gets smaller, then the function prunes

the tree to keep the tree as small as possible (Line 11). Finally, when the iterations are

finished, the function returns the tree, � (Line 15).

The �= 5 >A<43(0<?;4 function gets GBC0AC , G6>0; , and 214BC and then returns a sample

within the informed set. This sampling process is outlined in Algorithm 18. Line 2

calculates the minimum possible path between the start location, GBC0AC , and the goal

location, G6>0; , which is a straight line between these two configurations. In the next

line, Line 3, the center point of the subset, G24=C4A , is calculated. Line 4 obtained the

rotation matrix, C. The function calculates the transformation matrix, L (Line 5 ~ Line 7).

Afterward, a random sample within a unit ball needs to be taken, G10;; (Line 8). Then, the

G10;; needs to be transformed to the world frame and stored in GA0=3 (Line 9). Finally, the

function returns the GA0=3 (Line 10).

Algorithm 18 �= 5 >A<43(0<?;4 Function
1: function �= 5 >A<43(0<?;4(GBC0AC , G6>0; , 214BC)
2: 2<8= ←‖ G6>0; − GBC0AC ‖2;
3: G24=C4A ← (GBC0AC + G6>0;)/2;
4: C← '>C0C8>=)>,>A;3�A0<4(GBC0AC , G6>0;);
5: A1 ← 214BC/2;
6: {A8}8=2,...,= ← (

√
22
<0G − 22

<8=
)/2;

7: L← 3806{A1, A2, ..., A=};
8: G10;; ← (0<?;4*=8C�0;;;
9: GA0=3 ← (CLG10;; + G24=C4A)

⋂
-;

10: return GA0=3;
11: end function

The �GC4=3∗ function is the optimized version of the �GC4=3 function. It includes

the rewiring process. The optimization process first tries to connect the G=4F to a vertex

that offers the shortest path to the root. It then considers G=4F as a potential parent for
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its near vertices. In other words, the parents’ costs of the near vertices are compared

to the G=4F cost. If the G=4F offers a shorter path to the root, then the parents of near

vertices will be changed to the G=4F . The output of this function has three different options,

'402ℎ43, �3E0=243, and )A0??43. '402ℎ43 is when the GA0=3 has been added to the

tree. �3E0=243 will be the output when the function could not add the GA0=3 to the tree,

but it added another vertex to the tree, which is in the direction of the GA0=3 but nearer to

the tree. )A0??43 will be returned by the function whenever neither the GA0=3 nor any

other vertices could be added to the tree due to the presence of an obstacle. Algorithm 19

outlines the �GC4=3∗ function.

Algorithm 19 Extend* Function
1: function �GC4=3∗ (� = (+, �), G)
2: G=40A4BC ← #40A4BC (�, G);
3: G=4F ← (C44A (G=40A4BC , G);
4: if 8B�>;;8B8>=�A44(G=40A4BC , G=4F ) then
5: + ← +

⋃ {G=4F };
6: G<8= ← G=40A4BC ;
7: -=40A ← #40A (�, G=4F , A'') ∗ );
8: 2<8= ← �>BC (G=40A4BC , �) + �>BC (!8=4(G=40A4BC , G=4F ));
9: for each G=40A ∈ -=40A \G=40A4BC do
10: if 8B�>;;8B8>=�A44(G=40A , G=4F ) & (�>BC (G=40A , �) + �>BC (!8=4(G=40A , G=4F )) < 2<8=) then
11: G<8= ← G=40A ;
12: 2<8= ← �>BC (G=40A , �) + �>BC (!8=4(G=40A , G=4F ));
13: end if
14: end for
15: � ← �

⋃ {G<8=, G=4F };
16: for each G=40A ∈ -=40A \G<8= do
17: if 8B�>;;8B8>=�A44(G=40A , G=4F ) & (�>BC (G=4F , �) + �>BC (!8=4(G=4F , G=40A )) <

�>BC (G=40A , �)) then
18: G?0A4=C ← %0A4=C (G=40A , �);
19: � ← � \ {(G?0A4=C , G=40A )};
20: � ← �

⋃ {(G=4F , G=40A )};
21: end if
22: end for
23: if (G=4F = G) then
24: return '402ℎ43;
25: else
26: return �3E0=243;
27: end if
28: end if
29: return )A0??43;
30: end function

%AD=4)A44 is removing the vertices of the tree which are not able to provide better

solutions than the current one. This function removes the leaves of the tree that have the
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estimated cost, 5̂ (E) = 6̂(E) + ℎ̂(E), more than the current shortest path cost, 214BC . This

procedure is presented in Algorithm 20.

Algorithm 20 %AD=4)A44 Function
1: function %AD=4)A44(+ ⊆ -, � ⊆ + ×+, 214BC ∈ R>0)
2: do
3: +?AD=4 ← {E ∈ + | 5̂ (E) > 214BC , 0=3 ∀F ∈ +, (E, F) ∉ �};
4: �

−← {(D, E) ∈ � | E ∈ +?AD=4};
5: +

−← +?AD=4;
6: while +?AD=4 ≠ ∅;
7: end function

5.3 Simulation

Hybrid RRT was compared to other RRT-based methods on simulated problems in R3

and R6 using Open Motion Planning Library (OMPL) (Sucan et al., 2012).

Four different state spaces are selected for the simulation, which are the built-in state

spaces of the OMPL App. These four state spaces are shown in Figure 5.2 and Figure 5.3.

The planners were compared together in these state spaces based on their ability to find

initial solutions, and their ability to return near-optimal solutions. The planners were run

100 times in each scenario.

Simulation carried out on four different OMPL App scenarios, BugTrap_planar ,

Maze_planar, Home, and Twistycool. BugTrap_planar (Figure 5.2), and Maze_planar

Figure 5.2: The OMPL App BugTrap_planar state space. It includes two rigid bodies
representing the start location, GBC0AC , and the goal location, G6>0; .
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(a) Maze_planar (b) Home (c) Twistycool

Figure 5.3: The OMPL state spaces used for the simulation. The rigid bodies are
highlighted by red color. Each state space has two rigid bodies, which are representing the
start location, GBC0AC , and the goal location, G6>0; .

(Figure 5.3a) are 3D state spaces, while Home (Figure 5.3b), and Twistycool (Figure 5.3c)

are 6D state spaces.

Simulations are divided into two categories: the ability to find initial solutions and the

ability to return near-optimal solutions.

5.3.1 Find Initial Solutions

In this test, Hybrid RRT has been compared to RRT, RRT-Connect, RRT*, Informed

RRT*, and BIT*. In order to test the ability of planners in terms of finding initial solutions,

each planner has unlimited time to find an initial solution. All planners found the first

solutions for 100 times.

5.3.1.1 BugTrap_planar

BugTrap_planar, shown in Figure 5.2, is an OMPL App state space with 3 Degree of

Freedoms (DoFs), including one rotation and two real vectors (x-axis and y-axis). This

simulation is designed to compare the ability of different planners in terms of finding

initial solutions.

As can be seen in Table 5.1, Hybrid RRT could return initial solutions with nearly

the same amount of time as RRT-Connect, and faster than other planners. RRT is the
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Table 5.1: The obtained results of the planners in BugTrap_planar scenario. Each planner
was run for 100 times, and the average time needed to find the initial solutions are presented.

Planner Average Time (Second)
RRT 0.411341305
RRT-Connect 0.404057516
Hybrid RRT 0.393124017
RRT* 0.994565494
Informed RRT* 0.640909516
BIT* 0.528384085

third-fastest planner in terms of finding an initial solution. In contrast, RRT* is the slowest

planner, which could find initial solutions after approximately one second. It can be seen

that the nonoptimized RRTs were faster than the asymptotically optimal RRT. The reason

is that the asymptotically optimal versions of RRT run their rewiring procedure in each

iteration so that it takes time and does not let them expand as fast as nonoptimized versions.

Moreover, among the asymptotically optimal versions, BIT* is the fastest in finding an

initial solution, which is due to the batches it takes to find initial solutions.

5.3.2 Find near-optimal Solutions

In this simulation, Hybrid RRT has been compared to RRT* and Informed RRT* in

terms of finding near-optimal solutions in a limited time. In each scenario, the planners

had limited time for finding solutions and optimizing them.

5.3.2.1 Maze_planar

Maze_planar (Figure 5.3a), is an OMPL App state space with 3 Degree of Freedoms

(DoFs), including one rotation and two real vectors (x-axis and y-axis). The planners had 5

seconds to solve this problem in each run. The experiment specifications are listed below:

• robot: car2_planar_robot

• environment: Maze_planar_env

• start state (x, y, yaw): (0.01, -0.15, 0.00)
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• goal state (x, y, yaw): (41.01, -0.15, 0.00)

• memory_limit: 1000MB

• runtime_limit: 5s

• run_count: 100

5.3.2.2 Home

Home is 6DoFs problems (3 coordinate planes (x, y, z) and their rotations (roll, pitch,

yaw)) Figure 5.3b. In order to return near-optimal solutions, the planners must pass through

the window located between GBC0AC and G6>0; . Ten seconds had been given to planners to

solve this problem in each run.The experiment specifications are listed below:

• robot: Home_robot

• environment: Home_env

• start state (x, y, z): (252.95, -214.95, 46.19)

• goal state (x, y, z): (2.95, -100.00, 46.19)

• memory_limit: 1000MB

• runtime_limit: 10s

• run_count: 100

5.3.2.3 Twistycool

Twistycool is a 6DoFs problem (Figure 5.3c), which is difficult to be solved due to

offering only a small passage to connect GBC0AC to G6>0; . There is a wall in the middle of the

map, and it has only a small window, which is the only passage through the wall so that the

planners need to find it to solve the problem. Due to the difficulty of this scenario, each

planner had 100 seconds to solve the problem in each run. The experiment specifications

are listed below:

• robot: Twistycool_robot
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• environment: Twistycool_env

• start state (x, y, z): (270.0, 160.0, -200.0)

• goal state (x, y, z): (270.0, 160.0, -400.0)

• memory_limit: 1000MB

• runtime_limit: 100s

• run_count: 100

5.3.3 The proposed methods comparison

In this section the proposed methods, Informed RRT*-Connect and Hybrid RRT, were

compared together in the OMPL app scenarios (Figure 5.3).

5.4 Discussion

The evaluation of the simulation is represented in this section, which includes several

parts, finding initial solution (Section 5.4.1), comparison of Hybrid RRT with the existing

methods (Section 5.4.2), comparison of the proposed methods together (Section 5.4.3),

and summary (Section 5.4.4).

5.4.1 Finding initial solutions

In the first simulation, finding initial solutions, it can be seen that the optimized methods

(RRT*, Informed RRT*, and BIT*) are slower than nonoptimized versions. It is due to the

fact that the optimized versions try to rewire their trees from the early stage of planning so

that this process takes time and does not let them expand their trees as fast as nonoptimized

versions. Hybrid RRT postpones the rewiring trees until it finds an initial solution. Then,

it starts optimizing its solutions. This ability makes Hybrid RRT a fast planner in terms of

finding initial solutions.
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Figure 5.4: The rate of success of the three planners versus time on all the scenarios.
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Figure 5.5: The solution cost versus time of the three planners on all the scenarios. Error
bars represent a nonparametric 95% confidence interval for median solution cost.
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Figure 5.6: Comparison results of the proposed methods together in terms of success
rate and path length. Error bars in path length graphs represent a nonparametric 95%
confidence interval for median solution cost.
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5.4.2 Hybrid RRT comparison with the existing methods

The next three simulations were carried out to compare the ability of RRT*, Informed

RRT*, and Hybrid RRT in terms of returning near-optimal solutions. The success rates

over time of planners in three scenarios are shown in Figure 5.4, and the median of path

lengths are shown Figure 5.5.

Table 5.2 presents the obtained results of these simulations.

For the first OMPL App scenario, Maze Planar, the planning time was five seconds.

The median path cost of Hybrid RRT and Informed RRT* were almost the same, while

RRT* achieved longer paths in this scenario so that RRT* is the least successful planner in

terms of path length. In terms of success rate, both Hybrid RRT and RRT* could achieve

total success, 100%, while Informed RRT* could achieve 99%. In Home scenario, the

planning time was 10 seconds. In spite of the previous scenario, Maze Planar, Hybrid

RRT and Informed RRT* did not obtain approximately the same result. Hybrid RRT could

return 294.2 as the solution cost, while Informed RRT* and RRT* could return 298.6 and

313.3, respectively. In terms of success rate, Hybrid RRT was able to achieve the total

success, 100%, while Informed RRT* could only achieve 63%, which makes it the least

successful planner in this scenario. For the most challenging scenario, the Twistycool, the

time was 100 seconds. Informed RRT* and RRT* were able to return almost the same

value as their median path length, which is about 484. On the other hand, Hybrid RRT

could return a better median path length, 424, which is nearly 60 units less than the other

planners’ obtained path cost. The success rates of RRT* and Informed RRT* were 75%

and 71%, respectively. In contrast, Hybrid RRT could achieve total success, 100%, in this

scenario. Hybrid RRT could achieve total success in all the scenarios and offer shorter

paths compared with the other planners. Using nonoptimized bidirectional search is why

Hybrid RRT could outperform the other methods in the success rate. In other words,
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having two trees with no procedure for optimization helps Hybrid RRT achieve initial

solutions faster than other methods.

Table 5.2: The results of 100 independent runs of each planner in OMPL App scenarios.

State Space Planning
Time(s) Planner Median

Path Length
Average
Path Length

Success
Rate (%)

Maze Planar 5
RRT* 76.7167445 76.61962043 100
Informed RRT* 73.765986 77.67313142 99
Hybrid RRT 73.946069 74.00716048 100

Home 10
RRT* 313.3311305 362.1013499 76
Informed RRT* 298.605655 370.8753614 63
Hybrid RRT 294.2446595 308.4424628 100

Twistycool 100
RRT* 484.0112635 472.0144996 75
Informed RRT* 484.355887 463.4621787 71
Hybrid RRT 424.2882035 359.3157852 100

In all the scenarios, Hybrid RRT could achieve 100% success rate, while RRT* and

Informed RRT* could only achieve complete success inMaze_planar, which is a 3DoF

problem.

Although all the planners could achieve 100% success rate inMaze_planar, they reached

it by consuming different amounts of time. Hybrid RRT reached 100% after only 0.4s,

while RRT* and Informed RRT* achieved it after approximately 4s. Therefore, Hybrid

RRT acted ten times faster than other planners in Maze_planar scenario. In terms of path

length, Hybrid RRT could achieve near-optimal solutions faster and RRT* and Informed

RRT*.

In Home scenario, Hybrid RRT could reach 100% after about 8s, while RRT* and

Informed RRT* could only achieve approximately 75% and 65% after 10s, respectively.

Moreover, Hybrid RRT was the fastest planner in terms of optimizing the solution. Hybrid

RRT obtained solution cost of 310 before 3s, while Informed RRT* achieved it after 6s,

and RRT* could not reach this level at the end of the planning time frame.

Twistycool is the most challenging problem to be solved among all the simulated

scenarios. Hybrid RRT was able to reach total success after around 45s, while RRT* and
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Informed RRT* were not able to reach 100%. They could achieve nearly 80% after 100s.

RRT* and Informed RRT* could optimize their solution to approximately 470 after 100s,

which has been obtained by Hybrid RRT after only 35s.

5.4.3 Informed RRT*-Connect versus Hybrid RRT

The proposed methods, Informed RRT*-Connect and Hybrid RRT, were compared

together in OMPL App scenarios. Their obtained results have been shown in Figure 5.6.

It can be seen that Hybrid RRT was more successful than Informed RRT*-Connect in

terms of success rate. It is because that Hybrid RRT does not have any procedure of

optimizing its trees before finding initial solutions, which help it to be faster other versions

of RRT that keep rewiring their trees from the early stage of planning, such as Informed

RRT*-Connect.

In the first two scenarios,Maze Planar (Figure 5.3a) and Home (Figure 5.3b), Informed

RRT*-Connect and Hybrid RRT were acting almost similarly. Informed RRT*-Connect

could return near-optimal solution slightly faster than Hybrid RRT, which is due to rewiring

its trees from the beginning of the planning. However, in Twistycool scenario (Figure 5.3c),

Hybrid RRT could return near-optimal solutions faster than Informed RRT*-Connect.

It is because that Hybrid RRT could find its initial solution approximately around 18s,

while Informed RRT*-Connect could find its initial solution after about 40s. It means that

Hybrid RRT was about two times faster than Informed RRT*-Connect, and then it has

enough time to optimize its solution.

Table 5.3 presents the obtained results of these simulations. Both planners had three

seconds to solve the first scenario, Maze Planar. Their obtained results are approximately

the same in both the path length and the success rate. Although both planners were 100%

successful in this scenario, they achieved it with different amounts of time. Hybrid RRT

could get the total success around 0.75 seconds, while Informed RRT*-Connect could

115

Univ
ers

iti 
Mala

ya



achieve after around 1.5 seconds (Figure 5.6a). In contrast to the success rate, in path

length, it is Informed RRT*-Connect that could get near-optimal solution slightly faster

than Hybrid RRT (Figure 5.6b). In the second OMPL scenario, Home, both planners could

achieve 296.07 as their path length. Although they could return the same path length, they

were different in terms of success rate. Hybrid RRT could obtain total success, 100%, while

Informed RRT*-Connect could achieve 87% in this scenario. Like the previous scenario,

Informed RRT*-Connect could reach the near-optimal solution slightly faster than Hybrid

RRT (Figure 5.6d). In the most challenging scenario, the Twistycool, the proposed methods

had different results in both path length and success rate. The median path length for

Hybrid RRT was 474, while it was 553 for Informed RRT*-Connect. In terms of success

rate, Hybrid RRT could again achieve 100%, while Informed RRT*-Connect could obtain

61%.

Table 5.3: The results of 100 independent runs of each proposed method in OMPL App
scenarios.

State Space Planning
Time (s) Planner Median

Path Length
Average
Path Length

Success
Rate (%)

Maze Planar 3
Informed
RRT*-Connect 76.8861285 79.66400145 100

Hybrid RRT 77.850624 81.36165075 100

Home 10
Informed
RRT*-Connect 296.0728605 376.6897815 87

Hybrid RRT 296.0712065 305.4543328 100

Twistycool 50
Informed
RRT*-Connect 553.34607 485.9692609 61

Hybrid RRT 474.415751 434.2218751 100

5.4.4 Summary

This chapter presented a new path planner, Hybrid RRT, which combines the abilities of

bidirectional RRTs, unidirectional RRTs, nonoptimized RRTs, and asymptotically optimal

RRTs to be able to surpass them. Hybrid RRT implements a bidirectional search to find

an initial solution faster than unidirectional methods. Then, it merges its two trees into
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one so as to optimize it via implementing informed sampling for a single tree. In other

words, Hybrid RRT divides planning time into three different phases. Phase one is about

finding initial solutions. Nonoptimized RRTs normally obtain initial solutions faster than

asymptotically optimal versions of RRT. Moreover, bidirectional RRTs are faster than

unidirectional RRTs in terms of finding initial solutions. Therefore, Hybrid RRT uses a

bidirectional nonoptimized RRT to find initial solutions. Although having two trees help

planners to find initial solutions faster, they may take more time to optimize their both

trees in comparison with unidirectional RRTs. As a result, Hybrid RRT implements a

unidirectional asymptotically RRT, which uses informed sampling. This helps Hybrid

RRT return near-optimal solutions faster. Thus, the second phase is to combine the two

trees of phase one into one tree. Afterward, Hybrid RRT has a single tree, which has an

initial solution. In phase three, Hybrid RRT limits the search area into one of the state

space subsets, which its size is defined based on the length of the initial solution. It then

takes samples within the subset in order to improve the solution quality.

The simulations show that Hybrid RRT outperforms RRT* and Informed RRT* in terms

of the success rate as well as optimization time. It has a higher success rate, and it could

return near-optimal solutions faster. Moreover, Hybrid RRT can return initial solutions

faster than Informed RRT*-Connect, and it can also return near-optimal solutions faster

Informed RRT*-Connect in scenarios in which finding initial solutions is challenging.

These abilities make Hybrid RRT suitable for various motion planning problems.
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CHAPTER 6: DISCUSSION AND CONCLUSION

Autonomous robots are working in unknown and uncontrolled environments. Therefore,

they need to have a motion planner to guide them to reach their desired locations. Motion

planners must find high-quality and collision-free paths in a reasonable amount of time.

Accomplishing this task is challenging due to the problem domain. Most environments are

continuous so that planners discretize them to have a finite number of samples. Mostly,

planners are either graph-based or sampling-based to discretize their environments.

Approximating an environment by a graph is challenging due to the relationship between

resolution and search performance. If the resolution is selected too high, then finding

solutions for problems will take a long time. On the other hand, if the resolution is selected

too low, then the solution will be found faster, but it is low-quality.

Although there are several limitations to graph-based methods, they are efficient in their

searches, such as A*. This planner uses heuristics intending to prioritize the search area

based on the potential solution quality.

Sampling-based methods do not make a graph from state spaces before start planning.

They make an anytime approximation from the search space, which helps them avoid any

resolution decision before they start planning. Moreover, sampling-based methods can be

run indefinitely until they find suitable paths.

There are two types of sampling-based methods: Multi-query and single-query methods.

Multi-query planners such as Probabilistic Road Map (PRM) (Kavraki et al., 1996) can

solve several problems with different start locations and goal locations in the state space.

They first create a roadmap by taking random samples, then connecting different locations

through the created roadmap. Therefore, planning time for multi-query planners is divided

into two phases, the learning phase and the query phase. In the learning phase, the planner
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creates its roadmap from the state space by taking random samples and connecting them

together. In the query phase, the planner receives several the start and the goal locations

and then try to connect these locations to the roadmap and then find a path between each

pair of the start and the goal locations.

Single-query planners such as Rapidly-exploring Random Tree (RRT) (LaValle, 1998)

do not make a roadmap like multi-query planners. Instead, unidirectional RRTs construct

a tree rooted in the start location and explore the state space by growing the tree toward

random samples. The exploring process will be stopped once the goal location is sampled.

They do not consume time for any learning phases. In other words, they keep searching the

state space until either an appropriate result is found or the planning time is over. RRT-based

planners are probability complete, which means that they have a unity probability of

finding a solution, if one exists, with an infinite number of samples.

In spite of the benefits of unidirectional RRTs, they need more time to find initial

solutions in comparison with bidirectional RRTs. Bidirectional RRT-based methods, such

as RRT-Connect (Kuffner & LaValle, 2000), implements two trees from the start location

and the goal location. These two trees try aggressively to make a connection between

themselves. Using two trees makes RRT-Connect a faster motion planner compared to

RRT in terms of finding initial solutions.

Although RRT-based methods can solve the motion planning problems efficiently, they

provide nonoptimal solutions (Karaman & Frazzoli, 2011). It is due to the fact that they

explore the state space with the random walk so that their outputs would be a sequence of

random samples, and they do not have any procedure for optimizing their trees.

RRT* (Karaman&Frazzoli, 2011) implements a rewiring procedure, which leads to near-

optimal solutions. RRT*-based motion planners are called almost-surely asymptotically

optimal, which means that they will return near-optimal solutions by increasing the number
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of samples. RRT* does not stop exploring state spaces after a solution is found. It continues

exploring the state space with the aim of returning better solutions than the current one.

RRT* keeps sampling all over the state space to optimize the current solution so that it is an

inefficient way due to its single-query nature (Gammell et al., 2014). In other words, it is

better to distribute the samples over a region of the environment that has more probability

of improving the solution quality.

Gammell et al. (Gammell et al., 2014) combined the heuristics of graph-based with the

random sampling of sampling-based to propose a subset of the state space in which better

solutions can be found. They proposed Informed RRT* (Gammell et al., 2018, 2014),

which works like RRT* before finding an initial solution. Afterward, it limits the search

area to an ellipsoidal subset of the state space.

Although Informed RRT* can return near-optimal solutions faster than the standard

version of RRT*, it only expedites the optimization process. It still has the problems of

other unidirectional methods, which is spotting a sample in the goal area, especially when

the goal area is hidden beyond the narrow passages.

Chapter 4 proposed a new motion planner, Informed RRT*-Connect. This planner

is a bidirectional RRT-based motion planner. It starts exploring the environment by

implementing two trees, one from the start location, another from the goal location. These

two trees are optimizing themselves like RRT*. After an initial solution is found, Informed

RRT*-Connect search area will be limited to an ellipsoidal subset of the state space which

its eccentricity depends on the length of the shortest solution. Limiting state spaces to

subsets gives the ability to the planner to return near-optimal solutions with fewer iterations.

Moreover, it is a dual-tree motion planner so that it can find first solutions faster than

unidirectional searches, such as Informed RRT* so that it can reach the subset of the state

space faster than Informed RRT*.
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The comparison has been carried out in terms of success rate and path length. Informed

RRT*-Connect has been tested in various scenarios. In the easiest scenario, which is shown

in Figure 4.7a, all planners were successful in finding initial solutions. In this scenario,

informed RRT*-Connect could 100% successful, while the second most successful was

Informed RRT* by 97%. In the most challenging scenario (Figure 4.9c), Informed

RRT*-Connect success rate was 93%, while Informed RRT* was only 1%. Therefore,

Informed RRT*-Connect is a better anytime planner than the existing methods. This

planner has been published:

• Mashayekhi, Reza, et al. “Informed RRT*-Connect: An Asymptotically Optimal

Single-Query Path Planning Method.” IEEE Access 8 (2020): 19842-19852.

Chapter 5 proposed another motion planner that is a semi-bidirectional RRT-based

planner, Hybrid RRT. Almost all RRT-based methods can be divided into two categories,

nonoptimized versions, and optimized versions. Nonoptimized versions such as RRT and

RRT-Connect are used to find initial solutions. On the other hand, optimized versions like

RRT* and Informed RRT* have been designed to return near-optimal solutions so that they

keep optimizing their trees from the beginning of the planning until the end. However, it

makes them slower than nonoptimized versions of RRT in terms of finding initial solutions.

In Addition to these categories, most RRT-based methods are also categorized into two

groups: unidirectional and bidirectional.

Hybrid RRT divides the planning time into three phases. Phase one is to find an initial

solution, the second phase is to combine two trees of phase one into one tree, and phase

three is to optimize the solution. Hybrid RRT implements a bidirectional nonoptimal RRT

to achieve the first solutions faster than unidirectional methods. After finding the first

solution, Hybrid RRT needs to merge its two trees into one. Then, it optimizes the tree to
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find near-optimal solutions.

In order to achieve fast results out from the optimization process, Hybrid RRT limits

the state space into a subset of the state space like Informed RRT*. Therefore, it needs to

combine two trees of phase one into one tree to be able to implement Informed sampling

on a single tree.

Hybrid RRT is neither an entirely unidirectional method nor a fully bidirectional one.

It is a combination of both groups. Moreover, it is neither a nonoptimized version nor an

optimized version. It uses a nonoptimized search for finding initial solutions, which make

it faster than the optimized versions of RRT. Moreover, it implements an optimization

process to be able to return near-optimal solutions. Hybrid RRT can find first solutions as

fast as RRT-Connect and returns the near-optimal solutions as quickly as Informed RRT*.

The comparison has been carried out in terms of success rate and path length. Hybrid

RRT has been tested in various scenarios. The easiest scenario (Figure 5.3a), in which

all planners were almost 100% successful. Although all planners were successful in this

scenario, they achieved complete success with different amounts of time. Hybrid RRT

could reach complete success after only 0.4s, while the second-fastest planner, RRT*,

could achieve complete success approximately after 4s. It means that Hybrid RRT was ten

times faster than the second-fastest planner. In all other scenarios, Hybrid RRT was the

fastest in terms of success rate.

In terms of path length, the most challenging scenario was Figure 5.3c in which RRT*

and Informed RRT* could achieve 475 at the end of planning time, 100s. In comparison,

Hybrid RRT could achieve this path length after only 35s. Hybrid RRT was about three

times faster than the second-fastest planner in terms of path length. This planner has been

published:

• Mashayekhi, Reza, et al. “Hybrid RRT: A Semi-Dual-Tree RRT-Based Motion
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Planner.” IEEE Access 8 (2020): 18658-18668.

The proposed methods were compared with each other in OMPL App scenarios

(Figure 5.3). In the first scenario, Maze Planar (Figure 5.3a), and the second scenario,

Home (Figure 5.3b), Hybrid RRT was more successful in terms of success rate. It achieved

100% in both scenarios, while Informed RRT*-Connect could only achieve 100% in the

first scenario. Although both planners could achieve total success in the first scenario,

Hybrid RRT achieved almost two times faster than Informed RRT*-Connect. On the other

hand, in terms of path length, Informed RRT*-Connect acted slightly faster than Hybrid

RRT to reach a near-optimal solution. Informed RRT*-Connect keeps rewiring its two

trees from the beginning of the planning time, while Hybrid RRT starts rewiring after it

finds an initial solution. It is the reason that Informed RRT*-Connect could offer slightly

shorter paths in the first two benchmarking scenarios. Finally, in the most challenging

scenario, Twistycool (Figure 5.3c), Hybrid RRT could surpass Informed RRT*-Connect is

both path length and success rate.

This thesis proposed two new single-query almost-surely asymptotically optimal motion

planners that outperform the state-of-the-art motion planners.
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