
TESTING MODEL USING RISK POKER TECHNIQUE
FOR SCRUM-BASED SOFTWARE DEVELOPMENT

PROJECTS

SITI NOOR HASANAH BINTI GHAZALI

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

 2017

Univ
ers

iti
Mala

ya

TESTING MODEL USING RISK POKER
TECHNIQUE FOR SCRUM-BASED SOFTWARE

DEVELOPMENT PROJECTS

SITI NOOR HASANAH BINTI GHAZALI

DISSERTATION SUBMITTED IN FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF MASTER
OF SOFTWARE ENGINEERING

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2017 Univ
ers

iti
Mala

ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: SITI NOOR HASANAH BINTI GHAZALI
Matric No: WGC130003

Name of Degree: MASTER of SOFTWARE ENGINEERING

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): TESTING

MODEL USING RISK POKER TECHNIQUE FOR SCRUM-BASED

SOFTWARE DEVELOPMENT PROJECTS

Field of Study: SOFTWARE TESTING

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair

dealing and for permitted purposes and any excerpt or extract from, or
reference to or reproduction of any copyright work has been disclosed
expressly and sufficiently and the title of the Work and its authorship have
been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that
the making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the
copyright in this Work and that any reproduction or use in any form or by any
means whatsoever is prohibited without the written consent of UM having
been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed
any copyright whether intentionally or otherwise, I may be subject to legal
action or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

 Witness’s Signature Date:

Name:

Designation:

Univ
ers

iti
Mala

ya

iii

ABSTRACT

In agile software development, project estimation often depends on group discussion

and expert opinions. Literature claims that group discussion in risk analysis helps to

identify some of the crucial issues that might affect development, testing, and

implementation. However, risks prioritization often relies on individual expert

judgement. Therefore Risk Poker, a lightweight risk based testing methodology which

helps to achieve consensus through group discussion in risk analysis that outperforms

the individual analyst’s estimation is introduced in agile methods. Apart from the

above-mentioned benefits Risk Poker can offer, unfortunately no study has been

conducted to prove its ability to improve testing process to date. Therefore, this research

is aimed at closing this research gap by (i) deploying Risk Poker technique as risk-based

strategy in the agile development lifecycle, and (ii) empirically evaluating the proposed

test process in providing adequate testing. This research will guide software

practitioners in implementing this technique in Scrum-based software development

projects. For this purpose, Risk Poker technique is coupled with test coverage for an

innovated testing process for Scrum-based software development projects. A case study

was conducted with 6 teams of students to estimate test coverage using Risk Poker for

an e-commerce system. Three teams estimated their user stories using Risk Poker, while

the rest estimated individually and used an average to obtain the statistical combination.

The results showed that the proposed usage of Risk Poker mean BRE is 0.24, which is

lesser compared to the mean BRE 0.50 for averaged statistical estimation.

Univ
ers

iti
Mala

ya

iv

ABSTRAK

Di dalam pembangunan perisian yang menggunakan kaedah agile, penganggaran

projek seringkali bergantung pada perbincangan kumpulan. Pelbagai penulisan

berpendapat bahawa perbincangan kumpulan membantu mengenalpasti beberapa isu-isu

penting yang boleh memberi kesan kepada proses pembangunan, ujian, dan

pelaksanaan. Malah, perbincangan secara berkumpulan memberikan hasil analisa yang

lebih baik berbanding penganggaran oleh pakar secara individu, selain memastikan

kesamarataan dari segi penyertaan di dalam proses analisis. Namun, pengkelasan risiko

bagi pembangunan perisian megikut tahap kesukaran sering diputuskan oleh seorang

individu profesional. Oleh itu, berdasarkan faedah perbincangan kumpulan, Risk Poker

membantu mencapai persetujuan melalui perbincangan kumpulan di dalam

penganalisaan risiko di mana hasilnya mengatasi anggaran seseorang penganalisis

individu. Selain daripada faedah-faedah Risk Poker yang disebut di atas, malangnya

tiada kajian yang telah dilakukan bagi membuktikan kemampuan Risk Poker dalam

menambahbaik proses pengujian yang ada pada masa kini. Oleh itu, kajian ini

mensasarkan untuk mengisi jurang tersebut melalui (i) perlancaran teknik Risk Poker di

dalam kitaran hayat pembangunan agile, dan (ii) penilaian penambahbaikan tersebut

dalam analisis risiko secara empirik. Kajian ini akan menjadi panduan bagi pengamal

pembangunan perisian bagi mengimplementasikan teknik ini di dalam projek

pembangunan perisian berasaskan Scrum. Untuk itu, teknik Risk Poker digandingkan

dengan liputan ujian untuk menghasilkan suatu inovasi proses ujian dalam projek agile

yang menggunakan Scrum. Sebuah kaji selidik telah dijalankan di mana ia melibatkan 6

kumpulan pelajar, untuk menganggarkan liputan ujian menggunakan teknik Risk Poker

ke atas sebuah sistem e-dagang. Tiga kumpulan menggunakan Risk Poker dalam kaedah

penganggaran mereka, manakala kumpulan selebihnya menganggar secara individu.

Hasil kajian menunjukkan bahawa penggunaan Risk Poker menperolehi purata BRE

Univ
ers

iti
Mala

ya

v

sebanyak 0.24, iaitu lebih kurang berbanding purata BRE kaedah penganggaran statistik

secara individu sebanyak 0.50.

Univ
ers

iti
Mala

ya

vi

ACKNOWLEDGEMENTS

I would first like to thank my supervisor Professor Dr. Siti Salwah Salim of the

Faculty of Computer Science and Information Technology at University of Malaya. The

door to Prof. Dr. Siti Salwah Salim’s office was always open whenever I ran into a

trouble spot or had a question about my research or writing. She consistently allowed

this research to be my own work, but steered me in the right the direction whenever he

thought I needed it.

I would also like to thank Assoc. Prof. Dr. Siti Hafizah Binti AB Hamid who gave

lots of help and cooperation in providing her final year students to participate in the

experiment validation for this research. Without the students’ passionate anticipation

and input, the validation could not have been successfully conducted.

Finally, I must express my very profound gratitude to my parents and my beloved

husband Luqman Hakim Bin Baharudin for providing me with unfailing support and

continuous encouragement throughout my years of study and through the process of

researching and writing this dissertation. This accomplishment would not have been

possible without them. Thank you.

Univ
ers

iti
Mala

ya

vii

TABLE OF CONTENTS

Abstract .. iii	

Abstrak ... iv	

Acknowledgements .. vi	

Table of Contents .. vii	

List of Figures ... x	

List of Tables ... xi	

CHAPTER 1: INTRODUCTION .. 1	

1.1	 Problem Statement .. 3	

1.2	 Research Motivation .. 5	

1.3	 Objectives and Research Questions ... 6	

1.4	 Research Significance ... 9	

1.5	 Scope of Research ... 10	

1.6	 Outline of the Dissertation ... 11	

CHAPTER 2: LITERATURE REVIEW ... 12	

2.1	 Agile Software Development Methodology .. 12	

2.2	 Scrum ……………………………………………………………………………17	

2.2.1	 The Three Roles in Scrum .. 20	

2.2.2	 The Scrum Work Flow ... 21	

2.3	 Software Testing .. 25	

2.3.1	 Software Testing in Scrum ... 30	

2.3.2	 Testing Issues in Scrum ... 32	

2.4	 Risk-based Strategy in Scrum ... 35	

2.4.1	 Risk Management and Risk-based Testing .. 37	

Univ
ers

iti
Mala

ya

viii

2.4.2	 Comparison of Risk-based Techniques .. 39	

2.4.3	 Discussion .. 42	

2.5	 Risk Poker as a Risk-based Software Test Strategy .. 43	

2.6	 Software Test Coverage .. 47	

2.7	 Summary ... 50	

CHAPTER 3: RESEARCH METHODOLOGY ... 52	

3.1	 Research Methodology .. 52	

3.1.1	 Literature Review ... 52	

3.1.1.1	 Sources of the Literature Review .. 53	

3.1.1.2	 Reviewing the Literature Review ... 53	

3.1.1.3	 Findings of the Literature Review .. 54	

3.1.2	 Model Building .. 56	

3.1.3	 Prototype .. 56	

3.1.4	 Experiment Validation ... 57	

3.2	 Summary ... 59	

CHAPTER 4: MODEL BUILDING ... 60	

4.1	 Testing Model Using Risk Poker Technique for Scrum-based Software

Development Projects .. 60	

4.1.1	 Risk Poker as a Risk-based Testing ... 61	

4.1.2	 Risk Poker and Test Coverage Estimation ... 66	

4.1.3	 Prototype System: Risk Graph ... 67	

4.1.3.1	 Prototype Functional Requirement ... 70	

4.1.3.2	 Prototype Non-Functional Requirement 71	

4.1.3.3	 Programming Language .. 71	

4.1.3.4	 User Interface Diagram ... 72	

Univ
ers

iti
Mala

ya

ix

4.1.3.5	 Operations in the Prototype ... 72	

4.1.4	 Integrating the proposed Testing Model inside a Scrum Methodology ... 75	

4.2	 Summary ... 78	

CHAPTER 5: VALIDATION .. 79	

5.1	 Experiment Design .. 79	

5.1.1	 Experiment Objective ... 80	

5.1.2	 Experiment Participants ... 80	

5.1.3	 Experiment Materials ... 81	

5.1.4	 Experiment Process .. 83	

5.2	 Experiment Results .. 86	

5.2.1	 RQ4.1: Is the test coverage provided by Risk Poker-based proposed

model adequate compared to the statistical combination of individuals? 87	

5.2.2	 RQ4.2: How does Risk Poker-based proposed model estimation differ

from the averaged statistical combination of individual estimations? 89	

5.3	 Discussion ... 91	

5.4	 Study Validity .. 93	

5.5	 Summary ... 95	

CHAPTER 6: CONCLUSION .. 96	

6.1	 Fulfillment of Research Objectives ... 96	

6.2	 Research Contributions ... 97	

6.3	 Research Limitations ... 98	

6.4	 Recommendation for Future Work .. 98	

REFERENCES ... 100	

APPENDIX ... 106	

Univ
ers

iti
Mala

ya

x

LIST OF FIGURES

Figure 2.1: Agile Manifesto (Fowler & Highsmith, 2001) ... 14	

Figure 2.2: Overall Scrum Process. Retold from (Hartman & Lawrence, 2013) 22	

Figure 2.3: Risk Management Process .. 38	

Figure 2.4: Summary of Literature Review Flow Diagram .. 51	

Figure 3.1: Research methodology process flow .. 52	

Figure 4.1: Detailed view of Risk poker activity flow diagram (Van de Laar, 2012) 63	

Figure 4.2: Rating card for Impact factor and Likelihood factor 65	

Figure 4.3: Update Sprint Backlog details .. 68	

Figure 4.4: Risk Graph prioritization .. 69	

Figure 4.5: Test coverage estimation for the risk level Medium 70	

Figure 4.6: Risk Graph prototype interface structure ... 72	

Figure 4.7: Use Case Diagram of the Prototype Risk Graph .. 73	

Figure 4.8: Process Flow of Prototype Risk Graph .. 74	

Figure 4.9: Proposed Software Testing Strategy incorporated in Scrum workflow 75	

Figure 4.10: Integration of the Proposed Testing Model with Scrum Work Flow 76	

Figure 4.11: Risk Poker Technique Affect Testing Activity in Sprint 77	

Figure 5.1: BRE mean for experimental and control group .. 88	

Figure 5.2: Unexposed fault quantity .. 92	

Univ
ers

iti
Mala

ya

xi

LIST OF TABLES

Table 2.1: Comparison of Agile methodologies (Coffin & Lane, 2006) 16	

Table 2.2: Scrum Benefits (Selvi & Majumdar, 2013) ... 19	

Table 2.3: Comparisons of software testing strategies (Thomas Müller, 2011) 28	

Table 2.4: Summary of software testing issues in Scrum from previous studies. 34	

Table 2.5: Comparisons of Risk-based techniques. .. 41	

Table 2.6: Comparison of Test Coverage techniques. .. 48	

Table 3.1: Decisions made based on the Literature Review ... 55	

Table 4.1: Coverage complexity for unit test (Thomas Müller, 2011) 67	

Table 4.2: Functional Requirement of Risk Graph prototype ... 70	

Table 4.3: Non-Functional Requirement for Risk Graph prototype 71	

Table 5.1: Summary of experiment participants’ details .. 81	

Table 5.2: Summary of experiment materials ... 82	

Table 5.3: Experiment Steps ... 83	

Table 5.4: Statistics of Student Teams Test Result ... 87	

Table 5.5: BRE scores ... 89	

Table 5.6: Independent t-test result ... 90	

Univ

ers
iti

Mala
ya

1

CHAPTER 1: INTRODUCTION

Agile has been a very popular choice for the ever-changing software projects in

software industry. It is reported that most agile projects implemented Scrum

management process, where according to (One, 2010) 58% of the respondents of agile

projects used Scrum, followed by Scrum with Extreme Programming hybrid and others.

Thus, this research explores within the scope of Scrum management process for agile

projects.

Although agile methodology has been widely chosen as software development

methodology in industrial practice, unlike traditional software methodology, agile

methodology is lacking a well-documented software testing process as a level of

standard that can be used like a text-book guide that could be directly adopted in agile

process without any alteration to fit agile process (Karhunen, 2009; Khalane & Tanner,

2013). Currently, agile team needs to modify the established traditional software testing

process to fit agile characteristics (Khalane & Tanner, 2013). Compared to agile,

traditional method refers to extensive planning, codified processes, and rigorous reuse

to make development an efficient and predictable activity (B. Boehm, 2002), in which

(Biju, 2010) also translates traditional method as waterfall, spiral and iterative methods.

Upon exploring agile environment in depth, it is revealed that agile methodology

explicitly practices risks-based strategies in prioritizing, estimating and analyzing tasks.

However, in most situations, prioritization and analysis often relies on individual expert

opinions despite one of the most important agile characteristic being self-managed team

where it emphasizes on the importance of group discussions or team decision in

carrying out software development activities. Thus, upon proposing a testing model that

is able to be implemented directly in agile methodology without the need of

Univ
ers

iti
Mala

ya

2

modification to fit agile and Scrum self-managed team members, this research identified

a technique which is able to make use of group discussion characteristic in achieving

consensus in prioritizing and analyzing tasks. The identified technique is called Risk

Poker and it is derived from one of the popular techniques used to combine expert

opinions in order to determine planning estimation, called Planning Poker (Grenning,

2002), which is widely used in the scrum methodology (Schwaber, 2004; Schwaber &

Beedle, 2002).

Recently, Risk Poker technique proposed by (Van de Laar, 2012) has utilize one of

the benefit of Planning Poker characteristics, which is group discussion in providing

lightweight risk analysis technique. Risk Poker is designed to identify and analyze risks

for user stories by achieving group consensus. It is a team-based activity in which

decisions are made by achieving an agreement between team members. However, as

suggested by (Van de Laar, 2012) there is a need to combine Risk Poker technique with

test coverage to provide estimation on how much testing is needed to provide adequate

testing.

Thus, by acknowledging that Risk Poker and test coverage will provide adequate

testing in agile, this research can support software industry personnel to implement Risk

Poker with Planning Poker in planning meeting for Scrum methodology in the future. In

addition to that, it is assumed that the specified test coverage estimated by Risk Poker is

able to provide adequate testing which is crucial for small iteration-based agile projects.

Where at the end of software testing activity, the estimated test coverage can be used as

one of the acceptance criteria in claiming that adequate testing has been performed for

the agile product.

Univ
ers

iti
Mala

ya

3

The use of Risk Poker is a new concept among software practitioners and there is no

empirical evidence proving the efficiency of Risk Poker technique for agile-based

process. Therefore, this research aims to materialize this technique together with a

combination of test coverage through experiment where at the end of this research, a

testing model integrated in Scrum is produced with proof of concept through experiment

validation. This research will integrate Risk Poker technique with test coverage in the

planning phase in agile lifecycle and evaluating this approach to identify whether Risk

Poker can provide adequate test coverage estimation for agile based projects. A properly

designed study can provide preliminary evidence about this approach’s strengths and

weaknesses, thus reducing the risks accompanying its adoption in practice.

1.1 Problem Statement

Most of existing ready-to-use software testing process is tailored on fitting into well

documented specification-based project. Thus, there is not much study focused on how

to fit software testing model in the lightweight agile characteristics effortlessly, without

the need of modification (Itkonen, Rautiainen, & Lassenius, 2005). A study by (Khalane

& Tanner, 2013) agreed that most of the time, agile team members are required to

modify existing process or technique to fit it into agile environment.

The fixed and short duration of agile project development requires a definite answer

to how much testing is needed to ensure quality. Hence, test coverage is needed to be

used as acceptance criteria for short iterations to define testing completeness. Therefore,

this research is combining test coverage with a suitable test strategy as a proposed

solution to perform as a ready-to-use testing model for agile projects.

Univ
ers

iti
Mala

ya

4

In most cases, risk analysis and tasks prioritization often rely on individual expert

estimation where, a study by (Conboy & Coyle, 2009) has discussed risk management

thoroughly, in which it also stated that the most dominant sources of risk identification

is from Senior/Project Management. This contradicts with one of agile crucial

characteristics which is a self-managing team, because in agile, decision should be made

by team members through group discussion whereby it is able to promote optimized

knowledge and expertise sharing among team members and consequently improve

analyses (Moløkken-Østvold & Jørgensen, 2004) and estimation. Thus, this research is

going to implement Risk Poker as a risk analysis technique that could perform as a

testing model and provide test coverage estimation based on group consensus in risk

analysis. However, despite the importance of group discussion in agile environment,

literature claims that group discussion could add influence upon decision-making,

which will increase optimism in estimation (Armstrong, 2006).

In order to propose a testing model that emphasizes group communication as one of

its strengths, this research has identified that Risk Poker, as a risk-based strategy, has

high potential to be suitable for agile environment as it promotes group consensus in

analyzing risks based on various experiences of experts coming from different

backgrounds. Unfortunately, despite the fact that Risk Poker is derived from a popular

and widely used technique called Planning Poker, this research has learnt that through

extensive literature search, there is no evidence of research study previously has been

conducted to prove that Risk Poker is successful to perform as risk analysis.

Univ
ers

iti
Mala

ya

5

1.2 Research Motivation

The lack of well-documented standardized testing process that could fit into agile

project without modification has motivated this research to explore more on testing in

agile scope. Furthermore, software testing courses, techniques and study are more often

introduced and validated in traditional environment compared to agile environment.

Thus, there is a need to provide more analysis and study on testing process in agile

environment as a guide for industrial professional and other interested researcher to

explore and discover more research gap that needs to be filled in the future.

Apart from that, this research is motivated to explore and propose a software test

strategy that fully utilizes agile characteristics in the proposed model. This is to give

distinction and advantage to the proposed model compared to the existing software test

strategy that is generally designed for traditional methodology, whereby the proposed

model could use the benefit of agile characteristic to improve agile process as a whole.

Thus, this research focused on one of the basic agile characteristics, which is a self-

managed team wherein group discussion plays important role upon making decision.

Based on the principle that many heads think better than one, it is expected that expert

group judgment provides better analysis than individual expert does, by making sure all

team members participate equally in the analysis process, regardless of their positions.

Lastly, literature has proven that there is a successful staffing effort estimation

technique which emphasized on group discussion benefit to provide expert group

judgment specifically for Scrum. This fact has continued to motivate this research to

focus on providing a testing model that could successfully fit into agile like the staffing

effort estimation technique.

Univ
ers

iti
Mala

ya

6

1.3 Objectives and Research Questions

The main goal of this research is to propose a testing model which will optimize the

group discussion characteristic of agile environment to provide risk analysis and

estimate test coverage. It is expected that the proposed testing model will provide

adequate testing which will be the acceptance criteria for the product developed.

Following are the objectives set to be achieved in this research:

1) To identify a suitable testing strategy for agile projects following Scrum.

2) To identify a suitable test coverage technique to provide adequate test coverage

for the identified test strategy in 1.

3) To construct a testing model for agile project following scrum using the research

findings in Objectives 1 & 2.

4) To validate the proposed model in terms of better risk analysis to provide test

coverage estimation in agile projects.

The first objective will ensure the important criteria in agile environment are taken

into account upon identifying relevant technique to provide a suitable software test

strategy that can fit into agile projects. Following that, this research identifies suitable

test coverage technique which can be combined with the technique found in Objective 1

to provide test coverage for the lightweight Scrum environment. This research

constructs a testing model which integrates the proposed test strategy with suitable test

coverage that could easily fit into agile projects following Scrum. Lastly, this research

validates the proposed model in Scrum project with students as the test subjects in order

to collect data and evaluate the effectiveness of proposed model towards providing

adequate testing for agile projects.

Univ
ers

iti
Mala

ya

7

Below are the research questions for each of the objectives defined above:

Objective 1:

RQ1: How does software test strategy in agile methodology differ from

traditional methodology?

This question helped this research to explore agile software development

characteristics, the main differences of software development process in agile in

comparison to traditional software development process, and identify suitable software

test strategy to be used in agile project following Scrum without the need to modify the

software test strategy to fit into agile team. It will address the issues and problems faced

by software testers in agile environment. Once the differences between executing testing

in agile methodology and traditional methodology is identified, the scope of identifying

the right software test strategy for agile is narrowed down.

Objective 2:

RQ2: Which test coverage technique could provide adequate testing and

suitable for the identified test process in RQ1?

This question explored on software test coverage application in order to find suitable

test coverage technique that is able to provide adequate test coverage for the lightweight

Scrum project environment. The identified test coverage technique is then combined

with the software test strategy found in RQ1 to provide adequate testing estimation for

Scrum.

Univ
ers

iti
Mala

ya

8

Objective 3:

RQ3: How to integrate the identified testing method with test coverage into a

model to provide adequate testing estimation for agile project following scrum?

This research formulates and constructs a testing model for agile projects following

Scrum by integrating the identified software test strategy together with test coverage

into Scrum process. The affected scrum process is identified and this research designs

the proposed model inside the aforementioned Scrum process.

Objective 4:

RQ4: How does risk poker perform better risk analysis and provide adequate

test coverage?

This question proved whether the proposed model is able to promote better risk

analysis and provide adequate test coverage for agile projects. In order to get the

evidence required to prove the proposed model, a group of final year students from

Software Verification and Validation class are used to implement the proposed model in

an agile project following Scrum methodology. The following two sub-questions are

answered respectively;

RQ4.1: Is the test coverage provided by Risk Poker-based proposed model adequate

compared to the statistical combination of individuals?

 Risk estimation provided by student teams is analyzed through comparison. The

Risk Poker estimates are compared with the averaged statistical combination of

students’ estimates to determine the accuracy of risk analysis.

Univ
ers

iti
Mala

ya

9

 RQ4.2: How does Risk Poker-based proposed model estimation differ from the

averaged statistical combination of individual estimations?

 Risk estimation provided by student teams is analyzed using SPSS tool to

provide evidence that Risk Poker technique does improve test coverage estimation

statistically.

1.4 Research Significance

This research creates a significant impact on providing a suitable ready-to-use testing

process for agile project following Scrum. Its main contribution is to offer a testing

model which could provide adequate test coverage that could fit into agile environment

while fully utilizing group discussion in risk analysis as one of agile’s important

characteristic. The risk analysis provides prioritized tasks and test coverage estimation

which are achieved from group consensus instead of relying on risk analysis and

estimation by individual expert judgment which could overlook some important aspects

while analyzing and calculating the risk factor.

This research also produces a Risk Graph that prioritizes the tasks to be developed

and test coverage estimation to help developer and tester identify high-risk items and

test coverage for the sprint.

Lastly, the analysis from the validation experiment is expected to be beneficial to

professionals in software industry and researchers interested on software testing in agile

projects.

Univ
ers

iti
Mala

ya

10

1.5 Scope of Research

The proposed model implement a risk-based software test strategy called Risk Poker.

Risk analysis obtained from Risk Poker technique is used to estimate test coverage. The

proposed model is then integrated in Scrum process as a testing model which provides

adequate testing throughout the project.

Next, this research evaluates the proposed model’s effectiveness by analyzing the

test results of the validation experiment. The validation is done in a small-scale project

at university stage, where the experiment environment involves 6 teams of final year

students in Software Engineering course taking Software Verification and Validation

class. The project duration is 9 weeks which is divided to two-weeks sprints for 3

iterations, for a total of 34 user stories provided by an e-commerce client. The teams of

students are able to construct test cases and execute testing accordingly. Even though

the validation is done in a small scale of student environment, effort was made to make

sure the setting and execution of the experiment is very closely similar to an industry

environment like what has been done in previous studies by (Mahnic, 2011; Mahnič &

Hovelja, 2012; Molokken-Ostvold & Haugen, 2007; Moløkken-Østvold, Haugen, &

Benestad, 2008; Williams, Gegick, & Meneely, 2009). The test coverage estimation

conducted in the validation experiment focused on unit testing phase only to measure

exposed fault compared to seeded fault in the system under test.

Univ
ers

iti
Mala

ya

11

1.6 Outline of the Dissertation

The dissertation is organized into six chapters for easy read-out. The list of chapters

in this dissertation and their descriptions are as follows:

Chapter 1 Introduction is the chapter which provides brief descriptions of the

research topic, objectives, research approaches and research contribution.

Chapter 2 Literature Review focuses on the research study and literature review of

existing researches on agile methodology, testing strategies, test coverage and other

studies or researches which adopted similar group discussion estimation or group

discussion decision making in order to understand how to design the proposed model in

agile project effectively.

Chapter 3 Research Methodology describes the processes, actions and steps that

have been taken throughout the research in order to integrate the proposed testing model

into the planning meeting and validate its effectiveness for agile projects.

Chapter 4 Model Building describes and explains the proposed testing model in

details through design and diagrams for further understanding.

Chapter 5 Validation describes how the experiments and implementation of the

proposed model is carried out throughout the research for an agile project. Based on the

experiment and model implementation, this chapter also evaluates the effectiveness of

integrating risk poker into the planning meeting in order to analyze risk and provide test

coverage for agile project.

Chapter 6 Conclusion focuses on the conclusion, contribution and future works of

this research.

Univ
ers

iti
Mala

ya

12

CHAPTER 2: LITERATURE REVIEW

In this chapter, this research reviews literatures related to the research domain which

is agile method software development lifecycle to explore agile characteristics and to

identify suitable framework to be integrated with the proposed solution. Next, this

research explores on Scrum process to identify which Scrum process that is going to be

affected upon integrating the proposed solution. Subsequently, this research reviews

literatures of software testing to identify suitable software test strategy to achieve

objective 1, and lastly test coverage literatures are reviewed to identify suitable test

coverage technique to achieve objective 2.

2.1 Agile Software Development Methodology

Agile methodology is another type of software development lifecycle that stresses

out the importance of short development with more customer interaction compared to

traditional methodology which is waterfall software development lifecycle. It has

become an increasingly popular pick in industrial environment (Felker, Slamova, &

Davis, 2012) which has been proven when the number of agile adoption in practice has

started to multiply in a short time (Eloranta, Koskimies, Mikkonen, & Vuorinen, 2013).

The adoption is encouraged by agile method’s promising flexibility in terms of ability to

accept and adapt to changes throughout a project cycle (Karhunen, 2009), coupled with

its behavior as a time-boxed development cycle which guarantees workable software

within short period of time compared to the fixed, long-period traditional methodology.

These facts have influenced this research to choose agile methodology as domain of

interest to work on, as agile popularity should be captured in a proven record for

industrial guidance about opting agile methodology as software development cycle.

Following, agile software development methodology is described briefly in this section

of this thesis.

Univ
ers

iti
Mala

ya

13

Agile in a software development environment refers to a type of process or

methodology used as a guideline in order to develop a software product, which is also

treated like a software development lifecycle. In the early stages of agile discovery, this

method has been used in many projects but has never been officially standardized as a

recognized software development methodology to be practiced as a guideline in

software industry. Thereupon, in 2001, a group of software engineering experts whom

have worked and experiences with agile method has gathered and discussed to agree to

officially recognize agile methodology in software development. They have come up

with an Agile Manifesto which has define a set of values for agile methodology (Fowler

& Highsmith, 2001). Along with the defined Agile Manifesto, they have developed 12

principles to further explain the values to be used as guidance in software development

projects. There are many studies such as (Cho, 2008), (Hu, Yuan, & Zhang, 2009),

(Karhunen, 2009) and (Karlsson & Martensson, 2009) which has deliberately explained

and elaborate these 12 agile principles for better understanding. Figure 2.1 shows Agile

Manifesto and the principles defined by the 17 software engineers during the meeting.

Univ
ers

iti
Mala

ya

14

Figure 2.1: Agile Manifesto (Fowler & Highsmith, 2001)

Tasks in traditional methodology is coordinated and assigned by Project Manager or

Team Leader, unlike in agile methodology where tasks are coordinated by a self-

managing team, which means team members decide and discuss tasks amongst

themselves (Moe, Dingsøyr, & Dybå, 2010). This is aligned with agile characteristics

which concentrate on; 1) Individual and interaction, 2) Working software, 3) Customer

collaboration, 4) Respond to change rather than following a plan (Cho, 2008).

Traditional methodology assumes a Project Manager is able to plot a project

schedule complete with predictable disaster and then assumes project will work as

planned. But in reality, development project is full of surprises, unpredictable matters

Univ
ers

iti
Mala

ya

15

and changes, which fortunately could be handled by agile methodology as it is able to

deal with the challenge of handling unpredictable project obstacles, such as unexpected

change request from time to time (Moe & Dingsøyr, 2008). This is because agile

attribute allows numerous unlimited changes throughout iterations in order to support

product evolvement. Furthermore, agile methodology promotes less documentation

while enhancing knowledge and skills sharing amongst team members. This is to ensure

every team members have equal knowledge on the systems so that if a person of the

team leaves, there is still a lot of shared knowledge that has gotten around among other

team members (Cho, 2008). And as a final point; what makes agile an attractive

methodology to be adopted, is the basic agile practices such as pair programming,

continuous integration, short release and simple design, making the development

process and procedure look much more promising (Harichandan, Panda, & Acharya,

2014). There are many empirical studies that have been made on agile approach and its

benefits which (Eloranta et al., 2013) has summed up as following; 1) Better control on

managing changing priorities, 2) Improved visibility and team morale, 3) Quicker time

to market, and 4) Increased productivity.

There are many frameworks for project management process available to support

agile software development; amongst them are Scrum, Extreme Programming (XP),

Lean, Crystal, Feature Driven Development (FDD), Agile Unified Process and Dynamic

Systems Development Method. Details of the comparison of these agile methodologies

are as shown in Table 2.1.

Univ
ers

iti
Mala

ya

16

Table 2.1: Comparison of Agile methodologies (Coffin & Lane, 2006)

Category Methodology Strength Weakness
Agile • Popular choice as software development approach,

• Identified agile characteristics, one of them is to emphasize communication
between team members and customer,

• Identified popular agile methods which is:

Scrum

• The only methodology

compared here that has

certification

• Allows improvements and

modification in the

framework

• Only provide project

management process,

which acts like an empty

bucket that requires

combination or

implementation

Extreme

Programming

(XP)

• Supports pair

programming which is a

very strong technical

practices

• Allow constant refactoring

of product developed as it

is release-based approach

• Not a structured process

phases but more to

coding and releases

where product is

improved based on a

series of releases.

Lean
• Provide strong Return on

Investment element for

project success

• An element called

Theory of Constraints

can be complex to adopt

Feature Driven

Development
• Design by feature and

build by feature

• Activities and process in

the iterations are not well

defined

Agile Unified

Process
• Provide many techniques

and disciplines to choose

• Documentation is much

more formal and heavier

Crystal

• Provide many

methodologies (a list of

prescribed flavor) designed

to scale by project size and

criticality

• The only agile

methodology that could

support life critical project

• Adjustment is required

according to project size

and criticality to follow

the prescribed flavor

Univ
ers

iti
Mala

ya

17

Category Methodology Strength Weakness
Dynamic Systems

Development

Method

• Business value is the

highest priority for

deliverable

• Heavyweight project

process compared from

the list

A study by (Itkonen et al., 2005) has stated that it is not clear how the testing

activities are going to fit into XP, TDD, FDD, etc. whilst on the other hands, Risk Poker

has been suggested by (Van de Laar, 2012) to be able to fit inside Scrum as a risk-based

testing. Thus, this research chooses to innovate the suggested solution for Scrum

framework. The following section describes more about Scrum method within the scope

of this research.

2.2 Scrum

The Scrum process skeleton is formalized and presented by Ken Schwaber at

OOPSLA (Object Oriented Programming, Systems, Languages and Applications) in

1995. Scrum provides a simple iterative and incremental framework for project

management (Hossain, Babar, & Paik, 2009) where Scrum project planning promotes

product backlog stacks as paper-less documentations and burn-down charts as

lightweight techniques compared with too many formal documentation and Gantt charts

in traditional software development (Sutherland, 2001). In addition to that, Scrum is

able to fulfill agile characteristics in order to produce software early and continuously

while still maintain high degree of flexibility for project success. Scrum process is an

adaptive cycle which regularly review activities to see what is occurring and take them

into account to produce predictable outcome (Caballero, Calvo-Manzano, & San Feliu,

2011). Since Scrum team is self-managed, team members have the decision-making

authority that comes into play when problems occurred, in which case they can be

solved without escalating or needing the superior personnel for approval in order to

Univ
ers

iti
Mala

ya

18

obtain quick solution (Moe et al., 2010). These features have made Scrum the most

widely used agile framework, where almost half of existing software industry with agile

projects choose to use Scrum by itself or a hybrid of Scrum and XP (Löffler, Güldali, &

Geisen, 2010).

Many studies have reported successful stories of Scrum adoption and their benefits

such as;

1) Team is self-responsible in planning smaller tasks for themselves which will lead

to a correct estimation (Haugen, 2006; Molokken-Ostvold & Haugen, 2007;

Moløkken-Østvold et al., 2008),

2) Team members are forced to be exclusively committed to task as planned during

the sprint planning because of the burn-down chart (Cho, 2008; Deemer,

Benefield, Larman, & Vodde, 2010),

3) Team members are rewarded with high team spirit, enjoyable feeling and

satisfaction when they are able to deliver end product at the end of each sprint

(Caballero et al., 2011),

4) Daily meetings have shown that everyone has better general view of work

progress and able to come up with solution together (J. Li, Moe, & Dybå, 2010),

5) Customer needs are addressed in every sprint, compared to traditional approach

where customer needs are only addressed at the end of the project in user

acceptance (Cho, 2008),

6) Better process control and quality because of controllable-sized tasks (Schwaber,

1997).

Additionally, (Selvi & Majumdar, 2013) have come up with top 10 reasons for

adopting Scrum in agile project as shown in Table 2.2.

Univ
ers

iti
Mala

ya

19

Table 2.2: Scrum Benefits (Selvi & Majumdar, 2013)

 Top 10 Reason to use Scrum

Scrum enables rapid reaction to changing
customer requirements
Scrum teams possess all the required skills
to get the job done
Scrum teams incur less technical debt
Scrum improves communication
Scrum leads to better client relationships
Scrum improves personnel satisfaction
and commitment
Scrum reduces time taken to get product
to market
Scrum produces higher quality product
Scrum succeeds by giving the customer
what they need
Scrum increases productivity and lowers
costs

The above-mentioned studies have influenced this research to focus on Scrum

process improvement for agile project. Even though Scrum has been popular in agile

project, (Cho, 2008) has reported some issues upon adopting Scrum in real practice such

as;

1) No proper documentation traceability of tasks management when the system has

become too big with too many releases. Even though Scrum promotes knowledge

sharing amongst team members so that everyone is equal in knowledge, it is not

feasible if the system is too large with distributed agile team,

2) Scrum promotes more communication with customer, but often customer is

unable to communicate as required to obtain feedback of what they want for

future system,

3) It’s hard to gather everyone at the right time for daily review meeting,

Univ
ers

iti
Mala

ya

20

4) Potential to adopt wrong practice from the actual recommended Scrum practice,

such as unintentionally keeping the waterfall process in some of the product

development.

Now that the environment of Scrum framework has been described and related issues

are highlighted as above, in the following section this research describes more on team

members’ role in a Scrum team. This is essential as Scrum team plays important role to

make sure Scrum project is adopted with correct practice.

2.2.1 The Three Roles in Scrum

There are three important roles in a Scrum team, which are defined as; Product

Owner, Scrum Master and The Team. Brief descriptions for each roles and

responsibilities in Scrum are as follows.

Product Owner is the person who is responsible to make sure customer gets what

they want. Product Owner is the main person who gathers and interacts with customer

to collect requirements or features from customer before starting with a Scrum project.

The collected requirements or features are written as a simple user stories which is

understandable to customer as well, and it is kept in Product Backlog for reference.

Product Owner is the only person who is responsible to prioritize the product backlog

(Schwaber & Beedle, 2002) before Sprint Planning Meeting, where items that give the

most value to the customer is placed at the top, thus granting Product Owner the

authority to make decision on what item is important and what is not, based on

customer’s interest.

The next important role is Scrum Master; which is the person who is responsible in

practicing the correct Scrum process throughout the project. Scrum Master has to make

sure everyone in the team understands all the Scrum process so that they are able to

Univ
ers

iti
Mala

ya

21

follow the rules and practices. Scrum Master is also responsible in addressing and

guiding team members to solve problem to prevent delays and bottleneck.

Finally, The Team consists of developers, testers, customer representative and other

relevant personnel who make sure the development of product functionality is a success

(Lewis & Neher, 2007). They are responsible for developing the product in a self-

managed environment which means all team members must work together to produce

workable product at the end of the sprint by sharing the knowledge, skills and concerns

of the tasks assigned and cooperate accordingly as they are equally responsible for the

end product (Moe et al., 2010). This characteristic of the team in Scrum team is proven

to be able to improve productivity and able to integrate the product more efficiently

(Moore, Reff, Graham, & Hackerson, 2007).

In the following section, this research explored on the process and work flows that

make a Scrum framework works as project management process. Understanding these

processes and activities helped this research to determine where to integrate the

proposed method inside a Scrum framework.

2.2.2 The Scrum Work Flow

Scrum is a repetitive process of planning phase, development phase and

review/closure phase for a software development project. At the high-level process

overview, each iteration will start with planning, followed by development phase in a

short period of time-boxed iteration called Sprint which last for one to four weeks and

ends with reviewing/closure phase at the end of sprint. If there is room for the end

product to evolve or if there are any changes uncovered during reviewing session, the

changes and improvement will be brought to the planning phase for the next sprint. As

shown in Figure 2.2, there are processes of product backlog collection, sprint planning

meeting, sprint backlog creation also known as tasks prioritization, cycles of sprints

Univ
ers

iti
Mala

ya

22

where product is developed and tested, daily scrum meeting for progress update, and at

the end of the sprint there are retrospectives in which the finished product is presented

to the customer for feedback and discussion on issues is conducted.

Figure 2.2: Overall Scrum Process. Retold from (Hartman & Lawrence, 2013)

The sprint starts with Product Owner meeting and collecting requirements or what

end user imagines they want for the end product. Requirements are collected as user

story where end user or stakeholders list out all the things they want or think that a

system should do in order to cater to their needs. User stories act as requirements and

features documentation in Scrum (Karhunen, 2009), therefore Product Owner will

clarify any issues of the listed user stories with stakeholders to grasp all the

functionality needed and then prioritize the user stories in a stack of product backlog

with those that value the most to the end user placed at the top. Product Owner is also

responsible for determining the business value of the project that contributes to profit

and loss to be prioritized in product backlog.

Univ
ers

iti
Mala

ya

23

Product backlog is a prioritized list of user stories which is rated by Product Owner

according to business value for the proposed release (Schwaber & Sutherland, 2007).

Items in product backlog is treated as the to-do list for the team to be executed in sprint,

therefore they are often updated and available for the entire project duration. This

backlog will continue to be refined and expanded by Product Owner to reflect changes

and feedback by customer throughout the project lifetime. In addition to that, Product

Owner is responsible to assign business value estimate or risk of impact value to each of

the user story. Items ranked at the top of the product backlog list are rated as the most

important to Product Owner, customer and end-user.

Once product backlog is ready and available to be explored to develop product

functionality, a planning meeting will be held as a start. This meeting is also called

Sprint Planning Meeting. Objective of the meeting is to discuss the selected product

backlog item to decide, estimate and assign tasks to team members. In order to do so,

team members select some user stories prioritized by Product Owner in product backlog

and start discussing the user stories in depth with Product Owner, Scrum Master and

The Team. Following that, team members will break the selected product backlog into a

smaller workable task to be committed throughout the sprint and team members start to

discuss the tasks in details. It is important for the team to fully understand the selected

items before starting to work on it. During the discussion, Product Owner will explain

the user stories in perspective of business value and what end user wants to the team and

the team members will exchange knowledge and opinion on the feature to be developed

in terms of development and testing wise. Once everyone is satisfied with the discussed

items, it will be assigned to the respective person with estimated staffing effort such as

tasks break-out, work hours, etc (Schwaber, 1997). At the end of Sprint Planning

Meeting, the list of product backlog items which have been divided into smaller tasks

Univ
ers

iti
Mala

ya

24

with assignment estimation will be sorted in Sprint Backlog for team’s reference. A

Sprint Backlog in Scrum stores a list of tasks broken-down from the user stories

selected by the team in Sprint Planning Meeting which will be worked-on in the sprint.

Next, the team starts product development in order to produce the functionality

planned within the estimated time-boxed sprint (Eloranta et al., 2013). Some people

may call this sprint as development sprint (Eloranta et al., 2013). Objective of this sprint

is to deliver a workable functionality at the end of sprint (Moore et al., 2007). During

the development, the team will meet every day with Scrum Master to update status and

problems faced in development. This meeting is called Daily Scrum Meeting and will

last for 15 minutes only. No other issues should be discussed apart from what the team

is doing and what obstacles are hindering the team members. This is to ensure the

meeting is not a waste of time and interrupt team’s schedule of that day.

At the end of the sprint, a meeting called Sprint Review meeting is held to decide on

the status of the end product. The Team will present the constructed product to Product

Owner and stakeholders in order to gain feedback whether the product is declared as

done or not done, or whether there is any improvement or changes needed for the

functionality. If there is any change request made by stakeholders, the changes will be

added into product backlog for the upcoming sprint. This activity gives the stakeholders

the ability to keep track of the requirement changes and to see the product evolve from

one sprint to another sprint. This will give them higher confidence in the team’s ability

to deliver the requested functionality in the desired time-frame (Schatz & Abdelshafi,

2005).

Univ
ers

iti
Mala

ya

25

Lastly before starting and planning for a new sprint, a Sprint Retrospective meeting

is held by Scrum Master with The Team. Objective of this meeting is to revise and

evaluate the previous sprint. Scrum Master will record if there is any issue from

previous sprint that should be addressed in the next sprint and if there is any

improvement needed for the upcoming sprint. This is to gain better estimation during

sprint planning and to obtain improved effectiveness and efficiency throughout the

Scrum project.

The Scrum flow section has described all processes taken place in a Scrum team.

These processes or framework of a Scrum methodology is like a bucket with rooms that

need to be filled in with some other important process modified or implementation of

another strategy to suit the agile development environment better (Khalane & Tanner,

2013). As an example, testing process could be integrated into this Scrum bucket to

enhance quality assurance in the product development of agile methodology. Therefore,

this research is going to identify software test strategy to go along with Scrum process

to integrate testing process in a Scrum development environment. Following section

touched in brief the discovery of software testing in agile methodology in order to

understand more on software test strategy characteristics.

2.3 Software Testing

Software testing in a software development lifecycle is meant to expose defects of

product development and coding errors, to measure product’s reliability and

dependability while convincing customers that the performance of the product is

acceptable and increase customer’s confidence that the product is able to perform

correctly. On the whole, software testing helps to achieve the final goal of a software

development process which is to produce high-quality software in an attempt to satisfy

the requirements and meet the user’s needs. Studies also reveal that the quality of

Univ
ers

iti
Mala

ya

26

testing processes translates into the level of quality and software development effort,

where many agile’s practices success rate depends on effective software testing process

(Hellmann, Sharma, Ferreira, & Maurer, 2012; Khalane & Tanner, 2013; Winter,

Rönkkö, Ahlberg, & Hotchkiss, 2011).

Software engineering has recognized that software testing has become an essential

activity in the software development lifecycle in order to determine and improve

software quality over time when a nonprofit association has established a recognized

international organization of software testing called International Software Testing

Qualification Board (ISTQB) offering certificates internationally. The certificate is to

recognize and qualify software tester in order to offer assurance in quality control of the

software tested to regulate the standard of software testing quality. ISTQB (Thomas

Müller, 2011) has defined some characteristics of software testing to be adhered; 1) To

ensure the program is meeting the business and technical requirements agreed for the

program’s design and development architecture, and 2) To deliver a program that will

work as expected.

Unfortunately, software testing is often mistakenly treated as a single activity to be

executed after coding to uncover defects randomly while still expecting that it could

verify the software to the characteristics defined by ISTQB. The truth is that software

testing is a process that runs continuously parallel with other processes in software

lifecycle development. It has planning phase, analysis and design phase, execution

phase, exit criteria evaluation phase and ended with reporting. Planning phase is to

determine scope, analyze and review test item, assign resources and effort required, and

identify test approach to design test, and execute test is defined based on approaches

suitable with the project nature. The most common adopted approaches are risk-based

strategy, requirement-based strategy, model-based strategy and experience-based

Univ
ers

iti
Mala

ya

27

strategy. Table 2.3 shows the strengths and weaknesses comparisons of these software

test strategies against agile characteristics. The analyses of these comparisons has

shown that risk-based strategy suit agile characteristic where risks are analyzed and

prioritized to discover problematic area early. Risk-based strategy involves test

planning, estimating and prioritizing tests based on the risk analysis performed using

project documents and stakeholder inputs. On the other hand, requirement-based

strategy involves test planning, estimating and design tests based on the analysis

performed using the requirement specification documents. And lastly, model-based

strategy involves building mathematical models of the critical system behaviors and

then executes testing to conform the system is able to be working as predicted by the

model. While in analysis and design phase, test item is designed and reviewed to be

ready for the next phase which is test execution. The test item is then tested in execution

phase according to the test technique or test strategy defined in planning phase. When

testing of the test item is finished, exit criteria is evaluated based on the test coverage

defined during planning phase and the testing activity is concluded with test report that

contains evaluation on how testing activity performed and lessons learned for future

release.

Univ
ers

iti
Mala

ya

28

Table 2.3: Comparisons of software testing strategies (Thomas Müller, 2011)

Category Software Test
Strategy Strength Weakness

Software

Testing
• Identified and understand software testing process

• Identified software testing approach for software development project to

learn which approach is suitable with agile:

Risk-based

• Tests are focused on most

critical areas with risk

analysis

• Problem areas are

discovered early, leads to

better strategies and tests

designed as preventive

method

• Risks might be assessed

as too low or too high

• Risk assessment can be

too subjective

Model-based

• Automated testing of test

generation and test result

which is based on system

model

• Useful for structured

analysis

• Easy to understand

between different teams in

an organization

• The model designers

should be an expert of

the application area

• Might encounter problem

in determining whether

test failure is caused by

code or test script

• Might not be suitable for

testing all application

Requirement-

based

• Precise and details testing

when it has clear, complete

and correct requirements

• provides well-structured

testing with improved

traceability and visibility

• There will be limitations

and error when the

requirement is not

defined correctly

• requires complete and

correct requirement

Experience-based

• Works well when there is

no adequate requirement

provided

• Particularly useful for low-

risk project with time

constraint

• Intensity and

completeness of this test

design cannot be

measured

• Not a systematic

approach with no record

traceability

Univ
ers

iti
Mala

ya

29

The flow of a traditional software testing, which can be directly implemented in a

traditional software methodology, starts from the beginning of a software development

project, in the design and requirement phase, where static testing is carried out to review

or inspect the design and requirement of the program to prevent early mishaps of

program design and data flow. Following that, dynamic testing such as unit testing,

integration testing and system testing is executed on the coded program to uncover

defect using a set of techniques and test cases. In order to carry out dynamic testing, test

leaders will define and plan the software test design technique and test coverage for

tester. Once testing activity is executed as planned, defects detected will be fixed by

developer and regression testing is carried out to unmask any hidden defect. Lastly the

program under test is evaluated to make sure the tested program has met the completion

criteria to decide whether the program has finished testing and ready to be delivered to

customer.

Upon finishing testing, it is important to make sure the program was tested

adequately before it is declared as “done” and handed-over to customer, as (Woodward

& Hennell, 2005) has stated the impact of an inadequate infrastructure for software

testing could affect business loss. Hence, it is suggested to couple testing with coverage

criteria to cover the entire set of testing parameter be it conformance of specification or

the accuracy of coding structure (Julius, Fainekos, Anand, Lee, & Pappas, 2007). Due to

the important of testing process in a software development environment, much research

is needed toward developing new, improved test methods (Briand & Pfahl, 1999)

consistent with the adopted software development lifecycle.

Univ
ers

iti
Mala

ya

30

2.3.1 Software Testing in Scrum

Most of the adopted industrial software testing techniques are the existing techniques

established for traditional software development lifecycle such as waterfall

methodology (Itkonen et al., 2005). However, software testing in agile project

environment requires testers to learn about the program under test thoroughly and

always remember to concern themselves with customer’s information as guidance for

testing activities (Collins, Dias-Neto, & de Lucena, 2012). This research finds it

important to invest in Scrum focusing on software testing as Scrum let the team

members define their own quality strategy which is observed as more effective as they

are self-managing and makes decision by themselves upon what they are working on

rather than relying on management team (Caballero et al., 2011). Moreover, without

fully changing basic tasks such as coding and testing, Scrum is aiming to deliver as

much quality software as possible within the short time-boxed sprints which aligns with

software testing goals (Lewis & Neher, 2007). Apart from that, during user stories

discussion in planning meeting, testers could help the team to uncover complex business

logic by identifying complex and negative test case scenarios and together discover

which items of the program could be affected and significantly reduce potential defect

and thus add more information as guidance to estimate the stories (Kayes, Sarker, &

Chakareski, 2013).

However, despite the fact that software testing is an important and costly activity in

software development lifecycle, and inadequate testing usually leads to major risks

(Garousi & Zhi, 2013), Scrum process and most agile methods do not describe specific

software test strategy to be taken into consideration (Itkonen et al., 2005). This is

important because in agile, the team is not just responsible to identify failures, but they

are also responsible to prevent it from happening at early stage. Therefore, agile testing

Univ
ers

iti
Mala

ya

31

is a challenge for traditional testers that used to be involved in testing activity at the end

of a waterfall project (Collins et al., 2012).

Apart from the importance of early testing, (J. Li et al., 2010) also points out that

knowledge sharing through group discussion helps in improving test efficiency, hence

the importance of team concept in agile practices. In the team, it is not just testers who

care about quality. The whole team is responsible to understand that quality is a part of

the product development and how they fit into the process. Discussion amongst the team

members in agile practices guides the team into understanding what quality attributes

should be considered and together come up with the definition of “done” as the

completion criteria (Talby, Keren, Hazzan, & Dubinsky, 2006). This means that testers

in agile projects need to work closely and coordinate between business, management

and developers.

In view of that, we can see that tester’s responsibility in Scrum does not focus on

testing activity solely, but tester is also responsible to explain to developers and

customer’s representative of the testing issues, review unit tests strategy, review stories

and making them testable together with team members so they can understand the

stories from inside out and together decide on the test strategy. In addition to that, the

advantages of including professional testers in any agile development team are as

follows; 1) Increase productivity, 2) Increase of cross competence within the team, 3)

Promotes wider knowledge sharing which improves group dynamics, and 4) Could

improve effort estimation and test strategy estimation (Karlsson & Martensson, 2009).

Univ
ers

iti
Mala

ya

32

2.3.2 Testing Issues in Scrum

Previous studies on software testing for agile projects specifically Scrum are

reviewed to gain insight on the current situation of software testing issues in agile

projects. Generally, agile methodology suggests no specific roles amongst team

members. Everyone is responsible equally on the software development throughout

iterations. Thus, quality assurance is every team member’s responsibility. This leads to

the raised issue of whether testers are needed in agile development at all (Kettunen,

Kasurinen, Taipale, & Smolander, 2010). However, when dedicated tester is not

assigned to an agile team, wherein developers test their own code, tester’s attitude is

hard to achieve within these developers and could lead to bias in producing quality

software, hence the need of software tester professionals for software testing in agile

(Itkonen et al., 2005).

Next in-line, many studies have raised concern that Scrum leaves too many aspects

of quality management open. Common issue is how to fit software testing in the

iterations (Caballero et al., 2011) as there is limited amount of studies in relation of

agile methods and testing. Many structured text book software testing processes are for

traditional software development environment. Testing practices used in these plan-

driven methods may not be compatible with agile processes that do not have a

structured defined requirement at the beginning of the development (Itkonen et al.,

2005).

Apart from that, not much research in software testing for agile project focuses on

test planning and the control over test coverage in order to provide effective test

adequacy criteria for the short time-boxed iteration as scrum development process

(Khalane & Tanner, 2013). Study by (Kettunen et al., 2010; Stolberg, 2009) has

reported that it was difficult to test in parallel with development when applying the

Univ
ers

iti
Mala

ya

33

traditional testing approaches in agile environment and it has also cut short on time

which resulted in unsatisfied testing coverage at the end of iterations. A study by

(Petersen & Wohlin, 2010) also reported issues of test coverage and staffing effort when

migrating from traditional test model to agile model. This issue has been identified

throughout literature and continuous approach is proposed such as Extreme

Programming (XP) which emphasizes the importance of building quality into the

system with early testing, pair programming throughout the development lifecycle.

However, it is not clear how the testing activities are related and synchronized with the

other development tasks.

Lastly, as Scrum does not define proper test planning and how dedicated testers fit

into Scrum process, this has left test engineers not knowing what to test, how much

testing is needed, or what is the required output from the testing activity (Karhunen,

2009). Thus, as reported by (Khalane & Tanner, 2013), because agile and Scrum do not

provide concrete guidance on testing strategies and how to fit them into the process, it

has left the team to become innovative by adopting practices from other methodologies

such as traditional software testing strategy for waterfall methodology and carefully

redesigning the current scrum process structure to accommodate the adopted practices,

hence the need to define what type of testing technique or metrics in order to decide

what should be tested (Garousi & Zhi, 2013).

The listed issues were collected from previous studies where researches of the related

studies have encountered those issues and highlighted them in their report as

summarized in Table 2.4.

Univ
ers

iti
Mala

ya

34

Table 2.4: Summary of software testing issues in Scrum from previous studies.

Issues in Scrum Research settings Result

The need of professional
Tester roles is arguable in
agile environment

(Itkonen et al., 2005): A
study on how agile method
affects test processes on a
number of organizations
compared to the test
processes in a plan-driven
project.

A list of benefits observed
on test processes in agile
project which will be
beneficial for software
organization to address the
issues beforehand in test
process.

Difficult to test in parallel
with development when
applying traditional testing
approaches. The short time-
boxed iteration caused the
unsatisfied testing
coverage.

Scrum leaves too many
aspects of quality
management open, thus the
question of how to fit
software testing in
iterations

(Garousi & Zhi, 2013): A
survey of software testing
practices among
practitioners in Canada to
get the important and
interesting findings about
software testing practices.

Reveals the latest trends in
software testing industry,
identifying the areas of
strength and weakness.

Issues with test coverage
and staffing effort when
migrating from traditional
test model to agile

(Petersen & Wohlin, 2010):
Investigate the effect of
moving a test process from
one model to the other. How
the perception of
bottlenecks, unnecessary
work, and rework changes
when migrating from a plan-
driven to an incremental
software development
approach with agile
practices.

Reveals the issues during
migrating the test process,
after effect of the migration
process which related to
testing lead-time and test
coverage. Improvements
were also identified where
many issues commonly
raised in plan-driven
approach were not raised
anymore in agile approach

The team needs to become
innovative by adopting
practices from other
methodologies since agile
and scrum do not provide
concrete guidance on
testing strategies

(Khalane & Tanner, 2013):
Identify and present the
concerns of stakeholders (in
meeting user expectation) for
Software Quality Assurance
in Scrum. This study
demonstrates the
incompleteness of agile
methods with particular
attention to the lack of
concrete guidance in Scrum,
thus the need of the team to
be innovative to adopt
existing method into agile
and Scrum.

This study draws on method
tailoring literature to argue
for customization of Scrum
and concludes that Scrum
needs to be viewed as a
framework of ‘empty
buckets’ which need to be
filled with situation specific
test practices and processes
in order to meet user
expectation.

Univ
ers

iti
Mala

ya

35

All of these issues have shown that Scrum methodology should be treated as an

empty bucket framework which needs to adopt a reliable software testing process to

improve software quality and meeting user expectation as suggested by (Khalane &

Tanner, 2013). Thus, as proposed by (Van de Laar, 2012) to implement Risk Poker as a

risk-based testing for Scrum, this research is focusing on Scrum as software

development methodology. Therefore, discussion of appropriate software testing

strategies is discussed within Scrum scope.

A qualitative study of survey conducted by (Kasurinen, Taipale, & Smolander,

2010), on the preferred testing process for software development has guided this

research to narrow down which type of software test strategy suitable for agile

practitioners. It is learnt that most of agile-based industry choose risk-based testing

process due to good feedback and customer participations. The risk-based technique

enables the team to focus on the most critical parts first which also improve the position

of testing to start early and provide tester with better insight of the software since the

team discussed the testing issues together at the beginning of the development. Thus, in

the following section, this research explores in details what motivates this research to

use risk-based approach as software test strategy.

2.4 Risk-based Strategy in Scrum

Literature reveals that, most of the time agile teams have to modify existing process,

strategies or techniques to fit in agile environment (Stolberg, 2009). Moreover, not

much articles and researches discussed which software test strategies works best in

Scrum but some of the existing research did come out with enough facts to lead this

research to proceed with risk-based testing as the best software test strategy for an agile

project such as Scrum.

Univ
ers

iti
Mala

ya

36

Following is the justifications that lead this research to choose risk-based testing as

software test strategy in agile project;

1) The agile environment itself such as budget constraint and time-boxed iterations

has pushed team member to prioritize level of testing needed for testing activity in

which, prioritization of testing level is actually a risk-based testing strategy

(Stallbaum, Metzger, & Pohl, 2008),

2) A research by (Kasurinen et al., 2010) which has surveyed 31 software industry

organizations, and interviewed 36 software professionals from 12 focus

organizations in determining the preferred test selection strategy whether it is risk-

based or design-based selection. The development approach for this focus group

varies from plan-driven methodology to agile methodology and mixes of these

two methodology at which has produced result that most of agile methodology

practices adopted risk-based testing selection as testing strategy.

3) Agile process implicitly apply risk-driven strategy when sprint are defined and

task are assigned (Nyfjord, 2008) which have the commonality with risk-based

testing strategy method,

4) Even though agile process itself is a risk-driven process, it does not explicitly

include risk management phases as in how to identify, analyze and mitigate risk

(Paulk, 2002), thus a risk-based testing strategy could support risk management

efficiently during project execution.

Therefore, based on the evidence listed above, risk-based testing as a software test

strategy is best adopted in agile project since it is the nature of testing activity that there

is always never enough time to test everything, especially in a time-boxed iteration like

agile projects. Moreover, it is common that testing team often puzzled on how to assess

user stories’ business value, how to analyze technology risks and how to achieve

Univ
ers

iti
Mala

ya

37

consensus on certain decision on their own (M. Li, Huang, Shu, & Li, 2006). Following

section describes risk management in software development project and risk-based

testing as software test strategy to help understanding how risk analysis is conducted

throughout a software project.

2.4.1 Risk Management and Risk-based Testing

In a software development project environment, risks are addressed in risk

management discussion. Risk management is usually linked with project management

planning which is carried out by project managers and stakeholders for a software

development project. It is always emphasized on how important it is to identify risks in

software project management and act towards it in order to prevent disasters,

cancellation and frustration (Bannerman, 2008). The effect of project failure which is

caused by unidentified and unmanageable risks can be controlled or minimized by

having risk management composed of a collection of risk control methods. In general,

risk management involves risk identification, risk analysis, risk prioritization and risk

control (Hartmann, Fontoura, & Price, 2005) which is illustrated in Figure 2.3. In

planning phase, any possible risks to the project are identified and this action is called

risk identification. Following, an estimation of the probability of the risks happening

and the consequence should the risk happens is analyzed (Hall, 1998). Once the risk

analysis is complete, the risks are prioritized according to their importance. The risk

prioritization allows project manager and team to execute actions described previously

from the highest risk items first (B. W. Boehm, 1991). Afterward risk control is

discussed; as an example, what are the strategies to deal with the risks and the risks

resolution plan should any of the risks predicted occurred during project execution.

Univ
ers

iti
Mala

ya

38

Figure 2.3: Risk Management Process

Similar to a software project risk management, ISTQB (Thomas Müller, 2011) has

summed up that risk-based testing would help testing team to perform risk management,

identify hazards that would lead to potential project risk, describe the risk that would

threat project’s objective, distinguish between project risks and product risks, use risk

management element for test planning and define how testing would be carried out.

From testing point of view, risk-based testing strategy guides how much testing

activities and effort to spend based on the risks assessment where; high risk items will

need serious testing compared to the low risk items. In short, the goal of a risk-based

testing is to uncover the costliest and most important defects or faults as early as

possible so that when a test is required to stop, risk-based testing has ensure that testers

have spent the budget in a well-organized approach (Stallbaum et al., 2008).

Identify Risks

Analyze Risks

Prioritize Risks

Control Risks

Univ
ers

iti
Mala

ya

39

Risk management in this testing strategy requires testing team to continuously assess

what might possibly go wrong that would lead to risks and identify which are the

important risks to deal with, followed by the strategies to deal with those risks. Hence,

from all these risk-based testing characteristic, a study (Bannerman, 2008) has

concluded that risk analysis would improve estimation and reduce duplication of effort

for the team.

Thus, in relation to the details explained about risk management and risk-based

testing above, this research agrees with a study by (Nelson, Taran, & de Lascurain

Hinojosa, 2008) which shows that it is effective and important to manage risks

explicitly in an agile structure development so that everyone in the team is aware and

understands every risk identified, understand and contributes on the risks mitigation

strategy and able to execute it as planned. They also reported in their research that,

many agile projects implicitly managed risks which has left team members hanging

without knowledge and awareness of the possible risks, so when any of the risks

happen, team members are unable to control the risk which leads to project failure or

increased project cost. Hence the need to propose a testing model with risk-based testing

strategy that could overcome this issue. In accordance to identify a suitable risk-based

strategy for the proposed testing model, following section explored on previous research

about risk-based strategy techniques for comparisons.

2.4.2 Comparison of Risk-based Techniques

In this section, literature on existing risk-based techniques is explored to identify

suitable risk-based techniques to be adopted as risk-based testing strategy for agile.

From literature, many researchers have focused on risk management at project level

while only a few concentrated on defining risks for product level risk control

manipulation as below;

Univ
ers

iti
Mala

ya

40

1) A research by (Black, 2003) on how to and why use risk analysis for test planning

and quality guidance has shed some light that it is also beneficial to manipulate risk

assessment at product development level. Risk analysis proposed is to estimate cost

of testing, however without knowing how much test is needed, cost estimation

would not be accurate.

2) A research article by (Hartmann et al., 2005) has proposed to manipulate risks

criteria to help choosing the right development methodologies for a software project.

The designer will perform a risk analysis of the project and use the tool to decide on

the development methodology pattern to tackle the risks identified appropriately.

This research could be enhanced to support decision on testing methodologies as

well in order to cover all processes in a software development project.

3) A study by (Boness, Finkelstein, & Harrison, 2008) suggested to assess risk and

provide risk control at an early stage by using the requirement analysis on goal

graphs and judgments supplied by stakeholders or experts. However, if the

requirement analysis is not clear, there is a possibility that some risks are missed out

and unable to be controlled when it happens unexpectedly especially in agile

project.

4) A useful tool of a model-based technique for risk-based system testing called

RiteDAP has been proposed by (Stallbaum et al., 2008). This tool accepts risk

analysis of an activity diagram and then automatically generates and prioritizes test

cases for testing but no test coverage of how much testing is needed is provided to

measure test adequacy especially in a time-boxed iteration like agile project.

Furthermore, a detailed activity diagram is required to make use of this tool.

Univ
ers

iti
Mala

ya

41

5) A technique that implement risk-based strategy in agile is proposed by (Van de

Laar, 2012) where risk analysis is executed by team members to help them prioritize

the user stories of the product to be developed. The risk analysis could be used to

estimate how much testing is needed throughout the development stage.

Table 2.5 summarizes the above risk-based technique researches and the

comparisons whether the technique is able to fit in agile environment or not.

Table 2.5: Comparisons of Risk-based techniques.

Risk-based technique Domain Application Agile characteristics
Cost of Exposure (Black,

2003)	

Testing cost estimation
Risk analysis to estimate
cost of testing.

None;

Pattern-based

Methodology Tailoring

(Hartmann et al., 2005)	

Development
methodology estimation
Risk analysis which
provides development
methodology based on
pattern and risk criteria.

None;

Requirement analysis

using Goal Graph (Boness

et al., 2008)

Development risks
estimation
Risk analysis to assess risk
in requirements analysis
using goal graphs and
judgments from
stakeholders to estimate
project risk instead of
product development risk.

None

RiteDAP (Stallbaum et al.,

2008)
Software test strategy
estimation
A model-based technique
for risk-based system
testing which automatically
generates and prioritizes
test cases based on the test
models that have been
provided with information
about risks.

None; this tool requires a
complete use-case or activity
diagram from a complete
defined user requirement
which is not always available
in agile projects environment.
Furthermore, any changes on
the use-case or diagram will
cause difficulty to be
implemented in the tool as
add-on or changed activity
diagram.

Univ
ers

iti
Mala

ya

42

Risk-based technique Domain Application Agile characteristics
Risk Poker (van de Laar,

2012)

Software test strategy
estimation
Risk analysis amongst team
members to assess risks no
matter how simple user
stories provided. The risk
analysis provides risk
prioritization for the user
stories.

Yes; achieving group
consensus for risk analysis.

2.4.3 Discussion

Risk-based testing has proven its practicality in managing and mitigating risks but

(Nyfjord, 2008) has made a good point by concerning on how to merge the lightweight

process of agile with the standard industrial process without damaging the agility

characteristics. From this point of view, this research has narrowed down the focus to

adopt existing technique which has been proved successful in agile project and has been

used widely in industrial project specifically Scrum methodology. This has led to an

effort estimation technique used in Scrum called Planning Poker which has been

identified as popular to Scrum project for staffing effort estimation (Williams et al.,

2009) and following with its popularity, a risk-based technique has been derived; which

is called Risk Poker, as mentioned in the previous section. The existence of Risk Poker

as a risk-based technique which provides lightweight risk analysis technique described

by (Van de Laar, 2012) could fit agile project following Scrum perfectly. The following

section discussed how Risk Poker technique could perform as a software test strategy

for an agile project in detail.

Univ
ers

iti
Mala

ya

43

2.5 Risk Poker as a Risk-based Software Test Strategy

As mentioned in section 2.4.2, only Risk Poker technique as a risk-based technique is

able to be implemented in Scrum process without the need to modify the technique to fit

agile characteristics. Furthermore, review of previous studies has shed some beneficial

points to adopt Risk Poker technique as software test strategy in Scrum. A review by

(Kettunen et al., 2010) has stated that one of the main challenges faced in agile software

testing is that development team is unable to communicate with each other and fully

understand about software testing thus making it difficult to estimate the testing

activities. To top it up, test strategy and test plan for the agile project is also a problem

when development tasks are given higher priority compared to testing tasks. Hence,

(Garousi & Zhi, 2013) has pointed out the need of risk and priority-based testing to

overcome this issue and to shorten time in agile project. In the same study, Garousi has

raised questions as whether tester knowledge alone is enough to be relied on upon

creating test-cases and how to decide on what should be tested and what should not,

which is also a concern stated by (Jogu & Reddy, 2013) that if the team choose to use

the conventional well-established testing process, it should be changed and modified to

suit agile environment.

Thus, in searching for the most economically efficient way of performing software

testing, Risk Poker could overcome this issue with its team-based discussion for

decision and risk analyses upon achieving equal understanding and knowledge sharing

amongst team members. Furthermore, (Moløkken & Jørgensen, 2004) has raised

concerns that despite having group discussion as a high value in agile environment,

most of risk analyses are based on individual expert-judgment estimates rather than

group decision. This leads to hidden related issues when knowledge sharing and

discussion is not implemented. Thus, group discussion amongst people with different

Univ
ers

iti
Mala

ya

44

knowledge and backgrounds helps to identify more issues that might affect

development, testing, implementation, etc. This group discussion characteristic is one of

the main key-point in Risk Poker technique, which will also promote optimized

knowledge and expertise sharing amongst team members which will improve analyses.

Risk Poker is held in a planning meeting to discuss risks associated to the

requirement for the sprint and prioritize the risks for development and the prioritized

risks defined the intensity of the development and testing required for the sprint. Risk

Poker is also considered as risk assessment activity as team members analyze and

identify risks related to the user stories and prioritize the development task and testing

task from the highest risk component to the lowest. The Risk Poker technique identifies

risks for the development of product and estimate the required testing effort for the

product. It is important to cater to the high-risk items first because if time or budget

constrains might be disturbed, the team is able to let the low-risk items get forwarded

into the following iteration and prevent great failure to the program.

Risk Poker is structured where team members are participating in the discussion and

everyone is sharing their opinion regardless of their position or working experience.

This way, for the team member that does not have much to say due to limited expertise,

will implicitly learn and grasp new knowledge from the matter’s expert and allowed to

ask question for better understanding. Such a structured knowledge transfer could

ensure everyone will have equal knowledge of the subject matter to estimate risks

effectively and prevent misunderstanding of the subject discussed. Output of the risk

poker session is a list of risk assessment where related risks of the requirement for the

iteration discussed are identified and prioritized according to its importance.

Univ
ers

iti
Mala

ya

45

With all that being said, here’s to more reason why adopting Risk Poker would

benefit an agile development team;

1) In reality, even without a formal risk assessment strategy, agile processes are

managing risks and attempting to mitigate some risks implicitly, but since they are

not organized or structured, those risks might be left untreated (Nelson et al., 2008).

Thus, a structured technique that supports agile environment is needed to properly

address and control risks identified in agile development.

2) Agile process consists of self-managing team members, therefore, the team is

expected to share the authority of making decisions rather than having one person

responsible to make decision for the team or even accept individual decision

regarding their work without having other team members involve in their work

(Moe et al., 2010).

3) Apart from the self-managing team characteristics, the team is expected to be a

cross-functional team where members have the necessary knowledge to deliver

working program because without this ability, a typical problem in an agile

development is that the product is not ready at the end of the sprint (Eloranta et al.,

2013).

4) When the items are prioritized according to the risk, it could ensure that nearly 50%

of the feature developed is sufficient to meet the goal, and consequently, project

manager or product owner could opt to drop the remaining requirements if necessary

(Schatz & Abdelshafi, 2005).

5) In scrum environment, it is observed that product owner might not have enough time

or did not have required competence to sort and prioritize sprint backlog accordingly

(Eloranta et al., 2013).

Univ
ers

iti
Mala

ya

46

Thus, adopting Risk Poker would ensure team members could manage this matter

themselves. Although implementing Risk Poker technique as a risk-based testing

promises beneficial result, it still has some room for improvements. Following items are

open for discussion and improvement available for risk poker technique:

1) Risk Poker as a risk-based testing has been suggested to be used by (Van de Laar,

2012) but there is no empirical study available on Risk Poker technique in software

engineering context.

2) As introduced by (Van de Laar, 2012), risk analyses from Risk Poker can provide

testing information needed, but there is no guide on test coverage selection; an

estimation of how much testing is required for each prioritized items will prevent

waste of time, effort and limited resources on the unnecessary low risk areas of the

code that may already be adequately tested and has less hidden defect of a program

failure.

3) Risk Poker can be easily combined with Planning Poker as they complement each

other, but there is no empirical study to prove it.

4) Risk Poker is a lightweight technique which is quick to understand and could get

fast result as it uses traffic-light colored poker cards instead of the conventional

quantitative approach using risk factors (Van de Laar, 2012). However, there is no

empirical study to measure this lightweight claim.

Having said the benefits of Risk Poker technique and the lack of evidence on Risk

Poker as a risk-based testing has motivated this research to adopt Risk Poker in Scrum

methodology, implement and evaluate the effectiveness of this technique as evidence

for academic and industrial reference. Moreover, combining Risk Poker with test

coverage estimation would ensure adequate testing is given to the program developed

and simultaneously improve test process and software development quality. Thus, next

Univ
ers

iti
Mala

ya

47

section discussed more on test coverage to be selected to estimate how much testing is

needed for testing.

2.6 Software Test Coverage

Test coverage could be a good indicator to measure software quality by giving

information of coverage adequacy for system under test, thus making it an important

step in software testing process (Shahid, Ibrahim, & Selamat, 2011). When test

coverage is defined correctly, it ensures that testing is executed effectively according to

the coverage criteria without missing the important areas of the system under test.

(Dang & Nahhal, 2009) also quoted that test coverage has become a way to relate how

much tests needs to be carried out. Furthermore, inadequate testing has become a major

problem and it is an area that is still given much focus amongst researchers to explore

(Lawrence, Clarke, Burnett, & Rothermel, 2005).

Adequate test coverage is a testing execution which is considered as “good enough”

when it meets the defined criterion. Generally, when a test suite is able to detect every

defect and verify correct behavior of the program, it is considered “good enough” and

effective in measuring software quality. Unfortunately, in reality it is impossible to

detect all defects in a program and claim the program is defect-free. Therefore we need

to define a test criterion which is a set of requirement to be fulfilled or achieved as an

adequacy measurement which acts as a stopping rule to mark when it is enough to stop

testing (Marré & Bertolino, 2003). Apart from become a stopping rule, test criterion

could also be defined to determine the observations that should be made during the

testing process (Zhu, Hall, & May, 1997).

Univ
ers

iti
Mala

ya

48

There are many test coverage techniques that have been developed such as;

1) Counting how much program blocks are covered in statements, branches, conditions

and number of dead mutants in mutation testing for structural source code testing,

2) Data-flow transition coverage in state machines and path coverage to satisfy all

program’s behavior from entry node to exit node (Walkinshaw, Bogdanov, Derrick,

& Paris, 2010).

3) Structural testing coverage measurement works well with incomplete requirements

as in agile environment. This type of testing is also useful in exposing unwanted

program code or functionality since such testing inspect program codes; looks for

statements not executed by any test cases (Woodward & Hennell, 2005).

Table 2.6 shows detail comparison of test coverage techniques mentioned above.

Table 2.6: Comparison of Test Coverage techniques.

Category Summary Strength Weakness

Test

Coverage
• Identified how to measure test adequacy

• Identified various approaches to measure test coverage

Code Coverage

• Able to measure code

coverage in a unit test

where each written code is

tested

• Only measure coverage

of what has been written

Requirement

Coverage

• Allow positive and

negative test on the

product functionality

• Require complete list of

requirements to define

test coverage

Structural

Coverage

• Each element of the

software is exercised

during testing

• Will be hard to define

coverage structure for a

gradually change product

Architectural

Coverage

• Actual control and data

links are utilized during

testing

• Needs to define detailed

architectural design to

measure coverage

Univ
ers

iti
Mala

ya

49

Much research focus on how to measure the degree of coverage achieved by a test set

and how much more is needed instead of determining how much is enough to be

declared as stopping rules. A research by (Gargantini & Riccobene, 2001) for ASM

specifications provides a formula called test predicate is defined for coverage criterion

to determine if a particular testing goal is reached when each of the test predicate is true.

This formula is good to determine and measure which specification and testing goal is

not covered yet and summarize test coverage percentage, however it is not able to serve

as stopping rule to indicate when to stop testing.

On the other hand, (Marré & Bertolino, 2003) has introduced the concept of a

spanning set of entities for coverage testing where the generated reduced sized test suite

set could guarantee the coverage needed. They have provided a method to derive a

spanning set that is parameterized in the inclusion relation between entities which is

useful for reducing and estimating the number of test cases and for evaluating test-suite

thoroughness more effectively.

Nevertheless, all these techniques are not lightweight technique to be applied in a

real software project as it takes some time for the tester to learn how to formulate these

techniques into test coverage criterion in order to determine test adequacy, especially in

a short time-boxed iteration such as agile project. Therefore a comprehensive study of

test coverage by (Zhu et al., 1997) particularly for code coverage in unit testing is used

as guidance in this research in order to define test coverage criterion for unit testing as;

i. It could serve as a stopping rule criterion for a testing activity closure (Zhu

et al., 1997),

Univ
ers

iti
Mala

ya

50

ii. Test-cases are designed based on the internal structure of the program,

thus less dependency on a well-documented requirement specification

document (Chilenski & Miller, 1994).

iii. The low-level testing of individual components which is unit testing to

verify the implementation of the software at code development level

promotes early error detection (Gittens, Romanufa, Godwin, & Racicot,

2006).

This research has chosen to couple risk-based testing with test coverage adequacy

measurement because it is observed that the number of failures revealed in testing is

also related to how much coverage is set by the current test set (Cai & Lyu, 2007).

2.7 Summary

This chapter has described and discussed on literatures which contributed and are

related to this research. This research focused on providing a suitable software test

strategy for software testing domain which falls into agile methodology software

development within the scope of Scrum management process. The summary of

literature review within this chapter is illustrated in Figure 2.4 for better understanding.

Univ
ers

iti
Mala

ya

51

Figure 2.4: Summary of Literature Review Flow Diagram

Agile Software Development Methodology

Identified the difference of agile methodology compared to
traditional methodology

Scrum

Identified the important processes that makes a Scrum flow, in order
to identify the suitable place to integrate the proposed solution

Software Testing in Scrum

Identified the software test strategies in Scrum, the issues discussed
and the motivation to choose risk-based technique

Risk-based testing as software test strategy in Scrum

Identified a suitable risk-based technique to be adopted as software
test strategy from a list of existing risk-based techniques

Risk Poker as a risk-based software test strategy in Scrum

Identified the advantage and weakness of risk poker to be addressed
in this research for improvement

Software Test Coverage

Identified a suitable test coverage technique which acts as stopping
rule as an indicator when to stop testing while still provides adequate

testing

Univ
ers

iti
Mala

ya

52

CHAPTER 3: RESEARCH METHODOLOGY

This chapter describes the process flow employed as research methodology used in

completing this research. The process flow ensures this research is on track and able to

achieve the objectives defined in chapter 1. The process that is also recognized as

research methodology is explained in the next section.

3.1 Research Methodology

Research methodology used in this research consists of literature review phase,

followed by model building of the proposed solution, developing the prototype and

ended with validation phase. Each process has its own objective to achieve as illustrated

in Figure 3.1 below. The details of these processes are explored in the following section.

Figure 3.1: Research methodology process flow

3.1.1 Literature Review

In the process of literature review, this research executes this phase to make sure

research objective 1 and 2 as defined in chapter 1 are achieved respectively. All

literature related to this research is reviewed to help this research decides on the design

of the proposed solution. In the following section, information about the literature

review of this research is provided in the form of; 1) Sources of the literature, 2)

Literature review, and 3) Findings of the literature review.

Univ
ers

iti
Mala

ya

53

3.1.1.1 Sources of the Literature Review

The sources of literature review for this research are from research articles,

conference papers, journals, articles from periodical online magazines and books.

Initially, searches of the most cited articles and studies on software testing current trend

were grabbed from the following databases: ACM, IEEE Xplore, ScienceDirect and ISI

Web of Science databases. After the search in the databases, a search for the keywords

was performed in Google Scholar to collect any relevant papers falling short of the

original search. From there, related research and studies are searched and reviewed for

current trend focus.

3.1.1.2 Reviewing the Literature Review

This research’s works started with reviewing previous studies of software testing

research domain for agile methodology. A study by (Kettunen et al., 2010) on the

comparison of agile process and traditional process development in industrial world has

bring interest to this research to explore more on agile software development

environment compared to traditional one as many of the software project out there

adopted agile methodology, but there is not much research on software test process

efficiency available for agile environment as reference.

This research reviewed a study by (Crispin & Gregory, 2009) at first as it provide

meaningful information on agile testers as a start, and following, this research reviewed

other related studies in this area for more insight. After many review of agile and

software testing studies, this research has narrowed down the research domain to focus

on software testing strategy for Scrum, as Scrum has been widely chosen as the popular

project management for agile project and it implicitly apply risk-based prioritization for

the tasks assigned in each sprint. Various Scrum studies are reviewed to understand how

to manage software development in Scrum methodology, like (Schwaber, 2004) to

Univ
ers

iti
Mala

ya

54

name an example and how software testing fits into the development iteration (James,

2007).

3.1.1.3 Findings of the Literature Review

Having reviewed the studies and research areas mentioned in previous section, this

research explored on existing agile methodology or framework that has been used in

industry as listed in Table 2.1 in Chapter 2, Section 2.1. Next, this research moved

forward by investigating the issues and problems arose specifically in software testing

domain for Scrum project management. Current issues and challenges of agile software

development with Scrum are reviewed, which is also discussed in Chapter 2, Section

2.2.1.

Next, this research concentrates on reviewing various studies of software test

strategy in agile project relevant with the current issues in Scrum to gain the overall

view of current issues and problems to be resolved, as highlighted in Table 2.3 and

Table 2.4 in Section 2.3, Chapter 2.

To highlight, one of the issues discussed repeatedly is that literature claims that

group discussion could add influence to the participants upon making decisions, despite

one of the important agile characteristic being a self-managing team. In addition to that,

(Karlsson & Martensson, 2009) did mention that in the self-managing team, it is

required that team members participate equally in the analyses process, which is not the

case in most situation in traditional software testing strategy due to the nature of

defined process control model. Lastly, the reviewed studies also mentioned the problem

of defining test adequacy for customer assurance, especially for a short period time-

boxed iteration in agile project.

Univ
ers

iti
Mala

ya

55

From the literature reviewed, this research has come up with decisions to apply risk-

based approach as risk-based testing strategy. Upon studying the Scrum project

management studies, this research has come across a popular estimation technique that

applies group discussion upon achieving decision and estimation which could address

the problem of self-managing teamwork for software testing called Risk Poker. On

resolving test adequacy matter on how much testing is enough or needed for the

developed software, this research proposed to use the group estimation technique to

analyze risks and assign relatively appropriate test coverage based on the risks

prioritized. The reasons that lead this research to make the above decisions based on the

thorough literature reviews, are as listed in Table 3.1. Once objectives 1 and 2

identified, the next step is to construct a model for the proposed solution as described in

the following section.

Table 3.1: Decisions made based on the Literature Review

Category Available methods or
tools

Selected
method Reason

Software Test

Strategies

• Risk-based strategy

• Requirement-based

strategy

• Model-based strategy

Risk-based

strategy

• Literature revealed that

most of agile project

adopt risk-based

approach

Risk-based

Testing

Techniques

• Cost of Exposure

• Pattern-based

Methodology Tailoring

• Requirement Analysis

using Goal Graph

• RiteDAP

• Risk Poker

Risk Poker

• Group consensus in risk

analysis fits important

agile characteristic;

Group discussion &

self-managed team

• Can be adopted into

agile environment

without modification

Univ
ers

iti
Mala

ya

56

Category Available methods or
tools

Selected
method Reason

Test Coverage

• Code Coverage

• Requirement Coverage

• Structural Coverage

• Architectural Coverage

Code

Coverage

• Able to measure fault

exposure effectiveness

• Can be used as stopping

rule to define test

adequacy

3.1.2 Model Building

The proposed solution focuses on proposing a testing model which suits agile

environment especially Scrum. The risk analysis result of the proposed solution

provides adequate test coverage estimation for testing activity. The proposed solution

obtained risk analysis for the product under development by achieving group consensus

amongst team members from various expertise which will implicitly promotes

knowledge sharing for more accurate analysis and uncover hidden issues. The proposed

solution also provides estimation of test coverage on how much testing is needed based

on the risk analysis. To support the proposed solution, a prototype to produce a risk

graph which prioritize tasks for the sprint based on the risk analysis result, and provide

test coverage estimation information is developed as explained next in section 3.2.3.

More details on model building for the proposed solution are described in chapter 4.

3.1.3 Prototype

A prototype to display the risk graph is developed for the proposed solution to

display the prioritized items and the estimated test coverage. This prototype shows that

the analyzed tasks listed in the risk graph produced from the implemented proposed

solution is prioritized correctly with the estimated test coverage information for the

sprint. More information on the risk graph produced by this prototype is explored in

Univ
ers

iti
Mala

ya

57

chapter 4. The remaining objective of this research is related to the case study validation

which is explained in the following section.

3.1.4 Experiment Validation

This research reviewed previous studies as example to plan and design the

experiment. Existing case study and research which can be used as an example to

validate the proposed solution are mostly related to poker technique as an estimation

technique. Thus, previous studies on poker technique in software engineering domain

which is mostly about planning poker effectiveness as staffing effort estimation

technique in agile project are studied.

Previous study by (Haugen, 2006) and (Molokken-Ostvold & Haugen, 2007) are

aimed to see whether planning poker technique could provide better accuracy on

staffing effort estimation compared to unstructured group technique that does not apply

group discussions for group estimation. The experiment in these studies is on measuring

the accuracy difference between planning poker technique as group estimation and

individual statistical group combination. (Moløkken-Østvold et al., 2008) and (Mahnič

& Hovelja, 2012) both evaluate the effectiveness of planning poker technique as

compared to individual statistical group combination which also applies group

discussions, similar to planning poker, called hybrid Delphi technique. The difference

between these two studies is; (Moløkken-Østvold et al., 2008) was to estimate tasks for

current sprint, while (Mahnič & Hovelja, 2012) experiment was to estimate bigger scale

development effort, which is user stories for all development sprints in the project.

Apart from planning poker studies, study on protection poker as a software security

risk analyses technique by (Williams et al., 2009) offers the result of the effectiveness of

applying protection poker in students project and in an industrial project where by

Univ
ers

iti
Mala

ya

58

applying protection poker for software security analyses, it has uncover hidden issues,

broaden knowledge sharing and improved software security analyses amongst team

member.

Hence, based on these studies, this research has designed an experiment to evaluate

the effectiveness of risk poker as software test strategy for risk analyses and provide test

coverage estimation by comparing the result of using risk poker technique to estimate

test coverage with the averaged statistical combination of individual estimations as

described in chapter 5. The experiment is also designed to be able to provide the answer

of the research questions as defined in chapter 1.

Once the experiment is executed as planned, and the required data are collected, this

research analyzes the result of the experiment to achieve research’s final objective as

explained objective 4 in chapter 1. This research compares the total of fault exposed

during testing activity with seeded fault embedded in the system for both controlled

group and experimental group. Thus, having reviewed previous studies on poker

techniques, this research measures the accuracy of risk analyses and test coverage of

risk poker compared to the averaged statistical combination of individual estimations

using the calculation of balance measure of relative error (BRE), where;

𝐵𝑅𝐸 = %&&'&'()*+,-&./0%&'()*+,
123	(%&&'&'()*+,,&./0%&'()*+,)

 which is explained with further details in

Chapter 5.

This research depends mainly on case study validation to see the effectiveness of the

proposed technique. However, due to limitation of resources, it was not possible to

apply this software testing technique or experiment in real life project and will be

recommended as future work as discussed in chapter 6.

Univ
ers

iti
Mala

ya

59

3.2 Summary

In this chapter, this research described the flow of process that has been chosen to be

followed in order to plan and execute current research. There are four main steps or

process throughout this research methodology which are; 1) Literature review, 2) Model

building, 3) Prototype, 4) Case Study Validation. In the following chapter, this research

described the proposed solution in details which covers model building explanation and

prototype construction.

Univ
ers

iti
Mala

ya

60

CHAPTER 4: MODEL BUILDING

This chapter explores the construction of testing model as the proposed solution for

this research in detail and how the proposed model integrates into a Scrum methodology

for agile project. Section 4.1.1 describes Risk Poker technique as the selected risk-based

testing technique for the proposed testing model. In section 4.1.2, Risk Poker technique

is combined with test coverage to provide test coverage estimation for the proposed

model. While in section 4.1.3, the result of risk analysis performed using the proposed

model is translated into a Risk Graph prototype which contains all information of the

risk analysis result. Lastly, in section 4.1.4, the proposed testing model is integrated

inside a Scrum methodology.

4.1 Testing Model Using Risk Poker Technique for Scrum-based Software

Development Projects

Most of Scrum practitioners employ Planning Poker technique to estimate tasks and

staffing effort for sprint (Haugen, 2006; Molokken-Ostvold & Haugen, 2007). Planning

Poker is a popular choice because of the face-to-face group discussion and self-

managing characteristics which is important for agile practitioners (Mahnič & Hovelja,

2012; Moløkken-Østvold et al., 2008). Planning Poker is a process of group estimation

for user stories used in planning releases and iterations (Grenning, 2002) where it will

be used to plan which features to be implemented and estimate staffing effort of the

development team for the sprint. In Scrum, Planning Poker process is executed during

Sprint Planning Meeting by The Team and Product Owner.

Recently, (Van de Laar, 2012) has proposed Risk Poker technique as a risk-based

testing approach for agile projects which can be executed alongside with Planning

Poker. Similarly, in Risk Poker, group consensus is achieved upon deciding the color

Univ
ers

iti
Mala

ya

61

cards risk level, instead of traditional individual risk assessment calculation for user

stories. Risk poker technique is implemented as a risk-based software testing strategy in

Scrum’s Sprint Planning Meeting for risk analyses and this research combines code

coverage technique to provide estimation of how much test coverage is needed for the

tasks to be developed in the sprint as a testing model for Scrum methodology.

Like Planning Poker, Risk Poker technique is a face-to-face discussion and provide

group consensus decision for determining risk level and estimate how much testing is

needed for the user stories listed in product backlog to be developed in the sprint. As

group discussion and self-managing team is one of the important agile characteristics,

this technique is suitable for Scrum practitioners to be implemented in their process as a

testing process for Scrum. Upon implementing Risk Poker technique, the team could

also improve knowledge expertise, to be able to be responsible for the quality equally

amongst team members, to be able to decide on how much test coverage is needed

based on equal understanding amongst team member and to be able to practice cross

functional job if needed during sprint as everybody is in the same level of knowledge

sharing. Next, following section explores on how Risk Poker technique works as a risk-

based testing in details.

4.1.1 Risk Poker as a Risk-based Testing

In Risk Poker technique, risks are identified and discussed with team members and

risks prioritization are achieved through group consensus. In a traditional risk

prioritization, risks exposure is calculated to prioritize risks. The formula is as follows:

RE = P x C (Amland, 2000; Bannerman, 2008; B. Boehm, 1989; Stallbaum et al.,

2008), where;

Univ
ers

iti
Mala

ya

62

• RE is the risk exposure,

• P is the probability of the risk to happen, also known as likelihood of the risk to

occur, and

• C is the cost also known as impact that will affect the project, if the risk

happens.

Usually, an expert professional in the project management is responsible to assign

score or weigh factor to the probability (P) and cost (C) of the identified risk according

to his or her judgment. The risk exposure (RE) is then calculated and prioritized

accordingly. In Risk Poker, instead of relying on an individual expert judgment which

might overlook some issues upon estimating risks regarding product development, team

members are responsible to rate the probability of risks using colored rating card, which

is called likelihood factor in this research. While for the cost factor, product owner and

stakeholders are responsible to discuss and estimate the cost of the risk which is called

impact factor in this research.

Rating Impact Factor Risks

In the Scrum process, upon listing product backlog items, Product Owner discusses

with stakeholders to collect all required features for the product to be developed in a

form of user stories. Product Owner translates these user stories into product backlog

items. Once all required features are collected and listed in the product backlog, Product

Owner discusses the product backlog items with stakeholders to identify risks and costs

that will affect the project. Thus, at the end of the discussion, Product Owner and

stakeholders decide on risk level appropriate for each of the product backlog item which

will impact business, user’s needs and project as a whole. This is called impact factor

risk identification.

Univ
ers

iti
Mala

ya

63

Rating Likelihood Factor Risks

When product backlog items are ready, a Sprint Planning Meeting is called by

Product Owner. In the meeting, the team and product owner discuss on the selected user

story to estimate staffing effort and assign tasks. However, in this research, for a Scrum

process which applied Risk Poker technique, during discussion amongst The Team and

Product Owner, everyone is required to identify all risks related to the item in

discussion and discusses the risks thoroughly in terms of developer perspective, tester

perspective and user perspective. When everyone has equal knowledge and awareness,

risks level assignment takes place using Risk Poker technique to ensure the team

understands the risks thoroughly and able to rate and manage them equally as a team.

These risk level assignment is called likelihood factor identification which would

indicate how much testing is needed for unit test.

Risk Poker Activity Flow

Figure 4.1: Detailed view of Risk poker activity flow diagram (Van de Laar,
2012)

Univ
ers

iti
Mala

ya

64

Figure 4.1 is drawn to show the activity of Risk Poker technique in detail. The flow

starts with:

• Product Owner and stakeholders decide on impact factor for the user stories based on

how much the user story would affect the end user, business and project.

• Following, Product Owner presents the user stories to the Team members during

Sprint Planning Meeting without disclosing the impact factor rating. In the meeting,

team members ask questions and discuss the user stories presented until they are

satisfied. During the discussion, they identify and analyze what risks associated with

the user stories; where should, if any of the risk happens, it will affect the quality of

the product or even cause failure to the product. This risk is classified as likelihood

factors for the discussed user story. In the discussion, the team discusses the user

story thoroughly both from the eye of developer and tester. They are equally

responsible for the product quality, thus they are required to understand all risks

associated with the user story and together shares their concerns based on their

expertise for the item to be considered and discussed.

• When everybody in the team is clear with the user story and their risks, the team is

then required to estimate risk level for the user story and assign test coverage they

think would be enough for testing activity. Thus, team members will be given a set of

card which contains a table of four colored (green, yellow, orange and red) boxes to

rate the risk level of likelihood for the user story as shown in Figure 4.2. The four

colored risk factor is proposed by (Van de Laar, 2012). In addition to that, a study by

(Noor & Khan, 2014) also classified and discussed defect prioritization in terms of

four coloured priority level. Team members are required to rate the likelihood factor

individually where ‘red’ represents the highest estimation factor and ‘green’ as the

lowest estimation factor. When everyone has finished with the estimation

Univ
ers

iti
Mala

ya

65

individually, team members are required to simultaneously show their estimation in

the group. If there is any huge difference of estimation color, the estimator should

explain the difference and discussion will take place once again. When everyone is

satisfied with the discussion, they are given a new set of estimation card and they are

required to do the estimation individually once again and show the result

simultaneously afterwards.

Figure 4.2: Rating card for Impact factor and Likelihood factor

• If the results still show difference of color assignment for the estimation factor,

Product Owner has the right to assign the highest estimation for the likelihood factor

for the user story affected. Otherwise if no difference of estimation showed up and

group consensus is achieved, product owner records the rating of likelihood factor.

Univ
ers

iti
Mala

ya

66

In regard of impact factor, Product Owner is responsible to present them to the team

members and justify the rating at the end of the discussion. Team members are allowed

to ask questions and discussion will take place until everyone is satisfied over the

impact factor rating. Risk analyses obtained through Risk Poker technique provides

estimation of test coverage, which is explored in the following section.

4.1.2 Risk Poker and Test Coverage Estimation

At the end of Sprint Planning Meeting, the team has obtained risk rating for each of

the discussed backlog items. At this stage, the product backlog items have been broken

out into smaller tasks to be committed to by team members. The tasks are stored as

Sprint Backlog Items which have rating color assigned to them as discussed in planning

meeting. The rating color assigned provides estimation of test coverage to determine

how much testing is needed throughout sprint. Testing activity will be executed based

on the test coverage estimation to obtain a “done” criteria as a show stopper for testing

activity before presenting the finished product to the user at the end of sprint. At the end

of the sprint, the team will deliver the finished product with the test coverage report as

one of the criteria acceptance for quality assurance upon delivering the finished product

as promised.

A set of test coverage technique is assigned for each rating color associated with

likelihood and impact factor to estimate how much testing is needed. Test coverage

technique assigned for unit test is Code Coverage to test development coding to find

error and expose fault. Table 4.1 describes the code coverage definition for test

coverage defined for unit test.

Univ
ers

iti
Mala

ya

67

Table 4.1: Coverage complexity for unit test (Thomas Müller, 2011)

Rating Test coverage complexity

Lowest (Green) Decision coverage:

100% decision coverage implies both 100%
branch coverage and 100% statement coverage.

Low (Yellow)	 Decision condition coverage:

100% decision condition coverage implies both
100% condition coverage and decision coverage.

High (Orange)	 Condition determination coverage:

100% condition determination coverage implies
100% decision condition coverage.

Highest (Red) Multiple condition coverage:

100% multiple condition coverage implies 100%
condition determination coverage.

The test coverage complexity is defined in a test coverage table in the prototype

system. At the end of Sprint Planning Meeting, team members are required to update

Sprint Backlog Items with the rating color which will be matched to the estimated test

coverage by the prototype system automatically. Team members are able to view Risk

Graph exported by the prototype system for the prioritized Sprint Backlog Items as

reference for the team to work on the tasks according to the highest priority. Details on

the prototype system to display the Risk Graph are described in the following section.

4.1.3 Prototype System: Risk Graph

At the end of the Sprint Planning Meeting, the discussed user story is updated in the

Sprint Backlog database through the prototype system interface as shown in Figure 4.3

together with the risk rating color assigned both for likelihood and impact factor. The

risk rating will determine how thorough a testing will be done in the sprint. The

Univ
ers

iti
Mala

ya

68

prototype system allows the team member to insert, update and delete Sprint Backlog

Items from and into the database. Each Sprint Backlog Items that has rating color

assigned to it is then matched to the estimated test coverage needed for unit testing and

acceptance testing for team member’s reference in order to execute test in sprint.

Figure 4.3: Update Sprint Backlog details

Once Sprint Backlog database is updated for the sprint, the team is able to view Risk

Graph prioritization to see which item is prioritized from the highest risk level to the

lowest risk level as shown in Figure 4.4. Risk levels are categorized into High, Medium

and Low grids. Each risk level grid shows a table that consists of rating color for both

Univ
ers

iti
Mala

ya

69

likelihood and impact factor assigned, and the total of related user stories. Instead of

traditionally calculating the risk exposure for each of the sprint backlog items, the

prototype system pairs the rating color of likelihood factor and impact factor to

prioritize risk exposure as shown in Figure 4.4.

Figure 4.4: Risk Graph prioritization

Once the Risk Graph prioritization is exported, the team will choose to develop and

test on the sprint backlog items placed in high risk area first, followed by medium risk

level items as plotted in the graph. As mentioned previously, the risk analysis obtained

from Risk Poker provides test coverage definition both for unit test and acceptance test.

Team members are able to see the details of test coverage estimated for sprint backlog

items by clicking the total number of corresponding sprint backlogs of the risk level.

Test coverage estimated for the corresponding sprint backlogs is as shown in Figure 4.5.

Univ
ers

iti
Mala

ya

70

Figure 4.5: Test coverage estimation for the risk level Medium

Thus, based on the estimated test coverage for the corresponding sprint backlogs,

testers will construct and execute test accordingly. In this research, the efficiency of

these test suites in detecting fault during experiment validation will determine the

effectiveness of Risk Poker technique as risk-based testing in order to provide test

coverage estimation. Details of this prototype system are explored in the following

section for further understanding.

4.1.3.1 Prototype Functional Requirement

Similar to other system development, this prototype has a number of functional

requirements as listed in Table 4.2:

Table 4.2: Functional Requirement of Risk Graph prototype

ID Functional Requirement

FuncReq01 Prototype system should be able to provide a fully functional
database for Sprint Backlog Items as record.

FuncReq02 Prototype system should be able to match test coverage for Sprint
Backlog Items in the database automatically

FuncReq03 Prototype system should prioritize sprint backlog items in Risk
Graph according to the rating color and display the Risk Graph
accordingly.

Univ
ers

iti
Mala

ya

71

ID Functional Requirement

FuncReq04 Prototype system should provide details of the estimated test
coverage for unit test and acceptance test for sprint backlog items
according to risk level

4.1.3.2 Prototype Non-Functional Requirement

Apart from functional requirements listed in the previous section, the prototype

system also has some non-functional requirements to be adhered to in prototype

development. The list of non-functional requirements is as shown in Table 4.3.

Table 4.3: Non-Functional Requirement for Risk Graph prototype

ID Non-Functional Requirement

NonFuncReq01 Interface Requirement:

The interface should be user friendly, easy database
update and easy to understand data population.

NonFuncReq02 Scalability Requirement:

The coding and development of the prototype system
should be optimized, structured and cached
systematically.

4.1.3.3 Programming Language

The Risk Graph prototype system is a web-based system developed using PHP

scripting language for web development. The database support of the prototype system

is MySQL database. The coding of PHP language and MySQL database for the

prototype system is optimized and structured to fulfill the non-functional requirement of

NonFuncReq02 as mentioned in the previous section.

Univ
ers

iti
Mala

ya

72

4.1.3.4 User Interface Diagram

The prototype system of Risk Graph has easy-to-navigate user interfaces as defined

in non-functional requirement NonFuncReq01. The interfaces designed for this

prototype are simple, clear and easy to understand as illustrated in Figure 4.6 below.

Figure 4.6: Risk Graph prototype interface structure

There are three main user interfaces designed for this prototype system to fulfill the

functional requirement as mentioned in section 4.1.3.1. The Sprint Backlog UI should

be able to address the FuncReq01, while Test Coverage UI addressed FuncReq04 and

lastly Risk Graph UI addressed FuncReq03.

4.1.3.5 Operations in the Prototype

This section describes the use case diagram and the process flow of the prototype

system in details. The prototype use case diagram is as illustrated in Figure 4.7.

Univ
ers

iti
Mala

ya

73

Figure 4.7: Use Case Diagram of the Prototype Risk Graph

“Manage Sprint Backlog” use case as defined in Figure 4.7 addressed the functional

requirement FuncReq01 and FuncReq02 in order to provide fully functional database

for Sprint Backlog Items. “Populate Risk Graph” use case addressed the functional

requirement FunReq03 to provide prioritized Sprint Backlog Items in a risk graph with

risk level defined accordingly. Lastly “Estimate Test Coverage” use case is only

available if “Populate Risk Graph” use case is developed, as this use case provides the

estimation of test coverage needed for the prioritized Sprint Backlog Items as required

by FuncReq04.

The use case diagram defined has fulfilled all the required functions of the prototype

system. Next, the prototype system process flow is defined as shown in the process flow

design in Figure 4.8. Univ
ers

iti
Mala

ya

74

Figure 4.8: Process Flow of Prototype Risk Graph

The process flow of the prototype system starts with user insert sprint backlog items

into the database with the respective rating color at the end of Sprint Planning Meeting.

Once the Sprint Backlog is updated, the prototype system matches the rating color with

test coverage estimation automatically. After that, the prototype system automatically

prioritizes sprint backlog items according to the rating color. This prioritization process

is then translated into Risk Graph which is displayed in the Risk Graph UI for user’s

reference. Lastly, the prototype system allow user to display test coverage estimation for

each risk level for testing in the sprint.

Univ
ers

iti
Mala

ya

75

4.1.4 Integrating the proposed Testing Model inside a Scrum Methodology

Figure 4.9: Proposed Software Testing Strategy incorporated in Scrum
workflow

Figure 4.9 shows where the proposed testing model incorporated into the Scrum

work flow. The proposed sections are mentioned through red circles that highlight the

position where Risk Poker technique is integrated with Scrum processes. The proposed

testing model is integrated into Scrum work flow and affected two particular processes:

(i) Sprint Planning Meeting and (ii) Sprint Backlog. In Product Backlog listing and

Sprint Planning Meeting, the Product Owner along with the team members discuss the

user stories and focus on the risks involved. The team also decides the risks rating to

estimate test coverage.

Univ
ers

iti
Mala

ya

76

This integration will provide a testing model for Scrum methodology in terms of;

1) The approach used for risk-analyses of user stories amongst team

members which will uncover any possible hidden or unseen risks,

2) Better knowledge sharing between different background to improve

decision on risk level and test coverage. Figure 4.10 shows the

integrated testing model inside Scrum process.

Figure 4.10: Integration of the Proposed Testing Model with Scrum Work Flow

Integrating Risk Poker technique as a risk-based testing in Scrum would improve

both risk analyses process and test coverage as risk poker is able provide a group

consensus upon analyzing risks and estimating test coverage. In a big picture, Risk

Univ
ers

iti
Mala

ya

77

Poker technique will affect the following processes in Scrum, as shown previously in

Figure 4.10; 1) Listing Product Backlog, 2) Sprint Planning Meeting, 4) Update Sprint

Backlog to manipulate Risk Graph prioritization, and 5) Testing activity in sprint.

For the testing activity inside sprint, testers are going to generate and execute test

cases manually or using tools, and bug fixing is done in parallel in the sprint as shown

in Figure 4.11. How much testing is needed and what type of test method to be applied

has been estimated in Sprint Planning Meeting through Risk Poker, thus testers execute

test as per estimated and provide test result as a report to be presented to customer as

“done” criteria upon delivering finished work at the end of the sprint.

Figure 4.11: Risk Poker Technique Affect Testing Activity in Sprint

Once the sprint duration is finished and end product is delivered to customer, the

same scenario described in this section will be repeated again for the next batch of user

stories defined in the product backlog items.

Univ
ers

iti
Mala

ya

78

4.2 Summary

In this chapter, this research constructs the proposed solution’s model building in

details, where explanation about Risk Poker technique is described, followed by

combining test coverage with Risk Poker to provide test coverage estimation, design

and develop system prototype of Risk Graph for the proposed testing model and lastly

describes how the proposed testing model fits inside a Scrum methodology.

This chapter achieves this research’s objective, which is Objective 3 in order to

construct a testing model for agile project following Scrum. Construction of model

building for the proposed testing model is described in details in this chapter. To

validate whether the proposed testing model described in this chapter would perform

effectively, experiment validation is carried out as defined in the following chapter,

which is chapter 5.

Univ
ers

iti
Mala

ya

79

CHAPTER 5: VALIDATION

In this chapter, validation of the proposed testing model is executed through an

experiment on control group of student teams compared to the experimental group of

student teams. The result of the experiment from both control group and experimental

group student teams are analyzed statistically using SPSS tool to answer research

questions defined in objective 4 for this research. The experiment details are described

in the following section; such as experiment design which is described in section 5.1

with subsection of the experiment objective, experiment participants, experiment

materials and experiment process. At the end of the experiment, the collected data and

result are analyzed in experiment results in section 5.2. Lastly, section 5.3 discusses the

study validity of this research for future reference.

5.1 Experiment Design

In this section, the experiment is designed thoroughly to make sure all elements are

considered and available for experiment process. At this stage, experiment objectives is

listed to make sure the research questions required to achieve objective 4 is addressed

during the implementation of the experiment as explained in section 5.1.1. Next,

participants of the experiment validation are identified and their characteristics are

listed, as described in section 5.1.2. Next, experiment materials are prepared for this

research’s experiment validation as described in section 5.1.3. The materials prepared

should fit student teams’ knowledge and their ability to execute the experiment

successfully to make sure the experiment is deliverable. Lastly, the experiment process

or step by step of process flow of the experiment is planned as described in section

5.1.4. Details of the experiment designed to validate the proposed testing model are

explained in the subsections below.

Univ
ers

iti
Mala

ya

80

5.1.1 Experiment Objective

In order to fill the gap that has been defined in Chapter 1 and to confirm whether the

proposed testing model could perform in Scrum methodology, this research has taken an

approach to implement the proposed testing model in an agile software development

project following Scrum for a group of student team.

The study was conducted to observe how well the proposed method performed as a

software test strategy for Scrum student team. The validation of experiment result is

aimed to answer research questions defined in objective 4 for this research as described

in Chapter 1. There are two research questions to be answered to achieve objective 4,

which is RQ4.1 and RQ4.2 which were explained in detail in the experiment results

section 5.2 in this chapter.

5.1.2 Experiment Participants

The experiment was conducted to observe how well the proposed method perform as

a software test strategy for the student team in an agile software development project

following Scrum. The conducted experiment requires 3 experimental group of students

to estimate risk level and test coverage using the proposed method while the other 3

control group students were using the averaged statistical combination of individual

estimates for further comparison. Data and result collected in the study are used to

analyze the student group performance when using the proposed method compared to

the averaged statistical combination of individual estimates. The student groups are

made of final year undergraduate students of Software Engineering course. They have

completed the Software Verification & Validation study syllabus for the semester and

assumed to be familiar with test planning process, able to construct test cases for testing

purpose and able to perform various types of testing technique throughout the software

project. Table 5.1 listed the summary of the experiment participants’ details.

Univ
ers

iti
Mala

ya

81

Table 5.1: Summary of experiment participants’ details

Participants

Scrum
Team

Final year student of Software Engineering course

Completed the Software Verification & Validation
syllabus

Assumed to be familiar with:

1) Test planning
2) Construct Test Cases
3) Execute testing

3 Experimental group (4 students each group)

3 Control group (4 students each group)

5.1.3 Experiment Materials

A set of 34 user stories were given to 6 groups of students to be analyzed, estimated

and tested for an agile software project lifecycle following Scrum. Each team is required

to prioritize and estimate test coverage for the same set of 34 user stories within 3

sprints with each sprint’s duration lasting for 2 weeks. The whole project takes 9 weeks

to complete the estimation and testing. Each group consists of 4 students and acts as a

self-organizing and self-managing Scrum Team, responsible to analyze risks, risk level,

estimate test coverage and execute testing on an e-commerce system based on the given

user stories.

The software project prepared by this research is based on an open source e-

commerce system for a client named Marvel Beads. The client provides the required

user requirements and this research plays the role of Product Owner in collecting user

story from client. An open source e-commerce system is developed and customized

according to the user stories and passed to the student team for testing for each sprint.

Univ
ers

iti
Mala

ya

82

Each story consists of a short description of the required functionality to be discussed

by team members during planning meeting to analyze risks, prioritize the tasks and

assign how much test coverage is needed. Testing activity is executed in a two-week

sprint based on the test coverage estimation obtained during planning meeting. The six

groups of student teams are divided into two categories; 1) Three of the groups apply

risk-poker technique to prioritize tasks and estimate test coverage, whilst the other 2)

Three teams use averaged statistical combination of individual estimations to prioritize

and estimate test coverage technique.

Seeded faults are planted in the system to suit the purpose of testing in order to

measure how much fault is exposed at the end of the project to measure test coverage

adequacy estimated using the proposed model. Table 5.2 listed the summary of

experiment materials and environment prepared to execute the experiment validation for

the proposed testing model.

Table 5.2: Summary of experiment materials

Experiment Materials

Software Project 1 complete software testing project (test plan, construct
test cases, execute testing, report)

Tamper coding for testing

34 user stories for 3 sprints

Sprint duration: 2 weeks

Project duration: 9 weeks

Scrum process affected Sprint Planning Meeting

Sprint backlog prioritization

Testing activity

Univ
ers

iti
Mala

ya

83

Project Data Data For Sprint Planning Meeting:

1) User stories
2) Risks identification list
3) Risks level rating
4) Test coverage

5.1.4 Experiment Process

Once the software project environment is ready for the experiment, this research

starts the experiment according to the step-by-step process described in Table 5.3.

Table 5.3: Experiment Steps

Steps Sprint Activities

A 0 Brief and train student teams on the software project details and Scrum
process

A.1 Train experimental student teams on how to implement the proposed
method in Scrum

A.2 Train control student teams on how to estimate risks and test coverage
using averaged statistical combination of individual estimations

B Product Owner list user stories in the product backlog for 3 sprints
respectively

C 1,2 and 3 Sprint Planning Meeting

C.1 Student team and Product Owner conduct a discussion session on the
user stories for Sprint 1

C.2 Tasks are identified, associated risks are identified, risks are discussed
and analyzed

C.3 Student teams estimate risks level and test coverage for user stories

C.3.1a Experimental student teams use Risk Poker technique to estimate risks
level and test coverage

C.3.1b Control group student teams use the averaged statistical combination of
individual scores to estimate risks level and test coverage

C.4 A list of risks level and test coverage estimation is collected for the
user stories

C.5 Student teams insert the rating into Risk Graph prototype system to
prioritize the highest risks level tasks to the lowest risks level

Univ
ers

iti
Mala

ya

84

Steps Sprint Activities

D 1,2 and 3 Sprint

Test the prioritized items according to the assigned test coverage in the
Risk Graph to expose fault

E Report the list of fault exposed during testing activity

F The researcher collects data and test result for both experimental and
control group.

The detailed explanation of the step-by-step experiment process is as follows:

1) This research conducted a briefing session (Step A; Table 5.3) to train student teams

on Scrum process. Briefed experimental student teams on how to implement the

proposed method within Scrum. Next, student teams of the control group are briefed

and trained to estimate risk level and test coverage using averaged statistical

combination of individual estimates.

2) At the beginning of the project, a collection of the same user stories have been

assigned for 3 sprints respectively for all teams (Step B).

3) Student teams start the project with Sprint Planning Meeting. In Sprint Planning

Meeting, the student teams are required to discuss user stories, identify risks and

analyze risks associated with the user stories for prioritization later (Step C). Once

discussion has taken place and everyone is clear with the related issues for the user

story, student teams are provided with rating card to rate risk level for the discussed

user story. The risk level assigned is associated with related test coverage for each

level. The risk rating card consists of four color risks: Red as the highest risk,

followed by orange, yellow and green. The highest risk level is associated with the

most intense code coverage for unit test which is multiple condition coverage,

followed by condition determination coverage, decision condition coverage and

decision coverage.

Univ
ers

iti
Mala

ya

85

• The experimental student group is required to implement Risk Poker

technique in Sprint Planning Meeting to estimate test coverage and prioritize

risks, while on the other hand,

• The control student group estimate test coverage and prioritize risks using

averaged statistical combination of individual estimations where each team

member is required to prioritize the user stories individually and the scores

are then averaged to get the test coverage and prioritization scores. The rating

card for control group students has scores where the highest risk scores 4

points, followed by high risk with 3 points, medium risk with 2 points and

low risk with 1 point.

• Experimental student group estimated the risk level individually on the rating

card and then present the rating result together with other team member to

reveal rating result. If there is difference in color of rating, they will discuss

the color difference and issues related. And then, once again they will

estimate the risk level rating individually and present the result once again to

achieve group consensus on risk rating. Should the rating color is difference

again at this time around, the team use the highest risk level rating. The

rating is updated in Risk Graph prototype system to prioritize and assign test

coverage of the user story.

• On the other hand, the rating card for control group student teams contain

score points for each color risk level to be averaged to get the statistical

combination of individual estimates. Control student estimated the risk level

individually on the rating card and then present the rating result together with

other team member to reveal result rating. The score of the rating will be

accumulated amongst team member and then averaged to get the risk level

score. The user story is prioritized and assigned with appropriate test

Univ
ers

iti
Mala

ya

86

coverage according to the averaged score using the Risk Graph prototype

system.

4) At the end of Sprint Planning Meeting, student teams obtained prioritized tasks for

the Sprint Backlog using the Risk Graph prototype system.

5) Following that, upon starting sprint, student team start testing the user stories

according to the test coverage assigned to the highest risk product first, followed by

medium risk and ended with low risk product (Step D) as shown in the Risk Graph

prototype system.

6) At the end of sprint, student teams provide a list of fault exposed as well as the test

result (Step E).

Data is collected to measure how Risk Poker and test coverage implementation in

Scrum performed compared to the averaged statistical combination of individual

estimates (Step F).

5.2 Experiment Results

The result of experiment on estimating risk level and test coverage for 34 user stories

is collected and analyzed to validate the proposed method compared to the averaged

statistical combination of individual estimations. This research monitors and observes

throughout the experiment process, and data is collected throughout the experiment and

test result is collected at the end of each sprint. The test result is a report of how much

fault is exposed throughout testing process in each sprint for each team. The exposed

fault is compared to the seeded fault to measure test coverage adequacy. Basic

descriptive statistics for the student teams test result are presented in Table 5.4.

Univ
ers

iti
Mala

ya

87

Table 5.4: Statistics of Student Teams’ Test Result

 BRE averaged Individual
Statistical Combination

BRE Risk Poker

User stories 102 102

Mean 0.5049 0.2402

Median 0.0000 0.0000

Std. deviation 0.88858 0.49116

Skewness 2.543 1.973

Std. error of
skewness

0.239 0.239

Kurtosis 8.145 3.235

Std. error of
kurtosis

0.474 0.474

Range 5.00 2.00

5.2.1 RQ4.1: Is the test coverage provided by Risk Poker-based proposed model

adequate compared to the statistical combination of individuals?

Exposed fault is used to measure whether the test coverage estimated in the sprint is

adequate to expose the seeded fault in the system. Balanced Relative Error (BRE) is

used to calculate performance of test coverage assigned in the sprint. Thus, the greater

the BRE score is, the less adequate test coverage assignment performed in the related

sprint as the BRE score represents how accurate test coverage estimated is to expose

seeded fault. The BRE of both experimental student teams and control student teams are

calculated as follows:

𝐵𝑅𝐸 =
𝑠𝑒𝑒𝑑𝑒𝑑;<=>? − 𝑒𝑥𝑝𝑜𝑠𝑒𝑑;<=>?

min	(𝑠𝑒𝑒𝑑𝑒𝑑;<=>?, 𝑒𝑥𝑝𝑜𝑠𝑒𝑑;<=>?)

Univ
ers

iti
Mala

ya

88

In order to answer RQ4.1 this research calculates the mean BRE of the fault exposure

by comparing the BRE of Risk Poker estimates (experimental student teams) and the

BRE of the averaged statistical combination of individual estimates (controlled student

teams).

Figure 5.1: BRE mean for experimental and control group

Figure 5.1 shows the BRE mean for both the experimental and control student teams

test result. The mean BRE of the seeded fault is 0.00 thus, the closer the mean BRE of

the test result to 0.00, the lesser the relative error of the fault exposure. Table 5.5

summarized the BRE scores for both experimental group (student team A-1, A-2, A-4)

and controlled group (student team B-3, B-5, B-6). It seems that experimental group

student teams returned BRE scores are within 0.0 - 1.0, and the greatest relative error

score for this group is within 1.1 - 2.0 (student team A-1). Whilst on the other hand,

BRE scores for controlled group student teams are within 1.1 - 2.0 applicable for all

participated teams (student team B-3, B-5, B-6). Straightforward analysis of the results

Univ
ers

iti
Mala

ya

89

has suggested that mean BRE of experimental student teams (0.24) is smaller than the

mean BRE of the controlled student teams (0.50). Thus this research is able to conclude

that the test coverage estimation provided by Risk Poker technique is more adequate in

exposing the seeded fault compared to the averaged statistical combination of individual

estimates.

Table 5.5: BRE scores

 BRE =

 0.0 0.1 - 1.0 1.1 - 2.0 2.1 - 3.0 3.1 - 4.0 4.1 - 5.0

n = 34

A-1 21 10 3 0 0 0

A-2 30 4 0 0 0 0

A-4 29 5 0 0 0 0

B-3 17 9 4 2 1 1

B-5 25 8 1 0 0 0

B-6 23 9 2 0 0 0

5.2.2 RQ4.2: How does Risk Poker-based proposed model estimation differ from

the averaged statistical combination of individual estimations?

Referring to the descriptive statistic as stated in the previous Table 5.4, for the total

of 102 user stories that were analyzed for both experimental and control group of

student teams, the experimental group of student teams which estimate risk and test

coverage using Risk Poker technique, have the BRE mean of 0.24 (sd = 0.49) compared

to the control group of student teams BRE mean which is 0.50 (sd = 0.89). So, does the

difference between the two BRE means is simply due to sampling variation, or does the

BRE provide evidence that Risk Poker technique does, on average, improve test

coverage estimation? The p-value obtained from an independent samples t-test answers

this question. This research has run an independent t-test to test the hypothesis that both

Univ
ers

iti
Mala

ya

90

the experimental and control group were associated with statistically significantly

different mean of balanced relative error of the test coverage estimation. Thus, the

independent t-test was conducted to compare balanced relative error for test coverage

estimation in using Risk Poker technique as risk and test coverage estimation and in

averaged statistical combination of individual estimation conditions.

The result displayed in Table 5.6 has shown that there was a significant difference in

the BRE scores for student teams that used Risk Poker technique to estimate risk level

and test coverage (M=0.24, SD=0.49) and BRE scores for student team that did not used

Risk Poker technique (M=0.50, SD=0.89) conditions; t(202)=(2.63), p=(0.009). Since

the p-value is 0.009, therefore the difference between the two means is statistically

significantly different from zero at the 5% level of significance. Thus, there is sufficient

evidence to suggest that risk poker technique does change the mean BRE of test

coverage accuracy. There is an estimated change of standard error of 0.1%. Hence,

these results suggest that Risk Poker technique really does have an effect on estimating

risk level and test coverage for testing of an agile project following Scrum.

Table 5.6: Independent t-test result

 Lavene’s Test
for Equality of

Variances

t-test for Equality of Means 95% Confidence
Interval of the

Difference

F Sig. t df Sig. (2-
tailed)

Mean
Difference

Std. Error
Difference

Lower Upper

BRE
Scores

Equal
variances
assumed

17.139 0.000 -2.633 202 0.009 -0.26471 0.10053 -0.4629 -0.6649

Equal
variances
not
assumed

 -2.633 157.448 0.009 -0.26471 0.10053 -0.4632 -0.6615

Univ
ers

iti
Mala

ya

91

5.3 Discussion

RQ4.1 Is the test coverage provided by Risk Poker-based proposed model adequate

compared to the statistical combination of individuals?

Referring back to Figure 5.1, this research has learnt that BRE mean for control

group (Group B-3, B-5 & B-6) is greater than experimental group, thus it indicates that

the control group’s test coverage estimation is less accurate to expose seeded fault. The

range of control group’s mean is 5.00 compared to experimental group which is 2.00 as

shown earlier in Table 5.4 Statistics. The higher range of unexposed seeded fault for

control group indicates that test coverage estimation by experimental group is more

adequate to detect seeded fault compared to the control group. In addition to that, the

highest number of unexposed seeded fault (7 unexposed seeded fault) occurred in two

out of three control group’s estimation as shown in Figure 5.2 also indicates inadequate

test coverage estimation technique for testing to cover required functionality to detect

fault. These issues have proven that Risk Poker technique is able to provide relevant

estimation of test coverage when the group is allowed to discuss their rating and

concerns, where hidden issues are able to be highlighted for the task rating and

estimation. Furthermore, this result has shown significant difference in statistical tests

presented previously in Table 5.4 which indicates that Risk Poker estimates provided by

student teams is more accurate than the averaged statistical combination of individual

estimations.
Univ

ers
iti

Mala
ya

92

Figure 5.2: Unexposed fault quantity

RQ4.2: How does Risk Poker-based proposed model estimation differ from the

averaged statistical combination of individual estimations?

Following, an independent t-test analysis conducted on the experiment test result has

shown that there is a statistically significant difference between the proposed technique

and the averaged statistical combination of individual estimations. Thus, it indicates that

test coverage estimation provided by student teams that used Risk Poker technique is

more accurate than the averaged statistical combination of individual estimations. In

addition to that, the result of this statistical tests also disagree with (Armstrong, 2006)

that face-to-face meetings are harmful for decision making. Considering the fact that

Risk Poker estimates tended to be slightly better than the averaged statistical

combination of individual estimates, it seems reasonable to continue the research on

group processes in software estimation.

Univ
ers

iti
Mala

ya

93

5.4 Study Validity

The conclusions of this research are based on the results of statistical tests which has

exposed that there is a statistically significant difference between experimental group

and control group student teams. In this study, in order to increase study validity, 6

teams studied were working on the same problem. All teams estimated the same set of

user stories; therefore, their estimates are directly comparable. However, in spite of the

fact that the study was conducted within the framework of a group student project,

every effort was made to increase its external validity by simulating an industrial

environment as closely as possible. The experiment is controlled where;

i. The Sprint Planning Meeting is conducted within a certain time-frame

with Product Owner and Customer is around to explain the user stories to

the team.

ii. The user stories were defined on the basis of the e-commerce system that

is actually used for an online store and the students were required to fully

test the code with seeded fault.

iii. The test report are required to be handed to the researcher at the end of

each sprint to ensure testing are executed as planned.

Nevertheless, the main threat to external validity remains that only one project was

used.

On the basis of statistical analysis, the results can be generalized only to students of

the last year of computer science course working on similar projects that require the

testing of e-commerce systems, while more studies are needed on real projects of

different size and complexity in order to generalize the findings to industry. In addition

to that, the researcher is also the Product Owner, so it might not be comparable to an

Univ
ers

iti
Mala

ya

94

actual product owner in industrial environment. Furthermore, the experiment

environment does not include full development project and bug fixes which could be

another variable that would contribute to the effectiveness of implementing the

proposed method in an agile project following Scrum.

Student teams were required to end their Sprint Planning Meeting within 60 - 80

minutes in each meeting where they discuss, analyze, prioritize and estimate test

coverage for each user story. The experiment includes the time constraint in the project

execution to make sure both the experimental and control group spend the same amount

of effort and time to achieve decision on risk analyses and estimating test coverage.

Considering the aforementioned limitations, the results of this study can be used

together with other studies as a stepping stone to further research, narrowing down the

focus to a more experienced expert groups and searching for contexts where Risk Poker

improves test coverage estimation accuracy by increasing commitment, sharing

estimating expertise, promoting team growth and refining solution understanding. To

second that, experimenting with student teams alone might not give a various statistic

result to compare and measure the difference of implementing the proposed technique

with other technique. Also, in a bigger scale, student would not be able to replicate a

real situation as professional testers with their limited experience, thus the need for a

bigger scale study to involve industrial project for more statistical comparable result.

And lastly, the experiment is a comparison between experimental and control group of

people, not a post and after post technique. Thus, a study reporting the statistic result of

improvement of accuracy of before implementing the proposed technique with after the

implementation the proposed technique would help.

Univ
ers

iti
Mala

ya

95

5.5 Summary

This chapter provides discussion and result of the fourth research objective, which is

to validate the proposed model in a software project case study following Scrum in

order to improve risk analyses in agile projects. Research questions 4.1 and 4.2 are

answered respectively throughout this chapter to provide test result and data to measure

the effectiveness of proposed method in the experiment conducted. The test result

shows that there is a significant difference between the experimental group and

controlled group to support that the proposed method would provide positive effect to

the process, however, the study scale is small, which involves final project of student

teams. Overall, the experimental group which implemented the proposed method

performs better than the control group because the result analysis shows that Risk Poker

test coverage estimation is able to expose seeded fault better than the controlled group,

thus it is able to improve risk analysis in agile project following scrum. However, future

case study or future researcher should consider all the study validity factors as listed in

section 5.4 for better result and reliable measurement.

Univ
ers

iti
Mala

ya

96

CHAPTER 6: CONCLUSION

In this chapter, this research discusses in brief the conclusion of the research,

research findings, research contributions and research limitations to give a clear head-

point to any interested industry personnel, researcher and academician who would like

to implement the proposed method in software development project. Also, this research

summarizes potential future work and provides some recommendations for the use of

other researchers who are interested to explore further on software testing and agile

domain.

6.1 Fulfillment of Research Objectives

At the end of this research, all objectives defined previously in Chapter 1 are

achieved, which are;

• Through intensive literature reviews, this research has identified a suitable

testing strategy that could fit agile projects following Scrum effortlessly and able

to performed effectively through the experiment validation described in Chapter

5,

• This research has also identified suitable test coverage technique to combine

with the identified software test strategy, where the test coverage estimation

provided by the proposed method shows significant difference in the statistical

result analyzed in Chapter 5 compared to the individual estimations,

• This research has successfully constructed a testing model that would fit

effortlessly in agile project, where the testing model is successfully implemented

in the experiment process, experiment environment and materials section as

described in Chapter 5,

Univ
ers

iti
Mala

ya

97

• Lastly, this research has successfully validated that the proposed testing model is

able to provide better estimation of test coverage in agile project by answering

the required research questions which resulted in the significant difference of the

result analysis for the experiment result section, as described in Chapter 5.

6.2 Research Contributions

Based on the findings described above, this research helps to identify a risk analysis

technique as software test strategy whereby Risk Poker, which strongly emphasizes on

group discussion characteristics of agile method, is suitably integrated in the planning

meeting and consequently yielded better risk prioritization as well as estimating

adequate test coverage.

This benefits industry players who would like to implement ready-to-use software

testing strategy for an agile project following scrum, in which they will be able to

efficiently prioritize user stories and estimate the required testing effort and testing

coverage.

Moreover, the results identified in this research will provide some guidance for

practical practitioners to understand what to expect when trying to implement this

technique in software development projects and helps other interested researcher to

explore more on software testing in agile domain.

Univ
ers

iti
Mala

ya

98

6.3 Research Limitations

Although in general this research is able to meet the stipulated research objectives,

there are several limitations to the applicability of the results. One of the limitations is

that the case study carried out in this research may not speak for all levels of project

scale due to the limited size scale of the experiment conducted. Besides, this research

also did not have the suitable resources for experiment participants such as those from

bigger scale projects in the software industry to implement and simulate this study in an

almost realistic software project environment with expert personnel from various fields

to come together and contribute their views and estimations which can serve as another

method to measure the accuracy and efficiency of the proposed method. Like those in

most researches of this level, this research also faced other common limitations such as

time, people, money and real project environment. Other limitations of the experiment

validation for this research is also described in chapter 5, section 5.4 for Study Validity.

6.4 Recommendation for Future Work

This research opens up opportunities to various potential future works and some of

the future works highly recommended by this research are as follow;

• Integration of Risk Poker with Planning Poker in the planning meeting since

both techniques share many similar characteristics to achieve group consensus in

decision making process.

• Conduct similar case study but in a software project which has various levels of

group members knowledge and field of expertise which is expected to produce

higher accuracy in risk prioritization and test coverage estimation.

Univ
ers

iti
Mala

ya

99

• Study the outcome of a software development project that initially does not

apply the method proposed by this research, and then apply the proposed method

in order to identify and measure the improvements brought by the proposed

method.

• Apply similar case study on a real software development project involving real

industry personnel in order to verify the practicality of implementing the

proposed method in the industry. In the same study, researchers may also

identify the reception level and issues that would occur upon implementing the

proposed technique to the existing team members who have established their

own ways of estimating prior to the introduction of the new method.

Univ
ers

iti
Mala

ya

100

REFERENCES

Amland, S. (2000). Risk-based testing:: Risk analysis fundamentals and metrics for
software testing including a financial application case study. Journal of Systems
and Software, 53(3), 287-295.

Armstrong, J. S. (2006). How to make better forecasts and decisions: Avoid face-to-face
meetings. Foresight, 5, 3-8.

Bannerman, P. L. (2008). Risk and risk management in software projects: A
reassessment. Journal of Systems and Software, 81(12), 2118-2133.

Biju, S. M. (2010). Agile software development methods and its advantages
Technological Developments in Networking, Education and Automation (pp.
603-607): Springer.

Black, R. (2003). Quality Risk Analysis. USA: Rex Black Consulting Services[Online]
Available: http://www/. rexblackconsulting. com/publications/Quality%
20Risk% 20A nalysis1. pdf.

Boehm, B. (1989). Software risk management. Paper presented at the European
Software Engineering Conference.

Boehm, B. (2002). Get ready for agile methods, with care. Computer, 35(1), 64-69.

Boehm, B. W. (1991). Software risk management: principles and practices. Software,
IEEE, 8(1), 32-41.

Boness, K., Finkelstein, A., & Harrison, R. (2008). A lightweight technique for
assessing risks in requirements analysis. IET software, 2(1), 46-57.

Briand, L., & Pfahl, D. (1999). Using simulation for assessing the real impact of test
coverage on defect coverage. Paper presented at the Software Reliability
Engineering, 1999. Proceedings. 10th International Symposium on.

Caballero, E., Calvo-Manzano, J. A., & San Feliu, T. (2011). Introducing Scrum in a
Very Small Enterprise: A Productivity and Quality Analysis Systems, Software
and Service Process Improvement (pp. 215-224): Springer.

Cai, X., & Lyu, M. R. (2007). Software reliability modeling with test coverage:
Experimentation and measurement with a fault-tolerant software project. Paper
presented at the Software Reliability, 2007. ISSRE'07. The 18th IEEE
International Symposium on.

Chilenski, J. J., & Miller, S. P. (1994). APPLICABILITY OF MODIFIED
CONDITION DECISION COVERAGE TO SOFTWARE TESTING. Software
Engineering Journal, 9(5), 193-200.

Cho, J. (2008). Issues and Challenges of agile software development with SCRUM.
Issues in Information Systems, 9(2), 188-195.

Univ
ers

iti
Mala

ya

101

Coffin, R., & Lane, D. (2006). A Practical Guide to Seven Agile Methodologies. Part 1,
XP, Scrum, Lean, and FDD.

Collins, E., Dias-Neto, A., & de Lucena, V. (2012). Strategies for agile software testing
automation: An industrial experience. Paper presented at the Computer Software
and Applications Conference Workshops (COMPSACW), 2012 IEEE 36th
Annual.

Conboy, K., & Coyle, S. (2009). A case study of risk management in agile systems
development.

Crispin, L., & Gregory, J. (2009). Agile testing: A practical guide for testers and agile
teams: Pearson Education.

Dang, T., & Nahhal, T. (2009). Coverage-guided test generation for continuous and
hybrid systems. Formal Methods in System Design, 34(2), 183-213.

Deemer, P., Benefield, G., Larman, C., & Vodde, B. (2010). The scrum primer. Scrum
Primer is an in-depth introduction to the theory and practice of Scrum, albeit
primarily from a software development perspective, available at: http://assets/.
scrumtraininginstitute. com/downloads/1/scrumprimer121. pdf, 1285931497, 15.

Eloranta, V.-P., Koskimies, K., Mikkonen, T., & Vuorinen, J. (2013). Scrum Anti-
Patterns--An Empirical Study. Paper presented at the Software Engineering
Conference (APSEC, 2013 20th Asia-Pacific.

Felker, C., Slamova, R., & Davis, J. (2012). Integrating UX with scrum in an
undergraduate software development project. Paper presented at the
Proceedings of the 43rd ACM technical symposium on Computer Science
Education.

Fowler, M., & Highsmith, J. (2001). The agile manifesto. Software Development, 9(8),
28-35.

Gargantini, A., & Riccobene, E. (2001). ASM-based testing: Coverage criteria and
automatic test sequence generation. Journal of Universal Computer Science,
7(11), 1050-1067.

Garousi, V., & Zhi, J. (2013). A survey of software testing practices in Canada. Journal
of Systems and Software, 86(5), 1354-1376.

Gittens, M., Romanufa, K., Godwin, D., & Racicot, J. (2006). All code coverage is not
created equal: a case study in prioritized code coverage. Paper presented at the
Proceedings of the 2006 conference of the Center for Advanced Studies on
Collaborative research.

Grenning, J. (2002). Planning poker or how to avoid analysis paralysis while release
planning. Hawthorn Woods: Renaissance Software Consulting, 3.

Hall, E. M. (1998). Managing risk: Methods for software systems development: Pearson
Education.

Univ
ers

iti
Mala

ya

102

Harichandan, S., Panda, N., & Acharya, A. A. (2014). Scrum Testing With Backlog
Management in Agile Development Environment.

Hartman, B., & Lawrence, R. (2013). Intro to Agile. Agile For All. Retrieved from
http://www.agileforall.com/

Hartmann, J., Fontoura, L. M., & Price, R. T. (2005). Using Risk Analysis and Patterns
to Tailor Software Processes. XIX Simpósio Brasileiro de Engenharia de
Software, Uberlândia.

Haugen, N. C. (2006). An empirical study of using planning poker for user story
estimation. Paper presented at the Agile Conference, 2006.

Hellmann, T. D., Sharma, A., Ferreira, J., & Maurer, F. (2012). Agile Testing: Past,
Present, and Future--Charting a Systematic Map of Testing in Agile Software
Development. Paper presented at the Agile Conference (AGILE), 2012.

Hossain, E., Babar, M. A., & Paik, H.-y. (2009). Using scrum in global software
development: a systematic literature review. Paper presented at the Global
Software Engineering, 2009. ICGSE 2009. Fourth IEEE International
Conference on.

Hu, Z.-g., Yuan, Q., & Zhang, X. (2009, 11-12 July 2009). Research on Agile Project
Management with Scrum Method. Paper presented at the Services Science,
Management and Engineering, 2009. SSME '09. IITA International Conference
on.

Itkonen, J., Rautiainen, K., & Lassenius, C. (2005). Towards understanding quality
assurance in agile software development. Paper presented at the Icam 2005.

James, M. (2007, 24 September 2007). Scrum and Quality Assurance. Agile.

Jogu, K. K., & Reddy, K. N. (2013). Moving Towards Agile Testing Strategies. Cvr
journal of science & technology, 88.

Julius, A. A., Fainekos, G. E., Anand, M., Lee, I., & Pappas, G. J. (2007). Robust test
generation and coverage for hybrid systems Hybrid Systems: Computation and
Control (pp. 329-342): Springer.

Karhunen, J.-R. (2009). Scrum quality management: an empirical study.

Karlsson, E., & Martensson, F. (2009). Test processes for a Scrum team. Master’s
thesis, Lund University, Sweden.

Kasurinen, J., Taipale, O., & Smolander, K. (2010). Test case selection and
prioritization: risk-based or design-based? Paper presented at the Proceedings
of the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, Bolzano-Bozen, Italy.

Kayes, I., Sarker, M., & Chakareski, J. (2013). On Measuring Test Quality in Scrum:
An Empirical Study. arXiv preprint arXiv:1310.2545.

Univ
ers

iti
Mala

ya

103

Kettunen, V., Kasurinen, J., Taipale, O., & Smolander, K. (2010). A study on agility and
testing processes in software organizations. Paper presented at the Proceedings
of the 19th international symposium on Software testing and analysis.

Khalane, T., & Tanner, M. (2013). Software quality assurance in Scrum: The need for
concrete guidance on SQA strategies in meeting user expectations. Paper
presented at the Adaptive Science and Technology (ICAST), 2013 International
Conference on.

Lawrence, J., Clarke, S., Burnett, M., & Rothermel, G. (2005). How well do
professional developers test with code coverage visualizations? An empirical
study. Paper presented at the Visual Languages and Human-Centric Computing,
2005 IEEE Symposium on.

Lewis, J., & Neher, K. (2007). Over the Waterfall in a Barrel-MSIT Adventures in
Scrum. Paper presented at the AGILE.

Li, J., Moe, N. B., & Dybå, T. (2010). Transition from a plan-driven process to scrum:
a longitudinal case study on software quality. Paper presented at the
Proceedings of the 2010 ACM-IEEE international symposium on empirical
software engineering and measurement.

Li, M., Huang, M., Shu, F., & Li, J. (2006). A risk-driven method for eXtreme
programming release planning. Paper presented at the Proceedings of the 28th
international conference on Software engineering.

Löffler, R., Güldali, B., & Geisen, S. (2010). Towards Model-based Acceptance Testing
for Scrum. Softwaretechnik-Trends, GI.

Mahnic, V. (2011). A case study on Agile Estimating and Planning using Scrum.
Electronics and electrical engineering, 111(5), 123-128.

Mahnič, V., & Hovelja, T. (2012). On using planning poker for estimating user stories.
Journal of Systems and Software, 85(9), 2086-2095.
doi:http://dx.doi.org/10.1016/j.jss.2012.04.005

Marré, M., & Bertolino, A. (2003). Using spanning sets for coverage testing. Software
Engineering, IEEE Transactions on, 29(11), 974-984.

Moe, N. B., & Dingsøyr, T. (2008). Scrum and team effectiveness: Theory and practice
Agile Processes in Software Engineering and Extreme Programming (pp. 11-
20): Springer.

Moe, N. B., Dingsøyr, T., & Dybå, T. (2010). A teamwork model for understanding an
agile team: A case study of a Scrum project. Information and Software
Technology, 52(5), 480-491.

Moløkken, K., & Jørgensen, M. (2004). Expert estimation of the effort of
webdevelopment projects: Why are software professionals in technical roles
more optimistic than those in non-technical roles. Journal of Empirical Software
Engineering.

Univ
ers

iti
Mala

ya

104

Molokken-Ostvold, K., & Haugen, N. C. (2007). Combining estimates with planning
poker--an empirical study. Paper presented at the Software Engineering
Conference, 2007. ASWEC 2007. 18th Australian.

Moløkken-Østvold, K., Haugen, N. C., & Benestad, H. C. (2008). Using planning poker
for combining expert estimates in software projects. Journal of Systems and
Software, 81(12), 2106-2117.

Moløkken-Østvold, K., & Jørgensen, M. (2004). Group Processes in Software Effort
Estimation. Empirical Software Engineering, 9(4), 315-334.
doi:10.1023/B:EMSE.0000039882.39206.5a

Moore, R., Reff, K., Graham, J., & Hackerson, B. (2007). Scrum at a fortune 500
manufacturing company. Paper presented at the Agile Conference (AGILE),
2007.

Nelson, C. R., Taran, G., & de Lascurain Hinojosa, L. (2008). Explicit risk management
in agile processes Agile processes in software engineering and extreme
programming (pp. 190-201): Springer.

Noor, R., & Khan, M. F. (2014). Defect Management in Agile Software Development.
International Journal of Modern Education and Computer Science, 6(3), 55.

Nyfjord, J. (2008). Towards integrating agile development and risk management.

One, V. (2010). The State of Agile Development. State of Agile Survey 2010.

Paulk, M. C. (2002). Agile methodologies and process discipline. Institute for Software
Research, 3.

Petersen, K., & Wohlin, C. (2010). The effect of moving from a plan-driven to an
incremental software development approach with agile practices. Empirical
Software Engineering, 15(6), 654-693.

Schatz, B., & Abdelshafi, I. (2005). Primavera gets agile: a successful transition to agile
development. Software, IEEE, 22(3), 36-42. doi:10.1109/MS.2005.74

Schwaber, K. (1997). Scrum development process Business Object Design and
Implementation (pp. 117-134): Springer.

Schwaber, K. (2004). Agile Project Management with Scrum: Microsoft Press.

Schwaber, K., & Beedle, M. (2002). Agilè Software Development with Scrum.

Schwaber, K., & Sutherland, J. (2007). What is scrum. URL:
http://www.scrumalliance.org/system/resource/file/275/whatIsScrum.pdf, [Sta
nd: 03.03. 2008].

Selvi, K., & Majumdar, R. (2013). Scrum: An Agile Process. International Journal of
Research in Engineering and Technology, 2(3), 337-340.

Univ
ers

iti
Mala

ya

105

Shahid, M., Ibrahim, S., & Selamat, H. (2011). An Evaluation of Current Approaches to
Support Test Coverage Analysis. Paper presented at the International Conference
on Computer Engineering and Technology, 3rd (ICCET 2011).

Stallbaum, H., Metzger, A., & Pohl, K. (2008). An automated technique for risk-based
test case generation and prioritization. Paper presented at the Proceedings of the
3rd international workshop on Automation of software test.

Stolberg, S. (2009, 24-28 Aug. 2009). Enabling Agile Testing through Continuous
Integration. Paper presented at the Agile Conference, 2009. AGILE '09.

Sutherland, J. (2001). Agile can scale: Inventing and reinventing scrum in five
companies. Cutter IT Journal, 14(12), 5-11.

Talby, D., Keren, A., Hazzan, O., & Dubinsky, Y. (2006). Agile software testing in a
large-scale project. Software, IEEE, 23(4), 30-37.

Thomas Müller, D. F., ISTQB WG Foundation Level. (2011). Certified Tester
Foundation Level Syllabus. Version 2011. Retrieved from
http://www.istqb.org/downloads/send/2-foundation-level-documents/3-
foundation-level-syllabus-2011.html4

Van de Laar, J. (2012). Risk Poker: Risk based testing in agile projects. Software
Quality DayS, 51.

Walkinshaw, N., Bogdanov, K., Derrick, J., & Paris, J. (2010). Increasing functional
coverage by inductive testing: a case study Testing Software and Systems (pp.
126-141): Springer.

Williams, L., Gegick, M., & Meneely, A. (2009). Protection Poker: Structuring
Software Security Risk Assessment and Knowledge Transfer Engineering
Secure Software and Systems (pp. 122-134): Springer.

Winter, J., Rönkkö, K., Ahlberg, M., & Hotchkiss, J. (2011). Meeting organisational
needs and quality assurance through balancing agile and formal usability testing
results Software Engineering Techniques (pp. 275-289): Springer.

Woodward, M. R., & Hennell, M. A. (2005). Strategic benefits of software test
management: a case study. Journal of Engineering and Technology
Management, 22(1), 113-140.

Zhu, H., Hall, P. A., & May, J. H. (1997). Software unit test coverage and adequacy.
Acm computing surveys (csur), 29(4), 366-427.

Univ
ers

iti
Mala

ya

