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FRACTAL AND EDGE-BASED TECHNIQUES FOR KIDNEY 
ENHANCEMENT AND SEGMENTATION ON MAGNETIC RESONANCE 

IMAGES (MRI) 

ABSTRACT 

Recently, many rapid developments in digital medical imaging have made further 

contributions to healthcare systems. However, the segmentation of regions of interest in 

medical images plays a vital role in assisting doctors in their medical diagnoses and for 

the early detection of disease. Since health issues related to the kidneys are increasing 

exponentially, this thesis focused on developing methods for the segmentation of MRI 

images of the kidney. Kidney images frequently suffer from low contrast, low resolution 

and noise, and are blur. Hence, it is necessary to enhance the images in order to improve 

the segmentation. Therefore, the current thesis focused on enhancing the fine details of 

the kidney region and the segmentation of the kidney images. To solve the above issues, 

the proposed work introduced a new model for enhancing low-contrast MRI kidney 

images based on fractional entropy. It is true that fractional entropy is able to handle 

complex situations such as images that are affected by the above challenges, and as such, 

the proposed work explored the same in this thesis to find solutions. However, sometimes, 

due to the presence of neighbouring organs and other regions in the background, the 

enhancement model must be one that can sharpen those details, thereby making the 

segmentation problem a challenging one. Therefore, this thesis was aimed at proposing a 

new method for kidney segmentation based on an active contour model driven by 

fractional-based energy minimization. Since the special characteristic of fractional 

calculus is its ability to preserve high-frequency contours regardless of contrast variations 

and noise, the proposed work explored this characteristic for the segmentation of kidney 

images. However, it should be noted that this method is said to be computationally 

expensive.  
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Therefore, the thesis proposed a new method based on edge information for the 

segmentation of kidney images. It is true that the pixels representing the contours of the 

kidney share a unique spatial relationship. The proposed work used the same basis for the 

detection of the pixels in the edge domain, which represented the contours of the kidney 

in the enhanced images.  Overall, this study made three contributions, namely, a fractional 

entropy-based method for the enhancement of kidney images, a fractional-based 

minimization function for kidney image segmentation, and an edge-based method for 

kidney image segmentation. The developed methods were tested on datasets using 

standard measures to evaluate the methods. The results of the proposed methods were 

compared with existing methods to show that the proposed methods are effective and 

useful.  

 

Keywords: Fractal; Local Fractional Entropy; Active Contours; Kidney Enhancement; 

Kidney Segmentation. 
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TEKNIK BERASASKAN FRAKTAL DAN EDGE UNTUK 
PENAMBAHBAIKAN DAN SEGMENTASI PADA IMEJ RESONANS 

MAGNETIK (MRI) BUAH PINGGANG 
 

ABSTRAK 

 Kebelakangan ini, perkembangan pesat dalam pengimejan perubatan digital telah 

memberi sumbangan tambahan kepada sistem penjagaan kesihatan. Secara tidak 

langsung, segmentasi dalam imej perubatan telah memainkan peranan penting bagi 

memudahkan urusan doktor. Doktor boleh menggunakan hasil segmentasi untuk 

perubatan diagnosis dan pengesanan awal penyakit. Oleh kerana isu kesihatan yang 

berkaitan dengan buah pinggang semakin meningkat, tumpuan tesis ini adalah bagi 

membangunkan kaedah segmentasi imej buah pinggang dari MRI data. Secara umum, 

imej buah pinggang didapati dalam kontras rendah, resolusi rendah, bising dan kabur. 

Untuk meningkatkan prestasi segmentasi, terdapat keperluan untuk penambahbaikan. 

Oleh itu, tesis yang dicadangkan memberi tumpuan kepada peningkatan butiran halus 

kawasan buah pinggang dan pembahagian imej buah pinggang dari imej data secara 

keseluruhan. Untuk mencari penyelesaian kepada isu-isu di atas, kerja yang dicadangkan 

memperkenalkan model baru untuk meningkatkan imej buah pinggang MRI kontras 

rendah berdasarkan entropi pecahan. Memang benar entropi fraktional mempunyai 

keupayaan untuk mengendalikan situasi kompleks seperti imej yang terjejas oleh cabaran 

di atas, maka, kerja yang dicadangkan mencari penyelesaian dalam tesis ini. 

Walaubagaimanapun, kadang-kadang, disebabkan oleh kehadiran organ-organ jiran dan 

kawasan-kawasan lain di latar belakang, model peningkatan mungkin dapat mempertajam 

butiran tersebut, yang membuat segmentasi lebih mencabar. Oleh itu, tesis ini bertujuan 

untuk mencadangkan satu kaedah baru untuk pemisahan buah pinggan berdasarkan model kontur 

aktif yang didorong oleh pengurangan tenaga berasaskan pecahan. Oleh kerana kalkulus pecahan 

mempunyai hak istimewa mengekalkan kontur frekuensi tinggi tanpa mengira kontras variasi dan 

bunyi, kerja yang dicadangkan ini juga dapat membahagikan imej buah pinggang. Walau 

bagaimanapun, diperhatikan bahawa kaedah ini dikatakan agak mahal. Oleh itu, tesis ini 
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mencadangkan kaedah baru berdasarkan maklumat terkini untuk membahagikan imej 

buah pinggang. Boleh dikatakan bahawa piksel itu mewakili kontur buah pinggang dan 

mempunyai hubungan perkongsian ruang yang unik. Kerja yang dicadangkan 

menggunakan asas yang sama untuk mengesan piksel di domain lain yang mewakili 

kontur buah pinggang dalam imej yang dipertingkatkan. Secara keseluruhan, terdapat tiga 

sumbangan, iaitu, kaedah berasaskan entropi pecahan untuk peningkatan imej buah pinggang, 

fungsi pemotongan berasaskan pecahan untuk segmentasi imej buah pinggang dan kaedah 

berasaskan pinggir untuk pemisahan imej buah pinggang Kaedah yang dibangunkan diuji pada 

dataset menggunakan langkah-langkah standad. Keputusan kaedah yang dicadangkan 

dibandingkan dengan kaedah sediada bagi menunjukkan bahawa kaedah yang 

dicadangkan adalah berkesan dan berguna. 

Kata kunci: Fraktal; Entropi Pecahan Tempatan; Kontur Aktif; Peningkatan Buah 

Pinggang; Segmentasi Buah Pinggang. 

 

Univ
ers

iti 
Mala

ya



vii 

ACKNOWLEDGEMENTS 

All praise to Allah, the Almighty, the Benevolent for His blessings and guidance to me 

and bestowing upon me wisdom, ideas and strength to successfully complete this PhD 

thesis. 

I would like to express my very special thanks to my supervisors, Associate Professor Dr. 

Hamid Abdullah Jalab, Associate Professor Dr. Shivakumara Palaiahnakote, and Dr. 

Unaizah Hanum Binti Obaidellah for guidance and contribution of time, ideas and energy 

in making my PhD experience productive and stimulating. My supervisors gave me the 

opportunity to carry out my research with few obstacles.  

I would like to thank the Faculty of Computer Science and Information Technology, 

University of Malaya for providing me with a great academic environment and also 

offering me a well-equipped laboratory. 

Most prominently, I would like to extend my warmest gratitude to my beloved parents, 

my husband (Alaá Selawi), my children, and sisters for their precious support, patience 

and assurance throughout my education in University of Malaya (UM). They always 

being my stand all through the period of my education, and I will always be appreciative 

for their never-ending love, sacrifice and generosity. Special thanks to all my fellow 

friends, especially Dr. Nadia, and Dr. Amira and all of those who supported me in any 

respect during the completion of my research. This study was supported by Postgraduate 

Research Grant (PPP) of University of Malaya, Malaysia. Grant no: PG019-2015B. 

Univ
ers

iti 
Mala

ya



viii 
 

TABLE OF CONTENTS 

Abstract ............................................................................................................................ iii 

Abstrak .............................................................................................................................. v 

Acknowledgements ......................................................................................................... vii 

Table of Contents ........................................................................................................... viii 

List of Figures ................................................................................................................. xii 

List of Tables................................................................................................................... xv 

List of Symbols and Abbreviations ................................................................................ xvi 

CHAPTER 1: INTRODUCTION………………………………..……………….……1 

1.1 Background………………………………………………………………….…….1 

1.2 Kidney Imaging Application ................................................................................... 4 

1.3 Types of Kideny Imaging ........................................................................................ 7 

 1.3.1 Ultrasound (US)……………………………………………………….…..7 

 1.3.2 Magnetic Resonance Imaging(MRI)………………………………………8 

 1.3.3    Computed Tomography(CT)…………………………………………..…..9 

1.4 Research Motivation   ……………………………………………………………10 

1.4.1 Enhancement of kidney MRI Images…………………….………...……10  

 1.4.2   Segmentation of Kidney MR Images…………….…………………...…11  

 1.4.3  An Efficient Kidney MR Segmentation……………………………….…12  

1.5 Research Challenges………………………………………………………...…...13 

1.5.1 Challenges of Kidney MR Enhancement…………………………...……13  

1.5.2  Challenges of Kidney MR Segmentation - Active Contour Model…...…14 

 1.5.3  Challenges of Kidney MRI Segmentation - Edge based Model…………14 

1.6 Problem Statement………………………………………………………………. 15 

1.7 Research Questions ………………………………………………………………15 

Univ
ers

iti 
Mala

ya



ix 
 

1.8    Objectives……………………………………………………………….………...16 

1.9    Scope of Research …………………………………………………………....…...16 

1.10  Thesis Organization ………………………………………………………....…...17 

1.11  Summary ………………………………………………………………………...18 

CHAPTER 2: LITERATURE REVIEW  ................................................................... 19 

2.1 Background ............................................................................................................ 19 

2.2 Kidney Image Enhancement  ................................................................................. 19 

 2.2.1 Image Noising……………………………………….………………...…22 

 2.2.2  Low-Contrast Enhancement…………………………………...…………25 

 2.2.3 Fractional Differential Approach……………………..………………….28 

         2.2.4     Motivation of Kidney MR Enhancement………………………………..31 

2.3 Kidney Image Segmentation ................................................................................. 33 

 2.3.1 Active Contour Model………………………………………….…...……34 

 2.3.2 Level Set Method……………………………...…………………………40 

 2.3.3 Motivation of Kidney MR Segmentation-Active Contour Model………..52  

         2.3.4    Edge-based Method……………………………………………………….53 

         2.3.5   Motivation of Kidney MRI Segmentation-Edge based Model……………56 

2. 4    Evaluation Metrics ……………………………………………………………….58               

         2.4.1  Image Quality Assessment ........................................................................... 60 

        2. 4.2    Segmentation Assessment………………… …………………………….61               

2.5  Chapter Summary..................................................................................................... 63 

CHAPTER 3: RESEARCH METHODOLOGY ....................................................... 64 

3.1 Background ............................................................................................................ 64 

3.2 Research phases ..................................................................................................... 64 

Univ
ers

iti 
Mala

ya



x 
 

3.2.1 Requirement Stages…………………………………………....………...69 

3.3 Analysis stage ........................................................................................................ 70 

 3.3.1 Datasets collection…………………….…………………………………70 

                3.3.1.1   Ground Truth Data …………………………………………………72 

 3.3.2 Hardware and software setup………...…………………………………..75 

3.4         Summary………...…………………………………………………………….75  

CHAPTER 4:  FRACTIONAL ENTROPY  BASED METHOD FOR KIDNEY 

IMAGE ENHANCEMENT …………………..………………………………...…....76 

4.1 Background ............................................................................................................ 76 

4.2 The proposed method     ………………………………………………………….76 

4.2.1  Local Fractional Entropy…………………………………………….….76 

 4.3   Experimental Results…………………………………………………. ……...82 

4.3.1 Qualitative Result of Proposed and Existing Method…………………...85  

4.3.2 Quantitative Result………………………………………………….….91 

4.4 Discussion      ......................................................................................................... 92 

4.5 Chapter Summary      ............................................................................................. 94 

CHAPTER 5: FRACTIONAL BASED MINIMIZATION FUNTION FOR 

KIDNEY IMAGE SEGMENTATION ........................................................................ 95 

5.1 Background ............................................................................................................ 95 

5.2 The proposed Method     ........................................................................................ 95 

 5.2.1  Overview of Chan–Vese (CV) algorithm    .............................................. 96 

 5.2.2 The LFMLF Energy Minimization Function for Kidney Segmentation  .. 97 

5.3 Experimental Results       ..................................................................................... 100 

 5.3.1  Qualitative Result    ................................................................................ 103 

Univ
ers

iti 
Mala

ya



xi 
 

 5.3.2 Quantitative Result .................................................................................. 108 

5.4 Discussion       ...................................................................................................... 110 

5.5 Chapter Summary       .......................................................................................... 111 

CHAPTER 6: Edge Based Method for Kidney Image Segmentation .................... 112 

6.1 Background .......................................................................................................... 112 

6.2 The proposed Edge-Based Method  for Kidney Segmentation………………..  112 

6.3 Experimental Results       ..................................................................................... 117 

 6.3.1  Qualitative Result    ................................................................................ 118 

 6.3.2 Quantitative Result .................................................................................. 120 

6.4    Evaluating two proposed Segmentation methods……………….………………121  

 6.4.1  Qualitative Result    ................................................................................ 122 

 6.4.2 Quantitative Result .................................................................................. 123 

6.5 Discussion       ...................................................................................................... 124 

6.6 Summary       ........................................................................................................ 125 

CHAPTER 7: CONCLUSION AND FUTURE WORK ......................................... 126 

7.1 Background .......................................................................................................... 126 

7.2 Summary of the Proposed Work ......................................................................... 126 

7.3 Contributios of the Proposed Work     ................................................................. 127 

7.4 Limitaitons of the Proposed Work       ................................................................. 128 

7.5 Recommendations for Future Work     ................................................................ 129 

References ..................................................................................................................... 130 

List of Publications ....................................................................................................... 141 

 

 

Univ
ers

iti 
Mala

ya



xii 
 

 LIST OF FIGURES 

 

Figure 1.1 : Four Basic Components Of The Computer-Aided Diagnosis 
System   (CAD)…………………………………………………. 

2 

    
Figure 1.2 : Sample of Low- And High-Contrast MRI Kidney Images……... 2 
    
Figure 1.3 : Sample of Automatically Segmented MRI Kidney Images………. 4 
    
Figure 1.4 : Pixelated Normal Kidney Anatomy……………………………. 6 
    
Figure 1.5 : Polycystic Kidney Disease……………………………………... 6 
    
Figure 1.6 : Abdominal Ultrasound 1. Renal Cortex 2. Pelvicalyceal System 

3. Renal Sinus 4. Liver…………………………………………. 
8 

 
Figure 1.7 : Contrast-Enhanced MR Image; 1-Cortex 2- Medulla 3-Pelvis… 9 

    
Figure 1.8 : CT Kidney Image………………………………………………. 10 
    
Figure 1.9 : MR Image; 1- Liver 2-Renal Column 3-Muscles………………. 11 
    
Figure 1.10 : Challenges of Kidney MRI Enhancement (different organs 

overlapped in medical image) …………………………………. 
 

14 

Figure 1.11 : Challenges of Kidney MRI Active Contour Model Segmentation 
(several neighboring tissues have similar intensities) 
…………………………………………………………………… 

14 

    
Figure 1.12 : Challenges of Kidney MRI Edge Based Model Segmentation 

(Non-uniform shape of the organs with missing lines, edges, 
boundaries) 
 

15 

Figure 2.1 : (A) Original Image (B) Histogram…………………………….  19 
    
Figure 2.2 : Different Modalities for Medical Imaging……………………… 20 
    
Figure 2.3 : Major Issue Related to The Medical Images…………………… 21 

 
Figure 2.4        : Kidney Image Enhancement Challenges………………………… 32 
    
Figure 2.5 : Motivation for the Proposed Work on Kidney Segmentation……. 53 

Univ
ers

iti 
Mala

ya



xiii 
 

Figure 2.6     : Challenges of Kidney Boundary Detection……………………… 57 
    
Figure 3.1 : 0General Flow Of The Proposed Methods……………………… 68 
    
Figure 3.2 : Sample from Dataset-1 Which Consist 230 MRI Images Collected 

from A Hospital in Saudi Arabia……………………. 
73 

    
Figure 3.3 : Sample of Ground Truth for Dataset-1………………………… 73 
    
Figure 3.4 : Sample from Dataset-2 Which Consists Of 20 Images Collected 

from Wikimedia Commons as Standard Dataset………………. 
74 

    
Figure 3.5 : Sample of Ground Truth for Dataset-2………………………… 75 
    
Figure 4.1 : Contrast is Increased after Enhancement ……………………. 80 
    
Figure 4.2 : The Result of Proposed Enhancement Model on Different Kidney 

Images…………………………………………………... 
81 

     
Figure 4.3 : Determining the Value for α with the average BRISQUE Measure  84 
    
Figure 4.4 : Enhancement Results of The Proposed and Existing Methods…... 87 
    
Figure 4.5      : Histogram for Enhancement Results of the Proposed and Existing. 

Methods Where X Line Refer to Gray Level and Y Line Refer to 
Pixel Count 

89 

    
Figure 5.1 : Low Contrast Input Image………………………………………. 

 
100 

Figure 5.2 : Segmented Image Using the Proposed Algorithm…………….... 
 

100 

Figure 5.3 : Determining the Optimal Value for The Alpha to Segment the 
Kidney Images By Varying Fractional Power Α And Calculating 
Mean Accuracy……………………………………....................... 

103 

    
Figure 5.4 : 

 

Determining the Number Optimal Iterations for Kidney 
Segmentation for Dataset-1 And Dataset-2 By the Proposed 
Method……………………………………………………………  

103 

    
Figure 5.5 : Examples of Kidney Segmentation Using the Proposed Method 

for Dataset-1……………………………………………………. 
105 

    
Figure 5.6 : The experimental results of the proposed and existing models for 

kidney segmentation dataset1. (A) Input images, (B) Hasan et al. 
(C) Chan et al. (D) Li et al. (E) Ibrahim et al. (F) Proposed Method 

106 

Univ
ers

iti 
Mala

ya



xiv 
 

Figure 5.7 : Example of Kidney Segmentation Using the Proposed Method for 
Dataset-2……………………………………………………. 

107 

    
Figure 5.8 : The experimental results of the proposed and existing models for 

kidney segmentation. (A) Input images, (B) Hasan et al, (C) Chan 
et al, (D) Li et al, (E) Ibrahim et al, (G) Proposed Method 

108 

Figure 6.1 : Samples of MRI Kidney Image..................................................... 113 
    
Figure 6.2 : Canny Edge Image………………………………………………. 113 
     
Figure 6.3 : Label Object Sample Example 1………………………………… 114 
    
Figure 6.4 : Label Object Sample Example 2………………………………. 114 
    
Figure 6.5 : Object Centroid Example 1……………………………………… 115 
    
Figure 6.6 : Object Centroid Example 2……………………………………… 115 
    
Figure 6.7 : The Result of Proposed Segmentation Model on Different Kidney 

Images……………………………………………………………. 
116 

    
Figure 6.8 : Examples of Kidney Segmentation Using the Proposed Edge-

based Method for Kidney segmentation…………………………. 
119 

    
Figure 6.9 : Samples of Kidney Segmentation Using Proposed Edge-Based 

Method on Dataset-2 
120 

    
    
Figure 6.10 : The Comparison results between the two proposed segmentation 

methods using dataset1 (A) Input images, (B) Ground Truth, (C) 
Proposed segmentation1, (D) Proposed segmentation2 

122 

  
 

 

Univ
ers

iti 
Mala

ya



xv 
 

LIST OF TABLES 

Table 2.1 : Overview of Active Contour Segmentation Method…………...   39 
    
Table 2.2 : Overview of Level-Set Segmentation Method…………………   49 
    
Table 2.3 : Overview of Edge Based Model Segmentation……………….   55 
    
Table 4.1 : Histogram Flatness (HFM) and Histogram Spread (HS) 

Measures for Test Image of Figure 4.1 
…………………………………………………………………… 

  82 

    
Table 4.2 : The Enhancement Performance of the Proposed and Existing 

Methods 
  92 

    
Table 5.1 : Performance of The Proposed and Existing Methods for Dataset-

1………………………………………………………................. 
109 

    
Table 5.2 : Performance of The Proposed and Existing Methods for Dataset-

2…………...................................................................................... 
110 

    
Table 6.1 : Perform of The Proposed and Existing Methods for Dataset-1… 121 
    
Table 6.2 : Performance of the proposed edge-based method for kidney image 

segmentation on Dataset-2…………………………………………121 
 

Table 6.3 : The Comparison results between the two proposed segmentation 124     
methods using dataset-1 …………………………………………… 

   
Table 6.4 :   The Comparison results between the two proposed segmentation 124 

methods using dataset-2 ………………………………………… 
 

 

 

 

 

 

 

Univ
ers

iti 
Mala

ya



xvi 
 

LIST OF SYMBOLS AND ABBREVIATIONS 

ACM : Active Contour Methods 

ADPKD :  Autosomal Dominant Polycystic Kidney Diseases 

AFDA : Adaptive Fractional Differential Algorithm 

AIV : Adjust Intensity Values 

AKI : Acute Kidney Injury 

BEAS :  B-Spline Explicit Active Surfaces 

BRISQUE : Blind/Reference Less Image Spatial Quality Evaluator 

BT : Binary Tomography 

CADs : Computer Aided Diagnosis Systems 

CCA :  Connected Component Analysis 

CCA : Connected Component Analysis 

CEUS : Contrast-Enhanced Ultrasound 

CKD : Chronic Kidney Disease 

CLAHE : Contrast Limited Adaptive Histogram Equalization 

CNGGVF : Component-Normalized Generalized GVF 

CS : Compress Sensing 

CT : Computed Tomography 

CV :  Chan-Vese 

DCE-MR : Dynamic Contrast Enhanced MR 

DRLSE : Distance Regularized Level Set Evolution 

DSC : Dice's Similarity Coefficient 

DW-MRI : Diffusion Weighted Resonance Imaging 

DWT : Discrete Wavelet Transform 

EM : Expectation Maximization 

Univ
ers

iti 
Mala

ya



xvii 
 

ET : Electron Tomography 

FCM : Fuzzy C Mean   

FN : False Negative 

FR  : Full Reference 

G&DVF : Gradient And Direction Vector Flow 

GFR :  Glomerular Filteration Rte 

GMM : Gaussian Mixture Model 

GVC :  Gradient Vector Convolution 

HISTEQ : Histogram Equalization 

IQA : Image Quality Assessment 

JSC : Jaccard’s Similarity Coefficient 

LFE : Local Fractional Entropy 

LFML : Local Fractional Mittag-Leffler 

LFMLF : Local Fractional Mittag-Leffler’ Function 

MGRF : Markov Gibbs Random Field 

MRI : Magnetic Resonance Imaging 

MSTV : Maximally Stable Temporal Volume 

NIQE : Natural Image Quality Evaluator 

NLTV  : Non-Local Total Variation 

NR : Non-Reference 

NSS : Natural Scene Statistics 

PCs :  Principle Component 

PKD : Polycystic Kidney Disease 

ROI : Region Of Interest 

RR : Reduced Reference 

SGVF :  Sigmoid Gradient Vector Flow 

Univ
ers

iti 
Mala

ya



xviii 
 

SRAD : Speckle-Reducing Anisotropic Diffusion 

SSM : Statistical Shape Model 

SVD : Singular-Value Decomposition 

SVM  : Support Vector Machines 

TE  :       Echo Time  

TKV                 : Total Kidney Volume 

TN : True Negative 

TP : True Positive 

TR : Repetition Time  

UI : User Interaction 

US : Ultrasound 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

iti 
Mala

ya



1 
 

CHAPTER 1: INTRODUCTION 

 

1.1 Background 

This chapter presents the motivation for this work. In particular, it discusses the 

background, importance of medical imaging, need of kidney imaging, the statement of 

research problem with questions, and objectives, following by scope of the research.  

The kidneys are vital body organs that filter and remove waste products from the 

blood. They are retroperitoneal organs situated close to the centre of the back and below 

the rib cage. One kidney is located on each side of the spine. Every year, many people in 

developing countries are diagnosed with kidney diseases because of hypertension, 

diabetes mellitus, and glomerulonephritis. 

The early diagnosis of diseases and disorders is crucial because the impedance of 

kidney function can be life-threatening. Various types of abnormalities such as renal 

cysts, renal calculi, and renal infections are related to the renal system. 

The two most common kidney diseases are acute kidney injury (AKI) and chronic 

kidney disease (CKD), with a worldwide increase of 0.5%–0.7% and 8%–16%, 

respectively (Bellomo, Kellum, & Ronco, 2012; Jha, Garcia-Garcia, & Iseki, 2013; 

Remuzzi, Benigni, Finkelstein, & Grunfeld, 2013). These diseases leading to kidney 

failure, mortality, and several other complications. 

The use of the total kidney volume (TKV) for disease diagnosis can help to determine 

treatment and intrusive diagnostics. The kidney volume is calculated from the outer 

dimensions of the kidney using the ellipsoid method. 

A typical computer-aided diagnosis (CAD) system has four basic components, as 

shown in Figure 1.1, namely, the image pre-processing, image segmentation of the region 

of interest (ROI), image feature extraction, and classification of the segmented ROI. 

Image enhancement is the first component of a CAD system. The enhancement part 
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directly affects the output of the second part, that is, the segmentation. The output of a 

CAD system is related to the previously mentioned components and their adaptations. 

Therefore, the image enhancement component must be accurately determined for a 

specific problem (such as noising, low-contrast image). 

 

 

 

 

 

 

 

 

Image enhancement or enhancing the quality of original images is a fundamental step 

in improving the edge details of kidney images acquired from low-contrast MRI. Figure 

1.2 displays an example of low- and high-contrast MRI kidney images. A good selection 

of enhancement techniques can extensively improve the accuracy of a CAD system. 

 

 

 

 

 

 

 

 

 

 

  

Low contrast MRI kidney image 
(brisque =40.46) 

High contrast MRI kidney image 
(brisque =15.730) 

Figure 1.2: Sample of Low- and High-Contrast MRI Kidney 
Images 

Figure 1.1: Four Basic Components of the Computer-Aided Diagnosis 
System (CAD)  

CAD system 
component stages

Pre-processing Segmentation Feature 
Extraction Classification

Univ
ers

iti 
Mala

ya



3 
 

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) (Mittal et al., 2012). 

A lower BRISQUE value means that a given image has a better perceptual quality. This 

work considers poor-quality (low contrast) images affected by geometrical 

transformation, distortion, noise, and different modalities in capturing images for 

enhancement and segmentation. Therefore, to confirm poor-quality images, the proposed 

work uses two quality measures: (i) BRISQUE, and (ii) the naturalness image quality 

evaluator (NIQE). Deciding the threshold value to verify the degree of poor-quality 

images, these two measures are used to estimate good- and poor-quality MRI images 

chosen randomly from different datasets. Based on an experimental rationale, the 

proposed work determines the optimal cut-off threshold(s) for the measures to judge poor-

quality images. 

The precise segmentation of medical images is significant but considered as a 

challenge because of pathological changes and large variations in renal shapes. As such, 

developing an automatic method to extract the ROI of a kidney is difficult because of 

image noise, inhomogeneity, discontinuous boundaries as well as the similar visual 

appearance of neighbouring parts of various structures.  

During kidney segmentation, as shown in Figure 1.3, the precise and effective 

segmentation of kidney edges in medical images is important for many applications 

associated with surgical planning and diagnosis. Effective methods, including the use of 

a low-contrast agent for neighbouring parts, have been applied to overcome kidney MRI 

challenges such as the issue of partial volume, high artefacts and leakage gradient 

response, high signal-to-noise ratio, and intensity inhomogeneity (Chehab & Bratslavsky, 

2016; A. J. Huang, Lee, & Rusinek, 2004; Nikken & Krestin, 2007).   

Automated segmentation systems for different imaging technologies, like ultrasound 

(US) images, computed tomography (CT) images, and MRI, are essential for detecting 

abnormalities through different medical imaging modalities. 

Univ
ers

iti 
Mala

ya



4 
 

 

 

 

 

 

 

 

 

Many popular existing models for the enhancement and segmentation of kidney 

images are mentioned in this section, and the limitations associated with each model are 

given in detail to address the issue of kidney enhancement and segmentation methods. 

 

1.2 Kidney Imaging Applications 

Medical imaging plays an important role in the visual representations process of the 

human tissue and organ functions for the purposes of clinical analysis, diagnosis, and 

treatment. Medical imaging techniques such as magnetic resonance, ultrasound, and 

computed tomography, are important for outlining the human anatomy and its 

physiology, and for identifying potential abnormalities. Furthermore, medical imaging is 

important for follow-ups on diseases that have been already diagnosed and treated.  

Renal imaging is a vital process in clinical assessments of the kidney. Ultrasound (US) 

images, CT images, and MRI are examples of conventional renal imaging procedures 

with explicit attributes that are helpful for extracting data about the anatomy of the kidney 

and its status. Several clinical investigations demand numerous imaging acquisition 

systems to enhance the treatment and diagnosis process (Lima, Rodrigues, & Mota, 2017; 

Pedro L Rodrigues, Rodrigues, Fonseca, & Lima, 2013; Pedro L. Rodrigues, Vilaça, 

Oliveira, & Cicione, 2013). 

  

 
 
 

 

MRI kidney image 

 

MRI segmented kidney image 

Figure 1.3: Sample of Automatically Segmented MRI 
Kidney Images 

Univ
ers

iti 
Mala

ya



5 
 

The kidney participates in the homeostasis of the entire body and controls the acid-

base balance, electrolyte concentration, and extracellular liquid volume. According to the 

National Institute of Health in 2014, 4.4 million (1.9%) of adults were diagnosed with 

kidney disease in the USA (Blackwell & Lucas, 2014), while 50,476 individuals died of 

nephritis, nephrotic disorder, and nephrosis (Xu, Kochanek, & Murphy, 2016).  

The kidney is comprised of four distinct structures with various functions, namely, the 

renal cortex, the renal column, the renal medulla, and renal pelvis (Clapp, 2009) (Figure 

1.4). Different kidney diseases affect various parts of the kidney. For instance, a kidney 

tumour (Siemer, Lahme, Altziebler, & Machtens, 2007) typically occurs in the renal 

cortex and the renal column; hypertrophy (Jun, Xiaodong, & Erping, 2006) may occur in 

the renal column; medullary cysts and kidney diseases (Hart, Gorry, & Hart, 2002) 

generally affect the renal medulla; and the malignant growth of transitional cells, and 

cancer of the ureter and renal pelvis (Lucké & Schlumberger, 1958) may form in the 

region of the renal pelvis. Changes in the volume of various segments may alter different 

renal functions (Gloger, Tönnies, Laqua, & Völzke, 2015). The renal cortical has been 

verified to be powerful biomarkers of renal function in numerous clinical situations 

(Beland, Walle, & Machan, 2010); (Stevens, Coresh, Greene, & Levey, 2006). The 

volume of the renal medulla and the renal cortex is highly interesting for epidemiological 

studies (Gloger, Tönnies, Laqua, et al., 2015); (Mounier-Vehier, Lions, Devos, & 

Jaboureck, 2002). The volume of the renal pelvis should be determined to diagnose renal 

pelvis disease in children (Koff, Binkovitz, & Coley, 2005). In community medicine and 

epidemiological investigations, image information is necessary. Hence, the automatic, 

exact, and productive kidney segmentation has extraordinary clinical benefits, and for the 

evaluation of renal function and morphology (Will, Martirosian, & Würslin, 2014). 
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Figure 1.4: Pixelated Normal Kidney Anatomy1 

 

Various renal abnormalities, such as renal cysts, renal calculi, and end stage kidney 

failure, are related to the renal system. The polycystic kidney disease (PKD), the chronic 

kidney disease (CKD), and the acute kidney injury (AKI) which are the most widely 

recognized ailments that affect the kidney. This disease causes both kidneys to be 

enlarged. 

The seriousness of the renal function disability is related to the shape of the kidneys. 

Typically, the larger the kidney, the more disjointed will be the renal failure (Figure 1.5). 

CKD is a general medical issue with a developing rate in the aging population  (Couser, 

Remuzzi, Mendis, & Tonelli, 2011).  

 

Figure 1.5: Polycystic Kidney Disease2 

 
1 (Image courtesy: cnx.org/content/col11496/1.6/) 
2 http://phil.cdc.gov/PHIL_Images/02071999/00002/20G0027_lores.jpg 
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1.3 Types of Kidney Imaging 

The kidney is comprised of five distinct structures, namely, the renal cortex, renal 

sinus, renal medulla, renal pelvis, and renal parenchyma, and they can be seen and 

assessed through imaging. The US, MRI and CT, are used to produce renal images to 

assess the condition of the kidney. These imaging modalities have unique imaging 

abilities and are utilized for clinical purposes, and therefore, can ideally be used for 

investigations based on their quality of enhancement, segmentation, and non-kidney 

removal components. 

 

1.3.1 Ultrasound (US) 

The US diagnostic radiology technique, also called medical ultrasonography or 

sonography, works at a frequency above the hearing range of humans to produce images 

from inside the body. An ultrasound machine transmits sound waves, which are extremely 

high for hearing, to the human body, and the sound echoes are converted into an image 

called a sonogram. The US images enabling medical experts to utilize each sound and 

visual to evaluate a patient’s health (Bavu, Gennisson, & Couade, 2011). A kidney 

ultrasound is clinically utilized to survey the morphology and size of the kidney (Figure 

1.6). The parenchyma shows up as a hypoechogenic (dark), while the medulla has a lower 

echogenicity than the surrounding parenchyma. The renal sinus and renal pelvis show up 

as large areas in the centre of the kidney. The US modality can recognize stones, tumours, 

and cysts. Kidney diseases, including cystic, hydronephrosis, and nephrolithiasis kidney 

infections, are traditionally assessed through the US method (Noble & Brown, 

2004);(Brown, Rosen, & Wolfe, 1997) instead of other imaging modalities. The US has 

several advantages because it displays great detail without any type of radiation, costs 

less, and provides an examination in real time (Noble & Brown, 2004); (Brown et al., 

1997) . US images, for the most part, have speckle noise, low image quality, artefacts, 
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and low contrast, thereby hampering segmentation. An MR system gives complete and 

useful functional information and an anatomical view of the kidney.  

 

 

 

  

 

Figure 1.6: Abdominal Ultrasound 1. Renal cortex 2. Pelvicalyceal system 3. Renal 
sinus 4. Liver3 

 

1.3.2 Magnetic Resonance Imaging (MRI) 

Magnetic resonance is a medical imaging model that utilizes radio waves plus a 

magnetic field to produce precise images of parts and structures inside the body. MRI 

features remarkably in diagnoses by yielding different kinds of information about body 

structures, and may show problems that cannot be observed through other imaging 

methods (Bottrill, Nicholas, & Long, 2006). MRI can often be utilized to assess the chest 

and abdomen (heart, liver, kidneys, and spleen), blood vessels, bones and joints, breasts, 

abnormal tissues, and organs in the pelvis (Y. Chen, Chen, & Shi, 2013).  

In MRI images, the renal structure and status, such as of the renal medulla, pelvis, and 

renal cortex, can be correctly visualized (Figure 1.7). Renal injuries and tumours can 

likewise be identified in MRI images, and even some renal masses can be recognized. 

Unlike the US, the MRI is unable to sufficiently identify calcifications such as renal 

stones (Chehab & Bratslavsky, 2016) (Nikken & Krestin, 2007). Renal function also be 

assessed by a dynamic MRI with a contrast enhanced features (DCE-MRI), where images 

are progressively produced after a contrast agent, such as gadolinium, has been injected 

into the patient. For investigations into kidney vasculature, the renal tissues are enhanced 

 
3 http://w-radiology.com/abdominal-ultrasound.php 
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by a contrast specialist to enable them be viewed so that their functions can be evaluated 

according to changes in the signal intensity after some time (Nikken & Krestin, 2007); 

(Bokacheva, Rusinek, Zhang, & Lee, 2008) (A. J. Huang et al., 2004). Generally, MRI 

gives the highest spatial resolution with an insignificant risk to patients because radiation 

is not required. In MRI images, a higher delicate tissue contrast is obtained in an 

examination compared to the other imaging modalities. Its drawbacks include costly 

equipment and a low temporal resolution (Chehab & Bratslavsky, 2016); (Nikken & 

Krestin, 2007); (A. J. Huang et al., 2004). 

 

 

 

 

 

 

 

 

1.3.3 Computed Tomography (CT) 

CT, which is also known as CAT scanning, is a medical imaging technique of multiple 

X-ray projections obtained from various sides to create precise cross-sectional images 

associated with regions of the human body. CT images allow medical doctors to obtain 

highly accurate 3-D images of specific areas of the body, such as soft tissues. CT is 

usually the preferred approach for diagnosing numerous cancers types (G.-H. Chen, Tang, 

& Leng, 2008). For the renal anatomy, the data obtained by CT, as shown in Figure 1.8, 

are similar to the data obtained from a renal ultrasound. The renal sinus can be viewed as 

water-dense structures, which show up in CT images with dark regions enclosed by the 

parenchyma. This methodology has a high sensitivity and resolution that enable it to 

Figure 1.7: Contrast-Enhanced MR image; 
1-Cortex 2- Medulla 3-Pelvis 
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identify small lesions and cysts that cannot be typically detected by other imaging 

modalities.  

   

 

 

 

 

 

 

Figure 1.8: CT Kidney Image4 

 

1.4 Research Motivation  

It was noted in the previous section that there are several methods for kidney image 

enhancement and accurate segmentation. This section discusses the motivation for kidney 

image enhancement and segmentation. In other words, the challenges posed by images of 

different structures in the kidney.  

1.4.1 Enhancement of Kidney MRI Images  

Kidney image enhancement becomes challenging because of the issues of low contrast, 

partial volume, high artefacts, leakage gradient response, low signal-to-noise ratio, 

intensity inhomogeneity, and non-uniform image background. Most methods focus on the 

removal of noise to enhance kidney images, and these involve different filtering 

approaches to decrease the noise impact. These techniques are useful for improving the 

whole image but not the local data. Similarly, other techniques address the issue of low 

contrast by using a fractional-based model (Raghunandan, Shivakumara, Jalab, & 

Ibrahim, 2017). However, these techniques are restricted to precise applications, like text 

detection and recognition. Consequently, none of these strategies have addressed the issue 

 
4 https://w-radiology.com/abdominal_ct/ 
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of low-contrast kidney images and investigated a generalized model for enhancing low-

contrast images. Most techniques also utilize global data, not local data, to enhance the 

images. Consequently, a general model should be developed to enhance low-contrast 

MRI kidney images influenced by various factors, such as the MRI system, noise, and 

diseases.  

Nevertheless, the enhancement process may magnify the details in the background 

because of the presence of neighbouring organs and other fine details, thereby making an 

accurate segmentation of the kidney region a challenging task. Therefore, it is essential 

for developing an approach that can accurately segment kidney images.  

1.4.2 Segmentation of Kidney MRI Images  

The internal structure of the kidney is complex and difficult to recognize. Several 

neighbouring tissues or organs, including the renal column, muscles, and liver, have the 

same intensities, as shown in Figure 1.9. The variety of kidney shapes (in terms of length 

and volume) complicates the mechanized recognition and segmentation of the kidney.  

 

  

 

 

 

These limitations pose challenges to segmentation. Different methods of kidney 

segmentation have been observed, and most of these methods explore low-level features, 

such as colour, gradient and edge information, to formulate an energy minimization 

function or cost function to decrease errors between dominant pixels and other pixels in 

the images. None of the methods have been able to adequately address the issues of low 

contrast and degraded images for kidney segmentation. Generally, the methods (Hasan, 

Figure 1.9: MR image; 1- Liver 2-Renal Column 3- Muscles Univ
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Meziane, Aspin, & Jalab, 2016; Chunming Li, Chenyang Xu, Changfeng Gui, & Martin 

D Fox, 2010) use the gradient descent-based energy minimization function in different 

ways. However, this energy minimization function suffers from inherent limitations, such 

as sensitivity to inhomogeneous intensity values. Hence, these methods are inadequate to 

address issues associated with kidney segmentation.  

Furthermore, it has been observed that there are methods for segmenting kidney 

images (Abdulahi & Tapamo, 2015; Qiao, Lu, Su, & Chen, 2016). However, these 

methods use computationally expensive models to achieve results. Therefore, there is a 

demand for the development of an efficient method for segmenting the kidney region in 

enhanced images.  

1.4.3 An Efficient Kidney MRI Segmentation  

The precise and proficient detection of the kidney boundary in low-contrast images is 

considered as the main difficulty in the detection of kidney MRI image edges. The exact 

identification of a kidney shape in medical images with decreased non-kidney 

components to acquire insignificant false edge detection is adequately vital for several 

applications in surgical planning and diagnosis. 

Kidney image edge detection is a significant step in the segmentation procedure 

because the final appearance and nature of the segmented image depend greatly on the 

edge detection technique utilized. Most strategies utilize the Canny edge detection 

algorithm with various filters. However, these strategies suffer from inherent limitations 

such as sensitivity to noise and inhomogeneous intensity values (Les, Markiewicz, 

Dziekiewicz, & Lorent, 2018); (Nikolic, Tuba, & Tuba, 2016). In this proposed study, an 

effective strategy was applied to the kidney MRI segmentation model based on the use of 

kidney edge components, while preserving the kidney-segmented edge information from 

low-contrast MRI images. Canny used as pre-processing step for our second proposed 

segmentation method. 
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1.5  Research Challenges 

From the above discussion, it can be noted that the following are the main issues for 

kidney MRI segmentation. Moreover, the kidney image enhancement is challenging with 

respect to contrast, resolution variations and poor quality (low contrast). In addition, 

inhomogeneous pixel values make the enhancement more complex and challenging. In 

the same way, the accurate kidney region segmentation using enhanced images is another 

challenge due to the presence of other organs and the structure of the kidney. Therefore, 

the proposed work in this thesis is focused on the above two issues as its main challenges. 

The specific challenges based on the existing methods in the literature are listed in the 

subsequent sections on the respective topics (Chapter 2).  

 

1.5.1 Challenges of Kidney MRI Enhancement 

The challenges in previous works (Figure 1.10) 

1- There is no generalized model for kidney image enhancement. Most of the 

developed methods focus on a specific cause and application of kidney image 

enhancement.  

2- Most of the developed methods consider noise to be the main cause of poor kidney 

image enhancement. However, this is not necessarily true for all situations 

because the image can be affected by low contrast, low resolution, blurring and 

poor quality.  

3- A few methods take into account local information for image enhancement. In 

other words, most of the methods that have been developed are aimed at 

enhancing the whole image. This idea does not work for the process of kidney 

images enhancement because the kidney is only a small region of the image.  
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1.5.2 Challenges of Kidney MRI Segmentation - Active Contour Model 

The challenges in previous works (Figure 1.11) 

1- Most of the developed methods has been developed for high-quality images, not 

for poor-quality images.  

2- The methods are meant to address a particular cause, but there is no generalized 

segmentation of kidney model.  

3- The methods do not consider efficiency as the main criterion, but rather are aimed 

at achieving accurate and better results. 

 

 

 

 

 

 

 

 

1.5.3 Challenges of Kidney MRI Segmentation – Edge-based Model 

            The challenges in previous works (Figure 1.12) 

1- The methods were developed using edge information. However, some work 

well for highly contrast images.  

Figure 1.10: Challenge of Kidney MRI Enhancement (Different Organs 
Overlapped in Medical Image) 

Figure 1.11: Challenges of Kidney MRI Active Contour Model 
Segmentation (Several Neighboring Tissues Have Similar Intensities) 

 

Univ
ers

iti 
Mala

ya



15 
 

2- The methods that use edge information are sensitive to background 

complexities, which are not work well for complex background images.  

3- When the shape of the kidney changes, the efficiency of the edge-based 

methods degrades.  

 

 

 

 

 

 

 

 

1.6  Problem Statement 

It can be seen from the list of challenges in the preceding section that, there is a need 

to enhance kidney MRI images to improve the contrast images in preparation for the 

image segmentation step. Also, the segmentation and accurate detection of the kidney 

boundary are necessary to eliminate the unwanted structures of other regions (e.g., renal 

column, muscles, and liver) that share the same properties as the kidney, such as the 

intensity. These problems are regarded as open research issues in image processing. Thus, 

these were the two key issues that were addressed in this thesis.  

 

1.7 Research Questions 

The research questions are: 

1- How to develop a new model for enhancing the fine details of the kidney from 

poor quality Magnetic Resonance Image? 

Figure 1.12: Challenges of Kidney MRI Edge based Model Segmentation 
(Non-Uniform Shape of the Organs with Missing Lines, Edges, Boundaries) 
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2- How to segment the kidney region from the enhanced MRI images which 

contains information of other neighbouring organs and other background 

information? 

3- How to develop an efficient method to segment the kidney region in MRI scans? 

1.8 Objectives   

1- To develop a new method based on local fractional entropy for enhancing the 

quality of images, particularly in the kidney region.   

2- To propose a new method using local fractional calculus for the accurate 

segmentation of the kidney region from enhanced images.   

3- To explore an edge-based kidney segmentation for the enhanced images with 

minimum computational cost.  

1.9 Scope of the Research 

It can be noted from the above discussion that there are several issues regarding kidney 

image enhancement, segmentation, classification, and identification of diseases, 

depending on the application. However, the scope of the proposed work was limited to 

the enhancement of kidney images and the segmentation of the kidney region. This was 

because these two issues are the main factors for achieving better results for the 

classification and identification of diseases. The successful classification and 

identification of diseases depend on the successful enhancement and segmentation of 

kidney images. Therefore, the scope of the proposed work was confined to the two issues 

mentioned above in this thesis.  
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1.10 Thesis Organization 

This thesis organization is as follows:  

Chapter 1 provides an introduction to the proposed methods and the motivation for this 

work. Next, it presents the research background, importance of medical imaging, types 

of kidney imaging, research challenges, problem statement with research followed by the 

objectives and scope of the research.  

Chapter 2 presents a brief literature review of various kidney enhancement and 

segmentation methods for different medical imaging modalities, which are affected by 

major issues related to those medical images. A simple explanation is presented for 

problems in relation to quality, such as de-noising and low contrast, that are encountered 

in most of the images. The fractional differential approach is also described for kidney 

image segmentation, and an overview is given of state-of-the-art segmentation strategies, 

namely the active contour model, level set method, and edge-based method. 

Chapter 3 presents the research methodology, which consists of four phases. Phase 1 

involves the analysis, while the other three phases have to do with the design and 

implementation of the three proposed algorithms for kidney image enhancement and 

segmentation. The structure of each phase, experiment and evaluation is also described.  

Chapter 4 presents a fractional entropy-based method for the enhancement of kidney 

images. The structural description for kidney image enhancement and the experimental 

results (quantitative and qualitative) are introduced in this chapter. Different low-contrast 

kidney MRI images are tested to determine accuracy of the proposed method. Several 

experimental results are described. To evaluate the accuracy of the methods, evaluation 

metrics based on (BRISQUE) (Mittal et al. 2012) and (NIQE) (Mittal et al. 2013) are 

used.  

Chapter 5 presents a fractional-based minimization function for kidney image 

segmentation. The structural design for kidney image segmentation is introduced in this 
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chapter. The proposed segmentation scheme is examined against different datasets to 

evaluate the detection accuracy of the proposed method. Numerous experimental results 

(quantitative and qualitative) are described in this chapter. To evaluate the accuracy of 

the method, evaluation metrics based on the TPR, FPR, Jacquard index, and Dice 

coefficient are used. The proposed method is evaluated on two datasets of images.  

Chapter 6 gives a detailed description of an edge-based method for kidney image 

segmentation. The proposed method is examined against a collected dataset to evaluate 

the detection accuracy of the proposed method. Several experimental results (quantitative 

and qualitative) are described. To evaluate the accuracy of the method, evaluation metrics 

based on sensitivity and accuracy are used.  

Chapter 7 presents a summary of the three novel approaches for enhancing and 

segmenting kidney components by means of an active contour model and edge-based 

method for kidney image segmentation from low-contrast kidney MRI images, together 

with the contributions and limitations of the proposed methods, and recommendations for 

future work. 

1.11 Summary 

This chapter presented the importance of the enhancement and segmentation of kidney 

images and motivation for the proposed research. The challenges faced regarding each 

topic were listed and discussed. Based on the challenges, the proposed work defined the 

problems as the research issues. To find a solution to the problems, the respective 

objectives were defined, and the scope and organization of the thesis were presented.
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CHAPTER 2: LITERATURE REVIEW 

2.1  Background  

The previous chapter highlighted the importance of kidney image enhancement and 

segmentation. In addition, it listed the challenges of image enhancement and 

segmentation. However, the listed challenges should be justified through a review of 

state-of-the-art methods. Therefore, this chapter reviews the existing methods for the 

respective challenges to justify why they remain unsolved.  

2.2  Kidney Image Enhancement  

The aim of this section is to descript the detail of kidney images enhancement. Contrast 

enhancement are used to make images more legible to the human eye. Contrast 

manipulation involves changing the range of values in an image in order to increase the 

contrast. The motivation behind the image enhancement stage is by improving the 

contrast and removing noise. A contrast enhancement method maps the values of the 

intensities of an image to a new range. Figure 2.1 shows a low contrast original image 

with its histogram. In the histogram of the image (Figure 2.1(b)) all the values are 

unevenly distributed throughout the range. 

 

  

 

 

                            

 

  

Figure 2.1: (a) Original Image (b) Histogram 

 

(a) (b) 
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Various image enhancment techniques have been applied in medical imaging. The 

intensity adjustment technique is one of several image-enhancement approaches for 

enhancing the range of intensities in the output image. The low contrast of an image is 

increased by remapping the pixel’s intensity to cover the entire intensity range [0, 250].  

Histogram equalization is a computer image processing method that is used to enhance 

the contrast in an image. It spreads out the most frequent intensity values over the image. 

This strategy, for the most part, expands the global contrast of an image, where its usable 

information is characterised by a lower local contrast to gain a higher contrast.  

Image enhancement is a fundamental step for enhancing the quality of original images. 

Many automated enhancement methods have been applied to different imaging 

technologies to enhance the quality of medical images, and these methods have been 

categorised in this chapter according to the different medical imaging modalities, as 

shown in Figure 2.2.  

 

 

 

 

 

                       Figure 2.2: Different Modalities for Medical Imaging 

Medical imaging is a powerful tool for visual illustrations of the internal organs of the 

human body (James & Dasarathy, 2014). kidney and its internal components can be 

visualized and evaluated through image modalities. 

Images frequently suffer from low contrast, low resolution, noise, and blur, all of which 

affect image quality. For that reason, it is necessary to enhance the images to improve the 

process of segmenting the different components of an image. The proposed work reported 

Medical Imaging 
Modalities

Ultrasound (US) 
Images

Magnetic 
Resonance 

Imaging (MRI)

Computed 
Tomography 
(CT) Images
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in this thesis is expected to enhance and segment poor-quality images associated with the 

abovementioned issues.   

Three systems are used for imaging the kidneys and evaluating their functioning; namely, 

US, MRI, and CT. Each of these approaches has its own imaging capabilities and is used 

according to the purpose of the clinical evaluation at hand. These three imaging techniques 

are especially important in terms of their use in segmentation methods. Image acquisition 

methods affect image quality. Each imaging technique is subject to a specific issue; for 

example, ultrasound images tend to produce low-quality, low-contrast images, and are 

affected by speckle noise; MRI images suffer from low temporal resolution as do CT 

(ionizing radiation) images. Besides these issues, affected areas in such images are subject 

to poor quality due to geometric transformations, resulting in the poor-quality images that 

are considered in this work. To overcome these issues, the image enhancement model 

proposed in this thesis can adapt to properly enhance poor-quality images irrespective of the 

above-mentioned challenges.   

One of the most important concerns is that most of the images suffer from different quality-

related problems, as shown in Figure 2.3. 

The existing image enhancement approaches have been categorised in this chapter 

according to the main goal of image enhancement, as shown in Figure 2.3. 

 

 

 

 

Figure 2.3: Major Issues Related to Medical Images 

 

Most of the images suffer from different quality-related problems, the most important 

of which, according to the literature review, are noising, and low contrast. A simple 

explanation for each is presented below. 

Medical Image 
Issues

Noising Blurring Elimination Low-
Resolution

Low-
Contrast

Low-
Brightness
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2.2.1 Image Noising  

Image noise is unwanted signals in images and is usually an aspect of electronic noise. 

It can be produced by a camera or sensor and scanner.  

a) Magnetic Resonance Imaging (MRI)  

Issues related to noise are also common in MRI. Therefore, suitable methods to remove 

such noise – referred to as ‘de-noising’ – are necessary to enhance the quality of these 

MRI images, as described in the following literature.   

Trinh, et al. (2011) proposed a novel learning method to eliminate Gaussian noise from 

MRI images based on Kernel Ridge Regression. However, this method does not work 

well for different noising degrees. 

Yu & Li et al. (2012) implemented a new pre-processing method utilizing a total 

variation image de-noising model. A new watershed technique for MR renography image 

segmentation was proposed. To achieve smoothing and to improve the contrast in the 

image pre-processing procedure, a total variation model is used as a nonlinear filter. The 

pre-processing step is permitted to enhance and smooth the image, thereby enhancing the 

accuracy of the resulting watershed strategy.  

A. Roy & Maityet al. (2014) suggested that the medical images are caught at low-

measurement spaces in a compressed sensing (CS) paradigm for a different reasons. The 

reconstructed medical images after CS activity have been found to have an uneven force 

intensity of the organs. Some pre-processing task is fundamental for edge enhancement 

before the segmentation process is applied. Morphological tasks, namely erosion and 

dilation, might be utilized to catch the missing edges, shapes, boundary data and so on. 

Morphological tasks were then applied to the recreated MR images to acquire the detailed 

images, which were then added to the previous space. The segmentation was then done 

utilizing fuzzy c-means (FCM) clustering. 
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Kang, Lee, & Yoo et al. (2016) presented a semi-automated approach for kidney 

compartment segmentation of dynamic contrast-enhanced MRI images (DEC-MRI). An 

automatic and effective method for the segmentation of internal renal structures from 

MRI images is still lacking due to the low resolution of MRI images, contrast changes 

and intensity inhomogeneity in each kidney compartment. All of this makes segmenting 

the internal kidney structure a challenge. The presented method involved the following 

steps: 1) pre-processing of image to enhance the renal region; 2) use of connected 

component trees and maximally stable temporal volume (MSTV) for segmenting the 

whole kidney; 3) describing the segmented kidney voxels in an automated way by 

principle component (PC), application of the K-means clustering to the PCs, and labelling 

of the clusters; 4) application of the Otsu thresholding to remove noise and restore the 

kidney voxels that escaped detection. This method requires manual delineation and 

parameter settings and was designed to segment the kidney shape from a 2D ultrasound. 

It is not easy to segment the kidney shape from 3D ultrasound images by applying this 

approach.  

b) Computed Tomography (CT) 

Bhandari, et al. (2011) applied CT-image de-noising using a comparative analysis of 

curvelet- based techniques. Although this method performs well in decreasing the noise 

in an image, it is not effective enough for use with low-contrast-affected images.    

Koyuncu, et al. (2017) proposed three algorithms for the denoising and enhancement 

of abdominal CT images. First, block-matching and a 3D filtering algorithm to achieve 

denoising to eliminate Gaussian noise in CT images. Second, the fast-linking spiking 

cortical model to eliminate fat tissues. Third, the Otsu algorithm to remove the redundant 

parts of an image (however, this method considers enhancement as a denoising process). 
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c) Ultrasound (US)  

US images that suffer from the problem of noise were described in the literature 

review Supriyanto, Tahir, & Nooh et al. (2011). Ultrasound images are usually filled with 

noise, and this can sometimes be a challenge to clinicians when it comes to meauring the 

kidney parameters. A segmentation instrument with a programmed recognition system is 

expected to facilitate clinicians or sonographers in completing their task in a shorter time. 

Supriyanto et al. (2011) developed a model that is able to automatically identify the 

centroid of a human kidney. An appropriate algorithm was constructed to handle fuzzy 

and noisy US images and also to recognize the centroid of the kidney. To reduce noise in 

an image, a Gaussian filter was utilized to eliminate small or unwanted objects. Next, a 

texture filter and morphological operator were used for the image segmentation. The 

algorithm failed to distinguish the centroid in some images because of noise in the kidney 

US images. The test outcome demonstrated that the product accomplished an accuracy of 

up to 96.43% in detecting the centroid.  

F. Yang, Qin, & Xie et al. (2012) presented a new method for the segmentation of 

ultrasound (US) images of the kidney by a combination of non-local total variation 

(NLTV) image de-noising, with the distance regularized level set evolution (DRLSE). 

Initially, a de-noised US image is obtained by NLTV image de-noising. Next, DRLSE is 

applied in the kidney division to obtain a binary image. In this case, a black region and 

white region represents the kidney and background, respectively. In the last stage, the 

shape prior is applied to obtain a shape with smooth edges from the kidney shape space, 

which is then utilized to optimize the segmentation outcome of the second step. 

Gungor & Karagoz et al. (2015) proposed a homogeneity map technique to decrease 

speckles in ultrasound images. The technique investigates the gradient data for improving 

the image quality. Also, the technique works as a de-noising filter for the removal of 

noise.  
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B. Li & Xie et al. (2015) proposed an adaptive fractional differential algorithm 

(AFDA) for enhancing medical images. Most medical images have a low resolution, low 

contrast, and significant noise, thereby making diagnosis difficult. The AFDA method, 

which segments edges, utilizes the improved Otsu algorithm and local information to 

process each pixel on the image. However, the method was developed to extract edges 

and enhance them in high-quality images, but not to improve poor-quality images. 

Nikolic et al. (2016) presented an algorithm that is dependent on Canny edge detection 

for the recognition of inner organs in medical ultrasound images instead of using a 

Gaussian filter and median filter for removal noise. However, there is corruption of the 

edges. 

Baselice, Ferraioli, Ambrosanio, Pascazio, & Schirinzi et al. (2018) used an enhanced 

wiener filter algorithm for ultrasound data restoration. The principal focus of the strategy 

is to decrease the impact of speckle noise by investigating the local Gaussian Marko 

random field. Moreover, the strategy adapts the wiener filter to such an extent that it tunes 

its portion to join the edges and preserves with an effective decrease in noise. The 

technique was produced for noise removal, but it does not enhance low-quality images of 

the kidney.  

Most of methods mentioned focused on de-noising and noise removal for the 

enhancement of kidney images. 

 

2.2.2 Low-Contrast Enhancement 

Contrast refers to the difference in intensity between the maximum and minimum pixels 

of an image. Contrast is determined by the difference between colors so that an object 

within an image can be distinguished from another object (Campbell, 1968). 
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a) Magnetic Resonance Imaging (MRI)  

The following literature review describes MRI images that suffer from the problem of 

low contrast. MRI systems use radio waves and magnetic waves to produce images of the 

body’s internal organs. However, the combination of these waves does not guarantee that 

good-quality images will be produced. For this reason, the developed methods also take 

low-quality images into consideration. 

Lausch, Ebrahimi, & Martel et al. (2011) presented a registration algorithm that is 

applied to abdominal dynamic contrast enhanced (DCE) MRI images. This algorithm is 

used to correct the intensity with a conjunction reference image scheme to minimize the 

effects of contrast during a registration performance related to intensity changes. 

However, this method only reduces the non-rigid motion and does not enhance poor-

quality kidney images.  

Min Zhang, Wu, Beeman, & Bennett et al. (2015) proposed efficient small blob 

identification based on local convexity, shape and intensity information. For detecting the 

blob, the technique improves the low-contrast data in the kidney images. It investigates 

the local convexity to enhance information in the kidney MRI images. The use of the 

technique is restricted to specific datasets and applications to enhance the contrast and 

noise removal application, but it does not enhance poor-quality kidney images.  

 

b) Computed Tomography (CT) 

The following literature review describes CT images that suffer from the problem of low 

contrast.  

Hassanpour et al. (2015), proposed a new method for enhancing contrast in poor-

quality CT images. In this method, morphological Top-Hat transforms were used. This 

method can enhance the degree of contrast for different organs that overlap in medical 
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images. However, there is no evaluation metric available to determine the efficiency of 

this method.   

Kallel & Hamida et al. (2017) stated that the performance of medical image processing 

methods, specifically in CT scans, is generally affected by low-contrast quality presented 

by medical imaging instruments. In this research, an advanced adaptive and basic method 

for the improvement of dark images was presented. This methodology is mainly based on 

adaptive gamma correction utilizing changes in discrete wavelet transform (DW) with 

single value decomposition (DWT-SVD). The limitation of this method is that the 

threshold utilized for the contrast must be set manually.  

The article by Les et al. (2018) presented an inventive strategy for distinguishing the 

kidney region in computed tomography images. The method utilizes the examination of 

geometric coefficients and the investigation of brightness in the region conceivably 

involving the kidney. The kidney is physically marked (independently left and right 

kidney). Next, binary masks are made based on the shape of the kidney. Subsequent to 

the overlapping of the binary masks, the focuses that are frequently contained in the 

covered regions are checked. In this manner, the focuses are the beginning stages of the 

kidney acknowledgment calculations. To improve the representation of the kidney, a 

brightness correction is created, followed by geometric coefficients are calculated, after 

that image segmented using canny edge algorithm. However, this method needs user 

interaction to mark the left and right kidney.  

c)  Ultrasound (US) 

The following literature review describes US images that suffer from the problem of low 

contrast.  

According to Rahman et al. (2013), the presence of noise and low contrast in 

ultrasound images makes the detection of the kidney a troublesome and challenging task. 

In this paper, Rahman developed and executed a system that can segment the human 
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kidney from ultrasound images. First, the input image is taken, and restoration is 

performed on that image. By lessening the noise and improving the quality of the image, 

a smooth resultant image is obtained utilizing a Gabor filter. Histogram equalization is 

utilized to improve the image quality. The entire procedure is divided into two stages: 

candidate extraction and pre-processing. The noise in low-contrast images is handled by 

a pre-processing step. After the removal of the noise, a proper segmentation algorithm is 

used to extract the kidney area. For a better outcome, a region-based segmentation is used 

to extract the kidney areas. Finally, refinement is performed to yield the fragmented 

kidney region from the original image. The eliminations for this examination require 

client interaction to decide on the seed point to initialize the segmentation process, and 

the kidney detection based on the intensities may not be reliable due to variations in the 

size and shape of the renal pelvis. 

2.2.3  Fractional Differential Approach     

Fractional calculus is considered one of the numerous models of scientific formalism 

(Butzer & Westphal, 2000). Local fractional calculus is a generalized approach to 

integration and differentiation for functions defined on fractal sets (a fractal is defined as 

becoming a rough or fragmented form that can be broken down into smaller components, 

which can be observed as a smaller backup of the original form). During the last century, 

the notion of applying local fractional calculus from physics and engineering has attracted 

research in other domains. This has strengthened the relationships between the domains 

of fractal geometry and fractional calculus. Local fractional entropy is defined by 

calculating the local probability for each input pixel and multiplying for each pixel to 

enhance it. Fractal and fractional both refer to fundamental problems that arise in all fields 

of science and technology; fractals are geometrical objects with a non-integer dimension 

while fractional are the non-integer order of differential operators, as a result, the fractal 

falls within the realm of fractional calculus. 
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      L'Hopital in 1695 pondered the importance of ⅆ
𝑚𝑓(𝑥)

ⅆ𝑥𝑚
 for m = 1/2 and, until the half 

of the nineteenth century (Butzer & Westphal, 2000). More recently, fractional calculus 

has been incorporated into the fields of anomalous diffusion, turmoil, polymer science, 

biophysics, and field hypothesis (Agrawal, 2002; Frederico & Torres, 2007; Herrmann, 

2008). The idea behind the definition of a fractional derivative is to find an operator that 

generalizes the equation. Entropy measures the pixel intensity levels randomness, which 

reflects the complexity of image texture distribution in image. 

The perception that the Shannon entropy can be characterized from the equation,  

𝑆 = 𝑙𝑖𝑚
𝑡→−1

ⅆ

ⅆ𝑡
∑�̅�𝑖

𝑡

𝑖

                                                                       2.1 

where pi is the probability opened the likelihood of characterizing a new entropy function. 

Specifically, (Frederico & Torres, 2007) called attention to the fact that the Tsallis entropy 

can be communicated in an identical manner as the condition 

                                             𝑆 = 𝑙𝑖𝑚
𝑡→−1

𝐷𝑞
𝑡∑𝜌𝑖

−𝑡

𝑖

                                                                        2.2 

where the operator 𝐷𝑞𝑡  is known as the Jackson derivative, q derivative defined as:   

                                       𝐷𝑞𝑡 = 𝑡−1
1−𝑞𝑡𝑑∕𝑑𝑡

1−𝑞
                                                                             2.3 

Jackson derivative plays important role in quantum groups (Jackson, Fukuda, Dunn, & 

Majors, 1910). Since the Jackson derivative assumes the significant role of detailing the 

non-commutative analytics, therefore, it is normal that quantum gatherings (Ubriaco, 

2001) may likewise play a significant role in the Tsallis formalism. Another types of 

entropy have been characterized with the utilization of variations of the Jackson q-

subsidiary. (Borges & Roditi, 1998; Johal, 1998) proposed another thermos statistics that 

is dependent on the q-examination (Lavagno, Scarfone, & Swamy, 2007) and 

speculations of the Tsallis entropy.  
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G. Huang, Xu, Chen, & Men et al. (2015) proposed a new image enhancement 

algorithm that uses a fractional differential to enhance the edge information of an image. 

A type of filter that is dependent on the non-integer fractional differential is applied. The 

main idea of this method is to adjust two parameters of the filter, namely, the step and 

order, within a certain range. This method improves the noise-free state of the image and, 

at the same time, retains the contour data of the colour image. However, the data between 

neighbouring pixels are ignored during the image sampling 

Ghatwary, Ahmed, & Jalab et al. (2015) presented an approach for tumours liver 

detection by classifying them through the fractional differential enhancement of CT 

images. The fractional differential is applied to improve the CT images of the liver by 

enhancing the texture and edge features. The detection process relies on the differentiation 

of normal tissues from abnormal tissues.  

Al-abayechi, Jalab, Ibrahim, & Hasan et al. (2017) presented an image enhancement 

method based on a fractional Poisson for the segmentation of skin lesions using the 

watershed transform. The identification of abnormalities is done by the newly proposed 

segmentation method, which depends on a new filter to smooth the input images based 

on the fractional Poisson. The noise is eliminated, and a smooth image is obtained in the 

pre-processing step. Watershed and morphological operations are used to segment the 

skin tissue area. 

Guan, Ou, Lai, & Lai et al. (2018) presented a novel image enhancement for medical 

images based on a fractional derivative and directional derivative. The method enhances 

the texture information for both high-frequency and low-frequency information by 

considering the surrounding data (such image edge, texture and clarity) and the structural 

features of various pixels, and takes into account the directional derivative framework 

when constructing the masks. In the first step, a mathematical system is proposed. 
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Secondly, the gradient of the image is calculated, and the mask is constructed with various 

values. Thirdly, to evaluate the image quality is selected.  

Cao et al. (2018) presented an image enhancement using on fractional calculus. A 

fractional differential is used to enhance the texture information and remove noise, and a 

guided filter is used to estimate the illumination component to ensure the occurrence of 

fewer phenomena. A contrast limited adaptive histogram equalization is used to improve 

the contrast of the image.  

The limitation of most of the methods mentioned is the use of global enhancements to 

enhance the images but not local enhancements, which are more effective due their ability 

to improve the regional contrast. The MRI kidney images usually contain different pixels 

quality in different regions; so that no need to consider local information, namely, the 

pixels in kidney edges, for enhancing the edge details in kidney images. 

 

2.2.4 Motivation of Kidney MR Enhancement  

With lifestyle changes come several health problems in equal proportion. New devices 

and frameworks have been developed to provide solutions to such problems. In some 

instances, despite the support of new systems in providing solutions for diseases, new 

problems are also being introduced because of complex situations (i.e., kidney diseases) 

and inherent limitations of the system function (Helena R Torres, Queirós, & Morais, 

2018). For example, in kidney segmentation an MRI system generates a low-contrast 

image initially while scanning the body. Although the system generates a good-quality 

image after a few scans, it is difficult to predict the exact time and image number needed 

to obtain the desired quality. Accordingly, finding quality images involves laborious and 

time-consuming processes. Common diseases, including AKI and CKD, influence the 

shape of the kidney (Helena R Torres, Sandro Queiros, et al., 2018) because of swelling 
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of the neighbouring tissues of the kidney. Consequently, kidney enhancement has become 

a more complex and challenging task. 

  

 

 

(a) Input low-contrast 

kidney image 

(b) AIV (Gonzalez, R. 

Et al. 2012) 

(c) CLAHE (Gonzalez, R. Et 
al. 2012) 

 

   

(d) HISTEQ (Gonzalez, R. 

Et al. 2012) 

(e) Riesz Fractional 

(Raghunandan, 

Shivakumara, Jalab, & 

Ibrahim, 2017) 

(f) Proposed 

 

 

 

Figure 2.4: Kidney Image Enhancement Challenges  

 

Figure 2.4(a) shows a low-contrast image created by the MRI system in which the 

kidney pixels and other tissues appear to be similar. Figure 2.4(b) presents the results of 

a method to adjust the intensity values to a specified range (AIV) (Gonzalez, Woods, & 

Eddins, 2012b). Figure 2.4(c) illustrates the results of a contrast limited adaptive 

histogram equalization (CLAHE) (Gonzalez, Woods, & Eddins, 2012a); Figure 2.4(d) 

shows the results of the histogram equalization (HISTEQ) (Gonzalez et al., 2012a). 

Figure 2.4(e) reveals the result of the Riesz fractional method (Raghunandan et al., 2018). 

Figure 2.4(f) displays the results of the proposed model.  
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In the strategies in Figure 2.4, the AIV, CLAHE, and Riesz fractional techniques did 

not enhance the edge details of the kidneys in comparison to the input image, whereas 

HISTEQ improved the details of the kidney edges and other areas in the image. However, 

the proposed model increased the contrast between the background and kidney edges. 

Thus, the edge details of the kidney boundary were sharpened. HISTEQ, AIV, and 

CLAHE are classical strategies that are used as a basis for developing new methods (Hart 

et al., 2002). However, such strategies are great when a full image is to be enhanced. The 

Riesz fractional technique (Raghunandan, Shivakumara, Jalab, & Ibrahim, 2018) is useful 

for improving low-contrast text images but not kidney images. As a result, the existing 

strategies used global enhancing which is not applied for kidney images which contain 

different levels of pixel intensity. Accordingly, there is a necessity to develop a new 

method that uses the local information for improving edge details in MR images of the 

kidney.  

2.3 Kidney Image Segmentation  

In poor-quality images, the values of pixels of the kidney appear as highly similar to 

those of other bodily tissues; this means that the differences between such pixel values 

become difficult to determine. For this reason, image segmentation may not provide 

acceptable results due to the poor-quality images produced. This motivated us to propose 

an enhancement method to increase the contrast between the tissues of the kidney 

boundaries and other bodily tissues. This allows us to produce detailed images with 

sharpened edges, and this occurs when there are small changes in the intensity values that 

indicate the edges of the kidney in the image differences. On this basis, this image 

enhancement approach will be used in our proposed segmentation method.   

One of the most significant topics in image processing and analysis is image 

segmentation. The objective is to slice an image into various segments and discrete areas, 

which is a significant initial step towards the analysis of the contents of an image. Image 
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segmentation is normally used to find boundaries (curves, lines, etc.) and to locate objects 

in images. It is used to label each pixel in an image (Petitjean & Dacher, 2011; H. R. 

Torres, Queiros, & Morais, 2018). Using different applications and modalities helped to 

show the challenges for kidney segmentation and the limitation also to show our 

motivation to proposing a new model for kidney segmentation from low-contrast MR 

images. 

 

2.3.1 Active Contour Model 

Active contour models can provide smooth contours and close shapes or surfaces to 

targeted objects with sub-pixel precision and have been applied to 2D and 3D image 

segmentations on different models (i.e. MRI, CT, US). These models can be formulated 

under an energy minimization system that is dependent on the hypothesis of surface 

development and geometric streams. A principal active contour model proposed by 

Kichenassamy et al. (1996) is known as the snake model because of the presence of 

contours. It can be effectively applied to manage a wide variety of computer vision 

applications. The snake model is described under the influence of image forces. Internal 

forces control the bending attributes, while image forces, for example, the gradient, serve 

to push the snake toward the image features.  

The interior bending energy of the spline is defined as follows: 

                                      𝐸𝑖𝑛𝑡 = 𝛼(𝑠)|𝑣𝑠(𝑠)|
2 + 𝛽(𝑠)|𝑣𝑠𝑠(𝑠)|

2                                                 2.4  

Where 𝑣, vertices and the coefficients,  and  are weighting parameters control the active 

contours, can be utilized to control the coherence attributes of the snake by changing its 

versatility and unbending nature. The application of this essential model is limited 

because of contour initialization. Berger (1990) was the first to essentially employ 

parametric models in the analysis of medical images to segment objects in 2D images. Be 

that as it may, this classic snake gives the precise area of the edges only if the initial 
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contour form is given adequately close to the edges, since they utilize only local data 

along the shape. This limitation demonstrates that essentially the snake alone is unable to 

serve the motivation behind a precise segmentation, and further adjustments and 

extensions are needed. (Cohen, 1991)  merged an expansion force in the original snake 

model to stay away from local minima solutions, i.e., the bend ignores edges, and stops 

only if the edge is strong. However, this method does not work effectively for images 

with weak edges. Cohen & Cohen et al. (1993) utilized an interior expansion power to 

extend the spurious edges of the snake model. However, the snake method has a poor 

range of capture (less sensitive movement towards the real edges). Poon, Braun, & Fahrig 

et al. (1994) proposed an algorithm to limit the energy of the active contour model by 

utilizing simulated annealing. This technique improves the range of capture; however, 

noise and other image artefacts can cause incorrect districts or boundary discontinuities 

in items recovered by this strategy. 

Erdt & Sakas et al. (2010) proposed a novel method for segmenting kidney images 

obtained. The global and local deformations of the kidney shape used to obtain the image 

segmentation. The shape of the model is adjusted in the global deformation, while 

protecting the global shape of the kidney. Moreover, the shape is deformed in the local 

deformation, while constrained utilizing local features. Both the global and local 

deformations are calculated so that the shape that is displayed fits the kidney boundaries. 

Zhu, Zhang, Zeng, & Wang et al. (2010) proposed the gradient and vector flow 

(G&DVF) of the external force, which incorporates the GVF field and prior directional 

data manually given by the client. In (Qin, Zhu, Zhao, Bai, & Tian, 2013), a new external 

force called a component normalized-generalized GVF (CN-GGVF) was proposed, 

which enhanced the location of the concave regions, and the long and thin spaces. 

(Prevost, Mory, & Correas et al. (2012) presented a modified system to segment the 

3D contrast enhanced kidney images. The strategy is focused on two stages: first, the 
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kidney is automatically localized then, the segmentation achieved by maximizing the 

motion of the image gradient through the segmentation boundary. This task is mainly 

challenging because of the partial occultation of the organ. 

Yao, Liu, & Liao et al. (2012) derived an external force sigmoid gradient vector flow 

(SGVF), which has a sigmoid limit before the GVF field is computed from the original 

image. The external force reduces the noise sensitivity and fits to minimize snake 

leakages. The fundamental solution of action is to improve the convergence of the snake 

for therapeutic image segmentation was jointly the work of (Wu, Wang, & Jia, 2013; 

Mengmeng Zhang, Li, Li, & Bai, 2013). 

J. Huang, Yang, Chen, & Tang et al. (2013) proposed an active contour model to 

section kidney images by combining the local data with global shape prior. The local 

force, formed by the MLE of a Fisher-Tippett distribution, is utilized to describe the grey 

dimension, while the dark dimension insights are consolidated with the global 

characteristic of a kidney shape. The shape requirement is acquired by converting the 

segmented contour to a parameterized super-oval. The proposed model, which has two 

sub-problems, is comprehended by an exchanging minimization algorithm. One sub-

problem is obtaining segmented contours for the fixed prior shape, and another sub-

problem is discovering the deformation parameters of the super-ellipse for a given 

segmented shape. The two subproblems can be iteratively settled. A traditional gradient 

descent strategy is used for the parameters of the super-ellipse, while for the contour 

development issue, a fixed super-oval is adopted. Hung et al. (2013) made a convex 

relaxation of the functional and employed the split Bregman strategy to limit it because 

of the L1/L2 character of the convex relaxation. By doing this, the sectioned shape can 

be obtained quickly for a fixed super-ellipse, thereby improving the speed of the entire 

algorithm by the Fisher-Tippett distribution. Huang et al. proposed another active contour 

model to segment ultrasound kidney images. The drawback of this method is that it 
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requires manual interaction to prevent the model from fitting a non-kidney shape. This 

method is designed to segment 2D kidney images, so it cannot be easily extended into 3D 

kidney segmentation image.  

In M. Zhang et al. (2013), a gradient vector convolution (GVC) field was proposed as 

the external force. This force is calculated by convoluting the gradient map of the image 

with a defined kernel. In any case, this method is limited to the segmentation of specific 

anatomical regions, for instance, the cardiovascular region in the left ventricle in MRI. 

M. Zhang et al. (2013) improved the GVF by utilizing a combination of a balloon and 

tangential power. This method is sensitive to a number of parameters.  

Ling Li, Gu, & Wen et al. (2014) presented a segmentation method for kidney MRI 

images utilizing a multiscale geometric active contour model. The active contour methods 

(ACM) by (Caselles, Kimmel, & Sapiro, 1997) be separated into two classes: a parametric 

active shape model and a geometric active shape model. The geometric technique is a 

characteristics model. As a result of its arithmetical completeness, the geometric active 

contour is able to overcome many of the challenges of the parametric active contour. In 

any case, in medical images with heavy structural noise, the progression of the geometric 

active multiscale model will be seriously affected when dealing with this problem as the 

technique results in dimensional observational mode decomposition.  

The main part of external forces was presented by Qin et al. (2013); Wu et al. (2013); 

Yao et al. (2012); M. Zhang et al. (2013); Zhu et al. (2010). The initial snake is set close 

to the targeted boundary to improve the segmentation accuracy, especially in the case 

where the proportion of image clutter and noise is high, for instance, in medical images. 

This inevitably incorporates the manual selection of several initial snake elements. 

Furthermore, they may fail to exactly drive the snake to the wanted boundary around 

weak edges (Y. Wang, Wu, & Jia, 2014). 
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In the paper by Abdulahi & Tapamo et al. (2015), a fast Chan-Vese (CV) with a simple 

shape display and connected component analysis (CCA) was proposed to segment the 

kidney in magnetic resonance imaging (MRI). A connected component analysis is 

performed on the mask acquired from a connected component set to reserve the 

conceivable applicant kidney by applying the associated segment investigation and shape 

prior after the fast CV. This demonstrated that the kidney can be productively outlined 

from the background. The study also compared Otsu’s thresholding algorithm and the fast 

CV strategy. Further, the paper demonstrated that Otsu's adaptive thresholding model is 

better than the quick CV model as far as speed is concerned. 

Evangelin & Suresh et al. (2015) presented a 2D model for the segmentation of the 

full kidney. To demonistrate the model in numerical experiments, a standardized gradient 

and Mahalanobis distance were utilized from the time courses of the segmented districts 

to a training set for image segmentation. The potential of the new methodology was 

exhibited in real MRI information from ten healthy volunteers. This segmentation term 

promotes the time course closeness of the voxels all through the kidney along these lines, 

thereby inferring that this segmentation has a high potential as a DCEMRI model for 

Kidney segmentation. 

Qiao et al. (2016) proposed a new active contour method based on a diffusion stream 

strategy. The gradient vector flow (GVF) is used as an external force within the active 

contour. An adaptive diffusion stream is used, where the external GVF force is redefined 

according to the characteristics of the image. Hence, the active contour model can 

adaptively converge to specific concavities, while preserving the weak edges. 

Additionally, the procedure revolves around a tangent direction diffusion, which 

considers the convex shape of the kidney. An overview of the state-of-the-art 

segmentation strategies is shown in Table 2.1 
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A summary of image segmentation strategies is shown in Tables 2.1, 2.2 and 2.3. A 

few parameters are displayed in the tables, for example, the particular technique utilized 

in every class. The initialization strategy for each technique is also presented. The user 

interaction (UI) required by every strategy is additionally introduced. A segmentation 

method can be classified based on the amount of (UI) user interaction required, where 

(I0) refers to no user interaction required, (I1) initialization of segmentation methodology, 

(I2) region interest for the segmentation process, and (I3) modification contours during 

or after the segmentation method. Finally, the validation and limitations are also shown. 

Table 2.1: Overview of Active Contour Segmentation Method. (ND = not defined)  

Reference Method of 
segmentation 

Method of 
initialization 

UI Validation Limitation 

(Erdt & Sakas, 
2010) 

Surface 
deformation 

To place 
shape model 
in kidney 

 

I1, I3 

 

  

30 Image Does not work 
effectively for 
images with 
weak edges 

(Prevost et al., 
2012) 

 

Active 
contours 

Robust 
ellipsoid 
estimation 

I3 21 
images/ 
64 images 

Noise and 
other image 
artefacts cause 
incorrect 
districts or 
boundary 
discontinuities 
in items 
recovered by 
this strategy 

(J. Huang, 
Yang, Chen, 
Tang, & 
Representation, 
2013) 

Active 
contours 

ND ND - Required 
manual interact 
to prevent the 
model from 
fitting non-
kidney shape 

(Ling Li et al., 
2014) 

Active 
contours  

ND ND - Discover the 
deformation 
parameters of 
the super-
ellipse for 
given 
segmented 
shape 

(Abdulahi & 
Tapamo, 2015) 

Active 
contour 

Initial-
contour 

I1 10 Images Is to get the 
segmented 
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contour for 
fixed prior 
shape, 

(Qiao et al., 
2016) 

Active 
contours and 
adaptive 
diffusion 
flow 

Threshold  

 

I2 - Unable to 
identify the 
kidney shape in 
low quality ct 
images 

 

The active contour method for kidney segmentation has many limitations. Based on 

the above discussion and review, the active contour method does not work effectively for 

images with weak edges, while the snake method suffers from a poor capture range.  Noise 

and other image artefacts can cause incorrect districts or boundary discontinuities in items 

recovered by this strategy. The proposed kidney detection methods will most likely be 

unable to identify the kidney shape in low-quality images. 

 

2.3.2 Level Set Method  

The level set technique presented by (Osher & Sethian, 1988) is a method for 

indicating active contours, and it is widely available in image segmentation. The level set 

method relies on the time, position, some energy functions, and geometry of the interface 

(Osher & Paragios, 2003). The level set function, Φ (x, y) can be created for any input 

image to design the contour.  

The outside and inside regions of the curve are given by the Lipshitz continuous function, 

Φ, with the following characteristics: 

                              {

𝛷(𝑥, 𝑦) > 0    𝑖𝑛𝑠𝑖ⅆ𝑒 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 

𝛷(𝑥, 𝑦) = 0 𝑎𝑡 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 

𝛷(𝑥, 𝑦) < 0 𝑜𝑢𝑡𝑠𝑖ⅆ𝑒 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑜𝑢𝑟

}                                                      2.5 

If the value of Φ changes, some regions which are positive in the original will trurn to 

negative, and some regions which are negative in the original will turn to positive. The 

contours will change position according to the level set funtion value. 
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Equation 2.4 for the level set function, Φ can be written in general form as a non-linear 

partial differential equation :  

 

                                              
𝜕𝜙

𝜕𝑡
+ 𝑣|𝛻𝜙| = 0                                                                            2.6 

In this equation, V is the velocity field, which is known as the speed function for the 

image segmentation part. The value of V depends on the level set function, Φ and the 

image data.  

 

C. Li, C. Xu, C. Gui, & M. D. Fox et al. (2010) presented a distance regularized level 

set evolution (DRLSE) as a new level set definition for image segmentation. The DRLSE 

was applied to the edge-based active contour method and gave a basic narrowband usage 

to drastically decrease the computational cost. The manual initialization used in this 

strategy is refined towards the kidney edges in an automated way.   

The paper by Khalifa, El-Baz, & Gimel'farb et al. (2010) introduced a new work that 

combined a Markov Gibbs random field (MGRF) with a spatial variety of images with a 

mean curvature of the developing contours and its object background map to control the 

map direction and magnitude at every progression.  

Hufnagel, Ehrhardt, Pennec, Schmidt-Richberg, & Handels et al. (2010) presented an 

automated segmentation method for multiple structure data by combining an implicit 

representation of segmentation with a statistical shape model (SSM). The model by 

Hufnagle et al. (2010) is explicitly represented via a shape prior knowledge point-based 

GGM-SSM. Then, the implicit level framework is incorporated with an explicit SSM, 

where the shape of the segmentation is represented by a zero dimension of a higher 

dimensional function.  

Khalifa, Elnakib, Beache, & Gimel’farb et al. (2011) presented a 3D extension of a 

previous 2D stochastic controlling force introduced by (Khalifa et al., 2010) to deal with 
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the 3D geometric model for kidney region extraction from kidney images. The paper by 

(Khalifa, Elnakib, et al., 2011) described another novel and automated 3D segmentation 

method for the kidney from images of the stomach. The proposed 3D stochastic 

controlling force represented the previous 3D shapes, first a demand-intensity model, and 

second, a demand spatial interaction model between the kidney voxels and its 

background. The kidney border is removed from the surrounding stomach tissues using 

the geometric deformable model. The initial shape and appearance features are 

coordinated into a two-level joint Markov-Gibbs random field (MGRF) model of the 

kidney and its background. 

Khalifa, Gimel'farb, El-Ghar, & Sokhadze et al. (2011) presented a new deformable 

model-based segmentation technique to exact the extraction of the kidney from images 

of the stomach. Khalifa et al. (2011) presented a 3D extension of a previous 2D stochastic 

controlling force introduced by (Khalifa, Elnakib, et al., 2011) to deal with an improved 

3D approach for kidney segmentation using a level set-based deformable model. Its 

progression was constrained by a specially organized stochastic speed that represented 

the shape prior and features of the image intensity and spatial cooperation. The shape 

prior is learned from co-aligned 3D kidney data. The current visual appearances are 

described with marginal grey level distributions obtained by dismantling their mixture 

over the kidney data. The spatial interaction efforts between the kidney voxels are 

modelled by a 3D organized translation and rotation variation of the Markov-Gibbs 

random field (MGRF) for “object background" labels with a logically estimated potential. 

In (Khalifa, Soliman, Takieldeen, & Shehata, 2016), the same team enhanced the strategy 

control by utilizing a non-negative matrix factorization technique to consolidate those 

features and also to derive the contour. (Khalifa, Soliman, Dwyer, & Gimel'farb, 2016) 

replaced the deformable model and random forest model, which were joined to the 

previous proposed features.  
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Noll, Li, & Wesarg et al. (2013) presented a programmed kidney detection and 

segmentation algorithm. The methodology uses essential kidney shape data to identify 

the kidney position. Following that, the level set calculation is applied to section the 

identification result. This combined technique may encourage doctors and unpractised 

learners to accomplish kidney identification and segmentation for symptomatic purposes. 

In this technique, the kidney is first identified utilizing an inquiry diagram approach. 

Then, a 3D ellipsoid model and an appropriate binary form are applied. As the last step, 

a level-set refinement and matching algorithm are used to segment the kidney. A 

consistent propagation speed with a defined limitation using a fast matching algorithm is 

used to the increase computational speed. However, this method has a low specificity and 

may wrongly detect other structures.  

According to Lin Li, Ross, & Kruusmaa et al. (2013) because of noise in kidney 

images, these images, as a rule, have a low contrast, with shadows and blurry boundaries. 

Therefore, exact segmentation is challenging. Li et al. (2013) proposed another region-

based level set strategy active contour calculation of images for kidney segmentation. The 

energy function of the calculation depends on the Chan-Vese energy function and 

distance. The image is divided into two sections. The calculation limits the contrast 

between each part and maximizes the distance of the density function between each part 

of the images of a phantom kidney and the real ultrasound medical images utilized for 

that. 

Song, Wang, Liu, & Li, 2015a; H. Wang, Pulido, & Song et al.  (2014) presented a 

segmentation of the renal area based on a two-level set technique. Wang and Song et al. 

(2015) utilized a distance regularized level set evolution procedure to portion the kidney 

boundary, followed by a region-scalable fitting force minimization method to segment 

the kidney. The parenchyma is chosen by subtracting the region from the gross kidney 

Univ
ers

iti 
Mala

ya



44 
 

area. This disadvantage of this framework is that the level set re-initialization results in 

numerical errors.  

Hodneland, Hanson, Lundervold, Modersitzki, & Eikefjord et al. (2014) presented a 

combined dynamic contrast improved magnetic resonance imaging 4D DCE-MR model 

for the simultaneous registration and segmentation of the entire kidney. To use the model 

in numerical experiments, a normalized gradient is used as the information term in the 

registration together with a Mahalanobis distance from the time courses of the 

segmentation location to a training set for the supervised segmentation. The segmentation 

term influences the registration by enforcing a time course similitude of voxels inside and 

outside the kidney. Utilizing the time series information from ten diverse DCE-MRI 

examinations, conceivable and promising outcomes can be obtained, which are 

specifically identified by the smoothness of the voxel time courses and the small deviance 

in the lohexol-measured glomerular filtration rate (GFR). Energy minimization is 

achieved by evolving the contour and moving grid of the deformation.  

Gloger, Liebscher, Tönnies, & Völzke et al. (2014) presented an automated kidney 

MR information segmentation utilizing the shape prior in a specific probability. In this 

research, a variation edge alignment force was proposed to guide the shape prior level set 

segmentation of the boundaries of the outer organs. The edge alignment force was 

developed and tested for an existing 3D level set method to segment the kidney 

parenchyma in MR datasets for an epidemiological study. Furthermore, the existing 

approach was extended to additional parenchyma features of all MR contrasts for 

segmentation. Information on the MR intensities of all the MR contrasts is incorporated 

into probability maps, which are generated through the use of discriminant. Reduction 

techniques combined with a probabilistic Bayesian approach. A method to calculate 

probability maps in proband-specific kidney regions was presented. The most accessible 

MR contrasts were used to create a singular probability map (Gloger et al., 2012), 
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Moreover, a variation plan was used to enhance the boundary force alignment. Another 

improvement was made (Gloger, Tönnies, Laqua, et al., 2015) through the computation 

of a subject explicit probability map. In a comparative work, the procedure was 

additionally connected to allow the segmentation of the kidney parts (medulla, and 

cortex). Tissues expressed in probability maps were joined with fuzzy clustering to 

separate the previous parenchyma into the relevant compartments. In (Gloger, Tönnies, 

Mensel, Völzke, & Biology, 2015), a support vector machine algorithm was joined to a 

Fourier descriptor for the shape features to generate the probability maps  

Shehata, Khalifa, Soliman, & Alrefai et al. (2015b) proposed 3D kidney segmentation 

based on a geometric level-set deformable model from diffusion weighted magnetic 

resonance imaging (DW-MRI). This method combines different image features and has 

the potential to deal with a level set deformable model. The proposed deformable method 

is based on an adaptive prior guided by visual appearance. The level set is obtained by 

integrating the joint Markov-Gibbs random field (MGRF) of the kidney with the 

background. Experimental results showed that better segmentation occurred than in the 

level set. This can be explained by the additional adaptive shape model and the spatial 

features, which enabled the model to perform robust kidney segmentation despite the 

image noise, anatomical differences, and equivalent intensities of the kidney and 

surrounding tissues. In order to validate the performance, a comparison of various types 

of level set systems was made by (Shehata, Khalifa, Soliman, & Alrefai, 2015a). (Liu, 

Soliman, Gimel’farb, & El-Baz, 2015) proposed a similar method where parameter 

estimation was done through the MGRF, integration appearance and shape prior of the 

level set energy function.  

In Song et al. (2015a), a distance regularized level set evolution (DRLSE) method was 

presented to segment the kidney area from 2D ultrasound images. This strategy was 

followed by an area-scable energy minimization. The favorable position for this strategy 
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kept up the consistency for the level set function throughout the evolution. Although this 

strategy has great validity. it requires the interaction of the client to initialize the section 

strategy. 

Marsousi, Plataniotis, & Stergiopoulos et al. (2017) proposed a technique for 

distinguishing and segmenting a 3-D kidney shape using a line training dataset. This fast 

and effective strategy is applied to overcome images explicit problems, namely speckle 

noise, low boundary contrast, partial kidney occlusion, and probe misalignment, which 

limit the use of the solution. This paper offered another shape model called the complex-

valued implicit shape model by consolidating prior information of prepared shapes and 

anatomical learning. After that, the recognized kidney is segmented utilizing a novel 

complex area-based level set methodology. However, there are three drawbacks to this 

methodology. First, the proposed kidney detection will most likely be unable to identify 

the kidney shape in low-quality ultrasound images. Second, the pre-processing module is 

unable to adequately isolate the voxels of the kidney shape from non-kidney voxels. 

Third, the enrolment system fails to fit the kidney shape shown on image. 

Turco, Valinoti, & Martin et al. (2018) proposed a completely automated segmentation 

technique to compute the total kidney volume (TKV) from non-differentiated information 

in patients with autosomal dominant polycystic kidney disease (ADPKD). The proposed 

segmentation technique relies on deformable-models and level-set function development. 

The means as pursued: 1- The scope of the pixel forces in connection to the histogram of 

the kidney zone was investigated. This procedure enables the bones and different 

structures that are not targeted to be concealed. 2- Next, to lessen the noise by keeping 

the edge refinements, a non-local implicit–based channel was performed. 3- A K-means 

methodology was used to group the volumes. The kidney was distinguished in 

mechanically by considering the more noteworthy local regions. 4- Once the level set 

function was initiated, its advancement was guided by the image slope data, which laied 
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out the last renal shapes. 5- The automated strategy was actualized and connected 

manually according to the outcomes. 6- The kidney volumes from the mechanized and 

manual tracings were processed by summing up the results of the region inside the renal 

shape on each image and the thickness of the cut. 7- The understanding between the two 

techniques was assessed utilizing linear regression, and the Dice similarity coefficient. A 

Bland-Altman investigation presented a low bais (- 0.3%) and thin limit of understanding 

(11%), while the Dice coefficient showed a value of 0.91+_0.02, which was thought to 

be very high. This technique was tested on 21 patients. A bigger dataset is required to 

demonstrate the validity of the proposed methodology. Based on the underlying 

outcomes, future investigations should seek to improve the technique for further approval. 

Currently, several different deep CNN models have been proposed: AlexNet, 

GoogleNet, DenseNet, and U-Net (Ronneberger, et al. 2015). These deep CNNs are 

applied in a range of different applications such as object detection, segmentation, and 

image classification. For kidney segmentation, Thong et al. (2018) proposed a kidney 

segmentation algorithm at variable pixel densities by using a convolutional networks 

approach. The method was evaluated using a collected dataset of 79 scans. However, 

while this method achieved accurate segmentation, it required high computation time.  

Sharma, et al. (2017) presented a fully automated CNN made up of different layers, 

which learned features without using any handcrafted features. This model was tested 

using a patient dataset of 244 image acquisitions. However, this method suffered from 

the identification of false positives due to small, isolated noise, which was wrongly 

classified as foreground.  

From the above review of the CNN models of kidney segmentation, it can be observed 

that most of these CNN models are based on the U-Net architecture, which works well 

with certain selected types of kidney images. 
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The problem considered in this thesis is complex as it involves poor-quality images 

affected by several adverse factors such as MRI system issues, noise, and different 

diseases. Therefore, the effect of each of these adverse factors on the images is 

unpredictable. In this situation, there is a need for generalized models that work well 

irrespective of these challenges. The current work is motivated by the challenge of 

proposing models that do not involve deep learning for enhancement and segmentation. 

This is because the performance of such deep learning models depends on the number of 

training samples used and the huge number of images involved in the training process. 

Further, it is uncertain whether the training samples include all the possible cases of the 

images, which limits generalization. In addition, collecting a huge number of images in 

the case of medical imaging is difficult. Therefore, using a deep learning-based model 

may not be robust enough for different datasets and applications compared to hand-

crafted features that include fewer samples to determine the values for the conditions and 

parameters.    

Over the last few years, the fuzzy technique has played an important role in image 

enhancement due to its ability to capture and represent uncertainty in the form of 

membership. Joshi, et al., (2018) proposed a fuzzy inference system (FIS) for enhancing 

contrast in low- resolution images. For each input image pixel value, the input 

membership function (Gaussian) fuzzified these pixels by assigning each pixel to the class 

with the highest membership value. Next, based on the rule IF-THEN, the input image is 

mapped to output. Finally, using the output member function, the defuzzified value 

obtained. However, obtaining image contrast enhancement using these stages is 

computationally expensive.  

Fernandes et al. (2019), presented an adaptable contrast-enhancement technique 

employing fuzzy logic. Fuzzy common sense is relatively effective at handling 

ambiguous and vague data.  Since contrast may also be considered to be a vague term, 
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fuzzy principles can be effectively applied to amplify the distinction of an image. 

Establishing an adaptable fuzzy inferencing system usually determines the pixels of the 

output depending on the contrast measure associated with the input image. This method 

can be applied to images requiring improvement in which excellent high-quality noise 

suppression should be present as well as lower illumination gain will be tolerable. 

However, the above-mentioned methods may not work well for our kidney image 

enhancement task because kidney MRI images are affected by multiple adverse factors 

such as noise and low contrast. In this situation, deriving the fuzzy membership function 

is difficult because poor- quality input images are unpredictable. Therefore, generalized 

models (e.g., Gonzalez, Woods, & Eddins, 2012a; Gonzalez, Woods, & Eddins, 2012b) 

perform better than fuzzy-based models for enhancement in this thesis. This is because 

general methods can deal with different situations while methods developed for a specific 

purpose may not be sufficiently robust for complex images. 

An overview of the state-of-the-art level set segmentation strategies is shown in Table 

2.2.  

Table 2.2: Overview of Level-Set Segmentation Method. (ND = not defined) 

Reference Method of 
segmentation 

Method of 
initialization 

UI Validation Limitation 

(F. Yang et al., 
2012) 

level-set 
(DRLSE) 

(Denominated 
distance 
Regularization 
level-set 
evolution) 

- ND 14 images Lack of 
robustness to 
noisy area 

(Lin Li et al., 
2013) 

Level-set ND ND - The restriction 
for this 
technique it's 
connected on 
21 patients just 
to demonstrate 
legitimacy of 
the introduced 
methodology 
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bigger dataset 
required 

(Noll et al., 
2013) 

Level-set and 
fast marching 
algorithm 

Graph 
searching 

I0 61 images this method has 
low specificity 
may wrongly 
detect other 
structures.  

 
(Song, Wang, 
Liu, & Li, 
2015b) 

DRLSE 

(Denominated 
distance 
Regularization 
level-set 
evolution) 

- 

 

 

I1 

 

10 Images Frame work 
the level set re-
initialization 
caused 
numerical 
errors. This 
technique 
utilizes a 
manual 
initialization, 
which is then 
therefore 
refined towards 
the kidney 
boundary 

(Hodneland et 
al., 2014) 

Level-set and 
Registration 

2D training 
masks 

I1 20 images require client 
interaction to 
intialization of 
section strategy 

(Gloger et al., 
2014) 

(Gloger et al., 
2012) 

(Gloger, 
Tönnies, 
Laqua, et al., 
2015) 

(Gloger, 
Tönnies, 
Mensel, et al., 
2015) 

level set and 
fuzzy 
clustering  

Kidney 
probability 
map 

I0 - 

 

30 dataset 

 

25 images 

 

 

25 Images 

 

This method is 
robust to 
changes in the 
parameterizati
on 

 

(Shehata et al., 
2015b) 

(Shehata et al., 
2015a) 

Level set Estimation 
of MGRF 
parameters 

I2 40 datasets Need to 
Estimate 
parameter  

(Liu et al., 
2015) 

Level set Estimation 
of MGRF 
parameters 

I1,I
2 

50 datasets Need to 
Estimate 
parameter 
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And require 
client 
interaction to 
intialization of 
section strategy 

(Khalifa et al., 
2010) 

Level set Circular 
contour 

I1 21 Images This 
techniques 
were not 
designed to 
deal with low 
contrast 

(Hufnagel et 
al., 2010) 

Level set and 
SSM 
(Statistical 
Shape Model) 

 

To place 
SSW in 
kidney with 
an 
evolutionar
y algorithm 

I0 

  

- Need a prior 
shape 
knowledge 

(Cuingnet et 
al., 2012) 

Template 
deformation 

Regression 
forests 

I0 179 images Overfit for 
dataset used 
with noisy 
segmentation 

(Khalifa, 
Gimel'farb, et 
al., 2011) 

(Khalifa, 
Elnakib, et al., 
2011) 

(Khalifa, 
Soliman, 
Takieldeen, et 
al., 2016) 

Level-set 

 

 

 

ND 

 

 

 

I1 14 datasets 

 

29 Patients 

 

36 datasets 

This 
techniques 
were not 
designed to 
deal with low 
signal to noise 
ratio , low 
contrast , and 
diffusion 
boundaries 

 

From the above discussion and review, the level set methods for kidney segmentation 

have many limitations such as lack of robustness towards noisy areas, and numerical 

errors resulting from the level set re-initialization. These techniques utilize manual 

initialization. Therefore, such methods cannot adequately isolate kidney shape voxels 

from non-kidney voxels. They are also robust to changes in the parameters and are 

designed to deal with low-contrast images. 
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 2.3.3  Motivation of Kidney MR Segmentation - Active Contour Model 

Many popular models have been proposed to address the issues that have been discussed. 

They can be categorized broadly as models that propose a generalized method for the 

segmentation of a region of interest in medical images. For example, an active contour 

model was established to segment brain tumours (Hasan et al., 2016). Ibrahim et al. 

(2016b) proposed a method for segmenting bacterial growth in microscopic images based 

on fractional operators. Since these methods use a generalized idea, they do not perform 

well in segmenting the kidney region from MRI images. The two methods shown in 

Figures 2.5(d) and 2.5(e) failed to segment the kidney region accurately. More robust 

methods for segmenting the kidney region from images have been proposed to overcome 

these limitations associated with active contours and models (Chan, Sandberg, & Vese, 

2000; Chunming Li et al., 2010; L. Wang, Chen, & Shi, 2018) by using a level set 

(Chunming Li et al., 2010). Both models exploit the gradient descent for energy 

minimization in different ways. The gradient-based energy minimization model is not 

robust because of inhomogeneous intensity values and poor image quality. The input 

image in Figure 2.5(a) was affected by low contrast and degradations (i.e. poor-quality 

images). The active contour model (Chan et al., 2000) failed to segment the kidney 

correctly. Poor segmentation results are mainly attributed to the algorithm, which suffers 

from the tuning parameters of the model and local minimum problems. Therefore, models 

such as the Chan–Vese algorithm, which explores the gradient-based energy 

minimization function, may not work well on low-contrast and degraded images. Thus, 

the proposed work introduced a fractional Mittag–Leffler energy minimization function 

for kidney segmentation, which considers the advantages of fractional calculus. Further 

details can be found in the proposed methodology in Section 5.2.   
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(a) Input image (b) Chan et al. (c) Li et al. (d) Hassan et al. (e) Ibrahim et al. 
Figure 2.5: Motivation for the Proposed Work on Kidney Segmentation 

 

2.3.4  Edge-based Method  

A representation of the edges of an image will reduce the amount of information to be 

handled, while holding the basic data about the shape of object in the scene. This 

explanation of an image is easy to incorporate into a lot of object recognition algorithms 

utilized in computer vision alongside other image processing applications. The significant 

characteristic of the edge identification strategy is its ability to extract a definite edge line 

with great orientation, as shown by the increased literature about edge detection that has 

been accessible over the past three decades. 

 Edge detection is a basic tool for image segmentation. Edge detection techniques 

change the original images into edge images, which profit by the grey level progressions 

in the image. In the preparation of the images, particularly in PC visions, the edge 

recognition handles the restriction of critical varieties of a grey level image and the 

detection of the physical and geometrical properties of objects at the scene. It is a basic 

procedure that recognizes the frame of an object, its boundaries, and the background in 

the image. Edge detection is the most common methodology used for distinguishing 

critical discontinuities in intensity values. Edges are neighbourhood changes in the image 

intensity. Edges typically occur on the boundary between two regions. The main feature 

is that such intensities can be extracted from the edges of an image. 

Edge detection is considered as an active research area in which it facilitates a higher 

level of image analysis. There are three unique kinds of discontinuities in the grey level, 
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namely, lines, edges and points. A spatial mask can be used to recognize all three kinds 

of discontinuities in an image. There are many edge detection techniques for image 

segmentation in the literature (Thong, Kadoury, Piché, & Pal, 2018; H. R. Torres et al., 

2018).  

Canny used as pre-processing step for our second proposed segmentation method, for 

this reason we considered Canny edge detection in literature review. A discontinuity-

based edge detection procedure that is commonly used is the Canny edge detection 

technique. This is a standard edge detection strategy that was first introduced by John 

Canny in 1983, and it is still able to outperform many of the newer algorithms that have 

been created. It is an important method for finding edges. It first removes the noise from 

the image before detecting the edges of the image.  

The Canny edge strategy (Canny 1986) attempts to enhance the image edge recognition 

by distinguishing the edges between various areas. The edge strategy has an advantage in 

that it radically reduces the amount of information to be processed, while saving auxiliary 

data about the boundary of the object (Shrimali, Anand et al., 2009). The execution of the 

Canny edge identification depends on a Gaussian filter to not only remove the image 

noise and smoothen the image details, but also weaken the edge data. 

The Canny algorithm process can be broken down into 5 steps: 

• Apply a Gaussian filter to get a smooth image by removing the noise. 

• Calculate the intensity gradient of the image. 

• Apply a non-maximal suppression to the gradient magnitude. 

• Apply a threshold to locate the potential edges. 

• Suppress all the weak edges and keep the strong ones.  

Tomasi and Manduchi et al. (1998) adjusted a bilateral filter to perform edge recognition, 

which is the inverse of bilateral smoothing. The Gaussian domain kernel of a bilateral 
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filter is replaced by an edge location mask, and a Gaussian range piece is replaced by an 

inverted Gaussian kernel.  

Chai et al. (2011) presented a speckle-reducing anisotropic diffusion (SRAD) system 

in the image de-noising portion of the Canny algorithm structure. The proposed technique 

removes speckle noise related to image details. A comparable methodology was presented 

by (Nikolic et al., 2016). However, in this method, diverse procedures and distinctive 

phantom images are used. In this study, Nikolic et al. (2016b) proposed a change in the 

Canny administrator by supplanting the Gaussian filter with an adjusted median filter and 

a weighted dynamic smoothing level.  

Those strategies do not segment the kidney accurately. Thus, the models that 

investigate the Canny edge by using various filters may not function well for low-contrast 

and degraded images. As such, it is necessary to develop a potentially viable strategy for 

a kidney MRI segmentation model based on the use of kidney edge components, while 

preserving kidney-segmented edge information from low-contrast MRI images. An 

overview of state-of-the-art edge-based model segmentation strategies is shown in Table 

2.3. 

 

Reference Category of segmentation Limitation 
(Tomasi & 
Manduchi, 
1998a) 

Canny (adjusted a bilateral filter) Fail to precisely meet the 
desired boundary if the noise 
level in an image is high 

(Shrimali, 
Anand, & 
Kumar, 2009) 

Canny (Gaussian filter) Gaussian filtering not only 
remove image noise and 
smoothers image details, but 
also weakens the edge data. 

(Chai, Wee, & 
Supriyanto, 
2011a) 

Canny (SRAD filter) Not work well for poor quality 
and degraded images 

(Nikolic et al., 
2016) 

adjusted median filter Not function well for low 
contrast and degraded images 

Table 2.3: Overview of Edge based Model Segmentation. 
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There are many limitations to the edge-based segmentation method, according to the 

above discussion and review. It fails to precisely meet the desired boundary if the noise 

level in an image is high, and it does not work well for poor-quality and degraded images. 

In view of the many limitations of the segmentation methods described in the above 

discussion and review, this study was carried out with the aim of proposing a generalized 

and new model for kidney segmentation from low-contrast MR images. 

2.3.5 Motivation of Kidney MRI Segmentation - Edge based Model 

It should be noted that most edge recognition techniques require denoising strategies and 

the enhancement of the resolution of MRI images to decrease the image noise, whereby 

the signal sparse representation is utilized to evacuate unwanted structures in the region. 

The Canny edge detection, which was proposed by John Canny in 1983, is one of the 

standard edge detection strategies. It is mainly used to detect the edges of an image by 

first removing noise from the image. 

The Canny edge detection strategy (Canny, 1986) attempts to illuminate the edges of an 

image by distinguishing them from various areas. The advantage of this strategy is that it 

can be used to investigate images by reducing the proceed information, while saving 

essential auxiliary data about the boundary of the object (Shrimali et al., 2009). However, 

the Canny edge detection strategy may still fail to precisely meet the desired boundary if 

the noise level in an image is high because noise and edges include high-frequency 

components.  

Tomasi and Manduchi et al. (1998) adjusted a bilateral filter to perform edge recognition, 

which is the inverse of bilateral smoothing. The Gaussian domain kernel of a bilateral 

filter was replaced by an edge location mask, and a Gaussian range piece was replaced 

by an inverted Gaussian kernel.  

Chai et al. (2011) presented a speckle-reducing anisotropic diffusion (SRAD) system in 

the image denoising portion of the Canny algorithm structure. The proposed technique 
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removes speckle noise related to image details. A comparable methodology was exhibited 

by (Nikolic et al., 2016). However, in this method, diverse procedures and distinctive 

phantom images are used, which means that a designed object is scanned or imaged in 

the field of medical imaging to analyse, evaluate, and tune the performance of different 

imaging devices. In this study, Nikolic et al. (2016b) proposed a change in the Canny 

main algorithm by replacing the Gaussian filter with an adjusted median filter. 

The literature review of edge detection techniques demonstrated that numerous 

difficulties were encountered in kidney edge detection. The input image in Figure 2.6(a) 

was influenced by low contrast and corruptions. As such, Figure 2.6(b) presents the 

results of the traditional Canny method (Canny, 1986), Figure 2.6(c) illustrates the results 

of the SRAD method (Chai et al., 2011a), and Figure 2.6(d) shows the results of the 

bilateral-Canny method (Tomasi & Manduchi, 1998a). These strategies were unable to 

segment the kidney accurately. Thus, the models that investigated the Canny edge 

strategy by using various filters may not function well for low-contrast and degraded 

images. As such, it was proposed to develop a potentially viable strategy for a kidney 

MRI segmentation model based on the use of kidney edge components while preserving 

kidney-segmented edge information from low-contrast MRI images, in accordance with 

the applied Canny edge recognition calculation and other conditions. 

 

 

 

 

 

 

 

 
(b) (Canny 1986)         (c) (Tomasi and Manduchi 1998) 

(a) Input image 

         (d) (Chai, Wee et al. 2011) 

Figure 2.6: Challenges of Kidney Boundary 
Detection 
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 2.4     Evaluation Metrics  

The progression and quality of medical imaging are essential for disease diagnosis. 

Some MRI images may present distortions during image acquisition, reproduction, pre-

processing, and post-processing, possibly corrupting image quality. As such, image 

quality assessment (IQA) (Barrett, 1990) has emerged as an imperative issue in numerous 

fields and applications such as in image acquisition, compression, transmission, 

enhancement, and segmentation. IQA has become essential for assessing new software or 

hardware of imaging systems. IQA can be divided into two classes: objective and 

subjective evaluation. In an objective evaluation, a mathematical model is used to assess 

image quality, while in a subjective evaluation, image quality is assessed by a medical 

practitioner. Most image quality studies involve task-specific models for assessment and 

arrangement (Barrett, 1990); (Dutta, Ahn, & Li, 2013). The medical image quality is 

largely considered as a function of perceptibility of a specific illness or is causally linked 

to accuracy in diagnosis. Such task-specific model groups can distinguish between normal 

tissues and tumours that exist in the region of interest (ROI). An IQA considers the right 

classification as good image quality and the wrong classification as poor image quality. 

Nonetheless, an IQA of natural images has a distinctive methodology, and numerical 

models are used calculate a score that corresponds to the image quality that is conceivable 

to human judgment. Mathematical models reflect several factors, including contrast (Fang 

et al., 2015), luminance (Mittal, Moorthy, & Bovik, 2012), distortion (Moorthy & Bovik, 

2011), complex measurement of an image (Ye & Doermann, 2012), texture measurement 

statistics (Tang, Joshi, & Kapoor, 2011), image highlights (Mittal et al., 2012), and natural 

scene statistics (NSS) (Mittal et al., 2012); (Moorthy & Bovik, 2011) (Saad, Bovik, & 

Charrier, 2012). Target techniques are additionally grouped into reduced reference (RR), 

full reference (FR) (Mittal, Soundararajan, & Bovik, 2013), and non-reference or blind 
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(NR) techniques (Mittal et al., 2013), depending on the amount of data accessible from 

an original image as a source of perspective: 

• In FR strategies, a whole unique image is utilized as a reference image. This 

technique compares a distorted image with the original image. Some examples are 

mean squared error (MSE) and peak signal-to-noise ratio (PSNR), which are both 

the bases for a mathematically defined image quality.  

• In RR techniques, the whole original image is inaccessible as a reference. Only 

some features about texture or other reasonable descriptive features of the original 

image are given.  

• In blind or NR strategies, the original image is completely inaccessible. The pixel 

domain of a distorted image is used to search for artefacts. 

 

FR and RR strategies require the accessibility of a reference image against the test 

image, classified as Jaccard’s similarity coefficient (JSC) (Jaccard, 1901) and Dice’s 

similarity coefficient (DSC) (Dice, 1945). In numerous applications, the reference image 

is inaccessible, so it cannot be compared with the test image. As such, the application of 

FR-IQA and RR-IQA algorithms is limited, and reliable NR-IQA calculations are 

required. NR-IQA depends on the rule that natural images have certain regular factual 

properties that are quantifiably adjusted by the presence of distortions. This technique is 

suitable for evaluating the nature of an image without a reference image.  

The datasets for this research were collected from two different sources to evaluate the 

performance of the proposed and existing methods. The datasets included low contrast, 

low resolution, noise, complex background, inhomogeneity, and other surrounding 

tissues of MRI images.  
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2.4.1 Image Quality Assessment  

Since no standard dataset for kidney image segmentation available in the literature, 

datasets collected. In order to measure the performance of the proposed enhancement 

model, the research adopted standard and no-reference measures to compare between the 

proposed method and other kidney enhancement methods (BRISQUE),(Mittal et al., 

2012) and (NIQE)(Mittal et al., 2013) methods.  

The BRISQUE, a no-reference image quality measure. The lower value of BRISQUE 

represents a better perceptual quality of an image. A BRISQUE score correlates well with 

the human perception of quality. 

The naturalness image quality evaluator (NIQE) is also a no-reference image quality 

measure. A smaller score of NIQE specifies better perceptual image quality. However, a 

NIQE score does not correlate with the human perception of quality as reliably as the 

BRISQUE score. The NIQE model is not trained using subjective quality scores, so a 

NIQE score does not correlate as reliably as a BRISQUE score with the human perception 

of quality. The BRISQUE model is trained using subjective score opinions.  

The proposed method was independent of datasets and applications. The proposed 

model can be applied to enhance other poor-quality images. Therefore, it can be deduced 

that the proposed model outperforms the existing methods in terms of application, as well 

as the BRISQUE and NIQE scores.  

The standard measures, namely, sensitivity and accuracy, were used to measure the 

performance of the proposed model.  
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2.4.2 Segmentation Assessment  

Sensitivity:  

The sensitivity coefficient was calculated from the results by using a manually segmented 

image. Sensitivity is the percentage of pixels recognized by the algorithm. It is provided 

by the following equation: 

                              Sensitivity= 𝑇𝑃

𝑇𝑃+𝐹𝑁
, where                                                                                       2.7                                                                                  

TP (True positive): number of pixels from A correctly classified like B  

FN (False Negative): number of pixels from A incorrectly unclassified as B  

A: Automatically MRI segmented  

B: Manually MRI segmented  

Accuracy  

Accuracy is the ratio of elements that correctly classify the variable elements, and it is 

calculated as follows: 

                           Accuracy = 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
, where                                                                           2.8 

TP (True positive): correctly segmented region as a kidney  

FP (False positive): falsely segmented region as a kidney  

TN (True negative): correct region detected as non-kidney 

FN (False negative): false region detected as a non-kidney.  

In the assessment of the segmentation process, both sensitivity and accuracy are not 

always significantly relevant because both methods of assessment depend on the 

segmented region. Evaluation is performed based on the segmented region but not the 

size of the region. The numerator and denominator of Equations (2.7) and (2.8) do not 

include the size of the kidney region. The numerator and denominator are simply the 

numeric values of the pixels compared with the ground-truth images under testing. For 

this reason, two additional metrics were used, namely, the Jaccard index and Dice 

coefficient (Hasan et al., 2016). The JSC and DSC were also used to compare between 
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the proposed method (kidney MR image segmentation-active contour model) and other 

kidney segmentation methods (such as active contour methods, level set functions), 

depending on the available ground truth for the input images.  

JSC  

The Jaccard coefficient measures the similarity between two dataset samples and is 

defined as the size of the intersection features divided by the size of the union of sample 

sets.  

JSC (Jaccard, 1901) is defined as 𝐽𝑎𝑐𝑐𝑎𝑟ⅆ(𝐼, 𝐺) = 𝑐𝑎𝑟ⅆ(𝐴∩𝐵)

𝑐𝑎𝑟ⅆ(𝐴𝑈𝐵)
, where                            2.9     

• A: Automatically segmented region. 

• B: Manually segmented region (ground truth) 

• Card (X): Indicates the pixel number in region X  

 

DSC  

The DSC (Dice, 1945) is used to compare the similarity between two data sets: 

automatically-segmented region and manually-segmented region. 

The DSC is defined as 𝐷𝑖𝑐𝑒(𝐼, 𝐺) = 2 ∗ |𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 (𝐴,𝐵)|

|𝐴|+|𝐵|
, where                                 2.10 

A: automatically segmented region  

B: manually segmented region (ground truth) 

The higher JSC and DSC values indicated that the proposed model was good and 

preserved the shape of the kidney. Further, a number of iterations were produced by the 

proposed model for kidney segmentation to measure the efficiency of the proposed 

model. Since the efficiency of the proposed segmentation method measures how fast this 

method can segment the kidney body correctly, this involves time complexity. The time 

complexity of the proposed segmentation method is a function that provides the running 

iteration time for kidney segmentation. Since the above-mentioned measures required 

ground truth, the kidney region had to be segmented manually by the user, where the 
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segmented regions were further verified by a doctor who was an expert radiologist. At 

the same time, the results given by the proposed and existing methods were verified by 

the same doctor to calculate the measures (JSC, DSC). 

2.5  Summary  

This chapter reviewed the methods in relation to kidney enhancement and 

segmentation. Many enhancement and segmentation methods have been proposed for CT 

and MR images. It was noted from the review of the image enhancement and 

segmentation methods that most of the methods focused on a particular application and 

issue. Therefore, it is confirmed that a generalized method for kidney image enhancement 

and an efficient method for kidney region segmentation are still considered as open issues 

in the field of medical imaging.  
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CHAPTER 3: RESEARCH METHODOLOGY 

 

3.1  Background  

The challenges in kidney image enhancement and segmentation were justified by 

reviewing the existing methods for the respective topics. This chapter presents the four 

main phases of the research methodology. Phase 1 presents the requirements and study 

analysis, and the three other phases are representing the design and implementation of 

three proposed algorithms for kidney image enhancement and segmentation. The 

description of each phase is given in the following subsections.  

3.2  Research Phases  

As shown in Figure 3.1, the implementation phase consisted of three methods. The 

first proposed algorithm presented a novel model for image enhancement of low-quality 

kidney MRI images using fractional entropy. The presented model evaluated the 

probability of the pixels representing the edge that was dependent on the entropy of the 

neighbouring pixels, thereby resulting in local fractional entropy. The details of the 

proposed method are discussed in Chapters 4, 5, and 6.  

In the second proposed algorithm implementation, a modified active contour model 

driven by fractional-based energy minimization for kidney segmentation in MR images 

was presented. It consisted of a novel fractional Mittag-Leffler’s function that replaced 

the standard gradient-descent minimization function. The proposed model exploited the 

special property of fractional calculus to preserve the high frequency features of 

processing contour. 

In the third research stage, an algorithm was developed to remove the non-kidney 

components from the segmented kidney MRI images. The proposed algorithm was 
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designed in a way that it was able to remove the non-kidney components significantly, 

while preserving the kidney-segmented edge information in the MRI image.  

The performances of the proposed algorithms were analysed using the (BRISQUE) 

(Mittal et al., 2012) and (NIQE) (Mittal et al., 2013) are used approaches to pre-

processing operations (enhancement operation) and in terms of sensitivity and accuracy, 

the JSC, DSC and MNI were used for the segmentation process.  

This work proposes an enhancement model for poor-quality kidney MRI images 

affected by geometrical transformation and noise. To achieve this, the proposed work 

applied two different quality measures, namely, BRISQUE and NIQE to determine the 

image quality. The measures are estimated for good- and poor-quality images, which are 

chosen randomly from different datasets. To determine the feasible values for the 

thresholds and parameters used in the proposed models for both enhancement and 

segmentation, we randomly chose 80 samples across the datasets for experimentation. 

The experimental results for different low-quality kidney MR images showed that the 

proposed models were effectively enhanced and segmented for removing the non-kidney 

components of low-quality kidney MRI images.  

The main phases of the research methodology are the requirements, and 

implementation. The verification of the proposed algorithms by testing the different 

methods. However, a few stages of each developed scheme were formed within the first 

two steps of the methodological structure. The proposed algorithms were evaluated by 

testing each proposed scheme against two different datasets (i.e. dataset-1, which 

consisted of 230 MRI images collected from a hospital in Saudi Arabia, and dataset-2, 

which consisted of 20 images collected from Wikimedia Commons, as a standard 

dataset). Moreover, the scope was simplified in the requirements phase. The description 

will be in detail in the following chapters.  
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The proposed kidney enhancement and kidney segmentation developed and explained 

in the design phase. 

 

Finally, the proposed algorithms were evaluated against two different datasets, which 

were collected from a hospital in Saudi Arabia and from Wikimedia Commons as a 

standard dataset, and the results were analysed.   

The fractional calculus was used as a pre-processing stage, to enhance the low-contrast 

data. The main advantages of LEF (local entropy fractional) are its capability to detect 

edges through probability and local entropy if an image contains a minimal change in 

intensity values. When the intensity values in an image different, presented the edge 

details becomes easier. As such, when the intensity values change slightly because of 

various factors, including noise, disease, neighbouring tissues, and scanning systems, 

enhancing the edge details can be challenging. The local fractional entropy approach – 

which is inspired by the concept of fractional calculus – was further proposed to improve 

these processes (noise, disease, neighboring tissues), where fractional entropy is a 

generalization of Shannon entropy with fractional power (α). When α=1 the fractional 

entropy will become the Shannon entropy while fractional calculus is a generalization of 

ordinary calculus with fractional power (α). When α=1, fractional calculus will become 

ordinary calculus and fractional entropy does not depend on fractional calculus.Then, 

after the enhancement stage was completed, the research proposed a novel energy 

minimization function called the fractional Mittag-Leffler’s function (LFMLF) for kidney 

segmentation. Inspired by the ability of fractional calculus to handle non-linear problems 

such as inhomogeneous intensity values, poor quality (low contrast) and degradations 

(Al-Shamasneh et al., 2018; Jalab & Ibrahim, 2013, 2015), the research proposed the 

LFMLF for kidney segmentation from MRI images. The main contribution of this study 

from the investigation of the LFMLF is to provide different ways to address the complex 
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issue of kidney segmentation (noise, disease, neighbouring tissues, and scanning 

systems).  

The gradient-descent energy minimization function suffers from inherent limitations 

such as sensitivity to inhomogeneous intensity values. Hence, methods that depend on the 

gradient-descent energy minimization function are not adequate to address the described 

issues associated with kidney segmentation. This limitation drove the motivation of this 

study to model an energy minimization function based on fractional calculus for kidney 

segmentation. 
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Figure 3.1: General Flow of Proposed Methods 
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Next, in the post-processing stage, which was the final stage, an algorithm was 

designed that was able to considerably remove the non-kidney components while 

preserving the kidney-segmented edge information in the MRI image-based Canny edge 

detection, with the application of some conditions, namely, the angle from the centroid to 

the boundary, the distance from the centroid to the boundary, and the shape factor of the 

kidney. The proposed methods (kidney MR image enhancement, kidney MR image 

segmentation-active contour model, kidney MR segmentation edge-based model) were 

evaluated.  

 

3.2.1 Requirements Stage  

The research methodology first three stages (i.e., requirements, system analysis and 

system design) had to be carried out before the proposed algorithms development. The 

first step of the proposed kidney enhancement and segmentation system was the 

requirements phase. The requirements phase was the main stage of each proposed phase. 

This step was comprised of the following activities.  

a) Review the Existing studies: A comprehensive literature review was conducted 

to discover the problems with the enhancement and segmentation of low-contrast 

kidney MRI image schemes. The literature review, which were provided in 

Chapter 2, helped in finding the problem statement, and identifying the research 

objectives. 

 b)  Scope of Selection for Proposed Kidney Enhancement and Segmentation:  

The scope of the research was defined according to the explanation in the literature, 

and the structure of the enhancement and segmentation algorithms proposed by this 

research.  

Univ
ers

iti 
Mala

ya



70 
 

In terms of the application of the proposed algorithms, MATLAB language was chosen 

for the implementation of proposed enhancement and segmentation stages. The proposed 

enhancement and segmentation algorithms were identified to fulfil the following 

requirements: 

1. Must be able to support grayscale and RGB images. A colored image is divided 

into three-channel images; namely, red, green, and blue. Each channel will 

produce a grayscale image. Hence, the proposed algorithm should be able to work 

with colored and grayscale images such as those in the MRI datasets.  

2. Must be able to work on images with different format and dimensions such 2D and 

3D images on different models (i.e. MRI, CT, US).  

3. Must be able to accurately enhance and segment low-contrast MRI kidney images.  

4. Must be robust towards input images different quality factors such as poor quality 

(low contrast), degradations, and contrast variations. 

5. Must be effective for removing non-kidney components from segmented kidney 

MRI images. 

3.3  Analysis Stage  

The suitable solutions to accomplish the scope identified in the requirements stage 

were considered. The result of the analysis phase helped in the construction of the most 

effective algorithms in order to achieve the objectives acknowledged by this research. In 

this section, the data collection for the proposed enhancement and segmentation 

algorithms is described. However, the analysis of this stage depended on the outcome of 

the proposed enhancement and segmentation algorithms. To confirm the results of the 

analysis stage, many experiments were carried out.  

3.3.1 Dataset Collection  

Since no standard dataset for kidney image segmentation available in the literature, 

datasets were collected from two different sources to evaluate the performance of the 
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proposed and existing methods. A hospital in Saudi Arabia was approached to collect a 

dataset of 230 MRI images from different patients. The dataset, called dataset-1 for 

experimentation, included MRI images with low contrast, low resolution, and noise. The 

images had a thickness of 1.7 mm, with dimensions of 256 x 256 pixels. 

For disease identification (such as chronic kidney disease and acute kidney injury), as 

pre-processing steps, our proposed enhancing and segmentation methods are applied to 

poor-quality kidney images, the acquisition of image slices captured in different ways, 

and the capturing procedures do not significantly affect the overall performance of the 

models. Similarly, when images are captured for different image modalities, this also does 

not significantly affect the performance of all the proposed models.    

The medical device used for scanning the MRI images was the MRI-MAGNETOM 

Aera transforms 1.5T economics. The MRI image type used in this research was the MRI 

T1 vibe. The TR (repetition time) and TE (echo time) which are represent the basic pulse 

sequence parameters and are measured in milliseconds (ms). The TR (repetition time) is 

the cycle time between corresponding points, while the TE (echo time) is the time from 

the middle of the first pulse to the middle of the echo. The TR value was 3.4 ms and the 

TE value was 1.3 ms. The thickness of the image was 1.7 mm, and the dimensions were 

256 x 256 pixels.  

 Images from Wikimedia Commons (an open-access repository), consisting of 20 MRI 

images, were also used. This was considered as the standard dataset and was called 

dataset-2 in this experiment. Since the dataset-2 images were collected from unknown 

sources that was made publicly available on the Wikimedia Commons repository for that 

not all parameters exist  (the dimensions of the images were 475 × 512 pixels, the file size 

was 43 KB, and the MIME type was image/jpeg), the images were much more complex 

than the images in dataset-1 due to the presence of a complex background, inhomogeneity 

and other surrounding tissues. In total, 250 images (i.e. 230 + 20 images) were used in 
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the experiment. It was estimated that the two datasets that were considered were adequate 

to evaluate the proposed and existing methods for kidney image segmentation because 

both the datasets had a different nature, which included the possible causes (low contrast, 

complex background, inhomogeneity and other surrounding tissues) of kidney image 

segmentation. The collected images were in the DICOM format. To avoid loss of 

information, the DICOM function in MATLAB 2018b, which is able to export images 

without affecting the quality of the original images, was used to display the images for 

processing. 

3.3.1.1 Ground Truth Data  

The Jaccard index and the Dice coefficient were employed as performance 

measures. A medical expert was contacted to determine the exact kidney in the input 

image, then the kidney regions were segmented manually under the supervision of clinical 

experts in the hospital. An experienced doctor was consulted for the manual segmentation 

of the kidney region. Furthermore, the ground truth was confirmed by two expert 

radiologists with over 20 years’ experience, one of them the head of the radiology 

department from the same hospital where the new dataset was collected. Next, formal 

consent was obtained from the patients to use their MRI scans in this research. Samples 

from the two datasets with the ground truth are shown in Figures 3.2, while Figure 3.4 

illustrates the samples from dataset-1 and dataset-2 to show the structure of the images in 

the datasets. Figure 3.3 and Figure 3.5, respectively, show the ground truth for both 

datasets. It was noticed that these input images were affected by multiple factors such as 

poor quality (low contrast), degradations, and contrast variations, as shown in Figure 3.2 

and Figure 3.4. 
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Figure 3.2: Sample from Dataset-1 Which Consist 230 MRI Images Collected from 
Hospital in Saudi Arabia 

 

 

 

 

 

 

Figure 3.3: Sample of Ground Truth for Dataset-1 
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Figure 3.4: Sample from Dataset-2 Which Consists of 20 Images Collected from 
Wikimedia Commons as Standard Dataset 
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                    Figure 3.5: Sample of Ground Truth for Dataset-2 

 

3.3.2  Hardware and Software Setup  

The experimental results were done using the MATLAB 2018b software using Intel 

Core i5 processor 2.40 GHz and 8 GB memory. A total of 250 experimental images were 

tested. The collected images were in DICOM format.  

 

3.4  Summary  

The methodology was explained in this chapter. Each proposed phase was also 

described. Also, the requirements, analysis, primary design, and implementation, were 

explained.  
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CHAPTER 4: Fractional Entropy-based Method for Kidney Image Enahncement 

 

4.1  Background 

In the previous chapter, the research methodology stages were presented. This chapter 

proposes a new model for kidney image enhancement based on the fractional entropy 

approach. It is true that fractional entropy has the ability to solve complex issues, such as 

finding high-frequency values based on neighbouring information when the image is 

degraded and affected by distortions. This observation motivated the exploration of the 

same model in this chapter, which is organised as follows: In Section 4.2 the proposed 

method is explained, and in Section 4.3, the experimental results are presented.  

 

4.2 Proposed Method  

As mentioned in the earlier chapters, when there is a critical distinction between 

intensity values in an image, it is simpler to enhance the edge information. However, if 

there is a slight change in the intensity values then enhancing the edge details can be 

challenging. Motivated by the strategies developed by (R. Ibrahim & Jalab, 2015; 

Raghunandan, Shivakumara, Jalab, Ibrahim, et al., 2017; S. Roy, Shivakumara, Jalab, & 

Ibrahim, 2016), where fractional calculus was investigated to improve text detection by 

using the local fractional entropy model. 

The general flow of the proposed phases has been explained. As explained previously in 

Chapter 3, this research proposed a kidney enhancement algorithm. The following sub-

sections define the structure of the proposed algorithm. 

  

4.2.1 Local Fractional Entropy  

The proposed model inferred that local fractional entropy is dependent on the pixel’s 

frequency of the input. Subsequently, the presented model improved every pixel, where 

the grey-level changes were unimportant without influencing high frequency details. For 
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a consistent function, φ in [a, b], and for a variable, u in [a, b], the local fractional integral 

is clear defined (X.-J. Yang, 2011; X.-J. Yang, Baleanu, & Srivastava, 2015; X.-J. Yang 

& Srivastava, 2013): 

                                      𝐼(𝛼)   𝜑(𝑢) =
1

Γ(1+𝛼)
 ∫ 𝜑(𝑢) (ⅆ𝑢)𝛼 ,                                                       4.1
𝑏

𝑎
                                                                 

where Γ is the Euler gamma function. The fractional power operator is 0 < α ≤ 1.  

The discrete form of (4.1) is given by: 

                        𝐼(𝛼)   𝜑(𝑢) =
1

Γ(1+𝛼)
    lim
Δ𝑢𝑘→0

∑ 𝜑(𝑢𝑘)(Δ𝑢𝑘)
𝛼𝑛−1

𝑘=0 ,                                               4.2                                                          

where     Δ𝑢𝑘 = 𝑢𝑘+1 − 𝑢𝑘,      𝑢0 = 𝑎.  

The fractional entropies have been recommended by numerous researchers recently (see 

(Machado, 2014; Ubriaco, 2009)) for solving fractional nonlinear issues (see (X.- J. Yang, 

Baleanu, and Gao, 2017; X.- J. Yang, F. Gao, and H. Srivastava, 2017; X.- J. Yang, F. 

Gao, and H. M. Srivastava, 2017; X.- J. Yang, Machado, and Baleanu, 2017). 

The Tsallis entropy, as local fractional entropy, has been observed to improve the 

fractional integral operator. The probability of the pixels in the input image is indicated 

by φ. The Tsallis entropy is characterized as: 

                                               Ε𝛼(𝜑(𝑢)) =  
∫ (𝜑(𝑢))

𝛼
 ⅆ𝑢  −1 

𝑏
𝑎

1−𝛼
                                                           4.3                                

Hence, in the discrete form, it is: 

                                         Ε𝛼(𝜑(𝑢)) =  
1

1 − 𝛼
  (∑  𝜑𝛼(𝑢𝑘) − 1

𝑛−1

𝑘=0

)                                      4.4 

By applying the derivative with respect to φ in (4.4), the following is obtained 

                                           𝐸́
𝛼(𝜑(𝑢)) =  

𝛼

1−𝛼
  ∑  𝜑𝛼−1(𝑢𝑘

𝑛−1
𝑘=0 )                                                    4.5                                                            

The power function 𝜑𝛼 in (4.5) resulting the following local fractional integral:   
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    𝐼(𝛼)   𝜑𝛼(𝑢) =
1

Γ(1+𝛼)
    lim
Δ𝑢𝑘→0

∑ 𝜑𝛼(𝑢𝑘)(Δ𝑢𝑘)
𝛼𝑛−1

𝑘=0                                                                4.6                                       

In the examination by this study, the distance between pixels is regarded as being equivalent 

to 1. Consequently, the estimate of the limit part of (4.6) is as per the following:                     

lim
Δ𝑢𝑘→0

(Δ𝑢𝑘)
𝛼 = 1.  

Thus, the following is obtained  

                                   𝐼(𝛼)   𝜑𝛼(𝑢) =
1

Γ(1+𝛼)
    lim
Δ𝑢𝑘→0

∑ 𝜑𝛼(𝑢𝑘)
𝑛−1
𝑘=0                                              4.7                                    

                                        

By taking the derivative regarding φ for the two sides of (4.7), the following is achieved 

                      𝐼(𝛼)   𝜑𝛼(𝑢)́ =
𝛼

Γ(1+𝛼)
    lim
Δ𝑢𝑘→0

∑ 𝜑𝛼−1(𝑢𝑘)
𝑛−1
𝑘=0                                                       4.8                                                       

The local fractional entropy for images is the convolution of (4.5) and (4.8: 

                                       𝐺 = 𝐼(𝛼)   𝜑𝛼(𝑢𝑘) ∗ Έ𝛼(𝜑(𝑢𝑘))                                                              4.9                                 

 Consequently, the local fractional convolution operator is acquired 

G =  
𝛼2

(1−𝛼)𝛤(1+𝛼)
  (∑

1

𝜑1−𝛼(𝑢𝑘)
𝑛−1
𝑘=0  ) ,         𝜑(𝑢𝑘) ≠ 0.                                                              4.10                                         

From (4.10), the following improvement is obtained which is the contribution of the study: 

G𝑘 = 
𝛼2

(1 − 𝛼)𝛤(1 + 𝛼)
   𝜑𝑘

𝛼−1   ,     𝑘 = 0,1,2, … , 𝑛 − 1,                                              4.11 

where  𝜑𝑘𝛼−1 =  𝜑 𝛼−1(𝑢𝑘) is the fractional probability of the pixels.  

By utilizing the local fractional entropy operator (𝐺𝑘), the LFE is developed. The improved 

image, IF is given by: 

                                                          𝐼𝐹 = 𝐺𝑘. 𝐼                                                                                4.12                                                                                                           
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𝐺𝑘  is calculated at every pixel, based on the image pixel’s probability, and it is calculated in 

image spatial domain, while IF represent the output enhanced image, and I is the input image. 

The fractional power value (α) of the presented G operator is characterized by the scope of 

0 < α ≤ 1.: 

The above advanced function works well because the contrast enhancement is determined 

at every pixel, based on the pixel’s probability. Figure 4.1 shows a low contrast input image 

with its improved counterpart, as well as diagrams of the probability distribution of their 

pixels. It was noted from the improved image shown in Figure 4.1 (a) that the contrast 

between the background and the pixels of the kidney was expanded and contrasted with the 

input image. This demonstrated that the proposed model improved the general quality of the 

image. It was apparent from Figure 4.1 (b) that the probability distribution of the pixels for 

the info image before the enhancement appeared to be too dense, while the probability 

distribution of the pixels in the enhanced image appeared to be dispersed. This implies that 

the contrast had been improved. Subsequently, it can be inferred that the low-contrast pixels 

representing the boundary of the kidney were improved and therefore, resulted in a dispersed 

probability distribution with similar frequencies of the input image. Figure 4.2 demonstrates 

the enhancing impact of the proposed model for a few more low contrast kidney images. 

The input images are shown in Figure 4.2(a), while the enhanced images are shown in Figure 

4.2(b).  
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(a)       Low contrast input image Enhanced input image 

 

 
 
 
  

(b) Histogram before enhancement Histogram after enhancement 
 

 

Figure 4.1: Contrast is Increased after Enhancement 

 

In this approach, the proposed local fractional entropy algorithm was presented as a 

new model for enhancing low-quality kidney MRI images  

The steps for the proposed algorithm as follow: 

1 Low contrast kidney image generated by an MRI system (Refer to Figure 4.1) 

2 Calculate the pixel’s probability, as denoted by φ in the input image 

3 Calculate the power function, 𝜑𝛼 

4 Calculate the local fractional entropy operator (𝐺𝑘), by dividing the power 

operator, 𝛼2 by Gamma (1 − 𝛼)𝛤(1 + 𝛼), and then, multiply the result by the 

local fractional probability of the pixel,  𝜑𝑘𝛼−1 =  𝜑 𝛼−1(𝑢𝑘).  

5 Calculate the enhanced image, IF by the product of the local fractional entropy 

operator (𝐺𝑘), with I as the input image,  𝐼𝐹 = 𝐺𝑘. 𝐼.      
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6 Set the values of the fractional operator α. The best value for the parameter, α 

which gives a better perceptual quality of BRISQUE and NIQE is set 

experimentally to 0.7.  

7 Calculate the BRISQUE and NIQE for the final enhanced images by the proposed 

LFE. 

8 Image is enhanced using local fractional entropy (Refer to Figure 4.2).  

 

 
 
 
 
 
 
 

 

 
 
 

 

(a) Input kidney images  
 

 
 
 
 
 
 
 

 

 

 

(b) Enhanced counterpart of the input kidney images  

 

Figure 4.2: The Result of Proposed Enhancement Model on Different Kidney 
Images 

 

Two performance metrics which quantify the spread and flatness of the image 

histogram are calculated to show the effectiveness of proposed enhancement method. 

These two metrics helped to differentiate between the low and high contrast images.  

1- The histogram flatness measure (HFM) is the ratio of the geometric mean of h(x) 

to the arithmetic mean of h(x) and can be defined as: 

                    HFM =
Geometric mean of histogram count

Arithmetic mean of histogram count
                               4.13      
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2- The histogram spread (HS) can be defined as (Tripathi, 2011)  

 

          HS =
Quartile distance of histogram 

Possible range of pixel values
                                                    4.14 

 

The histogram quartiles represent the amount of data spread. The quartile distance is 

the difference between the 3rd quartile and the 1st quartile of the extracted image 

histogram. 

 

Table 4.1: Histogram Flatness (HFM) and Histogram Spread (HS) Measures 

for Test Image of Figure 4.1  

 low contrast image Enhanced image 

HFM 0.2488 0.2962 

HS 0.0086 0.0146 

 

The results of Table 4.1, show that low contrast dark image shown in Figure 4.1, has 

HFM, and HS values less than the enhanced image by our proposed method. This 

performance metric conforms that the HFM, and HS depends not only on the 

intensity values of the histogram but also on the histogram bin positions, thus giving 

accurate results.   
 

4.3  Experimental Results 

In this section, different low-contrast MRI kidney images were tested to determine the 

accuracy of the proposed method. As described in the previous chapters, the proposed 

method can be applied to datasets of different complexities, including those with low 

contrast, low resolution, noise, complex background, degradations and inhomogeneous 

contrast variations, and MRI images of other surrounding tissues. The proposed 
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enhancement scheme was examined against these datasets to evaluate the detection 

accuracy of the proposed method. To evaluate the accuracy of the method, evaluation 

metrics based on BRISQUE and NIQE were used. The performance of the method was 

evaluated on the dataset of collected images. As far as it is known, at present, there is no 

standard dataset available in the existing literature for the enhancement of kidney images. 

The measures mentioned in Chapter 3 were used to evaluate the proposed enhancement 

method, namely, the BRISQUE (A. Mittal, A. K. Moorthy, and A. C. Bovik, 2012a) and 

NIQE (A. Mittal, R. Soundararajan, and A. C. Bovik, 2013a).  

In general, a smaller score of BRISQUE and NIQE indicate a better perceptual image 

quality. In the presented model, the key parameter was α, where the performance of the 

proposed model changed, as indicated by its value. Consequently, the normal BRISQUE 

scores for predefined test images were computed from the dataset by differing the values 

of α. Changes in α values will affect the probability of the enhanced image and the 

BRISQUE score. The proposed model picked the value of α when the BRISQUE score 

reached the lowest value. As shown in Figure 4.3, BRISQUE gave the most reduced score 

of α at 0.7. A similar value was considered for all the experiments in this work. Note that 

the estimations of BRISQUE changed quickly with respect to small changes in α. This 

changing behaviour reflected the impact of fractal entropy on the value of every pixel of 

the enhanced image. 
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Figure 4.3: Determining the Value for α with the average BRISQUE Measure  

 

To demonstrate the adequacy of the proposed model, the essential and recent 

techniques were implemented for a comparative study. It was speculated that if the 

fundamental strategy functions work well, the most recent techniques should work well 

as well. Thus, the proposed strategy was evaluated against the outcomes from the 

traditional techniques (Gonzalez and Woods, 2012), specifically the adjusted intensity 

values (AIV) to a specified range, the contrast-limited adaptive histogram equalization 

(CLAHE), and the histogram equalization (HISTEQ). These are very basic methods for 

image enhancement. In addition, the Tsallis entropy technique (Jalab, Ibrahim, and 

Ahmed, 2017) proposed another scientific model by utilizing the convolution of the 

fractional Tsallis entropy for image denoising. Raghunandan et al. (2017) presented the 

fractional Riesz model for enhancing licence plate images. This technique explores 

fragmentary calculus for enhancing licence plate images. This method has also been 

proposed for enhancing license plate number and text enhancement in natural-scene 

images, although it has not yet been used for kidney image enhancement. In addition, this 

method is different from the proposed model; this is because the objective of the existing 

method is different and so the method suffers from inherent limitations. Although the 
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existing method was developed based on fractionals, the concept and the parameters used 

in the method are different from the proposed method. 

4.3.1 Qualitative Results of Proposed and Existing Methods 

To show the effectiveness of the proposed algorithm, we implement the recent Tsallis 

entropy technique and the fractional Riesz model, basic models with adjusted intensity 

values (AIV) to a specified range, contrast-limited adaptive histogram equalization 

(CLAHE), and histogram equalization (HISTEQ), for comparative study. The latest 

models should work effectively because they use the same basic idea for enhancement. 

The qualitative test results for the presented and current existing strategies for various 

low-contrast MRI kidney images are shown in Figure 4.4.  

For qualitative comparison, we used a comparison with appropriate image-enhancing 

methods whose MATLAB codes are publicly available (AIV, CLAHE, and HISTEQ). It 

was hypothesized that if the fundamental strategy functions work well, the most recent 

techniques should also work well. The qualitative test results for the presented and current 

existing strategies for various low-contrast MRI kidney images are shown in Figure 4.4. 

When comparing the results of the proposed enhancing method with the basic techniques 

such as adjusted intensity values (AIV) to a specified range, the contrast-limited adaptive 

histogram equalization (CLAHE), and the histogram equalization (HISTEQ), these are 

very basic methods for image enhancement, In addition, in comparison to the Tsallis 

entropy technique and fractional Riesz model, the proposed model produced better 

outcomes. This was valid because all the basic enhancing methods enhance the entire 

image globally and work well for images with similar intensity values and applied for 

specific applications such as the Riesz model. Also, the proposed model is appropriate 

for enhancing images that are affected by numerous factors such as MRI system, noise, 

and diseases. These factors cause differentiations in quality in various regions of an 

image. This is because the proposed model considers local data to enhance the pixels of 
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a given image. Moreover, the proposed enhanced method reduces the similarities between 

the kidney region and the surrounding tissue because the proposed model considers local 

information for enhancing pixels. Therefore, increase the contrast between the 

background and kidney edge that’s mean sharpen edge of the kidney.  

 

    
(a) Input Kidney images  

 
 

    
(b) Adjust Intensity Values to Specified Range (AIV) (Gonzalez, R. Et al. 

2012) 
 

 

    
(c) Contrast-Limited Adaptive Histogram Equalization (CLAHE) 

(Gonzalez, R. Et al. 2012) 
 

 

    
(d) Histogram Equalization (HISTEQ) (Gonzalez, R. Et al. 2012) 
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(e) Tsallis entropy (Jalab, Ibrahim et al. 2017) 
 

 

    
(f) Riesz Fractional (Raghunandan, Shivakumara et al. 2017) 

 
 

    
      (g) Proposed method  
 
Figure 4.4:   Enhancement Results of the Proposed and 

Existing Methods 
 

 

Contrast enhancement techniques are used to improve the quality of an image to make it 

more legible for human vision. Contrast manipulation involves changing the range of 

values in an image to increase contrast. The motivation behind image enhancement is to 

improve the contrast of an image and remove noise to enhance image quality. 

 

    
(a) Input Kidney images  
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(b) Histogram for Input Kidney images histogram 

 
 
 

    
(c) Histogram for Adjust Intensity Values to Specified Range (AIV) (Gonzalez, R. Et al. 2012) histogram  
 

 

    
(d) Histogram of Contrast-Limited Adaptive Histogram Equalization (CLAHE) (Gonzalez, R. Et al. 2012) 

 
 

    
(e) Histogram of  Equalization (HISTEQ) (Gonzalez, R. Et al. 2012) 

 
 

    
(f) Histogram of Tsallis entropy (Jalab, Ibrahim et al. 2017) 
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(g) Histogram of Riesz Fractional (Raghunandan, Shivakumara et al. 2017) 
 
 

    
      (H) Histogram of Proposed method 
 

 

Figure 4.5:   Histogram for Enhancement Results of the Proposed and Existing 
Methods Where X Line Refer to Gray Level and Y Line Refer to Pixel Count  
 

 

The contrast-enhancement method maps values of the intensities of an image to a new 

range. Figure 4.5 (a and b) shows the low contrast of an original image with its histogram. 

Notice that the histogram of the image (Figure 4.5(b)) shows all the values of intensity 

(where the X line refers to the gray level and the Y line refers to pixel count), which are 

unevenly distributed throughout the range. 

Various image enhancement techniques have been implemented in the MATLAB 

environment as mentioned before in Chapter 4 Section 4.3. These techniques are the 

Intensity Adjustment Technique (imadjust), the Histogram Equalization Technique 

(histeq), and the Adaptive Histogram Equalization technique (adapthisteq). As described 

below, all of these techniques are applied to kidney images to investigate the effects of 

these enhancement techniques on MRI images.  

The Intensity Adjustment Technique is one of several image-enhancement approaches 

and is  particularly suitable for image enhancement. Figure 4.5 (c) shows the histogram 
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for an adjusted enhanced image. The level of contrast is increased in the image, and the 

histogram now fills the entire range [0,250], mostly, the histogram is present on the left. 

The histogram for the contrast-limited adaptive histogram equalization (Adapthisteq) 

technique operates on small regions in the image, called tiles. This technique enhances 

the contrast for each tile; it is used to avoid amplifying any noise that might be present in 

the image and Figure 4.5, (d) shows this histogram image. Adapthisteq produces an output 

image with  values distributed throughout the range [0,250]. 

Histogram Equalization is a computer image-processing method used to enhance contrast 

in images. Figure 4.5 (e) shows the histogram for enhancement-tested images. The Histeq 

histogram produces an output image with values evenly distributed throughout the range 

(i.e., stretching out the intensity range of the image to enhance contrast).  

In the Intensity Adjustment Technique (imadjust), Histogram Equalization Technique 

(histeq), and Adaptive Histogram Equalization technique (adapthisteq), the enhancement 

histogram is produced for the kidney edges in the same way as for other regions; the 

enhancement is achieved globally way not locally.  

In addition, the Tsallis entropy technique and fractional Riesz model are used for 

enhancing license plate images. However, neither of these techniques work well for 

kidney-image enhancement, as shown in Figure 4.5 (f, g), as the histogram appears to be 

almost the same as the histogram for the input image.  

State-of-the-art methods focus on denoising and speckle noise removal to enhance kidney 

images. While these methods work well for enhancing the entire image globally, they do 

not work well for local information. Moreover, one cannot expect or predict the global 

effect of different causes because kidney images contain different quality levels in 

different regions. Therefore, the enhancement is performed for both kidney boundaries 

and other regions. 
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The proposed method shown in Figure 4.5(h) produces an output histogram image with 

values distributed throughout the range [0,250]. The proposed method works to increase 

the contrast between the background and the kidney edges. By sharpening the edge details 

of the kidney, our proposed enhancement model is designed for images affected by 

multiple adverse factors and different poor-quality considerations, and it outperforms 

other state-of-the-art methods. This achievement is because fractional calculus can solve 

the non-linear problem, and overcome poor-quality, low contrast images. 

4.3.2 Quantitative Results 

The quantitative results are reported in Table 4.2. The best BRISQUE and NIQE scores 

were obtained by the proposed model in contrast to the current strategies. This 

demonstrated that the proposed model was superior to the current strategies. In reference 

to BRISQUE, the AIV was the second best compared with the proposed model, and the 

CLAHE was the second best for NIQE compared with the proposed model. Similarly, the 

HISTEQ and the Riesz fractional reported the worst outcomes as far as the BRISQUE 

and NIQE values were concerned in comparison to the other techniques. This was because 

these fundamental strategies suffered from the effects of inherent constraints such as 

global thresholding. As for the Riesz fractional-based technique, the parameters were 

tuned by the content of the licence plate images. Moreover, the proposed model did not 

depend much on the specific content of the image. Rather, it investigated the probability 

of the pixels utilizing nearby data. In this way, this technique was independent of datasets 

and applications. In other words, the presented model can be utilized to enhance other 

poor-quality medical images. In this way, it was found that the proposed model 

outperformed the existing techniques in terms of its applications, and BRISQUE and 

NIQE scores. 
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Table 4.2: The Enhancement Performance of the Proposed and Existing Methods. 

Methods BRISQUE NIQE 

Histogram Equalization (Gonzalez & Woods, 2012) 41.35 8.65 

CLAHE (Gonzalez & Woods, 2012) 38.85 7.08 

AIV (Gonzalez & Woods, 2012) 25.95 7.10 

Tsallis entropy (Jalab, Ibrahim, & Ahmed, 2017) 37.03 6.04 

Riesz Fractional (Raghunandan, Shivakumara, Jalab, & 

Ibrahim, 2017) 
41.93 10.01 

Proposed method 22.37 6.32 

 

4.4 Discussion  

Medical imaging is an important tool used for the screening, detection, and diagnosis of 

diseases affecting the internal organs and tissues of the human body. However, most of 

these images suffer from quality-related problems such as blurring, low resolution, noise, 

system acquisition problems, and the challenge of detecting different diseases. All of 

these issues make it difficult to extract suitable data from such images. This makes image 

enhancement a complex challenge. To address this, the current chapter focuses on kidney- 

image enhancement by proposing a new local fractional entropy approach by estimating 

the probability of pixels which represent the edge of the kidney based on the entropy of 

the neighbouring pixels, since if there are small changes in the values, this indicates the 

edge of the kidney tissue. As mentioned in the literature review, as no standard dataset is 

available for kidney image enhancement, our dataset is collected from two different 

resources. The dataset includes low contrast, low resolution, and noise so both datasets 

are suitable for evaluation. To demonstrate the adequacy of the proposed model, the 

essential recent techniques were implemented for a comparative study of adjusted 

intensity values (AIV) to a specified range, contrast-limited adaptive histogram 
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equalization (CLAHE), and histogram equalization (HISTEQ). These are relatively basic 

methods for image enhancement. In addition, the Tsallis entropy technique (Jalab, 

Ibrahim, and Ahmed, 2017) proposed another scientific model by utilizing the 

convolution of the fractional Tsallis entropy for image denoising. Raghunandan et al. 

(2017) presented a fractional Riesz model for enhancing licence plate images. Most of 

these methods focus on denoising and speckle noise removal for enhancing kidney 

images. These methods work well for enhancing the entire image globally but not locally 

as well as being applied for specific applications like Riesz, which are used for text 

detection and recognition in other fields (not for kidney images). State-of-the-art 

enhancement methods are effective at globally enhancing kidney images, moreover, one 

cannot expect or predict the global effects of different causes because kidney images 

contain different quality levels in different regions. Therefore, the enhancement is 

performed for both kidney boundaries and other regions. For this application, there is an 

urgent need to develop a model that considers local information to enhance the edge 

details for kidney images. The proposed method works by increasing the contrast between 

the background and the edges of the kidney by sharpening edge details. The 

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) (Mittal et al. 2012) and 

the naturalness image quality evaluator (NIQE) (Mittal et al. 2013) are used for evaluating 

our proposed enhancement method. Lower value scores indicate a better quality image. 

The qualitative and quantitative evaluation results illustrated that our proposed 

enhancement model for images affected by multiple adverse factors and different poor 

quality outperformed the other state-of-the-art methods. This was because the fractional 

calculus used can solve the non-linear problem in poor-quality, low-contrast images. 

However, despite its merits, the proposed approach is subject to several limitations. For 

example, when the input images are affected by several factors such as noise, it is difficult 

to analyze the image content by eye and so the enhancement method does not work well. 
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This is because the proposed model cannot distinguish between the actual values and the 

noise pixel values. Also, while the proposed model involves few parameters to achieve 

better results, on occasion, the parameters fail to obtain the correct values to obtain good 

results in different situations. Therefore, it is necessary to reduce the model’s dependency 

on these parameters.  

 

4.5  Chapter Summary  

This chapter presented a description of each step of the proposed research method for the 

novel research stage; namely, the enhancement of MRI kidney images. The proposed 

algorithm presented local fractional entropy as a new model for enhancing low-quality 

MRI kidney images. The results of the experiments on different low-quality kidney MRI 

images demonstrated that the proposed model effectively enhanced the images. The next 

chapter presents the proposed fractional-based minimization function method for kidney-

image segmentation and the experimental results. 
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CHAPTER 5: FRACTIONAL-p-BASED MINIMIZATION FUNCTION FOR 

KIDNEY IMAGE SEGMENTATION 

 

5.1  Background  

In the previous chapter, a new method for enhancing low quality MRI kidney images 

based on fractional entropy was presented. However, due to the adverse effects of kidney 

images, there are chances of enhancing other details along with the details of kidney 

region. Therefore, this chapter proposes a new model for segmentation of the kidney 

region from the enhanced images. The segmentation method presents a modified active 

contour model driven by fractional-based energy minimization for MRI kidney 

segmentation.  

This chapter is organised as follows: Section 5.1 presents the study background, 

Section 5.2 outlines the proposed method, and Section 5.3 describes the experimental 

results of the segmentation. 

 

 

5.2  Proposed Method  

As mentioned in the previous chapters, the limitation of the gradient-descent energy 

minimization function drove the motivation to model an energy minimization function 

based on fractional calculus for kidney segmentation. The proposed work has been 

divided into two steps – the first section provides an overview of the gradient-based 

energy minimization function, while the following section proposes a new fractional 

Mittag-Leffler energy minimization function for kidney segmentation from MRI images. 

As mentioned in Chapter 3, this research proposed a kidney segmentation algorithm. 

The following sub-sections explains in detail the proposed algorithm.  
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5.2.1 Overview of Chan–Vese (CV) Algorithm  

According to the literature on kidney segmentation and general object segmentation, 

the gradient-based energy minimization function approach to image segmentation is 

popularly known as the Chan–Vese (CV) algorithm (Chan et al., 2000). Therefore, this 

section presents an overview of the CV algorithm before the proposed LFMLF is 

described. The theoretical analysis of the CV algorithm for kidney segmentation is as 

follows: The CV algorithm refers to energy minimization as the “fitting energy” for 

segmentation. The minimizing level set function, φ is defined in Equation (5.1) as  

ℱ𝐶𝑉(𝐶, 𝑐1, 𝑐2) = μ 𝐿𝑒𝑛𝑔𝑡ℎ(𝐶) + 𝑣 𝐴𝑟𝑒𝑎(𝑖𝑛𝑠𝑖ⅆ𝑒(𝐶))

+ λ1∫ |𝐼(𝑥, 𝑦, 𝑧) − 𝑐1|
2ⅆ𝑥ⅆ𝑦ⅆ𝑧

𝑖𝑛𝑠𝑖ⅆ𝑒(𝐶)

+   λ2∫ |𝐼(𝑥, 𝑦, 𝑧) − 𝑐2|
2ⅆ𝑥ⅆ𝑦ⅆ𝑧                                         5.1 

𝑜𝑢𝑡𝑠𝑖ⅆ𝑒(𝐶)

 

  

where 𝜆1 and 𝜆2 are the internal and external control forces, respectively, while μ and v 

are used to control the smoothness of the curve C which define the boundary of the object 

where c1,c2 are the internal and external smoothness, respectively. More details for fixing 

the parameters can be found in (Friedman, 2010). 𝛿𝑜 is a 2D Dirac function, ∇ is the 

gradient operator, and 𝐻 is the Heaviside function.  

The Chan-Vese energy function, ℱ𝐶𝑉, in the form of ∅ is given as follows:  

ℱ𝐶𝑉(∅(𝑥, 𝑦, 𝑧)) = μ ∫ δ𝑜(∅(𝑥, 𝑦, 𝑧)) |∇∅(𝑥, 𝑦, 𝑧)|ⅆ𝑥ⅆ𝑦ⅆ𝑧Ω
+

𝑣 ∫ 𝐻(∅(𝑥, 𝑦, 𝑧))ⅆ𝑥ⅆ𝑦ⅆ𝑧
Ω

+ λ1 ∫ |𝐼(𝑥, 𝑦, 𝑧) −
𝑖𝑛𝑠𝑖ⅆ𝑒(𝐶)

𝑐1|
2𝐻(∅(𝑥, 𝑦, 𝑧)ⅆ𝑥ⅆ𝑦ⅆ𝑧 +

λ2 ∫ |𝐼(𝑥, 𝑦, 𝑧)𝑐2|
2(𝐻(∅(𝑥, 𝑦, 𝑧))ⅆ𝑥ⅆ𝑦ⅆ𝑧                                                    5.2                                  5.2 

𝑜𝑢𝑡𝑠𝑖ⅆ𝑒(𝐶)
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The alternative updating of 𝑐1, 𝑐2, and ∅ are used to minimize the Chan-Vese 

function, ℱ𝐶𝑉. The values of 𝑐1 and 𝑐2 are defined in Equation 5.3 and Equation 5.4, 

respectively.  

𝑐1(∅(𝑥, 𝑦, 𝑧)) =
∫ 𝐼(𝑥,𝑦,𝑧)𝛺 .𝐻(∅(𝑥,𝑦,𝑧))ⅆ𝑥 ⅆ𝑦 ⅆ𝑧       

∫ 𝐻(∅(𝑥,𝑦,𝑧))ⅆ𝑥 ⅆ𝑦
𝛺

ⅆ𝑧
                                                            5.3                                  

𝑐2(∅(𝑥, 𝑦, 𝑧)) =
∫ 𝐼(𝑥,𝑦,𝑧)
Ω

.(1−𝐻(∅(𝑥,𝑦,𝑧)))ⅆ𝑥 ⅆ𝑦ⅆ𝑧

∫ (1−𝐻(∅(𝑥,𝑦,𝑧)))ⅆ𝑥 ⅆ𝑦Ω ⅆ𝑧
                                                          5.4     

The associated Euler-Lagrange for ∅, with the proposed LFMLFα is defined in Equation 

5.5  

{

𝜕∅

𝜕𝑡
= 𝐿𝐹𝑀𝐿𝐹𝛼 [𝜇 ⅆ𝑖𝑣 (

∇∅

|𝛻∅|
) − 𝑣 − 𝜆1 (𝐼(𝑥, 𝑦) − 𝑐2)

2 + 𝜆2 (𝐼(𝑥, 𝑦) − 𝑐2)
2]  𝑖𝑛 𝛺

δ(∅)

|𝛻∅|

𝜕∅

𝜕�⃗� 
= 0 𝑜𝑛 𝜕                                                                                                               5.5            

                     

where 𝜕∅
𝜕�⃗� 

  indicates the exterior normal derivative of ∅. 

 

5.2.2 The LFMLF Energy Minimization Function for Kidney Segmentation  

It was noted from the theory presented in Section 5.3.1 that the concept of CV can be 

modified to derive a fractional-based energy minimization function to improve the 

performance of the CV algorithm for kidney segmentation. This observation motivated 

the introduction of a new fractional Mittag-Leffler (LFML) energy minimization function 

for kidney segmentation, which is presented formally as follows:    

Let 𝑓 ∈  𝐿𝑝 (𝑋) be the space of the Lebesgue integral functions with the norm  

‖𝑓‖𝑋 = [∫|𝑓|
𝑝  ⅆ𝑚 + inf ∫(∇𝑓)𝑝  ⅆ𝑚]1/𝑝 <  ∞, 𝑝 ≥ 1,                                         5.6                                         

where m satisfies 𝑚(𝐵(2𝑟)) ≤ 𝐾𝑚(𝐵(𝑟)), 𝐾 > 0, and 𝐵(𝑟) is a set of radii, 𝑟. The 

capacity 𝐶𝑝 of the set E in 𝑋 is defined in Equation 5.7 as  
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                                                𝐶𝑝(E) = inf  ‖𝑓‖𝑋
𝑝                                                               5.7                     

Finding a stable fixed boundary is deeply connected to the study of energy minimization.  

For 𝑓 ∈ 𝐵(𝑋) ,  the differential fractional operator is defined in Equation 5.8 as   

                                  𝐷𝛼 𝑓(𝑥) =  lim
𝑥→𝑥0

Γ(𝛼+1) [𝑓(𝑥)−𝑓(𝑥0)]

(𝑥−𝑥0)𝛼
                                               5.8                                                                          

where 0 <  𝛼 < 1  is the fractal measure (Hausdorff measure) of x and x0 in X.  

By applying Equation 5.8, the fractional gradient can be derived as defined in Equation 

5.9 below  

                                    ∇𝛼 𝑓(𝑥) = 𝑒[𝐷𝛼  𝑓(𝑥)] =  ∑ 𝐷𝛼  𝑓𝑖𝑒𝑖
𝑛
𝑖=1                                     5.9                               

where f is an n-dimensional function, and 𝑒 is the unit vector. The generalized fractional 

norm is derived by substituting Equation 5.9 into Equation 5.6, as defined in Equation 

5.10.  

                                ‖𝑓‖𝑋,𝛼 = 𝑖𝑛𝑓𝑓 ∈𝑋  ∫(|𝑓| + ∇
𝛼𝑓)(𝑥) ⅆ𝑥                                     5.10                                                                 

Equation 5.9 is substituted into Equation 5.6 to obtain the generalized fractional norm as 

follows.  

‖𝑓‖𝑋,α = [  ∫|𝑓
(𝛼)|

𝑝
  ⅆ𝑚 + inf ∫(∇α𝑓(𝛼))

𝑝
 ⅆ𝑚] 1/𝑝 <  ∞, 𝑝 ≥ 1 .                    5.11                               

To minimize the energy term, as defined in Equation 5.11, a special function based on 

the fractional Mittag-Leffler function (LFMLF) for kidney segmentation in MRI images 

was proposed. Therefore, the proposed LFMLF was instantly linked to the diffusion 

process (Mainardi, Mura, & Pagnini, 2010), as defined in Equation 5.12.   

                            𝐸𝛼(𝑥𝛼) =  ∑
𝑥𝑛𝛼

Γ(1+𝛼 𝑛)
∞
𝑛=0                                                                    5.12                                                                                  

In image processing, the difference (𝑥 − 𝑥0)𝛼 = 1. Therefore, applying Equation 5.12 in 

Equation 5.8 gives the following, as defined in Equation 5.13.  
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         𝐸(𝛼)𝛼(𝑥
𝛼):=  𝐷𝛼 𝐸𝛼(𝑥

𝛼) =  lim
𝑥→𝑥0

Γ(𝛼+1) [𝐸𝛼(𝑥
𝛼)−1)] 

(𝑥−𝑥0)𝛼
                                        5.13                                                                          

In this study, the LFMLF was implemented as a minimization function, as defined in 

Equation 5.14.  

                            𝐿𝐹𝑀𝐿𝐹𝛼    =  𝛤(𝛼 + 1) ∗ [𝐸𝛼(𝑥
𝛼) − 1]                                            5.14                                                                    

    

In this approach, the proposed LFMLF presented a new model for the segmentation of 

the edges of the kidney from low-quality kidney MRI images. 

The steps for the proposed algorithm as follow: 

1 Low-contrast image generated by an MRI system (Refer to Figure 5.1) 

2 Calculate the Chan-Vese (CV) algorithm, which refers to energy minimization 

as “fitting energy” for segmentation, and the minimizing level set function, φ, 

as defined in the equation  

 ℱ𝐶𝑉(𝐶, 𝑐1, 𝑐2) = μ 𝐿𝑒𝑛𝑔𝑡ℎ(𝐶) + 𝑣 𝐴𝑟𝑒𝑎(𝑖𝑛𝑠𝑖ⅆ𝑒(𝐶)) +

λ1 ∫ |𝐼(𝑥, 𝑦, 𝑧) − 𝑐1|
2ⅆ𝑥ⅆ𝑦ⅆ𝑧

𝑖𝑛𝑠𝑖ⅆ𝑒(𝐶)
+   λ2 ∫ |𝐼(𝑥, 𝑦, 𝑧) −

𝑜𝑢𝑡𝑠𝑖ⅆ𝑒(𝐶)

                  𝑐2|
2ⅆ𝑥ⅆ𝑦ⅆ𝑧                                                                                                    5.15  

  

where 𝜆1 and 𝜆2 are the internal and external control forces, while the smoothness of C 

is controlled by μ and v. 

3  Implement a minimization function to minimize the energy term by 

minimizing 2 factors, 𝛼 and 𝜃, by using the Mittag-Leffler function (LFMLF) 

4 Set the values of the fractional operator, α. The best values for the parameter, 

α which give the best results for kidney segmentation are the Jaccard similarity 

coefficient (JSC) and the Dice coefficient set experimentally to 0.35. 

5 Implement the LFMLF, which is defined in Equation 5.16 

 

  𝐿𝐹𝑀𝐿𝐹𝛼      =
1

𝜃𝛼
     

𝛤(𝛼 )(𝛤(𝛼+1))2

𝛤(𝛼2)
−  𝛤(𝛼 + 1)                                            5.16                                              
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where 𝜃 is the diffusion constant, α the fractional power. 

6 Multiply the 𝐿𝐹𝑀𝐿𝐹 result with the calculated fitting energy CV ℱ𝐶𝑉algorithm 
as in Equation 5.17 

 

{
 

 
𝜕∅

𝜕𝑡
= 𝐿𝐹𝑀𝐿𝐹𝛼 [𝜇 ⅆ𝑖𝑣 (

∇∅

|𝛻∅|
) − 𝑣 − 𝜆1 (𝐼(𝑥, 𝑦) − 𝑐2)

2 + 𝜆2 (𝐼(𝑥, 𝑦) − 𝑐2)
2]  𝑖𝑛 𝛺

δ(∅)

|𝛻∅|

𝜕∅

𝜕�⃗� 
= 0 𝑜𝑛 𝜕                                                                                                           5.17        

 

                                                                                                                           

7 Calculate the sensitivity, accuracy, Jaccard, and Dice coefficient for the final 

segmented images using the proposed LFMLF (Refer to Figure 5.2). 

  

Figure 5.1: Low Contrast Input 
Image 
 

Figure 5.2: Segmented Image 
using the Proposed Algorithm 
 

5.3  Experimental Results 

The datasets for this study were collected from two different sources to evaluate the 

performance of the proposed and existing methods. A dataset consisting of 230 images 

of different patients was collected. The dataset, called dataset-1 for the experiment, 

included images with low contrast, low resolution, and noise. Images were also collected 

from Wikimedia Commons, which consisted of 20 images. This was considered as a 

standard dataset and was called dataset-2 in this experiment. Since the images in dataset-

2 were collected from unknown sources, the images were much more complex than the 

images in dataset-1 due to the presence of a complex background, inhomogeneity, and 

other surrounding tissues. In total, 230 + 20 = 250 images were considered for the 

experiments. The two datasets were adequate for the evaluation of kidney image 

segmentation because both datasets had different characteristics. The collected images 

Univ
ers

iti 
Mala

ya



101 
 

were in DICOM format. In order to avoid the loss of information, the DICOM function 

in MATLAB 2018b was used to display the images for processing, where the images 

were exported without affecting the quality of the original images.  

The proposed method was tested using the standard measures, as mentioned in 

Chapter-3, namely, sensitivity and accuracy, which measured whether the proposed 

model was able to segment the kidney sections correctly or not.  

In the assessment of the segmentation process, both sensitivity and accuracy are not 

always significantly relevant because both methods of assessment depend on the image 

size. For this reason, two additional metrics were used, namely the Jaccard index and the 

Dice coefficient (Hasan et al., 2016). 

The higher JSC and DSC values indicated that the proposed model was good and 

preserved the shape of the kidney. Further, the efficiency of the proposed model was 

measure by the number of iterations consumed by the model for the kidney segmentation. 

Since the above-mentioned measures required ground truth, the kidney regions were 

manually segmented, where the segmented regions were further verified by a doctor, who 

was an expert radiologist. At the same time, the results given by the proposed and existing 

methods were verified by the same doctor to calculate the measures. The ground truth and 

segmentation results of the samples using the proposed method for dataset-1 and dataset-

2 are shown in Figure 5.5 and Figure 5.6, respectively.  

To show the effectiveness and usefulness of the proposed model, it was compared to 

the following state-of-the-art methods by: (Chan et al., 2000), who used an active contour 

criteria for segmentation, (Hasan et al., 2016), who proposed an automated segmentation 

method to segment the tumour regions in volumetric MRI brain scans, (R. W. Ibrahim, 

Nashine, & Kamaruddin, 2017), who proposed a generalized hybrid time-space dynamic 

system to segment medical images based on a local regional active contour model, and 

Li et al. (2010), who explored a level set for kidney segmentation. The reason for 
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choosing the method by (Chan et al., 2000) for the comparative study was to show that 

energy minimization alone is not sufficient to achieve better results for kidney 

segmentation in complex images affected by multiple adverse factors. Similarly, the 

reason for choosing the methods of (Hasan et al., 2016; R. W. Ibrahim et al., 2017) was 

that these methods explore the generalized model for segmenting the region of interest in 

medical images. Similarly, a comparison was performed to demonstrate that the 

generalized models may not be adequate to achieve enhanced results for kidney image 

segmentation.  

In the proposed fractional Mittag-Leffler function (LFMLF), α is a key parameter, 

according to Equation 5.17. To determine a feasible value for α to achieve better results 

for kidney segmentation, experiments were conducted on 60 images selected randomly 

from dataset-1 and dataset-2 to calculate the mean accuracy by varying the α value, as 

illustrated in Figure 5.3. It was noticed in Figure 5.3 that the mean accuracy scores 

showed the highest results for the value at 0.35. Hence, the same value was considered as 

the optimal value for experimentation. Similarly, the number of iterations of the proposed 

model was taken as another key parameter to indicate better results. In order to determine 

the feasible values for the thresholds and parameters used in the proposed models for both 

enhancement and segmentation, we choose 100 samples across datasets randomly for 

experimentation. Therefore, in the thesis, only the number of testing sample are 

mentioned, for experimentation to calculate the mean accuracy scores by varying the 

number of iterations, as illustrated in Figure 5.4. It was observed in Figure 5.4 that the 

mean accuracy score reached the highest peak at 600 iterations for dataset-1 and 300 

iterations for dataset-2. Thus, 600 and 300 were the feasible values for the iterations of 

dataset-1 and dataset-2, respectively. Then, the same values were used for all the 

experiments in this work. In the same way, the values for the parameters, namely, λ1 = λ2 

= 1, length penalty, μ = 106 and µ𝐹 = 0.01, were determined in this study.  
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Figure 5.3: Determining the Optimal Value for The Alpha to Segment the Kidney 
Images by Varying Fractional Power α and Calculating Mean Accuracy. 

 

 

                      

 

 

 

 

 

 

 

 

Figure 5.4: Determining the Number Optimal Iterations for Kidney Segmentation 
for Dataset-1 And Dataset-2 By the Proposed Method.   
 

5.3.1 Qualitative Results 

The qualitative results of the proposed segmentation model for dataset-1 and dataset-

2 are shown in Figure 5.5 and Figure 5.7, respectively. It can be observed that the input 

images were affected by multiple factors such as poor quality(low contrast), degradations 

and contrast variations, as shown in Figure 5.5(a) and Figure 5.7(a), and the proposed 

model was able to successfully segment the kidney regions, as shown in Figure 5.5(c) and 

Figure 5.7 (c). This was evident from the comparison of the segmentation results of the 
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proposed model with the ground truth, where the results of the proposed method were 

almost the same as the ground truth. This showed that the proposed model, which 

combines fractional calculus with the active contour model, is able to handle images 

affected by various complexities. This is the advantage of the proposed fractional-based 

model for segmentation.  

The segmentation results for state-of-the art techniques with proposed segmentation 

model for dataset-1 and dataset-2 are shown in Figure 5.6 and Figure 5.8, respectively. It 

can be observed that the existing method fail to segment kidney in proper way since the 

boundary covers extra background. This is because existing method sensitive to poor 

quality and inhomogeneous intensities. The Proposed method can segment kidney region 

successfully due to its, ability to handle complex situation.   

 

    
(a) Input images 

    
(b) Ground truth 

    
(c) Proposed kidney segmentation 
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(d) Binary image of proposed kidney segmentation 

Figure 5.5:  Examples of Kidney Segmentation Using the Proposed Kidney 
Segmentation for Dataset-1 

 

A 

     

B 

     

C 

     

D 

     

E 
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F 
   

 

 

  

      

    
(a) Input images 

    

(b) Ground truth 

    
    

(c) Proposed kidney Segmentation 

 

Figure 5.6: The experimental results of the proposed and existing models for 
kidney segmentation dataset1. (A) Input images, (B) Hasan et al. (C) Chan et 
al. (D) Li et al. (E) Ibrahim et al. (F) Proposed Method 
 

Univ
ers

iti 
Mala

ya



107 
 

 

 

 

 
 
 
 

 
 

Figure 5.7: Example of Kidney Segmentation Using the Proposed Method for 
Dataset-2 
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D 

    

(d) Binary image of proposed kidney segmentation 
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5.3.2 Quantitative Results 

The quantitative results for dataset-1 and dataset-2 are described in Table 5.1 and Table 

5.2, respectively. It is evident that the proposed model shown best in using the following 

metrics for evaluation the kidney segmentation: sensitivity, accuracy, JSC, and DSC 

when compared with other existing models. The number of iterations with dataset-1 was 

the highest due to the nature and size of the images it contained. The number of 

computations was insufficient to determine the computational time required, as this 

depends on several factors, such as the method, coding, logic, and implementation. In 

general, if the method requires a greater number of iterations, the process will involve a 

greater number of operations. Therefore, the number of computations may be high but 

not necessarily time-consuming. Therefore, it can be asserted that the proposed model 

outperformed the existing models in terms of segmentation, shape preservation and 

efficiency. When the results of the proposed and existing models on dataset-1 and dataset-

2 were compared, the proposed and existing methods reported poorer results for dataset-

2 compared to the results for dataset-1. This was justifiable because dataset-2 was much 

Figure 5.8 The experimental results of the proposed and existing models for 

kidney segmentation. (A) Input images, (B) Hasan et al, (C) Chan et al, (D) 

Li et al, (E) Ibrahim et al, (G) Proposed Method 
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more complex that dataset-1, as described in the previous section. Table 5.1 and Table 

5.2 show that the methods of (Hasan et al., 2016; R. W. Ibrahim et al., 2017), which 

involved generalized models for segmentation, achieved better results than the other 

methods, except for to the proposed model for kidney image segmentation, in terms of 

sensitivity. This is true because generalized models have the ability to tackle the different 

adverse factors of an image, while methods developed for specific purposes may not be 

robust enough for complex images. However, the results of the generalized methods were 

poorer than the proposed method for all measures. This showed that the proposed model 

is suitable for complex and simple images.  

The results in Table 5.2 showing the measures of kidney segmentation for Dataset-2. The 

measures are affected by the overlapping of kidney and background tissues. It was noted 

from Table 5.2 that the sensitivity of the proposed model was lower than the JSC. This 

was due to the occasional inclusion of additional background information in the 

segmentation results produced by the proposed model. Hence, there was the possibility 

that the model missed counting a result for sensitivity, while this did not occur for the 

JSC. This was because in the case of sensitivity, the segmentation results with extra 

information might have been classified as a false negative, while this did not occur for 

the JSC.  

Table 5.1: Performance of the Proposed and Existing Methods for Dataset-1 

Methods   Sensitivity (%) Accuracy (%) JSC (%) DSC (%) Iterations 
(Li et al., 2010) 93.60 98.64 87.06 92.77 700 

(Chan et al., 2000) 86.56 91.25 86.23 84.75 800 
(R. W. Ibrahim et al., 2017) 90.89 89.90 84.10 87.92 700 

(Hasan et al., 2016) 88.17 90.73 86.69 82.84 700 
Proposed Method  94.79 98.95 93.11 94.70 600 
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Table 5.2: Performance of the Proposed and Existing Methods for Dataset-2  

Methods Sensitivity(%) Accuracy(%) JSC(%) DSC(%) Iterations 
(Li et al., 2010) 61.17 66.73 61.69 60.84 500 

(Chan et al., 2000) 60.56 67.95 61.23 65.75 500 
(R. W. Ibrahim et al., 

2017) 73.28 75.37 67.50 73.32 500 

(Hasan et al., 2016) 72.91 69.0.3 70.86 75.78 500 
Proposed Method  83.14 85.99 86.38 83.86 500 

 

5.4 Discussion  

The current chapter focused on our proposed method for segmenting kidney images from 

enhancement input MRI images, which contain enhanced information about other 

neighboring organs and background information. Accurate segmentation is challenging 

due to intensity inhomogeneity caused by imperfections during the image acquisition 

process. Most state-of-the-art kidney segmentation methods are developed for use with 

high-quality images, not poor-quality images. To overcome this, our motivation was to 

propose a new model for segmenting kidney images from low-contrast MRI images. This 

chapter presented a model consisting of a novel fractional energy minimization for 

segmenting kidney images from low- contrast MRI images. Existing methods such as the 

active-contour model, which uses gradient-based energy minimization, are sensitive to 

inhomogeneous intensity values. Therefore, it is important to propose a new fractional 

Mittage-Leffeler function for energy minimization to maintain the high-frequency 

contour features while enhancing low-frequency texture details in smooth areas. The 

dataset was collected from two different resources; the images were complex with the 

presence of complex backgrounds, and featured inhomogeneity and surrounding tissues, 

as well as including all the causes of kidney segmentation. The proposed model was 

compared to the following state-of-the-art methods (e.g., Hasan et al., 2016), who 

explored active contours for segmenting brain tumor MRI brain images. Ibrahim, 

Nashine, & Kamaruddin (2017) proposed a method for segmenting bacteria growth from 

a microscopic image based on a fractional operator. However, these methods depend on 
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generalized segmentation approaches, which under-perform in segmenting kidney 

regions from MRI images. To overcome these limitations, more robust methods for 

segmenting kidney details from images have been proposed. For example, Chan et al. 

(2000) used an active contour criteria for segmentation while Li et al. (2010) explored a 

level set for kidney segmentation. Both methods used gradient descent for energy 

minimization, which is not robust for inhomogeneous intensity values and poor-quality 

images. Using energy minimization alone is not sufficient to achieve optimal results for 

kidney segmentation in complex images affected by multiple adverse factors. To 

overcome this, the proposed fractional Mittage-Leffler-minimization method for kidney 

segmentation offers the advantages of fractional calculus which can deal with low-

contrast and degraded images. Also, to assess if the proposed method segmented kidney 

images effectively or not, sensitivity and accuracy measures are applied. Based on the 

qualitative and quantitative results, the proposed method outperformed the existing 

models in terms of sensitivity, accuracy, JSC, and DSC, and can segment images of the 

kidney region successfully. The good segmentation results achieved by our proposed 

model were due to applying fractional calculus in an active contour. However, the key 

limitation of this method is that it is computationally expensive. 

5.5  Chapter Summary  

This chapter presented a detailed description of each step of the proposed research 

method for the novel research stage, namely, segmentation. The segmentation method 

presented a modified active contour model driven by fractional-based energy 

minimization for MRI kidney segmentation. The experimental results for different low-

quality kidney MR images showed that the proposed model effectively segmented the 

kidney boundary of low-quality kidney MR images.  
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CHAPTER 6: Edge-based Method for Kidney Image Segmentation 

 

6.1  Background 

In the earlier chapter, a new method for the segmentation of the kidney edge from low-

quality MRI kidney images using a modified active contour model driven by fractional-

based energy minimization for MRI kidney segmentation was presented. However, since 

the method involves an active contour model, the method is said to be computationally 

expensive. Therefore, this chapter proposes an efficient method based on edge 

information for an accurate segmentation of the kidney region from enhanced images.  

This chapter is organised as follows: Section 6.1 presents the background, Section 6.3 

outlines the proposed edge-based method for kidney segmentation, while Section 6.4 

describes the experimental results.  

 

6.2   Proposed Edge-Based Method for Kidney Segmentation 

Edge features is one of the most important features in image processing applications. The 

purpose is to detecting discontinuities of object boundary in the levels of brightness. The 

edge detection has been used extensively in many applications, so that it is important to 

design an efficient edge detector which influence the image analysis. This study presented 

a new method of extracting kidney edges from low quality MRI images. The proposed 

algorithm was designed to remove significant non-kidney elements while preserving 

kidney-segmented edge information from low-contrast MRI images.  

Canny edge information is used for segmenting the kidney region in the images as shown 

in Figure 6.2. However, the Canny-based output does not provide segmentation results 

directly. Therefore, to reduce the complexity of the background, Canny edge information 

is used as it eliminates background information and provides finely detailed images of 

the kidney region. The information given by the Canny for the kidney region is considered 
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as input for the subsequent steps to segment the kidney region. In other words, the Canny 

information is used as a pre-processing result to segment the kidney region in the images. 

The proposed edge-based method for kidney image segmentation was applied to the MRI 

image-based Canny edge detection under three applicable conditions, namely:  

Condition (1): Angle from the centroid to boundaries 

Condition (2): Distance from the centroid to boundaries 

Condition (3): Shape factor of the kidney 

The first step was to apply the Canny edge detection to the input image, I (x, y). The input 

images are shown in Figure 6.1 and the Canny edge images are shown Figure 6.2. 

The detailed steps for the proposed algorithm were as follows: 

a) Input MRI image  
 
 

 
 
 

 
 
 
 
 
 

  
 

 

Example (1) MRI input image Example (2) MRI input image 

              Figure 6.1: Samples of MRI Kidney Images 
 

b) Apply Canny edge 
 

 
 
 

 
 
 
 
 
 

  
 

 

Example (1) Canny Edge Map Example (2) Canny Edge Map 

 
Figure 6.2: Canny Edge Image 
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c) Label connected components 

Connected-component labelling in 2-D binary images was used to label each blob. The 

total number of objects in the image in Example 1 was 152 objects, while the image in 

Example 2 had 215 objects. Some objects were chosen from both examples, as shown in 

Figure 6.3 and Figure 6.4.  

 

 
 
 

 
 
 
 
 
 

  
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

  

 
 

 

d) Calculate a centroid  

 

e)  

 

 

 

 

 

 

Figure 6.4: Label Object Sample Example 2 

Figure 6.3: Label Object Sample Example 1 
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d) Find the centroid for each object using the region props function (see Figure 6.5).  

e) In Figure 6.6, the centroid is marked as a star. Then, the boundary (BW) is used 

to trace the region boundary in the binary image and to calculate the boundary 

point (x, y).  

 

 
 

 
 
 
 
 
 

  
 

 

 

 
 
 
 
 
 
 
 
 
 

  

 

 

 
 
 

 
 
 
 
 
 

  
 

 

 

 
 
 
 
 
 
 
 
 
 
 

  

Figure 6.6: Object Centroid Example 2 

 

f) The distance from the centroid to the boundary is calculated using the equation  

Figure 6.5:  Object Centroid Example 1 
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            distance =sqrt((x − xCentroid). ˆ2 ˖ (y − yCentroid). ˆ2                                    6.1                          

g) Then the angle from the centroid to the boundary is calculated using the next 

equation  

             Angle =  atan2d (y −  yCentroid, x −  xCentroid)                                           6.2                                     

h) Then, the angle from the centroid to the boundary is calculated as the max angle 

and max distance found for each object. To extract the kidney edge without any 

non-kidney component, hence the max angle and max distance represent the 

kidney components.  

i) The minimum distance from the centroid to the boundary is found. Then, the 

object is removed or otherwise kept.  

j) If there is still any non-kidney component in the final result, the shape factor of 

the kidney is calculated to remove any non-kidney component and keep kidney 

edges to get final result as: 

                                                       SF = 4πA/L2                                                                          6.3                                                                                          

A: area of region 

L: is the number of boundaries which is equal to the number of x. 

For the kidney, the SF will be the min value. 

The final result extracted for the kidney edge is shown in Figure 6. 7 for Example1 and 

Example 2.   

 

 
 
 

 
 
 
 

 

Figure 6. 7: The Result of Proposed Segmentation Model on Different Kidney 
Images 
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6.3  Experimental Results 

A dataset, consisting of 230 images, was collected of different patients. The dataset 

included low-quality image characteristics such as low contrast, low resolution, and noise. 

The dataset was considered adequate enough to evaluate the proposed and existing 

methods for kidney image segmentation because the nature of the dataset varied in terms 

of low-quality characteristics that included the possible causes of kidney image 

segmentation.  

In order to measure whether the proposed model was able to segment kidney parts 

correctly or not, standard measures, namely, sensitivity and accuracy, were used. Kidney 

regions were segmented manually, and the segmented regions were further verified by a 

doctor who was an expert radiologist. At the same time, the results given by the proposed 

and existing methods were verified by the same doctor to calculate the measures. The 

ground truth samples and segmentation results of the proposed edge-based method for 

kidney segmentation for the dataset are shown in Figure 6. 8.  

To show the effectiveness and usefulness of the proposed model, it was compared with 

the following state-of-the-art methods: Canny edge strategy (Canny, 1986), which uses 

Gaussian filtering for segmentation. However, the Canny edge detection may still fail to 

precisely meet the desired boundary if the noise level in the image is high because the 

noise and edges both include high frequency components. The execution of the Canny 

edge identification depends on Gaussian filtering. Gaussian filtering does not just remove 

image noise and smothers image subtleties, but also weakens the edge data. Tomasi and 

Manduchi (1998) adjusted the bilateral filter to do edge recognition, which is the inverse 

of bilateral smoothing. Chai, Wee et al. (2011) presented the speckle-reducing anisotropic 

diffusion (SRAD) system in the image denoising part of the Canny algorithm structure. 

The proposed technique is able to remove speckle noise while maintaining image 

subtleties.  
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These strategies do not segment the kidney accurately. Thus, this may be the reason 

why the models which investigated the Canny edge with various filters on their own may 

not function well for low-differentiation and degraded images. In this way, a viable 

strategy for removing the non-kidney part from low-complexity MRI images was 

developed according to the Canny edge recognition calculations with the application of a 

few conditions, namely, the angle from the centroid to the boundaries, the distance from 

the centroid to the boundaries, and the shape factor of the kidney. 

 

6.3.1 Qualitative Results 

The qualitative results of the proposed segmentation model for the dataset1 and 

dataset2 are shown in Figure 6.8 and Figure 6.9, respectively. It was observed that the 

input images were affected by multiple factors, such as poor quality (low contrast), 

degradations, and contrast variations, as shown in Figure 6.8(a) and 6.9(a). The proposed 

model was able to successfully segment the kidney regions, as shown in Figure. 6.8(c) 

and Figure 6.9(c). This was evident from the comparison of the segmentation results of 

the proposed model and the ground truth, where the results of the proposed edge-based 

method for kidney segmentation were almost the same as the ground truth. This shows 

that the proposed model has the ability to handle complex situations (i.e., kidney 

diseases). This is the advantage of the proposed model for segmentation.  
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(a) Input images 

 
 

    

(b) Ground truth 

 
 

    

(c) Proposed Edge-based kidney segmentation 

 

 

    

(d) Binary image of proposed Edge-based kidney segmentation 

Figure 6.8: Examples of Kidney Segmentation Using the Proposed Edge-Based 
Method for Kidney Segmentation 
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(a) Input images 
    

(b) Ground truth 
    

(c) Proposed edge-based method 
 

 
  

 
(d) Binary image of proposed Edge-based kidney segmentation 

 
Figure 6.9: Samples of Kidney Segmentation Using Proposed Edge-Based Method 
on Dataset-2 

 

 

6.3.2 Quantitative Results 

The quantitative results for the tested dataset are reported in Table 6.1 and Table 6.2, 

where it was evident that the proposed model produced the best results in terms of 

sensitivity and accuracy, JSC, DSC compared to other existing models.  
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Therefore, it can be asserted that the proposed model outperformed the existing models 

in terms of segmentation, shape preservation and efficiency. Table 6.1and Table 6.2 show 

that the proposed model was suitable for complex images as well as simple images.  

 

 

Table 6.1: Perform of The Proposed and Existing Methods for Dataset-1 

 

Table 6.2: Performance of the proposed edge-based method for kidney image 
segmentation on Dataset-2 
 

 

6.4 Evaluating two proposed segmentation methods 

To support the first proposed segmentation algorithm (Fractional-Based Minimization 

Function for Kidney Image Segmentation) this method overcomes the limitations of the 

second proposed segmentation method which is the edge-based method for kidney image 

segmentation. A qualitative and quantitative evaluation is provided using dataset-1 in 

Sections 6.5.1 and 6.5.2. 

Methods Sensitivity (%) Accuracy (%) JSC (%) DSC (%) 

(Tomasi & Manduchi, 
1998b) 

30.28 63.788 49.55 
 

68.92 

(Chai, Wee, & 
Supriyanto, 2011b) 

33.28 59.865 45.79 56.32 

Proposed 98.14 94.656 90.55 
 

93.92 

Methods Sensitivity (%) Accuracy (%) JSC (%) DSC (%) 

(Tomasi & Manduchi, 
1998b) 

39.58 41.788 41.95 
 

42.79 

(Chai, Wee, & 
Supriyanto, 2011b) 

38.28 39.85 40.79 37.32 

Proposed 48.34 48.68 47.85 
 

46.52 
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6.4.1 Qualitative Results 

The qualitative results of both proposed segmentation models for dataset-1 are 

shown in Figure 6.10. It was observed that the input images were affected by multiple 

factors, as shown in Figure 6.10(a). Each proposed model was able to successfully 

segment the kidney regions, with more accurate results for proposed segmentation 1 

(fractional-based minimization function) compared to the proposed segmentation 2 

(edge-based method) as shown in Figure. 6.10(c) and Figure 6.10(d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

     

B 

     

C 

 

     

D 

 

     

 
Figure 6.10: The Comparison results between the two proposed segmentation methods using    
dataset 1    (A) Input images, (B) Ground Truth, (C) Proposed segmentation 1, (D) Proposed 
segmentation 2 
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6.4.2 Quantitative Results 

The quantitative results for the tested dataset are reported in Table 6.3 and Table 6.4, 

where it was evident that both proposed segmentation models produced good results in 

terms of accuracy, with lower computational time for the edge-based method. This is 

because after implementing the edge-based method, the active contour-based method is 

computationally expensive because it involves a large number of iterations. However, the 

motivation for using the active contour-based method is to develop a generalized method 

to obtain accurate results. Although the active contour-based method is computationally 

expensive, it achieves better results compared to the edge-based method. In contrast, 

while the edge-based method is more efficient, it is not as accurate as the active contour-

based method. 

The proposed enhancement model enhanced images of the kidney region that included 

other body parts. This made the segmentation of the kidney region difficult. The proposed 

work explored a fractional calculus-based method for segmenting the kidney region in 

the enhanced images. Since fractional calculus has the ability to handle uncertainty 

between the prominent pixels and background pixels, the proposed method exploited this 

property to segment the kidney region in the enhanced images. According to the 

experiments, the above method is computationally expensive, which means that the 

method requires a greater number of operations. As the number of operations increases, 

the processing time also increases. The second segmentation method proposed was 

developed using an edge-based method. It is true that the pixels, which represent the 

contours of the kidney, share unique spatial relationships. Based on this, the proposed 

model achieved better results than the existing models. 
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Table 6.3: The Comparison results between the two proposed segmentation 
methods using dataset 1 

 

 

 

 

Table 6.4: The Comparison results between the two proposed segmentation 
methods using dataset 2 

 

 

 

 

6.5        Discussion  

According to the experimental results in Chapter 5, the proposed active contour-

segmentation method is computationally expensive. To develop an efficient method for 

segmenting the kidney based on enhanced images, the proposed work developed an edge-

based method. Edges are important features in such images to separate key data, and it 

represents the basic tools for segmentation. However, edges of such regions can be hard to 

determine because the MRI input images are affected by multiple factors, such as poor 

quality, degradation, and contrast variation. The state-of-the-art developed methods work by 

segmenting high-quality images; additionally, the performance of these methods is affected 

when the shape of the kidney changes. To overcome this, we developed a strategy for 

segmenting kidney-edge components by preserving kidney segmentation edge information 

from low-contrast MRI input images. The Canny edge detection strategy (Canny, 1986; 

Tomasi and Manduchi,1998; Chai, 2011), did not segment the kidney accurately. These 

methods are mainly used to determine edges by removing noise from images before edge 

detection to simplify the information to be processed while maintaining edge information. 

Method Accuracy of dataset1 Time (sec) 

Proposed 
segmentation1 

98.95 3.26 

Proposed 
segmentation 2 

94.65 0.76 

Method Accuracy of dataset2 Time (sec) 

Proposed 
segmentation1 

80.55 4.66 

Proposed 
segmentation 2 

50.21 1.88 
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However, this can still fail to accurately designate the boundaries if the noise level in the 

image is too high; also, the Canny method depends on Gaussian filters, which not only 

remove noise but also smooth the image, which affects edge data. To measure the 

performance of our proposed method, we used standard measures; namely, sensitivity, 

accuracy, JSC, and DSC. The proposed edge-based method for kidney-image segmentation 

was applied to the MRI image-based Canny edge detection under three applicable 

conditions; namely: (i) angle from the centroid to boundaries; (ii) the distance from the 

centroid to boundaries, and (iii) the shape factor of the kidney. According to qualitative and 

quantitative results, the proposed method outperforms existing methods and is useful in the 

terms of accuracy, sensitivity, JSC, and DSC. Moreover, the proposed method achieved this 

performance with a minimum of computational expense. However, when the proposed 

enhancement method does not enhance the details properly over the entire image, the 

proposed segmentation method fails to perform well. 

 

6.6  Chapter Summary  

This chapter presented the description of each step of the proposed edge-based method 

for kidney image segmentation. The experimental results on different low-quality kidney 

MR images showed that the proposed model was able to carry out the effective 

segmentation of kidney MRI images based on the use of kidney edge components while 

preserving kidney-segmented edge information from low-contrast MRI images.  
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

 

7.1  Background 

In this research, three novel approaches for enhancing and segmenting kidney 

components from low-contrast kidney MRI images, namely, an active contour model and 

edge-based methods for kidney image segmentation, were proposed. This chapter describes 

the summary, contributions and limitations of the proposed methods and recommendations 

for future work.  

 

7.2  Summary of the Proposed Work 

According to the objectives mentioned in Chapter-1, the proposed thesis work achieved 

the following, as described below.  

A new model based on fractional entropy was proposed for kidney image enhancement. This 

was the first objective of the thesis. The results showed that the proposed model is effective 

and useful for enhancing the fine details of the kidney region in the input images. It was also 

shown that the proposed model works well for images affected by noise, blurring and poor 

quality (low contrast). In addition, the results of a comparative study of the proposed model 

and existing models showed that the proposed model is effective.  

To achieve the second objective, the proposed work introduced a novel local fractional 

Mittag-Leffler function (LFMLF) as an energy minimization function to swap the standard 

gradient-descent minimization function in an active contour segmentation. The proposed 

model exploited the special property of fractional calculus, namely, its capability to not only 

preserve high-frequency contour features, but also to improve the low-frequency texture 

details in a smooth area to overcome the challenges. The results of the proposed model 

showed that it works well for images posed with different challenges.   
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For achieving the third objective, the proposed work developed an edge-based method 

for segmenting the kidney region in enhanced images. The proposed method extracted the 

unique information of the pixels, which represent the contours of the kidney for segmenting 

the region. The results of the proposed method and existing methods showed that the 

proposed method is accurate compared to the existing methods.  

 

7.3  Contributions of the Proposed Work  

This thesis made three contributions, namely, a fractional entropy model for MRI kidney 

image enhancement, a fractional calculus-based method for kidney image segmentation, and 

an edge-based method for efficient kidney image segmentation.  

The proposed work explored the fractional entropy information in a new way to achieve 

better results, and this was the main contribution compared to the existing models. Since the 

kidney images that were considered in this thesis were complex in nature in terms of low 

contrast, resolution, degradation and poor quality, the proposed fractional entropy enhanced 

the pixels based on the neighbouring information, irrespective of the above challenges.  

Similarly, due to complex images, the proposed enhancement model enhanced other 

information along with the kidney region. This made the segmentation of the kidney region 

difficult. The proposed work explored a fractional calculus-based method for segmenting 

the kidney region in the enhanced image. Since fractional calculus has the ability to handle 

uncertainty between the prominent pixels and background pixels, the proposed method 

exploited this property to segment the kidney region in the enhanced image.  

According to the experiments, the above method is computationally expensive. To develop 

an efficient method for segmenting the kidney region from the enhanced images, the 

proposed work developed an edge-based method. It is true that the pixels, which represent 

the contours of the kidney, share some unique spatial relationship. Based on this, the 

Univ
ers

iti 
Mala

ya



128 
 

proposed model achieved better results. The main contribution of the proposed method was 

the achievement of results with acceptable efficiency. 

 

7.4  Limitations of the Proposed Work 

Although the methods proposed in this thesis worked well for the different situations, 

there were some limitations as follows:  

When the input images are affected by noise, and are severely blurred, where one cannot see 

the content in the image with the naked eye, the enhancement method does not work well. 

This is because the proposed model gets confused with the actual pixel values and the noise 

pixel values. The proposed model involves many parameters to achieve better results. 

Sometimes, the parameters fail to get the correct values to obtain good results for different 

situations. It is necessary to reduce the dependency on the parameters.  

In the case of segmentation, the success of the proposed model depends on the success of 

the proposed enhancement model. If the enhancement model fails to classify the pixels of 

the kidney from the background pixels, the proposed segmentation will fail. This shows that 

there is a need to develop a method that works well without depending on the enhancement.  

Although the proposed edge-based method is efficient for segmenting the kidney region 

from enhanced images, the method is sensitive to a complex background and low-contrast 

images. When the proposed enhancement method does not enhance the details properly for 

the whole image, the proposed segmentation method fails to perform well. When the image 

contains different regions with different contrast qualities, the edge-based method does not 

perform well. In addition, if the image loses the details of the kidney contours, the edge-

based method fails to segment the kidney region from the enhanced images.  
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7.5 Recommendations for Future Work 

In view of the listed drawbacks of the proposed models of each topic, there is scope for 

the improvement of the proposed models. At times, the input image is expected to be affected 

by several causes, such as noise, blurring and other distortions. Therefore, it is necessary to 

developing a model that can cope effectively with many challenges. This is one major issue 

that should be considered in future work.  

The current trend is to explore deep learning-based models for solving complex issues. 

Future studies can explore a combination of feature extraction and deep learning for image 

enhancement and segmentation. In this context, one more work in the future can be to 

generate ground truth and collect a large number of images for the learning and training of 

the deep network.  

Future works can combine both the enhancement and segmentation steps into one method 

for evaluating the proposed system. Next, the proposed work can be extended to identify the 

related diseases in kidney images.    
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