

ENHANCING SYSTEM PERFORMANCE USING
PERSISTENT RAM MODULES AS STORAGE CLASS

MEMORY

TEBRA A MOUSSA JUMMAH

FACULTY OF COMPUTER SCIENCE AND INFORMATION
TECHNOLOGY

UNIVERSITI MALAYA
KUALA LUMPUR

 2022

Univ
ers

iti
Mala

ya

ENHANCING SYSTEM PERFORMANCE USING
PERSISTENT RAM MODULES AS STORAGE CLASS

MEMORY

TEBRA A MOUSSA JUMMAH

DISSERTATION SUBMITTED IN PARTIAL

FULFILMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF COMPUTER SCIENCE

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITI MALAYA
KUALA LUMPUR

2022

Univ
ers

iti
Mala

ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Tebra A Moussa Jummah

Matric No: 17057630/1

Name of Degree: Master of Computer Science

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

Enhancing System Performance Using Persistent RAM Modules as Storage

Class Memory

Field of Study: Computer System and Technology

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work.
(2) This Work is original.
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work.

(4) I do not have any actual knowledge, nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work.

(5) I hereby assign all and every right in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained.

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action,
or any other action as may be determined by UM.

Candidate’s Signature: Date:

Subscribed and solemnly declared before,

Witness’s Signature : Date:

Name:

Designation:

20 Jan 2022

20 Jan 2022
Univ

ers
iti

Mala
ya

iii

 ENHANCING SYSTEM PERFORMANCE USING PERSISTENT RAM

MODULES AS STORAGE CLASS MEMORY

ABSTRACT

Throughput and time latency are critical performance metrics of most application

systems; thus, any underlying storage technology must provide the best of both metrics.

Since hard disk drive (HDD) and solid-state drive (SSD) became an I/O bottleneck

performance for most intensive data applications, a new storage technology must be

produced to address this issue. Storage class memory (SCM) emerged as the new

promising technology with byte-addressable, high access time, and persistent features. In

this research, an SCM emulator was implemented using a kernel module based on a RAM

named ZRAM, which served as a general-purpose RAMDISK feature with persistence.

Further, a test has been conducted on the implemented emulator with persistent

RAMDISK and PMEM. The experiments conducted in this research were done through

three stages: the first of which involved testing the workload within different data

placement devices; the second stage involved running of tests upon a collection of disk

filesystems, RAM filesystem, and persistent memory filesystem (PMFS). At the third

stage, experiments were conducted to examine the effect of moving data files on

performance. The implemented emulator persistent ZRAM (PZRAM) achieved superior

performance as compared to HDD and SSD with a performance improvement of 14290%

and 1167% respectively, a slide higher performance than PMEM with 2.3% improvement

and almost similar performance of persistent RAMDISK. Additionally, the proposed

PZRAM with TMPFS running on top of it has provided better performance with 11.83%

over PZRAM with ext4. Further, this research provided comparative experiments on the

effect of filesystem and moving data files on throughput and latency performance.

Univ
ers

iti
Mala

ya

iv

Keywords: Storage class memory (SCM), Hard disk drive (HDD), Solid-state drive

(SSD), Filesystems and Performance.

Univ
ers

iti
Mala

ya

v

MENINGKATKAN PRESTASI SISTEM MENGGUNAKAN MODUL RAM
BERTERUSAN SEBAGAI STORAGE CLASS MEMORY

ABSTRAK

Truput dan latency masa adalah metrik prestasi kritikal bagi kebanyakan sistem

aplikasi sehingga mana-mana teknologi penyimpanan mesti memberikan yang terbaik

dari kedua metrik tersebut. Oleh kerana pemacu cakera keras (HDD) dan pemacu keadaan

pepejal (SSD) menjadi prestasi penghambat I/O untuk kebanyakan aplikasi data intensif,

teknologi penyimpanan baru mesti dihasilkan untuk mengatasi masalah ini. Memori kelas

storan (SCM) adalah teknologi baru yang menjanjikan ini dengan pengalamatan byte,

akses yang tinggi dan ciri-ciri berkekalan. Dalam penyelidikan ini, kami telah

menerapkan emulator SCM menggunakan modul kernel bernama ZRAM sebagai fitur

umum RAMDISK dengan ciri-ciri berkekalan. Selanjutnya, kami telah menguji emulator

yang kami laksanakan dengan RAMDISK dan PMEM yang kekal. Eksperimen kami

dilakukan melalui tiga peringkat; pertama: menguji beban kerja dalam peranti

penempatan data yang berbeza, kedua: ujian dijalankan pada kumpulan sistem fail cakera,

sistem fail RAM dan sistem fail memori berterusan (PMFS). Pada tahap ketiga,

eksperimen adalah untuk mengkaji pengaruh memindahkan fail data terhadap prestasi.

Emulator ZRAM yang kami laksanakan (PZRAM) telah menunjukkan prestasi yang

unggul berbanding dengan HDD dan SSD dengan peningkatan prestasi masing-masing

14290% dan 1167%, prestasi yang lebih tinggi berbanding PMEM dengan peningkatan

2.3% dan prestasi RAMDISK berterusan yang hampir serupa. Selain itu, PZRAM yang

kami cadangkan dengan TMPFS telah memberikan prestasi yang lebih baik dengan

11.83% berbanding PZRAM dengan ext4. Selanjutnya penyelidikan ini memberikan

eksperimen perbandingan mengenai pengaruh sistem fail dan memindahkan fail data

terhadap prestasi throughput dan latensi.

Univ
ers

iti
Mala

ya

vi

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Almighty Allah for the help and in easing my

journey throughout the study period to achieve this stage.

Secondly, I would like to express my sincere gratitude to both of my supervisors

namely, Assoc. Prof. Dr. Rosli Salleh and Dr. Anjum Naveed for their guide,

understanding, patience, help, and support throughout my thesis journey.

Next, I would like to thank my dearest family for their endless support, their kind

prayers, and their wishes. Special thanks to my Brother Adam Abubaker Moussa for

standing with me throughout this journey.

Furthermore, I owe so much thanks to my friends who were with me in this journey

through their prayers and kind wishes. More importantly, special thanks to Mashahi

Khalafalla, a friend of mine who helped me a lot during my stay in my home country with

registration and other related matters.

Finally, I would like to thank all the people I have come across during this journey,

who have helped or taught me in one way or the other. Also, I would like to appreciate

the FSKTM staff for their kind and responsive attitudes during this period. In conclusion,

I would express my sincere gratitude to Mrs. Norhazariah Binti Husin for her kind

assistance throughout this journey.Univ
ers

iti
Mala

ya

vii

TABLE OF CONTENTS

 Abstract... iii

ABSTRAK .. v

ACKNOWLEDGEMENTS ... vi

TABLE OF CONTENTS .. vii

LIST OF FIGURES .. xi

LIST OF TABLES ... xiii

List of Symbols and Abbreviations .. xiv

CHAPTER 1: INTRODUCTION .. 16

1.1 Background .. 16

1.2 Problem Statement ... 18

1.3 Research Questions .. 20

1.4 Research Objectives ... 21

1.5 Research Scope ... 21

1.6 Research Contribution .. 22

1.7 Thesis Organization .. 23

CHAPTER 2: LITERATURE REVIEW .. 24

2.1 Introduction .. 24

2.2 MYSQL .. 24

2.2.1 InnoDB Storage Engine ... 24

2.2.2 InnoDB Supported ACID .. 25

2.2.3 InnoDB Architecture .. 26

Univ
ers

iti
Mala

ya

viii

2.2.4 InnoDB Buffer Pool ... 27

2.2.5 InnoDB Double-write buffer (DWB) ... 29

2.3 Data Placement’s Media ... 30

2.3.1 Random Access Memory ... 31

2.3.2 Hard Disk Drive (HDD)... 33

2.3.3 Solid State Drive (SSD) ... 35

2.3.4 Storage Class Memories (SCM) .. 36

2.4 Related Work .. 40

2.4.1 Main Memory Database System (MMDB)...................................... 40

2.4.2 Storage Class Memory Database Management Systems
(SCM/NVM-DBMS) ... 42

2.4.3 Solid-state Drives Database Management Systems (SSD-DBMS) . 44

2.4.4 USE of RAMDISK and ZRAM for Better Performance 45

2.5 Discussion and Comparison ... 46

2.5.1 Data Placement Media ... 47

2.5.2 Related Work ... 47

2.5.2 Identify the research gap: ... 50

2.6 Summary .. 51

CHAPTER 3: METHODOLOGY ... 52

3.1 Introduction .. 52

3.2 Proposed Method .. 53

3.2.1 Create PM Emulators ... 54

3.2.2 Persisting PM Emulator ... 57

3.2.3 Sign Access Permission to PM Emulators 58

3.2.4 Tuning MYSQL Configuration File .. 58

Univ
ers

iti
Mala

ya

ix

3.2.5 Running Experiments... 59

3.3 Implementation ... 63

3.3.1 Source Code Files’ Tree... 63

3.3.2 Source Code ... 65

3.4 Summary .. 71

CHAPTER 4: RESULTS AND DISCUSSION ... 72

4.1 Introduction .. 72

4.2 Experimental Setup .. 72

4.2.1 Server Specification ... 72

4.2.2 MYSQL Specification ... 73

4.2.3 Data Placement .. 73

4.2.4 Filesystem Running on PM Emulator .. 73

4.2.5 MYSQL Data Files .. 74

4.2.6 Benchmark Application ... 74

4.2.7 Performance Parameter .. 75

4.3 Results .. 75

4.3.1 Data Placement Media ... 75

4.3.2 Filesystem Running on PM Emulator .. 76

4.3.3 MYSQL Data Files .. 79

4.4 Discussion .. 80

4.4.1 Data Placement Media ... 80

4.4.2 Filesystem Running on PM Emulator .. 81

4.4.3 MYSQL Data Files .. 83

4.5 Summary .. 84

Univ
ers

iti
Mala

ya

x

CHAPTER 5: CONCLUSION AND FUTURE WORK 85

5.1 Conclusion .. 85

5.2 Fulfilment of Research Objectives ... 85

5.3 Research Significance .. 86

5.4 Research Limitations .. 87

5.5 Future Work ... 87

REFERENCES .. 89

Univ
ers

iti
Mala

ya

xi

LIST OF FIGURES

Figure 1.1: Performance of HDD, SSD, and PRAMDISK ... 19

Figure 2.1: InnoDB Buffers and Logs (Schwartz et al., 2012)……………………........26

Figure 2.2: InnoDB Components (Lalit, 2016) ... 27

Figure 2.3: Buffer Pool Block Lists (Mijin, 2017).. 28

Figure 2.4: Double Write Buffer Architecture (Mijin, 2017) ... 29

Figure 2.5: Double Write Buffer Phases (Mijin, 2017) .. 30

Figure 2.6: Memory Taxonomy (Meena, Sze, Chand, & Tseng, 2014) 31

Figure 2.7: SWOT Analysis of RAM ... 33

Figure 2.8: SWOT Analysis of HDD .. 34

Figure 2.9: SWOT Analysis of SSD ... 36

Figure 2.10: SWOT of SCM ... 40

Figure 3.1: Research Methodology Phases……………………………………………..52

Figure 3.2: Proposed Method Steps .. 54

Figure 3.3: PZRAM Creation Steps .. 55

Figure 3.4: Pramdisk Creation Steps ... 56

Figure 3.5: PMEM Creation Steps .. 57

Figure 3.6: Running HammerDB .. 60

Figure 3.7: Selecting MYSQL TPC-C Benchmark... 60

Figure 3.8: Confirming TPC-C for MYSQL .. 61

Figure 3.9: Building Schema Options ... 61

Figure 3.10: Building Schema .. 61

Figure 3.11: Selecting the Driver Options .. 62

Figure 3.12: Defining the Number of Users ... 62

Figure 3.13: Creating the Virtual Users .. 62

Figure 3.14: TPC-C collects the TMP & NOPM .. 63

Univ
ers

iti
Mala

ya

xii

Figure 3.15: Source Code Files' Tree .. 64

Figure 4.1: System Performance-based on Type of Data Placement Devices………....80

Figure 4.2: PZRAM Performance based on Filesystems .. 81

Figure 4.3: PRAMDISK Performance based on Implementation Methods 82

Figure 4.4: PMEM Performance based on Filesystems .. 82

Figure 4.5: System Performance-based on Moving Data Files....................................... 83

Univ
ers

iti
Mala

ya

xiii

LIST OF TABLES

Table 2.1: DRAM Role & Limitations ... 32

Table 2.2: HDD Role & Limitations for DBMS ... 34

Table 2.3: SSD Role & Limitations .. 35

Table 2.4: Classifications of Research Papers on SCM-DBMS 39

Table 2.5: Comparison of Memory Technologies (Kuznetsov, 2019) 47

Table 2.6: Comparison of Related Work .. 494

Table 4.1: Server Information…………………………………………………………..72

Table 4.2: Results based on Data Placement Media ... 76

Table 4.3: Results of ZRAM based on Disk Filesystems ... 77

Table 4.4: Results of ZRAM based on RAM Filesystem ... 77

Table 4.5: Results of PRAMDISK with Different Implementation Methods Criteria ... 78

Table 4.6: Results of PMEM with Filesystems ... 79

Table 4.7: Results of Moving Different Data Files ... 79

Univ
ers

iti
Mala

ya

xiv

LIST OF SYMBOLS AND ABBREVIATIONS

Btrfs : B-tree filesystem

datadir : MYSQL data directory

DBMS : Database management system

DBW : InnoDB double-write buffer

DRAM : Dynamic random-access memory

Ext4 : Fourth extended filesystem

F2FS : Flash-friendly filesystem

HDD : Hard drive disk

ibdata : Innodb system tablespace

MRAM : Magnetic random-access memory

NVDIMM : Non-volatile dual inline memory module

NVM : Non-volatile memory

NVRAM : Non-volatile random-access memory

PCM : Phase change memory

PM : Persistent memory

PMEM : Persistent memory emulator

PMFS : Persistent memory filesystem

PRAMDISK : Persistent random access-memory disk

RAM : Random access-memory

RERAM : Resistive random-access memory

SCM : Storage class memory

SRAM : Static random-access memory

SSD : Solid-state drive

STT_MRAM : Spin-transfer-torque magnetic random-access memory

Univ
ers

iti
Mala

ya

xv

TMPFS : Temporary storage filesystem

TPC-C : Online transaction processing benchmark

XFS : Extent’s filesystem

ZRAM : A compressed random-access memory module

Univ
ers

iti
Mala

ya

16

CHAPTER 1: INTRODUCTION

1.1 Background

For decades, hard disk drives (HDD) have been used as primary storage for most

database management systems (DBMS) (Oukid & Lersch, 2019). However, the massive

increase in present-day data volume alongside the need to access this data in a very short

time has led the IT companies and database vendors the search for new storage media that

can satisfy the requirements for all kinds of enterprises (Gaonkar, Bojewar, & Das, 2013).

 To meet this ever-increasing number of data generated and processed by the present-

day business companies; social media, banks, etc., as well as storage and memory

industries, have experienced rapid growth in recent years to deliver numerous kinds of

novel memory and storage to handle data and users/vendors’ demands (Ouyang, Nellans,

Wipfel, Flynn, & Panda, 2011).

This new revolution in the storage/memory industry has changed the traditional

memory hierarchy which consisted of various tiers of memory technologies, sorted from

the fastest and least capacity to the slowest and the highest capacity: CPU registers, cache

memories (SRAM), main memory (DRAM), secondary storage (HDD), and the tertiary

storage (Tape Drive) (Ma et al., 2016).

Solid-state drives (SSD) are the first storage technology leap introduced by

semiconductor storage industries. It is a flash-based storage technology that functions as

secondary storage. SSD offers an order of magnitude better performance than its

predecessors: Hard disk drive (HDD) and magnetic tapes (Meza, Wu, Kumar, & Mutlu,

2015).

After the SSD leap, semiconductor storage and memory technologies showed a huge

revolution in the market by delivering a collection of different storage technologies that

Univ
ers

iti
Mala

ya

17

possessed the best metrics of both memory and storage technologies (Natarajan, 2004).

This collection of technologies is known as storage class memories (SCM). SCM is a

non-volatile, byte-addressable memory that comes in different technologies introduced

by different vendors. Some examples of SCM are phase-change memory (PCM), spin-

transfer-torque magnetic random-access memory (STT-MRAM), and resistive random

access memory (RRAM) (Natarajan, 2004). More details will be delivered in Chapter 2

of this dissertation.

SCM is also known as persistent memory (PM), non-volatile RAM (NVRAM), and

non-volatile memory (NVM). It’s a promising technology that bridges the performance

gap between DRAM and HDD/SSD (Jackson, Johnson, & Parsons, 2018).

Consequently, all these new and old storage/memory technologies have changed the

traditional memory hierarchy by adding new layers to the memory hierarchy. Such

technologies will be placed above HDD and lower than DRAM. However, as expected,

some SCM technologies can replace DRAM, and some can even replace SRAM.

Interestingly, studies are still exploring the potential use of such technologies (Yu &

Chen, 2016).

With the massive change in the storage area, generated data volume, and lagging of

HDD to keep up with this change in terms of performance and market demands,

applications had to explore new storage devices that provide them with their demands at

a reasonable cost.

Database management systems (DBMS) are one of these applications that has a huge

number of I/O operations. DBMS is used as a data host for most contemporary web

applications, online transactions, etc., to store, manage and provide data integrity.

Consequently, any improvement in DBMSs performance relatively leads to improve their

Univ
ers

iti
Mala

ya

18

relying applications’ performance (Ramez Elmasri, 2011).

Storage media and the filesystem (where DBMS store its data? and the type of running

filesystem on top of the storage media?), play a hugely significant role in DBMS

performance. Thus, choosing the right storage media and filesystem that suits the needs

of business/users’ is a critical task.

Because of the lack of real SCM technologies hardware, there are several emulators

either based on hardware or software to emulate the real SCM device. Intel has introduced

a PMEM emulator within Linux kernel 4 and later, additionally suggested using

RAMDISK as an emulator (Corporation, 2016).

In this research, an examination has been carried out on how database management

systems can benefit from SCM technologies by creating a persistent general-purpose

RAMDISK using a kernel module based on RAM named ZRAM. This is in addition to

testing the emulators with different types of filesystems and tuning the MYSQL InnoDB

storage engine. Further details about the MYSQL InnoDB storage engine will be

discussed in the next chapter.

1.2 Problem Statement

The performance of the most data-intensive applications is highly reliant on the

performance of the used storage system and other additional factors (Van Renen, Vogel,

Leis, Neumann, & Kemper, 2019). Such applications require high transaction rates at low

latency times. Although the performance of I/O storage devices has been gradually

improved, I/O latency and throughput remain one of the core systems’ bottlenecks for

disk-based database management systems (DBMS) (Bhimani et al., 2017).

Univ
ers

iti
Mala

ya

19

Figure 1.1: Performance of HDD, SSD, and PRAMDISK

From Figure 1.1, it’s clear that there is a massive performance variation among hard

disk drives, solid-state drives, and RAMDISK with regards to latency and throughput.

Where the implemented emulator persistent RAMDISK (PZRAM) achieved superior

performance as compared to HDD and SSD with a performance improvement of 14290% and

1167% respectively. This achievement has proved that both HDD and SSD drive

performance lag far behind the dynamic random-access memory (DRAM). This huge

performance gap is because DRAM latency is around 100,000 times lesser than hard disks

(HDD) and the bandwidth of DRAM is 6000 times higher than HDD (Patterson &

Hennessy, 2019, p. 856). Although SSD drives have bridged the high-performance gap

between memory and storage disks, they are around three orders of magnitude slower

than DRAM. Additionally, SSD-based-NAND flash is used as a block device which

results in extra overhead (Dulloor, 2016).

This vast performance gap can be hidden and bridged using SCM technologies (Oukid

& Lersch, 2019). However, SCM technologies are not broadly available yet. Thus, the

Linux RAM-based drives and filesystems available in Linux kernels can be explored to

build up a novel PM emulator (this research refers to the SCM emulator as a PM emulator

in the remaining chapters) with no special hardware or any complicated code and

complexity.

Univ
ers

iti
Mala

ya

20

Although ZRAM is available on Linux kernel mainlines and can be used as a general-

purpose RAMDISK, its use can only be found as a swap file in the research domain

(Desireddy & Pathireddy, 2016; Ilyas, Ahmad, & Saleem, 2020). ZRAM is a compressed

RAM-based block device that can save more memory, as compared to other RAMDISK

implementation methods. Since ZRAM and RAMDISK are RAM-based, all the contents

stored in ZRAM/RAMDISK will be lost upon system shutdown or system crash. Thus,

making a ZRAM/RAMDISK persistent is highly necessary to act as an SCM device.

Moreover, apart from the performance being affected by the storage technology, there

is an influence of the running filesystem from that storage device on the overall system

performance. Thence, the choice as to which filesystem is more suitable for storage and

application demand is critical.

For ZRAM, a disk-based filesystem is mostly used on top of it, such as ext4

(StuartIanNaylor, 2019; Gupta, 2014). However, it is argued that since ZRAM is a RAM-

based block disk, a RAM-based filesystem will be a better choice than the disk-based one.

In a glance, to bridge the performance gap between dynamic random-access memory

and storage device, this research proposes a persistent ZRAM as a PM emulator with

TMPFS running on top of the ZRAM block-drive to store the MYSQL data directory.

1.3 Research Questions

 In this section, the problem will be broken down into a set of questions for further

guidance to design the proposed solution. These questions are identified as follows:

• What are the existing storage/memory technologies, their role, and

limitations in database management systems?

• How to enhance system performance using a persistent RAM-based

module (ZRAM) as an SCM?

• Is the proposed method PZRAM able to improve the system

Univ
ers

iti
Mala

ya

21

performance?

1.4 Research Objectives

The main goal of this research is to improve system performance using SCM. Hence,

the target is tailored towards speeding up the response time and increasing system

throughput. The objectives of this research are listed thus:

• To explore and analyze the storage/memory technologies, their role, and

limitations in database management systems.

• To propose and implement a method that enhances system performance

using a persistent RAM-based module (ZRAM) as SCM.

• To empirically evaluate the proposed method (PZRAM) through an

experimental analysis to prove its ability to improve the system

performance.

1.5 Research Scope

 The scope of this research addresses the following points:

• This study only focuses on the system throughput and latency

performance.

• The effect of underlying storage on system performance in terms of

throughput and latency performance.

• The effect of the running filesystem on system performance like Ext4,

XFS, Btrfs, F2FS, RAMFS, TMPFS, and PMFS.

• The moving data files and their effect on performance when moving to

another location.

• ZRAM a compressed random-access memory-based block drive is used

to build up a PM emulator.

• TPMFS is a random-access memory filesystem, used to create a

Univ
ers

iti
Mala

ya

22

RAMDISK to emulate the PM.

• PMEM an Intel emulator is enabled on Linux kernels 4 and later used

to emulate PM in this research.

1.6 Research Contribution

This research contributes to MYSQL database management system performance

improvement and SCM/NVM DBMS-related research. Since the real hardware of SCM

is not yet widely available, the researcher implemented a software emulator to act as an

SCM. This emulator is used to perform all experiments. Thus, to implement the software,

the research employed the random-access memory-based module presented in mainline

Linux kernels. Further, this research proposed a persistent RAM-block device using a

ZRAM module with TMPFS on top of it. Additionally, the research delivered an

empirical comparative experiment that covered three aspects of performance-related

factors as follows:

• What is the best storage device to use as the main storage for data

placement?

• What type of file system provides good performance when used on

top of the storage device?

• What data files of an application have an impact on performance

when it’s moved?

The research highlighted the effect of the filesystem, with regards to the moving of

data files on latency and throughput performance. Additionally, the study also provides

users/researchers a comprehensive guideline to choose which storage type, which data

files should move, and which filesystem can provide better performance.

Furthermore, this research provided the implementation of persistent RAMDISK and

compared the different methods of its implementations with each other.

Univ
ers

iti
Mala

ya

23

1.7 Thesis Organization

The structure of this thesis is organized thus:

Chapter 1-Introduction

The chapter discusses the background, research problem, research questions,

objectives, and research contribution.

Chapter 2- literature review

In this chapter, the existing related studies and brief background are reviewed.

 Chapter 3- Methodology

This chapter covers the proposed research methodology and its implementation in

detail.

Chapter 4- Results and discussion

In this chapter, the obtained results are presented and analyzed to evaluate the proposed

solution.

Chapter 5- Conclusion

 Finally, this chapter concludes the dissertation and provides future suggestions.

Univ
ers

iti
Mala

ya

24

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

 This chapter discusses the review of literature conducted for this research. It

commences with a critical review of the thesis case study (MYSQL InnoDB storage

engine), followed by discussing the DBMS data placement media, and concludes with

a discussion of related works.

2.2 MYSQL

 MYSQL is the most used open-source relational database management system

(RDBMS) built upon the structured query language (SQL) (Manual, 2013, p. 4). The

architecture of MYSQL differs from the other database servers’ architecture, thus

making it widely used for multi-purpose and demanding environments. Examples of

applications/environments that make use of MYSQL include web applications,

embedded applications, online transaction processing (OLTP), data warehouses, among

others. The most significant merit of MYSQL is its storage-engine architecture. In which

the design of its storage separates the query processing and other tasks from data storage

and recovery. Different storage engines are offered by MYSQL, such as InnoDB,

MyISAM, memory engine, archive engine, CSV engine, NDB cluster engine, etc.

(Schwartz, Zaitsev, & Tkachenko, 2012).

2.2.1 InnoDB Storage Engine

 InnoDB is the most popular designed storage engine for transactional and non-

transactional storage. The vast popularity of Innodb comes as a result of its key provided

features such as auto crash recovery, storing data in sequential files called system

tablespace, using multi-version concurrency control (MVCC), row-level locking,

implementing the four SQL standard isolation levels, producing faster primary key

Univ
ers

iti
Mala

ya

25

lookups and foreign key constraints to protect data integrity and finally its support to

ACID-transaction features (Schwartz et al., 2012; Manual, 2013, p.).

2.2.2 InnoDB Supported ACID

 The ACID-compliant transaction featuring is a group of database concepts that

supports data reliability, which is an important aspect of business data and critical data

applications. The use of ACID along with the InnoDB storage engine can save stored data

from corruption caused by crashes and bugs. These ACID features comprise atomicity,

consistency, isolation, and durability (Manual, 2013, p.; MySQL, 2001,p. 242).

2.2.2.1 Atomicity

 Atomicity means that every transaction should be accomplished, or nothing happens.

Thus, if one transaction fails, then all other transactions will fail. MySQL's InnoDB

ensures data atomicity by auto-commit setting, commit statement, rollback statement,

and operational data from the information schema tables.

2.2.2.2 Consistency

 Consistency is the part of the ACID model that deals with the internal InnoDB

processing to save data from crashes and corruption. MYSQL’s InnoDB supports data

consistency by using features such as InnoDB DWB, and InnoDB crash recovery.

2.2.2.3 Isolation

 The InnoDB provides an isolation feature by applying the auto-commit setting and

SET ISOLATION LEVEL statement.

2.2.2.4 Durability

 Finally, durability is a part of the ACID transaction model which ensures that the

transaction that has been committed will be saved permanently. MYSQL InnoDB

provides this feature through InnoDB DWB and other configuration options such as:

Univ
ers

iti
Mala

ya

26

• Configuration option innodb_flush_log_at_trx_commit.

• Configuration option sync_binlog.

• Configuration option innodb_file_per_table.

• Write buffer in a storage device, such as a disk drive, SSD, or RAID
array.

2.2.3 InnoDB Architecture

Figure 2.1: InnoDB Buffers and Logs (Schwartz et al., 2012)

 As illustrated in Figure 2.1 above, the InnoDB consists of several buffers and logs.

• Buffer pool: a special reserved area in the main memory to cache

InnoDB data table and indexes.

• Redo log buffer: a memory area that maintains data that needs to be

written into redo logs.

• System tablespace: where the InnoDB stores the users’ indexes and

data. The created tablespace file, referred to as ibdata, is created in the

data directory. The system tablespace includes:

Univ
ers

iti
Mala

ya

27

– InnoDB data dictionary

– InnoDB double-write buffer

– Undo logs

– Change buffer

InnoDB distributes these buffers and logs into an in-memory and an on-disk storage

area. Figure 2.2 illustrates the distribution.

Figure 2.2: InnoDB Components (Lalit, 2016)

2.2.4 InnoDB Buffer Pool

 The buffer pool is considered as a cache memory for InnoDB data tables and indexes.

It is structured as a linked list of pages and constructed with the least recently used

algorithm (LRU). The buffer bool blocks are divided into three blocklists:

• A free list that maintains the free page frames.

• LRU list which includes all pages that contain the file page.

• The flush list comprises all LRU list blocks that have been changed in

memory but are not yet written to their data file in the disk.

Univ
ers

iti
Mala

ya

28

Figure 2.3: Buffer Pool Block Lists (Mijin, 2017)

2.2.4.1 Buffer Pool Mechanism

 Since the buffer pool is managed as a list, the newly added pages to the pool are

inserted in the middle of the list. The middle point of the list is split up into two sub-

lists, the new and old sub list. The head of the list holds the new sub-list where the pages

are recently accessed. However, the tail contains the old sub-list where pages are accessed

for a short period. Accordingly, these lesser accessed pages are nominees to be evicted

by the LRU. 3/8 of the buffer pool is dedicated to the old sub-list. Whenever a new read

occurs, the new pages are written at the head of the old sublist and the less accessed ones

are moved to the tail, and then evicted. Any reads occurring, inclusive of the old sublist,

are moved up to the new sublist and will reside in the buffer pool for a longer time

(Manual, 2010).

2.2.4.2 Multiple Buffer Pool Instances

 To lower the contention among threads that concurrently read and write the cache

pages, InnoDB enables users to split the buffer pool into multiple instances. Every page

that is stored in or read from the buffer pool is randomly allocated to only one of the

buffer instances, using the hashing function. The hashing function enables every buffer

pool to control its free lists, flush lists, LRUs, and all other data structures linked to the

buffer pool and ensures they are maintained by their buffer pool mutex. For enabling

multiple buffer pool instances, there is a need to set the innodb_buffer_pool_instances

configuration option to a value greater than 1 (Manual, 2010).

Univ
ers

iti
Mala

ya

29

2.2.5 InnoDB Double-write buffer (DWB)

 The DWB is a recovery technique used by InnoDB against partial-written pages issues

during the process of writing and updating the pages. The DWB consist of two blocks,

where each block has 64 pages. The DWB size is computed by 2 extents (2*64=128).

Figure 2.4 below clarifies the DWB architecture:

Figure 2.4: Double Write Buffer Architecture (Mijin, 2017)

 InnoDB DWB is a redundant method that writes pages twice. This mechanism includes

two steps: In the first phase, the InnoDB copies the dirty pages from the buffer pool instances

to the DWB file. Then this contiguous set of memory pages is written synchronously

and sequentially to the DWB file. In the second phase, InnoDB rewrites the same dirty

pages to their proper locations in the tablespace file using the synchronous random writes.

The double-write strategy ensures that a complete set of copy pages will always exist in

the storage even in the case of crashes and system failures. For example, when a system

crash occurs, InnoDB checks double-write files; if a page in the double-write (step I) is

found to be partially written, it will be simply removed. If the page in the tablespace is

inconsistent, it will be recovered by the copy of the page existing in the double-write file

Univ
ers

iti
Mala

ya

30

(Son, Kang, Yeom,& Han, 2017; Manual, 2010; Schwartz et al., 2012).

Figure 2.5: Double Write Buffer Phases (Mijin, 2017)

 Besides MYSQL, there are other contributed works to the InnoDB DWB, targeted at

optimizing it as well as addressing its issues. Percona server 5.7 presented a parallel DWB

to address the IO contention issue and concurrency-related issues inherent in the legacy

DWB due to its nature of being only one shared file (Schwartz et al., 2008, p. 293).

2.3 Data Placement’s Media

Most of the contemporary RDBMS/applications are reliant on two different memory

types (Schwartz et al., 2008). Typically, they make use of fast but volatile memory such as

random-access memory (RAM) for storing the most frequently accessed data (hot data),

whereas persistent and high dense devices are responsible for data storage like hard

disk drive (HDD) or solid-state drive (SSD) (Petrov, Gottstein, & Hardock, 2015). Both

memory types' pitfalls have led researchers and memory/storage vendors to investigate a

new memory type that comprises the advantages of persistent, high bandwidth devices

as well as fast, byte-addressable ones.

Univ
ers

iti
Mala

ya

31

Figure 2.6: Memory Taxonomy (Meena, Sze, Chand, & Tseng, 2014)

2.3.1 Random Access Memory

Random-access memory (RAM) is a system volatile memory technology that stores

machine instructions and temporal applications’ data. It is shaped of integrated circuit

(IC) chips with metal-oxide-semiconductor (MOS) memory cells. There are two

commonly used types of RAM, which are static random access memory (SRAM)

and dynamic random access memory (DRAM) (Ma et al., 2016; Oukid & Lersch, 2018).

2.3.1.1 Static Random-Access Memory

SRAM technology uses six transistors per bit to read and write data into memory cells.

Additionally, it requires a very minimum amount of power to maintain the charge in the

reserved mode, and it doesn’t need to be refreshed. Therefore, its access time is very close

to its cycle time, and it’s considered as a very fast memory system, lower dense, and the

most expensive one. SRAM is typically used as a cache memory for the CPU in all

modern computer systems (Patterson & Hennessy, 2019, p. 85; Oukid & Lersch, 2018).

2.3.1.2 Dynamic Random-Access Memory

DRAM requires only one transistor to store a bit of data, and one capacitor to hold the

charges. It requires a periodic refreshment and continuous charge to keep functioning.

DRAM is less expensive and higher dense than SRAM, thus, it is used as the main

Univ
ers

iti
Mala

ya

32

memory of computer memory systems. The role of DRAM in computer systems has given

it higher attention from researchers and memory industry vendors (Oukid & Lersch,

2019). There are a variety of DRAM types in the market introduced by several companies.

Currently, most of the DRAM market is controlled by Micron, Samsung, and SK Hynix;

they possess more than 95% of the market share. The huge competition among such

companies yields in producing numerous amount of DRAM technologies according to

the specific application needs (Ma et al., 2016). Due to the reduction in the price of

DRAM and its increased capacity, it is used as the main memory for some kind of

database management systems (Kabakus & Kara, 2017). Following table 2.1 presents the

role and limitations of DRAM:

Table 2.1: DRAM Role & Limitations

Role of
DRAM

Systems Most Popular Type Limitation

Used as a
buffer pool

storage

DBMS MYSQL, Microsoft SQL,
Oracle, POSTGRESQL,

etc.

Limited data
capacity.
Energy
consumption.
Scaleup issues.

Used as
the main

storage for
data

placement

In-memory database (IMDB) Voltdb, SAP Hana, SQL
Hekaton, Timesten, H-
store, MemSQL etc.

Key-value stores (KVS) Memcached, Redis,
Aerospike, etc.

Figure 2.7 presents the strengths, weaknesses, opportunities, and threats (SWOT)

analysis of DRAM:

 Univ
ers

iti
Mala

ya

33

Figure 2.7: SWOT Analysis of RAM

2.3.2 Hard Disk Drive (HDD)

Hard disk drives (HDDs) are non-volatile memory that is commonly used as secondary

storage devices in most current general-purpose computer systems. They make use of the

magnetization concepts to store and retrieve data, hence they are called magnetic disks.

Current HDDs are reliant on the same system design principle since their invention in the

1960s, of which they consist of several platters attached with a head surface, and a

movable arm to read/write data to the platter surface (Patterson & Hennessy, 2019, p. M-

85)

Although HDDs have been utilized as default storage for most systems and database

management systems (DBMSs) due to their high density, lower prices, and high

reliability, their nature of magnetic movable parts makes them slower than all mainstream

NVM technologies such as SSD and class storage memory technologies (SCM).

Data on HDDs can be accessed randomly and sequentially. However, accessing reads

and writes sequentially is far faster than accessing them randomly, because sequential

Strengths
• Byte

addressable
• Fast read and

write
• Higher

endurance
• Fast access

time

Weakness
• Volatilitity
• low capacity
• Expenisive as

compared to
other storage
components.

Opportunitie
s

• Uses as a
main memory
in systems.

• Capacity can
be increased.

Threats
• Not repairable

in case of
damage.

• Scale up
limitation

• Row-
hammering

Univ
ers

iti
Mala

ya

34

access does not require repositioning the movable arms. To improve the performance of

hard disks, a Redundant Array of Independent Disks (RAID) was introduced to bridge

the performance gap between disks and memory and the central processing unit (CPU)

(Ma et al., 2016; Oukid & Lersch, 2019). Following table 2.2 presents the role and

limitations of the hard disk drive (HDD) for the most popular database management

systems (DBMSs).

Table 2.2: HDD Role & Limitations for DBMS

Role of HDD Systems Most Popular Type Limitation
Used as the main
storage for Data
placement.

SQL-DBMS

MYSQL, Microsoft SQL,
Oracle, POSTGRESQL, etc.

Slower data rate.
Longer access time.
Can become a
bottleneck for IO
data intensiveness. Used either as a

Backup location
or as the main
storage.

NOSQL MongoDB, Redis,
Memcached, CouchDB,
Couchbase, Aerospike, etc.

Figure 2.8 presents the strengths, weaknesses, opportunities, and threats (SWOT)

analysis of the hard disk drives (HDD):

Figure 2.8: SWOT Analysis of HDD

Strengths
•Persistent
•Good at
sequential reads
and writes

•Large capacity
•Low price

Weakness
•Low random
access
read/write
perfomance.

•Bottleneck
perforamnce for
high io
applications.

Opportunities
•Uses as a main
storage in
systems

•Can use two
HDD or more
on same
machine.

•Maybe used as
an arichival
device in the
future.

Threats
•Viruses threat
•Can be
damaged due to
its movable
parts nature

•Noise
•Not repariableUniv

ers
iti

Mala
ya

35

2.3.3 Solid State Drive (SSD)

SSDs are electronic storage devices based on flash NAND/NOR or Random-access

memory. SSDs vary from HDDs in their design, where they do not have any movable

parts and stores data in semiconductor cells. SSDs are designed in such a way that they

vary from each other according to the number of bits that can be stored in each

semiconductor cell (Ma et al., 2016; Oukid & Lersch, 2019). However, most

contemporary developed SSDs are functional either using a multi-level cell (MLC) or

triple-level cell (TLC).

To scale more capacity, a 3D NAND Flash technology was introduced and exploited

to manufacture SSDs. The 3D NAND technologies have been widely used in most

present-day SSDs (Bhimani et al., 2017; Canim, Mihaila, Bhattacharjee, Ross, & Lang,

2010).

SSDs were the first storage technology leap that was placed between HDD and

DRAM. Its access time is measured in microseconds which is far lower than HDD access

time. Because of the promising performance of SSDs, a lot of studies investigated on

making use of it with database management systems (Do et al., 2011; Kang, Lee, Moon,

Kee, & Oh, 2014; Rizvi & Chung, 2010; Shahla Rizvi & Chung, 2010). Following table

2.3 presents the roles and limitations of the solid-state drive (SSD)for DBMS:

Table 2.3: SSD Role & Limitations

Role of SSD Reference Limitation

SSD-DBMS

 (Shahla Rizvi & Chung, 2010), (Rizvi &
Chung, 2010), (Schmidt, Ou, & Härder, 2009)

Lifespan &
Reliability.

Lower access time
than DRAM.

Not optimized for
DBMS, it’s simply
replaced by HDD.

As a Buffer-pool
extension

(Do et al., 2011), (Canim et al., 2010),
(Zhuang, Zuk, Ramachandra, & Sridharan,

2016),
Cache & Write
optimization

(Kang et al., 2012), (He, Sun, & Feng, 2014),
etc.

Note* SSD is simply used as main storage instead of
HDD by different users, companies, etc. for
their systems like DBMS or NoSQL-related

apps to get better performance.

Univ
ers

iti
Mala

ya

36

Figure 2.9 shows the strengths, weaknesses, opportunities, and threats (SWOT)

analysis of the solid-state drives (SSD):

Figure 2.9: SWOT Analysis of SSD

2.3.4 Storage Class Memories (SCM)

SCM is a non-volatile memory (NVM) technology that provides non-volatility, high

density as HDD/SSD, byte-addressable, lower latency, and higher throughput as DRAMs.

Moreover, SCM can be directly connected to the CPU using the DRAM bus and

addressed by usual load/store instructions. There are a variety of SCM technologies

introduced by different companies like Micron, Intel, SK Hynix, SanDisk, IBM,

Samsung, Crossbar, etc. some of these technologies are discussed in the next subsections

(Oukid et al., 2017).

2.3.4.1 Non-Volatile Dual In-line Memory Module (NVDIMM)

NVDIMM is a non-volatile random access memory type that uses the dual in-line

memory module package (DIMM). NVDIMM provides data persistence even in cases

whereby there is a system failure as well as sudden system shutdowns. NVDIMM uses a

Strengths
•Persistent
•Large
capacity

•Good for both
random and
sequential
access.

•Fast access
time than
HDD

Weakness
•Low
endurance

•Expenisive as
compared to
HDD

•Asymmetric
perforamnce

•No write in
place

Opportunities
•Used as a
main storage
in systems

•Capacity can
be increased.

•Replace HDD
in future

Threats
•Not reliable
•Data retention
gets worse as
flash scales
down

•Viruses

Univ
ers

iti
Mala

ya

37

backup battery (BB) to supply power to volatile DRAMs for up to 72 hours. Due to the

downside of this battery backup technology, most newly developed NVDIMMs use the

onboard supercapacitors to save DRAMs’ energy. This is because it is a non-volatile

memory type and is well-matched with DRAM’s interface; thus, it is also referred to as

persistent memory (PMEM) (Bez & Pirovano, 2004; Nguyen & Lee, 2019). There are

three types of NVDIMM introduced by the standard JEDEC organization and they are

discussed next.

• NVDIMM-N

NVDIMM-N consists of both flash memory technology and legacy DRAM in a single

module, in which the DRAM can be accessed directly by the computer systems. In case

of any system failure or power loss, the data will be backed up from DRAM onto a non-

volatile flash memory by the NVDIMM-N module and copied back into DRAM when

the system power is restored. There are a variety of products based on the NVDIMM-N

technology available in the market (Sainio, 2016; Gervasi, 2017).

• NVDIMM-F

NVDIMM-F is a kind of flash memory technology with the use of DRAM’s bus.

Although the use of DRAM’s bus enhanced the NVDIMM-F performance over the SSD

in terms of bandwidth and latency, it functions like an SSD (Sainio, 2016; Gervasi, 2017).

• NVDIMM-P

NVDIMM-P contains both features of DRAM and flash technologies, in which it can

provide both block addressing and byte addressing. With regards to the size, NVDIMM-

P can be manufactured with terabytes like any NAND flash technology. Furthermore, it

can provide time delay within the level of 7-10 seconds. Like the previous types of

NVDIMM, DRAM can be accessed directly using the memory bus, hence the data can be

Univ
ers

iti
Mala

ya

38

accessed directly by the CPU without the need for extra latency of the PCIe or any other

disk interfaces (Sainio, 2016; Gervasi, 2017).

2.3.4.2 Phase-Change Memory (PCM)

PCM is another form of non-volatile random access memory that is also referred to as

a phase change RAM (PRAM/PCRAM), an ovonic unified memory (OUM), or a

chalcogenide RAM (CRAM) (B. C. Lee, Ipek, Mutlu, & Burger, 2009). This memory

technology is built upon a chalcogenide glass material that can be switched between two

different states called amorphous and crystalline. The PCM cell structure is comprised of

1 transistor and one resistor (1T/1R) and the data is stored using resistivity instead of the

electrical chargers (Lee, 2009; Oukid & Lersch, 2019). Intel and STMicroelectronics are

now selling PRAM-based devices to consumers, under the names: 3D XPoint Optane,

and QuantX.

2.3.4.3 3D Xpoint

This refers to a form of non-volatile memory (NVM) technologies introduced by Intel

and Micron Manufacturing. Since April 2017, they have been available on the memory

market under the names of Intel Optane and Micron QuantX. Their initial prices are lesser

than the prices of dynamic random-access memory (DRAM) and more than the prices of

flash-based memories (Jackson et al., 2018; Smith, 2015).

2.3.4.4 Resistive Random-Access Memory (RRAM/ReRAM)

ReRAM is another form of non-volatile random-access memory technology, similar

to a phase-change memory (PCM). ReRAM functions by switching the resistance through

a dielectric solid-state material usually referred to as a memristor (Calderoni, Sills,

Cardon, Faraoni, & Ramaswamy, 2015; S. Kim, 2012).

Univ
ers

iti
Mala

ya

39

2.3.4.5 Magneto- Resistive RAM (MRAM)

MRAM is also another form of non-volatile memory where data are stored by magnetic

storage elements (Meena et al., 2014). These storage elements are developed by two

ferromagnetic plates, each of which can hold a magnetic field, spilled by a thin layer. One of the

two plates is a permanent magnet set to a polarity; the other’s field can be changed to match that

of an external field to store memory. STT-MRAM is a form of MRAM with better scalability

and far higher densities over traditional MRAM generations. The following table presents

the classifications of the research papers on storage class memory-database management

systems (SCM-DBMS):

Table 2.4: Classifications of Research Papers on SCM-DBMS

Area of study Reference
Design &
architecture

(Arulraj & Pavlo, 2017a), (Van Renen et al., 2018a), (DeBrabant et al.,
2014a), (Mustafa, Armejach, Ozturk, Cristal, & Unsal, 2017a), (Oukid,
2019), (Kuznetsov, 2019), etc.

Recovery & logs (Huang, Schwan, & Qureshi, 2014a), (W. H. Kim, Kim, Baek, Nam, &
Won, 2016), (Arulraj, Pavlo, & Dulloor, 2015), (Li, Liu, Xiao, Zeng, &
Zhu, 2018), (Son, Kang, Yeom, & Han, 2017a), (Li et al., 2018), (Joshi,
Nagarajan, Viglas, & Cintra, 2017), (Arulraj, Perron, & Pavlo, 2016),
(Wang & Johnson, 2014), etc

Indexes & data
structure

(Sha et al., 2018), (Oukid, Lasperas, Nica, Willhalm, & Lehner, 2016),
(Lersch, Hao, Oukid, Wang, & Willhalm, 2019), (March & Clara,
2017), (Proctor, 2012), (Arulraj, Levandoski, Minhas, & Larson, 2018),
(Lersch et al., 2019), etc

Storage engines
& transactions

(Oukid, Booss, Lehner, Bumbulis, & Willhalm, 2014), (Eisenman et al.,
2018), (Kimura, 2015), (Kolli, Pelley, Saidi, Chen, & Wenisch, 2016),
(Liu et al., 2017), (Giles, Doshi, & Varman, 2013), (Sorin, 2017), etc.

Buffer & data
management

(Leis, Haubenschild, Kemper, & Neumann, 2018),(Nguyen & Lee,
2019), (H. Kim, Agrawal, & Ungureanu, 2012), (Götze, van Renen,
Lersch, Leis, & Oukid, 2018), (Arulraj, Pavlo, & Malladi, 2019),
(Nguyen & Lee, 2019)etc.

Univ

ers
iti

Mala
ya

40

Figure 2.10 shows the strengths, weaknesses, opportunities, and threats (SWOT) of

the storage class memory devices (SCM):

Figure 2.10: SWOT of SCM

2.4 Related Work

2.4.1 Main Memory Database System (MMDB)

Although MMDB was a subject of study since the mid-1980s, the rapid drop in the

DRAMs’ price and the increase of their capacity has again made MMDB a hot topic in

recent years. Nowadays, most database vendors have an in-memory database solution to

enhance their systems’ performance. There is a vast number of MMDBs products that

have dominated the DBMS enterprise and data-centers, varying with regards to them

being either relational or NoSQL (Faerber et al., 2017, 2017).

1. In-Memory Database (IMDB)

One of the relational in-memory database examples is Oracle times-ten. Times-ten

Strengths
•Persistent
•Byte
addressability

•Larger capacity
than DRAM

•Faster access
time than SSD
& HDD

•Higher
endurance
except for PCM

Weakness
• PCM has low
endurance.

•More expensive
than HDD/SSD

•Apps &
systems need to
redesign and
archtect their
systems to
adopt this new
technology.

Opportunities
•Used as a
universal main
storage in
systems

•Capacity can be
increased.

•PCM may
replace DRAM/
HDD & SSD in
the future.

•Stt-mram may
replace SRAM

Threats
•High retention
temperature.

•Switching
reliability.

•Immature
technologies

•Device failure.

Univ
ers

iti
Mala

ya

41

(Lahiri, Neimat, & Folkman, 2013) stores all its related data into the memory at the

runtime. In addition, it provides data durability by using an HDD to provide data

persistence and recovery. HANA (Faerber et al., 2017), is another in-memory, column-

based, relational DBMS that developed SAP SE. It is designed to handle real-time

analytics and transactional processing. It differs from other MMDB by providing multi-

level partitioning.

MEMSQL (Chen et al., 2015) is another type of relational database that carries out

both transactions and real-time analytics. MEMSQL makes use of standard SQL to

perform queries. Furthermore, it is compatible with MYSQL, where the application can

connect to MEMSQL through MYSQL clients and servers. In like manner, Hekaton

(Diaconu et al., 2013) is a Microsoft SQL integrated in-memory database. The main goal

of Hekaton is to provide online transaction processing (OLTP). Furthermore, Voltdb is a

relational in-memory database system based on ACID-compliant.

2. Key-Value Stores (KVS):

 Memcached (Jose et al., 2011) is an example of open-source NoSQL key-value

memory caching systems, which are widely used to store data and objects by the data

centers, web applications, etc. Memcached uses large hash tables distributed among

multiple machines/servers alongside the least recently used (LRU) mechanism, to evict

data. It provides a simple data type and command. Query and data access are done in a

multi-thread manner.

 Redis (Anthony, 2016) is another open-source NoSQL key value in the memory

database store. Redis can be used as a database or a cache system. When it is used as a

cache, it provides six types of cache evection policies. Moreover, Redis supports a set of

complex data types like maps, sets, strings, stored sets, lists, streams, indexes, etc. It is

Univ
ers

iti
Mala

ya

42

considered one of the most common top KV stores globally. Aerospike is an open-source

NoSQL flash-optimized in-memory.

Aerospike (Anthony, 2016) architecture consists of three layers, a client Layer that

tracks node and figures out where the data is placed in the cluster; Data Distribution Layer

that manages cluster communications and handles failover, replication, synchronization,

rebalancing, and data migration; Data Storage Layer that stores data in memory and flash

memory for fast retrieval. Although Data Storage Layer is optimized for flash memory

(SSDs), it can also be configured to store data in memory (RAM).

2.4.2 Storage Class Memory Database Management Systems (SCM/NVM-DBMS)

There are several studies on the use of storage class memories/non-volatile memories

for database management systems, which focus on either studying recovery methods,

improving database logging, or designing a new DBMS architecture.

In a recent research work (Mustafa, Armejach, Ozturk, Cristal, & Unsal, 2017), the

authors explored the implications of employing NVM as primary storage for DBMS by

investigating the necessary modifications to be applied on a traditional relational DBMS

to take advantage of NVM features.

This research (Van Renen et al., 2018) proposed a transparent integration of NVM into

the memory hierarchy. While some systems use NVM mostly to achieve durability or to

extend the main memory capacity, in this approach, NVM is an integral part: they

leveraged not only the persistency but also the byte addressability by loading individual

cache lines from NVM into DRAM. This way, variable-size pages can be deployed,

which allows hot tuples to be kept in DRAM instead of hot pages.

Furthermore, the paper of (Lindström, Das, Mathiasen, Arteaga, & Talagala, 2015),

implemented NVM Compression in the popular MariaDB database and used variants of

Univ
ers

iti
Mala

ya

43

commonly available POSIX file system interfaces to provide the extended FTL

capabilities to the user space application. The experimental results show that the hybrid

approach of NVM Compression can improve compression performance by 2-7x, deliver

compression performance for flash devices within 5% of uncompressed performance,

improve storage efficiency by 19% over legacy Row-Compression, reduce data write up

to 4x when combined with other flash aware techniques such as Atomic Writes, and

deliver further advantages in power efficiency and CPU utilization.

In the work of (Lemke et al., 2017), the SAP HANA in-memory database system

integrated NVM by utilizing its “delta” and “main” storage separation. The immutable

and compressed bulk of the data (“main”) was stored on NVM, while the updatable part

(“delta”), which contains recent changes, remained in the main memory. This simple

approach nicely fits HANA’s architecture but does not apply to most database systems.

Another specific way of exploiting NVM is to use it as a cache for LSM-based storage.

Furthermore, in the research conducted by (Fang, Hsiao, He, Mohan, & Wang, 2011),

a detailed design of an SCM-based approach for DBMS logging was proposed, in which

this approach achieved high performance by simplified system design and better

concurrency support.

Another work conducted by (Arulraj & Pavlo, 2017a) provided an outline on how to

build a new DBMS given the changes to the hardware landscape due to NVM. The authors

surveyed recent developments in this area and discussed the lessons learned from prior

research on designing NVM database systems. They further highlighted a set of open

research problems and presented ideas for solving some of them.

Consequently in the study of (DeBrabant et al., 2014a), two possible architectures

using non-volatile memory (i.e., NVM-only and NVM+DRAM architectures) were

studied and evaluated. Their analysis shows that memory-oriented systems are better

Univ
ers

iti
Mala

ya

44

suited to take advantage of NVM and outperform their disk-oriented counterparts.

However, it was discovered that from both the NVM-only and NVM & DRAM

architectures, the throughput of the memory-oriented systems decreases as workload

skew is decreased, while the throughput of the disk-oriented architectures increases as

workload skew is decreased.

More so, in another study by (DeBrabant et al., 2014b), a system software support to

enable low-overhead PM access by new and legacy applications were explored. The

authors implemented PMFS, a lightweight POSIX file system that exploits PM’s byte-

addressability to avoid overheads of block-oriented storage and enable direct PM access

by applications (with memory-mapped I/O).

Similarly, to the above-mentioned works, this study also uses the non-volatile memory

concepts to enhance and achieve better system performance. However, we differ from

these works in terms of the used emulator and some other objectives. Further explanation

will be carried in subsections 2.5.2 and 2.5.3.

2.4.3 Solid-state Drives Database Management Systems (SSD-DBMS)

The research community has taken note of this trend, and over the past year, there has

been substantial research on redesigning various DBMS components for SSDs (Canim et

al., 2010; He et al., 2014; Kang et al., 2014, 2012; Min, Kang, & Kim, 2015).

In a research by (Do et al., 2011), four alternative designs that use an SSD to extend

SQL Server 2008 R2’s buffer pool across a broad range of benchmarks were evaluated.

In like manner, (Canim et al., 2010) presented an SSD-resident buffer-pool extension for

database systems. The regular memory-resident buffer-pool functioned as the primary

cache, whereas the SSD portion of the buffer-pool was used as a second-level cache.

Univ
ers

iti
Mala

ya

45

Furthermore, in the work of Kang et al. (2015), SSD was used as the storage device for

the DWB. This work addressed the DWB from a different aspect in which the storage

devices are used to store the DWB per its size. DWB is used as a read cache for random

reads, in addition, to supporting atomic writes. The proposed mechanism offered a 50%

performance improvement compared to hard disk storage (HDD).

Another research about the use of SSD for DBMS was that of Rizvi & Chung (2010),

where DBMS was implemented on flash memory SSD-based large enterprise

applications. The authors presented the relevancy of SSD characteristics with storage

features of data warehouses and data marts and proposed the architecture of data storage

for variable-length records in and data retrieval, using virtual sequential access method

by multilevel indexing from flash memory-based SSDs for such applications.

Moreover, in the study by Shahla Rizvi & Chung (2010), an advanced DBMS

architecture was proposed using key sequenced data set, virtual sequential access method,

and multilevel indexing for flash memory SSD based performance oriented embedded

and multimedia applications. Basic database operations plus space reclamation and

memory wear-leveling were achieved by taking flash characteristics into account

carefully. Main memory-based buffer management was implemented to increase

throughput and to ensure efficient media utilization.

2.4.4 USE of RAMDISK and ZRAM for Better Performance

RAMDISKS and ZRAM are dynamic random-access memory-based block drives that

are provided within Linux kernels. Both modules can be used to enhance system

performance.

2.4.4.1 RAMDISK

The major use of RAMDISK modules is their application as a virtual file system for

Linux kernel; in which the Linux kernel utilizes more than one RAMDISK file system to

Univ
ers

iti
Mala

ya

46

mount a kernel image in its root file system during the system boot time. Furthermore,

Linux exploits space to keep system and hardware devices' information in a proc file

system or sysfs of the RAM disk at the run time. However, the RAM-based file systems

provided by Linux do not have durability, which means that if the systems shut down or

crash, the data stored on the RAMDISK file systems would be lost. Thus, to ensure

durability, moving stored data from the RAMDISK drive to the hard disk drive should be

done synchronously.

Also, RAMDISK can be used to store temporary data of applications to gain better

performance. Numerous studies have used RAMDISK to improve applications

performance (H. Lee & Lee, 2016; Shu, Yu, & Yan, 2004; Wickberg & Carothers, 2012).

This performance improvement comes with the use of DRAM capacity cost. Further,

RAMDISKs can be used to emulate persistent memory or non-volatile memory (Bahn &

Cho, 2020; Dulloor, 2016; Sehgal, Basu, Srinivasan, & Voruganti, 2015).

2.4.4.2 ZRAM

 ZRAM is mostly used to optimize swap performance to improve the overall system

performance (Desireddy & Pathireddy, 2016; Ilyas et al., 2020). Additionally, it can be

used as a general-purpose RAMDISK. In an experiment (StuartIanNaylor, 2019), a

ZRAM drive was implemented to enhance IoT projects by reducing write operations and

memory footprints. However, this implemented ZRAM drive was performed using an

overlay to ensure persistency and Ext4 as a filesystem running on top of the created

ZRAM. The authors argued that since ZRAM is based on RAM, a RAM-based filesystem

would be more suitable for ZRAM.

2.5 Discussion and Comparison

This section discusses and compares the difference between data placement media and

the most related works.

Univ
ers

iti
Mala

ya

47

2.5.1 Data Placement Media

Storage and memory markets provide us with a collection of technologies with

different storage mechanisms and various performance characteristics. These differences

among them give designers the ability to choose which storage or memory is needed for

the system performance requirements. None of the aspects is best, thus whenever one is

chosen above others, there’s a need to clarify the accompanying demands. For

performance improvement and access time, memories like SRAM, DRAM, PCM,

STT_MRAM, and RERAM is the best choice. With regards to price and capacity, SSD

and HDD are preferable. Nonetheless, the choices are not limited to the aspects alone,

others exist such as reliability, lifetime, etc. Table 2.5 offers a comparison among these

technologies with some characters.

Table 2.5: Comparison of Memory Technologies (Oukid & Lersch, 2019; Rizk,
Rizk, Kumar, & Bayoumi, 2019; Zhao, Xu, Chi, & Xie, 2015)

Storage class HDD SSD DRAM SRAM PCM ReRAM STT-
RAM

Volatility No No Yes Yes No No No
Endurance > 10ⁱ⁵ 10⁴ > 10ⁱ⁵ > 10ⁱ⁵ 10⁵-10⁹ 10⁵-10ⁱⁱ > 10ⁱ⁵

Scalability Yes Yes Yes Yes Yes Yes Yes
Mechanism Magnetic Flash Magnetic
Cell element N/A 1T 1T1C 6T 1T1R 1T1C 1T1R
Cell size 2/3F² 4 − 5F² 6 − 8F² > 100F² 8 − 16F² > 5F²

37F²

Read latency 8.5ms 25 μs 10-60ns <10ns 48ns <10ns <10ns
Write
latency

9.5ms 200 μs 10-60ns <10ns 40-
150ns

10ns 12.5ns

Energy per
bit access

100-
100omJ

10nJ 2pJ 1pJ 100pJ 0.02pJ 2pJ

Cost low low High high medium medium medium

2.5.2 Related Work

 As surveyed in the related work section, numerous researchers have studied and

investigated the impact of NVM on database design (Fang et al., 2011; Huang, Schwan,

& Qureshi, 2014b; W. H. Kim et al., 2016; Son, Kang, Yeom, & Han, 2017b), where

some specifically conducted studies on the database logging for NVM. Thus, this reduces

the impact of disk I/O on transaction throughput and response times by directly writing

Univ
ers

iti
Mala

ya

48

log records into an NVM component instead of flushing them to disk. However, the new

experiments show that moving the whole data directory including logs, helped in gaining

higher performance than moving only log files; thus, leading to the novelty of the present

research as compared to that of past related works. This research also implements a

general-purpose RAMDIK using ZRAM for emulation of PM.

 The architecture of NVM DBMS is prevalent in literature (Arulraj & Pavlo, 2017a;

Kuznetsov, 2019; Petrov et al., 2015) and was studied as storage for DBMS (Mustafa et

al., 2017b). However, this present work examined the performance gains of MYSQL by

using an NVM as a default storage for its data directory. This research has emulated the

NVM using persistent RAMDISK (PZRAM), PMEM, and PRAMDISK. Additionally,

the use of NVM has been tested as storage for log files, ibdata, and both ibdata and logs;

also, the researchers examined the effect of filesystems on system performance. Further,

the present research compared the performance by only moving logs into NVM, ibdata,

logs & ibdata with moving the whole data directory. Moreover, no modification was made

on the source code of MYSQL, rather it was only tuned to get better performance.

Additionally, the emulator used in this research doesn’t need any special hardware or any

complexity. It’s available on Linux kernel mainlines. Table 2.6 presents the most relevant

studies to the current work.

Univ
ers

iti
Mala

ya

49

Table 2.6: Comparison of Related Work

Author Emulator Case study Focus Contribution Limitations

Mustafa,
Naveed Ul
[2016]

PMFS PostgreSQL
SE

NVM
DBMS
design

 Investigated the
impact of the use
of NVM as the
main storage for
DBMS.

Increase
cache miss
latency where
data is not
close to
the
processing
units when it
is needed for
processing

Kuznetsov,
Sergey D
[2019]

NVM
emulator

SOFORT NVM-
DBMS
architecture

Surveyed and
discussed the
existing works on
NVM DBMS
architecture.

The
architecture
sketch is not
well
technically
elaborated.

Debrabant,
Justin
[2014]

NUMA
interface
& PMFS

H-store,
Mysql(v5.5)

NVM
DBMS
design &
architecture

Explored and
analyzed the two
possible uses of
NVM for DBMS.

The reduction
in
performance
is due to the
overhead of
fetching and
evicting data
from NVM

Renen,
Alexander
Van
[2018]

SEP table as a
B+-tree
using C++
templates

NVM
DBMS
design

Evaluated the
three NVM
DBMS design
approaches and
proposed a
lightweight
storage manager.

Writes are not
immediately
persistent
because
NVM is
behind the
same CPU
cache
hierarchy as
DRAM and
changes are
initially
written to the
volatile CPU
cache.

Zhang,
Yiying
[2015]

PMEP File Bench,
MongoDB,
and MySQL,
Memcached

NVM and its
use as
storage of
application

Analyzed the
performance of
applications with
the use of NVM.

A small
performance
drop over
DRAM when
using NVMM
as a big
memory for
memory-
intensive
applications.

Univ
ers

iti
Mala

ya

50

2.5.2 Identify the research gap:

Because of the rapid and massive amount of today’s processed and generated online

data, most of the data-intensive and real-time applications require higher performance

metrics from their underlying storage media (Dulloor, 2016; Sha et al., 2018; Zhang &

Swanson, 2015). However, most of the existing storage technologies are limited in their

performance (Oukid & Lersch, 2019). Consequently, a new generation of storage

technologies was explored to satisfy these applications’ demands. Such technologies are

called storage class memories (SCM), which are compromised with the best metrics of

both disk/flash drives and DRAMs.

Since SCMs are still not widely available, many research papers offered and

implemented PM emulators to experiment with the performance of SCM. However, such

emulators either need special hardware or have a complexity (Kuznetsov, 2019; Mustafa

et al., 2017b; Van Renen et al., 2018b; Volos, Magalhaes, Cherkasova, & Li, 2015).

Several pieces of research studied how database management systems (DBMS) can

leverage the storage class memories (SCM). However, most of these works focused on

database logging (Arulraj et al., 2015; Chatzistergiou, Cintra, & Viglas, 2015; Liu et al.,

2017; March & Clara, 2017), the SCM-DBMS architectures (Arulraj & Pavlo, 2017b;

DeBrabant et al., 2014a; Rizk et al., 2019), memory management(Arulraj et al., 2019;

Van Renen et al., 2018b).

Although many research studies have been carried out on the SCM-DBMS, they did

not focus on the type of data files to have resided in the SCM device, best filesystem for

the underlying device, and exploiting system modules such as ZRAM to build up a

persistent PM emulator.

The above shortcomings motivated the researcher to propose a method that uses a

kernel module called ZRAM to enhance the system performance. In addition to

Univ
ers

iti
Mala

ya

51

examining which type of data file has the highest effect on the system performance when

resides within SCM, and the impact of the running filesystem on the top of the emulators

on the overall system performance.

2.6 Summary

In summary, the performance of hard disk drives (HDD) lags far behind solid-state

drives (SSD) and dynamic random-access memory (DRAM). Although SSD bridged the

performance gap between HDD and DRAM, their performance is three orders magnitude

lower than DRAM. Most contemporary systems and applications rely on HDD or SSD to

store their data. Such storage technologies provide larger capacities with persistence at

lower costs. However, due to their high access latency time, volatile main memories

(DRAMs) were used as the main storage to store data by many systems. However, DRAM

cannot be used further because of its limited capacity and scale issues.

As I/O latency and throughput are one of the major performance bottlenecks for disk-

based database systems, new storage technologies must be introduced to bridge this

performance gap. Storage class memories (SCM) are such promising technologies that

can eliminate I/O bottlenecks and bridge the performance gap between HDD/SSD and

DRAM. These technologies are not widely available yet, thus several SCM emulators

were proposed by researchers. However, these emulators either require special hardware

or have code complexity. Intel PMEM emulator and RAMDISK are available solutions

within system resources. However, PMEM requires reconfiguring and recompiling the

Linux kernel which takes more storage space. Finally, each RAMDISK implementation

method has its advantages and disadvantages.

Univ
ers

iti
Mala

ya

52

CHAPTER 3: METHODOLOGY

3.1 Introduction

This chapter starts with describing the research methodology used in this research,

followed by discussing the proposed method and its implementation in detail. The

methodology of this research consists of the following phases shown in Figure 3.1.

Figure 3.1: Research Methodology Phases

Univ
ers

iti
Mala

ya

53

Phase 1: Literature review:

In this phase, the literature about storage devices and NVM-DBMS were reviewed and

analyzed. Chapter 2 was devoted to covering this phase.

Phase 2: Defining the research problem and objectives:

From reviewing and analyzing the literature about NVM-DBMS, the research problem

and objective were defined. Chapter 1 was devoted to covering this phase.

Phase 3: Implementing the proposed solution:

This phase addresses the proposed method to enhance system performance using

persistent ZRAM and its implementation. Next sections 3.2 and 3.3 will cover this phase

in detail.

Phase 4: Evaluation:

In the last phase, an evaluation of the proposed method is done to examine if the thesis

objectives are fulfilled and if the proposed method offers better performance. This phase

is covered in detail in Chapter 4.

3.2 Proposed Method

The steps undergone via the proposed method of this research are illustrated in Figure

3.2 below.

Univ
ers

iti
Mala

ya

54

Figure 3.2: Proposed Method Steps

3.2.1 Create PM Emulators

For the creation of the persistent memory emulator, this research employed two types

of available Linux kernel modules based on RAM namely: ZRAM and RAMDISK. This

is in addition to a PMEM emulator that is based on dynamic random-access memory

(DRAM).

3.2.1.1 ZRAM

ZRAM was earlier known as a compchache. It is a Linux kernel module available in

Linux kernels since kernel version 3.14. ZRAM creates random access memory-based

block drives with the compression on the fly feature. All pages written to such drives are

squeezed and kept in the main memory. Thus, it offers faster I/O operations in addition

to its compression feature that delivers a fine amount of memory savings. ZRAM can be

used as a general-purpose RAMDISK or as a swap device. Figure 3.3 shows the steps

undergone in creating the ZRAM.

Create the PM emulator

Make the emulator persistent

Tune MYSQL config file

Run experiments

Sign access permission of the created PM
emulator to MYSQL user

Univ
ers

iti
Mala

ya

55

Figure 3.3: PZRAM Creation Steps

3.2.1.2 RAMDISK

RAMDISK is a chunk of available computer memory that is used by the operating

system (OS) as a temporary disk drive for storing temporal data. The RAMDISK

performs faster than the SSDs and hard drives.

Univ
ers

iti
Mala

ya

56

Figure 3.4: Pramdisk Creation Steps

3.2.1.3 PMEM

PMEM is a dynamic random-access memory-based emulation of the persistent

memory which is a byte-addressable and non-volatile memory that can be accessed with

common loads and stores via the same interface to a conventional DRAM. This emulation

is provided in Linux kernel version 4.0 and above. Figure 3.5 shows the steps undergone

in creating PMEM.

Univ
ers

iti
Mala

ya

57

Figure 3.5: PMEM Creation Steps

3.2.2 Persisting PM Emulator

Since the emulators are based on dynamic random-access memory (DRAM) which is

a volatile memory, any stored data will be lost by shutting down. As a result, in this

research, three of the emulators were made persistent to appear as non-volatile memory

(NVM). This can be done either by providing the NVM via a battery or by synchronizing

it to non-volatile storage. This research employed the second approach to make a

persistent ZRAM and ramdisk as follows:

• First, a backup directory was created to synchronize the MYSQL directory from

and to ZRAM or the ramdisk mount point.

• Second, a script was created at /etc/init.rd/ramdisk to synchronize the contents

of ZRAM or RAMDISK to a persistent backbone device.

• Finally, for a periodically synchronizing back from RAMDISK to HDD or SSD,

the command was put into the crontab file

Upon starting the MYSQL service, mount the PMEM point

If the MYSQL service stop, unmount the created PMEM point

Persist PMEM cross reboots

Move mysql to the PMEM mount point & assign access permission
to MYSQL user

Mount the created file

Create a mount point with a file system

Modify & update GRUB

Configure, build & install the kernel

Download Linux kernel

Univ
ers

iti
Mala

ya

58

3.2.3 Sign Access Permission to PM Emulators

For security matters, MYSQL requires an MYSQL user that has its access permission

to access its contents (Manual, 2013). To sign access permission to MYSQL users, this

research employed two techniques.

Running Chown command: This is a Linux command that’s responsible for changing

users’ ownership of a file, link, or directory in Linux (van Vugt, 2015, p. 172).

Modifying and reloading Apparmor: where an AppArmor is a security module

supplied by Linux kernel to give the systems’ administrators, ability to limit the program's

resource and access (Gruenbacher & Arnold, 2007).

3.2.4 Tuning MYSQL Configuration File

To get an optimized MYSQL server performance, there was a need to tune some

MYSQL variables. Hence the researcher tuned some of these variables to achieve the

study’s target.

basedir = /usr
datadir = /mnt/ramdisk/mysql #moving data dir to PRAMDISK
tmpdir = /tmp
lc-messages-dir = /usr/share/mysql
skip-external-locking
#skip-innodb_doublewrite
Innodb_flush_method =O_DIRECT
innodb_buffer_pool_size = 2GB
innodb_buffer_pool_instances = 8
innodb_file_per_table = 1

• Increasing the size of the buffer pool had a great impact on the performance as

a larger buffer pool produces better performance.

• The flush method also influences the performance, especially for I/O

applications.

• Increase the number of buffer pool instances.

Univ
ers

iti
Mala

ya

59

• Enabling the InnoDB file per file is a good option

• Changing the MYSQL data directory to a faster storage media result in a

superior performance improvement.

3.2.5 Running Experiments

To run the experiments, there was a need to set and configure the system environment

accordingly. The experiments comprised three stages: testing-based data placement

devices, based types of filesystems, and the moved data files.

➢ When running experiments to test MYSQL performance based on utilizing the

data placement device, the MYSQL data directory variable was tuned with the

new location as follows:

datadir = /mnt/ramdisk/mysql #moving datadir to PRAMDISK

➢ When running experiments to test MYSQL performance based on the type of

filesystem, the filesystem was made on a disk/block drive and mounted to a

mount point. For instance, the researcher first run mkfs.ext4 -F /dev/zram0 and

later ran the command mount /dev/zram0 /mnt/ramdisk.

➢ When running experiments to test mysql performance based on the moved file

data, the specific file was moved and mysql tuned accordingly. For example,

for moving logs, the researcher set the new location for the variable

innodb_log_group_home_dir = /mnt/ramdisk in configuration file of MYSQL

/etc/mysql/mysql.conf.d/mysqld.cnf. Consequently, for moving ibdata , the

researcher set the innodb_data_file_path =“ibdata1:12M:autoextend” and

innodb_data_home_dir = /mnt/ramdisk in MYSQL configuration file.

3.2.4.1 Running HammerDB TPC-C MYSQL Benchmark

After carrying out the proposed method, the experiment stage was performed. Initially,

the server was rebooted; and the following command was run to start the

Univ
ers

iti
Mala

ya

60

PZRAM/PRAMDISK/PMEM service as well as to start up MYSQL:

sudo etc/init.d/Pramdisk start

sudo service mysql start

 Afterward, Hammerdb3.2 was run to do the experiments as illustrated in the following

photos from Figure 3.6- 3.13 respectively.

Figure 3.6: Running HammerDB

Figure 3.7: Selecting MYSQL TPC-C Benchmark
Univ

ers
iti

Mala
ya

61

Figure 3.8: Confirming TPC-C for MYSQL

Figure 3.9: Building Schema Options

Figure 3.10: Building Schema

Univ
ers

iti
Mala

ya

62

Figure 3.11: Selecting the Driver Options

Figure 3.12: Defining the Number of Users

Figure 3.13: Creating the Virtual Users

Univ
ers

iti
Mala

ya

63

 After creating this step, the program was run and it led to the collection of data, of

which the results are presented as illustrated in Figure 3.14.

Figure 3.14: TPC-C collects the TMP & NOPM

3.3 Implementation

 To implement the proposed method, some scripts were created alongside modification

of some system files.

3.3.1 Source Code Files’ Tree

In this section, the scripted files were structured, and the system modified files to

implement the study’s proposed method. Figure 3.15 demonstrates the created and

modified files tree accordingly.

Univ
ers

iti
Mala

ya

64

Figure 3.15: Source Code Files' Tree

3.3.1.1 Created Source Code Files

▪ /etc/init.d/Pzram: this file contains the creation script of persistent ZRAM.

▪ /etc/init.d/Pramdisk: this file contains the creation script of persistent RAMDISK.

▪ /etc/init.d/pmem: this file contains the creation script of PMEM.

▪ /etc/init.d/umounting: to mount the created ZRAM/PMEM/PRAMDISK and their

mount point.

▪ /etc/systemd/system/Pzram: to run the PZRAM script automatically.

▪ /etc/systemd/system/Pramdisk: to run the PRAMDISK script automatically.

▪ /etc/crontab: to periodically sync data into PZRAM/PRAMDISK and HDD/SSD.

3.3.1.2 Modified Source Code Files

▪ /etc/mysql/mysql.conf.d/mysqld.cnf: this is the file configuration of MYSQL.

▪ /etc/apparmor.d/usr.sbin.mysql: this contains the configuration of apparmor for

MYSQL access.

PM
 e

m
ul

at
or

 /etc/

/usr/

Mysql/

Bin/

Init.d/

Apparmor.d/

systemd/

fstab

grub

Init-zram-swapping

Usr.sbin.mysqld

Mysqld.cnf

Pramdisk

Pzram

Pmem

unmountt

Pzram.servi
ce

Pramdisk.ser
vice

System
/

Mysql.
conf.d/

default

/crontab

Univ
ers

iti
Mala

ya

65

▪ /etc/default/grub: this file contains a GNU and boot system info. This file was

used to reserve a memory region for PMEM.

▪ /etc/usr/bin/init_zram_swapping: this file creates and initializes the ZRAM.

3.3.2 Source Code

Here, the codes and commands used in carrying out the proposed method are

presented.

3.3.2.1 PZRAM

❖ /etc/init.d/Pzram script:

#!/bin/bash
This script to create a persistent zram block drive
Creation of ramdisk/zram mount point
if [-d /mnt/ramdisk]; then
 echo “ramdisk mount point already created"
else
 sudo mkdir /mnt/ramdisk
fi
#Loading zram
modprobe num_devices = 1
#Deactivate swap on zram0
swapoff /dev/zram0
#Making a filesystem on zram0
#mkfs.ext4 -F /dev/zram0 #making ext4 on zram0 disk
#mkfs.xfs -f /dev/zram0 #making xfs on zram0 disk
#mkfs.f2fs -f /dev/zram0 #making f2fs on zram0 disk
#mkfs.btrfs -f /dev/zram0 #making btrfs on zram0 disk
#Mounting the selected disk-based filesystem on zram
mount /dev/zram0 /mnt/ramdisk
#Mounting tmpfs on zram0
if mountpoint -q /dev/zram0 /mnt/ramdisk; then
echo “/dev/zram /mnt/ramdisk is mounted”
else
sudo mount -t Tmpfs /dev/zram0 /mnt/ramdisk
fi
#Moving mysql directory to /mnt/ramdisk
#Move mysql data directory to /mnt/ramdisk
mv /var/lib/mysql /mnt/ramdisk
#Sign access permission to mysql user
chown -R mysql:mysql /mnt/ramdisk/mysql
#Restarting mysql service after tuning its file configuration before running this script
sudo service mysql restart
Create a ramdisk backup directory
if [-d /var/ramdisk-backup]; then
 echo “ramdisk backup directory already created"

Univ
ers

iti
Mala

ya

66

else
 sudo mkdir /var/ramdisk-backup
fi
#Synching the ramdisk contents to hdd and verse vice
case "$1" in
 start)
 echo "Copying files to ramdisk"
 rsync -av /var/ramdisk-backup/ /mnt/ramdisk/
 echo [`date +"%Y-%m-%d %H:%M"`] Ramdisk Synched from HD >>
/var/log/ramdisk_sync.log
 ;;
 sync)
 echo "Synching files from ramdisk to Harddisk"
 echo [`date +"%Y-%m-%d %H:%M"`] Ramdisk Synched to HD >>
/var/log/ramdisk_sync.log
 rsync -av --delete --recursive --force /mnt/ramdisk/ /var/ramdisk-backup/
 ;;
 stop)
 echo "Synching logfiles from ramdisk to Harddisk"
 echo [`date +"%Y-%m-%d %H:%M"`] Ramdisk Synched to HD >>
/var/log/ramdisk_sync.log
 rsync -av --delete --recursive --force /mnt/ramdisk/ /var/ramdisk-backup/
 ;;
 *)
 echo "Usage: /etc/init.d/ramdisk {start|stop|sync}"
 exit 1
 ;;
 esac

 exit 0

After creating the script, the /etc/init.d/Pzram file was enabled for execution by

running the following command in the terminal:

sudo chmod u+x /etc/init.d/Pzram

 Then, the script file was set up to run at startup by running the following command in

the terminal:

update-rc.d Pzram defaults 00 99

 Finally, the file was synchronized to its backup directory by running the following

command:

/etc/init.d/Pzram sync

 And for periodically synchronizing back from RAMDISK to HDD or SSD, the

following command was inputted into the crontab file:

Univ
ers

iti
Mala

ya

67

2 * * * * root /etc/init.d/Pzram sync >> /dev/null 2>&1

❖ PZRAM Unmount script /etc/init.d/unmount

#! /bin/bash
 sudo umount /dev/zrm0 /mnt/ramdisk

❖ /etc/systemd/system/Pzram. Service:

[Unit]
Description=Create persistent zram as a PM emulator

[user]
User=root
Group=root

[Service]
Type=simple
WorkingDirectory=/usr/bin
ExecStart=/bin/bash Pzram start
KillMode=process
ExecStop=/bin/bash unmount stop
[Install]
WantedBy=default.target

❖ /etc/usr/bin/init_zram_swapping:

 The size of ZRAM was modified from the following line to set 2G from:

mem=$(((totalmem / 2 / ${NRDEVICES}) * 1024))

 to

mem=$(((totalmem * 3 / ${NRDEVICES}) * 1024))

❖ /etc/fstab

dev/zram0 /mnt/zram tmpfs rw,relatime,noatime 0 0

❖ /etc/apparmor.d/usr.sbin.mysql:

 The /etc/apparmor.d/usr.sbin.mysql/ file was modified by adding these two lines

under # Allow data dir. access line:

/mnt/ramdisk/mysql/ r,
/mnt/ramdisk/mysql/** rwk,

Univ
ers

iti
Mala

ya

68

3.3.2.2 PRAMDISK

/etc/init.d/Pramdisk script:

#!/bin/bash
This script to create a persistent ramdisk using tmpfs
Creation of ramdisk/zram mount point
if [-d /mnt/ramdisk]; then
 echo “ramdisk mount point already created"
else
 sudo mkdir /mnt/ramdisk
fi
#Mounting the ramdisk
If !mountpoint -q /mnt/ramdisk; then
sudo mount -t Tmpfs -o size=1G tmpfs /mnt/ramdisk
fi
#Move mysql data directory to /mnt/ramdisk
mv /var/lib/mysql /mnt/ramdisk
#Sign access permission to mysql user
chown -R mysql:mysql /mnt/ramdisk/mysql
#Restarting mysql service after tuning its file configuration before running this script
sudo service mysql restart
Create a ramdisk backup directory
if [-d /var/ramdisk-backup]; then
echo “ramdisk backup directory already created"
else
 sudo mkdir /var/ramdisk-backup
fi
#Synching the ramdisk contents to hdd and vice versa
case "$1" in
 start)
 echo "Copying files to ramdisk"
 rsync -av /var/ramdisk-backup/ /mnt/ramdisk/
 echo [`date +"%Y-%m-%d %H:%M"`] Ramdisk Synched from HD >>
/var/log/ramdisk_sync.log
 ;;
 sync)
 echo "Synching files from ramdisk to Harddisk"
 echo [`date +"%Y-%m-%d %H:%M"`] Ramdisk Synched to HD >>
/var/log/ramdisk_sync.log
 rsync -av --delete --recursive --force /mnt/ramdisk/ /var/ramdisk-backup/
 ;;
 stop)
 echo "Synching logfiles from ramdisk to Harddisk"
 echo [`date +"%Y-%m-%d %H:%M"`] Ramdisk Synched to HD >>
/var/log/ramdisk_sync.log
 rsync -av --delete --recursive --force /mnt/ramdisk/ /var/ramdisk-backup/
 ;;
 *)
 echo "Usage: /etc/init.d/ramdisk {start|stop|sync}"

Univ
ers

iti
Mala

ya

69

 exit 1
 ;;
 esac

 exit 0

After creating the script, the /etc/init.d/Pramdisk file was enabled for execution by

running the following command in the terminal:

sudo chmod u+x /etc/init.d/Pramdisk

 Then, the script file was set up to run at start-up by running the following command in

the terminal:

update-rc.d Pramdisk defaults 00 99

 Finally, the file was synchronized to its backup directory by running the following

command:

/etc/init.d/Pramdisk sync

 And for periodically synchronizing back from RAMDISK to HDD or SSD, the

following command was inputted into the crontab file:

2 * * * * root /etc/init.d/Pramdisk sync >> /dev/null 2>&1

❖ PRAMDISK Unmount script /etc/init.d/unmount

#! /bin/bash
 sudo umount /mnt/ramdisk

❖ /etc/systemd/system/Pramdisk. Service:

[Unit]
Description=Create persistent ramdisk as a PM emulator

[user]
User=root
Group=root

[Service]
Type=simple
WorkingDirectory=/usr/bin
ExecStart=/bin/bash Pramdisk start
KillMode=process
ExecStop=/bin/bash unmount stop
[Install]
WantedBy=default.target

Univ
ers

iti
Mala

ya

70

❖ /etc/fstab

 This file was modified by mounting the created RAMDISK file at the boot time by

adding the following command into the /etc/fstab:

tmpfs /mnt/ramdisk tmpfs defaults, size=4096M 0 0

❖ /etc/apparmor.d/usr.sbin.mysql:

 At this point, the /etc/apparmor.d/usr.sbin.mysql/ file is modified by adding these

two lines under # Allow data dir. access line:

/mnt/ramdisk/mysql/ r,

/mnt/ramdisk/mysql/** rwk,

3.3.2.3 PMEM

❖ /etc/init.d/Pmem script:

#!/bin/bash

This script to create a mount point for PMEM

Creation of PMEM mount point

if [-d /mnt/ramdisk]; then

 echo “ramdisk mount point already created"

else

 sudo mkdir /mnt/ramdisk

fi

#Making a filesystem on top of pmem

sudo mkfs.ext4 /dev/pmem0

#Mounting the pmem on a mount point

If !mountpoint -q /dev/pmem0 /mnt/ramdisk; then

sudo mount /dev/pmem0 /mnt/ramdisk

fi

#Move mysql data directory to /mnt/ramdisk

mv /var/lib/mysql /mnt/ramdisk

#Sign access permission to mysql user

chown -R mysql:mysql /mnt/ramdisk/mysql

#Restarting mysql service after tuning its file configuration before running this script

sudo service mysql restart

Univ
ers

iti
Mala

ya

71

❖ /etc/default/grub:

 This file was modified to reserve a memory region of 2G for this study’s created

PMEM block device.

GRUB_CMDLINE_LINUX="memmap=2G!4G"

❖ /etc/apparmor.d/usr.sbin.mysql:

 The /etc/apparmor.d/usr.sbin.mysql/ file was modified by adding these two lines

under # Allow data dir. access line:

/mnt/ramdisk/mysql/ r,

/mnt/ramdisk/mysql/** rwk,

❖ PMEM Unmount script /etc/init.d/unmount

#! /bin/bash

 sudo umount /dev/pmem0 /mnt/ramdisk

For PMEM, there was no need to do a synchronization or set the script to run at start-

up, the only thing needed was to add the following line into /etc/fstab to persist the image

of PMEM on reboots, after which PMEM appears as a disk partition with persistent

contents:

/dev/pmem0 /mnt/mem ext4 rw,relatime,dax data ordered 0 0

3.4 Summary

In summary, this chapter described the proposed method and its implementation from

creating the PM emulator, persisting it, signing its access permission, to the tuning of

MySQL configuration file and presenting the experimental steps in detail.

Univ
ers

iti
Mala

ya

72

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, obtained results from the experimental stage are presented. Further, the

chapter reviews the experiment setup and tools and discusses the difference between

using three data placement media for the MYSQL data directory: NVM emulator, SSD,

and HDD. Furthermore, deliberations are provided on the influence of file system type

on the performance.

4.2 Experimental Setup

MYSQL version 5.7.31 was used as the case study application for this research. The

benchmark workload for the MYSQL server was generated using HammerDB version

3.2. The next sections outline the details of the experimental setup.

4.2.1 Server Specification

 The configuration of the server is summarized in Table 4.1.

Table 4.1: Server Information

Specification Description

Processor processor Intel® Court i3-8100 CPU @
3.60GHz × 4

Memory 4G

Storage HDD 1TB, Samsung SSD 128 GB

Cores 4

Operating System Ubuntu 18.04.4/Linux kernel-4.15.9

Application MYSQL -5.7.31 server

Benchmark Hammerdb-3.2

Univ
ers

iti
Mala

ya

73

4.2.2 MYSQL Specification

MYSQL version 5.7.31 was run on the server with a 1Gb buffer pool and 8 instances.

For this study, the experiment was run on MYSQL with the tuning of specific MYSQL

variables. Additionally, different MYSQL InnoDB files such as log files, system-

tablespace, and the whole data directory, were moved. MYSQL was configured with

tuning the following variables:

• Innodb_buffer_ pool_size: the size of the buffer pool was set to 1G.

• Innodb_buffer_ pool_ instances: this option was configured with 8 instances.

• Innodb_file_per_table: this variable was enabled by setting to 1.

• Innodb_flush_method: the flush method option was set to O_direct.

4.2.3 Data Placement

The experiment was divided into three parts based on the placement of the MYSQL

Data directory.

• PM emulator: in the first set of experiments, the MYSQL data directory was

placed in a PRAMDISK/PMEM/PZRAM.

• SSD: In the second set of experiments, the MYSQL data directory was placed

on an SSD drive.

• HDD: In the third set of experiments, the MYSQL data directory was placed

on an HDD (results of this experiment are not mentioned in this chapter, it was

used in the problem statement section).

4.2.4 Filesystem Running on PM Emulator

In addition to the type of data placement media, the experiments were run based on the

type of running file system on top of the PM emulators. The used file systems in this

experiment are listed as follows:

• Ext4 (Djordjevic, 2012): a disk-based filesystem developed to support large

Univ
ers

iti
Mala

ya

74

volumes of stored data (1 exabyte).

• XFS (XFS Overview, 2013): a disk-based filesystem that offers a high-

performance using B+ trees for directories and file allocation.

• Btrfs (Btrfs Contributors at kernel.org, 2016): an Oracle-designed file system

for Linux based on the copy-on-write (COW) concepts.

• F2FS (Lee, 2015): a flash-based filesystem designed for flash SSD devices.

• TMPFS (Snyder, 1990): a RAM filesystem that overcomes the limitations of

RAMFS.

• RAMFS (Li, 2011): a random-access memory file system that grows

dynamically.

• PMFS (Dulloor, 2016): a persistent file system developed by Intel for

persistent memory (Shaw, 2012).

4.2.5 MYSQL Data Files

The experiments were also run according to the stored MYSQL files on the PM

emulator to find out their effect on performance. These files are:

• MYSQL data directory (datadir).

• MYSQL log files (ib_log_buffer0/ib_log_buffer1).

• MYSQL system tablespace (ibdata1).

4.2.6 Benchmark Application

HammerDB version 3.2 (Shaw, 2012) was used as a benchmark application.

HammerDB implements the TPC-C standard, which is a standard test suite for database

performance testing. The tests simulate a warehousing system accessed through online

users. Users place online orders for the items distributed among multiple warehouses. The

size of the test database can be varied by changing the number of warehouses (Shaw,

2012). This research tested the load by setting the number of warehouses to 5 and the

Univ
ers

iti
Mala

ya

75

number of users to 5 as well, where the total of transactions is set to 1000000 users’

transactions with enabling the use of all warehouses. Every database transaction consists

of order placement and order fulfilment. HammerDB tests are suitable for transactional

workload where a mix of reading and write operations are generated by the transactions.

The performance of a database server system is tested in terms of transactions per minute

(TPM) and Number of new orders (NOPM) and latency/response time.

4.2.7 Performance Parameter

 Since the throughput and latency are the most significant database management

system (DBMS) performance metrics (Bhimani et al., 2017), This study utilizes these two

performance metrics to evaluate the proposed method performance. The transaction per

minute (TPM) (Shaw, 2012) and the number of new orders per minute (NOPM) (Shaw,

2012) were used to measure and collect the number of transactions completed per unit

(throughput); The latency time where the time taken by system to response is collected

by noting the time taken from running the build schema to its completion.

4.3 Results

This section presents the obtained results from the performed experiments on the

server with three types of data placement media, moved MYSQL data files, and type of

filesystem running on the PM emulators in terms of TPM, NOPM, and latency time.

4.3.1 Data Placement Media

MYSQL by default stores its data into the HDD unless the user/admin moves its data

directory to another storage device. However, in this research, the MYSQL data directory

option was tuned to set in SSD, PRAMDISK, PMEM, and PZRAM as prime storage for

the MYSQL data directory in each experiment stage. This experimental stage is the most

important one because it is concerned about the core objective of this study (enhancing

system performance by moving MYSQL data directory into an SCM emulator). To

Univ
ers

iti
Mala

ya

76

distinguish from the other stages, we have made the number of iterates 3 and the rest of

experiments has only two iterates. Table 4.2 shows the results obtained from testing

MYSQL on all data placement media listed above.

Table 4.2: Results based on Data Placement Media

Iterates SSD PMEM PRAMDISK PZRAM

TPM NOPM Time TPM NOPM Time TPM NOPM Time TPM NOPM Time

1 18512 6193 51sc 229304 75528 34sc 233216 77283 34sc 234567 77234 33sc

2 18509 6103 49sc 229400 75663 35sc 234390 76932 33sc 234127 76961 34sc

3 18389 6037 49sc 230018 75757 35sc 234681 76953 34sc 236931 78282 33sc

With an SSD, the transaction per minute (TPM) reached a peak of 18512 and the

number of new orders (NOPM) got 6193 with a latency of 51sc-49sc. PMEM reached a

peak of 229304 for transaction per minute (TPM) and 75757 new orders per minute

(NOPM) with a latency of 34sc -33sc. PRAMDISK achieved the highest transaction per

minute (TPM) at 234681 and 77283 for new order per minute (NOPM) with a latency of

34sc-34sc. Finally, PZRAM reached its highest transaction per minute (TPM) at 236931

and 78282 for its new order per minute at a time latency of 34sc-33sc.

4.3.2 Filesystem Running on PM Emulator

In this section, the results of experiments run are presented based on the type of

running file system on top of PM emulators namely, PMEM, PRAMDISK, and PZRAM.

For each emulator, the suitable filesystems that match have been used.

4.3.2.1 PZRAM and Filesystems

For PZRAM, a collection of disk-based filesystems and RAM filesystems were used

Univ
ers

iti
Mala

ya

77

on top of the created disk ZRAM. Tables 4.3 and 4.4 demonstrates the results of each

used filesystem on top of ZRAM.

Table 4.3: Results of ZRAM based on Disk Filesystems

Iterates Ext4 XFS Btrfs F2FS

TPM NOPM Time TPM NOPM Time TPM NOPM Time TPM NOPM Time

1 211865 69984 34sc 182641 60221 34sc 158806 52588 35sc 213265 70410 34sc

2 211696 69944 35sc 182403 60166 35sc 159318 52726 35sc 214529 71275 34sc

ZRAM with Ext4 reached a peak of 211856 for the transaction per minute (TPM) and

69984 number of new orders (NOPM) with a latency of 35sc-34sc. With XFS, it reached

a peak of 182641 for transaction per minute (TPM) and 60221 new orders per minute

(NOPM) with a latency of 35sc -34sc. With Btrfs, the highest transaction per minute

(TPM) reached were at 159318 and 52726 for new order per minute (NOPM) with a

latency of 35sc. Consequently, F2FS reached its highest transaction per minute (TPM) at

214529 and 71275 for its new order per minute at a time latency of 34sc-33sc. TMPFS

and RAMFS reached the peak of their transaction per minute (TPM) at 236931, 235652

respectively, and new order per minute (NOPM) peak at 78282, 77669 respectively with

33sc-34sc latency time.

Table 4.4: Results of ZRAM based on RAM Filesystem

Iterates TMPFS RAMFS

TPM NOPM Time TPM NOPM Time

1 234127 76961 34sc 234172 77349 34sc

2 236931 78282 33sc 235652 77669 34sc

Univ
ers

iti
Mala

ya

78

4.3.2.2 PRAMDISK and Filesystems

 The results of creating the RAMDISK with different methods like creating it only

through mounting filesystem like TMPFS/RAMFS or using /dev/shm are shown in Table

4.5 below.

Table 4.5: Results of PRAMDISK with Different Implementation Methods Criteria

Iterates RAMFS RAMFS /dev/shm TMPFS TMPFS /dev/shm

TPM NOPM Time TPM NOPM Time TPM NOPM Time TPM NOPM Time

1 234433 77348 33sc 232173 76940 34sc 233216 77283 34sc 234470 77343 34sc

2 233734 77677 34sc 232646 76846 33sc 234681 76953 33sc 234501 77501 35sc

Creating the RAMDISK with mounting RAMFS helped it in reaching its highest

transaction per minute (TPM) at 234443 and the new order per minute (NOPM) at 77677

at a latency of 34sc-33sc. When creating using /dev/shm with RAMFS on top of it, it was

able to reach a 232646 transaction per minute (TPM) and a 76940 new order per minute

(NOPM) at a latency of 34sc-33sc. For TMPFS, the peak of transaction per minute (TPM)

was at 234681 and the new order per minute (NOPM) was attained at 77283 at a time

latency of 33sc-34sc. Finally, the /dev/shm based TMPFS reached the highest point of

transaction per minute (TPM) at 234501 and 77501 for new orders per minute (NOPM)

at a latency of 35sc-34sc.

4.3.2.3 PMEM and Filesystems

The findings of testing PMEM with types of disk filesystems that support DAX and

persistent memory file system (PMFS) are listed in Table 4.6 below.

Univ
ers

iti
Mala

ya

79

Table 4.6: Results of PMEM with Filesystems

Iterates Ext4 XFS PMFS

TPM NOPM Time TPM NOPM Time TPM NOPM Time

1 229304 75528 34sc 203467 67430 34sc 228952 75652 34sc

2 229400 75663 35sc 204625 67121 35sc 229481 75989 34sc

PMEM with Ext4 was able to attain a 229400 transaction per minute (TPM) and 75663

new orders per minute (NOPM) at a time latency of 35sc-34sc. With XFS, it was able to

reach a peak of transaction per minute (TPM) at 204625 and 67430 new orders per minute

(NOPM) at a latency time of 35sc-34sc. With PMFS on top of PMEM, the highest

transaction per minute (TPM) at 229481 and 75989 new orders per minute (NOPM) were

achieved at a latency of 34sc.

4.3.3 MYSQL Data Files

The obtained findings from moving the three types of MYSQL data files are

demonstrated in Table 4.7 below.

Table 4.7: Results of Moving Different Data Files

Iterates Logs ibdata Logs & ibdata datadir

TPM NOPM Time TPM NOPM Time TPM NOPM Time TPM NOPM Time

1 165606 54644 42s 19701 6510 46s 184909 62203 41s 233216 77283 34sc

2 165290 54654 42s 19540 6558 44s 184060 62629 44s 234390 76932 33sc

Moving only log files gets its peak transaction per minute (TPM) at 165606 and new

orders per minute at 54654 at a time latency of 42sc. An only moved ibdata reached a

19701 transaction per minute (TPM) and 6558 at a latency of 46sc-44sc. The moved logs

& ibdata together provide about 184909 transactions per minute and attained a new order

Univ
ers

iti
Mala

ya

80

per minute (NOPM) of 62629 at a latency of 44sc-41sc. Moving the whole data directory

shows its highest transaction per minute at 234390 and 77282 new orders per minute at a

latency of 34sc-33sc.

4.4 Discussion

 This section is devoted to a discussion of the research findings in the following

subsections.

4.4.1 Data Placement Media

Figure 4.1: System Performance-based on Type of Data Placement Devices

According to results from Figure 4.1, it is revealed that an SSD performance falls

behind the three types of PM emulators in both performance parameters: throughput and

response time. This is due to the fact that the SSD is orders of magnitude slower than

DRAM in which SSD latency times are counted in microseconds whereas the DRAM is

in a nanosecond. Further, DRAM outperforms the SSD in the bandwidth and endurance,

etc. (Dulloor, 2016; Ma et al., 2016; Oukid & Lersch, 2019). Since the three proposed

emulators are based on the DRAM, it is proved that the study’s proposed PZRAM with

TMPFS has better performance over SSD with 1167% performance improvement.

PZRAM outperforms PMEM with 3.2% performance improvement and almost the same

performance with PRAMDISK. This slide improvement over PMEM, because PMEM

requires kernel reconfiguration and compilation which results in an extra overhead and

seconds TPM
&NOPM
M

Univ
ers

iti
Mala

ya

81

more occupied storage space. However, ZRAM is better than RAMDISK in which that

ZRAM saves more memory capacity and squeezes the data due to its compression in fly

feature.

4.4.2 Filesystem Running on PM Emulator

4.4.2.1 PZRAM and Filesystems

Figure 4.2: PZRAM Performance based on Filesystems

From Figure 4.2, it can be interpreted that using RAM filesystems on top of ZRAM

disk outperforms disk/flash-based filesystems like Ext4 with 11.83%, XFS with 29.72%,

F2FS with 10.44%, and Btrfs with 48.7% performance improvement. This is because the

whole disk-based filesystems are programmed, oriented, and built to optimize disk

devices. Additionally, as RAM technologies have the characters that differ them from

other devices, they require a RAM/Memory-based filesystem to optimize its peak

performance. Also noted from the above figure is that F2FS has a better performance than

Ext4, XFS, and BTRFS. This result is because F2FS is a flash-based filesystem. After

F2FS, Ext4 boasts of a better performance than XFS and Btrfs. Consequently, Btrfs has

the lowest throughput.

seconds
TPM
&NOPM
M

Univ
ers

iti
Mala

ya

82

4.4.2.2 PRAMDISK and Filesystems

Figure 4.3: PRAMDISK Performance based on Implementation Methods

To create a RAMDISK on Linux operating system, different methods can be

employed. Implementation of RAMDISK can be done through TMPFS, RAMFS, or

/dev/shm with RAMFS or TMPFS on top of shared memory /dev/shm. Figure 4.3 above,

shows that all RAMDISK implementation methods provided by Linux almost have the

same performance with just a tiny slide of variation. Also, it can be noticed that mounting

RAMFS/TMPFS as RAMDISK outperforms using /dev/shm since the /dev/shm is built

as a block device and use the shared memory.

4.4.2.3 PMEM and Filesystems

Figure 4.4: PMEM Performance based on Filesystems

From Figure 4.4, it is evident that Ext4 with DAX and PMFS has the almost same

performance, where an XFS supporting DAX, falls behind both files in terms of

throughput.

seconds

seconds TPM
&NOPM
M

TPM
&NOPM
M

Univ
ers

iti
Mala

ya

83

4.4.3 MYSQL Data Files

Figure 4.5: System Performance-based on Moving Data Files

 It is obvious from Figure 4.5 that moving the whole data directory has the best

performance with an 1167% improvement over SSD. This is because moving the data

directory into the main memory has lower access time and greater bandwidth than SSD

(Oukid & Lersch, 2019). Where moving the log files also showed a good influence on

performance with 792.88% over the ibdata. This performance improvement is because

moving logs to SCM will reduce writings to the disk. Moving system-table space (ibdata)

has a slight performance improvement with 6.42% which doesn’t have a noticeable

significant impact on performance like the other moved files. However, it was found that

moving both logs and ibdata has a higher performance with 894.27% than moving only

logs. Further, it was also discovered that moving the whole data directory offers a better

performance improvement with 1089.74%, 41.81%, and 27.34% performance

improvement over moved ibdata, only moved logs and moved ibdata & logs respectively.

This improvement comes as a result that moving the whole data directory into a PM

emulator eliminates reads and writes from disks. Thus a superb performance can be

gained when systems’ data can be stored and accessed from the higher memory hierarchy

levels like caches and main memory rather than IO reads and writes which are considered

as slower memory levels (Patterson & Hennessy, 2019, p. 85).

seconds TPM
&NOPM
M

Univ
ers

iti
Mala

ya

84

4.5 Summary

 This chapter has addressed and discussed the obtained results and made comparisons

among each of the components to prove that the proposed method provides a superior

MYSQL performance in terms of throughput and response time.

Univ
ers

iti
Mala

ya

85

CHAPTER 5: CONCLUSION AND FUTURE WORK

5.1 Conclusion

Storage class memory (SCM) is a promising non-volatile, byte-addressable memory

that is introduced by different memory landscape makers to bridge the performance gap

between the main memory and storage drives. In this thesis, a PM emulator using PZRAM

was proposed. Further, the performance of the MYSQL InnoDB engine was tested on

three PM emulators in terms of throughput and response time. More so, a persistent

ZRAM was built to host the MYSQL data directory as a PM. This was done to make and

use a PMEM emulator and PRAMDISK as data placement media for the MYSQL data

directory besides HDD and SSD. The experiment in this study contains the test of moving

different data files separately, such as log files, system tablespace, and whole data

directory, to a PM emulator. Also, experiments were run to examine the effect of

filesystems on system performance. The study’s implemented emulator persistent ZRAM

(PZRAM) has shown a massive performance improvement as compared to HDD and SSD

with an improvement of 14290% and 1167% respectively, a tiny higher performance than

PMEM with 2.3% improvement and almost similar performance of persistent

RAMDISK. Additionally, the study’s proposed PZRAM with TMPFS running on top of

it has provided better performance with 11.83% over PZRAM with Ext4.

5.2 Fulfilment of Research Objectives

 The following are the objectives of the research and their associated research

questions:

1) To explore and analyze the storage/memory technologies, their role, and

limitations in database management systems.

RQ1: What is the existing storage/memory technologies, their role, and limitations in

database management systems?

2) To propose and implement a method that enhances system performance using a

Univ
ers

iti
Mala

ya

86

persistent RAM-based module (ZRAM) as SCM.

 RQ2: How to enhance system performance using a persistent RAM-based module

(ZRAM) as SCM?

3) To empirically evaluate the proposed method (PZRAM) through an experimental

analysis to prove its ability to improve the system performance

RQ3: Is the proposed method PZRAM able to improve the system performance?

To achieve the first research objective and its associated research question; the

literature review was performed. Different types of storage and memory: HDD, SSD,

DRAM, SRAM, and SCM technologies were studied and compared. The strengths,

weaknesses, opportunities, and threats of these technologies were identified.

To achieve the second research objective and its associated research question; the

PZRAM a general-purpose RAMDISK was proposed. The proposed PZRAM is based on

ZRAM and TMPFS.

To achieve the third research objective and its associated research question; the

proposed method was evaluated by running several experiments with different

environmental criteria.

5.3 Research Significance

The most important part of this research is that all requirements are available in the

systems. The only thing needed is to exploit and optimize them in order to achieve

superior performance improvements. A PM emulator was created using a ZRAM

compressed RAM-block drive with a RAM filesystem on top of it. Further, comparisons

were made on the PMEM emulator with Ext4, XFS, and PMFS filesystems to check

which filesystem with PMEM can reach the best performance. The same scenarios were

done for the creation of ZRAM, which was tested with Ext4, XFS, F2FS, Btrfs, RAMFS,

Univ
ers

iti
Mala

ya

87

and TMPFS.

For persistent RAMDISK, tests were conducted on the RAMDISK with TMPFS,

RAMFS, RAMFS /dev/shm, and TMPFS /dev/shm. Another significance of this research

besides storage device and filesystem, the data file of an application, is that tests were run

according to moving data file separately to other locations such as log files, system

tablespace, and whole data directory.

This research provides a good assessment to users, researchers, and administrators as

it can help them to understand the role of filesystems and moved data files on system

throughput performance. Further, it also helped in reviewing and analyzing the different

data placement devices and their role in database management systems.

5.4 Research Limitations

▪ As this research’s-built PM emulator is based on dynamic random-

access memory (DRAM), thus more memory will be consumed.

▪ The size of created PM emulator is limited by the memory capacity.

▪ Another limitation and strength at the same time are that there were

no modifications done on the MYSQL source code, which could have

helped in creating awareness of SCM/PM byte addressability features.

▪ This research only focussed on two performance metrics namely:

throughput and response time.

5.5 Future Work

 There is no perfect work, especially in the research domain. Each research completes

the other. Thus, this dissertation focuses on only two metrics of system performance

namely the throughput and response time. In the upcoming works, the researcher aims at

measuring query execution performance and recovery performance. For the setup

environment, future research would probably run experiments on a real SCM device to

Univ
ers

iti
Mala

ya

88

check if its performance is gained by emulators. Furthermore, in the proposed method of

the current study, there were no modifications to the source code of MYSQL. Thus, future

work might consider modifying the source code to make an MYSQL InnoDB aware of

persisting memory by creating an SCM- MYSQL storage engine and comparing its

performance with the non-modified version.

 For improving the application performance, future work plans to move forward to a

cache memory level since it’s faster than DRAM and the other lower memory hierarchy

levels. Regarding this, future work is aimed at creating a partition of cache memory and

flushing the hottest data of the desired application into that partition, and finally locking

the created partition.

Univ
ers

iti
Mala

ya

89

REFERENCES

Anthony, A. (2016). Memcached, Redis, and Aerospike Key-Value Stores Empirical
Comparison, 1–8.

Arulraj, J., Levandoski, J., Minhas, U. F., & Larson, P.-A. (2018). Bztree: a high-

performance latch-free range index for non-volatile memory. Proceedings of the
VLDB Endowment, 11(5), 553–565. https://doi.org/10.1145/3187009.3164147

Arulraj, J., & Pavlo, A. (2017a). How to build a non-volatile memory database

management system. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (Vol. Part F1277, pp. 1753–1758).
https://doi.org/10.1145/3035918.3054780

Arulraj, J., & Pavlo, A. (2017b). How to build a non-volatile memory database

management system. Proceedings of the ACM SIGMOD International Conference
on Management of Data, Part F1277, 1753–1758.
https://doi.org/10.1145/3035918.3054780

Arulraj, J., Pavlo, A., & Dulloor, S. R. (2015). Let’s talk about storage & recovery

methods for non-volatile memory database systems. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (Vol. 2015-May, pp.
707–722). https://doi.org/10.1145/2723372.2749441

Arulraj, J., Pavlo, A., & Malladi, K. T. (2019). Multi-tier buffer management and

storage system design for non-volatile memory. ArXiv.

Arulraj, J., Perron, M., & Pavlo, A. (2016). Write-Behind Logging. Proceedings of the

VLDB Endowment, 10(4), 337–348. https://doi.org/10.14778/3025111.3025116

Bahn, H., & Cho, K. (2020). Implications of NVM based storage on memory subsystem

management. Applied Sciences (Switzerland), 10(3), 1–18.
https://doi.org/10.3390/app10030999

Bez, R., & Pirovano, A. (2004). Non-volatile memory technologies: Emerging concepts

and new materials. In Materials Science in Semiconductor Processing (Vol. 7, pp.
349–355). https://doi.org/10.1016/j.mssp.2004.09.127

Bhimani, J., Yang, J., Yang, Z., Mi, N., Xu, Q., Awasthi, M., … Balakrishnan, V.

(2017). Understanding performance of I/O intensive containerized applications for
NVMe SSDs. In 2016 IEEE 35th International Performance Computing and
Communications Conference, IPCCC 2016.
https://doi.org/10.1109/PCCC.2016.7820650

Univ
ers

iti
Mala

ya

90

Btrfs Contributors at kernel.org. (2016). kernel.org. Retrieved from
https://btrfs.wiki.kernel.org/index.php/Contributors

Calderoni, A., Sills, S., Cardon, C., Faraoni, E., & Ramaswamy, N. (2015).

Microelectronic Engineering Engineering ReRAM for high-density applications.
MICROELECTRONIC ENGINEERING, (April), 1–6.
https://doi.org/10.1016/j.mee.2015.04.044

Canim, M., Mihaila, G. A., Bhattacharjee, B., Ross, K. A., & Lang, C. A. (2010). SSD

bufferpool extensions for database systems. Proceedings of the VLDB Endowment,
3(2), 1435–1446. https://doi.org/10.14778/1920841.1921017

Chatzistergiou, A., Cintra, M., & Viglas, S. D. (2015). REWIND: Recovery Write-

Ahead System for In-Memory Non-Volatile Data-Structures. Vldb ’15, 497–508.
https://doi.org/10.14778/2735479.2735483

Chen, J., Jindel, S., Walzer, R., Sen, R., Jimsheleishvilli, N., & Andrews, M. (2015).
The MemSQL query optimizer: A modern optimizer for real-time analytics in a
distributed database. In Proceedings of the VLDB Endowment (Vol. 9, pp. 1401–
1412). https://doi.org/10.14778/3007263.3007277

Corporation, I. (2016). How to emulate Persistent Memory. Retrieved from

https://pmem.io/2016/02/22/pm-emulation.html

DeBrabant, J., Arulraj, J., Pavlo, A., Stonebraker, M., Zdonik, S. B., & Dulloor, S.

(2014a). A Prolegomenon on OLTP Database Systems for Non-Volatile Memory.
Amds@Vldb, 57–63. Retrieved from http://dblp.uni-
trier.de/db/conf/vldb/adms2014.html#DeBrabantAPSZD14

DeBrabant, J., Arulraj, J., Pavlo, A., Stonebraker, M., Zdonik, S. B., & Dulloor, S.

(2014b). A Prolegomenon on OLTP Database Systems for Non-Volatile Memory.
Amds@Vldb, 57–63. Retrieved from http://dblp.uni-
trier.de/db/conf/vldb/adms2014.html#DeBrabantAPSZD14

Desireddy, S., & Pathireddy, D. R. (2016). Optimize In-kernel swap memory by

avoiding duplicate swap out pages. In International Conference on
Microelectronics, Computing and Communication, MicroCom 2016 (pp. 2–5).
https://doi.org/10.1109/MicroCom.2016.7522551

Diaconu, C., Freedman, C., Ismert, E., Larson, P.-åke, Mittal, P., Stonecipher, R., …

Zwilling, M. (2013). Hekaton : SQL Server ’ s Memory -Optimized OLTP Engine.

Do, J., Zhang, D., Patel, J. M., DeWitt, D. J., Naughton, J. F., & Halverson, A. (2011).

Turbocharging DBMS buffer pool using SSDs. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (pp. 1113–1124).
https://doi.org/10.1145/1989323.1989442

Univ
ers

iti
Mala

ya

91

Dulloor, S. R. (2016). Systems and applications for persistent memory. Thesis,

(December 2015). Retrieved from
https://smartech.gatech.edu/handle/1853/54396%5Cnpapers3://publication/uuid/9A
636FA2-795A-4C6C-AE4D-66246BA778EE

Dulloor, S. R., Kumar, S., Keshavamurthy, A., Lantz, P., Reddy, D., Sankaran, R., &

Jackson, J. (2014). System software for persistent memory. Proceedings of the 9th
European Conference on Computer Systems, EuroSys 2014.
https://doi.org/10.1145/2592798.2592814

Eisenman, A., Naumov, M., Gardner, D., Smelyanskiy, M., Pupyrev, S., Hazelwood,

K., … Katti, S. (2018). Bandana: Using non-volatile memory for storing deep
learning models. ArXiv.

Faerber, F., Kemper, A., Larson, P. Å., Levandoski, J., Neumann, T., & Pavlo, A.

(2017). Main memory database systems. Foundations and Trends in Databases.
https://doi.org/10.1561/1900000058

Fang, R., Hsiao, H. I., He, B., Mohan, C., & Wang, Y. (2011). High performance

database logging using storage class memory. Proceedings - International
Conference on Data Engineering, 1221–1231.
https://doi.org/10.1109/ICDE.2011.5767918

Gaonkar, P. E., Bojewar, S., & Das, J. A. (2013). A Survey : Data Storage

Technologies, 2(2), 547–554.

Giles, E., Doshi, K., & Varman, P. (2013). Bridging the programming gap between

persistent and volatile memory using WrAP. Proceedings of the ACM International
Conference on Computing Frontiers, CF 2013.
https://doi.org/10.1145/2482767.2482806

Götze, P., van Renen, A., Lersch, L., Leis, V., & Oukid, I. (2018). Data Management
on Non-Volatile Memory: A Perspective. Datenbank-Spektrum, 18(3), 171–182.
https://doi.org/10.1007/s13222-018-0301-1

Gruenbacher, A., & Arnold, S. (2007). AppArmor Technical Documentation.

He, S., Sun, X. H., & Feng, B. (2014). S4D-cache: Smart selective SSD cache for

Parallel I/O systems. Proceedings - International Conference on Distributed
Computing Systems, 514–523. https://doi.org/10.1109/ICDCS.2014.59

Huang, J., Schwan, K., & Qureshi, M. K. (2014a). NVRAM-aware logging in

transaction systems. Proceedings of the VLDB Endowment, 8(4), 389–400.
https://doi.org/10.14778/2735496.2735502

Univ
ers

iti
Mala

ya

92

Huang, J., Schwan, K., & Qureshi, M. K. (2014b). NVRAM-aware logging in
transaction systems. Proceedings of the VLDB Endowment, 8(4), 389–400.
https://doi.org/10.14778/2735496.2735502

Ilyas, M. U., Ahmad, M., & Saleem, S. (2020). Internet-of-Things-Infrastructure-as-a-

Service: The democratization of access to public Internet-of-Things Infrastructure.
International Journal of Communication Systems, 33(16), 1–15.
https://doi.org/10.1002/dac.4562

Imamura, S. (n.d.). Evaluating a Trade-Off between DRAM and Persistent Memory for

Persistent-Data Placement on Hybrid Main Memory.

Jackson, A., Johnson, N., & Parsons, M. (2018). Exploiting the Performance Benefits

of Storage Class Memory for HPC and HPDA Workflows. Supercomputing
Frontiers and Innovations, 5(1), 79–94. https://doi.org/10.14529/jsfi180105

Jose, J., Subramoni, H., Luo, M., Zhang, M., Huang, J., Wasi-Ur-Rahman, M., …

Panda, D. K. (2011). Memcached design on high performance RDMA capable
interconnects. In Proceedings of the International Conference on Parallel
Processing (pp. 743–752). https://doi.org/10.1109/ICPP.2011.37

Joshi, A., Nagarajan, V., Viglas, S., & Cintra, M. (2017). ATOM: Atomic Durability in

Non-volatile Memory through Hardware Logging. Proceedings - International
Symposium on High-Performance Computer Architecture, 361–372.
https://doi.org/10.1109/HPCA.2017.50

Kabakus, A. T., & Kara, R. (2017). A performance evaluation of in-memory databases.

Journal of King Saud University - Computer and Information Sciences, 29(4), 520–
525. https://doi.org/10.1016/j.jksuci.2016.06.007

Kang, W.-H., Lee, S.-W., Moon, B., Kee, Y.-S., & Oh, M. (2014). Durable write cache

in flash memory SSD for relational and NoSQL databases. Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data - SIGMOD ’14,
529–540. https://doi.org/10.1145/2588555.2595632

Kang, W.-H., Yun, G.-T., Lim, S.-P., Shin, D.-I., Park, Y.-H., Lee, S.-W., & Moon, B.

(2012). InnoDB DoubleWrite Buffer as Read Cache using SSDs. Proceedings of the
10th USENIX Conference on File and Storage Technologies (FAST’12), 1–2.

Kim, H., Agrawal, N., & Ungureanu, C. (2012). Unioning of the Buffer Cache and

Journaling Layers with Non-volatile Memory. Proceedings of the 11th USENIX
Conference on File and Storage Technologies (FAST 13), 8(4), 1–25.
https://doi.org/10.1145/2385603.2385607

Kim, S. (2012). Resistive RAM (ReRAM) Technology for High Density Memory

Univ
ers

iti
Mala

ya

93

Applications. 4th Workshop Innovative Memory Technol MINATEC 2012; June 21-
24 2012, 4.

Kim, W. H., Kim, J., Baek, W., Nam, B., & Won, Y. (2016). NVWAL: Exploiting
NVRAM in write-ahead logging. In International Conference on Architectural
Support for Programming Languages and Operating Systems - ASPLOS (Vol. 02-
06-Apri, pp. 385–398). https://doi.org/10.1145/2872362.2872392

Kimura, H. (2015). Foedus: Oltp engine for a thousand cores and NVRAM. In

Proceedings of the ACM SIGMOD International Conference on Management of
Data (Vol. 2015-May, pp. 691–706). https://doi.org/10.1145/2723372.2746480

Kolli, A., Pelley, S., Saidi, A., Chen, P. M., & Wenisch, T. F. (2016). High-performance

transactions for persistent memories. International Conference on Architectural
Support for Programming Languages and Operating Systems - ASPLOS, 02-06-
Apri, 399–411. https://doi.org/10.1145/2872362.2872381

Kuznetsov, S. (2019). Towards a native architecture of In-NVM DBMS. In

Proceedings - 2019 Actual Problems of Systems and Software Engineering, APSSE
2019 (pp. 77–89). IEEE. https://doi.org/10.1109/APSSE47353.2019.00017

Lahiri, T., Neimat, M.-A., & Folkman, S. (2013). Oracle TimesTen: An In-Memory

Database for Enterprise Applications. IEEE Data Eng. Bull, 36(2), 6–13.

Lee, B. C., Ipek, E., Mutlu, O., & Burger, D. (2009). Architecting phase change

memory as a scalable dram alternative. ACM SIGARCH Computer Architecture
News, 37(3), 2–13. https://doi.org/10.1145/1555815.1555758

Lee, H., & Lee, S.-W. (2016). Performance Improvement Plan for MySQL Insert

Buffer. https://doi.org/10.1145/3007818.3007833

Leis, V., Haubenschild, M., Kemper, A., & Neumann, T. (2018). Leanstore: in-memory

data management beyond main memory. Proceedings - IEEE 34th International
Conference on Data Engineering, ICDE 2018, 185–196.
https://doi.org/10.1109/ICDE.2018.00026

Lemke, C., Radestock, G., Schulze, R., Thiel, C., Meghlan, A., Sharique, M., …

Willhalm, T. (2017). SAP HANA adoption of non-volatile memory. In Proceedings
of the VLDB Endowment (Vol. 10, pp. 1754–1765).
https://doi.org/10.14778/3137765.3137780

Lersch, L., Hao, X., Oukid, I., Wang, T., & Willhalm, T. (2019). Evaluating persistent

memory range indexes. Proceedings of the VLDB Endowment, 13(4), 574–587.
https://doi.org/10.14778/3372716.3372728

Li, Y., Liu, F., Xiao, N., Zeng, J., & Zhu, L. (2018). SNFS: Small Writes Optimization

Univ
ers

iti
Mala

ya

94

for Log-Structured File System Based-on Non-Volatile Main Memory. In
Proceedings - 2017 IEEE 19th Intl Conference on High Performance Computing
and Communications, HPCC 2017, 2017 IEEE 15th Intl Conference on Smart City,
SmartCity 2017 and 2017 IEEE 3rd Intl Conference on Data Science and Systems,
DSS 2017 (Vol. 2018-Janua, pp. 89–97). https://doi.org/10.1109/HPCC-SmartCity-
DSS.2017.12

Lindström, J., Das, D., Mathiasen, T., Arteaga, D., & Talagala, N. (2015). NVM aware

MariaDB database system. In 2015 IEEE Non-Volatile Memory Systems and
Applications Symposium, NVMSA 2015.
https://doi.org/10.1109/NVMSA.2015.7304362

Liu, M., Zhang, M., Chen, K., Qian, X., Wu, Y., Zheng, W., & Ren, J. (2017). DudeTM:

Building durable transactions with decoupling for persistent memory. ACM
SIGPLAN Notices, 52(4), 329–343. https://doi.org/10.1145/3037697.3037714

Ma, L., Arulraj, J., Zhao, S., Pavlo, A., Dulloor, S. R., Giardino, M. J., … Zdonik, S.

(2016). Larger-than-memory data management on modern storage hardware for in-
memory OLTP database systems. In Proceedings of the ACM SIGMOD
International Conference on Management of Data.
https://doi.org/10.1145/2933349.2933358

Manual, M. R. (2013). MySQL 5 . 0 Reference Manual. MySQL 5.0 Reference Manual,

1, 1692. Retrieved from dev.mysql.com

March, F., & Clara, S. (2017). WORT : Write Optimal Radix Tree for Persistent

Memory Storage Systems This paper is included in the Proceedings of the 15th
USENIX Conference on. Fast.

Meena, J. S., Sze, S. M., Chand, U., & Tseng, T. Y. (2014). Overview of emerging

nonvolatile memory technologies. Nanoscale Research Letters, 9(1), 1–33.
https://doi.org/10.1186/1556-276X-9-526

Meza, J., Wu, Q., Kumar, S., & Mutlu, O. (2015). A Large-Scale Study of Flash

Memory Failures in the Field (pp. 177–190). Association for Computing Machinery
(ACM). https://doi.org/10.1145/2745844.2745848

Min, C., Kang, W.-H., & Kim, T. (2015). Lightweight Application-Level Crash

Consistency on Transactional Flash Storage. Usenix Atc’15, 221–234. Retrieved
from https://www.usenix.org/conference/atc15/technical-session/presentation/min

Moving MySQL databases to ramdisk on Ubuntu · GitHub. (n.d.). Retrieved March 20,

2020, from
https://gist.github.com/kurisuchan/1262135/d7c2db7258b3cda96144027b346beb4f
44fb8205

Univ
ers

iti
Mala

ya

95

Mustafa, N. U., Armejach, A., Ozturk, O., Cristal, A., & Unsal, O. S. (2017a).

Implications of non-volatile memory as primary storage for database management
systems. Proceedings - 2016 16th International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation, SAMOS 2016, 164–171.
https://doi.org/10.1109/SAMOS.2016.7818344

Mustafa, N. U., Armejach, A., Ozturk, O., Cristal, A., & Unsal, O. S. (2017b).

Implications of non-volatile memory as primary storage for database management
systems. In Proceedings - 2016 16th International Conference on Embedded
Computer Systems: Architectures, Modeling and Simulation, SAMOS 2016 (pp.
164–171). https://doi.org/10.1109/SAMOS.2016.7818344

Natarajan, S. (2004). Emerging memory technologies. In Microelectronics: Design,

Technology, and Packaging (Vol. 5274, p. 7). https://doi.org/10.1117/12.530385

Nguyen, T. D., & Lee, S. W. (2019). PB-NVM: A high performance partitioned buffer

on NVDIMM. Journal of Systems Architecture, 97(August 2018), 20–33.
https://doi.org/10.1016/j.sysarc.2019.03.007

Oukid, I. (2019). Architectural principles for database systems on storage-class

memory. Lecture Notes in Informatics (LNI), Proceedings - Series of the
Gesellschaft Fur Informatik (GI), P-289, 477–486.
https://doi.org/10.18420/btw2019-29

Oukid, I., Booss, D., Lehner, W., Bumbulis, P., & Willhalm, T. (2014). SOFORT: A

hybrid SCM-DRAM storage engine for fast data recovery. 10th International
Workshop on Data Management on New Hardware, DaMoN 2014 - In Conjunction
with the ACM SIGMOD/PODS Conference.
https://doi.org/10.1145/2619228.2619236

Oukid, I., Booss, D., Lespinasse, A., Lehner, W., Willhalm, T., & Gomes, G. (2017).

Memory management techniques for large-scale persistent-main-memory systems.
Proceedings of the VLDB Endowment, 10(11), 1166–1177.
https://doi.org/10.14778/3137628.3137629

Oukid, I., Lasperas, J., Nica, A., Willhalm, T., & Lehner, W. (2016). FPTree: A hybrid

SCM-DRAM persistent and concurrent B-Tree for Storage Class Memory.
Proceedings of the ACM SIGMOD International Conference on Management of
Data, 26-June-20, 371–386. https://doi.org/10.1145/2882903.2915251

Oukid, I., & Lersch, L. (2019). On the diversity of memory and storage technologies.

ArXiv. https://doi.org/10.1007/s13222-018-0287-8

Ouyang, X., Nellans, D., Wipfel, R., Flynn, D., & Panda, D. K. (2011). Beyond block

Univ
ers

iti
Mala

ya

96

I/O: Rethinking traditional storage primitives. Proceedings - International
Symposium on High-Performance Computer Architecture, 301–311.
https://doi.org/10.1109/HPCA.2011.5749738

Patterson, D. A., & Hennessy, J. L. (2019). Computer architecture: A Quantative

Approach, 1–1527.

Peglar, R. (n.d.). What You can Do with NVDIMMs President , Advanced Computation

and Storage LLC.

Petrov, I., Gottstein, R., & Hardock, S. (2015). DBMS on modern storage hardware. In

Proceedings - International Conference on Data Engineering (Vol. 2015-May, pp.
1545–1548). https://doi.org/10.1109/ICDE.2015.7113423

Proctor, A. (2012). Non-volatile memory & its use in enterprise applications. Viking

Technology Understanding Non-Volatile Memory Technology Whitepaper,
(January), 1–8. Retrieved from https://scholar.google.fr/scholar?hl=en&q=Non-
volatile+memory+%26+its+use+in+enterprise+applications&btnG=&as_sdt=1%2
C5&as_sdtp=#0

Ramez Elmasri, S. B. N. (2011). Fundamentals of Database Systems - 6th Edition.

Addison Wesley (Vol. 49). https://doi.org/10.1007/978-1-4842-0877-9_10

Rizk, R., Rizk, D., Kumar, A., & Bayoumi, M. (2019). Demystifying emerging

nonvolatile memory technologies: Understanding advantages, challenges, trends,
and novel applications. In Proceedings - IEEE International Symposium on Circuits
and Systems (Vol. 2019-May). https://doi.org/10.1109/ISCAS.2019.8702390

Rizvi, S. S., & Chung, T. S. (2010). Flash memory SSD based DBMS for data

warehouses and data marts. In 2010 The 2nd International Conference on Computer
and Automation Engineering, ICCAE 2010 (Vol. 3, pp. 557–559).
https://doi.org/10.1109/ICCAE.2010.5451825

Schmidt, K., Ou, Y., & Härder, T. (2009). The promise of solid state disks: Increasing

efficiency and reducing cost of DBMS processing. In ACM International
Conference Proceeding Series (pp. 35–41).
https://doi.org/10.1145/1557626.1557633

Schwartz, B., Zaitsev, P., Tkachenko, V., Zawodny, J. D., Lentz, A., & Balling, D. J.

(2008). High Performance MySQL.
https://doi.org/10.1017/CBO9781107415324.004

Sehgal, P., Basu, S., Srinivasan, K., & Voruganti, K. (2015). An empirical study of file

systems on NVM. In IEEE Symposium on Mass Storage Systems and Technologies
(Vol. 2015-Augus). https://doi.org/10.1109/MSST.2015.7208283

Univ
ers

iti
Mala

ya

97

Sha, E. H. M., Jiang, W., Dong, H., Ma, Z., Zhang, R., Chen, X., & Zhuge, Q. (2018).

Towards the Design of Efficient and Consistent Index Structure with Minimal Write
Activities for Non-Volatile Memory. IEEE Transactions on Computers, 67(3), 432–
448. https://doi.org/10.1109/TC.2017.2754381

Shahla Rizvi, S., & Chung, T. S. (2010). Flash memory SSD based DBMS for high
performance computing embedded and multimedia systems. In Proceedings,
ICCES’2010 - 2010 International Conference on Computer Engineering and
Systems (pp. 183–188). https://doi.org/10.1109/ICCES.2010.5674850

Shu, J. W., Yu, B., & Yan, R. (2004). Design and Implementation of a non-volatile

RAM disk in the SAN environment. Lecture Notes in Computer Science (Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 3252, 203–212. https://doi.org/10.1007/978-3-540-30207-0_26

Smith, R. (2015). Intel Announces Optane Storage Brand For 3D XPoint Products.

AnandTech. Retrieved from http://www.anandtech.com/show/9541/intel-
announces-optane-storage-brand-for-3d-xpoint-products

Snyder, P. (1990). tmpfs: A virtual memory file system. Proceedings of the Autumn

1990 EUUG Conference, 241–248. Retrieved from
http://wiki.deimos.fr/images/1/1e/Solaris_tmpfs.pdf

Son, Y., Kang, H., Yeom, H. Y., & Han, H. (2017a). A log-structured buffer for

database systems using non-volatile memory. Proceedings of the ACM Symposium
on Applied Computing, Part F1280, 880–886.
https://doi.org/10.1145/3019612.3019675

Son, Y., Kang, H., Yeom, H. Y., & Han, H. (2017b). A log-structured buffer for

database systems using non-volatile memory. Proceedings of the Symposium on
Applied Computing - SAC ’17, 880–886. https://doi.org/10.1145/3019612.3019675

Sorin, D. J. (2017). Persistent Memory. Computer, 50(3), 12.

https://doi.org/10.1109/MC.2017.67

Van Renen, A., Leis, V., Kemper, A., Neumann, T., Hashida, T., Oe, K., … Sato, M.

(2018a). Managing non-volatile memory in database systems. Proceedings of the
ACM SIGMOD International Conference on Management of Data, 1541–1555.
https://doi.org/10.1145/3183713.3196897

Van Renen, A., Leis, V., Kemper, A., Neumann, T., Hashida, T., Oe, K., … Sato, M.

(2018b). Managing non-volatile memory in database systems. In Proceedings of the
ACM SIGMOD International Conference on Management of Data (pp. 1541–1555).
https://doi.org/10.1145/3183713.3196897

Univ
ers

iti
Mala

ya

98

Van Renen, A., Vogel, L., Leis, V., Neumann, T., & Kemper, A. (2019). Persistent
memory I/O primitives. ArXiv.

van Vugt, S. (2015). Beginning the Linux Command Line. Beginning the Linux

Command Line. https://doi.org/10.1007/978-1-4302-6829-1

Volos, H., Magalhaes, G., Cherkasova, L., & Li, J. (2015). Quartz: A lightweight

performance emulator for persistent memory software. In Middleware 2015 -
Proceedings of the 16th Annual Middleware Conference (pp. 37–49).
https://doi.org/10.1145/2814576.2814806

Wang, T., & Johnson, R. (2014). Scalable logging through emerging nonvolatile

memory. Proceedings of the VLDB Endowment, 7(10), 865–876.
https://doi.org/10.14778/2732951.2732960

Wickberg, T., & Carothers, C. (2012). The RAMDISK storage accelerator - A method

of accelerating I/O performance on HPC systems using RAMDISKs. In Proceedings
of the 2nd International Workshop on Runtime and Operating Systems for
Supercomputers, ROSS 2012 - In Conjunction with: ICS 2012.
https://doi.org/10.1145/2318916.2318922

XFS Overview. (2013). Silicon Graphics International Corp. Retrieved from
http://oss.sgi.com/projects/xfs/index.html

Yu, S., & Chen, P. Y. (2016). Emerging Memory Technologies: Recent Trends and

Prospects. IEEE Solid-State Circuits Magazine, 8(2), 43–56.
https://doi.org/10.1109/MSSC.2016.2546199

Zhang, Y., & Swanson, S. (2015). A study of application performance with non-volatile

main memory. IEEE Symposium on Mass Storage Systems and Technologies, 2015-
Augus. https://doi.org/10.1109/MSST.2015.7208275

Zhao, J., Xu, C., Chi, P., & Xie, Y. (2015). Memory and storage system design with

nonvolatile memory technologies. IPSJ Transactions on System LSI Design
Methodology, 8(February), 2–11. https://doi.org/10.2197/ipsjtsldm.8.2

Zhuang, Z., Zuk, S., Ramachandra, H., & Sridharan, B. (2016). Designing SSD-

Friendly Applications for Better Application Performance and Higher IO Efficiency.
Proceedings - International Computer Software and Applications Conference, 1,
369–378. https://doi.org/10.1109/COMPSAC.2016.94

Univ
ers

iti
Mala

ya

