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OPTIMAL DISTRIBUTION SYSTEM RECONFIGURATION 

INCORPORATING DISTRIBUTED GENERATION BASED ON SIMPLIFIED 

NETWORK APPROACH 

ABSTRACT 

Network Reconfiguration (NR) and Distributed Generation (DG) are well-accepted 

strategies to minimize power loss and voltage deviation in the Electrical Distribution 

Network (EDN). Since the NR problem contains a huge combinational search space, most 

researchers applied meta-heuristic methods to attain optimal NR solution. However, 

meta-heuristic methods do not always guarantee optimal solution and furthermore they 

consume huge processing time. This occurs mainly due to (1) random solution’s 

initialization and (2) the verification of solution in each iteration to fulfill the operation 

constraints during the optimization process. Besides, solving the NR problem 

simultaneously with DG placement and sizing increases the computational burden due to 

increase of the search space. With the aim of reducing the computational time and 

improving the consistency in obtaining the optimal solution as well as minimizing power 

loss and voltage deviation of the EDN, this work proposes a new method based on a two-

stage optimization. This method introduces a technique to simplify the network into a 

simplified network graph. Then, the simplified network is utilized for guided 

initializations and generations of the population as well as for the proper population’s 

codification. The proposed method is employed to solve the NR problem and DG 

integration separately and simultaneously. In addition, this work considered non-

dispatchable renewable energy resources and load variations for daily operation. The 

selected meta-heuristic techniques in this research involve the Firefly Algorithm (FA) 

and Biogeography-Based Optimization (BBO). To verify the efficiency of the proposed 

method, simulations were carried out on 33-bus, 69-bus, and 118-bus IEEE test systems. 

Furthermore, comparisons were performed between the proposed method along with the 
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conventional evolutionary programming, particle swarm optimization, FA and BBO as 

well as the previous works. The obtained results of the NR problem as well as DG 

placement and sizing demonstrate the superiority of the proposed method in obtaining a 

fast and high-quality solution that minimize the power loss and voltage deviation in 

different case studies. 

Keywords: Network reconfiguration, Distributed generation, Renewable energy 

resources, Meta-heuristic techniques, Load variations. 
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REKONFIGURASI SISTEM PENGAGIHAN YANG OPTIMUM 

MENGGABUNGKAN JANAKUASA TERAGIH BERDASARKAN 

PENDEKATAN RANGKAIAN DIPERMUDAHKAN 

ABSTRAK 

Penyusunan Semula Rangkaian (NR) dan Janakuasa Teragih (DG) adalah strategi 

yang dapat diterima dengan baik untuk meminimumkan kehilangan kuasa dan 

penyimpangan voltan dalam Rangkaian Pengagihan Elektrik (EDN). Oleh kerana 

masalah NR mengandungi ruang carian gabungan yang besar, kebanyakan penyelidik 

menggunakan teknik meta-heuristik untuk mencapai penyelesaian NR yang optimum. 

Walau bagaimanapun, teknik meta-heuristik tidak selalu menjamin penyelesaian yang 

optimum dan lebih jauh lagi memerlukan masa pemprosesan yang besar. Ini berlaku 

terutamanya disebabkan oleh (1) permulaan penyelesaian secara rawak dan (2) 

pengesahan penyelesaian dalam setiap lelaran untuk memenuhi batasan operasi sepanjang 

proses pencarian. Tambahan pula, penyelesaian masalah NR secara serentak dengan 

penempatan DG akan meningkatkan beban pengiraan disebabkan peningkatan ruang 

carian. Dengan tujuan untuk mengurangkan masa pengiraan dan meningkatkan 

konsistensi dalam mendapatkan penyelesaian yang optimum serta meminimumkan 

kehilangan kuasa dan penyimpangan voltan dari EDN, kajian ini mencadangkan kaedah 

baru berdasarkan pengoptimuman dua peringkat. Kaedah ini memperkenalkan teknik 

untuk mempermudah rangkaian menjadi grafik rangkaian yang dipermudahkan. 

Kemudian, rangkaian yang dipermudahkan digunakan untuk penghasilan pemula dan 

populasi terpandu serta pengekodan populasi yang tepat. Kaedah yang dicadangkan 

digunakan untuk menyelesaikan masalah NR dan integrasi DG secara berasingan dan 

serentak. Di samping itu, kajian ini juga mengambil kira sumber tenaga boleh 

diperbaharui yang tidak dapat dihantar dan variasi beban untuk operasi harian. Teknik 

meta-heuristik yang dipilih dalam penyelidikan ini melibatkan Firefly Algorithm dan 
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Biogeography-Based Optimization. Untuk mengesahkan kecekapan kaedah yang 

dicadangkan, simulasi dilakukan pada sistem ujian IEEE 33-bus, 69-bus, dan 118-bus. 

Selanjutnya, perbandingan dilakukan antara kaedah yang dicadangkan bersama dengan 

pengaturcaraan evolusi konvensional, pengoptimuman kumpulan zarah, FA dan BBO 

serta karya sebelumnya. Hasil yang diperoleh dari masalah NR serta penempatan dan 

ukuran DG menunjukkan kelebihan kaedah yang dicadangkan dalam mendapatkan 

penyelesaian yang cepat dan berkualiti tinggi yang meminimumkan kehilangan kuasa dan 

penyimpangan voltan dalam kajian kes yang berbeza. 

Kata kunci: Penyusunan semula rangkaian, Janakuasa Teragih, Sumber tenaga boleh 

diperbaharui, teknik Meta-heuristik, Variasi beban. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

With the deregulation of the electricity sector, power utilities are required to ensure 

that customers receive reliable power supply. At the same time, power utilities also need 

to operate at optimum cost. One of the problems that would increase the operation cost is 

power loss. It was estimated that power loss in transmission and distribution systems is 

the largest individual consumer for any power system operator (Kalambe & Agnihotri, 

2014). Also, up to 6% of the electricity is wasted as power loss in the electrical network, 

mostly occur at the distribution level (Jackson et al., 2015). Thus, it is very crucial to find 

an effective method to minimize such losses. 

 One of the well-known approaches to achieve this goal in Electrical Distribution 

Networks (EDNs) is through Network Reconfiguration (NR). NR is the process of 

changing some of the EDN’s switches from open to close and vice versa. The EDN 

operators mostly utilize the NR technique to optimize the EDN  performance in 

minimizing power loss (R. S. Rao, K. Ravindra, K. Satish, & S. Narasimham, 2013), 

improving voltage profile (Badran, Mokhlis, Saad, & Jallad, 2017), achieving load 

balancing (Eldurssi & O'Connell, 2015) and executing system restoration (Dimitrijevic 

& Rajakovic, 2015). Obtaining the optimal NR in short computational time is attracting 

more attention recently due to the advancement in the controlling technology of the EDN 

by the system operators that allows faster switches' changes for better adaption with the 

load changes. However, finding the NR solution is still challenging task due to the large 

combinational search space and the onerous duty of maintaining the radial structure 

during the EDN’s operation. 

Another method to reduce the power loss in the distribution networks is to connect the 

network to one or more Distributed Generation (DG). DG is defined as a small generation 
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unit fixed at a chosen location in the network. The DGs are categorized to (1) Renewable 

Energy Resource (RER) like biomass, Wind Turbine (WT), and Photovoltaic (PV) and 

(2) regular DGs such as fuel cells, microturbine, and gas turbine. With proper integration 

of DGs in the EDN, a significant reduction of power loss can be achieved that directly 

translates to reduce network operating costs (Grisales-Noreña, Gonzalez Montoya, & 

Ramos-Paja, 2018). 

Besides minimizing power loss, DG based on RER will also reduce environmental 

pollution causes by central power plants that much dependent on coal as its main source 

of power generation’s fuel. It is predicted that RER could reduce 60% of the carbon 

emission from the central power plants by the year 2050 (Javanmardi, Nasri, & 

Sadeghkhani, 2012). Therefore, RERs generation capacity has witnessed a continuous 

trend of annual growth across the world. Furthermore, by using the RER, less power from 

central power plants is required to be generated and in long run reducing operation cost 

of electricity generation. 

1.2 Problem Statement  

In order to maximize revenue, the electrical power distribution utilities’ operators 

employ many tools to enhance the system performance, i.e. reduce the power loss and the 

voltage deviation. Many strategies were used for this purpose, however, only a few of 

them proved their high capabilities and flexibilities like NR and DG integration (Badran, 

Mekhilef, Mokhlis, & Dahalan, 2017a).  

The methods to solve the NR problem can be categorized into heuristic and meta-

heuristic methods. Although heuristic methods might require a shorter time to obtain a 

solution, they commonly trap at local optima and suffer from a lack of accuracy. This 

occurs due to the incapability of heuristic method to search in multiple directions of the 

search space. Due to this shortcomings, meta-heuristic methods have been explored 
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extensively to solve NR (B. Sultana, Mustafa, Sultana, & Bhatti, 2016). In general, all 

meta-heuristic methods rely on creating a random initial population and keep updating 

this population until it converges to the same solution or the maximum set iteration 

number. For the NR problem, the number of solutions in the search space is exponentially 

related to the number of switches in the system. However, the majority of these solutions 

do not maintain the radiality structure of the system. Hence, these solutions are not 

feasible and need to be modified which will consequently slow down the search process. 

Therefore, conventional meta-heuristic methods require large computational time. 

Moreover, meta-heuristic methods that start the search process without a proper initial 

population have less possibility of finding the optimal solution and the search process 

takes a longer time (Elaziz & Mirjalili, 2019; Friedrich & Wagner, 2015). Therefore, most 

of the previous methods failed in obtaining the optimal NR solution with good 

consistency. 

Researches in minimizing the power loss and voltage deviation were also conducted 

by finding the solution of DG integration. Most of the prior works depended on the 

analytical methods or meta-heuristic methods to detect the proper placement and sizing 

of the DG (Abdmouleh, Gastli, Ben-Brahim, Haouari, & Al-Emadi, 2017). However, due 

to the large search space, finding the optimal solution is not guaranteed by conventional 

methods. Furthermore, it has been proven that the improper integration of the DG results 

in negative impacts on the distribution networks (Anaya & Pollitt, 2015). 

Although the results of using NR or DG integration, separately, are encouraging, the 

works that considered solving NR with the existence of the DG showed better results 

(Imran, Kowsalya, & Kothari, 2014; T. T. Nguyen, Truong, & Phung, 2016; Rawat & 

Vadhera, 2019). Nevertheless, most of the existing researches considered solving these 

problems sequentially. Only a few works considered finding the optimal NR 
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simultaneously with DG integration due to the complexity of solving this problem. 

Furthermore, solving the NR problem simultaneously with the DG integration leads to 

further expanding the search space especially for the large-scale distribution networks. 

Hence, it is vital to propose a new method for efficient exploration of the search space, 

and consequently finding a higher-quality solution. 

Finally, the integration of non-dispatchable renewable energy causes instability in the 

generated energy as compared to the conventional central generation source. 

Consequently, this may lead to serious potential risks unless it is managed appropriately. 

In addition, the hourly loads' variations must be considered to maintain service quality. 

Hence, the impact of finding the hourly NR in presence of non-dispatchable renewable 

energy generation and loads variation must be considered. Moreover, considering real 

data of renewable energy output levels and loads variations has been rarely considered in 

the prior studies. 

1.3 Research objectives 

The primary aim of this research is to develop a fast and effective two-stage method 

to analyze and solve the network reconfiguration problem with DG placement and sizing 

and load variations.  The objectives that need to be achieved are as following: 

1. To design fast and optimal network reconfiguration based on the simplified 

network approach to minimize power loss and voltage deviation. 

2. To design optimal DG placement and sizing method for the distribution 

networks using the simplified network approach. 

3. To formulate the network reconfiguration and DG placement and sizing 

simultaneously using the proposed method.  

4. To incorporate variable renewable DG output and load variation in the 

proposed method. 
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1.4 Scope of research 

This research proposes a new, fast, and optimal two-stage method with guided 

initialization for finding the simultaneous solution of the NR and DG in the distribution 

networks. The main aim of this study is to obtain the optimal configuration and DG 

location and sizing that minimize the power loss and voltage deviation while maintaining 

the system constraint. 

The validity of the proposed method is verified through multiple case studies on well-

known, different sizes IEEE 33-bus, 69-bus, and 118-bus distribution test networks. The 

proposed two-stage method is implemented using the Firefly Algorithm (FA) and 

Biogeography-Based Optimization (BBO). To the best of the author’s knowledge, BBO 

has not been used to solve the network reconfiguration and DG integration previously. 

The proposed method results are compared to the conventional Evolutionary 

Programming (EP), Particle Swarm Optimization (PSO), FA and BBO as well as the 

previous related works. All the tests were carried out by MATLAB using a PC with an 

Intel Core 2 Duo, 3.06 GHz processor. 

1.5 Thesis Outline 

This report includes five chapters. In the first chapter, a brief introduction is presented 

followed by illustrating the problem statement and the research objectives.  Finally, the 

scope of research and the report outline are stated.  

Chapter 2 starts with a general introduction. Then, reviews on network reconfiguration 

based on heuristic and meta-heuristic methods, graph theory-based methods and two-

stage methods. Next, the classical optimization techniques and the meta-heuristic 

methods for DG placement and sizing are presented. Reviews on network reconfiguration 

with the presence of DG are also explored. Finally, a brief summary is presented to 

conclude the limitations of the previous works. 
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In chapter 3, the problem formulation, the simplified network approach, and the 

implementation of the meta-heuristic methods to solve the network reconfiguration and 

DG placement and sizing are detailed. 

Chapter 4 presents the proposed method’s application for solving the network 

reconfiguration and DG integration separately. The simulation results are analyzed and 

discussed. The analysis is focused on the impact of the proposed method on the system 

performance with regards to the power loss and voltage profile. Furthermore, 

comparisons between the proposed method and the conventional meta-heuristic methods 

and previous works are carried out in this chapter.  

In Chapter 5, the solution and analysis of the proposed method in solving the network 

reconfiguration and DG integration sequentially and then simultaneously are detailed. 

Thereafter, the incorporation of variable DG output and load variation in the proposed 

method is addressed. 

The conclusions of this research study and the recommendations for the future works 

are presented in chapter 6. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

The electric energy industry is continuously developing around the world to meet the 

growth in the load. The power systems evolved from a single low power generator, 

providing energy for a limited number of customers, to a highly complex interconnected 

multi-generators network that needs intelligent methods to guarantee its proper operation. 

The electrical power systems consist of three levels, the generation, the transmission, 

and the distribution. However, It was estimated that power loss in transmission and 

distribution systems is the largest individual consumers for any power systems (Kalambe 

& Agnihotri, 2014). In addition, the last decade witnessed a rapid increment in the 

complexity of the Electrical Distribution Networks (EDN) due to the rise in the number 

of the connected Distributed Generation (DG) in the EDN. The inappropriate installation 

of the DG, power loss in the EDN increases (Abdmouleh et al., 2017). On the other hand, 

by proper integration of the DG, power loss is remarkably reduced (KOLA, 2018). 

Similarly, Network Reconfiguration (NR) was reported as a highly efficient method to 

minimize the total active power loss (Usman, Coppo, Bignucolo, & Turri, 2018). 

This chapter reviews the previous works that studied the NR in the EDN. The reviewed 

methods involve heuristic and meta-heuristic methods as well as graph theory-based 

methods and two-stage methods. Then, the DGs types are explained as well as the 

methods to integrate the DGs in the EDN. Besides, methods for solving simultaneously 

the NR while integrating the DGs have been described. Thereafter, the previous works 

that considered the integration of Renewable Energy Resources (RERs) in the EDN are 

discussed. At the end of this chapter, some justified conclusions have been identified as 

a ground for the new method. 
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2.2 Network Reconfiguration 

During the last few years, the importance of EDN in daily life becomes significant. 

Nowadays most of the electricity companies are facing serious challenges to provide the 

electrical power supply through EDNs to the customers with the lowest price and highest 

reliability. The EDN consists of many buses connected through lines. Each bus has an 

active and reactive load, and each line has an impedance and switch. The status of the 

switch determines whether the power flow is allowed to pass through this line or not. In 

the modern EDNs, all the switches can be controlled by a central control unit; thus, the 

best configuration can be determined based on the system data. The previous process 

called the NR. NR is considered one of the most effective approaches and it is frequently 

used due to its high efficiency in reducing power loss and enhancing the bus voltage.  

Figure 2.1 presents an explanatory of the NR process of the 14-bus EDN. In Figure 

2.1 (a), the EDN is showed in its base case, where switches (s15, s16, s17) are open while 

the other switches are closed. In figure 2.1 (b), an NR process is preformed and 

consequently, a new open switches configuration is applied which consists of switches 

(s4, s8, s13).  

NR studies consider single or multi-objectives such as reduce power loss (R. Rao, K. 

Ravindra, K. Satish, & S. Narasimham, 2013), enhance voltage profile (Badran, Mokhlis, 

Mekhilef, Dahalan, & Jallad, 2017), optimize load balancing (Eldurssi & O'Connell, 

2015), improve the system reliability (Amanulla, Chakrabarti, & Singh, 2012) and 

achieve system restoration if a fault occurs (Dimitrijevic & Rajakovic, 2015). However, 

power loss minimization and voltage profile improvement were mainly considered in the 

NR (Das, Das, & Patra, 2017).  The methods to solve the NR problem can be categorized 

mainly into artificial neural network-based methods, heuristic methods and meta-

heuristic algorithms (B. Sultana et al., 2016). 
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Figure 2.1 An example of network reconfiguration 

2.2.1 Artificial neural network methods 

Artificial Neural Networks (ANN) is a computing mechanism inspired from the 

human brain and applied to solve several engineering problems. It basically depends on 

learning through training samples and then it can find a solution for a given input. ANN 

have been reported in few studies to solve the NR in the EDN. However, using ANN 

required long training time that increases rapidly for large EDN. Hence, ANN-based 

methods are valid only for small and medium distribution systems.  

Early works on ANN was reported by (Kim, Ko, & Jung, 1993). Two groups of ANN 

were utilized to forecast the load and solve the NR. The first ANN group forecasted the 
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load level at each zone of the EDN, while the second ANN group found the NR based on 

the forecasted load levels. Real power loss minimization was the objective function of 

the study. The authors of (Kashem, Jasmon, Mohamed, Moghavvemi, & Systems, 1998) 

developed an ANN model based on the multi-layers’ perceptron while the back-

propagation approach was used for ANN training. The training sets were created by 

modifying the constant P-Q load models. The method was applied on a small IEEE test 

system to find the NR. 

 The research of (Kashem, Ganapathy, Jasmon, & systems, 2001) employed the 

conjugate gradient descent back-propagation technique in the ANN mode. The aim of the 

proposed method is to find the NR that maximize the voltage stability in the EDN. In 

other work, to utilize the ANN for medium-sized EDN, the ANN training sets number 

was reduced in (Salazar, Gallego, & Romero, 2006) through clustering technique. The 

load clustering reduces the ANN input data and enhanced the results of the NR. 

2.2.2 Heuristic methods 

Heuristic methods rely normally on approximation to speed up the search process for 

solution. Hence, finding an optimal solution is not guaranteed. Early research on NR 

widely used heuristic methods to obtain solution. 

 The sequential switch opening method was used in (Shirmohammadi & Hong, 1989) 

to reduce the power loss by solving the NR problem during the planning and operation of 

the EDN. Branch and bound method was presented by (Baran & Wu, 1989) with the aim 

of power loss reduction and load balancing. In their work, mesh network is created by 

closing all the normally open switches. Then, switches are opened one by one, while 

maintaining the radiality, until the optimal open switches combination that minimize the 

objective function is found. 
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 Goswami and Basu (1992) presented an approximate power flow approach based 

heuristic method to obtain the NR that reduces the power loss in the EDN. Unlike (Baran 

& Wu, 1989), one loop is created in one time. Next, Kirchhoff’s voltage and current laws 

equations were solved to find the optimum flow pattern for each individual loop in the 

EDN. By repeating the process, the open switches configuration was obtained. The 

algorithm suggested by (McDermott, Drezga, & Broadwater, 1999) starts with opening 

all the switches in the EDN. Next, the switch that causes least increase in the power loss 

while serving new load is closed. The proposed algorithm consumes longer 

computational time since load flow is run whenever a new switch is closed. 

(Gomes et al., 2006) proposed a method that starts with closing all switches in the 

EDN, and consequently many loops are generated. Thereafter, a loop is chosen to be 

broken based on heuristic technique and optimum power flow calculations. The process 

is repeated until all loops are broken. The results indicate maintaining a radial solution of 

the NR. Recently, the authors of (Kovački, Vidović, & Sarić, 2018) solved the problem 

of the dynamic reconfiguration depending on Lagrange relaxation approach with the 

objective of minimizing the power loss in the EDN. However, the implementation of the 

method is complicated. 

2.2.3 Meta-heuristic methods 

To overcome the shortcomings of heuristic methods, meta-heuristic methods have 

been explored extensively to solve NR. In general, all meta-heuristic techniques start with 

generating an initial random population, then a verification is required to ensure that the 

population fulfils the optimization problem constraints. If any of the population violates 

one of the constraints, this population is replaced by another feasible population. Next, 

the population is evaluated and ranked based on the problem’s objective function. 

Thereafter, the population is modified and evaluated again until it converges. For 
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complicated optimization problems, generating feasible population consumes long 

computational time. Several meta-heuristic techniques were employed to obtain the NR 

solution in the EDN. 

2.2.3.1 Genetic algorithm 

Genetic algorithm is an optimization technique inspired by the natural evolution. It 

normally involves mutation, crossover and selection. Genetic algorithm has been used to 

obtain the solution of the NR problem in the EDN. Power loss minimization was achieved 

by finding the NR in (Zhu, 2002). The refined genetic algorithm was used in the study 

while radiation load flow was utilized for power flow calculations. Genetic algorithm was 

also used in (de Macêdo Braz & de Souza, 2010) where it was integrated with proposed 

sequential population codification. The study aimed to reduce the power loss and number 

of switching operation. The authors in (Wang & Gao, 2013) developed a non-revisiting 

genetic algorithm to find NR that minimizes the power loss. An archive was employed to 

store the solutions that have been already visited for faster search process.  

2.2.3.2 Evolutionary programming 

Evolutionary Programming (EP) is a stochastic optimization technique that values the 

connections between the parent and children population, rather than the genetic operators 

(Yao, Liu, & Lin, 1999). EP proved its capability to solve many optimization problems 

efficiently and its implementation is simple comparing to other meta-heuristic methods. 

(Yao et al., 1999). The authors in (Song, Wang, Johns, Wang, & Distribution, 1997) 

integrated EP with fuzzy controller to solve the NR problem for power loss minimization. 

With the aim of maximizing the EDN loadability, a fuzzy-based evolutionary 

programming algorithm was developed in (Venkatesh, Ranjan, & Gooi, 2004) to obtain 

the NR solution. In (Aman, Jasmon, Naidu, Bakar, & Mokhlis, 2013), the discrete EP was 

utilized to determine the optimal NR which reduces the power loss in the EDN.  
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2.2.3.3 Particle swarm optimization 

Particle swarm optimization (PSO) is a stochastic optimization method that was 

modeled to act the social behavior of the birds in searching for food (Eberhart & Kennedy, 

1995). PSO is considered one of the best search algorithms that do not have any selection 

method. Each particle from the swarm explores the search space to discover the best food 

source. PSO was inspired from the natural behavior of the birds’ swarm while they are 

looking for food. The special characteristic of birds’ swarm is that it does not have a 

leader in their group. They communicate with each other to decide where they should 

move. Each bird inspects the search space to find the food. Then, the whole swarm 

members change their direction to the one individual bird that has the closest position to 

the food (Shi, 2001). PSO has been implemented to solve many discrete optimization 

problems (Jordehi & Jasni, 2015).  

PSO was employed to solve the NR in many works such as (Amanulla et al., 2012; 

Huang & Dinavahi, 2018a). Binary PSO (BPSO) was used in (Amanulla et al., 2012) to 

minimize the power loss and enhance the reliability of the EDN by finding the NR. The 

reliability at the load points were evaluated by employing probabilistic reliability models 

of the EDN. The authors of (Huang & Dinavahi, 2018b) suggested the decimal encoding 

of the population, whereas, the decoding was performed based on probability-based loop 

destruction approach. In addition, the direct load flow calculation approach was utilized 

to evaluate the population. The proposed encoding and the direct load flow approach were 

implemented using PSO and contributed in reducing the computational time for finding 

the NR solution that minimize the power loss.  

NR was utilized to perform network restoration in (Y. Liu & Gu, 2007). The proposed 

method depends on topological features of scale-free networks as well as the discrete PSO 

to find the NR. The effect of the NR solution is evaluated based on the restored nodes 
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importance degree. (Fathy, El-Arini, & El-Baksawy, 2018) used the binary particle 

swarm optimization gravity search method to explore the EDN’s configuration that 

minimize the power loss of the network. The results were validated by the reliability 

indices and compared with the original network’s configuration.  

2.2.3.4 Cuckoo search algorithm 

Cuckoo search algorithm is an evolutionary algorithm proposed by (Yang & Deb, 

2009) to solve optimization problems. It was inspired by the commit brood parasitic 

conduct of some cuckoo kinds combined with the Lévy flight conduct of some birds. 

Solving the NR problem in the EDN is one of the applications of this algorithm. The 

authors of (Herazo, Quintero, Candelo, Soto, & Guerrero, 2015) implemented the discrete 

cuckoo search algorithm to obtain the optimal NR of the EDN. The results show that the 

performance of the discrete cuckoo search is superior to the binary ant colony algorithm. 

Cuckoo search algorithm was utilized in (T. T. Nguyen & Truong, 2015) to find the 

configuration that minimizes the power loss and improve the voltage profile. The radiality 

constraint of the EDN was maintained by testing all the population and only accepts the 

population that guarantee the radial operation of the EDN. In (T. T. Nguyen & Nguyen, 

2019), the cuckoo search algorithm was modified to increase its capability to solve the 

NR problem in the EDN. In the suggested improved cuckoo search, a local search 

mechanism was included to utilize the best solution’s neighbors of each iteration. Hence, 

increase the opportunity of obtaining a global better solution. 

2.2.3.5 Firefly algorithm 

Firefly Algorithm (FA) is a nature inspired meta-heuristic technique that was recently 

introduced in (Yang, 2010) and it has great capabilities addressing the discrete and 

combinational optimization problems (Sayadi, Hafezalkotob, & Naini, 2013; Yang & He, 

2013). Also, FA proved its efficiency to solve different optimization problems (Kar, 
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2016). FA is classified as a swarm-based optimization. Hence, it owns most of swarm-

based optimizations features. However, FA has two important superiority over the other 

optimizations. First, its ability to divide the population into subgroups and then each sub 

group will deal with a local optimum. Thereafter, the best global solution will be chosen. 

Second, this subdivision will allow the population to search in different parts of the search 

space simultaneously. Thus, the computational time will be reduced comparing to other 

optimizations (Yang, 2010).  

The quantum-inspired binary FA was utilized in (Shareef et al., 2014) to solve the NR 

problem. The objectives of the study are to improve the power quality and reliability of 

the EDN. A new load flow approach for unbalanced distribution systems was suggested 

by (Kaur & Ghosh, 2016). NR was solved by utilizing the firefly algorithm in a fuzzy 

domain for handling the multi-objective function that aims to reduce power loss and 

voltage deviation as well as load equalizing in the feeders. Recently, a combination of the 

Selective Firefly Algorithm (SFA) along with a heuristic technique, that depends on a 

power flow analysis creation, was proposed in (Gerez, Silva, Belati, Sguarezi Filho, & 

Costa, 2019) to solve the NR problem for power loss minimization. 

2.2.3.6 Other meta-heuristic methods 

The previous meta-heuristic methods were frequently considered to obtain the optimal 

solution for the NR. However, other methods have been implemented to find the solution 

of the NR. Ant colony search algorithm was used in (Su, Chang, & Chiou, 2005) for 

obtaining an optimal solution of the NR. Total real power loss minimization is the main 

aim of the study while maintaining the voltage and current constraints. (Abdelaziz, 

Mohamed, Mekhamer, & Badr, 2010) used the modified Tabu search algorithm to find 

the NR that minimize the active power losses in the EDN. In addition, the radial structure 

of the system was maintained by the Kirchhoff method. 
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A hybrid optimization method was proposed in (Asrari, Lotfifard, & Payam, 2015) to 

integrate the fuzzy pareto concept with the customized shuffled frog leaping technique 

for finding the solution of the NR problem. This hybrid method aimed to reduce the 

computational time by considering only the feasible solutions in the search space. The 

objective functions of the study include power loss minimization and power quality 

improvement. The authors of (Masteri & Venkatesh, 2016) presented a method based on 

classic nonlinear optimization to enhance the probability of finding a high-quality 

solution for the NR problem. The method relies on a complementarity technique to covert 

the discontinuous solution to continuous. Hence, use the nonlinear optimization method. 

The solution found by the proposed method reduced the power loss while maintaining the 

voltage profile in the allowable ranges.  

The runner-root algorithm was employed in (T. T. Nguyen, Nguyen, Truong, Nguyen, 

& Phung, 2017) to find the solution of the NR problem. The study aims to reduce power 

loss, load balancing among feeders and lines as well as to reduce switching number and 

improve the voltage profile. The runner-root algorithm used its features, which are 

random leap, reinitialization to escape the local optima solution and the capability of 

searching with small steps around the current best solution, to find the NR solution. A 

hybrid fuzzy-flower pollination algorithm was utilized in (Mariaraja, Manigandan, & 

Thiruvenkadam, 2018) to obtain the NR solution in the EDN. The method was tested 

under normal and abnormal operating scenarios.  

2.2.4 Graph theory-based methods 

Since NR problem is considered as a remarkably complicated combinational problem, 

most of the conventional meta-heuristic methods have suffered from slow convergence 

and suboptimal solutions, especially for the large systems. In addition, lots of generated 

solutions do not fulfill the system constraints, mainly the radiality constraint. To 
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overcome these demerits, some studies suggested the combination of the graph theory 

principles with NR problem. Those methods can be classified into two main sets: (a) 

methods based on spanning tree rules (Ahmadi & Martí, 2015; Dimitrijevic & Rajakovic, 

2015; Duan, Ling, Wu, & Zhong, 2015; Muthukumar & Jayalalitha, 2017) and (b) 

methods based on employing the FLs (Andervazh, Olamaei, & Haghifam, 2013; Gupta, 

Swarnkar, Niazi, & Bansal, 2010; Mendoza et al., 2006; Souza, Romero, & Franco, 

2015). 

2.2.4.1 The spanning tree-based methods 

A spanning tree is a graph that includes all connected nodes and has no loops. The 

edges have weights which determine the cost of moving from the source node to the end 

nodes. Many studies have modeled the EDN as a spanning tree and applied graph theory 

to find the minimum cost spanning tree. All radial EDN are spanning trees, where the 

sum of the edges’ weights is the objective function value.  

In (Dimitrijevic & Rajakovic, 2015), a heuristic graph-based method was presented to 

obtain the optimum configuration for the service restoration problem in EDN. The 

method was built based on the rules of the modified Pirm’s algorithm to find the minimum 

spanning tree. The main aim of the NR is to minimize the number of de-energized nodes 

in the EDN while alleviating the operation cost. The authors of (Duan et al., 2015) 

implemented an enhanced genetic algorithm to minimize the power losses and improve 

the reliability through the optimal NR. The genetic algorithm operators, mutation and 

crossover, were modified to obtain only the feasible radial solutions. In the crossover, one 

or many switches are exchanged between two spanning trees in the EDN based on 

Kruskal theory. The results proved the efficiency of the method, but the computation time 

stills high. 
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A hybrid algorithm that consists of heuristic technique as well as harmony search 

algorithm and particle artificial bee colony algorithm was introduced in (Muthukumar & 

Jayalalitha, 2017). The proposed method employed a discrete graph representation of the 

EDN to identify the NR solution that minimize the power loss. The improved fast 

nondominated sorting genetic algorithm was used successfully by (Ji, Shi, & O’Connell, 

2018) to obtain the NR that improve the voltage profile and reduce the power loss. 

Moreover, the authors utilized the essential spanning trees approach to reduce the 

computational time. 

2.2.4.2 The fundamental loops-based methods 

The EDNs consists of normally closed switches and normally open ones. By closing 

all the switches in the EDN, many loops will be generated. The Fundamental Loops (FLs) 

are chosen from these loops and then one switch from each FL is selected to form the 

population’s combination. This population codification technique reduces the size of the 

search space because it will eliminate many unwanted populations’ combinations. 

The research of (Mendoza et al., 2006) integrated genetic algorithm with FLs concept 

to generate feasible populations and develop new genetic operators (i.e. cross over and 

mutation). The FLs were used to reduce the search space by eliminating most of the non-

radial restricted population. FLs were identified as the set of vectors that assemble a 

closed loop in a circuit that does not involve any other closed loop. Then, one switch is 

selected from each FL to be off to form the population. The method succeeded in reducing 

the time and mitigating the power loss, but it did not ensure the system radiality because 

the interior nodes might be isolated for some cases. In (Souza et al., 2015), the same FL 

approach of (Mendoza et al., 2006) was employed to solve the NR but with artificial 

immune network COPT-AINET and OPT-AINET algorithms instead of genetic 

algorithm. The study targeted to reduce the real power loss in the EDN. 
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The authors of (Gupta et al., 2010) developed the method of (Mendoza et al., 2006) to 

overcome the non-radiality cases. This was accomplished by introducing new radiality 

rules that prevent isolation of the internal nodes. Furthermore, a multi-objectives function 

combining genetic algorithm and fuzzy logic methods was formulated. Minimization of 

total power loss, voltage deviation, number of switching and branch currents in the EDN 

were the objectives of the study. In (Andervazh et al., 2013), the rules of (Gupta et al., 

2010) were integrated with discrete PSO while considering a pareto multi-objectives 

function. Furthermore, an external archive was used to store non-dominated solutions so 

that the searching process is accelerated. 

The prior review shows the importance of employing the graph theory to accelerate 

obtaining the solution for the NR problem in the EDN systems. The main demerit of those 

methods is that most of them start the search process from a random initial solution which 

leads to slow converge. In addition, most of the previous works studied the test systems 

under static load case only, whereas it is vital to observe the system behavior under 

different loads variation’s scenarios. 

2.2.5 Two-stage methods 

Two-stage methods were also reported in many previous research to solve the NR 

problem in the EDN (Ahmadi & Martí, 2015; Ding & Loparo, 2014; Kashem, Ganapathy, 

& Jasmon, 1999; Raju & Bijwe, 2008; Tyagi, Verma, & Bijwe, 2018). However, 

obtaining the optimal solution is not guaranteed in these methods. 

A two-stage method to solve the NR problem was suggested by (Kashem et al., 1999). 

In the first stage, the loop that maximize the load balance in the EDN is found. Then, the 

second stage choose a switch from that loop to be open so that an improvement in load 

balancing is achieved. With the aim of real power loss minimization, the authors of (Raju 

& Bijwe, 2008) introduced a two-stage method for NR in the EDN. Power loss sensitivity 
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of the switches’ impedances was used in the first stage. Whereas, the seconds stage 

utilized the branch exchange approach to improve the first stage solution. 

A hierarchical decentralized method was proposed in (Ding & Loparo, 2014) to reduce 

the power losses in the EDN by finding the NR solution. The EDN is broken down into 

smaller subsystems, where an agent is allocated to each subsystem. Then, a two-stage 

method is defined to regulate the reconfiguration of these subsystems. The first stage aims 

to find the reconfiguration of each subsystem, whereas the second stage coordinates the 

results of each subsystem to reach a satisfactory configuration. In (Tyagi et al., 2018), the 

first stage intends to find the configuration that minimizes the reactive power loss by a 

heuristic method. Then, the second stage uses the improved harmony search algorithm to 

enhance the system loadability.  

In (Ahmadi & Martí, 2015), a two stages method was proposed to get topological 

reconfiguration of the EDN. First, a heurist technique was utilized to obtain an initial 

solution for the NR problem. Then, in the second stage, the Mixed-Integer Programming 

approach was used to find the final NR. In addition, the NR was formulated as a minimum 

spanning tree problem to accelerate finding the NR solution. The suboptimal solutions 

were obtained in a short time using this method. Hence, it could be applied only when the 

optimal solution is not a must. 

2.3 Optimal DG placement and sizing 

DG is defined as a decentralized energy resource that is connected directly to the EDN 

to support the network and provide clean energy to consumers (Alanne & Saari, 2006; 

Ehsan & Yang, 2018; Georgilakis & Hatziargyriou, 2013). The DGs are categorized into 

renewable DG and non-renewable DGs. Micro turbine, combustion engine and fuel cell 

are examples of the non-renewable DGs. While, Photovoltaic (PV), Wind Turbine (WT) 
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and biomass are instances of renewable DGs, which also known as RER (Prakash & 

Khatod, 2016; Zubo et al., 2017).  

During the last decade, DG integration in the EDN has been frequently utilized to fulfil 

one or more from the following objectives: 

▪ Reduce the active power loss (Grisales-Noreña et al., 2018) and the reactive 

power loss (Hung, Mithulananthan, & Lee, 2014). 

▪ Enhance the voltage profile (Tolabi, Ali, & Rizwan, 2014). 

▪ Improve the EDN reliability (Awad, El-Fouly, & Salama, 2014).  

▪ Reduce the operation cost (Evangelopoulos & Georgilakis, 2013). 

▪ Improve the power quality (Liang, 2016). 

▪ Minimize the pollutant gas emission (Hamida, Salah, Msahli, & Mimouni, 

2018).  

However, it has been reported that the inappropriate DGs integration in the EDN 

causes decreases in the system performance such as increasing the power loss in the EDN 

(Abdmouleh et al., 2017). Therefore, classical optimization techniques and meta-heuristic 

techniques have been proposed for proper integration of the DGs. 

2.3.1 Classical optimization methods 

The classical optimization techniques include mainly the analytical techniques, mixed-

integer linear programming, optimal power flow techniques and ANN. The analytical 

techniques rely on repressing the EDN as a mathematical model and then compute the 

optimal DG placement and sizing by numerical solutions. Although the analytical 

techniques provide a high-quality solution for the DG integration problem, the analytical 

techniques need long computational time for the large EDN. On the other hand, mixed-
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integer linear optimization is a mathematical optimization that aims to maximize or 

minimize the objective, beside some of the problem variables must be integer.  

Index-based techniques are frequently used to solve the DG integration problem. A 

comparison between the loss sensitivity index and index vectors as well as the voltage 

sensitivity index techniques were presented in (Murthy & Kumar, 2013). Furthermore, 

the study proposed many modified hybrid techniques for the DG placement and sizing in 

the EDN. In (Hung et al., 2014), the penetration level of the PVs was obtained by 

proposing several kinds of time-varying voltage dependent load models. The PV size was 

determined by an analytical approach. The proposed method aimed to reduce the active 

and reactive power loss as well as the voltage deviation in the EDN through the PV 

placements. 

The iterative analytical method (Forooghi Nematollahi, Dadkhah, Asgari 

Gashteroodkhani, & Vahidi, 2016) and the repeated load flow method (Singh, Sood, & 

Barnwal, 2016) were employed to find the optimal placement and sizing of RER in the 

EDN. RERs with different power factors were tested with the aim of reducing the power 

loss in the EDN. The problem of DG placement and sizing as well as choosing the DG 

type was modeled as a Mixed integer linear programming in  (Rueda-Medina, Franco, 

Rider, Padilha-Feltrin, & Romero, 2013). The aim of the study was to minimize the 

investment and operation cost of the DG integration in the EDN. 

The authors of (Ochoa & Harrison, 2010) utilized the optimal power flow technique 

for the RER integration in the EDN. Various scenarios of the demand level and RER 

penetration were considered in the study with the objective of energy loss minimization. 

ANN has been utilized in solving the DG installation in the EDN. A multi-layer 

perceptron ANN with sigmoid activation function was proposed in (Zambri, Mohamed, 
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& Wanik, 2015) to determine the DG active and reactive power outputs for power loss 

minimization. 

2.3.2  Meta-heuristic methods 

Meta-heuristic techniques are widely used for the DG placement and sizing due to 

their efficiency, simple implementation and flexibility. Thus, these techniques were 

implemented for multi-objectives cases beside the case of solving the DG problem along 

with other problem such as NR or demand side management.  

Genetic algorithm is commonly utilized to obtain the solutions of the DG sitting and 

sizing problem.  The authors of (Soroudi, Ehsan, & Zareipour, 2011) applied the genetic 

algorithm to enhance the EDN reliability and reduce the expansion costs by proper DG 

integration. Similarly, the adaptive genetic algorithm was adapted in (Y. MA, YANG, 

GUO, & WU, 2012) to enhance the system reliability and minimize the cost through the 

RER installation. PV, wind turbine and biogas were considered in the study. 

The optimal integration of DG was identified by utilizing the FA in (Sulaiman, 

Mustafa, Azmi, Aliman, & Rahim, 2012). Minimizing the active and reactive power loss 

as well as reduce the line loading were the objectives of the study. In (M. Othman, El-

Khattam, Hegazy, & Abdelaziz, 2016), the supervised FA was adapted to solve the DG 

integration problem in the balanced and unbalanced EDN. However, finding the optimal 

solution by these two methods is not guaranteed for large scale EDN.  

Power loss minimization was accomplished in (Kansal, Kumar, & Tyagi, 2013) by the 

optimal placement and sizing of DGs using PSO. Moreover, the optimal power factor for 

the DG was obtained. The method is applicable to different types of DGs including RER 

units such as wind farms and photovoltaic. PSO was also utilized in (Meera & 

Hemamalini, 2019) for multiple RER planning in a meshed EDN. The RERs placement 

Univ
ers

iti 
Mala

ya



24 

and sizing as well as the power factor were found to enhance the reliability indices, 

minimize the power loss and improve the voltage profile. With the aim of minimizing the 

power loss and voltage deviation, (Moravej & Akhlaghi, 2013) utilized the cuckoo search 

algorithm to obtain the DG location and size in the EDN. 

Biogeography-based Optimization (BBO) is a meta-heuristic technique that was 

inspired by the biogeography behavior of the species in nature. It was proposed by Simon 

in 2008 (Simon, 2008), and it has been successfully implemented to solve many 

optimization problems in the power system (H. Ma, Simon, Siarry, Yang, & Fei, 2017), 

such as economic dispatch (Bhattacharya & Chattopadhyay, 2009) and power 

management (Bansal, Kumar, & Gupta, 2013). BBO depends on migration and mutation 

to search for the problem solution. It has certain features in common with genetic 

algorithms and PSO like sharing information between solutions. However, BBO includes 

fewer computational steps per iteration which result in faster convergence compared to 

the other meta-heuristic techniques. Furthermore, in BBO, solutions with low fitness are 

updated by copying some elements from the good fitness solutions, and consequently, 

this increases the opportunity of maintaining a high-quality solution (Bhattacharya & 

Chattopadhyay, 2009). BBO was implemented in (Ghaffarzadeh & Sadeghi, 2016) to 

identify the optimal placement and sizing of the DGs and capacitors in the EDN. 

Minimization of total active and reactive power loss, reduction of the power from the 

feeders and enhancement of voltage profile were the objective of the study. In addition, 

the total harmonic distortion was investigated. The results show the superiority of the 

BBO over PSO and GA in obtaining better solutions. 

Krill hard algorithm was used in (S. Sultana & Roy, 2016) for optimal interconnection 

of the DGs. Additionally, biomass, wind turbines and solar cell were optimally placed in 

the network. The results showed power loss and energy cost reduction comparing other 

Univ
ers

iti 
Mala

ya



25 

meta-heuristic algorithms. A combination between the PSO and the artificial immune 

system was presented in (Bhadoria, Pal, & Shrivastava, 2019) to identify the optimal 

placement and sizing of the DGs. The objectives of the study involve power loss 

minimization and voltage profile enhancement. The method was tested on radial and 

meshed EDN.  

2.4 Solving the network reconfiguration in presence of DG 

Although the application of NR or DG alone already has a good impact on the EDN’s 

performance, studies that adopted both approaches have accomplished a vital 

improvement in the system performance. The objectives of these studies are similar to 

the objectives of solving the NR or DG integration separately (Badran, Mekhilef, et al., 

2017a). In this section, the research about NR with DG integration is reviewed. The non-

renewable DG and the RER are considered in the review. 

2.4.1 Network reconfiguration with dispatchable DG integration  

Due to the rapid growth in the DG integration in the EDN, it is necessary to consider 

the DG existence when solving the NR problem. Hence, many studies were suggested to 

solve the NR problem and dispatchable DG integration in the EDN. 

(R. Rao et al., 2013) used the harmony search algorithm to obtain the solution of the 

NR and DG sizing problem. Whereas, the best DG location was determined based on a 

sensitivity analysis. The objectives of the work are to decrease the power loss and enhance 

the voltage profile of the EDN buses. Moreover, the method was tested under the light, 

normal, and high loads level. The results showed that using the harmony search algorithm 

is more efficient than using the genetic algorithm or the refined genetic algorithm. The 

firework algorithm was used in (Imran et al., 2014) to find the optimal NR and DG 

capacity with the objectives of reducing the power loss and enhancing the voltage 

stability. The locations of the DG were identified according to the voltage stability index. 
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The method maintained the radiality of the system by generating the appropriate parent 

node-child node path of the system. Besides, the method was tested under different 

uniform load levels. 

(Capitanescu, Ochoa, Margossian, & Hatziargyriou, 2015) studied the distribution 

network in the planning mode and operation mode. The work aimed to maximize the DG 

output by changing the EDN topology. The problem was formulated using mixed-integer 

non-linear optimal power flow. The presented results demonstrated that in both modes, 

using NR is an impressive means to accommodate bigger values of DG in the distribution 

network. The authors of (Rajaram, Kumar, & Rajasekar, 2015) used a modified plant 

growth simulation algorithm for minimizing the power loss by finding the optimal NR 

simultaneously with proper DG sizing. The loss sensitivity index was used to obtain the 

optimal location of the DG in the EDN. The objective of the study is to reduce the total 

real power loss. 

(T. T. Nguyen et al., 2016) applied the cuckoo search algorithm in solving the problem 

of NR and DG placement and sizing to reduce power loss and improve the voltage 

stability. The graph theory was used to check the feasibility of the solution of the NR. 

Seven different cases were investigated to verify the efficiency of the method. With the 

aim of total power loss minimization, the authors of (Bayat, Bagheri, & Noroozian, 2016) 

proposed a Uniform Voltage Distribution based constructive NR Algorithm (UVDA) for 

solving the NR problem simultaneously with the DGs placement and sizing. 

 (Hong, Hu, Guo, Ma, & Tian, 2016) introduced a directed graph-based approach for 

NR and service restoration in the presence of DG intending to minimize power loss. The 

NR was modeled as a mixed-integer quadratic programming problem, while the service 

restoration was considered as a mixed-integer linear problem. The authors of (Gampa & 

Das, 2017) presented a two-stage method to solve the NR problem in presence of the DGs 
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based on the heuristic branch exchange method and by employing the fuzzy genetic 

algorithm to minimize the power loss while maintaining the EDN operation constraints. 

The first stage finds the NR solution without considering the DGs, whereas the second 

stage determines the final open switch combination while finding DGs locations through 

sensitivity analysis based on power loss minimization and voltage profile improvement. 

(Badran, Mekhilef, Mokhlis, & Dahalan, 2017b) introduced a methodology to 

optimize the distribution system in the operation mode. The method reduces the power 

loss and enhances the weakest bus voltage by finding simultaneously the optimal NR, DG 

placement, and sizing as well as the optimal switching sequence from the initial 

configuration to the final one. Firefly algorithm was used to examine the capabilities of 

the method with the aim of daily power loss minimization and the EDN’s voltage profile 

enhancement. (Arif, Wang, Wang, & Chen, 2017) presented a method to solve the outage 

management problem that contains the repair and restoration of the distribution network 

with the existing of DGs. The method proved its efficiency in reducing the needed time 

to solve the aforementioned problem. 

The uncertainties in loads of the distribution network with the presence of DG were 

considered in the method proposed by (K.-y. Liu, Sheng, Liu, & Meng, 2017). The 

method aims to find the NR using the binary particle swarm optimization and then to 

explore the DG location and size using sensitivity analysis and the harmony search 

algorithm, respectively. Reducing the cost of the real power loss, minimizing the expected 

energy not supplied, and lessening the cost of the switch operation are the objectives of 

the study. Binary PSO has been applied in (Saleh, Elshahed, & Elsayed, 2018) to find the 

best set of switches to be closed. Then, the conventional PSO has been used for choosing 

the optimal location and size of the DGs. The results show the positive effect of solving 

the NR and DG integration sequentially on reducing power loss. 
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In (Kumar, Singh, Mishra, Jha, & Samantaray, 2018), the NR problem was solved 

simultaneously with DG installation by applying the bit shift operator-based particle 

swarm optimization. The objectives include minimizing power loss and improving the 

voltage profile. Many loads’ types were considered to investigate the validity of the 

proposed method. In (Kaveh, Hooshmand, & Madani, 2018), the system reconfiguration, 

DG installment, and network rephrasing were optimized simultaneously to reduce power 

loss and phase unbalancing and enhance the voltage profile. The optimization was 

accomplished using bacterial foraging with a spiral dynamic. 

The authors of (Rawat & Vadhera, 2019) examined the efficiency of integrated PSO, 

teaching-learning-based optimization as well as Jaya optimization in solving the problem 

of NR and DG placement and sizing. The results show that Jaya optimization 

outperformed other optimization algorithms in reducing power loss and enhancing the 

voltage profile. (Akrami, Doostizadeh, & Aminifar, 2019) presented a two-stage data-

driven approach that depends on the µPMUs’ measurements to find the hourly 

configurations for the EDN. The configurations, that minimize the operation cost, were 

found using a stochastic robust optimization considering the uncertainties in the DGs 

outputs and the loads. 

2.4.2   Network reconfiguration with RER integration  

The integration of the RER in the EDN causes difficulties in EDN management due to 

the intermittent nature of the RER. Therefore, many studies discussed solving the NR 

along with the RER installation. (Esmaeili, Sedighizadeh, & Esmaili, 2016) proposed a 

modified multi-objective big bang-big crunch algorithm to solve simultaneously the NR 

and RER sizing problem based on acquiring the Pareto optimal solution. Wind turbines, 

PV, and fuel cells are the RER considered in the study. Also, the proposed method aimed 

to reduce the power loss, improve the voltage stability index as well as cut down the total 
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cost and the emission produced in the EDN. Moreover, the uncertainty of loads was 

modeled by the triangular fuzzy number concept. 

(Zarei & Zangeneh, 2017) suggested a method to find the optimal NR in the presence 

of the wind turbine in the network. The objectives of the study involved, decreasing the 

power loss and energy not supplied as well as increasing the voltage stability index and 

the wind turbine penetration level. Besides, the uncertainties of the loads and the wind 

turbine’s output were considered. However, PV integration was not considered in the 

study. (Lei, Hou, Qiu, & Yan, 2018) proposed a method for solving the problem of the 

dynamic NR in presence of DGs in the distribution network. The method depends on 

identifying the critical switches that are most appropriate for DG integration. The study 

also considered the loads’ uncertainties and RERs’ outputs variations.  

2.5 Summary 

This chapter presents a detailed review of the previous methods of NR and DG 

integration in the distribution network that was suggested in the previous works. Optimal 

NR and DG integration are valuable mechanisms to reduce power loss and improve the 

voltage profile in the distribution networks. 

Owing to the complexity of the NR problem, finding an optimal solution is a daunting 

task that requires high computational time. To address the challenges included in the NR, 

various methods were proposed to find an optimal solution in a minimum computational 

time. In this chapter, ANN, heuristic, and meta-heuristic methods, which were previously 

suggested, are explained and discussed. It was noted that the reviewed works suffer from 

slow convergence and fail to obtain the optimal solution. However, graph theory-based 

methods achieved improvement in finding a better solution in a short time since graph 

theory can be utilized to eliminate many of non-feasible solutions from the search space. 

In addition, it is worth mentioning that proper meta-heuristic methods’ initialization has 
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been rarely considered for solving the NR problem. This chapter also provides a 

comprehensive review of the classical and meta-heuristic methods that were employed 

for the DG integration in the distribution network. It should be pointed out that when the 

DG placement and sizing are not performed properly, it will cause great concerns for the 

EDN operator such as additional power loss. Thus, further investigation on finding the 

optimal solution of the DG integration in the EDN is required. The studies that considered 

solving the NR problem simultaneously or sequentially with the DG were also reviewed 

in this chapter. Solving the problem of NR and DG at the same time leads to further 

expansion in the search space. Therefore, although different meta-heuristic methods were 

considered, most of them were not able to find optimal solutions, especially for medium 

and large EDN. Hence, supplementary research should be investigated to enhance the 

solution quality. Finally, it is worth mentioning that previous studies rarely discussed the 

integration of non-dispatchable RER and their impact on the system configuration when 

the load is changing hourly. 

To address the above issues, the next chapter introduces the simplified network 

approach and the proposed population codification as well as the proposed two-stage 

method implementation using meta-heuristic methods. 
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CHAPTER 3: RESEARCH METHODOLOGY 

3.1 Introduction 

This research aims to solve the NR simultaneously with DG placement and sizing 

based on the simplified network approach and two-stage meta-heuristic optimization. 

Firefly Algorithm (FA) and Biogeography-Based Optimization (BBO) are the meta-

heuristic methods employed in this research. The intermittent nature of the RER is also 

considered. 

This chapter explains the problem formulation of the NR and DG integration in the 

EDN and the operation constraints. In addition, the proposed Simplified Network Graph 

(SNG) approach and the proposed population codification are described. Then, a detailed 

explanation of the meta-heuristic methods used in this work is provided. Thereafter, the 

conventional NR method is described followed by the implementation of the proposed 

two-stage method using the FA and BBO. Finally, the application of the proposed method 

considering the load changes and the variations in the RER outputs is illustrated. 

3.2 Problem formulation 

This section presents the problem formulation for the optimization of NR and DG 

placement and sizing in the distribution system. The optimization searches for the 

combination of open switches as well as DGs locations and sizes that minimizes the 

power loss of the EDN and improve the overall voltage profile while fulfilling the 

operating constraints. 

3.2.1   Objective function 

The objectives of this study are to minimize the total real power losses and the voltage 

deviation of the EDN buses while fulfilling the system constraints. Therefore, the 

objective function F can be expressed as follows (T. T. Nguyen et al., 2016):  
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min(𝐹) = min(𝑃𝑙𝑜𝑠𝑠
𝑅 + IVD) (3.1) 

Where; 

𝑃𝑙𝑜𝑠𝑠
𝑅 = net power loss. 

𝐼𝑉𝐷 = index of voltage deviation. 

Since the objective function F is twofold with different units, the net power loss 𝑃𝑙𝑜𝑠𝑠
𝑅  

is taken as the ratio between the system total active power loss after reconfiguration 𝑃𝑙𝑜𝑠𝑠
𝑟𝑒𝑐  

and the total active power loss before reconfiguration 𝑃𝑙𝑜𝑠𝑠
0 .  

𝑃𝑙𝑜𝑠𝑠
𝑅 = 

𝑃𝑙𝑜𝑠𝑠
𝑟𝑒𝑐  

 𝑃𝑙𝑜𝑠𝑠
0  

(3.2) 

The total power loss in the EDN is given by the following equation: 

𝑃𝑙𝑜𝑠𝑠 = ∑|𝐼𝑡|
2𝑙𝑡𝑅𝑡

𝑛𝑏𝑟

𝑡=1

 (3.3) 

Where; 

 𝑛𝑏𝑟= total number of the branches excluding the open switches. 

𝐼𝑡 = current at line t. 

𝑅𝑡 = The resistance of the line t. 

𝑡 = line number. 

𝑙𝑡 = the topology status of line t (1=close, 0=open). 

The Index of Voltage Deviation (IVD) penalizes the highest voltage deviation from 

the nominal voltage. The smaller value of the index, the better for the EDN performance. 

IVD is given by the equation: 
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𝐼𝑉𝐷 = 𝑚𝑎𝑥𝑖=2
𝑛 (

|𝑉1|−|𝑉𝑖|

|𝑉1|
) (3.4) 

Where; 

𝑛 = the total number of buses in the EDN. 

𝑉𝑖 = the voltage magnitude at bus i. 

𝑉1 = the nominal voltage of the reference bus. In this research, the nominal voltage is 

1 p.u. (Rahim et al., 2019). 

3.2.2 Operation constraints 

All the optimization solutions should never violate any of the following operation 

constraints: 

3.2.2.1 Power balance 

 In all EDNs, the supply of power must equal the sum of the load demands and power 

loss. 

𝑃𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛 + ∑𝑃𝐷𝐺,𝑖

𝑘

𝑖=1

= 𝑃𝑙𝑜𝑎𝑑 + 𝑃𝑙𝑜𝑠𝑠 (3.5) 

Where; 

𝑃𝐷𝐺,𝑖 = the generated power of the DG i 

𝑘= the total number of DGs in the EDN. 

𝑃𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛 = the output power from the substation. 

𝑃𝑙𝑜𝑎𝑑 = the EDN’s load. 

𝑃𝑙𝑜𝑠𝑠 = the power loss of the system. 
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3.2.2.2 Voltage constraint 

The voltage magnitude V at each bus should stay within specific limits during the 

operation of the EDN. 

𝑉min ≤ 𝑉𝑖 ≤ 𝑉max (3.6) 

Where;  

𝑉𝑖 = the voltage magnitude at bus i. 

𝑉min = the lower bound of the voltage magnitude. 

𝑉max = the upper bound of the voltage magnitude. 

In this research, 𝑉min is 0.9 p.u. whereas, 𝑉max is 1.1 p.u. (Rahim et al., 2019). 

3.2.2.3 Distributed generator capacity 

The generated power from each DG should have an acceptable output based on the 

DG’s characteristics. Hence, the output of each DG must fulfill the following equation: 

𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐷𝐺,𝑖  ≤  𝑃𝑖

𝑚𝑎𝑥 (3.7) 

Where;  

𝑃𝑖
𝑚𝑖𝑛 = the lower bound of the DG output. 

𝑃𝑖
𝑚𝑎𝑥 = the upper bounds of the DG output. 

3.2.2.4 Power injection 

This operation constraint guarantees that no power from the DGs can flow to the 

substation. 
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∑𝑃𝐷𝐺,𝑖

𝑘

𝑖=1

< (𝑃𝑙𝑜𝑎𝑑 + 𝑃𝑙𝑜𝑠𝑠) (3.8) 

 

3.2.2.5 The radiality constraint 

The EDN must stay radial after finding the new configuration. In this research, the 

radiality of the EDN is maintained for all solutions as explained in section 3.4. 

3.3 Simplified network graph structure 

This section explains in detail the architecture of the SNG. Then, an illustrative 

example is presented. For a given EDN, the following steps describe the implementation 

of the SNG:  

Step 1: The EDN is represented as an undirected graph; where the buses are the 

nodes and the switches are the edges. 

Step 2: The Undirected Incidence Matrix (UIM) of the EDN graph is determined. 

The dimensions of the UIM are (The number of nodes × the number of edges). 

All UIM elements are zeros except when two nodes (n1 and n2) are connected 

through an edge e1. Thus, UIM(n1, e1)=1 and UIM(n2,e1)=1. 

Step 3: From the UIM, calculate the Node Degree Vector (NDV) by summing the 

elements of each UIM’s row and store the result in the NDV. The dimensions 

of the NDV are (The number of nodes × 1). 

Step 4: If any of the NDV’s elements equal 1, the corresponding node is removed. 

e.g. if the NDV(n1,1)=1 and n2 is the successive node of n1 through the edge e1, 

then the UIM is updated by: UIM (n1, e1)=0 and UIM (n2, e1)=0. 

Step 5: Steps 3-4 are repeated until none of the NDV’s elements equal 1. 

Step 6: The nodes with a degree greater than 2 are added to the Fundamental 

Nodes Vector (FNV). 
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Step 7: For each Fundamental Node (FN), find the series of successive edges and 

nodes that connect directly this FN with other FNs (i.e. without passing through 

any other FNs). The resulted group of edges between two FN forms a path. 

Since all FN’s degrees are greater than two, each FN is at least connected 

directly to the other three FNs through different paths. 

Step 8: Loads of an FN n are calculated by: 

�̅�𝑛 + 𝑗�̅�𝑛 = (𝑃𝑛 + 𝑗𝑄𝑛) + ∑(𝑃𝑖 + 𝑗𝑄𝑖)

𝑖𝑚

𝑖=𝑖1

+ 0.5 × ∑ (𝑃𝑘 + 𝑗𝑄𝑘)

𝑘𝑢

𝑘=𝑘1

 (3.9) 

Where; 

�̅�𝑛 + 𝑗�̅�𝑛 = The new loads of the FN n. 

 (𝑃𝑛 + 𝑗 × 𝑄𝑛) = The original load of the FN n. 

𝑖𝑚,𝑛 = The set of nodes that are connected to the feeder through only one FN n. 

∑ (𝑃𝑖 + 𝑗 × 𝑄𝑖) =
𝑖𝑚,𝑛

𝑖=𝑖1
 The sum loads of all nodes 𝑖𝑚,𝑛. 

𝑘𝑢,𝑛= The set of non-fundamental nodes that belongs to the paths connected to 

the FN n. 

∑ (𝑃𝑘 + 𝑗 × 𝑄𝑘)
𝑘𝑢,𝑛

𝑘=𝑘1
= The sum of loads of all non-fundamental nodes 𝑘𝑢,𝑛. 

Step 9: The impedance of a path c that connects two FN n1 and n2 is given by: 

𝑅𝑐 + 𝑗𝑋𝑐 = ∑(𝑅𝑖 + 𝑗𝑋𝑖)

𝑖𝑡

𝑖=𝑖1

 (3.10) 

Where; 
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(𝑅𝑖 + 𝑗 × 𝑋𝑖)= The impedance of switch i that belongs to the path c. 

it = the total number of switches located between two FN n1 and n2. 

Step 10:  Create the SNG based on the FNs and paths. 

Figure 3.1 shows the flowchart of the steps to find the SNG. 

Read the system data.
Close all switches.

Find the UIM and the NDV of the graph.

Is all degrees    

Delete all nodes with 
degree =1

Add all nodes with degree > 2 to FNV

Find the paths that connect any two 
fundamental nodes

Calculate the loads and the impedances 
of the SNG using equations (3.9,3.10) 

Yes

No

End

Start

 
Figure 3.1: Flowchart of the approach of finding the SNG  

To illustrate the SNG concept, a 15-bus network shown in Figure 3.2 (a) is taken as an 

example. The UIM and NDV matrix for this EDN is given in Figure 3.3. From the UIM 

and NDV, it can be observed that nodes 3 and 7 are solely connected to nodes 2 and 6, 

respectively. Hence, nodes 3 and 7 are removed and consequently switches S2 and S6. 

Accordingly, the UIM is updated by UIM(2,2)=0, UIM(3,2)=0, UIM(6,6)=0 and 

UIM(7,6)=0. Thereafter, all the remaining nodes' degrees are equal to or greater than two. 

Therefore, the procedure of creating SNG advances to Step 6. The resulted graph is shown 

in Figure 3.2 (b). From the updated NDV in Figure 3.3, it can be observed that only nodes 

1, 2, 8, 12 degrees are greater than two. Hence, they considered as the FNs. The switches 
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that connect those FNs together are gathered to form the paths. For example, the path P1 

contains the switch S1. Whereas, the path P3 contains switches S3, S8, and S15. Then, 

the FN’s loads and the paths’ impedances are calculated using equations (3.8 and 3.9). 

The resulted graph is the SNG of the 15-bus EDN and it is shown in Figure 3.2 (c). The 

paths of the SNG along with its corresponding EDN’s switches are tabulated in Table 3.1. 

 
Figure 3.2: Finding the SNG of the 15-bus system 

(a) The original 15-bus system. 

(b) The 15-bus system after deleting nodes 3 and 7. 

(c) The SNG of 15-bus system. 
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Figure 3.3 The UIM and NDV matrixes of the 15-bus EDN 

  
Table 3.1 The paths and the switches of the 15-bus system 

Paths Switches 

P1 S1 
P2 S7 
P3 S3, S8, S15 
P4 S11 
P5 S4, S5, S12, S16 
P6 S9, S10, S13, S14, S17 

 

3.4 The proposed population codification and maintaining the radiality 

In this section, the approach for finding the FLs of a distribution system is explained. 

Thereafter, the proposed codification for the NR, which accelerates the search process 

and maintains the system radiality, is illustrated. 

As stated in section 3.3, EDNs consist of switches, whereas SNGs are made up of 

paths. In this work, the procedures of finding the FLs, codifying the population, and 

maintaining the radiality are similar in both the EDN and SNG. Therefore, to generalize 

the explanation for both; EDN and SNG, the term branch is used to represent the switch 

and the path in the description of these procedures. 
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3.4.1 Determination of the fundamental loops 

The distribution system, in its initial status, has a radial structure, i.e. it has no loops 

and no isolated buses. Starting from the initial topology, when a normally open branch is 

closed, one unique FL will be created. By repeating this process to all normally open 

branches, all FLs can be founded. Hence, the total number of the FL is always equal to 

the number of normally open branches. It is worth mentioning that the number of FLs in 

the EDN and its corresponding SNG is always identical. 

For instance, the FLs’ matrixes for the SNG and EDN of the 15-bus system, which 

was described in section 3.3, is given by: 

FLSNG = [
𝑃3 𝑃1 𝑃2
𝑃5 𝑃1 𝑃4
𝑃6 𝑃2 𝑃4

] (3.11) 

FLEDN = [
𝑆15 𝑆1 𝑆3 𝑆7 𝑆8
𝑆16 𝑆1 𝑆4 𝑆5 𝑆11 𝑆12
𝑆17 𝑆7 𝑆9 𝑆10 𝑆11 𝑆14

] (3.12) 

 

3.4.2 Establishing the common paths and the prohibited paths groups 

After finding the FLs of the SNG and EDN, it is necessary to define the common 

branches and the prohibited branches groups. The common branches and the prohibited 

branches groups play a vital role in maintaining the system radiality. 

If the branch is involved in more than one FL, it is called a common branch. Otherwise, 

it is called an uncommon branch. The prohibited branches groups are defined as the 

groups of branches that are not allowed to switch off at the same time to maintain the 

connection among all the nodes in the system. 

 For example, in Figure 3.2, the common paths of the given SNG are: [P1, P2, P4]. 

Whereas, the common switches of the EDN are: [S1, S7, S11]. In addition, there is only 
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one prohibited paths group, and one prohibited switches group which are: [P1, P2, P4] 

and [S1, S7, S11], respectively. It is worth mentioning that the number of common 

branches and prohibited branches groups increases when the network has a larger number 

of buses and branches, and a more complex structure.  

3.4.3 Radiality of the candidate solution 

In this section, the rules to maintain the population radiality is illustrated as follows: 

Rule 1: The dimension of the solution vector (population) equals the number of 

FLs.  

Rule 2: Only one branch from each FL should be selected to be open during one 

population. 

Rule 3: If one common branch is selected to be in the solution vector, this common 

branch will be deleted from the rest of the FLs.  

Rule 4: In the EDN level, when one switch from a path is selected in the solution 

vector, the remainder switches of that path will be deleted from the following 

FLs’ rows.  

Rule 5: All the branches of any prohibited group must not be off in one solution 

vector. For example, for a prohibited group consists of branches b1, b2, and 

b3, if b1 and b2 are selected to be open, then b3 is deleted from the following 

FLs. Hence, it can’t be selected to be open. 

Rule 6: When a branch is deleted from an FL matrix, one from the other branches 

in the same FL’s line will replace this branch to maintain the FL size. Hence, 

the FL matrix is changing continuously based on the solution vector elements. 

However, the FL matrix returned to its original form after each iteration. 
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For instance, in FLEDN shown in equation (3.12), if the first element of the solution 

vector is S1, then S1 is deleted from the second row of the FLEDN and replaced by one of 

the following elements (S16, S4, S5, S11, S12). 

In (Gupta et al., 2010), the proposed method imposes checking each element of the 

population whether it violates one of the rules. As a result, this will interrupt the search 

process and slow down the population’s convergence to the final solution. Whereas, 

according to Rule 6 of this work, the FL matrix is changing based on the prior generated 

population’s elements. Consequently, all the created and updated population are feasible, 

and the search process persists smoothly. Furthermore, the utilization of SNG assists in 

accelerating the population’s creating and updating as explained in Rule 4. Finally, it is 

worthy to mention that the decimal codifications are used in this work to code the DGs’ 

locations and sizes during the search process. 

3.5 Meta-heuristic methods overview 

In this section, a brief overview of the Firefly Algorithm (FA) and Biogeography-

Based Optimization (BBO) is presented.  

3.5.1 Firefly algorithm 

FA was inspired by the flashing behavior of the fireflies in nature. This behavior is 

essentially used by the fireflies to communicate among each other. When the firefly 

produces light with an (I) intensity, it attracts other fireflies, that have less intensity, in 

different attractiveness (β) based on the distance (r) between the two fireflies. The longer 

the distance between two fireflies, the less the attractiveness. In this algorithm, each 

population is represented by a firefly location, whereas the objective function is defined 

as the intensity of each firefly. 

The attractiveness between two fireflies β(r) is given by: 
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𝛽(𝑟) = 𝛽0𝑒
−𝛾𝑟2 (3.13) 

Where; 

 𝛽0 = the attractiveness at zero distance. 

 γ = the light absorption coefficient. 

 r = the Cartesian distance between two fireflies.  

The Cartesian distance between any two fireflies ℎ𝑙 and ℎ𝑗  is 𝑟𝑙𝑗 and it is given by: 

𝑟𝑙𝑗 = ‖ℎ𝑙 − ℎ𝑗‖ = √∑(ℎ𝑙,𝑘 − ℎ𝑗,𝑘)2

𝑑

𝑘=1

 (3.14) 

Where; 

 d = the problem dimension. 

 𝑟𝑙𝑗 = the Cartesian distance between two fireflies ℎ𝑙  and ℎ𝑗 . 

 ℎ𝑙,𝑘 and ℎ𝑗,𝑘 = the kth element of the firefly ℎ𝑙 and ℎ𝑗 , respectively. 

For all fireflies, if ℎ𝑗  is brighter (has higher light intensity) than ℎ𝑙, then ℎ𝑙 is attracted 

to ℎ𝑗  and ℎ𝑙 is updated by the following equation: 

ℎ𝑙 = ℎ𝑙 + 𝛽0𝑒
−𝛾𝑟𝑙𝑗

2

𝑟𝑙𝑗 + 𝛼(𝑟𝑎𝑛𝑑 − 0.5) (3.15) 

Where; 

 α = the randomized parameter. rand is a uniformly distributed random number 

between 0 and 1.  
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3.5.2 Biogeography-Based Optimization 

BBO populations are represented by habitats where the variables of the habitat are 

called the Suitability Index Variables (SIV). Each habitat has a Habitat Suitability Index 

(HSI) which represents the habitat’s fitness. The higher the HSI, the better the solution. 

Also, a habitat with high HSI has more species count (which refers to as S). When the 

habitat has a large number of species, its immigration rate λ is low since the habitat is 

almost saturated. For the same reason, when the habitat contains large species’ numbers, 

its emigration rate μ is high since the habitat has many opportunities to other adjacent 

habitats. On the other hand, the habitat with low HSI, i.e. a small number of species, has 

a high immigration rate and low emigration rate. Figure 3.4 illustrates the relationship 

between the immigration rate and emigration rate with the number of species of a single 

habitat. where 𝑆𝑚𝑎𝑥 is the maximum number of species that can be existed in habitat and 

S0 is the number of species when the immigration and emigration rates are equal.  

S0 Smax

Immigration 

Emigration
Rate

1

Species count

 

Figure 3.4 The immigration and emigration model for a single habitat. 

In this study, for any habitat: 

𝜆 + 𝜇 = 1  (3.16) 

BBO depends on two mechanisms namely; the migration and mutation. These 

mechanisms are utilized to update BBO’s population and create new solutions. However, 
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BBO also has elitism feature to retain the best solutions from changes. The keep rate 

parameter determines the rate of elitism habitat during the search process.  

 Migration 

During the habitat’s lifecycle, one or more from its SIV tend to migrate to another 

habitat. The migration decision depends on the comparison between a random value and 

the immigration rate of the given habitat. High HSI habitats have more species and 

therefore they have high emigration rate 𝜇 and accordingly low immigration rate 𝜆. 

Therefore, low HSI habitats tend to copy SIVs from the high HSI habitats. If the kth SIV 

of a habitat 𝐻𝑖 is determined to immigrate, then this SIV will be replaced by its 

corresponding SIV from another random habitat 𝐻𝑗 that normally has high HSI. Hence, 

the migration mechanism assists the population to share information with each other. The 

habitat is updated by the following equation: 

𝐻𝑖,𝑘 = 𝐻𝑗,𝑘  (3.17) 

Where; 

 𝐻𝑖,𝑘 and 𝐻𝑗,𝑘 = the kth SIV of the habitat i and j, respectively. 

The pseudo-code of the migration process is described as follows: 

START PROCEDURE Migration mechanism for n habitats 

FOR i=1 to n DO  

IF randomly generated number < 𝜆𝑖 

SELECT: 𝐻𝑖 with the immigration rate 𝜆𝑖 

FOR j=1 to n DO  

IF randomly generated number < 𝜇𝑗 

SELECT: 𝐻𝑗 with emigration rate 𝜇𝑗 
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Replace a random 𝑆𝐼𝑉 of 𝐻𝑖 with its corresponding 𝑆𝐼𝑉 from 𝐻𝑗 as 

given in (3.17) 

ENDIF 

ENDFOR 

ENDIF 

ENDFOR 

 Mutation 

The mutation is another mechanism in BBO that assists in further exploration of the 

search space by altering some of the habitat’s variables. In BBO, the solution probability 

(𝑃𝑆)  is inversely proportional to the mutation rate. Hence, habitats with low or high HSI 

have a high mutation rate because their probability to exist is small compared to the 

medium HSI habitats. The solution probability (𝑃𝑆)  and the mutation rate for habitat with 

S species is given by:  

�̇�𝑆 = {

−𝑃𝑆 + 𝜇𝑆+1𝑃𝑆+1 ;  𝑆 = 0
−𝑃𝑆 + 𝜇𝑆+1𝑃𝑆+1 + 𝜆𝑆−1𝑃𝑆−1 ;  1 ≤ 𝑆 ≤ 𝑆𝑚𝑎𝑥 − 1

−𝑃𝑆 + 𝜆𝑆−1𝑃𝑆−1;  𝑆 = 𝑆𝑚𝑎𝑥

   (3.18) 

𝑚(𝑆) = 𝑚𝑚𝑎𝑥 (
1 − 𝑃𝑆

𝑃𝑚𝑎𝑥
)    (3.19) 

Where; 

 𝑚𝑚𝑎𝑥 = the maximum mutation rate defined by the user. 

𝑃𝑚𝑎𝑥 = the argmax of the solution probability.  

The following pseudo-code illustrates the mutation mechanism: 
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START PROCEDURE Mutation mechanism for n habitats and m 𝑆𝐼𝑉 

FOR i=1 to n DO 

SELECT: 𝐻𝑖 with the immigration rate 𝜆𝑖 and emigration rate 𝜇𝑖 

Calculate the probability �̇�𝑆 using 𝜆𝑖 and 𝜇𝑖 based on equation (3.18) 

FOR j=1 to m DO 

SELECT: 𝑆𝐼𝑉𝑗 of 𝐻𝑖 with �̇�𝑖 

IF 𝑆𝐼𝑉𝑗 of 𝐻𝑖 is selected  

Replace 𝑆𝐼𝑉𝑗 of 𝐻𝑖 with a randomly generated SIV  

ENDIF 

ENDFOR 

ENDFOR 

3.6 The conventional methods for NR and DG integration 

In this section, the conventional FA and BBO for solving the NR and DG integration 

are explained to demonstrate the differences between the proposed method and 

conventional methods. 

3.6.1  Conventional biogeography-based optimization for network 

reconfiguration and DG integration 

The conventional BBO method typically employed the following processes in solving 

the NR and DG placement and sizing problem in the distribution systems: 

Step 1: Read the EDN data, DGs’ number (NDG) and allowable sizes, BBO 

parameters, the maximum number of iterations, the number of habitats Nh and 

the problem dimension (the number of SIV NSIV) which is given by: 

NSIV = (𝑁𝐹𝐿 + 2 ∗ 𝑁𝐷𝐺)  (3.20) 
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Step 2: Generate random initial SIVs and assign them to each habitat. The habitats 

of the conventional BBO are represented by eq (3.21). Each habitat consists of 

three parts, firstly is the open switches that represent the solution of the NR 

problem. Then, secondly and thirdly are the locations and sizes of the DGs, 

respectively. 

𝑥 = 

[
 
 
 
𝑆1,1 … 𝑆1,𝑁𝐹𝐿

𝐷𝐺𝐿1,1 … 𝐷𝐺𝐿1,𝑁𝐷𝐺
𝐷𝐺𝐶1,1 … 𝐷𝐺𝐶1,𝑁𝐷𝐺

𝑆2,1 … 𝑆2,𝑁𝐹𝐿
𝐷𝐺𝐿2,1 … 𝐷𝐺𝐿2,𝑁𝐷𝐺

𝐷𝐺𝐶2,1 … 𝐷𝐺𝐶2,𝑁𝐷𝐺

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑆𝑁ℎ,1 … 𝑆𝑁ℎ,𝑁𝐹𝐿

𝐷𝐺𝐿𝑁ℎ,1 … 𝐷𝐺𝐿𝑁ℎ,𝑁𝐷𝐺
𝐷𝐺𝐶𝑁ℎ,1 … 𝐷𝐺𝐶𝑁ℎ,𝑁𝐷𝐺

 

]
 
 
 

 (3.21) 

Where; 

S = the open switch number. 

DGL = the DG location. 

DGC = the DG capacity.  

Step 3: Thereafter, the iteration is started by applying a radiality check to the open 

switches’ combination in each habitat. If the combination is not radial, then the 

corresponding habitat should be replaced with other radial combination. 

Thereafter, the load flow analysis is performed to obtain the power flow in all 

network lines. Based on the power flow results, the fitness (HSI) of each habitat 

can be determined based on equation (3.1).    

Step 4: The habitat with the highest HSI is identified as the elite habitat. 

Step 5: Next, based on the HSI of each habitat, the immigration and emigration 

rates are calculated as well as the mutation rate. 

Step 6: Use immigration and emigration to decide which habitats ought to be 

modified. 
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Step 7: For each habitat, based on the mutation rate, some of the medium HSI 

habitats SIVs will be replaced by random values within the allowable range of 

the SIV. 

Step 8: Iterations are continued by repeating Steps 3-8 until the maximum number 

of iterations is reached. 

Step 9: Output the best habitat along with its HSI. This habitat represents the open 

switches combination, DGs locations, and DGs sizes that minimize the 

objective function given by equation (3.1). 

3.6.2 Conventional firefly algorithm for network reconfiguration and DG 

integration 

The conventional FA method typically employed the following processes in solving 

the NR problem: 

Step 1: Input the EDN data as well as the FA parameters. 

Step 2: The population in the conventional FA is the combination of the open 

switches in the EDN, whereas the fitness is given by equation (3.1). It starts 

with generating a random population and then test this combination to check if 

it fulfills all the system constraints. The population, that do not meet one or 

more constraints, will be replaced by a new feasible population. This process 

is repeated until all the populations satisfied the specified constraints.  

Step 3: Next, the iteration is started by solving the load flow analysis to obtain the 

power flow in all network lines. Based on the power flow results, the fitness 

function of each firefly can be determined.  

Step 4: For each firefly, its attractiveness to the other fireflies in terms of its 

brightness is checked and their locations are subsequently updated based on 

equations (3.13 to 3.15). Note that the updated population will be rounded to 
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the closest integer number. Next, the system constraints of the updated 

population are checked. Again, the population that does not meet the system 

constraints will be replaced with another random feasible population.    

Step 5: Ranking of the fireflies will be done next to name the best firefly.  

Step 6: Iteration is continued by repeating steps (3) to (6) until the maximum 

iterations number is reached or until the population converged to the same 

solution. 

Step 7: The best firefly along with its fitness will be determined and the best 

configuration of open switches that minimizes the objective function given by 

equation (3.1) is found. 

3.7 The proposed two-stage method for optimal network reconfiguration and 

DG integration 

The conventional meta-heuristic techniques suffer from slow convergence and there is 

no guarantee to obtain the optimal solution. This is due to the random solution’s 

initialization and the continuous radiality check during the search process. To overcome 

these demerits, the proposed two stages method has been proposed. In the first stage, the 

EDN is simplified into a smaller size network called the SNG. Then, a meta-heuristic 

technique is used to find the solution for the SNG. In the second stage, the optimal 

solution for the EDN is determined using a meta-heuristic that is initialized from the first 

stage’s output. Same or different meta-heuristic technique can be used in the second stage 

to find the optimal NR for the EDN. 

The flowchart of the proposed method to find the optimal NR is shown in Figure 3.5.  
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Start

Read the EDN data. Initialize the ISM. 
initialize the meta-heuristic techniques  

parameters.

Find the SNG based on section 3.3

Find the optimal NR and DG of the SNG 
using the meta-heuristic technique. 

Update the ISM during the search process. 

Extract the initial solution of the second 
stage from the ISM.

Find the optimal NR and DG of the EDN 
using the meta-heuristic technique.

End

Stage 1 
(Initialization)

Stage 2 (Optimal 
NR and DG )

 

Figure 3.5: Flowchart of the proposed method  

3.7.1 The proposed two-stage biogeography-based optimization for optimal 

network reconfiguration and DG integration 

The proposed two-stages BBO is implemented by the following steps. A complete 

optimization is used individually in each stage of the proposed method. The first stage 

consists of Steps 1-9, whereas Steps 10-16 represent the second stage.  

Step 1: Read the EDN data, DGs’ number (NDG) and maximum DG’s size, BBO 

parameters, the maximum number of iterations, the number of habitats Nh, and 

the problem dimension NSIV given by equation (3.20). Then, initialize a matrix 

named Initial Solution Matrix (ISM) whose dimensions are (Nh × NSIV). Each 

line of the ISM contains a single habitat. The rows of the ISM are sorted based 

on their fitness.  
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Step 2: Start the first stage by determining the SNG of the EDN through the 

approach explained in section 3.3 and calculate its loads and impedances based 

on equations (3.9 and 3.10). 

Step 3: Create random initial SIVs for each habitat as stated in section 3.4. 

Consequently, all the habitats are feasible. In this stage, the SIVs consists of 

the open paths’ indexes and the DGs’ locations and sizes. Each habitat occupies 

one row of the H matrix as presented in equation (3.23). 

H = 

[
 
 
 
𝑝1,1 … 𝑝1,𝑁𝐹𝐿

𝐷𝐺𝐿1,1 … 𝐷𝐺𝐿1,𝑁𝐷𝐺
𝐷𝐺𝐶1,1 … 𝐷𝐺𝐶1,𝑁𝐷𝐺

𝑝2,1 … 𝑝2,𝑁𝐹𝐿
𝐷𝐺𝐿2,1 … 𝐷𝐺𝐿2,𝑁𝐷𝐺

𝐷𝐺𝐶2,1 … 𝐷𝐺𝐶2,𝑁𝐷𝐺

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑝𝑁ℎ,1 … 𝑝𝑁ℎ,𝑁𝐹𝐿

𝐷𝐺𝐿𝑁ℎ,1 … 𝐷𝐺𝐿𝑁ℎ,𝑁𝐷𝐺
𝐷𝐺𝐶𝑁ℎ,1 … 𝐷𝐺𝐶𝑁ℎ,𝑁𝐷𝐺

 

]
 
 
 

 (3.22) 

Where; 

 p is the open path number. 

Step 4: Start the iteration by executing load flow analysis to obtain the power flow 

in the SNG. Then, evaluate the fitness (HSI) for each population (habitat) using 

equation (3.1). 

Step 5: Rank the habitats based on their HSI and select the elite habitat. Then, 

update the ISM by replacing the habitats that have the lowest HSI with those 

that have higher HSI. 

Step 6: Calculate the immigration, emigration, and mutation rates as well as the 

number of species. The calculation is performed for each habitat based on its 

HSI. 

Step 7: Modify the habitats based on the migration and mutation mechanisms. The 

habitats are modified based on the rules stated in section 3.4. 

Step 8: Iterations are carried on by repeating Step 4-8 until iterations reach the 

maximum number of iterations.  
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Step 9: End the first stage and move to the second stage. The output of the first 

stage is the ISM which contains the ranked open paths along with DGs 

locations and sizes. 

Step 10:  Strat the second stage by generating initial habitats from the ISM. Each 

path from the ISM includes one or more switches. However, only one switch 

is chosen randomly from the path. On the other hand, the DGs locations and 

sizes from the ISM are transferred without any changes to the population of 

the second stage. The population of the second stage consists of the 

combination of open switches’ and the DGs locations and sizes. Equation 

(3.23) shows the habitats matrix in the second stage.  

𝑥 = 

[
 
 
 
𝑆1,1 … 𝑆1,𝑁𝐹𝐿

𝐷𝐺𝐿1,1 … 𝐷𝐺𝐿1,𝑁𝐷𝐺
𝐷𝐺𝐶1,1 … 𝐷𝐺𝐶1,𝑁𝐷𝐺

𝑆2,1 … 𝑆2,𝑁𝐹𝐿
𝐷𝐺𝐿2,1 … 𝐷𝐺𝐿2,𝑁𝐷𝐺

𝐷𝐺𝐶2,1 … 𝐷𝐺𝐶2,𝑁𝐷𝐺

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑆𝑁ℎ,1 … 𝑆𝑁ℎ,𝑁𝐹𝐿

𝐷𝐺𝐿𝑁ℎ,1 … 𝐷𝐺𝐿𝑁ℎ,𝑁𝐷𝐺
𝐷𝐺𝐶𝑁ℎ,1 … 𝐷𝐺𝐶𝑁ℎ,𝑁𝐷𝐺

 

]
 
 
 

 (3.23) 

Step 11:  Start the iteration by executing load flow analysis to obtain the power 

flow in the EDN. Evaluate the fitness for each habitat using (3.1). 

Step 12:  Rank the habitats based on their HSI and select the elite habitat. 

Step 13:  Calculate the immigration, emigration, and mutation rates.  

Step 14:  Modify the habitats based on the migration and mutation mechanisms. 

The habitats are modified based on the rules stated in section 3.4. 

Step 15:  Iterations are carried on by repeating Step 11-15 until iterations reach the 

maximum number of iterations.  

Step 16:  Stop the process and output the elite habitat along with its HSI. The result 

represents the best-found open switches configuration and DGs locations and 

sizes that minimize the objective function given in equation (3.1). 
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3.7.2 The proposed two-stage firefly algorithm for optimal network 

reconfiguration and DG integration 

The following steps describe in detail the implementation of the proposed two-stage 

FA method to solve the NR problem. In this method, FA is used in the first stage to find 

the initial population whereas, in the second stage, it will be employed again to find the 

optimal NR. The flowchart of the proposed two-stage method is shown in Figure 3.5 

where it consists of Step 1-9 in the first stage and Step 9-15 in the second stage. 

Step 1:  Read the EDN data and the FA parameters. Then, initialize an Initial 

Solution Matrix (ISM) (NFF × NFL) where; NFF is the number of the fireflies 

population whereas NFL is the number of the FLs of the system (dimension of 

the problem). Each row of the ISM will contain the configuration of the open 

paths that minimize the given fitness function in the SNG.  

Step 2: Start the first stage by finding the SNG of the EDN using the approach 

proposed in section 3.3 and calculate its loads and impedances based on 

equations (3.9 and 3.10). Subsequently, find the FLs of the SNG as in section 

3.4. 

Step 3:  Create an initial population as stated in section 3.4. All the generated 

population are radial. In this stage, the population’s elements are the open paths 

indexes from the FLSNG matrix. Each row of the fireflies’ matrix represents 

individual firefly as follows: 

H = 

[
 
 
 
𝑝1,1 … 𝑝1,𝑁𝐹𝐿

𝐷𝐺𝐿1,1 … 𝐷𝐺𝐿1,𝑁𝐷𝐺
𝐷𝐺𝐶1,1 … 𝐷𝐺𝐶1,𝑁𝐷𝐺

𝑝2,1 … 𝑝2,𝑁𝐹𝐿
𝐷𝐺𝐿2,1 … 𝐷𝐺𝐿2,𝑁𝐷𝐺

𝐷𝐺𝐶2,1 … 𝐷𝐺𝐶2,𝑁𝐷𝐺

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑝𝑁ℎ,1 … 𝑝𝑁ℎ,𝑁𝐹𝐿

𝐷𝐺𝐿𝑁ℎ,1 … 𝐷𝐺𝐿𝑁ℎ,𝑁𝐷𝐺
𝐷𝐺𝐶𝑁ℎ,1 … 𝐷𝐺𝐶𝑁ℎ,𝑁𝐷𝐺

 

]
 
 
 

 (3.24) 

 

Step 4: Start the iteration by solving a load flow for the population to obtain power 

flow in all network lines. Based on the power flow results, the power loss and 
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the IVD for the SNG can be determined, and hence the fitness function is 

calculated using equation (3.1). 

Step 5:  Update the ISM by replacing the population that has the worst fitness with 

those that have better fitness. 

Step 6:  For each firefly, check its attractiveness to all other fireflies by comparing 

their brightness and update the fireflies based on equations (3.13, 3.14, 3.15) 

and the rules proposed in section 3.4. All fireflies should be rounded to the 

closest integer value. 

Step 7: Rank the population based on their fitness function. 

Step 8: Repeat steps 4 to 8 until the maximum number of iterations is reached, or 

the population converges to the same solution. 

Step 9: End the first stage and move to the second stage. The output of this stage 

is the ISM. The ISM contains the ranked open paths combinations that 

represent the solutions of the first stage. 

Step 10:  Generate the initial population based on the ISM determined from the first 

stage. Each path from the ISM contains one or more switches. However, only 

one switch is chosen randomly from each path in the ISM. The population in 

this stage is the index of the switch in the FLEDN  matrix. The initial 

population’s matrix 𝑥𝑠 is represented by the fireflies and is given by: 

𝑥 = 

[
 
 
 
𝑆1,1 … 𝑆1,𝑁𝐹𝐿

𝐷𝐺𝐿1,1 … 𝐷𝐺𝐿1,𝑁𝐷𝐺
𝐷𝐺𝐶1,1 … 𝐷𝐺𝐶1,𝑁𝐷𝐺

𝑆2,1 … 𝑆2,𝑁𝐹𝐿
𝐷𝐺𝐿2,1 … 𝐷𝐺𝐿2,𝑁𝐷𝐺

𝐷𝐺𝐶2,1 … 𝐷𝐺𝐶2,𝑁𝐷𝐺

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑆𝑁ℎ,1 … 𝑆𝑁ℎ,𝑁𝐹𝐿

𝐷𝐺𝐿𝑁ℎ,1 … 𝐷𝐺𝐿𝑁ℎ,𝑁𝐷𝐺
𝐷𝐺𝐶𝑁ℎ,1 … 𝐷𝐺𝐶𝑁ℎ,𝑁𝐷𝐺

 

]
 
 
 

 (3.25) 

Step 11:  Start the iteration by solving the load flow for all populations to obtain 

power flow in all network lines. Based on the power flow results, the power 

loss and the IVD for the EDN can be determined, and accordingly the fitness 

function using equation (3.1). 
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Step 12:  For each firefly, check its attractiveness to all other fireflies (compare 

their brightness) and update the fireflies based on equations (3.13, 3.14, 3.15) 

and the rules proposed in section 3.4. 

Step 13:  Rank the population based on their fitness function. 

Step 14:  Repeat the steps from 11 to 14 until the maximum number of iterations is 

reached, or the population converges to the same solution. 

Step 15:  Stop the process and print out the best firefly along with its fitness. The 

results show the best-found open switches’ configuration that minimizes the 

objective function given by equation (3.1). 

3.8 The proposed two-stage method for daily operation 

The previous sections considered finding the solution of the NR and DG when the 

EDN’s load is static and the DG’s output is controllable. However, in recent years, more 

RERs are integrated into the EDN, in addition to the continuous changes in the load 

characteristic. Hence, it is vital to study the case of daily operation where the load is 

varying hourly and considering the stochastic RER output. 

3.8.1 Objective function 

The objective function of this case is similar to eq. (3.1). It also contains minimizing 

the total real power losses and the voltage deviation of the EDN buses while maintaining 

the system constraints. However, the hour of the day must be referred to in the objective 

function formula. Hence, in this section, the objective function F can be presented as 

follows: 

min(𝐹(ℎ)) = min (𝑃𝑙𝑜𝑠𝑠
𝑅 (h) + IVD(h)) (3.26) 

𝑃𝑙𝑜𝑠𝑠
𝑅 (h) =  

𝑃𝑙𝑜𝑠𝑠
𝑟𝑒𝑐 (h) 

 𝑃𝑙𝑜𝑠𝑠
0 (ℎ)

 
(3.27) 

𝑃𝑙𝑜𝑠𝑠(ℎ) = ∑|𝐼𝑡(ℎ)|2𝑙𝑡(ℎ)𝑅𝑡

𝑛𝑏𝑟

𝑡=1

 
(3.28) 
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𝐼𝑉𝐷 (h) = 𝑚𝑎𝑥𝑖=2
𝑛 (

|𝑉1|−|𝑉𝑖(ℎ)|

|𝑉1|
) (3.29) 

Where; 

𝐹(ℎ) = the objective function at hour h. 

𝑃𝑙𝑜𝑠𝑠
𝑅 (h) = net power loss at hour h. 

𝐼𝑉𝐷(ℎ) = index of voltage deviation at hour h. 

ℎ = the hour of the day. 

𝑃𝑙𝑜𝑠𝑠
𝑟𝑒𝑐 (h) = the power loss of the system after reconfiguration. 

𝑃𝑙𝑜𝑠𝑠
0 (ℎ) = the power loss of the system after reconfiguration. 

𝐼𝑡(ℎ) = the current at line t at hour h. 

𝑅𝑡 = the resistor of line t. 

𝑙𝑡(ℎ) = the status of line t at hour h (1=close, 0=open). 

𝑛𝑏𝑟 = the total number of branches in the system. 

𝑛 = the total number of buses in the system. 

𝑉𝑖(ℎ) = the voltage magnitude at bus i during hour h. 

𝑉1 = the nominal voltage of the reference bus. 

It should be pointed out that the power loss before reconfiguration should be calculated 

for each hour since the load and the RER output are varying. 
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3.8.2 Operation constraints 

All the optimization solutions should never violate any of the following operating 

constraints at any hour: 

3.8.2.1 Power balance:  

In all hours, the supply of power must equal the sum of the load demands and the 

power loss at the hour. 

𝑃𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛(h) + ∑𝑃𝐷𝐺,𝑖

𝑘

𝑖=1

(h) = 𝑃𝑙𝑜𝑎𝑑(h) + 𝑃𝑙𝑜𝑠𝑠(ℎ) (3.30) 

Where; 

𝑃𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛(h) = the output power of the substation at hour h. 

𝑃𝐷𝐺,𝑖(ℎ) = the generated power of the DG i at hour h. 

𝑘= the total number of DGs in the EDN. 

𝑃𝑙𝑜𝑎𝑑(h) = the EDN’s load at hour h. 

𝑃𝑙𝑜𝑠𝑠(ℎ) = the power loss at hour h. 

3.8.2.2 Voltage constraint 

The voltage magnitude V at each bus should stay within specific limits during the 

operation of the EDN. 

𝑉min ≤ 𝑉𝑖(h) ≤ 𝑉max (3.31) 
 

Where;  

𝑉i(h) = the voltage magnitude of the bus i at hour h. 
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𝑉min = the lower bound of the voltage magnitude. 

𝑉max = the upper bound of the voltage magnitude. 

3.8.2.3 Distributed generator capacity 

 the generated power from each DG should have an acceptable output based on the 

DG’s characteristics. Hence, the output of each DG must fulfill the following equation: 

𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐷𝐺,𝑖(h)  ≤  𝑃𝑖

𝑚𝑎𝑥 (3.32) 

Where;  

𝑃𝑖
𝑚𝑖𝑛 = the lower bound of the DG output. 

𝑃𝑖
𝑚𝑎𝑥 = the upper bounds of the DG output. 

3.8.2.4 Power injection 

This constraint guarantees that no power from the DGs can flow to the substation at 

any hour of the day. 

∑𝑃𝐷𝐺,𝑖

𝑘

𝑖=1

(ℎ) < (𝑃𝑙𝑜𝑎𝑑(h) + 𝑃𝑙𝑜𝑠𝑠(ℎ)) (3.33) 

3.8.2.5 The radiality constraint 

The EDN must stay radial after finding the new configuration. In this research, the 

radiality of the EDN is maintained for all solutions as explained in section 3.4. Univ
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CHAPTER 4: VALIDATION OF THE PROPOSED METHOD 

4.1 Introduction 

This chapter discusses the performance of the proposed method in solving the NR 

problem in the EDN. Besides, the efficiency of the proposed method to solve the DG 

placement and sizing is evaluated. The proposed method is tested on 33-bus, 69-bus, and 

118-bus IEEE standard test systems. The obtained results are compared to the 

conventional EP (Dahalan, Mokhlis, Ahmad, Bakar, & Musirin, 2014), PSO (Dahalan, 

Mokhlis, Bakar, & Jamian, 2013), FA and BBO as well as to the recently published 

works. The proposed method in its second stage starts the search for the optimal 

configuration from the initial population found in the first stage whereas conventional 

methods start the search process from random populations. Furthermore, conventional 

methods need to check the population’s radiality repeatedly after each population update 

which increases the computation burden. 

4.2 Meta-heuristic parameters’ setting and assumptions 

Based on empirical tests that gave the best performance, the FA parameters are set to 

β0=1, γ=0.5, α=0.2. Similarly, the BBO parameters are set to mmax =0.01 and keep rate = 

0.1. Whereas, the parameters given in (Dahalan et al., 2014) was used for EP and the 

parameters of PSO were chosen according to EP (Dahalan et al., 2013). In addition, the 

conventional methods and the proposed method have the same number of population and 

maximum number of iterations to ensure the fair comparisons. All the tests were carried 

out by MATLAB using a PC with an Intel Core 2 Duo 3.06 GHz processor.  

Since existing works use different computer specifications, it is not possible to make 

a fair comparison for computational time. Therefore, comparison with the literature can 

only be done for voltage profile and the best, average, worst, and Standard Deviation 

(STD) of the power loss. Besides, all the configurations found in previous works were 
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simulated for a fair comparison. Nevertheless, comparison in computational time between 

the proposed two-stage FA and BBO as well as the conventional EP, PSO, FA, and BBO 

is presented to show the superiority of the proposed method. 

4.3 Test results for the network reconfiguration 

To demonstrate the effectiveness of the proposed method in solving the NR problem 

in the EDN, it is applied to 33-bus, 69-bus, and 118-bus IEEE test systems.  

4.3.1 Test system 1: IEEE 33-bus 

The 33-bus IEEE test system (Baran & Wu, 1989) consists of 33 buses and 37 

switches; switches 1 to 32 are the normally closed switches and 33 to 37 are the normally 

open switches. The system has a nominal voltage of 12.66 kV with the minimum and 

maximum allowable voltage magnitudes range between 0.9 p.u. and 1.1 p.u. The total 

active and reactive load of the system is 3715 kW and 2300 kvar, respectively. In the base 

case, the power loss of the system is 210.98 kW with the minimum bus voltage of 0.9038 

p.u. Since there are 5 normally open switches in the system, then the FLs number is equal 

to 5. The details of the 33-bus system can be found in the Appendix A.1. 

Figure 4.1 shows the IEEE 33-bus distribution network in the base case. Whereas, its 

SNG is presented in Figure 4.2. The SNG can be found as illustrated in section 3.3 and it 

consists of 12 paths and 8 fundamental nodes (i.e. 3, 6, 8, 9, 12, 15, 21, 29) which is 

smaller than the original EDN. As a result, the search space for the first stage was reduced 

to only 429 feasible solutions instead of 4×105 solutions in the original EDN. Hence, 

finding the optimal answer in the first stage is very attainable.  
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Figure 4.1 IEEE 33-bus distribution network in the base case 

 
Figure 4.2 The SNG of the IEEE 33-bus 

Table 4.1 shows the results found by the conventional EP, PSO, FA, and BBO as well 

as the proposed two-stage FA and BBO method. In this work, the simulation was run for 

500 times, and the best, worst, and average power loss were collected for each run, in 

addition to the minimum voltage. Then, for each method, the STD of the power loss was 

calculated to determine the consistency in obtaining the solution. 

 The optimal open switches configuration that minimizes the specified objective 

function under the system constraints. is (s7, s9, s14, s28, s32). The resulted power loss 

in the EDN after reconfiguration is 139.98 kW with the minimum voltage increment to 

0.9413 p.u. This value is comparable to the solution found by the other methods and this 

verified the accuracy of the proposed method. It is worth highlighting that although all 
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methods produced comparable optimal solutions, the STD of the power loss, as well as 

the total computational time for the proposed method, were significantly reduced 

compared to the other existing methods.  

Table 4.1 NR results for 33-bus 

Method Open switches of 
the best solution 

Power Loss (kW) Minimum 
Voltage 
(p.u.) Best Worst Avg. STD 

Base case 33, 34, 35, 36, 37 210.98 - - - 0.9038 

EP 7, 9, 14, 28, 32 139.98 192.73 148.85 9.84 0.9413 

PSO 7, 9, 14, 28, 32 139.98 182.36 149.2 9.78 0.9413 

FA 7, 9, 14, 28, 32 139.98 155.04 143.81 4.19 0.9413 

BBO 7, 9, 14, 28, 32 139.98 151.93 143.64 3.72 0.9413 

Proposed 
two-stage FA 7, 9, 14, 28, 32 139.98 140.71 139.99 0.101 0.9413 

Proposed 
two-stage 

BBO 
7, 9, 14, 28, 32 139.98 140.71 139.99 0.072 0.9413 

 

The two-stage FA and two-stage BBO have the most consistent performance with STD 

of only 0.101 kW and 0.072 kW, respectively. In addition, the average power loss of the 

proposed FA and BBO is 139.99 kW which is very close to the optimal solution. In 

comparison, the conventional EP, PSO, FA, and BBO have STD values of 9.84 kW, 9.78 

kW, 4.19 kW, and 3.72 kW, respectively. Additionally, the average power loss for 

conventional EP, PSO FA, and BBO amounted to 148.85 kW, 149.2 kW, 143.81 kW, and 

143.64 kW, respectively. Hence, the stability of the proposed two-stage method in finding 

the optimal configuration surpassed the other conventional methods due to the proposed 

guided initializations resulted from the first stage and the proper population’s codification 

that preserve the search process without any interference. 
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Figure 4.3 shows the voltage profile before and after reconfiguration. Since all the 

methods obtained the same solution, the voltage profile is identical. It is noted that in 

most buses, the voltage enhanced after applying the configuration found by the proposed 

method, comparing to the voltage profile in the base case.  

 
Figure 4.3 Comparison in voltage of the 33-bus for the NR  

It is worth mentioning that the open paths’ configuration of (P7, P9, P6, P4, P8) was 

obtained in the first stage of the proposed method for all runs. This configuration contains 

the optimal switches’ configuration, i.e. (s14, s28, s9, s7, s32). Therefore, the 

optimization search procedure starts from the initial populations that are adjoined to the 

optimal answer, which subsequently boosts the opportunity of the converge to the optimal 

solution in a significantly small number of iterations. Directly, a small number of 

iterations reduces the overall computation time. 

As tabulated in Table 4.2, the average number of iterations to converged in the 

proposed two-stage FA and BBO is 3.2 and 2.9, respectively, whereas they are 13.4, 18.1 

31.7, and 9.7 for conventional EP, PSO, FA, and BBO, respectively. Besides, the average 

time to converged is 1.7s and 1.5s for the proposed FA and BBO method, respectively, 
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which is significantly faster than the average time needed for the conventional EP, PSO, 

FA and BBO, which are 96s, 35s, 58s and 19s, respectively.  

Table 4.2 Comparison of iterations number and computational time for 33-bus 

Method Average iterations number Average total time (s) 

EP 13.4 96 

PSO 18.1 35 

FA 31.7 58 

BBO 9.7 19 

Proposed two-stage FA 3.2 1.7 

Proposed two-stage BBO 2.9 1.5 

A comparison of the convergence graphs between the proposed two-stage method and 

the conventional methods is presented in Figure 4.4. The comparison shows that the 

proposed two-stage FA and BBO start the convergence from initial solution close to the 

optimal solution due to the initialization in the first stage. Therefore, smaller number of 

iterations is required to find the optimal solution as compared to the conventional methods 

that start the search process without proper initialization. 

 

Figure 4.4 Comparison of the convergence graphs for 33-bus 
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Further analysis regarding the computational time was carried out and the summary is 

presented in Figure 4.5 for the case of conventional FA. It can be observed that 77% of 

the total time is consumed to perform the radiality check where it must be checked for 

each population during initialization as well as during each iteration whenever the 

population is updated. This is due to the fact that the radiality cannot be guaranteed if the 

switches combination were chosen randomly. Furthermore, the time needed for the 

radiality check increases proportionally to the size of the system. Therefore, for large 

EDN, the radiality check consumes a considerable time in the NR problem. Figure 4.5 

summarizes the remaining time allocation for load flow calculations (20%) and 

optimization process (3%) using conventional FA. 

 

Figure 4.5 Time consumption in the conventional FA method  

On the other hand, Figure 4.6 shows the time consumption for the proposed two-stage 

FA method. The load flow calculations in the first stage consumed 23% of the total time 

while 71% of the total time is consumed by the load flow calculations in the second stage. 

The remaining 6% is passed on to the other processes such as population update and 

optimization procedure. It can be concluded that the proposed two-stage FA method 

managed to reduce significant iteration numbers and overall computational time due to 

the proper initialization process and the proposed population codification. 
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Figure 4.6 Time consumption in the two-stage FA method 

The proposed method is also compared against the previous works such as Adaptive 

Weighted Improved Discrete PSO (AWIDPSO) (Subramaniyan, Subramaniyan, 

Veeraswamy, & Jawalkar, 2019), Harmony Search Algorithm (HSA) (Rao, Narasimham, 

Raju, & Rao, 2011), Firework Algorithm (FWA) (Imran & Kowsalya, 2014), two-stage 

heuristic-Improved Harmony Search Algorithm (IHSA) method (Tyagi et al., 2018) and 

the Enhanced PSO (EPSO) (A. M. Othman, El-Fergany, & Abdelaziz, 2015) as tabulated 

in Table 4.3. It has been observed that the proposed two-stage FA and BBO produced 

comparable solutions as FWA and heuristic-IHSA but with better STD of system power 

loss comparing to FWA. Also, the average power loss of the proposed method is smaller 

compared to the methods in the literature.  
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Table 4.3 Comparison of simulation results of 33-bus 

Method 
Open switches 

of the best 
solution 

Power Loss (kW) Minimum 
Voltage 
(p.u.) Best Worst Avg. STD 

HSA (Rao et 
al., 2011) 7, 10, 14, 36, 37 142.68 195.1 152.33 11.28 0.9038 

EPSO (A. 
M. Othman 
et al., 2015) 

7, 9, 14, 24, 32 141.92 - - - 0.9336 

AWIDPSO 
(Subramaniy

an et al., 
2019) 

7, 14, 11, 28, 32 141.63 - - - 0.9218 

FWA (Imran 
& Kowsalya, 

2014) 
14, 28, 9, 7, 32 139.98 155.75 145.63 5.49 0.9413 

Heuristic-
IHSA (Tyagi 
et al., 2018) 

7, 9, 14, 28, 32 139.98 - - - 0.9413 

Proposed 
two-stage 

FA 
7, 9, 14, 28, 32 139.98 140.71 139.99 0.101 0.9413 

Proposed 
two-stage 

BBO 
7, 9, 14, 28, 32 139.98 140.71 139.99 0.072 0.9413 

4.3.2 Test system 2: IEEE 69-bus 

The 69-bus system is a medium-sized test system with 73 switches (Savier & Das, 

2007). The normally closed switches are from 1-68 while switches 69-73 are the normally 

open switches. The 69-bus has a nominal voltage of 12.66 kV and base apparent power 

of 100 MVA. The total active load is 3802 kW, whereas the total reactive load of the 

system is 2694 kvar. The power loss in the initial configuration is 224.97 kW and the 

minimum voltage is 0.9092 p.u. The details of the 69-bus system can be found in the 

Appendix A.2.  

Since this system has 5 normally open switches, it has 5 FLs as well. It worth 

highlighting that the SNG of this 69-bus system has an identical structure with the 33-bus 

SNG. However, the fundamental nodes’ loads and the paths’ impedances are different. 
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The 69-bus SNG consists of 12 paths and 8 fundamental nodes. Like the 33-bus’s SNG, 

the 69-bus’s SNG has 429 feasible solutions as well. Whereas, the 69-bus EDN has a 

higher number of possible solutions of 1.5×107 solutions. The 69-bus EDN and SNG are 

shown in Figure 4.7 and 4.8, respectively. 

 

Figure 4.7 IEEE 69-bus distribution network in the base case 

 

Figure 4.8 The SNG of the IEEE 69-bus 

The results of the proposed method are presented in Table 4.4. The open switches’ 

configuration of (s14, s55, s61, s69, s70) minimizes the objective function given in 

equation (3.1) by reducing the system power loss to 98.61 kW and improving the 

minimum bus voltage to 0.9495 p.u. 
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Table 4.4 also shows that the power loss obtained by the conventional EP, PSO, FA, 

and BBO is 99.06 kW, 98.93 kW, 98.81 kW, and 98.81 kW, respectively. Besides, the 

consistency of finding the optimal solution by the proposed method is better than the 

consistency of the conventional methods. This is because the STD of the proposed two-

stage FA and BBO are 0.17 kW and 0.14 kW, respectively, which is smaller than the STD 

of the conventional methods. Furthermore, the average power loss obtained by the 

proposed FA and BBO are 98.70 kW and 98.63 kW, whereas the conventional EP, PSO, 

FA, and BBO obtained an average power loss of 112.04 kW, 107.87 kW, 104.62 kW, and 

103.07 kW, respectively. 

Table 4.4 NR results for 69-bus 

Method Open switches of 
the best solution 

Power Loss (kW) Minimum 
Voltage 
(p.u.) Best Worst Avg. STD 

Base case 69, 70, 71, 72, 73 224.97 - - - 0.9092 

EP 12, 14, 55, 61, 69 99.06 136.84 112.04 11.51 0.9495 

PSO 12, 13, 56, 61, 69 98.93 116.92 107.87 7.16 0.9495 

FA 12, 55, 61, 69, 70 98.81 116.92 104.62 6.48 0.9495 

BBO 12, 55, 61, 69, 70 98.81 115.87 103.07 5.37 0.9495 

Proposed 
two-stage FA 14, 55, 61, 69, 70 98.61 99.61 98.70 0.17 0.9495 

Proposed 
two-stage 

BBO 
14, 55, 61, 69, 70 98.61 99.61 98.63 0.14 0.9495 

Figure 4.9 presents a comparison in voltage profile of the 69-bus before 

reconfiguration and after obtaining the optimal solution. It is observed that in most buses, 

the voltage improved after applying the configuration found by the proposed method, 

comparing to the voltage profile in the base case. The voltage profile of the proposed 

method is slightly better than the voltage profile of the rest methods, although all of them 

have the same minimum bus voltage at bus 61. 

Univ
ers

iti 
Mala

ya



71 

 
Figure 4.9 Comparison in voltage of the 69-bus for the NR 

Table 4.5 presents a comparison between the proposed and conventional methods in 

the average number of iterations and the average total time required for converging to the 

final solution. The proposed two-stage FA and BBO needed 5.2 and 4.5 iterations as well 

as 2.7s and 2.3s, respectively, to converge. On the other hand, the conventional methods 

needed larger iterations number and consequently longer computational time for 

converging to the final solution. Moreover, a comparison of the convergence graphs 

between the proposed method and the conventional methods is presented in Figure 4.10.  

Table 4.5 Comparison of iterations number and computational time for 69-bus 

Method Average iterations number Average total time (s) 

EP 16.7 109.1 

PSO 20.3 48.6 

FA 35.7 87.3 

BBO 11.1 26.5 

Proposed two-stage FA 5.2 2.7 

Proposed two-stage BBO 4.5 2.3 
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Figure 4.10 Comparison of the convergence graphs for 69-bus 

The proposed two-stage FA and BBO are also compared to the works reported in the 

literature as tabulated in Table 4.6. The results demonstrate that the power loss obtained 

by the proposed method is smaller than the power loss of the Genetic Algorithm (GA), 

Refined GA (RGA), HSA (R. Rao et al., 2013) and the Modified PSO (MPSO) (Wu, 

Dong, & Liu, 2018). In addition, the proposed method achieved a smaller average power 

loss compared to the Binary Particle Swarm Optimization Gravity Search Algorithm 

(BPSOGSA) (Fathy et al., 2018), though both methods have the same best solution. 

Furthermore, the STD of the power loss found by the proposed two-stage FA and BBO 

is 0.17 kW and 0.14 kW which is smaller comparing to 3.14 kW reported in MPSO (Wu 

et al., 2018). 
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Table 4.6 Comparison of simulation results of 69-bus 

Method Open switches of 
the best solution 

Power Loss (kW) Minimum 
Voltage 
(p.u.) Best Worst Avg. STD 

GA (R. Rao 
et al., 2013) 14, 53, 61, 69, 70 103.29 - - - 0.9411 

RGA (R. Rao 
et al., 2013) 13, 17, 55, 61, 69 100.28 - - - 0.9428 

HSA (R. Rao 
et al., 2013) 13, 18, 56, 61, 69 99.35 - - - 0.9428 

MPSO (Wu 
et al., 2018) 

14, 47, 51, 65, 70 100.97 110.55 104.95 3.14 - 

BPSOGSA 
(Fathy et al., 

2018) 
14, 55, 61, 69, 70 98.61 - 171.50 - 0.9495 

Proposed 
two-stage FA 14, 55, 61, ,69, 70 98.61 99.61 98.70 0.17 0.9495 

Proposed 
two-stage 

BBO 
14, 55, 61, ,69, 70 98.61 99.61 98.63 0.14 0.9495 

 

4.3.3 Test system 3: IEEE 118-bus 

The 118-bus EDN is one of the largest-sized test systems typically used for distribution 

system (Zhang, Fu, & Zhang, 2007). For this system, switches 1 to 118 are the normally 

closed switches, whereas switches 119 to 133 are the normally open switches. This EDN 

has a nominal voltage of 11 kV with the minimum and maximum voltage magnitudes 

range between 0.9 p.u. and 1.1 p.u., respectively. The total active and reactive load of this 

EDN is 22710 kW and 17041 kvar, respectively. The details of the 118-bus system can 

be found in the Appendix A.3. The power loss of the network before configuration (base 

case) is 1296.5 kW with the minimum bus voltage of 0.8688 p.u. The 118-bus EDN has 

15 FL as it has 15 normally open switches. 

The SNG of this EDN consists of 41 paths and 27 fundamental nodes which are (1, 2, 

4, 8, 11, 24, 25, 27, 30, 31, 36, 42, 45, 56, 61, 65, 67, 68, 76, 78, 82, 89, 95, 100, 105, 
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110, 113). Figure 4.11 and 4.12 show the 118-bus EDN and its SNG, respectively. In the 

EDN diagram, the normally open switches are named based on the destination's bus in 

the base case (e.g. the switch between bus 2 and bus 10 is the switch number 10). 

Whereas, the number for the normally open switches is shown in 4.11. For the 118-bus 

system, there are 7×1018 potential configurations candidates which translates to very huge 

search space. However, a massive amount of these configurations does not satisfy the 

radiality constraint, and hence cannot be considered as a valid solution. On the other hand, 

the number of configurations in the SNG of the 118-bus is around 15×103. Thus, 

obtaining an initialization that leads to the optimal configuration is more prospective by 

the proposed method as compared to the conventional methods that generate the initial 

population randomly. 

 
Figure 4.11 IEEE 118-bus distribution network in the base case 
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Figure 4.12 The SNG of the IEEE 118-bus 

The optimal open switches configuration obtained by the proposed two-stage method 

is presented in Table 4.7. The open switch configuration is (s24, s26, s35, s40, s43, s51, 

s59, s72, s75, s96, s98, s110, s122, s130, s131). This configuration reduced the power 

loss to 853.58 kW and increases the minimum bus voltage of the system to 0.9323 p.u. 

Furthermore, the results demonstrate a precise consistency in the proposed method 

performance since the STD of the two-stage FA and BBO is only 6.05 kW and 4.48 kW, 

respectively. In addition, the average power loss of the proposed two-stage FA and BBO 

is 857.54 kW and 856.08 kW, respectively, which is close to the optimal answer. On the 

other hand, the conventional EP, PSO, FA, and BBO methods obtained different solutions 

that reduce the total power loss to 907.34 kW, 896.88 kW, 872.09 kW, and 871.59 kW, 

respectively. It should be pointed out that all these solutions are distanced away from the 

actual optimal solution. Besides, the STD for the conventional EP, PSO, FA, and BBO is 

158.43 kW, 159.44 kW 141.16 kW, and 137.74 kW, respectively. Hence, this indicates 

the poor performance of conventional methods.  
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Table 4.7 NR results for 118-bus 

Method 
Open switches 

of the best 
solution 

Power Loss (kW) Minimum 
Voltage 
(p.u.) Best Worst Avg. STD 

Base case 119 to 133 1296.5 - - - 0.8688 

EP 

24, 26, 34, 39, 
42, 51, 61, 73, 
74, 82, 96, 99, 
110, 122,131 

907.34 1344.49 1151.16 158.43 0.9319 

PSO 

22, 25, 34, 38, 
42, 49, 60, 73, 
75, 96, 98, 110, 
122, 130, 131 

896.88 1326.67 1140.04 159.44 0.9321 

FA 

22, 27, 40, 44, 
50, 58, 73, 75, 

77, 83, 110, 123, 
126, 131, 133 

872.09 1246.9 1045.19 141.16 0.9287 

BBO 

24, 26, 35, 39, 
42, 51, 60, 71, 
74, 77, 96, 110, 
122, 130, 131 

871.59 1241.49 1036.68 137.74 0.9322 

Proposed 
two-stage 

FA 

24, 26, 35, 40, 
43, 51, 59, 72, 
75, 96, 98, 110, 
122, 130, 131 

853.58 871.59 857.54 6.05 0.9323 

Proposed 
two-stage 

BBO 

24, 26, 35, 40, 
43, 51, 59, 72, 
75, 96, 98, 110, 
122, 130, 131 

853.58 870.49 856.08 4.48 0.9323 

 

Moreover, a comparison between the voltage profile in the base case and after 

obtaining the configurations is provided in Figure 4.13. The voltage profile of the 

proposed method NR achieved great improvement as compared to the base case voltage 

profile and the voltage profile of the other methods. 
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Figure 4.13 Comparison in voltage of the 118-bus for the NR 

Table 4.8 presents a comparison between the proposed method against conventional 

methods with regards to the average computational time and the number of iterations. 

The proposed two-stage FA and BBO methods managed to find the optimal solution with 

an average of 15.1 and 14.3 iterations, respectively, and within an average computational 

time of 7.4s and 6.9s, respectively. On the other hand, the conventional EP, PSO, FA, and 

BBO consumed an average computational time of 284s, 171s, 208s, and, 132s 

respectively, to find the NR solution. Also, the number of iterations for conventional EP, 

PSO, FA, and BBO are 115, 753, 876, and 93, respectively. Moreover, a comparison of 

the convergence graphs between the proposed method and the conventional methods is 

presented in Figure 4.14. The superiority of the proposed method over the conventional 

methods in terms of the quality of the solution as well as computational time is mainly 

due to the proposed guided initializations as well as the proposed codifications and 

radiality rules. 
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Table 4.8 Comparison of iterations number and computational time for 118-bus 

Method Average iterations number Average total time (s) 

EP 115 284 

PSO 753 171 

FA 876 208 

BBO 93 132 

Proposed two-stage FA 15.1 7.4 

Proposed two-stage BBO 14.3 6.9 

 

Figure 4.14 Comparison of the convergence graphs for 118-bus 

The proposed method is also compared to existing works in the literature as tabulated 

in Table 4.9. The proposed two-stage method found the same optimal solution as FWA 

(Imran & Kowsalya, 2014) and the HSA (Rao et al., 2011). However, the STD of the 

proposed method is smaller than the one found by the FWA and the HSA. In addition, 

the reduction in average power loss using the proposed method is higher than FWA and 

HSA methods. It should also be highlighted that the proposed two-stage method produced 

Univ
ers

iti 
Mala

ya



79 

a better solution compared to the best solution produced by the Modified Tabu Search 

(MTS) (Abdelaziz et al., 2010), EPSO (A. M. Othman et al., 2015) and Hierarchical 

Decentralized Method (HDM) (Ding & Loparo, 2014). 

Table 4.9 NR results for 118-bus 

Method Open switches of 
the best solution 

Power Loss (kW) Minimum 
Voltage 
(p.u.) Best Worst Avg. STD 

Base case 119 to 133 1296.5 - - - 0.8688 

HDM (Ding 
& Loparo, 

2014) 

23, 26, 34, 38, 40, 
45, 58, 71, 74, 95, 
97, 109, 123, 130, 

131 

873.62 - - - 0.932 

EPSO (A. M. 
Othman et al., 

2015) 

23, 27, 35, 40, 43, 
52, 59, 72, 75, 96, 
98, 110, 123, 130 

,131 

868.15 - - - 0.9323 

MTS 
(Abdelaziz et 

al., 2010) 

24, 27, 35, 40, 43, 
52, 59, 72, 75, 96, 
98, 110, 123, 130, 

131 

869.71 884 870 - 0.9321 

HSA (Rao 
et al., 2011) 

24, 26, 35, 40, 43, 
51, 59, 72, 75, 96, 
98, 110, 122, 130, 

131 

853.58 1282.7 935.01 69.3 0.9323 

FWA 
(Imran & 
Kowsalya, 

2014) 

24, 26, 35, 40, 43, 
51, 59, 72, 75, 96, 
98, 110, 122, 130, 

131 

853.58 942.34 887.54 29.58 0.9323 

Proposed 
two-stage FA 

24, 26, 35, 40, 43, 
51, 59, 72, 75, 96, 
98, 110, 122, 130, 

131 

853.58 871.59 857.54 6.05 0.9323 

Proposed 
two-stage 

BBO 

24, 26, 35, 40, 43, 
51, 59, 72, 75, 96, 
98, 110, 122, 130, 

131 

853.58 870.49 856.08 4.48 0.9323 
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4.4 Test results of the distributed generation integration 

The proper integration of the DG in the EDN has a great impact on mitigating the 

power loss and improving the voltage profile. This section discusses the performance of 

the proposed method in finding the solution of the DG placement and sizing. It is worth 

mentioning that it is assumed that the maximum capacity of each DG is 2000 kW for the 

33-bus and 69-bus and 4000 kW for the 118-bus (R. Rao et al., 2013). The proposed 

method is tested on 33-bus, 69-bus, and 118-bus IEEE test systems, and the results are 

compared to the conventional methods as well as the works found in the literature. In this 

section, all the integrated DGs are dispatchable DGs. Nevertheless, section 5.5 will 

investigate the integration of the intermittent RER in the EDN. 

4.4.1 Effect of the number of DGs on the distribution system performance 

To investigate the effect of the number of DGs installed in the EDN on the power loss 

and voltage deviation, the number of optimal integrated DGs increased gradually for all 

test systems, and the results are presented in Tables 4.10, 4.11 and 4.12. All the results 

have been obtained by the proposed two-stage method. 

As tabulated in Table 4.10 for the 33-bus EDN, the power loss decreases when the 

number of DG increases. However, the loss reduction rate is not steady. It is noted that 

when the number of DGs is more than three, the difference in power loss reduction is 

marginal. Hence, adding more DGs to the EDN will increase the DG installment and 

operation cost without promising revenue. Hence, connecting three DGs to the 33-bus 

EDN is sufficient. 
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Table 4.10 Analysis of the number of DGs for 33-bus 

 

Table 4.11 shows the impact of DGs’ number on power loss and voltage deviation. 

The results show that the minimum bus voltage in the system remains similar when the 

number of DGs increases. Additionally, the power loss reduction rate is small especially 

when the number of DGs is more than two. Therefore, it is adequate to integrate two DGs 

in the 69-bus to fulfill satisfying improvement in power loss and voltage deviation 

reduction. However, in this research, three DGs are connected to the 69-bus to provide a 

fair comparison with the previous works. 

 

 

Number of DG DG 
location 

DG 
size 

(kW) 

Total DG 
size 

(kW) 

Power 
Loss (kW) 

Loss 
reduction 

(%) 

Minimum 
Voltage 
(p.u.) 

Base case - - - 210.98 - 0.9038 
1 7 2000 2000 115.19 45.4 0.9364 

2 
13 851 

2009 87.16 58.69 0.9685 
30 1157 

3 
13 801 

2945 72.78 65.50 0.9686 24 1091 
30 1053 

4 

6 926 

3227 67.631 67.94 0.9703 14 647 
24 967 
30 686 

5 

6 744 

3224 66.34 68.55 0.9713 
9 686 
15 469 
24 357 
30 967 
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Table 4.11 Analysis of the number of DGs for 69-bus 

 

The number of DGs in the 118-bus EDN is investigated in Table 4.12. The DGs 

number is varied between 1 and 9, and the power loss and voltage deviation are 

determined for each case. The results show that the improvement rate of power loss 

reduction and voltage deviation is decreasing when more than seven DGs is considered. 

Thus, this research considers installing seven DGs in the 118-bus EDN. 

 

 

 

 

Number of DG DG 
location 

DG 
size 

(kW) 

Total DG 
size 

(kW) 

Power 
Loss (kW) 

Loss 
reduction 

(%) 

Minimum 
Voltage 
(p.u.) 

Base case - - - 224.97 - 0.9092 
1 58 1872 1872 83.21 63.01 0.9683 

2 
17 531 

2312 71.68 68.14 0.9789 
61 1781 

3 
11 625 

2659 69.49 69.11 0.979 22 321 
61 1713 

4 

11 526 

3343 67.92 69.81 0.979 18 380 
48 718 
58 1719 

5 

9 404 

3494 67.53 69.98 0.979 
12 370 
21 312 
48 717 
58 1689 
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Table 4.12 Analysis of the number of DGs for 118-bus 

Number 
of DG 

DG 
location 

DG size 
(kW) 

Total DG 
size (kW) 

Power 
Loss (kW) 

Loss 
reduction 

(%) 

Minimum 
Voltage (p.u.) 

Base case - - - 1296.5 - 0.8688 
1 71 2978 2978 1015.2 21.69 0.9097 

2 71 2978 6098 803.73 38.01 0.9117 
109 3120 

3 
50 2881 

8979 803.73 48.63 0.9545 71 2978 
109 3120 

4 

50 2875 

10422 803.73 52.57 0.9561 72 2603 
96 1822 
109 3121 

5 

50 2881 

12292 573.4 55.77 0.9562 
72 2533 
80 2095 
96 1663 
109 3120 

6 

41 1845 

13879 537.68 58.53 0.9567 

50 2763 
72 2475 
80 2068 
96 1628 
109 3098 

7 

30 3708 

16605 514.88 60.29 0.9567 

42 1154 
50 2331 
72 2533 
80 2095 
96 1663 
109 3120 

8 

20 1690 

18023 495.03 61.82 0.9567 

30 3450 
42 1140 
50 2331 
72 2533 
80 2095 
96 1663 
109 3120 

9 

20 1673 

18402 484.81 62.61 0.9567 

30 3101 
42 1125 
50 2330 
58 777 
72 2533 
80 2088 
96 1661 
109 3114 
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4.4.2 Test system 1: IEEE 33-bus 

As shown in section 4.3.1, the 33-bus EDN consists of 33 bus while its corresponding 

SNG has 8 buses only, which represents the FNs of the EDN. In the first stage of the 

proposed method, the DGs locations and sizes are found for the SNG. Then, in the second 

stage, starting from the solution of the first stage, the DG location and size for the EDN 

is determined. The first stage solutions are not mentioned since they are initial solutions.  

Table 4.13 presents the results of the proposed method and the conventional methods. 

The best solution was obtained by the proposed two-stage BBO. Three DGs are added at 

buses 13, 24, and 30 with capacities of 801 kW, 1091 kW, and 1053 kW, respectively. 

As a result, the power loss is reduced to 72.78 kW and the minimum voltage is enhanced 

to 0. 9686 p.u. The proposed two-stage FA also found a sub-optimal solution that 

mitigates the EDN’s power loss to 72.85 kW and raises the minimum voltage to 0.9675 

p.u. On the other hand, the solutions found by the conventional EP, PSO, FA, and BBO 

reduce the power loss to 83.74 kW, 81.2 kW, 78.32 kW, and 76.12 kW, respectively.  

To analyses the impact of the DG integration’s solutions on the voltage profile, Figure 

4.15 shows a comparison in the voltage profile of the 33-bus system for the solutions 

found by the proposed two-stage FA and BBO as well as the conventional EP, PSO, FA, 

and BBO. The comparisons show the voltage profile improvement after integrating the 

DGs in the network. However, the voltage profile of the proposed method solution fulfills 

a greater enhancement in the voltage magnitude compared to the solutions of the 

conventional methods and the voltage magnitude in the base case when there is no DG 

connected to the EDN. 
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Table 4.13 The results of the DG integration for 33-bus 

 

 

Figure 4.15 Comparison in voltage of the 33-bus for the DG 

Method DG 
location 

DG 
size 

(kW) 

Total DG 
size 

(kW) 

Power 
Loss (kW) 

Loss 
reduction 

(%) 

Minimum 
Voltage 
(p.u.) 

Base case - - - 210.98 - 0.9038 

EP 
8 864 

3203 83.74 60.31 0.9475 23 1449 
30 890 

PSO 
9 1015 

2632 81.20 61.51 0.9572 25 580 
28 1037 

FA 
10 942 

2788 78.32 62.88 0.9609 24 762 
28 1084 

BBO 
10 1101 

2711 76.12 63.92 0.9646 24 866 
31 744 

The proposed 
two-stage FA 

14 761 
2861 72.85 65.47 0.9675 24 1062 

30 1038 

The proposed 
two-stage BBO 

13 801 
2945 72.78 65.50 0.9686 24 1091 

30 1053 
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The proposed method results are also compared against the previous works found in 

the literature as tabulated in Table 4.14. The solutions found by the proposed two-stage 

FA and BBO surpasses the solutions of the HSA (R. Rao et al., 2013), FWA (Imran et 

al., 2014), UVDA (Bayat et al., 2016), Symbiotic Organism Search (SOS) (T. P. Nguyen 

& Vo, 2018), Multi-Objective Taguchi Approach (MOTA) (Meena, Swarnkar, Gupta, & 

Niazi, 2017), Iterative Improved Analytical (IIA) method (Forooghi Nematollahi et al., 

2016) and Quasi-Oppositional Teaching Learning Based Optimization (QOTLBO) (S. 

Sultana, Roy, & Systems, 2014). The proposed two-stage FA and BBO minimize the 

power loss to 72.85 kW and 72.85 kW, respectively. Whereas, the power loss of the HSA, 

FWA, UVDA, SOS, MOTA, IIA, and QOTLBO is 96.7 kW, 88.68 kW, 74.21 kW, 

104.19 kW, 97.47 kW, 138.25 kW and 74.1 kW, respectively. Therefore, it can be 

concluded that significant enhancement in power loss reduction and voltage profile is 

achieved by using the proposed method to find the optimal DG placement and sizing in 

the EDN. 
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Table 4.14 Comparison of DG integration with the for 33-bus 

4.4.3 Test system 2: IEEE 69-bus 

The 69-bus IEEE test system composes of 69 buses whereas its SNG has 8 buses only. 

Hence, the search space for this case in the first stage is noticeably reduced. As presented 

in Table 4.15, the proposed two-stage FA and BBO obtained solutions that alleviate the 

power loss to 69.69 kW and 69.49 kW, respectively. The best solution found by the 

Method DG 
location) 

DG size 
(kw) 

Total 
DG 
size 

(kW) 

Power 
Loss 
(kW) 

Loss 
reduction 

(%) 

Minimum 
Voltage 
(p.u.) 

Base case - - 210.98 - 0.9038 

HSA (R. Rao 
et al., 2013) 

 17 572 
1725 96.76 52.26 0.967 18 107 

33 1046 

FWA (Imran et 
al., 2014) 

 14 589 
1792 88.68 56.24 0.968 18 189 

32 1014 

UVDA (Bayat 
et al., 2016) 

 11 875 
2731 74.21 63.39 0.962 24 931 

29 925 
SOS (T. P. 

Nguyen & Vo, 
2018) 

 6 2206 
3122 104.19 50.61   0.9501 28 200 

29 716 

MOTA 
(Meena et al., 

2017) 

 30 1340 

3280 97.47 53.79 0.9820 7 980 

14 960 

IIA (Forooghi 
Nematollahi et 

al., 2016) 

 13 385 
1986 138.25 34.47 0.9317 24 554 

30 1047 

QOTLBO (S. 
Sultana et al., 

2014) 

 12 880 

3010 74.10 64.87 0.9645 24 1059 

29 1071 

The proposed 
two-stage FA 

14 761 
2861 72.85 65.47 0.9675 24 1062 

30 1038 
The proposed 

two-stage 
BBO 

13 801 
2945 72.78 65.50 0.9686 14 761 
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proposed two-stage BBO includes placing the DGs at buses 11, 22, and 61 while their 

capacities are 625 kW, 321 kW, 1731 kW, respectively. The solutions found by the 

conventional EP, PSO, FA, and BBO reduce the power loss to 81.92 kW, 80.06 kW, 

74.36 kW, and 73.74 kW, respectively. 

Table 4.15 The results of the DG integration for 69-bus 

The voltage profile for the 69-bus considering the solutions found by the proposed 

method and the conventional methods is shown in Figure 4.16. The voltage profile of the 

proposed method’s solution outperforms the voltage profile of other methods. 

Table 4.16 shows a comparison between the proposed method and the HSA (R. Rao 

et al., 2013), FWA (Imran et al., 2014), UVDA (Bayat et al., 2016), SOS (T. P. Nguyen 

& Vo, 2018), and QOTLBO (S. Sultana et al., 2014) methods. The proposed two-stage 

FA and BBO achieved lower power loss and with better voltage profile as compared to 

the work found in the literature. It is noted that the proposed method reduced the power 

Method DG 
location 

DG 
size 

(kW) 

Total 
DG 
size 

(kW) 

Power 
Loss 
(kW) 

Loss 
reduction 

(%) 

Minimum 
Voltage 
(p.u.) 

Base case - - 224.97 - 0.9092 

EP 
6 820 

3720 81.92 63.59 0.9701 40 1067 
61 1833 

PSO 
 24 348 

2811 80.06 64.41 0.9689 37 998 
63 1465 

FA 
 61 1232 

2430 74.36 66.95 0.9766 64 424 
66 774 

BBO 
 53 392 

2752 73.74 67.22 0.98 61 1768 
68 592 

The proposed 
two-stage FA 

18 399 
2586 69.69 69.01 0.9789 58 1727 

63 460 
The proposed 

two-stage 
BBO 

11 625 
2659 69.49 69.11 0.979 22 321 

61 1713 
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loss by 19.91% as compared to the solution found by the HSA while the total DGs’ 

capacity used in the proposed method is smaller than the one used in HSA.  

 
Figure 4.16 Comparison in voltage of the 69-bus for the DG 

Table 4.16 Comparison of DG integration with the for 69-bus 

Method DG 
location 

DG 
size 

(kW) 

Total 
DG 
size 

(kW) 

Power 
Loss 
(kW) 

Loss 
reduction 

(%) 

Minimum 
Voltage 
(p.u.) 

Base case - - 224.97 - 0.9092 

HSA (R. Rao 
et al., 2013) 

 63 1302 
2689 86.77 61.43 0.9677 64 369 

65 1018 

FWA (Imran et 
al., 2014) 

27 225 
1831 77.85 65.39 0.974 61 1198 

65 408 

UVDA (Bayat 
et al., 2016) 

 11 604 
2431 72.62 67.72 0.9688 17 417 

61 1410 
SOS (T. P. 

Nguyen & Vo, 
2018) 

 57 258 
1982.7 82.07 63.51 0.969 58 200 

61 1524 
QOTLBO (S. 
Sultana et al., 

2014) 

 18 533 
2298 71.65 68.15 0.9792 61 1198 

63 567 

The proposed 
two-stage FA 

18 399 
2586 69.69 69.01 0.9789 58 1727 

63 460 
The proposed 

two-stage 
BBO 

11 625 
2659 69.49 69.11 0.979 22 321 

61 1713 
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4.4.4 Test system 3: IEEE 118-bus 

The 118-bus IEEE test system consists of 118 buses whereas its SNG contains only 

27 buses. Therefore, the search space in the first stage is notably decreased. Tables 4.17 

and 4.18 show the DGs’ locations and sizes found by the conventional EP, PSO, FA, and 

BBO as well as the proposed two-stage FA and BBO. 

 It is noted that when five DGs are connected to the EDN, the best solution is found 

by the proposed two-stage BBO which reduces the power loss to 573.39 kW while 

increasing the minimum bus voltage to 0.9561 p.u. The proposed two-stage FA obtained 

a solution that mitigates the power loss to 576.58 kW and enhances the minimum bus 

voltage to 0.9533 p.u. Moreover, Table 4.17 show that the solutions found by the 

conventional EP, PSO, FA and BBO reduce the power loss and voltage deviation by 

smaller values when compared against the solutions found by the proposed two-stage 

method. For instance, the solution found by the conventional EP reduced the power loss 

to 625.4 kW although the total DGs’ capacity is larger than the capacity found by the 

proposed method. 

 In the same manner, as tabulated in Table 4.18, when seven DGs are connected to the 

118-bus EDN, the proposed two-stage BBO achieved a solution that fulfills minimum 

power loss and voltage deviation followed by the solution found by the proposed two-

stage FA. The solution found by the proposed two-stage BBO reduced the power loss to 

514.87 kW with a minimum voltage of 0.9566. Hence, the power loss is reduced by 

60.29% as compared to the base case. From Tables 4.17 and 4.18, it can be concluded 

that the proposed two-stage method has the superiority of obtaining better solutions as 

compared to the conventional methods. 
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Table 4.17 The results of the DG integration for 118-bus when 5 DGs are 
connected 

 

 

 

 

Method DG 
location 

DG size 
(kW) 

Total 
DG 
size 

(kW) 

Power 
Loss 
(kW) 

Loss 
reduction 

(%) 

Minimum 
Voltage 
(p.u.) 

Base case - - 1296.5 - 0.8688 

EP 

 

6 4000 

12734 625.48 51.75 0.9468 
52 1717 
71 2679 
91 2144 
111 2192 

PSO 

 

50 2418 

10928 612.27 52.77 0.9423 
58 1335 
70 2384 
91 1950 
110 2839 

FA 

40 2919 

13425 609.29 53.01 0.9516 
48 2907 
74 2340 
87 2339 
110 2918 

BBO 

50 2288 

11115 603.77 53.43 0.9475 
72 2322 
81 2295 
93 1709 
111 2500 

The proposed 
two-stage FA 

50 2681 

11935 576.58 55.52 0.9533 
74 2311 
80 2085 
91 1990 
110 2868 

The proposed 
two-stage 

BBO 

50 2881 

12292 573.39 55.77 0.9561 
72 2533 
80 2095 
96 1663 
109 3120 Univ
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Table 4.18 The results of the DG integration for 118-bus when 7 DGs are 
connected 

Method DG 
location 

DG size 
(kW) 

Total 
DG 
size 

(kW) 

Power 
Loss 
(kW) 

Loss 
reduction 

(%) 

Minimum 
Voltage 
(p.u.) 

Base case - 1296.5 - - 0.8688 

EP 

20 2336 

14565 572.25 55.86 0.9391 

32 1586 
35 1865 
73 2426 
81 3363 
104 1236 
110 1748 

PSO 

73 2501 

14885 554.04 57.26 0.9635 

81 2126 
42 1315 
109 2936 
35 1781 
98 1533 
50 2692 

FA 

32 2296 

14091 542.79 58.13 0.9495 

43 1506 
51 1379 
71 2595 
86 1871 
96 1326 
110 3119 

BBO 

32 2344 

14202 530.46 59.08 0.9621 

42 1170 
52 2126 
73 2490 
80 1899 
91 1301 
110 2873 

The proposed 
two-stage FA 

20 14202 

15771 515.02 60.28 0.9563 

41 1833 
50 2732 
72 2533 
80 2094 
96 1663 
109 3119 

The proposed 
two-stage 

BBO 

30 3708 

16604 514.87 60.29 0.9566 

42 1154 
50 2331 
72 2533 
80 2094 
96 1663 
109 3119 
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A comparison between the proposed two-stage method and the works found in the 

literature is tabulated in Tables 4.19 and 4.20 for the case of 5 and 7 connected DGs, 

respectively. Table 4.19 shows that the solutions found by SOS (T. P. Nguyen & Vo, 

2018), TLBO (S. Sultana et al., 2014) and QOTLBO (S. Sultana et al., 2014) reduced the 

power loss to 798.8 kW, 594.66 kW, and 581.17 kW, respectively. Whereas, the proposed 

two-stage FA and BBO reduced the power loss to 576.58 kW and 573.39 kW, 

respectively. Similarly, for the case of 7 connected DGs, Table 4.20 illustrates the 

superiority of the proposed method as compared against QOTLBO, TLBO, and SOS 

since the proposed method accomplished better results for power loss mitigation and 

voltage profile enhancement. Therefore, from the presented observations and 

comparisons, the preeminence of the proposed method over the conventional methods 

and works found in the literature is asserted. 
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Table 4.19 Comparison of DG integration with the for 118-bus when 5 DGs are 
connected 

 

 

 

 

 

Method DG 
location 

DG size 
(kW) 

Total 
DG 
size 

(kW) 

Power 
Loss 
(kW) 

Loss 
reduction 

(%) 

Minimum 
Voltage 
(p.u.) 

Base case - - 1296.5 - 0.8688 

QOTLBO (S. 
Sultana et al., 

2014) 

 49 3013 

12124 581.17 55.17 0.9541 
72 2543 
82 1665 
91 1766 
109 3137 

TLBO (S. 
Sultana et al., 

2014) 

49 2775 

11084 594.66 54.13 0.9510 
72 2421 
82 1692 
91 1867 
109 2329 

SOS (T. P. 
Nguyen & Vo, 

2018) 

68 966 

7311 798.80 38.38 0.9117 
 70 2597 
104 793 
106 509 
108 2446 

The proposed 
two-stage FA 

50 2681 

11935 576.58 55.52 0.9533 
74 2311 
80 2085 
91 1990 
110 2868 

The proposed 
two-stage 

BBO 

50 2881 

12292 573.39 55.77 0.9561 
72 2533 
80 2095 
96 1663 
109 3120 
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Table 4.20 Comparison of DG integration with the for 118-bus when 7 DGs are 
connected 

Method DG 
location 

DG size 
(kW) 

Total 
DG 
size 

(kW) 

Power 
Loss 
(kW) 

Loss 
reduction 

(%) 

Minimum 
Voltage 
(p.u.) 

Base case - 1296.5 - - 0.8688 

QOTLBO (S. 
Sultana et al., 

2014) 

 24 1246 

13773 575.95 55.57 0.9538 

42 732 
47 3539 
74 2679 
78 1248 
94 1086 
108 3243 

TLBO (S. 
Sultana et al., 

2014) 

 8 1755 

14225 590.49 54.45 0.9454 

10 591 
36 1536 
49 2686 
71 2501 
79 2494 
110 2662 

SOS (T. P. 
Nguyen & Vo, 

2018) 

 67 875 

7437 794.18 38.74 0.9117 

68 200 
69 200 
70 2501 
104 678 
106 722 
108 2261 

MOTA (Meena 
et al., 2017) 

 42 1920 

18360 616.98 52.41 0.9679 

48 4380 
70 2280 
72 1380 
78 2880 
96 1920 
110 3600 

The proposed 
two-stage FA 

20 1794 

15771 515.02 60.27 0.9563 

41 1833 
50 2732 
72 2533 
80 2094 
96 1663 
109 3119 

The proposed 
two-stage 

BBO 

30 3708 

16604 514.87 60.29 0.9566 

42 1154 
50 2331 
72 2533 
80 2094 
96 1663 
109 3119 
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4.5 Summary 

This chapter presents the results of the proposed two-stage method to find the optimal 

NR solution in fast computational time, and with high consistency in finding the solution 

that minimizes the power loss and voltage deviation. The effectiveness of the proposed 

method was investigated on 33-bus, 69-bus, and 118-bus EDNs, and the results were 

compared to the conventional EP, PSO, FA, and BBO as well as the other recent works. 

Based on the results of the 33-bus, 69-bus, and 118-bus, it can be summarized that the 

proposed two-stage method outperformed the conventional methods in terms of the 

voltage profile, computational time as well as the best, the average and the overall STD 

of the system power loss. Besides, the proposed method found the same or better solution 

than the reported works since it has a smaller STD and better average power loss. The 

superiority of the proposed method over the conventional methods is mainly due to the 

proper population’s initializations and the codifications through the proposed SNG 

approach.  

This chapter has also provided an analysis of the number of DGs that should be 

connected to the 33-bus, 69-bus and 118-bus EDNs. Thereafter, comparisons between the 

proposed two-stage FA and BBO methods and the conventional EP, PSO, FA and BBO 

were performed. The results show that the proposed method managed to enhance the 

solution quality of the DG placement and sizing. Thus, better power loss reduction and 

voltage profile are achieved by the proposed method. The proposed method results are 

also compared against the recent works found in the literature, and the comparisons 

verified the superiority of the proposed method over the HSA, FWA, UVDA, QOTLBO, 

TLBO, IIA, MOTA and SOS. 
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CHAPTER 5: PERFORMANCE OF THE PROPOSED METHOD FOR 

NETWORK RECONFIGURATION AND DG INTEGRATION 

5.1 Introduction 

The performance of the proposed method in obtaining the solution for the NR and DG 

integration sequentially and simultaneously is presented in this chapter. The proposed 

method is tested on 33-bus, 69-bus, and 118-bus IEEE standard test systems, and the 

solutions of NR and DG are compared against the conventional methods and the recent 

works. The comparison metrics include power loss minimization and voltage profile 

improvement. Besides, this chapter presents the results of the incorporation variable DG 

output and load variation in the proposed method. 

5.2 Network reconfiguration with DG integration sequentially 

In this scenario, the NR is found first, and then the DG placement and sizing are 

obtained using the proposed two-stage method. The results of the NR that found in section 

4.3 is considered for each method. Thereafter, the search for the optimal DG placement 

and sizing is conducted. 

5.2.1 Test system 1: IEEE 33-bus 

The optimal NR solution for the proposed method is (s7, s9, s14, s28, s32). Starting 

from this configuration, the proposed two-stage method obtained the solution of DGs 

located at buses 12, 16 and 25, and with the capacities of 536 kW, 503 kW, and 1616 kW, 

respectively. Consequently, as presented in Table 5.1, the power loss is 56.28 kW and the 

minimum bus voltage is 0.9723 p.u. On the other hand, the power loss of the solutions 

found by the conventional EP, PSO, FA, and BBO are 56.45 kW, 56.38 kW, 56.28 kW, 

and 56.28 kW, respectively. Therefore, the proposed method produced the same or better 

solution than the conventional method. The solutions found by EP and PSO are 

suboptimal solutions as compared to the solution found by the proposed method. 
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Moreover, as shown in Figure 5.1, the proposed method produces a voltage profile with 

a remarkable improvement compared to the base case. 

Table 5.1 The results of the sequential network reconfiguration and DG 
integration for 33-bus 

  

 
Figure 5.1 Comparison in voltage of the 33-bus for the NR and DG sequentially 

Method Open switches DG 
location 

DG 
size 

(kW) 

Power 
Loss 
(kW) 

Loss 
reduction 

(%) 

Minimum 
Voltage 
(p.u.) 

Base case 33,34,35,36,37 - - 210.98 - 0.9038 

EP 7, 9, 14, 28, 32 
12 499 

56.45 73.24 0.9738 16 522 
25 1701 

PSO 7, 9, 14, 28, 32 
12 553 

56.38 73.27 0.9709 16 491 
25 1544 

FA 7, 9, 14, 28, 32 
12 536 

56.28 73.32 0.9723 16 503 
25 1616 

BBO 7, 9, 14, 28, 32 
12 536 

56.28 73.32 0.9723 16 503 
25 1616 

The proposed 
two-stage FA 7, 9, 14, 28, 32 

12 536 
56.28 73.32 0.9723 16 503 

25 1616 
The proposed 

two-stage 
BBO 

7, 9, 14, 28, 32 
12 536 

56.28 73.32 0.9723 16 503 
25 1616 
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The proposed method is additionally compared to the HSA (R. Rao et al., 2013), FWA 

(Imran et al., 2014), Teaching-Learning-Based Optimization (TLBO) (Rawat & Vadhera, 

2019), UVDA (Bayat et al., 2016) and Adaptive Cuckoo Search Algorithm (ACSA) (T. 

T. Nguyen et al., 2016). The comparison verifies the efficiency of the proposed method 

since it managed to obtain better solutions than the previous works. 

Table 5.2 Comparison results of the sequential network reconfiguration and DG 
integration for 33-bus  

5.2.2 Test system 2: IEEE 69-bus 

The proposed method is utilized to find the NR and DG placement and sizing 

sequentially. The solution obtained by the proposed two-stage BBO reduces the power 

loss to 35.18 kW and improves the minimum bus voltage to 0.9813 p.u. The open 

switches configuration is (s14, s55, s61, s69, s70) whereas, the DGs locations 11, 61, 

Method Open switches DG 
location 

DG 
size 

(kW) 

Power 
Loss 
(kW) 

Loss 
reduction 

(%) 

Minimum 
Voltage 
(p.u.) 

Base case 33,34,35,36,37 - - 210.98 - 0.9038 

UVDA (Bayat 
et al., 2016) 7, 9, 14, 32, 37 

12 526 
66.60 68.43 0.9757 15 592 

30 1125 

FWA (Imran 
et al., 2014) 7, 9, 14, 28, 32 

18 159 
83.93 60.22 0.9612 32 599 

33 314 

HSA (R. Rao 
et al., 2013) 7, 9, 14, 32, 37 

30 661 
97.13 53.96 0.9478 31 161 

32 269 
TLBO (Rawat 

& Vadhera, 
2019) 

7, 9, 14, 28, 32 
17 383 

60.00 71.56 0.9803 21 984 
29 1747 

ACSA (T. T. 
Nguyen et al., 

2016) 
7, 9, 14, 28, 32 

12 540 
58.79 72.13 0.9803 16 504 

29 1754 

The proposed 
two-stage FA 7, 9, 14, 28, 32 

12 536 
56.28 73.32 0.9723  16 503 

25 1616 
The proposed 

two-stage 
BBO 

7, 9, 14, 28, 32 
12 536 

56.28 73.32 0.9723  16 503 
25 1616 
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64 with the sizes of 530 kW, 1432 kW, 458 kW, respectively. This solution is better 

than the solutions found by the conventional EP, PSO, FA, and BBO as shown in Table 

5.3. A detailed voltage profile comparison is presented in Figure 5.2. 

Table 5.3 The results of the sequential network reconfiguration and DG 
integration for 69-bus 

 
Figure 5.2 Comparison in voltage of the 69-bus for the NR and DG sequentially 

Method Open switches DG 
location 

DG 
size 

(kW) 

Power 
Loss 
(kW) 

Loss 
reduction 

(%) 

Minimum 
Voltage 
(p.u.) 

Base case 69, 70, 71, 72, 73 - - 224.97 - 0.9092 

EP 12, 14, 55, 61, 69 
7 710 

37.84 83.18 0.9783 27 696 
61 1290 

PSO 12, 13, 56, 61, 69 
10 791 

37.53 83.32 0.9807  26 457 
61 1570 

FA 12, 55, 61, 69, 70 
27 604 

36.37 83.83 0.9808 61 1411 
68 334 

BBO 12, 55, 61, 69, 70 
27 583 

35.95 84.02 0.9817 61 1449 
66 440 

The 
proposed 
two-stage 

FA 

14, 55, 61, 69, 70 
11 528 

35.19 84.36 0.9815 61 1443 
64 501 

The 
proposed 
two-stage 

BBO 

14, 55, 61, 69, 70 
11 530 

35.18 84.36 0.9813 61 1432 
64 485 
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A comparison between the proposed method and the previous research was carried out 

and the results are presented in Table 5.4. The proposed method solution is better than 

the solutions found by UVDA, FWA, HSA, TLBO, and ACSA. The comparison proves 

the capability of the proposed method to obtain a high-quality solution that minimizes 

power loss and voltage deviation. 

Table 5.4 Comparison results of the sequential network reconfiguration and DG 
integration for 69-bus 

 

5.2.3 Test system 1: IEEE 118-bus 

The results of the NR and DG integration sequentially are tabulated in Table 5.5. The 

solution obtained by the proposed two-stage BBO mitigates the power loss to 514.96 kW 

Method Open switches DG 
location 

DG 
size 

(kW) 

Power 
Loss 
(kW) 

Loss 
reduction 

(%) 

Minimum 
Voltage 
(p.u.) 

Base case 69, 70, 71, 72, 73 - - 224.97 - 0.9092 
UVDA 

(Bayat et al., 
2016) 

14, 58, 61, 69, 70 
11 620 

37.87 83.16 0.9801 61 1378 
64 722 

FWA (Imran 
et al., 2014) 14, 56, 61, 69, 70 

61 1001 
43.92 80.48 0.9720 62 214 

64 142 

HSA (R. Rao 
et al., 2013) 13, 18, 56, 61, 69  

58 426 
59.58 73,52 0.9622 60 352 

61 1066 
TLBO 

(Rawat & 
Vadhera, 

2019) 

14, 58, 61, 69, 70 
27 288 

39.26 82.55 0.9756 61 1491 
69 275 

ACSA (T. T. 
Nguyen et 
al., 2016) 

14, 57, 61, 69, 70 
12 369 

37.25 83.44 0.9869 61 1725 
64 467 

The 
proposed 
two-stage 

FA 

14, 55, 61, 69, 70 
11 528 

35.19 84.36 0.9815 58 1443 
61 501 

The 
proposed 
two-stage 

BBO 

14, 55, 61, 69, 70 
11 530 

35.18 84.36 0.9813 58 1432 
61 485 
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while improving the minimum bus voltage to 0.9498 p.u. Whereas, the conventional EP, 

PSO, FA, and BBO reduce the power loss to 571.51 kW, 576.77 kW, 569.15 kW, and 

565.72 kW. In addition, a comparison in the voltage profile is conducted in Figure 5.3. 

The comparison highlights the improvement of the voltage profile as compared to the 

base case and the conventional methods. 

Table 5.5 The results of the sequential network reconfiguration and DG 
integration for 118-bus 

 

Method Open switches DG 
location 

DG 
size 

(kW) 

Power 
Loss 
(kW) 

Loss 
reduction 

(%) 

Minimum 
Voltage 
(p.u.) 

Base case 119 to 133 - - 1296.5 - 0.8688 

EP 

24, 26, 34, 39, 
42, 51, 61, 73, 
74, 82, 96, 99, 
110, 122,131 

69 1721 

571.51 55.92 0.9517 
78 2759 
82 1580 
97 1511 
118 2102 

PSO 

22, 25, 34, 38, 
42, 49, 60, 73, 
75, 96, 98, 110, 
122, 130, 131 

51 2762 

576.77 55.51 0.9428 
58 1489 
70 1691 
81 2126 
110 1942 

FA 

22, 27, 40, 44, 
50, 58, 73, 75, 

77, 83, 110, 123, 
126, 131, 133 

54 2640 

569.15 56.10 0.9509 
71 1431 
91 2877 
107 2013 
111 1721 

BBO 

24, 26, 35, 39, 
42, 51, 60, 71, 
74, 77, 96, 110, 
122, 130, 131 

30 3338 

565.72 56.36 0.9476 
50 1180 
74 1853 
104 2336 
118 1726 

The 
proposed 
two-stage 

FA 

24, 26, 35, 40, 
43, 51, 59, 72, 
75, 96, 98, 110, 
122, 130, 131 

74 1710 

515.48 60.24 0.9502 
79 2842 
96 1812 
107 1688 
111 1718 

The 
proposed 
two-stage 

BBO 

24, 26, 35, 40, 
43, 51, 59, 72, 
75, 96, 98, 110, 
122, 130, 131 

74 1616 

514.96 60.28 0.9498 
79 2801 
96 1767 
107 1893 
111 1701 
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Figure 5.3 Comparison in voltage of the 118-bus for the NR and DG sequentially 

The proposed method results are also compared to ACSA (T. T. Nguyen et al., 2016). 

The solution of the proposed method outperformed the ACSA solution in terms of power 

loss and voltage deviation minimization as shown in Table 5.6. 

Table 5.6 Comparison results of the sequential network reconfiguration and DG 
integration for 118-bus 

 

Method Open switches DG 
location 

DG 
size 

(kW) 

Power 
Loss 
(kW) 

Loss 
reduction 

(%) 

Minimum 
Voltage 
(p.u.) 

Base case 119 to 133 - - 1296.5 - 0.8688 

ACSA (T. 
T. Nguyen 
et al., 2016) 

24, 26, 35, 40, 
43, 51, 59, 72, 
75, 96, 98, 110, 
122, 130, 131 

65 5000 

631.19 51.32 0.9538 96 1756 

111 1714 

The 
proposed 
two-stage 

FA 

24, 26, 35, 40, 
43, 51, 59, 72, 
75, 96, 98, 110, 
122, 130, 131 

74 1710 

515.48 60.24 0.9502 
79 2842 
96 1812 
107 1688 
111 1718 

The 
proposed 
two-stage 

BBO 

24, 26, 35, 40, 
43, 51, 59, 72, 
75, 96, 98, 110, 
122, 130, 131 

74 1616 

514.96 60.28 0.9498 
79 2801 
96 1767 
107 1893 
111 1701 
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5.3 Network reconfiguration with DG integration simultaneously 

In this scenario, the NR and DG solution is found simultaneously. Hence, the 

complexity of this scenario is more than the previous scenarios where the search for the 

NR solution and DG solution is separated. 

5.3.1 Test system 1: IEEE 33-bus 

The 33-bus IEEE test system is utilized to examine the efficiency of the proposed 

method in solving the NR and DG integration simultaneously. The number of DGs 

connected to the system is 3. In the first stage, the combination of the open paths is found 

as well as the location and the size of each DG. Then, the second stage starts the search 

process by converting the paths’ combination to switches combination whereas the DGs’ 

locations and sizes are transferred without change.  

Table 5.7 shows the simulation results of the proposed two-stages methods besides the 

comparison with the literature. The proposed two-stage BBO found the open switches 

configuration of (s10, s28, s31, s33, s34) with DGs placed at buses 7, 17, and 25 and sized 

as 812, 784 and 1182 kW, respectively. This solution reduces the power loss to 52.42 kW 

and enhances the minimum bus voltage to 0.9727 p.u. Whereas the solution found by the 

two-stage FA is to open the switches (s10. s27, s30, s33, s34) and to install the DGs at 

buses 7, 18 and 25, and with outputs of 847, 896 and 1164 kW, respectively. Thus, the 

resulted power loss is 52.99 kW, and the minimum bus voltage is 0.9674 p.u. On the other 

hand, the solutions found by the conventional EP, PSO, FA, and BBO are far from the 

optimal solution found by the proposed method. It is worth mentioning that the power 

loss reduction of the proposed two-stage FA and BBO compared to the base case are 

74.88% and 75.15%, respectively. Whereas, the conventional EP, PSO, FA, and BBO 

loss reduction are 61.63%, 65.68%, 66.04%, and 69.22%, respectively.  
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Proposed tw
o-stage B

B
O

 

Proposed tw
o-stage FA

 

B
B

O
 

FA
 

PSO
 

EP 

B
ase case 

M
ethod T

able 5.7 T
he results of the sim

ultaneous netw
ork reconfiguration and D

G
 integration for 33-bus 

10, 28, 31, 33, 34 

10, 27, 30, 33, 34 

7, 8, 28, 31, 34 

6, 10, 30, 33, 37  

14, 15, 20, 28, 33 

7, 8, 27, 34 ,35 

33, 34, 35, 36, 37 

O
pen sw

itches 

812 (7), 784 (17), 1182 (25) 

847 (7), 896 (18), 1164 (25) 

971 (7), 1247 (29), 589 (33) 

763 (9), 726 (18), 1014 (24) 

958 (8), 892 (23), 1299 (30) 

949 (16), 978 (24), 823 (25) 

- 

D
G

 size in kW
 (Location) 

52.42 

52.99 

64.93 

71.64 

72.01 

80.95 

210.98 

Pow
er Loss 

(kW
) 

75.15 

74.88 

69.22 

66.04 

65.68 

61.63 

- 

Loss 
reduction 

(%
) 

0.9727 

0.9674 

0.9563 

0.9548 

0.9649 

0.9547 

0.9038 

M
inim

um
 

V
oltage 
(p.u.) 

 

Univ
ers

iti 
Mala

ya



106 

Furthermore, Figure 5.4 compares the voltage profile of the system for the base case, 

conventional methods, and the proposed method for the case of NR and DG 

simultaneously. It is noted that the solution found by the proposed method has a 

significant impact on voltage profile enhancement compared to the other cases. 

 
Figure 5.4 Comparison in voltage of the 33-bus for the simultaneous NR and DG  

Besides, Table 5.8 presents a comparison between the proposed method solutions and 

the solutions found by the FA (Badran, Mokhlis, Mekhilef, et al., 2017), HSA (R. Rao et 

al., 2013), FWA (Imran et al., 2014), TLBO  (Rawat & Vadhera, 2019), UVDA (Bayat 

et al., 2016) and ACSA (T. T. Nguyen et al., 2016) reduced the real power loss to 73.04 

kW, 73.05 kW, 67.11 kW, 58.04 kW, 57.28 kW and 53.21 kW, respectively. From the 

comparison between the results of the proposed method and the works in the literature, it 

can be concluded that the solutions found by the two-stages BBO and FA surpassed the 

ones given in the literature. 
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A
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SA
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2016) 

U
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10, 28, 31, 33, 34 

10, 27, 30, 33, 34 

11, 28, 31, 33, 34 

7, 10, 13, 27, 32 

6, 10, 14, 32, 37 

7, 14, 11, 32, 28 

7, 14, 10, 32, 28 

8, 9, 28, 32, 33 

33, 34, 35, 36, 37 

O
pen sw

itches 

812 (7), 784 (17), 1182 (25) 

847 (7), 896 (18), 1164 (25) 

964 (7), 896 (18), 1438 (25) 

1554 (29), 649 (15), 486 (21) 

1329 (8), 1172 (24), 726 (31) 

536 (32), 615 (29), 531 (18) 

525 (32), 558 (31), 584 (33) 

841 (31), 340 (32), 591 (33) 

- 

D
G

 size in kW
 (Location) 

52.42 

52.99 

53.21 

57.28 

58.04 

67.11 

73.05 

73.04 

210.98 

Pow
er 

Loss (kW
) 

75.15 

74.88 

74.77 

72.85 

72.49 

68.19 

73.05 

65.38 

- 

Loss 
reduction 

(%
) 

0.9727 

0.9674 

0.9806 

0.9760 

0.9751 

0.9713 

0.9700 

0.9735 

0.9038 

M
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V
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(p.u.) 
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5.3.2 Test system 2: IEEE 69-bus 

The proposed two-stage method is also applied to 69-bus to find the solution of the 

NR simultaneously with the DGs integration. As shown in Table 5.9, the proposed two-

stage BBO managed to reduce the power loss to 35.18 kW and improved the minimum 

bus voltage to 0.9813 p.u. by opening switches (s14, s56, s61, s69, s70) and placing three 

DGs at buses 11, 61 and 64 with sizes of 530, 1432 and 485 kW, respectively. Meanwhile, 

the results found by the conventional EP, PSO, FA, and BBO reduced the power loss to 

58.71 kW, 52.72 kW, 40.04 kW, and 39.51 kW, respectively. Moreover, the voltage 

profile comparison is presented in Figure 5.5. 

 

Figure 5.5 Comparison in voltage of the 69-bus for the simultaneous NR and DG 

As presented in Table 5.10, the proposed method solutions surpassed the solutions 

found by FA (Badran, Mokhlis, Mekhilef, et al., 2017), HSA (R. Rao et al., 2013), FWA 

(Imran et al., 2014), TLBO (Rawat & Vadhera, 2019), UVDA (Bayat et al., 2016), and 

ACSA (T. T. Nguyen et al., 2016) with regards to power loss reduction. Accordingly, it 

can be concluded that the proposed method produced a better solution than the previous 

solutions for the case of solving the NR and DG integration simultaneously. 
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ork reconfiguration and D
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 integration for 69-bus 

14, 56, 61, 69, 70 

14, 55, 61, 69, 70 

14, 55, 61, 69, 70 

14, 19, 58, 62, 69 

11, 41, 53, 61, 70 

6, 13,55, 62, 69 

69, 70, 71, 72, 73 

O
pen sw

itches 

530 (11), 1432 (61), 485 (64) 

528 (11), 1443 (61), 501 (64) 

368 (27), 420 (51), 1212 (61) 

476 (27), 1469 (62), 302 (69) 

394 (17), 363 (20), 1764 (61) 

1286 (21), 67 (29), 1451 (61) 

- 

D
G

 size in kW
 (Location) 

35.18 

35.19 

39.51 

40.04 

52.72 

58.71 

224.97 

Pow
er 

Loss (kW
) 

84.36 

 84.36 

82.43 

82.20 

76.56 

73.90 

- 

Loss 
reduction 

(%
) 

0.9813 

0.9815 

0.9766 

0.9810 

0.9702 

0.9693 

0.9092 
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(p.u.) 

 

 

Univ
ers

iti 
Mala

ya



110 

Proposed tw
o-stage B

B
O

 

Proposed tw
o-stage FA

 

A
C

SA
 (T. T. N

guyen et al., 2016) 

U
V

D
A

(B
ayat et al., 2016) 

FW
A

 (Im
ran et al., 2014) 

H
SA

 (R
. R

ao et al., 2013) 

FA
 (B

adran, M
okhlis, M

ekhilef, et al., 
2017) 

TLB
O

 (R
aw

at &
 V

adhera, 2019) 

B
ase case 

M
ethod 

T
able 5.10 com

parison results in case of sim
ultaneous N

R
 and D

G
 for 69-bus 

14, 56, 61, 69, 70 
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14, 58, 61, 69, 70 
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69, 17, 13, 58, 61 

12, 19, 57, 61, 69 

9, 7, 13, 57, 63 

69, 70, 71, 72, 73 

O
pen sw
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530 (11), 1432 (58), 485 (61) 

528 (11), 1443 (58), 501 (61) 

154 (11), 1724 (61), 553 (65) 
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- 
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5.3.3 Test system 3: IEEE 118-bus 

The optimal solution of simultaneous NR and DG integration for the 118-bus is 

presented in Table 5.11. The solution found by the proposed two-stage BBO consists of 

opening the switches (s22, s27, s40, s43, s50, s62, s71, s75, s77, s96, s108, s110, s122, 

s131, s133) along with five DGs placed at buses 54, 73, 80, 96 and 111 with the capacities 

of 2598 kW, 2182 kW, 3134 kW, 1984 kW, and 1692 kW, respectively. The 

aforementioned solution reduces the power loss to 489.21 kW and improves the minimum 

bus voltage to 0.9568 p.u. Similarly, the solution found by the proposed FA minimizes 

the real power loss to 493.86 kW and enhances the bus voltage to 0.9577 p.u. From Table 

5.11, it can be concluded that the proposed method solution is preferable over the 

solutions obtained by the conventional EP, PSO, FA, and BBO. Furthermore, a 

comparison in the voltage profile between all methods is illustrated in Figure 5.6. 

A comparison between the proposed method and previous works for the 118-bus is 

presented in Table 5.11. The total DG size for the proposed method is 11590 kW which 

smaller than the total size of 119703 kW in the FA (Badran, Mokhlis, Mekhilef, et al., 

2017) and slightly larger than the total DGs size of 9918 kW in the ACSA (T. T. Nguyen 

et al., 2016). Nevertheless, the power loss of the proposed method is significantly smaller 

than the solution found by FA and ACSA. 

 
Figure 5.6 Comparison in voltage of the 118-bus for the simultaneous NR and DG 
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5.4 Overall comparisons for all cases 

In the previous chapter, two case studies that include the solutions of the NR and DG 

separately were considered. In this chapter, the solutions for the NR and DG sequentially 

and simultaneously are presented. For further performance analysis, this section provides 

a comparison between these cases for all test systems.  

Table 5.13 presents a comparison in power loss and minimum bus voltage for all test 

systems considering all the case studies. All the solutions are the optimal solutions found 

by the proposed two-stage BBO. The comparison shows that finding the most efficient 

technique to minimize the power loss and voltage deviation is to find the solution of the 

NR and DG simultaneously followed by the solution of NR and DG sequentially. On the 

other hand, the solution of the DG separately is more efficient than the solution of the NR 

only. Moreover, a comparison in voltage profile for each case is conducted and the results 

of the 33-bus, 69-bus, and 118-bus are depicted in Figures 5.7 to 5.9, respectively. 

Therefore, it is recommended to solve the NR and DG simultaneously to minimize the 

power loss and voltage deviation. 

 
Figure 5.7 Voltage profile comparisons of the 33-bus for different case studies 
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Figure 5.8 Voltage profile comparisons of the 69-bus for different case studies 

 
Figure 5.9 Voltage profile comparisons of the 118-bus for different case studies 
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Table 5.13 Performance analysis of the proposed method for different case 
studies 

Case study Power loss 
(kW) 

Power loss 
reduction (%) 

Minimum bus 
voltage (p.u.) 

33-bus 

Base case 210.98 - 0.9038 

Only NR case 139.98 33.65 0.9413 

Only DG case 72.78 65.50 0.9686 

NR and DG sequentially 56.28 73.32 0.9723 

NR and DG simultaneously 52.42 75.15 0.9727 

69-bus 

Base case 224.97 - 0.9092 

Only NR case 98.61 56.16 0.9495 

Only DG case 69.49 69.11 0.9790 

NR and DG sequentially 35.18 84.36 0.9813 

NR and DG simultaneously 35.18 84.36 0.9813 

118-bus 

Base case 1296.5 - 0.8688 

Only NR case 853.58 34.17 0.9323 

Only DG case 573.39 55.77 0.9561 

NR and DG sequentially 514.96 60.28 0.9498 

NR and DG simultaneously 489.21 62.27 0.9568 
 

5.5 Network reconfiguration with variable DG output and load variation  

In this scenario, the variable DG output and load variation will be addressed and 

incorporated in the proposed two-stage method. The significant impact of the hourly NR 

on the power loss and voltage deviation reduction is investigated. The 33-bus test system 

is considered, and four RER DGs are placed in this EDN as tabulated in Table 5.14. The 

Wind Turbines (WTs) are located at buses 10 and 33, whereas the Photovoltaics (PVs) 

are placed on buses 7 and 14. The locations of the WT and PV are found by the proposed 

two-stage method considering the average load and DG output. 

Univ
ers

iti 
Mala

ya



117 

Table 5.14 Type, location and the maximum capacity of the renewable energy 

Type Location Maximum Capacity (kW) 

WT 1 10 500 
WT 2 33 500 
PV 1 7 400 
PV 2 14 600 

 

5.5.1 Performance analysis for a single day 

Table 5.15 shows the hourly variations of the WT, PV, and loads for a single day in 

California, U.S (U.S energy information administration, 2020, March 1). The PV 

generation ranges between 0 to 80%, whereas the WT outputs change from 54% in hour 

23 into the almost maximum value of 99% at hour 5. The load varies between 64% at 

hour 13 to 89% at hour 19. 

To verify the importance of intraday NR, the following fixed configurations were 

considered for comparison against the hourly configuration. 

- Conf. 1: It is the base case configuration. The open switches of this 

configuration are s33, s34, s35, s36, s37. 

- Conf. 2: It is the optimal open switches configuration found when the load is 

at peak level, i.e. 100%, while no RER is connected to the system. The open 

switches are s7, s9, s14, s28, s32. 

- Conf. 3: It is the optimal open switches configuration obtained when the load 

at peak level and the RERs are at their maximum generation level. The open 

switches of this configuration are s10, s30, s33, s34, s37. 

The optimal hourly configurations found by the proposed method are presented in 

Table 5.16. It is noted that when there are no large changes in the RER generation and 

load profile, the configuration does not change like hours 9 to 14 and 20 to 23.   
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Table 5.15 Variations of solar, wind and load for a single day 

Hour PV (%) WT (%) Load (%) 
1 0 81 74 
2 0 81 71 
3 0 87 70 

4 0 94 69 

5 0 99 69 

6 0 91 71 

7 9 90 73 
8 57 78 73 
9 80 82 71 

10 80 77 69 

11 77 78 67 

12 74 75 65 

13 74 73 64 
14 72 72 65 
15 68 68 66 

16 56 61 70 

17 10 62 75 

18 7 73 83 
19 0 76 89 
20 0 70 88 

21 0 68 86 

22 0 58 84 

23 0 54 80 
24 0 69 75 

 

Table 5.16 The hourly configurations of the system 

Hours Open switches Hours Open switches 

1, 2, 7 6, 11, 14, 30, 37 15 10, 30, 33, 34, 37 

3, 4, 5, 6 7, 8, 14, 28, 36 16, 18, 19 7, 11, 30, 34, 37 

8 11, 30, 33, 34, 37 17, 20, 21, 22, 23 7, 10, 14, 30, 37 

9, 10, 11, 12, 13, 14 7, 11, 34, 36, 37 24 7, 11, 14, 30, 37 
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Table 5.17 shows the power loss obtained for each hour using the proposed method 

and the power loss resulted from using the fixed configurations for all hours. It is noted 

that the hourly configuration fulfills lower power loss as compared to the fixed 

configurations. The total power loss reductions of the hourly configurations with respect 

to the fixed configurations Conf. 1, 2, and 3 are 24.51%, 25.82%, and 6.54%, respectively. 

Conf. 3 achieved high power loss reduction when the RERs output level is at their 

maximum level. On the other hand, the power loss reduction of the hourly configuration 

is 10% smaller than the power loss of the Conf. 3 when the RERs output is far from the 

maximum limits like hours 20 to 23. 

The minimum bus voltage for each hour resulted from the hourly configurations and 

the fixed configurations is shown in Figure 5.10. The comparison shows that by using the 

hourly configurations, the voltage profile further improved as compared to the voltage 

profile obtained by the fixed configurations. 

 
Figure 5.10 Voltage profile comparisons between the hourly configuration and 

the fixed configurations 
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Table 5.17 Power loss comparisons between the hourly configuration and the 
fixed configurations 

Hour 
Power loss of the 

hourly 
configurations [kw] 

Power loss of the fixed 
configurations [kw] 

Conf. 1 Conf. 2 Conf. 3 

1 45.53 60.50 58.55 48.99 

2 41.36 54.43 54.00 44.34 

3 39.51 50.73 53.21 41.88 

4 37.02 47.21 52.91 39.67 

5 36.32 46.16 53.87 39.26 

6 40.18 51.49 55.17 42.73 

7 41.48 52.38 57.38 43.63 

8 37.51 45.15 56.53 37.57 

9 34.94 42.92 58.47 35.31 

10 32.99 40.61 54.81 33.18 

11 31.07 38.31 52.39 31.49 

12 29.19 35.91 48.93 29.52 

13 28.30 34.87 47.38 28.58 

14 29.20 35.65 47.79 29.25 

15 29.95 36.56 47.33 29.95 

16 34.60 43.12 49.81 35.23 

17 48.02 65.71 58.65 52.51 

18 59.12 81.18 72.81 64.76 

19 71.22 99.86 85.55 78.87 

20 71.24 100.57 83.93 79.17 

21 68.06 96.07 80.05 75.66 

22 67.84 96.56 77.19 75.73 

23 61.81 87.92 69.93 68.99 

24 48.95 67.53 59.83 53.79 
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5.5.2 Performance analysis for different renewable energy output level 

The RERs’ capacity level has an influence on the hourly configuration. To analyze 

this effect, different level of WT and PV capacities is considered, and the results are 

collected. The RER output level is changing between 0% to 150% of their initial values 

in 50% step. Since the fixed configuration (Conf. 3) is found by considering the maximum 

load and RER generation, Conf. 3 is changing based on the RER output level. Hence, 

Conf. 3 is determined for each RER value, and the results are presented in Table 5.18.     

Table 5.18 The open switches of Conf. 3 for deferent RERs’ output level  

RERs’ output level % Open switches 

0 7, 9, 14, 28, 32 

50 7, 10, 13, 31, 37 

100 10, 30, 33, 34, 37 

150 11, 28, 33, 34, 36 
 

The daily power loss obtained by the hourly configurations is presented in Table 5.19. 

When the RER output level is 0%, the hourly configuration is constant, and it is the same 

as Conf. 2 since only the load is changing. Hence, the reduction in power loss is only with 

respect to the base case configuration. However, it is noted that when the output level 

increases, the importance of the hourly configurations becomes more significant as 

compared to the fixed configurations Conf. 2 and Conf. 3. Whereas, the relation between 

the output level and the total power loss reduction with respect to the Conf. 1 (base case) 

is not linear since it is mainly infected with the similarity between the hourly 

configuration and the Conf. 1. Furthermore, the comparison between the results of Conf 

1. Conf. 2 and Conf. 3 shows that Conf. 3 achieved lower power loss since it considers 

the RER and load at their maximum level.  
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It also can be observed from Table 5.19 that increasing the RER output more than 

100% does not provide a notable decrease in the daily power loss since the slope of the 

power loss decreases. Therefore, the chosen capacities of the installed RERs are suitable 

for this EDN. 

Table 5.19 Daily power loss comparisons between the hourly configuration and 
the fixed configurations for different RERs’ output levels 

RERs’ 
output level 

(%) 

Total power loss of 
the hourly 

configurations [kw] 

Total hourly power loss reduction with respect 
to the fixed configurations (%) 

Conf. 1 Conf. 2 Conf. 3 

0 1795.93 32.57 0 0 

50 1291.83 29.25 10.43 2.47 

100 1065.42 24.51 25.83 6.54 

150 1015.73 26.28 41.91 9.84 

  

It can be concluded that in the case of hourly load variations and non-dispatchable 

RER integration, obtaining the optimal NR hourly improves the system performance. 

Hence, it is vital to adapt an NR method that is able to find the optimal solution in a short 

computational time. 

5.6 Summary  

This chapter presented the application of the proposed two-stage method to solve the 

NR and DG placement and sizing. Both the sequential and simultaneous approaches were 

considered. The proposed method was evaluated on three test systems of different sizes. 

For all test systems, the proposed method solution for the sequential NR and DG 

integration outperformed the solutions of the conventional methods and the works found 

in the literature. Thereafter, solving the NR problem simultaneously with DGs placement 

and sizing is considered by the proposed method. The solution found by the proposed 
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two-stage BBO for the 33-bus, 69-bus and 118-bus managed to outclass the solutions of 

the conventional methods in terms of minimizing the power loss and voltage deviation. 

Furthermore, the proposed method outperformed the works found in the literature in 

reducing power loss and improving the voltage profile. Moreover, it was observed that 

solving NR and DG integration simultaneously is more efficient than the sequential 

solution.  

For the case of RERs’ output level variation along with load changes, the impact of 

the hourly configurations on reducing the power loss and enhancing the voltage profile 

was highlighted. Base case configuration, minimum RER output level configuration, and 

maximum RER output level, and maximum load configuration are the three fixed 

configurations that were used for comparisons against the hourly configuration found by 

the proposed method. The results show that the hourly configuration solutions achieve 

smaller power loss and voltage deviation as compared to the fixed configurations. In 

addition, it was demonstrated that the necessity of the hourly configuration growths if the 

RER output level rises. 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

This research proposes a new two-stage optimization method to simultaneously obtain 

the optimal network reconfiguration and DG integration in fast computational time and 

with high consistency. The proposed simplified network approach and the proposed 

codification have been utilized to find the initial solutions and maintain the radiality 

constraint during the search process. The proposed method has been implemented using 

FA and BBO with the aim of minimizing power loss and voltage deviation. This work is 

verified using 33, 69, and 118-bus IEEE distribution networks and the results are 

compared against the conventional EP, PSO, FA, and BBO as well as the recent works 

found in the literature such as the HSA, EPSO, AWIDPSO, heuristic-IHSA, GA, RGA. 

BPSOGSA, HDM, FWA, MPSO, and MTS. 

 For the first objective, the capability of the proposed method to find the optimal NR 

is examined. Results show the superiority of the proposed method in obtaining the same 

or a better solution than the previously proposed methods with much better consistency 

and in fast computational time. For the 33-bus, 69-bus, and 118-bus, the power loss was 

reduced by 33.65%, 56.11%, and 34.11%, respectively. Besides, the proposed two-stage 

method achieved smaller STD of power loss as compared to the conventional EP, PSO, 

FA, and BBO, as well as the HSA, FWA, MPSO, and MTS, found in the literature. 

Moreover, the proposed method required shorter computational time than the 

conventional method where the proposed two-stage BBO is faster by more than 90% as 

compared to the conventional BBO for the three test systems. 

In the second objective, DGs are integrated into the distribution networks. The 

proposed method is utilized to find the optimal DG placement and sizing that minimize 

the power loss and voltage deviation. As compared to the base case, the power loss was 
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reduced by 65.6%, 69.11%, and 55.77% for the 33-bus, 69-bus, and 118-bus, 

respectively. In addition, a notable improvement in the voltage profile has been achieved 

by the proposed method. The comparisons between the proposed method, the 

conventional methods, and the previous works show the proposed method capability to 

attain the best solutions for the 33-bus, 69-bus, and 118-bus. 

For the third objective, the proposed method is employed to solve simultaneously the 

NR and DG placement and sizing. The solution found by the proposed method for the 33-

bus, 69-bus, and 118-bus reduced the power loss by 75.15%, 84.36%, and 62.27%, 

respectively, as compared to the base case. Furthermore, the proposed method 

outperformed the works found in the literature in reducing power loss. For instance, the 

solutions found using the proposed two-stage BBO obtained a power loss smaller by 

1.48%, 4.97%, and 16.55% for the 33-bus, 69-bus, and 118-bus, respectively as compared 

to the ACSA. Moreover, a tremendous system voltage profile improvement was achieved 

by considering the simultaneous NR and DG solutions. Additionally, it was observed that 

the simultaneous NR and DG solution is more efficient compared to the sequential 

solution as well as solving the NR and DG separately. Therefore, the proposed method 

succeeded in obtaining a high-quality solution to the problem of NR and DG placement 

and sizing. 

In the fourth objective, the incorporation of variable DG output and load variations has 

been successfully achieved by the proposed method. The value of the hourly NR is 

examined considering the load changes as well as WT and PV output level variations. 

The hourly NR is obtained using the proposed two-stage method to minimize power loss 

and voltage deviation. To analyses the impact of the hourly configuration, its solution is 

compared against three fixed configurations. The comparison shows that the hourly NR 

achieves smaller daily power loss by 7% to 26% comparing to the fixed configurations. 
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Furthermore, it was noted that the significance of the hourly configuration increases when 

the RERs’ output level increases. 

6.2 Future   work 

The analysis of NR and DG integration based on the proposed method can be further 

improved. The following extension works suggestions that can be conducted in the future 

are as follows: 

1) The proposed two-stage method was successfully implemented using the FA and 

BBO. Hybrid FA and BBO or other meta-heuristic methods are also possible to be 

utilized with the aim to achieve better consistency in obtaining the solution as well 

as shorter computational time. 

2) The objective function of this work is minimizing power loss and voltage 

deviation. Nevertheless, reducing the operation and investment cost, mitigating the 

number of the switching operation, achieving load balance among the feeders can 

be also considered for future works. 

3) From the perspective of operation, protection system is also interesting to be 

considered as the constraints in the system.  

4) The proposed method can be also employed for system restoration application 

since its ability to find the optimal NR solution in short computational time has 

been verified. Univ
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