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AN INTRA-SEVERITY CLASSIFICATION AND ADAPTATION TECHNIQUE 

TO IMPROVE DYSARTHRIC SPEECH RECOGNITION ACCURACY  

ABSTRACT 

Dysarthria is a motor speech impairment at the neurological and/or muscular levels that 

caused difficulty in pronouncing words clearly. Automatic speech recognition (ASR) 

system is increasingly applied as assistive technology to aid an individual with physical 

disability particularly the speech impaired community such as dysarthria speakers. 

However, the development of an effective ASR system is hindered by the data sparsity, 

either in the coverage of the language or the size of the existing speech databases. The 

speaker adaptation (SA) technique is one of the solutions to overcome the data sparsity 

issue of ASR for dysarthric speakers. Our proposed method introduces the intra-severity 

classification and adaptation techniques which are applied sequentially in two stages of 

system development. Firstly, intra-severity classification intended to identify the level of 

severity of the dysarthric speakers. Secondly, the identified severity level of a particular 

dysarthric speaker in the first stage is applied to the corresponding intra-severity 

adaptation of dysarthric speech. For the classification part, there are six algorithms used 

to classify the intra-severity of dysarthric speakers. The algorithms include Linear 

Discriminant Analysis (LDA), Artificial Neural Network (ANN), Support Vector 

Machine (SVM), Naive Bayes (NB), Classification And Regression Tree (CART), 

Random Forest (RF). The Random Forest (RF) algorithm was proposed as a classifier for 

the intra-severity classification of the dysarthric speaker which has the lowest average 

ranking score as compared to other benchmark classifiers. The intra-severity adaptation 

of the ASR system was developed using two well-known adaptation techniques which 

are the Maximum Likelihood Linear Regression (MLLR) and Maximum A Posterior 
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(MAP) as well as a combination of them. The results showed that the combination of 

MLLR+MAP adaptation outperforms all adaptation techniques with total improvement 

in Word Error Rate (WER) from 39.84% to 18.48% with 53.61% improvement from the 

baseline WER in the overall performance of the system. The total improvement of the 

WER based on severity level were 66.32%, 52.35%, and 45.20% for mild, moderate, and 

severe severity level respectively for the hybrid MLLR+MAP adaptation technique. The 

combination of the adaptation techniques in sequential order helps to take advantage of 

each adaptation technique and avoid the flaws of each technique in relation to adaptation 

data size. 

Keywords: Dysarthria, Automatic Dysarhric Speech Recognition System, Classification 

Algorithms, Adaptation Techniques, Feature Selection Methods. 
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PENGURUSAN DAN TEKNIK PENDIDIKAN INTRA-KEBERHASILAN 

UNTUK MENINGKATKAN KETERANGAN PENGIKTIRAFAN 

DYSARTHRIC ACKURASI 

ABSTRAK 

Dysarthria adalah kekurangupayaan pertuturan motor pada peringkat neurologi dan / atau 

otot yang menyebabkan kesukaran pertuturan dengan jelas. Sistem pengecaman ucapan 

automatik (ASR) semakin meningkat penggunaanya sebagai teknologi bantuan untuk 

membantu individu yang mengalami kecacatan fizikal terutamanya masyarakat kurang 

upaya pertuturan seperti penutur dysarthria. Walau bagaimanapun, perkembangan sistem 

ASR yang berkesan dihalang oleh sparsiti data, sama ada dalam liputan bahasa atau saiz 

pangkalan data ucapan yang sedia ada. Teknik penyesuaian penutur (SA) adalah salah 

satu daripada penyelesaian untuk mengatasi isu sparsiti data ASR untuk penutur 

dysarthric. Kaedah yang kami cadangkan memperkenalkan intra-keterukan yang 

digunakan secara berurutan dalam dua peringkat pembangunan sistem. Pertama, 

klasifikasi intra-keterukan digunakan untuk mengenal pasti tahap keterukan untuk 

penutur dysarthric. Kedua, tahap keterukan yang dikenal pasti bagi penutur dysarthric 

tertentu pada peringkat pertama digunakan pada penyesuaian intra-keterasan yang 

sepadan dengan penutur dysartric sistem ASR yang dibangunkan sebelum peringkat 

pembangunan. Dalam bahagian klasifikasi, terdapat enam algoritma yang digunakan 

untuk mengklasifikasikan intra-keterukan penutur dysarthric. Algoritma tersebut 

termasuk Linear Discriminant Analysis (LDA), Artificial Neural Network  (ANN), 

Support Vector Machine (SVM), Naive Bayes (NB), Classification And Regression Tree 

(CART), Random Forest (RF). Algoritma Random Forest dicadangkan sebagai classifier 

untuk klasifikasi intra severity penturur dysathria kerana ia menunjukkan skor klasifikasi 

purata yang terendah bila dibandingkan dengan classifier yang lain. Penyesuaian intra-
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keterukan sistem ASR telah dibangunkan dengan menggunakan dua teknik penyesuaian 

yang terkenal iaitu Regresi Linear Maksimum (MLLR) dan Maksimum A Posterior 

(MAP) serta gabungannya. Keputusan menunjukkan bahawa gabungan penyesuaian 

MLLR + MAP mengatasi semua teknik penyesuaian dengan peningkatan jumlah kadar 

ralat perkataan (WER) dari 39.84% kepada 18.48% dengan peningkatan 53.61% daripada 

WER asas dalam prestasi keseluruhan sistem. Peningkatan jumlah WER berdasarkan 

tahap keterukan adalah 66.32%, 52.35%, dan 45.20%, untuk tahap keterukan ringan, 

sederhana dan teruk untuk teknik penyesuaian MLLR + MAP hibrid. Kombinasi teknik 

penyesuaian dalam susunan berurutan membantu untuk memanfaatkan kelebihan setiap 

teknik penyesuaian dan mengelakkan kelemahan setiap teknik berkaitan dengan saiz data 

penyesuaian 

Kata kunci: Dysarthria, Sistem Pengiktirafan Ucapan Dysarhric Automatik, Pengkelasan 

Algoritma, Teknik Penyesuaian, Kaedah Pemilihan Ciri. 
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CHAPTER 1: INTRODUCTION 

Speech is an amazing achievement of the human motor system whereby sound is 

produced at rates of up to 30 segments per second in an action of precise coordination. 

This requires the work of more muscle fibers than any other mechanical performance by 

humans  (Ray Kent, Kent, Weismer, & Duffy, 2000). 

1.1 Definition and Understanding of Speech Impairment 

According to the Individual with Disability Education Act (IDEA), impairment of 

speech and language is defined as a means of communication disorder that negatively 

affects the educational performance of a child. IDEA classified speech and language 

impairment into four core areas, which are articulation, fluency, voice and language 

impairments (Center for Parent Information And Resources, 2011).  

A communication disorder is defined as the inability to receive, comprehend, process, 

and send concepts (symbols system which is verbal, nonverbal and graphical). According 

to the American Speech-Language-Hearing Association,  speech and language 

impairment is a form of communication disorder that affects the individual (American 

Speech-Language-Hearing Association, 1993). 

Speech impairment may be acquired or developed. Individuals may suffer from one or 

more of speech impairments. It ranges from mild to profoundly severe with regards to its 

severity (American Speech-Language-Hearing Association, 1993; Center for Parent 

Information And Resources, 2011; Prelock, Hutchins, & Glascoe, 2008). 
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According to Colorado Department of Education (2017), “a child with impairment of 

speech or language may have a communication disorder, which prevents the child from 

receiving reasonable educational benefits from regular education.”  The speech or 

language impairment criteria consist of a barrier to proper communication, in writing 

and/or orally in one’s primary language, in social and academic interactions. There can 

also be demonstrations of inappropriate or undesirable behavior due to limited 

communication skills, as the person may be unable to communicate without using 

assistive, augmentative/alternative communication devices or systems (Colorado 2017). 

1.2 Terms and Categories of Speech Impairment 

There are three main types of speech impairment with regards to articulation, fluency 

and, voice. The articulation impairment is related to producing the speech sound in an 

incorrect manner. The substitution, addition, omission, or distortion are the characteristics 

of the articulation impairment that may lead to poor clarity of the sound (American 

Speech-Language-Hearing Association, 1993; Center for Parent Information And 

Resources, 2011). For example, difficulty in articulating certain sounds, such as “i” or 

“r”. 

Fluency refers to the disruption of the flow of speaking. The characteristics of the 

fluency impairment include typical rhythm, rate and repetition of the sound, phrases, 

words, and, syllables. The struggled behavior and inappropriate mannerism such as 

inhalation, exhalation, or phonation pattern may accompany this kind of impairment. The 

speech sound which is not suitable for an individual’s age or gender is defined as a voice 

disorder. The characteristics of this kind of speech impairment are the poor generation 

and the lack of loudness, resonance, pitch, vocal quality, and duration (American Speech-
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Language-Hearing Association, 1993; Center for Parent Information And Resources, 

2011).   

In relation to these three main types of speech impairment, there are many terms that 

are used in reference to speech impairment, such as childhood apraxia of speech (CAS), 

dysarthria, stuttering, voice, etc. This study focuses only on those suffering from speech 

impairment due to dysarthria. The term childhood apraxia of speech (CAS) included just 

to compare with dysarthria of speech, which is related to each other and classified 

according to the level of impairment: 

1.2.1 Childhood Apraxia of Speech (CAS)  

Apraxia means without action in which “a” means absent of, and “praxia” means the 

performance of the action, from the Greek word “praxis” (Freed, 2012). Childhood 

Apraxia of Speech (CAS) is a neurological childhood speech sound disorder whereby the 

control for the muscles of speech movements are affected due to unknown neuromuscular 

defects (for example, abnormal tone and reflexes) (American Speech-Language-Hearing 

Association, 2007; Strand & McCauley, 2008).  CAS is motor speech impairment, due to 

the damage in the areas in the brain that is involved with speaking. A person suffering 

from speech apraxia is unable to coordinate the sounds in syllables and words. The extent 

of severity relies on the nature of brain damage and range, from mild to severe. 

Individuals with CAS know what words to say, but their brains have difficulty in 

controlling the muscle actions precisely to pronounce the words. The consensus of the 

investigation is that the apraxia of speech in children has the following segmental and 

suprasegmental features: (a) repeated productions of syllables or words caused by 

inconsistent errors on consonants and vowels (b) coarticulatory transitions between 

sounds and syllables that are lengthened and disrupted, and (c) inappropriate prosody, 
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especially in the realization of lexical or phrasal stress (American Speech-Language-

Hearing Association, 2007). 

1.2.2 Dysarthric Speech 

The literal definition of dysarthria is “disorder utterance” in which “dys” means 

disorder or abnormal and “arthria” means to utter distinctly, from the Greek word, 

“arthroun” (Freed, 2012). Dysarthria is an impairment of the neuron-motor speech, 

whereby the muscles controlling the speech organs are weak, move slowly, or not move 

at all. The causes of dysarthria include muscle dystrophy, cerebral palsy, head injury, and 

stroke (Green et al., 2003). The severity and classification of dysarthria depend on the 

area of the nervous system affected as well as the site and degree of neurological damage. 

Clinically, dysarthria is assessed according to the articulation and speech intelligibility, 

in accordance with the measures of human perception (Kayasith, Theeramunkong, & 

Thubthong, 2006a). A common assessment tool is the Frenchay dysarthria assessment 

(Enderby, 1980b). It is a clinical-based tool that has the latest enhanced version which 

was released in 2008. Another tool used is called the Computerized Assessment of 

Intelligibility of Dysarthric Speech (CAIDS) (Yorkston, Beukelman, & Traynor, 1984). 

Symptoms of dysarthria include slurred speech, weak or imprecise articulator contact, 

low volume, and hypernasality.  

One of the functions of the central nervous system is to control speech production. 

Any lesions in this system can cause different perturbations of speech and is based on the 

location and type of lesion. The term dysarthria is associated with this type of lesions. 

Therefore, speech analysis of the patients suffering from this pathology can reveal 

important information for assessment and treatment, thus increasing the effectiveness and 

reliability of the diagnosis process. 
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The main goals of the motor speech evaluation used in the assessment tool, as reported 

in (Roth, 2011) includes, to describe the speech characteristics, to differentially diagnose 

dysarthria types, to confirm the presence of neurologic disease and the level of nervous 

system involvement, to determine speech impairment severity, to determine the presence 

of other neurologic communication disorders, to determine recovery prognosis, and to 

define an intervention plan.   

Childhood Apraxia of Speech (CAS) and dysarthria are very closely related to each 

other and are classified under articulation impairment. To differentiate between them, 

Table 1.1 shows the relationship between specific functions and possible speech 

impairment, and Figure 1.1 gives specific terms related to the problems of the oral motor 

(Strand & McCauley, 2008).  

Table 1.1 and Figure 1.1 show that for dysarthric speakers, the function of the 

execution of movement is affected, which may include weakness, the law in motion, and, 

speed. In other words, these deficits can be improved by encouraging dysarthric speakers 

to keep practicing the pronunciation of the words without fear and hesitation.  

Table 1.1 Relationship between specific function and possible speech disorders  

(Strand & McCauley, 2008) 

Function Neural Process 
Possible speech 

impairment 

i. Specifying range of motion, 

direction, speed and force of 

movement 

Motor planning and 

programming 

Childhood apraxia of 

speech(CAS) 

ii. Executing of movement 

resulting in acoustic output 
Motor execution Dysarthria 
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Figure 1.1: Specific terms related to oral-motor problems (Strand & McCauley, 

2008). 

 

1.3 Automatic Speech Recognition (ASR) 

Human communication is considered as one of the most crucial and essential forms of 

the human social interdependence and exchange of information throughout their lives. 

The primacy of spoken communication in human psychology has been extended through 

the technological platform such as the internet, television, radio, movies, and telephony. 

Besides human-human communication, human-machine interaction has gained an 

important preference among humans as it is based on interface objects and functions that 

are graphically-represented, called graphical user interface (GUI), which is utilized in 

most computers such as menus, icons, pointers, and windows. Most computer operating 

systems and applications also depend on users’ mouse clicks and keyboard strokes, with 

a display monitor or to show feedbacks. However, today’s computers are still in the 

primary stages in comparison to the fundamentals of the human’s abilities: to listen, 

understand, speak, and learn. 
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The spoken language system includes both the components of speech recognition and 

speech synthesis. Furthermore, understanding the dialog component, and domain 

knowledge are required to manage the interaction with the user and accurately interpret 

the speech for the necessary action to be taken. Challenges, like the flexibility, robustness, 

ease of integration, and, engineering efficiency might be present in each component of 

the spoken language system (Huang, Acero, & Hon, 2001).  

Automatic speech recognition (ASR) is the process and related technology for 

obtaining the word or words sequence from a given speech signal. Speech recognition 

applications that have appeared over the last decade include voice dialing, interactive 

voice response, call routing, data entry and dictation, voice search, control and command 

(voice user interface with the computer), hands-free computing (automotive 

applications), creation of structured documents (e.g., legal and medical transcriptions), 

control of appliance by voice, learning of languages with the aid of computers, robotics, 

and, search of content-based spoken audio (He & Deng, 2008; Huang et al., 2001).  

The automatic speech recognition system (ASR) consists of basic components such as 

the acoustic model, language model, dictionary, signal processing, and decoder as shown 

in the blue dotted box in Figure 1.2. The acoustic model includes the representation 

knowledge about acoustics, phonetics, microphone, environmental variability, gender, 

and the speakers’ dialect differences. The language model refers to the knowledge of the 

system on the likeness of the word sequences. In some ASR system, the semantics and 

functions desired to be performed may also include the language model. Dictionary refers 

to the phonetical representation of the words, whether in single or multiple 

representations.  Signal processing refers to the process of speech signal through the 

processing module to extract the related features for the decoder. The adaptation refers to 
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the modification of the acoustic model or a language model to improve the performance 

in terms of recognition accuracy. The decoder uses the above components to produce the 

word sequence that almost matches the input feature vectors with the stored acoustic 

features (Huang et al., 2001).  

The development process includes the understanding of human speech and language, 

recognizing the languages in a way that it can be used to automate it, using time alignment 

for word boundaries, developing the system to easily manipulate speech processing, 

developing a statistical approach to estimate the likelihood appearance of the words in 

sentences, and finally working with Large Vocabulary Continuous Speech Recognition 

(LVCSR). Therefore,  the challenge is to develop a machine that can understand speech, 

make decisions for desirable actions to be taken, and respond like how humans do (Furui, 

2005).   

 

 

 

 

 

 

 

 

Signal Processing 

Decoder 

Adaptation 

Dictionary 

Language Model 

Acoustic Model 

Applications 

Figure 1.2: Basic system architecture of an automatic speech recognition (ASR) 

system 
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The speech recognition system is being improved progressively for the past few years. 

The speech recognition system yields high recognition result when the system is tested 

on the same speaker that was used during the training stage of the system development. 

In fact, the speaker-dependent speech recognition model performs better than the speaker-

independent speech recognition models (Woodland, 2001). In (Gauvain & Lee, 1994; 

Gauvain & Lee, 1994; Kuhn, Junqua, Nguyen, & Niedzielski, 2000; Leggetter & 

Woodland, 1995; Woodland, 2001) the adaptation techniques were proposed to reduce 

the mismatches between the classified parameters of training conditions and testing 

conditions using some adaptation data.   

 There are many approaches used to perform speaker adaptation in the area of 

speech recognition technology. The speaker adaptation aims to obtain the final system 

that has a desirable speaker-dependent (SD)-like properties that require a small portion 

of the speaker-specific (parameters) training data to develop the full SD system. 

Generally, the speaker adaptation (SA) system is designed to improve the overall 

performance for all speaker interaction with the ASR systems. 

1.4 Research Motivation 

An automatic dysarthric speech recognition system has many potential applications. 

Remarkably, it is revealed from the previous studies that the automatic speech recognition 

(ASR) system has been used to help dysarthric speakers in various fields. The most 

applied domains are:  

 Early and self-diagnoses: 

One of the most essential motivations for developing the ASR system for 

dysarthria is the convenience of using a home-based assessment program for easy 

automatic determination of the severity level of dysarthric speakers. Furthermore, 
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the home-based assessment can also be used for early diagnoses of dysarthria 

which leads to providing a suitable treatment at an early stage of the disability 

(Bowen et al., 2012).  

 Computer games: 

Automatic speech recognition can be used to develop a game application for 

dysarthric speakers. The benefit of this game application is to give feedback to the 

parents, instructors, or pathological therapists of the degree, types, and severity of 

the dysarthric speakers. The game application can also be used as a tool to improve 

the speech difficulties for dysarthric speakers (Kitzing, Maier, & Åhlander, 2009; 

Parker, Cunningham, Enderby, Hawley, & Green, 2006).  

 Computer-Assisted interaction: 

The dysarthric speakers particularly the adults have shown to be more interested 

in interacting with the ASR system (human-computer interaction) than using the 

traditional interaction (using keyboard). Some dysarthric speakers are unable to 

type with their hands or find it too tiring (Hamidi, Baljko, Livingston, & 

Spalteholz, 2010; Hux, Rankin-Erickson, Manasse, & Lauritzen, 2000; Thomas-

Stonell, Kotler, Leeper, & Doyle, 1998) thus providing a motivation to develop 

the automatic dysarthric speech recognition system. 

On the other hand, there is some practical motivation to do this research which 

includes: 

 There is plenty of unimpaired speech corpus as compared to the very few corpora 

for impaired speech (which is attributed to the difficulties in collecting the data 

from impaired speakers). This motivates the researcher to use adaptation 

techniques to reduce the mismatches between the features of the impaired speaker 
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with the unimpaired trained acoustic model in automatic speech recognition 

techniques.  

 The improvement to the recognition accuracy of the automatic speech recognition 

system over the last decades for unimpaired speakers (Xiong, Barker, & 

Christensen, 2018) motivates the researcher to investigate the acoustic features 

and adaptation techniques that helps to improve the recognition accuracy off the 

automatic dysarthric speech recognition system that can improves the life quality 

of dysarthric speaker.  

 One of the aims of ASR research is to develop an application for dysarthric 

speakers which might be used in assistive technology or used in web applications 

with the low computational cost. This motivates the researcher to use severity 

level classification and adaptation techniques that help to limit the classification 

and adaptive acoustic model to the total number of the severity level of dysarthric 

speakers.     

1.5 Problem Statement 

The classification of dysarthria has gained importance among the researchers. First is 

to fully understand the types of impairment which result in empirical (sound) features that 

help the development of programs, to easily identify the disorder and its characteristics 

(Kim, Kent, & Weismer, 2011). Secondly, classifications are needed to compare the types 

of dysarthria with each other or with controlled speech, resulting in accurate identification 

of impairment ( Kim et al., 2011; Liss et al., 2009). There is no standard measurement for 

speech severity in dysarthria, thought the speech intelligibility is often used to determine 

the level of the speech mechanism that is affected by the neurological disease (Kent et 

al., 1989). One of the main challenges in differentiating between the effects of severity 

and type of dysarthria is the lack of relevant analysis from a sufficiently large number of 
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speakers with different types of dysarthria and with various levels of severity (Kim et al., 

2011).  

When analyzing the symptoms of dysarthria, both at the articulatory and acoustic level, 

types of dysarthria is used to identify speakers with dysarthria (Weismer, Kim, Maassen, 

& van Lieshout, 2010). Furthermore, (Kim et al., 2011; Weismer et al., 2010) concludes 

that the large inter-speaker variability associated with dysarthria type is caused by the 

variation in the severity of the speech involved. In other words, the classification of 

speakers with dysarthria according to severity is highly similar to the type classification 

(Kim et al., 2011). However, the use of severity level classification is not thoroughly 

investigated in dysarthria speech recognition despite some research that focuses on 

Spastic Severity Disorder Classification (Paja & Falk, 2012). Furthermore, the common 

feature selection techniques are the forward selection procedure and the backward 

selection procedure, which is time-consuming and needs a pre-defined justification to 

obtain the desired feature selection in order to obtain the highest classification accuracy 

with less features (Kim, Kumar, Tsiartas, Li, & Narayanan, 2015; Middag, Martens, Van 

Nuffelen, & De Bodt, 2009). 

Dysarthric speakers generally produce speech that is difficult to be understood by those 

unfamiliar with the speakers (Christensen, Casanueva, Cunningham, Green, & Hain, 

2014). This physical disability results in the need for a system that can understand the 

spoken language, and become more appealing compared to the traditional method 

interfaces, such as using a keyboard and mouse. As such, the ASR system was developed 

as a means of communication aid for dysarthric speakers. 

Due to the tiredness and frustration of the dysarthric speakers to speak for long periods 

of time, there is a lack of speech databases that are available, to provide sufficient speech 
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samples to train a speaker-dependent (SD) ASR system (Gale, Chen, Dolata, van Santen, 

& Asgari, 2019; Sharma & Hasegawa-Johnson, 2013; Xiong et al., 2018) as well as to 

use the standard speaker-independent ASR system (Despotovic, Walter, & Haeb-

Umbach, 2018; Gale et al., 2019; Mengistu & Rudzicz, 2011), as such giving rise to the 

term data sparsity. This occurs when a number of data samples cannot produce enough 

parameters that can identify the presented data samples. Thus, the recognition accuracy 

will not be as high as expected or may even be worse than the original recognition 

accuracy of the system (Shinoda, 2011). 

To overcome the problem of data sparseness, two approaches can be considered. The 

first is to recognize impaired (dysarthric) speech by using the unimpaired (normal) speech 

acoustic model (Stern & Lasry, 1987). However, the intelligibility of a dysarthric 

speaker’s speech is very low. This results in typical measures of speech acoustics to have 

values with ranges that differ significantly from those for unimpaired speech (Liu, Tsao, 

& Kuhl, 2005). Thus the acoustic models trained in unimpaired speech will not be able 

to adjust to this mismatch (Morales & Cox, 2009). 

The alternative solution is Speaker Adaptation (SA). It has the ability to learn the 

acoustic characteristics of individual speakers and adapt them to specific speakers. The 

SA ASR system helps to compensate the inconsistencies in the speech production and to 

reduce the irregularities between the features of the speaker with the trained acoustic 

model of the ASR system (Kotler & Thomas-Stonell, 1997; Rudzicz, Namasivayam, & 

Wolff, 2011; Sharma & Hasegawa-Johnson; Stern & Lasry, 1987). 
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1.6 Research Objectives 

The objectives of this research are as follow: 

1. To identify the suitable classification algorithms and acoustic features of 

dysarthria for automatic classification of dysarthric speech severity level. 

2. To identify the suitable adaptation techniques in relation to data size and level of 

severity of the dysarthric speech towards improvement in recognition accuracy of 

dysarthric speech recognition. 

3. To design and develop the intra-severity automatic dysarthric speech recognition 

method using the identified classification and adaptation techniques in objectives 

1 and 2.   

4. To evaluate the accuracy of the developed automatic dysarthric speech 

recognition method by comparing it with the baseline acoustic model.    

1.7 Research Questions 

The following research questions are suggested as a guide for conducting this research 

at the different phases to accomplish the research objectives. The questions are listed 

based on the objectives in the previous section: 

Objective #1: 

1. What is the importance of classifying the dysarthric speech severity level? 

2. What are the acoustic features that affect the classification of the severity level of 

dysarthric speech? 

3. What are the statistical functions that can be used to determine the dimensions of 

the vector for each acoustic feature? 

4. What is the effect of the reduction of the statistical function per acoustic feature? 
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Objective #2: 

1. What is the best adaptation technique that obtains the highest recognition 

accuracy? 

2. What is the effect of increasing the data adaptation amount to improve ADSR’s 

recognition accuracy? 

Objective #3: 

1. What are the best classifier and adaptation techniques that can be used to design 

and implement the proposed system to improve the recognition accuracy of the 

automatic dysarthric speech recognition system (ADSR)? 

Objective #4: 

1. What are the measurements used to evaluate the classification accuracy and the 

recognition accuracy of the severity level of the automatic dysarthric speech 

recognition system? 

2. How are the results of the proposed system compared to other related methods in 

terms of classification accuracy, recognition accuracy and the combination of 

both? 

1.8 Significance of the Research 

This research is focusing on the classification and adaptation techniques to help 

dysarthric speakers overcome their disability and be more involved with the society. 

There are several significance of this research as the following: 

 Introduce an intra-severity classification and adaptation technique where each 

severity consists of utterances from speakers belonging to the same severity 
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level. For example, the dataset for mild level includes the utterances from the 

mild speakers. Thus, in the classification phase, it will help to automatically 

identify the severity level of dysarthric speakers, which is required during the 

adaptation phase. In other words, the classification phase will classify the 

dysarthric speakers based on the total number of severity level which will be 

similar to the total number of the adaptation model built for the ADSR system. 

 The lack of corpora for dysarthric speakers will be overcome as this research 

will use the adaptation techniques to reduce the mismatches between the 

unimpaired speakers (mostly available corpora) and dysarthric speakers based 

on severity level.  

 Using the hybrid adaptation techniques based on the standard adaptation 

techniques, which are MLLR and MAP adaptation techniques helps to improve 

the recognition accuracy of the automatic dysarthric speech recognition system 

as the hybrid method is aimed at obtaining the benefits of both techniques and 

at the same time reduce the disadvantage of those techniques.   

The researchers in the field of dysarthria might benefits from this research as this 

research is focusing on improving the recognition accuracy of the automatic dysarthric 

speech recognition system. The dysarthric speakers, as well as the therapist, is one of the 

beneficiaries of this research as they will get feedback when this research will be used as 

a base for a complete system.  

1.9 Research Scope 

This research focuses on the improvements of the ASR system’s recognition accuracy 

of dysarthric speakers, which includes three main areas: 
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 Dysarthria of speech: 

This field of research includes the understanding of dysarthria, its causes, and the 

solutions proposed by the therapists. The intelligibility of the dysarthric speakers, 

types of dysarthria, disease types and the severity level of dysarthria has been 

explored to fully understand in this field of study. This research also focuses on the 

techniques used to help dysarthric speakers, using classifications of dysarthric 

speakers based on type, disease, and severity level.  

 Automatic Speech Recognition: 

This field of research includes the understanding of speech production and mimics 

the acoustic system of the human being. It includes the databases (corpora), which 

features the extraction and coding of the language model used to build the acoustic 

model for the ASR system. The different types of acoustic models in ASR, such as 

speaker-independent, speaker-dependent and speaker adaptive has been 

investigated in this research. 

 Classification Algorithm: 

The classification algorithm is investigated to gain extra knowledge on the basic 

methodology of its design which includes feature selection, feature extraction, and 

type of classification method, like statistical or machine learning.  

The three areas of research have been explored in general. However, the scope of this 

research focuses on the intersection of the three areas as shown in Figure 1.3. The severity 

level (intra-severity) based classification and adaptation methods are used to enhance the 

accuracy of the automatic speech recognition for dysarthric speakers. To be more specific, 

the focus is on the severity level, the adaptation techniques, and the machine learning 

techniques for the classification of dysarthric speech.  
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1.10 Thesis Organization 

This thesis is organized as follows: 

Chapter 1 provides a general introduction to the research with regards to the 

background and problem statement, introduction of the research objectives, and 

highlighting the scope and contributions of the research topic. The introduction of the 

speech impairment with regards to speech dysarthria and its deficiencies in the speech 

production system is described in more detail. A basic concept of automatic speech 

recognition, its types, its acoustic model types, and its performance are explored in this 

chapter.      
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Figure 1.3: Research Scope 
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Chapter 2 presents the literature reviews; it covers the dysarthric speech disorder and 

automatic speech recognition for dysarthric speech. The perceptual and objective 

assessment, classification, and type of dysarthria for dysarthric speakers are also 

described in this chapter. On top of that, this chapter provides an overview of the 

classification techniques used to classify the dysarthric speakers and to measure the 

degree of intelligibility and level of severity of dysarthric speakers. The automatic speech 

recognition for dysarthric speech is explored and described as part of a technique used to 

help those affected to overcome their disabilities. 

Chapter 3 describes the proposed technique in both the classification and automatic 

speech recognition for dysarthric speech. The classification phase consists of corpus 

selection, feature extraction for certain sets of identified features, and feature selection 

for obtaining optimal sets of features using different feature ranking algorithms that were 

covered in the first part of the chapter. The proposed automatic speech recognition part 

of dysarthric speakers is presented as a second part section of this chapter, which consists 

of corpora used for training of the acoustic model, and the adaptation techniques which 

aim to minimize the mismatch between speakers’ variability in the acoustic model.     

Chapter 4 discusses the results obtained from applying the classification and 

adaptation techniques used in ASR for dysarthric speakers. The comparison of the results 

with other related works in classification and also in ASR for dysarthric speakers is 

described to evaluate our proposed method. 

Finally, Chapter 5 ends this research by describing the capabilities and features of 

the proposed methodologies. Also included in this chapter are some promising directions 

which can be used as guidelines for further research in the future.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Overview of this Chapter 

This chapter presents the outcome of the intensive literature review of the related 

domain so as to answer the research questions and to meet the research aim. It covers the 

major component of the research as presented in section 1.8 above. 

2.2 Gauging and Assessing the Severity of Dysarthric Speech 

Speech robustness is one of the most important aspects of speech production, which is 

the speaker’s ability to reduce a variety of interior and exterior noises (Kent et al., 2000). 

The speech motor control has the ability to distinguish between normal and neurologically 

disordered speech depending on the articulator’s internal models, a motor-sensory 

combination which is based on rhythm, and with the dynamic articulations’ specification, 

contained inside motor score or program (Kent et al., 2000). One major advantage of the 

study of speech disorder is to enhance the speech motor control’s theories regarding the 

development of speech, standard regulation of speech, and identifying disorders of speech 

caused by diseases of the neurology (Kent et al., 2000). 

The impairment of articulation, voice, and prosody are the standard characterized 

factors for dysarthria (described in chapter 1 section 1.2). On the other hand, the type and 

severity of dysarthria state the nature of impairment of speech (Kent et al., 2000). 

Dysarthria involves disorders in motor execution, with disruptions at different levels 

depending on the type of dysarthria. According to (Liss et al., 2009), no study has been 

conducted for dysarthric speaker classification as a large number of dysarthric speakers 

include dysarthria type, the severity of impairment, and disease types. The study also 

concludes that the measurement used for the classification of any type of dysarthria that 

can directly distinguish the dysarthria type is rare. Also, a combination of several existing 
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measurements has not been considered in the existing literature. An example is the 

research on speaking rate by (Niimi, 2001). However, this measurement could not be used 

to distinguish all types of dysarthria. Formant frequencies and formant transition rates 

have shown no particular differences between dysarthria type (Weismer et al., 2010).  

Dysarthria type is related to the presentation of symptoms, which is divided into 

hypokinetic, hyperkinetic, ataxic, flaccid-spastic mix, spastic, and flaccid (Darley, 

Aronson, & Brown, 1969a, 1969b; Kent, Vorperian, Kent, & Duffy, 2003) Dysarthria 

disease is more complicated and corresponds with dysarthria type because one disease 

can be affected by one or more dysarthria type (Duffy, 2006). Dysarthria severity level 

concerns the degree of dysarthric impairment which is not a common research area among 

researchers (Young & Mihailidis, 2010). 

2.2.1 Perceptual Judgments 

The Perceptual Judgments (PJ) of speech is one of the most common traditional 

methods for dysarthria assessment (Murdoch, 1998). The first differential diagnosis of 

dysarthria was initially proposed by Darley et al. (1969b). The study was performed on 

seven different neurologic diseases including cerebellar ataxia, pseudobulbar palsy, 

bulbar palsy, amyotrophic lateral sclerosis, Parkinson's disease (PD), dystonia, and 

chorea. Figure 2.1 shows the category of each affected speech production mechanism. 
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Figure 2.1: Speech production and it’s related features used for perceptual 

judgment of dysarthric classification (Darley et al., 1969b). 

 

In Darley et al. (1969b), samples that were collected for the study were rated on a 

seven-point scale by qualified speech-language pathologists perceptually. The results 

were in a group of features and were divided into eight clusters. Table 2.1 shows the eight 

clusters of features and their causes. 
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Table 2.1: Articulation clusters and their related features and caused 

No Cluster Features related Caused 

1 Articulatory Inaccuracy IC,IAB,DV 
Disruption of the coordinator 

activity 

2 Prosodic Excess R,PI,IS,EES,PP Neuromuscular defect 

3 Prosodic Insufficiency M,ML,SP,RS Muscle Movement restriction 

4 
Articulatory-Resonatory 

Incompetence 
HN,IC,DV 

Previous and reduced power 

contraction 

5 Phonatory Stenosis 
PL,PB,ELV,HV,S

S,VS,R,SP 

Laryngeal Physiologic 

Narrowness 

6 Phonatory Incompetence BV,BVT,AI,SP Reduced Muscular Contraction 

7 
Resonatory 

Incompetence 
HN,NE,SP,IC 

Previous and velo-pharyngeal 

port failure 

8 
Prosodic-Phonatory 

Insufficiency 
M,ML,HV Hypotonia 

 

The speech perceptual analysis has two types of speech assessment tests, both of which 

are carried out manually. First, the articulatory test which is used as a clinical tool and is 

based on the perceptions of clinicians, speech therapists, or pathologists (Sommers, 

Logsdon, & Wright, 1992).  The articulatory test concerns the severity level and 

diagnoses the errors of dysarthric speech. The knowledge, training, and experiences 

obtained by the clinicians guide the organization to set up a common standard and 

methods to help clinicians to make easy decisions regarding the disorder of the speaker 

(Ray Kent, 1996). An early standard test for dysarthric speech was “Frenchay Dysarthria 

Assessment”, which used a different speech profile pattern that included 11 sections to 

address the types of dysarthria (Enderby, 1980b), and is used by many other researchers 

(Green et al., 2003; Mark Hawley et al., 2007). Some researchers combined the 

articulatory features with the spectrum features to precisely diagnose their results 

(Markov, Dang, & Nakamura, 2006).  An A-score is used by Kayasith & Theermukong 
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(2009) for articulatory assessment. Two experts judged each speaker’s speech and 

assigned the proportion of phonemes pronounced correctly over the total phonemes 

pronounced (modification of the Percentage of Correct Consonants (PCC)). 

The intelligibility test is the second test of perceptual analysis for dysarthric speech. It 

measures the level of understanding between speakers and listeners (Kayasith & 

Theeramunkong, 2009).  Compared to the articulatory test which depends on clinicians’ 

knowledge, training and experiences, the intelligibility test is based on a group of listeners 

without any hearing impairment (Ray Kent, Miolo, & Bloedel, 1994). Some researchers 

used the combination of speech features like the quality of voice, articulation, prosody, 

and nasality as a factor to assess the comprehensibility (De Bodt, Hernández-Dı́az Huici, 

& Van De Heyning, 2002; Narendra & Alku, 2019). Similar to the articulatory test, the 

intelligibility test needs subjective judgment. Moreover, both tests are painstaking and 

require human comprehension and appreciation (Kayasith & Theeramunkong, 2009). 

Twelve listeners with no hearing impairment have been assessed for their speech for three 

sessions, which consist of scales of rating, multiple choices, and transcription of the word 

(Kayasith & Theeramunkong, 2009). The final intelligibility score (I-score) is calculated 

by adding up and averaging evaluations from all listeners’ for the three sessions. 

The criteria for the classification of speech severity are reported in Kayasith & 

Theermukong (2009) which is used to classify the articulatory and intelligibility tests. 

Table 2.2 shows the classification of speech severity for articulation and intelligibility 

according to the severity score (Kayasith & Theeramunkong, 2009).  
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Table 2.2: severity level and severity speech for articulatory and intelligibility 

test 

Severity level Severity score 

Very severe 0.00-0.40 

Severe 0.41-0.60 

Moderate 0.61-0.80 

Mild 0.81-0.95 

Normal 0.96-1.00 

 

2.2.2 Objective and Perceptual Classification 

The challenge of the Perceptual Judgments (PJ) method is to invariably distinguish the 

individuals and their existing speech disorders, more so with the existence of many 

different types of the intervention program. Many researchers have stated that judgment 

according to human perception alone is insufficient and finding of automatic features is 

necessary to obtain reasonable results in relation to disorder classifications (Fonville et 

al., 2008; Van der Graaff et al., 2009). Thus, the objective measure is used to improve the 

perceptions’ precision and to utilize alternative comparison reference between different 

studies and subjects (Guerra & Lovey, 2003).  

The combination of perturbation of speech’s judgment of objective and perception is 

the trend of the dysarthria assessment (Ray Kent, Weismer, Kent, Vorperian, & Duffy, 

1999).  The main purpose of the perceptual combination and objective judgment is to 

receive the benefit of the automatic algorithms, to process the speech to automatically 

assess the level of severity for the dysarthric speakers, which was earlier perceived as less 

reliable by clinicians (Guerra, 2002).  
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In Guerra & Lovey (2003) a novel approach has been proposed in the form of features 

that are perceptual and objective, from speech signals that are impaired (pathological). 

The methodology: first, look at the features are extracted by using the digital signal 

processing algorithm. Then the clinician compares the less reliably judged combination 

with the remaining features which are directly taken from medical records or judgments 

of perception. The classifiers used are Linear Discriminant Analysis (LDA) and non-

linear, based on Self-Organizing Map (SOM). The non-linear classifier has performed 

better than the linear classifier as well as providing data that are represented bi-

dimensionally. This helps in a better understanding of the relationship between deviations 

of speech and the damage location in the central or peripheral nervous system. 

2.2.3 Objective Classification 

Currently, perceptual assessment (subjective intelligibility assessment tests)  is used 

by speech-language pathologists to characterize speech disorder severity, as well as plan 

and monitor the treatment, and document intelligibility change over time (Klopfenstein, 

2009). However, this type of assessment is expensive, strenuous, and depends on many 

biases and variables, e.g., being familiar with the patients and their pathologies of speech 

(De Bodt et al., 2002). On the other hand, objective measurement is economic and 

dependable. It ables to help in pharmacological and/or surgical evaluation of treatment 

(Constantinescu et al., 2010). Meanwhile, the automated machine-based system is 

becoming the preference of the clinicians to help predict the decision for the treatments 

(Hill et al., 2006; Maier et al., 2009). 

With regards to the objective intelligibility measurement, the force alignment of the 

speech acoustic features to the phonemic and phonological features for a given unknown 

speech is one of the approaches used to predict corresponding hypothesis speech (Falk, 
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Chan, & Shein, 2012). In Middag et al (2009) an example was proposed for the systems 

to use the objective intelligibility measurement for dysarthric speech. 

2.2.4 Dysarthric Speech Intelligibility 

It is important to characterize a particular speech disorder’s effects on intelligibility 

(Paja & Falk, 2012). The severity of speech in dysarthria has no standard, whereas the 

intelligibility of speech is frequently used to determine the level of speech mechanism 

affected by a neurological disease (Kent et al., 1989). Even though the number of speakers 

with different types of dysarthria at various severity levels is sufficiently large, the low 

number of associated analysis poses a challenge in differentiating severity effects and 

dysarthria type (Kim et al., 2011).  

Each severity level has its own characteristics and can be used to classify speech 

impairment. It has been reported that both severity level and disorder types are used to 

measure the intelligibility of speakers (Falk et al., 2012). The direct measure of dysarthric 

severity has been proposed in Falk et al (2012). Meaning, intelligibility is one of the 

approaches for the classification of severity of dysarthria. 

To identify the intelligibility deficits in dysarthria using the signal properties, and to 

determine acoustic features for each dysarthria type, are the two goals of the acoustic 

method in classification of dysarthria. The acoustic method has been conducted to 

determine the acoustic measure that predicts the level of intelligibility and physical 

correlation of perceptual features, to determine the dysarthria type (Rayd Kent & Kim, 

2008). 

Some researchers reported that speech intelligibility can be assessed using phoneme 

level intelligibility. The benefits of using the phoneme level intelligibility are: (1) the 
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speech intelligibility core is equivalent to the phoneme level intelligibility, (2) phonemes 

(consonants, vowels, and consonant words) are used as stimuli to observe the phoneme 

intelligibility and is relevant for dysarthria of all severities, and (3) adequately built 

assessment of phoneme intelligibility can lead to obtaining associated segmental 

information (Ray Kent, Weismer, Kent, & Rosenbek, 1989). An investigation of both 

phonemic features (acoustic model of phoneme and phonological features) and acoustic 

model of dimensions of articulation (articulation manner and place, voice, etc.) has been 

addressed in (Van Nuffelen, Middag, De Bodt, & Martens, 2009). 

The reliability of measures of phoneme intelligibility for dysarthric speakers has been 

evaluated using Phonemic Features (PMF) model, Phonological Features (PLF) model, 

and combination of both phonemic and phonological features (PMF +PLF) model (Van 

Nuffelen et al., 2009). The computed scores using intelligibility models of the three types 

are matched to scores of perceptual intelligibility from the assessment of standardized 

intelligibility (Van Nuffelen et al., 2009). The calculation of the phonemic feature model 

uses the triphone model that is generated by comparing the pronounced speech with the 

transcription of the typical phoneme, according to what the speaker says. The final feature 

represents an average of a good pronunciation by a given speaker. On the other hand, the 

phonological feature generation uses the speaker context-independent acoustic model, 

which works on phonological space counted to 24 phonological features, like voice, 

fricative, nasal, etc. 

Dysarthric speech intelligibility classification has been performed on a binary 

intelligibility label (Kim et al., 2015) as a score of intelligibility on at least five scales, or 

percentage (Frank Rudzicz, Namasivayam, & Wolff, 2012). Binary intelligibility is useful 
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for automation of intelligibility classification assessment, while the intelligibility score 

and percentage are useful for clinical and perceptual assessment.  

In Dhanalakshmi & Vijayalakshmi (2015) a Gaussian Mixture Model (GMM)-based 

speaker identification system was used to evaluate the speaker identity, while 

Degradation Mean Opinion Score (DMOS) evaluates the naturalness, and the Word Error 

Rate (WER) assesses the intelligibility evaluation. The evaluation of the intelligibility 

carried out using the adaptive synthesis system is used to generate speech from the 

dysarthric speakers for the purpose of enhancing communication of the dysarthric 

speakers and normal speakers. Time-Domain Pitch Synchronous Overlap Add (TD-

PSOLA) modifies the rate of synthesized speech. Table 2.3 shows the factor that alters 

the duration of specific dysarthric speakers (Dhanalakshmi & Vijayalakshmi, 2015). 

2.2.5 Features of Dysarthric Speech 

Guerra (2002) used 20 features from the 38 features listed in figure 2.1 to classify 

dysarthric speakers. The study uses a hybrid approach in which the automatic features 

have been extracted automatically using the speech algorithms and perceptual judgment 

by experts. The study used eleven of twenty features, to be applied on automatic feature 

extraction and the remaining nine features are for perceptual judgments by experts. 
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Table 2.3: Rate of Speech and Duration Factor of TD-PSOLA 

Severity 

Level 
Speaker ID 

Speech rate 

(Phonemes/second) 
Duration factor 

Mild 

BB 8.5 0.75 

FB 6.4 0.7 

MH 7 0.8 

Moderate 

RK 7 0.6 

JF 5.5 0.6 

RL 3 0.55 

Severe 

BK 3 0.5 

SC 4.5 0.5 

BV 2.3 0.65 

 

The Kurtosis of Linear Prediction (LP) residual (κLP) signal is used to distinguish the 

excitation of the atypical vocal source (referring to vocal breathing and harshness). The 

rate-of-change of the signal in log-energy is used to characterize the speech temporal 

impairments with regards to the short-term (60ms) temporal dynamics. Delta zeroth-order 

cepstral coefficient’s (σ∆c0) standard deviation is used to compute the short term 

temporal dynamics. Temporal of speech is concentrated on the unclear distinction 

between the adjacent phonemes caused by articulation’s inaccurate placement. The Low-

to-High Modulation Energy Ratio (LHMR) is used to characterize the speech temporal 

impairment associated with the long term (256ms) temporal dynamics. Representation of 

the modulation spectral signal, which is auditory-inspired is used to represent the 

modulation spectral energy’s ratio from frequencies lower than 4 Hz to frequencies 

greater than 4 Hz (Falk et al., 2012; Falk & Wai-Yip, 2010; Paja & Falk, 2012). Prosody 
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features are used as parameters to identify speech impairment such as standard deviation 

of the fundamental frequency (σ f0), the range of fundamental frequency f0 (∆f0), and 

percentage of segments of voice in words uttered (%ⱱ) (Paja & Falk, 2012). In Paja & 

Falk (2012) the combination of these features in one dimension feature is used for 

automatic prediction of intelligibility. 

Practical applications are used to help dysarthric speakers. These applications use blind 

methods such as the second-formant slope transitions, duration of tone unit, and variation 

of the fundamental frequency (F0) (Kent et al., 1989; Schlenck, Bettrich, & Willmes, 

1993). One advantage of using blind methods as a gauge for the intelligibility of 

dysarthric speech is that they don’t need to prioritize information for the given word to 

be uttered (Klopfenstein, 2009).  Moreover, dysarthric speech’s rhythmic disturbances 

are characterized by the spectrum of modulation, which is the power spectrum of the 

speech signal envelope (LeGendre, Liss, & Lotto, 2009). 

Harmonics-to-Noise Ratio (HNR), Glottal-to-Noise Excitation ratio (GNE), and Mel 

Frequency Cepstral Coefficients (MFCCs) are speech features used for the classification 

of dysarthric speech especially it’s  severity (Godino-Llorente, Gómez-Vilda, & Blanco-

Velasc, 2006; Paja & Falk, 2012). MFCCs have the capability to capture the movement 

of irregular vocal fold or the lack of closure of vocal-fold caused by the change in 

mass/tissue (Godino-Llorente et al., 2006). GNE quantifies the excitation ratio, due to 

vocal fold oscillation versus turbulent noise (Godino-Llorente et al., 2010). HNR uses the 

difference in the ratio between the component of the periodic signal’s energy and the 

component of the aperiodic signal’s energy (Teixeira & Fernandes, 2014). The 

combination of all these features in one dimension is proposed in Paja & Falk (2012). 
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One measure used to identify severity type is the Low-to-High Modulation energy 

Ratio (LHMR) (Falk et al., 2012).  The higher LHMR values are affected by the 

intelligibility level according to how the modulation spectral frequency contents are 

(greater or lower than 4 Hz). Frequency below 4 Hz causes less ineligibility (Falk et al., 

2012) and above 4 Hz increases the intelligibility (Doh-Suk, 2004). 

Some of the features like perturbations in temporal dynamics (long and short term), 

atypical excitation of the vocal source, separation of information of vocal tract and source, 

nasality, prosody, and composite measure (Falk et al., 2012). According to De Bodt et al., 

(2002) and Falk et al., (2012), a linear combination of the characteristics of dysarthric 

speakers, the performance was better than its individual measures. However, the use of 

composite measures proved to overcome standalone measures. 

The Variability Index (VI) is defined as the average syllable variability for a given 

utterance, after comparing the duration of neighboring syllables with the normalized 

duration of each syllable (Deterding, 2001). Compared to a control group of speakers, VI 

values were lower for a group of ataxic dysarthria. Furthermore, control speech and ataxic 

dysarthria have different intersubjective variability in VI values (Stuntebeck, 2002).  The 

calculation of VI is as the following:   

𝑉𝐼 =  
1

𝑛 − 2
∑|𝑑𝑘+1 −  𝑑𝑘|

𝑘−2

𝑛=1

                                (2.1) 

Where 𝑑𝑘  is the normalized duration of the kth; and  𝑛 is the number of syllables in 

the utterance. 

Nowadays, speakers with mild and moderate dysarthria are using automatic speech 

recognition (ASR) as an objective measure to identify intelligibility (Doyle et al., 1997; 
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Maier et al., 2009; Sharma, Hasegawa-Johnson, Gunderson, & Perlman, 2009). For 

severe dysarthric speakers, the difficulty is for the speakers to make the speech more 

understandable, to be reflected by the ASR technologies. Pre-processing approaches are 

used to enhance the ASR in identifying the type of speakers with dysarthria (Middag et 

al., 2009; Frank Rudzicz, 2007). One limitation of using ASR for dysarthric speakers is 

the limitation of the vocabulary size (Doyle et al., 1997). By being speaker-dependent 

(Frank Rudzicz, 2007) and having data availability sparseness (Green et al., 2003), 

accurately trained models are needed to overcome this limitation. 

With regards to the pitch, mild dysarthria is associated with low pitch variation 

(monotonicity), whereas severe dysarthria is associated with high pitch variation (Falk et 

al., 2012; Schlenck et al., 1993). 

2.2.5.1 Acoustic features of dysarthric speech 

An acoustic analysis provides data on dysarthria as accompanied by several diseases 

and may also include speech behavior over time (Ray Kent et al., 1989). There are many 

speech parameters that play an important part in decreasing the speech intelligibility, like 

voicing contrasts, nasalization, and vowel height (Weismer, Martin, & Kent, 1992). 

Voice Onset Time (VOT) (Liu, Tseng, & Tsao, 2000), second formant frequency (F2) 

slope (Kent et al., 1992; Y. Kim, Weismer, Kent, & Duffy, 2009), and acoustic vowel 

space (McRae, Tjaden, & Schoonings, 2002; Tjaden & Wilding, 2004; Weismer, Jeng, 

Laures, Kent, & Kent, 2001) are some of the acoustic features used to determine speech 

intelligibility of speakers with dysarthria. Dysarthria type is characterized according to 

acoustic measurements such as slow rate of speaking, VOT with high variability, almost 

similar duration of utterance with regards to vowel/syllable, and fundamental frequency 

(F0) range across utterances which are abnormally large, has been associated to ataxic 
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dysarthria (Kent et al., 2000). Hypokinetic dysarthria is associated with normal or faster 

rate of speaking, high mean F0, decrease F0 variability, and decrease in extents and slopes 

of F2 (Goberman, Coelho, & Robb, 2005; Solomon & Hixon, 1993). Spastic dysarthria 

has been studied in (Ozawa, Shiromoto, Ishizaki, & Watamori, 2001; Özsancak, Auzou, 

Jan, & Hannequin, 2001). Hyperkinetic, flaccid, and mixed dysarthria have been studied 

(Liss et al., 2009; Wang, Kent, Duffy, & Thomas, 2005). 

The Root-Mean-Square (RMS) intensity contour, F0 contour, F2 transitions extent and 

duration, M1 for fricatives (/s/ and /ʃ/) during three 50-ms-long windows approaching the 

vocalic nucleus (25-ms overlap between adjacent windows), first and second formant 

frequencies from four corner vowels, voiceless interval duration, and vowel and sentence 

duration, were acoustic measurements studied in (Kim et al., 2011). These measurements 

were required to derive these variables for analysis: RMS intensity range of utterance, F0 

range (maximum-minimum) of utterance, F2 slope, M1 difference between /s/ and /ʃ/, 

acoustic vowel space, Pairwise Variability analysis (PVI), and rate of articulation. 

According to the Kim et al. (2011), the following acoustic measures were significantly 

correlated with speech intelligibility according to disease group: F2 slope, vowel space, 

the difference of M1 for /s/ and /ʃ/, rate of articulation, Voiceless Interval Duration, and 

range of F0 interquartile. All clinical groups, except for Parkinson's disease (PD), had a 

significant rate of articulation, and scores of speech intelligibility for all four disease 

groups showed significant regression of F2 slope. 

Regarding the classification type, the study conducted in Kim et al (2011) showed that 

there are acoustic variables that contribute to the classification of dysarthria. The intensity 

ring (dB), Voiceless Interval Duration (VID), and Articulation Rate (AR) have a 

significant effect on etiology classification. Furthermore, the range of F0 and Articulation 
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Rate (AR) affect the classification of type, whereas ranges of F0, the slope of F2, and 

vowel space (VS) have more effect on severity classification. 

2.2.5.2 Vowels of dysarthric speech 

Vowel-related phonological contrasts like tense-lax, high-low, and front-back are used 

to predicate the intelligibility of words among dysarthria speakers (Ansel & Kent, 1992). 

Vowel space area has an important effect on speech intelligibility as found in (Liu et al., 

2005). The reduction of displacements in the articulation of dysarthric speakers resulted 

in squeezing of vowel space area which is affected by the speech intelligibility (Neel, 

2008; Tjaden & Wilding, 2004; Weismer et al., 2001). The vowel space area is measured 

in F1 and F2. F1 measures (dimension) jaw opening and tongue height while the F2 

measures (dimension) the tongue position (Neel, 2008). 

The features that contribute to intelligibility variability found in the cerebral palsy 

dysarthric adult are contrasts in a vowel (tense-lax, high-low, and front-back) (Ansel & 

Kent, 1992). The errors were: short vowels recognized as long vowels and vice versa 

(called short-long pair error), high vowels recognized as low vowels (called tongue height 

error), front vowels recognized as back vowels (called tongue advancement error), and 

target monophthong recognized as diphthong, or a diphthong recognized as a different 

diphthong (Ansel & Kent, 1992; Thubthong, Kayasith, Manochiopinig, Leelasiriwong, & 

Rukkharangsarit, 2005).   

Some researchers have categorized the error pattern according to misrecognized types, 

which is considered as recognition error. The misrecognized types are substitution 

(manner, placement, the combination of manner and placement, height, short-long, pair, 

and others), distortion, addition, omission, and reduction (Manochiopinig, Thubthong, & 

Kayasith, 2007; Manochiopinig, Thubthong, & Kayasith, 2008). The results showed that 
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substitution has the most number of error patterns with all kinds of dysarthric speech 

characteristics as well as the only error pattern to occur in vowels and tones 

(Manochiopinig et al., 2007; Manochiopinig et al., 2008; Thubthong et al., 2005). It is 

followed by reduction, distortion, omission and addition, in that order (Manochiopinig et 

al., 2007; Manochiopinig et al., 2008). 

2.2.5.3 Consonants of dysarthric speech 

The consonant is one feature that plays an important role in dysarthria. It applies in 

almost all perceptual types of dysarthria. However, there is no consensus on the acoustic 

measure to cover all consonants (Ray Kent & Kim, 2003).  The Voice Onset Times (VOT) 

is one of the consonant features (consonant stops) which is mostly used to distinguish 

between impaired and non-impaired speech (Auzou et al., 2000). Another factor in the 

consonants feature is the fricatives, where controlling articulation precisely for speech 

production makes this feature interesting for researchers.  Many researchers focused on 

the fricative /s/, which happens frequently in multiple languages, as well as its distinct 

spectral pattern (Ray Kent & Kim, 2003). A study by Chen and Stevens to acoustically 

measure the fricative /s/ as pronounced by normal and dysarthric speakers show that both 

the perceptual and spectral analysis have been compared based on spectrographic 

observation (Chen & Stevens, 2001). The analysis criteria were the initial sound, proper 

tongue position, and change from the current fricative to the following vowel (Chen & 

Stevens, 2001). The study, as obtained by the judges, concludes that between 

intelligibility and fricative /s/ ratings of the speakers, a correlation exists (Chen & 

Stevens, 2001). 

With regards to phonemes category, dysarthric speakers were reported to have 

difficulty in pronouncing alveolar phonemes for the initial and final consonant. Whereas, 

Univ
ers

iti 
Mala

ya



  

37 

 

the high recognition accuracy, labial phonemes of final consonant and glottal phonemes 

of initial consonant were obtained. In the initial consonant, the approximant phonemes 

have more recognition accuracy than affricate phonemes (Manochiopinig et al., 2007; 

Manochiopinig et al., 2008). As for the error pattern in the consonant, most errors were 

reported to be manner errors (place, voicing, or both) (Thubthong et al., 2005; Whitehill 

& Ciocca, 2000). 

2.2.5.4 Prosody features of dysarthric speech 

With regards to the correlation between the prosody and assessment of dysarthric 

speech, some studies reported that the speakers with severe dysarthria had higher mean 

F0 and shorter tone units while the speakers with mild dysarthria or neurological disease 

had lower mean F0 and longer tone unit (Schlenck et al., 1993). The prosody parameters, 

such as the unit of tone  (word, ratio, duration), the variation of F0, and mean F0 had 

participated in distinguishing the dysarthric speech and had interaction with speech 

intelligibility (Bunton, Kent, Kent, & Rosenbek, 2000).  Fundamental frequency contour 

parameters are one of the prosody features that had interaction with dysarthric speech 

intelligibility and dysarthric types (Bunton, Kent, Kent, & Duffy, 2001). 

The prosody features for the non-intelligible dysarthric speech was obtained using the 

utterance level features and phonetic level features. The utterance level features elicit the 

following [0.1 0.25 0.5 0.75 0.9] quantiles, interquartile pitch range and its delta, variance 

in pitch, Z-score of each phoneme duration, normalized L0-norm ratio and the normalized 

utterance duration and their sums (Kim et al., 2015).  Features for the phonetic level 

involve the variance of pitch contour and stylization parameter. They are calculated by 

fitting quadratic polynomials for each phonetics (Kim et al., 2015). 
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2.2.5.5 Nasality features of dysarthric speech 

Hypernasality feature is one of the nasality indices which has gained importance for 

dysarthric speech classification. It is because hypernasality is a feature for dysarthric 

speech classification type and severity level. Hypernasality is also a factor that diminishes 

intelligibility (Ray Kent & Kim, 2003). 

2.2.5.6 Distance measure of dysarthric speech 

There are some approaches that are used to compare the features from both the 

dysarthric speakers' speech and non-impaired speakers' speech. An example proposed by 

Gu, Harris, Shrivastav, & Sapienza (2005) is by computing the distance measure (e.g., 

Itakura-Saito distortion) between the given speech utterance samples for dysarthric 

speakers and equally the same speech of non-impaired speakers. Dynamic time warping 

is applied to calculate the differences of the speech feature, like utterance durations (Gu 

et al., 2005). 

A combination of the possible source of variability features with the feature selection 

for feature dimensionality is one of the easy and common fusion methods for solving 

issues of dimensionality. This is called the feature-level fusion (Kim et al., 2015). 

2.2.5.7 Other features of dysarthric speech 

Speech quality features such as ratio of harmonics to noise, shimmer and jitter, spectral 

features (such as formants and mel-frequency cepstral coefficients), scores of automatic 

speech recognition (such as word recognition or confidence score of phoneme,  prosodic, 

phonemic and perceptual features), and features of estimated speech parameter (such as 

phonological features), are features that provides indicators for speech variabilities in 

general and to enhance the speech recognition rate (Dibazar, Berger, & Narayanan, 2006; 

Kodrasi & Bourlard, 2019; Andreas Maier et al., 2009; Middag, Bocklet, Martens, & 
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Nöth, 2011; Van Nuffelen et al., 2009).  Researchers have studied those features at the 

word level. Some researchers studied a simple sentence or passage level, which has the 

following advantages: 1. Stimuli used during the data collection 2. The simplicity of the 

pronunciation of segmentation which is composed of short duration and intelligibility 

information. 3. Data collected exhibit real-world communication scenarios. The sentence-

level speech production data has more variability and complexity with regards to the 

robustness and characteristics of the feature, as compared to word-level or single 

phonetics data (Kim et al., 2015).   

The features of voice quality, like Harmonics to Noise Ratio (HNR), and shimmer and 

jitter are used for intelligibility classification tests (Kim et al., 2015; Narendra & Alku, 

2018, 2019). Features of voice quality are proposed to be effective in speech intelligibility 

(Kim et al., 2015). Preminger and Van Tasell (1995) reported that speech intelligibility is 

less affected by perceptual speech quality. Speech quality dimensions, like total 

impression, the effort to listening, and loudness have been suggested to be more 

predictable than speech intelligibility scores (Preminger & Van Tasell, 1995). 

The pronunciation features, like the duration of phonetics,  cepstral mean normalized 

39-dimension Mel-Frequency Cepstral Coefficients (MFCCs), and formants, have been 

used for pronunciation variation (Witt, 1999). Some researchers used statistical spectral 

features to address pronunciation features. This feature includes [.05 1.25 5.75 9.95] 

quantiles, interquartile range, and third-order polynomial coefficients of the first, second, 

and third formats of their bandwidths and their derivatives for each segment of the vowel  

in each utterance (Kim et al., 2015). Some pronunciation features extracted from 

waveforms of speech at the utterance-level excluded the silence where the maximum and 

standard deviation of cepstral mean normalized 39 MFCCs are estimated (Kim et al., 
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2015). The temporal features contain the duration of pause and average syllable, and 

exclude beginning and ending silence to the duration of average vowel and syllable ratio 

number, calculated from the phonetic transcription (Kim et al., 2015). 

According to Kim, Martin, Hasegawa-Johnson, & Perlman (2010) articulatory manner 

change is accompanied by the speech of dysarthria. In contrast, the variability of 

articulatory place can affect all normal and dysarthric speech. Moreover, for complex 

phonetics production, there is an increase in articulatory errors (Kim, Martin, Hasegawa-

Johnson, & Perlman, 2010). The utterance-level prosodic feature variation also increases 

for dysarthric speech (Kim et al., 2010).  The super-Gaussianity of the speech spectral 

coefficients arises due to the pauses between the phonemes and due to formant transitions 

in voiced sounds used to classify the healthy and dysarthric speakers (Kodrasi & 

Bourlard, 2019). 

2.2.6 The Techniques for the Classification of Dysarthric Speech 

The techniques used for the classification of dysarthric speech in (Guerra, 2002; 

Guerra & Lovey, 2003) are the differential diagnosis of dysarthrias proposed by Darley, 

Aronson, and Brown (DAB), where a Linear Discriminant Analysis (LDA) and a non-

linear method using Self Organizing Map (SOM) are used. 

DAB was implemented using average PJ of clinicians on 38 dimensions, grouped into 

8 clusters. A minimal Euclidean distance between the combination of clusters reported 

for each type of dysarthria and the vector formed by each cluster’s occurrence form the 

base for the decision to be made (Darley et al., 1969b).   

LDA method was an alternative approach where the final dataset (combined data) is 

separated into different groups using linear surfaces.   In this method, the input vector is 

Univ
ers

iti 
Mala

ya



  

41 

 

classified into a group, with the existence of a minimal squared distance between it and 

the observation. LDA, therefore, finds a unique discriminant equation for patients of each 

group or class. Features that positively contribute to the linear equation’s final magnitude 

is the source in the relevancy of the classifier’s decision (Guerra & Lovey, 2003). 

SOM method in a non-linear approach where an unsupervised artificial neural network 

based on SOM is used (Fritzke, 1994; Kohonen, 1990). One advantage of using the SOM 

method is that the group’s spatial distribution can be represented bi-dimensionally. The 

idea of the SOM method is to extract the features and analyze according to vectors such 

as weights associated with the neurons’ centroid from the relevant groups (Kohonen, 

1990).  

According to Guerra (2002), the LDA improved its classification recognition rate. On 

the other hand, the SOM classifier provided almost a 5% better classification ratio than 

LDA and almost 20% better than DAB. Additionally, the SOM provided a better 

perceptual percentage of correct classification (PPC), backward relevancy analysis that is 

more precise and produces a map containing each group’s detailed information.  

Linear, quadratic and Mahalanobis distance-based discriminant functions are used as 

discriminant analysis classifiers for automatic detection of dysarthria speech severity 

(Paja & Falk, 2012). In Paja & Falk (2012) cross-validation of 15-fold was used with 

validation use consuming 30% and training use taking up 70% of the recorded data. The 

results in Paja & Falk (2012) show that Mahalanobis distance classifier obtained the best 

accuracy of 95% when used with combined features (the nasality-related features and 

prosody features totaling 6 features on one side and the remaining 28 consisting of salient 

acoustic features, making up 34 features in total). Paja & Falk (2012) proved that the 

combined features perform better than stand-alone features. 
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The utterances have been clustered according to the speech characteristics of the 

subjects (Kim, Kumar, Tsiartas, Li, & Narayanan, 2012). The bottom-up Agglomerative 

Hierarchical Clustering (AHC) with a single Gaussian was used to group together 

utterances of similar speech. By using a majority voting rule, the ad-hoc scheme that 

jointly classifies all utterances inside a cluster enforces smoothness constraint (Kim et al., 

2012).   

Line Spectrum Pair (LSP) is one of the linear prediction parametric representation for 

spectral information of the speech space and is related to the formant of speech sound or 

natural resonances (Qian, Soong, Chen, & Chu, 2006). LSP feature from each utterance 

with Generalization Likelihood Ratio (GLR) distance is used to perform the AHC 

clustering and to perform a posterior smoothing for the test set (Kim et al., 2015).  

Table 2.4 shows the related classification of dysarthric speakers, which includes the 

classification algorithms, evaluation method, data set, extracted features, feature selection 

used, and results obtained from studies in classifying dysarthric speech. 
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Table 2.4: Summary of classification and feature selection methods used for classifying the dysarthric of speech 

Author(s) 
Classifier 

Algorithm 

Evaluation 

Method 
Data Set 

Extracted 

Features 

F
ea

tu
re

 

S
el

ec
ti

o

n
 

Results Note 

 Frederic L. 

Darley et al., 

(1969) 

Perceptual 

judgment (three 

judges used for this 

assessment) 

Minimal 

Euclidean 

Distance 

212 

dysarthric 

subjects 

38 features as 

presented in 

Figure 2.1 

No 

66.1 % 

accuracy of 

classification 

Seven groups of 

dysarthria were 

studied - it considers 

first studied regarding 

dysarthric speech 

 Guerra & 

Lovey (2003) 

Linear discriminant 

analysis(LDA) and 

non-linear based on 

self-organizing map 

(SOM) (artificial 

neural network 

based on SOM 

network) 

Percentage of 

correct 

classification(PP

C) 

62 

dysarthric 

subjects ( 

database 

collected 

by Aronson 

and 

colleagues, 

1993) 

20 speech features 

(11 extracted 

using computer 

algorithm and 9 

extracted using 

perceptual 

judgment )  

No 

The non-

linear 

classifier 

(85.83%) and 

linear 

classifier 

(81.1%)  

Dysarthria type 

classification 

 Tiago H Falk, 

Chan, & 

Shein (2012) 

Class-based linear 

estimators 

Pearson (R) and 

Spearman rank 

(RS) correlation 

coefficients, 

along with their 

corresponding p- 

values 

Universal 

Access 

Speech 

database 

(10 spastic 

dysarthric 

speakers) 

A Typical vocal 

source excitation 

(1 feature), 

temporal 

dynamics (4 

features), Nasality 

(8 features), 

prosody (3 

features), and 

composite (3 

composite 

features) 

No 

combine 

many 

features have 

an effect on 

the objective 

measurement 

of dysarthric 

word 

intelligibility  

The atypical vocal 

source excitation, 

temporal dynamics 

and prosodic as 

features to dysarthric 

intelligibility 

assessment 
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Author(s) 
Classifier 

Algorithm 

Evaluation 

Method 
Data Set 

Extracted 

Features 

F
ea

tu
re

 

S
el

ec
ti

o

n
 

Results Note 

 Middag et al 

(2009a) 

Linear regression 

models 

Fivefold cross-

validation (CV) 

and root mean 

squared error 

(RMSE) for 

performance 

criterion  

Dutch 

Intelligibili

ty 

Assessmen

t (DIA), 

211 

speakers 

(51 control 

speakers) 

55 Phonemic 

Features (PMFs),  

24 Phonological 

Features (PLFs), 

and 768 Context-

Dependent 

Phonological 

Features (CD-

PLFs) 

Yes 

Combine 

many 

features have 

an effect on 

automating 

intelligibility 

assessment  

Three groups of the 

feature were studies 

in order to predict the 

intelligibility (PMF, 

PLF, and CD-PLF) 

 Schlenck, 

Bettrich, & 

Willmes 

(1993) 

Discriminant 

Analysis(ALLOC8

0) 

Leaving-one-out 

strategy  

154 normal 

subjects 

and  84 

dysarthric 

subjects 

Mean 

Fundamental 

Frequency(F0), its 

standard 

deviation, and the 

highest and 

lowest F0 

measurement 

No 

84% of male 

speakers and 

100% of the 

female 

speakers 

were 

correctly 

classified 

distinguish between 

dysarthria and normal 

speakers 

 Godino-

Llorente, 

Gómez-Vilda, 

& Blanco-

Velasc (2006) 

Gaussian mixture 

model (GMM) 

K-fold cross-

validation 

53 control 

subjects 

and 173 

pathologica

l subjects 

MFCC Yes  94% 

distinguish between 

pathological and 

normal speakers 

(used F-Ratio and 

Fisher’s discriminant 

ratio as a feature 

selection) 
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Author(s) 
Classifier 

Algorithm 

Evaluation 

Method 
Data Set 

Extracted 

Features 

F
ea

tu
re

 

S
el

ec
ti

o

n
 

Results Note 

 Fonville et al. 

(2008) 
KAPPA statistics 

Confidence 

Interval 

100 

dysarthric 

subjects 

neurologists and 

neurological 

trainees(manual 

assessment of 

type off 

dysarthria) 

No 35% 
Dysarthria type 

classification 

 Y. Kim, 

Kent, & 

Weismer 

(2011) 

Discriminant 

Function Analysis 

(Statistical 

Analysis) 

SPSS Version 

16.0 for every 

single Acoustic 

variable and for 

all eight acoustic 

variables  

107 

dysarthric 

subjects 

8 segmental/ 

suprasegmental 

features: 2nd 

formant 

frequency slope, 

articulation rate, 

voiceless interval 

duration, 1st-

moment analysis 

for fricatives, 

vowel space, F0, 

intensity range, 

and Pairwise 

Variability Index 

No 

The 

classification 

accuracy of 

dysarthria 

using disease 

type or 

severity level 

outperform 

classification 

using 

dysarthria 

type 

Comparison of the 

classification of 

dysarthria based on 

type, disease, and 

severity 

 Liss et al. 

(2009) 

Discriminant 

Function Analysis 

A cross-

validation 

method 

55 subjects 

including 

control 

subjects 

10 features of 

rhythm metrics 
No 

80% 

successful in 

classifying 

speakers into 

their 

appropriate 

group 

the effectiveness of 

the rhythm metrics in 

dysarthria type 

classification 
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Author(s) 
Classifier 

Algorithm 

Evaluation 

Method 
Data Set 

Extracted 

Features 

F
ea

tu
re

 

S
el

ec
ti

o

n
 

Results Note 

 De Bodt et al 

(2002) 

Linear Regression 

Analysis 

The correlation 

between the four 

dimensions and 

the overall 

judged 

intelligibility 

79 

dysarthric 

subjects  

Voice quality, 

articulation, 

nasality, and 

prosody 

No 

95% 

prediction 

interval of 

Judged and 

calculating 

rating were 

in agreement 

of 75% of 

the patients 

The effectiveness of 

the linear 

combination of voice 

quality, articulation, 

nasality, and prosody 

on the overall 

intelligibility of 

dysarthric speakers 

 Kim, et al 

(2010)  

Listeners 

Classification 

Two-way 

ANOVA 

analysis of the 

correct 

percentage of 

consonant 

categories 

7 

dysarthric 

subjects 

- No 

more 

intelligible 

speakers 

produce 

more 

correctly 

articulated 

consonant 

Consonants 

classification to three 

types of articulations 

which are articulatory 

complexity, place of 

articulation and 

manner of 

articulation. (The 

classification perform 

manually by listeners 

and compared to the 

pronunciation 

dictionary 
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Author(s) 
Classifier 

Algorithm 

Evaluation 

Method 
Data Set 

Extracted 

Features 

F
ea

tu
re

 

S
el

ec
ti

o

n
 

Results Note 

 Middag et al 

(2011)  

Ensemble Linear 

Regression (ELR) 

Support Vector 

Regression (SVR) 

Pearson 

Correlation 

Coefficient 

(PCC) and the 

Root Mean 

Squared Error 

(RMSE) 

85 subjects 

suffered 

from 

cancer in 

different 

regions of 

the larynx 

(German) 

122 

subjects as 

Flemish 

Pathologic

al Speech 

(Dutch) 

Acoustical  

features and 

phonological 

features 

Yes 

SVR 

classifier 

outperformed 

ELR 

classifier in 

both data sets 

The effectiveness of 

using ASR in 

intelligibility 

prediction model- the 

combination of 

acoustical and 

phonological features  

 Kim et al. 

(2015)  

Linear 

Discriminant 

Analysis (LDA) 

classifier, K-

Nearest Neighbor 

(KNN) classifier 

and Support Vector 

Machine (SVM) 

leave-one-

subject-out for 

testing, and used 

random cross-

validation for 

parameter tuning 

55 subjects 

of NKI 

CCRT 

Speech 

Corpus  

and 10 

subjects(6 

dysarthric 

and 4 

control) of  

the 

TORGO 

database  

Prosody, 

Pronunciation, 

Voice quality, and 

All 

Yes 

73.5% 

unweighted 

classification 

and 72.8% 

Weighted  

classification  

Sentence level 

features of 

pathological speech 

for automatic 

intelligibility 

classification (binary 

classification -

intelligible and not 

intelligible) 
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Author(s) 
Classifier 

Algorithm 

Evaluation 

Method 
Data Set 

Extracted 

Features 

F
ea

tu
re

 

S
el

ec
ti

o

n
 

Results Note 

Kim et al. 

(2012) 

Naïve Bayes, 

Noisy-Majority and 

joint both 

- 

NKI CCRT 

Speech 

Corpus 

multiple language 

phoneme 

probability(MLPP

), prosodic and 

international 

features, voice 

quality, and 

pronunciation 

features 

- 

76.8% 

accuracy on 

a test set 

when joint 

classification 

is applied 

(Naïve 

Bayes+Noisy

-Majority) 

Intelligibility 

classification (binary 

classification 

(intelligible and not 

intelligible) 

Paja & Falk 

(2012) 

Linear  

Quadratic  

A Mahalanobis 

distance-based 

discriminant 

analysis classifier 

Randomized 

bootstrap (15-

fold) cross-

validation was 

used with 70% 

of the input data 

recordings kept 

for system 

training and 

30% left for 

validation. 

Universal 

Access 

Speech 

database 

(10 spastic 

dysarthric 

speakers) 

Atypical vocal 

source excitation, 

temp-oral 

dynamics, 

nasality, and 

prosody. A subset 

of six of these 

features was 

shown to be 

useful for speech 

intelligible- 

ility prediction, as 

well as the 

alternate, features 

Mel-frequency 

cepstral coeffici-

ents (MFCCs), 

glottal-to-noise 

excitation ratio 

(GNE), and 

Yes 

Nine 

top 

featu

res 

 combination 

of features 

make 

Mahalanobis 

distance-

based 

discriminant 

outperform 

with 95% the 

linear and 

quadratic 

classifier 

Spastic Severity 

Disorder 

Classification 
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Author(s) 
Classifier 

Algorithm 

Evaluation 

Method 
Data Set 

Extracted 

Features 

F
ea

tu
re

 

S
el

ec
ti

o

n
 

Results Note 

harmonics-to-

noise ratio (HNR) 

Narendra & 

Alku  (2018)  
SVM 

Leave-one-

subject-out 

cross-validation 

(Classification 

Accuracy) 

TORGO 

database 

Glottal features 

log-energy, 

MFCCs (13), 

Mel-spectrum 

(26), zero-

crossing rate, 

pitch, jitter, 

shimmer, voicing 

probability, 

spectral flux, roll-

off points, 

spectral centroid, 

the position of 

spectral 

maximum and 

minimum  

Yes   

Almost 

94% with 

feature 

selection 

algorithms 

examines the 

effectiveness of 

glottal source 

parameters in 

dysarthric speech 

classification from 

three categories of 

speech signals(non-

words, words, and 

sentences) 

Narendra 

& Alku  

(2019)  

SVM 

Leave-one-

subject-out 

cross-validation 

(Classification 

Accuracy) 

TORGO 

database 

and UA-

Speech 

database 

Glottal features log-

energy, MFCCs 

(13), Mel-spectrum 

(26), zero-crossing 

rate, pitch, jitter, 

shimmer, voicing 

probability, spectral 

flux, roll-off points, 

spectral centroid 

Yes  

89 % on 

TORGO 

database and 

96 % on UA-

Speech 

database 

Identifying the  

Dysarthric speakers 

from coded  telephone 

speech  
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2.2.7 Classification of Dysarthric Speaker Summary 

After discussing and reviewing several topics related to the classification of dysarthric 

speech which is summarized in Table 2.4. Some of the key points are discussed below: 

2.2.7.1 Dysarthric features and feature selection 

There are many features extracted from dysarthric speech signal and used for the 

classification of dysarthric speech including the following: A typical vocal source 

excitation, prosodic features, nasality features, phonemic features, pathological features, 

fundamental frequency, MFCC, articulation features, voiceless interval duration, rhythm 

features, voice quality features, acoustic features, phonological features, g Harmonics-to-

Noise Ratio (HNR), and Glottal-to-Noise Excitation ratio (GNE).  Some of these features 

are very large, so feature selections are used and summarized as the following:  

• Features selection (F-Ratio, Fisher’s discriminant ratio, and forward selection 

procedure).  

• From a set of input variables, the selection of a subset of variables is the focus of 

feature selection. The subset variables have the ability to describe the input data 

and provide good prediction results as well as reduce the computational time 

while reducing the effect of noise or irrelevant variables  (Chandrashekar & 

Sahin, 2014, Guyon & Elisseeff, 2003). 

• For dysarthric speech, the use of feature selection is to reduce the number of 

a feature used to predict the intelligibility or severity level of speech. 

2.2.7.2 Classification of dysarthric speech 

• The classification of dysarthric speakers is performed to identify the followings: 
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• (Neurologic diseases, dysarthria type, the intelligibility of the speech, 

differentiation between non-impaired speakers and dysarthric speakers, 

severity level). 

• Classification algorithm used are as follow:  

•  Linear Discriminant Analysis (LDA). 

• Artificial Neural Network (ANN). 

• Discriminant Analysis (ALLOC80). 

• Gaussian Mixture Model (GMM). 

• Statistical Analysis (Discriminant function analysis, linear regression 

analysis). 

• K-Nearest Neighbor (KNN). 

• Support Vector Machine (SVM). 

• Quadratic Discriminant Analysis (QDA). 

• Mahalanobis Discriminant Analysis (MDA). 

2.2.7.3  Corpora used in dysarthric speech classification 

• NKI CCRT (Advanced head and neck cancer - Concomitant chemo-radiation 

treatment) used for binary intelligibility classification of pathological speech. 

• TORGO used for binary intelligibility classification (Intelligible or not 

intelligible). 

• DIA used to study the effect of phonemic and phonological features on the 

automatic intelligibility assessment. 

• UA-Speech used for spastic severity classification for dysarthric speakers. 
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2.3 Automatic Speech Recognition System for Dysarthric Speakers 

For individuals severely disabled physically and with dysarthria, their educational and 

vocational opportunities have been expanded significantly by the speech recognition 

technology (Ferrier, Shane, Ballard, Carpenter, & Benoit, 1995). Neurologic impairment 

affects manual motor control and speech intelligibility (Ferrier et al., 1995; Mathew, 

Jacob, Sajeev, Joy, & Rajan, 2018; Wilson, Abbeduto, Camarata, & Shriberg, 2019). The 

issues that are faced by the pathologies to enhance the speech for dysarthric speakers are 

the poor control of motor function and consequently, a production rate that is slow. Also, 

the techniques used as assistive devices need an extensive form of training (Ferrier, 1991; 

Takashima, Takiguchi, & Ariki, 2019). Even for extremely poor speech intelligibility, 

communication mode often preferred is speech (Ferrier et al., 1995). 

Joy & Umesh (2018) explored multiple ways to improve the recognition accuracy of GMM-

HMM and DNN-HMM acoustic models for the TORGO dysarthric speech database. The results 

showed that trained speaker-specific acoustic models that incorporate various acoustic model 

parameters, speaker normalized cepstral features, and complex DNN-HMM models improved the 

recognition accuracy for dysarthric speakers (Joy & Umesh, 2018). 

Doyle et al. (1997) used the perceptual assessment in his experiments to compare two 

types of recognition for dysarthria, which are automatic recognition and human listeners 

(Doyle et al., 1997). The results presented in Doyle et al. (1997) showed that the automatic 

recognition for the control speakers is more consistent than dysarthric speakers. The 

results obtained are according to the gender and it showed that female speakers performed 

better as compared to the male speakers. The experiment included six speakers who were 

divided into three severity levels (mild, moderate, and severe) with every level consisting 

of two speakers, one male, and one female. According to Doyle et al. (1997), the amount 

of training data affects the accuracy of the speech recognition for dysarthric speakers. 
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ASR system for speech dysarthria relies on speech intelligibility and consistency (Doyle 

et al., 1997). 

The perceptual stage in Doyle et al. (1997) consists of ten young adults without hearing 

impairment with ages ranging from 22 to 27 years. They served as listeners to evaluate 

impaired and controlled speakers. All listeners were first-year students in communication 

sciences and disorders, and none of them had clinical experience with dysarthric speakers. 

According to Doyle et al. (1997), the recognition accuracy for dysarthric speakers had 

overlapped with the control speakers and between severity type itself. On the other hand, 

the perceptual assessment showed that the score of the listeners for all of the controlled 

and impaired (including severity classification of dysarthria) speakers was better than the 

score by automatic speech. 

Modern approaches use automatic speech recognition to assess speakers with 

dysarthria (Green et al., 2003; Mark S. Hawley et al., 2007; Mark Hawley, Enderby, 

Green, Cunningham, & Palmer, 2006; Kayasith & Theeramunkong, 2009; Kayasith et al., 

2006a; Kayasith, Theeramunkong, & Thubthong, 2006b; Takashima et al., 2019; Zaidi, 

Boudraa, Selouani, Addou, & Yakoub, 2019). Speech Training And Recognition for 

Dysarthric Users of ASsistive Technology (STARDUST) is one of the projects developed 

based on Hidden Markov Model (HMM) algorithms that work on command words to 

help severely dysarthric speakers (Green et al., 2003). A prototype ASR system to 

facilitate speakers with dysarthria, to be treated with equipment (electronic assistive 

technology) is reported in (Mark Hawley et al., 2007; Mark Hawley et al., 2006). A small 

data has been used to develop the system with reasonable recognition achievements. 

Some researchers focused on the automatic prediction of speech recognition for children 

with dysarthria using speech indices (Kayasith & Theeramunkong, 2009; Kayasith et al., 
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2006a, 2006b). For the speech prediction indices, the tests have been performed in a 

limited environment, and the results needed more exploring. 

2.3.1 Speaker Adaptation 

The main aim of the speaker-dependent system is for the successful recognition and 

consistency of sound production. The speaker adaptable system has the ability to learn 

the acoustic characteristics of the individual speaker and adapt them to the specific 

speaker. This ability of the speaker adaptable system helps to compensate inconsistencies 

in speech production (Stern & Lasry, 1987). 

The improvement of the recognition accuracy for dysarthric speakers using the 

adaptation techniques based on the severity level of dysarthria is developed in (Bhat, 

Vachhani, & Kopparapu, 2016). In the adaptation of tempo, a pre-determined adaptation 

parameter α is used for the temporal reduction of the sonorant regions of an utterance. 

The severity based adaptation of tempo for Indian language is developed from both 

Hidden Markov Model (HMM) and Deep Neural Network (DNN).   The results show that 

using tempo adaptation improves the recognition accuracy of the dysarthric speakers from 

both HMM and DNN based acoustic models. The improvement includes the speaker-

independent model and speaker adaptive model. 

2.3.1.1 MLLR adaptation technique 

Among the linear mapping strategies, the Maximum Likelihood Leaner Regression 

(MLLR) is used among the acoustic feature spaces of many speakers. It is an adaptation 

technique popularly used in ASR (Gales & Woodland, 1996; Leggetter & Woodland, 

1995).   In MLLR, representation of HMMs’ mean vectors of the Gaussian distribution is 

as 
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𝜇 = (𝜇1, … . . , 𝜇𝑛)′                                      (2.2) 

Where the dimension of a feature vector is represented by 𝑛. The following 

transformation is used to update the mean vector in equation (2.2):  

�̂� = 𝐴𝝁 + 𝒃,                                               (2.3) 

Where, 𝑛 × 𝑛 matrix is represented by A, and -dimensional vector is represented by 

𝒃..  The following shows how Equation (2.3) can be written into a linear mapping: 

�̂� = 𝑊𝝃,                                                   (2.4) 

Where 𝝃 = (1, 𝜇1, … . . , 𝜇𝑛)′. 𝑊 is a 𝑛 × (𝑛 + 1) matrix. Its first column is identical to 

𝒃. 

Maximum Likelihood (ML) can be estimated by using the Expectation-Maximization 

(EM) algorithm to calculate W. In the following, the feature vector’s sequence is X:  

𝑋 = {𝑥1, … . . , 𝑥𝑇}                                    (2.5)  

The following is a rewritten auxiliary function: 

𝑄(𝑊, �̅�) = 𝐾 −
1

2
∑ ∑ 𝛾𝑚(𝑡)[𝐾𝑚 + log|∑𝑚| + (𝑥𝑡 − 𝑊𝝃)′∑𝑚

−1 (𝑥𝑡 − 𝑊𝝃) ] 

𝑇

𝑡=1

𝑀

𝑚=1

(2.6) 

Where, at time 𝑡, the posterior probability of being in mixture component 𝑚 is 

represented as  𝛾𝑚(𝑡). 𝐾 is a term independent from the output probability, and for 

mixture component 𝑚, normalization factor is represented by 𝐾𝑚. The following equation 

uses ML estimation to estimate the  �̅� of  𝑊: 
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∑ ∑ 𝛾𝑚(𝑡)

𝑀

𝑚=1

𝑇

𝑡=1

∑𝑚
−1𝑥𝑡𝜉𝑚

′ = ∑ ∑ 𝛾𝑚(𝑡)

𝑀

𝑚=1

𝑇

𝑡=1

∑𝑚
−1�̃�𝜉𝑚𝜉𝑚

′               (2.7) 

Equation (2.7) can be solved when the covariance matrix for each mixture component is 

diagonal. When Z compensates equation (2.7)’s left-hand side: 

𝑍 = ∑ ∑ 𝛾𝑚(𝑡)

𝑀

𝑚=1

𝑇

𝑡=1

∑𝑚
−1𝑥𝑡𝜉𝑚

′                              (2.8) 

Furthermore, defining the matrix  𝐺(𝑖) whose (𝑗, 𝑞)-th the element 𝘨𝑖𝑞, is  

𝘨𝑖𝑞 = ∑ 𝑣𝑖𝑗
(𝑚)

𝑑𝑞𝑗
(𝑚)

𝑚

𝑚=1

                                   (2.9) 

Where 𝑣𝑖𝑗  is the (𝑖, 𝑗)-th element of matrix V, 𝑑𝑖𝑗 is the (𝑖, 𝑗)-th element of matrix D, 

V and D are  

𝑉𝑚 = ∑ 𝛾𝑚(𝑡)∑𝑚
−1,                                  (2.10)

𝑀

𝑚=1

 

𝐷𝑚 = 𝜉𝑚𝜉𝑚
′                                                   (2.11)  

Using these equations, �̃� is obtained as follows. 

�̃�𝑖
′ =  𝐺(𝑖)−1𝑧𝑖

′,                                           (2.12) 

Where �̃�𝑖is the 𝑖-th column vector of �̃�𝑚, and 𝑧𝑖 is the 𝑖-th column vector 𝑍. 

2.3.1.2 MAP adaptation technique 

Maximum A Posteriori (MAP) adaptation is one of the well-known approaches used 

for automatic speech recognition. It is one of the approaches for statistical modeling 
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(Shinoda, 2011). Its estimation is known as Bayes estimation of the vector parameter, as 

loss function is not specified (DeGroot, 2005; Gauvain & Lee, 1994; Reynolds, Quatieri, 

& Dunn, 2000). MAP is valuable when dealing with problems occurring as a result of 

sparse training data for which Maximum Likelihood (ML) estimation produces inexact 

expected estimates, by providing consolidated prior knowledge in the training data 

(Gauvain & Lee, 1994).  

MAP estimation is applied to two groups of applications stated as model adaptation 

and parameter smoothing, which is relevant to the same problem of parameter estimation 

for sparse training data (Gauvain & Lee, 1994). With regard to the amount of data, the 

MAP is more efficient as compared to the ML estimation approach when the amount of 

data is low. Whereas, as the amount of data increases, the estimation of the parameter for 

MAP and ML converges (Shinoda, 2011).  

Let 𝑓(𝑥|𝜃) denote the probability density function (pdf) of  𝑥 variable, and the sample 

χ= { 𝑥1, … . . , 𝑥𝑇} denote the given set of T observation vectors. The parameters are to be 

estimated from 𝜃 (a random vector having values in the speakers’ space) by using T 

samples of 𝑥 with a probability density function (pdf). The parameters estimated in ML 

estimation are as follows: 

�̃� = arg max
𝜃

𝑓(𝑥|𝜃)                      (2.13) 

Where �̃� is the maximum likelihood estimator of 𝜃. In MAP,  𝜃 is increased as more 

data samples are observed. The prior distribution is the parameter distribution before data 

observation. In this regards, let the prior distribution for 𝜃 𝑏𝑒 𝑔(𝜃). The parameter’s pdf, 

after χ, 𝑔(𝜃|χ) is observed, can be formulated based on Bayes’ Theorem as the following 

which is called a posterior distribution,  
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𝑔(𝜃|χ) =
𝑓(χ|𝜃)𝑔(𝜃)

∫ 𝑓(χ|𝜃)𝑔(𝜃)𝑑𝜃
                  (2.14) 

The maximum value of the posterior distribution is provided by MAP estimation. In 

other words, the maximum of a posterior distribution is the value where posterior 

distribution mode is maximized and can be expressed as  �̃� and is computed as the 

following: 

�̃� = argmax
𝜃

𝑔(𝜃|χ)        

            = argmax
𝜃

𝑓(χ|𝜃)𝑔(𝜃)       (2.15) 

According to the last equation (2.15), both ML and MAP performed almost similarly 

in the case of lack of knowledge about  𝜃. 

2.3.2 Dysarthric Speech Corpora 

The lack of speech data available for dysarthric speakers is one of the major stumbling 

blocks in the development of dysarthric ASR systems. There are a few corpora used by 

researchers in which some are available for free and some of them are payable. This 

section will focus on some of the corpora used in developing a dysarthric ASR system. 

2.3.2.1 Whitaker corpus 

The Whitaker corpus is a collection of isolated word utterances spoken by six-person 

suffering from cerebral palsy. The total utterances of Whitaker corpus are 19,275 isolated 

words. The corpus contains utterances of one non-impaired speaker which is used as a 

reference. The isolated word is divided into two sets, the first set consists of alphabets, 

digits, and 10 control words with a total of 46 words (referring as “TI-46”). The second 

set consists of phonetically diverse words (referring as “Grandfather”). The corpus is 
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available for researchers to study different aspects of speech disorder (Deller, Liu, Ferrier, 

& Robichaud, 1993). 

2.3.2.2 Nemours speech corpus 

NEMOURS speech corpus comprises of 814 short nonsense sentences. 11 male 

speakers have spoken these sentences. 74 sentences are required to be spoken by each 

speaker. The form of the sentence is “The X is Ying the Z” where X ≠ Z (Menendez-

Pidal, Polikoff, Peters, Leonzio, & Bunnell, 1996). Closed-set phonetic contrasts (e.g. 

voice, manner, and place) are provided by the constraints of the target words X, Y, and Z 

(Ray Kent et al., 1989). More details about this corpus will be explained in the next 

chapter. 

2.3.2.3 UA-Speech Corpus 

 UA-Speech corpus is universal access to the database of audiovisual. It is publicly-

available at the University of Illinois and is described in more detail in Kim et al. (2008). 

The dataset was recorded using a 7-channel microphone array. A wide range of 

impairment’s severity, ranging from 2% to 95% word intelligibility was covered by using 

the data from 10 spastic dysarthric speakers. The corpus is an isolated word-level 

transcription. 765 isolated word utterances were read by each speaker. These included  

100 common words in the Brown corpus of written English (e.g., it, is, you), 19 computer 

commands ( e.g., backspace, delete), 300 uncommon words selected from children’s 

novel, 26 radio alphabet letters (e.g., Alpha, Bravo), and 10 digits (zero to nine) (Kim et 

al., 2008). 

2.3.2.4 Madison Mayo Clinic dysarthria database  

The dysarthria database of Madison Mayo Clinic contains speech samples in digital 

form. It is recorded at the Mayo Clinic in Rochester, Minnesota (Kim et al., 2011).  The 
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database is represented by 107 dysarthric subjects in total, who suffer from, Parkinson’s 

disease (Males =29, Females = 10), stroke (Males = 21, Female=18), traumatic brain 

injury (Males =7, Females=5), and multiple system atrophy (Males=11, Females=6) (Kim 

et al., 2011). Six words were required to be uttered by every speaker (wax, ship, sip, sight, 

shoot, and hail) for 10 times. The criteria for the chosen words are the acoustic 

characteristics and vocalic nuclei of the words, which require obvious vocal tract change 

(Kent et al., 1989; Kim et al., 2009). The participants were asked to utter five sentences 

(The boiling tornado clouds moved swiftly, The potato stew is in the pot, The blue spot 

in on the key, Combine all the gradients in a large bowl, and Put the high stack of cards 

on the table). Acoustic and intelligibility data are derived by choosing these sentences 

(Kim et al., 2011). The speech samples were collected in a quiet room using a digital 

audiotape recorder (DAT; TASCAM DA-P1) with a high-quality microphone (SHURE 

SM 58) with 16-bit quantization at a sampling rate of 44.1 kHz. After recording, a TF32 

program was used to analyze the speech (Kim et al., 2011). 

2.3.2.5 TORGO speech corpus 

Fifteen subjects, classified into 7 control and 8 dysarthric speakers (3 females and 5 

males, aged from 16 to 50 years old) make up the TORGO speech corpus that has good 

coverage of intelligibility range. Participants suffering from Amyotrophic Lateral 

Sclerosis (ALS) and Cerebral Palsy (CP) are included in the speech corpus. For CP 

participants, some of the examples of their impairment are ataxic, athetoid, and spastic  

(Rudzicz et al., 2011). A speech-language pathologist based on the Frenchay Dysarthria 

Assessment diagnosed The TORGO speech corpus (Enderby, 1980a). 
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2.3.3 Dysarthria and Quality of Life 

Damage of the neuromuscular systems that regulate speech is often accompanied by a 

variable rate of speech, imprecise articulation, disordered speech prosody, and excessive 

nasalization (Frederic Darley et al., 1969). Deficits in speech physiology may result in 

the deformation of the acoustic signal and reduced speech intelligibility. Difficulties with 

social interaction, vocational placement, and academic performance are mainly 

associated with deficits of intelligibility which reduces the quality aspect of life. Voice-

operating software and voice-command assistive devices are speech technologies to help 

assist the Persons with Disabilities (PWDs) (Mark Hawley, 2002; Mark Hawley et al., 

2006). 

2.3.4 Related Work on Dysarthric Speakers  

In a seminal work by Ferrier et al. (1995) for developing ASR system for dysarthric 

speaker, their test subjects consist of ten adults with spastic cerebral palsy with five males 

and five females as well as one male and one female nondisabled subject (Ferrier et al., 

1995). The age of the disabled speakers ranged from 12 to 62 while for the nondisabled 

speakers, the age of males was 33, and 30 for the female. All subjects were not suffering 

from any hearing disability. One noticeable feature for the subjects is that they all had 

received five years or more of speech therapy (Ferrier et al., 1995).  

For the experimental setting, they have used the realistic Highball 33-984c 

omnidirectional microphone and the TEAC W-450R cassette recorder was used to record 

testing samples (Ferrier et al., 1995). Using a 486 Gateway computer, the DragonDictate 

System was operated. For this system, the subject wore a standard headset microphone 

which was placed half-inch from the mouth (Ferrier et al., 1995). The subject was asked 

to speak a Grandfather passage where global intelligibility as measured by CAIDS was 
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assessed by three graduate students of speech-language pathology. Both transcription and 

multiple-choice formats were used for a single word, and transcription only format was 

used for sentences. Recognition levels were then compared to nondisabled speakers. The 

text used for recording is one of the most memorable texts that helped to produce the 

quality in the sound, which is the Pledge of Allegiance. Some of the subjects had visual 

tracking problem which caused the dictation process to be carried out at a slower rate. 

One subject had a reading problem, so the words in the choice list were read out by the 

researcher (Ferrier et al., 1995).  

For all subjects, 200 msec was the level of pause set. There is some human intervention 

to dictate words to the DragonDictate system. To achieve high recognition accuracy, 

human intervention provides the speech recognizer with an accurate model of the user 

(Ferrier et al., 1995). The score given to the word recognized is according to one of the 

following choices: the word was correctly recognized, the word has been missed but the 

correct word is in the list of possible word recognition, or the word was wrongly 

recognized with no possible word recognition in the estimated list (Ferrier et al., 1995). 

Another score that has been recorded was for word fluency features, which included 

disfluencies, non-speech sound, and intra-word pauses.  

Disfluency has been defined as any word, syllable, or sound repetition (Ferrier et al., 

1995). Non-speech sounds are determined as noises, like laughing, coughing, smacking 

of the lip, or sounds associated with control of saliva (Ferrier et al., 1995). Intra-word 

includes discernible pauses between phonemes caused by poor articulation (phonatory 

control), slowed rate, or breathing during word production (Ferrier et al., 1995).  

Ferrier et al. (1995) found that dysarthric speakers with high-intelligibility speech had 

more recognition accuracy as compared to low-intelligibility speech. One of the 
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variations affecting the low-intelligibility speaker is fatigue, which makes constructing a 

speech corpus to train a speech recognition system a laborious task (Ferrier et al., 1995; 

Kayasith & Theeramunkong, 2009). The study concluded that if there were more 

dysarthric voice and fluency features like non-speech sound and intra-word pauses, 

achieving 80% recognition takes a longer time. The decoding done by human listeners is 

a complex task which uses structured knowledge of words, besides the acoustic and 

linguistic knowledge (Ferrier et al., 1995). Human listeners automatically normalize 

speech patterns that are different, like dysarthric speech or nonstandard dialects (Ferrier 

et al., 1995). 

The corpus used in Kayasith & Theeramunkong (2009) consists of 67 words of the 

Thai language. The corpus was phonetically balanced which was set by a speech therapist 

at Siriraj Hospital. The children who pronounced the words suffered from literacy 

limitations, therefore, every word was accompanied by pictures. Recording of 67 words 

was done in a controlled environment (quiet room with the door closed). Every word was 

recorded five times and used for evaluation (Kayasith & Theeramunkong, 2009). The 

speech stimuli used in this experiment is the picture represents by the targeted word and 

displayed on a computer screen. In case of faulty pronunciation or if the speaker has 

difficulty in pronunciation, the system will provide an example of the word pronunciation 

(Kayasith & Theeramunkong, 2009).  

 There were two groups of the subject, the dysarthric (cerebral palsy) and controlled 

speakers in equal numbers with regards to its proportion and gender (Kayasith & 

Theeramunkong, 2009). For system development in Kayasith & Theeramunkong (2009) 

the HTK toolkits were used in developing the speech recognition system. Also used were 

the Neural Interface Computation (NICO) toolkit to develop the Artificial Neural 
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Networks (ANN) speech recognition system. By using a random initial weight of between 

-1.0 and 1.0 for the standard back-propagation method, the network was trained.  

Three different measures were used for the evaluation. They are the root-mean-square 

of difference (∆rms), the Pearson’s correlation coefficient (R2) between Φ (also the I- and 

A-score) and the recognition rate (of ANN or HMM), and the Rank-Order Inconsistency 

(ROI).  Thus, to predict recognition performance, a function is generated. Recognition 

performance from Φ (also the I- and the A-score) is predicted using these functions. The 

calculation of ∆rms is done using the actual and predicted recognition rates (from ANN or 

HMM).  By considering the differences between the performances of ANN and HMM, 

the margin for the different results of each measure was calculated (an acceptable bound). 

This margin is then used to determine if the difference between the actual and the 

predicted recognition rates from Φ (also the I- and the A-score) is acceptable or not.  

According to Kayasith & Theeramunkong (2009), the initial and cluster consonants 

are the toughest to pronounce among the five classifications, which are tone, vowel, 

initial, final, and cluster consonants. Phoneme levels had high confusion from the signal 

of the dysarthric speakers, as shown by the experiments.  

An articulation test was used to study Thai stroke patients’ dysarthric speech 

characteristics (Manochiopinig et al., 2007; Manochiopinig et al., 2008). The 

characteristics of speech comprise of tones, vowels, initial, final and cluster consonants 

(Manochiopinig et al., 2007; Manochiopinig et al., 2008). There were 14 subjects who 

suffered from a stroke and with speech dysarthria, divided into 5 females and 9 males 

(Manochiopinig et al., 2007; Manochiopinig et al., 2008). The types of dysarthria used in 

this experiment are flaccid (11 cases) and spastic (3 cases) (Manochiopinig et al., 2007; 

Manochiopinig et al., 2008).  There are 68 words used to assess the characteristics of 
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speech for dysarthric speakers. Each word is of a single-syllable level and covers all the 

phonemes of the Thai language (Manochiopinig et al., 2007; Manochiopinig et al., 2008). 

The stimuli used to encourage the participants to pronounce the words is in picture form. 

The results showed that the highest recognition rate was obtained from the vowels and 

tone characteristics (Manochiopinig et al., 2007; Manochiopinig et al., 2008). 

Three classifiers were used to classify prosody, voice quality, and pronunciation 

features, all of which are unweighted. They are the average recall of Linear Discriminant 

Analysis (LDA), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM) (Kim 

et al., 2015). The results have been conducted on 2 of every feature type separately, and 

three features combined together. The pronunciation features with the SVM classifier 

with 3rd-order polynomial kernel function had the best performance for intelligibility 

classification as compared with LDA and KNN. Feature-level fusion combines all types 

of features and obtained the highest level of accuracy  (Kim et al., 2015).  For the TORGO 

dataset, the classification results for the feature selection showed that the LDA classifier 

had the best performance as compared to the SVM classifier, while KNN is not reported 

because of the instability of the results data (Kim et al., 2015). 

The number of subjects used in Van Nuffelen et al (2009) was 211 speakers, divided 

into 60 speakers with dysarthria, 42 with pathological speech secondary to hearing 

impairment, 12 children with cleft lip, 7 diagnosed with dysphonia, 37 with a 

laryngectomy, 2 with glossectomy, and lastly 51 control speakers. They recorded 10,550 

consonant-vowel-consonant words taken from the Dutch Intelligibility Assessment (DIA) 

(Van Nuffelen et al., 2009). The percentages of the severity type of dysarthric speakers 

are 53%, 39% and 8% for mild, moderate and severe severity respectively.  
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The training for developing both phonemic and phonological feature models included 

both the pathological and control speakers. The intelligibility scores for dysarthric 

speakers were compared with the perceptual intelligibility measured in which the high 

scores were recorded for every speaker after five repetitions (Van Nuffelen et al., 2009). 

The five-fold cross-validation experiment with some restriction with regards to the 

number of features in the five-fold has been applied to simplify the model (Van Nuffelen 

et al., 2009).  

The results showed in Van Nuffelen et al (2009) confirmed that the combined 

phonemic and phonological features model for dysarthric speakers has the highest 

correlation between the computed intelligibility scores (objective intelligibility) and 

perceptual intelligibility scores. The study concluded that to overcome the large 

deviations between perceptual and computed scores of intelligibility, the severe 

dysarthric intelligibility speakers, which had fewer participations in the training should 

be increased to be used for training of the model (Van Nuffelen et al., 2009). The features 

group, like vowel-related phonemic and phonological features, lateral-, silence-, fricative-

, velar-, and plosive-related features are observed to be useful for the clinical point of 

view. One more observation from this study is that vowel-related is the most important 

feature that contribute to the dysarthric speech’s intelligibility. 

Table 2.5 listed the studies related to the automatic speech recognition system for 

dysarthric speakers. The adaptation techniques, type of speech, model type, data set, and 

results obtained are the criteria used to summaries the studies in ASR for dysarthric 

speakers.   
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Table 2.5: Automatic Speech Recognition System for Dysarthric Speakers 

Author(s) 
 Adaptation 

techniques 

Type of 

speech  
Model Type Data Set Results Note 

Dhanalaksh

mi & 

Vijayalaks

hmi (2015) 

adaptation 

CMLLR+MAP 
Continuous 

Word Model 

speaker 

independent 

NEMOURS 

Corpus(10 

Males) as for 

recognition 

system  

CMU Arctic 

database for 

synthesis system 

Both speech recognition 

and speech synthesis can 

be used to assist the 

intelligibility of dysarthric 

speakers as well as the 

speech rate affected 

speech intelligibility 

used speech recognition 

and speech synthesis 

technique to improve 

intelligibility 

Doyle et al. 

(1997) 
- 

Isolated 

words 

speaker-

independent 

Model 

6 subjects 

dysarthric 

speakers(3 male 

and 3 female) 

and 6 subjects as 

normal speakers 

Commercial ASR system 

can help in predicting the 

intelligibility of the 

dysarthric speakers (more 

practice give more 

accurate results) while for 

perceptual recognition it is 

steady 

compare the results of 

the commercial IBM 

Voice type with the 

nonbearing impaired 

adult listeners regarding 

the intelligibility 

Sharma et 

al (2009) 
no adaptation 

Isolated 

words 

Speaker 

dependent 

model 

7 subjects from 

UA-Speech 

database 

In word level with the 

small size of vocabulary 

the recognition accuracy is 

higher than their 

respective intelligibility 

ratings while for medium-

size one, monophone and 

triphones are less 

The research concerns 

about the effectiveness 

of the speaker-dependent 

model for dysarthric 

speakers for small 

vocabulary size 

(recognize word level 

and phone level) Univ
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Author(s) 
 Adaptation 

techniques 

Type of 

speech  
Model Type Data Set Results Note 

Green et al. 

(2003) 
No adaptation 

Isolate 

words 

Speaker 

dependent 

model 

8 subject as 

paper wrote 

The goal is to allow these 

clients to control assistive 

technology by voice 

small vocabulary, 

speaker-dependent, 

isolated-word 

application, the speech 

material more variable 

than normal, and only a 

small amount of data is 

available for training 

Ferrier et 

al. (1995) 
No adaptation 

Continuous(

read 

Grandfath-

er passage) 

Speaker 

independent 

model 

10 dysarthric 

speakers 

90% recognition within 

eight dictation sessions for 

people with good 

intelligibility 

Examined speech 

recognition accuracy 

using Dragon Dictate for 

adults with cerebral 

palsy compared with 

control subjects. people 

with good intelligibility 

were more successful at 

using speech recognition  

Kayasith & 

Theeramun

kong 

(2009) 

No adaptation 
Isolated 

words 

Speaker 

dependent 

model 

7 dysarthric 

subjects and 8 

control subjects 

HMM reference, Φ 

achieved low rank-order 

inconsistency of 18%, 

compared to 36% for the 

articulatory test and 25% 

for the intelligibility test. 

ANN reference, Φ had a 

low inconsistency of 7% 

while the articulatory test 

and the intelligibility test 

gained high inconsistency 

of 54% and 43%, 

respectively 

both Hidden Markov 

Model (HMM) and 

Artificial Neural 

Network (ANN) speech 

recognition system was 

developed to recognize 

words to predict the 

speech recognition rate 

for the dysarthric 

speaker with the 

perceptual calculated  A-

score and I-Score   Univ
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Author(s) 
 Adaptation 

techniques 

Type of 

speech  
Model Type Data Set Results Note 

Mark 

Hawley 

(2002) 

No adaptation 
Isolated 

words 

Speaker 

independent 

model 

1 subjects 

46% of recognition rate 

within 14 sessions, and 

64% recognition rate for 

correct words in the choice 

list of 5 words 

study the effects of using 

Dragon Dictate ASR 

system in the 

improvement of 

recognition rate after a 

certain session of 

repeated words 

Mark 

Hawley et 

al. (2006) 

No adaptation 
Isolated 

words 

Speaker 

dependent 

The data build 

for every subject 

willing to 

participate in the 

system 

95% of word recognition 

rate in the test conditions 

and 87% in every usage in 

the uncontrolled noise 

condition 

Development of a voice-

input voice-output 

communication aid 

(VIVOCA) for people 

with disordered or 

unintelligible speech 

(Severe dysarthric 

speakers)- use both ASR 

and TTS systems 

Mark 

Hawley et 

al. (2007) 

No adaptation 

Isolated 

words(com

mand set) 

Speaker 

dependent 

The data build 

for every subject 

willing to 

participate in the 

system(17 

subjects 

participated for 

evaluation of the 

system) 

88.5 % of accuracy for 

pre-training stage (before 

user training) and 95.4 of 

accuracy after user 

training. 86.9% of 

accuracy for word 

recognition when subjects 

used the system at home 

This paper studies the 

effectiveness of the user 

training stage for 

improving the 

performance of the 

recognition accuracy 

(user training provides 

more training data for 

ASR system).  

Kayasith, 

et al 

(2006a) 

No adaptation 
Isolated 

words 

speaker-

independent 

Model 

16 dysarthric 

subjects and 8 

control subjects 

The root means square 

error between the 

prediction rates and 

recognition rates is less 

than 7.0% and 2.5% for 

HMM and ANN ASR 

respectively. 

introduce new indicator 

called speech 

consistency score (SCS) 

for dysarthric speech 

recognition rate 

prediction Univ
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Author(s) 
 Adaptation 

techniques 

Type of 

speech  
Model Type Data Set Results Note 

Kayasith, 

et al 

(2006b) 

No adaptation 
Isolated 

words 

Speaker 

independent 

Model 

16 dysarthric 

subjects and 8 

control subjects 

The system an average 

improvement of 9.56% 

and 7.86% of prediction 

for both articulatory and 

intelligibility tests 

respectively 

introduce new indicator 

called speech confusion 

index (Ø) for dysarthric 

speech recognition rate 

prediction 

Dibazar et 

al (2006) 

MAP 

Adaptation 

Phoneme 

level  

Speaker 

dependent 

657 impaired 

speech subjects 

and 53 control 

subjects 

Above 76% of recognition 

using training samples 

with multiple labels  

This paper focuses on 

the recognition of five 

specific pathologies 

Maier et al. 

(2009) 
No adaptation 

Continuous 

speech (read 

the passage 

"The North 

Wind and 

the Sun") 

Speaker 

independent 

Model 

90 subjects with 

head and neck 

cancer 

50% of the mean of the 

recognition rate for the 

laryngectomees (LE)  and 

48% mean of word 

accuracy for oral 

cancer(OC) 

Study the effects of 

speech recognition on 

the  objectify and 

quantify the most 

important aspect of 

pathologic speech (the 

intelligibility) 

Middag et 

al (2009b) 
No adaptation 

Isolated 

words 

Speaker 

independent 

Model 

- 

90% using Person 

correlation coefficient 

between mean 

professional listeners’ 

scores and the objective 

scores   

Using ASR as a tool for 

objective intelligibility 

assessment for 

pathological speech 

Bhat et al 

(2016) 

feature space 

MLLR 

(fMLLR) based 

speaker adaptive 

training (SAT) 

adaptation 

Isolated 

word 

Speaker 

independent 

and speaker 

adaptive model 

Universal 

Access Speech 

Corpus (UA-

Speech) 13 

subjects control 

speakers and 15 

subjects of 

dysarthric 

speakers  

The proposed speaker-

independent and speaker- 

adapted systems provide 

an improvement of 

47.11% and 55.81% 

respectively, for GMM-

HMM-TA and 48.44% 

and 63.67% for DNN-

HMM-TA respectively 

Using the severity level 

based tempo adaptation 

of sonorants (vowels, 

glides, liquids, and 

nasals) in dysarthric 

speakers to improve the 

speech recognition for 

dysarthric speakers. Two 

models developed which 

are Gaussian Mixture 
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Author(s) 
 Adaptation 

techniques 

Type of 

speech  
Model Type Data Set Results Note 

Model (GMM)- HMM 

and Deep 

Neural Network (DNN)- 

HMM. 

Sriranjani, 

Ramasubba 

Reddy, & 

Umesh 

(2015)  

MLLR and 

feature space 

MLLR 

(fMLLR) based 

speaker adaptive 

training SAT 

Continuous 

speech 

Speaker 

Independent 

model 

Nemours 

Corpus and UA-

Speech corpus 

for dysarthric 

subjects and 

Wall Street 

Journal (WSJ0) 

corpus and TI 

digits for control 

subjects 

improvement of 18.09% 

and 50.00% 

over baseline system for 

Nemours database and 

Universal Access 

speech (digit set) database 

respectively 

Used the unimpaired 

speech data to pooled 

the SI acoustic model 

with the adaptation data 

of the dysarthric speech 

to improve the 

recognition accuracy of 

dysarthric speakers 

Mathew 

et al (2018)  
No adaptation 

Isolated 

word 

Speaker 

Independent 

model 

TORGO 

database 

Word level accuracy of 

63.27% with PLP Feature 

set and 61.69% with 

MFCC Feature set 

Comparing the feature 

extraction types to 

recognizing the word 

level of Dysarthric 

speech with the human 

listener assessment 

Joy & 

Umesh 

(2018)   

No Adaptation 
Continuous 

speech 

Speaker 

Independent 

model 

TORGO 

database 

The results  show 

significant improvements 

over previous attempts at 

building ASR systems for 

TORGO for sever and 

sever-moderate dysarthric 

speech 

Explored multiple ways 

to improve 

The recognition 

accuracies of GMM-

HMM and DNN-HMM 

acoustic models for the 

TORGO dysarthric 

speech database. 

Zaidi et al. 

(2019) 
No Adaptation 

Continuous 

speech 

Speaker 

Independent 

model 

Nemours 

Corpus 

54.78 % using MFCC’s, 

JITTER and SHIMMER 

52.41 % using PNCC’s, 

JITTER and SHIMMER 

Improve the recognition 

accuracy of ASR for 

dysarthric speakers 

using the Power 

Normalized Cepstral 
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Author(s) 
 Adaptation 

techniques 

Type of 

speech  
Model Type Data Set Results Note 

Coefficients (PNCC) 

and FMCC feature 

extraction in 

concatenation with 

several variances of 

JITTER and SHIMMER 
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2.3.5 Automatic Dysarthric Speech Recognition Summary 

After discussing and reviewing several topics related to the ADSR for dysarthric 

speech which is summarized in Table 2.5. Some of the key points are discussed below 

• Adaptation techniques (MAP, MLLR , fMLLR, SAT, CMLLR). 

• Acoustic model (SD, SI, SA). 

• Type of speech (isolated words (mostly), phoneme, continuous speech (rarely)). 

• Corpora used (NEMOURS, TORGO, UA-Speech). 

• SA model was applied to the commercial ASR, like DragonDictate. 

2.4 Findings of the Literature Review 

As discussed earlier in this chapter, the existing classification algorithms used in the 

classification of dysarthric speech are based on type and disease of dysarthria (Kim et al., 

2011). However, the use of the severity level classification is not thoroughly investigated 

in dysarthria of speech classification and recognition despite some research that focuses 

on Spastic Disorder Classification (Paja & Falk, 2012). From literature review, the 

common feature selection methods are the forward selection procedures and the backward 

selection procedures which are time-consuming and need a predefined justification to 

obtain the desired feature selection, and to accomplish the highest classification accuracy 

with only few features (Kim et al., 2015; Middag et al., 2009). The common practice is 

to select one feature selection method to rank the features according to their relevance to 

the type of dysarthric speech severity level, which can be achieved using the feature 

ranking methods. In fact, using more than one feature ranking method is likely to produce 

more different ranking sets, and presenting only one set given by a particular method can 

be misleading (Kuncheva, 2007). Most algorithms used for dysarthric speech are with the 

small dimensions of features. However, the large dimension of acoustic features is not 
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fully investigated with different feature ranking methods and classification algorithms. 

Furthermore, using the speech tools that used to obtain a set of features which are required 

many adjustment and settings, and in some cases obtaining features from different speech 

tools containing only a small dimension of features that results in difficulties in the use 

of the classification algorithms.  

In the Automatic Dysarthric Speech Recognition system, the accuracy of recognition 

depends on the acoustic model, which includes speaker-independent, speaker-dependent, 

and speaker adaptation (Hamidi et al., 2010; Shinoda, 2011) with speaker adaptation 

being the subset of the speaker-independent model.   

To address the above-mentioned issue of the existing classification and ASR for 

dysarthric speakers, the large dimensional acoustic feature is extracted using the 

openSMILE tool (Eyben et al., 2013) which is based on, the severity level of dysarthric 

speech. Feature ranking methods were used to rank the feature based on their relation to 

the severity level of dysarthric speech, which is mild, moderate, and severe. The feature 

ranking methods are fast and do not suffer from some limitations, such as classifier-

dependency, or the lack of interpretability (Saeys, Abeel, & Van de Peer, 2008; Santana 

& de Paula Canuto, 2014). When using the severity level of dysarthric speech as the 

classification base, the performance of the different classification algorithms are 

compared by applying several classification techniques.  

In the ADSR, the acoustic model enriched with speech data from the normal speakers 

and the adaptation data were used to improve the recognition accuracy of dysarthric 

speech as in (Mustafa, Salim, Mohamed, Al-Qatab, & Siong, 2014). The combination of 

some adaptation techniques results in the improvement of the recognition accuracy of the 
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ADSR (Sriranjani, Ramasubba Reddy, & Umesh, 2015). It is applied in this study based 

on the severity level of dysarthric speech, to improve recognition accuracy. 

2.5 Classification Algorithms, Feature and Adaptation Identification for Intra-

Severity ADSR 

In this section, the identification of classification algorithms and features for the 

proposed intra-severity classification and adaptation ADSR are described. Section 2.5.1 

and section 2.5.2 discusses the classification algorithms and features for intra-severity 

ADSR in fulfilling the first objective of this research. In Section 2.5.3, the adaptation 

techniques applying for intra-severity ADSR are described to achieve the second 

objective of this research.  

2.5.1 Classification Algorithms Identification 

The classification algorithms used in the previous works are Linear Discriminant 

Analysis (LDA), Artificial Neural Network (ANN), Discriminant Analysis (ALLOC80), 

Gaussian Mixture Model (GMM), Statistical Analysis (Discriminant function analysis, 

linear regression analysis), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), 

Quadratic Discriminant Analysis (QDA), and Mahalanobis Discriminant Analysis 

(MDA). Furthermore, those algorithms are used in the classification of dysarthric speech 

to identify the neurologic diseases, dysarthria type, the intelligibility of the speech, and 

differentiation between non-impaired speakers and dysarthric speakers. 

This research used machine learning algorithms rather than deep learning algorithms. 

The reasons for using machine learning are (1) machine learning almost always require 

structured data, whereas deep learning networks rely on layers of the ANN (artificial 

neural networks) (Deng & Yu, 2014; LeCun, Bengio, & Hinton, 2015). In this research, 

the classification algorithms used to identify the severity level of dysarthric speakers that 
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are categorized into three levels of severity level which is mild, moderate and severe 

severity level. (2) Machine learning algorithms are built to “learn” to do things by 

understanding labeled data, then use it to produce further outputs with more sets of data. 

However, they need to be retrained through human intervention when the actual output 

isn’t the desired one (Deng & Yu, 2014; LeCun et al., 2015). (3) The main concern of this 

research is to improve the recognition accuracy for ADSR by applying adaptation 

techniques wither standalone or a combination of standalone adaptation techniques; thus, 

the classification techniques used to automatically identify the suitable adaptive acoustic 

model. (4) The huge number of acoustic features extraction and feature selection also 

investigate to enhance the classification accuracy as the feature selection method used to 

rank the most relevant acoustic features for each severity level of dysarthric speakers.        

For classification algorithms, the common algorithms used for dysarthric speech are 

the small dimension of features. In this research, algorithms used in include SVM, LDA, 

and ANN as well as some of the well-known algorithms used for comparison with 

algorithms used for previous research like Classification and Regression Tree (CART), 

Naive Bayes (NB), and Random Forest (RF) which describes as the followings: 

2.5.1.1 Linear Discriminant Analysis (LDA) 

In 1936, Fisher originally developed the Linear Discriminant Analysis (LDA), 

which is a classification method and has been used effectively in a wide variety of 

problems. 

In statistical pattern classification, LDA is a well-known technique to compress 

the information contents (with respect to classification) and to improve the discrimination 

of a feature vector by a linear transformation. Improvement in the recognition 

performance for small-vocabulary systems is the result of supplying LDA to automatic 
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speech recognition (Haeb-Umbach & Ney, 1992). In addition to this, LDA easily handles 

cases of unequal within-class frequencies with performances examined on randomly 

generated test data. Maximal separability is guaranteed as the ratio of between-class to 

within-class variance in any particular data set is maximized by this method.  The 

distribution of the feature data is better understood with the help of this method 

(Balakrishnama & Ganapathiraju, 1998).  

LDA’s main objective is to separate data samples into distinct groups called 

classes. LDA transforms the data into a different space, usually with a dimension that is 

lower, maximizing the between-class separability while minimizing variability of within-

class. Optimal distinguishing between the classes is by this transformation called the 

feature projection. In any particular data set, the ratio of between-class to within-class 

variance is maximized by using the LDA method. Therefore, maximum separability is 

guaranteed (McLachlan, 2004). 

LDA is commonly used in learning problems by the machine, like data 

dimensionality reduction, pattern and face recognition, and feature extraction. It is a 

simple and mathematically robust method which usually generates models whose 

accuracy is similar to complicated methods (Guerreiro, 2008). 

2.5.1.2 Classification and Regression Tree (CART) 

Breiman et al., (1984), developed Classification and Regression Trees (CART), a 

method of classification which uses past data to build the decision tree classification 

model and then use it to classify new data sample. 

Prediction or classification of cases is permitted by tree-building algorithms (set 

of if-then (split) conditions), used by Classification and Regression Tree (CART) models. 
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The regression-type model refers to a CART model that predicts the value of continuous 

variables from a set of continuous and/or categorical predictor variables. The 

classification-type CART model is used for the prediction of the value of the categorical 

variables from a set of continuous and/or categorical predictor variables. Like CART, one 

noticeable advantage of decision tree-based models is that they can handle smaller data, 

though scalable to large problems (Balakrishnama & Ganapathiraju, 1998). 

CART training comprises of four processes. The first step is making the decision 

tree, where the recursive splitting of nodes is used.  Based on the distribution of classes 

in the dataset, each derived node is assigned to a predicted class. At the second step, 

“maximal tree” is produced and building the decision tree is stopped. The produced tree 

is often large that it probably over-fits the information from the learning samples. The 

third step is tree “pruning,” which is a sequence of making simpler trees by amputation 

of increasingly important nodes. The last is the optimum tree selection. At this stage, only 

the tree that fits the information in the learning dataset is selected from the pruned trees 

(Roger & Lewis, 2000). 

2.5.1.3 Artificial Neural Network (ANN) 

Artificial neural networks (Teuvo Kohonen, 1982) or neural networks are usually 

considered as a simulation of the nervous system’s information-processing. By studying 

the system of neurons and learning rules derived from biological models, early work in 

this field was inspired (Depenau, 1995). 

There are two different kinds of neural networks. Feed-forward network with a 

simple perceptron and its extension, and the multi-layer perceptron which is one of the 

most commonly used neural networks for classification. Neurons or nodes are 

interconnected computing units that make up all neural networks. Inputs from different 
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units in the network, or from the outside world are received by each unit. Output based 

on these inputs is calculated. Units are organized into layers in the feed-forward network. 

It is made up of L processing layers, with the first layer (1=0) being the input layer, and 

the last layer (1=L) being the output layer. Through these two layers, all communications 

with the outside world are done. Hidden layers are the intermediate layers of units which 

cannot be reached from the outside, and hidden units are the units within them. The layer 

closest to input is the first hidden layer and the one closest to the output is the last hidden 

layer. A simple perceptron is what the network is called if there are not any hidden layers. 

On the other hand, it is called a multi-layer perceptron, or X-layer perceptron, where X is 

the number of hidden layers sum by 1. In a feed-forward network, starting from the input, 

passing of information is from a lower layer toward a higher layer and not the reverse of 

that. This indicates that lower layer units may only be connected to higher layer units, 

without allowing feedback or interconnections (Depenau, 1995).  

2.5.1.4 Support Vector Machine (SVM) 

A Support Vector Machine (SVM) is a powerful algorithm learning machine 

originating from the theory of statistical learning, first introduced by (Vapnik, 1998). It 

has been used successfully in a wide variety of problems like face detection, malware 

detection, handwriting recognition, and many others (Witten et al., 2016). This method is 

also popular because of its high level of generalizability and its capability in handling 

high dimensional input data relative to neural networks and decision trees (Theodoridis 

& Koutroumbas, 2006). 

SVM can employ a small training set for creating generalizable nonlinear 

classifiers which are the main advantages of this classifier in high-dimensional feature 

space. In the case of having large training sets, SVM chooses a small set of support vector 
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that are required for designing the classifier. It can significantly decrease the 

computational cost of testing (Jain et al., 1999). Because of the above-mentioned 

advantages of SVM, it is one of the most popular classification techniques ineffective 

computing. SVM classifiers propose competitive performance results for emotion 

recognition compared to other classification techniques. 

2.5.1.5 Naive Bayes (NB) 

For machine learning and data mining, one of the most efficient and effective 

inductive learning algorithms is Naive Bayes (NB) (Zhang, 2004).  

2.5.1.6 Random Forest (RF) 

An ensemble of the machine learning algorithm, Random Forest (RF) is best 

defined as a “combination of tree predictors such that each tree depends on the values of 

a random vector sampled independently and with the same distribution for all trees in the 

forest” (Lebedev et al., 2014). To date, this algorithm produces one of the best 

classification accuracies in many applications. Compared to other techniques, it has 

important advantages in terms of opportunity for efficient parallel processing, tuning 

simplicity, robustness to noise, and the ability to handle highly non-linear biological data. 

For handling of high-dimensional problems, with often redundant number of features, RF 

is the ideal candidate due to these factors. Several approaches for feature set reduction 

within and outside the context of  RF have been proposed, although RF can itself be 

considered as an effective feature selection algorithm, to further improve its performance 

(Tuv et al., 2009). 

2.5.2 Acoustic Features Identification 

There are many features extracted from dysarthric speech signal and used for the 

classification of dysarthric speech including the following: A typical vocal source 
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excitation, prosodic features, nasality features, phonemic features, pathological features, 

fundamental frequency, MFCC, articulation features, voiceless interval duration, rhythm 

features, voice quality features, acoustic features, phonological features, log Harmonics-

to-Noise Ratio (HNR), and Glottal-to-Noise Excitation ratio (GNE) groups based on the 

acoustic features. (Eyben, 2015) defined the acoustic features to be used for real-time 

speech and music analysis. In this research, some of the features introduced in (Eyben, 

2015) were used, which is divided into four groups based on the acoustic features. These 

are the prosodic, voice quality, spectral and cepstral groups. These features have been 

used in the classification of the dysarthric speech, to differentiate between non-impaired 

speakers and dysarthric speakers, as in (Godino-Llorente et al., 2006; Schlenck et al., 

1993), to differentiate based on type of dysarthria as in (Fonville et al., 2008; Guerra & 

Lovey, 2003; Liss et al., 2009),  to differentiate based on severity of dysarthric speech 

(Kim et al., 2011; Paja & Falk, 2012), or to measure the intelligibility of dysarthric 

speakers (Kim et al., 2015; Middag et al., 2011). For each feature, there are parameters 

computed for a short time frame of an audio signal at a given time, called the acoustic 

Low Level Descriptors (LLD) (Eyben, 2015; Schuller, 2013), more details are given in 

chapter 3 section 3.2.1.2.  

2.5.3 Adaptation Techniques Identification for Intra-Severity ADSR  

In (Al-Qatab, Mustafa, & Salim, 2014; Mustafa et al., 2014), the acoustic model 

enriched with speech data from the normal speakers and the adaptation data were used to 

improve the recognition accuracy of dysarthric speech. The combination of some 

adaptation techniques results in the improvement of the recognition accuracy of the 

ADSR (Sriranjani et al., 2015) which is applied in this study based on the severity level 

of dysarthric speech, to improve its recognition accuracy. 
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Two of the well-known adaptation techniques for the ASR system are the maximum a 

posterior (MAP) (Gauvain & Lee, 1994) and the parameter transformation-based 

adaptation using the maximum likelihood linear regression (MLLR) (Leggetter & 

Woodland, 1995). These techniques have been proven to be effective for developing the 

ASR system with data sparsity for dysarthric speech. As a transformation based approach, 

MLLR has no further improvement at a certain point although there is more adaptation 

data available (Shinoda, 2011). MLLR usually requires recorded speech of a new speaker 

with the use of the same text or sentences recorded from the reference speaker, which is 

referred to as text-dependent (Digalakis & Neumeyer, 1996). On the other hand, MAP is 

more efficient as compared to the ML estimation technique when the data size is small. 

However, as the size of the data increases, the estimation of the parameter for MAP and 

ML is converging towards an equilibrium point (Kotler & Thomas-Stonell, 1997). 

The adaptation techniques used for ADSR are MLLR, MAP, fMLLR, SAT, and 

CMLLR. This study has sequentially applied MLLR and MAP and vice versa. In the first 

hybrid approach (MLLR+MAP), the overall regression classes were estimated using the 

global regression classes, which is then switched to MAP adaptation using the prior 

transformation regression classes as an input to update each phoneme in the acoustic 

model updated firstly by MLLR. On the other hand, the MAP+MLLR hybrid approach 

estimates the parameter and updates each Gaussian of all phonemes in the acoustic model, 

then switches to MLLR adaptation using the updated acoustic model as an input to 

construct estimated global regression classes. 

2.6 Summary 

This chapter describes the literature review of the current research. The classification 

of dysarthric speech has been investigated. The summary of the findings from the related 

works listed in Table 2.4 and discussed in section 2.2.7. The automatic dysarthric speech 
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recognition described in this chapter which includes the adaptation techniques, dysarthric 

speech corpora, and the acoustic model used which is summaries in section 2.3.5. The 

finding from the literature review presented in this chapter as well as the identification of 

the classification algorithms, feature selection method, and adaptation techniques.   
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CHAPTER 3: RESEARCH METHODOLOGY 

3.1 Overview 

This chapter is devoted to the discussion of the methodology carried out throughout 

this research. The research methodology adopted in this research is designed based on the 

patterns of the design science (DS), to accomplish the research objectives. The design 

science research methodology process is described in section 3.2. The following sections 

described each process of the DSRM in more detail. The proposed Intra-Severity ADSR 

architecture, the speech corpus, acoustic features, features extraction tools and 

techniques, selection of feature methods, and classification algorithms used are described 

in section 3.5 of this chapter. Section 3.6 describes the data analysis carried out in chapter 

4 as well as measuring the performance of the classification and ADSR for the proposed 

Intra-Severity ADSR. Section 3.8 summarizes this chapter.  

3.2 The Design Science Research Methodology Process 

The structure of this research is adopted from the design science research methodology 

(DSRM) process model that is normally used for an information system (IS) proposed by 

(Peffers, Tuunanen, Rothenberger, & Chatterjee, 2007). DSRM is carried out in this 

research to meet three objectives, which are: (1) it is consistent with previous literature, 

(2) it provides a nominal process model to conduct the design science (DS) research, and 

(3) it provides a mental model to present and evaluate DS research in IS. The 

characteristics of this research outcome are considered as an artifact to be delivered as 

one of the main aims of the DSRM. In this research, the artifact is an intra-severity 

classification and adaptation technique to improve dysarthric speech recognition 

accuracy. 
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(Dysathric speech classification 

and adaptation) 

Design an improved automatic dysarthric speech 
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Figure 3.1: Adopted DSRM process model (Peffers, Tuunanen, Rothenberger, & Chatterjee, 2007) Univ
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Figure 3.1 depicted the DSRM adopted for this research which includes the five 

activities. These activities are described in the following sections and an adequate 

description of each activity is explained throughout the thesis. 

3.3 Problem Identification and Motivation 

A narrative literature review is one of the most essential steps in every research. It 

helps to define the problems that require seeking solutions. Chapter 2 which includes the 

literature review described the state of the science related to both, the classification of the 

dysarthric speech, and the automatic speech recognition for dysarthric speakers for the 

contextual point of view. Conduction of the literature review or narrative literature review 

helps in two aspects. First is to discover the potential problem/s in the classification and 

automatic speech recognition for the dysarthric speaker, and second is to propose a 

solution for the identified problem (/s) which will help in the automatic classification and 

automatic speech recognition for the dysarthric speakers. Thus, the problem statement 

and the questions for this research are presented in the first chapter which includes also 

the motivation of this research.  

By maintaining a solution’s value to the identified problem, two things are achieved.  

First, the researcher and the targeted readers of the research are motivated to seek a 

solution and be satisfied with the results. Second, it settles the argumentation with the 

understanding of the problem by the researcher. 

3.4 Defining the Objectives for a Solution 

This research proposed a solution for the design and improvement of the classification 

and automatic recognition accuracy for dysarthric speakers using the severity based 

classification and adaptation. In chapter 2 section 2.4 and section 2.5 are included the 
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identification of the classification algorithms, feature selection and adaptation techniques 

used as a solution to improve the recognition accuracy of the ADSR system.   

This solution has the ability to enhance the accuracy of the classification and automatic 

speech recognition for dysarthric speakers by addressing the problems identified in the 

existing systems. 

3.5 Design and Development of the Proposed Intra-Severity Automatic 

Dysarthric Speech Recognition 

In this research, the databases’ (Corpora) are identified to include the dysarthric 

severity level with an equal number of speakers. The features are extracted from each 

dysarthric severity level to perform the severity based classification of dysarthric speech. 

The classification of dysarthric speech-based severity levels obtained using a well-known 

classification method using the feature selection method to reduce the computational cost 

of the system. The adaptation techniques are also performed for automatic dysarthric 

speech recognition systems based on the severity levels of dysarthric speech.  

The design of the proposed intra-severity automatic dysarthric speech recognition has 

three phases. Figure 3.2 shows the overall design used in this research. The three phases 

are classification, adaptation, and development of automatic recognition for the unknown 

speech. In the first phase, the automatic classification of dysarthric speech based on 

severity level is applied which helps the system to automatically know the adaptation 

model to apply. The adaptation models, which is the second phase of the proposed ADSR, 

include three models similar to the severity level of dysarthric speakers which are Mild, 

Moderate, and Severe adaptation models. The third phase and the final phase is the 

automatic dysarthric speech recognition to automatically predict the unknown text based 

on the speech file. 
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The proposed Intra-Severity ADSR uses the severity level of dysarthric speech to 

classify the dysarthric speech into three severity levels which are Mild, Moderate, and 

Severe levels. Furthermore, the adaptation models created using the adaptation techniques 

for the proposed Intra-Severity ADSR also used the severity levels which are Mild, 

Moderate, and Sever severity levels.     

 

 

 

 

 

 

 

 

 

3.5.1 Classification Phase 

This phase includes several steps, which include identification of database, feature 

extraction, feature selection, and classifier algorithms, as shown in Figure 3.3. 

3.5.1.1 Speech Corpus 

As the main focus of the classification phase of this experiment is to predict the correct 

severity level of dysarthric speech, the corpus should meet these two criteria. First, the 

Severity Based Classification Phase 

Severity Based Adaptation Phase 

Automatic Speech Recognition Phase 

Hypothesis Text 

Dysarthric Speaker 

Speech File 

Figure 3.2: Overall architecture of the proposed Intra-Severity automatic 

dysarthric speech recognition 
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speech is continuous rather than isolated words, and second, the corpus includes all levels 

of severity with an equal number of participants for each severity level. The NEMOURS 

database (Menendez-Pidal, Polikoff, Peters, Leonzio, & Bunnell, 1996) is the dysarthric 

speech database that meets these criteria and was selected as the database for training. To 

maintain equal participants per severity level, two speakers were excluded from this 

experiment as data from one speaker was missing, and so another speaker was left out to 

maintain that balance.  

As for the TORGO dysarthric speech database (Frank Rudzicz et al., 2012), severity 

level distribution is not equal among all participants, which include two subjects who are 

mildly dysarthric, one subject who is moderately dysarthric, one subject who is moderate-

to-severely dysarthric, and four subjects who are severely dysarthric (Mengistu & 

Rudzicz, 2011). The Universal Access Speech Corpus (UA-Speech) (Kim et al., 2008) is 

also one of the open-access corpora for dysarthric speakers that collect the data from 

participants in a word-level speech consisting of 765 isolated words per speaker.  

The NEMOURS speech corpus is used to extract the feature vectors for the feature 

selection stage, and development and testing of the classifiers.  
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Figure 3.3: The classification phase diagram 
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3.5.1.2 Acoustic features extraction 

As described in chapter 2 section 2.5.2, there are four acoustic features have been 

identified for the classification of the severity level of dysarthric speakers. This section 

provided more details about the features extracted from each group. 

Figure 3.4 below shows the features extracted from dysarthric speech wave files.  For 

each feature, there are parameters computed for a short time frame of an audio signal at a 

given time, called the acoustic Low Level Descriptors (LLD) (Eyben, 2015; Schuller, 

2013). For instance, the prosodic feature includes six acoustic LLD, which are loudness 

(sum of the audio spectrum), Relative Spectral Transform (RASTA), fundamental 

frequency (F0), Root Mean Square Energy (RMS Energy), Zero-Crossing Rate (ZCR), 

and Probability of Voicing (Prob. Of Voicing). 
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There is a number of statistical functional computed for each acoustic LLD. The values 

of LLD computed are either smoothed by a window length 3 moving average filter as a 

standard,  referred here as LLD or smoothed by delta regression coefficient referred here 

as ∆ LLD  (Eyben et al., 2013). Figure 3.5 shows the structural diagram of features, in 

which each feature has a set of LLD and each LLD has a set of statistical functions that 

is smoothed in different ways to obtain the final feature vectors (Dimension). The feature 

vectors will be combined for all acoustic features and used later as a parameter for feature 

selection and classifier.  

Acoustic Features 

Spectral Cepstral Voice Quality Prosodic 

F0 (Fundamental 

Frequency) 

RMS Energy 
(Root Mean Square 

Energy) 

RASTA 
(Sum of RelAtive   

Spectral TrAnsform) 

Prob. of Voicing 
(Voicing probability of 

the final F0) 

Loudness 
(Sum of Audio Spectrum) 

ZCR 
Zero-Crossing Rate 

JitterDDP 
(‘Jitter of the Jitter’) 

JitterLocal 
(Local frame-to-frame 

Jitter) 

ShimmerLocal 
(Local frame-to-frame 

Shimmer) 

logHNR 
(Logarithmic 

Harmonics-to-

NoiseRatio) 

RASTA-Band 1-26 
(RelAtive Spectral TrAnsform 
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Other Spectral Features 
(Flux, Entropy, Skewness, Slope, 

psySharpness, Harmonicity,  Band 

Energy 250-650 Hz and 1-4 kHz) 

MFCC (1-14) 

Figure 3.4: The acoustic features and related LLD acoustic parameters 
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Based on the number of statistical functional applied to the LLD, there are two groups 

in this experiment. Table 3.1 shows the related features of each group and the number of 

statistical functional applied to each LLD. 

Table 3.1: Acoustic feature of LLD groups and number of statistical functional 

applied for each group 

LLD 

Group ID 
Features # LDD 

# Statistical 

Functional  per LLD 
Total 

A 

Prosodic (Loudness, 

RASTA, RMS Energy, 

ZCR) 

4 100 400 

Spectral 34 100 3400 

Cepstral 14 100 1400 

B 

Prosodic (Prob. Of 

Voicing) 
1 78  78 

Voice Quality 4 78 312 

Prosodic (F0) 1 83 83 

Total  5673 

 

Acoustic Feature 

Acoustic Low Level Descriptor (LLD) 

Statistical functional smoothed by moving  

average filter with window length 3 (LLD) 
Statistical functional smoothed by 

delta regression coefficient (∆ LLD) 

Features vectors (Dimensions) 

Figure 3.5: Structural diagram for acoustic feature 

Univ
ers

iti 
Mala

ya



  

94 

 

Table 3.2 depicts the statistical functional applied to each group of LLD, group of 

statistical functional, and the number of statistical functional applied.  

Table 3.2: Statistical Functional, groups, number, and applied LLD group used 

in the experiment 

No. Statistical Functional SF Group 
#  

SF 

LLD 

Group 

1 Quartiles 1–3, 3 inter-quartile ranges Percentiles 6 A,B 

2 1% Percentile (≈min), 99% percentile (≈max) Percentiles 2 A,B 

3 Percentile range 1–99% Percentiles 1 A,B 

4 Position of min/max, range (max − min) Temporal 3 A,B 

5 Arithmetic mean1, root quadratic mean Moments 2 A,B 

6 Contour flatness Temporal 1 A,B 

7 Standard deviation, skewness, kurtosis Moments 3 A,B 

8 Rel. duration LLD is above 25/50/75/90% range Temporal 4 A,B 

9 Rel. duration LLD is rising Temporal 1 A,B 

10 Rel. duration LLD has positive curvature Temporal 1 A,B 

11 Gain of linear prediction (LP), LP coefficients 1-5 Modulation 6 A,B 

12 Mean, max, min, SD of segment length Temporal 4 A,B2 

13 
Mean value of peaks, Mean value of peaks – 

arithmetic mean 
Peaks 3 A 

14 Mean/SD of inter peak distances Peaks 2 A 

15 Amplitude mean of peaks, of minima Peaks 2 A 

16 Amplitude range of peaks Peaks 1 A 

17 Mean/SD of rising/falling slopes Peaks 4 A 

18 Contour centroid Temporal 1 A3,B 

19 Linear regression slope, offset, quadratic error3 Regression 3 A3,B 

20 Quadratic regression a, b, offset, quadratic error3 Regression 4 A3,B 

21 Percentage of non-zero frames Temporal 1 B2 

1 Arithmetic mean of LLD and positive arithmetic mean of Δ LLD. 2 applied to F0 only in 

group B (LLD, not Δ LLD). 3 Applied to LLD not Δ LLD in group A. SF- Statistical 

functional 
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3.5.1.3 Feature selection dimensions 

The large numbers of features extracted in this research make it difficult to perform 

the classification of severity type. As a result, feature selection is a possible solution to 

create different training sets in order to identify the most significant features related to 

the specific type of severity level. Alternatively, reducing the number of features used in 

the classification algorithm can also solve this problem. 

There is no method used in the literature to select the optimal number of features. 

However, the equation below is suggested to better the computation cost (Khoshgoftaar, 

Golawala, & Van Hulse, 2007; Samsudin, Shafri, Hamedianfar, & Mansor, 2015): 

𝑁𝑂𝐹 =  log2 𝑛                  (3.1) 

Where NOF is the number of features to be picked up for classification algorithms, 

and the total number of extracted features is 𝑛.  

Using the above equation, the number of features extracted as shown in Table 3.1 is 

5673 (𝑛 = 5673), and so the number of features that will be used in classification 

algorithms are 13 features: 

𝑁𝑂𝐹 =  log2 5673 

𝑁𝑂𝐹 =  12.47  13 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

These 13 features will be selected for the classification algorithms after applying the 

feature selection method to identify the most significant features among all features 

extracted for this experiment. 
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3.5.1.4 Feature selection methods 

In this research, the feature selection methods applied prior to the running of the 

classification algorithms. The objective of using different feature selection methods is to 

create different training sets and to increase the diversity among the classifiers, which is 

a key feature in improving the performance of the multi-classifiers system. In addition to 

this, selection methods of two different features may give rise to two different sets of 

features. 

Thus, presenting only one feature set can be misleading and may produce suboptimal 

results (Kuncheva, 2007). The seven feature selection methods used in this study, namely, 

Conditional redundancy (Condred) and Relief, Interaction Capping (ICAP), Conditional 

Information Feature Extraction (CIFE), Conditional Mutual Information Maximization 

(CMIM),  Double Input Symmetrical Relevance (DISR), and Joint Mutual Information 

(JMI) (Parmar et al., 2015). The following subsections are briefly explained about each 

selection method: 

(a) Joint Mutual Information (JMI) 

It was proposed by (Gao, Hu, & Zhang, 2018) where increasing the complementary 

information between features reduces redundancy (Brown, Pocock, Zhao, & Luján, 

2012). The class for evaluating the importance of features, the already-selected feature, 

and the joint mutual information between the candidate features are employed by JMI, 

unlike other feature selection methods (Gao et al., 2018). 

(b) Double Input Symmetrical Relevance (DISR) 

To reduce redundancy, (Meyer & Bontempi, 2006) symmetric relevance criterion is 

used, where the concept of complementary information between the feature is promoted. 
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Symmetrical relevance on all combinations of two features is measured by this criterion 

(Meyer & Bontempi, 2006). 

(c) Conditional Mutual Information Maximisation (CMIM) 

This method searches for the most discriminative features by finding the optimal trade-

off between relevance and redundancy of the feature (Fleuret, 2004). In this case, the 

feature selection only maximizes the mutual information of the feature while adding 

additional information to the already selected feature set. 

(d) Conditional Information Feature Extraction (CIFE) 

 This method was proposed by (Lin & Tang, 2006), where, by reducing the class-

relevant redundancies among features maximizes the class-relevant information aimed. 

(e) Interaction Capping (ICAP) 

The ICAP (Jakuline, 2005), uses interaction gain measures to detect the relevant 

feature. In this method, any feature if not relevant to the class on its own, it can be relevant 

when combined with another feature. 

(f)  Conditional Redundancy (Condred) 

(Brown et al., 2012) proposed this method, and is used for comparison purposes. 

(g) Relief 

This was introduced by (Kira & Rendell, 1992). It is a feature grading algorithm 

method. The objective of this method is the quality estimation of features to differentiate 

samples that are near to each other in a dataset. Original Relief can only handle Boolean 

concept problems, but extensions have been developed to work in classification problems 

and in regression.   
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3.5.1.5 Classification algorithms 

In this research, six classification algorithms were used, which includes SVM, 

LDA, and ANN as well as some of the well-known algorithms used for comparison with 

algorithms used for previous research like Classification and Regression Tree (CART), 

Naive Bayes (NB), and Random Forest (RF). 

The classification algorithms classify the severity level of a given dysarthric 

speaker based on the acoustic features extracted into specific severity level which are 

mild, moderate and severe. This step is the final step of the classification phase of the 

proposed intra-severity automatic dysarthric speech recognition.    

3.5.1.6 Procedures and tools 

The tool used for feature extraction is openSMILE version 2.3.0, while the 

configuration for feature extraction used from the wave files of the severity level of the 

dysarthric speakers is the standard INTERSPEECH 2016 Computational Paralinguistic 

Challenge (INTERSPEECH 2016 ComParE Set) (Eyben et al., 2013).  

In speech analysis, the typical frame lengths range from 20 to 60 milliseconds 

(ms), with the most commonly chosen frame period is 10ms (Rabiner, 1989; Young et 

al., 2009). For the proposed solution, 60ms were used as frame length, with 10ms as frame 

period. According to (Eyben, 2015) to compute LLD, the frame must contain enough data 

and the quasi-stationary of the signal is ensured to be within the frame with respect to 

LLD of interest by identifying the length of the frame. 

The procedures for feature extraction is in three steps. First, the samples 

pronounced by each speaker are listed into one individual file for each speaker. This file 

is used as an input to the openSMILE tool to produce the features for each separate file 
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(the total number of sample files per speaker is 74). Second, each file generated in the 

first step is combined in three separate files according to their severity level. Third, the 

three separate files produced in the second step are combined in one feature file, including 

the class types which are severe, moderate, and mild. This file is then used as an input for 

the feature selection step for the classification algorithm.  

MATLAB software version R2014b is used to combine all feature selection with 

classification algorithms in a single coding file. MATLAB is a well-known tool widely 

used by developers and researchers. The feature selection was obtained from FEAST 

toolbox version 2.0 (downloadable from     https://github.com/Craigacp/MIToolbox/). 

There are seven feature selection methods used in this experiment described previously 

in this chapter.  

The various toolbox used for the classification algorithms include: statistical 

toolbox used to build LDA, and CART classification methods, Neural network toolbox 

used to build the ANN models, libvm version 3.22 developed by Chih-Chung Chang and 

Chih-Jen Lin to build the SVM classification model (can be downloaded from 

http://www.csie.ntu.edu.tw/~cjlin/libsvm ) (Chang & Lin, 2011), Naive Bayes code 

which uses the default algorithms developed in MATLAB program, and the code for the 

Random Forest (can be downloaded from 

https://code.google.com/archive/p/randomforest-matlab/downloads). 

3.5.2 Automatic Dysarthric Speech Recognition Phases 

This phase is designed to automate the speech recognition of dysarthric speech. The 

ADSR involves the severity based adaptation phase and automatic speech recognition 

phase as described previously in the proposed intra-severity automatic speech 

recognition. Figure 3.6 showed the diagram for building the ADSR which starts with the 
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building process of the baseline speech acoustic model using the Wall Street Journal 

(WSJ1) corpus (Linguistic Data Consortium, 1994), TIMIT corpus (Garofolo & 

Consortium, 1993), and TORGO corpus. Following this is the model adaptation of the 

NEMOURS database to build the SA (adapted) speech acoustic model. The following 

section describes the related ADSR components. 

3.5.2.1  Speech corpora  

The speech corpuses used in this experiment are the Wall Street Journal (WSJ1) corpus 

(Linguistic Data Consortium, 1994), TIMIT corpus (Garofolo & Consortium, 1993), 

TORGO corpus, and NEMOURS corpus. The TORGO corpus and NEMOURS corpus 

were described in more detail in the previous chapter. WSJ1 corpus and TIMIT corpus 

are described below.  

 TIMIT speech corpus: at Texas Instruments and MIT, the TIMIT acoustic-phonetic 

continuous speech corpus was developed and distributed by the US National Institute of 

Standards and Technology. Eight major dialect division of American English is 

represented by it, comprising of 438 male speakers and 192 female speakers making up 

a total of 630 speakers (Garofolo & Consortium, 1993). 
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Figure 3.6: The automatic dysarthric speech recognition phases diagram Univ
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Wall Street Journal (WSJ1) corpus is collected for the development and evaluation 

of the Large Vocabulary Continuous Speech Recognition System (LVCSR).  The WSJ1 

corpus includes nearly 78,000 utterances (~73 hours of speech) labeled as training 

utterances. There were 245 subjects who participated in the recording the training set. The 

subjects were made up of journalists (20) and non-journalists (225) (Linguistic Data 

Consortium, 1994). Some training data has been spontaneously dictated by journalists 

(4,000 utterances of the training set). Nevertheless, the level of experience in dictation 

among journalists varies. On the other hand, the testing set labeled in the WSJ1 corpus 

has nearly 8,200 utterances (~8 hours of speech). There were 30 subjects that participated 

in recording the test set. The subjects were made up of journalists (20) and non-journalists 

(10) (Linguistic Data Consortium, 1994). Similar to the training set, some utterances have 

been spontaneously dictated (6,800 utterances of the testing set), producing more dictated 

data than the training set. The recording of the corpus used two microphones, a Sennheiser 

close-taking head-mounted microphone and microphones of varying types. 

3.5.2.2 Speech corpus selection 

For developing the speaker-independent (baseline) speech acoustic model, the WSJ1, 

TIMIT and TORGO speech databases were used as described in Table 3.3. On the other 

hand, for developing the adaptation model, NEMOURS databased is used after the 

removal of the two speakers as mentioned earlier in section 3.5.1.1. Table 3.4 shows the 

severity levels of the speakers of the NEMOURS database. More information about the 

speakers’ severity levels and their intelligibility score can be found in (Menendez-Pidal 

et al., 1996). The intelligibility score is computed as the average of scores for three 

sessions by 12 non-hearing impaired listeners.  
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Table 3.3: Database used in this experiment for the training, adaptation and testing stages 

Corpus Name 
Size (sentences or recording 

time) 

Number of 

Speakers 

Vocabulary 

Size (number of 

words) 

Level of Severity (did 

they cover all three 

levels) 

Usage of 

the data 

corpus 

WSJ1 (Linguistic Data 

Consortium, 1994) 

77800 utterance (~73 hours 

of speech) 
245 speakers Less than 20K non-impaired speech Training 

TIMIT  (Garofolo & 

Consortium, 1993) 

4620 training utterances-

approximately  3.14 hours 

for training  

462(326 males 

and 136 

females)  

Less than 

6k of words 
non-impaired speech Training 

TORGO (Frank Rudzicz et al., 

2012) (Enderby, 1980b) 

(Mengistu & Rudzicz, 2011) 

500 utterances per speaker 

(Approximately 3 hours of 

speech for each speaker ) 

8(five males-3 

females) 

Less than 1000 

words 

4–Severely,1-Moderate 

to Severely,1-

Moderately, 2-very Mild. 

Training 

NEMOURS (Menendez-Pidal 

et al., 1996) 
74 sentence(4.06 Hours) 9(9 males) 

Less than 

200 words 
Mild-Moderate-Severe 

Adaptation 

and testing 
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Table 3.4: The intelligibility scores and classification of dysarthric speech of 

NEMOURS database according to human assessment 

Severity Level Speaker ID Intelligibility score 

Mild 

BB 89.7 

FB 92.9 

MH 92.1 

Moderate 

RK 68.6 

JF 78.5 

RL 73.3 

Severe 

BK 58.2 

SC 51.5 

BV 57.5 

 

3.5.2.3 Experimental Procedures 

(a) Development of the baseline speech acoustic model (BAM) 

The Baseline Acoustic Model (BAM) is trained using the data from different corpora: 

WSJ1 (Linguistic Data Consortium, 1994), TIMIT (Garofolo & Consortium, 1993), and 

TORGO (Frank Rudzicz et al., 2012) databases. The main purpose of using these three 

speech databases is to enrich the acoustic model, and for the ASR system’s accuracy of 

recognition to improve (Al-Qatab et al., 2014; Paul & Baker, 1992). The speech used for 

developing the BAM includes both the non-dysarthric speech (Control Speakers) and 

dysarthric speech (Dysarthric Speakers).  

The baseline acoustic model developed in this research did not make use of the 

adaptation technique and was used as benchmark comparison (in term of recognition 

accuracy) with the proposed automatic dysarthric speech recognition accuracy (intra-

severity based adaptation). Furthermore, the baseline acoustic model also used to show 

that using the non-impaired speech corpora can help to overcome the lack of corpora for 

impaired speech (dysarthric speech). 
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(b) Intra-severity based adaptation 

For Speaker Adaptation (SA) of BAM, the MLLR and MAP techniques were used. 

These techniques were used individually and in combination (hybrid). The four SA 

experiments are made up of Dysarthric Speaker Adaptation (DSA) using MAP, MLLR, 

and a hybrid of these two techniques, namely DSA-MLLR, DSA-MAP, DSA-

MLLR+MAP, and DSA-MAP+MLLR respectively. 

In this study, the adaptation is performed individually for a different level of severity, 

adaptation techniques, and the amount of data used, which are computed using the 

following equation:  

𝑁𝑂𝐸 = 𝑁𝑆𝑇 ∗ 𝑁𝐴𝑇 ∗ 𝑁𝑆                (3.2) 

Where NOE is the number of experiments performed, NST denotes the number of 

severity levels, NAT denotes the number of adaptation techniques, and NS denotes the 

number of datasets used in this experiment. As such, the number of experiments 

conducted in this study is 120 (3 x 4 x 10). The adaptation models: MILD (mild dysarthric 

speech), MODR (moderate dysarthric speech), and SEVR (severe dysarthric speech) are 

trained accordingly to obtain severity adapted models. 

(c) Testing data 

The NEMOURS corpus is used for the testing stage in this research as shown in Figure 

3.5. The complete samples include in the NEMOURS corpus used for the testing stage. 

The testing data are applied to the acoustic models built as described in subsection b of 

section 3.2.2.3. The intra-severity based testing performs to the intra-severity based 

adaptation. The differences between the adaptation data set and testing data set are that 

the adaptation stage is divided into the ten sets which every set contains speech from all 

speakers in the specific severity level as described in section 3.2.2.4 while in the testing 

Univ
ers

iti 
Mala

ya



  

106 

 

stage the complete samples are used to obtain the results based on the severity level. More 

information about the NEMOURS corpus described in section 3.5.2.2 as well as in section 

2.6.2 in chapter 3.  

(d) Speech data coding 

12 Mel-Frequency Cepstral Coefficients (MFCCs) were extracted. This includes C0 

as an energy component for every 10 ms analysis frame using a 25-ms Hamming window, 

and their first and second derivatives computed to obtain a 39-dimensional feature vector. 

The cepstral mean and energy normalization was applied to the feature vectors during 

training and testing.  

(e) HMM topology and tools used 

To build the HMM topology and to train the acoustic model, the 3-states left to right 

context-dependent triphones were used. 41 monophones (which contained silence and 

short pauses) were used to construct all the triphone models. By applying decision tree 

clustering, the context-dependent triphones acoustic model was tied so that the acoustic 

performance is enhanced and the common features among the states are shared. 

Additionally, to gain extra acoustic performance, the 16 mixture Gaussians per state was 

performed. This results in the utterances used, states, and the number of triphones to build 

a trained acoustic model for BAM to be at 86,547, 8,108, and 9,423 respectively. The 

HTK (version 3.4.1) toolkit (Young et al. 2009) is used to perform the speech coding and 

training of the baseline speech acoustic model. The word network constructed from the 

sentences of the test data includes the same form of constricting the sentence (see section 

2.6.2 in chapter 2). The dictionary used for training and testing is extracted from the 

Carnegie Mellon University (CMU) pronouncing dictionary. The dictionary was used for 

words, silence, and space included the training and testing sentences.  
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3.5.2.4 Adaptation dataset 

Adaptation datasets used for this experiment have been divided into ten sets based on 

the duration of the utterance (30 sets in total). Table 3.5 depicts the duration of the 

adaptation dataset used to adapt the acoustic model. The adaptation dataset was grouped 

based on the minimum optimal speech duration, which is about one minute of data 

(Shinoda, 2011). Each dataset is an intra-severity data, where each severity consists of 

utterances from speakers belonging to the same severity level. For example, the dataset 

for mild severity level includes the utterances from the three mild severity speakers. The 

test dataset covers the speeches of all the speakers with the same severity level. The data 

is divided randomly from the database based on the amount of data needed for adaptation, 

with the aim of increasing recognition accuracy.  

Table 3.5: Duration in seconds of the adaptation datasets 

Adaptation 

set 

Duration in seconds for each level of severity 

Mild 

(MILD) 

Moderate 

(MODR) 

Sever 

(SEVR) 

Set-1 63.52 92.14 143.93 

Set-2 118.61 181.62 240.47 

Set-3 183.84 277.75 350.55 

Set-4 241.60 363.13 458.02 

Set-5 299.77 455.09 561.59 

Set-6 363.92 550.40 691.01 

Set-7 421.98 631.43 791.26 

Set-8 491.15 730.41 907.21 

Set-9 551.64 823.40 1008.84 

Set-10 608.18 908.55 1103.42 

TOTAL 3344.21 5013.92 6256.30 
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3.6 Evaluation  

The fourth step of the DSRM process is the evaluation which is described in more 

detail in chapter 4. In this research, a series of a comparative analysis based on the 

classification accuracy of dysarthric speakers as well as the recognition accuracy of ASR 

for dysarthric speakers are conducted to compare the accuracy rate for both the 

classification and the recognition rate of different related work in the field of classification 

and recognition techniques. This section has explained the analysis of the data used to 

evaluate the proposed Intra-Severity ADSR in both classification and adaptation phases. 

The data analysis used in the proposed Intra-Severity ADSR based on the classification 

of dysarthric speech and the automatic dysarthric speech recognition, which is discussed 

in the following sections: 

3.6.1 Classification of Dysarthric Speech 

The acoustic feature analysis is used to identify the best acoustic features that can be 

used in the classification phase. The analysis of the acoustic features includes the sub-

acoustic feature that will help to identify the best performance of the sub-acoustic 

features. It also includes the analysis of the performance of all the sub-acoustic features 

and the combination of each sub-acoustic features as well as the acoustic features and the 

combination of all the acoustic features.  

The classification algorithms analysis is used to identify the classification algorithms’ 

best performance. The combination of each selection of feature and classification 

algorithms is considered as an independent classification algorithm which has its own 

performance. 
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Identifying the best acoustic features and the best classification algorithms help to 

select the acoustic features and the classification algorithms to develop the automatic 

dysarthric speech recognition systems. 

3.6.2 Automatic Dysarthric Speech Recognition 

The data analysis in this phase includes the performance of the ADSR when using the 

acoustic model with the data from the normal speakers. It also includes the analysis of 

each adaptation techniques: when it is applied to the baseline acoustic model, and when 

it is not applied.  

The results of all the adaptation techniques proposed in this study were also analyzed 

to obtain the best performance of the adaptation techniques, to improve the recognition 

accuracy of the automatic dysarthric speech recognition system.   

3.6.3 Performance Measure 

Measuring the performance of the proposed solution performs based on the two parts 

of the solution which are classification and adaptation of dysarthric speech based on the 

severity level. Each performance measure of the classification and automatic dysarthric 

speech recognition describe in the following subsections.  

3.6.3.1 Classification accuracy 

To calculate the classification accuracy for each classifier algorithm, the k- fold cross-

validation, where k is assigned to 10 (Ishibuchi & Nojima, 2013; McLachlan, Do, & 

Ambroise, 2005) is commonly used to calculate the rate of accuracy of the classifier 

algorithm for severity level of dysarthric speakers. In this method, the extracted features 

from dysarthric speakers (including all severity levels) are randomly divided into 10 equal 

sizes of set samples, where nine partitions are assigned for model training, and the 
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remaining one is used as the test set for model evaluation.  For each run, one partition is 

used as a test data and the remaining partitions are used as training data. To ensure all 10 

partitions are used as test data, this procedure is repeated 10 times. To produce a single 

estimation, the mean score of all 10 runs was calculated. Compared to a repeated random 

sub-sampling, the advantage of this method is that for both training and validation, all 

observations are used, and each observation is used for validation for exactly once only. 

The average classification accuracy rate is calculated using the equation below: 

Average Classification Accuracy Rate = 100 × (𝑇𝑁𝐶𝐹 𝑇𝑁𝐹)         (3.3)⁄  

where TNCF is the Total Number of Correctly-testing Features, and TNF is the Total 

Number of Features used. 

For the selection of the best classifier or best feature selection method, the raking 

method proposed by Friedman’s M Statistic (Neave & Worthington, 1988) is used 

(Brazdil & Soares, 2000). In this method, each classifier received a rank based on the 

measured accuracy rates on each feature group, where the classifier with the highest 

accuracy rate on the features group is assigned rank 1 and the classifier with second 

highest accuracy rate is assigned rank 2 and so on. In the case of two classifiers achieving 

equal accuracy rates, then the rank is divided between them. For example, considering 

the accuracies of 50%, 60%, 62%, 62%, and 67% achieved from five different classifiers 

on different group features, their ranking score would be 5, 4, 2.5, 2.5, and 1 respectively. 

The performance of the classifier algorithms is evaluated using the ranking method 

represented by the following equation: 

𝑅𝑎𝑛𝑘𝑖𝑛𝑔 (𝑥1
𝑛) = {

𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑏𝑎𝑠𝑒 𝑜𝑛 ℎ𝑖𝑔ℎ𝑒𝑠𝑡, 𝑥𝑖  𝑖𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
𝑛

2
, 𝑥𝑖  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒𝑞𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒         (3.4)
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Where 𝑥1
𝑛 is the set of accuracy rates for the classification algorithms used, the 

number of classification algorithms used is 𝑛, and the current value in the 𝑥 set is 𝑖. 

For calculating the final ranking of a classifier on different features groups, the mean 

score of each classifier is calculated. Therefore, the lowest average ranking score is 

considered the best classifier. The following equation is used to calculate the best 

classifier based on average ranking score: 

𝐵𝑒𝑠𝑡 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑋1
𝑛) = Min (𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑅𝑎𝑛𝑘𝑖𝑛𝑔(𝑥1

𝑛)))                    (3.5) 

Where 𝑋1
𝑛 is the set of classification algorithms used, 𝑛 is the total number of the 

classifier, and 𝑅𝑎𝑛𝑘𝑖𝑛𝑔 (𝑥1
𝑛) is the ranking score of the accuracy rate of different feature 

groups. 

3.6.3.2 Recognition accuracy 

Word Error Rate (WER) is generally the way to measure the effectiveness of an ASR 

system. In a total recognition task, global and incorrect word recognition are measured 

by WER. Alternatively, measuring an error rate may also be done in smaller units, such 

as detailed errors, syllables, or phonemes. These include deletion rates, substitution, and 

insertion of phoneme (Mokbel et al., 1996) as  follows: 

𝑊𝑜𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 (𝑊𝐸𝑅)

=
𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 + 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 + 𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑂𝑓 𝑊𝑜𝑟𝑑𝑠
∗ 100%        (3.6) 

where: 
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 Phoneme insertion: Due to the slow speaking rate of a dysarthric speaker, an extra 

sound or sounds is/are added to the intended word. This causes a monosyllabic 

word to be interpreted as two syllables. 

 Phoneme substitution: People suffering from dysarthria make pronunciation 

errors (e.g., twee instead of tree), thus one phoneme is substituted with another.  

 Phoneme deletion: People suffering from dysarthria do not produce certain 

sounds, causing the omission of all the syllables or specific sounds. 

The final recognition accuracy of the proposed technique is determined using the 

Average of Word Error Rate used in this to obtain final recognition accuracy. The 

Average Word Error Rate calculated by summing up all the word error rate for results 

from each adaptation data sets divided by the number of adaptation sets which is 10 data 

sets (details of the WER for each adaptation set found in Appendix E, Table E.2). The 

following equation used to calculate the final WER: 

 𝑊𝑜𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 (𝑊𝐸𝑅) =
𝑆𝑢𝑚(𝑊𝐸𝑅 𝑓𝑜𝑟 10 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 𝑆𝑒𝑡𝑠)

10
         (3.7) 

   Equation 3.7 used to evaluate the recognition accuracy in chapter 4.    

3.7 Communication 

In finalizing this research, the documentation of all activities and processes of this 

research is performed in the form of a thesis. Additionally, some of the major findings 

are published and some are submitted for possible publication to the related journal and 

conferences. 
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3.8 Summary 

This chapter provides the DSRM developed for the current research. The process of 

DSRM is described throughout the sections of this chapter. More details about the design 

and development of the proposed system are presented. The overall system architecture, 

which includes classification and automatic speech recognition for dysarthric speech is 

explained. The experiment design for each part of the system development is explained 

in detail, which includes the acoustic features, speech corpus, and techniques used for 

each part of the proposed system. The analysis of the data and the performance measures 

for each part of the proposed system are also explained in this chapter.   
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CHAPTER 4: ANALYSIS, RESULTS, AND DISCUSSION 

4.1 Overview  

In this chapter, the results obtained from the experiments will be analyzed. Discussions 

on the results will be explained in detail to show the system’s accuracy.  

The results are analyzed in two parts. The first part will focus on the analysis of the 

results on the classification of the dysarthric severity level of the system. This part will 

report the best acoustic features and the best classification algorithms to classify the 

speech of the dysarthric speakers to its level of severity, which is mild, moderate, or 

severe. In the second part, the analysis of the results from the Automatic Dysarthric 

Speech Recognition (ADSR) will be illustrated. This chapter includes the best adaptation 

techniques that could be used to help obtain a high recognition accuracy for dysarthric 

speakers.  

4.2 The Dysarthric Severity Level Classification   

The acoustic features used to obtain the set of features from the dysarthric speech audio 

files (samples) which are classified according to the severity level (mild, moderate, and 

severe) are the prosodic, voice quality, spectral and cepstral features. For those features 

that have sub-features, the results will be obtained using each sub-feature and the 

combination of all sub features separately, and will be included in the comparison of all 

sub features, which will be called “All”. For example, the voice quality acoustic feature 

has four sub-features which are jitterDDP, jitterLocal, shimmerLocal, and logHNR, so 

the fifth sub-feature is the combination of all the four sub-features, and will be labeled as 

“All”. This combination will also be used for the main acoustic features, which will 

include the combination of all acoustic features, and will also be called as “All”. 
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The number of acoustic features for every sub-feature will be 13, as shown in chapter 

3. For the combination of sub-features, the 13 features will be selected after combining 

all the sub-features. The selection of these features will be according to the feature 

selection algorithms.  

The results are analyzed based on the classification algorithms. There are six 

classification algorithms used in this experiment, which are LDA, CART, NB, ANN, 

SVM, and RF. The results will show the effectiveness of each classification algorithm 

based on the feature selection method and acoustic feature. 

In both acoustic feature and classification algorithms analysis, the average ranking 

method is used to obtain the best performance, whether on the acoustic feature or 

classification algorithms analysis.  

The classification accuracy of the dysarthric severity level is depicted in Table 4.1. It 

will be used as the base to various forms of analysis such as the average ranking score, 

either for acoustic features’ performance or classification algorithms’ performance, which 

is discussed below. 
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Table 4.1: The classification accuracy based on classification algorithms, feature selection, and acoustic features 
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jmi 77.16 71.94 65.77 72.98 57.70 66.37 65.14 44.62 49.50 52.24 71.00 66.35 77.98 74.47 78.10 70.72 75.22 

disr 85.00 72.38 66.22 75.38 56.62 67.13 65.49 43.54 56.11 56.91 70.71 68.62 76.42 74.65 80.32 72.39 76.59 

cmim 77.64 70.56 66.53 76.29 57.06 66.33 81.82 46.70 51.94 55.06 71.80 69.04 78.51 77.79 80.17 69.37 75.06 

cife 69.64 69.53 71.02 63.40 58.25 63.94 63.65 44.30 46.86 50.57 72.22 66.38 70.87 71.48 65.77 60.22 62.62 

icap 75.53 74.33 66.67 76.57 56.78 66.80 81.25 40.83 49.55 52.41 71.65 68.80 80.32 78.06 81.51 61.12 74.15 

condred 74.02 69.21 60.80 62.90 58.39 65.02 62.92 40.41 48.36 50.47 68.92 66.82 73.12 71.79 67.70 68.46 76.23 

relief 86.61 65.92 62.32 85.30 77.02 79.90 87.55 53.76 54.07 69.98 68.00 69.04 81.55 95.64 93.86 81.09 75.22 
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jmi 70.71 59.90 83.18 73.55 55.88 62.49 82.13 49.70 54.64 54.95 74.77 71.78 71.02 68.92 72.51 64.72 74.48 

disr 75.08 62.60 81.67 75.38 53.60 63.83 80.65 52.69 59.60 62.33 75.21 74.61 72.96 69.84 75.66 63.86 76.57 

cmim 74.15 61.24 82.90 73.89 56.90 63.52 84.82 52.10 54.19 62.91 73.89 75.82 75.09 77.04 73.10 65.14 76.57 

cife 71.87 59.78 79.75 63.09 55.41 55.11 79.85 49.43 55.10 52.81 72.98 66.37 68.78 62.92 60.65 61.71 68.20 

icap 71.79 60.50 81.85 70.74 53.28 65.20 83.34 49.53 54.07 52.70 77.95 76.01 71.77 75.53 75.08 62.88 79.41 

condred 69.06 59.28 80.47 60.65 51.18 57.35 80.17 50.29 54.65 54.36 73.11 72.06 66.81 65.77 59.16 64.40 77.02 

relief 85.26 68.02 60.52 78.40 66.22 75.52 86.20 59.18 54.95 64.86 69.65 64.84 74.48 90.85 90.09 75.69 77.77 
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jmi 72.22 59.92 72.52 63.81 62.49 64.43 71.31 52.42 54.02 57.36 74.02 70.69 73.58 70.88 75.38 65.76 79.89 

disr 76.29 62.61 72.35 70.26 61.25 68.04 69.68 52.39 57.05 62.61 73.40 73.72 72.68 72.07 77.16 66.99 79.89 

cmim 74.15 62.47 72.53 61.81 62.61 66.33 79.58 52.86 55.70 63.50 75.99 72.67 75.97 76.58 81.07 67.27 80.77 

cife 67.86 60.52 79.57 56.05 59.90 59.88 73.72 53.74 50.17 55.97 69.81 68.77 66.20 69.23 65.92 60.95 66.55 

icap 71.31 62.15 71.81 59.31 61.89 65.19 78.96 54.03 56.34 57.09 74.03 72.52 75.84 77.32 80.91 65.92 83.18 

condred 68.45 58.84 71.29 62.31 57.65 58.70 68.76 52.70 53.49 54.98 71.17 67.14 63.06 67.74 62.31 66.33 77.46 
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relief 83.15 66.70 56.89 70.59 65.05 80.20 82.14 54.03 52.25 67.71 65.45 64.38 75.38 85.28 80.62 78.99 77.34 
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jmi 80.01 67.72 74.62 77.78 53.76 63.05 76.27 43.36 45.17 46.07 77.49 71.87 74.40 77.17 77.81 70.86 77.47 

disr 79.12 72.21 73.07 75.39 55.10 67.13 74.74 44.31 54.80 55.20 78.80 79.73 71.49 76.88 81.20 70.27 75.06 

cmim 77.91 65.77 73.99 75.55 58.11 65.72 83.48 45.94 49.68 54.27 78.97 76.87 73.13 79.58 80.63 72.08 78.67 
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condred 78.80 66.22 75.80 64.53 52.27 62.00 74.89 42.02 45.17 44.80 74.30 71.47 73.73 73.29 67.85 70.26 78.21 

relief 89.01 73.58 58.71 80.94 75.40 80.37 87.10 51.94 51.51 68.63 70.26 64.40 82.29 95.64 94.45 79.17 74.91 

S
V

M
 

jmi 79.42 71.48 69.38 77.79 58.45 66.20 64.42 43.26 48.01 49.70 73.25 69.35 80.21 76.27 79.45 70.41 76.58 

disr 78.68 75.83 65.32 76.72 58.28 65.93 68.93 43.55 48.02 48.20 73.72 72.07 76.57 77.04 81.81 67.43 78.97 

cmim 78.66 70.86 67.27 75.84 60.22 64.55 82.12 44.44 48.35 48.92 73.00 69.63 78.81 81.39 82.42 69.37 74.45 

cife 71.89 70.88 74.31 62.18 55.55 64.23 65.30 43.72 46.56 49.52 72.22 69.38 72.21 69.99 67.44 60.38 59.31 

icap 75.83 74.17 69.85 77.93 56.45 65.76 81.53 43.25 48.36 50.01 74.21 69.54 78.68 81.82 81.06 63.51 77.02 

condred 76.88 71.32 66.10 65.60 56.91 64.56 64.41 43.38 44.45 47.92 70.12 69.24 76.13 72.69 69.35 68.61 74.31 

relief 76.09 62.35 58.86 62.34 50.00 56.61 80.03 50.90 49.86 50.58 61.38 49.83 75.24 92.95 89.92 81.11 63.07 

R
F

 

jmi 81.52 69.98 87.83 82.13 68.37 71.04 87.97 55.25 63.50 61.43 81.38 80.63 79.01 78.83 81.99 74.31 83.19 

disr 82.30 71.91 86.63 82.58 66.84 73.73 88.74 58.54 66.05 70.41 80.14 83.03 80.17 77.79 79.72 73.59 82.58 

cmim 82.25 70.87 87.53 81.97 66.97 72.48 91.14 58.56 61.40 69.94 82.29 81.67 79.57 83.94 84.23 74.63 87.82 

cife 80.00 68.63 86.91 71.32 63.81 66.02 86.31 55.86 59.46 61.24 78.53 75.97 77.33 69.97 71.04 72.83 78.38 

icap 81.68 72.67 88.15 80.33 64.43 73.30 91.15 58.40 63.06 60.65 82.00 81.56 80.18 81.08 81.98 70.88 89.64 

condred 77.02 69.52 86.93 72.35 62.46 67.39 87.52 57.06 62.03 64.12 80.47 79.74 74.03 71.78 69.68 72.36 85.27 

relief 92.01 75.09 69.99 84.68 75.55 86.07 89.66 64.69 60.08 71.03 75.51 72.51 83.93 95.80 95.79 83.50 83.48 
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4.2.1 Acoustic Feature Analysis 

 The intra-acoustic features include the analysis of each acoustic feature 

independently. The main goal of this analysis is to show the effectiveness of the sub 

acoustic feature in classifying the severity levels of dysarthric speakers.  

4.2.1.1 Intra feature analysis  

(a) Prosodic acoustic features 

Table 4.2 shows the ranking score obtained from the classification accuracy in Table 

4.1. The ranking score varies from 1 to 7 based on the highest classification accuracy of 

the number of sub acoustic features used in this experiment. The calculated average 

ranking score is shown at the end of Table 4.2.  

Figure 4.1 shows the graphic chart for the average ranking score for the sub acoustic 

features of the prosodic acoustic features. As seen from Table 4.2 and Figure 4.1, the best 

classification performance for the severity level of dysarthric speakers is the audspec 

(Loudness) prosodic acoustic features, with the lowest average ranking score of 2.24. The 

results listed in Table 4.2 showed that the combination of the prosodic acoustic features 

has the second-highest score with 2.26 average ranking score. The F0Final ranked third 

with an average ranking score of 3.38. 
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Table 4.2: Average ranking score for Prosodic Acoustic Features 
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jmi 1 3 5 2 7 4 6 

disr 1 3 5 2 7 4 6 

cmim 2 4 5 3 7 6 1 

cife 2 3 1 6 7 4 5 

icap 3 4 6 2 7 5 1 

condred 1 2 6 5 7 3 4 

relief 2 6 7 3 5 4 1 

C
A

R
T

 

jmi 4 6 1 3 7 5 2 

disr 4 6 1 3 7 5 2 

cmim 3 6 2 4 7 5 1 

cife 3 5 2 4 6 7 1 

icap 3 6 2 4 7 5 1 

condred 3 5 1 4 7 6 2 

relief 2 5 7 3 6 4 1 

N
B

 

jmi 2 7 1 5 6 4 3 

disr 1 6 2 3 7 5 4 

cmim 2 6 3 7 5 4 1 

cife 3 4 1 7 5 6 2 

icap 3 5 2 7 6 4 1 

condred 3 5 1 4 7 6 2 

relief 1 5 7 4 6 3 2 

A
N

N
 

jmi 1 5 4 2 7 6 3 

disr 1 5 4 2 7 6 3 

cmim 2 5 4 3 7 6 1 

cife 3 4 2 5 7 6 1 

icap 3 5 4 2 7 6 1 

condred 1 4 2 5 7 6 3 

relief 1 6 7 3 5 4 2 

S
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jmi 1 3 4 2 7 5 6 

disr 1 3 6 2 7 5 4 

cmim 2 4 5 3 7 6 1 

cife 2 3 1 6 7 5 4 

icap 3 4 5 2 7 6 1 

condred 1 2 3 4 7 5 6 

relief 2 3 5 4 7 6 1 
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Ranking 
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Figure 4.1: The graph chart for Average ranking Score for Prosodic Acoustic 

Features 
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(b) Voice quality acoustic features 

Table 4.3 shows the ranking score obtained from the classification accuracy in Table 

4.1. The ranking score varies from 1 to 5 based on the highest classification accuracy of 

the voice quality sub acoustic features. The calculated average ranking score is shown at 

the end of Table 4.3.  

Figure 4.2 shows the graphic chart for the average ranking score of the voice quality 

sub acoustic features. As shown in Table 4.3 and Figure 4.2, the best classification 

performance for the severity level of dysarthric speakers is the logHNR voice quality 

acoustic features with the lowest average ranking score of 1.19. The results listed in Table 

4.3 showed that the combination of the voice quality acoustic features can be a competitor 

to sub voice quality acoustic features as it is ranked second, followed by lorHNR with 

2.00 average ranking score. The shimmerLocal ranked third with an average ranking 

score of 3.02. The average ranking score is computed as the average of the ranking score 

obtained based on the classification accuracy for each classification algorithm and feature 

selection method used in this experiment. 
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Table 4.3: Average Ranking Score for Voice Quality Acoustic Features 
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Figure 4.2: The graph chart for Average Ranking Score for Voice Quality Acoustic 

Features 
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(c) Spectral acoustic features 

There are two spectral acoustic features included in this section as well as the 

combination of two acoustic features. The performance of the spectral acoustic features 

are reported in Table 4.4 and Figure 4.3. 

Table 4.4 shows the ranking scores obtained from the classification accuracy for the 

spectral acoustic features depicted in Table 4.1.  

Table 4.4 and Figure 4.3 depict the best classification performance for the severity 

level of dysarthric speakers, where the combination of all spectral acoustic features with 

the lowest average ranking score of 1.83. The results listed in Table 4.4 show that the 

PCM-other spectral features of the spectral acoustic features is ranked second, followed 

by the combination of spectral acoustic features with 1.98 average ranking score. The 

audspecRasta-band 1-26 was third with an average ranking score of 2.19.   

Table 4.4: Average Ranking Score for Spectral Acoustic Features 
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Figure 4.3: The graphic chart for Average Ranking Score for Spectral Acoustic 

Features 

4.2.1.2 The acoustic feature analysis 

This part of the analysis is on the performance of four acoustic features, which are 

prosodic, voice quality, spectral, and cepstral. In each feature, the combination of sub-

features is selected to be used for comparison in this experiment.  

The best performance to classify the severity level of dysarthric speakers is achieved 

by the prosodic acoustic features, as shown in Table 4.5, with the average ranking score 

of 2.21. The ranking score shown in Table 4.5 is calculated from the classification 

accuracy depicted in Table 4.1. Figure 4.4 depicts the graph chart for the average ranking 

score of four acoustic features as well as the combination of these acoustic features.  

Table 4.5 shows that the combination of the acoustic features have significant 

achievement as it is placed second, followed by the prosodic acoustic features, with an 

average ranking score of 2.40. The third-ranking feature is the spectral acoustic features 

with an average ranking score of 2.50.  
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Comparing these results showed in Table 4.5 with the results showed in Kim et al. 

(2015) which used the prosodic and voice quality features for binary classification of dysarthric 

speakers. The features dimensions used were 6 and 5 features for prosodic and voice quality 

acoustic features respectively. 

The binary classification of intelligibility based on prosodic acoustic features is 71. 3% and 

75.5% respectively for unweighted and weighted average recall using the SVM classification 

algorithms. The LDA classification algorithm obtained 65.3% for unweighted and 69.1%  for 

weighted average recall. The results from this study as listed in Table 4.1 above shows that the 

prosodic acoustic features obtained 72.39 % and 72.55% average classification accuracy 

respectively using the SVM and LDA classification algorithms.   

For voice quality features, the binary classification of intelligibility is 66.3% and 66.0% 

respectively for unweighted and weighted average recall using the SVM classification algorithms. 

The LDA classification algorithms obtained 68.9% for unweighted and 71.7% for weighted 

average recall. The results from this study as listed in Table 4.1 above show that the voice quality 

acoustic features obtained 67.39 % and 67.86% average classification accuracy using the SVM 

and LDA classification algorithms respectively. 

Table 4.5: Average Ranking Score for Acoustic Features 
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Figure 4.4: Graphic chart for all Acoustic Features Groups 

4.2.1.3 Overall acoustic features 

The overall acoustic features are listed together to show the comparison of all the 

acoustic features in classifying the severity level of dysarthric speakers. The comparison 

includes all of the acoustic features used in this experiment. The sub-features, as well as 

the combination of the sub-features, are also included. The main objective of this analysis 

is to report the best performance of the acoustic features for classifying the severity level 

of dysarthric speakers. The total number of acoustic features used is 17, which includes 

all features that were discussed in the previous section of this chapter. 

The best performance of the overall acoustic features used to classify the severity level 

of dysarthric speakers is the combination of prosodic acoustic features as it obtained the 

lowest average ranking score among the overall features as shown in Table 4.6. Figure 

4.5 also depicts the graph chart for the average ranking score for all the acoustic features 

which shows that the lowest ranking score is obtained by the combination of prosodic 

acoustic features with an average ranking score of 4.48. The second-best performance 
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was obtained by the sub-features of prosodic acoustic features, named the 

audspec(Loudness) with an average ranking score of 4.83. The loudness acoustic feature 

also considers as one of the acoustic features used in the perceptual (subjective) studies 

to identify the quality of the voice in dysarthric speakers (Hartelius, Runmarker, & 

Andersen, 2000). Both the combination of all the features of spectral and the overall 

combination of all the features obtained an average score of 4.95, which ranks them as 

the third-highest performance for classifying the severity level of dysarthric speakers.  

As such, the prosodic, voice quality, spectral and cepstral acoustic features have a 

significant impact on the classification of dysarthric speakers’ severity level. The 

combination of all the acoustic features achieved a high average ranking score in 

classifying the severity level of acoustic features. For example, the combination of 

acoustic features achieved the third-highest average ranking score in all the previous 

results as well as in the overall acoustic feature analysis where it achieved the first and 

third highest performance among all of the acoustic features used, as can be seen in Table 

4.6 and Figure 4.5.  

Paja & Falk (2012) also reported that the combination of the features obtained the highest 

performance to classifying the spastic severity for dysarthric speakers. The acoustic features 

selection algorithms used by Paja & Falk (2012) has only 9 acoustic features to use for three 

classification algorithms, while this study used 13 acoustic features among overall of 5,673 

acoustic features  (Based on the most related acoustic features).  
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Table 4.6: Average Ranking Score of overall features 
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Figure 4.5: The graph chart for Average Ranking Score of overall features
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4.2.2 Classification Algorithms Analysis  

In the previous sections, the acoustic features are analyzed to identify the best classifier 

to classify the severity level of dysarthric speakers. In this section, the classification 

algorithms will be analyzed to report the best classification algorithms for classifying the 

severity level of the dysarthric speakers. 

There are six classification algorithms used to report the best performance to classify 

the severity level of the dysarthric speakers. The classification algorithms used are LDA, 

CART, NB, ANN, SVM, and RF Algorithms.  

Table 4.7 reports the ranking score obtained from the classification accuracy depicted 

in Table 4.1. The number of ranking varies from 1 to 42 score according to the number 

of classification algorithms. There are six classification algorithms and seven features 

selection method for each classification algorithms, totaling to 42 ranking score (six 

classification algorithms x seven features selection methods = 42 ranking score). 

The average ranking score depicted in Table 4.7 and Figure 4.6 shows that the Random 

Forest (RF) algorithms with the “relief” features selection method obtain the highest 

performance for classifying the severity level of dysarthric speakers with the average 

ranking score of 4.88. The second and third highest performance for classifying the 

severity level for dysarthric speakers is obtained by RF algorithms with the “cmim” and 

“icap” features selection algorithms, with an average range of scores of 5.29 and 6.41 

respectively. It can also be seen from Figure 4.6 that the RF algorithms obtained the 

highest performance for classifying the severity level for dysarthric speakers. The 

Random Forest algorithms are used to identify the most relevant features for the 

pathophysiology of parkinsonian dysarthria, which also obtains the highest classification 

accuracy to classify the Parkinson's disease from healthy speakers (Rueda et al., 2019). 
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Comparing with the results showed in Kim et al. (2015) pronunciation and voice quality for 

binary classification of dysarthric speakers was varied based on the acoustic features. 

The binary classification of intelligibility is 73.5% for unweighted and 72.8% for weighted 

average recall for the SVM classification which was the best performance for the classifier. The 

results from this study as listed in Table 4.1 above shows that the SVM classification algorithms 

obtained 71.96% average classification accuracy. The results in this study were computed as 

an average classification accuracy rather than the best recognition accuracy as there are 

seven feature selection algorithms used for each classification algorithms with the highest 

classification accuracy was 78.97%. The results showed that the RF algorithms obtained 

high performance as described previously. 

Narendra & Alku (2019) used almost the same acoustic features used in this study including 

the glottal features to classifying dysarthric and non-impaired speakers. The classification 

accuracy was 94.29% using SVM classification algorithms and 89.64% classification 

accuracy using RF classification accuracy when comparing the classification accuracy 

obtained from Narendra & Alku (2019) and this study respectively. The difference between 

the current study and (Narendra & Alku, 2019), is that the current research classifies the 

dysarthric speech and non-impaired speech categorized into word, non-word, and 

sentences. 
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Table 4.7: Average Ranking Score for all classification algorithms 
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Figure 4.6: The graph chart for Average Ranking Score of all classification algorithms
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4.2.3 Statistical Analysis  

In this research, the two way ANOVA statistical analysis is used to determine if there 

is an interaction between the two independent variables on the dependent variable. Thus, 

it used to compare the means differences between groups that have been split into two 

independent variables (called factors). The two independents variables in this study are 

the classification algorithms and the acoustic features, while the dependent variable is the 

classification accuracy. 

Figure 4.7 shows the two way ANOVA analysis obtained based on the classification 

accuracy listed in Table 4.1. The focus rows in Figure 4.7 are the "CA stands for 

Classification algorithms", "AF stands for Acoustic Features" and “CA*AF”. These rows 

inform us whether our independent variables (the "Classification Algorithms CA" and 

"Acoustic Features AF" rows) and their interaction (the "CA*AF" row) have a statistically 

significant effect on the dependent variable "classification accuracy ". As can see from 

the "Sig." column of the "CA*AF" row that there is a statistically significant interaction 

between classification algorithms CA and acoustic features AF at the p = .016 level (p < 

0.5). Furthermore, both classification algorithms (CA) and acoustic features (AF) have 

statistically significant as the p=0.00 (p < 0.001).  
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4.3 Performance of Automatic Dysarthric Speech Recognition (ADSR) 

The results are analyzed in several sections, starting with the effectiveness of using a 

controlled speech corpus to build the automatic speech recognition engine for dysarthric 

speech. The adaptation techniques that help improve the performance of the ADSR will 

be discussed in more detail. The overall average improvement of using the adaptation 

techniques are compared with the results when no adaptation techniques are used.  

4.3.1 The Effectiveness of Using Controlled Speech Corpus for Dysarthric Speech 

Recognition 

Table 4.8 shows the results of increasing data size to the word error rate of the 

dysarthric speakers. It was found that as the corpus size increases, the word error rate 

decreases for the dysarthric speakers. Figure 4.8 shows the graphic chart for the results 

reported in Table 4.8.  For example, the word error rate for the mild severity level has 

decreased from 37.27% when using WSJ1Model to only 34.46%, and 34.01% when using 

Tests of Between-Subjects Effects 

Dependent Variable:   Classification Accuracy   

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected 

Model 

64909.419a 101 642.668 18.052 .000 .749 

Intercept 3203396.441 1 3203396.441 89978.657 .000 .993 

CA 5888.285 5 1177.657 33.079 .000 .213 

AF 53037.336 16 3314.833 93.109 .000 .709 

CA * AF 3995.090 80 49.939 1.403 .016 .155 

Error 21788.263 612 35.602    

Total 3496597.528 714     

Corrected Total 86697.681 713     

a. R Squared = .749 (Adjusted R Squared = .707) 

 

Figure 4.7 : Statistical significance of the two-way ANOVA   
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the WSJ1TimitModel and WSJ1TimitTorgoModel respectively. This improvement in 

recognition accuracy is also applied to a moderate severity level.  

Table 4.8: The Word Error Rate (WER) of using increased data for building the 

ASR system for dysarthric speakers 

Acoustic Model Size of data 
Mild 

(WER%) 

Moderate 

(WER%) 

Severe 

(WER%) 

WSJ1Model 
77800 utterances (~73 

hours of speech) 
37.24 43.99 45.12 

WSJ1TimitModel 

82420 utterances 

(~76.14 hours of 

speech) 

34.46 44.89 45.04 

WSJ1TimitTorgoModel 

86420 utterances 

(~100.14 hours of 

speech) 

34.01 40.24 45.27 

 

 

Figure 4.8: Graphic chart of WER of using increasing data for building the 

ASR system for dysarthric speakers 
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Table 4.9 shows the overall results of using more corpus to the Word Error Rate 

(WER) of the dysarthric speakers. It shows from the results depicted in Table 4.9 that the 

WER dropped from 42.12% when using WSJ1Model (less sample for training the 

acoustic model), and 41.47% when using the MSJ1TimitModel, to 39.84% when using 

the WSJ1TimitTorgoModel, with a total improvement of recognition accuracy of 2.28%. 

Figure 4.9 shows the graphic chart for the results showed in Table 4.9, which clearly 

shows the word error rate obtained based on the acoustic model. In general, the results 

showed that less WER is achieved by using more data to train the acoustic model 

(meaning: more recognition accuracy achieved). Sriranjani et al. (2015) reported that the 

WER obtained using the Wall Street Journal (WSJ0) corpus and TI digits for control subjects was 

almost 36% when testing with Nemours corpus. The acoustic model enriched with speech data 

from the normal speakers and the adaptation data were used to improve the recognition accuracy 

of dysarthric speech (Al-Qatab et al., 2014; Mustafa et al., 2014) 

Table 4.9: The overall WER of increasing data size for building the ASR system 

for dysarthric speakers 

Acoustic Model Size of data WER (%) 

WSJ1Model 
77800 utterances (~73 hours 

of speech) 
42.12 

WSJ1TimitModel 
82420 utterances (~76.14 

hours of speech) 
41.47 

WSJ1TimitTorgoModel 
86420 utterances (~100.14 

hours of speech) 
39.84 

 

 

Univ
ers

iti 
Mala

ya



  

142 

 

 

Figure 4.9:  Graphic chart of overall WER for increasing data size for building 

the ASR system for dysarthric speakers 

 

4.3.2 The Effectiveness of Using the Adaptation Data for Dysarthric Speech 
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This section contains subsections that describe the results of the effectiveness of using 

the adaptation techniques with different severity levels as compared to the results 

obtained from the previous section with no adaptation techniques used.  

4.3.2.1 The results using the MLLR adaptation techniques 

Figure 4.10 illustrates the results in Table 4.10 as a graphic chart. The results reported 

in Table 4.10 show that the performance of the ADSR improved when using the MLLR 

adaptation techniques where WER dropped from 39.84% to 25.04% on overall severity 

level with a total of 14.80% of improvement of recognition accuracy. Table 4.10 reported 

that the more severe the severity level, the more the WER obtained as can be seen from 

WER of 16.28%, 26.29%, and 32.55%  for mild, moderate, and severe severity level 

respectively. 

Table 4.10: The WER for the dysarthric speech using adaptation technique 

MLLR.  

Acoustic  

Model 

 

Adaptation 

Technique 

Adaptation 

Data 

Mild 

(WER%) 

Moderate 

(WER%) 

Severe 

(WER%) 

All 

(WER%) 

W
S

J
1
T

im
it

T
o
rg

o

M
o
d

el
 

MLLR 

NA 34.01 40.24 45.27 39.84 

A 16.28 26.29 32.55 25.04 

NA is no adaptation used and A is adaptation used 
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Figure 4.10: Graphic chart of WER for using the MLLR adaptation techniques 
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Table 4.11: The WER for the dysarthric speech using the MAP adaptation 

technique 
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NA 34.01 40.24 45.27 39.84 

A 14.55 23.60 31.92 23.36 

NA is no adaptation used and A is adaptation used 

 

 

Figure 4.11: Graphic chart of WER for using the MAP adaptation technique 
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18.48%, with a total improvement of 21.36% of recognition accuracy. Figure 4.12 

illustrates the graph chart for the results in Table 4.12 of WER before and after using the 

MLLR+MAP adaptation techniques.  

 

Table 4.12: The WER for the dysarthric speech for the adaptation technique 

MLLR+MAP 
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M
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M
L

L
R

+
M

A
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NA 34.01 40.24 45.27 39.84 

A 11.46 
19.17 24.80 18.48 

NA is no adaptation used and A is adaptation used 
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Figure 4.12: Graphic chart of WER for using the MLLR+MAP adaptation 

techniques 

 

4.3.2.4 The results using the MAP+MLLR adaptation techniques 

Table 4.13 shows the results of the combination of MAP+MLLR adaptation 

techniques as well as a result when adaptation is not performed. Figure 4.13 illustrates 

the results in Table 4.13 in the form of a graphic chart. The results reported in Table 4.13 

show that the performance of the ADSR improved when using the MAP+MLLR 

adaptation techniques where WER dropped from 39.84% to 20.90% on the overall 

severity level with a total of 18.94% in the improvement of recognition accuracy.  
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Table 4.13: The WER for the dysarthric speech obtained using the adaptation 

techniques MAP+MLLR 
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Figure 4.13: Graphic chart of WER using the MAP+MLLR adaptation 

technique 
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experiment. Comparing the WER of the four adaptation techniques showed that the 

MLLR+MAP outperforms the MLLR, MAP, and MAP+MLLR adaptation techniques. 

Figure 4.14 represents the graph chart for the results in Table 4.14 and it can be seen that 

the low WER is achieved by MLLR+MAP adaptation techniques with the WER at 

11.46%, 19.17, and 24.80 for mild, moderate, and severe severity level respectively. 

Figure 4.15 shows the overall WER for the four adaptation techniques where the highest 

performance is achieved by the combination of different adaptation techniques of 

MLLR+MAP.  

In general, the performance of the combination of the MLLR and MAP outperform 

standalone adaptation techniques. One possible explanation is that, as a transformation 

based approach, MLLR has no further improvement at a certain point although there is 

more adaptation data available (Shinoda, 2011). MLLR usually requires the recorded 

speech of a new speaker with the use of the same text or sentences recorded from the 

reference speaker, which is referred to as text-dependent (Digalakis & Neumeyer, 1996). 

On the other hand, MAP is more efficient as compared to the ML estimation technique 

when the data size is small. However, as the size of the data increases, the estimation of 

the parameter for MAP and ML is converging towards an equilibrium point (Kotler & 

Thomas-Stonell, 1997).   
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Table 4.14: The WER for the dysarthric speech recognition obtained using all 

the adaptation techniques used in this experiment 
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Figure 4.14: Graphic chart of WER for using the four adaptation techniques 

based on the severity level 
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Figure 4.15: Graphic chart of overall WER based on using four adaptation 

techniques 

 

4.3.2.6 The overall performance of the ADSR system using the adaptation 

techniques 

The overall improvement of AWER will be described in this section according to the 

severity level of dysarthric speakers and the adaptation techniques used. The average 
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× 100%        (4.1) 

Where AI is the Average Improvement of the performance based on WER, Original 

Value is the WER of the ADSR without adaptation techniques used, and New Value is 

the WER of ADSR when applied with the adaptation techniques.  
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severity level with values varying between 34.66% and 52.35%. The severe severity level 

has the lowest average improvement with values varying from 28.10% to 45.20%. The 

overall average improvement showed that the MLLR+MAP adaptation techniques 

outperform the other adaptation techniques with an average improvement of 53.62%, 

followed by MAP+MLLR with an average improvement of 47.55%. The MLLR and 

MAP adaptation techniques achieved the lowest average improvement among the overall 

average improvement, with an average improvement of 37.15% and 41.37% respectively.  

Figure 4.16 depicts the graph chart for the overall average improvement of the severity 

levels according to the adaptation techniques used in this experiment.  

Table 4.15: The overall average improvement of the ADSR system when using 

the adaptation techniques 

Severity 

Level 

 Adaptation 

Technique 

No Adaptation 

(WER%) 

Use adaptation 

(WER%) 

Average 

Improvement 

WER(%) 

Mild 

MLLR 34.01 16.28 52.12 

MAP 34.01 14.55 57.22 

MLLR + MAP 34.01 11.46 66.32 

MAP + MLLR 34.01 12.98 61.83 

Moderate 

MLLR 40.24 26.29 34.66 

MAP 40.24 23.60 41.34 

MLLR + MAP 40.24 19.17 52.35 

MAP + MLLR 40.24 21.08 47.61 

Severe 

MLLR 45.27 32.55 28.10 

MAP 45.27 31.92 29.48 

MLLR + MAP 45.27 24.80 45.20 

MAP + MLLR 45.27 28.63 36.76 

All 

MLLR 39.84 25.04 37.15 

MAP 39.84 23.36 41.37 

MLLR + MAP 39.84 18.48 53.62 

MAP + MLLR 39.84 20.90 47.55 
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Figure 4.16: Graphic chart of overall improvement of the ADSR system when 

using the adaptation techniques 
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4.4 Comparing with other Related Work 

This section provides a comparison of the current study with the related studies in 

regards to the Automatic Dysarthric Speech Recognition System for dysarthric speech. It 

includes the adaptation techniques used, type of speech, model type, data set used, and 

the word error rate as compared to the other studies. 

Table 4.16 shows that many of the existing works adopted the adaptation techniques 

(Al-Qatab et al., 2014; Mustafa et al., 2014; Sriranjani et al., 2015). In the acoustic model 

type, the two types of acoustic models used are speaker-independent and speaker adaptive 

models. Unimpaired speech is used to enrich the acoustic model and is applied for all 

similar existing works as shown in Table 4.16. The WER of the current study is compared 

with the existing works to determine the effectiveness of the proposed technique. The 

WER of 18.48% by the proposed technique is considerably better than the existing works, 

where the WER can be reduced by as much as 50% (based on WER of 37.48% from (Al-

Qatab et al., 2014)). This study used a large number of speech files to train the acoustic 

model which includes three corpora WSJ1, TIMIT, and TORGO to enrich the acoustic 

model that resulted in better performance of the adaptive model compared with other 

similar works. The results of this study conclude that enriching the acoustic model with 

the speech files from non-impaired speakers affected the recognition accuracy of 

dysarthric speech. Furthermore, the combination of the well-known adaptation techniques 

(MAP and MLLR) for dysarthric speech outperforms the standalone adaptation technique 

(Shinoda, 2011).   
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Table 4.16: Comparison of the current study with related studies of the ADSR 

System 

Study 
Adaptation 

Techniques  

Type 

Of 

Speech 

Acoustic Model 

Type 

Testing 

Data Set 

Recognition 

Accuracy 

WER (%) 

Mustafa et 

al. (2014) 
CMLLR 

C
o
n
ti

n
u
o

u
s 

sp
ee

ch
 

Speaker independent 

and speaker adaptive 

model 

N
E

M
O

U
R

S
 

C
o
rp

u
s 

 

33.95% 

Al-Qatab et 

al (2014) 
MLLR 

C
o
n
ti

n
u
o
u
s 
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ee

ch
 

Speaker Independent 

model 

N
E

M
O

U
R

S
 

C
o
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u
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37.48% 

 

Sriranjani et 

al., (2015) 

feature 

space 

MLLR 

(fMLLR)  C
o
n
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n
u
o
u
s 

sp
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Speaker Independent 

model 

N
E

M
O

U
R
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C
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s 

 

29.83 % 

Present 

Study 
MLLR+ 

MAP 

C
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n
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n
u
o
u
s 

sp
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N
E

M
O

U
R

S
 

C
o
rp

u
s 

 

18.48% 
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Figure 4.17: WER of the current study compared to the related studies 

4.5 Summary 

This chapter reports the results of the two processes of the system, the automatic 

classification of the dysarthric speakers, followed by the automatic dysarthric speech 

recognition system. 

The analysis of the results for the first part, which is the classification of the dysarthric 

speakers based on severity level (mild, moderate, and severe) was reported in both the 

acoustic features level and classification algorithms level. By combining all the prosodic 

acoustic features, acoustic features’ performance becomes the best, followed by the 

prosodic audispec(loudness) feature. In total, the combination of the feature for acoustic 

features had a competitive highest average accuracy. Furthermore, the Random Forest 

(RF) classification algorithms with the relief feature selection method have the highest 

average accuracy rate in classifying the severity level for dysarthric speakers. 
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The results of the dysarthric automatic speech recognition report that uses more data 

from non-impaired speakers are to enrich the acoustic model and enhance its 

performance. On the other hand, the performance of the dysarthric automatic speech 

recognition improved as the adaptation data based on the severity level is applied to the 

ADSR acoustic model. The average improvement in the average WER for the ADSR 

model shows that the adaptation data using the MLLR followed by the MAP 

(MLLR+MAP) have the highest average improvement for each severity level of 

dysarthric speakers. 

Therefore, the automatic classification of severity level for dysarthric speakers is used 

in identifying the right adaptation model for each severity level of dysarthric speakers in 

the dysarthric automatic speech recognition systems. The combination of acoustic 

features with the Random Forest (RF) classification algorithms as well as using the 

adaptation techniques MLLR+MAP helps the system obtain the highest performance. 
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CHAPTER 5: CONCLUSION AND FUTURE WORKS 

5.1 Overview 

This research’s main objective is to propose an automatic classification of dysarthric 

speech, using severity level based adaptation for automatic speech recognition of 

dysarthric speech. This chapter summarizes the work that was carried out in this research. 

The research objectives of this research listed in chapter one are revisited, research 

contributions, some limitations of this research, and some suggestions for future works 

are discussed in the following sections. 

5.2 Fulfilment of Research Objectives 

This section discusses the accomplishments of the research objectives defined for this 

research. 

5.2.1 Research Objective 1 

The first objective is to identify the suitable classification algorithms and acoustic 

features of dysarthria for automatic dysarthric severity level classification. This objective 

is achieved with the analysis of the findings in section 2.2 of chapter 2, reported in Table 

2.4 as well as in chapter 2, sections 2.4 and 2.5 (subsection 2.5.1 and 2.5.2). 

The findings describe the classification algorithms applied, the acoustic features, the 

features selection methods, and the performance of the system for each research. Some 

of the classification algorithms used are LDA, NB, Linear regression analysis, Gaussian 

mixture model, and ANN. The numerous features used in the classification algorithms 

are listed in Table 2.4 of chapter 2, which includes features like F0, MFCC, duration, 

prosody features, voice quality, and HNR features. For features selection, there are 5 out 

of 15 researches listed in Table 2.4. The reason for not using the feature selection methods 

is that this research applied a small number of features for classification algorithms. 
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The selection of the speech corpus, acoustic feature selection as well as the 

classification algorithms used to apply the intra-severity classification has been described 

in chapter 3 sections 3.5.1.1, 3.5.1.4, and 3.5.1.5 respectively.  

The four research questions to be answered by this objective are: 

RQ1: What is the importance of dysarthric speech severity level classification? 

(Kim, Kent, & Weismer, 2011) stated that the classification accuracy using severity 

level and disease type outperforms the classification accuracy using the severity types. 

Also, the correlation between intelligibility and severity level of dysarthric speakers as 

reported in (Kayasith & Theeramunkong, 2009) encouraged the researcher to classify the 

dysarthric speakers based on severity levels. 

RQ2: What are the acoustic features that affect the dysarthric speech severity level 

classification? 

Table 2.4 summarizes the acoustic features used by researchers which shows that the 

acoustic features are used in the classification of dysarthric speakers. For example, the 

prosodic acoustic features and voice quality acoustic features, and the combination of 

both features were used by (Kim, Kumar, Tsiartas, Li, & Narayanan, 2015) for automatic 

intelligibility classification for dysarthric speakers and (Paja & Falk, 2012) for spastic 

severity disorder classification. 

RQ3: What is the statistical function that can be used to determine the dimensional 

of features vector for each acoustic feature? 

The statistical function is used by researchers to make the dimensional of the feature 

vector for acoustic features as in (Schlenck, Bettrich, & Willmes, 1993) is the prosodic 
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acoustic feature to distinguish between normal and dysarthric speakers. In (Eyben, 2015), 

large statistical features were extracted where this research has adopted several of them 

as listed in Table 2.4, chapter 2.  

RQ4: What is the effect of the reduction of the statistical functional per acoustic 

feature? 

A large number of statistical features extracted from each acoustic features required us 

to search for a method to reduce this large number, which can be achieved by using the 

feature selection algorithms that has the ability to rank the feature based on their relevance 

to classification type used in the training set (Kuncheva, 2007).  Besides that, this research 

used the logarithmic base to total the number of features for better computation cost 

(Khoshgoftaar, Golawala, & Van Hulse, 2007; Samsudin, Shafri, Hamedianfar, & 

Mansor, 2015) described in section 3.5.1.3 of chapter 3. 

5.2.2 Research Objective 2 

The second objective is to identify the suitable adaptation techniques in relation to data 

size and level of severity of the dysarthric speech towards improvement in recognition 

accuracy of dysarthric speech recognition. This objective is achieved with the analysis of 

findings in section 2.3 of chapter 2 and reported in Table 2.5 as well as in chapter 2 section 

2.4 and section 2.5.3.  The findings described the automatic dysarthric speech recognition 

systems, and the adaptation techniques used. The combination of the different adaptation 

techniques were used in the previous researches like in (Dhanalakshmi & Vijayalakshmi, 

2015), which are the CMLLR+MAP adaptation techniques for improving the 

intelligibility of dysarthric speakers as well as using the feature space MLLR adaptation 

as in (Bhat, Vachhani, & Kopparapu, 2016) to improve the recognition accuracy for 
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dysarthric speakers which provided an improvement of speaker-adapted systems of 

55.81% and 63.67%  for GMM-HMM-TA and DNN-HMM-TA respectively. 

The used of enriching acoustic models to apply the adaptation techniques and the 

amount of adaptation data set used to improve the automatic dysarthric speech recognition 

system has been described in chapter 2 section 2.4, section 2.5.3 and chapter 3 section 

3.5.2.4.   

RQ1: What are the best adaptation techniques that obtain the highest recognition 

accuracy? 

Bhat et al., (2016) and Sriranjani, Ramasubba Reddy, & Umesh (2015) reported that 

using the feature space MLLR based on speaker adaptive training improves the baseline 

acoustic model for dysarthric speakers which reaches up to 50% over the recognition of 

baseline acoustic model. 

RQ2: What is the effect on ADSR’s recognition accuracy by increasing the amount 

of adaptation data? 

It can be seen from the studies that the standalone adaptation techniques have a 

limitation on improving the recognition accuracy of the ASR system. For example, in a 

transformation based approach, MLLR has no improvement up to a certain point, 

although more adaptation data is available (Shinoda, 2011). MLLR usually requires the 

recording of sentences for a new speaker with the same text recorded for the reference 

speakers, which is referred to as text-dependent (Digalakis & Neumeyer, 1996).  

However, for adaptation of the MAP, the size of the acoustic model can be adjusted to 

the data adaptation amount, with an update of each Gaussian component of the system.  

Moreover, it can function in a wide variability of pronunciation, like differences of 
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phonemes pronunciation standards, dialects, and foreign accents, since each phoneme is 

processed separately. One disadvantage of MAP is the poor estimation of the parameter 

of the correct acoustic transformation when there is limited or unsupervised adaptation 

data (Gales, 2001). MAP needs a large amount of adaptation data to fully update all the 

phonemes separately (Goronzy & Kompe, 1999). 

5.2.3 Research Objective 3 

The third objective is to design and develop the intra-severity automatic dysarthric 

speech recognition system using the identified classification and adaptation techniques in 

objectives 1 and 2. This objective is achieved by using a sequence of experiments as 

discussed in sections 3.5.1 and 3.5.2 of chapter 3. In Figure 3.2, the overall system 

development is depicted. The details of the first stage of the proposed system, which is 

the classification part, is described in detail in section 3.5.1. The acoustic features, 

statistical functions, features selection, and classification algorithms are described in 

detail in section 3.5.1. Section 3.5.2 describes the acoustic model and the adaptation 

techniques in detail. The experimental design and settings for both parts are shown in 

chapter 3. 

RQ1: What are the best classifier and adaptation techniques that can be used in 

tandem, to design and implement the proposed system for the improvement of the 

recognition accuracy of the automatic dysarthric speech recognition system 

(ADSR)? 

The results analysis in Table 4.6 showed that the combination of prosodic acoustic 

features have the best performance as it has the lowest average ranking score of 4.48, 

followed by loudness plus prosodic acoustic features with an average ranking score of 

4.83. The combination of all spectral acoustic features and the combination of all acoustic 
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features have the same average ranking score of 4.95.  Also, the average ranking score 

depicted in Table 4.7 showed that the Random Forest (RF) algorithms with the “relief” 

feature selection method obtained the highest performance for classifying the severity 

level of dysarthric speakers with an average ranking score of 4.88. The second and third 

highest performance for classifying the severity level for dysarthric speakers were 

obtained by the RF algorithms with the “cmim” and “icap” features selection algorithms 

with an average ranking score of 5.29 and 6.41 respectively. 

For the automatic dysarthric speech recognition (ADSR), the average improvement of 

the WER showed that the MLLR+MAP has the best performance due to its highest 

average improvement for each severity level of 66.32%, 52.35%, and 45.20% for mild, 

moderate, and severe severity level respectively, as well as the combination of all severity 

with an average improvement of 53.62%, as shown in Table 4.15.   

5.2.4 Research Objective 4 

The fourth objective is to evaluate the performance of the developed intra-severity 

automatic dysarthric speech recognition system by comparing it with the baseline 

acoustic model. This objective is achieved by applying the measurement techniques on 

each part of the system and by comparing the results with other related work.  

RQ1: What are the measurements used to evaluate the classification accuracy and 

recognition accuracy of the severity level automatic dysarthric speech recognition 

system? 

The measurements used in this research varied based on the part of the system. In the 

classification part, the K-Fold with (K=10) has been used for recognition accuracy of the 

severity level of dysarthric speech, depicted in Table 4.1 of chapter 4. The average 
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ranking score was obtained and reported in detail for a different analysis of the results as 

described in section 4.2.   

For the ADSR, the Word Error Rate (WER) is used as the main measurement for the 

recognition accuracy. For evaluation of the system in comparison to baseline ADSR 

system, and to report the adaptation techniques’ best performance, the average 

improvement of WER of the ADSR system was used, which showed the percentage 

improvement of each adaptation techniques compared to the percentage when no 

adaptation techniques were applied.     

RQ2: How are the results of the proposed system when compared to other baseline 

methods in terms of classification accuracy, recognition accuracy and the 

combination of both? 

The proposed system is considered to be an effective solution as it obtained considerable 

performance among all the related studies. Section 4.4 showed a comparison of this study 

with related existing studies with regards to the two parts of the proposed system. It can 

be seen from the comparison that the proposed system performed well when compared 

with other related studies.   

5.3 Research Contributions 

The current research contributes to the field of ADSR by improving its recognition 

accuracy by applying the combined adaptation techniques based on severity level, as well 

as proposing the automatic classification of dysarthric speech based on severity level, 

which can be used to automatically assign the severity level to the corresponding adapting 

severity level model in the ADSR system. The contribution of this study can be listed as 

the following: 
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 Propose a design for intra-severity classification and adaptation techniques to 

help improve the recognition accuracy of the ADSR system for dysarthric 

speech. 

 The proposed method helps to reduce the computation cost to the development 

of the ADSR system which mostly used in assistive technology to enhance 

dysarthric speaker’s communication skills. The generalization of the severity 

level classification and adaptation proposed to reduce both the dimension of 

classification and the number of adaptive acoustic models of the ADSR system.  

 Investigate a large acoustic feature space (around 6,000 features) and its 

affection on the classification of the severity level of dysarthric speech. 

Furthermore, ranking of the acoustic feature using the feature selection 

methods which help to identify the most suitable acoustic features for severity 

level classification. 

 Introduce an automatic classification for the severity level of dysarthric speech 

which helps to the automatic election of the adaptive acoustic model for the 

ADSR system.  

 The proposed method helps the ADSR system to use the available unimpaired 

corpus to develop the acoustic speech rather than used impaired corpus which 

is very limited. 

5.4 Research Limitation 

 This research focuses on the severity level of the dysarthric speech, which is 

mild, moderate, and severe, for both classification and adaptation techniques 

of the automatic dysarthric speech recognition system. In both the 

classification and adaptation for dysarthric speakers, the training and testing 
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stage the NEMOURS dysarthric speech corpus was used for. As for the results, 

it may be different when using other databases.   

 The difficulties in obtaining data from dysarthric speakers in general, as well 

as finding the free corpus for dysarthric speakers, which include balancing the 

samples for severity level of dysarthric speakers, make our research limited to 

the available corpus, which is the NEMOURS corpus. 

 All dysarthric speakers included in this research are young adult males.    

5.5 Suggestions for Future Works 

This section provides some suggestions as a result of carrying out this research, which 

can help to enhance the performance of the ADSR system.  

 Include more corpora that are classified as severity level to enrich the speaker 

adaptation model with more speaker’s variability, to help reduce the mismatch 

between the testing data and training data, so as to lead to more accurate results. 

 Improve this proposed model to be included in assistive technology to help 

dysarthric speakers improve their communication skills for a better quality of 

life. 

Study the specific statistical function of acoustic features that is more effective 

in distinguishing between dysarthric speakers and normal speakers for better 

computational cost.   

 Conducting more investigation of the acoustic features and its effectiveness on 

the dysarthric severity level which can help to identify the severity level of 

dysarthric speakers. This can help pathologies to automatically identify the 

level of severity to determine the suitable intervention plan.  
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 Apply more complicated classification algorithms like deep learning 

algorithms or ensemble classification for the classification part to enhance the 

classification accuracy. 

 Enhance the proposed method to be applied in web-based applications. This 

will be required to apply the server-based acoustic model for dysarthric speech. 

Thus, the accessibility of the ADSR will be easy for both pathologists and 

parents to help improve the communication of dysarthric speakers.  
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