
DEEP LEARNING-BASED BREAST CANCER DETECTION 
AND CLASSIFICATION USING HISTOPATHOLOGY 

IMAGES 

 

 

 

 

GHULAM MURTAZA 

 

 

 

 

 

FACULTY OF COMPUTER SCIENCE AND 
INFORMATION TECHNOLOGY 

UNIVERSITY OF MALAYA 
KUALA LUMPUR 

 
  
 2021

Univ
ers

iti 
Mala

ya



DEEP LEARNING-BASED BREAST CANCER DETECTION 

AND CLASSIFICATION USING HISTOPATHOLOGY 

IMAGES 
 

 

 

 

 

GHULAM MURTAZA 

 

 

THESIS SUBMITTED IN FULFILMENT OF THE 
REQUIREMENTS FOR THE DEGREE OF DOCTOR OF 

PHILOSOPHY 

 

FACULTY OF COMPUTER SCIENCE AND 
INFORMATION TECHNOLOGY 

UNIVERSITY OF MALAYA 
KUALA LUMPUR 

 
 

2021 

Univ
ers

iti 
Mala

ya



ii 

UNIVERSITY OF MALAYA 

ORIGINAL LITERARY WORK DECLARATION 

Name of Candidate: Ghulam Murtaza      

Matric No: WVA170003    (New Matric No: 17043591/1) 

Name of Degree: Doctor of Philosophy 

Title of Thesis: Deep Learning-based Breast Cancer Detection and Classification using 
Histopathology Images

Field of Study: Machine Learning 

I do solemnly and sincerely declare that: 

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and

for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyrighted work has been disclosed expressly and sufficiently
and the title of the Work and its authorship have been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyrighted work;

(5) I hereby assign all and every right in the copyright to this Work to the University of
Malaya (“UM”), who henceforth shall be the owner of the copyright in this Work
and that any reproduction or use in any form or by any means whatsoever is
prohibited without the written consent of UM having been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action or any
other action as may be determined by UM.

Candidate’s Signature      Date:09/02/2021 

Subscribed and solemnly declared before, 

Witness’s Signature 

Name: 

Designation:  

Date:  10/2/2021 

Name: 

Designation:  

Date:  10/2/2021 

Univ
ers

iti 
Mala

ya



iii 

DEEP LEARNING-BASED BREAST CANCER DETECTION AND 

CLASSIFICATION USING HISTOPATHOLOGY IMAGES 

ABSTRACT 

Cancer disease is drastically increasing worldwide over the past few years. Among all 

types of cancers in women, breast cancer (BrC) is the main cause of abnormal deaths. For 

a confident diagnosis of BrC, histopathology (Hp) images are usually suggested by the 

doctors. BrC detection is a diagnostic test for benign (non-cancerous) and malignant 

(cancerous) breast tumors (BrT). Once the BrT is diagnosed, then it needs to be classified 

for subtypes of benign and malignant to start specific treatment. Several studies developed 

BrC detection and classification models using Hp images. However, the existing models 

required high computational resources, long training time, and their performance is 

compromised due to a higher misclassification rate. Thus, this research is aimed to 

develop two models. First, the BrC detection model is developed to diagnose BrT basic 

types like benign and malignant. Second, the BrT classification model is developed to 

diagnose subtypes of benign and malignant tumors. To perform overall experiments, Hp 

images of the BreakHis dataset are utilized. BreakHis is a large and complex dataset (i.e., 

four subtypes of each benign and malignant BrTs) that publicly available. For BrC 

detection, an efficient and reliable model namely Ensemble BrC Detection Network 

(EBrC-Net) and three misclassification reduction (McR) algorithms are developed. The 

proposed EBrC-Net model is based on deep learning (DL) based approach. EBrC-Net 

architecture is designed to require less training time and computational resources like a 

normal desktop computer. The trained EBrC-Net is used to extract discriminative 

features. The extracted features are evaluated through six machine learning (ML) 

classifiers namely softmax, k-nearest neighbor (kNN), support vector machine, linear 

discriminant analysis, decision tree, and naive Bayes. Experimentally, it has been 
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observed that kNN outperformed the rest of the five ML classifiers. Furthermore, three 

McR algorithms are developed and implemented in a cascaded manner to reduce the false 

predictions (i.e., misclassification) of the aforementioned six ML classifiers. The 

proposed BrC detection model for five folds of features achieved mean accuracy, 

sensitivity, and patient recognition rate by 97.78%, 97.28%, and 97.92% respectively. On 

the other hand, BrT classification is aimed to develop an efficient and reliable model 

namely Biopsy Microscopic Image Cancer Network (BMIC-Net) to classify Hp images 

into eight subtypes of BrT through a DL-based hierarchical classification approach. 

BMIC-Net model can be trained using less computational resources in less time. The 

trained BMIC-Net is used to extract discriminative features from Hp images. To reduce 

the misclassification, a feature selection algorithm (using information gain and principal 

component analysis schemes) is developed to elicit the most discriminative feature subset. 

Finally, the aforementioned six ML classifiers are analyzed to acquire the best performing 

classifier. The experimental results revealed that BMIC-Net outperformed for five folds 

of features by obtaining a mean accuracy of 95.33% for first-level hierarchical classifier 

and 94.70%, 92.53% for second-level hierarchical classifiers. Moreover, the 

performances of both BrC detection and BrT classification are compared with existing 

state-of-art baseline studies. Findings discovered that the proposed models are efficient 

(i.e., consume less computational resources and training time) and reliable (i.e., reduce 

misclassification to show better and unbiased results even using a complex dataset) in 

comparison with the existing SoA baseline studies. Thus, the proposed BrC detection and 

classification models can assist doctors to serve on the basis of the second opinion for 

early diagnosis of BrC. 

Keywords:  Breast Cancer Detection, Medical Image Classification, Deep Learning, 

Histopathology Images. 
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PENGESANAN DAN PENGELASAN KANSER PAYUDARA BERASASKAN 

PEMBELAJARAN DALAM MENGGUNAKAN IMEJ HISTOPATOLOGI   

ABSTRAK 

Penyakit kanser meningkat secara mendadak di seluruh dunia sejak beberapa tahun 

yang lalu. Di antara semua jenis kanser pada wanita, kanser payudara (BrC) adalah 

penyebab utama kematian yang tidak normal. Untuk diagnosis BrC yang meyakinkan, 

imej-imej histopatologi (Hp) biasanya disarankan oleh doktor-doktor. Pengesanan BrC 

adalah ujian diagnostik untuk “benign” (tidak kanser) dan “malignant” (kanser) 

ketumbuhan payudara (BrT). Apabila BrT didiagnosis, maka ia perlu diklasifikasikan 

kepada sub jenis “benign” dan “malignant” untuk memulakan rawatan tertentu. Beberapa 

kajian telah membangunkan model pengesanan dan pengelasan BrC menggunakan imej 

Hp. Walau bagaimanapun, model-model sedia ada memerlukan sumber pengiraan yang 

tinggi, masa latihan yang panjang dan prestasi mereka juga telah terjejas kerana kadar 

ralat klasifikasi yang lebih tinggi. Oleh itu, kajian ini bertujuan untuk membangunkan 

dua model. Pertama, model pengesanan BrC dibangunkan untuk mendiagnosis jenis asas 

BrT seperti “benign” dan “malignant”. Kedua, model pengelasan BrT dibangunkan untuk 

mendiagnosis sub jenis tumor “benign” dan “malignant”. Untuk melaksanakan 

eksperimen secara keseluruhan, imej Hp set data BreakHis telah digunakan. BreakHis 

adalah set data yang besar dan kompleks (iaitu, empat sub jenis daripada setiap BrTs 

“benign” dan “malignant”) yang adasecara terbuka. Untuk pengesanan BrC, model yang 

cekap dan boleh dipercayai iaitu Rangkaian Pengesanan Kumpulan BrC (EBrC-Net) dan 

tiga algoritma pengurangan ralat klasifikasi (McR) telah dibangunkan. Model EBrC-Net 

yang dicadangkan adalah berdasarkan pendekatan pembelajaran dalam (DL). Senibina 

EBrC-Net direka untuk memerlukan masa latihan yang kurang dan sumber komputasi 

seperti komputer biasa. EBrC-Net yang terlatih digunakan untuk mengekstrak ciri 

berorientasikan hasil. Ciri-ciri yang diekstrak telah dinilai melalui enam pengelas 
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pembelajaran mesin (ML) iaitu softmax, k-nearest neighbor (kNN), mesin vektor 

sokongan, analisis diskriminasi linear, pepohon sokongan, dan naive Bayes. Secara 

eksperimen, kNN mengatasi lima pengelas ML yang lain. Tambahan lagi, tiga algoritma 

McR telah dibangunkan dan dilaksanakan dengan cara yang tersusun untuk 

mengurangkan ramalan palsu (iaitu, ralat klasifikasi) untuk keenam-enam pengelas ML. 

Model pengesanan BrC yang dicadangkan untuk lima lapisan ciri telah mencapai purata 

ketepatan, kepekaan dan kadar pengiktirafan pesakit, masing-masing sebanyak 97.78%, 

97.28% dan 97.92%. Selain itu, klasifikasi BrT bertujuan untuk membangunkan model 

yang cekap dan boleh dipercayai iaitu Rangkaian Kanser Mikrokopik Biopsi (BMIC-Net) 

untuk mengelaskan imej Hp kepada lapan sub jenis BrT melalui pendekatan pengelasan 

hierarki DL. Model BMIC-Net boleh dilatih menggunakan sumber kurang pengiraan 

dalam masa yang singkat. BMIC-Net terlatih telah digunakan untuk mengeluarkan ciri-

ciri yang berbeza daripada imej Hp. Untuk mengurangkan ralat klasifikasi, algoritma 

pemilihan ciri telah dibangunkan (menggunakan information gain dan principal 

component analysis skema) untuk memperoleh subset ciri yang paling diskriminatif. 

Akhirnya, keenam-enam kelas ML yang dinyatakan di atas telah dianalisis untuk 

memperoleh pengelas terbaik. Keputusan eksperimen menunjukkan bahawa BMIC-Net 

telah mengatasi untuk lima lapisan ciri dari segi prestasi dengan memperoleh purata 

ketepatan yang lebih baik daripada 95.33% untuk pengelas hierarki peringkat pertama 

dan 94.70%, 92.53% untuk pengelas hierarki peringkat kedua. Selain itu, prestasi bagi 

kedua-dua pengesanan dan pengelasan BrC telah dibandingkan dengan kajian dasar 

terkini yang sedia ada. Hasil penyelidikan mendapati bahawa kedua-dua model yang 

dicadangkan adalah cekap (iaitu, menggunakan kurang sumber pengiraan dan masa 

latihan) dan boleh dipercayai (iaitu, mengurangkan salah klasifikasi untuk menunjukkan 

hasil yang lebih baik dan tidak berat sebelah walaupun menggunakan set data yang 

kompleks) berbanding dengan dasar kajian terkini yang sedia ada. Oleh itu, model 
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pengesanan dan pengelasan BrC yang telah dicadangkan boleh membantu para doktor 

sebagai asas pendapat kedua untuk diagnosis awal BrC.  

Kata kunci: Pengesanan Kanser Payudara, Pengelasan Imej Perubatan, Pembelajaran 

Dalam, Imej Histopatologi.  
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CHAPTER 1: INTRODUCTION  

This chapter discusses the overall research background and underlying motivation. It 

also presents the problem statement, followed by the research questions and research 

objectives. Moreover, it also briefly describes the research design, scope, contribution, 

and significance of the overall research. Finally, it states the organization of the overall 

research work presented in this thesis. 

1.1 Background 

Cancer is the most prevailing cause of abnormal deaths and a massive problem for 

public health around the globe. In 2015, 8.8 million deaths caused by cancer and 27 

million new cases of cancer are expected till 2030, reported by the International Agency 

of Research on Cancer, affiliated with World Health Organization (WHO, 2018). 

Moreover, among all types of cancers, breast cancer (BrC) is the foremost cause of 

mortality (i.e., 571000 deaths) in women. Whereas, 30% to 50% of cancer burden can be 

reduced by early diagnosis of cancer, reported by WHO. Initially, BrC detection is a 

diagnostic test to identify two main types of breast tumors (BrTs) like benign and 

malignant, which can be classified into further subtypes. Benign is known as a non-

invasive/non-cancerous tumor, whereas malignant is an invasive/cancerous type of 

tumor. Non-invasive BrTs have not spread to nearby tissue or beyond. Conversely, 

invasive (known as cancerous) BrTs spread to the surrounding breast tissues and other 

parts of the body, thus can cause abnormal death if does not diagnose at an early stage.  

Medical images, such as histopathology (Hp) and radiology images, are used as a 

diagnostic test for BrC (i.e., benign or malignant). Radiology images, for instance, 

mammograms, can locate BrC lesions but cannot verify whether a highlighted location is 

cancerous. However, in a breast biopsy, a small sample of tissue is obtained from a 

suspicious area of the breast and fixed into slides for manual examination under a 
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microscope. Microscopic manual examination of the breast tissue gives a more credible 

cancer diagnosis in comparison with radiology images. Breast Hp slides enable tissue-

level analysis, enabling pathologists to distinguish types of cell nuclei and the shapes and 

architectures of specific patterns. Moreover, Hp slide manual analysis allows visual 

examination of cell shape abnormality and distribution and helps in determining the breast 

lesion classification up to eight subtypes of BrT namely adenosis (A), fibroadenoma (F), 

tubular adenoma (TA), phyllodes tumor (PT), ductal carcinoma (DC), lobular carcinoma 

(LC), mucinous carcinoma (MC), and papillary carcinoma (PC). However, the reliability 

of Hp sample manual analysis solely depends upon the daily workload, laboratory 

environment, and pathologists’ domain knowledge, expertise, and field experience 

(Vestjens et al., 2012; Ehteshami, Veta, Johannes van Diest, et al., 2017). 

In Elmore, Longton, and Carney (2015) study, 6900 cases were diagnosed by 115 

pathologists and compared with expert consensus-driven ground truth; 20% of benign 

cases were misdiagnosed (i.e., misclassified) as malignant, whereas 10% of malignant 

cases were misclassified as benign. In addition, a pathologist working as a general 

pathologist and performing manual analysis with a small number of cases in a week 

makes more diagnostic errors than does an expert pathologist (Allison et al., 2014). 

Moreover, arriving at a diagnostic consensus is a major issue among expert pathologists 

due to professional differences of opinion on features meeting diagnostic criteria. Hp 

manual analysis has other issues, such as the availability of expert pathologists in 

healthcare institutions, especially in underdeveloped countries (Sophie Softley Pierce, 

2017). Furthermore, Hp slide manual analysis is a time-consuming and cumbersome task 

and hence prone to human errors (Evans, 2011). Therefore, to avoid these issues, digital 

pathology laboratories convert Hp breast tissue slides into digital images known as digital 

Hp images (or simply Hp images) by using scanners with various zooming factors.  
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With the invention of digital Hp images, researchers have developed machine learning 

(ML) based BrC detection (i.e., benign or malignant) and classification (i.e., up to eight 

subtypes of BrT) models, which can perform an efficient and reliable automatic BrC 

diagnosis using Hp image. Thus, ML-based BrC detection and classification can 

overcome the aforementioned issues of a microscopic manual analysis of breast Hp slides. 

Moreover, it can assist the pathologists/doctors and serve as the basis of the second 

opinion in BrC diagnosis at an early stage. 

In medical science, two types of Hp image analysis are found to diagnose benign or 

malignant BrT types, for instance, image-level and patient-level analyses (Spanhol, 

Oliveira, Petitjean, & Heutte, 2016a). The commonly adopted analysis is the image-level 

analysis where ML-based model performance is measure in terms of accuracy, sensitivity, 

FMeasure, etc., without using the number of patients, i.e., how accurately instances are 

correctly predicted for its intended class label like benign or malignant. However, the 

patient-level analysis is defined in terms of patient recognition rate (PRR) for benign and 

malignant cases by the BreakHis dataset host (Spanhol et al., 2016a), which is the sum of 

all patient scores divide by the total number of patients. Where, the patient score is the 

number of images correctly predicted (i.e., benign or malignant) for a patient upon the 

total number of images of a patient. Therefore, most of the studies used image-level 

analysis, and some of the studies used patient-level analysis for BrC detection. 

Recent studies have developed BrC detection and classification models by exploiting 

Hp images (Araujo et al., 2017; Chang, Yu, Han, Chang, & Park, 2017; Samala et al., 

2017; Spanhol, Oliveira, Cavalin, Petitjean, & Heutte, 2017; Zheng et al., 2017; Feng, 

Zhang, & Yi, 2018; Gandomkar, Brennan, & Mello-Thoms, 2018; Nahid, Mehrabi, & 

Kong, 2018). Two approaches are generally used to detect and classify BrC are traditional 

ML-based and deep learning (DL) based approaches. BrC detection and classification 
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models, which are based on traditional ML, often follow four main steps: image 

preprocessing, feature extraction, training, and evaluation of classification model.  

For instance, Spanhol, Oliveira, Petitjean, and Heutte (2016b) developed and hosted a 

BrC Hp image dataset named BreakHis for researchers. The authors preprocessed an 

image by removing unwanted areas and saving it as an 8-bit image portable network 

graphics format and sized to 700×460×3 with no compression. Image acquisition is 

conducted on four different magnifications using a region of interest (ROI) marked by an 

expert pathologist. In the preprocessing step, features were extracted through six types of 

commonly used textural descriptor methods, and a master feature vector (MFV) is 

created. Thereafter, four classifiers were trained and evaluated using MFV: k-nearest 

neighbor (kNN), quadratic linear analysis, support vector machine (SVM), and random 

forests (RF). The authors reported overall accuracy ranging from 80% to 85% and PRR 

is 83.8±4.1. Nonetheless, the success of traditional ML-based BrC detection models 

depends upon the discriminative feature (Mujtaba, Shuib, Raj, Majeed, & Al-Garadi, 

2017; Nweke, Teh, Al-Garadi, & Alo, 2018; Ishtiaq et al., 2019) extraction key step 

(Domingos, 2012; Duda, Hart, & Stork, 2012). The limitations of hand-engineered 

features (HeFs) extraction are as follows. 

1. The extraction of discriminative features requires domain knowledge and is a difficult 

and time-consuming task.  

2. Rework is often needed when a similar type of dataset collected from different sites 

is utilized. Hence, robust feature extraction is not a trivial task.  

3. Images, especially neighboring pixels, possess highly correlated information (Shen, 

Wu, & Suk, 2017). HeFs extraction methods may lose such kind of important 

information related to normal and abnormal breast tissues.  
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Therefore, DL-based approaches bypassed (by embedding the features extraction 

while model training) the HeFs extraction step involved in traditional ML-based 

approaches. Furthermore, DL-based approaches require minimal data preprocessing tasks 

(if ever) and identify relevant information in a self-taught manner (Shen et al., 2017). 

Thus, the fundamental goal of using DL-based approaches is to automate the feature 

extraction step during the model training process. DL-based BrC detection and 

classification approaches are of three types. The first type comprises DL-based models 

created and trained from scratch, which are also known as de-novo (Hadad, Bakalo, Ben-

Ari, Hashoul, & Amit, 2017) models. The second type involves models created and 

retrained after fine-tuning the pre-trained models (e.g., AlexNet), which are called 

transfer learning (TL)-based models. Whereas third approach models were created by 

ensembling layers of first and second types of models i.e., de-novo and TL-based layers.   

Several existing studies have exploited de-novo models (Araujo et al., 2017; Samala 

et al., 2017; Feng et al., 2018; Nahid et al., 2018). For instance, in Feng et al. (2018), 

image patches were fed into a DL-based model of stacked denoising auto-encoders with 

three hidden layers. The author trained the model using a graphics processing unit (GPU) 

for three hours and reported better accuracy where benign was 97.98±0.69 and malignant 

was given as 88.37±1.90. However, the results were biased because the author used an 

exclusive small-sized dataset, i.e., 58 breast Hp images. In Araujo et al. (2017), the author 

used the Bioimaging Challenge 2015 Breast Histology dataset and performed many 

image preprocessing tasks, such as stain normalization, histogram stretching, division of 

images into patches with 50% overlap, intensity normalization, and image augmentation. 

Furthermore, a convolutional neural network (CNN) model was created and trained from 

scratch, deep convolution activation features (DeCAFs) were extracted, and classification 

was performed through SVM and softmax; results showed that the former classifier 

outperformed the latter. The model training time and resources were not mentioned. 
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Whereas reported accuracy was 77.8% for four classes and 83.3% for BrC detection. 

However, the classification accuracy needs to be improved for the method to be deployed 

in real-life scenarios.  

The aforementioned studies revealed that de-novo model sizes are often small, and 

most of the models are created according to the volume of data because a large DL model 

size needs a large amount of data and is likely to overfit. However, the major advantage 

of using a de-novo model is that the customized robust layers can be created to improve 

the performance of a model for the specific type of data like medical images. 

Nevertheless, de-novo models require a large amount of labeled data to be trained 

properly and avoid overfitting issue, but the annotated medical images are rarely available 

in large quantities. Furthermore, model training with large data and model size will 

require considerable time and computational resources (e.g., high-capacity storage 

devices, random access memory, and GPU), which are very costly.  

Thus, to avoid the limitation of DL-based de-novo models, many researchers adopted 

the TL-based DL approach (Chang et al., 2017; Spanhol et al., 2017; Zheng et al., 2017; 

Gandomkar et al., 2018), where, the pre-trained model is exploited followed by fine-

tuning step. The fine-tuning step mostly involves the replacement of the last layer of a 

pre-trained model for the target number of classes. For instance, in Gandomkar et al. 

(2018), the author used the BreakHis dataset after removing the borderline patient. A TL-

based hierarchical model was trained and evaluated followed by preprocessing tasks such 

as scaling, stain normalization, augmentation, and patch generation. The author achieved 

95.70% accuracy for  BrT classification using a single fold of data. However, a pre-trained 

150-layer Residual neural network (ResNet) was used, and three models were created 

hierarchically. Hence, the author deployed model was large enough but complex and 

required plenty of resources and training time. Chang et al. (2017) proposed a TL-based 
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model by exploiting a pre-trained Google inception v3 model. The BreakHis dataset was 

used after applying preprocessing tasks, such as rescaling and various image 

augmentation techniques. Many cutoff values are tested to acquire reliable accuracy rates, 

and the cutoff value method is optimized for asymmetric misclassification costs. The 

findings showed accuracy rates of 83% and 89% for benign and malignant cases. 

Nonetheless, the Google inception v3 model contains a large number of layers (i.e., 48) 

and needs ample resources and time for training.  

The aforementioned studies discovered that the TL-based models may become 

overfitted if the target data size is very small because pre-trained models were trained on 

a very large amount of data (Sert, Ertekin, & Halici, 2017; Shen et al., 2017; Gandomkar 

et al., 2018). Therefore, for retraining, such models cannot properly learn the new features 

from a few instances of target data. Oftentimes, pre-trained models are large (e.g., 

GoogLeNet has 152 layers.) and thus require a large amount of data and consume 

considerable computational resources and training time. Conversely, if the TL-based 

model size is small, such as AlexNet, and the data size is not too small, then it can be 

used to create a classification model by using limited resources (Spanhol et al., 2016a; 

Spanhol et al., 2017). Otherwise, the classification results may not be sufficiently accurate 

and reliable to be implemented in real-life applications.  

Therefore, some researchers created an ensemble DL-based model by combining TL-

based layers and few newly created layers trained from scratch (i.e., de-novo model 

layers) (Kumar, Bhadauria, Virmani, & Thakur, 2017; Rasti, Teshnehlab, & Phung, 2017; 

Sert et al., 2017; Wan, Cao, Chen, & Qin, 2017). For instance, Wan et al. (2017), exploited 

an exclusive dataset of 106 Hp images for BrC grading into low, intermediate, and high 

classes. The author performed nuclei segmentation by an enhanced hybrid active contour 

model. Thereafter, a CNN-based ensemble model was used to extract an integrated set of 
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pixel-level texture features and object-level architectural features. Finally, SVM was used 

in a cascaded fashion to combine two types of features and thus maximize classification 

performance. The ensemble model is capable of adopting advantages of both TL-based 

and de-novo models like custom layers can be created to learn better features from 

medical images compared to TL-based models, model size can be increased or decreased 

by adding or removing layers to get better features. Moreover, ensemble models require 

fewer images and can be trained in less time using fewer resources compared to de-novo 

models. Thus, it can be concluded that TL-based and ensemble models are suitable for 

medical image BrC detection and classification compared to de-novo models.  

Generally, it has been observed in the aforementioned DL-based models of BrC 

detection and classification that the results are compromised due to a higher number of 

false negative and false positive predictions, also known as wrong predictions or simply 

misclassification. Whereas, misclassification using BrC Hp images for eight subtypes of 

BrT maybe because of three reasons. First, there is a high correlation among the features 

of many subtypes of BrT Hp images (Han, Wei, et al., 2017). Which may create 

complexity (i.e., low interclass similarity and low intraclass dissimilarity) for the 

classifier to differentiate among multiple subtypes of BrT. Therefore, the 

misclassification rate can be higher (Han, Wei, et al., 2017). Second, a large number of 

features are extracted through DL-based models. Such a large number of 

features/dimensions can easily distract the training process of a classifier that can increase 

the misclassification rate (Fan & Fan, 2008). Third, the DL-based models are normally 

trained using augmented images along with original images. Whereas the quantity of 

augmented images is huge than the original images, therefore model maybe got better 

training for augmented images instead of original images (Simard, Steinkraus, & Platt, 

2003). However, testing data contains only original images, thus it can be easily 

misclassified by the model which was largely trained on augmented images. 
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1.2 Research Motivation 

Cancer-related mortality has drastically increased in recent years. As per WHO report 

(WHO, 2018), cancer is the leading cause of death, and approximately 8.8 million people 

have died globally in 2015 due to this disease. In addition, the number of new cancer 

cases is expected to increase by 70% in the next two decades. Among the various types 

of cancer, breast cancer is the most common among women and is the third leading cause 

of cancer-related deaths (1.7 million, 11.3%) (WHO, 2018). In addition, an early and 

precise diagnosis is important to improve the prognosis and increase the survival rate of 

patients with BrC by 50%.  

Hp imaging is more commonly used for the detection and classification of BrC 

compared with other medical imaging modalities like mammogram (MG), magnetic 

resonance imaging (MRI), ultrasound (US), and computerized tomography (CT). 

Nonetheless, Hp image manual analysis has three major limitations (Gurcan et al., 2009). 

First, expert pathologists are rare in healthcare organizations in several developing 

countries. Second, the procedure is cumbersome and time-consuming for pathologists. 

Therefore, pathologists may experience fatigue and reduced attention during the image 

manual analysis. Finally, a reliable manual analysis is highly dependent on the 

professional experience, expertise, and domain knowledge of pathologists.  

Thus, the aforementioned limitations may cause misdiagnosis/misclassification of Hp 

image manual analysis for BrC and may lead to an incorrect treatment plan. Hence, to 

address the above mentioned limitations of BrC Hp image manual analysis, ML-based 

diagnostic systems (i.e., detection and classification models) can be used for automatic 

analysis. Moreover, ML-based BrC detection and classification models can assist doctors 

to serve as a second opinion to analyze the Hp images efficiently and more accurately 

compared to manual analysis. 
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1.3 Statement of Problem 

Several researchers classified breast cancer from Hp images (Brook et al., 2008; 

Zhang, 2011; Spanhol et al., 2016a; Xu, Luo, Wang, Gilmore, & Madabhushi, 2016; 

Araujo et al., 2017; Ehteshami, Veta, Johannes, & et al., 2017; Han, Wei, et al., 2017; 

Spanhol et al., 2017; Wan et al., 2017; Zheng et al., 2017; Bardou, Zhang, & Ahmad, 

2018; Nahid & Kong, 2018; Nahid et al., 2018). However, there are four major 

limitations.  

1. First, these studies mostly employed image-level BrC detection. However, patient-

level BrC detection can pose different results.  

2. Second, these studies mostly classified BrT up to four classes. However, there are 

eight subtypes of BrT which are inherently more complex to classify. Therefore, a 

higher misclassification rate is observed in the aforementioned studies. 

3. Third, these studies mostly employed the accuracy metric to measure classification 

model performance. However, this metric can be biased (due to misclassification) in 

measuring the overall classification performance (Powers, 2011).    

4. Finally, the majority of the existing DL-based models are trained on high 

computational resources for longer training time to classify BrC histopathological 

images. Therefore, computationally efficient classification models are needed. 

Hence, to overcome the aforementioned limitations, efficient (i.e., consume less 

computational resources and training time) and reliable (i.e., reduce misclassification to 

show better and unbiased results even using complex dataset) BrC detection and 

classification models are needed, which can be trained on complex, publicly available 

standard datasets using low computational resources in less time and able to show better 

results due to reduced misclassification rate. In addition, more robust metrics need to be 

used to accurately measure the performance of BrC detection and classification models. 
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1.4 Research Aims and Objectives 

The primary goal of this research is to provide efficient (i.e., consume less 

computational resources and training time) and reliable (i.e., reduce misclassification to 

show better and unbiased results even using complex dataset) DL-based breast cancer 

detection and classification models by using Hp images. Thus to accomplish these goals 

this research has the following research objectives (RO). 

RO1: To investigate the existing DL-based models for breast cancer detection and 

classification, using Hp images for early diagnosis. 

RO2: To develop an efficient (i.e., consumes less computational resources and training 

time) and reliable (i.e., reduces misclassification to show better and unbiased results even 

using complex dataset) DL-based model for BrC detection at patient-level using Hp 

images. 

RO3: To develop an efficient (i.e., consumes less computational resources and training 

time) and reliable (i.e., reduces misclassification to show better and unbiased results even 

using complex dataset) DL-based model for BrT classification (up to eight classes) using 

Hp images. 

RO4: To evaluate the performance of proposed BrC detection and classification models 

by comparing their performances with existing state-of-the-art (SoA) BrC detection and 

classification models. 

1.5 Research Questions 

The research questions (RQ) belong to each research objective are given as follows: 

RO1: To investigate the existing DL-based models for breast cancer detection and 

classification, using Hp images for early diagnosis. 

RQ1: What are the existing DL-based models for breast cancer detection and 

classification, using Hp images for early diagnosis? 
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RQ2: What are the common medical imaging modalities used for BrC detection and 

classification? 

RO2: To develop an efficient (i.e., consumes less computational resources and 

training time) and reliable (i.e., reduces misclassification to show better and 

unbiased results even using complex dataset) DL-based model for BrC detection at 

patient-level using Hp images. 

RQ3: How to develop an efficient (i.e., consumes less computational resources and 

training time) and reliable (i.e., reduces misclassification to show better and unbiased 

results even using complex dataset) DL-based model for BrC detection at patient-level 

using Hp images? 

RO3: To develop an efficient (i.e., consumes less computational resources and 

training time) and reliable (i.e., reduces misclassification to show better and 

unbiased results even using complex dataset) DL-based model for BrT classification 

(up to eight classes) using Hp images. 

RQ4: How to develop an efficient (i.e., consumes less computational resources and 

training time) and reliable (i.e., reduces misclassification to show better and unbiased 

results even using complex dataset) DL-based model for BrT classification (up to eight 

classes) using Hp images? 

RO4: To evaluate the performance of proposed BrC detection and classification 

models by comparing their performances with existing state-of-the-art BrC 

detection and classification models. 

RQ5: How to evaluate the performance of proposed BrC detection and classification 

models?  
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1.6 Research Methodology 

The research is conducted to perform BrC detection and classification using a DL-

based approach for Hp images. The general research design implemented in this research 

work is shown in Figure 1.1.  

 
Figure 1.1: Steps involved in research methodology 

The presented research design consisting of seven steps, like problem identification, 

data collection, image preprocessing, DL-based model development, training, and 

DeCAFs/features extraction, best ML classifier selection, model performance 

1- Problem Identification

• Literature analysis, comparison study

2- Data Collection

• BreakHis dataset

• Splitting dataset into validation, testing and training sets by random 
sampling

3- Image Preprocessing

• Normalization

• Augmentation

• Rescaling

4- DL-based Model Development, Training and DeCAFs Extraction

• BrC detection

• BrT classification

5- DeCAFs classification via six ML Classifiers

• Parameter optimization of ML classifiers

• DeCAFs evaluation for five folds using six ML classifiers

6- Model Performance Enhancement

• BrC detection performance enhancement by misclassification reduction

• BrT classification performance enhancement by feature selection

7- Model Evaluation

• Multiple performance evaluation metrics

• Baseline comparison
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enhancement, and model evaluation. These research design steps are briefly explained as 

follows: 

1- Problem Identification 

This step demonstrated the research problem identified through a literature review on 

DL-based breast cancer detection and classification through various medical imaging 

modalities. This review involves the analysis of five aspects related to BrC detection and 

classification namely medical imaging modalities, medical imaging datasets, medical 

image preprocessing techniques, BrC deep neural network model types currently 

implemented and performance evaluation metrics used to assess the performance of the 

model. The details of this section are discussed in Chapter 2. 

2- Data Collection 

In this step, the publicly available standard BreakHis corpus (Spanhol et al., 2016b) is 

collected for DL-based BrC detection and classification. BreakHis consist of a larger 

number of Hp images compared to other public datasets. Here, Hp images are distributed 

into eight subtypes of breast tumors in a patient-wise fashion. It is a multifaceted standard 

dataset, which enabled us to compare directly the results of proposed BrC detection and 

classification models with existing SoA baseline models. Due to these inherent 

characteristics of the BreakHis dataset, the results of the proposed DL-based model 

become more applicable and reliable compared to any small-sized public or exclusive 

dataset. The details of this section are discussed in Chapter 3 (Sections 3.2.1.1 and 

3.2.2.1). 

3- Image Preprocessing 

In this step, the necessary medical image preprocessing tasks like Hp image stain 

normalization, image augmentation, and image rescaling are performed before initiating 

the training process of proposed DL-based models. However, before performing any 
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preprocessing task, the BreakHis dataset is split into training, validation, and testing sets. 

The image augmentation is applied to training sets only to increase the number of 

instances by applying basic image processing techniques. This is due to a large number 

of training instances that are required to avoid biased training and overfitting issues of the 

DL-based model. In addition, all images are rescaled to fit into the first layer of the 

proposed DL-based models for BrC detection and BrT classification. The details of this 

section are discussed in Chapter 3 (Sections 3.2.1.2 and 3.2.2.2). 

4- DL-based Model Development, Training, and DeCAFs Extraction 

In this step, proposed DL-based models are created and trained multiple times by 

adjusting random hyperparameters until minimum validation loss or maximum validation 

accuracy is not observed. Thus, the models are developed and trained efficiently to 

consume fewer resources (like a normal desktop computer instead of GPU) and training 

time. Finally, the trained DL-based models are used to extract features/DeCAFs from Hp 

images for BrC detection (i.e., benign or malignant) and classification for eight subtypes 

of BrT. Whereas, further analyses are made by using five folds of extracted DeCAFs. The 

details of this section are discussed in Chapter 3 (Sections 3.2.1.3 and 3.2.2.3). 

5- Best Machine Learning Classifier Selection 

In this step, the extracted DeCAFs are evaluated for five folds through six ML 

classifiers (i.e., softmax, k nearest neighbor (kNN), linear discriminant analysis (LDA), 

naive Bayes (NB), decision tree (DT), and support vector machine (SVM)) to ensure that 

the DL-based classification models were trained properly to extract discriminative 

features from Hp images. Moreover, this step helps to evaluate the performance of six 

ML classifiers by using six performance evaluation metrics (PEMs) namely accuracy 

(Ac), sensitivity (Sn), precision (Pr), FMeasure (Fm), patient recognition rate (PRR), and 

area under the curve (AUC). The details of this section are discussed in Chapter 3 

(Sections 3.2.1.4 and 3.2.2.4). 
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6- Model Performance Enhancement 

In this step, the performance of six ML classifiers is improved. For BrC detection, 

three misclassification reduction algorithms are implemented to enhance six ML 

classifiers’ performance by using multiple Hp images of each patient provided in the 

BreakHis dataset. Whereas, for BrT classification, a feature selection algorithm is 

implemented by using two feature reduction schemes (i.e., Information Gain (IG) and 

Principal Component Analysis (PCA)) to select a minimum number of features to 

enhance overall classification performance. The details of this section are discussed in 

Chapter 4 (Sections 4.3 to 4.5). 

7- Model Evaluation 

This step evaluates the performance of trained BrC detection and classification models 

by using multiple PEMs like Ac, Sn, Pr, Fm, PRR, and AUC. Where PRR is used for 

patient-level analysis and rest are used for image-level analysis. This step also compares 

the performance of the proposed models with existing SoA baseline studies. Finally, it 

identifies the best model for BrC detection and classification using Hp images. The details 

of this step are discussed in Chapter 5. 

1.7 Research Scope 

This research is conducted on the basis of a certain definition to maximize the specialty 

of work for a certain area. The limitations are discussed as follows: 

1. The BreakHis dataset images are actually patches taken from BrC whole slide 

images (WSI) marked by an expert pathologist. Thus, the proposed model is 

trained on image patches which possess dependency on expert pathologists. 

However, the generalizability of the proposed models should be applied to WSI 

images to minimize the dependency of expert pathologists. 
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2. The proposed models are capable to classify Hp images of BrC only. However, 

Hp images can be of many diseases like lung, liver, and bladder cancers.  

3. The proposed BrC models are able to detect and classify Hp images only. 

However, there are many other medical image modalities used for BrC diagnosis. 

4. The proposed models are based on CNN model, however, there are many other 

types of DNN model can be used for BrC detection and classification. 

1.8 Research Contribution 

The contributions of this research in current literature are as follows. 

 Literature Analysis  

This aims to identify the weaknesses of existing models related to BrC detection 

and classification. Moreover, deep neural network (DNN) based (i.e., DL-based) BrC 

detection and classification models that can classify various types of medical imaging 

modalities namely, MG, MRI, US, CT, and Hp digital images are comprehensively 

and systematically reviewed. This extensive review is based on the following five 

aspects namely   

1. Medical imaging modalities used for BrC detection and classification. 

2. Medical image datasets were used in the development of DL-based detection and 

classification models. 

3. Preprocessing techniques adopted to improve medical image quality. 

4. DL-based (i.e., DNN-based) model types currently applied to BrC detection and 

classification using various medical imaging modalities. 

5. Evaluation metrics used to assess the performance of DL-based BrC detection and 

classification models. 

Moreover, the current challenges and future directions related to BrC detection and 

classification are also discussed.  

 Breast Cancer Detection Model 
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1. This research developed a DL-based ensemble model (with larger input image 

size and unfreezed layers) for BrC detection (i.e., benign or malignant) at the 

patient-level for Hp images using less computational resources (i.e., normal 

desktop computer instead of GPU) in less training time. In addition, the proposed 

model is used to extract discriminative features used for BrC detection. 

2. Three misclassification reduction (McR) algorithms are developed to improve the 

performance of the BrC detection model at the patient-level. 

1. McR image-wise (McRI) Algorithm: Reduces wrong predictions using 

many augmented images of the single original image and computes image-

wise confidence of each patient.  

2. McR patient-wise (McRP) Algorithm: Reduces wrong predictions using 

multiple augmented images of many original images of a patient and computes 

patient-wise confidence using all images of each patient.  

3. McR confidence-wise (McRC) Algorithm: Reduces wrong predictions using 

the average of image-wise confidence and patient wise confidence computed 

in McRI and McRP algorithms. 

 Breast Tumor Classification Model 

1. This research developed a DL-based hierarchical BrT classification model to 

solve the multiclassification (i.e., eight classes) problem for breast Hp images 

using less computational resources (i.e., normal desktop computer instead of 

GPU) in less training time. Moreover, the proposed model is used to extract 

discriminative features for BrT classification. 

2. To reduce the misclassification of the BrT classification model, a feature selection 

algorithm is implemented using two feature reduction schemes namely IG and 
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PCA to select minimum features subset to enhance the overall performance of the 

BrT classification model. 

The proposed BrC detection and classification models have been published in 

reputable ISI-indexed journals and conferences (refer to page number 190 for the overall 

list of publications). 

 

1.9 Research Significance 

The significance of this research work is perceived in two domains, namely 

significance to doctors/pathologists and significance to researchers for BrC detection and 

classification models’ development. 

1.9.1 Significance to Doctors and Pathologists 

As discussed in Section 1.1, Hp images are used with more confidence for the detection 

and classification of BrC compared with other medical imaging modalities. However, the 

prognosis and treatment of BrC solely depend on the diagnostic analyses report made by 

pathologists. Traditionally, Hp images are manually analyzed by more than one expert 

pathologist to diagnose the proper subtype of BrC. Whereas, the analysis of two 

pathologists may vary due to their domain knowledge, expertise, workload, and working 

environment. Therefore, pathologists’ manual analysis can produce 24% incorrect 

ISI-indexed Journal Publications

• Paper 1 (Literarure Review) Murtaza, G., Shuib, L., Abdul Wahab, A.W. et al.
Deep learning-based breast cancer classification through medical imaging
modalities: state of the art and research challenges. Artif Intell Rev 53, 1655–
1720 (2020). https://doi.org/10.1007/s10462-019-09716-5. (Published)

• Paper 2 (BrC Detection): Murtaza, G., Shuib, L., Wahab, A.W.A. et al.
Ensembled deep convolution neural network-based breast cancer classification
with misclassification reduction algorithms. Multimed Tools Appl 79, 18447–
18479 (2020). https://doi.org/10.1007/s11042-020-08692-1. (Published)

• Paper 3 (BrT Classification): Murtaza, G., Shuib, L., Mujtaba, G. et al. Breast
Cancer Multi-classification through Deep Neural Network and Hierarchical
Classification Approach. Multimed Tools Appl 79, 15481–15511 (2020).
https://doi.org/10.1007/s11042-019-7525-4. (Published)
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classification (Vestjens et al., 2012). Moreover, to arrange expert pathologist, and to 

develop consensus among their analysis is an expensive and time-consuming task (Evans, 

2011). Hence, it may cause delay for specific diagnosis followed by treatment plan. Thus, 

there is a need for DL-based BrC detection and classification models to diagnose BrC 

automatically. The DL-based  BrC detection and classification models are a more 

accurate, cost-effective, and less time-consuming method for early diagnosis of breast 

cancer (Schneider & Yaffe, 2000; Sadaf, Crystal, Scaranelo, & Helbich, 2011). Moreover, 

BrC detection and classification models can assist doctors and serve as the second opinion 

to make the decision more confidently in less time for the prognosis and treatment of BrC 

at an early stage.  

1.9.2 Research Significance for Researchers for BrC Detection and 

Classification Models Development 

As mentioned in Section 1.1, the existing DL-based BrC detection and classification 

model requires a large number of labeled images to be trained from scratch (i.e., de-novo 

model), thus it consumes very high computational resources like GPU and needs longer 

training time. However, medical images are usually not available in large quantities. 

Thus, collecting a large number of labeled medical images is not an easy task. Due to 

these unavoidable limitations of the de-novo model, the TL-based or ensemble model is 

a better choice, because it requires less number of labeled images, consumes fewer 

resources (like a normal desktop computer), and needs less time to train the BrC detection 

and classification models.  Thus, the proposed TL-based or ensemble DL-based models 

are used to extract the features/DeCAFs. The DeCAFs are further analyzed by using ML 

classifiers to improve the BrC detection and classification results for breast biopsy Hp 

images. Moreover, robust feature extraction and reduction algorithms are developed to 

enhance the performance of classifiers for proposed BrC detection and classification 

Univ
ers

iti 
Mala

ya



21 

models. Finally, the results are justified by comparing them with existing baseline 

models.  

1.10 Thesis Overview 

The rest of the structure of this thesis work is organized as follows: 

Chapter 2: This chapter demonstrates the literature analysis conducted for BrC 

diagnosis. This review focuses on breast cancer detection and classification by using 

medical imaging multimodalities through SoA DNN approaches. It is anticipated to 

maximize the procedural decision analysis in five aspects, such as types of medical 

imaging modalities, datasets, and their categories, preprocessing techniques, types of 

DNNs, and PEMs used for breast cancer detection and classification. In addition, this 

study provided quantitative, qualitative, and critical analyses of the five aspects. This 

review showed that mammograms and Hp images were mostly used to classify breast 

cancer. Moreover, about 55% of the selected studies used public datasets, and the 

remaining used exclusive datasets. Several studies employed augmentation, scaling, and 

image normalization preprocessing techniques to minimize inconsistencies in breast 

cancer images. Several types of machine learning BrC detection/classification models 

were implemented and are categories into two main types like traditional ML-based 

models and Artificial Neural Network (ANN) based models.  In traditional ML BrC 

detection/classification models the most widely used classifiers are kNN, LDA, NB, DT 

and SVM. Whereas, in ANN the shallow and DNN were employed to classify breast 

cancer using medical images. The convolutional neural network is utilized frequently to 

construct an effective breast cancer classification model. Some of the selected studies 

employed a pre-trained network or developed new deep neural networks to classify breast 

cancer. However, the DL-based model required high computational resources and a large 

number of images to get the desired results. Most of the studies used the accuracy measure 
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to compare the results. Whereas, a fewer number of studies used AUC metrics followed 

by Sn, Pr, Fm, and PRR to evaluate the performance of the developed breast cancer 

detection and classification models. Finally, this review presented research challenges for 

problem identification.  

Chapter 3: This chapter is mainly divided into two sections. Section one presents the 

overall research methodology employed to develop the BrC detection model. Whereas 

section two discusses the entire research methodology implemented for the BrT 

classification model.  

Section one converses in detail the dataset used for experiments. It also explains the 

various Hp image preprocessing tasks like stain normalization, augmentation, rescaling, 

and splitting the dataset into training, validation, and testing sets. Afterward, it elaborates 

on the DL-based model development and the DeCAFs extraction process. In addition, it 

demonstrates the evaluation made for five folds of DeCAFs using six traditional ML 

classifiers through six PEMs. Finally, it explains the BrC detection model performance 

enhancement that is achieved by developing and implementing three misclassification 

reduction (McR) algorithms in a cascade manner.  

Whereas, the second section elaborates on the detailed research methodology 

implemented to construct the BrT classification model to diagnose eight subtypes of BrT. 

Furthermore, it discusses the data collection, selection of images, and splitting of images 

into training, validation, and testing sets. Moreover, this section explains the adopted 

image preprocessing tasks like augmentation, selection, and rescaling. It also discusses 

the entire methodology used for the development and training of the DL-based 

hierarchical BrT classification model with DeCAFs extraction. The extracted DeCAFs 

are evaluated for five folds by using the aforementioned six traditional ML classifiers 

through three PEMs like Ac, Sn, and AUC. Furthermore, to enhance the performance of 
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traditional ML classifiers a feature selection algorithm is developed using feature 

reduction schemes namely IG and PCA. The proposed feature selection algorithm 

enhanced the BrT classification model performance.  

Chapter 4: This chapter explains the development of the proposed model to show the 

entire contribution made in this research work. It explains the research contribution in 

terms of problem identification through literature review, development of proposed BrC 

detection, and BrT classification models. It also discusses the developed algorithms 

implemented to enhance the performance of proposed models through misclassification 

reduction. 

Chapter 5: This chapter covers two main parts of this research such as experimental 

results and discussion with baseline comparison. The first part represents the mean results 

(using five folds of features) for four experimental setups for each BrC detection and BrT 

classification model. For, BrC detection Ac, Sp, Sn, Pr, Fm, and PRR are reported for 

four experimental setups. Whereas, for BrT classification Ac, Sn and AUC are shown for 

four experimental setups. However, the second part provides a detailed discussion about 

the advantages and limitations of existing models’ and compares the proposed models’ 

results with exiting SoA BrC detection and classification baseline models.  

Chapter 6: This chapter concludes the thesis by reevaluating the research objective. 

The main contributions are summarized. It discusses the limitations of the research work 

and proposed future directions.  

Univ
ers

iti 
Mala

ya



24 

CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

This chapter presents a review of existing relevant literature on ML-based BrC 

detection and classification through medical imaging modalities. It covers the overall 

analysis of BrC detection and classification by discussing almost all major studies. This 

review can assist researchers in BrC detection and classification to gain a better, concise 

perspective of existing problems and future directions. In this regard, many studies were 

scrutinized from eight journal1 repositories to achieve five goals: imaging modalities, 

datasets, preprocessing techniques, machine learning classification models applied, and 

PEMs used for BrC detection and classification.  

This chapter begins with a brief introduction to breast cancer. Whereas description, 

purpose, and types of medical imagining modalities used to diagnose BrC are discussed 

in Section 2.2. Section 2.3 elaborates a thorough analysis of BrC medical image datasets 

that were utilized in various studies. Section 2.4 covers the preprocessing techniques 

applied to BrC medical imaging modalities. Section 2.5, focuses on medical image 

preprocessing tasks. Whereas, Section 2.6 presents a comprehensive review of machine 

learning based classification models used in BrC detection and classification. The 

analysis of various evaluation metrics is discussed in Section 2.7. Section 2.8 and 2.9 

identifies the research limitations of existing work to find the research gap. Finally, 

Section 2.10 presents a summary of this chapter.  

 
2.2 Breast Cancer  

Among all the cancers, BrC is a fatal cause of death in women around the world 

(WHO, 2018). BrC is usually caused by breast tumors (BrTs). The BrTs are mainly of 

 

1 Web of Science, scopus, IEE Xplore, PubMed, MedLine, Science Direct, ACM Digital Library, and 
springerLink 
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two types benign and malignant. However, both BrTs also have further subtypes and each 

subtype needs to be diagnosed individually. The benign type of BrTs are known as non-

cancerous, thus do not invade other parts of the body. Whereas malignant BrTs are 

cancerous and aggressive which can spread to other parts of the body and can cause death 

if not diagnosed properly at its early stage. Initially, the doctor performs a physical 

examination of a breast to analyze suspicious symptoms. If any abnormality is found then 

mammograms or other medical imaging modalities (i.e., MRI, US, and CT) are suggested 

as breast screening tests to detect the BrC. Moreover, if a further detailed analysis of BrT 

is required then doctors usually suggest a breast biopsy Hp test, which allows BrT definite 

analysis at the tissue level. Furthermore, each subtype of BrT has a different treatment 

plan thus needs to diagnose confidently. 

2.3 Medical Imaging Modalities  

The BrT classification is composed of five unique types of medical imaging modalities 

and their combinations known as multimodalities. The distribution of chosen studies 

among various modalities and several studies is shown in Table 2.1. For clarity, imaging 

modalities can be bifurcated into colored images and grayscale images. Table 2.1 

indicates that most of the work had been performed in either breast Hp biopsy colored 

images or using breast X-ray grayscale images, also known as mammograms (MGs). 

Table 2.1 shows that most of the studies are based on MG imaging modality. The main 

reason for a large number of studies using MGs may the availability of images. MGs 

imaging technology has been adopted for the last two decades. MG-based studies mostly 

explored the breast density grading or classification for two classes. Moreover, the 

second-highest number of articles was published on Hp images. In these studies, 

researchers usually classified BrC not only into two main BrT types (i.e., benign or 

malignant) but also into further subtypes of each benign and malignant BrT. However, 

the third-highest number of studies were published for US images. Fewer studies 
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compared with US images were found for MRI images. Moreover, very few studies used 

multimodalities for BrT classification. For instance, one study was found for each 

combination, such as MG with US and US with CT images. Unfortunately, none of the 

studies used only CT or positron emission tomography (PET). However, CT and PET 

have been used for BrT classification for many years and played a significant role (Ahn 

et al., 2013; Lebron, Greenspan, & Pandit-Taskar, 2015). CT and PET images may be 

used if evidence shows that BrC has spread or reoccurred outside the breast. The detailed 

distribution of study references, modality type, a brief description of each modality used, 

and the number of studies is shown in Table 2.1. 

Table 2.1: Distribution of studies for various medical imaging modalities. 
Medical 
Imaging 
Modalities 

Brief Description Studies 

MG (Breast 
X-rays) 

Mammograms are found in 
three forms, such as screen-
film mammograms (SFMs), 
digital mammograms 
(DMs), and digital breast 
tomography (DBT). SFMs 
and DMs are 2D grayscale in 
nature, but DBT provides 
multiple frames of 2D 
grayscale images that appear 
like a black-and-white video. 

(Arefan, Talebpour, Ahmadinejhad, & 
Asl, 2015; Arevalo, González, Ramos-
Pollán, Oliveira, & Lopez, 2015; 
Fonseca et al., 2015; Rouhi, Jafari, 
Kasaei, & Keshavarzian, 2015; Kim, 
Kim, & Ro, 2016; Leod & Verma, 
2016; Bakkouri & Afdel, 2017; 
Carneiro, Nascimento, & Bradley, 
2017; Dhungel, Carneiro, & Bradley, 
2017; Duraisamy & Emperumal, 2017; 
Jaffar, 2017; Khan, 2017; Kumar, 
Bhadauria, et al., 2017; Qiu et al., 2017; 
Samala et al., 2017; Sert et al., 2017; 
Sun, Tseng, Zhang, & Qian, 2017; 
Zhang et al., 2017; Samala et al., 
2018a) 

US US images are also known as 
Sonograms. The US images 
are used in three 
combinations: simple 2D 
grayscale US images, US 
images along with additional 
additive features of shear-
wave elastography (SWE) 
color images, and US images 
along with Nakagami 
colored images. 

 

(Nascimento et al., 2016; Zhang et al., 
2016; Byra, Piotrzkowska-
Wroblewska, Dobruch-Sobczak, & 
Nowicki, 2017; Han, Kang, et al., 
2017) 
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Medical 
Imaging 
Modalities 

Brief Description Studies 

MRI MRI is used with pre and 
post-contrast [Dynamic 
Contrast-enhanced (DCE) 
MRI] images to diagnose the 
BrC. Post-contrast images 
are colored images but are 
usually converted into 
grayscale to feed into ANN. 

(Bevilacqua et al., 2016; Amit et al., 
2017; Han, Wei, et al., 2017) 

Hp Images Hp Images are H&E stained 
colored images and 
subdivided into two 
categories: whole slide 
images and image patches 
extracted from WSI by an 
expert pathologist. 

(Cao, Qin, Jing, Chen, & Wan, 2016; 
Spanhol et al., 2016a; Wu, Shi, Li, Suo, 
& Zhang, 2016; Xu et al., 2016; 
Abdullah-Al, Bin Ali, & Kong, 2017; 
Araujo et al., 2017; Bayramoglu, 
Kannala, & Heikkila, 2017; Bejnordi et 
al., 2017; Chang et al., 2017; Han, Wei, 
et al., 2017; Nahid & Kong, 2017; 
Nejad, Affendey, Latip, & Ishak, 2017; 
Spanhol et al., 2017; Wan et al., 2017; 
Zheng et al., 2017; Abdullah-Al, 
Mehrabi, & Kong, 2018; Bardou et al., 
2018; Feng et al., 2018; Gandomkar et 
al., 2018; Nahid et al., 2018) 

Multimodal
ities 

Some studies used the 
combination of two 
modalities of grayscale 
images named 
multimodalities for BrT 
classification. These 
combinations are MG with 
MRI and US with CT. 

US with CT (Cheng et al., 2016) 

MG with MRI (Hadad et al., 2017) 

 

 

2.3.1 Mammogram 

Mammograms (MGs), also known as low-dose breast X-ray images, enable 

radiologists to investigate breast tissues for anomalies. MGs have been studied for the last 

two decades and are usually suggested in early stages called MG screening, see Figure 

2.1 (A). In MG analysis, a radiologist looks for the presence of mass (cyst or lump, Figure 

2.1 (A)) and tiny deposits of calcium (specifically with an irregular shape) called micro-

calcifications that appear like small white spots or flecks, see Figure 2.1 (B). However, 

due to imaging technology advancement, MGs fall into three categories, namely, screen-
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film mammography (SFM), full-field digital mammograms (FFDM), and digital breast 

tomosynthesis (DBT). 

 
Figure 2.1: (A) Mammogram Screening: Masses with areas of varying density 
reflecting the presence of elements which are of fat and soft-tissue density (Jonathan 
J. James, 2016). (B) Left: A mammogram image view, Right: A clustered micro-
calcifications in magnified view (Jing, Yang, & Nishikawa, 2012) 

The traditional SFM images were used for BrT classification in many studies (Arevalo 

et al., 2015; Dhungel et al., 2017; Duraisamy & Emperumal, 2017; Jaffar, 2017; Khan, 

2017). Dhungel et al. (2017) proposed an integrated model for the detection, 

segmentation, and classification of BrC into benign or malignant masses using SFM. 

Similarly, Duraisamy and Emperumal (2017) proposed a novel method by using the 

Chan-Vese level set method to segment SFM images before classifying BrC into normal, 

benign, or malignant cases.  

The second category of MGs, FFDM (simply called digital MG or DM), is a well-

adopted technology used by several researchers for BrT classification (Arefan et al., 2015; 

Carneiro, Nascimento, & Bradley, 2015; Leod & Verma, 2016; Carneiro et al., 2017; 

Hadad et al., 2017; Kumar, Bhadauria, et al., 2017; Qiu et al., 2017; Sert et al., 2017; Sun 

et al., 2017; Zhang et al., 2017). Carneiro et al. (2017) developed a holistic approach to 

classify unregistered DM and corresponding segmentation maps into normal, benign, or 

malignant breast lesions. Moreover, Qiu et al. (2017) proposed a model to classify benign 

(B) (A) 
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and malignant masses using DM without lesion segmentation, feature extraction, or 

feature selection.  

In the third category, the most advanced MG technology is 3D MG, known as DBT. 

The DBT machine takes many views by moving over the breast and integrates images to 

look like a video. Nonetheless, due to the limited availability of datasets, few studies used 

DBT for BrT classification. Kim et al. (2016) implemented a BrT classification model to 

discover the latent bilateral feature representations of masses using the volume of interest 

in DBT. Similarly, Samala et al. (2018b) developed an efficient model by reducing the 

number of computations to perform BrC binary classification using all types of MGs, 

such as SFM, FFDM, and DBT.  

Apart from DBT image classification, most research used either SFM or DM. The 

prime advantage of the popularity of SFM is that the images are directly printed on large 

sheets of film; in addition, it is a more cost-effective and frequently available imaging 

technology than FFDM and DBT. By contrast, FFDM images are easier to view, store, 

print, and manipulate using a desktop computer. Therefore, digital MG images can be 

viewed on a computer screen using many options, such as zooming, contrast 

enhancement, and highlighting the affected regions. Hence, due to the efficient processing 

of digital images, most of the recent public datasets utilized by researchers are digital 

MGs instead of SFM.  

However, researchers started to used DBT because of many reasons; for instance, DBT 

may give a clear view of the breast from multiple angles to diagnose cancer with higher 

confidence and reduce the chance of follow-up testing as compared with FM or DM 

(Radiological Society of North America, 2018). Moreover, the availability of a large 

number of images per subject in video form provides better analysis opportunities to 

reduce the FNs in MGs. 
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Table 2.2, lists the detailed advantages and limitations of MGs. Regardless of MG 

diagnosis popularity, some cases may have dense tissues (bulky patient) or thick breast 

skin, such as in younger women, rendering the cancerous area almost invisible. Hence, 

macro-classification can be overlooked or misinterpreted during image analysis and may 

increase the FN rate. When image analysis is suspicious, the doctor may suggest some 

complementary tests, such as US, CT, PET, MRI, or biopsy, to acquire a detailed view of 

suspicious breast regions. 

Table 2.2: Studies, imaging modality, strengths, weakness, and applications of 
various medical imaging modalities used in BrT classification 

Imaging 
modality Applications Limitations 

Mammogram 
(MG) 

 Most studies employed SFM 
(Arevalo et al., 2015; Dhungel 
et al., 2017; Duraisamy & 
Emperumal, 2017; Jaffar, 2017; 
Khan, 2017; Samala et al., 
2018b) or DM (Arefan et al., 
2015; Carneiro et al., 2015; 
Fonseca et al., 2015; Leod & 
Verma, 2016; Carneiro et al., 
2017; Hadad et al., 2017; 
Kumar, H.S, Virmani, & 
Thakur, 2017; Qiu et al., 2017; 
Sert et al., 2017; Sun et al., 
2017; Zhang et al., 2017; 
Samala et al., 2018b) instead of 
DBT (Kim et al., 2016) for BrC 
diagnosis.  
 Relative to Hp, DM technology 

is an efficient, highly 
standardized, and cost-effective 
method to capture, store, and 
process images. 
 Needs less expertise and 

professional knowledge to 
diagnose and categorize an 
image compared with Hp. 
 A large variety of ML-based 

models are available to serve as 
a second opinion. 
 DBT shows a significantly 

higher rate of screen-detected 
cancer compared with DM 
screening (Hofvind et al., 2018). 

 Micro-calcifications are very 
small, isolated, with various 
sizes, shapes, dispersed, looks 
similar to their surroundings; 
thus, they cannot be identified in 
mammograms from high-
frequency noise. 
 Several preprocessing tasks are 

needed before performing 
classification because of the 
presence of many factors, 
artifacts, and structure, such as 
film emulsion error, digitization 
artifacts, fibrous strands, 
borders of breast, and 
hypertrophied lobules, causes 
misinterpretation. 
 High breast density complicates 

the visualization of cancer in 
mammograms. However, the 
deeper breast is usually prone to 
cancer, and a radiologist can 
overlook or misinterpret the 
findings (Elmore et al., 2009). 
Hence, US or MRI can be 
preferred for a dense breast. 
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Imaging 
modality Applications Limitations 

Magnetic 
Resonance 
Imaging (MRI) 

 An MRI scan does not use 
potentially harmful ionizing 
radiation like CT scans and X-
rays. 
 MRI images show more details 

of tissues (e.g., soft tissues of 
the breast) than CT scans (Tessa 
& Keith, 2018). 
 MRI can identify suspicious 

areas that can be further used for 
biopsy, known as MRI-guided 
biopsy. 
 DCE MR imaging uses contrast 

agents to show a clear and 
detailed view of affected breast 
regions.  

 MRI can still miss some tumors 
that a mammogram can detect. 
Thus, MRI is usually suggested 
in addition to a mammogram 
test. 
 An MRI is not generally 

recommended for women who 
are pregnant (MFMER, 2018). 
 May increase body temperature 

during long MRI (Tessa & 
Keith, 2018). 
 Contrast agents usually injected 

to enhance MRI images may 
create allergies or any 
complications, especially for 
kidney patients (MFMER, 
2018). 

Ultrasound 
(US) 

 Very few articles are found 
using US images (Silva, Costa, 
Pereira, W.C, & Filho, 2015; 
Cheng et al., 2016; Nascimento 
et al., 2016; Zhang et al., 2016; 
Byra et al., 2017; Han, Kang, et 
al., 2017) for breast cancer 
diagnosis. 
 Images are taken in a real-time 

fashion. Hence, a breast lesion 
can be viewed from multiple 
angles, reducing the FN rate in 
diagnosis. 
 Widely available, extremely 

safe (noninvasive and no 
exposure to radiation) 
technology. Hence, preferred 
for a routine checkup among 
pregnant women. 
 It can detect invasive cancer 

areas that can be further used for 
biopsy, known as US-guided 
biopsy. 
Additional features, such as 
color-coded SWE images and 
Nakagami parametric images, 
can be captured along with 
traditional US images to 
identify breast lesion ROI. 

 Poor image quality is usually 
observed when a great amount 
of tissues is examined by 
ultrasound images (Radiological 
Society of North America, 2018; 
Ultrasound, 2018). 
 SWE images can cause 

misinterpretation if the probe is 
pressed harder (Barr, 2012; 
Youk, Gweon, & Son, 2017). 
 Solely single Nakagami 

parameters cannot distinguish 
between benign and malignant 
tissues (Tsui, Yeh, Chang, & 
Liao, 2008). 
The shadowing effect due to 
high attenuation makes the 
tumor contour unclear; thus, 
selecting the proper ROI and 
estimating tumor Nakagami 
parameters are difficult (Tsui et 
al., 2008). 
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Imaging 
modality Applications Limitations 

Histopathology 
(Hp) Images 

 Many studies employed Hp 
images (Cao et al., 2016; 
Spanhol et al., 2016a; Wu et al., 
2016; Xu et al., 2016; Abdullah-
Al et al., 2017; Araujo et al., 
2017; Bayramoglu et al., 2017; 
Bejnordi et al., 2017; Chang et 
al., 2017; Han, Wei, et al., 2017; 
Nahid & Kong, 2017; Nejad et 
al., 2017; Spanhol et al., 2017; 
Wan et al., 2017; Zheng et al., 
2017; Bardou et al., 2018; Feng 
et al., 2018; Gandomkar et al., 
2018; Nahid & Kong, 2018; 
Nahid et al., 2018).  
 Hp images can be used in two 

forms, namely, whole slide 
images or ROI extracted from 
WSI.  
 Images are colored, can 

diagnose multiple types of 
cancers (Han, Wei, et al., 2017) 
instead of detecting malignancy 
only (Qiu et al., 2017) through 
grayscale imaging modalities. 
Ultimately, it leads to better 
prognosis and treatment at an 
early stage of BrC.  
 An in-depth study of BrC tissues 

is possible. Hp images enable us 
to provide more confident 
diagnosis results than any other 
imaging modalities.  
 Multiple ROI images can be 

created from WSI, which results 
in less probability to miss the 
cancer tissue detection, 
especially early-stage, and 
reduces the FN rate.  
 Images can be shared 

electronically to obtain an 
opinion from experts, especially 
for borderline cases, where two 
cancer types are hard to 
characterize.  
 It can be stored for a long time 

for future analysis or reference 

 A breast biopsy is an invasive 
method and thus has higher risks 
than other modalities. 

 Manual analysis of Hp images is 
time-intensive and requires high 
expertise; it depends on the 
professional experience and 
knowledge of a pathologist 
(Farahani, Parwani, & 
Pantanowitz, 2015).  

 Manual image inspections are 
tedious; thus, analysis reports 
are also affected by factors, such 
as fatigue and reduced 
pathologist attention (Spanhol et 
al., 2016b).  
 Hp image appearance variability 

causes misdiagnosis due to 
variability, different lab 
protocols, fixation, sample 
orientation in the block, human 
expertise in tissue preparation, 
microscopy maintenance, and 
color variation due to 
differences in staining 
procedures (McCann, Ozolek, 
Castro, Parvin, & Kovacevic, 
2015).  

 For multiclass classification, 
traditional machine learning 
algorithms produce poor results 
because of high variability 
among images of the same 
cancer subtype (McCann et al., 
2015). Hence, complex methods 
and high computational 
resources are required to 
improve computer-aided 
diagnosis. 
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2.3.2 Ultrasound 

Ultrasound (US) images are also known as sonograms. Breast US (Figure 2.2(B)) is 

an imaging test that sends high-frequency sound waves into the breast and converts them 

into images without radiation involvement, unlike MGs and MRI. Apart from breast tests, 

the US image test can help diagnose anomalies, such as pain, swelling, and infections into 

the human body's internal organs, including a baby in the mothers’ womb, brain, lung, 

heart, and hips. In addition, the US images can help perform breast needle biopsy (Section 

2.2.4) for the intrinsic analysis of breast tissues.  

 
Figure 2.2: (A) Well-defined rounded mass mammogram. (B) The absence of 

internal echoes and the posterior enhancement of the ultrasound beam are 
diagnostic of a cyst or lump or mass (Jonathan J. James, 2016) 

As per common clinical practices, the US image is not used like MG as its own for 

only breast screening purposes. Therefore, US may be the best approach to find 

abnormalities in MG or physical examination (such as benign, i.e., noninvasive cancer) 

in the form of a solid lump (mass) or fluid-filled regions (cysts) (Silva et al., 2015; Cheng 

et al., 2016; Nascimento et al., 2016; Han, Kang, et al., 2017). However, the US image 

cannot distinguish a cancerous mass from calcifications. Some researchers found that 

breast US is the better choice to diagnose BrC, especially when an MG is unable to 

highlight BrC lesions clearly, in young subjects with thick, fatty, or bulky breast skin. 

Detailed advantages and limitations of using US images are discussed in Table 2.2. Cheng 
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et al. (2016) deployed a model to extract features automatically from breast US images 

directly to perform accurate breast lesion classification as benign or malignant. Similarly, 

Nascimento et al. (2016) extracted handcrafted morphological features from breast US 

images and fed them into ANN for BrC binary classification (benign or malignant). 

Moreover, due to new developing imaging technologies, the US image has been equipped 

with more advanced features, such as US image with shear-wave elastography (SWE) 

(Figure 2.3) and the US image with Nakagami images. 

 
Figure 2.3: Left side US image (B-Mode). Shear-wave elastography image on the 

right side shows an irregular mass in red color, known as heterogeneous elasticity. 
The statistical parameters (e.g. Mean, Minimum, Maximum, etc.) of ROI (a large 

circle) are calculated (Youk et al., 2017) 

Elastography is a recently developed US technique used to visualize and measure 

tissue elasticity. Elastographic images are based on tissue stiffness or hardness (such as 

in liver or breast) and are used to differentiate between benign and malignant lesions 

(Youk et al., 2017). It is a supportive parameter to the US image and adopted to quantify 

tumor grade by using a standardized color scheme. Hence, Zhang et al. (2016) used US 

SWE images to learn features directly by using a deep belief network to classify images 

(with higher accuracy) into benign or malignant BrC.  

Moreover, US images are used with Nakagami images (Figure 2.4) for BrC analysis. 

US Nakagami parametric images are used with Nakagami distribution to model echo 

amplitude distribution to represent tissue characteristics (Tsui et al., 2016). These color-

coded images can be captured along with traditional US images. The color-coded US 

images enable radiologists to quantify the stiffness or hardness of tissues. Hence, SWE 
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and Nakagami features play an additional role to enhance BrT classification diagnosis. 

However, very few studies used the new US technology. Byra et al. (2017) developed a 

model and extracted the scattering properties of breast tissues from parametric maps of 

Nakagami images to perform BrT classification by using a convolutional neural network 

(CNN). Data collection, particularly the difficulty in collecting a large number of medical 

images from any medical institution, maybe one of the reasons for the few publications. 

 
Figure 2.4: Left US image (B-mode) of a lesion reconstructed using the RF data on 

the right side corresponding Nakagami map (Byra et al., 2017) 

2.3.3 Magnetic Resonance Imaging  

Magnetic resonance imaging (MRI) is a diagnostic technology that uses magnetic 

fields and radio waves to capture a detailed image of the body’s soft tissue, such as breast 

(Figure 2.5), liver, or lung, and bones. Therefore, breast MRI images can show more clear 

views of breast soft tissues than MGs, US, or CT images (Tessa & Keith, 2018).  

 
Figure 2.5: Samples of Breast MRI images (Breast Cancer Imaging, 2018) 
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Table 2.2, lists the advantages and limitations of MRI. Furthermore, MRI can identify 

suspicious areas that can be used for breast biopsy, known as MRI-guided biopsy. MRI 

machine captures many breast images of a single subject and combines as a detailed view. 

MRI is usually requested once cancer has been diagnosed and the doctor wants to obtain 

detailed information about the extent of the disease (MFMER, 2018).  

However, very few studies used MRI to classify BrC (Bevilacqua et al., 2016; Amit et 

al., 2017; Rasti et al., 2017) possibly because of the unavailability of the public datasets. 

Bevilacqua et al. (2016) extracted features from MRI-segmented images and inputted 

them into an ANN for benign and malignant BrC identification. Analogously, Amit et al. 

(2017) extracted regions of interest (ROIs) from breast MRI images and inputted them 

into a CNN for multiclass classification.  

To enhance image quality, a contrast agent is usually injected into the human body 

before the dynamic contrast-enhanced MRI (DCE-MRI). This procedure can produce 

colored parametric views along with contrast-enhanced grayscale images to provide 

detailed information about cancerous tissues (Moon, Cornfeld, & Weinreb, 2009). 

However, only one study benefitted from DCE-MRI for BrT classification. Rasti et al. 

(2017) employed a deep learning ensemble CNN model to classify breast tumors using 

segmented DCE-MRI images of an exclusive dataset. 

2.3.4 Histopathology Images 

In histopathology (Hp) biopsy imaging, tissue samples are collected from an abnormal 

region of the breast and fixed across glass microscope slides. These slides are stained by 

using hematoxylin-eosin (HE) and examined under a microscope by a pathologist for 

cancerous tissue diagnosis. Moreover, these stained slides are scanned and converted into 

digital colored images called WSIs, see Figure 2.6. Expert pathologists usually extract 

ROI patches from WSI with various zooming factors (Figure 2.6) to diagnose multiple 

subtypes of noninvasive cancer (benign) or invasive BrC (malignant) (Figure 2.7), which 
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is impossible by using grayscale images. Due to tissue level image analysis, apart from 

BrC diagnosis, biopsy imaging is a gold standard for many types of cancers, including 

liver, lung, and bladder cancer (Rubin, Strayer, & Rubin, 2008).  

 
Figure 2.6: Histopathology WSI is shown on the left at low magnification and a 

cropped region is shown on the right at high magnification (Liu, Hernandez-
Cabronero, Sanchez, Marcellin, & Bilgin, 2017) 

 
Figure 2.7: Histopathology image patches showing eight subtypes of breast cancer 

(Spanhol et al., 2016b) 

Therefore, many researchers employed Hp images to classify BrC multiclass 

accurately (Cao et al., 2016; Spanhol et al., 2016a; Wu et al., 2016; Xu et al., 2016; 

Abdullah-Al et al., 2017; Araujo et al., 2017; Bayramoglu et al., 2017; Bejnordi et al., 

2017; Chang et al., 2017; Han, Wei, et al., 2017; Nahid & Kong, 2017; Nejad et al., 2017; 

Spanhol et al., 2017; Wan et al., 2017; Zheng et al., 2017; Bardou et al., 2018; Feng et 

al., 2018; Gandomkar et al., 2018; Nahid & Kong, 2018; Nahid et al., 2018). For instance, 

Han, Wei, et al. (2017)  used Hp images to classify BrC into eight types. Araujo et al. 

(2017)  used Hp images to develop a model that classifies BrC into four subtypes. The 
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above-listed studies reported that the use of Hp images is beneficial for specific subtypes 

of benign or malignant BrC.  

Automatic breast classification through Hp images has several advantages over MGs 

and other imaging modalities Table 2.2. For instance, Hp images enable the classification 

of BrC into many subtypes instead of binary classes and the monitoring of treatment 

effects, whereas WSI images allow the creation of a large number of ROI images, which 

are required to train DNN models. Images can be shared electronically to obtain the 

opinion of any far distant expert pathologist and thus form an accurate diagnosis. 

Although Hp images are authentic for automatic BrT classification, such images have 

some drawbacks in automatic image classification. For instance, a biopsy is an invasive 

method. In addition, a long time is needed to create digital images from collected biopsy 

samples, and high expertise is needed to distinguish between subtypes of BrC. Moreover, 

color variation is high because of the staining process, lab protocols, and scanner 

brightness in the development of Hp images, which complicate training a multiclass DNN 

model efficiently, especially when using borderline cases. Details of the imaging 

modalities used in previous studies are listed in Table 2.2.  

2.3.5 Multimodalities 

Apart from classifying BrC by using a single medical imaging modality, few 

researchers preferred to use at least two different imaging modalities, see Figure 2.8. 

Hadad et al. (2017) trained various classification models by using two modalities, namely, 

MGs and MRIs. This study performed a binary classification by identifying a breast 

image possessing either mass or non-mass regions. Moreover, images were classified as 

normal, benign, or malignant by (Khan, 2017) through multimodalities, such as MGs with 

US images. Many imaging modalities for BrT classifications are usually adopted when 

the size of the collected exclusive dataset is small. Moreover, a model trained on multi-

site, multi-datasets using multi-modalities is highly robust to classify real-life images. 
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Eventually, the performance of the BrC classifier is unaffected by the images captured on 

various machines, different imaging protocols, and the environment for handling images. 

Hence, such types of models are more reliable to be implemented in real-life. 

 
Figure 2.8: Multimodalities used for BrT classification. The left image is a 

mammogram showing a solid mass. The Center image is the US image showing 
stuff tissues as black. The right side image is MRI providing a clear view of breast 

mass (Breast Cancer Imaging, 2018) 

 

2.4 Breast Cancer Classification Dataset Analysis 

This section elaborates on a thorough analysis of public datasets that were utilized in 

various studies for BrT classification. Table 2.3 shows that eight public datasets were 

employed for BrT classification, namely, Breast Cancer Data Repository (BCDR), 

Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-

DDSM), Digital Database for Screening Mammography (DDSM), INBreast, 

Mammographic Image Analysis Society (MIAS)/mini-MIAS, UCI Machine Learning 

Repository, Bioimaging Challenge 2015 Breast Histology (BCBH), and Breast Cancer 

Histopathological Image (BreakHis).  
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Table 2.3: Publically available datasets and corresponding URL 

# 
Dataset 

Name/Authors 
Description 

Link to Dataset 

1 

BCDR (Moura & 
López, 2013) 

Breast cancer digital repository 
(BCDR) is a public dataset 
contains MGs and US images of 
1734 patients. The images are 
classified and annotated by a 
specialized radiologist for 
researchers to develop computer-
aided diagnostic systems. 

https://bcdr.ceta-
ciemat.es/information/
about 

2 

CBIS-DDSM (Clark 
et al., 2013; Rebecca 
Sawyer Lee, 2016) 

Curated Breast Imaging Subset 
of DDSM (CBIS-DDSM) dataset 
is an updated version of the 
Digital Database for Screening 
Mammography (DDSM). It 
possesses 2620 scanned MGs 
labeled as normal, benign, and 
malignant. 

https://wiki.cancerima
gingarchive.net/displa
y/Public/CBIS-DDSM 

3 

DDSM (Chris Rose, 
2006) 

The Digital Database for 
Screening Mammography 
(DDSM) dataset provided 2500 
studies of MG images to facilitate 
the research community.  

http://www.eng.usf.ed
u/cvprg/Mammograph
y/Database.html 

4 

INBreast (Moreira et 
al., 2012) 

The INBreast dataset contains 
410 MGs images of 115 cases. 
Moreover, the images are 
categorized into various types of 
lesions like (masses, 
calcifications, asymmetries, and 
distortions). 

http://medicalresearch.
inescporto.pt/breastres
earch/index.php/Get_I
Nbreast_Database 

5 

MIAS (Suckling et al., 
2015) 

The Mammographic Image 
Analysis Society (MIAS) 
database of digital mammograms 
(v1.21) provides the 322 images, 
associated truth data. 

https://www.repositor
y.cam.ac.uk/handle/18
10/250394 

6 

mini-MIAS (Suckling 
et al., 1994) 

Mini-MIAS is originally a subset 
of the MIAS Database. The 
images were digitized and 
clipped/padded so that every 
image is 1024 × 1024 pixels. 

http://peipa.essex.ac.u
k/info/mias.html 

7 

UCI (Dua, 2017) Dataset possesses 700 instances 
for benign and malignant 
classification. 

https://archive.ics.uci.
edu/ml/datasets/Breast
+Cancer+Wisconsin+
%28Original%29 
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# 
Dataset 

Name/Authors 
Description 

Link to Dataset 

8 

BCBH (Araujo et al., 
2017) 

Bioimaging Challenge 2015 
Breast Histology (BCBH) dataset 
possesses four classes normal, 
benign, in situ carcinoma, and 
carcinoma. 

Overall 285 Hp mages are 
provided and split into training 
and testing sets. 

https://rdm.inesctec.pt
/dataset/nis-2017-003 

9 

BreakHis (Spanhol et 
al., 2016b) 

The Breast Cancer 
Histopathological Image 
Classification (BreakHis) 
provided 7909 Hp images of 81 
patients. The dataset is divided 
into eight subtypes of breast 
tumors. 

https://web.inf.ufpr.br/
vri/databases/breast-
cancer-
histopathological-
database-breakhis/ 

 

Most of the articles utilized public datasets, usually based on MG, US, or Hp images. 

By contrast, a fewer number of studies employed exclusive datasets. In exclusive datasets, 

imaging modalities that are not publicly available similar to CT scan images were also 

used. Public datasets provided more annotated images than exclusive datasets. Hence, 

researchers can prepare BrT classification models by comparing the performance of 

developed classification models. Therefore, the model tested on public datasets is more 

reliable than the models tested on exclusive datasets. Regardless of database type 

(exclusive or public) at the abstract level, grayscale (e.g., MG, US, and MRI) or colored 

images (e.g., Hp images) are used for BrT classification. Moreover, most studies 

performed binary classification, and very few studies focused on multiclass problems for 

BrT classification. By contrast, some studies performed breast density grading (Cao et 

al., 2016; Wan et al., 2017) into three classes, namely, low, high, and medium grade. 

Detailed analysis of public datasets used for BrT classification is given in Table 2.4. 

 Table 2.4 shows the dataset name and type of imaging modality along with several 

images, number of patients, number of classes, and class labels for each dataset. This 

table also shows the reference of studies in which a particular dataset was used. The 
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investigation of the dataset reveals that most previous research used MG datasets and 

usually addressed either binary classification (benign or malignant) or tertiary 

classification (normal, benign, and malignant) of BrC. In this regard, most of the studies 

used MG datasets. Where MG-based studies(Carneiro et al., 2015; Rouhi et al., 2015; 

Leod & Verma, 2016; Bakkouri & Afdel, 2017; Carneiro et al., 2017; Jaffar, 2017; 

Kumar, H.S, et al., 2017; Samala et al., 2017; Sert et al., 2017) used DDSM datasets and 

studies(Arefan et al., 2015; Rouhi et al., 2015; Duraisamy & Emperumal, 2017; Jaffar, 

2017; Khan, 2017; Kumar, Kumar, & Shao, 2017) used MIAS datasets.  

Moreover, the MGs of both INBreast and BCDR datasets utilized by studies (Arevalo 

et al., 2015; Bakkouri & Afdel, 2017; Carneiro et al., 2017; Dhungel et al., 2017; 

Duraisamy & Emperumal, 2017; Khan, 2017; Kumar, Kumar, et al., 2017). Whereas,  

study (Kumar, Kumar, et al., 2017) classified MGs of CBIS-DDSM datasets. However, 

multimodality (US and MG)-based BCDR-F03 datasets were used by studies (Arevalo et 

al., 2015; Duraisamy & Emperumal, 2017) for BrT classification.  

Table 2.4: Detailed analysis of public datasets used in breast cancer classification. 
Imaging 
Modality 

Dataset 
Name 

No. of 
Images 

No. of 
Patients 

No. of 
Classes 

Class Labels Study References 

Mammogram
s 

BCDR 1734 --- 3 Normal, Benign, 
Malignant 

(Khan, 2017) 

BCDR-
F03 

736 344 2 or 
10 

(Benign, 
Malignant) or 
(Normal, Benign-
calcification, 
Malignant-
calcification, 
Benign-
circumscribed 
masses, 
Malignant-
circumscribed 
masses, 
Speculated 
masses, Ill-
defined masses, 
Benign-
architectural 
distortion, 
Malignant-

(Arevalo et al., 
2015; 
Duraisamy & 
Emperumal, 
2017) Univ
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Imaging 
Modality 

Dataset 
Name 

No. of 
Images 

No. of 
Patients 

No. of 
Classes 

Class Labels Study References 

architectural 
distortion, 
Asymmetry) 

CBIS-
DDSM 

4067 --- 2 Benign, 
Malignant 

(Kumar, 
Kumar, et al., 
2017) 

DDSM 10480 2620 2 Benign, 
Malignant 

(Carneiro et al., 
2015; Rouhi et 
al., 2015; Leod 
& Verma, 
2016; Bakkouri 
& Afdel, 2017; 
Carneiro et al., 
2017; Jaffar, 
2017; Kumar, 
H.S, et al., 
2017; Samala 
et al., 2017; 
Sert et al., 
2017) 

INBreas
t 

419 115 2 or 3 (Benign, 
Malignant) or 
(Normal, Benign, 
Malignant) 

(Carneiro et al., 
2017; Dhungel 
et al., 2017; 
Kumar, 
Kumar, et al., 
2017) 

MIAS/ 
Mini-
MIAS 

322 161 2 Benign, 
Malignant 

(Arefan et al., 
2015; Rouhi et 
al., 2015; 
Duraisamy & 
Emperumal, 
2017; Jaffar, 
2017; Khan, 
2017; Kumar, 
Kumar, et al., 
2017) 

Mammogram
s and 
Ultrasound 
Images 

BCDR 3703 1010 2 Benign, 
Malignant 

(Bakkouri & 
Afdel, 2017) 

Univ
ers

iti 
Mala

ya



44 

Imaging 
Modality 

Dataset 
Name 

No. of 
Images 

No. of 
Patients 

No. of 
Classes 

Class Labels Study References 

Histopatholog
y Images 

BCBH 269 --- 4 Normal, Benign, 
In situ carcinoma, 
Carcinoma 

(Araujo et al., 
2017) 

BreakH
is 

7909 82 2 or 8 Four Benign 
Tumors 
(Adenosis, 
Fibroadenoma, 
Phyllodes tumor, 
Tubular 
adenoma), Four 
Malignant 
Tumours (Ductal 
carcinoma, 
Lobular 
carcinoma, 
Mucinous 
carcinoma, and 
Papillary 
carcinoma). 

(Spanhol et al., 
2016a; 
Abdullah-Al et 
al., 2017; 
Bayramoglu et 
al., 2017; Han, 
Wei, et al., 
2017; Nahid & 
Kong, 2017; 
Nejad et al., 
2017; Spanhol 
et al., 2017; 
Bardou et al., 
2018; Feng et 
al., 2018; 
Gandomkar et 
al., 2018; 
Nahid & Kong, 
2018; Nahid et 
al., 2018) 

 

Apart from MG-based binary or ternary classification, Hp images played a prominent 

role to solve multiclass (up to eight subtypes) problems for BrT classification. In this 

respect, many studies performed classification by using the BreakHis dataset, as shown 

in Table 2.4. Unfortunately, most studies performed binary classification, and very few 

obtained better results to solve multiclass problems. Moreover, only one study used Bio-

Imaging Challenge 2015 Breast Histology dataset and tackled the multiclass BrC issue. 

As per our review, the most widely used and authentic dataset in MG, US, and Hp imaging 

modalities are DDSM, BCDR, and BreakHis, respectively, because these datasets contain 

a large number of images of many patients, which are required to train DNN classification 

models with confidence. Unlikely, no publicly available datasets have been employed for 

CT, MRI, PET modalities. Hence, the unavailability of online datasets might be a reason 

for publically available datasets that may contain an insufficient number of images for 

training a DNN-based BrT classification model. 
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2.5 Medical Image Preprocessing 

This section covers the preprocessing techniques adopted for medical image 

multimodalities in BrT classification. In general, BrC image preprocessing tasks involve 

augmentation, ROI extraction, scaling, image normalization, and enhancement to remove 

artifacts or cropping, stain normalization, feature reduction, and image registration. 

However, the use of raw images (without preprocessing) usually distracts the 

classification model and may lead to a high misclassification rate. The distribution of 

studies among preprocessing methods and their advantages are summarized in Table 2.5. 

Table 2.5: Distribution of studies among preprocessing methods and their 
advantages 

Preprocessing 
Method 

Methodology Advantages References 

Augmentation Geometric 
Transform like 
rotation, flip 

To avoid the DNN model 
overfitting issue. 

To overcome the class 
imbalance training problem. 

The network can learn lesions 
from many angles like a 
pathologist usually does in 
real-life for better analysis of 
Hp images. 

(Arevalo et al., 
2015; Bevilacqua 
et al., 2016; Cheng 
et al., 2016; Kim et 
al., 2016; Spanhol 
et al., 2016a; Xu et 
al., 2016; Amit et 
al., 2017; Araujo et 
al., 2017; Bakkouri 
& Afdel, 2017; 
Bayramoglu et al., 
2017; Bejnordi et 
al., 2017; Byra et 
al., 2017; Carneiro 
et al., 2017; Chang 
et al., 2017; 
Dhungel et al., 
2017; Duraisamy 
& Emperumal, 
2017; Hadad et al., 
2017; Han, Kang, 
et al., 2017; Jaffar, 
2017; Kumar, 
Kumar, et al., 
2017; Nejad et al., 
2017; Rasti et al., 
2017; Samala et al., 
2017; Sert et al., 
2017; Spanhol et 
al., 2017; Zhang et 
al., 2017; Zheng et 

Add noise/ 
Distortion ( 
Gaussian noise, 
Barrel or Pin 
Cushion 
transforms) 

Enables DNN to be trained 
robustly. Therefore, it can 
predict with higher accuracy 
even if images are noisy, as 
found in real-life. Hence there 
will be improved class label 
prediction for noisy images. 

DNN requires the least 
preprocessing steps at the 
time of prediction. 

Patch creation 
Methods 
(Patches with 
50% 
overlapping, no 
overlapping or 
randomly 
selected 
patches) 

Many images can be 
generated from the original 
images. Moreover, it can 
preserve the image aspect 
ratio, architecture or shape of 
the lesion, and subjective 
information. Hence, it 
increases the performance of 
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Preprocessing 
Method 

Methodology Advantages References 

the classifier and reduces the 
chance of false negatives. 

One can avoid artificial 
images generated by 
geometric transform or noise 
addition methods. 

No need to rescale images 
before inputting them to 
ANN. Hence, it may reduce 
the chance of information loss 
due to rescaling. 

 

al., 2017; Bardou et 
al., 2018; Feng et 
al., 2018; 
Gandomkar et al., 
2018; Samala et al., 
2018b; Kumar et 
al., 2020) 

Synthetic 
Minority Over- 

sampling 
technique 
(SMOTE) 

To increase the number of 
samples (vectors) to the 
minority class, in order to 
handle the class imbalance 
problem before DNN training. 

ROI 
Extraction 

Methods used 
like region 
growing, 
Nuclei 
Segmentation, 
Otsu Method, 
Markov 
Random Model 

Enables to increase the 
number of positive and 
negative image samples.  

Help the DNN model to learn 
better representation related 
to abnormal and abnormal 
regions and reduces the 
chances of overfitting. 

Saves computation time and 
resources. 

(Arefan et al., 2015; 
Arevalo et al., 2015; 
Fonseca et al., 2015; 
Rouhi et al., 2015; 
Bevilacqua et al., 
2016; Cao et al., 
2016; Cheng et al., 
2016; Kim et al., 
2016; Leod & 
Verma, 2016; 
Nascimento et al., 
2016; Amit et al., 
2017; Duraisamy & 
Emperumal, 2017; 
Han, Kang, et al., 
2017; Khan, 2017; 
Kumar, H.S, et al., 
2017; Rasti et al., 
2017; Samala et al., 
2017; Wan et al., 
2017; Zheng et al., 
2017; Feng et al., 
2018; Samala et al., 
2018b) 

Scaling Methods like 
Gaussian 
Pyramid, Bi-
cubic 
interpolation, 

Required to resize the image 
before served as input to the 
DNN. 

(Arefan et al., 2015; 
Fonseca et al., 2015; 
Cheng et al., 2016; 
Kim et al., 2016; 
Spanhol et al., 
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Preprocessing 
Method 

Methodology Advantages References 

Bilinear 
interpolation 

Carefully selected 
interpolation methods can 
avoid the loss of information 
in mapping to the new pixel 
grid. 

Gaussian pyramid can help to 
increase the number of images 
along with resizing. 

2016a; Xu et al., 
2016; Zhang et al., 
2016; Abdullah-Al 
et al., 2017; 
Bakkouri & Afdel, 
2017; Bayramoglu 
et al., 2017; 
Carneiro et al., 
2017; Chang et al., 
2017; Dhungel et 
al., 2017; 
Duraisamy & 
Emperumal, 2017; 
Han, Kang, et al., 
2017; Jaffar, 2017; 
Kumar, Kumar, et 
al., 2017; Nejad et 
al., 2017; Wan et al., 
2017; Gandomkar et 
al., 2018; Yao, 
Zhang, Zhou, & 
Liu, 2019) 

Normalization 
& 
Enhancement 

Histogram 
equalization, 
adaptive Mean, 
Median filters, 
Log transforms, 
CLAHE 
method, Wiener 
Filter 

Normalize the low-value and 
high-value intensity/contrast 
present in an image. 

Adaptive filters remove noise 
by mean, variance, and spatial 
correlations. 

Reduces US image blurring 
effects and impulse noise. 

DNN usually shows better 
performance on a normalized 
image, which helps to 
minimize loss while 
backpropagation. 

(Arefan et al., 2015; 
Arevalo et al., 2015; 
Rouhi et al., 2015; 
Bejnordi et al., 
2017; Duraisamy & 
Emperumal, 2017; 
Han, Kang, et al., 
2017; Jaffar, 2017; 
Khan, 2017; Nejad 
et al., 2017; Rasti et 
al., 2017; Sert et al., 
2017; Krishna & 
Rajabhushnam, 
2019) 

Remove 
Artifacts 

Using binary 
images and 
thresholding 
the pixel 
intensity, 
cropping 
border, 
Extracting 
Bigger regions, 
using geometric 
parabola 

Help to eliminated non-breast 
regions (labels, wages, 
opaque markers, white 
strips/borders, thorax, lungs, 
chest wall, and pectoral 
muscle) in mammograms, US 
and MRI. 

 

(Cao et al., 2016; 
Abdullah-Al et al., 
2017; Wan et al., 
2017; Gandomkar et 
al., 2018; Mullooly 
et al., 2019) 
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Preprocessing 
Method 

Methodology Advantages References 

around the rib 
cage. 

Stain 
Normalization 
or Removal 

Stain 
Normalization  

 

To make variable color (due 
to H&E staining of Hp 
images) uniform in all images 
of all patients. So that DNN 
will not distract due to 
brightness and color stain 
inconsistencies and show 
better classification results for 
multiclass BrC. 

Contrast, intensity, and color 
statistics of source images are 
almost like the reference 
image. 

 
The Reinhard method 
preserves the structures of Hp 
images. Therefore, suitable 
for BrT classification. 
Khan’s supervised method 
works at the pixel level and 
thus achieves, a good result 
for stain separation. 

 

(Arefan et al., 2015; 
Bevilacqua et al., 
2016; Bayramoglu 
et al., 2017; Sert et 
al., 2017; Kumar et 
al., 2020) 

 Color 
Deconvolution 

To extract intensities of 
hematoxylin-eosin (H&E) 
staining from Hp images and 
convert them into optical 
density space images without 
being significantly 
influenced. Hence it reduces 
the image dimensionality and 
uses the least resources and 
enhances the performance of 
classification. 

By adopting filtered and 
independent observations it 
reduces the impurity of the 
signal when estimating the 
stain matrix.  

It preserves texture 
information that is associated 
with stain colors in Hp 
images. 
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2.5.1 Augmentation 

Augmentation creates new images by increases the number of instances (BrC images) 

using basic image preprocessing techniques. In general, a DNN model requires a large 

number of images to be trained to produce reliable results. Indeed, image augmentation 

is required when the target dataset does not contain enough images for training a DNN 

model properly. This review identified four types of augmentation techniques, of which 

geometric transforms, noise addition, and patch extraction were implemented over breast 

images directly and synthetic minority over-sampling technique was adopted for feature 

vector data (manually extracted from breast images) before feeding to any ANN. For 

instance, some studies (Arevalo et al., 2015; Kim et al., 2016; Amit et al., 2017; Bakkouri 

& Afdel, 2017; Bayramoglu et al., 2017; Bejnordi et al., 2017; Byra et al., 2017; Carneiro 

et al., 2017; Chang et al., 2017; Dhungel et al., 2017; Duraisamy & Emperumal, 2017; 

Hadad et al., 2017; Han, Wei, et al., 2017; Jaffar, 2017; Nejad et al., 2017; Rasti et al., 

2017; Samala et al., 2017; Sert et al., 2017; Zhang et al., 2017; Zheng et al., 2017; Bardou 

et al., 2018; Gandomkar et al., 2018; Samala et al., 2018b; Kumar et al., 2020) utilized 

geometric transform (e.g., rotation at various angles, flip horizontally and vertically).  

However, other studies (Cheng et al., 2016; Spanhol et al., 2016a; Xu et al., 2016; 

Araujo et al., 2017; Duraisamy & Emperumal, 2017; Kumar, Kumar, et al., 2017; Spanhol 

et al., 2017; Zheng et al., 2017; Feng et al., 2018; Gandomkar et al., 2018) extracted many 

patches from the original image. Whereas, patches are extracted by using three strategies, 

namely, a random number of patches (Spanhol et al., 2016a; Spanhol et al., 2017), patches 

with 50% overlapping (Spanhol et al., 2016a; Araujo et al., 2017), and patches with no 

overlapping (fixed size window) (Cheng et al., 2016; Xu et al., 2016; Duraisamy & 

Emperumal, 2017; Kumar, Kumar, et al., 2017; Zheng et al., 2017; Feng et al., 2018; 

Gandomkar et al., 2018). Furthermore, augmentation by using noise addition or color 
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variation was adopted in previous studies (Bejnordi et al., 2017; Chang et al., 2017) to 

train a model robustly to handle noisy images while performing class label prediction. 

For instance, Chang et al. (2017) added a random distortion to original images while 

creating new images. 

2.5.2 Image Region of Interest Extraction 

An original breast image may contain many regions of normal and abnormal tissues, 

and the segregation of these regions is known as ROI extraction. ROI extraction has two 

major advantages. First, it increases the number of training and testing images required 

for DNNs. Second, it supports DNNs to learn only normal and abnormal regions instead 

of irrelevant regions.  Many studies (Arefan et al., 2015; Arevalo et al., 2015; Fonseca et 

al., 2015; Rouhi et al., 2015; Bevilacqua et al., 2016; Cao et al., 2016; Cheng et al., 2016; 

Kim et al., 2016; Leod & Verma, 2016; Nascimento et al., 2016; Amit et al., 2017; 

Duraisamy & Emperumal, 2017; Han, Kang, et al., 2017; Khan, 2017; Kumar, H.S, et al., 

2017; Rasti et al., 2017; Samala et al., 2017; Wan et al., 2017; Zheng et al., 2017; Feng 

et al., 2018; Samala et al., 2018b) extracted ROIs from the original image before BrT 

classification. For instance, Samala et al. (2018b) extracted thousands of ROI from 3D 

MG DBT images. Similarly, Rouhi et al. (2015) cropped the ROI of abnormal tissues and 

mass regions before BrT classification. 

 

2.5.3 Scaling 

Scaling or resizing is an important preprocessing task applied to images before they 

are fed directly into a DNN. Image scaling or interpolation occurs when an image is 

resized from the one-pixel grid to another. It increases or decreases the number of pixels 

by remapping. Most of the selected studies (Arefan et al., 2015; Fonseca et al., 2015; 

Cheng et al., 2016; Kim et al., 2016; Spanhol et al., 2016a; Xu et al., 2016; Zhang et al., 

2016; Abdullah-Al et al., 2017; Bakkouri & Afdel, 2017; Bayramoglu et al., 2017; 
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Carneiro et al., 2017; Chang et al., 2017; Dhungel et al., 2017; Duraisamy & Emperumal, 

2017; Han, Wei, et al., 2017; Jaffar, 2017; Kumar, Kumar, et al., 2017; Nejad et al., 2017; 

Wan et al., 2017; Gandomkar et al., 2018; Yao et al., 2019) adopted interpolation 

methods, such as nearest neighborhood, bilinear, or bi-cubic. For instance, Dhungel et al. 

(2017) adopted the bi-cubic interpolation method to rescale images before feeding into a 

five-layered CNN for BrC binary classification. Zhang et al. (2016) utilized bilinear 

interpolation to resize US BrC images for binary classification. However, Bakkouri and 

Afdel (2017) adopted Gaussian pyramids to reduce and expand image size using MG 

images before classification. 

2.5.4 Normalization and Enhancement 

Medical image acquisition and digitization are affected by involving color and light 

conditions. Hence, different color and light conditions affect all pixel values present in an 

image. To overcome these issues, researchers adopted many techniques, which can be 

broadly divided into two categories: global or local image normalization and 

enhancement techniques.  

Global image normalization and enhancement techniques perform the same operation 

on all pixels of images, such as histogram, mean, and median contrast/intensity 

normalization. By contrast, local image normalization and enhancement techniques 

operate on any pixel depending on the contrast or intensity of the neighboring pixels. 

DNNs usually perform better when the input images are normalized and decorrelated 

because these properties help gradient-based optimization and learning (Jarrett, 

Kavukcuoglu, & LeCun, 2009; Krishna & Rajabhushnam, 2019).  

Whereas, some studies (Arefan et al., 2015; Arevalo et al., 2015; Bejnordi et al., 2017; 

Duraisamy & Emperumal, 2017; Han, Kang, et al., 2017; Jaffar, 2017; Khan, 2017; Nejad 

et al., 2017; Rasti et al., 2017; Sert et al., 2017) utilized the techniques to improve image 

quality before feeding into any type of DNN for BrT classification. For instance, some 
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studies (Bejnordi et al., 2017; Duraisamy & Emperumal, 2017; Nejad et al., 2017) 

employed global contrast normalization by using mean filters to solve the multiclass BrT 

classification problem. Khan (2017) removed US image speckle noise and blurring effect 

by adopting Wiener and adaptive filters (e.g., mean, variance, and spatial correlations). 

The author reduced the impulse noise usually found in US images by using the mean filter 

and wavelet shrinkage. Moreover, image local contrast enhancement was performed by 

contrast limited adaptive histogram equalization (CLAHE). However, Jaffar (2017) 

adopted a hybrid of a bilateral filter with log transformation to preserve edges while 

performing image normalization. 

2.5.5 Removing Artifacts  

Artifacts are removed from breast images to eliminate all non-breast regions from the 

original raw image. Some imaging modalities, such as MG, US, and MRI, possess many 

artifacts (e.g., labels, wages, opaque markers, white strips/borders, thorax, lungs, chest 

wall, and pectoral muscle) (Figure 2.9) that should be removed before starting the BrT 

classification task. Few studies (Arefan et al., 2015; Bevilacqua et al., 2016; Bayramoglu 

et al., 2017; Sert et al., 2017; Mullooly et al., 2019) adopted preprocessing techniques to 

remove non-breast regions because they may not use the entire raw image but breast 

image ROIs for classification. For instance, Arefan et al. (2015) extracted non-breast 

regions from MGs in two steps, namely, the creation of binary images created by pixel 

thresholding to detect connected areas and the deletion of small disconnected areas. 

Hence, the breast region is separated from the rest of the background before performing 

breast density multiclassification, such as fatty, glandular, or dense breasts. Bevilacqua 

et al. (2016) classified breast US images after eliminating the thorax part by considering 

a geometric parabola that follows the rib cage border. Moreover, Sert et al. (2017) 

removed white strips found at MG borders by thresholding the intensity value to 150. 
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-

 
Figure 2.9: Different artifacts in a mammogram (Left image) and MRI (right 

image) (Saidin, Sakim, Ngah, & Shuaib, 2012; Breast Cancer Imaging, 2018) 

2.5.6 Stain Normalization 

In digital pathology (DP) labs, the preparation of Hp biopsy images involves different 

chemicals, stains, lighting effects, and scanners to develop digital images from collected 

breast tissue samples. The inconsistencies in Hp images may be introduced by using 

different chemicals for staining, concertation of colors, or different scanners from many 

vendors. Moreover, these factors may create major inconsistencies in images of two 

patients even if images are prepared in the same DP lab. To eliminate these 

inconsistencies, previous studies used RGB histogram specification, Reinhard’s 

(Reinhard, Adhikhmin, Gooch, & Shirley, 2001), Macenko’s (Macenko et al., 2009), and 

Khan’s methods (Khan, Rajpoot, Treanor, & Magee, 2014) to normalize the Hp images 

before classification, see Figure 2.10.  

 
Figure 2.10: Source image stain normalized by using a reference image through 

three techniques 
 
Many studies (Cao et al., 2016; Abdullah-Al et al., 2017; Araujo et al., 2017; Wan et 

al., 2017; Zheng et al., 2017; Gandomkar et al., 2018; Kumar et al., 2020) employed stain 

normalization or removal techniques before proceeding toward BrT classification. For 
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instance, Abdullah-Al et al. (2017) used Retinex operation to perform a non-linear 

transformation to normalize illumination. Wan et al. (2017) adopted Khan’s method to 

perform a non-linear mapping-based stain normalization. Gandomkar et al. (2018) 

employed two stain normalization methods, namely, the histogram specification-based 

method and Reinhard’s method; the latter uses mean and standard deviation to match 

RGB channels with the reference image. Furthermore, (Zheng et al., 2017) removed the 

color stain by using the color deconvolution method proposed by Ruifrok and Johnston 

(2001). This method separates the color information acquired by H&E staining. It 

determines the contribution of all applied stains according to the stain specific RGB 

absorption. 

2.6 Machine Learning Based Classification Model Types Used for BrC 

Detection and Classification 

This literature review reveals that two types of predictions are made for BrC diagnosis. 

First is related to predicting either the BrT is benign or malignant named BrC detection. 

Whereas, the second one is to diagnose the subtypes of BrT for each benign (i.e., A, F, 

TA, and PT) and malignant (i.e., DC, LC, MC, and PC) commonly referred to as BrT 

classification.  Moreover, this literature review reveals that BrC detection and BrT 

classification models are mainly of two types. The first type of model is based on ML 

classifiers like softmax, kNN, LDA, linear regression (LR), NB, DT, and SVM. Whereas, 

the second type of models are based on artificial neural networks (ANN). However, ANN 

is mostly using the softmax classifier for the detection/classification of BrC Hp images. 

2.6.1 Traditional Machine Learning Classification Models Used for BrC 

Detection and Classification 

It is observed while performing the review, that the most commonly used ML 

classifiers for BrC detection/classification are kNN, LDA, LR, NB, DT, SVM, and 
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softmax as shown in Table 2.6. This table shows the distribution of studies where various 

types of ML classifiers are used for BrC detection/classification. The basic concept 

behind each of the aforementioned ML classifier is given as follows. 

The kNN (Fix, 1951) is one of the simplest classifier also known as non-parametric 

(i.e., little or no prior knowledge about the distribution of the data is required), lazy 

learning algorithm. Simply, the kNN separates data points into several classes in order to 

predict a class label for a new testing point. It is lazy because it does not use training data 

points for generalization. It determines the feature similarity i.e. how much a new testing 

point is similar to the training points. Where class label or discrete value for a new testing 

point is decided by majority voting of k nearest neighbors. 

The LDA (Fisher, 1936) is basically a dimensionality reduction method, which is also 

used to solve classification problems in supervised learning (requires labeled data for 

training) manner. LDA converges data points into lower dimension space from a higher 

dimension space. Moreover, LDA can make groups of data points in lower dimension 

space to separate them into two or more classes. 

In statistics, the LR is a linear approach to model the relationship between the 

dependent and independent variables. As a machine learning classifier, LR fits a line into 

a data point and maps numeric inputs to numeric outputs. It creates a model by creating 

a relationship between one or more variables. LR model ensures generalization to predict 

outputs for unseen inputs.  

The NB is a classification technique based on the Bayes theorem (i.e., calculating 

posterior probability). NB assumes that the attributes of data are independent of each 

other, therefore called naive or simple. NB classifiers can be built easily and work better 

on a large dataset.  

The DT is an unsupervised machine learning predictive modeling approach. It creates 

a decision tree as a predictive model from training data to make predictions over testing 
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data. In DT the leaves represent the class labels, branches are used as features that lead to 

class labels.  

The SVM (Cortes & Vapnik, 1995) is a supervised machine learning classifier used 

for classification/regression. SVM represents data points in space by dividing with a gap 

as wide as possible. The unseen testing data points are then mapped into the same space 

to be predicted a category based on the side of the gap on which they fall. 

However, softmax is a function used in the last layer of ANNs (like in  CNN for image 

classification) to predict the probabilities for class labels and to quantify how good or bad 

a prediction is made. Thus, many researchers (Liao, Xu, Lv, & Zhou, 2015; Qi, Wang, & 

Liu, 2017; Daghaghi, Medini, & Shrivastava, 2019) used softmax function based layer 

and termed it as a softmax classifier. Therefore, in this research, the term softmax is used 

as a softmax classifier.  

Table 2.6: Distribution of studies using various machine learning classifiers for 
BrC detection and classification 

Study 
References 

Machine Learning Classifiers BrC Detection/ 
Classification kNN LDA LR NB DT SVM softmax 

Kumar et al. 
(2020) 

No No No No Yes Yes Yes Detection 

Mullooly et al. 
(2019) 

No No No No Yes No Yes Detection 

Krishna and 
Rajabhushnam 
(2019) 

No No No No Yes Yes No Detection 

Bardou et al. 
(2018) 

Yes No No No Yes Yes Yes Classification 

Nahid and Kong 
(2018) 

No Yes No No No Yes Yes Detection 

Araujo et al. 
(2017) 

No No No No No Yes Yes Classification 

Han, Wei, et al. 
(2017) 

No No No No No No Yes Classification 

Nahid et al. 
(2018) 

No No No No No Yes Yes Detection 

Samala et al. 
(2017) 

No No No No No Yes Yes Detection 

Thirumalai and 
Manzoor (2017) 

No No Yes No No No No Detection 
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Study 
References 

Machine Learning Classifiers BrC Detection/ 
Classification kNN LDA LR NB DT SVM softmax 

Wan et al. 
(2017) 

No No No No No Yes No Detection 

Zheng et al. 
(2017) 

Yes No No No No Yes Yes Detection 

Oleksyuk, 
Saleheen, 
Caroline, 
Pascarella, and 
Won (2016) 

No No No Yes No No No Detection 

Pritom, Munshi, 
Sabab, and 
Shihab (2016) 

No No No Yes No No No Detection 

Spanhol et al. 
(2016a) 

Yes No No No Yes Yes Yes Detection 

Deng and 
Perkowski 
(2015) 

No No No Yes No No No Detection 

Rouhi et al. 
(2015) 

No No No Yes No No Yes Detection 

Lo, Shen, 
Huang, and 
Chang (2014) 

No No Yes No No No No Detection 

Ahn et al. 
(2013) 

No No Yes No No No No Detection 

Zhang (2011) No No No No No Yes No Classification 

 

2.6.2 Artificial Neural Network Used in BrC Detection and Classification 

The human brain consists of more than 10 billion interconnected neurons. Using 

chemical reactions, each neuron obtains information, processes it, and responds 

accordingly. Similarly, artificial neuron (AN) mimics the simple methods of mammal 

neurons, see AN in Figure 2.11. The first simplified artificial neuron was introduced by 

(McCulloch & Pitts, 1943). A group of ANs forms a layer, and a group of layers creates 

an ANN, see Figure 2.11. An ANN is an ML technique that can learn and perform tasks, 

such as classification, prediction, decision-making, and visualization, by using sample 

data. Moreover, an ANN can perform multi-disciplinary tasks by using many types of 

real-life data, including structured (data in vector form), semi-structured (like emails), 

and unstructured data, such as BrC medical images. Many types of ANNs were developed 
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to process different types of data. For the classification of BrC medical images, 

researchers mainly used two types of ANNs, namely, shallow neural networks (SNNs) 

and DNNs, see Figure 2.12. Most researchers employed DNNs (also known as deep 

learning-based models) for BrT classification. In subsequent subsections, the types of 

ANNs used for BrT classification are discussed in the light of selected studies. Moreover, 

the pros and cons of each model are presented in Table 2.8. 

 
Figure 2.11: Left: An artificial neuron. Right: sample of an artificial neural 

network 

2.6.2.1 Shallow Neural Network 

An ANN with a single hidden layer is referred to as an SNN (Bebis & Georgiopoulos, 

1994). The basic building block (elementary unit) of an ANN is an artificial neuron, 

simply referred to as neuron or node or hidden units. A simple ANN is a mathematical 

function that works similar to a biological neuron. The output of an ANN is represented 

by connection weights that update the effect of a given input, and the nonlinear 

characteristics are applied by any transfer function at a particular neuron. Afterward, 

neuron impulse is calculated by applying a non-linear function (i.e., activation function) 

on a weighted sum of input data. Simultaneously, a learning algorithm (e.g., 

backpropagation) is responsible for updating the weight to show the model’s learning 

capability. A simple ANN and the basic structure of SNN are shown in Figure 2.11.  
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Figure 2.12: Type of ANNs used for BrC detection and BrT classification 

In Figure 2.11, a simple ANN obtains unidirectional input, such as x1, x2, x3, …, xn, 

shown by arrows toward the activation function based on the weighted sum of input data. 

The neuron output is represented by f(y) and has the following relationship: 

�(�) = � �� + � ����

�

���

�,                                                                                                 (1) 

where xj, wj represents the input and weight matrix, respectively, b is the bias neuron 

that allows a classifier to translate its decision boundary, f(y) is an activation function, 

and y is the sum of the scalar product of the weight matrix and input.  

� = ���� +  ���� + ���� + ⋯ + ����.                                                                         (2) 

A nonlinearity function is also applied after the sum of the dot product of weighted 

inputs. The non-linearity function is also known as the activation function (Duch & 

Jankowski, 1999). The most popular choices for activation functions are rectified linear 

unit (ReLU), tanh, and sigmoid as shown in Table 2.7.  
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Table 2.7: Brief description of popular activation functions 

 
 
As shown in Figure 2.11, the nodes are distributed into the input, hidden, and output 

layers. The input signal flows from the input layer, passes toward the hidden layer, and 

ends at the output layer. Such type of input flow in a strict feed-forward fashion develops 

a feed-forward ANN (FF-ANN). However, instead of using an ANN with a single hidden 

layer, multiple hidden layers can be used, in FF-ANN. Noticeability, none of the nodes 

possess any connection within the same layer. This independence of neurons within a 

layer supports parallel computations while training an ANN. The training of an ANN is 

a learning process where patterns are learned from input data by changing the weights 

after applying some learning rules. Learning rules, such as backpropagation, delta rule, 

and perceptron rule, help modulate weights automatically while training the network. The 

trained ANN can then be used for prediction using real-life data.  

Many studies have created SNN models to classify BrC (Rouhi et al., 2015; Leod & 

Verma, 2016; Kumar, H.S, et al., 2017). Kumar, H.S, et al. (2017), ensembled six binary 

ANNs for 4-class breast density grading classification using MGs. Rouhi et al. (2015) 

developed an SNN model to find the threshold for regions growing segmentation and 

Activation 
Functions 

ReLU Tanh Sigmoid 

Equation ∅(�) = max (�, 0) ∅(�) = tanh (�) ∅(�) =
1

1 + ���
 

Range (0,∞)  (-1,1) (0,1) 
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Gradient 
�� ∅ > 0 �ℎ�� 1, 

 ���� 0 
1 − ∅(�)� ∅(�)(1 − ∅(�)) 

Update 
Suppressed 
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Overcome 
vanishing 
Gradient 
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classification of MGs into benign or malignant cases. These studies highlighted that using 

SNNs is beneficial for BrT classification. SNNs have some basic advantages owing to 

their simple structure. They possess a single hidden layer and work in a feed-forward 

fashion, thereby allowing them to create, implement, and optimize BrT classification. 

SNNs consume the least computation resources and time among the different types of 

ANNs. Moreover, SNNs can produce better results than other types of ANNs even if the 

dataset is small. However, using SNN also has some limitations. For instance, an SNN 

used for structured data has a limited number of dimensions; otherwise, small networks 

are unable to show good generalization performance over high-dimensional data, 

especially when complex patterns need to be learned to solve multiclass problems. 

Moreover, the performance of the network depends on the designed features and the 

optimization of the network structure. 

2.6.2.2 Deep Neural Networks 

DNNs are used for DL as an ML method and AI technique for automatic feature 

extraction. Usually, the word deep is referred to when more than one hidden layer has 

been deployed between the input and output layers of any NN (Svozil, Kvasnicka, & 

Pospichal, 1997). DNNs use representation learning to discover complex feature 

representations automatically (such as diagnosis of BrC using medical images) unlike 

traditional ML classifiers (e.g., support vector machine, random forest decision tree, and 

k-nearest neighborhood), which require HcFs to show optimum results. The empirical 

success of DNN is inherited by its mathematical formulas (Goceri, 2018). Over the years, 

DNNs focused on applications such as speech recognition (Hannun et al., 2014; Amodei 

et al., 2016), fraud detection (Paula, Ladeira, Carvalho, & Marzagão, 2016; Wang & Xu, 

2018), traffic sign detection (Islam, Raj, & Mujtaba, 2017), face recognition (Sun, Chen, 

Wang, & Tang, 2014; Parkhi, Vedaldi, & Zisserman, 2015), emotion recognition 

(Jirayucharoensak, Pan-Ngum, & Israsena, 2014; Kahou et al., 2016),  medical image 
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diagnosis (Wu, Chen, & Ding, 2014; Lakhani & Sundaram, 2017; Siddiqui, Mujtaba, 

Reza, & Shuib, 2017), and human activity recognition (Nweke, Teh, Alo, & Mujtaba, 

2018; Nweke, Teh, Mujtaba, & Al-garadi, 2019).  

The upsurge in DL research is fueled by its ability to extract salient features from raw 

images of BrC without relying on laboriously extracted HcFs. In recent years, an 

extensive number of DNNs have been proposed. The DNNs can be broadly categorized 

into multi-layer neural networks (ML-NN), deep belief neural network, stacked denoising 

auto-encoders (SDAE), principal component analysis network (PCANet), and CNN. 

Furthermore, CNN models were either trained from scratch called de-novo models or 

created through TL by using pre-trained models, see Figure 2.12. In subsequent 

subsections, the types of DNNs used for BrT classification are discussed in the light of 

selected studies. 

(a) Multi-Layer Neural Network 

An ML-NN is a type of DNN that is similar to an SNN. Nonetheless, an ML-NN 

possesses two or more hidden layers between the input and output layers, unlike an SNN 

(Bengio, 2009; Deng & Yu, 2014), see Figure 2.13. However, ML-NN training must be 

configured to obtain the desired results. Configuring an ML-NN is actually initializing 

and modulating the parameters to perform optimum training, such as initializing weights 

by generating any random number or by using prior domain knowledge before initiating 

the learning rule. Recently, the most popularly adopted learning rule is backpropagation 

(Abraham, 2005). In backpropagation, the weights are automatically updated in each pass 

on the basis of error rate (loss) produced at the output layer by using gradient and chain-

rule (Svozil et al., 1997). However, this literature review revealed that very few studies 

used ML-NN for BrT classification. Like, Kumar, H.S, et al. (2017) proposed an ML-NN 

model with two hidden layers and optimized by different stopping criteria using 22 
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morphological features extracted from 100 US images to classify benign or malignant 

BrC.  

 
Figure 2.13: A sample illustration of Multi-Layer Neural Network 

Furthermore, Arefan et al. (2015) developed an ML-NN model using 2–20 hidden 

layers. They extracted nine statistical features from 43 MG images to classify breast 

density as fatty, glandular, or dense. The afore-stated studies showed the urge of using 

ML-ANN. For instance, increasing the number of hidden layers can improve the 

generalization performance of the network. However, additional layers require more data 

instances for better training; otherwise, the network may be overfitted (good performance 

on validation data but unable to perform on target data). Furthermore, optimizing the 

number of hidden layers and training hyper-parameters for a larger size of ML-NN 

become crucial tasks (for further details, see Table 2.8).  

Table 2.8: ANN models used in selected studies for BrT classification 
ANN 
Types 

Strengths Weaknesses 

SNN Small size networks. 
 
Easy to develop, train and optimize the 
training parameters. 
 
A small amount of data can obtain 
better generalization performance. 
 
Requires less training time, 
computational power, and memory to 
store weights.  

Do not show good performance on 
high dimensional data.  
 
Performance solely depends upon the 
designed features and the structure of 
ANN.  
 
Difficult to generalize the predictions. 

ML-NN It includes all advantages of SNN, 
additionally, the increased hidden 

Includes all weaknesses of SNN, 
additionally, a higher number of 
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ANN 
Types 

Strengths Weaknesses 

layers help to get better generalization 
performance. 

 
High Dimensional data can be used for 
better feature extraction. 

hidden layers need more data to get 
better generalization performance.  

 

DBN 
 
 

This efficient, greedy learning can be 
followed by, or combined with, other 
learning procedures that fine-tune all of 
the weights to improve the generative 
or discriminative performance of the 
whole network.  

 
It can be deployed for high dimensional 
data that possess correlated features. 

Unable to track the loss while 
computing the log-likelihood. 

SADE Automatic denoising from high 
dimensional data enhances the 
performance of the BrT classification 
model, using a real-life medical image.  

 
Can track cross entropy which is what 
is being minimized by the model’s 
learning algorithm like back-
propagation. 

Denoising works better on high 
dimensional data compared to low 
dimensions because of higher 
dependencies usually found among 
higher dimensions like BrC medical 
images. 

PCA-Net Due to the large receptive field, it can 
extract overall observations of the 
objects in an image and captures more 
semantic level information. 

 
Due to binary hashing and block 
histogram, PCANet is flexible for 
mathematical analysis and justification 
of its effectiveness.  
 
 

The use of a simple hashing method 
cannot provide rich enough 
information to map the features. 
Hence affects the representation 
performance.  

 
Preferred when data possess much 
irrelevant information. 

CNN      
(De-novo) 

CNN(UDM): Customized deep CNN 
models can be created.  

 
A model can be created according to 
the type and number of images. 

CNN(UDM): usually difficult to train 
a model for a small number of images 
to solve the multiclass problem.  

 
Needs high expertise to design and 
optimize the deep network for 
specific data. May consumes lots of 
time and resources to get optimum 
results. 

 
CNN(CDM): Includes the same 
strengths as in CNN(UM)  

 

CNN(CDM): Two times training of 
the model will take a longer time and 
may require higher resources.  
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ANN 
Types 

Strengths Weaknesses 

Additionally, a model can be effective 
even if there are fewer target images to 
solve multiclass classification. 

 
Hard to optimize model training on 
two datasets of different domains like 
ImageNet and BreakHis.  

 
Requires a large number of instances 
(BrC images) with balanced 
distribution among classes. 

CNN(COM): Customized deep CNN 
models can be created.  
The training, validation, and testing 
were performed on a larger number of 
images of the same modality. Usually, 
it shows better performance. 
Preferred when source images (usually 
exclusive dataset images) are not 
enough for training. 
It allows using all target images for 
testing purposes only.  

CNN(COM): Medical images 
collected from different sites always 
have different image acquisition 
protocols. Hence needs extra and 
carefully adopted preprocessing 
methodologies to get a reliable 
generalized model. 

  

CNN  
(Pre-
trained) 

A deep CNN model can be trained 
quickly using the least resources 
compared to de-novo training. 

 
It can show comparable performance 
even if target data is smaller in size like 
Hp BrC images. 

If the target dataset is very small (like 
100 images) then results may be not 
reliable. 

 
Retraining also requires class wise 
balance data to produce unbiased 
results, usually not found in real-life 
medical images. 

CNN(FTM-ARL) possesses the fusion 
of new layers to be trained from 
scratch, so flexible to learn more 
generalized and unbiased weights from 
a small amount of target data like BrC 
images compared to FTM-LL. 

Limitations are the same as in 
CNN(FTM-LL) except CNN(FTM-
ARL): Training time may increase 
due to the introduction of new layers 
to be trained from scratch  

 
The optimization of newly appended 
layers needs to be addressed carefully 
to get the desired results. 

 

Furthermore, Arefan et al. (2015) developed an ML-NN model using 2–20 hidden 

layers. They extracted nine statistical features from 43 MG images to classify breast 

density as fatty, glandular, or dense. The afore-stated studies showed the urge of using 

ML-ANN. For instance, increasing the number of hidden layers can improve the 

generalization performance of the network. However, additional layers require more data 
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instances for better training; otherwise, the network may be overfitted (good performance 

on validation data but unable to perform on target data). Furthermore, optimizing the 

number of hidden layers and training hyper-parameters for a larger size of ML-NN 

become crucial tasks (for further details, see Table 2.9).  

(b) Deep Belief Networks 

A deep belief network is a type of DNN (Hinton, Osindero, & Teh, 2006) that consists 

of several layers of restricted Boltzmann machines (RBMs), see Figure 2.14(a) (Fischer 

& Igel, 2012). An RBM is a generative model that serves as a building block in greedy 

layer-wise feature learning and training of DNN. RBM maps binary data-vectors using 

binary latent variables. Hence, the goal is to obtain discriminative representation features. 

If the RBM network cannot directly be used for medical images (e.g., SWE images), then 

Point-wise gated Boltzmann machines (PGBM) (Figure 2.14(b)) are adopted to model 

complex image data (e.g., BrC US-SWE images) while avoiding irrelevant patterns.  

Moreover, in unsupervised learning (performed by using unlabeled data), a DBN can 

learn to probabilistically reconstruct its inputs. Hence, a hidden layer works like a feature 

extracting entity. All the hidden layers are trained one after the other, i.e., one layer at a 

time. Finally, a DBN can be trained in a supervised fashion for classification, see Figure 

2.14(c). However, only one study utilized the advantages of DBN for BrT classification 

[28]. Zhang et al. (2016) deployed a two-layered DBN composed of PGBM and RBM for 

BrC binary classification by using breast US-based SWE colored images. PGBM was 

equipped to distinguish between relevant and irrelevant features from SWE images. 

Furthermore, relevant features were supplied to RBM to learn the relationship among the 

BrC relevant features. Finally, SVM was used to classify benign or malignant BrC cases 

by using features extracted through RBM. 
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Figure 2.14: A restricted Boltzmann machine (RBM) with fully connected visible 

and hidden units (a), a sample diagram of supervised PGBM shown (b) (Sohn, 
Zhou, Lee, & Lee, 2013) and (c) shows a sample diagram of supervised DBN 

 
The main advantage of using a DBN for image classification is that it is mostly trained 

layer by layer, allowing each layer to be optimized easily for improved feature 

generalization. In addition, the layers, except the last one, can be trained in an 

unsupervised fashion. The last hidden layer is usually trained in a supervised manner to 

fine-tune the network output. Hence, a DBN provides an opportunity to perform better 

training using a small number of annotated images, also called semi-supervised learning. 

Semi-supervised learning is useful for medical image classification because finding 

labeled images for different types of cancers is difficult. However, using RBMs layered 

deep networks also has some limitations. For instance, a DBN cannot track the loss while 

computing the log-likelihood for which we care about as the better-trained model. 

(c) Stacked Denoising Autoencoder 

A stacked denoising autoencoder (SDAE) is a type of stacked autoencoder that helps 

eliminate noisy features, see Figure 2.15. SDAE networks can automatically extract 

discriminant representative hidden patterns from data using an intrinsic data 

reconstruction mechanism. The SDAE network can hypothetically address the issues of 

high variations in either shape or appearance of lumps. As the inherent benefit of 

automatic feature extraction along with noise tolerance, SDAE-based models can 

conceivably minimize issues related to image processing inaccuracies, which ultimately 

lead to non-reliable feature extraction.  

(b) (c) (a) 
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Figure 2.15: Left side figure, a sample network diagram of the traditional 
autoencoder. Right side figure, a network diagram of stacked denoising 

autoencoder 

Due to noise tolerance nature, few studies (Cheng et al., 2016; Feng et al., 2018) 

developed an SDAE-based model to classify BrC images. Cheng et al. (2016) developed 

a model for two-phased training. In the first phase, two-layered SDAE is trained using 

image ROIs. In the second phase, the pre-trained model is refined by supervised learning 

with additional neurons to preserve the original image size and aspect ratio. Softmax was 

used for benign or malignant classification for both breast US and lung CT images, with 

an Ac and area under the ROC curve (AUC) of 94.4%±3.2% and 98.4%±1.5%, 

respectively.  

Similarly, Feng et al. (2018) deployed SDAE consisting of three layers along with 

softmax. An SDAE extracts features layer by layer from breast Hp image ROIs in an 

unsupervised manner and the model is fine-tuned by using labels to train softmax for 

benign or malignant BrT classification. The authors obtained 98.28%±0.12% and 

90.54%±0.45% accuracies for the two classes. These results indicate that the performance 

of the SDAE-based model is comparable to that of any other type of DNN model because 

of its integral ability of noise reduction, especially when real-life medical images usually 

possess noise from different sources.  

Hence, auto noise reduction for medical images helps the network to learn more 

relevant features. Furthermore, layer-by-layer training facilitates easy optimization and 

regulation of training parameters. Regardless of its major advantages, SDAE also has 
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some limitations. For instance, SDAE shows poor performance on low-dimensional data 

or data possessing poor correlation among the dimensions (Vincent, Larochelle, Lajoie, 

Bengio, & Manzagol, 2010). High-dimensional data, such as medical images, usually 

inherit a very high correlation. 

(d) Principal Component Analysis Network 

Principal component analysis network (PCANet) is an easily implementable, two-

staged, unsupervised DL technique for image classification (Chan et al., 2015). The two-

staged network performs three tasks, namely, cascade PCA, binary hashing, and block-

wise histogram. PCA is used to learn multi-stage weights (filter banks), followed by 

binary hashing and block histograms for indexing and pooling. Binary hashing simply 

encodes the quantized binary code mapping to the sequence of principal components, see 

Figure 2.16. 

 
Figure 2.16: A two-staged PCANet block diagram sample (Chan et al., 2015) 

According to this review, only one study [34] employed PCANet with some variation 

of the kernel for breast and liver cancer analysis. Wu et al. (2016) created a PCANet-

based model to classify breast/liver cancer Hp images in binary classes. The author used 

random binary hashing in PCANet instead of simple sequence binary hashing to generate 

multiple random codes for information extraction. Finally, a low-rank bilinear classifier 

is used to classify images of two datasets. Compared with other DL-based networks, 

PCANets are easier to design, implement, and train by using different types of high-
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dimensional data. Due to binary hashing and block histogram, PCANet is flexible for 

mathematical analysis and justification of its effectiveness. Moreover, PCANet has a 

large receptive field, so that it can extract overall observations of the objects in an image 

and learn invariance from it. Hence, PCANet can capture pixel-level information. 

(e) Convolutional Neural Network 

CNN is a type of DL-based ANN technique. This technique has gained attention after 

work (Hinton & Salakhutdinov, 2006). Moreover, the history of CNN for medical image 

classification is a long one. Initially, a CNN-based “Neocognitron” model was proposed 

by (Fukushima & Miyake, 1982). Recently, image classification has been revolutionized 

after the birth of AlexNet (Krizhevsky, Sutskever, & Hinton, 2012).  

A deep CNN model usually consists of some primary layers, such as an input layer, 

one or more convolution layers, one or more fully connected (FC) layers, and an output 

layer using softmax to compute label probabilities. Convolution layers are responsible for 

learning high-level features, such as edges and bobs, whereas FC layers learn pixel-level 

features. Apart from primary layers, some other layers including a normalization layer 

(increases network stability) and a pooling layer (progressively reduces the spatial size of 

the representation to reduce the number of parameters and computation in the network) 

may be used after convolution layers, and a dropout layer (reduces network overfitting) 

is usually deployed after the FC layer, see Figure 2.17. However, training is performed in 

a supervised manner using backpropagation. In addition, hyper-parameters such as input 

image size and batch size (Goceri & Gooya, 2018) need to be carefully adjusted to obtain 

optimum results. In brief, the concept of Deep CNN is to make a hierarchical model to 

represent data at multiple levels of abstraction and enable the model to obtain accurate 

representations from data in a self-taught manner (Shen et al., 2017).  
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Figure 2.17: An illustration of deep CNN-based model for BrT classification using 

mammograms 

The CCN used for breast classification is divided into two broad categories, namely, 

the de-novo trained model and the TL-based model, see Figure 2.12. CNN models that 

were created and trained from scratch are called “de-novo models” (Hadad et al., 2017). 

Conversely, CNN models that exploited previously trained networks (e.g., AlexNet, 

VGG-Net, GoogLeNet, and ResNet) are called “TL-based models.”  

This survey on BrT classification revealed that many studies (Arevalo et al., 2015; 

Fonseca et al., 2015; Cao et al., 2016; Kim et al., 2016; Spanhol et al., 2016a; Xu et al., 

2016; Abdullah-Al et al., 2017; Amit et al., 2017; Araujo et al., 2017; Bakkouri & Afdel, 

2017; Bayramoglu et al., 2017; Bejnordi et al., 2017; Byra et al., 2017; Dhungel et al., 

2017; Hadad et al., 2017; Han, Kang, et al., 2017; Kumar, Kumar, et al., 2017; Nahid & 

Kong, 2017; Nejad et al., 2017; Qiu et al., 2017; Rasti et al., 2017; Sun et al., 2017; Wan 

et al., 2017; Zheng et al., 2017; Bardou et al., 2018; Nahid & Kong, 2018) used de-novo 

training.  

Conversely, little fewer studies (Bejnordi et al., 2017; Dhungel et al., 2017; Han, Kang, 

et al., 2017; Kumar, Kumar, et al., 2017; Zheng et al., 2017) employed pre-trained CNN 

for BrT classification. In this review, the de-novo CNN models are further categorized 

into two subtypes, namely, uni-dataset and multi-dataset models. Uni-dataset models 

(UDM) are de-novo models that are trained and tested on a single dataset, whereas cross-

domain models (CDM) or cross-origin models (COM) are trained and tested on multiple 
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datasets, see Figure 2.12. CDM-type models are created from scratch, trained on a dataset 

of different domains (e.g., nonmedical images), and ultimately retrained (after fine-

tuning) for the target dataset, such as BrC images. By contrast, COMs are trained on 

images of the same domain but collected from different sites, followed by fine-tuning and 

retraining for the target dataset. However, CDMs are usually smaller in size (possess less 

number of layers) and created with some special layers to enhance the classification 

performance compared with pre-trained models such as AlexNet (Han, Kang, et al., 

2017). 

Apart from models trained from scratch, pre-trained models were also adopted in many 

studies for BrT classification. The pre-trained models were trained on natural images and 

mostly possess highly deep structures to learn many class labels; for instance, AlexNet 

trained for 1000 class labels and contain five convolution layers along with three FC 

layers, see Figure 4.2. Two strategies were adopted by researchers to perform TL for BrT 

classification. First, only the last layer was fine-tuned followed by the retraining of the 

adopted model, named here as the fine-tuned model (last layer) (FTM-LL). Second, one 

or more layers of the pre-trained network were replaced with newly created layers before 

retraining the network using target data, named here as the fine-tuned model 

(append/remove layer) (FTM-ARL), see Figure 2.12. 

 
(f) A fusion of Deep Neural Networks  

The review of selected studies showed that most of the CNN-based models use a single 

type of CNN and are not used in a fused fashion. Some studies (Bejnordi et al., 2017; 

Nahid & Kong, 2018) deployed models by embedding some residual blocks along with 

convolutional layers based on pre-trained models, such as ResNet. However, CNN 

models that were used along with a residual block and were trained from scratch produced 

good results. For instance, Nahid and Kong (2018) developed a model using a residual 

block with the convolution layer and obtained an Ac of 92.19%. By contrast, a fusion of 
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CNNs was prepared by Nahid et al. (2018). The authors deployed three types of model, 

namely, CNN, long short-term memory (LSTM), and a fusion of CNN and LSTM. The 

CNN-based model outperformed the other models. Hence, the failure of fused models 

may be due to the small number of images that are to be fed into a larger fused network. 

In particular, training from scratch using a small number of images with a large (fused) 

network may produce unreliable results. Hence, considerable effort is required to assess 

confidently the effective use of fused CNN type of networks. 

2.6.3 Empirical Analysis of Traditional Machine Learning Models Vs. Deep 

Learning Models for BrC Detection and Classification 

It has been discovered in this review, that the aforesaid traditional ML BrC 

detection/classification models (based on classifiers like kNN, LDA, LR, NB, DT, and 

SVM) are commonly adopted due to six reasons (Kotsiantis, Zaharakis, & Pintelas, 2007). 

First, these types of models require fewer computational resources like a normal desktop 

computer with less training time compared to DL models. Second, the traditional ML 

classification model usually needs a small number of images for training compared to DL 

models. Therefore, traditional ML classification models can be trained efficiently using a 

small number of images to show comparable results. Third, fewer parameter adjustment 

is required to get almost similar results compared to DL classification models. Fourth, 

DL-based models get very smaller size input images like AlexNet (Krizhevsky et al., 

2012) get 227x227 pixels, whereas Hp images usually are of very high resolution like 

BCBH Hp image size is 2040 x 1536 pixels. Thus, rescaling is mandatory before feeding 

into DNNs, which causes loss of information (Komura & Ishikawa, 2018).  Sixth, apart 

from testing and training data DL model required validation data. However, traditional 

ML-based models do not require validation data. Thus more data instances are required 

to train a DL-based model compared to traditional ML-based models.  
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However, a softmax classifier is commonly used for ANN-based DL models for BrC 

detection and classification using medical images. The traditional ML classification 

model's performance is highly dependent upon the key step i.e., extraction of handcrafted 

features(HcFs) (Chen, Jiang, Li, & Li, 2013; Aghdam & Heidari, 2015). HcFs extraction 

is a highly difficult task for medical images like BrC medical images. Because it requires 

domain knowledge to get discriminative features that play a vital role in the training of 

the BrC classification model. However, DL-based models are able to extract medical 

image correlated features automatically, thus very little or no human expertise (i.e., 

domain knowledge) is required (Smitha, Shaji, & Mini, 2011).  

Thus, for BrC detection and classification DL-based correlated features are more 

discriminative compared to HcFs. However, traditional ML classifiers can be used after 

extracting the features from the DL model for BrC detection and classification using 

medical images like Hp images. 

2.6.4 Empirical Evaluation of BrC Deep Neural Network Models Using Different 

Datasets  

This section presents an empirical evaluation of different types of DNN on publicly 

available datasets. Table 2.9, shows the study-wise DNN models that have been employed 

on various datasets related to BrT classification. Here, the majority of the studies 

employed CNN instead of multi-layer NN and SNN to classify BrC. Moreover, most of 

the studies used MGs followed by Hp images. However, the most common datasets 

utilized for MG classification are DDSM, INBreast, BCDR-F03, and mini-MIAS.  

Carneiro et al. (2017) developed a CNN (FTM-ARL)-based model and achieved the 

best performance (0.96±0.05 VUS, 0.96±0.05 AUC) by using the DDSM dataset for three 

classes (normal, benign, or malignant) of BrC. However, using the same DDSM dataset, 

Rouhi et al. (2015) and Leod and Verma (2016) deployed SNN and reported 0.94 AUC 
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and 86% Ac for a binary classification problem. These studies show that the CNN(FTM-

ARL) model outperforms the SNN model using the same dataset. This finding can be 

attributed to the fact that CNN pre-trained models along with some new layers are more 

capable of learning better-generalized activations compared with shallow learning from 

scratch for BrT classification. Bakkouri and Afdel (2017) and Abdullah-Al et al. (2017) 

also used the DDSM MG dataset to distinguish between benign or malignant breast 

lesions. However, a former study adopted a CNN (UDM)-based model and showed a 

higher Ac of 97.28% compared with that obtained in a later study (i.e., 93.35%) that 

adopted a CNN (COM)-based model. The reason behind the success of CNN (UDM) 

maybe because the former study extracted the image ROIs by using Gaussian pyramids, 

which may enhance the model performance.  

Moreover, both Dhungel et al. (2017) and Kumar, Kumar, et al. (2017) used the 

INBreast MG dataset to distinguish between benign and malignant breast tumors. 

Although both studies used CNN (COM) models, the former study reported better 

performance (i.e., Sn=98%, Sp=70%) than the latter study (i.e., Ac=75%, AUC=0.57). 

Hence, the former study performed better than the latter possibly because of the use of a 

small network that is more likely to be overfitted instead of a deep-layered network.  

Similarly, Duraisamy and Emperumal (2017) and Arevalo et al. (2015) used the 

BCDR-F03 MG dataset to classify BrC. Here, the first study used a CNN (FTM-LL)-

based model, whereas the second study created a CNN(UDM) model. The first study 

model outperformed the second one because TL-based models usually perform better on 

a small number of images (BCRDR-F03 possesses only 736 images) than models trained 

from scratch. Similarly, Jaffar (2017) and Nahid and Kong (2018) utilized mini-MIAS 

MGs for two (benign/malignant) and three (normal/benign/malignant) types of BrC 

predictions. Moreover, the former study created a ML-NN network, whereas the latter 

study employed a CNN (COM) model type. However, the latter study showed better 
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performance (i.e., Sn=97%, Sp=100%) than the former (i.e., Sn=93.25%, Sp=90.50%). 

The better performance of the former study might be due to the smaller size of the network 

instead of using deep-layered convolutional networks, especially when dealing with a 

small number of images, such as the mini-MIAS dataset with only 322 images of 161 

patients. 

Apart from MG datasets, many studies used Hp image datasets, especially for 

multiclass BrT classification. In addition, the dataset was commonly used for Hp images 

in BreakHis followed by BCBH (Han, Kang, et al. (2017). Bardou et al. (2018) utilized 

the BreakHis dataset for multiclass (eight classes) BrT classification. The first study 

implemented a CNN(CDM) model, whereas the CNN(UDM) network was used by 

Bardou et al. (2018). Comparative analysis of both studies showed that the first study 

outperformed (Avg. Ac=93.2%, PRR=97%) the other study because of the pre-training 

of the newly created model using the ImageNet dataset. However, these studies improved 

the diagnosis of the eight subtypes of breast lesions.  

Similarly, other studies (Spanhol et al., 2016a; Abdullah-Al et al., 2017; Nahid & 

Kong, 2017; Nejad et al., 2017; Nahid et al., 2018) employed the BreakHis dataset by 

using the same type of network, such as CNN (UDM), for binary classification. However, 

the first study showed the highest Ac of 92.19% among all the studies. The author 

possibly deployed many residual blocks using CNN (for global feature extraction) along 

with contourlet transform and histogram features (for local feature extraction). 

Alongside MG or Hp image datasets for BrT classification, some studies used US 

(Silva et al., 2015; Cheng et al., 2016; Nascimento et al., 2016; Zhang et al., 2016; Byra 

et al., 2017; Han, Kang, et al., 2017; Khan, 2017), MRI (Bevilacqua et al., 2016; Amit et 

al., 2017; Hadad et al., 2017; Rasti et al., 2017), or more than one modality (Hadad et al., 

2017). Moreover, most of the datasets used for US and MRI images are exclusive because 

these modalities are rarely found in publicly available datasets. Zhang et al. (2016) 
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employed a two-layered DBN for the extraction of features from breast US-SWE images 

for malignancy detection. The author narrated an Ac of 93.4% (AUC=0.94). Similarly, 

Nascimento et al. (2016) developed a ML-NN model to classify breast US images into 

benign or malignant lesions. The author reported a higher Ac of 96.98% (AUC=0.98).  

Furthermore, Byra et al. (2017) employed a CNN(UDM) model by using US-based 

Nakagami images. This study reported 83% Ac (AUC=0.912±0.005) for binary classes 

of BrC. Few researchers adopted breast MRI modality (Bevilacqua et al., 2016; Amit et 

al., 2017; Hadad et al., 2017; Rasti et al., 2017) for cancer diagnosis using exclusive 

datasets. For instance, Bevilacqua et al. (2016) reported an Ac of 89.77%±5.84% for 

binary classes by deploying ML-NN for breast MRI classification. Similarly, Rasti et al. 

(2017) implemented a CNN(UDM) model from scratch for benign or malignant breast 

DCE-MRI classification. They reported the highest Ac of 96.39% for malignancy 

diagnosis.  

Instead of using the single modality, the authors maximized multi-modality to train the 

NN model. Khan (2017) developed a CNN(COM) model by using two exclusive datasets 

of different modalities, such as MGs and breast MRI, to perform binary classification. 

However, model training was performed on MG images, whereas testing results were 

obtained by using breast MRI. The reported Ac was 94% (AUC=0.98) for benign and 

malignant classes of breast MRI images. Hence, this review shows that the fusion of 

multi-modalities can improve the performance of DNN models. 

Table 2.9: Study-wise performance of ANNs for breast cancer detection and 
classification 

Reference 
ANN 
Type 

Dataset 
No. of 

Classe
s 

Performance 
Time, 
Resourc
e 

(Kumar, 
H.S, et al., 
2017) 

SNN  DDSM 4 Ac=79.5% Not 
given 

(Rouhi et 
al., 2015) 

SNN  DDSM, 
MIAS 

2 Avg [(Ac=86.66%, 
Sn=87.91%, Sp=85.40%, 
AUC=0.8825) (MIAS), 

Not 
given 
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Reference 
ANN 
Type 

Dataset 
No. of 

Classe
s 

Performance 
Time, 
Resourc
e 

(Ac=95.01%, 
Sn=96.25%, Sp=93.78%, 
AUC=0.9499) (DDSM)] 

(Leod & 
Verma, 
2016) 

SNN  DDSM, 
UCI 

2 Ac=86% (DDSM), 
Ac=89.175% (UCI) 

Not 
given 

(Feng et 
al., 2018) 

SDAE  ED(Hp 
Image) 

2 Ac=98.28±0.12, 
90.54±0.45, 
Pr=97.88,90.04 

6 Hrs 22 
Min 

(Cheng et 
al., 2016) 

SDAE  ED(US)  2 Ac=94.4±3.2, 
Sn=90.8±5.3, 
Sp=98.1±2.2,AUC=98.4±
1.5 

Not 
given 

(Wu et al., 
2016) 

PCA-Net ED(Hp 
Image) 

2 Ac=78.46±3.92, 
Sn=71.00±4.18, 
Sp=83.23±5.30 

Not 
given 

(Bevilacqu
a et al., 
2016) 

Multi-
Layer NN  

ED(MRI) 2 Avg Ac=89.77±5.84, 
Min Ac=73.08±0.43, 
Sn=0.89±0.10, 
Sp=0.90±0.09 

Not 
given 

(Nasciment
o et al., 
2016) 

Multi-
Layer NN  

ED(US)  2 Ac=96.98%, AUC=0.98 Not 
given 

(Arefan et 
al., 2015) 

Multi-
Layer NN  

mini-
MIAS 

3 Ac=97.66% Not 
given 

(Khan, 
2017) 

Multi-
Layer NN  

mini-
MIAS, 
BCDR 

3 Sn=97%,Sp=100% (mini-
MIAS)MG, 
Sn=98%,Sp=97% 
(BCDR)MG, 
Sn=99%,Sp=100% 
(BCDR)US 

Not 
given 

(Zhang et 
al., 2016) 

DBN  ED(US-
SWE) 

2 Ac=93.4%, Sn=88.6%, 
Sp=97.1%, AUC=0.947. 

1 Hr 11 
Min, 
GPU 

(Arevalo et 
al., 2015) 

CNN(UD
M)  

BCDR-
F03 

2 AUC=0.86. Not 
given, 
GPU 

(Araujo et 
al., 2017) 

CNN(UD
M)  

BCBH 4,2 Ac=77.8% (4 classes), 
Ac=83.3% (2 classes), 
Sn=95.6%. 

Not 
given 

(Bardou et 
al., 2018) 

CNN(UD
M)  

BreakHis 8,2 Ac=83.31% to 88.23% (8 
Classes), Ac=96.15%, 
98.33% (2 Classes). 

1Hr 43 
Min, 
GPU 

(Bayramog
lu et al., 
2017) 

CNN(UD
M)  

BreakHis 3 Avg Ac=80.10%, PRR= 
83.25%. 

Not 
given 

(Spanhol et 
al., 2016a) 

CNN(UD
M)  

BreakHis 2 Ac=90.0±6.7, 
PRR=85.6±4.8. 

3 Hrs, 
GPU 
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Reference 
ANN 
Type 

Dataset 
No. of 

Classe
s 

Performance 
Time, 
Resourc
e 

(Abdullah-
Al et al., 
2017) 

CNN(UD
M)  

BreakHis 2 Ac=85.36%, Sp=70.36%, 
Rc=91.36%, Pr=89%. 

 2 Hrs, 
GPU 

(Nahid & 
Kong, 
2017) 

CNN(UD
M)  

BreakHis 2 Max Sp=97.18%, Max 
Sn=99%.  

Not 
given 

(Nejad et 
al., 2017) 

CNN(UD
M)  

BreakHis 2 Ac=77.5%. Not 
given 

(Nahid & 
Kong, 
2018) 

CNN(UD
M)  

BreakHis 2 Ac=92.19%, Sn=94.94%, 
Rc=98.20%, Pr=98%. 

6 Hrs 
GPU 

(Nahid et 
al., 2018) 

CNN(UD
M) 

BreakHis 2 Ac=91%, Pr=96%. Not 
given 

(Bakkouri 
& Afdel, 
2017) 

CNN(UD
M)  

DDSM, 
BCDR 

2 Ac=97.28%, Sn=99.79%, 
Sp=94.78% 

Not 
Given, 
GPU 

(Kim et al., 
2016) 

CNN(UD
M)  

ED(DBT
) 

2 Avg AUC=0.847±0.012 Not 
given 

(Rasti et 
al., 2017) 

CNN(UD
M)  

ED(DCE
-MRI) 

2 Ac=96.39%, Sn=97.73%, 
Sp=94.87% 

Not 
given, 
GPU 

(Wan et al., 
2017) 

CNN(UD
M)  

ED(Hp 
Image) 

3 Avg. Ac=69% 20 Hrs 

(Cao et al., 
2016) 

CNN(UD
M)  

ED(Hp 
Image) 

2 Ac=90%, 74%, 76%. 
AUC=0.93 

Not 
given 

(Xu et al., 
2016) 

CNN(UD
M)  

ED(Hp 
Image) 

2 Ac=84.34, F1=85.21, 
Max AUC=0.89597 

Not 
given 

(Fonseca et 
al., 2015) 

CNN(UD
M)  

ED(MG) 4 Max Ac=78.35%, Avg 
Ac=73.05%, 

72 Hrs, 
CPU 

(Qiu et al., 
2017) 

CNN(UD
M)  

ED(MG) 2 Avg AUC=0.790±0.019, 
Max AUC=0.836±0.036 

Not 
given, 
GPU 
card 

(Sun et al., 
2017) 

CNN(UD
M)  

ED(MG) 2 Ac=82.43%, 
AUC=0.8818 

Not 
given 

(Hadad et 
al., 2017) 

CNN(UD
M)  

ED(MG, 
MRI) 

2 Ac=94%, AUC=0.98 
(MRI) 

7.5 Min, 
GPU 

(Amit et 
al., 2017) 

CNN(UD
M)  

ED(MRI) 3 Ac=83%, AUC=0.91 2 Min, 
GPU 

(Byra et al., 
2017) 

CNN(UD
M)  

ED(US, 
Nakagam
i) 

2 Ac=83%, Sn=82.4, 
Sp=83.3, 
AUC=0.912±0.005 

Not 
given 

(Duraisamy 
& 
Emperumal
, 2017) 

CNN(FTM
-LL)  

BCDR-
F03, 
MIAS 

10 Ac=99%, Sn=98.75%, 
Sp=1.0%, AUC=0.9815 

Not 
given, 
GPU 

(Gandomka
r et al., 
2018) 

CNN(FTM
-LL)  

BreakHis 8 Max. Ac=95.70% using 
one fold 

Not 
given 
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Reference 
ANN 
Type 

Dataset 
No. of 

Classe
s 

Performance 
Time, 
Resourc
e 

(Chang et 
al., 2017) 

CNN(FTM
-LL)  

BreakHis 2 Ac=83%,89%, 
AUC=0.93, 

Not 
given 

(Spanhol et 
al., 2017) 

CNN(FTM
-LL)  

BreakHis 2 Max Ac=84.2%, PRR= 
86.3% 

Not 
Given 

(Sert et al., 
2017) 

CNN(FTM
-LL)  

DDSM 2 Ac=94.1%,Pr=95%,Sn=9
4% 

Not 
given 

(Samala et 
al., 2017) 

CNN(FTM
-LL) 

DDSM, 
ED(MG) 

2 AUC=0.82±0.02, Not 
given 

(Zhang et 
al., 2017) 

CNN(FTM
-LL)  

ED(MG) 2 AUC=0.73 1 Hr 10 
Min, 
GPU 

(Han, 
Kang, et 
al., 2017) 

CNN(FTM
-LL)  

ED(US)  2 Ac=91%, Sn=0.86, 
Sp=93%, AUC>0.9 

Not 
give, 
GPU 

(Samala et 
al., 2018b) 

CNN(FTM
-ARL) 

DDSM, 
ED(DBT
) 

2 ED AUC=0.90±0.4 Not 
given, 
GPU 

(Carneiro 
et al., 
2017) 

CNN(FTM
-ARL)  

DDSM, 
INBreast 

3,2 VUS=0.96±0.05(DDSM)
, 3-class, VUS= 
0.94±0.05 (INBreast), 3-
class, 
AUC=0.96±0.05(DDSM)
, 2-class AUC= 
0.94±0.05 (INBreast), 2-
class,  

Not 
given 

(Kumar, 
Kumar, et 
al., 2017) 

CNN(CO
M)  

CBIS-
DDSM, 
MIAS, 
INBreast 

2 Ac=75%, AUC=0.57 
(INBreast) 

Not 
given 

(Jaffar, 
2017) 

CNN(CO
M)  

DDSM, 
mini-
MIAS 

2 Avg Ac=93.35%, 
Sn=93% (DDSM), Avg 
Ac=92.85%, Sn=93.25% 
Sp=90.50%, AUC=0.92 
(mini-MIAS). 

Not 
given 

(Zheng et 
al., 2017) 

CNN(CO
M)  

ED(Hp 
Image) 

15,2 Ac=96.4% (15 classes), 
Ac=95.9%, 
AUC=0.86306 (2 classes) 

Not 
given 

(Bejnordi 
et al., 
2017) 

CNN(CO
M)  

ED(Hp 
Image-
WSI) 

3 Ac=81.3%, AUC=0.962 Not 
given 

(Dhungel 
et al., 
2017) 

CNN(CO
M)  

INBreast 2 Sn=98%, Sp=70% Not 
given, 
CPU 

(Han, 
Kang, et 
al., 2017) 

CNN(CD
M)  

BreakHis
, 
ImageNet 

8 Avg Ac=93.2%, 
PRR=97% 

10 Hrs 
13 Min, 
GPU 

Exclusive Dataset(ED), Accuracy(Ac), Sensitivity(Sn), Specificity(Sp), Precision(Pr), Average(Avg), Maximum(Max), Patient 
Recognition Rate (PRR) 
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2.7 Evaluation Metrics Analysis and Review 

After training the DNN model followed by image preprocessing, training, and 

validation of BrC images, the test images are then served as input to the trained DNN 

model for classification to evaluate its performance. In general, the evaluation metrics are 

computed from the confusion matrix. In the confusion matrix, the actual (input) classes 

are represented with rows, whereas the column represents the predicted (output) class 

labels. Therefore, the BrC can be classified as true positive (TP) or true negative (TN) 

when correctly classified and false positive (FP) or false negative (FN) when incorrectly 

classified. Based on the confusion matrix, the most popularly adopted evaluation 

measures for BrT classification are Ac, Sn, Sp, Pr, Fm, AUC, the volume under the ROC 

surface (VUS) (Landgrebe & Duin, 2008), and patient recognition rate. These metrics are 

briefly defined in subsequent paragraphs. 

2.7.1 Accuracy  

The accuracy (Ac) measure represents how many of the total instances are correctly 

classified. It simply shows how much normal patients are correctly predicted and how 

many abnormal (BrC) patients are correctly diagnosed. It can be expressed by Equation 

(3): 

�� =  
(�� + ��)

(�� + �� + �� + ��)
.                                                                                                 (3) 

 

2.7.2 Sensitivity  

The sensitivity (Sn) or recall (Re) measure indicates how much of the total positive 

instances are predicted correctly. In simple words, it represents how much BrC patients 

are correctly predicted from overall abnormal (BrC) patients. Thus, it should be as high 

as possible. Low Sn means many cancer patients are misdiagnosed and will be treated as 

normal. Hence, Sn is highly important in medical image diagnosis. It can be computed by 

using Equation (4): 
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�� =  
��

(�� + ��)
.                                                                                                                       (4) 

 

2.7.3 Specificity  

Specificity (Sp) measure shows how much of the total negative predictions are correct. 

It simply represents how much of the normal (BrC) prediction is correct. It should be high 

as possible but is less important in medical diagnosis than Sn. It can be denoted by 

Equation (5): 

�� =  
��

(�� + ��)
.                                                                                                                        (5) 

 

2.7.4 Precision  

Precision (Pr) denotes how much of the total positive predictions are correct. It simply 

represents how much of the abnormal (BrC) prediction is correct. Both Sn and Pr should 

be high for medical image diagnosis to avoid misdiagnosis of cancerous patients. It can 

be calculated by Equation (6): 

 

�� =  
��

(�� + ��)
.                                                                                                                     (6) 

 

2.7.5 FMeasure  

FMeasure (Fm) reflects the simultaneous impact of both Sn and Pr through harmonic 

means by applying more penalty over extreme values. It helps to compare two models 

with high Sn and low Pr and vice versa. It can be measured by Equation (7).  

�� =  
2 ∗ (�� ∗ ��)

(�� + ��)
.                                                                                        (7) 

 

2.7.6 Area Under the ROC Curve 

A receiver operating characteristic curve (ROC) plots the curve of precision against 

sensitivity. The area under the ROC curve (AUC) is a common evaluation measure that 

helps to choose optimal models and ignore suboptimal ones (Figure 2.18 (a)), showing 
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the performance comparison of four classification models for BrC. The figure shows that 

model-1 outperforms the three other models. By contrast, model-4 shows the lowest 

performance. The AUC value can be computed by using Equation (8). An AUC value lies 

between 1 and 0. However, an AUC value of 1 represents a perfect model and an area of 

0.5 or below reflects an ineffective model. 

 

AUC =  
∑ ��(��)� − ��(�� + 1)/2 

��+��
.                                                                                         (8) 

where Ip and In denote the number of positive and negative BrC images, respectively, and 

Ri is the rank of the ith positive image in the ranked list.  

2.7.7 The Volume Under the ROC Surface  

The ROC is a standard tool to evaluate two-class classification problems. It was 

extended and enabled to evaluate multiclass problems named VUS (for three class VUSs, 

see Figure 2.18(b)) (He & Frey, 2008). Furthermore, in multi-classes, the independent 

and dependent (of the same type) classes are grouped, and many ROCs are created. 

Finally, the decomposed ROCs are interrogated by using cost-sensitive and Neyman–

Pearson optimization along with volume under the curve (Ferri, Hernández-Orallo, & 

Salido, 2003). 

 
Figure 2.18: (a) A sample ROC diagram, comparing the performance of four classification 

models of breast cancer. (b)  Illustration of sample VUS diagram for three classes 
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2.7.8 Patient Recognition Rate  

It is required to perform a patient-level analysis. The accuracy of a classifier, which is 

required to decide whether or not the patient is cancerous. Formally, the overall patient 

recognition rate (PRR) of a classifier is denoted by (Spanhol et al., 2016b) as follows: 

PRR =  
∑ ������� �����

����� ������ �� ��������
.                                                                                                   (9)                              

Where the patient score is calculated by the following:  

Patient score =  
����

��
.                                                                                                             (10) 

Here, �� represents the total number of cancer images of patient P, and ���� is the 

number of images correctly classified for patient P.  

2.7.9 Cross-entropy Loss  

Cross-entropy loss is used in the classification model to compute the probabilities to 

measure the performance. If the loss is high means the predicted label is diverging from 

the actual label. Thus, a perfect prediction is found when the loss is zero. It can be 

calculated by Equation (11). 

������������ =  − ∑ ��,� log���,�� .�
���                                                                        (11) 

Where, M,y, o, and p represents the number of classes, binary value indicator(0,1), 

correct classification for observation c, observation, and predicted probability 

respectively. 

In AlexNet based model, CrossEntopy loss is used to optimize the classification model. 

It is calculated on training and validation sets. It represents how well the model is doing 

in these two sets. It is the sum of errors made for each example in training or validation 

sets termed as training loss or validation loss. Training/validation loss value implies how 

poorly or well a model behaves after each iteration of optimization. Whereas, validation 

accuracy metric is used to measure the algorithm’s performance in an interpretable way. 

The accuracy of a model is usually determined after the model parameters and is 
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calculated in the form of a percentage. It is the measure of how accurate your model's 

prediction is compared to the true data. 

Table 2.10 shows the frequency of studies that used particular performance evaluation 

measures to compute the performance of BrT classification models. The majority of the 

studies evaluated the performance by employing the Ac metric. Moreover, studies 

(Spanhol et al., 2016a; Bayramoglu et al., 2017; Han, Kang, et al., 2017; Nejad et al., 

2017; Spanhol et al., 2017; Bardou et al., 2018; Gandomkar et al., 2018) calculated Ac at 

four magnifications (40×, 100×, 200×, and 400×) based on two levels, such as Ac at the 

image level and Ac at the patient-level, by using BreakHis Hp images. However, the 

patient-level Ac (i.e., patient recognition rate) is more important than the image-level Ac 

in medical science (Spanhol et al., 2017). For instance, previous studies (Spanhol et al., 

2016a; Bayramoglu et al., 2017; Han, Kang, et al., 2017; Spanhol et al., 2017; Gandomkar 

et al., 2018) used the BreakHis dataset and showed Ac at the four magnifications at both 

levels.  

Table 2.10: Frequency count of performance metrics used in each selected 
primary study 

Study Reference Performance Metrics 

(Arefan et al., 2015; Fonseca et al., 2015; Leod & Verma, 
2016; Spanhol et al., 2016a; Bayramoglu et al., 2017; Hadad 
et al., 2017; Han, Kang, et al., 2017; Kumar, H.S, et al., 
2017; Nejad et al., 2017; Spanhol et al., 2017; Bardou et al., 
2018; Gandomkar et al., 2018) 

Ac 

(Cao et al., 2016; Nascimento et al., 2016; Amit et al., 2017; 
Bejnordi et al., 2017; Chang et al., 2017; Kumar, Kumar, et 
al., 2017; Sun et al., 2017; Wan et al., 2017; Zheng et al., 
2017) 

Ac, AUC 

(Rouhi et al., 2015; Cheng et al., 2016; Zhang et al., 2016; 
Byra et al., 2017; Han, Kang, et al., 2017; Jaffar, 2017) 

Ac, Sn, Sp, AUC 

(Arevalo et al., 2015; Kim et al., 2016; Xu et al., 2016; 
Samala et al., 2017; Zhang et al., 2017; Samala et al., 2018b) 

AUC 
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Study Reference Performance Metrics 

(Bevilacqua et al., 2016; Wu et al., 2016; Bakkouri & Afdel, 
2017; Duraisamy & Emperumal, 2017; Rasti et al., 2017) 

Ac, Sn, Sp 

(Sert et al., 2017; Nahid & Kong, 2018) Ac, Sn, Pr, Fm 

(Carneiro et al., 2017) AUC, VUS 

(Khan, 2017; Nahid & Kong, 2017) Sn, Sp 

(Nahid et al., 2018) Ac, Pr 

(Feng et al., 2018) Ac, Pr, Fm 

(Araujo et al., 2017) Ac, Sn 

(Abdullah-Al et al., 2017) Ac, Sn, Sp, Pr, Fm 

(Dhungel et al., 2017) Sn 

(Qiu et al., 2017) Sn, Sp, AUC 

(Spanhol et al., 2016a; Bayramoglu et al., 2017; Han, Kang, 
et al., 2017; Spanhol et al., 2017; Gandomkar et al., 2018) 

Ac, PRR 

 

The second-highest number of studies used Ac along with AUC. The AUC evaluation 

measure is usually adopted to analyze the behavior of a model for each class (or for 

multiple model performance comparison). It reveals the authenticity of the overall 

predicted Ac and whether a model is biased toward any particular class. However, the 

studies that created multiple deep CNN de-novo models used exclusive datasets and tried 

to solve the multiclass BrC problem by reporting the AUC along with Ac to ensure that 

the newly trained model is unbiased and better than other models. For instance, studies 

(Amit et al., 2017; Bejnordi et al., 2017; Wan et al., 2017; Zheng et al., 2017) developed 

de-novo models to classify BrC into more than two classes.  

Furthermore, few studies reported either the AUC or AUC along with Ac, Sn, and Sp. 

Whereas, studies (Cheng et al., 2016; Zhang et al., 2016; Byra et al., 2017; Han, Kang, et 

al., 2017) used exclusive datasets of breast US images considered the Ac, Sn, Sp, and 

AUC metrics to test the performance of trained CNN models before deploying their 

commercial usage. Apart from some basic evaluation measures, few studies used more 

sophisticated evaluation measures, such as Fm and VUS, for multiclass BrT 

classification. For instance, Carneiro et al. (2017) used the VUS metric to show the 
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performance of a TL-based CNN model for three classes of BrC using the INBreast and 

DDSM datasets. Furthermore, some recent studies (Abdullah-Al et al., 2017; Sert et al., 

2017; Feng et al., 2018; Nahid & Kong, 2018) have reported Fm with few other evaluation 

metrics, such as Ac, Sn, Sp, and Rc. 

 

2.8 Limitations Related to the Existing Literature 

This section presents the limitations identified in the review literature. In specific, the 

current research enhanced the confidence level to make better decisions for BrC image 

analysis in three aspects, namely, the creation of DL-based models for better feature 

extraction, performance enhancement by reducing misclassification, and the performance 

metrics utilized to compare the results. 

 

2.8.1 Limitations of Artificial Neural Networks Based Models 

This review identified two major types of artificial neural networks (ANNs), such as 

SNNs and DNNs (i.e., DL-based), for BrC detection and classification. However, few 

researchers employed SNNs because their simple network can learn tasks better for both 

practical and theoretical reasons. In addition, they require less training time, 

computational power, and memory to store intermediate computational results (e.g., 

weights). Thus, they can be implemented economically with ease by using a normal 

desktop machine. Moreover, SNNs can show better generalization performance on a 

small amount of data than DNNs. SNNs also provide quicker responses than DNNs at the 

time of testing as required in real-time. However, using SNNs has some limitations. For 

instance, they may not show better performance on high-dimensional data such as Hp 

BrC images. Usually, SNNs use structured data; hence, their performance depends on the 

designed features and the number of neurons used in hidden layers.  

Therefore, to avoid the limitations of SNNs, most researchers employed DL-based 

approaches for BrC detection and classification. This review indicates that DL-based 
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approaches are based on either a multilayer neural network (ML-NN) or CNN. In ML-

NN, the increased number of hidden layers is supported to improve the generalization 

performance for BrC image detection and classification. However, it requires a larger 

number of images compared with SNNs. Furthermore, the performance of the network 

depends on the optimization of parameters, the number of hidden layers used, and the 

number of neurons per layer employed in the creation of ML-NN. Such a type of network 

is difficult to optimize, especially in the BrT classification like Hp images.  

Alternatively, the majority of researchers used CNN-based approaches to deal with 

high-dimensional data for BrT classification. CNN approaches used by researchers are 

often of two types: the establishment of a de-novo model that is trained from scratch or 

the adoption of a pre-trained model also known as the TL-based model. However, the 

majority of DL-based models are based on CNN de-novo models because de-novo models 

are created and optimized according to the size, nature, and type of specific data, such as 

BrC images. Hence, a small CNN de-novo model can produce better BrT classification 

results if designed and trained with proper optimization (Goceri & Gooya, 2018). 

Conversely, employment and training of deeper layers on a small amount of data may 

face more overfitting issues. Furthermore, de-novo training parameter optimization is 

difficult and can be achieved by trial-and-error methods. Hence, multiple models may be 

created and trained, which mostly requires a long time and very high computational 

resources like GPU. Therefore, to overcome de-novo CNN training issues, many 

researchers deployed pre-trained models, such as AlexNet. These models are already 

trained on millions of nonmedical images (natural images) to classify ten hundred natural 

objects, such as a pen, a tree, and a cap. Moreover, TL-based models are retrained on 

medical images after fine-tuning. Fine-tuning may involve the removal of the last layers, 

the use of a small learning rate, and freezing the weights of the first few layers (i.e., 

ensemble models). The analysis of selected studies reveals that the TL-based models 
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show comparable performance while using a small number of medical images. Apart from 

de-novo and TL-based models ensemble models were also used where two or more new 

layers are added and trained from scratch. However, TL-based and ensemble models can 

be trained without using high-computational resources, such as GPU in a reasonable time. 

Whereas, if the dataset is too small (like less than 1000 images), then the pre-trained 

network may lead to an overfitting issue and will not be able to learn new features 

properly. Therefore, researchers usually performed image augmentation (rotation, 

translation, and flipping) to increase the number of images.  

In summary, the “no free lunch” theorem of Wolpert and Macready (1997) inferred 

that no single ML classifiers perform optimally in all domains. Hence, a variety of DL-

based techniques should be employed to evaluate which algorithm outperforms on a 

specific type of data, such as Hp BrC images. The selected primary studies implemented 

their own customized data set and different experimental setups. Thus, statistically 

comparing the performance values across the studies is infeasible. Nonetheless, a 

comparison of the performance of different studies shows that the CNN model 

outperforms among DL-based models for BrC detection and classification. 

2.8.2 Limitations of Performance Evaluation Metrics  

This review also reveals that most of the researches used Ac as a primary PEM for 

BrC detection and classification model comparison. However, the Ac metric can be 

biased towards a particular class (Powers, 2011). Thus, apart from Ac, there is a need to 

measure and compare the other PEMs like Sn, Sp, Fm, AUC, and PRR. Because, Sn is a 

highly important metric in medical science to show the misclassification results for the 

diagnosis of a cancerous patient i.e., malignant. Whereas, Fm and AUC are also important 

to show that the BrC detection and classification models are properly trained and able to 

show unbiased results for multiple classes for BrT. Furthermore, in medical science PRR 

is more important to detect either the patient is malignant or benign and it may show 
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different results than image-level classification (Spanhol et al., 2017). Thus appropriate 

metrics should be used to accurately measure and compare the performance of BrC 

detection and classification models. 

2.8.3 Low Model Performance (i.e., Higher Misclassification) 

Generally, it has been observed in the aforementioned DL-based models of BrC 

detection and classification that the results were compromised due to a higher number of 

false negative and false positive predictions, also known as false predictions or simply 

misclassification. Whereas, misclassification using BrC images for multi-subtypes (more 

than two) of BrT maybe because of three reasons. First, there is a high correlation among 

the features of many subtypes of BrT images. Which may create complexity (i.e., low 

interclass similarity and low intraclass dissimilarity) for the classifier to differentiate 

among multiple subtypes of BrT. Therefore, the misclassification rate can be higher and 

the model can show compromised accuracy.  

Second, a large number of features were extracted through DL-based models. Such a 

large number of saturated features can easily distract the training process of a classifier 

that can lead to an increase in false predictions/misclassification rate. Third, the DL-based 

models were normally trained using augmented images along with original images. 

Whereas the quantity of augmented images is huge than the number of original images, 

therefore the model may get better training for augmented images instead of original 

images. However, testing data contains only original images, thus it can be easily 

misclassified by the model which was largely trained on augmented images. Thus there 

is a need to develop a robust algorithm for the reduction of misclassification rate to 

enhance the model performance. 

2.9 Research Gap Analysis for Problem Identification 

This review of existing literature revealed that many studies have employed DL-based 

BrC detection and classification models by using Hp images (Cao et al., 2016; Spanhol 
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et al., 2016a; Xu et al., 2016; Abdullah-Al et al., 2017; Araujo et al., 2017; Bayramoglu 

et al., 2017; Bejnordi et al., 2017; Chang et al., 2017; Han, Wei, et al., 2017; Nejad et al., 

2017; Spanhol et al., 2017; Wan et al., 2017; Zheng et al., 2017; Bardou et al., 2018; 

Gandomkar et al., 2018; Nahid & Kong, 2018; Nahid et al., 2018). Because Hp image is 

a standard medical imaging modality used to diagnose BrC more confidently compared 

to any other type of modalities like Mg, US, MRI, PET, and CT images. Most of the 

aforementioned studies utilized high computational resources and longer training time to 

get better results to perform BrC detection and classification. For instance for BrC 

detection using Hp images Spanhol et al. (2016a) achieved better average Ac (i.e., 90%) 

and PRR (i.e., 85.6) using GPU for three hours. Similarly, Nahid and Kong (2018) 

performed trained for six hours using a GPU to achieve 92.19% Ac. Moreover, Wan et 

al. (2017) trained a model using GPU for twenty hours for BrC grading like low, medium, 

or high. Moreover, very few studies have computed PRR for patient-level BrC detection. 

Which is highly important in medical science to diagnose a patient as benign or malignant 

instead of just image-level BrC detection.  

On the other hand, to solve the BrT classification problem very few studies reported 

training time and resources for their developed models. For instance, Araujo et al. (2017) 

developed a CNN-based model and trained from scratch to classify four types of BrT. 

The author reported low Ac is 77.8% but model training time and resources were not 

discussed. Moreover, Bardou et al. (2018) created a CNN-based model and trained from 

scratch using GPU for 1 hour 43 minutes. However, the reported Ac (i.e., 88.31%) was 

better by using BreakHis Hp images to classify eight types of BrT. Similarly, Wan et al. 

(2017) developed a CNN-based model and performed 20 hours of training from scratch 

by using GPU. The reported average accuracy was very low at 69% to perform 

classification for three classes of BrT. Moreover, Han, Wei, et al. (2017) developed a 

model from scratch and performed pre-training on ImageNet (a large dataset of natural 
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images). Afterward model was retrained on GPU for 10 hours 13 minutes using BreakHis 

images to solve the BrT classification problem. The author reported better Ac (i.e., 

93.2%) and PRR (i.e., 96.15%).  

Thus it can be concluded from an extensive literature review that DL-based models 

usually required very high computational resources and longer training time. Moreover, 

most of the studies reported accuracy and very few studies used other PEMs. Thus, to 

show results reliability, apart from Ac other PEMs should be computed like PRR, Sn, Sp, 

Fm, and AUC. PRR is required for patient-level diagnosis for BrC detection. However, 

Sn, Fm, and AUC metrics are also important to show image-level diagnosis. Thus, PEMs 

are required to show that the BrC detection and classification models were trained 

properly and able to produce unbiased results, especially when dealing with multiple 

classes of BrT using Hp images. 

2.10 Summary 

This chapter presented a critical analysis of BrC detection and classification by 

analyzing collectively the major research endeavors presented by current scholars to assist 

the new researchers in this domain. Many academic studies were carefully selected from 

eight unique academic repositories. The review was performed based on selected primary 

studies from five aspects, namely, various medical imaging modalities exploited, datasets 

used, image preprocessing techniques, types of ANNs (including deep neural networks), 

and PEMs used to construct and evaluate the BrC detection and classification models. In 

BrC detection and classification, various types of public and exclusive datasets were used. 

However, exclusive datasets are usually smaller in size than public datasets. Thus, more 

researchers preferred to use public datasets over exclusive ones. Whereas, public datasets 

that contain multimodality images of the same patient along with some other information, 

such as DNA sequence, are urgently needed. Such a type of dataset can help reduce FPs 

using automated systems. Furthermore, among all the datasets, MG and Hp imaging 
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modalities were widely adopted, followed by US images, and very few used MRI and CT 

breast images. Thus, other modalities (e.g., PET, CT, and thermal images) that may 

provide different types of lesion characteristics should be explored to improve BrC 

detection and classification results. Furthermore, in preprocessing tasks, image 

augmentation, scaling, image intensity/contrast normalization, stain normalization, and 

stain removal techniques were mostly adopted to remove image inconsistencies before 

feeding to any DL-based model. However, preprocessing techniques should be adopted 

carefully so that important information, such as lesion texture-, shape-, and illumination-

based information, can be preserved. In this review, several types of DNN architecture 

were identified to detect and classify BrC. Among these, CNN was the most popular 

choice of researchers for BrC detection and classification. Of these CNN-based models, 

de-novo, TL-based, and ensemble models were employed by the researchers, and results 

showed that de-novo models showed better results but consume high computational 

resources and training time. By contrast, pre-trained models were also tested and achieved 

comparable results on smaller datasets after fine-tuning using augmented images for BrC 

detection and multiclass classification. Moreover, ensemble models also showed better 

results. However, the TL-based and ensemble models require less computational 

resources and training time. In addition, such types of models can show better results on 

a small number of images. Therefore, most of the studies adopted either TL-based or 

ensemble type of models for BrC detection and classification compared to de-novo 

models. Nonetheless, DL-based models usually show compromised results due to a 

higher misclassification rate while using BrC Hp images. To evaluate the DL-based 

models, various performance metrics are used, such as Ac, Sn, Sp, Fm, AUC, and PRR. 

Among these, the first three are more common and essential in medical image 

classification for image-level analysis. However, mostly Ac is reported for baseline 

comparison. Apart from Ac, Sn, Fm, and AUC are also important metrics, needed to show 
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that results are reliable and unbiased. While PRR is needed for patient-level analysis. 

Finally, this review enabled us to find out the research gaps that require extensive efforts 

to improve DL-based BrC detection and classification models. Thus, it was revealed from 

the extensive review that there is a need to develop an efficient (i.e., consume fewer 

computational resources and training time) and reliable (i.e., reduce misclassification to 

show better and unbiased results even using complex dataset) BrC detection and 

classification models for early diagnosis of breast cancer to assist doctors to serve as the 

second opinion in any health care institution. 
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CHAPTER 3: METHODOLOGY AND EXPERIMENTAL SETUP 

3.1 Introduction 

This chapter comprises two major divisions namely methodology and experimental 

setup. In the methodology division, the detailed procedure implemented for the 

development of both BrC detection and BrT classification models is elaborated. Whereas, 

in the experimental setup division, the organization of experimental steps followed for 

BrC detection and BrT classification are reported in detail. Section 3.2 covers the overall 

research methodology, Section 3.3 demonstrates the entire experimental setup and 

Section 3.4 gives a summary of this chapter.  

3.2 Methodology 

This section reports the overall research methodology implemented in this research 

work.  A brief discussion of the research methodology is already presented in Section 1.6. 

The problem identification is made through the literature review and a detailed discussion 

is made in Chapter 2. This section presents the overall research methodology in detail to 

develop the proposed BrC detection (i.e., the subject is benign or malignant) model and 

BrT classification (i.e., eight subtypes of BrT) model using Hp images. 

3.2.1 Breast Cancer Detection Model Construction Methodology 

This section elaborates on the methodology (see Figure 3.1) employed to develop a 

BrC detection model using BreakHis dataset Hp images. The entire methodology for BrC 

detection is composed of five stages, namely, data collection, image preprocessing, DL-

based model development and DeCAFs extraction, BrC detection techniques, model 

construction, and performance evaluation, see Figure 3.1.  

In the data collection stage, the publicly available BreakHis dataset is used. First, all 

images are divided into benign and malignant categories to perform BrC detection. 

Overall 82 patients’ images of 40× magnification are utilized for further experiments. 
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Furthermore, the patient-wise BreakHis images are split into training, validation, and 

testing sets via random sampling. In the image preprocessing stage, few essential tasks 

are conducted, such as stain normalization, training set augmentation, and selection of 

equal numbers of augmented training set images for each class and image rescaling. 

Hence, a comprehensive training set is created by combining the class-wise balanced 

augmented images and original (i.e., nonaugmented) images.  

Stage-3: Deep Learning Based 
Model Creation, Training & 

DeCAFs Extraction

Create EBrC-Net

Set random hyper-parameters

Extract Features/DeCAFs of 
all images

Use testing set to select best 
epoch model of EBrC-Net

Train EBrC-Net & save after 
each eopch

Is validation loss 
minimum ?

No

Yes

Stage-1: Data Collection

BreakHis 
Dataset

Divide images into benign 
and malignant categories

Select images of 40x 
magnification

Split patient wise images into 
training, validation and 
testing set by random 

sampling

Stage-4: Breast Cancer Detection 
Technique

Train and test six ML classifiers 
1- Softmax, 
2- k Nearest neighbors,  
3- Support vector machine, 
4- Linear discriminant analysis, 
5- Decision tree, and 
6- Naive bayes.

Select three best performing 
augmentation methods

Use three misclassification 
reduction (McR) algorithms in 

cascade manner
1- Image wise McR 
2- Patient  wise McR
3- Patient  confidence wise McR

Stage-2: Image 
Preprocessing

Stain normalization by 
Reinhard’s method

Augment training set images

Select randomly equal 
number of augmented 

(training set) images per 
class

Combine selected augmented 
and unaugment training set 

images

Rescale all images to size 
258x258x3

Stage-5: Performance 
Evaluation Metrics

Accuracy Specificity

Sensitivity

FMeasure

Precision

Patient Recognition Rate

Construct BrC 
Detection Model

Select best preforming classifier

 
Figure 3.1: BrC detection model construction methodology 

In the third stage, ensembled BrC network (EBrC-Net) architecture is created and 

trained by using random hyper-parameters. The trained EBrC-Net is achieved after using 

multiple random hyper-parameters via the trial-and-error method. The model is selected 

when the lowest validation loss has been observed. Ultimately, the DeCAFs of all images 

are extracted by using the trained EBrC-Net model for further analyses.  

In stage four, six ML classifiers (i.e., softmax, kNN, NB, SVM, LDA, and DT) are 

analyzed using five folds of extracted DeCAFs.  Thereafter, the three best augmentation 

methods are chosen by using Ac, Sn, and Sp metrics to enhance the performance of 

classifiers. Three McR algorithms (i.e., McRI, McRP, and McRC) are employed to 

improve the classification performance. Where the McRI algorithm reduces 

misclassification in image-wise fashion and computes image-wise confidence. The McRP 
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algorithm further reduces misclassification using multiple images of a patient and 

computes patient-wise confidence, whereas McRC minimizes misclassification using the 

average of image-wise and patient-wise confidence. The average of image-wise and 

patient-wise confidence ensures that if the majority number of one patients’ images are 

cancerous then the patient is determined as cancerous. 

In the last stage, performances of the aforementioned six ML classifiers are evaluated 

on the basis of six PEMs namely Ac, Sn, Sp, Pr, Fm, and PRR. Where PRR shows the 

patient-level while the rest are representing the image-level performance of the model. 

Finally, the best classifier is selected to construct the BrC detection model for both image-

level and patient-level for BrC detection using the BreakHis dataset, see Figure 3.1. All 

five stages of the overall research methodology for BrC detection are described in detail 

in the following sections. 

3.2.1.1  Data Collection 

This research used the publicly available corpus Breast Cancer Hp Image 

Classification (BreakHis)  (Spanhol et al., 2016b). BreakHis dataset was created by a 

collaboration of P&D Laboratory and Pathological Anatomy and Cytopathology, Parana 

Brazil. This dataset was gathered by taking samples through an excisional biopsy of breast 

tumor tissue from 82 subjects. Each patient possesses many Hp biopsy images. Therefore, 

the overall dataset consists of 7909 images captured through a microscope with four 

magnifications: 40×, 100×, 200×, and 400×, see Table 3.1. However, in this research 40x 

images are used because they have shown the best results in dataset host experiments 

(Spanhol et al., 2016a). The images are 8-bit RGB of size 700×460 pixels. All patients’ 

images are categorized as either benign or malignant. A benign tumor is a usually 

noninvasive (non-cancerous) type of tumor; thus, it is localized and the lesion grows 

gradually. In contrast, malignant is an invasive (cancerous) tumor, spreads farther to other 
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body parts, and abolishes adjacent structures, leading to an abnormal death. The BreakHis 

contains 2480 benign and 5429 malignant Hp images, see Table 3.1. 

Table 3.1: BreakHis dataset images distribution 

BrT types 

     Magnifications
 
BrT 
subtypes 

40× 100× 200× 400× 
Total 

images 
Total 

patients 

Benign 

A 114 113 111 106 444 4 

F 253 260 264 237 1014 10 

PT 149 150 140 130 569 3 

TA 109 121 108 115 453 7 

Benign total 625 644 623 588 2480 24 

Malignant

DC 864 903 896 788 3451 38 

LC 156 170 163 137 626 5 

MC 205 222 196 169 792 9 

PC 145 142 135 138 560 6 

Malignant total  1370 1437 1390 1232 5429 58 

Total images 1995 2081 2013 1820 7909 82 
 

Moreover, BreakHis BrC images are further divided into eight subtypes of BrT. For 

instance, benign tumor subtypes are adenosis (A), fibroadenoma (F), tubular adenoma 

(TA), and Phyllodes tumor (PT) whereas malignant tumor is divided into ductal 

carcinoma (DC), lobular carcinoma (LC), mucinous carcinoma (MC), and papillary 

carcinoma (PC) subtypes. The overall dataset (including a borderline patient images) has 

been split according to the protocol defined by the dataset host into training (50%), 

validation (20%), and testing (30%), see Table 3.2.  Noticeably in Table 3.2, the patient-

wise split is performed to ensure that the images of a patient are not shared among the 

training, validation, and/or testing sets. Thus patient-level BrC detection required a 

patient-wise split of dataset images.  

Table 3.2: Patient-wise split of BreakHis (40× magnification) dataset 

BrT types 
BrT 

subtypes 

Training set 
(50%) 

Images 
(patients) 

Validation set 
(20%) 

Images 
(patients) 

Testing set     
(30%) 

Images 
(patients) 

Benign A 64 (2) 35 (01) 15 (01) 
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BrT types 
BrT 

subtypes 

Training set 
(50%) 

Images 
(patients) 

Validation set 
(20%) 

Images 
(patients) 

Testing set     
(30%) 

Images 
(patients) 

F 117 (5) 49 (02) 87 (03) 

PT 58 (01) 38 (01) 13 (01) 

TA 90 (03) 32 (02) 27 (02) 

Benign total 329 (11) 154 (06) 142 (07) 

Malignant 

DC 458 (20) 105 (06) 269 (04) 

LC 51 (03) 22 (01) 83 (02) 

MC 84 (04) 75 (02) 46 (03) 

PC 88 (03) 21 (01) 36 (02) 

Malignant total 681 (30) 223 (10) 434 (11) 

Total (40x magnification) 1010 (41) 377 (16) 576 (25) 
 

3.2.1.2 Image Preprocessing 

Image preprocessing is required to enhance the image quality before performing model 

training like stain normalization, image augmentation, and rescaling. In general, the Hp 

image requires stain normalization to normalize the image inconsistencies. Whereas, DL-

based models require image augmentation to create data samples in larger quantity to 

avoid overfitting. However, rescaling of images is needed before feeding the images into 

a DL-based model.  

(a) Stain Normalization  

Hp images mostly exhibit extremely high color inconsistencies when prepared in a 

pathology laboratory (lab). These inconsistencies may occur due to the use of different 

chemicals for staining, the concentration of colors (due to hematoxylin and eosin staining 

of Hp images), and the use of different scanners from numerous vendors. Given these 

factors, the Hp images of two patients, although prepared in the same digital pathology 

lab, may vary in color, intensity, brightness, and contrast. The high variation among 

images of two patients of the same cancer type may lead to improper training of the 

proposed DL model. Thus, to eliminate these image inconsistencies, stain normalization 

is required. In this study, Reinhards’ method (Reinhard et al., 2001) is applied for stain 
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normalization. Reinhard's’ stain normalization preserves the structure of cancer lesions 

better in comparison with other methods, such as Khans’ method (Khan et al., 2014) and 

the Macenko method (Macenko et al., 2009). It uniforms the color, brightness, intensity, 

and contrast of all images of all patients by using a reference image (Figure 3.2) and used 

by some studies (Alsubaie, Trahearn, Raza, Snead, & Rajpoot, 2017; Chen et al., 2017; 

Rasti et al., 2017; Gandomkar et al., 2018). Hence, it supports the DL model in the training 

process to learn superior generalized features from BrC Hp images. 

 
Figure 3.2: Reinhard method used to normalize source image through reference 

image 

(b) Image Augmentation  

Data augmentation is required to train the DL-based model properly to avoid 

overfitting issue, especially for small numbers of images (Shorten & Khoshgoftaar, 

2019). Therefore, it is needed to enhance training accuracy for medical images, which are 

oftentimes not available in large quantities. Images are augmented typically to create 

more images from original ones, i.e., oversampling. Image augmentation involves basic 

image processing techniques, such as image rotation, flipping, shifting, rescaling, 

shearing, and padding. Moreover, by combining two or more of these image augmentation 

techniques, many new artificial images can be created from the original image. Many 

studies (Arevalo et al., 2015; Araujo et al., 2017; Bayramoglu et al., 2017; Carneiro et al., 

2017; Hadad et al., 2017; Jiang, Liu, Yu, & Xie, 2017; Zheng et al., 2017; Bardou et al., 

2018) implemented image augmentation method to train the model properly. In this 

research, only the training set is augmented through the aforementioned image processing 

techniques to train EBrC-Net. Each image is augmented 24 times by using rotation 90° 

Reference Image Source Image Reinhards’ Image 
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rotation, translation by a fifth of the original image size, image shearing with four affine 

transforms, vertical and horizontal flipping, and four times of image padding, see 

Algorithm 3.1. Furthermore, to avoid the class imbalance problem, equal numbers of the 

augmented images are randomly selected from each class. However, the original training 

images are used along with the randomly selected augmented training images, see Table 

3.3. Therefore, the training set has a total number of 11210 (5429 benign + 5781 

malignant) images of 41 patients, see Table 3.4. Thus, the following goals are achieved 

by adopting the overall image augmentation process:  

1. Creating a large training set that is sufficient for proper training of EBrC-Net;  

2. Acquisition of a balanced number of images (class-wise) that will help avoid 

overfitting during model training and thus enable the proposed DL-based EBrC-Net 

model to show classification results with improved quality and reliability using a 

small number of images.  

Table 3.3: Augmented training set distribution using BreakHis (40× magnification) 
dataset 

BrT types BrT subtypes 
Original 
images    

(A) 

Total augmented 
images               

(B) 

Overall training 
set                        

A + Min(B) 

Benign 

A 64 1600 1339 

F 117 2959 1392 

PT 58 1450 1333 

TA 90 2250 1365 

Benign total 329 8259 5429 

Malignant 

DC 458 11450 1733 

LC 51 1275 1326 

MC 84 2100 1359 

PC 88 2200 1363 

Malignant total 681 17025 5781 
Total (40x magnification) 
images 

1010 25284 11210 
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Table 3.4: Utilized BreakHis (40× magnification) dataset distribution 

BrT types 
Augmented training set     

Images(patients) 
Validation set     

Images(patients) 
Testing set 

Images(patients) 
Benign 5429 (11) 154 (06) 142 (07) 
Malignant 5781 (30) 223 (10) 434 (18) 
Total 11210 (41) 377 (16) 576 (25) 

 

(c) Image Rescaling  

The original image size of the BreakHis dataset is too large (700×460×3) to fit into the 

input layer size (i.e., 258×258×3) of EBrC-Net. Moreover, the image size of the training 

set has been changed arbitrarily when the aforementioned basic image processing 

techniques are applied for image augmentation. Hence, all images are rescaled to a size 

of 258×258×3 by using the bicubic interpolation method before serving as input to EBrC-

Net. 

3.2.1.3 Development of BrC Detection Model 

Transfer learning is adopting knowledge from other domains to the target domain (Lu 

et al., 2015). By the definition, the TL-based models possess the same input size 

(Brownlee, 2020), and no need to be trained from scratch (Tan et al., 2018) except the 

softmax layer for the target class labels. Thus, fine-tuning is required for the last layer 

only (i.e., softmax layer) by keeping the rest of the layers freezed and it does not allow to 

change the input image size. Here, the low-level features (extracted via convolutional 

layers) and high-level features (extracted via fully connected layers) are extracted from 

the TL-based model without being trained on target (i.e., medical) images. However, the 

proposed model EBrC-Net is using TL for convolution layers only, while all fully 

connected layers are trained from scratch like a de-novo model. In addition, the input 

layer size is optimized and increased to 258×258, which is only possible in de-novo 

model. All the fully connected are trained from scratch to learn the BrC lesion specific 

feature. Thus, the proposed model is named as ensembled model for two types of 
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conventions i.e. TL model and de-novo (i.e. layers trained from scratch) model, for further 

details see section 4.2.2.1.  

The ensembling in EBrC-Net will get two advantages, first fully connected layer 

(which are trained from scratch) will be able to learn domain specific feature from Hp 

images. Whereas, due to TL-based convolution layers, the proposed ensemble model will 

be trained using less computational resources in less time with less number of images 

compared to any de-novo model of similar architecture. Moreover, EBrC-Net possesses 

the same architecture as AlexNet (Krizhevsky et al., 2012) for a fair comparison of results 

to show that the proposed model is able to learn better features than pre-trained AlexNet. 

The details of AlexNet and the proposed DL-based BrT detection model are given in 

Chapter 4, Section 4.2. 

(a) Training and Feature Extraction through EBrC-Net Model 

This study used the EBrC-Net model to extract the discriminative features compared 

to AlexNet from preprocessed Hp BrC images. Several experiments are executed to 

obtain the optimum results by adjusting a few training options which can be easily used 

to train EBrC-Net by using a normal desktop machine. The proposed model is trained by 

using a gradient descent solver with a momentum of 0.9. The other parameter adjustments 

are as follows: maximum epochs set of 30, mini-batch size is taken as 64, the initial 

learning rate is 0.001, L2 regularization is set to 0.0001, validation frequency is 50, 

validation patients are used as 5, learning drop rate is 0.1, and learning drop period is set 

to 2. The EBrC-Net learning rate is set lower than the AlexNet initial learning rate so that 

the low-level features of AlexNet CLs are not completely lost while retraining. 

Furthermore, the model is forced to stop training if validation loss is not reducing in 

fifteen successive validation iterations. Hence, EBrC-Net is devised in such a way to 

avoid an overfitting issue using a small number of images than AlexNet. The 
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aforementioned parameters enabled EBrC-Net to extract more discriminative generalized 

features than AlexNet.  Apart from network training, according to dataset host protocol 

for BrC detection, a random subsampling approach is adopted for the selection of training, 

validation, and testing set images, where 50%, 20%, and 30% patient-wise images are 

used for training, validation, and testing, respectively, see Table 3.4. The validation 

images are known as seen data and taken separately from testing images because the 

analysis of the EBrC-Net trained model on unseen data (i.e., testing images) ensures the 

reliability of performance. Hence, in real-life, the EBrC-Net model can be implemented 

more confidently, as it has been tested on unseen data. Furthermore, Ac, Sp, Sn, Pr, Fm, 

and PRR are calculated for testing image analysis. Finally, DeCAFs of training images 

are extracted from the seventh layer of EBrC-Net. The DeCAFs of all training images are 

extracted to form a master feature vector (MFV) table. Each testing image MFV consists 

of 4096 unique features. Furthermore, MVF is divided into five folds to train and test the 

aforementioned six ML classifiers for further analyses of BrC Hp image detection.  

3.2.1.4 Breast Cancer Detection Techniques 

This section explains the further experiments performed using five folds of extracted 

DeCAFs using trained EBrC-Net to enhance the performance of the BrC detection model. 

Where, six ML classifiers, namely, the softmax, kNN (k = 1, 3, 5, 7, and 9), SVM (linear, 

rbf, and polynomial), NB, DT, and LDA, are evaluated by using five folds of DeCAFs of 

BreakHis dataset. These six ML classifiers are selected on the basis of the literature 

review as discussed in Chapter 2 (Section 2.6.1).  Moreover, according to the no free 

lunch theorem for optimization (Wolpert & Macready, 1997), not one  ML classifier can 

perform persistently better on all types of data. Therefore, many classifiers are evaluated 

on the BreakHis dataset to investigate the performance of each classifier individually. 

Moreover, six performance metric evaluations are computed for six classifiers that 

enabled the achievement of one best performing classifier for BrC detection. Finally, to 
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enhance the performance of ML classifier three misclassification reduction algorithms 

(McR) are developed and implemented for BrC detection. However, before implementing 

using McR the best augmentation methods are selected to get better results for BrC 

detection. The details of proposed McR algorithms are discussed in Chapter 4, Section 

4.3. 

3.2.1.5 Model Construction and Evaluation 

Six traditional ML classifiers along with three McR algorithms are evaluated by using 

six PEMs like Ac, Sp, Sn, Pr, Fm, and PRR. These six PEMs are selected on the basis of 

the literature review as discussed in Chapter 2 (see Section 2.7) for BrC detection. For 

medical images, there are two ways to represent the classification results like image-level 

and patient-level (Spanhol et al., 2016b). Ac, Sp, Sn, Pr, and Fm (see Sections from 2.7.1 

to 2.7.5) are required for a fair comparison with the baseline studies at image-level. Here, 

the Ac metric is the most commonly used to compare the results with existing SoA 

models. Whereas, in medical science, Sn is more important than any other performance 

evaluation metric because misclassification of malignancy is not tolerable for diagnosis 

n follow-up (Van Stralen et al., 2009). While Fm is needed to show that the classifiers are 

reliable and unbiased to detect BrC. Apart from image-level results, PRR is required to 

show the performance of the BrC detection model at the patient-level (see Sections 1.1 

and 2.7.8). The PRR is defined as the ratio of the sum of patient scores to the total number 

of patients. Here, the total number of patient score represents the ratio of cancer images 

correctly classified to the total number of images per patient. In medical science patient-

level, BrC detection is more important compared to image-level BrC detection (Spanhol 

et al., 2017). Finally, on the basis of the aforementioned six PEMs, all aforementioned 

ML classifiers for the EBrC-Net model are evaluated to select the top-performing model 

as the BrC detection model. 
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In this research, the BrC detection model is developed to detect BrC as benign or 

malignant at the image-level as well as patient-level. However, once the BrC detection is 

made then there is a need to find the specific subtype of BrT for better prognosis and 

related treatment. Because each subtype of BrT has a different treatment plan and dosage. 

Thus, the proposed hierarchical BrT classification model is developed to classify eight 

subtypes of BrT.   
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3.2.2 Breast Tumor Classification Model Construction Methodology 

This section discusses the detailed research methodology (see, Figure 3.3) to construct 

the proposed BrT classification model for breast Hp images. The overall research 

methodology comprises five main phases, namely, data collection, image preprocessing, 

features extraction through the proposed DL-based model, classification through 

traditional ML classifiers, feature reduction and selection, BrT classification model 

construction, and evaluation.  

Phase-1: Data Collection

BreakHis 
Dataset

Select balance number of 
patients per class

Select 58 patients’ images of 
40x magnification

Split images into training, 
validation and testing set by 

random sampling

BreakHis 
Dataset

Select balance number of 
patients per class

Select patients’ images of 
40x magnification

Split images into training, 
validation and testing set by 

random sampling

Phase-2: Image 
Preprocessing

Augment training set images

Select randomly equal 
number of augmented 

(training set) images per 
class

Combine selected augmented 
and unaugment training set 

images

Rescale all images to size 
227x227x3

Phase-3: Deep Learning Based 
Model Creation, Training & 

DeCAFs Extraction

Extract Features/DeCAFs of 
overall dataset images

Is validation 
Accuracy  max?

Yes

Create BMIC-Net (i.e., BC1, 
B2, and M2) Hierarchical 

Model

Set random hyper-parameters

Use testing set to select best 
model of BMIC-Net (i.e., 

BC1, B2, and M2) 

Train BMIC-Net (i.e., BC1, 
B2, and M2) 

No

Phase-4: Breast Tumor 
Classification Technique

Train and test six ML classifiers 
1- k Nearest neighbors,  
2- Support vector machine, 
3- Linear discriminant analysis, 
4- Decision tree, 
5- Naive bayes, and
6- Linear Regression.

Feature Reduction using IG and 
PCA scores

Feature Selection Algorithm

Phase-5: Performance 
Evaluation Metrics

Accuracy

AUROC

Sensitivity

Construct BrT 
Classification Model

Select best preforming classifier

 
Figure 3.3: BrT classification model construction methodology 

In the data collection phase, a publicly available BreakHis dataset is utilized and a 

balanced number of images per class are selected by the random sampling method. 

Whereas, in the image preprocessing phase, some essential image preprocessing tasks are 

performed on the collected image corpus like augmentation, selection of images for 

training, and rescaling. The image augmentation technique is required to avoid overfitting 

and class imbalance issues to improve the classification performance. Subsequently, 

phase three creates the proposed hierarchical BrT classification model. The proposed 

model comprises three DL-based classifiers namely BC1, B2, and M2. BC1 can classify 

benign and malignant images, while B2 and M2 can classify further four subtypes each 

benign and malignant tumor. These three classifiers are created through fine-tuning the 
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last layer of AlexNet.  Moreover, BC1, B2, and M2 are trained until maximum validation 

accuracy is not observed. Finally, in phase three, several discriminative and informative 

DeCAFs (compared to non-hierarchical AlexNet model) of overall images available in 

the BreakHis dataset are extracted by using trained BC1, B2, and M2 classifiers to perform 

hierarchical BrT classification.  In the fourth phase, the extracted DeCAFs from BC1, B2, 

and M2 DL-based classifiers are evaluated through six traditional ML classifiers namely 

kNN, SVM, LDA, DT, NB, and LR using three PEMs like Ac, Sn, and AUC. In addition, 

the overall dataset DeCAFs are evaluated for five folds and mean results are presented in 

this research. Here, Ac is the primary metric required to compare the results and Sn is 

important for medical diagnoses to show misclassification of cancerous patients. 

Whereas, AUC values highlight that the classifier is unbiased and produced reliable 

results for eight classes of BrT. Moreover, to select the best performing classifier and 

improve classification results, feature selection and reduction algorithms are developed 

using two feature reduction schemes namely IG and PCA. The feature reduction schemes 

and feature selection algorithm reduced the classifier training time and computational cost 

as well as improve the overall classification performance i.e., misclassification reduction. 

In the last phase, the BrT classification model is constructed by using best performing 

ML classifiers evaluated through aforesaid three PEMs with a minimum number of 

feature sets. All these phases are described in detail in subsequent subsections. 

3.2.2.1 Data Collection 

The details of the BreakHis dataset are already discussed in Section 3.2.1.1. However, 

for training BMIC-Net, this research used only images of 58 patients at 40× magnification 

level because the highest classification performance was achieved at this level by dataset 

host (Spanhol et al., 2017). Noticeably, the DC class contains 38 patients’ images that are 

46% of the overall dataset. Thus to avoid class imbalance BMIC-Net training issue, this 

research randomly selects nine patients. The selected 58 patients’ images (including a 
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borderline patient images) are split into training (i.e., 50%), validation (i.e., 20%), and 

testing (i.e., 30%) set by using a random sampling method, see Table 3.5. 

Table 3.5: Images selected for training and testing 

BrT 
Types 

BrT 
Subtypes 

40× 
(Overall) 

40× 
(Selected) 

No. of  
Patients 

Training 
+Validati

on 

Testi
ng 

50% + 
20% 

30% 

Benign 

A 114 114 4 80 34 

F 253 253 10 177 76 

PT 109 109 3 76 33 

TA 149 149 7 104 45 

Benign total 625 625 24 438 187 

Malignant 

DC 864 208 14 146 62 

LC 156 156 5 109 47 

MC 205 205 9 144 61 

PC 145 145 6 102 43 

Malignant total 1370 714 34 500 214 

Total Images 1995 1339 58 937 402 
 

3.2.2.2 Image Preprocessing 

The image preprocessing phase involves image augmentation, image selection and 

splitting into training, validation and testing set, and the rescaling of images. CNN's 

require a large number of training images to achieve good performance. Therefore, image 

augmentation can be used to improve training performance by using a small number of 

original images. Image augmentation creates artificial new images (i.e., over-sampling) 

by various image processing techniques (e.g., image rotation, shift, shear, flip, and 

padding) and their random combinations. In this research, the augmentation is only 

applied to the training set using the aforementioned image processing techniques. Each 

image is augmented 24 times using rotation 90°, flip in vertical and horizontal directions, 

translation by the fifth part of image size, shear image using four affine transforms, and 

image padding, see Algorithm 3.1.  
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Algorithm 3.1: Image augmentation algorithm 

 

In addition, the original images are used along with the minimum quantity available in 

any class out of 24 times augmented images. The original number of images taken in each 

class is shown in Table 3.5. Finally, all the images are rescaled to size 227×227×3 before 

initiating the BMIC-Net models training process.   

3.2.2.3 Development of BrT Classification Model 

The proposed hierarchical BrT classification model named as Biopsy Microscopic 

Image Cancer Network (BMIC-Net) is created by using a pre-trained model like AlexNet. 

BMIC-Net is composed of three DL-based classifiers namely BC1, B2, and M2. Moreover, 

each classifier is created by fine-tuning the last layer of AlexNet for the target number of 

classes. BC1, B2, and M2 classifiers are employed in two leveled hierarchy. At the top 

level of the hierarchy, BC1 is placed to classify Hp image as benign or malignant. 

Whereas, level two of hierarchy possesses B2 and M2 classifiers. B2 classifier is 
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responsible to classify further four subtypes of benign tumors. On the other hand, M2 can 

classify four subtypes of malignant BrC. The hierarchical design and use of pre-trained 

models enable the BMIC-Net model to be trained with less computational resources (such 

as a normal desktop machine) in less time using a fewer number of images compared to 

the de-novo model. For further details of the proposed BrT classification model design, 

see Chapter 4, Section 4.4. 

(a) Training and Feature Extraction through BMIC-Net Model 

BMIC-Net DL-based classifiers (i.e., BC1, B2, and M2) are trained multiple times with 

random hyper-parameters using a trial-and-error method. The training process continues 

until maximum validation accuracy (lies between 0 to 100)  is not observed for each of 

the three DL-based classifiers.  In the construction of a fine-tuned BMIC-Net classifiers, 

several experiments are run recursively to obtain optimum training results by adjusting a 

few training options, see Algorithm 3.2.  

Algorithm 3.2: BMIC-Net model training, classification, and feature extraction 
algorithm 
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The BC1, B2, and M2 classifiers are trained using gradient descent. Some of the 

parameter adjustments are as follows: the momentum of 0.9, maximum epochs of 30, 

mini-batch size of 50, the initial learning rate of 1e-4, and learning rate drop factor of 0.5. 

The BC1, B2, and M2 are fine-tuned with stochastic gradient descent with a learning rate 

adjusted to be lower than the initial learning rate of AlexNet. Hence, the features 

previously learned from the larger dataset are guaranteed to be not entirely ignored during 

retraining. Furthermore, the network is compelled to stop training if validation accuracy 

(lies between 0 to 100) is not improving in the multiple numbers of consecutive validation 

iterations. Ultimately, BMIC-Net classifiers are devised in such a way to avoid overfitting 

and underfitting training issues. Moreover, the best feasible validation Ac of BMIC-Net 

classifiers is achieved to obtain the best possible features.  

It should be noted that a random sub-sampling approach is used to select 50% training, 

20% validation, and 30% for testing set images. Furthermore, by default, the softmax 

classifier is used in the validation process for training.  Finally, the features that are 

finalized by BMIC-Net classifiers are extracted before the output layer to form master 

feature vector (MFV), which is composed of 4096 features for classification and served 

as an input to traditional ML classifiers (i.e., SVM, kNN, DT, NB, LDA, and LR) to 

evaluate the classification predictive performance. 

3.2.2.4 Breast Cancer Classification Technique 

The extracted MFV of each BC1, B2, and M2 classifiers is evaluated using five folds 

through six ML classifiers namely, the kNN (k=1,3,5,7, and 9), SVM (linear, rbf, and 

polynomial), NB, DT, LDA, and LR. Apart from these, softmax results are also compared 

with the proposed model performance for the non-hierarchical model. These six ML 

classifiers are selected on the basis of the literature review as discussed in Chapter 2 

(Section 2.6.1). Moreover, according to the No-Free-Lunch theorem (Wolpert & 
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Macready, 1997), the best classifier will not be the same for all the data sets.  Therefore, 

these six ML classifiers are applied to select the best performing models for BMIC-Net 

classifiers for BrT classification on the BreakHis dataset.  

(a) Feature Reduction and Selection 

A large number of features (i.e., 4096) are extracted through each of the three DL-

based classifiers (i.e., BC1, B2, and M2) of the BMIC-Net hierarchical model. Such a large 

number of features can easily distract the training process of traditional ML classifiers 

(Fan & Fan, 2008). Therefore, two feature reduction schemes, namely IG and PCA are 

adopted to reduce the number of features. Afterward, a feature selection algorithm is 

developed to select a minimum number of feature subsets. The proposed feature selection 

algorithm selects a minimum number of features (using IG and PCA) without 

compromising the overall accuracy of the hierarchical BrT classification model. 

Moreover, it reduces the training time and improves the ML classifier performance by 

reducing the misclassification. The detailed discussion for feature reduction and selection 

algorithm is given in Chapter 4, Section 4.5. 

3.2.2.5 Model Construction and Evaluation 

The best performing traditional ML classifier for BC1, B2, and M2 DL-based classifiers 

is evaluated by using three (i.e., Ac, Sn, and AUC) PEMs. These three PEMs are selected 

on the basis of the literature review as discussed in Chapter 2 (see Section 2.7) for BrT 

classification. Moreover, Ac, Sn, and AUC are also computed for a fair comparison with 

the baseline study. The Ac metric is mainly required to compare the results with existing 

SoA models. However, a single metric analysis can be biased like accuracy. On the other 

hand, in medical science, Sn is more important than any other PEM because 

misclassification of malignancy is more critical than benign. Whereas, AUC is needed to 

show that the classifiers are unbiased to classify eight subtypes of BrT. Thus, Ac, Sn, and 
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AUC metrics will ensure that the performance of the proposed BrT classification model 

is unbiased (i.e., more reliable) even using a multifaceted dataset. Finally, on the basis of 

the aforementioned three PEMs, the top-performing traditional ML classifier, best feature 

reduction scheme, and minimum feature subset are selected to construct a hierarchical 

BrT classification model for Hp images. 
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3.3 Experimental Setup 

This section presents the experimental setup of proposed DL-based models for BrC 

detection and BrT classification using Hp images. An extensive set of experiments is 

carried out using various PEMs. Overall four experimental setups are made for each BrC 

detection model and BrT classification model, see Figure 3.4. The complete flow of 

experimental setups is discussed in the following subsections. Sections 3.3.1 and 3.3.1 

discusses the overall experimental setup of BrC detection and BrT classification models. 

 
Figure 3.4: The experimental setups distribution overview 

3.3.1 Experimental Setup of BrC Detection Model 

In this research, four experimental setups are designed to assess the performance of 

the proposed BrC detection model. The setting I is required to select the best DL-based 

model for feature extraction. Setting II enables to select the best performing ML classifier 

and setting III improves the performance of the classification model for BrC detection. 

Whereas, setting IV shows the improved PRR for patient-level BrC detection.  Overall 

82 (26 + 14 + 18 + 24) analyses are performed in the following four experimental setups. 

Experimental Setups

BrC    
Detection

Four Experimental 
Setups

BrT 
Classification

Four Experimental 
Setups
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1. In Setting I, initially input image size is optimized before initiating the training 

process of the proposed EBrC-Net model. Afterward, EBrC-Net performance is 

analyzed and compared with the pre-trained AlexNet model. Thus, during the 

training of both models, the epoch-wise validation loss and validation accuracy 

are computed for comparison. In addition, the performance of both models is 

further examined by using testing images at each epoch. Hence, this setting 

analysis helps to select the best model for further experiments. Here, 26 analyses 

are performed (03 for input image optimization + 10 for AlexNet training + 10 for 

EBrC-Net training), see Figure 5.3. 

2. In Setting II, firstly parameter optimization is carried for kNN (1,3,5,7 and 9) and 

SVM (kernel, rbf, and polynomial) classifiers. Secondly, the performance of 

extracted DeCAFs from EBrC-Net is evaluated through six ML classifiers, 

namely, softmax, kNN (k=7), SVM (kernel), NB, DT, and LDA. In this setting, 

14 analyses (5 for kNN optimization + 3 for SVM optimization + 6 ML classifiers) 

are conducted by using five PEMs such as Ac, Sp, Sn, Pr, and Fm. These five 

PEMs enable us to compare the performance of six ML classifiers for BrC 

detection. For further experiments, see Figure 5.5. 

3. In Setting III, three algorithms are developed and implemented in a cascaded 

manner for McR to boost up the performance of six ML classifiers for BrT 

detection. In addition, similar PEMs are adopted for evaluation as used earlier in 

Setting II. In this setting, overall 18 analyses are conducted (3 McR algorithms x 

6 ML classifiers), see Table 5.1. 

4. In Setting IV, the PRR is computed to show patient-level improved performance 

due to McR algorithms. In addition, six ML classifiers’ performance is compared 

before and after applying the proposed McR algorithms using the aforementioned 

five PEMs. In medical science, the PRR is highly important, because in real-life 
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the decisions are based on patient-level instead of image-level classification 

(Spanhol et al., 2017).  In this setting, a total of 24 analyses are performed. Where, 

out of 24, six analyses are performed before, and 18 analyses are performed after 

applying the McR algorithms by using six ML classifiers, see Figure 5.6. 

The image preprocessing steps, development of the EBrC-Net model, all Hp image 

classification experiments, and McR algorithms are implemented in MATLAB R2017b 

version. All the experiments are mainly executed on default hyper-parameters except for 

those hyper-parameters which are specifically mentioned in this research work, see 

Section 3.2.1.3(a). 

3.3.2 Experimental Setup of BrT Classification Model 

In this research, four experimental setups are designed to assess the performance of 

the proposed BMIC-Net hierarchical BrT classification model. Here, an overall 3015 

result analyses are carried out. In setting I, II, III, and IV overall 49, 26, 2916, and 24 

analyses are made respectively. 

1. In the first setting, the training performance of proposed hierarchical (see, Figure 

4.4 and Figure 4.5) model BMIC-Net classifiers (BC1, B2, and M2) [see, Figure 

5.7 (a) to (f)] has been analyzed and compared with non-hierarchical (see Figure 

4.4) model [see, Figure 5.7 (g) and (h)] Thus, during the training of both models, 

the epoch-wise validation loss and validation accuracy are computed for 

comparison. This epoch-wise analysis helps to select the best model for feature 

extraction. Here, 49 analyses are performed (36 for the proposed BMIC-Net 

hierarchical model  + 13 for the non-hierarchical model), see Figure 5.7. Finally, 

three MFVs are created from trained BC1, B2, and M2 DL-based classifiers using 

all images of BreakHis for five-fold analysis. 
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2. In the second setting, initially, parameters are optimized for kNN (1,3,5,7, and 9) 

and SVM (linear, rbf, and polynomial) to get the best use of classifiers. 

Subsequently, the performance of extracted three MFVs is evaluated using six 

traditional ML classifiers, namely, kNN (k=1), SVM(linear), NB, DT, LDA, and 

LR. In addition, five folds of each of three MFVs are used to show the mean 

results in terms of Ac, Sn, and AUC for each of the aforementioned six ML 

classifiers. Hence, in this setting, 26 analyses are run (5 for kNN optimization + 3 

for SVM optimization + 6 traditional ML classifiers × 3 BMIC-Net classifiers: 

BC1, B2, and M2), see Figure 5.9. 

3. In the third setting, the best feature subset is obtained using IG and PCA. The 

performance of 50 to all 4096 features is evaluated with an increment of 50 from 

all three MFVs (BC1, B2, and M2). Thus, 82 sub-MFVs (50 features, 100 features, 

150 features, …, and 4096 features) are prepared overall from each of the three 

super-MFVs. Moreover, the same six ML classifiers, which are used in setting I, 

are adopted to evaluate the performance of the prepared 82×3 sub-MFVs. Thus, 

in this setting, 2916 analyses are run (81 sub-MFVs × 3 super-MFVs × 2 feature 

reduction schemes × 6 ML classifiers) to perform feature reduction, see Figure 

5.10. 

4. The fourth setting mainly comprises of two parts. Where, first part shows the mean 

Ac of five folds to analyze the performance of features extracted from the non-

hierarchical model using six ML classifiers for eight subtypes of BrT, see Table 

5.4. While, the second part compares the mean Ac of the proposed hierarchical 

model against the non-hierarchical model using six ML classifiers, see Table 5.5. 

Therefore, in this experiment, overall 24 analyses are executed (12 for non-

hierarchical model + 12 for proposed BMIC-Net hierarchical model). 
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The image preprocessing, construction of proposed BMIC-Net, all classification 

experiments, and feature reduction are performed in MATALB R2017b. All classification 

experiments are solely executed on default hyper-parameters except a few which are 

specifically defined for this research work, see Section 3.2.2.3(a). 

3.4 Summary 

This chapter is divided into two major parts namely methodology and experimental 

setup. In the first part of this chapter, the overall research methodology used for BrC 

detection and BrT classification using Hp images is described in detail. Initially, the 

details of the dataset are discussed. Afterward, the basic medical image preprocessing 

techniques like stain normalization, augmentation, splitting images into training, 

validation, and testing, and rescaling are talked about. Furthermore, the development and 

training of proposed DL-based models namely EBrC-Net and BMIC-Net are discussed in 

detail. Subsequently, a detailed discussion about DeCAFs extraction and evaluation 

through six traditional ML classifiers has been made. Moreover, three McR algorithms 

(i.e., McRI, McRP, and McRC) are briefly explained to enhance the performance of the 

BrC detection model.   A feature reduction and selection algorithm is also discussed to 

improve the performance of the hierarchical BrT classification model. Finally, 

performance evaluation metrics are elaborated for evaluation to construct BrC detection 

and BrT classification models.  

The second part of this chapter describes the organization of experimental setups 

implemented for both BrC detection and BrT classifications models. For BrC detection, 

four experimental settings are made for each of the proposed models. The experimental 

setting I ensures that the proposed DL-based EBrC-Net model is able to extract better 

features compared to AlexNet. Whereas, experimental setting II, enables to evaluate the 

performance of six traditional ML classifiers using five folds of extracted features from 
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EBrC-Net. However, in experimental setting III, the performance of the EBrC-Net is 

enhanced by implementing three McR reduction algorithms. Finally, in setting IV of 

experimental setups, the improved PRR is also shown for patient-level analysis for BrC 

detection. Thus, the best performing classifier is obtained for BrC detection. On the other 

hand, for BrT classification, four experimental settings are implemented. In setting I, 

proposed BMIC-Net hierarchical classifiers like BC1, B2 and M2 are trained to extract the 

best possible MFVs compared to the non-hierarchical model. In setting II, the extracted 

overall BreakHis MFVs are evaluated using five folds via six ML classifiers. Whereas, in 

setting III, the performance of the proposed hierarchical classification model is enhanced 

by implementing feature reduction algorithms. While, in setting IV, the performance of 

the proposed BMIC-Net hierarchical model is compared with the non-hierarchical model 

by reporting mean Ac for five folds of extracted MFVs. The details about the main 

contributions for proposed models are discussed in Chapter 4. 
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CHAPTER 4: DEVELOPMENT OF BREAST CANCER DETECTION AND 

CLASSIFICATION MODELS 

4.1 Introduction 

This chapter represents a detailed discussion about the architectural design and 

development of proposed BrC detection and BrT classification models to highlight the 

research contributions. Overall, four research contributions are made in this research, as 

shown in Figure 4.1.  

 
Figure 4.1: Contributions for BrC detection and classification 

In BrC detection model the main contributions are:  

1. Design and development of an efficient (i.e., consumes less computational 

resources and training time) and reliable (i.e., produces better and unbiased 

results even using complex dataset) DL-based BrC detection model (i.e., EBrC-

Net) to extract discriminative features (due to larger input image size and un 

freezed layers) compared to AlexNet using BreakHis dataset Hp images. 

2. Three misclassification reduction algorithms are implemented in a cascade 

manner to enhance the performance of the proposed BrC detection model. 

Contribution

• Development of DL-based ensemble BrC detection model
• Misclassification reduction algorithms

BrC Detection

• Development of DL-based hierarchical BrT classification model
• Feature selection algorithm

BrT Classification
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The main contributions in the BrT classification model,  

1. Design and development of an efficient (i.e., consumes less computational 

resources and training time) and reliable (i.e., produces better and unbiased 

results even using complex dataset) DL-based BrT classification model (i.e., 

BMIC-Net hierarchical model) to extract discriminative features compared to 

non-hierarchical model using BreakHis dataset Hp images. 

2. A feature selection algorithm is implemented to elicit a minimum number of 

feature subsets to reduce misclassification and enhances the overall performance 

of the proposed BrT classification model. 

The development of BrT detection and BrC classification models is described in 

section 4.2 and 4.4. Whereas, the performance enhancement algorithms for both of the 

proposed models is described in Sections 4.3 and 4.5. 

4.2 Development of BrC Detection Model 

The proposed DL-based BrC detection model (i.e., EBrC-Net) is a fusion of TL-based 

(i.e., pre-trained) and de-novo (i.e., trained from scratch) models, see Section 3.2.1.3. 

Therefore, it is named as an ensemble breast cancer network for BrC detection using Hp 

biopsy images. EBrC-Net possesses the same architecture as AlexNet (Krizhevsky et al., 

2012) except for two major modifications. First, the input layer image size is larger than 

that of AlexNet. Second, three fully connected layers are allowed to learn from scratch. 

Whereas, five convolution layers are adopted from pre-trained AlexNet to perform partial 

transfer learning. The ensembling in EBrC-Net ensures the extraction of improved 

generalized and domain specific Hp image features compared to AlexNet using less 

computational resources and training time. In the following sections, the architecture of 

AlexNet, the design and development of the proposed EBrC-Net, and the latter proposed 

model’s importance are discussed.  
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4.2.1 Pre-trained AlexNet Architecture 

AlexNet is a pre-trained CNN-based classification model specially trained on 1 million 

natural images to classify 1000 objects, such as coffee mugs, pencils, pens, keyboards, 

and animals. At the abstract level, the AlexNet architecture comprises the following 

layers: an input layer, five convolution layers (CLs), three fully CLs (FCLs), a softmax 

layer, and an output layer, see Figure 4.2. The input layer directly takes RGB images (e.g., 

I = i1, i2, i3, …, in) of size 227×227×3. Additionally, a nonlinear activation layer rectified 

linear unit (ReLU), and a batch normalization layer is placed after each CL in AlexNet. 

Similarly, a MaxPool layer is kept after the normalization layer in each CL except third 

and fourth convolution layers. Furthermore, a ReLU layer and a dropout layer are also 

placed after the sixth and seventh FCLs, whereas a softmax layer is employed after the 

last FCL to compute the probabilities of each class label for the output layer. AlexNet is 

formally denoted by f: i → c, where i represents the image c, which denotes the 

classification label. AlexNet contains V convolution layers, and U fully connected layers 

are defined as follows: 

f(�; �) = f���(����, ����)                                                                                                    (12) 

FCLs = f�(, … , ��(���, ��), … , ��)                                                                                    (13) 

CLs = f�(, … , f�(�, θ), … , θ�)                                                                                                 (14) 

where {f�(. )}���
�  represents a convolutional layer, θ� denotes the parameters of layer v 

of the AlexNet which consist of a weight matrix �� ϵ ℝ��∗��∗��∗���� and bias vector 

�� ϵ ℝ��, with kv*kv showing the size of the filters in layer v which possess nv-1 input 

channels and nv output channels. Similarly, fU is a fully connected layer with 

weights {��}���
� , where �� ∈  ℝ����∗ ��  representing the connections from fully 

connected layer u-1 to u and biases {��}���
�  where  � ϵ ℝ��  and fout represent a 
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multinomial logistic regression layer (Krizhevsky et al., 2012) containing weights ���� ∈

 ℝ��∗� and bias ���� ϵ ℝ�.  

The operation performed by each convolutional layer v ∈ {1, … , V} of the AlexNet is 

defined as follows: 

�� = f(I���, θ) = �� ⊗ ���� + ��                                                                                      (15) 

where ⊗ used as convolution operator, �� = (��,�, … , ��,��
) and H0 represents the 

input Hp image i. After the convolutional layers, fully connected layers are available that 

receives vectorized input volume ��ϵ ℝ|��| from HV, where |��| represents the length 

of the vector �� and applies V linear transformations defined by (Krizhevsky et al., 2012) 

as follows: 

�� = f�(��, θ�) = ���,�, … , (���� + ��), … + ��,��                                                       (16) 

where ��ϵℝ��,�. The final classification layer is defined by a softmax function over a 

linearity transform input (Krizhevsky et al., 2012) as follows:  

���� = f���(��, θ���) = softmax(������ + ����)                                                               (17) 

where softmax(�) =  
��

∑ ��(�)
�

 and ���� ∈ [0,1]�denotes the output from the overall 

extraction of process, with Y representing the number output labels.  

 
Figure 4.2: AlexNet architecture 
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The output of the convolutional layer is often forwarded to nonlinearity function, batch 

normalization layer, and subsampling layers. An activation or nonlinearity function is 

the function in an artificial neuron that delivers an output that is based on inputs. Many 

nonlinearity functions are used to model the neuron’s output, for instance, tanh [f(x) = 

tanh(x)] or sigmoid [f(x) = (1+e-x)-1]. In terms of deep neural training, while using 

gradient descent to find local minima for calculating validation loss, these nonlinearity 

functions are much slower than ReLUs [f(x)=max(x,0)] (Nair & Hinton, 2010; 

Krizhevsky et al., 2012). If x is less than zero, then f(x) is zero; otherwise, f(x) is x.  

Therefore, AlexNet is equipped with ReLU for expedited processing using gradient 

descent. ReLU does not require input normalization if some training examples provide 

positive input. Hence, a batch normalization scheme is introduced after ReLU in each 

convolutional layer of AlexNet, which can be referred to as “brightness normalization,” 

and it can reduce the error rate by 2% in a four-layer CNN (Krizhevsky et al., 2012).  

Mathematically batch normalization is denoted by the following: 

b�,�
� =

��,�
�

���� ∑ (��,�
�

)���� (���,���/�)
����� (�,���/�)

�
�                                                                                        (18)                          

Here, b�,�
� , a�,�

�  represents batch normalization and activity of the neuron on kernel i at 

location x, y. Moreover, n denotes adjacent kernel maps at the same location, and N is the 

total number of kernels in the layer. The constants k, n, a, and β are hyper-parameters, 

and their values are determined on the basis of the validation set. In addition to the 

nonlinearity function and batch normalization layers, a subsampling layer (i.e., MaxPool 

layer) is often placed to summarize the outputs of neighboring groups of neurons in the 

same kernel map. MaxPool takes the maximum value from an input matrix. The AlexNet 

avoids the overlap pooling by using stride 2 with 3 × 3 filter size. Hence, the network is 

less likely to be overfitted. Furthermore, a dropout layer is used after the first two FCLs 

in AlexNet, because it reduces the training time and overfitting dispute by assigning zero 
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to the output of each neuron with a probability of 0.5. Hence, such dropped neurons do 

not participate in both the forward pass and backpropagation process while training. 

 
4.2.2 Proposed DL-based BrC Detection Model  

Transfer learning is the process of using a previously trained (often trained on natural 

images such as AlexNet) model after fine-tuning and retraining on specific target data 

such as Hp BrC medical images. In fine-tuning, the last layer of the pre-trained model is 

often replaced by a newly created classification layer. Moreover, in TL, the weights of all 

layers remain frozen except the last layer, which is the newly created classification layer. 

Freezing the layers means not changing the layer weights during the training process in 

gradient descent optimization. However, due to the freezing of weights, the computations 

will be minimized, thus it enabled the TL-based model to be trained by using less 

computational resources in less time using fewer annotated images (like medical images)  

compared to a de-novo model (Jiang et al., 2017).  

Whereas, in a de-novo model, new layers are created and trained from scratch (Hadad 

et al., 2017). De-novo model layers are able to change their weights while training, 

therefore referred to as unfrozen layers. Due to the updation of a large number of weights 

in each iteration with the backpropagation process, a large number of computations are 

performed, thus requires very high computational resources, longer training time, and a 

large number of labeled images. However, in a de-novo model, customized layers can be 

created according to the type and size of data.  

On the contrary, TL-based model may not be able to produce good results for specific 

types of images such as Hp BrC because these models are trained on a large number of 

natural images like ImagNet (Yosinski, Clune, Bengio, & Lipson, 2014) and unable to 

learn specific features from a small number of medical images like BreakHis. In contrast, 
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the de-novo model can show better performance for specific types of images instead of 

natural images due to customized layers. Moreover, a smaller size de-novo model 

network can be created and may produce better results by using less computational 

resources and training time (Hadad et al., 2017). However, the major obstacle of using 

the de-novo model is that it often requires a large number of annotated images to train 

from scratch, which is often not possible for medical images. Thus, TL-based or ensemble 

models can be trained easily instead of the de-novo model for medical image 

classification. 

4.2.2.1 EBrC-Net Architecture and Model Structure 

In deep CNN-based models like AlexNet, the CLs are responsible to extract low-level 

and middle-level features such as edges, curves, bobs, and colors, which are common 

features in all types of images such as medical and nonmedical (i.e., natural images). On 

the other hand, the FCLs are capable to extract high-level features, also known as specific 

features. The specific features of medical images (e.g., BrC lesion structure and 

geometrical shape features) are entirely different from natural images. Hence, the TL 

model may lose the specific features of BrC images due to frozen FCLs. Nonetheless, the 

common features remain unaffected/preserved even though the CLs are frozen. 

Therefore, by exploiting this property of TL models, the initial five layers of the proposed 

EBrC-Net are kept frozen (transferred from AlexNet) to adopt image common features. 

Thus, due to frozen layers, the computations will be reduced at each layer to update the 

weights. However, the last three layers of EBrC-Net are kept unfrozen as used in a de-

novo model, so that they can be trained from scratch to learn the specific features of 

medical images like BrC lesion shape, size, and structure. Therefore, EBrC-Net is a fusion 

of the TL and de-novo models, that is, EBrC-Net, see Figure 4.3. The ensembling of two 

learning techniques enabled EBrC-Net to take advantage of both types of models i.e., TL-

based and de-novo models. Thus, EBrC-Net is able to produce better results compared to 
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the de-novo and TL-based models by using a small number of images without facing an 

overfitting issue. In addition, EBrC-Net can be trained in less time by consuming fewer 

resources such as a common desktop CPU. Thus, EBrC-Net is able to produce better 

generalization of features for BrC Hp images than both de-novo and TL-based models. 

 
Figure 4.3: Network architecture of proposed EBrC-Net 

Finally, the weights of newly created fully connected layers of EBrC-Net are 

initialized by using the weights of pre-trained AlexNet because AlexNet FCL weights 

become more supportive to EBrC-Net while training compared to randomly assigned 

weights. Actually, it minimizes the validation loss faster than the random weight 

initialization. In addition, the input layer image size of EBrC-Net is taken larger than the 

pre-trained AlexNet input layer. The input layer image size of EBrC-Net (Figure 4.3) is 

optimized to 258×258×3 instead of 227×227×3 used by AlexNet, see Figure 4.2. 

Optimized input layer image size enabled the proposed model to extract more 

discriminative and generalized features for BrC Hp images compared to the AlexNet 

default input layer image size. In the end, the last fully connected layer is fine-tuned to 

perform BrC detection (benign/malignant) results for BrT Hp images.  

4.3 Performance Enhancement of BrC Detection Model  

This section describes the second contribution made for the BrC detection model. In 

this regard, three misclassification reduction algorithms namely misclassification 

reduction image-wise (McRI), misclassification reduction patient-wise (McRP), and 
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misclassification reduction confidence-wise (McRC) are created by using top-performing 

augmentation methods to enhance the performance of the proposed BrC detection model. 

Therefore, the next two subsections will describe the augmentation method selection and 

McR algorithms in a detailed manner. 

4.3.1 Selection of Image Augmentation Method  

As discussed in Section 3.2.1.2(b), 24 augmentation techniques are used to create 

augmented images to form the training set. Here, out of 24, three top-performing 

augmentation techniques are selected to reduce the misclassification for ML classifiers. 

Because it has been observed by performing numerous experiments that more than three 

augmentation methods are unable to reduce misclassification. Moreover, the use of more 

than three augmentation techniques created more saturated and unbiased results.  After 

performing extensive experiments by using ML classifiers, the three best augmentation 

techniques are selected by using three PEMs, namely, Ac, Sp, and Sn.  The evaluation of 

these metrics enabled the selection of the three best performing unbiased augmentation 

techniques, which can, therefore, be used for McR. 

4.3.2 Misclassification Reduction Algorithms 

The DL-based EBrC-Net model is trained using 24 times augmented images along 

with original images. Whereas the quantity of augmented images is much higher than the 

original images, thus EBrC-Net got better training for augmented images instead of 

original images. However, testing data contains only original images, thus it can be easily 

misclassified by the model which is largely trained on augmented images.  Therefore, the 

misclassification rate needs to be reduced to produce reliable results. In this regard, three 

McR algorithms namely McRI, McRP, and McRC are developed to minimize the 

misclassification rate for BrC detection by using BrT Hp images. Noticeably, before 

applying McR algorithms, the images are sorted in a patient-wise manner.  
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(a)  McR Image-wise 

In the McRI algorithm (Algorithm 4.1), the input image is augmented three times by 

using previously selected best augmentation techniques (see Section 4.3.1) and classified 

through a trained classifier. Because more than three times augmentation is unable to 

reduce misclassification. Thereafter, the label for the original image is decided on the 

basis of counting of predicted three labels of augmented images. If the counting of benign 

prediction is higher than malignant, then the original image is labeled as benign, else 

malignant. Suppose original testing images are represented by I1, I2, I3, …, In and each 

image is augmented three times and denoted as a1, a2, and a3. Now assume that the 

augmented images a1, a2, and a3 of original image I1 are classified as images a1, and a3 are 

benign whereas a2 is malignant, thus three augmented images are counted as I1(2,1); 

likewise assume images a1, a2, and a3 of I2 are classified as image a1 is benign whereas 

images a2 and a3 are malignant, therefore counted as I2(1,2). Let us say seven images of 

patient P1 are present, and all are classified and counted as I1(2,1), I2(1,2), I3(2,1), I4(0,3), 

I5(2,1), I6(2,1), and I7(3,0). Hence, clearly, five images I1, I3, I5, I6, and I7 are classified as 

benign whereas two images I2 and I4 are classified as malignant, see Algorithm 4.1. Thus, 

using a technique to predict a class label for the original image on the basis of three 

augmented images reduced the chances of misclassification instead of predicting a single 

original image directly. However, patient confidence will be 5/7 (i.e., 71.42%) (see lines 

21 and 23 of the McRI Algorithm 4.1). 

(b) McR Patient-wise  

In the McRP algorithm (Algorithm 4.2), initially, all original images of the single 

patients are read and augmented thrice by using previously selected best augmentation 

techniques. Thereafter, all the augmented images of one patient are classified by a trained 

classifier. Subsequently, the predicted labels for benign and malignant are counted and 

stored in a table named patient-wise counting table (PCT). PCT is populated in such a 
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way that each row represents the count(s) for malignant or benign predictions for each 

original image. Thus, PCT contains the overall counts for benign and malignant 

predictions for all images of a patient.  

Algorithm 4.1: McRI Algorithm 

 

In the same way, a PCT is created for each patient (e.g., P1, P2, P3, …, Pn) one after the 

other. Once the PCT for images of patient P1 is populated, an overall sum of counts (SoCs) 

is computed to show the total counts for benign and malignant predictions for patient P1. 

Hence, on the basis of SoCs, all images of a patient are classified as either benign or 

malignant. Take the same example discussed in McRI algorithm Section 4.3.2(a), where 

the computed counts for seven images are I1(2,1), I2(1,2), I3(2,1), I4(0,3), I5(2,1), I6(2,1), 

and I7(3,0), which are now stored in PCT. Here, in PCT the SoCs for benign and 

malignant predictions are 12 and 9, respectively. It can be observed that the benign class 

has higher SoCs than the malignant class. Therefore, all images of patient P1 are classified 

as benign. Conversely, in PCT if malignant SoCs become larger than benign SoCs, then 
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all images of that particular patient are classified as malignant, see McRP Algorithm 4.2. 

Thus, in the McRP algorithm, all the images are recognized by their relevant group (i.e., 

augmented patient-wise group of images) instead of classifying each original image 

individually. Classifying images through its related group can drastically reduce the 

misclassification rate compared to the McRI algorithm for BrC Hp images using the 

BreakHis dataset. The same as the McRI algorithm, here patient confidence is also 

computed for each patient by using SoCs such as 12/21 (i.e., 57.14%) (see lines 17 and 

20 of the McRP Algorithm 4.2). 

Algorithm 4.2: McRP Algorithm 

 

(c) McR Confidence-wise 

In algorithms McRI and McRP, patient confidence is calculated after the labels of all 

images of each patient are predicted. Patient confidence is formally denoted by the 

following Equation (19): 

Patient confidence =  
I�

I�
                                                                                    (19) 
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where Ic represents the number of correctly classified images of a patient and It denotes 

a total number of images of a patient. McRI algorithm (Algorithm 4.1) computes the 

image-wise confidence (IWC) whereas the McRP algorithm (Algorithm 4.2) calculates 

the patient-wise confidence (PWC). 

However, in the McRC algorithm (Algorithm 4.3), the average patient confidence 

(APC) is calculated by using IWC and PWC. Suppose, if APC of patient P1 is above the 

minimum value found in APC, then patient P1 images are labeled according to the labels 

predicted through the McRP algorithm. Otherwise, labels are assigned by using the McRI 

algorithm. Thus, by using average confidence based on the McRI algorithm and McRP 

algorithm predictions, the misclassification has been drastically reduced. It is because the 

misclassification performed at the patient-level (McRP Algorithm) has been corrected by 

image-level (McRI algorithm) predictions, see Algorithm 4.3. 

Algorithm 4.3: McRC Algorithm 

 

4.4 Development of BrT Classification Model 

The proposed DL-based hierarchical BrT classification model (i.e., BMIC-Net) is 

composed of three classifiers namely BC1, B2, and M2. Each one of the three classifiers 

is created by using AlexNet after fine-tuning the last layer for their target classes of BrT. 

For instance, BC1 is trained to classify the basic types of BrT like benign or malignant. 

Whereas B2 and M2 are enabled to classify further four subtypes of each benign and 
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malignant BrT. This hierarchical design of BMIC-Net enables the model to classify eight 

subtypes of BrT in a systematic way (indirectly) the BreakHis dataset is organized. 

Moreover, to enhance the performance of the BMIC-Net model a feature selection 

algorithm is implemented to select the minimum number features subset for 

misclassification reduction to achieve maximum accuracy. The detailed discussion for the 

design and development of the proposed BMIC-Net and feature selection algorithms are 

presented in the following section.  

4.4.1 Proposed BMIC-Net  

As mentioned earlier in Section 3.2.1.1, the collected corpus comprised only 7909 

images belonging to eight BrT types. Thus, the available small number of images may 

not be highly effective for any DL-based model to train from scratch. In such cases, the 

pre-trained DL-based classification model plays a decisive role in the classification of 

new types of images, such as medical images. Moreover, it can be easily and quickly 

retrained on new images to obtain a reasonable classification performance using a smaller 

number of images, less computational resources (like a personal desktop computer), and 

training time. Thus, one of the objectives of this research is to train a DL-based 

classification model on a smaller number of medical images by using the least 

computation resources with lesser training time. Therefore, this research used the 

AlexNet pre-trained classification model that can be retrained on a small number of 

images.  

AlexNet architecture possesses a fewer number of layers compared with most of the 

pre-trained DL-based CNN architectures. To achieve the objectives, this study used TL 

by fine-tuning AlexNet to construct three classifiers (BC1, B2, and M2) for the BMIC-Net 

hierarchical classification model. In TL, the first part of AlexNet architecture which is 

based on the convolution layer is responsible to extract low- and middle-level-features. 
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Whereas, the second part consist of fully connected layers extracts high-level feature. The 

last layer of AlexNet is trained for 1000 classes of natural images using the ImageNet 

dataset. Thus need to be fine-tuned for eight subtypes of BrT of the BreakHis dataset. 

Thus in this research, the last fully connected layer is fine-tuned and retrained for the 

newly specified number of classes (i.e., eight types of BrT) instead of 1000 classes of 

natural images used by AlexNet in default.  

Hence, the use of a hierarchical model using pre-trained layers reduced the 

computational resources and training time. Therefore, the proposed model can be trained 

on a normal desktop computer and requires fewer images to get better results, which 

enabled the achievement of the main objective of this research. 

4.4.1.1 BMIC-Net Architecture and Model Structure 

Figure 4.4, shows the architecture of the proposed BMIC-Net hierarchical model three 

classifiers (i.e., BC1, B2, and M2) and non-hierarchical model to classify eight subtypes of 

BrT. For the proposed model, each one of the three classifiers is derived from a pre-

trained fine-tuned AlexNet model for target BrT classes. Therefore, BC1 is fine-tuned to 

classify basic types of BrT namely benign and malignant. However, B2 is fine-tuned to 

classify four subtypes of benign tumors namely, A, F, TA, and PT, see B2 architecture in 

Figure 4.4. Whereas, M2 is a fine-tuned form of AlexNet to classify malignant BrC types 

namely DC, LC, MC, and PC, see the M2 architecture diagram in Figure 4.4. Moreover, 

a non-hierarchical model is given to show the classification of eight subtypes of BrT by 

fine-tuning the last layer of AlexNet for overall eight classes, see Figure 4.4. 

4.4.1.2 BMIC-Net Model Structure 

The three classifiers (i.e., BC1, B2, and M2) of the BMIC-Net hierarchical classification 

model are planted into two levels. In addition, a feature reduction and selection algorithm 

is also used to enhance the classification performance (by reducing misclassification) 
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after each classifier at each level, see Figure 4.5. At the first level, the BC1 classifier is 

placed to classify a Hp image into two basic types of BrT namely, benign and malignant, 

formally represented by Equation (13). Whereas at the second level rest of the two 

classifiers B2 and M2 are employed. B2 further classifies a BrC Hp image into four 

subtypes of benign (i.e., A, F, TA, and PT), formally represented by Equation (14). 

Whereas the M2 classifier is responsible to classify BrC Hp images for four subtypes of 

malignancy (i.e., DC, LC, MC, and PC), formally represented by Equation (15).  

����
(�) = �������(�. � + �)                                                                             (13) 

���
��|����

� =  �������(�. � + �)   ,   �� ����
�� ������                              (14) 
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Figure 4.4: Network architectures’ of BMIC-Net model classifiers’ for hierarchical 

BrT classification 
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Figure 4.5: Proposed hierarchical classification flow diagram 

���
��|����

� =  �������(�. � + �)  ,   �� ����
�� ���������                       (15) 

Where, I, W, and b represent input image, weights and biases respectively computed 

by BC1, B2, and M2 classifiers. ����
 represents the classification probabilities predicted 

for benign and malignant classes. ���
 denotes the classification probabilities predicted for 

four subclasses of benign BrC. Similarly, ���
 denotes the classification probabilities 

predicted for four subclasses of malignant BrC. 

In summary, the proposed hierarchical BrT classification model structure is simpler 

and easier to classify four subtypes of benign separately from four subtypes of malignant 

BrT instead of overall eight BrT types directly. Thus, an indirect multiclassification 

approach (i.e., a hierarchical classification approach) produced better results compared to 
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direct classification (i.e., a non-hierarchical classification approach). This is the main 

notion of choosing a hierarchical classification model. 

4.5 Performance Enhancement of BrT Classification Model  

This section describes the second contribution made for the BrT classification model. 

In this regard, a feature selection algorithm is created using two feature reduction schemes 

like IG and PCA to get the minimum number of features to reduce the misclassification 

which enhances the overall performance of the hierarchical BrT classification model. The 

next subsection 4.5.1 describes the design and working of the feature reduction and 

selection algorithm. 

4.5.1 Feature Reduction and Selection Algorithm 

As mentioned in Section 3.2.2.4, after MFVs extraction using three classifiers (i.e., 

BC1, B2, and M2) at each classification level, six ML classifiers are applied, namely, the 

kNN(k=1), SVM(linear), NB, DT, LDA classifier, and LR. These six ML classifiers are 

applied to see the performance of ML classifiers in terms of mean Ac for five folds of 

extracted MFVs. Furthermore, according to Wolpert and Macready (1997), no single  ML 

algorithm can perform consistently better on all types of data. Thus, the performance of 

various algorithms on the collected dataset must be evaluated to investigate which one 

produces better classification results on the collected dataset. Hence, this study selected 

the six aforementioned ML classifiers to evaluate their performances on the extracted 

three MFVs using BC1, B2, and M2.  

Generally, it has been experimentally observed that the misclassification is because of 

two reasons. First, there is a high correlation among the features of eight subtypes of BrC 

Hp images. Which may create complexity for the ML classifier to distinguish eight 

subtypes of BrT. Therefore, the misclassification rate is higher. Second, a large number 

of features (i.e., 4096) in MFV is extracted through BMIC-Net for each BC1, B2, and M2. 
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Such a large number of features can easily distract the training process of a ML classifier 

that can increase the misclassification rate.  Moreover, such a large number of features in 

MFV may not be feasible for effective ML classifiers to obtain the highest Ac within 

limited computational time and resources. Thus, the three MFVs are analyzed and 

optimized using two well-known feature reduction schemes, namely, IG and PCA, to 

obtain the most informative and discriminative feature subset, see Algorithm 4.4.  

The feature reduction process is based on three steps. In the first step, a feature score 

table (FST) is created using MFV. In the second step, a feature accuracy table is generated 

using the FST. Finally, the highest accuracy is achieved when the least number of feature 

subsets is used. There are three major reasons behind the selection of IG and PCA feature 

reduction methods. First, in several studies, these methods have shown promising results 

compared to other methods (Bovis, Singh, Fieldsend, & Pinder, 2000; Swiniarski, Lim, 

Shin, & Skowron, 2006; Naik et al., 2008; Buciu & Gacsadi, 2009; Surendiran & Vadivel, 

2010; Buciu & Gacsadi, 2011; Zhang, Tomuro, Furst, & Raicu, 2012; Babu, Sukumar, & 

Anandan, 2013; Kozegar, Soryani, Minaei, & Domingues, 2013). Second, images mostly 

have highly correlated features due to similarity among neighboring pixels. However, 

real-life Hp images usually possess some noise/inconsistencies due to different color, 

intensity, and lighting effects because of image acquisition protocols and different 

standards followed in digital pathology labs. Thus entropy-based feature selection (like 

IG) method helps to find out the purity of contribution for each dimension towards the 

intended class label (Kent, 1983). Third, for high dimensional data like Hp images, PCA 

is mostly used in order to handle the curse of dimensionality without losing important 

information. Moreover, variant information in the data needs to be preserved. Thus, PCA 

is a well-established mathematical technique for reducing the dimensionality of images 

and keeps the embedded information variations as its maximum (Abdi & Williams, 2010). 
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Algorithm 4.4: Feature reduction schemes adopted 

 

After applying feature reduction schemes a feature selection algorithm (Algorithm 4.5) 

is developed and implemented to select the minimum features subset for each of the 

classifiers used in the hierarchical classification approach. Noticeably, the selected 

feature subset does not compromise the overall Ac (lies between 0 to 100) of the 

hierarchical classification model. Overall 82 feature subsets (50, 100, 150, …, 4096) are 

created and tested by using the aforementioned six ML classifiers for each feature 

reduction scheme namely, IG and PCA.  

Algorithm 4.5: Feature selection algorithm 

 

The feature selection algorithm enables to select the minimum features subset where 

highest Ac (lies between 0 to 100) is observed by each of the six ML classifiers for overall 

4096 DeCAFs extracted through BC1, B2, and M2 DL-based BMIC-Net model. Finally, a 

minimum subset of features, top-performing feature reduction scheme and best 
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performing ML classifier are selected to construct hierarchical Br classification. Thus the 

main goals of feature reduction and selection are achieved because the proposed model 

consumes less computational resources and produced better results by reducing 

misclassification to enhance the overall performance of the proposed hierarchical BrT 

classification model.  

4.6 Summary 

This chapter represented the detailed discussion about architectural design (see Section 

4.2.2.1 and 4.4.1.1) and algorithms for model performance enhancement (see Sections 

4.3.2 and 4.5.1) to highlight the research contributions made for proposed BrC detection 

and BrT classification models. Overall, four research contributions are discussed, where 

two contributions are made for each BrC detection model and the BrT classification 

model. For BrC detection an ensemble DL-based EBrC-Net model is created to extract 

better features compared to AlexNet using less computational resources, less training time 

using complex datasets. EBrC-Net is enabled to accept a larger input image size compared 

to AlexNet. Whereas, the fully connected layers are trained from scratch to learn Br 

cancer lesion specific features instead of natural image specific features like AlexNet. In 

addition, to improve the performance of extracted features via EBrC-Net three McR 

reduction algorithms (i.e., McRI, McRP, and McRC) are developed to reduce the 

misclassification rate. On the other hand, for BrT classification a DL-based BMIC-Net 

hierarchical model is developed to extract better features compared to non-hierarchical 

model for eight subtypes of BrT. Moreover, it consumes less computational resources, 

less training time, and able to show better results using a complex dataset.  Furthermore, 

a feature reduction and selection algorithm is developed to get a minimum number of 

features (which reduces misclassification) to enhance the overall performance of the 

proposed model. The results of the proposed BrC detection and BrT classification models 

are discussed in Chapter 5. 
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CHAPTER 5: EXPERIMENTAL RESULTS AND DISCUSSION 

5.1 Introduction 

This chapter is largely composed of two main parts, the first part reports the 

experimental results while the second part is discussion. In the first part, the experimental 

results of both BrC detection and BrT classification models are presented. Whereas, the 

second part of this chapter presents a vital and hypothetical discussion about existing SoA 

models for BrC detection and BrT classification. The following sections provide more 

details of the experimental results and overall discussion. 

5.2 Experimental Results 

This section reports the experimental results of proposed DL-based BrC detection and 

BrT classification models using Hp images. An extensive set of experiments are carried 

out using various PEMs. Overall four experimental setups yielded four experimental 

results for each BrC detection model and BrT classification model, see Figure 5.1. The 

complete flow of experimental results is discussed in the next sections. 

 
Figure 5.1: The experimental results distribution overview 
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5.2.1 Experimental Results of BrC Detection Model 

In this section, the results of the aforementioned four experimental setups (see Section 

3.1.1) are reported and analyzed. Results are discussed in terms of overall mean prediction 

Ac, Sp, Sn, Pr, Fm, and PRR for five folds of features. 

5.2.1.1 Experimental Results of Setting I  

This section comprises of two parts, first part shows the results of input image 

optimization for the proposed EBrC-Net model and the second part compares the training 

performance to select the best possible trained models for AlexNet and EBrC-Net. Here 

AlexNet is fine-tuned for the last layer for benign and malignant classes while keeping 

the rest of the layers freezed. Whereas the proposed EBrC-Net model is similar to 

AlexNet with few modifications like larger input image size, three unfreezed fully 

connected layers trained from scratch and the last layer is fine-tuned for benign and 

malignant classes. 

The motivation behind the optimization of input image size is that the rescaling of 

medical images can cause the loss of BrT lesion related information. Which may reduce 

the quality of features extracted through CNN models. Thus, the CNN-based model may 

produce compromised results. Urbaniak and Wolter (2020) experimentally observed that 

the larger image size usually improves the medical image diagnosis accuracy using CNN. 

Therefore, the input image size for EBrC-Net is optimized by using three sizes like 

138×138, 227×227, and 258×258 via minimum validation loss with better accuracy, see 

Figure 5.2. Here, 227x227 is the standard image size used for AlexNet and 258×258 is 

the maximum image size supported by the EBrC-Net. However, a smaller size 138x138 

is also experimented to ensure that the CNNs using medical images showed better 

accuracy for large size images, see Figure 5.2. Thus, achieving better accuracy is one of 

the objectives of this research. From Figure 5.2, it has been experimentally observed that 
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258×258 image size got 0.6975 minimum validation loss and better accuracy compared 

to the rest of the image sizes like 138×138 and 227×227. Moreover, the lowest 

performance is shown by 138x138 image size. For further experiments, 258×258 image 

size has been selected for input to EBrC-Net on the basis of minimum validation loss as 

well as maximum validation accuracy, see Figure 5.2.  

 
Figure 5.2: Input image size optimization for EBrC-Net 

Furthermore, the training of both AlexNet and EBrC-Net is evaluated by validation 

accuracy followed by validation loss, see Figure 5.3. The model training is stopped if the 

validation loss is not decreasing until fifteen consecutive iterations.  

Based on the results of validation loss (Figure 5.3), the AlexNet model training loss is 

mostly higher than the proposed model till the third epoch. Thus, Figure 5.3(a) presents 

that EBrC-Net performed better than the AlexNet, especially at epoch 2 where the 

minimum validation loss is 0.6975. However, the validation loss is almost the same after 

3rd epoch for both models. On other hand, the analysis of validation accuracy shows that 

the EBrC-Net model initially has achieved lower Ac (i.e., 51.46%, 51.99%, 52.25%, and 

49.6%) in comparison with AlexNet (i.e., 42.18%, 54.64%, 55.7%, and 53.58%) in first 
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epoch. However, after the second epoch, the performance of EBrC-Net is almost retained 

higher. Hence, the validation accuracy of the proposed model is highest at epoch 2 (i.e., 

68.7%), and it is much better than the AlexNet model during the overall training process, 

see Figure 5.3(b).  

 
Figure 5.3: Epoch-wise comparison of the AlexNet model with EBrC-Net model. 

(a) Validation loss comparison. (b) The validation set accuracy comparison 
 

Hence, it can be concluded from the above two (validation loss and validation 

accuracy) analyses that the EBrC-Net model at epoch 2 has shown better performance 

than AlexNet.  This ensures that the proposed model is better than AlexNet to learn the 

features from Hp images due to larger input size and unfreezed fully connected layers. 

Therefore, EBrC-Net epoch 2 trained models are selected for further analyses to solve the 

BrC detection problem. 

5.2.1.2 Experimental Results of Setting II 

The performance of extracted DeCAFs from EBrC-Net is evaluated through six ML 

classifiers, namely, softmax, kNN, SVM, NB, DT, and LDA. Before performing the 

analysis of the aforementioned classifiers, parameter optimization has been carried out 

for kNN and SVM classifiers to get the best possible results. The performance of kNN is 

optimized by using k-values like 1,3,5,7, and 9.  Where, it is experimentally noticed that 

kNN has shown the best results by showing 78.30% Ac, 80.41% Sn, and 71.83% Sp when 

the k-value is 7, see Figure 5.4(a).  Thus, for kNN, the value of k is selected as 7 for 

further analyses.  Similarly, the parameters for SVM are optimized by using different 

(a) (b) 
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kernels like linear, rbf and polynomial, in order to achieve the best possible results. Here, 

the linear kernel outperformed the rest of the two kernels by showing Ac, Sn, and Sp as 

75.00%, 74.42%, and 76.76% respectively, see Figure 5.4(b). Therefore, the linear kernel 

is adopted for SVM for further analyses.  

 
Figure 5.4: Parameter optimization of kNN and SVM classifiers 

After parameter optimization, this section reports and examines the experimental 

results of six analyses by using the aforementioned five PEMs. These PEMs facilitated to 

show the performance of six ML classifiers, for further analyses of BrC detection. Figure 

5.5  shows the mean results in terms of Ac, Sn, Sp, Pr, and Fm for five folds of the dataset 

using aforesaid six ML classifiers. Where, softmax and kNN (k = 7) have achieved better 

Ac (i.e., 83.96% and 78.26%) than the rest of the four ML classifiers. However, the Sp of 

softmax is lower (i.e., 56.20%) than kNN (i.e., 71.83%) and in contrast, Sn of softmax is 

higher (i.e., 93.09%) than kNN (i.e., 80.37%). Thus, it can be concluded that the Ac of 

softmax is highly biased toward the positive class (malignant class) compared to kNN. 

Moreover, the Pr of kNN is better than softmax such as 89.71% and 86.65%. Nonetheless, 

the Fm of softmax is higher than kNN like 89.73% and 84.78%. Furthermore, the rest of 

the four classifiers like NB, SVM(linear), LDA, and DT have shown almost the same Ac 

i.e., 74.76%,74.69%,73.99%, 73.40%. Whereas, the Sn (i.e., 80.78%) of NB is much 

better than SVM, LDA, and DT. Conversely, NB has shown the lowest Sp (i.e., 56.34%) 

than SVM, LDA, and DT. While, Pr of SVM and DT is better among all classifiers like 

(a) (b) 
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90.50%, and 90.25%. The Fm of SVM and LDA is almost same like 81.54%, and 81.28%, 

while Fm of DT is least among all classifiers i.e. 80.43%.  

 
Figure 5.5. Performance of six ML classifiers 

Analysis of the six ML classifiers’ results has concluded that softmax and kNN have 

outperformed the rest of the classifiers. However, the Ac, Sn, and Fm of softmax are 

better than kNN. On the contrary, kNN possesses better Sp and Pr than softmax. Thus 

further analyses are also made on all aforementioned ML classifiers using five folds of 

features by implementing McR algorithms. For this experimental setting, the detailed 

results of five folds with standard deviation using aforesaid six ML classifiers are shown 

in appendix-A Table-1. 

5.2.1.3 Experimental Results of Setting III 

In experimental setting III, the performance of three McR algorithms, namely, McRI, 

McRP, and McRC, is evaluated by using six ML classifiers like kNN, softmax, NB, SVM, 

LDA, and DT, see Table 5.1. In addition, Table 5.1 represents the mean results in terms 

of Ac, Sn, Sp, Pr, and Fm for five folds of features with a standard deviation. By 

comparing the results of all classifiers shown in Table 5.1, it can be observed that the 

softmax has shown slightly better 83.16(0.31) Ac than kNN i.e., 81.25(0.39). 

Nonetheless, softmax is more biased toward the positive class than kNN, because softmax 
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is shown a high Sn (i.e., 87.37(0.31)) with a low Sp (i.e., 70.28(0.53)). In contrast, kNN 

has shown relatively better unbiased Sn (i.e., 80.6(0.19)) with Sp (i.e., 83.24(1.04)). 

Therefore, kNN has better Pr (i.e., 93.63(0.38)) than softmax (i.e., 89.99(0.18)). Whereas, 

Fm reported by softmax (i.e., 88.66(0.22)) is better than kNN (i.e., 86.62(0.27)). On the 

other hand, when the experimental results of both classifiers for the McRP algorithm are 

compared, then it is noticed that kNN is achieved much better performance than softmax. 

For instance, kNN achieved 95.76(0.20) Ac which is higher than softmax with 

89.86(0.24). Moreover, kNN is shown 94.52(0.19) Sn with 99.58(0.63) Sp. Whereas, 

softmax remained highly biased by acquiring 97.14(0.50) Sn with 67.61(0.77) Sp. 

Therefore, Pr and Fm are more reliable using kNN (i.e., 99.85(0.22) and 97.11(0.13)) 

rather than softmax (i.e., 90.16(0.18), 93.52(0.17)). Lastly, when the results of McRC 

algorithm are analyzed using both classifiers, then it can be clearly perceived from Table 

5.1, that kNN outperformed the softmax by showing the best Ac with 97.78(0.23); Sn, 

97.28(0.19); Sp,  99.30(1.00); Pr, 99.76(0.33); and Fm as 98.51(0.15). Whereas, softmax 

got Ac as 91.88(0.13); Sn, 98.48(0.50); Sp, 71.69(1.29); Pr, 91.41(0.32); and Fm is noted 

as 94.81(0.10). Moreover, the softmax remained biased toward the malignant/positive 

class even after applying McR algorithms. Apart from softmax and kNN performance, it 

is concluded from Table 5.1 that the performance of the remaining classifiers’ is also 

improved but shown lower results than kNN and softmax when three McR algorithms are 

applied one after the other. In summary, it can be summarized for this experimental setup 

that kNN has shown the best performance among all ML classifiers while using McRI, 

McRP, and McRC algorithms. The detailed results of five folds with standard deviation 

using three McR algorithms with aforesaid six ML classifiers are shown in appendix-A 

Table-2. 
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Table 5.1: Performance comparison of McR algorithms using machine learning 
classifiers 

Classifier Algorithm Ac Sn Sp Pr Fm 
kNN McRI 81.25±0.39 80.6±0.19 83.24±1.04 93.63±0.38 86.62±0.27 

McRP 95.76±0.20 94.52±0.19 99.58±0.63 99.85±0.22 97.11±0.13 

McRC 97.78±0.23 97.28±0.19 99.30±1.00 99.76±0.33 98.51±0.15 

Softmax McRI 83.16±0.31 87.37±0.31 70.28±0.53 89.99±0.18 88.66±0.22 

McRP 89.86±0.24 97.14±0.50 67.61±0.77 90.16±0.18 93.52±0.17 

McRC 91.88±0.13 98.48±0.50 71.69±1.29 91.41±0.32 94.81±0.10 

NB McRI 80.21±0.35 79.77±0.34 81.55±0.59 92.96±0.22 85.86±0.26 

McRP 86.22±0.26 86.77±0.55 84.51±0.86 94.48±0.26 90.46±0.22 

McRC 88.23±0.15 89.26±0.55 85.07±1.44 94.82±0.45 91.95±0.12 

SVM McRI 80.49±0.40 79.91±0.44 82.25±0.59 93.23±0.22 86.05±0.31 

McRP 86.32±0.19 86.77±0.55 84.93±1.18 94.63±0.37 90.53±0.17 

McRC 87.88±0.15 88.80±0.55 85.07±1.44 94.79±0.45 91.69±0.12 

LDA McRI 81.69±3.86 81.20±4.20 83.19±2.86 93.62±1.27 86.94±2.93 

McRP 84.00±3.07 84.10±3.80 83.70±1.31 94.02±0.65 88.75±2.40 

McRC 86.86±0.87 87.49±1.15 84.91±1.21 94.66±0.40 90.93±0.65 

DT McRI 79.97±0.40 79.45±0.44 81.55±0.59 92.94±0.22 85.66±0.31 

McRP 85.45±0.19 86.31±0.55 82.81±1.18 93.89±0.36 89.94±0.17 

McRC 87.01±0.15 87.65±0.55 85.07±1.44 94.73±0.46 91.05±0.13 

 

5.2.1.4 Experimental Results of Setting IV 

In experimental setting IV, the performance of three McR algorithms is also examined 

by using aforesaid six ML classifiers through PRR. The PRR plays a vital role in cancer 

patient diagnosis because in medical science the patient-level decision is also important 

than making image-level prediction only.  

In this setting, a total of four analyses are presented, and out of 4, 1 and 3 analyses are 

performed before using McR and after applying McR algorithms. Figure 5.6, shows that 

initially, PRR of softmax (i.e., 79.25%) is slightly better than kNN (i.e., 76.05%) when 

none of the three McR algorithms is used. However, when the McRI algorithm is applied, 

then it has been noticed that PRR of kNN (i.e., 80.82%) is improved, and it is marginally 

greater than softmax (i.e., 78.49%). Moreover, the application of the McRP algorithm had 

drastically increased PRR of kNN (i.e., 96.00%) than softmax (i.e., 84.00%). In addition, 

McRC had shown the best PRR by using kNN (i.e., 97.92%), whereas PRR of softmax 

(i.e., 91.75%) is improved but highly less than kNN. Apart from PRR analysis of kNN 
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and softmax classifiers, the other ML classifiers have shown better PRR as the McR 

algorithms are applied in a cascade manner. The PRR of NB, SVM, LDA and DT is 

improved from 74.65%,74.65%, 73.45%, 72.41%, and 71.11% to 90.92%, 91.75%, 

90.49%, 89.47%, 88.67%, and 87.63% respectively. Furthermore, the trend line of kNN 

shows that the PRR has been drastically improved as the McR algorithms are applied one 

after the other. Thus, kNN(k=7) outperformed softmax when three McR algorithms are 

used in a cascaded manner. 

 
Figure 5.6. Analysis of PRR before and after McR and performance of three 

misclassification algorithms  

In summary of all experimental setups, the DeCAFs of training, validation, and testing 

sets are extracted through the EBrC-Net model. Thereafter, the aforementioned six ML 

classifiers are trained and tested using five folds of overall DeCAFs after parameter 

optimization of kNN and SVM. Where kNN(k=7) has shown reliable performance 

compared to the rest of the classifiers. Next, the proposed three McR algorithms are used 

with aforesaid six ML classifiers and it has been observed that kNN has outperformed the 

remaining five ML classifiers. In addition, the results are compared before and after 

applying McR algorithms. Here, it is experimentally discovered that the proposed McR 

algorithms have shown drastically improved results by achieving mean accuracy up to 

97.78(0.23). Finally, PRR is computed for each of the six ML classifiers and kNN has 

Univ
ers

iti 
Mala

ya



151 

shown the best performance among all. Thus, DeCAFs extracted via EBrC-Net and 

classified through kNN(k=7) using three McR algorithms have outperformed for BrC 

detection. 

5.2.2 Experimental Results of BrT Classification Model 

This section reports and discusses the experimental results of four experimental setups 

(see Section 3.3.2) for BrT classification in terms of overall predictive mean Ac, Sn, and 

AUC using five folds of features. 

5.2.2.1 Setting I Experimental Results 

This section presents results for the selection of the best possible trained DL-based 

classifiers for the proposed hierarchical BMIC-Net model and non-hierarchical model for 

BrT classification.  The validation loss and validation accuracy are computed and 

analyzed after each epoch while training both models (i.e., hierarchical and non-

hierarchical) for comparison. However, the training process is terminated if validation 

accuracy is not improving in consecutive three epochs. 

It can be observed from Figure 5.7 (a) and (b) that the DL-based classifiers are trained 

for four epochs. Whereas, lowest validation loss (i.e., 0.3433) and highest validation 

accuracy (i.e., 83.92%) are observed at epoch 3. Similarly, the B2 classifier is trained up 

to 18 epochs as shown in Figure 5.7 (c) and (d). The lowest validation loss (i.e., 0.6308) 

and highest validation accuracy (i.e., 77.96%) are observed at epoch 15. Whereas, the M2 

classifier is trained for 18 epochs. Where, the lowest validation loss (i.e., 0.66673) and 

highest validation accuracy (i.e., 74.06%) are observed at epoch 14, see Figure 5.7 (e) 

and (f). On the other hand, the non-hierarchical classifier is trained till 14 epochs. Here, 

the lower validation loss (i.e., 0.995) and best validation accuracy (i.e., 62.56%) are 

observed at epoch 10, see Figure 5.7 (g) and (h). Thus, for AlexNet the model is selected 

at epoch 10 for further analyses. In summation, by comparing the model training results 
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it can be concluded that the performance of the proposed hierarchical BrT classification 

model BMIC-Net is much better than the non-hierarchical classifier. Thus, the DL-based 

classifiers like AlexNet, BC1, B2, and M2 are selected on the basis of best validation 

accuracy and are used to extract the features to create MFV for further analyses. 

 
Figure 5.7: Epoch-wise comparison of BMIC-Net with non-hierarchical model 

5.2.2.2 Setting II Experimental Results 

The performance of extracted features from BMIC-Net (i.e., BC1, B2, and M2) is 

evaluated through six traditional ML classifiers, namely, kNN, SVM, NB, DT, LDA, and 

(a) (b) 

(c) 

(e) 

(g) (h) 

(d) 

(f) 
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LR using five folds of MFV. Before performing the analyses of the aforementioned six 

traditional ML classifiers, the parameter optimization has been carried out for kNN and 

SVM to get the best possible results. The performance of kNN is optimized by using k-

values like 1,3,5,7, and 9.  Where, it is experimentally observed that kNN (k=1) has shown 

the best accuracies for BC1, B2, and M2 like  94.55%, 92.13%, and 91.28% respectively, 

see Figure 5.8(a).  Similarly, the parameters for SVM are optimized by using different 

kernels like linear, rbf, and polynomial. Here, the linear kernel has been outperformed the 

rest of the two kernels by showing the best accuracies for BC1, B2, and M2 like  90.37%, 

88.40%, and 88.87% respectively, see Figure 5.8(b). Therefore, the linear kernel is 

adopted for SVM for further analyses.  

 
Figure 5.8: Parameter optimization for kNN and SVM 

 
In this section, all results are presented in terms of mean Ac and AUC with standard 

deviation for five folds of overall 4096 DeCAFs/features. Figure 5.9, shows the mean 

accuracies of the three proposed BMIC-Net classifiers (i.e., BC1, B2, and M2) using the 

six traditional ML classifiers. Here, the BC1 classifiers, kNN (k=1) outperformed the 

remaining five ML classifiers by obtaining Ac of 94.33% (Sn = 91.74%, 97.17%). 

Conversely, DT has shown the least Ac for BC1 classifier i.e., 84.91%. Nonetheless, the 

Ac and Sn of the SVM and LDA are slightly less than that of kNN. Whereas, NB and LR 

have shown average accuracy which slightly greater than LDA for the BC1 classifier. In 

the B2 and M2 of BMIC-Net classifiers, the kNN outperformed the five other traditional 

(a) (b) 
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ML classifiers by obtaining mean accuracies of 91.88% (Sn = 95.19%, 95.15%, 85.285, 

91.21%) and 91.47% (Sn = 91.80%, 95.74%, 87.79%, 90.69%), respectively, followed 

by the SVM and LR. In addition, the lowest mean Ac is observed in the NB. To 

summarize, in setting II, the best performance in all BMIC-Net classifiers is observed 

through kNN followed by SVM. However, in the BC1 ML classifiers, the best 

performance is shown by the kNN followed by the LDA. Thus, the AUC is also shown 

for best-performing traditional ML classifiers for all three BMIC-Net hierarchical 

classifiers in Table 5.2. For this experimental setting, the detailed results of five folds 

with standard deviation using aforesaid six traditional ML classifiers for proposed BMIC-

Net model classifiers (i.e., BC1, B2, and M2) are shown in Appendix-B Table-1. 

 
Figure 5.9. Model wise six traditional ML classifiers accuracies 

 

Table 5.2 shows the AUC of all three BMIC-Net classifiers using kNN, SVM, NB, 

DT, LDA, and LR traditional ML classifiers. The highest AUC values of 0.9750, 0.9484, 

0.9121, and 0.9555 are obtained by A, F, PT, and TA classes, respectively, in the B2 

classifier. However, the BC1 classifier depicts slightly lower AUC values of 0.9455 and 

0.9455 for benign and malignant classes, respectively. Conversely, the M2 classifier 

shows the lowest AUC values of 0.9358, 0.9544, 0.9245, and 0.9505 for the DC, LC, MC, 

and PC classes, respectively. As can be witnessed from Table 5.2, the intraclass 

performances of each class across all three models are reasonable. Moreover, the AUC 
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figures of each BMIC-Net classifier shows that all three classifiers are good enough to 

predict BrC across the eight classes. Furthermore, the AUC shows that the proposed 

BMIC-Net classifiers are not either over-fitted or under-fitted or biased towards any 

particular class. Thus, the performance of all three proposed BMIC-Net classifiers is 

satisfactory and reliable. However, the AUC values of LDA are at the second-highest 

level followed by SVM for BC1. Whereas, SVM got better AUC for B2 and M2 classifiers 

compared to LDA. In contrast, DT has shown the lowest AUC values for proposed model 

classifiers i.e., BC1, B2, and M2. In conclusion, kNN(k=1) has shown better results in 

terms of mean Ac, Sn, and AUC for BC1, B2, and M2 classifiers using five folds of 

features.  

Table 5.2: AUC values for proposed BC1, B2, and M2 classifiers 
Proposed  

Model 
Labels kNN SVM NB DT LDA LR 

BC1 Benign 0.9455 0.9017 0.8644 0.8390 0.9158 0.8623 
Malignant 0.9455 0.9093 0.8644 0.8590 0.9158 0.8623 

B2 A 0.9750 0.8874 0.6359 0.7263 0.7383 0.8619 
F 0.9484 0.8901 0.6411 0.7222 0.7306 0.8661 
PT 0.9121 0.8826 0.6336 0.7345 0.7331 0.8590 
TA 0.9556 0.8808 0.6448 0.7251 0.7378 0.8680 

M2 DC 0.9358 0.8545 0.5841 0.7082 0.8222 0.8316 
LC 0.9545 0.9876 0.5901 0.7274 0.8190 0.8218 
MC 0.9245 0.8811 0.5775 0.7208 0.8046 0.8273 
PC 0.9505 0.9854 0.5859 0.7115 0.8119 0.8297 

 

5.2.2.3 Setting III Experimental Results 

This section reports and discusses the results using mean Ac and AUC for five folds 

of each of three MFVs. To recapitalize, the aim of this setting II is to obtain the best 

feature subset for high classification Ac and to reduce the computational time. Thus, in 

this setting, various feature subsets are tested with the six aforementioned ML classifiers 

across BC1, B2, and M2 of the proposed BMIC-Net model to observe their classification 

performance, see Figure 5.10. Moreover, two feature reduction schemes like IG and PCA 

are compared to see which one elicits the best subset of features for classification. 
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Figure 5.10: Feature reduction and selection with overall accuracies 

The experimental results of these analyses are shown in Figure 5.10(a) to Figure 

5.10(f). Figure 5.10(a) and Figure 5.10(b) show the overall predictive accuracies of the 

BC1 classifiers across the six ML classifiers, 82 feature subsets (50, 100, 150, … 4096), 

and two feature reduction schemes. IG outperformed PCA by obtaining the highest Ac of 

95.33(0.31) using 900 features through kNN. In addition, Figure 5.10(c) and Figure 

5.10(d) show the overall predictive accuracies of the B2 classifier across the six ML 

classifiers, 82 feature subsets (50, 100, 150, … 4096), and two feature reduction schemes. 

PCA performed slightly better than IG by obtaining a higher Ac of 94.70(0.62) using only 

50 features through kNN. Finally, Figure 5.10(e) and Figure 5.10(f) show the overall 

predictive accuracies of the M2 classifier across the six ML classifiers, 82 feature subsets 

(50, 100, 150, … 4096), and two feature reduction schemes. IG marginally performed 

(a) (b) 

(c) (d) 

(e) (f) 

Univ
ers

iti 
Mala

ya



157 

better than PCA by obtaining a higher Ac of 92.53(0.73) using only 350 features through 

kNN. In sum, compared with all 4096 features, 900 feature subsets show the best 

performance (95.33% mean Ac, Sn = 93.45%, 97.06%) using IG and kNN in the BC1 

classifiers. In addition, compared with all 4096 features, only 50 feature subsets show the 

best performance (94.70% mean Ac, Sn = 96.97%, 96.55%, 93.85%, 91.11%) using PCA 

and kNN in the B2 classifiers. Finally, in the M2 classifiers, 350 out of 4096 feature 

subsets show the best performance (92.53% overall Ac, Sn = 88.72%, 97.87%, 91.85%, 

93.02%) using IG with kNN.  

Apart from mean Ac, the AUC is also calculated in Table 5.3 to observe the intraclass 

performance across the BC1, B2, and M2 classifiers. The AUC values of the BC1 classifiers 

using 900 feature subsets extracted by IG with kNN are 0.9536 and 0.9536 for the benign 

and malignant classes. In addition, the AUC values of the B2 classifiers using 50 feature 

subsets extracted by PCA and kNN are 0.9718, 0.9621, 0.9623, and 0.9556 for the A, F, 

PT, and TA classes, respectively. Finally, the AUC values of the M2 classifiers using 350 

feature subsets extracted by IG and kNN are 0.9294, 0.9651, 0.9524, and 0.9529 for the 

DC, LC, MC, and PC classes, respectively. As shown in Figure 5.11, the intraclass 

performance of each class across all three BMIC-Net classifiers is satisfactory. The 

detailed results of five folds with standard deviation using aforesaid six traditional ML 

classifiers with feature reduction algorithm for proposed BMIC-Net model classifiers 

(i.e., BC1, B2, and M2) are shown in Appendix-B Table-2. 

Table 5.3: AUC values for proposed BC1, B2, and M2 classifiers after feature 
reduction 

Proposed  
Models 

Labels kNN SVM NB DT LDA LR 

BC1 Benign 0.9536 0.9357 0.8712 0.8570 0.9213 0.8759 
Malignant 0.9536 0.9293 0.8811 0.8590 0.9218 0.8759 

B2 A 0.9718 0.9174 0.6925 0.7563 0.7783 0.8990 
F 0.9621 0.9211 0.6783 0.7622 0.7906 0.8961 
PT 0.9623 0.9126 0.6785 0.7545 0.7831 0.8890 
TA 0.9556 0.9008 0.6892 0.7451 0.7778 0.8880 
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Proposed  
Models 

Labels kNN SVM NB DT LDA LR 

M2 DC 0.9294 0.8945 0.6141 0.7372 0.8292 0.8716 
LC 0.9651 0.8967 0.6211 0.7274 0.8390 0.8598 
MC 0.9524 0.8825 0.6018 0.7208 0.8346 0.8573 
PC 0.9592 0.8934 0.6149 0.7415 0.8319 0.8697 

 

Moreover, the AUC figures of each model show that all three BMIC-Net classifiers 

can predict BrC across the eight classes using the reduced feature subset. Furthermore, 

the proposed BMIC-Net model classifiers with reduced features are neither over-fitted 

nor under-fitted or biased toward any particular class or classes. Thus, the performance 

of all three proposed BMIC-Net model classifiers with reduced feature subset is better 

and more accurate compared with overall 4096 features. Furthermore, the top 900 features 

extracted through IG from the 4096 overall features should be consumed as an input to 

kNN when constructing the top-level BC1 classifier. In addition, the top 50 features 

extracted through PCA from the 4096 overall features should be given as an input to kNN 

when constructing the second-level B2 classifier. Moreover, the top 350 features extracted 

through IG from the 4096 overall features should serve as an input to kNN when 

constructing the second-level M2 classifier. Ultimately, the constructed models should be 

deployed in a cascading manner to predict the eight BrT types. 

 
Figure 5.11: ROCs after feature reduction 

5.2.2.4 Setting IV Experimental Results 

This section comprises two parts, where the first part, in particular, presents 12 

analyses for the non-hierarchical classifier to predict eight classes of BrT. In the second 

(a) (b) (c) 
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part, further 12 analyses are made to compare the performance of the proposed BMIC-

Net hierarchical model with the non-hierarchical model. 

Table 5.4 represents the performance of the non-hierarchical model for both before 

and after feature reduction schemes. In addition, six traditional ML classifiers are 

examined through mean accuracy and standard deviation for five folds of features. Here, 

the ML classifiers parameter are optimized and remain the same as applied in the 

hierarchical model. Initially, before applying the feature reduction algorithm, kNN is 

shown slightly better Ac (i.e., 86.87(0.58)) compared to SVM like 86.80(0.18). Moreover, 

LDA is shown the third highest performance among all ML classifiers. Conversely, NB 

is shown the worst results by showing Ac like 38.43(0.64). Whereas, DT and LR are 

shown average performance when the feature reduction algorithm is not applied for five 

folds of the dataset. On the flip side, when a feature reduction algorithm is applied the 

kNN is shown drastically improved Ac i.e., 90.18(0.20) compared to SVM like 

85.79(1.14), see Table 5.4. In contrast, NB reported the least performance by acquiring 

44.06(1.10) Ac.  Precisely, in 12 analyses the best performance has been observed by 

kNN whereas SVM got the second-highest results in terms of mean Ac and standard 

deviation for five folds of features via feature reduction algorithm. However, NB, DT, 

and LR are unable to give better results at all. 

Table 5.4: Non-hierarchical model performance before and after feature reduction 

  
Classifier 

Five Folds 
Mean Std. Dev. 

1 2 3 4 5 

B
efore F

eatu
re 

R
ed

u
ction

 

kNN 86.84 85.94 86.90 87.24 87.44 86.87 0.58 

SVM 86.97 86.80 86.71 86.55 86.96 86.80 0.18 

NB 38.39 37.49 38.29 38.79 39.20 38.43 0.64 

DT 62.43 61.53 60.18 62.83 63.03 62.00 1.17 

LDA 85.53 84.63 84.63 85.93 86.13 85.37 0.71 

LR 60.01 59.11 59.91 61.20 60.61 60.16 0.79 

         

A
fter 

F
eatu

re  

kNN 90.45 90.26 90.10 89.90 90.18 90.18 0.20 

SVM 87.65 85.00 86.10 85.30 84.90 85.79 1.14 

NB 44.93 44.03 44.83 44.33 42.20 44.06 1.10 

DT 69.33 68.43 60.18 69.73 69.93 67.52 4.14 
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Classifier 

Five Folds 
Mean Std. Dev. 

1 2 3 4 5 

LDA 87.49 86.59 86.59 87.89 88.09 87.33 0.71 

LR 64.79 63.89 64.69 61.20 65.39 63.99 1.65 
 

Table 5.5 gives a comprehensive performance analysis by summarizing the results of 

the proposed hierarchical model with non-hierarchical for both before and after feature 

reduction approaches using mean Ac and standard deviation for five folds of features.  

Table 5.5: Performance comparison of the proposed hierarchical model with the 
non-hierarchical model, before and after feature reduction 

 

Proposed Hierarchical Model Non-Hierarchical 
Model BC1 B2 M2 

B
efore F

eature 
R

eduction 

kNN 94.33±0.48 91.88±0.67 91.47±0.71 86.87±0.58 

SVM 90.17±0.43 88.31±0.36 88.07±0.67 86.8±0.18 

NB 86.24±0.51 63.81±0.78 58.49±0.82 38.43±0.64 

DT 84.91±0.84 72.14±0.49 71.49±0.63 62.00±1.17 

LDA 91.25±0.87 73.77±0.71 81.63±1.13 85.37±0.71 

LR 86.09±0.73 86.62±0.48 82.31±0.95 60.16±0.79 

      

A
fter F

eature 
R

eduction 

kNN 95.33±0.31 94.7±0.62 92.53±0.73 90.18±0.20 

SVM 93.02±0.23 90.46±0.25 88.98±1.40 85.79±1.14 

NB 87.73±0.51 68.31±0.73 61.68±0.87 44.06±1.10 

DT 85.8±0.36 75.29±0.30 73.16±0.52 67.52±4.14 

LDA 92.11±0.74 78.10±0.99 83.79±0.65 87.33±0.71 

LR 87.55±0.24 89.5±0.31 86.31±0.80 63.99±1.65 
 
Here, it can be concluded that the proposed model BMIC-Net classifiers (i.e., BC1, B2, 

and M2) outperformed using kNN(k=1) when the feature reduction algorithm is applied. 

However, SVM(linear) has shown the second-highest performance. While remaining ML 

classifiers are shown compromised mean Ac. Lastly, in comparison, the non-hierarchical 

model has shown lower performance than the proposed BMIC-Net hierarchical model 

classifiers. 

In summation of above mentioned four experimental setups, the proposed hierarchical 

model is trained and selected on the basis of maximum validation accuracy. The best 

possible trained models of BMIC-Net are used for feature extraction for further analyses 

via six ML classifiers. Next, it is experimentally noticed that kNN(k=1) has outperformed 
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for five folds of dataset among all six ML classifiers. Furthermore, a feature reduction 

algorithm is used to reduce the feature set to enhance the performance of ML classifiers 

using PCA and IG schemes. Where a large number of features are reduced and the 

performance is significantly improved by proposed model classifiers. Afterward, six ML 

classifiers are analyzed using reduced features. Here, it is experimentally observed that 

the proposed feature reduction algorithm has improved the BrT classification drastically. 

Finally, the results of the proposed BMIC-Net hierarchical model are compared with the 

non-hierarchical model to highlight the contribution of the proposed model and feature 

reduction algorithm. Where it is clearly examined that the proposed hierarchical model 

has shown better results compared to the non-hierarchical model using five folds of 

features, see Table 5.5.      

The proposed hierarchical BrT classification model outperformed compare to the non-

hierarchical classification model using Hp images due to many reasons. First, there is a 

great challenge in classification due to broad inconsistency in high-resolution image 

appearance. Second, there is a greater similarity of cancerous tissues between two 

borderline types of cancers like in the BreakHis dataset one of the subjects (ID: 13412) is 

a borderline case. The subject possesses characteristics of two cancer types like ductal 

and lobular carcinoma. Third, due to inhomogeneous staining, the color distribution in 

image slides varies among patients. Due to these inherent Hp image issues, a classifier 

can be jumbled and leads to a higher misclassification rate. Therefore, it is simpler and 

easier to classify among four subtypes of cancer instead of eight subtypes of BrT directly. 

Thus indirect classification using the proposed hierarchical approach enhanced the BrT 

classification performance using less computational resources and training time. This is 

the main notion of choosing a hierarchical classification model.  
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5.3 Discussion 

This section presents a vital and hypothetical discussion about existing SoA BrC 

detection and BrT classification models. Moreover, it highlights the pros and cons of 

various types of existing models developed by the research community. This section also 

compares the results of proposed BrC detection and BrT classification models with 

existing SoA models. The following sections provide further details of the overall 

discussion.  

5.3.1 State-of-the-art BrC Detection and Classification Models Analysis 

This section reveals the theoretical analysis and imperative results of the proposed BrC 

detection and classification model by using the Hp images of the BreakHis dataset. The 

proposed model had shown enhanced performance and obtained reliable BrC diagnostic 

results. BreakHis dataset is a multifaceted, challenging, and publically available standard 

dataset. Thus, the evaluation of the proposed classification model on such type of complex 

dataset proved that the model is simple, computationally cost-effective, reliable, and 

relatively more accurate than the existing baseline SoA BrC detection and classification 

models. Several studies have employed BrC detection and classification models and 

reported high accuracy, which assists doctors in early diagnosis.  

The current studies have deployed several types of BrC detection and classification 

models by using DL-based approaches. DL-based classification models specifically 

embed the feature extraction task into its training process. The auto-feature extraction 

methodology enables the DL-based detection/classification model to learn discriminative 

features in a self-taught manner. However, recent studies exploited the following three 

types of DL-based approaches for BrC detection and classification. 

1. Models are created and trained from scratch (i.e., de-novo models). 
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2. Models are created using transferred learning by adopting pre-trained models, 

followed by a fine-tuning step (i.e., TL-based models). 

3. Ensemble models are created by combining both de-novo and TL-based layers. 

 However, all the above mentioned types of DL-based models have some limitations. 

Likewise, DL de-novo models inherently need a large number of annotated (class-wise 

balanced) instances to avoid overfitting issues in the training process. Moreover, such 

type of models requires a large volume of storage capacity, very high computational 

power, and a longer time to train the model properly. Nonetheless, it will not be a realistic 

solution for medical images, because collecting medical images in large volumes with 

class-wise balance instances is a highly difficult task.   

By contrast, TL-based and ensemble models provide computationally feasible, 

reliable, and faster solution for the detection/classification of smaller datasets.  The main 

advantage of using TL-based or ensemble models are, for instance, most of the pre-trained 

models exploited TL is larger in size, but they can be retrained after fine-tuning for target 

data in very less time than the similar size of de-novo models. Moreover, they require less 

computational power as well as storage capacity because in TL usually the last layer is 

fine-tuned and retrained while keeping most of the layers frozen and their weights are not 

changed while retraining process. Thus, computation is required for only a last layer that 

is kept unfrozen, and their weights are computed in the backpropagation process. 

Furthermore, the frozen layers of pre-trained models adopted in the creation of TL-based 

ensemble models are already trained on natural images for many classes. Therefore, they 

can be retrained using a small number of images more efficiently and show better results 

than de-novo models. Thus, to overcome the limitations of the de-novo model the BrC 

detection model is created by the fusion of the de-novo model with the TL-based model. 
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Whereas, the BrT classification model is created by using a TL-based hierarchical 

classification approach. 

5.3.2 Proposed BrC Detection Model Discussion 

In this research, to overcome the issues of de-novo, a fused model EBrC-Net has been 

proposed. EBrC-Net is a combination of the smallest size pre-trained model (i.e., 

AlexNet) and the de-novo model. In AlexNet the convolution layers are responsible for 

the extraction of low- and medium-level features such as edges, corners, and bobs 

whereas fully connected layers are involved to extract high-level features or semantic 

features. The low- and medium-level features are most common in all types of images 

such as natural and medical images. However, the semantic features of specific images, 

namely, medical images, are entirely different from the natural images. The specific 

feature of BrC Hp images is like lesion size, geometrical structure, shape, etc., which are 

discriminative features related to medical images only. Therefore, the features learned by 

convolution layers of AlexNet are generic and can be adopted for BrC Hp medical images. 

Nonetheless, the features learned by fully connected layers of AlexNet are specific to 

natural images, hence cannot be used for Hp images of BrC.  

Therefore, in the EBrC-Net model, the convolutional layers are adopted through TL, 

whereas fully connected layers are created and trained from scratch like the de-novo 

model. Due to TL, the weights of convolutional layers of EBrC-Net are frozen whereas 

fully connected layer weights remained unfrozen. The unfrozen weight of fully connected 

layers in EBrC-Net will allow the model to learn specific features of Hp images from 

scratch whereas frozen layers of convolution layers will remain the same. Hence, this 

ensembling of the TL-based and de-novo model training strategy reduces the 

computational time and consumes limited resources. Moreover, the proposed model will 
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be able to learn discriminative features using a small number of images like the BreakHis 

dataset.  

Furthermore, to avoid the overfitting issue, the training set images are augmented, and 

an equal number of images per class has been utilized to avoid class imbalance disputes 

while training the EBrC-Net. Apart from image augmentation as a preprocessing task, 

some other necessary preprocessing tasks such as stain normalization and scaling are also 

carried out before initiating the training process. Reinhard's’ stain normalization method 

is applied to remove the inconsistencies of BreakHis Hp images. The Hp images 

inherently carry inconsistencies due to the use of the variable quantity of coloring 

chemicals in staining, the concentration of colors, and preservatives in the preparation of 

microscopic slides. Moreover, these slides are converted into digital images by using 

scanners of different vendors in digital Hp labs. Therefore, the Reinhard method is used 

to harmonize all images without losing the structural features of the BrC lesion. However, 

other stain normalization methods are prone to lose such kind of important information 

such as Khans’ (Khan et al., 2014) and Macenko method (Macenko et al., 2009).  

The goal of stain normalization is to train the EBrC-Net without being distracted by 

Hp image inconsistencies and able to learn discriminative and more generalized features. 

In addition, the images are rescaled to size 258×258×3 and served as input to EBrC-Net 

first layer, because the input image size of the first layer is modified in EBrC-Net to 

extract better features than AlexNet. Thereafter, EBrC-Net is trained multiple times after 

changing the hyper-parameters based on the trial-and-error technique. The training 

process continues until the minimum loss has been achieved. While training, a trained 

model is stored on the completion of each epoch. Finally, the best performing trained 

epoch model of EBrC-Net has been selected by evaluating it on validation and testing set. 

Lastly, the DeCAFs of training and testing sets are extracted from the trained EBrC-Net 
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model and classified through six ML classifiers like softmax, kNN(k=7), NB, SVM 

(linear), LDA, and DT after parameter optimization.   

The performance of six ML classifiers has been evaluated by using five performance 

metrics (i.e., mean Ac, Sp, Sn, Pr, and Fm) for BrC detection (i.e., benign or malignant 

cases) using five folds of features.  It has been experimentally observed that softmax and 

kNN are outperformed the rest of the classifiers. Noticeably, the mean accuracy of 

softmax (i.e., 83.96%) is higher than kNN (i.e., 78.26%), but the accuracy of softmax is 

biased and inclined toward the malignant class as has been observed by analyzing Sn (i.e., 

80.37%) and Sp (i.e., 56.20%) measures. It might be due to the majority of patients (i.e., 

57 out of 81) who belong to the malignant class in the BreakHis dataset. Thus, the 

malignant class possesses a better representation of overall cancer cases than the benign 

class. However, kNN possess more reliable and unbiased results (Sn = 80.78% and Sp = 

71.83%) than softmax and all other classifiers.  

The following reasons show prominent and reliable results by kNN classifier:  

1. It often performs better if the number of instances is large enough.  

2. It can be properly applied to the data which possesses a higher dimension, even if it 

is dispersed and have an inseparable linear boundary.  

3. It works well even if data is noisy, hence show a lower misclassification rate.  

4. Inherently, the kNN classifier is flexible for distance choices and well suited for 

multiclass data.  

5. Classification model development is simpler, faster, and computationally cost-

effective, producing the best results on image data (Kuramochi & Karypis, 2005).  

Experiments show that the NB, SVM, LDA, and DT have shown a lower performance 

related to softmax and kNN. NB produced lower results due to some facts. First, NB often 
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works well on independent features, whereas in images neighbor pixel is highly 

correlated. Second, it is highly sensitive to class imbalance issues. Third, NB estimates 

possible likelihood values between 0 and 1, hence causes unstable results. Due to these 

reasons, NB might be unable to extract informative features from images (Rennie, Shih, 

Teevan, & Karger, 2003).   

The reason behind the poor performance of the DT classifier might be because it often 

trains a weak and noisy classifier. It cannot generalize well and optimized DT is highly 

affected even if the minor change is conducted in the training set. In addition, it shows 

unstable performance on numeric data such as images and makes complex, larger tree 

splits, that is, needed to be pruned, which causes loss of useful information (Kotsiantis et 

al., 2007).  

The causes of weak results shown by LDA maybe because it shows poor results if the 

data is a slightly skewed or class wise imbalance. It would be more sensitive in binary 

classification if a dataset is imbalanced. Furthermore, it is unsuitable for nonlinear 

problems, such as images that have nonlinearly spread information. It also shows better 

results if the interclass distance is higher, which is often not found in medical images. 

LDA is highly sensitive to overfitting, thus requiring careful validation and testing 

(Kotsiantis et al., 2007), whereas SVM is unable to perform for images because it is not 

appropriate for nonlinear problems and not a suitable choice for data to possess a large 

number of features. Furthermore, if the inter-class difference is low and data sparsity is 

very high, then SVM often show weak results (Byun & Lee, 2002).  

The results of kNN show a high misclassification rate and room for BrC detection 

improvement. In this regard, three McR algorithms are developed and implemented in a 

cascaded manner. The McRI algorithm minimized the misclassification rate at the image 

level, where each image is augmented three times and classified through kNN. The 
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original image is classified on the basis of the majority count of three classified 

augmented images. Whereas the McRP algorithm reduced false predictions at the patient-

level. Here, all images of a patient are augmented thrice and classified through kNN. The 

overall original images of a patient are classified on the basis of the maximum count of 

classified augmented images of a patient. In addition, both algorithms also computed the 

patient-level confidence. Patient-level confidence represents the ratio of correctly 

classified augmented images to overall augmented images. Finally, the McRC algorithm 

further reduces the patient-level misclassification (i.e., McRP algorithm) by using image-

level McR (i.e., McRI algorithm). Thus, if any misclassification is made by the McRP 

algorithm will be recovered by the McRI algorithm, on the basis of patient-level 

confidence.  

The results show that three McR algorithms successively improved the BrC 

classification performance. For instance, the mean accuracy before applying McR 

algorithms is 78.26%. However, the accuracy improved gradually using three McR 

algorithms (applied one after the other) such as 81.25%, 95.76%, and 97.78%. Similarly, 

PRR is also improved from 76.05% to 97.92% by using three McR algorithms.  

The success of the proposed BrC detection model also lies in the inherent distribution 

of images in a patient-wise fashion. The BreakHis dataset possesses multiple images of 

each of the 82 patients. Thus, if a majority of the images of a patient are classified as 

cancerous, then it will be easier to diagnose the malignancy. Moreover, this is the 

common practice of doctors which is adopted for manual analysis of images to diagnose 

patients’ malignancy. To take advantage of this idea which is based on dataset 

characteristics, this research came up with McR algorithms. However, it has been 

observed during experiments that the second and third McR algorithms have shown the 

best results when the maximum number of images per patient are utilized. Because a 
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larger number of images makes it possible to detect BrC for a patient more accurately 

compared to the patient who has fewer images. 

5.3.3 Proposed BrC Detection Model Baseline Comparison 

Table 5.6 summarizes some existing SoA studies that had developed BrC detection 

models by using Hp images for two classes. For instance, (Spanhol et al., 2016a; Spanhol 

et al., 2017; Nahid & Kong, 2018; Nahid et al., 2018) utilized the BreakHis dataset for 

BrC detection, i.e., benign or malignant. Spanhol et al. (2016a) used the TL-based model 

to achieved better average Ac (i.e., 90%) and PRR (i.e., 85.6) using GPU for three hours. 

Furthermore, Spanhol et al. (2017) used pre-trained AlexNet to extract DeCAFs from the 

last three layers. Thereafter, a feature fusion of a three-layer is performed to obtain better 

results. The reported Ac is 84.2%.  Similarly, Nahid and Kong (2018) extracted both local 

and global features from BreakHis images and classified them through the CNN model 

containing a residual block. The Ac achieved is 91.19% by using GPU for six hours of 

model training. Nahid et al. (2018) developed the CNN model, guided by the 

unsupervised clustering method like k-means and mean-shift to reduced misclassification. 

After feature extraction, softmax and SVM are used for classification. The author 

presented 91% Ac. It can be noticed from Table 5.6, that some of the studies did not 

provide Sn, Fm, and PRR, which are highly important in medical diagnosis for BrT 

detection. However, most of the studies used high computational resources for longer 

training time. Whereas few of the baseline studies did not the mentioned the training time. 

 Conversely, the proposed EBrC-Net model is enabled to extract better features of BrT 

lesion due to larger input image size and unfreezed fully connected to learn specific 

features from scratch using Hp images. However, Hp images' general features are learned 

via TL-based freezed convolutional layers. Moreover, to enhance the performance of the 

proposed BrT detection model, three McR algorithms are implemented using kNN(k=7). 
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Which, reduced the misclassification rate drastically when applied in a cascade manner. 

Thus, the proposed EBrC-Net model is able to show better performance by extracting 

better features in less time duration with fewer resources compared to the aforementioned 

baseline models. 

Table 5.6: Performance comparison of proposed EBrC-Net model to the state-
of-the-art existing models using BreakHis dataset 

Study 
Referenc

e 

Model 
Type 

Trainin
g 

Duratio
n, 

Resourc
es 

Ac 
(%) 

Sn 
(%) 

Fm 
(%) 

PRR 
(%) 

Limitations 

(Spanhol 
et al., 
2016a) 

De-novo 
(CNN) 

3 Hrs, 
GPU 

85.6 Not 
provi
ded 

Not 
provi
ded 

88.6  Sn and Fm are not 
provided. 

 Needs to improve model 
performance. 

        
(Spanhol 
et al., 
2017) 

TL 
(CNN) 

Not 
provide

d 

84.2 Not 
provi
ded 

88.7 86.3  Model training time 
duration, resources, Sn 
and are not provided. 

 Needs to improve model 
performance 

        

(Nahid & 
Kong, 
2018) 

De-novo 
(CNN) 

6.25 
Hrs, 
GPU 

92.19 94.94 98.00 Not 
provi
ded 

 PRR is not provided. 
 Required very high 

resources 
        

(Nahid et 
al., 2018) 

De-novo 
(CNN, 
SVM) 

Not 
provide
d, CPU 

91.00 Not 
provi
ded 

93.00 Not 
provi
ded 

 Model training time, Sn, 
and PRR are not 
provided. 

 Needs to improve model 
performance 

        

The 
proposed 
model 
(EBrC-
Net) 

Ensemble
d (CNN, 
kNN) 

04 Hrs, 
CPU 

97.74 97.01 98.48 97.98  Trained on image 
patches created from 
WSI. Therefore, results 
may be different for 
WSI images.  

 

It can be seen in Table 5.6, the results of the proposed BrC detection model are 

comparatively better (Ac=97.74%, Sn=97.01%, Fm=98.48%, PRR=97.98%) than all of 

the baseline studies by using less computational resources (i.e., CPU instead of GPU) in 

less time (i.e., four hours) (RO2 and RO4 are achieved). Hence, the proposed EBrC-Net 
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model is efficient and reliable and can be deployed using a desktop machine to assist 

doctors as a second opinion for BrC detection using Hp images.  

5.3.4 Proposed BrT Classification Model Discussion 

This section presents the hypothetical analysis and significant results of the proposed 

BMIC-Net hierarchical BrT classification model using Hp images. The proposed model 

obtained reliable and improved classification performance for eight subtypes of BrT. The 

rigorous experimental evaluation on complex, challenging, and standard publicly 

available datasets proved that the proposed BMIC-Net model is less complex, 

computationally effective, reliable, and more accurate compared with existing baseline 

classification models for BrT classification.  

Numerous studies have proposed classification models that claim high accuracies for 

the early diagnosis of BrC. However, such models suffer from three major limitations. 

First, these models are mostly capable of predicting only two classes of BrC, namely, 

benign and malignant. Second, several studies have evaluated the performances of those 

classification models on exclusive datasets containing a low amount of training images. 

Thus, the reported results in existing studies may not be directly comparable and 

applicable on a wider scale. Finally, most of the existing classification models have been 

developed using traditional ML approaches, whereby the handcrafted feature extraction 

and selection process are performed with the help of domain experts. Thus, extracting and 

selecting the features manually are tiring and time-consuming tasks. To overcome the 

issues of classification models developed using traditional ML approaches, recent studies 

have developed several classification models through DL-based approaches to produce 

accurate predictions by involving an auto-feature extraction step. Therefore, the proposed 

model BMIC-Net hierarchical model is developed by fine-tuning the last layer of AlexNet 

for each of the classifiers like BC1, B2, and M2. The model performance is enhanced by 
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implementing a feature selection algorithm via IG and PCA schemes. The reduced 

features with kNN(k=1) have drastically improved the performance of the proposed 

model for BrT classification using Hp images.   

5.3.5 Proposed BrT Classification Model Baseline Comparison 

Some studies (Han, Wei, et al., 2017; Bardou et al., 2018; Nahid et al., 2018) had 

employed a DL-based BrT classification model to classify eight subtypes of BrT using 

BreakHis dataset, see Table 5.7. For instance, Bardou et al. (2018) created a CNN-based 

model and trained from scratch using GPU. However, the model training time is not 

mentioned by the author. The classification is made through SVM and RF classifiers for 

eight subtypes of BrT using the BreakHis dataset. Here, the author reported Ac ranging 

from 83.31% to 88.23% with 84.48% Sn. Nahid et al. (2018) deployed three types of 

model, namely, CNN, long short-term memory (LSTM), and a fusion of CNN and LSTM 

using the BreakHis dataset. Softmax and SVM are used for classification and acquired 

91.00% Ac and 96.00% Pr.  However, in the aforementioned studies, there is a need to 

show model training time and other performance metrics like Sn and AUC for image-

level analysis and PRR for patient-level analysis. Moreover, Han, Wei, et al. (2017) 

classified BrC using the BreakHis dataset through a class structure-based deep 

convolutional neural network (CSDCNN) model and obtained a classification Ac of 

93.2% for eight subtypes of BrT. Nonetheless, the Ac obtained through CSDCNN is 

higher than the aforementioned baseline studies. Where distance constraint of feature 

space is proposed to formulate the feature space similarities of Hp images by leveraging 

intra-class and inter-class labels of BrC as prior knowledge. It optimized the distance of 

different classes features space to select the desired features. However, CSDCNN has 

shown poor results when directly trained on the BreakHis dataset. Thus, it was trained on 

the ImageNet dataset (possess 14 million natural images of 1000 categories) to construct 

a pre-trained CSDCNN. Afterwards, TL is performed to retrained the pre-trained 
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CSDCNN on the BreakHis dataset for 10 hours and 13 minutes on GPU. Whereas, the 

pre-training time is not mentioned by the author and it can be very long due to a large 

number of computations for huge ImageNet dataset based pre-training. Thus, this model 

is computationally very expensive and needs extensive resources in training and requires 

huge number of images for extracting useful features from the BreakHis dataset.  

Table 5.7: Performance comparison of proposed BMIC-Net model to the state-
of-the-art existing models using BreakHis Dataset 

Study 
Referen
ce 

Model 
Training 
Duration, 
Resources 

Ac   
(%) 

Sn (%) AUC Limitations 

(Bardou 
et al., 
2018) 

De-novo 
(CNN, 
SVM, 
RF) 

Not given, 
GPU 

83.31 
to 
88.23 

84.48 Not 
provided 

 Needs to improve 
model performance. 

 AUC is not provided. 
 The model is 

computationally 
expensive. 

       

(Nahid 
et al., 
2018) 

De-novo 
(CNN, 
SVM) 

Not given, 
CPU 

91.00 Not 
provide
d 

Not 
provided 

 Needs to improve 
model performance. 

 Sn and AUC are not 
provided. 

 Only image-wise 
classification, no PRR. 

       

(Han, 
Wei, et 
al., 
2017) 

TL 
(CNN) 

10 Hrs  13 
Min + 
Pre-
training 
Time,  
GPU   

93.80 Not 
provide
d 

Not 
provided 

 Sn and AUC are not 
provided. 

 Computational 
expensive model. 

 Model is complex and 
pre-trained on 
ImageNet so longer 
pre-training time, 
requires a large 
number of images. 

       

Propose
d 
hierarch
ical 
model 
(BMIC-
Net) 

Hierarch
ical 
Model 
(CNN, 
kNN) 

5 Hours 
/classifier, 

CPU 

BC1(95
.33), 
B2(94.7
0), 
M2(92.
53) 

BC1(93
.45, 
97.06), 
B2(96.9
7, 
96.55, 
93.85, 
91.11), 
M2(88.
7,97.87
,91.85,
93.02) 

BC1(0.953
6, 
0.9536), 
B2(0.9718
, 0.9621, 
0.9623, 
0.9556), 
M2(0.929
4, 0.9651, 
0.9524, 
0.9529) 

 Trained on BreakHis 
images, which are 
patches created from 
WSI. Therefore, 
results may be 
different for WSI 
images.  

 If a borderline patient 
is excluded in model 
training then it can 
improve the 
performance. 
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Conversely, the proposed model BMIC-Net model uses a hierarchical approach to 

extract discriminative features. Here, the B2 classification model is responsible to extract 

features of four subtypes of BrT if the Hp image is classified as benign by the BC1 model 

otherwise M2 classification model is implemented to extract features of four subtypes of 

malignant BrT. Thus, due to this hierarchical approach implementation, the BMIC-Net 

model is efficient (i.e., used fewer computational resources and time) to extract features 

more accurately as compared to the non-hierarchical model. Here, a large number of 

features are extracted due to three models like BC1, B2, and M2. Thus, to extract 

discriminative features, which are mainly contributing to the model classification, a 

feature selection algorithm is implemented using IG and PCA schemes to enhance the 

performance of ML classifiers like kNN.   

Therefore, the results of the proposed hierarchical BrT classification model are 

comparatively better i.e., BC1   (mean Ac=95.33%, Sn=95.25%, AUC=95.36%), B2 

(mean Ac=94.70%, Sn=94.62%, AUC=96.3%), and M2 (Ac=92.53, Sn=92.87, 

AUC=95.15), than the baseline study (Han, Wei, et al., 2017) by using less computational 

resources (i.e., CPU instead of GPU) in less time (i.e., used CPU for five hours per 

classifier) (RO3 and RO4 are achieved). The baseline study (Han, Wei, et al., 2017) used 

a larger ImageNet dataset (14 million natural images of 1000 classes, needs large 

computations to get desired results) for pre-training while the proposed model acquired 

better results using only BreakHis dataset, thus proposed model is trained on fewer 

images in less time using fewer resources. Hence, the proposed model is efficient and 

reliable and can be deployed using a desktop machine to assist doctors as a second opinion 

for BrT classification using Hp images.  

5.4 State-of-the-art versus proposed models 

The SoA baseline studies and the proposed BrC detection and classification models 

are developed to extract both local and global features using a CNN-based architecture. 
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Where the BrC detection SoA baselines studies used some techniques to improve their 

model performance. For instance, Nahid and Kong (2018) extracted features from 

BreakHis images and classified them through the CNN model containing a residual block. 

The model trained on GPU for 6.25 Hrs with 92.19% accuracy. Similarly, Nahid et al. 

(2018) developed a CNN model, guided by the unsupervised clustering method. After 

feature extraction, softmax and SVM are used for classification. The author reported 

91.00% accuracy using the CPU. However, the proposed EBrC-Net is an AlexNet based 

CNN model used for local and global features extraction. The EBrC-Net is based on 

AlexNet and trained on BreakHis after two modifications. First, the input layer size is 

optimized and kept larger than the AlexNet to extract distinct features. Second, all fully 

connected layers are trained from scratch to extract better local features, nonetheless 

convolution layers are used from AlexNet as transfer learning to extract better global 

features of BrC lesion. Moreover, to improve BrC detection model performance, McR 

algorithms are implemented and classified through kNN. The proposed model achieved 

better 97.74% accuracy in less time (4 hrs) using CPU compared to aforementioned SoA 

baseline studies (see Table 5.6). 

For BrT classification, the SoA baseline model (Han, Wei, et al., 2017) implemented 

CNN-based CSDCNN model. Where a distance constraint of feature space is proposed to 

formulate the feature space similarities of Hp images by leveraging intra-class and inter-

class labels of BrC as prior knowledge. However, the model had shown poor results when 

directly trained on the BreakHis dataset. Therefore, it was initially trained on the 

ImageNet dataset to construct a pre-trained CSDCNN. Apart from pre-training time 

duration, CSDCNN is trained for 10 Hrs and 13 min on GPU and had shown comparable 

accuracy. Whereas the proposed BMICT-Net hierarchical classification model is based 

on three classifiers BC1, B2, and M2, which are created from AlexNet transfer learning. 

Here, BC1 extracts benign and malignant features, while B2 and M2 are trained to extract 
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BrT features related to benign and malignant subtypes. The features extracted through the 

proposed hierarchical model are discriminative than non-hierarchical models for eight 

subtypes of BrT classification. Furthermore, to enhance the proposed classification model 

performance a feature selection algorithm is implemented and classified via kNN. The 

proposed model is shown better results compared to CSDCNN using fewer images and 

trained on CPU for 5hr per classifier (see Table 5.7). 

5.5 Summary 

This chapter focus on two parts of this research, the first experimental results and the 

second part is discussion. The first part of this chapter covers the entire experimental 

results. Where the proposed BrC detection and BrT classification model experimental 

setup and results are analyzed. For BrC detection the EBrC-Net is trained on the normal 

desktop computer till minimum validation loss is not observed. Whereas, the best 

performing model is selected at epoch 2 of the overall training process. The DeCAFs of 

the training and testing sets are extracted from EBrC-Net, and six ML classifiers (i.e., 

softmax, kNN, NB, SVM, LDA, and DT) are evaluated using six PEMs (i.e., Ac, Sn, Sp, 

Pr, Fm, and PRR) for five folds of DeCAFs. Where kNN(k=7) and softmax has shown 

better results compare to the rest of the four classifiers. Furthermore, three McR 

algorithms are developed to improve the classification results of the six ML classifiers. 

Next, the three McR algorithms (i.e., McRI, McRP, and McRC) are implemented one 

after the other to reduce the misclassification. McRI algorithm reduces wrong predictions 

in an image-wise fashion. Successively, the McRP algorithm further minimizes 

misclassification in a patient-wise manner. Whereas, the McRC algorithm utilizes the 

average confidence of predictions made by McRI and McRP algorithms to reduce further 

misclassification. The kNN results are much better and reliable than the softmax when 

the McR algorithms are applied in a cascaded manner. The best mean Ac shown by kNN 
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is 97.78%. Meanwhile, 97.28%, 99.30%, 99.76%, 98.51%, and 97.92% are mean results 

achieved for the other PEMs, i.e., Sn, Sp, Pr, Fm, and PRR, respectively.  

The proposed BrT classification model produced promising results in comparison with 

the baseline models. However, for BrT classification a DL-based hierarchical 

classification model BMIC-Net is developed which contains three classifiers like BC1, 

B2, and M2. The three classifiers of BMIC-Net are trained on a normal desktop computer 

until maximum validation accuracy is not achieved. The features are extracted to obtain 

the MFVs. These MFVs contained 4096 enormous features. Thus, the most discriminative 

features are elicited through a feature selection algorithm using IG and PCA to reduce the 

misclassification. Finally, the six ML classifiers are applied on extracted subsets of 

features to evaluate the classification performance for five folds of MFVs.  

The results of several analyses showed that IG outperformed PCA in obtaining the 

most discriminative subset of features. Furthermore, kNN outperformed then all other 

ML classifiers and obtained the mean accuracies of 95.33% (Sn = 93.45%, 97.06%), 

94.70% (Sn = 96.97%, 96.55%, 93.65%, 91.11%) and 92.53% (Sn = 88.72%, 97.87%, 

91.85%, 93.02%) in the BC1, B2, and M2 models, respectively. Finally, the results of both 

BrC detection and BrT classification models are compared with baseline studies and it 

has been concluded that proposed models are efficient (i.e., consume less computational 

resources and training time) and produced reliable (i.e., reduce misclassification to show 

better and unbiased results even using complex dataset) results and used less number of 

image i.e., only BreakHis dataset is used instead of large dataset like ImageNet. Thus 

proposed BrT classification model can be deployed on any normal desktop computer to 

serve as a second opinion for a doctor. 

Whereas, the second part of this chapter represents an important and theoretical 

discussion about existing SoA BrC detection and BrT classification models. Three types 
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of models namely de-novo, TL-based, and ensemble models are discussed and pros, cons 

are also categorically emphasized. The development of the proposed BrC detection model 

by ensembling both the de-novo model and the TL-based model are defended. Moreover, 

TL-based model development for BrT classification is also justified with reasoning. 

Prominently, this chapter also compared the results of proposed BrC detection and BrT 

classification models with existing SoA baseline models. Thus it has been elucidated that 

the proposed BrC detection and classification models are efficient (i.e., consume less 

computational resources and training time), reliable (i.e., reduce misclassification to show 

better and unbiased results even using complex dataset) fewer images compared to the 

existing SoA baseline models. Chapter 6 gives a conclusion of this research work carried 

out for DL-based BrC detection and classification using Hp images. 
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CHAPTER 6: CONCLUSION 

6.1 Introduction 

In this thesis, initially, a literature analysis is conducted to understand the existing SoA 

research methodologies and to dig out the present research challenges related to BrC 

detection and classification using medical images. The literature analysis aims to perform 

hypothetical and statistical analysis of existing medical imaging modalities used, 

publically available standard medical imaging datasets utilized, medical image 

preprocessing techniques adopted, DL-based BrC classification models developed, and 

performance evaluation metrics used for BrC detection and classification. While 

conduction this extensive analysis, future directions are also identified for problem 

identification for this thesis work. The details of the literature review are discussed in 

Chapter 2.  

Besides the identification of research problems of BrC detection and classification, the 

publically available standard dataset BreakHis is collected. BreakHis contains breast 

biopsy Hp images split into two main types of BrT namely benign and malignant. 

However, each benign and malignant BrT is further divided into four subtypes. Thus 

overall eight subtypes of BrT Hp images are collected in the BreakHis dataset. Moreover, 

BreakHis possess 7909 BrT Hp images of 82 patients with four different magnifications. 

Whereas, in this research benign and malignant BrT types are used for BrC detection and 

eight subtypes of BrT are utilized for BrT classification. Moreover, the dataset is split 

into training, validation, and testing sets using a random sampling method before 

performing any preprocessing tasks. The details of the collected dataset are discussed in 

Chapter 3, Sections 3.2.1.1 and 3.2.2.1.  

Apart from data collection and splitting into training, validation, and testing sets, some 

necessary preprocessing tasks like Hp image stain normalization, image augmentation, 
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selection of an equal number of augmented images for each class, and the rescaling of 

overall images are performed before initiating the training process of DL-based BrC 

detection and BrT classification models. The stain normalization is required to minimize 

the color abnormalities inherently found in original raw Hp images so that the BrC model 

will not be distracted by unwanted features.  Image augmentation is required to increase 

the number of training instances by applying basic image processing techniques. Because 

DL-based BrC detection and classification models will be trained properly using 

augmented images without facing an overfitting issue. The selection of an equal number 

of augmented training images per class (by random sampling) is made to avoid the biased 

(toward majority class) training of proposed models. However, due to the image large 

size of the BreakHis dataset, there is a need for image rescaling before feeding into the 

input layer of proposed DL-based BrC detection and BrT classification models. The 

details of image preprocessing tasks are discussed in Chapter 3, Sections 3.2.1.2 and 

3.2.2.2. 

The BrC detection (i.e., EBrC-Net) and BrT classification (i.e., BMIC-Net) models are 

created using AlexNet architecture and trained multiple times (using the trial-and-error 

method) over randomly selected hyper-parameters until the minimum validation loss or 

maximum validation accuracy is not observed. The EBrC-Net model is based on the 

ensembling of de-novo and TL-based layers.  EBrC-Net is enabled to accept larger input 

image size compared to AlexNet to extract better features. Whereas, the fully connected 

layers are trained from scratch to learn Br cancer lesion related specific features instead 

of natural image specific features already learned by AlexNet. Whereas the BrT 

classification model is developed using TL with the hierarchical classification approach. 

Thus both models are designed to be trained efficiently using less computational 

resources like a normal desktop computer instead of GPU in less time. After performing 

extensive attempts of training (due to the trial-and-error method) using randomly selected 
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multiple hyper-parameters finally trained models for BrC detection and BrT classification 

are achieved and used for DeCAFs extraction. The details of BrC detection and BrT 

classification model training are discussed in Chapter 3 (Sections 3.2.1.3(b), and 

3.2.2.3(b)) and Chapter 4 (Section 4.2.2 and 4.4.1). 

The extracted DeCAFs are evaluated in five folds by using multiple traditional ML 

classifiers to ensure that the extracted features are well generalized to represent all 

subtypes of BrT. It has been observed that there is a higher number of misclassification 

is made by all ML classifiers. Thus to reduce the misclassification rate three McR 

algorithms (see Section 4.3.2) are developed and implemented to enhance the 

performance of the BrC detection model. On the other hand, due to the large number (i.e., 

4096) of DeCAFs extracted for BMIC-Net hierarchical BrT classification the 

misclassification rate was higher. Thus, to enhance the performance of the BMIC-Net 

BrT classification model, the selection algorithm is developed using feature reduction 

schemes like IG and PCA, see Section 4.5.1. The feature selection algorithm reduces the 

misclassification by eliminating the unwanted features without being compromising the 

overall performance of the BMIC-Net hierarchical BrT classification model.  The details 

of BrC detection and BrT classification models performance enhancement are discussed 

in Chapter 3 (Sections 3.2.1.4 and 3.2.2.4) and Chapter 4 (Sections 4.3 and 4.5). 

Finally, multiple PEMs like Ac, Sp, Sn, Fm, PRR, and AUC are used to evaluate the 

performance of proposed BrC detection and BrT classification models. The use of many 

PEMs allows comparing the results of proposed models with existing SoA baseline 

models. Because, the multiple evaluation metrics have ensured that the models trained 

are reliable and unbiased even if the dataset is complex i.e., eight subtypes of BrT. The 

details of PEMs results are discussed in Chapter 3 (Sections 3.2.1.5 and 3.2.2.5). In 

addition, the computational resources and training time of proposed models are also 
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compared with baseline studies. In summary, the comparison in terms of multiple PEMs, 

computational resources, and training time of proposed models with baseline studies 

revealed that the proposed models are efficient and reliable. Hence the proposed models 

can be implemented where limited computer resources are available. The proposed 

models can assist doctors as the second opinion to detect BrC at the patient-level and 

classify Hp images for eight subtypes of BrT.  

Due to BMICT-Net hierarchical model, the number of features is three times higher 

than EBrC-Net thus feature reduction/selection was essential. Moreover, the feature 

selection algorithm is designed to solve multiclassification problems in a hierarchical 

manner thus does not fit for EBrC-Net.  Whereas, in EBrC-Net, the McR algorithms are 

designed to work for two classes only, thus does fit for the BMIC-Net hierarchical 

multiclassification model. 

With the context of this study, each research question is answered and discussed in 

Chapters 2, 3, 4, and 5. This thesis concludes by revisiting the research objectives and 

RQs presented in Chapter 1 describing how they are achieved. The core contributions of 

this thesis and the limitations and future research directions are also discussed. 

6.2 Reappraisal of Research Objectives and Research Questions 

This section revisits the research objectives and research questions for this thesis. 

Moreover, it discusses the findings of each RQ of each objective briefly. Figure 6.1, 

shows the relationship between the research objectives and the chapters of the thesis in 

which these objectives are achieved and presented. It also shows the list of publications 

where these objectives are achieved and published.  

RO1: To investigate the existing DL-based models for breast cancer detection and 

classification, using Hp images for early diagnosis.  

Univ
ers

iti 
Mala

ya



183 

To achieve this research objective, the academic literature in the field of DL-based BrC 

detection and classification using medical imaging modalities is reviewed by exploiting 

the analysis of the procedural decision in five aspects namely types of medical imaging 

modalities, medical imaging datasets, preprocessing techniques, types of DL-based 

classification models, and performance evaluation metrics. To achieve the first research 

objective, many studies are selected and thoroughly reviewed in the scope of the 

aforementioned five aspects. The findings of each RQ of objective 1 are given below: 

 
Figure 6.1: Schematic mapping of research objectives 

RQ1: What are the existing DL-based models for breast cancer detection and 

classification, using Hp images for early diagnosis? 

 In the literature review, mainly two types of DL-based models are created the first 

de-novo and the other one is based on TL models. However, few models used the fusion 

of both de-novo and transferred learning model for Hp images. Each type of model has 

its pros and cons to be developed and used for a specific type of data. The detailed answer 

is given in Section 2.6.2.2.  

Research Objective 1 (Achieved in Chapter 2)

• Journal Paper-1: Murtaza, G., Shuib, L., Abdul Wahab, A.W. et al. Deep learning-based breast cancer classification 
through medical imaging modalities: state of the art and research challenges. Artif Intell Rev 53, 1655–1720 (2020). 
https://doi.org/10.1007/s10462-019-09716-5 (Published)

Research Objective 2 (Achieved in Chapter 3 [Section 3.2.1] and Chapter 4 [Sections 4.2, 4.3])

• Journal Paper-2: Murtaza, G., Shuib, L., Wahab, A.W.A. et al. Ensembled deep convolution neural network-based breast 
cancer classification with misclassification reduction algorithms. Multimed Tools Appl 79, 18447–18479 (2020). 
https://doi.org/10.1007/s11042-020-08692-1. (Published)

• Conference Paper-1: Murtaza, G., Shuib, L., Wah, T. Y., Mujtaba, G., & Mujtaba, G. (2018). Breast Cancer Classification 
from Histopathology Images using Deep Neural Network. Paper presented at the Data Science Research Symposium 2018. 
(Published)

• Conference Paper-2: Murtaza, G., Shuib, L., Wahab, A. W. A., Mujtaba, G., & Raza, G. (2019). Breast cancer classification 
using digital biopsy histopathology images through transfer learning. Paper presented at the First International Conference on 
Computer Science and Engineering 2019, Indonesia. (Published).

Research Objective 3 (Achieved in Chapter 3 [Section 3.2.2] and Chapter 4 [Sections 4.4, 4.5])

• Journal Paper-3: Murtaza, G., Shuib, L., Mujtaba, G. et al. Breast Cancer Multi-classification through Deep Neural 
Network and Hierarchical Classification Approach. Multimed Tools Appl 79, 15481–15511 (2020). 
https://doi.org/10.1007/s11042-019-7525-4 (Published)

Research Objective 4 (Achieved in Chapter 5 and 6)

• Journal Paper-2: Murtaza, G., Shuib, L., Wahab, A.W.A. et al. Ensembled deep convolution neural network-based breast 
cancer classification with misclassification reduction algorithms. Multimed Tools Appl 79, 18447–18479 (2020). 
https://doi.org/10.1007/s11042-020-08692-1 (Published)

• Journal Paper-3: Murtaza, G., Shuib, L., Mujtaba, G. et al. Breast Cancer Multi-classification through Deep Neural 
Network and Hierarchical Classification Approach. Multimed Tools Appl 79, 15481–15511 (2020). 
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RQ2: What are the common medical imaging modalities used for BrC detection and 

classification? 

The literature review discovered that there are many BrC medical imaging 

modalities [i.e., breast X-rays (mammograms), Hp, MRI, US, and CT] used by the 

researchers to detect and classify breast cancer. However, mammograms and Hp images 

are the most commonly used medical imaging modalities for BrC detection and 

classification. Moreover, Hp images will give more detailed breast tissue level analysis 

to diagnose BrC more confidently compared to mammograms. For further details, please 

refer to Section 2.3. 

RO2: To develop an efficient (i.e., consumes less computational resources and 

training time) and reliable (i.e., reduces misclassification to show better and 

unbiased results even using complex dataset) DL-based model for BrC detection at 

patient-level using Hp images. 

RQ3: How to develop an efficient (i.e., consumes less computational resources and 

training time) and reliable (i.e., reduces misclassification to show better and unbiased 

results even using complex dataset) DL-based model for BrC detection at patient-level 

using Hp images? 

To achieve this research objective, a DL-based ensembled breast cancer detection 

model EBrC-Net is developed using preprocessed Hp images in a patient-wise fashion. 

EBrC-Net is designed in such a way so that it can be trained in less time using less 

computational resources. EBrC-Net possesses frozen and unfrozen layers. No 

computation is required for the frozen weights of convolution layers in EBrC-Net. Thus, 

it reduced the computational time, resources and does not require a large number of 

images like de-novo models. The training of fully connected unfrozen layers of EBrC-
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Net is performed rigorously to get generalized, discriminative DeCAFs using a normal 

desktop computer. The extracted DeCAFs are evaluated using five folds with six ML 

classifiers. The top-performing ML classifier is selected and BrC detection results are 

improved by implementing three misclassification reduction algorithms to detect BrC. 

For details of model development and training, see Chapter 3 (Sections 3.2.1.3 and 

3.2.1.4) and Chapter 4 (Sections 4.2 and 4.3). The mean results of five folds are evaluated 

using five performance evaluation metrics and compared with baseline models. The five 

performance evaluation metrics shown better and unbiased results compared to existing 

SoA baseline models see Chapter 5, (Sections 5.3.2 and 5.3.3). Moreover, computational 

resources and training time of BrC detection model is also compared with baseline 

studies. It is observed that the proposed model showed better results using less 

computational time and resources. Thus it can be concluded that the proposed BrC 

detection model is efficient (i.e., consumes less computational resources and training 

time) and reliable (i.e., reduces misclassification to show better and unbiased results even 

using complex dataset) to be implemented for early diagnosis of BrC using Hp images. 

For detailed results analysis, see Chapter 5 (Sections 5.3.3). 

RO3: To develop an efficient (i.e., consumes less computational resources and 

training time) and reliable (i.e., reduces misclassification to show better and 

unbiased results even using complex dataset) DL-based model for BrT classification 

(up to eight classes) using Hp images. 

RQ4: How to develop an efficient (i.e., consumes less computational resources and 

training time) and reliable (i.e., reduces misclassification to show better and unbiased 

results even using complex dataset) DL-based model for BrT classification (up to eight 

classes) using Hp images? 
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To achieve this research objective, a TL-based hierarchical breast cancer 

classification model BMIC-Net is developed using preprocessed Hp images to classify 

eight subtypes of BrT. BMIC-Net model is composed of three classifiers (i.e., BC1, B2, 

and M2). Each classifier is created by fine-tuning the last layer of AlexNet for the target 

number of classes. Due to hierarchical design, the BMIC-Net is simple and able to classify 

four subtypes of each benign and malignant tumor separately instead of classifying eight 

subtypes collectively. Moreover, due to separate classifiers (i.e., B2 and M2) in 

hierarchical model design, it is faster and easier to train the model for a maximum of four 

classes [i.e., four for benign (i.e., B2) and four for malignant (i.e., M2)] compared to entire 

eight classes of BrT collectively. Thus, due to the TL and hierarchical design of BMIC-

Net, the model is efficient and required less computational resources, training time, and 

required fewer images to show better results. Furthermore, the training of BMIC-Net is 

performed thoroughly to get discriminant DeCAFs using normal desktop computers. The 

extracted DeCAFs are evaluated by using six ML classifiers. The top-performing ML 

classifier is selected and BrT classification mean results for five folds. Moreover, a feature 

selection algorithm is developed to reduce the misclassification of ML classifiers using 

feature reduction schemes like IG and PCA. For details of BrT classification model 

development and training see Chapter 3 (Sections 3.2.2.3 and 3.2.2.4) and Chapter 4 

(Sections 4.4 and 4.5). The mean results for five folds are evaluated using three PEMs 

(like Ac, Sn, and AUC) and compared with baseline models. The computed performance 

evaluation metrics shown better and unbiased results for eight classes compared to 

existing SoA baseline models see Chapter 5, (Sections 5.3.4 and 5.3.5). Thus it can be 

concluded that the proposed hierarchical BrT classification model is efficient (i.e., 

consumes less computational resources and training time) and reliable (i.e., shows better 

and unbiased results even using complex dataset) to be implemented in any healthcare 
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center for early diagnosis of BrC using Hp images. For detailed results analysis, see 

Chapter 5, (Sections 5.3.5)  

RO4: To evaluate the performance of proposed BrC detection and classification 

models by comparing their performances with existing state-of-the-art BrC 

detection and classification models. 

RQ5: How to evaluate the performance of the proposed models? 

To achieve this research objective, the proposed BrC detection and classification 

models are evaluated by using multiple evaluation metrics (like Ac, Sn, Pr, Fm, AUC, 

and PRR) and results are compared with the existing SoA baseline models. The Ac is the 

most common single value metric required to compare the results directly with baseline 

models. However, accuracy can be biased and may be inclined toward the majority class. 

Thus other performance evaluation metrics like Sn, Pr, Fm, AUC, and PRR need to be 

measured with accuracy. However, Sn is very important to measure in medical science to 

avoid misdiagnosis of a cancerous patient compared to noncancerous. Whereas, Fm and 

AUC metrics used in this study show that the results of the proposed model are not biased 

even for eight subtypes of breast cancer. Moreover, for BrC patient detection PRR is more 

important than image-level classification accuracy to detect cancerous patients. Thus, in 

this research, the use of multiple evaluation metrics shows that the proposed models have 

shown better and reliable performance to be implemented in real-life scenarios. The 

details of experimental results and baseline comparison are discussed in Chapter 5, 

Section 5.3.  
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6.3 Limitations of Proposed BrC Detection and Classification Models 

Certain limitations are identified in this work 

1. Limitation due to BreakHis dataset: The proposed DL-based BrC detection and 

classification models are trained on Hp images as provided by the collected 

BreakHis dataset. However, the images of the BreakHis dataset are image patches 

marked by the groups of expert pathologists from WSI Hp images. Obviously, the 

proposed models are trained on selected BrC Hp image patches. Therefore, the 

proposed models are not trained over WSI images and may show different results.   

2. Borderline patients: In the BreakHis dataset the images of a borderline patient 

(ID:13412) are placed in two subtypes of malignant class (i.e., DC and LC) of BrT 

in the BreakHis dataset. Therefore, the proposed models are trained using a 

borderline case accordingly. Here, the BrT detection model will have duplicate 

images for malignant class, thus no effect on results. However, the proposed BrT 

classification model can show improved results if the borderline patient is 

removed.  

3. Requires many images per patient: The BreakHis dataset provides many images 

of a BrC patient in order to develop patient-level BrC detection models. It is 

already discussed that in medical science the patient-level BrC detection is more 

important than the image-level diagnosis. Therefore, in this research, the proposed 

BrC detection model is trained by using multiple images per patient, because, it 

may show different results for image-level BrC detection.  

4. Multimodality medical imaging BrC diagnosis: The proposed BrC detection and 

classification models are trained on single medical imaging modalities like Hp 

images of BrT. Therefore, the proposed model may not be able to diagnose any 

other type of medical imaging modalities like Breast MRI, US, and CT images.  

5. Multi-cancer Hp image diagnosis: The proposed BrC detection and classification 

models are trained to diagnose BrC only for Hp images. However, Hp images can 
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be of other cancer types like liver, lung, or bladder. Therefore, the proposed models 

may not show better results for other cancer types for Hp images.  

6.4 Future Research Directions 

The future direction to enhance the capability for BrC detection and BrT classification 

models are given as follows 

1. Mostly BrC detection and classification models used either Hp image patches 

taken from WSI or directly WSI images. Thus there is a need to develop robust 

BrC detection and classification models to classify both types of Hp images 

simultaneously. Because it will minimize the dependency of an expert pathologist 

to mark WSI for the extraction of Hp image patches. 

2. Usually, single modality based BrC detection and classification models are created. 

However, multiple modalities are used by doctors to diagnose BrC. Therefore, 

there is a need to develop robust BrC detection models that can classify multiple 

imaging modalities concurrently like MG, MRI, US, CT, and PET images. 

3. Hp images can be used to diagnose cancer of various parts of the body like the 

liver, lung, or bladder.  However, the current studies mostly diagnosed only a 

single cancer type.  Thus there is a need to develop a generic model for detection 

and classification to diagnose Hp images of multiple types of cancer (i.e., liver, 

lung, or bladder). 

6.5 Summary 

This chapter concludes the overall research work presented in this thesis by revisiting 

the research objectives and research questions. This chapter also discussed the various 

limitations of the proposed research and presented the future research directions in the 

field of BrC detection and classification using medical images.  
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