
AN ENHANCEMENT OF AGE AND GENDER CLASSIFICATION
ACCURACY WITH HYBRID HANDCRAFTED AND DEEP

FEATURES USING HIERARCHICAL EXTREME LEARNING
MACHINE

MOHAMMAD JAVIDAN DARUGAR

FACULTY OF COMPUTER SCIENCE AND INFORMATION
TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2020

Univ
ers

iti
Mala

ya

AN ENHANCEMENT OF AGE AND GENDER
CLASSIFICATION ACCURACY WITH HYBRID
HANDCRAFTED AND DEEP FEATURES USING

HIERARCHICAL EXTREME LEARNING MACHINE

MOHAMMAD JAVIDAN DARUGAR

DISSERTATION SUBMITTED IN PARTIAL
FULFILMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF COMPUTER SCIENCE

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2020

Univ
ers

iti
Mala

ya

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Mohammad Javidan Darugar

Registration/Matrix No.: Old: WGA140037 | New: 17049741/1

Name of Degree: Master of Computer Science

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

An enhancement of Age and Gender classification accuracy with hybrid handcrafted

and deep features using Hierarchical ELM

Field of Study: Artificial Intelligence

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for

permitted purposes and any excerpt or extract from, or reference to or reproduction
of any copyright work has been disclosed expressly and sufficiently and the title of
the Work and its authorship have been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the making
of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the University
of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and
that any reproduction or use in any form or by any means whatsoever is prohibited
without the written consent of UM having been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action or any
other action as may be determined by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name:
Designation:

ii

Univ
ers

iti
Mala

ya

ABSTRACT

Age and gender classification are some of the essential algorithms that have many

use cases in our everyday life. For example, in robotics, field robots can interact with a

human base on their gender in data analysis, to have statistics about age and gender of

audiences in social events, YouTube video analysis, and many other applications. In this

research, we have addressed limitations in deep neural networks, which by overcoming

this limitation, we can gain better accuracy and performance. Our study has several

other possible applications which are not limited only to age and gender classification.

This dissertation is about a high-performance method for age and gender classification in

captured facial photos, which is employing deep network architectures as the primary basis

of our architecture. We have employed branches of deep learning, such as convolutional

neural networks and autoencoders. We have also used Hierarchical Extreme Learning

Machines to avoid significant time consumption and to overcome limitations that most

conventional deep networks have. We have addressed the problem of using Softmax as the

classifier, which usually leads to less performance and accuracy due to its limitation, which

is only able to classify linearly separable data. Our proposed architecture consists of two

main categories of feature extraction and learning methods which are namely supervised

and unsupervised. We have investigated two supervised feature extraction techniques and

a deep feature extraction technique to extract unsupervised features to judge the influence

of each one on the accuracy of our proposed model. The supervised methods that are

examined in this study are Histogram of Oriented Gradients or HOG and Action Units (or

AUs). For unsupervised feature extraction techniques, we have employed a deep neural

network which is known as convolutional neural network (CNN). CNNs use shift-invariant

filters to make discriminative features inside neural networks. One of the very potent tools

iii

Univ
ers

iti
Mala

ya

is convolutional neural networks, which is used for obtaining useful features that also are

useful for unknown classes. In our research, we figured out that some of our features are

high, and some are very low in dimension. So to combine these groups of supervised

and unsupervised features with different dimensions, we have used multiple autoencoder

neural networks to join, reduce, and encode all employed feature maps into a single feature

vector. Hierarchical-ELM, which is a branch of Extreme Learning Machines, is adopted

to classify the final feature vector. Toward this research, we have analyzed the result of

our proposed work with state of the art, and also related works are explained to illustrate

our significant improvement for age and gender classification in facial images. Our gains

are in both accuracy and performance. Regarding performance, we have achieved faster

training and testing process. Since we are dealing with large datasets of facial images,

therefore, speeding up these steps can influence a more reliable solution.

Keywords: Deep Neural Networks, Age and Gender Classification, Hierarchical

Extreme Learning Machine, Convolutional Neural Network.

iv

Univ
ers

iti
Mala

ya

ABSTRAK

Klasifikasi umur dan jantina adalah beberapa algoritma penting yang mempunyai

banyak kes penggunaan dalam kehidupan seharian kita. Contohnya, dalam bidang ro-

botik, robot bidang boleh berinteraksi dengan asas manusia mengenai jantina mereka

dalam analisis data, untuk mempunyai statistik mengenai Umur dan Gender khalayak

dalam acara sosial, analisis video YouTube, dan banyak aplikasi lain. Dalam penyelidikan

ini, kita telah menangani batasan-batasan dalam rangkaian saraf yang mendalam, yang

dengan mengatasi had ini, kita dapat memperoleh ketepatan dan prestasi yang lebih baik.

Kajian kami mempunyai beberapa aplikasi lain yang mungkin tidak hanya terhad kepada

klasifikasi umur dan jantina. Disertasi ini adalah tentang kaedah berprestasi tinggi untuk

klasifikasi Umur dan Jantina dalam foto wajah yang diambil, yang menggunakan seni

bina rangkaian dalam sebagai asas utama seni bina kami. Kami telah mempekerjakan

cabang-cabang pembelajaran yang mendalam, seperti convolutional neural network dan

autoencoder. Kami juga telah menggunakan Mesin Pembelajaran Extreme Hierarki untuk

mengelakkan penggunaan masa yang ketara dan untuk mengatasi batasan-batasan yang

mempunyai rangkaian dalam yang paling konvensional. Kami telah menangani masalah

menggunakan Softmax sebagai pengelas, yang biasanya membawa kepada kurang prestasi

dan ketepatan kerana batasannya, yang hanya dapat mengklasifikasikan data yang boleh

diasingkan secara linear. Senibina kami yang dicadangkan terdiri daripada dua kategori

utama pengekstrakan ciri dan kaedah pembelajaran yang diawasi dan tidak diselia. Kami

telah menyiasat dua teknik pengekstrakan ciri yang diawasi dan teknik pengekstrakan ciri

yang mendalam untuk mengekstrak ciri-ciri yang tidak diselia untuk menilai pengaruh

masing-masing berdasarkan ketepatan klasifikasi kami. Kaedah yang diawasi dalam ka-

jian ini adalah Histogram Gradients Oriented atau HOG, Action Units atau AU. Untuk

v

Univ
ers

iti
Mala

ya

teknik ekstraksi ciri yang tidak terjejas, kami telah menggunakan rangkaian saraf yang

mendalam yang dikenali sebagai convolutional neural network (CNN). CNNs menggu-

nakan penapis peralihan bergerak untuk membuat ciri diskriminatif di dalam rangkaian

saraf. Salah satu alat yang sangat kuat ialah convolutional neural network, yang digunakan

untuk mendapatkan ciri-ciri berguna yang juga berguna untuk kelas yang tidak diketahui.

Dalam penyelidikan kami, kami mendapati bahawa beberapa ciri kami adalah tinggi, dan

ada yang sangat rendah dalam dimensi. Jadi, untuk menggabungkan kumpulan ciri-ciri

yang diselia dan tidak diselia dengan dimensi yang berbeza, kami telah menggunakan

pelbagai autoencoder neural network untuk menyertai, mengurangkan, dan mengodkan

semua peta ciri yang digunakan ke dalam vektor ciri tunggal. Hierarki-ELM, yang meru-

pakan cabang Mesin Pembesaran Extreme, digunakan untuk mengklasifikasikan vektor

ciri akhir. Dalam kaji selidik ini, kami telah menganalisis hasil karya yang dicadangkan

kami dengan keadaan seni, dan juga kerja-kerja yang berkaitan dijelaskan untuk meng-

gambarkan peningkatan yang signifikan untuk klasifikasi Umur dan Jantina dalam imej

muka. Keuntungan kami berada dalam kedua-dua ketepatan dan prestasi. Mengenai

prestasi, kami telah mencapai proses latihan dan ujian yang lebih cepat. Oleh kera-

na kita berhadapan dengan kumpulan data wajah yang besar, oleh itu, mempercepatkan

langkah-langkah ini dapat mempengaruhi penyelesaian yang lebih dapat diandalkan.

Keywords: Deep Neural Networks, Age and Gender Classification, Hierarchical

Extreme Learning Machine, Convolutional Neural Network.

vi

Univ
ers

iti
Mala

ya

ACKNOWLEDGEMENTS

First, I want to give my genuine appreciation to my advisor and guidance Prof. Dr.

Loo Chu Kiong for all constant assistance and help for my Master study. For all of

my passion and success during my study that created by his motivation and patience,

and vast experience and expertise. His supervision encouraged me during my study and

research and working on this dissertation. Dr. Aznul Qalid Bin Md Sabri, Dr. Unaizah

Hanum Binti Obaidellah, and Dr. Woo Chaw Seng, I would like to thank you for your

motivating, discerning remarks, and challenging questions. Moreover, I want to give my

most profound love to my mother Maryam Chapari Rasi for raising me and supporting me

during my whole life, and to my wife Anahita for supporting me during my study as my

best friend and accompanying me in all hardships in throughout my life. I want to thank

one of the best couples I have known during my study in Malaysia, dear Sina and Fatima,

thanks for all your helps and supports.

vii

Univ
ers

iti
Mala

ya

TABLE OF CONTENTS

Abstract ... iii

Abstrak .. v

Acknowledgements ... vii

Table of Contents .. viii

List of Figures ... xii

List of Tables... xiii

List of Appendices .. xvi

CHAPTER 1: INTRODUCTION .. 1

1.1 Background.. 1

1.1.1 Deep Neural Networks and Softmax... 2

1.2 Problem Statement... 3

1.3 Research Objectives... 5

1.4 Research Questions.. 6

1.5 Proposed Method ... 6

1.6 Contributions of the Study... 7

1.7 Dissertation Structure .. 7

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 9

2.1 Deep Artificial Neural Networks ... 9

2.1.1 Autoencoders .. 21

2.1.2 Convolutional Neural Networks (CNN).. 23

2.2 Facial Feature Extraction ... 28

2.3 Supervised Feature Extraction Techniques.. 28

2.3.1 Histogram of Oriented Gradients.. 29

2.3.2 Action Units .. 30

2.4 Deep Feature Extraction Techniques ... 31

viii

Univ
ers

iti
Mala

ya

2.5 Extreme Learning Machine ... 32

2.5.1 Learning in Extreme Learning Machine... 32

2.5.2 High Performance Extreme Learning Machine 37

2.5.3 Hierarchical Extreme Learning Machine.. 37

CHAPTER 3: METHODOLOGY ... 42

3.1 Introduction.. 42

3.2 Model Overview .. 42

3.3 Preprocessing... 44

3.4 Initial Layer or Input Layer .. 44

3.5 Feature Extraction Layer.. 44

3.6 Supervised Feature Extraction Layer... 45

3.6.1 Action Units Features Extraction .. 45

3.6.2 HOG Features Extraction.. 46

3.7 Implementation of AUs and HOG ... 46

3.8 Unsupervised Feature Extraction Layer... 47

3.8.1 Pre-Trained CNN .. 47

3.8.2 Architecture of the Pre-trained CNN .. 48

3.8.3 CNN Features.. 49

3.9 Feature Fusion and Dimensionality Reduction Layers .. 49

3.9.1 Autoencoder for AUs .. 52

3.9.2 Autoencoder for HOG... 53

3.9.3 Autoencoder for CNN... 54

3.9.4 Combining Features .. 55

3.10 Classification Layer ... 56

3.10.1 ELM Autoencoder... 57

3.11 Softmax vs H-HP-ELM ... 61

ix

Univ
ers

iti
Mala

ya

3.12 Summary.. 62

CHAPTER 4: EXPERIMENTS... 63

4.1 Introduction.. 63

4.2 Autoencoder Dataset.. 63

4.3 Classification and Estimation Datasets .. 63

4.3.1 FG-NET Dataset ... 64

4.3.2 LAP Dataset .. 64

4.3.3 CACD Dataset... 64

4.3.4 LFW Dataset ... 65

4.3.5 MORPH-II Dataset ... 65

4.3.6 WIKI-IMDB Dataset .. 66

4.3.7 Adience Dataset .. 67

4.3.8 M3C Dataset ... 68

4.3.9 M-Ages Datasets ... 69

4.4 Environment... 70

4.5 Data Split for 3 Age Categories and Gender Classification................................. 71

4.6 Model Evaluation... 71

4.7 Benchmark Evaluation For Age Estimation .. 76

4.8 Summary.. 77

CHAPTER 5: EXPERIMENTAL RESULTS AND DISCUSSION 78

5.1 Age and Gender Classification .. 78

5.1.1 MORPH-II Dataset ... 78

5.1.2 Adience Dataset .. 79

5.1.3 LFW Dataset ... 79

5.1.4 M3C Dataset ... 80

5.2 Benchmark Evaluation Results .. 81

x

Univ
ers

iti
Mala

ya

5.2.1 Gender Classification .. 81

5.2.2 Age Group Classification .. 82

5.2.3 Age Estimation.. 84

5.3 H-HP-ELM vs Softmax ... 85

5.4 Summary.. 86

CHAPTER 6: CONCLUSION AND FURTHER WORKS................................... 87

6.1 Conclusion ... 87

6.2 Further Work.. 88

References .. 89

Appendices.. 96

xi

Univ
ers

iti
Mala

ya

LIST OF FIGURES

Figure 2.1: Sigmoid or Logistic function.. 20

Figure 2.2: Almost all autoencoder types have a typical design as above which
includes two main components: encoder ℎ = 𝑓 (𝑥) and decoder
𝑟 = 𝑔(ℎ). Former maps input to an internal representation ℎ, latter
maps representation ℎ to reconstruction 𝑟.. 22

Figure 2.3: Max pooling ... 28

Figure 2.4: HOG features pyramid.. 30

Figure 2.5: Action Units detection pipeline overview... 31

Figure 3.1: Overview of the proposed architecture... 43

Figure 3.2: Overview of CNN feature extractor.. 50

Figure 3.3: Autoencoder to encode AUs features vector .. 53

Figure 3.4: Autoencoder to encode HOG features vector ... 54

Figure 3.5: Autoencoder to encode CNN features vector ... 55

Figure 3.6: Feature fusion ... 56

Figure 3.7: Input matrix to H-HP-ELM.. 57

Figure 3.8: Fully connected layer + Softmax classifier... 62

xii

Univ
ers

iti
Mala

ya

LIST OF TABLES

Table 1.1: Best accuracy of other works ... 4

Table 3.1: CNN Parameters .. 51

Table 3.2: Classes used in our classification... 61

Table 4.1: Statistics of original LFW dataset.. 65

Table 4.2: Statistics of original MORPH-II dataset for gender and 3 categories
classification... 66

Table 4.3: Statistics of WIKI dataset for gender and 3 categories classification 66

Table 4.4: Statistics of IMDB dataset for gender and 3 categories classification 67

Table 4.5: Statistics of Adience dataset for gender and 3 categories classification 68

Table 4.6: Statistics of the M3C dataset for gender and 3 categories classification ... 69

Table 4.7: M-Ages Datasets merge ... 70

Table 4.8: Confusion matrix for gender classification .. 72

Table 4.9: Confusion matrix for age classification (Multi Class) 73

Table 4.10: Evaluation metrics and their equations for gender classification............... 74

Table 4.11: Evaluation metrics and their equations for age classification 75

Table 4.12: Evaluation metrics and their equations for age estimation 76

Table 5.1: Confusion matrix for gender classification (MORPH-II) 78

Table 5.2: Confusion matrix for 3 age categories classification (MORPH-II) 79

Table 5.3: Confusion matrix for gender classification (Adience) 79

Table 5.4: Confusion matrix for 3 age categories classification (Adience) 79

Table 5.5: Confusion matrix for gender classification (LFW) 80

Table 5.6: Confusion matrix for gender classification (Merged Dataset) 80

Table 5.7: Confusion matrix for 3 age categories classification (Merged Dataset) 80

Table 5.8: Mean Confusion matrix for gender classification (Adience) by M3C 81

Table 5.9: Mean Confusion matrix for gender classification (MORPH-II) by M3C .. 81

xiii

Univ
ers

iti
Mala

ya

Table 5.10: Overall accuracy for gender classification on benchmark datasets 82

Table 5.11: Mean age classification accuracy and 1-off accuracy results on Adience . 83

Table 5.12: Mean confusion matrix for age classification on Adience (Exact) 83

Table 5.13: Mean confusion matrix for age classification on Adience (1-off) 83

Table 5.14: Average MAE (years) for age estimation on benchmark datasets.............. 84

Table 5.15: Average 𝜖−error for age estimation on LAP dataset 85

Table 5.16: Accuracy and Training time for H-HP-ELM .. 85

Table 5.17: Accuracy and Training time for Fully Connected Layers + Softmax 85

xiv

Univ
ers

iti
Mala

ya

xv

Univ
ers

iti
Mala

ya

LIST OF APPENDICES

Appendix A: Published Results ... 96

xvi

Univ
ers

iti
Mala

ya

CHAPTER 1: INTRODUCTION

1.1 Background

Age and gender are becoming valuable information in data science, and also play essential

roles in social interactions. Concerning data science, information like age and gender

can be used in recommendation systems or regarding robotics for robots that interact

with Human languages have various greetings and grammar rules for each gender. For

instance, typically separate word lists are employed while speaking with seniors compared

to juveniles. Early designs for age and gender classification are employing supervised or

unsupervised features classification. For example, supervised features like facial texture

using Local Binary Pattern or 3D structure of the head and unsupervised features like

features that are extracted using deep neural networks like convolutional neural network

which will be explained in more detail in next chapter. In this chapter, we are introducing

new research that can improve age and gender tagging or classification in terms of accuracy

and performance. In studies that deal with massive datasets time is essential especially

for the training process. The main reason behind that is it can lead to unreliable results

or may take so much time to gain suitable results in the other hand a fast training process

can help to speed up research and achieve proper results faster.

Many data scientists struggle with using huge datasets which means they have to

spend hours and use many computational resources to train their models. To be more

precise, if we have thousands or even millions of facial images batches that they are used

to adjusting weights in the neural network in each iteration, that would be a massive

burden for computational resources and time-consuming process because this iteration

may happen for many times to converge the best possible solution. We know that in

some cases machine learning engineer needs to stop the learning process due to issues,

1

Univ
ers

iti
Mala

ya

for example, over-fitting and change some parameters and start over training again. But

with the iterative solution, it won’t be easy.

Base on our pre-research investigation, most of the researches is either using super-

vised or unsupervised feature learning methods individually but just a limited number of

researches have used a hybrid form of supervised and unsupervised features.

1.1.1 Deep Neural Networks and Softmax

Generally speaking, deep neural networks (DNN) is one of many varieties of artificial

neural networks (ANNs) with several hidden layers connecting the input layer to the

output layer (Bengio et al., 2009; Schmidhuber, 2015). In DNN designs, the data,

e.g., an image is represented as a layered composition of that data in this example image

primitives (Szegedy, Toshev, & Erhan, 2013) which helps to have multiple levels of feature

abstraction. In other words, it helps to have a composition of features in a bottom-up form

of abstraction levels, e.g., from patches to meaningful features such as Cars, Human or

Cat face, which helps to ignore redundant features and to model complex data (Bengio

et al., 2009). One of the essential modules of Supervised DNNs is the classifier. The

commonly used classifier for DNNs is Softmax which implies the generalized form of

logistic regression in which one of its properties is to be utilized to describe a distribution

in categorical form. It is a likelihood or a distribution of probability across 𝐾 various

potential values. Concerning logistic regression, it is possible to have the target values

only in binary: 𝑦 (𝑖) ∈ {0, 1}. For example, the binary form is employed for recognizing

data with two classes. e.g., whether positive or negative handwritten digits while on

the other hand Softmax regression can supervise 𝑦 (𝑖) ∈ {0, . . . , 𝐾 − 1} which if for

example if 𝐾 = 10 then it is possible to classify numbers 0 to 9 since there are 10

classes. Considering dataset of {(𝑥 (1) , 𝑦 (1)), . . . , (𝑥 (𝑚) , 𝑦 (𝑚))} with 𝑚 labeled data, with

𝑥 (𝑖) ∈ ℜ𝑛 as input feature logistic regression can classify the target values 𝑦 (𝑖) ∈ {0, 1}

2

Univ
ers

iti
Mala

ya

which represent binary labels. (Ma, Lu, Zhang, & Tang, 2014).

By assuming ℎ𝜃 (𝑥) as the hypothesis we have:

ℎ𝜃 (𝑥) =
1

1 + exp(−𝜃⊤𝑥) (1.1)

moreover, considering the loss function to be minimized with paramere 𝜃:

𝐽 (𝜃) = −
[
𝑚∑
𝑖=1

𝑦 (𝑖) log ℎ𝜃 (𝑥 (𝑖)) + (1 − 𝑦 (𝑖)) log(1 − ℎ𝜃 (𝑥 (𝑖)))
]

(1.2)

Softmax regression in opposed to binary form that we have discussed, can have label

𝑦 in 𝐾 sapace. So, in {(𝑥 (1) , 𝑦 (1)), . . . , (𝑥 (𝑚) , 𝑦 (𝑚))} can be training set which target

classes are 𝑦 (𝑖) ∈ {0, 1, . . . , 𝐾 − 1}.

For an evaluation input data 𝑥, to compute the likelihood that 𝑃(𝑦 = 𝑘 |𝑥) toward

every value of 𝑘 = 0, . . . , 𝐾 − 1. The probability of the class number is estimated having

every 𝑘 different possible amount. Therefore, it produces an output vector with a 𝐾

dimension where elements sum is 1.0 providing us 𝐾 predicted probability values.

Then if we assuem ℎ𝜃 (𝑥) is:

ℎ𝜃 (𝑥) =

𝑃(𝑦 = 1|𝑥; 𝜃)

𝑃(𝑦 = 2|𝑥; 𝜃)
...

𝑃(𝑦 = 𝐾 |𝑥; 𝜃)

=

1∑𝐾
𝑗=1 exp(𝜃 (𝑗)⊤𝑥)

exp(𝜃 (1)⊤𝑥)

exp(𝜃 (2)⊤𝑥)
...

exp(𝜃 (𝐾)⊤𝑥)

(1.3)

here model parameters are shown as 𝜃 (1) , 𝜃 (2) , . . . , 𝜃 (𝐾) ∈ ℜ𝑛 (Ma et al., 2014).

1.2 Problem Statement

We have noticed that those architectures are using Softmax suffer from lack of accuracy

to classify age and gender which caused by limitations of Softmax (Table 1.1).

3

Univ
ers

iti
Mala

ya

Table 1.1: Best accuracy of other works

Author Gender Age
Dantcheva, A., and Brémond, F. (2016) 75.10% -
Levi, G., and Hassner, T. (2015). 86.80% 84.70%
E Eidinger, R Enbar, T Hassner (2014) 77.80% 79.50%

The main limitation of the Softmax classifier is that the classification process will

not work if the input data is not linearly separable and one more limitation of the Softmax

classifier is that it does not support the null rejection. Therefore it is obligated to train the

algorithm with a particular null class. Identified research problems are listed as below:

• The first problem is that deep network feature extraction cannot guarantee linear

separable features.

• The second problem is that early methods are using Softmax for classifier which

Softmax has limitations, the primary and essential limitation of the Softmax algo-

rithm is that it will not work if the provided data is not linearly separable.

• The third problem is that Softmax architectures use iterative training algorithms

which leads to performance issues such as slow convergence rate and local minima.

• The fourth problem is that although unsupervised feature learning methods can

learn to extract useful features, there is no guarantee that we can extract well-known

useful handcrafted features as well.

• The fifth problem is that supervised and unsupervised features can be in very

different dimensions which makes the fusion of these groups of features so important

because a weak approach to fuse them may lead to an underfitting learning state.

Our hypothesis is included of three main conditions:

• To overcome limitations of Softmax that are explained earlier we use a non-linear

classifier

4

Univ
ers

iti
Mala

ya

• To use a non-iterative training algorithm like a form of Extreme Learning Machines

to overcome the performance issue

• A hybrid form of supervised and unsupervised feature learning can lead to a selec-

tion of more useful features

1.3 Research Objectives

Considering the problem statement and our hypothesis which are explained in the previous

section, we are establishing a research to fulfill our goal to overcome the mentioned

problems. Objectives of our research are listed below:

• To use Hierarchical ELM architecture as a non-linear classifier to overcome the ear-

lier mentioned limitation of Softmax which does not need the data to be necessarily

linearly separable.

• By choosing Hierarchical ELM as the classifier, we overcome slow convergence

rate and local minima.

• To use a fusion of well-known handcrafted features namely Action Units, Histogram

of Oriented Gradients as supervised features and a group of convolutional layers

of a pre-trained convolutional neural network as an unsupervised feature extraction

method.

• To use three autoencoders to fuse Action Units, Histogram of Oriented Gradients

and features from convolutional layers.

Therefore our primary goal in this study is to design and implement an architecture

to extract a hybrid fusion of handcrafted features namely Action Units and Histogram

of Oriented Gradients with deep CNN features and then classify them with Hierarchical

ELM as a non-linear classifier for age and gender classification.

5

Univ
ers

iti
Mala

ya

1.4 Research Questions

• Can hybrid handcrafted and deep features improve the accuracy of age and gender

classification?

• Can be replacing the Softmax classifier with H-ELM leads to any improvement in

the accuracy and performance in terms of training time?

1.5 Proposed Method

The proposed method implements an architecture that consists of independent layers,

which are namely layer zero, supervised and unsupervised features extraction layer,

supervised and unsupervised features fusion and dimensionality reduction layer and a

classification layer.

The initial layer or layer zero is our input layer to the whole system. It is an RGB

facial image. This layer will be fed to the next and first essential layer of our architecture.

In supervised and unsupervised features extraction layer important features of facial

images are extracted. In this research, we want to analyze a hybrid feature learning model,

which consists of a hybrid handcrafted and deep features extraction model to extract the

most useful features. Histogram Of Gradients and Facial Action Units are a well-known

example of facial handcrafted features that we are using in our research. We have used a

pre-trained convolutional neural network to extract unsupervised deep features.

In supervised and unsupervised features fusion and dimensionality reduction layer

we are trying to combine outputs from feature extraction units in the feature extraction

layer. We append HOG, AUs, and CNN features using three autoencoders that they encode

features into three features vectors with the same size and then they represent a single

vector when they are appended to end of each other respectively.

In H-ELM layer generated feature vector is used as input to the H-ELM classifier to

6

Univ
ers

iti
Mala

ya

classify age and gender.

1.6 Contributions of the Study

The contribution of this research is summarized as follow:

• One of the essential contributions of this study is to propose an architecture to learn

and extract hybrid handcrafted and deep features. So Histogram Of Gradients and

Facial Action Units are chosen for handcrafted feature extraction method and few

convolutional layers of a pre-trained convolutional neural network are chosen as a

deep feature extraction method. These features are then encoded and joined to each

other as the input for the classifier.

• Another important contribution of this study is to use Hierarchical Extreme Learning

Machine (H-ELM) as a non-linear classifier to improve the accuracy and also to

speed up the training process so the proposed architecture can run considerably

faster.

1.7 Dissertation Structure

The rest of this dissertation is structured as below:

• In chapter two we will explain some of the related works, literature review and

background of important concepts that are used in this research. We will discuss

briefly the key differences between Softmax and H-ELM and how they work.

• In chapter three we will explain our proposed architecture in detail. We will explain

how hybrid handcrafted features and deep features are generated through the feature

extraction layer, the way they are encoded and how it is prepared to be classified by

H-ELM.

7

Univ
ers

iti
Mala

ya

• In chapter four we will explain our experiments on well-known and benchmark

datasets.

• In chapter five we will illustrate our results gained that we from our experiments

from chapter four.

8

Univ
ers

iti
Mala

ya

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

There are many machine learning models to classify age and gender. These models can

either be implemented with a deep or shallow neural network. For example (van de

Wolfshaar, Karaaba, & Wiering, 2015), and (Levi & Hassner, 2015) use CNN or convo-

lutional neural networks to extract facial features to classify age and gender. (Eidinger,

Enbar, & Hassner, 2014) on the other hand, uses Local Binary Pattern or LBP and FPLBP

alongside a Support Vector Machine or SVM classifier for age and gender classification.

Some techniques use different training set from the testing set for benchmark evaluation.

As an instance, (R. Rothe, Timofte, & Gool, 2016) uses the WIKI-IMDB dataset as the

training set and Adience as the testing set, which leads to higher accuracy. Here in this

chapter, we explain important concepts that are used in our research.

2.1 Deep Artificial Neural Networks

A deep neural network or DNN designs form a configuration where the object is denoted

as compositions of image primitives in multiple layers (Szegedy et al., 2013). These extra

layers that exist in deep neural networks help to represent features from a deficient level,

which can perform similarly to shallow networks but with much fewer units to model

complex data (Bengio et al., 2009). Convolutional deep neural networks or CNNs are

utilized vastly in computer vision (LeCun, Bottou, Bengio, & Haffner, 1998). CNNs have

shown excellent results to model ASR (Sainath, Mohamed, Kingsbury, & Ramabhadran,

2013).

We can train a CNN by one of the conventional delta-rule based algorithms. Back-

propagation (or BP) comprises an algorithm to compute the gradient of the loss function

concerning the weights in an artificial neural network. The loss function in backpropa-

gation computes the contrast among the training set input data and target output after the

9

Univ
ers

iti
Mala

ya

data has gone through the network. Backpropagation is regularly employed to optimize

the network concerning the performance by altering the weights.

It mainly consists of two essential stages: 1) propagation and 2) weight update. The

given input vector to the network will be fed forward into the next layers continuously until

it reaches the output layer. The values that are present in the output layer are analyzed

against the actual target output. The loss function will help to measure error value for

each neuron in that layer. The propagation of computed error values from the output

to backward is the step in which every neuron obtains associated error amount, which

approximately describes its contribution to the actual target value.

BP employs computed errors to measure the gradient of the loss function. Then the

measured gradient is used by the optimization process utilizes it to adjust the weights

to lessen the loss function. The mentioned step is essential since the network has been

trained, and the hidden units are adjusted, so each neuron learns to recognize various

features concerning the entire input range.

Later, once the training process is done, whenever an arbitrary input data is fed to

the input layer, which brings added unknown features, hidden units will react by an active

output if the current input data contain a pattern that matches a feature that the single

neurons have trained to identify.

BP needs a recognized, suitable output for every input value to compute the loss

function gradient. Therefore, it is mostly known and used as a supervised learning

technique, although it is applied to unsupervised learning methods such as autoencoders.

Common problems that are known for most multi-layer neural networks are com-

putation time and overfitting. It is widespread for DNNs to overfit, and the reason is

that the layers of abstraction allow the network to model rare dependencies in the train-

ing data. Commonly, regularization techniques Ivakhnenko’s unit pruning (Ivakhnenko,

10

Univ
ers

iti
Mala

ya

1971), weight decay ℓ2 or sparsity ℓ1 are examples that can be practiced while training to

overcome overfitting (Bengio, Boulanger-Lewandowski, & Pascanu, 2013). Alternatively,

dropout performs very well concerning regularization, which randomly drops units based

on a probability value from the hidden units while training (Dahl, Sainath, & Hinton,

2013).

DNNs rely on several training parameters, namely the layers depth, the capacity of

each layer regarding processing units, initial weights, and, last but not least, the learning

rate. Finding the most optimal parameters is not strait-forward, and it usually needs lots

of experiments and computations, which costs time. There are ways to escape from this

bottleneck which, as an instance, it is common to use batches of the training set to speed up

computation (Hinton, 2010). GPU processing has also introduced considerable speedups

in training since GPUs are excellent tools for matrix-based computations (Schmidhuber,

2015). Most popular alternatives to iterative solutions such as BP are "Extreme Learning

Machines" (G.-B. Huang, Zhu, & Siew, 2006) training without backtracking (Ollivier,

Tallec, & Charpiat, 2015) "No-prop" networks,(Widrow, Greenblatt, Kim, & Park, 2013)

"weightless networks" (Aleksander, De Gregorio, França, Lima, & Morton, 2009) and

last but not least non-connectionist neural networks (Robinson, 1994). In further sections,

Extreme Learning Machines will be explained in detail.

Loss Functions: Loss or Cost function is an essential part of a broad neural network.

Loss functions same as linear or other parametric models represent a distribution 𝑝(𝑦 |

𝑥; 𝜃), and which merely uses the policy of highest probability which indicates that the

cross-entropy as the loss function is an excellent choice to be used among the training

data and predictions by the model. Instead of predicting an entire likelihood distribution

over 𝑦, a prediction of the statistic of 𝑦 by conditioning on 𝑥 is made. The loss function

applied to train a neural network frequently comes with a regularization term. For deep

11

Univ
ers

iti
Mala

ya

neural networks conventionally, a weight decay method is adopted (Goodfellow, Bengio,

& Courville, 2016). Usually, weight decay is performed by minimizing a sum comprising

both the Mean Squared Error (MSE) on the training and a criterion 𝐿 (𝑤) that expresses

an inclination for the weights to have less squared ℓ2 norm (Goodfellow et al., 2016).

Particularly,

𝐿 (𝑤) = 𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 + 𝜆𝑤𝑇𝑤 (2.1)

where in the equation 2.1 𝜆 represents a value that is picked ahead of time that

regulates the strength of preference for smaller weights (Goodfellow et al., 2016). When

𝜆 = 0, no preference is imposed, and a more extensive 𝜆 makes the weights to become

smaller. Minimizing 𝐿 (𝑤) leads to a selection of weights that make a tradeoff between

fitting the training data and being scanty, which produces solutions that have a gentle

slope or place weight on fewer of the features.

Maximum likelihood (the negative log-likelihood) is the commonly used method to

train most modern neural networks; in other words, it is expressed as the cross-entropy

within the model distribution and the training dataset. This equation gives the explained

loss function:

𝐿 (𝜃) = −E𝑥,𝑦∼𝑝𝑑𝑎𝑡𝑎 log 𝑝𝑚𝑜𝑑𝑒𝑙 (𝑦 | 𝑥) (2.2)

The particular class of log 𝑝𝑚𝑜𝑑𝑒𝑙 is the foundation of the particular design of the loss

function, which varies in different models. Deriving the loss function from maximum

likelihood utilizing this approach has an essential advantage. It eliminates the difficulty of

outlining loss functions for every model. While designing a neural network, the inclination

of the loss function is obligated to be broad and foreseeable adequately to work being a

12

Univ
ers

iti
Mala

ya

useful director during the training.

For many models, negative log-likelihood is employed, so several output units com-

prise an exponential function, which helps to saturate if its argument has a hugely negative

value. Then it can be used to cancel the exponential of some output units (Goodfellow et

al., 2016). Utmost models are parameterized in such a way that for discrete output vari-

ables so they are not able to denote a likelihood of zero or one but still can be approaching

doing so arbitrarily. As an instance, logistic regression is such a model. By using this

approach, the model can designate a remarkable large density to the actual target, which

results in cross-entropy reaching negative infinity (Goodfellow et al., 2016).

Softmax Units for Multinoulli Output Distributions: Besides choosing the loss

function, it is crucial to select an output unit. In most cases, cross-entropy among the data

and distribution of the model can be the right option. The identical neural network unit

can be employed as both output and hidden units. So it is assumed that a provided set of

hidden features by the feedforward neural network represented by ℎ = 𝑓 (𝑥; 𝜃). Output

units then present a transformation of the features to accomplish the job that the network

needs to fulfill. Softmax function most likely is used whenever we want to denote a

probability distribution across a discrete variable within probable values.

The sigmoid function is also used over a binary variable to express a probability

distribution the same as Softmax; in other words, Softmax is a generalized form of the

Sigmoid function. In most cases, Softmax functions are used classifier output, to designate

the probability distribution across various classes. The model can use Softmax functions

inside itself in case we desire the model to pick within one often different choices for some

internal variable but is not frequent. For binary variables where it is expected to generate

�̂� = 𝑃(𝑦 = 1|𝑥). (2.3)

13

Univ
ers

iti
Mala

ya

which is a single number, since mentioned number required to be within 0 and 1 and

also the result of logarithm function for that number wanted to be adequately reformed

toward gradient-based optimization of the log-likelihood, a number 𝑧 = log �̃�(𝑦 = 1|𝑥) is

predicted instead. Sigmoid function controls a Bernoulli distribution of the exponentiated

and normalized value. A vector �̂�, with �̂�𝑖 = 𝑃(𝑦 = 𝑖 |𝑥) helps to generalize for a discrete

variable which has 𝑛 values. Despite, every element of �̂�𝑖 be between 0 and 1, but also

the summation of the entire vector items should be one which leads to a valid probability

distribution.

The multinoulli distribution uses the same way as the Bernoulli distribution uses to

have generalized form. Initially, raw log-likelihoods are calculated using a linear layer:

𝑧 = 𝑊⊤ℎ + 𝑏 (2.4)

which in this equation 𝑧𝑖 = log �̃�(𝑦 = 𝑖 |𝑥). Later on, to attain the desired �̂�, 𝑧 can

be exponentiated and normalized by Softmax function. The Softmax function can be

illustrated by the given equation below:

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑧)𝑖 =
exp(𝑧𝑖)∑
𝑗 exp(𝑧 𝑗)

(2.5)

Same as logistic sigmoid, the 𝑒𝑥𝑝 function performs very well to train the Softmax

in a way so it can generate value in the output units by adopting maximum log-likelihood,

which is our desired target value 𝑦. Here, main aim is to have maximum value for equation

log 𝑃(𝑦 = 𝑖; 𝑧) = log 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑧)𝑖. An essential characteristic of the defined terms is that

𝑙𝑜𝑔 in the log-likelihood can reverse (it is natural) the exponential function of the Softmax:

14

Univ
ers

iti
Mala

ya

log 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑧)𝑖 = 𝑧𝑖 − log
∑
𝑗

𝑒𝑥𝑝(𝑧 𝑗) (2.6)

In equation 2.6, the first term has a constant straight contribution to the loss function,

and because it is not able to saturate, the training can continue, despite though the effect of

𝑧𝑖 on the following term of equation 2.6 can become very small. The first term encourages

𝑧𝑖 to be upshifted while maximizing the log-likelihood. At the same time, the following

term helps every 𝑧 to be downshifted. To have better discernment about the following

term, log
∑
𝑗 𝑒𝑥𝑝(𝑧 𝑗), perceive that 𝑚𝑎𝑥 𝑗 𝑧 𝑗 approximates aforementioned term. The

idea for this approximation is that 𝑒𝑥𝑝(𝑧𝑘) is unimportant to consider for any 𝑧𝑘 that

is noticeably less than 𝑚𝑎𝑥 𝑗 𝑧 𝑗 . This approximation gives the intuition that the log-

likelihood with negative value loss function constantly well penalizes the most intense

prediction that is wrong comparing to the true target. In case that the expected result

already possesses the most significant amount to the Softmax, then the −𝑧𝑖 term and the

log
∑
𝑗 𝑒𝑥𝑝(𝑧 𝑗) ≈ 𝑚𝑎𝑥 𝑗 𝑧 𝑗 = 𝑧𝑖 terms will approximately drop. Altogether, the model is

controlled by unregularized maximum likelihood to determine those parameters which

lead the Softmax to prediction with probability values:

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑧(𝑥; 𝜃))𝑖 ≈
∑𝑚
𝑗=1 1𝑦 (𝑗)=𝑖,𝑥 (𝑗)=𝑥∑𝑚

𝑗=1 1𝑥 (𝑗)=𝑥
(2.7)

The advantage of a consistent estimator like maximum likelihood is that it is guar-

anteed that the prediction happens as long as the model group can represent the training

distribution. Practically, when the model is limited to the approximation of these frac-

tions, it means that the model has limited capacity and imperfect optimization. The 𝑒𝑥𝑝

becomes hugely negative for the argument, and then it leads to a vanishing gradient, so in

such case, only those target functions that use a 𝑙𝑜𝑔 to reverse the 𝑒𝑥𝑝 of the Softmax can

15

Univ
ers

iti
Mala

ya

escape this failure through learning.

Squared error performs weakly as a loss function and usually causes failure during

training for Softmax units to change its output. Both sigmoid and Softmax can saturate.

When the input to the sigmoid function is much negative or positive, then it will saturate.

The output from Softmax is not a single value, so that these values may saturate due to the

contrast among input values get severe. So as it is expected when the Softmax saturates,

common loss functions that deal with the Softmax also most likely will saturate, except

those loss functions can reverse the saturation of activation function. Considering the

equation below:

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑧) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑧 + 𝑐). (2.8)

we can achieve a numerically solid modification inherited from Softmax:

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑧) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑧 − 𝑚𝑎𝑥𝑖𝑧𝑖). (2.9)

The second equation empowers users to assess Softmax by only little numerical

errors, even if 𝑧 holds notably positive or negative values. The value drives the Softmax

function that its parameters deviate from 𝑚𝑎𝑥𝑖 𝑧𝑖.

Considering an output 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑧)𝑖, if the corresponding input has the maximum

possible value (𝑧𝑖 = 𝑚𝑎𝑥𝑖𝑧𝑖) and 𝑧𝑖 is remarkably more massive than rest of the inputs it

will saturate to 1. Alternatively, it will additionally saturate to 0 if 𝑧𝑖 has not the maximum

possible value; moreover, the maximum value is considerably high. In the generalized

form, sigmoid units saturate; furthermore, if the loss function cannot compensate for it,

then it can head to similar barriers while training. Two various methods exist to generate

term 𝑧 in the Softmax function. The commonly recognized way is to ordinarily have

16

Univ
ers

iti
Mala

ya

another layer of the NN before outputting each member of 𝑧, as outlined before applying

𝑧 = 𝑊⊤ℎ + 𝑏. It is possible to force a constraint that a single component of 𝑧 is set to

have a fixed value. As an instance, to demand that 𝑧𝑛 = 0, which is how precisely the

sigmoid function behaves. Defining 𝑃(𝑦 = 1|𝑥) = 𝜎(𝑧) is equivalent to defining 𝑃(𝑦 =

1|𝑥) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑧)1 with a two-dimensional 𝑧 and 𝑧1 = 0. Both the 𝑛 argument and 𝑛− 1

argument, then approaches to the Softmax, can express the corresponding combination

of probability distributions except with various training dynamics. Practically, there is

seldom enormously differ among using the over parameterized or the limited one, and it is

simpler to implement the over parameterized one. The Softmax outputs, in any case, will

summate to 1, so increasing the amount of single unit unavoidably corresponds to a drop

in the amount of other units. By the maximum (if the difference among the maximum

possible value 𝑎𝑖 and the others are very high in magnitude), it converts to a winner-take-

all form (it happens if a single unit of outputs is almost 1, and the rest are approximately

0). The phrase soft in the Softmax function illustrates that it is for continuous values;

moreover, it is differentiable too, and arg max function, besides its result, described as

a one-hot vector, is not continuous or differentiable. So, in other words, the Softmax

function, therefore, implements a softened form of the arg max function. The analogous

soft form of the maximum function is 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑧)⊤𝑧.

Hidden Units So far, the discussion is focused on gradient-based optimization that

is commonly used to train most parametric machine learning models of NNs. There is

a unique issue to feed-forward neural networks that concerns about what kind of hidden

units we need to employ. The study of hidden layers is a notably hot field for study

and research, and it seems still have not various ultimate theoretical principles. As an

example, ReLus are excellent first selections for hidden units. Although several varieties

of hidden units exist, it is usually hard in many cases to determine when to use which sort

17

Univ
ers

iti
Mala

ya

of hidden units.

Neither of each hidden units covered in this list is differentiable in every input point.

In many examples, hidden units takes a vector 𝑥, calculating an affine transformation

𝑧 = 𝑊⊤𝑥 + 𝑏 and next 𝑧 is input for an element-wise nonlinear function 𝑔(𝑧). Hidden

units are recognizable by realizing the form of the activation function 𝑔(𝑧).

ReLu and generalized forms of ReLu Rectified linear units or generally known as

ReLus utilize the activation function 𝑔(𝑧) = 𝑚𝑎𝑥{0, 𝑧}. In other words, it gives an output

of 𝑧 if 𝑧 is positive; otherwise, the output will be 0. Due to its similarity to linear units, it is

straightforward to optimize those units. Although it seems similar to linear in the positive

axis, the Relu activation function is entirely nonlinear, and also any combinations of ReLu

are also known as a nonlinear function. The contrast between a linear unit and a ReLu is

that a ReLu produces zero for negative values. So whenever the ReLu is active, then the

derivatives over a ReLu stay big. The rectifying operation has the second derivative of 0

for almost all possible values, and when the unit is active, the derivative of the rectifying

operation is 1 for all related values.

ReLus are usually utilized across an affine transform function:

ℎ = 𝑔(𝑊⊤𝑥 + 𝑏) (2.10)

To apply good practice to set the initial value of parameters of the affine transfor-

mation, that is possible to make all components of 𝑏 to hold a small positive number,

for example, 0.15. It is also required to have ReLus to be initially active, so this small

positive number lets the derivatives to pass through for many inputs in training set to

make that happen. Various generalized forms of ReLus are practiced among top recent

researches. Many of these generalized forms functioning well comparable to ReLus and

18

Univ
ers

iti
Mala

ya

in some cases, appear to perform better. Gradient-based methods are not a wise choice

to train a model based on ReLus for which their activation is zero, and this is one of

the downsides for ReLus. Different generalized forms of ReLus ensure that they obtain

gradient throughout. Basics of certain different generalized form of ReLus is to use a non

zero slope 𝛼𝑖 when 𝑧𝑖 < 0 : ℎ𝑖 = 𝑔(𝑧, 𝛼)𝑖 = max(0, 𝑧𝑖) + 𝛼𝑖 min(0, 𝑧𝑖). Absolute amount

of rectification will fix 𝛼𝑖 = −1 to gain 𝑔(𝑧) = |𝑧 |. Other generalized forms of ReLus are

more predominantly applicable. For example, a Leaky ReLu makes 𝛼𝑖 a little amount like

0.01, while a parametric ReLu handles 𝛼𝑖 as one learnable parameter.

Maxout units generalize ReLus by dividing 𝑧 into sets of 𝑘 values as an alternative

way to applying an element-wise function 𝑔(𝑧). The maximum element of one of these

groups will be output from each Maxout unit:

𝑔(𝑧)𝑖 = max
𝑗∈𝐺 (𝑖)

𝑧 𝑗 , (2.11)

here for each group 𝑖,{(𝑖−1)𝑘 +1, . . . , 𝑖𝑘}, the𝐺 (𝑖) will be list of indices into that groups’

inputs. This approach implements a method of learning a multi-direction responsive

piecewise linear function for input 𝑥 space.

A Maxout unit has this ability to learn a linear, also convex piecewise function limited

to 𝑘 pieces. In other words, a Maxout units layer merely is a layer where the activation

function is the max of the inputs. Maxout units may, therefore, considered as learning the

activation function itself. Generally, it has such a learning power, which makes it able to

approximate any convex function as long as the 𝑘 is big enough.

To be more precise, only two pieces, a Maxout layer, implements the identical

function of the input 𝑥 as a conventional layer by ReLu, Leaky ReLu, PReLu activation

function, or a different function altogether. However, the Maxout layer is parameterized

19

Univ
ers

iti
Mala

ya

differently from the mentioned layers. As a result, it has distinctive learning dynamics in

all aspects in any case. For each Maxout unit, there are 𝑘 weight vectors rather than only

one; as a result, regularization is a more crucial requirement for Maxout units comparing

to ReLus. However, if the training set is big enough and at the same time, the amount of

pieces per unit is maintained low, they can act appropriately even without regularization.

In some cases, Maxout units can be requiring fewer parameters, which makes it be

statistically and computationally even more beneficial. To be more specific, if we assume

the features obtained through 𝑛 separate linear filters, the Maxout units will reduce features

𝑘 times without dropping information by taking the maximum value over each group of 𝑘

features. ReLus and all derived generalized forms are built against the idea that models are

more straightforward for optimization if their performance is resembling linear models,

which applies in various contexts besides deep linear networks.

Sigmoid or Logistic function is a mathematical function possessing an "S" formed

curve (sigmoid curve). Frequently, sigmoid function refers to the particular case of the

logistic function shown in figure 2.1 and defined by the equation 2.12:

−6 −4 −2 0 2 4 6

0.5

1

Figure 2.1: Sigmoid or Logistic function

𝑆(𝑡) = 1
1 + 𝑒−𝑡 (2.12)

20

Univ
ers

iti
Mala

ya

Its Range is between 0 and 1. It is straightforward to comprehend and to use, but it

possesses essential causes to make it fall out of popularity, and there are reasons for that:

• Sigmoids usually converge very slowly.

• Sigmoids saturate and destroy gradients.

• Its output is not zero centered, which causes the new gradient values to go re-

markably far in various directions. 0 < output < 1, and it makes optimization

harder.

• Small or vanishing gradient problem which network starts to refuse to learn.

2.1.1 Autoencoders

Autoencoders are conventional neural networks to reduce feature dimensions. In this

paper (Y. Wang, Yao, & Zhao, 2016), research has been established that compares auto-

encoder and its ability to reduce the dimensionality with the other well-known methods

such as LDA, PCA, and Isomap. Their experiments (from (Y. Wang et al., 2016)) show

that auto-encoders act differently, and besides, to reduce dimensionality, it can detect

repetitive structures as well. So auto-encoder is the right solution for data with repetitive

structures (Y. Wang et al., 2016). As another example in paper (W. Wang, Huang,

Wang, & Wang, 2014), a generalized autoencoder has been introduced, which is a neural

network framework for dimensionality reduction. The mentioned approach in (W. Wang

et al., 2014) is compared with conventional approaches like LDA, PCA, LLE, LE, MFA,

and Isomap, which shows that autoencoders are performing very good in many possible

applications.

Autoencoders are a class of neural networks that reasonably learns to try to make a

very close but not exact copy of its input through one or more hidden layers to its output

21

Univ
ers

iti
Mala

ya

layer. As it is mentioned, it usually has deep or shallow layers of hidden ℎ units that are

also called the encoded layer(s) of an autoencoder. It has to main parts, which are encoder

and decoder. Encoder is known as function ℎ = 𝑓 (𝑥) and decoder which reconstruct

input gain is known as 𝑟 = 𝑔(ℎ). The design is shown in Figure 2.2. If an autoencoder

successfully learns in the training process to set 𝑔(𝑓 (𝑥)) = 𝑥 for all input 𝑥, then it is

not helpful. Preferably, autoencoders are intended to be incapable of learning to replicate

perfectly to do so autoencoders are usually limited with policies that allow them to generate

just approximation of data and to choose only input that can resemble the training data

as network output. Autoencoders are designed only to learn the useful properties of the

data, so the model is designed in a way to determine which features of the input should

be selected based on their priority. The new generation of autoencoders are based on

stochastic mappings and it no longer limited to deterministic functions 𝑃𝑒𝑛𝑐𝑜𝑑𝑒𝑟 (ℎ | 𝑥)

and 𝑃𝑑𝑒𝑐𝑜𝑑𝑒𝑟 (𝑥 | ℎ). (Goodfellow et al., 2016).

hx r
𝑓 𝑔

Figure 2.2: Almost all autoencoder types have a typical design as above which in-
cludes two main components: encoder ℎ = 𝑓 (𝑥) and decoder 𝑟 = 𝑔(ℎ). Former maps
input to an internal representation ℎ, latter maps representation ℎ to reconstruction
𝑟.

Undercomplete Autoencoders: Although reproducing the input in the output layer

may seem worthless, but the output of the decoder is not the aim to have this network.

Instead, the primary goal is to train the autoencoder to do the input replication part, which

will lead to ℎ obtaining useful features. When the autoencoder is forced to have a hidden

layer of ℎ with a smaller dimension than the input layer 𝑥, it can gain useful features. An

autoencoder that is using this method is called under complete. So the autoencoder has

to obtain the most notable features of the training data. To train an autoencoder, we need

22

Univ
ers

iti
Mala

ya

a process which it is explained clearly as minimizing a loss function:

𝐿 (𝑥, 𝑔(𝑓 (𝑥))) (2.13)

where 𝐿 is a loss function, in this loss function, every time 𝑥 is different from the

reconstructed value in the output layer, 𝑔(𝑓 (𝑥)) will be penalized. In such a case, mean

squared error can be employed as the loss function. When a decoding layer is linear, and

𝐿 is the mean squared error, an under complete PCA and a single layer autoencoder will

resemble almost equivalent functions if only the autoencoder has a linear transfer function;

however, they cannot reproduce same encoded values. (Goodfellow et al., 2016).

Moreover, autoencoders have a nonlinear encoding function 𝑓 and nonlinear de-

coding function 𝑔 can, therefore, learn a robust nonlinear generalized form of PCA.

Unfortunately, one of the downsides is that it can appear not to be able to extract useful

features if either encoder or decoder are given exceedingly much capacity.

2.1.2 Convolutional Neural Networks (CNN)

CNNs, are a class of ANNs which is suitable to process data that is presented in the multi-

dimensions matrix. CNNs have shown remarkably successful performance in useful

applications. The term convolutional neural network designates that the network uses

convolution, which is a mathematical operation. Convolution is a particular class of linear

operations. CNNs are ANNs that utilize convolution operation for matrix multiplication

in feature learning or extraction layers.

Convolution: Convolution is a mathematical operation that applying them on func-

tions 𝑓 and 𝑔will generate a different function which is comparable to cross-correlation. It

has many use-cases such as probability, pattern recognition, natural language processing,

image processing. The convolution operation over function 𝑓 and function 𝑔 is shown as

23

Univ
ers

iti
Mala

ya

𝑓 ∗ 𝑔 for continues values (Press, 1989).

Because in computer vision, we are dealing with images which are 2𝐷 data, so as

it is explained in (Damelin & Miller Jr, 2012), we can extend convolution from (Press,

1989) to be used for 2𝐷 discrete values. Here is the convolution operation function for

2𝐷 images:

(𝑓 ∗ 𝑔) [𝑚, 𝑛] =
𝑈∑

𝑢=−𝑈

𝑉∑
𝑣=−𝑉

𝑓 [𝑚 − 𝑢, 𝑛 − 𝑣]𝑔[𝑢, 𝑣] (2.14)

Convolutional layers: Neural networks for image classification are made up of

layers, and each layer can contain hundreds, even thousands of neurons. The earlier layers

of the NN closer to the input will focus on the more granular details of the image, such

as pixels. Later layers will focus on abstractions. Images contain very complex dense

information, and when we work with them using neural networks, we are likely to have a

parameter explosion. As an instance, if we have 100 by 100 image, It is possible to set up

the first layer to have 10000 neurons to process the individual pixels. If we connect these

neurons in the next layer, even if they are fewer than 10000 neurons in the subsequent

layers, it will soon run into a case where there are millions of parameters to train within

the neural network, which is not sustainable. Therefore it does not make that much sense

to work with images employing a fully connected NN. In such a case, CNNs come in,

enabling NNs to get these parameters under control.

One significant advantage of CNNs is that there are dramatically fewer parameters

than deep neural networks for similar performance. CNNs work particularly well with

data that come expressed in two dimensions, such as an image. It has a height and a

width and pixel values, which make up the individual elements of the matrix. CNNs use

convolution to have neurons focus on local receptive fields on smaller portions of the input

image instead of the whole image. The primary role of convolutional layers in CNNs is to

24

Univ
ers

iti
Mala

ya

zoom in on specific bits of input. Imagine that convolutional layers are a pair of binoculars,

which is used to look at small bits of the input at a time and have higher layers piece these

together. Convolutional layers are followed by higher-level layers that aggregate inputs

into more abstract or higher-level features. CNNs might include convolutional layers

which focus on pixels which are aggregated to lines which are then aggregated to contours

or edges, and finally abstracted to identify objects. So far, we know one thing about

convolutional layers on CNNs, which is the fact that they convolution. We assume that we

have an input image in which this image is made up of pixels. Imagine now a matrix of

neurons but not a layer of neurons, which are receptive to the convolutional kernel sliding

over this pixel matrix. This matrix of neurons that respond to a convolutional kernel is

called a feature-map. A convolutional layer is made up of a number of these feature-maps

where each feature-map responds to a different convolutional kernel. The convolutional

kernel that we slide over the input matrix forms the local receptive field for every neuron

in this feature-map. The size of this kernel or filter, as it is also called, determines how

many elements of the input matrix will be processed (by a particular neuron). In the first

layer, this input matrix will comprise of the pixel values of the image. In subsequent

layers, the input matrix will comprise outputs of neurons from the previous layers. This

convolutional kernel is expressed regarding the width and height of the receptive area,

how many neurons in its width, and how many neurons in its height where a neuron

represents a matrix element. The convolutional kernel is the zoom-in mechanism for

identifying image characteristics, so using small convolutional kernels tends to be more

efficient, so it is better to use two 3× 3 kernels, as compared with one 9× 9 kernel. Stride

determines the distance between successive receptive fields. The stride determines how

the convolutional kernel slides over the input. As the kernel slides over, a different neuron

is activated through that receptive field. Zero paddings determine how is a desirable way

25

Univ
ers

iti
Mala

ya

to treat the pixels at the edges of the image. Feature-map contains neurons that have

identical weights and biases, which are determined by the weights that are specified in the

kernel, which acts as the feature detector for the feature-map.

The weights of the kernel, and thus, of the feature-map are determined during

the training process. There are two significant advantages to having feature-maps with

neurons that respond to local receptive fields that are dramatically fewer parameters to

train, mainly because all neurons in a feature-map have the same weights and biases.

Feature-maps also allow convolutional neural networks to recognize patterns independent

of the location. If there is a pattern in the top left corner of the image, so if there is a

cat in the input image, it will be identified no matter where it is located. It is essential

to realize that these feature-maps, which we stacked together, make up convolutional

layers, the neurons are not connected to all pixels individually. A group of pixels or a

group of neurons are connected to one neuron in the next layer. Thus, convolutional

neural networks are set to be sparse neural networks. One convolutional layer in a CNN

comprises of several feature-maps all of the equal sizes. Each of these feature-maps

responds to different convolutional kernels that have slid over the input, which means

each of these feature-maps has different parameters. Convolutional neural networks will

have some convolutional layers stacked up one after another. They may be interspersed

with pooling layers. Every neuron within a feature-map within a convolutional layer

includes the feature-maps of all previous layers. A neuron is in a particular feature-

map in one convolutional layer can see all previous feature-maps in its local receptive

field, and this is the secret of how aggregated features are picked up using convolutional

neural networks. CNNs can pick up higher-level aggregations by having neurons respond

to multiple feature-maps within their local receptive field. Pooling layers also play an

essential role here.

26

Univ
ers

iti
Mala

ya

Pooling: The second kind of layer that a convolutional neural network is made up of

is the pooling layer (Figure 2.3). Neurons in a pooling layer have no weights or biases, so

they do not have parameters that need to be trained during the training phase of the neural

network. A pooling neuron applies merely some aggregation function to its input. The

pooling layer performs a sub-sampling of the input to extract the most significant features.

Common aggregations operations performed by the pooling layer are maximum, sum, or

average of the inputs. Pooling is some sliding window function, but within each window

(for example, a 2 × 2 window), you will perform a simple aggregation over all cells that

are included. The maximum value (for max-pooling) of all the input cells within the

2 × 2 window will be pooling results. The window will move in the whole input matrix,

and output will be a sub-sample of this matrix. The same procedure can be applied in

case of average or sum pooling aggregation function. Subsampling of inputs for such

a dense problem such as image recognition allows us to reduce memory usage while

training the neural network substantially. Pooling also will enable us to mitigate the issue

of overfitting our model on the training dataset. Pooling also allows the neural network

to recognize features independent of the location, which is called location invariance.

Pooling layers typically perform aggregations on each channel of the input image if they

are colored images or each feature-map of the previous layer independently. At the same

time, pooling retains an only corresponding portion of the input that is passed into it, so

the output area of a pooling matrix is less than the area that was input for the pooling

matrix, so the image becomes smaller and smaller as it passes through pooling layers.

However, the depth of the image as represented by the feature-maps in the convolutional

layers remain the same when they pass through a pooling layer. Pooling layers change

the size of an image, but not the depth. Then we have fully connected layers that consist

of a feed-forward neural network connected to the end of typical convolutional neural

27

Univ
ers

iti
Mala

ya

networks that usually have few fully connected layers that typically have ReLU activation

functions for their neurons. To classify the input image, the neural network has to assign

the output to enable that image finally. A common choice for this layer is the Softmax

layer that we have discussed earlier.

Figure 2.3: Max pooling

2.2 Facial Feature Extraction

Automatic facial feature extraction is one of the most fundamental problems in computer

vision, which is a necessary step in face recognition, facial image compression, facial age,

and facial gender classification. Many approaches are proposed to solve this problem. All

of these methods for facial feature extraction are divided into two main categories:

1. Supervised Feature Extraction Techniques

2. Unsupervised Feature Extraction Techniques

2.3 Supervised Feature Extraction Techniques

Supervised feature extraction is using a supervised feature learning method to learn

features of labeled data. Labeled data here are the data with manual features that human

marks those features as target features or labels. A model that is trained by these labels will

28

Univ
ers

iti
Mala

ya

be employed to predict similar features. These labeled data allow the model to compute

an error term then be used as feedback to correct the learning process (for example, a

gradient descent backpropagation neural network).

2.3.1 Histogram of Oriented Gradients

Histogram of Oriented Gradients (HOG) is one of the robust feature extraction methods in

image processing and computer vision (Dalal & Triggs, 2005; Felzenszwalb, McAllester,

& Ramanan, 2008). It has been used to detect human or pedestrian (Zhu, Yeh, Cheng, &

Avidan, 2006), to classify age and gender (Verma & Jariwala, 2018) or to recognize facial

expression (Nazir, Jan, & Sajjad, 2018; Nigam, Singh, & Misra, 2018).

The idea is to count the number of gradient orientation occurrences in specific parts

of an image. Initially, the image is partitioned into 8 × 8 regions without overlapping

pixels or cells. Then a 1D HOG will be accumulated over pixels for each cell. Two

essential components of these histograms are 1) they capture local shape features, but

2) they are invariant to slight deformations. HOG process discretizes the gradient into

one of nine orientation bins toward each pixel base. The orientation is determined based

on votes provided by the respected pixel. The gradient magnitude at that pixel specifies

the strength of that orientation. Concerning the computation of the gradient for colorful

images, each pixel at each color channel will be processed independently, and the most

significant gradient magnitude among those channels will be picked. Lastly, based on the

gradient strength in a region near each cell, the histogram of that cell is normalized. The

process is done over four 2 × 2 blocks of cells. Each block contains a particular cell, and

normalizing the given cell histogram is done by considering the total energy in each block.

As a result, there will be a 9×4 vector, which represents the regional gradient information

for each cell. HOG features for each level of a standard image pyramid will form the final

step, which is to provide a HOG feature pyramid (see Figure 2.4). At the bottom of the

29

Univ
ers

iti
Mala

ya

pyramid, there are more detailed gradients histogrammed features comparing to features

at the top of the pyramid, which are gradients histogram computed over fairly broad areas

(Felzenszwalb et al., 2008).

Figure 2.4: HOG features pyramid

2.3.2 Action Units

Facial Action Coding System or FACS is a coding system that has this ability to code

almost all possible facial expressions manually. It deconstructs it into the particular Action

Units (AU) that produce the facial expression. AUs are suitable to be adopted for any

higher-order decision-making process since AUs are independent of any interpretation,

which includes essential emotions recognition, or commands for intelligent environments

based on human facial expression.

In (Baltrušaitis, Mahmoud, & Robinson, 2015), they have proposed a robust tech-

nique to obtain these action units. They are dependant on two main kinds of features:

geometry features and appearance features. For obtaining these features, it is required to

track specific landmarks and face alignment on a facial image, which is explained in detail

30

Univ
ers

iti
Mala

ya

in the paper by (Baltrušaitis et al., 2015).

Figure 2.5: Action Units detection pipeline overview.

2.4 Deep Feature Extraction Techniques

Deep feature extraction methods are used in different aspects. For instance, in (Y. Chen,

Jiang, Li, Jia, & Ghamisi, 2016), to classify hyperspectral image (HSI), they have intro-

duced a regularized deep feature extraction (FE) technique which relies on a convolutional

neural network (CNN). Their method applies different convolutional and pooling layers to

obtain unsupervised, nonlinear, discriminant, and invariant features from HSIs. Features,

as mentioned above, are helpful regarding image classification. Common issues for the

classification of HSI are 1) imbalance between high dimensionality and 2) limited avail-

ability of training samples, which are solved by a few strategies such as ℓ2 regularization

and dropout. These strategies help to escape from overfitting in class data modeling.

In (Zhao & Du, 2016), they have proposed a spectral-spatial feature-based clas-

sification (SSFC) structure that uses dimension reduction and DL methods for spatial

and spectral feature learning. Regarding high-dimensional hyperspectral data sets, their

structure introduces an algorithm that can extract spectral features out of such a dataset.

CNN is employed to obtain spatial-related features. Stacked spectral and spatial features

together will extract the fusion feature to classify by the multiple-feature-based classifier

as image classification.

In (Sun, Chen, Wang, & Tang, 2014), they extracted useful features using CNN or

31

Univ
ers

iti
Mala

ya

ConvNets. Two crucial part of ConvNets is namely convolution and pooling, which are

used to extract visual features in a hierarchy form. Concerning 2𝐷 images as input, they

can be from small patches to more abstract concepts like Cat or Human faces. They have

used four convolutional layers, with locally shared weights for the last two convolutional

layers. It obtains 160-dimensional DeepID2 features at the DeepID2 layer. The DeepID2

layer is followed by the fully-connected layer, which is connected to both the last two

convolutional layers. They have used ReLu units in their entire network. This network is

used to extract features from RGB input with dimensions of 55 × 47.

2.5 Extreme Learning Machine

The extreme learning machine or ELM has become an essential problem-solving approach

for the past few years. There are many important research topics using ELM for machine

learning due to its novel properties, such as notably fast training, robust generalization,

and predicting or classification strength.

2.5.1 Learning in Extreme Learning Machine

Concerning single hidden layer feedforward networks or SLFNs, ELM is a robust solution

for them, which is proved to have excelling training accuracy and speed in numerous

applications, for instance, face classification. One prominent advantage of the ELM

networks is that their parameters of hidden units are randomly generated, and they do

not need to be fine-tuned, on the other hand, conventional learning algorithms such as

backpropagation, support vector machine, they usually need a kind of iterative training

algorithm to tune the hidden units. In theory, a single layer feedforward neural network

that has hidden neurons that are created randomly following by output weights which are

fine-tuned using regularized least square, it can still keep its general prediction ability

without the need to adjust the parameters of hidden units. So ELM manages to deliver

32

Univ
ers

iti
Mala

ya

faster and more reliable generalization performance comparing to other iterative models

such as SVM or BP-NNs.

Many researchers have been contributed remarkable researches and studies to ELM

concerning theory and also applications so far. The capacity of ELM has been empowered

with kernel learning, which, as a result, makes ELM a powerful approach for an extended

type of feature mapping besides traditional usages. Besides original ELM, which mainly

focuses on classification, extended ELM is widely practiced for supervised and semi-

supervised networks with magnificent results. The original ELM and its variants mainly

focus on classification. The primary attribute of ELM is that a non-iterative linear function

can be used for weight, and the reason behind that is there is no dependency between

input and output wights like what exists in, for example, BP training algorithms. This

attribute leads to a notable improvement regarding training speed in ELM comparing

to, for example, Support Vector Machines (SVM) or compared to Multilayer Perceptron

(MLP), based on experiments done by (Akusok, Björk, Miche, & Lendasse, 2015).

The Theory of ELM: Assume that the following equation from (Tang, Deng, &

Huang, 2016) can represent SLFNs with L hidden nodes:

𝑓𝐿 (𝑋) =
𝐿∑
𝑖=1

𝐺𝑖 (𝑥, 𝑎𝑖, 𝑏𝑖) · 𝛽𝑖, 𝑎𝑖 ∈ 𝑅𝑑 , 𝑏𝑖, 𝛽𝑖 ∈ R (2.15)

where 𝐺𝑖 (·) denotes the 𝑖𝑡ℎ hidden node activation function, 𝑎𝑖 is the input weight

vector connecting the input layer to the 𝑖𝑡ℎ hidden layer, 𝑏𝑖 is the bias weight of the 𝑖𝑡ℎ

hidden layer, and 𝛽𝑖 is the output weight (Tang et al., 2016). For additive nodes with

activation function 𝑔, 𝐺𝑖 is defined as follows:

𝐺𝑖 (𝑥, 𝑎𝑖, 𝑏𝑖) = 𝑔(𝑎𝑖 · 𝑥 + 𝑏𝑖) (2.16)

33

Univ
ers

iti
Mala

ya

and for radial basis function (RBF) nodes with activation function 𝑔, 𝐺𝑖 is defined as

𝐺𝑖 (𝑥, 𝑎𝑖, 𝑏𝑖) = 𝑔(𝑏𝑖 | |𝑥 − 𝑎𝑖 | |) (2.17)

It has been proved that the SLFNs are able to approximate any continuous target

functions over any compact subset 𝑥 ∈ R𝑑 with above random initialized adaptive or RBF

nodes. Let 𝐿2(𝑥) be a space of functions 𝑓 on a compact subset 𝑥 in the 𝑑-dimensional

Euclidean space R𝑑 such that | 𝑓 |2 is integrable, that is,
∫
𝑥
| 𝑓 (𝑥) |2𝑑𝑥 < ∞ (Tang et al.,

2016). For 𝑢, 𝑣 ∈ 𝐿2(𝑥), the inner product (𝑢, 𝑣) is defined by

(𝑢, 𝑣) =
∫
𝑥
𝑢(𝑥)𝑣(𝑥)𝑑𝑥 (2.18)

The norm in 𝐿2(𝑥) space is denoted as | | · | |, and the closeness between network

function 𝑓 n and the target function 𝑓 is measured by the 𝐿2(𝑥) distance (Tang et al.,

2016)

| | 𝑓𝐿 − 𝑓 | | =
(∫

𝑥
| 𝑓𝑛 (𝑥) − 𝑓 (𝑥) |2𝑑𝑥

)2

(2.19)

Theorem 2.1: Given any bounded non-constant piecewise continuous function 𝑔 :

R → R, if span {𝐺 (𝑎, 𝑏, 𝑥) : (𝑎, 𝑏) ∈ R𝑑×𝑅} is dense in 𝐿2 , for any target function 𝑓 and

any function sequence 𝑔𝐿 (𝑥) = 𝐺 (𝑎𝐿 , 𝑏𝐿 , 𝑥) randomly generated based on any continuous

sampling distribution, lim
𝑛→∞

| | 𝑓 − 𝑓𝑛 | | = 0 holds with probability one if the output weights

𝛽𝑖 are determined by ordinary least square to minimize | | 𝑓 (𝑥) − ∑𝐿
𝑖=1 𝛽𝑖𝑔𝑖 (𝑥) | | (Tang et

al., 2016).

Randomly generated networks with the outputs being solved by least mean square

can maintain the universal approximation capability, if and only if the activation function

𝑔 is non-constant piecewise and span {𝐺 (𝑎, 𝑏, 𝑥) : (𝑎, 𝑏) ∈ R𝑑 ×𝑅} is dense in 𝐿2. Based

34

Univ
ers

iti
Mala

ya

on this theorem, ELM can be established for fast learning, which will be described in

detail in further(Tang et al., 2016).

ELM Learning Algorithm: According to Theorem 2.1, the ELM can be built with

randomly initialized hidden nodes. Given a training set {(𝑥𝑖, 𝑡𝑖) |𝑥𝑖 ∈ R𝑑 , 𝑡𝑖 ∈ R𝑚, 𝑖 =

1, ..., 𝑁}, where 𝑥𝑖 is the training data vector, 𝑡𝑖 represents the target of each sample, and 𝐿

denotes the number of hidden nodes. From the learning point of view, unlike traditional

learning algorithms, ELM theory aims to reach the smallest training error but also the

smallest norm of output weights.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 : | |𝛽 | |𝜎1
𝑢 + 𝜆 | |H𝛽 − 𝑇 | |𝜎2

𝑣 (2.20)

where 𝜎1 > 0, 𝜎2 > 0, 𝑢, 𝑣 = 0, (1/2), 1, 2, ..., +∞,H is the hidden layer output

matrix (randomized matrix)

H =

h(𝑥1)
...

h(𝑥𝑁)

=

h1(𝑥1) ... hL(𝑥1)
...

...
...

h1(𝑥𝑁) ... hL(𝑥𝑁)

(2.21)

and T is the training data target matrix

T =

t𝑇1
...

t𝑇𝑁

=

t11 ... t1𝑚

...
...

...

t𝑁1 ... t𝑁𝑚

(2.22)

The ELM training algorithm can be summarized as follows:

• Randomly assign the hidden node parameters, e.g., the input weights 𝑎𝑖 and biases

𝑏𝑖 for additive hidden nodes, 𝑖 = 1, ..., 𝐿.

35

Univ
ers

iti
Mala

ya

• Calculate the hidden layer output matrix H.

• Obtain the output weight vector

𝛽 = H†T (2.23)

where T = [t1, ..., t𝑁]𝑇 , 𝐻† is the Moore-Penrose generalized inverse of matrix H.

The orthogonal projection method can be efficiently used for the calculation of MP

inverse: H† = (H𝑇H)−1H𝑇 , if H𝑇H is nonsingular; or H† = H𝑇 (H𝑇H)−1 , if HH𝑇 is

nonsingular. According to the ridge regression theory, it was suggested that a positive

value (1/𝜆) is added to the diagonal of H𝑇H or HH𝑇 in the calculation of the output

weights 𝛽. By doing so, the resultant solution is equivalent to the ELM optimization

solution with 𝜎1 = 𝜎2 = 𝑢 = 𝑣 = 2, which is more stable and has better generalization

performance. That is, in order to improve the stability of ELM, we can have

𝛽 = H𝑇

(
1
𝜆
+ HH𝑇

)−1

T (2.24)

and the corresponding output function of ELM is

𝑓 (𝑥) = ℎ(𝑥)𝛽 = ℎ(𝑥)HT

(
1
𝜆
+ HH𝑇

)−1

T (2.25)

or we can have

𝛽 =

(
1
𝜆
+ HH𝑇

)−1

H𝑇T (2.26)

and the corresponding output function of ELM is

𝑓 (𝑥) = ℎ(𝑥)𝛽 = ℎ(𝑥)
(
1
𝜆
+ HHT

)−1

HTT (2.27)

36

Univ
ers

iti
Mala

ya

2.5.2 High Performance Extreme Learning Machine

The HP-ELM or High-Performance Extreme Learning Machine is introduced by (Akusok

et al., 2015) for the first time, which is a powerful toolbox that has implemented ELMs

networks precisely. Generally speaking, an ELM is a straightforward algorithm, which

is only a few lines of code in Matlab. However, the performance of such ELMs is not

optimal. It is essential to manage to do regularization, parameter selection efficiently, to be

flexible for scalability without facing out-of-memory issues to process on Big Data, which

leads to achieving the best accuracy. HP-ELM toolbox has provided the best performing

ELM implementation for researchers to focus on researches without concerning about the

implementation of these networks from scratch and also to be more flexible to deploy the

research to production and commercial products.

2.5.3 Hierarchical Extreme Learning Machine

Feature extraction is an essential requirement for classification. In a hierarchical(multi-

layer) learning design using ELM autoencoders, the initial inputs are fed into various

hidden layers, and then the outputs of the previous layer are used as the inputs of the next

one.

Autoencoders based on ELM Theory: ELM method can be applied to form an

autoencoder for an MLP, which then the autoencoder can be used as a feature extractor. As

it is explained in autoencoder section 2.5.1, It utilizes the encoded outputs to approximate

the original data input. The critical difference between normal autoencoder and ELM

based autoencoders is that ELM uses randomly mapped outputs. So, the input reconstruc-

tion can be seen as an ELM training problem, although it needs typically regularized least

mean square optimization for non-elm approaches. Features that the ELM autoencoder

extract tends to be dense and may have redundancy, and the reason is that original ELM

37

Univ
ers

iti
Mala

ya

uses a sort of penalty, which in such case, we need a sparse autoencoder instead. In

further, we will explain ELM Sparse Autoencoder, which is employed as the essential

element of H-ELM.

Hierarchical-ELM is made in a hierarchical structure, and the design is different

from conventional layerwise learning in deep learning frameworks. H-ELM is made of

two primary and essential stages. First, unsupervised feature learning and extraction,

second, supervised encoded feature classifying. Concerning the earlier stage, a sparse

ELM autoencoder is utilized to obtain sparse features in various levels from the input,

while for the later stage, the original ELM is employed for classifying. In further, we will

explain more details about H-ELM and also its advantage from different perspectives. As a

preprocessing step, the raw input needs to be converted into an ELM random feature space.

Afterward, the preprocessed input will go through an N-Layer unsupervised sparse feature

learning hierarchy. The output from every hidden layer is described in this equation:

𝐻𝑖 = 𝑔(𝐻𝑖−1 · 𝛽) (2.28)

here (𝑖 ∈ [1, 𝐾]) and it is the index of the hidden layer. The hidden layer 𝐻𝑖 and

𝐻𝑖−1 are output from respectively 𝑖 and 𝑖 − 1 hidden layer. The output weights are shown

as 𝛽 and 𝑔(·) is the activation function for hidden units.

Each hidden layer performs as an independent feature extractor unit. In each layer,

computed features get more compact. Moreover, the wights of each hidden layer will be

set only one time and without the need for fine-tuning when features from that layer are

extracted, which is an entirely different story comparing to backpropagation based neural

networks, which need to be fine-tuned iteratively. As a result, H-ELM is quicker than

deep neural networks concerning the training speed (Tang et al., 2016).

The output from the very last hidden layer of sparse autoencoder 𝐻𝐾 is prepared for

38

Univ
ers

iti
Mala

ya

the classification stage, which is the high-level compact features that hierarchical layers

have extracted those from input layer feeds. They are perturbed by random before they go

through the classification stage, and finally, they are used as the inputs to the supervised

classifying stage to produce final outputs of the H-ELM model.

As it is explained in (Tang et al., 2016), H-ELM is based on random feature map-

ping, which fully utilizes the approximation ability of ELM networks regarding feature

learning and classification. Based on Theorem 2.1 from (Tang et al., 2016), H-ELM can

approximate or classify any input data.

Sparse Autoencoder for H-ELM: H-ELM owns two independent stages, unsuper-

vised and supervised training. In this section, we will concentrate on how to train the

sparse autoencoder of the H-ELM design. As we explained earlier, autoencoder intends

to learn a function ℎ𝜃 (𝑥) ≃ 𝑥, where = {𝐴, 𝑏}, 𝐴 are the hidden weights, and 𝑏 is the bias.

In plain English, the autoencoder attempts to approximate a function that reconstructs

similar values as the input into the outputs (Tang et al., 2016).

ELM sparse autoencoder, unlike the autoencoders practiced in the conventional deep

learning algorithms, the input weights of the ELM sparse autoencoder are trained by

exploring the path back of a random space. The ELM theory has proved that the training

of ELM with randomly mapped input weights is capable of approximating any input data.

So if the same approach used to train the autoencoder, as soon as the autoencoder is

initialized, we no longer need to fine-tune it. Besides sparse autoencoder is using ℓ1

optimization which leads to a more compact and sparse features to be extracted by the

autoencoder

ELM sparse autoencoder optimization model is expressed as below:

𝑂𝛽 = 𝑎𝑟𝑔𝑚
𝛽
𝑖𝑛{| |H𝛽 − X| |2 + ||𝛽 | |ℓ1} (2.29)

39

Univ
ers

iti
Mala

ya

where here 𝑋 is the input value, 𝐻 represents the random mapping output, and 𝛽 is the

hidden layer weight. In the conventional deep learning algorithms, typically 𝑋 is the

encoding outputs of the bases 𝛽. These parameters will be adjusted during the iterations

of optimization. Despite the case that in sparse autoencoder, since random mapping is

employed for hidden units, in this case, 𝑋 is the data, and 𝐻 is the random initialized

output, which then optimization is not required.

Moreover, the experiments that are done by (Tang et al., 2016) has proved that it has

improved both training time plus the training accuracy. The optimization algorithm for

the ℓ1 optimization problem in detail can be found here (Tang et al., 2016), but we will

discuss a bit about essential parts. Here is the object function:

𝑂𝛽 = 𝑝(𝛽) + 𝑞(𝛽) (2.30)

where 𝑝(𝛽) = | |H𝛽−X| |2 , and 𝑞(𝛽) = | |𝛽 | |ℓ1 is the ℓ1 penalty term of the training model.

In this step, a FISTA algorithm (Beck & Teboulle, 2009) is employed to minimize

a smooth convex function with a complexity of 𝑂 (1/ 𝑗2), where 𝑗 denotes the iteration

times(Tang et al., 2016).

Here are the implementation steps in details:

1) Calculate the Lipschitz constant 𝛾 of the gradient of smooth convex function ∇𝑝.

2) Begin the iteration by taking 𝑦1 = 𝛽0 ∈ 𝑅𝑛 , 𝑡1 = 1 as the initial points. Then, for

𝑗 (𝑗 ≥ 1) the following holds.

a) 𝛽 𝑗 = 𝑠𝛾 (𝑦 𝑗), where 𝑠𝛾 is given by

𝑠𝛾 = 𝑎𝑟𝑔𝑚
𝛽
𝑖𝑛

{
𝛾
2 | |𝛽 − (𝛽 𝑗−1 − 1

𝛾∇𝑝(𝛽(𝑗−1))) | |2 + 𝑞(𝛽)
}

.

b) 𝑡 𝑗+1 =
1+

√
1+4𝑡2𝑗
2

40

Univ
ers

iti
Mala

ya

c) 𝑦 𝑗+1 = 𝛽 𝑗 +
(
𝑡 𝑗−1
𝑡 𝑗+1

)
(𝛽 𝑗 − 𝛽 𝑗−1)

To correctly retrieve the data from the corrupted ones, we need to compute the

iterative steps above. To recover compact descriptions of the initial data, initially, we

consider 𝛽 being the weights of the sparse autoencoder, and then we can compute the

inner product of the inputs and extracted features for that.

ELM vs H-ELM: Training in H-ELM is much better than ELM concerning perfor-

mance, and as mentioned earlier, the H-ELM has two essential parts. First, unsupervised

feature extraction, and second, supervised feature classifying. A very critical difference

among H-ELM and ELM is that before feature classification happens, hierarchical sparse

autoencoders of H-ELM will extract useful features of the raw input data, while in classic

ELM design, the raw data is fed to the network for classification. As a best practice in the

data analysis field, the compact features appear to be more efficient in eliminating redun-

dancy of the raw input data, which therefore enhances the overall training performance

significantly.

41

Univ
ers

iti
Mala

ya

CHAPTER 3: METHODOLOGY

3.1 Introduction

In previous chapters, we discussed conventional solutions for age and gender classification,

and we also discussed the limitations we have. In this chapter, we will focus on methods

to overcome those limitations were explained in the first chapter. The methodology that is

adopted in this research is to propose an architecture to classify age and gender. An age and

gender classification system is proposed, which in short it is a machine learning model that

extracts handcrafted features, namely HOG and Action Unit combined with unsupervised

features using a pre-trained convolutional neural network from facial images then reduced

in dimensions by autoencoders and finally classified by H-ELM as the classifier. In this

chapter, the architecture that is designed for our research will be described in detail.

3.2 Model Overview

Our proposed model architecture for age and gender classification has essential layers

which are:

• Preprocessing

• Initial layer or input layer

• Feature extraction layer

• Feature combining and dimensionality reduction layer

• Classification layer

42

Univ
ers

iti
Mala

ya

Figure 3.1: Overview of the proposed architecture

In Figure 3.1, we have illustrated an overview of our proposed system. A benchmark

dataset is split to training and validation set using a k-fold cross-validation algorithm,

then both are sent to preprocessing step, which for example detects face position in input

images, normalizes the input data, and finds facial landmarks using the method from

(Zadeh, Chong Lim, Baltrusaitis, & Morency, 2017). Then the preprocessed data will

43

Univ
ers

iti
Mala

ya

be sent to feature extraction layers where Action Units, HOG features, and CNN features

will be extracted simultaneously. Each feature group is sent to the respected autoencoder

(AE1, AE2, or AE3) to encode each feature vector to a similar useful feature vector with

different dimensions. Outputs from autoencoders are then combined, and a new feature

vector is created, which is the output for the H-ELM classifier.

3.3 Preprocessing

Facial images in age and gender labeled benchmark datasets are in different sizes, and also

coordinates of faces are different in each picture, and in many cases, there is a background

environment that usually causes noise. As the first step, we detect face area in all pictures,

and we drop images without a human face or those can not be adequately detected. The

face area will be cropped out of the original image, and then it will be resized to a fixed

width and height, which are respectively 227 and 227. Since the facial image is an

RGB image, the output image has three dimensions, which create an input vector of size

227 × 227 × 3.

3.4 Initial Layer or Input Layer

The initial layer is the input layer to the whole model that is the RGB facial image from

the preprocessing step. This image is a matrix that has dimensionality of 227 × 227 × 3.

This layer will be fed to the next and first essential layer of our architecture.

3.5 Feature Extraction Layer

In this layer, the essential features of facial images are extracted. In this research, we want

to analyze a hybrid feature learning model. We have designed a hybrid handcrafted and

deep features extraction model to extract the most useful features. Generally speaking, we

have two categories for feature learning which are namely supervised and unsupervised

feature learning methods. Earlier in chapter two, we have explained how Action Units (or

44

Univ
ers

iti
Mala

ya

AUs) and Histogram of Oriented Gradients (or HOG) are working. AUs and HOG are

examples of supervised feature learning and extraction, which we used them for the same

feature extraction layer, and for the unsupervised feature extraction layer, we used a pre-

trained convolutional neural network, which is an unsupervised feature learning method

as it is explained in chapter 2. In our research, we have used these both categories to see

how hybrid forms of these two categories can improve the accuracy of the classification

of age and gender on facial images.

3.6 Supervised Feature Extraction Layer

As explained earlier in chapter two, supervised feature extraction methods usually use a

pre-trained model that is trained with well-known labeled features. These features are

usually marked manually, and a machine learning model is employed to train a model to

track the same features automatically later.

3.6.1 Action Units Features Extraction

In chapter two, we explained that Action Units or AUs are units of a coding system for

facial expressions. As it is explained in (Hess, Adams Jr, & Kleck, 2004), the gender of

each individual has a big impact on the rate of facial expressions. In other words, gender

affects the intensity of angriness, happiness, and sadness. Such features like Action

Units, which illustrate facial expression, are useful features for gender as well because the

intensity for these features is different for each gender. Moreover, (Valstar, Jiang, Mehu,

Pantic, & Scherer, 2011) and (Fabian Benitez-Quiroz, Srinivasan, & Martinez, 2016) have

used Action Units as very good features for facial expression recognition.

Another research that is done by (H.-Y. Huang, 2009) demonstrated that women,

in general, have stronger facial expressions and stronger experiences of emotion than

men. Moreover, women generally show more intense facial expressions than men, despite

45

Univ
ers

iti
Mala

ya

having similar emotional experiences. Compared with men, women showed notably

stronger facial expression during the happiness and fear conditions, but not during the

anger condition.

So we use Action Units because, as we mentioned, base on the research from (H.-

Y. Huang, 2009) and (Hess et al., 2004), the intensity of each facial expression is affected

by gender, so we use features which illustrating facial expression such as AUs to help

classifier to classify gender.

3.6.2 HOG Features Extraction

In chapter two, we explained how the Histogram of Oriented Gradients or HOG works

in detail. HOG is one of the robust handcrafted features from facial images that can

be used for age or gender classification. For example, (Azzopardi, Greco, & Vento,

2016) achieved 92.6% accuracy for gender recognition using HOG features. The analysis

over age estimation in paper (Huerta, Fernández, Segura, Hernando, & Prati, 2015) for

different techniques shows that the fusion of HOG with other useful features can improve

the accuracy of age classification significantly. So we use HOG as another group of

handcrafted facial features besides other feature groups.

3.7 Implementation of AUs and HOG

We have used OpenFace, which is an open-source library that is implemented by (Baltrušaitis,

Robinson, & Morency, 2016). OpenFace has a robust implementation of HOG and AUs.

In a supervised feature extraction layer, we have two independent feature extraction mod-

ules. Each module extract respected features and feeds to the next layer. We have

implemented an interface to extract AUs and HOG features in realtime.

We have implemented a python wrapper for the C++ code of the OpenFace library.

In that wrapper which is a python, C and C++ code we have implemented a class called

46

Univ
ers

iti
Mala

ya

HCFeatures which implements a function called Extract_AUs_HOG. This function has

an argument 𝑎𝑟𝑟 , which is a matrix, or simply it is just an image. This function returns a

2D vectors of vectors which contains AUs and HOG features.

Inside the function in the wrapper code (HCFeatures::Extract_AUs_HOG) we use

an instance initialized inside HCFeatures::Load() of another class which is called Open-

FaceInterface. This instance is used to load pre-trained model and to extract features.

OpenFaceInterface implements a function with same name Extract_AUs_HOG which

basically does face detection and then detects facial landmarks and uses those landmarks

to extract AUs and HOG features using method StaticAUs_And_HOG from OpenFace

(Baltrušaitis et al., 2016).

3.8 Unsupervised Feature Extraction Layer

In this layer, we have used a pre-trained convolutional neural network to extract unsu-

pervised features. To do so, we have employed a CNN that is introduced by (Levi &

Hassner, 2015). The network is trained with thousands of facial images. In other words,

we have trained this network independently, and once weights are adjusted enough, then

this network without a classifier layer is used as a feature extractor. The CNN network by

(Levi & Hassner, 2015) consists of multiple layers. In this part, we want to explain the

architecture for the pre-trained CNN in detail.

3.8.1 Pre-Trained CNN

This CNN model is pre-trained with thousands of facial images by (Levi & Hassner,

2015). In other words, this CNN model has well-adjusted weights for convolutional layers

that we can reuse for the unsupervised feature extraction layer.

47

Univ
ers

iti
Mala

ya

3.8.2 Architecture of the Pre-trained CNN

The CNN model includes three convolutional layers following with two fully-connected

layers, including a small number of neurons. All three channels from the colorful input

image are processed directly through the network. At first, images are resized to 256×256

and cropped of 227 × 227, then is fed to the network. Convolutional layers mentioned

above are described as below:

• Layer 1: 96 filters where each filter has the size of 3 × 7 × 7 pixels are employed

to the input in the very first layer which then followed by ReLu units and then a

max-pooling layer taking the maximal value of 3× 3 regions with two-pixel strides

and also a local response normalization layer.

• Layer 2: The 96×28×28 output of the prior layer is then processed by the following

convolutional layer, containing 256 filters of size 96 × 5 × 5 pixels. Again, this is

also followed by ReLU, a max-pooling layer, and a local response normalization

layer with the same hyper parameters as before.

• Layer 3: Finally, the third and last convolutional layer operates on the 256×14×14

blob by applying a set of 384 filters of size 256 × 3 × 3 pixels, followed by ReLU

and a max-pooling layer.

The following fully connected layers are then defined by:

• Layer 4: A first fully connected layer that takes the output of the third convolutional

layer and contains 512 neurons, followed by a ReLu and a dropout layer.

• Layer 5: A second fully connected layer that takes the 512-dimensional output of

the first fully connected layer and again contains 512 neurons, followed by a ReLu

and a dropout layer.

48

Univ
ers

iti
Mala

ya

• Layer 6: A third, fully connected layer that outlines the final classes for age or

gender.

Lastly, the output of the very last layer is fed to the classifier, which is a Softmax

layer that specifies a probability for each class. The maximum probability among output

probabilities will be the predicted class or the input test image.

3.8.3 CNN Features

We have checkpoints that stores final weights for the trained CNN model, as we mentioned

earlier, the classifier layer will be skipped from this network, so only convolution and

pooling layers are used for CNN feature extracting layer. To do so last two fully-connected

layers and classifiers are dropped, and we only need the output from the final convolutional

layer, so we reload stored weights from checkpoints that are created during the training

process of the pre-trained CNN model into respected filters of the CNN feature extractor.

In other words, we reuse weights for filters of convolutional layers from the pre-trained

CNN model for our CNN feature extractor. The structure of CNN layers is illustrated in

Figure 3.2. The output from the last max-pooling layer (pool3) is flatted, which contains

unsupervised features that we feed to the next layer, the same as the supervised feature

extraction layer.

In table 3.1 we have illustrated parameters of the CNN feature extractor network that

is fine-tuned with the pre-trained CNN model.

3.9 Feature Fusion and Dimensionality Reduction Layers

In this step, we are trying to combine outputs from feature extraction units in the feature

extraction layer. Our goal is to append HOG, AUs, and CNN features. The problem is

we can not append these features directly together, and the main reason for that is all

these feature groups are in very different dimensions. For action unit features, the feature

49

Univ
ers

iti
Mala

ya

Figure 3.2: Overview of CNN feature extractor

has a dimension of 34, and the HOG features vector contains 4464 decimal values, and

finally, the highest dimension goes for output from the CNN model, which is 13824 length

50

Univ
ers

iti
Mala

ya

Table 3.1: CNN Parameters
Name Type Parameters
conv1 convolution 2d Input: facial images (227 × 227)

Number of output filters: 96
Kernel Size: [7, 7]
Stride: [4, 4]
Padding: VALID

pool1 max pooling 2d Input: conv1
Kernel Size: [3, 3]
Stride: [2, 2]
Padding: VALID

norm1 local response normalization Input: pool1
Depth radius: 5
Alpha: 0.0001
Beta: 0.75

conv2 convolution 2d Input: norm1
Number of output filters: 256
Kernel Size: [5, 5]
Stride: [1, 1]
Padding: VALID

pool2 max pooling 2d Input: conv2
Kernel Size: [3, 3]
Stride: [2, 2]
Padding: VALID

norm2 local response normalization Input: pool2
Depth radius: 5
Alpha: 0.0001
Beta: 0.75

conv3 convolution 2d Input: norm2
Number of output filters: 384
Kernel Size: [3, 3]
Stride: [1, 1]
Padding: SAME

pool3 max pooling 2d Input: conv3
Kernel Size: [3, 3]
Stride: [2, 2]
Padding: VALID

output reshaped vector Size: 384 × 6 × 6 = 13824

features vector. Combining such features without any adjustment most likely will lead to

overfitting issues, or in the best case, features like AUs will be useless because it will have

a minor impact in the combined feature vector. Another problem is that these features

in total are so vast, and they consume a lot of unnecessary resources, and because we

are dealing with extensive datasets, it can lead to a prolonged and unnecessary process.

51

Univ
ers

iti
Mala

ya

To overcome this issue, we have mapped our raw feature vectors into three independent

autoencoders, which lead to features vector of 256×3 = 768 dimension, which is an input

for our classifier.

The training process for each autoencoder happens individually. When each autoen-

coder is trained, then all autoencoders can encode features reasonably, and then we use

them without training them again. We evaluate our autoencoders with Mean Squared

Error (MSE) metric. In other words, our autoencoder trainer tries to minimize MSE. We

are using the RMSProp algorithm as the optimizer to reduce the MSE. The difference

between RMSProp (Ruder, 2016) and gradient descent algorithm is how gradients are

calculated. Each neuron in hidden layers of this network has equipped with a sigmoid

activation function.

3.9.1 Autoencoder for AUs

The first autoencoder that we are explaining in this section is employed to encode 34

Action Units features vector into a higher dimension because, as it is mentioned earlier,

combining small feature vectors with big feature vectors will most likely lead to overfitting

problem. As it is illustrated in Figure 3.3, the autoencoder has an input layer with 34

neurons and the first hidden layer with 512 neurons and the second hidden layer with 256

neurons these two hidden layers are for encoder we have the same size hidden layers for

the decoder. So the third hidden layer is again with 256 neurons and fourth hidden layer

with 512 neurons and finally 34 output neurons. This autoencoder tries to reconstruct

input to the output layer.

To train the autoencoder for AUs, we used an initial learning rate of 0.01 with a batch

size of 128 and a total epoch of 400. All weights and biases initialized with random values

from a normal distribution. Then these values are adjusted using the RMSProp algorithm

until the MSE reaches global minima. Once the network training is finished, we use a

52

Univ
ers

iti
Mala

ya

forward function to get encoded features only. To do so, we feed the AUs features vector

to the network, and values from sigmoids of the second hidden layer of the encoder are

reduced or encoded features.

...
...
...
... ...

...

𝐴𝑈1

𝐴𝑈34

𝐻11

𝐻12

𝐻13

𝐻1512

𝐻21

𝐻22

𝐻2256

𝐻2′1

𝐻2′2

𝐻2′256

𝐻1′1

𝐻1′2

𝐻1′3

𝐻1′512

𝐴𝑈′
1

𝐴𝑈′
34

Figure 3.3: Autoencoder to encode AUs features vector

3.9.2 Autoencoder for HOG

The second autoencoder that we are explaining in this section is employed to encode

4464 HOG features vector into a lower dimension. As it is illustrated in Figure 3.4, the

autoencoder has an input layer with 4464 neurons and the first hidden layer with 512

neurons and the second hidden layer with 256 neurons these two hidden layers are for

encoder we have the same size hidden layers for the decoder. So the third hidden layer is

again with 256 neurons and fourth hidden layer with 512 neurons and finally 4464 output

neurons. This autoencoder tries to reconstruct input to the output layer.

To train the autoencoder for HOG, we used an initial learning rate of 0.01 with a

batch size of 128 and a total epoch of 5000. All weights and biases initialized with random

values from a normal distribution. Then these values are adjusted using the RMSProp

53

Univ
ers

iti
Mala

ya

algorithm until the MSE reaches global minima. Once the network training is finished, we

use a forward function to get encoded features only. To do so, we feed the HOG features

vector to the network, and values from sigmoids of the second hidden layer of the encoder

are reduced or encoded features.

...

...
...
...

𝐻𝑂𝐺1

𝐻𝑂𝐺2

𝐻𝑂𝐺3

𝐻𝑂𝐺4

𝐻𝑂𝐺5

𝐻𝑂𝐺4464

𝐻11

𝐻12

𝐻13

𝐻1512

𝐻21

𝐻22

𝐻2256

𝐻2′1

𝐻2′2

𝐻2′256

𝐻1′1

𝐻1′2

𝐻1′3

𝐻1′512

𝐻𝑂𝐺′
1

𝐻𝑂𝐺′
2

𝐻𝑂𝐺′
3

𝐻𝑂𝐺′
4

𝐻𝑂𝐺′
5

𝐻𝑂𝐺′
4464

Figure 3.4: Autoencoder to encode HOG features vector

3.9.3 Autoencoder for CNN

The last autoencoder that we are explaining in this section is employed to encode 13824

CNN features vector into a lower dimension. As is illustrated in Figure 3.5, the autoencoder

has an input layer with 13824 neurons and the first hidden layer with 512 neurons and the

second hidden layer with 256 neurons these two hidden layers are for encoder we have

the same size hidden layers for the decoder. So the third hidden layer is again with 256

neurons and fourth hidden layer with 512 neurons and finally 13824 output neurons. This

autoencoder tries to reconstruct input to the output layer.

To train the autoencoder for CNN, we used an initial learning rate of 0.01 with a

54

Univ
ers

iti
Mala

ya

batch size of 128 and a total epoch of 5000. All weights and biases initialized with random

values from a normal distribution. Then these values are adjusted using the RMSProp

algorithm until the MSE reaches global minima. Once the network training is finished, we

use a forward function to get encoded features only. To do so, we feed the CNN features

vector to the network, and values from sigmoids of the second hidden layer of the encoder

are reduced or encoded features.

...

...
...
...

𝐶𝑁𝑁1

𝐶𝑁𝑁2

𝐶𝑁𝑁3

𝐶𝑁𝑁4

𝐶𝑁𝑁5

𝐶𝑁𝑁13824

𝐻11

𝐻12

𝐻13

𝐻1512

𝐻21

𝐻22

𝐻2256

𝐻2′1

𝐻2′2

𝐻2′256

𝐻1′1

𝐻1′2

𝐻1′3

𝐻1′512

𝐶𝑁𝑁′
1

𝐶𝑁𝑁′
2

𝐶𝑁𝑁′
3

𝐶𝑁𝑁′
4

𝐶𝑁𝑁′
5

𝐶𝑁𝑁′
13824

Figure 3.5: Autoencoder to encode CNN features vector

3.9.4 Combining Features

In this section, we explain how all encoded features from previous sections are combined.

As explained in sections 3.9.1, 3.9.2 and 3.9.3 we can encode our features from vastly

different dimensions into same dimensions. As a result, we have three encoded features

vectors with a size of 256. As is illustrated in Figure 3.6, we append these three features

vectors together, and as a result, we will have a single features vector of 768. Later in the

next section, we will use this features vector as input feed to our classifier.

55

Univ
ers

iti
Mala

ya

0.9 0.19 0.12 0.4 0.21 0.11

AUs HOG CNN

Figure 3.6: Feature fusion

3.10 Classification Layer

In this layer, we are attempting to predict and classify age and gender using the final feature

map from the previous layer. There are a couple of famous and well-known classifiers

to solve this problem. As it is explained earlier, Softmax is one of the widely used

solutions for multi-class classification, which is a generalized form of logistic regression.

Logistic regression works as a binary classifier within it and generalizes binary classifiers

to multi-class classification.

As we discussed in previous chapters, the main problem with the Softmax algorithm

is that it will not work if our data is not linearly separable and because deep network

feature extraction methods (in our case CNN) can not guarantee linear separability of

features, so Softmax is not a right choice for us. In this research, we are investigating our

proposal classifier H-HP-ELM to overcome limitations of Softmax. This solution has one

crucial benefit, H-HP-ELM makes it possible to use our proposed network in a parallel

mode, which for deep learning modules, it can be an advantageous approach.

The mathematics behind H-ELM has been explained in the previous chapter. So far,

the only implementation of H-ELM is in Matlab code, and HP-ELM is implemented in

python. So we have to re-implement H-ELM in Python to be able to do our research about

the performance of H-HP-ELM for age and gender classification.

If the classification layer is considered as an independent layer, the input would be

encoded and appended features vector (which the dimension is 768) from the previous

section for all or batched training or evaluation dataset. In other words, as it is illustrated

56

Univ
ers

iti
Mala

ya

in Figure 3.7, we build a matrix of 𝑀 × 768 where 𝑀 is the number of facial images in

the respective dataset, and we feed it to the classifier.

𝐻2𝐴𝑈1,1 . . . 𝐻2𝐴𝑈1,256 𝐻2𝐻𝐺1,1 . . . 𝐻2𝐻𝐺1,256 𝐻2𝐶𝑁1,1 . . . 𝐻2𝐶𝑁1,256

...
...

...
...

...
...

𝐻2𝐴𝑈𝑀,1 . . . 𝐻2𝐴𝑈𝑀,256 𝐻2𝐻𝐺𝑀,1 . . . 𝐻2𝐻𝐺𝑀,256 𝐻2𝐶𝑁𝑀,1 . . . 𝐻2𝐶𝑁𝑀,256

Figure 3.7: Input matrix to H-HP-ELM

The proposed H-HP-ELM has its own three main layers:

• First ELM Autoencoder layer (Tang et al., 2016)

• Second ELM Autoencoder layer (Tang et al., 2016)

• HP-ELM (Akusok et al., 2015)

3.10.1 ELM Autoencoder

One of the ELM theory use case other than SLNFs is for autoencoders (Tang et al., 2016).

Mathematically, the autoencoder maps the input data 𝑥 to a higher level representation, and

then uses latent representation 𝑦 through a deterministic mapping 𝑦 = ℎ𝜃 (𝑥) = 𝑔(𝐴 ·𝑥+𝑏),

parameterized by 𝜃 = 𝐴, 𝑏, where 𝑔(·) is the activation function, A is a 𝑑′ × 𝑑 weight

matrix and 𝑏 is a bias vector. The resulting latent representation 𝑦 is then mapped back

to a reconstructed vector 𝑧 in the input space 𝑧 = ℎ𝜃 ′ (𝑦) = 𝑔(𝐴′ · 𝑦 + 𝑏) with 𝜃′ = {𝐴′, 𝑏′}

(Tang et al., 2016). The pseudo code in Algorithms 1 and 2 is the implementation of the

ELM-Autoencoder.

The function 𝑠𝑝𝑎𝑟𝑠𝑒_𝑒𝑙𝑚_𝑎𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟 is employed to extract sparse features of

the input data from the previous layer or input in each layer as it is explained in (Tang

et al., 2016) in detail,. 2-layer unsupervised learning is performed to obtain sparse high-

level features eventually. As it is explained in (Tang et al., 2016) 𝑁1 and 𝑁2 are values

57

Univ
ers

iti
Mala

ya

that are required to build 𝑏1 and 𝑏2 matrices, which are used for first and second ELM-

Autoencoders sequentially. Base on our experimental results, we found that 𝑁1 = 768

and 𝑁2 = 768 are suitable values for our use case. Parameters 𝑏1 and 𝑏2 are matrices

that have random initial values, which 𝑏1 is the bias for first ELM-Autoencoder, and 𝑏2 is

the bias for the second ELM-Autoencoder. 𝑏1 has a shape of (𝐼 + 1) × 𝑁1, where 𝐼 is the

input dimensions for the classifier, which equals the features vector size from the previous

section. 𝑏2 has a shape of (𝑁1 + 1) × 𝑁2 (Tang et al., 2016). Both ELM-Autoencoders

have an iterative loop of 100 times to calculate 𝛽1 for the first sparse autoencoder and 𝛽2

for second sparse autoencoder. 𝛽1 and 𝛽2 are required for the feed-forward network that

is used for evaluation and testing later, which are output weights for each autoencoder.

The 𝜆 for both autoencoders are 10−3.

Algorithm 1 Sparse ELM Autoencoder
1: function sparse_elm_autoencoder(A, b, 𝜆, iterations)
2: AA = (A’) * A;
3: Lf = max(eigen(AA));
4: Li = 1/Lf;
5: alp = 𝜆 * Li;
6: m = size(A,2);
7: n = size(b,2);
8: x = zeros(m,n);
9: yk = x;

10: tk = 1;
11: L1 = 2 * Li * AA;
12: L2 = 2 * Li * A’ * b;
13: for i=1:iterations do
14: 𝑐𝑘 = 𝑦𝑘 − 𝐿1 ∗ 𝑦𝑘 + 𝐿2;
15: 𝑥1 = (𝑚𝑎𝑥(𝑎𝑏𝑠(𝑐𝑘) − 𝑎𝑙 𝑝, 0)). ∗ 𝑠𝑖𝑔𝑛(𝑐𝑘);
16: 𝑡𝑘1 = 0.5 + 0.5 ∗ 𝑠𝑞𝑟𝑡 (1 + 4 ∗ 𝑡𝑘2);
17: 𝑡𝑡 = (𝑡𝑘 − 1)/𝑡𝑘1;
18: 𝑦𝑘 = 𝑥1 + 𝑡𝑡 ∗ (𝑥 − 𝑥1);
19: 𝑡𝑘 = 𝑡𝑘1;
20: 𝑥 = 𝑥1;
21: return x, tk

Function 𝑓 𝑒𝑒𝑑𝑓 𝑜𝑟𝑤𝑎𝑟𝑑_𝐿1_𝐿2 in Algorithm 3 is for feedforward usage, which

means whenever the model is trained, this can be used to extract unsupervised features

from the input of the classification layer.

58

Univ
ers

iti
Mala

ya

Algorithm 2 First and Second ELM Autoencoders
1: function layers_L1_L2(𝑖𝑛𝑝𝑢𝑡, 𝑏1, 𝑏2, 𝑖𝑡𝑒𝑟1, 𝑖𝑡𝑒𝑟2)
2: 𝑖𝑛𝑝𝑢𝑡 = 𝑧𝑠𝑐𝑜𝑟𝑒(𝑖𝑛𝑝𝑢𝑡𝑇)𝑇 ;
3: 𝐻1 = [𝑖𝑛𝑝𝑢𝑡.1 ∗ 𝑜𝑛𝑒𝑠(𝑠𝑖𝑧𝑒(𝑖𝑛𝑝𝑢𝑡, 1), 1)];
4: 𝐴1 = 𝐻1 ∗ 𝑏1;
5: 𝐴1 = 𝑚𝑎𝑝𝑚𝑖𝑛𝑚𝑎𝑥(𝐴1);
6: 𝛽1 = 𝑠𝑝𝑎𝑟𝑠𝑒_𝑒𝑙𝑚_𝑎𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟 (𝐴1, 𝐻1, 10−3, 50)𝑇 ;
7: 𝑇1 = 𝐻1 ∗ 𝛽1;
8: 𝑇1, 𝑝𝑠1 = 𝑚𝑎𝑝𝑚𝑖𝑛𝑚𝑎𝑥(𝑇1𝑇 , 0, 1);
9: 𝑇1 = 𝑇1𝑇 ;

10: 𝐻2 = [𝑇1.1 ∗ 𝑜𝑛𝑒𝑠(𝑠𝑖𝑧𝑒(𝑇1, 1), 1)];
11: 𝐴2 = 𝐻2 ∗ 𝑏2;
12: 𝐴2 = 𝑚𝑎𝑝𝑚𝑖𝑛𝑚𝑎𝑥(𝐴2);
13: 𝛽2 = 𝑠𝑝𝑎𝑟𝑠𝑒_𝑒𝑙𝑚_𝑎𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟 (𝐴2, 𝐻2, 10−3, 50)𝑇 ;
14: 𝑇2 = 𝐻2 ∗ 𝛽2;
15: 𝑇2, 𝑝𝑠2 = 𝑚𝑎𝑝𝑚𝑖𝑛𝑚𝑎𝑥(𝑇2𝑇 , 0, 1);
16: 𝑇2 = 𝑇2𝑇 ;
17: return 𝛽1, 𝛽2, 𝑇2, 𝑝𝑠1, 𝑝𝑠2

Algorithm 3 Feed-Forward Layer 1 and Layer 2
1: function feedforward_L1_L2(test_x, 𝛽1, 𝛽2, ps1, ps2)
2: 𝑡𝑒𝑠𝑡_𝑥 = 𝑧𝑠𝑐𝑜𝑟𝑒(𝑡𝑒𝑠𝑡_𝑥𝑇)𝑇 ;
3: 𝐻𝐻1 = [𝑡𝑒𝑠𝑡_𝑥 0.1 ∗ 𝑜𝑛𝑒𝑠(𝑠𝑖𝑧𝑒(𝑡𝑒𝑠𝑡_𝑥, 1), 1)];
4: 𝑇𝑇1 = 𝐻𝐻1 ∗ 𝛽1;
5: 𝑇𝑇1 = 𝑚𝑎𝑝𝑚𝑖𝑛𝑚𝑎𝑥(𝑇𝑇1𝑇 , 𝑝𝑠1)𝑇 ;
6: 𝐻𝐻2 = [𝑇𝑇1 0.1 ∗ 𝑜𝑛𝑒𝑠(𝑠𝑖𝑧𝑒(𝑇𝑇1, 1), 1)];
7: 𝑇𝑇2 = 𝐻𝐻2 ∗ 𝛽2;
8: 𝑇𝑇2 = 𝑚𝑎𝑝𝑚𝑖𝑛𝑚𝑎𝑥(𝑇𝑇2𝑇 , 𝑝𝑠2)𝑇 ;
9: return 𝑇𝑇2

The whole process of extracting features using ELM-Autoencoder and finally clas-

sifying them with HP-ELM has been shown in Algorithm 4. With a closer look at the

pseudo-code in Algorithm 4 it can be seen that from lines 1 to 12, we train the classifier

and from lines 13 to 17, we evaluate the model. Variables 𝛽1, 𝛽2, 𝑝𝑠1 and 𝑝𝑠2 needs to

be stored for later to be used as parameters for classification pipeline (to predict). The

𝑒𝑙𝑚 variable is also stored as a serialized object in the filesystem, which is an instance

of 𝐸𝐿𝑀 from ℎ𝑝𝑒𝑙𝑚 library, which is implemented by (Akusok et al., 2015) as we

explained earlier. Having the stored parameters and elm object, we can use this trained

class for classification later. The HP-ELM network that we are using needs 3000 initial

neurons, which later will use the Leave-one-out validation method to select the optimal

59

Univ
ers

iti
Mala

ya

Algorithm 4 Hierarchical High Performance Extreme Learning Machine
1: 𝑁1 = 768;
2: 𝑁2 = 768;
3: 𝑏1 = 𝑟𝑎𝑛𝑑 (𝑖𝑛𝑝𝑢𝑡.𝑠ℎ𝑎𝑝𝑒[1] + 1, 𝑁1) − 1.0;
4: 𝑏2 = 𝑟𝑎𝑛𝑑 (𝑁1 + 1, 𝑁2) − 1.0;
5: 𝛽1, 𝛽2, 𝑇2, 𝑝𝑠1, 𝑝𝑠2 = 𝑙𝑎𝑦𝑒𝑟𝑠_𝐿1_𝐿2(𝑖𝑛𝑝𝑢𝑡, 𝑏1, 𝑏2, 𝑖𝑡𝑒𝑟1, 𝑖𝑡𝑒𝑟2);
6: 𝑒𝑙𝑚 = 𝐸𝐿𝑀 (𝑇2.𝑠ℎ𝑎𝑝𝑒[1], 𝑡𝑎𝑟𝑔𝑒𝑡.𝑠ℎ𝑎𝑝𝑒[1]);
7: 𝑒𝑙𝑚.𝑎𝑑𝑑_𝑛𝑒𝑢𝑟𝑜𝑛𝑠(3000, ′𝑟𝑏 𝑓 _𝑙2′);
8: 𝑖 𝑓 (𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) {
9: ... 𝑒𝑙𝑚.𝑡𝑟𝑎𝑖𝑛(𝑖𝑛𝑝𝑢𝑡, 𝑡𝑎𝑟𝑔𝑒𝑡,′ 𝐿𝑂𝑂 ′,′ 𝑟 ′);

10: } 𝑒𝑙𝑠𝑒 {
11: ... 𝑒𝑙𝑚.𝑡𝑟𝑎𝑖𝑛(𝑖𝑛𝑝𝑢𝑡, 𝑡𝑎𝑟𝑔𝑒𝑡,′ 𝐿𝑂𝑂 ′);
12: }
13: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑒𝑙𝑚.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑖𝑛𝑝𝑢𝑡);
14: 𝑖 𝑓 (𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) {
15: ... 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡𝑠_𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑝𝑟𝑒𝑑𝑖𝑐𝑡);
16: ... 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛_𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡𝑠_𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑡𝑎𝑟𝑔𝑒𝑡);
17: ... 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛_𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛_𝑡𝑎𝑟𝑔𝑒𝑡);
18: } 𝑒𝑙𝑠𝑒 {
19: ... 𝑎𝑟𝑔𝑚𝑎𝑥_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡𝑠_𝑎𝑟𝑔𝑚𝑎𝑥(𝑝𝑟𝑒𝑑𝑖𝑐𝑡);
20: ... 𝑎𝑟𝑔𝑚𝑎𝑥_𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡𝑠_𝑎𝑟𝑔𝑚𝑎𝑥(𝑡𝑎𝑟𝑔𝑒𝑡);
21: ... 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑎𝑟𝑔𝑚𝑎𝑥_𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑎𝑟𝑔𝑚𝑎𝑥_𝑡𝑎𝑟𝑔𝑒𝑡);
22: }
23: 𝑇𝑇2 = 𝑓 𝑒𝑒𝑑𝑓 𝑜𝑟𝑤𝑎𝑟𝑑_𝐿1_𝐿2(𝑡𝑒𝑠𝑡_𝑖𝑛𝑝𝑢𝑡, 𝛽1, 𝛽2, 𝑝𝑠1, 𝑝𝑠2);
24: 𝑡𝑒𝑠𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑒𝑙𝑚.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑇𝑇2);
25: 𝑖 𝑓 (𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) {
26: ... 𝑡𝑒𝑠𝑡_𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡𝑠_𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑡𝑒𝑠𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡);
27: ... 𝑡𝑒𝑠𝑡_𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛_𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡𝑠_𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑡𝑒𝑠𝑡_𝑡𝑎𝑟𝑔𝑒𝑡);
28: ... 𝑡𝑒𝑠𝑡_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑡𝑒𝑠𝑡_𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛_𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑡𝑒𝑠𝑡_𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛_𝑡𝑎𝑟𝑔𝑒𝑡);
29: } 𝑒𝑙𝑠𝑒 {
30: ... 𝑡𝑒𝑠𝑡_𝑎𝑟𝑔𝑚𝑎𝑥_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡𝑠_𝑎𝑟𝑔𝑚𝑎𝑥(𝑡𝑒𝑠𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡);
31: ... 𝑡𝑒𝑠𝑡_𝑎𝑟𝑔𝑚𝑎𝑥_𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡𝑠_𝑎𝑟𝑔𝑚𝑎𝑥(𝑡𝑒𝑠𝑡_𝑡𝑎𝑟𝑔𝑒𝑡);
32: ... 𝑡𝑒𝑠𝑡_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑡𝑒𝑠𝑡_𝑎𝑟𝑔𝑚𝑎𝑥_𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑡𝑒𝑠𝑡_𝑎𝑟𝑔𝑚𝑎𝑥_𝑡𝑎𝑟𝑔𝑒𝑡);
33: }

regularization parameter. The leave-one-out cross-validation (LOO) approach is one of

the most effective methods for model selection and parameter optimization in machine

learning (van Heeswijk & Miche, 2015). We use regression for age estimation, which is

recognized with parameter 𝑟 in algorithm 4 in line 9 because for age estimation we do not

have any class, but we predict the actual age value instead of class, and we need that for

benchmark evaluation that we will explain in next chapter.

Speaking of datasets and desired labels that we need in our research, we have two

classes for gender classification and three classes for age classification. All of the datasets

60

Univ
ers

iti
Mala

ya

of facial images that are used for classification in this research have labels as values in

table 3.2 and for age estimation where we estimate age value (and not the category) we

have age value (numerical e.g., 25 or 57) as the label or target value.

Table 3.2: Classes used in our classification
Type Class Label
Gender classification Female 0

Male 1
Age classification Non-adult 0

Adult 1
Elderly people 2

3.11 Softmax vs H-HP-ELM

As we discussed Softmax and its’ limitations and to achieve enough results to justify our

objectives, we want to evaluate the performance of our classification layer. Since we want

to compare our classifier with Softmax, we have used Softmax as the classifier for an

independent model, which is identical to our architecture in all other layers, and the only

difference is the classification layer, which we replaced H-HP-ELM with Softmax. We

have used the same datasets that we have used for our proposed architecture to evaluate

our models.

Usually, a Softmax classifier comes with one or multiple fully connected layers. Both

H-HP-ELM and Softmax (plus fully connected layers) have the same inputs and outputs,

but they are trained in different ways, as we explained earlier in previous and current

chapters. In this research, we decided to use two fully connected layers, followed by a

Softmax classifier.

The classification layer that we have chosen contains the input layer, which is the

output from autoencoders and one fully connected layer, and finally, a Softmax classifier

(Figure 3.8). 𝐶1, 𝐶2, ...𝐶𝑛 represents the classes of the Softmax classifier.

We need a loss function and an optimizer to train our classifier. We use Softmax

61

Univ
ers

iti
Mala

ya

...
...

...

𝐴𝐸1

𝐴𝐸2

𝐴𝐸3

𝐴𝐸768

𝐹𝐶11

𝐹𝐶12

𝐹𝐶1512

𝐶1

𝐶𝑛

Figure 3.8: Fully connected layer + Softmax classifier

cross-entropy loss function in combination with the exponential moving average technique

with an initial decay of 0.9. We have used an exponential staircase decay momentum

optimizer with an initial value of 0.9 with a decay rate of 0.5, which in every 5k steps cuts

the learning rate in half.

3.12 Summary

To summarize, in our classification layer, we are feeding the output features that we

extracted in feature extraction layer to the H-HP-ELM classifier. So our feature, which has

768 dimensions, will be changed to more sparse features after passing through hierarchical

layers of H-HELM, which means only significant and essential features are selected. The

final feature size in the final layer before the HP-ELM classifier is 400, which has been

chosen based on an experiment. These features are the very final features that are suitable

features to be used for classification. It is then fed into the HP-ELM classifier, which our

HP-ELM classifier contains initially 3000 neurons in the hidden layer, which are radial

basis function neurons following having ℓ2 normalization. Then we are selecting the

optimal number of neurons using Leave-one-out or LOO while training our network.

62

Univ
ers

iti
Mala

ya

CHAPTER 4: EXPERIMENTS

4.1 Introduction

In this chapter, we explain how our experiments are established. We will discuss details

that are not covered in the previous chapter. As an example, we will explain how our

research is built, what environment we have used, and how the datasets are prepared. We

will also discuss the method that we use to evaluate the efficiency of our proposed method.

4.2 Autoencoder Dataset

To train our autoencoders, we needed an independent dataset of facial images that are not

used for the classification and estimation layer. To do so, we have used a portion of the

WFLW dataset (Wu et al., 2018) with 6551 facial images from the wild. We have moved

out pictures with a bad pose or low-quality images, which brought us 5017 facial images.

Then we have randomly chosen 3000 facial images from these remained images to train

our autoencoders. We have extracted CNN, AUs, and HOG features for all these images,

and we stored them as binary files with the same naming as the original image file name

but with different extensions. Later we used these binary files, which contain features to

train our autoencoders that we explained in the previous chapter. This dataset is not used

for classifier training step.

4.3 Classification and Estimation Datasets

We used multiple facial images benchmark datasets to evaluate our proposed method.

These datasets are used in various researches related to facial image analysis. They are

publicly available, and for a few of them, it is required to sign up, which the process is

straightforward.

63

Univ
ers

iti
Mala

ya

4.3.1 FG-NET Dataset

FG-NET dataset is introduced by (Lanitis & Cootes, 2002), which contains 1002 images

from 82 individuals. Ages ranging from newborns to 69 years old. The Leave One

Person Out (LOPO) protocol is the commonly used evaluation protocol for FG-NET.

All samples of a single person are employed as the test set, and the rest of the other 81

persons are employed for the train set. This process is repeated for all 82 persons on the

FG-NET dataset. This evaluation protocol makes sure that images of a single person are

not employed in the testing and training set at the same time to avoid any bias for the

trained models. In our experiment, we use the same protocol to evaluate our model with

the benchmark dataset. The FG-NET dataset is so small to train our model, so we only

use this dataset to test age estimation and not for training.

4.3.2 LAP Dataset

The ChaLearn Looking at People or LAP dataset, which is introduced in (Escalera et al.,

2015) contains 4,699 images labeled with real and apparent age. The dataset is split into

a 2,476 train set, 1,136 validation set, and 1,087 test set. The LAP dataset is not big

enough to train our model, so we only use this dataset to test age estimation and gender

classification but not for training step. Distribution of ages in the LAP dataset is from 20

to 40 years but has a small number of images per year for ages from 0 to 15 and from 65

to 100. This dataset is used for benchmark age estimation evaluation of our model.

4.3.3 CACD Dataset

The Cross-Age Celebrity Dataset or CACD (B.-C. Chen, Chen, & Hsu, 2014) contains

163,446 images of 2,000 celebrities from 2004 to 2013. The age is estimated using the

query year and the known date of birth. The dataset splits into training, validation, and

test sets. Images from 1800 celebrities are used as a train set, 80 as the validation set,

64

Univ
ers

iti
Mala

ya

and 120 as the test set. As it is self-explanatory, this dataset is used for benchmark age

estimation evaluation of our model.

4.3.4 LFW Dataset

The Labeled Faces in the Wild or LFW dataset (G. B. Huang, Ramesh, Berg, & Learned-

Miller, 2007) contains 13,233 photos of 5,749 individuals and 1,680 people with two or

more images that were collected in 2007. LFW is one of the standard benchmarks for

gender classification. The protocol for the LFW dataset is to use 10-fold cross-validation

to evaluate the performance on the dataset. However, the training set (nine folds) is

imbalanced in terms of the number of samples for each gender. To fix that issue, we

combined training set with WIKI-IMDB datasets, and we also performed downsampling

for Male class and oversampling for Female class.

Table 4.1: Statistics of original LFW dataset

Male 10,268
Female 2,966
Total 13,233

4.3.5 MORPH-II Dataset

MORPH-II dataset is introduced by (Ricanek & Tesafaye, 2006). This dataset contains

55,134 images of 13,618 individuals age range from 16 to 77. Benchmark evaluation

for this dataset is done by measuring Mean Average Error (MAE) for age estimation and

Accuracy for gender classification. The labels for each sample includes age, Ethnicity, and

gender. MORPH-II dataset has an uneven distribution of samples for Male (80%), and

Female (20%), the performances measured on these benchmarks are prone to be biased.

The same problem exists for the distribution of ages. The first benchmark evaluation

for MORPH-II is to divide the dataset into an 80% training set and 20% validation or

test set. A more efficient protocol for this dataset introduced by (Guo & Mu, 2010),

65

Univ
ers

iti
Mala

ya

which later adopted by many other researchers. The MORPH-II dataset is split into three

non-overlapping parts 𝑆1, 𝑆2 and 𝑆3. gender classification and age estimation models are

trained using 𝑆1 and validated by 𝑆2 and 𝑆3, and again trained on 𝑆2 and validated on 𝑆1

and 𝑆3. Final results are the mean of Accuracy and MAE over these two experiments.

Regarding the age classification model, we need to evaluate the performance of our

model for three categories of Non-Adults, Adults, and Elderly People. So we regrouped

the MORPH-II dataset. Here are the statistics for the MORPH-II dataset that we need for

model evaluation used in Table 4.2.

Table 4.2: Statistics of original MORPH-II dataset for gender and 3 categories
classification

Non-Adults Adults Elderly People Total
Male 6,638 36,525 3,482 46,645
Female 831 7,207 451 8,489
Total 7,469 43,732 3,933 55,134

4.3.6 WIKI-IMDB Dataset

WIKI dataset first used by (R. Rothe et al., 2016) and (R. Rothe, Timofte, & Gool, 2015)

for age and gender classification. This dataset contains more than 62K images. Because

the dataset contains lots of low quality and bad angle photos of individuals too, so we

have extracted only useful facial photos for our experiment. Here are the statistics for the

WIKI dataset that we have used in Table 4.3.

Table 4.3: Statistics of WIKI dataset for gender and 3 categories classification

Non-Adults Adults Elderly People Total
Male 106 3,493 525 4,124
Female 124 2,290 228 2,642
Total 230 5,783 753 6,766

(R. Rothe et al., 2016) also uses the IMDB dataset and (R. Rothe et al., 2015) for age

and gender classification. This dataset contains more than 460K images. Since the dataset

contains lots of low quality and bad angle photos of individuals too, so we have cleaned

66

Univ
ers

iti
Mala

ya

up the dataset to have useful facial photos for our experiment. Here are the statistics for

the IMDB dataset that we have used in Table 4.4.

Table 4.4: Statistics of IMDB dataset for gender and 3 categories classification

Non-Adults Adults Elderly People Total
Male 301 11,234 1,350 12,885
Female 582 13,944 650 15,176
Total 883 25,178 2,000 28,061

For both datasets, we extracted CNN, AUs, and HOG features for all images for both

validation and training sets, and we stored them as binary files with the same naming

as the original image file name but with different extensions. The stored features are

used for another experiment to train our H-HP-ELM classifier. As it is explained earlier,

WIKI-IMDB has many low-quality images with noises that our feature extraction methods

failed to extract features properly for many of the images, so we could not do a benchmark

evaluation for the dataset. For that reason, we decided to use it for training purposes only.

4.3.7 Adience Dataset

Adience dataset is introduced by (Eidinger et al., 2014) for age and gender classification.

Adience dataset consists of 26,580 unconstrained images of 2,284 subjects in 8 age

categories that are 0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53 and 60+. We have used

these categories for benchmark model evaluation.

The protocol for the Adience dataset to evaluate the performance of gender and age

classification is to perform training and testing using 5-fold cross-validation, which is

defined by (Eidinger et al., 2014). Gender labeling is a binary classification task, and

for the multi-class age classification, we report mean classification error across all age

groups. Moreover, for age classification, we need to test with the 1-off method that the

accuracy measured considering predictions when the prediction is off only one age group

as correct prediction (either younger or older group).

67

Univ
ers

iti
Mala

ya

As it is also mentioned in (Levi & Hassner, 2015), we realized that many samples in

this dataset have motion blur, occlusions, too much rotation. Since they have an essential

impact on the quality of age and gender classification and estimation results, we removed

them out from our dataset, and to compensate for the data loss. We used the same

oversampling method as (Levi & Hassner, 2015) has used. We also flipped many samples

horizontally to compensate for the data loss. We have performed oversampling only for

the training set and not for the validation set to make sure the evaluation for benchmark

evaluation remains valid.

Regarding the age classification model, we need to evaluate the performance of our

model for three categories of Non-Adults, Adults, and Elderly People. So we regrouped

samples in the Adience dataset, and here are the statistics for the Adience dataset that we

need for model evaluation used in Table 4.5.

Table 4.5: Statistics of Adience dataset for gender and 3 categories classification

Non-Adults Adults Elderly People Unknown Total
Male 4,643 5,547 837 21 11,048
Female 5,371 6,212 823 1,277 13,683
Total 10,014 11,759 1,660 1,298 24,731

4.3.8 M3C Dataset

As we explained earlier in this chapter, datasets used for our tests are not balanced in

terms of classes. For example, as it is illustrated in table 4.4, the number of old females

in the IMDB dataset is fewer than adult females as another example number of old males

is considerably less than adult males in the MORPH-II dataset (table 4.2). This condition

can harm the training process for samples with minority class or samples with the majority

class.

We wanted to do an experiment with a more balanced data by oversample minority

class and undersample majority class. We also tried to combine these datasets and

68

Univ
ers

iti
Mala

ya

measure the impact of the model that is trained using this balanced and merged dataset.

For undersampling, we randomly removed facial images from majority classes, and for

oversampling we randomly selected facial images from minority classes and made copy

from them and to avoid overfitting due to duplicated data and possible bias to the model,

we rotated images for 1 to 3 degrees clockwise and anticlockwise or/and we flipped them

as well. Although the data is still imbalanced after oversampling and downsampling, the

imbalance rate has improved significantly. For example as it is illustrated in tables 4.2 and

4.6, for the merged dataset we have 53.7% Male and 46.3% Female while for MORPH-II

dataset we have 15.4% Female and 84.6% Male. We have merged our datasets in order to

balance our training sets as much as possible and to do so, we have combined all samples

together considering the class names as the directory names to separate based on classes,

in other words, the directory structure is the same as before but all files from all datasets

that we have for same class are gathered in a single directory with same class name.

These files are the same files that we generated for each dataset (*.hog, *.aus and *.cnn),

which are handcrafted and unsupervised features that we explained earlier in the previous

chapter. These features are used for our experiment on the merged dataset to train our

H-HP-ELM classifier. Later we evaluated our model using 10-fold cross-validations to

evaluate our model. We call this dataset the M3C dataset in this research for convenience.

Table 4.6: Statistics of the M3C dataset for gender and 3 categories classification

Non-Adults Adults Elderly People Total
Male 11,688 14,200 12,388 38,276
Female 13,816 14,827 4,304 32,947
Total 25,504 29,027 16,692 71,223

4.3.9 M-Ages Datasets

As we explained earlier, some of the benchmark datasets in previous sections are too small

to be used as a training set. However, we still need them for benchmark evaluation. So

69

Univ
ers

iti
Mala

ya

we merged LAP, CACD, WIKI-IMDB, and MORPH-II datasets into a single training set.

For example, as it is illustrated in table 4.7, to evaluate the LAP dataset, the test set of

LAP dataset is used as the test set and the training set will be the combination of CACD,

WIKI-IMDB, and MORPH-II in addition to the LAP training set. However, all of the

noisy, blurry images caused by motion blur, too much rotation are removed out of the

merged training set. We also tried to perform undersampling and oversampling to balance

and also to compensate for data loss in these M-Ages training datasets.

We call this dataset M-Ages datasets in this research, which are used to evaluate age

estimation on FG-NET, LAP, CACD, WIKI-IMDB, and MORPH-II using MAE metric.

For each test, we follow the respective protocol as it is illustrated in table 4.7, which are

explained earlier in this chapter.

Table 4.7: M-Ages Datasets merge

Test set Entire dataset Training set only Protocol
#1 FG-NET LAP, CACD, - LOPO

WIKI-IMDB, MORPH-II
#2 LAP CACD, WIKI-IMDB, LAP It has test set

MORPH-II
#3 CACD LAP, WIKI-IMDB, CACD It has test set

MORPH-II
#4 MORPH-II LAP, CACD, WIKI-IMDB MORPH-II S1, S2 and S3

4.4 Environment

For our experiments, we used a high-end GPU Machine, which is equipped with a Single

GPU with 24GB GDDR5 Memory, Model Quadro M6000, accompanied by it with 128

GB Ram and running under Intel Xeon CPU E5-2699 with 22 Core, running 44 Threads.

This Machine has Linux distribution Ubuntu version 17.10 LTS as the operating system

with Python 3. We used this Machine to re-train our pre-trained CNN. Our proposed

model is trained on another Machine, which is a Lenovo Y50-70 Laptop with a Core-i7

processor and 16GB of RAM.

70

Univ
ers

iti
Mala

ya

4.5 Data Split for 3 Age Categories and Gender Classification

A common way is to, for example, split a dataset into a 70% training set and 30% test

set and calculate accuracy on the test set. Researches show that dividing the dataset into

training and test in this way is not an efficient approach. One of the efficient ways is to

use cross-validation. To do so, we use k-fold cross-validation to split our datasets into

validation and training sets. By employing k-fold cross-validation, we shuffle then split

the data into k equal portions. One portion will be used as a validation set, and the rest

will be used as a training set. We run this process for k times, which in our case, k=10.

However, in the case of benchmark evaluation, we use the respective protocol for each

benchmark dataset and for the 3 age categories classification, and also for other datasets,

we use 10-fold cross-validation.

4.6 Model Evaluation

Evaluation of our model depends on the cross-validation from the previous section that we

are using in our experiment. We are using k-fold cross-validation, which split our datasets

into k different folds with the same amount of samples. One of the folds is used for the

test, and the rest is for training. This process is repeated for k times. In our experiment,

k=10. We extracted CNN, AUs, and HOG features for all images for both validation and

training sets, and we stored them as binary files with the same naming as the original

image file name but with different extensions. By employing this approach, we can start

over the training step without extracting features again. Later the stored features are used

for the training step to find the best parameters for our H-HP-ELM classifier. We want to

evaluate our model by these metrics (tables 4.10 and 4.11):

• Precision which illustrates the percentage of correct predictions for a class out of

the number of total predictions for that class.

71

Univ
ers

iti
Mala

ya

• Recall which illustrates the percentage of correct prediction for a class out of the

number of actual correct results that should have been returned for that class.

• Specificity which illustrates the percentage of samples that are correctly not pre-

dicted as expected for a class out of the number of total classes excluding that

specific class.

• F1 Score is a harmonic mean of recall and precision.

• Accuracy is the percentage of correctly predicted values for all classes out of all

samples that are used for prediction.

To measure these metrics of our model, we need to make a confusion matrix for our

results. Since we have ten trained models due to the k-fold cross-validation method, so

we have ten confusion matrices. We sum all these ten matrices into one matrix, and this

final confusion matrix will measure the evaluation metrics. A similar approach is used by

(Zhou et al., 2016) to evaluate their model, which they perform 10-fold, 5-fold, and 2-fold

cross-validation. They run their algorithm for 20 iterations and calculate the F-scores

from the average value of confusion matrices from the 20 iterations.

In our case, since we are using 10-fold cross-validation, we will generate ten confu-

sion matrices, and we measure the average value in the range of 0.0 to 1.0.

Table 4.8: Confusion matrix for gender classification

Predicted
Male Female

Actual Male True Male (TM) False Female (FF)
Female False Male (FM) True Female (TF)

The terms that are used in confusion matrix for gender classification in table 4.8 are

explained as below:

72

Univ
ers

iti
Mala

ya

Table 4.9: Confusion matrix for age classification (Multi Class)

Predicted
𝐴1 ... 𝐴𝑛

Actual
𝐴1 True 𝐴1 ... False 𝐴𝑛
...
𝐴𝑛 False 𝐴1 ... True 𝐴𝑛

• True Male (TM): actual samples of class Male correctly predicted as class Male

• True Female (TF): actual samples of class Female correctly predicted as class

Female

• False Male (FM): actual samples of class Female incorrectly predicted as class Male

• False Female (FF): actual samples of class Male incorrectly predicted as class

Female

The terms that are used in confusion matrix for age classification in table 4.9 are

explained as below:

• True 𝐴𝑥 (𝑇𝐴𝑥): actual samples of class 𝐴𝑥 correctly predicted as class 𝐴𝑥

• False 𝐴𝑥 (𝐹𝐴𝑥): actual samples of class 𝐴𝑥 incorrectly predicted as class from

{𝐴1, 𝐴2, ..., 𝐴𝑛} but not 𝐴𝑥 .

73

Univ
ers

iti
Mala

ya

Table 4.10: Evaluation metrics and their equations for gender classification

Equation Details

Overall Accuracy: where 𝑁𝐶 is the number of samples that
are predicted correctly and 𝑁𝑇 is the total

𝐴 = 𝑁𝐶

𝑁𝑇
× 100 number of samples. Although accuracy is an

important information but it does not provide
sufficient information to evaluate the model.

Precision:

𝑃𝑀 = 𝑇𝑀
𝑇𝑀+𝐹𝑀 𝑃𝑀 is precision for males

𝑃𝐹 = 𝑇𝐹
𝑇𝐹+𝐹𝐹 𝑃𝐹 is precision for females

Recall:

𝑅𝑀 = 𝑇𝑀
𝑇𝑀+𝐹𝐹 𝑅𝑀 is recall for males

𝑅𝐹 = 𝑇𝐹
𝑇𝐹+𝐹𝑀 𝑅𝐹 is recall for females

Specificity:

𝑆𝑀 = 𝑇𝐹
𝑇𝐹+𝐹𝑀 𝑆𝑀 is specificity for males

𝑆𝐹 = 𝑇𝑀
𝑇𝑀+𝐹𝐹 𝑆𝐹 is specificity for females

F1 Score:

𝐹𝑀 = 2 × 𝑃𝑀×𝑅𝑀
𝑃𝑀+𝑅𝑀

𝐹𝑀 is F1-Score for males

𝐹𝐹 = 2 × 𝑃𝐹×𝑅𝐹
𝑃𝐹+𝑅𝐹

𝐹𝐹 is F1-Score for females

74

Univ
ers

iti
Mala

ya

Table 4.11: Evaluation metrics and their equations for age classification

Equation Details

Overall Accuracy: where 𝑁𝐶 is the number of samples that
are predicted correctly and 𝑁𝑇 is the total

𝐴 = 𝑁𝐶

𝑁𝑇
× 100 number of samples. Although accuracy is an

important information but it does not provide
sufficient information to evaluate the model.

Precision:

𝑃𝐴𝑥 =
𝑇𝐴𝑥

𝑇𝐴𝑥+Σ𝐹𝐴𝑥
𝑃𝐴𝑥 is precision for class 𝐴𝑥

Recall:

𝑅𝐴𝑥 =
𝑇𝐴𝑥

𝑇𝐴𝑥+Σ𝐹𝐴𝑦𝑖
𝑅𝐴𝑥 is recall for class 𝐴𝑥
where 𝑦 in {1, 2, 3, ..., 𝑛} and 𝑦! = 𝑥

Specificity:

𝑆𝐴𝑥 =
Σ𝑇𝐴𝑦𝑖+Σ𝐹𝐴𝑦𝑖

Σ𝑇𝐴𝑦𝑖+Σ𝐹𝐴𝑦𝑖+Σ𝐹𝐴𝑥 𝑗
𝑆𝐴𝑥 is specificity for class 𝐴𝑥
where 𝑦 in {1, 2, 3, ..., 𝑛} and 𝑦! = 𝑥

F1 Score:

𝐹𝐴𝑥 = 2 × 𝑃𝐴𝑥×𝑅𝐴𝑥

𝑃𝐴𝑥+𝑅𝐴𝑥
𝐹𝐴𝑥 is F1-Score for class 𝐴𝑥

75

Univ
ers

iti
Mala

ya

4.7 Benchmark Evaluation For Age Estimation

In this section, we explain how we perform benchmark evaluation on well-known bench-

mark datasets that we have used in our experiments. As we explained earlier, there are

datasets that we have in our experiments which they should be evaluated using Mean

Absolute Error or MAE (table 4.12).

Another metric to evaluate age estimation is the 𝜖-error, which was proposed in the

LAP challenge. 𝜖-error is useful where no ground truth age is available, but the ages are

guessed by random people. This method makes sure that wrong predictions are penalized

less than others in case there are too many wrong guesses by a human for the respective

sample (table 4.12).

The reason to have a different approach for these datasets is that they are labeled for

age estimation, while our original model is designed to classify age into three categories.

So we use this approach for age estimation only, and it is not required for age and gender

classification.

Table 4.12: Evaluation metrics and their equations for age estimation

Equation Details

Mean absolute error: Where:

𝑀𝐴𝐸 = 1
𝑛

∑𝑛
𝑖=1 |𝑝𝑖 − 𝑔𝑖 | - 𝑛 = Total of samples

- 𝑝𝑖 = Predicted Age
- 𝑔𝑖 = Ground-truth Age

𝜖- error: Final 𝜖-error is the average over all samples.

𝜖 = 1 − 𝑒−
(𝑥−𝜇)2

2𝜎2 Ranges:
- from 0 = Perfect predictions
- to 1 = Completely wrong

76

Univ
ers

iti
Mala

ya

4.8 Summary

In this chapter, we discussed the benchmark datasets that we have used in our experiments.

We explained our environment setup, and we explained how we extract features from our

datasets. We explained how we improved the impact of an imbalanced dataset in our

experiments. We evaluated our method with the confusion matrix, cross-validation,

precision, recall, specificity, f1 score, accuracy and MAE. In the next chapter, we will

analyze our results and the performance of our method.

77

Univ
ers

iti
Mala

ya

CHAPTER 5: EXPERIMENTAL RESULTS AND DISCUSSION

Our proposed architecture that we explained in detail in chapter 3 has been tested on four

benchmark datasets that we explained in chapter 4. We have performed experiments on

these datasets to evaluate our architecture for age and gender classification and also for

age estimation. In this chapter, we will discuss our experiment on each dataset and our

gained results.

5.1 Age and Gender Classification

We performed multiple experiments to evaluate our architecture for gender and age (3 cat-

egories) classification on multiple datasets which are namely LFW, MORPH-II, Adience,

and M3C. The protocol that we are using to evaluate our dataset is 𝑘-fold cross-validation

algorithm where 𝑘 = 10. We shuffle our dataset, and then we divide it into ten equal

portions, and one of the portions is used randomly as the validation set and the rest for

the training set.

5.1.1 MORPH-II Dataset

The confusion matrices for validation set evaluation results are illustrated in tables 5.1

and 5.2 (Actual vs Predicted values) which illustrates average of 10 independent other

runs with same steps in range of 0 to 1.

Table 5.1: Confusion matrix for gender classification (MORPH-II)

Actual \ Predicted Male Female Recall
Male 0.9530 0.1410 0.9074
Female 0.0470 0.8590 0.9269
Precision 0.9530 0.8595 -
Specificity 0.9269 0.9074 -
F-Score 0.9296 0.8919 -

78

Univ
ers

iti
Mala

ya

Table 5.2: Confusion matrix for 3 age categories classification (MORPH-II)

Actual \ Predicted Non-Adult Adult Elderly People Recall
Non-Adult 0.9000 0.0885 0.0260 0.7837
Adult 0.0820 0.8845 0.1910 0.9196
Elderly People 0.0180 0.0270 0.7830 0.8473
Precision 0.8998 0.8845 0.7828 -
Specificity 0.9677 0.8247 0.9628 -
F-Score 0.8410 0.8696 0.9014 -

5.1.2 Adience Dataset

The confusion matrix for validation set evaluation results are in tables 5.3 and 5.4 (Actual

vs Predicted values) which illustrates average of 10 independent other runs with same

steps in range of 0 to 1. Please note that for adience dataset those images that have

unknown labels for age are removed from dataset.

Table 5.3: Confusion matrix for gender classification (Adience)

Actual \ Predicted Male Female Recall
Male 0.8969 0.1122 0.8735
Female 0.1031 0.8878 0.9088
Precision 0.8969 0.8878 -
Specificity 0.9088 0.8735 -
F-Score 0.8850 0.8982 -

Table 5.4: Confusion matrix for 3 age categories classification (Adience)

Actual \ Predicted Non-Adult Adult Elderly People Recall
Non-Adult 0.9349 0.01515 0.0637 0.9564
Adult 0.0393 0.95989 0.0820 0.9456
Elderly People 0.0258 0.02496 0.8546 0.8468
Precision 0.9349 0.9599 0.8545 -
Specificity 0.9606 0.9626 0.9761 -
F-Score 0.9455 0.9527 0.8506 -

5.1.3 LFW Dataset

The confusion matrix for validation set evaluation results are in table 5.5 (Actual vs

Predicted values) which illustrates average of 10 independent other runs with same steps

in range of 0 to 1.

79

Univ
ers

iti
Mala

ya

Table 5.5: Confusion matrix for gender classification (LFW)

Actual \ Predicted Male Female Recall
Male 0.9827 0.0211 0.9942
Female 0.0173 0.9789 0.9394
Precision 0.9827 0.9789 -
Specificity 0.9394 0.9942 -
F-Score 0.9884 0.9587 -

5.1.4 M3C Dataset

In the previous chapter, we have explained how important it is to have a balanced dataset

and how an imbalanced dataset can affect the process of our model training. So we

decided to combine datasets, and then we perform oversampling and undersampling

methods to make sure we have a roughly balanced merged dataset to train our model, as

we explained in the previous chapter. Here in this section, we are explaining the results

for our experiment on the merged dataset.

The confusion matrix for validation set evaluation results are in tables 5.6 and 5.7

(Actual vs Predicted values) which illustrates average of 10 independent other runs with

same steps in range of 0 to 1.

Table 5.6: Confusion matrix for gender classification (Merged Dataset)

Actual \ Predicted Male Female Recall
Male 0.9401 0.0594 0.9683
Female 0.0599 0.9406 0.8907
Precision 0.9401 0.9406 -
Specificity 0.8907 0.9683 -
F-Score 0.9540 0.9150 -

Table 5.7: Confusion matrix for 3 age categories classification (Merged Dataset)

Actual \ Predicted Non-Adult Adult Elderly People Recall
Non-Adult 0.9296 0.0323 0.0168 0.8551
Adult 0.0328 0.9437 0.0695 0.9856
Elderly People 0.0376 0.0240 0.9137 0.7327
Precision 0.9296 0.9437 0.9137 -
Specificity 0.9859 0.8410 0.9930 -
F-Score 0.8908 0.9642 0.8133 -

80

Univ
ers

iti
Mala

ya

5.2 Benchmark Evaluation Results

In this section, we want to perform a benchmark evaluation of our proposed model.

We want to evaluate how our model performs for age and gender classification and age

estimation.

5.2.1 Gender Classification

We have three different datasets to evaluate our model for gender classification, which

are, namely, LFW, MORPH-II, and Adience datasets. We use the M3C plus training set

of each mentioned dataset as the training set and test or validation set of the selected

dataset as the test or validation set following the respective protocol of each dataset that is

explained in the previous chapter. In table 5.10, we have compared our results with other

works that have done experiments on these datasets using the same protocol. The LFW

dataset has the same protocol as we have in section 5.1, so we will not repeat the same

experiment, and we compare gained results in table 5.5 in that section with our results in

this section. We have trained our model once with the original training set of each dataset

and once with the M3C dataset.

Table 5.8: Mean Confusion matrix for gender classification (Adience) by M3C

Actual \ Predicted Male Female Recall
Male 0.9069 0.0985 0.8887
Female 0.0931 0.9015 0.9178
Precision 0.9069 0.9015 -
Specificity 0.9178 0.8887 -
F-Score 0.8977 0.9095 -

Table 5.9: Mean Confusion matrix for gender classification (MORPH-II) by M3C

Actual \ Predicted Male Female Recall
Male 0.9580 0.1260 0.9115
Female 0.0420 0.8740 0.9389
Precision 0.9581 0.8740 -
Specificity 0.9389 0.9115 -
F-Score 0.9342 0.9052 -

81

Univ
ers

iti
Mala

ya

Table 5.10: Overall accuracy for gender classification on benchmark datasets

Author \ Dataset LFW Adience MORPH-II
Our model trained by original training set - 89.2% 91.47%

Our model trained by M3C dataset 98.19% 90.4% 92.24%

CNN + Fine tuning + oversampling - 87.2% -
(van de Wolfshaar et al., 2015)

CNN (Levi, G., & Hassner, T. 2015). - 86.8% -

LBP + FPLBP + SVM (Eidinger et al., 2014) - 76.1% -

LBP + SVM (Ramón-Balmaseda, 2012) 75.10% - 88%

LBP + Adaboost (Shan, 2010) 94.44% - -

Boosted LBP + Adaboost (Shan, 2012) 94.81% - -

BIF + LPQ + BSIF 96.7% - 97.1%
(Gupta, Kumar, Yadav, & Shrivastava, 2018)

We have computed mean confusion matrices and evaluation metrics for Adience,

MORPH-II and LFW datasets which are illustrated in tables 5.8, 5.9 and 5.5 respectively.

All these confusion matrices, show a very good classification accuracy. As it is illustrated

in 5.10, in both approaches (with and without M3C dataset) that we have employed to

train our model, we have gained highest accuracy comparing to other methods on same

datasets as we have used.

5.2.2 Age Group Classification

We have used the Adience dataset to evaluate our model for gender classification. Since the

protocol is to use 5-fold cross-validation, we use four folds as the training set and the rest

as the test or validation set of the Adience dataset for our experiment. As we explained in

the previous chapter, we report the average value of the results for five different runs using

5-fold cross-validation and also the results for the 1-off method. The overall accuracy

results for exact and 1-off methods are illustrated in table 5.11. The confusion matrix,

82

Univ
ers

iti
Mala

ya

precision, recall, specificity and f1 score for age classification over Adience dataset are in

the tables 5.12 and 5.13.

Table 5.11: Mean age classification accuracy and 1-off accuracy results on Adience

Method / Author Exact age group 1-off age group
Our model 76.44 ± 0.1 97.62 ± 0.6
LBP+FPLBP (Eidinger et al., 2014) 44.5 ± 2.3 80.7 ± 1.1
LBP+FPLBP+Dropout 0.8 (Eidinger et al., 2014) 45.1 ± 2.6 79.5 ± 1.4
CNN with single crop (Levi & Hassner, 2015) 49.5 ± 4.4 84.6 ± 1.7
CNN with oversampling (Levi & Hassner, 2015) 50.7 ± 5.1 84.7 ± 2.2
DEX w IMDB-WIKI (Rothe, 2018) 64.0 ± 4.2 96.6 ± 0.9
DEX w/o IMDB-WIKI (Rothe, 2018) 55.6 ± 6.1 89.7 ± 1.8
DCNN (J.-C. Chen et al., 2016) 52.88 ± 6 88.45 ± 2.2

Table 5.12: Mean confusion matrix for age classification on Adience (Exact)

0-2 4-6 8-13 15-20 25-32 38-43 48-53 60+ Recall
0-2 0.760 0.106 0 0 0 0.003 0 0 0.887
4-6 0.201 0.703 0.079 0.026 0 0.003 0 0 0.678
8-13 0.019 0.175 0.829 0.110 0.010 0.003 0.008 0 0.744
15-20 0.003 0.009 0.091 0.726 0.043 0.028 0.008 0 0.689
25-32 0.008 0.003 0 0.11 0.872 0.125 0.017 0.008 0.888
38-43 0.005 0.003 0 0.004 0.069 0.706 0.325 0.008 0.715
48-53 0 0 0 0 0.004 0.128 0.583 0.416 0.427
60+ 0.003 0 0 0.018 0 0.003 0.058 0.567 0.839

Precision 0.760 0.703 0.829 0.726 0.872 0.706 0.583 0.567 -
Specificity 0.960 0.956 0.972 0.972 0.953 0.956 0.978 0.978 -
F-Score 0.819 0.690 0.784 0.707 0.880 0.711 0.493 0.677 -

Table 5.13: Mean confusion matrix for age classification on Adience (1-off)

0-2 4-6 8-13 15-20 25-32 38-43 48-53 60+ Recall
0-2 0.961 0 0 0 0 0.003 0 0 0.997
4-6 0 0.984 0 0.026 0 0.003 0 0 0.978
8-13 0.019 0 1 0 0.010 0.003 0.008 0 0.955
15-20 0.003 0.009 0 0.951 0 0.028 0.008 0 0.939
25-32 0.008 0.003 0 0 0.985 0 0.017 0.008 0.989
38-43 0.005 0.003 0 0.004 0 0.959 0 0.008 0.984
48-53 0 0 0 0 0.004 0 0.967 0 0.975
60+ 0.003 0 0 0.018 0 0.003 0 0.983 0.952

Precision 0.961 0.984 1 0.951 0.985 0.959 0.967 0.983 -
Specificity 0.993 0.998 1 0.995 0.994 0.994 0.998 0.999 -
F-Score 0.979 0.981 0.977 0.945 0.987 0.971 0.971 0.967 -

83

Univ
ers

iti
Mala

ya

5.2.3 Age Estimation

As we explained in the previous chapter, we train our model with the M-Ages dataset

then we perform test following the respective protocol for each dataset that we mentioned

before in the previous chapter. In table 5.14, we have illustrated the results for FG-NET,

LAP, CACD, and MORPH-II datasets. Regarding the FG-NET and LAP datasets, we have

achieved better MAE compared to other methods in table 5.14 and regarding the CACD

and MORPH-II datasets we have achieved much lower MAE compared to other methods.

As it is illustrated in table 5.15, we have achieved smaller 𝜖-error for LAP dataset.

Table 5.14: Average MAE (years) for age estimation on benchmark datasets

Author \ Dataset FG-NET LAP CACD MORPH-II
Our model 3.02 3.22 4.28 2.21

LBP Kernel Density 5.09 - - -
Estimate (Ylioinas, 2013)

Label Distribution (CPNN) 4.76 - - -
(Geng, Yin, & Zhou, 2013)

Biologically InspiredAAM 4.18 - - -
(Hong, Wen, Fang, & Ding, 2013)

DEX (Rothe, 2018) 4.63 5.580 6.521 3.25

DEX with IMDB-WIKI (Rothe, 2018) 3.09 3.252 - 2.68

Method by (Guo & Mu, 2010) - - - 4.46

Pretrained CNN model, softmax - - - 3.03
(Tan, Zhou, Wan, Lei, & Li, 2016)

BIF+LR (Liu, Lei, Wan, & Li, 2015) - - 7.79 -

BIF+SVR (Guo & Mu, 2013) - - 7.67 -

Fused method - - 5.24 2.95
(Wan, Tan, Lei, Guo, & Li, 2018)

84

Univ
ers

iti
Mala

ya

Table 5.15: Average 𝜖−error for age estimation on LAP dataset

Author \ Dataset LAP
Our model 0.276

DEX (Rothe, 2018) 0.469

DEX with IMDB-WIKI (Rothe, 2018) 0.282

5.3 H-HP-ELM vs Softmax

We have performed two independent experiments for Softmax and H-HP-ELM classi-

fiers, as we explained in chapter 3 to classify outputs from autoencoders of our proposed

architecture. The idea of this experiment is to compare the performance of the classifi-

cation layer only. In table 5.16 our results for H-HP-ELM and results for conventional

architectures is illustrated in table 5.17. Model evaluation for the LFW dataset is trained

using M3C, and it is evaluated by the testing set of the LFW dataset. Regarding the age

classification, we have performed this experiment for 3 age categories, as we explained

earlier.

Table 5.16: Accuracy and Training time for H-HP-ELM

Age Classification Gender Classification
Dataset Accuracy Time Accuracy Time

MORPH-II 87.30% 01:12:51 91.47% 00:59:37
WIKI 85.14% 00:05:03 83.42% 00:05:10
IMDB 84.50% 00:28:33 82.20% 00:31:21
LFW - - 98.19% -

ADIENCE 93.57% 00:38:22 89.20% 00:36:54
M3C 93.91% 01:47:19 94.03% 01:31:41

Table 5.17: Accuracy and Training time for Fully Connected Layers + Softmax

Age Classification Gender Classification
Dataset Accuracy Time Accuracy Time

MORPH-II 83.95% 02:49:03 78.20% 02:03:44
WIKI 86.35% 00:22:34 81.95% 00:31:01
IMDB 79.65% 02:13:41 75.35% 02:24:00
LFW - - 98.34% -

ADIENCE 79.90% 02:39:28 81.45% 02:44:13
M3C 87.23% 04:01:51 90.08% 03:17:21

85

Univ
ers

iti
Mala

ya

As it is illustrated, we have analyzed age and gender classification in terms of training

time and overall accuracy for each dataset. The fact that both models are identical in feature

extraction layers but with different classifiers, we can then compare the impact of H-HP-

ELM in terms of accuracy and training time. For example, results for the MORPH-II

dataset clearly, show an improvement in both accuracy and training time. The training

time for the Softmax model is 2 hours, while for the H-HP-ELM, it is almost 1 hour, and

the overall accuracy improved from 83.95% and 78.20% to 87.30% and 91.47% for age

and gender classification respectively. Similar improvements happened in other datasets

as it is shown in tables 5.16 and 5.17. This experiment proves that we have achieved our

objective to overcome the limitation of Softmax, considering the achieved results.

5.4 Summary

In this chapter, we have illustrated our experimental results by metrics that we explained

in the previous chapter. We have presented how the H-HP-ELM layer can improve

classification problems and how it can overcome the Softmax limitation that we explained

in the first chapter. We have shown how gender classification, age classification and age

estimation can be improved by using H-ELM classifiers and regressors.

86

Univ
ers

iti
Mala

ya

CHAPTER 6: CONCLUSION AND FURTHER WORKS

6.1 Conclusion

We have achieved a better solution for age and gender classification in terms of accuracy

and performance based on the results from the previous section comparing to the methods

that are using Softmax as the classifier. We have also achieved a better solution for age

estimation compared to the methods that are using other regressors as the age estimator.

We have fulfilled our research objectives successfully as explained below:

• We managed to build our architecture using Hierarchical Extreme Learning Ma-

chines as the classifier part. The algorithm 4 in chapter 3, illustrates how we used

HP-ELM in Hierarchical form by using a sparse autoencoder (algorithm 1 in chapter

3) and high performance ELM to classify age and gender. In section 3 in chapter 5,

we have shown how accuracy and training time are improved by using H-HP-ELM

instead of Softmax. Considering the results from section 5.3, we have clearly met

first and second objectives.

• In chapter 3 we explained how supervised and unsupervised features are extracted.

We eliminated the classifier and fully connected layers of a pre-trained CNN model

to feed-forward the input through the whole network to extract unsupervised fea-

tures. We also used HOG and Action Units as our supervised feature extraction

techniques. We used three independent autoencoders to compact and fuse these

three feature groups. In chapter 5 our benchmark evaluation results illustrates that

we have achieved better accuracy and MAE compared to other methods even with

Softmax classifier. It shows feature extraction methods that we have used are suc-

cessfully representing good features of face of each individual. In other words we

have successfully fulfilled the third and forth objectives.

87

Univ
ers

iti
Mala

ya

In this research, we also realized that using a pre-trained CNN model can help to

avoid under/over-fitting if the dataset is too small. When we are using small datasets for

CNN networks, it is most likely to over-fit or under-fit because convolutional layers can

not generalize with small datasets, but in this research, because we have used a pre-trained

CNN, we could avoid this problem.

6.2 Further Work

Our research still suffers from a couple of limitations that can be addressed by other

researchers for further researches. The very first limitation is that we need a large amount

of data for training. There are limited non-commercial labeled facial datasets for age and

gender, which can be addressed by other researchers to establish research on it and to

collect systematic and useful facial images from different individuals with different ages

to have more diversity in facial image datasets. Another problem for deep networks that

we can address is that we need a high amount of RAM and GPU, which, although there

are few solutions for them still they are not the best solutions. ELM networks suffer from

uncertainty issues that can be addressed for further research.

88

Univ
ers

iti
Mala

ya

REFERENCES

Akusok, A., Björk, K.-M., Miche, Y., & Lendasse, A. (2015). High-Performance Extreme
Learning Machines: a Complete Toolbox for Big-Data Applications. IEEE Access,
3, 1011–1025.

Aleksander, I., De Gregorio, M., França, F. M. G., Lima, P. M. V., & Morton, H. (2009).
A Brief Introduction to Weightless Neural Systems. In Esann (pp. 299–305).

Azzopardi, G., Greco, A., & Vento, M. (2016). Gender Recognition From Face Images
Using A Fusion of SVM Classifiers. In International Conference on Image Analysis
and Recognition (pp. 533–538).

Baltrušaitis, T., Mahmoud, M., & Robinson, P. (2015). Cross-Dataset Learning and
Person-specific Normalisation for Automatic Action Unit Detection. In Automatic
Face and Gesture Recognition (FG), 2015 11th IEEE International Conference
and Workshops on (Vol. 6, pp. 1–6).

Baltrušaitis, T., Robinson, P., & Morency, L.-P. (2016). Openface: an Open Source Facial
Behavior Analysis Toolkit. In Applications of Computer Vision (WACV), 2016
IEEE Winter Conference on (pp. 1–10).

Beck, A., & Teboulle, M. (2009). A Fast Iterative Shrinkage-Thresholding Algorithm for
Linear Inverse Problems. SIAM Journal on Imaging Sciences, 2(1), 183–202.

Bengio, Y., Boulanger-Lewandowski, N., & Pascanu, R. (2013). Advances In Optimizing
Recurrent Networks. In Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference On (pp. 8624–8628).

Bengio, Y., et al. (2009). Learning Deep Architectures for AI. Foundations and Trends®
in Machine Learning, 2(1), 1–127.

Chen, B.-C., Chen, C.-S., & Hsu, W. H. (2014). Cross-Age Reference Coding for
Age-invariant Face Recognition and Retrieval. In Proceedings of the European
Conference on Computer Vision (ECCV).

Chen, J.-C., Kumar, A., Ranjan, R., Patel, V. M., Alavi, A., & Chellappa, R. (2016).
A Cascaded Convolutional Neural Network for Age Estimation of Unconstrained
Faces. In 2016 IEEE 8th International Conference on Biometrics Theory, Appli-

89

Univ
ers

iti
Mala

ya

cations and Systems (btas) (pp. 1–8).

Chen, Y., Jiang, H., Li, C., Jia, X., & Ghamisi, P. (2016). Deep Feature Extraction and
Classification of Hyperspectral Images Based on Convolutional Neural Networks.
IEEE Transactions on Geoscience and Remote Sensing, 54(10), 6232–6251.

Dahl, G. E., Sainath, T. N., & Hinton, G. E. (2013). Improving Deep Neural Networks for
Lvcsr Using Rectified Linear Units and Dropout. In Acoustics, Speech and Signal
Processing (icassp), 2013 IEEE International Conference on (pp. 8609–8613).

Dalal, N., & Triggs, B. (2005). Histograms of Oriented Gradients for Human Detection.
In Computer Vision and Pattern Recognition, 2005. Cvpr 2005. IEEE Computer
Society Conference on (Vol. 1, pp. 886–893).

Damelin, S. B., & Miller Jr, W. (2012). The Mathematics of Signal Processing (No. 48).
Cambridge University Press.

Eidinger, E., Enbar, R., & Hassner, T. (2014). Age and Gender Estimation of Unfiltered
Faces. IEEE Transactions on Information Forensics and Security, 9(12), 2170–
2179.

Escalera, S., Fabian, J., Pardo, P., Baro, X., Gonzalez, J., Escalante, H. J., . . . Guyon,
I. (2015). Chalearn Looking at People 2015: Apparent Age and Cultural Event
Recognition Datasets and Results. In Proceedings of the IEEE International
Conference on Computer Vision Workshops (pp. 1–9).

Fabian Benitez-Quiroz, C., Srinivasan, R., & Martinez, A. M. (2016). Emotionet: An
Accurate, Real-time Algorithm for The Automatic Annotation of a Million Facial
Expressions in the Wild. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (pp. 5562–5570).

Felzenszwalb, P., McAllester, D., & Ramanan, D. (2008). A Discriminatively Trained,
Multiscale, Deformable Part Model. In Computer Vision and Pattern Recognition,
2008. cvpr 2008. IEEE Conference on (pp. 1–8).

Geng, X., Yin, C., & Zhou, Z.-H. (2013). Facial Age Estimation by Learning From Label
Distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(10), 2401–2412.

90

Univ
ers

iti
Mala

ya

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. (http://
www.deeplearningbook.org)

Guo, G., & Mu, G. (2010). Human Age Estimation: What Is The Influence Across Race
and Gender? In 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition-Workshops (pp. 71–78).

Guo, G., & Mu, G. (2013). Joint Estimation of Age, Gender and Ethnicity: CCA vs. PLS.
In 2013 10th IEEE International Conference and Workshops on Automatic Face
and Gesture Recognition (FG) (pp. 1–6).

Gupta, R., Kumar, S., Yadav, P., & Shrivastava, S. (2018). Identification of Age, Gender,
& Race SMT (Scare, Marks, Tattoos) from Unconstrained Facial Images Using
Statistical Techniques. In 2018 International Conference on Smart Computing
and Electronic Enterprise (icscee) (pp. 1–8).

Hess, U., Adams Jr, R. B., & Kleck, R. E. (2004). Facial Appearance, Gender, and
Emotion Expression. Emotion, 4(4), 378.

Hinton, G. (2010). A Practical Guide to Training Restricted Boltzmann Machines.
Momentum, 9(1), 926.

Hong, L., Wen, D., Fang, C., & Ding, X. (2013). A new Biologically Inspired Active
Appearance Model for Face Age Estimation by Using Local Ordinal Ranking. In
Proceedings of the Fifth International Conference on Internet Multimedia Com-
puting and Service (pp. 327–330).

Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2007, October). Labeled
Faces in the Wild: A Database for Studying Face Recognition in Unconstrained
Environments (Tech. Rep. No. 07-49). University of Massachusetts, Amherst.

Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme Learning Machine: Theory
and Applications. Neurocomputing, 70(1), 489–501.

Huang, H.-Y. (2009). Gender Differences In Facial Expressions of Emotions (Unpublished
doctoral dissertation). Humboldt State University.

Huerta, I., Fernández, C., Segura, C., Hernando, J., & Prati, A. (2015). A Deep Analysis
on Age Estimation. Pattern Recognition Letters, 68, 239–249.

91

Univ
ers

iti
Mala

ya

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Ivakhnenko, A. G. (1971). Polynomial Theory of Complex Systems. IEEE Transactions
On Systems, Man, and Cybernetics, 1(4), 364–378.

Javidan Darugar, M., & Loo, C. K. (2017). Gender Estimation Based on Supervised Hog,
Action Units and Unsupervised cnn Feature Extraction. In Artificial Intelligence
and Robotics (IRANOPEN), 2017 (pp. 23–27).

Lanitis, A., & Cootes, T. (2002). FG-NET Aging Data Base. Cyprus College, 2(3), 5.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based Learning Applied
To Document Recognition. Proceedings of The IEEE, 86(11), 2278–2324.

Levi, G., & Hassner, T. (2015). Age and Gender Classification Using Convolutional
Neural Networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops (pp. 34–42).

Liu, T., Lei, Z., Wan, J., & Li, S. Z. (2015). DFDNET: Discriminant Face Descriptor Net-
work for Facial Age Estimation. In Chinese Conference on Biometric Recognition
(pp. 649–658).

Ma, J., Lu, C., Zhang, W., & Tang, Y. (2014). 1255. Health Assessment and Fault
Diagnosis for Centrifugal Pumps Using Softmax Regression. Journal of Vibro-
engineering, 16(3).

Nazir, M., Jan, Z., & Sajjad, M. (2018). Facial Expression Recognition using Histogram
of Oriented Gradients Based Transformed Features. Cluster Computing, 21(1),
539–548.

Nigam, S., Singh, R., & Misra, A. (2018). Efficient Facial Expression Recognition
using Histogram of Oriented Gradients in Wavelet Domain. Multimedia Tools and
Applications, 77(21), 28725–28747.

Ollivier, Y., Tallec, C., & Charpiat, G. (2015). Training Recurrent Networks Online
Without Backtracking. arXiv preprint arXiv:1507.07680.

Press, W. H. (1989). Numerical Recipes In Pascal: The Art of Scientific Computing
(Vol. 1). Cambridge University Press.

92

Univ
ers

iti
Mala

ya

Ramón-Balmaseda. (2012). Gender Classification in Large Databases. In Iberoamerican
Congress on Pattern Recognition (pp. 74–81).

Ricanek, K., & Tesafaye, T. (2006). Morph: A Longitudinal Image Database of Normal
Adult Age-progression. In Automatic Face and Gesture Recognition, 2006. fgr
2006. 7th International Conference on (pp. 341–345).

Robinson, A. J. (1994). An Application of Recurrent Nets to Phone Probability Estimation.
IEEE Transactions on Neural Networks, 5(2), 298–305.

Rothe. (2018). Deep Expectation of Real and Apparent Age From a Single Image Without
Facial Landmarks. International Journal of Computer Vision, 126(2-4), 144–157.

Rothe, R., Timofte, R., & Gool, L. V. (2015, December). Dex: Deep Expectation
of Apparent Age From a Single Image. In IEEE International Conference on
Computer Vision Workshops (iccvw).

Rothe, R., Timofte, R., & Gool, L. V. (2016, July). Deep Expectation of Real and Apparent
Age From a Single Image Without Facial Landmarks. International Journal of
Computer Vision (IJCV).

Ruder, S. (2016). An Overview of Gradient Descent Optimization Algorithms. arXiv
preprint arXiv:1609.04747.

Sainath, T. N., Mohamed, A.-r., Kingsbury, B., & Ramabhadran, B. (2013). Deep Con-
volutional Neural Networks for lvcsr. In Acoustics, Speech and Signal Processing
(icassp), 2013 IEEE International Conference On (pp. 8614–8618).

Schmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview. Neural
Networks, 61, 85–117.

Shan, C. (2010). Gender Classification on Real-life Faces. In International Conference
on Advanced Concepts for Intelligent Vision Systems (pp. 323–331).

Shan, C. (2012). Learning Local Binary Patterns for Gender Classification on Real-world
Face Images. Pattern Recognition Letters, 33(4), 431–437.

Sun, Y., Chen, Y., Wang, X., & Tang, X. (2014). Deep Learning Face Representation by

93

Univ
ers

iti
Mala

ya

Joint Identification-verification. In Advances in Neural Information Processing
Systems (pp. 1988–1996).

Szegedy, C., Toshev, A., & Erhan, D. (2013). Deep Neural Networks for Object Detection.
In Advances in Neural Information Processing Systems (pp. 2553–2561).

Tan, Z., Zhou, S., Wan, J., Lei, Z., & Li, S. Z. (2016). Age Estimation Based on a
Single Network With Soft Softmax of Aging Modeling. In Asian Conference on
Computer Vision (pp. 203–216).

Tang, J., Deng, C., & Huang, G.-B. (2016). Extreme Learning Machine for Multilayer
Perceptron. IEEE Transactions on Neural Networks and Learning Systems, 27(4),
809–821.

Valstar, M. F., Jiang, B., Mehu, M., Pantic, M., & Scherer, K. (2011). The First Facial
Expression Recognition and Analysis Challenge. In Automatic Face & Gesture
Recognition and Workshops (fg 2011), 2011 IEEE International Conference on
(pp. 921–926).

van de Wolfshaar, J., Karaaba, M. F., & Wiering, M. A. (2015). Deep Convolutional
Neural Networks and Support Vector Machines for Gender Recognition. In 2015
IEEE Symposium Series on Computational Intelligence (pp. 188–195).

van Heeswijk, M., & Miche, Y. (2015). Binary/ternary Extreme Learning Machines.
Neurocomputing, 149, 187–197.

Verma, S., & Jariwala, K. N. (2018). Age & Gender Classification using Histogram of
Oriented Gradients and Back Propagation Neural Network.

Wan, J., Tan, Z., Lei, Z., Guo, G., & Li, S. Z. (2018). Auxiliary Demographic Infor-
mation Assisted Age Estimation With Cascaded Structure. IEEE Transactions on
Cybernetics, 48(9), 2531–2541.

Wang, W., Huang, Y., Wang, Y., & Wang, L. (2014). Generalized Autoencoder: A
Neural Network Framework for Dimensionality Reduction. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp.
490–497).

Wang, Y., Yao, H., & Zhao, S. (2016). Auto-encoder Based Dimensionality Reduction.

94

Univ
ers

iti
Mala

ya

Neurocomputing, 184, 232–242.

Widrow, B., Greenblatt, A., Kim, Y., & Park, D. (2013). The No-Prop Algorithm: A
New Learning Algorithm for Multilayer Neural Networks. Neural Networks, 37,
182–188.

Wu, W., Qian, C., Yang, S., Wang, Q., Cai, Y., & Zhou, Q. (2018). Look At Boundary:
A Boundary-Aware Face Alignment Algorithm. In Cvpr.

Ylioinas. (2013). Age Estimation Using Local Binary Pattern Kernel Density Estimate.
In International Conference on Image Analysis and Processing (pp. 141–150).

Zadeh, A., Chong Lim, Y., Baltrusaitis, T., & Morency, L.-P. (2017). Convolutional Ex-
perts Constrained Local Model for 3d Facial Landmark Detection. In Proceedings
of The IEEE International Conference on Computer Vision (pp. 2519–2528).

Zhao, W., & Du, S. (2016). Spectral–spatial Feature Extraction for Hyperspectral Image
Classification: A Dimension Reduction and Deep Learning Approach. IEEE
Transactions on Geoscience and Remote Sensing, 54(8), 4544–4554.

Zhou, B., Koerger, H., Wirth, M., Zwick, C., Martindale, C., Cruz, H., . . . Lukowicz,
P. (2016). Smart Soccer Shoe: Monitoring Foot-ball Interaction With Shoe
Integrated Textile Pressure Sensor Matrix. In Proceedings of the 2016 ACM
International Symposium on Wearable Computers (pp. 64–71).

Zhu, Q., Yeh, M.-C., Cheng, K.-T., & Avidan, S. (2006). Fast Human Detection using a
Cascade of Histograms of Oriented Gradients. In 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06) (Vol. 2, pp.
1491–1498).

95

Univ
ers

iti
Mala

ya

	Abstract
	Abstrak
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	Background
	Deep Neural Networks and Softmax

	Problem Statement
	Research Objectives
	Research Questions
	Proposed Method
	Contributions of the Study
	Dissertation Structure

	Background and Literature Review
	Deep Artificial Neural Networks
	Autoencoders
	Convolutional Neural Networks (CNN)

	Facial Feature Extraction
	Supervised Feature Extraction Techniques
	Histogram of Oriented Gradients
	Action Units

	Deep Feature Extraction Techniques
	Extreme Learning Machine
	Learning in Extreme Learning Machine
	High Performance Extreme Learning Machine
	Hierarchical Extreme Learning Machine

	Methodology
	Introduction
	Model Overview
	Preprocessing
	Initial Layer or Input Layer
	Feature Extraction Layer
	Supervised Feature Extraction Layer
	Action Units Features Extraction
	HOG Features Extraction

	Implementation of AUs and HOG
	Unsupervised Feature Extraction Layer
	Pre-Trained CNN
	Architecture of the Pre-trained CNN
	CNN Features

	Feature Fusion and Dimensionality Reduction Layers
	Autoencoder for AUs
	Autoencoder for HOG
	Autoencoder for CNN
	Combining Features

	Classification Layer
	ELM Autoencoder

	Softmax vs H-HP-ELM
	Summary

	Experiments
	Introduction
	Autoencoder Dataset
	Classification and Estimation Datasets
	FG-NET Dataset
	LAP Dataset
	CACD Dataset
	LFW Dataset
	MORPH-II Dataset
	WIKI-IMDB Dataset
	Adience Dataset
	M3C Dataset
	M-Ages Datasets

	Environment
	Data Split for 3 Age Categories and Gender Classification
	Model Evaluation
	Benchmark Evaluation For Age Estimation
	Summary

	Experimental Results and Discussion
	Age and Gender Classification
	MORPH-II Dataset
	Adience Dataset
	LFW Dataset
	M3C Dataset

	Benchmark Evaluation Results
	Gender Classification
	Age Group Classification
	Age Estimation

	H-HP-ELM vs Softmax
	Summary

	Conclusion and Further Works
	Conclusion
	Further Work

	References

