CHAPTER 4

EMPIRICAL RESULTS

4.1 Introduction

This chapter reports the findings on the response of commercial bank lending to the money market interest rate changes in Malaysia. The two-step principle suggested by Cover (1992), and Dell'Ariccia and Garibaldi (1998) discussed in Chapter 3 forms the basis of analysis. The finding of the two-step procedure is divided into two sections. The first part relates to the estimation of the money market rate processes and the residuals obtained from the model for these processes are used for constructing the positive and negative interest rate shocks. This is discussed in Section 4.2. The effect of the interest rate shocks on aggregate commercial bank lending is discussed in Section 4.3.

As mentioned in Chapter 3, unit root tests for all the variables are performed. Cointegration tests are used to detect presence of long-run relationships. The vector error correction model is used for modelling the money market interest rate processes and also the relationship between commercial bank lending and interest rate shocks.

4.2. Money Market Interest Rate Shocks

4.2.1. Unit Root Tests

The first step is to determine if unit roots are present in the logarithms of the seven-day money market interest rate (LMM7), one-month money market interest rate (LMM1), three-month money market interest rate (LMM3), gross domestic product (LGDP) and consumer price index (LCPI). This is for estimating the stationarity of theses series.

These series are referred to as the level of the data. If the unit root test fails to reject the test in levels but rejects the test in first differences, the series is not stationary in their levels and it needs to be differenced to achieve stationarity. It means that the series contains one unit root and is integrated of order one, I(1). The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root tests are used to test for presence of unit roots in LMM1, LMM3, LMM7, LGDP and LCPI.

This ADF test and PP test depend crucially on the correct choice of deterministic components such as constant and trend terms, and sufficient lagged terms of the dependent variable are to be included to ensure that the error terms behave like white noise. A constant is included in the test regression in testing for presence of unit roots in the LMM7, LMM1, LMM3 because the series have non-zero mean

level. The t-statistic has a nonstandard distribution if the underlying process contains a unit root with a zero constant. A constant and linear trend are included in the test regression in testing for presence of unit roots in LGDP and LCPI, because the series have non-zero mean level and a trend. The t-statistic has a nonstandard distribution if the underlying process contains a unit root with a zero linear trend. The test is run with 1 to 8 lagged dependent variable in the right hand side of the test regression.

The ADF unit root test for level of the variables is presented in Table 4.1. The use of the Schwarz criterion for selecting the optimal lag length suggests lag 2 for LMM1; lag 1 for LMM3 and LMM7; lag 4 for LGDP and lag 2 for LCPI. The ADF test statistics are not significant for all the level of the data (LMM1, LMM3, LMM7, LGDP and LCPI). This shows that these variables have at least a unit root. It means the series are not stationary at their level.

Presence of unit root are tested for the first differences of the series. The results are also presented in Table 4.1. The Schwarz criterion suggests an optimal lag length of 1 for LMM1, LMM3, LMM7 and LCPI but lag 3 for LGDP. The ADF test statistics are significant, this rejecting the null hypothesis of unit root for four of the variables (LMM1, LMM3, LMM7, and LCPI) at first differences. This means that the series are stationary after taking first differences. The null hypothesis cannot be rejected for LGDP, suggesting this series is not first difference stationary.

AUGMENTED DICKEY-FULLER (ADF) UNIT ROOT TESTS

A L M. B. C. M. C.		0.0						
Number of lagged dependent variable	1	2	3	4	5	6	7	∞
LMM7								
LEVEL	-1.482	-1.915	-2.282	-2.955 **	-2.187	-2.033	-2.566	-2.060
SCHWARZ CRITERION	-1.031	-0.962	-0.890	-0.858	-0.732	-0.616	-0.585	-0.432
IST DIF	-3.120 **	-2.705 *	-2.414	-3.063 **	-2.908 *	-1.738	-2.148	-1.376
SCHWARZ CRITERION	-0.956	-0.839	-0.707	-0.679	-0.575	-0.455	-0.369	-0.229
LMM1								
LEVEL	-1.269	-2.119	-2.248	-2.511	-1.930	-2.028	-2.198	-2.156
SCHWARZ CRITERION	-1.115	-1.120	-1.030	-0.954	-0.821	-0.761	-0.648	-0.511
IST DIF	-2.942 **	-2.731 *	-2.627 *	-2.978 **	2.617 *	-1.749	-1.603	-1.417
SCHWARZ CRITERION	-1.093	-0.983	-0.866	-0.800	-0.721	-0.575	-0.433	-0.274
LMM3								
LEVEL	-1.416	-1.144	-2.314	-2.697 *	-2.185	-2.131	-2.085	-1.982
SCHWARZ CRITERION	-0.863	-0.760	-0.794	-0.752	-0.615	-0.515	-0.381	-0.234
IST DIF	-4.252 ***	-2.730 *	-2.541	-2.827 *	-2.783 *	-2.226	-2.039	-1.356
SCHWARZ CRITERION	-0.817	-0.739	-0.639	-0.562	-0.461	-0.325	-0.182	-0.043
TGDP								
LEVEL	-2.885	-1.508	-0.684	-2.344	-1.978	-0.976	-0.818	-1.654
SCHWARZ CRITERION	-2.730	-2.840	-2.983	-3.634	-3.497	-3.401	-3.444	-3.528
IST DIF	-8.417 ***	-7.235 ***	-2.148	-2.362	-2.984	-3.318	-1.891	-2.562
SCHWARZ CRITERION	-2.869	-3.064	-3.564	-3.465	-3.467	-3.521	-3.517	-3.534
ICPI								
LEVEL	-2.124	-2.033	-1.726	-2.439	-1.737	-2.118	-2.787	-2,499
SCHWARZ CRITERION	-7.286	-7.430	-7.302	-7.304	-7.190	-7.190	-7.138	-7.082
IST DIF	-6.073 ***	-4.313 ***	-2.483	-2.885	-2.647	-2.481	-2.927	-2.661
SCHWARZ CRITERION	-7.409	-7.308	-7.220	-7.187	-7.080	-6.962	-6.938	-6.835
NOTE	Figures in bold are for the model with optimal lag length chosen using the Schwarz criterion.	for the model with	optimal lag lengti	h chosen using the	Schwarz criterion	•		

Figures in bold are for the model with optimal lag length chosen using the Schwarz criterion.

*** Significant at 1% Level

** Significant at 5% Level

* Significant at 10% Lvel

Level: At the level of the series

1st Dif: At the first difference of the series

TABLE 4.2	PHILLIPS-PERRON (PP) UNIT ROOT TESTS	ERRON (PP) UNIT ROO	T TESTS				
TRUNCATION LAG	1	2	3	4	5	6	7	8
LMM7								
LEVEL	-0.677	-0.938	-1.093	-1.192	-1.218	-1.200	-1.179	-1.145
IST DIF	-3.915 ***	-3.948 ***	-3.963 ***	-3.998 ***	-3.966 ***	-3.905 ***	-3.875 ***	-3.834
LMM1								
LEVEL	-0.531	-0.827	-0.990	-1.075	-1.090	1	-1.043	-1.010
IST DIF	-4.023 ***	-4.102 *** -4.140 ***	4.140 ***	4.160 ***	4.123 ***	4.081 ***	4.043 ***	4.011
LMM3								
LEVEL	-0.986	-1.089	-2.222	-1.315	-1.330	-1.310	+	-1.257
	The second secon					-		

*** Significant at 1% Level

IST DIF

-7.231 ***

-7.874 *** -2.876

-8.730 *** -2.864

-8.102 ***

-8.066 ***

-8.722 ***

-9.417 *** -3.144

-8.998 ***

-3.224 *

-3.064

-3.155

-3.140

-3.070

IST DIF

LEVEL LCPI

-1.866

-1.707 -5.639 ***

-1.564

-1.600

-1.565

-1.445

-1.313

-1.179

-5.667 ***

-5.662 ***

-5.674 ***

-5.724 ***

-5.791 ***

-5.852 ***

-5.676 ***

LEVEL LGDP IST DIF

LEVEL

-0.811

-1.020

4.236 ***

4.299 ***

-4.434 *** -1.206

4.545 ***

4.643 ***

4.728 ***

-4.784 ***

4.809 ***

-1.346

-1.457

-1.541

-1.595

-1.624

LLOAN

IST DIF

-4.503 ***

-4.688 ***

4.719 ***

-4.739 ***

-4.714 ***

-4.681 ***

4.660 ***

4.641 ***

1st Dif: At the first difference of the series

34

^{**} Significant at 5% Level

* Significant at 10% Lvel

Level : At the level of the series

The ADF test is not robust to a mild class of heteroscedastic and autocorrelated disturbance terms. The PP unit root test is more robust as the procedure uses a non-parametric correction to the t-statistic of the AR(1) coefficient to account for the serial correlation and heteroscedastic errors

The PP unit root test for the level and first difference of the variables LMM7, LMM1, LMM3, LGDP and LCPI are presented in Table 4.2. The results show that the test does not reject the null hypothesis of a unit root for the level of the series. This means the series are non-stationary at level. However the PP test for first difference of the series rejects the null hypothesis of a unit root at one percent level. This suggests that all five series are I(1).

4.2.2 Cointegration

The unit root tests shows that the variables LMM7, LMM1, LMM3, LGDP and LCPI are non-stationary at the level but stationary after taking first difference. It is tested if LMM7, LGDP and LCPI are cointegrated. The cointegration test is also performed using LMM1 and LMM3. To take into account the possibility of a structural break, dummy variable is added in the test regression. This is to take care of the changes in the financial market in Malaysia after the implementation of the capital control since the fourth quarter of year 1998. The results for the cointegration test are presented in Table 4.3.

Table 4.3 Testing for Cointegration between Interest Rate, CPI and GDP

Seven-day Money Market Interest Rate (LMM7)

Eigenvalue	Likelihood Ratio	5 Percent Critical Value	l Percent Critical Value	Hypothesized No. of CE(s)
0.566149	48.55781	29.68	35,65	None **
0.274845	15.15563	15.41	20.04	At most 1
0.055897	2.300815	3.76	6.65	At most 2

One-month Money Market Interest Rate (LMM1)

Eigenvalue	Likelihood Ratio	5 Percent Critical Value	l Percent Critical Value	Hypothesized No. of CE(s)
0.565365	50.13231	29.68	35.65	None **
0.306697	16.80238	15.41	20.04	At most 1 *
0.052352	2.150880	3.76	6.65	At most 2

Three-month Money market Interest Rate (LMM3)

Eigenvalue	Likelihood Ratio	5 Percent Critical Value	1 Percent Critical Value	Hypothesized No. of CE(s)
0.563962	47.20008	29.68	35.65	None **
0.243858	13.99900	15.41	20.04	At most 1
0.068025	2.817979	3.76	6.65	At most 2

Notes: *(**) denotes rejection of the hypothesis at 5%(1%) significance level

CE refers to cointegration equation

The number of lag used in the tests is 1

Test assumption: Linear deterministic trend in the data

Intercept (no trend) in CE

Exogenous series: Dummy variable (1 for fourth quarter of 1998 to

second quarter of 2000; 0 otherwise)

As shown in Table 4.3 one cointegration equation is found for LMM7, LCPI and LGDP. Two cointegration equations are found for LMM1, LCPI and LGDP. One cointegration equation is found for LMM3, LCPI and LGDP. This shows that a long-run equilibrium relationship exists among the variables, that is, the money market interest rates move in random with CPI and GDP in long run. The normalized cointegrating equations are presented in Tables 4.4.

Table 4.4 Normalized Cointegrating Equation

			Depen	dent Variable		
		LMM7 *	LMM1 (First CE)	LCPI ** (Second CE)	LMM3	*
ss saft	LCPI	82.394 (65.355)			74.161 (64.229)	
Dependent Variables	LGDP	-38.384 (30.505)	0.396 (0.383)	0.473 (0.018)	-34.518 (29.903)	
Ä Š	Constant	26.353	-2.322	-0.374746	23.623	-

Notes: The figures in parentheses are standard errors.

4.2.3 Error Correction Model

The Error Correction model (ECM) is employed to estimate the relationship between the interest rate, CPI and GDP. The ECM accounts for the long and short run relationships among the variables. Any deviation from the long-run equilibrium is corrected gradually through a series of partial short-run

^{*} One Cointegrating equation.

^{**} Two Cointegrating equations.

adjustments. This is incorporated in the model by including the error correction term (ECT) that is obtained from the cointegrating equation.

As there are two cointegration equations for LMM1, LCPI and LGDP, two ECTs are used in the model. For other cases where one cointegration equation is found, only one ECT is used.

The ECTs in the equations for LMM7, LMM1 and LMM3 are shown as follow:-

LMM7: $Z_t = -26.35310 + LMM7_t + 38.38410 LGDP_t - 82.3944010LCPI_t$

LMM1: $Z_{1t} = 2.321697 + LMM1_{t} - 0.395834LGDP_{t}$

 $Z_{2t} = 0.374746 + LCPI_t - 0.473161LGDP_t$

LMM3: $Z_t = -23.62339 + LMM3_t + 34.51768 LGDP_t - 74.16050 LCPI_t$

Table 4.5 reports the ECM for the three interest rates. ECMs with 1 to 8 lags of interest rate, LGDP and LCPI were estimated. The models that are reported in Table 4.5 have an optimal lag length as determined by the Schwarz criterion. All the ECTs are significant. The first ECT for the model of LMM1 is significant at the 1 percent level and the ECT for LMM3 and LMM7 and the second ECT for LMM1 are significant at the 10 percent level. The dummy variable is only significant in the case of LMM1. The short run responses to GDP and CPI seen not significant. Long term adjustments may be a result of market forces or government intervention through monetary policy. In the long run, all the three

interest rate series adjusted positively to increase in GDP but negatively to an increase in CPI with a one quarter lag. This shows that interest rate has been used as a counter business cyclical tool for long term targeting. The negative relationship with CPI seems an outcome of market reaction to such policy. This could be a result of the expectation formation. Inflationary pressure pushes interest rate up in the short run. A market with rational agents would expect this trend to be reversed in the long run.

Table 4.5: The Vector Error Correction Model

Dependent Variable	LMM7 _t	LMM1,	LMM3 _t
Constant	(0.0074	0.0096 (0.04625)	0.0452 (0.05962)
Z_{t-1}	0.0213 * (0.01292)	-0.1793 *** (0.06639)	0.0280 * (0.01520)
Z _{2t-1}		-1.4538 * (0.87414)	
ΔLMM1 _{t-1}		0.1124 (0.15687)	0.1007
ΔLMM3 _{t-1}	0.1866		0.1007 (0.17221)
ΔLMM7 _{t-1}	(0.17224)		
ΔLGDP _{t-1}	- 0.2544 (0.46126)	- 0.3750 (0.38121)	-0.6526 (0.48452)
ΔLCPI _{t-1}	-1.8983 (4.56343)	0.9378 (3.86859)	-5.9224 (4.91857)
DUM _t	- 0.0261 (0.09823)	- 0.1745 * (0.9130)	(0.10451)

Notes: Figures in parentheses are standard errors.

Quarterly data: 1990:1 to 2000:2

*** Significant at the 1% level

- ** Significant at the 5% level
- * Significant at the 10% level

The seven-day money market interest rate is adjusts by 2.1 percent every quarter for any money market interest rate deviation from the long run equilibrium relationship. The one-month money market interest rate adjusts by 18 but the three-month money market interest rate adjusts by 2.8 percent every quarter. Of the three series, the one-month money market interest rate (LMM1) has the highest adjustment for a given change in GDP in the long run. Adjustments in the seven-day money market interest rate (LMM7) and three-month money market interest rate (LMM3) are comparatively lower. The magnitude for all the three cases, however is very low, indicating the rigidity in the money market.

The residuals from the three models are used for constructing positive and negative interest rate shocks in the seven-day, one-month and three-month money market respectively.

The positive money market interest rate shock (TIGHT_t) is defined as below:

$$TIGHT_t = max(\epsilon_t, 0)$$

The negative money market interest rate shock (EASY_t) is defined as below:

$$EASY_t = min(\epsilon_t, 0)$$

4.3 Effects of the Interest Rate Shocks on Aggregate Bank Lending

4.3.1 Unit Root Test

The unit root test is performed on the logarithm of total commercial bank lending (LLOAN), logarithm of total deposit in commercial bank (LDEP), positive shocks to the money market interest rate (TIGHT) and negative shocks to the money market interest rate (EASY). This to examine for series stationarity. As before, the Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root tests are used. We include a constant in the test regression for TIGHT_MM7, TIGHT_MM1, TIGHT_MM3, EASY_MM7, EASY_MM1, and EASY_MM3 because these series have non-zero mean level. We include a constant and linear trend in the test regression for LLOAN and LDEP because the series have non-zero mean level and a trend.

The ADF test is run with 1 to 8 lags of dependent variable. The Schwarz criterion is used to select the optimal lag length. The results are presented in Table 4.6. The optimal lag length is one for LLOAN, TIGHT_MM7, EASY_MM7, TIGHT_MM1, EASY_MM1, TIGHT_MM3 and EASY_MM3 and four for LDEP. The ADF test statistics are not significant for the level of LLOAN and LDEP but significant for the first difference. This shows that LLOAN and LDEP have one unit root and are not stationary in their level. On the other hand, the null hypothesis is rejected for TIGHT MM7, EASY MM7, TIGHT MM1,

EASY_MM1, TIGHT_MM3 and EASY_MM3, indicating these are stationary variables in level.

The results for the PP test are presented in Table 4.7. The results show that the PP test significantly reject the null hypothesis at one percent level for TIGHT_MM7, EASY MM7, TIGHT MM1, EASY MM1, TIGHT MM3, EASY_MM3.

The results also show that the null hypothesis of a unit root is not rejected for LLOAN and LDEP at their level. This means the series are non-stationary in level. However the test for first difference of the series significantly rejects the null hypothesis of a unit root at one percent level. This means that the LLOAN and LDEP are stationary in first difference.

ALICMENTED DICKEY-FULLER (ADF) UNIT ROOT TESTS

WERE TEST OF THE PERSON NAMED IN THE P

10000	AUGINE	LE	DICMA	LOTITION (AUGMENTED DICKET FOLLEN (ADE) ONLI NOOT I	VOOT TEST	EDID		
Number of lagged dependent variable	1		2	3	4	5	6	7	∞
LLOAN									
LEVEL	-1.154	\dashv	-1.692	-2.520	-2.866	4.000 *	-3.843 **	-3.958 **	-4.641 ***
SCHWARZ CRITERION	-4.035		-4.014	-4.074	-4.000	-3.947	-3.937	-3.875	-3.937
IST DIF	-2.642		-1.764	-1.537	-1.546	-1.570	-1.729	-1.947	-2.014
SCHWARZ CRITERION	-4.027		-3.988	-3.856	-3.724	-3.588	-3.476	-3.360	-3.339
2ND DIF	-7.571 ***	*	-5.054 ***	-3.499 *	-2.882	-2.320	-1.993	-1.957	-1.957
SCHWARZ CRITERION	-3.994		-3.880	-3.744	-3.602	-3.467	-3.313	-3.271	-3.139
AECT									
LEVEL	-1.064		-0.897	-1.158	-0.505	-0.534	-0.650	-1.099	-0.542
SCHWARZ CRITERION	-3.947		-3.838	-3.819	-3.767	-4.098	-3.968	-3.874	-3.798
IST DIF	-4.570 ***	*	-3.596 **	-3.532 *	-4.584 ***	-3.595 **	-2.442	-2.967	-2.656
SCHWARZ CRITERION	-3.909		-3.874	-3.857	-4.188	-4.053	-3.929	-3.891	-3.799
TIGHT_MM7									
LEVEL	-3.949 ***	*	-2.656 *	-1.530	-2.099	-2.327	-1.925	-1.367	-0.720
SCHWARZ CRITERION	-2.663	_	-2.549	-2.441	-2.445	-2.357	-2.210	-2.071	-1.989
EASY_MM7									
LEVEL	-3.700 ***	*	-3.175 **	-2.780 *	-2.619 *	-2.984 *	-1.809	-2.181	-1.726
SCHWARZ CRITERION	-1.911		-1.793	-1.672	-1.551	-1.481	-1.392	-1.305	-1.159
IIGHT MM1									
LEVEL	-4.496 ***	×	-3.267 **	-1.643	-1.742	-1.598	-2.282	-2.459	-1.910
SCHWARZ CRITERION	-2.975		-2.859	-2.957	-2.972	-2.829	-2.832	-2.719	-2.557
EASY MMI									
LEVEL	-3.543 **	_	-3.028 **	-3.176 **	-2.892 *	-2.753 *	-2.492	-2.489	-2.131
SCHWARZ CRITERION	-2.332		-2.225	-2.138	-2.022	-1.890	-1.748	-1.619	-1.468
TIGHT_MM3									
LEVEL	-4.606 ***	*	-3.656 ***	-1.946	-2.720 *	-2.074	-2.033	-1.875	-1.527
SCHWARZ CRITERION	-2.541		-2.418	-2.357	-2.443	-2.318	-2.203	-2.055	-1.900
EASY_MM3									
LEVEL	-4.701 ***	×	-3.132 **	-2.889 *	-2.834 *	-3.268 **	-2.230	-2.530	-1.650
WARZ CRITERION	-1.793	-	-1.721	-1.601	-1.497	-1,444	-1.304	-1.213	-1.096
NOTE * * * ㅋ	Figures in bold are for the m *** Significant at 1% Level ** Significant at 5% Level	are for at 1% at 5%	the model with o Level Level	ptimal lag length	Figures in bold are for the model with optimal lag length chosen using the Schwarz criterion *** Significant at 1% Level ** Significant at 5% Level	chwarz criterion.			
-	Level: At the level of the series	level	of the series	1					

43

NOTE	LEVEL	EASY MM3	LEVEL	TIGHT MM3	LEVEL	EASY_MM1	LEVEL	TIGHT_MM1	LEVEL	EASY MM7	LEVEL	TIGHT_MM7	IST DIF	LEVEL	LDEP	IST DIF	LEVEL	LLOAN	TRUNCATION LAG	TABLE 4.7
*** Significant at 1% Level ** Significant at 5% Level * Significant at 10% Lvel Level : At the level of the series lst Dif : At the first difference of	-6.398 ***		-6.079 ***		-5.336 ***		-7.207 ***		-6.097 ***		-5.907 ***		-5.818 ***	-1.212		-4.236 ***	-0.811		-	PHILLIPS-P
*** Significant at 1% Level ** Significant at 5% Level ** Significant at 10% Lvel Level : At the level of the series lst Dif: At the first difference of the series	-6.404 ***		-6.082 ***		-5.367 ***		-7.189 ***		-6.108 ***		-5.908 ***		-5.840 ***	-1.271		-4.299 ***	-1.020		2	ERRON (PP
15. 28.	-6.399 ***		-6.094 ***		-5.379 ***		-7.153 ***		-6.111 ***		-5.912 ***		-5.829 ***	-1.371		4.434 ***	-1.206		3	PHILLIPS-PERRON (PP) UNIT ROOT TESTS
	-6.402 ***		-6.095 ***		-5.353 ***		-7.100 ***		-6.109 ***		-5.921 ***		-5.888 ***	-1.360		4.545 ***	-1.346		4	I TESTS
	-6.414 ***		-6.103 ***		-5.326 ***		-7.080 ***		-6.103		-5.913 ***		-6.007 ***	-1.347		4.643 ***	-1.45/		5	
	-6.442 ***		-6.114 ***		-5.298 ***		-7.0/5	222(444)	-6.095	222122	-5.901	2 222 1411	-6.032 ***	-1.3/8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.728	-1.541	1 241	0	
	-6.474 ***		-6.135		-5.280	2 220 1444	-/.0/4	2024	-0.UV	7005 ***	-5.896 TTT		-6.096	-1.405	1 100	-4./84 ***	-1.393	1 506	,	
	-6.521		-6.162		-7.1/1.C-	5 077 ***	-/.0/4	7074	-0.101	C 101 ***	-3.693	n 00h	-0.139	-1.422	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-4.009	-1.024	1 624	0	°

4.3.2 Cointegration

This section examines the cointegration on between LLOAN and LDEP. In the cointegration test TIGHT and EASY are added as exogenous variables in the test, in order to control for the interest rate shocks while examing the relationship between LLOAN and LDEP. The results for cointegration test are presented in Table 4.8

The cointegration Test found one cointegration equation between LLOAN and LDEP. This means, that long-run equilibrium relationship exists between these variables. The normalized cointegration for the above respective series are presented in Tables 4.9. The results show approximately a one-to-one relationship between deposit and market lending.

Table 4.8 Testing for Cointergration between LLOAN and LDEP

Exogenous series :Seven-day Money Market Interest Rate Shock (EASY_MM7 & TIGHT MM7)

Eigenvalue	Likelihood Ratio	5 Percent Critical Value	l Percent Critical Value	Hypothesized No. of CE(s)
0.648346	33.53855	15.41	20.04	None **
0.036113	1.140217	3.76	6.65	At most 1

Exogenous series :One-month Money Market Interest Rate Shock (EASY_MM1 & TIGHT_MM1)

Eigenvalue	Likelihood Ratio	5 Percent Critical Value	l Percent Critical Value	Hypothesized No. of CE(s)
0.572636	26.36070	15.41	20.04	None **
0.000225	0.006976	3.76	6.65	At most 1

Exogenous series :Three-month Money Market Interest Rate Shock (EASY_MM3 & TIGHT_MM3)

Eigenvalue	Likelihood Ratio	5 Percent Critical Value	l Percent Critical Value	Hypothesized No. of CE(s)
0.638256	31.52144	15.41	20.04	None **
2.15E-06	6.66E-05	3.76	6.65	At most 1

Notes: *(**) denotes rejection of the hypothesis at 5%(1%) significance level CE refers to cointegration equation

The number of lag used in the tests are: 2 lags of money market interest

rate shocks

10 lags of LLOAN and LDEP

Test assumption: Linear deterministic trend in the data Intercept (no trend) in CE

Table 4.9 The Normalized Cointegrating Equations

		Dependent Variable		
		LLOAN"	LLOAN**	LLOAN***
+-	LDEP	1.007	0.937	0.903
dent le		(0.015)	(0.032)	(0.051)
Depender Variable	Constant	0.034	0.880	1.279

Notes: The figures in parentheses are standard errors.

- * Exogenous series :Seven-day Money Market Interest Rate Shock (EASY MM7 & TIGHT MM7)
- ** Exogenous series :One-Month Money Market Interest Rate Shock (EASY MM1 & TIGHT MM1)
- *** Exogenous series: Three-month Money Market Interest Rate Shock (EASY MM3 & TIGHT MM3)

4.3.3 Error Correction Model

The ECM is used to examine how commercial bank lending respond to changes in deposits and interest rate shocks. The results are reported in Table 4.10.

For the ECM, models with 1 to 10 lags of ΔLLOAN and ΔLLDEP were considered in combination with a maximum of 5 lags of the exogenous variables (EASY and TIGHT). The reported models are those with the optimal lag length determined by the Schwarz criterion.

Table 4.10: The Error Correction Model

West resident and the second and the	1	ΔLLOAN ,	
Constant	-2.213***	-3.893***	-2.346***
	(0.373)	(1.045)	(0.751)
Z_{t-1}	-1.844*** ^a	-1.348*** ^b	-1.208*** ^c
• •	(0.304)	(0.343)	(0.337)
Δ LLOAN _{t-1}	0.783***	0.783***	0.716***
	(0.183)	(0.140)	(0.178)
ΔLLOAN _{t-2}	0.441*	0.966***	0.561**
	(0.235)	(0.239)	(0.210)
ΔLLOAN _{t-3}	0.398*	1.307***	1,514***
	(0.232)	(0.278)	(0.275)
Δ LLOAN ₁₋₄	0.426**	0.984***	0.833***
	(0.185)	(0.236)	(0.220)
$\Delta LLOAN_{t-5}$	0.840***	1.003***	0.126
Bernaman and the Committee of the Commit	(0.192)	(0.325)	(0.326)
Δ LLOAN _{t-6}	1.216***	0.901***	1.273***
	(0.259)	(0.290)	(0.260)
Δ LLOAN _{t-7}	1.731***	1.101***	1.044**
	(0.308)	(0.298)	(0.450)
$\Delta LLOAN_{1-8}$	1.686***	1.030***	0.506
	(0.371)	(0.347)	(0.451)
ΔLLOAN _{t-9}	0.960**	0.668**	0.680**
Anna ha sanana adag antaranga tiranga tirang antarang antarang antarang antarang antarang antarang antarang an	(0.350)	(0.271)	(0.283)
$\Delta LLOAN_{t-10}$	0.538	0.560**	0.860***
	(0.331)	(0.223)	0.453
∆LDEP _{t-1}	0.426	1	(0.382)
	0.010	(0.467)	-0.403
$\Delta LDEP_{t-2}$	Į.	(0.450)	(0.365)
	0.084	0.866***	0.462**
ΔLDEP _{t-3}	(0.180)	(0.232)	(0.216)
A T TO STORY	0.080	1,007**	-0.174
ΔLDEP _{t-4}	(0.189)	(0.373)	(0.285)
AT TYPE	-0.459**	0.873**	0.309
ΔLDEP _{t-5}	(0.186)	(0.363)	(0.218)
ALINED	-0.124	0.570*	-0.159
ΔLDEP ₁₋₆	(0.221)	(0.318)	(0.245)
ΔLDEP ₁₋₇	-0.398*	0.380*	-0.0185
ALDER 1-7	(0.199)	(0.224)	(0.171)
ΔLDEP _{t-8}	0.368**	0.870***	0.266
ALDET 1-8	(0.161)	(0.254)	(0,225)
ΔLDEP _{t-9}	-0.021	0.716**	0.379*
(-9	(0.145)	(0.293)	(0.221)
ΔLDEP _{t-10}	0.302**	0.433*	-0.052
[-]()	(0.137)	(0.239)	(0.243)
EASY MM7 _{t-1}	0.186**		
	(0.077)		NA CONTRACTOR OF THE PROPERTY
EASY MM7 _{t-2}	0.079		
	(0,068)		

Table 4.10: The Error Correction Model (cont'd)

EASY MM1 _{t-1}		-0.209***	
		(0.072)	
EASY MM1 ₁₋₂		-0.127	
		(0.075)	
EASY MM3 _{t-1}			-0.230**
- ' '			(0.084)
EASY MM3 _{t-2}			0.009
			(0.066)
TIGHT MM7' _{t-1}	0.092		
*****	(0.110)		
TIGHT MM7 ₁₋₂	0.273**		
THE PARTY.	(0.127)		
TIGHT MM1 ₁₋₁		0.568***	
		(0.091)	
TIGHT MM1 ₁₋₂		0.093	
		(0.240)	
TIGHT MM3 _{t-1}			0.575***
		}	(0.129)
TIGHT_MM3 ₁₋₂			-0.494**
*****			(0.202)
TREND	0.069***	0.119***	0.074***
	(0.011)	(0.031)	0.022)

Notes: Figures in parentheses are standard errors.

Number of lags selected in the above models are determined using Schwarz criterion.

- *** Significant at the 1% level
- ** Significant at the 5% level
- * Significant at the 10% level

^a
$$Z_t = -10.364 + LLOAN_t -0.150 LDEP_t$$
 (0.068)

^b
$$Z_t = -24.800 + LLOAN_t + 1.048 LDEP_t$$
 (0.201)

$$^{\circ}$$
 $Z_{t} = -17.826 + LLOAN_{t} + 0.470 LDEP_{t}$ (0.196)

The results of our estimation indicate for every one percent deviation of the aggregate commercial bank lending from the long run equilibrium, an adjustment of between 1.2 to 1.8 percent in lending is found in the next quarter. This implies that when aggregate commercial bank lending deviates from the long run

equilibrium, it needs less than one quarter to adjust to the long run equilibrium position.

The high speed of adjustment may be due to the government interventions in the aggregate commercial bank lending. For instant, the time needed to recover the non-performing loans (NPL) has been speed up through Asset Management Company (AMC), namely, Pengurusan Danaharta Nasional Berhad (Danaharta). Beside that, commercial banks can also sell existing loans to National Mortgage Corporation known as Cagamas Berhad. Furthermore, the aggregate commercial lending can be influenced by Bank Negara Malaysia through the funds under its monitoring.

The results show that trend the coefficient is positive and significant at one percent level. This suggests that the aggregate commercial bank lending has upward trend with a quarterly growth between 7 to 12 percent. Besides that, the results also indicate that both the negative and positive money market interest rate shocks have significantly influenced the commercial bank lending.

The commercial lending react more quickly to negative seven-day money market interest rate shocks (EASY_MM7) than positive interest rate shocks (TIGHT_MM7). We find a significant coefficient for EASY_MM7_{t-1} at 5 percent level but not for TIGHT_MM7_{t-1}. This means that the commercial bank lending reacts more quickly to the negative interest rate shocks of one quarter ago

but not to the positive interest rate shocks of one quarter ago. Furthermore, the null hypothesis of a zero coefficient is rejected for EASY_MM1_{t-1},EASY_MM3_{t-1} TIGHT_MM1_{t-1} and TIGHT_MM3_{t-1}. It means that the commercial bank lending reacts quickly to both the positive and negative one-month and three-month interest rate shocks of one quarter ago.

The negative one-month and three-month money market interest rate shocks (EASY_MM1_{t-1} and EASY_MM3_{t-1}) have a negative effect on the aggregate commercial bank lending instead of increasing the aggregate commercial bank lending. The positive one-month and three-month money market interest rate shocks (TIGHT_MM1_{t-1} and TIGHT_MM3_{t-1}) have a positive effect to the aggregate commercial bank lending instead of decreasing the aggregate commercial bank lending. The results suggest that the commercial banks are prudent in their lending in easy money market conditions and willingness to increase lending in tight market condition is high. These results are different from the findings of Dell'Ariccia and Garibaldi (1998) who studied the response of aggregate bank lending to changes in the money market rate for the case of US and Mexico. They showed that the interest rate increases (TIGHT) have negative effects on the aggregate bank lending.

The only exception to the result is the negative seven-day money market interest rate shocks (EASY_MM7_{t-1}) that has a positive effect on the aggregate

commercial bank lending. In this case, easy short- term money market conditions have increased bank lending.

Further analysis is conducted using the Wald restriction test for asymmetry in the responses of market lending to positive and negative shocks. The results of the test are shown in Table 4.11.

Table 4.11 The Wald Test for Symmetry between Positive and Negative Interest Shocks in the Money Market

Seven-day Money Market Interest Rate Shock (EASY_MM7 & TIGHT_MM7)

Marginal Test	0.306 (0.580)	
$H_0: \varphi = \tau_1 $		
Overall Test	1.898 (0.387)	
$H_0: \varphi_i = \tau_i \forall_i$		

One-month Money Market Interest Rate Shock (EASY_MM1 & TIGHT_MM1)

Marginal Test	11.860 (0.001)
$H_0: \phi_i = \tau_i $	
Overall Test	18.496 (0.000)
$H_0: \phi = \tau_i \forall_i$	

Three-month Money Market Interest Rate Shock (EASY_MM3 &TIGHT_MM3)

Marginal Test	12.798 (0.000)
Ho: 1/10/1=17/1	
Overall Test	25.373 (0.000)
$H_0: (\varphi_i \models \tau_i \setminus \forall_i)$	

Notes: The test statistic are reported and p-values are given in parentheses. The coefficients φ_i and τ_i refer to those used in equations (3.10) to (3.12).

The Wald test shows that we are unable to reject the null hypothesis of a symmetric marginal impact of EASY_MM7 $_{t-1}$ and TIGHT_MM7 $_{t-1}$ on the

aggregate commercial lending. We are also unable to reject the null symmetry of all coefficients for the seven-day money market interest rate shocks. The Wald test indicates that the response of aggregate commercial bank lending to positive and negative seven-day money market interest rate shocks (EASY_MM7 & TIGHT MM7) is symmetric.

However, for the one-month and three-month money market interest rate shocks, the null hypothesis of symmetric marginal impact of the first quarter lag and the null hypothesis of symmetric of all coefficients are rejected. From the results, the Wald test indicates that the response of total commercial bank lending to negative and positive one-month money market interest rate shocks are asymmetric. This is also true for the three-month money market interest rate shocks. Generally, the results in Table 4.10 show that the magnitudes of TIGHT_MM1_{t-i} and TIGHT_MM3_{t-i} are larger than those for EASY_MM1_{t-i} and EASY_MM3_{t-i} respectively. Note also that the three-month money market interest rate plays an important role in determining the Base Lending Rate (BLR) of commercial banks especially during period the November 1995 to September 1998. So, this indirectly has very strong influence on the commercial bank lending.

In Malaysia, the one-month and three-month money market interest rate have higher influences on the financial market. This may be because the commercial bank Base Lending Rate (BLR) was computed based on a weighted average of the three-month inter-bank rate from November 1995 to September 1998.

However, the Bank Negara Malaysia has introduced the intervention rate as a substitute to the inter-bank rate for the computation of BLR. But the one-month and three-month money market interest rate still play an important role in determining the aggregate commercial bank lending. The money market is an avenue for channelling of short term funds among the financial institutions. Furthermore, the average monthly volume of transactions in inter-bank deposits has increased from RM17.8 billion in 1989 to RM101.2 billion in 1999. Also, the average monthly volume of money market papers transacted has increased from RM2.6 billion in 1989 to RM18.0 billion in 1999. This shows the reliance of the financial institutions on the money market to meet their funding requirements and portfolio adjustments. So, the money market is expected to continue playing an important role in determining the aggregate commercial bank lending.

In addition, we estimate a restricted regression of the response of commercial bank lending to money market interest rate shocks. The interest rate shocks are defined as follows:

Shock_MM7
$$_{t-i}$$
 = EASY_MM7 $_{t-i}$ + TIGHT_MM7 $_{t-i}$

$$Shock_MM1_{t-i} = EASY_MM1_{t-i} + TIGHT_MM1_{t-i}$$

$$Shock_MM3_{t-i} = EASY_MM3_{t-i} + TIGHT_MM3_{t-i}$$

The results are shown in Table 4.12

Table 4.12 Impact of Combined Interest Rate Shocks on Commercial Bank Lending.

	Δ LLOAN _t		
Constant	-1.871***	-2.044***	-1.575*
	(0.305)	(0.497)	(0.786)
Z_{t-1}	-1.837***	-1.848***	-0.746**
	(0.290)	(0.423)	(0.300)
ΔLLOAN _{t-1}	0.802***	1.136***	0.311
	(0.169)	(0.259)	(0.234)
ΔLLOAN ₁₋₂	0.514**	0.629*	0.688**
	(0.217)	(0.304)	(0.292)
ΔLLOAN _{t-3}	0.516***	0.643***	0.861***
	(0.167)	(0.231)	(0.283)
ΔLLOAN _{t-4}	0.421**	0.606***	1.136***
	(0.162)	(0.201)	(0.269)
ΔLLOAN _{t-5}	0.665***	0.591**	0.665**
LLD C 1 1 1 (-)	(0.167)	(0.221)	(0.297)
ΔLLOAN _{t-6}	1.167***	0.944**	0.596*
ZZZZO111-0	(0.241)	(0.287)	(0.301)
ΔLLOAN _{t-7}	1.561***	1.414***	0.491
LILLOTTI (-)	(0.263	(0,371)	(0.393)
ΔLLOAN _{t-8}	1.724***	1.624***	0.405
ALLOMINE-8	(0.357)	(0.492)	(0.389)
ΔLLOAN _{t-9}	0.987***	1.012**	0.218
ALLOANI-9	(0.328)	(0.450)	(0.362)
ΔLLOAN _{t-10}	0.817***	0.827**	0.600*
ALLOAM-10	(0.274)	(0.373)	(0.323)
ΔLDEP _{t-1}	0.129	-0.207	0.0965
ALDER [-]	(0.234)	(0.251)	(0.396)
ALDEP ₁₋₂	-0.342*	-0.231	-0,423
ALDEF 1-2	(0.200)	(0.270)	(0.394)
ΔLDEP _{t-3}	-0.033	0.042	-0.133
ALDEP _{t-3}	(0.176)	(0.232)	(0.327)
ALDED	-0.079	0.067	-0.168
$\Delta LDEP_{t-4}$	(0.161)	(0.214)	(0.319)
ALTON	-0.620***	-0.501**	-0.584*
$\Delta LDEP_{t-5}$	(0.176)	(0.230)	(0.307)
ALDED	-0.393**	-0.373	0.131
ΔLDEP _{ι-6}	(0.190)	(0.250)	(0.229)
ATODO	-0.580***	-0.421*	-0.206
$\Delta LDEP_{t-7}$		(0.238)	(0.251)
	(0.188)	0.188	0.327
$\Delta LDEP_{t-8}$			(0.253)
	(0.149)	-0.004	-0.185
$\Delta LDEP_{t-9}$	-0.158		
WTH 10-20-1	(0.126)	(0.216)	(0.264)
$\Delta LDEP_{t-10}$	0.185	-0.054	0.123
	(0.116)	(0.157)	(0.190)

Table 4.12 Impact of Combined Interest Rate Shocks on Commercial Bank Lending, (cont'd)

SHOCK_MM7 _{t-1}	0.141*** (0.036)		
SHOCK_MM7 _{t-2}	0.128** (0.049)		
SHOCK_MM1 _{t-1}		0.185** (0.071)	
SHOCK_MM1 ₁₋₂		0.062 (0.084)	
SHOCK_MM3 _{t-1}			-0.054 (0.061)
SHOCK_MM3 _{t-2}			-0.158** (0.068)
SHOCK_MM3 _{t-3}			-0.213*** (0.062)
SHOCK_MM3 _{t-4}			-0.109* (0.055)
TREND	(0.009)	0.065*** (0.015)	0.052** (0.024)

Notes: Figures in parentheses are standard errors.

Number of lags selected in the models are determined by Schwarz criterion.

- *** Significant at the 1% level
- ** Significant at the 5% level
- * Significant at the 10% level

The results indicate that most of the coefficients for the lagged LDEP are not significant compared to the results in Table 4.10 where almost all the coefficients are significant. Also, the results show that the seven-day and one-month money market interest rate shocks have a positive effect on the aggregate commercial bank lending, but the three-month money market interest rate shocks have negative effect. This set of findings highlight that an analysis based on combined interest rate shocks can lead to misleading results. It is unlikely that LDEP is insignificant in explaining LLOAN. Therefore, this shows that the earlier analysis with positive and negative interest rate shocks separated is more relevant.