
MODELING A PROBLEM SOLVING APPROACH

THROUGH COMPUTATIONAL THINKING FOR

TEACHING PROGRAMMING

ZEBEL AL TAREQ

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2021

Univ
ers

iti
Mala

ya

MODELING A PROBLEM SOLVING APPROACH

THROUGH COMPUTATIONAL THINKING FOR

TEACHING PROGRAMMING

ZEBEL AL TAREQ

DISSERTATION SUBMITTED IN PARTIAL

FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SOFTWARE ENGINEERING

(SOFTWARE TECHNOLOGY)

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2021

Univ
ers

iti
Mala

ya

ii

UNIVERSITY OF MALAYA
ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Zebel Al Tareq
Matric No: 17043515/1
Name of Degree: Master of Software Engineering
Title of Project Paper/Research Report/Dissertation/Thesis (“this
Work”): Field of Study:

 Modeling a Problem Solving Approach Through Computational Thinking for
Teaching Programming

 I do solemnly and sincerely declare that:
(1) I am the sole author/writer of this Work.
(2) This Work is original.
(3) Any use of any work in which copyright exists was done by way of fair

dealing and for permitted purposes and any excerpt or extract from, or
reference to or reproduction of any copyright work has been disclosed
expressly and sufficiently and the title of the Work and its authorship have
been acknowledged in this Work.

(4) I do not have any actual knowledge nor do I ought reasonably to know that
the making of this work constitutes an infringement of any copyright work.

(5) I hereby assign all and every right in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the
copyright in this Work and that any reproduction or use in any form or by any
means whatsoever is prohibited without the written consent of UM having
been first had and obtained.

(6) I am fully aware that if in the course of making this Work, I have infringed
any copyright whether intentionally or otherwise, I may be subject to legal
action or any other action as may be determined by UM.

Candidate’s Signature Date: 16/ 08 / 2021
Subscribed and solemnly declared before,

Witness’s Signature Date: 16/ 08 / 2021

Name:
Designation:

Univ
ers

iti
Mala

ya

 iii

MODELING A PROBLEM SOLVING APPROACH THROUGH

COMPUTATIONAL THINKING FOR TEACHING PROGRAMMING

ABSTRACT

Different teaching approaches for programming are widespread but what is essential

for students is being able to computationally formulate an algorithmic solution at first and

then transfer to code. A number of factors such as inefficient teaching approaches and

lack of problem-solving skills are factors making this knowledge procedure difficult. This

study aims to investigate teaching issues in solving programming problems and find the

right approach to teach programming using a suitable problem solving approach method.

Sorting algorithm as a concept for solving problems have been utilized to understand the

effectiveness of the model in different teaching methods. After carrying out a thorough

literature review on core concepts of the study, a pilot study was conducted, and it

identified some difficulties faced in teaching programming and motivated the search for

an approach to overcome the issues and design the workshops for the feasibility study. A

problem-solving approach (PSA) model was formulated using computational thinking

concepts based on the sorting problems. An experimental study was designed to evaluate

the PSA model. The syntax-based programming workshop was the control group. The

problem-based and the game-based programming workshops utilizing our problem-

solving model using sorting algorithms were the experimental groups.

A one-way ANOVA test indicated that the mean score for syntax-based workshop post

test scores (M=6.99, SD=1.92) was significantly different than the post test scores of

activity-based workshop (M=8.05, SD=1.96) and the post test scores of game-based

workshop (M=8.62, SD=1.90). However, the post test scores of activity-based workshop

(M=8.05, SD=1.96) did not significantly differ from the post test scores of game-based

workshop (M=8.62, SD=1.90).

Univ
ers

iti
Mala

ya

iv

The results suggested that students had improved their programming skills in all the

workshops. However, participants had better acquisition of problem-solving skills and a

better understanding of programming concepts with both the active learning skills

compared to the syntax-based approach. Even though there was no significant difference

between the scores of the active learning methods, a comparison between both the

approaches from a teaching perspective suggested that game-based learning was more

suitable due to its interactivity.

Keywords: Computational thinking, Problem-Solving Approach Model, Active

learning, Problem-based learning, Game-based learning.

Univ
ers

iti
Mala

ya

 v

MEMODELKAN PENDEKATAN PENYELESAIAN MASALAH

MELALUI PEMIKIRAN KOMPUTASIONAL UNTUK

PENGAJARAN PROGRAM

ABSTRAK

 Pendekatan pengajaran yang berbeza untuk pengaturcaraan adalah semakin

meluas tetapi apa yang penting bagi pelajar adalah dapat merumuskan penyelesaian

algoritma pada awalnya dan kemudian memindahkan ke kod. Beberapa faktor seperti

pendekatan pengajaran yang tidak cekap, kekurangan kemahiran menyelesaikan

masalah dan lain-lain adalah faktor yang menyukarkan prosedur pengetahuan ini.

Kajian ini bertujuan untuk menyelidiki masalah pengajaran dalam menyelesaikan

masalah pengaturcaraan dan mencari pendekatan yang tepat untuk mengajar

pengaturcaraan menggunakan kaedah pendekatan penyelesaian masalah yang sesuai.

Algoritma isihan sebagai konsep untuk menyelesaikan masalah telah digunakan untuk

memahami keberkesanan model dalam kaedah pengajaran yang berbeza. Setelah

melakukan tinjauan literatur yang menyeluruh mengenai konsep utamakajian ini, sebuah

kajian rintis dilakukan, dan menunjukkan beberapa kesulitan yang dihadapi untuk

mengajar pengaturcaraan dan memotivasi untuk mencari pendekatan untuk mengatasi

masalah dan merancang bengkel untuk kajian kemungkinan. Model PSA dirumuskan

menggunakan konsep pemikiran komputasional berdasarkan masalah isihan. Satu kajian

eksperimental telah direka bentuk untuk menilai Model PSA. Bengkel pengaturcaraan

berasaskan sintaks adalah sebagai kumpulan kawalan. Bengkel pengaturcaraan

berasaskan masalah dan pembelajaran berasaskan permainan yang direka bentuk

berdasarkan model PSA adalah kumpulan eksperimental.

Univ
ers

iti
Mala

ya

 vi

Ujian ANOVA sehala menunjukkan bahawa skor min untuk ujian pasca bengkel

berasaskan sintaks (M = 6.99, SD = 1.92) berbeza dengan signifikan berbanding dengan

skor ujian pasca bengkel berasaskan aktiviti (M = 8.05, SD = 1.96) dan skor ujian pasca

bengkel berasaskan permainan (M = 8.62, SD = 1.90). Walau bagaimanapun, skor ujian

pasca bengkel berasaskan aktiviti (M = 8.05, SD = 1.96) tidak berbeza dengan signifikan

berbanding skor ujian pasca bengkel berasaskan permainan (M = 8.62, SD = 1.90). Hasil

menunjukkan bahawa di semua bengkel pelajar telah meningkatkan kemahiran

pengaturcaraan mereka. Walau bagaimanapun, para peserta memperoleh pemerolehan

kemahiran menyelesaikan masalah dengan lebih baik dan pemahaman konsep

pengaturcaraan yang lebih baik dengan kedua-dua pendekatan pembelajaran aktif

berbanding dengan pendekatan berasaskan sintaks. Walaupun tidak ada perbezaan yang

signifikan antara skor kaedah pembelajaran aktif, perbandingan antara kedua-dua

pendekatan dari perspektif pengajaran menunjukkan bahawa pembelajaran berasaskan

permainan lebih sesuai kerana interaktivitinya.

Kata kunci: Pemikiran komputasional, Model penyelesaian masalah, Pembelajaran aktif,

Pembelajaran berasaskan penyelesaian masalah, Pembelajaran berasaskan permainan.

Univ
ers

iti
Mala

ya

 vii

ACKNOWLEDGEMENTS

I would first like to thank my dissertation supervisor, Dr. Raja Jamilah Raja Yusof,

lecturer at Faculty of Computer Science and Information Technology, University of

Malaya. The door to Dr. Raja’s office was always open whenever I ran into a troubled

spot. Even during the Covid-19 pandemic, she has given all the necessary guidelines and

support via online to keep the research process active and smooth. She consistently

allowed this paper to be my own work but led me in the right direction whenever she

thought I needed it.

I would like to thank all the participants who participated in this study. Their active

and spontaneous participation has made it possible to achieve the most important goals

of this research and made it an exciting experience.

I would also like to thank University of Malaya for giving me the chance to study here

and enhance my knowledge for my future.

Finally, I must express my very profound gratitude to my parents, my sister, my newly

wedded wife and my other family members, my classmates, my friends and my colleagues

for providing me with unfailing support and continuous encouragement throughout my

years of study and through the process of researching and writing this dissertation. This

accomplishment would not have been possible without them. Thank you.

Author

Zebel Al Tareq

Univ
ers

iti
Mala

ya

 viii

TABLE OF CONTENTS

ABSTRACT ... iii

ABSTRAK .. v

Acknowledgements ... vii

Table of Contents ... viii

List of Figures .. xiii

List of Tables.. xvi

List of Symbols and Abbreviations ... xvii

CHAPTER 1: INTRODUCTION .. 1

1.1 Background .. 1

1.2 Problem Statement ... 4

1.3 Research Objectives... 4

1.4 Research Questions .. 5

1.5 Scope of the Study ... 6

1.6 Significance of the Study ... 7

CHAPTER 2: LITERATURE REVIEW .. 9

2.1 Why Computational Thinking as a Problem-Solving Skill 9

2.1.1 Critical thinking and its relationship with CT .. 10

2.1.2 Analytical thinking and its relationship with CT 11

2.1.3 Creative thinking and its relationship with CT .. 11

2.1.4 Justification .. 12

2.2 Problem-Solving in Programming through Computational Thinking 12

2.3 Computational Thinking in Solving Programming Problems 13

2.4 Computational Thinking Components for Solving Problems 16

Univ
ers

iti
Mala

ya

 ix

2.4.1 Data .. 18

2.4.2 Decomposition .. 18

2.4.3 Pattern Recognition .. 18

2.4.4 Abstraction ... 18

2.4.5 Algorithmic .. 19

2.5 Discussing Teaching Approaches .. 19

2.5.1 Teacher-centred learning .. 20

2.5.1.1 Benefits and difficulties in the teacher-centred approach 20

2.5.1.2 Teacher-centred learning in programming 20

2.5.2 Student-centred active learning .. 21

2.5.2.1 Benefits and difficulties in student-centred active learning

approach .. 23

2.5.2.2 Student-centred active learning in programming 23

2.5.3 Justification on the chosen pedagogy ... 24

2.6 PBL in Programming and CT .. 24

2.7 GBL in Programming and CT ... 25

2.8 Interactive Programming and Learning Environment ... 27

2.9 Game-Based Features and Components .. 29

2.10 Sorting Algorithms and its Application in Programming 30

2.11 Sorting Algorithm and Computational Thinking ... 34

2.12 Gap Analysis .. 34

CHAPTER 3: RESEARCH METHODOLOGY ... 36

3.1 Identifying the Literature ... 36

3.2 Pilot Study ... 37

3.3 Create PSA Model ... 38

3.4 Modelling and Notation ... 38

Univ
ers

iti
Mala

ya

 x

3.4.1 Model the problems .. 38

3.4.2 Notate the CT steps .. 39

3.4.3 Design the workshops .. 39

3.5 Experimental Design and Participants ... 39

3.5.1 Syntax-based learning .. 40

3.5.2 Problem-based learning .. 40

3.5.3 Game-based learning .. 40

3.6 Pre-Test and Post-Test ... 40

3.7 Analysis and Evaluation of the Pre-Test and Post-Test... 41

CHAPTER 4: PILOT STUDY AND PSA MODEL DEVELOPMENT 42

4.1 Pilot Study to Evaluate Traditional Teaching Effectiveness 42

4.2 PSA Model and Modelling Sorting Problems ... 44

4.2.1 PSA MODEL ... 45

4.2.2 Sorting problems using PSA model ... 47

4.2.2.1 Bubble sort .. 47

4.2.2.2 Counting sort ... 49

4.2.2.3 Merge sort ... 51

4.2.2.4 Quick sort .. 55

4.2.2.5 Bucket sort ... 58

CHAPTER 5: EXPERIMENTAL PLANNING AND DESIGN 61

5.1 General Process for Feasibility Study.. 61

5.2 Syntax-Based Workshop ... 62

5.3 Problem-Based Learning Workshop ... 63

5.4 Game-Based Workshop ... 64

5.5 Design of the workshop materials ... 65

Univ
ers

iti
Mala

ya

 xi

5.5.1 Teacher-centred syntax-based workshop design 66

5.5.2 Problem-based workshop design .. 67

5.5.2.1 Bubble sort in PBL .. 68

5.5.2.2 Counting sort in PBL ... 71

5.5.2.3 Merge sort in PBL ... 75

5.5.3 Game-based workshop design (interactive gamified system) 79

5.5.3.1 Modules of the interactive gamified system 80

5.5.3.2 Bubble sort in GBL ... 81

5.5.3.3 Counting sort in GBL .. 85

5.5.3.4 Merge sort in GBL .. 89

CHAPTER 6: FINDINGS AND ANALYSIS ... 95

6.1 Comparison between Pre-Test and Post-Test .. 95

6.1.1 Syntax-based workshop .. 95

6.1.2 Problem-based learning workshop ... 96

6.1.3 Game-based learning workshop ... 96

6.2 Comparison between Pre-Tests of the Three Workshops...................................... 97

6.3 Comparison between Post-Tests of the Three Workshops 97

6.4 Analyze and Discuss the Results ... 98

CHAPTER 7: CONCLUSION ... 102

7.1 Research Contributions .. 102

7.2 Revisiting the Objectives ... 102

7.2.1 First objective and related question and answers 103

7.2.2 Second objective and related question and answers 103

7.2.3 Third objective and related question and answers 104

7.3 Significance of Study ... 104

Univ
ers

iti
Mala

ya

 xii

7.4 Concluding Remarks ... 104

7.5 Research Challenges .. 105

7.6 Future Improvements ... 105

References ... 106

Appendix B ... 121

Appendix C ... 124

Appendix D ... 127

Appendix E ... 129

Appendix F .. 131

Appendix G ... 133

Appendix H ... 137

Univ
ers

iti
Mala

ya

 xiii

LIST OF FIGURES

Figure 1.1: Google Trend comparison of different teaching methods 1

Figure 2.1: Project-based learning subsets .. 22

Figure 3.1: Research Methodology Procedure .. 36

Figure 4.1: Problem-solving approach (PSA) model .. 45

Figure 4.2: Bubble sort using PSA model ... 47

Figure 4.3: Counting sort using PSA model ... 49

Figure 4.4: Merge sort using PSA model .. 51

Figure 4.5: Quick sort using PSA model .. 55

Figure 4.6: Bucket sort using PSA model ... 58

Figure 5.1: Experimental planning of the study .. 61

Figure 5.2: Bubble sort using PSA for PBL .. 68

Figure 5.3: Unsorted numbers with id 1 and id 2 chosen ... 69

Figure 5.4: id 1 > id 2 and swapped .. 69

Figure 5.5: Sort all numbers following this process ... 69

Figure 5.6: Define array with collection of numbers and index 70

Figure 5.7 Check condition to swap .. 70

Figure 5.8: How loops are used to iterate through the array ... 70

Figure 5.9: Counting sort using PSA for PBL .. 71

Figure 5.10: A collection of unsorted numbers in listToSort and count from 0 until highest
index .. 72

Figure 5.11: Count occurrence of each number and add in correct index 72

Figure 5.12: Count of all available numbers in listToSort greater than 0 72

Figure 5.13: Adding to final list and ignore count 0 ... 73

Figure 5.14: Initialize an array named data ... 73

Univ
ers

iti
Mala

ya

 xiv

Figure 5.15: Define function and create count array ... 74

Figure 5.16: Keep count of listToSort... 74

Figure 5.17: How to append to final array .. 74

Figure 5.18: Merge sort using PSA for PBL ... 75

Figure 5.19: Collection of unsorted numbers in Padlet .. 76

Figure 5.20: Left and right ids are divided finding mid .. 76

Figure 5.21: Further divide between left side ... 76

Figure 5.22: Sort and merge left side .. 77

Figure 5.23: Further divide right, sort and merge ... 77

Figure 5.24: Sort and merge sorted left and right ... 77

Figure 5.25: Divide the array until length is greater than 1 .. 78

Figure 5.26: Divide left and right further .. 78

Figure 5.27: Sort and merge last divided items... 78

Figure 5.28: Sort and merge when no more items left in one side.................................. 79

Figure 5.29: Modules of the system .. 80

Figure 5.30: Levels to choose before starting the game ... 80

Figure 5.31: Bubble sort using PSA for GBL ... 81

Figure 5.32: Choose some random numbers ... 82

Figure 5.33: Two numbers highlighted ... 82

Figure 5.34: Swap or no swap based on condition.. 82

Figure 5.35: Game completed after all steps with score ... 83

Figure 5.36: Random numbers chosen initialized as array ... 83

Figure 5.37: If condition to swap numbers ... 83

Figure 5.38: A for loop for comparing the numbers ... 84

Univ
ers

iti
Mala

ya

 xv

Figure 5.39 Nested loop to go (size - 1) rounds .. 84

Figure 5.40: Counting sort using PSA for GBL .. 85

Figure 5.41: Choose random numbers and find highest ... 86

Figure 5.42: Drag and drop highlighted number to respective index 86

Figure 5.43: Ignore for count = 0 and add for count > 0 ... 86

Figure 5.44: Count index appended to final array .. 87

Figure 5.45: Define function and find highest number in list ... 87

Figure 5.46: How count array is created to keep count of numbers in data 88

Figure 5.47: How to append by ignoring count = 0 .. 88

Figure 5.48: Merge sort using PSA in GBL .. 89

Figure 5.49: Choose a collection of unsorted numbers and find the highest 90

Figure 5.50: Left and right divided ... 90

Figure 5.51: Further divide left side .. 90

Figure 5.52: Drag and drop smaller number to highlighted final index.......................... 91

Figure 5.53: Further divide right side and merge .. 91

Figure 5.54: Drag and drop to merge sorted left and sorted right 91

Figure 5.55: Random chosen unsorted number as array and function defined 92

Figure 5.56: Break left and right side by inputting mid .. 92

Figure 5.57: Further right division calling recursive function .. 93

Figure 5.58: While loop for merging the unsorted divisions .. 93

Figure 5.59: Additional while loops if items are remaining in either side 93

Figure 5.60: Sorted left and right merging using while loops .. 93

Univ
ers

iti
Mala

ya

 xvi

LIST OF TABLES

Table 2.1: Research involving CT with other problem-solving skills 9

Table 2.2: Research involving different models of CT ... 12

Table 2.3: Findings from the studies related to computational thinking......................... 14

Table 2.4: Usage of different CT concepts ... 16

Table 2.5: PBL in programming and CT .. 24

Table 2.6: Results from the studies of PBL and GBL with CT 25

Table 2.8: Findings from the studies of interactive programming learning studies........ 28

Table 2.10: Results from the studies of sorting algorithm and programming 30

Table 2.11: Classifications of sorting algorithm ... 33

Univ
ers

iti
Mala

ya

 xvii

LIST OF SYMBOLS AND ABBREVIATIONS

CT : Computational Thinking

PSA : Problem-solving Approach

CRIT : Critical Thinking

CRET : Creative Thinking

AT : Analytical Thinking

PBL : Problem-based learning

GBL : Game-based learning

PJBL : Project-based learning

 Univ
ers

iti
Mala

ya

 1

CHAPTER 1: INTRODUCTION

Learning and teaching programming has been an integral part of the modern world.

Programming learning is very well related to computational thinking (CT) that enhances

the problem-solving skills of a person (Voogt et al., 2015). Those who are programming

in their everyday life are solving different problems through the representation and

execution of codes. Since computational thinking enhances problem-solving skills,

teaching programming has to be related to computational thinking (Kong et al., 2020).

1.1 Background

A challenging aspect of teaching a programming course is how to provide the right

information in the right context at the right time (Adamchik & Gunawardena, 2003).

Recently, many teaching approaches are being considered to teach programming. Active

learning techniques have surpassed traditional teacher-centric approaches (Acharya &

Gayana, 2021) and emphasized a collaborative approach between a student and a teacher,

rather than one way of providing information. It is one of the most talked-about processes

of learning, and a few notable ones under active learning are game-based learning,

problem-based learning, project-based learning, etc.

Figure 1.1: Google Trend comparison of different teaching methods

Univ
ers

iti
Mala

ya

 2

A comparison on Google Trends shows that project-based learning for programming

has been a growing interest worldwide. Even though project-based learning has been

trending, it is quite time consuming and often lead to assignment-based activities. Project-

based learning is actually problem-based learning on a larger scale. Problem-based

learning works with a problem to be solved and generates possible solutions. Problem-

solving is an integral part of the game-based learning approach as well. Game-based

learning is a gamified approach to problem-based learning. Despite all these different

teaching procedures, it is still a matter of concern to teach programming effectively while

engaging the students actively.

Teaching the concepts of programming and making it understandable for the learners

has not been an easy task to do. It is known that programming learning is considered

difficult and there have been many cases where learners have given up (Ala-Mutka,

2004). One of the main sources of programming difficulties is not being able to

understand the fine line between programming knowledge and programming strategies.

Several teaching methods have been used for teaching programming. It is a fact that

teachers are not emphasizing a step-by-step problem-solving approach but only focusing

on one line to another line (Siti Rosminah & Ahmad Zamzuri, 2012). The most common

teaching processes are the common ways of using basic programming concepts and

syntax (M., 2014). There is no doubt that it is necessary to have some knowledge of

syntax. But what is more important is to be able to formulate a solution to a problem step-

by-step so that the approach is clear and then transfer it to programming syntaxes and

achieve the desired outcome.

Formulating the problems strategically is an essential approach, and it is undoubtedly

important to be engaged in the required problem-solving process. While the lack of

problem-solving capabilities are seen as a possible cause of failure in programming, it is

also evident that non-viable strategies of key programming concepts held by students lead

Univ
ers

iti
Mala

ya

 3

to misconceptions in programming learning (Bubica & Boljat, 2014). In a problem-based

learning environment, students have to approach a problem in a systematic manner. The

use of a strategic approach in programming teaching enables students to participate in the

process and learn the concepts of programming. Utilizing a strategic approach in teaching

programming problems helps to cultivate procedural skills among students to perform

complex programming tasks (Xie et al., 2019). Students need to identify key facts, check

for any missing information, assimilate new knowledge, and apply the information

individually or in a group. Similarly, for programming problems, based on the given data,

a computational problem-solving process has to be involved where a problem is

decomposed into smaller sub-problems, where students need to identify similarities or

dissimilarities, abstract unnecessary characteristics, or avoid repetitions and processes in

an algorithmic manner. It is very much inter-related to the teaching and learning of

computer programming through the use of CT as a strategy to formulate problems based

on the concepts of abstraction, decomposition, algorithms, logic, patterns and evaluation

(Shute et al., 2019). CT is treated as a way of thinking just like the thought process of a

computer which provides solutions to a specific task (Zaharin et al., 2018).

According to Wing (2012), it is the problem-solving process that is associated in

formulating a problem and expressing a solution to that problem in such a way that can

be carried out in an effective manner by a human or a machine. It helps to develop an

analytical ability that enhances critical thinking and arithmetic capabilities. For someone

to have a good base for programming, computational thinking is a rudimentary skill.

A fundamental approach towards learning to program and develop problem-solving

skills is a considerable idea to develop fundamental skills. In order to teach programming

to students, the teaching of sorting algorithm helps to cover the fundamentals of

programming concepts (M. G. Voskoglou & Buckley, 2012a). Sorting algorithm implies

defining a technique to arrange data in a specified order where most of the grouped orders

Univ
ers

iti
Mala

ya

 4

are in an arithmetic or lexicographical order (Rana et al., 2019a). Sorting problems have

many algorithmic solutions and is convenient for beginners to be indulged in the process

of it.

1.2 Problem Statement

As many students are finding programming to be difficult and disheartening (Ismail et

al., 2010a), it is not yet clear to educators what could be an effective approach for teaching

programming to the students and is becoming an area of concern. A number of issues

arise when programming is being taught to students. Ineffective teaching approaches and

lack of problem-solving skills are among the important factors that are contributing to the

difficulties of teaching and learning of programming (Cheah, 2020).

The biggest mistake that many new programmers make is not focusing on how to

formulate a solution to a problem but focus on learning the syntax (Spraul, 2013). Since

problem-solving skills are important in order to learn and solve programming problems,

it is essential to be cultivated in order to excel at programming. Problem-solving is a core

concept in programming education and is regarded as a key skill to model the solution of

a problem (Caeli & Yadav, 2020). There is a gap to understand the effective teaching

approach that fully focuses on solving programming problems.

1.3 Research Objectives

With the inclusion of a proper problem-solving skill for solving programming

problems, it is also necessary to understand the effective teaching method that is useful

to develop CT based problem-solving skills. The main aim of the study is to learn how

effective a problem-solving approach based on computational thinking is in teaching

programming compared to the traditional way of teaching the subject. Therefore, the

identified objectives of this study are as follows:

• To investigate teaching issues in solving programming problems.

Univ
ers

iti
Mala

ya

 5

• To design a problem-solving approach (PSA) model for teaching programming

through the chosen problem-solving skill.

• To evaluate the effectiveness of the PSA model in relation to different

programming teaching approaches.

1.4 Research Questions

The research questions that arise to achieve the above objectives are:

• To investigate teaching issues in solving programming problems.

- Which problem-solving concept can be selected as a problem-solving skill

among the notable ones?

- Does the selected problem-solving concept enhance problem-solving

skills among students while learning programming?

- What is an effective teaching approach to develop problem-solving skills

for solving programming problems, and why?

• To design a problem-solving approach (PSA) model for teaching programming

through the chosen problem-solving skill.

- How can CT concepts help to formulate a problem-solving approach

(PSA) model in programming?

- How does the PSA model help to solve problems for different algorithmic

solutions?

- How can the PSA model be translated into effective programming

teaching methods to solve problems?

• To evaluate the effectiveness of the PSA model in relation to different

programming teaching approaches.

Univ
ers

iti
Mala

ya

 6

- How to evaluate the effectiveness of different teaching approaches

blended into the PSA model?

- Which teaching approach is more effective in utilizing the PSA model?

1.5 Scope of the Study

Several important works of literature on different pedagogical approaches, CT, and

sorting algorithms related to programming studies have been discussed. There are many

types of active learning approaches such as problem-based learning, experimental

learning, flipped classroom etc. Since this study is focused on a problem-solving

approach, the study has mainly focused on problem-based learning and teaching methods

that are closely related to problem-based learning. Problem-based learning has been

chosen as it emphasizes a balance in designing a course along with discussing

problems(Xie et al., 2019). Game-Based learning focuses on problem solving as well by

integrating problem-based learning in a gamified approach(Kazimoglu, Kiernan, Bacon,

& Mackinnon, 2012). In addition, CT and its components and how they help in solving

algorithmic problems have been an integral part of the discussion. Sorting algorithms are

considered a problem-solving concept, and their importance in programming studies have

been described in different studies.

This study focuses on a problem-solving approach model to solve problems and

integrate them with teaching programming. It works with various sorting algorithms such

as bubble sort, merge sort, counting sort, quick sort and bucket sort. These sorting

algorithms are considered as the problems that need to be solved using the PSA model.

The participants in this study were mostly students from pre-university or first-year

students from the undergraduate level. However, some professionals with little to no

programming background were also allowed since this was an online workshop.

Univ
ers

iti
Mala

ya

 7

1.6 Significance of the Study

Since this study will be focusing on the problem-solving approach, while sorting

problems have a number of algorithmic solutions, sorting algorithms along with CT has

been considered as vital concepts to teach programming and learn the effectiveness of the

teaching. Sorting algorithms are identified as the problems to be solved in this study

during the process of problem-based learning.

If we take a look at the teacher-centred style of teaching programming across various

institutions or websites, it is common practice that programming is taught using syntax

from start to finish. Sorting algorithm is a very important part of programming and has

many elements related to the syntax of programming. It might be effective to use sorting

as a domain and to formulate their solution utilizing a problem-solving approach based

on computational thinking. The study aims at getting a clearer insight of how effective

the proposed problem-solving approach benefits students while teaching programming.

Furthermore, the study has compared teacher-centred programming learning and

problem-based learning to realize their impact on students.

Problem-solving skills such as analytical thinking (AT), computational thinking (CT),

critical thinking (CRIT), creative thinking (CRET) etc. are being referred as problem-

solving processes in this research. The strategies of these skills are referred as problem-

solving approaches. In addition, Active learning and Teacher-centred approach is being

referred as Teaching approach. Game-based learning, Problem-based learning, Project-

based learning are being referred as active learning technique in the required cases. This

research has been organised into the following chapters:

I. Introduction

II. Literature Review

III. Research Methodology

IV. Pilot Study and PSA Model Development

Univ
ers

iti
Mala

ya

 8

V. Experimental Planning and Design

VI. Findings and Analysis

VII. Conclusion

Univ
ers

iti
Mala

ya

 9

CHAPTER 2: LITERATURE REVIEW

It is important to know the desired problem-solving skill and know why it is the most

necessary one. It is equally important to discuss the relation of the needed problem-

solving skill and how it accumulates different teaching approaches.

2.1 Why Computational Thinking as a Problem-Solving Skill

Thinking is a cognitive activity utilized to process information, create a solution to

problems, making decisions, and generating new ideas. Computational Thinking (CT) is

the problem-solving process associated with formulating a problem and expressing a

solution to that problem. Besides CT, there are several types of core problem-solving

skills, and the notable ones include analytical thinking (AT), critical thinking (CRIT), and

creative thinking (CRET). A study that has closely monitored programming and CT

effectiveness on developing several problem-solving skills such as AT, CRIT, and CRET

has suggested that there was a noticeable impact of CT and programming on these

mentioned problem-solving skills even though further research is required to get clearer

insights (Wong & Cheung, 2020).

Table 2.1: Research involving CT with other problem-solving skills

Author AT CRIT CRET Perception Findings
(Wong &
Cheung, 2020)

Investigating the
effects of
programming and CT
on problem-solving
skills.

Noticeable impacts
of programming and
CT on the problem-
solving skills.

(Van Dyne &
Braun, 2014)

 Evaluate a CT course
developed to improve
the analytical skills of
students.

Increase student
analytical problem-
solving skills.

(Atmatzidou &
Demetriadis,
2014)

 Evaluation of CT
skills in educational
robotics activities to
enhance critical
thinking.

Students became
familiar with CT
skills and enhance
critical skills.

Univ
ers

iti
Mala

ya

 10

Table 2.1 continued: Research involving CT with other problem-solving skills
Author AT CRIT CRET Perception Findings
(Kules, 2016)

 How CT and CRIT
support each other
and develop learning
outcomes.

Suggests ways for
better course design
using the analysis of
the relationship.

(M. G.
Voskoglou &
Buckley, 2012b)

 An experiment on
problem-solving and
discuss the
relationship between
CT and CRIT

Use of computers as
a tool to enhance
problem-solving
capabilities.

(Avello-
Martínez et al.,
2020)

Compressive review
of CT and CRET’s
relationship with
coding and
educational robotics.

CT and CRET are
related to find an
efficient and good
solution to problems
in multiple ways.

(Hershkovitz et
al., 2019)

Trying to find
association between
general creativity and
computational
creativity.

Quite a few
associations between
the two creativity
constructs.

In table 2.1, Research involving CT with other problem-solving skills have been

illustrated.

2.1.1 Critical thinking and its relationship with CT

Critical thinking (CRIT) is the process of careful evaluation of a problem to be solved

and determining the process of interpretation of that problem (Analytical Thinking and

Critical Thinking, n.d.). To engage in problem-solving, we need to think at a deeper level

and evaluate the problem using or adapting existing knowledge and skills, laying the

groundwork for critical thinking (Doleck et al., 2017).

CRIT and CT complement each other as a way of solving problems, and their

relationship suggests a better course structure in computer science (Kules, 2016).

Furthermore, it enhances problem-solving capabilities (M. G. Voskoglou & Buckley,

2012b). An article by Laura says that CT is not that far afield from CRIT and the process

of both of this problem-solving skills mirror each other (L. Lee, 2019). CT solves complex

problems by integrating current knowledge and critical thinking (M. Voskoglou, 2013).

Therefore, CT is a good approach chosen to solve problems because a vital concept of

Univ
ers

iti
Mala

ya

 11

problem-solving, which is CRIT, is connected with it and is nurtured during the process

of it.

2.1.2 Analytical thinking and its relationship with CT

Analytical thinking (AT) is the mental process to break down a complex problem into

smaller parts, and it is a component within critical thinking (Analytical Thinking and

Critical Thinking, n.d.). Analytical thinking helps to distinguish and outline problems,

extract key information, and develop feasible solutions.

 A different study by Wing (2008) relates CT with AT by linking them to mathematical

thinking in which a problem-solving approach might be initiated. One of the studies have

proved that students’ analytical problem-solving skills were improved by the association

of CT concepts (Van Dyne & Braun, 2014). CT includes CRIT and AT for the

development of an individual’s problem-solving skills with the help of technology

(Korucu et al., 2017). It is apparent that CT is a compact approach that integrates the other

problem-solving skills such as AT and CRIT to better develop one’s competencies.

2.1.3 Creative thinking and its relationship with CT

 Creative thinking (CRET) is the ability to think in a new or different way. It refers to

a new or different approach to solving a problem using a different angle (Tomaszewski,

2021).

When applying CT principles in problem-solving, a certain level of CRET is involved

in it as a significant aspect of critical thinking (Doleck et al., 2017). CT and CRET have

quite a few associations within their creativity constructs (Hershkovitz et al., 2019) and

they are related to find an effective and good solution to problems in multiple ways

(Avello-Martínez et al., 2020). In a number of aspects, CT problem-solving skills are

found to be associated with CRET skills and is considered to be a reflection of logical

and creative thinking along with problem-solving skills (Durak & Saritepeci, 2018).

Therefore, CT is also a good problem-solving skill that relates to CRET to a certain extent.

Univ
ers

iti
Mala

ya

 12

2.1.4 Justification

The above discussion explains the relationship of CT with other core problem-solving

skills that are associated with a problem-solving approach. It gives a clearer overview that

computational thinking associates major problem-solving processes that are vital in

solving problems. As a result, computational thinking fosters improvement in problem-

solving skills by associating other thinking skills. Since other thinking skills for solving

problems are associated with CT and can be enhanced through CT, it will be considered

as the problem-solving approach for this paper.

2.2 Problem-Solving in Programming through Computational Thinking

Different teaching approaches are being utilized to make programming learning easier

for students. Instructing and learning programming ideas and skills have been regarded

as a huge challenge to both tutors and peers (Yang et al., 2015). Few problems that were

identified are lack of skills in evaluating problems, ineffective use of problem

representation processes to solve problems, and the unsuccessful application of teaching

approaches for solving problems and programming (Ismail et al., 2010b). Some initiatives

have been taken to enhance programming teaching and learning.

Table 2.2: Research involving different models of CT

Author Perception Problem-solving model used
(Szabó, 2020) Interrelating concepts of

programming tasks to
enhance problem-solving.

A complete structure with
programming concepts for
algorithmic programming.

(Threekunprapa & Yasri,
2020)

Developing unplugged
activities using flowcharts to
enhance CT skills.

CT development model in
different phases using
flowcharts.

(Palts & Pedaste, 2020) Common understanding of
CT in CS and develop a
model to describe three
dimensions.

A model for developing CT in
3 stages consisting of 10 CT
skills.

Univ
ers

iti
Mala

ya

 13

In table 2.2, Research involving different models of CT have been illustrated.

A conceptual structure has been created by connecting different programming

concepts used in algorithmic thinking to enhance problem-solving skills among students

(Szabó, 2020). This approach is useful provided the user has extensive knowledge in

programming and already masters most of the well-known programming paradigms. In

the case of a novice programmer, this is not an effective way to approach a solution to a

problem. The use of algorithms proved to be useful for teaching programming but

formulating through an effective approach is essential.

Another model for solving programming problems was illustrated, which displayed a

model in 3 stages: a) defining the problem, b) solving the problem, and c) analysing the

solution. The model also included 10 of the CT components (Palts & Pedaste, 2020). This

model does not break down the computational thinking concepts step-by-step rather than

just including them in different stages of the model. A limitation of the model is that there

is not much information about the relationships between the CT elements.

In order for students to be genuinely involved in the process of programming learning

based on computational thinking, a step-by-step approach is essential to illustrate the

relationship between core CT elements. Even though unplugged activities resulted in

finding student development of CT concepts in phases through flowcharts

(Threekunprapa & Yasri, 2020), they cannot be the best approaches to foster

programming learning using CT concepts until a relational problem-solving approach

fully focused on CT has been modelled.

2.3 Computational Thinking in Solving Programming Problems

Computational thinking (CT) can be enhanced by participating in computational

activities. Several studies have suggested that in the modern era of scientific and

technological education, it is an important part. The effectiveness of CT in computer

programming courses is widespread, and many studies have already concluded its

Univ
ers

iti
Mala

ya

 14

importance in programming. If computational activities are naturally integrated into the

teaching process, then peers would be well prepared and more successful in solving

programming problems as being computationally progressive (Hu, 2011). Another study

suggests that greater efforts are needed to strengthen the foundation of CT long before

the students participate in learning their first programming language (Lu & Fletcher,

2009). CT enables users to deal with complexity and open-ended problems and, as a

result, persists in working with hard problems and solving them (D. Barr et al., 2011a).

This helps students to get prepared for basic and extensive knowledge to get used to

programming concepts.

Table 2.3: Findings from the studies related to computational thinking

Author Name Perception Findings
(Buitrago Flórez et al., 2017) Highlight the necessity of learning

programming at an early stage to
develop CT skills.

Focus on CT for the CS and
programming teaching and
notice the adversities among
different strategies.

(Nouri et al., 2020) Understanding which CT related skills
are developed among peers while
working with programming.

Computational concepts,
computational practices and
computational perspectives
are developed as CT
perspectives.

(Yasmin et al., 2019) Arguing CT framings, historize and
situate CS to provide new directions
for students to actively participate.

Propose a new direction to
reframe CT by encompassing
functional skills as well as
socio-political and personal
contexts to accompany
youths’ use.

(Kong & Wang, 2020) Exploring CT perspectives
development on programming
learning and formation of
computational identity (CI)
components.

Questioning and connecting
ability is developed and can
foster CI formation, such as
programming engagement.

(Zhang & Nouri, 2019) A review to examine CT skills
systematically through Scratch based
on empirical evidence.

Students learn different CT
skills and enhance their
problem-solving skills.

(Kong et al., 2020) Empirical evidence of design and
evaluation of a teacher development
program as there is a lack of high-
quality research.

Better understand CT
concepts and improved
problem-solving skills.

Univ
ers

iti
Mala

ya

 15

Table 2.3 continued: Findings from the studies related to computational thinking
Author Name Perception Findings
(García-Peñalvo & Mendes, 2018) Exploring CT effects on pre-

university students with a focus on CT
to develop logical and problem-
solving skills.

CT is an exemplary
dimension to prepare
students for the upcoming
years.

(Voogt et al., 2015) Advance discussion of what CT is and
present instances of what is required to
be taught and how.

Need to study development
procedure of CT, improve the
ability to deal with
complexity, and study the
role of programming.

(Marcelino et al., 2018) Develop and run an education course
for elementary school teachers to learn
CT concepts and Scratch via e-
learning courses.

It was possible for the
trainees to acquire CT
concepts and Scratch as well
as develop useful products.

Findings from the studies related to computational thinking have been illustrated in

table 2.3.

Programming and CT complement each other, and it has been suggested to teach

programming at an early stage to develop CT skills gradually (Buitrago Flórez et al.,

2017). A number of CT related skills such as computational concepts, computational

practices, and computational perspectives are developed among students (Nouri et al.,

2020) and encompass functional skills for active participation (Yasmin et al., 2019) while

students are working with programming. Moreover, integration of CT concepts in

programming studies develops questioning and connecting ability through fostering

programming engagement (Kong & Wang, 2020) which results in a better computational

approach. Zhang & Nouri (2019) carried out a review in order to systematically examine

CT skills that can be achieved through the learning of Scratch programming. It was

learned that students could acquire different CT skills through Scratch programming.

The above discussion suggests that CT needs to be at the centre of computer science

and programming learning and teaching to improve problem-solving skills (Kong et al.,

2020). It is good to know that CT is another entity in the teacher’s toolbox for future years

and a new silver bullet for 21st-century education (García-Peñalvo & Mendes, 2018).

Univ
ers

iti
Mala

ya

 16

Nevertheless, further research is required to understand the role of programming in CT to

establish the claim that it enhances problem-solving abilities (Voogt et al., 2015).

2.4 Computational Thinking Components for Solving Problems

Computational thinking (CT) is a method for solving problems, and it has extensive

usage in the field of computer science. It integrates critical thinking and current

knowledge and relates those to resolve complex technological problems. It has already

been mentioned in the Background from Jeannette M. Wing that it is the problem-solving

process that is associated with formulating a problem and expressing a solution to that

problem in such a way that can be carried out in an effective manner by a human or a

machine. Computational thinking can also be considered as the mental activity for

abstracting problems and formulating solutions (Yadav et al., 2014). Computational

thinking has enabled and driven many technologies in this era of modern science.

Table 2.4: Usage of different CT concepts

CT CONCEPTS USAGE ACADEMIC AUTHORS
Data Finding the data source for a

problem, analyze and
represent the data.

(V. Barr & Stephenson, 2011)

(I. Lee et al., 2014)

Decomposition

Breaking the problems into
smaller sub-problems to
solve the problem.

(Ahsan Habib, 2019)

(Sa, 2018)

Pattern Recognition Recognizing the patterns in
the process that looks for
similarities or dissimilarities.

(Ahsan Habib, 2019)

(Sa, 2018)

Abstraction Encapsulating a set of often-
repeated commands by
filtering out unnecessary
characteristics.

(V. Barr & Stephenson, 2011)

(D. Barr et al., 2011b)

(Hazzan & Kramer, 2008).

(I. Lee et al., 2011).

Algorithmic (Ahsan Habib, 2019)

Univ
ers

iti
Mala

ya

 17

An algorithmic procedure for
the problem to be solved.

(V. Barr & Stephenson, 2011)

(Hu, 2011)

 Usage of different CT concepts have been illustrated in Table 2.4.

Univ
ers

iti
Mala

ya

 18

Research by Ahsan already discusses various elements of CT and maps the CT

elements into the important and mostly used programming attributes. Table 2 has

indicated several CT elements and some research that has been carried out based on those

concepts.

2.4.1 Data

In order to solve a problem, it is necessary to find the data source of that problem (V.

Barr & Stephenson, 2011). Data has to be logically analysed and organized, then

represented through models or simulations (I. Lee et al., 2014).

2.4.2 Decomposition

Decomposition simply refers to breaking down a complex problem into smaller sub-

problems, so it is decomposed into easily solvable parts (Sa, 2018). CT uses

decomposition whenever it is trying to work on solving a complex task of designing a

system that is complex (Wing, 2006).

2.4.3 Pattern Recognition

When we are working with a set of data that is hard to work on individually, we use

some techniques to understand a common pattern across the problem-solving approach.

Once a complex problem has been decomposed, CT paves the way to look into shared

characteristics (Ahsan Habib, 2019). Looking into shared similarities or dissimilarities of

the decomposed data using these programming concepts is coined after the term ‘Pattern

Recognition’ (Sa, 2018).

2.4.4 Abstraction

In any basic or complex problem-solving approach, there will a need to ignore

unnecessary characteristics by focusing on the general ones that are common to all or

multiple elements (Sa, 2018). When it compresses a set of repetitive commands, that term

is often referred to as abstraction (V. Barr & Stephenson, 2011). The precise role of

abstraction is it is used whenever needed. In very simple words, the process of abstraction

Univ
ers

iti
Mala

ya

 19

can be perceived as a purpose of many-to-one mapping (Hazzan & Kramer, 2008). In

programming, a model needs to be created with the general characteristics of the problem

to be solved. It can take the form of stripping down a problem by capturing shared

characteristics into a single set as a representative of other instances (I. Lee et al., 2011).

2.4.5 Algorithmic

Algorithms are step-by-step rules to follow when the problems are being solved (Sa,

2018). It is an idea to achieve the output by following the sequential statements correctly.

A study indicates that algorithms are a precise specification of the functionality of a

system that determines the quality of the computation process and effectively handles the

complexity of models and representations (Hu, 2011). One study says that algorithmic

thinking helps to automate solutions (D. Barr et al., 2011b).

The use of these different computational thinking concepts helps to create a step-by-

step algorithmic solution. Once particular data or a group of data has been decomposed,

they can be stripped down as a problem to be solved through abstraction by recognizing

the pattern and eventually lead to an algorithmic solution.

2.5 Discussing Teaching Approaches

Teaching computer programming in computer science courses has been a difficult task

for teachers so far. There have been many discussions to find the best pedagogical

approach to teaching programming. In addition, computer programming is not actually

an easy topic to master due to the nature of the subject (Lahtinen et al., 2005). Both

teachers and students are still struggling for a better knowledge give and take process.

High-quality research for programming education is important for a student to better

understand the subject and gain quality knowledge (THE ROYAL SOCIETY, 2017).

Most teaching practices fall into two kinds of pedagogical approaches, which are the a)

teacher-centred approach and the b) student-based active learning approach (Duckworth,

2009) (Wohlfarth et al., 2008).

Univ
ers

iti
Mala

ya

 20

2.5.1 Teacher-centred learning

If a teacher-centred pedagogy is mentioned, then the name clearly indicates that it is

mostly teacher-centric, and students are following the instructions from the teachers. This

approach is more tutor-centred rather than being learner-centred. It can be referred to as

the combination of an active teacher and a passive student (Mascolo, 2009). The teacher

functions as the centre of the knowledge process as a classroom lecturer, present

information to students and students are passively expected to obtain the knowledge as it

is being presented (Faraon et al., 2020).

2.5.1.1 Benefits and difficulties in the teacher-centred approach

An article at the University of San Diego has discussed some potential benefits and

drawbacks of the teacher-centred approach (Lathan, 2017). Teacher centred approaches

in learning have a few benefits, and the notable ones are: i) the teacher maintains good

order in class during the teacher-centred approach, ii) full responsibility is on the

educator, iii) educators feel more comfortable while being in charge of class activities,

and iv) students know that they need to focus on the teacher.

This article has also focused on the drawbacks of the teacher-centred approach, which

include: i) the method will only be effective when a lesson is made interesting by the

instructor, ii) lack of collaboration, iii) missing opportunities of discussion and sharing

the discovery with classmates, and iv) lesser opportunities to develop problem-solving

skills.

2.5.1.2 Teacher-centred learning in programming

A study indicated that teacher-centred education in programming and computational

thinking propelled only the good students to excel in their performance, whereas the

average or weaker students were left behind (Sahin & Abichandani, 2013). A lack of

participation from students is an issue in the teacher-centred approach and results in a

lack of attention to the learning of the students (Gelisli, 2009). Another issue that has

Univ
ers

iti
Mala

ya

 21

been addressed in the previous section amongst the drawbacks is that the teacher-centred

approach offers lesser opportunities to develop problem-solving skills, whereas problem-

solving is one of the core factors in programming. In addition, a lack of collaboration and

discussion makes learning difficult and only ensures better control by the teacher in the

classroom, whereas problem-solving skills and better learning has to be the main motive.

2.5.2 Student-centred active learning

o Active learning has been quite popular in the 21st century, and it involves students

having the course materials through different approaches. Active learning can be

in any form of engagement such as discussions and group tasks, problem-based

approach, role plays, use of games in teaching etc. Active learning can also be

called student-based active learning since the students are placed at the centre of

a lecture’s objectives and outcomes (Malhotra, 2019). Students are not only

occupied in learning but also participate in the mental processes. It places a greater

degree of responsibility on the learners and makes them active compared to a

teacher-centric approach. Compared to traditional approaches of programming

lectures, better learning outcomes have been witnessed by utilizing active learning

(Park et al., 2020). Problem-based learning (PBL) can be considered as one of

the very well-known approaches in programming studies. It is a pedagogical

approach that helps students to learn while dynamically engaging with problems

(Yew & Goh, 2016a). A number of studies have been carried out on the usability

of PBL and its impact on programming studies. Problem-based learning is a

method that makes the problem the centre of learning and is proved to be an

effective learning method in programming courses (Bawamohiddin & Razali,

2017).

Univ
ers

iti
Mala

ya

 22

o On the other hand, PBL is a subset of project-based learning (PJBL) (Larmer,

2015) but PJBL is more focused on a long-term team-based approach by working

in phases (Bell, 2010) to solve problems and enhance problem-solving skills.

Students get to integrate and communicate while doing a project and can improve

both individual and group experience throughout the process (Subramaniam et al.,

2017). Activity-based problem-solving is an effective medium of learning for the

students.

o Game-based learning (GBL) is a very interesting approach where educational

games are utilized as a medium of teaching and learning programming combined

with problem-solving strategies to attract students to the learning process (C. S.

Chang et al., 2015). Game-based learning usually simulates solving problems in

a game environment that helps students to develop their logical and formulation

skills (Jesus & Silveira, 2021). Game-based learning is also a subset of PJBL since

it stimulates building up problem-solving skills among students. Educational

games are a combination of activity simulation and ideals of problem orientation

that revolves around the problem as in problem-based learning. These games are

used to develop objectives of learning and, as a result, obtain better learning

outcomes (Malliarakis et al., 2014).

Figure 2.1: Project-based learning subsets

Project-based learning would be a suitable approach. But with the time constraints and

enabling voluntary participation among students, problem-based learning would be a

Univ
ers

iti
Mala

ya

 23

more suitable approach to teach the students. Moreover, a gamified approach would be

effectual as well to integrate problem-based learning in order to solve programming

problems and develop CT skills.

2.5.2.1 Benefits and difficulties in student-centred active learning approach

The student-centred arrangement has been considered to be a dynamic process of

learning (Price, 2019). This author has identified some potential benefits of the student-

centred active learning approach. A few notable pros of student-centred active learning

include: i) shared experience between educators and students, ii) facilitate critical

thinking and further inquiry on solving problems, iii) learn to work independently and in

a group, iv) peer-to-peer and peer-to-educator collaboration, and v) interact with each

other during the learning process to solve problems. Some of the cons of student-centred

active learning include: i) the class environment might be noisy or chaotic, ii)

collaborative approach might not be beneficial for all students, iii) less focus on lectures

might lead to missing out on important information.

2.5.2.2 Student-centred active learning in programming

Active learning concepts engage programming students in a group discussion to

discuss the problem, analyse, and solve the problem (Tom, 2015). Programming is more

about solving problems, and most of the active learning concepts focus on keeping the

problems as a focus and to engage the students. Student-based learning enables enhanced

participation and allows students to acquire knowledge and skills to solve programming

problems that build design thinking, problem-solving, and the ability to analyse (Acharya

& Gayana, 2021). Even though the class environment might feel a bit noisy and chaotic,

the learning purpose is very well-served by utilizing a student-centred active learning

approach.

Univ
ers

iti
Mala

ya

 24

2.5.3 Justification on the chosen pedagogy

The above discussion gives us a clear indication that student-based learning

emphasizes more on solving problems and developing cognitive skills among students.

In addition, students are more interested in learning activities that are collaborative and

make them participate actively in the process (Otukile-Mongwaketse, 2018). As this

study aims at solving problems within an effective pedagogy, student-centred learning

will be very handful since it focuses on the problem and engage the participants in the

process.

2.6 PBL in Programming and CT

Table 2.5: PBL in programming and CT

Author Name PBL Perception Findings
(Kale & Yuan,
2020)

To know whether
problem-solving skills are
addressed through
computational thinking.

The current study plans
addressed some of the CT
and problem-solving
skills.

(Jonasen & Gram-
Hansen, 2019)

Highlight the benefits of
PBL to develop CT skills.

CT concepts through PBL
provide digital
competencies and improve
problem-solving.

(Yew & Goh,
2016b)

Process of problem-based
learning (PBL) and how
its various components
impact learning.

Longer-term knowledge
retention and has been
generally consistent and
influence learning
outcomes.

(Chen, 2018)

Teaching programming
based on CT and problem-
based learning.

Better understanding of
problem learning through
discussion and improved
test score.

Table 2.5 illustrates PBL in programming and CT. Even though some of the

programming courses are integrating CT and problem-solving skills, it was evident in one

of the studies that it is essential to focus on the other CT components to strengthen

problem-solving skills (Kale & Yuan, 2020). Problem-based learning centralizes the

problem by engaging students, and engaging CT concepts through PBL provides digital

Univ
ers

iti
Mala

ya

 25

competencies and foster problem-solving skills (Jonasen & Gram-Hansen, 2019).

Problem-based learning and its various components are proven to be effective in longer-

term knowledge retention and have been influencing learning outcomes on a consistent

basis (Yew & Goh, 2016b). Discussion is an integral part of problem-based learning

where a problem and the approach are discussed in steps. The discussion process assists

students in understanding the problems better and have a greater achievement during

academic learning (Chen, 2018).

2.7 GBL in Programming and CT

This part of the study will be focused specifically on how game-based learning blended

in PBL has worked parallelly with computational thinking and has complemented each

other. Since the study is focusing on using problem-based learning as the main

pedagogical approach, and game-based learning also comes under problem-based

learning, further discussion can provide a clearer overview.

Table 2.6: Results from the studies of PBL and GBL with CT

Author Name PBL GBL Perception Findings
(Kazimoglu,
Kiernan, Bacon, &
Mackinnon, 2012)

Design of an
educational game
framework to facilitate
CT skill development
in introductory
programming.

Beneficial approach to
help students to learn
problem-solving skills.

(Zhao & Shute,
2019)

Evaluation of
cognitive and
attitudinal influence
utilizing a video game
for students CT skill
development.

Improved CT skill and
problem-solving
significantly.

(Berland & Lee,
2011)

board games represent
an informal and
collaborative context
to observe complex
computational
thinking.

Spontaneous board
gameplay can
contribute to
developing complex
computational
thinking.

(Menon et al., 2019)

Evaluating tabletop
escape games as a
probable tool to
cultivate CT among K-
12 learners and

unplugged activities
and a computer
programming
approach can help to
remain

Univ
ers

iti
Mala

ya

 26

Table 2.6 continued: Results from the studies of PBL and GBL with CT

Author Name PBL GBL Perception Findings
 assessing its

effectiveness.
involved in the
learning process.

(Turchi et al., 2019)

Focusing on
playfulness and
collaboration by
introducing a game-
based system to foster
CT skills.

Playfulness can
involve a wide
audience to learn CT
skills, whereas
collaborative aspects
are possibly effective
to stimulate problem-
solving formality on
end-user reflection.

(Kazimoglu,
Kiernan, Bacon, &
MacKinnon, 2012)

Analysis of how a
game supports CT
concepts and mapping
those to programming
constructs.

The game was well
designed for most
students to understand
introductory concepts.

(Malizia et al., 2020) Introduces a game that
combines GBL with
tangible UI and virtual
reality to foster CT
skills.

Players will learn
about their problem-
solving abilities on the
progress of CT.

(Tsarava et al.,
2017)

A gamified instruction
approach of plugged-
in and unplugged
activities to master
specific CT processes.

Students can construct
knowledge through
playing and interacting
with educational
activities.

(Garneli &
Chorianopoulos,
2019)

Effects of video game
making (VGM) on CT
skills development and
peer performance.

VGM within science
content brought in
more CT skills and
improved performance
to acquire
programming skills.

(C.-S. Chang et al.,
2020)

An educational game
utilized among
students to improve
their knowledge of
programming.

Results show that PBL
learning approach of
the game can enhance
learning satisfaction
and motivation.

Table 2.6 illustrates Results from the studies of PBL and GBL with CT.Educational

games do not only engage the students but also bring in important educational concepts

for actively participating in learning. One study suggested a game that was well designed

to support pupils to learn introductory programming concepts (Kazimoglu, Kiernan,

Bacon, & MacKinnon, 2012). Educational games assist in strengthening the development

of CT skills in introductory programming, and this approach benefitted students to acquire

Univ
ers

iti
Mala

ya

 27

problem-solving skills (Kazimoglu, Kiernan, Bacon, & Mackinnon, 2012). A problem-

based learning approach enhances the learning satisfaction and motivation of a student.

However, during the process, it is important that the students remain well connected in

the process. Programming and unplugged activities can keep learners actively involved

in the process (Menon et al., 2019). An active problem-solving approach can contribute

to developing computational thinking among students (Berland & Lee, 2011). Whether

via gamified or non-gamified problem-based approaches, playfulness is important to

involve students to learn CT skills (Turchi et al., 2019). Furthermore, a problem-based

approach with an interactive UI helps the instructor to measure the problem-solving

abilities of the students as well as CT skills (Malizia et al., 2020).

Interactive video games are found to be interesting. A study by Zhao & Shute (2019)

assessed that they improved the CT skills of users. Zhao and Shute evaluated attitudinal

and cognitive impacts of a video game for CT skill development and assessed the

effectiveness of the game by investigation of a particular game feature. An educational

gamified instruction approach integrating a series of plugged-in and unplugged activities

helped students construct knowledge through playing and interacting with educational

activities (Zhao & Shute, 2019).

2.8 Interactive Programming and Learning Environment

In order to teach computational thinking skills, different technologies, including

interactive learning environments (ILE), have been utilized to support teaching and

learning (Barron-Estrada et al., 2020). An interactive programming environment or

interactive development environment is a system that supports the basic tools which are

needed to write and test software. A number of tools are used by developers across the

globe for software code creation, building, and testing. Besides interactive development

environments, there are learning tools that educators have been using over the years for

making learning smooth for their students. Interactive programming learning

Univ
ers

iti
Mala

ya

 28

environments are gaining more popularity day by day among educators and pupils. It

helps in greater student engagement and accelerates learning in a fun way rather than a

conventional approach.

Table 2.7: Findings from the studies of interactive programming learning studies

Author Name Game-Based Concepts Findings

(Barron-Estrada et al., 2020) An interactive learning environment
focused on the development of CT
skills using block-based visual
programming.

Improved enjoyment and ease
of use, natural UI provides
learning motivation.

(Wang et al., 2020) Introduce a self-paced programming
environment that combines block-
based and visual programming with
structured practices for engagement.

Kept students engaged and
progressive even though some
struggled and required
additional assistance.

(Tariq, 2020) Exploring the usability of a shader
mode tool for open-source software
widely used in education and other
sectors, discuss how it can aid shader
for emerging computational artists.

Shader examples played an
important part in providing
inspiration and providing
learning for less experienced
users.

(Schwebel et al., 2012) Evaluating “Blue Dog” to teach young
children how to interact safely with
dogs.

Children using “Blue Dog” had
a greater change in recognition
of risky dog situations than
children learning fire safety.

(Smith et al., 2020) Describe initial work towards solving
the leveraging of narrative and
computational thinking to engage
students in a narrative-centred
environment.

The environment successfully
enabled students to engage in
different CT concepts.

(Nguyen et al., 2020) A programming environment to allow
students producing an agent in a
virtual world enabled to answer
questions in spoken language from a
user.

With an accuracy of 78
percent, students were capable
of communicating intuitively
with the environment.

Table 2.8 illustrates findings from the studies of interactive programming learning

studies .An interactive learning environment (ILE) called CREA y JUEGA emphasized

the enrichment of CT skills utilizing block-based programming, enhanced ease of

participation, and motivated learners (Barron-Estrada et al., 2020). In order to enhance

student engagement, another study introduced a self-paced coding environment that

Univ
ers

iti
Mala

ya

 29

combined block-based and visual programming. It kept most of the students engaged, and

they progressed throughout the process. But some students still struggled with such a

highly structured program (Wang et al., 2020). A study by Tariq (2020) found out the

overall usability of a shader mode tool to be useful for teaching programming with CT

for less experienced users, along with discussing the usefulness of the system. Taking a

look for other research papers that uses ILE for general usages, such as teaching young

children how to interact with dogs. A study described initial work towards solving the

leveraging of narrative thinking and computational thinking through a narrative-centred

interactive environment. The research found that the environment was successful in

creating narratives as well as engaging peers in various CT concepts (Smith et al., 2020).

 A research that evaluated “Blue Dog” had made children more aware of risky

situations with dogs and how to interact safely (Schwebel et al., 2012). Another study

proposed a VR programming environment to enable peers to produce an agent in a virtual

world enabled to answer questions in spoken language from a user. With a high accuracy

result of 78 percent, students were capable of intuitively communicating with the

environment (Nguyen et al., 2020).

2.9 Game-Based Features and Components

There are a few things that need to be taken into consideration while designing a game.

A study has confirmed that there are five crucial features to be focused on when building

a game, including design, controls, social features, assets, and ease of navigation (Mohd

et al., 2016). One of the best ways is by breaking the game into different levels. In

addition, some rewards like points give a level of confidence to the user and ensure

interesting engagement. It is better if the game is easy and has different content. However,

the main goal of the game must be focused on each step of the development. The

navigational features must be logical and easy. Assets such as fonts, look, and feel give a

good impression to the user about the game. Social features are a good thing to be

Univ
ers

iti
Mala

ya

 30

implemented in a game but might not be very useful for the purpose of an educational

game.

2.10 Sorting Algorithms and its Application in Programming

Sorting is a technique that is utilized for rearranging a set of unsorted items into a finite

sequence or order, which might be lowest to highest, longest to shortest, alphabetical, and

it is known as sorting algorithm (Margaret Rouse, 2017). It implies defining a technique

to arrange data in a specified order where most of the grouped orders are in an arithmetic

or a lexicographical order (Rana et al., 2019a). A very common example of sorting is

when we buy products from e-commerce websites, we sort the items according to year or

price, from lowest to highest. This simple example shows us how sorting is associated

with our day-to-day life.

 It is a very important operation in computer science. Sorting algorithms are often

taught as a part of computer science education in the background of a programming

language (Nasar, 2019). Good knowledge of sorting algorithm is an essential skill for

computer science students or professionals. Sorting algorithm processes consist of well-

defined steps for problem-solving, which is an undetachable part for driving the

development and defining the discipline of computer science (Lui et al., 2019). Sorting

algorithms enhance algorithmic thinking, which is more than necessary to solve

programming problems. Few popular sorting algorithms are selection sort, bubble sort,

insertion sort, merge sort, quick sort etc.

Table 2.8: Results from the studies of sorting algorithm and programming

Author Name Perception Findings
(Chuechote et al., 2020) Provide theory-based explanation

embracing a framework of cognitive
development of how students
ascertain sorting algorithms (SA) after
digital gameplay.

Impact of the digital game on
algorithmic thinking and for
self-learning by discovering
the relation between actions
and schematic reasoning.

(Statter & Armoni, 2020) Studying the effect of a framework for
teaching abstraction with regards to

Indicate that the framework
was highly effective to
develop CS abstraction skills,

Univ
ers

iti
Mala

ya

 31

Table 2.10 continued: Results from the studies of sorting algorithm and programming

Author Name Perception Findings
 algorithmic problem-solving by using

Scratch for algorithmic solutions.
provide an explanation to a
solution, use of initialization
process and CS perception.

(Ward et al., 2010) Examines implementing common CS
problems through a parallel SA,
another SA and a binary number
conversion game in Scratch and Alice.

Both Scratch and Alice
illustrated a skillful way to
teach programming and
resulted in programming
significant CS concepts.

(Kohn & Komm, 2018) Introduce programming as well as
discuss algorithms by proposing a
common computing agent as a
notional machine.

Programming and
algorithmic thinking need to
be considered equally for
explicit incorporation of
underlying computing
education.

(Bang, 2018) Using the SortVR app to present a
proof-of-concept that students can
learn sorting algorithms using VR
headsets.

The interaction was easy, and
the app shows the potential of
VR for sorting algorithm and
CS concept teaching in the
future.

(Muntean, 2019) Introduces flipped classroom
methodology to teach advance
programming concepts such as sorting
and searching in programming.

Results show that the
methodology is useful in
teaching the programming
concepts with an enjoyable
learning experience.

In table 2.10, Results from the studies of sorting algorithm and programming have

been illustrated. Several studies have carried out research related to sorting and its

application to programming courses. One of the notable aspects of sorting algorithm is

that there are many ways of sorting, but still, it addresses the same problem. A study by

Bang, (2018) presented a proof-of-concept using the SortVR app so that students can

learn two sorting algorithms: bubble sort and selection sort, using VR headsets. It proved

to provide better interaction and potentiality of VR technology for sorting algorithm as

well as CS concept teaching in the future. In addition, the design of algorithms makes it

more interesting for students. Another study embraced a framework to provide a theory-

based framework of cognitive development of how students ascertain sorting algorithms

(SA) after digital gameplay (Chuechote et al., 2020). It helped to find the impact of the

Univ
ers

iti
Mala

ya

 32

digital game on algorithmic thinking and for self-learning by discovering the relation

between actions and schematic reasoning. The stability and adaptability of different

algorithms can help to understand different CS problems and enhance problem-solving

skills to a certain extent. A study examined implementing common CS problems through

a parallel SA, another SA, and a binary number conversion game in Scratch and Alice

(Ward et al., 2010). It was known that both Scratch and Alice illustrated a meaningful

and creative way to engage while teaching programming as well as programming

impactful CS concepts. The concept of abstraction and data is also a crucial CS concept

which is a core part of sorting algorithms since it is basically about sorting numerous data.

Statter and Armoni studied the effect of a framework for teaching abstraction to 7th grader

novice students with regards to algorithmic problem-solving by using Scratch for

algorithmic solutions (Statter & Armoni, 2020). The findings indicated that the

framework was quite effective to develop abstraction skills, provide an explanation for a

complicated solution, use of initialization process, and CS perception. In addition, the

framework proved to be useful for improving the CS performance of students.

Furthermore, the concept of sorting algorithm is very useful in computational education,

and it is very rich in implementation. A study at the National College of Ireland

introduced a flipped classroom-based methodology to teach advance programming

concepts such as sorting and searching in programming for programming courses

(Muntean, 2019). Results indicated that the approach was effective to teach concepts such

as sorting and searching using the methodology for an enjoyable learning experience. In

another paper, a framework using a mutual computing agent as a notional machine was

proposed to introduce programming as well as discuss algorithms and their complexity

(Kohn & Komm, 2018). It was learnt that programming and algorithmic thinking needs

to be considered equally for explicit incorporation of underlying computing education.

Univ
ers

iti
Mala

ya

 33

Table 2.9: Classifications of sorting algorithm

Author Year Classifications of S.A.

(Rana et al., 2019b) 2019 In-place Sorting

Not-in-place Sorting

Stable Sorting

Not Stable Sorting

Adaptive Sorting

Non-Adaptive Sorting

Table 2.11 shows classifications of different kinds of sorting algorithms according to a

research. The paper has indicated six divisions of sorting algorithms (Rana et al., 2019b),

and they are described below:

o In-place Sorting: Extra space for comparison is not required, e.g. selection sort,

bubble sort.

o Not-in-place Sorting: More than or equal extra places needed to sort the

elements, e.g., merge sort.

o Stable Sorting: Same items sequence not alternated in which they appear after

being sorted, e.g., insertion sort, bubble sort.

o Not Stable Sorting: Same items sequence alternated in which they appear after

being sorted, e.g., heap sort, quick sort.

o Adaptive Sorting: Uses already sorted items by not reordering them in sorted

form, e.g., quick sort, insertion sort.

o Non-Adaptive Sorting: Force every single item to be reordered by confirming

Univ
ers

iti
Mala

ya

 34

the items have been sorted, e.g., heap sort, merge sort.

2.11 Sorting Algorithm and Computational Thinking

Programming is a process of learning that has multiple dimensions associated with it.

Sorting algorithm and CT concepts are vital dimensions in learning programming. Along

with sorting algorithm, CT concepts have a great contribution to both learning and

applying problem-solving concepts (Nokkaew, 2019). Through sorting algorithms,

students get to learn how to make comparison and rearrange items by using algorithmic

thinking. Algorithmic thinking is one of the core concepts of CT. When sorting algorithm

in programming, data are logically decomposed and represented through abstractions and

solutions are automated through algorithmic thinking. On the other hand, it is also useful

for educators because the basic concepts of sorting algorithms are easy to explain, and

there is a large number of sorting algorithms that are useful in different circumstances

(Anonymous, 2014).

2.12 Gap Analysis

The problem statement stated that ineffective pedagogy and the lack of problem-

solving skills are a hindrance towards learning and teaching programming. A gap has

been found which is to understand improving problem-solving skills through a problem

solving approach and finding the effective teaching method to utilize the process. Some

studies that have worked with problem-solving through computational thinking have been

noted and explained the need for computational thinking skills besides other problem-

solving skills. In addition, different teaching approaches and suitable teaching approaches

for programming learning and computational thinking are discussed as well to address

our problems. Problem-based learning and other active learning processes such as project-

based learning and game-based learning and their relationships assimilate the need of

GBL and PBL for this research. In addition, it is necessary to figure out the teaching

Univ
ers

iti
Mala

ya

 35

approaches along with the intended problem solving approach through computational

thinking.

Univ
ers

iti
Mala

ya

 36

CHAPTER 3: RESEARCH METHODOLOGY

This chapter focuses on the methodology on which this study has been carried out. It

has identified the literature followed by a pilot study to understand students’ basic level

of understanding. A problem-solving approach (PSA) model has been created to model

different sorting problems which was then used to design the teaching modules for the

experimental group(s). Finally, the workshop was conducted, and the students were

evaluated to establish the results of this study.

Figure 3.1: Research Methodology Procedure

3.1 Identifying the Literature

The literature review has identified the studies which have highlighted the need for a

problem-solving approach. Our problem statement has pointed out computational

thinking as a pivotal skill to solve programming problems, and further studies on the core

problem-solving skills and their association with CT accelerated the fact that CT is

necessary for solving complex programming problems. Then, the literature has identified

Univ
ers

iti
Mala

ya

 37

the computational thinking concepts which were used to formulate the solution of a

problem. In addition, studies focusing on different kinds of teaching approaches and their

findings have been discussed for a better insight into teaching techniques and establish

why this study has chosen student-based active learning and its concepts such as PBL and

GBL as its experimental teaching method. It was also identified that educational gamified

approaches are utilizing problem-based learning as the teaching method. Furthermore, the

discussions have added upon how sorting algorithm and CT support teaching

programming. The additional discussion has been carried out for interactive learning

environments and their significance in online learning and gamified approaches. Brief

literature on crucial features of gamified approaches was discussed, which gave an idea

for the design of the game-based approach for this study. Moreover, it was identified that

sorting algorithm consists of the fundamentals of programming and can be quite effective

with computational thinking for teaching various programming concepts.

3.2 Pilot Study

According to Doody & Doody (2014), a pilot study is a limited-scale version of an

intended study and conducted within a small group of participants that are similar to the

ones to be recruited later in the main study. The main objective of a pilot study is to

enhance the prospect of success in the main study by testing the practicability to recruit

the participants and determine the validity of the contents and materials (Fraser et al.,

2018). A pilot study has been carried out in this study prior to aiming at the feasibility

study. The study intends to investigate the issues in solving programming problems and

enhance problem-solving skills among students through an effective teaching approach.

Therefore, the pilot study has been carried out using a traditional teacher-centred

approach and to understand its effectiveness among students through a pre-test and post-

test. It raised some issues and shortcomings that needed to be rectified before conducting

Univ
ers

iti
Mala

ya

 38

the feasibility study. A detailed overview of the pilot study has been included in the

Modelling and Workshop Design chapter.

3.3 Create PSA Model

A problem-solving approach (PSA) is a model that has utilized the core concepts of

computational thinking to solve a programming problem and will later be integrated into

the student-centred active learning approaches to teach the students. The discussions in

the literature review established the use of various CT concepts in problem-solving

approaches, and has guided towards establishing this model. The modelling and design

chapter has illustrated the PSA model and explained the construction and procedure of

the model.

3.4 Modelling and Notation

Different problems have been modelled in this step in accordance with the PSA model

as well as notating the different steps mathematically. The design of the workshops has

been done using these problem-specific models which were then used for designing the

workshops.

3.4.1 Model the problems

The Related Work section mentioned that a problem-solving approach model that

included the CT concepts was designed without much relationship between them (Palts

& Pedaste, 2020). Another paper found the development of CT concepts through

activities in phases through flowcharts (Threekunprapa & Yasri, 2020) but an overall CT

process was not utilized but measured the concepts one by one. The necessity of a

relational approach within the concepts of CT has already been mentioned. The PSA

model has been designed using core CT concepts by connecting them to each other,

resulting in an algorithmic solution. The PSA model helps us to formulate a solution to

the algorithmic problems for different sorting algorithms. The model is used for some

Univ
ers

iti
Mala

ya

 39

important sorting techniques in this paper. How the model works, and its entire process

has been further elaborated in the Modelling and Workshop Design chapter.

3.4.2 Notate the CT steps

Each step that has been carried out as the model has been notated mathematically for

an easier representation so that the terms of the steps become more precise. Notating steps

in an easy and clear format can make arguments and logics easy to realize (Biletch et al.,

2015). It is more of a symbolic representation of what actually happens in the process and

enables a better understanding.

3.4.3 Design the workshops

The design of the workshops has included these things when the PSA model has been

utilized in the student-centred approach by using the PSA model of different algorithms

and then utilizing those models in different active learning approaches. The PSA model

of a specific algorithm was modified to fit in the procedure of the specific workshop. The

modified model was then translated to the purposed activity of that algorithm to solve the

problem (Please refer to Modelling and Workshop Design). Each step in the activity was

later related to the required programming workable syntaxes and semantics (function calls

and iterations).

3.5 Experimental Design and Participants

The research involves 90 participants which were divided into three groups, each

consisting of at least 30 participants. The three groups are: syntax-based learning,

problem-based learning, and game-based learning. A pre-test and post-test consisting of

basic programming questions were given to the participants that have given a numerical

evaluation of their performance and their progression. However, in all these cases, during

participant recruitment, participants were encouraged to participate with little

programming background rather than having zero knowledge in programming.

Univ
ers

iti
Mala

ya

 40

3.5.1 Syntax-based learning

 The first group attended a workshop that was making use of a teacher-centred method

of teaching programming using syntax. The topics that were covered during this

workshop were indexing, operators, loops, data types etc., using python language. A pre-

workshop test and post-workshop test were conducted to evaluate student progression.

3.5.2 Problem-based learning

 The second group attended another workshop and was taught programming using

online problem-based learning, and the problems involved in the workshop were outlined

based on our PSA model. Students took part in activities for solving different sorting

algorithms in a computational problem-solving process. The sorting algorithms included:

bubble sort, counting sort, and merge sort. A pre-workshop test and post-workshop test

were conducted to evaluate student progression.

3.5.3 Game-based learning

 The third group attended another programming workshop and was taught

programming using online game-based learning, and the course was outlined based on

our PSA model. Students played games through a gamified approach for solving different

sorting algorithms in a computational problem-solving process. The sorting algorithms

included: bubble sort, counting sort, and merge sort. A pre-workshop test and post-

workshop test were conducted to evaluate student progression.

A detailed discussion has been carried out in the Experimental Design chapter for all three

modules designed for different workshops.

3.6 Pre-Test and Post-Test

 A pre-test and post-test (refer to Appendix C) consisting of basic programming

questions were given to participants that will give a numerical evaluation of their

performance and their progression.

Univ
ers

iti
Mala

ya

 41

Marking criteria:

The marking criteria that were used for the tests are as follows:

Syntax – 10%

Decomposition, abstraction, pattern recognition – 50%

 Algorithmic – 40%

3.7 Analysis and Evaluation of the Pre-Test and Post-Test

An analysis has been carried out for the syntax-based and problem-based group. A

paired sample T-test to compare between the pre-test and post-test of the completed

activity has been carried out. A one-way ANOVA test has been carried out to compare

the pre-test results of the three outlined workshops. Another one-way ANOVA test has

been carried out to compare between the T-test results of the three outlined workshops.

The above methodology gives us an overview of the methods on how this study has

been conducted. The pilot study is the very first step that has been taken to understand

the difficulties in programming teaching and solving programming problems.

Univ
ers

iti
Mala

ya

 42

CHAPTER 4: PILOT STUDY AND PSA MODEL DEVELOPMENT

First, a pilot study has been carried out to evaluate the traditional teacher-centred

approach by giving an idea to basic CT concepts and then teach the programming

concepts.

4.1 Pilot Study to Evaluate Traditional Teaching Effectiveness

Objective: Understanding potential effectiveness of traditional teacher-centred syntax-

based approach in programming.

Material:

▪ Microsoft PowerPoint slides (samples in Appendix B) to lecture the topics that

are covered in the study.

▪ A brief of CT concepts and different programming concepts using sorting

algorithms.

▪ Google Meet video calling app to provide the lecture through an online platform.

▪ Utilizing the website repl.it to code python syntax with the students.

Demographic:

In total, there were 3 participants who were first-year undergraduate ICT students.

Their ages were between 18 to 25, and all were male participants.

Procedure:

An interview was scheduled using Google Meet software for a video call on a specific

date. At the start of the online lecturing session, students were given a question paper for

the pre-test with an allotted time of 30 minutes. A brief overview was presented about the

topics to be covered during the lecture. A 2-hour lecture session was conducted on those

topics. First, the notable computational thinking concepts were presented using a slide

and students were given a brief idea about how each concept works. Subsequently, some

concepts of the sorting algorithm were presented. The concepts that were presented were:

Brute forces (bubble sort), Multiple ways brute forces (counting sort two ways) and

Univ
ers

iti
Mala

ya

 43

Divide & Conquer (merge sort). The procedure for teaching the sorting algorithms was

in this order: the students were given an overview of how the algorithms work through

examples in PowerPoint slides. After the students had a brief idea of the process, they

were presented the flowchart of the respective sorting algorithm. Then they were given a

live demo on how to write the codes by sharing the screen of the instructor. The students

were asked to write the code along with the instructor. Next, they were given an overview

of the programming concepts that have been used in the respective sorting algorithm

within the codes. Upon completion of all the lecture slides (samples in Appendix B), the

students were asked to do a post-test for the study with a different set of questions. This

helped to evaluate the differences before and after the lecture.

Marking criteria and results:

The marking criteria that were used for the test are as follows:

 Syntax – 10%

 Programming concepts – 50%

 Algorithmic – 40%

Appendix A includes the pre-test and post-test numerical evaluation of this pilot study.

The results display that there has not been sufficient improvement as per the scores of the

pre-test and post-test. One student had scored better than the pre-test, and the other two

students could not improve their post-test results. It indicates that the majority of the

students need a more structured way for effective learning.

Difficulties/challenges encountered:

• Students have an idea about the syntax, but they are unsure of its usage at the

right time.

• Formulating the problem-solving process was quite difficult for the students.

Univ
ers

iti
Mala

ya

 44

• Students were facing difficulties to transform the sorting algorithm process into

a coding process.

• Providing instructions was challenging via online media. It was difficult to

collaborate with the students, e.g., any code that has been written by the student

or instructor was only visible via screen share, which was not intuitive.

Observations for improvement:

• The scores indicate that the improvement of the students need further

enhancement in the course materials and improve the way of teaching.

• During the teacher-centred syntax-based approach in the feasibility study,

focus more on the syntax and make sure that students get a better idea of the

syntax in a structured manner.

• Other than the teacher-centred approach, computational thinking concepts

need to be integrated as a process for solving problems rather than just giving

an idea of how it works.

• The syntax and basic concepts need to be incorporated as a part of the CT

process in due time so students can relate to the problem and be able to

transfer it to code.

• The programming level of the participants are beginners, and therefore, a

collaborative tool as an IDE would be easier to explain the concepts and for

better understanding of the students.

4.2 PSA Model and Modelling Sorting Problems

The results of the pilot study have given the idea of integrating the CT concepts as a

process to solve problems. This section focuses on creating a problem-solving approach

(PSA) model and use it to model different sorting problems.

Univ
ers

iti
Mala

ya

 45

4.2.1 PSA MODEL

Figure 4.1: Problem-solving approach (PSA) model

From the literature review, the study has identified the core CT concepts to solve

fundamental and complex problems. The five identified CT concepts are:

i) Data

ii) Decomposition

iii) Pattern Recognition

iv) Abstraction

Univ
ers

iti
Mala

ya

 46

v) Algorithmic

Figure 4.1 shows the problem-solving approach model for this research. The core

computational thinking (CT) concepts are a major part of this model. First of all, it is a

problem that has to be solved. So, we start with the problem. Since our aim is teaching

and learning programming through this model, and it is obvious that computational

thinking is a well-needed capability to be acquired, the first concept that needs to be

considered is data. Data represents a problem as well as the instance of the problem (N.

Miller & L. Ranum, 2006). Taking into consideration the data and the problem, we need

to decompose the data into sub-data/sub-problems. Once the problem has been

decomposed, we need to find the similarities or patterns among the decomposed

problems. If the patterns have not been recognized or are unable to be recognized, then

we need to look at our decomposition steps again. Once the pattern(s) have been

recognized, then it is time to gather the general characteristics using the abstraction step.

If the problem is not solved during the abstraction step, then we go back and check our

decomposed sub-problems and proceed in solving the problem using the next step once

the problem has been solved, then it is the end of the process. It is an algorithmic process

that enables to generate an algorithmic solution from the beginning until the end. The

algorithmic process comprises of decomposition, pattern recognition and abstraction

through an interconnection. The iterative flow does not add another step for algorithm

like a general CT approach but involves decomposition, pattern recognition, and

abstraction as a whole algorithmic process. This iterative flow is based on the sequencing

of the CT concepts where the data is identified first and then decomposed into smaller

sub-problems followed by finding the similarities or dissimilarities, extract unnecessary

characteristics, then avoid repetitions and processes in an algorithmic manner until the

intended solution of the problem has been achieved.

Univ
ers

iti
Mala

ya

 47

4.2.2 Sorting problems using PSA model

A number of sorting algorithms, which is a domain for this research, and are used as

problems to be solved are given below. A number of algorithms have been approached

by applying the model above.

4.2.2.1 Bubble sort

Figure 4.2: Bubble sort using PSA model

Mathematical Notation:

Data:

Let the sequence of numbers be denoted by, X = { a1 , a2 ,a3 …… an }

Decomposition:

And two of the sequential numbers from above denoted by,

ai = { ai , ai+1 } where i ≤ n – 1

Univ
ers

iti
Mala

ya

 48

Pattern recognition:

After decomposing the smallest sub-problem by taking 2 numbers and identifying

pattern, 𝑖𝑓𝑎𝑖 > 𝑎𝑖+1

Abstraction:

ai = {
{𝑎𝑖+1 , 𝑎𝑖} 𝑖𝑓𝑎𝑖 > 𝑎𝑖+1
{𝑎𝑖 , 𝑎𝑖+1} 𝑒𝑙𝑠𝑒

To sort X into ascending order repeat ai  X that can be denoted by a function S that

takes value of X ; S(X)

 S(X) = (aj)𝑖,𝑗
𝑛 , for each i ≤ n – 1 there are values of j≤ n – i - 1

Implementation:

def BubbleSort (Array):

size = len(Array)

for i in range(0,size-1) :

for j in range(0 , size – i - 1):

if Array[j] > Array[j+1] :

Array[j],Array[j+1] = Array[j+1],Array[j]

 endIF

 endFor

 endFor

 endFunction

Array = [10,7,2,1,3]

BubbleSort (Array);

Univ
ers

iti
Mala

ya

 49

4.2.2.2 Counting sort

Figure 4.3: Counting sort using PSA model

Mathematical Notation:

Data:

Let the unsorted sequence of numbers be denoted by, X = { a1 , a2 ,a3 …… an }

And biggest number in X is ah where 0 ≤ h ≤ n

Decomposition:

Univ
ers

iti
Mala

ya

 50

Let, decomposing each number by counting the occurrence in X, denoted by Ci,

where i ≤ h

Ci = { ci , ci+1 ,ci+2 …… ch}

Pattern recognition:

Ci > 0

Abstraction:

Identifying pattern Ci > 0,𝑦 = (i)0
𝑐

 In order to place the counts accordingly, repeat y until biggest number that can be

denoted by a function S that takes value of Ci ; S(Ci)

S(Ci) = (y)𝑖
ℎ

Implementation:

def CountSort (Array , max):

size = len(Array)

newArray = []

m = max + 1

count = [0] * m

for i in range(0 , size):

count[Array[i]] = count[Array[i]] + 1

 endfor

for i in range(len(count)):

if count[i] > 0:

for j in range(count[i]):

newArray.append(i)

 endfor

 endif

Univ
ers

iti
Mala

ya

 51

 endfor

for i in range(0 , size):

Array [i] = newArray [i]

 endfor

 endFunction

Array = [10,7,2,1,3]

CountSort(Arr, max(Array))

4.2.2.3 Merge sort

Figure 4.4: Merge sort using PSA model

Univ
ers

iti
Mala

ya

 52

Mathematical Notation:

Data:

Let the unsorted sequence of numbers be denoted by, X = { a1 , a2 ,a3 …… an }

Decomposition:

And X(n) denotes the function with n elements.

X(n) = X(n/2) divides the elements into 2 halves where values of n decrease until n = 1.

Repeatedly, dividing it into 2 halves decomposing to the smallest unit, denoted by Xs

Xs = (X(n))𝑛
1 = {Xn, Xn-1,…., X1},

where each element represents a set of the smallest sub-division.

Pattern recognition:

Identifying Pattern,  | Xs | = 1,

Abstraction:

Let two groups to be compared from Xs denoted as Xi and Xi+1.

Lowest number to be placed first for sorting and can be denoted as,

Xmin = {min(Li + Li+1)}

Sorting the divided groups and merging them can be denoted as,

Xm = Xmin

In order to finally merge all the groups, repeat Xm and finally sort them accordingly

and can be denoted by a function S that takes value of Xm; S(Xm)

S(Xm) = (Xm)𝑖
𝑛−1

Implementation:

def MergeSort (Array):

if(len(Array) > 1):

mid = len(Array) // 2

Univ
ers

iti
Mala

ya

 53

L = Arr[0 : mid]

R = Arr[mid:]

MergeSort (L)

MergeSort (R)

i = j = k = 0

while (i<len(L) and j<len(R)):

if (L[i] < R[j]):

Arr[k] = L[i]

i = i + 1

else

Arr[k] = R[j]

j = j + 1

 endif

k = k + 1

 endWhile

while (i<len(L)) :

Arr[k] = L[i]

i = i + 1

k = k + 1

 endWhile

while (j<len(R)) :

Arr[k] = R[j]

j = j + 1

k = k + 1

 endWhile

 endFunction

Univ
ers

iti
Mala

ya

 54

Array = [10,7,2,1,3]

MergeSort (Array)

Univ
ers

iti
Mala

ya

 55

4.2.2.4 Quick sort

Figure 4.5: Quick sort using PSA model

Mathematical Notation:

Data:

Univ
ers

iti
Mala

ya

 56

Let the sequence of numbers be denoted by, X = { a1 , a2 ,a3 …… an }

Decomposition:

Let ap be the pivot of the sequence.

X(n) denotes the function with n elements.

X(n) = X(n - 1) denotes the number of comparisons against the pivot where values of n

decreases until n = 0.

Let XL = { X ,ai < ap } and XR = {  X ,ai > ap } where i ≤ n

Pattern recognition:

Decomposing the numbers by comparing with the pivot and identifying pattern,

 X, XL< ap< XR

Abstraction:

ai = {
𝑎𝑖 ∈ XL 𝑖𝑓 ai < ap

 𝑎𝑖 ∈ XR 𝑒𝑙𝑠𝑒 𝑖𝑓 ai > ap

To sort X into ascending order repeat ai  X that can be denoted by a function S that

takes value of X ; S(X)

S(X) = (a𝑖)𝑖=𝑛
0

Implementation:

def Partition (array, low, high):

i = low - 1

pivot = array [high]

for j in range (low, high):

if array [j] < pivot :

i = i + 1

array [i + 1] , array [j] = array [j] , array [i + 1]

 endIF

array [i+1] , array [high] = array [high] , array [i + 1]

Univ
ers

iti
Mala

ya

 57

return (i+1)

 endFor

 endFunction

def QuickSort (array, low, high):

if low < high:

pi = Partition (array, low, high)

QuickSort (array, low , pi - 1)

QuickSort (array, pi + 1 , high)

 endIF

 endFunction

Array = [10,2,9,2,1]

QuickSort (Array, 0, len(Array) - 1)

Univ
ers

iti
Mala

ya

 58

4.2.2.5 Bucket sort

Figure 4.6: Bucket sort using PSA model

Mathematical Notation:

Data:

Let the sequence of numbers be denoted by, X = { a1 , a2 ,a3 ……, an }

Decomposition:

Let the maximum number in X be denoted by, am

Number of buckets required can be denoted as, h = am / 10

Univ
ers

iti
Mala

ya

 59

Let the sequence of Buckets be denoted by, B = {B0 , B1 , B2 , ……, Bh}

Each number in the sequence X to be divided by 10 can be denoted by,

Xd = { i1 , i2, i3……, in} where i is the whole number before decimal point.

Each bucket in B can be denoted as Bi = (i)𝑖=0
𝑛 where i ∈ Xd and index of bucket.

 Xd , y = (Bi)𝑖=0
𝑛

Pattern recognition:

 |B| > 0 , B = (Bs)0
𝑛

Where each bucket will follow bubble sort method to sort the buckets individually and

sorted buckets can be denoted as,

Bs = { s1 , s2 , s3 ……, sn }

Abstraction:

To sort X into ascending order add all elements of  |B| > 0 that can be denoted by a

function S that takes value of B ; S(B)

S(B) = {B0 + B1 + B2 +…. + Bn}

Implementation:

u10 →def BucketSort (array):

u11 → bucket = []

u12 → for i in range(len(array)):

u13 → bucket.append([])

 endfor

u14 → for j in array:

u15 → bindex = int(10 * j)

u16 → bucket[bindex].append(j)

 endfor

u17 → for i in range(len(array)):

u18 → bucket[i] = BubbleSort (bucket[i])

Univ
ers

iti
Mala

ya

 60

 endfor

u19 → k = 0

u20 → for i in range(len(array)):

u21 → for j in range(len(bucket[i])):

u22 → array [k] = bucket [i][j]

 endFor

u23 → k = k + 1

 endFor

endFunction

u25 → Array = [10,7,2,1,3]

u26 → BucketSort (Array)

The above sorting problems have been modelled using the PSA model. The problem-

solving process using the PSA model for different sorting problems has paved the way to

solve programming problems in different active learning techniques such as PBL and

GBL. The next chapter will focus on the experimental design and use PSA models for

different sorting problems to design the workshops.

Univ
ers

iti
Mala

ya

 61

CHAPTER 5: EXPERIMENTAL PLANNING AND DESIGN

The research involves 90 participants that were divided into three groups, each

consisting of at least 30 participants. The three groups are: syntax-based learning,

problem-based learning and game-based learning. A pre-test and post-test consisting of

basic programming questions were given to participants that have given a numerical

evaluation of their performance and their progression. However, in all these cases, during

participant recruitment, participants were encouraged to participate with little

programming background rather than having zero knowledge in programming.

Figure 5.1: Experimental planning of the study

5.1 General Process for Feasibility Study

First of all, participants were recruited using a Google Form where they had to undergo

a mandatory pre-test and solve questions related to programming. Among the workshops,

syntax-based workshop was conducted first. Among the questions, basic programming

Univ
ers

iti
Mala

ya

 62

concepts has to be included and the marking criteria that has been followed is the same

as in the pilot study. For each workshop, there were different Google Forms being handed

out but with the same questions, so that it would be easy to keep track of the participants

in each workshop. Once the students’ registration due date finished, they were allocated

a specific time and schedule to attend the workshops using Google Meet software. Once

the workshop was successfully conducted, a post-test was conducted with the same

pattern of questions as the pre-test but there were different problems to be solved. Same

as the pre-test, the post-test questions were also handed out via different Google Forms

but with the same questions in all of them so that it would be easier to check the answers

of different groups later.

5.2 Syntax-Based Workshop

Hypothesis: Syntax-based teacher-centred programming learning is beneficiary to

improve problem-solving skills.

Materials:

▪ Microsoft PowerPoint Slides to explain the basic programming concepts.

▪ Google Meet software for conducting a hassle-free online class.

▪ A collaborative online python compiler named “Google Colab” where code

changes can be displayed in real time.

Demographic:

Number of people: 30

Age: 29 participants were aged between 18-25, 1 participant was above 40

Gender: male: 16, female: 14

Educational background: First year and pre-university ICT students, non-ICT related

professionals

Univ
ers

iti
Mala

ya

 63

Workshop procedure: Basic concepts of programming were covered using Microsoft

PowerPoint slides (refer to Appendix C). A small introduction was given about python

and then topics that were covered are: Strings, operations, Functions, methods, numeric

data, operators and mathematical functions, List/Array, Conditional & Logical operators,

and Loops. Each topic was covered one by one and in the process, demonstrations were

given to see how the syntax works and how to write them. An online python compiler

named ‘Google Colab’ was utilized to give a demonstration to the students and they were

encouraged to write chunks of code in the process. This is the most usual way of teaching

programming, and this group is the control group of the study.

5.3 Problem-Based Learning Workshop

Initially the activity-based process was thought to be used in a classroom by using

playing cards and combining students in a group. Since the data collection process has

been undertaken during the Covid-19 pandemic, the process had to be changed. An online

yet trackable approach had to be taken into consideration for this.

Hypothesis: Problem-based programming learning by utilizing the PSA model is

beneficial to improve problem-solving skills.

Materials:

▪ Microsoft PowerPoint Slides explaining a step-by-step computational approach to

transfer the problem-solving steps into programming concepts.

▪ Google Meet software for conducting a hassle-free online class.

▪ Padlet software to conduct sorting activities online and check how students were

approaching the problem.

▪ A collaborative online python compiler named “Google Colab” was used where

the sorting algorithms codes were displayed and run.

Univ
ers

iti
Mala

ya

 64

Demographic:

Number of people: 30

Age: 25 participants were aged between 18-25, 3 participants were aged between 25-30,

and 2 participants were aged between 30-40

Gender: male: 22, female: 8

Educational background: First year and pre-university ICT students, non-ICT related

professionals

Workshop procedure: An online-based tool called Padlet was chosen in order to enable

the students to participate in this workshop. The students were recruited the same way as

the syntax-based workshop. Three sorting algorithms that were introduced in this study

were: bubble sort, counting sort, and merge sort. First of all, a demo was given on how to

solve a sorting process using the padlets (refer to Appendix B). The algorithmic process

was taught in accordance with the PSA model of the study. Then the students proceeded

in doing the activity. The students were given the idea through the slides (refer to

Appendix F) on how they have gone through the different stages of computational

thinking in the process and at the same time, how to transfer the problem-solving process

to the programming concepts. In each case, the programming concepts were explained in

detail so that the students get used to the idea on how to transfer the computational

thinking elements to programming concepts. The explanation proceeded as per the steps

in the PSA model and the programming concepts were brought in accordance with it.

Furthermore, Google Colab was used to give the working codes of the algorithms to the

students. If students had to be taught any specific programming concepts separately,

Google Colab was the go-to tool.

5.4 Game-Based Workshop

Hypothesis: Game-based programming learning by utilizing PSA is beneficial to

improve problem-solving skills.

Univ
ers

iti
Mala

ya

 65

Materials:

▪ Microsoft PowerPoint Slides explaining different concepts of programming in

case they were needed.

▪ Google Meet software for conducting a hassle-free online class.

▪ Interactive gamified system for sorting numbers which allowed users to solve

algorithms in a gamified environment and illustrated a console-like behaviour to

teach programming concepts.

▪ A collaborative online python compiler named “Google Colab” where the sorting

algorithms codes were displayed and run.

Demographic:

Number of people: 30

Age: 18-25

Gender: male: 17, female: 13

Educational background: First year and pre-university ICT students.

Workshop procedure: The proposed game-based system was utilized in this procedure.

First of all, an algorithm was selected, and participants were instructed on how to play

the game. Then they were given some time to play the games in 3 different levels.

Following which, a demonstration was given on the interactive view about how the

coding process works while they were playing the games. Furthermore, Google Colab

was used to provide the working codes of the algorithms to the students. If students

needed to be taught any specific programming concepts separately, Google Colab was

the go-to tool.

5.5 Design of the workshop materials

A few issues that were addressed during the pilot study were taken into consideration,

such as the difficulties faced and the observations of the study. The three workshops that

have been identified in the methodology section included: syntax-based learning

Univ
ers

iti
Mala

ya

 66

workshop, problem-based learning workshop, and game-based learning workshop. The

syntax-based learning workshop is actually the teacher-centred approach and focuses

more on the syntax. The participants in this workshop fall under our control group. The

other two groups were working in a student-centred active learning approach. The

problem was the main focus and used our CT model, and the course materials have been

designed. Furthermore, for the ease of the students and the workshop, python has been

utilized as the programming language.

5.5.1 Teacher-centred syntax-based workshop design

This workshop focuses on the usual way of learning programming which is a syntax-

based approach. Most of the design was done by focusing on the syntax approach from

the basics up to the harder levels. First of all, a definition of the selected programming

language has been given. Different data types such as string, integer, and float has been

discussed. Basic concepts such as string and operations using string such as add,

concatenate, and repetition was discussed. Following which, indexing and slicing in

strings were discussed. In built functions such as length and type are explained with

regards to string. Split, join, upper, lower, and other methods were discussed next. Once

string concepts have been completed, harder concepts like numeric data and their

functions were introduced along with operators and math functions. After all these

concepts, students were brought into the topic of List/Array. A definition had been given

about this topic. Then, topics like string were brought within List/Array such as indexing

and slicing, operators, functions, and methods. Once this was done, conditional

statements and logical operators were taught to students. Upon completion, loops were

taught to students, e.g., for loop and while loop. Finally, the last topic that was covered

in the workshop was how to define a function, pass arguments, and call the function.

Appendix E has provided some of the slides that will give an overview on the design of

this workshop through the PowerPoint slides.

Univ
ers

iti
Mala

ya

 67

5.5.2 Problem-based workshop design

This workshop was designed for one of our experimental groups that participated in a

problem-based learning environment through an activity-oriented approach. The

developed PSA model was our blueprint for this workshop. Students learned different

concepts of programming by participating in solving sorting algorithmic problems. The

sorting algorithms that were used in the workshop included: bubble sort, counting sort,

and merge sort. A CT-based solution using our PSA model has already been formulated

for all these algorithms (please refer to bubble sort, counting sort, merge sort). These

formulated solutions were modified to fit in the activities that was used to design the

activities of these algorithms in Padlet (refer to Appendix B). After a single activity was

completed, the steps in the activity were related to the programming syntaxes associated

to the sorting technique.

Univ
ers

iti
Mala

ya

 68

5.5.2.1 Bubble sort in PBL

Figure 5.2: Bubble sort using PSA for PBL

The Bubble sort problem-solving process using the PSA model has been utilized to

formulate the process of the bubble sort activity in this workshop. This model has been

the guideline to design the activity in Padlet for bubble sort.

Univ
ers

iti
Mala

ya

 69

(a) Transfer the model into activity:

Figure 5.3: Unsorted numbers with id 1 and id 2 chosen

Figure 5.4: id 1 > id 2 and swapped

Figure 5.5: Sort all numbers following this process

The above figures illustrate how the PSA model was translated into activity. Id 1 and

id 2 has been chosen and they have to identify if the first id is greater than the second id.

If it is true, then they swap their places and if not, they do not swap. For example, id 1

and id 2 has been swapped. In the next step, id 1 and id 3 will be compared in the same

fashion and this process keeps going on until the last number. If all numbers are not sorted,

Univ
ers

iti
Mala

ya

 70

they start from the beginning, choose two numbers, and follow the same process from the

beginning.

(b) From activity to code:

Figure 5.6: Define array with collection of numbers and index

Figure 5.7 Check condition to swap

Figure 5.8: How loops are used to iterate through the array

With each step of the activity, the codes are related with a motive to transfer the

problem-solving approach into programming syntax. The concept of data is represented

through an array. Two numbers are compared through an if else statement using the index

of an array. To identify the index of an array and comparing all the numbers, the concept

Univ
ers

iti
Mala

ya

 71

of for loop is brought to light. Furthermore, how many rounds the number has to be

compared is also explained by relating to the activity where the participants incremented

the steps (Figure 5.5) and write completed whenever the local biggest number is in the

right place.

5.5.2.2 Counting sort in PBL

Figure 5.9: Counting sort using PSA for PBL

Univ
ers

iti
Mala

ya

 72

The counting sort problem-solving process using the PSA model has been utilized to

formulate the process of the counting sort activity in this workshop. This model has been

the guideline to design the activity in Padlet for counting sort.

(a) Transfer the model into activity:

Figure 5.10: A collection of unsorted numbers in listToSort and count from 0

until highest index

Figure 5.11: Count occurrence of each number and add in correct index

Figure 5.12: Count of all available numbers in listToSort greater than 0

Univ
ers

iti
Mala

ya

 73

Figure 5.13: Adding to final list and ignore count 0

Figure 5.10 illustrates a collection of unsorted numbers in listToSort and using the

highest number, a collection of count boxes has already been created so students

understand that the count boxes are created according to the highest number. Figure 4.16

illustrates how the count is increased based on the numbers available in listToSort by

increasing the count of an index. Upon counting one item, that item is colored. Once the

count(s) of the listToSort numbers are all greater than 0, the numbers are then appended

to final array as many times as the count (Figure 5.13).

(b) From activity to code:

Figure 5.14: Initialize an array named data

Univ
ers

iti
Mala

ya

 74

Figure 5.15: Define function and create count array

Figure 5.16: Keep count of listToSort

Figure 5.17: How to append to final array

Figure 5.14 illustrates the concept of array by using the collection of elements and how

to define a function to pass the highest number of the array. Figure 5.15 shows how the

count array is produced based on the highest number. Figure 5.16 shows in code how to

Univ
ers

iti
Mala

ya

 75

keep count of the numbers available in listToSort, and Figure 5.17 illustrates how the

count indexes are appended to array to finally sort the list. Finally, calling of a function

is illustrated that passes the data to the defined function which is the listToSort inside the

function and using max concept to find the highest number in an array.

5.5.2.3 Merge sort in PBL

Figure 5.18: Merge sort using PSA for PBL

Univ
ers

iti
Mala

ya

 76

The Merge sort problem-solving process using the PSA model has been utilized to

formulate the process of the merge sort activity in this workshop. This model has been

the guideline to design the activity in Padlet for merge sort.

(a) Transfer the model into activity:

Figure 5.19: Collection of unsorted numbers in Padlet

Figure 5.20: Left and right ids are divided finding mid

Figure 5.21: Further divide between left side

Univ
ers

iti
Mala

ya

 77

Figure 5.22: Sort and merge left side

Figure 5.23: Further divide right, sort and merge

Figure 5.24: Sort and merge sorted left and right

Figure 5.19 illustrates a collection of unsorted numbers in Padlet. Mid index is found

by floor technique and then divided left and right using the mid-point (Fig 5.20). Left side

is further divided using same technique to find mid and then the divided groups are

merged. The same divide and conquer technique happen for the right side as well. Finally,

Univ
ers

iti
Mala

ya

 78

sorting takes place between the sorted right and left side and the numbers are all in a

sorted order (Fig 5.24)

(b) From activity to code:

Figure 5.25: Divide the array until length is greater than 1

Figure 5.26: Divide left and right further

Figure 5.27: Sort and merge last divided items

Univ
ers

iti
Mala

ya

 79

Figure 5.28: Sort and merge when no more items left in one side

When the numbers are being divided into groups, the division related syntaxes are

displayed along with defining the function and how they work (Fig 5.25) using concepts

of indexing and slicing if the array to be divided is greater than 1. Further divisions are

explained with recursive function calls and how to re-use the functions in code. Fig 5.27

and 5.28 shows that while loops have been used to merge the divisions, and sort them.

The variables initialized for increment within while loop (i, j, k) were concepted in Padlet

during the activity so students can understand the increment and decrement operations

within while loops.

5.5.3 Game-based workshop design (interactive gamified system)

Similar to the problem-based workshop, the sorting algorithms that were used in the

workshop include: bubble sort, counting sort, and merge sort. A CT-based solution using

our PSA model has already been formulated for all these algorithms (please refer to

bubble sort, counting sort, merge sort). These formulated solutions were modified to fit

into the games that were used to design the gamified approaches of these algorithms in

an interactive gamified system. After each level has been played by the participants, they

were provided with an idea about the programming syntaxes by relating them to the steps

in the game. Users have to choose the level first. Bubble sort and counting sort consist of

3 levels which are easy, medium, and hard. Merge sort consists of 2 levels: easy and

medium level. For each correct move, students get 1 point. For each wrong move, 1 point

is deducted.

Univ
ers

iti
Mala

ya

 80

5.5.3.1 Modules of the interactive gamified system

Figure 5.29: Modules of the system

Figure 5.30: Levels to choose before starting the game

Univ
ers

iti
Mala

ya

 81

5.5.3.2 Bubble sort in GBL

Figure 5.31: Bubble sort using PSA for GBL

The Bubble sort problem-solving process using the PSA model has been utilized to

formulate the process of the bubble sort game in this workshop. This model has been the

guideline to design the game for bubble sort.

Univ
ers

iti
Mala

ya

 82

(a) Transfer the model into a gamified approach:

Figure 5.32: Choose some random numbers

Figure 5.33: Two numbers highlighted

Figure 5.34: Swap or no swap based on condition Univ
ers

iti
Mala

ya

 83

Figure 5.35: Game completed after all steps with score

The above figures illustrate how the PSA model was translated into a gamified

approach. User selects the level and then selects numbers randomly and finalize a

collection to sort the numbers. Figure 5.33 shows how two numbers are highlighted. Two

buttons named ‘Swap’ and ‘No Swap’ are present for the user to decide the conditions

based on the order of the selected numbers. After a correct move, next two numbers to be

compared are highlighted.

(b) Interactive console to relate each step with code:

Figure 5.36: Random numbers chosen initialized as array

Figure 5.37: If condition to swap numbers

Univ
ers

iti
Mala

ya

 84

Figure 5.38: A for loop for comparing the numbers

Figure 5.39 Nested loop to go (size - 1) rounds

When the random numbers are being chosen, the interactive console display them as

an array being initialized as shown in Figure 5.36. When two numbers are highlighted, it

displays the if condition and the index of the highlighted numbers along with the

condition to check if numbers are to be swapped or not. After the first swap, the for loop

concept is shown to explain how to iterate within a collection of numbers. After

completion of the first round of comparison among the numbers, the concept of a nested

for loop is available for the participants to understand how many rounds the comparison

has to be done. Univ
ers

iti
Mala

ya

 85

5.5.3.3 Counting sort in GBL

Figure 5.40: Counting sort using PSA for GBL

The Counting sort problem-solving process using the PSA model has been utilized to

formulate the process of the counting sort gamified approach in this workshop. This

model has been the guideline to design the game for Counting sort.

Univ
ers

iti
Mala

ya

 86

(a) Transfer the model into a gamified approach:

Figure 5.41: Choose random numbers and find highest

Figure 5.42: Drag and drop highlighted number to respective index

Figure 5.43: Ignore for count = 0 and add for count > 0 Univ
ers

iti
Mala

ya

 87

Figure 5.44: Count index appended to final array

After selecting the desired level from some random numbers, a collection of unsorted

numbers is chosen to be sorted using counting sort. After correct input of the highest

number, (highest + 1) number of count boxes are generated. Each time a highlighted

number has to be dragged and dropped into the correct count index (Fig 5.42). Once all

the numbers have finished counting from the list to be sorted, it is time to append them to

a sorted list. Each count with 0 has to be ignored while those greater than 0 has to be

added to final array. While adding the counted index to final array, the highlighted

number has to be followed. Once all numbers have been appended successfully, the game

is finished and the final score is displayed.

(b) Interactive console to relate each step with code:

Figure 5.45: Define function and find highest number in list

Univ
ers

iti
Mala

ya

 88

Figure 5.46: How count array is created to keep count of numbers in data

Figure 5.47: How to append by ignoring count = 0

Defining a function and calling a function – these two concepts will be included here.

The highest number in the array will be displayed which will utilize the max function in

python to get the highest number. (highest number + 1) array generation interactivity will

be displayed at this step once the correct number has been input. How count is being

added will be shown for the index 0 of count and the following index will be displaying

the for loop concept. Once all the counts have been obtained, a for loop concept and

‘Append’ method with an if statement will be displayed, which will append the index as

many times as count and ignore the count that is not greater than 0. A for loop will display

how the count array is being iterated to append the counted index and finally sort the data.

Univ
ers

iti
Mala

ya

 89

5.5.3.4 Merge sort in GBL

Figure 5.48: Merge sort using PSA in GBL

The merge sort problem-solving process using the PSA model has been utilized to

formulate the process of the merge sort game in this workshop. This model has been the

guideline to design the game for merge sort.

Univ
ers

iti
Mala

ya

 90

(a) Transfer the model into a gamified approach:

Figure 5.49: Choose a collection of unsorted numbers and find the highest

Figure 5.50: Left and right divided

Figure 5.51: Further divide left side
Univ

ers
iti

Mala
ya

 91

Figure 5.52: Drag and drop smaller number to highlighted final index

Figure 5.53: Further divide right side and merge

Figure 5.54: Drag and drop to merge sorted left and sorted right

Figure 5.49 illustrates a collection of unsorted numbers chosen by the user and then

the user inputs the mid of the numbers using floor technique. If the correct number

according to the mid index has been input, the numbers are divided into left and right.

Utilizing the same procedure, the left side is divided first. Once all the divided groups

have only one number, then the array displays as many boxes as available numbers in

both sides of the last divided group. Among the selected numbers, the smallest number

Univ
ers

iti
Mala

ya

 92

needs to be dragged to the highlighted box of the array (Fig 5.52). If one side has already

been dragged, then the highlighted number on the other side will be dragged to the

highlighted box. In this process, the left side will be sorted. Follow the same procedure

for the right side by inputting the mid and do all the things same as the left side. Once

both the left and right sides are sorted, the final sorting takes place where the drag and

drop takes place and sorts all the numbers.

(b) Interactive console to relate each step with code:

Figure 5.55: Random chosen unsorted number as array and function defined

Figure 5.56: Break left and right side by inputting mid

Univ
ers

iti
Mala

ya

 93

Figure 5.57: Further right division calling recursive function

Figure 5.58: While loop for merging the unsorted divisions

Figure 5.59: Additional while loops if items are remaining in either side

Figure 5.60: Sorted left and right merging using while loops

First of all, the interactive system will show that code checks in length of array is

greater than 1. Once the array length is greater than 1, then the length is floored to divide

the array into left and right. MergeSort function is called recursively so that the left and

right can be divided further. The left and right further division is displayed through

interactive design by reusing the previous logics for division. The merging process using

Univ
ers

iti
Mala

ya

 94

while loops are shown. First the two sides to be merged will be shown using the while

loop as long as both sides have some elements. The merging process for the rest of the

items and sorting them using another 2 while loops are displayed interactively and how

they are placed in the sorted array.

The workshops have been conducted using the above experimental process for PBL

and GBL. The students have actively participated in the process and the outcome of this

workshops are evident in the next chapter.

Univ
ers

iti
Mala

ya

 95

CHAPTER 6: FINDINGS AND ANALYSIS

In this section, the pre-test and post-test scores were included and analysed after they

were marked based on our marking scheme. Paired sample T-test has been carried out to

compare the pre-test and post-test of each workshop. A one-way ANOVA test has been

carried out to compare the pre-tests and post-tests of all the workshops.

6.1 Comparison between Pre-Test and Post-Test

6.1.1 Syntax-based workshop

A paired sample T-test was conducted to compare the pre-test and post-test scores of

the syntax-based workshop.

According to the above table, there was a significant difference (conditions t(29) = -

2.201, p = 0.036) in the scores of pre-test (M=5.99, SD=2.44) and post-test (M= 6.99,

SD=1.92) for 95% level of significance. These results suggest that the syntax-based

programming course had a positive effect on students' programming learning.

Specifically, the student's results were better after taking the course and achieved better

marks in the post-test.

Univ
ers

iti
Mala

ya

 96

6.1.2 Problem-based learning workshop

A paired sample T-test was conducted to compare the pre-test scores and post-test

scores of the problem-based workshop.

According to the above table, there was a significant difference (conditions t(29) = -

7.017, p < .001) in the scores of the pre-test (M=5.09, SD=2.51) and post-test (M= 8.05,

SD = 1.96) for 95% level of significance. These results suggest that the problem-based

programming course had a positive effect on students' programming learning.

Specifically, the student's results were better after taking the course and achieved better

marks in the post-test.

6.1.3 Game-based learning workshop

Univ
ers

iti
Mala

ya

 97

A paired sample T-test was conducted to compare the pre-test scores and post-test

scores of the game-based workshop.

According to the above table, there was a significant difference (conditions t(29) = -

10.032, p < .001) in the scores of pre-test (M=5.36, SD=3.3) and post-test (M=8.62,

SD=1.90) for 95% level of significance. These results suggest that the game-based

programming course had a positive effect on students' programming learning.

Specifically, the student's results were better after taking the course and achieved better

marks in the post-test.

6.2 Comparison between Pre-Tests of the Three Workshops

A one-way ANOVA between groups was conducted to compare the test results and

understand students' programming level based on the pre-test for the syntax-based

workshop, problem-based workshop, and game-based workshop. There was not a

significant difference in programming understanding level in the pre-test workshops at

the p=0.440 level for the three conditions [F(2,87)=0.83, p=0.44]

6.3 Comparison between Post-Tests of the Three Workshops

Univ
ers

iti
Mala

ya

 98

A one-way ANOVA between subjects was conducted to compare the test results and

understand students' programming level based on the post-test for the syntax-based

workshop, problem-based workshop, and game-based workshop. There was a significant

difference of programming understanding level in the post-test programming workshops

at the p=0.006 level for the three conditions [F(2,87)=5.505, p=0.006]. Since there was a

significant difference, a required post hoc test was carried out to compare each condition

to the other two conditions.

Post hoc comparisons using LSD test indicated that the mean score for the syntax-

based workshop post-test scores (M=6.99, SD=1.92) was significantly different than the

post-test scores of the activity-based workshop (M=8.05, SD=1.96) and the post-test

scores of the game-based workshop (M=8.62, SD=1.90). However, the post-test scores

of the activity-based workshop (M=8.05, SD=1.96) did not significantly differ from the

post-test scores of the game-based workshop (M=8.62, SD=1.90).

6.4 Analyze and Discuss the Results

Our problem statement points out that the biggest mistake many new programmers

make is not focusing on solving problems but on learning syntax. The PSA model was

Univ
ers

iti
Mala

ya

 99

developed to solve programming-related problems, solve the issues and teach students

using this approach model. The first rule of learning programming language includes

syntax and semantics. The second rule is how computers run a program (pointer,

operation). The third is how to solve a specific problem (Chen, 2018). The workshops'

design has included these things when the PSA model was utilized in the student-centred

approach by using the PSA model of different algorithms and then using those models to

different active learning approaches. The PSA model of a specific algorithm was modified

to fit in the procedure of the particular workshop. The modified model was then translated

to that algorithm's purposed workshop activity to solve the problem (Please refer to

Modelling and Workshop Design). Each step in the activity was later related to the

required programming workable syntaxes and semantics (function calls and iterations)

and at the same time explained how different operations work. The syntax-based approach

included syntax and semantics. The workshop has demonstrated the usage of those

syntaxes that can be used to formulate a problem by using simple examples in a

collaborative environment.

The above results indicate all the workshop pre-test and post-test result findings. The

pre-test was conducted before the students joined their respective workshops, and the

post-test was conducted upon completion of the workshop. The test results can be found

in Appendix G. The pre-test results have been compared using one way ANOVA test,

and no significant differences were found. It implies that the understanding level of the

participants was almost similar in each workshop (refer to 6.1.4). The pre-test and post-

test results of the workshops through a paired sample T-test were compared (section 6.1.1,

6.1.2, 6.1.3) and all the results have displayed that there was a significant difference

between the pre-test and post-test results and students have improved their scores after

the workshops. According to the marking criteria, as mentioned in the Methodology

section, the students were evaluated mostly on their application of CT skills in the tests.

Univ
ers

iti
Mala

ya

 100

In addition, the questions in the test were open to any programming language as well as

pseudocode because the main motive was to understand the problem-solving skill

development of students by the workshops. The paired sample T-test results with the

significant differences in each case show that students improved their problem-solving

skills and acquired better programming knowledge by attending these workshops.

Ineffective teaching approaches and lack of problem-solving skills were identified as

a problem in this research. Our PSA model was translated and utilized in problem-based

workshops and game-based workshops. The control group was the participants in the

teacher-centred workshop. Since all the workshops have shown student improvement, it

was necessary to understand the level of improvement in different teaching approaches.

A one-way ANOVA test (refer to 6.1.5) was carried out, and a significant difference

between the results paved the way to do a post hoc test for comparing each workshop

with the other two. Results suggested that problem-based learning and game-based

learning participants had better scores compared to the teacher-centred approach. This

suggests that the effective teaching approach for programming is active learning since

both these workshops had better results compared to the teacher-centred approach.

Furthermore, these workshops encompass the PSA model and prove that the translation

of the PSA model through these active learning approaches helped to strengthen the

problem-solving skills.

The results (refer to 6.1.5) also show that there was not a significant difference between

the results of the problem-based workshop and the game-based workshop. So, the

teaching aspect had to be compared for both approaches to understand the more

convenient approach that fully focuses on solving problems based on CT skills. A few

points to be noted from the instructors’ perspective include:

1) The game-based workshop was more automated compared to the problem-based

workshop due to an online gamified system, e.g., highlighting a number and

Univ
ers

iti
Mala

ya

 101

comparing the highlighted numbers were easier to find and more comfortable for

the participants.

2) The scoring system of the game, along with the allotted time, created

competitiveness among students as they were posting scores once they have

finished playing all levels of the game (refer to Appendix H).

3) The interactivity of the game-based approach made it more distinct and helped to

understand the programming steps while playing the sorting game. This was a real-

time approach, whereas the problem-based approach was playing the game in an

online software and then use PowerPoint slides to relate them with the codes.

The interactivity and automated features of the gamified system made instructions

smoother and consumed less time. Therefore, it is suggested from a teaching perspective

that the game-based approach would be a better approach to be utilized.

Univ
ers

iti
Mala

ya

 102

CHAPTER 7: CONCLUSION

7.1 Research Contributions

The PSA model has been derived from the basic concepts of computational thinking.

This model has interconnected the CT concepts by deriving the data first, created an

iterative flow between decomposition and pattern recognition, and then only it has been

made possible for the decomposed part to be abstracted, bypassing the recognized pattern

condition. The three major concepts of decomposition, pattern recognition, and

abstraction are interconnected through an iterative approach, and this interconnection

resulted in an algorithmic approach. This model has simplified the algorithmic process

through the interconnection of these CT concepts. A general CT approach requires an

algorithmic approach to be utilized after the initial three steps to solve a problem. But this

model has enabled the algorithmic process to be automated by interconnecting the first

three cornerstones of CT. This model is based on the sequencing of the CT concepts

where the data is identified first and then decomposed into smaller sub-problems, identify

similarities or dissimilarities, extract unnecessarily characteristics, avoid repetitions and

process in an algorithmic manner until the intended solution of the problem has been

achieved.

Another contribution in this research is that the PSA model has been utilized to

formulate a solution to different sorting algorithms that have later paved the way to

translate the sorting problems to effective active learning approaches to teach

programming based on a problem.

7.2 Revisiting the Objectives

The objectives that were raised and the questions associated to them have been the

motive to carry out this research.

Univ
ers

iti
Mala

ya

 103

7.2.1 First objective and related question and answers

Our first objective was to investigate teaching issues in solving programming

problems. The first question was to know the reason behind selecting CT concepts as a

problem-solving skill. The relationship of CT with other problem-solving skills in the

literature provided an understanding that CT helps to develop the core thinking skills, and

that is why it is the chosen problem-solving approach for this research. The second

question about CT concepts enhancing problem-solving skills in programming was

elaborated by researching various studies and finding out primarily that CT concepts are

quite useful to enhance problem-solving skills and represent very important tools for

teachers teaching programming in the 21st century. The third question was answered using

a thorough investigation of the teacher-centred approach and a student-centred approach

by discussing the positive and negative sides of both approaches. It was found that the

student-centred active learning approach is effective in solving problems, and this claim

was further established through enhanced research of active learning approaches such as

problem-based and game-based learning and their role in developing CT skills.

7.2.2 Second objective and related question and answers

The second objective of our research was to design the PSA model for teaching

programming. The CT concepts were utilized to develop the PSA model by

interconnecting the major CT components and incorporating those to an iterative

approach that already became an algorithmic approach. The PSA model helped to solve

different sorting algorithm problems by utilizing this interconnected approach and solved

five different algorithms. Later, the PSA model was translated into effective

programming teaching methods by modelling the activity/game-based on the chosen

sorting algorithm PSA model, and from that, programming concepts related to those steps

were taught.

Univ
ers

iti
Mala

ya

 104

7.2.3 Third objective and related question and answers

The third and final objective was to evaluate the effectiveness of the PSA model in

relation to different programming teaching approaches. The control group utilizing the

teacher-centred teaching approach was compared with the active learning approaches

such as the problem-based learning group and the game-based learning group. The

workshop using a pre-test and post-test helped us to know that student-centred active

learning approaches are better than teacher-centred approaches. From a teaching

perspective, discussing the differences between both the active learning approaches, it

was suggested that within active learning approaches, game-based learning is a better

active learning approach than problem-based learning.

7.3 Significance of Study

The pilot study that was carried out helped us to understand the issues that were faced

during the study and provided suggestions for improvement for the feasibility study. This

study helped to overcome the raised issues by considering the suggestions to design the

courses and bring the teaching into a computational process. The PSA model lets

participants get into the process step-by-step and formulate the problems in an iterative

problem-solving process. The novelty in this study is that this will help students to

formulate solutions for sorting algorithm problems and enhance their problem-solving

skills when they are approaching a programming question or task.

7.4 Concluding Remarks

Therefore, it can be concluded that the proposed model, based on the collected data

and analysis of those, is good for solving problems and aids in teaching programming.

Our execution of this model to formulate problems and using sorting algorithms to teach

different programming concepts proved to be fruitful to instil interest among students for

active participation and be better at solving problems in the classroom. Using this model,

Univ
ers

iti
Mala

ya

 105

educators and instructors might be able to get students more interested in learning

programming and overcome the lacking.

7.5 Research Challenges

A limitation of the present study is that the workshops were conducted fully online. At

the beginning of this research, face-to-face workshops were the real motive. But due to

the pandemic situation, there were no other options rather than opting in for a complete

online solution. It was initially intended to use in-person activities and games so that it

could be more engaging.

A major challenge with the pre-test and post-test was that the time limitation was not

possible to be tracked. Even though students were told not to use more than 30 minutes,

but it was impossible to ensure other than just asking them. Some participants who did

the pre-test did not attend the workshops and were hard to find later. Otherwise, there

would be more participants in the study.

7.6 Future Improvements

The research has been limited to the core computational thinking concepts for the

moment. In the future, more concepts can be integrated into the model to make it more

detailed and effective. In addition, future researchers can use this model and come up

with a guideline to map other problems so that other people can do mapping for different

algorithms.

The study was conducted using Python programming language, and other languages

were not used. Therefore, other languages such as Java, C/C++, Javascript, etc. languages

can also be used to be taught using this model and transforming it into codes following

this process. Any other suitable pedagogical approach can also be examined using this

model, provided the teaching procedure is compatible with the model.

Univ
ers

iti
Mala

ya

 106

REFERENCES

Acharya, S., & Gayana, M. N. (2021). Enhanced Learning and Improved Productivity

of Students ’ using Project Based Learning Approaches for Programming Courses.

34(January), 524–530.

Adamchik, V., & Gunawardena, A. (2003). A learning objects approach to teaching

programming. Proceedings ITCC 2003, International Conference on Information

Technology: Computers and Communications, 96–99.

https://doi.org/10.1109/ITCC.2003.1197507

Ahsan Habib, M. (2019). A RECOMMENDER OF PHYSICAL GAMES FOR

LEARNING PROGRAMMING AND COMPUTATIONAL THINKING.

Ala-Mutka, K. M. (2004). Problems in learning and teaching programming-a literature

study for developing visualizations in the Codewitz-Minerva project. Codewitz

Needs Analysis, 1–13.

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:PROBLEMS+I

N+LEARNING+AND+TEACHING+PROGRAMMING+-

+a+literature+study+for+developing+visualizations+in+the+Codewitz-

Minerva+project#0

Analytical Thinking and Critical Thinking. (n.d.). Analytical Thinking and Critical

Thinking. https://thepeakperformancecenter.com/educational-

learning/thinking/critical-thinking/analytical-thinking-critical-thinking/

Anonymous. (2014). Computational thinking: How do we think about problems so that

computers can help? 1–17. http://barefootcas.org.uk/barefoot-primary-computing-

resources/concepts/computational-thinking/

Atmatzidou, S., & Demetriadis, S. (2014). How to Support Students ’ Computational

Thinking Skills in Educational Robotics Activities. Proceedings of 4th

International Workshop Teaching Robotics, Teaching with Robotics & 5th

Univ
ers

iti
Mala

ya

 107

International Conference Robotics in Education, July, 43–50.

Avello-Martínez, R., Lavonem, J., & Zapata-Ros, M. (2020). Coding and educational

robotics and their relationship with computational and creative thinking. A

compressive review. Revista de Educacion a Distancia, 20(63).

https://doi.org/10.6018/RED.413021

Bang, M. M. (2018). Teaching Sorting Algorithms in an Interactive Virtual Reality

Environment. July.

Barr, D., Harrison, J., & Conery, L. (2011a). Computational Thinking: A Digital Age

Skill for Everyone. Learning and Leading with Technology, 38(6), 20–23.

http://quijote.biblio.iteso.mx/wardjan/proxy.aspx?url=https://search.ebscohost.com

/login.aspx?direct=true&db=ehh&AN=59256559&lang=es&site=eds-

live%5Cnhttps://content.ebscohost.com/ContentServer.asp?T=P&P=AN&K=5925

6559&S=R&D=ehh&EbscoContent=dGJyMMTo50Sep6

Barr, D., Harrison, J., & Conery, L. (2011b). Computational Thinking: A Digital Age

Skill for Everyone. Learning and Leading with Technology, 38(6), 20–23.

http://quijote.biblio.iteso.mx/wardjan/proxy.aspx?url=https://search.ebscohost.com

/login.aspx?direct=true&db=ehh&AN=59256559&lang=es&site=eds-

live%5Cnhttps://content.ebscohost.com/ContentServer.asp?T=P&P=AN&K=5925

6559&S=R&D=ehh&EbscoContent=dGJyMMTo50Sep6

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is

involved and what is the role of the computer science education community? ACM

Inroads, 2(1), 48–54. https://doi.org/10.1145/1929887.1929905

Barron-Estrada, M. L., Zatarain-Cabada, R., & Cardenas-Sainz, B. A. (2020). A natural

user interface implementation for an interactive learning environment. Proceedings

- IEEE 20th International Conference on Advanced Learning Technologies, ICALT

2020, 341–343. https://doi.org/10.1109/ICALT49669.2020.00109

Univ
ers

iti
Mala

ya

 108

Bawamohiddin, A. B., & Razali, R. (2017). Problem-based learning for programming

education. International Journal on Advanced Science, Engineering and

Information Technology, 7(6), 2035–2050.

https://doi.org/10.18517/ijaseit.7.6.2232

Bell, S. (2010). Project-Based Learning for the 21st Century: Skills for the Future. The

Clearing House: A Journal of Educational Strategies, Issues and Ideas, 83(2), 39–

43. https://doi.org/10.1080/00098650903505415

Berland, M., & Lee, V. R. (2011). Collaborative strategic board games as a site for

distributed computational thinking. International Journal of Game-Based

Learning, 1(2), 65–81. https://doi.org/10.4018/ijgbl.2011040105

Biletch, B., Kay, K., & Yu, H. (2015). An Analysis of Mathematical Notations: For

Better or For Worse. 1–54. http://www.wpi.edu/academics/ugradstudies/project-

learning.html1

Bubica, N., & Boljat, I. (2014). Strategies for Teaching Programming to Meet New

Challenges : State of the Art. Ciet, September, 1–6.

https://www.academia.edu/7689191/Strategies_for_Teaching_Programming_to_M

eet_New_Challenges_State_of_the_Art

Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G.

(2017). Changing a Generation’s Way of Thinking: Teaching Computational

Thinking Through Programming. Review of Educational Research, 87(4), 834–

860. https://doi.org/10.3102/0034654317710096

Caeli, E. N., & Yadav, A. (2020). Unplugged Approaches to Computational Thinking: a

Historical Perspective. TechTrends, 64(1), 29–36. https://doi.org/10.1007/s11528-

019-00410-5

Chang, C.-S., Chung, C.-H., & Chang, J. A. (2020). Influence-of-problem-based-

learning-games-on-effective-computer-programming-learning-in-higher-

Univ
ers

iti
Mala

ya

 109

education-_-Enhanced-Reader.pdf.

Chang, C. S., Chen, J. F., & Chen, F. L. (2015). Development and design of problem

based learning game-based coursware. Proceedings of the International

Conference on E-Learning 2015, E-LEARNING 2015 - Part of the Multi

Conference on Computer Science and Information Systems 2015, 217–219.

Cheah, C. S. (2020). Factors Contributing to the Difficulties in Teaching and Learning

of Computer Programming: A Literature Review. Contemporary Educational

Technology, 12(2), ep272. https://doi.org/10.30935/cedtech/8247

Chen, G. (2018). Programming Language Teaching Model Based on Computational

Thinking and Problem-based Learning. 156(Seiem), 128–131.

https://doi.org/10.2991/seiem-17.2018.31

Chuechote, S., Nokkaew, A., Phongsasithorn, A., & Laosinchai, P. (2020). A neo-

piagetian analysis of algorithmic thinking development through the “sorted” digital

game. Contemporary Educational Technology, 12(1), 1–15.

https://doi.org/10.30935/cet.685959

Doleck, T., Bazelais, P., Lemay, D. J., Saxena, A., & Basnet, R. B. (2017). Algorithmic

thinking, cooperativity, creativity, critical thinking, and problem solving: exploring

the relationship between computational thinking skills and academic performance.

Journal of Computers in Education, 4(4), 355–369.

https://doi.org/10.1007/s40692-017-0090-9

Doody, O., & Doody, C. M. (2014). Conducting a pilot study: case study of a novice

researcher Owen Doody and Catriona M Doody. Case Study of Novice Researcher,

4(1), 1–8.

Duckworth, E. (2009). Helping Students Get to Where Ideas Can Find Them. New

Educator, 5(3), 185–188. https://doi.org/10.1080/1547688X.2009.10399573

Durak, H. Y., & Saritepeci, M. (2018). Analysis of the relation between computational

Univ
ers

iti
Mala

ya

 110

thinking skills and various variables with the structural equation model. Computers

and Education, 116, 191–202. https://doi.org/10.1016/j.compedu.2017.09.004

Faraon, M., Rönkkö, K., Wiberg, M., & Ramberg, R. (2020). Learning by coding: A

sociocultural approach to teaching web development in higher education.

Education and Information Technologies, 25(3), 1759–1783.

https://doi.org/10.1007/s10639-019-10037-x

Fraser, J., Fahlman, D., Arscott, J., & Guillot, I. (2018). Pilot testing for feasibility in a

study of student retention and attrition in online undergraduate programs.

International Review of Research in Open and Distance Learning, 19(1), 260–278.

https://doi.org/10.19173/irrodl.v19i1.3326

García-Peñalvo, F. J., & Mendes, A. J. (2018). Exploring the computational thinking

effects in pre-university education. Computers in Human Behavior, 80, 407–411.

https://doi.org/10.1016/j.chb.2017.12.005

Garneli, V., & Chorianopoulos, K. (2019). The effects of video game making within

science content on student computational thinking skills and performance.

Interactive Technology and Smart Education, 16(4), 301–318.

https://doi.org/10.1108/ITSE-11-2018-0097

Gelisli, Y. (2009). The effect of student centered instructional approaches on student

success. Procedia - Social and Behavioral Sciences, 1(1), 469–473.

https://doi.org/10.1016/j.sbspro.2009.01.085

Hazzan, O., & Kramer, J. (2008). The role of abstraction in software engineering.

Proceedings - International Conference on Software Engineering, November,

1045–1046. https://doi.org/10.1145/1370175.1370239

Hershkovitz, A., Sitman, R., Israel-Fishelson, R., Eguíluz, A., Garaizar, P., & Guenaga,

M. (2019). Creativity in the acquisition of computational thinking. Interactive

Learning Environments, 27(5–6), 628–644.

Univ
ers

iti
Mala

ya

 111

https://doi.org/10.1080/10494820.2019.1610451

Hu, C. (2011). Computational thinking - What it might mean and what we might do

about it. ITiCSE’11 - Proceedings of the 16th Annual Conference on Innovation

and Technology in Computer Science, 223–227.

https://doi.org/10.1145/1999747.1999811

Ismail, M. N., Ngah, N. A., & Umar, I. N. (2010a). Instructional strategy in the teaching

of computer programming: A need assessment analyses. Turkish Online Journal of

Educational Technology, 9(2), 125–131.

Ismail, M. N., Ngah, N. A., & Umar, I. N. (2010b). Instructional strategy in the teaching

of computer programming: A need assessment analyses. Turkish Online Journal of

Educational Technology, 9(2), 125–131.

Jesus, A. M. de, & Silveira, I. F. (2021). Game-based collaborative learning framework

for computational thinking development. Revista Facultad de Ingenieria, 99(99),

113–123. https://doi.org/10.17533/udea.redin.20200690

Jonasen, T. S., & Gram-Hansen, S. B. (2019). Problem based learning: A facilitator of

computational thinking. Proceedings of the European Conference on E-Learning,

ECEL, 2019-Novem, 260–267. https://doi.org/10.34190/EEL.19.150

Kale, U., & Yuan, J. (2020). Still a New Kid on the Block? Computational Thinking as

Problem Solving in Code.org. Journal of Educational Computing Research, 1–25.

https://doi.org/10.1177/0735633120972050

Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L. (2012). A Serious Game for

Developing Computational Thinking and Learning Introductory Computer

Programming. Procedia - Social and Behavioral Sciences, 47, 1991–1999.

https://doi.org/10.1016/j.sbspro.2012.06.938

Kazimoglu, C., Kiernan, M., Bacon, L., & MacKinnon, L. (2012). Learning

programming at the computational thinking level via digital game-play. Procedia

Univ
ers

iti
Mala

ya

 112

Computer Science, 9(0), 522–531. https://doi.org/10.1016/j.procs.2012.04.056

Kohn, T., & Komm, D. (2018). Teaching programming and algorithmic complexity

with tangible machines. Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

11169 LNCS, 68–83. https://doi.org/10.1007/978-3-030-02750-6_6

Kong, S. C., Lai, M., & Sun, D. (2020). Teacher development in computational

thinking: Design and learning outcomes of programming concepts, practices and

pedagogy. Computers and Education, 151(March), 103872.

https://doi.org/10.1016/j.compedu.2020.103872

Kong, S. C., & Wang, Y. Q. (2020). Formation of computational identity through

computational thinking perspectives development in programming learning: A

mediation analysis among primary school students. Computers in Human

Behavior, 106(December 2019), 106230.

https://doi.org/10.1016/j.chb.2019.106230

Korucu, A. T., Gencturk, A. T., & Gundogdu, M. M. (2017). Examination of the

Computational Thinking Skills of Students. Journal of Learning and Teaching in

Digital Age (JOLTIDA), 2(1), 11–19.

Kules, B. (2016). Computational thinking is critical thinking: Connecting to university

discourse, goals, and learning outcomes. Proceedings of the Association for

Information Science and Technology, 53(1), 1–6.

https://doi.org/10.1002/pra2.2016.14505301092

Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. (2005). A study of the difficulties of

novice programmers. Proceedings of the 10th Annual SIGCSE Conference on

Innovation and Technology in Computer Science Education, 14–18.

https://doi.org/10.1145/1067445.1067453

Larmer, J. (2015). Project-Based Learning vs. Problem-Based Learning vs. X-BL.

Univ
ers

iti
Mala

ya

 113

Edutopia. https://www.edutopia.org/blog/pbl-vs-pbl-vs-xbl-john-

larmer#:~:text=We decided to call problem,in other types of projects.

Lathan, J. (2017). Complete Guide to Teacher-Centered vs. Student-Centered Learning.

University of San Diego. https://onlinedegrees.sandiego.edu/teacher-centered-vs-

student-centered-learning/#:~:text=teacher-centered educational approach%2C

the,%2C a student-centered vs.&text=In student-centered learning%2C the,role in

their own learning.

Lee, I., Martin, F., & Apone, K. (2014). Integrating computational thinking across the

K–8 curriculum. https://dl.acm.org/doi/fullHtml/10.1145/2684721.2684736

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., &

Werner, L. (2011). Computational thinking for youth in practice. ACM Inroads,

2(1), 32–37. https://doi.org/10.1145/1929887.1929902

Lee, L. (2019). Computational Thinking is Critical Thinking—and Belongs in Every

Subject. Edutopia. https://www.edutopia.org/article/computational-thinking-

critical-thinking-and-belongs-every-subject

Lu, J. J., & Fletcher, G. H. L. (2009). Thinking about computational thinking. SIGCSE

Bulletin Inroads, 41(1), 260–264. https://doi.org/10.1145/1539024.1508959

Lui, A. K. F., Poon, M. H. M., & Wong, R. M. H. (2019). Automated generators of

examples and problems for studying computer algorithms: A study on students’

decisions. Interactive Technology and Smart Education, 16(3), 204–218.

https://doi.org/10.1108/ITSE-10-2018-0091

M., K. (2014). Problems in Programming Education and Means of Their Improvement.

459–470. https://doi.org/10.2507/daaam.scibook.2014.37

Malhotra, N. (2019). Implementing Active Learning and Student-Centered Pedagogy in

Large Classes. FACULTY FOCUS.

https://www.facultyfocus.com/articles/blended-flipped-learning/implementing-

Univ
ers

iti
Mala

ya

 114

active-learning-and-student-centered-pedagogy-in-large-classes/#:~:text=Active

learning places the student,such as comprehension and evaluation.

Malizia, A., Turchi, T., Danesi, F., Fogli, D., & Bell, D. (2020). TAPASPlay: a Tangible

Game-Based Learning Approach (Issue 2017).

Malliarakis, C., Satratzemi, M., & Xinogalos, S. (2014). Designing educational games

for computer programming: A holistic framework. Electronic Journal of E-

Learning, 12(3), 281–298.

Marcelino, M. J., Pessoa, T., Vieira, C., Salvador, T., & Mendes, A. J. (2018). Learning

Computational Thinking and scratch at distance. Computers in Human Behavior,

80, 470–477. https://doi.org/10.1016/j.chb.2017.09.025

Margaret Rouse. (2017). sorting algorithm. WhatIs.Com.

https://whatis.techtarget.com/definition/sorting-algorithm

Mascolo, M. (2009). Beyond Student-Centered and Teacher-Centered Pedagogy:

Teaching and Learning as Guided Participation. Pedagogy and the Human

Sciences, 1(1), 3.

Menon, D., Viéville, T., & Romero, M. (2019). Computational thinking development

and assessment through tabletop escape games. International Journal of Serious

Games, 6(4), 3–18. https://doi.org/10.17083/ijsg.v6i4.319

Mohd, F., Hielmi, E., & Daud, C. (2016). MOBILE GAMES USABILITY.

Muntean, C. H. (2019). Teaching Tip : Flipping the Class to Engage Students in

Learning Programming Algorithms. 2320–2325.

N. Miller, B., & L. Ranum, D. (2006). Problem Solving with Algorithms and Data

Structures using Python.

https://runestone.academy/runestone/books/published/pythonds/Introduction/WhatI

sProgramming.html#:~:text=Programming is the process of,be executed by a

computer.&text=Algorithms describe the solution to,to produce the intended result.

Univ
ers

iti
Mala

ya

 115

Nasar, A. A. (2019). A Mathematical Analysis of student-generated sorting algorithms.

Mathematics Enthusiast, 16(1–3), 315–330.

Nguyen, V. T., Zhang, Y., Jung, K., Xing, W., & Dang, T. (2020). VRASP: A Virtual

Reality Environment for Learning Answer Set Programming. Lecture Notes in

Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 12007 LNCS(January), 82–91.

https://doi.org/10.1007/978-3-030-39197-3_6

Nokkaew, A. (2019). Sorted: An Educational Digital Game for Learning Sorting

Algorithms. April 2019.

Nouri, J., Zhang, L., Mannila, L., & Norén, E. (2020). Development of computational

thinking, digital competence and 21st century skills when learning programming in

K-9. Education Inquiry, 11(1), 1–17.

https://doi.org/10.1080/20004508.2019.1627844

Otukile-Mongwaketse, M. (2018). Teacher centered dominated approaches: Their

implications for todays inclusive classrooms. International Journal of Psychology

and Counselling, 10(2), 11–21. https://doi.org/10.5897/ijpc2016.0393

Palts, T., & Pedaste, M. (2020). A model for developing computational thinking skills.

Informatics in Education, 19(1), 113–128.

https://doi.org/10.15388/INFEDU.2020.06

Park, H., Yang, S., & Choi, H. (2020). Scenario based active learning programming

with unity 3d. Annual Conference on Innovation and Technology in Computer

Science Education, ITiCSE, 56(4), 1283. https://doi.org/10.1145/3328778.3372582

Price, I. (2019). Student-Centered Vs. Teacher-Centered Classrooms: Which and

Why?e. Iddblog. https://www.iddblog.org/student-centered-vs-teacher-centered-

classrooms-which-and-why/

Rana, M. S., Hossin, M. A., Mahmud, S. M. H., Jahan, H., Satter, A. K. M. Z., &

Univ
ers

iti
Mala

ya

 116

Bhuiyan, T. (2019a). MinFinder : A New Approach in Sorting Algorithm.

Rana, M. S., Hossin, M. A., Mahmud, S. M. H., Jahan, H., Satter, A. K. M. Z., &

Bhuiyan, T. (2019b). MinFinder : A New Approach in Sorting Algorithm. 131, 2.1.

Types of Sorting Algorithms, paragraph: 2.

https://doi.org/10.1016/j.procs.2019.06.020

Sa, L. L. (2018). The Basics of Computational Thinking. https://themekeeper.com/web-

design/the-basics-of-computational-thinking

Sahin, C., & Abichandani, P. (2013). Should the first course in computational problem

solving and programming be student-centered or teacher-centered? Proceedings -

Frontiers in Education Conference, FIE, May, 748–754.

https://doi.org/10.1109/FIE.2013.6684926

Schwebel, D. C., Morrongiello, B. A., Davis, A. L., Stewart, J., & Bell, M. (2012). The

blue dog: Evaluation of an interactive software program to teach young children

how to interact safely with dogs. Journal of Pediatric Psychology, 37(3), 272–281.

https://doi.org/10.1093/jpepsy/jsr102

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2019). Demystifying Computational

Thinking. Reseachgate, 509, 1–21.

Siti Rosminah, M. D., & Ahmad Zamzuri, M. A. (2012). Difficulties in learning

Programming: Views of students. 1st International Conference on Current Issues

in Education (ICCIE2012), September, 74–78.

https://doi.org/10.13140/2.1.1055.7441

Smith, A., Mott, B., & Taylor, S. (2020). Toward a Block-Based Programming

Approach to Interactive Storytelling for Upper Elementary Students. 1–10.

Spraul, V. A. (2013). THINK LIKE A PROGRAMMER. Journal of Chemical

Information and Modeling, 53(9), 1689–1699.

Statter, D., & Armoni, M. (2020). Teaching abstraction in computer science to 7th grade

Univ
ers

iti
Mala

ya

 117

students. ACM Transactions on Computing Education, 20(1), 8–837.

https://doi.org/10.1145/3372143

Subramaniam, S., Chua, F. F., & Chan, G. Y. (2017). Project-based Learning for

Software Engineering–An Implementation Framework. Journal of

Telecommunication, Electronic and Computer Engineering, 9(3-4 Special Issue),

81–85.

Szabó, Z. (2020). Problem solving and interrelation of concepts in teaching algorithmic

thinking and programming. CEUR Workshop Proceedings, 2650, 318–327.

Tariq, I. (2020). An interactive interface for shader programming. May.

THE ROYAL SOCIETY. (2017). After the reboot : computing education in UK schools

Contents.

Threekunprapa, A., & Yasri, P. (2020). Patterns of computational thinking development

while solving unplugged coding activities coupled with the 3s approach for self-

directed learning. European Journal of Educational Research, 9(3), 1025–1045.

https://doi.org/10.12973/EU-JER.9.2.1025

Tom, M. (2015). Five Cs Framework: A Student-centered Approach for teaching

programming courses to students with diverse disciplinary background. Journal of

Learning Design, 8(1), 21–37. https://doi.org/10.5204/jld.v8i1.193

Tomaszewski, M. (2021). Creative Thinking: Definition, Examples & How to Boost

Creativity. https://zety.com/blog/creative-thinking-skills

Tsarava, K., Moeller, K., Pinkwart, N., Butz, M., Trautwein, U., & Ninaus, M. (2017).

Training computational thinking: Game-based unplugged and plugged-in activities

in primary school. Proceedings of the 11th European Conference on Games Based

Learning, ECGBL 2017, October, 687–695.

Turchi, T., Fogli, D., & Malizia, A. (2019). Fostering computational thinking through

collaborative game-based learning. Multimedia Tools and Applications, 78(10),

Univ
ers

iti
Mala

ya

 118

13649–13673. https://doi.org/10.1007/s11042-019-7229-9

Van Dyne, M., & Braun, J. (2014). Effectiveness of a Computational Thinking (CS0)

course on student analytical skills. SIGCSE 2014 - Proceedings of the 45th ACM

Technical Symposium on Computer Science Education, 133–137.

https://doi.org/10.1145/2538862.2538956

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking

in compulsory education: Towards an agenda for research and practice. Education

and Information Technologies, 20(4), 715–728. https://doi.org/10.1007/s10639-

015-9412-6

Voskoglou, M. (2013). Problem solving, fuzzy logic and computational thinking.

Egyptian Computer Science Journal, 37(1), 131–145.

http://www.ecsjournal.org/Archive/Volume37/Issue1/8.pdf

Voskoglou, M. G., & Buckley, S. (2012a). Problem Solving and Computational

Thinking in a Learning Environment. 36(4), 28–46.

Voskoglou, M. G., & Buckley, S. (2012b). Problem Solving and Computational

Thinking in a Learning Environment. 36(4), 28–46. http://arxiv.org/abs/1212.0750

Wang, W., Zhi, R., Milliken, A., Lytle, N., & Price, V. W. (2020). Crescendo: Engaging

students to self-paced programming practices. Annual Conference on Innovation

and Technology in Computer Science Education, ITiCSE, 859–865.

https://doi.org/10.1145/3328778.3366919

Ward, B., Marghitu, D., Bell, T., & Lambert, L. (2010). Teaching computer science

concepts in Scratch and Alice. Journal of Computing Sciences in Colleges, 26,

173–180. https://www.dropbox.com/sh/628r06wzowu1py6/4bA9m7cJ3PWard et

al 2010 Teaching CS concepts in Scratch and Alice-1546874624/Ward et al 2010

Teaching CS concepts in Scratch and Alice.pdf

Wing, J. M. (2006). Computational Thinking. Computer Science Handbook, Second

Univ
ers

iti
Mala

ya

 119

Edition, 49(3), 68-1-68–18. https://doi.org/10.1201/b16812-43

Wing, J. M. (2008). Computational thinking and thinking about computing.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 366(1881), 3717–3725.

https://doi.org/10.1098/rsta.2008.0118

Wing, J. M. (2012). Computational Thinking (M. A. F. Summit (ed.)). Microsoft.

Wohlfarth, D., Sheras, D., Bennett, J. L., Simon, B., Pimentel, J. H., & Gabel, L. E.

(2008). Student Perceptions of Teaching Transparency. The Journal of Effective

Teaching, 7(2), 36–50. http://uncw.edu/cte/et/

Wong, G. K. W., & Cheung, H. Y. (2020). Exploring children’s perceptions of

developing twenty-first century skills through computational thinking and

programming. Interactive Learning Environments, 28(4), 438–450.

https://doi.org/10.1080/10494820.2018.1534245

Xie, B., Loksa, D., Nelson, G. L., Davidson, M. J., Dong, D., Kwik, H., Tan, A. H.,

Hwa, L., Li, M., & Ko, A. J. (2019). A theory of instruction for introductory

programming skills. Computer Science Education, 29(2–3), 205–253.

https://doi.org/10.1080/08993408.2019.1565235

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational

thinking in elementary and secondary teacher education. ACM Transactions on

Computing Education, 14(1). https://doi.org/10.1145/2576872

Yang, T. C., Hwang, G. J., Yang, S. J. H., & Hwang, G. H. (2015). A two-tier test-

based approach to improving students’ computer-programming skills in a web-

based learning environment. Educational Technology and Society, 18(1), 198–210.

Yasmin, B., Debora, A., Proctor, C., Kafai, Y. B., Proctor, C., & Lui, D. A. (2019).

Framing Computational Thinking for Computational Literacies in K-12 Education.

Proceedings of the Weizenbaum Conference 2019 Challenges of Digital Inequality,

Univ
ers

iti
Mala

ya

 120

7. https://doi.org/10.34669/wi.cp/2.21

Yew, E. H. J., & Goh, K. (2016a). Problem-Based Learning: An Overview of its

Process and Impact on Learning. Health Professions Education, 2(2), 75–79.

https://doi.org/10.1016/j.hpe.2016.01.004

Yew, E. H. J., & Goh, K. (2016b). Problem-Based Learning: An Overview of its

Process and Impact on Learning. Health Professions Education, 2(2), 75–79.

https://doi.org/10.1016/j.hpe.2016.01.004

Zaharin, N. L., Sharif, S., & Mariappan, M. (2018). Computational Thinking: A

Strategy for Developing Problem Solving Skills and Higher Order Thinking Skills

(HOTS). International Journal of Academic Research in Business and Social

Sciences, 8(10). https://doi.org/10.6007/ijarbss/v8-i10/5297

Zhang, L. C., & Nouri, J. (2019). A systematic review of learning computational

thinking through Scratch in K-9. Computers and Education, 141(June), 103607.

https://doi.org/10.1016/j.compedu.2019.103607

Zhao, W., & Shute, V. J. (2019). Can playing a video game foster computational

thinking skills? Computers and Education, 141(July), 103633.

https://doi.org/10.1016/j.compedu.2019.103633

Appendix A

Student ID Pre-Test Post Test

01 4 3.5

02 5.1 5.8

03 6.1 6.1

Univ
ers

iti
Mala

ya

