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ON-ORBIT SPATIAL IMAGE CHARACTERISATION AND RESTORATION  

BASED ON STOCHASTIC CHARACTERISTIC TARGETS 

ABSTRACT 

While the qualities associated with the radiometric and geometric resolution are a 

major concern in earth observation satellite (EOS) imaging sensors calibration and 

validation, spatial resolution quality is an important parameter that is essentially needed 

for on-orbit spatial EOS imaging performance assessment. Moreover, its calibration 

results can be applied to an image restoration problem, to improve the spatial quality of 

the EOS data. A practical way to characterize the on-orbit spatial quality performance of 

an EOS imaging sensor is to determine the modulation transfer function (MTF) from its 

remotely sensed images on the ground.  However, existing approaches and techniques for 

spatial characterisation are highly reliant on the presence and manual identification of a 

well-separated characteristics target.  These approaches and techniques impose stringent 

criteria and temporal sampling issues. In spatial image restoration, even with the perfect 

estimation of degradation function, restoring coherent high-frequency image details can 

still be very difficult.  

This thesis presents two frameworks; the first one is for on-orbit spatial 

characterisation, whereas the second is for optical satellite image restoration. In the first 

framework, this thesis introduces an insight to effectively measure the MTF by analyzing 

the stochastic characteristics in the observed image. In particular, first, it proposes a 

segmentation method to select the ideal candidates for MTF Measurement. Second, it 

develops an adaptive structure selection method that removes detrimental structures and 

selects only useful information for point spread function (PSF) estimation. Finally, it 

introduces a spatial prior that can simultaneously suppress noises while preserving the 

sparsity and continuity of data to obtain high fidelity two-dimensional PSF model for 

MTF measurement. The experimental results demonstrate that the proposed framework 
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is practical and effective, with < 2.3% of relative error at the Nyquist frequency as 

compared to the well-established edge method.  

In continuation of the first framework, the proposed MTF measurement algorithms are 

evaluated experimentally as a blur kernel estimation method for spatially varying and 

invariant blur removal. Furthermore, this thesis presents a comparative study on blur 

estimation methods that utilize the principle of sparse representation to gain an insight 

into image priors type that appropriate for blur removal in blind optical satellite images.  

Given the fact that the heavy-tailed properties of MTF typically introduce noise and an 

unacceptable aliasing effect. Therefore, in the second framework, this thesis exploits the 

image properties and shows that only one image property used in a regularization-based 

framework is insufficient to obtain satisfying restoration results. Hence, this thesis 

presents a strategy for high-fidelity MTF compensation by characterizing both the local 

smooth and nonlocal self-similarity properties of images in the hybrid domain. To 

minimize computational complexity, it establishes a simple joint statistical model in the 

Curvelet domain to combine these image properties and employ the multi-objective 

bilevel optimization approach to efficiently solve the severely ill-posed inverse problem 

of MTFC.  The experimental results show that the proposed methods achieve significant 

performance in preserving high fidelity images with feature similarity (FSIM) index value 

as high as 0.99876 and minimum computational complexity. 

Keywords: Modulation Transfer Function, Remotely-sensed imagery, Sparsity priors, 

Regularized-based Joint Statistical Model, Image Fidelity. 
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PENCIRIAN DAN PEMULIHAN IMEJ SPATIAL DI-ORBIT BERDASARKAN 

TARGET CIRIAN STOKASTIK 

ABSTRAK 

Walaupun kualiti yang berkaitan dengan resolusi radiometrik dan geometri adalah 

keutamaan dalam Kalibrasi dan Validasi sensor pengimejan bagi satelit pencerapan bumi 

(EOS), kualiti resolusi spatial adalah parameter penting yang pada asasnya diperlukan 

untuk penilaian prestasi pengimejan EOS dari segi spatial yang berada di orbit. Selain itu, 

hasil penentukurannya juga dapat membantu dalam masalah pemulihan imej bagi 

meningkatkan kualiti spatial data EOS. Satu cara praktikal untuk mencirikan prestasi 

spatial bagi sensor pengimejan EOS yang berada di orbit adalah dengan menentukan 

fungsi pemindahan modulasi (MTF) dari imejnya yang dicerap melalui penderia jauh. 

Pendekatan dan teknik pencirian spatial yang sedia ada amat bergantung pada kewujudan 

target dengan cirian yang jelas terpisah dan memerlukan pengenalpastian secara manual. 

Perkara ini mengenakan pematuhan kriteria dan masalah persampelan temporal yang 

tidak fleksibel. Dalam usaha pemulihan imej spatial, walaupun dengan anggaran fungsi 

degradasi yang sempurna, memulihkan perincian imej berfrekuensi tinggi yang koheren 

masih boleh menjadi sangat sukar.   

Tesis ini membentangkan dua rangka kerja; Yang pertama adalah untuk pencirian 

spatial pengimejan EOS yang berada di orbit, manakala kedua adalah untuk pemulihan 

imej satelit. Dalam rangka pertama, tesis ini memperkenalkan saranan baru untuk 

menganggarkan MTF secara berkesan dengan menganalisis ciri-ciri stokastik pada imej 

yang diteliti. Untuk merealisasikan matlamat rangka kerja ini; Pertama, tesis ini 

mencadangkan kaedah segmentasi untuk memilih calon pinggir yang sesuai dari imej 

untuk anggaran MTF. Kedua, kita membangunkan kaedah pemilihan struktur boleh-suai 

yang dapat menghindarkan struktur imej yang tidak sesuai dan hanya memilih maklumat 

struktur yang berguna untuk perkiraan fungsi sebaran titik (PSF). Akhir sekali, tesis ini 
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mengemukakan kaedah anggaran yang mantap dengan memperkenalkan “spatial prior” 

yang dapat menyekat hingar, dan memelihara kejelasan dan kesinambungan kernel PSF 

pada masa yang serentak untuk peroleh model PSF dua dimensi berfideliti tinggi untuk 

kiraan MTF. Hasil eksperimen menunjukkan bahawa rangka kerja yang dicadangkan 

adalah praktikal dan berkesan Hasil eksperimen menunjukkan bahawa kerangka kerja 

yang dicadangkan adalah praktikal dan berkesan, dengan <2.3% ralat relatif pada 

frekuensi Nyquist berbanding dengan kaedah sedia ada yang mapan. 

Dalam kesinambungan rangka kerja pertama, tesis ini menilai algoritma pengukuran 

MTF yang dicadangkan secara eksperimen sebagai kaedah anggaran kernel kabur untuk 

penyingkiran kabur. Selanjutnya, tesis ini membentangkan kajian perbandingan 

mengenai kaedah anggaran kabur yang menggunakan prinsip perwakilan jarang untuk 

mendalami pemahaman dalam “image prior’ yang sesuai untuk penyingkiran kabur dalam 

imej satelit optik. Pada hakikatnya, ciri-ciri MTF biasanya memperkenalkan hingar dan 

kesan alias yang tidak disenangi dalam usaha MTFC yang sedia ada.  Maka, dalam rangka 

kerja kedua, tesis ini mengeksploitasi ciri-ciri tersebut dan menunjukkan bahawa 

kerangka kerja berdasarkan ‘regularisation’ yang hanya bergantung pada satu sifat imej 

sahaja adalah tidak memadai untuk mendapatkan hasil pemulihan imej yang memuaskan. 

Dengan itu, tesis ini membentangkan strategi untuk menghasilkan kaedah pempampasan 

MTF berfideliti tinggi dengan mencirikan sifat-sifat “local smooth” dan “nonlocal self-

similarity” pada imej dalam domain ruang dan frekuensi secara hibrid. Untuk 

mengurangkan kerumitan komputasi, tesis ini membangunkan satu model statistik 

cantuman yang mudah dalam domain Curvelet untuk menggabungkan sifat-sifat imej ini.  

Bagi membolehkan kaedah ‘regularised-based’ pempampasan MTFC ini mudah dikawal 

dan lebih mantap, tesis ini menggunakan pendekatan “multi-objective bilevel 

optimization” untuk menyelesaikan masalah MTFC yang pada dasarnya adalah “ill-posed 

inverse problem”. Hasil eksperimen pada kedua kerangka ini menunjukkan bahawa 
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kaedah yang dicadangkan dapat mencapai prestasi yang signifikan dalam memelihara 

imej  berfideliti ttinggi dengan nilai “Feature similarity (FSIM) index” setinggi 0.99876 

berserta dengan kerumitan komputasi yang minimum. 

Kata Kunci: Fungsi pemindahan modulasi, Imej penderiaan jarak jauh, “Sparsity priors”, 

Model statistik cantuman berdasarkan “regularization”, Fideliti imej. 
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CHAPTER 1: INTRODUCTION 

1.1 Research Overview 

Over the decades, remote sensing technology guided by satellite imagery has been a 

prevailing technique for exploring and obtaining meteorological, geophysical, and 

biophysical information about the earth, and the effects that human activities have had 

upon them. With the advancement of technology, more sophisticated passive remote 

sensing sensors systems are developed to provide high-resolution optical satellite images. 

This advancement has opened fields of exploration and application, which demand the 

ever-increasing quality for remotely sensed imageries; solely because detection and 

quantification of objects, and monitoring of environmental trends require high quality and 

long term stability of earth observations.  Therefore, it is important to have quality 

assurance in Earth Observation Satellite (EOS) data processing in place to ensure users 

that the remotely sensed imageries are reliable and suitable for operational use or 

research.  Specifically, in other words, they must ensure the “fitness for purpose” of the 

delivered EOS data product (Fox, 2010a; WGCV, 2019). Since it is a data product, hence 

it consists of measurements that require characterisation (WGCV, 2019).  

For remote sensing quality assurance to be optimal and widely applicable 

operationally, it should include the fundamental steps of calibration and validation 

(Cal/Val) (Teillet, Horler, & O’Neill, 1997; QA4EO, 2010; WGCV, 2019).  In the passive 

imaging (i.e., optical) remote sensing platform Cal/Val initiative, before an EOS is 

launched into orbit, pre-flight calibration should be conducted to characterize the 

radiometric and geometric performance of the satellite’s imaging sensors.  Once the 

satellite is in orbit, in-flight calibration (also known as post-launch calibration) should be 

carried out to validate the performance of the satellite’s imaging sensors and the quality 

of the remotely sensed data (Chen, 1996; Fox, 2010b; WGCV, 2019). 
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The spatial characterisation is one of the key parts of Cal/Val for post-launch optical 

EOS sensor calibration (Viallefont-robinet et al., 2018). The quantitative information 

from the spatial characterisation is essential to (1) evaluate the usefulness of delivered 

EOS data products for image analysis, (2) understand what data level of spatial processing 

is available from passive remote sensing imaging, (3) evaluate the performance of the in-

flight EOS spatial imaging, and (4) determine the stability of delivered EOS data products 

during commissioning and continuing throughout the mission life of the EOS program 

(Ryan et al., 2003; WGCV, 2019).  

Generally, the characterisation of spatial resolution in most of the passive remote 

sensing imaging systems is described by the sensor modulation transfer function (MTF) 

and ground sampling distance (GSD) (Holst, 2017). This is to say, it can be characterized 

by estimating the MTF value of the system at Nyquist spatial frequency, where its 

sampling frequency is equal to the inverse of GSD. Here, MTF is defined as the 

normalized magnitude of the Fourier Transform (FT) for the imaging system’s point 

spread function (PSF). Knowledge of the MTF for a given image acquisition system is 

fundamentally important since it enables an objective assessment of the imaging 

performance. Furthermore, the MTF can be utilized through image restoration techniques 

as an image degradation function to undo the spatial image degradation effect. 

Spatial image degradation in remotely sensed imagery could happen while launching 

into orbit (Haghshenas, 2017), during image acquisition and data transmission, or even 

throughout its mission time in the orbit. The degradation in sensor performance with time 

in orbit is generally attributed to material deposition on the sensor optics caused by 

outgassing from the system in the vacuum condition of space (Rao & Chen, 1994; Loew, 

2017; Saiga et al., 2018). For remote sensing optical satellite imaging, image acquisition 

occurs while orbiting the earth. Because of the satellite’s attitude control for maneuvering, 
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the instantaneous field of view (IFOV) of the imaging system can be greater or lesser than 

the nominal resolution during image capturing. This results in MTF degradation 

proportional to the ratio of IFOV and GSD during image acquisition (Schott, 2007). 

Besides, during image acquisition, the imaging system could cause a blurring due to the 

cumulative (e.g., diffraction, aberrations, focusing errors) effects of the instrumental 

optics and environmental factors. Moreover, regardless of how well an imaging system 

is fabricated, it will inevitably suffer from some degree of blur due to uncertainties in 

fabrication.  Blurred images inherently have less information than sharp images, which 

leads to difficulty when performing image analysis. These types of degradations, 

therefore, need to be compensated, and they can be compensated using the MTF as a 

degradation function for that image restoration.  

This Work explores solutions from the ill-posed problem of image restoration area to 

address the current challenges of (1) low precision and temporal sampling frequencies in 

the existing MTF measurement approach for spatial characterisation and assessment of 

on-orbit optical satellite imaging and its data products; and (2) the adverse effects (i.e., 

noise amplification and aliasing) of MTF compensation to improve the spatial quality of 

delivered optical EOS data products. The contribution of this thesis is threefold; first is 

the development of a new on-orbit spatial characterisation framework based on stochastic 

characteristics in the observed image; second is the development of an MTF 

compensation method for spatial image restoration that exploits the local smooth and 

nonlocal self-similarity of image properties; third is an insightful study about the 

usefulness of image priors for spatially varying and invariant blur in optical satellite 

images. 

This chapter gives a brief overview of the research work as above. In the following 

sections, the research problems motivated by the current challenges, including the 
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objectives, the scope, and the significance of this research will be explained. The 

correlation among the articles (i.e., Chapter 4 to Chapter 6)  in this thesis is organized in 

Section 1.7, where a brief description of the proposed solution in the respective article is 

included for an overview. 

1.2 Research Motivation 

In the year 2009, the second EOS of Malaysia, RazakSAT™, was launched into a near-

equatorial orbit to offer imaging opportunities in the equatorial region (SpaceX 

Successfully Launches Satellite Into Earth Orbit, 2009). Unfortunately, it ceased 

operation after one year of operation (Subari, 2014). During its mission life, on-orbit 

spatial quality assessment has been conducted using natural characteristic targets from 

the nominal image scene as artificial targets are not available for imaging (Wong, 2012). 

It was reported in (Wong, 2012) that one of the challenges of the work is the difficulty to 

find suitable edge features due to the condition of the images (i.e., cloud cover, saturation 

due to high gain setting and low contrast image); only 23 out of 256 datasets were found 

useful for further analysis. These issues provide a rationale for research to explore 

alternative or new methods for on-orbit spatial image quality assessment and 

improvement.  In the following subsections, the challenges of the research focus area will 

be described in greater detail. 

1.2.1 On-orbit Spatial Characterisation 

Derivation of MTF from remotely sensed imagery for on-orbit spatial characterisation 

requires the use of specific artificial (i.e., man-made target) or natural targets on the 

surface of the earth. On-orbit MTF measurement methods are mainly based on artificial 

targets such as sharp edge (Viallefont-robinet et al., 2018; Pagnutti et al., 2017; Kohm 

2004), pulse target (Ryan, 2003; Helder et al., 2006), or bar target (Kaftandjian et al., 

1996; Reulke et al., 2006) with different spatial frequencies, and also point target (Helder 
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et al., 2004) were developed and successfully applied to evaluate the spatial qualities of 

IKONOS (Ryan et al., 2003; Helder et al., 2006), Quickbird (Helder et al., 2004; Helder 

et al., 2006), OrbView-3 (Kohm 2004), Landsat (Rauchmiller & Schowengerdt, 1988; 

Schowengerdt et al., 1985; Storey, 2001; Stensaas, 2014; Dennis, 2015; Wenny et al., 

2015), SPOT (Viallefont-Robinet & Léger, 2010), KOMPSAT (Lee et al, 2008; Seo et 

al., 2015; Lee at al., 2016), etc. Figure 1.1 shows a test site with artificial targets situated 

in the Finnish Geodetic Institute. Note that these targets are engineered with different 

shapes and sizes, and they are either permanent or portable targets.  

 

Figure 1.1: The Sjökulla Site at Finnish Geodetic Institute; the artificial target 
highlighted in the red box is (a) portable edge target, (b) permanent sparse 

resolution bar target, (c) portable Siemens star target, and (d) permanent point 
targets. 

1.2.1.1 Challenges from measurement target data 

Although utilization of the artificial targets in the test site for MTF measurement has 

been shown to produce quality results, there are not always available or convenient, 

because their access to the targets is limited.  While building own test site can be the 

solution to access issues, establishing a test site can impose many challenges. This is 

because building a test site not only requires an amount of cost but finding a suitable site 
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is a non-trivial task. As it must meet selection criteria, such as surface properties of the 

site (e.g. reflectance factor, etc.), horizontal land, size of land (i.e. the size of the surface 

area to be sampled is selected depending on the imaging sensor resolution), and altitude 

of the site location (Berthelot et al., 2008; Santer et al., 2013).  The site should be located 

at a high altitude, far from the ocean, urban and industrial areas, and have easy access. 

One important criterion that is difficult to meet by equatorial region countries, such as 

Malaysia, is that the site should have cloud-free and low precipitation characteristics. This 

is important because the low probability of cloud coverage increases the probability of 

the EOS imaging the test site at the time of overpass. Since the measurement is strictly 

depending on the imaged targets that are not guaranteed by weather conditions, this 

ultimately leads to another challenge, which is the temporal sampling (i.e., how frequently 

is the area of interest is being imaging.) issue, where measurement data may not always 

be available. 

With the aforementioned limitations, alternatively, one can exploit and use the natural 

characteristic target found in nominal scenes. For example, as shown in Figure 1.2, one 

can use the street centerline or bridge in the nominal scene in a pulse target method to 

estimate its MTF value.  

  

Figure 1.2: In-scene natural targets: (a) a high-resolution sensor image, the 
street center-line highlighted in the red box can be utilized as a pulse target, (b) a 
high-resolution sensor image, building shadows highlighted in the red box can be 

utilized as edge target, and (c) a low-resolution sensor image without an ideal 
target. 
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This type of target allows many other measurement opportunities. However, a major 

concern of using the natural characteristic targets is that they must meet certain criteria 

such as magnitude, length, noise, and contrast level (Helder et al., 2004, Blanc, 2009; 

Pagnutti et.al., 2010).  Therefore, they are generally required to be manually selected.  

Most of the time, the manual selected targets may not be ideal, or, in some cases, they are 

simply not available. Moreover, some optical satellite images are low in spatial resolution, 

and this resulted in even limited well-separately characteristic targets in these images. 

Because of this, the MTF measurement methods based on fixed characteristic target is 

not very suitable for some of the passive remote sensing imaging systems. Due to the 

constraints imposed by the fixed characteristic issues, there is a need to find an alternative 

to fixed characteristic targets for MTF measurement, thus, this becomes one of the 

motivations of this thesis. 

1.2.1.2 Challenges from the measurement methods 

In general, there are two image-based methods to measure the MTF of passive remote 

sensing imaging systems. One method is based on fixed characteristic targets as stated 

previously and the other method is based on random targets. 

A long list of literature has been published on MTF measurement based on the fixed 

characteristic target. For notable representative works, consider those from Ryan et al. 

(2003), Kohm (2004), Helder et al. (2004), Wenny et al. (2015), Wang et al. (2017), 

Pagnutti et al. (2017), and Viallefont-Robinet (2018). Contrary to the fixed characteristic 

target, very little MTF measurement methods based on random targets were found in the 

literature. Besides, most of the literature proposed random target-based methods (Daniels 

et al., 1995; Xie, Hwang & Zhang, 2015; Saiga et al., 2018; Kang, Hao & Cheng, 2015; 

Backman, 2004) are conducted in laboratories and applied to medical and natural (i.e., 

consumer photography) imaging. Throughout this thesis, the terms ‘natural images’ or 

‘natural imaging’ will refer to consumer photography. 

Univ
ers

iti 
Mala

ya



 

42 

Up to now, there have been no detailed studies of the usability of random target on-

orbit spatial characterisation. Therefore, this thesis explores a stochastic target-based 

MTF measurement method, to determine whether it is practical and effective to use for 

on-orbit spatial characterisation. Note that the term “stochastic” is used instead of 

“random” because it would be a deterministic process, no random phenomena are 

involved. 

1.2.2 Spatial Image Restoration 

As was stated in the research overview, knowledge of the MTF not only provides a 

quantitative measurement for on-orbit spatial characterisation, but it enables a means to 

compensate the degradation for spatial image quality improvement. In this context, if one 

can measure the MTF which represents the degradation function that compromises the 

sharpness of the remotely sensed images, then the MTF can be utilized to ‘undo’, or at 

least reduce the degenerative effects to find the best estimate of an ideal remotely-sensed 

image. MTF compensation (MTFC) has its root in the image restoration problem 

(Schowengerdt, 2007), as the name implies, it works by using the measured MTF to 

compensate (i.e., inverse) for the system impulse response, to amplify the attenuated 

spatial frequencies for visual enhancement. 

1.2.2.1 Challenges in existing Modulation Transfer Function Compensation 

The existing MTFC is capable of enhancing the fine spatial detail of an image. 

However, as MTF exhibits a heavy-tailed distribution, division by the singularities value 

of MTF will amplify noise at those generally high frequencies. Thus, it introduces noise 

and unacceptable aliasing in the restored image (Holst, 2017).  These degenerative effects 

compromise the signal-to-noise ratio (SNR) of the image because noise can corrupt the 

image signal and causes difficulty in image analysis (Stensaas, 2014, Lee et al, 2016).  
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Figure 1.3 illustrates an example of satellite images before and after preprocessing using 

the existing MTFC. 

 
(a) (b) 

Figure 1.3: Example of satellite images (a) before and (b) after preprocessing 
using the existing MTFC. It can be noticed that after MTFC, the image shows 

enhancement. However, it also results in a grainy appearance.   

Due to this problem, when acquiring remote sensing datasets, the end-users and data 

providers need to evaluate the relative importance of image sharpness versus SNR in their 

application, to decide whether to have a processed dataset with MTFC or without MTFC 

(Schott, 2007; Stensaas, 2014; Kang, Chung & Kim, 2015).   Due to this shortcoming, 

users usually apply image enhancement techniques to improve the quality of the acquired 

image for image analysis.  Over the years, many research (e.g., Suresh et al., 2018; 

Kumari et al., 2017; Sajid & Khurshid, 2015; Li, Si, & Jia, 2017) in remote sensing data 

processing mostly revolved around the enhancement of contrast or removal of noise. 

These attempts can cause loss of significant information, which affects the remote sensing 

data comprehensibility and clarity (Suresh et al., 2018, Liang, Li, & Wang, 2012). Image 

enhancement is mainly concerned with the modification of images to optimize their 

appearance to the visual system, making it a subjective process (Gonzalez and Woods, 

2017). As pointed out by Liang et al. (2012), this process can artificially alter the 

radiometric properties (such as atmospheric conditions, sun angles, shadows, etc) that 
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characterize the environmental conditions captured in the remotely sensed imageries. 

Therefore, it is not viable to use image enhancement techniques to improve image quality 

for assisting scene interpretation tasks before quantitatively estimating the biophysical 

variables1 of the image. In this regard, it is worth noting that just how important image 

restoration is for assuring quality in the remote sensing data processing.  

Image restoration, unlike image enhancement, is an objective process where its goal is 

to reconstruct the original image spectrum from its degraded observed version using prior 

knowledge of the degradation phenomenon. Despite the importance of image restoration, 

there remains a paucity of research for MTFC improvement. MTFC is an inverse problem, 

therefore it is inherently an ill-posed problem, which requires a priori knowledge about 

the ideal image to alleviate its ill-posedness and stabilize the solution. However, for an 

application like remote sensing, it is difficult to statistically model the original image or 

obtain prior information about scenes never imaged before. Therefore, designing effective 

regularization terms to reflect the image priors for remotely sensed image restoration is 

one of the challenges to address in this research.  

There exist many blind image restoration methods for restoring natural images in the 

literature, many have demonstrated successful results (e.g., Ren et al., 2016; Zhang, J. et 

al., 2014b; Schonfeld & Wang, 2019). However, they require a heavy mathematical 

model to carry out the task effectively and consequently suffer from the complexity of 

computation. Moreover, the studies are mostly using a priori blur estimation methods, 

thus they focused on developing a blur kernel estimation method to restore a latent sharp 

 

1 Biophysical variables in scene interpretation task using remote sensing technology are referring to   
planimetric location, topographic-bathymetric elevation, color and the spectral signature of features, 
vegetation chlorophyll absorption characteristics, vegetation biomass, vegetation moisture content, soil 
moisture content, surface temperature, and texture or surface roughness (Jensen, 1983; Laing et al. 2012). 

Univ
ers

iti 
Mala

ya



 

45 

image. Relatively to blind image restoration methods, little research has been carried out 

on non-blind image restoration methods. In practice, even if the degradation function (i.e., 

blur kernel) from a blurry image in the blind image restoration problem could be perfectly 

estimated, restoring coherent and high-frequency image details can still be very difficult. 

Hence, the development of an MTFC that exhibits the most appropriate compromise 

among computational complexity, reliability, and robustness to noise is motivated in this 

research. 

1.2.2.2 Challenges in spatial deblurring problem 

The satellite imaging system is typically designed to be a linear spatially-invariant 

system (Holst, 2017); hence it is natural to assume the blur that occurred in the observed 

image would be spatially invariant. However, in a practical situation of passive remote 

sensing imaging, many factors can extrinsically or intrinsically cause image blur 

(Haghshenas, 2017). Any of these factors could make motion blur spatially varying which 

makes its estimation and removal highly difficult. Figure 1.4 shows an example of a 

satellite image that is degraded by spatially varying blurs.   

 

Figure 1.4: Example of a satellite image with a spatially varying blur; The red 
boxes emphasize the close-up view of the spatial varying blur kernel of the satellite 

image. 
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So far, however, there has been too little attention has been paid to the study that includes 

spatially varying blur estimation methods for optical satellite image processing.  

The success of Fergus et al., (2006) in single-blind image deblurring that stemmed 

from the use of various sparse priors has inspired much research in blur kernel estimation 

for spatial deblurring. Each of the research has shown its importance and usefulness in 

several domains, and their goal is always to lead to better results than existing ones. 

Nevertheless, all those techniques (e.g., Ma, Xu, & Zeng, 2017; Zha et al.,  2018; Gong 

et al. 2018) implicate complicated mathematical problems solving strategies, 

consequently, more complex formulas are developed. To address this challenge, this 

thesis examines various image priors to study their significance in both spatially-invariant 

and varying blur removal, and to examine the fact that complex formulations are generally 

assumed to produce restoration results more effectively. 

1.3 Statement of Problem 

The existing MTF measurement approach for on-orbit spatial imaging performance 

evaluation highly relies on the presence and manual identification of a well-separated 

fixed characteristics target, which confined with stringent criteria and temporal sampling 

issue to provide accurate measurements (Pagnutti et al., 2010; Lee et al., 2016; Viallefont-

Robinet et al., 2018). Besides, it is not suitable for low spatial resolution EOS (Xie et al., 

2015). These drawbacks make it a non-versatile approach.  Therefore, there is a need to 

explore an alternative to fixed characteristic target for a versatile and robust MTF 

measurement approach (i.e. suitable for high, medium, and low spatial resolution optical 

EOS) in the field of EOS data Cal/Val.  

Due to the ill-posedness of MTFC, in practice, restoring a high-quality image from a 

degraded image is non-trivial, even when using a perfectly estimated MTF, unpleasant 

artifacts can still appear in the restored image. Consequently, the estimated MTF from 
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the on-orbit spatial characterisation effort has become an optional process in operational 

use (Albert, 2015; Lee et al., 2016). Many natural image restoration algorithms exist and 

demonstrate successful results at the price of additional complexity (e.g, Ren et al., 2016; 

Zha et al., 2018). These shortcomings demand a need for an improved MTFC. Hence, 

studies to develop an MTFC method that can find a compromise between solution 

accuracy (i.e., high fidelity data) and computational efficiency are a recognized need for 

low-level vision processing. In the context of image processing, high fidelity is about the 

reproduction of an effect (i.e., image) that is very faithful (i.e., as similar as possible) to 

the original image. An image with high fidelity is an image without adverse artifacts (e.g., 

noise, aliasing, etc), with rich contrast edges and details as illustrated in Figure 1.5 (f). 

Figures 1.5 (a) to 1.5(e) depict examples of low fidelity images.  

 

Figure 1.5: Examples of low and high fidelity images; (a) Blur and noisy image, 
(b) Image with motion blur, (c) Image with over smooth effects (d) Image with 

aliasing, holo effect, and boundary condition issue, (e) Image with visible noise and 
aliasing effect, (f) A high fidelity image with rich contrast edges and details. 
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Furthermore, passive remote sensing imaging, just as any other observation process is 

never perfect because of the uncertainties caused by extrinsic and intrinsic factors in the 

imaging chain. The uncertainties could cause defocus and motion blur spatially varying 

which makes its estimation and removal highly difficult. To date, there is a notable 

paucity of studies investigating this type of blur in optical satellite image restoration. 

Therefore, there is a need to conduct a comparative study to gain further understanding 

of image priors by developing new prior that can adequately handle complex constraints 

in the solution space.  

1.4 Statement of Objectives 

This research aims to develop the consolidated framework that encompasses on-orbit 

spatial image characterisation and restoration methods, to facilitate spatial quality 

assurance of optical EOS data product processing in a reliable, efficient, and expedient 

manner that is commensurate with the needs of the users (i.e., data processors, data 

providers, and end-users).  

More specifically, the objectives of this research are as follow: 

1) To propose a stochastic target-based MTF measurement framework for a 

reliable2 and expedient3 approach to conducting on-orbit spatial 

characterisation. 

 

2 reliable defines dependable to produce accurate and precision measurement (Squara et al., 2020; 
JCGM 2012); In this framework, relative error and relative standard deviation are used for measurement 
accuracy and precision, respectively. 

3 In this study, expedient describes a means for attaining an end with flexibility and convenient. For this 
study, it will be considered flexible and convenient when it is able to overcome the hassle of manual 
identification and dependency on the presence of a well-separated characteristic target. In another words, 
it can be conducted without the needs of test site and an automatic method.   
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2) To evaluate the effectiveness and practicality of using stochastic characteristics 

targets for On-orbit spatial characterisation. 

3) To develop a low4 computational regularized-based MTFC method that 

executes an optimal trade-off between noise regularization and detail 

preservation for high fidelity low-level vision processing of optical EOS data 

product. 

4) To conduct a comparative study on the characteristic of image priors in order 

to gain further understanding of image priors that appropriate for spatial blur 

removal in optical satellite images. 

1.5 Significance of Research 

This research is conducted to provide an insight to estimate the on-orbit MTF 

conveniently and effectively by measuring the degradation function of the observed 

image solely based on the properties (i.e., nonlocal self-similarity characteristic) of the 

observed image, regardless of its features (e.g., straight line, edge, or round).  The 

proposed framework offers an automated approach for spatial characterisation, thus 

overcomes the constraints in the manual identification process and dependence on the 

presence of a well-separated characteristic target in the image. In addition, it enables an 

improvement of spatial image quality through regularized-based MTF compensation. 

On-orbit spatial characterisation through the MTF measurement method as proposed 

above could be used by the engineer or researcher from the satellite development program 

as a validation process in assessing the quality of the acquired EOS data to ensure its 

“fitness for purpose” before data dissemination. Furthermore, this method could be used 

 

4 This work targets on a low computational cost algorithm, which is the processing time to produce the 
final output. For the purpose of this study, the algorithm is considered low when its processing time is at 
least tenfold faster than the competing method. 
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to monitor the quality degradation of the EOS imaging system during commissioning and 

continuing throughout the life of the EOS program. Furthermore, the proposed techniques 

in the framework aim to estimate an accurate degradation function in the image 

restoration model. These techniques, therefore, could be adopted by the researcher and 

practitioners in the image processing discipline to restore degraded images. The 

usefulness of these studies is not limited to remote sensing applications, but also other 

applications such as consumer photography, microscopy, medical, astronomy imaging, 

etc. 

1.6 Scope of the Research 

The focus area of this research is the optical EOS data Cal/Val. There are five 

responsivity domains to be addressed in the Cal/Val process for ensuring EOS delivered 

product data quality, namely Spatial, Radiometric, Spectral, Temporal, and Polarization 

(Tansock et al., 2015). This research is focused on spatial responsivity to determine the 

image sensor performance and EOS data product quality in terms of spatial resolution.  

The test data used for this research are remotely-sensed images from the optical satellite, 

a passive remote sensing sensor that measures naturally occurring energy. These images 

comprise the level 2A product of IKONOS (Dial et al., 2003) and the level-0 product of 

RazakSAT (ATSB, 2010).  

As a measure of the geospatial quality of imagery, the MTF of the system is often used 

along with the SNR. Of particular interest here are image quality criteria related to spatial 

resolution performance. Hence, this thesis focuses on the measurement of MTF for on-

orbit spatial characterisation. This thesis proposes an on-orbit spatial characterisation 

based on nonlocal self-similarity of an image, where it employs the two system quality 

metric as follows: Full-Width Half Maximum of the one dimensional (1-D) PSF and MTF 

at Nyquist frequency. 
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Degradation comes in many forms such as blurring, noise, and distortion. However, 

this research concentrates on compensation for the degradation of spatial image properties 

caused by blurring only.  

1.7 Organization of the Thesis 

The remainder of the thesis is organized as follow: 

Chapter 2 presents some theoretical knowledge and past studies of spatial image 

characterisation and image restoration that form an important background of the 

research problem. The purpose of this chapter is to detail the literature work related to the 

research topic in order to identify and justify the research problem. This chapter starts the 

discussion by describing the rationale for on-orbit spatial characterisation and its 

important aspects, including the definition of spatial resolution and its relationship to 

image sharpness, and the performance quality metric. This chapter describes and critically 

reviews the relevant method available for spatial image characterisation and image 

restoration for optical satellite images. After that, this chapter categorizes all available 

methods and discusses their merits and drawbacks in detail. Finally, to justify the research 

problems and move on to Chapter 3 to find solutions to the ill-posed problem of image 

restoration. 

Chapter 3 provides a critical review of the ill-posed problem of blind image 

deblurring. This chapter outlines the key ideas and theories from the existing nature 

image restoration that applicable in solving the research problem.  This chapter starts by 

describing why blind image restoration is a difficult task, due to it being an ill-posed 

problem. This chapter then discusses how good image prior modeling via the 

regularization method can create a well-posed image restoration problem. This chapter 

explores various image deblurring methods, of particular importance, are the structure-

texture image decomposition method variational method. The practical issues in an image 
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deblurring design and image quality assessment metric used in the proposed methods are 

also presented in this chapter. Finally, this chapter concludes the literature review for this 

thesis. 

Chapter 4 present the first framework of this Work which is the on-orbit spatial 

characterisation based on stochastic characteristics of optical satellite images. This 

chapter introduces a framework that aims to achieve the first and second objectives 

presented in Section 1.4 of this chapter.  For this framework, selection and extraction of 

reliable structures (i.e., the nonlocal self-similarity properties), and computation costs are 

critical to ensure accurate MTF measurement. To this end, three strategies are being 

established in this work: First, to reduce the computation complexity, an effective 

segmentation method to select the ideal candidates that wholly represent the data is 

formulated. Second, to remove detrimental structures and obtain useful information for 

the MTF measurement, this work develops an effective adaptive structure selection 

method. Third, to preserve the sparsity and continuity of the PSF kernels, this work 

proposes a robust kernel estimation method by introducing a new total variation (TV) 

spatial prior to finally obtain a two-dimensional PSF for MTF measurement. For a 

comprehensive analysis and experimental to evaluate the effectiveness and practicality of 

the proposed framework, a wide range of real satellite images are being considered. 

Chapter 5 presents another research work on the restoration of spatially blurred 

optical satellite images. This research work aims to achieve the fourth objective of this 

thesis. It is organized in Chapter 5 instead of Chapter 6, since it is an extension of the first 

framework, which continue to evaluate the effectiveness of the proposed MTF 

measurement algorithms experimentally as a blur kernel estimation method for image 

restoration using three different blur groups (i.e., Defocus, Gaussian, and motion blur). 

Moreover, this work also studies the significance of the two most recent use priors that 
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utilize the principle of sparse representation, namely the graph-based prior by Bai, 

Cheung, Liu, & Gao, (2019) and enhanced low-rank prior by Ren et al., (2016). Based on 

the experimental evaluation of the three methods, a comparative study to gain further 

understanding of image priors that appropriate for blur removal in optical satellite images 

(i.e., the fourth objective of this thesis) is conducted in this chapter.  

Chapter 6 presents the second framework of this Work, which is the regularization-

based MTFC for spatial image quality improvement using a joint statistical model in 

the curvelet domain. The purpose of this chapter is to propose a solution to achieve the 

third objective outlined in this thesis. In this framework, this work designs two 

regularization terms; one that exploits Gaussian priors and hyper-laplacian priors in the 

hybrid spatial and frequency domain, whereas the other one exploits Laplacian prior in 

the frequency domain. Later, a simple joint statistical model in the Curvelet domain to 

combine the two regularization terms is established in this work. In order to have a 

tractable and robust regularization-based MTFC method, a bilevel optimization approach 

for MTFC is developed to efficiently solve the underdetermined inverse problem for 

spatial image quality improvement. 

Chapter 7 summarizes the research presented in this thesis. In particular, it concludes 

the significance of this Work and the limitation of the proposed framework in the field of 

EOS data Cal/Val. Future research direction is also recommended. 
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CHAPTER 2: SPATIAL IMAGE CHARACTERISATION AND RESTORATION 

This chapter presents extensive background studies of spatial image characterisation 

and image restoration for optical satellite imageries, and the current knowledge pertaining 

to the research topic. The purposes of this chapter are to detail the literature related to the 

research domain and to identify the potential research problems in the field of EOS data 

calibration and validation, specifically in spatial image characterisation and restoration. 

This chapter also provides the basic knowledge of the technical elements found in the 

thesis, including spatial resolution definition, spatial quality measurement metrics, and 

electro-optical satellite imaging concept.  

In section 2.1, this chapter describes the initiative of on-orbit spatial calibration and 

validation for the EOS mission. In particular, it explains what defines a spatial resolution 

and its importance. Furthermore, it describes the quality metrics related to on-orbit spatial 

characterisation and reviews its application to the assessment of EOS imaging system 

performance. Section 2.2 presents approaches to on-orbit spatial characterisation. In this 

section, this chapter explains and reviews the generic MTF measurement methods that 

have been used operationally in the past and current EOS program, and outlined their 

advantages and disadvantages. In section 2.3, this chapter discusses the spatial image 

restoration methods for optical satellite images.  The discussion is organized from two 

aspects. Firstly, the introduction of the degradation models, where it briefly explains the 

sources of degradation and its model. Secondly, the related works and limitations of the 

generic spatial image restoration methods that have been used for optical satellite image 

spatial quality improvement in real operation.  Finally, section 2.4 lists the identified 

current research issues in the on-orbit spatial characterisation and image restoration and 

provides the concluding remarks. 
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2.1 On-orbit Spatial Calibration and Validation 

The first launched of Landsat Multispectral Scanner System (MSS) sensor in the year 

1972 initiated the modern era of earth observation from space when it provides a 

systematic set of synoptic, high resolution remotely sensed imagery of the earth's surface 

to the world scientific community (Schowengerdt & Slater, 1972). Since then, there have 

been series of EOS, dedicated to applications that cover various domains, from 

meteorology to surveillance and mapping, disseminating images with spatial resolution 

ranging from several kilometers to several tens of centimeters.  

With the continuing advancement, expertise in the exploitation and processing of such 

images is also increasing, which triggers a growing need for assessing the performance 

of the imaging system. As such, in 1984, the Working Group on Calibration and 

Validation (WGCV) under the Committee on Earth Observing Satellites (CEOS) was 

established. The mission of WGCV is to ensure long-term confidence in the quality of 

EOS delivered product data (WGCV, 2019). There are five responsivity domains to be 

addressed in the Cal/Val process for ensuring the delivered EOS product data quality. 

One of these is spatial responsivity (Tansock, Thurgood & Larsen, 2003; Morain & 

Budge, 2004).  

This section presents the post-launch EOS spatial Cal/Val criteria related to spatial 

responsivity. The spatial responsivity domain includes calibration parameters that 

quantify spatial figures of merit for an optical sensor. The spatial resolution is one of the 

optical sensor parameters often mentioned, nevertheless, also one that is least understood. 

Hence, this section provides some basic knowledge and principles about spatial resolution 

and its relationship with image quality in the following subsections. 
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2.1.1 Defining Spatial Resolution 

Spatial resolution is often used to describe the smallest discernable object within an 

image. But, is the spatial resolution the smallest object that can be discerned in the 

imagery?  As it is well known that an optical remote sensing sensor is possible to detect 

considerably smaller objects than the ground instantaneous field of view (GIFOV5) if 

there is adequate contrast compared to the surrounding background (Schowengerdt, 2007, 

Reulke & Eckardt, 2013). Even though such objects may be detectable, they are not 

necessarily recognizable, except by the general context of the image (e.g., the object 

detected in the observed scene may be known as a traffic path but cannot be recognized 

whether a road or bridge.) The Innovative Imaging and Research Corporation (I2R), 

therefore under the request of the United States Geological Survey (USGS) has prepared 

a guide called Guide to Digital Imagery Spatial Resolution to help the remote sensing 

community to understand how certain image specification parameters affect spatial 

resolution (I2R, 2018).  According to the Guide by I2R (2018), “Spatial resolution 

determines the smallest discernable feature within an image (Holst, 2017). Often, the 

spatial resolution of remotely sensed imagery is described only in terms of pixel spacing, 

or GSD” (p.2).  

GSD is an image quality measurement involving the pixel size, focal length, and 

altitude (i.e., the flight height of a satellite imaging system to imaged object), as illustrated 

in Figure 2.1. In remote sensing, image sampling refers to the conversion of an observed 

continuous spatial signal into a discrete and digitized image. The sampling rate is 

controlled by the size of the sensor’s detectors and optics. The GSD is determined by the 

distance between the sensor and the object being imaged, and the focal length of the 

 

5 GIFOV can be defined as the geometric size of the image projected by the detector on the ground 
through the optical system (Schott, 2007). 
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sensor; it is the distance between two consecutive pixels centered measured on the ground 

(Holst, 2017). As explained by Slater (1980) in Schowengerdt (2007), the digitized image 

is comprising of a grid of pixels that is achieved by a combination of sensor platform 

scanning direction in the cross-track direction and along-track direction.  

 

Figure 2.1: Illustration of Ground Sample Distance. 

While GSD is significant, it only represents a single aspect of spatial resolution. There 

are other important features that affect image resolution quality and interpretability. One 

of them is image sharpness. Image sharpness can be defined in several different ways. 

Before further discussion,  it is better to understand what happens when a passive remote 

sensing imager acquires an image.  
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Passive remote sensing imaging is a process that converts solar radiance that either 

reflected or emitted from the scene into an image of radiance spatial distribution. When 

an electro-optical imaging system measures the reflected or scattered light from a single 

point, or point source, the light is not acquired by a single detector. Rather the light is 

spread over and measured by several detectors (See Figure 2.1). This point source system 

response is the impulse response resulted from the measurement system (i.e. detectors 

and optics) of an electro-optical imaging system (Scott, 2007; Holst 2017). The impulse 

response is called PSF.  

The PSF can accurately describe the spatial responsivity of the sensor by measuring 

how sharp an imaging system can acquire imagery. Hence, it should be noted that the 

spatial resolution information cannot be fully captured by only using GSD; it also depends 

on how well an imaging system is focused during image capturing. Figure 2.2 illustrates 

the effect of the imaging system with a response to various image sharpness. Based on 

the visual inspection, these two images can have the same GSD, but with different levels 

of image sharpness, they can look very different.  

 

(a) (b) 

Figure 2.2: Two images with the same GSD of 15m but different levels of image 
sharpness; (a) Image is in focus, (b) Image is blurry, it has a poorer image 

sharpness compared to (a). 

 

Univ
ers

iti 
Mala

ya



 

59 

It is important to appreciate the spatial characteristics of an image, particularly if the 

data is to be used for image analysis. A more detailed account of why the spatial resolution 

is important will be explained in the next subsection. 

2.1.2 Importance of Spatial Resolution 

Spatial resolution can influence the usefulness of a delivered product dataset for 

different applications of remote sensing technology (Irons et al. 1985; Schowengerdt, 

2007; Lisani, Michel, Morel, Petro, & Sbert, 2016).  For example, in meteorology, this 

application may require a relatively low spatial resolution, as it focuses on features that 

cover a large area, while others like environmental assessment and mapping applications 

may require the highest possible spatial resolution because they involve the identification 

of small features in a particular area. 

It is important to understand the technical characteristics of image data before 

initializing an image analysis. Understanding can help a person’s ability to extract useful 

information from imagery. Furthermore, it can help in optimizing the amount of data 

needed, ensuring image quality assurance, and even driving camera design (Reulke & 

Eckardt, 2013). 

An understanding of the effects of GSD and image sharpness can help EOS imager 

developers and EOS data end-users in different ways. For EOS developers, it can guide 

data acquisition parameters, such as acquisition height or image stabilization 

requirements to improve the development of the next EOS program. For example, they 

can develop image sensors with improved optics. For EOS data providers and end-users, 

this knowledge can help to decide whether to trade GSD for image sharpness when 

acquiring datasets. Such circumstances occurred when the spatial quality of the acquired 

data is compromised by generative effects such as blur. There exist image sharpening 

algorithms that reduce blur for spatial quality improvement. However, a sharper image is 
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not always a better image. Datasets with limited detector sensors or inherently limited 

detection sensitivity can be over-sharpened and will appear pixelated, or aliased. Aliasing 

causes fringing patterns, such as Moiré patterns. These artifacts will appear in an image 

even though they are not physically present in a scene.  Typically, a blurrier dataset that 

has a smaller GSD could provide the same level of detail as a sharpened, slightly aliased 

dataset that has a larger GSD (Reulke & Eckardt, 2013).  In such cases, end-users may 

prefer datasets with larger GSD because it covers a larger area of interest, despite the 

noise. 

In addition, spatial resolution is an important component in the National Imagery 

Interpretability Rating Scale (NIIRS) (Leachtenauer, 1996; Colburn et al, 1996) that is 

used by the National Geospatial-Intelligence Agency to assess image utility (Pike, 2019). 

The NIIRS concept provides a means to directly quantify the interpretability and the 

usefulness of remote sensing imagery for scene interpretation tasks (Pike, 2019).  

While image sharpness is an important feature that affects spatial image quality for 

scene interpretability, it is a subjective parameter for imaging system performance 

measures.  Hence, the next subsection will present the key calibration parameters in 

spatial responsivity that characterize the spatial resolution objectively.  

2.1.3 Quantifying Spatial Resolution 

Spatial resolution can be quantified using either spatial data or spatial frequency data. 

If the assessment is conducted using spatial data, then it is in the spatial domain, where 

the data is measured as a function of x and y in a spatial coordinate plane. Alternatively, 

if the assessment is conducted using spatial frequency data, then it is in the frequency 

domain using Fourier analysis, where the data is measured as a function of u and v in 

spatial frequency coordinate.  Among others, Full Width Half Maximum (FWHM) of the 

one dimensional (1-D) PSF and Relative Edge Response (RER) are the most widely used 
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electro-optical remote sensing system quality metric in the spatial domain, whereas the 

MTF at Nyquist frequency is the most commonly used in the frequency domain (Pagnutti 

et al., 2017; I2R, 2018; Viallefont-robinet et al., 2018). These quality metrics form the 

basis for defining the sharpness of an image. They have been used in real satellite 

operation to evaluate the imaging system performance of satellite such as IKONOS (Ryan 

et al., 2003; Xu & Schowengerdt, 2003; Helder et al., 2004), SPOT 5 (Léger, Viallefont, 

Hillairet, & Meygret, 2003), QuickBird (Blonski, 2004; Helder et al., 2004), OrbView 

(Kohm, 2004) and Landsat (Schowengerdt et al., 1985; Storey, 2001). To date, they are 

still being used by the recent satellites, such as Landsat 8 (Wenny et al., 2015), 

KOMPSAT-3A (Lee et al., 2016), MODIS (Choi, Xiong, & Wang, 2014; Wang, Xiong, 

& Choi, 2014), Sentinel-2 (Francesconi, Lonjou, & Lafrance,  2017), THEOS 

(Khetkeeree & Liangrocapart, 2018), and SPOT 7 (Wu, Luo, Zhang, Guo,  & He, 2018). 

The following subsections will first explain the spatial domain measures and are followed 

by frequency domain measures. 

2.1.3.1 Spatial domain measures 

Imaging systems are sensitive to changes at all spatial frequencies. Hence, the 

inevitably imperfect imaging behavior of an optical system can produce blurred (or spread 

out) function depending on the input signal source of the original imaged scene (Holst, 

2017).  In optical imaging, when the source of the input signal is a single point source, 

the image is scanned to produce the PSF in two-dimensional (2-D). Whereas, when the 

source of the input signal is from a collection of point sources that formed a line or an 

edge, the image is scanned to produce Line Spread Function (LSF) or Edge Spread 

Function (ESF) in 1-D. Figure 2.3 illustrates the variation of the spread function of a 

point, line, and edge.  
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Figure 2.3: Variation of spread function (Boreman, 2001) 

In practice, due to SNR and sampling considerations, it is very difficult to directly 

measure the 2-D PSF of an imaging system (Park, Schowengerdt, & Kaczynski, 1984; 

Helder et al., 2004). Compare to a point source in 2-D PSF, the light source level of LSF 

and ESF in the image are greater, therefore, they are often much easier to measure. 

Nevertheless, they must be measured in multiple directions to determine whether there is 

an asymmetry in the PSF (Schowengerdt, 2007). Before proceeding to describe the 

FWHM of 1-D PS, this subsection will first describe the RER of ESF, because the 

derivation of a 1-D PSF requires the introduction of ESF. 

Relative Edge Response (RER): An edge in an image excites imaging response 

systems and results in an edge response, this edge response is called edge spread function 

(ESF). This process is mathematically equivalent to convolving the system impulse 

response with the edge (Gaskill 1978; Goodman 2008; Boreman, 2011). A common 

spatial performance metric based on the ESF is the Relative Edge Response (RER). The 

RER is defined as the slope (steepness) of the normalized ESF evaluated at ± 0.5 pixels 

of the nominal edge location (Schott, 2007). It represents how an imaging system 

responds to a change in contrast over one pixel. A steeper edge slope produces higher 
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RER indicates a sharper image, whereas lower RER values indicate a blurrier image. 

Figure 2.4 illustrates the measurement of RER from a normalized ESF. 

 

Figure 2.4: Illustration of RER. Δ RER is the region where the slope of 
normalized edge response is calculated at ± 0.5 pixels (i.e. within Δ d = 1) of the 

nominal edge location. 

Full-Width Half Maximum (FWHM) of one-dimensional (1-D) PSF: As explained 

in subsection 2.1.3.1, it is difficult to directly measure the 2-D PSF. Nevertheless, it can 

be measured via its 1-D representation. In the optical image formation theory, a 1-D LSF 

is a projection of the 2-D PSF along the edge. Since the satellite imaging system is 

typically an anisotropic PSF system; hence a single LSF can represent the 1-D PSF itself.  

The LSF can be calculated by taking the derivative of normalized ESF (Gaskill, 1978; 

Boreman, 2001).  The width of the LSF at half the height (the 50% point) is called the 

Full-Width Half Maximum (FWHM). The FWHM of the LSF represents the width of the 
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integral of the system PSF in one direction as illustrated in Figure 2.5. The width is the 

spatial measure of image sharpness that quantifies the spatial image quality. 

 

Figure 2.5: Illustration of FWHM of 1-D PSF. 

In addition to LSF and ESF, there is another representation of the spatial response that 

is calculated via the Fourier transform (FT) of a PSF. The detailed description is described 

in the next subsection.  

2.1.3.2 Frequency domain measure 

Spatial performance can be quantified in the frequency domain using the MTF 

(Gaskill, 1978; Boreman, 2001; Goodman, 2008; Holst, 2017).  The MTF measures the 

change in contrast, or modulation, of an optical system’s response at each spatial 

frequency. It is defined as the normalized magnitude of the FT for the imaging system’s 

PSF (Gaskill, 1978). If the PSF is circularly symmetric, then its frequency response will 

also be circularly symmetric. By applying the FT to a radial slice of the PSF, a 1-D MTF 

(Boreman 2001, Schott, 2007) can be obtained. 

MTF at Nyquist Frequency: The MTF value at the Nyquist frequency is a common 

measure of image sharpness (Boreman 2011). This value provides a measure of resolvable 
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contrast at the highest ‘alias-free’ spatial frequency. Figure 2.6 illustrates a sample of an 

MTF curve with highlighted Nyquist Frequency. 

 

Figure 2.6: Illustration of the MTF curve showing Nyquist frequency. 

The Nyquist frequency in Figure 2.6 is defined as half the sampling rate of the frequency, 

which is 0.5 cycle/pixel, and the sampling frequency is equal to the inverse of GSD. The 

following table summarized the spatial resolution metrics in both domains: 

Table 2.1: Summary of spatial resolution metrics 

Domain Parameter Description Shortcomings Measurements 

Spatial 

FWHM of 
the 1-D 
PSF / LSF 
 

▪ A measure of 
sharpness 

▪ Only one 
measurement. 

Direct measure 
from 2-D PSF; or 
derived from a 
line source or 
derivative of 
edge response.  
Common units: 
meters or pixels 

Relative 
Edge 
Response 
(RER) 

▪ A measure of 
contrast change 
over one pixel on 
a normalized 
edge response. 

▪ A measure of 
sharpness. 

▪ Varies with the 
inverse of LSF 
FWHM 

▪ Only one 
measurement 
typically at 
the mid-
frequency 
range. 

Derived from 
edge response 
within ±0.5 
pixels.  
Common units: 
dimensionless 
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Table 2.1, Continued. 

Domain Parameter Description Shortcomings Measurements 

Frequency 

MTF at 
Nyquist 
frequency 

▪ Measure the 
MTF value at 
Nyquist 
Frequency 

▪ A measure of 
sharpness and 
aliasing 

▪ Only one 
parameter.  

▪ Does not 
describe the 
MTF at 
midrange and 
lower spatial 
frequencies. 

Normalized 
MTF value at 
Nyquist 
frequency.  

Common units: 
dimensionless 

 

Based on the description of spatial and frequency domain measures in this subsection, 

it is obvious that these quality metric terms are related to each other mathematically. 

Hence, moving on, the relation among these quality metrics will be outlined. 

2.1.4 Image Sharpness Measure Relationships 

As pointed by Schowengerdt (2007), an important assumption in remote sensing 

electro-optical imaging is that the net 2-D sensor PSFnet at the image plane coordinates 

(𝑥, 𝑦) is given by a product of two 1-D PSFs in the cross-track, and along-track directions 

𝑃𝑆𝐹𝑛𝑒𝑡(𝑥, 𝑦) = 𝑃𝑆𝐹𝑐(𝑥)𝑃𝑆𝐹𝑎(𝑦). (2.1) 

where c and a are the cross-track and along-track direction as illustrated in Figure 2.1. 

PSFnet consists of several components. First, the optical PSF, which is induced by the 

optics. Then, the image formed by the optics on the detectors may in some cases move 

during the integration time for each pixel; this introduces an image motion PSF. After 

that, the detector adds additional blurring due to the detector PSF. Last, the detected signal 

is further degraded by the electronics PSF (Schowengerdt, 2007; Schott, 2007). For 

simplicity, throughout this thesis, PSF will be used instead of PSFnet. 
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As explained in subsection 2.1.3.1., the LSF is the derivative of the ESF, both being a 

1-D function, which reveals that 1-D LSF is a projection of the 2-D PSF along the edge. 

Hence, the LSF in two orthogonal directions in terms of the PSF can be written as follows, 

𝐿𝑆𝐹𝑐(𝑥) =  ∫ 𝑃𝑆𝐹(𝑥, 𝑦)𝑑𝑦,

∞

−∞

    𝐿𝑆𝐹𝑎(𝑦) =  ∫ 𝑃𝑆𝐹(𝑥, 𝑦)𝑑𝑥.

∞

−∞

 
(2.2) 

Furthermore, the ESF in terms of the LSF can be written as follows, 

𝐸𝑆𝐹𝑐(𝑥) =  ∫  𝐿𝑆𝐹𝑐(𝛼)𝑑𝛼,

𝑥

−∞

    𝐸𝑆𝐹𝑎(𝑦) =  ∫    𝐿𝑆𝐹𝑎(𝛼)𝑑𝛼.

𝑦

−∞

 
(2.3) 

Taking the derivation of Equation 2.3, an expression for the LSF can be obtained as 

follows 

𝐿𝑆𝐹𝑐(𝑥) =
𝑑

𝑑𝑥
𝐸𝑆𝐹𝑐 (𝑥),    𝐿𝑆𝐹𝑖(𝑦) =

𝑑

𝑑𝑦
𝐸𝑆𝐹𝑎(𝑦).      

(2.4) 

The FT of the LSF in Equation 2.4 is the MTF, which can be defined as 

𝑀𝑇𝐹(𝑢) = ∫ 𝐿𝑆𝐹(𝑥). 𝑒−𝑖2𝜋𝑣𝑥𝑑𝑥,

∞

−∞

  𝑀𝑇𝐹(𝑣) = ∫ 𝐿𝑆𝐹(𝑦). 𝑒−𝑖2𝜋𝑣𝑦𝑑𝑦.

∞

−∞

    
(2.5) 

where i is a complex number, 𝑢 and 𝑣 are the spatial frequency coordinates. 

Figure 2.7 shows several terms from both spatial and frequency domain measures, and 

generally outlines how they relate to each other mathematically. Note the reduction of the 

2-D PSF to the 1-D ESF or LSF is irreversible, which means it is not possible to recover 

the PSF from the ESF or LSF. Thus, the latter is often measured in at least two directions 

(i.e., cross-track and along-track direction) to establish any asymmetry. In practice, the 

line or edge response is usually measured rather than the point response. The 

mathematical relations among these spread functions established the baseline knowledge 
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for spatial characterisation, they have been used to assess the spatial performance of the 

EOS imaging system in real operation of the satellite over the decades. 

 

Figure 2.7: The mathematical relations among various representations of 
optical spatial data and spatial frequency response. 

This section has explained and reviewed the key aspects of on-orbit spatial calibration 

and validation. The section that follows will move on to describe the philosophy of 

approaches used for on-orbit spatial characterisation as well as their related work. 

2.2 Approaches to On-orbit Spatial Characterisation 

In order to meet the goal of post-launch calibration and validation, some sensor designs 

incorporate onboard calibration instruments to facilitate on-orbit calibration.  From the 

literature, only a very limited number of past and current sensors (Tansock, 2015) have 

an onboard calibration instrument that designed with the SNR assessment capability; and 

Based on the current literature, none of them has capabilities for on-orbit spatial 

assessment Onboard calibrators can provide good temporal sampling with high precision 

for sensor responses temporal trends (Thenkabail, 2015). However, they add significantly 
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to the system complexity and cost of a satellite mission. Moreover, they are susceptible 

to degradation (i.e., system performance) over time. Fortunately, an alternative called the 

vicarious calibration technique is made possible by taking in-situ measurements on the 

ground during satellite overpasses (Thome, 2004). Most often, the vicarious technique is 

employed based on the earth-viewing approach using an image, or a combination of 

images. These images are selected when the imaged landscape offers certain properties, 

such as, well-marked contrast or on the contrary, spatial homogeneity, whose knowledge 

or modeling permits the assessment of these parameters.  

Vicarious calibration, according to WGCV of CEOS (Vicarious calibration, 2013) is 

referred to as “techniques that make use of natural or artificial targets on the surface of 

the Earth for the post-launch calibration of sensors. Usually, these targets are imaged in 

near-coincident fashion by the sensor to be calibrated and by one or more well-calibrated 

sensors from satellite or aircraft platforms or on the ground”.  

Vicarious techniques are useful for on-orbit calibration because they are independent 

of pre-flight calibration and onboard calibrators. However, these techniques also have 

some drawbacks, where they tend to yield lower precision for high accuracy methods 

measurement and have lower temporal sampling frequencies (Tansock et al., 2015; 

Thenkabail, 2015). Despite those drawbacks, over the last 10-20 years, vicarious 

calibration has become widely adopted as the means to provide independent quality 

assurance of remotely sensed data from spaceborne sensors. There is a long list of on-

orbit spatial characterisation that utilized the vicarious techniques, some notable work 

from the literature are those from Rauchmille & Schowengerdt (1988), Storey (2001), 

Helder et al. (2004), Pagnutii et al. (2010), Lee et al. (2016), Qian et al. (2017), and 

Viallefont-robinet et al. (2018). 
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The predominant vicarious approach is with regards to the measurement, on satellite 

overpass days, of pertinent surface and atmospheric optical properties at terrestrial sites 

with suitable characteristics to estimate (Thome, 2004). Terrestrial sites such as lakebeds 

with the bridge are most used as vicarious calibration targets for MTF measurement 

(Blanc, 2009; Calibration Test Sites Selection and Characterisation, 2019), for example, 

the Chesapeake Bay Bridge-Tunnel, San Mateo Bridge, and Lake Pontchartrain 

Causeway in the USA. Other terrestrial surfaces from a different country that have been 

used for this purpose include Jiaozhou Bay Bridge in Shandong Province, China.  An 

alternative to natural targets for vicarious calibration is artificial targets. Usually, these 

are man-made targets such as point light sources, edges, or rectangular pulses that are 

fixed and deployable on the ground. Some of the popular artificial targets are summarized 

in Table 2.2. Figure 2.2 illustrates the example of natural targets and artificial targets. 

Table 2.2: Artificial Targets 

Target Name, Location Corresponding MTF 
Cal/Val Mission Appropriate GSD 

Stennis Spatial Targets, 
Mississippi, USA 

QuickBird, OrbView GSD < 2.5 – 5 meters 

Baotou, Inner Mongolia, 
China 

Landsat 8 GSD < 50 meters 

Big Spring, Texas, USA IKONOS GSD < 5 – 10 meters 

Sjökulla site, Sjökulla, 
Finland 

HR/EHR spaceborne 
system 

GSD from 3 cm to 50 cm 

Fort Huachuca, Arizona, 
USA 

SPOT 5 10-15 cm < GSD < 1 - 3 m 

Salon de Provence, France ALOS PRISM, SPOT 5 GSD < 5 – 10 meters 

Peng-Hu, Pescadores 
Islands, Taiwan 

FORMOSAT GSD < 2.5 – 5 meters 
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Lake Pontchartrain Causeway Stennis Space Center Spatial Targets 

  

Chesapeake Bay Bridge-Tunnel Fort Huachuca 

 
 

 

(a) Natural Target (b) Artificial Target 

Figure 2.8: Examples of natural targets and artificial targets. Column (a) shows 
two natural targets; The Lake Pontchartrain Causeway (Top) in Louisiana, USA 
has been used in the Cal/Val mission of the Landsat series program for decades; 
whereas the Chesapeake Bay Bridge-Tunnel (Bottom) is used for the Landsat-7 

program. Column (b) shows two artificial targets, one at the Stennis Space Center 
(Top), these targets have been used for QuickBird and Orbview Cal/Val Mission. 
The other one (Bottom) is at Fort Huachuca, this target was used in the SPOT 5 

Cal/Val mission. 

Spatial resolution measures related to the MTF are gaining widespread acceptance in 

the electro-optical instrumentation community for outer space programs since the year 

1980s (United Nations Digitally Library, 1980). Since then, its measurement approach 

has been used for numerous space sensors (as mentioned in subsection 2.1.3), and to date, 

this approach is still considered the best approach to quantify the spatial image quality of 

a passive remote sensing imaging system (Viallefont-robinet et al., 2018). The philosophy 

of this measurement approach in the following subsections. 
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2.2.1 MTF Measurement Methods 

There are many known methods that can be used for measuring the MTF of an imaging 

system. One example, the Sinusoidal Input method by Coltman (1954) of which is a 

typical approach that has been to obtain MTF.  However, for an EOS that is already 

launched to the orbit, the Sinusoidal Input method and few of the known methods 

(Masaoka et al., 2014; Kuhls-Gilcris, Bednarek & Rudin, 2010; Anam et al., 2019) are 

not applicable.  

As the EOS imaging system that is to be evaluated is already on the orbit, therefore, 

the appropriate and practical way to measure its MTF for spatial quality evaluation is by 

vicarious approach, where the MTF is determined from the remotely sensed images using 

specific artificial or natural targets on the ground (i.e. earth surface). These targets have 

been briefly described in the introduction of this section.  

In general, there are two image-based methods to measure the MTF of EOS imaging 

systems. One method is based on fixed characteristic targets and the other method is based 

on stochastic targets. The artificial and natural targets are typically fixed-characteristic 

targets. Based on the literature review, the fixed-characteristic targets are the more 

commonly used target for MTF measurement as compared to the stochastic targets.  The 

subsections that follow will provide and review the related works that use these targets 

for MTF measurement and their methods. 

2.2.1.1 Fixed-characteristics target-based 

There is an extensive work in MTF measurement based on fixed-characteristic dated 

since the 1980s  when the National Aeronautics and Space Administration (NASA) 

conducted the Landsat Image Data Quality Analysis (LIDQA) program to quantify the 

performance of the Thematic Mapper (TM) on Landsat-4 (McGillem et al., 1983). The 

fixed-characteristics targets are ground targets with well-separated characteristics such as 
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imaging points, lines, and edges. Derivation of MTF from these well-separated 

characteristics is as explained in subsection 2.1.4. Depending on the spatial resolution of 

the imaging systems, the types of useful targets range from engineered fixed and 

deployable targets to natural targets such as agricultural and urban features.  As presented 

in the introduction of this section, there are a few independent, comprehensive MTF 

evaluation sites that are currently available in countries such as the USA, China, etc.  

As proposed by Léger et al. (2004), measurement targets for MTF assessment can be 

categorized into four types:  the edge targets, the impulse targets, the pulse targets, and 

the periodic targets, which use edge input, line input, point source input, and bar input 

method, respectively.  

(a) Edge input method 

The Edge input method, also known as the knife-edge method, or the slanted-edge 

method. This method is widely used for laboratory measurements and may be 

implemented in various manners. For on-orbit MTF assessment, it requires a slanted edge 

as illustrated in Figure 2.9.   

 

Figure 2.9: Schematic edge targets (Blanc, 2009). The width of the target in the 
direction of the MTF profile is noted as LW; The height LH of the target in the 

direction normal to the MTF profile, and Ɵ is the orientation angle with respect to 
the direction of the MTF profile. The transition distance LT of the selected target to 

the surrounding background. 
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Over the years, it has been widely used in real satellite operations by researchers from 

many organizations, including the National Institution for space research, the space 

agency, the Orbital sciences corporation, etc. To name a few, consider those summarized 

in Table 2.3.  This method is favorable to many researchers and scholars because edges 

are particularly useful since all the appropriate information can be derived from a high 

quality (i.e., high SNR) edge response without incurring sampling issues. Besides, they 

can be easily found in an image as they occur naturally throughout many urban and 

agricultural scenes.   

Table 2.3: Some of the operational work published on MTF assessment using 
Edge Input Method  

Authors Organization Satellite 
Ryan et al. 2003 NASA Stennis Space Center IKONOS 
Helder et al., 2004 South Dakota State University and 

collaboration with NASA Stennis 
Space Center 

Quickbird 

Kohm, 2004 Orbital Imaging Corporation OrbView-3 
Nutpramoon, 
Weerawong, &  
Apaphant, 2007 

Geo-Informatics and Space 
Technology Development Agency 
(GISTDA), Thailand 

THEOS (Thailand Earth 
Observation Satellite). 

Bensebaa, Banon, 
Fonseca, & Erthal, 
2007 

National Institute for Space 
Research (INPE), Brazil 

CBERS-2 (China-Brazil Earth 
Resources Satellite-2) 

Lee et al. 2008 Korea Aerospace Research Institute 
(KARI) 

KOMPSAT-2 (Korea Multi-
Purpose SATellite-2) 

Viallefont-Robinet 
& Léger, 2010 

The French Aerospace Lab in the 
Department of Optics and 
Associated Techniques (DOTA) 

SPOT-5(Satellite Pour 
l’Observation de la Terre-5) 

Wenny et al, 2015 NASA Goddard Space Flight Center Landsat 8 
Min et al. 2016 Environmental Satellites, National 

Satellite Meteorological Center 
FengYun-3C/MERSI 

Lee et al. 2016 Korea Aerospace Research Institute 
(KARI) 

KOMPSAT-3 (Korea Multi-
Purpose SATellite-3) 

Pagnutti et al, 2017 NASA Stennis Space Center DLR DESIS (DLR Earth 
Sensing Imaging Spectrometer) 

Gascon et al., 2017 Airbus Defense and Space Sentinel-2A 
Park et al., 2018 Korea Aerospace Research Institute 

(KARI) 
KOMPSAT-3 (Korea Multi-
Purpose SATellite-3) 

Kim et al., 2020 Korea Aerospace Research Institute 
(KARI) 

KOMPSAT-3A (Korean Multi-
Purpose SATellite-3A)  
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A requirement to determine MTF from the edges is to have a high-fidelity 

representation of the ESF. In particular, a sharp, straight, and slanted-edged target is 

required to measure the phase change of the edge across the sampling grid to create a 

“super-resolved” ESF (Kohm, 2004; Wang, Choi & Xiong, 2011; Wang & Xiong, 2013). 

The edge method usually requires the utilization of both parametric and nonparametric 

fitting techniques throughout the process to properly calculate an accurate MTF ((Ryan 

et al., 2003; Kohm, 2003. Helder et al., 2004), which include the Gaussian function fit, 

sigmoid function fit, modified Savitzky–Golay (SG) filtering (Helder et al., 2004), and 

Locally Estimated Weighted Scatterplot Smoothing (LOESS) (Cleveland, 1985) curving 

fitting. 

As illustrated in Figure 2.9, an edge target corresponds to a high contrast Heaviside 

edge. This type of target can be artificially constructed using level smooth surfaces 

painted with highly reflective (white) paint and dark (black) paint, or specific dark and 

bright tarps spread out on the ground. The basic idea of the edge method is to find a 

regularly observed object with high-contrast edges to construct a fine sampled ESF based 

on the system’s response to a step function. Among others, the edge input method by 

Helder et al. (2004) and Kohm (2004) are the most widely adopted. These authors give 

some rules of thumb for an “appropriate” edge target dedicated to acquiring a high-fidelity 

representation of the ESF for an accurate MTF measurement as presented in Table 2.4.  

The differences between Helder et. al. (2004) and Kohm (2004) are the type of edge 

detection and curve fitting technique used in their method for ESF construction. For 

example, Kohm (2003) uses a Sobel edge detection operator followed by thresholding 

and binary morphological processing to identify suitable edges in the nominal scene for 

ESF construction. Then he used the LOESS curve fitting techniques to resample the ESF 

data to uniformly spaced points to obtain the ESF. Whereas Helder et al. (2004) estimate 

the edge location by fitting the Fermi function (Fermi & Enrico, 1926) to the data and 
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uniformly spaced the samples using a non-linear modified filter based on Savitzky-Golay 

filter (Savitzky, 1964) to obtain the ESF. 

Table 2.4: Edge targets selection criteria 

Key Parameters Criterion Rationale 
The differential radiance 
between the dark and bright 
part of the target; 

The dark and bright 
difference divided by the 
standard deviation (SD) 
of the noise should be 
greater than 50. 

To produce accurate and 
consistent results. 

The orientation angle α with 
respect to the direction of the 
MTF profile;  

6 to 8 degrees To get a uniformly 
distributed sub-pixel edge 
location for suitable ESF 
construction. 

The width LW of the target in 
the direction of the MTF 
profile; 

6 to 10 GSD To span enough image 
rows and columns to 
increase sampling 
frequency and improve the 
SNR budget. 

the height LH of the target in 
the direction normal to the 
MTF profile; and 

20 GSD 

The transition distance LT of 
the edge target to the 
surrounding background. 

3 to 5 GSD To reduce sampling bias 
and improve the SNR 
budget. 

 

In addition to the ground target images, the high-contrast edge of the Moon can also 

serve as the edge target for the MTF characterisation of remote sensing instruments that 

has a lunar observation capability (Choi, Xiong & Wang, 2014; Wang et al. 2014; Keller, 

Chang & Xiong, 2017; Wang, Choi & Xiong, 2011; Wang & Xiong, 2013). NASA’s 

MODerate resolution Imaging Spectroradiometer (MODIS) (Choi et al., 2014; Wang et 

al. 2014) onboard the Terra and Aqua satellites is an example of this capability. In this 

case, the curved edge will play the same role as the slanted edge. Due to the curvature of 

the Moon, the distances between the image grids and the actual edge positions at different 

lines are different at a subpixel level. Therefore, this method requires sufficient samples 

(lines) of lunar edges near the lunar equator to construct a high-fidelity representation of 
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the ESF. Choi et al. (2014) adopted the same ESF construction proposed by Helder et al. 

(2004) to achieve a high-fidelity representation of ESF for MTF measurement.  

Based on the literature, a few researchers (Hwang, 2008; Estribeau & Magnan,2004) 

adapted ISO 12333 standard slanted-edge method proposed by Burns (2002) for on-orbit 

MTF measurement. Nevertheless, according to a stability and repeatability study 

performed by Roland (2015), the ISO 12233 slanted-edge MTF measurement method is 

not robust against noise. This is because it takes the derivative of each data line in the 

edge-angle estimation. Errors in the estimation introduce negative bias to MTF 

computation, resulting in underestimation for the actual MTF measurement. 

(b) Point input method 

The work by Rauchmiller & Schowengerdt (1988) is one of the earliest attempts to 

measure the 2-D PSF of Landsat TM using an array of black squares on a white-sand 

surface as a Point input method. Later, this method has been improved to use an impulse 

target that corresponds to a point source or a set of point sources.  Impulse target is a type 

of artificial target that is generally categorized as a “passive” mirror type reflective point 

source target or “active” Xenon lamp source target. These point sources reflect the 

sunlight to the sensor. The light is seen by the sensor as a point source on the ground, 

where the amount of degradation measured from that point source image signifies a direct 

measure of the PSF for that system. 

The test site of National d'Etudes et de Recherches Aérospatiales (ONERA) used at 

least two 3 kW Xenon spotlights that can be aimed at EOS imagery systems. These 

artificial impulse targets have been used to assess the absolute MTF of SPOT-3 (Léger et 

al., 1994) and SPOT-5 (Léger et al., 2004).  Rangaswamy (2003) has tested 1.2 m convex 

mirrors to create an array of artificial passive point sources. This array of point source 

targets has been used to assess the MTF of Quickbird II and IKONOS. Figure 2.10 
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presents the impulse target using a convex mirror (Rangaswamy 2003) and the Xenon 

spotlight (Léger et al., 2004).   

 

(a) (b) (C) 

Figure 2.10: Impulse target set up. (a) An artificial target site (in Stennis Space 
Center) using an array of convex mirrors as point sources (Rangaswamy 2003). 

(b)-(c) Impulse target by (Léger et al., 2004); (b) Impulse target set up using Xenon 
spotlights (b) Image captured by SPOT-3 during Cal/Val mission. 

One of the drawbacks of the Point input method is that the 2-D impulse responses 

acquired during the satellite overpass were always too noisy to fit a surface Gaussian 

function properly. This technique has been improved in recent research by Schiller, Silny, 

& Taylor, (2012). The authors proposed a method called the Specular Array Calibration 

(SPARC) method, which is an adaptable ground-based system that uses convex mirrors 

to create small reference targets. It used a grid of spherical reflectors to create point source 

images at different pixel phasing. As a result, the oversampled PSF can be generated from 

a single image of a mirror array or multiple images of the array for better sampling 

statistics. This method has been used to assess the MTF of IKONOS (Schiller et al.,  

2017). One of the disadvantages of this method is its dependence on pre-flight calibration 

data, where it required the knowledge of the sensor PSF, to accurately extract the 

integrated signal. The pre-flight calibration data is not always available since some small 

satellite industries may choose to minimize pre-flight requirements due to cost and time 

constraints. 
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Most recently, Li, Zhang, Zhang, & Yu, (2018) employed the point source target 

method of Rangaswamy (2003) and developed a large area greyscale target to measure 2-

D PSF for MTF assessment of Chinese surveying and mapping satellite Tianhui-1. The 

contribution of their work is an automatic recognition and positioning method to detect 

point source images for geometric calibration.  

Similar to the Edge input method, besides the utilization of ground target images, with 

agile maneuvering satellite platforms, stars can be excellent natural impulse targets for 

on-orbit MTF assessment. Several scans of stars have been performed the same manner 

as the planetary scans with the Advanced Land Imager (ALI) of The Earth Observing-1 

(E0-1) for this purpose (Hearn, 2002). According to the analysis from Hearn (2002), stars 

in the Pleiades constellation and the star Vega in the Lyrae constellation were found to be 

excellent natural impulse targets in terms of radiance contrast, which is useful for MTF 

assessment. A notable recent satellite that is equipped with star observation capability is 

the KOMPSAT-3 (Lee et al., 2014; Kang, Chung & Kim, 2015). 

(c) Line input method 

Due to surrounding background noise in the image and sampling considerations, 

instead of using the point target method, various techniques have been developed to 

estimate a 1-D PSF, known as LSF (as explained in Section 2.1.3.1), where the Line input 

method (Ryan et al., 2003; Helder et al., 2006), is one of the methods. In real satellite 

operation, the Line input method is commonly known as the Pulse input method. 

The Pulse input method is similar to the Edge input method except that the input to the 

imaging system was a pulse. If a natural target is used, the pulse input is usually based on 

an image with a jetty or centerline of an airport runaway.  A pulse target consists of a 

bright region surrounded by dark regions as illustrated in Figure 2.11. To achieve good 

performance, these measurement techniques typically require a specific size (i.e., width 
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and height) and orientation of targets based on the GSD, as well as scanning the sensor 

direction if it is equipped with a scan mirror (Helder et al. 2004). The width of the input 

pulse is critical because of the zero-crossing point of the Sinc function. It is important, 

therefore, that the width of the input pulse must be appropriately sized. In summary, the 

key parameters and their importance are the same as for the edge target presented in Table 

2.4 of the topic (i) Edge input Method in this subsection. 

 

Figure 2.11: Schematic pulse targets (Blanc, 2009). The width of the target in 
the direction of the MTF profile is noted as W; The width of the pulse LW on the 

target in the direction of the MTF profile; The height LH of the target in the 
direction normal to the MTF profile, and Ɵ is the orientation angle with respect to 
the direction of the MTF profile. The transition distance LT of the selected target to 

the surrounding background. 

(d) Bars input method 

The bars input method is solely artificial targets. In contrast to the aforementioned 

targets, there is very little published information on this type of target (Léger, Chung & 

Li, 2003, Xu et al., 2014).  A periodic target consists of specific patterns that are 

periodized, where the pattern can comprise edges, pulses, or impulses (Blanc, 2008). 

Examples of those periodic patterns are the standard USAF (U.S. Air Force MIL-STD 
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150A standard) three-bar pattern or the Siemens radial stars pattern (Reulke et al., 2006) 

both depicted in Figure 2.12. 

 

(a) (b) 

Figure 2.12: Example of periodic targets (Blanc, 2009). (a) Three-bar pattern. 
(b) Siemens-star pattern. 

In Figure 2.12(a), the width L is typically appropriate for GSD, whereby the 𝜂 = 1

√2
6 . For 

the Siemens-star pattern in Figure 2.12(b), if it has #px bright patterns and a radius varying 

between Rmin and Rmax, the appropriate GSD is as follows 

𝜋𝑅𝑚𝑖𝑛
2#𝑝𝑥

< 𝐺𝑆𝐷 <  
𝜋𝑅𝑚𝑎𝑥
2#𝑝𝑥

   (2.6) 

where px is the pixel pitch in the image plane, # is the number of pixels per pattern, and 

R is the radius of siemens star.  

Even though it is possible to use both targets (i.e., Three-bar and Siemens-star pattern) 

for MTF assessment, they are usually used to provide a direct and quick visual assessment 

of the resolving power of the imaging system (Léger, 2004). The edge, pulse, or impulse 

target method is preferable compared with the periodic target method for numerical on-

orbit MTF assessment. 
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This subsection has described and reviewed the MTF measurement method using 

fixed-characteristic targets. In the following subsection, the potential use of stochastic 

characteristic targets for on-orbit MTF measurement will be discussed. 

2.2.2 Stochastic Characteristic Target 

The stochastic characteristic target, which is also known as the random target, is 

another type of target that can be employed in image-based MTF assessment (Xie et al., 

2015). The fractal properties of an image are a type of stochastic characteristics. 

Compared to fixed-characteristic targets, very few studies have explored this type of 

target, particularly for on-orbit MTF assessment.  

For optic laboratory MTF assessment, the MTF measurement method based on random 

target was first proposed by (Daniels et al., 1995),  in which a random transparency target 

is used as the template, and then it is imaged on a charge-coupled device (CCD) by the 

optical system under test (OSUT). By using the power spectral density values of the image 

captured by a CCD, the optical system’s MTF can be obtained with Fourier spectral 

analysis. This test method is convenient because the random image has the characteristic 

of shift-invariance and can easily achieve automatic measurement.  

 

(a) (b) 

Figure 2.13: Example of random transparency targets. (a) A bandlimited white-
noise random image. (b) A discrete narrowband random image. 
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Figure 2.13 shows the example of random transparency targets used in Daniels et al. 

(1995). The MTF measured using the random target of Figure 2.13(a) is to create the 

'continuous' MTF that provides a continuous curve for all spatial frequencies of interest. 

Whereas the random target of Figure 2.13(b) is to create the 'discrete' MTF to measure it 

at a number of discrete spatial frequencies. 

Levy et al. (1999) adopted the same principle as Daniels et al. (1995) for lens 

measurements, but instead of using random transparency target, they used a random test 

target generated on a computer screen. As none of the authors have considered speed 

issues, Backman & Makynen (2004) proposed a different type of random target method 

for fast MTF inspection.  The previous works focus mostly on the 1-D MTF test. The 

random image can also be used as a 2-D target since its image brightness changes in two 

orthogonal directions and is available for measuring 2-D MTF.  Hence, Evtikhiev et al. 

(2013) proposed another type of random target to reduce the noise impact for the 2-D 

MTF measurement.  In 2014, Kang et al., (2014) proposed another random target-based 

2-D MTF to improve the work of Evtikhiev et al. (2013).  

Whilst several studies of optic laboratory MTF assessment based on stochastic targets 

have shown acceptable results, there is very little research that uses the stochastic target 

as an input target for on-orbit MTF measurement. Moreover, none of them was used 

operationally. One of the related works found in the literature is that of Xie et al. (2015).  

Due to the difficulty in obtaining suitable target images, the authors proposed an MTF 

measurement method based on natural image power spectrum statistical characteristics. 

In their work, they constructed a model that combines a fractal Brownian motion model 

that utilizes natural images with stochastic fractal characteristics, with an inverse Fourier 

transform of an ideal optical satellite image amplitude spectrum. The model is used to 

decouple the blurring effect of an ideal natural image. For MTF measurement, they built 
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another statistical model based on the SD of the image sequence amplitude spectrum and 

estimated the model parameters using the ergodicity assumption of an optical satellite 

image sequence. The experimental results demonstrate that the method is practical and 

effective, but it suffers from high computational complexity. Another notable work is 

from Saiga et al. (2018). The authors proposed an alternative way of estimating MTF 

using a random target, regardless of the image type or the use of imaging modality. In 

their work, they estimated MTF by using the Fourier transform a logarithmic plot of the 

image. One of the limitations of the proposed method is that it has a strict prerequisite 

because the MTF of the target image must be approximated with a Gaussian. If the linear 

correlation of the Gaussian is not identified in the logarithmic plot of the image, then the 

PSF cannot be extracted. Consequently, the MTF will not be estimated from the target 

image too. In addition, it is not robust in handling sparse images. As stated in Mizutani 

(2016), a sparse image results in a noise profile that dominates the entire logarithmic plot 

after the application of the Fourier transform. Thus, this makes it difficult to identify the 

linear correlation at the left end of the logarithmic plot. 

This chapter has discussed two image-based MTF measurement methods, where one 

method is based on fixed characteristic targets and the other method is based on stochastic 

targets. For the fixed-characteristic target, none of the studies that have been reviewed so 

far were using an automatic technique to select input targets. The next subsection will 

discuss this type of technique.  

2.2.3 Automatic MTF Measurement Techniques 

From the literature search, there are only a few works that research on MTF 

measurement using an automatic approach. In Wang, Li & Li (2009), an automatic 

onboard MTF measurement approach based on the detection of straight lines with Hough 

transforms was proposed. In this case, a set of conditions are formulated to choose these 
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qualified lines. Once the qualified lines are obtained, MTF will be estimated using a step 

edge method. Although Hough Transform is robust to noise, it is slow and sensitive to 

the quantization of parameters. Besides, due to its sensitivity to quantization, for those 

detected lines, it requires several orthogonal visits in equal intervals along the line to 

reduce the errors of observed ESF. The authors suggested that a more efficient variant of 

Hough Transform can be utilized to reduce the computational complexity and enhance 

the line detection accuracy. 

Recently, Li et al. (2015) proposed an automatic method that used an image motion 

velocity model (Zhong et al., 2009) to extract the edge of the sub-frame images. After the 

edge extraction, they applied mathematical morphology and correlation–homomorphic 

filter algorithms to eliminate noise and enhance the sub-frame images. They use the image 

partial differentiation technique (Helder et al., 2004) to determine the position of edge 

points and later construct the ESF based on the optical transfer function of the camera. 

Finally, MTF is calculated by the derivation of ESF and Fourier transform. 

Most recently, Pagnutti et al. (2017) developed an automated algorithm to estimate 

RER. In their work, they exploited the edge features in a nominal scene for on-orbit 

characterisation of the German Aerospace Center’s Earth Sensing Imaging Spectrometer 

(DESIS) Sensor on the International Space Station. Similar to Kohm’s MTF measurement 

method (2003), it requires the use of an edge detection technique, and an edge screening 

to find the ideal edges for RER and MTF measurements. According to the paper, the 

automated algorithm can produce comparable results against the traditional methods (i.e., 

edge or point input method on natural targets) of Landsat 8 Operational Land Imager.  

So far, this chapter has discussed all the key aspects of on-orbit spatial characterisation. 

The next part of the chapter will provide extensive literature relating to on-orbit spatial 

image restoration.  
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2.3 Spatial Image Restoration in Optical Satellite Images 

Returning briefly to the optical satellite image formation and its effect on image 

sharpness. Remotely sensed images inevitably suffer from a series of degradation 

processes in the imaging chain. The degradations could happen due to extrinsic or 

intrinsic factors as follow (Schowengerdt, 2007; Schott, 2007; Blanc, 2009): (1) 

Launching into the orbit, such as launch vibrations, transitions from air to vacuum, or 

thermal state (Rodin et al., 2019); (2) Image acquisition; Degradation occurs due 

environmental factors, such as atmospheric turbulence, attenuation, and scattering of 

aerosols; or due to physical limitation of the imaging system as no instrument (remote-

sensing systems included) can measure a physical signal with infinite precision 

(Schowengerdt, 2007). Disturbance such as diffraction limit, optical aberration, out of 

focus, image motion, and camera motion (Nan et al., 2015); and (3) Data Transmission; 

Interference of electronic components, analog to digital transformation, etc. 

Generally, an imperfect imaging behavior of the imaging sensors (i.e., detector, optics, 

and electronics) degrades the spatial properties of remotely sensed imageries in two ways: 

(1) distortion; and (2) blurring.  This thesis focuses on the latter.  The blur as described 

in subsection 2.1.3.1 is the spread function characterized by the PSF.  By definition, the 

MTF is the modulus of the FT of the PSF (Boreman 2001). Knowing that the “sensor” 

transfer function blurs the image, it is thus natural to consider how to remove, or at least 

reduce its effect. It can be done using a filter that amplifies (i.e., "boosts") the higher 

frequencies to compensate for the blurring in the imaging process that has reduced the 

high-frequency content in the image (Schowengerdt, 2007).  This approach is an old topic 

in image processing, known as image restoration (Andrews &  Hunt, 1977).  

Image restoration has matured since its inception in space exploration in the 1960s. 

The great cost and effort required to launch a human into space made any images that 
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were captured on missions extremely valuable to scientists.  Consequently, research into 

image restoration methods grew rapidly and soon spread to other imaging areas. 

Numerous techniques can be found in the literature (for recent reviews, refer to Lai et al., 

2016). These techniques differ primarily in the prior information about the image they 

incorporate to perform the restoration task.  

2.3.1 Image Degradation Model 

Image restoration in remote sensing is concerned with the correction and calibration 

of images that aim to achieve a high fidelity representation of the earth's surface (Liang, 

Li & Wang, 2012). In other words, it is an objective process where its goal is to 

reconstruct the original image spectrum 𝐹(𝑢, 𝑣)  from its degraded observed version 

𝐺(𝑢, 𝑣) using a priori knowledge of the degradation phenomenon 𝐻(𝑢, 𝑣)  and 𝑁(𝑢, 𝑣). 

The degradation model in the frequency domain can be described as 

𝐺(𝑢, 𝑣)  =  𝐻(𝑢, 𝑣) ∘ 𝐹(𝑢, 𝑣) + 𝑁(𝑢, 𝑣) (2.7) 

where N(𝑢, 𝑣) denotes the random noise spectrum and H denotes the optical transfer 

function, which amplitude spectrum is the MTF.  The symbol ∘⃘ denotes an element-wise 

multiplication operator.  

Using the familiar notation for convolution, if H is a linear, spatially-invariant process, 

the degraded image 𝑔(𝑥, 𝑦) corresponds to the expression of Equation (2.7) in the spatial 

domain is formulated as  

𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) ⊗ ℎ(𝑥, 𝑦) + 𝜂(𝑥, 𝑦) (2.8) 

where 𝑓(𝑥, 𝑦), ℎ(𝑥, 𝑦) and 𝜂(𝑥, 𝑦) represent a latent image, PSF, and unknown noise 

respectively; the symbol ⊗ denotes 2-D convolution operator; x and y are the continuous 

variables in x and y plane, respectively. Based on Equation (2.8), the fundamental task of 
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image restoration is to deconvolve the degraded image with the PSF that exactly describes 

the blurriness. Deconvolution is the process of reversing the effect of convolution. 

2.3.1.1 Blur models 

The deterministic component of the degradations, called blur, is modeled by a mapping 

𝑓(𝑥, 𝑦; 𝑠(�̃�, �̃�)) of the scene 𝑠(�̃�, �̃�) to the image plane coordinates (x, y). In general, this 

mapping is non-linear and spatially varying; however, in most work, it is assumed that 

the observed image is the output of a linear spatially-invariant system, representing 

convolution of the image and blur, to which is also subject to statistical degradations 

noise, commonly called noise (Schowengerdt, 2007).   

(a) Linear spatially-invariant blur Models 

The mapping 𝑓(𝑥, 𝑦; 𝑠(�̃�, �̃�)) becomes the PSF if 𝑠(�̃�, �̃�) is substituted by the unit 

impulse 𝛿(�̃�, �̃�) indicating a point source for the scene. Assuming a linear degradation 

system in the limit of scene representation, with a spatial distribution of an infinite number 

of point sources; by the rule of superposition, the resulting image plane intensity 

distribution yields the expression 

𝑔(𝑥, 𝑦) = ∑ ℎ(𝑥, 𝑦; �̃�, �̃�)𝑓(�̃�, �̃�)

(𝑢,𝑣)∈Ψ

, (2.9) 

where  ℎ(𝑥, 𝑦; �̃�, �̃�) is the PSF and Ψ denotes the PSF support.  

If the blur is considered as spatially-invariant, then (2.9) becomes a discrete 

convolution summation as follows: 

𝑔(𝑥, 𝑦) = ∑ ℎ(𝑘, 𝑙)𝑠(𝑥 − 𝑘, 𝑦 − 𝑙),
(𝑘,𝑙)∈Ψ

 (2.10) 

where ℎ(𝑘, 𝑙) = ℎ(𝑥 − �̃�, 𝑦 − �̃�).  
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Generally, almost all realistic blurs are modeled with non-causal PSFs, the blurring 

PSF is modeled as an (M × M)th order finite impulse response (FIR) filter (Holst, 2017). 

The conservation of energy assumption implies that a point source of light should result 

in no loss of energy as  

∑ ℎ(𝑘, 𝑙) = 1.
(𝑘,𝑙)∈Ψ

 (2.11) 

  

(b) Spatially variant blur Models 

The most general case of space-variant blurs is modeled by Equation (2.9). However, 

under some assumptions, it is possible to approximate the space-variant blur model with 

a piecewise space-invariant PSF. In other words, the space-variant blur can be presumably 

represented by a collection of 𝑃𝑆𝐹𝑠 ↦ (𝑃𝑆𝐹0, 𝑃𝑆𝐹1… , 𝑃𝑆𝐹𝑛, 𝑠 = 0, 1. . 𝑛) where n is a 

predetermined number, such that at each pixel one of the 𝑃𝑆𝐹𝑠 can be matched to the 

observed data. Then Equation (2.9) is simplified to: 

𝑔(𝑥, 𝑦) = ∑ ℎ(𝑘, 𝑙)(𝜃(𝑥, 𝑦)𝑠(𝑥 − 𝑘, 𝑦 − 𝑙),
(𝑘,𝑙)∈Ψ

 (2.12) 

where 𝜃(𝑥, 𝑦) is a random variable that indicates the blur model acting at (𝑥, 𝑦). The 

space-variant blur identification problem then reduces to a detection problem, at each 

pixel, over a finite-population set of possible 𝑃𝑆𝐹𝑠.  

2.3.1.2 Sources of blur 

Blurring in an image occurs because of a localized averaging of pixels, which results 

in the smoothing of image content. As expressed in Equation (2.8), it is usually modeled 

as a convolution of the latent sharp image with the PSF. In a simple description, if the 

PSF is the same for all image pixels, the blur is termed spatially-invariant. If the PSF 

changes throughout the image, the blur is termed spatially variant. According to its 
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sources, typically, image blur can be generally categorized into three groups: motion blur, 

out-of-focus blur, and environmental blur. 

Motion blur. The motion blur is fundamentally arising from mismatching between 

photoinduced charge transfer and optical image movements during the exposure period. 

Ideally, if the scene is static with uniform depth and if the imaging system motion is 2-D 

translational, then the motion blur can be viewed as spatially-invariant. This degradation 

could be estimated and removed through a blind deconvolution procedure (Quan & Zhang 

et al., 2011).  However, in a practical situation of passive remote sensing imaging, 

imaging system motion includes more complex motion due to satellites' orbit 

maneuvering. Objects inside the imaged scene can also be moving during the time it takes 

to integrate the signal for a pixel. Besides, the focal depth of the imaging system is 

probably spatially changing. Any of these factors could make motion blur spatially 

varying (see example in Figure 2.14(a)), which makes its estimation and removal highly 

difficult (Bhaskar et al., 1994, Shi et al., 2015). 

 
(a) (b) (c) 

2.14: Examples of different types of blur. (a) Motion blur, (b) Out-of-focus blur, 
and (c) Environmental blur. 

Out-of-focus blur. Incorrect lens setting or limited depth of field would produce a 

defocus blur (see example in Figure 2.14(b)), which is an important type of lens blur. 

Besides, even if the scene is perfectly in focus and no matter how well the lens is 

corrected, in most optical imaging systems there always exists a fundamental resolution 

limit due to diffraction, which is called diffraction-limited blur (Holst, 2017). Generally, 
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diffraction-limited blur can be approximately viewed as spatially-invariant, while the 

spatial variance of defocus blur depends on both the depth of field of the lens and depth 

of the scene (Liu et al., 2010; Jiang, Chen & Yu, 2012; Li et al., 2013). Typically, a crude 

approximation of a defocus blur is made as a uniform circular model (Gonzalez & Wood, 

2017). 

Environmental blur. Environmental factors also cause blurring. As light passes 

through mediums with different refractive indexes, bending, diffraction, and scattering 

will occur. Figure 2.14(c) shows an example of an environmental blur. 

For remote sensing imaging, atmospheric turbulence, which generates a variation of 

refractive index along the optical transmission path and distorts the light wavefront, can 

give rise to attenuation of the irradiance of the propagating image, thus reducing the 

contrast of the imaged scene. Removing such effects is very important for many 

applications and meanwhile, it is quite challenging. Some notable works to remove 

atmospheric blur are those from (Dherete & Rouge, 2003; Ma & Le Dimet, 2009; 

Semenov et al., 2011; Moshkov et al., 2013; Aouinti et al., 2016). A common generic 

model of an environmental blur for a measured optical PSF in passive remote sensing is 

the 2-D Gaussian function (Athanasiou et al., 2017). 

2.3.1.3 Blur estimation 

Given the fact that the degradation phenomenon is unknown, thus image restoration of 

optical satellite images is a blind image deconvolution (BID) problem.  For a survey on 

the extensive background literature in this area, readers may refer to (Kundur & 

Hatzinakos, 1996). The BID estimates the blur, either in preprocessing or simultaneously 

during restoration. This is to say, the BID approaches can be classified into two categories 

according to what stage of the blur is identified: a priori or jointly with the image. 
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A priori blur estimation methods: With this approach, the PSF is identified 

separately from the original image as a preprocessing step, and later used in combination 

with one of the classical image restoration (e.g., Modified inverse filter, Wiener filter) 

algorithms in order to restore the original image. A parametric blur model may be used, 

for example, one of the general models described in then the objective is to identify the 

most likely blur parameters h from the observation. (e.g., Zhang et al., 2014, Chen et al., 

2010; Lee et al., 2008; Mittal & Garg 2013; Li et al., 2017) 

Joint estimation methods: Most existing methods fall into this class, where the image 

and blur are identified simultaneously. However, in practice, many methods in this 

category use an alternating approach to estimate f and h rather than truly finding the joint 

solution. Prior knowledge about the image and blur is typically incorporated in the form 

of models. Parameters describing such models are also required to be estimated from the 

available data; often this is performed before image and blur identification, although 

simultaneous identification is possible (see e.g., Papa et al., 2006; Shen et al., 2012; Liu 

& Eom 2013; Zhi et al., 2014)).  

2.3.2 Approaches to Optical Satellite Image Restoration 

This section will discuss and review the studies on optical satellite image restoration 

under two topics: the first topic discusses the filter-based MTF compensation techniques 

that have been used operationally by most of the satellite operators. Whereas the second 

topic presents some notable research works on optical satellite image restoration. 

2.3.2.1 Filter-based MTF Compensation techniques 

Satellite image restoration based on the compensation of MTF dates to the mid-1980s 

by Wood et al. (1986) but was not commonly available as a production processing option 

until about the year 2000 (Schowengerdt, 2007). The restoration kernel is commonly 

referred to as MTFC.  MTFC-based image filtering techniques are commonly adopted by 
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past and current satellites such as IKONOS (Cook et al. 2003; Ryan et al., 2003), 

OrbView-3 (Kohm, 2004), Landsat (Wu & Schowengerdt, 1993; Storey, 2007; Wenny et 

al., 2015), QuickBird (Helder et al. 2006), WorldView-2 (Poil et al. 2014) and SPOT 

(Ruiz & Lopez, 2002, Viallefont-Robinet and Léger, 2010). 

The MTFC process involves two steps. First, The MTF is derived from the degraded 

image by measuring fixed-characteristic targets as described in section 2.2.; second, using 

the measured MTF, a filter-based method is applied for compensating the MTF to restore 

the degraded image. Based on these steps, the MTFC thus can be deemed as a 

deconvolution problem; It estimates blur (i.e., the PSF) in preprocessing.  There are 

several deconvolution techniques available for image restoration. Among others, the 

Wiener filter (Wiener, 1964) and regularized Inverse filter (Gonzalez & Woods, 2017) 

are the popular choices and have been operational to restore optical satellite images. 

These filters are the obvious choice because they are closed-form solutions that could be 

solved efficiently in the Fourier spatial frequency domain (Fonseca, Prasad, & 

Mascarenhas, 1993; Bretschneider, 2002; Schowengerdt, 2007; Li et al. 2013; Lee et al., 

2016). Specifically, the following subsection will describe these filters and reviews their 

related works.  

(a) Inverse filter 

Given 𝐺(𝑢, 𝑣) which denotes the degraded observed version of the original image 

spectrum 𝐹(𝑢, 𝑣) as described in Equation (2.7). In sensor MTF compensation, the 

attempt is to undo the blurring effects of imaging sensor 𝐻(𝑢, 𝑣) by dividing both sides 

of Equation (2.7) to find the best estimate of the restored image �̈�(𝑢, 𝑣)  

�̈�(𝑢, 𝑣) =  
𝐺(𝑢, 𝑣)

𝐻(𝑢, 𝑣)
=  𝐹(𝑣, 𝜔)  +

𝑁(𝑢, 𝑣)

𝐻(𝑢, 𝑣)
 

(2.13) 

Univ
ers

iti 
Mala

ya



 

94 

The spatial domain representation of the restored image �̈�(𝑢, 𝑣) is determined by 

taking the inverse Fourier transform Ƒ-1 of Equation (2.9) and convolution theorem to 

yield: 

�̈�(𝑢, 𝑣) =  Ƒ−1 (
𝐺(𝑢, 𝑣)

𝐻(𝑢, 𝑣)
) = Ƒ−1 (𝐹(𝑢, 𝑣)  +

𝑁(𝑢, 𝑣)

𝐻(𝑢, 𝑣)
)  

(2.14) 

When there is no noise in the degraded image, Equation (2.14) produces perfect 

restoration. However, in practice, there will always be noise in the degraded image, and 

singular values in 𝐻(𝑢, 𝑣) cause this noise to be amplified at the output.  To avoid noise 

amplification, usually, a threshold is applied to regulate the modulation boosting of the 

inverse filter at higher frequencies. This attempt is thus become a modified inverse filter 

(MIF).  

The MIF by Fonseca et al. (1993) is one of the earliest attempts. In their work, they 

combine the restoration process with an interpolation process to generate images with 

better resolution over a finer grid than the original sampling grid. The combined 

interpolation-restoration process is performed through a 2-D, separable, Finite Impulse 

Response (FIR) filter that has input signals with different sampling rates. The ideal low 

pass FIR filter for interpolation (Crochiere & Rabiner, 1983) is modified to account for 

the restoration process. The proposed method is applied to the interpolation-restoration 

of Landsat-5 TM data. The restoration process amplifies the high-frequency components 

of the image, therefore an image with sharper transitions is obtained. However, the 

enhancement of the aliasing effect is also more evident in the restored image. 

Boggione and Fonseca (2003) proposed a Modified Inverse Filtering (MIF) to 

improve the work of Fonseca et al. (1993) by  applying a cut off frequency value of 

𝐺(𝑢,𝑣)

𝐻(𝑢,𝑣)
outside a predefined radius of the filter. The cut off value acts as a low pass filter on 

𝐺(𝑣, 𝜔) to obtains the restored image based on the low pass filtered �̈�(𝑢, 𝑣).  This filter 
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has been used to restore satellite images of Landsat-7.  This method significantly deblurs 

the image, however, it is still cannot escape from the amplification of noise.  

A more recent work of MIF is proposed by Li et al. (2013) to restore the images 

of the Huanjing 1A satellite (HJ-1A). The MTFC filter for the HJ-1A CCD camera was 

developed based on the MIF presented by Fonseca et.al. (1993). To overcome the 

fluctuation of the MTFC filter of Fonseca et al. (1993), instead of using the parametric 

cubic convolution interpolation approach, the authors adopted the interpolation approach 

of Gu et al. (2005). The proposed MTFC is effective for sensors characterized by low 

MTFs. 

When the image is degraded by a known blur, it is possible to recover the image 

by inverse filtering or generalized inverse filtering. However, Inverse filtering is very 

sensitive to additive noise. To overcome the problems with inverse filtering, a method 

that can obtain a meaningful approximation solution with some additional constraints is 

required, and the Wiener filter is one of the most common early methods. Related works 

that used Wiener Filter for satellite image restoration will be presented in the next 

subsection. 

(b) Wiener filter 

The Wiener filter seeks an estimate of an ideal image that minimizes statistical error 

in the degraded image using a linear filter operation. The aim of the process is to have a 

minimum mean square error, which is the difference between the original signal and the 

estimated signal should be as little as possible.  Derivation of the Wiener filter is not 

included in this subsection, details can be found in Gonzalez & Woods (2017).  

In the frequency domain, the Wiener Filter is expressed as 
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�̈�(𝑢, 𝑣) =  Ƒ−1 (
1

𝐻(𝑢, 𝑣)
) ⌈

|𝐻(𝑢, 𝑣)|2

|𝐻(𝑢, 𝑣)|2 +
𝑆𝑛(𝑢, 𝑣)
𝑆𝑓(𝑢, 𝑣)

⌉  
(2.15) 

One of the major difficulties in using the Wiener filter is that the power spectral 

densities of signal, 𝑆𝑛(𝑢, 𝑣) and noise𝑆𝑓(𝑢, 𝑣) are not always known a priori. Therefore, 

the ratio 𝑆𝑛(𝑢,𝑣)
𝑆𝑓(𝑢,𝑣)

 is typically approximated empirically by a constant, 𝐾𝑤 (Gonzalez and 

Woods, 2017), thus become 

�̈�(𝑢, 𝑣) =  Ƒ−1 (
1

𝐻(𝑢, 𝑣)
) ⌈

|𝐻(𝑢, 𝑣)|2

|𝐻(𝑢, 𝑣)|2 + 𝐾𝑤
⌉  

(2.16) 

This type of filter given in Equation (2.16) was also used in the MTFC work of Fonseca 

et al. (1993). In the same year, Wu and Schowengerdt (1993) also use the same filter to 

restore Landsat TM imagery. 

McNeill and Pairman (1998) proposed to use the Wiener filter to estimate the PSF of 

SPOT satellite images. According to the authors, the main disadvantage of this method is 

that it cannot incorporate the constraint limits into the restoration procedure.  To 

overcome this, Bretschneider (2002) suggested an iterative version of deconvolution, 

which is the Maximum Likelihood Estimation (Pratt, Edgeworth, & Fisher, 1976) to 

estimate the 𝐻(𝑣,𝜔).  As the Wiener filter has a low-pass characteristic, the extent of the 

PSF estimated by the iterative Wiener filter is larger than the maximum likelihood 

estimation. Even though, it can be partly compensated by superimposing a finite extent 

on the intermediate results.  However, this attempt introduced high-frequency 

components in the restored image. Nevertheless, the Wiener filter is still a favorable 

MTFC because of its statically optimal behavior, which allows it to execute an optimal 

tradeoff between inverse filtering and noise smoothing (Wong, 2010, Li et al., 2015). 
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In (Lee et al., 2008), the authors proposed a deconvolution filter by inversely 

transforming the Wiener filter to a spatial domain for MTF compensation of KOMPSAT-

2 satellite images.  The size of the inversely transformed filter for the MTF kernel is 13 

× 13.  Generally, this filter was able to produce a sharper feature than unprocessed images; 

however, it is still compromised with ringing and aliasing effect on the restored image. 

Hence, MTFC becomes an optional process in operational use. Despite this shortcoming, 

this filter was used in the subsequent KOMPSAT program, namely the KOMPSAT-3 

(Lee et al., 2016). 

Wiener filter is originally a kind of non-iterative deconvolution filter. Wang and Geng 

(2008) utilized the classical Wiener filter and modified it into an iterative method to 

improve the restoration results of CBERS-02 images. This filter contributes to an 

improved restoration technique, but it requires a priori knowledge about the images and 

availability of the blur factor based on the in-situ meteorological parameter. This prior 

information is important to update the iterative process to ensure the correct and quick 

iteration procedure.  Such a requirement somehow becomes the shortcoming of this 

method.   

Another work of MTFC is proposed by Zhang, Wang, & Pan, (2013), where the author 

proposed an image restoration approach based on the Kalman filter to generate LSF for 

MTF measurement. Again, in this work, the Wiener filter is chosen to be the restoration 

filter.  The test data used for this study are the images from satellite CBERS-2. The 

authors compared their experiments in terms of edge energy and texture contrast with the 

traditional MTFC.  According to the authors, the proposed algorithm can restore more 

texture information for the restored image as compared to the traditional MTFC. More 

recently, the Wiener Filter is used as an MTFC kernel by Oh et al. (2014) to restore 

Geostationary Ocean Color Imager (GOCI) images. 
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The Wiener Filter is possible to achieve excellent results using the approximation 

given in Equation 2.11. However, the constant 𝐾𝑤, which is the estimate of the ratio of 

power spectra is not always a suitable solution (Gonzalez &Woods, 2017).  

Most recently, Aouinti et al., (2016) applied the genetic algorithm to the Wiener filter 

to optimize the regularization parameter in the deconvolution process. Numerical 

evaluation using SNR demonstrates the improvement of image quality through the 

elevation of SNR. 

Murthy, Kurian, & Guruprasad (2015) conducted a performance evaluation on the 

Wiener filter, Constrained Lease Square filter, Richardson–Lucy deconvolution, and 

Blind deconvolution methods in the presence of different artifacts. According to the 

authors, the Constrained Least Square (CLS) filter is restoring better than other filters.  

Thus, the CLS filter filtering and its related works will be briefly described in the 

following subsection.  

(c) Constrained least square filter 

CLS filter filtering can be considered a type of regularized filtering. It attempts to make 

the image restoration problem well-posed by introducing information about the original 

image using the mean and variance of the noise from the degraded image (Gonzalenz & 

Woods, 2017). This attempt posed an important advantage as it does not rely on prior 

information of the original image.  By the definition of 2-D convolution and 

lexicographically ordering of the image data, Equation (2.8) in vector-matrix form can be 

expressed as follows 

𝑔 = 𝐻𝑓 + 𝜂 (2.17) 

Thus, the frequency-domain solution to a constrained least-square optimization 

problem is given by the expression 
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�̈�(𝑣, 𝜔) =  Ƒ−1 (
1

𝐻(𝑣, 𝜔)
) ⌈

|𝐻(𝑣, 𝜔)|2

|𝐻(𝑣, 𝜔)|2 +  𝛾|𝑃(𝑣, 𝜔)|2
⌉  

(2.18) 

Subject to the constraint 

‖𝑔 − 𝐻𝑓‖
2
= ‖𝜂‖2 

 

(2.19) 
where 𝛾 is an adjustable parameter so that constraints in Equation (2.18) is satisfied, and 

𝑃(𝑣, 𝜔) is the FT of the Laplacian operator 

𝑝(𝑥, 𝑦) =  [
0 −1 0
−1 4 −1
0 −1 0

] 
(2.20) 

Detail derivation of this filter can be found in Gonzalenz & Woods (2017). In contrast 

to the Wiener filter, there is a notable paucity of MTFC that employ CLS.  One notable 

work is from Mu et al. (2013); the authors obtained the H (v, ω) by direct laboratory 

measurements and then used the CLS filter to compensate the MTF.  

This subsection has discussed and reviewed the commonly used Filter-based MTFC. 

In the next subsection, notable works of image restoration for optical satellite images 

based on the concept of MTFC will be presented. 

2.3.2.2 Non-Filter-based MTF Compensation Techniques 

The early MTFC approaches that utilized the Wiener filter and Modified Inverse filter, 

sought to solve the degradation (i.e., the blur) problem by applying inverse filtering to 

boost the attenuated higher spatial frequencies data of the degraded image. However, such 

approaches eventually lead to noise amplification and aliasing in the restored image. 

Hence, researchers have sought solutions from the more advanced blind image 

deconvolution methods.  The blind restoration problem of optical satellite images has 

been solved using Bayesian analysis (Chen et al. 2010; Shen et al. 2012), nonlinear 

penalty functions that utilize TV (Li et al. 2017; Liu & Eom, 2013; Jidesh & Shivarama, 

2018)  or sparsity-based models (Rasti et al. 2014; Mittal & Garg, 2013). A more detailed 

study of TV and sparsity-based regularizers will be provided in Chapter 3. For example, 
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in the attempts to restore the degraded SPOT-5 image, Chen et al. (2010) proposed a non-

iterative blind image-restoration algorithm in the redundant wavelet domain, which 

included the MTF measurement step and MTF compensation step. In the MTF 

measurement phase, they used the surface fitting technique (Balaras & Jeter, 1990) to fit 

the surface of the normalized logarithmic amplitude spectrum of the degraded image to a 

known parametric MTF model. And later, in the MTF compensation phase, with the MTF, 

they developed a maximum a posteriori (MAP)-based image-restoration algorithm which 

required the use of a multivariate statistical model (Tan & Jiao, 2007), Landweber 

iteration, and Multishrinkage denoising (Sendur & Selesnick, 2002). The restoration 

results show that the proposed method can significantly retrieve some lost detail 

information in the degraded SPOT-5 image. However, it imposed computational demand 

due to the complexity of the algorithm. 

Another example of MAP-based satellite image restoration is proposed by Shen et al. 

(2012). In contrast to Chen et al. (2010), instead of treating the PSF in preprocessing, 

these authors estimate the PSF simultaneously during restoration.  To narrow the solution 

space for the best possible definition, the author employed the Huber–Markov random 

field prior model to regularize the constraint in the solution. According to the authors, 

experimental results on CBERS-2B imageries showed that these methods perform quite 

well in terms of both visual inspection and quantitative evaluation. However, because of 

the employment of a complicated prior model, it compromised with computational 

complexity. For example, the proposed method is up to ten times slower than the iterative 

Blind Deconvolution (Ayers & Dainty, 1988) method and maximum likelihood 

deconvolution (MLD) (Lagendijk et al., 1990) methods. 

Liu & Eom (2013) developed a hybrid algorithm based on the discrete TV 

regularization algorithm (Vogel & Oman, 1998) using an auxiliary image from another 
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multispectral satellite imaging sensor as a prior image for restoration. Similar to Shen et 

al. (2012), the authors estimate the PSF simultaneously during the restoration process.  In 

their approach, the amount of prior information from the auxiliary image to be used in the 

hybrid algorithm is determined based on the similarity between the auxiliary image and 

the degraded image. In order to estimate the amount of required prior information, the 

authors developed an algorithm based on normalized local mutual information. The 

proposed algorithm is applied to both simulated and real multispectral images from 

DMC+4 satellite, and the performance of the proposed algorithm is compared with the 

fixed-point total variation (FP-TV) method (Vogel & Oman, 1998), the shape adaptive 

discrete cosine transform (SA-DCT) method (Oliveira & Figueiredo, 2009), and the 

major-maximum total variation (MM-TV) approach (Foi et al., 2007). In both quantitative 

and qualitative comparisons for effectiveness, the proposed algorithm performed better 

than other algorithms. No analysis and experimental results on computation time and 

convergence analysis were reported in this paper. 

Recently, Li et al. (2017) proposed an MTFC method that utilizes a regularization TV 

energy function model to compensate for the MTF using a partial derivative iteration 

algorithm. This method has been tested on the Space Smart Optical Orbiting Payload 

Integrated with Attitude and Position (SSPIAP) of China. According to the authors, the 

compensated MTF can be used to improve the imaging performance of onboard remote 

sensors and provide a reference for the onboard MTF compensation of space CCD 

cameras in the future.  

One example of the sparsity-based blind satellite deconvolution method is the work of 

Mittal & Garg (2013). In their work, the authors made a small modification of the existing 

Local polynomial approximation-intersection of confidence interval (LPA-ICI) algorithm 

by using a different wavelet technique (Immerkaer-Daubechies) for the restoration of 
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optical satellite images. Unlike existing multi-channel blind restoration methods that 

require spatially aligned images and correct veneration of blur size and shape (Sroubek 

& Flusser, 2005). According to the authors, the significant advantage of the proposed 

algorithm is that it can be applied to images of arbitrary sizes, The authors were inspired 

by  Katkovnik et al. (2006) on their work in contributing a novel nonparametric regression 

method for deblurring noisy images based on the LPA of the image and the paradigm of 

ICI that is applied to define the adaptive varying scales (window sizes) of the LPA 

estimators.  According to Katkovnik et al. (2005), the actual filtering for restoration is 

performed in the signal domain while frequency domain Fourier transform operations are 

applied only for the calculation of convolutions.  

In (Shen et al. 2014), another blind satellite deconvolution method was developed. The 

authors employed an alternating minimization (AM) framework to simultaneously 

estimate the PSF and restore the degraded image.  In their work, an automatic knife-edge 

detection method is used to obtain a good initial PSF for the AM framework. Besides, an 

adaptive-norm prior based on the structure tensor (Zhang, L. et al., 2011) is utilized in the 

AM framework to guarantee the global performance of the restoration. Preconditioned 

conjugate gradient (PCG) (Lin et al. 2005) optimization is also implemented to ensure the 

rapid iteration of the algorithm. Results in both simulated and real data experiments from 

Zi Yuan 3 (ZY-3) cartographic satellite indicate that the proposed image restoration 

method is robust, converges quickly, and can stop automatically to obtain satisfactory 

results.  However, the proposed method imposes specific priors over the PSF according 

to the remote sensing degradation characteristics. In addition, the initial PSF estimation 

also relies on the existence of knife-edge features, which may not exist in some natural 

images. 
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Zhi et al. (2014) proposed to solve the problem of image restoration of high-resolution 

TDICCD camera due to satellite vibrations, which considers image blur and irregular 

sampling geometric quality degradation simultaneously. the vibration simulation model 

is established, and the irregular sampling degradation process of geometric quality is 

mathematically modeled using bicubic Hermite interpolation. Subsequently, a full image 

degradation model is developed combined with a blurred and noisy degradation process. 

Experimental results indicate that the proposed method performs well, and the Structural 

Similarity between the restored and ideal images is greater than 0.9 in the case of seriously 

blurred, irregularly sampled, and noisy images. The proposed method can be applied to 

restore high-resolution on-orbit satellite images effectively. 

2.4 Summary 

This chapter has reviewed the past and recent studies of two major topics of this thesis, 

namely (1) The on-orbit spatial characterisation, and (2) The spatial restoration of optical 

satellite images. Based on the studies, the challenges and problems of these topics have 

been identified.  

In the topic of on-orbit spatial characterisation, much of the literature on EOS Cal/Val 

was found extensive and focuses particularly on the use of fixed-characteristic targets to 

measure and assess the on-orbit MTF of EOS. On the contrary, very few published studies 

have explored the use of stochastic-characteristic targets for on-orbit spatial 

characterisation. The MTF measurements based on fixed characteristic targets are highly 

dependent on a well-separated characteristic such as edges, lines, points, or bars in the 

remotely sensed imagery. The utilization of these well-separated characteristic targets is 

confined to stringent criteria and temporal issues, which make it a non-versatile approach. 

While stochastics characteristic targets do not restrict by these issues, but its feasibility 

and reliability for on-orbit spatial characterisation are still arguable. 
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For the topic of the spatial restoration of optical satellite images, the early MTFC 

which has been used operationally in most of the satellites has become an optional process 

because of its side effect (i.e., noise amplification and aliasing) in the restored images. 

These side effects are inherently an ill-posed inverse problem. The problem has received 

a considerable amount of research attention in recent years, yet no method has been 

proposed that can conclusively claim to have solved it. Besides, one of the most 

significant problems to the existing methods is that they usually incur computational 

complexity. Also based on the review, it can be concluded that the majority of advanced 

MTFC methods utilize nonlinear TV or sparsity-based regularizers. Furthermore, the 

quality of the restored image depends heavily on accurately estimating the model 

parameters (i.e., regularization parameters and prior information of an ideal image). 

Methods that utilize variational methods or nonlinear constrained optimization objectives, 

currently provide the best method for prior information and parameters modeling to 

estimate PSF and restore the image. 

In Chapter 3, the variational modeling will be further reviewed and analyze, in 

particular, the TV, and the nonlinear constrained optimization. Furthermore, the ill-posed 

problem of image restoration will be studied to find a solution to solve the identified 

research problem. 
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CHAPTER 3: ILL-POSED PROBLEM OF BLIND IMAGE RESTORATION  

This chapter reviews and analyzes the existing image deblurring methods by various 

researchers in the field of image restoration. The purposes of this chapter are to study the 

literature work related to the identified problem in Chapter 2 in order to propose solutions 

towards the identified problem. This chapter also discusses the practical issue of 

designing an image deblurring method. Furthermore, the performance evaluation 

measures for the proposed methods are determined and presented in this chapter.  

In section 3.1, this thesis explains the ill-posed problems in blind image restoration in 

general and detailed the solutions for these problems. In this thesis, the image deblurring 

method is recognized as the potential solution to the identified research problem. 

Subsequently, the challenges in the estimation of an accurate blur kernel for successful 

image restoration will be addressed in section 3.2. The crucial aspects of how to find good 

region priors are also included in this section. Section 3.3 provides a review of three 

classes of modeling methods for image deblurring. In particular, it provides a critical and 

comprehensive review of the selected variational method. Section 3.4 identified and 

discusses the two common issues that are usually encountered in designing deblurring 

methods. The image quality assessment metrics used to evaluate the performance of the 

characterisation and restoration of the spatial images are introduced in section 3.5. 

Finally, section 3.6 provides a summary of this chapter. 

3.1 Solutions to Ill-posed Image Restoration Problem 

Recall that the field of image restoration is concerned with the estimation of 

uncorrupted images 𝑓(𝑥, 𝑦), from noisy, blurred ones 𝑔(𝑥, 𝑦) as follow: 

𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) ⊗ ℎ(𝑥, 𝑦) + 𝜂(𝑥, 𝑦). (3.1) 
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where ℎ(𝑥, 𝑦) and 𝜂(𝑥, 𝑦) represent a PSF and unknown noise respectively; the symbol 

⊗ denotes 2-D convolution operator; x and y are the continuous variables in x and y 

coordinate plane, respectively.  

By considering a whole image, equation (3.1) is often represented as a matrix-vector 

form as 

𝒈 = 𝑯𝒇 + 𝒏. (3.2) 

where g, f, and n are lexicographically ordered column vectors representing 

𝑔(𝑥, 𝑦), 𝑓(𝑥, 𝑦) and 𝜂(𝑥, 𝑦), respectively. H is a Block Toeplitz with Toeplitz Blocks 

(BTTB) matrix derived from ℎ(𝑥, 𝑦). 

Depending on the H operator in Equation (3.1), the image restoration problem can be 

classified into (1) image deblurring (Pan et al., 2017; Choi & Lee, 2009; Ren et. al, 2016); 

when H is a blur operator; (2) image Denoising (Dabov et al., 2007; Chen & Liu, 2013; 

dai et al., 2013), when H is identity; (3) image inpainting (Takeda et al., 2007; Zhai & 

Yang, 2012; Zhang, J. et al., 2014) when H is a mask, that is, H is a diagonal matrix 

whose diagonal entries are either 1 or 0, keeping or eliminating the corresponding pixels; 

and (4) compressing sensing (Zhang et al., 2012; Zhang, J. et al., 2013), when H is a set 

of random projections.  

Mathematically, the image restoration problem, described by Equation (3.1), requires 

solving an ill-posed problem (Kundur & Hatzinakos, 1996) because (1) there might be 

many different sets of H and f corresponding to the same observed image g, and (2) the 

inverse problem to estimate f from g often involves some numerical singularities.  

According to the sense of Hadamard (1952), a problem is well-posed if the following 

three properties hold true: (1) Existence: For all suitable data, a solution exists, (2) 
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Uniqueness: For the suitable data, the solution is unique, and (3) Stability: The solution 

depends continuously on the data.  

Given a degradation model in vector-matrix form as expressed in Equation (3.2). To 

satisfy the first condition, the restoration problem must account for noise, because in 

practical imaging situations, additive noise is not negligible. For example, equality g = 

Hf will not always have a solution because it does not account for the noise term n. For 

the second condition, if only partial information about the imaging process is used to 

formulate an optimality criterion, this may yield a large number of possible solutions; 

Hence, to have a unique solution, proper initialization of algorithm or additional 

assumption on the imaging system is needed to choose the appropriate solution. Finally, 

the solution must depend continuously on the data, because discontinuities cause 

instability in many algorithms. 

Based on the above deliberation, hence, to create a well-posed problem, it is essential 

to incorporate a priori information about an ideal image via regularization (Mesarovi et 

al., 1995). This section will provide a detailed review of the keys to the solution to the ill-

posed inverse problem, namely the priori information of an image, and regularization. 

3.1.1 Priori Information of an Image 

In the image deblurring literature (e.g., Levin et al. 2007, Krishnan & Fergus, 2009, 

Cao et al., 2015; Dong, W. et al., 2013; Pan et al., 2017; Bai et al., 2019), two types of 

additional information that often used to create the well-posed problem are (1)   image 

priors, and (2) additional image observations (e.g., image properties). The following 

subsections will review the relevant additional information about an ideal image that can 

potentially solve the ill-posed problem. 
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3.1.1.1 Image properties 

In recent years, the nonlocal self-similarity characteristic revealed by natural images 

has possibly become the most significant nonlocal statistics in image processing (Wu et 

al., 2019). The nonlocal self-similarity describes the repetitiveness of higher-level 

patterns (e.g., textures and structures) embodied by the natural images within the nonlocal 

area (Bahadir & Xin, 2012). State-of-the-art algorithms for various image restoration 

tasks often rely on the assumption that natural images contain many mutually similar 

patches at different locations, which describes the prior information of the image. 

Typically, the patch similarity is assessed through the Euclidean distance of the pixel 

intensities (Buades, Coll & Morel, 2005). 

Inspired by the success of nonlocal means (NLM) denoising filter by Buades et al. 

(2005), a series of nonlocal regularization functions for inverse problems exploiting 

nonlocal self-similarity property of natural images have emerged ( Kindermann et al., 

2005; Gilboa & Osher, 2007;  Elmoataz et al., 2008; Peyré, 2008; Dong, W. et al., 2011, 

Zhang, J. et al., 2014; Jung et al.,2011). Utilization of nonlocal self-similarity as a 

regularization function in the literature is usually conducted in pixel-level (i.e from one 

pixel to another) (e.g., Gilboa & Osher, 2007; Zhang, T. et al., 2010) or block-level (e.g., 

Protter et. al. 2009; Dong, W. et al., 2011).  

Apart from nonlocal self-similarity, local smoothness is another significant property 

in natural images. It characterizes the closeness of neighboring pixels in the two-

dimensional space domain of images within the local region.  Recently, Zhang, J. et al. 

(2014) proposed a joint statistical model that combines these two properties as 

regularization priors to solve the ill-posed inverse problem of image restoration. Figure 

3.1 illustrates the local smoothness and nonlocal self-similarity of a natural image. 
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3.1: Illustrations for local smoothness and nonlocal self-similarity of natural 
images (adapted from Zhang et al. 2014). 

To create a well-posed problem of image restoration, besides the image properties, the 

characteristics of an image are also significant.  As pointed out by Cho et al. (2010), even 

different textures within the same image also can have a distinct profile of characteristics; 

thus, it requires further investigation. The next subsection will study these characteristics.  

3.1.1.2 Image characteristics 

Over the years, besides the aforementioned image properties, many studies also 

suggest that priors based on natural image statistics can regularize deblurring problems 

to yield better results (e.g., Levin, 2006; Cho et al., 2010; W. Dong et al., 2013; Zhang et 

al., 2014; Liu et al., 2016; Bai et al., 2019).  Moreover, prior studies have also shown that 

the marginal distributions of image statistics are non-Gaussian and have significantly 

heavier tails than a Laplacian, that well modeled by the hyper-Laplacian (Levin et al. 

2007, Krishnan & Fergus, 2009). The distribution of gradients of hyper-laplacian (Field, 

1994) has most of its mass on small values but gives significantly more probability to 

large values than a Gaussian distribution.  Figure 3.2 illustrates the empirical distribution 

of gradient with respect to a scene (Krishan & Fergus, 2009). It can be noticed that the 

hyper-Laplacian (i.e., Green) fits the empirical distribution (i.e., Blue) closely, 

particularly in the tails. 
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(a) (b) 

Figure 3.2: A hyper-Laplacian with exponent α = 2/3 is a better model of image 
gradients than a Laplacian or a Gaussian (Krishan & Fergus, 2009). (a) A typical 
real-world scene. (b) The empirical distribution of gradients in the scene (blue), 

along with a Gaussian fit (cyan), a Laplacian fit (red), and a hyper- Laplacian with 
α = 2/3 (green). 

 The marginal statistics of images are usually modeled by Generalised Gaussian 

distribution (GGD) (Mallat, 1989), the simplified form of GGD is defined as 

𝜌𝐺𝐺𝐷(𝑓)  ∝  𝑒
−𝛾|∇f|𝛼 , (3.3) 

where ∇𝑓 =  (𝜕𝑥 𝑓, 𝜕𝑦 𝑓)𝑇  is the gradient of the image f, γ, and α are the shape 

parameters. The distribution 𝜌𝐺𝐺𝐷(𝑓) is a Gaussian distribution function if p = 2, and a 

Laplacian distribution function if p = 1. If 0 < p < 1, then 𝜌𝐺𝐺𝐷(𝑓) is named as hyper-

Laplacian distribution. In sparse coding, it is as known as Lp-seminorm, which is typically 

a non-convex problem.  More discussion about the value p can be found in the paper by 

Krishnan and Fergus (2009). The authors have done impressive work in proposing a fast 

deconvolution method using hyper-Laplacian priors, as such their works have received 

considerable scholarly attention in recent years.  Based on their work, Chang and Wu 

(2015), and Xu et al. (2013) introduced the hyper-Laplacian priors to handling outliers in 

the image deblurring process.  Furthermore, Liu et al., (2016) fitted the hyper-Laplacian 

function to high resolution Passive millimeter-wave images as a regularization function 

to create a well-posed image restoration model. Most recently, Cheng et al. (2019) 
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proposed a nonconvex variational model for Retinex where they utilized the hyper-

Laplacian priors to characterizing the gradients of reflectance in the Retinex model.  

So far, this chapter has described the image properties and image characteristics. The 

following part of this section moves on to provide brief literature on image priors.  

3.1.1.3 Image priors 

Image priors, also known as the “prior information” of an image (Roth & Black, 2005) 

play an important role in the development of algorithms to treat the ill-posedness of the 

image restoration problem. The characteristics and properties of images as explained in 

the previous subsections are the “prior information” that formed data-authentic (i.e., true, 

quantitative, or qualitative information, acquired from real-life phenomena) priors of an 

image (Roth & Black, 2005). With this knowledge, many priors have been proposed 

based on different principles. The variety range from priors on derivative (e.g., Rudin et 

al., 1992, Levin, 2006), multiscale image transform coefficient (e.g., Donoho, 1995; 

Portilla et al., 2003), filter responses (e.g., Zhu & Mumford, 1997; Roth & Black, 2005) 

and patches (e.g., Buades et al., 2005).   

The Image priors can be obtained by either model-based or learning-based approaches 

depending on the availability of the training data (Wu et al. 2018). With the limitation of 

training data, in this context, this thesis focuses on a model-based approach (readers may 

refer to Gong et al. (2018) for more detailed learning-based approaches).  

In Model-based approaches, image priors are obtained by mathematical construction 

of a penalty functional and its parameters must be intrinsically estimated from the 

observation. Among others, sparse coding and its variations are seemly the most studied 

in the literature (Dabov et al. 2007; Dong, W. et al., 2011; Dong, W. et al., 2013, Mairal 

et al., 2009, Wu et al., 2016, Sha et al., 2019; Liu & Osher, 2019).  Early studies in sparse 
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coding mostly concentrated on the characterisation of localized structures or transient 

events in natural images. A sparse coding model with good localization properties in both 

spatial and frequency domains can be constructed through mathematical design (e.g., 

wavelet (Mallat, 1996)) or learn them from training data (e.g., dictionary learning (Mairal 

et al., 2009a)). In the signal frequency domain,  the sparse model assumes that natural 

images will be sparsely distributed in some transformed domain; whereas in the spatial 

domain, the sparse model assumes each patch of an image can be accurately represented 

by a few elements from a basis set called a dictionary, which is learned from natural 

images (Aharon et al. 2006). According to Mairal et al. (2009a), dictionary learning can 

give sparser solutions as compared to predefined transform matrices, because it is more 

adaptable to image local structures. 

Dabov et al. (2007) proposed a patch-based procedure that exploits image self-

similarities and gives state-of-the-art results. Owing to their work, the importance of 

exploiting nonlocal self-similarity properties in natural images was recognized in 

simultaneous sparse coding works and nonlocal sparsity-based image restoration. The 

nonlocal self-similarity property is among the most effective image priors to the 

constraint solution space effectively. In recent works, studies found that the combination 

of the sparsity and the self-similarity properties of natural images are usually achieved 

better performance. Some of the notable works are those from (Mairal et al. 2009b, 

Zhang, J. et al., 2014; Dong, W. et al., 2013).  

Most recently, Dong, W. et al. (2015) proposed an image model named SSC-GSM that 

combined the Gaussian scale mixture (GSM) (Portilla et al., 2003) with simultaneous 

sparse coding (SSC) leading to state-of-the-art performance in image restoration. The 

authors point out that their work clearly has shown the importance of spatial adaptation 
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regardless the underlying image model is local or nonlocal; during the image modeling, 

it is crucial to take both local variations and nonlocal invariance into account. 

In this section, it has been explained that the characteristics and properties of the image 

are essential to designing image priors.  Image priors knowledge plays a critical role in 

the performance of image restoration algorithms by solving the ill-posed inverse problem, 

therefore, designing effective regularization functions to reflect the image priors is at the 

core of image restoration.  

3.1.2 Regularization 

The success in solving the ill-posed problem of image restoration depends on how 

accurately the regularizer models priori information of the original image (Kundur & 

Dimitrios 1996).  

In general, the regularization solution that copes with the ill-posed nature of image 

restoration can be described in the following minimization problem as 

𝑚𝑖𝑛
𝑓

1

2
‖𝑓 ⊗𝑯− 𝑔‖2

2 +  𝜆𝛹(𝑓), (3.4) 

where  1
2
‖𝑓 ⊕ 𝐻 − 𝑔‖2

2 is the l2-norm data-fidelity function, 𝛹(𝑓) is called the 

regularization function denoting image prior and λ is the regularization parameter. 

Traditionally, the regularization function would be defined using the l2--norm and a 

simple variational operator 𝛹, such as the Laplacian (Gonzalez & Woods, 2017). This 

could potentially create a well-posed problem by introducing a smoothness constraint that 

penalizes variations caused by amplified noise. Nevertheless, since images are piecewise 

smooth, traditional regularizers may adversely affect the restoration of sharp edges, often 

producing images that are over-smoothed. More advanced regularizers, such as the TV 

norm, use nonlinear penalty functions to model the characteristics of the original image, 
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which generally produce a better restoration result. A more detailed study of the 

regularization methods will be discussed in Section 3.3. In this subsection, the 

optimization approaches for image regularization will be reviewed. 

There are various optimization approaches for a regularized-based image restoration 

problem.  Based on the literature review, these approaches can be grouped into four: (1) 

Pixel-based Regularization Methods, (2) Sparsity-based Regularization Methods, (3) 

Patch-based Regularization Methods, and (4) Group-based Regularization Methods. The 

subsections that follow will review each group in detail. 

3.1.2.1 Pixel-based regularization methods 

Classical regularization functions, such as half quadrature formulation (Geman & 

Reynolds, 1992), Mumford-Shah (MS) model (Mumford & Shah, 1989), and TV models 

(Rudin et al., 1992), utilize local structural patterns with the underlying assumption that 

neighboring are locally smooth except at edges.  

There is a large number of pixel-based regularization functions (Carter, 2001; 

Chambolle, 2004; Beck & Teboulle, 2009; Babacan et al, 2008; Chantas et al., 2010; 

Sánchez et al.,2013; Liu & Huang, 2014; Ma et al., 2017) built on the TV model (Rudin 

et al., 1992) demonstrate high effectiveness in preserving edges and recovering smooth 

regions. One representative work from the literature that uses the TV energy model as 

MTFC for optical satellite images is Li et al (2017).  TV regularizer prefers boundaries 

with limited curvature (Bellettini et al., 2002), therefore, they usually smear out image 

details and cannot deal well with fine structures. 

3.1.2.2 Sparsity-based regularization methods 

In the survey by Amudha et al. (2012), the authors stated that sparsity-based restoration 

methods are emerging methods that perform better deblurring in the presence of noise.  
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This statement is well supported by many (Zhang et al., 2015; Liu et al., 2016; Wu et al., 

2016) because the sparsity-based regularizers force the transform domain coefficients of 

the restored images to be sparse, thus, it generally reduces noise without adversely 

affecting the restoration of edges. To take advantage of the multi-scale properties of 

images, many sparsity-based regularization algorithms (e.g., Figueiredo & Nowak 2003; 

Figueiredo et al. 2007; Argenti et al. 2008; Dupe et al., 2009; Chan & Zhou, 2007; Cai et 

al, 2011; Tao 2010; Xu et al. 2013) based on wavelet (Mallat, 1989), curvelet (Candès & 

Donoho, 2000), and contourlet (Do & Vetterli, 2005) are proposed.  

According to Ma et al., (2017), in most cases, the sparsity-based regularization 

methods (e.g., wavelet) can achieve better quality than the pixel-based regularization 

method (e.g., TV).  However, both regularization methods do not thoroughly make use 

of all properties of the images. This makes sense because the pixel-based regularization 

methods cannot characterize the multi-scale properties and multi-level structures of an 

image. The sparsity-based regularization methods using the transform domain coefficient, 

even though can characterize both properties, but not capable of characterizing the 

nonlocal self-similarity of an image. 

3.1.2.3 Patch-based regularization methods 

Recently, inspired by the success of nonlocal means (NLM) denoising filter by Buades 

et al. (2005) that exploits nonlocal self-similarity property of natural images, a series of 

patch-based regularization algorithms have emerged (Jung et al., 2011; Li et al., 2014, 

Zoran & Weiss, 2011; Zhang, J., et al.,2014a; Gu, Liu & Hu, 2015; Zha et al., 2017). Due 

to the utilization of self-similarity prior, this type of regularization function has been 

shown to produce superior results over the pixel-based regularizers, with sharper image 

edges and more image details (e.g., Zhang, J., et al., 2014a). Since pixel-based 

regularizers are a type of 1-D feature extraction, therefore they cannot capture the 
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redundancy of small patches inside the same image. The basic idea of regularization using 

the image patch is to approximate a pixel value using the weighted mean of the other 

pixels which have similar structures to that of the current one. The patch-based 

regularizers have sparsity properties because the patch is modeled by a sparse linear 

combination of learnable basis elements. These elements, called atoms, compose a 

dictionary (Aharon et al., 2006).  

There exist two main problems in the current patch-based sparse representation model 

(Zhang, J., et al., 2014a; Liu & Hu, 2015; Zha et al., 2017). First, it often requires high 

computational complexity. This is because dictionary learning is a large-scale and highly 

non-convex problem (Aharon et al., 2006; Engan, Aase & Hakon-husoy, 1999). Second, 

a patch is the unit of sparse representation, and each patch is usually considered 

independently in dictionary learning and sparse coding, which disregard the relationships 

of self-similarity among patches.  In addition, with the learned dictionary, the actual 

sparse coding process is always calculated with relatively expensive nonlinear 

estimations, such as match pursuits (Chen, Donoho & Saunders, 2001; Tropp & Gilbert, 

2007); This condition also may be unstable and imprecise due to the coherence of the 

dictionary (Mallat & Yu, 2010). 

3.1.2.4 Group-based regularization methods 

Most recently, instead of a single image patch, a group of similar patches (i.e., patch 

group) is used as a basic unit of sparse coding (Xu et al., 2015, Zhang, J., et al., 2014b). 

In other words, the patch group is representative of a set of sparse codes in the group 

domain. Similar to patch-based, each group can also be precisely represented by a sparse 

linear combination of basic elements of the dictionary (Mairal et al., 2009). This type of 

representation achieves better performance with lower computational complexity than 

patch-based algorithms since it is designed with self-adaptive dictionary learning for each 
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group.  It is different compared with a single patch that utilizes dictionary learning 

independently from sparse representation modeling of natural images. 

Zha et al. (2018, citing Li et al., 2016) point out that the group-based regularization 

method (Zhang, J., et al., 2014b), even though has shown great successes in various image 

processing tasks, may suffer an over-smooth effect in the restored image. Hence, the 

authors proposed a new sparse representation model, so-called dubbed joint patch-group 

based sparse representation (JPG-SR). Compared with the work of Zhang, J. et al., 

(2014a) for image inpainting, the proposed JPG-SR achieved a better performance in 

functions of Peak Signal to noise ratio. 

The section that follows moves on to review the blur estimation in image deblurring 

problem and describe the utilization of image priors to greater detail. 

3.2 Addressing Blur Estimation in Blind Image Deblurring 

Based on Equation (3.1), the fundamental task of deblurring is to deconvolve the 

blurred image (i.e., degraded image, g) with the PSF that exactly describes the distortion. 

Image deblurring has been studied extensively with a rich literature. Early approaches 

used parameterized forms for blur kernels and imposed constraints on the blur kernels 

with a single image (Chen et al. 1996; Chan and Wong 1998; Yitzhaky et al. 1998) or 

multiple images (Rav-Acha & Peleg 2005). However, as demonstrated in Fergus et al. 

(2006), the real kernel caused by motion blur is complex, beyond a simple parametric 

form. In the image deblurring process, Fergus et al. (2006) point out, image deblurring 

task has been shown to render favorable results if it is solved in two steps: (1) blur kernel 

estimation and (2) non-blind deconvolution. If the blur kernel can be accurately estimated, 

then the blurred image can be restored with non-blind deconvolution algorithms using the 

estimated blur kernel. This type of approach is referred to as the a-priori blur identification 
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method (as described in section 2.3 of Chapter 2). Image deblurring is a low-level task 

aiming to produce high quality images for the subsequent high-level vision tasks.  

The success of early single-image deblurring methods (e.g., Fergus et al., 2006; Shan, 

Jia & Agarwala, 2008) partly stems from the use of various sparse priors in either the blur 

kernel estimation phase or the restoration phase of the latent sharp image. The primarily 

used of sparse priors is to avoid possibly results in a dense kernel that causes unwanted 

artifacts and local minimum problem in an iterative kernel estimation. However, there is 

a direct consequence, because minimizing a non-convex energy function with the kernel-

sparsity prior is usually computationally expensive.  

Apart from using the sparse priors, there is another group of methods that use the 

Gaussian kernel priors (Joshi, Szeliski & Kriegman, 2008; Cho & Lee, 2009). Using the 

Gaussian kernel priors, thus it reduces to a convex optimization problem that can be 

solved efficiently using Fourier Transform (FT).  This approach greatly shortens the 

computation time, but the Gaussian priors tend to produce overly smooth images. 

Furthermore, although the FT can solve the deconvolution problem efficiently, it 

produces periodic boundary artifacts. This happens because convolution operation in the 

frequency domain is assumed to be fully cyclic, however, this assumption is wrong along 

image boundaries (Levin et al., 2007).  

Regardless of the limitation of both approaches (i.e., using sparse or Gaussian priors) 

in the tradeoff of efficiency and effective issues, their success has been an inspiration to 

many. Such that there is a growing body of literature that recognizes the challenges in the 

field of single-blind image blind deblurring. The significant progress in this field can be 

attributed to the advancement of efficient inference algorithms (Levin et al., 2009; Xu & 

Jia, 2010), various natural image priors (Krishnan & Fergus, 2011; Sun et al, 2013; Pan 
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et al., 2014; Liu et al., 2016; Ma et al, 2017; Bail et al., 2018), and more general motion 

blur models (Whyte et. al, 2012; Gupta et al, 2010; Hu et al., 2014).  

As mentioned in the steps single bling image deblurring proses, estimation of the 

accurate kernel is one of the keys for successful image deblurring results. Hence, the 

following subsection reviews the two most important aspects that attribute to an accurate 

blur kernel estimation, namely image priors, and image structure. 

3.2.1 Exploiting Image Priors 

From the literature, many blur kernel estimation methods have exploited various 

constraints to model the characteristics of blur and utilize different natural image priors 

to regularize the solution space. Based on the principle, this thesis divides these image 

priors into four types: Gradient-based, Intensities-based, low rank-based, and graph-

based.  The success of most existing algorithms can be attributed to the use of a wide 

range of parametric image priors. These constraints are used to avoid local minima, dense 

kernels, and visual artifacts in the restored image.  

3.2.1.1 Gradient-based image priors 

Gradient-based image priors are among the earliest priors used to estimate blur kernels 

from a single blurred image. In (Fergus et al. 2006), the authors proposed to use the 

Gaussian mixture model (GMM) of that having finite mixture numbers to fit the gradient 

magnitudes distribution of the natural image to obtain the blur kernel by adopting a 

Bayesian approach.  Chakrabarti et al (2010) extended the GMM to the Gaussian scale 

mixture (GSM) which is a mixture of infinite Gaussian models with a continuous range 

of variances. A critical issue of this model is that the infinite selection of Gaussian 

distribution standard deviation, which makes it computationally expensive. Additionally, 

for computation efficiency, a generalized Gaussian model is used by Levin et al. (2007) 
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in their design of an optimal aperture filter, and a Gaussian prior is imposed on the 

gradient patches instead of gradient pixels by Hu et al (2012).  

Shan et al. (2008) introduce a local prior by concatenating two piece-wise continuous 

functions to fit the logarithmic gradient distribution of natural images. In (Levin et al., 

2011), the authors model the sparse priors as a mixture of Gaussian (MOG) and employed 

an expectation-maximization (EM) approximation method to estimate blur kernels. As 

pointed out by Levin et al. (2009), sparse priors used in image deblurring favor blurry 

images rather than clear images. In order to over this problem, the normalized sparsity 

prior (Krishnan, Tay & Fergus, 2011) and patch recurrence prior (Michaeli & Irani, 2014) 

have been proposed. While these priors have been demonstrated satisfactory results for 

image deblurring, they are computationally expensive due to their highly non-convex 

nature. Other methods have been applied to reduce the computational load. For example, 

Krishan and Fergus (2009) proposed fast hyper-laplacian priors using a lookup table 

(LUT) and an analytic approach for image deblurring; the work has gained widespread 

acceptance. Besides that, in (Cho & Lee 2009; Xu & Jia, 2010), the authors used a 

Gaussian prior on the latent sharp images that can be computed efficiently by Fast FT. 

Moreover, they also introduced an edge selection step to select useful edges for kernel 

estimation. However, as the edge selection step is developed based on heuristic filters, 

therefore, the assumption that there exist strong edges in the latent sharp images may not 

always hold. In order to better reconstruct sharp edges for kernel estimation, exemplar-

based methods (Sun et al., 2014; Pan et al., 2014; Hacohen, Shechtman & Lischinski, 

2013) have been proposed to exploit the priori information contained both in a blurry 

input and example images. The drawback of this method is that the query in the external 

dataset is computationally expensive.  

Univ
ers

iti 
Mala

ya



 

121 

In addition to generic priors for natural image deblurring, the authors of (Pan et al., 

2014a; Pan et al. 2014b; Cho, Wang & Lee, 2012) also exploited statistics for specific 

classes of objects (e.g., text and faces) for different application to solve its deblurring 

problem.  

3.2.1.2 Intensities-based image priors 

Besides the priors on image gradients, the knowledge of image intensities is extremely 

helpful in specific applications. For example, in (Chen et al. 2011), the authors developed 

a content-aware prior based on image intensities to computing the histogram of the whole 

image for document image deblurring.  

Recently, sparse representations have been used to model image priors, their sparsity 

properties can be comprised of a direct measure of image intensities or a transform 

coefficient. In Hu et al. (2010), the authors learn an over-complete dictionary directly 

from a blurry image, and later use the sparsity constraints to iteratively recover the latent 

sharp image.  In the application of face recognition, Zhang, H., et al. (2011) proposed a 

sparse representation algorithm to deblur and recognize face images in a unified manner. 

Additionally, Cai, et al., (2012) utilized the multi-scale properties of wavelet to enforcing 

sparsity constraints on both the sharp image and blur kernel for image deblurring. 

Another notable work of sparse representation is from W. Dong et al. (2011), where 

the authors combined the merit of sparsity and the self-similarity of natural images to 

achieve a better performance of image deblurring results. In their subsequent work, Dong, 

W., et al., (2013) developed a method called nonlocally centralized sparse representation 

(NCSR) to model image patches that exploit image nonlocal self-similarity for deblurring.   

In (Couzinie-Devy et al., 2011), the authors model the clear image patches and blurry 

ones with a linear mapping function and employed the learning dictionary to recover 
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sharp details, More recently, Cao et al. (2015) used several multi-scale dictionaries to 

describe and deblur text images. As pointed out by Ren et al. (2016), although these 

dictionary-based methods may restore some high-textured regions, they usually fail to 

preserve substantially useful information for kernel estimation. Hence, it often generates 

hallucinated high-frequency contents, which complicate the subsequent kernel estimation 

steps. 

3.2.1.3 Low-rank priors 

Apart from employing the aforementioned sparsity priors, the low-rank model has also 

been proposed to exploit the sparsity (i.e., low-rankness) of the image vector-matrix. In 

the recent year, low-rank matrix approximation (LRMA) that aims to recover the 

underlying low-rank matrix from its degraded observation has been employed and 

successfully applied to image restoration (e.g., Wang et al., 2013; Zhang, H., et al., 2014; 

Xu et al, 2018).  Among which, the nuclear norm minimization (NNM) approach for 

LRMA has been successfully employed in various application such as matrix denoising 

(Donoho, Gavish & Montanari), low-level vision tasks (Oh et al., 2013), and face shadow 

removal(Mu et al, 2011; Kang, Peng & Cheng, 2015).  A comparative study for the NNM 

methods can be found in the work by Zha et al. (2019). 

When dealing with the single image denoising problem using the LRMA, authors in 

(Dong. W., 2013b; Lu et al., 2014, Jia et al., 2016) exploit the nonlocal self-similarity on 

the patch level. Though LRMA takes full advantage of nonlocal self-similarity on patch 

level, it usually produces over-smooth estimates. 

Recently, to generate a good low-rank estimation from patch groups, Gu et al. (2014) 

propose a weighted nuclear norm minimization (WNNM) model to adaptively regularize 

the singular value of the matrix, for which it facilitates more flexible and robust results in 

image denoising. Inspired by WNNM, Xie et al. (2014) extend the 2-D low-rank matrix 
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model to a higher dimension tensor model for multispectral image denoising tasks. Later, 

a multi-channel WNNM model is proposed by Xu et al. (2018) to address the real color 

image denoising problem, which enables a different color to have different noise levels. 

The LRMA has also been applied to the non-blind image deblurring problem. A low-

rank based nonlocal spectral prior is exploited by W. Wang et al. (2013) for non-blind 

image deblurring.   

 In contrast to the WNNM method (Gu et al. 2014) that uses a weighting scheme for 

denoising, Ren et al. (2016) employed the low rank prior to generating clean intermediate 

images for kernel estimation. The WNNM was employed by Ma et al. (2017), in the TV 

regularization framework to solve the deblurring problem.  

Similar to W. Dong et al. (2013), Wen, Li & Bresler (2017) also take full advantage 

of both the local sparsity and nonlocal self-similarity in natural images to propose a model 

co-called STROLLER (Sparsifying TRansfOrm Learning and Low-Rank) to combine the 

adaptive transform sparsity of image patches and the low-rankness of data matrices 

formed by Block Matching (BM) for deblurring. 

3.2.1.4 Graph-based Image Priors 

With the advance of Graph signal processing (GSP) (Shuman et al., 2013), a new type 

of image priors has emerged. GSP is an emerging field to study signals on irregular data 

kernels described by graphs. The GSP models the pixels as nodes with weighted edges 

that reflect inter-pixel similarities and interprets the images (or image patches) as graph 

signals (Shuman et al., 2013).  This type of priors has been designed for different image 

applications (Hu, Cheung & Kazui, 2016; Pang & Cheung, 2017; Kheradmand & 

Milanfar, 2014; Liu et al., 2017; Bai et al. 2019). 
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Based on the literature review, generally, there are two types of graph-based image 

priors, namely graph Laplacian regularizer (Pang et al. (2017) and GTV (Graph Total 

Variation)  (Elmoataz, Lezoray & Bougleux, 2008; Hidane, Lzoray & Elmoataz, 2013; 

Couprie et al., 2013; Berger et al., 2017) have been designed for different inverse 

problems. 

(a) Graph laplacian prior 

In (Hu, Cheung & Kazui, 2016), the authors designed a dequantization (i.e., soft-

decoded JPEG- compressed) scheme specifically for piecewise smooth (PWS) images 

(i.e., images with sharp object boundaries and smooth interior surfaces) using the 

quantization bin boundaries as constraints to optimize the desired graph-signal and the 

similarity graph in a unified framework. In Liu et al. (2017), another type of soft-decoded 

JPEG- compressed) scheme for natural images was developed using a combination of 

three priors. The three priors are comprised of a new graph smoothness prior called Left 

Eigenvectors of Random walk Graph Laplacian (LERaG), a compact dictionary trained 

by sparse representation, and Laplacian distribution of discrete cosine transform 

coefficients. In (Pang et al. 2017), an image denoising method was developed using a 

graph Laplacian regularization in the continuous domain, whereas in (Kheradmand & 

Milanfar, 2014), a non-blind image deblurring method was developed using a doubly-

stochastic graph Laplacian. 

(b) Graph total variation prior  

Elmoataz et al. (2008) analyzed the discrete p-Dirichlet energy in image and manifold 

processing. The p-Dirichlet energy prior is also known as GTV is the type of prior that 

favors the piecewise smooth preserving properties and convexity. In (Couprie et al., 

2013), the author proposed a dual constrained GTV regularization on graphs. Hidane et 

al. (2013) employed the GTV for a non-linear multi-layered representation of graph 
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signals., whereas Berger et al. (2017) employed the GTV for recovering a smooth graph 

signal from noisy samples taken on a subset of graph nodes. Most recently, Bai et al. 

(2019) proposed a reweighted graph total variation (RGTV) prior to promoting a bi-modal 

weight distribution to reconstruct a skeleton patch from a blurry observation for blur 

kernel estimation. of a blurry image patch to solve the blind image deblurring problem. 

From the literature review, numerous studies were found to focus on exploiting 

additional information (i.e., image priors) for blur kernel estimation to facilitate blind 

single image deblurring. However, considerably less attention has been paid to exploit 

image structure for kernel estimation and deblurring. Hence, the following subsection will 

discuss this topic. 

3.2.2 Exploiting image structure 

In signal processing, an edge in an image excites imaging response systems and results 

in an edge response, which derivative is the degradation function that describes the blur 

in an image. In the sense of single-blind image deblurring, extraction of salient edges 

from reliable image structure is crucial for an accurate blur kernel estimation. Thus, it 

leads to a question on “What kind of image feature or structure of a blurred image is 

considered reliable to help in kernel estimation, and how to extract these features from a 

blurred image?”. 

3.2.2.1 Selection of good regions 

For the single-blind image deblurring problem (e.g., Fergus et al., 2008; Shan et al., 

2008; Zhang, X. et al. 2016, Zhu & Sim, 2011; Zhang, C. et al., 2018), intuitively, it is 

usually beneficial to make full use of the input blurred image. However, not all pixels of 

the input blurred image are informative. Smooth regions, for example, not only do not 

contribute much to estimating the blur kernel but can cost the kernel estimation if 

containing random noise. Therefore, it is important to detect reliable image features for 
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blur kernel estimation (Zhang, J., et al., 2014), so that the accurately estimated blur kernel 

can then be used to recover a latent sharp image with high visual quality. 

Alternatively, another group of works (Cho, S. & Lee, 2009; Joshi et al., 2008; Cho, 

T. et al., 2011; Smith 2012) focuses on the use of sharp edges in the image for blur kernel 

estimation. For example, Cho, T. et al. (2011) employed an explicated edge prediction 

step that uses the Radon Transform (Deans, 1992) for blur kernel estimation. However, 

this method has difficulty in dealing with a large blur. Generally, sharp edges can be very 

useful under proper assumptions. According to Smith (2012), the underlying assumption 

for effective use of sharp edges is that high contrast regions in the original image can 

maintain informative structure even after the motion blur. However, Xu & Jia (2010) 

argues that sharp edges do not always effective for kernel refinement in the estimation 

process, but instead in some circumstances greatly increase the estimation ambiguity. For 

example, when detected edges are smaller than the size of the blur kernel. Consequently, 

they proposed new metric co-called edge maps to measure the usefulness of the image 

edges.  Recently, many existing algorithms (e.g., Pan et al., 2013; Hu & Yang, 2015) have 

adopted edge maps for kernel estimation. 

This subsection has discussed the type of image feature or structure in a blurred image 

that can be utilized in kernel estimation. The next subsection will move on to review the 

methods used for structure extraction, particularly in the structure-texture image 

decomposition approach. 

3.2.2.2 Structure-texture image decomposition 

Texture, according to Wei et al. (2009) usually refers to surface patterns that are similar 

in appearance and local statistics, whereas structure is a cohesive whole built up of distinct 

parts. 
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In general, the structure-texture decomposition problem is formulated as finding an 

appropriate (or latent) structure by suppressing texture details in the input image. Hence, 

given an image I, in structure-texture decomposition, an image is decomposed as 

𝐼 = 𝑆 + 𝑇 (3.5) 

where S and T represent the structure elements and texture details, respectively.  

The structure-texture decomposition problem has been used in a broad range of image 

processing applications, such as image denoising (Rudin et al., 1992; Aujol et al, 2005; 

Gilles, 2007), image composition (Xu et al., 2012; Gastal & Oliveira, 2011), image 

smoothing (Perona & Malik, 1998), etc. Due to its importance, several methods have been 

proposed over the years, which in general can be divided into two categories: (1) filtering-

based approaches (Cho, Lee, Kang, & Lee, 2014; Paris, Hasinoff & Kautz, 2011; 

Karacan, Erdem & Erdem, 2013; Zhang, Q., Xu & Jia, 2014; Lee et al., 2017) and (2) 

optimization-based (Rudin et al., 1992; Hua et al., 2014; Weiss, 2006; Xu et al, 2011; Xu 

et al., 2012). 

(a) Filtering-based approaches 

Among the filtering-based approaches, the bilateral filter (Tomasi & Manduchi, 1998) 

is the widely used kernel-based edge-preserving filter. It works by weight averaging the 

colors of neighbor pixels based on their distances in space and range. Due to its simplicity 

and effectiveness, bilateral filtering has been successfully applied to several 

computational image applications (Fattal et al, 2007; Winnemoller et al. 2006).  Many 

works have been built on the bilateral filter (e.g., Durand & Dorsey, 2002; Porikli, 2008; 

Yang et al., 2009). However, all these methods usually lead to runtime and/or memory 

cost problems, due to the complexity of algorithms. 
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In (He, Sun & Tang, 2010), another filter-based approach, so-called the guided filter 

was developed to perform local linear transforms of a guidance image using a strategy 

that does not lead to gradient distortions near edges.  

To remove strong textures within images, several methods have been proposed such 

as the histogram filter (Kass & Solomon, 2010), median filter (Weiss, 2006; Ma et al., 

2013; Zhang, Q., 2014), and diffusion-based approaches (Weickert, 1998; Vanhamel, 

Pratikakis, & Sahli, 2003). These methods are capable of filtering textures to some extent 

unless the textures contain large oscillating signals.  In (Subr, Soler & Durand, 2009), the 

authors remove the strong textures within the image using computed envelopes defined 

from local extrema and smoothed out texture oscillations by averaging the envelopes. 

The domain transform method by Gastal and Oliveira (2011) delivers a significantly 

reduce computational cost in 2-D filtering by reducing the dimensionality to 1-D filtering 

operation. These methods can produce high-quality edge-preserving smoothing results 

while preserving strong textures. One limitation of this filter is not it is not rotationally 

invariant (i.e., filtering a rotated image and rotating a filtered image may produce different 

results). 

Cho et al. (2014) extend the bilateral filter to be a bilateral texture filter that uses joint 

bilateral filtering with a guidance image. The guidance image is generated via a patch 

shift mechanism. Similar to Cho et al. (2014), the rolling guidance filter (Zhang, Q., 2014) 

also uses a guidance image in joint bilateral filtering. The guidance image is based on a 

Gaussian-blurred image, it is used to eliminate only the image structures that are smaller 

than a specific scale.  

Most recently, Lee, H. et al., (2017) proposed a new gradient operator, the interval 

gradient method that adaptively smooths image gradients to filter out textures from 
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images. Using interval gradients, textures can be distinguished from structure edges and 

smoothly varying shadings.  

(b) Optimization-based approaches  

The TV method was originally proposed by Rudin et al. (1992). It is a renowned 

denoising algorithm that effectively suppresses textures of arbitrary shapes by enforcing 

TV regularization constraints on the image to preserve large-scale edges.  This approach 

has been analyzed in Meyer’s (2001) and Aujol et al. (2006). It is the inspiration source 

of many works (Vese & Osher, 2003; Aujol & Chambolle, 2005; Aubert & Aujol, 2005; 

Aujol et al, 2005; Osher et al., 2003, Xu & Jia, 2010; Pan et al., 2013).  The detailed 

mathematical study of work by Rudin et al. (1992) can be found in the work by Chambolle 

& Lions,(1997).   

According to Farbman et al. (2008), structure-texture decomposition methods based 

on the bilateral filter (e.g, Durand & Dorsey, 2002; Paris, 2007) are limited in their ability 

to extract detail at arbitrary scales, which results in halo artifacts. Instead, the authors 

introduced the weighted least squares (WLS) method in their framework to overcome 

some of these problems. It works by controlling the level of smoothing, and by forcing 

the filtered image to be smooth except at regions having large gradient values, thus 

becomes a multi-scale image decomposition method. Later, Paris et al. (2011) 

demonstrated that multi-scale detail manipulation can be achieved using a modified 

Laplacian pyramid with coefficient classification. 

In (Xu et al, 2011), L0 gradient minimization was introduced to globally optimize the 

quality of filtering by controlling the number of non-zero gradients in the image. With 

this control, it can remove low-amplitude structures and globally preserve and enhance 

salient edges, even if they are boundaries of very narrow objects.  
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As compared to filtering-based approaches, optimization-based techniques (Farbman, 

2008; Paris, 2011) are able to produce high quality results; however, their computation 

costs are higher in general. In addition, these methods cannot satisfyingly distinguish 

texture from the main structures. In their subsequent work (Xu et al. 2012), the authors 

introduced relative total variation (RTV) which allows accurate identification and 

removal of texture regions. One limitation as reported by Xu et al. (2012) is that it cannot 

distinguish between texture and structure that are similar in scales or are close with 

respect to the new variation measures. This is because their method assumes neither the 

specific type of texture nor the latent main structure arrangement. 

Except for (Xu et al., 2012), all the aforementioned studies aim at extracting structure 

from noise with edge-preserving capabilities. However, only a few of them have a specific 

goal of extracting structure from the texture. Hence, Karacan et al. (2013) proposed a 

patch-based texture removal algorithm that uses similarity measures based on region 

covariances (i.e., the covariance matrices of image features). 

This section has extensively reviewed both approaches for structure-texture image 

decomposition. Based on the review, it can be concluded that the optimization-based 

approaches (e.g., Xu et al., 2011; Xu et al., 2012; Hua et al., 2014) globally suppress the 

oscillating patterns induced from texture T while guessing the structure image S as similar 

as possible to the input image I. Although they obtain high-quality results, these methods 

are comparably complex and cannot easily be parallelized, thus not allowing the 

algorithm to handle large images and used in interactive applications. Whereby, the 

filtering-based algorithms (e.g., Cho et al, 2014; Karacan, Erdem & Erdem, 2013; Zhang, 

Q., Xu & Jia, 2014) try to design effective filter kernels to suppress texture T. Previous 

filtering approaches, however, often fail to accurately detect structure S for structure 

edges and corners.  
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This section has attempted to provide a summary of the past and current literature 

relating to kernel blur estimation for blind image deblurring. The next section will discuss 

and review, the literature that employed regularized-based approaches to solving blind 

image restoration problems. 

3.3 Reviewing Blind Image Restoration Methods 

As a fundamental problem in the field of image processing, image restoration has been 

the subject of intensive research among scholars and researchers over the decades. The 

recent reviews of this problem can be found in the work by Lai et al. (2016).  

Recovering an ideal image 𝑓(𝑥, 𝑦) from degraded image 𝑔(𝑥, 𝑦) of Equation (3.1) can 

be formulated as the minimization problem 

min
𝑓(𝑥,𝑦)

∑ |ℎ(𝑥, 𝑦) ⊗ 𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)|2𝑥,𝑦 . (3.6) 

As mentioned in Section 3.1, to obtain a good restoration result, prior knowledge of the 

image must be incorporated in solving Equation (3.4). This leads to the question of 

choosing regularization functions for Equation (3.4), or equivalently the priors of 𝑓(𝑥, 𝑦). 

However, the difficulty is that computationally efficient priors are not necessarily 

effective (e.g., Tikhonov-Millar regularization) whereas effective priors may not be 

efficient (e.g., TV regularization). Therefore, seeking a good prior to developing an 

algorithm becomes the basis of image restoration.  

There is a diverse variety of image restoration methods that have been studied in many 

articles and books (Kundur & Hatzinakos, 1996; Banham & Katsaggelos, 1997; Hansen, 

Nagy & O’Leary, 2006; Bovik, 2009; Gonzalez & Woods, 2017; Campisi & Egiazarian, 

2017).  From the viewpoint of how to handle the ill-posedness in image deblurring tasks, 

existing methods can be grouped into five categories: variational methods (e.g., Jordan 

et al., 1999;  Krishan et al., 2011; Papafitsoros & Schonlieb, 2014; Bruckstein, Donoho, 
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& Elad, 2017; Li et al., 2018; Cheng et al., 2019). Bayesian inference framework (e.g., 

Richardson 1972; Fergus et al., 2006; Levin et al., 2011; Zhang et al., 2014; Bigdeli et 

al., 2017; Cao et al., 2018), sparse representation-based methods (e.g., Chen et al., 

1998;  Elad & Aharon, 2006; Dong et al., 2013; Dong et al.,2015; Tang et al, 2018; Yu et 

al., 2019), homography-based modeling (Whyte et al., 2010; Joshi et al., 2010; Cho et 

al., 2012; Zheng et al., 2013; La Camera et al., 2015), and region-based methods (e.g., 

Levin 2006; Hirsch et al., 2010; Xu & Jia, 2012;  Kim et al., 2013; Hu & Yang, 2015; Zhi 

et al, 2017). However, this section will only focus on those that are related to the research 

problem of this Work, namely the TV regularization in variational methods and 

alternating minimization in variational Bayesian methods.  

3.3.1 Variational Methods 

Variational methods are typically used to convert an ill-posed problem into a well-

posed problem which is characterized by exploring additional information or constraints 

to reduce the size of the solution space of the unknown variables (Jordan et al., 1999). 

These types of methods stem from the calculus of variations. To approximate the problem, 

it typically involved the extremum (i.e., maximum or minimum) functional setting that 

comprises a function and the associated constraints: 

min
𝐴
𝛷(𝐴; 𝐵) + 𝜆𝛹(𝐴), (3.7) 

where A is the undetermined variables and B is the observations. In variational 

principle, 𝛷(𝐴; 𝐵) is called the data-fidelity function, 𝛹(𝐴) is the regularization function, 

and  𝜆 denotes the regularization parameter. Under this formulation, the non-blind image 

deblurring problem can be expressed as 

min
𝑓
𝛷(𝑓; 𝑔, ℎ) + 𝜆𝑓𝛹𝑓(𝑓), (3.8) 

while the blind case is 
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min
𝑓,ℎ

𝛷(𝑓; ℎ, 𝑔) + 𝜆𝑓𝛹𝑓(𝑓) + 𝜆ℎ𝛹ℎ(ℎ), (3.9) 

The term 𝛷 is determined according to the noise assumptions, such as Gaussian noise, 

Poisson noise, or impulse noise. Generally, this section assumes the Gaussian noise 

model, and the corresponding is given by 

𝛷 = ‖𝑔 − 𝑓 ⊗ ℎ‖2
2. (3.10) 

Here, this thesis will discuss the variational methods from the regularization aspect only.  

The Tikhonov-Miller regularizer (Tikhonov 1963) is the earliest regularization term 

that was used as a variational operator. Traditionally, to stabilize the deblurring result, the 

solution is expected to have a small norm. Therefore, the Tikhonov-Miller regularizer 

(Tikhonov 1963) is imposed on the sharp image as 

𝛹𝑓(𝑓) =  ‖𝑓‖
2. (3.11) 

The drawback of the Tikhonov-Miller regularizer is that it will adversely over-

smoothed edges in the deblurred image, therefore, it is rarely used in the current 

deblurring tasks. In contrast, the development of first-order regularizers which can 

preserve more significant details is more frequently adopted. One renowned example is 

the ROF model by Rudin et al (1992). Since the introduction of ROF in 1992, the TV 

problem has been a popular research problem for more than a decade. Minimizing the TV 

within an image has the effect of penalizing oscillations and noise, while still allowing 

sharp discontinuities such as edges. The TV is a norm defined as 

 𝑇𝑉𝑖(𝑓) = ‖√|∇ℎ𝑓|2 + |∇𝑣𝑓|2‖1, 
(3.12) 

where the subscript i means it is the isotropic version. Complementarily, anisotropic TV 

is 
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 𝑇𝑉𝑎(𝑓) = ‖|∇ℎ𝑓| + |∇𝑣𝑓|‖1. (3.13) 

Both 𝑇𝑉𝑖 and 𝑇𝑉𝑎 norm is effective in enhancing the edge visualization in the restored 

image. The main difference between 𝑇𝑉𝑖 and 𝑇𝑉𝑎 is regarding their sensitivity to edge 

directions. From Equations (3.12) and (3.13), it can be observed that 𝑇𝑉𝑖 enforces the 

same strength on the edges with different directions, whereas 𝑇𝑉𝑎 favors certain 

directions. Both methods have proven to be useful in numerous applications, such as 

image denoising, decomposition, super-resolution, inpainting, and non-blind deblurring 

(Bioucas-Dias, Figueiredo & Oliveira, 2006; Babacan et al., 2008; Amizic, et al., 2010; 

Afonso, Bioucas-Dias & 2010). Nevertheless, when applied to blind deblurring problems, 

some failures occur depending on the type of norm (Perrone, 2014). 

TV is intrinsically an l1-norm of the image gradients and thus induces sparsity over 

image gradients. However, it is not a direct choice for regularization in the image 

deblurring problem. The reason is that, for a sharp image of natural scenes, the gradient 

magnitude is typically sparse, meaning that most values are either zero or very small, but 

may occasionally be large. If a blur kernel is operated on this image, the high-frequency 

bands will be attenuated, leading to the magnitudes being not sparse. Consequently,  

minimizing the l1-norm on the high frequencies of the image will result in a blurry image. 

Alternatively, to preserve the original sparsity, the l0-norm that has the intrinsic property 

of being scale-invariance is a natural choice.  Minimizing l0 will only lead to a sparse 

effect, without destroying the magnitudes of large values, thus preserving the energy of 

original gradients. As a regularization term, nevertheless, l0 is difficult to optimize 

because of the lack of derivative properties, so typically the l1 will be utilized as an 

alternative to approximate l0. Unfortunately, the blurring process reduces the l1-norm of 

the gradients. Minimizing l1 fails to preserve or recover the energy of the original 
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gradients. Additionally, the scale variant property makes l1 sensitive to the setting of the 

regularization parameter λ. Due to these difficulties, various methods of approximating 

the l0-norm while maintaining the scale-invariance property are proposed. 

One notable example of the approximation is the unnatural l0 regularizer which is 

proposed by Xu et al (2013). The idea of unnaturalness stems from the observation that 

found the intermediate image results in most iterative regularized-base deblurring 

methods, only contain high-contrast and step-like structures while suppressing others. 

These images are different from natural scenes, and hence the term ’unnatural’ is 

exploited. To incorporate the step-edge properties in an unnatural representation, the 

authors utilized the unnatural l0 scheme to preserve the salient changes (i.e., the gradients) 

in the image. Given an input image𝑓, it regularizes the high-frequency part by 

manipulating gradient vectors∇∗𝑓, where ∗∈ {ℎ, 𝑣} denoting two directions, for each 

pixel 𝑖. The unnatural l0-norm regularization function is defined as 

𝛹𝑓(∇∗𝑓) =  ∑𝜓(∇∗𝑓𝑖)

𝑖

, (3.14) 

where 

𝜑(∇∗𝑓) = {
1

𝜖2
|∇∗𝑓|

2, 𝑖𝑓 |∇∗𝑓| ≤  𝜖,

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

(3.15) 

Depending on the formulation, the gradient magnitudes smaller than 𝜖 are penalized by 

(·) while the larger values result in a constant 1 in the objective function. Minimizing this 

regularizer will remove fine structures and keep useful salient details in the result. Figures 

3.3(a)-3.3(c) illustrate three plots under different values of 𝜖. When 𝜖 approaches zero, 

this regularizer can be fitted perfectly to the l0 -norm. Another property ensuring the 

unnatural l0 superior to l1 is its scale invariance property, as previously stated. By using 
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this regularization technique in the estimation of blur kernels, the deblurring performance 

has been notably improved.  

 

Figure 3.3: Visualization of different measures 

Another recent example of the approximation that works on l0-norm is Pan et al., (2017), 

where the authors exploited both gradient and intensity prior as the regularization function 

for text image deblurring.  

Besides working on the improvement of l0-norm approximation, some have attempted 

to solve the TV-norm approximation by extending the l1 norm. One notable work is from 

Krishnan et al. (2011), where the author extended the l1-norm to a normalized version as  

𝛹(∇∗) =
‖∇𝑓‖1
‖∇𝑓‖2

. (3.16) 
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In this formulation, the authors proposed a regularization function that uses the ratio of 

the l1-norm to the l2-norm on the high frequencies of an image. The simplest interpretation 

of the l1/l2 function is that it is a normalized version of l1, making it scale-invariant. To 

understand this regularizer, let us focus on the denominator, l2 norm.  In the blurring 

process, similar to l0 or l1, it also reduces the l2-norm of the gradients. Fortunately, l2 is 

reduced more than the numerator l1 norm, leading to an increased ratio of l1/l2.  Figure 

3.3(f) illustrates that the minimum of this ratio lies along the axes, which makes the blurry 

effect to drive the ratio away from the axes. Therefore, minimizing this regularizer will 

deduce the blurry effect in the image without destroying the magnitude of the true gradient 

because l1/l2 is evidently scale-invariant.  

Owing to the TV properties such as convexity, homogeneity, rotation, and translation 

invariance, over the year, the TV-norm has remained a favorite regularization function 

simply because of its flexibility in implementation. Some recent examples that adopted 

TV-norm regularizers for image deblurring tasks are those from (Yanovsky & 

Dragomiretskiy, 2018; Ma, Lou & Huang, 2017; Cheng et al., 2018). In (Yanovsky & 

Dragomiretskiy, 2018), the authors used the l1-norm TV to solve image destripping 

problems. The variational problem is solved using an alternating direction method of 

multipliers (ADMM). To overcome the suboptimal results of (Ma, Lou & Huang, 2017) 

in sparsity approximation, Cheng et al. (2018) introduce a point-wise l2-norm TV with 

hybrid hyper-laplacian and Tikhonov prior for Retinex.  

Note that the above regularizers are all based on first-order derivatives. While the 

second-order regularization techniques have proven to be useful in image denoising tasks, 

they also have been introduced to deblurring images. Lefkimmiatis et al. (2012) extended 

the first-order TV functional to two second-order cases by defining the mixed norms (e.g.,  

l1 with l∞ and l1 with l2). These regularizers are found to be able to maintain the favorable 
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properties of TV, and also can effectively suppress the staircase effect (Liang & Zhang, 

2015; Li & Hao, 2018). Rather than only enforcing the second-order regularization in 

deblurring tasks, Papafitsoros and Schönlieb (2014) applied both first- and second-order 

regularizers thus become a combined regularization function. The benefit of the combined 

function regularization is that the first-order term recovers the step-edges as well as 

possible, while the second-order term eliminates the staircase artifacts produced by the 

first-order regularizer, without introducing any severe blur in the reconstructed image.  

One limitation of most regularizers is that they are based on the local principle (i.e., 

regularizing the local structures). Fortunately, they can be overcome using the nonlocal 

principle. Inspired by the development of nonlocal TV (Gilboa & Osher 2007, 2008) in 

the image deblurring task (Lou et al., 2010), Jung et al. (2011) derived a nonlocal 

Mumford-Shah (MS) regularizer by applying the nonlocal operators to the multichannel 

approximations of the MS regularizer. Due to the nonlocal self-similarity image 

properties (as discussed in Subsection 3.1.1.1), this regularizer performs better than the 

local counterpart in various image applications.  

In a variational framework, with the utilization of the matrix-vector expression in 

Equation (3.2), the general formulation in image deblurring problem is defined as, 

 min
𝑓

1

2
‖𝑔 − 𝐻𝑓‖2 +  𝜆𝛹(𝑓), (3.17) 

where 𝜆 is the regularization parameter.  A crucial issue in solving the variational problem 

is the determination of the regularization parameter.  A good selection of the parameter 

will result in a promising deblurring result, whereas a bad choice may lead to slow 

convergence as well as the existence of severe artifacts in the results. Generally, when the 

degradation in the blurry image is significant, the value of λ needs to be set large, to reduce 

the blur as much as possible. However, in the continuing iterations, the blurry effect is 
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decreased gradually. In this case, a small value of λ is required since a large value will 

damage the fine detail in the image. By considering these effects, a direct implementation 

is to set λ from large to small according to an empirical reduction rule (Tai et al., 2011; 

Almeida & Almeida 2010; Faramarzi et al., 2013): 

 𝜆𝑡+1= 𝑚𝑎𝑥(𝜆𝑡. 𝜑, 𝝀𝒎𝒊𝒏), (3.18) 

which depends on the initial value 𝝀𝟎, the minimal value 𝝀𝒎𝒊𝒏 and the reduction factor 

𝜑 ∈ (0, 1). Usually, 𝜑 = 0.5. This setting ensures the improvement of the convergence 

speed of the algorithm if, at each step in the outer iteration, the optimal solution of its 

immediate predecessor is used as a starting point for the inner iterative steps. The adaptive 

adjustment of the parameter by considering the intermediate images in each iteration is 

more favorable. 

3.3.2 Alternating Minimization 

Solving an optimization problem over two variables in a product space is central to 

many applications in areas such as signal processing, information theory, statistics, 

control, and finance. The alternating minimization (Csiszár & Tusnády, 1984) has been 

extensively used in such applications due to its iterative nature and simplicity. Some of 

the notable works from the literature that use the alternating minimization algorithm for 

optimization are (Krishan & Fergus, 2009; Cho & Lee, 2009; Xu & Jia; 2010; Šroubek, 

& Milanfar, 2012; Liu, T., et al., 2016; Shen et al., 2014; Yang et al., 2016). 

The alternating minimization algorithm attempts to solve a minimization problem of 

the following form: given A, B and a function D: A × B → R, minimize D over A × B. 

That is, find 

 min
(𝐴,𝐵)∈𝐴𝑥𝐵

𝐷(𝐴, 𝐵) (3.23) 
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Often minimizing both variables simultaneously is not straightforward. However, 

minimizing with respect to one variable while keeping the other one fixed is often easy 

and sometimes possible analytically. In such a situation, the alternating minimization 

algorithm described next is well suited: start with an arbitrary initial point B0 ∈ B; for n 

≥ 1, iteratively compute 

 𝐴𝑛  ∈  max
𝐴 ∈𝐴

𝐷(𝐴, 𝐵𝑛−1), (3.24) 

 𝐵𝑛  ∈  max
𝐵 ∈𝐵

𝐷(𝐴 𝑁 , 𝐵), (3.25) 

In other words, instead of solving the original minimization problem over two 

variables, the alternating minimization algorithm solves a sequence of minimization 

problems over only one variable. If the algorithm converges, the converged value is 

returned as the solution to the original problem. Conditions for the convergence and 

correctness of such an algorithm, that is, conditions under which have been of interest 

since the early 1950s. 

 lim
𝑛→∞

𝐷(𝐴𝑛,  𝐵𝑛) ∈  min
(𝐴,𝐵)∈𝐴𝑥𝐵

𝐷(𝐴, 𝐵) (3.26) 

3.4 Practical Issues in Image Deblurring Design 

In practice, there are several issues usually encountered in designing the deblurring 

method. The following subsections discuss two of the most common issues, namely (1) 

boundary Condition and (2) noise and outliers. 

3.4.1 Boundary Conditions 

The image deblurring problem is often complicated by so-called boundary conditions 

(BC) caused by sharp intensity differences on the image boundaries. This is because, in 

the image deblurring task, pixels located around the boundary of the blurry image are 
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dependent upon the unknown pixels outside the observed region. Inappropriate 

processing of these pixels can bring severe artifacts. Figure 3.5 illustrates the boundary 

conditions of an image. 

 

Figure 3.4: Illustration of boundary effects on (a) an image and (b) its brief 
explanation. 

Over the years, the practical issue of boundary conditions has been taken substantial 

efforts and some excellent techniques have been developed by researchers (e.g. Matakos 

et al., 2013; Zhou, et al. 2014; Zhang, X. et al., 2017; Chen, & Zhu, 2018; Khristenko et 

al.,  2019).  Woods et al. (1995) was the first to discuss the boundary truncation artifact. 

Later, Tan et al. (1991) have discussed the boundary artifacts and proposed optimal 

window techniques. Despite that, the well-known zero-padding method (Andrew & Hunt, 

1977) that smoothes the boundary to zeros using the zero-padding method has been 

accepted as a common solution to eliminate the boundary effect. This method improves 

the image deblurring results but still compromises with some distortions, especially along 

the edges. Subsequently, Aghdasi & Ward (1996) proposed a method to smooth the edge 

by reflecting the original image to extend the image. Although this method improved the 

result further, there are not effective for dealing with images with holes or highly irregular 

shapes such as remotely sensed images. Hence, it remains as active research in image 

deblurring problem. 
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In the literature, several kinds of BC are typically utilized to formalize the boundary 

issue, which includes Zero-padding (i.e., Zero Dirichlet)(Andrew & Hunt, 1977), periodic 

Liu & Jia, 2006), reflective (also known as Neumann) (Ng et al., 1999) and anti-reflective 

(Serra-Capizzano, 2003).  Among all, the periodic BC, which assumes a periodic 

convolution, is frequently used. This condition utilizes the Fast Fourier Transform (FFT) 

and thus speeds up the optimization. The zero-padding BC works by padding the external 

region with zero values, whereas the reflective BC treats the pixels outside the image as 

a mirror reflection of those near the boundary, therefore preserves the continuities at the 

boundary. Even though these BCs make the deblurring tasks addressable and 

computationally convenient, they are intrinsically an approximate procedure and do not 

correspond to the real imaging systems. Moreover, they produce staircase artifacts in the 

deblurred image during the deconvolution process. Unlike reflective BC, anti-reflective 

BC preserves not only the continuity of image but also the continuity of the normal 

derivative. In the case of reflective or anti-reflective BC, if the PSF is strongly symmetric, 

the resulting convolution matrix H can be diagonalized by 2-D discrete cosine transform 

or 2-D discrete sine transform, respectively. Chen & Zhu, (2018) is one of the most recent 

works that applied anti-reflective BC. The good property of anti-reflective BC allows 

efficient implementation of direct filtering type methods, such as spectra filtering 

methods. However, these ‘‘reflective’’ boundary structures, which are designed for 

computation purposes, seldom exist in a real practical application. 

Instead of using the aforementioned BC, Zhou et al. (2014) treat the BC issues by 

building a relationship between the missing boundary pixel values and the available 

image data. They called their method as boundary treatment undetermined BC. This 

method was able to yield similar quality images if the observed image is not severely 

blurred, however, if the observed image is severely blurred, it failed to recover the details 

in the image boundary. Recently, Tu et al. (2015) proposed an improved edge-preserving 
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regularization (IEPR) term with structure adaptive map at blurry motion boundaries to 

reduce boundary errors that are caused by blur. However, it is compromised with the 

computational burden, as it costs about 50% of the run-time of the whole optimization 

process to reduce the boundary artifacts.  Most recently, Zhang, S. et al. (2017) have 

attempted to solve the image restoration problem with the four aforementioned BC and a 

mean BC.  In the experiments, the quantitative restoration results obtained using the anti-

reflective BC and mean are equal and higher than the other BCs. This shows that the anti-

reflective BC performs better than Dirichlet, periodic, and refective BC. 

3.4.2 Noise and Outliers 

Noises in images are typically caused by insufficient exposure time during the image 

acquisition process. While blur can be reduced by using a shorter exposure, this comes at 

an unavoidable trade-off with increased noise. Generally, if the noises in blurry images 

have not reached an extreme level, they can be effectively removed by appropriately 

choosing the parameters of the noise model using the Bayesian inference framework or 

the regularization parameters in variational methods (e.g., Fergus et al., 2006; Shan et al., 

2008; Whyte et al., 2014; Pan et al. 2016;  Hu et al., 2018). Conversely, if the noises have 

reached an extreme level,  deblurring an image with noticeable noise will produce ringing 

artifacts in the restoration results. To handle this issue, researchers from the literature will 

usually apply image denoising as a preprocessing step in the image deblurring task. For 

example, Tai and Lin (2012) applied an existing denoising algorithm as a preprocessing 

step, and successively conducted blind deconvolution on the denoised image to estimate 

the blur kernel and the sharp image. However, directly applying image denoising methods 

to the observed image often partially damages the blur information that needed to be 

extracted from the observed image, which leads to biased kernel estimation. To overcome 

this problem, Zhong et al. (2013) designed a set of denoising filters based on the 

directional filters to preserve the blur information in the orthogonal direction to the filter 
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so that the denoising operation does not affect the estimated blur kernel result. Later, 

Wong and Chan (2015) proposed to restore a burred-noisy image using bilevel 

programming to decouple the denoising and deblurring operation in different sub-

problem. Instead of handling the noise in the spatial domain, the authors applied a 

curvelet-based denoising algorithm to penalize the noise while preserving the blur 

information for the deblurring operation. 

Another source of deblurring that should be adequately addressed is outliers. One 

common outlier is saturated pixels, which usually happened when a low lighting scene is 

taken with a long exposure time, resulting in saturation in the scene with bright spots as 

illustrated in Figure 3.5.   

 
Figure 3.5: Illustration of outliers in an observed scene. 

 

According to Cho et al. (2011), outliers include all factors which cannot be explained 

by the linear convolution model defined in Equation (3.2), including dead pixels of 

sensor, saturated or clipped pixels, non-Gaussian noise, and nonlinear impulse response 

function. If these outliers are processed using the linear convolution model, it will result 
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in ringing artifacts in the restored image. Cho et al. (2011) proposed to solve the image 

deblurring problem by classifying the blurry image into two parts, namely inliers and 

outliers.  In their method, they imposed different statistical assumptions on these two parts 

in a binary map and later employed the Expectation–maximization (EM) algorithm to 

alternately find the estimation of the sharp image and the classification of the inlier/outlier 

until a reasonable restoration result is obtained.  Hu et al. (2014) and Whyte et al. (2014), 

the authors address blurred images with outliers using domain-specific properties (i.e., 

light streaks), where they explicitly take the light streaks and corresponding light sources 

into account, then pose them as constraints in a non-linear blur model for estimating the 

blur kernel in an optimization framework. However, as this method heavily relies on light 

streaks, it becomes less effective when the light streaks cannot be extracted, besides, it 

does not perform well for other types of outliers, such as non-Gaussian noise.  To improve 

the outlier handling method,  Pan et al. (2016) proposed a method that detects the regions 

of outliers to refine the edge information for blur kernel estimation. Although this method 

performs well on several kinds of outliers, e.g., saturated pixels and non-Gaussian noise, 

it comes with computational complexity. Moreover, it does not produce quality results 

when the edges are not correctly selected or the regions of outliers cannot be detected. 

Recently, Dong, J. et al., (2017) proposed computational simple algorithms to overcome 

complexity issues in the existing algorithms. According to the authors, since the outliers 

significantly affect the goodness-of-fit in function approximation, therefore, instead of 

explicitly handle the outlier, the authors proposed an algorithm to model the data fidelity 

term so that the outliers have little effect on kernel estimation. The proposed algorithm 

does not require any heuristic outlier detection step, thus it is computational much 

simpler. 
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3.5 Determining Image Quality Assessment Metrics 

The evaluation for image deblurring can be subjective quality assessment or objective 

quality assessment. The subjective quality assessment predicts the observers’ perception 

without a well-defined numerical quantification. Although the subjective image quality 

assessment is the most direct and most accurate metric to reflect a person’s perception, it 

is too subjective to cater for different persons. In contrast, objective quality assessment 

metrics can operate automatically and numerically.  

According to whether the reference clean image is available or not, existing image 

quality assessment (IQA) metrics can be generally divided into two categories: 1) full 

reference IQA; and 2) no reference IQA.  

Full reference IQA metrics assume that the clean image is available in order to 

compute a measure, while no reference IQA metrics can perform quality assessments 

without the reference image. The full reference IQA metrics, which are widely utilized to 

evaluate the performance of image deblurring algorithms include the root mean square 

error, peak signal-to-noise ratio, and the structural similarity index, improvement of 

signal-to-noise ratio, structural similarity index, and Feature-Similarity index. 

Given a restored image y ∈ Rm×n and the original clean image x ∈ Rm×n with m × n size 

dimension. 

Root Mean Square Error (RMSE): RMSE of the restored image y with reference to 

(w.r.t.) the original clean image x is defined as the square root of the mean square error 

(MSE). The RMSE is usually employed to measure the l2-norm distance between the 

denoised image and the original clean image. It is a full reference IQA metric that is 

closely related to the peak signal-to-noise ratio. Usually, a smaller RMSE value indicates 

better image quality. The definition of RMSE is: 
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𝑅𝑀𝑆𝐸(𝑥, 𝑦) =  √
1

𝑀𝑁
∑∑(𝑥𝑖𝑗 − 𝑦𝑖𝑗)

2
𝑁

𝐽=1

𝑀

𝐼=1

 

(3.27) 

Peak Signal-to-Noise Ratio (PSNR): PSNR is the most commonly used full reference 

IQA metric for many image restoration tasks. The definition of PSNR can be formulated 

as follows (for an 8-bit image): 

𝑃𝑆𝑁𝑅 = 20𝑙𝑜𝑔10 (
28

𝑅𝑀𝑆𝐸 (𝑥, 𝑦)
). 

(3.28) 

As one can see, PSNR is closely related to the l2-norm distance between two images. 

The unit of PSNR is the decibel (dB) and a higher dB value indicates better image quality 

and lower RMSE. Though PSNR is very simple and intuitive, higher PSNR does not mean 

higher visual structural similarity. Hence, researchers resort to find alternative and better 

IQA metrics. 

Improvement of Signal to Noise Ratio (ISNR): Similar to PSNR, ISNR is closely 

related to the l2-norm distance between two images. The unit of ISNR is the decibel (dB) 

and a higher dB value indicates better image quality. The definition of ISNR can be 

formulated as 

𝐼𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
∑ [𝑔(𝑥, 𝑦) − 𝑓(𝑥, 𝑦)]2𝑖𝑗

∑ [𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦)]
2

𝑖𝑗

) 
(3.29) 

Structural Similarity Index Metric (SSIM) by Wang et al. (2004): One seminal work 

in IQA is the, which is also a full reference IQA metric. In SSIM, each image patch is 

decomposed into three different components indicating three core informative parts of the 

original patch. The three components are luminance (mean value of the pixels in the 

patch), contrast (the standard deviations of the patch), and structure (the mean subtracted 
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patch). SSIM considers the fact that the human visual system is very sensitive to the 

relative changes in luminance, rather than the absolute changes in luminance.  

SSIM method can be expressed through these three terms as 

𝑆𝑆𝐼𝑀 (𝑥, 𝑦) =  [𝑙(𝑥, 𝑦)]𝛼. [𝑐(𝑥, 𝑦)]𝛽 . [𝑠(𝑥, 𝑦)]𝛾. (3.30) 

Here, l is the luminance (used to compare the brightness between two images), c is the 

contrast (used to differ the ranges between the brightest and darkest region of two images) 

and s is the structure (used to compare the local luminance pattern between two images 

to find the similarity and dissimilarity of the images) and α, β, and γ are the positive 

constants. Again luminance, contrast, and structure of an image can be expressed 

separately as: 

𝑙(𝑥, 𝑦) =  
2𝜇𝑥𝜇𝑦+ 𝐶1

𝜇𝑥
2+𝜇𝑦

2+𝐶1
’ (3.31) 

𝑐(𝑥, 𝑦) =  
2𝜎𝑥𝜎𝑦+ 𝐶2

𝜎𝑥
2+𝜎𝑦

2+𝐶2
’ (3.32) 

𝑠(𝑥, 𝑦) =  
𝜎𝑥𝑦+ 𝐶3

𝜎𝑥𝜎𝑦+𝐶3
’ (3.33) 

where µ and µ are the local means, σ and σ are the standard deviations and σ is the cross-

covariance for images x and y sequentially. If α = β = γ = 1, then the index is simplified 

as the following form using Equations (3.31) -(3.33): 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦+ 𝐶1)(2𝜎𝑥𝜎𝑦+ 𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
. (3.34) 

The value range of SSIM is between 0 and 1, where a higher value indicates higher 

similarity (SSIM=1 indicates that the two images are the same), as well as better image 

quality. From Equation (3.34), one can see that SSIM is on a normalized scale (values 

between 0 and 1) that can be expressed in the dB scale as 10log10 [SSIM (x, y)].  
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Feature-SIMilarity (FSIM) index (Zhang, L., et al. 2011): The underlying principle 

of FSIM is that the human visual system perceives an image mainly based on its salient 

low-level features. Specifically, two kinds of features, the phase congruency (PC) and the 

gradient magnitude (GM), are used in FSIM, and they represent complementary aspects 

of the image visual quality. 

Phase Congruency (PC): A new method for detecting image features is phase 

congruency. One of the important characteristics of phase congruency is that it is invariant 

to light variation in images. Besides, it is also able to detect more some interesting 

features. It stresses on the features of the image in the domain frequency. Phase 

congruency is invariant to contrast.  

Gradient magnitude (GM): The computation of the image gradient is a very traditional 

topic in digital image processing. Convolution masks are used to express the operators of 

the gradient. There are many convolutional masks to measure the gradients. If f(x) is an 

image and Gx, Gy of its horizontal and vertical gradients, respectively. Then the gradient 

magnitude of f(x) can be defined as  

√𝐺𝑥2 + 𝐺𝑦2. (3.35) 

Let two images are f1 (test image) and f2 (reference image) and their phase congruency 

can be denoted by PC1 and PC2, respectively. The Phase Congruency (PC) maps extracted 

from two images f1 and f2 and the Magnitude Gradient (GM) maps G1 and G2 extracted 

from the two images too. FSIM can be defined and calculated based on PC1, PC2, G1, and 

G2. At first, the similarity of these two images can be calculated as 

𝑆𝑃𝐶 = 
2𝑃𝐶1𝑃𝐶2𝑇

𝑃𝐶1
2 + 𝑃𝐶2

2+𝑇1
 (3.36) 

Univ
ers

iti 
Mala

ya



 

150 

where T1 is a positive constant that increases the stability of Spc. Practically T1 can be 

calculated based on the dynamic range of PC values. The above equation describes the 

measurement to determine the similarity of two positive real numbers and its range is 

within 0 to 1. 

Similarly, the similarity between G1 and G2 can be calculated as  

𝑆𝐺 = 
2𝐺1𝐺2+𝑇2

𝐺1
2 + 𝐺2

2+𝑇2
 (3.37) 

where T2 is a positive constant that depends on the dynamic range of gradient magnitude 

values. In this paper, both T1 and T2 are constant so that the FSIM can be conveniently 

used.  

Now SPC and SG are combined to calculate the similarity SL of f1 and f2. Sl can be 

defined as 

𝑆𝐿 (𝑥) = [𝑆𝑃𝐶(𝑥)]
𝜇1 . [𝑆𝐺(𝑥)]

𝜇2 . (3.38) 

where the parameters 𝜇1 and 𝜇2 are used to adjust the relative importance of PC and GM 

features. In this paper, 𝜇1 = 𝜇2 =1 is set for convenience. From Equations (3.36) to (3.38), 

it is evident that FSIM is normalized (values between 0 and 1). 

3.6 Summary 

This chapter has reviewed the ill-posed problem of blind image restoration, 

particularly the image deblurring problem. Table 3.1 summarizes the literature review of 

the existing approaches or methods that solve the ill-posed blind image restorations 

problem.  Based on the review of literature, there is a diverse variety of applied techniques 

for image restoration problems; each of them shows its importance and usefulness in 

several domains, and their goal is always to lead to better results than existing ones. 
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Nevertheless, all those techniques suffer from heavy mathematical baggage implicated to 

carry out the task, consequently, more complex formulas are developed.  

Table 3.1: Summary of approaches and methods for blind image restorations. 

Approach  
Method/ Principle Advantages Disadvantages 

Optimization approaches for a regularized-based image restoration problem. 
Pixel-based utilizes local 

structural patterns of 
the image and is 
built on the 
assumption that 
images are locally 
smooth except at 
edges. 
 

simpler algorithms and 
effective in preserving edges 
and recovering smooth 
regions. 

 
 

• smear out image details 
and cannot deal well 
with fine structures.  

• cannot characterize the 
multi-scale properties 
and multi-level 
structures of an image. 

Sparsity-based assumes that each 
patch of an image 
can be accurately 
represented by a few 
elements from a 
basis set called a 
dictionary, which is 
learned from natural 
images. 

• adaptable to the images 
through the learned 
dictionary, thereby 
enhancing the sparsity for 
image details preservation. 

• Can be modeled in 
transform domain 
coefficient that characterizes 
the multi-scale properties 
and multi-level structures of 
an image. 
 

not capable of 
characterizing the 
nonlocal self-similarity of 
an image. 

Patch-based based on a 
pointwise selection 
of small image 
patches of fixed size 
in the variable 
neighborhood of 
each pixel that can 
be modeled by a 
sparse linear 
combination of 
learnable basis 
elements. 
 

• have sparsity properties to 
improve image details 
preservation. 

• effective in characterizing 
the nonlocal self-similarity 
of an image for edge 
preservation and recovering 
smooth regions. 

 
 

requires high 
computational complexity 
as it is non-convex 
problem due to large-scale 
dictionary learning. 

Group-based Utilize a group of 
similar patches as a 
basic unit of sparse 
coding. 

• can be precisely represented 
by a sparse linear 
combination of basic 
elements of the dictionary.  

• acquires lower 
computational complexity 
than patch-based algorithms. 

 

• suffer an over-smooth 
effect in the restored 
image. 

• requires higher 
computational 
complexity compared to 
pixel- and sparsity-
based algorithms. 
 

 

Univ
ers

iti 
Mala

ya



 

152 

Table 3.1, Continued. 

Approach  
Method/ Principle Advantages Disadvantages 

Exploiting image priors for blur estimation in Blind Image Deblurring 
Gradient-

based 
utilize statistical 
priors of gradient 
distributions. 

• simpler algorithms. 
• highly effective for blur 

kernel estimation.  

highly non-convex 
models, which are 
computationally 
expensive. 

Intensities-
based 

utilize the 
knowledge on image 
intensities.  

• can be modeled in sparse 
representation. 

 
• able to restore rich textured 

regions. 

often generates 
hallucinated high-
frequency contents that 
complicate the subsequent 
kernel estimation steps. 

Low-rank 
priors 

utilize the sparsity 
(i.e., low-rankness) 
of image vector-
matrix. 

• can exploit the nonlocal self-
similarity on the patch level. 
 

• produces over-smooth 
and holo effects in the 
restored image. 

• computationally 
expensive 

Graph-based utilize the graph 
signal processing. 

• highly effective in edge 
preservation promote image 
sharpness. 

• Data-adaptive. 
 

prompt to produce an 
over-smooth effect in the 
restored image. 

Structure-texture decomposition for blur estimation in Blind Image Deblurring 
Filtering-

based 
utilize weight 
averaging of 
neighbor pixels 
based on their 
distances in space 
and range. 

simpler algorithms and can 
produce quality edge-
preserving and smoothing 
results. 

limited in their ability to 
extract detail at arbitrary 
scales, which results in 
halo artifacts. 

 

Optimization-
based 

utilize multi-scale 
detail 
decomposition in an 
iterative process. 

Produce better edge-
preserving and smoothing 
results than Filtering-based by 
suppressing the oscillating 
patterns induced from texture 
while estimating the structure 
image as similar as possible to 
the input image. 

• computation costs are 
higher than Filtering-
based.  

• cannot easily be 
parallelized. 

 
 

 

In reviewing the literature on how to make a well-posed blind image deblurring, 

several interesting findings were found. There exists a poor compromise among 

computational complexity, convergence properties, and portability of the algorithm for 

the existing blind deconvolution methods. For example, in the structure extraction method 

for blur kernel estimation. In the case of optimization-based approaches (e.g., Xu et al., 

2011; Xu et al., 2012; Hua et al., 2014), this approach can globally suppress the oscillating 

patterns induced from texture while guessing the structure image as similar as possible to 

the input image. Although they obtain high-quality results, these methods are comparably 
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complex and cannot easily be parallelized, thus not allowing the algorithm to handle large 

images and used in interactive applications. Whereby, filtering-based algorithms (Cho et 

al, 2014; Paris et al. 2011; Karacan et al. 2013; Zhang, Q. et al. 2014) are highly efficient 

as compared to the optimization approach. Besides, it can be an effective filter kernel to 

suppress texture. However, often fail to accurately detect structure for edges and corners 

of the image.  Image deblurring methods that exploit the nonlocal self-similarity methods 

have demonstrated successful results. However, they require a heavy mathematical model 

to carry out the task effectively and consequently suffer from the complexity of 

computation. 

The relative importance of each of the above factors depends on the imaging 

application. For remoted sensed images, which require a near real-time image restoration, 

reducing computational complexity and convergence speed is of the utmost importance. 

Nevertheless, the reliability of the solution is also one of the primary considerations. 

Therefore, the challenge is to design a method that exhibits the most appropriate 

compromise among computation complexity, reliability, and portability for a given 

application 

With the above considerations, this thesis proposes to exploit the TV variational 

methods to utilize nonlocal self-similarity to develop an accurate blur kernel estimation 

for on-orbit spatial characterisation. Whereas to create a well-posed problem for optical 

satellite image restoration, this thesis exploits the merit of image prior characteristic in 

both local smoothness and nonlocal self-similarity properties of an image in a hybrid 

domain (viz., space spatial and frequency), to design effective regularization terms that 

reflect these image properties. 
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CHAPTER 4: ON ORBIT SPATIAL CHARACTERISATION BASED ON 

STOCHASTIC CHARACTERISTIC TARGET 

This chapter presents a major contribution to the thesis. In this chapter, this thesis 

proposes a flexible approach for on-orbit spatial characterisation. Different from the 

existing approach, it does not require the use of a fixed-characteristic target, instead, it 

utilizes the stochastic characteristic of an imaged scene. This approach encompasses an 

image-based MTF measurement method that aims to obtain an accurate estimate of the 

Point Spread Function (PSF) kernel by solving a constrained optimization problem. To 

this end, this work presents several strategies to realize the aim of this work. First, this 

work proposes a segmentation method to select the ideal candidates for MTF 

measurement. Second, this work develops an adaptive structure selection method that 

removes detrimental structures and selects useful information for PSF estimation. Finally, 

this work puts forward a robust estimation method by introducing a spatial prior that is 

able to simultaneously suppress noises while preserving the sparsity and continuity of the 

PSF kernels for on-orbit spatial characterisation. 

4.1 Introduction 

The spatial characterisation is a nontrivial task in the calibration and validation of EOS 

data (WGCV, 2019). The MTF as intensively discussed in Chapter 2 is one important 

measure in spatial characterisation effort. It is a widely used quantifying metric for 

characterizing the spatial detail resolved by the EOS electro-optical imaging system. 

Specifically, it describes the ability of the optical system to transfer the detail (i.e., 

contrast) information of an object (e.g., a scene on the earth's surface) to an image at 

different spatial frequencies (Holst, 2017). There exist many known methods that can be 

used for measuring the MTF of an imaging system (e.g., Masaoka et al., 2014; Anam et 

al., 2019). However, for an EOS that is already in orbit, many of these known methods 
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are not applicable. The appropriate and practical method, thus, is to determine the MTF 

from its remotely sensed images with the use of specific artificial or natural targets on the 

ground (e.g., Helder et al., 2004; Pagnutii et al., 2010;  Viallefont-robinet et al., 2018).  

Based on the literature review in Section 2.2, two main challenges have been 

discovered: (1) The existing approach is non-versatile as it highly relies on the existence 

of well-separated fixed characteristic targets, and (2) while random targets methods are 

available but they are under-explored, and most of are not suitable for on-orbit 

characterisation (Xie et al., 2015).   

Natural scene inherently possesses nonlocal, self-similarity, and multiple scales 

characteristics which can be described as stochastic characteristic targets (Al-Hamdan et 

al. 2012; Bahadir & Xin, 2012). Corresponding to natural scenes, optical satellite images 

also possess those stochastic characteristics that can be decomposed from the image. 

Based on this knowledge, we, thus inspired to introduce an insight that a degradation 

spectrum (i.e the MTF) can be estimated, by analyzing the nonlocal self-similarity 

characteristics, namely the structural component, in the observed image.  

This chapter proposes a flexible approach to conduct on-orbit characterisation.  Differs 

from the existing methods that rely on the presence and manual identification of well-

separated characteristics target such as edges and lines in the image, the proposed method 

is an automatic MTF measurement method that exploits the stochastic characteristic (i.e., 

nonlocal self-similarity characteristic of image properties) using a blind image 

deconvolution (BID) method in the spatial domain.  

Based on the studies of previous work in Chapter 3, to reduce the ill-posedness of blur 

(i.e., Point Spread Function (PSF)) kernel estimation in the BID problem, this work 

develops three strategies to warrant an efficient and effective MTF measurement 

framework based as follows: First, to reduce the computation complexity in this work, a 

segmentation method is formulated to select the ideal candidates that wholly represent 
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the data precisely and effectively. Second, to remove detrimental structures and obtain 

useful information for the MTF measurement, this work develops an adaptive structure 

selection method, which can select reliable structures effectively. Finally, to preserve the 

sparsity and continuity of the PSF kernels for MTF measurement, this work proposes a 

robust PSF kernel estimation method by introducing a sparsity-based image prior. It also 

helps to suppress the noise effectively. 

The remainder of the chapter is organized as follows. Section 4.2 provides the 

philosophy that formulates the solution to the research problem. Next, Section 4.3 

introduces the proposed MTF measurement method for a flexible on-orbit spatial 

characterisation approach. Then the experimental results and discussions are provided in 

Section 4.4. Finally, Section 4.5 concludes this chapter. 

 

4.2 Problem formulation 

This section describes the important characteristic that introduces insights to formulate 

the problem. The solutions that were applied to design and develop the MTF 

Measurement framework are also described in this section. 

Image properties: Image properties inherently containing local smoothness and 

nonlocal self-similarity characteristics (Bahadir & Xin, 2012). Of particular interest is the 

nonlocal self-similarity characteristics that depict the repetitiveness of higher level 

patterns, namely the textures and structures embodied by the images within the nonlocal 

area (see Figure 4.1). Recall that the model of image degradation as described in 

subsection 2.3.1 is the convolution of an ideal image with the PSF that formed the 

observed degraded image. Therefore, these characteristics can be exploited to decouple 

the PSF, and the ideal image recorded by an EOS electro-optical imaging system. In this 

framework, this thesis defines reliable structures as the salient edges that form the 

structural component of an image.  
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(a) (b) (c) 

Figure 4.1: Illustration of image properties. (a) a region with nonlocal self-
similarity properties, (b)-(c) depict decomposition of (a) into texture and structure 

region, respectively 

Based on the studies in Chapter 3, several aspects that are critical for ensuring accurate 

MTF measurement have been identified. One of them is structure extraction; it is critical 

to ensure accurate MTF measurement because different extraction of structures may lead 

to a different radial profile of PSF. An image with a reliable image structure possesses a 

more salient edge that can be extracted to estimate the PSF radial profile will yield better 

PSF estimation results compare with an image that contains weak edges and a more 

smooth region. These can be described by the examples shown in Figure 4.2. This figure 

demonstrates that sub-images obtained from the same scene but each results in different 

PSF kernel results as highlighted in the red box, which obviously demonstrates the 

influence of image structure in the PSF estimation. 

In addition to the extraction of reliable structure, other aspects including noise 

suppression, edge restoration, and good region selection are also important for ensuring 

accurate MTF measurement. The next section will explain the important aspects of noise 

suppression, edge restoration, and good region selection, subsequently, propose the 

techniques to mitigate the problem. 
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Figure 4.2: Influence of image structure in PSF kernel estimation. The red box 
denotes the estimated PSF radial profile with respect to the structural component 

of the sub-image. In comparison, the sub-image in the bottom right corner 
contains weaker structures and a flatter region, therefore, it yields an ambiguity in 
the PSF estimation. On the contrary, sub-image in the upper left and right-corner 

sub-images yield a better PSF estimation profile, as they contain more salient 
structures (i.e., the structure of the stadium). 

In this framework, besides reliability, efficiency in processing the satellite images is 

also another crucial issue. Therefore, this work studied the influences of region selection 

(refer to Subsection 3.2.2), to determine how to extract and what kind of image structures 

within the observed image can benefit the PSF kernel processing. In consideration of all 

factors discussed in the literature review, this work decided to select a salient structure 

with the use of an edge map. Here, the area and the size of a good region to select will be 

discussed. 

Good region selection: To estimate the PSF of a single image, intuitively, one will 

consider using the whole image, since it is a sole representation of that image. However, 

studies demonstrated that regions with short length edges could adversely affect the 

deblurring results (Joshi et al. 2008, Hu & Yang, 2015). Besides, it may cause 

computational efficiency issues. For example, given a high-resolution optical satellite 

image with a 4096 × 4096-pixel size, it is rather time-consuming to apply deblurring 
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algorithms with the whole image. Hence, the obvious solution is to select a region within 

the input image to estimate a blur kernel. The selection process can often be partly 

alleviated by manual selection; however, this requires tedious human intervention. 

Therefore, an automatic method to select a good region is proposed in this work, in other 

words, a segmentation method to select ideal candidates for PSF estimation. This work 

will demonstrate that using a region of the blurred image for kernel estimation may render 

better deblurring results rather than using the whole image in Subsection 4.4.2. 

Next, let us return briefly to the fundamental of the image degradation model and 

describe the philosophy that guides the problem formulation of this framework. 

Image degradation model: No instrument, remote-sensing imaging systems 

included, can measure a physical signal with infinite precision (Schowengerdt, 2007). 

Without loss of generality, this work recalls the image formation model.  

If 𝑓(𝑥, 𝑦)  represents an input signal and ℎ(𝑥, 𝑦) is a linear, spatially-invariant 

operator, then generally, the output signal 𝑔(𝑥, 𝑦) of the instruments (i.e., EOS electro-

optic imaging system) can be expressed as 

𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) ⊗  ℎ(𝑥, 𝑦) + 𝜂(𝑥, 𝑦), (4.1) 

which reads “the output signal equals the input signal convolved ⊗ with the system 

response.”  Note that x and y are continuous variables in the x- and y-plane, respectively.  

According to the convolution theorem, the spatial domain convolution between ℎ(𝑥, 𝑦) 

and 𝑓(𝑥, 𝑦) can be expressed in the frequency domain as the multiplication of the Fourier 

transforms (FT) of those quantities.  In other words, the system’s output is computed in 

the frequency domain according to the following equation: 

𝐺(𝑢, 𝑣)  =  𝐻(𝑢, 𝑣) ∘ 𝐹(𝑢, 𝑣) + 𝑁(𝑢, 𝑣). (4.2) 
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where u and v are the spatial frequency coordinates; 𝐺(𝑢, 𝑣), 𝐹(𝑢, 𝑣) and 𝑁(𝑢, 𝑣)denote 

the degraded image spectrum, the ideal image spectrum, and random noise spectrum, 

respectively; and 𝐻(𝑢, 𝑣)denotes the optical transfer function (OTF). The symbol ∘⃘ 

denotes an element-wise multiplication operator.  

Suppose for a moment that ℎ(𝑥, 𝑦)is unknown and a unit impulse (i.e., a point of a 

light source) is applied to the system.  Assuming that the Fourier transform of a unit 

impulse, 𝐹(𝑢, 𝑣), is equal to one; therefore, based on Equation (4.2), the inverse Fourier 

transform of the output, 𝐺(𝑢, 𝑣), will result in ℎ(𝑥, 𝑦).  Alternatively, applying the 

impulse as an input signal directly yields ℎ(𝑥, 𝑦) for the output signal.  Thus, the inverse 

transform of the system transfer function, ℎ(𝑥, 𝑦), can be known as the impulse response 

in linear spatially-invariant systems theory.  In optics, ℎ(𝑥, 𝑦), the inverse of the OTF, is 

called the PSF (Gonzalez & Woods, 2017). Hence, the OTF and the PSF of an imaging 

system, is thus, constitute an FT pair, which can be defined as follows: 

Definition 4.1: Given a remotely sensed image, the on-orbit characterisation problem is 

to determine its MTF by the modulus of the system PSF, which, in turn, is the FT of the 

system’s PSF described as: 

𝑀𝑇𝐹(𝑢, 𝑣) =
|𝐻(𝑢,𝑣 )|

|𝐻(0,0)|
,  𝐻(𝑢, 𝑣) = Ƒ{𝑃𝑆𝐹(𝑥, 𝑦)}. (4.3) 

where Ƒ represents the FT.  

Explanation of the proposal to make use of digital image processing techniques to 

develop a method for on-orbit MTF measurement will be described in the following 

subsection. 

BID problem: To estimate the PSF in Equation (4.3), this work seeks a solution in digital 

natural image processing techniques. Of particular the BID technique is used to recover 
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image sharpness and signal-to-noise ratio. With reference to Equation (4.1), it is obvious 

that one major task in BID processing is the estimation of the two-dimensional (2-D) 

kernel function, ℎ(𝑥, 𝑦) of the degraded image, 𝑔(𝑥, 𝑦),  which is the PSF.  The net 2-D 

sensor of PSF for electro-optical imaging consists of several components.  Nevertheless, 

based on the literature review in Section 2.1, an important assumption in EOS electro-

optical imaging is that the net 2-D sensor PSF is given by a product of two 1-D PSFs in 

the cross-track and along-track directions (Schowengerdt, 2007). Therefore, the PSF can 

be determined based on this assumption as follows: 

Definition 4.2: Given a remotely sensed image, the estimated 2-D kernel function can be 

defined as the PSF of the in-flight EOS electro-optical imaging system as 

𝑃𝑆𝐹𝑛𝑒𝑡(𝑥, 𝑦) = 𝑃𝑆𝐹𝑐(𝑥)𝑃𝑆𝐹𝑎(𝑦). (4.4) 

where 𝑃𝑆𝐹𝑐(𝑥) and 𝑃𝑆𝐹𝑎(𝑦) is the output measurement of this framework. Accordingly, 

they represent the 1-D PSF in the cross-track and along-track directions, respectively. 

By the definition of 2-D convolution and lexicographically ordering of the image data, 

Equation (4.1) can be expressed in vector-matrix form as  

𝑔 = 𝑓ℎ +  𝜂. (4.5) 

Solving for h and f simultaneously in Equation (4.5) is an ill-posed non-linear 

minimization problem. As discussed in Chapter 3, the problem is generally intractable, 

unless prior knowledge on h or f is assumed to be available to stabilize the solution space.  

Given an observed g, therefore, this work proposes to estimate the PSF kernel h by 

solving the following constrained optimization problem with l2-norm regularization. 

𝐶(𝑓, ℎ) =  ‖𝑔 − ℎ⊗𝑓‖2
2 + λ𝛹(ℎ) + γ𝛹(𝑓), (4.6) 
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where 𝐶(𝑓, ℎ) is the cost function with respect to the unknown f and h. The first term, 

‖𝑔 − ℎ⊗𝑓‖2
2 is the data fitting function that ensures the fidelity between the observed 

images (i.e., degraded image) and the latent sharp image (i.e., ideal image). The last two 

terms, 𝛹(ℎ) and 𝛹(𝑓)  are the priors function, which models the priors distributions of 

the PSF and the latent sharp image, respectively. Variables λ and γ are the corresponding 

regularization parameters to balance the trade-off between the data fidelity function and 

the priors function. The intended outputs from this cost function are the 2-D PSFs, which 

later will be processed to become one single 1-D PSF. The MTF can be directly found by 

taking the 1-D Fast FT of the 1-D PSF. 

So far, this work has explained how the research problem in this framework is 

formulated. The next section will establish the framework for on-orbit spatial 

characterisation through the estimation of MTF from image structures. 

4.3 MTF measurement from Image Structures 

This section provides an extensive explanation of the development of a new approach 

to on-orbit spatial characterisation. Figure 4.3 illustrates the overall framework of the 

proposed MTF measurement method. The process of this framework is divided into three 

phases: (1) Selection of ideal candidates, (2) Robust PSF estimation, and (3) MTF 

calculation.  

Accordingly, this work begins with the development of a method for the selection of 

ideal candidates; the ideal candidates are the sub-images with reliable structure, which 

will be used as input to the second phase of the framework.  The second framework which 

is the robust PSF estimation method is the core of this framework that aims to derivate 

accurate PSFs estimate. In order to achieve that aim, this work adopts a strategy named 

alternating minimization (AM) that was originally proposed by You and Kaweh (1996) 

to solve the cost function in Equation (4.6). After completed the PSFs kernel estimation 
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process for all ideal candidates, finally, the third phase will input the PSFs estimate. With 

the underlying assumption that the PSF is linear Spatially-invariant, in Phase 3: MTF 

calculation, this work interlaces all PSF kernel to become one single PSF kernel to wholly 

represent the PSF of the original imaged scene. The FWHM value of PSF and MTF at the 

Nyquist frequency is derived to ultimately quantify the spatial quality of the EOS optical 

imaging system and its data product.  

 

Figure 4.3: The framework of the proposed on-orbit MTF measurement 

Accordingly, this work begins with the development of a method for the selection of 

ideal candidates; the ideal candidates are the sub-images with reliable structure, which 

will be used as input to the second phase of the framework.  The second framework which 

is the robust PSF estimation method is the core of this framework that aims to derivate 

accurate PSFs estimate. In order to achieve that aim, this work adopts a strategy named 

alternating minimization (AM) that was originally proposed by You and Kaweh (1996) 

to solve the cost function in Equation (4.6). After completed the PSFs kernel estimation 

process for all ideal candidates, finally, the third phase will input the PSFs estimate. With 

the underlying assumption that the PSF is linear Spatially-invariant, in Phase 3: MTF 

calculation, this work interlaces all PSF kernel to become one single PSF kernel to wholly 
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represent the PSF of the original imaged scene. The FWHM value of PSF and MTF at the 

Nyquist frequency is derived to ultimately quantify the spatial quality of the EOS optical 

imaging system and its data product.  

The subsections that follow will discuss each of the phases in detail. 

4.3.1 Phase 1: Selection of Ideal Candidates 

Generally, satellite images are large in size, intuitively, using the whole image for PSF 

kernel estimation is computationally expensive. Therefore, to reduce the computational 

burden, this work adopts two strategies as follows: 

First, to utilize intensity derivatives (i.e., gradient value) rather than intensity (i.e., 

pixel value) in the optimization function for PSF kernel estimation. Since an image 

gradient depicts a directional change in the intensity of an image, therefore, it highlights 

the edge of image features which is effective in determining the image structure. Using 

only the image gradient, the numerical optimization process of Equation (4.6) can be 

accelerated by excluding pixel values in the formulation.  

Second, instead of using the whole image, the original scene is split into segments of 

sub-images and creates a gradient profile for each of the sub-image. Among the sub-

images, only those with salient edges will be selected as ideal candidates for PSF 

estimation. The radiometric resolution of images is then measured, where each bit 

typically records an exponent of power 2. So, the processing time for an image is expected 

to run in O(N2). This work conducted an analysis to decide on the size of sub-images, as 

it is using good region selection based on edge map, a 28 × 28 sub-image size was found 

sufficient, therefore the size of the sub-image is fixed to 28 × 28.  

The strategies used to reduce the computational burden in this framework have been 

explained in this subsection. The next subsection will explain how to select the ideal 

candidates, which will be used as the inputs to the proposed PSF estimation method. 
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4.3.1.1 r-map for potential candidate selection 

In this phase, first, the observed image g of size 2n × 2n is split into a total of sub-

images, j with the size of 28 × 28. 

𝑔 ↦ {�̃�1,�̃�2,...�̃�𝑗,: j = (2𝑛 28⁄ )2} , (4.7) 

As discussed in subsection 3.2.2, insignificant edges will make PSF estimation 

vulnerable to noise. Besides, this work cannot estimate a PSF kernel on a region with a 

constant intensity. Hence, to select ideal candidates for PSF estimation, this work 

proposes to use a technique that capable of measuring useful gradient in the sub-image.   

Inspired by the structure extraction method proposed by Xu and Jia (2012), this work 

adopted their ideal and used a relative windowed TV to select reliable candidates from 

the Equation (4.7). 

For each pixel 𝑥 ∈ 𝑔, 𝑟(𝑥) measures the usefulness of gradients by 

𝑟(𝑥) =
‖∑ 𝛻�̃�(𝑦)𝑦⋲𝑁𝑚(𝑥) ‖

∑ ‖𝛻�̃�(𝑦)‖𝑦⋲𝑁𝑚(𝑥) + 𝛽
, 

(4.8) 

where �̃� denotes the sub-image and Nm(x) is an m × m window centered at pixel 𝑥. The 

∑ ‖𝛻�̃�(𝑦)‖𝑦⋲𝑁𝑚(𝑥)  measures the absolute spatial difference within 𝑁𝑚(𝑥) , while 

‖∑ 𝛻�̃�(𝑦)𝑦⋲𝑁𝑚(𝑥) ‖ captures of the overall spatial variation of 𝛻�̃�(𝑦). The β in Equation 

(4.8) is a control parameter. It is used to avoid division by zero that causes invalid data 

outputs. This parameter is set as a small positive number with 0 < β < 1).  Empirical 

analysis shows that higher β filter out more image gradient results in the possibility of 

exclusion of salient edges, in contrast, smaller β may retain more small-scale structures 

that could adversely affect the selection results, since it inevitable random noise. Hence, 

for this work, the β is set to 0.5, which the average value, since statistically, it measures 

the central tendency of the r-map profile to retain useful edges. For the relative window, 

this work uses a size of 5 × 5 window. A small r implies that the local region is flat, 

whereas a large r implies exist of strong image structures in the local window.  Figure 4.4 
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shows examples of sub-image with two different image properties, where Figure 4.4(a) 

contains mainly local smooth properties, whereas Figure 4.4(c) contains mainly nonlocal 

self-similarity properties. Figures 4.4(b) and 4.4(d) are the r-map profile derived using 

Equation (4.8) for Figures.4.4 (a) and 4.4(c), respectively.  It can be noticed that the 

structure magnitude of Figure 4.4(b) is very weak compared to Figure 4.4(d), which 

exhibits small r-map profile values. Note that the r value is a decimal value comprised 

between 0 and 1, the closer the r value to 1 the stronger the structure magnitude, vice 

versa. 

 

Figure 4.4: Examples of r-map profile: a sub-image with (a) and (b) local 
smoothness properties and its r-map profile. (c) and (d) nonlocal self-similarity 

properties and its r-map profile 

Although large r implies the existence of strong image structures in the sub-image, it 

might not necessarily have the salient edge that is suitable for PSF kernel estimation. 

Therefore, this work proposes additional criteria to filter unreliable candidates in the 

following subsection. 
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4.3.1.2 Determining ideal candidates 

To warrant reliable structures, the ideal candidates are selected according to the 

following criteria: Let �̃�𝑟𝑚𝑎𝑥 be the sub-image with the largest r, measure the variance 

values, 𝜎2 of r. The potential candidates, �́� are selected from  

�́�(𝑖 + 1)  ↤  { �̃�𝑖..𝑗 ∶ 𝑟 >  𝑡, 𝑖 = 1,… 𝑗}, (4.9) 

where t is the threshold value of pT × (𝜎2) �̃�𝑟𝑚𝑎𝑥.  pT is a value ranging from 0% to 100%. 

Recall that the proposed PSF estimation method is based on the BID method in the 

spatial domain. BID is an ill-posed problem, therefore, the predefined assumption that 

sub-image with the highest variance value of r, �̃�𝑟𝑚𝑎𝑥 is the most perfect candidate for 

PSF kernel estimation may not be always true. However, there is a certainty about the 

existence of strong image structures in the sub-image. Therefore, more potential 

candidates can be included to increase the sample size, to reduce the uncertainty of the 

estimation result. To determine the preliminary threshold value to include potential 

candidates, an analysis was conducted using 10 data samples with synthetic Gaussian blur 

with 2.6 standard deviations (SD). As mentioned in subsection 4.3.1.1, the predetermined 

pixel size for the sub-image is 28 × 28. Therefore, each data sample with a pixel size of 

4096 x 4096 will obtain 256 sub-images. By applying 75% × (𝜎2) �̃�𝑟𝑚𝑎𝑥 as initial 

threshold rule (which is about one-sigma confidence interval), the selected sub-images 

are expected to have at least 75%  r variance values. In this analysis, from the 10 groups 

of 256 subimages, the obtained minimum, maximum and mean value of sub-images is 

42, 104, and 79, respectively. Furthermore, from these sub-images, three sets of 30 sub-

images with approximately 75% of r variance values are selected for further analysis.  

The purpose of further analysis is to measure the relative SD of the FWHM value at PSF 

from the selected sub-images. The FWHM value at PSF of the selected sub-images is 

derived using the existing edge method of Khom (2004). Table 4.1 tabulates the results 
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of this analysis.  The data analysis yields a relative SD of < 1.9% of FWHM value at PSF 

among the selected sub-images, which demonstrates high precision measurement. With 

the resulting relative SD and the mean value. Therefore, based on the empirical analysis, 

75% × (𝜎2) �̃�𝑟𝑚𝑎𝑥is a good choice for the inclusion of potential candidates.  Moreover, 

by taking 30 sub-images instead of  79 (mean value) sub-images, the results of this 

analysis also demonstrate that the input image for PSF estimation can be reduced.   

Table 4.1: The FWHM of PSF for 3 x 30 sub-images of approximately 75% of r 
variance values 

Gaussian blur, σ = 2.6; FWHM of Ground truth = 6.13 pixel 
Sample 1: Average = 6.12 pixel;  SD = 0.12; Relative SD = 1.90% 

6.21 6.14 6.29 6.09 5.99 6.29 
6.21 6.21 5.82 5.90 6.10 6.16 
6.25 6.06 6.21 6.16 5.82 6.08 
6.04 6.17 6.02 6.18 6.20 6.06 
6.19 6.13 6.19 6.21 6.17 6.14 

Sample 2:  Average = 6.15 pixel;  SD = 0.04; Relative SD = 0.66% 
6.13 6.17 6.12 6.09 6.21 6.09 
6.14 6.12 6.17 6.14 6.17 6.11 
6.19 6.13 6.08 6.12 6.17 6.14 
6.17 6.11 6.12 6.11 6.21 6.12 
6.16 6.16 6.14 6.12 6.19 6.11 

Sample 3: Average = 6.14 pixel;  SD = 0.10; Relative SD = 1.60% 

6.20 6.04 6.15 6.07 6.17 6.21 

6.16 6.25 6.15 6.14 6.11 6.04 

6.06 6.14 6.12 6.19 6.02 6.23 

6.15 6.25 6.29 6.09 5.77 6.19 

6.21 6.06 6.25 6.21 6.13 6.06 

      

 

Since the computational time is the other concern in this framework, so this work 

chooses to limit the input images by only including those sub-images with a 10% 

deviation of variance values from (𝜎2) �̃�𝑟𝑚𝑎𝑥.  The threshold is selected by multiply the 

(𝜎2) �̃�𝑟𝑚𝑎𝑥 with a value ranging from 75% to 90%, depending on the intuitive judgment 

on the characteristic of the input images. For instance, if the input image consists of more 
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urban areas, the value can be higher than 85%, else it should be lower but not lesser than 

75%. In the experiment of this work, the pT is set to 90%, this is because from the 

preliminary analysis that uses 10 data samples, on average there are more than 30 

candidates can be selected from each data sample, and previous analyses also show that 

this amount is sufficient.  

Figure 4.5 shows an example of sub-images from Equation (4.10) with its respective r 

map profile by Equation (4.9).  Based on the analysis, with r5 as the �̃�𝑟𝑚𝑎𝑥, the percentage 

of r variance values relative to �̃�𝑟𝑚𝑎𝑥 for r1, r2, r3 and r4 is 9.8%, 28.2%, 93.5% and 

98.8%, respectively. Since r3 and r4 exceeded the predefined threshold value, therefore, 

they are selected as the potential candidates. From Figure 4.6, it is clearly shown that r3, 

r4, and r5 contain strong image structures in the sub-image.   

 

�̃�1 �̃�2 �̃�3 �̃�4 �̃�5 
  (a)   

 

r1 r2 r3 r4 r5 
𝜎𝑟1
2 = 0.004 𝜎𝑟2

2 = 0.012 𝜎𝑟3
2 = 0.036 𝜎𝑟4

2 = 0.038 𝜎𝑟5
2 = 0.039 

(b) 
Figure 4.5: Sub-images with its r map profile: (a) images �̃�𝟏..𝟓 are some of the 

sub-images from the segmentation process and (b) images are the respective r map 
profile (with variance values) of each sub-image from (a).  

To further reduce the computation effort, the number of ideal candidates, 𝑐 ̂ to be 

selected for phase 2 is determined by 
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𝑐 ̂ = {𝑐 =
√𝑗

2
, �̈� ≥ 𝑐

�̈�,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

(4.10) 

where �̈� is the total number of potential candidates from sub-images, �́�(𝑖 + 1). The ideal 

candidates, therefore, are described as �́�𝑖
𝑝 ↦ {�́�𝑖, �́�𝑖+ 1,..,.�́�𝑝: i = 1, 2…�̈� }. 

The next subsection will discuss all methods used to solve the proposed robust PSF 

estimation in the second phase of the proposed framework. 

4.3.2 Phase 2: Robust PSF Estimation 

In this phase, the PSF estimation method is formulated as a constrained optimization 

problem. It is the core of the proposed on-orbit spatial characterisation Framework.  

As was mentioned in Section 4.2, to enable accurate PSF kernel estimation, two 

important aspects other than the good region selection and reliable structure extraction, 

are the ability of algorithms to restore a sharp edge and suppress noise in the smooth 

regions.  In fact, to achieve sharp edge restoration and noise suppression, it is critical to 

select only useful or reliable structures within the ideal candidates as the input for PSF 

kernel estimation. For that reason, the priors function in Equation (4.6) is decoupled into 

two steps: (1) PSF kernel estimation and (2) latent image estimation, and alternately 

optimize the ℎ and 𝑓 to progressively refine the PSF kernel at the k-th iteration, such that 

the Equation (4.6) becomes 

{

ℎ𝑘+1

𝑓𝑘+1

 
= min

ℎ
 ‖𝑔 − ℎ𝑘⊕𝑓‖2

2 + 𝜆ℎ𝛹ℎ(ℎ), (4.11) 

= min
𝑓

 ‖𝑔 − ℎ⊕𝑓𝑘‖2
2 +𝜆𝑓𝛹𝑓(𝑓). (4.12) 

The fact that noise suppression in smooth regions is important, is because such regions 

usually occupy much larger areas than strong edges in an image. If the noise has not been 

suppressed in smooth regions, the data fitting function in Equation (4.12) would be 
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significantly affected by the noise, compromising the accuracy of kernel estimation from 

strong edges in Equation (4.11).  

Since this work is using the alternating minimization approach and its convergence 

rate depends heavily on the initial guess, one method to improve the search is by building 

a multi-scale image pyramid. Hence, a multi-scale image pyramid is developed to perform 

the optimization process of PSF kernel estimation (i.e., Equation (4.11)) and latent image 

estimation (i.e., Equation (4.12)) step in a coarse-to-fine approach. This kind of setup is 

useful to avoid convergence to unfavourable local minima. Given an ideal candidate, 

�́�𝑖
𝑝, an image pyramid is constructed with a scaling factor of √2

2
 to get the coarsest level. 

By starting from the coarsest level, the sharp and large-scale edges can be predicted in 

low resolution, where the extent of degradation has been narrowed and most of the edges 

can be predicted without severe localization errors. The number of pyramid levels is 

adaptively determined by the size of the PSF kernel. In this experiments, the kernel size 

was specified by the user, however, empirically, it did not have much influence on the 

accuracy of PSF kernel estimation if the size is large enough to contain the estimated 

kernel.  

In this work, the size of the PSF kernel at the coarsest pyramid level is a 7 × 7 kernel. 

Start with the coarsest level, the PSF kernel, h in Equation (4.11) and the latent image, f 

in Equation (4.12) is updated alternately at each level of the pyramid and propagates the 

solution to the next finer level. At each pyramid level, this work performed five iterations 

to estimate the latent image and up-sampled it to the next finer level by bilinear 

interpolation. 
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The overall process of the PSF estimation phase has been described in this subsection. 

Thus, the following subsections will move on to describe the steps for PSF kernel 

estimation and latent image estimation in further detail. 

4.3.2.1 Step 1: PSF kernel estimation 

Estimation of PSF relies on solving the problem in Equation (4.11), which is a least-

square fitting problem. The minimizer of Equation (4.11) is to best fit the solution to g 

and h. If f is the true estimate, then the minimizer h is the best solution to the original 

problem in the l2-norm residue sense. If f is an incorrect estimate, then h cannot be the 

solution of the original problem, even if it is the minimizer of Equation (4.11). 

In the early success of the single BID problem, Fergus et al. (2006) pointed out that h 

can be better estimated if f is replaced by ∇f, where ∇f is the image gradient of 𝑓. The 

idea can be intuitively understood by observing Figure 4.6, which shows an image blurred 

by different variance σ2 of Gaussian PSFs. When the variance of the Gaussian PSF 

increases, the texture of the image is smeared out, but the edges can remain to be seen 

clearly. This result implies that a significant portion of the information is preserved in ∇f. 

Hence, similar to the method for the selection of ideal candidates in Subsection 4.3.1, the 

image gradient is utilized rather than image intensity. The minimization in Equation 

(4.11), thus can be rewritten as 
 

min
ℎ
 ‖∇𝑔 − ℎ⊗ ∇𝑓‖2

2 + 𝜆ℎ‖ℎ‖𝛼
𝛼, (4.13) 

where ∇𝑓 = [𝜕𝑥 𝑓, 𝜕𝑦 𝑓]𝑇 is the gradient of 𝑓, and 0 < 𝛼 ≤ 2. 

The drawback of Equation (4.13) is that it relies on the initial estimation of ∇𝑓, which 

suggests that ∇𝑓 must be sharp, for otherwise ℎ ⊗ ∇𝑓 is not a good estimate of ∇𝑔. So, 

the question now is: how to obtain a sharp ∇𝑓 without solving the h? There exists an edge 

sharpening technique, such as the renowned shock filter by Osher & Rudin (1990). 

However, even if a sharp ∇𝑓 that denotes all edges of the image is available, it generally 
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includes both strong and weak edges. Furthermore, studies have shown that more edges 

do not necessarily benefit kernel estimation.  

 

Figure 4.6: An image is blurred using Gaussian PSFs with different variance 
σ2.The texture regions are smoothed when σ increases, but strong edges are still 

clearly seen although blurred. 

Taking all these factors into consideration, this work further studies the nonlocal self-

similarity characteristic of an image. It is ubiquitous that the structural component of an 

image contains major objects in the image, whereas the texture component comprises the 

fine-scale details and noise. Therefore, as was mentioned in Section 4.2, the capability to 

extract reliable structures is critical to ensure accurate MTF measurement because 

different extraction of structures can lead to different PSF estimation results. In addition, 

although the r-map from Equation (4.8) contains structure information of the ideal 

candidate, some of them often contain many small-scale structures that usually lead to 

large kernel estimation errors. Thus, this work target extracting more reliable structures 

using several key steps, which will be explained in the next subsection.  
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(a) Extraction of reliable structure 

As aforementioned, the texture component contains fine-scale details and noise that 

will jeopardize the kernel estimation results. Hence, to increase the robustness of 

extracting reliable structure, this work employs a structure–texture decomposition method 

to exclude the texture component. TV regularizer method, as originally proposed in 

Rudin, Osher & Fatemi (1992) is known to be one of the best for preserving large-scale 

edges in the structure–texture decomposition methods.  

A study by Aujol et al. (2006) that compared four different models of TV (Rudin, 

Osher & Fatemi, 1992; Aujol et al, 2006; Yin et al., 2005;  Meyer, 2001), concluded that 

the TV-l2 model of Rudin et al. (1992) is the most favorable to use for unknown texture 

pattern. Therefore, this work adopts the TV-l2 model that uses a quadratic penalty to 

enforce structural similarity between the input and output. This model is expressed as  
 

min
�́�𝑠
∑{

1

2µ
‖�́�𝑠- �́�‖2

2 + ‖𝛻�́�𝑠‖2}, (4.14) 

where �́�𝑠 is the decomposed structure from the ideal candidate, �́�𝑖
𝑝, and µ is an adjustable 

parameter that requires extensive manual-tuning. The data fidelity function‖�́�𝑠- �́�‖2
2 is to 

make the extracted structures similar to those in the input image. ∑‖𝛻�́�𝑠‖2 is a TV 

regularizer. Although highly effective for denoising, the l2-norm also penalizes large 

gradient magnitudes that possibly affect contrast during denoising. It causes an 

undesirable effect such as staircasing in the smooth region.  

Studies in Subsection 3.1.1.2 found that image gradients typically exhibit heavy-tailed 

distributions, which can be fitted by the hyper-laplacian model.  As such, to mitigate this 

staircasing effect by the model in the Equation (4.14), the µ is replaced with a hyper-

laplacian prior, 𝜔(𝑥), and incorporate r(x) as defined in Equation (4.8) as an adaptive 
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smoothness weight to Equation (4.14) such that it becomes a sparse adaptive model 

defined as  

𝑚𝑖𝑛
�́�𝑠
∑{

1

2𝜔(𝑥)
‖�́�𝑠- �́�‖2

2 + ‖𝛻�́�𝑠‖2}, where 𝜔(𝑥) = 𝑒−‖𝑟(𝑥)‖0.8, (4.15) 

To demonstrate the validity of Equation (4.15), an experiment as shown in Figure 4.7 

was conducted in this work.   

 

Figure 4.7: Comparison of the latent image results with Equations (4.14) and 
(4.15), respectively. (a) Original image, (b) and (c) blurred image with closed-up 

view, (d) structures extraction with Equation (4.15), (e) and (f) results with 
Equation (4.15), (g) structures extraction with Equation (4.14), and (h) and (i) 

results with Equation (4.14). 

From Figure 4.7(b), it can be visualized that the blurred image contains some vague 

structures, which may have detrimental effects on PSF kernel estimation. But with the 

sparse adaptive smoothness weight of r(x) from Equation (4.8), it can be noticed that more 

reliable structures are extracted in Figure 4.7(d) for PSF estimation. In addition, the close-
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up view from Figure 4.7(f) shows a much sharper image without a staircasing effect. 

Figures 4.7(h) and 4.7(i) show latent image results obtained by Equation (4.14) after an 

exhausting tuning of parameter µ.  To quantify the validity of Equation 4.15, this work 

uses the structural similarity index (SSIM) quality assessment of Wang et al. (2004). The 

SSM index is a decimal value comprised between -1 and 1, where the closer the SSIM 

value to 1 the higher is the quality of the measured image. In comparison, Equation (4.15) 

obtains a higher SSIM value (0.98) as compared to Equation (4.14)(0.81). These 

experimental results demonstrate that the latent image by the Equation (4.15) is 

significantly better than the Equation (4.14). 

After obtained the �́�𝑠, the structure will be enhanced using the shock filter of Osher & 

Rudin (1990) and further enhance by diminishing the small gradient value using the 

Heaviside step function to ensure that only salient structures with large gradient values 

remain for kernel estimation. 

 The shock filter is an iterative algorithm developed for anisotropic diffusion problems. 

Given an image �́�𝑠, in the k-th iteration of the shock filter, the algorithm will iteratively 

update the image as 

�̌�𝑠
𝑘+1 = �̌�𝑠

𝑘 − 𝛽sign(∆�́�𝑠
𝑘)‖∇�́�𝑠

𝑘‖
2
. (4.16) 

where ∆�́�𝑠 = �́�𝑠𝑥
2�́�𝑠𝑥𝑥 + 2�́�𝑠𝑥�́�𝑠𝑦�́�𝑠𝑥𝑦 + �́�𝑠𝑦

2 �́�𝑠𝑦𝑦is the Laplacian of �́�𝑠, 𝛽(=1) is the 

step size. 

The final selected salient structures for kernel estimation, thus, are determined as 

𝛻𝑠 = 𝛻�̌�𝑠 . П(‖𝛻�̌�𝑠‖2, 𝜏𝑠) (4.17) 

where �̌�𝑠 denotes the shock filtered images using Equation (4.16), П(. ) is the Heaviside 

step function, and 𝜏𝑠 is a threshold of the gradient magnitude, ‖𝛻�̌�𝑠‖2.  П(. ) outputs ones 
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for (‖𝛻�̌�𝑠‖2  ≥  𝜏𝑠) and zeros otherwise. By applyingП(. ), some noise in the 𝛻�̌�𝑠 can be 

eliminated and maintaining only useful salient edges for kernel estimation.  

 
(a) �́�𝑠 (b) �̌�𝑠 (c) 𝛻𝑠 

Figure 4.8: Illustration for the extraction of reliable structure. (a) Structure 
�́�𝒔extracted using Equation (4.15), (b) shock filtered image �̌�𝒔 by Equation (4.16), 

and (c) Salient structure 𝜵𝒔 by Equation (4.17). 

(b) Kernel refinement  

At the beginning of the kernel refinement process, the threshold 𝜏𝑠 for truncating 

gradients is determined according to Cho and Lee (2009). As the kernel refinement 

iteration progresses, similar to Xu and Jia (2010), the threshold 𝜏𝑠 is gradually adjusted 

by dividing 1.1 at each iteration to include more edges for inferring subtle structures 

during kernel refinement. Figures 4.9(b) to 4.9(d) show the coarse-to-fine pyramid of 

interim ∇s maps in the iterative optimization process. It can be noticed that as the iteration 

increases, more and sharper edges are included in the subsequent level for kernel 

estimation. Univ
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Figure 4.9: The coarse-to-fine pyramid optimization process for kernel 
refinement. (a)-(d) interim ∇s maps at each level pyramid using Equation (4.17); 

The first row shows the interim ∇s maps, whereas the second row shows its 
corresponding estimated PSF kernel. 

(c) Kernel estimation  

With the shock filter and structure extraction method, the minimization of finding h in 

Equation (4.11) becomes 

min
ℎ
‖𝛻𝑔-h⊗ 𝛻𝑠‖2

2 + 𝜆ℎ‖ℎ‖𝛼
𝛼  (4.18) 

s.t. ℎ(𝑥, 𝑦) ≥ 0, ∑ ℎ(𝑥, 𝑦) = 1,{𝑥,𝑦}   

where 𝛻𝑠 is the salient structure. 

Most of the state-of-the-art works adopted a single Gaussian (Shan, Jia & Agarwala, 

2008; Pan et al., 2017) or hyper Laplacian (Krishnan & Fergus, 2009, Liu et al., 2016) 

regularizer to guarantee the sparseness of PSF kernel. However, it neglects the continuity 

of the PSF kernel, and sometimes it induces noisy kernel estimates. Noisy interim kernels 

will damage the interim latent image estimation, and this further leads to unreliable 

kernels during the kernel refinement. To address these problems, this work includes a 

new spatial function that simultaneously suppresses noise in the kernel and ensures 

sparsity and continuity of the kernel.  
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Given an interim PSF kernel ∇ℎ, the new spatial function only counts the number of 

the non-zeros image gradient in both directional, thus the new spatial function is defined 

as 

𝑃(ℎ) = {(𝑥, 𝑦): |𝜕𝑥ℎ(𝑥, 𝑦)| + |𝜕𝑦ℎ(𝑥, 𝑦)| > 0}, (4.19) 

With the introduction of Equation (4.19), the total energy of the kernel estimation 

model, later, is defined as 

min
ℎ
‖𝛻𝑔-h⊕𝛻𝑠‖2

2 + 𝜆ℎ‖ℎ‖𝛼
𝛼 + 𝛾P(h) (4.20) 

                          s.t. ℎ(𝑥, 𝑦) ≥ 0, ∑ ℎ(𝑥, 𝑦) = 1,{𝑥,𝑦}   

where the first term is the data fidelity function that provides reliable edge information, 

the second function provides a sparsity priors to the kernel; and the new spatial function 

P(h) promotes continuity by maintaining the non-zero gradients, with parameter 𝛾 to 

constrain the spatial smoothness of the kernel h. 

It is difficult to minimize Equation (4.20) as f is non-linear and its concrete form is 

assumed to be unknown in this work. To overcome this problem, this work proposes to 

minimize the energy function of Equation (4.20) by decoupling the functions of the prior 

into separate steps with the bilevel programming (BLP) approach (Fehrenbach et al. 2015) 

such that the model becomes  

min
ℎ
ℎ(ℎ, ℎ̂)𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (𝑠. 𝑡. ) 

‖ℎ̂-h‖
α

α
+ 𝛾P(ℎ̂).  

ℎ 𝑠𝑜𝑙𝑣𝑒𝑠 
 ℎ̂ = arg𝑚𝑖𝑛 ‖𝛻𝑔-h*𝛻𝑠‖2

2 + 𝜆ℎ‖ℎ‖𝛼
𝛼 (4.21) 

𝑠. 𝑡.     ℎ(𝑥, 𝑦) ≥  0, ∑ ℎ(𝑥, 𝑦) = 1{𝑥,𝑦} ,  
where 0 < 𝛼 ≤ 1, 

where the lower-level problem is solved using the constrained iterative reweighed least 

square (IRLS) method of Levin et al. (2007), whereas the Upper-level problem is solved 

using the l0 gradient minimization of Xu et al. (2011). The choice of BLP because it has 

an advantage as compared to the conventional iterative method that frequently uses in 
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image restoration technique, is that it has the ability to optimize many parameters 

simultaneously. 

4.3.2.2 Step 2: Interim latent image estimation 

Recall that in the PSF kernel estimation problem, finding h is an iterative process in 

which f must be also updated before a new h is found. In this step, this work applies 

deconvolution to estimate the latent image f from the estimated kernel h of Equation 

(4.21). To guide the recovery of the latent image, this work employs the anisotropic TV-

l1 model, as this model is well known for suppressing noise while preserving strong edges 

(Chen et al., 2015). The total energy function in Equation (4.12) associated with f  is 

rewritten as 

min
𝑓
‖g-h*f‖2

2 + 𝜆𝑓‖𝛻𝑓‖𝑇𝑉1 , (4.22) 

where ‖𝛻𝑓‖𝑇𝑉1 is the spatial priors that enforces a smooth gradient in f.  Since sparse 

priors choose to concentrate derivatives at a small number of pixels, leaving the majority 

of image pixels constant, hence, the optimization problem is no longer convex, so it 

cannot be minimized in closed form. To solve this problem, the IRLS method is utilized 

in the spatial domain using the conjugate gradient algorithm (Barrett et al. 1995). 

So far, the overall procedures of the PSF estimation method have been discussed. The 

PSF estimation contains two major steps. The first step is the estimation of h, whereas the 

second step is the estimation of f.  The output from this method is a set of PSF estimate, 

K. Given a set of PSF estimate, K is described as  

K ↦ {ℎ𝑖 , ℎ𝑖+1,..,.ℎ𝑝: i = 1, 2…p }  (4.23) 

The next subsection will present the final phase of this framework, which is the MTF 

measurement method.  

Univ
ers

iti 
Mala

ya



 

181 

4.3.3 Phase 3: MTF calculation 

In this phase, first, a parametric model is developed to analyze and measure the PSF 

for MTF measurement. In practical remote sensing imaging, most imaging sensors cannot 

produce symmetric PSF due to inherently imperfect imaging behavior and image motion. 

Therefore, parametric PSF modeling essential to eliminate noise and also to promote high 

fidelity representation of PSF.   

In most science and engineering fields, including remote sensing, it is often 

mathematically convenient to assume a Gaussian distribution for independent, identically 

distributed samples from a random process (Schowengerdt, 2007; Holst, 2017). In 

general, the 2-D Gaussian function is the common generic model for a measured PSF, 

where its end-to-end system transfer function can be represented by a Gaussian curve 

(Storey, 2001; Helder et al., 2006; Kang, 2015). Thus, the 2-D Gaussian model is 

considered to be the most appropriate model for the MTF measurement of this framework. 

4.3.3.1 Parametric PSF modeling 

Before the 2-D Gaussian model is being applied, for each blur kernel ℎ𝑖,in K, first, 

determine its peak location by finding the brightest pixel value in the kernel, and then 

shift the peak to the center position of the kernel. Recall that the PSF is assumed to be a 

linear Spatially-invariant system, we, therefore interlace the PSF kernels in K by 

averaging all ℎ𝑖, K using Equation (4.24), the intermediate 𝑃𝑆𝐹̅̅ ̅̅ ̅, thus become 

𝑃𝑆𝐹̅̅ ̅̅ ̅ =
1

𝑝
∑ ℎ𝑖
𝑝
𝑖=1 , 𝑤ℎ𝑒𝑟𝑒 ℎ𝑖 ∈ 𝐾, (4.24) 

The purpose of the interlacing process is to reduce the uncertainty in the kernel estimation 

process in phase 2. Figure 4.10 shows an example of 𝑃𝑆𝐹̅̅ ̅̅ ̅ and its corresponding 

distribution of brightness in a 3-D view. 
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(a) (b) 

Figure 4.10: Estimated PSF kernel, (a) an example of 𝑷𝑺𝑭̅̅ ̅̅ ̅̅   estimated from a 
real satellite image, and (b) is its corresponding distribution of brightness. 

After obtained the 𝑃𝑆𝐹̅̅ ̅̅ ̅, a 2-D Gaussian distribution function is applied for sub-pixel 

interpolation and curve fitting using the following equation 

𝑃𝑆𝐹(𝑥, 𝑦) = 𝐴𝑒
−1
2
(𝑥
2

𝜎𝑥
2+

𝑦2

𝜎𝑦
2), 

(4.25) 

where A is an amplitude of the Gaussian distribution, 𝜎𝑥 and 𝜎𝑦 are the standard 

derivation of the Gaussian distribution along x- and y-direction, respectively. By applying 

the natural logarithm of the Gaussian distribution in Equation (4.25), then yield 

𝑙𝑛 𝑃𝑆𝐹(𝑥, 𝑦) = −
1

2𝜎𝑥
2 𝑥

2 −
1

2𝜎𝑦
2 𝑦

2 + 𝑙𝑛𝐴, 
(4.26) 

 = 𝑎1𝑥
2 + 𝑎2𝑦

2 + 𝑎3, 

In order to estimate the parameters in Equation (4.25), the weighted least-square 

Gaussian curve fitting (Gua, 2011) is employed since it can effectively eliminate the 

influences of random fluctuations on the PSF estimation. The weighted least-square 

Gaussian curve fitting algorithm of Gua (2011) is defined as follows 
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(

  
 

∑ℎ̂𝑘−1
2 𝑥4 ∑ℎ̂𝑘−1

2 𝑥2𝑦2 ∑ℎ̂𝑘−1
2 𝑥2

∑ℎ̂𝑘−1
2 𝑥2𝑦2 ∑ℎ̂𝑘−1

2 𝑦4 ∑ℎ̂𝑘−1
2 𝑦2

∑ℎ̂𝑘−1
2 𝑥2 ∑ℎ̂𝑘−1

2 𝑦2 ∑ℎ̂𝑘−1
2

)

  
 
(

𝑎1,𝑘
𝑎2,𝑘
𝑎3,𝑘

) =

(

  
 

∑ℎ̂𝑘−1
2 𝑙𝑛𝑃𝑆𝐹𝑥2

∑ℎ̂𝑘−1
2 𝑙𝑛𝑃𝑆𝐹𝑦2

∑ℎ̂𝑘−1
2 ln 𝑃𝑆𝐹 )

  
 
. (4.27) 

where  ℎ̂(𝑘) = {
𝑃𝑆𝐹                 𝑓𝑜𝑟 𝑘 = 0

𝑒𝑎1𝑥
2+𝑎2𝑦

2+𝑎3 𝑓𝑜𝑟 𝑘 > 0
 and 𝑎1,𝑘, 𝑎2,𝑘, 𝑎3,𝑘 are refined values of  𝑎1, 

𝑎2, 𝑎3 after k-th iteration.  

From Equation (4.26), accordingly, yield 𝑎1 = −
1

2𝜎𝑥
2 , 𝑎2 = −

1

2𝜎𝑦
2, and  𝑎3 = 𝑙𝑛𝐴. By 

applying the estimates of Gaussian parameters (i.e., 𝜎𝑥 , 𝜎𝑦, 𝑎𝑛𝑑 𝐴) to Equation (4.25), 

finally obtain the parametric PSF model as demonstrated in Figure 4.11. 

 

(a) (b) 

Figure 4.11: Parametric PSF. (a) 2-D PSF after applying Equations (4.25)-(4.27), 
and (b) its corresponding distribution of brightness. 

4.3.3.2 Spatial resolution measurement 

Finally, in this framework, the spatial resolution is characterized using spatial quality 

metrics as follows: 

(a) Full-width at the half-maximum measurement 

To obtain an estimate for the overall FWHM, firstly, slice the 2-D PSF representation 

from Equation (4.25) into 1-D PSFs through the peak in the cross-track and along-track 
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directions. Each 1-D PSF slice is then normalized such that the peak value is 1.0. An 

example of the 2-D PSF plot and its corresponding 1-D PSF is shown in Figure 4.8. 

 

Figure 4.12: Illustration of the intermediate PSF kernel: the y-axis is the 
normalized PSF value, whereas the x-axis is the pixel position. (a) PSF kernel in 

the 2-D view. (b) PSF in the 3-D view. (c) Slice of 1-D PSF in the cross-scan 
direction, and (d) Slice of 1-D PSF in the along-track direction. 

The PSF values were interpolated using the cubic spline interpolation with a sampling 

resolution of 0.05 pixels. Next, the sliced 1-D PSF profile in both directions was trimmed to 

minimize the frequency leakage. The FWHM of PSF value is typically described as either 

the width of a spectrum curve or the function measured between points on the curve at 

which the function reaches half its maximum value, as shown in Figure  4.13. In Figure  

4.13, those points are labeled as the starting points (SP) and ending points (EP), 

respectively. The half-maximum value on the y-axis is always 0.5 because the 1-D PSF 

plot is normalized.  
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The FWHM value of the estimated PSF can be determined by finding the points on the 

x-axis that reside in the half-maximum value. Figure 4.13 shows the technique used to 

calculate the FWHM values of the estimated PSF. From the depicted figure, the starting 

x point, xs of SP, and the ending x point, xe of EP can be calculated using the linear 

interpolation between points (P1, P2) and points (P3, P4), respectively. Once xs and xe are 

found, the FWHM could be calculated by measuring the distance between these two 

points using the following equation: 

FWHM = 𝑥𝑒 − 𝑥𝑠. (4.28) 

 

Figure 4.13: FWHM measurement of PSF. 

(b) MTF values at Nyquist frequency 

Finally, 1-D FT is applied to the 1-D PSF. The resulting transfer function was then 

normalized by the DC term to obtain the MTF. The MTF values at Nyquist frequency are 

determined based on the Nyquist frequency location. The Nyquist frequency location was 

calculated using the dataset size and the predetermined spline resolution of 0.05 pixels is 

described as 
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Nyquist frequency location = (whole dataset × 0.05) / 2 + 1 (4.29) 

Figure 4.14 shows an example of the normalized MTF plot with its MTF value at the 

Nyquist frequency. 

 

Figure 4.14: An example of a normalized MTF. 

 

4.4 Analysis and Experimental Results 

The test analysis and experiment results for MTF measurement evaluation are 

elaborated in four separate sub-sections. For the test analysis, this work provides an 

insightful analysis of the complexity and computational time of the algorithm, and 

analyses of the ideal candidate selection method. Whereas, for the experiment results, the 

performance of the algorithm is assessed by conducting experiments on synthetically 

blurred satellite images and real satellite images with unknown blur. 

 

4.4.1 Sources of Data and Evaluation Measures 

The dataset used for this research consists of remotely-sensed images from IKONOS 

(Dial et al., 2003) and RazakSAT (ATSB, 2010). The general characteristics and imaging 

system specification for both IKONOS and RazakSAT are presented in Table 2.2. The 
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rationale of the dataset selection from IKONOS, among many other satellites, is that the 

performance of this satellite is made available through NASA's Science Data Purchase 

Program. Besides, it is available in the Level-2A product format, which implies that it has 

gone through radiometric correction and geo-rectification. Therefore, it can be used 

ground-truth data for this research. Whereas for RazakSAT, it is available in raw Level-

0 product format, which is suitable to use as real satellite images with unknown 

degradation effects.  

For a comprehensive analysis and evaluation, this work considers a wide range of test 

images, consisting of synthetic Gaussian blur and real unknown blur. The first dataset is 

the synthetically blurred satellite images simulated from IKONOS data. Using synthetic 

(i.e., stimulating) imagery, image acquisition, and processing variability can be removed 

from this discussion.  

As mentioned in Subsection 4.3.3., a common generic model for a measured optical 

PSF is the 2-D Gaussian function. Therefore, a total of 50 data samples is collected by 

synthetically blurred the ground-truth data with Gaussian kernels of 25 × 25 for three 

different SD σ, 1, 2 and 2.6; Gaussian kernel of 35 × 35 with an SD of 3 and Gaussian 

kernel of 45 × 45 with an SD of 4. Apart from blurring, Gaussian white noise with 0.1 

variances is added to all synthetic data to test the robustness of the proposed MTF 

measurement method. The second dataset is the real unknown blur satellite images. The 

real unknown blur images for this research comprise 50 data samples from RazakSAT 

data in the Panchromatic (PAN) band. The general characteristics and imaging system 

specifications for both IKONOS and RazakSAT satellite are presented in Table 4.2. This 

work conducted a series of experiments with the proposed MTF measurement algorithm 

and the experimental results are evaluated quantitatively using two metrics, namely the 

FWHM of PSF and MTF values at Nyquist frequency. 
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Table 4.2: General specification and characteristics of IKONOS and RazakSAT. 

Parameter IKONOS RazakSAT 
Orbit 98.1°, sun-synchronous 9°, near-equatorial 
Altitude (km) 681 685 
Spectral band PAN, Multispectral (MS): 

blue, green, red, near-
infrared 

PAN, Multispectral (MS): 
blue, green, red, near-
infrared 

GSD 1-m PAN; 4-m MS  2.5-m PAN; 5.0-m MS 
Image swath (km) 13.8 20 
MTF @ Nyquist frequency PAN > 9%, MS > 17% PAN > 8%,  MS > 15% 
Signal quantization  11-bits per pixel 8-bits per pixel 

 

4.4.2 Algorithm Complexity and Computational Time 

The main complexity of the proposed method comes from the pyramid image process, 

where it iteratively solve Equations (4.21) and (4.22), that involve non-convex models 

and a few convolution operations. The proposed method is implemented in Matlab on an 

Intel Core i5 CPU with 8GB of RAM. 

 In this experiment, to estimate the PSF kernel from the synthetically blurred satellite 

images, the kernel size is specified based on the size of the known Gaussian kernel which 

comprises 25 × 25 kernels, 35 × 35 kernel, and 45 × 45 kernels. Meanwhile, for real 

satellite images with unknown blur, which is the RazakSAT images, this work empirically 

set the kernel size to 15 × 15, as it is found to be large enough to contain the estimated 

PSF kernel. In addition, an analysis using a 35 × 35 kernel is included, in order to 

comprehend the influence of kernel size with regards to the PSF kernel estimation 

accuracy.  

For the computational time with an image size of 256 × 256, this work spends about 

22 second(s) to estimate a 15 × 15 PSF kernel, 48 seconds, 75 to 81 seconds, and 210 

seconds to estimate a 25 × 25 PSF kernel, 35 × 35 PSF kernel and 45 × 45 PSF kernel, 

respectively. For the RazakSAT satellite image with a pixel size of 4096 × 4096, based 

on the segmentation method proposed in Subsection 4.3.1, in most cases, a total of 8 sub-
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images will be selected for PSF kernel estimation. Therefore, on average, the total 

computational time for the MTF measurement is about 176 seconds.  The average 

processing time of the proposed method is tabulated in Table 4.3. In this framework, the 

number of pyramid levels for kernel estimation is adaptively determined by the size of 

the PSF kernel. Therefore, the processing time is expected to increase, since increasing 

the size of the kernel increases the pyramid level. One notable observation from this 

analysis is that the MTFNyq difference between 15 × 15 kernel and 35 × 35 kernel is not 

significant, which indicates that kernel size does not have much influence on the accuracy, 

nevertheless, it does influence computational efficiency.  

Table 4.3:  Average processing time of datasets with different kernel size 

Data Type Kernel size Pyramid level Time (s) 

Synthetically blurred satellite 
images, 256 × 256 pixels 

25 × 25 5 47.56 ± 1.01 

35 × 35 6 80.84 ± 3.97 

45 × 45 7 209.82 ± 13.87 

Real Satellite with unknown 
blur, 256 × 256 pixels 

15 ×15 5 
21.57 ± 0.54 

(MTFNyq = 0. 0784) 

35 × 35 6 
74.56 ± 3.02 

(MTFNyq = 0. 0779) 
4096 × 4096 pixels 15 × 15 5 175.74 ± 1.52 

 

Based on the analysis of 30 datasets as presented in Table 4.4, the processing time for 

a method that uses the whole image with size (2𝑛  × 2𝑛 : n = 1, 2…) is expected to run in 

O(N2),  which means whenever N doubles, the running time increases about fourfold. 
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Table 4.4: Processing time using the whole image (𝟐𝒏  × 𝟐𝒏 : n = 8, 9, 10, 11.)  
without the proposed segmentation method. 

Dataset 
Size of Image (pixel) 

256  × 256 512  × 512 1024  × 1024 2048  × 2048  
1 73.05 324.93 1348.33 6624.96 
2 74.12 327.11 1347.27 6645.94 
3 72.89 308.37 1336.48 6578.52 
4 73.44 319.31 1340.02 6610.85 
5 72.88 321.09 1351.66 6643.54 
6 73.71 322.02 1342.25 6647.28 
7 72.73 315.88 1342.51 6608.12 
8 73.18 319.09 1341.80 6610.92 
9 71.85 315.25 1338.48 6642.59 
10 72.16 319.82 1343.13 6582.94 
11 72.92 315.08 1343.64 6614.45 
12 71.90 313.50 1341.66 6510.85 
13 75.74 320.20 1341.98 6643.54 
14 72.54 318.97 1342.25 6652.45 
15 74.95 317.25 1338.92 6654.56 
16 75.51 322.36 1342.59 6599.23 
17 72.74 322.92 1345.73 6594.06 
18 75.01 317.96 1342.26 6647.22 
19 74.92 327.09 1341.98 6681.02 
20 73.74 314.98 1339.78 6588.84 
21 71.16 313.60 1341.27 6613.89 
22 72.62 315.54 1340.90 6629.73 
23 73.93 317.44 1342.98 6622.99 
24 73.36 321.96 1334.29 6605.47 
25 72.73 315.98 1342.08 6669.59 
26 75.18 317.54 1335.03 6651.56 
27 72.85 316.19 1341.81 6681.89 
28 72.16 311.19 1342.25 6609.47 
29 74.19 318.98 1344.71 6629.23 
30 75.20 323.39 1342.38 6651.02 

Average 73.43 318.54 1341.98 6624.96 
 

Figure 4.15 shows the processing time of the segmentation method as a function of the 

size of the image. In comparison with the average processing time in Table 4.4, from the 

figure, it is clearly shown that the proposed method achieves significantly faster 

computational speed compared to a method without the used segmentation.  
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Figure 4.15: Processing time for MTF measurement of RazakSAT 

4.4.3 Analysis of Selection of Ideal Candidate 

The selection of ideal candidates is a crucial measure for this work as it ultimately 

determines the effectiveness of the proposed MTF measurement method. As explained in 

Subsection 4.3, the algorithm is set to select ideal candidates according to Equation (4.8) 

in phase 1, then it measures their average PSF value to characterize the spatial quality of 

the observed image and the performance of the imaging system in phase 3. To determine 

the accuracy and precision of the proposed algorithm, in this analysis, the measurement 

bias and error results are identified from the proposed algorithm. In the former, 

identification of systematic errors can improve the overall accuracy of the measurement; 

while in the latter quantification of precision allows error estimates to be associated with 

individual measurements. The measurement bias shall be determined by the relative SD.  

The proposed segmentation method experiments on all the synthetic and real satellite 

images in this work. In this analysis, the results of three samples of synthetic images are 

presented with a size of 4096 × 4096 pixels, but each with different blurring effects by 

SD and σ in Gaussian function. Each sample consists of eight sub-images selected by 

Equation (4.8) and the results are shown in Table 4.5. 
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Table 4.5: The FWHM of PSF for 3 different samples. 

Dataset 

Sample-1 Sample-2 Sample-3 
Gaussian blur, σ = 1, 

 FWHM of Ground 
truth = 2.45 pixel 

Gaussian blur, σ = 2.6 

FWHM of Ground 
truth = 6.13 pixel 

Gaussian blur, σ = 4,  

FWHM of Ground 
truth = 9.43 pixel 

FWHM 
(pixel) 

Relative 
Error (%) 

FWHM 
(pixel) 

Relative 
Error (%) 

FWHM 
(pixel) 

Relative 
Error (%) 

1 2.48 1.2 6.15 0.1 9.46 0.3 
2 2.56 4.2 6.12 -0.3 9.44 0.1 
3 2.52 2.7 5.99 -2.4 9.31 -1.3 
4 2.46 0.4 6.17 0.5 9.37 -0.7 
5 2.47 0.8 6.11 -0.3 9.38 -0.5 
6 2.58 5.1 6.12 -0.2 9.48 0.5 
7 2.51 2.5 6.33 3.1 9.23 -2.1 
8 2.55 4.2 6.21 1.3 9.51 0.7 

Average 2.52 2.6 6.15 1.0 9.40 0.8 
Relative SD 

(%) 1.7 1.6 1.0 

 

From Table 4.5, it can be observed that the relative SD for all three samples is 

relatively small. This indicates the proposed algorithm is able to produce high precision 

results of FWHM. Then, it is observed that the average relative error of FWHM results 

by the proposed algorithm is < 2.6%. This demonstrates that the proposed algorithm is 

capable of producing results with a 2-sigma confidence interval. Among all samples, 

Sample-3 has the highest degree of blur but has the lowest relative SD. Besides that, it 

also obtains small relative errors in the range of −2.2% to 0.5%. On the contrary, Sample-

1 contains the lowest degree of a blur but has the highest value of relative SD, with a 

relative error as high as 5.1%. These observations suggest that the proposed method 

handles large-scale blur more effectively.  

Figure 4.16 depicts the visual output of the PSFs estimate for sample 3. From Figure 

4.16(c), it can be noticed that the estimated 1-D PSFs fit the reference (i.e., Blue) closely. 
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Figure 4.16: PSF estimation for sample 3 with Gaussian blur, σ = 4. (a) The 
main scene (i.e., Sample 3), (b) Selected candidates1,2..8 (i.e., datasets), (c) g 2-D 

PSF1,2..8 estimate correspond to (b), and (d) The corresponding 1-D PSF1,2..8  
distribution of (c) with relative to the reference (i.e., ground truth). 

In the second analysis, experiments on the real satellite images with unknown blur are 

conducted in this work.  The results are presented for three data samples from three 

different scenes. The observed images used in this analysis are as shown in Figure 4.17. 

Each sample is the segmented sub-images from the main scene with 4096× 4096 pixel 

size. Table 4.6 shows the experimental results of the three samples.  
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Figure 4.17: Sample of the RazakSAT satellite images used in the second 
analysis 

The results from Table 4.6 show the average FWHM of PSF for the scene from 

Figures. 4.17(a)-4.17(c) is relatively close, with a relative SD of 0.95%. The MTFs value 

at the Nyquist frequency for Sample-4, Sample-5, and Sample-6 is within the range of 

0.061 to 0.084, 0.061 to 0.086, and 0.065 to 0.087, respectively. These results 

demonstrated that the proposed method can provide high precision data. From Figure 

4.17, it can be observed that Figure 4.17(a) has the most urban area, while Figure  4.17(b) 

has more cloud coverage and a less urban area. This is because salient edges are easier to 

find in the urban area and so this type of scene usually provides more selection of reliable 

structures. In particular, as the number of reliable structures increases, the SD of MTF 

and FWHM decreases, conversely, when the relative SD decreases, the confidence level 

of results increases.  

Based on the analyses, it is evident that the proposed segmentation method for ideal 

structure selection is able to deliver reliable candidates to estimate the MTF for the 

observed image.  
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Table 4.6: The estimated MTFNyq results of 3 different Samples 

Dataset 
Sample-4 Sample-5 Sample-6 

FWHM MTFNyq FWHM MTFNyq FWHM MTFNyq 
1 2.76 0.061 2.99 0.073 3.05 0.072 
2 2.96 0.065 2.67 0.062 2.77 0.086 
3 2.77 0.068 2.75 0.079 2.70 0.076 
4 2.78 0.066 2.78 0.086 2.66 0.079 
5 2.96 0.070 2.92 0.080 2.72 0.065 
6 2.75 0.071 2.64 0.073 2.94 0.071 
7 2.64 0.084 2.99 0.086 2.70 0.068 
8 2.89 0.067 2.61 0.061 2.66 0.076 
9 2.84 0.070 3.28 0.085 3.10 0.087 
10 3.05 0.066 3.05 0.077 2.83 0.084 

Average 2.84  2.87  2.81  
SD (SD) 0.12 0.006 0.22 0.009 0.16 0.008 

Relative SD 
(%) 4.1 7.5 5.9 

 

4.4.4 Experiments on Synthetically Blurred Satellite Images 

In this experiment, the accuracy of the proposed method is assessed by measuring the 

FWHM relative error of the estimated PSF for both scan directions. To this end, this work 

experiments with four groups of the sample which are generated synthetically using the 

incremental blur SD σ from 1 to 4. Table 4.7 presents the experimental results obtained 

by the proposed method. These results indicate that the algorithm is capable of producing 

acceptable results with average relative error as low as ±0.2 and with the highest relative 

error of ±5.3. It can be noted that the errors are relatively larger for smaller blurs (i.e. σ = 

1). 
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Table 4.7: The measured FWHM value from four different scales of blur 

Scan 
Direction Across-scan Along-scan Across-scan Along-scan 

Sample 

FWHM 
(pixel) 

Relative 
Error 
(%) 

FWHM 
(pixel) 

Relative 
Error 
(%) 

FWHM 
(pixel) 

Relative 
Error 
(%) 

FWHM 
(pixel) 

Relative 
Error 
(%) 

Gaussian blur, σ = 1, 
FWHM of Ground truth = 2.45 pixel 

Gaussian blur, σ = 2, 
FWHM of Ground truth = 4.76 pixel 

Penang1 2.60 6.0 2.60 5.9 5.03 5.8 4.86 2.1 
Penang2 2.59 5.5 2.57 4.9 4.81 1.2 4.83 1.5 
Penang 3 2.52 2.8 2.56 3.8 4.76 0.1 4.82 1.3 
Penang 4 2.65 8.1 2.68 9.5 4.83 1.5 4.85 2.0 
Penang 5 2.57 4.9 2.56 4.2 4.83 1.6 4.89 2.8 
Penang 6 2.49 1.5 2.52 2.8 4.95 4.0 4.87 2.4 
Penang 7 2.54 3.6 2.50 1.8 4.93 3.8 4.76 0.1 
Penang 8 2.66 8.6 2.56 4.3 4.93 3.6 4.78 0.5 
Penang 9 2.70 10 2.65 8.2 4.95 3.9 4.89 2.9 

Penang 10 2.52 2.7 2.52 2.8 4.84 1.7 4.80 1.0 
Average 2.59 5.3 2.58 4.8 4.89 2.7 4.84 1.6 

 
Gaussian blur, σ = 3, 

FWHM of Ground truth = 7.09 pixel 
Gaussian blur, σ = 4, 

FWHM of Ground truth = 9.43 pixel 
Penang1 7.26 2.4 7.11 0.2 9.43 -0.02% 9.23 -2.1 
Penang2 7.05 -0.5 7.13 0.5 9.56 1.33% 9.38 -0.7 
Penang 3 7.21 1.6 7.41 4.5 9.18 -2.72% 9.45 0.2 
Penang 4 7.42 4.6 7.27 2.4 9.41 -0.28% 9.61 1.8 
Penang 5 7.06 -0.4 7.14 0.7 9.37 -0.81% 9.82 4.0 
Penang 6 7.08 -0.2 7.27 2.6 9.72 3.09% 9.42 -0.1 
Penang 7 7.08 -0.2 7.27 2.6 9.73 3.11% 9.44 0.1 
Penang 8 7.26 2.4 7.11 0.2 9.58 1.59% 9.40 -0.4 
Penang 9 7.55 6.5 7.55 6.5 9.42 -0.19% 9.40 -0.4 

Penang 10 7.35 3.6 7.23 1.9 9.31 -1.32% 9.05 -4.0 
Average 7.22 2.0 7.25 2.2 9.47 0.4% 9.42 -0.2 
 

4.4.5 Experiments on Real Satellite Images with Unknown Blur 

For this experiment, the MTF value at the Nyquist frequency is calculated, where the 

along-scan and across-scan components are averaged. To validate the proposed MTF 

measurement method on real satellite images from RazakSAT, the MTFs value obtained 

from the proposed method is compared with the well-established edge method by Kohm 

(2004). For this experiment, this work presents one sample of real unknown blur satellite 

images with 4096 × 4096 pixel size and split it into 256 sub-images with a size of 256 × 

256 pixels. The search for the ideal candidates with knife-edge features from the 256 sub-

images is conducted manually. After some tedious search, six potential sub-images were 

eventually found. This work applied both methods to these sub-images and found out 
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only 3 sub-images can be processed by the Edge method (Kohm, 2004), while the 

proposed method is able to derive the MTF value at the Nyquist frequency for all the sub-

images. The MTF value at the Nyquist frequency from these experiments is tabulated in 

Table 4.8, where MTFNyq represents the MTF at the Nyquist frequency and RENyq 

represents the relative error of both methods at the Nyquist frequency. The MTF plot 

results are shown in Figure 4.18. 

 

Figure 4.18: A comparison of the model verification using the edge method and 
the proposed method (Kohm, 2004). (left) Sample image. (right) Respective MTF 

plot. Red box = ideal candidate for the Edge Method (Kohm, 2004). 
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Table 4.8: Comparison between the proposed method and the Edge method (Kohm, 2004) 

 Data-1 Data-2 Data-3 
MTFNyq from Edge Method (Kohm, 
2004) 0.0541 0.0758 0.0637 

MTFNyq from proposed Method 0.0553 0.0767 0.0650 
RENyq between two methods 2.3% 1.2% 2.1% 

 

From Figure 4.18 and Table 4.8, it can be observed that the MTFs of both methods are 

very close. The MTFs value from this proposed method is larger than the edge method at 

the Nyquist frequency. The relative errors at the Nyquist frequency between the two 

methods are also very small and within the range of 1.2 to 2.3%.  

As explained in Subsection 2.2.1, there are a few criteria to determine the ideal 

candidate from an observed image using the Edge method. Figures 4.19(a) to 4.19(c) 

show examples of potential candidates for the MTF measurement using manual search.  

 

Figure 4.19: The experiment results in low-contrast real satellite images with 
unknown blur. Red box = potential candidate but not ideal for the method by Kohm 

(2004). 

Based on the visual observation, even though these candidates possess natural 

characteristic targets such as edge target, but they do not meet certain criteria such as 

noise and contrast level. Therefore, it failed to estimate the MTF value of the images. 

According to Helder et al. (2006), the contrast level of the target divided by the target’s 

noise SD should be greater than 50. On the contrary, the proposed method is based on the 

structural component of an image, thus it does not require to meet such stringent criteria 

as imposed by the Edge method. Figure 4.19(d) shows the MTFs plot results from the 
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proposed method for sub-image Figures. 4.19(a)-4.19(c). It can be visualized that the 

MTFs plot for these images are relatively close. 

Figure 4.20 shows a few more experiment results of real unknown blur satellite images 

produce by the proposed method. The rest of the experiment results are available in 

Appendix A.  

 

Figure 4.20: MTF profile of real unknown blur satellite images (RazakSAT) by 
the proposed method. 
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The MTF value at the Nyquist frequency for each sample is tabulated in Table 4.9. 

These experimental results show that the degradation function of the RazakSAT imaging 

system is non-linear and spatially variant. It means the PSF changes with the spatial 

position of the pixels. This makes sense because the spatial properties of a scene can be 

modified or distorted due to defocus and motion blur effects from the imaging chain 

process. From Table. 4.9, the estimated MTFNyq values of the sub-images are between 

0.071 to 0.096, and the average MTFNyq value is 0.084. The average MTF value obtained 

from the proposed method suggests that the RazakSAT Satellite’s imaging system has the 

ability to resolve 8.4% of the object contrast to the image at Nyquist frequency. This result 

shows that the MTF measurement from the proposed method is consistent with the MTF 

specification published by (ATSB, 2010). Also, this experiment demonstrates the 

robustness of the proposed method for spatial characterisation and its suitability for MTF 

measurement of optical satellite images with low spatial resolution. 

Table 4.9: MTF estimate of real unknown blur satellite images by the proposed 
method. 

Sample MTFNyq from proposed Method 
RazakSAT_7 0.071 
RazakSAT_8 0.077 
RazakSAT_15 0.086 
RazakSAT_67 0.085 
RazakSAT_69 0.096 
RazakSAT_86 0.087 
RazakSAT_99 0.088 
RazakSAT_121 0.088 
RazakSAT_128 0.081 
RazakSAT_153 0.089 

Average 0.0845 
SD 0.007 
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4.5 Conclusion 

This chapter proposed a robust MTF measurement method based on the nonlocal self-

similarity characteristics, namely the structural component of optical satellite images. The 

novelty of this method is twofold, first is the introduction of a segmentation method that 

automatically identifies the ideal candidates for MTF measurement; second, an adaptive 

structure selection method that finds reliable structures effectively for MTF measurement. 

In addition, the proposed method is able to overcome the hassle of manual identification 

and dependency on the presence of a well-separated characteristic target, which shows 

that it is a convenient approach. Experimental results were conducted using the 

synthetically blurred and real satellite images. It showed that the relative SD of the 

Nyquist frequency between the well-established edge method and the proposed method 

is < 2.3%. These indicate that the proposed MTF measurement method can accurately 

predict the imaging system’s performance and the degradation function for image 

restoration. Also, the computation time for the MTF measurement of a real satellite image 

only takes about 3 min. Based on the experimental results, in summary, it can be reckoned 

that the proposed MTF measurement method is effective and practical for on-orbit spatial 

characterisation. 
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CHAPTER 5: RESTORATION OF SPATIALLY BLURRED OPTICAL 

SATELLITE IMAGES 

This chapter continues to analyze and evaluate the proposed MTF measurement 

algorithms from Chapter 4 experimentally as a blur kernel estimation method for spatially 

blurred optical satellite image restoration. Over the years, numerous prior-based kernel 

estimation algorithms have been proposed to restore latent sharp images under spatial 

invariant or varying blur. However, these algorithms are mainly evaluated for natural 

images. It is thus unclear how these algorithms perform on optical satellite images, 

especially for other types of blur besides Gaussian blur. To this end, this chapter presents 

a perceptual study and analysis of blind single image restoration, particularly in blur 

kernel estimation that utilizes the principle of sparse representation, to gain further 

understanding of image priors that appropriate for blur removal in optical satellite images. 

The datasets for this work comprise synthetically blurred satellite images and real satellite 

images with unknown blur. Using these datasets, a comparative study is conducted on 

various sparse representation methods from some viewpoints, including their 

motivations, mathematical representations, and the main algorithms. The evaluation and 

analysis indicate the need for an efficient and robust sparse representation method in 

single optical satellite image blind deblurring. 

5.1 Introduction 

Blur is the deterministic component of the image degradation model, which is 

generally assumed to be a linear Spatially-invariant with Gaussian-like shape in passive 

remote sensing imaging. However, in a real-world situation, it is mostly non-linear and 

spatially varying (Holst, 2017; Gonzalez & Woods, 2017). As was mentioned in Chapter 

2, based on the sources,  there are three groups of blurs. For sources of blur such as lens 

blur, their point spread function (PSF) can be approximated through a parametric model 
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(e.g., disk, Gaussian) that characterized by a single parameter indicating its scale (e.g., 

radius, standard deviation (SD), etc.); whereas, for other situations such as motion blur 

and environmental blur, the PSF can have a somewhat arbitrary form with a high degree 

of freedom, which makes its measurement quite challenging.  

Over the years, there are a large number of published studies on deblurring spatial 

varying blur (e.g., Levin et al., 2007;  Zhu, Cohen, Schiller, & Milanfar, 2013; Cheong, 

Chae, Lee, Jo, & Paik, 2015; Zhang, Wang, Jiang, Wang, & Gao, 2018) or Spatially-

invariant blur (e.g., Cho & Lee, 2009; Xu et al., 2013; Zhang, J., et al. 2014; Tang et al., 

2018; Cao, He, Zhao, Lu, & Zhou, 2018) problems using image statistic priors. Based on 

the literature, this thesis identifies few issues: (1) Even though there is abundant work on 

prior-based image deblurring, there is a notable paucity of studies that seek to identify the 

most suitable prior in optical satellite image deblurring application; (2) Most of the works 

concentrate on one group of blur only (i.e., Gaussian blur), whereby in a real situation of 

passive remote sensing imaging, challenging imaging conditions as described in 

Subsection 2.3 which are adversely affected the quality of the acquired imagery;  and (3) 

While many of the proposed algorithms  (e.g., Ma et al, 2017;  Zha et al.2018; Gong et 

al. 2018) are effective, they usually suffer from computational complexity due to the 

implication of heavy mathematical baggage implicated to carry out the task.  

Currently, sparse representation methods have become one of the main streams of 

research on image restoration, since it provides data-authentic priors in the kernel 

estimation, where it can guide the intermediate latent image restoration and thus facilitate 

blur kernel estimation. The concept of sparse representation has its roots in compressed 

sensing (CS). The original theory of CS coined by Donoho (2006) suggests that if a signal 

is sparse or compressive the original signal can be reconstructed by exploiting a few 

measured values. The rationale of CS theory has been demonstrated by Candès et al. 
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(2006) from the mathematical perspective. Motivated by the concept of sparse 

representation, a new approach for MTF measurement was developed in Chapter 4; for 

which it utilizes the merit of sparsity properties in an image with an improved l2-norm 

TV model to ensure extraction of salient edge, thus become a sparsity prior for PSF kernel 

estimation. In Chapter 4, the proposed MTF measurement method was shown to be 

effective and practical for on-orbit spatial characterisation. However, it has not been 

evaluated for its effectiveness and robustness in blind image restoration, particularly for 

optical satellite images. As mentioned in Section 1, knowledge of the MTF for a given 

image acquisition system is not only important for imaging performance assessment but 

also can be utilized as an image degradation function in blind image restoration 

techniques for spatial image quality improvement. Subsequently, this chapter evaluates 

its performance and conducts a comparative study of blind single image restoration, 

particularly in blur kernel estimation that utilizes the principle of sparse representation; 

to gain further understanding of image priors that appropriate for blur removal in optical 

satellite images regardless of the blur type. To carry the task, this thesis develops and 

examines two advanced image priors that use sparse representation algorithms, namely 

the low-rank priors and graph-based priors. This thesis studies their significance in blur 

kernel estimation and validates the viewpoint that complex formulations are generally 

assumed to produce restoration results more effectively. Furthermore, two non-blind 

image deconvolution (ID) methods were employed for image restoration and show that 

with a proper estimation rule, blind image restoration can be performed even with a 

simple prior. 

In this work, the aim is not to propose a new low-rank and graph-based prior blur 

kernel estimation method. Instead, the low-rank and graph-based priors blur kernel 

estimation methods were developed according to Ren et al. (2016) and Bai et al. (2019), 

respectively; the aim is to gain in-depth knowledge about these image priors for future 
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works in optical satellite images restoration. In recent works, studies found that the 

combination of the sparsity and the self-similarity properties of natural images are usually 

achieved better performance (Zhang, J., et al. 2014; Yu, Chang, & Xiao, 2019; Wu, Wang, 

Kong, & Yin, 2016). Therefore, the rationale for choosing the low-rank and graph-based 

priors method is because they are among the recent successful existing image deblurring 

method that advanced the sparse representation and the self-similarity properties of 

natural images, and they have been applied successfully to both Spatially-invariant and 

varying blur images. Besides, although the low-rank approximation has been widely 

applied to image restoration, it is still unclear whether it is able to help blind deblurring 

and how it affects the blur kernel estimation. 

The remainder of the chapter is organized as follows. In Section 5.2, this work first 

describes the enhanced low-rank priors blur estimation method of Ren et al. (2016), later 

the Graph-based priors blur estimation method of Bai et al. (2019), and finally, it presents 

the overall algorithm of the proposed sparsity priors blur estimation method. Next, 

Section 5.3 briefly introduces the non-blind ID methods that were employed for the 

comparative study of the aforementioned blur estimation methods. Section 5.4 presents 

analysis and experimental evaluations. Furthermore, this work provides more discussion 

including the limitation of the proposed blur estimation method in Section 5.5. Finally, 

section 5.6 provides the conclusion of this work. 

5.2 Blur Kernel Estimation 

As aforementioned in the introduction, for an effective comparative study in the blind 

single image restoration, the priori blur estimation methods will be used, in which the 

PSF (i.e., blur kernel) will be identified separately from the observed image as a 

preprocessing step using three different blur estimation methods: (1) sparsity prior with 

improved l2-norm TV model that was proposed in Chapter 4, (2) Graph-based priors using 
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reweighted Graph Total Variation (RGTV) Model (Bai et al., 2019), and (3) enhanced 

Low-rank priors using low-rank matrix approximation (LRMA) method (Ren et al., 

2016).  Since the related works for LRMA and RGTV have been discussed in Subsection 

3.2.1, hence, in this section, this work focuses on the philosophy of these methods. 

5.2.1 Low-rank Prior 

Let us again recall the vector-matrix form of the image degradation model in Equation 

(4.5). Here, the observed blurry image, latent sharp image, and the corresponding blur 

kernel are expressed as 𝑏, 𝑙, and 𝑘, respectively. The degradation process is modeled as 

𝑏 = 𝑙 ⊗ 𝑘 +  𝜂. (5.1) 

Suppose there is a matrix of degraded image patches, Y. The latent low-rank matrix �̂� 

can be estimated from Y using the following nuclear norm minimization (NNM) problem.  

�̂� = min
𝑋
‖𝑌 − 𝑋‖𝐹

2 + �̈�‖𝑋‖∗. (5.2) 

where �̈� is a threshold and ‖𝑋‖∗ is the nuclear norm of matrix M, which is the sum of its 

singular values. The ‖ ‖𝐹
2denotes the Frobenius norm. 

The rank of a data matrix X counts the number of non-zero singular values of it, which 

is nondeterministic polynomial time (NP)-hard to minimize. Alternatively, the nuclear 

norm of X, defined as the l1-norm of its singular values -the formula is a convex relaxation 

of matrix rank function. The low-rankness of X can be viewed as a two-dimensional (2-

D) sparsity prior. It encodes the input 2-D data matrix over a set of rank-1 basis matrices 

and assumes its singular values to be sparsely distributed, which means it has only a few 

non-zero or significant singular values. 

The NNM has one distinct advantage, where it lies in the tightest convex relaxation of 

the original rank minimization problem with certain data fidelity terms. However, Candés 

and Recht (2009) proved that most low-rank matrices can be perfectly recovered by 
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solving an NNM problem. Besides, Cai, Candés, and Sheng (2010) also proved that the 

NNM based low-rank matrix approximation problem with F-norm data fidelity can be 

easily solved by a singular value thresholding (SVT) model. However, although the NNM 

has a closed-form solution with a good theoretical guarantee by the SVT model (Cai et 

al., 2010), it tends to over-shrink the singular values (i.e., rank components) equally by 

the threshold λ, ignoring the different significances of matrix singular values. Therefore, 

it achieves unsatisfactory accuracy for approximating the matrix rank. For that reason, 

Gu et al. (2013) propose a weighted nuclear norm minimization (WNNM) model that can 

be expressed as 

�̂� = min
𝑋
‖𝑌 − 𝑋‖𝐹

2 + 𝜆‖𝑋‖𝑤,∗. (5.3) 

where ‖𝑋‖𝑤,∗ = ∑ ‖𝑤𝑖𝜎𝑖(𝑋)‖1𝑖 is the weighted nuclear norm. In this model, larger 

singular values are shrunk less, and smaller singular values are shrunk more to preserve 

the major data components, thereby making this model flexible for dealing with numerous 

problems. Later, Dong, W. et al. (2013) propose a powerful image model in the patch 

space that connects low-rank methods with simultaneous sparse coding (Mairal, 2009). 

In this model, they demonstrate a relationship between singular values of a data matrix 

(likelihood term) and pseudo-metric norm ‖𝐴‖1,2 (prior term) in simultaneous sparse 

coding resulted in a novel interpretation of singular value decomposition (SVD) from a 

bilateral variance estimation perspective. Besides Dong, W. et al. (2013), another notable 

work that provides connection among the sparse representation, nonlocal self-similarity, 

and low-rank matrix approximation is that of Wang, S. et al. (2013). Inspired by the works 

of Dong, W. et al. (2013) and Wang, S. et al, (2013), Pan et al. (2014) also employed low-

rank prior in their image restoration model. Different from the two previous works that 

used the image priors to restore images, they use it for edge preservation in the kernel 

estimation process. Recently, Ren et al. (2016) pointed out that the WNNM model in 

Equation (5.3) can be used to deblur an image to a certain degree using any kernel 
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information. In contrast to the WNNM model by Gu et al. (2013), where a weighting 

scheme is designed specifically for denoising, they proposed an algorithm to estimate 

weights for deblurring. In their works, they showed that low-rank properties of both 

intensity and gradient images can be exploited for effective deblurring. 

5.2.1.1 General formulation 

Generally, the deblurring problem based on LRMA can be formulated under the 

framework of Bayesian inference. One common model is the maximum a posteriori 

(MAP) framework (e.g., Dong, J. et al. 2017; Wang et al., 2012; Ren et al., 2016) which 

is defined as  

{𝑙, �̂�} = min
𝑙,𝑘
𝑝(𝑙, 𝑘|𝑏) =  min

𝑙,𝑘
𝑝(𝑏|𝑙, 𝑘)𝑝(𝑘)𝑝(𝑙), (5.4) 

where 𝑝(𝑘) and 𝑝(𝑙) are the priors of the blur kernel and latent sharp image, respectively. 

By taking the negative log-likelihood of Equation (5.4), then Equation (5.4) can be 

rewritten as, 

{𝑙, �̂�} = min
𝑙,𝑘
𝑝(𝑙 ⊗ 𝑘, 𝑏) + 𝜇1𝛹(𝑘) + 𝜇2𝛹(𝑙) (5.5) 

where the first, second, and third term denotes the data fidelity function, kernel prior, and 

image prior function, respectively.  

The objective functions are typically formulated based on the intended application. For 

this comparative study, the interest is to examine a low-level vision application such as 

image deblurring that utilizes the benefits among the sparse representation, nonlocal self-

similarity, and low-rank matrix approximation. For instance, the works by Ren et. al. 

(2016), where they used the nonlocal self-similarity of both intensity and gradient patches 

based on low-rank prior for blind image deblurring. Gu et al. (2013) have shown that a 

better approximation of prior function can be obtained by assigning different weights on 

different singular values in the LRMA process. Hence, the image prior function in 

Equation (5.5) can be formulated as 
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𝜑(𝑙) =  ∑ ‖𝑙𝑖‖𝑤,∗𝑖 +
𝜎

𝜆
∑ ‖∇𝑙𝑖‖𝑤,∗𝑖 .  (5.6) 

where ∇ =  (∇ℎ, ∇𝑣)𝑇 denotes the image gradient operator. The 𝑙𝑖 and ∇𝑙𝑖denotes the 

matrices stacked by the nonlocal similar image and gradient patches with low-rank 

property, respectively. According to Ren et al. (2016), the w should be inversely 

proportional to the singular values of 𝑙𝑖 and ∇𝑙𝑖. Thus the objective function for a single 

image blind deblurring model based on enhanced prior (i.e., sparse nonlocal low-rank 

prior) can be expressed as 

{𝑙, �̂�} = min
𝑙,𝑘
‖ 𝑙 ⊗ 𝑘 − 𝑏‖1 +  𝛾‖𝑘‖2

2 +  𝜆∑‖𝑙𝑖‖𝑤,∗
𝑖

+
𝜎

𝜆
∑‖∇𝑙𝑖‖𝑤,∗
𝑖

. (5.7) 

subject to 𝑘𝑖 ≥ 0 and  ∑ 𝑘𝑖 = 1.𝑖   

5.2.1.2 Optimization 

In order to solve Equation (5.7) efficiently, similar to most single image deblurring 

problems, the alternating minimization based on half-quadratic splitting is adopted. That 

is, to separate the intermediate latent images and blur kernels estimation into 

subproblems, then estimate the subproblems alternatively by assuming one of them is 

known in the l2-norm minimization, Equation (5.7), thus becomes 

𝑙 = min
𝑙
‖ 𝑙 ⊗ 𝑘 − 𝑏‖2

2 +  𝜆 ∑ ‖𝑙𝑖‖𝑤,∗𝑖 +
𝜎

𝜆
∑ ‖∇𝑙𝑖‖𝑤,∗𝑖 . (5.8) 

�̂� = min
𝑘
‖ 𝑙 ⊗ 𝑘 − 𝑏‖1 + 𝛾‖𝑘‖2

2. (5.9) 

where the tasks in Equations (5.7) and (5.8) are to update the latent images and estimate 

the blur kernel, respectively, in a multi-scale blind deconvolution approach (Fergus et al., 

2008). 

Updating the latent images: Similar to the proposed methods in Chapter 4, new auxiliary 

variables d, p, and g are introduced to solve the Equation (5.8), thus become 

𝑙 = min
𝑙
‖ 𝑙 ⊗ 𝑘 − 𝑏 − 𝑑‖2

2 + 𝛽‖𝑙 − 𝑝‖2
2 +  𝜏‖∇𝑙 − 𝑔‖2

2 + 𝑛‖𝑑‖1 + (5.10) 
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𝜆∑ ‖𝑙𝑖‖𝑤,∗𝑖 +
𝜎

𝜆
∑ ‖∇𝑙𝑖‖𝑤,∗𝑖 . 

where n, 𝛽, and 𝜏 are positive parameters. Using the half-quadratic splitting technique 

(Xu et al., 2011), the optimization problem in Equation (5.10) can be divided into four 

subproblems, each designed to solve l, d, p, and g, separately.  

Subproblem l: to solve l, the energy function in Equation (5.10) becomes, 

𝑙 = min
𝑙
‖ 𝑙 ⊗ 𝑘 − 𝑏 − 𝑑‖2

2 + 𝛽‖𝑙 − 𝑝‖2
2 +  𝜏‖∇𝑙 − 𝑔‖2

2. (5.11) 

which is a least squared problem that can be solved efficiently using the FFT, according 

to Parseval’s theorem.  

𝑙 =  ℱ−1 (
ℱ(𝑏 + 𝑑)°ℱ(𝑘)̅̅ ̅̅ ̅̅ ̅ +  𝛽ℱ(p) +  𝜏ℱ𝑔

ℱ(𝑘)°ℱ(𝑘)̅̅ ̅̅ ̅̅ ̅ +  𝜏ℱ(∇)°ℱ(∇)̅̅ ̅̅ ̅̅ ̅
), 

(5.12) 

where ℱ(.) and ℱ−1(. ) denote the FFT and inverse FFT, respectively; and ℱ(. )̅̅ ̅̅ ̅̅  is the 

complex conjugate operator.  

Subproblem d: since closed-form solution is available to solve subproblem d, given l, 

the d can be computed by one-dimensional shrinkage operator as 

𝑑 = sign(𝑙 ⊗ 𝑘 − 𝑏)max (‖𝑙 ⊗ 𝑘 − 𝑏‖ − 𝑛, 0). (5.13) 

Subproblems p and g: The subproblems with respect to p and g can each be estimated 

by solving 

�̂� = min
𝑝
𝛽‖𝑙 − 𝑝‖2

2+ 𝜆∑‖𝑝𝑖‖𝑤,∗
𝑖

, (5.14) 

and 

�̂� = min
𝑔
𝛽‖∇𝑙 − 𝑔‖2

2+ 𝜎∑‖𝑔𝑖‖𝑤,∗
𝑖

. (5.15) 

According to Gu et al. (2013), Equations (5.14) and (5.15) can be solved efficiently by 

the WNNM, and the weight vector w in these equations can be defined as 

𝑤𝑗 = 2√2𝑚/(𝜎𝑗(. ) + 𝜖). (5.16) 
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where 𝑚 is the number of column of the matrix 𝑙𝑖 or ∇𝑙𝑖 (i.e., the selected number of 

similar patches), 𝜎𝑗(. ) denotes 𝜎𝑗(𝑙𝑖) and 𝜎𝑗(∇𝑙𝑖) for Equation (5.14) and (5.15), 

respectively. In Equation (5.16), 𝜎𝑗(𝑙𝑖) is the 𝑗𝑡ℎ singular value of 𝑙𝑖, whereas 𝜎𝑗(∇𝑙𝑖) is 

the  𝑗𝑡ℎ singular value of ∇𝑙𝑖, and 𝜖 is an infinitely small number. With the well-defined 

weight vector w, the singular values of 𝑙�̂� shrunk by the generalized soft-thresholding 

operator 𝑆𝑤(∑)𝑖𝑖 , 

𝑆𝑤(∑)𝑖𝑖 = max (∑ − 𝑤𝑗 , 0)𝑖𝑖 . (5.17) 

The proposed weight vector w and the soft-thresholding operator 𝑆𝑤(∑)𝑖𝑖 in Equation 

(5.17) play an important role in eliminating the texture details and tiny edges while 

maintaining the main fine structures in blurry images.  

Estimating Blur Kernels: In Ren et al. (2016), the Equation (5.9) was solved using the 

fast deblurring of Cho and Lee (2009) based on on the gradient images and l2-norm of 

data fidelity function, 

�̂� = min
𝑘
‖ ∇𝑙 ⊗ 𝑘 − ∇𝑏‖2

2 + 𝜏‖𝑘‖2
2. (5.18) 

As it is a  least-squares minimization problem with Tikhonov regularization, therefore it 

leads to a closed-form solution for k.  

�̂� =  ℱ−1 (
ℱ(∇b)°ℱ(∇𝑙)̅̅ ̅̅ ̅̅ ̅̅

 ℱ(∇𝑙)°ℱ(∇𝑙) +  𝛾̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
), 

(5.19) 

  

5.2.1.3 Algorithms 

The overall algorithm of the enhanced low-rank prior based on LRMA for estimating 

the blur kernel k is shown in Algorithm 5.1. 

Algorithm 5.1: Deblurring by Enhanced Low-Rank Prior (Ren et al., 2016) 

Input: Blurry image b and kernel size m × m 

Univ
ers

iti 
Mala

ya



 

212 

1 Downsample the observed blurry image 𝑏 to generate the image pyramid 

{𝑏0, 𝑏1, … . , 𝑏𝑛} 

2 Estimate the blur kernels �̂�𝑖 and latent images 𝑙𝑖 (𝑖 = 1, 2, … , 𝑛) in the 

intermediate layers using Xu et al. (2012) and output �̂�𝑖 

3 Upsample �̂�𝑖to generate initial blur kernel 𝑘0 for full resolution image 𝑏0 

4 for 𝑗 = 1,2, … 5  do 

5  solve d by minimizing Equation (5.13) 

6  𝛽 ← 2𝜎 

7  repeat 

8   solve p by minimizing Equation (5.14) 

9   𝜏 ← 2𝜆 

10   repeat 

11    solve g by minimizing Equation (5.15) 

12    solve l by minimizing Equation (5.12) 

13    𝜏 ← 3𝜏 

14   until 𝜏 > 𝜏𝑚𝑎𝑥 

15   𝛽 ← 2𝛽 

16  until 𝛽 > 𝛽𝑚𝑎𝑥 

17  Solve blur kernel k by Equation (5.19) 

18  𝜆 ← 0.9𝜆, 𝜎 → 0.9𝜎 

19 end for 

Output: Blur kernel 𝑘. 

 

5.2.2 Graph-based Prior 

Owing to Graph signal processing (GSP), a new type of image priors based on an 

adapted nonlocal graph has emerged (Peyŕe, 2008).  In image processing, recently, there 

has been a surge of interest in graph-based filtering methods that build on nonlocal and 

semi-local graphs (i.e., weighted edge) to connect the pixels of the image based on their 

physical proximity as graph signals to solve the inverse problem (Hu et al., 2016; Pang 

& Cheung, 2017; Kheradmand & Milanfar, 2014; Liu et al., 2017; Bai et al. 2019). Of 

particular interest here is the reweighted graph total variation (RGTV) type of graph-
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based prior. Most recently, Bai et al. (2019) argued that a skeleton image, which is a PWS 

proxy is sufficient to estimate the blur kernel. Since the edge weights of a graph for the 

skeleton image patch have a unique bi-modal distribution, they inspired to propose an 

RGTV prior in promoting the desirable bi-modal distribution given a blurry patch. 

Furthermore, they introduced a graph weight function so that the RGTV can be expressed 

as a graph l1-Laplacian regularizer, for which the prior can then be interpreted as a low-

pass graph filter with desirable spectral properties.  

According to the GSP concepts of Peyŕe (2008), signals on a weighted directed graph  

�̈� = (𝑉, 𝐸, 𝑤) consist of a finite nonempty set 𝑉 of vertices (i.e., image pixels), a finite 

set E ⊂ V × V of M edges, and 𝑤:𝐸 →  ℝ is a weight function, where each edge M(𝑖, 𝑗) ∈

𝐸 is undirected with a corresponding weight wij that describes the strength of connection 

from nodes i and j. Here, the weight is computed using a Gaussian kernel (Shuman et al., 

2013) as follows 

[𝑊]𝑖,𝑗 = 𝑤𝑖,𝑗 = exp(−
‖𝑙𝑖 − 𝑙𝑗‖

2

𝜎2
), 

(5.20) 

where W is an adjacency matrix of size M × M, 𝑙𝑖 and 𝑙𝑗 are the intensity values at pixels 

i and j of the image l, and σ is a parameter. 0 ≤ 𝑤𝑖,𝑗 ≤ 1 and the larger wi,j is, the higher 

the connection strength (i.e., similarity) of the nodes i and j are to each other.  

Given the adjacency matrix W, a combinatorial graph Laplacian matrix L is a 

symmetric matrix defined as:  

𝑳 ≜ diag(𝑾𝟏) −𝑾 (5.21) 

where 1 is a vector of all 1’s. diag(·) is an operator constructing a square diagonal matrix 

with the elements of the input vector on the main diagonal.  

Based on Spectral Theorem, the symmetric matrix L in Equation (5.21) can have an 

orthogonal matrix U  that diagonalizes L, such that it becomes 
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𝑳 = 𝑼𝜦𝑼𝑻 (5.22) 

where Λ is a diagonal matrix containing eigenvalues λ𝑘, 𝑘 ∈ { 1, … , 𝑁}. Each column uk 

in U  is an eigenvector corresponding to λk. Given wi,j is non-negative from Equation 

(5.20) and L is a positive semi-definite (PSD) matrix, therefore,  λ𝑘 ≥  0 for each k and 

𝑙𝑇𝐿𝑙 ≥  0 for the arbitrary graph signal l. In Bai et al., (2009), the authors adopted the 

idea of Shuman et al., (2013),  where they interpreted the non-negative eigenvalues λ𝑘 of 

GSP as graph frequencies and corresponding eigenvectors in U as graph frequency 

components. Here, together, they (i.e., graph frequencies and frequency components) 

define the graph spectrum for graph G. 

Skeleton Image and its Bi-modal Weight Distribution: Instead of using a structure 

extracted image (Xu et al., 2012) or an edge-aware smoothed image (Xu et al., 2011), Bai 

et al. (2019) proposed a skeleton image (i.e., PWS version of the observed image) as a 

proxy for the blind image deblurring problem. Figure 5.1(c) illustrates an example of a 

skeleton image proposed by Bai et al., (2019). In Figure 5.1, it can be noticed the skeleton 

image retains the strong gradients in a natural image but smooths out the minor details. 

To show the significance of the proposed skeleton image and its bi-modal distribution, 

Bai et al. (2019) construct a fully connected graph for each of three representative local 

patches highlighted in Figures 5.1(d), 5.1(e), and 5.1(f) and compute its respective edge 

weight 𝑤𝑖,𝑗 using Equation (5.18) to examine its edge weight distribution.  The edge 

weight distributions of these patches are as illustrated in Figures 5.1(g), 5.1(h), and 5.1(i).  

The x-axis of the histogram is the discrete inter-pixel difference 𝑑 = |𝑙𝑖 − 𝑙𝑗| for edge 

weight  𝑤𝑖,𝑗, whereas the y-axis shows fractions of weights of a given d for different 

image patches. Note that the edge weight  𝑤𝑖,𝑗 in Equation (5.20) is a monotonically 

decreasing function of d.  
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Figure 5.1: Illustrations of different kinds of images (Bai et al, 2019). (a) a real 
natural image. (b) a blurry image. (c) a skeleton image. (d), (e) and (f) are cropped 
region in red box of (a), (b) and (c), respectively; whereas (g), (h) and (i) are the Edge 
weight distribution around image edges of (a), (b) and (c), respectively. 

One notable observation from the histograms in Figure 5.1 is that both the real natural 

patch and its skeleton version have bi-modal distributions of edge weights, but not the 

blurred patch. The bi-modal distribution means that the inter-pixel differences in an image 

patch are either very small or very large, which shows that the patch is PWS. The PWS 

property of the skeleton patch exhibits similar characteristics as the real natural image for 

an appropriate blur kernel estimation. Moreover, according to the authors, with its sparse 

representation, the skeleton patch can be more easily reconstructed from a blurry patch 

than the natural patch with less processing time. 

Reweighted Graph Total Variation Prior: In order to incorporate the aforementioned 

bi-modal edge weight distribution in a target pixel patch using the RGTV. First, the 
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gradient operator of a graph signal l must be defined. The gradient of node 𝑖 ∈ 𝑽 is 

defined as ∇𝑖𝑙 ∈ ℝ𝑁 and its j-th element is 

(∇𝑖𝑙)𝑗 ≜ 𝑙𝑗 − 𝑙𝑖 (5.23) 

Typically, the graph total variation (GTV) (Elmoataz et al., 2008; Hidane, et al., 2013; 

Berger et al., 2017) is defined as 

‖𝑙‖𝐺𝑇𝑉 =∑‖diag(𝑊𝑖, . )∇𝑖𝑙‖1 =∑∑𝑤𝑖,𝑗|𝑙𝑗 − 𝑙𝑖 |

𝑀

𝑗=1

𝑀

𝑖=1𝑖∈𝑣

 
(5.24) 

where 𝑊𝑖,. is the i-th row of the adjacency matrix W. The GTV initializes W using 

Equation (5.20). Since it is kept fixed, therefore, it does not use the bi-modal distribution 

of edge weights. The behavior of GTV in Equation (5.24) is separable, which means it 

can be analyzed using a single node pair (i, j) by treating it separately like a two-node 

graph.  With 𝑑 = |𝑙𝑗 − 𝑙𝑖 | and fixed 𝑤𝑖,𝑗, the regularizer 𝑤𝑖,𝑗 for pair (i, j) becomes 𝑤𝑖,𝑗𝑑, 

which is a linear function of 𝑑 with slope 𝑤𝑖,𝑗.  Minimizing Equation (5.24) will push 𝑑 

towards 0, thus making the image 𝑙 smoother. 

In Bai et al. (2019), the GTV is extended to RGTV, where the graph weights  𝑊(𝑙) are 

also functions of 𝑙 defined as 

‖𝑙‖𝑅𝐺𝑇𝑉 =∑‖diag(𝑊𝑖, . (𝑙))∇𝑖𝑙‖1                                     

𝑖∈𝑣

  

 

 

=∑∑𝑤𝑖,𝑗(𝑙𝑖 , 𝑙𝑗 )|𝑙 − 𝑙𝑖 |

𝑀

𝑗=1

𝑀

𝑖=1

 (5.25) 

where 𝑊𝑖,. (𝑙)is the i-th row of 𝑊(𝑙) and 𝑤𝑖,𝑗(𝑙𝑖 𝑙𝑗 ) is the (𝑖, 𝑗) element of 𝑊(𝑙). With the 

extension, the RGTV has changed the regularizer pair (𝑖, 𝑗) into 𝑤𝑖,𝑗(𝑙𝑖 𝑙𝑗 )|𝑙𝑗 − 𝑙𝑖 | =

exp (−
𝑑2

𝜎2
) . 𝑑, and making the curve of this regularizer to have one maximum at 𝜎/√2 

and two minima at 0 and +∞. Minimizing Equation (5.25) will reduce 𝑑 if 𝑑 is smaller 
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than 𝜎/√2 and vice versa. Using Equation (5.25), the RGTV regularizer can effectively 

promote the desirable bi-modal edge weight distribution of sharp images. 

Spectral Analysis of GTV and RGTV: Inspired by Elmoataz et al. (2008), Bai et al. 

(2019) formulated an l1-Laplacian operator on a graph based on the spectral interpretation 

of GTV. According to the authors, the new graph spectral interpretation with RGTV 

regularizer can lead to an efficient algorithm for the non-convex and non-differentiable 

blind image deblurring problem, and an accelerated graph spectral filtering 

implementation specifically for Gaussian blur.  The graph spectrum of RGTV is defined 

with respect to a graph Laplacian variation operator, towards a spectral interpretation for 

GTV by sub-differentiating and applying an upper-bound function to the sub-derivative 

of Equation (5.24), yields  

(𝜕‖𝑙‖𝐺𝑇𝑉)𝑖 = �́�.∑𝛾𝑖,𝑗. (𝑙𝑖 − 𝑙𝑗),

𝑁

𝑗=1

 
 

                                  =  �́�. (∑𝛾𝑖,𝑗

𝑁

𝑗=1

𝑙𝑖 −∑𝛾𝑖,𝑗

𝑁

𝑗=1

𝑙𝑗) 
(5.26) 

 where �́� is a coefficient derived from the derivative apart from the Laplacian operator 

and 

𝛾𝑖,𝑗 =
𝑤𝑖,𝑗

max {|𝑙𝑖−𝑙𝑗|,𝜖}
 . (5.27) 

where 𝜖 is introduced as a small constant for numerical stability around 0. When 

|𝑙𝑖 − 𝑙𝑗| <  𝜖, then 𝛾𝑖,𝑗 = (
1

𝜖
)𝑤𝑖,𝑗, which is upper-bounded by 1

𝜖
, and 𝜖 is fixed at 0.01. 

Considering 𝛾𝑖,𝑗 as a new graph weight defined by Equation (5.27), a new adjacency 

matrix Γ with the new weight function of Equation (5.27) can be defined, such that the 

Equation (5.26) can be reformulated in matrix form for GTV as 

𝐿Γ ≜ diag(Γ1) − Γ. (5.28) 
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where 𝐿Γ is the l1-Laplacian matrix. 𝐿Γis a real symmetric PSD matrix. 

5.2.2.1 General formulation 

Given an image degradation model in Equation (5.1),  the optimization of the blind 

single image restoration problem using the proposed RGTV prior of Bai et al. (2019) can 

be expressed as: 

𝑙, �̂� = min
𝑙,𝑘

1

2
‖𝑙 ⊗ 𝑘 − 𝑏‖2

2 + 𝜏1‖𝑙‖𝑅𝐺𝑇𝑉 + 𝜏2‖𝑘‖2
2 (5.29) 

where the first term is the data fidelity function, and the remaining two functions are 

regularization terms for variables l and k, respectively. 𝜏1 and 𝜏2 are two corresponding 

weights for the two regularization terms. 

Equation (5.29) is a non-convex and non-differentiable optimization, therefore solving 

it can be challenging. Similar to the low-rank prior-based blur estimation method in 

subsection 5.2.1, Bai et al. (2019) applied a coarse-to-fine strategy (Fergus et al., 2006) 

to solve Equation (5.29). Note that the minimizer 𝑙 is the PWS proxy (i.e., the skeleton 

image) for estimating a good blur kernel �̂�.  

Skeleton Image Restoration: Given �̂�, optimization of Equation (5.29) to solve 𝑙 

becomes: 

𝑙 = min
𝑙

1

2
‖𝑙 ⊗ �̂� − 𝑏‖

2

2
+ 𝛽‖𝑙‖𝑅𝐺𝑇𝑉 (5.30) 

Recall that RGTV is a non-differentiable and non-convex prior, where the edge 

weights are functions of 𝑙. To solve Equation (5.30), Equations (5.27) and (5.28) in the 

spectral analysis, and an alternating scheme with the proposed l1-Laplacian of GTV are 

employed for RGTV approximation. In the alternating scheme, the 𝑙 is first optimized 

with an initialized LΓ, and then the LΓ is updated using LΓ (𝑙) to optimize 𝑙 again. The 

alternating algorithm runs iteratively until reaching convergence according to Equation 
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(5.30).  By fixing LΓ and �̂� to solve 𝑙, the problem thus becomes a non-blind image 

deblurring problem with a graph Laplacian regularizer  

𝑙 =  min
𝑙

1

2
‖𝑙 ⊗ �̂� − 𝑏‖

2

2
+  𝛽. 𝑙𝑇𝐿𝛤 𝑙 

(5.31) 

Since Equation (5.31) is a quadratic convex optimization function, hence, it is 

equivalent to solving the following system of linear equations, 

(�̂�𝑇�̂� + 2𝛽. 𝐿𝛤)�̂� = �̂�
𝑇𝑏 (5.32) 

where �̂� is a block circulant with circulant blocks (BCCB) matrix, which means it is the 

matrix representation of convolving with �̂�. The matrix �̂�𝑇�̂� + 2𝛽. 𝐿𝛤 is a real symmetric 

positive definite matrix. In order to verify if Equation (5.32) is well-conditioned 

numerically, the Power Method (Wilkinson, 1987) is used to compute the maximum and 

minimum eigenvalues of �̂�𝑇�̂� + 2𝛽. 𝐿𝛤 and to check the condition number λmax/λmin. In 

the rare case when the condition number is large, in order to stabilize the solution in 

Equation (5.32), an iterative refinement term 𝜖𝐼 is added iteratively according to Parikh 

& Boyd (2014). Since the left-hand-side matrix is sparse, positive definite, and 

symmetric, therefore Equation (5.32) can be solved efficiently using the Conjugate 

Gradient (CG) method (Boyd & Vandenberghe, 2004). In practice, the �̂�𝑙 can be 

implemented as 2-D convolution and accelerates with the FFT. Besides, the LΓ𝑙 can be 

implanted as a locally graph filter, instead of matrix computation. 

5.2.2.2 Optimization 

Blur Kernel Estimation: Given a latent image 𝑙, the blur kernel 𝑘 in Equation (5.29) 

can be solved by the following optimization  

�̂� = min
𝑘

1

2
‖𝑙 ⊗ �̂� − ∇𝑏‖

2

2
+  𝜇‖𝑘‖2

2 (5.33) 
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where ∇ is the gradient operator. Equation (5.33) is a quadratic convex function and has 

a closed-form solution, there it can be accelerated via FFT (Cho & Lee, 2009). After 

obtaining �̂�, the negative elements of �̂� is thresholded to zeros and �̂� is normalized to 

ensure ∑ �̂�𝑖 =  1. According to the authors, the rationale for a successful kernel estimation 

with a skeleton image 𝑙 is that Equation (5.30) is an over-determined function. Since the 

kernel 𝑘 is much smaller than the image 𝑙, the skeleton image 𝑙 with restored sharp edges 

is sufficient for kernel estimation. 

Acceleration for Specific Gaussian Blur Deblurring: In image restoration applications, 

such as out-of-focus deblurring or image super-resolution (Cheol, Kyu & Gi, 2003; Farsiu 

et al., 2004). Typically, Gaussian blur is seemingly the most widely-assumed type of blur 

when solving Equation (5.33).  In the deblurring task, a general blur kernel �̂�  typically 

takes most of the running time. Fortunately, under the assumption of Gaussian blur, the 

�̂� (or  �̂�) can be replaced with graph filter 𝐼 + 𝑎. 𝐿Γ, where  𝐿Γ is first initialized as an 

unweighted graph Laplacian. The filter 𝐼 + 𝑎. 𝐿Γ with 𝑎 <  0 is a smoothing process, 

which is considered as an approximation of Gaussian blur. To set a suitable initial value 

for parameter 𝑎, the images are blurred with Gaussian blurs.  From the experiments, the 

optimal 𝑎 = −0.07 from the sharp and blurred image pairs using the least square method, 

𝑎 = min
𝑎
‖(𝐼 + 𝑎. 𝐿𝛤)𝑋 − 𝑌‖2

2. (5.34) 

where matrix 𝑋 = [𝑙1,𝑙2, … , 𝑙𝑛]  represents 𝑛 sharp images, matrix 𝑌 = [𝑦1,𝑦2, … , 𝑦𝑛]  

represents corresponding blurred images.  

With 𝐼 + 𝑎. 𝐿Γ, the skeleton image restoration function in Equation (5.30) is 

reformulated to Equation (5.35) as 
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𝑙  = min
1

2
𝑥

‖(𝐼 + 𝑎. 𝐿𝛤)𝑙 − 𝑏‖2
2 + 𝛽‖𝑙‖𝑅𝐺𝑇𝑉. (5.35) 

The advantage of Equation (5.35) is that 𝐼 + 𝑎. 𝐿Γ and graph Laplacian closed-form in 

Equation (5.31) now share the same graph frequency bases. The closed-form solution in 

Equation (5.32) now becomes: 

�̂�  =  (
𝑔(𝐿𝛤)

𝑔2(𝐿𝛤) + 2𝛽. 𝐿𝛤
) 𝑏 

(5.36) 

     = 𝑈𝛤 (
𝑔(𝚲𝛤)

𝑔2(𝚲𝛤)+2𝛽.𝚲𝛤
)𝑈𝛤

𝑇𝑏 

where 𝑔(𝑋) = 𝐼 + 𝑎. 𝑋. Equation (5.36) is a polynomial graph filter to signal 𝑏 that can 

be implemented with an accelerated Lanczos method (Susnjara et al., 2015). The Lanczos 

method computes an orthonormal basis 𝑉𝑧 = [𝑣1,𝑣2, … , 𝑣𝑛] of the Krylov subspace 

𝐾𝑧(𝐿Γ, 𝑏) = 𝑠𝑝𝑎𝑛{𝑏, 𝐿Γ𝑏,… , 𝐿Γ
𝑧−1𝑏} and the corresponding symmetric scalar tridiagonal 

matrix HZ as 

𝑉𝑍
∗𝐿𝛤𝑉𝑍 = 𝐻𝑍 = 

𝛼1 𝛽2
𝛽2 𝛼2 𝛽3

𝛽3 𝛼3

    

⋱

 
(5.37) 

     ⋱     
⋱ 𝛽𝑀
𝛽𝑀 𝛼𝑀

 

 

The approximation of �̂� with order Z Lanczos method is 

𝑙  = 𝑓(𝐿𝛤)𝑏 ≈ ‖𝑏‖2𝑉𝑍𝑓(𝐻𝑧)𝑒1 ≔ 𝑓𝑧, (5.38) 

where 𝑒1 ∈  ℝ𝑍is the first unit vector. 𝑓(𝐻𝑧) is inexpensive given Z << M. The 𝑙  , 𝐿Γ =

𝐿Γ(𝑙 ) and the parameter 𝑎 is updated using Equation (5.39) iteratively until convergence, 

𝑎 = min
𝑎
‖(𝐼 + 𝑎. 𝐿𝛤)𝑙 − 𝑏‖2

2
. (5.39) 

When a satisfactory skeleton image 𝑙 is restored, the blur kernel �̂� can be computed using 

Equation (5.33). 
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5.2.2.3 Algorithms 

The optimization algorithm in each scale is sketched in Algorithm 1. 

Algorithm 5.2: Blur Kernel Estimation by RGTV prior 

Input: Blurry image 𝑏 and kernel size 𝑚 ×𝑚 

1: Initialize �̂� with delta function or the result from a coarser scale 

2: While not converge do 

  Compute 𝑙 according to Algorithm 5.2.1 

  Compute 𝑘 by solving Equation (5.33)  

  𝛽 ← 𝛽/1.1 

 end while 

Output: estimated blur kernel 𝑘 

Algorithm 5.2.1: Accelerated Blind Gaussian Blur Deblurring 

Input: Blurry image 𝑏 and kernel size 𝑚 ×𝑚 

1 Initialize 𝐿Γ  as an unweighted graph Laplacian;  

 Initialize blur with 𝐼 + 𝑎. 𝐿Γ  smoothing. 

2 Computing 𝑙 by solving Equation (5.35): 

 while not converge do 

  Update 𝑙 using the Lanczos method Equation (5.37) and Equation (5.38). 

  Update 𝐿Γ = 𝐿Γ (�̂�) using Equation (5.27) and Equation (5.28). 

  Update 𝑎 using Equation (5.39). 

 end while 

3 Compute �̂� by solving Equation (5.33). 

Output: estimated blur kernel �̂� and skeleton image 𝑙. 

 

5.2.3 The proposed Sparsity Prior 

The overall algorithm of the proposed robust PSF estimation based on sparsity prior is 

shown in Algorithm 5.3. 

Algorithm 5.3. Robust PSF Estimation 

Input: Ideal candidates { �́�𝑠: 𝑠 =  image 𝑏 and kernel size ℎ × ℎ } selected using the 

method described in subsection 4.3.1. 
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1: Determine the number of image pyramid 𝑛 according to the size of the kernel; 

2: for 𝑖 = 1 → 𝑛  do 

3  Downsample 𝑏 according to the current image pyramid to get 𝑏𝑖; 

4  for 𝑗 = 1 → 𝑚 (m iterations) do 

5   Select salient edges 𝛻𝑆 according to Equation (4.17);  

   % Estimate kernel 𝑘   

6   for  𝑗 = 1 → 𝑖𝑡𝑟  do 

7    Solve 𝑘 by minimizing the Upper-level problem of bilevel 

programming in Equation (4.21); 

8    Solve �̂� by minimizing the lower-level problem of bilevel 

programming in Equation (4.21); 

    𝑘 ← �̂�; 

9   end for 

10   Estimate latent image 𝐼𝑗 according to Equation (4.22);  

11   𝑡 ← 𝑡/1.1, 𝜃 ←  𝜃/1.1. 

12  end for 

13  Upsample image 𝐼𝑖 and set 𝐼𝑖+1 ← 𝐼𝑖 

14 end for 

Output: Blur kernel 𝑘. 

 

5.3 Final Image Restoration 

The main objective of this chapter is to evaluate the effectiveness of various images 

prior in blur estimation methods for an accurate blur kernel estimation. For this work, 

although Equations (4.12), (5.12), and (5.35) can be used to estimate the final latent sharp 

image for sparsity prior, low-rank prior, and graph-based prior, respectively, however, 

these methods are less effective for the images with rich details. In order to make a fair 

comparison on the effectiveness of the blur estimation method and to recover a latent 

sharp image with fine details, this work employed the non-blind image restoration (IR).  

In contrast to blind IR (i.e., image restoration through estimation of degradation function 

from an unknown blur) that has been comprehensively explained in Section 3, the main 
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goal of non-blind IR is to estimate the ideal image assuming the blur is known. In another 

word, it restores images with the degradation model and parameters given by users.  This 

research work employed the non-blind IR method of Levin et al. (2007) that uses a sparse 

prior. Furthermore, another non-blind IR method that uses hyper-laplacian prior is 

employed to gain further insight into the role of the image prior in image restoration. The 

non-blind IR method is that of Krishan & Fergus (2009). This method was adopted in Bai 

et al. (2019) to evaluate the proposed graph-based blind image deblurring in final image 

restoration. 

5.4 Analysis and Experimental Results 

In this section, comprehensive experiments are conducted to evaluate the effectiveness 

of three different blur estimation methods as described in Section 5.3, namely, the 

enhanced low-rank prior method (Ren et al, 2016), graph-based prior method (Bail et al., 

2019), and the proposed sparsity prior method. Of particular in this experiment, this work 

intends to validate the proposed MTF measurement algorithms in Chapter 4 as a blur 

estimation method in solving various blind deblurring problems. For a comprehensive 

evaluation, similar to Chapters 4, synthetically blurred data and real unknown blurred 

data are used; the level 2A product of IKONOS was used as ground truth and level-0 

product of RazakSAT as real unknown blur data. For experimental with synthetic data, 

the three blur estimation methods were evaluated on three groups of blurred cases, 

including defocus, Gaussian blur, and motion blur. Intuitively, the larger the blur, the 

larger the spread over a pixel, meaning more pixel will be needed to fit the blur. Therefore, 

different kernel size is applied on different blur type with different amount of blur. This 

work sets up two different disk radius sizes for defocus, two different σ (i.e., SD) for 

Gaussian blur, one linear motion with 20-pixel length and 30-degree angle of motion, and 

three complex blurs with nonlinear motion. Hence, these made up to eight types of blurred 

cases for these experiments.  
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For a set of data 𝑃 =  {𝑃1, 𝑃2, . . , 𝑃10}, which comprises of  512 × 512-pixel test data 

samples with diverse scenes as shown in Figure 5.3, each data sample in 𝑃 was 

synthetically blurred with the eight different blur kernels and added white additive 

Gaussian noise with zero mean and  0.5 SD.  Thus, eight different datasets were collected, 

each consists of 10 samples of synthetic data.  Table 5.1. summarizes the dataset 

characteristic and setting for the experiments. 

Table 5.1: Dataset and experimental setting 

Dataset Blur type and parameter Kernel 
size 

Total 
sample 

IKONOS 
(level 2A 
product) 

P1, P2, P3, 
P4, P5, P6, 
P7, P8, P9 
and P10 
(pixel size: 
512 x512) 

(1) Defocus blur, disk radius size, 
d = 5; (Dd=5) 

25 × 25 

80 

(2) Defocus blur, disk radius size, 
d = 10; (Dd=10) 

45 × 45 

(3) Gaussian blur, σ = 1; (Gσ = 1) 25 × 25 
(4) Gaussian blur, σ = 4; (Gσ = 4) 45 × 45 
(5) Linear motion, Ml , length = 

20;  angle = 30 degree  
25 × 25 

(6) Nonlinear motion blur -1, Mnl-

1 
45 ×  45 

(7) Nonlinear motion blur -2, Mnl-

2 
25 × 25 

(8) Nonlinear motion blur -3, Mnl-

3 
55 × 55 

RazakSAT 
(level-0 
product) 

R1, 
R2,…..R50 
(pixel size: 
512 x512) 

Unknown bur 15 × 15 50 

 

For real satellite data, 50 data samples with 512 × 512-pixel were collected. Figure 5.2 

shows the ground truth data used for simulating synthetic data, whereas Figure 5.3 shows 

part of the test data for experiments on real unknown blur. The rest of the test datasets 

from the level-0 product of RazakSAT are presented in Appendix B.   
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Figure 5.2: Test data from level 2A product of IKONOS. Note that P1 and P5 
are images with rich high contrast edges and details, whereas P9 and P10 are 

images with low contrast edges and details. P2 and P4 represent images with large-
scale edges and some smooth regions; P3 and P8 are images with complex 

structures and rich narrow edges, and P6 and P7 are images with large smooth 
regions and limited edge structures. 

 

Figure 5.3: Test data from the level-0 product of RazakSAT with unknown blur. 

For these experiments, the competing algorithms are evaluated from the aspects of 

effectiveness and efficiency. As such, the experimental results are discussed in three 

subsections, first, the experimental on synthetic data, followed by experimental on real 

data, and lastly, the evaluation on algorithm complexity and computational time. 
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5.4.1 Experiments on Synthetically Blurred Data 

For synthetically blurred data, two sets of experiments were conducted: (1) to evaluate 

the accuracy of the estimated blur kernels and (2) to evaluate the quality of the restored 

image.  

To evaluate the effectiveness of the blur estimation methods on the accuracy of 

estimated blur kernels. For numerical experimental results, this work adopts the sum of 

squared differences error (SSDE) (unitless: interval [0 1]), which is defined as follows: 

𝑆𝑆𝐷𝐸 = ∑[𝑘ref(𝑥, 𝑦) − 𝑘(𝑥, 𝑦)]
2

(𝑥,𝑦)

 (5.40) 

where 𝑘 and kref denote the estimated blur kernel and ground truth blur kernel, 

respectively. The closer the SSDE value to 0 the higher is the accuracy of the estimated 

results.   

Whereas for evaluation of the restored images (i.e., final output) using the competing 

blur estimation algorithms, the ISNR (unit: dB), and FSIM (unitless: interval [0 1]) are 

employed according to Equation (3.31) and Equation (3.40), respectively. In order to 

compare the overall performances (i.e., level of significance) of the proposed method to 

the competing methods, this work uses the two-tailed binomial test that is known as the 

Sign test (Sheskin, 2011).  For this evaluation, the null hypothesis is that there is no 

significant difference of performance between the competing methods; with an 

underlying level of significance, �̈�  = 0.05, the proposed method is deemed significantly 

better with calculated probability, p-value < 0.05, thus rejecting the null hypothesis.  

 In addition to quantitative measurement, this work also includes visual observation 

for qualitative evaluation. In order to make fair comparisons, the same kernel size is used 

for all the algorithms to estimate the blur kernel in each case. Then, the same non-blind 

image deblurring algorithms are used to recover sharp images with estimated blur kernels.  
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5.4.1.1 Effectiveness of blur estimation method 

In this experiment, this work estimates the blur kernel for all blur cases using the kernel 

size according to the ground truth kernel size as listed in Table 5.1. The SSDE results 

among competing methods on the datasets are presented in Table 5.2.   

Table 5.2: SSDE comparison of blur estimation methods with different prior 
types for blur kernel estimation. The bold numbers are the lowest SSDE, which 

indicates the best performance. 

Type of 
Blur Algorithm 

Dataset 
P1 P2 P3 P4 P5 

Defocus,  
d = 5 

Graph-based Prior 0.0134 0.0227 0.0262 0.0202 0.0165 
Low-rank Prior 0.0142 0.0184 0.0152 0.0196 0.0146 

Sparsity Prior 0.0042 0.0052 0.0073 0.0052 0.0059 

Defocus,  
d = 10 

Graph-based Prior 0.0812 0.1400 0.1802 0.1634 0.1059 
Low-rank Prior 0.1067 0.0711 0.0942 0.0796 0.1042 

Sparsity Prior 0.0173 0.0561 0.0897 0.0378 0.0231 

Gaussian,        
σ = 1 

Graph-based Prior 0.0001 0.0004 0.0007 0.0019 0.0009 
Low-rank Prior 0.0021 0.0018 0.0019 0.0009 0.0022 

Sparsity Prior 0.0002 0.0002 0.0003 0.0006 0.0009 

Gaussian,       
σ = 4 

Graph-based Prior 0.0007 0.0009 0.0262 0.0007 0.0005 
Low-rank Prior 0.0009 0.0021 0.0023 0.0022 0.0016 
Sparsity Prior 0.0005 0.0003 0.0004 0.0008 0.0004 

Linear 
motion 

Graph-based Prior 0.0080 0.0106 0.0039 0.0286 0.0087 
Low-rank Prior 0.0315 0.0204 0.0282 0.0081 0.0307 

Sparsity Prior 0.0031 0.0097 0.0007 0.0061 0.0129 

Nonlinear 
motion 1 

Graph-based Prior 0.0143 0.0121 0.0155 0.0115 0.0091 
Low-rank Prior 0.0408 0.0349 0.0256 0.0172 0.0396 
Sparsity Prior 0.0079 0.0074 0.0083 0.0107 0.0154 

Nonlinear 
motion 2 

Graph-based Prior 0.0037 0.0128 0.0084 0.0035 0.0055 
Low-rank Prior 0.0097 0.0138 0.0295 0.0067 0.0100 

Sparsity Prior 0.0065 0.0072 0.0083 0.0142 0.0054 

Nonlinear 
motion 3 

Graph-based Prior 0.0054 0.0049 0.0054 0.0054 0.0055 
Low-rank Prior 0.0088 0.0061 0.0110 0.0123 0.0095 

Sparsity Prior 0.0068 0.0062 0.0053 0.0065 0.0067 
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Table 5.2, continued. 

Type of 
Blur Algorithm 

Dataset 
P6 P7 P8 P9 P10 

Defocus,   
d = 5 

Graph-based Prior 0.0244 0.0291 0.0176 0.0496 0.0394 
Low-rank Prior 0.0170 0.0278 0.0147 0.0166 0.0156 

Sparsity Prior 0.0101 0.0127 0.0024 0.0052 0.0097 

Defocus,   
d = 10 

Graph-based Prior 0.2734 0.2363 0.1713 0.2029 0.2674 
Low-rank Prior 0.1194 0.1290 0.0971 0.1045 0.1122 

Sparsity Prior 0.0477 0.1448 0.0206 0.0828 0.0743 

Gaussian,         
σ = 1 

Graph-based Prior 0.0007 0.0001 0.0015 0.0010 0.0021 
Low-rank Prior 0.0031 0.0048 0.0014 0.0024 0.0008 

Sparsity Prior 0.0066 0.0058 0.0002 0.0015 0.0008 

Gaussian,        
σ = 4 

Graph-based Prior 0.0025 0.0019 0.0011 0.0384 0.0316 
Low-rank Prior 0.0011 0.0023 0.0017 0.0054 0.0025 
Sparsity Prior 0.0005 0.0008 0.0005 0.0012 0.0009 

Linear 
motion 

Graph-based Prior 0.0393 0.0211 0.0087 0.0188 0.0031 
Low-rank Prior 0.0257 0.0353 0.0281 0.0163 0.0278 

Sparsity Prior 0.0196 0.0040 0.0070 0.0039 0.0015 

Nonlinear 
motion 1 

Graph-based Prior 0.0145 0.0195 0.0125 0.0146 0.0215 
Low-rank Prior 0.0289 0.0306 0.0138 0.0359 0.0313 
Sparsity Prior 0.0439 0.0054 0.0154 0.0198 0.0218 

Nonlinear 
motion 2 

Graph-based Prior 0.0032 0.0230 0.0091 0.0074 0.0038 
Low-rank Prior 0.0185 0.0348 0.0095 0.0124 0.0323 

Sparsity Prior 0.0168 0.0141 0.0050 0.0035 0.0033 

Nonlinear 
motion 3 

Graph-based Prior 0.0080 0.0173 0.0050 0.0056 0.0048 
Low-rank Prior 0.0334 0.0188 0.0083 0.0088 0.0095 

Sparsity Prior 0.0134 0.0053 0.0061 0.0055 0.0062 
 

Figure 5.4 presents a visual estimation of the blur kernels from one of the datasets for 

all blur types by the competing methods. Based on visual observation, for this dataset 

(i.e., Sample P1), it can be noticed that the estimated results in Figure 5.4 (b) and 5.4 (c) 

are comparable to the ground truth in Figure 5.4 (a), whereas Figure 5.4 (d) show a 

discrepancy in comparison.  
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Figure 5.4: Comparison of the estimated kernels for sample P1. (a) the ground 
truth blur kernels;  estimated kernel results by (b) proposed method, (c) Ren et al. 

(2016), and (d) Bai et al. (2019). 

For better observation, a comparison (in terms of SSDE) of the estimated kernels by 

the three different prior-based methods is provided in bar graph representation as 

illustrated in Figures 5.5.   The bar height in the figures indicates the SSDE of the 

estimated kernels; lower bars indicate better performance. 

 

Figure 5.5: Comparison of the estimated kernels in terms of SSDE. Bar height 
indicates the SSDE of the estimated kernels; lower bars indicate better 

performance. The red box in the right top corner is the closed up view of Gaussian 
blur results 
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The SSDE value graph bars in Figure 5.5 show that in this test sample, the proposed 

method estimated a more accurate blur kernel than the other methods as it obtains the five 

lowest SSDE out of eight blur cases.  

For a more effective evaluation, instead of based on the test samples, the experimental 

results will be discussed according to the group of blur cases.  

Defocus blur: From Figure 5.6(a), it is can be noticed that all green bars are shorter 

than the red and blue bars for all datasets. Whereas in Figure 5.6(b), only one of the 10 

green bars is not the shortest among the three bars. From this experiment, it is obvious 

that the proposed method is able to estimate defocus blur better than the other methods 

with 95% (i.e., 19 of 20) lowest SSDE, with one case outperformed by the low-rank prior 

method. The graph-based prior method, on the contrary, has the highest SSDE for all 

defocus blur cases, which indicates that it provides the least accurate estimated defocus 

blur. 

 
(a) 

 
Figure 5.6: Comparison of estimated kernels in SSDE value for (a) Defocus 

blur, d = 5; (b) Defocus blur, d = 10. 
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(b) 

Figure 5.6, continued. 

Gaussian blur: Based on the experimental results on 10 datasets for each blur case, 

there are only five and nine datasets with the shortest green bars found in Figures 5.7 (a) 

and 5.7 (b), respectively.  These results show that the proposed method performs better 

than other methods, particularly for large Gaussian blur (e.g., σ = 4). Whereas, for the 

small gaussian blur (e.g., σ = 1), the proposed method is comparable to the graph-based 

prior method with 50% lowest SSDE. Furthermore, from Figure 5.7 (a), it is noticed that 

the proposed method has an obvious spike for datasets P6 and P7, whereas, in Figure 5.7 

(b), the graph-based prior methods show an obvious spike for dataset P3, P9, and P10.  
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(a) 

 
(b) 

 
Figure 5.7: Comparison of estimated kernels in SSDE value for (a) Gaussian 

Blur, σ = 1; (b) Gaussian Blur, σ = 4. 

Motion blur: There are nine, six, eight, and three datasets with the shortest green bars 

found in Figures 5.8(a), 5.8(b), 5.8(c), and 5.8(d), respectively.  In percentage, the 

proposed method with sparsity prior outperforms the other methods by 90% (i.e., 9 of 10) 

in estimating linear motion. Whereby in nonlinear motion blur, the performances between 

the proposed method and graph-based prior method are almost comparable, with the 

proposed method somewhat slightly better by obtaining 57% (i.e., 17 of 30)  lowest SSDE 

over the 43% (i.e., 13 of 30) lowest SSDE of the graph-based prior method. 

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060

0.0070

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

SS
D

E
 o

f E
st

im
at

ed
 K

er
ne

ls

Dataset

Gaussian Blur, σ = 1

Graph-based Prior Low-rank Prior Sparsity Prior (Proposed Method)

0.0000

0.0100

0.0200

0.0300

0.0400

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

SS
D

E
 o

f E
st

im
at

ed
 K

er
ne

ls

Dataset

Gaussian Blur, σ = 4

Graph-based Prior Low-rank Prior Sparsity Prior (Proposed Method)

Univ
ers

iti 
Mala

ya



 

234 

 

 
(a) 

 
(b) 

 
(c) 

 
Figure 5.8:Comparison of estimated kernels in SSDE value for (a) Linear 

motion blur, angle = 30 degree; (b) nonlinear motion blur, Mnl-1; (c) nonlinear 
motion blur, Mnl-2; and (d) nonlinear motion blur, Mnl-3. 
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(d) 

Figure 5.8, continued. 

Based on Table 5.2 and Figures 5.6 to 5.8, it is obvious that the proposed Sparsity Prior 

is significantly better than the low-rank based prior in estimating blur kernel regardless 

of the blur type.  Therefore, for this evaluation, only the Sign test between proposed 

Sparsity Prior and Graph-based Prior is conducted. From the pairwise comparisons results 

between these methods as presented in Table 5.3. The proposed Sparsity Prior shows 

significantly better performance over Graph-based Prior with a level of significance, �̈�  of  

0.005 for defocus and 0.05 for linear motion blur, respectively. However, the proposed 

method is not significantly better than the Graph-based Prior for nonlinear motion blur.  

For Gaussian blur, the level of significance �̈�  is only 0.1. 

Table 5.3: Sign test for pairwise comparisons between proposed Sparsity Prior 
and Graph-based Prior; The ‘-’ sign indicates p-value > 0.1 

Sparsity Prior Graph-based Prior 
 Defocus Gaussian Linear 

motion 
Nonlinear  

d = 5 d = 10 σ = 1 σ = 4 1 2 3 
Wins (+) 10 10 5 9 9 5 7 3 
Loses (-) 0 0 5 1 1 5 3 7 

Detected differences �̈� = 0.005 �̈� = 0.1 �̈� = 0.05 - 
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From Table 5.2, Table 5.3, and Figures 5.6 to 5.8, several observations were found. First, 

the proposed method considerably outperforms the other methods with about 74% (i.e., 

59 of 80 cases) with the lowest SSDE in all the cases, whereas the graph-based prior and 

low-rank prior have 25% (i.e., 20 of 80) and 1% (i.e., 1 of 80), respectively. Second, the 

defocus blur is the most challenging type of blur to solve, as the obtained SSDE values 

for estimated defocus blur kernels from each dataset are relatively higher than other 

groups of blurred cases(i.e., Gaussian and motion blur). Among the three blur estimation 

methods, the proposed method estimates the best result with the lowest SSDE, whereas 

the graph-based prior method estimates with the highest SSDE value. The proposed 

method is very effective in estimating large Gaussian blur. Third, the graph-based prior 

method is not as effective compared with the other methods when restoring low contrast 

images with large Gaussian blur. For example, in Figure 5.7(b), it is obvious that the 

SSDE values of P3, P9, and P10 are relatively high compared with SSDE values in other 

data samples. As shown in Figure 5.2, the contrast of these data samples is lower 

compared to other images. Fourth, since the proposed method is designed to estimate the 

blur kernel based on the region with salient structures, the accuracy is reduced when 

estimating blur from the data sample with a large smooth region and such as sample P6 

and P7. This can be noticed in Figure 5.7(a), where it has relatively high SSDE values for 

samples P6 and P7 among others. Lastly, the proposed method performs better than other 

methods in estimating linear motion. For nonlinear and complex motion blur, the 

proposed method outperforms the low-rank based prior method but comparable to the 

graph-based prior method.   
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5.4.1.2 Effectiveness of image restoration 

 
In this experiment, this work evaluates the effectiveness of the three blur estimation 

methods that were discussed in the previous subsection in estimating an accurate blur 

kernel for image restoration. To quantitatively evaluate the restored images (i.e., final 

output), ISNR (unit: dB), and FSIM (unitless: interval [0 1]) were used. Furthermore, this 

work also includes visual observation for qualitative evaluation.  

In order to make fair comparisons with different blur estimation algorithms, in each 

experiment, all three blur estimation algorithms are applied to estimate the blur kernel, 

and then the same ID methods are used for final image restoration.  As mentioned in 

Section 5.3, here, this work uses two ID methods are used: (1) the sparse prior ID method 

of Levin et al. (2007) and (2) the fast hyper-laplacian prior ID method of Krishnan and 

Fergus (2009), for which, throughout this experiment, will be referred as SPID and HPID, 

respectively.  

Similar to Subsection 5.4.1.1, the experimental results will be discussed based on the 

group of blurred cases, which include defocus, Gaussian blur, and motion blur.  

(a) Defocus 

Table 5.4 tabulates the FSIM and ISNR of restored images by the competing methods. 

From Table 5.4, this work finds the combination methods with the highest FSIM and 

ISNR value and gives a count for each winner then records the total counts in Table 5.5. 
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Table 5.4: Quantitative evaluation in terms of ISNR and FSIM for the 
competing algorithms in restoring defocus blurred images. The bold numbers are 

either the highest FSIM or ISNR, which indicate the best performance. 

Dataset 

Type of Blur Defocus, d = 5 Defocus, d = 10 

Algorithm SPID HPID SPID HPID 
Quantitative 

metrics FSIM ISNR FSIM ISNR FSIM ISNR FSIM ISNR 

Sample 
P1 

Graph-based Prior 0.9967 2.18 0.9957 1.85 0.9783 1.69 0.9696 1.59 
Low-rank Prior 0.9964 1.72 0.9959 1.53 0.9684 -0.63 0.9681 0.24 
Sparsity Prior 0.9979 2.90 0.9967 2.50 0.9888 3.32 0.9796 2.51 

Sample 
P2 

Graph-based Prior 0.9951 1.42 0.9943 1.31 0.9769 1.22 0.9712 1.29 
Low-rank Prior 0.9941 0.99 0.9935 0.83 0.9627 0.65 0.9597 0.83 
Sparsity Prior 0.9973 2.74 0.9957 2.14 0.9838 2.68 0.9768 2.08 

Sample 
P3 

Graph-based Prior 0.9941 0.90 0.9934 0.84 0.8739 -0.06 0.9547 0.69 
Low-rank Prior 0.9966 1.47 0.9951 1.08 0.9673 0.54 0.9592 0.65 
Sparsity Prior 0.9964 1.84 0.9947 1.30 0.9735 1.63 0.9674 1.27 

Sample 
P4 

Graph-based Prior 0.9942 1.43 0.9951 1.67 0.9580 0.45 0.9507 0.77 
Low-rank Prior 0.9929 0.95 0.9927 0.87 0.9702 0.53 0.9635 0.99 
Sparsity Prior 0.9974 2.85 0.9956 2.15 0.9852 3.14 0.9729 2.31 

Sample 
P5 

Graph-based Prior 0.9965 1.95 0.9951 1.59 0.9739 1.32 0.9612 1.22 
Low-rank Prior 0.9971 2.03 0.9959 1.65 0.9758 0.60 0.9664 1.00 
Sparsity Prior 0.9978 2.61 0.9962 2.11 0.9867 2.92 0.9756 2.13 

Sample 
P6 

Graph-based Prior 0.9920 0.22 0.9909 0.32 0.9566 0.05 0.9537 0.01 
Low-rank Prior 0.9953 1.15 0.9932 0.87 0.9616 -0.29 0.9595 0.04 
Sparsity Prior 0.9971 2.10 0.9954 1.38 0.9837 1.77 0.9787 1.37 

Sample 
P7 

Graph-based Prior 0.9879 0.48 0.9858 0.47 0.9657 0.50 0.9653 0.56 
Low-rank Prior 0.9778 -2.47 0.9776 -2.02 0.9533 -0.48 0.9528 -0.10 
Sparsity Prior 0.9895 1.77 0.9879 1.23 0.9740 1.69 0.9727 1.39 

Sample 
P8 

Graph-based Prior 0.9951 1.70 0.9937 1.38 0.9599 0.35 0.9435 0.55 
Low-rank Prior 0.9966 2.00 0.9948 1.51 0.9624 -0.18 0.9520 0.49 
Sparsity Prior 0.9970 2.80 0.9949 2.16 0.9805 2.67 0.9660 1.84 

Sample 
P9 

Graph-based Prior 0.9854 -0.45 0.9853 -0.37 0.9569 0.62 0.9551 0.55 
Low-rank Prior 0.9949 1.34 0.9939 0.99 0.9664 0.88 0.9610 0.76 
Sparsity Prior 0.9942 1.84 0.9933 1.29 0.9712 1.92 0.9685 1.52 

Sample 
P10 

Graph-based Prior 0.9922 0.40 0.9919 0.57 0.9541 0.24 0.9516 0.34 
Low-rank Prior 0.9950 1.42 0.9935 0.94 0.9612 0.51 0.9546 0.44 
Sparsity Prior 0.9947 1.80 0.9931 1.17 0.9712 1.57 0.9662 1.16 

 

In Table 5.5, it can be seen that SPID with the input from blur kernel estimated by the 

proposed blur estimation method (i.e., sparsity prior) outperforms HPID with about 85% 

(i.e., 17 of 20 cases) higher FSIM value and 100% (i.e., 20 of 20 cases) higher ISNR value 
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for all datasets, respectively. The SPID with the input blur kernel estimated by the method 

of the low-rank prior produces the highest FSIM in sample P3, P9, and P10, which 

indicates the low-rank prior can recover the structure of a low contrast image better than 

sparsity prior. 

Table 5.5: Blind image restoration Performance for a combination of methods 
in restoring defocus blurred images. The number denotes the total count of the 

highest achievement (i.e., winner) in the FSIM or ISNR value. 

Blind image restoration Dd=5 Dd=10 
FSIM ISNR FSIM ISNR 

Graph-based Prior + SPID 0 0 0 0 
Low-rank Prior + SPID 3 0 0 0 
Sparsity Prior + SPID 7 10 10 10 
Graph-based Prior + HPID 0 0 0 0 
Low-rank Prior + HPID 0 0 0 0 
Sparsity Prior + HPID 0 0 0 0 

 

One interesting observation from this experiment is that with the use of SPID, the 

graph-based prior method, even though they were reported to have the highest SSDE for 

all datasets in subsection 5.4.1.1 is able to produce better restoration results than the low-

rank prior method in some cases. Besides, it can be learned from Table 5.4 that with the 

graph-based prior input kernel, SPID considerably outperforms HPID by achieving 90% 

higher FSIM and 60% higher ISNR value in all cases. For low-rank prior, SPID achieves 

95% higher FSIM and 55% higher ISNR in all cases, whereas for sparsity prior blur, it 

achieves 100% for both  FSIM and ISNR in all cases. These results indicate that the three 

blur estimation priors favor SPID.  Since the overall performance result is significant, 

therefore, the Sign test is not conducted for this evaluation. 

Figures 5.9 and 5.10 show the quantitative evaluation of restored images by SPID for 

defocus with disk radius sizes of 5 and 10, respectively. In Figures 5.9 and 5.10, the FSIM 

and ISNR are presented in graph bars, the higher bar indicates better performance, 

whereby the bars in the negative y-axis indicate a fail result. From both figures, in 
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comparison, it can be observed that SPID can achieve better restoration results in terms 

of FSIM and ISNR using the estimated blur kernel of the proposed blur estimation method 

(i.e., with sparsity prior). For example, Figure 5.11 shows the visual quality of restoration 

results of sample P1, 𝑑 = 10. From the figure, with the higher ISNR value compared to 

graph-based prior and low-rank prior, it can be noticed that the sparsity prior restores a 

sharper and artifact-free image. In this case, the low-rank prior method obtains a negative 

ISNR, visually, even though it has a sharper appearance, however, suffers from aliasing 

effects. 

 

 
 

Figure 5.9: Quantitative evaluation for defocus blur, 𝒅 = 𝟓 in terms of ISNR, 
and FSIM on all datasets.  
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Figure 5.10: Quantitative evaluation for defocus blur, 𝒅 =  𝟏𝟎 in terms of ISNR 
and FSIM on all datasets. 

 

 
(a) (b) (c) (d) 

Figure 5.11: Restoration results for Sample P1 of Figure 5.10 (a) Defocus (d10) 
image. Restored image using the estimated kernel from (b) Graph-based prior, (c) 

Low-rank prior, and (d) Proposed sparsity prior blur estimation method. Note that 
(c) depicts a fail case due to inaccurate blur kernel estimation using low-rank 

prior.  

(b) Gaussian blur 

Table 5.6 tabulates the FSIM and ISNR of restored images by competing methods, 

whereas Table 5.7 keeps the winner counts of the combination methods in Table 5.6. 

Based on the observation from Table 5.6, similar to the previous experiments on defocus 

datasets, the three blur estimation priors favor SPID to produce better restoration results.  
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Table 5.6: Quantitative evaluation in terms of ISNR and FSIM for the 
competing algorithms in restoring Gaussian blurred images. The bold numbers are 

either the highest FSIM or ISNR, which indicate the best performance. 

Dataset 

Type of Blur Gaussian, σ = 1 Gaussian, σ = 4 

Algorithm SPID HPID SPID HPID 
Quantitative 

metrics FSIM ISNR FSIM ISNR FSIM ISNR FSIM ISNR 

Sample 
P1 

Graph-based Prior 0.9999 2.89 0.9998 2.95 0.9871 1.53 0.9848 1.33 
Low-rank Prior 0.9989 -0.30 0.9990 -0.41 0.9894 1.12 0.9874 1.07 
Sparsity Prior 0.9994 2.49 0.9994 2.50 0.9873 1.52 0.9852 1.34 

Sample 
P2 

Graph-based Prior 0.9995 1.69 0.9848 1.14 0.9869 1.36 0.9994 1.28 
Low-rank Prior 0.9885 0.69 0.9869 0.77 0.9992 0.19 0.9991 -0.23 
Sparsity Prior 0.9893 1.52 0.9868 1.30 0.9998 2.60 0.9998 2.23 

Sample 
P3 

Graph-based Prior 0.9993 0.66 0.9993 0.66 0.9492 -2.95 0.9797 0.82 
Low-rank Prior 0.9993 0.26 0.9994 0.27 0.9848 0.61 0.9817 0.51 
Sparsity Prior 0.9996 1.52 0.9995 1.22 0.9848 1.14 0.9825 0.92 

Sample 
P4 

Graph-based Prior 0.9991 0.70 0.9839 1.28 0.9869 1.52 0.9992 0.26 
Low-rank Prior 0.9871 0.75 0.9859 0.73 0.9989 0.03 0.9990 -0.32 
Sparsity Prior 0.9881 1.50 0.9854 1.27 0.9994 1.63 0.9993 1.09 

Sample 
P5 

Graph-based Prior 0.9993 0.60 0.9992 0.62 0.9880 1.49 0.9849 1.24 
Low-rank Prior 0.9991 -0.15 0.9991 -0.42 0.9894 0.95 0.9865 0.90 
Sparsity Prior 0.9992 0.58 0.9992 0.55 0.9881 1.44 0.9848 1.19 

Sample 
P6 

Graph-based Prior 0.9995 1.95 0.9994 1.93 0.9842 0.60 0.9823 0.47 
Low-rank Prior 0.9972 -1.57 0.9974 -1.70 0.9829 -0.02 0.9806 0.10 
Sparsity Prior 0.9915 -2.64 0.9918 -2.51 0.9887 0.98 0.9865 0.76 

Sample 
P7 

Graph-based Prior 0.9797 0.97 0.9987 1.59 0.9987 2.03 0.9790 0.83 
Low-rank Prior 0.9903 -5.36 0.9907 -5.21 0.9663 -3.08 0.9668 -2.57 
Sparsity Prior 0.9919 -5.07 0.9921 -5.00 0.9807 1.14 0.9797 0.92 

Sample 
P8 

Graph-based Prior 0.9869 1.36 0.9994 1.28 0.9995 1.69 0.9848 1.14 
Low-rank Prior 0.9992 0.19 0.9991 -0.23 0.9885 0.69 0.9869 0.77 
Sparsity Prior 0.9998 2.60 0.9998 2.23 0.9893 1.52 0.9868 1.30 

Sample 
P9 

Graph-based Prior 0.9991 0.08 0.9990 -0.20 0.9344 -4.34 0.9752 0.64 
Low-rank Prior 0.9991 -0.31 0.9994 -0.34 0.9767 -0.37 0.9750 -0.30 
Sparsity Prior 0.9986 -0.47 0.9985 -0.71 0.9800 1.04 0.9791 0.90 

Sample 
P10 

Graph-based Prior 0.9976 -1.74 0.9976 -1.84 0.9268 -3.50 0.9718 -0.03 
Low-rank Prior 0.9999 2.02 0.9998 1.35 0.9827 0.40 0.9798 0.32 
Sparsity Prior 0.9992 0.90 0.9991 0.45 0.9813 0.77 0.9802 0.63 

 

From Table 5.7, it is evident that SPID performs better than HPID. Consistent with the 

SSDE results of the Gaussian blur kernel estimation in Subsection 5.4.1.1, the sparsity 

prior when combined with SPID is more effective in recovering large Gaussian blur (e.g., 
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σ = 4), whereas, for small Gaussian blur (e.g., σ = 1), it is comparable to graph-based 

prior. These results can be observed in Figures 5.12 and 5.13. 

Table 5.7: Blind image restoration Performance for a combination of methods 
in restoring Gaussian blurred images. The number denotes the total count of the 

highest achievement (i.e., winner) in the FSIM or ISNR value. 

Blind image restoration Dσ = 1 Dσ = 4 
FSIM ISNR FSIM ISNR 

Graph-based Prior + SPID 5 2 2 3 
Low-rank Prior + SPID 1 1 1 0 
Sparsity Prior + SPID 2 4 7 7 
Graph-based Prior + HPID 1 3 0 0 
Low-rank Prior + HPID 1 0 0 0 
Sparsity Prior + HPID 0 0 0 0 

 

Figure 5.12 shows the quantitative evaluation of restored images by SPID for Gaussian 

blur, σ = 1. In Figure 5.12, overall, the proposed algorithm performs favorably against 

HPID with sparsity, except for Samples P6 and P7.  From Figure 5.12, with the negative 

ISNR value, this result indicates that the sparsity prior fails to recover Sample P6 and P7 

with adverse effects. These results are expected as the sparsity prior is not effective in the 

recovering degraded image with a large smooth region and small Gaussian blur. This 

observation is also found in low-rank prior. Figure 5.13 shows the visual comparison of 

restoration results of Sample P7 in Figure 5.12. 
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Figure 5.12: Quantitative evaluation for Gaussian blur, σ =1 in terms of ISNR, 
and FSIM on all datasets.  

 

 
(a) (b) (c) (d) 

Figure 5.13: Restoration results for Sample P7 of Figure 5.12 (a) Ground truth 
of Sample P7. Restored image using the estimated kernel from (b) Graph-based 

prior, (c) Low-rank prior, and (d) Sparsity prior blur estimation technique. It can 
be observed from the closed-up view, (c) appears as over sharp with halo effect; 

the halo effects are also noticeable in (d).  

Figure 5.14 shows the quantitative evaluation of restored images by SPID for Gaussian 

blur, σ = 4. In Figure 5.14, overall, the proposed method performs better than the other 
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methods. From the figure, with the negative ISNR value, this indicates the graph-based 

prior method is not as effective compared with the other methods when restoring low 

contrast images with large Gaussian blur. 

 

 

Figure 5.14: Quantitative evaluation for Gaussian blur, σ =4 in terms of ISNR, 
and FSIM on all datasets.   

For this evaluation, the Sign test is used to better evaluate the level of significance for 

the proposed Sparsity Prior when combined with SPID.  Table 5.8 presents the pairwise 

comparison results for the Sign test. For removal of large Gaussian blur, Dσ = 4, the 

combination of proposed Sparsity Prior with SPID shows a significant performance over 

other combination methods except for the combination of Graph-based Prior with SPID. 

Whereas for small Gaussian blur, Dσ = 1, the performance is generally not significant.   
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Table 5.8: Pairwise comparisons of proposed Sparsity Prior + SPID to other 
combination Gaussian blur removal; The ‘-’ sign indicates p-value > 0.1. 

Sparsity Prior + 
SPID 

Graph-based 
Prior + SPID 

Low-rank 
Prior + SPID 

Graph-based 
Prior + HPID 

Low-rank 
Prior + HPID 

Sparsity Prior 
+ HPID 

Gaussian blur, Dσ = 1 

FSIM 
Wins (+) 5 7 6 6 5 
Loses (-) 5 3 4 4 5 

Detected differences - - - - - 

ISNR 
Wins (+) 5 9 6 7 8 
Loses (-) 5 1 4 3 2 

Detected differences - �̈� = 0.05 - - �̈� = 0.1 
Gaussian blur, Dσ = 4 

FSIM Wins (+) 7 9 10 10 9 
Loses (-) 3 1 0 0 0 

Detected differences - �̈� = 0.05 �̈� = 0.005 �̈� = 0.005 �̈� = 0.05 

ISNR Wins (+) 6 10 10 10 10 
Loses (-) 4 0 0 0 0 

Detected differences - �̈� = 0.005 �̈� = 0.005 �̈� = 0.005 �̈� = 0.005 
 

(c) Motion blur 

In these experiments, this work tested four motion blur cases which comprise one 

linear motion blur and three examples of nonlinear motion blur.  The FSIM and ISNR of 

restored motion blur images by competing methods are tabulated in Table 5.9 and Table 

5.10.   

Table 5.9: Quantitative evaluation in terms of ISNR and FSIM for the 
competing algorithms in restoring linear motion and nonlinear motion-blurred 

images. The bold numbers are either the highest FSIM or ISNR, which indicate the 
best performance. 

Dataset 

Type of Blur Linear motion, angle = 30 
degree Nonlinear Motion 1, Mnl-1 

Algorithm SPID HPID SPID HPID 
Quantitative 

metrics FSIM ISNR FSIM ISNR FSIM ISNR FSIM ISNR 

Sample 
P1 

Graph-based Prior 0.9959 3.91 0.9927 3.48 0.9515 -1.44 0.9754 1.60 
Low-rank Prior 0.9948 3.18 0.9930 2.84 0.9261 -3.92 0.9553 -2.59 
Sparsity Prior 0.9970 4.60 0.9934 4.01 0.9920 2.95 0.9433 -1.20 

Sample 
P2 

Graph-based Prior 0.9880 2.34 0.9870 2.22 0.9314 -1.31 0.9766 1.11 
Low-rank Prior 0.9917 2.05 0.9895 1.92 0.9269 -2.53 0.9644 -0.66 
Sparsity Prior 0.9961 4.19 0.9912 3.14 0.9849 2.62 0.9313 -1.38 

Sample 
P3 

Graph-based Prior 0.9930 2.93 0.9887 2.30 0.9449 -0.54 0.9667 0.50 
Low-rank Prior 0.9876 0.74 0.9846 1.03 0.9511 -1.95 0.9445 -1.77 
Sparsity Prior 0.9944 3.60 0.9895 2.67 0.9787 1.90 0.9464 -1.00 
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Table 5.9, continued. 

Dataset 

Type of Blur Linear motion, angle = 30 
degree Nonlinear Motion 1, Mnl-1 

Algorithm SPID HPID SPID HPID 
Quantitative 

metrics FSIM ISNR FSIM ISNR FSIM ISNR FSIM ISNR 

Sample 
P4 

Graph-based Prior 0.9828 2.13 0.9846 2.41 0.9378 -1.40 0.9806 1.91 
Low-rank Prior 0.9830 0.57 0.9845 0.86 0.9368 -2.63 0.9734 0.43 
Sparsity Prior 0.9962 4.65 0.9917 3.72 0.9871 2.35 0.9407 -0.91 

Sample 
P5 

Graph-based Prior 0.9943 3.44 0.9907 2.93 0.9434 -1.11 0.9621 -0.36 
Low-rank Prior 0.9950 3.28 0.9915 2.66 0.9368 -4.08 0.9610 -1.63 
Sparsity Prior 0.9965 4.12 0.9921 3.38 0.9842 1.35 0.9409 -1.11 

Sample 
P6 

Graph-based Prior 0.9968 3.19 0.9906 -0.25 0.9290 -1.02 0.9720 0.30 
Low-rank Prior 0.9928 1.92 0.9922 1.53 0.9206 -2.83 0.9555 -1.07 
Sparsity Prior 0.9913 0.06 0.9903 0.15 0.9117 -2.11 0.9155 -1.27 

Sample 
P7 

Graph-based Prior 0.9902 2.82 0.9846 1.09 0.9345 -0.98 0.9647 -0.19 
Low-rank Prior 0.9835 0.46 0.9827 0.56 0.9327 -2.19 0.9318 -1.93 
Sparsity Prior 0.9886 1.74 0.9851 1.64 0.9729 -0.37 0.9419 -0.65 

Sample 
P8 

Graph-based Prior 0.9937 3.31 0.9865 2.38 0.9408 -1.43 0.9814 1.65 
Low-rank Prior 0.9943 2.89 0.9897 2.39 0.9404 -2.20 0.9829 2.08 
Sparsity Prior 0.9944 3.87 0.9891 3.08 0.9846 1.49 0.9386 -1.21 

Sample 
P9 

Graph-based Prior 0.9895 2.48 0.9671 -0.20 0.9302 -0.93 0.9595 -0.28 
Low-rank Prior 0.9852 1.11 0.9804 0.96 0.9179 -1.76 0.9528 -1.05 
Sparsity Prior 0.9856 2.23 0.9833 1.80 0.9697 -0.75 0.9350 -0.86 

 
Sample 

P10  

Graph-based Prior 0.9900 2.56 0.9896 1.90 0.9303 -1.15 0.9733 -0.36 
Low-rank Prior 0.9930 2.13 0.9897 1.53 0.9345 -2.43 0.9507 -1.53 
Sparsity Prior 0.9938 3.11 0.9895 2.14 0.9758 -0.29 0.9251 -0.82 

Dataset Type of Blur Nonlinear Motion 2, Mnl-2 Nonlinear Motion 3, Mnl-3 

Sample 
P1 

Graph-based Prior 0.9864 -0.40 0.9971 5.34 0.9263 -2.27 0.9348 -0.67 
Low-rank Prior 0.9790 -1.84 0.9929 0.24 0.9268 -2.39 0.9784 0.75 
Sparsity Prior 0.9993 7.12 0.9865 -0.70 0.9741 1.32 0.9291 -1.54 

Sample 
P2 

Graph-based Prior 0.9821 -1.73 0.9948 1.89 0.9030 -2.42 0.9485 -0.36 
Low-rank Prior 0.9784 -2.67 0.9945 0.44 0.9340 -0.98 0.9220 -1.83 
Sparsity Prior 0.9959 1.01 0.9868 -1.50 0.9554 0.40 0.9117 -1.60 

Sample 
P3 

Graph-based Prior 0.9847 -0.47 0.9903 0.84 0.9158 -2.32 0.9512 -0.43 
Low-rank Prior 0.9633 -3.45 0.9780 -2.43 0.9229 -3.08 0.9575 -0.69 
Sparsity Prior 0.9959 1.54 0.9858 -0.19 0.9452 -0.04 0.9312 -0.67 

Sample 
P4 

Graph-based Prior 0.9834 -0.89 0.9973 4.64 0.9002 -3.23 0.9493 -0.66 
Low-rank Prior 0.9881 -0.60 0.9779 -2.83 0.9081 -3.42 0.9769 1.53 
Sparsity Prior 0.9990 5.71 0.9806 -1.27 0.9660 1.19 0.9106 -2.06 

Sample 
P5 

Graph-based Prior 0.9857 -0.63 0.9957 4.55 0.9213 -2.23 0.9240 -0.62 
Low-rank Prior 0.9811 -1.71 0.9918 -0.25 0.9234 -2.48 0.9811 1.91 
Sparsity Prior 0.9987 4.32 0.9877 -0.23 0.9629 0.18 0.9247 -1.31 
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Table 5.9, continued. 

Dataset 

Type of Blur Nonlinear Motion 2, Mnl-2 Nonlinear Motion 3, Mnl-3 

Algorithm SPID HPID SPID HPID 
Quantitative 

metrics FSIM ISNR FSIM ISNR FSIM ISNR FSIM ISNR 

Sample 
P6 

Graph-based Prior 0.9802 0.36 0.9874 1.45 0.9448 -1.01 0.9386 -1.37 
Low-rank Prior 0.9568 -4.33 0.9577 -4.48 0.9246 -5.56 0.9289 -5.15 
Sparsity Prior 0.9650 -1.85 0.9614 -2.47 0.9065 -6.19 0.9291 -3.04 

Sample 
P7 

Graph-based Prior 0.9771 -1.51 0.9727 -1.18 0.8943 -3.25 0.9315 -0.52 
Low-rank Prior 0.9577 -5.28 0.9620 -4.97 0.9312 -2.97 0.8903 -3.49 
Sparsity Prior 0.9874 -0.64 0.9687 -1.57 0.9451 -0.19 0.9398 -0.32 

Sample 
P8 

Graph-based Prior 0.9830 -1.33 0.9964 3.22 0.9203 -2.31 0.9771 1.33 
Low-rank Prior 0.9823 -1.82 0.9968 3.10 0.9703 0.96 0.9244 -1.56 
Sparsity Prior 0.9995 6.45 0.9861 -0.53 0.9291 -0.71 0.9784 0.96 

Sample 
P9 

Graph-based Prior 0.9819 -0.67 0.9923 -0.22 0.9134 -0.76 0.9331 -0.12 
Low-rank Prior 0.9773 -1.31 0.9876 -0.88 0.9210 -0.95 0.9577 -0.47 
Sparsity Prior 0.9977 -0.05 0.9818 -0.54 0.9456 -0.14 0.9306 -0.23 

Sample 
P10 

Graph-based Prior 0.9845 -0.65 0.9917 2.84 0.9166 -0.91 0.9419 -0.59 
Low-rank Prior 0.9731 -4.47 0.9729 -4.65 0.9257 -1.32 0.9650 -0.67 
Sparsity Prior 0.9981 4.02 0.9827 -0.38 0.9603 0.50 0.9246 -0.73 

  

From Tables 5.9, it can be observed that, in most of the cases, the sparsity prior method 

can attain the highest FSIM and ISNR values. For better observation, the restoration 

results of the linear motion blur, Ml, and the three nonlinear motion blur, Mnl-1, Mnl-2, and 

Mnl-3 are summarized in Table 5.9. Then, the count of the combination methods that 

achieved the highest FSIM and ISNR value is recorded in Table 5.10.  For Ml blur 

estimation, SPID outperforms HPID with 100% highest FSIM and ISNR value for all 

cases, whereas, there are only 90% highest FSIM and 60% highest ISNR, 90% highest 

FSIM and 70% highest ISNR, and 90% highest FSIM and 70% highest ISNR cases found 

for nonlinear motion blind Mnl-1, Mnl-2, and Mnl-3, respectively.  
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Table 5.10: Blind image restoration Performance for a combination of methods 
in restoring motion-blurred images. The number denotes the total count of the 

highest achievement (i.e., winner) in the FSIM or ISNR value. 

Blind image 
restoration 

Ml Mnl-1 Mnl-2 Mnl-3 
FSIM ISNR FSIM ISNR FSIM ISNR FSIM ISNR 

Graph-based Prior + SPID 3 3 0 0 0 0 0 1 
Low-rank Prior + SPID 0 0 0 0 0 0 0 0 
Sparsity Prior + SPID 7 7 9 6 9 7 4 4 
Graph-based Prior + HPID 0 0 1 4 1 3 0 2 
Low-rank Prior + HPID  0 0 0 0 0 0 5 4 
Sparsity Prior + HPID 0 0 0 0 0 0 1 0 

 

Based on the winner counts in Table 5.10, it can be noted that for the nonlinear blur, 

the proposed method is considerably effective to restore the structure of the image since 

9 out of 10 cases are achieving the highest FSIM. However, in terms of SNR, the result 

of the graph-based prior is almost comparable to sparsity prior.  

To further evaluate these results, the Sign test is conducted as presented in Table 5.11. 

In this table, it can be noted that the combination of proposed Sparsity Prior with SPID 

shows significant performance in linear motion blur removal compared to other 

combination methods except for the combination of Graph-based Prior with SPID. 

Whereas for nonlinear motion blur removal, this combination is significantly better than 

the combination of Graph-based Prior with SPID, Low-rank Prior with SPID, and 

Sparsity Prior with HPID. It is considered significant for the combination of Low-rank 

Prior with HPID, but not for the combination of Graph-based Prior with HPID. 

 

 

 

Univ
ers

iti 
Mala

ya



 

250 

Table 5.11: Pairwise comparisons of proposed Sparsity Prior + SPID to other 
combination methods in motion blur removal; The ‘-’ sign indicates p-value > 0.1. 

Sparsity Prior + 
SPID 

Graph-based 
Prior + SPID 

Low-rank 
Prior + SPID 

Graph-based 
Prior + HPID 

Low-rank 
Prior + HPID 

Sparsity Prior 
+ HPID 

Linear motion, angle = 30 degree 

FSIM 
Wins (+) 7 9 10 9 10 
Loses (-) 3 1 0 1 0 

Detected differences - �̈� = 0.05 �̈� = 0.005 �̈� = 0.05 �̈� = 0.005 

ISNR 
Wins (+) 7 9 10 9 9 
Loses (-) 3 1 0 1 1 

Detected differences - �̈� = 0.05 �̈� = 0.005 �̈� = 0.05 �̈� = 0.05 
Nonlinear Motion 1, Mnl-1 

FSIM 
Wins (+) 9 9 9 9 9 
Loses (-) 1 1 1 1 1 

Detected differences �̈� = 0.05 �̈� = 0.05 �̈� = 0.05 �̈� = 0.05 �̈� = 0.05 

ISNR 
Wins (+) 9 10 7 9 9 
Loses (-) 1 0 3 1 1 

Detected differences �̈� = 0.05 �̈� = 0.005 - �̈� = 0.05 �̈� = 0.05 
Nonlinear Motion 2, Mnl-2 

FSIM 
Wins (+) 9 10 9 10 10 
Loses (-) 1 0 1 0 0 

Detected differences �̈� = 0.05 �̈� = 0.005 �̈� = 0.05 �̈� = 0.005 �̈� = 0.005 

ISNR 
Wins (+) 9 10 7 10 10 
Loses (-) 1 0 3 0 0 

Detected differences �̈� = 0.05 �̈� = 0.05 - �̈� = 0.005 �̈� = 0.1 
Nonlinear Motion 3, Mnl-3 

FSIM 
Wins (+) 9 9 7 3 9 
Loses (-) 1 1 3 7 1 

Detected differences �̈� = 0.05 �̈� = 0.05 - - �̈� = 0.05 

ISNR 
Wins (+) 9 9 7 7 8 
Loses (-) 1 1 3 3 2 

Detected differences �̈� = 0.05 �̈� = 0.05 - - �̈� = 0.1 
 

For better illustration of the restoration results in motion blur removal, Figures 5.15, 

5.16, 5.17, and 5.18 plot the graph bars of restoration results using SPID for linear motion 

blur Ml, nonlinear motion blind Mnl-1, Mnl-2, and Mnl-3, respectively.  

In Figure 5.15, it is clearly shown that the proposed sparsity prior method outperforms 

the other methods in most cases, except for data samples P6 and P7. These results again 

showed that the sparsity prior is not effective in restoring degraded images with 

characteristics of sample P6 and P7 (i.e. dataset with images with large smooth regions 

and limited edge structures), on the contrary, the graph-based prior is more effective in 

restoring this type of image.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
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Figure 5.15: Quantitative evaluation for linear motion blur, angle = 30 degrees 
in terms of ISNR and FSIM on all datasets.  

Figure 5.16 shows the comparison of FSIM and ISNR achieved by the three prior-based 

estimation methods on all datasets with complex motion blur. As shown in Figure 5.16, 

the restoration results with the proposed blur kernel estimation attain the highest FSIM in 

most cases except data sample P6, whereas in terms of ISNR, six out of 10 datasets have 

the highest ISNR.  
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Figure 5.16: Quantitative evaluation for nonlinear motion blur 1 in terms of 
ISNR and FSIM on all datasets. 

Figure 5.17 shows the comparison of FSIM and ISNR achieved by the three prior-

based estimation methods on all datasets with another example of complex motion blur. 

In terms of FSIM, the proposed sparsity prior-based blur estimation method significantly 

outperforms the other method except for data sample P6. Whereas in terms of ISNR, the 

proposed method attains the highest ISNR value in seven cases except for data samples 

P6, P7, and P9. 
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Figure 5.17: Quantitative evaluation for nonlinear motion blur 2 in terms of 
ISNR and FSIM on all datasets.  

Figure 5.18 plots the FSIM and ISNR achieved by the three prior-based estimation 

methods on all datasets with another example of complex motion blur. In terms of FSIM, 

the proposed sparsity prior-based blur estimation method outperforms the competing 

methods except for data sample P6. Whereas in terms of ISNR, the proposed method only 

attains the highest ISNR value in five cases.  
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Figure 5.18: Quantitative evaluation for nonlinear motion blur 3 in terms of 
ISNR and FSIM on all datasets. 

Based on the effectiveness evaluations presented in this subsection. In comparison 

with other algorithms in terms of SSDE, FSIM, and ISNR, and the Sign test, the sparsity 

prior algorithms achieve the best overall performance, followed by the graph-based prior 

algorithms, and then the low-rank prior algorithms. Further details about the findings will 

be discussed in Section 5.5. 

5.4.1.3 Visual Observation 

In this subsection, eight sets of visual restoration results are presented, which 

demonstrate deblurring of the eight blur cases (i.e., listed in Table 5.1), respectively.   
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Figure 5.19 shows a comparison of the three algorithms on defocus blurred images 

with low contrast edge structures and details. Due to inaccurate blur kernel estimation, 

the restored image of the graph-based prior method (Bai et al., 2019) in Figure 5.19(d) 

still contains a large blur that smears out image details. The low-rank prior method of Ren 

et al. (2016) shows better results (see Figure 5.19(e)) than the graph-based prior method, 

but cannot small details (e.g., building floor levels cannot be differentiated in the red box). 

The result of the proposed sparsity prior is shown in Figure 5.19(a) performs best in both 

kernel estimation and latent sharp image restoration; it can be noticed the size and shape 

of the estimated blur kernel are closer to the ground truth, thus it recover more image 

details.  

 
(a) (b) (c) (d) (e) 

     
Figure 5.19: Visual comparison of restored image for defocus case (disk size = 

5); The red and yellow boxes denote a cropped region in (a) Blurry-noisy image. 
(b) Ground truth Image and blur kernel (c) results using the proposed sparsity 

prior (d) results of Ren et al. (2016) using low-rank prior, and (e) results of  Bai et 
al. (2019) using graph-based prior. The images are better viewed in full size on the 

computer screen. 

Figure 5.20 shows the visual observation of restoration results for another defocus blur 

case (i.e, defocus with a disk radius size of 10).  In comparison, visually, it is can be 

noticed that the estimated blur kernel in Figure 5.20 (c) is more accurate compared to the 

estimated blur kernels of the graph-based prior method and low-rank prior method in 

Figures 5.20 (d) and 5.20 (e), respectively. Among all, the graph-based prior perform the 

worse restoration results. 

Univ
ers

iti 
Mala

ya



 

256 

 
(a) (b) (c) (d) (e) 

     
Figure 5.20: Visual comparison of restored image for defocus case (disk size = 

10); The red and yellow boxes denote a cropped region in (a) Blurry-noisy image. 
(b) Ground truth Image and blur kernel (c) results using the proposed sparsity 
prior, (d) results of  Bai et al. (2019) using graph-based prior, and (e) results of 

Ren et al. (2016) using low-rank prior. The images are better viewed in full size on 
the computer screen. 

In Figure 5.21, a comparison of visual restoration results for a challenging example 

(i.e., data sample with low contrast and narrow edge structure) is presented.  

 
(a) (b) (c) (d) (e) 

     
Figure 5.21: Visual comparison of restored image for Gaussian blur, σ = 1; The 

red and yellow boxes denote a cropped region in (a) Blurry-noisy image. (b) 
Ground truth Image and blur kernel (c) results using the proposed sparsity prior, 
(d) results of  Bai et al. (2019) using graph-based prior, and (e) results of Ren et al. 

(2016) using low-rank prior. The images are better viewed in full size on the 
computer screen. 

From the close-up view, it can be observed that the graph-based prior method presents 

a clearer and pleasant appearance compared to the other methods. However, the sparsity 

prior presents a restored image with better contrast than the graph-based prior. The low-
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rerank prior estimated a much larger PSF compared with the ground truth, thus presenting 

visual restoration results with a slight halo effect. 

In the next figure, this work demonstrates an example of visual comparison restoration 

results for data samples with large-scale edge structures and smooth regions. Visually, 

the restoration results of the sparsity prior in Figure 5.22 (c) and the graph-based prior in 

Figure 5.22 (d) are comparable. In the close-up view, visually, the sparsity prior is slightly 

better as it presents a better contrast and sharper edge that results in a more natural 

appearance, whereby the graph-based prior presents a flat appearance. The visual 

restoration of the low-rank prior in Figure 5.22 (e) suffers from an aliasing effect due to 

the obvious deviation between the estimate blur kernel and the ground truth kernel. 

 
(a) (b) (c) (d) (e) 

     
Figure 5.22: Visual comparison of restored image for Gaussian blur, σ = 4; The 
red and yellow boxes denote a cropped region in (a) Blurry-noisy image. (b) 

Ground truth Image and blur kernel (c) results using the proposed sparsity prior, 
(d) results of  Bai et al. (2019) using graph-based prior, and (e) results of Ren et al. 

(2016) using low-rank prior. The images are better viewed in full size on the 
computer screen. 

For the linear motion blur image in Figure 5.23(a), the proposed sparsity prior method 

estimate a more accurate blur kernel compared to the other methods, hence the restored 

image as shown in Figure 5.23(c) is visually better than those in Figures 5.23(d) and 

5.23(e). Among others, again, in this case, the low-rank-based prior method performs the 

worse qualitative evaluation results. 
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(a) (b) (c) (d) (e) 

     
Figure 5.23: Visual comparison of restored image for linear motion blur (angle 

direction = 30 degrees); The red and yellow boxes denote a cropped region in (a) 
Blurry-noisy image. (b) Ground truth Image and blur kernel (c) results using the 
proposed sparsity prior, (d) results of  Bai et al. (2019) using graph-based prior, 
and (e) results of Ren et al. (2016) using low-rank prior. The images are better 

viewed in full size on the computer screen. 

In addition to the capability in dealing with the blurred image containing rich textures 

and small details, the proposed sparsity method also can deal with complex motion blur 

kernels, as shown in Figure 5.24.  

 
(a) (b) (c) (d) (e) 

     
Figure 5.24: Visual comparison of restored image for nonlinear motion blur 

(i.e., Mnl-1); The red and yellow boxes denote a cropped region in (a) Blurry-noisy 
image. (b) Ground truth Image and blur kernel (c) results using the proposed 
sparsity prior, (d) results of  Bai et al. (2019) using graph-based prior, and (e) 

results of Ren et al. (2016) using low-rank prior. The images are better viewed in 
full size on the computer screen. 

Due to the complex blur, the low-rank prior method of Ren et al. (2016) cannot 

estimate the blur kernel accurately; as the kernel estimation results in Figure 5.24 (c) 

contain some obvious noise, hence the restored image suffers from obvious noise and 
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ringing artifacts. The blur kernel estimated by the graph-based prior method of Bai et al. 

(2019) in Figure 5.24 (e) is over smooth, hence it cannot recover fine details in the blurred 

image.  Visual comparison in Figure 5.24 demonstrates that the proposed algorithm 

estimates a more accurate blur kernel compared to other methods, thus recover sharper 

edges and more image details. 

Figure 5.25 shows another example of a nonlinear motion blur. From Figures 5.25 (c), 

5.25(d), and 5.25 (e), one can easily see the visual improvement in the images by the 

competing methods, and the results are almost comparable. However, from the close-up 

view, there are boundary artifacts observed in the restored image by the graph-based prior 

and low-rank prior methods. Besides, the restored image by the low-rank prior still 

contains some blur. In contrast, the kernels estimated by the proposed sparsity prior 

method are most similar to the ground truth, thus, it presents a restored image with sharper 

edges and fine details.  

 
(a) (b) (c) (d) (e) 

     
Figure 5.25: Visual comparison of restored image for nonlinear motion blur 

(i.e., Mnl-2); The red and yellow boxes denote a cropped region in (a) Blurry-noisy 
image. (b) Ground truth Image and blur kernel, (d) results of Bai et al. (2019) 

using graph-based prior, and (e) results of Ren et al. (2016) using low-rank prior. 
The images are better viewed in full size on the computer screen. 

Figure 5.26 shows another comparison of restoration results for a large and complex 

motion blur data sample. From this figure, it can be noticed that the kernels estimated by 

the proposed method and graph-based prior method are more similar to the ground truth 
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whereas the results by low-rank prior methods contain some amount of noise. Based on 

this observation, it can be noted that the deblurred images by Ren et al. (2016) contain 

ringing artifacts. The graph-based prior methods by Bai et al. (2019), although perform 

well on kernel estimation, but the final deblurred images appear to be flat and less detail 

is recovered. The proposed sparsity prior method performs the best in kernel estimation 

and the restored image by SPID recovers sharper edges and more fine details. 

 
(a) (b) (c) (d) (e) 

     
Figure 5.26: Visual comparison of restored image for nonlinear motion blur 

(i.e., Mnl-3); The red and yellow boxes denote a cropped region in (a) Blurry-noisy 
image. (b) Ground truth Image and blur kernel (c) results using the sparsity prior, 
(d) results of  Bai et al. (2019) using graph-based prior, and (e) results of Ren et al. 

(2016) using low-rank prior. The images are better viewed in full size on the 
computer screen. 

5.4.2 Experiments on Real Unknown Blurred Data 

In addition to the synthetic blurred data, this work also uses real unknown blurred 

images to further demonstrate the effectiveness of the proposed method. Since the 

restoration results for synthetic blurred data in the previous subsection show that the 

graph-based prior is fairly comparable to the proposed sparsity prior in some cases, 

whereas low-rank prior is outperformed by the proposed sparsity prior. Therefore, in this 

experiment, this work excludes the low-rank prior method is excluded but concentrates 

on evaluating the performance of the SPID with the estimated sparsity prior kernel input 

against the state-of-art work of Bai et al. (2019) that uses estimated graph-based prior 

kernel input.  Since the ground truth images and kernels are unknown in these cases, this 
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work analyzes the restoration results qualitatively. Figure 5.27 shows some of the 

restoration results on the real blur satellite images of RazakSAT.  

 
(a) (b) (c) 

   
Figure 5.27: Visual comparison of competing methods. Deblurring results by 

SPID using (a) estimated blur kernel of the graph-based prior method, (b) original 
image without deblurring process, and (c) the estimated blur kernel of the 

proposed sparsity prior methods. 
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The rest of the experiment results are available in Appendix D. By contrast, it can be 

noticed that the restored images generated by the proposed algorithm are sharper and 

clearer whereas those recovered using estimated graph-based prior kernel input do not 

show much improvement from the real unknown blurred data. This indicates that the 

graph-based prior estimation method is not effective in restoring images with a small 

amount of blur and low contrast images. 

5.4.3 Algorithm Complexity and Computational Time 

The proposed IR algorithms, sparsity prior, and low-rank prior algorithms are 

implemented in MATLAB on an Intel Core i5 CPU with 8 GB of RAM. For a fair 

comparison, the executable program of graph-based prior is also run in the same setup. 

In the implementation, for an image of size 512×512, SPID costs (21.60 ± 0.89) seconds, 

whereas the competing IR method (Krishnan & Fergus, 2009) costs (1.24 ± 0.16). The 

average processing time of the three blur estimation algorithms on 512 × 512-pixel size 

datasets is presented in Table 5.9.  

Table 5.12: Average processing time (minutes) of different methods on images 
of size 512×512. 

Blur Type Kernel size 
Processing time (minutes) 

Graph-based 
Prior 

Low-rank 
Prior 

Sparsity 
Prior 

Dd=5 25 × 25 1.2 ± 0.07 24.35 ± 0.42 4.5 ± 0.12 
Dd=10 45 × 45 1.7 ± 0.04 22.76 ± 0.80 8.1 ± 0.29 
Gσ = 1 25 × 25 1.1 ± 0.01 23.06 ± 0.78 4.3 ± 0.19 
Gσ = 4 45 × 45 1.8 ± 0.08 23.02 ± 0.66 8.6 ± 0.32 
Ml  25 × 25 1.2 ± 0.03 21.69 ± 0.71 4.2 ± 0.28  

Mnl-1 45 × 45 1.7 ± 0.05 21.36 ± 0.68 8.1 ± 0.31 
Mnl-2 25 × 25 1.2 ± 0.02 23.58 ± 1.26 4.0 ± 0.13 
Mnl-3 55 × 55 2.6 ± 0.13 21.37 ± 0.80 8.3 ± 0.21 

 

Among the three blur estimation algorithms, the computational time of Graph-based prior 

algorithms is lower than the other algorithms. This is mainly because the optimization has 
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a closed-form solution and the graph filter is implemented with an accelerated Lanczos 

method (Susnjara, Perraudin, Kressner & Vandergheynst, 2015). Even though the low-

rank prior algorithms have a closed-form solution, it evitably suffers from high 

computational complexity as it requires solving costly SVD, which has complexity O(N3) 

in general. However, unlike methods by graph-based prior methods and the proposed 

sparsity prior, the low-rank prior blur estimation method is independent of the input size 

kernel. Both the graph-based and sparsity prior blur estimation method employed a 

coarse-to-fine strategy where its pyramid levels are determined by the size blur kernel. 

For example, in the proposed sparsity prior algorithm, a kernel size with 25 × 25 kernel 

will require four pyramids, whereas both 45 × 45 and 55 × 55 require five levels of the 

pyramid to yield the final estimated kernel results, thus require more processing time.  

5.5 Discussion 

Based on the experimental results presented in Section 5.4, the following observations 

were found. First, choosing a suitable type of prior for an accurate kernel estimation is a 

challenging task. As it depends not only on the type of blur but also on the amount of blur 

and the characteristic of images (e.g., contrast, dense or sparse image details). In 

comparison with other algorithms in terms of SSDE, FSIM, and ISNR, the sparsity prior 

algorithms achieve the best overall performance, followed by the graph-based prior 

algorithms, and then the low-rank prior algorithms. However, it can be noted all the prior-

based blur estimation methods still cannot obtain satisfactory results on some challenging 

datasets. For example, all these representative algorithms achieve relatively higher SSDE 

in datasets with defocus type of blur in Subsection 5.4.1.1., these results indicate that they 

are not robust in deblurring defocus blur. Among the representative algorithms, the 

sparsity prior method achieves relatively better results than the other methods. With the 

highest SSDE, one can see that the graph-based prior algorithm has the lowest FSIM and 

ISNR in the final image restoration results. Moreover, the graph-based prior method is 
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not as effective compared with the other methods when dealing with low contrast images. 

In this case, the low-rank prior can recover the structure of a low contrast image better 

than the sparsity prior. In this comparative study, although sparsity prior algorithms have 

achieved promising performance on both synthetically blurred and real unknown blur 

satellite data, efforts can be made in promoting the robustness of the sparse representation. 

Thus, devising a more robust blur estimation algorithm is an important issue.  

Second, it can be noted from the experimental results that high computational 

complexity in the kernel estimation process is one of the drawbacks in blind image 

restoration. Generally, the restoration process for the final image restoration methods 

takes less than 30 seconds, but it is not the case for blur kernel estimation methods. In 

terms of speed (i.e., processing time), the low-rank prior and sparsity prior take a much 

longer time to converge than the graph-based prior. Moreover, compared with the low-

rank and sparsity prior that used the l1-regularized sparse representation-based image 

restoration methods, the graph-based prior has very competitive restoration results with 

significantly low complexity.  

Third, the extensive experimental results have demonstrated that there is no absolute 

winner between sparsity prior and graph-based prior in deciding which method achieves 

the best performance for nonlinear motion blur datasets. Nevertheless, the proposed 

algorithms were found more capable than the graph-based prior algorithms to deblur 

images with both small and large blur kernels especially when the blurred images contain 

rich details. 

Fourth, the proposed sparsity prior-based kernel estimation algorithm is not without 

flaws. The method would fail when the blurred image is textureless. As mentioned in 

Chapter 4, Section 4.3.2.1, the proposed kernel prior assists to extract salient edges in the 

intermediate image to improve the accuracy of the estimated kernel. Thus, if the blurred 
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image is textureless or less texture, salient edges cannot be obtained for kernel estimation. 

Figure 5.28 shows a failure case. As the input image only contains less texture and a more 

smooth area, the proposed algorithms fail to estimate the blur kernel, which leads to 

degraded deblurred results.  

 
(a) (b) (c) (d) 

 Figure 5.28. One example of a limitation using the blur kernel that is estimated 
by the proposed sparsity prior-based method. ( a) Blurred-noisy image, (b) 

restoration result using the proposed sparsity prior, (c) restoration result of  Bai et 
al. (2019) using graph-based prior, and (d) restoration result of Ren et al. (2016) 

using low-rank prior. With limited salient structures in the input image that 
degraded with non-linear motion blur, the proposed method fails to estimate an 

accurate blur kernel. As a result, the deblurred images of (b) contain obvious 
artifacts compared to (c) and (d).  Among others, the graph-based prior method by 

Bai et al., (2019) performs the best. 

As explained in Section 5.2.1.2., the low-rank prior-based method work by shrinking 

small singular values which usually correspond to textures in an image. Thus, the low-

rank prior method will fail if a blurred image contains rich textures because most of the 

textures will be removed and few sharp edges are retained for kernel estimation. Figure 

5.29 shows an example and the deblurred result of the low-rank prior method as compared 

to other methods.  
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(a) (b) (c) (d) 

Figure 5.29. One example of a limitation using the blur kernel that is estimated 
by the low-rank prior method. (a) Blurred-noisy image, (b) restoration result of 
Ren et al. (2016) using low-rank prior (c) restoration result of Bai et al. (2019) 
using graph-based prior, and (d) restoration result using the proposed sparsity 
prior. As the blurry image (a) contains rich textures (e.g., forest), the low-rank 

prior method fails to recover clear results and the deblurred result in (b) contains 
obvious ringing artifacts. For blurred images with rich textures, the proposed 

sparsity prior method performs the best since it recovers more textures as shown 
in (d) compared to other methods. 

The limitation of the graph-based prior method by Bai et al. (2019) is that it tends to 

smear out minor details and creating a flattened image. As explained in 5.2.2., Bai et al. 

(2019) use a skeleton image to retain the strong gradients in an image that smooths out 

the minor details. Figure 5.30 shows an example and the deblurred result of the graph-

based prior method as compared to other methods. 

 
(a) (b) (c) (d) 

Figure 5.30.One example of a limitation using the blur kernel that is estimated 
by the graph-based prior method. ( a) Blurred-noisy image, (b) restoration result 

of  Bai et al. (2019) using graph-based prior, (c) restoration result using the 
proposed sparsity prior, and (d) restoration result of Ren et al. (2016) using low-
rank prior. As the blurry image (a) contains mostly large structures with fewer 
textures, it is obvious that the graph-based prior method cannot produce clear 

deblurred results (b) and recover small details in the blurred image. Among all, 
the proposed sparsity prior method performs the best. 

Fifth, this work suggests that while the sparse prior is helpful, the key component 

making blind deconvolution possible is not solely based on the choice of prior, but also 
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requires the thoughtful choice of estimator. For example, the graph-based prior method, 

even though they obtained the worse kernel estimation results (i.e., highest SSDE) for all 

datasets in subsection 5.4.1.1, but with SPID, it is shown to produce better restoration 

results than the Low-rank prior method using the same SPID in Figure 5.31.  In Figure 

5.31 and all figures that followed, the quantitative measurement value at the left of the 

slash denotes SSDE and the right of the slash denotes ISNR (dB). 

 
(a) (b) (c) 

Figure 5.31. Comparison of restored image for defocus case (disk size = 10) 
using SPID between Graph- and low-rank prior kernel estimation methods; (a) 

Blurred-noisy image, (b) restoration results by Bai et al. (2019) using graph-based 
prior, (0.1400/1.22dB), and (c) restoration results by Ren et al. (2016) using low-

rank prior, (0.0711/0.65dB). 

For nonlinear motion blur kernel estimation of  Mnl-3 (as shown in Table 5.4(a)), among 

the three prior-based estimation methods, the graph-based prior method performs the best, 

whereas the low-rank prior method performed the worse. However, the low-rank prior 

method achieved the highest FSIM and ISNR in some cases using the HPID.  Figure 5.32 

shown a comparison of restoration results for a blurred image with Mnl-3. 
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(a) (b) (c) 

Figure 5.32. Visual comparison of restored image for nonlinear motion blur 
(i.e., Mnl-3) using HPID among all the kernel estimation methods; (a) restoration 
results by the proposed sparsity prior method, (0.0067/-1.31dB), (b) restoration 

results by Ren et al. (2016) using low-rank prior, (0.0095/1.91dB), and (c) 
restoration results by Bai et al. (2019) using graph-based prior, (0.0055/-0.62dB). 

Figure 5.33 shows another example of image restoration with nonlinear motion blur 

(i.e., Mnl-3). In this example, in terms of SSDE, the proposed sparsity-base prior method 

is outperformed by the graph-based prior method. In this case, the graph-based produce 

better restoration using the HPID instead of SPID.  However, with the SPID as the image 

restoration estimator, the proposed method can produce better restoration results than the 

best restoration of the graph-based prior method. 

 
(a) (b) (c) 

Figure 5.33. Visual comparison of restored image for nonlinear motion blur 
(i.e., Mnl-3) between the graph-based prior and the proposed sparsity prior kernel 

estimation methods using the HPID and SPID, respectively; red box denotes 
cropped region. (a) Blurry-noisy image, (b) restoration results by Bai et al. (2019) 

using graph-based prior, (0.0048/-0.59dB), and (c) restoration results by the 
proposed sparsity prior method, (0.0062/0.50dB). The zoom-in view of the cropped 

region results in (c) recovers more details than (b). 
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Figure 5.34 shows the last example of image restoration by the proposed kernel 

estimation method. Figures 5.34 (a) and 5.34 (b) show restoration results using the same 

kernel estimation results, but the different choice of estimator. Figure 5.34(a) is restored 

using the HPID, whereas Figure 5.34(b) is restored using the SPID.  Based on the visual 

comparison, it is obvious that the SPID produces better restoration results than HPID.  

 
(a) (b) (c) 

Figure 5.34. Visual comparison of restored images for nonlinear motion blur 
(i.e., Mnl-1) using the same kernel estimation results (i.e., by the proposed method), 

but the different choice of the estimator; (a) Blurry-noisy image, (b) image 
restoration result by HPID, and image restoration result by SPID. 

Finally, based on the experimental results, and the presented examples, it can be 

concluded that the proposed sparsity prior kernel estimation method produces better 

image restoration results with the SPID as the choice of estimator. 

5.6 Conclusion 

This chapter presents three different prior-based blur kernel estimation algorithms, 

namely the graph-based prior, low-rank prior, and sparsity prior (i.e., the proposed kernel 

estimation algorithms in Chapter 4), which adopt the concept of sparse representation 

methods for image deblurring. This work discusses their motivations, mathematical 

representations, and applications. More specifically, this work conducts a comparative 

study to analyze and evaluate these algorithms experimentally to gain further 

understanding of image priors that appropriate for blur removal in optical satellite images 

regardless of the blur type. The type of blur includes defocusing, Gaussian, uniform blur, 
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linear motion, and nonlinear motion blur. In this work, the graph-based prior and low-

rank prior algorithms are developed based on the works from Bai et al., (2019), and Ren 

et al. (2016) respectively. In addition, this work employed two non-blind image 

deconvolution (ID) methods for the final image restoration. To evaluate the performance 

of the three prior-based blur kernel estimation algorithms, the SSDE was used as the 

quantitative measure, whereas for image quality assessment, ISNR, FSIM, and 

computation time are included as the quantitative measurement. Besides, numerical 

measurement, this work also includes visual observation for qualitative measurement. 

The evaluation for SSDE values shows that the proposed sparsity prior kernel estimation 

method achieves the best overall performance, followed by the graph-based prior 

algorithms, and lastly the low-rank prior algorithms. This indicates the robustness of the 

proposed method in recovering the various type of blur. Furthermore, the experimental 

results in the final image restoration also evident that the estimated blur kernel by the 

proposed method can effectively restore the blurry-noisy images with a more than 70% 

success rate. Based on the experimental studies and show that with a proper estimation 

rule, blind image restoration can be performed even with a simple prior. This study shows 

that with a proper estimation rule, blind deconvolution can be performed even with a 

simple prior such as the proposed sparsity prior. In particular, it shows that the proposed 

blur estimation with sparsity prior is effective for estimating the blur kernel of degraded 

optical satellite images, and with the use of the SPID and HPID method, it can remove 

the blur in the degraded image effectively. Nevertheless, experimental results have shown 

that the proposed method favors the SPID over HPID, this is because the remotely sensed 

optical satellite images are generally fuzzy, and HPID is not effective in restoring images 

with a small amount of blur and low contrast images.  The proposed method is based on 

the structure extraction method, hence it is not efficient in estimating blur images with a 

largely smooth region, on contrary, the graph-based prior algorithm that uses skeleton 
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images as a PWS proxy is more efficient and effective in estimating this type of image. 

Both the graph-based prior and low-rank prior method require complex formulations, 

however, with the use of an accelerated Lanczos method (Susnjara et al., 2015), the graph-

based prior can estimate a blur kernel with a pixel size of 55 × 55 in not more than 2.6 

seconds. Unfortunately, for the low-rank prior method that uses the SVD, it requires 

expensive computational time, but yet it performed the worse among the three prior-based 

kernel estimation methods. Therefore, in this study, it is concluded that complex 

formulations cannot be assumed to produce restoration results more effectively. Sparse 

representation has a wide potential for low-vision applications in the optical satellite 

image processing application.  Thus, developing an efficient and robust sparse 

representation method for blur estimation is still the main challenge and to design a more 

effective and efficient sparse prior based kernel estimation is being expected and is 

beneficial to performance improvement. 
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CHAPTER 6: REGULARIZED-BASED MODULATION TRANSFER 

FUNCTION COMPENSATION FOR SPATIAL IMAGE QUALITY 

IMPROVEMENT 

This chapter addresses the problems of noise and moiré patterns of the Modulation 

Transfer Function Compensation (MTFC) method in operational use. The existing MTFC 

is not effective in noise suppression and preserving image details, thus compromise the 

image quality (e.g., signal to noise ratio) in the delivered product data (Lee et al., 2016). 

While there are many image restoration methods available for typical natural images, they 

often compromised by the computational burden that not practical for remote sensing 

imagery. Hence, the purpose of this work is to propose a regularization-based MTFC 

method that executes an optimal trade-off between noise regularization and detail 

preservation for high fidelity low-level vision processing of EOS data products with 

minimum computational complexity. To design the regularization function, this work 

exploits the merit of image priors in both local smoothness and nonlocal self-similarity 

properties of an image in a hybrid domain (viz., space spatial, and frequency). Later, a 

simple joint statistical model in the Curvelet domain is established to combine these two 

properties. In order to make this regularization-based MTFC method tractable and robust, 

this work employs a bilevel optimization approach to compensate for degradation and 

subsequently improve the quality of the delivered product data.  

6.1 Introduction 

Spatial image quality is one of the key parameters for characterizing and validating 

image data (Chen, 1996). Hence, it is important to appreciate the spatial characteristics 

of image data, particularly if the data is to be used for image analysis since the quality of 

the analysis depends on the quality of the data. However, in the imaging chain, remotely 

sensed imagery from optical satellites frequently suffers from the inevitable effects of 
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degradations. The degradations could happen due to extrinsic or intrinsic factors as 

discussed in Subsection 2.3. These sorts of degradations reduce the image quality, 

therefore, they need to be compensated; and they can be compensated using the MTF, 

which is the degradation function for that image restoration problem. 

Based on the literature review in Section 2.3, two main challenges in spatial image 

restoration for optical satellite images have been discovered: (1) The adverse effects (i.e., 

noise amplification and aliasing) of existing MTFC compromise the signal to noise ratio 

(SNR) of the delivered product data (Albert, 2015; Lee et al., 2016). (2), while there are 

many image restoration methods available for image quality improvement, they are often 

accompanied by a higher computational cost (e.g, Ren et al., 2016; Zha et al., 2018). 

 Recall that the fundamental task of image restoration is to deconvolve the degraded 

image with the spread function that exactly describes the distortion. Convolution in the 

spatial domain incurs a high computational cost when compared with the cost of 

multiplication operation for the filters in the frequency domain. Moreover, a remotely 

sensed image is typically large with a massive amount of information encoded in each 

observation; and each scene contains abundant texture with small details compared to a 

typical natural image, this resulted in even higher computational cost. On the contrary, in 

the frequency domain, owing to the FFTs, multiplications correspond to convolution 

operations can be accelerated. Thus, it reduces the computation burden. However, it still 

has its drawbacks. For example, the Wiener Filter (Wiener, 1964); this filter is the most 

widely used MTFC method (e.g., Bretschneider, 2002, Li et al., 2015, Oh et al., 2014; 

Aouinti et al., 2016; Lee et al, 2018)  because it is simple, fast, and give good results in 

the case of degradation with the relatively small blur. Nevertheless, it is still an ill-posed 

problem even though with known MTF. The ill-posed problem will give rise to artifacts 

such as ringing and noise amplification in the restored image. Figure 6.1 depicts some of 

the typical side effects of the restoration problem in spatial- and frequency-domain.  
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Figure 6.1: Comparison of visual quality for image restoration in different 
domains. The red box denotes the cropped region. (a) Original Image, (b) Restored 
image by Wiener filter (Lee et al., 2016), illustrating the rise of ringing effect and 
noise amplification, and (c) Restored image by Anisotropic TV model (Pan et al., 

2017), illustrating over smooth effect that created an unnatural appearance. 

Unlike typical natural images, in a realistic situation of remote sensing, the pixel 

intensity of acquired remote sensing images could be not uniform. In addition, most of 

their structures are submerged in the image and it is hard to distinguish the content of 

these images. Hence, seeking a robust method that will deblur, and penalize noise but 

preserves sharp discontinuities details in the restored image with minimum computation 

cost, is a significant challenge in the optical satellite image restoration problems.  

Based on the studies of previous work, two shortcomings have been discovered. First, 

utilizing only one image property in the regularization-based framework is insufficient to 

obtain satisfying restoration results. For example, on one hand, image restoration using 

an anisotropic TV-prior by Pan et al., (2017) has shown to be effective in recovering the 

main structures of the image with less visible noise in the local smooth region, but not 

effective in preserving fine details as shown in Figure 6.2(a). On the other hand, the image 

restoration with a Laplacian prior (Oh and Choi, 2014) has been shown to be effective in 

preserving abundant tiny textures, but not effective in suppressing noise and ringing 

artifacts in the restored image as shown in Figure 6.2(b). Second, there is a need to design 

a framework for MTFC that exhibits the most appropriate compromise among 

computational complexity, reliability, and robustness to noise. Therefore, this work 
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proposes a framework for high-fidelity MTF compensation for optical satellite image 

restoration by characterizing both local smoothness and nonlocal self-similarity of images 

in minimum computational complexity. Given the fact that non-blind deconvolution can 

be regarded as a separate step in the image restoration process which disregards the blur 

kernel estimation process.  Moreover, in recent years, considerable literature has grown 

up around image restoration with blur kernel estimation. Little attention has been paid to 

the non-blind image restoration technique. Hence, this work considers a non-blind MTF 

Compensation that excludes the blur kernel estimation process and focuses on final image 

restoration with a known blur kernel.  Technically, using a non-blind MTF Compensation 

excludes image acquisition and processing (e.g., blur kernel estimation) variability, but 

only concentrates on the restoration technique. 

 
(a) (b) 

Figure 6.2: Comparison of visual quality for image restoration in different 
domains. The yellow and red boxes denote the cropped regions. (a) Restored image 

using anisotropic TV-prior (Pan et al., 2017); As can be seen there are no visible 
noise and ringing artifacts in the cropped regions, but the forest tree and the roof 

are too smooth. (b) Restored image by Laplacian prior (Oh and Choi, 2014); as can 
be seen that the cropped regions are rich in detail, however, they also exhibit a few 

ringing artifacts. 

The main contributions of this framework are listed as follows. First, from the 

perspective of image statistics, this work designs two regularization terms that exploit 

local smoothness and nonlocal self-similarity properties of the image in the hybrid spatial 

and frequency domain in Section 6.3. Following this, this work establishes a simple joint 

statistical model in the Curvelet domain to combine the two regularization terms to ensure 
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a more reliable and robust estimation for MTFC. Second, a new form of minimization 

function for compensating MTF is formulated using the proposed regularization-based 

framework. Third, to have a tractable and robust regularization-based MTFC method, a 

bilevel optimization approach for MTFC is developed to efficiently solve the 

underdetermined inverse problem. 

The remainder of the Chapter is organized as follows. Section 6.2 describes some 

common characteristics from the perspective of the image statistic and optimization 

approach that was employed to design the proposed MTFC framework. Next, Section 6.3 

introduces the objection functions containing regularization terms in the bilevel 

optimization problems and elaborates on the details of solving optimization.  The 

experimental results and discussions are provided in Section 6.4. Finally, Section 6.5 

concludes this chapter.  

6.2 Proposed Strategies and Solutions for MTFC  

This section describes the strategies and solutions that are applied to design the MTFC 

framework to attain the objectives of this work. Remote sensing images, like any typical 

natural image, serve as the main stimuli of the human visual system; but in a more 

complex way to aid in observing the dynamic earth's surface on a greater scale and depth. 

As such, knowing more about the structure (and statistics) of these extremely complex 

and diverse stimuli is important for gaining a better understanding of the visual system. 

As aforementioned in Chapter 1, the scope of work is on spatial resolution, therefore, it 

excludes other characteristics such as radiometric and spectral out of this discussion. 

Hence, the remote sensing images and natural images can be treated in the same 

perspective, to find a good model that will tell us given an image g how likely it is that 

this image is natural by exploiting their properties and statistical structure, to design the 

image priors which is required to integrate information lost in the degradation processes. 
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6.2.1 Image Characteristic 

Natural images have several important statistical properties that manifest themselves 

in different contexts, many of them relevant to the works presented. Of particular interest 

here are the multi-resolution representation of images and their non-Gaussian structure. 

Images can have multi-resolution representation, meaning that an image can be described 

at different levels of resolution in either spatial or frequency domain. One example is the 

image pyramid that was applied for kernel refinement in the proposed PSF kernel 

estimation in Section 4.3.2.1. (b). Another important property that plays a significant role 

in this work is the non-Gaussianity of natural images.  

In the following subsections, the multi-resolution representation will be discussed, 

followed by a non-Gaussianity characteristic. 

6.2.1.1 Multi-resolution representation 

Curvelet, coined by Candѐs and Donoho (2000) provides a multi-resolution 

representation with several features that set them apart from other representations such as 

wavelets (Mallat, 1996), Gabor system (Feichtinger, 1989), steerable pyramids 

(Simoncelli & Freeman, 1995), etc. Besides having a strong directional character, 

Curvelets present a highly anisotropic behavior at a fine scale with effective support 

shaped according to the parabolic scaling principle. 

The curvelet construction was originally developed for providing efficient 

representations of smooth objects with discontinuities along curves; It has been applied 

to many image processing problems such as data compression (e.g., Liu et al., 2016; Costa 

et al., 2015), image restoration (e.g., Swamy & Vani, 2016; Qiao et al, 2016; Panigrahi, 

Gupta & Sahu, 2018), image reconstruction (e.g., Durand, Frapart & Kerebel, 2017; Xiao, 

2018), and image recognition (e.g., Elaiwat, 2015; Qiao et al., 2016). 
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One important property of curvelets that inspired us to employ them for this work is 

that it obeys the principle of harmonic analysis stating that it is possible to analyze and 

reconstruct an arbitrary function 𝑓(𝑥1, 𝑥2) as a superposition of such models (Candѐs et 

al. 2003). Hence, it can be used as a decomposition and reconstruction method.  

There are two types of fast discrete Curvelet transforms (FDCT). The first one is based 

on unequally-spaced fast Fourier transforms (USFFT), whereas the other is based on the 

wrapping of specially selected Fourier samples (FDCT WARPING) (Candѐs et al., 2006). 

This work adopts the latter for this framework since this is the fastest Curvelet transform 

currently available (Candѐs et al., 2006; Luo et al, 2014).  

6.2.1.2 Non-Gaussianity and heavy tails 

One notable property of natural images is their non-Gaussianity. This can be explained 

by observing the marginal filter histograms in Figure 6.3.  This figure depicted that the 

filter response histograms of zero mean filters, when applied to natural images always 

portray highly non-Gaussian shapes with strong peaks and heavy tails.  

 

Figure 6.3: Non-Gaussianity of natural images. Illustrated is the histogram of 
horizontal derivative filter responses over a natural image, in a log scale. Note that 
the response histogram (blue dotted line) has much heavier tails than a Gaussian 
(solid red line). Correspondingly, the peak around zero is much narrower than a 

Gaussian. 

The behavior of the marginal statistics of images modeled by general Gaussian 

distribution (GGD) has been explained in Subsection 3.1.1.2. The works from Pitkow 
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(2010), Wainwright & Simoncelli (1999), and Lam & Goodman (2000) explain why this 

non-Gaussian distribution arises in natural images. In the literature, studies have shown 

that the marginal distributions of image statistics have significantly heavier tails than a 

Laplacian, that well modeled by a hyper-Laplacian. Figure 6.4 presents four examples of 

an image with different characteristics and intensity; the first column displays the images 

in pixel-value, whereas the second and third column display gradient of the image in the 

horizontal direction and the histogram of the horizontal gradient image, respectively.  

Accordingly, as illustrated in Figure 6.4, optical satellite images also exhibit that heavy-

tailed distribution.  

(a) 

 

(b) 

(c) 

(d) 

Figure 6.4: Various images with their respective gradient image and 
distribution in a horizontal direction. (a) IKONOS Image, (b) RazakSAT Image, 

(c) A real-world scene (d) The canonical images of Lena. 

 As mentioned in Subsection 3.1.1.2, one notable work about hyper-laplacian priors is 

that of Krishnan & Fergus (2009). Based on their works and many others (Xu, Hu & Peng, 
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2013; Chang & Wu 2015; Cheng et al., 2019), it can be noticed that regularization term 

using a hyper-Laplacian prior can obtain a clear image with main structures and fewer 

artifacts.  

In order to further understand the attribute of image properties, an analysis is 

conducted to examine the frequency component of the restored image in different bands 

using the Curvelet transform as discussed in Subsection 6.2.1.1. 

Let us recall the vector-matrix form of the image degradation model in Equation (4.5). 

Given a restored image, f, the subband decomposition model of Curvelet transform can 

be applied to yield a subband 𝑓𝑗 described as 

𝑓𝑗 = 𝐷𝑗(𝑓), 𝑗 ∈  ℤ, (6.1) 

where 𝐷𝑗  is a bandpass filter extracting frequency component of restored image f at each 

scale j in a corona of frequencies |𝜉|  ∈  [2𝑗 , 2𝑗+1], and ℤ  is an integer number. The 

number of scales is determined by 

𝑁𝑗 = [𝑙𝑜𝑔2(min(𝑚, 𝑛) − 3], (6.2) 

where m and n are the size of an image. For this analysis, this work uses synthetic images 

of 512 ×  512-pixel size, therefore, subbands up to scale 6 are obtained for each image. 

The higher the scale the higher the frequency component in that subband, and vice versa. 

In this analysis, besides the hyper-Laplacian prior, this work also explores the 

characteristic of Gaussian prior and Laplacian prior. 

This work employs a non-blind deconvolution method by Krishan & Fergus (2009), 

Cho & Lee (2009), and CLS filtering (Gonzalenz & Woods, 2017) that uses hyper-

Laplacian prior, Gaussian prior, and Laplacian prior, respectively. This work analyzes 

two sets of 10 synthetic images, both sets are added Gaussian noise with standard 

deviation (SD) σ of 0.5, but different amounts of blur σb, (i.e., σb= 1 and σb= 4). In order 
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to quantify the effectiveness of image priors, this work uses a Feature similarity index 

(FSIM) quality assessment (Zhang, L. et al., 2011).  The FSIM index is a decimal value 

comprised between −1 and 1, where the closer the FSIM value to 1 the higher is the 

quality of the observed data.  

 

Figure 6.5: Comparison for image priors based on average FSIM of 10 
synthetically blurred-noisy images. 

Based on the graph presented in Figure 6.5, it can be noticed that hyper Laplacian prior 

(i.e., blue bars) at Scale 5 and 6 are taller than Gaussian prior (i.e., red bars) and Laplacian 

prior (i.e., dark grey bars). Hence, it is evident that the hyper Laplacian prior opts to 

concentrate derivatives at Scale 5 and 6. This indicates that it is more effective in 

maintaining the structure of an image regardless of the amount of blur compares to the 

other two priors.  

For Gaussian prior, as expected, it is more effective in regularize smooth region (see 

Scale 1), since it prefers to distribute derivates equally over an image. One key 

observation from this analysis is that, regardless of the amount of blur, the CLS filter that 

employs Laplacian prior is very robust in the middle range frequencies (see Scale 2 to 4).  
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This indicates that it can preserve details of an image better than gaussian and hyper-

Laplacian prior. However, as expected this filter is not efficient in restoring the high-

frequency component of an image that contains a large amount of blur (see Scale 6, σb 

=4).  The evidence reviewed here showed that different image priors characterize different 

and complementary aspects of natural image statistics. Thus, it will be beneficial to 

combine multiple priors to improve restoration performance. 

Local smoothness and nonlocal self-similarity characteristics in image properties 

have been mentioned frequently in the previous chapters. From the description of the 

local smoothness and nonlocal self-similarity characteristic in image statistics, it implies 

that image properties can be perceived in three components, which comprises of smooth, 

texture, and structure as illustrated in Figure 6.6. Therefore, inspired by this, this work 

utilizes all three image priors, namely, the hyper-Laplacian priors, Gaussian, and 

Laplacian prior term to regularize the optimization solution in the proposed MTFC 

Framework.  In the proposed framework, the hyper-Laplacian priors are designed to 

constrain the solution in preserving the structural component of nonlocal self-similarity, 

whereas the Laplacian priors are for preserving the texture component of nonlocal self-

similarity. Furthermore, the Gaussian priors are designed to preserve the local smoothness 

component. 

  
(a) (b)  (c) (d) 

Figure 6.6: Illustration of image properties. (a) Satellite image contains an example 
of local smoothness as shown by circular region, and nonlocal self-similarity as 

shown by square region, (b) a cropped region with nonlocal self-similarity 
properties, (c)-(d) depict decomposition of (b) into texture and structure region, 

respectively. 
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6.2.2 Hybrid Image Restoration Model through Bilevel Programming 

Finding a solution to regularize noise while preserving image fidelity for natural 

images is unarguably a non-trivial problem. One successful approach is the hybrid 

approach. Some representative works in the literature are Joint Statistic Modelling 

(Zhang, J., 2014), Fourier-Wavelet Regularized Deconvolution (Neelamani, Choi & 

Baraniuk, 2004), Hybrid TV-Hyper-Laplacian (Zhang, X., 2015), and Joint Nonlocal 

Means Filter (Yang, 2015). These hybrid methods have demonstrated successful results. 

However, they require a heavy mathematical model to carry out the task effectively and 

consequently suffer from the complexity of computation.  

Considering the respective advantages and limitations of different regularized-based 

approaches discussed in Subsection 3.1.2., and the merit of different image prior 

characteristics in different image properties. In contrast to the methods in the literature, 

this work develops two regularization models with different objective functions to 

characterize the image properties. The two-regularization model is optimized with multi-

objective bilevel programming (MBP) for high fidelity of MTF compensation.  Based on 

the literature review, until recently, image restoration techniques based on MBP have not 

yet received broad attention in the literature. Only a few articles related to this class of 

problems in the literature (Nikolova, Steidl & Weiss, 2015; Kunisch & Pock, 2013; 

Tappen, Liu, Adelson, & Freeman, 2007) were found, and the studies have tended to 

focus on parameter learning for variational image denoising models.  These studies 

suggest that MBP has a few advantages as compared to the conventional iterative method 

that frequently uses in the image restoration technique, is that it can ease the difficulty of 

dealing with the disjunctive nature of the complementarity constraints and optimize many 

parameters simultaneously.  
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In this study, it is believed that MTF compensated image with significant improvement 

of signal to noise ratio can be achieved by incorporating the three image priors suggested 

in Subsection 6.2.1.2. into the ill-posed restoration problem and then solving it efficiently 

using the MBP. 

6.3 Proposed Modulation Transfer Function Compensation Framework 

Let us recall the image restoration model in Equation (4.1). Given a blur and noisy 

image, the goal of image restoration is to reliably remove blur and noise to restore 

coherent image details. In general, the regularization solution that copes with the ill-posed 

nature of image restoration can be described in the following minimization problem as 

min
𝑓

1

2
‖𝑓 ⊕ ℎ − 𝑔‖2

2 +  𝜆𝛹(𝑓), (6.3) 

where  1
2
‖𝑓 ⊕ ℎ − 𝑔‖2

2 is the L2 data-fidelity term, 𝛹(𝑓) is called the regularization term 

denoting image prior and λ is the regularization parameter.  

In the proposed framework of MTFC as presented in Figure 6.7, there are two 

regularization models; one is used for characterizing the properties of image smoothness 

and image structure, whereas the other one is used for characterizing the properties of 

image texture.  With these regularization terms, the two complementary models are fused 

in the Curvelet domain to maximize their merits and minimize their weaknesses. In doing 

that, this work can obtain a high-fidelity image that portrays both local and nonlocal 

properties of the image more richly, which confines the solution space of the inverse 

problem and significantly improve the spatial quality of the observed image. The model 

for this framework is defined as 

𝑀𝑇𝐹𝐶3(𝐹) =  𝑀𝑇𝐹𝐶1(𝐹𝐴) + 𝑀𝑇𝐹𝐶2(𝐹𝐴`), with A' = {s ∈ S: s ∉ A}. (6.4) 

where 𝑀𝑇𝐹𝐶3(𝐹) represent the Hybrid MTFC Model. 𝑀𝑇𝐹𝐶1(𝐹𝐴)corresponds to the 

regularization model that contains image smooth and structure, whereas, 
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𝑀𝑇𝐹𝐶2(𝐹𝐴`)corresponds to the regularization model that contains image texture. The 𝑆 =

(𝑠0, … , 𝑠𝑁𝑗) where Nj is determined by Equation (6.2).  

To solve Equation (6.4), the two regularization terms are decoupled into separate steps 

and later optimize the solutions with MBP such that they become a new model expressed 

as 

min
�̂� 
𝑀𝑇𝐹𝐶𝑈(𝑓𝑈, 𝑓𝐿)  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑄(𝑓𝑈) >  𝑄(𝑓𝐿) , 𝑄(𝑓𝑈) >  𝑄(𝑓�̅�): 𝑓�̅� ∈ 𝑋𝑈  

𝑓𝐿 𝑠𝑜𝑙𝑣𝑒𝑠 
argmin

𝑓�̅�
{𝑀𝑇𝐹𝐶𝐿(𝑓𝑈, 𝑓�̅�): 𝑓�̅� ∈ 𝑋𝐿(𝑓𝑈) }, 𝑓𝑈 ∈ 𝑋𝑈 (6.5) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑃𝐿(𝑓𝐿, 𝑔) ~0,  

Where X is the feasible set; U and L indicate Upper-and Lower-level, respectively; f 

represents the final decision of MBP (i.e. the restored image); and the 𝑓𝑈 , 𝑓𝐿 , 𝑓�̅� denote the 

Upper-level decision, lower-level decision, and the potential lower-level decision, 

respectively. The lower-level objective function 𝑀𝑇𝐹𝐶𝐿(𝑓𝑈, 𝑓�̅�) apply image priors 

𝑃𝐿(𝑓𝐿 , 𝑔) on degraded image g to obtain a latent sharp image 𝑓𝐿, whereas 

𝑀𝑇𝐹𝐶𝑈(𝑓𝑈, 𝑓𝐿) is the Upper-level objective function, and 𝑄(𝑓𝑈) >  𝑄(𝑓𝐿) , 𝑄(𝑓𝑈) >

 𝑄(𝑓�̅�) are the Upper-level inequality constraints of fitness value for the Upper-level 

problem.  The fitness function for inequality constraint Q is formulated based on the most 

widely used quality metric, which is the recently proposed FSIM and ISNR as described 

in Section 3.5. 

It should be noted that the lower-level optimization problem is optimized only with 

respect to the L variables, and the variable vector of 𝑓𝑈 is kept fixed.  The next section 

first describes the lower-level problem and follow by the Upper-level Problem. From 

Equation (6.5), it should be noted that the lower-level optimization problem is optimized 

only with respect to the L variables, and the variable vector of 𝑓𝑈 is kept fixed.  The next 

section will first describe the lower-level problem and followed by the Upper-level 

Problem. 
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Figure 6.7: The framework of the proposed Modulation Transfer Function 
Compensation 

6.3.1 Lower-Level Problem 

The objective function for the Lower-level problem (LLP) is to obtain a clear image 

that emphasizes image smoothness without amplified noise, and image structure without 

image artifacts such as ringing near edges.  To achieve this objective function, this work 

develops two strategies, where first a hyper-Laplacian image prior (Krishnan & Fergus, 

2009) is adopted to make gradients in near-edge regions obey a heavy-tailed distribution 

to produce sharper edges; and to suppress noise and remove ringing artifacts. Secondly, 

this work introduces a mask to encode edge regions and use a Gaussian prior to eliminate 

noise and ringing artifacts in locally smooth regions. The combined image priors are thus 

defined as 

𝑃(𝑓) = 𝜏1‖∇𝑓‖
𝑝 ∘ 𝑀(𝑥) + 𝜏2‖∇𝑓‖2

2  ∘ (1n × m −𝑀(𝑥)) , (6.6) 

where ∇𝑓 =  (𝜕𝑥 𝑓, 𝜕𝑦 𝑓)𝑇  is the gradient of the image f, 𝜏1, and 𝜏2 are the weights; the 

symbol ∘⃘ represents the element-wise multiplication operator,  ‖. ‖𝑝 is the hyper-

Laplacian prior; p is the parameter with 1
2
≤ 𝑝 ≤  

4

5
 . Smaller p leads to a smoother result.  

The p can be adjusted to get a satisfactory result. 1𝑛 × 𝑚 denotes an all-ones matrix 
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according to a a 𝑛 ×  𝑚 image, and M(x) is a 2-D binary mask function which is defined 

as  

𝑀(𝑥)  =  {1,  𝑥 ∩  𝑑𝑥   
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(6.7) 

and dx is a dilated edge region. The dx is obtained using two operations, where first is to 

detect edges in image g with the Canny edge detector, then to utilize mathematical 

morphological operations to dilate the edges with a disk model, with a radius that is equal 

to the kernel size. 

The proposed prior P(f) in Equation (6.6) is used as a regularization term to solve the 

objective function of LLP. Hence, the total energy of LLP is defined as  

 

𝑀𝑇𝐹𝐶𝐿(𝑓𝐿) =  min
𝑓
‖𝑓𝐿⊗  ℎ − 𝑔‖2

2 + 𝑃𝐿(𝑓𝐿) 

subject to 𝑓𝐿  = 𝑎𝑟𝑔𝑚𝑖𝑛 𝜏1‖∇𝑓𝐿‖
𝑝 ∘ 𝑀(𝑥) + 𝜏2‖∇𝑓𝐿‖2

2  ∘ (1𝑛𝑥𝑚 −𝑀(𝑥)) , 
𝜏1 > 0,  𝜏2 > 0 

 

(6.8) 

Due to the Lp-norm regularization term in Equation (6.8), Equation (6.8) becomes a non-

convex function that is commonly regarded as computationally intractable. Inspired by 

Pan et al. (Pan et al., 2017)’s method in solving non-convex function, this work introduces 

an auxiliary variable q to substitute ∇𝑓𝐿  and add another regularization term in Equation 

(6.8) to penalize the non-sparsity of the gradient. Therefore, Equation (6.8) is 

reformulated as 

 𝑀𝑇𝐹𝐶𝐿(𝑓𝐿) =  min
𝑓𝐿
‖𝑓𝐿⊗  ℎ − 𝑔‖2

2 + 𝑃𝐿(𝑓𝐿) 

subject to 𝑓𝐿  = 𝑚𝑖𝑛
𝑓𝐿
𝜏1‖𝑞‖

𝑝°𝑀(𝑥) + 𝜏2‖𝑞‖2
2°(1𝑛x𝑚 −𝑀(𝑥)) +

 𝜏3‖∇𝑓𝐿 − 𝑞‖2
2  , 𝜏1 > 0,  𝜏2 > 0. 

(6.9) 

When 𝜏3 is close to ∞, the solution of Equation (6.9) converges to that of Equation 

(6.8). With the formulation of Equation (6.9), the optimization problem can be decoupled 

into two sub-problems and solved efficiently through alternatively minimizing (Geman 
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& Yang, 1995) f and q independently. Accordingly, the two sub-problems that are referred 

to as uL sub-problem and fL sub-problem will be discussed as follows. 

uL sub-problem: By fixing all variables except q, Equation (6.9) is reduced to 

𝜏1‖𝑞‖
𝑝°𝑀(𝑥) + 𝜏2‖𝑞‖2

2°(1𝑛𝑥𝑚 −𝑀(𝑥)) + 𝜏3‖∇𝑓𝐿 − 𝑞‖2
2 . (6.10) 

Thus, optimal q can be found using the Newton-paphson method.  

fL sub-problem: Given a fixed value of q from the previous iteration, Equation (6.9) is 

quadratic in f. The optimal 𝑓𝐿thus becomes 

min
𝑓𝐿
‖𝑓𝐿ℎ − 𝑔‖2

2 + 𝜏3 ‖𝑓𝐿 − 𝑞‖2
2 .  (6.11) 

As it is a closed-form least-squares minimization problem, this allows us to find optimal 

f directly using FFTs based on Parseval’s theorem as follows: 

𝑓𝐿 = ℱ
−1 (

ℱ(𝑔)°ℱ(ℎ)̅̅ ̅̅ ̅̅ ̅ + 𝜏3ℱ(u)°ℱ(∇)̅̅ ̅̅ ̅̅ ̅

ℱ(ℎ)°ℱ(ℎ)̅̅ ̅̅ ̅̅ ̅ + 𝜏3ℱ(∇)°ℱ(∇)̅̅ ̅̅ ̅̅ ̅
), 

(6.12) 

where ℱ(.) and ℱ−1(. ) denote the FFT and inverse FFT, respectively; and ℱ(. )̅̅ ̅̅ ̅̅  is the 

complex conjugate operator.   

Figure 6.8 demonstrates the effectiveness of the combined image priors (i.e., hyper-

Laplacian prior and Gaussian prior) used to achieve the objection function of the LLP in 

Equation (6.6). From Figure 6.8(a), it can be observed visually that the proposed image 

priors provide a smooth region without visible noise and structure preservation better than 

Krishan and Fergus (2009) in Figure 6.8(b). Another observation is that the boundary 

artifacts due to the periodicity property of FT are not visible in the intermediate latent 

image 𝑓𝐿 in Figure 6.8(a). In quantitative comparison, the intermediate latent image in 

Figure 6.8(b) has a higher FSIM value (0.98) than the intermediate latent image in Figure 

7(c) (0.95). 
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Figure 6.8: Effectiveness of the proposed prior, the block regions show the 
cropped region and their closed-up view. (a) Blurred-noisy input (gaussian blur, σ 

=2), (b) intermediate latent image 𝒇𝑳 restored by Equation (6.7). (c) Restored 
results using the method by Krishnan & Fergus (2009). The closed-up view from 

the yellow box obviously shown boundary artifacts. 

6.3.2 Upper-Level Problem 

The Upper-level problem (ULP) comprises two objective functions, one is to recover 

the fines texture of the degraded image spectrum G based on 𝑓�̅� ∈ 𝑋𝐿(𝑓𝑈), while the other 

one is to produce the ultimate restoration result. Similar to LLP, the ULP is solved in two 

steps; the two steps problem is described as uU sub-problems and fU sub-problems. 

uU sub-problem: The objective function that corresponds to solving the ULP is defined 

as 

 𝑀𝑇𝐹𝐶𝑈(𝐹𝑈) =  𝑀𝑇𝐹(𝑢, 𝑣) ∘ 𝐺(𝑢, 𝑣)  (6.13) 

 where 𝑀𝑇𝐹(𝑢, 𝑣) =  𝐻(𝑢,𝑣) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

|𝐻(𝑢,𝑣) |2  + 𝜏|𝑅(𝑢,𝑣)|2
  (6.14) 

 subject to ‖𝑔 − 𝐻𝑓𝐿‖
2  =  ‖𝜂‖2, 𝜏 > 0,  

where u and v are the spatial frequency coordinate; 𝜏 is a weight, 𝑅(𝑢, 𝑣) is a Laplacian 

prior, which penalizes the PSFs that are not smooth; and 𝐻(. )̅̅ ̅̅ ̅̅  is the complex conjugate 

of H. Note that Equation (6.14) has the same expression as the CLS filter defined in (Li 

et al., 2013). The regularization term Equation (6.14) has the advantages of convex 

optimization and a very low computational complexity (Mu et al, 2013; Gonzalez and 

Woods, 2017). As demonstrated in Subsection 6.2.1.2, the least-squares estimator is 

efficient in preserving the image in the middle range frequency.  Moreover, compared 
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with the Wiener filter, the CLS is known to yield better results for high- and medium-

noise cases (Gonzlenz & Woods, 2017). There is no need to design a very complex 

regularization term since the task of restoring smooth regions and retaining the sharp 

edges will be accomplished by LLP. Nevertheless, to make it more tractable and robust, 

another prior term about the solution is introduced as  

𝑃𝑈(𝑓𝑈) = 𝜀/𝑉𝑎𝑟(𝑓𝐿), (6.15) 

where 𝜀 is the noise level estimation using the method by Liu et al. (2013) and 𝑉𝑎𝑟(𝑓𝐿) 

is the image variance of the estimated undegraded image (i.e. the output from LLP). The 

main problem of the classic CLS filter in image restoration is that the weights could not 

be estimated accurately based on the blurred noisy image. If a reference image that 

contains a much better estimate of the frequency information than the noisy image is 

available, then the regularization term could be estimated more accurately. In addition, 

the optimization of UPP is more efficient because 𝛼 can be found must faster than the 

classic one as presented in Figure (6.10). 

With the introduction of Equation (6.15), the objection function and constraints of ULP 

in Equation (6.14) are modified to become 

 
𝑀𝑇𝐹(𝑢, 𝑣) =  

𝐻(𝑢, 𝑣) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

|𝐻(𝑢, 𝑣) |2  +   𝜏𝑃𝑈(𝑓𝐿)|𝑅(𝑢, 𝑣)|2
  

subject to 𝑚𝑖𝑛 ‖𝑓𝐿 − 𝑓‖2
2 , 𝜏 > 0, 𝜀 − ‖𝑓𝐿 − 𝑓‖2

2 = 0, 

 

(6.16) 

where 𝑚𝑖𝑛 ‖𝑓𝐿 − 𝑓‖22 denotes image fidelity of LLP. Based on the autocorrelation 

theorem, the |𝐻(𝑢, 𝑣) |2  term in Equation (6.16) can be approximated to 𝐻(𝑢, 𝑣) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∗

𝐻(𝑢, 𝑣), hence, the modified constraint least square filter in Equation (6.14) can be 

described as 

𝑀𝑇𝐹 (𝑢, 𝑣) =  
1

𝐻(𝑢, 𝑣)
∘

|𝐻(𝑢, 𝑣)|2  

|𝐻(𝑢, 𝑣)|2  +   𝜏𝑃𝑢(𝑓𝑙)|𝑅(𝑢, 𝑣)|2
,  

(6.17) 
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Note that Equation (6.17) can be perceived to have two separate part: an inverse filtering 

part 1

𝐻(𝑢,𝑣)
, which contributes to the sharpness for deblurring, and a noise smoothing part 

|𝐻(𝑢,𝑣) |2  

|𝐻(𝑢,𝑣) |2  +  𝜏𝑃𝑢(𝑓𝑙)|𝑅(𝑢,𝑣)|
2 for denoising. Subsequently, it allows more degrees of freedom 

for image restoration that incorporate both deblurring and denoising techniques in one 

single filter.  Therefore, this work proposes a modified constraint least square filter, which 

can be expressed as 

𝑀𝑇𝐹 (𝑢, 𝑣) =  (
1

𝐻(𝑢, 𝑣)
)
𝜇𝑖

∘ (
|𝐻(𝑢, 𝑣)|2  

|𝐻(𝑢, 𝑣)|2  +   𝜏𝑃𝑢(𝑓𝑙)|𝑅(𝑢, 𝑣)|2
)

𝜇𝑠

, 
(6.18) 

where 𝜇𝑖 and 𝜇𝑠 represent the inverse control parameter and the smooth control parameter 

respectively.  Empirically, the range of tuning for 𝜇𝑖 is between 0 and 2, while the range 

of tuning for 𝜇𝑠 is between 0 and 10.  A lower value of 𝜇𝑖 produces low contrast restored 

image and higher value produces noise amplification and artifacts.  Whereas, a conversely 

higher value of 𝜇𝑠 produces low contrast restored image and lower value produces noise 

amplification and artifacts.  

The intermediate latent image of ULP is obtained by applying the inverse FFT to 

Equation (6.13) as follows, 

𝑓�̅� = ℱ
−1(𝑀𝑇𝐹𝐶𝑈(𝐹𝑈)), (6.19) 

Figure 6.9 present one example of the intermediate latent image 𝑓𝑈 using Equation (6.19). 

They show the comparison of visual image quality and convergence analysis between the 

improved CLS and classic CLS, respectively. From the close-up views in Figures 6.9(b) 

and 6.9(c), it can be noticed that the proposed improved CLS produce sharper results than 

the classic CLS.  Quantitatively, the intermediate latent image in Figure 8(b) has a higher 

FSIM value (0.97) as compared to the intermediate latent image in Figure 8(c) (0.95).  
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(a) (b) (c) 

Figure 6.9: Visual quality comparison of image restoration (a) Blurred-noisy 
input (gaussian blur, σ =2), (b) Restored results by the proposed improved CLS 
using Equation (6.18), (c) Restored results by classic CLS. Note that the close-up 

views correspond to the red box in (b) and (c).  

To prove the efficiency of the improved CLS, a convergence analysis is presented 

for both the improved and the classical CLS in MATLAB on an Intel Core i5 CPU with 

8 GB of RAM in Figure 6.10. From this figure, it can be noted that the improved CLS 

converges much faster than the classical one. In an average of 10 datasets, it requires only 

30 iterations as a stop criterion. It is five times faster than the classic CLS that requires at 

least 150 iterations as a stop criterion. 

 

Figure 6.10: Convergence analysis for improved CLS and classic CLS. 

fU sub-problem: The objective function corresponds to combine local and nonlocal 

properties of the image from the bilevel problem, and implicitly determine the most 

optimal decision of this problem is defined as 

 𝑀𝑇𝐹𝐶𝑈(𝑓𝑈, 𝑓𝐿 ) =  𝐶
−1[⟨𝑓�̅�,𝜓𝑗`,𝑝,𝑘

𝑢 ⟩ + ⟨𝑓�̅� ,𝜓𝑗,𝑝,𝑘
𝑙 ⟩], 

(6.20) 
 subject to 𝑓𝐿 ∈ 𝑋𝑈, 𝑓�̅� ∈ 𝑋𝑈 
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where 𝐶−1denotes the inverse curvelet transform function; 𝜓𝑗,𝑝,𝑘𝑢 is the curvelet 

coefficient of the latent image from ULP at scale j, wedge location p, and coordinates k, 

whereas 𝜓𝑗′,𝑝,𝑘
𝑙  is the curvelet coefficient of the latent image from LLP at scale 𝑗′ (i.e., 

the complement of j) 

Given an intermediate latent image of ULP, 𝑓�̅�(𝑥, 𝑦), the curvelet coefficients 𝜓𝑗′,𝑝,𝑘
𝑙  

are obtained using the  FDCT WARPING (Candѐs et al., 2006). For all images in 𝑓 =

(𝑓�̅�, 𝑓𝐿 ) with the size of 𝑚 ×  𝑛 pixel, Equation (6.2) is used to calculate the number of 

scales and apply Equation (6.1) to extract frequency coefficients of  𝑓 at each scale and 

filter into a pool of subbands as follow 

{𝑓�̅� ↦ ( ∆0 𝑓�̅�,  ∆1 𝑓�̅�,  ∆2 𝑓�̅� , …  ∆𝑁𝑗 𝑓�̅�), 𝑓𝐿 ↦(𝑆0 𝑓𝐿,  ∆1 𝑓𝐿,  ∆2 𝑓𝐿 , …  ∆𝑁𝑗 𝑓𝐿)} , (6.21) 

where  ∆0…𝑁𝑗 represent the band levels, with  ∆0 being the band with the lowest frequency, 

and  ∆𝑁𝑗 being the band with the highest frequency. Since low frequencies are responsible 

for the general appearance of images over smooth areas, whereas high frequencies are 

responsible for detail.  The 𝑓𝐿 ↦ (∆0 𝑓𝐿 ,  ∆1 𝑓𝐿 ,  ∆𝑁𝑗 𝑓𝐿) will represent the smooth region 

and structure, whereas, 𝑓�̅� ↦ (∆2 𝑓�̅�,  ∆3 𝑓�̅�, … ,  ∆𝑁𝑗−1 𝑓�̅�) will represent the texture. Thus, 

finally, the final decision of MBP is obtained as 

𝑓𝑈  ↦ (∆0 𝑓𝐿 ,  ∆1 𝑓𝐿 , ∆2 𝑓�̅�,  ∆3 𝑓�̅�, … ,  ∆𝑁𝑗−1 𝑓�̅� , ∆𝑁𝑗 𝑓𝐿), which is the ultimate restoration 

result.  

6.4 Analysis and Experimental results 

This section presents extensive experimental results to evaluate the performance of the 

proposed algorithm. For this experiment, eight sub-images with 512 ×  512-pixel are 

selected from the level 2A product of IKONOS as presented in Figure 6.11. These sub-

images are also the ground-truth data for this experiment.  
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As mentioned in the introduction, this work proposes a non-blind deconvolution 

method, which is a stand-alone problem that concentrates on recover the degraded image 

with a known degradation function. Therefore, the datasets that are used for analysis and 

experiments are synthetically blurred satellite images simulated from the ground-truth 

data. As the practical atmospheric PSF in optical satellite images is assumed to be a 

Gaussian-like shape, so the eight ground truth data are synthetically blurred with Gaussian 

blur for four different standard deviations (SD) σ of 1, 2, 3, and 4. Thus, four groups of 

eight datasets are collected, which are labeled as Dataset-1, Dataset-2, Dataset-3, and 

Dataset-4 that contain blur SD, σ of 1, 2,3, and 4, respectively. Apart from blurring, this 

work also added white additive Gaussian noise with zero mean and 0.5 SD to all datasets 

to test the robustness of the proposed algorithm.  

 

Figure 6.11: Ground truth data from level 2A product of IKONOS. 

The proposed algorithm is compared with five competing methods. They comprise of 

an MTF-filtering based method which is the widely used Wiener filter (Mu et al., 2016), 

two recent representative non-blind deconvolution methods (i.e. Krishnan & Fergus 

(2009) and Pan et al., (2017)) that exploit image prior as regularization term, and two 

representative non-blind deconvolution methods (i.e., Zhang, J. et al. (2014), Zhang, X. 
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et al. (2015)), which use a hybrid model. The competing methods are evaluated from two 

aspects: efficiency and effectiveness. To evaluate the efficiency of the proposed 

algorithms, this work uses convergence speed (i.e., the number of iterations for 

convergence) and computational time. As to evaluate effectiveness, this work uses ISNR 

(unit: dB), and the recently proposed FSIM [unitless: interval [0 1]); FSIM is known to 

achieve much higher consistency with the subjective evaluations than state-of-the-art IQA 

metrics Zhang, L. et al., 2011). In addition to quantitative measurement, this work also 

uses visual observation for qualitative evaluation. 

Nevertheless, to evaluate the effectiveness of the proposed method in a real-world 

practical situation, apart from experimental on synthetic data,  this work also experiments 

with real unknown blur satellite data by employing the MTF measurement method from 

Chapter 4 to estimate the degradation function (i.e., PSF kernel), and later to be input to 

the proposed method to compensate for degradation. In these experiments, the MTF area 

(MTFA) ratio is used to quantitatively assess the restoration quality. The ISNR and FSIM 

are not applicable since the restoration process has become a blind deconvolution problem 

with unknown blur.  For this experiment, 50 data samples are collected from RazakSAT 

data in the Panchromatic (PAN) band.   

In this subsection, the numerical evaluation results for all data are presented. However 

for visual evaluation, only some of the results are presented, the rest of the experimental 

results are available in Appendix D. 

6.4.1 Analysis of the effectiveness of Combined Prior in MTFC 

This analysis evaluates the effectiveness of the proposed combined priors to MTFC 

using the four groups of datasets. Each restored image f by the proposed regularisation-

based MTFC method is decomposed into subbands using Equation (6.1) in the curvelet 
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domain and the FSIM is measured with reference to the ground truth. Figure 6.12 shows 

an example of decomposed images. 

 
Example f 

 
∆0 𝑓 ∆1 𝑓 ∆2 𝑓 

 
∆3 𝑓 ∆4 𝑓 ∆5 𝑓 

Figure 6.12: Decomposition of restored image f into six subbands 

Table 6.1 tabulates the average FSIM and relative SD of each subband for all 

datasets. Furthermore, for better visualization, this work presents the analysis results in 

terms of average FSIM in Figure 6.13.   From the analyses, as expected the dataset with 

the smallest blurring effect (i.e., Dataset-1, σ =1) has the best image reconstruction results 

with lower uncertainty, and vice versa. Note that, the tabulated relative SD for Dataset-1, 

Dataset-2, Dataset-3 and Dataset-4 is within the range of 0.0001 to 0.0054, 0.0018 to 

0.0059, 0.0022 to 0.0061, and 0.0010 to 0.0088, respectively. The low relative SD of the 

datasets indicates the robustness of the proposed method, whereby the high FSIM value 

obtained by the reconstructed subbands shows the effectiveness of the proposed method. 

This is evident from Figure 6.13, where it can be noticed that all reconstructed subbands 

are obtaining an FSIM value higher than 0.9. In particular, the bar chart of FSIM value 

for subband ∆1 𝑓 and ∆2 𝑓 in Figure 11 is relatively high for all datasets, which indicates 

the proposed combined priors in the LLP can effectively characterize the local smooth 

region of the image. In addition, the FISM value of subband ∆4 𝑓 and ∆5 𝑓 in this analysis 
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also shows that the proposed combined priors can preserve the structure effectively even 

in large blur conditions (see Dataset-3 and Dataset-4 in Table 6.1).   

One key observation from the analyses is that the proposed priors in the ULP can 

mostly attain a near-perfect FSIM score (i.e., > 0.99) in the mid-range frequency (see 

subband ∆2 𝑓 and ∆3 𝑓 in Table 1), which indicates that it can preserve image detail 

effectively. Moreover, it can be noted that even with a large gaussian blur σ = 4, the 

proposed method is capable to recover the high-frequency components of an image up to 

0.90352 FSIM value with relative SD as low as 0.0085%.  The low uncertainty values 

and the high FSIM value of the reconstructed subbands tabulated in Table 1 demonstrate 

the high reliability of the priors employed by the proposed method. This merit can warrant 

the robustness of the proposed method. 

Table 6.1: The average FSIM and relative SD of datasets in their respective 
subband.  

Subband 
Dataset-1 Dataset-2 Dataset-3 Dataset-4 

Gaussian blur, SD 
σ =1 σ =2 σ =3 σ =4 

∆0 𝑓 Average FSIM 0.99999 0.99967 0.99999 0.99864 
Relative SD (%) 0.0001 0.0018 0.0022 0.0010 

∆1 𝑓 Average FSIM 0.99998 0.99957 0.99982 0.99889 
Relative SD (%) 0.0039 0.0048 0.0030 0.0044 

∆2 𝑓 Average FSIM 0.99996 0.99691 0.99943 0.99189 
Relative SD (%) 0.0054 0.0051 0.0042 0.0073 

∆3 𝑓 Average FSIM 0.99998 0.99744 0.99828 0.97167 
Relative SD (%) 0.0039 0.0059 0.0052 0.0075 

∆4 𝑓 Average FSIM 0.99921 0.96084 0.93902 0.92584 
Relative SD (%) 0.0052 0.0039 0.0053 0.0088 

∆5 𝑓 Average FSIM 0.99229 0.93121 0.92091 0.90352 
Relative SD (%) 0.0031 0.0055 0.0061 0.0085 
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Figure 6.13: The average FSIM datasets in their respective subband 

Figure 6.14 – 6.17 presents examples of synthetic blurred-noisy images used in this 

analysis and their respective restoration results by the proposed regularisation-based 

MTFC method. The restoration results as shown in these figures demonstrate the 

effectiveness of the combined priors in MTFC. 

 
Figure 6.14: Experiment results of S4. The top row shows the blurred-noisy 

image with different amounts of blur, whereas the bottom row presents the 
respective image after the image restoration process. The quantitative 

measurement value at the left of the slash denotes ISNR (dB) and the right of the 
slash denotes FSIM. 
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Figure 6.15: Experiment results of S5. The top row shows the blurred-noisy 
image with different amounts of blur, whereas the bottom row presents the 

respective image after the image restoration process. The quantitative 
measurement value at the left of the slash denotes ISNR (dB) and the right of the 

slash denotes FSIM. 

 

 

Figure 6.16: Experiment results of S7. The top row shows the blurred-noisy 
image with different amounts of blur, whereas the bottom row presents the 

respective image after the image restoration process. The quantitative 
measurement value at the left of the slash denotes ISNR (dB) and the right of the 

slash denotes FSIM. 
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Figure 6.17: Experiment results of S8. The top row shows the blurred-noisy 
image with different amounts of blur, whereas the bottom row presents the 

respective image after the image restoration process. The quantitative 
measurement value at the left of the slash denotes ISNR (dB) and the right of the 

slash denotes FSIM. 

6.4.2 Comparison with competing methods 

This sub-section presents experimental evaluations for spatial quality improvement by 

the proposed regularization-based MTFC method against five competing methods which 

have been described briefly at the beginning of this section. All FSIM and ISNR results 

among competing methods on Dataset-1, Dataset-2, Dataset-3, and Dataset-4 are 

presented in Table 6.2, Table 6.3, Table 6.4, and Table6. 5. These results are generated 

using the same input blurry images and PSF kernel, hence they are directly comparable.  

The next section will first present the quantitative experiments and followed by 

qualitative evaluation. 

6.4.2.1 Quantitative evaluation 

For a more effective evaluation, the numerical experiment results will be discussed 

according to the group of datasets in a bar graph representation.  

Dataset-1: Table 6.2 tabulates the FSIM and ISNR of Dataset-1 by the proposed method 

and the five competing methods.  
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Table 6.2: Numerical image restoration results of various regularisation 
methods for Dataset-1. The bold numbers are either the highest FSIM or ISNR, 

which indicate the best performance. 

Dataset-1: Gaussian blur, σ = 1 

Data IQA 
Metric 

MTF-based 
Filtering 

Single prior-based 
Regularisation Method 

Hybrid / Joint Statistical 
Regularisation Method 

Lee et al. 
(2016) 

Krishnan 
and Fergus 

(2009) 

Pan et al. 
(2017) 

Zhang, X. 
et al. 

(2015) 

Zhang, 
J. et al. 
(2014) 

Proposed 
Method 

S1 
FSIM 0.99772 0.99751 0.99604 0.99652 0.99755 0.99801 
ISNR 1.55 3.57 2.69 4.31 7.56 6.96 

S2 
FSIM 0.99016 0.98793 0.98734 0.98985 0.99128 0.99165 
ISNR 0.62 2.4 2.02 3.65 5.49 4.26 

S3 
FSIM 0.99544 0.99587 0.99455 0.998 0.99811 0.99818 
ISNR 1.15 5.89 3.35 6.17 7.58 6.27 

S4 
FSIM 0.99487 0.99382 0.99395 0.99614 0.99684 0.99785 
ISNR 2.26 3.2 3.2 3.86 7.05 6.68 

S5 
FSIM 0.99472 0.992974 0.99181 0.99218 0.99298 0.99369 
ISNR 2.78 2.92 3.33 4.89 7.81 6.92 

S6 
FSIM 0.99508 0.99434 0.99414 0.99511 0.99551 0.99553 
ISNR 4.09 2.4 3.63 4.65 5.91 5.36 

S7 
FSIM 0.99814 0.99787 0.99735 0.99687 0.99787 0.99829 
ISNR 5.63 3.2 2.92 4.89 7.51 6.37 

S8 
FSIM 0.99516 0.99754 0.99621 0.99757 0.99764 0.99827 
ISNR 0.52 5.05 2.22 5.05 6.84 5.65 

 

Accordingly, the restoration results are presented in a bar graph in Figure 6.18 for 

better visualization.  From the figure, it can be noticed that all methods achieve a good 

performance in terms of FSIM, with a minimum FSIM value of 0.98734 and a maximum 

FSIM value as high as 0.99829. This makes sense since this dataset is with a small amount 

of blur (i.e., Gaussian blur, σ =1), therefore most of the information in the image is still 

intact and can be recovered based on the prior knowledge of the data.  

In Figure 6.18, it is can be noticed the hybrid or joint statistical regularisation methods 

obtain a higher FSIM and ISNR value for most of the data compared to MTF-filtering 

based and single prior-based regularisation. Among them, in terms of FSIM, the proposed 

method (i.e., green bar) obtain the highest value for the whole dataset. Whereas, in terms 

of ISNR, the method of Zhang, J. et al. (2014) obtain the highest value for the whole 
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dataset. The method of Zhang, X. et al. (2015) is in third place in both IQA metrics in 

most of the cases. Achievement of the proposed method in terms of FSIM shows that the 

proposed combined priors are effective in restoring the features component and 

preserving the structural component of the image better than other methods. In 

comparison, the method of (Pan et al., 2017) has the lowest FSIM in most cases. The 

Wiener filter of Lee et al. (2016) achieve a relatively high FSIM compared to (Pan et 

al.,2017) and (Krishan &Fergus, 2009), however, it achieved a relatively low ISNR 

compared to other methods in most cases, especially for Data S8 that have abundant 

detail. 

 
(a) 

 
(b) 

Figure 6.18: Numerical experiment results for Dataset-1. Graphs show (a) FSIM 
value and (b) ISNR value of the restored image. 

Dataset-2: Figure 6.19 presents the FSIM and ISNR results of Dataset-2 by all 

competing methods. The numerical results of FSIM and ISNR of this dataset are tabulated 

in Table 6.3.  
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Table 6.3: Numerical image restoration results of various regularisation 
methods for Dataset-2. The bold numbers are either the highest FSIM or ISNR, 

which indicate the best performance. 

Dataset-2: Gaussian blur, σ = 2 

Data IQA 
Metric 

MTF-based 
Filtering 

Single prior-based 
Regularisation Method 

Hybrid / Joint Statistical 
Regularisation Method 

Lee et al. 
(2016) 

Krishnan 
and Fergus 

(2009) 

Pan et al. 
(2017) 

Zhang, 
X. et al. 
(2015) 

Zhang, J. 
et al. 

(2014) 

Proposed 
Method 

S1 
FSIM 0.97957 0.97536 0.96957 0.97855 0.97957 0.97961 
ISNR 3.34 2.66 2.72 2.65 3.97 3.57 

S2 
FSIM 0.96172 0.95974 0.95891 0.96548 0.9685 0.9692 
ISNR 1.86 1.3 1.48 1.85 2.26 2.19 

S3 
FSIM 0.97911 0.97299 0.97746 0.97945 0.98192 0.98292 
ISNR 2.25 2.64 1.77 2.64 3.09 2.65 

S4 
FSIM 0.97182 0.96381 0.96718 0.98178 0.98279 0.98379 
ISNR 2.63 1.67 1.89 2.33 3.04 2.72 

S5 
FSIM 0.97308 0.9714 0.96974 0.97241 0.97751 0.97851 
ISNR 2.81 1.67 1.27 2.44 3.03 2.9 

S6 
FSIM 0.97516 0.96479 0.97314 0.97685 0.97983 0.98009 
ISNR 1.97 1.32 1.30 1.72 3.09 2.88 

S7 
FSIM 0.97609 0.96983 0.97033 0.97485 0.97885 0.98017 
ISNR 3.12 1.91 2.12 2.68 3.60 3.23 

S8 
FSIM 0.97462 0.97293 0.97505 0.97892 0.98199 0.98243 
ISNR 2.25 2.64 1.77 2.64 3.09 2.65 

 

Based on the results in Table 6.3 and Figure 6.19, it can be observed that there is a 

slight decrement in the FSIM value for Dataset-2 due to a larger amount of blur compared 

to Dataset-1. The FSIM is within the range of 0.95891 to 0.98379. From the figure, the 

same trend of results can be observed, where the proposed method shows the highest 

FSIM value for datasets. Unfortunately, it is outperformed by Zhang, J. et al. (2014) in 

terms of ISNR with the second-highest ISNR in all cases. From the figure, generally, the 

method of Pan et al. (2017) that uses TV-based prior performs the worse in terms of FSIM 

and ISNR, followed by the method of Krishnan and Fergus, (2009), then the Wiener filter. 
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(a) 

 
(b) 

Figure 6.19: Numerical experiment results for Dataset-2. Graphs show (a) FSIM 
value and (b) ISNR value of the restored image. 

Dataset-3: Table 6.4 and Figure 6.20 show the numerical results and the bar graph of 

FSIM and ISNR of Dataset-3, respectively.  The FSIM value for this dataset is within the 

range of 0.91718 to 0.94258, as expected, it is lower than those in Dataset-1 and Dataset-

2 since the blur is higher. In this dataset, the proposed method again achieves the highest 

FSIM for most of the data except for data S3, where the method by Zhang, J. et al. (2014) 

that uses a patch-based regulariser achieves a better FSIM than the proposed method.  

Data S3 (see Figure 6.11) depicts an airport runway image, this result demonstrates that 

the patch-based regularisation method is more effective in preserving the structure of 

images with less detail in large blur conditions.  Moreover, it again achieves the highest 

ISNR for all cases. The proposed method achieves the second-highest ISNR in all cases, 

whereas the rest of the competing methods are almost comparable. 
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Table 6.4: Numerical image restoration results of various regularisation 
methods for Dataset-3. The bold numbers are either the highest FSIM or ISNR, 

which indicate the best performance. 

Dataset-3: Gaussian blur, σ = 3 

Data IQA 
Metric 

MTF-based 
Filtering 

Single prior-based 
Regularisation Method 

Hybrid / Joint Statistical 
Regularisation Method 

Lee et al. 
(2016) 

Krishnan 
and Fergus 

(2009) 

Pan et al. 
(2017) 

Zhang, X. 
et al. 

(2015) 

Zhang, J. 
et al. 

(2014) 

Proposed 
Method 

S1 
FSIM 0.92723 0.92682 0.92551 0.92915 0.93426 0.9343 
ISNR 2.45 2.34 1.82 2.44 2.72 2.46 

S2 
FSIM 0.92057 0.92645 0.92403 0.93202 0.93739 0.93896 
ISNR 1.55 1.56 1.40 1.69 2.01 1.91 

S3 
FSIM 0.92403 0.92925 0.92896 0.93132 0.93349 0.93156 
ISNR 2.45 2.19 1.95 2.45 2.91 2.63 

S4 
FSIM 0.93701 0.93122 0.91913 0.93624 0.94145 0.94258 
ISNR 2.46 2.43 1.75 2.42 2.68 2.67 

S5 
FSIM 0.92882 0.92841 0.91718 0.92828 0.92896 0.92952 
ISNR 0.98 0.84 0.53 0.80 1.72 1.60 

S6 
FSIM 0.92249 0.92239 0.92372 0.92571 0.92859 0.93259 
ISNR 2.39 2.30 1.72 2.38 2.53 2.39 

S7 
FSIM 0.93416 0.93526 0.93457 0.93813 0.93908 0.93924 
ISNR 2.54 1.65 1.79 2.25 2.84 2.68 

S8 
FSIM 0.93539 0.93075 0.93372 0.92901 0.93554 0.93594 
ISNR 2.39 1.55 1.64 1.96 2.77 2.53 

 

 
 

(a) 

Figure 6.20: Numerical experiment results for Dataset-3. Graphs show (a) FSIM 
value and (b) ISNR value of the restored image. 
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(b) 

Figure 6.20, continued. 

Dataset-4: Figure 6.21 presents the FSIM and ISNR results of Dataset-4 by all 

competing methods. The numerical results of FSIM and ISNR of this dataset are tabulated 

in Table 6.5.  

 
(a) 

 

 
(b) 

Figure 6.21: Numerical experiment results for Dataset-4. Graphs show (a) FSIM 
value and (b) ISNR value of the restored image. 
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For a dataset with blur σ = 4, the lowest range of FSIM is expected in this dataset since 

a lot of image content may be smoothened by the blur. The trend of the experiment results 

of Dataset-4 is similar to the previous datasets. From the table, the FSIM value within the 

range of 0.84823 to 0.88705 is obtained for this dataset. These values are the lowest 

among all. 

Table 6.5: Numerical image restoration results of various regularisation 
methods for Dataset-4. The bold numbers are either the highest FSIM or ISNR, 

which indicate the best performance. 

Dataset-4: Gaussian blur, σ = 4 

Data IQA 
Metric 

MTF-
based 

Filtering 

Prior-based 
Regularization Method 

Hybrid / Joint Statistical 
Regularization Method 

Lee et al. 
(2016) 

Krishnan 
and Fergus 

(2009) 

Pan et al. 
(2017) 

Zhang, 
X. et al. 
(2015) 

Zhang, J. 
et al. 

(2014) 

Proposed 
Method 

S1 
FSIM 0.87259 0.86287 0.85666 0.8733 0.88196 0.88227 
ISNR 2.49 2.48 1.82 2.32 2.66 2.51 

S2 
FSIM 0.85651 0.85536 0.85267 0.85295 0.86651 0.86693 
ISNR 1.88 1.88 1.40 1.76 2.01 1.93 

S3 
FSIM 0.85833 0.84823 0.8583 0.8584 0.87576 0.87409 
ISNR 2.48 2.42 1.88 2.48 2.63 2.54 

S4 
FSIM 0.86953 0.86951 0.85619 0.86445 0.87415 0.87434 
ISNR 2.35 2.34 1.66 2.06 2.49 2.40 

S5 
FSIM 0.86557 0.87424 0.85248 0.87589 0.88684 0.88705 
ISNR 1.68 1.70 1.18 1.60 2.07 1.75 

S6 
FSIM 0.87531 0.86524 0.85518 0.87516 0.87216 0.87539 
ISNR 2.14 1.5 1.55 1.95 2.25 2.22 

S7 
FSIM 0.86981 0.85942 0.85142 0.86651 0.87709 0.87773 
ISNR 2.36 2.38 1.62 2.17 2.5 2.42 

S8 
FSIM 0.87088 0.8715 0.85471 0.87112 0.8802 0.88188 
ISNR 2.38 2.37 1.55 2.38 2.66 2.49 

 

Discussion: There are several observations from the quantitative evaluation for all 

datasets; first, the hybrid or joint statistic regularisation methods are found to achieve 

higher FSIM and ISNR in all datasets, which means using a combined priors-based 

regulariser are more effective than a single prior-based regulariser for obtaining satisfying 

restoration results.  Secondly, the proposed method considerably outperforms the other 
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methods in terms of FSIM, with about 94% (i.e., 30 of 32 cases) the highest FSIM in all 

the cases. However, in terms of ISNR, the proposed MTFC method is outperformed by 

Zhang, J. et al. (2014), with the second-highest ISNR in all cases. The method by Zhang, 

J. et al., (2014) is a type of patch-based regularisation method. In their work, the authors 

exploit nonlocal statistical modeling to preserve the self-similarity property of an image. 

According to the authors, the advantage of nonlocal statistical modeling is that self-

similarity among globally positioned image patches is exploited in a more effective 

statistical manner in a three-dimensional (3D) transform domain than nonlocal graphs 

incorporated in traditional nonlocal regularisations. Based on the experiments, it is 

noticed that the nonlocal statistical modeling for self-similarity is data-adaptive because 

of its content-aware search for similar patch within the nonlocal region, hence it is not 

only capable of preserving the common textures and details among all similar patches but 

also keep the distinguishing image intensities (i.e., prior based on image intensities) of 

each patch in a certain degree in the 3D transform domain.  Different from (Zhang, J. et 

al., 2014), the proposed method utilizes the gradient-based type of priors and joint 

statistical modeling in the curve domain.  As pointed out by Zhang, L. et al. (2011), the 

conventional metrics such as the ISNR operate directly on the intensity of the image and 

they do not correlate well with the subjective fidelity ratings. Besides, it is worth noting 

the FSIM can achieve much higher consistency with subjective evaluations than other 

IQA metrics. The FSIM is normalized in representation, and it is giving perception and 

saliency-based error, whereas ISNR is not normalized in representation, and from a 

semantic perspective, ISNR is giving only absolute error.  From this point of view, since 

the proposed method considerably outperforms the other methods in terms of FSIM, 

second to Zhang, J. et al. (2014) in terms of ISNR, therefore, this work concludes that the 

proposed MTFC method is comparable to the Hybrid methods. The proposed method, 

thus, significantly outperformed the widely used Wiener filter and image prior-based 
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regularisation methods (i.e., Krishnan & Fergus, 2009; Pan et al., 2017), with better ISNR 

and FSIM results in all cases.   

6.4.2.2 Qualitative evaluation 

This sub-section presents the qualitative evaluation of the image restoration results via 

visual observation. Figures 6.22 to 6.25 show visual quality restoration results for some 

of the datasets. Only four examples are shown, and each represents restoration for a 

different amount of blur. Note that these examples are selected based on their feature 

density in a scene.   

 
Figure 6.22: Visual quality comparison of image restoration in the case of blur σ 

=1, red box denotes cropped region; The quantitative measurement value at the 
left of the slash denotes ISNR (dB) and the right of the slash denotes FSIM. (a) 

Original image, (b) Blurred-noisy image, S1. Restoration results by (c) the 
proposed method, (d) Wiener filter (Lee et al., 2016), (e) Krishnan and Fergus 
(2009), (f) Pan et al (2017), (g) Zhang, X. et al. (2015), and (h) Zhang, J. et al.  

(2014). 
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Figure 6.23: Visual quality comparison of image restoration in the case of blur σ 
=2, red box denotes cropped region; The quantitative measurement value at the 
left of the slash denotes ISNR (dB) and the right of the slash denotes FSIM. (a) 

Original image, (b) Blurred-noisy image, S2. Restoration results by (c) the 
proposed method, (d) Wiener filter (Lee et al., 2016), (e) Krishnan and 

Fergus(2009), (f) Pan et al (2017), (g) Zhang, X. et al. (2015), and (h) Zhang, J. et 
al. (2014). 

 

Figure 6.24: Visual quality comparison of image restoration in the case of blur σ 
=3, red box denotes cropped region; The quantitative measurement value at the 
left of the slash denotes ISNR (dB) and the right of the slash denotes FSIM. (a) 

Original image, (b) Blurred-noisy image, S3. Restoration results by (c) the 
proposed method, (d) Wiener filter (Lee et al., 2016), (e) Krishnan and 

Fergus(2009), (f) Pan et al (2017), (g) Zhang, X. et al. (2015), and (h) Zhang, J. et 
al. (2014). 
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Figure 6.25: Visual quality comparison of image restoration in the case of blur σ 
=4, red box denotes cropped region; The quantitative measurement value at the 
left of the slash denotes ISNR (dB) and the right of the slash denotes FSIM. (a) 

Original image, (b) Blurred-noisy image, S6. Restoration results by c) the proposed 
method, (d) Wiener filter (Lee et al., 2016), (e) Krishnan and Fergus(2009), (f) Pan 

et al (2017), (g) Zhang, X. et al. (2015), and (h) Zhang, J. et al. (2014). 

From visual observation, it is apparent that all the methods produce sharper images 

than the blurred-noisy image. From the close-up view, noise amplification can be 

observed in the restored results by Wiener filter (Lee et al., 2016); the method by Krishnan 

and Fergus (2009) is good at capturing contour structures but fails in recovering textures 

and produces over-smooth effects. Also, it can be observed that the method of (Krishnan 

& Fergus, 2009) can restore better texture than the method of (Pan et al, 2017) however 

it produces noticeable boundary artifacts. These artifacts can be overcome to some extent 

with edge tapering operations. Meanwhile, the hybrid method by Zhang, X. et al. (2015) 

can restore textures better than the method by Krishnan and Fergus (2009) and suppresses 

most of the noise-caused artifacts, however, it is exhibiting a lower contrast visual quality 

than other methods.  In comparison, the hybrid method by Zhang, J. et al. (2014) produces 

a much cleaner image with sharper edges and textures, however, for large blur images, it 

tends to produce an unnatural appearance (i.e. cartoon effect) on the restored image. 
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Based on this experiment, the proposed regularisation-based MTFC method is found to 

be able to provide accurate restoration on both edges and textures with almost 

unnoticeable ringing artifacts. It is exhibiting good visual quality, which is consistent with 

FSIM. While it may not have to produce visual quality as clean as the method of Zhang, 

J. et al., 2014, but it exhibits a more natural effect than other methods and for large blurred 

images. 

6.4.3 Experiments on Real Satellite Datasets 

In a real-world application, the non-blind deconvolution performs as part of the blind 

image restoration, where the ground truth blur kernel is unknown, thus making it more 

challenging. Thus, experiments are conducted to study the practicability of the proposed 

method for spatial quality improvement of real satellite images.  

The PSF kernel of the real satellite datasets is estimated using the proposed MTF 

measurement method in Chapter 4. As shown in Figure 6.26, even though the blur kernel 

is not precisely known, visually it can be observed the restored images are sharper images 

than the real unknown blur images. The visual quality implies that the proposed method 

can recover the details of the blurry image and suppress the ringing artifacts.   

Figures 6.27 (a) to 6.27(d) depict the MTF plot with respect to the images in Figure 

6.26. From Figure 6.27, it can be noticed that the MTFA under the MTF curve for the 

restored images is obviously larger than the real blur images. The MTFA ratio for images 

R1, R2, R3, and R4 is 1.53, 1.38, 1.26, and 1.37, respectively. The quantitative 

measurements indicate spatial image quality improvement by the proposed method. More 

of the experimental results can be found in Appendix E. 
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Figure 6.26: Visual quality comparison of image restoration on real satellite 
images. (a) Before image restoration, (b) After image restoration, and (c) The 

green and red box denotes cropped regions for (a) and (b), respectively. 
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Figure 6.27: MTF profile for before and after MTFC correspond to figures 
5.16(a) R1-first row (MTFA ratio= 1.53), (b) R1-second row (MTFA ratio: 1.38), 
(c) R3-third row (MTFA ratio = 1.26), and (d) R4-fourth row (MTFA ratio: 1.3). 

6.4.4 Algorithm Complexity and Computational Time 

The proposed method is implemented in MATLAB on an Intel Core i5 CPU with 8 

GB of RAM. Comparing the uL, uU, fL, fU sub-problems in the bilevel programming, it is 

obvious to conclude that the main complexity of the proposed algorithm comes from the 

uU sub-problem. However, as the primary computational task in both Upper-and Lower-

level problems consists of FFT, therefore, overall it has a very low computational 

complexity.  In the implementation, for an image of size 512×512, the bilevel 

optimization costs (9.53 ± 0.26) seconds. Table 6.6. presents the computational time of 

all competing methods on the test images. From the table, it is obvious that Wiener Filter 

(Lee et al, 2016) is the fastest method. The method by Krishnan and Fergus (2009) and 

Pan et al. (2017) come in second and third fastest, respectively. The proposed method 
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being the fourth fastest. Although Zhang, J. et al. (2014) have the highest ISNR in most 

cases, it suffers from huge computational times due to the need for dictionary learning.  

It is about 120 times slower than the proposed method. 

Table 6.6: Average processing time (seconds) of different methods on images of 
size 512×512. 

Methods 
Gaussian blur, σ 

1 2 3 4 
Lee et al. 

(2016) 0.15 ± 0.01 0.18 ± 0.02 0.21 ± 0.02 0.24 ± 0.02 

Krishnan and 
Fergus (2009) 0.69 ±  0.02 0.79 ± 0.02 1.06 ± 0.05 1.25 ± 0.02 

Pan et al. 
(2017) 4.80 ± 0.30 4.38 ± 0.43 4.79 ± 0.37 4.29 ± 0.34 

Zhang, X. et al. 
(2015) 9.89 ± 0.39 10.79 ± 0.41 11.78 ± 0.80 12.64 ± 0.59 

Zhang, J. et al. 
(2014) 1016.15 ± 86.22 1065.73 ± 83.53 1103.34 ± 94.48 1254.18 ± 103.93 

Proposed 
Method 9.34 ± 0.21 9.35 ± 0.28 9.89 ± 0.33 9.56 ± 0.22 

 

From Table 6.6, unlike methods by (Krishnan & Fergus, 2009; Zhang, X., et al. 2015; 

Zhang, J. et al., 2014), the computational complexity of the proposed method and Wiener 

filter (Lee et al., 2016) are independent of the amount of blur. 

6.4.5 Algorithm Convergence and Robustness 

In numerical optimization, the number of iterations for convergence, or convergence 

speed, is important. The proposed bilevel MTFC algorithm utilizes the alternating 

minimization method and least error minimization in solving the LLP and ULP, 

respectively. Both minimization methods ensure that each sub-problem has a closed-form 

solution. Thus, it has a fast convergence property. Figure 6.28 shows the improvement of 

SNR with respect to iterations. It is observed that with the growth of the iteration number, 

the ISNR curves increase monotonically and converge, which demonstrates the 

convergence of the proposed method. The algorithm convergence helps to determine the 

stopping criterion much easier by just pre-set the maximum iteration number. 
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Furthermore, from Figure 6.28(c), it is obvious that the initialization results in a higher 

quality of the intermediate latent image 𝑓𝐿 from LLP require fewer iteration numbers to 

be convergent. The convergence analysis fully illustrates the robustness of the proposed 

method, that is, the proposed method can provide almost the same results when starting 

with various initializations in ULP. 

 
(a) 

 
(b) 

 
(c) 

Figure 6.28: Verification of the convergence and robustness of the proposed 
algorithm. 
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6.5 Conclusion 

This chapter describes a robust and efficient MTF compensation method for restoring 

optical satellite images with high fidelity using a joint statistical model in the Curvelet 

domain. This work exploited the merit of image prior characteristic in the local smooth 

and nonlocal self-similarity properties of an image, to design an effective regularization 

term to solve the underdetermined inverse problem of MTFC. In particular, this work 

shows that the regularization-based MTFC can be reformulated as a tractable 

optimization problem using the MBP. Extensive comparisons against leading methods in 

non-blind deconvolution are performed to evaluate the performance of the proposed 

method. The ISNR and FSIM, are used for image quality assessment in terms of 

effectiveness, whereas computation time is used for assessment in terms of efficiency. 

The evaluation results show that the proposed method achieves significant performance 

in preserving more image details and exhibits good convergence property with minimum 

computational complexity. This indicates the proposed regularization-based MTFC 

method found a compromise between solution accuracy and computational efficiency, 

which can be used to compensate for the degradation for optical satellite image spatial 

quality improvement before data dissemination.  
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CHAPTER 7: CONCLUSION 

7.1 Research Summary  

EOS data and its derived products shall have associated with quality assurance EOS 

data processing to enable users to assess their “fitness for purpose” (WGCV, 2019). As 

such, the research problem domain is in the field of optical EOS data Cal/Val that focused 

on spatial image characterisation and calibration. For on-orbit spatial characterisation, 

although there exist well-established methods in the current practice, these methods are 

generally constraint by stringent criteria, precision, and temporal issues, which created 

issues of reliability and flexibility.  Whereas for spatial image calibration, due to the 

inherently ill-posed problem of image restoration methods that typically induce artifacts 

in the derived EOS products, the existing method has become an optional process for the 

user. Moreover, most studies in the field of image restoration have only focused on natural 

images, relatively only a few studies have attempted to restore optical satellite images. 

Furthermore, one of the most significant problems to existing image restoration methods 

is that they are usually suffered from computational complexity. With the aforementioned 

challenges, in this research work, new ideas are investigated to address the issues in the 

two research focus areas by introducing (1) a spatial characterisation framework for on-

orbit optical EOS imaging and data assessment, and (2) solutions to image restoration 

problems for spatial image quality improvement. This thesis discussed their theory, 

design, development, and verified their performance by analyses and experiments using 

a wide range of datasets, consisting of synthetic and real satellite images. 

The primary goal for this research work is to develop a consolidated framework that 

encompasses on-orbit spatial image characterisation and restoration methods, to facilitate 

spatial quality assurance of optical satellite data product processing in a reliable and 

flexible manner that is commensurate with the needs of the users (i.e., data processors, 

data providers, and end-users). By considering the primary goal of this research, different 
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strategies with specific objectives are formulated. Specifically, there are four objectives 

for this research. The following briefly discussed how these objectives are achieved in 

their respective research focus area. 

On-orbit spatial characterisation: The first objective of this research work is to 

develop a stochastic type of image-based MTF measurement framework for a convenient 

approach to conduct on-orbit characterisation and the second, is to evaluate the 

effectiveness and practicality of using stochastic characteristics targets for on-orbit spatial 

characterisation.  In order to achieve these objectives, three strategies are established to 

guide the development of this framework. First, to ensure the efficiency of the algorithms, 

the image gradient is utilized to accelerate the numerical optimization process. Instead of 

the entire observed image, a segmentation method is developed to effectively select useful 

stochastic targets with a relative windowed TV as ideal candidates for PSF estimation. 

Second, to warrant reliable PSF estimation results, new TV-prior terms are introduced in 

structure extraction algorithms that adaptively select salient structures while mitigating 

detrimental structures. Third, to obtain a high fidelity PSF kernel, a new prior term is 

introduced in the minimization function to preserve the sparsity and continuity of the 

image gradient while suppressing the noises in the PSF kernel. The detailed research work 

for this framework was described in Chapter 4.  This thesis divided the process of this 

framework into three phases, Selection of ideal candidates, Robust PSF estimation, and 

finally is the MTF calculation. Empirically, research work showed that the selection of 

an ideal candidate method can effectively select useful stochastic targets for PSF 

estimation. Experimental results demonstrated that the proposed framework is practical 

and effective. One of the strengths of this research work is that it represents a new norm 

for on-orbit spatial characterisation independent of the vicarious calibration target.  
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Spatial image restoration:  The study in Chapter 5 is a continuation of the first 

framework in Chapter 4, which further study the proposed MTF measurement method as 

a degradation function; and evaluate it as the blur estimation in the blind deconvolution 

domain problem. The objective of the study, which also the third objective in research 

work is to conduct a comparative study for further understanding of image priors that 

appropriate to remove spatial blur in optical satellite images. To this end, this Work 

studies the significance of the most recently used state-of-art priors as a comparison. 

Since the proposed blur estimation method is a type of sparse representation method, 

hence, the graph-based prior (Bai et al. 2018) and low-rank priors (Ren et al., 2016) type 

of blur estimation methods are selected. This Work studied their motivations, 

mathematical representations, and developed the algorithms according to Bai et al. (2018) 

and Ren et al. (2016). The algorithms are experiments using datasets that are synthetically 

blurred with three groups of blurred cases, including defocus, Gaussian blur, and motion 

blur. The strengths of the study included an in-depth analysis of three different image 

priors on a different type of blur that may bring motivation and introduction to new insight 

into the research focus area. 

The fourth objective is to develop a low computational regularized-based MTFC 

method that executes an optimal trade-off between noise regularization and detail 

preservation for high fidelity low-level vision processing of EOS data products. The 

details of the methods are discussed in Chapter 6. Specifically, new regularization 

functions are developed within a joint statistical model. The joint statistical model 

consists of (1) the local smoothness to suppress artifacts in the smooth region and along 

the edge, and (2) the nonlocal self-similarity image properties to preserve structure and 

image details. Empirically, this work showed that the joint statistical model can draw out 

the merit of a different image prior characteristic in different image properties.  The 

effectiveness and efficiency of the proposed method have been demonstrated with five 
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state-of-art methods.  Although the findings show that the patch-based regularization 

method performs better, this study has several strengths. This study demonstrated that 

low computational optimization algorithms are possible with the use of MBP. With its 

ability for solving the disjunctive nature of the complementarity constraints, it is tractable 

and has shown good convergency properties. Besides, the minimization in MBP can be 

decoupled and solved separately in a single BP.  

The section that follows discusses the findings from the research focus area. Based on 

the findings, comments on the strength and weaknesses of the research works will be 

presented. The significance of the findings will as the achievements, becomes the 

contribution of the study, where for all weaknesses, they will be the future works and 

direction of this research. 

7.2 Research Findings 

This section highlights the findings for the research work reported in this thesis based 

on the research focus area. 

7.2.1 On-orbit Spatial Characterisation 

From the research work in this focus area, there are several conclusive findings as 

follows: 

i. On-orbit spatial calibration using the stochastic characteristic target in the observed 

image for MTF measurement was found practical. It is practical since image 

properties inherently containing nonlocal self-similarity characteristics, where its 

structure components can be extracted and used to estimate the PSF kernel (i.e., 2-D 

PSF) of the observed image.  Based on Section 4.3.3., the FWHM of PSF value and 

the MTF values at Nyquist frequency can be calculated to characterize the spatial 

responsivity of the in-flight EOS imaging system. The experimental results 
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demonstrate the effectiveness of the proposed method by achieving < 2.3% of relative 

SD at the Nyquist frequency as compared to the well-established edge method.  

Moreover, in this study, the proposed segmentation method that automatically 

identifies the ideal candidates for MTF measurement was found to be efficient, where 

it only takes about 3 min computation time for the MTF measurement of a real satellite 

image. This result further confirms the practicality of the stochastic characteristic-

based target for on-orbit spatial calibration.  

ii. This study confirmed that good region selection is critically important for ensuring 

the extraction of reliable structures for PSF kernel estimation. Consistent with the 

literature (Hu & Yang, 2015), using the r-map of the Equation (4.8), the study found 

that not all pixels of the input blurred image are informative, contrary, they could 

adversely affect the estimation results. For instance, regions with short length edges 

and regions with a large smooth area often contain many small-scale structures due to 

inevitable random noise, which usually causes large kernel estimation errors. This 

finding further supports the idea of using segmentation in the ideal candidate selection 

phase is useful to increase efficiency and effectiveness. This is because it is not 

usually beneficial to make full use of the input blurred image, with good region 

selection, ideal candidates can be found to wholly represent the observed image. 

Moreover, using ideal candidates not only improves effectiveness but also increases 

efficiency, as the algorithm runs faster on a sub-image than on the entire observed 

image. 

iii. In this study, the incorporation of hyper-laplacian priors as an adaptive smoothness 

weight to the renowned TV-l2 model of Rudin et al. (1992) was found effective. As it 

ensures sparseness of gradient magnitudes that help mitigate the staircasing effect in 

the structure extraction steps. While this prior guarantees the sparseness of the PSF 

kernel, but it is also found to neglects the continuity which sometimes induced noisy 
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PSF kernel. Based on this finding, a new prior as defined in Equation (4.19) is 

proposed to maintain the non-zero gradients in the PSF kernel, which could 

simultaneously suppress noise in the kernel while ensuring sparsity and continuity of 

the kernel. 

iv. In the kernel estimation phase, based on the results, it is confirmed that the kernel size 

did not have much influence on the accuracy of PSF kernel estimation if the size is 

large enough to contain the estimated kernel. However, oversized kernels are very 

likely to introduce estimation errors in images with rich details regions. Besides that, 

it required more computational time when using the multi-scale pyramid optimization 

process. 

v. The proposed method can provide high precision data. However, the confidence level 

of the derived results can be influenced by the input data (i.e., the selected idea 

candidates). Recall that the ideal candidates for PSF estimation are selected based on 

a predefined threshold (i.e., > 90 % of the highest candidate r-map variance value), 

where they will be selected if their r-map variance value exceeds the threshold. As 

shown in Sub-section 4.4.3, a scene with the urban area typically has more salient 

edges than a scene that has more cloud coverage, therefore, the relative SD among 

candidates is lower. Hence, the heavy cloud cover scene should be excluded as 

datasets for spatial characterisation.  

vi. For the proposed on-orbit spatial characterisation method, one unanticipated finding 

was that the algorithm is more effective for an observed image with a larger amount 

of blur. Results in Section 4.4.4 noted that the relative errors are relatively larger for 

smaller blur images. One possible explanation is that: in contrast to earlier findings 

of the effectiveness in a good region selection method for salient structure extraction, 

however, in this case, it required extensive parameter tuning to balance the trade-off 
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between the data fidelity and prior function. Which may not always be the most 

optimum, thus compromise the estimation results. 

7.2.2 Spatial Image Restoration 

In this research focus area, the image restoration process is studied in two separate 

steps: the blur kernel estimation (i.e., the degradation function) and the final image 

restoration (i.e., non-blind deconvolution).  

i. In the comparative studies of sparsity priors (i.e., the proposed method) to the state-

of-art blur kernel estimation methods (i.e., graph-based priors and low-rank priors), it 

is somewhat surprising that the proposed sparsity priors method with much less 

complicated formulation than the foremost methods is proven to be the most robust 

where it can effectively estimate all groups of blurs, including defocus, Gaussian blur 

and motion blur. Between the other two methods, the graph-based priors type has been 

shown to perform better than the low-rank priors type. This study shows the 

robustness of sparsity-priors despite its simplicity, and it is suitable for blur removal 

in optical satellite images. 

ii. In deblurring nonlinear motion, even though the proposed prior is better than low-

rank priors, but the observed difference with graph-based priors was not significant. 

Nevertheless, it is found that that the proposed algorithms more capable than the 

graph-based prior algorithms to deblur images with both small and large blur kernels 

especially when the blurred images contain rich details. 

iii. Among the three groups of blurs, the defocus type of blur was found the most 

complicated, as all representative algorithms achieve relatively higher SSDE on 

datasets. Among all, the graph-based priors type was found the weakest.  

iv. In comparison to the low-rank and the proposed sparsity priors that also used the l1-

regularized sparse representation-based type of image restoration methods, it is found 
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that the graph-based prior has competitive restoration results with significantly low 

complexity. This outcome may be explained by the fact that the data fitting function 

was implemented as a locally graph filter, instead of matrix computation. The graph 

filter was implemented with a Lanczos method (Susnjara et al., 2015), which is faster 

than the conjugate gradient algorithm (Barrett et al. 1995) for this specific problem.  

v. The most obvious finding to emerge from the comparative studies is that while the 

sparse prior in kernel estimation are helpful, the key component making blind 

deconvolution possible is not solely based on the choice of prior, but also requires the 

thoughtful choice of an estimator to produce a high-fidelity restored image. 

vi. In the effort of developing a low computational and high fidelity regularized-based 

MTFC method, it is confirmed that utilizing only one image property in the 

regularization-based framework is not enough to obtain satisfying image restoration 

results. It is evident in this study that it was beneficial to combine multiple priors to 

improve restoration performance since different image priors characterize different 

and complementary aspects of natural image statistics. By solving the two 

complementary models in a closed-form solution using the bilevel programming, 

much faster convergence properties can be achieved which in turn lowers the 

computation time.  

vii. In the regularized-based MTFC framework, in the aspect of effectiveness, the 

proposed method considerably outperforms the best among all other methods in terms 

of FSIM, with a minimum FSIM value of 0.86693 and maximum FSIM value as high 

as 0.99829 for gaussian blur SD of 4 and 1, respectively. However, one unexpected 

finding was that the proposed method was outperformed by the patch-based 

regularization method of Zhang, J. et al. (2014) in terms of ISNR. In visual 

comparison, Zhang, J. et al. (2014) produce a much cleaner image with sharper edges 

and textures. However, for large blur images, it tends to produce an unnatural 
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appearance (i.e. cartoon effect) on the restored image. While the proposed method 

may not have to produce visual quality as clean as the method of Zhang, J. et al.,(2014) 

but it exhibits a more natural effect than other methods and for large blurred images.  

A possible explanation for these results might be that the conventional metrics such 

as the ISNR operate directly on the intensity of the image and they do not correlate 

well with the subjective fidelity ratings as pointed by Zhang, L. et al. (2011). Based 

on both quantitative and qualitative evaluation results, since the FSIM differences 

between the two methods are relatively small, therefore, these findings suggest that 

the patch-based regularization method is better than the proposed methods. 

Nevertheless, in the aspect of efficiency, despite its effectiveness, the patch-based 

regularization method of Zhang, J. et al. (2014) suffers from huge computational times 

due to the need for dictionary learning, where it required about 120 times more than 

the proposed method.  

7.3 Research Achievements and Contributions 

This section elaborates on the achievements in the respective research focus areas, and 

subsequently, draws together the contributions in this research. 

7.3.1 On-orbit Spatial Characterisation 

This thesis found an alternative to onboard calibration and vicarious calibration that 

attributes to post-launch Cal/Val of EOS data. The approach is versatile as it is not 

restricted to target selection criteria and temporal issues in vicarious calibration that 

require the use of a well-separated fixed characteristics target. Instead, this thesis 

proposes an approach to use a stochastic characteristic target in the observed scene as 

spatial data input to the MTF measurement method which was formulated as a constrained 

optimization problem to accurately estimate the PSF kernel. In the process, this thesis 

successfully develops a framework comprised of (1) a high precision and efficient 
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segmentation method that can automatically select ideal candidates for PSF estimation; 

(2) an adaptive structure selection method to select reliable structures effectively for PSF 

estimation; and (3) a robust PSF estimation method that can simultaneously suppress 

noises while preserving the sparsity and continuity of the PSF kernels for MTF 

measurement. With the proposed on-orbit MTF measurement framework, this thesis has 

achieved the first objective of this research. In the experiments, the framework was found 

to be able to produce a high confidence level of MTF measurement results (i.e., relative 

SD of the Nyquist frequency between the well-established edge method and the proposed 

method is < 2.3%.). Moreover, it is also found to be efficient since it only takes about 3 

min computation time to obtain the MTF measurement results for on-orbit spatial 

characterisation. Based on these evaluation results, this thesis has shown that using 

stochastic characteristics targets for on-orbit spatial characterisation is practical and 

effective, which, in turn, has shown the achievement of the second objective for this 

research. 

7.3.2 Spatial Image Restoration 

The studies under this research focus area extend knowledge of the ill-posed image 

restoration problem, particularly for optical satellite images. In the research work, two 

different prior-based (i.e., low-rank priors and graph-based priors) are developed 

according to the existing work in the literature and conducted a comparative study to the 

proposed MTF measurement method that was designed with sparsity priors. This study 

drew out insightful analysis and conclusive findings of the low-level vision processing, 

including the behavior and the importance of the image priors in different types of blur, 

the query whether complex formulation will warrant a more effective algorithm, and the 

importance of estimator for successful final image restoration. Based on the analyses and 

findings, the thesis has met the third research objective that aims to gain a better 
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understanding of image priors that appropriate for the removal of spatially varying blur 

in optical satellite images. 

Further to this research focus, a well-posed image restoration problem is created by 

exploiting the merit of image statistical properties, including its non-gaussianity and 

heavy tails property, and also its representation in multi-resolution. To this end, this thesis 

successfully developed a new framework MTFC encompasses (1) two regularization 

models with a new form of minimization function; one was used for characterizing the 

properties of image smoothness and image structure, whereas the other one was used for 

characterizing the properties of image texture; and (2) a joint statistic model that fused 

the two complementary models in curvelet domain. One significant achievement in this 

framework is that this thesis successfully developed a robust bilevel programming 

algorithm with a fast convergence property to solve the underdetermined inverse 

problems of MTF using the two complementary regularization models. From the 

numerical measurement in terms of effectiveness, although the proposed MTFC method 

is outperformed by one of the competing methods (i.e., the patch-based regularization 

method), it is significantly outperformed other competing methods, including the existing 

MTFC.  Whereas, in terms of efficiency, it takes about (9.53 ± 0.26) seconds, which is 

significantly better than the patch-based regularization method that takes about (1109.85 

± 102.63). Moreover, in terms of visual evaluation, it is comparable to the patch-based 

regularization method. The evidence presented thus suggested this thesis met the fourth 

objective since the proposed algorithms are effective as it capable of finding an optimal 

trade-off between noise regularization and detailed preservation in the restored image, 

and they are practical to use in optical satellite images as they run with low computation 

time.  
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7.3.3 Contributions 

Based on the research achievements, this Work suggests that the research works make 

important contributions to the field of EOS data Cal/Val by introducing 

i. A new approach of on-orbit spatial characterisation using the stochastic 

characteristic targets, which offers an automated and flexible way to spatial 

characterisation. This is the first study that has evaluated the effectiveness and 

practicality of stochastic characteristics target for on-orbit spatial characterisation. 

ii. A robust PSF estimation method was designed with an improved TV-l2 model and 

new sparse priors regularization for ensuring an accurate estimation of 

degradation function for blind image restoration. 

iii. A practical and effective regularized-based MTFC method to improve the spatial 

quality of EOS data for reliable data dissemination. Notwithstanding the findings 

from Sub-section 7.2.2. (iv), this Work offers valuable insights into the use of 

image statistical properties in optical satellite image processing and analysis. 

iv. A comparative study about the usefulness of image priors for spatially varying 

and invariant blur in optical satellite images; and comprehensive literature of 

spatial characterisation and restoration in optical satellite images. The study, 

therefore, will introduce new insight into the research focus area that may promote 

innovation and motivation to guide future research in this area. 

7.4 Future Works and Directions 

Despite the achievements and contributions presented in Section 7.3, there are 

weaknesses found in the findings and other important issues worth further research. 

Besides, based on the studies, the real-world image restoration problem is still a 

challenging task and needs future research for new solutions. The following section 

presents the direction for future works. 
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7.4.1 Deep prior learning 

Deep Learning, and Deep Convolutional Neural Networks (DCNN) in particular, 

currently set the state-of-the-art performance in signal and data processing. Recently, in 

remote sensing, a considerable amount of research has adopted the application of deep 

learning for typical supervised learning tasks such as classification (e.g., Romero, Gatta, 

& Camps-Valls, 2016; Fotiadou, Tsagkatakis, & Tsakalides, 2017). As pointed in the 

findings, one critical aspect to ensure the availability of reliable structure for PSF 

estimation is through a good region selection. Even though the proposed Ideal Candidates 

Selection technique was found to be effective, it cannot differentiate the object of the 

scenes. In the experiments, it was found that a scene with a more urban area and lesser 

cloud cover provides a higher confidence level results since more salient edges can be 

found in the observed scene. As remote sensing data also bring chance and challenge for 

deep learning. Therefore, this thesis proposes to further the research work to investigate 

the potential of deep learning in on-orbit spatial characterisation, particularly in the 

selection of ideal candidates phase. 

7.4.2 New image priors 

Although new priors for image (and blur) modeling have been proposed in this Work, 

many competing models have been recently published, of particular interest here is the 

deep image prior. In the literature, most of the works emphasized that learning is 

necessary for building good image priors (Zhang, J. et al. 2015; Li et al., 2016; Zha et al. 

2018), hence, a great deal of image statistics are captured by the structure of a 

convolutional image generator independent of learning, such as dictionary-based priors. 

Therefore, for the directions of this Work, it would be worth investigating the differences 

between deep images prior and the proposed models, as well as whether any of the 

features of this model can be adapted for use in the MTFC problem. Furthermore, a 

comparative study between dictionary-based priors and deep learning-based priors will 
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also provide important insight into the development of approaches for remote sensing 

observation enhancement. 

7.4.3 Determining Kernel Size in Blind Deconvolution 

As presented in the findings, there is an issue in determining the ideal kernel size for 

blind deconvolution. On one hand, as discovered in Chapter 4, oversized kernels are very 

likely to introduce estimation errors for an observed image with rich details region (e.g., 

small scale edges) that leads to inaccurate results, moreover, it requires more 

computational time in a multi-scale pyramid optimization process. On the other hand, as 

discovered in Chapter 5, a smaller kernel size that the ground truth cannot provide 

sufficient support domain for the estimated kernel. In both cases, blur kernel estimation 

error is likely to be introduced, yielding severe artifacts in image restoration results. 

Currently, in most of the blind deconvolution methods, kernel size is treated as a hyper-

parameter that is manually set. Ideally, the kernel size should be the same as the ground 

truth size so that it can completely constrain the PSF domain. However, in real practical 

application, it requires manual exhausted tuning. Therefore, in practice, users usually pre-

defined a large value to guarantee the PSF domain. For further research, this thesis 

suggests a prediction step to exploit the structural information in degraded kernels and 

analyze a mechanism to estimation error in an oversized kernel, which subsequently 

formulates a regularization function as a stopping criterion in the optimization process to 

avoid oversized kernel issues. 

7.4.4 Acceleration of algorithms 

Many of the methods used rely on solving optimization problems, including the 

proposed methods that use CG algorithms and all competing methods in Chapter 6, or 

some of the other priors in the literature require nonlinear search procedures over sparse 

dictionaries. With computationally heavy algorithms of the kind described and scale 
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necessary for processing the increasingly large images encountered in a real-world 

practical situation, and the change in the evolution of CPU designs, it is becoming a reality 

that signal processing methods cannot simply put off implementation details as a 

secondary step; again thought should be given during the algorithmic design stage. For 

instance, in Chapter 6, the successful results of patch-based regularization that exploits 

the nonlocal self-similarity properties of the image in preserving high fidelity images 

were inarguable, however, it was compromised with high computational complexity. 

Therefore, for future work, the author would like to study the feasibility of this 

regularization term in MTFC and explore ways to improve its efficiency by exploring the 

parallelization of algorithms, or deployment on new hardware in parallel computing. 

7.5 Research Conclusion 

This research set out with the ultimate aim of exploring a new approach or new 

methods for on-orbit spatial image characterisation and restoration. From the detailed 

discussion contained within this thesis, they have shown that all specific objectives of the 

Work have been fulfilled. In doing so, this thesis has contributed a consolidated 

framework to address the challenges of the optical EOS data Cal/Val particularly in 

spatial characterisation and calibration through the development of the MTF 

measurement and compensation method. This study should, therefore, be of value to 

engineers or researchers from the satellite development program as a validation process 

in assessing the quality of the acquired EOS data to ensure its “fitness for purpose” before 

data dissemination. The findings presented in this thesis add to the understanding of the 

ill-posed inverse problem in PSF estimation for spatial characterisation and calibration. 

Besides, they also provide insights and directions for future works. Furthermore, these 

findings contribute to the evidence that supports the achievements and contribution of the 

Work. Therefore, this thesis concluded that the primary goal for this research was 

fulfilled.   
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