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SPOTTING EVENTS IN FOOTBALL VIDEOS WITH A COMBINATION OF 

TWO-STREAM CONVOLUTIONAL NEURAL NETWORK AND DILATED 

RECURRENT NEURAL NETWORK 

ABSTRACT 

In this research, we address the problem of event detection and localization in football 

(soccer) videos. While the problem of event detection in videos is itself a research 

problem, event detection in sports, especially in football, has an important commercial 

impact as well. Football is played by more than 250 million players in 200+ nations. In 

addition, it has the highest television audience in sport. This makes football the most 

popular sport in the world. Considering the advancement in streaming technologies on 

mobile platforms, it is important to develop efficient and fast processing algorithms for 

thousands of videos captured and stored in the cloud. Unlike images, videos provide 

additional temporal information. While this additional information is helpful, it also 

makes the reasoning more challenging. On one hand, from the local correlation between 

adjacent frames, it is possible to identify the short-range correlation between player 

movements. On the other hand, one can identify the mid-range and long-range correlation 

between events that are seconds away from each other. One important challenge in 

analyzing long videos is how to consider all range of correlations (short - long) between 

video frames. Localizing (temporal segmentation) events in a football video is a 

challenging problem. While the general problem of temporal segmentation in videos have 

been extensively addressed in the literature, to the best of our knowledge this work is the 

among the first to address the event localization problem in “long” football videos using 

end-to-end deep learning techniques. Football videos are long and the correlation between 

frames in the video ranges from short to long. To model various range of correlations in 

football videos, we propose to use a combination of two-stream CNNs and dilated RNNs 

with LSTM cells, to capture short-range and long-range correlations. Our experimental 

Univ
ers

iti 
Mala

ya



iv 

result shows 5.4% - 11.4% accuracy improvement compared to the state of the art and the 

baselines for the problem of spotting in long videos presented in the largest football 

dataset available for research community (i.e., SoccerNet). 

Keywords: Deep Learning, Recurrent Neural Networks, Two-stream CNN, Sport 

Video Analysis, Activity Detection and Spotting. 
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MENGESAN PERISTIWA DALAM VIDEO BOLA SEPAK DENGAN 

KOMBINASI RANGKAIAN NEURAL KONVOLUSI DUA-SALURAN DAN 

RANGKAIAN NEURAL BERULANG 

ABSTRAK 

Dalam penyelidikan ini kami menangani masalah pengesanan peristiwa dan 

penempatan dalam video bola sepak. Pengesanan peristiwa video merupakan satu cabaran 

bagi penyelidik, manakala pengesanan peristiwa dalam bidang sukan terutamanya dalam 

acara bola sepak. Ini membawa impak komersil yang agak penting. Bola sepak dimainkan 

oleh lebih 250 juta pemain di 200+ negara. Di samping itu, acara ini mempunyai penonton 

televisyen yang tertinggi dalam bidang sukan. Ini menjadikan bola sepak sebagai acara 

sukan yang paling popular di dunia. Memandangkan bahawa kemajuan teknologi 

streaming pada platform mudah alih, ini adalah sangat penting untuk mencipta proses 

algoritma yang, mampat dan laju untuk beribu-ribu video yang ditangkap dan disimpan 

dalam cloud. Video berbeza dengan gambar, di mana ia membekalkan informasi 

temporal. Walaupun informasi ini bermanfaat, namun informasi ini juga menjadikan 

penaakulan lebih mencabar. Biasanya dari korelasi tempatan antara bingkai yang 

bersebelahan, ini adalah berkemungkinan untuk mengenalpastikan korelasi jarak pendek 

antara pergerakan-pergerakan pemain. Manakala, seseorang dapat mengenalpastikan 

korelasi jarak sederhana dan jarak jauh antara peristiwa yang berlaku dalam detik dari 

satu sama lain. Salah satu cabaran penting dalam menganalisis video panjang adalah 

bagaimana untuk mempertimbangkan semua korelasi (pendek - panjang) antara bingkai-

bingkai video. Penempatan (segmentasi temporal) peristiwa video bola sepak 

ialah(adalah) satu masalah yang mencabar. Walaupun masalah umum segmentasi 

temporal dalam video telah ditangani secara meluas dalam kerja penyalidikan yang telah 

diterbitkan, untuk pengetahuan terbaik kami, penyelidikan ini ialah antara penyelidik 

yang pertama dalam menangani masalah peristiwa penempatan video bola sepak yang 
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“panjang” dengan menggunakan teknik pembelajaran mesin mendalam. Video bola sepak 

adalah panjang dan korelasi antara bingkai dalam video berbagai dari pendek hingga 

panjang Untuk memodel pelbagai korelasi dalam video bola sepak, kami mencadang 

untuk menggunakan gabungan two-stream CNNs dan dilated RNNs dengan sel LSTM, 

untuk menghasilkan korelasi jarak pendek dan jarak jauh. Keputusan ujian kami 

menunjukkan pembaikan ketepatan yang ketara 5.4% - 11.4% (berbanding dengan 

keputusan terbaik yang ada dan keputusan asas) terhadap masalah spotting dalam video 

panjang didapati dari dataset bola sepak terbesar yang sedia ada untuk komuniti 

penyelidikan (iaitu SoccerNet). 

Kata Kunci: Pembelajaran Mesin Mendalam, Rangkaian Neural Berulang (RNNs), 

CNN dua aliran (Two-stream CNN), Analisis Video Sukan, Pengesanan Aktiviti dan 

Spotting. 
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CHAPTER 1: INTRODUCTION 

1.1 Primary Background Studies 

Sports video analysis has been an active research area in the last few years (Assfalg, 

Bertini, Del Bimbo, Nunziati, & Pala, 2002; Brendel, Fern, & Todorovic, 2011; S. Chen, 

Fern, Mahasseni, & Todorovic, 2013; S. Chen, Fern, & Todorovic, 2014; Cioppa et al., 

2020; D’Orazio & Leo, 2010; Ekin, Tekalp, & Mehrotra, 2003; C.-L. Huang, Shih, & 

Chao, 2006; Ibrahim, Muralidharan, Deng, Vahdat, & Mori, 2016; Jiang, Lu, & Xue, 

2016; Kautz et al., 2017; Lan, Sigal, & Mori, 2012b; Ramanathan et al., 2016; 

Tavassolipour, Karimian, & Kasaei, 2014; Todorovic & Mahasseni, 2016; Tovinkere & 

Qian, 2001; Vats, Fani, Walters, Clausi, & Zelek, 2020; Z. Wang, Yu, & He, 2016; P. Xu 

et al., 2001; Y. Yang, Lin, Zhang, & Tang, 2007). Thanks to high-speed internet on 

portable platforms, streaming technology has advanced rapidly in the past decade. As a 

result, there has been a great demand for the use of video streaming and sharing services, 

and annotation platforms of sports videos. Unfortunately, majority of the cloud-based 

services provide a limited set of capabilities to their customers for rapid access to 

particular video highlights or functionalities to reduce the manual effort for a content 

search in videos. 

Two important challenges in video analysis are the localization of the key moments in 

a video and the classification of the localized key moments into certain event categories. 

While the former considers the temporal segmentation of a given video, the latter focuses 

on classifying the content of a short segment of the video. Both of these problems are 

even more complicated in scenarios with very high dynamics such as sports videos. 

Among all sports, football (soccer) is unquestionably one of the most, if not the most 

popular sport. Just in Europe, revenue from football is more than 25 billion dollars. In a 

revolutionary decision, FIFA decided to use the Video Assistant Referee system, known 
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as VAR, in world cup 2018 games. This was football's first use of computer vision 

technology. This shows the importance of intelligent football video analysis systems, 

especially for real-time events. Note that in this manuscript, “soccer” and “football” are 

used interchangeably if not stated otherwise. 

While multiple solutions have been proposed to automatically analyze other sports 

telecasts such as hockey and basketball, understanding football videos is much more 

complicated. This is mainly because of the event sparsity in long football videos. Unlike 

similar outdoor sports such as “American Football” and “Baseball” which are episodic, 

football is a non-episodic game. A football game is at least a continuous 45-minutes long 

sport (each half of the game). As a result, manual search for contents and highlights in a 

large number of long football videos is not plausible. 

In this work, we propose a new architecture for temporal segmentation and 

classification of important football events. The proposed architecture considers the mid-

range and long-range correlation between frames in addition to the local spatiotemporal 

information to efficiently segment major events in a video. More specifically, we benefit 

from a combination of models at different granularity levels to consider local 

spatiotemporal clues, short-range temporal information, and mid to long-range temporal 

correlation.  

1.2 Motivation 

This research focuses on identifying a solution for football event classification and 

spotting. We argue that this is a very important research problem with a huge impact on 

academic and industry. In the next two subsections, we briefly provide more information 

to highlight the industry and academic impact of this work. 
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1.2.1 Industry Impact 

As stated in (Giancola, Amine, Dghaily, & Ghanem, 2018), "the global sports market 

is estimated to generate an annual revenue of $91 billion, whereby the European football 

market contributes about $28.7 billion (i.e., more than 30%). After merchandising, 

Television broadcast rights are the second major revenue stream for a football club". 

While entertainment serves as the main purpose of the football broadcast, recently main 

broadcasting platforms (e.g., Wyscout1, Reely2, and Stats SPORTVU3) offer sports 

analytics as part of their core marketing to help professionals to produce statistics, analyze 

plans, and scout new players. 

Also, football is the most popular sport in the world with more than 250 million players 

in more than 200 countries. With the rapid development in video streaming technology, 

users watch, share and annotate more football videos than before. Most of the available 

web services, however, do not provide enhanced functionalities to their users that would 

enable faster access to certain video moments, or would reduce manual labor in video 

annotation. This means having more intelligent highlights and event detection algorithms 

is helpful for users to save their time and money. In addition to online viewers and fans, 

professional athletes and coaches need to access important events to review their games 

or to analyze the opponent’s. It is ideal to achieve this without a need to browse the entire 

video. 

                                                 

1 Wyscout is an Italian company that supports football scouting, match analysis and transfer dynamic 

2 Reely is a computer vision, AI, deep learning platform specializing in transforming sports video content into actionable data. 

3 SportVU is a camera system hung from the rafters that collects data 25 times per second and follows the ball and every player   
on the court. 
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Given the growing sport analysis industry (e.g., SportsLogiq4, HUDL5, and Reely), 

results from this study are valuable to the industry practitioners as well as related software 

providers in developing better practices and tools for football video analysis. We believe 

since this study is evaluated on a large soccer dataset (i.e., SoccerNet), the results will 

generalize well in real setting and the aforementioned industry solutions will benefit from 

this research work.  

To summarize, more accurate event localization helps various potential stakeholders 

by enabling quicker and more effortless access to important events in videos. 

1.2.2 Academic Impact 

Sport Analysis has attracted a large number of researchers in academia in the past two 

decades. We believe this is mainly due to certain challenges in sport videos such as high-

speed events and complex correlation between events. Football in particular has certain 

unique characteristics. It is an outdoor game with varying lighting conditions which 

makes the processing of raw images challenging. In addition, football field is 

exceptionally large compared to other team sports such as volleyball or basketball with 

more players spread out in the field. More importantly, football is a highly dynamic game 

with “sparse interesting events in long videos”. In other words, there are few interesting 

events in a long football video, which is very different from volleyball or basketball with 

high rate of interesting events (e.g., goal). These challenges make sports video analysis 

and in particular analysis of football videos an interesting problem domain for academia. 

This has resulted in multiple workshops and challenges in top academic conferences such 

as International Workshop on Computer Vision in Sports (CVSports), ActivityNet 

                                                 

4 SportLogiq is an AI powered sports analytics company. 

5 Hudl is a product and service of Agile Sports Technologies, Inc. 
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challenge6. We believe that this research provides a new baseline for other researchers in 

this field. 

1.3 Problem Statement 

The main goal of Artificial Intelligence (AI) is to train intelligent systems which are 

able to behave in a similar way as humans. While humans, perform a large class of actions 

without carefully analyzing the action itself, training an intelligent system with similar 

behavior is a challenging task. One of the main abilities of humans is the ability to 

recognize (to differentiate) different events upon observation. For example, given a clip 

of a football video, humans can easily identify if the clip contains a penalty shot or not. 

Thanks to high-speed internet on portable devices, streaming technology has advanced 

rapidly in the past decade. This has resulted in an exponential demand increase of cloud-

based storage, sharing, and annotation platforms as well as the streaming services for 

sports videos. Unfortunately, most of these cloud-based services do not provide enhanced 

functionalities to their users that would enable faster access to certain video highlights or 

reduce manual effort in video annotation. Sports videos analysis became a very important 

research topic in the last few years (D’Orazio & Leo, 2010; Jiang et al., 2016; Tovinkere 

& Qian, 2001; Z. Wang et al., 2016; P. Xu et al., 2001) and several high-rank conferences 

have assigned certain workshops (e.g., CVSports) for this area of research. One of the 

key challenges in any video analysis is to localize the key moments in the video and to 

classify these key moments into certain categories. This is even harder in sports videos 

which usually cover high dynamic content. Undoubtedly, football is one of the most (if 

not the most) attracting sports in the world. Just in Europe, its revenue is more than 25 

billion dollars. Given the long duration of a football game, intelligent methods for 

understanding football videos help the viewers with the localization of the salient 

                                                 

6 http://activity-net.org/ 

Univ
ers

iti 
Mala

ya



6 

moments of a game. While several companies such as HUDL, Reely, SportLogiq has built 

semi-automatic approaches to analyze sports telecasts such as “hockey” videos, 

identifying football events is still a challenge and most of the current commercial software 

still rely heavily on human annotations. 

In a revolutionary decision, FIFA decided to use the Video Assistant Referee system, 

known as VAR, in world cup 2018 games. While using computer vision is still at its 

infancy in football, this shows the importance of intelligent football video analysis 

systems with high accuracy and real-time capability. 

While researchers have applied preliminary recurrent based architectures to classify 

videos captured in the wild (Donahue et al., 2015; Todorovic & Mahasseni, 2016), these 

models have not yet been fully applied to the problem of event detection in football 

videos. 

As mentioned in the introduction section, our goal is to localize the events in football 

videos. While similar research work has addressed event localization on other sports and 

even football videos, we identified the following challenges: 

 One key observation is that unlike most of the events in generic videos, events 

in sport videos occur in a glimpse. This means that the interval that the event 

happens is very short. Also, since the sport is very fast pace the boundaries of the 

event are very subjective. 

 Another important observation is that there are short-range, mid-range, and 

long-range dependencies between frames in football videos. To the best of our 

knowledge, the prior work has only addressed one of the above correlations at a 

time. We believe, in order to effectively localize events in football videos, a 

model should consider long-range, mid-range, and short-range correlation. 
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 Last but not least, the majority of the prior work has only considered short 

football videos for evaluation. To show the strength of an algorithm and 

performance on actual football videos it is important to evaluate the models on a 

large-scale video dataset which is representative of the diversity in long football 

videos. 

To summarize, our goal is to recognize the significant moments in a football video. 

Certain events such as "goal event" or "card event" are of great importance and localizing 

them in a video helps with faster retrieval of key highlights. Localization of the significant 

moments in a video and classification of the localized moments into pre-defined event 

categories are the two important challenges in video analysis.  

The problem of temporal segmentation of a given video is one of the challenging 

problems in computer vision. This problem is even more complicated in scenarios where 

1) there are highly dynamic scenes such as sports videos, 2). events happen in a glimpse, 

3) there are dependencies between the distant video frames. 

In our opinion, the main reason for less accurate results in football is the fact that 

football is a highly dynamic game. Different events in a football video are highly 

correlated, and the correlation in time varies from short-range to mid-range and long-

range. Football is an outdoor game, which means that scene appearance and lighting 

conditions highly vary between games. Finally, while 22 players spread over a large area 

on the football field, the game focus can instantaneously change in a matter of seconds. 

1.4 Aim and Objectives of the Research 

The main goal of this research is to provide an approach to analyze football videos. In 

this work, we define the analysis of football videos as the process of localizing and 

classifying three key events in a football game. We argue that these three events are 
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amongst the most important events in any football game, and accurate estimation would 

improve the quality of the automatic video analysis in sports videos. We identify the 

following research objectives: 

1. To investigate the state-of-the-art feature extraction models in videos in order to 

improve the event classification and spotting in football videos. 

2. To design and implement a neural network model to improve event localization 

in long football videos.  

3. To evaluate the accuracy of the proposed algorithm for event localization and 

classification in long football videos. 

1.5 Research Questions 

The following research questions are sought while conducting various significance of 

this research: 

1. What type of feature descriptors should be considered to improve the event 

localization accuracy in football videos? 

2. How to combine modern neural networks architecture to address the limitation 

of previous event classification and detection approaches in football videos? 

3. What is the event classification and spotting performance of our method 

compared to the baselines and existing approaches? 

1.6 Relationship Between Objectives and Questions 

To demonstrate how research questions and objectives are connected, Table 1.1 

provides the mapping between the research questions and the objectives of the research. 
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Table 1.1: Mapping between objectives and questions 

Research question Research objective 
What type of feature descriptors should be 
considered to improve the event localization 
accuracy in football videos? 

To investigate the state-of-the-art feature 
extraction models in videos to improve the 
event classification and spotting in football 
videos. 

How to combine modern neural networks 
architecture to address the limitation of 
previous event classification and detection 
approaches in football videos? 

To design and implement a neural network 
model to classify and localize three events in 
long football videos. 

What is the event classification and spotting 
performance of our method compared to the 
baselines and existing approaches? 

To evaluate the accuracy of the proposed 
algorithm for event localization and 
classification in long football videos. 

 

1.7 Research Methodology and Proposed Approach 

To clarify the research problem, answer the research questions and achieve the 

research objectives, we followed the following quantitative research method presented in 

Figure 1.1. First, in order to explain the problem definition and properly formulate the 

problem statement we did an extensive research literature review. Second, based on the 

literature review, we refined the problem formulation and identified the current issues and 

challenges. Note that this itself resulted in more literature review. After formalizing the 

problem, we designed our event classification and spotting model and implemented its 

combined neural network components, in the TensorFlow framework. We then trained 

the network on Amazon Web Service (AWS) machines and evaluated the results on the 

SoccerNet dataset. 
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Figure 1.1:Research methodology framework followed in this thesis. 

1.8 Scope of the Research 

The scope of this study focuses on proposing a unified neural network model that 

combines the most recent successful neural network architectures to model short-range, 

mid-range, and long-range dependencies for event spotting in football videos. For 

evaluation, the scope is limited to the largest publicly available football dataset 

(SoccerNet). The proposed architecture considers the long-range correlation between 

frames in addition to the local spatiotemporal information to efficiently segment major 

events in a video. More specifically, we benefit from a combination of models at different 

granularity levels to consider local spatiotemporal clues (i.e., short-range temporal 

information) as well as mid-range and long-range temporal correlation.  

In addition, two neural network architecture are combined for event spotting task in 

football videos. These are 1) Two-stream Convolutional Neural Networks (Two-stream 

CNN), and 2) Dilated Recurrent Neural Network (Dilated-RNN). The evaluation results 

are limited to three neural network architectures which include RNN and Two-stream 

CNN and ResNet-CNN using the SoccerNet dataset. 
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As part of the evaluation of our methods, presented in Chapter 5 we perform ablation 

studies to show the effectiveness of each component of our proposed neural network 

model. Performance evaluation is limited to the mean average precision (mAP) metric 

which is compared with the baseline. 

1.9 Principal Contribution 

A more accurate event detection model in football will help online users to access the 

key moments of a football matches. On the other hand, it would be a great advantage for 

the professional athletes and coaches to access the important events in a football video 

without a need to browse the entire video. Also, as a result of successful applications of 

the state-of-the-art methods in video analysis, there are multiple activity detection 

competitions in top tier conferences such as “International Conference on Computer 

Vision (ICCV)” and “Computer Vision and Pattern Recognition (CVPR)”. Activity 

detection in sports is even a more challenging problem because of the high complexity 

and complex dynamics. Recently, most of these top tier conferences, have a 

separate “sports analysis workshop” (e.g., CVSports). 

Every sport has its unique characteristics which will lead to certain assumptions. These 

assumptions result in different video analysis models for different sports. Unlike some 

sports like basketball and volleyball, football is outdoor. As a result, scene appearance 

and lighting conditions highly vary between games. Also, unlike basketball and 

volleyball, football is a non-episodic game with high dynamics (e.g., both basketball and 

volleyball all episodic games). As a result, we argue that events in a football video are 

highly correlated and the correlation in time could be short-range, mid-range, or long-

range. Considering the aforementioned impact of this research in academia and industry 

in the first chapter, and the fact that previous work on football video analysis has not 

considered the short-range, mid-range, and long-range correlation between frames, has 
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motivated me to undertake this research. My goal is to achieve the research objectives of 

this work and to propose a more sophisticated method for event localization. 

To the best of our knowledge, none of the previous works in the area of football video 

analysis has modeled the complex correlation among frames together in one single model. 

We believe there are two reasons for this:  

1. Lack of large-scale football datasets which makes it hard to train deep learning 

models (Giancola et al., 2018). 

2. It is harder to model complex frame relations in long football videos using 

standard RNN and CNN models (Jiang et al., 2016).  

As far as we are aware, our work is the first to consider various ranges of dependencies 

among video frames for event localization in sports videos. Our main contribution is the 

development of a new unified model for video event localization in football videos. The 

following summarizes our contributions: 

 We used the two-stream CNN network for extracting local spatiotemporal 

features in long football videos. 

 We explicitly model mid-term correlation between frames using LSTM network. 

 We used dilated RNNs to capture the long-range dependencies between video 

frames. 

 We evaluate our approach on the largest publicly available football video 

dataset which has shown up to (5.4% - 6.9%) accuracy improvement in event 

spotting compared to the state of the art and up to (7.2% - 11.4%) accuracy 

improvement compared to our simple baseline. 

 We ran an extensive ablation study to analyze the contribution of each component 

in our proposed unified neural network model. 
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1.10 Organization of the Thesis 

This thesis is organized in seven chapters, including the introduction chapter. The rest 

of the thesis is structured as follows:  

CHAPTER 2, “Literature review”, presents a comprehensive review of the most recent 

relevant published literatures related to sport video analysis. This chapter also provides 

an overview of the state-of-the-art approaches and techniques used in video 

understanding. In addition, it covers the successful techniques and approaches for 

classical feature extraction and machine learning methods as well as modern deep 

learning-based techniques in computer vision. 

CHAPTER 3, “Methodology”, presents the research methodology used for this 

research work. This chapter describes the data collection sources and presents the 

proposed model for event classification and localization. Finally, the chapter describes 

the evaluation approach and metric used in this study to analyze and test the proposed 

model. 

CHAPTER 4, “Football Event Spotting and Classification”, provides a detailed 

description of the problem statement and proposed model in our research as well as the 

methods and concepts used for feature extraction and classification. Finally, this chapter 

provides a complete overview of the implementation details and, training/testing 

pipelines. 

CHAPTER 5, “Experimental Results and Discussion”, presents the evaluation results 

and accuracy of the proposed models for event classification and localization. It also 

provides explanations and analysis of the provided results. 
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CHAPTER 6, “Conclusion and Future Direction”, discusses the research findings and 

summarizes the significance of the study and the research contributions made in this 

work. It also explains a set of limitations and proposes potential future works. 

1.11 Summary 

In summary, this chapter presented an introduction to this research and presented an 

overall view of the event localization and spotting in football videos. The motivation 

which inspired this research work, and the research objectives and questions were also 

presented in this chapter. The mapping between the objectives and research questions and 

how we planned to achieve those is also provided.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

The following two sections provide a review of the prior work on sports video analysis 

(football and non-football) and a review of the state-of-the-art machine learning models 

applied on image and video analysis. We first provide a general overview of prior work 

on sport analysis in computer vision. We then provide a detailed overview of prior work 

on analyzing football videos, including different problems addressed in each work. 

Second, we provide a brief overview of relevant recent approaches for event detection 

and localization in videos (not necessarily sport-related). Finally, we provide a 

comprehensive overview of the building blocks of the most recent models we plan to use 

in our work. Figure 2.1 illustrates the semantic view of the literature review structure. In 

addition, APPENDIX A presents the knowledge map of our literature review. 

 

Figure 2.1: Abstract view of the literature review structure in this research work. 
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2.2 Sport Analysis 

Sports analysis gained recognition in the research community in the past decade due 

to rapid growth in video streaming on mobile platforms and the high demand for 

broadcasting sports videos. Multiple research and industry projects focused on sport 

analysis applications provided promising results. While it is not possible to review all 

prior work in this paper, we provide a high-level categorization of the related work by 

focusing on different sports each work has addressed. 

2.2.1 Non-football Analysis 

Basketball has been the focus of multiple prior works (Brendel et al., 2011; L. Chen, 

Zhai, & Mori, 2017; S. Chen, A. Fern, et al., 2014; Ramanathan et al., 2016). While 

authors in (S. Chen, A. Fern, et al., 2014) use classical machine learning algorithms 

grounded on hand-crafted features to track the basketball players and to classify the 

videos, more recent approaches exploit deep learning-based techniques which learn the 

features and model parameters in an end-to-end manner (Ramanathan et al., 2016). 

Volleyball is another highly dynamic sport addressed in (Donahue et al., 2015; Ibrahim 

et al., 2016; Kautz et al., 2017). Authors in (Kautz et al., 2017) propose a method based 

on convolutional neural networks to track the players and classify the activities in beach 

volleyball. In (Ibrahim et al., 2016), deep recurrent models (multi-layer LSTMs) are used 

to identify the volleyball players in the field and to perform high-level structured activity 

detection. In a completely different line of research, hierarchical graphical models have 

been applied to perform group activity recognition in hockey videos (Lan et al., 2012b). 

While the prior work has shown promising results in analyzing videos from basketball, 

volleyball, and hockey games, similar approaches are either not applicable to football 

videos or do not provide accurate results. 
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We believe the main reason for these less accurate results in football is the fact that 

football is a non-episodic and highly dynamic game. As a result, different events in a 

football video are highly correlated and the correlation in time could be short-range, mid-

range, or long-range. Also, unlike most of these sports, football is an outdoor game, which 

means that scene appearance and lighting conditions highly vary between games. Another 

major difference is the higher number of players in a football game. In football players 

are scattered in the football field and the arrangement of the players is extended over a 

large area. 

‘American football’ is probably the most comparable sport to football (soccer) in terms 

of the field appearance and number of players. Similar to football, it is also played 

outdoors. Several prior works (Atmosukarto, Ghanem, Saadalla, & Ahuja, 2014; S. Chen, 

Z. Feng, et al., 2014; S. Chen et al., 2013) have addressed ‘American football’ video 

analysis. Most of these approaches use classical machine learning methods to model the 

interaction between players and the motion in the scene. The main difference between 

football (soccer) and the ‘American football’ is the fact that unlike ‘American football’ 

where the game is episodic (and is divided to multiple plays) and well-structured (S. Chen 

et al., 2013), football (soccer) is a non-episodic game and the game spreads over almost 

the entire field in a very short (sometimes even seconds) period of time. 

2.2.2 Football Analysis 

Analyzing football videos have attracted researchers in the computer vision field for 

more than a decade now. Detecting certain events, highlighting an event, tracking football 

players, and providing game statistics are among the few examples of applications 

addressed in the literature. 

Analyzing football videos has been addressed in (Assfalg, Bertini, Colombo, Del 

Bimbo, & Nunziati, 2003; Assfalg et al., 2002; Ekin et al., 2003; Yu Huang, Llach, & 
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Bhagavathy, 2007; Kolekar & Sengupta, 2015; Pallavi, Mukherjee, Majumdar, & Sural, 

2008a, 2008b; X Qian, Hou, Tang, Wang, & Li, 2012; Xueming Qian, Liu, Wang, Li, & 

Wang, 2010; Tavassolipour et al., 2014; Z. Wang et al., 2016; Wickramaratna, Chen, 

Chen, & Shyu, 2005). Authors in (Z. Wang et al., 2016) propose a video annotation 

platform based on semantic matching using coarse time constraints. More specifically, 

video events and external text information (match reports) are synchronized using their 

semantic correspondence in the temporal sequence. Authors in (Ekin et al., 2003) propose 

to use cinematic and object-based features to summarize and analyze football videos. 

Their method includes novel low-level football video processing algorithms, such as 

dominant color region detection, robust shot boundary detection, and shot classification, 

as well as some higher-level algorithms for goal detection, referee detection, and penalty-

box detection. A recent work (Jiang et al., 2016) focuses on combining CNN (LeCun, 

Bottou, Bengio, & Haffner, 1998) and RNNs (Hochreiter & Schmidhuber, 1997). CNN 

features are fed to RNN layers to solve the task of football event detection. This is perhaps 

the closest work to ours. The main difference is that we use dilated RNNs with LSTM 

cells grounded on top of two-stream neural networks which enables us to perform well 

on long videos. 

Video summarization and highlight detection is another important application area. 

Authors in (Tavassolipour et al., 2014) use Bayesian approaches to summarize videos and 

to detect events using semantic analysis through Bayesian inference. Similarly, Bayesian 

networks (BN) and Dynamic Bayesian networks (DBNs) grounded on low-level image 

features are used alongside algorithms which use a high-level knowledge encoded in 

abstract non-geometric representations to perform video summarization. Authors in 

(Assfalg et al., 2002) propose Hidden Markov Models (HMMs) to classify and recognize 

highlight football clips. Finally, authors in (Y. Yang et al., 2007) proposed a more generic 

approach for high-light extraction in football videos based on the goal-mouth detection. 
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More recently, authors in (Giancola et al., 2018) proposed to use the anchors of soccer 

events in football videos for the task of events spotting. They also published the 

SoccerNet dataset for event classification and spotting in football (soccer) videos. Follow-

up research presented in (Cioppa et al., 2020) proposed a new loss function specifically 

designed for event spotting in football videos. Authors in (Vats et al., 2020) proposed to 

use a CNN architecture with multi-layer 1D convolutions for event spotting, which 

improved the accuracy result on SoccerNet (Giancola et al., 2018). 

Our approach is different from all prior work in the following: 

 We propose to use a hierarchical RNN architecture with LSTM units to find the 

dependency between sub-events. This enables us to identify long-range 

correlation between different events in a long video. 

 We use two-stream networks for feature detection in the CNN layers which have 

resulted in better accuracy in other action recognition tasks. This allows us to 

describe short-range correlation between frames in a more expressive way. 

 We evaluate our approach and the baselines on the recently released video dataset 

which is currently the largest football video dataset in the research community-

SoccerNet (Giancola et al., 2018). Our proposed model improved the accuracy 

of the state-of-the-art method on SoccerNet (Giancola et al., 2018) by introducing 

a combination of two neural networks and improved the action spotting baseline. 

To summarize, our main contribution is the new approach for modeling long-range 

correlations between frames. Unlike these prior works, we explicitly represent the short-

range dependencies using local spatiotemporal features and long-range dependencies 

using a hierarchical recurrent neural network with skip connections. 
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Table 2.1 summarizes the relevant work in soccer video analysis. 

Table 2.1: The table consist of two groups of paper: papers from 2002 to 2014 
which use classical computer vision feature and shallow machine learning models, 

papers from 2014 to 2020 which use deep learning methods. 

Author Method Problem 

(Assfalg et al., 2002) HMM Highlight detection 

(Ekin et al., 2003) Bayesian network Soccer video analysis and 
summarization,   

(Assfalg et al., 2003) Finite state machines Highlight detection 

(Wickramaratna et al., 2005) Feed-forward neural network Goal event detection 

(C.-L. Huang et al., 2006) Bayesian network Semantic analysis 

(Y. Yang et al., 2007) Top-Hat Transform Highlight extraction 

(Yu Huang et al., 2007) Color segmentation Player and ball detection 

(Pallavi et al., 2008b) Graph-based Player tracking 

(Pallavi et al., 2008a) Hough Transform and 
trajectory estimation 

Ball detection 

(Baccouche, Mamalet, 
Wolf, Garcia, & Baskurt, 
2010) 

KNN, SVM, LSTM-RNN Action Classification 

(Xueming Qian et al., 2010) Hidden conditional random 
field 

Highlight events detection 

(Zawbaa, El-Bendary, 
Hassanien, & Abraham, 
2011) 

SVM Summarization  

(X Qian et al., 2012) Hidden conditional random 
field 

Events detection, 

(Tavassolipour et al., 2014) Bayesian network and copula   Event detection and 
summarization 

(Kolekar & Sengupta, 2015) Bayesian network-based Highlight generation 

(Z. Wang et al., 2016) Bayesian network-based Event annotation 

(Jiang et al., 2016) CNN + RNN Event detection 

(T. Liu et al., 2017) CNN+LSTM Event detection 

(Hong, Ling, & Ye, 2018) CNN Event classification 

(Giancola et al., 2018) CNN + NetRVLAD Event spotting 

(Cioppa et al., 2020) CNN + NetRVLAD Event spotting 

(Vats et al., 2020) A multi-tower temporal 
convolutional network 

Event detection 
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2.3 Event Detection and Localization in Videos 

Event understanding and activity recognition research focuses on analyzing events and 

activities in a video (Kautz et al., 2017; Kumar & John, 2016; Lu, Shi, & Jia, 2013; Ma 

et al., 2013; Xueming Qian et al., 2010; Ramanathan et al., 2016; K. Tang, Fei-Fei, & 

Koller, 2012; Ullah, Ahmad, Muhammad, Sajjad, & Baik, 2017; C.-h. Wang, Wang, & 

Guan, 2011; Yeung, Russakovsky, Mori, & Fei-Fei, 2016). It is either defined as 

localizing an event in an untrimmed video or classifying video segments according to a 

set of predefined event classes, mostly referred to as action/activity recognition. Event 

localization and activity recognition have been applied in different domains such as sports 

videos, movie clips, and surveillance videos. Other than finding a solution for event 

localization in videos, it is also important to define an event or activity in terms of the 

boundaries and characteristics. 

One important difficulty is the subjective nature of the event definition. Different 

people may define an event or an action in different ways. Also, the definition could be 

domain dependent. One common process is to define temporal segments that will be 

classified into different event classes using predefined labels (Buch, Escorcia, Shen, 

Ghanem, & Carlos Niebles, 2017; Caba Heilbron, Carlos Niebles, & Ghanem, 2016; Gao, 

Yang, Chen, Sun, & Nevatia, 2017; Shou, Wang, & Chang, 2016; Z. Wang et al., 2016). 

In addition to the above, the duration of an event can also vary subject to subject. For 

example, in a football video, while one person can define the goal event to be precisely 

the time the ball passed the goal line, another user might consider an interval where the 

ball is heading to the goal line till it hits the net. Recently, (Sigurdsson, Russakovsky, & 

Gupta, 2017) conduct a semi-large experiment on different algorithms applied on 

different datasets with different data annotations. Based on the results, authors argue that 

defining temporal boundaries for an action is an ambiguous task. In another similar 
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evaluation, (W. Chen, Xiong, Xu, & Corso, 2014) questioned the concept of action, action 

boundaries, and what are the differences between an action and a motion. In their paper, 

they define four aspects for an action: 1) Movement that an agent can do, 2) It requires 

an intention, 3) It requires a bodily movement and 4) An action has side effects on the 

environment it is being performed. Others, such as (X. Dai, Singh, Zhang, Davis, & Qiu 

Chen, 2017) simply define actions as set of defined clips with a start and end position. 

The concept of an event is even more vague in multimedia communities. In (Awad et 

al., 2016) , the authors define an event for multimedia event detection system as a kit 

which consists of 1) a unique title for the event, 2) a textual description of the event, 3) 

an expression of some event knowledge needed for a human to understand and perform 

the event, and 4) a set of video examples which demonstrates the event. In addition, a 

specific event may be described with a specific rule for start and end. 

In the context of live sports video broadcasts, defining an action boundary is a 

complicated task. For example, as mentioned above, the beginning and the end of events, 

such as scoring a goal (e.g., two-point or three-point field goal in basketball) is subjective. 

Similarly, temporal boundaries of a slam dunk in basketball and scoring a point/serving 

in volleyball is not clearly defined. 

Due to this ambiguous definition, different work might have different annotations 

which results in a different definition of an action. For example, authors in (Ramanathan 

et al., 2016) define a basketball shot as a three seconds action, where the action stars three 

seconds before the exact instant that a ball crosses the hoop. Similar to the other sports 

broadcasts, in football, it is also not clear how to objectively define the start and end 

boundaries of events such as scoring a goal, issuing a card, or substitution. We agree with 

the authors in (Giancola et al., 2018) that the anchor of each of these events in sports are 

well defined as a single time instance. Still, as it is mentioned by (Ramanathan et al., 
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2016) defining a boundary around the anchor of events with a fixed duration would be 

subjective. 

Some recent datasets such as THUMOS14 (Y.-G. Jiang & Sukthankar, 2014), 

ActivityNet (Caba Heilbron, Escorcia, Ghanem, & Carlos Niebles, 2015), and Charades 

(Sigurdsson et al., 2016), try to address the ambiguity problem of temporal boundaries by 

asking multiple annotators to annotate the same video. Also, AVA (Gu et al., 2018) 

attempts to resolve the atomic characteristic of actions by providing well-defined 

annotations within a 3 seconds duration. While the results of these annotations are 

aggregated to a single annotation, it still does not resolve the main core issue which is the 

resulting event boundary is not agreed upon.  

Unlike previous approaches, authors in (Giancola et al., 2018), provided an alternative 

definition for event localization. In their definition, an event is anchored around a single 

time instance and the detections will be validated based on a pre-specified error tolerance. 

This is referred to as event spotting. In our work, we follow a similar concept of event 

spotting proposed by (Giancola et al., 2018). In other words, rather than identifying the 

boundaries of an action within a video and looking for Intersection-over-Union (IoU) 

between temporal windows, spotting identifies the moment that an event occurs. A 

candidate spot is positive if it lands within a tolerance window around the anchor of an 

event. Otherwise, it is considered as negative. Note that, we do not claim this is the best 

definition for event localization for all types of events in videos. Instead, we believe this 

is a more reasonable definition for sports videos, where the actions/events happen at a 

glimpse. 

2.3.1 Classical Approaches 

Video analysis (such as object detection in videos, activity recognition and detection, 

sports video analysis, etc.) has been an active area of research since the formation of the 
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computer vision field. Several successful classical approaches have proposed to use a 

combination of handcrafted feature extraction methods (Figure 2.2) and shallow 

classification models. The handcrafted features include SIFT-Scale-Invariant Feature 

Transform (Lowe, 2004), SIFT 3D (Scovanner, Ali, & Shah, 2007), Histograms of 

Oriented Gradients-HOG (Dalal & Triggs, 2005), HOG3D (Klaser, Marszałek, & 

Schmid, 2008), Histogram of Optical Flow-HOF (Chaudhry, Ravichandran, Hager, & 

Vidal, 2009) which are all based on histogram descriptors, and Spatiotemporal Interest 

Points- STIP (Rapantzikos, Avrithis, & Kollias, 2009) and the classifier is usually a 

shallow model such as support vector machines –SVM (X. Yang, Zhang, & Tian, 2012), 

K-nearest neighbor - KNN (Efros, Berg, Mori, & Malik, 2003), logistic regression and 

Hidden Markov Models (C.-h. Wang et al., 2011) which consumes the handcrafted 

features to predict or detect the events in videos. (Kumar & John, 2016; X. Li, 2007) 

addressed human activity detection problem in videos. (X. Li, 2007) adopted the concept 

of the histogram of oriented gradients in images and proposed oriented histograms of 

optical flow for feature extraction. Using these feature vectors and HMM, the authors 

proposed human motion descriptors in videos. In a similar work, (Efros et al., 2003; 

Kumar & John, 2016) use the HOF proposed by (X. Li, 2007). While (Kumar & John, 

2016) uses a multi-class SVM classifier to classify/recognize human-human interactions, 

(Efros et al., 2003) benefits from KNN for classifying human actions in videos. Using an 

alternative approach which is based on appearance features, authors in (X. Yang et al., 

2012) used SVM classifier on top of HOG features, extracted from video frames, for 

action recognition in broadcast tennis and golf videos. Using a similar approach, (Oreifej 

& Liu, 2013) applied SVM classifier on top of the histogram of normal orientation for 

faster human activity recognition. (X. Yang & Tian, 2012) proposed a different approach 

by using an action recognition system based on the Eigen representation of human joints 

and NBNN classifier. In (Efros et al., 2003) authors use optical flow histograms and KNN 

Univ
ers

iti 
Mala

ya



25 

to detect the motion of a player in football games. Note that in almost all of these 

approaches, a dimensionality reduction technique (such as principal component analysis 

– PCA) is applied on the original features to improve the classification performance. 

 

Figure 2.2 : Classical computer vision methods based on handcrafted features. 

2.3.2 Deep Learning Approaches 

In recent years, the computer vision community benefitted from deep learning-based 

approaches (Figure 2.3) significantly. Specifically, in video analysis, researchers have 

applied CNN and RNN architectures to a wide range of problems including action 

recognition and detection (Baccouche et al., 2010; L. Chen et al., 2017; Ibrahim et al., 

2016; Jiang et al., 2016; Karpathy et al., 2014; Ramanathan et al., 2016). Most of these 

models, notably the CNN-based models, are inspired by successful applications of similar 

architectures in image analysis domain. The number of prior works which have used deep 

learning for video analysis is more than a few thousand papers, and it is out of the scope 

of this work to provide a comprehensive review of all deep learning-based models in this 

area. Instead, we present the most relevant work which are relevant to ours with respect 

to the model and architecture. 

In the context of sports analysis, various approaches have been proposed to address 

different problems in sports videos. In basketball, (L. Chen et al., 2017) used a 

combination of CNN and SVM for utilizing weakly supervised data for action localization 

in basketball videos, and (Ramanathan et al., 2016) utilized the same architecture for 

events and key actor detection in multi-person basketball videos. (Ibrahim et al., 2016) 

build a deep model based on RNN-LSTM for activity recognition in volleyball videos. 
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Authors in (Karpathy et al., 2014) introduced a novel approach which uses two stream 

multiresolution CNN architecture to capture the important spatiotemporal features and to 

classify videos. In another effort, (Baccouche et al., 2010) used an RNN build on top of 

handcrafted features (BoW and SIFT) to perform action classification in football videos. 

Similarly, authors in (Jiang et al., 2016) proposed to ground RNN on top of CNN features 

for event detection in short football videos instead. 

Deep neural network-based models have been extensively applied in other domains in 

non-sport video analysis. While a large number of approaches have relied on non-

temporal models using different variants of CNNs (e.g., two-stream CNNs (W. Dai, Chen, 

Huang, Gao, & Zhang, 2019; Feichtenhofer, Pinz, & Zisserman, 2016; C. Li, Wu, Zhao, 

Cao, & Tang, 2018; K. Simonyan & A. Zisserman, 2014; Limin Wang, Xiong, Wang, & 

Qiao, 2015; H. Xu, Das, & Saenko, 2019), others have built temporal models using RNN 

based architectures for temporal analysis of videos (Q. Dai et al., 2015; Fan, Lu, Li, & 

Liu, 2016; Ullah et al., 2017; Zhao, Ali, & Van der Smagt, 2017). In (H. Xu et al., 2019) 

the authors addressed the problem of activity detection in 3D videos by using a two-

stream CNN architecture. For violent scene detection and affective impact prediction in 

videos, authors in (Q. Dai et al., 2015) used a combination of two-stream CNN and RNN 

to capture the short and long-term dependencies and SVM for scene classification. In 

similar approaches, (Ullah et al., 2017), (Fan et al., 2016) and (Zhao et al., 2017) utilized 

the combination of two-stream and RNN for action recognition in videos, video-based 

emotion recognition and action recognition in 3D videos respectively. Authors in (Lin 

Wang, Zhou, Li, Zuo, & Tan, 2018) proposed a hybrid autoencoder architecture based on 

the LSTM Encoder-Decoder and the convolutional Autoencoder for anomaly event 

detection. Their experimental results show better spatiotemporal feature extraction. They 

improved the extrapolate capability of the decoder. In a similar problem, Authors in (Yan, 

Smith, Lu, & Zhang, 2018) proposed a two-stream recurrent variational autoencoder for 
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anomaly event detection by capturing the spatiotemporal and optical flow features. 

Authors in (Nguyen & Meunier, 2019) proposed a CNN to address the problem of 

anomaly detection in surveillance videos by learning a correspondence between common 

object appearances. A generic deep one-class is used in (P. Wu, Liu, & Shen, 2019) to 

develop a framework for event detection. 

To summarize, we identify two groups of approaches and methods. On one side, there 

are approaches that build classifiers using RNNs which is grounded on top of hand-crafted 

features. On the other side, there are approaches that build the classifiers and underlying 

feature extraction layers together using RNNs and CNNs. 

 

Figure 2.3: Deep learning-based models outline. 

2.4 Review of Machine Learning 

In this section, we will provide a review of the most relevant machine learning 

approaches used in computer vision. Not surprisingly, we categorize these models to two 

broad spectrums of models: “Classical machine learning methods with handcrafted 

features” and “Deep-learning based methods”. 

2.4.1 Classical Machine Learning with Handcrafted Features 

This group of methods have been studied for a long time in the computer vision 

community. The common theme behind these methods is that the process of extracting 
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features from the raw input data is separated from the classification/reasoning process. 

As for the feature extraction, the design of the features are done by experts in the field 

and is usually formulated as a predefined mathematical formulation without any learnable 

component. Table 2.2 presents a summary of relevant work which have used classical 

features and machine learning methods in computer vision research. Note that while these 

models have showed successful results in a subset of problems, they usually suffered from 

generalization to real-world setting and slow computation. We reviewed the relevant 

applications of classical methods in activity detection and recognition in Section 2.3.1. 

Since our methods are not based on hand-crafted features nor classical machine learning, 

the comprehensive review of classical machine learning is out of the scope of this thesis. 

Instead, for completeness, we provide a high-level review of the combination of these 

approaches in the following table. 

Table 2.2: Summary of classical ML methods and hand-crafted features. 

      Feature 
 
Method 

HOG HOF MBH SIFT STIP Others 

KNNs (Yuanyua
n Huang, 
Yang, & 
Huang, 
2012; 
Serpush & 
Rezaei, 
2020; Shri 
& 
Jothilaksh
mi, 2018) 

(Efros et 
al., 2003) 

N/A N/A (Rapantzi
kos et al., 
2009) 

(Maheswa
ri & 
Ramakrish
nan, 2015; 
Zhan, Liu, 
Gou, & 
Wang, 
2016) 
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Table 2.2 Continued.  

      Feature 
 
Method 

HOG HOF MBH SIFT STIP Others 

HCRFs/ 
CRFs 

N/A N/A N/A N/A N/A (X Qian et 
al., 2012; 
Jin Wang, 
Liu, She, 
& Liu, 
2011; T. 
Wang et 
al., 2006) 

HMMs (C.-h. 
Wang et 
al., 2011) 

(X. Li, 
2007) 

(Sun & 
Nevatia, 
2013) 

N/A N/A (Assfalg 
et al., 
2002; Xie, 
Chang, 
Divakaran
, & Sun, 
2002) 

SVM (Dalal & 
Triggs, 
2005; C.-
P. Huang, 
Hsieh, 
Lai, & 
Huang, 
2011; X. 
Yang et 
al., 2012) 

(Kumar & 
John, 
2016) 

(Dalal, 
Triggs, & 
Schmid, 
2006; H. 
Wang, 
Kläser, 
Schmid, & 
Liu, 2011, 
2013) 

(Scovanne
r et al., 
2007; J.-
T. Zhang, 
Tsoi, & 
Lo, 2014; 
Zhou et 
al., 2008) 

(Thi, 
Zhang, 
Cheng, 
Wang, & 
Satoh, 
2010) 

(Jinjun 
Wang, 
Xu, Chng, 
Wah, & 
Tian, 
2004) 

SSVM (Lan, 
Sigal, & 
Mori, 
2012a) 

N/A N/A N/A N/A (Soomro, 
Idrees, & 
Shah, 
2018; 
Todorovic 
& 
Mahasseni
, 2013) 
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Table 2.2 Continued.  

      Feature 
 
Method 

HOG HOF MBH SIFT STIP Others 

Others N/A (Chaudhry 
et al., 
2009; 
Lertnipho
nphan, 
Aramvith, 
& 
Chalidabh
ongse, 
2011; 
Raptis & 
Sigal, 
2013) 

N/A N/A (P. Liu, 
Wang, 
She, & 
Liu, 2011) 

N/A 

 

To summarize, as it is presented in Table 2.1 and Table 2.2, while prior to 2015 

classical machine learning approaches dominated the research community, recent 

advances in deep learning techniques resulted in a paradigm shift in the community. The 

state-of-the-art computer vision techniques heavily benefit from these advances and 

improve the accuracy of various problems including the activity recognition and 

detection. Following this paradigm shift, our approach is mainly built on top of the most 

recent successful deep learning models. 

2.4.2 Deep Convolutional Neural Networks 

Deep neural networks refer to a class of machine learning methods that are inspired by 

our understanding of the human brain. These methods are particularly powerful in 

automatic feature detection. The main theme behind these methods is that the network 

architecture itself also learns how to extract the features from the raw data. Two 

categorize of deep neural networks have been extensively used in the past few years: 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). As we 
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heavily rely on these two categorize, the following two subsections provide a detailed 

summary of both. 

2.4.2.1 Convolutional Neural Networks Fundamental 

A convolutional neural network (CNN, or ConvNet) is a type of deep neural network 

proposed by (LeCun et al., 1998) in 1998. It is inspired by the human visual system and 

has been mostly applied in visual image analysis. 

While the underlying theory is similar to standard feed-forward neural networks such 

as multi-layer perceptron, a convolutional neural network avoids the dense connections 

to prevent overfitting. To the contrary, convolutional neural networks limit the 

connectivity of the neurons between two consecutive layers to a small local neighborhood 

of each neuron. This reduces the number of network parameters which effectively results 

in better generalizability and less overfitting. Figure 2.4 illustrates the overall idea behind 

the convolutional filters. 

A deep convolutional neural network (DCNN) is designed by concatenating multiple 

layers of convolutional filters and features. The first modern Deep CNN model, 

‘AlexNet’, was proposed in (Krizhevsky, Sutskever, & Hinton, 2012). Figure 2.5 shows 

the AlexNet network architecture. After the success of ‘AlexNet’, multiple other DCNN 

architectures are purposed. The most famous ones are the VGG (K. Simonyan & A. J. a. 

p. a. Zisserman, 2014) and ResNet (He, Zhang, Ren, & Sun, 2016). 

While CNN was originally designed for 2D image analysis, extensions of 2D 

convolutions to 3D convolutions, were proposed for three-dimensional data including 

videos and 3D point clouds. Unlike the 2D convolution, in addition to spatial convolution 

operation, the filters are convolved in the temporal domain as well. 
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Figure 2.4 : An example of 2D convolutional filter 

 

Figure 2.5: The AlexNet network architecture proposed in (Krizhevsky et al., 
2012). 

2.4.2.2 VGG Network 

VGG is a CNN architecture for object recognition and classification tasks. It refers to 

“Visual Geometry Group” and developed in 2014 by (K. Simonyan & A. J. a. p. a. 

Zisserman, 2014) at Oxford Robotics Institute and submitted to the large-scale image 

recognition challenge (ILSVRC20147). At the time, the proposed model scored the first 

and the second places in the localization and classification tracks respectively. Originally, 

                                                 

7 http://image-net.org/challenges/LSVRC/2014/ 
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it was introduced after the success of AlexNet (Krizhevsky et al., 2012). The main 

important difference is the use of 3X3 kernel-size filters in all layers which allows the 

model to use a fewer number of parameters at each layer. This enabled the authors to 

design a deeper network with 16 layers. More number of layers help the network to learn 

better and more abstract feature representations at higher layers. Also, deeper networks 

have larger receptive fields8 which improves the classification accuracy. On ImageNet (J. 

a. D. Deng, W. and Socher, R. and Li, L.-J. and Li, K. and Fei-Fei, L., 2009) dataset, 

VGG achieved 92.3% in the top-5 accuracy metric. Figure 2.6 illustrates compares VGG 

and AlexNet structures. Following the original paper, another variation was proposed 

with 19 layers which was called VGG-19 (vs the original VGG-16). 

 

Figure 2.6: Architecture of AlexNet vs. VGG-16. Top: Architecture of AlexNet, 
Bottom: Architecture of VGG-16 (Yu et al., 2016). 

2.4.2.3 ResNet Network 

Since AlexNet, the CNN architectures such as VGG proposed to use more layers which 

result in deeper networks. For example, VGG-19 has 19 layers while AlexNet had only 

five convolutional layers. However, increasing network depth negatively affects the 

training and convergence of the learning mostly due to the vanishing gradient problem. 

                                                 

8 Effective area of the input image visible by the hidden/output layers 
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A residual neural network (ResNet) is a neural network architecture proposed by (He 

et al., 2016). After AlexNet wining at the LSVRC20129 ResNet became the most novel 

network architecture in the computer vision community by winning the 1st place of 

ImageNet challenge on the ILSVRC201510 for the classification task. 

The fundamental difference of ResNet is that it allows successful training of extremely 

deep neural networks (more 150 layers) by introducing skip connections. These skip 

connections add the original input to the output of the convolution block. Figure 2.7 

illustrates the skip connection concept. To summarize, skip connections have the 

following benefits:  

1. Overcome the prior difficulties due to the vanishing gradients problem by 

allowing an alternate shortcut path for the gradient to flow through. 

2. Allow the model to learn an identity function which ensures that the higher layer 

will perform at least as good as the lower layer, and not worse. 

 

Figure 2.7: Visualization of the skip-connection concept in neural networks. 

                                                 

9 http://www. image-net.org/challenges/LSVRC/2012/ 

10 http://www.image-net.org/challenges/LSVRC/2015/ 
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As it is shown in Equation 2.1, the identity shortcut (x) can be directly used when the 

input and output are of the same dimensions. 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥                                                      (2.1) 

If the input and output dimensions are different, the shortcut still performs identity 

mapping, and a projection shortcut is used to match the dimension using the Equation 2.2. 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑊𝑠𝑥                                             (2.2) 

2.4.2.4 Two-Stream Convolutional Neural Network 

Compare to images, in addition to spatial information, videos provide another 

important clue referred to as the temporal component based on the motion. To benefit 

from the motion information, inspired by a similar approach or technique in the domain 

of image analysis, a large number of video analysis methods are proposed. One classical 

example is the HOF which is an extension of HOG to “spatiotemporal” domain. 

Deep learning is not an exception to this phenomenon. (Karpathy et al., 2014) 

introduced a novel approach by proposing two networks for capturing the important 

spatiotemporal features present in videos. For the low-resolution frames, they used 

a “context stream” to capture the important features and for the high-resolution middle 

region of the frame, they used a “fovea stream” to capture the important detailed features. 

The information from these two streams is subsequently fused to provide a more 

descriptive feature of the video content. Despite improved results, motion related features 

from temporal axis were not considered for learning. Authors in (K. Simonyan & A. 

Zisserman, 2014) extended Karpathy’s ideas by explicitly designing one network to 

capture spatial features (only using static images) and another network to 

extract temporal features (using opticalflow streams). Both networks are trained 

simultaneously in an end-to-end learning fashion.  
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As it is stated in (K. Simonyan & A. Zisserman, 2014), breaking up the spatial and 

temporal subnetworks has two benefits: 

1. It closely resembles the human visual system. Based on the studies in 

neuroscience, our visual system processes what we observe through: a) the 

ventral stream, which is responsible for processing spatial information (such as 

shape and color), and b) the dorsal stream which process the motion information 

(Goodale & Milner, 1992; Kruger et al., 2012). Inspired by the human visual 

system, we can decompose a video into the spatial and temporal components in 

a similar way. The spatial-stream is responsible for the image contents such as 

objects, colors, and shapes while the motion information across video frames is 

processed in the temporal-stream. For better clarification, consider the 

differences between the “card event” and “substitution event”. While the specific 

hand movement is captured by the temporal stream, the object in hand (card or 

the substitution board) differences are captured in the spatial stream. This 

provides more evidence for the reasoning system to distinguish between these 

two events.  

2. From a practical perspective, separating these two streams, enables us to leverage 

a large amount of training data for image analysis task to train the spatial network 

(e.g., ImageNet). This reduces the training time and a need for large scale video 

datasets for appearance generalization.  

Given a video ( 𝑣𝑖), the standard two-stream CNN (K. Simonyan & A. Zisserman, 

2014) is applied to extract features from video frames. The two-stream network 

introduces an architecture which consists of two subnetworks operating on spatial and 

temporal streams. The extracted features from each subnetwork are then combined by late 

fusion. The spatial stream subnetwork extracts feature for action recognition from still 
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video frames. On the other hand, the temporal stream computes the features from a dense 

opticalflow map. While in the original paper, the late fusion combines the results of the 

last SoftMax layer, in this work we propose to combine the features of the last fully 

connected layer before the SoftMax layer using an additional fully connected layer. This 

is shown in Figure 2.8.  

 

Figure 2.8: Original Two-Stream CNN proposed in (K. Simonyan & A. Zisserman, 
2014). 

Following the success of the two-stream networks (K. Simonyan & A. Zisserman, 

2014), multiple research work applied a similar network architecture and have shown 

state-of-the-art results in their problem domain (W. Dai et al., 2019; Feichtenhofer, Pinz, 

& Wildes, 2017; H. Xu et al., 2019; Zhao et al., 2017). 

We want to emphasize that inspired by the original CNN introduction (LeCun et al., 

1998), multiple modern CNN architectures are proposed to improve the efficiency and 

accuracy of the CNN models. It is not possible to go over the details of each of these 

networks. Instead, we summarize the most successful CNN architectures in Table 2.3.  
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Table 2.3: Comparison between different CNN architectures. 

CNNs 
Architectures 

Summary Advantage Disadvantage 

AlexNet (Krizhevsky 
et al., 2012) 

First successful CNN 
to use GPU, 
Rectified Linear 
Units, and Dropout 

Simple Large number of 
parameters, 
overfitting 

GoogleNet, 
Inception (Szegedy 
et al., 2015) 

Introduced multiple 
kernel sizes in each 
layer called 
Inspection Layer 

Flexible kernel sizes Average number of 
parameters 

ResNet (He et al., 
2016) 

Introduced the skip 
connection and the 
residual learning 

Best results, Fewer 
number of 
parameters 

Hard to train from 
scratch 

VGG (19, 100) (K. 
Simonyan & A. J. a. 
p. a. Zisserman, 
2014) 

The first attempt to 
have very deep 
neural networks with 
more than 16 layers 
of 3X3 convolutions 

Small number of 
parameters dues to 
using 3x3 filters only 

Hard to train when 
the network is deep 

Two-Stream CNN 
(K. Simonyan & A. 
Zisserman, 2014) 

The first 2D CNN, 
designed specifically 
for videos 

Uses the opticalflow 
information, Suitable 
for video analysis 

More parameters due 
to two parallel 
networks 

Conv3D (Ji, Xu, 
Yang, & Yu, 2012) 

A successful 
extension of 2D 
CNNs for videos. 

Uses 3D 
convolutional filters, 
Suitable for video 
analysis 

Average number of 
parameters, slower 
compared to 2D 
convolutions 

 

As it is presented in Table 2.4, Two-stream CNN and Conv3D based models are both 

specifically designed for video analysis and they have shown promising results. One 

important practical concern regarding the Conv3D approaches is that in a setting where 

the length of the video is long, Conv3D approaches usually suffer from slow training and 

inference. This is specifically a concern for us working with long football videos. In 

addition, as we rely on pre-trained models and fine-tuning for our CNN based models.  
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Table 2.4: Comparison between different feature extraction techniques. 

                                                     Data set 

Approach 

NTSEL 
(%) 

NDRDB 
(%) 

UCF101 
mAP 
(%) 

HMDB 
mAP 
(%) 

Handcrafted based 
iDT (HOG) 70.18 50.43 - - 
iDT (HOF) 64.76 52.05 - - 
iDT (MBH) 65.38 49.12 - - 

iDT+FV - - 85.9 57.2 
iDT+HSV - - 87.9 61.1 

CNN based 
DeCAF (ImageNet with VGG-16) 53.63 50.54 - - 

Two-stream ConvNet (Spatial) 69.04 48.47 - - 
Two-stream ConvNet (Temporal) 64.05 45.93 - - 

Two-stream ConvNet 85.44 50.50 - - 
TDD(ZFNetNet) - - 90.30 63.20 

Two-stream (CNN-M) - - 88 59.40 
Improved Two-stream (VGG-16) - - 92.50 65.40 

ActionVLAD (VGG-16) - - 92.70 66.90 
LSTM/ConvPooling (GoogleNet) - - 88.60 - 
Residual Two-stream (ResNet-50) - - 93.40 66.40 

CNN-based action recognition (3D CNN - - 90.80 63.60 
 

Note that while prior work (Gavrilyuk, Ghodrati, Li, & Snoek, 2018; Sultani, Chen, & 

Shah, 2018; Tran, Wang, Torresani, & Feiszli, 2019; Tran et al., 2018; H. Xu, Das, & 

Saenko, 2017) use networks with 3D convolutions for some video analysis problems, 

authors in (Giancola et al., 2018) and (Cioppa et al., 2020) have shown that using ResNet 

(He et al., 2016) features outperform the C3D (Tran, Bourdev, Fergus, Torresani, & 

Paluri, 2015) and I3D (Carreira & Zisserman, 2017) features for event spotting. 

2.4.3 Recurrent Neural Networks 

Unlike images, videos contain temporal information which can be utilized for video 

analysis problems. Feed-forward neural networks are not capable of consuming the 

available temporal information, mainly because they assume independence between 

observations at different time steps. This is a significant shortcoming which limits the 

application of these models to non-sequential data. Consider the problem of classifying 
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words in a sentence. Inherently, there is a correlation between words in a sentence. One 

approach is to use all the words in a sentence as an input to a feed-forward network. 

Unfortunately, this is not possible for two reasons. First, the number of words in a 

sentence vary from sentence to sentence. Second, even if we fix the number of inputs to 

a large constant value and assume that the network can handle it, this approach is for sure 

not extendable for a larger sequence of words such as paragraphs or documents. 

Recurrent Neural Networks (RNNs) (Hochreiter & Schmidhuber, 1997) is a different 

type of neural network which is designed to address this issue. An RNN contains feedback 

loops, which allows the network to memorize previous observations as abstract 

information. This is achieved through a feedback signal from the previous state ℎ𝑡−1. At 

each time step, the network consumes the current input 𝑥𝑡 and the previous abstract 

information ℎ𝑡−1 and generates the current abstract information ℎ𝑡. Figure 2.9(a), shows 

the overall architecture of an RNN.  

In practice, an unfolded RNNs through time and an extension of the backpropagation 

algorithm called backpropagation through time is used to train the network parameters. 

This is shown in Figure 2.9(b). 

 

Figure 2.9: Unrolled recurrent neural network structure. 
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More specifically, the Equation 2.3 and 2.4 provide the detail mathematical 

formulations of a vanilla RNN (Hochreiter & Schmidhuber, 1997)  

ℎ𝑖 = 𝜎ℎ(𝑊ℎℎℎ𝑖−1 + 𝑊ℎ𝑥𝑥𝑖 + 𝑏ℎ).                                  (2.3) 

𝑦�̂� =  𝜎𝑦(𝑊𝑦ℎℎ𝑖 + 𝑏𝑛).                                           (2.4) 

where 𝑊ℎ𝑥 is input to hidden layer weight, 𝑊ℎℎ is hidden to hidden layer weight, and 

𝑊𝑦ℎ is hidden to output weight and (𝜎ℎ 𝑎𝑛𝑑 𝜎𝑦) are activation functions. 

Sequential data analysis, which includes classification and prediction, has received a 

significant amount of attention in the machine learning and artificial intelligence research 

community. In recent years, RNNs have been applied to multiple sequential data 

problems. Table 2.5, provides a brief overview of these applications.  

Table 2.5: Example applications of RNN in various domains. 

Problem domain X                         Y Reference 
Speech recognition 

 

“My dog was 
running around the 
house” 

(Graves, Mohamed, 
& Hinton, 2013) 

Music generation ∅ 
 

(J. Wu, Hu, Wang, 
Hu, & Zhu, 2019) 

Sentiment 
classification 

There is nothing to 
like about this music.  

(D. Tang, Qin, & 
Liu, 2015) 

DNA sequence 
analysis 

AGCCCCTGTGAG
GAACTAG 

AGCCCCTGTGAG
GAACTAG 

(Quang & Xie, 2016) 

Machine translation bonne après-midi Good afternoon (Kalchbrenner & 
Blunsom, 2013) 

Video activity 
recognition 

 

Walking/Waiting (Z. Deng, Vahdat, 
Hu, & Mori, 2016) 

Name entity 
recognition 

Yesterday Sara met 
George  

Yesterday Sara met 
George  

(W. Wang, Bao, & 
Gao, 2016) 
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While RNNs have been successfully applied to a variety of problems, training RNNs 

is challenging and difficult. This results in various limitations in applying RNNs in certain 

settings and problem domains. In the next chapters, we will explain the RNN limitations 

and will discuss the possible solutions for these difficulties. 

2.4.3.1 Training Difficulties  

While recurrent models have been successfully applied to activity recognition and 

detection problems (Donahue et al., 2015), researchers have identified multiple issues 

with training standard RNNs (Pascanu, Mikolov, & Bengio, 2013). The most important 

observation is presented by (Bengio, Simard, & Frasconi, 1994). The authors have 

identified two important technical issues with backpropagation through time (BPTT) 

algorithm, referred to as the “vanishing” and “exploding” gradient problems. The high-

level explanation is that, during the backpropagation, due to numerical instability, the 

gradients backpropagated to deep layers (further away time steps in RNN) are either too 

small (vanish) or too large (explode). While the vanishing gradient problem causes the 

early layers not to learn anything, the exploding gradient problem causes inconsistent 

learning which prohibits convergence. In summary, this results in gradient-based 

optimization methods fail to capture hidden long-term dependencies, and mostly effected 

by short-term dependencies. This makes it hard to apply RNNs for very long data 

sequences.  

Another important challenge with standard vanilla RNN is that memorizing very long 

dependencies is hard to achieve while keeping track of the mid-range and short-range 

dependencies. Last but not least, due to the sequential nature of the training, training 

RNNs takes longer than standard feedforward networks (Pascanu et al., 2013) to 

converge. 
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To address the above-mentioned problems, three main research directions have been 

explored by the researchers. The first category of the research is focused on finding better 

optimization algorithms (Bengio, Boulanger-Lewandowski, & Pascanu, 2013; Martens & 

Sutskever, 2011; Pascanu et al., 2013). Most of these approaches are considered as 

extensions of stochastic gradient descent. In addition, a large number of practical 

heuristics have been also employed during training. These efforts include 1) Clipped 

gradient approach, by which the norm of the gradient vector is clipped, 2) Using different 

activation functions compared to standard (tanh, sigmoid) activation functions with more 

stable gradients, 3) Using moment based gradient descent methods which may be less 

sensitive to learning rate. Techniques such as dropout have also been applied to recurrent 

connections or input connections in RNNs to improve generalization. 

The second category of approaches are focused on designing more sophisticated 

hidden units for the RNNs. The pioneer method in this direction resulted in a successful 

recurrent unit called Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 

1997). LSTM introduces the concept of memory and gates to regularize the behavior of 

the recurrent unit. Recently, a similar hidden unit is also proposed which simplifies the 

original LSTM unit by removing the memory and reducing the number of gates. It is 

referred to as a gated recurrent unit (GRU) which was proposed by Cho (Chung, 

Gulcehre, Cho, & Bengio, 2014). Overall, these types of hidden units have shown 

superior performance to vanilla RNNs in a variety of machine learning applications such 

as computer vision (Donahue et al., 2015), speech recognition (Graves, Jaitly, & 

Mohamed, 2013) or natural language processing (Cho et al., 2014).  

Recently, the third category of approaches have been proposed which are based on 

more sophisticated recurrent connections. This includes (Chang et al., 2017; Y. Zhang et 

al., 2016) and (Campos, 2018). The core idea is to use skip connections to allow additional 
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feedback signals both in the forward and backward pass. Using skip connection can 

mitigate the issue of slow training. Combined with hierarchical RNNs, it also helps with 

memorizing longer dependencies.  

To summarize, while in theory, the RNNs are capable of exploiting the information 

observed in the past, in practice, due to training difficulties, the final trained RNN 

capacity in modeling the observed history is usually limited in length. 

2.4.3.2 Different Recurrent Units 

In this section, we provide a detailed summary of the two most successful extensions 

to recurrent units used in the research literature.  

Long Short-Term Memories (LSTMs): Long Short-Term Memory (LSTM), 

introduced in (Hochreiter & Schmidhuber, 1997), proposes a designated memory for 

RNN which allows the model to explicitly memorize the observed content in the past and 

choose when to use, modify or clear the memory. Figure 2.10 shows the architecture of 

an LSTM unit where x, h and c stand for input state, hidden state and cell state 

respectively. 

 

Figure 2.10: Overall architecture of the LSTM unit. 
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More specifically, an LSTM unit uses an explicit memory buffer and three gates 

(forget gate, input gate, and output gate) which control the information flow to and from 

the memory buffer.  

In the following paragraphs, we provide a comprehensive explanation of each of the 

components and present the mathematical equations. 

Figure 2.11, illustrates LSTM unit and its relation to the original recurrent neural 

network. To better understand the information flow, we provide a more detail explanation 

of the different gates and their goal as well as mathematical formulation that supports the 

ideas behind them in the following. 

 

Figure 2.11: Dilated version of single LSTM 

1. Forget gate — The value of the forget gate Figure 2.12 indicates how much 

information from past should be discarded or kept. Information from the previous 

state (ℎ𝑡−1) and the input content (𝑥𝑡) pass through a sigmoid function. which is 

a number between 0 and 1. If the outputs value is closer to one, the network 

preserves most of the previous memory content. If it is closer to zero, it replaces 

the current value and forgets most of the previous memory content. The 

mathematical equation is shown in Equation 2.5. 
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𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                    (2.5) 

 

Figure 2.12: Illustration of forget gate impact in LSTM. 

2. Input gate — The value of the input gate, shown in (Figure 2.13), identifies how 

much of the input content will be added to the memory. In other words, it indicates 

the contribution of the input value in the memory. To do this, the content of the 

input is multiplied by the output of the input gate before being added to the 

memory. If the output of the input gate is closer to one, it indicates the network 

should try to memorize most of the input, otherwise, the input will be suppressed 

before adding to the memory. The mathematical equations are shown in 

Equations 2.6 and 2.7. 

𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                     (2.6) 

𝐶𝑡 = tanh(𝑊𝑐. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)                                  (2.7) 

 

Figure 2.13: Illustration of input gate impact in LSTM. 
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3. Output gate — The output gate (Figure 2.14) identifies the amount of 

information in memory which is allowed to be visible outside of the LSTM unit. 

This is controlled by a sigmoid function where one indicates all the memory 

content should be visible and zero means no memory content is visible. The 

mathematical equations are shown in Equation 2.8 and 2.9. 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                                      (2.8) 

ℎ𝑡 =  𝑜𝑡 ∗ tanh (𝐶𝑡)                                           (2.9) 

 

Figure 2.14: Illustration of output gate impact in LSTM. 

To summarize, the forget gate allows the model to clear the memory from previous 

information. The input gate allows the model to change the content of the memory based 

on the most recent processed observation. Finally, the output gate allows the model to 

choose how the memory impacts the current latent state which is visible to others. 

Since its introduction, multiple improvements were suggested to the original LSTM 

cells. In this work we follow the implementation of LSTM as used in (Graves, Jaitly, et 

al., 2013). 

Gated Recurrent Units (GRUs): This type of recurrent unit shares a lot of similarity 

with LSTM units and was introduced by (Cho et al., 2014). The most obvious difference 

is that the memory cell is removed. Instead, the information is assumed to be encoded in 
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the hidden state itself. As a result of memory cell removal, the GRU does not have the 

output gate and the content of the hidden state is always visible.  

Figure 2.15 shows the architecture of a recurrent neural network with gated recurrent 

unit where 𝑥, ℎ stand for input state, hidden state respectively.  

 

Figure 2.15: Overall architecture of the GRU unit. 

More specifically, GRU is designed based on the LSTM's concept and has a similar 

structure. Similar to LSTM, the additional gate components support the information flow 

in RNN hidden states. GRU unit decides when a hidden state should be updated or when 

it should reset. This is pretty much like a simplified version of the LSTM and in some 

application domains GRU can even produce equally excellent results as LSTM units. 

Figure 2.16 illustrates a recurrent network with GRU units.  

 

Figure 2.16: Illustration of a single GRU in an unfolded RNN. 

In the following, we provide a more detail regarding each gate and its purpose. 
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1. Update gate - The update gate 𝑧𝑡 (Figure 2.17) decides how much information 

from previous time steps need to be kept for the next time step. This is shown in 

the following equation where 𝑥𝑡 and ℎ𝑡 are the input and hidden state and 𝑧𝑡 is 

the update gate value. We will show the usage of the update gate later in the "final 

memory at the current time step" section. The mathematical equation is shown in 

Equation 2.10. 

𝑧𝑡 = 𝜎(𝑊(𝑧)𝑥𝑡 + 𝑈(𝑧)ℎ𝑡−1)                                    (2.10) 

 

Figure 2.17: Illustration of update gate impact. 

2. Reset gate - The reset gate (Figure 2.18) decides how much of the past 

information needs to be forgotten. Basically, it is very similar to the forget gate 

in LSTM. This is shown in the Equation 2.11.  

𝑟𝑡 = 𝜎(𝑊(𝑟)𝑥𝑡 + 𝑈(𝑟)ℎ𝑡−1)                                    (2.11) 

 

Figure 2.18: Illustration of the reset gate impact. 
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3. Current hidden state content- is show in the Equation 2.12 and Figure 2.19. 

Basically, this is very similar to the original vanilla RNN formulation with an 

additional reset gate influencing the content of the previous hidden state.  

ℎ𝑡
′ = tanh (𝑊𝑥𝑡 + 𝑟𝑡⨀𝑈ℎ𝑡−1)                              (2.12) 

 

Figure 2.19: Illustration if the current memory content. 

4. Final memory at current time step – shown in Figure 2.20 , is very similar to 

the update equation from LSTM. Basically, the Equation 2.13 merges the content 

of the hidden state in the previous time step and the content in the current time 

step to produce the final memory content.  

ℎ𝑡 = 𝑧𝑡⨀ℎ𝑡−1 + (1 − 𝑧𝑡)⨀ℎ𝑡
′                                 (2.13) 

 

Figure 2.20: Illustration of the final memory at time “t”. 
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2.4.3.3 Different Recurrent Neural Network Architectures 

RNNs have shown great success in sequence modeling tasks, training RNNs for long 

sequences is challenging. Among the challenges presented in the literature the following 

are the most important ones: 

1. Long-range complex dependencies  

2. Vanishing and exploding gradient  

3. Efficient parallelization 

Multiple recurrent structures have been proposed to address the above issues. In this 

section, we review the most successful architectures.  

Skip RNN model - is an extension of the original recurrent connection in an RNN 

model introduced by (Campos, 2018). The goal is to improve the RNN models by limiting 

the size of the computational graph. To do this, the authors have proposed to skip the state 

updates. Their experimental results have shown that skip RNNs with vanilla recurrent 

units can match or in some cases even outperform the RNN models with GRU or LSTM 

units. In addition, they were also able to decrease the computational requirements. Having 

skip connections help gradients flow being backpropagated through fewer time steps. 

This makes it easier for the gradient based optimization approaches to learn faster and 

more efficient when considering long sequences models. This is shown in Figure 2.21. 

 

Figure 2.21 :Structure of the skipped RNN model (Chang et al., 2017) 
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Highway-LSTM – is a network architecture proposed by (Y. Zhang et al., 2016) to 

improve the learning of hierarchical recurrent models. The authors have proposed to add 

a new gate to control the information and gradient flow between the memory cells of 

different layers. These gate connections are referred to as “Highway Connections”. This 

is specifically helpful, when the network suffers from vanishing gradient problem in 

multi-layer recurrent networks. As it is shown in Figure 2.22 , the highway connection 

(red gate) controls the information/gradient flow between two memory cells at different 

levels of the hierarchy (i.e., layers L and L+1).  

 

Figure 2.22: Overview of the Highway-LSTM-RNNs architecture (Y. Zhang et al., 
2016). 

Dilated recurrent neural network- is another effective RNN connection structure 

introduced in (Chang et al., 2017). Figure 2.23 depicts the architecture of a dilated 

recurrent neural network. The key idea is to use regular skip connections in temporal axis. 

This allows a direct flow of information and gradients to and from further time steps. 

While the two-stream neural network provides the local spatial and temporal description 

of a video, the hierarchical nature of the dilated recurrent network combined with the 

structured skip connections enables our proposed model to link the local and global 
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information in a coherent unified manner. Effectively, adding these structured recurrent 

skip connections helps with the (vanishing /exploding) gradient problem. It also makes it 

easier to model long-range dependencies. One important characteristic of dilated RNN is 

that it is compatible with all recurrent cell types (e.g., LSTM and GRU). 

 

Figure 2.23: Overall architecture of the 3 layer dilated RNN with dilations of one, 
two, and four (Chang et al., 2017) 

More specifically, let 𝑐𝑡(𝑙) denote a cell in layer 𝑙 at time 𝑡. The skip connection is 

mathematically defined in Equation 2.14. 

𝑐𝑡(𝑙) = 𝑓(𝑥𝑡(𝑙), 𝑐
𝑡−𝑠(𝑙)

(𝑙)
)                                    (2.14) 

, where 𝑥 the input to layer 𝑙 at time 𝑡 and 𝑓 is the RNN cell (e.g., LSTM). 

2.5 Conclusion 

To summarize, as it is shown in recent years, deep learning-based approaches have 

significantly improved the accuracy and efficiency compared to classical machine 

learning models which were mostly based on hand-crafted features in computer vision. 

Building on top of the success of these approaches, we intend to use the relevant and 

successful neural network architectures for the purpose of long sports video analysis. 

While there are commonalities between sports, given the large variation in scenes, 

Univ
ers

iti 
Mala

ya



54 

crowds, player formation and spread in the filed as well as different dynamics in sports, 

sports analysis model designed for non-football sports (e.g., Basketball) does not 

necessarily address the challenges in football videos. Unlike so many other sports (e.g., 

American football, basketball), football is a non-episodic sport. As a result, events in a 

football video are highly correlated and the correlation in time could be short-range, mid-

range, or long-range. It is an outdoor sport with more than 20 players in the field which 

makes the appearance features very important to capture. We believe using specific CNN 

models designed for video analysis is important to capture fine-grained local 

spatiotemporal features. As mentioned earlier, authors in (Giancola et al., 2018) and 

(Cioppa et al., 2020) have shown that using ResNet (He et al., 2016) features outperform 

the various 3D convolution features. Also, in addition, as discussed above authors in (K. 

Simonyan & A. Zisserman, 2014), demonstrated the importance of using local temporal 

data. To this end, we plan to use two-stream CNNs with ResNet backbones instead of 

Conv3D architecture. Due to limited hardware resources which limits our training 

capabilities, we choose to use a pre-trained two stream-CNN with ResNet-50 architecture 

as a backbone. Using a pre-trained model is even more important when there is a large 

variety of scenes and their lighting conditions as well as a large number of players in the 

field. 

RNNs have shown to be effective when applied in problems which require temporal 

reasoning over frames (Jiang et al., 2016). Events in football videos are highly correlated 

and exhibit short-range, mid-range, and long-range dependencies. Additionally, football 

is a highly dynamic sport. As a result, we believe it is important to use RNN based models 

to capture temporal content. In this work we planned to use Dilated RNN with LSTM 

units to capture various correlation between frames. Note that Dilated RNN addresses the 

training difficulties for standard RNNs (Hochreiter & Schmidhuber, 1997). 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

In this chapter, we present the research design and the methodology used in this study 

to answer the research questions and to achieve the objectives of the research. We used 

quantitative research methods in this work. Our research methodology is implemented in 

the following steps presented in Figure 3.1. 

 

Figure 3.1: Research methodology process followed in this thesis. 

In the following sections we will provide more details for each of the above steps. 

3.2 Approaches of the Research 

We followed the standard practice for academic research. We first reviewed the 

relevant literature and group them based on their relevance. This enables us to refine our 

research questions and objectives and helps us to clarify our problem statement. We then 

focused on identifying the dataset requirements and data processing needs. Finally, we 

propose a model to support our hypothesis and studied the potential evaluation metrics 
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for fair quantitative comparison of our method with baselines and state of the art. In the 

following subsections, we provide a detailed explanation of each of the above processes. 

3.2.1 Review of Related Literature 

In the early stage of this research work, we conduct a critical review of sport analysis 

techniques applied to different sports. In summary, our investigation shows that:  

 First, each sport has its own unique characteristics which results in certain models 

to be only appropriate for a specific sport. For example, while both (Ramanathan 

et al., 2016) and (Ibrahim et al., 2016) have addressed player tracking in 

basketball and volleyball, each approach relies on certain assumptions which 

results in certain model to be only applicable for that specific sport. 

 Second, while before 2015 most of the proposed models used classical computer 

vision features and machine learning approaches, almost all of the recent work 

benefit from a rich set of deep learning-based models which mostly use CNNs 

for feature extraction from frames and RNNs for temporal reasoning. 

Since the main problem we focused on in this work is event localization in football 

videos, we specifically perform a thorough review of the most recent studies that 

conducted research on football video analysis. The range of problems varies from 

automatic event annotation using text and video data to highlight detection and video 

summarization. Our findings show that:  

 First, the lack of large-scale football datasets makes it hard to train deep learning 

models. In other words, since there is a limited number of datasets with very few 

short videos, it is hard to apply modern deep learning techniques.  

 Second, football is non-episodic, there is a large variation in the appearance of 

the football field, the field itself is large, there are more players in the field 
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compared to other group sports. All of these make it harder to model complex 

frame relations in football videos using standard temporal models such as vanilla 

recurrent neural networks.  

Based on our extensive literature review, we realized that deep learning and machine 

learning approaches are among the most successful techniques applied in sports analysis, 

specifically event understanding and localization. One key observation is that, to the best 

of our knowledge, the prior works that have focused on machine learning techniques, did 

not model the impact of various range of frame correlation in feature extraction. In other 

words, they did not specifically model short-range, mid-range and long-range 

dependencies in football videos. 

Since machine learning and deep learning methods are general mathematical and 

statistical approaches for data driven learning, it is possible to benefit from findings in 

other application areas. To achieve this and to make sure we are also aware of studies in 

other application areas, we studied the application of most recent deep learning techniques 

which have been applied on a variety of times series problems such as video analysis and 

natural language processing. 

We collected published studies by searching for relevant articles in the English 

language published between 1990 and 2019 from the Institute of Electrical and 

Electronics Engineers (IEEE), Elsevier, Springer, ScienceDirect, PubMed and arXiv 

databases. Key search terms were a combination of "artificial intelligence", "machine 

learning", " relevant machine learning methods", "deep learning", "relevant deep learning 

methods", "object detection in videos", "activity/action recognition/detection in videos", 

"object tracking in videos", "video summarization", "video(sport/non-sport) event 

detection", "video (sport/non-sport) event classification". Additional studies were 

conducted by searching the reference lists of the retrieved articles and manually searching 
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in relevant journals and conferences in the computer vision field such as CVPR and 

ICCV. 

3.3 Football Dataset (SoccerNet) 

As stated in (Giancola et al., 2018), the dataset is collected from online sources. The 

game and video times are synchronized by the game clock. A semi-automatic approach 

is used to generate rough temporal annotations. Based on the available game report, which 

is parsed and temporally aligned with the video, annotation labels for the events are 

created in a semi-automatic fashion. 

3.3.1 Video Collection 

Videos are obtained and collected from the six main European Championships which 

are collected from 2015, 2016, and 2017 seasons. The details of the games are provided 

in Table 3.1. As videos are collected from various online provides with different video 

encodings (e.g., H264 and MPEG). Different videos might have used different containers 

(e.g., MJPEG and MKV). Frame rate varies from 25 up to 50 frames per second (FPS). 

In addition, the image resolution ranges from SD (Standard Definition) to Full HD (High 

Definition). Overall, the dataset contains 764 hours of football videos which is almost 

4TB of data. 

Table 3.1: Details of the collected games in SoccerNet. 

League 14/15 15/16 16/17 Total 
EN-EPL 6 49 40 95 

ES-LaLiga 18 36 63 117 
FR-Ligue1 1 3 34 38 

DE-BundisLiga 8 18 27 53 
ET-Serie A 11 19 76 96 

EU - Champions 37 45 19 101 
Total 81 160 259 500 
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3.3.2 Data Preprocessing 

In the following subsections, we provide details of the pre-processing steps applied to 

videos for semi-automatic annotation. 

3.3.2.1 Game Synchronization with OCR 

The original videos contain recordings from before and after the game. We refer to this 

as untrimmed videos. Authors in (Giancola et al., 2018) used an Optical Character 

Recognition (OCR) based approach to identify the exact time presented in the video frame 

(usually in the top right or the bottom of the frame). As it is argued, this is a more robust 

approach compared to previous methods which rely on the appearance of the center of 

the frame and the referee’s whistle sound proposed in (Z. Wang et al., 2016). It is 

important to mention that this is possible because of the fact that football is a non-episodic 

game which ends when the time is up. Since using OCR from a single game could be 

noisy, multiple randomly sampled frames are used to identify the region of interest for 

game information and the RANSAC algorithm is used to remove the outliers. More 

details and a complete explanation are provided in (Fischler & Bolles, 1981). 

3.3.2.2 Collecting Event annotations 

Event annotations are collected from the available game reports provided for free at 

league’s websites. These reports provide a summary of the main events that happened 

during a game within a one-minute window. A total of 171,778 annotations of three main 

event categories, (i.e., “goals”, “cards” and “substitutions”), are collected from 13,489 

games. While the games are from the Champions League of five main European leagues 

from 2010 to 2017, due to storage limits, only 500 matches with a total number of 6,637 

events are practically used. To summarize, the dataset contains a total number of 6,637 

temporal annotations which are automatically parsed from online match reports at a one-
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minute resolution window. Three main classes of events (Goal, Yellow/Red Card, and 

Substitution) are annotated. APPENDIX B presents a sample of game events annotation. 

A manual annotation process is then used to convert the “one-minute” resolution 

annotations to the “second-level” resolution annotations. To define second-level 

granularity, the events are defined as the following: 

1. A card event is an instant that a referee shows a yellow or a red card to a player. 

2. A goal event is an instant that the ball crosses the goal line. 

3. A substitution event is an instant that a new player enters the football field (Note 

that substitutions that occur during half time break are not included).  

These event definitions are demonstrated in (Figure 3.2) and are used to identify 

temporal anchors for each event during the annotation process. 

 

Figure 3.2: Three football events annotated in SoccerNet. 

3.3.2.3 Splitting Dataset for Training, Testing and Validation 

Table 3.2 shows the training, test, and validation splits for the collected dataset. While 

the number of videos for each event class are not exactly the same, the authors in 

(Giancola et al., 2018) have tried to make it reasonably distributed. The videos are split 

to one-minute annotated chunks where one of the three events occur in this one-minute 
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window. To summarize, the games are randomly split into 300, 100, and 100 games for 

training, validation, and testing which contains 3965 event instances for training, 1314 

for testing, and 1358 for validation.  

Table 3.2: Details of the dataset splits: training, testing and validation splits. 

Split 
Event 

Total 
Goals Cards Substitution 

Train 961 1296 1708 3965 
Valid 365 396 562 1314 
Test 326 453 579 1358 
Total 1643 2145 2849 6637 

 

3.3.3 Dataset Comparison 

Considering the total duration and number of instances per class, the SoccerNet dataset 

is the largest localization dataset available. Table 3.3 and Figure 3.3 compares various 

relevant action localization datasets in terms of the number of instances per class, and the 

total duration. In Figure 3.3 the size of the hexagon shows the density of the event within 

the video. 

Table 3.3: Comparison of SoccerNet dataset with available video datasets.  

D
ataset 

C
ontent 

V
ideo 

Instance 

D
uration 
(hrs.) 

Sparsity 
(event/h) 

C
lasses 

Instance 
per classes 

THUNUS’14 General 413 6363 24 260.4 20 318 

MultiTHUMOS General 400 38690 30 1289.7 65 595 

Activitynet General 19994 30791 648 47.5 200 154 

Charades General 9848 66500 82 811.0 157 424 

AVA Movies 57600 210000 48 4375.0 100 2100 

Ours (Succernet) Football 1000 6637 764 8.7 3 2212 
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Figure 3.3 :Visualization of comparison between SoccerNet and available video 
datasets (Giancola et al., 2018) 

3.4 Proposed Model 

We hypothesize that the main difficulty in event localization is directly associated with 

various correlations among video frames at different granularity levels. Our key idea is 

to address these complex dependencies in football videos, by modeling short-range, mid-

range, and long-range correlations between video frames. As mentioned in Chapter 2, 

certain network architectures are more suitable for sequential data such as videos. 

Different network architectures can be used to understand and model various correlations 

among frames. While short-range correlation should consider both spatial features in 

every frame and local temporal features between a limited number of frames, mid-range 

and long-range features should consider longer correlations between frames. As we 

mentioned in Chapter 2, different CNN architectures have been proposed to benefit from 

spatial and local temporal features and capture the short-range correlations. In the mostly 

used CNN architecture for videos (K. Simonyan & A. Zisserman, 2014), which is cited 

more than 5263 time, the author used two-stream CNN to capture spatial and local 

temporal features. For the mid-range and long-range correlation, as we discussed in 

Chapter 2 most of the recent works benefit from different RNN architectures (Campos, 

2018; Chang et al., 2017; Chung, Ahn, & Bengio, 2016; Koutnik, Greff, Gomez, & 
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Schmidhuber, 2014; Neil, Pfeiffer, & Liu, 2016; Y. Zhang et al., 2016). Dilated RNN is 

one of the latest architectures which implemented for longer sequential dependencies and 

resolve some training difficulties in standard RNNs (Chang et al., 2017). In addition, as 

we mentioned in Chapter 2 author in (Jiang et al., 2016) showed that using a combination 

of CNN and RNN can improve the accuracy of football events classification. But as 

discussed earlier training RNNs is challenging for long sequences which results in poor 

performance in long videos. As a result, In this work, to achieve our hypothesis, we 

propose a network with two main components: A two-stream convolutional neural 

network (K. Simonyan & A. Zisserman, 2014) for short-range spatiotemporal feature 

extraction, and a dilated RNN with LSTM units (Chang et al., 2017) to model mid-range 

and long-range correlations. This is illustrated in Figure 3.4. While the two-stream neural 

network provides the local spatiotemporal description of video frames, the hierarchical 

nature of the dilated recurrent network combined with the structured skip connections and 

sophisticated design of LSTM units enables our proposed model to link the local and 

global information in a coherent unified manner. 

 

Figure 3.4: Overview: Our goal is to use low-level spatiotemporal features and a 
hierarchical recurrent model with skip connections (DilatedRNN with LSTM 

units) to improve event classification and event spotting in long football videos. 
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We can formally define the problem of classifying events in football videos as follow. 

Given a football video as a set of frames {𝑣𝑖}, {𝑥𝑖} is an ordered set of extracted features 

from video frames. While in classical computer vision, handcrafted features such as SIFT, 

HOG, or color histogram were used to define 𝑥𝑖, given the recent success of convolutional 

neural networks (CNN), it is common to define 𝑥𝑖 as one of the hidden layers of a CNN 

architecture. We define a temporal segment 𝑡𝑗 to be a subset of frames with the same 

assigned event. Considering an input video, the event detection problem is formally 

defined as estimating temporal segments, {𝑡𝑗}, of the pre-known event categories 𝑐 ∈  𝐶. 

In activity detection research, the goal is to propose a model that correctly estimates the 

entire temporal segments associated with a video and avoids estimating false/incorrect 

segments. While this definition of an event segment is useful for certain activities (e.g., 

sliding from the slide), for high-speed and fast pace activities such as scoring a goal this 

definition is vague and it is not suitable. In other words, for events that occur 

spontaneously, it is hard to clearly define the temporal segment. As a result, the event 

localization in this research refers to “spotting” of an event. Authors in (Giancola et al., 

2018)has defined spotting as: ‘finding the anchor time (or spot) that identifies an event. 

Intuitively, the closer the candidate spot is from the target, the better the spotting would 

be, and its quality is measured by its distance from the target’. 

Given a set of videos of football games, which we call them clips, we aim to learn a 

model which is capable of identifying certain predefined events. More specifically, the 

goal is to identify if a certain clip is of a certain event class (i.e., Goal event, Substitution 

event, Card event). One interesting application of such a system would be to generate 

highlights from a long football video. To formalize the problem statement, we introduce 

few notations in this section. Assume that we have access to a set of video clips from a 

set of football games. We call this set 𝐷 = {(𝑣𝑖, 𝑦𝑖): 1 ≤ 𝑖 ≤ 𝑛}, where 𝑣𝑖 is the video 

clips, 𝑦𝑖 is the actual event class of 𝑣𝑖, and 𝑛 is the number of given video clips. Note that 
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each video clip 𝑣𝑖 itself if described as 𝑣𝑖 = {𝑥𝑗: 1 ≤ 𝑗 ≤ 𝑚}, where 𝑚 is the length of 

the video clip. Given a video 𝑣𝑖, the goal is to use the learned classification model to 

classify the video to one of the following three event classes: 1) Goal event, 2) 

Substitution event, and 3) Card event.  

This is shown in following equations: 

𝑜𝑖 = 𝑂𝑝𝑡𝑖𝑐𝑎𝑙𝑓𝑙𝑜𝑤(𝑣𝑖, 𝑣𝑖+1)                                       (3.1) 

𝑥 = 𝑇𝑤𝑜𝑆𝑡𝑟𝑒𝑎𝑎𝑚𝐶𝑁𝑁(𝑣𝑖, 𝑜𝑖)                                    (3.2) 

𝑦 = 𝐷𝑖𝑙𝑎𝑡𝑒𝑑𝑅𝑁𝑁(𝑥)                                             (3.3) 

Where 𝑜𝑖 is the amount of displacement of each pixel from a frame “𝑣𝑖+1” at time “𝑡 +

1” relative to a frame “𝑣𝑖” at time “𝑡”, x is set of extracted features by 

𝑇𝑤𝑜𝑆𝑡𝑟𝑒𝑎𝑎𝑚𝐶𝑁𝑁(𝑣𝑖, 𝑜𝑖) from video frame “𝑣𝑖” and opticalflow “𝑜𝑖” at time “𝑡”. 

Finally, the class score 𝑦 is calculated by  𝐷𝑖𝑙𝑎𝑡𝑒𝑑𝑅𝑁𝑁(𝑥). A detailed explanation of 

each network’s equation is discussed in Chapter 2. 

As mentioned in Chapter 1, classifying the events in a football video is challenging 

due to their enormous variability in appearance and motion features. In particular, the 

videos are shot by people of different skills under varying weather and lighting 

conditions. The videos are usually recorded from multiple different viewpoints. In 

addition, each football field has its own specific compositions and markings. The 

appearance of the football scenes varies a lot from team to team. Additionally, as 

mentioned in Chapter 1 and 2, football is an outdoor sport that adds additional complexity 

for different lighting conditions. The football field is large, the sport itself is fast-paced 

and has very high dynamics. The above phenomena result in fast motions in football 

videos which directly contributes to motion complexity. That is why we believe that our 
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two-stream CNN is a sophisticated local spatiotemporal feature extractor. We train our 

spatial stream network on ImageNet, which allows a reasonable generalization of the 

appearance features. Our spatial stream is pre-trained on the UCF-101 activity dataset, 

which includes multiple outdoor sports. This allows our temporal network to learn from 

the dynamics in sports videos. 

We will provide a detailed explanation of each component in Chapter 4. In sections 

4.3 and 4.4.1 we explain the details of our two-stream CNN component and in sections 

4.3 and 4.4.2 we present our new network architecture based on dilated recurrent neural 

network and LSTMs. 

3.5 Evaluation of Proposed Model 

To achieve our last objective, the classification and spotting quality of our proposed 

model was assessed and compared with baselines and reported results in (Giancola et al., 

2018). Various evaluation metric has been used by the research community to report the 

evaluation results for detection tasks. The most common metric used in computer vision 

for object/event detection is the mean average precision (mAP) (Giancola et al., 2018). 

We use mAP to compare both our classification and spotting results as proposed by 

(Giancola et al., 2018). While for the classification task, mAP is well-defined, it is 

inherently difficult and ambiguous to define it for Spotting. As a result, in (Giancola et 

al., 2018), a tolerance threshold is introduced to define the correct and incorrect spotted 

event within that threshold. This means that rather than identifying the boundaries of an 

action within a video and looking for the intersection over union (IoU) between temporal 

windows (Figure 3.5), spotting identifies the moment that an event occurs. A candidate 

spot is positive if it lands within a tolerance window around the anchor of an event. 

Otherwise, it is considered as negative. This is illustrated in Figure 3.6.  
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Figure 3.5: Visual representation of the intersection over union (IoU) 

 

Figure 3.6: Overall idea of spotting (Candidate X spot the event within a tolerance 
of 3𝜹 and 4𝜹) 

This makes spotting a detection problem which allows us to define False positive, 

False negative, True positive, and True negative instances for this classification problem. 

The most common evaluation metric for such a detection problem is mAP. We used mAP 

for both event classification and spotting problems. Figure 3.7 summarizes the evaluation 

methodology carried on in this work. 
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Figure 3.7: High-level overview of various evaluations of event classification and 
spotting  

To better understand the mAP, we provide two illustration as in Figure 3.8 and 

Table 3.4. 

 

Figure 3.8: Illustration of true positive, false positive, false negative and true 
negative instances.  

Table 3.4: Definition of the confusion matrix 

Predicted class 
True class Positive Negative 

Positive True Positive (TP) False Negative (FN) 
Negative False Positive (FP) True Negative (TN) 
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Given the classifier’s outputs during test time, one can define four categories: True 

Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN). FP is 

the number of predictions that are classified incorrectly as the target output, TP is the 

number of predictions which are classified correctly as the target output. On the other 

hand, TN is the number of predictions which are classified correctly as non-target output. 

Finally, FN is the number of predictions which are incorrectly classified as non-target. 

During training, the goal is to approach a zero FP and FN.  

While TF, FP, TN, and FN are useful and essential, they usually do not provide a high-

level overview of the quality of a classifier. As a result, it is common to compute other 

metrics based on the above four. 

It is important to know how many times the estimated output (i.e., prediction) is 

correct. This is formulated as the percentage of correct estimates or TP

(TP+FP)
. In addition, 

it is also important to know, how many of the ground truth instances have been correctly 

identified. This is formulated as the percentage of the correct estimates or TP

(TP+FP)
. Based 

on the above definition, in practice, there is usually an inverse relation between precision 

and recall. If precision goes up, recall usually comes down and vice versa. As a result, 

researchers usually provide a plot referred to as precision/recall curve, which basically 

provides both precision and recall for certain choices of a trad-off parameter and report 

the “Area Under Curve” (AUC) (Zhu, 2004). This shown in Equation 3.4, where 𝑅 is a 

set of recall values, and for a given recall value of 𝑟, 𝑝(𝑟) represents the corresponding 

precision values 

𝐴𝑃 =  ∫ 𝑝(𝑟)𝑑𝑟 =
1

𝑅

1

0
∑ 𝑝(𝑟𝑖)𝑟𝑖

                                           (3.4) 
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Another metric which has been used more often recently, is the mAP. Basically, for 

one output class, average precision (AP) is defined as the average precision for different 

recall values, and it can be seen as the AUC of recall/precision plot for that class. Since 

precision is always in the range of (0,1), AP is also in the range of (0,1). The mAP metric 

basically computes the mean AP among different output classes. This is shown in 

Equation 3.5. 

𝑚𝐴𝑃 =  
∑ 𝐴𝑣𝑒𝑃(𝑞)

 𝑄
 𝑞

𝑄
                                          (3.5) 

3.6 Summary 

This chapter provided a detailed explanation of the methodology process of this 

research. We provided more information regarding the details of the football video dataset 

which includes the video acquisition process, data processing and comparison with other 

datasets. We also provided the high-level components of our proposed model for event 

classification and spotting. Our proposed model consists of two state of the art neural 

network architectures. While one of the proposed subnetworks captures the short-range 

spatiotemporal features, the other modules model mid-range, and long-range 

dependencies between frames in football videos. In Section 3.5, we explained the 

evaluation metric used to assess the accuracy of both classification and spotting problems. 

This evaluation is used to report the accuracy of classification and spotting models. Univ
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CHAPTER 4: EVENT SPOTTING AND CLASSIFICATION 

4.1 Introduction 

Due to the rapid advancements in machine learning techniques over the past few years, 

there has been a momentous increase of interest in video analysis, event detection in 

videos, and human recognition in videos. In this work, our aim is to develop a machine 

learning algorithm for event spotting and classification in long football videos. As 

mentioned in the literature review, presented in Chapter 2, multiple prior research work 

have addressed the event localization problem. However, the literature acknowledged that 

several improvements are required to improve the accuracy of event classification and 

spotting, specifically in long videos with a high dynamic content such as sports videos. 

In this chapter, we present the proposed model and a complete description of the 

implementation steps which were applied during the implementation and network 

training. 

4.2 Proposed Method 

As stated in Section 3.4, given a video, our model uses two-stream CNN to generate 

local spatiotemporal features from two consecutive frames. These local features capture 

the short-range correlation between frames in a short temporal window. Building on top 

of these local spatiotemporal features, we use a dilated recurrent neural network with 

LSTM cells to capture mid-range and long-range correlations between video frames in 

long videos. This is illustrated in Figure 4.1. Note that due to limited hardware resources 

our two-stream CNN implementation uses pre-trained ResNet-50 networks for each 

stream. Table 4.1 provides details of the convolutional layers, normalization layers, and 

number of feature maps in each layer for the ResNet-50 model used in the above two-

stream CNN. 
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Figure 4.1: Detailed illustration of the proposed model. Given the input video 
frames, we first compute a dense Opticalflow. Then the spatial stream network 

consumes the first frame, and the temporal stream network consumes the 
Opticalflow. The results from the two-stream networks are fused to form a single 

feature vector for future classification components (SoftMax layer or Dilated 
RNN).  

Table 4.1 : Architecture of ResNet-50 used in this study (unit are by pixel) 

Layer name Filter size Stride Padding Number 

of filters 

Output feature 

map size 

Input layer  224 × 224 × 3 

Conv1 Conv. 7 × 7 × 3 2 3 64 112 × 112 × 64 

Max Pooling 3 × 3 2 1  56 × 56 × 64 

Conv2 Res2a Conv. 1 × 1 × 64 1 0 64 56 × 56 × 256 

Conv. 3 × 3 × 64 1 1 64 

Conv. 1 × 1 × 64 1 0 256 

Conv. 

(Shortcut) 

1 × 1 × 64 1 0 256 

Res2b-c Conv. 1 × 1 × 256 1 0 64 56 × 56 × 256 

Conv. 3 × 3 × 64 1 1 64 

Conv. 1 × 1 × 64 1 0 256 
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Table 4.1 Continued. 

Layer name Filter size Stride Padding Number 

of filters 
Output feature 

map size 

Conv3 Res3a Conv. 1 × 1 × 256 2 0 128 28 × 28 × 512 

 
Conv. 3 × 3 × 128 1 1 128 

Conv. 1 × 1 × 128 1 0 512 

Conv. 

(Shortcut) 

1 × 1 × 256 2 0 512 

Res3b-d Conv. 1 × 1 × 512 1 0 128 28 × 28 × 512 

Conv. 3 × 3 × 128 1 1 128 

Conv. 1 × 1 × 128 1 0 512 

Conv4 Res4a Conv. 1 × 1 × 512 2 0 256 14 × 14 ×1024 

Conv. 3 × 3 × 256 1 1 256 

Conv. 1 × 1 × 256 1 0 1024 

Conv. 

(Shortcut) 

1 × 1 × 512 2 0 1024 

Res4b-f Conv. 1 × 1 × 

1024 

1 0 256 14 × 14 ×1024 

Conv. 3 × 3 × 256 1 1 256 

Conv. 1 × 1 × 256 1 0 1024 

Conv5 Res5a Conv. 1 × 1 × 

1024 

2 0 512 7 × 7 × 2048 

Conv. 3 × 3 × 512 1 1 512 

Conv. 1 × 1 × 512 1 0 2048 

Conv. 

(Shortcut) 

1 × 1 × 

1024 

2 0 2048 

Res5b-c Conv. 1 × 1 × 

2048 

1 0 512 7 × 7 × 2048 

Conv. 1 × 1 × 512 1 1 512 

Conv. 1 × 1 × 512 1 0 2048 

Average Pooling 4 × 8 11 0  1 × 1 × 2048 

Fully 

Conne

-cted 

Layers 

FC     101 

Soft Max      
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4.3 Feature Description 

In this section, we provide more details on our feature extraction approach. While we 

are using deep neural networks, where the intermediate layers (hidden layers) of the 

neural networks are responsible for automatic feature extraction from the original raw 

input, it is shown that that different parts of the networks are responsible for different 

types of features abstractions. As a result, in the following subsections, we explain the 

reasoning behind using different neural network architectures and what type of features 

are computed and modeled using each of them.  

4.3.1 Short-range 

One can breakdown the data in a video to spatial and temporal elements. While the 

spatial element provides information about the appearance of the scene and the objects in 

the scene, the temporal element provides information on how the appearance changes 

with time. As a result, (K. Simonyan & A. Zisserman, 2014) investigated the separation 

of these two information streams. We believe that modeling the temporal stream using 

Opticalflow provides a rich set of local spatiotemporal features. As a result, building on 

top of the original model in (K. Simonyan & A. Zisserman, 2014), in this work we split 

the CNN architecture into a spatial stream for object detection and a temporal stream for 

the motion detection for the task of event localization. Each network is implemented using 

CNN architecture and combined by late fusion in the last layer. Note that, while the two-

stream CNN network generates sophisticated local spatiotemporal features by modeling 

the short-term correlation between frames, it fails to capture longer temporal correlations 

between frames. In the next two subsections, we provide a detailed explanation of the 

spatial and temporal neural networks used in this work. 
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4.3.1.1 Spatial Stream 

Certain events and actions are highly correlated with objects and people in the scene. 

This kind of correlation can be captured by appearance features from a single frame. The 

core idea behind the spatial stream is to use convolutional layers to extract appearance 

features from a single static frame. One important benefit of using a spatial stream is that 

we can leverage from the sophisticated network architectures designed for image analysis 

problems and pre-train the models on large image datasets. Note that, for better accuracy 

and practical reasons, we have used a pre-trained model trained on ImageNet and only 

fine-tuned the last layer. 

4.3.1.2 Temporal Stream 

While the spatial stream provides a rich set of appearance features from a single frame, 

for particular events and actions, additional temporal features are needed for classification 

and recognition. The core responsibility of the temporal stream is to obtain such local 

temporal information from adjacent video frames. Rather than using raw frames, it has 

been shown that using low-level opticalflow features are more informative. Training on 

video datasets is harder and more expensive. As a result, we use a pre-trained temporal 

stream network, with a ResNet-50 backbone, which is trained on UCF101(Soomro, 

Zamir, & Shah, 2012) in our implementation. Note that, unlike the spatial stream 

ConvNet, which can be pre-trained on a large still image classification dataset (such as 

ImageNet), the temporal ConvNet needs to be trained on video data – and the available 

datasets for video action classification are still rather small. The details of the opticalflow 

computation is presented in the following paragraph. 

OpticalFlow Computation- As demonstrated in Figure 4.2, opticalflow simply 

computes the amount of displacement of each pixel from a frame at time “𝑡 + 1” relative 

to a frame at time “𝑡”. In other words, opticalflow defines a set of vector fields based on 
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changes in the pixel values in two consecutive frames, “𝑡” and “𝑡 + 1” The defined vector 

field has two components: a) A horizontal component, and b) a vertical component. The 

horizontal component, 𝑑𝑥𝑡, represents the amount of displacement in the 𝑥 direction. The 

vertical component, 𝑑𝑦𝑡, represents the amount of displacement in the 𝑦 direction. These 

two vector fields can be represented as two input channels with exactly the same 

dimensions as the original raw data. The input to the temporal stream is a stacked 

opticalflow channels of pairs of video frames. In our implementation, we only use two 

frames. This is mainly due to small performance gain using the additional channels and 

also practical computational efficiency and limitations in the computational resources.  

 

Figure 4.2: Illustration of the Opticalflow computation. Opticalflow calculates the 
displacement of a location in two frames in the horizontal and vertical directions.  

4.3.2 Mid-range 

While local spatiotemporal features have shown significant improvement in event 

classification and localization, it has been shown in the research community that more 

complex events and actions would benefit from analyzing longer correlations between 

video frames. RNNs have shown a great capacity in summarizing and categorizing the 

correlation between video frames which are further apart.  

As most of the available datasets only consider relatively short videos (with length up 

to a few minutes at most), in practice, most of the models only consider mid-range 

correlation between frames rather than long-range correlation. One of the most successful 

RNN architectures uses LSTM cells and is usually referred to LSTM networks. As a 
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result, we also use LSTMs to capture the mid-range correlation between video frames. 

The core components of LSTM are shown in Figure 2.11. 

4.3.3 Long-range 

For long videos with complex event patterns, it is important to better model the 

correlation between frames that are far away from each other. While LSTMs is capable 

of capturing such a dependency for mid-range correlations, they fail to do that for long 

videos with longer correlations. This is mainly due to the fact that while in theory the 

information flow is not constrained by time, in practice the vanilla recurrent network 

architectures fail to learn these longer dependencies due to various learning challenges 

discussed before. One successful architecture which enables the model to access the 

information from earlier frames is the “Dilated Recurrent Neural Network”. The core 

components of the architecture are shown in Figure 2.23. Two important features in 

dilated RNN helps with modeling longer dependencies: 1) Hierarchy of recurrent units, 

and 2) Skip connections between recurrent units. In other words, Dilated-RNN is a multi-

layer architecture designed by multi-resolution dilated recurrent skip connections. By 

using dilated connections, different layers of the network can focus on different temporal 

resolutions. In addition, and more importantly, the dilation reduces the average path's 

length between multiple nodes at different timestamps. This improves the ability of 

normal RNNs to capture long-term dependencies while prevents vanishing and exploding 

gradients. We want to emphasize that we improve the original dilated RNN by adding 

LSTM units to provide an additional memory capacity to the dilated RNN which helps it 

with better mid-range memory. 

4.4 Classification 

 In this section, we provide the details of training our classification models. As we 

have multiple components, we provide the details of each training separately. We first 
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split the dataset into training, validation, and testing. The same training set is used to train 

the RNN and fine-tune the Two-stream CNN nets. We used the validation set for hyper-

parameter tuning and also to identify the overfitting. We choose the model before the 

overfitting occurs while training and fine-tuning our networks. 

First, we fine-tune the two-stream CNN component of our model. This is important 

because the training of the RNN depends on the extracted features from the fine-tuned 

two-stream CNN. Later, we trained our dilated RNN with LSTM cells on top of the 

features computed using the fine-tuned two-stream CNN. This has two benefits: 1) It is 

computationally more efficient, 2) It allows us to extract the features prior to training 

which makes it easier and faster to train the dilated RNN network. 

4.4.1 Two-stream CNN Training 

 While one can always train the entire model from scratch, using a specific dataset, it 

is a common approach to use pre-trained models to help with better results and faster 

training. In addition, using pre-trained models also helps with limited computational 

resources. In this work, we used a per-train two-stream CNN trained on large benchmark 

datasets of ImageNet, and UCF101. The common practice in fine-tuning the neural 

network models is to remove the original classification layer and to replace it with a new 

classification layer that is suitable for the problem of interest.  

Various training strategies have been proposed for proper fine-tuning in the literature. 

The common approach is to freeze lower layers and train higher layers. In this approach, 

we need to decide which layers will be frozen and which layers will be (re) trained. In the 

case of smaller datasets, it is preferred to freeze more layers to reduce the network 

complexity during training and to avoid overfitting. The common understanding among 

the researchers is that the lower layers of a neural network learn to extract generic features 
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and usually, they are independent of the problem. As a result, in these approaches it is 

recommended to freeze almost all layers and fine-tune the last few layers in the hierarchy. 

Figure 4.3 demonstrates various strategies used in fine-tuning a neural network. Note 

that one extreme scenario is to use the pre-trained model as a feature extraction 

component and do not train any new layers. 

 

Figure 4.3 : Various fine-tuning strategies in deep neural networks. 

In this research, due to the resource limitations we will face if train from scratch, we 

keep all but the last convolutional layers of the pre-trained models and only replace the 

last SoftMax classification layer with a four-dimensional classification layer. This is 

shown in Figure 4.4. The following provides the details of fine-tuning the spatial and 

temporal streams respectively.  

 

Figure 4.4: The fine-tuning approach used in this work. 

Fine-tuning the spatial stream network- Since the spatial network operates on single 

static frames, we fine-tune the classification layer using individual frames sampled from 
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the videos. Using these frames as input, fine-tuning the spatial network is basically an 

image classification task. Our pretrained model is based on the ResNet-50 

implementation and is trained on ImageNet.  

During fine-tuning, the frames are randomly sampled from a “one-minute” video 

chunks provided as part of the training set. We deliberately sampled randomly to make 

sure the fine-tuning does not have a bias towards any specific game or event class and to 

uniformly cover the entire training dataset.  

Fine-tuning the temporal stream network-Unlike the spatial stream CNN, the input 

of the temporal stream network is the computed opticalflow channels from two frames 

rather than a static image. As a result, the temporal-stream CNN needs to be trained on a 

video dataset for video event classification rather than image analysis. Training a 

temporal stream network from scratch requires a large video dataset and a powerful 

computation platform. To overcome this, one approach is to use a pre-trained image 

model and only fine-tune the very first layer and the last classification layer. In this work, 

we used a pre-trained ResNet-50 model which is fine-tuned on the UCF101 action 

recognition and activity detection dataset. Similar to the spatial stream network, we added 

a four-dimensional classification layer and fine-tuned these layers during training.  

For fine-tuning, we similarly used the one-minute annotated video chunks. While it is 

possible to use all frames in a video, it is a common practice to subsample frames in the 

temporal dimension. We subsampled 5 frames per second (a total of 300 frames per 

minute). Using the previous frames of each of these frames, we compute the dense 

opticalflow. In other words, 10 frames were processed to compute the opticalflow 

channels per second. The output of the opticalflow computation is then used to fine-tune 

the classification layer of the temporal stream. Note that for faster training, we pre-

compute Opticalflow for the sub-sampled frames. In other words, for fine-tuning, we first 
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computed the Opticalflow values for the training videos. These Opticalflow values are 

then stored as NumPy arrays to be used during the fine-tuning process. For fine-tuning, 

we used images of size (224 X 224), and batches of size 32. We only fine-tune for ten 

epochs and used Adam optimizer with an initial learning rate set to 1.0e-4. This is shown 

in Figure 4.5 

 

Figure 4.5 : The training (fine-tuning) process of Two-stream CNN 

For fusing the results from the spatial and temporal streams, similar to the original 

two-stream CNN(K. Simonyan & A. Zisserman, 2014) paper, we use Max-Pooling. 

Another reason to choose the Max-Pooling operation is that we believe average pooling 

might result in less confident scores due to ambiguity in prediction. 

4.4.2 Dilated RNN Training 

As mentioned in Section 4.2, the input to the dilated RNN is the output of the fusion 

layer from two-stream CNN. More specifically, we use the 101-dimensional output of the 

two-stream CNN which we fine-tuned in Section 4.4.1, at the input layer of the first layer 

of the dilated RNN. Our proposed dilated RNN has three layers where each layer is 128 

dimensional. In other words, we have a dilated RNN with [128, 128, 128] dimensional 

hidden layers. 
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We use the pre-computed frame features using the underlying two-stream CNN model. 

For the two-stream CNN, we first identify the frames based on the temporal subsampling, 

followed by the opticalflow computation. In this work, we temporally subsampled five 

frames per second and apply the trained two-stream CNN on the sub-sampled frames. 

When training the dilated RNN, we load the computed features from the already 

computed and saved feature arrays. 

It is shown that adding the dropout layer for the input layer in RNNs improves the 

generalization quality of the network (Gal & Ghahramani, 2016). In this work, we use 

dropout layers with the dropout-rate set to 0.25. The main reason we use the dropout layer 

only in the first layer is that for the second and third layers, the network uses skip 

connections and we do not want to add more uncertainty by removing parts of the inputs 

from the underlying layers. During training, the dropout layer randomly drops %25 of the 

input from the 101-dimensional input. During test time, the input is kept as it is, but it is 

re-scaled to compensate for the input magnitude during training. In addition, we use a 

batch normalization layer after the activation function of the first layer of recurrent units 

to ensure a standardized latent space with zero mean and one variance. 

It is shown that weight-decay, improves the quality of generalization when training 

deep learning. We followed the best practice in the field and applied a weight decay with 

the coefficient set to “0.01”. In addition to this regularization, we used “Xavier normal” 

initializer (Glorot & Bengio, 2010) which is recently referred to “Glorot normal” 

initializer. For training, we used “Adam” optimizer with an initial learning rate set to 

0.001. Adam optimizer combines the benefits the two previously known extensions of 

gradient descent optimizer RMSProp and Adagrad (Ruder, 2016) and adapts the learning 

rate based on the moment information at each learning steps. 
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Since our dilated RNN is specifically designed for event classification in sports videos, 

we trained the model from scratch without using any pre-trained model. We use a mini-

batch size of 32 in our training. For fair comparison, all models are trained for 25 epochs. 

The input data is shuffled before starting each epoch. To train the dilated RNN model, we 

create a training dataset based on the original dataset which contains “one-minute” clips. 

This is shown in Figure 4.6. 

 

Figure 4.6 : Process of generating one-minute training clips for RNN. Given the 
event annotation, we create a training set using the one-minute clips by 

subsampling five frames per second. 

4.5 Spotting 

Event localization is defined in different ways in the research community. The most 

common definition is the event detection. This is shown in Figure 4.7. Basically, event 

detection is defined as finding the boundary (start and end) of a certain event with a 

correct event class associated with it. This is a reasonable and useful definition when the 

event has a long duration, and it has a clear start and end.  
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Figure 4.7: Different temporal definition of events in videos for a single event (left) 
and multiple events with overlap (right) (Mleya et al., 2019). 

Unfortunately, defining an action or event boundary (start and end time) is an 

ambiguous task. This is also discussed in detail in (Giancola et al., 2018) where the 

following reasons are identified: 

1. It is not clear how to define the event boundary for an event that occurs in a 

glimpse. For example, the goal event happens in a very short and unclear period 

of time.  

2. Defining start and end boundary is not well-defined for continuous event within 

a video. For example, it is subjective to define measurable quantities for the sun 

rise (some have defined different light illumination condition for it). 

3. For events that have an overlap (i.e., concurrent), it is hard to define the 

boundaries in a clear manner. For example, it is unclear how to separate call event 

from walking event, when someone receives a call while he is walking. 

An alternative event localization definition is defined in (Giancola et al., 2018) which 

is referred to as “event spotting”. Event spotting is clearly defined when the events happen 

in a very short period of time and when the boundary (start and end time) is very hard and 

ambiguous to define. Spotting identifies the moment that an event occurs. A candidate 

spot is positive if it lands within a tolerance window around the anchor of an event. 

Otherwise, it is considered as negative. This is shown in Figure 4.8. 
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Figure 4.8: Definition of anchor point in event spotting and the corresponding 
tolerance thresholds(Giancola et al., 2018). 

Given the fact that events in sport usually happen in a glimpse, it is reasonable to 

choose the second definition as event localization. As a result, in this work, we are 

interested in the event spotting problem. This means that, rather than identifying the 

boundaries of an action within a video and looking for IoU between temporal windows, 

we use spotting to identify the moment that an event occurs. 

To identify the spots in a long video, we used the following three approaches.  

 Segment Center: We first use an unsupervised segmentation algorithm 

(Watershed) to temporally segment a given video to shorter clips. The center 

frames in short clips are identified as the event spots and are classified using our 

frame-based model trained for classification (ResNet, Two-stream CNN). This is 

shown in Figure 4.9. 

 Segment Max: Similar to the above, we used the watershed algorithm to identify 

the shorter clips from a longer input video. For frames in each clip, we use our 

frame-based model trained for classification (ResNet, Two-stream CNN) to 

classify the event associated with each frame. The frame with the maximum 

classification score is selected as the event spot. This is shown in Figure 4.9. 
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 Non-Maximum Suppression (NMS): Given a football video, we classify the 

video frames using one of our classification models (1- frame-based model 

trained for classification (ResNet, Two-stream CNN), 2- temporal models 

(LSTM, Dilated RNN)). We then apply a one-minute non-overlapping non-

maximum suppression window on the entire video. The NMS will choose the 

frame with a higher classification confident as the anchor of the event for that 

one-minute window. This is demonstrated in Figure 4.10.  

Note that the first two approaches are only used for our baseline models which only 

operate at a frame level. Our recurrent temporal models only use the third approach. 

 

Figure 4.9: Spotting algorithms used based on the watershed segmentation 
method. 
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Figure 4.10: Spotting algorithms used based on the Non-Maximum Suppression 
(NMS) method. 

4.6 Implementation and Technical Details 

Training neural networks could be challenging. Details of hardware and software can 

affect the performance and accuracy of the final model. In the following sections, we 

provide a complete overview of the hardware used in this work as well as the development 

platform and third-party libraries. 

4.6.1 Hardware Description 

All experiments are performed on an AWS EC2 Machine. We used the AWS instances 

with the following spec: 

 CPU: Intel quad core-i7  

 RAM: 61GB  

 Graphic card: Tesla-K80 Nvidia card  

 Memory: 11Gb 
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Using the AWS machines has multiple benefits. They are usually upgraded with the 

latest CUDA libraries and offer an easy-to-use interface to install necessarily third-party 

libraries. Also, there are specific nodes suitable for deep-learning training. 

4.6.2 Software Description 

We implemented our code using Python. For classical computer vision operations such 

as opticalflow or some of the data processing parts, we use Opencv2.4.1. For all the deep 

learning modules, we use TensorFlow 1.14 (Abadi et al., 2016) in our experiments. We 

chose TensorFlow for the following two reasons: 

1. Extensive support of pre-trained models in TensorFlow. 

2. Great visualization of the network and loss during training. This is important 

because it allows us to debug the training behavior. 

4.6.3 Training, Testing and Validation Time 

Table 4.2 shows the training and test time for our proposed models. Training time for 

a mini batch is usually close to twice the test time for the same batch. This is mainly due 

to the fact that during training, we process both forward and backward passes while in 

test time we only perform the forward pass. Note that the training time in Table 4.2 is 

computed for 25 epochs. 

Table 4.2 : Training and Testing (processing) time  

Model Training Time Testing Time 
LSTM-Res 173.5H 7.2H 

LSTM-2S-CNN 184.2H 7.3H 
D-LSTM-Res 154.4H 7.1H 

D_LSTM-2S-CNN 153.8H 6.9H 
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4.7 Summary 

In this chapter, we provided more details regarding our proposed model and the neural 

network components. We explained how each component addresses various correlations 

(short-range, mid-range, and long-range correlations) between frames. We presented 

additional details of the proposed model and defined the steps towards the implementation 

and training of the proposed neural network modules.  

We used the largest publicly available dataset for football video analysis. The existing 

approaches either use the classical machine learning models or simply use an RNN model, 

grounded on CNN features, for event classification. Unlike these approaches, our 

proposed model consists of two states of the art neural network models: a) Two-stream 

CNN, and b) Dilated RNN with LSTM units. Each component is carefully designed to 

consider certain correlation patterns between frames. Two-stream CNN is designed to 

learn the local spatiotemporal features which models short-range correlation among 

frames. The dilated RNN with LSTM cells, use the skip-connections and the memory 

cells to address both mid-range and long-range dependencies.  

For practical reasons we used a pre-trained two-stream CNN network and trained the 

dilated RNN from scratch. A total number of 3965, 1314, 1358 were used for training, 

validation, and testing datasets respectively for both event classification and spotting. For 

training and testing, we used video chunks of one minute as an input of our networks. As 

for event spotting, we compared three different spotting approaches based on the 

classification results of both two-Stream CNN model and its combination with Dilated 

RNN. Note that the validation set is used for hyper-parameter tuning (e.g., learning rate, 

batch sizes) as well as identifying the epoch where the overfitting happens. 

To summarize, the main contribution of our model is the proposed combination of 

neural network components to capture the short-range, mid-range, and long-range 
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dependencies to improve classification and spotting accuracy. The next chapter will 

present the evaluation results and discussions of the proposed model. 
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CHAPTER 5: EXPERIMENTAL RESULTS AND DISCUSSION 

5.1 Introduction 

In this chapter, we provide the present evaluation results of our proposed models for 

event classification and spotting in long football videos. In our discussion, we focus on 

explaining our understanding of the results and why do we believe some models provide 

better results.  

For non-recurrent models, the models trained for action classification are applied in a 

sliding window fashion on a testing video. For a fair comparison, a stride of one is used 

as in (Giancola et al., 2018). For the recurrent models, a temporal sub-sampling rate of 

five frames per second is applied. Table 5.1 summarizes the evaluation categories we 

present in the rest of this chapter. 

Table 5.1 : Overview of test and evaluation of the proposed model for event 
spotting in Football videos 

Test and evaluation result of the proposed model for analyzing long football videos 

Test and evaluation of the classification 

result 

Test and evaluation of the spotting result 

 Evaluation of the classification results 

related to proposed two-Stream CNN and 

dilated RNN. 

 Discussion of the results related to the 

proposed two-Stream CNN and dilated 

RNN. 

 Comparison between proposed model with 

the base line. 

 Evaluation of events spotting results 

using segment center, segment max, 

NMS methods and two-Stream CNN.  

 Evaluation of events spotting results 

using NMS method and dilated RNN. 

 Discussion of the results related to the 

proposed spotting method  

 Comparison between proposed model 

with the base line. 
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5.2 Test and Evaluation of the Results for the Proposed Model 

As it has been briefly discussed in the introduction, event localization (either spotting 

or detection) strongly depends on the accuracy of event classification. The main 

difference between classification and localization is the fact that in the classification 

problem we are given a trimmed football video clip (a video which solely contains a single 

activity), and the goal is to classify the activity class in that video clip. For the localization 

problem, given an untrimmed football video, the goal is to identify the events in that 

video. This means to temporally localize the events in the video and to classify the event 

category in the video clip. As a result, the quality of the event classification results directly 

impacts the quality of the localization results. 

For a comprehensive evaluation, similar to (Gu et al., 2018), we also report the 

classification results on one-minute video chunks for our proposed model and the 

baselines. The test and evaluation results of the proposed event classification model 

include two parts:  

1. The single frame classification results which compare our proposed two-stream 

CNN with the baselines and the state of the art. 

2.  The novel proposed holistic model in this work which combines the two-stream 

CNN and the dilated RNN with LSTM cells.  

In the following, Section 5.2.1 provides the evaluation results for event classification 

and Section 5.2.2 provides the evaluation results for event spotting. 

5.2.1 Event Classification 

The proposed model in Section 4.2 is a combination of two subnetworks, the Two-

Steam-CNN and Dilated-RNN. To better analyze the impact of each of these network 

components in the final accuracy, we conducted a set of experiments with each 
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subnetwork to provide empirical results on how much each network contributes to the 

final accuracy.  

For pure CNN based models (e.g., Two-stream CNN), we use a SoftMax layer with a 

four-class output to classify four events (card event, goal event, substitution event, and 

the background event - i.e., no event). For RNN based models (e.g., Dilated RNN + Two-

stream CNN), we do not use a sliding window. Instead, at each time step, “t”, the input 

to the network is the frame at time “t”. The output of the network is a four-dimensional 

classification layer with a SoftMax activation function. To identify the associated class 

for the entire video chunk, we can either average the results from the SoftMax layers 

along the time axis, or just take the maximum. In our experiments, we find out that max 

operation results in better classification accuracy. For this reason, the results provided 

below use max operation to fuse the outcomes of all-time steps. 

For a fair comparison, we used similar one-minute video chunks used in (Giancola et 

al., 2018). The test subset includes 326, 453, 579 videos for goals, cards, and substitutions 

respectively. We also added 460 random background video clips as well.  

Figure 5.1 shows the average training and validation loss of our full model (dilated 

RNN + two-stream CNN) per-epoch. Note that since the validation loss is computed over 

the entire validation set, it is smoother compared to the training loss.  

 

Figure 5.1: Average lost per training epoch. (a) training loss, (b) validation loss. 
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Considering each class separately, one can compute the average precision (AP) by 

casting the results as a binary classification problem. For example, when considering the 

“card” event, we consider all other events as the “non-card” event. For this, we can 

compute the AP for the “card event”. As a result, we have four AP values for each event. 

Taking another average over the classes results in the mean average precision or mAP. 

Table 5.2 presents the result for event classification in the SoccerNet dataset for one-

minute videos chunks. 

Table 5.2: Accuracy result of the proposed models for event classification 
presented as mean average precision (mAP).  

Approach mAP Improvement 
ResNet-Max Pool 52.4 - 

(Giancola et al., 2018) 67.8 - 
2SNet-Max Pool  57.8 5.4 

D-RNN-Res 60.8 8.4 
D-RNN-2SNet 62.7 10.3 
D-LSTM-Res 65.3 12.9 

D-LSTM-2SNet (Proposed model) 69.9 17.5 
 

We compare different variants of our models with the result reported in (Giancola et 

al., 2018). The first variant is a two-stream CNN with max-pooling used as the fusion 

layer. This is referred to as “2SNet-Max Pool”. The other two models are two different 

dilated RNN models with different CNN backbones, ResNet and Two-stream CNN 

referred to as D-LSTM-Res and D-LSTM-2SNet. The “NetRVLAD” is the model 

proposed in (Giancola et al., 2018). 

5.2.1.1 Summary and Discussion of Event Classification 

As it is shown in (Table 5.2) the Dilated-LSTM with two-stream CNN backbone 

outperforms baselines and different variants of our approach. This is specifically 

important comparing D-LSTM-2SNet and D-LSTM-Res which supports our hypothesis 
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that modeling short-range correlation using a specific temporal CNN model is important 

and it results in 4.6% accuracy improvement. Another supporting evidence for this is the 

5.4% improvement from “2SNet-Max pool” compared to “ResNet-Max pool” which is 

gained by applying a temporal CNN based model. 

On the other hand, comparing pure CNN-based models and Dilated-RNN models we 

observe a large accuracy improvement. D-LSTM-Res improves the mAP accuracy 4.5% 

-12.5% compared to the other variance of the ResNet-based models, and D-LSTM-2SNet 

improves the accuracy 12.1% compared to two-stream CNN. This clearly shows that 

considering long-range dependencies is very important and clearly contributes to the 

overall accuracy.  

Finally, comparing results from D-LSTM and D-RNN shows 4.5-7.2% accuracy 

improvement. This is an important finding as it shows that LSTM units are important to 

capture the mid-range dependencies. 

To summarize, our classification model which uses the dilated LSTM network, and 

the two-stream CNN component together was able to improve the overall accuracy by 

2.1% compared to the state of the art and up to 17.5% compared to our simple baseline. 

The ablation study shows that each component has contributed to the overall accuracy. 

On average, the two-stream CNN improved the accuracy by 4%. The LSTM has improved 

the accuracy by 5.85% on average among different models. And finally, the dilated RNN 

improves the accuracy by at least 2.1% and up to 17.5%. 

5.2.2 Event Spotting 

Our proposed event spotting approach is built on top of the event classification model. 

As explained in Section 3.5, an event is spotted correctly, if the estimated event frame 
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falls within a threshold of the ground truth frame. Figure 5.2 shows different variations 

of event spotting and various thresholds defined as correctness tolerance. 

 

Figure 5.2: Illustration of an anchor point in event spotting. For a given anchor 
point, we consider multiple error tolerance thresholds. A candidate event spot is 

correct if it falls in the error tolerance window and it is incorrect otherwise. 

Similar to event classification, since the model consists of multiple subnetworks, we 

evaluate each subnetwork separately. For event spotting, we have three different 

approaches for temporal localization.  

1. One approach is based on an unsupervised temporal segmentation, “WaterShed” 

algorithm (Chien, Huang, & Chen, 2003), to create temporal segments from a 

long video.  

2. Second approach is based on a “uniform one-minute” segmentation from the 

original video. 

Given a temporal segmentation from one of the above algorithms, we use an event 

classification models to classify frames within the segment. 

The combination of different event classification models and different temporal 

segmentation results in various event spotting approaches. We conduct a comparison with 
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several baselines and variations in order to evaluate the effectiveness of our model. In the 

following, we first explain different baselines and variations of our approach in detail. 

Later we will provide multiple comparison results between various approaches. 

5.2.2.1 Baselines 

The baseline approaches are all frame-based models. This means that they do not use 

any recurrent component. These models use a CNN backbone (two-stream CNN or 

ResNet) to classify frames in the given temporal segment. Table 5.3, introduces various 

baselines, and explains the CNN model and the segmentation approach used in each. 

Table 5.3 :Definition of different event spotting baselines. 

Model Name CNN backbone Temporal 
Segmentation 

Description 

‘2SNet-
Segment 
Center’ 

Two-stream 
CNN 

Watershed Classifies the segment based on the 
event scores of the center frame in the 
segment. 

‘2SNet-
Segment Max 

Two-stream 
CNN 

Watershed Classifies the segment based on the 
event of the frame with maximum 
event scores among the frames in the 
segment. 

‘2SNet-
Segment NMS’ 

Two-stream 
CNN 

Uniform one-
minute 

Classifies each one-minute segment 
by applying a non-maximum 
suppression (NMS) over the 
estimated event classes for frames in 
one-minute segment. 

‘ResNet-
Segment 
Center’ 

ResNet Watershed Classifies the segment based on the 
event scores of the center frame in the 
segment. 

‘ResNet-
Segment Max 

ResNet Watershed Classifies the segment based on the 
event of the frame with maximum 
event scores among the frames in the 
segment. 

‘ResNet-
Segment NMS’ 

ResNet Uniform one-
minute 

Classifies each one-minute segment 
by applying a non-maximum 
suppression (NMS) over the 
estimated event classes for frames in 
one-minute segment. 
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Figure 5.3, demonstrates the mAP results for different basslines explained in Table 5.3. 

The plots show the mAP results for different error tolerance represented in seconds. Note 

that the best result in (Giancola et al., 2018) is achieved using an additional NetVLAD 

model after the classification layer. Similar to the baselines, we also apply PCA 

dimensionality reduction on CNN features with 512 dimensions. Similarly, we used the 

threshold of 50% for the watershed algorithm. 

 

Figure 5.3: Spotting results for variants of our single-frame models (mAP vs error 
tolerance threshold). All models are trained on 60-second videos. 

One important observation is that for lower tolerance thresholds, all two-stream neural 

network-based baselines outperform the equivalent baselines which operate on ResNet 

features. This suggests the importance of capturing both spatial and temporal information. 

5.2.2.2 Variations of Our Approach 

Evaluation result from baseline approaches allows us to demonstrate the effectiveness 

of two-stream CNN in capturing the local spatiotemporal features. To better understand 

the efficacy of the DialtedLSTM in modeling mid-range and long-range correlations 

between frames, we define multiple variations of our model, each using distinct recurrent 

network components. Unlike the baselines, we only use the NMS spotting algorithm for 
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recurrent methods for the following two reasons. First, the boundaries of the watershed 

segments are not well-aligned with the ground truth event spots. Second, this limits the 

information flow from previous frames which are not in the watershed segment. More 

importantly, the key idea behind using recurrent models is to allow the network itself to 

learn how to regulate the information flow. In our view, providing the pre-processed 

segments is not well-explained with the theory behind the recurrent models. 

We study two variants of LSTM networks: 1) Standard LSTM network, and 2) 

DilatedLSTM which is a DilatedRNN with LSTM cells. We ground these recurrent 

networks on the features computed using two-stream CNN or ResNet50. In total, 

combining the recurrent component and the CNN backbone defines six different variants 

of our proposed spotting algorithm. 

Table 5.4, provides details of the ML model and the temporal algorithm in multiple 

variations of our approach.  

Table 5.4 : Definition of different variation of our approaches. 

Model Name CNN backbone Description 

LSTM-Res ResNet Classifies each one-minute segment by applying a 
non-maximum suppression (NMS) over the estimated 
event classes for frames in one-minute segment. A 
plain recurrent model with LSTM units which 
operates on the features extracted from a ResNet 
model is used to classify each frame. 

LSTM-2SNet Two-stream 
CNN 

Classifies each one-minute segment by applying a 
non-maximum suppression (NMS) over the estimated 
event classes for frames in one-minute segment. A 
plain recurrent model with LSTM units which 
operates on the features extracted from a Two-stream 
CNN model is used to classify each frame. 
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Table 5.4 Continued  

Model Name CNN backbone Description 

D-RNN-Res ResNet Classifies each one-minute segment by applying a 
non-maximum suppression (NMS) over the estimated 
event classes for frames in one-minute segment. A 
dilated recurrent model with vanilla RNN cells which 
operates on the features extracted from a ResNet 
model is used to classify each frame. 

D-RNN-2SNet Two-stream 
CNN 

Classifies each one-minute segment by applying a 
non-maximum suppression (NMS) over the estimated 
event classes for frames in one-minute segment. A 
dilated recurrent model with vanilla RNN cells which 
operates on the features extracted from a Two-stream 
CNN model is used to classify each frame. 

D-LSTM-Res ResNet Classifies each one-minute segment by applying a 
non-maximum suppression (NMS) over the estimated 
event classes for frames in one-minute segment. A 
dilated recurrent model with LSTM cells which 
operates on the features extracted from a ResNet 
model is used to classify each frame. 

D-LSTM-2SNet Two-stream 
CNN 

Classifies each one-minute segment by applying a 
non-maximum suppression (NMS) over the estimated 
event classes for frames in one-minute segment. A 
dilated recurrent model with LSTM cells which 
operates on the features extracted from a Two-stream 
CNN model is used to classify each frame. 

 

Table 5.5, demonstrates mAP result for spotting football events trained on 5, 20, and 

60 seconds, averaged over three different error thresholds of 5 seconds, 20 seconds, and 

60 seconds for the event spotting algorithms proposed in Chapter 4. For this experiment, 

we use the uniform “one-minute” segmentation followed by a non-maximum suppression 

of “one-minute” window. As it is shown in the table, among the non-recurrent models, 

the 2SNet model outperforms the ResNet model. This shows that considering a temporal 

stream and identifying local spatiotemporal features helps the model to classify the events 

with more accurate confidence which results in better event spotting. Comparing the 

recurrent variants of our model (i.e., LSTM-Res and LSTM-2SNet) with the frame-based 
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baselines show that including mid-range temporal information increases the overall 

spotting accuracy up to 2.3%. Finally, dilated recurrent based models (i.e., D-LSTM-Res 

and D-LSTM-2SNet) gained up to 9.8% accuracy improvement compared to vanilla 

recurrent models. One key observation is that for smaller error thresholds, the accuracy 

gain of using dilated recurrent model is smaller than the accuracy gain compared to larger 

error thresholds. We believe this is due to the fact that for smaller error thresholds fine 

grain details of local spatiotemporal features are more important in accuracy gain. For 

larger thresholds, the gain of using dilated recurrent networks is more evident and more 

significant as long-range correlation is more important to consider. The best results are 

obtained with a model that combines all three ranges of correlation, D-LSTM-2SNet. 

Note that since the authors in (Giancola et al., 2018), did not provide a tabular result for 

their spotting model, the numbers in Table 5.5, are based on the plots reported in the 

original paper and their text. Compare to (Giancola et al., 2018) our best model achieves 

5.4%-6.9% improvement. 

Table 5.5: mAP result for spotting football events trained on 5, 20, and 60 
seconds, averaged over three different error thresholds of 5 seconds, 20 seconds, 

and 60 seconds. 

Model Error Tolerance =  

5s 

Error Tolerance = 

20s 

Error Tolerance = 

60s 

(Giancola et al., 2018) 3 35 59 
ResNet 2 29.7 57.2 
2SNet 7.7 31.1 60.6 

LSTM-Res 4.3 30.5 60.2 
LSTM-2SNet 8.7 33.4 61.7 
D-LSTM-Res 4.5 40.3 63.9 

D-LSTM-2SNet 9.2 41.9 64.4 
 

Figure 5.4, illustrates the mAP results of the model trained on 60-second videos as a 

function of error tolerance for our recurrent models, which allows us to understand the 

positive and negative contributions of each network. 
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As it is shown, the standard LSTM variants outperform the dilated variants for error 

thresholds smaller than 10 seconds. We believe that fine-grain details captured by local 

spatiotemporal features provide more accuracy gain for smaller error thresholds. Our 

understanding is that although the accuracy difference is insignificant compared to other 

variants, considering the information from faraway frames potentially adds more noise 

which decreases the accuracy.  

For greater threshold values, the gain of using dilated recurrent network is more 

evident and more significant, which indicates that long-range correlations are more 

critical to consider. At first glance, this seems counterintuitive. After a deeper analysis of 

the result, we identified that the DilatedRNN variants make fewer mistakes if the error 

threshold is between 10-20 seconds. On the other hand, if the error threshold is less than 

10 seconds, local spatiotemporal models are more accurate. 

 

Figure 5.4: Spotting results for variants of our recurrent-based models (mAP vs 
error tolerance threshold). All models are trained on 60-second videos. 

As discussed in Chapter 4 for training dilated RNN based models, we use “one-

minute” video clips. To better understand the effect of the clip’s length, we also trained 

models on shorter clips of five and twenty seconds. The mAP results for various error 

tolerance for these models are shown in Figure 5.5 and Figure 5.6. 
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Figure 5.5: Spotting results for variants of our recurrent-based models (mAP vs 
error tolerance threshold). All models are trained on 20-second videos. 

 

Figure 5.6: Spotting results for variants of our recurrent-based models (mAP vs 
error tolerance threshold). All models are trained on 5-second videos. 

We observe a similar pattern between mAP and error tolerance for models trained with 

five- seconds and twenty-seconds videos compared to the models trained with one-minute 

clips. Also, comparing the results from models trained on videos of 20 and 60 seconds, it 

seems that capturing long-term dependencies is more successful in longer videos and the 

results are generally better for error thresholds above 25 seconds. 

In addition, Table 5.6 demonstrates the average mAP results across different error 

tolerance for variations of our event spotting algorithm. In other words, this table 
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represent area under curve for mAP plot (AUC). We train each model with video clips of 

5, 20, and 60 seconds. Five-second video clips represent settings where the model is 

limited to short-range dependencies during training. Training with 20- seconds and 60-

seconds video clips allows the model to explore mid-range and long-range dependencies 

as the corresponding models have access to 4 times and 12 times more previous frames 

each.  

Table 5.6: Comparison of our proposed event spotting approach compared to 
state of the. The models are trained on 5, 20, and 60 second videos. The results show 
the area under curve (AUC) of the mAP plots shown in Figure 5.4.  

Model 5s videos 20s videos 60s videos 
(Giancola et al., 2018) 35.1% 49:7% 40.6% 

ResNet 29.4% 32.1% 33.2% 
2SNet 29.7% 32.4% 34.0% 

LSTM-Res 34.3% 54.1% 55.1% 
LSTM-2SNet 36.2% 57.3% 58.1% 
D-LSTM-Res 36.1% 58.3% 59.2% 

D-LSTM-2SNet 37.3% 60.1% 63.3% 
 

Similar to the studies of the baseline methods, the two-stream CNN model outperforms 

the ResNet model. In particular, the margin is higher for shorter clips of sizes 5 and 20 

seconds. These results verify that if we only consider short-term dependencies, the models 

with explicit motion features provide a richer representation of the underlying raw frames.  

Based on the results presented in Table 5.6, recurrent variants of our approach perform 

better than the single-frame variant across different training settings. One interesting 

observation is that for models trained on five-second videos, the best result is 7%, but the 

average mAP increases to more than 13% for models trained on 20-second videos. We 

believe this shows the importance of capturing mid-range correlations between video 

frames. Finally, dilated LSTM variants gain up to 9.8% accuracy improvement compared 

to the standard LSTM models. One key observation is that for short video clips, the 
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accuracy gain of using dilated recurrent model is insignificant compared to the accuracy 

improvement for longer video clips. This observation verifies our original hypothesis that 

sophisticated modeling of long-range dependencies is essential for more accurate event 

spotting. 

Table 5.7 compares our best performing model, which grounds DilatedLSTM on two-

stream CNN features, to the state of the art. We provide the best reported results from 

three prior work (Giancola et al., 2018), (Cioppa et al., 2020) and (Vats et al., 2020). 

While the authors in (Giancola et al., 2018) specifically mentioned that their best result 

is obtained training on 20-second videos, for (Cioppa et al., 2020) and (Vats et al., 2020) 

it is not clear from the text which video lengths the model is trained with. Our full model 

improves the result by 13.6% compared to (Giancola et al., 2018). We also outperform 

the models proposed in (Cioppa et al., 2020) and (Vats et al., 2020) by 0.8% and 3.2% 

respectively. 

Table 5.7: Comparison of our proposed event spotting approach compared to 
state of the art. The reported mAP results from the state of the art are from 
published results. Note that the best result reported in (Giancola et al., 2018) is 
trained on 20-seconds videos. For the results in (Cioppa et al., 2020) and (Vats et al., 
2020) it is not clear what video length the models are trained on. Our best result is 
obtained from models trained on 60-second videos. This shows that explicit modeling 
of long-range dependencies improves the accuracy for longer videos. 

Model mAP 
(Giancola et al., 2018) [trained on 20-second videos] 49.7% 
(Vats et al., 2020) 60.1% 
(Cioppa et al., 2020) 62.5% 
Ours [trained on 60-second videos] 63.3% 

5.2.2.3 Qualitative results 

To better understand the spotting results and to explain the outcome of our proposed 

model, we randomly sampled some positive and negative examples and visualized the 

results. In the following, we will provide a few qualitative spotting examples of our model 

(two-stream CNN + Dilated RNN ) and the center segment spotting baseline for 1-minute 

video clips. Figure 5.7 shows a successful event spotting example. The sample candidate 
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point (goal candidate spot time = 9:54) in Figure 5.7 landed within an error tolerance of 

5 seconds around the anchor of the event (goal event anchor time = 9:52). Figure 5.8 

shows a failed event spotting sample. The candidate spot (substitution candidate spot time 

= 66:58) in ) Figure 5.8 is out of the error tolerance of 20 seconds around the anchor of 

the event (substitution event anchor time = 67:26). 

 

Figure 5.7: Successful goal spotting example for 5s tolerance (Italy Série A, 2015-
2016/2015-09-22, 21:45, Udinese 2 - 3 AC Milan. 

 

Figure 5.8: Failed substitution spotting example for 20s tolerance (Germany 
Bundesliga, 2015-2016/2015-10-04, 18:30, Bayern Munich 5 - 1 Dortmund). 
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The presented examples in Figure 5.9, demonstrate successful spotting within 60 seconds 

of the event anchor. Given these examples, we can see that even when the error tolerance 

is 60 seconds, the spotted event is well-correlated with the event boundaries.  

 

Figure 5.9 : Successful examples of goal, substitution, and card event spotting ((a) 
presents goals sample, (b) presents substitution sample and (c) presents cards 

sample). 

 

Finally, it is informative to better undrestand the importat spatioal regions in video 

frames which impact the neural network outout. This has been mostly investigated in sub-

field of explainable AI (XAI). Three different categories of explainable AI have been 

studied in the literature, namely "pre-modeling explainability", "explainability 

modeling", and "post-modeling explainability". The majority of deep learning models are 

trained with estimation performance as the main criteria, resulting in black-box ML 

models. As a result, the "post-modeling explainability" is studied in more detail in the 

literature. Since we two-stream CNN and RNN based architectures, we are also 

categorized as the former. More details regarding investigating XAI in our work  is 

provided in APPENDIX C.  
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5.2.2.4 Summary and Discussion of Event Spotting 

To summarize our observations, from the results provided in Figure 5.3-Figure 5.6 and 

Table 5.5-Table 5.8, we can clearly see that the two-stream CNN network component, 

contributes to the improvement of accuracy which results in up to 5.7% accuracy 

improvement compared to the ResNet variants. This contribution is more obvious for 

smaller threshold error tolerances. On the other hand, the dilated recurrent models 

outperform all variants of single-frame approaches. Comparing to the state of the art, 

while the accuracy improvement is more significant and consistent using all components 

(i.e., 5.4%-6.9% accuracy improvement with Dilated RNN+ LSTM+ Two-stream CNN), 

we still observe a considerable amount of improvement (1.5%-5.7%), by only using two 

out of three components. This also clearly shows that considering mid-range and long-

range temporal correlation between frames improves the accuracy in general. Note that 

as pointed out, among the dilated recurrent models, the one with LSTM cells which is 

grounded on Two-stream CNN outperforms all others due to the fact that it considers 

short-range, mid-range, and long-range correlations together. 

In addition to the above, we have also identified multiple approaches for spotting the 

events including an unsupervised “watershed” segmentation followed by the center of the 

segment spotting, max confidence spotting or “non-maximum suppression” (i.e., NMS) 

spotting which relies on scanning a “one-minute” window. Based on the results the NMS-

based models outperform the unsupervised segmentation models. As we can see the NMS 

with Dilated-RNN grounded on two-stream CNN achieves an average accuracy of 38.5% 

(best 64.4%) compared to the result reported in (Giancola et al., 2018) which is 32.3% 

(best 59%). Table 5.8, summarizes improvements achieved using different networks and 

error tolerance. 
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Table 5.8 :A summary of improvements based on the results presented in 
Table 5.5 compare to different baselines and state of the art.  

Short term, Mid 
Term and Long-
Term Comparison 

Average 
improvement 
for 5 second 

Average 
improvement 
for 20 second 

Average 
improvement 
for 60 second 

Average 
improvement 
for all error 
tolerance 

ResNet CNN vs 2-
stream CNN 
networks11: 

4.93% 1.96% 1.8% 2.9 % 

RNN with LSTM 
vs CNN models12: 

1.65% 1.55% 2.05% 1.75% 

Dilated RNN vs 
non-Dilated 
networks13: 

0.35 9.15% 3.55% 4.35% 

Proposed model vs 
baseline (ResNet)  

7.2% 11.4 7.2% 8.6% 

Proposed model vs 
state of the art 
(Giancola et al., 
2018) 

6.2% 6.9% 5.4% 6.2 % 

 

5.3 Summary 

In this chapter, we presented the evaluation result of the proposed models for event 

classification and spotting in long football videos. This includes the evaluation of event 

classification using single-frame approaches (e.g., Two-stream CNN) and temporal 

models (e.g., LSTM-Two-stream). Also, for event spotting, we evaluated multiple 

different neural network models as well as different event spotting approaches.  

To better analyze the impact of each component in our proposed models, we identified 

multiple baselines and variations of our approach. Through extensive evaluation, we 

showed that all Two-stream CNN models outperform the ResNet models for event 

                                                 

11 2SNet vs ResNet, LSTM-2SNet vs LSTM-Res and D-LSTM-2SNet vs D-LSTM-Res 

12 LSTM-Res vs ResNet and LSTM-2SNet vs 2SNet 

13 D-LSTM-Res vs LSTM-Res and D-LSTM-2SNet vs LSTM-2SNet 
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classification by 17.5%. This confirmed our original hypothesis that local spatiotemporal 

features are important to be considered specifically. We observe a similar accuracy 

improvement in event spotting experiments. 

Another set of experiments also showed that specifically modeling the temporal 

correlation for mid-range and long-range dependencies can improve the accuracy of the 

classification by 8.7% and the accuracy of the spotting 3.8%-12.2% compared to the 

baselines.
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CHAPTER 6: CONCLUSION AND FUTURE DIRECTION 

In this thesis, we addressed the problem of event localization in long football (soccer) 

videos. In Chapter 1, we explained that event localization in football videos is an active 

research problem with a strong industry impact. We formally explained the research 

questions and the objectives that motivated us to work on this research. In the rest of this 

chapter, we will review our research questions and objectives and provide details on how 

we achieved our goals. We will then highlight our contribution and provide some insight 

into our research findings. At the end, we will conclude with future works that can be 

built on top of this work. 

6.1 Achievement of Research Objectives 

As discussed in Section 1.4, the goal of this research is to propose an approach based 

on modern machine learning techniques to improve the quality of the automatic event 

classification and localization in football videos. The proposed model should increase the 

accuracy of localizing and classifying of the three important events (goal, card, and 

substitution) in football videos. As shown in Figure 4.1, to achieve this goal, a unified 

neural network model was carefully analyzed and designed. The research objectives 

outlined in Section 1.4 are discussed as follows: 

“To investigate the state-of-the-art feature extraction models in videos to improve 

the event classification and spotting in football videos”- As it is stated in Chapter 2, 

we reviewed a considerable number of prior works on football/sport analysis as well as 

multiple relevant papers from non-sport event detection in videos. We reviewed both prior 

approaches which were built on top of hand-crafted features (e.g., HOD, HOF) as well as 

modern approaches which mainly use deep neural networks (e.g., CNN, RNN). We also 

reviewed prior work on football video analysis in more details to better understand the 

latest research in this area and to identify the limitations of the current approaches. Based 
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on our reviews, we concluded that specifically modeling short-range, mid-range, and 

long-range dependencies is the key to improve localization accuracy in long football 

videos. While prior approaches have addressed various frame dependencies individually, 

to the best of our knowledge and based on our literature review of the prior work, none 

of these models have addressed all these frame correlation categories together.  

In Addition, our study shows that events in football videos are highly correlated in 

time. These temporal correlations are either short-range, mid-range, or long-range. 

Short-range correlations consider the dependencies between frames which are in a narrow 

neighborhood window (e.g., 1-5 frames). Mid-range correlations consider the 

dependencies that are beyond 5 frames but still happen in a short interval (e.g., 5-10 

seconds). Long-range correlations are the dependencies between frames that are beyond 

the mid-range dependencies.  

“To design and implement a neural network model to improve event localization 

in long football videos”- Based on our findings that no prior work has considered all 

types of frame correlation in a single model, we proposed a novel unified neural network 

architecture, which we implemented using TensorFlow framework, and trained it to 

classify and spot events in football videos (Chapter 4). The proposed model uses one of 

the most successful CNN architectures, Two-stream CNN, to compute local 

spatiotemporal features which describe the short-range dependencies. It also uses dilated 

RNN with LSTM cells to model the mid-range and long-range dependencies. While 

LSTM’s memory cell allows the model to handle mid-range dependencies, the dilated 

RNN architecture with skip connections allows the information flow from distant frames. 

This enables the model to better understand the long-range correlations among frames.  

“To evaluate accuracy of the proposed algorithm for event localization and 

classification in long football videos”- To demonstrate the effectiveness of our proposed 
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model, we evaluated our approach on the largest publicly available football dataset, 

SoccerNet in Chapter 5. The SoccerNet dataset contains a total number of 764 hours of 

football videos from major European leagues. To better understand the impact of each 

component in our proposed neural network, we perform an extensive ablation study. We 

identified multiple baselines and variations of our model with different components and 

evaluated our model for both event classification and spotting. For event spotting we 

identified three different spotting methods based on three different temporal segmentation 

algorithms. As reported in Chapter 4 and Chapter 5, using the correct feature extraction 

and classification model and modeling various correlation among video frames in football 

videos, enabled us to improve the accuracy of both event classification and spotting in 

long football videos. We were able to improve the event classification mAP by at least 

12.1% and up to 17.5% compared to baselines and 2.1% compared to the state of the art. 

The event spotting accuracy (between different error tolerances) was improved by at least 

3.8% up to 12.2%. compared to baselines and by at least 5.4% up to 6.9%. compared to 

state of the art. 

6.2 Main Contribution 

We believe that this research extended the prior work in event localization in football 

videos and made several key contributions. The following summarizes the main 

contributions of this work compared to prior work.: 

 We identified that modeling various correlation among frames is the key to 

improve the event localization accuracy: By reviewing the previous work in event 

localization and studying the limitations of each model, we realized that in order 

to improve localization accuracy it is important to model various correlations 

among frames, ranging from short to long-range. 
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 We used two-stream networks to model short-term dependencies between 

frames. Two-steam convolutional neural networks are powerful local 

spatiotemporal feature extraction models. We successfully exploit the descriptive 

power of this feature extraction method to improve the model’s accuracy 

specifically for short-range dependencies. 

 We model the mid-range correlation between frames using LSTM units in 

recurrent neural networks. The main strength of an LSTM unit is the explicit 

memory unit which allows the follow of information from previous time steps. 

We benefitted from this and used LSTMs to model the mid-range dependencies 

between frames. 

 We proposed to use dilated-RNN, a hierarchical recurrent neural network with 

skip connections, to model the long-range dependencies between frames. While 

LSTM is a powerful model to capture mid-range dependencies, it is limited in 

memorizing capacity. This results in poor representation of long-range 

dependencies between time steps. By augmenting our model with the dilated 

RNN architecture, we were able to address this limitation and allow long-range 

information from previous time steps to contribute to the classification of the 

most recent frame. 

 We performed a thorough evaluation of our proposed model using the largest 

publicly available football dataset for the research community. We implemented 

and trained our models using Tensorflow framework. We ran an extensive 

ablation study. Different components of our network are studied in isolation and 

together and we compared the results with various baselines and state of the art. 

This allowed us to analyze the contribution of each component separately. 
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6.3 Research findings and Outcome of the Research 

We believe that given the accuracy improvement achieved using the proposed model 

in this research, and the fact that the evaluation is done on a dataset of long videos from 

major European leagues, the outcome of this research has strong academic and industry 

impacts. As for the academic impact, although our experiments have been performed on 

football videos, the importance of addressing long-range, mid-range and short-range 

dependencies is not limited to football events. For any long video with multiple events, it 

is possible to use a similar architecture for event classification and localization and model 

the temporal correlations between frames and sub-events. One can simply apply our 

proposed model on different sports or on other problem domains such as video 

surveillance.  

As for the industry impact, given the quantitative and qualitative results, it is evident 

that our approach provides a more accurate event localization estimates for long football 

videos, and as a result could effectively be used in any industry application for semi-

automatic event annotation or highlight generation. This means that less human 

annotation effort is required to provide meta-information for industry applications. 

6.4 Limitation and Future Discussion 

While our proposed model improves the accuracy of event classification and spotting 

in football videos, it is still possible to improve the results for small error tolerance 

thresholds. One key area of improvement is to combine the temporal segmentation 

process and the event classification into a single end-to-end architecture. This can 

improve the accuracy of potting by eliminating the errors occur in the boundaries of the 

unsupervised temporal segmentation. Another area of focus could be the computational 

efficiency of the proposed approach. While our neural network inference is fast for each 

frame, for long videos with high a frame frequency rate, it is still computationally 
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expensive to run the pre-processing Opticalflow algorithm. One potential exploration 

would be to compute the Opticalflow using CNN models as well. Multiple recent work 

compute Opticalflow using a variation of CNN models which can be combined to provide 

the input for the temporal stream of the two-stream CNN. 
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