
ADVANCED ONLINE BATTERY STATES CO-

ESTIMATION USING KALMAN FILTER FOR ELECTRIC 

VEHICLE APPLICATIONS 

 

 

 

 

PRASHANT SHRIVASTAVA 

 

 

 

 

 

FACULTY OF COMPUTER SCIENCE AND 

INFORMATION TECHNOLOGY 

UNIVERSITY OF MALAYA 

KUALA LUMPUR 

 

  

 2021

Univ
ers

iti 
Mala

ya



ADAVANCED ONLINE BATTERY STATES CO-

ESTIMATION USING KALMAN FILTER FOR 

ELECTRIC VEHICLE APPLICATIONS 

 

 

 

 

PRASHANT SHRIVASTAVA 

 

 

THESIS SUBMITTED IN FULFILMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF 

PHILOSOPHY 

 

FACULTY OF COMPUTER SCIENCE AND 

INFORMATION TECHNOLOGY 

UNIVERSITY OF MALAYA 

KUALA LUMPUR 

 

 

2021 Univ
ers

iti 
Mala

ya



ii 

UNIVERSITY OF MALAYA 

ORIGINAL LITERARY WORK DECLARATION 

Name of Candidate: Prashant Shrivastava                                                                       

Matric No: 17006320/1/WVA170058     

Name of Degree: Doctor of Philosophy 

Title of Thesis: Advanced online battery states co-estimation using Kalman filter for 

electric vehicle applications 

Field of Study: Modelling, Simulation and Systems Performance 

 I do solemnly and sincerely declare that: 

(1) I am the sole author/writer of this Work;

(2) This Work is original;

(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or

reproduction of any copyright work has been disclosed expressly and

sufficiently and the title of the Work and its authorship have been

acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the

making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the

University of Malaya (“UM”), who henceforth shall be owner of the copyright

in this Work and that any reproduction or use in any form or by any means

whatsoever is prohibited without the written consent of UM having been first

had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any

copyright whether intentionally or otherwise, I may be subject to legal action

or any other action as may be determined by UM.

 Candidate’s Signature  Date: 

Subscribed and solemnly declared before, 

 Witness’s Signature  Date: 

Name: 

Designation: 

12/10/2021

13/10/2021

Univ
ers

iti 
Mala

ya



ii 

UNIVERSITI MALAYA 

PERAKUAN KEASLIAN PENULISAN 

Nama: Prashant Shrivastava

No. Matrik: 17006320/1/WVA170058     

Nama Ijazah: Doktor Falsafah 

Tajuk Tesis : Penganggaran Bersama Keadaan Bateri Atas Talian Termaju 

Menggunakan Penuras Kalman Untuk Aplikasi Kenderaan Elektrik 

Bidang Penyelidikan: Pemodelan, Simulasi dan Prestasi Sistem 

 Saya dengan sesungguhnya dan sebenarnya mengaku bahawa: 

(1) Saya adalah satu-satunya pengarang/penulis Hasil Kerja ini;

(2) Hasil Kerja ini adalah asli;

(3) Apa-apa penggunaan mana-mana hasil kerja yang mengandungi hakcipta telah

dilakukan secara urusan yang wajar dan bagi maksud yang dibenarkan dan apa-

apa petikan, ekstrak, rujukan atau pengeluaran semula daripada atau kepada

mana-mana hasil kerja yang mengandungi hakcipta telah dinyatakan dengan

sejelasnya dan secukupnya dan satu pengiktirafan tajuk hasil kerja tersebut dan

pengarang/penulisnya telah dilakukan di dalam Hasil Kerja ini;

(4) Saya tidak mempunyai apa-apa pengetahuan sebenar atau patut

semunasabahnya tahu bahawa penghasilan Hasil Kerja ini melanggar suatu

hakcipta hasil kerja yang lain;

(5) Saya dengan ini menyerahkan kesemua dan tiap-tiap hak yang terkandung di

dalam hakcipta Hasil Kerja ini kepada Universiti Malaya (“UM”) yang

seterusnya mula dari sekarang adalah tuan punya kepada hakcipta di dalam

Hasil Kerja ini dan apa-apa pengeluaran semula atau penggunaan dalam apa

jua bentuk atau dengan apa juga cara sekalipun adalah dilarang tanpa terlebih

dahulu mendapat kebenaran bertulis dari UM;

(6) Saya sedar sepenuhnya sekiranya dalam masa penghasilan Hasil Kerja ini saya

telah melanggar suatu hakcipta hasil kerja yang lain sama ada dengan niat atau

sebaliknya, saya boleh dikenakan tindakan undang-undang atau apa-apa

tindakan lain sebagaimana yang diputuskan oleh UM.

 Tandatangan Calon  Tarikh: 

Diperbuat dan sesungguhnya diakui di hadapan, 

 Tandatangan Saksi  Tarikh: 

Nama: 

Jawatan:

12/10/2021

13/10/2021

Univ
ers

iti 
Mala

ya



iii 

ADVANCED ONLINE BATTERY STATES CO-ESTIMATION USING 

KALMAN FILTER FOR ELECTRIC VEHICLE APPLICATIONS 

ABSTRACT 

Carbon impression and the growing reliance on fossil fuels are two unique concerns 

for world emission regulatory agencies. These issues have placed electric vehicles (EVs) 

powered by lithium-ion batteries (LIBs) on the forefront as alternative vehicles. The LIB 

has noticeable features, including high energy and power density, compared with other 

accessible electrochemical energy storage systems. However, LIB is exceedingly 

nonlinear and dynamic; therefore, it requires an accurate state estimation technique in a 

battery management system (BMS). Due to the existing correlation between the battery 

states, the co-estimation method for different battery states estimation is preferred over 

individual state estimation. Though, the trade-off between accuracy and computational 

burden of the co-estimation method is difficult to maintain in real-time application. This 

thesis focuses on the development of the co-estimation methods of lithium-ion battery 

states of interest, which are capable to improve the efficiency of BMS, especially for EV 

applications.  

To achieve high estimation accuracy at a low cost, the co-estimation method for state 

of charge (SOC) and state of energy (SOE) is investigated in the first phase of the thesis. 

A new dual forgetting factor-based adaptive extended Kalman filter (DFFAEKF) 

algorithm to concurrently estimate the electrical equivalent circuit model parameters and 

SOC at high accuracy is first developed. The DFFAEKF algorithm has the feature to 

reduce the possibility of battery model parameter divergence from the true value under 

different dynamic conditions with the same order of big O notation complexity as DEKF. 

Thereafter, with the credible SOC estimation by using DFFAEKF, a co-estimation 

method for SOC and SOE using a quantitative relationship between SOC and SOE is 
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developed. The simplicity of the proposed co-estimation method can avoid the heavy 

computational burden required by the individual state estimation of SOC and SOE.  

Finally, to effectively utilize the correlation amongst battery states and reduce the 

computational burden of the BMS, a unified frame of co-estimation method for battery 

states including SOC, SOE, state of power (SOP). actual capacity and maximum available 

energy is developed. In addition to co-estimation of SOC and SOE in the first method, 

the SOP estimation is performed by using identified Rint battery model parameters using 

the forgetting factor recursive least square (FFRLS) algorithm. Next, the actual capacity 

and maximum available energy estimation are performed by using a new sliding window-

approximate weighted total least square (SW-AWTLS) algorithm at a low computational 

burden. The performance of the proposed co-estimation methods are experimentally 

verified with battery cells of different chemistries and dynamic load profiles which 

suitable for EV. Besides, the low computational burden of the proposed co-estimation, 

the results demonstrate the high accuracy of the battery states estimation irrespective of 

the change in battery chemistry under-considered dynamic operating conditions. 

With the effective utilization of battery states correlation and high estimation accuracy 

of the battery states co-estimation methods, the performance of the BMS can be 

significantly improved. Furthermore, the proposed co-estimation methods in this thesis 

can contribute to the safe, reliable, and efficient utilization of the LIBs used in EV 

applications.  

Keywords: Battery State; Electrical equivalent circuit model (EECM); Kalman Filter 

(KF); Lithium-ion battery (LIB); Electric Vehicle (EV). 
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PENGANGGARAN BERSAMA KEADAAN BATERI ATAS TALIAN 

TERMAJU MENGGUNAKAN PENURAS KALMAN UNTUK APLIKASI 

KENDERAAN ELEKTRIK 

ABSTRAK 

Kesan karbon dan pergantungan yang semakin meningkat pada bahan bakar fosil 

adalah dua keprihatinan unik bagi agensi pengawalan pelepasan dunia. Isu-isu ini telah 

meletakkan kenderaan elektrik (EV) yang dikuasakan oleh bateri lithium-ion (LIB) di 

barisan hadapan sebagai kenderaan alternatif. LIB mempunyai ciri-ciri yang ketara, 

termasuk ketumpatan tenaga dan tenaga yang tinggi, berbanding dengan sistem 

penyimpanan tenaga elektrokimia yang lain. Walau bagaimanapun, LIB sangat tidak 

linear dan dinamik; oleh itu, secara amnya memerlukan teknik anggaran keadaan yang 

tepat dalam sistem pengurusan bateri (BMS). Oleh kerana terdapat hubungan antara 

keadaan bateri, kaedah anggaran bersama untuk anggaran keadaan bateri yang berbeza 

lebih disukai daripada anggaran keadaan individu. Walaupun begitu, keseimbangan 

antara ketepatan dan beban komputasi kaedah pengiraan bersama sukar dikekalkan dalam 

aplikasi sebenar. Tesis ini memfokuskan kepada pengembangan kaedah anggaran 

bersama keadaan bateri lithium-ion yang menarik, yang mampu meningkatkan kecekapan 

BMS, terutamanya untuk  aplikasi EV. 

Untuk mencapai ketepatan anggaran yang tinggi dengan kos rendah, kaedah anggaran 

bersama untuk keadaan cas (SOC) dan keadaan tenaga (SOE) disiasat pada fasa pertama 

tesis. Algoritma penapis Kalman (DFFAEKF) pelengkap adaptif berasaskan faktor lupa 

dua yang baru untuk secara bersamaan menganggarkan parameter model litar setara 

elektrik dan SOC pada ketepatan tinggi mula-mula diperkembangkan. Algoritma 

DFFAEKF mempunyai ciri untuk mengurangkan kemungkinan perbezaan parameter 

model bateri dari nilai sebenarnya dalam keadaan dinamik yang berbeza dengan 

kerumitan notasi O susunan yang sama dengan DEKF. Selepas itu, dengan perkiraan SOC 
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yang boleh dipercayai dengan menggunakan DFFAEKF, kaedah perkiraan bersama untuk 

SOC dan SOE menggunakan hubungan kuantitatif antara SOC dan SOE 

diperkembangkan. Keberkesanan kaedah penganggaran bersama yang dicadangkan dapat 

mengelakkan beban komputasi berat yang diperlukan oleh anggaran keadaan individu 

untuk SOC dan SOE. 

Akhirnya, untuk memanfaatkan korelasi antara keadaan bateri dengan berkesan dan 

mengurangkan beban komputasi BMS, satu kaedah taksiran bersama bagi keadaan bateri 

termasuk SOC, SOE, state of power (SOP), kapasiti sebenar, dan tenaga maksimum yang 

ada diperkembangkan. Sebagai tambahan kepada pengiraan bersama SOC dan SOE 

dalam kaedah pertama, anggaran SOP dilakukan dengan menggunakan parameter model 

bateri Rint yang dikenal pasti dengan menggunakan algoritma faktor terlupa rekursif 

kuasa dua terkecil (FFRLS). Seterusnya, kapasiti sebenar dan anggaran tenaga maksimum 

yang ada dilakukan dengan menggunakan algoritma slaid tingkap-perkiraan jumlah 

paling sedikit persegi (SW-AWTLS) baru dengan beban pengiraan yang rendah. Prestasi 

kaedah penganggaran bersama yang dicadangkan disahkan secara eksperimen dengan sel 

kimia bateri yang berbeza dan profil beban dinamik yang sesuai untuk EV. Selain itu, 

beban komputasi yang rendah dari penganggaran bersama yang dicadangkan, hasilnya 

menunjukkan ketepatan anggaran tinggi dari keadaan bateri tanpa mengira perubahan 

kimia bateri dalam keadaan operasi dinamik yang dipertimbangkan. 

Dengan penggunaan korelasi keadaan bateri yang berkesan dan ketepatan anggaran 

yang tinggi bagi kaedah pengiraan bersama keadaan, prestasi BMS dapat meningkat 

dengan ketara. Selanjutnya, kaedah penganggaran bersama yang dicadangkan dalam tesis 

ini dapat menyumbang kepada penggunaan LIB yang selamat, boleh dipercayai, dan 

efisien yang digunakan dalam aplikasi EV. 
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(KF); Bateri ion litium (LIB); Kenderaan Elektrik (EV). 
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CHAPTER 1: INTRODUCTION 

1.1 Background and Motivation 

The efficient deployment of Electric Vehicles (EVs) in the world transportation system 

is one of the appealing solutions to decrease greenhouse gases emission and boost energy 

efficiency. As per the Global EV outlook 2018 (IEA International Energy Agency, 2018), 

the worldwide automobile market will be successfully deploy 117.6 million EVs on the 

road, and that will contribute to reducing 262 Mt CO2 emission by 2030. The potential 

advantages of Lithium-ion batteries (LIBs) intrigue the EVs manufacturer companies to 

utilize them as the primary source of an energy storage system (Peters et al., 2017; Zubi 

et al., 2018). However, high cost, low production capacity, and highly dynamic nature are 

the real worries that confine its successive application in EV (Hannan, Hoque, et al., 

2017a). According to data collected by Bloomberg (This Is the Dawning of the Age of the 

Battery - Bloomberg, n.d.), the cumulative demand of LIB expected to tough the 

unthinkable number 9,300 GWh by 2030, as presented in Figure 1.1. Also, the worldwide 

cost and production capacity of the LIB pack are improving continuously, as shown in 

Figure 1.2. As reported by Bloomberg, the worldwide LIB pack cost will drop to nearly 

90 % as compared to 2010 and reached 73 USD/kWh by 2030.  

 

Figure 1.1: Expected worldwide cumulative lithium-ion battery demand by 2030 

in GWh (This Is the Dawning of the Age of the Battery - Bloomberg, n.d.) 
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Figure 1.2: Worldwide lithium-ion battery pack cost by 2030 in USD/kWh (This 

Is the Dawning of the Age of the Battery - Bloomberg, n.d.) 

Due to the highly nonlinear and dynamic nature of LIB, an effective battery 

management system (BMS) is constantly required to work LIB in the safe operating area. 

Protection from overcharging/discharging, cell balancing, and monitoring the battery 

states are the key roles of BMS.  

 

Figure 1.3: Example of failed BMS in Chevrolet Bolt EV model 2017-2019 

(General Motors Recalling Nearly 69,000 Bolt EVs for Fire Risks - The Economic 

Times, n.d.) 

Figure 1.3 shows a fire-damaged Chevrolet Bolt EV, whose failure is strongly linked to a 

defective BMS software that led to the thermal runaway. From this photograph, it can be seen 
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that a reliable and robust BMS is the utmost priority for the EV manufacturer to provide a 

safe driving experience to EV users. Other benefits of the robust BMS are to maximize the 

energy and power delivery capabilities of the battery pack and prolong the overall service life 

by accurately monitoring the battery states. Different battery states such as state of charge 

(SOC) (Z. Li et al., 2017a), state of energy (SOE) (HongWen He et al., 2015), state of 

health (SOH) (Lin et al., 2015), and state of power (SOP) (Farmann & Sauer, 2016) are 

estimated by using estimation algorithm in BMS.  

Generally, there are two types of estimation methods available in the literature such as 

the single/individual state estimation method and the combined states estimation or states 

co-estimation method. In the single/individual estimation, any one of the states is 

estimated by using a dedicated estimation method. In the last couple of years, there is 

plenty of research that has been done on the individual estimation method (Y. Wang et 

al., 2020). However, the individual estimation method may not be accurate due to the 

high dependency and correlation of the states on each other. To overcome this issue, the 

co-estimation method has been employed for the accurate battery states estimation 

especially for EV applications (X. Hu et al., 2018; P. Shen, Ouyang, Lu, et al., 2018). 

Based on the different states involved in the co-estimation method, the existing co-

estimation method can be classified into several categories such as 1) SOC and SOH, 2) 

SOC and SOE, 3) SOC and SOP, and 4) others. These categories are described in detail 

in chapter 2.  

This thesis aims to expand upon the current state-of-the-art of advanced LIB states 

estimation algorithms, by preparing a novel body of work on battery states co-estimation 

method, with a view to improve the accuracy and reduce the computational cost of the 

BMS used in EV. This chapter provides an overview of research motivations answering 

the question of the proposed research work. Also, a summary of previous work found in 
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the literature is presented. The problem statement, research questions, and objectives are 

described here. 

1.2 Problem Statement 

The battery states co-estimation method plays a vital role in improving the efficiency 

and reducing the computation of BMS (Hossain Lipu et al., 2021). Remarkably, the 

battery states co-estimation method continuously requires accurate SOC along with the 

other relevant battery parameters. Hence, to proceed with the battery states co-estimation 

method, the initial requirement is to estimate the SOC accurately. A large number of SOC 

estimation methods have been developed by the researchers so it is crucial to select a 

suitable algorithm for EV applications (Hannan, Lipu, et al., 2017).  

In recent years, the Kalman filter (KF) algorithm and its variants are most favored by 

researchers for model-based SOC estimation due to its prominent features such as the 

capability to adaptively decrease the impact of noise and wide operating range. 

Especially, the extended Kalman filter (EKF) is the most suitable algorithm for real-time 

SOC estimation (C. Huang et al., 2018). In model-based SOC estimation using EKF, the 

SOC estimation accuracy directly depends on the accuracy of identified battery model 

parameters and the prior knowledge of the system noise variables. To address this, the 

dual extended Kalman filter (DEKF) is extensively utilized by the researchers to 

concurrently update the battery model parameters and SOC. However, the problem of 

battery model parameter divergence from the true value greatly affects the estimation 

accuracy under realistic dynamic loading conditions (Wassiliadis et al., 2018). Thus, there 

is a need to develop an accurate SOC estimation algorithm to work effectively in the 

presence of uncertain disturbances and erroneous initial conditions under real-time 

applications. 
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Nowadays, the co-estimation method which estimates two or more battery states 

concurrently is gaining popularity due to the existing high correlation between the 

different states. Also, the co-estimation method helps to improve the battery states 

estimation accuracy (Y. Wang et al., 2020). In the literature, different co-estimation 

methods have been presented by researchers using KF family algorithms (X. Li et al., 

2019; Song et al., 2020; S. Zhang & Zhang, 2021b; Yongzhi Zhang et al., 2017). As the 

computational burden of the co-estimation algorithm proportionally increases the cost 

and size of the controller used in BMS, there is a need to develop an accurate 

comprehensive co-estimation method with the low computational burden that acquires 

the benefits of correlation between the battery states (Y. Wang et al., 2020).  

The problem statement of the thesis can be summarized as follows: 

i. With the advancement of EV battery technology, it is always crucial to select the 

more appropriate battery SOC estimation method for an EV application.   

ii. Subject to the uncertain disturbances and erroneous initial conditions, the 

accuracy of the SOC estimation process varies over the wide range of operating 

conditions. 

iii. Due to the high correlation between the states, it is critical to improve the overall 

performance of the BMS in the absence of any state information in real-time 

dynamic conditions. 
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1.3 Research Objectives 

There are three main research objectives in this thesis and all of them are geared toward 

enhancing the overall performance of the BMS. 

i. To analyze the existing online SOC estimation methods suitable for EV 

application. 

ii. To develop online SOC estimation with high accuarcy and robustness under 

uncertain disturbances and erroneous initial conditions. 

iii. To develop an accurate and computationally efficient co-estimation method 

with proper utilization of the correlation among the different battery states.  

1.4 Research Questions 

To achieve the objectives of this research, the following research questions need to be 

answered 

i. Which type of algorithm is well suited for online SOC estimation method 

performance in an EV application? 

ii. How can we improve the accuracy of the online SOC estimation method under 

under uncertain disturbances and erroneous initial conditions? 

iii. How can we estimate the different states of the battery under the influence of real-

time dynamic load by using the correlation among them with minimum 

computation effort? 

1.5 The importance and Relevance of the Study 

This research provides highly accurate, strongly robust to measurement noise 

uncertainties and computationally less expensive states co-estimation method for online 

estimation of different states, including SOC, SOE, SOP, actual capacity, and maximum 

available energy. With the proposed battery states co-estimation method, the existing 
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correlation between different states of LIB will be effectively utilized hence it would be 

implemented in limited computation capability microprocessor used in BMS. The output 

of this research will benefit EV users by providing more accurate information about the 

available charge, driving range, and safe driving experience. Furthermore, this research 

output will help to extend battery life, efficient energy management system to regulate 

the power flow with EV more precisely, optimize battery performance, protects from 

premature failures and safety hazards. 

1.6 Layout of Thesis 

This thesis is organized into several chapters. In this chapter, the background, 

objectives, research methodology, and relevance of the study are discussed. A brief 

explanation of the rest of the chapters are as follows: 

1.6.1 Chapter 2  

This chapter provides a state-of-the-art review on battery states estimation methods, 

for instance, individual state estimation method and battery states co-estimation method. 

It begins with a review of the suitable LIB technologies for EV applications. The key 

functions of the BMS are also discussed. Thereafter, a comprehensive review on the 

battery modeling method suitable for online battery states estimation is provided. A 

review on state-of-the-art of battery states including SOC, SOE, SOP, SOH, actual 

capacity, and maximum available energy estimation algorithms reported in the literature 

is undertaken. Also, a review on existing co-estimation methods is given. Finally, the 

recent studies in the existing literature on online SOC estimation using KF family 

algorithms are discussed. 

1.6.2 Chapter 3  

In this chapter, the experimental setting used to validate the proposed estimation 

methods in this thesis is discussed. The specification of the considered different 
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chemistries commercial battery cells, temperature chamber, and battery tester are 

provided. The battery testing methods involved in the development of the useful dataset 

and the evaluation matrices considered for the validation of the proposed methods are 

explained. After this, the proposed research methodology to achieve the objectives of the 

thesis is discussed. 

1.6.3 Chapter 4  

This chapter discusses the importance of the accurate and low computational burden 

co-estimation method for battery SOC and SOE is developed for EV applications. The 

mathematical model of the proposed dual forgetting factor-based adaptive extended 

Kalman filter (DFFAEKF) algorithm and its implementation for the SOC estimation 

method are provided. The benefits of DFFAEKF over DEKF in terms of estimation 

accuracy and fast convergence are given. Thereafter, the concept of the proposed co-

estimation method for SOC and SOE estimation and mathematics behind the 

implementation are also discussed. In addition, the experimental setting and battery test 

involved in the validation of the proposed method under dynamic operating conditions 

are explained.  

1.6.4 Chapter 5  

This chapter discusses the proposed unified frame of battery states co-estimation 

method for the estimation of SOC, SOE, SOP, actual capacity, and maximum available 

energy. The correlation between different battery states is effectively utilized to reduce 

the computational burden. The mathematical model of the proposed unified frame of the 

battery states co-estimation method is also discussed. Considered different algorithms for 

the battery SOP, actual capacity, and maximum available energy estimation are presented. 

In addition, the experimental setting and battery test involved in the validation of the 

proposed method under dynamic operating conditions are explained.  
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1.6.5 Chapter 6  

This chapter discusses the results of the proposed co-estimation method for SOC and 

SOE estimation using DFFAEKF under-considered dynamic operating conditions. Also, 

the identified battery 2RC model parameters using DFFAEKF and DEKF are presented 

for DST and US06 drive cycles. The accuracy and the robustness of the proposed co-

estimation method for SOC and SOE estimation under-considered dynamic operating 

conditions are analyzed. Thereafter, the results of the proposed unified frame of battery 

states co-estimation method for battery states (SOC, SOE, SOP), actual capacity, and 

maximum available energy are explained. The results analysis of the proposed unified 

frame of battery states co-estimation method under-considered dynamic operating 

conditions are also presented.  

1.6.6 Chapter 7  

This chapter contains the re-examination of the thesis objectives, conclusion, and 

suggestions for future work. 
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CHAPTER 2: BACKGROUND AND STATE OF THE ART LITERATURE 

REVIEW 

2.1 Introduction 

The LIB technologies are becoming a favorite choice for energy storage for EV 

applications. However, without significant improvement in the battery management 

system, LIBs will not be considered a safe and reliable choice for EV users. Therefore, 

this chapter initial aim to provide a review on LIB chemistries for EV and BMS. 

Thereafter, a comprehensive review on the battery modeling method suitable online states 

estimation is performed. A review on state-of-the-art of battery states, actual capacity, 

and maximum available energy estimation algorithms reported in the literature is 

undertaken. Finally, the recent studies in the existing literature on online SOC estimation 

using KF family algorithms were thoroughly reviewed. 

2.2 Suitable Lithium-ion battery chemistries for EV applications 

Over the past decade, the lithium-ion batteries (LIBs) penetration in the EV market is 

exponentially increasing, where high energy/power density is needed (Hannan, Hoque, et 

al., 2017b). Based on the positive electrode material chemistry, the existing LIBs can be 

classified into different categories such as lithium cobalt oxide (LCO), lithium-ion iron 

phosphate (LFP), lithium-ion nickel manganese cobalt oxide (NMC), lithium nickel 

cobalt aluminum oxide (NCA) and lithium-titanate (LTO) (Miao et al., 2019). The 

properties of mentioned LIBs are listed in Table 2.1.  Mostly, carbon and lithium titanate 

are utilized as negative electrode material (Linchao Zhang & Chen, 2011). All types of 

LIBs are being utilized by EV manufacturers. However, LFP, NMC, and NCA are gaining 

popularity amongst EV manufacturers due to high voltage and high specific energy 

density (L. Lu et al., 2013). NCA is widely utilized by Tesla in its current development 

establishes by Panasonic in the cylindrical form such as Tesla S and Tesla X models 

(Exclusive: Panasonic Aims to Boost Energy Density in Tesla Batteries by 20% - 
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Executive | Reuters, n.d.). NCM batteries are preferred for high-power applications. NMC 

batteries are used in EV models such as BMW i3, Nissan Leaf, Fiat 500e, Kia Soul EV, 

Ford Focus EV. Whilst LFP batteries with higher discharge current rate and superior 

thermal stability characteristics are used in Chevrolet spark, and BYD e6 (Sanguesa et 

al., 2021). Due to the low voltage and energy density of LFP batteries, it is more expensive 

on the scale of a cost/kWh. 

To meet the increasing demand for EVs in the market, high levels of academic and 

industrial research are going on to develop more advanced battery technologies. In this 

thesis, the commercially available NCA, NMC, and LFP cells for the development of the 

online state monitoring method. It is worth noting that the algorithms developed in this 

thesis are also applicable to other battery chemistries, given knowledge of certain battery 

design limits and algorithm tuning parameters are available at the initialization step. 
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2.3 Definition of different states of the Lithium-ion battery (LIB) 

2.3.1 State of Charge (SOC) 

SOC can be defined as the ratio of remaining capacity (��
�) to the actual capacity 

(��) of the battery as expressed in (2.1) (I. Kim, 2008). Where ��
� is the capacity in Ah 

refers to the maximum possible limit of charge that can be extracted from the battery at a 

particular time of instant and �� is the maximum possible limit of charge in Ah called 

actual capacity that can be extracted from the battery in its actual aged state starting from 

a fully charged state. The rated capacity in Ah (����
�) is the battery capacity provided 

by the manufacturer for operation under normal conditions. SOC is an important 

parameter to measure battery performance. Since it depends on the internal battery 

chemistry, the direct measurement from electrical signals is impossible. An accurate 

estimation of SOC is typically needed to avoid detrimental situations during the charging 

and discharging process.  

���(�) = (��
� ��) × 100%⁄                                       (2.1) 

Conventionally, the ���(�) can be calculated by (2.2), where �� is the coulombic 

efficiency, ���(0) is the initial SOC, and �(�) is the battery charging/discharging current. 

The ��  generally describes as the ratio of the consumed electrons and available electrons 

during the charging/discharging process. This ratio is assumed to be 0.9 and 1 during the 

charging and discharging process respectively (Plett, 2004e). The SOC is expressed in 

percentage as presented in Fig 4, the 100% SOC and 0% SOC implies the fully charged 

and fully discharged cell condition, respectively.  

���(�) = ���(0) −   ! ���(�)"(�) (��(�) × 3600)⁄�% &                (2.2) 
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Figure 2.1: LIB stored energy status at different SOC (100%, 50% and 0%) 

2.3.2 State of energy (SOE) 

SOE is a percentage ratio of the residual energy to the actual energy of the battery as 

represented by (2.3). The accurate SOE estimation is crucial for the optimal energy 

management of an EV application and microgrid application (Lin et al., 2017).  

��� = '()*"+,- ��(./0 (��) 12�+,- ��(./0(��)⁄                         (2.3) 

The actual energy of the battery is varying with the change in the operating conditions. 

Due to this, it becomes mandatory to consider the effect of temperature, current rate, and 

aging level for the accurate estimation of battery SOE (L. Zheng et al., 2016a). Further, 

the ���(�) can be expressed in power integral form as (2.4) (Yongzhi Zhang et al., 2017),  

���(�) = ���(0) −   ! �
3(�). �(�)"(�) (��(�) × 3600)⁄�% &                    (2.4) 

Where ��(�) is the actual energy or maximum available energy in Watt-hour (Wh), 

3(�) is the terminal voltage, �(�) is the charging/discharging current, �
 is the battery 

energy efficiency and ���(0) is the initial value of ���.  

Estimation of SOE is useful for the direct determination of the percentage of remaining 

energy of the battery. In the case of EVs, it is the more accurate parameter to predict the 
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useful remaining driving range of EVs. Due to the consideration of different parameters 

such as internal resistance energy loss and battery open circuit voltage (��3), the ��� 

of the battery varies nonlinearly with the battery current. 

2.3.3 State of power (SOP) 

Battery peak power (�4
�5) is the maximum power delivered in the time span (�) 

without violating the set operating parameters limits like the voltage, current, temp, and 

SOC (Pei et al., 2014). Due to the non-linear dynamic behavior of the LIB, these 

parameters significantly change throughout the battery life. And the SOP is the ratio of 

peak power (�4
�5) to the nominal power (�6) (2.5). In other words, it is simply a 

parameter to quantify the battery maximum power handling capacity during dynamic 

loading conditions (S. Wang et al., 2012). To maintain the life cycle with the full 

utilization of the battery power, it is necessary to estimate the SOP of the battery.  

��� = |�4
�5 �6⁄ |�89                                                 (2.5) 

For the operation of energy management systems in EVs, SOP estimation is important 

to control the energy flow from the battery to maintain its safe operating limit. The real-

time SOP estimation is requested, to measure and control the acceleration/deceleration 

and charging/discharging power requirement of the EVs in a certain duration of time 

(Waag et al., 2014). 

2.3.4 State of health (SOH) 

The battery SOH is a figure of merit that indicates the battery aging level. Due to 

complex internal electrochemical dynamics, understanding the battery aging process is 

very difficult. The aging phenomenon includes capacity fade and power fade of the 

battery cell. Usually, the capacity fade refers to the loss of active material inside the 

battery cell whereas the power fade refers to an increase in internal resistance. There are 
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multiple reasons behind the battery capacity fade and power fade. For example, the aging 

of the anode and cathode material of battery cells differs from each other significantly. In 

industry, the battery cell's remaining capacity and internal ohmic resistance are the two 

indicators utilized for SOH estimation. In the case of EV, the battery cell End of life 

(EOL) is defined as the time when the battery cell remaining capacity reaches 80% of the 

capacity at beginning of life (BOL) and the internal resistance cross the threshold limit of 

200% of internal resistance at BOL (W. Li et al., 2021a). As the battery cell crosses the 

EOL threshold limits, it could not be suitable for EV application. Based on capacity fade 

and power fade, the battery ��:(�) at time instant � can be expressed as (2.6) and (2.7), 

respectively (Zhengyu Liu et al., 2020). Where, �� and '� are the battery cell actual 

capacity and internal resistance at time instant �. �;<= and ';<= are the battery capacity 

and resistance value at BOL or fresh battery cell.  

��:(�) = (�� �;<=) × 100%⁄                                    (2.6) 

��:(�) = ('� ';<=) × 100%⁄                                    (2.7) 

2.4 Battery Management System 

Owing to the highly nonlinear and dynamic nature of LIBs, an effective BMS is 

continuously required to operate them in a safe operating area (L. Lu et al., 2013). The 

battery management system (BMS) is an electronic system that serves as the brain of the 

battery system. In this section, an overview of BMS key functions is provided. Thereafter, 

the focus is brought to the online battery modeling and parameter identification and states 

estimation algorithms, and suitable Kalman filter family algorithms for SOC estimation, 

which are the main topic of the study in this thesis. 
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As shown in Figure 2.2, some of the key functions of BMS are data acquisition, energy 

management system, thermal management system, safety and protection, cell balancing, 

and state monitoring (K. Liu et al., 2019; Xing et al., 2011). 

 

Figure 2.2: Basic functions of the battery management system  

2.4.1 Data Acquisition 

 The data acquisition includes the monitoring and storing of the most relevant battery 

data for decision-making units of BMS. The most relevant battery data are the measured 

voltage of every battery-connected battery cells, the current flows in parallel connected 

modules in the battery pack, and the temperature of each battery cells. The proper 

sampling frequency of voltage and current measurement is always required to capture the 

transient response of the battery cells. 

2.4.2 Energy Management system 

To control the energy flow to fulfill the fast-transient and slow-transient power 

requirements in the most practical application like EV, the proper energy management 
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system (EMS) is always needed. The EMS also creates communication between the DC-

DC converter, battery charger, propulsion motor, and battery pack. It also helps to control 

the power flow in the power train of the EV.  

2.4.3 Thermal management system  

LIBs are very sensitive to temperature. The increase in temperature has two effects on 

the performance of the LIBs. With the increase in temperature, the LIBs performance 

improves and work more efficiently. On the other side, it creates the problem of the 

thermal runway that can reduce their reliability because of probable explosion (Qian 

Wang et al., 2016). Therefore, to maintain the temperature within the safe operating 

temperature range, the thermal management system is generally equipped with a battery 

pack. Depending on the applications, two different types of TMS such as active and 

passive systems are widely used (Lopez Sanz et al., 2016).  

2.4.4 Safety and protection 

To protect the battery cells or battery pack from malfunctioning and permanent 

damage, different sensors are incorporated with BMS. With the help of sensor signals, 

the battery cells can be protected from overcharge, undercharge, insulation fault, 

uniformity fault, over-fast temperature rise, and low temperature (L. Lu et al., 2013).  

When the faults are diagnosed, the sensor signals are transmitted to the vehicle control 

unit to handle the faults. Under a serious fault condition, the vehicle control unit 

disconnects the battery pack from the power supply also.   

2.4.5 Cell balancing 

To fulfill the energy and power demand of the load, a large number of battery cells are 

connected in the series-parallel configuration in a battery pack. The battery cells 

connected in the series configuration operate with the amount of current under and 

discharge conditions. However, due to inconsistency amongst the battery cells, the small 
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imbalance in voltages of the battery cells is always present. Voltage differences may 

cause overcharging and deep discharging for a few cells, which leads to cell distortion. 

Voltage differences also affect the operation, performance, and safety of the entire battery 

pack. To outperform this, the cell balancing circuit is available in BMS. Generally, two 

types of cell balancing circuits are used in BMS such as active cell balancing and passive 

cell balancing that are also known as dissipative and non-dissipative cell balancers, 

respectively (Das et al., 2020). With the application of effective cell balancing, the energy 

and power delivery to the battery pack can be controlled.  

2.4.6 Battery States monitoring 

For the development of robust and efficient BMS, various battery states need to be 

monitored accurately. However, the battery states cannot be measured directly using 

electronic sensors. Therefore, the battery states estimation is performed with the help of 

other directly measurable quantities, such as battery terminal voltage, current, and 

operating temperature. The states estimation must be quick, reliable, and accurate to 

ensure the high performance of BMS. Due to dynamic operating conditions and battery 

aging, the battery characteristics such as battery capacity, and impedance parameters are 

varied significantly. Therefore, these variations in battery characterizations must be 

adaptively updated with the battery state estimation to produce an accurate and reliable 

set of battery state estimates. 

The overall structure of the battery state monitoring system is shown in Figure 2.3. 

Generally, the battery dynamic model is utilized with the battery states estimation 

algorithms of SOC (Hannan, Lipu, et al., 2017), SOE (X. Li et al., 2021), SOH (Berecibar 

et al., 2016a), and SOP (Farmann & Sauer, 2016). At every instant, the battery dynamic 

model parameters are identified by using the online model parameter identification 

method. Thereafter, the prediction of the OCV is made based on the battery dynamic 

Univ
ers

iti 
Mala

ya



20 

model identified parameters, which is then utilized in SOC estimation algorithm. 

Consequently, this information is processed into estimation algorithm s responsible for 

SOE, SOH and SOP. Furthermore, the battery’s actual capacity and maximum available 

energy are predicted based on estimated SOC and SOE to develop the comprehensive 

BMS for EV applications.  

 

Figure 2.3: Overall structure of battery states monitoring system 

2.5 Lithium-ion Battery Modeling methods 

Battery model development is the primary step of online SOC estimation. The purpose 

of the battery model is to replicate the performance of the battery behavior in a simulation 

environment. LIBs have a complex working phenomenon and incorporate different 

parameters, such as mass transfer, migration of ions between electrodes, side reactions, 

and current collector reactions. Thus, battery models with high reliability and accuracy 

are crucial for model-based parameter estimation. Based on control theory, battery 

models can be classified as the black model, white model, and gray model (Lai et al., 

2018).  

2.5.1 Types of Battery Models  

The battery model is classified into five categories, namely empirical model (EM) 

(Plett, 2004e, 2004c, 2004d, 2006a), ECM (Newman & Tiedemann, 1975), EECM 

(Mousavi G. & Nikdel, 2014), (Mu et al., 2017), ECIM (Stephan Buller et al., 2003; 
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Westerhoff et al., 2016) and DDM (Hametner & Jakubek, 2013), as depicted in Figure 

2.4. EECM is the most suitable for online SOC estimation because of its low complexity 

and computational requirements and high compatibility for embedded system 

applications. The EECM model can be classified into three: the Rint model, Randles 

model, and nRC model. 

 

Battery modelling methods

ECM EECM ECIM DDM

Rint Randles nRC

1RC 2RC

EM

 

Figure 2.4: Types of LIB modelling methods 

2.5.1.1 Empirical model 

In EMs, the battery internal electrochemical dynamics is represented by using a 

mathematical expression and reduced-order polynomial. The mathematical function is 

utilized to represent the relation between battery terminal voltage with the SOC and 

battery current. The Shepherd model, Unnewehr universal model, and Nernst model are 

the main categories of EM (Meng, Luo, et al., 2018). The combined model was proposed 

in (Plett, 2004d) to improve the accuracy and computational burden of EM. The combined 

model of LIB is the combination of the three aforementioned models, and it shows better 

performance compared with the individual model performances (Plett, 2004e, 2004c, 

2004d, 2006a).  

The terminal voltage (Vt,k ) can be expressed by (2.8) at kth sample time and comprises 

two parts: the function of SOCk in which the value of the constants d0, d1, d2, d3 and d4 
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depend on OCV and the function of current (Ik) where Ik and SOCk are the respective 

values of current I and SOC at the kth sample time. 

 3�,5 = "% +  "@ ���5⁄ + "A���5 + "B ln ���5 + "E ln(1 − ���5)  FGGGGGGGGGGGGGGGGGGHGGGGGGGGGGGGGGGGGGIJ(K<LM) − '�5NJ(OM)       (2.8) 

          The accuracy of the EM can be improved by adding more battery parameters. 

By contrast, the utilisation of numerous parameters proportionally increases the 

computational burden. Therefore, this modelling method is not suitable for online SOC 

estimation. 

2.5.1.2 Electrochemical model 

The first ECM was developed by Newman and Tiedemann (Newman & Tiedemann, 

1975), and it uses microscopic- and macroscopic-level information to describe the 

electrochemical and physical properties of the battery (Dees et al., 2002; C. Y. Wang et 

al., 1998). The pseudo-two-dimensional (P2D) model is amongst the most popular ECM 

models (Jokar et al., 2016a; J. L. Lee et al., 2012b; Smith et al., 2007). It works on the 

principles of porous electrode theory, concentrated solution theory and kinetic equations 

(Jokar et al., 2016a). In the past few years, the P2D model has been extensively utilised 

for LIB modelling. However, the overall computation time and modelling the complexity 

of this P2D model increase because of the need for numerous nonlinear PDEs to solve 

the P2D. In the past few years, several models, such as single particle (SP) model (Han 

et al., 2015a), simplified P2D model (SP2D) (Jokar et al., 2016b) and improved SP model 

(SP3), (Han et al., 2015b) have been developed to overcome the issues related to the P2D 

model. In (Wu et al., 2013), the P2D model was coupled with a thermal model for the 

development of BMS to address thermal runaway and performance degradation caused 

by dynamic loading (charge/discharge at medium-to-high C-ratings) of the LIB. 

Application of the full-order model of P2D, SP, SP2D and SP3 can accurately predict the 

Univ
ers

iti 
Mala

ya



23 

electrochemical properties of LIB. However, for the solution of PDEs, highly complex 

and costly software is usually required, which makes P2D model inappropriate for online 

application. Furthermore, for the identification of real-time parameters (voltage, SOC and 

electrochemical variables) of ECM with low computation time and complexity, the 

reduced-order model (ROM) with discrete-time realisation algorithm was used in (J. L. 

Lee et al., 2012a, 2012c; Smith, 2006). The developed ROM was successfully 

implemented with BMS, and it could track all electrochemical states with high accuracy 

(X. Guo et al., 2016). To further improve the performance of ROM, the time-varying 

ROM was developed with the generally preferred model blending (J. L. Lee et al., 2014). 

This ROM could track the variables over a wide range of SOC at the cost of reduced SOC 

estimation accuracy (Bartlett, Marcicki, Onori, Rizzoni, Yang, et al., 2016; Stetzel et al., 

2015). Therefore, the use of PDEs in computation remains doubtful for the real-time 

application in BMS of EV.  

2.5.1.3 Electrical equivalent circuit model 

To maintain the trade-off between battery model complexity and accuracy, a new 

modeling approach called EECM has been investigated by researchers (Mousavi G. & 

Nikdel, 2014; Rzepka et al., 2021) EECM is one of the most promising approaches for 

online battery parameter/state estimation, especially for EV applications. It uses lumped 

components such as resistors, capacitors and voltage source, to describe the complete 

battery dynamic behavior. The EECM approach can be classified into three categories, 

such as Rint model, Randles model and RC model (Mousavi G. & Nikdel, 2014), as 

presented in Figure 2.4. For the efficient utilization of EECM for online SOC estimation, 

an accurate model PIM is always needed.  

Based on the operating condition, PIMs suitable for battery EECM can be classified 

into two categories, online and offline. In the online method, tests are conducted during 
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the active application mode, whereas in the offline method, ad-hoc tests are conducted on 

the battery during the standby application mode. The offline method of battery parameter 

identification is extensively utilized in online SOC estimation. Additionally, it helps 

reduce the complexity of online SOC estimation. The commonly used offline PIMs are 

curve fitting (L. Lu et al., 2013), RLS algorithm (Barcellona & Piegari, 2017a; S. Zhang 

& Zhang, 2021b) multi-swarm particle swarm optimisation (MPSO) (C. Huang et al., 

2018) and GA (Q. Yang et al., 2017). However, the accuracy of the model parameters is 

highly sensitive to battery temperature and charging/discharging rate (Yun Zhang et al., 

2017). Thus, the application of an online adaptive algorithm for parameter identification 

seems more appropriate. For online parameter identification, the weighted RLS (Cheng 

Zhang, Allafi, Dinh, et al., 2018) is the most appealing method, and it requires only the 

battery current and voltage for parameter identification.  

With the advancement of control theory in the past decade, the different adaptive filters 

and nonlinear observers like KF and its variants, PF (Yun Zhang et al., 2017), RLS (P. 

Shen, Ouyang, Lu, et al., 2018), forgetting factor RLS (FFRLS) (Xia et al., 2018), 

multiple forgetting factors RLS (MFFRLS) (Safwat et al., 2017), UPF (Waag et al., 2014) 

and H-infinity (Barcellona & Piegari, 2017b; Hongwen He et al., 2012b; Mousavi G. & 

Nikdel, 2014; Partovibakhsh & Liu, 2012; Tian, Yong, Rusheng Yan, Jindong Tian, 

Shijie Zhou, 2017), have been investigated for the accurate parameter identification of 

LIBs.  

(a) Rint model 

The Rint model is the simplest type of battery equivalent circuit model that was 

developed from the combined model of LIB. As shown in Figure 2.5, it contains a single-

value internal ohmic resistance (Rst) and an OCV source (Vocv) (P. Shen, Ouyang, Lu, et 

al., 2018). The value of both components depends on the SOC, SOH and temperature of 
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the LIB (Hongwen He et al., 2011b). The hysteresis effect is an important attribute of LIB 

that cannot be neglected. The relaxed voltage is higher and lower than the true OCV 

during charging and discharging, respectively, because of the hysteresis effect in the 

battery. Consequently, two OCVs represent a single value of SOC, and this effect 

becomes severe at low temperatures. Hysteresis must be considered for accurate SOC 

estimation. In (Plett, 2004d), the zero-state hysteresis model was combined with the Rint 

model. The results illustrated that the consistency and performance of the zero-state 

hysteresis Rint model are better than those of the simple Rint model. Nevertheless, weak 

battery dynamics make the zero-state hysteresis Rint model unsuitable for LIB modelling 

under a dynamic load such as EV. 

Rst 

Ik

Vt,k
VOCV (SOC)

 

Figure 2.5: Rint battery model (P. Shen, Ouyang, Lu, et al., 2018) 

(b) Randle’s model 

In the Randle’s model, the battery is considered a large capacitor and is mostly used 

in CCM-based SOC estimation. The model was initially used in lead acid battery 

(Fairweather et al., 2012). In (C. Gould et al., 2012), it was used for LIB application, as 

presented in Figure 2.6, where Cp is the main capacitor to store the charge, parallel 

combination Cn and Rn represent the small time-constant electrochemical transitions, R is 

the internal resistance (a terminal and interconnection resistance) and Rp is a self-

discharge resistance. The n number of parallel RC branches can be added to the original 

model to analyse the more transient response (Nejad et al., 2016a). In (C. R. Gould et al., 

2009), the authors validated the Randles model on an ultra PRT vehicle by estimating the 
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SOC and SOH through real-time state observers such as Utkin and KF. In this thesis, the 

Rint is employed for SOP estimation of the battery cells due to intes low complexity. 

R 

Rn 

Cn 
I

Vt
Cp Rp 

 

Figure 2.6: Randle’s battery model (Nejad et al., 2016b)  

(c) nRC model 

The nRC Model incorporates a series of internal resistances (R) and n number of 

parallel RC branches to represent the transient responses of different time constants 

associated with LIB charge transfer, diffusion and voltage source Vocv. As shown in Figure 

2.7, depending on the load requirement and model accuracy, the number of parallel RC 

branches varies from 1 to n. The 1RC and the 2RC are commonly used RC models for 

online SOC estimation. In the 1RC model called Thevenin model, a single RC branch is 

used to describe the battery dynamics and transient response during charging and 

discharging. To further improve the performance of the 1RC model, in (Plett, 2004b; 

Xiaoqiang Zhang et al., 2016), the battery model called Partnership for a New Generation 

of Vehicles (PNGV) was adopted to describe the nonlinear characteristics. As shown in 

Figure 2.8, in the PNGV model, the capacitance Cb is connected in series with the 

resistance R to simulate the effect of the change in SOC on OCV, and resistance Rp and 

capacitance Cp are used to describe the polarisation effects. The model can define the 

battery voltage at a different SOC during the transient phase. The 2RC model is a highly 

preferred and accurate LIB model for online SOC estimation. It consists of two RC 

branches that describe the slow and fast transient response caused by charge transfer and 
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diffusion of LIB (P. Shen, Ouyang, Lu, et al., 2018). The value of all the parameters, such 

as Uoc, R and time constants (P@ and PA), are highly influenced by the battery temperature 

and SOC (S. Yang et al., 2017). In (Ouyang et al., 2014), the extended 2RC model was 

used to improve the model performance in the low SOC region in which the RC 

components indicate the solid-phase diffusion. The hysteresis model is usually combined 

with the 1RC and 2RC model to improve the model accuracy, especially for the EV 

application (Huria et al., 2014). 

R0 
R1 

C1 

I

Vt
VOCV (SOC)

Rn 

Cn 

 

Figure 2.7: nRC battery model (Nejad et al., 2016b) 

R 
RP 

CP 

I

Vt
VOCV (SOC)

Cb 

 

Figure 2.8: PNGV battery model (Pai, 2019) 

2.5.1.4 Electrochemical impedance model 

In ECIM, the properties of battery electrochemical impedance and electric impedance 

are composed to overcome the shortcomings of the EECM. The fractional order model 

based on fractional order calculus (FOC) and electrochemical impedance spectroscopy 
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(EIS) theory are used to investigate the ECIM (Mu et al., 2017). The FOC is suitable for 

modelling the battery dynamics. It can also incorporate the mass transport, diffusion 

dynamics and memory hysteresis effects of LIB into the developed model. EIS is the non-

destructive approach used for the development of ECIM of LIB to manifest the internal 

dynamics at different SOH of the battery (S. Buller et al., 2005). In EIS, the sinusoidal 

alternating current of different frequencies is applied to the battery, and the voltage 

response is recorded to develop the complex impedance frequency spectrum that is 

directly correlated with the SOC, SOH, temperature and amplitude of the applied current 

(Stephan Buller et al., 2003; Westerhoff et al., 2016). In the ECIM model, the charge 

transfer between electrolyte, active material and solid electrolytic interference is 

modelled by a constant phase element (CPE) parallel with a resistor, and the solid-state 

Li diffusion is captured by the Warburg component (S. Liu et al., 2017). To reduce the 

complexity of the n-order RC model, the authors in (C. Zou et al., 2018) developed the 

ROM with fraction element. The performance of the ECIM with one CPE is similar to 

the fifth-order RC model (Mu et al., 2017). The ECIM developed from the Randles model 

depicts higher accuracy compared with the commonly used 1RC model under a wide 

range of uncertainties (B. Wang et al., 2015), (Liao et al., 2012). The modified 2RC model 

employing two CPEs infer high robustness compared with the 2RC EECM (B. J. Wang 

et al., 2017). The ECIM method is more advantageous and accurate than ECM and 

EECM, but this method is not suitable for online parameterisation and SOC estimation in 

EV application because it requires a long test time (Waag et al., 2013).  

2.5.1.5 Data-driven model 

Establishing the precise battery model utilising the ECM, EECM and ECIM 

approaches is difficult due to the complex internal dynamic behaviour of the battery and 

uncertain external operating conditions. DDM method based on statistical machine 

learning tools, such as fuzzy logic (Hametner & Jakubek, 2013), neural network (C. Li et 
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al., 2019; Tong et al., 2016) and support vector machine (Klass et al., 2015a), (Klass et 

al., 2015b) is another convenient way to estimate online SOC. The need for an accurate 

plant model and the performance of the controller developed by a data-driven method 

depend on available signals, such as voltage, current and temperature. The application of 

highly nonlinear input and output training data pattern in modelling has several potential 

benefits, such as distributed processing, high computation rate and adaptive capability to 

solve the complex problems (R Xiong et al., 2018). However, the problems caused by the 

high involvement of data sets in this modelling method, such as the incorrect data 

selection, can severely influence SOC estimation (Hossain Lipu et al., 2020). The 

immense number of data sets required to cover all operating conditions significantly 

increases overall computational cost. 

2.5.2 Suitable battery modelling method for real commercial BMS of EV 

To analyse the suitable battery modelling method for real commercial BMS of EV, the 

available patents filed by different battery manufacturers and BMS companies related to 

online SOC estimation were reviewed (Baba & Adachi, 2013, 2016; Gelso & 

Bryngelsson, 2018; JR et al., 2005; KIM et al., 2018; T.-K. Lee, 2015, 2017; LIM & JIN, 

2012; Mao & Tang, 2014; Paolo Baruzzi et al., 2013; Plett, 2012, 2003, 2009; Quet, 2014; 

Tang et al., 2013; Vaidya & Kancharla, 2014; Valdez & Angel, 2016; Won et al., 2006; 

Zhong et al., 2014). Table 2.2 lists information about the battery modelling method 

employed in the patents. The table demonstrates that the EECM is the most suitable 

battery modelling method for online SOC estimation. Moreover, owing to the favorable 

features of 1RC and 2RC models for online SOC estimation, these two models are mostly 

utilised in the development of BMS of EV by different companies. In this thesis, the 2RC 

model is employed for SOC estimation.  
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2.6 Individual online states estimation method 

2.6.1 SOC estimation methods 

A precise and reliable online SOC estimation method is needed for the development 

of elite BMS. In recent years, several online SOC estimation methods have been 

developed (Figure 2.9). Table 2.3 lists the various attributes of these SOC estimation 

methods.  

2.6.1.1 Coulomb counting method 

CCM is one of the simplest methods of SOC estimation. It is used to find a direct 

relationship between the SOC and the battery charging/discharging current.  This method 

is commonly used in small electronic devices. Despite its simple computation, this 

method is not suitable for online SOC estimation because of its large error accumulation 

and the need for an initial SOC value (Caiping Zhang et al., 2016).  

SOC estimation methods

Coulomb counting method Open circuit voltage method 

Model based method

Machine learning based method

Adaptive filter based Nonlinear observer based

KF family Other filters

 

Figure 2.9: Categorisation of SOC estimation methods 

2.6.1.2 Open-circuit voltage method 

          OCVM has high precision and is easily implementable for SOC estimation. In 

this method, the OCV–SOC relationship is derived from the stepwise measurement of 

OCV for different values of SOC. Moreover, every LIB has its OCV–SOC curve that 

changes throughout the battery’s life and the associated hysteresis effect, even though 
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they are of the same material, structure and rating (S. Lee et al., 2008). According to 

(Cuma & Koroglu, 2015), the OCV–SOC curve changes slightly throughout the battery 

life and can thus be neglected.  

 For the same SOC level, the value of OCVs cannot be the same during charging and 

discharging because of the hysteresis characteristic (Hannan, Lipu, et al., 2017). 

However, in some LIB chemistries, the hysteresis effect can be ignored (Waag et al., 

2014). In previous years, various modified OCVMs have been proposed in the literature 

to improve accuracy and processing time (Leng et al., 2014; Waag & Sauer, 2013). 

However, this estimation method remains inappropriate for online SOC estimation owing 

to its high dependency on OCV values and the necessity of a long period to achieve a 

satisfactory equilibrium condition (S. Lee et al., 2008). It also requires high precision 

during the charging/discharging voltage measurement. 

2.6.1.3 Model-based method 

The main principle of the model-based SOC estimation method is to relate the 

measured battery signals (voltage, current and temperature) with the battery model. Three 

types of battery models, namely ECM, EECM and electrochemical impedance model 

(ECIM), are mainly employed in this method (R Xiong et al., 2018). In the ECM-based 

approach, parameters related to lithium (Li) concentration on positive and negative 

electrodes are utilised for SOC estimation (Junfu Li et al., 2016, 2017; Tagade et al., 

2016). However, these ECM-based approaches are not reasonable for SOC estimation 

because of the high participation of unknown variables and nonlinear partial differential 

equations (PDEs) (Bartlett, Marcicki, Onori, Rizzoni, Yang, et al., 2016). In the case of 

SOC estimation using ECIM, the relationships between battery impedance and SOC are 

used. Nevertheless, due to the high sensitivity of battery impedance against operating 

conditions, this method is not appropriate for online SOC estimation. Conversely, the 
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merits of the EECM-based approach, such as low complexity and high accuracy, make it 

favourable for online SOC estimation.  

The nonlinear techniques developed by researchers for EECM-based online SOC 

estimation can be classified into two groups: adaptive filter based and nonlinear observer 

based. In nonlinear techniques, a voltage-based correction method is used to update the 

algorithm for accurate SOC estimation, in which the difference between the model 

voltage and the measurement voltage is used for SOC estimation. According to the 

mathematical approach, this method can be further classified into two categories, KF 

based and other adaptive filter based, as shown in Figure 2.9. The performance of the KF-

based SOC estimation is highly dependent on the accuracy of the battery model and the 

measurement covariance information (Hongwen He et al., 2013; Jiahao Li et al., 2013; 

Meng et al., 2016; Xia, Wang, Tian, et al., 2015). Currently, owing to its high accuracy 

and self-correcting features, KF family-based SOC estimation is one of the preferred 

approaches for online SOC estimation (Meng, Ricco, Luo, et al., 2018). Different advance 

variants of KF family algorithms have been proposed by researchers for SOC estimation. 

These algorithms are elaborated with the help of suitable examples in Section 5. KF 

family algorithms can typically attain high accuracy with the assumption of Gaussian 

distribution system noise during SOC estimation. In previous years, other adaptive filters 

have been utilised for SOC estimation, including PF (Chin & Gao, 2018; El Mejdoubi et 

al., 2016; Xia, Wang, Wang, et al., 2015; Yongzhi Zhang et al., 2017), unified particle 

filter (UPF), modified particle filter (MPF) (B. Li et al., 2018; G. Li et al., 2018; Shao et 

al., 2014; Y. Wang et al., 2015; Xia et al., 2017), H-infinity (Rivera-Barrera et al., 2017), 

PSO (Chin & Gao, 2018; Mesbahi et al., 2016) and proportional integral (Meng, Ricco, 

Acharya, et al., 2018).  
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2.6.1.4 Machine learning based method 

With the advancement of computer technologies, SOC estimation using machine 

learning is becoming an attractive area for researchers to investigate. SOC estimation 

based on machine learning can be divided into two phases: data training and learning (Z. 

Li et al., 2017b). In the data training phase, some experiments are performed in a 

controlled environment on the LIB to generate a training data set. CCM is used to generate 

numerous data sets analogous to the relationship between input (voltage, current, 

temperature, SOH and impedance) and output (SOC). With the assistance of these data 

sets, SOC estimation is performed during the learning phase. Some machine learning 

tools, such as artificial neural network (F. Liu et al., 2015; Pu Shi et al., 2005), fuzzy logic 

(Y. Ma et al., 2018; Salkind et al., 1999; Singh et al., 2006; Zenati et al., 2010), support 

vector mechanism (Alv et al., 2013; Alvarez Anton et al., 2013; J. N. Hu et al., 2014; 

Meng et al., 2016; Sheng & Xiao, 2015), support vector regression (Farmann et al., 2015; 

Shi et al., 2008), extreme learning machine (Cao et al., 2017; G.-B. Huang & Chen, 2008) 

and genetic algorithm (GA), are used for SOC estimation (L. Chen et al., 2018; J. Lu et 

al., 2018a; Panday & Bansal, 2016). Real-world dynamic conditions can be considered 

during the data training phase, and this approach is suitable for all types of chemistry 

batteries. However, accurate SOC estimation requires enormous hardware (CPU and 

memory) to handle a large data set. 
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2.6.2 SOE estimation methods 

The battery SOC refers to the available capacity (Ah) instead of available energy (Wh) 

and the information related to battery available energy can calculate by using the battery 

state of energy (SOE) estimation. The SOE is a more suitable battery state which can be 

used to offer user-friendly driving. Further, the online SOE estimation is generally 

required for the optimization and management of the energy flow within EVs. As shown 

in Figure 2.10, the battery SOE estimation methods can be classified into three categories 

such as power integral method, model-based method, and machine learning-based method 

(Chang et al., 2020).  Table 2.4 lists the various attributes of these SOE estimation 

methods. 

SOE estimation methods

Model based method Machine learning based method

Adaptive filter based Nonlinear observer based

KF family Other filters

Power integral method

 

Figure 2.10: Categories of SOE estimation method 

2.6.2.1 Power integral method 

In the power integral method, the SOE estimation can be performed by using (2.4). 

Despite its simple implementation, this method is not suitable for online SOE estimation 

because of its large error accumulation and the need for an initial SOE value. 

Furthermore, due to change in ��(�) with battery aging and operating conditions, the 
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power integral method is not suitable for the SOE estimation under complex and dynamic 

operating conditions (Y. Wang et al., 2016). 

2.6.2.2 Model-based method 

Interestingly, the approaches used in SOC estimation can also be employed for SOE 

estimation as well (Dong, Chen, et al., 2016; Xu Zhang, Wang, Wu, et al., 2018). For 

instance, a hybrid LIB model-based analytical method was proposed to estimate the 

battery SOE in (K. Li et al., 2018). The coulomb counting method was utilized for the 

SOC estimation. It is demonstrated that the SOE estimation error is always less than 4.7 

% under dynamic loading conditions. In (Y. Wang et al., 2016), the model-based SOE 

estimation using extended Kalman filter (EKF) is investigated, but the offline method of 

the 1RC battery model parameter identification method was used in the study. In (Chang 

et al., 2020), model-based SOE estimation using an unscented particle filter (UPF) is 

developed. The recursive least square with forgetting factor (RLSF) algorithm is used for 

battery modeling and the result demonstrates the SOE estimation error of less than 1.8 %. 

In (Chang et al., 2020), the method of SOE estimation using the UKF algorithm is 

developed and the error is less than 1.8 %. However, the performance of the estimation 

method highly depends on the battery model accuracy due to the non-linear relationship 

between the SOE and battery terminal voltage. Furthermore, the computational 

complexity of the SOE estimation method increases significantly as a new state-space 

model is required.  

2.6.2.3 Machine learning-based method 

Recently, a few data-driven methods also have been investigated for SOE estimation to 

further improve the estimation accuracy such as in (X. Liu et al., 2014), the back-

propagation neural network-based open-loop SOE estimation was developed and 

demonstrates good accuracy under dynamic load current and temperature conditions. 

Univ
ers

iti 
Mala

ya



39 

However, the performance of this estimation method is very sensitive to measurement 

errors. The Long Short-Term Memory Neural Network (LSTNM-NN) is utilized for SOE 

estimation in (L. Ma et al., 2021). However, large data sets were involved in the training 

of the NN model. 
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2.6.3 SOP estimation methods 

To operate the battery in its safe operating region, the SOP estimation plays a crucial 

role along with the SOC and SOH estimation. The SOP is the function of different battery 

parameters and battery internal/external conditions (Farmann & Sauer, 2016). As the 

battery internal conditions change with the aging effect, it is hard to estimate the accurate 

real-time SOP value.  

As shown in Figure 2.11, the SOP estimation techniques can be categorized into three 

groups: characteristic map (CM) method, Model-based method (Waag et al., 2014) 

(Farmann et al., 2015; Farmann & Sauer, 2016; J. Lu et al., 2018b) and Machine learning-

based method. Table 2.5 lists the various attributes of these SOP estimation methods. 

SOP estimation methods

Characteristic map method Model based method

Adaptive filter based Nonlinear observer based

KF family Other filters

Machine learning based method

 

Figure 2.11: Categories of SOP estimation method 

2.6.3.1 Characteristics map-based method 

In this method, the relation between the available power and the different states (such 

as SOC, SOH, temperature), and parameters (like power pulse time scale) are used to 

develop the characteristic map. As shown in Figure 2.11, the data related to CM is 

generated by the standard laboratory tests such as HPPC (Farmann & Sauer, 2016; Plett, 

2004b) and EIS (J. Lu et al., 2018b) test, and the results are stored in the non-volatile 

memory of BMS. In (Cecile Vacher, 2002), the available power is determined from OCV 
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and internal resistance for a given SOC from CM data. In the proposed method, the fixed 

value temperature is used consequently the internal resistance remains constant through 

the lifetime although the increase in resistance is expected with time. The non-adaptive 

character of this proposed method is the main drawback, and it would be a cause of error 

in estimation. Since all the battery states are time-variant so that some adaptive technique 

is required to employ with this method (Lashway & Mohammed, 2016). With the addition 

of the adaptability feature, the SOP estimation error improves (Farmann et al., 2015; 

Farmann & Sauer, 2016). It is a simple method for SOP estimation. Nevertheless, it has 

some drawbacks like static battery characteristics are considered for estimation, 

employment of the adaption technique is not suitable for maximal power prediction, large 

space is required to store the multi-dimensional CMs. Memory problems can be resolved 

with the approximation of some parameters in the CMs but it will increase the adaptive 

technique complexity (Farmann et al., 2015).  

 

Figure 2.12: Fundamental steps involved in SOP estimation using CM method 

2.6.3.2 Model-based method 

The model-based SOP estimation method is the most promising approach, and it 

outperforms all the downsides related top CM method. The accuracy of the estimated 

SOP depends on the model accuracy. Low complexity and computational effort features 

of the EECM of LIB make it the most advantageous LIB model for the SOP estimation 

process of EVs where the high dynamic load is available. Further, the consideration of 

battery design limits also affects the performance of SOP estimation. For example, the 
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Rint model was utilized for voltage-based SOP estimation in (Plett, 2004f). However, two 

battery design limits such as voltage and current are considered that may cause overcharge 

and discharge issues without SOC limit. In (Dong, Wei, et al., 2016), the SOP estimation 

using KF is investigated. The power capability of the battery is demonstrated in the 

results. However, the method uses only one constraint for SOP estimation that could 

produce over-optimistic results. In (W. Zhang et al., 2015a), the SOP estimation using 

EKF is investigated. 1RC battery model and two constraints such as current and SOC are 

considered for SOP estimation. Though, the voltage constraint is missing due to which 

the overvoltage and under-voltage conditions may occur. To improve the SOP estimation 

accuracy, the multi-constraints (voltage, current, and SOC) SOP estimation method using 

the 1RC model is proposed in (Pan et al., 2017). The advantages of multi-constraints SOP 

estimation over a single constraint are deeply analyzed. The results demonstrated that the 

consideration of multi-constraint, accuracy, and robustness of the SOP estimation can be 

significantly improved. For example, in (J. Lu et al., 2018c), Genetic algorithm-based 

SOP estimation using the 1RC model is proposed. By considering three constraints (SOC, 

current, and voltage), the results demonstrate high SOP estimation accuracy up to 7.2 % 

as compared to the traditional Taylor method (T-method). In (L. Yang et al., 2020), a 

long-term power demand (LTPD) prediction model is employed for SOP estimation. As 

compared to the traditional method, the proposed method able to reduce error by 85.9%. 

However, with the application of the 1RC model, the accuracy of SOP estimation 

improves at cost of higher computational effort. In this thesis, to maintain the trade-off 

between accuracy and computational complexity, the Rint model is utilized for SOP 

estimation.  

2.6.3.3 Machine learning-based method 

In the machine learning-based method, the battery is regarded as a black box where 

the internal electrochemical dynamics of the battery are not considered. The SOP 
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estimation is done based on the model developed employing data collected from the 

experimental study. Generally, in the model development, the battery voltage, current, 

and operating temperature are considered as input and the SOP is taken as output. For 

example, in (Fleischer et al., 2013) an adaptive neuro-fuzzy-inference system (ANFIS) is 

used for SOP estimation. Though, the current limiting factor was not neglected in the 

study.  
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2.6.4 SOH estimation methods 

Like other battery states, the direct monitoring of SOH is not possible due to battery 

complex internal dynamics. Mostly, the battery internal resistance and available capacity 

are related to the SOH that denotes the extent of the battery aging. Different SOH 

estimation methods have been investigated in the literature that can be broadly classified 

into two categories such as experimental method and model-based method, as presented 

in Figure 2.13. Table 2.6 lists the various attributes of these SOH estimation methods. 

SOH estimation methods

Experimental Method Model Based Method

Adaptive filter based Nonlinear observer based

KF family Other filters

Machine learning based method

 

Figure 2.13: Categories of SOH estimation method 

2.6.4.1 Experimental Techniques 

There are several experimental methods available in the literature for SOH estimation.  

Mainly, the coulomb counting, electrochemical impedance spectroscopy (EIS), and 

incremental capacity and differential voltage (IC/DV) analysis are utilized in the 

experimental SOH estimation method (W. Li et al., 2021a). The major limitation of the 

experimental method is the requirement of a unique charging profile that is hard to 

achieve in real-time application. Under the coulomb counting method (J. Yang et al., 

2018), the number of Ah are counted during the charging and discharging process. Once 

the battery reached its cut-off voltage, the total counted Ah is divided by the BOL capacity 

to estimate the SOH (Berecibar et al., 2016b). The main shortcomings of this method are 
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(i) it generally required large-size memory for storing, (ii) the possibility of error 

accumulation during computation is high and (iii) achievement of cut-off voltage required 

to update the total counted Ah during real-time operation is very difficult. As the battery 

internal impedance increases with battery aging, the different frequency ranges on the 

EIS are used for SOH estimation. Different battery parameters can be extracted over the 

wide frequency range through the Nyquist plot draw from the EIS results. For example, 

very low-frequency impedance spectra show purely ohmic resistance and at the high 

frequency, it shows the inductive behavior. The small semicircle presents the solid 

electrolyte interface (SEI) layer and the larger semicircle shows the charge transfer 

process and the double-layer capacitance. However, the application of EIS in the real-

time application is not feasible because of the amplified noise error even with the use of 

smoothing filters and the requirement of collection of input data over the wide voltage 

range. The IC/DV method can estimate the SOH accurately by utilizing the measurement 

voltage and current. In which, the IC is referred to as the ratio of change in battery 

capacity to the change in terminal voltage during charging and discharging. In IC/DV 

analysis, the very low current passes through the cell to get the charge-voltage curves. 

The DV is stated as the inverse of differential capacity. Under IC/DV method, the shift in 

the peak and valley points on the IC curve is mainly considered for SOH estimation. The 

peak and valley positions are highly sensitive to the operating conditions, for example, 

C-rate, temperature, aging/cycles. Several methods have been proposed by the 

researchers in the literature.  For example, to estimate the SOH from the IC curve, in (Z. 

Wang et al., 2017), the method based on Gaussian process regression with a multi-island 

genetic algorithm (GRP-MIGA) was proposed by the authors. Under which, the wavelet 

filtering was used for the peak value and position extraction, and that was considered as 

health factors (HFs). Further, the grey correlation analysis was utilized to find the 

correlation between SOH and HFs. Finally, the performance of the proposed SOH 
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estimation method was validated by using an accelerated battery life test. In (Riviere et 

al., 2019), the innovative IC analysis method was proposed by Riviere. et. al., under which 

the area under the IC curve between the voltages is considered to estimate the SOH. To 

validate the effectiveness of the proposed method, the different chemistries batteries such 

as LFP and LMO were tested under dynamic operating conditions and the accuracy of 

less than 2% and 4% were recorded, respectively. However, with the involvement of 

differentiation, the impact of noise on the performance of SOH estimation is more even 

with smoothing filters. Also, the gathering of input data for a wide operating range is 

difficult in real-time applications. To overcome these issues, model-based methods are 

developed to work with sensor data directly.  

2.6.4.2  Model-based method 

The identified battery model parameter values are utilized for SOH estimation in the 

model-based method. Generally, the model parameters such as capacity and internal 

ohmic resistance are employed for SOH estimation. For the identification of model 

parameters different adaptive algorithms, non-linear observers, and machine learning 

methods have been greatly utilized in the literature. For example, in (Remmlinger et al., 

2013), the internal resistance of the linear parameter-varying battery model identified by 

KF is employed for SOH estimation. The results demonstrate the SOH estimation over a 

wide range of operating conditions. An EKF is a non-linear version of KF and it is widely 

utilized for battery model parameter identification. In (Plett, 2004c), the EKF is used for 

the identification of the capacity and internal resistance of the battery model. The results 

obtained are very accurate and the implementation of EKF for SOH estimation is lighter. 

To address the variations in battery model parameters with aging, the SOH estimation 

using EKF is investigated in  (J. Kim & Cho, 2011). It is observed that the diffusion 

resistance is more sensitive than other battery model parameters and implementable for 

SOH estimation. In (Xu Zhang, Wang, Liu, et al., 2018), the battery model parameters 
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were identified by using particle swarm optimization-genetic algorithm and SOC-OCV 

relationship obtained by particle filter. Lastly, the capacity estimation is performed by the 

RLS method for SOH estimation. The experimental results indicate high SOH estimation 

accuracy. In (Tan et al., 2021), to reduce the computational cost and achieve high 

accuracy, the model parameter identification and SOC estimation are performed at a 

multi-time scale. Further, based on the data collected from the accelerated degradation 

test, the relationship between RC parameters and SOH is developed. The obtained is 

employed for SOH estimation using SVR. In (Zhengyu Liu et al., 2020), the indirect 

enhanced health indicator (HI) and SVR are utilized for SOH estimation. The differential 

evolution algorithm is utilized to optimize the hyperparameters of the SVR. In (Gou et 

al., 2020), a novel ensemble learning method is proposed for SOH estimation. For a fast 

and efficient learning process, the extreme learning machine (ELM) is used to extract the 

relationship between the HIs and SOH. The developed method can accurately estimate 

the SOH with RMSE less than 0.78 % in 1ms under dynamic operating conditions. In (W. 

Li et al., 2021a), a long-short term memory (LSTM) network is developed to estimate the 

battery remaining capacity as output per cycle. The raw sensor voltage data from partial 

constant current charging curves are used for the training. The results demonstrated high 

accuracy even under 15 % missing data.  
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2.6.5 Actual capacity and maximum available energy estimation 

As the actual capacity (��) and maximum available energy (��) decreases with the 

battery aging. Two essential parameters can contribute to the accurate SOC and SOE 

estimation and also indicate the SOH of the battery cell. However, the estimation of �� 

and �� is difficult due to its dependence on operating conditions and battery aging level.  

For an accurate SOC and SOE estimation, the correct value of �� and �� are required to 

update during real-time operation. By using the (2.2) and (2.4), the value �� and �� can 

be calculated by using expressions (2.9) and (2.10), respectively. Where, t@ and tA are 

two different time instant.  

QS = T ! I(t)d(t)WXWY & × 3600Z (���(t@) − ���(tA))[               (2.9) 

ES =  T ! �(�). ](�)"(�)WXWY & × 3600Z (���(t@) − ���(tA))[      (2.10) 

In the literature, there are three types of methods for the actual capacity estimation 

namely differential analysis (DA) or incremental capacity analysis (ICA)-based method 

(J. He et al., 2020), machine learning (ML) based method, and model-based method are 

investigated. In the DA-based  (S. Zhang et al., 2020) and ML-based methods (Fan et al., 

2021; W. Li et al., 2021a), large experimental datasets are needed to accurately estimate 

the battery's actual capacity. In both methods, a long testing time and extensive offline 

investigation are always required. Also, the accuracy of the estimated capacity depends 

on the quantity and quality of the training data. Though, the model-based method 

combines battery model and estimation algorithms. In (Plett, 2011), the capacity 

estimation is performed by an approximated weighted total least square (AWTLS) 

algorithm. The AWTLS allows nonproportional noises on both the integrated current and 

SOC difference to make it implementable in BMS. However, as the sigma-point KF 

(SPKF) with offline identified model parameters employed for SOC estimation, the SOC 
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estimation accuracy cannot be guaranteed for a long-time. Therefore, with the 

employment of the online model parameters identification method, the accuracy of 

estimated capacity can be improved further. Also, there is a need to reduce the 

computational cost of the AWTLS method.  

Compared to actual capacity estimation, few studies are available in the literature on 

maximum available energy estimation (Deng et al., 2017). For example, the support 

vector regression algorithm is used for maximum available energy estimation in (Deng et 

al., 2017). The Long Short-Term Memory Neural Network (LSTNM-NN) is utilized for 

SOE estimation (L. Ma et al., 2021). Both the studies demonstrate good SOE estimation 

accuracy.  However, large data sets are involved in the training of the SVR model and 

NN model. In (S. Zhang & Zhang, 2021a), the model based maximum available energy 

estimation method is investigated with the help of SOE estimated using AEKF. The effect 

of operating temperature on estimation accuracy is analyzed. The results demonstrated 

that the estimated maximum available energy MAE and RMSE lies in the range of 1.5 % 

to 3.5 %.  In (L. Zheng et al., 2016b), the moving window energy-integration and average 

method is used for the maximum available energy estimation. However, the issue of slow 

convergence and high initial estimation error exists. In this thesis, the estimation of �� 

and �� are performed by using the new low cost AWTLS method as proposed in chapter 

5. 

2.7 Battery states co-estimation method 

The accuracy of the individual state estimation method is directly or indirectly 

influenced by the other states information in a LIB system. In most of the 

single/individual state estimation methods, the correlation between the states is 

overlooked due to which it is hard to get high estimation accuracy. In the past few years, 

to improving the accuracy and robustness of BMS, the battery states co-estimation 
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methods are gaining popularity. Based on the different states involved in the co-

estimation method, the existing co-estimation method can be classified into several 

categories such as 1) SOC and SOH, 2) SOC and SOE, 3) SOC and SOP, and 4) others. 

2.7.1 SOC and SOH 

Practically, the SOC and SOH are highly correlated with each and it cannot be ignored 

to achieve high estimation accuracy. As the SOH varies at a very slow rate over the battery 

life as compared to SOC and both are coupled with sophisticated electrochemical 

processes, therefore, it is challenging to estimate both simultaneously. In the last couple 

of years, different methods for co-estimation SOC and SOH have been investigated by 

researchers.  

For example, in (J. Kim & Cho, 2011), the SOC and SOH estimation have been 

developed by using the modified EKF (MEKF). The SOC and SOH estimation was 

performed with the employment of per unit (p.u.) values instead of absolute values. Due 

to the high sensitivity of diffusion resistance than other model parameters, it was used for 

SOH estimation. The SOC estimation error was within ±5% of the ampere-hour counting 

that required to improve further. To achieve high estimation accuracy, the multi-state 

observer has been proposed in (Y. Zou, Hu, Ma, & Eben Li, 2015).  In which the 2nd and 

4th order EKF observers were utilized for the SOC and SOH estimation, respectively. 

However, SOH estimation was performed by an offline method, therefore, it cannot be 

used for online applications. For online SOC and SOH estimation, a new simple and 

computationally efficient estimation method has been proposed in (Cacciato et al., 2017). 

The SOC and SOH are simultaneously online estimated by the simple mathematical 

formulas used by PI-based observers. Although, the results illustrated that the proposed 

method was suitable for a wide range of operating conditions however the estimator 

accuracy depends upon the precision of the sensors utilized for the measurement. To 
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overcome this issue, the co-estimation of SOC and SOH estimation is performed by using 

dual fractional-order extended Kalman filter (DFOEKF), in (X. Hu et al., 2018),. The 

high-fidelity fractional-order ECM parameter is identified by using the Hybrid Genetic 

Algorithm/Particle Swarm Optimization (HGAPSO) technique to reduce the effect of 

sensor noise. The results demonstrate the fast convergence and high accuracy with the 

error within 1% for both SOC and SOH at a high computational cost. In (M. Zeng et al., 

2019), a fuzzy control trace-free Kalman filter with 2-RC EECM has been investigated 

for the co-estimation of SOC and SOH. To simultaneously estimate SOC and internal 

resistance, two complete fuzzy UKF (F-UKF) algorithms were used. High estimation 

accuracy of SOC and internal resistance was achieved with the assistance of two different 

fuzzy controllers. The results claimed good performance of the developed co-estimation 

method with unknown initial SOC condition with good convergence speed under 

dynamic operating conditions.  

In (Song et al., 2020), a sequential algorithm has been investigated for SOC and SOH 

estimation. To improve the battery capacity and SOC estimation accuracy, the 

parameters/states estimation and frequency-scale separation were done by injecting the 

different frequencies' current signals. Experimental results were demonstrated the high 

estimation accuracy at low computational cost than the concurrent algorithm where all 

parameters/states are estimated simultaneously. However, the accuracy of the developed 

algorithm is not validated at low-aged conditions. To outperform this issue, a low-cost 

method for co-estimation of SOC and SOH using DEKF has been developed, (Park et al., 

2021). To reduce the computational cost, the MAFF-RLS method was employed OCV, 

capacity, and model parameter identification. Whereas DEKF was used for SOC and SOH 

estimation. The developed method was a self-adaptive algorithm means there was no need 

to develop OCV-SOC lookup tables under dynamic operating conditions. The results 

demonstrated that the developed estimator could maintain high accuracy under varying 
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degradation processes. To further reduce the computational burden and improve the SOC 

estimation accuracy, the multi-time scale frame for co-estimation of capacity and SOC is 

investigated (S. Zhang & Zhang, 2021b). The SOC estimation was done by using the 

AEKF algorithm with 1-RC model parameters identified by using FFRLS. The capacity 

estimation was performed by using EKF at the macro time scale. It was claimed that 

estimated SOC and capacity MAE maintained below 1 % under dynamic operating 

conditions. However, the high estimation accuracy cannot guarantee under real-time 

applications as the measurement noise effect was not considered. 

2.7.2 SOC and SOE  

In recent, simultaneous SOC and SOE estimation plays an important role in EV battery 

performance advancement. SOC and SOE are useful for the estimation of the remaining 

capacity and energy of the battery respectively. To optimize the application of EV, it is 

necessary to estimate both states. In (L. Zheng et al., 2016a), to investigate the SOE and 

maximum available energy, the LiMn2O4 cell of 90Ah capacity has been utilized under 

different aged conditions. Also, the different charge/discharge test was conducted to find 

the relation between the SOC and SOE. The results demonstrate the linear relation 

between SOC and SOE under different temperature and aged levels. In this paper, a 

moving-window energy-integral and average method are employed for the accurate SOE 

and maximum available energy estimation. However, the estimation accuracy depends on 

the measurable relationship between SOC and SOE that is used for the SOE estimation.  

In (Yongzhi Zhang et al., 2017), the estimator has been developed by the authors by 

using an adaptive H-infinity filter for combined SOC and SOE estimation in the real-time 

application. To evaluate the performance based on the ME and convergence rate, two 

other algorithms are used such as EKF and H-infinity. The results demonstrate the highest 

convergence rate and lowest ME of SOC and SOE estimation using adaptive H-infinity 
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filter. However, the use of offline model parameters limits the application in the long run. 

Furthermore, two different H-infinity filters were employed for battery SOC and SOE 

estimation that causes high computational cost. 

2.7.3 SOC and SOP 

On the other hand, for the optimal energy management unit in the EV, concurrent SOC 

and SOP estimation are also needed. Underestimate and overestimate the SOP value, may 

lead to overly conservative vehicle energy management and premature battery failure, 

respectively.  With the development of EV technology, several individual offline and 

online SOP estimation methods have been presented. However, these methods are still 

not reliable enough. The relation between the battery discharge power is calculated by the 

HPPC method, SOC, and temperature. In (Rui Xiong, Sun, et al., 2013), the combined 

SOC and SOP estimation method has been presented to achieve high reliability. In this 

work, the data-driven method is used for battery parameter estimation. The adaptive EKF 

is used for the SOC and SOP estimation. To improve the accuracy of the estimation for 

aged batteries, the same method has been used (F. Sun et al., 2014) with the consideration 

of battery SOH. Though, this method cannot be well suited for online applications due to 

the requirement of large data. The effect of SOC and SOH on SOP estimation accuracy 

has been analyzed and discussed in (J. Lu et al., 2018a). It concluded that the effect of 

SOC error on SOP estimation is lesser for the aged battery as compared to the healthy 

battery. 

2.7.4 Others 

Recently, the researchers are focusing on the development of a co-estimation method 

for concurrent estimation of three or more battery states to further improve the 

performance of the BMS. For instance, in (Xu Zhang, Wang, Wu, et al., 2018), the simple 

SOE and SOP estimation is performed based on the online estimated SOC using UKF at 
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each macro time. To reduce the complexity of the process, the SOP was determining by 

terminal voltage, SOC, and design limits. On the other hand, PSO and UKF were utilized 

for the online battery parameter identification and SOC estimation, respectively. The 

results demonstrate that the proposed algorithm estimates the SOC with less than 0.08% 

RMSE. However, the influence of SOH on the SOE and SOP estimation process was not 

considered in this study.  

In (P. Shen, Ouyang, Lu, et al., 2018), the co-estimation method for SOC, SOH, and 

SOP has been investigated. In this work, the estimated SOC using EKF was used to 

calculate the SOH and SOP of the battery. The method was validated to be effective in 

online applications with high accuracy. However, due to the employment of the offline 

parameter identification method, the performance of this method cannot be consistent 

with the battery age will increase. As the computational burden of the co-estimation 

algorithm proportionally increases the cost and size of the controller used in BMS. Thus, 

there is a need to develop an accurate battery states co-estimation method with a low 

computational burden that acquires the benefits of correlation between the battery states. 

As the accurate SOC estimation is the primary step for the development of battery 

states co-estimation method. In the proceeding section, the insights of online SOC 

estimation using the KF algorithm are provided as it is a key focus of the thesis. 

Furthermore, the features of different KF algorithms suitable for SOC estimation are 

explained. 

2.8 Simplified model-based online SOC estimation using KF algorithm 

The basic flow chart of the model-based online SOC estimation method using the KF 

algorithm is depicted in Figure 2.14. For a better understanding of the readers, the 

complete SOC estimation process is divided into three subtasks. The first task is to 

estimate a predetermined SOC using the (Ampere Hour Counting) AHC process (Cuma 
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& Koroglu, 2015). In which, the initial SOC (Y. Zou, Hu, Ma, & Li, 2015), battery charge 

/discharge current (Hongwen He et al., 2012a), and battery capacity (Y. Zheng et al., 

2018) are mainly required for the calculation of the predicted SOC. In the case of online 

SOC estimation, the value of the initial SOC can be extracted from the SOC-OCV 

relationship or the stored memory database. Based on the interpolation method, the OCV 

for the battery model, corresponding to the predicted SOC, can be calculated from the 

SOC-OCV relationship (Han et al., 2014; S. Yang et al., 2017; R. Zhang, Xia, Li, et al., 

2018b). The second task is to estimate the model voltage by using the selected battery 

model. Based on the measurement voltage, current, and temperature values, the battery 

model parameters can be evaluated using several PIMs (Waag et al., 2013; B. J. Wang et 

al., 2017; Rui Xiong, He, Sun, & Zhao, 2013). The final task is to update the Kalman 

gain, in which the model voltage and measured voltage are compared with each other, 

and the voltage error is used to modify the Kalman gain. With the help of updated gain 

based on the KF family algorithm, the estimated SOC can be generated.  

Real 

Battery

Measurement 

System

KF

Algorithm

AHC Process Battery Model

Temperature

Voltage

Current

Measured 

Voltage

Model 

Voltage

Error

Predicted 

SOC

Estimated 

SOC

   

Figure 2.14: Simple flow chart of model-based online SOC estimation method 

using KF algorithm 

2.8.1 General steps to combine battery model with KF algorithm 

To combine the battery model with the KF algorithm, the discretized state-space model 

is utilized. As shown in Figure 2.15, the first step is the discretization of the battery model 

equations. In the case of ECM, it contains a large number of non-linear PDEs and often 
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challenging to discretize. For this purpose, different discretization methods have been 

utilized in the literature, for example, analytical method, integral method approximation, 

Padè approximation method, finite element method, finite difference method, differential 

quadrature and Ritz method (Corno et al., 2015; Ying Shi et al., 2011). In (Romero-

Becerril & Alvarez-Icaza, 2011), the different discretization methods such as finite 

difference, finite element, and differential quadrature have been applied to the SP model 

of Li-ion cell and compared. The best results were obtained by the differential quadrature 

method in its polynomial version. In (Corno et al., 2015), an efficient electrochemical 

method-based SOC estimation method has been proposed by the authors. The semi-

separable structure-based ECM was utilized in combination with EKF. The finite 

difference method was employed for the discretization of the battery model. Additionally, 

the results demonstrated less than 5% estimation error under dynamic loading. On the 

other hand, in the case of EECM, the bilinear transformation method is mostly employed 

by the researchers (Rahimi-Eichi et al., 2014; Safwat et al., 2017; Wei et al., 2018; Xia, 

Wang, Tian, et al., 2015; R. Zhang, Xia, Li, et al., 2018b).  
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(For example: Bilinear transformation method, finite 

difference method and so on)

KF Algorithm
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Figure 2.15: General steps to combine battery model with KF algorithm 
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Hereafter, the second step is to obtain the time domain difference equations from the 

discretized battery model, and it will be used in the PIM. By using the identified battery 

model parameters in the time domain difference equations, the state space representation 

useful for the KF algorithm will be developed. For example, online SOC estimation using 

2RC model, the discretized form of state space equations can be represented by (2.8) (P. 

Shen, Ouyang, Lu, et al., 2018; Wijewardana et al., 2016).    
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�
             (2.8) 

2.9 Suitable KF family algorithms for model-based online SOC estimation 

The fundamental principle of KF algorithm is that it recursively estimates the current 

state with the help of the previously estimated state and the current measurement signals. 

The self-correcting feature of the KF family algorithms makes it suitable for the model-

based online SOC estimation for EV application. The complete KF family algorithms can 

be grouped into two categories based on the linearization process such as linear KF and 

non-linear KF as presented in Figure 2.16. Simultaneously, the non-linear KF method can 

be divided into three categories like EKF, SPKF and cubature KF (CKF), further SPKF 

divided into two parts like central difference KF (CDKF) and UKF. In the current 

scenario, for concurrent online estimation of battery parameter and SOC, the other two 

types of KF namely Joint and Dual KF (DKF) have been developed by the researchers. 
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Kalman Filter (KF)

Linear Kalman Filter Non-linear Kalman Filter

Extended Kalman Filter 
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Unscented Kalman Filter 
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Figure 2.16: Kalman filter family algorithms suitable for online SOC estimation 

2.9.1 Linear Kalman Filter (LKF)  

The LKF is a well-known mathematical estimation method, and it was introduced in 

1960 (S. Grewal & P. Andrews, 2001). It uses discretized mathematical equations of the 

linear dynamic system in the time domain for computation. It is a recursive estimation 

technique and provides optimal estimated values of the state with a minimum mean square 

error whose direct measurement is impossible (Mastali et al., 2013). The main advantage 

of this method is that it bounds the estimation mean square error. During the estimation 

process, it utilizes the process and measurement model with the noisy input-output 

measurements of the system usually described by (2.11) and (2.12) respectively. Where, 

^5 ∈ ℝ� is the state vector, +5 ∈ ℝa is the deterministic system input and  05 ∈ ℝ� is 

the system output at time index k. 15 ∈ ℝ�×�, b5 ∈ ℝ�×a, �5 ∈ ℝ�×� and  c5 ∈ ℝ�×a 

are system dynamics matrices. d5 ∈ ℝ�and ]5 ∈ ℝ� are independent white Gaussian 

process noise and measurement noise matrices with zero mean and known covariance 

values. �e  and �f are the covariance matrices of process and measurement noise, 

respectively. 

^5 = 15g@^5g@ + b5g@+5g@ + d5g@ ≈ f(^5g@, +5g@, d5g@, j − 1)          (2.11)                           

05 = �5^5 + "5+5 + ]5 ≈ h(^5, +5 , ]5 , j)                             (2.12)       
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Table 2.7: Summary of LKF estimation algorithm (Mastali et al., 2013; Z. Yu et 

al., 2015) 

Definition: Error, k̂5± = ^5 − m̂5±  and  0k5± = 05 − 0m5±                                                                    
Complete observations set, n5 = o0%, 0@, 0A, … , 05q                                                          
Conditional mean, m̂5r = �[^5|n5] and m̂5g = �[^5|n5g@]                                                                      
Initialization: For k = 0, set 

Step1 State variable,  m̂%r = �[^%]                                                                               
Step 2 Covariance matrix, �uk,%r = �[(^% − m̂%r)(^% − m̂%r)9]  = �[( k̂%)( k̂%)9]            

Computation: for k = 1,2,3, … compute 

Step 3 State estimation time update, m̂5g = 15g@ m̂5g@r + b5g@+5g@                              

Step 4 Error covariance time update, �uk,5g = 15g@�um,5g@r 15g@9 + �e                            

Step 5 Output estimate, 0m5 = �5 m̂5g + c5+5                                                                 

Step 6 Kalman gain matrix, v5 = �uk,5g �59[�5�uk,5g �59 + �f]g@                                       

Step 7 State estimation measurement update, m̂5r =  m̂5g + v5[05 − 0m5 ]                     
Step 8 Error covariance measurement update, �um,5r = (� − v5 �5) �uk,5g                       

Notation: Circumflex (^) indicates the estimated value, Tilde (⁓) indicates the 

predicted value, “T” indicates the matric transportation. Superscript “+” and “-” indicates 

posterior and prior value respectively.                                            

Generally, the process model and measurement model contain all the information 

about the system dynamics and measurement model that provides the idea about the 

relation between the system outputs, inputs, and states. The complete steps involve in 

LKF estimation technique are discussed in Table 2.7. The LKF estimation method is used 

for battery states and parameter estimation. Where the ���5 and 3�,5 are considered as 

^5 and  05 respectively. Generally, in the case of battery f (·) is considered as a linear 

function while h (·) is a non-linear function due to the non-linear relationship between the 

Uoc and SOC. The LKF assumes that the process and measurement noise are known as 

independent zero-mean Gaussian noise signals. However, in the case of a practical 

system, this assumption may not be valid for all the situations. As the battery is a highly 

non-linear system, in (Z. Yu et al., 2015), a modified LKF is used for SOC estimation. In 

modified LKF, the local linearization method to map the predictive SOC to the predictive 
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OCV using a zero axial straight line is added with standard LKF. In the past few years, 

different types of non-linear KF algorithms have been investigated to achieve higher state 

estimation accuracy and to tackle the issues related to standard LKF. 

2.9.2 Non-linear Kalman Filter 

2.9.2.1 Extended Kalman Filter 

 EKF algorithm is the most preferred method for the battery parameter/state estimation 

(C. Huang et al., 2018). The EKF algorithm is a non-linear version of the LKF, and it 

works on the principle of linearization of the non-linear function (Sepasi et al., 2014b). 

For this purpose, partial derivatives and first-order order Taylor series expansion have 

been employed. In (Plett, 2004a), the EKF has been used for the battery model parameter 

identification and state estimation. Usually, the computation of the Jacobian matrix is 

required during the estimation through the EKF algorithm that conversely effects the 

accuracy of the estimated SOC (Andre et al., 2013). Furthermore, by the usage of first-

order Taylor expansion in the linearization cut off the process in the EKF algorithm, only 

the first order accuracy is conceivable to achieve. Moreover, the EKF accuracy directly 

depends on the battery model and the prior knowledge of the system noise variables. If 

the prior knowledge is not correct, then the estimation process error may lead to 

divergence (R Xiong et al., 2018). Thus, to enhance the performance of the EKF 

algorithm, in the previous decades, there are several modifications have been done.  

For example, in (Sepasi et al., 2014b), the improved EKF (I-EKF) is proposed for 

online SOC estimation with the consideration of aging factor to inline adaptively update 

the battery model parameters. The SOC estimated by I-EKF method of a single cell can 

be accurately used to present the battery pack SOC of EV. In (Hongwen He et al., 2011b), 

the SOC estimation has been done with the assistance of robust EKF, and the five 

different types of RC model are considered to evaluate the performance. The estimation 
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algorithm sensitivity with different initial values has been examined. The results inferred 

that SOC estimation using robust EKF could effectively reduce the error resulting from 

the incorrect initial SOC values. Furthermore, in (Z. Chen et al., 2013), the experimental 

data have been used to develop the battery model to reduce the effect of measurement and 

process noise. The outcomes confirmed that the proposed method could effectively 

eliminate the impact of measurement noise and process noise on the SOC estimation 

without the utilization of prior knowledge of the initial SOC. However, it has a problem 

of significant error occurrence with the highly non-linear system due to its approximation 

of distributed Gaussian random variable and ignorance of higher order terms.  

2.9.2.2 Adaptive extended Kalman filter  

The assumption of fixed measurement and process noise covariance in EKF estimation 

reduces the overall performance of estimation (Sepasi et al., 2014a; Z. Zhang et al., 2021). 

For example, the problem of the biased solution may occur if the initial process and 

measurement noise covariance matrices are very small. By contrast, if both covariance 

matrices are very large, then the problem of error divergence usually occurs (Rui Xiong, 

He, Sun, & Zhao, 2013). The feature of adaptively updating the covariance matrices is 

added to EKF in the adaptive extended Kalman filter (AEKF) estimation method to 

overcome error divergence and biased solution. In (Rui Xiong, He, Sun, & Zhao, 2013), 

the new AEKF algorithm was proposed to estimate the SOC, in which the filter innovation 

matrix (Hk) based on the innovation sequence (ei) inside the moving estimation window 

(M) is added in the estimation steps of the EKF. With the aid of Hk, the measurement 

(Pv,k) and process (Pw,k) covariance matrices are updated iteratively. Divergence is an 

important factor in the accuracy of EKF, so the divergence judgmental condition was 

introduced in the AEKF in (Hongwen He et al., 2011) to avoid filter divergence and 

improve stability. 

Univ
ers

iti 
Mala

ya



65 

2.9.2.3 Sigma-point Kalman filter  

In the linearisation of EKF, the nonlinear equations expand around the prior mean with 

the expected covariance scale according to the slope of the function at a particular point. 

Consequently, many nonlinear terms are dropped from the expansion, which leads to 

reduced estimation accuracy (Plett, 2006b). Furthermore, the significant error in a true 

posterior spread may occur if the linearisation of the function is done in the 

neighbourhood of the prior mean. In (Plett, 2006b), sigma-point Kalman filter (SPKF), 

an alternative approach for state estimation of nonlinear systems, was proposed to 

overcome the shortcomings of EKF and AEKF. A second-order Taylor accuracy could 

be achieved using this method. In addition to a local linearisation, the statistical 

distribution approach with the utilisation of deterministic sampling points called sigma 

points (wx) was utilised for linearisation in SPKF (Liye Wang et al., 2009). The selection 

of sigma points is typically performed such that the weighted mean and covariance of the 

posterior random variable must be matched with the prior mean and covariance of the 

random variables being modelled (Plett, 2006b). Based on the weighing factor, the SPKF 

algorithm is classified into two categories: unscented Kalman filter (UKF) and central 

difference Kalman filter (CDFK) (Liye Wang et al., 2009). 

(a) Unscented Kalman filter  

The statistical method called unscented transformation was introduced in (Dong et al., 

2017) to avoid the calculation of the Jacobi matrix for the linearisation of the nonlinear 

equation used in EKF. In UT, minimal sets of sigma points (wx) are used to capture the 

posterior mean and covariance of random variables. During estimation, a set of sigma 

points is selected at each point such that the filter parameters (mean and covariance) are 

matched with the prior random value parameters (mean and covariance), as discussed in 

Table 2.8 (L. Zhao et al., 2013). Estimation utilises the augmented random vector (^�) 

to combine the randomness of state, process noise and measurement noise. 
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The introduction of sigma points in the UKF algorithm is the main difference between 

the EKF and UKF (Van der Merwe & Wan, 2001). Figure 2.17 shows that the mean 

covariance of the output sigma points is well matched with the true mean and covariance 

values. The second-order accuracy can be achieved through the second-order 

approximation with the predetermined sampling period. In (Shehab El Din, Hussein, & 

Abdel-Hafez, 2018), to further enhance the accuracy, the measurement noise covariance 

was estimated by the autocovariance least-squares (ALS) technique. The performance 

and robustness of UKF and EKF was compared in (C. Huang et al., 2018) to confirm the 

high accuracy, robustness and convergence rate with the unknown initial SOC of UKF. 

Several issues were identified with UKF. For example, it is not appropriate for high 

measurement noise because it may cause divergence. Additionally, it may produce a 

significant error and slow the convergence if the sampling data go beyond the defined 

limit because of the effect of external factors. Some advanced variants of UKF have been 

proposed by researchers in the past few years to address these issues. For example, an 

improved UKF (I-UKF) was proposed in (W. Wang et al., 2018), in which the noise 

suppression and invalid value elimination algorithms were combined with the UKF 

algorithm. For the SOC estimation under the real-time EV dynamic condition, the author 

(Shehab El Din, Hussein, & Abdel-Hafez, 2018) proposed a new adaptive UFK (AUKF) 

estimation method that illustrates better performance than EKF and UKF. 
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Figure 2.17: Linearisation of nonlinear function in EKF and UKF algorithm 

(Van der Merwe & Wan, 2001) 

i Adaptive unscented Kalman filter  

In AUKF, the parameters of the error covariance matrix are estimated and updated 

interactively. Through the application of AUKF algorithm, the unsatisfactory impression 

of uncertain measurement and process noise covariance on estimation accuracy can be 

reduced. In (Peng et al., 2017), EKF, UKF and AUKF were used for SOC estimation, and 

the results illustrated that the AUKF has the most minimal root mean square error 

(RMSE) and mean absolute error (MAE) compared with other under dynamic 

surroundings. In (W. Zhang et al., 2015b), AUKF was utilised to build the joint SOP and 

SOE estimator; the estimation error was less than 2% for assumed erroneous initial 

conditions. The main limitation of the AUKF is that noise statistics are calculated 
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assuming white noise measurement residuals. However, this condition will not be valid 

in all conditions, particularly when the filter initialises with incorrect values of noise 

statistics. 

ii Square-root unscented Kalman filter  

The calculation of the new sigma point at each time update is the computationally most 

expensive part in the entire UKF algorithm (Liye Wang et al., 2009) because it requires 

a square root of state covariance matrix � ∈ ℝ=×=. Instead of recursively updating full 

covariance P utilised in UKF algorithm, the application of the Cholesky factorisation 

given by ��9 ∈ � (where S is the lower triangular matrix for covariance P matrix) can 

significantly reduce the computational effort in SR-UKF (Dai et al., 2012). Firstly, the 

square-root unscented KF (SR-UKF) algorithm for parameter and state estimation was 

introduced by Merve et al. in 2001 (Van der Merwe & Wan, 2001), in which the matrix 

S propagates directly throughout estimation to avoid the re-factorisation of P matrix at 

each step. Three linear algebra techniques, such as QR decomposition (qr), Cholesky 

factor updating (cholupdate) and efficient least squares, are used for square-root 

covariance update and propagation (Van der Merwe & Wan, 2001). The SR-UKF 

algorithm is a logical replacement of EKF in state and parameter estimation in LIB 

applications. 

iii Adaptive square-root unscented Kalman filter 

In (Batteries, 2017), the ASR-UKF was proposed for SOC estimation; it combines the 

principle of SR-UKF and AUKF. The improved Sage–Husa estimation method was 

employed for adaptively updating the covariance matrices. The non-negative qualitative 

and symmetry character of covariance matrices ensure that the produced estimation 

results will not diverge. The ASR-UKF-based SOC estimation performance was 
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compared with the EKF and UKF, and the outcomes inferred that the ASR-UKF has the 

highest robustness and convergence during SOC estimation under inaccurate 

measurement noise conditions. This estimation method is more suitable for EV 

applications where the battery is operated under high stress and high temperature.  

iv Square-root spherical-unscented Kalman filter  

In (Aung et al., 2015), a square-root spherical-unscented Kalman filter (SRS-UKF) 

method was proposed for SOC estimation which uses a Jacobian-free linearisation 

approach with UKF for a nonlinear system. The computational complexity and cost of 

the UKF algorithm are proportional to the number of sigma points. When the single 

weight function (Wi) and spherical transformation in SRS-UKF are employed, the 

requirement of numerous sigma points and high computational cost are significantly 

reduced. The application of SRS-UKF method reduces the number of multiplications 

performed during estimation by ~32% compared with regular UKF. 

(b) Central difference Kalman filter 

In CDFK, Stirling’s formula is used for the approximation of derivatives, and a set of 

sigma points is used to reduce the computational burden by eliminating the Jacobian 

matrix. The function used to determine the value of the set of sigma points is chosen, such 

that the weighted mean and covariance can be matched with the mean and covariance of 

the prior modelled random variables. Unlike the UKF, this algorithm uses only a single 

tuning parameter h, which makes it more straightforward. The value of h may be any 

positive number, for example, in the case of Gaussian random variables, h is set to √3. 

Similar to SPKF, the augmented variable ^� defines the combined randomness of state, 

process noise, and measurement noise. Except for the sigma point weighing, the CDKF 

and UKF illustrate nearly the same accuracy during SOC estimation (Plett, 2006b). In 

(Sangwan et al., 2017), CDFK was used for the SOC estimation, and the results were 
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compared with those of EKF; CDKF had lower RMSE than EKF under identical testing 

conditions. In (HongWen He et al., 2015), the SOE estimator employed CDFK algorithm, 

and the proposed SOE estimator was reliable and highly accurate (maximum error of less 

than 1% for erroneous initial SOE) for EV application. 

2.9.2.4 Cubature Kalman filter 

EKF and SPKF suffer from divergence and dimensionality. To address these issues, 

the cubature Kalman filter (CKF) was proposed by Arasaratnam et al. in 2010 

(Tanachutiwat et al., 2010), in which the third-degree spherical radial cubature rule is 

applied for the numerical computation of the Gaussian weighted noise signals. The 

cubature rule transforms the variables from Cartesian to radial. Interestingly, the unique 

feature of CKF is that it uses equally weighted, uniformly distributed even number (2n; 

n is the state vector dimension) cubature points (�x) on the zero origin ellipsoid centre to 

calculate the state mean and covariance (Pathuri Bhuvana et al., 2013) (Xia, Wang, Tian, 

et al., 2015). In UKF, the odd number (2n+1) of sigma points (wx) is distributed on a non-

zero centre point ellipsoid. In (Pathuri Bhuvana et al., 2013), the CKF algorithm was used 

for SOC estimation, and its performance was compared with the EKF and UKF 

algorithms. The results demonstrated that the CKF had the highest accuracy with more 

computation time than EKF. To enhance the performance of CKF, a new adaptive CKF 

(ACKF) algorithm was proposed for SOC estimation in (Xia, Wang, Tian, et al., 2015), 

in which the performance of the proposed ACKF was compared with that CKF and EKF. 

The outcomes illustrated that the ACKF has the highest accuracy with the least 

convergence rate with high robustness against measurement error, though the 

computation time of ACKF exceeded that of CKF and EKF. The authors in (Z. Zeng et 

al., 2018) explained that the estimated SOC value using ACKF algorithm converges more 

rapidly than CKF and UKF with different initial SOC error conditions. 
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(a) Strong tracking-cubature Kalman filter 

In (Xia, Wang, Wang, et al., 2015), the attributes of CKF and STF algorithms were 

combined and a new advance algorithm called strong tracking-cubature Kalman filter 

(ST-CKF) was proposed for the online SOC estimation. With the addition of STF 

algorithm with CKF algorithm, the filter gain matrix can be updated online by introducing 

fading factor (z5) in the state estimation covariance matrix. In [43], the performance of 

the SOC estimation utilising ST-CKF was compared with the EKF and CKF algorithms. 

The results illustrated that the complexity of the ST-CKF is higher than those of the CKF 

and EKF because it is more robust to measurement noise. Additionally, the ST-CKF 

claims the lowest SOC estimation error under observable initial SOC conditions 

compared with the EKF and CKF algorithms. 

Table 2.9 presents a detailed comparison of the above specified different KF family 

algorithms based on previous studies. The distinctive highlights of the different KF family 

algorithms utilised in online SOC estimation, such as MAE, complexity and associated 

mathematical formulas, are briefly discussed. The associated key issues with KF family 

algorithms suitable for online SOC estimation are listed in Table 2.10. 
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2.10 Joint and dual Kalman filter 

The battery model parameters and SOC–OCV relation are time varying in nature and 

depend on operating conditions. Offline parameter estimation techniques are commonly 

utilised in battery state estimation by researchers. However, to improve the state 

estimation accuracy, the battery parameters must be updated alongside estimation in the 

task time frame. In (Plett, 2006c), two types of estimation approaches, namely joint KF 

estimation approach and dual KF estimation approach, were introduced. The concurrent 

estimation of battery state and parameter using a single member of the KF family 

algorithm became possible through the estimation of the augmented vector (¨) values in 

joint KF estimation approach [as expressed in (6)]. In this approach, the state and 

parameter comprise fast and slow dynamics of the system. The complete system dynamics 

can be described by (2.13) and (2.14). The basic structure of the joint KF estimation 

approach depicted in Figure 2.18 reveals that a single KF is sufficient for simultaneous 

online state and parameter estimation. The figure likewise demonstrates how the 

information flows from one step to another during estimation. Different KF algorithms, 

such as AKF (Dai et al., 2009; Gao et al., 2016), SPKF (Plett, 2006c) and SR–SPKF 

(Plett, 2006c), were utilised for online SOC and battery parameter estimation; all KF 

family algorithms claim high accuracy. However, owing to the incorporation of the large 

size of the augmented vector (¨), the overall computational complexity of the joint KF-

based SOC estimation significantly increases. Additionally, the time scale mismatch of 

state and parameter vector builds up the problem of poor numeric conditioning. 

               ¨ = ©^5ª5« = ¬�(^5g@, +5g@, ª5g@)ª5g@ ­+©d5g@.5g@ «                           (2.13)                                      

05 = /(^5, +5 , ª5) + ]5                                          (2.14)                                        
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Figure 2.18: Joint KF estimation approach  

 

Figure 2.19: Dual KF estimation (Campestrini et al., 2016) 

The issues of large size augmented vector and poor numerical conditioning identified 

with joint KF estimation can be resolved by using the dual KF estimation approach 

(Campestrini et al., 2016). In dual KF estimation, two separate KFs are utilised, one for 

state estimation and one for parameter estimation. The path of data flow from one KF to 

another KF is represented in Figure 2.19. The dynamic mathematical model represented 

by (2.15) and (2.16) explicitly includes the parameter vector ª5  (Plett, 2006c). 

^5 = �(^5g@, +5g@, d5g@ª5g@, j − 1)                         (2.15) 

05 = ℎ(^5, +5, ]5 , ª5 , j)                                    (2.16) 

In (Mastali et al., 2013), the dual KF was used for the LIB; dual KF could track SOC 

under a dynamic environment, such as EV with an error less than 4%. In (Plett, 2006c), 
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the dual SPKF and dual SR-SPKF were used for SOC estimation, and the results were 

compared with those of individual SPRK and SR-SPFK estimation. The members of the 

KF family, such as EKF (Dragicevic et al., 2013), SP-UKF (Erlangga et al., 2018), UKF 

(Y. Liu et al., 2012) and AUKF (H. Guo et al., 2017), were concurrently utilised in dual 

KF-based states and parameter estimation. All dual KFs demonstrate higher accuracy 

compared with individual KF state or battery parameter estimation approaches. In (Y. 

Zou, Hu, Ma, & Li, 2015), dual EKF was used for the combined SOC/SOH estimation. 

The two distinct EKFs with different time scales were used for online SOC estimation 

and offline SOH (capacity and internal ohmic resistance) estimation. The proposed 

method could estimate online SOC and SOH without heavy computational burden, 

divergence events and instability. In (Andre et al., 2013), dual KF was utilised for SOC 

and resistance estimation; it demonstrated high accuracy (less than 1% error) in SOC and 

resistance estimation even in the presence of 20% error in initial capacity. In (Mastali et 

al., 2013), dual EKF was used for SOC estimation of two commercial LIBs with different 

structures; the effect of battery structure on battery parameter was analysed using zero-

hysteresis Rint model. The results of the study illustrated that the parameter estimated by 

the filter depends on the battery model. However, the main drawback of the dual KF 

estimation approach is the high chance of information loss during estimation, which may 

lead to poor SOC estimation accuracy.  

2.11 Challenging steps in the implementation of KF family algorithms 

Some important steps involve determining the performance of the overall SOC 

estimation, such as (i) selection of battery model and its PIMs, (ii) selection initial SOC 

and filter tuning, (iii) selection of operating conditions and (iv) consideration of different 

error accumulation. 
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2.11.1 Selection of battery model and its estimated parameter accuracy 

Different battery models maintain their characteristics under varying environmental 

conditions, such as adaptability and precision. However, due to the complicated 

electrochemical behaviour under dynamic environmental circumstances, model selection 

for the appropriate implementation of the SOC estimation method becomes a difficult 

step. The complexity of the model is also an important factor that depends primarily on 

the number of model parameters to be identified. The model usually needs advanced 

hardware integrated into BMS with robust computational strategy and large memory 

storage room. The selection of the model relies on the dynamics of the present load 

profile. Importantly, the more complicated or higher-order model is required to capture 

extremely fluctuating load. The battery model’s accuracy is typically assessed in terms of 

its terminal voltage error. Therefore, the accuracy can be improved by applying the 

appropriate PIM. The literature was analysed to compare the average RMSE of various 

models obtained under DST and FUDS test circumstances (Figure 2.20). The Rint model 

shows the highest voltage error under specified test conditions owing to the absence of 

transient states to capture electrochemical dynamics. By contrast, the 2RC model shows 

excellent modelling capability. In addition, Randles model shows significant error owing 

to the battery model’s transient states. The researchers preferred the 2RC model with 

offline parameters for online model-based SOC estimation because it decreases the 

complexity of the online SOC estimation algorithm. 

In (Qianqian Wang et al., 2017), the performance of three distinct models (PNGV, 

1RC and 2RC) under distinct environmental circumstances (CCD test, DST test and 

HPPC test) was assessed. For all battery models, the offline PIM and the SOC estimation 

EKF were used. The standardised RMSE of the simulated voltage model was compared 

with the estimated SOC. The results showed a linear and strong correlation between the 

LIB model accuracy and model-based SOC estimation error (Figure 2.21). For the choice 
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of SOC estimation algorithm, the trade-off between model complexity and precision is 

more critical.        

 

(a) 

 

(b) 

 

Figure 2.20: Voltage RMSE of models under test condition (a) DST and (b) 

FUDS (Andre et al., 2013; Bartlett, Marcicki, Onori, Rizzoni, Xiao Guang Yang, et al., 

2016; Z. Chen et al., 2013; I. Kim, 2008; Qianqian Wang et al., 2017; Rui Xiong, He, 

Sun, & Zhao, 2013; Z. Yu et al., 2015; Y. Zou, Hu, Ma, & Eben Li, 2015) 
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Figure 2.21: Correlation between the normalised RMSE of the model and SOC 

estimation (Qianqian Wang et al., 2017) 

2.11.2 Selection initial SOC and filter tuning  

The inner dynamics of the battery varies depending on the true SOC value. The 

accuracy of the battery SOC estimation is high when its true SOC is set at 50% because 

the electrochemical responses within the battery are insufficient and unstable at 100% or 

0% SOC (D. Li et al., 2015). The convergence rate typically relies on the difference 

between the initial SOC and the true SOC during estimation, particularly in the case of 

unknown initial SOC. The convergence rate usually decreases as the true SOC error 

increases (Hongwen He et al., 2013). For example, in (C. Huang et al., 2018), the authors 

conducted experiments under various initial SOC error conditions to evaluate the 

robustness of EKF and UKF algorithms. The findings showed that the SOC estimation 

error value and divergence rate are directly affected by the initial SOC error level. 

RMSE’s value ranged from 0.7 to 6.72 for the initial SOC error range of 10%–90%. Issues 

linked to the initial SOC mistake can be fixed to some extent by using modified KF 

algorithms in the model-based Internet SOC estimation method. For example, for the 

SOC estimation of the EV battery, the EKF algorithm was used in (Z. Chen et al., 2013). 

The findings showed that the accurate estimation of SOC is feasible using EKF without 
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the previous understanding of the initial SOC and automatically converges to a true value 

within two minutes. The process and measurement noise were efficiently removed. Table 

2.11 describes the relative performance evaluation of various KF family algorithms used 

in the literature for model-based SOC estimation under observed/unobserved initial SOC 

circumstances. It also includes examples of the change in relative convergence rate of 

estimation algorithms under various initial conditions of SOC. For observable initial SOC 

situation, the value of MAE is almost continuous. However, in some instances of an 

unknown initial SOC error situation in the literature, a significant practically unacceptable 

variation in MAE values is registered. 

In addition, when using KF family algorithms, selecting the initial noise covariance 

matrix component called KF tuning assumes an important task in defining estimation and 

accuracy. The four distinct KF algorithms were separately tuned in (Campestrini et al., 

2016) to explore the accuracy of the SOC estimation. The findings inferred that each KF 

algorithm requires a distinctive set of KF tuning parameters to optimise KF performance. 

Three key parameter values, Pw, Pv and Px, are typically needed for ideal filter tuning. 

However, finding the precise value of these parameters is a difficult task. The influence 

of the initially set diagonal element values of Pw, Pv and Px on filter performance is briefly 

discussed in Table 2.12. 
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During estimation, the noise covariance matrices with a restricted understanding of 

model inaccuracies and system disturbances are difficult to initialise correctly. To 

maximise estimation accuracy, the choice of noise covariance components should be 

produced under the account of initial SOC because of high model uncertainty in low SOC 

region (S. Yang et al., 2017). The stability of the KF algorithm is usually readily diverged 

because of battery model error and noise statistics (Z. Yu et al., 2015). However, it can 

be enhanced by adding an optimisation method along with various KF family algorithms. 

For example, in (Shehab El Din, Hussein, Abdel-Hafez, et al., 2018), for accurate SOC 

estimation, the ALS optimisation technique was added to find the optimal value of Pv 

elements with the EKF and UKF algorithms. The performance of UKF + ALS under the 

incorrect initialisation was better than those of EKF + ALS, UKF and EKF without a 

substantial increase in computational complexity. 

2.12 Selection of operating conditions  

The accuracy of the model-based online SOC estimation is greatly influenced by the 

variation of battery model parameters and the OCV–SOC relationship caused by the 

temperature, current rate and SOC range (C. Huang et al., 2018; S. Yang et al., 2017; Yun 

Zhang et al., 2018). Therefore, a suitable operating condition must be selected. 

For example, in (Yun Zhang et al., 2018), the authors conducted few tests on the LFP 

18650 battery at different temperatures (−20 °C, −10 °C, 0 °C, 10 °C and 20 °C) and 

current rates (0.5C, 1C and 1.5C). In this study, the variation of the 1RC battery model 

parameters induced by the various operating conditions was evaluated thoroughly. The 

results showed that the value of internal resistance R is approximately independent of the 

operating SOC range. The values of model parameters R, R1 and C1 are highly sensitive 

to temperature but less sensitive to current rate and SOC range. The average OCV–SOC 

relationship stays compatible with the various operating conditions. 
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To analyse the effect of temperature and SOC range on the OCV–SOC relationship, 

the OCV–SOC relationship at different temperatures was developed by researchers in (S. 

Yang et al., 2017). The results illustrated that owing to the high Li concentration on the 

electrode, the difference in OCV under the low SOC region (< 10% SOC) is considerably 

large. Therefore, in the low SOC range (0%–10%), the deviation in OCV can lead to 

significant SOC error. In the 30%–40% SOC region, the deviation in OCV of 

approximately 4 mV/1% SOC was registered at a temperature of 25 °C.  

 In addition, knowledge of the accurate discharge capacity is always needed in the 

AHC of the model-based SOC estimation. According to (R. Zhang, Xia, Li, et al., 2018a), 

such discharge capacity usually varies with the change in operating conditions. For 

instance, the 90 Ah LiFePO4 was used in (Junfu Li et al., 2016) to analyse the effect of 

temperature on battery discharge capacity. The results demonstrated that the battery 

discharge capacity decreases with a change in temperature. However, in case of a rapid 

change in temperature during high current rate, the rate of change of battery capacity will 

be less (S. Yang et al., 2017). Owing to the slow Li diffusion process, the impact of 

temperature on the battery sets aside a prolonged effort to show up. Therefore, estimating 

the battery discharge capacity at ambient temperature (25 °C) is more appropriate (S. 

Yang et al., 2017). 

In the case of EVs, the variation in operating conditions, such as temperature and 

current rate, is relatively large, so the model parameter variation will be more important. 

Therefore, the model parameters must be updated online during estimation for accurate 

SOC estimation. Research efforts on online updating of the model parameters are divided 

into two groups of methods: KF based, and regression based (RLS, variants of RLS). In 

Section 2.10, the family of KF algorithm was used to simultaneously estimate battery 

parameters and states, such as joint and dual KF. Table 2.13 lists the different regression-
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based methods proposed by researchers in recent years (P. Shen, Ouyang, Lu, et al., 2018; 

Qianqian Wang et al., 2018; Q. Yu et al., 2017).  

Table 2.13: Online model parameter and SOC estimation methods of LiBs 

Ref. Algorithms Model RMSE (%) 

(Dai et al., 2009) Dual AKF 2RC < 3.0 

(J. Kim & Cho, 2011) Dual EKF 1RC < 5.0 

(Z. He et al., 2012) Joint SPKF Rint Undefined 

(Andre et al., 2013) KF+UKF 2RC < 1.0 

(T. Kim et al., 2015) Dual EKF 1RC 0.22 

(X. Guo et al., 2016) FFLS + AUKF 2RC 1.6 

(Xu Zhang et al., 2016) EKF + UKF 1RC 0.30 

(Safwat et al., 2017) MFFRLS + EKF 2RC 4.48 

MFFRLS + UKF 4.02 

MFFRLS + CKF 3.31 

(Xia et al., 2018) FFRLS + EKF 1RC 1.10 

FFRLS + UKF 1.40 

(P. Shen, Ouyang, Lu, 

et al., 2018) 

RLS + EKF 2RC 1.10 

(Wassiliadis et al., 

2018) 

Dual EKF 2RC 0.50 

(X. Hu et al., 2018) Dual EKF 2RC 1.0 

(Qianqian Wang et al., 

2018) 

Dual UKF 2RC 0.34 Univ
ers

iti 
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2.13 Consideration of different error accumulation 

During the implementation of the KF algorithm for model-based SOC estimation, the 

errors induced by multiple sources and their effect on estimation must be considered. The 

different error accumulation in estimation directly influences the accuracy and the 

convergence rate. Six types of errors can be induced during two sub-processes, such as 

AHC and voltage-based correction of complete estimation (Figure 2.22). The errors 

produced in AHC may be caused by capacity error (CE), initial SOC error (ISE) and 

current measurement error (CME). The errors produced in the voltage-based correction 

may be caused by the model prediction error (MPE), voltage measurement error (VME) 

and CME.  

Estimation errors

AHC process Voltage-based correction process

• Capacity induced error 

• Initial SOC induced error

• Current measurement error 

• Model prediction error 

• Current measurement error 

• Voltage measurement error  

Figure 2.22: Different errors in the model-based SOC estimation 

2.13.1 Initial SOC error 

Initial SOC error (ISE) is the difference between real SOC and estimated SOC. For the 

initialisation of estimation, ISE is needed to provide the initial SOC in the first iteration. 

The value of the initial SOC can be taken from the look-up table or the latest stored value 

of SOC. The value of ISE is reduced and approximately eliminated with the next several 

iterations because of the recursive update of KF gain during estimation (Y. Zheng et al., 

2018). ISE always converges at a fast rate towards zero with a large KF gain (P. Shen, 

Ouyang, Han, et al., 2018).  
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2.13.2  Capacity error 

The decrease in aged battery capacity is responsible for the induction of CE and it can 

be reduced by updating the battery capacity during estimation. With the application of 

KF family algorithm for SOC estimation, the effect of CE during dynamic loading can be 

reduced (Y. Zheng et al., 2018). In the case of a highly accurate battery model, the value 

of SOC error caused by the CE can be small with a large KF gain (P. Shen, Ouyang, Han, 

et al., 2018).  

2.13.3 Current measurement error 

The measured current is fed to AHC and voltage-based correction, resulting in CME 

availability in both. CME is mainly caused by the low precision of current sensors, bias 

error and noise generated during current measurement. The influence of current noise is 

minimal on SOC errors owing to the effect of integration in AHC. The CME generated 

in AHC is usually unidirectional and may increase in the first several iterations (Y. Zheng 

et al., 2018). However, the CME generated in voltage-based correction is opposite in sign 

to the CME generated in AHC (P. Shen, Ouyang, Han, et al., 2018). Hence, for the CME 

generated by AHC, the KF gain increases and, finally, the complete elimination of the 

increasing trend of error could be possible with the several next iterations (P. Shen, 

Ouyang, Han, et al., 2018). The appropriate value of KF gain is significant for accurate 

SOC estimation. For low KF gain, CME in AHC increases. The high KF gain produces 

more CME in correction (Y. Zheng et al., 2018).  

2.13.4 Voltage measurement error 

Similar to current measurement, bias error and noise may occur during voltage 

measurement. The value of noise depends on the environment, such as earthing and 

electromagnetic interference, and it is difficult to estimate. Nevertheless, the KF family 

algorithm can efficiently suppress noise (P. Shen, Ouyang, Han, et al., 2018). Bias error 
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is caused by the change in measured voltage from real voltage. To compensate for this 

bias error, the battery model state variables produce voltage deviation (Y. Zheng et al., 

2018). For example, in the case of 2RC model, SOCk, V1,k, and V2,k produce the voltage 

deviation to compensate for voltage bias error. The value of covariance matrix Pw 

elements is responsible for the magnitude of change in the state variables (Y. Zheng et 

al., 2018). 

2.13.5 Model prediction error 

Model prediction error (MPE) refers to the difference between model voltage and real 

voltage. It has a major contribution to the error of SOC estimation. Same as VME, it can 

be divided into two parts, namely bias error and noise. MPE and VME influence SOC 

estimation in the same fashion as well. The model voltage noise has no adverse effect on 

SOC estimation and its accuracy (Peng et al., 2017; Y. Zheng et al., 2018). The high 

dependency of MPE on the OCV–SOC relationship is the most challenging issue for the 

model-based SOC estimation using the KF algorithm in any working environment (P. 

Shen, Ouyang, Han, et al., 2018). 

Finally, the selection of hardware technology and software technology plays a vital 

role in SOC estimation. To reduce the effect of the accumulation of different errors, SOC 

estimation should include high-precision sensors, a good capacity estimation algorithm, 

and a highly accurate battery modelling method. 

2.14 Commonly used performance evaluation matrices 

In the existing studies, different types of evaluation matrices are commonly utilized 

for the performance evaluation of the state estimation algorithms such as estimation 

errors, convergence time, computational cost and computational complexity.  
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The estimation error can define as the difference between the measured value and the 

estimated value. The measured values are acquired from the experiments conducted in 

operating conditions demarcated according to the different tests, such as constant current 

discharge (CCD) (Petzl & Danzer, 2013; Tagade et al., 2016), PCPD (D. Li et al., 2015; 

Weigert et al., 2011), DST [57], HPPC (Hongwen He et al., 2011a; Tagade et al., 2016; 

Qianqian Wang et al., 2017), FUDS (Sangwan et al., 2017), UDDS (Rui Xiong, He, Sun, 

Liu, et al., 2013; J. Yang et al., 2018) and BJDC (Hongwen He et al., 2013). For example, 

the model terminal voltage error values are computed to analyse the accuracy of the 

identified battery model parameters using an estimation algorithm. The estimated SOC 

error values are evaluated to analyse the accuracy of SOC estimation. To evaluate the 

accuracy of the estimation algorithm, different estimation errors such as maximum 

absolute error (MaxAE) (HongWen He et al., 2015), mean absolute error (MAE) (W. Li 

et al., 2021b), and root mean square error (RMSE) (S. Zhang & Zhang, 2021b) are utilized 

by the researchers.  

The convergence time of the estimation algorithm is evaluated to analyse the 

robustness of the estimation algorithm (Zhu et al., 2020). It can be defined as the range 

from the initialization to the time when the absolute estimation error is less than threshold 

value. Generally, the estimation error ranges from 2-5 % is considered as threshold value. 

The computational cost and complexity are two important matrices are generally 

utilized to analyse the computational time and memory requirement of the estimation 

algorithm. In the past literature, the mean execution time (MET) (Hossain Lipu et al., 

2021)and worst-case big O notation (Lucu et al., 2018) are utilized for the evaluation of 

computational cost and complexity, respectively. The value of MET varies with the 

programming efficiency of the algorithm and the hardware specification. Practically, it is 

difficult to compare the MET of the algorithm with the other studies, as they were 
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implemented with different hardware and by different researchers. On the other hand, the 

worst-case big O notion provides an idea about the computational complexity of the 

algorithm. Due to the limited memory size and computational power of the 

microcontroller used in BMS, it is essential to have an idea about the computational 

complexity in terms of the big O notation of the estimation algorithm.  

Based on the literature, the above-mentioned evaluation matrices are considered for 

the performance of the proposed algorithm in this thesis. A detailed explanation about 

considered evaluation matrices is given in Section 3.3.  

2.15 Summary 

In this chapter, a state-of-the-art review on battery modeling and battery states 

estimation methods have been conducted. The properties of five categories of battery 

modelling methods such as EM, ECM, EECM, ECIM, and DDM are analyzed. The 

overall battery states estimation methods are classified into two broad categories namely 

individual states estimation method and combined states estimation or states co-

estimation methods. In individual state estimation methods, the different estimation 

methods utilized for SOC, SOE, SOP, and SOH are discussed. The four commonly used 

types of SOC estimation methods such as CCM, OCVM, MBM, and MLM are reviewed. 

This study showed that the MBM for online SOC estimation with battery EECM is more 

appropriate for EV applications because of its possible benefits, including the capability 

to deal with unknown noise signals, low complexity, and high accuracy over other 

modeling methods. Similarly, the different estimation methods for SOE, SOP, and SOH 

are also discussed. Further, the existing methods for battery actual capacity and maximum 

available energy estimation are reviewed. Due to the existing high correlation amongst 

the different battery states and improve the functioning of BMS, it is crucial to develop 

the states co-estimation method for the estimation of the different battery states in real-
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time application. The different existing co-estimation methods for SOC, SOE, SOP, and 

SOH estimation have been discussed. Presently, to effectively utilize the correlation 

between the battery states and for the development of computationally efficient BMS, the 

states co-estimation method is preferred by the researcher for different states estimation. 

Finally, the most recent studies in the existing literature on online SOC estimation 

using KF family algorithms were thoroughly reviewed. The results showed that the merits 

of self-correction and low computational burden make KF family algorithms suitable for 

model-based online SOC estimation. The estimation procedure and related issues of the 

KF family algorithms are discussed and compared. The challenging steps in the 

implementation of KF family algorithms for model-based online SOC estimation were 

analyzed in-depth and discussed. As the battery model parameter identification is always 

a crucial task in model-based SOC estimation. For accurate SOC estimation in EV, the 

dual KF is preferred for online estimation of battery model parameters and SOC 

simultaneously.  

Univ
ers

iti 
Mala

ya



100 

CHAPTER 3: RESEARCH METHODOLOGY 

3.1 Introduction  

This chapter describes the experimental setting used to validate the proposed 

estimation methods in this thesis. The data sets developed from the testing of the battery 

cells are utilized for validation purposes. For the validation of the proposed estimation 

methods, the load current profiles are derived based on the requirement of EV batteries 

under some prescribed dynamic profile and drive cycles. Different experimental settings 

are done for three battery cells of different chemistries based on the information given in 

the respective manufacturer datasheet. 

The sections of the chapter are arranged in this sequence. In Section 3.1, the 

introduction of the chapter is provided. In Section 3.2, the research methodology used in 

this study is presented. In Section 3.3, detailed experimental settings for dataset 

development are discussed. The specifications of considered battery cells are provided. 

Also, the conducted battery cell tests are explained. In Section 3.4, The different 

evaluation metrics considered for performance evaluation of the proposed battery states 

co-estimation methods are described.  

3.2 Methodology 

To achieve the thesis objectives as discussed in Section 1.3, the considered research 

methodology in this study divided into four phases (Figure 3.1).  

In Phase 1, a state-of-the-art review on battery modeling and battery states estimation 

methods have been conducted. The battery states estimation methods are classified into 

two broad categories namely individual states estimation method and combined states 

estimation methods. In individual state estimation methods, the different estimation 

methods utilized for SOC, SOE, SOP, and SOH are discussed. This study showed that the 

MBM for online SOC estimation with battery EECM is more appropriate for EV 
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applications because of its possible benefits, including the capability to deal with 

unknown noise signals, low complexity, and high accuracy over other modeling methods. 

The most recent studies in the existing literature on online SOC estimation using KF 

family algorithms were thoroughly reviewed. The results showed that the merits of self-

correction and low computational burden make KF family algorithms suitable for model-

based online SOC estimation. As the battery model parameter identification is always a 

crucial task in model-based SOC estimation. For accurate SOC estimation in EV, the dual 

KF is preferred for online estimation of battery model parameters and SOC 

simultaneously. Furthermore, the different estimation methods for SOE, SOP, and SOH 

are also discussed. The existing methods for battery actual capacity and maximum 

available energy estimation are reviewed. Due to the existing high correlation amongst 

the different battery states and improve the functioning of BMS, it is crucial to develop 

the states co-estimation method for the estimation of the different battery states in real-

time application. The different existing battery states co-estimation methods for SOC, 

SOE, SOP, and SOH estimation have been discussed. Presently, to effectively utilize the 

correlation between the battery states and for the development of computationally 

efficient BMS, the co-estimation method is preferred by the researcher for battery states 

estimation. 

In Phase 2, the different battery cell testing methods utilized for the development of 

useful datasets are performed on the considered battery cells of different chemistries such 

NCA, NMC, and LFP. Different dynamic load current profiles corresponding to DST, 

US06 drive cycle, and HPPC test are considered for testing of considered battery cells. 

The developed datasets will be utilized for the validation of the proposed estimation 

methods. 
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In Phase 3, to simultaneously estimate the battery model parameters and SOC at high 

accuracy and low computational cost, a proposed DFFAEKF algorithm is developed. In 

which, the benefits of the forgetting factor (high variations in the filter coefficients) 

together with the features of the DKF algorithm are utilized. Later, the co-estimation 

method for battery SOC and SOE estimation using the DFFAEKF algorithm is developed. 

In which, a proposed DFFAEKF was utilized for SOC estimation and experimental 

quantitative relation between SOC and SOE for SOE estimation to make it highly accurate 

and computational less expensive. The proposed method is capable to estimate the battery 

SOC and SOE with high accuracy and, strong robustness to the battery model parameter 

inaccuracy and measurement noise uncertainties. Further, to effectively utilize the 

correlation between different battery states and to reduce the computational burden of the 

overall co-estimation method, a unified frame of battery states co-estimation method for 

battery SOC, SOE, SOP, actual capacity, and maximum available estimation is 

developed. The robust and less computational burden methods are considered for the 

battery states (SOC, SOE, SOP) estimation. A proposed co-estimation method for SOC 

and SOE estimation using the DFFAEKF is utilized to estimate the SOC and SOE. By 

utilizing the identified Rint battery model parameters using the FFRLS algorithm and the 

estimated SOC, the battery model-based SOP estimation algorithm is implemented. 

Moreover, the actual capacity and maximum available energy estimation are performed 

by using a new SW-AWTLS algorithm. The SW-AWTLS algorithm can converge to true 

value at a fast rate with a low computational burden as compared to the AWTLS algorithm 

due to the sliding window. All the proposed methods are implemented in MATLAB 

environment for the evaluation purpose. 

In Phase 4, the performance of the proposed methods are validated and evaluated based 

on the various extensive simulation conducted in MATLAB environment. The data 

collected with the testing of different chemistry cells under different dynamic operating 
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conditions in Phase 2 and the different evaluation metrices are used to ensure the 

effectiveness of the proposed methods. The results of the proposed battery states co-

estimation methods are presented in Chapter 6. 

State of art literature review on individual state estimation and co-

estimation methods

Battery Cells testing under dynamic operating conditions and 

development of useful datasets

Development of more accurate SOC estimation method for EV 

application

Development of co-estimation method for SOC and SOE estimation 

for EV application

Development of unified frame for co-estimation of battery states, 

actual capacity and maximum available energy for EV application

Results validation and evaluate the performance of the proposed 

estimation methods under dynamic operating conditions

End

Start

Phase 1:

 Literature Review

Phase 2: 

Data Collection

Phase 3: 

Development 

Phase 4: 

Validation and 

Evaluation

 

Figure 3.1: Flow chart of research methodology 

3.3 Experimental settings 

The experimental setup involved in acquiring the experimental useful data is shown in 

Figure 3.2. It contains the battery testing system (Neware BTS4000), programmable 

temperature chamber (ESPEC SU-241), host computer, and battery cells. The battery 

testing system is used to charge and discharge the battery cell according to the load 

profiles. Then, the data is recorded and send to the host computer. The maximum 

operating current and voltage range of BTS 4000 are 10 A and 5V, respectively. The BTS 

4000 has the accuracy and stability of ± 0.05 % of FS. It can record the data at a frequency 
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of 10 Hz. The temperature chamber ESPEC SU-241is used to maintain the desired 

temperature settings. The operating temperature range of ESPEC SU-241is - 40°C to 

150°C. Where the balance temperature control system is used to control the operating 

temperature inside the chamber.  

 

Figure 3.2: Experimental Test Bench 

3.3.1 Considered battery cells specification 

As listed in Table 3.1, the three battery cells of different chemistries are considered for 

the validation of the proposed algorithms. The Lithium nickel cobalt aluminum oxide 

battery cell NCR 18650B manufactured by Panasonic is considered as Cell 2, as presented 

in Figure 3.3 (a).  It has a nominal capacity of 3.4 Ah and a nominal voltage of 3.6 V. The 

Lithium nickel manganese cobalt oxide battery cell US18650VTC6 manufactured by 

Sony is considered as Cell 3, as presented in Figure 3.3 (b). It has a nominal capacity of 

3.0 Ah and a nominal voltage of 3.7 V. The high-performance nanophosphate lithium 

iron phosphate battery cell ANR26650M1-B manufactured by A123 is considered as Cell 
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1, as presented in Figure 3.3 (c). It has a nominal capacity of 2.6 Ah and a nominal voltage 

of 3.6 V with high power and energy density. 

The details specification of the Cell 1, Cell 2 and Cell 3 is given in appendix A.  

 

 

(a) 

 

(b) 

 

(c) 

 

Figure 3.3: Considered battery cells: (a) Cell 1, (b) Cell 2, and (c) Cell 3 
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3.3.2 Battery Cell Testing Methods 

Different tests are conducted on the battery cells, to develop useful datasets for the 

validation of the proposed methods. The name of the different conducted tests, associated 

test settings, and the purpose/results of the test considered in this study are shown in 

Figure 3.4. 

 

Figure 3.4: Details of battery cells tests considered in the thesis 

3.3.2.1 Capacity test 

The capacity test is conducted to obtain the experimental actual capacity, which 

contains constant current- constant voltage (CC-CV) charge and CC discharge. With the 

help of obtained test results, the experimental maximum available energy values are also 

evaluated. Firstly, the battery cells are placed inside the battery chamber and soaked at 

the set temperature for 5 hours. The battery cells are charged using the CC-CV charging 

method to the test cells' upper cut-off voltage.  Three different discharge C-rates (e.g. 0.5 

C, 1.0 C, and 1.5 C) are considered for discharge the battery cell to lower cut-off voltage. 

The procedure is repeated at three distinct temperature values such as 5°C, 25°C, and 

45°C. The values of the obtained actual capacity and maximum available energy under 
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different operating conditions are presented in Figure 3.5. The obtained experimental 

actual capacity and maximum available energy for Cell1, Cell 2, and Cell 3 under three 

different operating temperatures are demonstrated in Figures 3.5 (a), 3.5 (b), and 3.5 (c), 

respectively.  

 

 

 

Figure 3.5: Obtained experimental actual capacity and maximum available 

energy of fresh battery cells at different operating temperature: (a) Cell 1, (b) Cell 

2, (c) Cell 3  
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3.3.2.2 Pulse discharge test 

The pulse discharge test is performed to evaluate the relationship between OCV and 

SOC. Firstly, the test battery cells are charged by using the CC-CV charge current profile. 

The test battery cells are considered to be fully charged to 100 % SOC at the end of the 

CC-CV charge. The test battery cells are kept at rest condition for 1-hour rest to measure 

the OCV at 100 % SOC. Hereafter, the test battery cells are discharged using CC 

discharge at a 1 C rate for every 10 % SOC with 1 hour rest period to determine the 

relationship between the OCV and SOC. The obtained OCV-SOC relationship for the test 

battery cells at 25°C is presented in Figure 3.6.  

The polynomial fitted equation is used to define the relationship between SOC and 

OCV and expressed by a function that contains SOC: 

��3 = ∑ j������x8% : i = 1,2, … �               (3.1) 

Where, jx (* = 0, 1, 2, … , �) are the coefficients of the ´n´ order polynomial equation 

and can be determined by using the robust linear least-squares fitting method as shown in 

Fig 3.3. The centering and scaling approach were employed to normalize the experimental 

values. To obtain a better fit or high R-square value, the order of the polynomial is set to 

7 for all the test battery cells. The obtained polynomial coefficients value of the fitted 

curve of OCV-SOC relationship for test battery cells are listed in Table 3.2. 
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Figure 3.6: Average OCV and SOC curve of test battery cells at 25°C: 

(a) Cell 1, (b) Cell 2, and (c) Cell 3 
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3.3.2.3  Constant current (CC) discharge test 

The CC discharge test is performed to obtain the experimental relation between SOC 

and SOE. Firstly, the test battery cells are fully charge using CC-CV charging profile. 

Hereafter, the test battery cells are discharged using CC discharge at 0.5 C, 1.0 C, and 1.5 

C under set temperature. The CC discharge test is repeated at three distinct temperature 

values such as 5°C, 25°C, and 45°C. Further, the experimental relations between SOC and 

SOE are evaluated under different operating conditions. According to the results, as 

shown in Figure 3.7, the relationship between SOE and SOC for all considered battery 

cells is expressed by the quadratic function as expressed by (3.2). Where a, b, and c are 

the function coefficients. The robust linear least square method is used to determine the 

value of the coefficients in (3.2) and the obtained values are listed in Table 3.3. The high 

value of R-Square indicates that the fitting function precisely matches the average 

experimental relationship between battery SOE and SOC. The coefficient of 

determination R-Square is 1 for all the test battery cells. The value of RMSEs is 0.1493, 

0.008, and 0.01232 of the fitted curves for Cell 1, Cell 2, and Cell 3, respectively. 

��� = , × ���A + ¢ × SOC + 2                                (3.2) 

Table 3.3: Obtained coefficient values of the fitted curve of average SOC and 

SOE relation of test battery cells 

Battery Cells Coefficient Values RMSE 

a b c 

Cell 1 -1.228 29.17 53.8 0.1493 

Cell 2 -1.01 29.19 53.58 0.008158 

Cell 3 -0.2319 29.78 52.35 0.01232 
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Figure 3.7: Experimental SOC and SOE relationship of test battery cells: (a) 

Cell 1, (b) Cell 2, and (c) Cell 3 
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3.3.2.4 Hybrid pulse power characterization (HPPC) test 

The high-power charging and discharging of the battery cell can accelerate the 

degradation process. To protect the cell from degradation, the maximum power limits are 

computed for the next ΔT seconds. Generally, the HPPC test is conducted on the battery 

cell to estimate the battery cell power. The load current profile presented in Figure 3.8 is 

used to perform the HPPC test on the battery cell. Under which, a current pulse of 1.5 C 

rate is injected for 10s followed by the rest of 40s at every 10 % SOC as shown in Figure 

3.9. A fully charged battery cell is discharged at a pulse of 0.5C for 10 % SOC. The rest 

of 1 hour is given after the discharge of every 10 % SOC. The rest of the 40s is given 

between the current pulse. The first and second pulse refers to discharge and charge, 

respectively. The magnified HPPC load current and voltage profile is shown in Figure 

3.9. 

 

Figure 3.8: Load current profile for HPPC test 
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Figure 3.9: Magnified load current and terminal voltage profile for HPPC test 

By using the load current and voltage profile shown in Figure 3.9 and the Rint battery 

model as shown in Figure 3.10, the steps involved in charge and discharge power limits 

based on voltage are described below. 

Rdis 

Ik

Vt,k
VOCV (SOC)

Rchr 

 

Figure 3.10: Battery Rint Model with different charge and discharge resistance 

(Nabi Akpolat et al., 2020) 
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Firstly, by using the HPPC test results, the discharge resistance ('�xµ¶44L) and charge 

resistance ('�·¸¶44L) can be calculated by using: 

'�xµ¶44L  = ¹∆»¼½¾∆O¼½¾  ¹ = ¹»¿(�X)g»¿(�Y)O(�X)gO(�Y) ¹                                  (3.3) 

'�·¸¶44L = �∆»ÀÁÂ∆OÀÁÂ �  = ¹»¿(�Ã)g»¿(�Ä)O(�Ã)gO(�Ä) ¹                                 (3.4) 

At j�· time instant, the terminal voltage of the battery cell (39,5) and the battery cell 

current (*5) are computed as: 

39,5  =  3<L»,5 − *5'µ�                                       (3.5) 

*5 =  »ÅÆÇ,Mg»È,MÉ¾¿                                                (3.6) 

To compute the battery discharge power, the value of 'µ� = '�xµ¶44L and 39,5 = 3�x�, 

Then, 

��xµ,5  = 39,5*5 = 3�x�( »ÅÆÇ,Mg»Ê½ËÉ¼½¾ÌÍÍÆ )                            (3.7) 

Similarly, to compute battery charge power, the value of 'µ� = '�·¸¶44L and 39,5 =
3��u, Then, 

��·¸,5  = 39,5*5 = 3��u( »ÊÎÏg»ÅÆÇ,MÉÀÁÂÌÍÍÆ )                          (3.8) 

Where, 3��u and 3�x� are the upper cut-off voltage and a low cut-off voltage of the 

battery cell, respectively. In the study, the computed ��xµ,5 and ��·¸,5 are considered as 

the true values discharge SOP and charge SOP, respectively. 
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3.3.2.5 Dynamic load profile test 

To validate the performance of the proposed methods in dynamic operating conditions 

under the variable power discharge regimes, two types of dynamic profiles namely 

dynamic stress test (DST) profile and the US06 drive cycle profile are used in this study. 

The DST profile is an improved version of the simplified Federal Urban Driving Schedule 

(SFUDS) and is used for drive cycle testing of USABC batteries. The US06 is a 

Supplemental Federal Test Procedure (SFTP) developed by the US Environmental 

Protection Agency (EPA) for an aggressive driving study. Due to the rapid speed 

fluctuations of US06, the robustness analysis of the proposed algorithm can be done. The 

dynamic load current profile of DST and US06 is presented in Figure 3.11 and Figure 

3.12, respectively. The positive and negative current values represent discharging and 

charging, respectively. 

 

Figure 3.11: Load current profile for a dynamic stress test (DST) 
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Figure 3.12: Load current profile for US06 drive cycle test 

3.4 Evaluation Metrics 

Consideration of appropriate evaluation matrices are very important for the validation 

of the proposed methods. In the study, four different types of evaluation metrics are 

considered for the evaluation of the proposed algorithm such as estimation errors, 

computational complexity, convergence speed, and computational burden.  

3.4.1 Estimation Errors 

To compare the estimation results, three different errors such as maximum absolute 

error (MaxAE), mean absolute error (MAE) and root mean square error (RMSE) are 

considered. The RMSE always a decent choice as an evaluation matric as it gives more 

weight to large errors. The value of estimation MAE, MaxAE, and RMSE can be 

evaluated by using (3.9), (3.10), and (3.11), respectively.  

MaxAE = max[|(�)�*�,�(")5 − (�(,)+.(")5|]                      (3.9) 

MAE = @6 ∑ (|(�)�*�,�(")5 − (�(,)+.(")5|)658@                  (3.10) 
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RMSE = �@6 ∑ ((�)�*�,�(")5 − (�(,)+.(")5)658@                  (3.11) 

The accuracy of the identified battery model parameters is computed with the help of 

battery terminal voltage errors. The terminal voltage absolute error (AE) is evaluated by 

comparing the estimated battery model terminal voltage with the measured battery 

terminal voltage.  

Similarly, the accuracy of the estimated battery states e.g., SOC and SOE are computed 

with the assistance of estimation errors. The estimated state absolution error is evaluated 

by comparing the estimated battery states with the measured battery states.  

3.4.2 Computational complexity 

The worst-case big O notation complexity �(. ) is widely used for the evaluation of 

the time complexity of the algorithm. The time complexity of the algorithm is commonly 

evaluated by the number of elementary mathematical operations performed. The big O 

complexity of the KF algorithm depends on the implicated matrices and vector 

dimensions and different operations. The fundamental algorithmic complexity associated 

with the simple matrices and vectors operation complexity is listed in Table 3.5. 

Generally, in the KF algorithm, the state vector size is n, measurement vector size is m, 

and command vector size is p involved. Based on the complexity fundamental given in 

table 3.5, the value of worst-case big O notation complexity �(. ) of the proposed 

algorithm is computed. 

Furthermore, the running time �(. ) of the proposed algorithm is evaluated. The �(. ) 

depends on the number of executed operations in an algorithm. The high value of 

operations, the longer �(. ) of the algorithm. 
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Table 3.4: Matrix operation complexity fundamental (Valade et al., 2017) 

Operation O (.) 

Matrix multiplication 2 × � × � × � 

Addition of two vectors of size n � 

Addition of two matrices of size (n, m)  � × � 

Transposition of a matrix 0 

Inversion of a matrix 4 × �B 

Mean vector of a matrix � × � 

Mean value of a vector � 

 

3.4.3 Computational cost 

Usually, the mean execution time (MET) is utilized to compare the computational cost 

of SOC estimation algorithms (Lucu et al., 2018). The final value of MET for a dynamic 

profile is calculated by using (3.12). Where ���L
×× x is the mean execution time of the 

ith battery cell. To evaluate the value of ���L
×× x of an ith battery cell, the algorithms are 

executed for 10 times under the same dynamic profile (Meng et al., 2016).  

��� = @6 ∑ ���L
×× x6x8@ : * = 1, 2, … Ø                                (3.12) 

3.4.4 Convergence speed 

Apart from the accuracy, the evaluation of the convergence speed is also an important 

factor in the performance analysis. The convergence speed can be defined as the time 

taken by the estimation value reaches the threshold value.  In this study, the convergence 

threshold is set to a 5 % estimation error value. The convergence speed also helps to 

evaluate the robustness of the proposed algorithm under erroneous initial conditions. The 
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high value of convergence speed means the high robustness of the proposed algorithm. 

The convergence speed also represents convergence time.  

3.5 Summary 

The different phases of research methodology to achieve the research objectives are 

discussed in this chapter. The experimental settings involved in the battery testing are 

described. The different battery cell testing methods utilized for the development of useful 

datasets are explained. The developed datasets will be utilized for the validation of the 

proposed battery states co-estimation methods. The different evaluation matrices such as 

estimation errors, computational complexity, convergence speed, and computational 

burden are briefly discussed in this chapter.  
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CHAPTER 4: CO-ESTIMATION METHOD FOR SOC AND SOE 

ESTIMATION USING DUAL FORGETTING FACTOR-BASED ADAPTIVE 

EXTENDED KALMAN FILTER  

4.1 Introduction  

As discussed in chapter 2, in model-based SOC estimation using EKF, the estimation 

accuracy directly depends on the accuracy of identified battery model parameters and the 

prior knowledge of the system noise variables. With the incorrect prior knowledge of 

system noise variables, the SOC estimation process error may prompt divergence. Also, 

the SOC estimation accuracy would not be guaranteed with the application of the offline 

battery model parameters identification method. Thus, it is always required to adaptively 

update the covariance matrix elements and the model parameters with the battery SOC 

estimation at a reduced computational burden. Also, in recent years, researchers are 

focusing on developing the combined SOC and SOE techniques that can be easily 

implementable into low-cost BMS chips. For instance, the adaptive H-infinity filters were 

used for the combined SOC and SOE estimation by using the offline identified model 

parameters in (Yongzhi Zhang et al., 2017). The results demonstrate a high estimation 

accuracy of SOC as well as SOE under different erroneous conditions. However, the use 

of offline model parameters limits the application in the long run. Furthermore, two 

different H-infinity filters were employed for battery SOC and SOE estimation that causes 

high computational cost. To reduce the computational cost of the model-based SOE 

estimation method, in (L. Zheng et al., 2016a), the simple SOE estimation based on the 

quantitative relationship between SOE and SOC was developed. In this study, the 

LiMn2O4 battery cells were considered. The results were analyzed under various 

operating conditions and the proposed method shows the SOE estimation maximum mean 

absolute error is 3.4 % under the dynamic stress test (DST) profile. The Luenberger 

observer was used for battery SOC estimation along with the offline identified battery 
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model parameters. The SOC estimation error was less than 2 %. However, the estimation 

accuracy of the Luenberger observer cannot be guaranteed due to the high sensitivity of 

the observer to battery model parameter variations. Therefore, there is a need to employ 

a highly accurate SOC estimation algorithm to simultaneously update the battery SOC 

and the model parameters and to improve the overall accuracy of the combined SOC and 

SOE estimation. Furthermore, it is also required to validate the concept of the quantitative 

relationship between battery SOE and SOC for other chemistry battery cells.  

In this chapter, a dual forgetting factor-based adaptive extended Kalman filter 

(DFFAEKF) algorithm is proposed for SOC estimation. Where the forgetting factor 

feature is used to reduce the computational burden of the proposed algorithm. Also, the 

proposed DFFAEKF algorithm helps to resolve the issue of battery model parameter 

divergence from the true value present in the DEKF algorithm to achieve high estimation 

accuracy under realistic dynamic loading conditions. Thereafter, using the proposed 

DFFAEKF algorithm, an accurate and low computational burden co-estimation method 

for SOC and SOE estimation is developed for EV applications. In the proposed co-

estimation method, the experimental correlation between SOC and SOE is utilized for 

SOE estimation. The concept of the proposed co-estimation method for SOC and SOE 

estimation and mathematics behind the implementation are also discussed. In addition, 

the experimental setting and battery test involved in the validation of the proposed method 

under dynamic operating conditions are explained.  

The sections of the chapter are arranged in this sequence. In Section 4.1, the 

introduction of the chapter is provided. In Section 4.2, the mathematical analysis of the 

proposed DFFAEKF algorithm and its implementation for the SOC estimation method 

are discussed. Section 4.3 explains the proposed co-estimation method for battery SOC 

and SOE for EV applications. The experimental setting and test conducted on the 
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considered battery cells are briefly discussed in Section 4.4. Finally, the summary of the 

chapter is presented in Section 4.5. 

4.2 Proposed dual forgetting factor-based adaptive extended Kalman filter 

(DFFAEKF) for SOC estimation 

A new dual forgetting factor-based adaptive extended Kalman filter (DFFAEKF) for 

SOC estimation is proposed in this chapter. In which, the benefits of the forgetting factor 

(high variations in the filter coefficients) together with the features of the DKF algorithm 

are utilized. The proposed algorithm has the feature of concurrently updating the battery 

model parameters with the SOC estimation at high accuracy under different dynamic 

conditions with the same order big O notation complexity as DEKF. 

4.2.1 Lithium-ion battery modeling 

 Due to the low complexity of the ECM of LIB, it is commonly utilized for model-

based SOC estimation. Especially, the 2RC battery model is commonly used for SOC 

estimation, as shown in Figure 4.1. It contains a series of internal resistance (R0),  two 

parallel-connected resistor and capacitor branches (R1C1 and R2C2), a voltage source 

equivalent to an open circuit (OCV) of the battery cell. R1 and R2 are the dynamic 

resistance and C1 and C2 are the corresponding dynamic capacitances. Vt is the battery 

terminal voltage. In this study, the polarity of discharging and charging battery current (I) 

is assumed to be positive and negative, respectively. The values of battery model elements 

are highly dependent on the battery SOC, charge/discharge C-rate, state of health, and 

operating condition. 

 The battery state-space equations developed by using Kirchhoff's voltage law can be 

written as:  
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⎩⎨
⎧ 3Ù@ = − »YÉYLY − @LY �3ÙA = − »XÉXLX − @LX �3� = ��3 − 3@ − 3A − �'%

                                           (4.1) 

O
C

V
 

R0 

R1 

C1 

R2 

C2 

I

Vt

V1 V2

V0

 

Figure 4.1: The second RC model for Lithium-ion battery                                        

4.2.2 Forgetting Factor-Based Adaptive Extended Kalman Filter (FFAEKF) 

Generally, the non-linear system is described by using discrete-time state space and 

measurement equation as given below:  

⎩⎨
⎧Ú5 = 15g@Ú5g@ + b5g@+5g@ + d5g@Û5 = �5Ú5 + c5+5 + ]5d5 ≈ Ø(0, �e,5)]5 ≈ Ø(0, �f,5)              (4.2) 

Where matrices 15, b5, �5 and c5 are dependent on system dynamics. Ú5 is the system 

state and Û5 is the output vector. d5 and ]5 are the zero mean small white noise signals 

with covariance �f,5 and �e,5 respectively. j denotes the time step for the system vectors.  

In the AEKF estimation method used in non-linear systems, the additional feature of 

adaptively updating the noise covariance matrices is utilized to overcome the error 

divergence and biased solution in AEKF. There are four adaptive filtering approaches 

generally used in AEKF such as the Bayesian estimation approach, the maximum 

likelihood estimation method, the correction technique, and the covariance matching 

technique (Rui Xiong, He, Sun, & Zhao, 2013). A covariance matching technique is a 
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simple approach and the idea behind it is to match the residuals consistent with the 

theoretical covariance. Generally, the noise covariance matrix is updated by using the 

moving window method (Zhentong Liu & He, 2015), and the forgetting factor method 

was introduced in (Akhlaghi et al., 2018; X. Li et al., 2019) to simplify the moving 

window method.  

The detailed steps of the forgetting factor-based AEKF (FFAEKF) can be summarized 

as follows: 

Step 1: Initialization 

Initialize the mean and covariance at step k = 0, 

Ü m̂%r = �(^%)�uk,%r = �[(^% − m̂%r)(^% − m̂%r)9]       (4.3) 

Where m̂%r and �uk,%r  are the estimated initial state and error covariance matrix. And 

superscript “+” represents the posterior values. Circumflex (^) and tilde (⁓) represent the 

estimated and predicted value. ‘T’ indicates matrix transportation. 

Step 2: Time Update or Prediction 

Obtain the prior state and its covariance matrix from the projection of step k-1 to step 

k. 

Predicted state estimation, 

m̂5g = 1�5g@ m̂5g@r + b�5g@+5g@                                   (4.4) 

Priori Covariance matrix, 

�uk,5g = 1�5g@�um,5g@r 1�5g@9 + �e,5g@                      (4.5) 
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where 1�5 = ÝÞ(uM,ßM,OM)ÝuM ¹uM8umM� , b�5g@ = ÝÞ(uM,ßM,OM)ÝeM ¹eM8eàM and �e,5 is the covariance 

of the process noise d5. 

Step 3: Measurement Update or Correction 

Obtain The improved posterior estimation by utilizing the difference between the actual 

measurement and predicted measurement calculated from the prior estimation, 

Innovation, 

 .5 =  05 − ��5u�uk,5g − c5u+5                                (4.6) 

Kalman gain matrix, 

y5 = �uk,5g ��5u9[��5u�uk,5g ��5u9 + c5u�f,5g c5u9]g@                (4.7) 

Posteriori state estimation, 

 m̂5r =  m̂5g + y5[05 − 0m5 ]              (4.8) 

Posteriori covariance matrix,  

�um,5r = �uk,5g − y5 ��k,5y59
             (4.9) 

Residual, 

 (5 =  05 − ��5u�um,5r − c5u+5       (4.10) 

Where ��5u = ÝÞ(uM,ßM,OM)ÝuM ¹uM8umM� , c5u = ÝÞ(uM,ßM,OM)ÝfM ¹fM8fM and �f,5 is the covariance of 

the measurement noise ]5. 

In the FFAEKF, the forgetting factor ‘,’ is used to adaptively update the noise 

covariance matrix. Generally, the value of  , can vary from 0 to 1. The application of the 

forgetting factor is to put more weightage on the current values in the update of the noise 
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covariance matrix and the updated covariance matrices can be expressed as below 

(Akhlaghi et al., 2018): 

Updated process noise covariance matrix, 

�e,5 = ,�e,5g@ + (1 − ,)�y5.5.59y59�    (4.11) 

Updated measurement noise covariance matrix, 

�f,5 = ,�f,5g@ + (1 − ,)  (5(59 + ��5u�uk,5g ��5u9&           (4.12) 

4.2.3 Proposed SOC estimation using DFFAEKF  

To estimate both battery state and parameters during the EV running condition, a new 

DFFAEKF is proposed in this paper. This proposed method will help to jointly update 

the battery model parameters, SOC as well as the unknown noise covariance matrices.  

The state-space equations for the battery SOC and model parameters estimation can 

be written as 

SOC estimation, 

 áÚ5 = [���5 3@,5 3A,5]9^5r@ = â(^5, ª5 , �5) + d5u 05 = ã(^5 , ª5 , �5) + ]5u                        (4.13) 

â(. ) and ã(. ) are the nonlinear functions of a state vector Ú5, and input battery current 

�5, and the battery model parameter vector ª5 . Further, it can be expressed as given 

below: 

â(. ) = ä1 0 00 1 (�åæçY⁄ 00 0 1 (�åæçX⁄ è é���53@,53A,5 ê + ⎣⎢⎢
⎡−��Tï �ð⁄ 0 00 '@(1 − (�åæçY ) 00 0 'A(1 − (�åæçX )⎦⎥⎥

⎤ �5 

(4.14) 
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ã(. ) = ��3(���5) − 3@,5 − 3A,5 − �5'%                   (4.15)  

where, Tï is the sampling time interval. 

The Jacobian matrix of state can be written as: 

 1�5 = ÝÞ(.)ÝuM ¹uM8umM� = ä1 0 00 (�åæçY 00 0 (�åæçX
è                                  (4.16) 

��5u = Ýô(.)ÝuM ¹uM8umM� = [���3 ����5⁄ −1 −1]                         (4.17) 

Model parameter estimation,  

áª5 = ['%,5 '@,5 P@,5 'A,5 PA,5]9ª5r@ = ª5 + d5ß"5 = ã(^5, ª5 , �5) + ]5ß
                           (4.18) 

where 3�,5 is the battery terminal voltage at step k. d5u and d5ß represent the zero mean 

independent white Gaussian process noise of the state and parameter respectively and 

their respective covariance matrices are �e,5u  and �e,5ß . Then, ]5u is the measurement noise 

random input signal with zero mean and covariance �f,5u .  

The Jacobian matrix of time-varying battery model parameters can be written as: 

��5ß = Ýô(.)ÝßM ¹ßM8ß�M� = Ýô(.)Ýß�M� + Ýô(.)ÝumM� ∙ ÝumM�Ýß�M�                              (4.19) 

The overall steps-wise implementation of the proposed DFFAEKF algorithm for joint 

estimation of the battery SOC and model parameters in the real-time condition are 

summarized in Figure 4.2. In this paper, ,= 0.98 is chosen to update the process and 

measurement noise covariance matrices of the battery state and model parameter. 
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4.3 Proposed co-estimation method for SOC and SOE estimation for EV 

application 

As reported in (W. Zhang et al., 2015b), the battery SOC and SOE are positively 

correlated with each other, under dynamic operating conditions. To justify the above 

statement, the different operating conditions (e.g. temperature, C-rate, aging) were 

considered during the experiments conducted on LiMn2O4 battery cells in (L. Zheng et 

al., 2016a). The experiments concluded that the relationship between SOE and SOC 

remains the same even under a significant change in the operating condition. Furthermore, 

it almost overlaps with each other in most of the conditions. Instead of using an additional 

filter or observer for battery SOE estimation, the concept of SOE estimation introduced 

in (L. Zheng et al., 2016a) in combination with the proposed DFFAEKF based SOC 

estimation method is utilized to develop a simple and more accurate SOE estimation 

method. Under this, the quantitative relationship between battery SOC and SOE obtained 

from the experimental data sets is employed. The battery test involved in the development 

of the experimental relationship between SOC and SOE is discussed in Section 3.3.  The 

SOC estimation results acquired from the DFFAEKF are utilized for the SOE estimation 

to improve the estimation results accuracy. The developed MATLB code for co-

estimation method for SOC and SOE using DEKF and DFFAEKF is attached in appendix 

B. 

The flow chart of co-estimation for SOC and SOE estimation using the DFFAEKF 

algorithm is represented in Figure 4.3.  
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Figure 4.3: Flowchart of co-estimation method for SOC and SOE estimation 

using DFFAEKF algorithm 

4.4 Considered battery Cell tests schedule 

Capacity Test ( 5°C, 25°C and 45°C)

Pulse Discharge Test (25°C )

CC Discharge Test ( 5°C, 25°C and 45°C)

Dynamic Load Profile Test (25°C)

DST and US06
 

Figure 4.4: Sequence of conducted tests for validation for co-estimation method 

for SOC and SOE estimation 

The sequence of conducted different tests on considered battery cells is presented in 

Figure 4.4. The test schedule combined four different tests such as capacity test, pulse 

discharge test, CC discharge test, and dynamic load profile test for the proposed method 

performance evaluation and validation. The experimental setting required to conduct the 

tests is discussed in Section 3.2. All the tests are conducted on considered three battery 

cells of different chemistries as discussed in Section 3.1.1. Different performance indices 
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such as estimation error, convergence speed, and computational complexity are 

considered for performance evaluation.  

4.5 Summary 

In this chapter, the proposed co-estimation method for SOC and SOE estimation using 

the DFFAEKF algorithm is described. The proposed method is capable to estimate the 

battery SOC and SOE with high accuracy and, strong robustness to the battery model 

parameter inaccuracy and measurement noise uncertainties. In which, a proposed 

DFFAEKF was utilized for SOC estimation and experimental quantitative relation 

between SOC and SOE for SOE estimation to make it highly accurate and computational 

less expensive. The implementation of the DFFAEKF algorithm for SOC estimation 

using the battery 2RC model is also discussed. The sequence of conducted tests for the 

performance evaluation of the proposed co-estimation method for SOC and SOE 

estimation is presented.  
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CHAPTER 5: UNIFIED FRAME OF BATTERY STATES CO-ESTIMATION 

METHOD FOR SOC, SOE, SOP, ACTUAL CAPACITY, AND MAXIMUM 

AVAILABLE ENERGY 

5.1 Introduction 

In chapter 4, the co-estimation for battery SOC and SOE estimation using DFFAEKF 

for EV application was proposed. However, this method was utilized for battery SOE and 

SOC estimation only. As the actual capacity and maximum available energy decreases 

with the battery aging. For an accurate SOC and SOE estimation, the correct value of 

actual capacity and maximum available energy is also required to update during real-time 

operation. For the development of efficient BMS for EV, the battery SOP, actual capacity, 

and maximum available energy are also needed to estimate at low computational burden. 

In recent years, the co-estimation method to estimate two or more battery states is 

gaining popularity due to the existing high correlation between the different states. For 

instance, in (Xu Zhang, Wang, Wu, et al., 2018), the SOE and SOP estimation using a 

multi-time-scale filter was introduced where the PSO-UKF was used for SOE estimation. 

However, the PSO was used for parameter identification of the 1-RC battery model that 

is not a suitable online application. In (X. Li et al., 2019), the co-estimation method for 

battery capacity and SOC was introduced. The neural network and AEKF were utilized 

for capacity and SOC estimation. However, in capacity estimation, a large of amount 

experimental datasets were involved in the neural network training. In (Yongzhi Zhang 

et al., 2017), the combined SOC and SOE estimation was performed using the H-infinity 

algorithm. Two separate filters for SOC and SOE estimation were used that significantly 

increases the computational burden. In (L. Ma et al., 2021), LSTNM-NN based combined 

SOC and SOE estimation method was investigated. The performance of the LSTNM-NN 

is compared with the SVR, random forest (RF), and simple recurrent neural network 

(Simple RNN). The LSTNM-NN demonstrated high accuracy and robustness at cost of a 
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high computational load.  In (X. Hu et al., 2018), the co-estimation method for SOC and 

SOH-based fractional-order calculus was proposed. However, the electrochemical 

impedance spectroscopy (EIS) results were utilized for battery modeling that makes it 

difficult to implement for real-time application.  In (P. Shen, Ouyang, Lu, et al., 2018), 

the model-based co-estimation method for SOC, SOH, and SOP was proposed. However, 

the offline identified battery model parameters using the Genetic algorithm used for SOC 

estimation. As the computational burden of the co-estimation algorithm proportionally 

increases the cost and size of the controller used in BMS. Thus, there is a need to develop 

an accurate unified frame of co-estimation method with a low computational burden that 

acquires the benefits of correlation between the battery states. 

In this chapter, an accurate unified frame of battery states co-estimation method is 

proposed for the estimation of SOC, SOE, SOP, actual capacity, and maximum available 

energy. The correlation between different battery states is effectively utilized to reduce 

the computational burden. For the battery states (SOC, SOE, SOP) estimation, robust and 

less computational burden methods are considered. The co-estimation method for SOC 

and SOE using DFFAEKF proposed in chapter 4, is utilized for SOC and SOE estimation. 

The Rint model parameters identified by using the FFRLS algorithm and estimated SOC 

are utilized for SOP estimation. A sliding widow-approximate weighted total least square 

(SW-AWTLS) method is proposed for battery actual capacity and maximum available 

energy estimation. In addition, the experimental setting and battery test involved in the 

validation of the proposed method under dynamic operating conditions are explained.  

The sections of the chapter are arranged in this sequence. In Section 5.1, the 

introduction of the chapter is provided. In Section 5.2, the mathematical analysis of the 

proposed unified frame of the battery states co-estimation method is discussed. 

Algorithms utilized for battery SOP, actual capacity, and maximum available energy 
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estimation are presented. The experimental setting and test conducted on the considered 

battery cells are briefly discussed in Section 5.3. Finally, the summary of the chapter is 

presented in Section 5.4. 

5.2 The proposed unified frame of the battery states co-estimation method 

As presented in Figure 5.1, the unified frame of battery states co-estimation method for 

the SOC, SOE, SOP, actual capacity, and maximum available energy estimation is 

proposed in this study. The main steps involved in the proposed unified frame battery 

states co-estimation method can be elaborated into four steps as follows: 1) A SOC and 

SOE estimation is performed by using the DFFAEKF algorithm and quantitative relation 

between SOC and SOE. 2) The Rint model parameters are identified by using the FFRLS 

algorithm and estimated SOC utilized for SOP estimation. 3) A new SW-AWTLS 

algorithm is employed for actual capacity and maximum available energy estimation. 
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5.2.1 SOC and SOE estimation 

The proposed co-estimation method for SOC and SOE estimation is utilized for the 

SOC and SOE estimation. For a detailed explanation, please refer to chapter 4. 

5.2.2 Model-based SOP estimation using FFRLS 

To protect the battery from over-charging and deep-discharge conditions, it is required 

to estimate the battery charge/discharge SOP. In this study, the Rint model is utilized to 

estimate the SOP at a low cost. The Rint model combines a series internal resistance ('µ�) 

and the open-circuit voltage source (3<L») as shown in Figure 5.2. By using Kirchhoff’s 

voltage law, the terminal voltage (ö�) can be described as: 

Rst 

Ik

Vt,k
VOCV (SOC)

 

Figure 5.2: Battery Rint Model for SOP estimation 

3� = ö<L» − �'µ�                                               (5.1) 

To identify the Rint model battery parameters, the widely used FFRLS algorithm is 

considered in this study. The fundamental steps involved in FFRLS can be expressed as 

below: 

� ª�(j) = ª�(j − 1) + Κ(j)[y(j) − ù�9(j)ª�(j − 1)]Κ(j) = �P(j − 1)ª(j)� (z + ù9(j)⁄ P(j − 1)ù(j))�(j) = [�� − Κ(j)ù9(j)�P(j − 1)] z⁄               (5.2) 

Where, 
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á y(j) = ö�,5ª(j) = [ö<L» 'µ�]9ù(j) = [1 −*5]9                                           (5.3) 

With the consideration of battery design limits and identified Rint model parameters, 

the battery charging/discharging SOP is evaluated. Firstly, the peak current limited by 

using the battery terminal voltage limits (3�,��u and 3�,�x� ) (Xu Zhang, Wang, Wu, et 

al., 2018) are calculated by (5.4). The steps involved in Rint model parameter 

identification using FFRLS are discussed in Table 5.1. 

Table 5.1: Rint model parameters identification using FFRLS (X. Chen et al., 

2016) 

Step 1: Initialization, for k = 0, set 

             ù(0), ª�(0), Κ(0), P(0), z   

Computation : for k = 1,2,3, …  

Step 2: Measurement (ù ) vector and model parameter vector (ª�)   

             �ª�(j) = [ö<L» 'µ�]9ù(j) = [1 −*5]9    
Step 3: Gain (Κ )and Error covariance (�) update 

             ÜΚ(j) = �P(j − 1)ª�(j)� (z + ù9(j)⁄ P(j − 1)ù(j))�(j) = [�� − Κ(j)ù9(j)�P(j − 1)] z⁄     
Step 4: Model parameter update 

              ª�� (j) = ª�� (j − 1) + Κ(j)ûy(j) − ù�9(j)ª�� (j − 1)ü 
 

Taking the SOC limits (�����u and ����x�) into consideration, the peak 

charge/discharge current is evaluated by using (5.5). Where 3ýK<L,5 confidence interval 
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is considered on the estimated SOC using DFFAEKF to obtain the more accurate peak 

power of the battery.  

Based on (5.4) and (5.5), the peak charge /discharge current is determined by (5.6). 

Where the ��·�¸ and ��xµ are the design limit of peak charge and discharge current of the 

battery cell, respectively. Finally, the SOP charge (���5�·¸) and SOP discharge (���5�xµ 

) of the battery cell at time instant k are calculated by (5.7). 

á�5�·¸,fþ× = �ÅÆÇM�Yg»¿,ÊÎÏÉæ�,M�5�xµ,fþ× = �ÅÆÇM�Yg»¿,Ê½ËÉæ�,M
                                          (5.4) 

á�5�·¸,K<L = (K<LMrB��ÅÆ,M)gK<LÊ½Ë
���æ �	⁄�5�xµ,K<L = (K<LMgB��ÅÆ,M)gK<LÊÎÏ
���æ �	⁄                      (5.5) 

Ü�5�·¸ = �,^ (��·�¸, �,^ (�5�·¸,fþ×, �5�·¸,K<L)�5�xµ = �*� (��xµ, �*� (�5�xµ,fþ×, �5�xµ,K<L)                 (5.6) 

Ü���5�·¸ = 3�,5�5�·¸���5�xµ = 3�,5�5�xµ                         (5.7) 

5.2.3 Actual capacity and maximum available energy estimation 

To estimate the actual capacity of the battery cell, equation (2.9) can be arranged as 

below: 

! ���(P)"P�X�YFGGGHGGGI�
= �� (���(�A) − ���(�@))FGGGGGGHGGGGGGIµ                           (5.8) 

where the linear relation . = �) is presented and the cell capacity can be estimated by 

using integrated current values (r) and the difference between the SOC values. Generally, 

some noise always available in the measurement signal and the estimated SOC. Thus, it 
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is required to consider the noises during the capacity estimation. In the standard LS 

method, the noise in the independent variable (r) is not considered (e.g., . − ∆. = �)). 

As the estimated SOC values generally imperfect, so that it would be required to consider 

the noise on x variable also (e.g., (. − ∆.) = �() − ∆)). It is assumed that ∆. and ∆) are 

the zero-mean Gaussian random variables with the known variances ý�½

A  and ýµ½

A , 

respectively. To address this issue an approximate weighted total least square (AWTLS) 

method was proposed in (Plett, 2011). 

 

Figure 5.3: Geometrical structure of AWTLS algorithm (Plett, 2011) 

The fundamental concept of AWTLS can be explained with the help of Figure 5.3. It 

shows the relationship between the data points ()x,  .x) and its optimized map (�x,  'x) on 

the line 'x = ���x with angle ∝= �,�g@�� . The x-distance and y-distance between the data 

point ()x,  .x) with the line is ∆. and ∆), respectively. The shortest distance between data 

point ()x,  .x) and a line is presented by �x. Further, x- and y- components of the 

perpendicular distance between the data point ()x,  .x) and the line is  �)x and  �.x, 

respectively. By using these variances, the cost function of AWTLS can be written as: 

�
Ë
A = ∑ �¾½

X

�¾½
X − ��½

X

��½
X

�x8@                                          (5.9) 

As ∆ .x =  .x −  ��� )x, we can write the cost function as: 
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�
Ë
A = ∑ (�½g
�Ëµ½)X�@g
�ËX�X (
�ËX

�¾½X + @
��½X )�x8@          (5.10) 

The Jacobian of the AWTLS cost function, 

Ý��ËXÝ
�Ë = A(
�ËXr@)Ä (2¯���E + (22E − 2@ − 2°)���B + (32A − 32¯)���A + (2@ − 22B + 2°)��� −
2A)                                         (5.11) 

where, 2@,� = 2@,�g@ + )�A/ý�ËA , 2A,� = 2A,�g@ + )�.�/ý�ËA , 2B,� = 2B,�g@ + .�/ý�ËA , 2E,� =
2E,�g@ + )�A/ýµËA , 2¯,� = 2¯,�g@ + )�.�/ýµËA  and 2°,� = 2°,�g@ + .�/ýµËA . At the initialization 

(� = 0), the value .% = ��þ� and )% = 1. Therefore, 2@,% = 1/ý��
A , 2A,� = ��þ�/ý��

A , 

2B,% = ��þ�A
/ý��

A , 2E,% = 1/ýµ�
A , 2¯,% = ��þ�/ýµ�

A  and 2°,% = ��þ�A
/ýµ�

A . 

Equation (5.11) is set to zero to obtain the optimal positive candidate solution for ��� 

that can give the lowest computed value of the cost function, as expressed below: 

2¯���E + (22E − 2@ − 2°)���B + (32A − 32¯)���A + (2@ − 22B + 2°)��� − 2A = 0  (5.12) 

To calculate the error bounds on the estimated capacity the Hessian is computed as 

expressed below: 

Ý��ËXÝ
�ËX = A(
�ËXr@)Ã (−22¯���̄ + (32@ − 62E + 32°)���E + (−122A + 162¯)���B +
(−82@ + 102B + 62E−82°)���A + (−122A − 162¯)��� − (2@ − 22B + 2°))       (5.13) 

Using (5.11) and (5.13), the estimated value of ���,5 using AWTLS at kth time instant 

can be expressed as: 

���,5 = ���,5g@ − Ý��ËXÝ
�Ë
Ý��ËXÝ
�ËX�                                      (5.14) 
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Besides, to reduce the computation burden, the sliding window (SW) method is 

associated with the AWTLS algorithm in SW-AWTLS. Under which, SW of specific 

length is slides over the dataset. The battery actual capacity estimation is performed at 

every macro time scale L. The steps involved in the SW-AWTLS algorithm are listed in 

Table 5.2. 

Table 5.2: Proposed SW-AWTLS algorithm  

For j = 0, 

        �@, �A and y = �A − �@ 

Where, �@ and �A  are the starting and end time instant of the sliding 

window, respectively. y is the length of the window. 

For j = 1 to end, 

    If j > �A, 

          ) = ���(�@) − ���(�A)  

         For * = (�@ + 1) to �A, 
          . = �(�@)  + �(*)  

          end 

                 ��,5 is estimated by using AWTLS 

      else  

                ��,5 = ��,5 (No update)  

 end 
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Like capacity estimation using AWTLS, the maximum available energy (���,5) 

estimation can be performed by using the AWTLS algorithm. To implement the AWTLS, 

the (2.10) can be rewritten in form as expressed below: 

! 3�(�)�(�)�X�Y "� = ��(���(�@) − ���(�A))                  (5.15) 

The estimated ���,5 using AWTLS can be expressed as: 

���,5 = ��,5g@ − Ý��ËXÝ��Ë
Ý��ËXÝ��ËX�                                      (5.16) 

To reduce the computational burden, the SW-AWTLS is utilized for the estimation of 

���,5. The developed MATLAB code for developed of unified frame of battery states co-

estimation is attached in appendix B. 

5.3 Experimental setting and tests schedule 

The sequence of conducted different tests on considered battery cells is presented in 

Figure 5.4. The test schedule combined four different tests such as capacity test, pulse 

discharge test, CC discharge test, and dynamic load profile test for the performance 

evaluation and validation of the proposed unified frame of battery states co-estimation 

method. All the tests were conducted repeatedly at 25 °C for all the considered batter 

cells.  The experimental setting required to conduct the tests are discussed in Section 3.2.  
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Capacity Test ( 5°C, 25°C and 45°C)

Pulse Discharge Test (25°C )

CC Discharge Test ( 5°C, 25°C and 45°C)

Dynamic Load Profile Test (25°C)

 (US06 and HPPC)
 

Figure 5.4: Sequence of conducted tests for validation of proposed unified frame 

of battery states co-estimation method 

5.4 Summary 

In this chapter, the proposed unified frame of battery states co-estimation method for 

the estimation of SOC, SOE, SOP, actual capacity, and maximum available estimation is 

described. The correlation between different battery states is effectively utilized to reduce 

the computational burden of the developed battery states co-estimation method. For the 

battery states (SOC, SOE, SOP) estimation, robust and less computational burden 

methods are discussed. The sequence of conducted tests for the performance evaluation 

of the proposed unified frame of battery states co-estimation method is presented.  
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CHAPTER 6: RESULT AND DISCUSSION 

6.1 Introduction 

In chapter 4, the proposed co-estimation method for battery SOC and SOE estimation 

using the DFFAEKF algorithm was presented. The proposed unified frame of co-

estimation method for battery states (SOC, SOE, SOP), actual capacity, and maximum 

available energy were discussed in chapter 5. In this chapter, the results obtained from 

the proposed battery states co-estimation methods in chapter 4 and chapter 5 under 

dynamic loading conditions are presented. As discussed in chapter 3, the data sets 

developed for three different chemistry cells tested under different battery test conditions 

are utilized for the performance evaluation of the proposed methods. 

The sections of the chapter are arranged in this sequence. In Section 6.1, the 

introduction of the chapter is provided. In Section 6.2, the results of the proposed co-

estimation method for SOC and SOE estimation using DFFAEKF are presented. This 

section includes the identified battery 2RC model parameters using DFFAEKF and 

DEKF. The accuracy and the robustness of the proposed co-estimation method for SOC 

and SOE estimation under-considered dynamic operating conditions are analyzed. In 

Section 6.3, the results of the proposed unified frame of battery states co-estimation 

method for battery states (SOC, SOE, SOP), actual capacity, and maximum available 

energy are explained. The results analysis of the proposed unified frame of battery states 

co-estimation method under-considered dynamic operating conditions are also included 

in this section. Finally, the summary of the chapter is presented in Section 6.4. Univ
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6.2 Results of proposed co-estimation method for SOC and SOE estimation 

using DFFAEKF  

6.2.1 Considered Measurement Noise Uncertainty 

In the real-time operation of EV, the measured battery terminal voltage and current 

which utilized for the SOC estimation always contained some noise signals. Due to the 

presence of the excess measurement noise signal, the estimation accuracy of the algorithm 

will be affected significantly. In the thesis, to validate the robustness of the proposed 

DFFAEKF algorithm, the Gaussian white noise signal with zero mean and 0.5 variance 

is considered as the measurement noise signal, as shown in Figure 6.1. The same 

measurement noise signal is considered for both battery terminal voltage and current, in 

the proposed co-estimation method for SOC and SOE. 

 

Figure 6.1: Measurement Noise Signal 

6.2.2 Battery cell model parameterization results 

To evaluate the accuracy of the identified battery model parameters of all the 

considered battery cells, the estimated terminal voltage results obtained from DFFAEKF 

and DEKF are compared under the dynamic profile tests (DST profile and US06 profile) 

at 25°C. The initial value of SOC is set to the correct value (100 %). The initial value of 
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battery model parameters is evaluated by using the forgetting factor-based recursive least 

square (FFRLS) method to reduce the convergence time of the estimated model 

parameters toward true values. The value of the forgetting factor is set to 0.99. The steps 

involved in the FFRLS method are described in (X. Sun et al., 2019). The developed 

MATLAB code for FFRLS is attached in appendix B. Under the DST profile, the 

identified battery model parameters (R0, R1, C1, R2, and C2) for Cell 1, Cell 2, and Cell 3 

are plotted in Figures 6.2 to 6.4, respectively. For all the considered cells under both DST 

and US06 profiles, due to the application of the forgetting factor in DFFAEKF, the high 

variation in the estimated model parameters is presented as compared to DEKF. 
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Figure 6.2: Identified battery model parameters using DFFAEKF and DEKF of 

Cell 1 under DST profile: (a) R0, (b) C1, (c) R1, (d) C2, (e) R2 
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Figure 6.3: Identified battery model parameters using DFFAEKF and DEKF of 

Cell 2 under DST profile: (a) R0, (b) C1, (c) R1, (d) C2, (e) R2 
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Figure 6.4: Identified battery model parameters using DFFAEKF and DEKF of 

Cell 3 under DST profile:(a) R0, (b) C1, (c) R1, (d) C2, (e) R2 
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Figure 6.5: Terminal voltage estimation results with correct initial SOC value 

under DST profile: (a) estimated voltage of Cell 1 (b) voltage error of Cell 1 (c) 

estimated voltage of Cell 2 (d) voltage error of Cell 2 (e) estimated voltage of Cell 3   

(f) voltage error of Cell 3 

Univ
ers

iti 
Mala

ya



153 

Terminal voltage estimation results for all the considered battery cells under the DST 

profile are shown in Figure 6.5. For Cell 1, the measured voltage and estimated voltage 

from DFFAEKF and DEKF are shown in Figure 6.5 (a), and Figure 6.5 (b) shows their 

estimation errors. But the estimation error of DEKF is higher than the DFFEKF. The 

estimation error of DFFAEKF is within ±35 mV. For Cell 2, the measured voltage and 

estimated voltage from DFFAEKF and DEKF are shown in Figure 6.5 (c), and Figure 6.5 

(d) shows their estimation errors. But the estimation error of DEKF is higher than the 

DFFEKF. The estimation error of DFFAEKF is within ±45 mV. For Cell 3, the measured 

voltage and estimated voltage from DFFAEKF and DEKF are shown in Figure 6.5 (e), 

and Figure 6.5 (f) shows their estimation errors. But the estimation error of DEKF is 

higher than the DFFEKF. The estimation error of DFFAEKF is within ±20 mV. For the 

DST profile, the RMSE of the recorded terminal voltage of Cell 1, Cell 2, and Cell 3 using 

DFFAEKF are 6.91 mV, 8.95 mV, and 0.36 mV respectively. Besides, the recorded 

terminal voltage MaxAE of Cell 1, Cell 2, and Cell 3 using DFFAEKF are 32.66 mV, 

43.46 mV, and 15.0 mV respectively as listed in Table 6.1.  

Under the US06 profile, the identified battery model parameters (R0, R1, C1, R2, and 

C2) for Cell 1, Cell 2, and Cell 3 are plotted in Figures 6.6 to 6.8, respectively. For all the 

considered cells under both DST and US06 profiles, due to the application of the 

forgetting factor in DFFAEKF, the high variation in the estimated model parameters is 

presented as compared to DEKF. 

The model terminal voltage estimation results for all the considered battery cells under 

the US06 profile are shown in Figure 6.9. 
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Figure 6.6: Identified battery model parameters using DFFAEKF and DEKF of 

Cell 1 under US06 profile: (a) R0, (b) C1, (c) R1, (d) C2, (e) R2 
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Figure 6.7: Identified battery model parameters using DFFAEKF and DEKF of 

Cell 2 under US06 profile: (a) R0, (b) C1, (c) R1, (d) C2, (e) R2 
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Figure 6.8: Identified battery model parameters using DFFAEKF and DEKF of 

Cell 3 under US06 profile:(a) R0, (b) C1, (c) R1, (d) C2, (e) R2 
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Figure 6.9: Terminal voltage estimation results with correct initial SOC value 

under US06 profile: (a) estimated voltage of Cell 1 (b) voltage error of Cell 1 

(c) estimated voltage of Cell 2 (d) voltage error of Cell 2 (e) estimated voltage 

of Cell 3 (f) voltage error of Cell 
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Table 6.1: Results of voltage estimation with correct initial SOC condition  

Dynamic 

Profile 

Battery 

Cells 

Voltage RMSE (mV) Voltage MaxAE (mV) 

DFFAEKF DEKF DFFAEKF DEKF 

DST Cell 1 6.91 15.07 32.66 104.96 

Cell 2 8.95 10.46 43.46 48.66 

Cell 3 0.36 0.49 15.0 20.8 

US06 Cell 1 6.33 13.47 32.90 67.93 

Cell 2 8.34 16.87 41.5 77.90 

Cell 3 0.37 0.50 15.1 20.5 

 

For Cell 1, the measured voltage and estimated voltage from DFFAEKF and DEKF 

are shown in Figure 6.9 (a), and Figure 6.9 (b) shows their estimation errors. But the 

estimation error of DEKF is higher than the DFFEKF. The estimation error of DFFAEKF 

is within ±33 mV. For Cell 2, the measured voltage and estimated voltage from 

DFFAEKF and DEKF are shown in Figure 6.9 (c), and Figure 6.9 (d) shows their 

estimation errors. But the estimation error of DEKF is higher than the DFFEKF. The 

estimation error of DFFAEKF is within ±42 mV. For Cell 3, the measured voltage and 

estimated voltage from DFFAEKF and DEKF are shown in Figure 6.9 (e), and Figure 6.9 

(f) shows their estimation errors. But the estimation error of DEKF is higher than the 

DFFEKF. The estimation error of DFFAEKF is within ±16 mV. Further, for the US06 

profile, the RMSE of the recorded terminal voltage of Cell 1, Cell 2, and Cell 3 using 

DFFAEKF are 6.33 mV, 8.34 mV, and 0.37 mV respectively. Besides, the recorded 

terminal voltage MaxAE of Cell 1, Cell 2, and Cell 3 using DFFAEKF is 32.9 mV, 41.5 

mV, and 15.1 mV respectively. As listed in Table 6.1, it is evident that during both the 

dynamic profile tests, the terminal voltage predicted by using DFFAEKF is well-matched 
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with high accuracy as compared with voltage predicted by using DEKF for all the 

considered battery cells.  

Table 6.2: Results of voltage estimation with incorrect initial SOC (80 %) value 

Dynamic 

Profile 

Battery 

Cells 

Voltage RMSE (mV) Voltage MaxAE (mV) 

DFFAEKF DEKF DFFAEKF DEKF 

DST Cell 1 10.95 15.81 209.98 218.24 

Cell 2 11.50 13.59 19.044 197.76 

Cell 3 0.49 0.51 49.87 50.55 

US06 Cell 1 7.66 11.61 215.73 217.40 

Cell 2 8.90 15.64 201.20 206.90 

Cell 3 0.48 0.51 50.19 51.37 

 

To evaluate the robustness of the proposed DFFAEKF, the initial SOC is set to an 

incorrect value (80 %). For the DST profile, the RMSE of the recorded terminal voltage 

of Cell 1, Cell 2, and Cell 3 using DFFAEKF are 10.95 mV, 11.50 mV, and 0.49 mV 

respectively. Besides, the recorded terminal voltage MaxAE of the Cell 1, Cell 2, and Cell 

3 using DFFAEKF are 209.24 mV, 197.76 mV, and 50.55 mV respectively as listed in 

Table 6.2. Further, for the US06 profile, the RMSE of the recorded terminal voltage of 

Cell 1, Cell 2, and Cell 3 using DFFAEKF are 7.66 mV, 8.90 mV, and 0.48 mV 

respectively. Besides, the recorded terminal voltage MaxAE of the Cell 1, Cell 2, and Cell 

3 using DFFAEKF are 215.73 mV, 201.20 mV, and 50.19 mV respectively, as listed in 

Table 6.2. In both cases, voltage errors in the DFFAEKF are significantly lesser than the 

voltage errors in the DEKF method.  
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6.2.3 SOC and SOE estimation results 

To evaluate the performance of the proposed co-estimation method for SOC and SOE 

using DFFAEKF, the combined SOC, and SOE estimation by using the DEKF is 

considered as a benchmark. The estimated SOC and SOE results for all the considered 

battery cells from DFFAEKF and DEKF under the DST profile at 25°C are compared in 

Figure 6.10. Similarly, for the US06 profile at 25°C, estimated SOC and SOE results for 

all the considered battery cells from DFFAEKF and DEKF are compared in Figure 6.11. 

Further, to evaluate the performance of the proposed co-estimation method for SOC and 

SOE, two different initial SOC conditions are considered such as (i) correct initial SOC 

condition and (ii) incorrect SOC condition.  

6.2.3.1 With correct initial SOC condition 

For the DST profile at 25°C, the estimated SOC and SOE results for all the considered 

battery cells with the correct initial SOC are depicted in Figure 6.10. Figure 6.10 (a) 

shows the estimated SOC and measured SOC for Cell 1 from both DFFAEKF and DEKF. 

It also shows the SOC error for Cell 1 from both DFFAEKF and DEKF. Figure 6.10 (b) 

shows the estimated SOE and measured SOE for Cell 1 from both DFFAEKF and DEKF. 

Also shows the SOE error for Cell 1 from both DFFAEKF and DEKF. Figures 6.10 (a) 

and 6.10 (b) indicate that the estimated SOC and SOE from DEKF is less accurate and 

diverging as compared to DFFAEKF. The value of recorded RMSE of estimated SOC 

and SOE for Cell 1 with DFFAEKF is less than 0.35 % as listed in Table 6.3 and Table 

6.4. For Cell 2, Figure 6.10 (c) shows the estimated SOC and measured SOC from both 

DFFAEKF and DEKF. It also shows the SOC error for Cell 2 from both DFFAEKF and 

DEKF. Figure 6.10 (d) shows the estimated SOE and measured SOE from both 

DFFAEKF and DEKF. It also shows the SOE error for Cell 2 from both DFFAEKF and 

DEKF. Figures 6.10 (c) and 6.10 (d) indicate that the estimated SOC and SOE from 

DEKF is less accurate as compared to DFFAEKF. The value of recorded RMSE of 
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estimated SOC and SOE for Cell 2 with DFFAEKF is less than 0.50 % as listed in Table 

6.3 and Table 6.4. Similarly, for Cell 3, Figure 6.10 (e) shows the estimated SOC and 

measured SOC from both DFFAEKF and DEKF. It also shows the SOC error for Cell 3 

from both DFFAEKF and DEKF. Figure 6.10 (f) shows the estimated SOE from both 

DFFAEKF and DEKF and measured SOE. Also indicates the SOE error for Cell 3 from 

both DFFAEKF and DEKF. Figures 6.10 (e) and 6.10 (f) indicate that the estimated SOC 

and SOE from DEKF is less accurate and diverging as compared to DFFAEKF. The value 

of recorded RMSE of estimated SOC and SOE for Cell 2 with DFFAEKF is less than 

0.57 % as listed in Table 6.3 and Table 6.4. Further, for all the considered battery cells, 

the values MaxAE of estimated SOC from DFFAEKF is very low (less than 1.1 %) in 

comparison to DEKF as listed in Table 6.3. 
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Figure 6.10: SOC and SOE estimation results with correct initial SOC value 

under DST profile: (a) estimated SOC of Cell 1 (b) estimated SOE of Cell 1 (c) 

estimated SOC of Cell 2 (d) estimated SOE of Cell 2 (e) estimated SOC Cell 3 

(f) estimated SOE of Cell 3 
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Table 6.3: Results of SOC estimation under DST and US06 profile with correct 

initial SOC condition 

Dynamic 

Profile 

Battery 

Cells 

SOC RMSE (%) SOC MaxAE (%) 

DFFAEKF DEKF DFFAEKF DEKF 

DST 

Cell 1 0.34 1.29 0.26 3.45 

Cell 2 0.49 0.67 1.04 1.26 

Cell 3 0.57 0.71 1.03 2.08 

US06 

Cell 1 0.28 1.24 0.25 3.07 

Cell 2  0.32 1.26 0.42 2.14 

Cell 3 0.64 0.72 1.02 2.75 

 

Similarly, for the US06 profile at 25°C, the estimated SOC and SOE results for all the 

considered battery Cells with the correct initial SOC are depicted in Figure 6.11. Figure 

6.11 (a) shows the estimated SOC and measured SOC for Cell 1 from both DFFAEKF 

and DEKF. It also shows the SOC error for Cell 1 from both DFFAEKF and DEKF. 

Figure 6.11 (b) shows the estimated SOE and measured SOE for Cell 1 from both 

DFFAEKF and DEKF. Also shows the SOE error for Cell 1 from both DFFAEKF and 

DEKF. Figures 6.11 (a) and 6.11 (b) indicate that the estimated SOC and SOE from 

DEKF is less accurate and diverging as compared to DFFAEKF. The value of recorded 

RMSE of estimated SOC and SOE for Cell 1 with DFFAEKF is less than 0.30 % as listed 

in Table 6.3 and Table 6.4. For Cell 2, Figure 6.11 (c) shows the estimated SOC from 

both DFFAEKF and DEKF and measured SOC. It also shows the SOC error for Cell 2 

from both DFFAEKF and DEKF. Figure 6.11 (d) shows the estimated SOE and measured 

SOE from both DFFAEKF and DEKF. It also shows the SOE error for Cell 2 from both 

DFFAEKF and DEKF. Figures 6.11 (c) and 6.11 (d) indicate that the estimated SOC and 

SOE from DEKF is less accurate as compared to DFFAEKF. The value of recorded 
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RMSE of estimated SOC and SOE for Cell 2 with DFFAEKF is less than 0.35 % as listed 

in Table 6.3 and Table 6.4. Similarly, for Cell 3, Figure 6.11 (e) shows the estimated SOC 

from both DFFAEKF and DEKF and measured SOC. It also shows the SOC error for 

Cell 3 from both DFFAEKF and DEKF. Figure 6.11 (f) shows the estimated SOE from 

both DFFAEKF and DEKF and measured SOE. Also indicates the SOE error for Cell 3 

from both DFFAEKF and DEKF. Figures 6.11 (e) and 6.11 (f) indicate that the estimated 

SOC and SOE from DEKF is less accurate and diverging as compared to DFFAEKF. The 

value of recorded RMSE of estimated SOC and SOE for Cell 2 with DFFAEKF is less 

than 0.65 % as listed in Table 6.3 and Table 6.4. Further, for all the considered battery 

cells, the values MaxAE of estimated SOC from DFFAEKF is very low (less than 1.3 %) 

in comparison to DEKF as listed in Table 6.3. 

Table 6.4: Results of SOE estimation under DST and US06 profile with correct 

initial SOC condition  

Dynamic 

Profile 

Battery 

Cells 

SOE RMSE (%) SOE MaxAE (%) 

DFFAEKF DEKF DFFAEKF DEKF 

DST 

Cell 1 0.34 1.23 0.18 3.01 

Cell 2 0.41 0.68 0.70 1.26 

Cell 3 0.56 0.72 1.09 2.11 

US06 

Cell 1 0.27 1.29 0.15 3.03 

Cell 2  0.31 1.26 0.29 1.81 

Cell 3 0.62 0.73 0.98 2.58 
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Figure 6.11: SOC and SOE estimation results with correct initial SOC value 

under US06 profile: (a) estimated SOC of Cell 1 (b) estimated SOE of Cell 1 (c) 

estimated SOC of Cell 2 (d) estimated SOE of Cell 2 (e) estimated SOC Cell 3 (f) 

estimated SOE of Cell 3 
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As indicated in Figures 6.10 and 6.11, under correct initial SOC condition, the 

estimated SOC and SOE using the proposed co-estimation method for SOC and SOE 

using DFFAEKF closely follow the measured values irrespective of the change in the 

battery cell chemistry and dynamic load profiles. 

6.2.3.2 With incorrect initial SOC value (80% SOC) 

The RMSE of the estimated SOC and SOE based on the proposed method using 

DFFAEKF with incorrect initial SOC are listed in Table 6.5. The incorrect initial SOC is 

set to 80 %. With the DST profile at room temperature, the RMSE of the estimated SOC 

and SOE using the DFFAEKF for all the considered battery cells is less than 0.9 %.  With 

the US06 profile at 25°C, the value RMSE of the estimated SOC and SOE for all the 

considered battery cells is less than 1.0 %. Besides, for the same erroneous initial SOC 

condition, the RMSE of estimated SOC and SOE using DEKF for all the considered 

battery cells is about 1.7 % under the DST profile at 25°C. With the US06 profile at 25°C, 

the RMSE of the estimated SOC, and SOE is about 1.5 % for all the considered battery 

cells with the erroneous initial SOC set to 80 %. The results indicate that the proposed 

co-estimation method for battery SOC and SOE using DFFAEKF is less sensitive to 

erroneous initial SOC conditions due to the availability of adaptability features as 

compared to the co-estimation for battery SOC and SOE using DEKF. 
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Table 6.5: RMSE (%) of estimated SOC and SOE with incorrect initial SOC 

(80%) value 

Dynamic 

Profile 

Battery 

Cells 

SOC RMSE (%) SOE RMSE (%) 

DFFAEKF DEKF DFFAEKF DEKF 

DST 

Cell 1 0.45 1.62 0.48 1.64 

Cell 2 0.63 1.38 0.69 1.39 

Cell 3 0.83 1.16 0.82 1.16 

US06 

Cell 1 0.56 1.13 0.62 1.40 

Cell 2  0.89 1.37 0.95 1.44 

Cell 3 0.94 1.14 
0.93 1.17 

 

6.2.3.3 Convergence speed comparison 

Apart from the accuracy, the evaluation of the convergence speed is also an important 

factor in the performance analysis. In this paper, the considered convergence threshold is 

less than 5 % for SOC and SOE error. The true initial SOC and SOE value is 100 %. 

Figure 6.12 and Figure 6.13 shows the comparison of convergence time of SOC and SOE 

estimation results under different initial SOC conditions for the DST and US06 profile 

for all the considered battery cells, respectively. The value of convergence time under 

different incorrect SOC conditions with DST and US06 profiles for all the considered 

battery cells are listed in Table 6.6.  

As shown in Figure 6.12, for all the considered battery cells, the SOC and SOE estimation 

results from DFFAEKF converged at a faster rate towards true values as compared to 

estimation results obtained from DEKF under incorrect initial SOC condition. As listed 

in Table 6.6, with the DST profile for Cell 1, the SOC and SOE estimation convergence 

time using DFFAEKF is less than 30 % of the convergence time in the estimation of SOC 

and SOE by using DEKF for the incorrect initial SOC set to 90 %. Similarly, for Cell 2 

with the incorrect initial SOC set to 90 %, the SOC and SOE estimation convergence time 
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using DFFAEKF is less than the convergence time in the estimation of SOC and SOE by 

using DEKF. With the DST profile, the SOC and SOE estimation convergence time of 

DFFAEKF is 50% of the convergence time in the estimation of SOC and SOE by using 

DEKF for Cell 3 with the incorrect initial SOC set to 90 %, as listed in Table 6.6.  

Similarly, for the US06 profile at 25°C, for all the considered battery cells, the SOC and 

SOE estimation results from DFFAEKF converged at a fast rate towards true values as 

compared to estimation results obtained from DEKF under incorrect initial SOC 

condition as presented in Figure 6.13. This implies that the application of the DFFAEKF 

for combined SOC and SOE estimation is more robust to the incorrect initial SOC 

conditions as compared to the DEKF irrespective of the chemistry of the battery cells. 

The convergence time increases with the increase in the error but the convergence rate of 

DFFAEKF remains high as compared to DEKF. 
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Figure 6.12: SOC and SOE estimation results with incorrect initial SOC values 

under DST test profile: (a) SOC of Cell 1 (b SOE of Cell 1 (c) SOC of Cell 2 (d) 

SOE of Cell 2 (e) SOC of Cell 3 (f) SOE of Cell 3 
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Figure 6.13: SOC and SOE estimation results with incorrect initial SOC 

values under US06 test profile: (a) SOC of Cell 1 (b SOE of Cell 1 (c) SOC of 

Cell 2 (d) SOE of Cell 2 (e) SOC of Cell 3 (f) SOE of Cell 3 
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6.2.3.4 Comparison of computational cost and big O notation complexity 

Furthermore, the mean execution time and big O notation complexity are required to 

evaluate the applicability of the proposed algorithm into the battery management system. 

Usually, the mean execution time (MET) is utilized to compare the computational cost of 

SOC estimation algorithms (Lucu et al., 2018). The value of METs are evaluated by using 

(3.12). 

Due to the availability of forgetting factor-based adaptive noise covariance matrices 

update feature in the proposed DFFAEKF algorithm, the METs of the DFFAEKF 

algorithm are slightly higher than the DEKF algorithm for both DST and US06 profiles, 

as described in Table 6.7. For the correct initial SOC condition, the calculated METs for 

DFFAEKF are 1.60 s (DST profile) and 1.44 s (US06 profile), whereas for METs for 

DEKF are 1.53 s (DST profile) and 1.39 s (US06 profile).  

Table 6.7: Comparison of mean execution time (MET) of DFFAEKF and DEKF 

Dynamic Profile 

MET (in seconds) 

DFFAEKF DEKF 

DST 1.60  1.53 

US06 1.44  1.39  
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By using the fundamental algorithmic complexity listed in Table 3.4, the big O 

notation complexity of steps involved in the DEKF algorithm is calculated as presented 

in Table 6.8. Further, the running time �(. ) and worst-case big O notation complexity 

�(. ) of the DFFAEKF and DEKF algorithm are listed in Table 6.9. Due to the 

employment of additional steps in DFFAEKF, the computed running time �(. ) is higher 

than the DEKF. However, both DFFAEKF and DEKF algorithm have the same worst-

case big O complexity of order 8�B as listed in Table 6.9. 

Table 6.9: Comparison of the complexity of DEKF and DFFAEKF algorithm 

Algorithms T (.) O (.) 

DFFAEKF 8�B + 8�A� + 17�A + 6�A + 6�� + 6�� + 4� 8�B 

DEKF 8�B + 8�A� + 3�A + 6�A + 6�� + 6�� 8�B 

 

With the result of slightly higher computational cost and same order big O complexity 

of DFFAEKF as compared to DEKF, the high accuracy combined SOC and SOE 

estimation using DFFAEKF is achieved. 

6.2.4 Comparative validation analysis with other methods 

The superiority of the proposed combined SOC and SOE estimation using the 

DFFAEKF method is validated by comparing the error terms of other prominent SOC 

and SOE estimation methods. Few recent studies of the SOC and/or SOE estimation 

including dual filter, hybrid LIB model-based analytical method, unscented Particle filter 

(UPF), forgetting factor-based AEKF, central difference KF (CDKF), unscented KF 

(UKF), combined SOC and SOE estimation using quantitative relationship, dual H-

infinity Filter (DHIF), and dual KF (DKF) are investigated for the comparative analysis, 

as presented in Table 6.10. For the NCR and NMC chemistry battery cell the value of 

SOE RMSE is less than 0.42 % under both DST and US06 profiles as listed in Table 6.4. 
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It is validated that the performance of the proposed combined SOC and SOE estimation 

method is better than the others under dynamic operating conditions as well as for 

different chemistry battery cells. The value of SOE RMSE and SOC RMSE of the 

proposed method with correct initial SOC conditions under both DST and US06 profiles 

are less than 0.65 %. Whereas, with incorrect initial SOC conditions the value of SOE 

RMSE and SOC RMSE of the proposed method under both DST and US06 profiles is 

less than 0.83 % and 0.94 %, respectively. 
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6.3 Results of proposed unified frame of battery states co-estimation method for 

SOC, SOE, SOP, actual capacity, and maximum available energy  

6.3.1 Combined SOC and SOE estimation results 

For the performance evaluation of combined SOC and SOE estimation using the 

DFFAEKF algorithm, two different dynamic load profiles such as US06 and HPPC load 

profile are considered.  

6.3.1.1 Battery model parameters identification results 

 The 2RC battery model parameters are identified using the DFFAEKF algorithm. The 

accuracy of the identified model parameters can be verified with the analysis of model 

terminal voltage errors. The model voltage error values obtained by comparing the model 

terminal voltage with the measured voltage. For all the considered battery cells, the value 

of MaxAE, MAE, and RMSE are computed for both the dynamic load profiles. 

Table 6.11: Model terminal voltage errors under US06 load profile 

Battery Cells Voltage Error 

Max AE (mV) MAE (mV) RMSE (mV) 

Cell 1 132.89 0.21 14.61 

Cell 2 55.88 0.11 10.50 

Cell 3 61.98 0.20 14.13 
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Table 6.12: Model terminal voltage errors under HPPC load profile 

Battery Cells Voltage Error 

Max AE (mV) MAE (mV) RMSE (mV) 

Cell 1 130.89 0.87 50.74 

Cell 2 108.03 0.11 33.65 

Cell 3 111.92 0.45 21.41 

 

As listed in Table 6.11, for the US06 drive cycle, the value of model voltage MaxAE 

for all the considered battery cells is within 133 mV. Whereas the value of voltage MAE 

and RMSE is less than 0.21 mV and 14.61mV, respectively. For all the considered battery 

cells under the HPPC test, the value of voltage MAE and RMSE is less than 0.87 mV and 

5074 mV, as listed in Table 6.12. The value of model voltage MaxAE for all the 

considered battery cells is within 130.1 mV. For both the dynamic load profiles, the 

evaluated voltage RMSE value is lower for cell 3 and highest for cell 1. 

6.3.1.2 SOC and SOE estimation results 

For all the considered battery cells, the SOC and SOE estimation results under US06 

and HPPC profile using combined SOC and SOE estimation algorithm are shown in 

Figure 14 and Figure 12. In the figures, estimated SOC and SOE with correct initial SOC 

under US06 and HPPC profile are presented. Under US06 and HPPC profiles, the 

computed MAE and RMSE of estimated SOC and SOE are listed in Table 6.13 and Table 

6.14.  

For the US06 profile, the estimated and measured SOC and SOE for cell 1 are shown 

in Figures 14 (a) and 14 (b), respectively. The value of estimated SOC MAE and RMSE 

are 0.29 % and 0.37 %, respectively. As listed in Table 6.13, the value of estimated SOE 

MAE and RMSE are 0.30 % and 0.35 %, respectively. For cell 2, the estimated and 
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measured SOC and SOE profiles are shown in Figures 14(c) and 14(d). The value of 

estimated SOC MAE and RMSE are 0.17 % and 0.422 %, respectively. The value of 

estimated SOE MAE and RMSE are 0.17 % and 0.23 %, respectively. Similarly, for cell 

3, the estimated and measured SOC and SOE profiles are shown in Figures 14(e) and 

14(f). The value of estimated SOC MAE and RMSE are 0.27 % and 0.31 %. The value 

of estimated SOE MAE and RMSE are 0.23 % and 0.30 %.  
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Figure 6.14: Estimated SOC and SOE results under US06 profile: (a) SOC of 

Cell 1 (b) SOE of Cell 1, (c) SOC of Cell 2 (d) SOE of Cell 2, (e) SOC of Cell 3 (f) 

SOE of Cell 3 
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Figure 6.15: Estimated SOC and SOE results under HPPC profile: (a) SOC of 

Cell 1 (b) SOE of Cell 1, (c) SOC of Cell 2 (d) SOE of Cell 2, (e) SOC of Cell 3 (f) 

SOE of Cell 3 

  

S
O

C
 (

%
)

0 100 200 300 400 500 600

Time (Min)

10

20

30

40

50

60

70

80

90

100
(b) Estimate

Measured

S
O

C
 (

%
)

0 100 200 300 400 500 600

Time (Min)

10

20

30

40

50

60

70

80

90

100
(d) Estimate

Measured

S
O

C
 (

%
)

0 100 200 300 400 500 600 700

Time (Min)

10

20

30

40

50

60

70

80

90

100
(f) Estimate

Measured

Univ
ers

iti 
Mala

ya



184 

Table 6.13: SOC and SOE estimation errors under US06 drive cycle profile 

Battery Cells 

SOC SOE 

MAE (%) RMSE (%) MAE (%) RMSE (%) 

Cell 1 0.29 0.37 0.30 0.35 

Cell 2 0.17 0.22 0.17 0.23 

Cell 3 0.27 0.31 0.23 0.30 

 

Table 6.14: SOC and SOE estimation errors under HPPC profile 

Battery Cells 

SOC SOE 

MAE (%) RMSE (%) MAE (%) RMSE (%) 

Cell 1 0.54 0.61 0.53 0.63 

Cell 2 0.47 0.57 0.48 0.58 

Cell 3 0.39 0.41 0.38 0.44 

 

For the HPPC profile, the estimated and measured SOC and SOE for cell 1 are shown 

in Figures 15 (a) and 15 (b), respectively. The value of estimated SOC MAE and RMSE 

are 0.54 % and 0.61 %, respectively. As listed in Table 6.14, the value of estimated SOE 

MAE and RMSE are 0.47 % and 0.57 %, respectively. For cell 2, the estimated and 

measured SOC and SOE profiles are shown in Figures 15 (c) and 12 (d). The value of 

estimated SOC MAE and RMSE are 0.47 % and 0.57 %, respectively. The value of 

estimated SOE MAE and RMSE are 0.48 % and 0.58 %, respectively. Similarly, for cell 

3, the estimated and measured SOC and SOE profiles are shown in Figures 15 (e) and 12 

(f). The value of estimated SOC MAE and RMSE are 0.39 % and 0.41 %. The value of 

estimated SOE MAE and RMSE are 0.38 % and 0.44 %. The estimation results verify 
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that the estimated SOC and SOE follow the measured values with high accuracy under 

dynamic loading conditions. 

6.3.2 SOP estimation results 

Finally, for all the considered battery cells, the SOP estimation is performed under the 

HPPC profile. The Rint model parameters identified by FFRLS are employed to compute 

the SOP charge/discharge value using (21). For all the considered battery cells, the value 

of identifying ö<L» are presented in Figure 6.16. The identified ö<L» for cell 1, cell 2, 

and cell 3 are presented in Figures 6.16 (a), 6.16 (b), and 6.16 (c), respectively. Since the 

identified 'µ�  values fluctuate in the range, the smoothed curve is obtained by using the 

cubic smoothing splines method as presented in Figure 6.17. Besides, for all the 

considered battery cells the battery DC internal charge/discharge resistances are evaluated 

by HPPC test results are also plotted as a reference in Figure 6.17. For cell 1, cell 2, and 

cell 3, the identified 'µ� using FFRLS, smoothed curve of 'µ�, and DC resistance 

charge/discharge evaluated using HPPC test are presented in Figures 6.17 (a), 6.17 (b), 

and 6.17 (c), respectively. 
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Figure 6.16: Estimated OCV using FFRLS under HPPC test: (a) Cell 1 (b) 

Cell 2 (c) Cell 3   
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Figure 6.17: Estimated Rst using FFRLS under HPPC test: (a) Cell 1 (b) Cell 2 

(c) Cell 3   
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The battery cell design limits such SOC constraints, voltage constraints, and current 

constraints, the charge/discharge SOP computation is given in Table 6.15.  For all the 

battery cells, the measured SOP is computed from HPPC test results, as shown in Figure 

6.18. Based on the battery cells maximum charge/discharge currents using (5.5) to (5.6), 

the charge/discharge SOP is predicted for all the battery cells using (5.7). As 

demonstrated in Figure 6.18, the predicted SOP is compared with the SOP obtained from 

HPPC test results. For cell 1, the value of predicted discharge SOP and charge SOP is 

presented in Figures 6.18 (a) and 6.18 (b), respectively. For cell 2, the value of predicted 

discharge SOP and charge SOP is presented in Figures 6.18 (c) and 6.18 (d). Similarly, 

for cell 3, the value of predicted discharge SOP and charge SOP is presented in Figures 

6.18 (e) and 6.18 (f). Due to the high difficulty in finding actual power values, the SOP 

estimation error is not computed.  

Table 6.15: Considered battery design limits of SOC constraints, voltage 

constraints, and current constraints for all the test battery cells 

Battery 

Cells 

Constraints Limits 

3�,�x� 3�,��u ��·�¸ ��xµ ����x� �����u 

Cell 1 2.5 3.6 -20 �ð 20 �ð 10 100 

Cell 2 2.8 4.2 -5�ð 2 �ð 10 100 

Cell 3 2.8 4.2 -7 �ð 6 �ð 10 100 
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Figure 6.18:  Estimated SOP results under HPPC profile: (a) SOP discharge for 

Cell 1, (b) SOP charge for Cell 1, (c) SOP discharge for Cell 2, (d) SOP charge for 

Cell 2, (e) SOP discharge for Cell 3, and (f) SOP charge for Cell 3 
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6.3.3 Actual capacity and maximum available energy estimation results 

To compute the performance of �� and �� estimation using SW-AWTLS algorithm, 

the value of estimated SOC and SOE using DFFAEKF algorithm is employed. The 

estimated SOC at two different moments of time and respective measured battery current 

is always required to update the estimated �� of the battery cell as expressed by (5.14). 

Similarly, estimated SOE at two different moments of time and respective measured 

battery power are always required to update the estimated �� of the battery cell as 

expressed by (5.16). The length of the sliding window is selected to 200 to estimate the 

�� and �� after every 200 seconds. With the application of the DFFAEKF algorithm, the 

dynamic estimates of the estimated SOC and SOE variance (ýK<L,5 = ýK<�,5 = ýµ,5) can 

be achieved. That ensures the high accuracy of �� and �� estimation using the SW-

AWTLS algorithm.  

For �� and �� estimation, the uncertainty in the measured current (�5)  and measured 

voltage (35) with zero mean Gaussian noise know variance (ý�,5) of 0.01 is considered.  

For all the considered battery cells, the wrong initial value of �� and �� are chosen to 2.0 

Ah and 7.5 Wh, respectively.  
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Figure 6.19: Results of estimated Cn and En under US06 profile: (a) Cn of Cell 1, 

(b) En of Cell 1, (c) Cn of Cell 2, (d) En of Cell 2, (e) Cn of Cell 3 (f) En of Cell 3 
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Figure 6.20: Results of estimated Cn and En under HPPC test: (a) Cn of Cell 1, 

(b) En of Cell 1, (c) Cn of Cell 2, (d) En of Cell 2, (e) Cn of Cell 3 (f) En of Cell 3 
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For the US06 drive cycle, the estimated �� for cell 1, cell 2, and cell 3 are shown in 

Figures 6.19 (a), 6.19 (c), and 6.19 (e). While the estimated �� for cell 1, cell 2, and cell 

3 are shown in Figures 6.19 (b), 6.19 (d), and 6.19 (f). Similarly, for the HPPC profile, 

the estimated �� for cell 1, cell 2, and cell 3 are shown in Figures 6.20 (a), 6.20 (c), and 

6.20 (e). Whereas the estimated �� for cell 1, cell 2, and cell 3 are shown in Figures 6.20 

(b), 6.20 (d), and 6.20 (f). As shown in Figures 6.19 and 6.20, the estimated �� and �� 

are converged towards its true values in the first few minutes irrespective of change in 

change chemistry and dynamic load profile. Also, with the application of SW-AWTLS, 

the computational load can be reduced in comparison to the AWTLS algorithm.  

Table 6.16:  � and !� estimation errors under US06 load profile after final 

convergence 

Battery 

Cells 

�� �� 

MAE (%) RMSE (%) MAE (%) RMSE (%) 

Cell 1 9.36e-05 0.096 6.38e-04 0.25 

Cell 2 3.73e-05 0.061 5.24e-06 0.23 

Cell 3 4.14e-04 0.021 5.16e-02 0.72 

 

For all the considered cells, the value of MAE and RMSE of estimated �� and �� 

using SW-AWTLS for the final convergence to true values under the US06 drive cycle 

are listed in Table 6.16. As presented in Figure 3.4, the average of obtained actual capacity 

and maximum available energy for all the considered battery cells during the capacity test 

are considered as true values. Under HPPC profile, the value of MAE and RMSE of 

estimated �� and �� using SW-AWTLS for the final convergence to true values are listed 

in Table 6.17. The low value of MAEs and RMSEs of estimated �� and �� under both, 

the considered load profiles prove the robustness and accuracy of the proposed SW-
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AWTLS algorithm. Also, with the application of SW-AWTLS, the computational load 

can be reduced in comparison to the AWTLS algorithm. 

Table 6.17:  � and !� estimation errors under HPPC load profile after final 

convergence 

Battery 

Cells 

�� �� 

MAE (%) RMSE (%) MAE (%) RMSE (%) 

Cell 1 1.74e-04 0.132 1.04e-03 0.32 

Cell 2 2.73e-04 0.165 4.21e-03 0.58 

Cell 3 3.70e-04 0.192 5.94e-03 0.77 

 

6.3.4 Comparative performance assessment of the proposed unified frame of 

battery states co-estimation method 

To prove the superiority of the proposed unified frame of battery states co-estimation 

method, the number of states/parameters estimated, and the number of filters/observers 

utilized are compared. Some of the recent studies on co-estimation are considered. As 

listed, in Table 6.18, most of the studies introduced a co-estimation method for two 

battery states/parameters. Only in (P. Shen, Ouyang, Lu, et al., 2018), three different 

states such as SOC, SOH, and SOP using three filters/observers are estimated by using 

the developed co-estimation method. Only one chemistry battery cell is considered for 

the result validation. In the proposed unified frame of battery states co-estimation method, 

five different battery states/parameters are estimated by using three different 

filters/observers. Involved fewer filters/observers proves the low computational burden 

of the proposed method. Furthermore, three battery cells of different chemistries are 

considered for validation to show the robustness of the proposed method. 
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6.4 Summary 

In this chapter, the results obtained from the proposed battery states co-estimation 

methods are presented. The experimental results indicated that the performance of the 

proposed co-estimation method for SOC and SOE estimation by using the DFFAEKF 

algorithm is superior as compared to the DEKF algorithm. Under dynamic operating 

conditions for all the considered battery cells, with the combined estimation method, the 

recorded RMSE of SOC estimation is less than 0.82 % under the DST profile and less 

than 0.94 % for the US06 profile. Also, the estimated RMSE of SOE is less than 0.83 % 

under the DST profile and less than 0.93 % for the US06 profile. The order of worst-case 

big O notation complexity of the proposed DFFAEKF is equivalent to DEKF. However, 

the computational cost of the DFFAEKF algorithm is slightly higher than the DEKF 

algorithm due to the availability of forgetting factor-based adaptive noise covariance 

matrices update feature in the proposed DFFAEKF algorithm. The proposed co-

estimation method for SOC and SOE estimation method by using the DFFAEKF 

algorithm is less sensitive to the initial error condition and has a fast-converging speed 

towards the true value as compared to the DEKF algorithm.  

Hereafter, the results obtained from the unified frame of battery states co-estimation 

method for SOC, SOE, SOP, actual capacity, and maximum available energy for EV 

applications are presented. The correlation between the different battery states is 

effectively utilized. The proposed unified frame of battery states co-estimation method 

can reduce the complexity and increase the estimation accuracy as compared to separate 

estimation algorithms. At a low cost, the SOC and SOE are estimated accurately by using 

the combined SOC and SOE estimation using the DFFAEKF algorithm. The experimental 

quantitative relationship between SOC and SOE is employed for SOE estimation. The 

charge/discharge SOP of the considered battery cells is predicted by using the identified 

Rint model parameters by FFRLS and the estimated SOC. Also, the predicted SOP 
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stratifies the battery cell design limits such as SOC, voltage, and current. Lastly, the actual 

capacity and maximum available energy are estimated by using the new SW-AWTLS 

algorithm. With the application of the SW method, the computational burden of AWTLS 

significantly reduce. Furthermore, the estimation results using the SW-AWTLS algorithm 

demonstrate fast convergence under incorrect initialization. With the features of high 

accuracy and computationally efficient, the proposed unified frame of battery states co-

estimation method can be the best reasonable choice for EV applications. 
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CHAPTER 7: CONCLUSION AND FUTURE WORK 

The conclusion of the thesis reflects the set of objectives discussed in Section 1.4. This 

chapter summarizes the outcomes of the research and provides suggestions for future 

work. 

The sections of the chapter are arranged in this sequence. In Section 7.1, the re-

examination of thesis objectives is provided. In Section 7.2, the contribution of the thesis 

is discussed. The future work for the researchers is provided in Section 7.3. 

7.1 Re-examination of thesis objectives 

The first objective of the thesis is to analyze the existing online SOC estimation 

methods suitable for EV application. To achieve this objective, a state-of-the-art review 

on different online SOC estimation methods was performed. Several characteristics of 

model-based online SOC estimation using the KF algorithm were investigated to improve 

estimation accuracy. In addition, to reduce the overall computational burden and improve 

the functioning of BMS, the correlation between different battery states was analyzed. 

The state-of-art review on SOE, SOP, battery actual capacity, and maximum available 

energy estimation were done. To effectively utilize the correlation between the battery 

states and for the development of computationally efficient BMS, the different co-

estimation methods were investigated. 

The second objective is to develop a more accurate online SOC estimation method 

under under uncertain disturbances and erroneous initial conditions. To achieve this, a 

new DFFAEKF for SOC estimation was proposed. In which, the benefits of the forgetting 

factor (high variations in the filter coefficients) together with the features of the DKF 

algorithm were utilized. The proposed algorithm has the feature of concurrently updating 
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the battery model parameters with the SOC estimation at high accuracy under different 

dynamic conditions with the same order big O notation complexity as DEKF. 

Finally, the third objective is to develop an accurate and computationally efficient co-

estimation method with proper utilization of the correlation among the different battery 

states. To achieve this, the co-estimation method for battery SOC and SOE using the 

DFFAEKF algorithm was proposed. The proposed method was capable to estimate the 

battery SOC and SOE with high accuracy and, strong robustness to the battery model 

parameter inaccuracy and measurement noise uncertainties. Thereafter, a unified frame 

of battery states co-estimation method for SOC, SOE, SOP, actual capacity, and 

maximum available estimation was proposed. The correlation between different battery 

states was effectively utilized to make the proposed unified frame of battery states co-

estimation estimation method more accurate and computationally efficient.  

7.2 Conclusion 

With the development of LIB technologies, its applications as the main source of the 

energy storage system in EV and microgrids are significantly increasing. Owing to the 

highly nonlinear and dynamic nature of LIBs, an effective BMS is continuously required 

to operate them in a safe operating area. For that purpose, a quick, reliable, and accurate 

estimation of battery states is always required. However, accurate online battery states 

such as SOC, SOE, SOP, and SOE estimation are challenging tasks due to the high 

affectability and complicated internal chemical dynamics of the battery. In the last couple 

of years, different battery states estimation methods have been investigated by 

researchers. Nowadays, researchers are focusing on developing the battery states co-

estimation that can be easily implementable into the low-cost BMS chips. Interestingly, 

all the battery states are highly correlated with each other. Hence, there is a need to 

Univ
ers

iti 
Mala

ya



201 

develop low computational cost battery states co-estimation method with the proposer 

utilization of correlation feature for BMS suitable EV applications. 

Currently, the MBM for online SOC estimation with battery EECM is more 

appropriate for EV applications because of its possible benefits, including the capability 

to deal with unknown noise signals, low complexity, and high accuracy over other 

modeling methods. Further, the merits of self-correction and low computational burden 

make KF family algorithms suitable for model-based online SOC estimation. Presently, 

for online SOC and model parameter identification, the dual extended Kalman filter 

(DEKF) is extensively utilized by researchers. However, the problem of battery model 

parameter divergence from the true value greatly affects the estimation accuracy under 

realistic dynamic loading conditions. To outperform this issue, a new DFFAEKF for SOC 

estimation is proposed in this thesis. In which, the benefits of the forgetting factor (high 

variations in the filter coefficients) together with the features of the DKF algorithm are 

utilized. The proposed DFFAEKF has the feature of concurrently updating the battery 

model parameters with the SOC estimation at high accuracy under different dynamic 

conditions with the same order big O notation complexity as DEKF. Further, the co-

estimation method for SOC and SOE estimation by using DFFAEKF has been developed 

to estimate the battery SOC and SOE with high accuracy and, strong robustness to the 

battery model parameter inaccuracy and measurement noise uncertainties. The different 

battery discharge tests incorporating dynamic loading profiles on three different 

chemistry battery cells have been conducted by using the experimental setup developed 

in the laboratory to validate the effectiveness of the proposed estimation method. The 

experimental results indicated that the performance of the combined SOC and SOE 

estimation by using the DFFAEKF algorithm is superior as compared to the DEKF 

algorithm.  
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To further improve the performance of the co-estimation method a unified frame of 

battery states co-estimation for SOC, SOE, SOP, actual capacity, and maximum available 

energy estimation has been developed. By which, the correlation between the different 

battery states is effectively utilized. The proposed unified frame co-estimation method 

can reduce the complexity and increase the estimation accuracy as compared to the 

separate estimation algorithms. Three battery cells of different chemistries are considered 

for the validation of the proposed method. As shown in the results, the SOC and SOE are 

estimated accurately by using the combined SOC and SOE estimation using the 

DFFAEKF algorithm. The experimental quantitative relationship between SOC and SOE 

is employed for SOE estimation. Then, the charge/discharge SOP of the considered 

battery cells is predicted by using the identified Rint model parameters by using FFRLS 

and the estimated SOC. The predicted SOP satisfied the battery cell design limits such as 

SOC, voltage, and current. Lastly, the actual capacity and maximum available energy are 

estimated by using the new SW-AWTLS algorithm. With the application of the SW 

method, the computational burden of AWTLS was significantly reduced. The estimation 

results of the SW-AWTLS algorithm demonstrated fast convergence under incorrect 

initialization. With the high accuracy, robustness, and low computation burden, the 

proposed battery states co-estimation method can be the best choice for EV applications. 
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7.3 Future work 

The following are the recommendations for future research work based on the research 

carried out in this thesis: 

i. The developed states co-estimation method focuses on the single-cell however 

due to limited voltage and capacity it has limited use in real applications. The 

extension of the proposed co-estimation method for the states estimation from cell 

level to battery pack level can be more meaningful for real-time applications.  

ii. Although, the performance of the proposed battery states co-estimation methods 

has been proved satisfactory, at a controlled operating temperature which is hard 

to realize in real-time applications. Therefore, the proposed battery states co-

estimation methods still need to further verify at dynamic operating temperatures.  

iii. Fresh battery cells of different chemistries are utilized for the validation of the 

proposed batter states co-estimation methods. As the LIB performance does not 

remain the same, it degrades with aging. Therefore, it would be more useful to 

consider different aging level battery cells for the further validation of the 

proposed co-estimation methods.  

iv. Due to the prominent features of LIBs, their application as an energy storage 

system for microgrids and renewable energy systems is also appreciably 

expanding. It would be interesting to implement the proposed battery states co-

estimation methods and validate its performance under an environment other than 
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