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ADVANCED ONLINE BATTERY STATES CO-ESTIMATION USING
KALMAN FILTER FOR ELECTRIC VEHICLE APPLICATIONS
ABSTRACT

Carbon impression and the growing reliance on fossil fuels are two unique concerns
for world emission regulatory agencies. These issues have placed electric vehicles (EVs)
powered by lithium-ion batteries (LIBs) on the forefront as alternative vehicles. The LIB
has noticeable features, including high energy and power density, compared with other
accessible electrochemical energy storage systems. However, LIB is exceedingly
nonlinear and dynamic; therefore, it requires an accurate state estimation technique in a
battery management system (BMS). Due to the existing correlation between the battery
states, the co-estimation method for different battery states estimation is preferred over
individual state estimation. Though, the trade-off between accuracy and computational
burden of the co-estimation method is difficult to maintain in real-time application. This
thesis focuses on the development of the co-estimation methods of lithium-ion battery
states of interest, which are capable to improve the efficiency of BMS, especially for EV

applications.

To achieve high estimation accuracy at a low cost, the co-estimation method for state
of charge (SOC) and state of energy (SOE) is investigated in the first phase of the thesis.
A new dual forgetting factor-based adaptive extended Kalman filter (DFFAEKF)
algorithm to concurrently estimate the electrical equivalent circuit model parameters and
SOC at high accuracy is first developed. The DFFAEKF algorithm has the feature to
reduce the possibility of battery model parameter divergence from the true value under
different dynamic conditions with the same order of big O notation complexity as DEKF.
Thereafter, with the credible SOC estimation by using DFFAEKF, a co-estimation

method for SOC and SOE using a quantitative relationship between SOC and SOE is
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developed. The simplicity of the proposed co-estimation method can avoid the heavy

computational burden required by the individual state estimation of SOC and SOE.

Finally, to effectively utilize the correlation amongst battery states and reduce the
computational burden of the BMS, a unified frame of co-estimation method for battery
states including SOC, SOE, state of power (SOP). actual capacity and maximum available
energy is developed. In addition to co-estimation of SOC and SOE in the first method,
the SOP estimation is performed by using identified Rint battery model parameters using
the forgetting factor recursive least square (FFRLS) algorithm. Next, the actual capacity
and maximum available energy estimation are performed by using a new sliding window-
approximate weighted total least square (SW-AWTLS) algorithm at a low computational
burden. The performance of the proposed co-estimation methods are experimentally
verified with battery cells of different chemistries and dynamic load profiles which
suitable for EV. Besides, the low computational burden of the proposed co-estimation,
the results demonstrate the high accuracy of the battery states estimation irrespective of

the change in battery chemistry under-considered dynamic operating conditions.

With the effective utilization of battery states correlation and high estimation accuracy
of the battery states co-estimation methods, the performance of the BMS can be
significantly improved. Furthermore, the proposed co-estimation methods in this thesis
can contribute to the safe, reliable, and efficient utilization of the LIBs used in EV

applications.

Keywords: Battery State; Electrical equivalent circuit model (EECM); Kalman Filter

(KF); Lithium-ion battery (LIB); Electric Vehicle (EV).
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PENGANGGARAN BERSAMA KEADAAN BATERI ATAS TALIAN
TERMAJU MENGGUNAKAN PENURAS KALMAN UNTUK APLIKASI
KENDERAAN ELEKTRIK
ABSTRAK

Kesan karbon dan pergantungan yang semakin meningkat pada bahan bakar fosil
adalah dua keprihatinan unik bagi agensi pengawalan pelepasan dunia. Isu-isu ini telah
meletakkan kenderaan elektrik (EV) yang dikuasakan oleh bateri lithium-ion (LIB) di
barisan hadapan sebagai kenderaan alternatif. LIB mempunyai ciri-ciri yang ketara,
termasuk ketumpatan tenaga dan tenaga yang tinggi, berbanding dengan sistem
penyimpanan tenaga elektrokimia yang lain. Walau bagaimanapun, LIB sangat tidak
linear dan dinamik; oleh itu, secara amnya memerlukan teknik anggaran keadaan yang
tepat dalam sistem pengurusan bateri (BMS). Oleh kerana terdapat hubungan antara
keadaan bateri, kaedah anggaran bersama untuk anggaran keadaan bateri yang berbeza
lebih disukai daripada anggaran keadaan individu. Walaupun begitu, keseimbangan
antara ketepatan dan beban komputasi kaedah pengiraan bersama sukar dikekalkan dalam
aplikasi sebenar. Tesis ini memfokuskan kepada pengembangan kaedah anggaran
bersama keadaan bateri lithium-ion yang menarik, yang mampu meningkatkan kecekapan

BMS, terutamanya untuk aplikasi EV.

Untuk mencapai ketepatan anggaran yang tinggi dengan kos rendah, kaedah anggaran
bersama untuk keadaan cas (SOC) dan keadaan tenaga (SOE) disiasat pada fasa pertama
tesis. Algoritma penapis Kalman (DFFAEKF) pelengkap adaptif berasaskan faktor lupa
dua yang baru untuk secara bersamaan menganggarkan parameter model litar setara
elektrik dan SOC pada ketepatan tinggi mula-mula diperkembangkan. Algoritma
DFFAEKF mempunyai ciri untuk mengurangkan kemungkinan perbezaan parameter
model bateri dari nilai sebenarnya dalam keadaan dinamik yang berbeza dengan

kerumitan notasi O susunan yang sama dengan DEKF. Selepas itu, dengan perkiraan SOC



yang boleh dipercayai dengan menggunakan DFFAEKF, kaedah perkiraan bersama untuk
SOC dan SOE menggunakan hubungan kuantitatif antara SOC dan SOE
diperkembangkan. Keberkesanan kaedah penganggaran bersama yang dicadangkan dapat
mengelakkan beban komputasi berat yang diperlukan oleh anggaran keadaan individu

untuk SOC dan SOE.

Akhirnya, untuk memanfaatkan korelasi antara keadaan bateri dengan berkesan dan
mengurangkan beban komputasi BMS, satu kaedah taksiran bersama bagi keadaan bateri
termasuk SOC, SOE, state of power (SOP), kapasiti sebenar, dan tenaga maksimum yang
ada diperkembangkan. Sebagai tambahan kepada pengiraan bersama SOC dan SOE
dalam kaedah pertama, anggaran SOP dilakukan dengan menggunakan parameter model
bateri Rint yang dikenal pasti dengan menggunakan algoritma faktor terlupa rekursif
kuasa dua terkecil (FFRLS). Seterusnya, kapasiti sebenar dan anggaran tenaga maksimum
yang ada dilakukan dengan menggunakan algoritma slaid tingkap-perkiraan jumlah
paling sedikit persegi (SW-AWTLS) baru dengan beban pengiraan yang rendah. Prestasi
kaedah penganggaran bersama yang dicadangkan disahkan secara eksperimen dengan sel
kimia bateri yang berbeza dan profil beban dinamik yang sesuai untuk EV. Selain itu,
beban komputasi yang rendah dari penganggaran bersama yang dicadangkan, hasilnya
menunjukkan ketepatan anggaran tinggi dari keadaan bateri tanpa mengira perubahan

kimia bateri dalam keadaan operasi dinamik yang dipertimbangkan.

Dengan penggunaan korelasi keadaan bateri yang berkesan dan ketepatan anggaran
yang tinggi bagi kaedah pengiraan bersama keadaan, prestasi BMS dapat meningkat
dengan ketara. Selanjutnya, kaedah penganggaran bersama yang dicadangkan dalam tesis
ini dapat menyumbang kepada penggunaan LIB yang selamat, boleh dipercayai, dan

efisien yang digunakan dalam aplikasi EV.
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CHAPTER 1: INTRODUCTION

1.1 Background and Motivation

The efficient deployment of Electric Vehicles (EVs) in the world transportation system
is one of the appealing solutions to decrease greenhouse gases emission and boost energy
efficiency. As per the Global EV outlook 2018 (IEA International Energy Agency, 2018),
the worldwide automobile market will be successfully deploy 117.6 million EVs on the
road, and that will contribute to reducing 262 Mt CO; emission by 2030. The potential
advantages of Lithium-ion batteries (LIBs) intrigue the EVs manufacturer companies to
utilize them as the primary source of an energy storage system (Peters et al., 2017; Zubi
etal., 2018). However, high cost, low production capacity, and highly dynamic nature are
the real worries that confine its successive application in EV (Hannan, Hoque, et al.,
2017a). According to data collected by Bloomberg (This Isthe Dawning of the Age of the
Battery - Bloomberg, n.d.), the cumulative demand of LIB expected to tough the
unthinkable number 9,300 GWh by 2030, as presented in Figure 1.1. Also, the worldwide
cost and production capacity of the LIB pack are improving continuously, as shown in
Figure 1.2. As reported by Bloomberg, the worldwide LIB pack cost will drop to nearly

90 % as compared to 2010 and reached 73 USD/kWh by 2030.
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Figure 1.1: Expected worldwide cumulative lithium-ion battery demand by 2030
in GWh (This Is the Dawning of the Age of the Battery - Bloomberg, n.d.)
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Figure 1.2: Worldwide lithium-ion battery pack cost by 2030 in USD/kWh (This
Isthe Dawning of the Age of the Battery - Bloomberg, n.d.)

Due to the highly nonlinear and dynamic nature of LIB, an effective battery
management system (BMS) is constantly required to work LIB in the safe operating area.
Protection from overcharging/discharging, cell balancing, and monitoring the battery

states are the key roles of BMS.

Figure 1.3: Example of failed BMS in Chevrolet Bolt EV model 2017-2019
(General Motors Recalling Nearly 69,000 Bolt EVs for Fire Risks - The Economic
Times, n.d.)

Figure 1.3 shows a fire-damaged Chevrolet Bolt EV, whose failure is strongly linked to a

defective BMS software that led to the thermal runaway. From this photograph, it can be seen



that a reliable and robust BMS is the utmost priority for the EV manufacturer to provide a
safe driving experience to EV users. Other benefits of the robust BMS are to maximize the
energy and power delivery capabilities of the battery pack and prolong the overall service life
by accurately monitoring the battery states. Different battery states such as state of charge
(SOC) (Z. Li et al., 2017a), state of energy (SOE) (HongWen He et al., 2015), state of
health (SOH) (Lin et al., 2015), and state of power (SOP) (Farmann & Sauer, 2016) are

estimated by using estimation algorithm in BMS.

Generally, there are two types of estimation methods available in the literature such as
the single/individual state estimation method and the combined states estimation or states
co-estimation method. In the single/individual estimation, any one of the states is
estimated by using a dedicated estimation method. In the last couple of years, there is
plenty of research that has been done on the individual estimation method (Y. Wang et
al., 2020). However, the individual estimation method may not be accurate due to the
high dependency and correlation of the states on each other. To overcome this issue, the
co-estimation method has been employed for the accurate battery states estimation
especially for EV applications (X. Hu et al., 2018; P. Shen, Ouyang, Lu, et al., 2018).
Based on the different states involved in the co-estimation method, the existing co-
estimation method can be classified into several categories such as 1) SOC and SOH, 2)
SOC and SOE, 3) SOC and SOP, and 4) others. These categories are described in detail

in chapter 2.

This thesis aims to expand upon the current state-of-the-art of advanced LIB states
estimation algorithms, by preparing a novel body of work on battery states co-estimation
method, with a view to improve the accuracy and reduce the computational cost of the
BMS used in EV. This chapter provides an overview of research motivations answering

the question of the proposed research work. Also, a summary of previous work found in



the literature is presented. The problem statement, research questions, and objectives are

described here.

1.2 Problem Statement

The battery states co-estimation method plays a vital role in improving the efficiency
and reducing the computation of BMS (Hossain Lipu et al., 2021). Remarkably, the
battery states co-estimation method continuously requires accurate SOC along with the
other relevant battery parameters. Hence, to proceed with the battery states co-estimation
method, the initial requirement is to estimate the SOC accurately. A large number of SOC
estimation methods have been developed by the researchers so it is crucial to select a

suitable algorithm for EV applications (Hannan, Lipu, et al., 2017).

In recent years, the Kalman filter (KF) algorithm and its variants are most favored by
researchers for model-based SOC estimation due to its prominent features such as the
capability to adaptively decrease the impact of noise and wide operating range.
Especially, the extended Kalman filter (EKF) is the most suitable algorithm for real-time
SOC estimation (C. Huang et al., 2018). In model-based SOC estimation using EKF, the
SOC estimation accuracy directly depends on the accuracy of identified battery model
parameters and the prior knowledge of the system noise variables. To address this, the
dual extended Kalman filter (DEKF) is extensively utilized by the researchers to
concurrently update the battery model parameters and SOC. However, the problem of
battery model parameter divergence from the true value greatly affects the estimation
accuracy under realistic dynamic loading conditions (Wassiliadis et al., 2018). Thus, there
is a need to develop an accurate SOC estimation algorithm to work effectively in the
presence of uncertain disturbances and erroneous initial conditions under real-time

applications.



Nowadays, the co-estimation method which estimates two or more battery states
concurrently is gaining popularity due to the existing high correlation between the
different states. Also, the co-estimation method helps to improve the battery states
estimation accuracy (Y. Wang et al., 2020). In the literature, different co-estimation
methods have been presented by researchers using KF family algorithms (X. Li et al.,
2019; Song et al., 2020; S. Zhang & Zhang, 2021b; Yongzhi Zhang et al., 2017). As the
computational burden of the co-estimation algorithm proportionally increases the cost
and size of the controller used in BMS, there is a need to develop an accurate
comprehensive co-estimation method with the low computational burden that acquires

the benefits of correlation between the battery states (Y. Wang et al., 2020).

The problem statement of the thesis can be summarized as follows:

i.  With the advancement of EV battery technology, it is always crucial to select the
more appropriate battery SOC estimation method for an EV application.

ii.  Subject to the uncertain disturbances and erroneous initial conditions, the
accuracy of the SOC estimation process varies over the wide range of operating
conditions.

iii.  Due to the high correlation between the states, it is critical to improve the overall
performance of the BMS in the absence of any state information in real-time

dynamic conditions.



1.3 Research Objectives
There are three main research objectives in this thesis and all of them are geared toward

enhancing the overall performance of the BMS.

i. To analyze the existing online SOC estimation methods suitable for EV
application.
ii.  To develop online SOC estimation with high accuarcy and robustness under
uncertain disturbances and erroneous initial conditions.
iii.  To develop an accurate and computationally efficient co-estimation method

with proper utilization of the correlation among the different battery states.

14 Research Questions
To achieve the objectives of this research, the following research questions need to be

answered

i.  Which type of algorithm is well suited for online SOC estimation method
performance in an EV application?
ii.  How can we improve the accuracy of the online SOC estimation method under
under uncertain disturbances and erroneous initial conditions?
iii.  How can we estimate the different states of the battery under the influence of real-
time dynamic load by using the correlation among them with minimum

computation effort?

1.5 The importance and Relevance of the Study

This research provides highly accurate, strongly robust to measurement noise
uncertainties and computationally less expensive states co-estimation method for online
estimation of different states, including SOC, SOE, SOP, actual capacity, and maximum

available energy. With the proposed battery states co-estimation method, the existing



correlation between different states of LIB will be effectively utilized hence it would be
implemented in limited computation capability microprocessor used in BMS. The output
of this research will benefit EV users by providing more accurate information about the
available charge, driving range, and safe driving experience. Furthermore, this research
output will help to extend battery life, efficient energy management system to regulate
the power flow with EV more precisely, optimize battery performance, protects from

premature failures and safety hazards.

1.6 Layout of Thesis

This thesis is organized into several chapters. In this chapter, the background,
objectives, research methodology, and relevance of the study are discussed. A brief
explanation of the rest of the chapters are as follows:
1.6.1 Chapter 2

This chapter provides a state-of-the-art review on battery states estimation methods,
for instance, individual state estimation method and battery states co-estimation method.
It begins with a review of the suitable LIB technologies for EV applications. The key
functions of the BMS are also discussed. Thereafter, a comprehensive review on the
battery modeling method suitable for online battery states estimation is provided. A
review on state-of-the-art of battery states including SOC, SOE, SOP, SOH, actual
capacity, and maximum available energy estimation algorithms reported in the literature
is undertaken. Also, a review on existing co-estimation methods is given. Finally, the
recent studies in the existing literature on online SOC estimation using KF family

algorithms are discussed.

1.6.2 Chapter 3
In this chapter, the experimental setting used to validate the proposed estimation

methods in this thesis is discussed. The specification of the considered different



chemistries commercial battery cells, temperature chamber, and battery tester are
provided. The battery testing methods involved in the development of the useful dataset
and the evaluation matrices considered for the validation of the proposed methods are
explained. After this, the proposed research methodology to achieve the objectives of the

thesis is discussed.

1.6.3  Chapter 4

This chapter discusses the importance of the accurate and low computational burden
co-estimation method for battery SOC and SOE is developed for EV applications. The
mathematical model of the proposed dual forgetting factor-based adaptive extended
Kalman filter (DFFAEKF) algorithm and its implementation for the SOC estimation
method are provided. The benefits of DFFAEKF over DEKF in terms of estimation
accuracy and fast convergence are given. Thereafter, the concept of the proposed co-
estimation method for SOC and SOE estimation and mathematics behind the
implementation are also discussed. In addition, the experimental setting and battery test
involved in the validation of the proposed method under dynamic operating conditions

are explained.

1.6.4 Chapter 5

This chapter discusses the proposed unified frame of battery states co-estimation
method for the estimation of SOC, SOE, SOP, actual capacity, and maximum available
energy. The correlation between different battery states is effectively utilized to reduce
the computational burden. The mathematical model of the proposed unified frame of the
battery states co-estimation method is also discussed. Considered different algorithms for
the battery SOP, actual capacity, and maximum available energy estimation are presented.
In addition, the experimental setting and battery test involved in the validation of the

proposed method under dynamic operating conditions are explained.



1.6.5 Chapter 6

This chapter discusses the results of the proposed co-estimation method for SOC and
SOE estimation using DFFAEKF under-considered dynamic operating conditions. Also,
the identified battery 2RC model parameters using DFFAEKF and DEKF are presented
for DST and USO06 drive cycles. The accuracy and the robustness of the proposed co-
estimation method for SOC and SOE estimation under-considered dynamic operating
conditions are analyzed. Thereafter, the results of the proposed unified frame of battery
states co-estimation method for battery states (SOC, SOE, SOP), actual capacity, and
maximum available energy are explained. The results analysis of the proposed unified
frame of battery states co-estimation method under-considered dynamic operating

conditions are also presented.

1.6.6  Chapter 7
This chapter contains the re-examination of the thesis objectives, conclusion, and

suggestions for future work.



CHAPTER 2: BACKGROUND AND STATE OF THE ART LITERATURE
REVIEW

2.1 Introduction

The LIB technologies are becoming a favorite choice for energy storage for EV
applications. However, without significant improvement in the battery management
system, LIBs will not be considered a safe and reliable choice for EV users. Therefore,
this chapter initial aim to provide a review on LIB chemistries for EV and BMS.
Thereafter, a comprehensive review on the battery modeling method suitable online states
estimation is performed. A review on state-of-the-art of battery states, actual capacity,
and maximum available energy estimation algorithms reported in the literature is
undertaken. Finally, the recent studies in the existing literature on online SOC estimation

using KF family algorithms were thoroughly reviewed.

2.2 Suitable Lithium-ion battery chemistries for EV applications

Over the past decade, the lithium-ion batteries (LIBs) penetration in the EV market is
exponentially increasing, where high energy/power density is needed (Hannan, Hoque, et
al., 2017b). Based on the positive electrode material chemistry, the existing LIBs can be
classified into different categories such as lithium cobalt oxide (LCO), lithium-ion iron
phosphate (LFP), lithium-ion nickel manganese cobalt oxide (NMC), lithium nickel
cobalt aluminum oxide (NCA) and lithium-titanate (LTO) (Miao et al., 2019). The
properties of mentioned LIBs are listed in Table 2.1. Mostly, carbon and lithium titanate
are utilized as negative electrode material (Linchao Zhang & Chen, 2011). All types of
LIBs are being utilized by EV manufacturers. However, LFP, NMC, and NCA are gaining
popularity amongst EV manufacturers due to high voltage and high specific energy
density (L. Lu et al., 2013). NCA is widely utilized by Tesla in its current development
establishes by Panasonic in the cylindrical form such as Tesla S and Tesla X models

(Exclusive: Panasonic Aims to Boost Energy Density in Tesla Batteries by 20% -
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Executive | Reuters, n.d.). NCM batteries are preferred for high-power applications. NMC
batteries are used in EV models such as BMW 13, Nissan Leaf, Fiat 500e, Kia Soul EV,
Ford Focus EV. Whilst LFP batteries with higher discharge current rate and superior
thermal stability characteristics are used in Chevrolet spark, and BYD e6 (Sanguesa et
al.,2021). Due to the low voltage and energy density of LFP batteries, it is more expensive

on the scale of a cost/kWh.

To meet the increasing demand for EVs in the market, high levels of academic and
industrial research are going on to develop more advanced battery technologies. In this
thesis, the commercially available NCA, NMC, and LFP cells for the development of the
online state monitoring method. It is worth noting that the algorithms developed in this
thesis are also applicable to other battery chemistries, given knowledge of certain battery

design limits and algorithm tuning parameters are available at the initialization step.
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2.3 Definition of different states of the Lithium-ion battery (LIB)
2.3.1 State of Charge (SOC)

SOC can be defined as the ratio of remaining capacity (Q,..,,) to the actual capacity
(Q,,) of the battery as expressed in (2.1) (I. Kim, 2008). Where Q,,, is the capacity in Ah
refers to the maximum possible limit of charge that can be extracted from the battery at a
particular time of instant and @,, is the maximum possible limit of charge in Ah called
actual capacity that can be extracted from the battery in its actual aged state starting from
a fully charged state. The rated capacity in Ah (Q,4¢eq) is the battery capacity provided
by the manufacturer for operation under normal conditions. SOC is an important
parameter to measure battery performance. Since it depends on the internal battery
chemistry, the direct measurement from electrical signals is impossible. An accurate
estimation of SOC is typically needed to avoid detrimental situations during the charging

and discharging process.
SOC(t) = (Qrem/Qn) X 100% 2.1

Conventionally, the SOC(t) can be calculated by (2.2), where 7, is the coulombic
efficiency, SOC(0) is the initial SOC, and I (t) is the battery charging/discharging current.
The 7, generally describes as the ratio of the consumed electrons and available electrons
during the charging/discharging process. This ratio is assumed to be 0.9 and 1 during the
charging and discharging process respectively (Plett, 2004e). The SOC is expressed in
percentage as presented in Fig 4, the 100% SOC and 0% SOC implies the fully charged

and fully discharged cell condition, respectively.

SOC(t) = S0C(0) — ( Sy 1l (©)d(©)/(Qn () X 3600)) 2.2)

13



Figure 2.1: LIB stored energy status at different SOC (100%, 50% and 0%)
23.2  State of energy (SOE)
SOE is a percentage ratio of the residual energy to the actual energy of the battery as
represented by (2.3). The accurate SOE estimation is crucial for the optimal energy

management of an EV application and microgrid application (Lin et al., 2017).
SOE = Residual Energy (E,)/Actual Energy(Ey) (2.3)

The actual energy of the battery is varying with the change in the operating conditions.
Due to this, it becomes mandatory to consider the effect of temperature, current rate, and
aging level for the accurate estimation of battery SOE (L. Zheng et al., 2016a). Further,

the SOE (t) can be expressed in power integral form as (2.4) (Yongzhi Zhang et al., 2017),

SOE(t) = SOE(0) — ( J3 16V (©).1(0)d()/ (En(t) X 3600)) (2.4)

Where E,, (t) is the actual energy or maximum available energy in Watt-hour (Wh),
V(t) is the terminal voltage, I(t) is the charging/discharging current, 7, is the battery

energy efficiency and SOE(0) is the initial value of SOE.

Estimation of SOE is useful for the direct determination of the percentage of remaining

energy of the battery. In the case of EVs, it is the more accurate parameter to predict the
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useful remaining driving range of EVs. Due to the consideration of different parameters
such as internal resistance energy loss and battery open circuit voltage (OCV), the SOE

of the battery varies nonlinearly with the battery current.

23.3  State of power (SOP)

Battery peak power (Ppgqy) is the maximum power delivered in the time span (T)
without violating the set operating parameters limits like the voltage, current, temp, and
SOC (Pei et al., 2014). Due to the non-linear dynamic behavior of the LIB, these
parameters significantly change throughout the battery life. And the SOP is the ratio of
peak power (Ppggr) to the nominal power (Py) (2.5). In other words, it is simply a
parameter to quantify the battery maximum power handling capacity during dynamic
loading conditions (S. Wang et al., 2012). To maintain the life cycle with the full

utilization of the battery power, it is necessary to estimate the SOP of the battery.

S0P = |PPeak/PN|t=T (2.5)

For the operation of energy management systems in EVs, SOP estimation is important
to control the energy flow from the battery to maintain its safe operating limit. The real-
time SOP estimation is requested, to measure and control the acceleration/deceleration
and charging/discharging power requirement of the EVs in a certain duration of time

(Waag et al., 2014).

2.3.4  State of health (SOH)

The battery SOH is a figure of merit that indicates the battery aging level. Due to
complex internal electrochemical dynamics, understanding the battery aging process is
very difficult. The aging phenomenon includes capacity fade and power fade of the
battery cell. Usually, the capacity fade refers to the loss of active material inside the

battery cell whereas the power fade refers to an increase in internal resistance. There are
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multiple reasons behind the battery capacity fade and power fade. For example, the aging
of the anode and cathode material of battery cells differs from each other significantly. In
industry, the battery cell's remaining capacity and internal ohmic resistance are the two
indicators utilized for SOH estimation. In the case of EV, the battery cell End of life
(EOL) is defined as the time when the battery cell remaining capacity reaches 80% of the
capacity at beginning of life (BOL) and the internal resistance cross the threshold limit of
200% of internal resistance at BOL (W. Li et al., 2021a). As the battery cell crosses the
EOL threshold limits, it could not be suitable for EV application. Based on capacity fade
and power fade, the battery SOH (t) at time instant t can be expressed as (2.6) and (2.7),
respectively (Zhengyu Liu et al., 2020). Where, C; and R; are the battery cell actual
capacity and internal resistance at time instant t. Cgo;, and Rgp; are the battery capacity

and resistance value at BOL or fresh battery cell.

SOH(t) = (C;/CroL) X 100% 2.6)

SOH(t) = (R,/Rpo) % 100% Q2.7)

2.4 Battery Management System

Owing to the highly nonlinear and dynamic nature of LIBs, an effective BMS is
continuously required to operate them in a safe operating area (L. Lu et al., 2013). The
battery management system (BMS) is an electronic system that serves as the brain of the
battery system. In this section, an overview of BMS key functions is provided. Thereafter,
the focus is brought to the online battery modeling and parameter identification and states
estimation algorithms, and suitable Kalman filter family algorithms for SOC estimation,

which are the main topic of the study in this thesis.

16



As shown in Figure 2.2, some of the key functions of BMS are data acquisition, energy
management system, thermal management system, safety and protection, cell balancing,

and state monitoring (K. Liu et al., 2019; Xing et al., 2011).

Figure 2.2: Basic functions of the battery management system
2.4.1 Data Acquisition
The data acquisition includes the monitoring and storing of the most relevant battery
data for decision-making units of BMS. The most relevant battery data are the measured
voltage of every battery-connected battery cells, the current flows in parallel connected
modules in the battery pack, and the temperature of each battery cells. The proper
sampling frequency of voltage and current measurement is always required to capture the

transient response of the battery cells.

24.2 Energy Management system
To control the energy flow to fulfill the fast-transient and slow-transient power

requirements in the most practical application like EV, the proper energy management
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system (EMS) is always needed. The EMS also creates communication between the DC-
DC converter, battery charger, propulsion motor, and battery pack. It also helps to control

the power flow in the power train of the EV.

24.3 Thermal management system

LIBs are very sensitive to temperature. The increase in temperature has two effects on
the performance of the LIBs. With the increase in temperature, the LIBs performance
improves and work more efficiently. On the other side, it creates the problem of the
thermal runway that can reduce their reliability because of probable explosion (Qian
Wang et al., 2016). Therefore, to maintain the temperature within the safe operating
temperature range, the thermal management system is generally equipped with a battery
pack. Depending on the applications, two different types of TMS such as active and

passive systems are widely used (Lopez Sanz et al., 2016).

2.44  Safety and protection

To protect the battery cells or battery pack from malfunctioning and permanent
damage, different sensors are incorporated with BMS. With the help of sensor signals,
the battery cells can be protected from overcharge, undercharge, insulation fault,
uniformity fault, over-fast temperature rise, and low temperature (L. Lu et al., 2013).
When the faults are diagnosed, the sensor signals are transmitted to the vehicle control
unit to handle the faults. Under a serious fault condition, the vehicle control unit

disconnects the battery pack from the power supply also.

24.5  Cell balancing

To fulfill the energy and power demand of the load, a large number of battery cells are
connected in the series-parallel configuration in a battery pack. The battery cells
connected in the series configuration operate with the amount of current under and

discharge conditions. However, due to inconsistency amongst the battery cells, the small
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imbalance in voltages of the battery cells is always present. Voltage differences may
cause overcharging and deep discharging for a few cells, which leads to cell distortion.
Voltage differences also affect the operation, performance, and safety of the entire battery
pack. To outperform this, the cell balancing circuit is available in BMS. Generally, two
types of cell balancing circuits are used in BMS such as active cell balancing and passive
cell balancing that are also known as dissipative and non-dissipative cell balancers,
respectively (Das et al., 2020). With the application of effective cell balancing, the energy

and power delivery to the battery pack can be controlled.

2.4.6 Battery States monitoring

For the development of robust and efficient BMS, various battery states need to be
monitored accurately. However, the battery states cannot be measured directly using
electronic sensors. Therefore, the battery states estimation is performed with the help of
other directly measurable quantities, such as battery terminal voltage, current, and
operating temperature. The states estimation must be quick, reliable, and accurate to
ensure the high performance of BMS. Due to dynamic operating conditions and battery
aging, the battery characteristics such as battery capacity, and impedance parameters are
varied significantly. Therefore, these variations in battery characterizations must be
adaptively updated with the battery state estimation to produce an accurate and reliable

set of battery state estimates.

The overall structure of the battery state monitoring system is shown in Figure 2.3.
Generally, the battery dynamic model is utilized with the battery states estimation
algorithms of SOC (Hannan, Lipu, et al., 2017), SOE (X. Li et al., 2021), SOH (Berecibar
et al., 2016a), and SOP (Farmann & Sauer, 2016). At every instant, the battery dynamic
model parameters are identified by using the online model parameter identification

method. Thereafter, the prediction of the OCV is made based on the battery dynamic
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model identified parameters, which is then utilized in SOC estimation algorithm.
Consequently, this information is processed into estimation algorithm s responsible for
SOE, SOH and SOP. Furthermore, the battery’s actual capacity and maximum available
energy are predicted based on estimated SOC and SOE to develop the comprehensive

BMS for EV applications.

Figure 2.3: Overall structure of battery states monitoring system

2.5 Lithium-ion Battery Modeling methods

Battery model development is the primary step of online SOC estimation. The purpose
of the battery model is to replicate the performance of the battery behavior in a simulation
environment. LIBs have a complex working phenomenon and incorporate different
parameters, such as mass transfer, migration of ions between electrodes, side reactions,
and current collector reactions. Thus, battery models with high reliability and accuracy
are crucial for model-based parameter estimation. Based on control theory, battery
models can be classified as the black model, white model, and gray model (Lai et al.,

2018).

2.5.1 Types of Battery Models
The battery model is classified into five categories, namely empirical model (EM)
(Plett, 2004e, 2004c, 2004d, 2006a), ECM (Newman & Tiedemann, 1975), EECM

(Mousavi G. & Nikdel, 2014), (Mu et al., 2017), ECIM (Stephan Buller et al., 2003;
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Westerhoff et al., 2016) and DDM (Hametner & Jakubek, 2013), as depicted in Figure
2.4. EECM is the most suitable for online SOC estimation because of its low complexity
and computational requirements and high compatibility for embedded system
applications. The EECM model can be classified into three: the Rint model, Randles

model, and nRC model.

@attery modelling meth0d9

v v v v v

o) Go)) (mo) Ge) (o)
v v

[ Rint J [ Randles J nRC

(o) )

Figure 2.4: Types of LIB modelling methods

2.5.1.1 Empirical model

In EMs, the battery internal electrochemical dynamics is represented by using a
mathematical expression and reduced-order polynomial. The mathematical function is
utilized to represent the relation between battery terminal voltage with the SOC and
battery current. The Shepherd model, Unnewehr universal model, and Nernst model are
the main categories of EM (Meng, Luo, et al., 2018). The combined model was proposed
in (Plett, 2004d) to improve the accuracy and computational burden of EM. The combined
model of LIB is the combination of the three aforementioned models, and it shows better
performance compared with the individual model performances (Plett, 2004e, 2004c,

2004d, 2006a).

The terminal voltage (Vix ) can be expressed by (2.8) at kK" sample time and comprises

two parts: the function of SOCx in which the value of the constants do, di1, do, dz and d4
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depend on OCV and the function of current (Ix) where Ik and SOCx are the respective

values of current | and SOC at the k' sample time.

Ver = do + d1/SOCy + d,SOCy + d3InSOCy, + dyIn(1 — SOC,) — R, (2.8)
F(s0Cy) f)

The accuracy of the EM can be improved by adding more battery parameters.
By contrast, the utilisation of numerous parameters proportionally increases the
computational burden. Therefore, this modelling method is not suitable for online SOC

estimation.

2.5.1.2 Electrochemical model

The first ECM was developed by Newman and Tiedemann (Newman & Tiedemann,
1975), and it uses microscopic- and macroscopic-level information to describe the
electrochemical and physical properties of the battery (Dees et al., 2002; C. Y. Wang et
al., 1998). The pseudo-two-dimensional (P2D) model is amongst the most popular ECM
models (Jokar et al., 2016a; J. L. Lee et al., 2012b; Smith et al., 2007). It works on the
principles of porous electrode theory, concentrated solution theory and kinetic equations
(Jokar et al., 2016a). In the past few years, the P2D model has been extensively utilised
for LIB modelling. However, the overall computation time and modelling the complexity
of this P2D model increase because of the need for numerous nonlinear PDEs to solve
the P2D. In the past few years, several models, such as single particle (SP) model (Han
et al., 2015a), simplified P2D model (SP2D) (Jokar et al., 2016b) and improved SP model
(SP3), (Han et al., 2015b) have been developed to overcome the issues related to the P2D
model. In (Wu et al., 2013), the P2D model was coupled with a thermal model for the
development of BMS to address thermal runaway and performance degradation caused
by dynamic loading (charge/discharge at medium-to-high C-ratings) of the LIB.

Application of the full-order model of P2D, SP, SP2D and SP3 can accurately predict the
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electrochemical properties of LIB. However, for the solution of PDEs, highly complex
and costly software is usually required, which makes P2D model inappropriate for online
application. Furthermore, for the identification of real-time parameters (voltage, SOC and
electrochemical variables) of ECM with low computation time and complexity, the
reduced-order model (ROM) with discrete-time realisation algorithm was used in (J. L.
Lee et al., 2012a, 2012c; Smith, 2006). The developed ROM was successfully
implemented with BMS, and it could track all electrochemical states with high accuracy
(X. Guo et al., 2016). To further improve the performance of ROM, the time-varying
ROM was developed with the generally preferred model blending (J. L. Lee et al., 2014).
This ROM could track the variables over a wide range of SOC at the cost of reduced SOC
estimation accuracy (Bartlett, Marcicki, Onori, Rizzoni, Yang, et al., 2016; Stetzel et al.,
2015). Therefore, the use of PDEs in computation remains doubtful for the real-time

application in BMS of EV.

2.5.1.3 Electrical equivalent circuit model

To maintain the trade-off between battery model complexity and accuracy, a new
modeling approach called EECM has been investigated by researchers (Mousavi G. &
Nikdel, 2014; Rzepka et al., 2021) EECM is one of the most promising approaches for
online battery parameter/state estimation, especially for EV applications. It uses lumped
components such as resistors, capacitors and voltage source, to describe the complete
battery dynamic behavior. The EECM approach can be classified into three categories,
such as Rint model, Randles model and RC model (Mousavi G. & Nikdel, 2014), as
presented in Figure 2.4. For the efficient utilization of EECM for online SOC estimation,

an accurate model PIM is always needed.

Based on the operating condition, PIMs suitable for battery EECM can be classified

into two categories, online and offline. In the online method, tests are conducted during
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the active application mode, whereas in the offline method, ad-hoc tests are conducted on
the battery during the standby application mode. The offline method of battery parameter
identification is extensively utilized in online SOC estimation. Additionally, it helps
reduce the complexity of online SOC estimation. The commonly used offline PIMs are
curve fitting (L. Lu et al., 2013), RLS algorithm (Barcellona & Piegari, 2017a; S. Zhang
& Zhang, 2021b) multi-swarm particle swarm optimisation (MPSO) (C. Huang et al.,
2018) and GA (Q. Yang et al., 2017). However, the accuracy of the model parameters is
highly sensitive to battery temperature and charging/discharging rate (Yun Zhang et al.,
2017). Thus, the application of an online adaptive algorithm for parameter identification
seems more appropriate. For online parameter identification, the weighted RLS (Cheng
Zhang, Allafi, Dinh, et al., 2018) is the most appealing method, and it requires only the

battery current and voltage for parameter identification.

With the advancement of control theory in the past decade, the different adaptive filters
and nonlinear observers like KF and its variants, PF (Yun Zhang et al., 2017), RLS (P.
Shen, Ouyang, Lu, et al., 2018), forgetting factor RLS (FFRLS) (Xia et al., 2018),
multiple forgetting factors RLS (MFFRLS) (Safwat et al., 2017), UPF (Waag et al., 2014)
and H-infinity (Barcellona & Piegari, 2017b; Hongwen He et al., 2012b; Mousavi G. &
Nikdel, 2014; Partovibakhsh & Liu, 2012; Tian, Yong, Rusheng Yan, Jindong Tian,
Shijie Zhou, 2017), have been investigated for the accurate parameter identification of

LIBs.

(@ Rint model

The Rint model is the simplest type of battery equivalent circuit model that was
developed from the combined model of LIB. As shown in Figure 2.5, it contains a single-
value internal ohmic resistance (Rg) and an OCV source (Vocv) (P. Shen, Ouyang, Lu, et

al., 2018). The value of both components depends on the SOC, SOH and temperature of
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the LIB (Hongwen He et al., 2011b). The hysteresis effect is an important attribute of LIB
that cannot be neglected. The relaxed voltage is higher and lower than the true OCV
during charging and discharging, respectively, because of the hysteresis effect in the
battery. Consequently, two OCVs represent a single value of SOC, and this effect
becomes severe at low temperatures. Hysteresis must be considered for accurate SOC
estimation. In (Plett, 2004d), the zero-state hysteresis model was combined with the Rint
model. The results illustrated that the consistency and performance of the zero-state
hysteresis Rint model are better than those of the simple Rint model. Nevertheless, weak
battery dynamics make the zero-state hysteresis Rint model unsuitable for LIB modelling

under a dynamic load such as EV.

:: Voev (SOC)

Figure 2.5: Rint battery model (P. Shen, Ouyang, Lu, et al., 2018)

(b) Randle’'s model

In the Randle’s model, the battery is considered a large capacitor and is mostly used
in CCM-based SOC estimation. The model was initially used in lead acid battery
(Fairweather et al., 2012). In (C. Gould et al., 2012), it was used for LIB application, as
presented in Figure 2.6, where Cp is the main capacitor to store the charge, parallel
combination C, and R, represent the small time-constant electrochemical transitions, Ris
the internal resistance (a terminal and interconnection resistance) and Rp is a self-
discharge resistance. The n number of parallel RC branches can be added to the original
model to analyse the more transient response (Nejad et al., 2016a). In (C. R. Gould et al.,

2009), the authors validated the Randles model on an ultra PRT vehicle by estimating the
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SOC and SOH through real-time state observers such as Utkin and KF. In this thesis, the

Rint is employed for SOP estimation of the battery cells due to intes low complexity.

Ol
M-
O
| -
||

Figure 2.6: Randle’s battery model (Nejad et al., 2016b)

(c) nRC mode

The nRC Model incorporates a series of internal resistances (R) and n number of
parallel RC branches to represent the transient responses of different time constants
associated with LIB charge transfer, diffusion and voltage source Vocv. As shown in Figure
2.7, depending on the load requirement and model accuracy, the number of parallel RC
branches varies from 1 to n. The 1RC and the 2RC are commonly used RC models for
online SOC estimation. In the 1RC model called Thevenin model, a single RC branch is
used to describe the battery dynamics and transient response during charging and
discharging. To further improve the performance of the 1RC model, in (Plett, 2004b;
Xiaogiang Zhang et al., 2016), the battery model called Partnership for a New Generation
of Vehicles (PNGV) was adopted to describe the nonlinear characteristics. As shown in
Figure 2.8, in the PNGV model, the capacitance Cp is connected in series with the
resistance Rto simulate the effect of the change in SOC on OCV, and resistance Rp and
capacitance Cp are used to describe the polarisation effects. The model can define the
battery voltage at a different SOC during the transient phase. The 2RC model is a highly
preferred and accurate LIB model for online SOC estimation. It consists of two RC

branches that describe the slow and fast transient response caused by charge transfer and

26



diffusion of LIB (P. Shen, Ouyang, Lu, et al., 2018). The value of all the parameters, such
as Uqc, Rand time constants (7, and 7,), are highly influenced by the battery temperature
and SOC (S. Yang et al., 2017). In (Ouyang et al., 2014), the extended 2RC model was
used to improve the model performance in the low SOC region in which the RC
components indicate the solid-phase diffusion. The hysteresis model is usually combined
with the 1RC and 2RC model to improve the model accuracy, especially for the EV

application (Huria et al., 2014).

Figure 2.7: nRC battery model (Nejad et al., 2016b)

Figure 2.8: PNGYV battery model (Pai, 2019)
2.5.1.4 Electrochemical impedance model
In ECIM, the properties of battery electrochemical impedance and electric impedance
are composed to overcome the shortcomings of the EECM. The fractional order model

based on fractional order calculus (FOC) and electrochemical impedance spectroscopy
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(EIS) theory are used to investigate the ECIM (Mu et al., 2017). The FOC is suitable for
modelling the battery dynamics. It can also incorporate the mass transport, diffusion
dynamics and memory hysteresis effects of LIB into the developed model. EIS is the non-
destructive approach used for the development of ECIM of LIB to manifest the internal
dynamics at different SOH of the battery (S. Buller et al., 2005). In EIS, the sinusoidal
alternating current of different frequencies is applied to the battery, and the voltage
response is recorded to develop the complex impedance frequency spectrum that is
directly correlated with the SOC, SOH, temperature and amplitude of the applied current
(Stephan Buller et al., 2003; Westerhoff et al., 2016). In the ECIM model, the charge
transfer between electrolyte, active material and solid electrolytic interference is
modelled by a constant phase element (CPE) parallel with a resistor, and the solid-state
Li diffusion is captured by the Warburg component (S. Liu et al., 2017). To reduce the
complexity of the n-order RC model, the authors in (C. Zou et al., 2018) developed the
ROM with fraction element. The performance of the ECIM with one CPE is similar to
the fifth-order RC model (Mu et al., 2017). The ECIM developed from the Randles model
depicts higher accuracy compared with the commonly used 1RC model under a wide
range of uncertainties (B. Wang et al., 2015), (Liao et al., 2012). The modified 2RC model
employing two CPEs infer high robustness compared with the 2RC EECM (B. J. Wang
et al., 2017). The ECIM method is more advantageous and accurate than ECM and
EECM, but this method is not suitable for online parameterisation and SOC estimation in

EV application because it requires a long test time (Waag et al., 2013).

2.5.1.5 Data-driven model

Establishing the precise battery model utilising the ECM, EECM and ECIM
approaches is difficult due to the complex internal dynamic behaviour of the battery and
uncertain external operating conditions. DDM method based on statistical machine

learning tools, such as fuzzy logic (Hametner & Jakubek, 2013), neural network (C. Li et
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al., 2019; Tong et al., 2016) and support vector machine (Klass et al., 2015a), (Klass et
al., 2015b) is another convenient way to estimate online SOC. The need for an accurate
plant model and the performance of the controller developed by a data-driven method
depend on available signals, such as voltage, current and temperature. The application of
highly nonlinear input and output training data pattern in modelling has several potential
benefits, such as distributed processing, high computation rate and adaptive capability to
solve the complex problems (R Xiong et al., 2018). However, the problems caused by the
high involvement of data sets in this modelling method, such as the incorrect data
selection, can severely influence SOC estimation (Hossain Lipu et al., 2020). The
immense number of data sets required to cover all operating conditions significantly

increases overall computational cost.

2.5.2  Suitable battery modelling method for real commercial BMS of EV

To analyse the suitable battery modelling method for real commercial BMS of EV, the
available patents filed by different battery manufacturers and BMS companies related to
online SOC estimation were reviewed (Baba & Adachi, 2013, 2016; Gelso &
Bryngelsson, 2018; JR et al., 2005; KIM et al., 2018; T.-K. Lee, 2015, 2017; LIM & JIN,
2012; Mao & Tang, 2014; Paolo Baruzzi et al., 2013; Plett, 2012, 2003, 2009; Quet, 2014;
Tang et al., 2013; Vaidya & Kancharla, 2014; Valdez & Angel, 2016; Won et al., 2006;
Zhong et al., 2014). Table 2.2 lists information about the battery modelling method
employed in the patents. The table demonstrates that the EECM is the most suitable
battery modelling method for online SOC estimation. Moreover, owing to the favorable
features of 1RC and 2RC models for online SOC estimation, these two models are mostly
utilised in the development of BMS of EV by different companies. In this thesis, the 2RC

model is employed for SOC estimation.
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2.6 Individual online states estimation method
2.6.1 SOC estimation methods

A precise and reliable online SOC estimation method is needed for the development
of elite BMS. In recent years, several online SOC estimation methods have been
developed (Figure 2.9). Table 2.3 lists the various attributes of these SOC estimation

methods.

2.6.1.1 Coulomb counting method

CCM is one of the simplest methods of SOC estimation. It is used to find a direct
relationship between the SOC and the battery charging/discharging current. This method
is commonly used in small electronic devices. Despite its simple computation, this
method is not suitable for online SOC estimation because of its large error accumulation

and the need for an initial SOC value (Caiping Zhang et al., 2016).

( SOC estimation methods )

v
(Coulomb counting method) (Open circuit voltage methocD (Machine learning based methocD

) 4
( Model based method )
[

C Adaptive filter based ) ( Nonlinear observer based)

( KF family ) ( Other filters )

Figure 2.9: Categorisation of SOC estimation methods
2.6.1.2 Open-circuit voltage method
OCVM has high precision and is easily implementable for SOC estimation. In
this method, the OCV-SOC relationship is derived from the stepwise measurement of
OCV for different values of SOC. Moreover, every LIB has its OCV-SOC curve that

changes throughout the battery’s life and the associated hysteresis effect, even though
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they are of the same material, structure and rating (S. Lee et al., 2008). According to
(Cuma & Koroglu, 2015), the OCV-SOC curve changes slightly throughout the battery

life and can thus be neglected.

For the same SOC level, the value of OCVs cannot be the same during charging and
discharging because of the hysteresis characteristic (Hannan, Lipu, et al., 2017).
However, in some LIB chemistries, the hysteresis effect can be ignored (Waag et al.,
2014). In previous years, various modified OCVMs have been proposed in the literature
to improve accuracy and processing time (Leng et al., 2014; Waag & Sauer, 2013).
However, this estimation method remains inappropriate for online SOC estimation owing
to its high dependency on OCV values and the necessity of a long period to achieve a
satisfactory equilibrium condition (S. Lee et al., 2008). It also requires high precision

during the charging/discharging voltage measurement.

2.6.1.3 Model-based method

The main principle of the model-based SOC estimation method is to relate the
measured battery signals (voltage, current and temperature) with the battery model. Three
types of battery models, namely ECM, EECM and electrochemical impedance model
(ECIM), are mainly employed in this method (R Xiong et al., 2018). In the ECM-based
approach, parameters related to lithium (Li) concentration on positive and negative
electrodes are utilised for SOC estimation (Junfu Li et al., 2016, 2017; Tagade et al.,
2016). However, these ECM-based approaches are not reasonable for SOC estimation
because of the high participation of unknown variables and nonlinear partial differential
equations (PDEs) (Bartlett, Marcicki, Onori, Rizzoni, Yang, et al., 2016). In the case of
SOC estimation using ECIM, the relationships between battery impedance and SOC are
used. Nevertheless, due to the high sensitivity of battery impedance against operating

conditions, this method is not appropriate for online SOC estimation. Conversely, the
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merits of the EECM-based approach, such as low complexity and high accuracy, make it

favourable for online SOC estimation.

The nonlinear techniques developed by researchers for EECM-based online SOC
estimation can be classified into two groups: adaptive filter based and nonlinear observer
based. In nonlinear techniques, a voltage-based correction method is used to update the
algorithm for accurate SOC estimation, in which the difference between the model
voltage and the measurement voltage is used for SOC estimation. According to the
mathematical approach, this method can be further classified into two categories, KF
based and other adaptive filter based, as shown in Figure 2.9. The performance of the KF-
based SOC estimation is highly dependent on the accuracy of the battery model and the
measurement covariance information (Hongwen He et al., 2013; Jiahao Li et al., 2013;
Meng et al., 2016; Xia, Wang, Tian, et al., 2015). Currently, owing to its high accuracy
and self-correcting features, KF family-based SOC estimation is one of the preferred
approaches for online SOC estimation (Meng, Ricco, Luo, et al., 2018). Different advance
variants of KF family algorithms have been proposed by researchers for SOC estimation.
These algorithms are elaborated with the help of suitable examples in Section 5. KF
family algorithms can typically attain high accuracy with the assumption of Gaussian
distribution system noise during SOC estimation. In previous years, other adaptive filters
have been utilised for SOC estimation, including PF (Chin & Gao, 2018; El Mejdoubi et
al., 2016; Xia, Wang, Wang, et al., 2015; Yongzhi Zhang et al., 2017), unified particle
filter (UPF), modified particle filter (MPF) (B. Li et al., 2018; G. Li et al., 2018; Shao et
al., 2014; Y. Wang et al., 2015; Xia et al., 2017), H-infinity (Rivera-Barrera et al., 2017),
PSO (Chin & Gao, 2018; Mesbabhi et al., 2016) and proportional integral (Meng, Ricco,

Acharya, et al., 2018).
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2.6.1.4 Machine learning based method

With the advancement of computer technologies, SOC estimation using machine
learning is becoming an attractive area for researchers to investigate. SOC estimation
based on machine learning can be divided into two phases: data training and learning (Z.
Li et al., 2017b). In the data training phase, some experiments are performed in a
controlled environment on the LIB to generate a training data set. CCM is used to generate
numerous data sets analogous to the relationship between input (voltage, current,
temperature, SOH and impedance) and output (SOC). With the assistance of these data
sets, SOC estimation is performed during the learning phase. Some machine learning
tools, such as artificial neural network (F. Liu et al., 2015; Pu Shi et al., 2005), fuzzy logic
(Y. Ma et al., 2018; Salkind et al., 1999; Singh et al., 2006; Zenati et al., 2010), support
vector mechanism (Alv et al., 2013; Alvarez Anton et al., 2013; J. N. Hu et al., 2014;
Meng et al., 2016; Sheng & Xiao, 2015), support vector regression (Farmann et al., 2015;
Shi et al., 2008), extreme learning machine (Cao et al., 2017; G.-B. Huang & Chen, 2008)
and genetic algorithm (GA), are used for SOC estimation (L. Chen et al., 2018; J. Lu et
al., 2018a; Panday & Bansal, 2016). Real-world dynamic conditions can be considered
during the data training phase, and this approach is suitable for all types of chemistry
batteries. However, accurate SOC estimation requires enormous hardware (CPU and

memory) to handle a large data set.
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2.6.2 SOE estimation methods

The battery SOC refers to the available capacity (Ah) instead of available energy (Wh)
and the information related to battery available energy can calculate by using the battery
state of energy (SOE) estimation. The SOE is a more suitable battery state which can be
used to offer user-friendly driving. Further, the online SOE estimation is generally
required for the optimization and management of the energy flow within EVs. As shown
in Figure 2.10, the battery SOE estimation methods can be classified into three categories
such as power integral method, model-based method, and machine learning-based method
(Chang et al., 2020). Table 2.4 lists the various attributes of these SOE estimation

methods.

C SOE estimation methods )

Y Y Y
(Power integral method) ( Model based method ) (Machine learning based methocD

C Adaptive filter based ) C Nonlinear observer based)
I
v v
( KF family ) ( Other filters )

Figure 2.10: Categories of SOE estimation method
2.6.2.1 Power integral method
In the power integral method, the SOE estimation can be performed by using (2.4).
Despite its simple implementation, this method is not suitable for online SOE estimation
because of its large error accumulation and the need for an initial SOE value.

Furthermore, due to change in E,(t) with battery aging and operating conditions, the
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power integral method is not suitable for the SOE estimation under complex and dynamic

operating conditions (Y. Wang et al., 2016).

2.6.2.2 Model-based method

Interestingly, the approaches used in SOC estimation can also be employed for SOE
estimation as well (Dong, Chen, et al., 2016; Xu Zhang, Wang, Wu, et al., 2018). For
instance, a hybrid LIB model-based analytical method was proposed to estimate the
battery SOE in (K. Li et al., 2018). The coulomb counting method was utilized for the
SOC estimation. It is demonstrated that the SOE estimation error is always less than 4.7
% under dynamic loading conditions. In (Y. Wang et al., 2016), the model-based SOE
estimation using extended Kalman filter (EKF) is investigated, but the offline method of
the 1RC battery model parameter identification method was used in the study. In (Chang
et al., 2020), model-based SOE estimation using an unscented particle filter (UPF) is
developed. The recursive least square with forgetting factor (RLSF) algorithm is used for
battery modeling and the result demonstrates the SOE estimation error of less than 1.8 %.
In (Chang et al., 2020), the method of SOE estimation using the UKF algorithm is
developed and the error is less than 1.8 %. However, the performance of the estimation
method highly depends on the battery model accuracy due to the non-linear relationship
between the SOE and battery terminal voltage. Furthermore, the computational
complexity of the SOE estimation method increases significantly as a new state-space

model is required.

2.6.2.3 Machine learning-based method

Recently, a few data-driven methods also have been investigated for SOE estimation to
further improve the estimation accuracy such as in (X. Liu et al., 2014), the back-
propagation neural network-based open-loop SOE estimation was developed and

demonstrates good accuracy under dynamic load current and temperature conditions.
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However, the performance of this estimation method is very sensitive to measurement
errors. The Long Short-Term Memory Neural Network (LSTNM-NN) is utilized for SOE
estimation in (L. Ma et al., 2021). However, large data sets were involved in the training

of the NN model.
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2.6.3 SOP estimation methods

To operate the battery in its safe operating region, the SOP estimation plays a crucial
role along with the SOC and SOH estimation. The SOP is the function of different battery
parameters and battery internal/external conditions (Farmann & Sauer, 2016). As the
battery internal conditions change with the aging effect, it is hard to estimate the accurate

real-time SOP value.

As shown in Figure 2.11, the SOP estimation techniques can be categorized into three
groups: characteristic map (CM) method, Model-based method (Waag et al., 2014)
(Farmann et al., 2015; Farmann & Sauer, 2016; J. Lu et al., 2018b) and Machine learning-

based method. Table 2.5 lists the various attributes of these SOP estimation methods.

( SOP estimation methods )

C Characteristic map method) CModel based method) CMachine learning based method)

( Adaptive filter based) C Nonlinear observer based)

v v
( KF family ) ( Other filters )

Figure 2.11: Categories of SOP estimation method
2.6.3.1 Characteristics map-based method
In this method, the relation between the available power and the different states (such
as SOC, SOH, temperature), and parameters (like power pulse time scale) are used to
develop the characteristic map. As shown in Figure 2.11, the data related to CM is
generated by the standard laboratory tests such as HPPC (Farmann & Sauer, 2016; Plett,
2004b) and EIS (J. Lu et al., 2018b) test, and the results are stored in the non-volatile

memory of BMS. In (Cecile Vacher, 2002), the available power is determined from OCV
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and internal resistance for a given SOC from CM data. In the proposed method, the fixed
value temperature is used consequently the internal resistance remains constant through
the lifetime although the increase in resistance is expected with time. The non-adaptive
character of this proposed method is the main drawback, and it would be a cause of error
in estimation. Since all the battery states are time-variant so that some adaptive technique
is required to employ with this method (Lashway & Mohammed, 2016). With the addition
of the adaptability feature, the SOP estimation error improves (Farmann et al., 2015;
Farmann & Sauer, 2016). It is a simple method for SOP estimation. Nevertheless, it has
some drawbacks like static battery characteristics are considered for estimation,
employment of the adaption technique is not suitable for maximal power prediction, large
space is required to store the multi-dimensional CMs. Memory problems can be resolved
with the approximation of some parameters in the CMs but it will increase the adaptive

technique complexity (Farmann et al., 2015).

Figure 2.12: Fundamental steps involved in SOP estimation using CM method
2.6.3.2 Model-based method
The model-based SOP estimation method is the most promising approach, and it
outperforms all the downsides related top CM method. The accuracy of the estimated
SOP depends on the model accuracy. Low complexity and computational effort features
of the EECM of LIB make it the most advantageous LIB model for the SOP estimation
process of EVs where the high dynamic load is available. Further, the consideration of

battery design limits also affects the performance of SOP estimation. For example, the
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Rint model was utilized for voltage-based SOP estimation in (Plett, 2004f). However, two
battery design limits such as voltage and current are considered that may cause overcharge
and discharge issues without SOC limit. In (Dong, Wei, et al., 2016), the SOP estimation
using KF is investigated. The power capability of the battery is demonstrated in the
results. However, the method uses only one constraint for SOP estimation that could
produce over-optimistic results. In (W. Zhang et al., 2015a), the SOP estimation using
EKEF is investigated. 1RC battery model and two constraints such as current and SOC are
considered for SOP estimation. Though, the voltage constraint is missing due to which
the overvoltage and under-voltage conditions may occur. To improve the SOP estimation
accuracy, the multi-constraints (voltage, current, and SOC) SOP estimation method using
the 1RC model is proposed in (Pan et al., 2017). The advantages of multi-constraints SOP
estimation over a single constraint are deeply analyzed. The results demonstrated that the
consideration of multi-constraint, accuracy, and robustness of the SOP estimation can be
significantly improved. For example, in (J. Lu et al., 2018c), Genetic algorithm-based
SOP estimation using the 1RC model is proposed. By considering three constraints (SOC,
current, and voltage), the results demonstrate high SOP estimation accuracy up to 7.2 %
as compared to the traditional Taylor method (T-method). In (L. Yang et al., 2020), a
long-term power demand (LTPD) prediction model is employed for SOP estimation. As
compared to the traditional method, the proposed method able to reduce error by 85.9%.
However, with the application of the 1RC model, the accuracy of SOP estimation
improves at cost of higher computational effort. In this thesis, to maintain the trade-off
between accuracy and computational complexity, the Rint model is utilized for SOP

estimation.

2.6.3.3 Machine learning-based method
In the machine learning-based method, the battery is regarded as a black box where

the internal electrochemical dynamics of the battery are not considered. The SOP
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estimation is done based on the model developed employing data collected from the
experimental study. Generally, in the model development, the battery voltage, current,
and operating temperature are considered as input and the SOP is taken as output. For
example, in (Fleischer et al., 2013) an adaptive neuro-fuzzy-inference system (ANFIS) is
used for SOP estimation. Though, the current limiting factor was not neglected in the

study.
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2.64 SOH estimation methods

Like other battery states, the direct monitoring of SOH is not possible due to battery
complex internal dynamics. Mostly, the battery internal resistance and available capacity
are related to the SOH that denotes the extent of the battery aging. Different SOH
estimation methods have been investigated in the literature that can be broadly classified
into two categories such as experimental method and model-based method, as presented

in Figure 2.13. Table 2.6 lists the various attributes of these SOH estimation methods.

C SOH estimation methods )

A
C Experimental Method ) C Model Based Method )

( Adaptive filter based ) C Nonlinear observer based) CMachine learning based methocD

v v
( KF family ) ( Other filters )

Figure 2.13: Categories of SOH estimation method

2.6.4.1 Experimental Techniques

There are several experimental methods available in the literature for SOH estimation.
Mainly, the coulomb counting, electrochemical impedance spectroscopy (EIS), and
incremental capacity and differential voltage (IC/DV) analysis are utilized in the
experimental SOH estimation method (W. Li et al., 2021a). The major limitation of the
experimental method is the requirement of a unique charging profile that is hard to
achieve in real-time application. Under the coulomb counting method (J. Yang et al.,
2018), the number of Ah are counted during the charging and discharging process. Once
the battery reached its cut-off voltage, the total counted Ah is divided by the BOL capacity

to estimate the SOH (Berecibar et al., 2016b). The main shortcomings of this method are
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(i) it generally required large-size memory for storing, (ii) the possibility of error
accumulation during computation is high and (iii) achievement of cut-off voltage required
to update the total counted Ah during real-time operation is very difficult. As the battery
internal impedance increases with battery aging, the different frequency ranges on the
EIS are used for SOH estimation. Different battery parameters can be extracted over the
wide frequency range through the Nyquist plot draw from the EIS results. For example,
very low-frequency impedance spectra show purely ohmic resistance and at the high
frequency, it shows the inductive behavior. The small semicircle presents the solid
electrolyte interface (SEI) layer and the larger semicircle shows the charge transfer
process and the double-layer capacitance. However, the application of EIS in the real-
time application is not feasible because of the amplified noise error even with the use of
smoothing filters and the requirement of collection of input data over the wide voltage
range. The IC/DV method can estimate the SOH accurately by utilizing the measurement
voltage and current. In which, the IC is referred to as the ratio of change in battery
capacity to the change in terminal voltage during charging and discharging. In IC/DV
analysis, the very low current passes through the cell to get the charge-voltage curves.
The DV is stated as the inverse of differential capacity. Under IC/DV method, the shift in
the peak and valley points on the IC curve is mainly considered for SOH estimation. The
peak and valley positions are highly sensitive to the operating conditions, for example,
C-rate, temperature, aging/cycles. Several methods have been proposed by the
researchers in the literature. For example, to estimate the SOH from the IC curve, in (Z.
Wang et al., 2017), the method based on Gaussian process regression with a multi-island
genetic algorithm (GRP-MIGA) was proposed by the authors. Under which, the wavelet
filtering was used for the peak value and position extraction, and that was considered as
health factors (HFs). Further, the grey correlation analysis was utilized to find the

correlation between SOH and HFs. Finally, the performance of the proposed SOH
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estimation method was validated by using an accelerated battery life test. In (Riviere et
al.,2019), the innovative IC analysis method was proposed by Riviere. et. al., under which
the area under the IC curve between the voltages is considered to estimate the SOH. To
validate the effectiveness of the proposed method, the different chemistries batteries such
as LFP and LMO were tested under dynamic operating conditions and the accuracy of
less than 2% and 4% were recorded, respectively. However, with the involvement of
differentiation, the impact of noise on the performance of SOH estimation is more even
with smoothing filters. Also, the gathering of input data for a wide operating range is
difficult in real-time applications. To overcome these issues, model-based methods are

developed to work with sensor data directly.

2.6.4.2 Model-based method

The identified battery model parameter values are utilized for SOH estimation in the
model-based method. Generally, the model parameters such as capacity and internal
ohmic resistance are employed for SOH estimation. For the identification of model
parameters different adaptive algorithms, non-linear observers, and machine learning
methods have been greatly utilized in the literature. For example, in (Remmlinger et al.,
2013), the internal resistance of the linear parameter-varying battery model identified by
KF is employed for SOH estimation. The results demonstrate the SOH estimation over a
wide range of operating conditions. An EKF is a non-linear version of KF and it is widely
utilized for battery model parameter identification. In (Plett, 2004c), the EKF is used for
the identification of the capacity and internal resistance of the battery model. The results
obtained are very accurate and the implementation of EKF for SOH estimation is lighter.
To address the variations in battery model parameters with aging, the SOH estimation
using EKF is investigated in (J. Kim & Cho, 2011). It is observed that the diffusion
resistance is more sensitive than other battery model parameters and implementable for

SOH estimation. In (Xu Zhang, Wang, Liu, et al., 2018), the battery model parameters
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were identified by using particle swarm optimization-genetic algorithm and SOC-OCV
relationship obtained by particle filter. Lastly, the capacity estimation is performed by the
RLS method for SOH estimation. The experimental results indicate high SOH estimation
accuracy. In (Tan et al., 2021), to reduce the computational cost and achieve high
accuracy, the model parameter identification and SOC estimation are performed at a
multi-time scale. Further, based on the data collected from the accelerated degradation
test, the relationship between RC parameters and SOH is developed. The obtained is
employed for SOH estimation using SVR. In (Zhengyu Liu et al., 2020), the indirect
enhanced health indicator (HI) and SVR are utilized for SOH estimation. The differential
evolution algorithm is utilized to optimize the hyperparameters of the SVR. In (Gou et
al., 2020), a novel ensemble learning method is proposed for SOH estimation. For a fast
and efficient learning process, the extreme learning machine (ELM) is used to extract the
relationship between the HIs and SOH. The developed method can accurately estimate
the SOH with RMSE less than 0.78 % in 1ms under dynamic operating conditions. In (W.
Liet al., 2021a), a long-short term memory (LSTM) network is developed to estimate the
battery remaining capacity as output per cycle. The raw sensor voltage data from partial
constant current charging curves are used for the training. The results demonstrated high

accuracy even under 15 % missing data.
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2.6.5 Actual capacity and maximum available energy estimation

As the actual capacity (Q,) and maximum available energy (E,,) decreases with the
battery aging. Two essential parameters can contribute to the accurate SOC and SOE
estimation and also indicate the SOH of the battery cell. However, the estimation of @,
and E), is difficult due to its dependence on operating conditions and battery aging level.
For an accurate SOC and SOE estimation, the correct value of Q,, and E,, are required to
update during real-time operation. By using the (2.2) and (2.4), the value Q,, and E,, can
be calculated by using expressions (2.9) and (2.10), respectively. Where, t; and t, are

two different time instant.

Q= ((21004®) x 3600)/(50C &) - 50€ (1)) 2.9)

E, = (( J210).v()d®) x 3600) J(SOE(ty) — SOE(t,))  (2.10)

In the literature, there are three types of methods for the actual capacity estimation
namely differential analysis (DA) or incremental capacity analysis (ICA)-based method
(J. He et al., 2020), machine learning (ML) based method, and model-based method are
investigated. In the DA-based (S. Zhang et al., 2020) and ML-based methods (Fan et al.,
2021; W. Li et al., 2021a), large experimental datasets are needed to accurately estimate
the battery's actual capacity. In both methods, a long testing time and extensive offline
investigation are always required. Also, the accuracy of the estimated capacity depends
on the quantity and quality of the training data. Though, the model-based method
combines battery model and estimation algorithms. In (Plett, 2011), the capacity
estimation is performed by an approximated weighted total least square (AWTLS)
algorithm. The AWTLS allows nonproportional noises on both the integrated current and
SOC difference to make it implementable in BMS. However, as the sigma-point KF

(SPKF) with offline identified model parameters employed for SOC estimation, the SOC
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estimation accuracy cannot be guaranteed for a long-time. Therefore, with the
employment of the online model parameters identification method, the accuracy of
estimated capacity can be improved further. Also, there is a need to reduce the

computational cost of the AWTLS method.

Compared to actual capacity estimation, few studies are available in the literature on
maximum available energy estimation (Deng et al., 2017). For example, the support
vector regression algorithm is used for maximum available energy estimation in (Deng et
al., 2017). The Long Short-Term Memory Neural Network (LSTNM-NN) is utilized for
SOE estimation (L. Ma et al., 2021). Both the studies demonstrate good SOE estimation
accuracy. However, large data sets are involved in the training of the SVR model and
NN model. In (S. Zhang & Zhang, 2021a), the model based maximum available energy
estimation method is investigated with the help of SOE estimated using AEKF. The effect
of operating temperature on estimation accuracy is analyzed. The results demonstrated
that the estimated maximum available energy MAE and RMSE lies in the range of 1.5 %
to 3.5 %. In (L. Zheng et al., 2016b), the moving window energy-integration and average
method is used for the maximum available energy estimation. However, the issue of slow
convergence and high initial estimation error exists. In this thesis, the estimation of Q,
and E,, are performed by using the new low cost AWTLS method as proposed in chapter

5.

2.7 Battery states co-estimation method

The accuracy of the individual state estimation method is directly or indirectly
influenced by the other states information in a LIB system. In most of the
single/individual state estimation methods, the correlation between the states is
overlooked due to which it is hard to get high estimation accuracy. In the past few years,

to improving the accuracy and robustness of BMS, the battery states co-estimation
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methods are gaining popularity. Based on the different states involved in the co-
estimation method, the existing co-estimation method can be classified into several

categories such as 1) SOC and SOH, 2) SOC and SOE, 3) SOC and SOP, and 4) others.

271 SOC and SOH

Practically, the SOC and SOH are highly correlated with each and it cannot be ignored
to achieve high estimation accuracy. As the SOH varies at a very slow rate over the battery
life as compared to SOC and both are coupled with sophisticated electrochemical
processes, therefore, it is challenging to estimate both simultaneously. In the last couple
of years, different methods for co-estimation SOC and SOH have been investigated by

researchers.

For example, in (J. Kim & Cho, 2011), the SOC and SOH estimation have been
developed by using the modified EKF (MEKF). The SOC and SOH estimation was
performed with the employment of per unit (p.u.) values instead of absolute values. Due
to the high sensitivity of diffusion resistance than other model parameters, it was used for
SOH estimation. The SOC estimation error was within +5% of the ampere-hour counting
that required to improve further. To achieve high estimation accuracy, the multi-state
observer has been proposed in (Y. Zou, Hu, Ma, & Eben Li, 2015). In which the 2" and
4™ order EKF observers were utilized for the SOC and SOH estimation, respectively.
However, SOH estimation was performed by an offline method, therefore, it cannot be
used for online applications. For online SOC and SOH estimation, a new simple and
computationally efficient estimation method has been proposed in (Cacciato et al., 2017).
The SOC and SOH are simultaneously online estimated by the simple mathematical
formulas used by PI-based observers. Although, the results illustrated that the proposed
method was suitable for a wide range of operating conditions however the estimator

accuracy depends upon the precision of the sensors utilized for the measurement. To
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overcome this issue, the co-estimation of SOC and SOH estimation is performed by using
dual fractional-order extended Kalman filter (DFOEKF), in (X. Hu et al., 2018),. The
high-fidelity fractional-order ECM parameter is identified by using the Hybrid Genetic
Algorithm/Particle Swarm Optimization (HGAPSO) technique to reduce the effect of
sensor noise. The results demonstrate the fast convergence and high accuracy with the
error within 1% for both SOC and SOH at a high computational cost. In (M. Zeng et al.,
2019), a fuzzy control trace-free Kalman filter with 2-RC EECM has been investigated
for the co-estimation of SOC and SOH. To simultaneously estimate SOC and internal
resistance, two complete fuzzy UKF (F-UKF) algorithms were used. High estimation
accuracy of SOC and internal resistance was achieved with the assistance of two different
fuzzy controllers. The results claimed good performance of the developed co-estimation
method with unknown initial SOC condition with good convergence speed under

dynamic operating conditions.

In (Song et al., 2020), a sequential algorithm has been investigated for SOC and SOH
estimation. To improve the battery capacity and SOC estimation accuracy, the
parameters/states estimation and frequency-scale separation were done by injecting the
different frequencies' current signals. Experimental results were demonstrated the high
estimation accuracy at low computational cost than the concurrent algorithm where all
parameters/states are estimated simultaneously. However, the accuracy of the developed
algorithm is not validated at low-aged conditions. To outperform this issue, a low-cost
method for co-estimation of SOC and SOH using DEKF has been developed, (Park et al.,
2021). To reduce the computational cost, the MAFF-RLS method was employed OCV,
capacity, and model parameter identification. Whereas DEKF was used for SOC and SOH
estimation. The developed method was a self-adaptive algorithm means there was no need
to develop OCV-SOC lookup tables under dynamic operating conditions. The results

demonstrated that the developed estimator could maintain high accuracy under varying

54



degradation processes. To further reduce the computational burden and improve the SOC
estimation accuracy, the multi-time scale frame for co-estimation of capacity and SOC is
investigated (S. Zhang & Zhang, 2021b). The SOC estimation was done by using the
AEKF algorithm with 1-RC model parameters identified by using FFRLS. The capacity
estimation was performed by using EKF at the macro time scale. It was claimed that
estimated SOC and capacity MAE maintained below 1 % under dynamic operating
conditions. However, the high estimation accuracy cannot guarantee under real-time

applications as the measurement noise effect was not considered.

272 SOC and SOE

In recent, simultaneous SOC and SOE estimation plays an important role in EV battery
performance advancement. SOC and SOE are useful for the estimation of the remaining
capacity and energy of the battery respectively. To optimize the application of EV, it is
necessary to estimate both states. In (L. Zheng et al., 2016a), to investigate the SOE and
maximum available energy, the LiMn204 cell of 90Ah capacity has been utilized under
different aged conditions. Also, the different charge/discharge test was conducted to find
the relation between the SOC and SOE. The results demonstrate the linear relation
between SOC and SOE under different temperature and aged levels. In this paper, a
moving-window energy-integral and average method are employed for the accurate SOE
and maximum available energy estimation. However, the estimation accuracy depends on

the measurable relationship between SOC and SOE that is used for the SOE estimation.

In (Yongzhi Zhang et al., 2017), the estimator has been developed by the authors by
using an adaptive H-infinity filter for combined SOC and SOE estimation in the real-time
application. To evaluate the performance based on the ME and convergence rate, two
other algorithms are used such as EKF and H-infinity. The results demonstrate the highest

convergence rate and lowest ME of SOC and SOE estimation using adaptive H-infinity
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filter. However, the use of offline model parameters limits the application in the long run.
Furthermore, two different H-infinity filters were employed for battery SOC and SOE

estimation that causes high computational cost.

273 SOC and SOP

On the other hand, for the optimal energy management unit in the EV, concurrent SOC
and SOP estimation are also needed. Underestimate and overestimate the SOP value, may
lead to overly conservative vehicle energy management and premature battery failure,
respectively. With the development of EV technology, several individual offline and
online SOP estimation methods have been presented. However, these methods are still
not reliable enough. The relation between the battery discharge power is calculated by the
HPPC method, SOC, and temperature. In (Rui Xiong, Sun, et al., 2013), the combined
SOC and SOP estimation method has been presented to achieve high reliability. In this
work, the data-driven method is used for battery parameter estimation. The adaptive EKF
is used for the SOC and SOP estimation. To improve the accuracy of the estimation for
aged batteries, the same method has been used (F. Sun et al., 2014) with the consideration
of battery SOH. Though, this method cannot be well suited for online applications due to
the requirement of large data. The effect of SOC and SOH on SOP estimation accuracy
has been analyzed and discussed in (J. Lu et al., 2018a). It concluded that the effect of
SOC error on SOP estimation is lesser for the aged battery as compared to the healthy

battery.

274  Others

Recently, the researchers are focusing on the development of a co-estimation method
for concurrent estimation of three or more battery states to further improve the
performance of the BMS. For instance, in (Xu Zhang, Wang, Wu, et al., 2018), the simple

SOE and SOP estimation is performed based on the online estimated SOC using UKF at
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each macro time. To reduce the complexity of the process, the SOP was determining by
terminal voltage, SOC, and design limits. On the other hand, PSO and UKF were utilized
for the online battery parameter identification and SOC estimation, respectively. The
results demonstrate that the proposed algorithm estimates the SOC with less than 0.08%
RMSE. However, the influence of SOH on the SOE and SOP estimation process was not

considered in this study.

In (P. Shen, Ouyang, Lu, et al., 2018), the co-estimation method for SOC, SOH, and
SOP has been investigated. In this work, the estimated SOC using EKF was used to
calculate the SOH and SOP of the battery. The method was validated to be effective in
online applications with high accuracy. However, due to the employment of the offline
parameter identification method, the performance of this method cannot be consistent
with the battery age will increase. As the computational burden of the co-estimation
algorithm proportionally increases the cost and size of the controller used in BMS. Thus,
there is a need to develop an accurate battery states co-estimation method with a low

computational burden that acquires the benefits of correlation between the battery states.

As the accurate SOC estimation is the primary step for the development of battery
states co-estimation method. In the proceeding section, the insights of online SOC
estimation using the KF algorithm are provided as it is a key focus of the thesis.
Furthermore, the features of different KF algorithms suitable for SOC estimation are

explained.

2.8 Simplified model-based online SOC estimation using KF algorithm

The basic flow chart of the model-based online SOC estimation method using the KF
algorithm is depicted in Figure 2.14. For a better understanding of the readers, the
complete SOC estimation process is divided into three subtasks. The first task is to

estimate a predetermined SOC using the (Ampere Hour Counting) AHC process (Cuma
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& Koroglu, 2015). In which, the initial SOC (Y. Zou, Hu, Ma, & Li, 2015), battery charge
/discharge current (Hongwen He et al., 2012a), and battery capacity (Y. Zheng et al.,
2018) are mainly required for the calculation of the predicted SOC. In the case of online
SOC estimation, the value of the initial SOC can be extracted from the SOC-OCV
relationship or the stored memory database. Based on the interpolation method, the OCV
for the battery model, corresponding to the predicted SOC, can be calculated from the
SOC-OCV relationship (Han et al., 2014; S. Yang et al., 2017; R. Zhang, Xia, Li, et al.,
2018b). The second task is to estimate the model voltage by using the selected battery
model. Based on the measurement voltage, current, and temperature values, the battery
model parameters can be evaluated using several PIMs (Waag et al., 2013; B. J. Wang et
al., 2017; Rui Xiong, He, Sun, & Zhao, 2013). The final task is to update the Kalman
gain, in which the model voltage and measured voltage are compared with each other,
and the voltage error is used to modify the Kalman gain. With the help of updated gain

based on the KF family algorithm, the estimated SOC can be generated.
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SOC

AHC Process Battery Model

Figure 2.14: Simple flow chart of model-based online SOC estimation method
using KF algorithm

2.8.1 General steps to combine battery model with KF algorithm

To combine the battery model with the KF algorithm, the discretized state-space model
is utilized. As shown in Figure 2.15, the first step is the discretization of the battery model
equations. In the case of ECM, it contains a large number of non-linear PDEs and often
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challenging to discretize. For this purpose, different discretization methods have been
utilized in the literature, for example, analytical method, integral method approximation,
Pade approximation method, finite element method, finite difference method, differential
quadrature and Ritz method (Corno et al., 2015; Ying Shi et al., 2011). In (Romero-
Becerril & Alvarez-Icaza, 2011), the different discretization methods such as finite
difference, finite element, and differential quadrature have been applied to the SP model
of Li-ion cell and compared. The best results were obtained by the differential quadrature
method in its polynomial version. In (Corno et al., 2015), an efficient electrochemical
method-based SOC estimation method has been proposed by the authors. The semi-
separable structure-based ECM was utilized in combination with EKF. The finite
difference method was employed for the discretization of the battery model. Additionally,
the results demonstrated less than 5% estimation error under dynamic loading. On the
other hand, in the case of EECM, the bilinear transformation method is mostly employed
by the researchers (Rahimi-Fichi et al., 2014; Safwat et al., 2017; Wei et al., 2018; Xia,

Wang, Tian, et al., 2015; R. Zhang, Xia, Li, et al., 2018b).

( Battery Model )

— Discretization
§ (For example: Bilinear transformation method, finite
«n difference method and so on)
State Space Representation
«
§' % = A X F Bl + W
@

Y =CiX + Dy +v,

( KF Algorithm )

Figure 2.15: General steps to combine battery model with KF algorithm
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Hereafter, the second step is to obtain the time domain difference equations from the
discretized battery model, and it will be used in the PIM. By using the identified battery
model parameters in the time domain difference equations, the state space representation
useful for the KF algorithm will be developed. For example, online SOC estimation using
2RC model, the discretized form of state space equations can be represented by (2.8) (P.

Shen, Ouyang, Lu, et al., 2018; Wijewardana et al., 2016).

T T
e’ 0 0 R(l-e™)
\/1,k+1 T \/l,k T
Vokaw [=| O €™ 0 Vi [HIRA-e®) |1, (2.8)
OC,,, 0 0 SOC_, || OC, 0t '
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Vi = Uoc(&)Ck)_VLk _Vz,k -ILR

29 Suitable KF family algorithms for model-based online SOC estimation

The fundamental principle of KF algorithm is that it recursively estimates the current
state with the help of the previously estimated state and the current measurement signals.
The self-correcting feature of the KF family algorithms makes it suitable for the model-
based online SOC estimation for EV application. The complete KF family algorithms can
be grouped into two categories based on the linearization process such as linear KF and
non-linear KF as presented in Figure 2.16. Simultaneously, the non-linear KF method can
be divided into three categories like EKF, SPKF and cubature KF (CKF), further SPKF
divided into two parts like central difference KF (CDKF) and UKF. In the current
scenario, for concurrent online estimation of battery parameter and SOC, the other two

types of KF namely Joint and Dual KF (DKF) have been developed by the researchers.
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Figure 2.16: Kalman filter family algorithms suitable for online SOC estimation
29.1 Linear Kalman Filter (LKF)

The LKF is a well-known mathematical estimation method, and it was introduced in
1960 (S. Grewal & P. Andrews, 2001). It uses discretized mathematical equations of the
linear dynamic system in the time domain for computation. It is a recursive estimation
technique and provides optimal estimated values of the state with a minimum mean square
error whose direct measurement is impossible (Mastali et al., 2013). The main advantage
of this method is that it bounds the estimation mean square error. During the estimation
process, it utilizes the process and measurement model with the noisy input-output
measurements of the system usually described by (2.11) and (2.12) respectively. Where,
X, € R™ is the state vector, u;, € RP is the deterministic system input and y, € R™ is
the system output at time index k. 4, € R™", B, € R™P, C; € R™*"™ and D, € R™*P
are system dynamics matrices. wy € R"and v, € R™ are independent white Gaussian
process noise and measurement noise matrices with zero mean and known covariance
values. B, and P, are the covariance matrices of process and measurement noise,

respectively.

X = Ag—1Xg—1 + Brq1U—1 + Wi—1 = f(Xp—1, U1, Wi—1, k — 1) (2.11)

Vi = Cexy + dyuy + vi = h(xy, uy, vy, k) (2.12)
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Table 2.7: Summary of LKF estimation algorithm (Mastali et al., 2013; Z. Yu et
al., 2015)

Definition: Error, X = x; — £ and J¥ = y, — P

Complete observations set, Y, = {vq, Y1, V2, > Yk}

Conditional mean, 27 = E[x;|Y,] and £ = E[x|Yg_1]

Initialization: For k=0, set

Stepl State variable, X3 = E[x,]

Step 2 Covariance matrix, P{y = E[(xo — £5) (xo — £5)7] = E[(%)(%o)"]

Computation: for k=1,2,3, ... compute

Step 3 State estimation time update, Xy = Ag_1X¢_1 + Byx_1Uk-1
Step 4 Error covariance time update, Pz), = Ay_1Pg,_1Ak_1 + Py
Step 5 Output estimate, y,, = C X, + Dy uy

Step 6 Kalman gain matrix, K = Pz, Cy [CxPz,Ci + P,]7*

Step 7 State estimation measurement update, X5 = X + Ki[Vi — Jx ]

Step 8 Error covariance measurement update, P,{ k= U — Ky Cy) Pry

Notation: Circumflex (#) indicates the estimated value, Tilde (~) indicates the
predicted value, “T” indicates the matric transportation. Superscript “+” and “-” indicates
posterior and prior value respectively.

Generally, the process model and measurement model contain all the information
about the system dynamics and measurement model that provides the idea about the
relation between the system outputs, inputs, and states. The complete steps involve in
LKF estimation technique are discussed in Table 2.7. The LKF estimation method is used
for battery states and parameter estimation. Where the SOCy, and V, ;. are considered as
x, and 1y respectively. Generally, in the case of battery f (-) is considered as a linear
function while h (-) is a non-linear function due to the non-linear relationship between the
Uoc and SOC. The LKF assumes that the process and measurement noise are known as
independent zero-mean Gaussian noise signals. However, in the case of a practical
system, this assumption may not be valid for all the situations. As the battery is a highly

non-linear system, in (Z. Yu et al., 2015), a modified LKF is used for SOC estimation. In

modified LKF, the local linearization method to map the predictive SOC to the predictive
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OCV using a zero axial straight line is added with standard LKF. In the past few years,
different types of non-linear KF algorithms have been investigated to achieve higher state

estimation accuracy and to tackle the issues related to standard LKF.

29.2 Non-linear Kalman Filter
29.2.1 Extended Kalman Filter

EKEF algorithm is the most preferred method for the battery parameter/state estimation
(C. Huang et al., 2018). The EKF algorithm is a non-linear version of the LKF, and it
works on the principle of linearization of the non-linear function (Sepasi et al., 2014b).
For this purpose, partial derivatives and first-order order Taylor series expansion have
been employed. In (Plett, 2004a), the EKF has been used for the battery model parameter
identification and state estimation. Usually, the computation of the Jacobian matrix is
required during the estimation through the EKF algorithm that conversely effects the
accuracy of the estimated SOC (Andre et al., 2013). Furthermore, by the usage of first-
order Taylor expansion in the linearization cut off the process in the EKF algorithm, only
the first order accuracy is conceivable to achieve. Moreover, the EKF accuracy directly
depends on the battery model and the prior knowledge of the system noise variables. If
the prior knowledge is not correct, then the estimation process error may lead to
divergence (R Xiong et al., 2018). Thus, to enhance the performance of the EKF

algorithm, in the previous decades, there are several modifications have been done.

For example, in (Sepasi et al., 2014b), the improved EKF (I-EKF) is proposed for
online SOC estimation with the consideration of aging factor to inline adaptively update
the battery model parameters. The SOC estimated by [-EKF method of a single cell can
be accurately used to present the battery pack SOC of EV. In (Hongwen He et al., 2011b),
the SOC estimation has been done with the assistance of robust EKF, and the five

different types of RC model are considered to evaluate the performance. The estimation
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algorithm sensitivity with different initial values has been examined. The results inferred
that SOC estimation using robust EKF could effectively reduce the error resulting from
the incorrect initial SOC values. Furthermore, in (Z. Chen et al., 2013), the experimental
data have been used to develop the battery model to reduce the effect of measurement and
process noise. The outcomes confirmed that the proposed method could effectively
eliminate the impact of measurement noise and process noise on the SOC estimation
without the utilization of prior knowledge of the initial SOC. However, it has a problem
of significant error occurrence with the highly non-linear system due to its approximation

of distributed Gaussian random variable and ignorance of higher order terms.

2.9.2.2 Adaptive extended Kalman filter

The assumption of fixed measurement and process noise covariance in EKF estimation
reduces the overall performance of estimation (Sepasi et al., 2014a; Z. Zhang et al., 2021).
For example, the problem of the biased solution may occur if the initial process and
measurement noise covariance matrices are very small. By contrast, if both covariance
matrices are very large, then the problem of error divergence usually occurs (Rui Xiong,
He, Sun, & Zhao, 2013). The feature of adaptively updating the covariance matrices is
added to EKF in the adaptive extended Kalman filter (AEKF) estimation method to
overcome error divergence and biased solution. In (Rui Xiong, He, Sun, & Zhao, 2013),
the new AEKF algorithm was proposed to estimate the SOC, in which the filter innovation
matrix (Hk) based on the innovation sequence (&) inside the moving estimation window
(M) is added in the estimation steps of the EKF. With the aid of Hk, the measurement
(Pvk) and process (Pwk) covariance matrices are updated iteratively. Divergence is an
important factor in the accuracy of EKF, so the divergence judgmental condition was
introduced in the AEKF in (Hongwen He et al., 2011) to avoid filter divergence and

improve stability.
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2.9.2.3 Sigma-point Kalman filter

In the linearisation of EKF, the nonlinear equations expand around the prior mean with
the expected covariance scale according to the slope of the function at a particular point.
Consequently, many nonlinear terms are dropped from the expansion, which leads to
reduced estimation accuracy (Plett, 2006b). Furthermore, the significant error in a true
posterior spread may occur if the linearisation of the function is done in the
neighbourhood of the prior mean. In (Plett, 2006b), sigma-point Kalman filter (SPKF),
an alternative approach for state estimation of nonlinear systems, was proposed to
overcome the shortcomings of EKF and AEKF. A second-order Taylor accuracy could
be achieved using this method. In addition to a local linearisation, the statistical
distribution approach with the utilisation of deterministic sampling points called sigma
points (X;) was utilised for linearisation in SPKF (Liye Wang et al., 2009). The selection
of sigma points is typically performed such that the weighted mean and covariance of the
posterior random variable must be matched with the prior mean and covariance of the
random variables being modelled (Plett, 2006b). Based on the weighing factor, the SPKF
algorithm is classified into two categories: unscented Kalman filter (UKF) and central

difference Kalman filter (CDFK) (Liye Wang et al., 2009).

(a8 Unscented Kalman filter

The statistical method called unscented transformation was introduced in (Dong et al.,
2017) to avoid the calculation of the Jacobi matrix for the linearisation of the nonlinear
equation used in EKF. In UT, minimal sets of sigma points (X;) are used to capture the
posterior mean and covariance of random variables. During estimation, a set of sigma
points is selected at each point such that the filter parameters (mean and covariance) are
matched with the prior random value parameters (mean and covariance), as discussed in
Table 2.8 (L. Zhao et al., 2013). Estimation utilises the augmented random vector (x%)

to combine the randomness of state, process noise and measurement noise.
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The introduction of sigma points in the UKF algorithm is the main difference between
the EKF and UKF (Van der Merwe & Wan, 2001). Figure 2.17 shows that the mean
covariance of the output sigma points is well matched with the true mean and covariance
values. The second-order accuracy can be achieved through the second-order
approximation with the predetermined sampling period. In (Shehab El Din, Hussein, &
Abdel-Hafez, 2018), to further enhance the accuracy, the measurement noise covariance
was estimated by the autocovariance least-squares (ALS) technique. The performance
and robustness of UKF and EKF was compared in (C. Huang et al., 2018) to confirm the
high accuracy, robustness and convergence rate with the unknown initial SOC of UKF.
Several issues were identified with UKF. For example, it is not appropriate for high
measurement noise because it may cause divergence. Additionally, it may produce a
significant error and slow the convergence if the sampling data go beyond the defined
limit because of the effect of external factors. Some advanced variants of UKF have been
proposed by researchers in the past few years to address these issues. For example, an
improved UKF (I-UKF) was proposed in (W. Wang et al., 2018), in which the noise
suppression and invalid value elimination algorithms were combined with the UKF
algorithm. For the SOC estimation under the real-time EV dynamic condition, the author
(Shehab El Din, Hussein, & Abdel-Hafez, 2018) proposed a new adaptive UFK (AUKF)

estimation method that illustrates better performance than EKF and UKF.
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Figure 2.17: Linearisation of nonlinear function in EKF and UKF algorithm
(Van der Merwe & Wan, 2001)

i Adaptive unscented Kalman filter

In AUKEF, the parameters of the error covariance matrix are estimated and updated
interactively. Through the application of AUKF algorithm, the unsatisfactory impression
of uncertain measurement and process noise covariance on estimation accuracy can be
reduced. In (Peng et al., 2017), EKF, UKF and AUKF were used for SOC estimation, and
the results illustrated that the AUKF has the most minimal root mean square error
(RMSE) and mean absolute error (MAE) compared with other under dynamic
surroundings. In (W. Zhang et al., 2015b), AUKF was utilised to build the joint SOP and
SOE estimator; the estimation error was less than 2% for assumed erroneous initial

conditions. The main limitation of the AUKF is that noise statistics are calculated
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assuming white noise measurement residuals. However, this condition will not be valid
in all conditions, particularly when the filter initialises with incorrect values of noise

statistics.

il Square-root unscented Kalman filter

The calculation of the new sigma point at each time update is the computationally most
expensive part in the entire UKF algorithm (Liye Wang et al., 2009) because it requires
a square root of state covariance matrix P € R*L. Instead of recursively updating full
covariance P utilised in UKF algorithm, the application of the Cholesky factorisation
given by SST € P (where Sis the lower triangular matrix for covariance P matrix) can
significantly reduce the computational effort in SR-UKF (Dai et al., 2012). Firstly, the
square-root unscented KF (SR-UKF) algorithm for parameter and state estimation was
introduced by Merve et al. in 2001 (Van der Merwe & Wan, 2001), in which the matrix
S propagates directly throughout estimation to avoid the re-factorisation of P matrix at
each step. Three linear algebra techniques, such as QR decomposition (gr), Cholesky
factor updating (cholupdate) and efficient least squares, are used for square-root
covariance update and propagation (Van der Merwe & Wan, 2001). The SR-UKF
algorithm is a logical replacement of EKF in state and parameter estimation in LIB

applications.

iii  Adaptive square-root unscented Kalman filter

In (Batteries, 2017), the ASR-UKF was proposed for SOC estimation; it combines the
principle of SR-UKF and AUKF. The improved Sage—Husa estimation method was
employed for adaptively updating the covariance matrices. The non-negative qualitative
and symmetry character of covariance matrices ensure that the produced estimation

results will not diverge. The ASR-UKF-based SOC estimation performance was
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compared with the EKF and UKF, and the outcomes inferred that the ASR-UKEF has the
highest robustness and convergence during SOC estimation under inaccurate
measurement noise conditions. This estimation method is more suitable for EV

applications where the battery is operated under high stress and high temperature.

iV Square-root spherical-unscented Kalman filter

In (Aung et al., 2015), a square-root spherical-unscented Kalman filter (SRS-UKF)
method was proposed for SOC estimation which uses a Jacobian-free linearisation
approach with UKF for a nonlinear system. The computational complexity and cost of
the UKF algorithm are proportional to the number of sigma points. When the single
weight function (W) and spherical transformation in SRS-UKF are employed, the
requirement of numerous sigma points and high computational cost are significantly
reduced. The application of SRS-UKF method reduces the number of multiplications

performed during estimation by ~32% compared with regular UKF.

(b) Central difference Kalman filter

In CDFK, Stirling’s formula is used for the approximation of derivatives, and a set of
sigma points is used to reduce the computational burden by eliminating the Jacobian
matrix. The function used to determine the value of the set of sigma points is chosen, such
that the weighted mean and covariance can be matched with the mean and covariance of
the prior modelled random variables. Unlike the UKF, this algorithm uses only a single
tuning parameter h, which makes it more straightforward. The value of h may be any
positive number, for example, in the case of Gaussian random variables, h is set to \f§
Similar to SPKF, the augmented variable x¢ defines the combined randomness of state,
process noise, and measurement noise. Except for the sigma point weighing, the CDKF
and UKF illustrate nearly the same accuracy during SOC estimation (Plett, 2006b). In

(Sangwan et al., 2017), CDFK was used for the SOC estimation, and the results were
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compared with those of EKF; CDKF had lower RMSE than EKF under identical testing
conditions. In (HongWen He et al., 2015), the SOE estimator employed CDFK algorithm,
and the proposed SOE estimator was reliable and highly accurate (maximum error of less

than 1% for erroneous initial SOE) for EV application.

2.9.24 Cubature Kalman filter

EKF and SPKF suffer from divergence and dimensionality. To address these issues,
the cubature Kalman filter (CKF) was proposed by Arasaratnam et al. in 2010
(Tanachutiwat et al., 2010), in which the third-degree spherical radial cubature rule is
applied for the numerical computation of the Gaussian weighted noise signals. The
cubature rule transforms the variables from Cartesian to radial. Interestingly, the unique
feature of CKF is that it uses equally weighted, uniformly distributed even number (2n;
N is the state vector dimension) cubature points (C;) on the zero origin ellipsoid centre to
calculate the state mean and covariance (Pathuri Bhuvana et al., 2013) (Xia, Wang, Tian,
etal., 2015). In UKF, the odd number (2n+ 1) of sigma points (X;) is distributed on a non-
zero centre point ellipsoid. In (Pathuri Bhuvana et al., 2013), the CKF algorithm was used
for SOC estimation, and its performance was compared with the EKF and UKF
algorithms. The results demonstrated that the CKF had the highest accuracy with more
computation time than EKF. To enhance the performance of CKF, a new adaptive CKF
(ACKEF) algorithm was proposed for SOC estimation in (Xia, Wang, Tian, et al., 2015),
in which the performance of the proposed ACKF was compared with that CKF and EKF.
The outcomes illustrated that the ACKF has the highest accuracy with the least
convergence rate with high robustness against measurement error, though the
computation time of ACKF exceeded that of CKF and EKF. The authors in (Z. Zeng et
al., 2018) explained that the estimated SOC value using ACKF algorithm converges more

rapidly than CKF and UKF with different initial SOC error conditions.
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(a) Strong tracking-cubature Kalman filter

In (Xia, Wang, Wang, et al., 2015), the attributes of CKF and STF algorithms were
combined and a new advance algorithm called strong tracking-cubature Kalman filter
(ST-CKF) was proposed for the online SOC estimation. With the addition of STF
algorithm with CKF algorithm, the filter gain matrix can be updated online by introducing
fading factor (A;) in the state estimation covariance matrix. In [43], the performance of
the SOC estimation utilising ST-CKF was compared with the EKF and CKF algorithms.
The results illustrated that the complexity of the ST-CKF is higher than those of the CKF
and EKF because it is more robust to measurement noise. Additionally, the ST-CKF
claims the lowest SOC estimation error under observable initial SOC conditions

compared with the EKF and CKF algorithms.

Table 2.9 presents a detailed comparison of the above specified different KF family
algorithms based on previous studies. The distinctive highlights of the different KF family
algorithms utilised in online SOC estimation, such as MAE, complexity and associated
mathematical formulas, are briefly discussed. The associated key issues with KF family

algorithms suitable for online SOC estimation are listed in Table 2.10.
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2.10  Joint and dual Kalman filter

The battery model parameters and SOC—OCYV relation are time varying in nature and
depend on operating conditions. Offline parameter estimation techniques are commonly
utilised in battery state estimation by researchers. However, to improve the state
estimation accuracy, the battery parameters must be updated alongside estimation in the
task time frame. In (Plett, 2006c¢), two types of estimation approaches, namely joint KF
estimation approach and dual KF estimation approach, were introduced. The concurrent
estimation of battery state and parameter using a single member of the KF family
algorithm became possible through the estimation of the augmented vector (X) values in
joint KF estimation approach [as expressed in (6)]. In this approach, the state and
parameter comprise fast and slow dynamics of the system. The complete system dynamics
can be described by (2.13) and (2.14). The basic structure of the joint KF estimation
approach depicted in Figure 2.18 reveals that a single KF is sufficient for simultaneous
online state and parameter estimation. The figure likewise demonstrates how the
information flows from one step to another during estimation. Different KF algorithms,
such as AKF (Dai et al., 2009; Gao et al., 2016), SPKF (Plett, 2006c) and SR-SPKF
(Plett, 2006c), were utilised for online SOC and battery parameter estimation; all KF
family algorithms claim high accuracy. However, owing to the incorporation of the large
size of the augmented vector (X), the overall computational complexity of the joint KF-
based SOC estimation significantly increases. Additionally, the time scale mismatch of

state and parameter vector builds up the problem of poor numeric conditioning.
_ ) _ [f Cee—1s Ug—1, 9k—1)] Wi—1
X=|g]= [ By 7 @2.13)

Tk—1

Vi = g (X, Uy, Ox) + vy (2.14)
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Figure 2.18: Joint KF estimation approach

Figure 2.19: Dual KF estimation (Campestrini et al., 2016)

The issues of large size augmented vector and poor numerical conditioning identified
with joint KF estimation can be resolved by using the dual KF estimation approach
(Campestrini et al., 2016). In dual KF estimation, two separate KFs are utilised, one for
state estimation and one for parameter estimation. The path of data flow from one KF to
another KF is represented in Figure 2.19. The dynamic mathematical model represented

by (2.15) and (2.16) explicitly includes the parameter vector 8, (Plett, 2006c).

X = f(Xp—1, Ug—1, Wg—10k-1,k — 1) (2.15)

yk = h(xk' uk' vk' ek; k) (216)

In (Mastali et al., 2013), the dual KF was used for the LIB; dual KF could track SOC

under a dynamic environment, such as EV with an error less than 4%. In (Plett, 2006¢),
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the dual SPKF and dual SR-SPKF were used for SOC estimation, and the results were
compared with those of individual SPRK and SR-SPFK estimation. The members of the
KF family, such as EKF (Dragicevic et al., 2013), SP-UKF (Erlangga et al., 2018), UKF
(Y. Liu et al., 2012) and AUKF (H. Guo et al., 2017), were concurrently utilised in dual
KF-based states and parameter estimation. All dual KFs demonstrate higher accuracy
compared with individual KF state or battery parameter estimation approaches. In (Y.
Zou, Hu, Ma, & Li, 2015), dual EKF was used for the combined SOC/SOH estimation.
The two distinct EKFs with different time scales were used for online SOC estimation
and offline SOH (capacity and internal ohmic resistance) estimation. The proposed
method could estimate online SOC and SOH without heavy computational burden,
divergence events and instability. In (Andre et al., 2013), dual KF was utilised for SOC
and resistance estimation; it demonstrated high accuracy (less than 1% error) in SOC and
resistance estimation even in the presence of 20% error in initial capacity. In (Mastali et
al., 2013), dual EKF was used for SOC estimation of two commercial LIBs with different
structures; the effect of battery structure on battery parameter was analysed using zero-
hysteresis Rint model. The results of the study illustrated that the parameter estimated by
the filter depends on the battery model. However, the main drawback of the dual KF
estimation approach is the high chance of information loss during estimation, which may

lead to poor SOC estimation accuracy.

2.11  Challenging steps in the implementation of KF family algorithms

Some important steps involve determining the performance of the overall SOC
estimation, such as (i) selection of battery model and its PIMs, (ii) selection initial SOC
and filter tuning, (iii) selection of operating conditions and (iv) consideration of different

error accumulation.
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2.11.1 Selection of battery model and its estimated parameter accuracy

Different battery models maintain their characteristics under varying environmental
conditions, such as adaptability and precision. However, due to the complicated
electrochemical behaviour under dynamic environmental circumstances, model selection
for the appropriate implementation of the SOC estimation method becomes a difficult
step. The complexity of the model is also an important factor that depends primarily on
the number of model parameters to be identified. The model usually needs advanced
hardware integrated into BMS with robust computational strategy and large memory
storage room. The selection of the model relies on the dynamics of the present load
profile. Importantly, the more complicated or higher-order model is required to capture
extremely fluctuating load. The battery model’s accuracy is typically assessed in terms of
its terminal voltage error. Therefore, the accuracy can be improved by applying the
appropriate PIM. The literature was analysed to compare the average RMSE of various
models obtained under DST and FUDS test circumstances (Figure 2.20). The Rint model
shows the highest voltage error under specified test conditions owing to the absence of
transient states to capture electrochemical dynamics. By contrast, the 2RC model shows
excellent modelling capability. In addition, Randles model shows significant error owing
to the battery model’s transient states. The researchers preferred the 2RC model with
offline parameters for online model-based SOC estimation because it decreases the

complexity of the online SOC estimation algorithm.

In (Qiangian Wang et al., 2017), the performance of three distinct models (PNGYV,
1RC and 2RC) under distinct environmental circumstances (CCD test, DST test and
HPPC test) was assessed. For all battery models, the offline PIM and the SOC estimation
EKF were used. The standardised RMSE of the simulated voltage model was compared
with the estimated SOC. The results showed a linear and strong correlation between the

LIB model accuracy and model-based SOC estimation error (Figure 2.21). For the choice
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of SOC estimation algorithm, the trade-off between model complexity and precision is

more critical.

(a)

(b)

Figure 2.20: Voltage RMSE of models under test condition (a) DST and (b)
FUDS (Andre et al., 2013; Bartlett, Marcicki, Onori, Rizzoni, Xiao Guang Yang, et al.,
2016; Z. Chen et al., 2013; I. Kim, 2008; Qiangian Wang et al., 2017; Rui Xiong, He,
Sun, & Zhao, 2013; Z. Yu et al., 2015; Y. Zou, Hu, Ma, & Eben Li, 2015)
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Figure 2.21: Correlation between the normalised RMSE of the model and SOC
estimation (Qiangian Wang et al., 2017)

2.11.2 Selection initial SOC and filter tuning

The inner dynamics of the battery varies depending on the true SOC value. The
accuracy of the battery SOC estimation is high when its true SOC is set at 50% because
the electrochemical responses within the battery are insufficient and unstable at 100% or
0% SOC (D. Li et al., 2015). The convergence rate typically relies on the difference
between the initial SOC and the true SOC during estimation, particularly in the case of
unknown initial SOC. The convergence rate usually decreases as the true SOC error
increases (Hongwen He et al., 2013). For example, in (C. Huang et al., 2018), the authors
conducted experiments under various initial SOC error conditions to evaluate the
robustness of EKF and UKF algorithms. The findings showed that the SOC estimation
error value and divergence rate are directly affected by the initial SOC error level.
RMSE’s value ranged from 0.7 to 6.72 for the initial SOC error range of 10%—-90%. Issues
linked to the initial SOC mistake can be fixed to some extent by using modified KF
algorithms in the model-based Internet SOC estimation method. For example, for the
SOC estimation of the EV battery, the EKF algorithm was used in (Z. Chen et al., 2013).

The findings showed that the accurate estimation of SOC is feasible using EKF without
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the previous understanding of the initial SOC and automatically converges to a true value
within two minutes. The process and measurement noise were efficiently removed. Table
2.11 describes the relative performance evaluation of various KF family algorithms used
in the literature for model-based SOC estimation under observed/unobserved initial SOC
circumstances. It also includes examples of the change in relative convergence rate of
estimation algorithms under various initial conditions of SOC. For observable initial SOC
situation, the value of MAE is almost continuous. However, in some instances of an
unknown initial SOC error situation in the literature, a significant practically unacceptable

variation in MAE values is registered.

In addition, when using KF family algorithms, selecting the initial noise covariance
matrix component called KF tuning assumes an important task in defining estimation and
accuracy. The four distinct KF algorithms were separately tuned in (Campestrini et al.,
2016) to explore the accuracy of the SOC estimation. The findings inferred that each KF
algorithm requires a distinctive set of KF tuning parameters to optimise KF performance.
Three key parameter values, Pw, Py and Px, are typically needed for ideal filter tuning.
However, finding the precise value of these parameters is a difficult task. The influence
of the initially set diagonal element values of Py, Py and Px on filter performance is briefly

discussed in Table 2.12.
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During estimation, the noise covariance matrices with a restricted understanding of
model inaccuracies and system disturbances are difficult to initialise correctly. To
maximise estimation accuracy, the choice of noise covariance components should be
produced under the account of initial SOC because of high model uncertainty in low SOC
region (S. Yang et al., 2017). The stability of the KF algorithm is usually readily diverged
because of battery model error and noise statistics (Z. Yu et al., 2015). However, it can
be enhanced by adding an optimisation method along with various KF family algorithms.
For example, in (Shehab El Din, Hussein, Abdel-Hafez, et al., 2018), for accurate SOC
estimation, the ALS optimisation technique was added to find the optimal value of Py
elements with the EKF and UKF algorithms. The performance of UKF + ALS under the
incorrect initialisation was better than those of EKF + ALS, UKF and EKF without a

substantial increase in computational complexity.

2.12  Selection of operating conditions

The accuracy of the model-based online SOC estimation is greatly influenced by the
variation of battery model parameters and the OCV-SOC relationship caused by the
temperature, current rate and SOC range (C. Huang et al., 2018; S. Yang et al., 2017; Yun

Zhang et al., 2018). Therefore, a suitable operating condition must be selected.

For example, in (Yun Zhang et al., 2018), the authors conducted few tests on the LFP
18650 battery at different temperatures (-20 °C, —10 °C, 0 °C, 10 °C and 20 °C) and
current rates (0.5C, 1C and 1.5C). In this study, the variation of the 1RC battery model
parameters induced by the various operating conditions was evaluated thoroughly. The
results showed that the value of internal resistance Ris approximately independent of the
operating SOC range. The values of model parameters R, R1 and C; are highly sensitive
to temperature but less sensitive to current rate and SOC range. The average OCV-SOC

relationship stays compatible with the various operating conditions.
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To analyse the effect of temperature and SOC range on the OCV-SOC relationship,
the OCV-SOC relationship at different temperatures was developed by researchers in (S.
Yang et al., 2017). The results illustrated that owing to the high Li concentration on the
electrode, the difference in OCV under the low SOC region (< 10% SOC) is considerably
large. Therefore, in the low SOC range (0%—-10%), the deviation in OCV can lead to
significant SOC error. In the 30%-40% SOC region, the deviation in OCV of

approximately 4 mV/1% SOC was registered at a temperature of 25 °C.

In addition, knowledge of the accurate discharge capacity is always needed in the
AHC of the model-based SOC estimation. According to (R. Zhang, Xia, Li, et al., 2018a),
such discharge capacity usually varies with the change in operating conditions. For
instance, the 90 Ah LiFePO4 was used in (Junfu Li et al., 2016) to analyse the effect of
temperature on battery discharge capacity. The results demonstrated that the battery
discharge capacity decreases with a change in temperature. However, in case of a rapid
change in temperature during high current rate, the rate of change of battery capacity will
be less (S. Yang et al., 2017). Owing to the slow Li diffusion process, the impact of
temperature on the battery sets aside a prolonged effort to show up. Therefore, estimating
the battery discharge capacity at ambient temperature (25 °C) is more appropriate (S.

Yang et al., 2017).

In the case of EVs, the variation in operating conditions, such as temperature and
current rate, is relatively large, so the model parameter variation will be more important.
Therefore, the model parameters must be updated online during estimation for accurate
SOC estimation. Research efforts on online updating of the model parameters are divided
into two groups of methods: KF based, and regression based (RLS, variants of RLS). In
Section 2.10, the family of KF algorithm was used to simultaneously estimate battery

parameters and states, such as joint and dual KF. Table 2.13 lists the different regression-
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Qiangian Wang et al., 2018; Q. Yu et al., 2017).

Table 2.13: Online model parameter and SOC estimation methods of LiBs

based methods proposed by researchers in recent years (P. Shen, Ouyang, Lu, et al., 2018;

Ref. Algorithms Model RMSE (%)
(Dai et al., 2009) Dual AKF 2RC <3.0
(J. Kim & Cho, 2011) Dual EKF 1RC <5.0
(Z.He et al., 2012) Joint SPKF Rint Undefined
(Andre et al., 2013) KF+UKF 2RC <1.0
(T. Kim et al., 2015) Dual EKF 1IRC 0.22
(X. Guo et al., 2016) FFLS + AUKF 2RC 1.6
(Xu Zhang et al., 2016) EKF + UKF 1IRC 0.30
(Safwat et al., 2017) MFFRLS + EKF 2RC 4.48
MFFRLS + UKF 4.02
MFFRLS + CKF 3.31
(Xia et al., 2018) FFRLS + EKF 1IRC 1.10
FFRLS + UKF 1.40
(P. Shen, Ouyang, Lu, RLS + EKF 2RC 1.10
et al., 2018)
(Wassiliadis et al., Dual EKF 2RC 0.50
2018)
(X.Huetal., 2018) Dual EKF 2RC 1.0
(Qiangian Wang et al., Dual UKF 2RC 0.34

2018)
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2.13  Consideration of different error accumulation

During the implementation of the KF algorithm for model-based SOC estimation, the
errors induced by multiple sources and their effect on estimation must be considered. The
different error accumulation in estimation directly influences the accuracy and the
convergence rate. Six types of errors can be induced during two sub-processes, such as
AHC and voltage-based correction of complete estimation (Figure 2.22). The errors
produced in AHC may be caused by capacity error (CE), initial SOC error (ISE) and
current measurement error (CME). The errors produced in the voltage-based correction
may be caused by the model prediction error (MPE), voltage measurement error (VME)

and CME.

C Estimation errors )

v v
C AHC process ) Goltage-based correction procesD

e Capacity induced error ® Model prediction error
e Initial SOC induced error e Current measurement error
e Current measurement error ® Voltage measurement error

Figure 2.22: Different errors in the model-based SOC estimation

2.13.1 Initial SOC error

Initial SOC error (ISE) is the difference between real SOC and estimated SOC. For the
initialisation of estimation, ISE is needed to provide the initial SOC in the first iteration.
The value of the initial SOC can be taken from the look-up table or the latest stored value
of SOC. The value of ISE is reduced and approximately eliminated with the next several
iterations because of the recursive update of KF gain during estimation (Y. Zheng et al.,
2018). ISE always converges at a fast rate towards zero with a large KF gain (P. Shen,

Ouyang, Han, et al., 2018).
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2.13.2 Capacity error

The decrease in aged battery capacity is responsible for the induction of CE and it can
be reduced by updating the battery capacity during estimation. With the application of
KF family algorithm for SOC estimation, the effect of CE during dynamic loading can be
reduced (Y. Zheng et al., 2018). In the case of a highly accurate battery model, the value
of SOC error caused by the CE can be small with a large KF gain (P. Shen, Ouyang, Han,

et al., 2018).

2.13.3 Current measurement error

The measured current is fed to AHC and voltage-based correction, resulting in CME
availability in both. CME is mainly caused by the low precision of current sensors, bias
error and noise generated during current measurement. The influence of current noise is
minimal on SOC errors owing to the effect of integration in AHC. The CME generated
in AHC is usually unidirectional and may increase in the first several iterations (Y. Zheng
etal., 2018). However, the CME generated in voltage-based correction is opposite in sign
to the CME generated in AHC (P. Shen, Ouyang, Han, et al., 2018). Hence, for the CME
generated by AHC, the KF gain increases and, finally, the complete elimination of the
increasing trend of error could be possible with the several next iterations (P. Shen,
Ouyang, Han, et al., 2018). The appropriate value of KF gain is significant for accurate
SOC estimation. For low KF gain, CME in AHC increases. The high KF gain produces

more CME in correction (Y. Zheng et al., 2018).

2.13.4 Voltage measurement error

Similar to current measurement, bias error and noise may occur during voltage
measurement. The value of noise depends on the environment, such as earthing and
electromagnetic interference, and it is difficult to estimate. Nevertheless, the KF family

algorithm can efficiently suppress noise (P. Shen, Ouyang, Han, et al., 2018). Bias error
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is caused by the change in measured voltage from real voltage. To compensate for this
bias error, the battery model state variables produce voltage deviation (Y. Zheng et al.,
2018). For example, in the case of 2RC model, SOCx, Vik and V2k produce the voltage
deviation to compensate for voltage bias error. The value of covariance matrix Pw
elements is responsible for the magnitude of change in the state variables (Y. Zheng et

al., 2018).

2.13.5 Model prediction error

Model prediction error (MPE) refers to the difference between model voltage and real
voltage. It has a major contribution to the error of SOC estimation. Same as VME, it can
be divided into two parts, namely bias error and noise. MPE and VME influence SOC
estimation in the same fashion as well. The model voltage noise has no adverse effect on
SOC estimation and its accuracy (Peng et al., 2017; Y. Zheng et al., 2018). The high
dependency of MPE on the OCV-SOC relationship is the most challenging issue for the
model-based SOC estimation using the KF algorithm in any working environment (P.

Shen, Ouyang, Han, et al., 2018).

Finally, the selection of hardware technology and software technology plays a vital
role in SOC estimation. To reduce the effect of the accumulation of different errors, SOC
estimation should include high-precision sensors, a good capacity estimation algorithm,

and a highly accurate battery modelling method.

2.14 Commonly used performance evaluation matrices
In the existing studies, different types of evaluation matrices are commonly utilized
for the performance evaluation of the state estimation algorithms such as estimation

errors, convergence time, computational cost and computational complexity.
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The estimation error can define as the difference between the measured value and the
estimated value. The measured values are acquired from the experiments conducted in
operating conditions demarcated according to the different tests, such as constant current
discharge (CCD) (Petzl & Danzer, 2013; Tagade et al., 2016), PCPD (D. Li et al., 2015;
Weigert et al., 2011), DST [57], HPPC (Hongwen He et al., 2011a; Tagade et al., 2016;
Qiangian Wang et al., 2017), FUDS (Sangwan et al., 2017), UDDS (Rui Xiong, He, Sun,
Liu, et al., 2013; J. Yang et al., 2018) and BJDC (Hongwen He et al., 2013). For example,
the model terminal voltage error values are computed to analyse the accuracy of the
identified battery model parameters using an estimation algorithm. The estimated SOC
error values are evaluated to analyse the accuracy of SOC estimation. To evaluate the
accuracy of the estimation algorithm, different estimation errors such as maximum
absolute error (MaxAE) (HongWen He et al., 2015), mean absolute error (MAE) (W. Li
etal., 2021b), and root mean square error (RMSE) (S. Zhang & Zhang, 2021b) are utilized

by the researchers.

The convergence time of the estimation algorithm is evaluated to analyse the
robustness of the estimation algorithm (Zhu et al., 2020). It can be defined as the range
from the initialization to the time when the absolute estimation error is less than threshold

value. Generally, the estimation error ranges from 2-5 % is considered as threshold value.

The computational cost and complexity are two important matrices are generally
utilized to analyse the computational time and memory requirement of the estimation
algorithm. In the past literature, the mean execution time (MET) (Hossain Lipu et al.,
2021)and worst-case big O notation (Lucu et al., 2018) are utilized for the evaluation of
computational cost and complexity, respectively. The value of MET varies with the
programming efficiency of the algorithm and the hardware specification. Practically, it is

difficult to compare the MET of the algorithm with the other studies, as they were
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implemented with different hardware and by different researchers. On the other hand, the
worst-case big O notion provides an idea about the computational complexity of the
algorithm. Due to the limited memory size and computational power of the
microcontroller used in BMS, it is essential to have an idea about the computational

complexity in terms of the big O notation of the estimation algorithm.

Based on the literature, the above-mentioned evaluation matrices are considered for
the performance of the proposed algorithm in this thesis. A detailed explanation about

considered evaluation matrices is given in Section 3.3.

2.15 Summary

In this chapter, a state-of-the-art review on battery modeling and battery states
estimation methods have been conducted. The properties of five categories of battery
modelling methods such as EM, ECM, EECM, ECIM, and DDM are analyzed. The
overall battery states estimation methods are classified into two broad categories namely
individual states estimation method and combined states estimation or states co-
estimation methods. In individual state estimation methods, the different estimation
methods utilized for SOC, SOE, SOP, and SOH are discussed. The four commonly used
types of SOC estimation methods such as CCM, OCVM, MBM, and MLM are reviewed.
This study showed that the MBM for online SOC estimation with battery EECM is more
appropriate for EV applications because of its possible benefits, including the capability
to deal with unknown noise signals, low complexity, and high accuracy over other
modeling methods. Similarly, the different estimation methods for SOE, SOP, and SOH
are also discussed. Further, the existing methods for battery actual capacity and maximum
available energy estimation are reviewed. Due to the existing high correlation amongst
the different battery states and improve the functioning of BMS, it is crucial to develop

the states co-estimation method for the estimation of the different battery states in real-

98



time application. The different existing co-estimation methods for SOC, SOE, SOP, and
SOH estimation have been discussed. Presently, to effectively utilize the correlation
between the battery states and for the development of computationally efficient BMS, the

states co-estimation method is preferred by the researcher for different states estimation.

Finally, the most recent studies in the existing literature on online SOC estimation
using KF family algorithms were thoroughly reviewed. The results showed that the merits
of self-correction and low computational burden make KF family algorithms suitable for
model-based online SOC estimation. The estimation procedure and related issues of the
KF family algorithms are discussed and compared. The challenging steps in the
implementation of KF family algorithms for model-based online SOC estimation were
analyzed in-depth and discussed. As the battery model parameter identification is always
a crucial task in model-based SOC estimation. For accurate SOC estimation in EV, the
dual KF is preferred for online estimation of battery model parameters and SOC

simultaneously.
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CHAPTER 3: RESEARCH METHODOLOGY

31 Introduction

This chapter describes the experimental setting used to validate the proposed
estimation methods in this thesis. The data sets developed from the testing of the battery
cells are utilized for validation purposes. For the validation of the proposed estimation
methods, the load current profiles are derived based on the requirement of EV batteries
under some prescribed dynamic profile and drive cycles. Different experimental settings
are done for three battery cells of different chemistries based on the information given in

the respective manufacturer datasheet.

The sections of the chapter are arranged in this sequence. In Section 3.1, the
introduction of the chapter is provided. In Section 3.2, the research methodology used in
this study is presented. In Section 3.3, detailed experimental settings for dataset
development are discussed. The specifications of considered battery cells are provided.
Also, the conducted battery cell tests are explained. In Section 3.4, The different
evaluation metrics considered for performance evaluation of the proposed battery states

co-estimation methods are described.

3.2 Methodology
To achieve the thesis objectives as discussed in Section 1.3, the considered research

methodology in this study divided into four phases (Figure 3.1).

In Phase 1, a state-of-the-art review on battery modeling and battery states estimation
methods have been conducted. The battery states estimation methods are classified into
two broad categories namely individual states estimation method and combined states
estimation methods. In individual state estimation methods, the different estimation
methods utilized for SOC, SOE, SOP, and SOH are discussed. This study showed that the

MBM for online SOC estimation with battery EECM is more appropriate for EV
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applications because of its possible benefits, including the capability to deal with
unknown noise signals, low complexity, and high accuracy over other modeling methods.
The most recent studies in the existing literature on online SOC estimation using KF
family algorithms were thoroughly reviewed. The results showed that the merits of self-
correction and low computational burden make KF family algorithms suitable for model-
based online SOC estimation. As the battery model parameter identification is always a
crucial task in model-based SOC estimation. For accurate SOC estimation in EV, the dual
KF is preferred for online estimation of battery model parameters and SOC
simultaneously. Furthermore, the different estimation methods for SOE, SOP, and SOH
are also discussed. The existing methods for battery actual capacity and maximum
available energy estimation are reviewed. Due to the existing high correlation amongst
the different battery states and improve the functioning of BMS, it is crucial to develop
the states co-estimation method for the estimation of the different battery states in real-
time application. The different existing battery states co-estimation methods for SOC,
SOE, SOP, and SOH estimation have been discussed. Presently, to effectively utilize the
correlation between the battery states and for the development of computationally
efficient BMS, the co-estimation method is preferred by the researcher for battery states

estimation.

In Phase 2, the different battery cell testing methods utilized for the development of
useful datasets are performed on the considered battery cells of different chemistries such
NCA, NMC, and LFP. Different dynamic load current profiles corresponding to DST,
USO06 drive cycle, and HPPC test are considered for testing of considered battery cells.
The developed datasets will be utilized for the validation of the proposed estimation

methods.
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In Phase 3, to simultaneously estimate the battery model parameters and SOC at high
accuracy and low computational cost, a proposed DFFAEKF algorithm is developed. In
which, the benefits of the forgetting factor (high variations in the filter coefficients)
together with the features of the DKF algorithm are utilized. Later, the co-estimation
method for battery SOC and SOE estimation using the DFFAEKF algorithm is developed.
In which, a proposed DFFAEKF was utilized for SOC estimation and experimental
quantitative relation between SOC and SOE for SOE estimation to make it highly accurate
and computational less expensive. The proposed method is capable to estimate the battery
SOC and SOE with high accuracy and, strong robustness to the battery model parameter
inaccuracy and measurement noise uncertainties. Further, to effectively utilize the
correlation between different battery states and to reduce the computational burden of the
overall co-estimation method, a unified frame of battery states co-estimation method for
battery SOC, SOE, SOP, actual capacity, and maximum available estimation is
developed. The robust and less computational burden methods are considered for the
battery states (SOC, SOE, SOP) estimation. A proposed co-estimation method for SOC
and SOE estimation using the DFFAEKF is utilized to estimate the SOC and SOE. By
utilizing the identified Rint battery model parameters using the FFRLS algorithm and the
estimated SOC, the battery model-based SOP estimation algorithm is implemented.
Moreover, the actual capacity and maximum available energy estimation are performed
by using a new SW-AWTLS algorithm. The SW-AWTLS algorithm can converge to true
value at a fast rate with alow computational burden as compared to the AWTLS algorithm
due to the sliding window. All the proposed methods are implemented in MATLAB
environment for the evaluation purpose.

In Phase 4, the performance of the proposed methods are validated and evaluated based
on the various extensive simulation conducted in MATLAB environment. The data

collected with the testing of different chemistry cells under different dynamic operating
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conditions in Phase 2 and the different evaluation metrices are used to ensure the
effectiveness of the proposed methods. The results of the proposed battery states co-

estimation methods are presented in Chapter 6.

J—
Phase 1: — State of art literature review on individual state estimation and co-
Literature Review estimation methods
\
- v
Phase 2: Battery Cells testing under dynamic operating conditions and
Data Collection development of useful datasets
v
/ Development of more accurate SOC estimation method for EV
application
Phase 3: — Development of co-estimation method for SOC and SOE estimation
Development for EV application
Development of unified frame for co-estimation of battery states,
\ actual capacity and maximum available energy for EV application
Phase 4: — . *
Validationand — Results validation and evaluate the performance of the proposed
Evaluation estimation methods under dynamic operating conditions

Figure 3.1: Flow chart of research methodology

33 Experimental settings

The experimental setup involved in acquiring the experimental useful data is shown in
Figure 3.2. It contains the battery testing system (Neware BTS4000), programmable
temperature chamber (ESPEC SU-241), host computer, and battery cells. The battery
testing system is used to charge and discharge the battery cell according to the load
profiles. Then, the data is recorded and send to the host computer. The maximum
operating current and voltage range of BTS 4000 are 10 A and 5V, respectively. The BTS

4000 has the accuracy and stability of = 0.05 % of FS. It can record the data at a frequency
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of 10 Hz. The temperature chamber ESPEC SU-241is used to maintain the desired

temperature settings. The operating temperature range of ESPEC SU-241is - 40°C to
150°C. Where the balance temperature control system is used to control the operating

temperature inside the chamber.

Figure 3.2: Experimental Test Bench

3.3.1 Considered battery cells specification

As listed in Table 3.1, the three battery cells of different chemistries are considered for
the validation of the proposed algorithms. The Lithium nickel cobalt aluminum oxide
battery cell NCR 18650B manufactured by Panasonic is considered as Cell 2, as presented
in Figure 3.3 (a). It has a nominal capacity of 3.4 Ah and a nominal voltage of 3.6 V. The
Lithium nickel manganese cobalt oxide battery cell US18650VTC6 manufactured by
Sony is considered as Cell 3, as presented in Figure 3.3 (b). It has a nominal capacity of
3.0 Ah and a nominal voltage of 3.7 V. The high-performance nanophosphate lithium

iron phosphate battery cell ANR26650M1-B manufactured by A123 is considered as Cell
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1, as presented in Figure 3.3 (c). It has a nominal capacity of 2.6 Ah and a nominal voltage

of 3.6 V with high power and energy density.

The details specification of the Cell 1, Cell 2 and Cell 3 is given in appendix A.

(a)

(b)

(c)

Figure 3.3: Considered battery cells: (a) Cell 1, (b) Cell 2, and (c) Cell 3
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3.3.2 Battery Cell Testing Methods

Different tests are conducted on the battery cells, to develop useful datasets for the
validation of the proposed methods. The name of the different conducted tests, associated
test settings, and the purpose/results of the test considered in this study are shown in

Figure 3.4.

Figure 3.4: Details of battery cells tests considered in the thesis

3.3.2.1 Capacity test

The capacity test is conducted to obtain the experimental actual capacity, which
contains constant current- constant voltage (CC-CV) charge and CC discharge. With the
help of obtained test results, the experimental maximum available energy values are also
evaluated. Firstly, the battery cells are placed inside the battery chamber and soaked at
the set temperature for 5 hours. The battery cells are charged using the CC-CV charging
method to the test cells' upper cut-off voltage. Three different discharge C-rates (e.g. 0.5
C, 1.0 C, and 1.5 C) are considered for discharge the battery cell to lower cut-off voltage.

The procedure is repeated at three distinct temperature values such as 5°C, 25°C, and

45°C. The values of the obtained actual capacity and maximum available energy under
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different operating conditions are presented in Figure 3.5. The obtained experimental
actual capacity and maximum available energy for Celll, Cell 2, and Cell 3 under three
different operating temperatures are demonstrated in Figures 3.5 (a), 3.5 (b), and 3.5 (¢),
respectively.

12 (@) 10.85
10 9.24 9.76

231 2.764 2.843

S N A &N

5°C 25°C 45°C
Opearting temperature (°C)

10 (®) 9.03
p 8.28 8.76
8
7
6
5
4
3 2.32 2.37 245
2
1
0
5°C 25°C 45°C
Opearting temperature (°C)
9 (c) 8.216
. 733 7.795
7
6
5
4
3 2.375 2.524 2.556
2
1
0

5°C 25°C 45°C
Opearting temperature (°C)

m Experimental Actual Capacity m Experimental Maximum Available Energy

Figure 3.5: Obtained experimental actual capacity and maximum available
energy of fresh battery cells at different operating temperature: (a) Cell 1, (b) Cell
2,(c)Cell 3
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3.3.2.2 Pulse discharge test

The pulse discharge test is performed to evaluate the relationship between OCV and
SOC. Firstly, the test battery cells are charged by using the CC-CV charge current profile.
The test battery cells are considered to be fully charged to 100 % SOC at the end of the
CC-CV charge. The test battery cells are kept at rest condition for 1-hour rest to measure
the OCV at 100 % SOC. Hereafter, the test battery cells are discharged using CC
discharge at a 1 C rate for every 10 % SOC with 1 hour rest period to determine the
relationship between the OCV and SOC. The obtained OCV-SOC relationship for the test

battery cells at 25°C is presented in Figure 3.6.

The polynomial fitted equation is used to define the relationship between SOC and

OCYV and expressed by a function that contains SOC:

OCV = ¥ ok, SOC™:i=1,2,..7n (3.1)

Where, k; (i =0, 1, 2, ..., n) are the coefficients of the ‘n” order polynomial equation
and can be determined by using the robust linear least-squares fitting method as shown in
Fig 3.3. The centering and scaling approach were employed to normalize the experimental
values. To obtain a better fit or high R-square value, the order of the polynomial is set to
7 for all the test battery cells. The obtained polynomial coefficients value of the fitted

curve of OCV-SOC relationship for test battery cells are listed in Table 3.2.
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Figure 3.6: Average OCYV and SOC curve of test battery cells at 25°C:

(a) Cell 1, (b) Cell 2, and (c) Cell 3
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3.3.2.3 Constant current (CC) discharge test

The CC discharge test is performed to obtain the experimental relation between SOC
and SOE. Firstly, the test battery cells are fully charge using CC-CV charging profile.
Hereafter, the test battery cells are discharged using CC discharge at 0.5 C, 1.0 C, and 1.5
C under set temperature. The CC discharge test is repeated at three distinct temperature
values such as 5°C, 25°C, and 45°C. Further, the experimental relations between SOC and
SOE are evaluated under different operating conditions. According to the results, as
shown in Figure 3.7, the relationship between SOE and SOC for all considered battery
cells is expressed by the quadratic function as expressed by (3.2). Where &, b, and c are
the function coefficients. The robust linear least square method is used to determine the
value of the coefficients in (3.2) and the obtained values are listed in Table 3.3. The high
value of R-Square indicates that the fitting function precisely matches the average
experimental relationship between battery SOE and SOC. The -coefficient of
determination R-Square is 1 for all the test battery cells. The value of RMSEs is 0.1493,

0.008, and 0.01232 of the fitted curves for Cell 1, Cell 2, and Cell 3, respectively.

SOE = a x SOC%+ b x SOC + ¢ (3.2)

Table 3.3: Obtained coefficient values of the fitted curve of average SOC and
SOE relation of test battery cells

Battery Cells Coefficient Values RMSE
a b c
Cell 1 -1.228 29.17 53.8 0.1493
Cell 2 -1.01 29.19 53.58 0.008158
Cell 3 -0.2319 29.78 52.35 0.01232
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Figure 3.7: Experimental SOC and SOE relationship of test battery cells: (a)
Cell 1, (b) Cell 2, and (c) Cell 3
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3.3.2.4 Hybrid pulse power characterization (HPPC) test

The high-power charging and discharging of the battery cell can accelerate the
degradation process. To protect the cell from degradation, the maximum power limits are
computed for the next AT seconds. Generally, the HPPC test is conducted on the battery
cell to estimate the battery cell power. The load current profile presented in Figure 3.8 is
used to perform the HPPC test on the battery cell. Under which, a current pulse of 1.5 C
rate is injected for 10s followed by the rest of 40s at every 10 % SOC as shown in Figure
3.9. A fully charged battery cell is discharged at a pulse of 0.5C for 10 % SOC. The rest
of 1 hour is given after the discharge of every 10 % SOC. The rest of the 40s is given
between the current pulse. The first and second pulse refers to discharge and charge,
respectively. The magnified HPPC load current and voltage profile is shown in Figure

3.9.

Current (A)
N

| ]
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220 225 230 235

100 200 300 400 500 600
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Figure 3.8: Load current profile for HPPC test

114



I@) |-
Al s
0 >
4T =105 40 aT=10y |,
| |
7Y S AR IS S . 20
v | | | |
A | |
b
Vi (V) | |
| |
I I
I I
| |
| |

Time (Sec)

AV s

-V ()

Figure 3.9: Magnified load current and terminal voltage profile for HPPC test
By using the load current and voltage profile shown in Figure 3.9 and the Rint battery
model as shown in Figure 3.10, the steps involved in charge and discharge power limits

based on voltage are described below.

i Fzchr i -
—W—{—
tRas R -
Vik :: jVocv (SOC)
I
_>

Figure 3.10: Battery Rint Model with different charge and discharge resistance
(Nabi Akpolat et al., 2020)
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Firstly, by using the HPPC test results, the discharge resistance (RY£F¢) and charge

resistance (thzp ©) can be calculated by using:

HPPC _ |AVais | _ |Ve(t2)—Ve(t1)
Rais _|A1dzs RGO 3.3)
HPPC _ |AVchg| _ |Ve(ta)-Ve(t3)

Reng ™ = Mepg| | I(t)-1(t3) (3.4)

At k™" time instant, the terminal voltage of the battery cell (V) and the battery cell

current (i) are computed as:

Ve = Vocvke — ikRst (3.5)
i = —VOCV};:VT'R (3.6)
HPPC

To compute the battery discharge power, the value of Rg; = Ryis ~ and Vi = Vi,

Then,

— ;o Vocvk—Vmin
Paisk = Vrilk = Vmin(—Rg}’Pc =) (3.7)
s

Similarly, to compute battery charge power, the value of Ry = thzp ¢ and Vik =

Vinax» Then,

. Vimax—Vocv k
Pchg,k =Vl = Vinax( RAPPC ) (3.8)
chg

Where, V4 and V,,,;;,, are the upper cut-off voltage and a low cut-off voltage of the
battery cell, respectively. In the study, the computed Pyjgy and Pepg i are considered as

the true values discharge SOP and charge SOP, respectively.
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3.3.2.5 Dynamic load profile test

To validate the performance of the proposed methods in dynamic operating conditions
under the variable power discharge regimes, two types of dynamic profiles namely
dynamic stress test (DST) profile and the US06 drive cycle profile are used in this study.
The DST profile is an improved version of the simplified Federal Urban Driving Schedule
(SFUDS) and is used for drive cycle testing of USABC batteries. The US06 is a
Supplemental Federal Test Procedure (SFTP) developed by the US Environmental
Protection Agency (EPA) for an aggressive driving study. Due to the rapid speed
fluctuations of US06, the robustness analysis of the proposed algorithm can be done. The
dynamic load current profile of DST and USO06 is presented in Figure 3.11 and Figure
3.12, respectively. The positive and negative current values represent discharging and

charging, respectively.

Current (A)
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25 26 27 28 29
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Figure 3.11: Load current profile for a dynamic stress test (DST)
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Figure 3.12: Load current profile for US06 drive cycle test
34 Evaluation Metrics
Consideration of appropriate evaluation matrices are very important for the validation
of the proposed methods. In the study, four different types of evaluation metrics are
considered for the evaluation of the proposed algorithm such as estimation errors,

computational complexity, convergence speed, and computational burden.

34.1 Estimation Errors

To compare the estimation results, three different errors such as maximum absolute
error (MaxAE), mean absolute error (MAE) and root mean square error (RMSE) are
considered. The RMSE always a decent choice as an evaluation matric as it gives more
weight to large errors. The value of estimation MAE, MaxAE, and RMSE can be

evaluated by using (3.9), (3.10), and (3.11), respectively.

MaxAE = max[|(Estimated), — (Measured);|] (3.9)

MAE = %Z,’Ll(l(Estimated)k — (Measured);|) (3.10)
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RMSE = \/%Zl,g:l((Estimated)k — (Measured);) (3.11)

The accuracy of the identified battery model parameters is computed with the help of
battery terminal voltage errors. The terminal voltage absolute error (AE) is evaluated by
comparing the estimated battery model terminal voltage with the measured battery

terminal voltage.

Similarly, the accuracy of the estimated battery states e.g., SOC and SOE are computed
with the assistance of estimation errors. The estimated state absolution error is evaluated

by comparing the estimated battery states with the measured battery states.

34.2 Computational complexity

The worst-case big O notation complexity O(.) is widely used for the evaluation of
the time complexity of the algorithm. The time complexity of the algorithm is commonly
evaluated by the number of elementary mathematical operations performed. The big O
complexity of the KF algorithm depends on the implicated matrices and vector
dimensions and different operations. The fundamental algorithmic complexity associated
with the simple matrices and vectors operation complexity is listed in Table 3.5.
Generally, in the KF algorithm, the state vector size is N, measurement vector size is M,
and command vector size is p involved. Based on the complexity fundamental given in
table 3.5, the value of worst-case big O notation complexity O(.) of the proposed

algorithm is computed.

Furthermore, the running time T'(.) of the proposed algorithm is evaluated. The T(.)
depends on the number of executed operations in an algorithm. The high value of

operations, the longer T'(.) of the algorithm.
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Table 3.4: Matrix operation complexity fundamental (Valade et al., 2017)

Operation O(Q)

Matrix multiplication 2XnXmxp
Addition of two vectors of size n n
Addition of two matrices of size (n, m) nxm
Transposition of a matrix 0
Inversion of a matrix 4 xnd
Mean vector of a matrix nxm
Mean value of a vector n

3.4.3 Computational cost

Usually, the mean execution time (MET) is utilized to compare the computational cost
of SOC estimation algorithms (Lucu et al., 2018). The final value of MET for a dynamic
profile is calculated by using (3.12). Where MET¢,;; ; is the mean execution time of the
i battery cell. To evaluate the value of MET,;; ; of an i battery cell, the algorithms are

executed for 10 times under the same dynamic profile (Meng et al., 2016).
MET =~ MET¢ey;:i=1,2,..N (3.12)

344 Convergence speed

Apart from the accuracy, the evaluation of the convergence speed is also an important
factor in the performance analysis. The convergence speed can be defined as the time
taken by the estimation value reaches the threshold value. In this study, the convergence
threshold is set to a 5 % estimation error value. The convergence speed also helps to

evaluate the robustness of the proposed algorithm under erroneous initial conditions. The

120



high value of convergence speed means the high robustness of the proposed algorithm.

The convergence speed also represents convergence time.

3.5 Summary

The different phases of research methodology to achieve the research objectives are
discussed in this chapter. The experimental settings involved in the battery testing are
described. The different battery cell testing methods utilized for the development of useful
datasets are explained. The developed datasets will be utilized for the validation of the
proposed battery states co-estimation methods. The different evaluation matrices such as
estimation errors, computational complexity, convergence speed, and computational

burden are briefly discussed in this chapter.
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CHAPTER 4: CO-ESTIMATION METHOD FOR SOC AND SOE
ESTIMATION USING DUAL FORGETTING FACTOR-BASED ADAPTIVE
EXTENDED KALMAN FILTER

4.1 Introduction

As discussed in chapter 2, in model-based SOC estimation using EKF, the estimation
accuracy directly depends on the accuracy of identified battery model parameters and the
prior knowledge of the system noise variables. With the incorrect prior knowledge of
system noise variables, the SOC estimation process error may prompt divergence. Also,
the SOC estimation accuracy would not be guaranteed with the application of the offline
battery model parameters identification method. Thus, it is always required to adaptively
update the covariance matrix elements and the model parameters with the battery SOC
estimation at a reduced computational burden. Also, in recent years, researchers are
focusing on developing the combined SOC and SOE techniques that can be easily
implementable into low-cost BMS chips. For instance, the adaptive H-infinity filters were
used for the combined SOC and SOE estimation by using the offline identified model
parameters in (Yongzhi Zhang et al., 2017). The results demonstrate a high estimation
accuracy of SOC as well as SOE under different erroneous conditions. However, the use
of offline model parameters limits the application in the long run. Furthermore, two
different H-infinity filters were employed for battery SOC and SOE estimation that causes
high computational cost. To reduce the computational cost of the model-based SOE
estimation method, in (L. Zheng et al., 2016a), the simple SOE estimation based on the
quantitative relationship between SOE and SOC was developed. In this study, the
LiMn2O4 battery cells were considered. The results were analyzed under various
operating conditions and the proposed method shows the SOE estimation maximum mean
absolute error is 3.4 % under the dynamic stress test (DST) profile. The Luenberger

observer was used for battery SOC estimation along with the offline identified battery
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model parameters. The SOC estimation error was less than 2 %. However, the estimation
accuracy of the Luenberger observer cannot be guaranteed due to the high sensitivity of
the observer to battery model parameter variations. Therefore, there is a need to employ
a highly accurate SOC estimation algorithm to simultaneously update the battery SOC
and the model parameters and to improve the overall accuracy of the combined SOC and
SOE estimation. Furthermore, it is also required to validate the concept of the quantitative

relationship between battery SOE and SOC for other chemistry battery cells.

In this chapter, a dual forgetting factor-based adaptive extended Kalman filter
(DFFAEKF) algorithm is proposed for SOC estimation. Where the forgetting factor
feature is used to reduce the computational burden of the proposed algorithm. Also, the
proposed DFFAEKF algorithm helps to resolve the issue of battery model parameter
divergence from the true value present in the DEKF algorithm to achieve high estimation
accuracy under realistic dynamic loading conditions. Thereafter, using the proposed
DFFAEKEF algorithm, an accurate and low computational burden co-estimation method
for SOC and SOE estimation is developed for EV applications. In the proposed co-
estimation method, the experimental correlation between SOC and SOE is utilized for
SOE estimation. The concept of the proposed co-estimation method for SOC and SOE
estimation and mathematics behind the implementation are also discussed. In addition,
the experimental setting and battery test involved in the validation of the proposed method

under dynamic operating conditions are explained.

The sections of the chapter are arranged in this sequence. In Section 4.1, the
introduction of the chapter is provided. In Section 4.2, the mathematical analysis of the
proposed DFFAEKF algorithm and its implementation for the SOC estimation method
are discussed. Section 4.3 explains the proposed co-estimation method for battery SOC

and SOE for EV applications. The experimental setting and test conducted on the
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considered battery cells are briefly discussed in Section 4.4. Finally, the summary of the

chapter is presented in Section 4.5.

4.2 Proposed dual forgetting factor-based adaptive extended Kalman filter
(DFFAEKF) for SOC estimation

A new dual forgetting factor-based adaptive extended Kalman filter (DFFAEKF) for

SOC estimation is proposed in this chapter. In which, the benefits of the forgetting factor

(high variations in the filter coefficients) together with the features of the DKF algorithm

are utilized. The proposed algorithm has the feature of concurrently updating the battery

model parameters with the SOC estimation at high accuracy under different dynamic

conditions with the same order big O notation complexity as DEKF.

4.2.1 Lithium-ion battery modeling

Due to the low complexity of the ECM of LIB, it is commonly utilized for model-
based SOC estimation. Especially, the 2RC battery model is commonly used for SOC
estimation, as shown in Figure 4.1. It contains a series of internal resistance (Ro), two
parallel-connected resistor and capacitor branches (RiCi and R2Cz), a voltage source
equivalent to an open circuit (OCV) of the battery cell. Ry and R, are the dynamic
resistance and Cy and C; are the corresponding dynamic capacitances. V; is the battery
terminal voltage. In this study, the polarity of discharging and charging battery current ()
is assumed to be positive and negative, respectively. The values of battery model elements
are highly dependent on the battery SOC, charge/discharge C-rate, state of health, and

operating condition.

The battery state-space equations developed by using Kirchhoff's voltage law can be

written as:
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v 1

( Vi= _R1C1 - C_1
{ sz_ V2 —ll “4.1)
R,C; Gy

v, = ocv —v, - v, — IR,

Figure 4.1: The second RC model for Lithium-ion battery
4.2.2 Forgetting Factor-Based Adaptive Extended Kalman Filter (FFAEKF)
Generally, the non-linear system is described by using discrete-time state space and

measurement equation as given below:

(X = Ag—1Xk—1 + Br—1Ug—1 + Wiy

Yk = Cka + Dkuk + (%7
4.2
4 wi = N(0, Py k) “4.2)
L v = N(O, Py )

Where matrices Ay, By, Cy and Dj, are dependent on system dynamics. X}, is the system
state and Y}, is the output vector. wy, and v, are the zero mean small white noise signals

with covariance P, ; and P,, ; respectively. k denotes the time step for the system vectors.

In the AEKF estimation method used in non-linear systems, the additional feature of
adaptively updating the noise covariance matrices is utilized to overcome the error
divergence and biased solution in AEKF. There are four adaptive filtering approaches
generally used in AEKF such as the Bayesian estimation approach, the maximum
likelihood estimation method, the correction technique, and the covariance matching

technique (Rui Xiong, He, Sun, & Zhao, 2013). A covariance matching technique is a
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simple approach and the idea behind it is to match the residuals consistent with the
theoretical covariance. Generally, the noise covariance matrix is updated by using the
moving window method (Zhentong Liu & He, 2015), and the forgetting factor method
was introduced in (Akhlaghi et al., 2018; X. Li et al., 2019) to simplify the moving

window method.

The detailed steps of the forgetting factor-based AEKF (FFAEKF) can be summarized

as follows:
Step 1: Initialization

Initialize the mean and covariance at step k=0,

{ %5 = E(x0) ws)

P;,o = E[(xo — %) (x0 — %5)"]

Where £ and P,{ o are the estimated initial state and error covariance matrix. And

superscript “+” represents the posterior values. Circumflex (*) and tilde (~) represent the

estimated and predicted value. ‘T’ indicates matrix transportation.
Step 2: Time Update or Prediction

Obtain the prior state and its covariance matrix from the projection of step k-1 to step

Predicted state estimation,

o— ~ a4 =

X = Ag_1X_1 + Br_q1Uk—1 4.4)
Priori Covariance matrix,

Py = Ak—lpgk—lA};—l + Py k-1 4.5)
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OF (xy,0,1 ~ OF (xy,,0,1 . .
9F (x1eBreli) , By_1 = 9F (x1eBreli) and P,, ; is the covariance

where A; =
aWk wk=szk

axk

of the process noise wy,.

Step 3: Measurement Update or Correction

Obtain The improved posterior estimation by utilizing the difference between the actual

measurement and predicted measurement calculated from the prior estimation,

Innovation,

e = Yk = CiPgy — Difu (4.6)
Kalman gain matrix,
L = PeiCif' [CEPerCE + DEP DT (4.7)
Posteriori state estimation,
R = R + L[y — e ] (4.8)
Posteriori covariance matrix,
Pie =Pz — Ly PyxLy” (4.9)
Residual,
ex = Yk — CiPg — Dituy, (4.10)
Where C¥ = % , Df = w and P, is the covariance of
k xXp=%f Vk V=V

the measurement noise vy.

In the FFAEKF, the forgetting factor ‘a’ is used to adaptively update the noise
covariance matrix. Generally, the value of a can vary from O to 1. The application of the

forgetting factor is to put more weightage on the current values in the update of the noise
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covariance matrix and the updated covariance matrices can be expressed as below

(Akhlaghi et al., 2018):

Updated process noise covariance matrix,
Py = aPy 1+ (1 — a)(LgrerTL") (4.11)
Updated measurement noise covariance matrix,
Poi = @Pyy + (1 — @) (exey” + CEPLCE') (4.12)

4.2.3 Proposed SOC estimation using DFFAEKF
To estimate both battery state and parameters during the EV running condition, a new
DFFAEKEF is proposed in this paper. This proposed method will help to jointly update

the battery model parameters, SOC as well as the unknown noise covariance matrices.

The state-space equations for the battery SOC and model parameters estimation can

be written as
SOC estimation,

Xk = [SOCk Vl,k Vz’k]T
Xk+1 =F(xk,9k,lk)+wff (413)
Vie = G(xp, O, Ii) + vg
F(.) and G (.) are the nonlinear functions of a state vector X}, and input battery current

I, and the battery model parameter vector 8 . Further, it can be expressed as given

below:
1 o_TS 0 soc, I[_ncTs/ Ca 0 . 0 ]I
F()=1|0 1/en 0 Vik +| 0 Ri(1—e™) 0 |Ik
Ts|| V. =Ts
0 0 1/e=L2k]l | 4 0 Ry(1—ew)]
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G(.) = 0CV(SOCy) — Vi — Vor — IRy (4.15)

where, T is the sampling time interval.

The Jacobian matrix of state can be written as:

1 0 0
-Tg
Ak:a;o =0 em 0 (4.16)
k Xk=X[ —Ts
0 0 e
Ax — 960) = [00cV/dSOC, -1 —1] 4.17)
Oxy xp=Rp

Model parameter estimation,

Or = [Rox Rix Tik Rok T2k]"
Ors1 = O + W/ (4.18)
di = G(xp, O, I) + vy
where V,  is the battery terminal voltage at step k. wj{ and Wg represent the zero mean
independent white Gaussian process noise of the state and parameter respectively and

their respective covariance matrices are P,  and P‘,‘Z, k- Then, v is the measurement noise

random input signal with zero mean and covariance Py.

The Jacobian matrix of time-varying battery model parameters can be written as:

A9 _ 0G() _9G() , 9G() 0%
Cx = 261 lg, —5 T 065 T 0%y 005 (4.19)

The overall steps-wise implementation of the proposed DFFAEKF algorithm for joint
estimation of the battery SOC and model parameters in the real-time condition are
summarized in Figure 4.2. In this paper, a= 0.98 is chosen to update the process and

measurement noise covariance matrices of the battery state and model parameter.
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4.3 Proposed co-estimation method for SOC and SOE estimation for EV
application

As reported in (W. Zhang et al., 2015b), the battery SOC and SOE are positively
correlated with each other, under dynamic operating conditions. To justify the above
statement, the different operating conditions (e.g. temperature, C-rate, aging) were
considered during the experiments conducted on LiMn2O4 battery cells in (L. Zheng et
al., 2016a). The experiments concluded that the relationship between SOE and SOC
remains the same even under a significant change in the operating condition. Furthermore,
it almost overlaps with each other in most of the conditions. Instead of using an additional
filter or observer for battery SOE estimation, the concept of SOE estimation introduced
in (L. Zheng et al., 2016a) in combination with the proposed DFFAEKF based SOC
estimation method is utilized to develop a simple and more accurate SOE estimation
method. Under this, the quantitative relationship between battery SOC and SOE obtained
from the experimental data sets is employed. The battery test involved in the development
of the experimental relationship between SOC and SOE is discussed in Section 3.3. The
SOC estimation results acquired from the DFFAEKEF are utilized for the SOE estimation
to improve the estimation results accuracy. The developed MATLB code for co-
estimation method for SOC and SOE using DEKF and DFFAEKEF is attached in appendix

B.

The flow chart of co-estimation for SOC and SOE estimation using the DFFAEKF

algorithm is represented in Figure 4.3.
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Figure 4.3: Flowchart of co-estimation method for SOC and SOE estimation
using DFFAEKF algorithm

4.4 Considered battery Cell tests schedule

Capacity Test ( 5°C, 25°C and 45°C)

A\ 4

Pulse Discharge Test (25°C)

N
NN

v

CC Discharge Test ( 5°C, 25°C and 45°C)

o
Nt

h 4
Dynamic Load Profile Test (25°C)
DST and US06

Figure 4.4: Sequence of conducted tests for validation for co-estimation method
for SOC and SOE estimation

The sequence of conducted different tests on considered battery cells is presented in
Figure 4.4. The test schedule combined four different tests such as capacity test, pulse
discharge test, CC discharge test, and dynamic load profile test for the proposed method
performance evaluation and validation. The experimental setting required to conduct the
tests is discussed in Section 3.2. All the tests are conducted on considered three battery

cells of different chemistries as discussed in Section 3.1.1. Different performance indices
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such as estimation error, convergence speed, and computational complexity are

considered for performance evaluation.

4.5 Summary

In this chapter, the proposed co-estimation method for SOC and SOE estimation using
the DFFAEKEF algorithm is described. The proposed method is capable to estimate the
battery SOC and SOE with high accuracy and, strong robustness to the battery model
parameter inaccuracy and measurement noise uncertainties. In which, a proposed
DFFAEKF was utilized for SOC estimation and experimental quantitative relation
between SOC and SOE for SOE estimation to make it highly accurate and computational
less expensive. The implementation of the DFFAEKF algorithm for SOC estimation
using the battery 2RC model is also discussed. The sequence of conducted tests for the
performance evaluation of the proposed co-estimation method for SOC and SOE

estimation is presented.
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CHAPTER 5: UNIFIED FRAME OF BATTERY STATES CO-ESTIMATION
METHOD FOR SOC, SOE, SOP, ACTUAL CAPACITY, AND MAXIMUM
AVAILABLE ENERGY

51 Introduction

In chapter 4, the co-estimation for battery SOC and SOE estimation using DFFAEKF
for EV application was proposed. However, this method was utilized for battery SOE and
SOC estimation only. As the actual capacity and maximum available energy decreases
with the battery aging. For an accurate SOC and SOE estimation, the correct value of
actual capacity and maximum available energy is also required to update during real-time
operation. For the development of efficient BMS for EV, the battery SOP, actual capacity,

and maximum available energy are also needed to estimate at low computational burden.

In recent years, the co-estimation method to estimate two or more battery states is
gaining popularity due to the existing high correlation between the different states. For
instance, in (Xu Zhang, Wang, Wu, et al., 2018), the SOE and SOP estimation using a
multi-time-scale filter was introduced where the PSO-UKF was used for SOE estimation.
However, the PSO was used for parameter identification of the 1-RC battery model that
is not a suitable online application. In (X. Li et al., 2019), the co-estimation method for
battery capacity and SOC was introduced. The neural network and AEKF were utilized
for capacity and SOC estimation. However, in capacity estimation, a large of amount
experimental datasets were involved in the neural network training. In (Yongzhi Zhang
et al., 2017), the combined SOC and SOE estimation was performed using the H-infinity
algorithm. Two separate filters for SOC and SOE estimation were used that significantly
increases the computational burden. In (L. Ma et al., 2021), LSTNM-NN based combined
SOC and SOE estimation method was investigated. The performance of the LSTNM-NN
is compared with the SVR, random forest (RF), and simple recurrent neural network

(Simple RNN). The LSTNM-NN demonstrated high accuracy and robustness at cost of a
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high computational load. In (X. Hu et al., 2018), the co-estimation method for SOC and
SOH-based fractional-order calculus was proposed. However, the electrochemical
impedance spectroscopy (EIS) results were utilized for battery modeling that makes it
difficult to implement for real-time application. In (P. Shen, Ouyang, Lu, et al., 2018),
the model-based co-estimation method for SOC, SOH, and SOP was proposed. However,
the offline identified battery model parameters using the Genetic algorithm used for SOC
estimation. As the computational burden of the co-estimation algorithm proportionally
increases the cost and size of the controller used in BMS. Thus, there is a need to develop
an accurate unified frame of co-estimation method with a low computational burden that

acquires the benefits of correlation between the battery states.

In this chapter, an accurate unified frame of battery states co-estimation method is
proposed for the estimation of SOC, SOE, SOP, actual capacity, and maximum available
energy. The correlation between different battery states is effectively utilized to reduce
the computational burden. For the battery states (SOC, SOE, SOP) estimation, robust and
less computational burden methods are considered. The co-estimation method for SOC
and SOE using DFFAEKF proposed in chapter 4, is utilized for SOC and SOE estimation.
The Rint model parameters identified by using the FFRLS algorithm and estimated SOC
are utilized for SOP estimation. A sliding widow-approximate weighted total least square
(SW-AWTLS) method is proposed for battery actual capacity and maximum available
energy estimation. In addition, the experimental setting and battery test involved in the

validation of the proposed method under dynamic operating conditions are explained.

The sections of the chapter are arranged in this sequence. In Section 5.1, the
introduction of the chapter is provided. In Section 5.2, the mathematical analysis of the
proposed unified frame of the battery states co-estimation method is discussed.

Algorithms utilized for battery SOP, actual capacity, and maximum available energy
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estimation are presented. The experimental setting and test conducted on the considered
battery cells are briefly discussed in Section 5.3. Finally, the summary of the chapter is

presented in Section 5.4.

5.2 The proposed unified frame of the battery states co-estimation method

As presented in Figure 5.1, the unified frame of battery states co-estimation method for
the SOC, SOE, SOP, actual capacity, and maximum available energy estimation is
proposed in this study. The main steps involved in the proposed unified frame battery
states co-estimation method can be elaborated into four steps as follows: 1) A SOC and
SOE estimation is performed by using the DFFAEKF algorithm and quantitative relation
between SOC and SOE. 2) The Rint model parameters are identified by using the FFRLS
algorithm and estimated SOC utilized for SOP estimation. 3) A new SW-AWTLS

algorithm is employed for actual capacity and maximum available energy estimation.

136



£3J19U9 J[qe[IeAR WINWIXBW pue
‘Kieded [enyde ‘gOs ‘HOS D 0S 10J POYIOW UONBUIISI-0I SI)e)S A13))e( Jo duiely pagrun pasodoid :1°S dan3rj

137



52.1 SOC and SOE estimation
The proposed co-estimation method for SOC and SOE estimation is utilized for the

SOC and SOE estimation. For a detailed explanation, please refer to chapter 4.

5.2.2 Model-based SOP estimation using FFRLS

To protect the battery from over-charging and deep-discharge conditions, it is required
to estimate the battery charge/discharge SOP. In this study, the Rint model is utilized to
estimate the SOP at a low cost. The Rint model combines a series internal resistance (Rg;)
and the open-circuit voltage source (V) as shown in Figure 5.2. By using Kirchhoff’s

voltage law, the terminal voltage (U;) can be described as:

:: Voev (SOC)

Figure 5.2: Battery Rint Model for SOP estimation

Vi =Upcy — IRy (5.1

To identify the Rint model battery parameters, the widely used FFRLS algorithm is

considered in this study. The fundamental steps involved in FFRLS can be expressed as

below:
6(k) = 6(k — 1) + K()[y(k) — T (k)8 (k — 1)]
K(k) = (P(k = 1)6(k))/ (A + ¢T (k) P(k — (k) (5.2)
P(k) = [(I = K(k)¢" (k))P(k — 1)]/2
Where,
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y(k) = Ugi
0(k) = [Uocy Rst]T (5.3)
k) =[1 —ix]"

With the consideration of battery design limits and identified Rint model parameters,
the battery charging/discharging SOP is evaluated. Firstly, the peak current limited by
using the battery terminal voltage limits (V¢ ;a5 and Vi i, ) (Xu Zhang, Wang, Wu, et
al., 2018) are calculated by (5.4). The steps involved in Rint model parameter
identification using FFRLS are discussed in Table 5.1.

Table 5.1: Rint model parameters identification using FFRLS (X. Chen et al.,
2016)

Step 1: Initialization, for k = 0, set
$(0),6,(0),K(0),P(0),2
Computation : fork=1,2.3, ...
Step 2: Measurement (¢ ) vector and model parameter vector (6,.)

{Hr(k) = [Ugcy Rst]T
¢pU) =[1 —i]”

Step 3: Gain (K )and Error covariance (P) update

{K(k) = (P(k — D6, (k))/ (A + " (k) P(k — D (k)
P(k) = [(I - K(k)$" (k))P(k — 1)]/2

Step 4: Model parameter update

0, (k) = 0,(k — 1) + K(k) [y (k) — ¢" (k)6, (k — 1)]

Taking the SOC limits (SOCyq, and SOC;,) into consideration, the peak

charge/discharge current is evaluated by using (5.5). Where 30y confidence interval
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is considered on the estimated SOC using DFFAEKEF to obtain the more accurate peak

power of the battery.

Based on (5.4) and (5.5), the peak charge /discharge current is determined by (5.6).
Where the I¢p,4 and ly;s are the design limit of peak charge and discharge current of the
battery cell, respectively. Finally, the SOP charge (S OPkC hg ) and SOP discharge (S OP,fiS

) of the battery cell at time instant K are calculated by (5.7).

Ichg,vol __ Uocvgys=Vemax
k - R
stk
; U “Vemi (5.4)
Idls,vol — OCVg+1~ Vtmin
k Rstk

chg:S0C _ (SOCk+3050¢,k)=SOCmin

k
NcTs/Ck
Idis,SOC A (S0Ck—3050C,k)—SOCmax (5.5)
k NcTs/Ck
h hgvol ;chg,SOC
LY = max (Igpyg, max (I, 1977 56)
Idis - . . dis,vol ;dis,SOC :
k. =min (Igs min (I, i )
h h
{SOPkC 9=V, " 57
SOPIS = Vil '

5.2.3  Actual capacity and maximum available energy estimation
To estimate the actual capacity of the battery cell, equation (2.9) can be arranged as

below:

[ el (D)dr = Qn (SOC(t,) = SOC(t1)) (5.8)

4 S

where the linear relation 7 = Qs is presented and the cell capacity can be estimated by
using integrated current values (r) and the difference between the SOC values. Generally,

some noise always available in the measurement signal and the estimated SOC. Thus, it
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is required to consider the noises during the capacity estimation. In the standard LS
method, the noise in the independent variable (r) is not considered (e.g., v — Ar = Qs).
As the estimated SOC values generally imperfect, so that it would be required to consider
the noise on x variable also (e.g., (r — Ar) = Q(s — As). It is assumed that Ar and As are
the zero-mean Gaussian random variables with the known variances arzi and aszl.,
respectively. To address this issue an approximate weighted total least square (AWTLS)

method was proposed in (Plett, 2011).

Figure 5.3: Geometrical structure of AWTLS algorithm (Plett, 2011)

The fundamental concept of AWTLS can be explained with the help of Figure 5.3. It
shows the relationship between the data points (s;, 1;) and its optimized map (S;, R;) on
the line R; = QS; with angle x= tan~'Q. The x-distance and y-distance between the data
point (s;, 1;) with the line is Ar and As, respectively. The shortest distance between data
point (s;, ;) and a line is presented by T;. Further, X- and y- components of the
perpendicular distance between the data point (s;, ;) and the line is &s; and 6r,

respectively. By using these variances, the cost function of AWTLS can be written as:

XZ — \'n 5521' _ 8731. (5 9)
Qn i=1 Uszi Urzl- .

AsAr, = r, — Q, s;, we can write the cost function as:
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—A. <2 A2
Xén _ n (ri—Qns;) & 4+ iz) (510)

= i=1 (1_0721)2 o_szi Uri
The Jacobian of the AWTLS cost function,

N, 2
9Qn (QZ+1)3

(csQn + (2c4 — ¢; — ¢6)Q5 + (3c2 — 3¢5) Q2 + (¢y — 2¢3 + ¢6)Qy —

) (5.11)

_ 2.2 _ 2 _ 2 _

where, €1, = Cin_1 + Sp/0r,, Con = Con—1 + Spt/0r , C3n = C3n1 + /0y, Can =
Can—1+ SFI02, Csn = Csn_q + SpTu/0Z, and Cop = Copn—1 + Tm/0s,. At the initialization
(n=0), the value 1y = Quom and sy = 1. Therefore, ¢19 = 1/67, C2n = Quom/07,,

_ 2, 2 _ 2 _ 2 P 2, 2
€30 = Qnom 107, Cap = 1ag,, €50 = Qnom/0s, and ¢ g = Qnom /05,

Equation (5.11) is set to zero to obtain the optimal positive candidate solution for Q,,

that can give the lowest computed value of the cost function, as expressed below:
csQn + (2c4 — ¢, — ¢6)Qr + (3, — 3¢5)Q3 + (61 — 2¢3 + ¢6)Qn — ¢, = 0 (5.12)

To calculate the error bounds on the estimated capacity the Hessian is computed as

expressed below:

X%, 2 ~ ~ ~
a@Qg = Gro (7265Qn + By — 6¢, + 3¢6)Qn + (—12¢, + 16¢5) Q5 +

(—8c; + 10c3 + 604—8c¢) 0% + (—12¢, — 16¢5)Q,, — (¢ — 2¢3 + ¢4)) (5.13)

Using (5.11) and (5.13), the estimated value of @n_k using AWTLS at KM time instant

can be expressed as:

~ ~ 6)(2n axzn
Qe = Qujer — 2 [T (5.14)
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Besides, to reduce the computation burden, the sliding window (SW) method is
associated with the AWTLS algorithm in SW-AWTLS. Under which, SW of specific
length is slides over the dataset. The battery actual capacity estimation is performed at
every macro time scale L. The steps involved in the SW-AWTLS algorithm are listed in

Table 5.2.

Table 5.2: Proposed SW-AWTLS algorithm

For k = 0,
MllMZ and L = MZ - M1

Where, M; and M, are the starting and end time instant of the sliding

window, respectively. L is the length of the window.
For k = 1 to end,
If k > M,,
s =S5S0C(M;) — SOC(M,)
Fori = (M; + 1) to M,,
r=I1(M;) +1(i)
end
Qn k 1s estimated by using AWTLS
else
Qnk = Unx (No update)

end
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Like capacity estimation using AWTLS, the maximum available energy (En,k)

estimation can be performed by using the AWTLS algorithm. To implement the AWTLS,

the (2.10) can be rewritten in form as expressed below:
fff V,(0)I(t) dt = E,(SOE(t,) — SOE(t,)) (5.15)

The estimated En,k using AWTLS can be expressed as:

~ Ax: [y
Enx =Epg-q— Zen / o (5.16)

0E, | oEZ

To reduce the computational burden, the SW-AWTLS is utilized for the estimation of
En_ x- The developed MATLAB code for developed of unified frame of battery states co-

estimation is attached in appendix B.

53 Experimental setting and tests schedule

The sequence of conducted different tests on considered battery cells is presented in
Figure 5.4. The test schedule combined four different tests such as capacity test, pulse
discharge test, CC discharge test, and dynamic load profile test for the performance
evaluation and validation of the proposed unified frame of battery states co-estimation
method. All the tests were conducted repeatedly at 25 °C for all the considered batter

cells. The experimental setting required to conduct the tests are discussed in Section 3.2.
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Capacity Test ( 5°C, 25°C and 45°C)

h 4

Pulse Discharge Test (25°C)

N
NN

v

CC Discharge Test ( 5°C, 25°C and 45°C)

e
Nt

Dynamic Load Profile Test (25°C)
(US06 and HPPC)

Figure 5.4: Sequence of conducted tests for validation of proposed unified frame
of battery states co-estimation method

54 Summary

In this chapter, the proposed unified frame of battery states co-estimation method for
the estimation of SOC, SOE, SOP, actual capacity, and maximum available estimation is
described. The correlation between different battery states is effectively utilized to reduce
the computational burden of the developed battery states co-estimation method. For the
battery states (SOC, SOE, SOP) estimation, robust and less computational burden
methods are discussed. The sequence of conducted tests for the performance evaluation

of the proposed unified frame of battery states co-estimation method is presented.
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CHAPTER 6: RESULT AND DISCUSSION

6.1 Introduction

In chapter 4, the proposed co-estimation method for battery SOC and SOE estimation
using the DFFAEKF algorithm was presented. The proposed unified frame of co-
estimation method for battery states (SOC, SOE, SOP), actual capacity, and maximum
available energy were discussed in chapter 5. In this chapter, the results obtained from
the proposed battery states co-estimation methods in chapter 4 and chapter 5 under
dynamic loading conditions are presented. As discussed in chapter 3, the data sets
developed for three different chemistry cells tested under different battery test conditions

are utilized for the performance evaluation of the proposed methods.

The sections of the chapter are arranged in this sequence. In Section 6.1, the
introduction of the chapter is provided. In Section 6.2, the results of the proposed co-
estimation method for SOC and SOE estimation using DFFAEKF are presented. This
section includes the identified battery 2RC model parameters using DFFAEKF and
DEKEF. The accuracy and the robustness of the proposed co-estimation method for SOC
and SOE estimation under-considered dynamic operating conditions are analyzed. In
Section 6.3, the results of the proposed unified frame of battery states co-estimation
method for battery states (SOC, SOE, SOP), actual capacity, and maximum available
energy are explained. The results analysis of the proposed unified frame of battery states
co-estimation method under-considered dynamic operating conditions are also included

in this section. Finally, the summary of the chapter is presented in Section 6.4.
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6.2 Results of proposed co-estimation method for SOC and SOE estimation
using DFFAEKF

6.2.1 Considered Measurement Noise Uncertainty

In the real-time operation of EV, the measured battery terminal voltage and current
which utilized for the SOC estimation always contained some noise signals. Due to the
presence of the excess measurement noise signal, the estimation accuracy of the algorithm
will be affected significantly. In the thesis, to validate the robustness of the proposed
DFFAEKEF algorithm, the Gaussian white noise signal with zero mean and 0.5 variance
is considered as the measurement noise signal, as shown in Figure 6.1. The same
measurement noise signal is considered for both battery terminal voltage and current, in

the proposed co-estimation method for SOC and SOE.

Measurement noise signal
:

"0 50 100 150 200 250
Time (Min)
Figure 6.1: Measurement Noise Signal
6.2.2  Battery cell model parameterization results
To evaluate the accuracy of the identified battery model parameters of all the
considered battery cells, the estimated terminal voltage results obtained from DFFAEKF
and DEKF are compared under the dynamic profile tests (DST profile and US06 profile)

at 25°C. The initial value of SOC is set to the correct value (100 %). The initial value of
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battery model parameters is evaluated by using the forgetting factor-based recursive least
square (FFRLS) method to reduce the convergence time of the estimated model
parameters toward true values. The value of the forgetting factor is set to 0.99. The steps
involved in the FFRLS method are described in (X. Sun et al., 2019). The developed
MATLAB code for FFRLS is attached in appendix B. Under the DST profile, the
identified battery model parameters (Ro, Ri, Ci, R2, and Cz) for Cell 1, Cell 2, and Cell 3
are plotted in Figures 6.2 to 6.4, respectively. For all the considered cells under both DST
and USO06 profiles, due to the application of the forgetting factor in DFFAEKEF, the high

variation in the estimated model parameters is presented as compared to DEKF.
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Figure 6.2: Identified battery model parameters using DFFAEKF and DEKF of

Cell 1 under DST profile: (a) Ro, (b) C1, (¢) R1, (d) Cz, (e) R2
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Terminal voltage estimation results for all the considered battery cells under the DST
profile are shown in Figure 6.5. For Cell 1, the measured voltage and estimated voltage
from DFFAEKF and DEKF are shown in Figure 6.5 (a), and Figure 6.5 (b) shows their
estimation errors. But the estimation error of DEKF is higher than the DFFEKF. The
estimation error of DFFAEKF is within #35 mV. For Cell 2, the measured voltage and
estimated voltage from DFFAEKF and DEKF are shown in Figure 6.5 (c), and Figure 6.5
(d) shows their estimation errors. But the estimation error of DEKF is higher than the
DFFEKEF. The estimation error of DFFAEKEF is within #45 mV. For Cell 3, the measured
voltage and estimated voltage from DFFAEKF and DEKF are shown in Figure 6.5 (e),
and Figure 6.5 (f) shows their estimation errors. But the estimation error of DEKF is
higher than the DFFEKF. The estimation error of DFFAEKF is within £20 mV. For the
DST profile, the RMSE of the recorded terminal voltage of Cell 1, Cell 2, and Cell 3 using
DFFAEKEF are 6.91 mV, 8.95 mV, and 0.36 mV respectively. Besides, the recorded
terminal voltage MaxAE of Cell 1, Cell 2, and Cell 3 using DFFAEKF are 32.66 mV,

43.46 mV, and 15.0 mV respectively as listed in Table 6.1.

Under the US06 profile, the identified battery model parameters (Ro, Ri, Ci, Rz, and
C») for Cell 1, Cell 2, and Cell 3 are plotted in Figures 6.6 to 6.8, respectively. For all the
considered cells under both DST and USO06 profiles, due to the application of the
forgetting factor in DFFAEKF, the high variation in the estimated model parameters is

presented as compared to DEKF.

The model terminal voltage estimation results for all the considered battery cells under

the USO06 profile are shown in Figure 6.9.

153



(@)

DFFAEKF
DEKF

50

100
Time (Min)

150

200

0.55 T 21 T
(b) DFFAEKF (© DFFAEKF
054+ DEKF DEKF
0.53F
20.5F 1
_ 0.52f ~
= G
< 0s1f E
@) o
0.5
0.49
0.48
0.47 . - . - 19.5 . - . -
0 50 100 150 200 0 50 100 150 200
Time (Min) Time (Min)
1.0004 T 50.015 T
(d) DFFAEKF (e DFFAEKF
DEKF DEKF
1.0002 50.01}
- 1 1=
E S 50.005f
< £
~ por ‘ ~a
© 0.9998} &
50F
0.9996
49.995f
0.9994 L L . L - L . -
0 50 100 150 200 0 50 100 150 200
Time (Min) Time (Min)

Figure 6.6: Identified battery model parameters using DFFAEKF and DEKF of
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Table 6.1: Results of voltage estimation with correct initial SOC condition

Dynamic Battery Voltage RMSE (mV) Voltage MaxAE (mV)
Profile Cells DFFAEKF DEKF DFFAEKF DEKF
DST Cell 1 6.91 15.07 32.66 104.96
Cell 2 8.95 10.46 43.46 48.66

Cell 3 0.36 0.49 15.0 20.8

USo06 Cell 1 6.33 13.47 32.90 67.93
Cell 2 8.34 16.87 41.5 77.90

Cell 3 0.37 0.50 15.1 20.5

For Cell 1, the measured voltage and estimated voltage from DFFAEKF and DEKF
are shown in Figure 6.9 (a), and Figure 6.9 (b) shows their estimation errors. But the
estimation error of DEKF is higher than the DFFEKF. The estimation error of DFFAEKF
is within £33 mV. For Cell 2, the measured voltage and estimated voltage from
DFFAEKF and DEKF are shown in Figure 6.9 (c), and Figure 6.9 (d) shows their
estimation errors. But the estimation error of DEKF is higher than the DFFEKF. The
estimation error of DFFAEKF is within #42 mV. For Cell 3, the measured voltage and
estimated voltage from DFFAEKF and DEKF are shown in Figure 6.9 (e), and Figure 6.9
(f) shows their estimation errors. But the estimation error of DEKF is higher than the
DFFEKEF. The estimation error of DFFAEKF is within +16 mV. Further, for the US06
profile, the RMSE of the recorded terminal voltage of Cell 1, Cell 2, and Cell 3 using
DFFAEKEF are 6.33 mV, 8.34 mV, and 0.37 mV respectively. Besides, the recorded
terminal voltage MaxAE of Cell 1, Cell 2, and Cell 3 using DFFAEKF is 32.9 mV, 41.5
mV, and 15.1 mV respectively. As listed in Table 6.1, it is evident that during both the

dynamic profile tests, the terminal voltage predicted by using DFFAEKF is well-matched
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with high accuracy as compared with voltage predicted by using DEKF for all the

considered battery cells.

Table 6.2: Results of voltage estimation with incorrect initial SOC (80 %) value

Dynamic Battery Voltage RMSE (mV) Voltage MaxAE (mV)
Profile Cells DFFAEKF DEKF DFFAEKF DEKF
DST Cell 1 10.95 15.81 209.98 218.24
Cell 2 11.50 13.59 19.044 197.76

Cell 3 0.49 0.51 49.87 50.55

US06 Cell 1 7.66 11.61 215.73 217.40
Cell 2 8.90 15.64 201.20 206.90

Cell 3 0.48 0.51 50.19 51.37

To evaluate the robustness of the proposed DFFAEKEF, the initial SOC is set to an

incorrect value (80 %). For the DST profile, the RMSE of the recorded terminal voltage

of Cell 1, Cell 2, and Cell 3 using DFFAEKF are 10.95 mV, 11.50 mV, and 0.49 mV

respectively. Besides, the recorded terminal voltage MaxAE of the Cell 1, Cell 2, and Cell

3 using DFFAEKEF are 209.24 mV, 197.76 mV, and 50.55 mV respectively as listed in

Table 6.2. Further, for the US06 profile, the RMSE of the recorded terminal voltage of

Cell 1, Cell 2, and Cell 3 using DFFAEKF are 7.66 mV, 8.90 mV, and 0.48 mV

respectively. Besides, the recorded terminal voltage MaxAE of the Cell 1, Cell 2, and Cell

3 using DFFAEKEF are 215.73 mV, 201.20 mV, and 50.19 mV respectively, as listed in

Table 6.2. In both cases, voltage errors in the DFFAEKF are significantly lesser than the

voltage errors in the DEKF method.
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6.2.3 SOC and SOE estimation results

To evaluate the performance of the proposed co-estimation method for SOC and SOE
using DFFAEKF, the combined SOC, and SOE estimation by using the DEKEF is
considered as a benchmark. The estimated SOC and SOE results for all the considered
battery cells from DFFAEKF and DEKF under the DST profile at 25°C are compared in
Figure 6.10. Similarly, for the US06 profile at 25°C, estimated SOC and SOE results for
all the considered battery cells from DFFAEKF and DEKF are compared in Figure 6.11.
Further, to evaluate the performance of the proposed co-estimation method for SOC and
SOE, two different initial SOC conditions are considered such as (i) correct initial SOC

condition and (ii) incorrect SOC condition.

6.2.3.1 With correct initial SOC condition

For the DST profile at 25°C, the estimated SOC and SOE results for all the considered
battery cells with the correct initial SOC are depicted in Figure 6.10. Figure 6.10 (a)
shows the estimated SOC and measured SOC for Cell 1 from both DFFAEKF and DEKF.
It also shows the SOC error for Cell 1 from both DFFAEKF and DEKEF. Figure 6.10 (b)
shows the estimated SOE and measured SOE for Cell 1 from both DFFAEKF and DEKF.
Also shows the SOE error for Cell 1 from both DFFAEKF and DEKEF. Figures 6.10 (a)
and 6.10 (b) indicate that the estimated SOC and SOE from DEKF is less accurate and
diverging as compared to DFFAEKF. The value of recorded RMSE of estimated SOC
and SOE for Cell 1 with DFFAEKEF is less than 0.35 % as listed in Table 6.3 and Table
6.4. For Cell 2, Figure 6.10 (c) shows the estimated SOC and measured SOC from both
DFFAEKF and DEKEF. It also shows the SOC error for Cell 2 from both DFFAEKF and
DEKF. Figure 6.10 (d) shows the estimated SOE and measured SOE from both
DFFAEKEF and DEKF. It also shows the SOE error for Cell 2 from both DFFAEKF and
DEKEF. Figures 6.10 (c) and 6.10 (d) indicate that the estimated SOC and SOE from

DEKEF is less accurate as compared to DFFAEKF. The value of recorded RMSE of
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estimated SOC and SOE for Cell 2 with DFFAEKEF is less than 0.50 % as listed in Table
6.3 and Table 6.4. Similarly, for Cell 3, Figure 6.10 (e) shows the estimated SOC and
measured SOC from both DFFAEKF and DEKF. It also shows the SOC error for Cell 3
from both DFFAEKF and DEKEF. Figure 6.10 (f) shows the estimated SOE from both
DFFAEKF and DEKF and measured SOE. Also indicates the SOE error for Cell 3 from
both DFFAEKF and DEKEF. Figures 6.10 (e) and 6.10 (f) indicate that the estimated SOC
and SOE from DEKF is less accurate and diverging as compared to DFFAEKF. The value
of recorded RMSE of estimated SOC and SOE for Cell 2 with DFFAEKEF is less than
0.57 % as listed in Table 6.3 and Table 6.4. Further, for all the considered battery cells,
the values MaxAE of estimated SOC from DFFAEKEF is very low (less than 1.1 %) in

comparison to DEKF as listed in Table 6.3.
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Figure 6.10: SOC and SOE estimation results with correct initial SOC value

under DST profile: (a) estimated SOC of Cell 1 (b) estimated SOE of Cell 1 (c)
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(f) estimated SOE of Cell 3
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Table 6.3: Results of SOC estimation under DST and US06 profile with correct
initial SOC condition

Dynamic Battery SOC RMSE (%) SOC MaxAE (%)

Profile Cells DFFAEKF DEKF | DFFAEKF DEKF

Cell 1 0.34 1.29 0.26 3.45

DST Cell 2 0.49 0.67 1.04 1.26

Cell 3 0.57 0.71 1.03 2.08

Cell 1 0.28 1.24 0.25 3.07

USo06 Cell 2 0.32 1.26 0.42 2.14

Cell 3 0.64 0.72 1.02 2.75

Similarly, for the US06 profile at 25°C, the estimated SOC and SOE results for all the
considered battery Cells with the correct initial SOC are depicted in Figure 6.11. Figure
6.11 (a) shows the estimated SOC and measured SOC for Cell 1 from both DFFAEKF
and DEKF. It also shows the SOC error for Cell 1 from both DFFAEKF and DEKF.
Figure 6.11 (b) shows the estimated SOE and measured SOE for Cell 1 from both
DFFAEKF and DEKF. Also shows the SOE error for Cell 1 from both DFFAEKF and
DEKEF. Figures 6.11 (a) and 6.11 (b) indicate that the estimated SOC and SOE from
DEKEF is less accurate and diverging as compared to DFFAEKF. The value of recorded
RMSE of estimated SOC and SOE for Cell 1 with DFFAEKEF is less than 0.30 % as listed
in Table 6.3 and Table 6.4. For Cell 2, Figure 6.11 (c) shows the estimated SOC from
both DFFAEKF and DEKF and measured SOC. It also shows the SOC error for Cell 2
from both DFFAEKF and DEKEF. Figure 6.11 (d) shows the estimated SOE and measured
SOE from both DFFAEKF and DEKEF. It also shows the SOE error for Cell 2 from both
DFFAEKF and DEKEF. Figures 6.11 (c) and 6.11 (d) indicate that the estimated SOC and

SOE from DEKF is less accurate as compared to DFFAEKF. The value of recorded
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RMSE of estimated SOC and SOE for Cell 2 with DFFAEKF is less than 0.35 % as listed

in Table 6.3 and Table 6.4. Similarly, for Cell 3, Figure 6.11 (e) shows the estimated SOC

from both DFFAEKF and DEKF and measured SOC. It also shows the SOC error for

Cell 3 from both DFFAEKF and DEKF. Figure 6.11 (f) shows the estimated SOE from

both DFFAEKF and DEKF and measured SOE. Also indicates the SOE error for Cell 3

from both DFFAEKF and DEKEF. Figures 6.11 (e) and 6.11 (f) indicate that the estimated

SOC and SOE from DEKEF is less accurate and diverging as compared to DFFAEKF. The

value of recorded RMSE of estimated SOC and SOE for Cell 2 with DFFAEKF is less

than 0.65 % as listed in Table 6.3 and Table 6.4. Further, for all the considered battery

cells, the values MaxAE of estimated SOC from DFFAEKEF is very low (less than 1.3 %)

in comparison to DEKEF as listed in Table 6.3.

Table 6.4: Results of SOE estimation under DST and US06 profile with correct

initial SOC condition

Dynamic Battery SOE RMSE (%) SOE MaxAE (%)

Profile Cells DFFAEKF DEKF DFFAEKF DEKF

Cell 1 0.34 1.23 0.18 3.01

DST Cell 2 0.41 0.68 0.70 1.26

Cell 3 0.56 0.72 1.09 2.11

Cell 1 0.27 1.29 0.15 3.03

US06 Cell 2 0.31 1.26 0.29 1.81

Cell 3 0.62 0.73 0.98 2.58
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As indicated in Figures 6.10 and 6.11, under correct initial SOC condition, the
estimated SOC and SOE using the proposed co-estimation method for SOC and SOE
using DFFAEKEF closely follow the measured values irrespective of the change in the

battery cell chemistry and dynamic load profiles.

6.2.3.2 With incorrect initial SOC value (80% SOC)

The RMSE of the estimated SOC and SOE based on the proposed method using
DFFAEKEF with incorrect initial SOC are listed in Table 6.5. The incorrect initial SOC is
set to 80 %. With the DST profile at room temperature, the RMSE of the estimated SOC
and SOE using the DFFAEKEF for all the considered battery cells is less than 0.9 %. With
the US06 profile at 25°C, the value RMSE of the estimated SOC and SOE for all the
considered battery cells is less than 1.0 %. Besides, for the same erroneous initial SOC
condition, the RMSE of estimated SOC and SOE using DEKF for all the considered
battery cells is about 1.7 % under the DST profile at 25°C. With the US06 profile at 25°C,
the RMSE of the estimated SOC, and SOE is about 1.5 % for all the considered battery
cells with the erroneous initial SOC set to 80 %. The results indicate that the proposed
co-estimation method for battery SOC and SOE using DFFAEKEF is less sensitive to
erroneous initial SOC conditions due to the availability of adaptability features as

compared to the co-estimation for battery SOC and SOE using DEKF.
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Table 6.5: RMSE (%) of estimated SOC and SOE with incorrect initial SOC

(80%) value
SOE RMSE (%
Dynamic | Battery SOC RMSE (%) (%)

Profile Cells DFFAEKF | DEKF | DFFAEKF DEKF

Cell 1 0.45 1.62 0.48 1.64

DST Cell 2 0.63 1.38 0.69 1.39

Cell 3 0.83 1.16 0.82 1.16

Cell 1 0.56 1.13 0.62 1.40

Uso06 Cell 2 0.89 1.37 0.95 1.44

Cell 3 0.94 1.14 0.93 1.17

6.2.3.3 Convergence speed comparison

Apart from the accuracy, the evaluation of the convergence speed is also an important
factor in the performance analysis. In this paper, the considered convergence threshold is
less than 5 % for SOC and SOE error. The true initial SOC and SOE value is 100 %.
Figure 6.12 and Figure 6.13 shows the comparison of convergence time of SOC and SOE
estimation results under different initial SOC conditions for the DST and US06 profile
for all the considered battery cells, respectively. The value of convergence time under
different incorrect SOC conditions with DST and USO06 profiles for all the considered

battery cells are listed in Table 6.6.

As shown in Figure 6.12, for all the considered battery cells, the SOC and SOE estimation
results from DFFAEKF converged at a faster rate towards true values as compared to
estimation results obtained from DEKF under incorrect initial SOC condition. As listed
in Table 6.6, with the DST profile for Cell 1, the SOC and SOE estimation convergence
time using DFFAEKF is less than 30 % of the convergence time in the estimation of SOC
and SOE by using DEKEF for the incorrect initial SOC set to 90 %. Similarly, for Cell 2

with the incorrect initial SOC set to 90 %, the SOC and SOE estimation convergence time
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using DFFAEKF is less than the convergence time in the estimation of SOC and SOE by
using DEKF. With the DST profile, the SOC and SOE estimation convergence time of
DFFAEKEF is 50% of the convergence time in the estimation of SOC and SOE by using

DEKEF for Cell 3 with the incorrect initial SOC set to 90 %, as listed in Table 6.6.

Similarly, for the US06 profile at 25°C, for all the considered battery cells, the SOC and
SOE estimation results from DFFAEKF converged at a fast rate towards true values as
compared to estimation results obtained from DEKF under incorrect initial SOC
condition as presented in Figure 6.13. This implies that the application of the DFFAEKF
for combined SOC and SOE estimation is more robust to the incorrect initial SOC
conditions as compared to the DEKF irrespective of the chemistry of the battery cells.
The convergence time increases with the increase in the error but the convergence rate of

DFFAEKEF remains high as compared to DEKF.
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Figure 6.12: SOC and SOE estimation results with incorrect initial SOC values
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SOE of Cell 2 (e) SOC of Cell 3 (f) SOE of Cell 3

169



100

801 E
S| —1 g -
% =
=} =}

2 40f @ 4

DFFAEKF-90%
— =— — DEKF-90%
] [— DFFAEKF-80%
=—— =— =— DEKF-80%

———————— DFFAEKF-90%
== == = DEKF-90%

20f| = DFFAEKF-80% 1
=—— =—— =— DEKF-80%

Measured

Measured
0 L 0 L : : L
0 50 100 150 200 0 50 100 150 200
Time (Min) Time (Min)
100 100

80

= 60 i =
Q okl
S S

% 40 1 % 40

DFFAEKF - 90% —————— DFFAEKF-90%
— — — DEKF-90% — — — DEKF-90%
20[] ————— DFFAEKF-80% 20f | —————— DFFAEKF-80% 1
— — — DEKF-80% — — — DEKF-80%
Measured = Measured

0 I I 0 -
0 50 100 150 200 0 50 100 150 200
Time (Min) Time (Min)
100 T T T T T T 100
(e)
80f sof
3 oo 3 3 o
N -’
Q =
Q =}
@ 40t @ 40}
DFFAEKEF - 90% DFFAEKF - 90%
== =—— =— DEKF-90% =—— =—— =— DEKEF - 90%
20] ————— DFFAEKF - 80% 20F | ————— DFFAEKF - 80%
= = = DEKEF - 80% = == = DEKEF - 80%
Measured Measured
o I I I I . . 0 I I I I . .
UO 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (Min) Time (Min)

Figure 6.13: SOC and SOE estimation results with incorrect initial SOC
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6.2.3.4 Comparison of computational cost and big O notation complexity

Furthermore, the mean execution time and big O notation complexity are required to

evaluate the applicability of the proposed algorithm into the battery management system.

Usually, the mean execution time (MET) is utilized to compare the computational cost of

SOC estimation algorithms (Lucu et al., 2018). The value of METs are evaluated by using

(3.12).

Due to the availability of forgetting factor-based adaptive noise covariance matrices

update feature in the proposed DFFAEKF algorithm, the METs of the DFFAEKF

algorithm are slightly higher than the DEKF algorithm for both DST and US06 profiles,

as described in Table 6.7. For the correct initial SOC condition, the calculated METSs for

DFFAEKEF are 1.60 s (DST profile) and 1.44 s (US06 profile), whereas for METs for

DEKF are 1.53 s (DST profile) and 1.39 s (US06 profile).

Table 6.7: Comparison of mean execution time (MET) of DFFAEKF and DEKF

MET (in seconds)
Dynamic Profile
DFFAEKF DEKF
DST 1.60 1.53
USo06 1.44 1.39
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By using the fundamental algorithmic complexity listed in Table 3.4, the big O
notation complexity of steps involved in the DEKF algorithm is calculated as presented
in Table 6.8. Further, the running time T'(.) and worst-case big O notation complexity
O0(.) of the DFFAEKF and DEKF algorithm are listed in Table 6.9. Due to the
employment of additional steps in DFFAEKF, the computed running time 7'(.) is higher
than the DEKF. However, both DFFAEKF and DEKF algorithm have the same worst-

case big O complexity of order 8n3 as listed in Table 6.9.

Table 6.9: Comparison of the complexity of DEKF and DFFAEKF algorithm

Algorithms T() O
DFFAEKF | 8n3 + 8n?m + 17n% + 6m? + 6mn + 6mp + 4n 8n3
DEKF 8n3 + 8n’m + 3n? + 6m? + 6mn + 6mp 8n3

With the result of slightly higher computational cost and same order big O complexity
of DFFAEKF as compared to DEKF, the high accuracy combined SOC and SOE

estimation using DFFAEKF is achieved.

6.2.4 Comparative validation analysis with other methods

The superiority of the proposed combined SOC and SOE estimation using the
DFFAEKF method is validated by comparing the error terms of other prominent SOC
and SOE estimation methods. Few recent studies of the SOC and/or SOE estimation
including dual filter, hybrid LIB model-based analytical method, unscented Particle filter
(UPF), forgetting factor-based AEKF, central difference KF (CDKF), unscented KF
(UKF), combined SOC and SOE estimation using quantitative relationship, dual H-
infinity Filter (DHIF), and dual KF (DKF) are investigated for the comparative analysis,
as presented in Table 6.10. For the NCR and NMC chemistry battery cell the value of

SOE RMSE is less than 0.42 % under both DST and US06 profiles as listed in Table 6.4.
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It is validated that the performance of the proposed combined SOC and SOE estimation
method is better than the others under dynamic operating conditions as well as for
different chemistry battery cells. The value of SOE RMSE and SOC RMSE of the
proposed method with correct initial SOC conditions under both DST and USO06 profiles
are less than 0.65 %. Whereas, with incorrect initial SOC conditions the value of SOE
RMSE and SOC RMSE of the proposed method under both DST and US06 profiles is

less than 0.83 % and 0.94 %, respectively.
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6.3 Results of proposed unified frame of battery states co-estimation method for
SOC, SOE, SOP, actual capacity, and maximum available energy
6.3.1 Combined SOC and SOE estimation results
For the performance evaluation of combined SOC and SOE estimation using the
DFFAEKEF algorithm, two different dynamic load profiles such as US06 and HPPC load

profile are considered.

6.3.1.1 Battery model parameters identification results

The 2RC battery model parameters are identified using the DFFAEKF algorithm. The
accuracy of the identified model parameters can be verified with the analysis of model
terminal voltage errors. The model voltage error values obtained by comparing the model
terminal voltage with the measured voltage. For all the considered battery cells, the value

of MaxAE, MAE, and RMSE are computed for both the dynamic load profiles.

Table 6.11: Model terminal voltage errors under US06 load profile

Battery Cells Voltage Error
Max AE (mV) MAE (mV) RMSE (mV)
Cell 1 132.89 0.21 14.61
Cell 2 55.88 0.11 10.50
Cell 3 61.98 0.20 14.13
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Table 6.12: Model terminal voltage errors under HPPC load profile

Battery Cells Voltage Error
Max AE (mV) MAE (mV) RMSE (mV)
Cell 1 130.89 0.87 50.74
Cell 2 108.03 0.11 33.65
Cell 3 111.92 0.45 21.41

As listed in Table 6.11, for the US06 drive cycle, the value of model voltage MaxAE
for all the considered battery cells is within 133 mV. Whereas the value of voltage MAE
and RMSE is less than 0.21 mV and 14.61mV, respectively. For all the considered battery
cells under the HPPC test, the value of voltage MAE and RMSE is less than 0.87 mV and
5074 mV, as listed in Table 6.12. The value of model voltage MaxAE for all the
considered battery cells is within 130.1 mV. For both the dynamic load profiles, the

evaluated voltage RMSE value is lower for cell 3 and highest for cell 1.

6.3.1.2 SOC and SOE estimation results

For all the considered battery cells, the SOC and SOE estimation results under US06
and HPPC profile using combined SOC and SOE estimation algorithm are shown in
Figure 14 and Figure 12. In the figures, estimated SOC and SOE with correct initial SOC
under US06 and HPPC profile are presented. Under US06 and HPPC profiles, the
computed MAE and RMSE of estimated SOC and SOE are listed in Table 6.13 and Table

6.14.

For the USO06 profile, the estimated and measured SOC and SOE for cell 1 are shown
in Figures 14 (a) and 14 (b), respectively. The value of estimated SOC MAE and RMSE
are 0.29 % and 0.37 %, respectively. As listed in Table 6.13, the value of estimated SOE

MAE and RMSE are 0.30 % and 0.35 %, respectively. For cell 2, the estimated and
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measured SOC and SOE profiles are shown in Figures 14(c) and 14(d). The value of
estimated SOC MAE and RMSE are 0.17 % and 0.422 %, respectively. The value of
estimated SOE MAE and RMSE are 0.17 % and 0.23 %, respectively. Similarly, for cell
3, the estimated and measured SOC and SOE profiles are shown in Figures 14(e) and
14(f). The value of estimated SOC MAE and RMSE are 0.27 % and 0.31 %. The value

of estimated SOE MAE and RMSE are 0.23 % and 0.30 %.
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Table 6.13: SOC and SOE estimation errors under US06 drive cycle profile

SOC SOE
Battery Cells
MAE (%) RMSE (%) MAE (%) RMSE (%)
Cell 1 0.29 0.37 0.30 0.35
Cell 2 0.17 0.22 0.17 0.23
Cell 3 0.27 0.31 0.23 0.30

Table 6.14: SOC and SOE estimation errors under HPPC profile

SOC SOE
Battery Cells
MAE (%) RMSE (%) MAE (%) RMSE (%)
Cell 1 0.54 0.61 0.53 0.63
Cell 2 0.47 0.57 0.48 0.58
Cell 3 0.39 0.41 0.38 0.44

For the HPPC profile, the estimated and measured SOC and SOE for cell 1 are shown
in Figures 15 (a) and 15 (b), respectively. The value of estimated SOC MAE and RMSE
are 0.54 % and 0.61 %, respectively. As listed in Table 6.14, the value of estimated SOE
MAE and RMSE are 0.47 % and 0.57 %, respectively. For cell 2, the estimated and
measured SOC and SOE profiles are shown in Figures 15 (c) and 12 (d). The value of
estimated SOC MAE and RMSE are 0.47 % and 0.57 %, respectively. The value of
estimated SOE MAE and RMSE are 0.48 % and 0.58 %, respectively. Similarly, for cell
3, the estimated and measured SOC and SOE profiles are shown in Figures 15 (e) and 12
(f). The value of estimated SOC MAE and RMSE are 0.39 % and 0.41 %. The value of

estimated SOE MAE and RMSE are 0.38 % and 0.44 %. The estimation results verify
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that the estimated SOC and SOE follow the measured values with high accuracy under

dynamic loading conditions.

6.3.2  SOP estimation results

Finally, for all the considered battery cells, the SOP estimation is performed under the
HPPC profile. The Rint model parameters identified by FFRLS are employed to compute
the SOP charge/discharge value using (21). For all the considered battery cells, the value
of identifying Uy are presented in Figure 6.16. The identified Uy, for cell 1, cell 2,
and cell 3 are presented in Figures 6.16 (a), 6.16 (b), and 6.16 (c), respectively. Since the
identified Ry, values fluctuate in the range, the smoothed curve is obtained by using the
cubic smoothing splines method as presented in Figure 6.17. Besides, for all the
considered battery cells the battery DC internal charge/discharge resistances are evaluated
by HPPC test results are also plotted as a reference in Figure 6.17. For cell 1, cell 2, and
cell 3, the identified R, using FFRLS, smoothed curve of Ry, and DC resistance
charge/discharge evaluated using HPPC test are presented in Figures 6.17 (a), 6.17 (b),

and 6.17 (c), respectively.
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The battery cell design limits such SOC constraints, voltage constraints, and current
constraints, the charge/discharge SOP computation is given in Table 6.15. For all the
battery cells, the measured SOP is computed from HPPC test results, as shown in Figure
6.18. Based on the battery cells maximum charge/discharge currents using (5.5) to (5.6),
the charge/discharge SOP is predicted for all the battery cells using (5.7). As
demonstrated in Figure 6.18, the predicted SOP is compared with the SOP obtained from
HPPC test results. For cell 1, the value of predicted discharge SOP and charge SOP is
presented in Figures 6.18 (a) and 6.18 (b), respectively. For cell 2, the value of predicted
discharge SOP and charge SOP is presented in Figures 6.18 (c) and 6.18 (d). Similarly,
for cell 3, the value of predicted discharge SOP and charge SOP is presented in Figures
6.18 (e) and 6.18 (f). Due to the high difficulty in finding actual power values, the SOP
estimation error is not computed.

Table 6.15: Considered battery design limits of SOC constraints, voltage
constraints, and current constraints for all the test battery cells

Battery Constraints Limits

Cells Vimin | Vemax Iehrg Lais SOCpin SO0Chnax
Cell 1 2.5 3.6 -20 Cy 20 Cy 10 100
Cell 2 2.8 4.2 -5C, 2Cy 10 100
Cell 3 2.8 4.2 -7 Cy 6 Cy 10 100
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6.3.3 Actual capacity and maximum available energy estimation results

To compute the performance of @,, and E,, estimation using SW-AWTLS algorithm,
the value of estimated SOC and SOE using DFFAEKF algorithm is employed. The
estimated SOC at two different moments of time and respective measured battery current
is always required to update the estimated Q,, of the battery cell as expressed by (5.14).
Similarly, estimated SOE at two different moments of time and respective measured
battery power are always required to update the estimated E, of the battery cell as
expressed by (5.16). The length of the sliding window is selected to 200 to estimate the
Q,, and E,, after every 200 seconds. With the application of the DFFAEKEF algorithm, the
dynamic estimates of the estimated SOC and SOE variance (0s5o¢ x = Osop k = Os) can
be achieved. That ensures the high accuracy of @, and E, estimation using the SW-

AWTLS algorithm.

For Q,, and E,, estimation, the uncertainty in the measured current (I;;) and measured
voltage (V) with zero mean Gaussian noise know variance (g, ;) of 0.01 is considered.

For all the considered battery cells, the wrong initial value of @,, and E;, are chosen to 2.0

Ah and 7.5 Wh, respectively.
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For the US06 drive cycle, the estimated @Q,, for cell 1, cell 2, and cell 3 are shown in
Figures 6.19 (a), 6.19 (c), and 6.19 (e). While the estimated E,, for cell 1, cell 2, and cell
3 are shown in Figures 6.19 (b), 6.19 (d), and 6.19 (f). Similarly, for the HPPC profile,
the estimated @Q,, for cell 1, cell 2, and cell 3 are shown in Figures 6.20 (a), 6.20 (c), and
6.20 (e). Whereas the estimated E,, for cell 1, cell 2, and cell 3 are shown in Figures 6.20
(b), 6.20 (d), and 6.20 (f). As shown in Figures 6.19 and 6.20, the estimated Q,, and E,
are converged towards its true values in the first few minutes irrespective of change in
change chemistry and dynamic load profile. Also, with the application of SW-AWTLS,

the computational load can be reduced in comparison to the AWTLS algorithm.

Table 6.16: Q,, and E,, estimation errors under US06 load profile after final

convergence

Battery Qn E,

Cells MAE (%) RMSE (%) MAE (%) RMSE (%)
Cell 1 9.36e-05 0.096 6.38e-04 0.25
Cell 2 3.73e-05 0.061 5.24e-06 0.23
Cell 3 4.14e-04 0.021 5.16e-02 0.72

For all the considered cells, the value of MAE and RMSE of estimated Q,, and E,
using SW-AWTLS for the final convergence to true values under the US06 drive cycle
are listed in Table 6.16. As presented in Figure 3.4, the average of obtained actual capacity
and maximum available energy for all the considered battery cells during the capacity test
are considered as true values. Under HPPC profile, the value of MAE and RMSE of
estimated Q,, and E,, using SW-AWTLS for the final convergence to true values are listed
in Table 6.17. The low value of MAEs and RMSEs of estimated Q,, and E,, under both,

the considered load profiles prove the robustness and accuracy of the proposed SW-
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AWTLS algorithm. Also, with the application of SW-AWTLS, the computational load

can be reduced in comparison to the AWTLS algorithm.

Table 6.17: Q,, and E,, estimation errors under HPPC load profile after final

convergence

Battery Qn E,

Cells MAE (%) RMSE (%) MAE (%) RMSE (%)
Cell 1 1.74e-04 0.132 1.04e-03 0.32
Cell 2 2.73e-04 0.165 4.21e-03 0.58
Cell 3 3.70e-04 0.192 5.94e-03 0.77

6.3.4 Comparative performance assessment of the proposed unified frame of
battery states co-estimation method

To prove the superiority of the proposed unified frame of battery states co-estimation
method, the number of states/parameters estimated, and the number of filters/observers
utilized are compared. Some of the recent studies on co-estimation are considered. As
listed, in Table 6.18, most of the studies introduced a co-estimation method for two
battery states/parameters. Only in (P. Shen, Ouyang, Lu, et al., 2018), three different
states such as SOC, SOH, and SOP using three filters/observers are estimated by using
the developed co-estimation method. Only one chemistry battery cell is considered for
the result validation. In the proposed unified frame of battery states co-estimation method,
five different battery states/parameters are estimated by using three different
filters/observers. Involved fewer filters/observers proves the low computational burden

of the proposed method. Furthermore, three battery cells of different chemistries are

considered for validation to show the robustness of the proposed method.
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6.4 Summary

In this chapter, the results obtained from the proposed battery states co-estimation
methods are presented. The experimental results indicated that the performance of the
proposed co-estimation method for SOC and SOE estimation by using the DFFAEKF
algorithm is superior as compared to the DEKF algorithm. Under dynamic operating
conditions for all the considered battery cells, with the combined estimation method, the
recorded RMSE of SOC estimation is less than 0.82 % under the DST profile and less
than 0.94 % for the US06 profile. Also, the estimated RMSE of SOE is less than 0.83 %
under the DST profile and less than 0.93 % for the US06 profile. The order of worst-case
big O notation complexity of the proposed DFFAEKEF is equivalent to DEKF. However,
the computational cost of the DFFAEKF algorithm is slightly higher than the DEKF
algorithm due to the availability of forgetting factor-based adaptive noise covariance
matrices update feature in the proposed DFFAEKF algorithm. The proposed co-
estimation method for SOC and SOE estimation method by using the DFFAEKF
algorithm is less sensitive to the initial error condition and has a fast-converging speed

towards the true value as compared to the DEKF algorithm.

Hereafter, the results obtained from the unified frame of battery states co-estimation
method for SOC, SOE, SOP, actual capacity, and maximum available energy for EV
applications are presented. The correlation between the different battery states is
effectively utilized. The proposed unified frame of battery states co-estimation method
can reduce the complexity and increase the estimation accuracy as compared to separate
estimation algorithms. At a low cost, the SOC and SOE are estimated accurately by using
the combined SOC and SOE estimation using the DFFAEKF algorithm. The experimental
quantitative relationship between SOC and SOE is employed for SOE estimation. The
charge/discharge SOP of the considered battery cells is predicted by using the identified

Rint model parameters by FFRLS and the estimated SOC. Also, the predicted SOP
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stratifies the battery cell design limits such as SOC, voltage, and current. Lastly, the actual
capacity and maximum available energy are estimated by using the new SW-AWTLS
algorithm. With the application of the SW method, the computational burden of AWTLS
significantly reduce. Furthermore, the estimation results using the SW-AWTLS algorithm
demonstrate fast convergence under incorrect initialization. With the features of high
accuracy and computationally efficient, the proposed unified frame of battery states co-

estimation method can be the best reasonable choice for EV applications.
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CHAPTER 7: CONCLUSION AND FUTURE WORK

The conclusion of the thesis reflects the set of objectives discussed in Section 1.4. This
chapter summarizes the outcomes of the research and provides suggestions for future

work.

The sections of the chapter are arranged in this sequence. In Section 7.1, the re-
examination of thesis objectives is provided. In Section 7.2, the contribution of the thesis

is discussed. The future work for the researchers is provided in Section 7.3.

7.1 Re-examination of thesis objectives

The first objective of the thesis is to analyze the existing online SOC estimation
methods suitable for EV application. To achieve this objective, a state-of-the-art review
on different online SOC estimation methods was performed. Several characteristics of
model-based online SOC estimation using the KF algorithm were investigated to improve
estimation accuracy. In addition, to reduce the overall computational burden and improve
the functioning of BMS, the correlation between different battery states was analyzed.
The state-of-art review on SOE, SOP, battery actual capacity, and maximum available
energy estimation were done. To effectively utilize the correlation between the battery
states and for the development of computationally efficient BMS, the different co-

estimation methods were investigated.

The second objective is to develop a more accurate online SOC estimation method
under under uncertain disturbances and erroneous initial conditions. To achieve this, a
new DFFAEKEF for SOC estimation was proposed. In which, the benefits of the forgetting
factor (high variations in the filter coefficients) together with the features of the DKF

algorithm were utilized. The proposed algorithm has the feature of concurrently updating
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the battery model parameters with the SOC estimation at high accuracy under different

dynamic conditions with the same order big O notation complexity as DEKF.

Finally, the third objective is to develop an accurate and computationally efficient co-
estimation method with proper utilization of the correlation among the different battery
states. To achieve this, the co-estimation method for battery SOC and SOE using the
DFFAEKEF algorithm was proposed. The proposed method was capable to estimate the
battery SOC and SOE with high accuracy and, strong robustness to the battery model
parameter inaccuracy and measurement noise uncertainties. Thereafter, a unified frame
of battery states co-estimation method for SOC, SOE, SOP, actual capacity, and
maximum available estimation was proposed. The correlation between different battery
states was effectively utilized to make the proposed unified frame of battery states co-

estimation estimation method more accurate and computationally efficient.

7.2 Conclusion

With the development of LIB technologies, its applications as the main source of the
energy storage system in EV and microgrids are significantly increasing. Owing to the
highly nonlinear and dynamic nature of LIBs, an effective BMS is continuously required
to operate them in a safe operating area. For that purpose, a quick, reliable, and accurate
estimation of battery states is always required. However, accurate online battery states
such as SOC, SOE, SOP, and SOE estimation are challenging tasks due to the high
affectability and complicated internal chemical dynamics of the battery. In the last couple
of years, different battery states estimation methods have been investigated by
researchers. Nowadays, researchers are focusing on developing the battery states co-
estimation that can be easily implementable into the low-cost BMS chips. Interestingly,

all the battery states are highly correlated with each other. Hence, there is a need to
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develop low computational cost battery states co-estimation method with the proposer

utilization of correlation feature for BMS suitable EV applications.

Currently, the MBM for online SOC estimation with battery EECM is more
appropriate for EV applications because of its possible benefits, including the capability
to deal with unknown noise signals, low complexity, and high accuracy over other
modeling methods. Further, the merits of self-correction and low computational burden
make KF family algorithms suitable for model-based online SOC estimation. Presently,
for online SOC and model parameter identification, the dual extended Kalman filter
(DEKEF) is extensively utilized by researchers. However, the problem of battery model
parameter divergence from the true value greatly affects the estimation accuracy under
realistic dynamic loading conditions. To outperform this issue, a new DFFAEKF for SOC
estimation is proposed in this thesis. In which, the benefits of the forgetting factor (high
variations in the filter coefficients) together with the features of the DKF algorithm are
utilized. The proposed DFFAEKF has the feature of concurrently updating the battery
model parameters with the SOC estimation at high accuracy under different dynamic
conditions with the same order big O notation complexity as DEKF. Further, the co-
estimation method for SOC and SOE estimation by using DFFAEKF has been developed
to estimate the battery SOC and SOE with high accuracy and, strong robustness to the
battery model parameter inaccuracy and measurement noise uncertainties. The different
battery discharge tests incorporating dynamic loading profiles on three different
chemistry battery cells have been conducted by using the experimental setup developed
in the laboratory to validate the effectiveness of the proposed estimation method. The
experimental results indicated that the performance of the combined SOC and SOE
estimation by using the DFFAEKF algorithm is superior as compared to the DEKF

algorithm.
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To further improve the performance of the co-estimation method a unified frame of
battery states co-estimation for SOC, SOE, SOP, actual capacity, and maximum available
energy estimation has been developed. By which, the correlation between the different
battery states is effectively utilized. The proposed unified frame co-estimation method
can reduce the complexity and increase the estimation accuracy as compared to the
separate estimation algorithms. Three battery cells of different chemistries are considered
for the validation of the proposed method. As shown in the results, the SOC and SOE are
estimated accurately by using the combined SOC and SOE estimation using the
DFFAEKEF algorithm. The experimental quantitative relationship between SOC and SOE
is employed for SOE estimation. Then, the charge/discharge SOP of the considered
battery cells is predicted by using the identified Rint model parameters by using FFRLS
and the estimated SOC. The predicted SOP satisfied the battery cell design limits such as
SOC, voltage, and current. Lastly, the actual capacity and maximum available energy are
estimated by using the new SW-AWTLS algorithm. With the application of the SW
method, the computational burden of AWTLS was significantly reduced. The estimation
results of the SW-AWTLS algorithm demonstrated fast convergence under incorrect
initialization. With the high accuracy, robustness, and low computation burden, the

proposed battery states co-estimation method can be the best choice for EV applications.
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7.3

Future work

The following are the recommendations for future research work based on the research

carried out in this thesis:

ii.

iii.

1v.

The developed states co-estimation method focuses on the single-cell however
due to limited voltage and capacity it has limited use in real applications. The
extension of the proposed co-estimation method for the states estimation from cell
level to battery pack level can be more meaningful for real-time applications.
Although, the performance of the proposed battery states co-estimation methods
has been proved satisfactory, at a controlled operating temperature which is hard
to realize in real-time applications. Therefore, the proposed battery states co-
estimation methods still need to further verify at dynamic operating temperatures.
Fresh battery cells of different chemistries are utilized for the validation of the
proposed batter states co-estimation methods. As the LIB performance does not
remain the same, it degrades with aging. Therefore, it would be more useful to
consider different aging level battery cells for the further validation of the
proposed co-estimation methods.

Due to the prominent features of LIBs, their application as an energy storage
system for microgrids and renewable energy systems is also appreciably
expanding. It would be interesting to implement the proposed battery states co-
estimation methods and validate its performance under an environment other than

EV.
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