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SUPERVISED OPTIMAL DECISION MACHINE LEARNING APPROACH TO

CLASS- AND METHOD-LEVEL DATA PREPROCESSING TOWARDS

EFFECTIVE SOFTWARE DEFECT PREDICTION

ABSTRACT

Software defect prediction provides actionable outputs to software teams while con-

tributing to industrial success. Therefore, predicting the number of defects in a new version

of software at both the class and method levels is an important goal of defect prediction

studies to assist software teams in optimizing their test efforts towards improving software

quality. However, despite remarkable achievements in defect prediction, the quality of the

data applied in defect prediction studies has been a major concern, with related quality

issues leading to numerous contradictory findings in machine learning research. In addition,

a demonstrated approach for predicting the number of defects in a new software version is

lacking. Therefore, efforts are required to demonstrate how class- and method-level defect

prediction can be achieved for a new software version and to develop an approach for

preprocessing the highly imbalanced class- and method-level data available for software

defect prediction. To address these issues, first, a data preprocessing framework is proposed

to overcome some of the challenges associated with typical software datasets, for instance,

irrelevant and redundant features. A machine-learning-driven, supervised optimal decision

procedure is followed in the development of this data preprocessing framework, resulting

in a prime advantage of bias-free method- and class-level datasets. Second, a method of

predicting the number of software defects in an upcoming product release is proposed using

predictor variables derived from the defect acceleration observed based on the existing

software defects, namely, the defect density, defect velocity and defect introduction time.
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The number of defects in the current version of a software product is characterized by

this defect acceleration; hence, these derived predictor variables can be used to construct

regression models to predict the number of software defects in a new version. An ex-

periment conducted on 69 open-source ELFF Java projects, containing 131,034 classes

and 289,132 methods, as well as on the NASA datasets, which contain 10 different Java

and C++ projects with 22,838 classes, is reported. To evaluate the effectiveness of the

proposed framework for data preprocessing, the average classification performances of

six selected state-of-the-art classifiers before and after data preprocessing are investigated

and compared across multiple projects with data imbalances between the defective and

defect-free classes. For both the class and method levels, these selected state-of-the-art

classifiers, namely, naïve Bayes, logistic regression, neural network, K-nearest neighbors,

support vector machine and random forest classifiers, achieve noteworthy performance

when applied to preprocessed datasets. Moreover, for the ELFF projects, the results at the

class and method levels respectively show correlation coefficients of 61% and 60% for the

defect density, -11% and -4% for the defect introduction time, and 94% and 93% for the

defect velocity (consistent results are also obtained for the NASA datasets, as presented in

the results section). The proposed approach can serve as a blueprint for program testing to

enhance the effectiveness of software development activities.

Keywords: Machine learning, software defect, defect prediction, data preprocessing,

defect velocity.
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PENDEKATAN PEMBELAJARAN MESIN KEPUTUSAN OPTIMUM YANG

DIAWASI KEPADA TAHAP KELAS- DAN KAEDAH PRA PEMPROSESAN

DATA KE ARAH RAMALAN KECACATAN PERISIAN YANG BERKESAN

ABSTRAK

Ramalan kecacatan perisianmemberikan output tindakan yang boleh dilakukan kepada

pasukan perisian sambil menyumbang kepada kejayaan industri. Oleh itu, meramalkan

bilangan kecacatan dalam versi perisian baru di kedua-dua peringkat kelas dan kaedah

adalah matlamat penting bagi kajian ramalan kecacatan untuk membantu pasukan perisian

dalam mengoptimumkan usaha ujian mereka ke arah meningkatkan kualiti perisian. Walau

bagaimanapun, disebalik pencapaian yang luar biasa dalam ramalan kecacatan, kualiti

data yang digunakan dalam kajian ramalan kecacatan telah menjadi kebimbangan utama,

dengan isu kualiti yang berkaitan yang membawa kepada banyak penemuan bertentangan

dalam penyelidikan pembelajaran mesin. Di samping itu, pendekatan yang ditunjukkan

untuk meramalkan bilangan kecacatan dalam versi perisian baru adalah kurang. Oleh

itu, usaha diperlukan untuk menunjukkan bagaimana ramalan kecacatan tahap kelas- dan

kaedah- boleh dicapai untuk versi perisian baru dan untuk membangunkan pendekatan

untuk memproses data kelas- yang sangat tidak seimbang dan tahap-kaedah yang tersedia

untuk ramalan kecacatan perisian. Untuk menangani isu-isu ini, pertama, rangka kerja

pra pemprosesan data dicadangkan untuk mengatasi beberapa cabaran yang berkaitan

dengan dataset perisian tipikal, contohnya, ciri-ciri tidak relevan dan berlebihan. Prosedur

keputusan optimum yang diawasi oleh mesin dan pembelajaran diikuti dalam pembangunan

kerangka kerja pra pemprosesan data ini, menghasilkan kelebihan utama bagi kaedah

bebas bias dan tahap kelas datasets. Kedua, satu kaedah untuk meramal bilangan kecacatan
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perisian dalam pelepasan produk yang akan datang dicadangkan menggunakan pemboleh

ubah ramalan yang diperoleh daripada pecutan kecacatan yang diperhatikan berdasarkan

kecacatan perisian yang sedia ada, iaitu, kepadatan kecacatan, kecacatan halaju dan masa

pengenalan kecacatan. Bilangan cacat dalam versi produk perisian semasa dicirikan

oleh pecutan kecacatan ini; Oleh itu, pembolehubah peramal yang diperolehi ini boleh

digunakan untuk membina model regresi untuk meramalkan bilangan kecacatan perisian

dalam versi baru. Eksperimen yang dijalankan pada 69 projek sumber terbuka ELFF Java,

mengandungi 131,034 kelas dan 289,132 kaedah, serta pada kumpulan NASA dataset,

yang mengandungi 10 projek Java dan C ++ yang berbeza dengan 22,838 kelas, dilaporkan.

Untuk menilai keberkesanan rangka kerja yang dicadangkan bagi pra pemprosesan data,

purata prestasi pengelasan untuk enam pengelas terkini yang terpilih sebelum dan selepas

pengolahan pra pemprosesan data telah disiasat dan dibandingkan di pelbagai projek

dengan ketidakseimbangan data antara kelas-kelas yang rosak dan cacat. Bagi kedua-dua

peringkat kelas dan kaedah, pengelas terkini yang dipilih, iaitu, naive Bayes, logistic

regression, neural network, K-nearest neighbors, support vector machine and random

forest, mencapai prestasi yang patut diberi perhatian apabila digunakan untuk dataset yang

diproses terlebih dahulu. Selain itu, untuk projek ELFF, keputusan di peringkat kelas dan

kaedah masing-masing menunjukkan koefisien korelasi sebanyak 61% dan 60% untuk

kepadatan kecacatan, -11% dan -4% untuk masa pengenalan kecacatan, dan 94% dan 93%

untuk halaju kecacatan (hasil yang konsisten juga diperolehi untuk dataset NASA, seperti

yang dibentangkan di bahagian hasil). Pendekatan yang dicadangkan ini boleh dijadikan

sebagai pelan tindakan bagi ujian program untuk meningkatkan keberkesanan aktiviti

pembangunan perisian.

Kata kunci: Mesin pembelajaran, kecacatan perisian, ramalan kecacatan, pra pemprosesan

data, halaju kecacatan.
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CHAPTER 1: INTRODUCTION

Software defect prediction involves building models to optimize performance standards

using historical data. Most often, these prediction models may not completely capture the

patterns present in the data, but useful estimates can nevertheless be obtained using these

models. Although these approximations may not provide all of the necessary information,

they can still aid in decision-making. In the context of software development, such data

can be acquired from available software repositories, such as the National Aeronautics

and Space Administration (NASA) and University of California Irvine (UCI) repositories

(Dheeru & Karra Taniskidou, 2017). Further actions such as preprocessing should then be

applied to these datasets to ensure that they are free from bias before they are used to build

prediction models. By applying such prediction models during software testing, software

companies can obtain a substantial amount of information regarding the number of defects

in an existing software product and investigate the factors that influence the number of

these defects. In the near future, if a new version of the existing software product is needed,

it would be desirable to apply the information obtained from the existing software product

to assist the software team in estimating the possible number of defects in the new version.

However, to achieve this objective, a reliable and efficient means of preprocessing the data

to achieve greater computing efficiency and better problem solving is needed, not only in

the software engineering community but also in other domains.

Almost all aspects of current economic growth (for example, banking, social media,

agriculture, health care, education, and transportation) involve the use of software tools

that rely on data and models. These software products depend on models that must be

trained using reliable datasets and are in high demand to aid organizations in their business

activities. Therefore, it is important to develop a means of adequately preprocessing
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the data used to train these models to achieve better model performance and overcome

some of the identified issues associated with the existing datasets. Some of these issues

include class imbalance, data heterogeneity, high skewness, privacy concerns, irrelevant

and redundant features, continuous data, collinearity among metrics, missing values and

noise in the data. If these datasets are not properly preprocessed, the prediction models will

produce misleading results at both the class and method levels of the software. Therefore,

this research attempts to address these inconsistencies associated with existing datasets

through an optimal decision framework that is capable of making datasets suitable for

use in defect prediction studies. An optimal decision in this context is a decision that can

lead to an optimal result in every phase of the proposed data preprocessing framework.

Furthermore, this study attempts to apply the preprocessed data obtained via the proposed

optimal decision framework in training models that can predict the numbers of defects

in a new version of a software product at both the class and method levels. Based on

the optimal decisions made, optimal derived variables, namely, the defect density, defect

velocity and defect introduction time, are identified during the implementation of the

proposed data preprocessing technique. These derived variables are found to have some

correlation with the number of defects in a software program.

Predicting the number of defects in software at both the class and method levels can

help to ensure that software testing receives the necessary attention within the software

engineering community. This is because defect prediction outcomes provide a software

team with an idea of the possible number of defects in an upcoming product release

prior to testing and thus can assist in the proper management of the available resources.

For this purpose, considerable efforts are still required in demonstrating how to predict

the number of software defects in a new product and in investigating the factors that

influence the number of defects in software at both the class and method levels. To this end,
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defect prediction provides advance information (i.e., prior information about the future)

concerning the possible number of defects that are likely to be present in a new software

product.

Information obtained from an existing software product can assist the software project

team in identifying defect-prone modules in the software system. In terms of cost, such

information can help the team to properly allocate the available resources to ensure their

effective utilization in quality assurance activities in an effort to deliver a high-quality

product to the end user. During software testing, additional effort may be required to

identify and correct the errors found in a software system, and such effort will incur an

additional cost. In such a case, the testing team may be faced with a lack of resources

for carrying out the required tasks. Therefore, it would be helpful to have an idea of the

possible number of defects likely to be present in a new version of a software product

before testing begins. Such prior knowledge on the possible number of defects can play

an essential role in assisting a software team in developing a reliable software product.

Through software defect prediction, the team can correctly identify the most defect-prone

software components and focus on reducing the number of defects likely to be present

in those components. Although conducting a software defect prediction study with the

aim of developing a reliable prediction model may require considerable amounts of time,

energy, and money as well as skilled research personnel, defect prediction remains one

of the most important means of improving software quality. To support the reliability

and effectiveness of defect prediction in software engineering, a reliable software defect

prediction technique is needed within the machine learning community.

To address this need for reliable software defect prediction models, previous studies have

made significant contributions to defect prediction. However, despite these contributions,

some controversies and limitations still exist regarding the existing defect prediction models.
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For instance, the quality of the historical data applied in defect prediction studies has been

a major concern, and related quality issues have led to numerous contradictory findings in

the field of machine learning (Xu et al., 2016). Consequently, the existing literature lacks

the following: (1) an approach for properly preprocessing the datasets applied in machine

learning studies and (2) a means of predicting the number of defects in a new version of a

software product. To address these gaps, this research focuses on (1) the quality of the

data applied in machine learning studies and (2) the prediction of the number of defects

present in a new version of a software product. The first phase of this research involves

investigating the literature to uncover existing issues that affect the quality of the data

applied in supervised machine learning studies; based on the findings, a framework is

proposed that offers a means of preprocessing both the class- and method-level datasets

applied in such studies. The second phase of this research also involves investigating the

literature to uncover means of predicting the number of software defects in a new software

version. On this basis, a technique is proposed for predicting the numbers of class- and

method-level defects using derived attributes, such as the defect density, defect velocity

and defect introduction time, obtained from the characteristics of the existing software

product at the class and method levels. The proposed solution is also applicable to module

level defects in a software program. Thus, this research addresses the need for a reliable

approach to resolve the data quality issues in defect prediction studies and to obtain prior

knowledge on the possible number of defects in a new software release. Such an approach

will assist software companies in decision-making. More specifically, it will assist software

testing teams in concentrating their efforts on the components with the highest predicted

numbers of defects, thereby saving resources during software testing while producing a

high-quality product with few defects, with the goal of remaining within the specified

budget and schedule constraints while delivering a reliable product to the end user. In the
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Software Development Life Cycle (SDLC), the testing phase typically consumes almost

half of the software budget. Therefore, the proposed approach can also be helpful for

reducing costs during the development of a new version of a software product, especially

during the software testing phase because of the expensive nature of this phase, which

requires more resources than other phases in the SDLC (Xu et al., 2016). The proposed

approach can serve as a blueprint for program testing to enhance the effectiveness of

software development activities.

The remainder of this section introduces the motivation for the research, the research

background, the problem statement, the research objectives, details on the proposed

solution and a statement on the research significance. Finally, the outline of the whole

thesis is presented.

1.1 Background

Often, defects in software systems can cost various organizations enormous amounts

of money and time in addition to causing disruption in human lives. These impacts

can even destroy the entire prospects of an organization by hindering its operations and

compromising its future. Many organizations have been greatly affected by financial loss

as a result of software defects. For instance, in 2004 and 2005, software defects caused the

UK Inland Revenue to issue tax-credit overpayments amounting to $3.45 billion. Between

2003 and 2004, the AT&T wireless service faced software defect problems that led to

a revenue loss of $100 million. The United States Internal Revenue Service suffered an

enormous loss of $4 billion in 1997 as a result of software defects. Furthermore, in 1994,

the United States Federal Aviation Administration faced a loss of $2.6 billion linked to its

advanced automation system. Also in 1994, Chemical Bank customers suffered a total loss

of $15 million to their bank accounts as a result of software error (Charette, 2005). Such

problems can be avoided by applying an effective defect prediction approach to improve
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the quality of software products, thereby protecting organizations from financial losses and

safeguarding the future of their businesses. However, developing a defect-free software

system is a difficult task because it requires considerable effort, time, and money as well

as a skilled software team. Although no software product is 100% free of defects, the

number of defects in a software system can be minimized to ensure that the system will

stand the test of time when it is deployed for its operational purpose. One of the means

to achieve a reliable software product with few or almost no defects is through defect

prediction. Defect prediction can provide a software team with prior information on the

possible number of defects likely to be present in a new version of a software product.

Such prior knowledge, if available, can enable the software team to restructure quality

assurance procedures towards reducing or even preventing the predicted defects.

Thus, software defect prediction helps to ensure that testing and debugging remain

in a fast-track mode by providing advance information on the number of faults that are

likely to be found in a new program. As discussed above, both stakeholders and software

companies may spend substantial resources repairing the damage caused by defects in

software products. The need for software defect prediction in software engineering is

driven by the importance of the proper use of available resources during software testing to

ensure that quality software products are delivered to users. If the developer fails to address

a problem early in the software development process, then that problem can become more

complicated, with a corresponding increase in cost in later phases. Conversely, if the

complexity is kept low, then the software can be more easily understood and modified

during its life cycle (Parthipan et al., 2014).

To ensure that software stakeholders make good decisions about future programs

and properly allocate resources to software projects, a prediction model must provide

managers with practical and actionable outputs (Caglayan et al., 2015). Currently, software
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companies apply a series of previously proposed techniques or custom approaches for

predicting software defects. However, software companies continue to face unexpected

faults that could have been revealed during the initial stages of development if suitable

prediction practices had been implemented. Therefore, detecting fault-prone software

components as early as possible can enable software experts to remain focused and to direct

their resources towards addressing possible issues that may arise in a software system that

is yet to be developed (Ma & Cukic, 2007). The metrics used early in the SDLC, such as

the expected project size and speed, can play a significant role in project management by

helping to reduce the defect density of a software product; specifically, these metrics can be

used to determine whether increased quality monitoring is necessary during development.

They can also be used in the planning of verification and validation activities if properly

applied (Jiang et al., 2007). Furthermore, it is essential to consider the cost and benefits of

predicting the number of software defects before program testing starts. If the quantitative

cost of a prediction is not assessed first, then poor prediction results may be obtained.

Furthermore, inappropriate resource allocation strategies can significantly increase the

testing effort (Monden et al., 2013).

1.2 Problem statement

In line with the information provided in the previous section, this section presents the

problems this research attempts to address. Notably, several previous empirical studies

on software defect prediction have been conducted, for instance, by Brecher et al. (1996),

Karayiannis et al. (1999) and Ghunaim & Dichter (2019). These studies have proposed

defect prediction models with a focus on binary defect classification. However, despite

the remarkable achievements reported in machine learning studies, the quality of the data

applied in defect prediction studies has been a major concern, and related quality issues

have led to numerous contradictory findings in machine learning studies (Xu et al., 2016).
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In addition, a demonstrated approach for predicting the possible numbers of defects in

software at both the class and method levels is lacking. Consequently, software companies

still face challenges posed by software defects despite the remarkable achievements made

in defect prediction studies. Thus, considerable efforts are still needed to develop an

acceptable data preprocessing approach and a prediction model for software engineering

that can address the challenges highlighted above. Moreover, it has yet to be demonstrated

how optimal real-time metrics such as the defect velocity can be used not only to construct

models to predict the possible number of software defects in a new product release but

also to aid in the preprocessing of datasets applied in machine learning studies.

Obviously, studies on predicting the number of possible software defects in a new

software version are lacking. In addition, the existing data preprocessing techniques, as

reported, for instance, by Ryu et al. (2015), D. Zhang et al. (2015) and Bae & Yoon (2015),

have not fully addressed the key data-related issues encountered in machine learning studies.

Hence, an applicable data preprocessing framework as well as software defect prediction

models are needed in the machine learning community to aid in the decision-making

process. To address this need, this research presents a data preprocessing framework and

proposes a method of predicting the number of software defects in a new software version.

Finally, to ensure fair and accurate results in machine learning studies, this research presents

a suitable data preprocessing approach to enable the accurate identification of the defects

present in a dataset before the application of learning algorithms. The proper preprocessing

of imbalanced datasets can assist in ascertaining the effects of data inconsistencies on

classifier performance for the defect-free (majority) class, the defective (minority) class,

or both (Chawla et al., 2004). Existing studies on defect prediction have been faced with

various challenges and consequently have yet to demonstrate an acceptable approach

for properly preprocessing the data applied in defect prediction studies. In addition,
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this research also aims to show that the preprocessing of data is an essential phase of

machine learning research. Specifically, data preprocessing should be carried out before

the construction of learning algorithms to obtain reliable input datasets (Haixiang et al.,

2017). Therefore, it is also important to gain an understanding of some of the issues

associated with the existing datasets and propose means to address these data-related issues.

These issues are discussed in Chapter 2. To clarify the above research problem, several

research questions (RQs) have been formulated, as discussed in section 1.4.

1.3 Motivation

This section presents the motivation for this research work and a set of facts supporting

this motivation. Data preprocessing is said to be the most challenging task in defect

prediction studies and is a time-consuming exercise (Munková et al., 2013; F. Rahman

et al., 2013; Gray et al., 2011). It is also an essential part of a defect prediction study

(Agrawal & Menzies, 2018). Therefore, the importance of data preprocessing underscores

the need for techniques that can ensure the reliability of the datasets used in defect

prediction studies. Usually, the exact number of defective modules in an existing dataset is

difficult to accurately determine, but through data preprocessing, accurate reporting of the

details regarding the number of defects and inconsistencies in the data can be recorded.

Consequently, researchers are encouraged to spend sufficient time on data preprocessing

to ensure that their studies yield unbiased outcomes. Researchers also need to report in

more detail the steps they follow when preprocessing the datasets used in their studies;

such detailed reports may lead to knowledge discovery (Shepperd et al., 2013).

This study is motivated by the need to create a step-by-step and easy, but practical,

optimal decision-making procedure for data preprocessing. The goal is to ensure that

datasets are accurately cleaned before they are applied in machine learning studies. The

proposed approach can be applied to various datasets used by different organizations and for
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different purposes. First, the proposed approach ensures that every dataset undergoes the

same preprocessing stages before it can be considered unbiased. The proposed approach

includes a filter-based feature selection phase, in which only relevant features are selected

from among the features present in the datasets. This phase ensures that redundant

features are eliminated and that only features with high predictive power are selected.

The predictive power of each selected feature is determined by applying a feature scoring

method. Second, each dataset is visualized to determine the number of outliers it contains.

Outliers are automatically removed from each dataset using widgets provided in Orange

2.7 (Demšar et al., 2013). This ensures that only clusterable data are used throughout the

experiment. Thereafter, a unique identifier is assigned to each inlier in each dataset for

further preprocessing; both target classes in the datasets are then thoroughly preprocessed

with an input space created to recapture unreported faults. Via this proposed approach, a

researcher can properly ensure that the datasets applied in a machine learning study are

free from bias. In addition, a proper evaluation of the average performances of various

classifiers on imbalanced data can be conducted.

The proposed decision-based data preprocessing approach is expected to enable some

learning algorithms to independently and accurately learn from properly preprocessed

imbalanced data while still generating suitable classification results, thus allowing them

to maintain their average performances. In addition, these classifiers should be able to

make optimal classification decisions based on training conducted using the preprocessed

data and thus produce optimal outputs. Again, unlike for several previously reported

studies, the motivation for this study is not to improve model performance. Rather,

this research is motivated by the need to ensure that learning models are trained using

reliable datasets to avoid bias and misclassification in defect prediction studies. If not

addressed, misclassification often leads to consequences that incur high costs (Chawla,

10

Univ
ers

iti 
Mala

ya



2009; Van Hulse et al., 2007). To reduce costs while achieving unbiased results in a defect

prediction study, it is advisable to apply clearly specified procedures such as those of

the approach proposed by Doppa et al. (2014). Various data preprocessing methods and

frameworks have been proposed to address imbalance issues, as reported by Saleem et al.

(2014), Beckmann et al. (2011), Iliou et al. (2015), Gray et al. (2012), and Shepperd et al.

(2013). In this regard, the researcher would like to acknowledge the contributions made

by the existing frameworks that have been proposed to solve data imbalance problems,

such as the framework of Menzies et al., the framework of Lessmann et al. (2008) and

the framework of Q. Song et al. (2010). However, Wahono (2015) takes a contrary

view, arguing that these frameworks produce misleading findings while addressing the

issues associated with data inconsistencies. In addition, none of these studies has clearly

demonstrated how to accurately pinpoint and record the identifiers of defective modules or

the number of outliers present in a dataset or how to address the inconsistencies in the

existing datasets. This research offers such an approach based on an optimal decision

framework that can be replicated by other researchers. By so doing, better results can be

achieved. A new approach is needed for data preprocessing to achieve greater computing

efficiency and improve problem solving in organizations. When properly applied, the

proposed approach is expected not only to overcome the challenges faced in assessing the

average performances of learning algorithms but also to reduce the level of bias in the data

applied in machine learning studies (Stefanowski, 2016).

In this study, it is hypothesized that when the proposed approach is used, not all

learning algorithms will suffer significant degradation in performance when applied to

data that are imbalanced at both the class and method levels. Hence, some classification

algorithms are expected to be able to maintain their average performance while learning

from imbalanced data by virtue of a decision-making approach that can enable these
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algorithms to independently and accurately learn from imbalanced data such that they can

generate suitable classification results. In addition, these classifiers should be able to make

optimal classification decisions such that they will produce optimal outputs.

To reduce costs while achieving unbiased results in a defect prediction study, it is

advisable to apply clearly specified procedures when performing such a study (Doppa et

al., 2014). As mentioned earlier, it is necessary to predict the possible number of defects

likely to be present in a new software product before testing such a product. To achieve

this objective, the data applied in such a prediction study require proper cleaning to enable

learning algorithms to generate accurate predictions, with no bias due to the quality of the

data used in training and validating the prediction models.

At present, there is no generally accepted data preprocessing framework or technique

for addressing the current data-related issues facing the machine learning community. In

addition, studies on predicting the potential number of software defects likely to be present

in a new version of a software product are lacking. Consequently, software companies

continue to suffer from the effects of software defects despite the remarkable achievements

made in defect prediction.

In this study, it is hypothesized that the choice of the metrics used for prediction also

influences the prediction results. Based on this hypothesis, an optimal decision procedure

is proposed to carefully select certain metrics that are mathematically derived based on

specific relationships with the numbers of defects present at the class and method levels

in a software program. These metrics are defined as follows: the defect density g is the

ratio of the number of defects to the project size, and the defect velocity v is the rate of

change in the defect position with respect to time t. Here, the time represents the defect

introduction time. These metrics, which have not previously been applied in research

on software defect prediction, are chosen as predictor variables. As reported by Felix &
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Lee (2017b), the defect density of a software project depends on the rate at which defects

occur, and these derived variables can be used to produce optimal results due to their

correlation with the numbers of defects in software at both the class and method levels,

which further indicates that the number of defects is a function of the defect acceleration.

Another reason for selecting these metrics is to produce cost-effective practical outputs of

software defect prediction for managers and development teams. Given the chosen metrics,

a simple modeling technique is needed to evaluate their influence on the number of defects

in an upcoming product release and to confirm their optimal output. As noted earlier, no

previous study has considered these predictor variables for predicting the number of defects

in a software product. Therefore, this study aims to investigate how the derived metrics

selected through the proposed optimal decision procedure can be applied in software defect

prediction during the software development process. The proposed modeling technique

is based on the relationship between the number of defects and the defect density as a

function of the defect acceleration. This technique is further explained in Chapters 3 and

4. These carefully selected metrics (for example, the defect velocity) can influence the

outcome of any prediction study because these metrics show a strong positive correlation

with the number of defects, thus making them optimal variables. Such careful selection

has the potential to improve prediction outcomes (Laradji et al., 2015). Therefore, it is

hypothesized that these carefully selected variables will enable significant and optimal

outcomes in predicting the number of defects in a new product release as well as in cleaning

both class- and method-level datasets applied in supervised machine learning studies.

Finally, the motivation for this research can be summarized as follows:

1. The need to gain an understanding and in-depth knowledge of the existing defect

prediction models used in supervised machine learning studies.

2. The need to contribute to the existing data preprocessing techniques to enhance the
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quality of the data applied in defect prediction studies.

3. The need to determine the average accuracy of the learning algorithms applied in defect

prediction.

4. The need to investigate the influence of the chosen derived variables, namely, the defect

velocity, defect density and defect introduction time, and their correlations with the number

of defects in a software product at the class and method levels.

5. The need to apply the information obtained from a current software product to predict

the number of software defects in a new version of that software product.

1.4 Research questions

Now that the problem that this study is attempting to address has been described, the

following research questions are formulated as follows.

RQ1. How do researchers perform and report the techniques applied during data prepro-

cessing?

RQ1.1 Do the reported data preprocessing techniques satisfactorily address data inconsis-

tency issues?

RQ1.2 Does a generally accepted data preprocessing technique exist?

RQ1.3 To what extent do the existing data preprocessing techniques offer suitable solutions

for data preprocessing?

RQ2. How is the performance of existing prediction models?

RQ2.1 Do classifiers exhibit degradation in their average performance as a result of

imbalanced data?

RQ2.2 Does data imbalance result in unfair and inaccurate evaluation outcomes?

RQ2.3 Do classification algorithms learn independently from imbalanced data?

RQ3. How do supervised classification algorithms perform on average when applied to

raw and preprocessed imbalanced data?
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RQ3.1 Do certain supervised classification algorithms outperform others on average when

applied to imbalanced data?

RQ3.2 How does class imbalance result in biased outcomes from supervised learning

algorithms?

RQ3.3 To what extent do supervised classification algorithms maintain their average

information entropy when applied to imbalanced data?

RQ4. How do the derived optimal predictor variables aid in data preprocessing and

influence the number of defects in a software project?

RQ4.1 How does the defect velocity impact the number of software defects?

RQ4.2 Does the defect density influence the number of software defects?

RQ4.3 Does the defect introduction time impact the number of software defects?

To provide answers to the above research questions, the objectives of this research are

formulated in the following section. The formulated research questions are aligned with

the research objectives, which are explicitly defined in the next section.

1.5 Research objectives

It is very important to provide the software engineering community with a cost-effective

but efficient framework that can enhance the quality of the data applied in various su-

pervised machine learning studies. Such a framework could also serve as a guide for

researchers when carrying out data preprocessing. In addition, it is important to consider

numerous evaluation metrics when determining the performance of the learning algorithms

applied in machine learning studies. This is because only a few metrics may not provide a

sufficiently detailed assessment of the algorithm performance. Learning algorithms can

be properly assessed through an optimal decision approach that accounts for numerous

performance metrics. The results thus obtained can also serve as an acceptable measure of

the average classifier performance, unlike an assessment using fewer evolution metrics.
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There is also a need to identify an ideal optimal variable that can assist both researchers and

software practitioners in software testing. Such an optimal variable, when derived, should

be capable of revealing the rate at which software defects occur in a software project. As

presented above, the existing research gives rise to numerous research questions that need

to be addressed in the current study. Therefore, this study focuses on providing solutions

that attempt to address these research questions as well as the problems at hand. The

objectives of this research are summarized as follows:

RO1. To investigate existing issues associated with the highly imbalanced and erroneous

class- and method-level datasets applied in supervised machine learning.

RO2. To investigate the performance of existing prediction models while identifying

the existing approaches and techniques applied during data preprocessing to address the

identified data-related issues at the class and method levels.

RO3. To propose a framework for preprocessing as well as a technique for predicting

the numbers of class- and method-level defects in a new software version using derived

optimal variables.

RO4. To evaluate the proposed data preprocessing framework as well as the class- and

method-level defect prediction technique based on the accuracy, precision, standard error,

information score, recall and entropy (level of uncertainty).

1.6 Mapping of research objectives and questions

To achieve these research objectives, the research questions are further clarified as

follows:

RQ1. One of the objectives of this research is to propose a cost-effective and efficient

framework for improving the quality of the data applied in machine learning studies.

Therefore, it is necessary to investigate how other researchers perform data preprocessing
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and how they report their approaches. There is a need to properly aggregate all clear

evidence on the methods and techniques applied when preprocessing the data used in

machine learning studies. Therefore, RQ1 is formulated to probe this evidence and ensure

proper reporting of the aggregated findings. The results achieved by investigating the

available evidence regarding the applied data preprocessing techniques and methods can

lead to meaningful answers to this research question.

RQ1.1. Data quality issues within the machine learning community have attracted

considerable attention. Although the existing research studies have proposed various

techniques that can be implemented to address issues of data quality and inconsistency,

these issues ultimately remain unsolved. Consequently, the outcomes of several research

studies have been challenged as a result of the inconsistent nature of the data applied; it

can thus be inferred that as a result of data quality issues, the results presented by most

research studies are questionable. Therefore, it is necessary to investigate whether the

reported data preprocessing techniques satisfactorily address data inconsistency issues.

Accordingly, RQ1.1 is formulated to investigate data inconsistency issues and possible

measures to address them.

RQ1.2. Obviously, there is an urgent need for an accepted data preprocessing framework

and techniques that can serve as a benchmark for data cleaning in machine learning studies.

Such a framework and techniques could also serve as a blueprint for the preprocessing of

data within amachine learning environment. Despite the remarkable achievements that have

been accomplished in machine learning studies, a generally accepted data preprocessing

framework and related techniques are lacking. One objective of this research is to address

this lack. In line with this objective, RQ1.2 is formulated to properly investigate the

existing literature to uncover whether any generally accepted data preprocessing framework

or technique exists.
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RQ1.3. This research question focuses on identifying all necessary and available data

preprocessing techniques in the literature and the corresponding data issues they address.

This research question is expected to aid in the collection of a convenient set of data

preprocessing techniques that can be applied to address data issues while performing data

cleaning.

RQ2. Another objective of this research is to investigate the performance of the

existing prediction models. This research question is formulated to assist in gaining a

broader understanding of the work being carried out by other researchers with regard to

the performance and accuracy of the existing defect prediction models. After a proper

investigation of the above issues, this research question will enable us to draw logical

conclusions regarding the performance and accuracy of the existing learning algorithms.

RQ2 is divided into three subquestions: RQ2.1, RQ2.2, and RQ2.3.

RQ2.1. This research question is formulated to drive an in-depth investigation of the

characteristics of the learning algorithms investigated as part of RQ2. Furthermore, RQ2.1

enables the accurate assessment of the average performances of these learning algorithms

when applied to imbalanced data. The results achieved in the course of this investigation

can yield logical conclusions regarding the average performances of the learning algorithms

applied in various machine learning studies. The related outcomes can also lead to a

further probe of the average performances of classification algorithms when applied to

imbalanced data.

RQ2.2. This research question is formulated specifically to investigate whether the

classification outcomes of learning algorithms are biased as a result of data imbalance.

Since the outcomes and performance of a prediction model depend on the quality of the

data applied in model training, there is a need to conduct an in-depth investigation of the

learning outcomes and behaviors of classification models trained on imbalanced data.
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RQ2.3. The aim of this research question is to encourage researchers performing machine

learning studies to conduct a proper investigation of the self-reliance of learning algorithms

when learning from imbalanced data. Although learning algorithms are typically expected

to learn accurately and independently, there could be instances in which certain factors

may hinder this capability; in particular, such a factor could result from inconsistencies in

the dataset. Corresponding findings regarding the independence of learning algorithms

can lead to rational conclusions concerning this issue.

RQ3. This research question guides an attempt to determine the average performance

of classification algorithms when applied to imbalanced data. Although several studies

have argued that the learning of classification algorithms may be biased as a result of

data imbalance, others take a different view. Here, it is argued that class imbalance itself

does not have a significant effect on the outcomes and average performance of learning

algorithms; rather, what should be of major concern is the process used to clean the datasets

(that is, data preprocessing). To strengthen this argument while providing answers to this

specific research question, an empirical investigation is conducted to determine whether

class imbalance has a major impact on the performance of learning algorithms.

RQ3.1. This research question is formulated to investigate whether certain classification

algorithms outperform others in the same learning environment when trained using

imbalanced data. The accuracy of a classification algorithm depends on the quality of

the data used for model training. However, more broadly, there is a need to properly

investigate whether certain classification algorithms outperform others when applied to

imbalanced datasets. The findings from this investigation will assist in the reporting of

the performances of certain classification algorithms compared to others in the same

classification environment. The findings can also yield logical conclusions regarding the

individual performances of different learning algorithms.
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RQ3.2. Although some previous studies have reported that classification algorithms are

biased due to the imbalanced nature of the datasets applied in machine learning studies,

it is necessary to properly investigate these claims. RQ 3.2 is therefore formulated to

guide this investigation and provide clear evidence regarding the bias, if any, of learning

algorithms applied to imbalanced data.

RQ3.3. The ability to maintain the average information entropy among the learning

algorithms also relies on the quality of the data applied in training these algorithms.

However, if some learning algorithms can maintain their average performance when

applied to imbalanced data, such algorithms can also be expected to maintain their average

information entropies when applied to imbalanced data. It is necessary to accurately

ascertain whether some classification algorithms can maintain their average information

entropies when learning from imbalanced data. Therefore, RQ3.3 is formulated to support

a proper investigation regarding the average information entropies of learning algorithms.

The resulting findings can assist in inferring the information entropies of various learning

algorithms.

RQ4. To achieve the objectives of the current study, it is necessary to investigate

whether and how the derived variables obtained through the approach proposed to address

this research problem influence the number of defects in a software project. Hence, RQ4

is formulated to aid in this assessment. The corresponding findings will help to establish

facts regarding the influence of these derived variables and their relationship with the

number of defects in a software project.

RQ4.1. This research question is formulated to investigate how the defect velocity can

impact the number of software defects. The defect velocity, as one of the derived variables

of interest, is investigated to determine its relationship with the number of defects in a

software project.
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RQ4.2. This research question is formulated to support the investigation of the impact of

the defect density on the number of software defects. A clear relationship exists between

the defect density and the number of defects in a software project, and this relationship

must be properly investigated. Thus, we formulate RQ4.2 to aid in this investigation. The

findings will assist in reporting the relationship between the defect density and the number

of software defects.

RQ4.3. As a software project moves from one phase of the SDLC to another, opportunities

may arise for a defect from one phase to be carried through to another along with the

project transition. The times at which these defect transitions occur may impact the

resulting number of defects. Therefore, it is also necessary to investigate whether the

defect introduction time influences the number of software defects. RQ4.3 is formulated to

guide this investigation.

To clearly show the relationship between the research objectives and the research questions,

it is convenient to present a table that shows the mapping between the research objectives

and the research questions as well as the phases of the research methodology in which

these research objectives and questions are achieved and addressed, respectively. Table 1.1

shows this mapping relationship.

Table 1.1: Mapping of research objectives and questions with the corresponding
phases of the research methodology
Research Objectives Main Research Questions Subquestions Research Methodology Phases

RO1 RQ1
RQ1.1
RQ1.2 Literature Review
RQ1.3

RO2 RQ2
RQ2.1
RQ2.2 Proposed Approach
RQ2.3

RO3 RQ3
RQ3.1
RQ3.2 Evaluation and Analysis
RQ3.3

RO4 RQ4
RQ4.1
RQ4.2 Evaluation and Analysis
RQ4.3
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1.7 Proposed solution

One of the expected outcomes of this research work is to propose a cost-effective

and efficient data preprocessing framework to enhance the quality of the data applied in

supervised machine learning studies. To achieve this aim, it is necessary to make an optimal

decision that can lead to the actualization of the above objective. Such an optimal decision

approach is also expected to be advantageous to the machine learning community. First,

to address the key data-related issues in software defect prediction, a framework for data

preprocessing is proposed in this study to address some of the challenges associated with the

relevant datasets. An optimal decision procedure is used to design this data preprocessing

framework, resulting in a prime advantage in ensuring effective data preprocessing. To

evaluate the effectiveness of the proposed framework, this study investigates the average

classification performances of several selected state-of-the-art classifiers across multiple

projects with data imbalances between the defective and defect-free classes.

Second, to demonstrate a method of predicting the numbers of class- and method-level

defects in an upcoming product release, the proposed framework is used as a basis to

present such a method that relies on predictor variables derived from the defect acceleration,

namely, the defect density, defect velocity and defect introduction time. These derived

variables are then used to construct models that can predict the number of defects in a new

product release.

1.8 Research scope

As defined by the standards set by the Software Engineering Body of Knowledge

(SWEBOK) (Bourque et al., 2014) and the international standard ISO/IEC TR 19759:2005

(Seidman, 2008), the five main phases of the SDLC are requirements engineering, software

design, software construction, software testing, and software maintenance. This research

aims to support the software testing phase.
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Software testing is an important phase of the SDLC that is carried out to find defects in

a software program under development. For this reason, the ability to predict the presence

of defects at both the class and method levels prior to testing will greatly assist the software

team in optimizing their test efforts to improve software quality. To achieve reliable

defect prediction outcomes, this research is driven by possibilities within the domain of

supervised machine learning, which consists of regression and classification. Hence, the

scope of this research revolves around these two phases of supervised machine learning.

Figure 1.1 presents the components of the supervised machine learning process, which is

the scope of this research. These components include regression, classification, the input

datasets, the training set, the test set, the learning algorithms/predictive models and the

output.

Figure 1.1: Scope of research

Regression: Regression analysis is an analytical approach for predicting the relation-

ships between dependent and independent variables (Montgomery et al., 2012). Every

supervised machine learning task includes some aspect of regression; in this research,

linear regression models are applied to achieve certain prediction tasks, for instance, to

predict the numbers of class- and method-level software defects. For the sake of achieving

the objectives of this research, such regression models enable the researcher to draw
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meaningful conclusions from the available evidence, allowing the possible number of

defects in a new software version to be predicted. More details on regression models are

provided in Chapters 3 and 4.

Classification: Supervised machine learning classification depends on the ability of

models to accurately identify the target class to which a given element of a group belongs.

In this context, an element refers to an observation based on the training data. For instance,

a dataset may contain sets of observations with known classes, categories or labels, which

may be defective or defect-free. However, if a new set of data that is independent of the

initial training set is required to be classified into the defective and defect-free categories,

a classification algorithm will be required to perform this task in the context of supervised

machine learning. The behavior of such a learning algorithm for this task is determined

by the initial data used to train it. Hence, one objective of this research is to implement

such algorithms to accurately determine how they perform when trained on preprocessed

training datasets, in comparison with their performance when trained on raw or unprocessed

datasets. Further details regarding classification algorithms and their performances are

provided in Chapters 3 and 4, respectively.

Input datasets: In this research, an essential concern is the quality of the input datasets.

The quality of the datasets applied inmachine learning studies cannot be ascertained because

existing studies have not fully reported how such datasets are cleaned or preprocessed.

Therefore, further studies are required not only to summarize the relevant data quality

issues but also to clarify the detailed approaches applied to address the inconsistencies

associated with existing datasets applied in machine learning studies. Furthermore, it is

important to note that the outcomes of prediction models depend on the quality of the data

used (Montgomery et al., 2012). Both classification and regression models for supervised

machine learning depend solely on high-quality data to ensure accurate performance. As
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such, the datasets applied in machine learning studies must be free from bias to avoid

misleading research findings. One of the objectives of this research is to propose a practical

and cost-effective framework to aid in data preprocessing for machine learning studies.

Test dataset: Although the test data are different from the training data, as much

attention should be accorded to the quality of the test data as to the quality of the training

data because the outcomes of learning algorithms are usually tested or verified using

separate test datasets. Learning algorithms are trained using unbiased training datasets;

then, after training, test datasets are applied to ascertain the algorithm performance. The

datasets used for training and testing must be independent of each other to avoid model

overfitting, which can result in misleading research findings. To avoid this, it is important

to separate the training data and the test data. Such separation is also applied in this

research to ensure accurate research findings.

Learning algorithms: In machine learning, learning algorithms are the predictive

models that are responsible for performing prediction tasks based on the training received.

As noted earlier, for these learning algorithms to produce reliable results, the quality of the

datasets used is the fundamental influencing factor. The list of learning algorithms applied

in this research is presented in Chapter 5.

Output: For a supervised machine learning process to be complete, an output is

expected. Since supervised machine learning models rely on input data, the output is

usually determined based on test data, as discussed in the previous subsection. Therefore,

the output of a supervised machine learning process is the prediction result obtained based

on the quality of the input data, which is validated using test data.

1.9 Research significance

There are several concerns regarding the quality of the datasets applied in machine

learning studies, as well as the lack of a demonstrated approach for predicting the numbers
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of defects in software at both the class and method levels. This research therefore offers a

solution to address these data quality issues as well as a demonstration of how the possible

number of defects in a new software version can be determined prior to testing. In this

way, adequately preprocessed datasets suitable for predicting the number of defects in a

new version of software at both class and method levels can be obtained, and the factors

that influence the number of defects in a software product can be identified during data

preprocessing.

In this study, an investigation of the existing literature confirms that the existing datasets

are inconsistent and erroneous in nature. Given this scenario, an optimal decision framework

is proposed for implementation in machine learning studies for data preprocessing. In

addition, there is a need to properly evaluate the average performance of the learning

algorithms applied in machine learning studies; hence, numerous evaluation metrics are

applied in this study to evaluate the average classification performance across the different

target classes in a dataset, i.e., the majority and minority classes. Such an evaluation

will produce more reliable and accurate results regarding the performance of the learning

algorithms applied in machine learning studies. Through this approach, software teams can

properly allocate the available resources for software projects. By means of the proposed

optimal decision framework, several predictor variables are identified that can be used

to construct regression models that can then be used to predict the number of software

defects. These new predictor variables will exert a meaningful influence on the number of

defects present in a new software release.

The significance of this research can be summarized as follows:

1. Provide a cost-effective means of preprocessing the class- and method-level datasets

applied in machine learning studies, which can be applied not only to software-related

data but also to data from any sector of the economy.
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2. Provide cost-effective prediction models.

3. Provide an approach that can assist in analyzing complex data and delivering faster and

more accurate results.

4. Provide techniques that can assist software managers in making better decisions.

5. Provide a framework that can serve as a practical tool for software testing teams.

6. Enable better resource allocation by software companies.

7. Open up new directions of research.

If an acceptable technique for data preprocessing and defect prediction can be developed,

it will provide a practical means of relieving the worries faced when building models for

software defect prediction and also bring an end to the concerns regarding the quality of

the data applied in defect prediction studies.

1.10 Thesis outline

The remainder of this thesis is organized as follows:

Chapter 2 presents a literature review. Chapter 3 describes the methodology. The

proposed approach is presented in Chapter 4. Chapter 5 explains the evaluations of and

experimentation with the proposed modeling approach. Chapter 6 reports the results and

offers relevant discussions. Chapter 7 presents the conclusions and directions for future

work. The organization of the thesis is summarized in Figure 1.2.
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Figure 1.2: Thesis organization
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CHAPTER 2: LITERATURE REVIEW

This chapter presents previous work related to data preprocessing, binary defect

prediction and classification models as well as work done on predicting the numbers

of defects in a new software version at both the class and method levels. A rigorous

literature review is undertaken to provide a clear understanding of the approaches to

data preprocessing and the performance of the existing learning algorithms as well as

to investigate the approaches applied to improve algorithm performance. In addition, to

aggregate clear evidence regarding the data preprocessing techniques available in the

existing literature, studies related to data preprocessing are investigated to reveal several

relevant data-related issues as well as the approaches applied to clean the datasets before

using them in supervised machine learning studies. Proper reporting of data cleaning

procedures is needed to possibly reveal new knowledge that will enhance the learning

outcomes in machine learning studies. Through the rigorous review performed in this

research, lists of several relevant studies that have attempted to address some of the

identified data-related issues are presented. Finally, the existing literature is investigated to

determine whether there is any existing approach for determining the number of defects

in a new software product release that emphasizes the optimal real-time variables that

influence the number of defects found in software products.

The lack of a generally acceptable means of preprocessing data applied in machine

learning studies in the existing literature remains a crucial concern. Data preprocessing is

performed before the construction of learning models to prepare reliable input datasets

(Haixiang et al., 2017). As an unavoidable phase of machine learning studies, data

preprocessing requires the understanding, identification and specification of data-related

issues as well as a knowledge-based approach that can be used to address these issues
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and, thus, make data more reliable for use in machine learning studies (S. Zhang et

al., 2003). Notably, there is clear evidence that data preprocessing can impact the

predictive performance of learning algorithms (Crone et al., 2006). If data are properly

preprocessed, researchers can accurately identify and report the number of defects found

in their data, thereby making their datasets more suitable for enabling learning models to

learn independently and accurately from unbiased data to produce reliable results. The

credibility of defect prediction is one factor influencing data quality (Hall et al., 2012;

Liebchen & Shepperd, 2016; Hosseini et al., 2016; Hosseini, Turhan, & Mäntylä, 2017).

In addition, the performances of the prediction models themselves consistently depend on

the quality of the data used to train them. Such models are trained using historical data to

identify defect-prone software modules (Tantithamthavorn et al., 2018).

Fan & Bifet (2013) noted that the quality of the data that can aid in decision-making

remains a challenge and that such data quality issues have led to controversial conclusions

in software engineering. Therefore, to address these data quality issues, the researcher has

identified a list of challenges associated with existing datasets that require urgent attention

in the machine learning community. The identified data-related issues are discussed in the

following section.

2.1 Data quality issues in supervised machine learning

There are several concerns regarding the quality of the data applied in defect prediction

studies. Obviously, the use of erroneous training datasets can lead to poor models and

biased prediction results, and any research findings based on such erroneous data will

continue to receive criticisms. Thus, the use of erroneous datasets in defect prediction

studies has become a cause of great concern. The identified issues related to the existing

datasets include class imbalance, data heterogeneity, high skewness, privacy concerns,

irrelevant and redundant features, continuous data, collinearity among metrics and noise in
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the data. Hosseini, Turhan, & Gunarathna (2017) also confirmed that these issues remain

major challenges in software defect prediction studies and must be addressed without delay.

2.1.1 Class imbalance

One of the major characteristics of the existing datasets is class imbalance, which can

be defined as a difference in data volume between the categories into which data are to be

classified (Chawla, 2009). Class imbalance can also be regarded as a situation in which the

number of defective (minority) instances and the number of defect-free (majority) instances

in a project are not equal. Class imbalance in a dataset can affect the performance of

classification algorithms, potentially leading to unfair and inaccurate evaluation outcomes

when traditional assessment techniques are applied (Galar et al., 2012; H. He & Ma, 2013;

Stefanowski, 2016; Van Hulse et al., 2007). Although approaches for overcoming the

challenges posed by data imbalance have been proposed in many previous studies, such as

those of G. E. Batista et al. (2004), Lusa et al. (2010), Błaszczyński & Stefanowski (2015),

Branco et al. (2015), Chawla (2009), Galar et al. (2012), H. He & Garcia (2009), H. He

& Ma (2013), Japkowicz & Stephen (2002), Stefanowski (2016), Y. Sun et al. (2009),

Van Hulse et al. (2007), Schapire (1990), Wolpert (1992), Breiman (1996), Breiman (2001),

Herbold (2013), Y. Ma et al. (2012), V. García et al. (2012), P. Yang et al. (2009), H. Cao

et al. (2013), Q. Li et al. (2013), Anand et al. (2010), and Galar et al. (2013), the issue

of imbalanced data in machine learning studies still remains unresolved. In some of the

primary studies selected in this literature review, such as those of L. Chen et al. (2015),

Ryu et al. (2016), Kamei et al. (2016), Ryu et al. (2017), Nekooeimehr & Lai-Yuen (2016),

H. Cao et al. (2014), J. Li et al. (2017), Yun et al. (2016), D. Zhang et al. (2015), Zhai et al.

(2017), Chetchotsak et al. (2015), Menardi & Torelli (2014), Das et al. (2015), Kumar et al.

(2014), D’Addabbo & Maglietta (2015), Z. Sun et al. (2015), Ha & Lee (2016), Krawczyk

et al. (2014), Cateni et al. (2014), Dubey et al. (2014), Díez-Pastor et al. (2015), P. Cao
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et al. (2014), Sáez et al. (2015), J. Song et al. (2016), and Jian et al. (2016), resampling

techniques, which involve repeatedly drawing samples from a given dataset, have been

applied to address this problem. In addition, reweighting has been applied in previous

studies, such as those of Ryu et al. (2016), X. Jing et al. (2015), and Ryu et al. (2017), to

address the imbalance problem. Ryu et al. (2015) applied a selective learning technique to

address the issue of imbalanced data.

Data imbalance appears to be a natural phenomenon. Therefore, software defect

prediction studies should focus more on data preprocessing than on balancing existing

datasets. This is because the use of well-cleaned and preprocessed data will lead to

reliable prediction outcomes, whereas using noisy and erroneous data will result in biased

outcomes (Tantithamthavorn et al., 2015; Saleem et al., 2014; Petrić et al., 2016; Iliou et

al., 2015; Gupta & Gupta, 2017; P. He et al., 2015). Several studies have proposed methods

of overcoming the class imbalance problem (G. E. Batista et al., 2004; Lusa et al., 2010;

Błaszczyński & Stefanowski, 2015; Branco et al., 2015; Chawla, 2009; Galar et al., 2012;

H. He & Garcia, 2009; H. He & Ma, 2013; Japkowicz & Stephen, 2002; Stefanowski,

2016; Y. Sun et al., 2009; Van Hulse et al., 2007). However, binary defect classification

studies continue to grapple with issues related to imbalanced data. In these studies, the

classifiers are typically biased toward the majority class and fail to accurately classify the

minority class (H. He & Ma, 2013; Stefanowski, 2016; Krawczyk et al., 2014; Weiss &

Provost, 2003).

To achieve better classification on imbalanced data, Ohsaki et al. (2017) proposed

a confusion-matrix-based kernel logistic regression (LR) method with the objective of

increasing the harmonic means of certain evaluation criteria, namely, the sensitivity,

specificity, positive predictive value and negative predictive value, in a well-balanced

manner.
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Several studies have shown that certain ensemble techniques, such as bagging and

boosting, can also be used to solve class imbalance problems (Schapire, 1990; Wolpert,

1992; Breiman, 1996, 2001). In addition, cost-sensitive methods can be useful when

attempting to reduce the classification bias of a single classifier (Tang et al., 2009; S. Wang

et al., 2012; X.-Y. Liu & Zhou, 2006; Castro & Braga, 2013; C. Zhang et al., 2016;

Krawczyk, 2016). Several studies have also proposed ensemble methods for improving

how imbalanced data are addressed (Krawczyk, 2016; Seiffert et al., 2010; Wallace et al.,

2011; P. Yang et al., 2014; Nikulin et al., 2009; S. Wang & Yao, 2013; Z. Sun et al., 2015).

While investigating methods for improving the classification accuracy of learning

algorithms, Galar et al. (2012) and H. He & Ma (2013) reported that the performances of

these algorithms can be improved by considering combinations of individual metrics when

confronting challenges related to imbalanced data. Meanwhile, G. E. Batista et al. (2004)

performed an extensive experimental assessment of the performance of learning algorithms

when applied to imbalanced data and reported that class imbalance does not completely

prevent the successful application of learning algorithms. This study confirms the findings

of G. E. Batista et al. (2004) in terms of the impact of data imbalance on the performance

of learning algorithms. In binary classification studies, more than a few evaluation metrics

are required to fully characterize the performance of each tested classifier. Therefore, a

method of adequately preprocessing imbalanced datasets as well as evaluating the average

performances of classifiers on imbalanced data is needed. Such a method will assist

in characterizing the overall behavior of each classifier and in guiding the selection of

appropriate classifiers for particular applications. As mentioned by Sommerville (2004),

one of the philosophies of software engineering is to do it right the first time to support

cost-effective decision-making.

Software project datasets are prone to class imbalance as a result of the emergence of
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defects; however, several researchers have proposed techniques to solve such imbalance

problems. For instance, class imbalance affects the performance of classification models

(G. Batista et al., 2012; Estabrooks et al., 2004; P. He et al., 2015; Japkowicz & Stephen,

2002; Mao et al., 2017; Qiao et al., 2017; Rodriguez et al., 2014; Soda, 2011; Tang et al.,

2009). To address this issue, Z.-W. Zhang et al. (2017) applied Laplacian score sampling

for the selection of training data. Their results confirmed that Laplacian score sampling

can improve data quality by addressing the imbalance issue in datasets. Another approach

for improving the quality of the data used in prediction studies is through a relational

association rule that can provide detailed information regarding the attributes of datasets

(Czibula et al., 2014).

The early detection of errors in datasets can enable the improvement of data quality.

Accordingly, Gray et al. (2011) and Gray et al. (2012) proposed several steps through which

data preprocessing can be improved by identifying errors in datasets early. Menzies et al.

(2007) noted that it is essential to consider the attributes of the datasets of interest when

building a prediction model. However, these attributes can contain errors that contribute

to data imbalance and can impact the performance of prediction models. One approach for

overcoming the imbalanced nature of datasets was reported by X.-L. Yang et al. (2017).

That approach can identify high-impact errors and is distinct from the traditional approach,

in which only binary classification is considered and the effect of data errors is disregarded.

Shepperd et al. (2013) outlined important rules for removing erroneous data from the

National Aeronautics and Space Administration (NASA) datasets. Their effort was

remarkable, and they also encouraged researchers to make available the sources of the data

applied in their research studies, spend sufficient time in preprocessing their datasets and

report the detailed steps followed during preprocessing.

In addition to these outlined rules for data preprocessing, Petrić et al. (2016) identified
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additional rules that can be applied when removing erroneous data. However, despite the

application of these rules during data preprocessing, datasets are still found to contain

errors following data cleaning. In particular, datasets obtained from repositories are prone

to errors and noise because of impurities in these datasets. These impurities can lead to

inaccurate prediction outcomes and, consequently, misleading results (Ramya et al., 2012).

Rodriguez et al. (2014) compared different data mining approaches, including sampling

and cost-sensitive, ensemble and hybrid approaches. That study relied on the datasets

cleaned and preprocessed by Shepperd et al. and concluded that the compared approaches

could enhance the classification accuracy for the minority class.

Critical comment: In the attempt to balance the classes and methods in a dataset,

new defects may be introduced, and the original data may be altered. To avoid this

undesirable situation, the researcher proposes and recommends a novel approach that

can be applied in preprocessing the existing highly imbalanced class- and method-level

datasets. This proposed approach accounts for the highly imbalanced nature of the

datasets, which ultimately does not have an adverse effect on the average performance of

learning algorithms.

2.1.2 Data heterogeneity

Variance in the attributes of existing datasets can lead to differences in the outcomes of

different machine learning studies. This is because data samples from different sources

that are applied in such studies exhibit different characteristics. The extent of the variations

among data sources and characteristics can lead to greater or lesser heterogeneity in

datasets. This is because data from different sources may exhibit different characteristics,

may be expressed using different representations, may be stored in incompatible formats,

and may otherwise be both inconsistent and interrelated (Che et al., 2013).

In addition, most software projects are characterized by heterogeneity, with dissimilar
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metrics spread throughout the datasets that constitute these projects (Canfora et al., 2015).

Furthermore, as reported by Yu & Mishra (2012), data heterogeneity can be affected by

various contextual factors, such as the domain, project size and programming language

used. Notably, due to the more homogeneous nature of the data involved, some machine

learning algorithms are likely to perform well when applied for within-project defect

prediction (Hosseini, Turhan, & Gunarathna, 2017). However, Nam et al. (2013) confirmed

that despite their success in within-project defect prediction due to the nature of the data,

such algorithms may not be applicable for cross-project defect prediction. To address the

issue of data heterogeneity, data transformation techniques have been applied in previous

studies, such as those of Watanabe et al. (2008), Nam et al. (2013), Camargo Cruz &

Ochimizu (2009), F. Zhang et al. (2016), and X. Jing et al. (2015). Filtering has also been

applied to address data heterogeneity, as reported by Turhan et al. (2013), Turhan et al.

(2009), Z. He et al. (2012), Jureczko & Madeyski (2010), Y. Ma et al. (2012), L. Chen et al.

(2015), Peters et al. (2015), X. Jing et al. (2015), Ryu et al. (2015), and Ryu et al. (2017).

Data normalization is another approach applied for this purpose, as reported by Uchigaki et

al. (2012), Y. Liu et al. (2010), Herbold (2013), Nam et al. (2013), Panichella et al. (2014),

Canfora et al. (2015), Ryu et al. (2016), X. Jing et al. (2015), and Ryu et al. (2017). Nam

et al. (2017) reported the use of metric matching to address data heterogeneity, whereas

Canfora et al. (2015) andHerbold (2013) addressed this issue by using clustering techniques.

Critical comment: New defects may be introduced, and the original data may be

altered, in the application of certain remedies such as data normalization L. Chen et al.

(2015). In addition, both relevant and irrelevant metrics in the data may be matched

when attempting to match metrics in datasets. These relevant and irrelevant metrics may

be clustered. To address these concerns, the researcher proposes a practical approach
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for avoiding the introduction of further defects into the datasets as well as a means of

preventing the matching of both relevant and irrelevant features in the datasets.

2.1.3 High skewness

Most of the time, the minority and majority classes in a dataset are not normally

distributed, thus leading to data skewness. Data can be skewed either positively or

negatively. Positively skewed data indicate a disadvantage to the right of the normal

distribution line, whereas a negatively skewed data distribution shows a disadvantage to

the left of the normal distribution line.

Figure 2.1: Normal skewness

Figures 2.1, 2.2 and 2.3 present normal, positively skewed and negatively skewed data

distributions, respectively. The x-axis represents the frequency of the data, while the y-axis

represents the data points for both the positive and negative classes.

As shown in Figure 2.1, a normal curve exhibits an almost perfectly symmetrical

distribution. Reducing the data skewness, i.e., making the distribution more normal, can

improve the performance of learning algorithms (Hosseini et al., 2016).

Figure 2.1 presents a normal distribution of data, in which the positive and negative

classes are evenly distributed. In such a scenario, classification algorithms will generally

show no bias when classifying both the positive and negative classes. In contrast, Figures

2.2 and 2.3 present data with positive and negative skewness, respectively, which may

cause classification algorithms to be biased towards the majority class.
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Figure 2.2: Positive skewness

Figure 2.3: Negative skewness

Although previous authors, such as Uchigaki et al. (2012), Turhan et al. (2013), Turhan

et al. (2009), and Ryu et al. (2015), have proposed means of addressing data skewness, this

issue remains unresolved in general in machine learning studies. Data skewness can cause

learning algorithms to produce poor and unreliable classification results (ÇATAL, 2016).

In a normally distributed dataset, the mode is typically equal to the median and mean. For a

positively skewed dataset, the mode is less than the median, which, in turn, is less than the

mean. In contrast, in a dataset with a negative skew, the mode is greater than the median,

and the median is greater than the mean. Logarithmic and automatic transformation

schemes have been applied to address data skewness in previous studies, such as those of

Uchigaki et al. (2012), Turhan et al. (2013), Turhan et al. (2009), Herbold (2013), Y. Ma

et al. (2012), L. Chen et al. (2015), Ryu et al. (2015), Ryu et al. (2017), and Feng et al. (2016).

Critical comment: Depending on the data distribution, it may be difficult to determine

the accuracy performance of a model as a result of highly skewed datasets. By considering

38

Univ
ers

iti 
Mala

ya



the skewed nature of the existing datasets, the researcher proposes a means of accurately

determining the performance of learning algorithms despite the use of highly skewed data.

2.1.4 Irrelevant and redundant features in datasets

Most datasets contain irrelevant features, which can affect the performance of learning

algorithms (Kwak & Choi, 2002; Gu et al., 2016). Training such algorithms only on

relevant features can yield optimal results in machine learning studies. By the same token,

irrelevant features can affect the accuracy of learning algorithms. Therefore, to encourage

unbiased prediction outcomes, classification algorithms should be trained on an ideal set

of features characterized by relevant information, simplicity and independence.

Techniques for selecting appropriate features from existing datasets can be applied to

identify the most suitable subset of features related to a particular problem (Hossain et al.,

2016). In addition, feature selection offers the ability to minimize the dimensionality of

the data (Wahono, 2015). Selecting the most relevant attributes simultaneously removes

irrelevant features from a dataset and enables better data management. For this reason,

feature selection is essential when addressing imbalanced data (Kwak & Choi, 2002; Gu et

al., 2016). To address the issue of irrelevant and redundant features in datasets, feature

selection approaches have been applied in many previous studies, such as those of Yu &

Mishra (2012), Lusa et al. (2010), W. Wei et al. (2013), Lane et al. (2012), Q. Li et al.

(2013), Alibeigi et al. (2012), Gong & Huang (2012), X.-w. Chen & Wasikowski (2008),

M.-H. Wei et al. (2013), P. He et al. (2015), Nam et al. (2017), Y. Zhang et al. (2015),

Lima & Pereira (2015), Bae & Yoon (2015), J. Yang et al. (2016), Yijing et al. (2016),

Beyan & Fisher (2015), Maldonado et al. (2014), Trafalis et al. (2014), Casañola-Martin et

al. (2016), Al-Ghraibah et al. (2015), Haixiang et al. (2016), Dubey et al. (2014), L. Song

et al. (2014), Moepya et al. (2014), Vong et al. (2015), N. Zhang (2016), Braytee et al.

(2016), and Ng et al. (2016).
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Attribute selection is one of the approaches that can be used to identify the most suitable

subset of features related to a particular problem (Hossain et al., 2016). Such an approach

enables the removal of irrelevant features in a dataset to enhance data management. For

this reason, feature selection is essential when addressing imbalanced data (Kwak & Choi,

2002; Gu et al., 2016). Furthermore, a few authors, such as Laradji et al. (2015) and

Shroff & Maheta (2015), have reported that feature selection can also be used to improve

the quality of a dataset; consequently, applying dimensional reduction to datasets can

improve the performance of prediction models. According to Tantithamthavorn (2016),

the attributes of a dataset influence data preprocessing. That study explicitly described

how data metrics can affect prediction outcomes and further reported that poor selection

of data metrics reduces the accuracy of prediction models. In fact, the impact of poor

metric selection can override the influence of the research team conducting the study and

consequently lead to misleading results.

Critical comment: It is usually difficult to select relevant features from datasets;

consequently, irrelevant features are most often included among the selected features. The

proposed data preprocessing framework offers a means of identifying relevant features in

datasets.

2.1.5 Continuous data

Continuous data are data whose values can be measured and divided into infinitely

small increments, unlike discrete data, which take specific values. The majority of the

existing datasets used in machine learning studies are characterized by continuous features,

which can make it difficult to properly report these data in a discrete fashion (Fayyad &

Irani, 1993).

Furthermore, the continuous nature of the existing data can lead to uncertainties in
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the results produced by learning algorithms. Thus, for most learning algorithms to

produce reliable classification outputs, a discrete feature space is required (Dougherty et

al., 1995). To address the issue of continuous data, Ching et al. (1995) proposed a new

information-theoretic data discretization technique. B. Ma et al. (2014) and L. Chen et al.

(2015) also applied discretization techniques to continuous data. Discretization transforms

quantitative data into qualitative data by partitioning the features into a small number of

nonoverlapping intervals generated by implementing certain boundaries. Each feature

value is assigned to its corresponding interval, thus making the data discrete (S. García et

al., 2016).

Critical comment: During preprocessing, new defects may be introduced, and the

original data may be altered. To avoid this undesirable situation, a data preprocessing

approach is proposed that can avoid any form of data alteration while also preventing the

introduction of defects into the existing datasets.

2.1.6 Data privacy

For obvious reasons, most project owners find it difficult to disclose their datasets

because of the confidentiality of their projects (Hosseini, Turhan, & Gunarathna, 2017;

Z. Li et al., 2017), although such projects may contain information that could be used

to improve knowledge discovery in machine learning studies. Consequently, due to the

privacy issues associated with these projects, such datasets are rarely made available to

the machine learning community. Privacy concerns give rise to several controversial

issues since the release of such information depends solely on the project owners or other

responsible parties, who may not always be able to guarantee that their datasets will be

used for the intended purposes (Smith et al., 2012).

However, as privacy issues continue to hinder the release of relevant datasets, these
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concerns continue to pose a serious challenge in the big data mining community, which

may sometimes require access to sensitive information in order to produce reliable results

(Che et al., 2013). Consequently, encryption has been adopted by most researchers to

ensure data privacy (Lin & Tzeng, 2012; N. Cao et al., 2014). In addition, multiparty data

sharing has been applied to address privacy issues, as reported by Peters et al. (2015).

Critical comment: Unfortunately, reliable datasets are not readily available for

use. Therefore, the proposed data preprocessing approach aims to restore researchers’

confidence in the ability to suitably preprocess existing datasets to avoid bias in the results

obtained in defect prediction studies.

2.1.7 Collinearity among metrics

In many existing datasets, some of the attributes are collinear, as reported by Gil &

Lalouche (2017), Herraiz et al. (2011), Landman et al. (2016), Landman et al. (2014),

Tantithamthavorn et al. (2016a), and F. Zhang et al. (2017). In other words, these metrics

are correlated with each other. Such metrics are commonly used in regression models for

defect prediction (Felix & Lee, 2017b). In multiple regression, however, the variables are

usually independent; for instance, in the expression

Y = B0 + B1X1 + B2X2 + ε

the variables X1 and X2 are treated as being independent of each other. However, multi-

collinearity will arise if X1 and X2 are correlated. In the above expression, Y represents

the dependent variable and, as such, depends on X1 and X2; this indicates that X1 and

X2 contain relevant information about Y . If X1 and X2 are collinear, this situation can

lead to redundancy and collinearity, which will hinder the ability to generate accurate
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prediction outcomes. When similar variables that are collinear are simultaneously applied

in a prediction model, the correlation that exists among the supposedly independent

variables tends to reduce the accuracy of the model (Hosseini, Turhan, & Gunarathna,

2017). Kamei et al. (2016) addressed the issue of collinearity among metrics by removing

highly correlated metrics, whereas Jiarpakdee et al. (2018) combined clustered variables

and applied the variance inflation factor technique to address the collinearity issue. In

addition, a principal-component-based approach for addressing the collinearity among

metrics has been proposed, as reported by Nagappan, Ball, & Murphy (2006), Briand et al.

(2002), Nagappan, Ball, & Zeller (2006), Nelson et al. (2011), and Castaño&Gallón (2017).

Critical comment: When attempting to address collinearity among metrics, relevant

features may be eliminated. Consequently, the resulting model performance results may

be misleading. The proposed framework for data preprocessing offers a suitable means of

identifying collinearity among metrics.

2.1.8 Noise in data

Noisy data will not produce meaningful outputs when they are used in prediction studies.

Noise in data is usually associated with outliers. Outliers are data points that lie far away

from the main cluster(s) of data. Outliers may occur in datasets as a result of measurement

variations or may be a manifestation of experimental error. The removal of outliers can

lead to a reduction in the noise found in a dataset (Ryu et al., 2015; W. Li et al., 2015;

W. Liu et al., 2014). Noise filtering has also been reported to be an effective means of

eliminating noise in a dataset, as reported by Hosseini, Turhan, & Gunarathna (2017) and

Kang et al. (2017).

Critical comment: Outliers in datasets cause those datasets to be noisy. During noise
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filtering, relevant features may be filtered out. Therefore, a filter-based feature selection

approach is proposed to address such noise in datasets.

2.1.9 Missing values in datasets

Most datasets used in machine learning studies tend to contain missing values. Missing

values are data that were not stored or recorded as a result of faulty sampling, which

often occurs due to human or computer error. Missing values are often difficult to avoid

because they are identified only during data analysis, and as such, most researchers face

difficulties when dealing with missing values (S. García et al., 2016). If missing values are

not adequately handled, they may lead to poor knowledge discovery or incorrect research

findings. Notably, important information can be lost as a result of missing values (H. Wang

&Wang, 2010). Several approaches, such as the imputation technique, have been proposed

to address the issue of missing values, as reported by Luengo et al. (2012). There is also

the possibility that the data may suffer from class overlap due to missing values.

Gupta & Gupta (2017) identified class overlap, which renders samples in a dataset

invalid and noisy, as a significant factor affecting datasets. The authors concluded that

training a classification model with data that are free of class overlap improves the model

performance. Conversely, training such a model with data containing class overlap can

decrease the model performance. To address the class overlap issue, G. Batista et al.

(2012), Chawla et al. (2002), and Gupta & Gupta (2017) proposed a synthetic minority

oversampling technique (SMOTE) that can identify the overlapping instances in a dataset

and improve the prediction outcome. Chawla et al. (2002) applied a combination of

an oversampling technique for the minority class and an undersampling technique for

the majority class to improve the classification accuracy in terms of the area under the

receiver operating characteristic (ROC) curve (AUC). This approach performs better than

undersampling alone, as confirmed by Ha & Lee (2016), who identified issues with the
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existing undersampling techniques in addressing the data imbalance problem. The authors

reported that the existing undersampling techniques cannot improve the understandability

of classification models in terms of the AUC. In an attempt to solve this problem with

the existing undersampling techniques, a method called Genetic Algorithm-based Under-

Sampling (GAUS) was proposed to improve the classification accuracy.

To address the persistent issue of class imbalance in datasets, Soda (2011) proposed a

reliability-based balancing algorithm to effectively balance the defective and defect-free

classes in a dataset. López et al. (2013) and Z. Sun et al. (2015) categorized some of the

proposed approaches for this purpose into data sampling methods, cost-sensitive learning

methods, methods based on algorithm modification and bagging, and boosting-based

methods. These approaches result in the loss of essential portions of the data, which may

lead to model overfitting (Z. Sun et al., 2015). Having investigated the existing literature,

the researcher now summarizes the identified data-related issues and the techniques applied

to address them in Table 2.1.
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Table 2.1: Summary of class- and method-level data-related issues and correspond-
ing preprocessing techniques and weaknesses

Data-related issue Preprocessing tech-
nique

Study references Weaknesses

Class imbalance
Rebalancing H. Cao et al. (2014), P. Cao et

al. (2014), Cateni et al. (2014),
L. Chen et al. (2015), Chetchot-
sak et al. (2015), Das et al.
(2015), Díez-Pastor et al. (2015),
Dubey et al. (2014), D’Addabbo
& Maglietta (2015), Ha & Lee
(2016), Jian et al. (2016), Kamei
et al. (2016), Krawczyk et al.
(2014), Kumar et al. (2014), J. Li
et al. (2017), Menardi & Torelli
(2014), Nekooeimehr & Lai-Yuen
(2016), Ryu et al. (2016), Ryu
et al. (2017), Sáez et al. (2015),
J. Song et al. (2016), Z. Sun et al.
(2015), Yun et al. (2016), Zhai et
al. (2017), D. Zhang et al. (2015)

New defects may be introduced,
and original data may be altered.

Reweighting X. Jing et al. (2015), Ryu et al.
(2016), Ryu et al. (2017)

Original data may be altered with
data approximation.

Selective learning Ryu et al. (2015) Relevant features in the data may
be omitted.

Data heterogeneity

Data transformation X. Jing et al. (2015), F. Zhang et
al. (2016)

New defects may be introduced,
and original data may be altered.

Filtering L. Chen et al. (2015), X. Jing et al.
(2015), Peters et al. (2015), Ryu
et al. (2015), Ryu et al. (2017)

Focuses only on noise in the
dataset; relevant features may be
filtered out.

Data normalization Canfora et al. (2015), X. Jing
et al. (2015), Panichella et al.
(2014), Ryu et al. (2016), Ryu
et al. (2017)

New defects may be introduced.

Metric matching Nam et al. (2017) Both relevant and irrelevant met-
rics in the data may be matched.

Clustering Canfora et al. (2015) Both relevant and irrelevant met-
rics in the data may be clustered.

High skewness Automatic/logarithmic
transformation

L. Chen et al. (2015), Feng et al.
(2016), Ryu et al. (2015), Ryu
et al. (2017), Changyong et al.
(2014)

Depends on the data distribution;
difficult to determine the accuracy
performance of a model.

Irrelevant and redundant features Feature selection Al-Ghraibah et al. (2015), Bae
& Yoon (2015), Beyan & Fisher
(2015), Braytee et al. (2016),
Casañola-Martin et al. (2016),
Dubey et al. (2014), Haixiang et
al. (2016), P. He et al. (2015),
Lima & Pereira (2015), Maldon-
ado et al. (2014), Moepya et al.
(2014), Nam et al. (2017), Ng et
al. (2016), L. Song et al. (2014),
Trafalis et al. (2014), Vong et al.
(2015), Wahono (2015), J. Yang
et al. (2016), Yijing et al. (2016),
N. Zhang (2016), Y. Zhang et al.
(2015)

Difficult to select relevant fea-
tures; irrelevant features may be
selected.

Continuous data Discretization L. Chen et al. (2015), B. Ma et al.
(2014)

New defects may be introduced,
and original data may be altered.

Data privacy Multiparty data shar-
ing

Peters et al. (2015) Reliable datasets are not readily
available for use.

Collinearity among metrics
Removal of highly
correlated metrics

Kamei et al. (2016) Relevant features may be re-
moved.

Combination of vari-
ables and variance in-
flation factor

Jiarpakdee et al. (2018), O’brien
(2007)

Primarily focuses on multi-
collinearity; consequently, model
performance results may be mis-
leading.

Principal-
component-based
technique

Castaño & Gallón (2017) New defects may be introduced,
and original data may be altered.

Noise in data Outlier removal W. Li et al. (2015), W. Liu et al.
(2014), Ryu et al. (2015)

Focuses only on outliers

Noise filtering Hosseini, Turhan, & Gunarathna
(2017), Kang et al. (2017)

Focuses only on noise.
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2.1.10 Quality of cross-project datasets

Herbold (2013) proposed a distance-based approach for selecting the data to be used in

defect prediction. The author found that a distance-based technique enhances the success

rate of cross-project defect prediction. To address the problem of erroneous datasets

affecting the performance of classification models, Beckmann et al. (2011) and Iliou et al.

(2015) proposed a genetic algorithm for the oversampling of data. Based on this genetic

algorithm, an evolutionary approach was used to create a synthetic minority-instance-

oriented class with which to adjust the data. It was shown that the classification accuracy

could be successfully improved via such data adjustment. Tantithamthavorn et al. (2015)

argued that the outcome and accuracy of any prediction model depend on the data used

for training. Therefore, prediction models may be overfitted and produce untrustworthy

results if the datasets are not reliable.

To overcome this problem, Siebra & Mello (2015) encouraged researchers to apply

adequate preprocessing techniques to achieve reliable results. M. H. Rahman et al. (2016)

applied a feature-space transformation process in combination with data preprocessing

and normalization to improve prediction accuracy, whereas Mausa et al. (2014) applied a

standard procedure for collecting data to be used in a defect prediction study. The latter

approach limits the influence of knowledge related to a biased dataset by focusing on the de-

tailed capabilities of a bug-code analyzer. This procedure provides all of the functionalities

necessary to create a software defect prediction dataset using a defect monitoring device

capable of analyzing defects from the contents of source code management repositories.

Y. Zhang et al. (2015) presented a means of combining classification models across

different projects by integrating multiple machine learning techniques to transfer a

prediction model from one project to another. The models were trained using data from

another project, and their performances were evaluated using two standard evaluation
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metrics: the F-score and cost-effectiveness. One of the findings of that study was that

for a new software project, insufficient training data are available for cross-project defect

prediction. Mahmood et al. (2015) analyzed the predictive performance achieved when

using imbalanced data for the prediction of software defects. When the data used for

classification are of unequal proportions among different classes, the predictive accuracy

of defect prediction studies appears to be low, whereas balanced data result in increased

predictive performance. One measure that can be used to address such imbalance problems

was highlighted by X.-Y. Jing et al. (2014).

To address the issues related to training data for different projects, Herbold (2013)

reported how a training data selection strategy can be applied to improve performance in

cross-project defect prediction. The proposed approach was evaluated on numerous case

studies based on 44 datasets, which were collected from 14 projects available online, using

7 different prediction models, namely, a naïve Bayes model, a support vector machine

(SVM) model, a Bayesian network model, a J48 decision tree model, a random forest

(RF) model, a multilayer perceptron model and an LR model. The results of this study

indicated a high success rate of cross-project defect prediction based on an evaluation

in terms of the recall, precision and success rate. In a comparison of the results for

the same project with those for different projects in terms of the recall and success rate,

cross-project defect prediction yielded a higher recall (by 0.19) than that achieved in

within-project prediction, whereas the cross-project success rate achieved with the training

data selection strategy was surpassed by the within-project success rate of 0.19. Despite

these noteworthy achievements in addressing data quality issues, the quality of the existing

class- and method-level datasets is yet to be fully addressed, and consequently, data quality

issues still lead to controversial research findings.
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2.2 Classification model performance in software defect prediction

Previous studies have proposed models for both within-project and cross-project defect

prediction at the source code level based on the software development process. These

models have achieved noteworthy performance in terms of accuracy, reliability, fault

detection and performance improvement in binary defect classification.

Several studies have focused on improving the outcomes and performances of the

prediction models used in binary defect classification. In either within-project or cross-

project prediction, the objective is to enhance the performance of the applied classification

algorithms. For instance, X. Jing et al. (2015) successfully applied a defect prediction

approach based on canonical correlation analysis to various heterogeneous projects. The

outcomes in that study were evaluated using the false positive rate, recall, F-score and

Matthews Correlation Coefficient (MCC).

To improve the detection of defect-prone modules, Shepperd et al. (2014) presented a

meta-analysis of how relevant prediction factors influence predictive performance. The

study further reported that classification outcomes primarily depend not on the model

chosen but on factors related to how the data used to train the models are cleaned by the

research group performing the study. According to the findings, the classifier can have an

influence of as little as 1.3% on performance, compared with the significant explanatory

factor of 31% related to the research group. In a study conducted to analyze the accuracy

of defect prediction models for new software products, Cavezza et al. (2015) proposed a

method of continuously improving a prediction model. This method was evaluated using

the precision, recall and F-measure. The experiment performed in that study produced

promising results and demonstrated how such an active method can be applied in defect

prediction.

M. H. Rahman et al. (2016) reported how the accuracy of a prediction technique can be
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improved via the application of a feature space transformation process. The outcomes of

this prediction technique were evaluated using the confusion matrix and balance as the

evaluation metrics. Maneerat & Muenchaisri (2011) reported the performances of various

machine learning algorithms, namely, RF, naïve Bayes, LR, an Instance-Based Learner

(IBL), a simple IBL (IBk), Voting Feature Intervals (VFI) and J48. The study analyzed

how bad-smell prediction can be performed early in the Software Development Life

Cycle (SDLC), and statistical significance tests were conducted to evaluate the prediction

performance. Performance metrics related to accuracy, specificity and sensitivity as well

as a confusion matrix table were used for evaluation.

Lessmann et al. (2008) evaluated the performance superiority of one classifier over

another. In this study, the AUC and the truth table also known as confusion matrix were

applied to evaluate the outcomes. The truth table shows the sensitivity (true positive

rate) and false alarm rate (false positive rate) of a classifier, whereas the AUC is the most

revealing and objective measure of the predictive accuracy of a model in the context of

defect prediction. Halim (2013) analyzed how to measure the complexity of object-oriented

software early in the SDLC to predict fault-prone classes. In this study, naïve Bayes and

K-Nearest-Neighbors (KNN) models were applied to identify the relationship between

module design complexity and fault-proneness. The performances of the models were

evaluated based on the accuracy, precision and AUC.

Tantithamthavorn et al. (2015) investigated how the effectiveness of a prediction model

can depend on the quality of the data used to train that model. The study concluded that if a

prediction model is trained with noisy data, then that model may produce inaccurate results.

The outcomes in that study were evaluated using the precision, recall and F-measure.

Monden et al. (2013) described how the effort required for defect prediction can be reduced

by adopting suitable evaluation measures that are likely to result in a reliable prediction
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accuracy. The outcomes in that study were evaluated based only on the prediction accuracy

and effort allocation.

Nugroho et al. (2010) applied several performancemetrics, including accuracy, precision,

sensitivity, specificity and a confusion matrix table, in the evaluation of early prediction

outcomes for estimating avoidable faults early in the SDLC. The study further reported

that a prediction model constructed using the Unified Modeling Language (UML) design

standard is likely to achieve higher accuracy than a prediction model constructed using

codes. However, a prediction model designed via a combination of both UML and

codes can achieve significantly improved performance. Another study (Taba et al., 2013)

investigated how to increase the accuracy of a bug prediction model by means of metric-

based antipatterns. Such antipatterns indicate weaknesses in the design that may increase

the risk of bugs in a software product. The F-score was applied to evaluate the outcomes

in that study.

Investigating whether metrics that are available early in the SDLC can be applied to

identify defective modules, Jiang et al. (2007) revealed that these metrics can influence

project management. Such metrics can be used to drive efforts to improve the quality of

software or to construct models to support verification and validation activities. In that

study, the performances of two models built using the aforementioned metrics, namely, a

requirement-based model and a code-based model, were compared using the following

machine learning algorithms: OneR, naïve Bayes with a kernel, voted perceptron, LR,

J48, VFI, IBk and RF. One drawback of the requirement-based model is that it cannot

independently predict defects. However, a significant prediction result was achieved when

the two models were combined. Nevertheless, only a few evaluation metrics were applied

for accuracy assessment in that study, including the probability of detection (PD), also

called the recall, as well as the probability of false alarms (PF) and the AUC.
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In an attempt to reduce the likelihood of errors in a software system, Taba et al. (2013)

enhanced the accuracy of defect prediction by applying metrics based on antipatterns.

They used refactoring to correct poor designs and used antipatterns to identify weaknesses

in a design that might increase the risk of future defects. If defects can be predicted using

antipattern information, then the development team can use refactoring to reduce the risk

of defects in the system.

Furthermore, Mori (2015) developed a prediction model with high accuracy and

explanatory power by superposing a naïve Bayes model on an ensemble model, which

resulted in an improvement in prediction performance. The naïve Bayes technique was

found to be suitable for predicting the defect-proneness of a class using object-oriented

metrics. This result is consistent with the finding of Menzies et al. that the naïve Bayes

technique appears to be the best approach for constructing defect prediction models.

X.-Y. Jing et al. (2014) also achieved improved accuracy in software defect prediction

using a technique based on collaborative representation classification. Their proposed

metric-based software defect prediction method resulted in a considerably larger number

of defect-free modules compared with the number of faulty modules. Although class

imbalance was encountered in that study, the outcome of the study was not affected because

the class imbalance was properly addressed through Laplacian score sampling for sample

training, which resulted in an improved prediction accuracy.

Islam & Sakib (2014) used package-based clustering to enhance the accuracy of

software defect prediction. These authors grouped software packages into multiple clusters

according to their relationships and similarities and proposed a prediction model using

this package-based clustering approach. The proposed approach achieved prediction

rates of 54%, 71%, and 90%, all higher than those obtained using a prediction model

based on BorderFlow and k-means clustering. However, the results thus obtained may be
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inconsistent and, as such, lead to incorrect interpretations. Therefore, Malhotra & Raje

(2014) addressed the problem of incorrect interpretations when verifying the performance

of a defect prediction model. These authors used an object-oriented metric design suite and

compared various machine learning techniques to investigate the impact of object-oriented

metrics on erroneous classification.

Cavezza et al. (2015) examined defect prediction performance during the software

development process. The findings of the study suggest that when a standard approach

is applied for defect prediction, promising results can be obtained through continuous

refinement of the prediction model using new commit data and by predicting whether

any action introduced into a program introduces a bug. Lu et al. (2012) developed

a semisupervised learning technique for program defect prediction using a variant of

a self-study algorithm. The results confirmed that confidence fitting can be used as

a substitute for established supervised algorithms. In combination with dimensional

reduction, the developed semisupervised algorithm performed considerably better than

an RF model when modules with typical faults were used for training. Xuan et al. (2015)

comprehensively studied within-project defect prediction performance in a practical and

sophisticated manner. These authors used a massive set of evaluation metrics and reported

that a Bayesian network achieved good performance. However, other classification models

may perform better in different scenarios because no single model dominates in binary

defect classification performance.

Fukushima et al. (2014) evaluated a cross-project model using Just-In-Time (JIT)

prediction via a case study of open-source projects. That study reported that within-project

defect prediction models that are able to achieve high accuracy are uncommon compared

with high-accuracy cross-project prediction models. However, cross-project prediction

models trained on projects with identical correlations between the predictor and dependent
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variables often exhibit good performance. Nam & Kim (2015) applied a collection of

metric equalities to construct a prediction model for projects with diverse metric sets.

They combined metric selection and metric combination to achieve a forecasting rate of

68%, which was higher than or comparable to the rates achieved for within-project defect

prediction. Their proposed method also showed statistical significance.

X. Jing et al. (2015) presented a successful solution for mixed cross-company defect

prediction by means of combined metric representations for data origin and destination.

The performance of this approach depends on the correlation analysis that is established to

achieve effective transfer learning for cross-company defect prediction. In this way, similar

initial and resulting data distributions can be obtained. Panichella et al. (2014) improved

the detection of defect-prone entities among software projects by means of a unified defect

predictor that considers the groupings produced by various machine learning techniques.

Lessmann et al. (2008) proposed techniques for predicting fault-prone modules by

prioritizing quality assurance efforts and used these techniques for selecting modules in

accordancewith their fault probabilities. To date, none of these techniques has demonstrated

the ability to predict the number of defects that may exist in an upcoming product release.

The approach proposed in the current study attempts to fill this gap to expedite actions

taken for quality assurance by allowing the number of software defects to be predicted

using the average defect density, average defect velocity, average defect introduction time

and module design complexity. Notably, software complexity significantly affects the cost

and time of software development and maintenance (Yousefi & Modiri, 2011).

Shepperd et al. (2014) conducted a meta-analysis of all relevant factors that influence

predictive performance. These authors verified the performance of their defect prediction

model by determining the factors that significantly influence the predictive outcomes

of software defect classifiers, as determined based on the MCC. They found that the
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choice of classifier only slightly influences the performance, whereas the model building

factors (that is, factors related to the research group) exert a significant effect. This is

because the research group is responsible for data preprocessing. If the data applied in a

study are not properly cleaned, that study may produce a biased outcome. Consequently,

the performance achieved in a prediction study depends predominantly on the research

group and not on the choice of classifier. F. Zhang et al. (2014) attempted to construct

a universal defect prediction prototype. However, developing a universal model of the

primary connections between software metrics and defects is challenging because of the

variations among predictors. Caglayan et al. (2010) therefore constructed a sensitive defect

prediction model based on fault categories. By separating defect statistics into different

classes for consideration in a defect prediction algorithm, practitioners are able to take

proper actions to improve their prediction accuracy. Similarly, grouping and segmenting

the errors in a program before applying a prediction model can also improve the prediction

accuracy. Maneerat & Muenchaisri (2011) analyzed bad-smell prediction in an early phase

of the SDLC by comparing the performances of different machine learning algorithms

through statistical significance testing.

Halim (2013) proposed a model that can compute the complexity of object-oriented

software in the design phase for the prediction of error-prone classes. He applied naïve

Bayes and KNN models to identify the link between complexity and bug-proneness in a

design. Parthipan et al. (2014) similarly proposed an evaluation model that captures the

symptoms of design complexity using an aspect-oriented complexity evaluation model.

Note that in the design phase and at the code level, defect prediction models are primarily

designed either to discriminate between defective and defect-free modules (binary classifi-

cation) or to forecast the number of defects (regression analysis) (Caglayan et al., 2010).

The findings obtained from this extensive literature review confirm that for defect prediction
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models to produce unbiased results, the quality of the data applied in training these models

must be uncompromised. The findings further confirm that a well-preprocessed class- or

method-level dataset is the key to ensure that the results obtained from any supervised

machine learning study will be optimal and obtained based on unbiased data. Notably, the

outcome of this literature review calls for an immediate solution to address the lingering

data quality issues in software defect prediction.

2.3 List of existing performance evaluation metrics

This section presents the metrics used to evaluate the performance of learning al-

gorithms applied in binary defect classifications. These metrics include the confusion

matrix, Classification Accuracy (CA), precision, recall, specificity, Matthews Correlation

Coefficient (MCC), J-coefficient, F-score, area under the receiver operating characteristic

(ROC) curve (AUC), Brier score, information score and geometric mean.

2.3.1 Confusion matrix

A confusion matrix, also called a truth table, shows the numbers of accurately and

inaccurately predicted outcomes compared with the real outcomes. The matrix has

dimensions ofM ×M , whereM is the number of target classes (for example, defective

and defect-free). In this study, the value ofM is 2. Table 5.1 presents the 2× 2 confusion

matrix for the two classes, namely, the positive and negative classes, or the defective and

defect-free classes, respectively.

Table 2.2: Truth table
Target Values

Actually Positive Actually Negative
Model Predictions Positive a = (TP) b = (FP)

Negative c = (FN) d = (TN)

In this table, a = the number of instances that are actually positive and are also predicted

to be positive, also called True Positives (TP); b = the number of instances that are negative
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but are predicted to be positive, also called False Positives (FP); c = the number of positive

instances that are incorrectly predicted to be negative, also called False Negatives (FN);

and d = the number of negative instances that are correctly predicted to be negative, also

called True Negatives (TN).

2.3.2 Classification accuracy (CA)

The ratio of the number of correct predictions to the total number of predictions. The

CA is calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

2.3.3 Precision

The proportion of all predicted positive instances that are correctly predicted.

Precision =
TP

TP + FP
(2.2)

2.3.4 Recall (sensitivity)

The proportion of all actually positive instances that are correctly predicted.

Recall =
TP

TP + FN
(2.3)

2.3.5 Specificity

The proportion of all actually negative instances that are correctly predicted.

Specificity =
TN

TN + FP
(2.4)
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2.3.6 Matthews correlation coefficient (MCC)

Applied in binary classification as a measure of the achieved performance, the MCC is

an important correlation coefficient that represents an overall assessment of the observed

and predicted classes in binary classification. It considers all four aspects of the confusion

matrix, including the true negatives (Mahmood et al., 2015). It is calculated directly from

the confusion matrix as follows:

MCC =
TP × TN − FP × FN√(

TP + FP
) (
TP + FN

) (
TN + FP

) (
TN + FN

) (2.5)

2.3.7 J-coefficient

The sum of the recall and specificity minus one. It is equivalent to the recall minus the

false positive rate (FPR).

J-coef = Recall − FPR = Recall + Specificity − 1 (2.6)

2.3.8 F-score

Also called the F-measure or F1, the F-score is the harmonic average of the precision

and recall. It is calculated using the following formula:

F -score = 2×
(
Precision×Recall

) (
Precision +Recall

)
(2.7)

2.3.9 Area under the ROC curve (AUC)

A metric based on a graphical representation of the performance of a binary classifier.

It can also be used to compare different classifiers. The sensitivity, which represents

the proportion of actually positive instances that are correctly classified, is plotted on

the y-axis against 1 minus the specificity, which represents the proportion of actually
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negative instances that are correctly classified, on the x-axis. A larger AUC value indicates

better classifier performance. As reported by Tantithamthavorn et al. (2016b), the possible

values of the AUC lie between 0 and 1. An AUC value of 0 indicates the worst possible

performance, whereas a value of 1 indicates the best possible performance.

2.3.10 Geometric mean (G-mean)

The square root of the product of the recall and precision, as proposed by Kubat et al.

(1997, 1998). Thus, the geometric mean is calculated as follows:

G-mean =
√
Recall × Precision (2.8)

2.3.11 Brier score (BS)

A score that measures the accuracy of probabilistic predictions. Tantithamthavorn et al.

(2016b) applied the Brier score in their study to measure the gap between the estimated

probability and the result achieved. A Brier score of 0 is the best achievable score, while 1

is the worst achievable score. The Brier score is calculated using the following formula:

BS =
1
N

N

t=1

(
ft − ot

)2 (2.9)

where

ft = the forecasted likelihood of occurrence, ot = the true event result at time t, and

N = the number of predicted instances.

2.3.12 Information Score (IS)

The average amount of information per classified instance, as defined by Kononenko &

Bratko (1991).
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2.4 Regression models in software defect prediction

Researchers have been making great efforts to develop various techniques capable

of predicting the number of software defects at the code level (Petrić, 2016). As noted

earlier, several studies have proposed approaches for improving the outcomes of software

defect prediction with a focus on binary classification, for example, those of Cavezza et

al. (2015), Xuan et al. (2015), Lu et al. (2012), Fukushima et al. (2014), Nam & Kim

(2015), X. Jing et al. (2015), Panichella et al. (2014), Lessmann et al. (2008), Shepperd

et al. (2014), and F. Zhang et al. (2014). These studies have focused on improving the

performance of learning algorithms at the class level. For instance, while investigating

methods of improving the classification accuracy of learning algorithms, Galar et al.

(2012) and H. He & Ma (2013) reported that the performances of these algorithms can be

improved by considering combinations of individual metrics when confronting challenges

related to imbalanced data. Lessmann et al. (2008) evaluated the performance superiority

of one classifier over another. Using an alternative improvement approach, Taba et al.

(2013) investigated how to increase the accuracy of a bug prediction model by means of

metric-based antipatterns. G. E. Batista et al. (2004) performed an extensive experimental

assessment of the performances of learning algorithms when applied to imbalanced data

and reported that class imbalance does not completely prevent the successful application

of learning algorithms. Notably, such learning algorithms are capable of classifying a

module as either defective or defect-free. Petrić (2016) reported that the current prediction

models handle defect prediction in a black-box manner. This is a weakness of the existing

prediction models since they do not enable the prediction of the number of defects but

rather focus on classification, which attempts only to forecast whether a software program

will be defective (Zimmermann et al., 2007).

On the other hand, the application of regression models can allow a software team to
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determine which models can best reveal the relationship between certain independent and

dependent variables (Petrić, 2016). While attempting to address the lack of approaches for

predicting the number of software defects, Bernstein et al. (2007) noted that if the number

of software defects in a new software product can be predicted, both software managers

and other stakeholders will benefit.

Nagappan & Ball (2005) presented a technique using a set of relative code churn

measures for the early prediction of the software defect density. Their results showed

that absolute measures of code churn are poor predictors of defect density. Meanwhile,

Bernstein et al. (2007) extracted a certain number of temporal features, such as the number

of revisions and the number of reported issues, from the CVS and Bugzilla repositories to

predict the number of defects for the Eclipse project. Their results indicate that by using

certain temporal features, a prediction model can be developed to predict whether a source

file will contain a defect. That study achieved noteworthy results in predicting the number

of software defects, although it was limited to only six Eclipse plugins, representing a

single project.

To estimate the number of software defects, Felix & Lee (2017b) proposed certain

prediction models that were first individually built using the average design complexity,

average defect density, average defect introduction time and average defect velocity. The

results obtained indicated that for determining the possible number of defects in a new

software release, multiple regression models can be built based on combinations of the

average defect density and average defect velocity and of the average design complexity

and average defect velocity, and a prediction model can be built based on the average defect

introduction time and average defect velocity. However, none of the existing studies has

considered the prediction of the numbers of software defects at both the class and method

levels simultaneously.
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Hence, this research presents such an approach using derived variables first applied by

Felix & Lee (2017b). Notably, in addition to not applying the proposed model for both

class- and method-level prediction, Felix & Lee (2017b) also did not provide detailed

regression model information, such as percentage errors on the results, and the quality of

the data applied was low. Therefore, the current study addresses the corresponding gap

in the literature by applying the proposed approach at both the class and method levels

for various software projects to enable a detailed analysis of the approach, along with

clear evidence of the reliability of the datasets. It is also important to note that the overall

accuracy of the proposed approach is greater than that of other methods in the literature

with respect to data quality and model performance. If the size of a software program can

be predicted as reported by Laranjeira (1990) and Dolado (2000), then a corresponding

method of predicting the possible numbers of defects likely to be present in a future release

of a software product at both the method and class levels is needed. Hence, the current

study attempts to provide such an approach.

2.5 Summary

While searching for answers to the current research questions to achieve the objectives

of this research, the researcher found that researchers are still attempting to address the

challenges related to the quality of the datasets applied in supervised machine learning

studies. Although existing studies have offered noteworthy contributions in attempts

to address issues related to the quality of the data used in software defect prediction,

these issues remain unresolved. Consequently, such issues have led to numerous research

controversies. Notably, some researchers have proposed various frameworks to address

these challenges, such as the frameworks of Menzies et al., Lessmann et al. and Song et al.

However, Wahono (2015) challenged the efficacy of these frameworks, arguing that they

produce misleading findings while addressing issues associated with data inconsistencies.
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Other researchers have also proposed techniques for addressing various data-related issues.

However, these techniques also do not fully address the existing data quality issues; hence,

our proposed framework attempts to fill this gap.

Importantly, the performances of existing prediction models have also been challenged

as a result of data inconsistencies in machine learning studies. Taipale et al. (2013)

maintained that these controversies involving defect prediction studies make it difficult

to successfully implement their research findings in a real-world scenario. Panichella

et al. (2014) further noted that no clear winner among these prediction models can be

identified due to the controversies associated with the research findings. However, while

investigating whether the existing literature has reported means of predicting the numbers

of class- and method-level defects in a new software version, the researcher conducting

this study found that Bernstein et al. (2007) considered the number of revisions and the

number of reported issues to predict the number of defects for the Eclipse project, although

without providing any general guidance on how such an approach could be applied to

future versions of software products. Although their results indicate that certain temporal

features can be used to develop a model for predicting whether a source file will contain

a defect, that finding is limited to only six Eclipse plugins, representing a single project,

which seems to be a drawback of their results.
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Table 2.3: Summary of some related studies on data preprocessing
Author(s) Topic area Institution Country Year Publication
Al-Ghraibah et al. (2015) Feature selection New Mexico State University United States 2015 Conference
Lima & Pereira (2015) Feature selection Federal University of Minas

Gerais
Brazil 2015 Conference

Maldonado et al. (2014) Feature selection Universidad de los Andes Chile 2014 Journal
Bolon-Canedo et al. (2011) Feature selection University of A Coruña Spain 2011 Journal
Braytee et al. (2016) Feature extraction University of Technology Syd-

ney
Australia 2016 Conference

ÇATAL (2016) Faulty data Istanbul Kültür University Turkey 2016 Journal
B. Ma et al. (2014) Fault classification BeijingUniversity of Posts and

Telecommunications
China 2014 Journal

Bae & Yoon (2015) Imbalanced learning Gwangju Institute of Science
and Technology

South Korea 2015 Journal

Vong et al. (2015) Imbalanced learning University of Macau Macau 2015 Journal
P. Cao et al. (2014) Imbalanced learning Northeastern University China 2014 Journal
D. Zhang et al. (2015) Imbalanced classifi-

cation
Shandong Jianzhu University China 2015 Conference

Moepya et al. (2014) Class imbalance University of Johannesburg South Africa 2014 Conference
Wald et al. (2013) Class imbalance Florida Atlantic University United States 2013 Conference
Longadge & Dongre (2013) Class imbalance G.H. Raisoni College of Engi-

neering
India 2013 Journal

Kontos & Maragoudakis (2013) Class imbalance University of the Aegean Greece 2013 Conference
Beyan & Fisher (2015) Imbalanced data University of Edinburgh Scotland 2015 Journal
Yin et al. (2014) Imbalanced data Xi’an Jiaotong University China 2014 Journal
Abolkarlou et al. (2014) Imbalanced data Graduate University of Ad-

vanced Technology
Iran 2014 Conference

Zhai et al. (2017) Imbalanced data Hebei University China 2017 Journal
Díez-Pastor et al. (2015) Imbalanced data Bangor University Wales 2015 Journal
Dubey et al. (2014) Imbalanced data Arizona State University United States 2014 Journal
D’Addabbo & Maglietta (2015) Imbalanced data National Research Council Italy 2015 Journal
Manikandan et al. (2016) Imbalanced data Bharathiar University India 2016 Journal
López et al. (2013) Imbalanced data University of Granada Spain 2013 Journal
Z. Sun et al. (2015) Imbalanced data Xi’an Jiaotong University China 2015 Journal
Trafalis et al. (2014) Imbalanced data University of Oklahoma United States 2014 Journal
Kumar et al. (2014) Imbalanced data JNTU India 2014 Journal
J. Li et al. (2017) Imbalanced data University of Macau Macau 2017 Journal
J. Yang et al. (2016) Imbalanced data Shenzhen University China 2016 Journal
Yijing et al. (2016) Imbalanced data China University of Geo-

sciences
China 2016 Journal

Casañola-Martin et al. (2016) Imbalanced data Universitat de València Spain 2016 Journal
Haixiang et al. (2017) Imbalanced data University of Geosciences China 2017 Journal
Haixiang et al. (2016) Imbalanced data University of Geosciences China 2016 Journal
Jian et al. (2016) Imbalanced data Guangdong University of

Technology
China 2016 Journal

Menardi & Torelli (2014) Imbalanced data Università degli Studi di
Padova

Italy 2014 Journal

Nekooeimehr & Lai-Yuen (2016) Imbalanced data University of South Florida United States 2016 Journal
Borrajo et al. (2011) Imbalanced data University of Vigo Spain 2011 Journal
Y. Liu et al. (2011) Imbalanced data Shandong University China 2011 Journal
Palacios et al. (2010) Imbalanced data Universidad de Oviedo Spain 2010 Conference
Cateni et al. (2014) Imbalanced datasets TeCIP Institute Italy 2014 Journal
Ng et al. (2016) Imbalanced datasets

in classification
South China University of
Technology

China 2016 Journal

Krawczyk et al. (2014) Imbalanced datasets
in classification

Wrocław University of Tech-
nology

Poland 2014 Journal

J. Song et al. (2016) Imbalanced datasets
in classification

Communication University of
China

China 2016 Conference

L. Song et al. (2014) Imbalanced datasets
in classification

Nanjing Medical University China 2014 Journal

L. Chen et al. (2015) Sample reduction Chongqing University China 2015 Journal
P. He et al. (2015) Metric set Wuhan University China 2015 Journal
X. Jing et al. (2015) Metric set Wuhan University China 2015 Conference
Castaño & Gallón (2017) Multicollinearity Universidad de Antioquia Colombia 2017 Journal
W. Li et al. (2015) Outliers in datasets Baylor Research Institute United States 2015 Journal
W. Liu et al. (2014) Outliers in datasets Watson Research Center United States 2014 Conference
Z. Li et al. (2017) Privacy Wuhan University China 2017 Journal
Ha & Lee (2016) Undersampling Sungkyunkwan University South Korea 2016 Conference
Kang et al. (2017) Undersampling Tongji University China 2017 Journal
Yun et al. (2016) Oversampling Sungkyunkwan University South Korea 2016 Conference
H. Cao et al. (2014) Oversampling Research institute Singapore 2014 Journal
Das et al. (2015) Oversampling Washington State University United States 2015 Journal

64

Univ
ers

iti 
Mala

ya



Table 2.4: Table 2.3 continued
Author(s) Topic area Institution Country Year Publication
Kamarulzalis et al. (2018) Oversampling Universiti Teknologi MARA Malaysia 2018 Conference
Beckmann et al. (2011) Oversampling Federal University of Rio de

Janeiro
Brazil 2011 Conference

Jiarpakdee et al. (2018) Correlated metrics University of Adelaide Australia 2018 Journal
N. Zhang (2016) Clustering University of the District of

Columbia
United States 2016 Conference

Y. Zhang et al. (2015) Cross-project prediction Zhejiang University China 2015 Conference
Nam et al. (2017) Cross-project prediction University of Waterloo Canada 2017 Journal
Hosseini, Turhan, & Gunarathna (2017) Cross-project prediction University of Oulu Finland 2017 Journal
Kamei et al. (2016) Cross-project prediction Kyushu University Japan 2016 Journal
Panichella et al. (2014) Cross-project prediction University of Salerno Italy 2014 Conference
Peters et al. (2015) Cross-project prediction University of Limerick Ireland 2015 Conference
Ryu et al. (2016) Cross-project prediction Korea Advanced Institute of Sci-

ence and Technology
South Korea 2016 Journal

Ryu et al. (2015) Cross-project prediction Korea Advanced Institute of Sci-
ence and Technology

South Korea 2015 Journal

Ryu et al. (2017) Cross-project prediction Korea Advanced Institute of Sci-
ence and Technology

South Korea 2017 Journal

Bosu & MacDonell (2013) Data quality Auckland University of Technol-
ogy

New Zealand 2013 Conference

Chetchotsak et al. (2015) Data balancing Khon Kaen University Thailand 2015 Journal
Feng et al. (2016) Data transformation University of North Carolina United States 2016 Journal
Canfora et al. (2015) Defect prediction University of Sannio Italy 2015 Journal
Wahono (2015) Defect prediction Dian Nuswantoro University Indonesia 2015 Journal
F. Zhang et al. (2016) Defect prediction Queen’s University Canada 2016 Journal
V. García et al. (2010) Resampling Universitat Jaume I Spain 2010 Conference
Sáez et al. (2015) Resampling University of Granada Spain 2015 Journal
Jojan & Srivihok (2013) Preprocessing Kasetsart University Thailand 2013 Conference
Muresan et al. (2015) Preprocessing Technical University of Cluj-

Napoca
Romania 2015 Conference

Tavares et al. (2013) Preprocessing Federal University of Pernambuco Brazil 2013 Conference
Wong et al. (2013) Preprocessing Hong Kong Polytechnic Univer-

sity
Hong Kong 2013 Conference

Manek et al. (2013) Preprocessing Jawaharlal Nehru Technological
University

India 2013 Conference

Lai & Leu (2017) Preprocessing Shih Chien University Taiwan 2017 Conference
Idri et al. (2018) Preprocessing Université Mohammed V Morocco 2018 Journal
Roy et al. (2018) Preprocessing University of Québec Canada 2018 Journal
Xiaoli et al. (2015) Preprocessing Northeast Dianli University China 2015 Journal
Benhar et al. (2018) Preprocessing Université Mohammed V Morocco 2018 Conference
Pérez et al. (2015) Preprocessing Tecnológico Nacional de México Mexico 2015 Journal
Fallahi & Jafari (2011) Preprocessing Shiraz University Iran 2011 Journal
Coone (n.d.) Preprocessing Universiteit Gent Belgium 2010 Journal
Bilgin & Camurcu (2010) Preprocessing Maltepe University Turkey 2010 Journal
Rhoads (2011) Preprocessing United States patent United States 2011 Other
Damaceno Borges et al. (2013) Preprocessing Federal University of Viçosa Brazil 2013 Journal
López et al. (2012) Preprocessing University of Granada Spain 2012 Conference
Meadem et al. (2013) Preprocessing University of Washington United States 2013 Conference
Kamiran & Calders (2012) Preprocessing Eindhoven University of Technol-

ogy
Netherlands 2012 Journal

Farquhar & Hill (2013) Preprocessing Radboud University Netherlands 2013 Journal
Fournet et al. (2013) Preprocessing Microsoft United States 2013 Conference
Shanab et al. (2012) Preprocessing Florida Atlantic University United States 2012 Journal
K. Li et al. (2010) Preprocessing Hebei University China 2010 Journal
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CHAPTER 3: RESEARCH METHODOLOGY

This chapter presents the methodology applied while conducting this research. It is

important to provide a clear overview of the applied research methodology, not only to

specify the steps taken but also to facilitate the understanding of the whole research process.

To meet the research objectives, a standard methodological approach was applied in this

research. Note that the key objectives of this research are to propose a suitable approach

for addressing data-related issues at both the class and method levels of software programs

and to propose a technique that can be applied to predict the numbers of defects in a new

version of software at both the class and method levels. To achieve the formulated research

objectives, an optimal decision approach was applied in each of the three main phases

of the standard research methodology, namely, (i) the planning phase, (ii) the proposed

approach phase, and (iii) the evaluation and analysis phase, as presented in Figure 3.1.

The flowchart presented in Figure 3.1 illustrates how the various stages of the research

methodology are related to each other in terms of the activities performed in the individual

phases. The phases of the research methodology are presented at the abstract level in

Figure 3.3.

3.1 Planning phase

The planning phase was the initial stage of the research. During this starting phase,

the research activities were broken down into individual logical segments to specify how

the defined research objectives were to be achieved. Based on the optimal decision made

to segment the research methodology phases, a clearer understanding of each phase and

their relationships was achieved. This segmentation of the research phases enabled the

researcher to effectively plan what was to be done and how throughout the entire research

process. Having first identified the research problem, the researcher identified the needs of
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Figure 3.1: Phases of the research methodology

the research, formulated the research questions, formulated the research objectives, selected

the electronic databases to be included in the research and clarified the reasons for their

selection. Furthermore, the researcher planned the search process and structured a quality

assessment of the materials to be included in the research. The researcher also planned the

types of instruments to be applied in the data collection and preprocessing procedures, thus

providing a basis for structuring the data analysis techniques and evaluating the proposed

approach. This planning phase formed the foundation of the research methodology, as

presented in Figure 3.1.
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3.1.1 Needs of the research

During the planning phase, the needs of this research were identified. These needs

are related to how the study is expected to contribute to the body of knowledge in the

field of machine learning for software defect prediction. The importance of this research

therefore forms the basis for the research significance, as presented in the previous chapter.

In addition, the defined key objectives of this study, namely, to propose a framework to

address the inconsistencies in the datasets applied in machine learning studies and to

propose a technique that can provide actionable outputs to software managers, are in line

with the research significance.

3.1.2 Planning the research questions

The research questions formulated in this study are answerable questions related to

the scope of this research, with a focus on supervised machine learning. During the

planning phase, a set of research questions were formulated to guide the investigation of the

preprocessing of class- and method-level datasets as well as defect prediction techniques in

the supervised machine learning domain. All research questions were required to possess

the following characteristics: clarity, focus, concision, understandability and arguability.

Clarity: The researcher formulated research questions concerning the preprocessing of

class- and method-level datasets as well as defect prediction to ensure that there would be no

need to seek additional information on the interpretation of any particular research question.

The researcher ensured that each research question provided sufficient information to be

investigated.

Focus: The researcher avoided irrelevant contents unrelated to supervised machine learning

when formulating the research questions; rather, only related research terms were included

in the research questions. This was done to allow specific answers to be provided to each

research question during the investigation of the processing of class- and method-level
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datasets and defect prediction.

Concision: The researcher ensured that the formulated research questions were as simple

as possible for ease of understanding.

Understandability: The researcher ensured that each research question would require not

only a "yes" or "no" answer but rather an articulation of ideas in response to questions on

the preprocessing of class- and method-level datasets and defect prediction.

Arguability: The research questions in this study were formulated to be capable of opening

up new areas of research rather than merely accepting previous findings on supervised

machine learning. The formulated research questions have been presented in Section 1.4.

3.1.3 Planning the search process, electronic databases and literature review

One of the crucial aspects of the planning phase of the research methodology applied

in this study was the selection of reliable electronic databases and search processes to

ensure the retrieval of information from reliable sources. Articles from journals and

conference proceedings related to data preprocessing as well as articles related to class-

and method-level defect prediction were extracted from electronic databases using both

automated and conventional manual search processes. A list of the electronic databases

searched is presented in Table 3.1. A flowchart of the search process is also presented in

Figure 3.2. The search strings were formulated to retrieve as many articles as possible

Table 3.1: List of electronic databases searched
Database URL

IEEE Explore www.ieeexplore.ieee.org
SpringerLink www.link.springer.com
ScienceDirect www.sciencedirect.com
Web of Science www.webofknowledge.com
Google Scholar www.scholar.google.com

Wiley Online Library www.onlinelibrary.wiley.com
ACM Digital Library www.dl.acm.org

IET Software Digital Library www.digital-library.theiet.org
Scopus www.scopus.com
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Figure 3.2: Search process flowchart

related to data preprocessing, the topic of interest in this literature review. The following

search strings were formulated and applied: (data OR data set OR data sets OR imbalanced
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data OR imbalanced data set OR imbalanced data sets) AND (preprocessing OR cleaning

OR cleansing OR preparation OR sanitization OR purification at class and method levels of

software OR program OR application) AND (defect prediction OR estimation OR forecast)

AND (Machine learning)

(number OR amount OR quantity OR digits OR figure) AND (new version OR product

OR program OR application) AND (defects OR errors OR faults OR failures at class

and method levels of software OR program OR application) AND (defect prediction OR

estimation OR forecast) AND (Machine learning)

During the literature review stage, relevant academic materials were investigated, such as

books, scholarly articles (including academic journal articles and conference proceedings),

reports, e-books and other documents relevant to the research problem, available mostly

in online databases and from the university library. The relevant documents found in

these repositories provided detailed information and evaluations of the work done in the

supervised machine learning domain. In addition, for the purpose of establishing the

research problem, the researcher performed an extensive literature review. Based on the

relevant documents found in the literature, the research problem under investigation was

formulated. The relevant documents accessed during the review period were organized so

as to facilitate understanding of the sources of the materials reviewed while investigating

the research problem as well as to demonstrate to the reader how this research can be

applied within the software engineering community. Importantly, the literature review

process enabled the researcher to gain an understanding of the academic progress achieved

within the research domain and, thus, to uncover gaps in the existing work, which the

present research attempts to fill. The researcher also considered the existing approaches

proposed in the literature for addressing research problems related to the research problem

investigated in this study. Thus, the literature review enabled the researcher to organize,

71

Univ
ers

iti 
Mala

ya



understand and acknowledge the existing contributions made by other researchers to

address similar research problems. From the reviewed documents, the researcher could

easily determine the correlations among the different studies and the possibilities for future

work suggested in the existing studies. The literature review lasted approximately 6 months.

Sufficient time was allocated to review all relevant materials, and at the end of the literature

review, the researcher was able to define the research problem. As mentioned previously,

this stage of the research methodology enabled the researcher to identify and review

previous studies related to the research problem investigated in this study by engaging in

a rigorous review process. Ultimately, the researcher acquired an overall understanding

of the materials available in various databases to support the formulation of the research

problem. The details of the literature review have been presented in Chapter 2.

3.1.4 Clarification of the research problem

The research problem investigated in this study was further clarified after a thorough

review of all of the conceptual and empirical literature available within the databases

searched. This problem is the main issue to which this research attempts to provide a

solution. This problem clarification helped the researcher to focus on the specific research

area related to the problem and on possibly suitable solutions. The formulation of this

research problem clarifies the key issues associated with class- and method-level software

defect prediction to provide guidance in developing and proposing a solution to address

this problem. The details of the research problem have been presented in Section 1.2.

3.2 Proposed approach phase

After clarifying the research problem, the researcher then formulated the detailed

structure of the proposed approach for addressing the fundamental research problem.

The reason for formulating the proposed approach in this way was to guide the research

72

Univ
ers

iti 
Mala

ya



Figure 3.3: Phases of the research methodology at the abstract level

activities to yield an optimal solution to the problem under investigation as efficiently as

possible, as presented in Figure 3.3. In essence, the formulation of the proposed approach

assisted in the research effort by specifying a means of collecting relevant evidence to
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support the research with minimum stress. In other words, the proposed approach provided

a framework to ensure the smooth flow of the research process and to determine how

the chosen approach could be applied to address the research problem. The approach

formulated during the planning phase of this study provided a blueprint for addressing the

research problem by accounting for the following:

1. The research problem.

2. A means to address the data quality issues encountered in defect prediction studies,

which have been a major concern leading to numerous contradictory research findings

in machine learning studies, and a demonstrated approach for predicting the numbers of

defects in a new software version at both the class and method levels.

3.2.1 Proposed supervised optimal decision machine learning approach

Figure 3.4: Flow diagram of the proposed approach

With the components presented in Figure 3.4, the proposed approach provided the

researcher with a comprehensive and well-structured plan to reduce the risk of bias and

enhance the reliability of the research findings. Through this well-structured approach,

the researcher could achieve optimal results and ultimately provide a means for future
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consideration of the research problem being addressed. Ultimately, all phases of the

proposed approach were necessary to enable the researcher to meet the objectives of this

study while addressing the research problem.

To address the issues related to the quality of the data applied for software defect

prediction studies at both the class and method levels, which have been a major concern

leading to numerous contradictory research findings in supervised machine learning studies,

the researcher applied an optimal decision technique as part of the proposed approach

to address these data quality issues through data preprocessing. First, the researcher

ensured that every dataset would undergo the same preprocessing stages before it could

be considered unbiased. The proposed approach includes a filter-based feature selection

phase, in which only relevant features are selected from among the features available in the

datasets. This phase ensures that redundant features are eliminated and that only features

with high predictive power are selected. The predictive power of each selected feature is

determined by applying a feature scoring method.

Second, each dataset is visualized to determine the number of outliers it contains. Outliers

are automatically removed from each dataset using widgets provided in Orange 2.7. This

ensures that only clusterable data are used throughout the experiment. Thereafter, a unique

identifier is assigned to each inlier in each dataset for further preprocessing; the datasets are

further thoroughly preprocessed with an input space created to recapture unreported faults.

Via this proposed approach, researchers can properly ensure that the datasets applied in a

machine learning study are free from bias. In addition, a proper evaluation of the average

performances of various classifiers on imbalanced data can be conducted.

The proposed decision-based data preprocessing approach is expected to enable some

learning algorithms to independently and accurately learn from properly preprocessed,

highly imbalanced data while still generating suitable classification results, thus allowing
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them to maintain their average performances. In addition, these classifiers should be

able to make optimal classification decisions based on the training conducted with the

preprocessed data and thus produce optimal outputs. The proposed approach ensures that

incorrect predictions in supervised machine learning are avoided. If not addressed, biased

predictions often lead to consequences with high costs (Chawla, 2009; Van Hulse et al.,

2007). To reduce costs while achieving unbiased results in a defect prediction study, it is

advisable to apply clearly specified procedures such as those of the proposed approach in

order to achieve unbiased results at low cost, as reported by Doppa et al. (2014). Second,

to address the lack of a demonstrated approach for predicting the numbers of defects in a

new software version at both the class and method levels, based on an optimal decision

approach, certain optimal variables are first derived as features that are relevant to and

correlated with the number of defects. These variables are the defect density, defect

introduction time and defect velocity, which have a certain correlation with the number of

software defects and thus can be applied in constructing regression models to predict the

number of defects in a new version of a software program. However, for the purpose of

determining the average classifier performance, a different feature selection technique is

applied. For each dataset, the individual rank score of each feature, denoted by rankid,

is determined to enable the identification of the relevant features and to ascertain their

correlations with the target class or target modules (i.e., defective classes or methods) in

the dataset. To achieve the above objective, an optimal threshold is set that is equal to the

average rank score of all features, denoted by Rankave. Features whose rank scores are

equal to or greater than this threshold are selected, and those with lower rank scores are

discarded.

For this feature selection procedure, a filter-based selection module has been selected

based on an optimal decision. This module provides multiple feature scoring algorithms
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to ascertain the relationships between the independent variables (i.e., the features in the

dataset) and the dependent variable (the target defective class or method). Among the

feature scoring methods offered by the module, the Pearson correlation method is selected

to accurately determine the linear relationship between each independent variable and the

dependent variable, which is relevant for identifying meaningful features. The Pearson

correlation is also used as an indicator to quantify the strength of meaningful features in

terms of their correlation.

3.2.1.1 Feature selection

As previously stated, the first preprocessing activity is feature selection. As soon as

the datasets are acquired from the repository, feature selection is performed to aid in the

accurate selection of relevant features in each dataset. The filter-based feature selection

approach applied in this research involves selecting a subgroup of relevant features from

among the available features in both class- and method-level datasets. The reasons for

performing filter-based feature selection include the following:

1. To ensure that the datasets applied in this research contain only relevant features.

2. To eliminate redundant features from the datasets.

3. To ensure that prediction models are constructed with relevant and simple feature sets.

4. To reduce the time needed to train the learning algorithms.

5. To avoid model overfitting, which may result in biased research findings.

6. To ensure that sparse data in the datasets are avoided.

3.2.1.2 Data visualization and outlier removal

After the selection of meaningful features from the datasets, the data are visualized to

clearly identify and remove the outliers in the datasets to address the issue of noise in the

data. Another reason for data visualization is to determine the patterns and concentrations
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of the defective and defect-free classes and methods in the datasets. Through this data

visualization, the impact of the defective classes and methods on software products is

revealed. Often, such defective classes and methods may result in catastrophic damage, as

reported by Felix & Lee (2017a); this situation confirms the need to predict the numbers

of defective classes and methods present in a new software version.

3.2.1.3 Assigning unique identifiers to classes and methods in datasets

As noted earlier, the existing class- and method-level datasets are inherently imbalanced,

and the proportions of defective and defect-free classes and methods vary from dataset to

dataset. Typically, it is difficult to accurately determine the exact numbers of defective

and defect-free classes and methods. Therefore, assigning unique identifiers to all classes

and methods in a dataset makes it much easier to identify and track the proportions of

defective and defect-free classes and methods. In the proposed approach, based on an

optimal decision for addressing data quality issues, unique identifiers are assigned during

data preprocessing for the following reasons:

1. For easy identification of defective and defect-free classes and methods in each dataset.

2. To identify and track records of missing values in each dataset.

3. To track outliers in each dataset.

3.2.1.4 Modeling technique

In this research, a modeling technique selected based on an optimal decision is applied

to clearly address the research problem. Following the work done by Felix & Lee (2017b),

the modeling technique applied in this research is based on Rayleigh’s prediction model,

which indicates that the numbers of class- and method-level defects in a software product

increase over time throughout the Software Development Life Cycle (SDLC). The reasons

for basing the modeling technique on Rayleigh’s prediction model include the following:
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1. To model an approach that can be used to address this research problem.

2. To ensure reliable defect prediction outcomes.

3. Rayleigh’s model allows the modeling of the defect density and defect acceleration.

4. Rayleigh’s model is based on the statistical defect distribution over time throughout the

SDLC and, thus, is far superior to static models.

5. To allow modeling of the entire SDLC.

It is likely that the number of defects in a software product will increase as the software

project transitions through the SDLC. Rayleigh’s model, which describes the number of

defects over time as a software project transitions, implies that the rate at which defects

occur over time will lead to an increase in the number of defects, consequently resulting in

an increase in the defect density of the software product. The defect density is calculated

as the ratio of the number of defects to the project size. Based on this evolution of the

defect density, it is confirmed that an increase in the number of defects is caused by the

defect rate. The rate in this context represents the acceleration of defect occurrence, which

leads to an increase in the defect density. This implies that the rate of defect occurrence is

proportional to the defect density (that is, the ratio of the number of defects to the project

size is proportional to the change in the defect velocity over the defect introduction time).

Therefore, on the basis of the rate of defect occurrence, it is further confirmed that the

defect acceleration drives the number of defects in a software product as well as its defect

density. Thus, an increase in the defect acceleration will result in an increase in both the

number of defects and the defect density of a software product. Acceleration is calculated

as the rate of change in velocity over time. Hence, the defect acceleration is calculated as

the change in the defect velocity over the defect introduction time. Since the ratio of the

number of defects to the project size is proportional to the change in the defect velocity

over the defect introduction time, the following expression holds:
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no. of defects

project size
∼ defect velocity v

defect introduction time t
(3.1)

Based on the above optimal relationship, the defect density, defect velocity and defect

introduction time can be identified as optimal variables since they offer an optimal solution

to the problem investigated in this research. Thus, these optimal variables are applied to

further preprocess both class- and method-level datasets by determining the defect density,

defect velocity and defect introduction time in each dataset. This information obtained

from the current version of a software product during the preprocessing phase is helpful in

constructing a model for predicting the numbers of defects in a new version at both the

class and method levels.

3.2.1.5 Tracking unreported faults in the datasets

The optimal approach applied in this research reveals that not all faults can be captured

while performing data analysis during the data preprocessing phase. Therefore, there is a

need to ensure that these unreported faults, which were either omitted, hidden or unnoticed

during data analysis, are fully tracked and reported. To track these unreported faults, an

input space that uses a kernel-based algorithm is created. This kernel-based algorithm

ensures that the outcomes in the input space are properly reported. First, the datasets are

transformed into a feature representation by means of a similarity function, which is a

real-valued function that quantifies the similarity between two objects. The kernel applied

in the input space to perform this fault recapturing is the radial basis function (RBF), which

will be discussed in the next chapter. Once the unreported faults have been recaptured, the

datasets are assumed to be free from bias because an accurate number of faults has been

reported.
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3.3 Evaluation and analysis phase

This section explains the means of ascertaining the performance of the proposed optimal

decision framework. The need to evaluate the proposed approach, to ensure that it is

the best approach for overcoming the challenges associated with the existing class- and

method-level datasets and developing a suitable means of predicting the number of software

defects in the new version of a software product, cannot be overemphasized. To accurately

evaluate the proposed optimal decision framework, both null and alternative hypotheses

are formulated.

3.3.1 Formulation of the research hypotheses

The researcher has formulated a set of clearly defined research hypotheses to confirm the

evaluation outcomes. It should be noted that at this stage, these hypotheses are unconfirmed

assumptions. In other words, they may be either true or not until the relevant logical and

empirical evidence has been tested and obtained through suitable evaluations. Because

of the importance of these hypotheses, their formulation was given careful attention,

especially with regard to the parameters used to construct them. These parameters are the

variables assumed to be correlated with the research problem investigated in this study.

Another reason for giving careful attention to the formulation of the research hypotheses is

that they may influence the manner in which computations and evaluations are carried out.

The research hypotheses provide clear guidance on the influence of the chosen variables

applied in this research and further reveal vital information about the research problem,

thus enabling the researcher to focus on the most suitable approach to the research problem.

These hypotheses were tested using the evaluation measures specified for various phases

in the evaluation diagram presented in Figure 3.5.
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Figure 3.5: Evaluation diagram for the proposed approach

3.3.2 Hypothesis testing

This section introduces the testing of the formulated hypotheses in order to answer the

research questions. These assumptions are the initial claims, which then require evaluation

to determine their acceptance or rejection. The researcher evaluates each hypothesis

by determining the likelihood that the stated relationship between the dependent and

independent variables is true or not. The steps involved in hypothesis testing are presented

in Figure 3.6.

Statement of hypotheses: The researcher must ensure that both the null and alternative

hypotheses are clearly stated. The null hypothesis represents the first assumption in terms

of the likelihood of acceptance, whereas the alternative hypothesis represents the way in

which it is believed that the null hypothesis could be wrong.
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Figure 3.6: Steps of hypothesis testing

Setting of criteria: In this step, the researcher sets criteria to serve as a benchmark for

decision-making. These criteria are defined to help determine whether the null hypothesis

should be accepted or rejected. The set criteria are then compared against the results

obtained in the computation step.

Computation of test significance: Significance tests are performed to determine the

values to be compared with the values of the criteria set in Step 2.

Decision-making: A decision is made based on the values obtained in the computation

phase. These values are compared against the benchmark defined to determine whether

the null hypothesis should be accepted or rejected.

Feature selection phase: The feature selection phase is the first phase in the proposed

optimal decision framework. Relevant features are selected, and irrelevant features are

discarded. To evaluate the outcome of the filter-based feature selection applied in this

phase, the Pearson correlation is applied to identify and select features with high predictive

power.

Outlier removal, unique identifier assignment and inlier selection phase: This

phase is executed using an automated approach available in Orange 2.7 to accurately

determine the outliers in the class- and method-level datasets. The automated widgets

provided in Orange 2.7 make it much easier to eliminate outliers and assign unique
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identifiers before further preprocessing is performed on the inliers.

Further preprocessing and input space phase: The inliers are further preprocessed

to determine the defect density, defect velocity and defect introduction time. To ensure

thorough preprocessing, this phase is executed by means of a modeling technique to

determine the relationships between these optimal variables (defect density, defect velocity

and defect introduction time) and the numbers of class- and method-level defects.

Overall performance of the framework: To assess the overall performance of the

proposed optimal decision framework, several learning algorithms, namely, naïve Bayes,

logistic regression, neural network, K-nearest neighbor, support vector machine and random

forest algorithms, were trained on the preprocessed training datasets. The performances of

these learning algorithms were evaluated in terms of the accuracy, sensitivity, area under

the receiver operating characteristic (ROC) curve (AUC), precision, recall, information

score, percentage prediction error, entropy and geometric mean (G-mean). Furthermore,

the performance of the framework was assessed by comparing the results achieved using

the preprocessed datasets with those achieved using the raw datasets based on the learning

algorithms and evaluation metrics listed above.

3.3.3 Instrumentation

To successfully test the hypotheses stated above, it was essential to select appropriate

instruments to conduct the experiments in order to achieve the research objectives and

avoid misinterpretation of the results. These instruments were applied in various phases

of the proposed framework to evaluate the performance in every phase. For instance,

to accurately select suitable features from the existing datasets, the researcher applied

Microsoft’s Azure Machine Learning Studio, which enabled filter-based feature scoring

to guide the selection of relevant and predictive features. Thus, the researcher evaluated

the performance of this feature scoring and ranking approach as a means of evaluating
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the initial phase of the proposed data preprocessing framework. For outlier visualization

and removal, the researcher applied automated widgets provided in Orange 2.7, which

enabled the automatic elimination of outliers and the assignment of unique identifiers

to the classes and methods in the datasets. Thereafter, the actual number of outliers in

each dataset could be evaluated via linear projection. To further preprocess the class-

and method-level datasets, the researcher applied a mathematical modeling technique to

derive the defect density, defect velocity and defect introduction time from the current

class- and method-level datasets. An open-source software tool called Symbolab was

used to verify the accuracy of the mathematical modeling technique applied to derive the

aforementioned optimal variables. Other statistical tools applied in this research include

Microsoft SPSS and Microsoft Excel to perform analysis of variance (ANOVA) and to

determine the correlations between the derived variables and the numbers of class- and

method-level defects.

3.3.4 Experimental design

To achieve the objectives of this research, the experimental planning itself was of

paramount importance. For the experimental design, the researcher carefully planned

the types of tools to be used and the systematic collection of the data. An appropriate

experimental design will enable accurate evaluation that will result in either acceptance or

rejection of the research hypotheses.

3.3.5 Data collection

This research relied on secondary data collection. The data used in this study were

collected from widely known repositories for supervised machine learning research.

Notably, most of the reliable previous research in this field has also relied extensively

on such secondary data collected by previous researchers, for instance, Elish & Elish
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(2008), Q. Song et al. (2011), Z.-W. Zhang et al. (2017) and Qiao et al. (2017). However,

this study did not rely on already preprocessed data; instead, the researcher applied the

proposed optimal-decision-based data preprocessing technique to clean and preprocess

the data to ensure the accuracy and reliability of the datasets applied in this study. The

data collected for this research constitute the major factor affecting the ability to achieve

the research objectives and answer the research questions. The means of data collection

should enable the acquisition of concrete evidence that can yield reasonable answers

to the research questions and can also be analyzed to provide a means of addressing

future research problems. This research relied on the widely used National Aeronautics

and Space Administration (NASA) datasets and the ELFF datasets. The NASA datasets

are available from the PROMISE repository, while the ELFF datasets can be found at

www.elff.org.uk/ESEM2016.

These datasets were used to ensure that the research findings would meaningfully

contribute to the body of knowledge within the machine learning community and that

the results obtained in this research could be readily compared with those in the existing

literature. These datasets enabled the researcher to conduct experiments, validate the

stated hypotheses, provide answers to the research questions and compute the experimental

outcomes. The following factors were considered during data collection: reliability,

suitability and adequacy.

Data reliability: To assess the data reliability, the researcher considered the following

factors: the sources of the data, the person or group of persons who collected the data, the

method of data collection, and the period of time during which the data were collected. The

researcher also considered whether there was a possibility of bias in the measurement tools

applied during data collection. With regard to the data sources, the researcher investigated

the projects from which the data were collected. There was strong evidence in the literature
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to support the sources of the datasets applied in the present research. Furthermore, the

reliability of the individuals or groups responsible for data collection was investigated.

This investigation proved that the people responsible for the collection of the data from

their sources were reliable and that their goal was to make these repositories available

to the software engineering community (Sayyad Shirabad & Menzies, 2005). Strong

evidence for this reliability was confirmed by the quality of the journals in which similar

research studies using these datasets were reported, such as the studies of Elish & Elish

(2008), Q. Song et al. (2011), Z.-W. Zhang et al. (2017) and Qiao et al. (2017). Regarding

the data collection procedures, reliable automated approaches with noteworthy accuracy

were reported as the data collection methods. Regarding the periods of time during which

the data were collected, for the NASA datasets, this period ranges from 2007 to 2018,

whereas the time period for the ELFF data ranges from 2016 to 2018. Both sets of datasets

were applied in validating the reliability of this research. Regarding the issue of bias in

the measuring tools, the researcher was able to identify some erroneous data among the

datasets. These errors in the datasets, which were identified during data cleaning, may

have been the result of bias in the measuring tools applied. The errors could have arisen

due to either human or computer faults. Despite these errors, the data show a considerable

level of accuracy. For instance, the number of projects recorded was confirmed to be

accurate for both sets of datasets during preprocessing.

Data suitability: Before these secondary data were collected, the researcher first

ensured their suitability for addressing the research problem considered in this study.

Datasets that were found to be unsuitable were not considered in this study; only suitable

data were used. The suitability of these datasets makes it possible to carry out experiments

with these data, analyze the data and compute the results. As noted in the previous section,

several past studies on defect prediction have relied on the datasets considered in this

87

Univ
ers

iti 
Mala

ya



research, and as such, the suitability of these datasets for our purpose is confirmed by the

literature.

Data adequacy: Since the level of accuracy found in these datasets was remarkable,

the researcher concluded based on the evidence gathered from the literature that these

datasets are suitable for use in the present research. The researcher ensured that these

secondary data are precise and are strongly correlated with the research problem addressed

in this study. The researcher thus concluded that both the NASA and ELFF datasets are

reliable, suitable and adequate for this research. More information on the data collection

process can be found in Chapter 4.

3.3.6 Data analysis

Data analysis is a process that involves the systematic application of statistical or logical

techniques to evaluate data. Analyzing data can enable researchers to draw meaningful

conclusions and to accurately report the behavior of the data attributes. To enforce the

integrity of the data used in this research, the researcher applied suitable data analysis to

accurately report the research findings to the best of his knowledge. To support the integrity

of the findings, the researcher reports how the information obtained from the data was

analyzed. The information thus obtained can not only assist in providing answers to the

research questions but also assist the software engineering community in decision-making

during software testing, with an emphasis on software defect prediction.

Certain statistical techniques and tools are used to ensure the accurate presentation of

information relevant to this research. First, tables are used to clearly summarize related

studies addressing data quality issues, including their countries of origin, the associated

institutions and the years when these studies were published. In addition, the various

techniques applied for data preprocessing are summarized in a table. Graphs are used

to present the behavior of and relationships between the derived optimal variables and
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the number of defects as well as to present the behavior of the learning algorithms on

imbalanced class- and method-level datasets.

3.3.7 Threats to validity

In the course of searching for answers to the research questions and achieving the

research objectives, unintentional errors might have occurred. Therefore, some threats to

the validity of this study exist that may have affected the results. The threats to the validity

of this research include construct, internal and external threats. Details of these threats to

validity will be presented in Chapter 6 (Results and Discussion).

3.4 Summary

This chapter has presented the step-by-step research methodology applied in this

research. The first of these steps was the planning phase, in which the researcher specified

the research needs and formulated the research significance to ensure that the objectives

of this research would be met. The research questions investigated in this research were

also formulated in the planning phase, on the basis of a rigorous literature review. The

second phase of the research methodology was the proposed approach phase. Accordingly,

an optimal decision framework for preprocessing both class- and method-level datasets

applied in machine learning studies has been developed and presented. This research also

demonstrates how this framework can be applied in predicting the numbers of class- and

method-level defects in new versions of software.

Finally, the proposed framework was evaluated based on its four key phases: the feature

selection phase, which was evaluated on the basis of feature scoring and ranking; the outlier

removal phase, which was evaluated via the automated linear projection tool available in

Orange 2.7 (Demšar et al., 2013); additional data preprocessing, which was evaluated by

means of a mathematical modeling technique; and the overall framework performance,
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which was evaluated through a comparison of the results obtained via training on raw and

preprocessed datasets. This comparison was achieved by evaluating the performances of

the various learning algorithms applied in this research. The performance comparison

of these algorithms was conducted by training these algorithms on raw and preprocessed

datasets, individually, and evaluating the results on the basis of various evaluation metrics,

namely, the accuracy, sensitivity, AUC, J-coefficient, precision, recall, information score,

Matthews Correlation Coefficient (MCC), F-score, Brier score, G-mean and entropy.
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CHAPTER 4: PROPOSED APPROACH

This chapter presents the proposed optimal decision approach applied to address the

problems identified in the previous chapters. Before presenting the proposed approach, the

research problems are first analyzed to ensure that the proposed approach is suitable to

address them. The problems addressed in this study include the lack of an appropriate

preprocessing technique for class- and method-level data and the lack of an appropriate

technique for predicting the numbers of class- and method-level defects in a new version

of software in advance, as presented in Section 1.2. Based on the optimal decision-making

that led to the proposed approach, several variables (referred to as optimal variables due

to their influence on the numbers of class- and method-level defects) have been derived,

namely, the defect density, defect velocity and defect introduction time. The essential

purpose of deriving these optimal variables is to ensure that their underlying influences

on the numbers of class- and method-level defects are investigated and revealed. In

addition, these optimal variables can be applied not only in preprocessing both class- and

method-level datasets but also in constructing regression models to predict the numbers of

class- and method-level defects in a new version of a software program.

4.1 Problem analysis

After a rigorous investigation of the literature, the researcher can confirm that most

defect prediction models applied in machine learning studies appear to be ineffective due

to the challenges these models face. These challenges can arise before, during or after

model construction as a result of data quality issues.

However, many attempts to improve the performance and accuracy of these learning

algorithms have been made; for instance, studies performed by X. Jing et al. (2015),

Shepperd et al. (2014), M. H. Rahman et al. (2016), Taba et al. (2013), Taba et al. (2013),
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and Herbold (2013) have reported improved performance of learning algorithms. However,

despite their high performance, the existing prediction models still produce biased results

when applied in machine learning studies. As a result of these biased findings, some

controversies exist with regard to the accuracy of the defect prediction models used in

existing machine learning studies. These bias-related controversies contribute to the

current lack of a reliable prediction model that can be used to predict the number of defects

in a new software version. This lack is reflected by the conflicting results reported in

the existing literature, which can be traced to the following root causes: the poor quality

of the class- and method-level data applied in defect prediction studies and poor model

construction due to the lack of appropriate variables that are highly correlated with the

number of software defects. Moreover, data quality issues remain an important factor in

defect prediction studies because the outcomes of such studies depend on the quality of the

data applied.

4.1.1 Emphasis on data quality

The backbone of every prediction model is the quality of the data applied. In practice,

every organization or industry relies on information acquired from datasets available within

that organization or industry to aid in better decision-making. As existing studies have

proven, however, the quality of much of this data is poor, which is an issue that has yet

to be fully addressed. Therefore, it is important to accurately analyze how the existing

poor-quality datasets affect industries and organizations. These negative impacts include

but are not limited to the following: (1) distrust of the findings obtained based on these

poor-quality datasets and (2) potential high costs incurred within an organization.
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4.1.1.1 Distrust of findings based on poor-quality datasets

Most decision-makers base their decision-making on information obtained from available

datasets. However, if one cannot trust these datasets due to their inconsistent quality, there

is a high risk of inaccurate and biased decision-making (Rob Manser, 2016). When a

biased or inaccurate decision is made, additional effort will be required to investigate

its cause, which may ultimately lead to re-evaluation of the datasets applied during the

decision-making process. As discussed in Section 1.1, organizations may suffer enormous

losses as a result of software defects; hence, the data extracted in such scenarios must be

reliable to enable the construction of reliable prediction models to prevent the recurrence

of such events. If the datasets obtained from such catastrophic losses are not reliable,

then there will be even a higher risk that the models constructed with such data will

produce misleading results. Moreover, if decisions are made based on biased and unreliable

datasets, especially when organizations have placed their confidence in such decisions,

distrust is likely to set in, which can result in a loss of customer confidence and loyalty

(Akbar & Parvez, 2009; Nguyen et al., 2013). Distrust among customers as a result of

poor data quality can also diminish the availability of resources within an organization if

not addressed. One of the ways to address such a situation while ensuring that available

datasets are free from bias is through the optimal decision framework proposed in this

research, which can address most relevant data quality issues.

4.1.1.2 High cost implications

There are always high costs associated with correcting the damage that occurs as a

result of applying poor-quality data in decision-making (Rob Manser, 2016). For instance,

with a cost-effective data preprocessing approach, it may cost an organization 1 dollar

to prevent poor data quality. On the other hand, it may cost the same organization 100

dollars to correct the damages caused as a result of poor data quality. Moreover, if this
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remediation is not achieved in a timely fashion, the consequences may incur thousands

of dollars of additional costs or may even result in catastrophic damage from which the

organization may be unable to recover. Figure 4.1 illustrates the relative cost of correcting

defects throughout the Software Development Life Cycle (SDLC) and shows that the cost

of preventing defects is always less than the cost of correction over time.

Figure 4.1: Relative cost of correcting defects (LaTonya Pearson, 2014)

If poor-quality data are applied in constructing prediction models to aid in decision-

making, the outcomes of such models will lead to the following results:

a. Reduced customer satisfaction and loyalty.

b. High loss in the organization’s income/profit.

c. Reduced productivity of the organization.

d. High consumption of revenue and a high cost of maintenance.

e. Distrust in the organization, leading to a loss of customers.

It is therefore important to note that class- and method-level datasets applied in defect

prediction studies are, by default, inconsistent due to their imbalanced nature. As such,

classification algorithms may produce inconsistent results due to this method and class

imbalance. As a result of these inconsistencies, many conflicting and questionable findings
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arise in the field of machine learning, and this situation requires urgent attention. If these

problems are not addressed, the outcomes of research on defect prediction will continue to

face criticism. It is also important to note that these inherent issues result in erroneous

data that, when applied in model construction, can lead to model overfitting and concept

drift, causing the constructed prediction models to perform poorly (Hosseini, Turhan, &

Gunarathna, 2017). In addition, if a prediction model is trained using erroneous data,

the model will tend to produce biased results since the outcome of a prediction model

depends on the quality of the data on which it is trained. Consequently, it is essential to

adequately preprocess these data before using them to train any prediction model to avoid

misleading results. To address this need, a preprocessing framework is proposed in this

research to supplement the existing preprocessing techniques available in the literature.

The proposed framework is needed because data preprocessing, which is performed before

the construction of learning models to prepare reliable input datasets (Haixiang et al.,

2017), is a crucial concern in machine learning research. As a fundamental phase of

machine learning studies, data preprocessing requires the understanding, identification

and specification of data-related issues as well as a knowledge-based approach that can be

used to address these issues and thus make data more reliable for use in machine learning

(S. Zhang et al., 2003). Notably, there is clear evidence that data preprocessing can impact

the predictive performance of learning algorithms (Crone et al., 2006). If data are properly

preprocessed, researchers can accurately identify and report the number of defects found in

their data, thereby making their datasets more suitable for enabling learning models to learn

independently and accurately from unbiased data to produce reliable prediction results to

aid in decision-making. The credibility of defect prediction is one factor influencing data

quality (Hall et al., 2012; Liebchen & Shepperd, 2016; Hosseini et al., 2016; Hosseini,

Turhan, & Mäntylä, 2017). Thus, it is necessary to focus on eliminating errors from a
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dataset by means of preprocessing rather than on altering the original dataset, which may

lead to the introduction of additional errors. Such alteration of the original datasets has

been identified as a weakness of the existing solutions offered in the literature to address

data quality issues. The removal of errors from an existing dataset can be achieved through

data preprocessing, which can be defined as the process of making the original dataset

less erroneous and more suitable for use in training learning algorithms to make unbiased

predictions.

4.1.1.3 Emphasis on learning algorithms

Notably, when learning algorithms are trained with unbiased data, such algorithms

tend to produce reliable results. It is also important to note that with the existing learning

algorithms, no approach has been demonstrated that can be applied to predict the number

of defects in a new software product prior to testing. Consequently, these prediction

models have not offered actionable outputs for use in the software industry. One reason for

this lack is that the existing prediction models have not been built using metrics that are

significantly correlated with the number of defects found in software systems. Therefore, it

is crucial to bridge this existing gap by means of the optimal decision approach proposed in

this research. In addition to the quality of the data, the metrics applied when constructing

prediction models can also play an important role in determining the ability of the resulting

regression models to predict the number of software defects. For instance, the defect

density is an important metric in a software system but has not been fully utilized in model

construction for defect prediction studies. The number of defects in a software project

can be characterized by its defect density, which is defined as the ratio of the number of

defects to the size of the project. If prediction models are not constructed with metrics

that exhibit a sufficient correlation with the number of defects, then such models can

produce misleading results. Therefore, it is important to consider meaningful metrics
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when constructing defect prediction models since the existing defect prediction models are

unable to estimate the number of future defects in a new software product. This lack could

also be the result of the unavailability of optimal metrics suitable for constructing such

models. If a prediction model is constructed with irrelevant metrics, this can similarly

result in false prediction outcomes, which can lead to software failure. If such a situation

occurs, the cost of correcting the software can be high. Consequently, biased prediction

outcomes can also lead a software team to deliver a defective software product to the end

user, which can reduce customer satisfaction (Koru & Liu, 2005). Notably, optimal metrics

for the construction of defect prediction models are currently lacking, and as a result, the

findings obtained in defect prediction studies continue to face challenges. To address

this lack, the researcher has identified such optimal metrics, namely, the defect density,

defect velocity and defect introduction time, which are real-time metrics with considerable

influence on the number of defects found in a software product. These metrics enable the

prediction of the number of defects in a new software release due to their influence on

and correlation with the number of defects. However, these real-time metrics have not

yet been utilized in the existing literature for the construction of prediction models, either

because these optimal metrics have simply been neglected or because they are expensive

(Ramler et al., 2014). The inability to utilize such metrics has impacted the outcomes of

most prediction studies in the field of machine learning. Supervised machine learning

requires techniques for selecting appropriate features from existing datasets to identify

the most suitable subset of features for solving data-related issues (Hossain et al., 2016).

It is known that the existing datasets contain irrelevant features, which can affect the

performance of learning algorithms; consequently, a proper means of selecting the most

relevant features is needed (Kwak & Choi, 2002; Gu et al., 2016). With the proper selection

of relevant features, learning algorithms can be trained on these features to yield optimal
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results in machine learning studies. By the same token, irrelevant features can affect the

accuracy of learning algorithms. Therefore, to encourage unbiased prediction outcomes,

classification algorithms should be trained on an ideal set of metrics characterized by

relevant information about the expected outcome. Selecting the most relevant attributes

thus simultaneously removes irrelevant features from a dataset and enables better data

management and understanding; for this reason, the choice of metrics is essential when

handling inconsistent datasets (Kwak & Choi, 2002; Gu et al., 2016).

The quality of data, in terms of accuracy, consistency and completeness, must be enhanced

before attributes can be successfully extracted from such data; such enhancement will

assist researchers in producing unbiased results (Ramler et al., 2014). Again, proper data

enhancement can be achieved through data preprocessing to ensure that a dataset is properly

cleaned and complete before learning algorithms are applied. Thus, proper preprocessing

will make it possible to extract optimal metrics that can be applied in model construction,

which can greatly support decision-making. Notably, as a result of the inconsistencies

that exist in the data and metrics applied in machine learning studies, it is difficult for

most researchers to accurately report the methods applied when performing data cleaning,

and these inconsistencies have also led to conflicting practical results in machine learning

studies (Shepperd et al., 2014).

Therefore, it is necessary for researchers to report in detail the measures applied during

data preprocessing (Felix & Lee, 2017b). One suitable means of achieving better data

preprocessing is through an optimal preprocessing approach characterized by the optimal

decision procedure proposed in this research. Clearly, the existing literature lacks such an

optimal data preprocessing approach. To bridge this gap, a data preprocessing framework

is proposed in this study to address some of the challenges associated with typical class-

and method-level software datasets. An optimal decision procedure was used to design
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this data preprocessing framework, resulting in a prime advantage in ensuring effective

data preprocessing. This approach can lead to knowledge discovery in defect prediction

studies and possibly open up new areas of research.

Notably, the presence of defects in software products markedly reduces software

performance. Consequently, such defects make it difficult for the user to understand how

a software product works. Furthermore, the defects present in a software system can be

expensive to eliminate and can result in a high cost of maintaining the software product

(D’Ambros et al., 2010). These defects can lead to software malfunction and, ultimately,

to failure. Such failures caused by defects can result in the unavailability of software

systems (Sullivan & Chillarege, 1991). The defects in a software product can limit both its

dependability and its security (Pereira et al., 2016).

Often, defects in a software system persist even after extensive quality assurance

procedures. Due to the issues raised here, it is extremely difficult to develop a generally

applicable defect prediction model that can provide actionable outputs to software teams

by predicting the number of defects in a new software version. Through extensive

research efforts, previous studies have demonstrated various achievements with regard to

the prediction of software defects. Nevertheless, additional research on software defect

prediction is still required to produce a pragmatic prediction model for managers and

development teams. To the best of our knowledge, a model that can successfully predict

the number of possible defects in an upcoming product release has not yet been proposed

for either cross-project or within-project defect prediction at either the class or method

level in software, with the exception of work done by Felix & Lee (2017b).

To date, the underlying factors responsible for an increase in the number of defects in

a software product (for example, the defect acceleration, as characterized by the defect

velocity and defect introduction time) have not been fully considered in defect prediction
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studies. In view of the fact that the existing literature has not demonstrated a way to bridge

this gap, this research therefore aims to address this need by presenting a cost-effective data

preprocessing approach for enhancing the quality of the data applied in defect prediction

studies while revealing the factors that contribute to an increase in the number of defects in

a software product. Thereafter, it is demonstrated how the relationship between the defect

acceleration and the number of defects can be useful in predicting the number of defects in

a new software version, as presented in Section 4.2.2.

4.2 Proposed optimal decision approach

This section presents how an optimal decision-making approach can be applied in

preprocessing datasets to be used in machine learning studies with the aim of addressing

the research problem. This research suggests that such an approach can be advantageous for

ensuring suitable preprocessing of class- and method-level datasets and reliable prediction

outcomes. Additionally, the researcher recommends that such an optimal decision-making

approach be applied in the selection of both the sets of evaluation metrics and the learning

algorithms applied in machine learning studies to aid in the proper assessment of algorithm

performance. It is often wise to choose the factors that can lead to optimal results when

such a choice is available (Goldberg, 2016); hence, this study offers such a choice. The

term optimal decision, as applied here, refers to a decision made in every stage of data

preprocessing to determine a suitable setpoint that can lead to an optimal result. Here, the

term setpoint refers to setting specifications that can result in a prime advantage. First, a

decision is made to apply filter-based feature selection to select suitable features from the

datasets before further preprocessing.

Feature selection is the process of selecting a subset of appropriate features that can

help machine learning models produce reliable results. One advantage of feature selection

is that it can reduce noise in the data, which can also lead to an improvement in model
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performance. If proper feature selection is not performed, the following issues are likely to

affect the performance of the learning algorithms:

1. Redundant or irrelevant features in the datasets will add no value for model performance.

2. No relevant information regarding model performance can be obtained if the datasets

contain redundant features; rather, such feature redundancy can increase the time required

to train the learning algorithms.

3. Multicollinearity can arise in the presence of redundant features.

Therefore, it is important to make an optimal decision to address the above concerns

through reliable and effective filter-based feature selection. More concretely, based on the

decision made, every attribute or feature d selected (note that the terms ‘attribute’ and

‘feature’ are used interchangeably throughout this thesis) from a dataset DS will result in

an outcome a as follows:

d : DS → a = fd (4.1)

In other words, the outcome a is a function of the decision made during the selection

process. Here, the term outcome refers to the result of a decision or choice. For every

selection made, multiple sets of possible outcomes may exist, represented as a set of

possibilities P that may be advantageous for decision-making. We can assign a prime

advantage, denoted by P ′aa, to this set of possibilities P . The term prime advantage

in this context means a highly relevant or significant outcome of a decision or choice.

To ascertain the prime advantage of a set of possibilities, reliable information must be

extracted about both the decision made and the relevance of the outcome based on that

decision.

The relevance of the outcome should be positive, meaning that it contributes to

addressing the research problem; if it is not, then a new decision will be made. Thus,
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the prime advantage of the decision to select a particular attribute can be represented as

follows:

P ′DSd = P
′
afd (4.2)

The prime advantage P ′ is a function of the selected attribute and thus may vary from

one selected attribute to another depending on the strength and correlation of each;

consequently, it is possible to identify an optimal attribute based on its predictive power

in terms of a rank score. Such a rank score is a measure of the relevance of the selected

attribute. The optimal attribute is denoted by doptimal. Here, the term optimal refers to the

most advantageous feature, or the feature with the highest relevance. The optimal attribute

selection as a function of the feature subset ds is expressed as follows:

doptimal = arg max
ds∈DS

P ′DSds (4.3)

where arg max denotes the argument of the maximum, representing the point at which

the optimal value is achieved.

Notably, the advantage of each selected attribute is important, and this advantage is not

compromised in this research. To avoid bias in feature selection, the average rank score on

each dataset is determined and expressed in the form of an objective function, which is

used as a selection criterion for every feature subset. The objective function is described

as follows. Given a set of features d, first, it is important to determine the strength of each

feature in terms of correlation as characterized by its rank score. The outcome a based on

the rank score of each feature is then compared with the objective function, denoted by

fave. Any feature whose rank score is equal to or greater than the average score is selected;

otherwise, the feature is discarded. Considering the prime advantage P ′DSds as a function

of the selected feature subset ds, the expected prime advantage P ′exp can be expressed as
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follows:

P ′expDSds = P
′faveds (4.4)

The objective function fave, which represents the average rank score, is calculated as

follows:

fave =
1
n

n

i=1
dn =

1
n

(
d1 + d2 + . . . dn

)
(4.5)

where

n = the total number of features in the dataset,

fave = the average rank score, and

di = the rank score of the i-th individual feature.

Hence, the optimal attribute doptimal depends on the objective function fave, which

is reflected in the expected prime advantage P ′exp of the given feature subset, P ′expDSds.

Therefore, the optimal attribute can be selected as follows:

doptimal = arg max
ds∈DS

P ′expDSds (4.6)

Similarly, an optimal decision-making approach can be applied in the selection of both

evaluation metrics and classifiers. Every metric m selected from the set of evaluation

metrics SM will result in an outcome a as follows:

m : SM → a = fm (4.7)

The purpose of applying optimal decision-making in metric and classifier selection is

to properly determine the average performance of the learning algorithms. For optimal
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selection among a set of evaluation metrics, we have the following expression:

moptimal = arg max
m∈SM

P ′expSMm (4.8)

To ensure satisfactory assessment of the average classifier performance, this optimal

decision-making approach was applied in this study to select from among the following

evaluation metrics: Classification Accuracy (CA), precision, recall, Matthews Correlation

Coefficient (MCC), area under the receiver operating characteristic (ROC) curve (AUC),

Brier score, and entropy. The decision to select these metrics was made because the

information obtained from these metrics can be used to assess classification algorithm

performance, and this research also suggests that these metrics can provide an overall

assessment of the performance of each classifier (X. Jing et al., 2015).

In addition, in a manner similar to that expressed in Equations 4.1-4.4, every classifier c

selected from the set of classification algorithms SC will result in an outcome a as follows:

c : SC → a = fc (4.9)

The corresponding expression for optimal classifier selection is

coptimal = arg max
c∈SC

P ′expSCc (4.10)

As defined earlier, the prime advantage is the relevance or significance of an outcome

based on a decision or choice. By means of the proposed framework, the following prime

advantages can be achieved when addressing various data-related issues:

1. Using the filter-based feature selection approach in the proposed framework, the relative

proportions of relevant and irrelevant features in a dataset can be revealed. Then, the
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relevant features can be selected to eliminate irrelevant and redundant features.

2. The data visualization phase of the proposed framework enables the identification and

elimination of outliers and noise present in a dataset. Outliers in a dataset can negatively

impact the outcomes of prediction models (Hosseini, Turhan, & Gunarathna, 2017).

3. To facilitate the optimal decision approach described above, in the proposed framework,

a unique identifier is assigned to each module in each dataset. These unique identifiers

enable the determination of the level of skewness within a dataset and the accurate

identification of the defective classes in each dataset.

4. Data resampling, corresponding to the creation of an input space for capturing unreported

faults, is considered in the proposed framework to identify instances that might have been

omitted in the initial data sampling phase to ensure that the data are accurately preprocessed

to achieve unbiased outcomes.

5. The optimal decision approach enables an appropriate feature scoring method for

determining the strength of each feature in terms of correlation.

6. Through the proposed framework, the average performances of classification algorithms

can be determined.

7. The proposed framework enables the mutual information due to entropy within a dataset

to be assessed.

4.2.1 Proposed optimal decision framework

The proposed data preprocessing framework is based on optimal decision-making

to ensure the proper preprocessing of datasets, the accurate identification of the levels

of imbalance in the datasets and, ultimately, the generation of unbiased datasets that

are suitable for training learning algorithms, as presented in Figure 4.2. For learning

algorithms to learn accurately, the datasets on which they are trained must be accurately

preprocessed. The selected data preprocessing technique p should be chosen to improve
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the quality of the data while addressing the research problem. Then, the performance of

the classification algorithms will depend on the data quality, which, in turn, will ultimately

depend on the preprocessing technique applied. Thus, the outcome a of preprocessing is

a function of the decision regarding the selection of the preprocessing technique. Every

technique p chosen from the set of preprocessing techniques SP will result in an outcome

a as follows:

p : SP → a = fp (4.11)

In every phase of the proposed framework, an optimal decision is made, which will lead

to other sets of possible outcomes p, which may similarly be more or less advantageous

for data preprocessing. We can assign a prime advantage to each of these possibilities

p, denoted by P ′aa, similar to Equation 4.2. It could be advantageous to extract only

meaningful attributes from the datasets while disregarding irrelevant attributes (Kwak &

Choi, 2002; Gu et al., 2016). It might also be advantageous to visualize the imbalanced

nature of the data to distinguish inliers from outliers, as only inliers are useful in obtaining

reliable classification results. The optimal preprocessing technique can be expressed as a

function of the selected attributes as follows:

poptimal = arg max
p∈SP

P ′SPp (4.12)

where p is the preprocessing technique selected through the optimal decision procedure

proposed in this study, SP is the set of preprocessing techniques, and a is the outcome

and is a function of the choice p. Such optimal decision-making was applied in the

preprocessing of the datasets used in this study to enable the learning algorithms to learn

accurately from unbiased datasets.

106

Univ
ers

iti 
Mala

ya



Figure 4.2: Proposed optimal decision framework for data preprocessing
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4.2.1.1 Outlier removal from imbalanced class- and method-level datasets

A dataset is imbalanced if the categories into which the data are to be classified

are not almost equally represented (Chawla, 2009). Thus, data imbalance (or class or

method imbalance) refers to the case in which the proportions of defective (minority) and

defect-free (majority) modules in a project are not equal. In addition to feature selection,

another important phase of data preprocessing is outlier removal. Therefore, the data were

first checked to determine whether they contained outliers before any further preprocessing

tasks were performed.

Outliers are data points that lie far away from the main cluster(s) of data. Outliers

may occur in datasets as a result of measurement variations or may be a manifestation

of experimental error. In this study, outliers were identified and eliminated during the

preprocessing phase to prevent them from impacting the results obtained. Figure 4.3

illustrates how the outliers were identified and removed from the datasets based on the

optimal decision to eliminate outliers. To identify outliers, the data file was first loaded into

the Orange workspace to visualize the inliers and outliers in the data. An outlier widget

was then connected to the data file to enable the separation of the outliers. Thereafter,

the outlier widget signal was reset to capture only the inliers in the data. To achieve a

reliable, bias-free dataset that would be suitable for use in prediction, it was then necessary

to subject the inliers to further preprocessing. The reason for removing outliers is to

enable prediction models to learn only from the main clusters of data to ensure an accurate

assessment of the models’ performance. If a prediction model is trained on data containing

outliers, the resulting noise in the data can cause the model to produce misleading results.

The outlier widget was configured with a distance metric to enable accurate outlier

identification; the Euclidean distance was applied, with K=3. The Euclidean distance

metric was chosen because it not only can be used to calculate the distance between two
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Figure 4.3: Outlier removal procedure

points on a plane but also is a consistent measure that treats all dimensions equally.

Consider two points (A and B) on a plane, as presented in Figure 4.4. The distance

between A and B can be calculated from their x and y coordinates using the Pythagorean

theorem.

dA,B =
√(
x2 − x1

) 2 +
(
y2 − y1

) 2 (4.13)

Similarly, the Euclidean distance between two points x and y in n dimensions can be
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Figure 4.4: Distance function

calculated as

dx, y =
√

n

i=1

(
xi − yi

)2 (4.14)

4.2.1.2 Further preprocessing of inliers

Inliers are the clustered data used for classification. Some inliers may be defective

but may be grouped together with defect-free instances in the data distribution, which

could pose a challenge in distinguishing defective from defect-free data. Therefore, it is

necessary to identify defective inliers during data preprocessing. The defective inliers

were captured with the help of an input space that allowed unreported faults (i.e., faults

omitted in the early phase of data preprocessing) to be recaptured. To visualize the data

and ensure that only inliers would be used in the experiments, we reset the widget signal to

capture only the inliers. Based on the optimal decision outcome, it was then necessary for

the inliers to undergo further preprocessing to make the data suitable for use in training

and validating the learning algorithms.
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4.2.1.3 Input space

Some unreported faults in class- and method-level datasets might be omitted, without

proper identification of their category as defective or defect-free. Such omission can

occur due to either human or computer error during the initial stage of data preprocessing.

Therefore, an input space was created to capture such omitted errors before the application

of the learning algorithms. For this purpose, a kernel-based approach was chosen to

determine the classification outcomes for unlabeled data not present in the training set. In

this approach, a similarity function is applied to both the training set and the unlabeled set

as represented in the feature space in which unreported faults are to be captured. The kernel

classifier computes a weighted sum of the similarities between the unlabeled and training

sets. The outcome, based on the sign function, will determine whether the unlabeled set is

negative or positive.

Therefore, to determine the classification outcomes for each inlier in the dataset, a

kernel-based algorithm was applied. The Radial Basis Function (RBF) kernel, which is

applied in various kernelized learning algorithms (Chang et al., 2010), was used for this

purpose. The RBF kernel takes as input samples xn , yn ∈ D, where xn is the data point

and yn is the weighted influence that determines the outcome for this data point.

However, each data point xn in the dataset DS is influenced by the distance ‖x − xn‖,

which is the Euclidean distance between the feature vectors in DS. To determine the

outcome hx for sample x, which is hypothesized to be either +ve or -ve based on the input

signal s, the RBF kernel defined by Schölkopf et al. (2004) is adopted, as follows:

hx = n

i=1
wn exp −γ ‖x− xn‖2 (4.15)

where x is the sample for which the outcome is to be determined and xn is a data point
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contained in the training sample. Here, wn is used to denote the weighted influence in a

more general form; in this case, wn is equivalent to yn. The notation indicates that all

related influences (the weighted influences of the input signal) are summed to determine

the outcome for x. The value of γ determines the distance range considered, where γ >

0, meaning that larger values of γ correspond to more negative values of −γ ‖x− xn‖2

(Schölkopf et al., 2004). The expected outcome hx can be represented as the input signal

s; thus,

s = n

i=1
wn exp −γ ‖x− xn‖2 (4.16)

The value of the RBF kernel decreases with increasing distance, ranging from 0 at an

infinite distance limit to 1 when x = xn (Shashua, 2009). Here, the goal is to minimize the

mean square error between the input signal and the weight; thus,mins− y2 ∈ D is taken

to ensure that the range of values will be between +1 and -1. The value +1 represents a

defective outcome, whereas any value below zero (between -1 and 0) will be regarded as 0.

Based on the similarity between the input signal and the hypothesis, as shown in Equations

4.15 and 4.16, it is found that hx = signs. Therefore, Equation 4.15 can be rewritten as

hx = sign n

i=1
wn exp −γ ‖x− xn‖2 (4.17)

Here, xn, yn is used to denote the i-th training sample and weighted influence drawn from

the 80% of the data designated as the training data; this sample has a corresponding weight,

denoted by wn in general form, which corresponds to yn. The 20% of the data to be used

for evaluation are treated by applying a similar RBF kernel between xm and ym, where x̂
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denotes an unlabeled input in the validation set. Hence, the outcome of the kernelized

binary classifier can be expressed as

x̂ = sign n

i=1
ym exp −γ ‖x− xm‖2 (4.18)

where x̂ ∈ {−1, +1} is the label predicted by the kernelized classifier for the evaluation

sample denoted by x̂, whose outcome is the target of interest; xm represents the validation

sample; and ym is the corresponding weight. Furthermore, the sign function, as applied in

Equations 4.17 and 4.18, is used to identify whether the predicted outcome is positive or

negative; when positive, the output value is set to 1, while when negative (-1 or less), it is

set to 0. Thus,

fx̂ =


1, if error_count ≥ 1

0, -1 or less

4.2.2 Modeling technique

The modeling technique applied in this research is based on the relationship between

the number of defects and the defect density as a function of the defect acceleration. This

relationship is based on the fact that an increase in the number of defects results in an

increase in the defect density of a project. Based on the application of the optimal decision

technique to derive variables that are correlated with the number of defects, this study

presents a simplified step-by-step modeling approach for further preprocessing of class-

and method-level datasets as well as for predicting the class- and method-level defects

in a new version of a software product. Figure 4.5 illustrates the basis of the proposed

modeling technique.

The modeling technique applied to derive the defect density, defect velocity and defect
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Figure 4.5: Proposed modeling technique for data preprocessing

introduction time is based on a Rayleigh distribution curve, which represents the number

of defects over time throughout the life cycle of a project (Aydin & Tarhan, 2014), as

shown in Figure 4.5. This curve reveals how software defects evolve with time throughout

the development process. As the phases of software development proceed, the number of

errors increases if these errors are not caught and eliminated. Furthermore, the Rayleigh

model also shows the relationships between other variables, such as the defect acceleration,

and the number of defects over time throughout the SDLC. These variables were used as

predictor variables to construct the regression models used in predicting the numbers of

class- and method-level defects in a new software version.

4.2.2.1 Definitions of metrics

The defect density, as an essential attribute for determining software reliability, is one of

the optimal variables applied in this research. This attribute has an exponential relationship

with the number of class- or method-level defects. A software product can be released

on the market only once its defect density is considered low enough to avoid criticism

(Malaiya & Denton, 2000). The quality of a software product can be evaluated based on
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its defect density (Shah et al., 2012; Mohagheghi et al., 2004). A software product with a

high defect density tends to perform less well, while a product with a low defect density

has the ability to run without failure (Westfall, 2013; Kelly et al., 1992). Specifically, a

high defect density indicates that a software program contains a large number of defects;

as such, the ability to estimate the defect density makes it easier for a testing team to

focus on identifying and correcting as many defects as possible with limited resources

(Westfall, 2013). Software companies tend to benefit from the early detection of defects

that are likely to be present in software, which is facilitated by knowledge of the defect

density in a software product of interest (Nagappan & Ball, 2005; Compton & Withrow,

1990; Planning, 2002). In addition, the defect density provides information that can help

development teams keep proper records while attempting to reduce the number of defects

in upcoming versions of a current product (Westfall, 2013).

Moreover, the defect density provides a development team with helpful information

for keeping track of the progress made in reducing the number of defects during software

project transitions (Westfall, 2013). It is also important to note that while the overall

software quality is a matter of concern, the aspects that require the greatest attention are

mainly the components with the highest defect densities; thus, the ability to determine the

defect density is key (Knab et al., 2006). Furthermore, based on the information provided

by the defect density of a software product, the number of defects in an upcoming release

of that product can be estimated (Knab et al., 2006).

Based on the relevant mathematical relationship, the optimal variables chosen as the basis

of this study were derived to provide a means of estimating the numbers of defects likely

to be present in various software products, as reported by Felix & Lee (2017b). If the

number of defects can be determined prior to software testing, it will be easier for the

testing team to focus on addressing as many defects as possible with the limited resources
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available (Westfall, 2013). Typically, following the SDLC, software developers aim to

meet the project deadline and thus carry out software development as quickly as possible,

without proper elaboration of the impact of such speedy transitions. Such high-velocity

transitions through the SDLC can expose a software product to defects. Therefore, to

improve software quality, it is wise to determine the impact of the average defect velocity

on the number of software defects as a software product transitions from one phase of the

SDLC to another. Any significant improvement in the SDLC will lead to a reduction in the

rate at which defects occur, reduce the need for software rework and ultimately improve

software quality and productivity (Diaz & King, 2002). Hence, it would be in the best

interests of the machine learning community if the numbers of defects in a new version of

software at both the class and method levels could be successfully estimated. In addition, it

would be beneficial to have an idea of the rate at which these defects occur and the impact

of this rate on software products. On the basis of the in-depth relationship between the

defect density as an optimal variable and the numbers of class- and method-level defects,

all of the optimal variables considered in this study are now explicitly defined, as follows.

Defect density: The defect density g represents the ratio of the number of defects to the

size of a software project. An increase in the number of defects in a software project will

result in an increase in the defect density (Felix & Lee, 2017b). The defect density, as

applied in this study, is expressed as a number per unit project size and is calculated using

the following equation:

defect density =
no. of defects

project size
(4.19)

Defect velocity: The defect velocity v is the change in the defect position with respect to
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time t and is measured in units of defects per day. The defect position here ranges from the

requirement phase of the SDLC to the implementation phase and represents when defects

might have occurred during software development.

Defect introduction time: The defect introduction time t is the time at which defects

occur in a software product and is measured in days. The Rayleigh distribution curve

depicts how the number of defects increases over time in a software project. Based on

the Rayleigh model, the integral of the relationship between the defect acceleration and

the number of defects can be taken to derive the defect density, defect velocity and defect

introduction time.

4.2.2.2 Derivations and formulations

This section presents the step-by-step derivation of the aforementioned optimal variables

applied in this research. At the starting point of a project, the number of defects is zero,

as illustrated in Figure 4.6. The chance of defect introduction increases over time as the

project proceeds from one phase to the next. With further phase transitions during software

development, the defect acceleration increases, which can lead to an increase in the number

of defects. The defect acceleration is the change in the defect velocity at a given instant of

time. The increase in the number of defects and the defect density are therefore functions

of the defect acceleration.

In Figure 4.6, x0 = initial defect status, v0 = initial defect velocity, t = time, and g =

defect density.

The transitioning of a software project from one phase of development to the next can

be accompanied by an increase in the number of defects. This is simply because of the

possibility of more defects being added to the project over time as the project transitions.

Furthermore, the defects present in the requirement phase can potentially transition to the

design phase, and so on, as the project continues. It is therefore necessary to determine
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Figure 4.6: Rayleigh distribution curve (Linda M. Laird, 2005)

the defect position as the project progresses. To this end, a mathematical relationship is

applied in the model to determine the defect position over time throughout the SDLC,

which, in turn, allows the defect introduction time to be determined. Accordingly, the

time at which a defect appears is also determined since the position of the defect can

be ascertained. On the Raleigh distribution curve, the variable x0 represents the initial

defect position, and v0 and t0 are the initial defect velocity and time, respectively. Under

the assumption that the project size is constant, i.e., the sizes of the previous and current

versions of the same project are the same, the numbers of defects in both versions are

influenced by the rate at which defects occur in those versions; this also implies that the

number of defects in a software project depends on the acceleration characterizing defect

occurrence while the project is ongoing.

Therefore, the defect density g of a software product depends on the number of defects,

as presented in the expression below.

fno. of defects ⇒ g

This expression indicates that the defect density g is affected by the number of defects in a

project, which, in turn, depends on the defect acceleration.
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The defect acceleration is the change in the defect velocity over a period of time. As

presented below, the number of defects within a software project is a function of the defect

acceleration (Felix & Lee, 2017b). Thus,

fdefect acceleration ⇒ no. of defects

If the defect acceleration is low, then the number of defects will also be low, and because

the defect acceleration is defined as the change in the defect velocity over time, the defect

density, which is affected by the defect velocity, will be low as well.

If the defect acceleration increases, this increased acceleration will lead to an increase

in the number of defects and, hence, an increase in the defect density g.

Therefore,

fdefect acceleration ⇒ g

The defect density g is a function of the defect acceleration, which characterizes defect

occurrence given a constant project size. The defect acceleration can be calculated as the

change in the defect velocity over the change in time, as follows:

defect acceleration =
∆ velocity v

∆ time t
(4.20)

At a constant project size, the number of defects and, consequently, the defect density g

of a project vary only as functions of the defect acceleration because the defect density

depends on the rate at which defects occur. Thus,

119

Univ
ers

iti 
Mala

ya



g =
no. of defects

const. project size
∝ fdefect acceleration

const. project size
(4.21)

For a constant project size, the defect density g, which depends on the defect acceleration,

can be expressed as follows:

g =
fdefect acceleration

const. project size
(4.22)

Hence, the defect density g is equivalent to the defect acceleration at a constant project

size (Felix & Lee, 2017b). Thus,

g =
∆velocity

(
v
)

∆time
(
t
) (4.23)

v = gt (4.24)

By integrating the defect velocity v over time t as described by Felix & Lee (2017b), the

following equation is obtained:

vdt = gdt (4.25)

g dt = gt + c (4.26)
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Replacing the constant c with the initial velocity v0 yields

g dt = gt + v0 (4.27)

By eliminating v0 in Equation 4.27, such that the velocity at the starting point is 0, the

following equation is obtained:

g dt = gt (4.28)

The initial velocity is zero; in this state, the project has not yet commenced. To predict the

defect position x as a function of time t, the defect velocity is used, as described by Felix

& Lee (2017b). The defect velocity is expressed as follows:

v =
∆Defect position

(
x
)

∆time
(
t
) (4.29)

The change in the defect position, ∆x, represents the transitioning of the project through

the SDLC. Therefore, the target defect position x as a function of time t can be determined

by integrating v with respect to time t on the basis of Equation 4.28. Accordingly, the

following equation is obtained:

x
(
t
)
= vdt (4.30)

Similar to Equation 4.25, i.e., vdt = gdt, integrating the defect velocity with respect to

time yields

vdt = gt + v0dt (4.31)
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Equation 4.31 can be further decomposed into a sum of two integrals to determine the

average defect introduction time t:

gt + v0dt = gtdt + v0dt (4.32)

From this sum of two integrals, the constants g and v0 are first factored out, as follows:

gtdt + v0dt = g tdt + v0 dt (4.33)

To solve for the resultant polynomial, the power rule of integration, of the form tndt =

1
n+1t

n+1 + c, is applied to the first integral to obtain

g tdt = g
1
2t

2 + c (4.34)

For the second part of the resultant polynomial in Equation 4.32, the following equation is

obtained:

v0dt = v0t + c (4.35)

Hence, combining Equations 4.34 and 4.35 yields

g tdt + v0dt = g
(1

2t
2
)
+ v0t + c (4.36)

The constant of integration c becomes the initial defect position x0. At this initial point,

the number of defects and the defect velocity are both equal to zero. Thus, the equation

x
(
t
)
= g

(1
2t

2
)
+ v0t + x0 (4.37)
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can be rewritten as

x
(
t
)
= g

(1
2t

2
)

(4.38)

Both v0t and x0 are equal to 0 at the initial point.

The defect introduction time t can then be calculated by solving Equation 4.38 for t, that

is, rewriting the formula such that the left-hand side is t. Consequently, the following

equation is obtained:

t =

√
2x
g

(4.39)

where x is the defect position at either the class or method level. In this study, x represents

the number of classes or methods, and g is the average defect density, measured as the

number of defects per unit project size.

Equations 4.19-4.39 show the relationships between the number of defects and the

optimal variables. The defect density is determined using Equation 4.19, the defect velocity

is determined using Equation 4.24, and the defect introduction time is determined using

Equation 4.39. Among these derived optimal variables, the defect velocity is hypothesized

to have a strong, positive correlation with the numbers of class- and method-level defects.

Based on such a correlation, the defect velocity can be applied in constructing regression

models to predict the numbers of class- and method-level defects. This implies that the

defect velocity accounts for the increase in the numbers of class- and method-level defects

in a software program.

4.3 Summary

The proposed optimal decision approach applied to achieve the research objectives has

been presented in this chapter. In addition, further analysis of the problem investigated in

this research is also presented to ensure that the proposed solution is suitable to address

the research problem. Notably, there are clear indications that the proposed solution
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should be suitable for addressing the research problem and that it can also serve as a

blueprint for the proper preprocessing of datasets applied in machine learning studies. The

proposed approach can render both class- and method-level datasets free from bias. For

instance, to address irrelevant and redundant features in a dataset, a filter-based technique

is applied in the proposed approach to form a feature subset based on the rank scores of

the selected features. To address the presence of outliers, which can hinder the accuracy of

learning algorithms, an automated linear projection widget is used in the proposed solution

to separate outliers from the rest of the data. To ensure a favorable outcome, optimal

decision-making is applied in every stage of the proposed framework to ensure proper

preprocessing of class- and method-level datasets to aid in effective defect prediction. The

literature suggests that an effective data preprocessing method is urgently needed as a tool

to support the research findings in the supervised machine learning domain; therefore,

the aim of this research is to develop a cost-effective approach to ensure that the datasets

applied in machine learning studies are free from bias.
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CHAPTER 5: EVALUATIONS AND EXPERIMENTATION

This chapter presents the metrics applied in evaluating the proposed approach presented

in the previous chapter and the sets of experiments carried out to validate the stated

hypotheses.

This section further explains the means of ascertaining the performance of the proposed

optimal decision framework. The evaluation of the proposed framework is important to

ensure that the best approach is applied for overcoming the challenges associated with the

existing class- and method-level datasets and developing a suitable means of predicting the

number of software defects in the new version of a software product. The methods used to

evaluate the phases of the optimal decision framework proposed in Chapter 3, including the

feature selection phase as well as the phase of outlier removal, unique identifier assignment

and inlier selection and the phase of further preprocessing and construction of the input

space, are presented here along with the means of evaluating the overall performance of

the proposed framework.

To evaluate the outcome of the filter-based method applied in the feature selection phase,

the Pearson correlation was applied to identify and select features with high predictive

power. The predictive power of the selected features was determined in the form of an

average rank score, as previously presented in Equation 4.5, Section 4.2.

To evaluate the outlier removal phase, the Euclidean distances between data points were

considered while applying Orange 2.7 to accurately determine the outliers in the class-

and method-level datasets. The automated widgets provided in Orange 2.7 made it much

easier to eliminate outliers and assign unique identifiers to the inliers of the datasets before

performing further preprocessing on the inliers.

To evaluate the outcome of the further preprocessing phase of the proposed approach, the
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defect density, defect velocity and defect introduction time of the inliers in each dataset were

determined by applying a modeling technique to extract the relationships between these

variables (defect density, defect velocity and defect introduction time) and the numbers of

class- and method-level defects. The defect density was evaluated using Equation 4.21.

The defect velocity was determined using Equation 4.24, whereas the defect introduction

time was determined using Equation 4.39.

5.1 Performance evaluation metrics

To assess the overall performance of the proposed optimal decision framework, several

learning algorithms, namely, naïve Bayes, logistic regression, neural network, K-nearest

neighbor, support vector machine and random forest algorithms, were trained on the

preprocessed training datasets. The performances of these learning algorithms were

evaluated in terms of the Classification Accuracy (CA), precision, recall, specificity,

Matthews Correlation Coefficient (MCC), J-coefficient, F-score, area under the receiver

operating characteristic (ROC) curve (AUC), Brier score, information score, information

entropy and geometric mean. Furthermore, the performance of the framework was assessed

by comparing the results achieved using the preprocessed datasets with those achieved

using the raw datasets based on the learning algorithms and evaluation metrics listed above.

The details of these metrics have been presented in Section 2.3.

Othermetrics applied in evaluating the proposed framework include the average classifier

performance, the average performance loss/gain, the average information entropy and the

percentage prediction error.
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5.1.1 Average classifier performance

To properly assess the overall performance of the learning algorithms applied in this

study, the average performance of each classifier was evaluated. The average classifier

performance (x̄), which represents the mean performance of a given classifier for the target

class of True or False, is calculated as follows:

x =
1
n

n

i=1
xn =

1
n

(
x1 + x2 + . . . xn

)
(5.1)

where n = the number of experiments performed,

x̄ = the average classifier performance, and

xi = the individual classifier performance in the i-th experiment (here, each experiment

corresponds to a different project for both the True and False classes).

5.1.2 Average performance loss/gain

The average performance loss/gain (Plossgain) of a classifier is used to determine the

extent to which that classifier’s average performance differs between the majority and

minority classes. The average performance loss/gain is characterized in terms of the

information entropy and is calculated as follows:

Plossgain =
V IT − V IF

V Ik
(5.2)

where V IT − V IF = the difference in average performance between the majority (False)

and minority (True) classes and V Ik = the average performance for the target class.

5.1.3 Average information entropy

In a situation where the average uncertainties for an information source regarding the

different possible outcomes of an event are unequal, the concept of entropy can be applied
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to the information concerning the outcome. Since each learning algorithm performs

differently when applied to imbalanced datasets, the amount of information available

regarding an algorithm’s performance may be uncertain and consequently exhibit variations.

Therefore, the average information entropy was applied to assess the level of uncertainty

of the information obtained among these learning algorithms.

Entropy refers to the average amount of information obtained regarding an information

source. The entropy of an information sourceX is denoted byHX . Here, the information

sources are the metrics in which the classifiers exhibit losses or gains as a result of the

information entropy. These metrics include the specificity, F-score, recall, precision and

G-mean. To determine HX , the following equation is used:

HX = n

i=1
pi log2

1
pi

(5.3)

This equation can be rewritten as

HX = p1 log2
1
p1
+ ... + pn log2

1
pn

(5.4)

where pi is the probability of a single outcome with respect to the information source and

n is the number of outcomes.

5.2 Classifiers

Classifiers are machine learning models for data analysis tasks. The purpose of the

classifiers considered in this research is to properly assess the overall performance of the

proposed solution. The classifiers investigated in this research are naïve Bayes, Logistic

Regression (LR), neural network, K-Nearest-Neighbors (KNN), Support Vector Machine

(SVM) and Random Forest (RF) classifiers.
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5.2.1 Naïve Bayes

A naïve Bayes classifier is an effective classifier that is capable of generating accurate

prediction results and is a suitable choice for classification problems involving variates of

independent variables (Larsen, 2005). It is capable of handling large datasets and often

outperforms various sophisticated classification models. The Bayes classification model is

derived from Bayes’ theorem under the hypothesis of independence among the variables.

Bayes’ theorem provides an avenue for estimating the conditional probability prba | b from

prba, prbb and prbb | a. The probability of class a given attribute b is calculated as

prba | b = prbb | a
prbb

(5.5)

For a large dataset, the posterior probability of class a is calculated as

prba | b = prbb1 | aprbb2 | a...prbbn | aprba (5.6)

where prba | b = the posterior probability of class a given attribute b,

prba = the prior probability of class a,

prbb = the prior probability of attribute b,

n = the number of instances, and

prbb | a = the likelihood, that is, the probability, of attribute b given class a.

The class with the highest posterior probability is the prediction outcome.

5.2.2 Logistic regression (LR)

LR estimates the likelihood of an event with two possible values (binary classification).

This is a predictive analysis conductedwhen the possible values of the independent variables

are 0 and 1. The LR model is employed to analyze data to interpret the relationship
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between one dependent binary variable and one or more independent variables.

5.2.3 Neural network

A neural network is a classification model inspired by the neural network of the human

brain. The units in a neural network perform tasks similar to those of neurons in the human

brain. This network has an input layer, an output layer, and one or more hidden layers in

between. During classification, data pass through the units of the neural network, which

perform various mathematical computations. These units interact with each other via

connections linking the various layers. Each connection has a number, called a weight,

associated with it. When the neural network takes an input, it processes that input by

performing calculations based on the weights to produce an output. A neural network is

trained by adjusting the values of the connections; this can be achieved by means of a

backpropagation algorithm, which trains from the input layer to the output layer and vice

versa. Alternatively, a neural network can be trained by trying to reduce a loss function

over a training set using a gradient-based method (Goldberg, 2016).

5.2.4 K-nearest neighbors (KNN)

A KNN classifier is based on a straightforward classification model that considers all

possible outcomes and classifies each instance in advance based on a resemblance factor.

An instance is classified based on the voting strength of its neighbors. In the classification

outcome, each instance is assigned to the class with the highest number of corresponding

votes, as determined by a distance factor. In this study, the Euclidean distance between

two neighbors is used as the distance factor.

For instance, consider two points (X and Y) on a plane. The distance between X and Y,

which also represents the length of XY , can be calculated from the a and b coordinates of

these points using the Pythagorean theorem.
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dx, y =
√(
a2 − b1

) 2 +
(
b2 − a1

) 2 (5.7)

Similarly, the Euclidean distance between two points a and b in n dimensions can be

calculated as

da, b =
√

n

i=1

(
ai − bi

)2 (5.8)

5.2.5 Support vector machine (SVM)

An SVM classifier finds the line of best fit that maximizes the margin between two

classes that are linearly separable. First, the SVM treats every instance of a class as a

vector of the input variables. Thus,

p = x1, x2, ..., xn (5.9)

Consequently, a dataset D takes the form of pairs of vectors and classes:

D = {x1, y1, x2, y2, ..., xn, yn} (5.10)

where x = the vectors, y = the classes associated with the vectors (either +ve or -ve), and n

= the number of instances.

Then, the SVM locates the two closest points between the two classes. The SVM connects

these two points with a line and then draws a perpendicular line bisecting this connection

line. Thus, the two closest points define the line of best fit. This line of best fit has an

intercept b and a normal vector w, which represents a weight vector, such that all x on the

line satisfy the linear equation

wTx = −b (5.11)
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Here, T denotes the transpose operation; in particular, wT is the transpose of the weight

vector w. Equation 5.11 can be rewritten as

wTx + b = 0 (5.12)

such that the scalar product of the weight vector and the point vector is equal to the intercept

of the line of best fit. From Equation 5.10, the training dataset can be written as

D = {xi, yi} (5.13)

in the form of point vectors xi paired with their corresponding classes yi. Thus, the linear

classification process can be expressed as a function of the point vector x as follows:

fx = signwTx + b (5.14)

5.2.6 Random forest (RF)

An RF classifier is a large collection of decision trees. These random trees are said

to make up a forest. A reasonable number of decision trees are generated based on a

random selection of data and variables. The RF predicts the class of the dependent variable

based on the class predicted by the largest number of trees. Thus, the decision trees are

used to predict the classification outcome. RF classifiers can outperform certain other

sophisticated classifiers (Masetic & Subasi, 2016; Subasi et al., 2017).

The classifiers introduced above were used to accurately assess and report the impact of

imbalance in class- and method-level datasets on the performance of learning algorithms.
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5.2.7 Prediction models

A regression model was constructed for predicting the number of defects. The prediction

outcomes were then compared with the actual numbers of defects present in the datasets.

In the regression models presented in Equations 5.15-5.22, Y represents the dependent

variable (that is, the number of defects); B0 represents the intercept, while B1 is the

coefficient of the independent variable X1; and ε represents the standard error of the

prediction.

Regression models were constructed with only one independent variable X1, i.e., the

defect velocity, because this variable exhibits a strong positive correlation with the number

of defects. This method of model construction also ensured that there was no collinearity

among independent variables in the constructed regression models. This is important

because when collinear variables are applied to construct a prediction model, the correlation

among these supposedly independent variables tends to reduce the accuracy of the model

(Hosseini, Turhan, & Gunarathna, 2017). Hence, to avoid the potential influence of

collinearity on the prediction accuracy, only simple regression models that could explicitly

and accurately reflect the performance of a single independent variable were considered.

Based on an analysis of variance (ANOVA) of the defect velocity at the method level, the

intercept and coefficient for the defect velocity were found to be approximately -96 and

17.7, respectively, as presented in Figure 5.1 along with the corresponding values of the

standard error, t-statistic and p-value. These coefficient and intercept values were applied

as the standard parameters of the regression equation. The above values were used in the

regression equation shown in Equation 5.15 below to estimate the number of defects:

Y = B0 + B1X1 + ε (5.15)
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Figure 5.1: Evidence for the intercept and coefficient values applied in the regression
models

Hence, the resulting regression equation for estimating the number of defects at the method

level was found to be

Y = −96 + 17.7X1 + ε (5.16)

Example 1. Suppose that a new version of the Unicore project, similar to an existing

version, is to be developed. It is possible to estimate the number of defects in the new

project at the method level using this regression equation. For instance, when developing

a Unicore1.n version that is similar to the existing Unicore1.3 project, information on

the existing project, such as the rate at which defects occurred in the current project (i.e.,

the average defect velocity), can be helpful for predicting the defect characteristics of the

future project. The Unicore1.3 project was characterized by an average defect velocity of

6.50 defects per day. Therefore, the regression equation for estimating the possible number

of defects in Unicore1.n at the method level is

Y = −96 + 17.7 ∗ 6.50 + ε = 19 + ε (5.17)
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This means that the predicted number of method-level defects in the Unicore1.n version

is 19 plus the standard error ε. For comparison, the actual number of defects in the

Unicore1.3 project is 21.

From an ANOVA of the defect velocity at the class level, the intercept and coefficient for

the defect velocity were found to be approximately -158 and 22.64, respectively. Therefore,

the regression equation for class-level defect prediction is

Y = −158 + 21.64X1 + ε (5.18)

Example 2. Suppose that a new version of the OmegaT project, similar to an existing

version, is to be developed. It is possible to estimate the number of defects in the new

project at the class level using this regression equation. For instance, when developing

an OmegaT3.n version that is similar to the OmegaT3.1 project, information such as

the average defect velocity of the existing project can again be helpful for predicting the

defect characteristics of the future project. The OmegaT3.1 project was characterized

by an average defect velocity of 9.49 defects per day. Therefore, the resulting regression

equation for estimating the possible number of defects in OmegaT3.n at the class level is

Y = −158 + 21.64 ∗ 9.49 + ε = 47 + ε (5.19)

This means that the predicted number of class-level defects in the OmegaT3.1 version

is 44 plus the standard error ε. The numbers of defects predicted as described above are

compared with the actual numbers of defects in the results section.

To further confirm the results obtained from the regression models, an additional

experiment was performed using the NASA module-level datasets. From the ANOVA

results for the defect velocity at the class level, the intercept and coefficient were found to
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be approximately -105 and 15.72, respectively. These values were used to construct the

regression equation. As before, the regression equation below was applied to estimate the

number of class-level defects based on the above values:

Y = B0 + B1X1 + ε (5.20)

Thus, the resulting regression equation for estimating the number of defects using the

NASA module-level data was found to be

Y = −105 + 15.72X1 + ε (5.21)

Example 3. Suppose that a new version of the KC project, similar to an existing

version, is to be developed. It is possible to estimate the number of defects in the new

project at the module level using this regression equation. For instance, when developing a

KCn version that is similar to the KC1 project, information such as the average defect

velocity of the existing project can be helpful for predicting the defect characteristics of the

future project. TheKC1 project was characterized by an average defect velocity of 25.49

defects per day. Therefore, the resulting regression equation for estimating the possible

number of defects inKCn at the module level is

Y = −105 + 15.72 ∗ 25.49 + ε = 296 + ε (5.22)

This means that the predicted number of module-level defects in the KCn version is

approximately 296 plus the standard error ε.
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5.3 Experiments

The computing environment used in the experiments was a computer with a 1.70 GHz

Intel(R) Core(TM) i5-3317U CPU and 4 GB of RAM running 64-bit Windows 10. Orange

2.7 was used to evaluate the performances of 6 state-of-the-art classifiers, namely, a naïve

Bayes classifier, an LR classifier, a neural network classifier, a KNN classifier, an SVM

classifier and an RF classifier. C++ was used as the programming language alongside the

regression models for predicting the numbers of defects in a new version of software at

both the class and method levels.

Figure 5.2: Experimental setup
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The experimental setup, as presented in Figure 5.2, was based on the well-planned

experimental design presented in Chapter 3. This design enabled the proper setup of

experiments based on proper instruments to aid in the generation of reliable research

findings. As stated previously in Chapter 3, appropriate and reliable tools were used

throughout the experiments to ensure consistent and reliable outcomes. The tools applied in

the experiments included Microsoft’s Azure Machine Learning Studio, which was applied

in the early stage of the experiments to perform filter-based feature scoring to enable the

selection of relevant and predictive features, and an automated outlier widget provided

in Orange 2.7, which enabled the automatic elimination of outliers and the subsequent

assignment of unique identifiers to the inlier classes and methods in the datasets for further

preprocessing. To further preprocess the class- and method-level datasets, a mathematical

modeling technique was applied to derive the defect density, defect velocity and defect

introduction time from the available class- and method-level data. An open-source software

tool called Symbolab was used to verify the accuracy of the technique used to derive

these optimal variables. Other statistical tools applied in this research included Microsoft

SPSS and Microsoft Excel, which were used to perform ANOVA and to determine the

correlations between the derived variables and the numbers of class- and method-level

defects.

5.3.1 Hypotheses

As discussed previously in Chapter 3, the researcher formulated lists of hypotheses

to enable the evaluation of the proposed optimal decision framework. Both null and

alternative hypotheses were considered to ensure a proper evaluation.
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5.3.1.1 List of null hypotheses (H0)

The null hypotheses (H0) served as the starting point and as the basis for the alternative

hypotheses. The null hypotheses were evaluated to determine the likelihood that the

corresponding assumptions could be accepted or rejected. To consider the possibility that

the null hypotheses could be wrong, an alternative hypothesis was also formulated as the

contrary counterpart to each null hypothesis.

In this research, several hypotheses regarding the relationships between the number

of software defects (dependent variable) and the derived optimal variables (independent

variables), namely, the defect density, defect velocity and defect introduction time, were

formulated and tested. Both null hypotheses (H0) and alternative hypotheses were consid-

ered to avoid bias and enable us to test our assumptions through evaluation. The following

null hypotheses were formulated in the present research.

a. Irrelevant and redundant features in class- and method-level datasets may not affect the

average performance of learning algorithms.

b. Outliers present in highly imbalanced class- and method-level datasets may not affect

the average performance of learning algorithms.

c. Learning algorithms may exhibit degradation in their average performance when applied

to imbalanced class- and method-level datasets.

d. The performance of learning algorithms may not be affected as a result of highly

imbalanced class- and method-level datasets.

e. Learning algorithms may not maintain their average information entropy when applied

to highly imbalanced class- and method-level datasets.

f. The outcome of a defect prediction study may not depend on the quality of the datasets

applied in that study.

g. The defect velocity v is not expected to influence the number of defects in a software
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project.

h. The defect density g is expected to influence the number of defects in a software project.

i. The defect introduction time t is expected to influence the number of defects in a software

project.

j. The defect density g of a software project is not expected to increase with an increase in

the number of defects.

5.3.1.2 List of alternative hypotheses (Hn)

Alternative hypotheses (Hn) are formulated statements that contradict the null hypothe-

ses. They are used to state certain assumptions about the ways in which the null hypotheses

may be wrong. The following alternative hypotheses were formulated in this study:

a. Irrelevant and redundant features in class- and method-level datasets may affect or

hinder the average performance of learning algorithms.

b. Outliers present in highly imbalanced class- and method-level datasets may affect the

average performance of learning algorithms.

c. Not all classifiers may exhibit degradation in their average performance when applied to

imbalanced data.

d. The performance of some learning algorithms may be affected as a result of highly

imbalanced class- and method-level datasets.

e. Some learning algorithms may maintain their average information entropy when applied

to highly imbalanced class- and method-level datasets.

f. The outcome of a defect prediction study may depend on the quality of the datasets

applied in that study.

g. The defect velocity v is expected to influence the number of defects in a software project.

h. The defect density g is not expected to influence the number of defects in a software
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project.

i. The defect introduction time t is not expected to influence the number of defects in a

software project.

j. The defect density g of a software project is expected to increase with an increase in the

number of defects.

These hypotheses were tested by means of the evaluation metrics presented in Sections 2.3,

4.2.2, 5.1.1, 5.1.2, 5.1.3 and 5.2.7.

5.3.2 Correlation analysis

A correlation analysis was performed to determine the relationships between pairs of

continuous variables, for instance, between an independent and a dependent variable or

between two independent variables. This analysis also allowed the numerical strengths of

the relationships between the dependent and independent variables to be determined. The

performance of each model was evaluated using the p-value, the adjusted R-square, the

F-statistic and the standard error.

5.3.2.1 P-value

The p-value is used to indicate how well a model performs; it represents the statistical

significance of the model (Ioannidis, 2005; Carterette, 2015).

5.3.2.2 F-statistic

The F-statistic enables a comparison of the average significance of the variables used in

model construction.

5.3.2.3 Adjusted R-square

The adjusted R-square measures the goodness of fit of a model and also indicates the

influence of a significant variable in a model. The adjusted R-square was considered in this
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study because its value increases only when a significant variable is included in a model.

5.3.2.4 Standard error

In a regression analysis, there is the possibility of variations in measurements. These

variations are often high but sometimes low relative to the actual measurements. The

standard error can be used as an indicator of the reliability of the sample estimates relative

to the actual measurements.

5.3.2.5 Mean magnitude of relative error (MMRE)

The mean magnitude of relative error (MMRE) is the most widely used evaluation

metric for comparing the performance of competing software prediction models, and one

of its purposes is to help a software team to select the best-performing model. However,

the MMRE was not applied as an evaluation criterion in this study because the findings of

several previous studies, such as those of Foss et al. (2003) and Miyazaki et al. (1994),

suggest that the MMRE may be unreliable under certain conditions, leading to the selection

of the worse candidate between two competing models; in particular, the MMRE tends to

prefer a model that underestimates to a model that accurately estimates the expected value.

These studies cast doubt on the results of previous studies that have relied on the MMRE

to compare the accuracy of different prediction models.

5.3.3 Data collection

First, 10 different datasets representing different projects were obtained from the

PROMISE repository (Sayyad Shirabad & Menzies, 2005). These NASA Metric Data

Program datasets have been widely used in software defect prediction studies. Second, 69

open-source projects called the ELFF datasets, which contain 131,034 classes and 289,132

methods and were first used by Shippey et al. (2016), were obtained from the repository

available at www.elff.org.uk/ESEM2016. All of these datasets require a significant amount
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of cleaning to be suitable for defect prediction studies and to produce reliable results. Table

5.1 presents the statistics of the 10 different NASA datasets collected from the PROMISE

repository. The columns in the table, from first to last, contain the dataset name, the

number of instances, the number of defects, the number of attributes and the percentage

of defects. Tables 5.2 and 5.3 present the statistics of the ELFF datasets at the class and

method levels, respectively. The columns in each table, from first to last, contain the

project name, the number of classes or methods, the number of defects, the number of

attributes (for instance, lines of code and branch count) and the percentage of defects.

Table 5.1: NASA dataset statistics
Dataset No. of Modules No. of Defects No. of Attributes % Defects
KC1 2109 326 21 15.46
KC2 522 107 21 20.50
KC3 458 43 39 9.39
MC1 9466 68 38 0.72
MC2 161 48 39 29.81
MW1 403 31 37 7.69
PC1 1109 77 21 6.94
PC2 5589 21 36 0.38
PC3 1563 159 37 10.17
PC4 1458 174 37 11.93
Total 22838 1054 326 4.62
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Table 5.2: ELFF class-level dataset statistics
Project Name No. of Defective Classes No. of Defects No. of Attributes % Defective Classes
AutoPlot 2012 2800 192 42 6.86
Cdk1 1678 0 42 0
Cdk1.1 1670 261 42 15.63
Cdk1.2 1717 0 42 0
Cmusphinx3.6 665 15 42 2.26
Cmusphinx3.7 665 10 42 1.5
Controltier3 1659 0 42 0
Controltier3.1 1658 117 42 7.06
Controltier3.2 1683 0 42 0
Drjava2008 2697 1013 42 37.56
Drjava2009 3196 774 42 24.22
Drjava2010 3549 403 42 11.36
Eclemma2 196 9 42 4.59
Eclemma2.1 233 37 42 15.88
Genoviz5.4 1111 827 42 74.44
Genoviz6 1077 840 42 77.99
Genoviz6.1 1059 817 42 77.15
Genoviz6.2 1156 306 42 26.47
Genoviz6.3 1242 226 42 18.2
HTMLUnit2008 497 427 42 85.92
HTMLUnit2009 1059 121 42 11.43
HTMLUnit2010 1296 364 42 28.09
JEdit5.2 1265 13 42 1.03
Jikesrvm2 1332 107 42 8.03
Jikesrvm3 2098 440 42 20.97
Jikesrvm3.1 2290 71 42 3.1
Jitterbit1.1 6141 533 42 8.68
Jitterbit1.2 12247 145 42 1.18
Jmol2 268 38 42 14.18
Jmol3 275 35 42 12.73
Jmol4 297 81 42 27.27
Jmol5 324 92 42 28.4
Jmol6 378 294 42 77.78
Jmol7 405 248 42 61.23
Jmol8 453 145 42 32.01
Jmol9 459 176 42 38.34
Jmol10 556 107 42 19.24
Jmri2 2730 124 42 4.54
Jmri2.2 3337 175 42 5.24
Jmri2.4 3727 1388 42 37.24
Jmri2.6 4059 252 42 6.21
Jppf4 1933 258 42 13.35
Jppf4.1 1934 133 42 6.88
Jppf4.2 1956 135 42 6.9
Jppf5 1879 274 42 14.58
Jppf5.1 1912 55 42 2.88
Jtds23072009 156 35 42 22.44
Jump1.5 2791 131 42 4.69
Jump1.6 2909 104 42 3.58
Jump1.7 3016 96 42 3.18
Jump1.8 3064 107 42 3.49
Jump1.9 3231 281 42 8.7
OmegaT3.1 1204 45 42 3.74
OmegaT3.5 1391 96 42 6.9
OmegaT3.6 1476 97 42 6.57
Runawfe3.5 5029 0 42 0
Runawfe3.6 5237 5 42 0.1
Runawfe4.1 2882 369 42 12.8
Runawfe4.2 3408 0 42 0
Saros1.0.6 329 69 42 20.97
Tango2008 4299 151 42 3.51
Unicore1.2 412 90 42 21.84
Unicore1.3 466 54 42 11.59
Unicore1.4 477 202 42 42.35
Unicore1.5 728 69 42 9.48
Unicore1.6 834 234 42 28.06
Xaware5 882 120 42 13.61
Xaware5.1 994 51 42 5.13
Xaware6 1001 0 42 0
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Table 5.3: ELFF method-level dataset statistics
Project Name No. of Methods No. of Defective Methods No. of Attributes % Defective Methods
AutoPlot 2012 15781 191 33 1.2
Cdk1 9576 0 33 0
Cdk1.1 4276 73 33 1.7
Cdk1.2 4366 0 33 0
Cmusphinx3.6 4819 15 33 0.30
Cmusphinx3.7 4826 10 33 0.20
Controltier3 6078 0 33 0
Controltier3.1 5799 52 33 0.9
Controltier3.2 4946 0 33 0
Drjava2008 15748 1012 33 6.40
Drjava2009 3333 130 33 3.90
Drjava2010 4946 100 33 0.2
Eclemma2 896 9 33 1.00
Eclemma2.1 1081 37 33 3.40
Ejit3 3357 48 33 1.43
Genoviz5.4 1451 141 33 9.7
Genoviz6 1269 117 33 9.20
Genoviz6.1 4701 504 33 10.70
Genoviz6.2 5704 210 33 3.70
Genoviz6.3 8509 221 33 2.6
HTMLUnit2008 4715 427 33 9.00
HTMLUnit2009 1096 16 33 1.50
HTMLUnit2010 7747 259 33 3.30
JEdit5.2 5400 9 33 0.17
Jikesrvm2 4489 43 33 0.96
Jikesrvm3 5113 149 33 2.90
Jikesrvm3.1 3890 20 33 0.50
Jitterbit1.1 1155 22 33 1.90
Jitterbit1.2 11246 26 33 0.23
Jmol2 1347 38 33 2.80
Jmol3 1402 35 33 2.50
Jmol4 1419 81 33 5.70
Jmol5 89 4 33 4.50
Jmol6 2170 280 33 12.90
Jmol7 2484 248 33 9.98
Jmol8 1910 85 33 4.50
Jmol9 3433 176 33 5.12
Jmol10 3957 81 33 2.05
Jmri2 4910 42 33 0.85
Jmri2.2 17011 175 33 1.03
Jmri2.4 11564 802 33 6.90
Jmri2.6 2637 30 33 1.13
Jppf4 2054 57 33 2.78
Jppf4.1 2058 28 33 1.36
Jppf4.2 298 5 33 1.67
Jppf5 448 16 33 3.57
Jppf5.1 3618 19 33 0.53
Jtds23072009 2005 27 33 1.34
Jump1.5 5194 51 33 0.98
Jump1.6 3692 30 33 0.81
Jump1.7 4064 26 33 0.64
Jump1.8 3090 13 33 0.42
Jump1.9 11661 201 33 1.72
OmegaT3.1 4347 35 33 0.81
OmegaT3.5 1812 30 33 1.66
OmegaT3.6 2331 34 33 1.46
Runawfe3.5 3282 0 33 0
Runawfe3.6 470 0 33 0
Runawfe4.1 1402 46 33 3.28
Runawfe4.2 2136 0 33 0
Saros1.0.6 749 31 33 4.13
Tango2008 3246 18 33 0.55
Unicore1.2 1756 67 33 3.80
Unicore1.3 952 21 33 2.20
Unicore1.4 2575 202 33 7.84
Unicore1.5 4007 69 33 1.72
Unicore1.6 2171 113 33 5.20
Xaware5 792 18 33 2.27
Xaware5.1 6033 43 33 0.71
Xaware6 2843 0 33 0
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5.3.4 Data preprocessing

To ensure the reliability of the collected datasets, first, the researcher gained a basic

understanding of the datasets used in this research by determining the origin, size, and

format of each dataset. The proposed optimal decision framework was applied to properly

preprocess the datasets. This research was conducted using the well-known NASA datasets

from the PROMISE repository (Sayyad Shirabad & Menzies, 2005) and the ELFF datasets

(Shippey et al., 2016).

Each dataset was preprocessed using the proposed optimal decision technique to select

feature subsets with high predictive strength from among the available features, followed by

the elimination of outliers from the datasets. A unique identifier was then assigned to each

module in each dataset to further preprocess both the class- and method-level data, followed

by the determination of the defect density, defect velocity and defect introduction time in

each dataset. This process was repeated for all datasets. Unique identifiers were assigned

to both defective and defect-free modules to allow the number of defective modules in each

dataset to be easily recorded and to avoid redundancy among the data points. From the

number of defective modules, the percentage of defective modules in each dataset could

be correctly determined based on the assigned unique identifiers. A class or method was

considered defective if the error count among the attributes was greater than or equal to 1.

Files with incomplete attributes were not counted. This process was repeated for each file

in every dataset. This was a time-consuming process; however, all 22,838 modules in the

NASA datasets as well as all 131,034 classes and 289,132 methods in the ELFF projects

used in this research were carefully cleaned and preprocessed. This cleaning process was

necessary to determine whether the datasets were suitable for training and validation and

to ensure that the prediction models (regression models and classifiers) applied in this

study produced unbiased outcomes.
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An input space was created to recapture unreported faults. Thereafter, the samples were

divided into training and validation sets with a 10-fold cross-validation structure to ensure

unbiased results. The training sets consisted of 80% of the data and were used to train the

prediction models. If models are properly trained, they will produce reliable results during

validation; this is why cross-validation sampling was applied when training the models to

ensure highly accurate results with regard to model performance. The steps of the applied

data preprocessing procedure are further elucidated in Algorithms 1, 2 and 3.

5.3.5 Steps of filter-based feature selection

Algorithm 1 presents the steps applied to perform filter-based feature selection. For

each dataset, the individual rank score of each feature, denoted by rankid, was determined

to identify the relevant features and ascertain their correlations with the target class of

modules (classes or methods) in the dataset, i.e., the defective class. To achieve the above

objective, an optimal threshold was set that was equal to the average rank score of all

features, denoted by Rankave. Features whose rank scores were equal to or greater than

this threshold were selected, and those with lower rank scores were discarded, as presented

in Algorithm 1.

5.3.6 Steps of determining the impacts of the defect density, defect introduction
time and defect velocity on the numbers of defects at the class and method
levels

Algorithm 2 presents the steps of determining the impacts of the defect density, defect

introduction time and defect velocity on the number of defects, and Algorithm 3 presents the

steps of the data cleaning approach applied to determine the average classifier performance.

In all three algorithms (Algorithms 1, 2, and 3), the module-, class- and method-level

datasets serve as the input for (1) filtering the features in the class- and method-level

datasets; (2) determining the impact of the defect density, defect velocity and defect
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Algorithm 1 Steps of filter-based feature selection
1: procedure Steps of Feature Selection from Each Dataset

Input: Datasets DS with the universal feature set
Output: Datasets with the selected feature subset

2: Analyze the features in each dataset
3: Record the total number of features in each dataset
4: Apply the feature selection module to each dataset
5: Apply the feature scoring method to rank each feature
6: Record the rank score of each feature in each dataset
7: Determine the average rank score of all features in each dataset
8: for i = 1 to n (each feature) do
9: Set optimal value = average rank score (Rankave)
10: if individual feature rank score rankid ≥ Rankave then
11: Include feature in subset
12: else
13: Discard feature
14: Record the total number of selected features for which rankid ≥ Rankave

15: end if
16: end for
17: end procedure

introduction time; and (3) determining the average classifier performance. In these

algorithms, DS represents the datasets. In Algorithm 2, CD represents both classes and

methods in the datasets. m represents the number of datasets, and n represents the number

of classes and methods in the datasets. To determine the impact of the defect density,

defect velocity and defect introduction time, the following steps were applied. First, all

classes and methods in each dataset were analyzed to assess the defect density in each

class and method. Subsequently, the defect velocity and defect introduction time in each

class and method were evaluated, as presented in Algorithm 2. The defect density of each

class and method was determined by dividing the number of defects in the class or method

by the size of the class or method, and subsequently, the average defect introduction time

and average defect velocity were determined. The defect velocity v is expressed as

v =
∆ defect position

(
x
)

∆ time
(
t
) (5.23)
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Algorithm 2 Steps of determining the impacts of the defect density, defect introduction
time and defect velocity in terms of correlation with the number of defects
1: procedure Steps of Determining the Impacts of the Defect Density, Defect

Introduction Time, and Defect Velocity in Terms of Correlation with the
Number of Defects at Both the Class and Method Levels
Input: Datasets DS
Output: Impacts of the defect density, defect introduction time and defect velocity on
the number of defects

2: Analyze datasets DS1−m

3: Analyze classes and methods CD1−n of each DS1−m

4: for i = 1 to n do
5: Determine the average defect density, g = no. of defects

class or method size
6: Determine the average defect velocity and defect introduction time, v =
∆Defect position

(
x
)

∆time
(
t
)

7: Determine the correlations between the average defect density g, average defect
velocity v and average defect introduction time t and the number of defects in datasets
DS1−m

8: Record the impacts of g, v and t on the number of defects
9: end for
10: end procedure

5.3.7 Steps of determining the average classifier performance

This section elaborates on the process used to accurately determine the average classifier

performances of the six state-of-the-art classifiers investigated in this study. The datasets

served as the input, as presented in Algorithms 1, 2 and 3. In the cross-validation approach,

the data were split into 10 folds, with a relative training set size of 80% and a validation set

size of 20%. The training data and validation data were independent of each other to ensure

unbiased prediction outcomes. The reason for using 80% of the data for training was to

effectively train the classification algorithms to avoid biased results. Notably, if models

are trained using only a small amount of data, they may learn inaccurately and produce

unreliable results. Thus, all the classification algorithms applied in this study were trained

using 80% of the available data. For this purpose, cross-validation sampling was chosen as

the approach used in this study. Throughout the experiment, A×B cross-validation was

used, representing a 10-fold cross-validation strategy for both the training and validation

sets, with a value of K=10, as presented in Algorithm 3. n represents the number of classes
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Algorithm 3 Data cleaning to determine average classifier performance
1: procedure Steps of Determining Average Classifier Performance

Input: Datasets DS
Output: Average classifier performance x̄ based on A×B cross-validation

2: A = 10 /* number of folds for cross-validation, K=10
3: B = 10 /* number of repetitions of training/validation
4: Preprocess datasets (DS1−n)
5: for i = 1 to n do
6: Assign an ID to each instance of (DS1−n)
7: Check attributes of each instance
8: Check for missing values in each instance
9: Check for outliers and inliers
10: for j = 1 to n do
11: Identify and record faulty classes and methods
12: Divide DS1−n into two parts: 80% and 20%, for training and validation,

respectively
13: Create an input space S for unreported faulty instances x̂ and x
14: Apply RBF kernel to training and validation data
15: Compute a weighted sum (wn and ym) for x and x̂

hx = sign n

i=1
wn exp −γ ‖x− xn‖2 , x̂ = sign n

i=1
ym exp −γ ‖x− xm‖2

x̂ and x ∈ {0, 1} = outcome that is of interest

=

1, if error_count ≥ 1
0, otherwise

16:17: if error_count ≥ 1 then
18: Target class = defective
19: else
20: Target class = defect-free
21: Record the number of defects
22: Calculate the percentage of defects in each class
23: end if
24: Evaluate the individual classifier performance x
25: Calculate the average classifier performance x = 1

n
N
i=1 xn =

1
n

(
x1 + x2 + . . . xn

)
26: Determine the variation of information related to the classifier performance

metrics
27: Compute the average entropy of the performance metrics
28: end for
29: end for
30: end procedure
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or methods in the datasets.

Each dataset was preprocessed as follows. First, a unique identifier was assigned to

each module in every dataset to enable the researcher to pinpoint the defective modules.

Thereafter, the attributes in each dataset were checked to easily identify missing values. The

outliers were then separated from the inliers because only the clustered inliers are suitable

for use in prediction. The number of errors in each dataset was recorded as well. If the

error count among the attributes was greater than or equal to 1, the corresponding module

instance was considered defective, whereas an error count of 0 indicated a defect-free

module. Thereafter, an input space was created to recapture unreported faults in both

the training and validation datasets, as presented in Algorithm 3. The six state-of-the-art

classifiers were implemented on each dataset to determine their individual classification

performances. Thereafter, the average classification performance of each classifier on all

datasets was determined. Finally, these average performances were compared.

5.3.8 Sampling strategy

This section elaborates on the selection of the sampling strategy applied in this study.

The sampling strategy was selected using an optimal decision-making approach similar to

that described previously. The assessment of any classifier’s performance depends on the

data sampling method applied. For the experiments reported here, three potential sampling

strategies were considered, namely, cross-validation, leave-one-out and random sampling.

5.3.8.1 Cross-validation

The researcher chose to apply a cross-validation sampling strategy to achieve accurate

results and also because, for a large dataset, the cross-validation sampling of data split

into 10 folds with relative training and validation set sizes of 80% and 20%, respectively,

performs better than leave-one-out or random sampling. Figure 5.3 illustrates how the
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cross-validation sampling strategy was applied in this study. Each dataset was split into

10 different folds, with each fold containing both training and and testing data. Notably,

cross-validation sampling ensures that the training and validation data are independent of

one another; consequently, with this strategy, learning algorithms tend to produce more

reliable results (Tantithamthavorn et al., 2017). For instance, Q. Li et al. (2014) applied

cross-validation sampling and achieved promising results.

Figure 5.3: Cross-validation sampling strategy

5.3.8.2 Leave-one-out sampling strategy

The leave-one-out sampling strategy requires a longer processing time because only one

sample is left out at a time. This sampling method produces more accurate and reliable

output but is very slow compared with cross-validation. Tantithamthavorn et al. (2016b)

reported that for Brier score evaluations, the leave-one-out sampling strategy is the most

stable choice.
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5.3.8.3 Random sampling

Random sampling follows an unsystematic approach in which the data are split into

training and validation sets in specific proportions such that every sample in the dataset has

the same chance of being chosen. The entire procedure is repeated a specified number of

times. Because of the random nature of the selection process, the results of this sampling

strategy cannot be controlled and, consequently, may be biased.

5.3.9 Classification procedure

This subsection explains in detail the experimental procedure used to evaluate the

average performances of the classifiers. The experiments were performed using Orange 2.7.

Figure 5.4 illustrates the classification procedure used to evaluate the average performances

of the selected classifiers.

Figure 5.4: Classification procedure

5.3.9.1 Outliers

The classification procedure is illustrated in Figure 2. First, the data were checked

to determine whether they contained outliers before the classification algorithms were

applied. Outliers are data points that lie far away from the main cluster(s) of data. Outliers

may occur in datasets as a result of measurement variations or may be an indication of
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experimental error. In this study, outliers were identified during the training phase because

they might impact model performance.

5.3.9.2 Inliers

Inliers are the clustered data used for classification. Some inliers may be defective but

nevertheless grouped together with defect-free instances in the data distribution, which

could pose a challenge in distinguishing defective from defect-free data.

5.3.9.3 Linear projection

To visualize the outliers, each data file was input into an outliers widget followed by

a linear projection widget. By feeding the data file into the linear projection widget, the

outliers could be identified as data points that were seen to be far from the clustered data

(inliers). These clustered data were then fed into the classifier for classification.

5.3.9.4 Test learners

Test learners were implemented to visualize the performance of each classifier. Learners

were connected in between the classifiers and the test learners to evaluate the performance

of each classifier.

5.4 Summary

This chapter has presented the detailed experimental setup that formed the basis for

the evaluation of the proposed approach. The experimental outcomes enabled meaningful

conclusions to be drawn when evaluating the clearly defined research hypotheses. The

details of the activities performed in the various phases of the proposed optimal decision

framework to achieve unbiased experimental outcomes have been presented in the current

chapter. For instance, the activities involved in preprocessing both class- and method-level

datasets include filter-based feature selection; outlier removal; the derivation of the defect
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density, defect velocity and defect introduction time for further preprocessing of the inliers;

and the creation of an input space for recapturing unreported faults. These preprocessing

activities were performed on the class- and method-level datasets before the application of

the learning algorithms to avoid misleading results. In addition, the evaluation metrics

applied to determine the performance of the proposed framework have been presented.

These evaluation metrics were used to accurately assess the performance of the proposed

approach. As described, the proposed optimal decision framework presented in the current

research attempts to address data-related issues at both the class and method levels, which,

in turn, will help to ensure that the data applied in supervised machine learning studies are

free from bias.
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CHAPTER 6: RESULTS AND DISCUSSION

This chapter focuses on the experimental results and the interpretation and discussion

thereof. The experimental design and modeling have been discussed in the previous chapter,

along with the metrics applied for evaluation. The results obtained when applying these

metrics during the evaluations are presented in this chapter and are used to draw conclusions.

It is therefore important to note that the results presented in this chapter conform to the

various phases of the experimental setup as discussed in the previous chapter. With respect

to the preprocessing of the class- and method-level datasets, the results obtained during

the feature selection phase are presented first, followed by those obtained in the outlier

removal and further preprocessing phases. Numerous evaluation metrics are used to

assess the consistency of the classifiers’ performance. These evaluation metrics include

the Classification Accuracy (CA), area under the receiver operating characteristic (ROC)

curve (AUC), Brier score, Matthews Correlation Coefficient (MCC), recall, specificity,

J-coefficient, F-score, precision, geometric mean (G-mean), information score, and entropy.

A large number of metrics are used because the use of many evaluation metrics increases

the likelihood of obtaining useful information on the model accuracy, such as the mean

performance, and thus results in more reliable predictions (X. Jing et al., 2015). Relevant

discussions on the research questions are also provided in this chapter.

6.1 Filter-based feature selection phase

The technique applied to select highly predictive features (that is, features that are

highly correlated with the number of defects present in the dataset) is a filter-based feature

selection technique, which makes it possible for the researcher to separate irrelevant and

redundant features from the relevant features in a dataset. This selection is based on the

average rank score of the features in the dataset, which is compared against the individual
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rank score of each feature to identify features with high predictive power. Features whose

individual rank scores are equal to or greater than the average rank score of all features in

the dataset are selected, whereas features whose individual rank scores are less than the

average rank score are discarded due to their low predictive strength. Tables 6.1-6.10 list the

features present in the National Aeronautics and Space Administration (NASA) class-level

datasets, the corresponding rank score of each feature, the selection or nonselection of

each feature for use in the analysis, and the reasons for selection or nonselection. The

average rank score of the features in each dataset was adopted as a benchmark against

which each feature in the dataset was compared. When the individual rank score of a given

feature was greater than or equal to the average rank score, that feature was selected as a

relevant feature; otherwise, it was not selected. Specifically, the average rank score for the

KC1 dataset was 0.303, and a total of 12 of the 21 features were selected, amounting to

57% of the features present in the dataset. The average rank score for the KC2 dataset was

0.371, and 11 of the 21 features (52%) were selected. The average rank score for the KC3

dataset was 0.268, and 27 of the 39 features (69%) were selected. The average rank score

for the MC1 dataset was 0.108, and 20 of the 38 features (53%) were selected.

The average rank score for the MC2 dataset was 0.248, and 27 of the 39 features (69%)

were selected, whereas the average rank score for the MW1 dataset was 0.217, and 22 of

the 37 features (59%) were selected. The PC1 dataset yielded an average rank score of

0.192, leading to the selection of 13 of the 21 features (62%). The average rank score for

the PC2 dataset was 0.122, and 18 of the 36 features (50%) were selected; the average

rank score for the PC3 dataset was 0.108, and 13 of the 37 features (35%) were selected;

and the PC4 dataset yielded an average rank score of 0.143, leading to the selection of

20 of the 37 features (54%). From the feature selection results, we can conclude that

most datasets contain numerous irrelevant features, which, if not eliminated, can lead to
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unreliable prediction outcomes. It is also important to note that some datasets can contain

more irrelevant than relevant features; for example, in the PC3 dataset, the percentage

ratio of relevant to irrelevant features was 35%:65%. Note that the rank scores for the

ELFF datasets are not listed because the ELFF datasets contain enormous numbers of

both classes and methods; consequently, only the results for the NASA datasets are listed

for clarity. However, the same feature selection technique was applied to all class- and

method-level datasets used in this research. For the same reason, the NASA datasets are

used throughout the rest of this chapter to provide a detailed illustration of the results

where necessary.

Table 6.1: Features and their corresponding rank scores for the KC1 dataset (fave =
0.303)
S/N Feature Rank score Selected Not selected Reason for selection/nonselection

1 McCabe’s line count of code (loc) 0.3484 X × rank score ≥ fave

2 McCabe’s "cyclomatic complexity" (v(g)) 0.2956 × X rank score <fave

3 McCabe’s "essential complexity" (ev(g)) 0.2052 × X rank score <fave

4 McCabe’s "design complexity" (iv(g)) 0.2957 × X rank score <fave

5 Halstead’s total operators + operands (n) 0.3551 X × rank score ≥ fave

6 Halstead’s "volume" (v) 0.3395 X × rank score ≥ fave

7 Halstead’s "program length" (l) 0.2328 × X rank score <fave

8 Halstead’s "difficulty" (d) 0.3875 X × rank score ≥ fave

9 Halstead’s "intelligence" (i) 0.3429 X × rank score ≥ fave

10 Halstead’s "effort" (e) 0.2701 × X rank score <fave

11 Halstead’s error estimator (b) 0.3390 X × rank score ≥ fave

12 Halstead’s time estimator (t) 0.2701 × X rank score <fave

13 Halstead’s line count (lOCode) 0.3415 X × rank score ≥ fave

14 Halstead’s count of lines of comments (lOComment) 0.2329 × X rank score <fave

15 Halstead’s count of blank lines (lOBlank) 0.3236 X × rank score ≥ fave

16 lOCodeAndComment 0.0051 × X rank score <fave

17 unique operators (uniq_Op) 0.3856 X × rank score ≥ fave

18 unique operands (uniq_Opnd) 0.3867 X × rank score ≥ fave

19 total operators (total_Op) 0.3488 X × rank score ≥ fave

20 total operands (total_Opnd) 0.3625 X × rank score ≥ fave

21 branchCount 0.2978 × X rank score <fave
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Table 6.2: Features and their corresponding rank scores for the KC2 dataset (fave =
0.371)
S/N Feature Rank score Selected Not selected Reason for selection/nonselection

1 McCabe’s line count of code (loc) 0.4069 X × rank score ≥ fave

2 McCabe’s "cyclomatic complexity" (v(g)) 0.3732 X × rank score ≥ fave

3 McCabe’s "essential complexity" (ev(g)) 0.3079 × X rank score <fave

4 McCabe’s "design complexity" (iv(g)) 0.3517 × X rank score <fave

5 Halstead’s total operators + operands (n) 0.3811 X × rank score ≥ fave

6 Halstead’s "volume" (v) 0.3295 × X rank score <fave

7 Halstead’s "program length" (l) 0.3153 × X rank score <fave

8 Halstead’s "difficulty" (d) 0.4897 X × rank score ≥ fave

9 Halstead’s "intelligence" (i) 0.4709 X × rank score ≥ fave

10 Halstead’s "effort" (e) 0.2388 × X rank score <fave

11 Halstead’s error estimator (b) 0.3322 × X rank score <fave

12 Halstead’s time estimator (t) 0.2157 × X rank score <fave

13 Halstead’s line count (lOCode) 0.3844 X × rank score ≥ fave

14 Halstead’s count of lines of comments (lOComment) 0.3514 × X rank score <fave

15 Halstead’s count of blank lines (lOBlank) 0.4061 X × rank score ≥ fave

16 lOCodeAndComment 0.3059 × X rank score <fave

17 unique operators (uniq_Op) 0.4958 X × rank score ≥ fave

18 unique operands (uniq_Opnd) 0.4777 X × rank score ≥ fave

19 total operators (total_Op) 0.3844 X × rank score ≥ fave

20 total operands (total_Opnd) 0.3989 X × rank score ≥ fave

21 branchCount 0.3637 × X rank score <fave

Table 6.3: Features and their corresponding rank scores for the KC3 dataset (fave =
0.268)
S/N Feature Rank score Selected Not selected Reason for selection/nonselection

1 loc_blank 0.3496 X × rank score ≥ fave

2 branch_count 0.3094 X × rank score ≥ fave

3 call_pairs 0.3503 X × rank score ≥ fave

4 loc_code_and_comment 0.3436 X × rank score ≥ fave

5 loc_comments 0.1485 × X rank score <fave

6 condition_count 0.2787 X × rank score ≥ fave

7 cyclomatic_complexity 0.3165 X × rank score ≥ fave

8 cyclomatic_density 0.1543 × X rank score <fave

9 decision_count 0.2834 X × rank score ≥ fave

10 decision_density 0.2534 × X rank score <fave

11 design_complexity 0.3095 X × rank score ≥ fave

12 design_density 0.1199 × X rank score <fave

13 edge_count 0.3334 X × rank score ≥ fave

14 essential_complexity 0.2160 × X rank score <fave

15 essential_density 0.1441 × X rank score <fave

16 loc_executable 0.3324 X × rank score ≥ fave

17 parameter_count 0.0498 × X rank score <fave

18 global_data_complexity 0.3118 X × rank score ≥ fave

19 global_data_density 0.0318 × X rank score <fave

20 halstead_content 0.3439 X × rank score ≥ fave

21 halstead_difficulty 0.3192 X × rank score ≥ fave

22 halstead_effort 0.2703 X × rank score ≥ fave

23 halstead_error_est 0.3160 X × rank score ≥ fave

24 halstead_length 0.3294 X × rank score ≥ fave

25 halstead_level 0.2208 × X rank score <fave

26 halstead_prog_time 0.2703 X × rank score ≥ fave

27 halstead_volume 0.3161 X × rank score ≥ fave

28 maintenance_severity 0.2642 × X rank score <fave

29 modified_condition_count 0.2728 X × rank score ≥ fave

30 multiple_condition_count 0.2784 X × rank score ≥ fave

31 node_count 0.3345 X × rank score ≥ fave

32 normalized_cyclomatic_complexity 0.1403 × X rank score <fave

33 num_operands 0.3214 X × rank score ≥ fave

34 num_operators 0.3336 X × rank score ≥ fave

35 num_unique_operands 0.3447 X × rank score ≥ fave

36 num_unique_operators 0.3273 X × rank score ≥ fave

37 number_of_lines 0.3353 X × rank score ≥ fave

38 percent_comments 0.1344 × X rank score <fave

39 loc_total 0.3364 X × rank score ≥ fave
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Table 6.4: Features and their corresponding rank scores for the MC1 dataset (fave

= 0.108)
S/N Feature Rank score Selected Not selected Reason for selection/nonselection

1 loc_blank 0.1779 X × rank score ≥ fave

2 branch_count 0.1054 × X rank score <fave

3 call_pairs 0.1775 X × rank score ≥ fave

4 loc_code_and_comment 0.1524 X × rank score ≥ fave

5 loc_comments 0.1306 X × rank score ≥ fave

6 condition_count 0.0882 × X rank score <fave

7 cyclomatic_complexity 0.0573 × X rank score <fave

8 cyclomatic_density 0.1191 X × rank score ≥ fave

9 decision_count 0.0821 × X rank score <fave

10 design_complexity 0.0265 × X rank score <fave

11 design_density 0.0981 × X rank score <fave

12 edge_count 0.1317 X × rank score ≥ fave

13 essential_complexity 0.0810 × X rank score <fave

14 essential_density 0.1830 X × rank score ≥ fave

15 loc_executable 0.1813 X × rank score ≥ fave

16 parameter_count 0.0082 × X rank score <fave

17 global_data_complexity 0.0117 × X rank score <fave

18 global_data_density 0.0515 × X rank score <fave

19 halstead_content 0.1744 X × rank score ≥ fave

20 halstead_difficulty 0.0822 × X rank score <fave

21 halstead_effort 0.0136 × X rank score <fave

22 halstead_error_est 0.1213 X × rank score ≥ fave

23 halstead_length 0.1256 X × rank score ≥ fave

24 halstead_level 0.0749 × X rank score <fave

25 halstead_prog_time 0.0136 × X rank score <fave

26 halstead_volume 0.1217 X × rank score ≥ fave

27 maintenance_severity 0.0213 × X rank score <fave

28 modified_condition_count 0.0935 × X rank score <fave

29 multiple_condition_count 0.0887 × X rank score <fave

30 node_count 0.1359 X × rank score ≥ fave

31 normalized_cyclomatic_complexity 0.0888 × X rank score <fave

32 num_operands 0.1259 X × rank score ≥ fave

33 num_operators 0.1248 X × rank score ≥ fave

34 num_unique_operands 0.2010 X × rank score ≥ fave

35 num_unique_operators 0.1363 X × rank score ≥ fave

36 number_of_lines 0.1948 X × rank score ≥ fave

37 percent_comments 0.1267 X × rank score ≥ fave

38 loc_total 0.1927 X × rank score ≥ fave
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Table 6.5: Features and their corresponding rank scores for the MC2 dataset (fave

= 0.248)
S/N Feature Rank score Selected Not selected Reason for selection/nonselection

1 loc_blank 0.3237 X × rank score ≥ fave

2 branch_count 0.3292 X × rank score ≥ fave

3 call_pairs 0.2373 × X rank score <fave

4 loc_code_and_comment 0.1708 × X rank score <fave

5 loc_comments 0.3456 X × rank score ≥ fave

6 condition_count 0.3365 X × rank score ≥ fave

7 cyclomatic_complexity 0.3209 X × rank score ≥ fave

8 cyclomatic_density 0.0956 × X rank score <fave

9 decision_count 0.3412 X × rank score ≥ fave

10 decision_density 0.1210 × X rank score <fave

11 design_complexity 0.3032 X × rank score ≥ fave

12 design_density 0.1357 × X rank score <fave

13 edge_count 0.3474 X × rank score ≥ fave

14 essential_complexity 0.3216 X × rank score ≥ fave

15 essential_density 0.2946 X × rank score ≥ fave

16 loc_executable 0.2480 X × rank score ≥ fave

17 parameter_count 0.1659 × X rank score <fave

18 global_data_complexity 0.2896 X × rank score ≥ fave

19 global_data_density 0.0173 × X rank score <fave

20 halstead_content 0.0878 × X rank score <fave

21 halstead_difficulty 0.3782 X × rank score ≥ fave

22 halstead_effort 0.2881 X × rank score <fave

23 halstead_error_est 0.2515 X × rank score ≥ fave

24 halstead_length 0.2739 X × rank score ≥ fave

25 halstead_level 0.2561 X × rank score ≥ fave

26 halstead_prog_time 0.2881 X × rank score ≥ fave

27 halstead_volume 0.2509 X × rank score ≥ fave

28 maintenance_severity 0.0132 × X rank score <fave

29 modified_condition_count 0.3307 X × rank score ≥ fave

30 multiple_condition_count 0.3369 X × rank score ≥ fave

31 node_count 0.3522 X × rank score ≥ fave

32 normalized_cyclomatic_complexity 0.1063 × X rank score <fave

33 num_operands 0.2656 X × rank score ≥ fave

34 num_operators 0.2778 X × rank score ≥ fave

35 num_unique_operands 0.1456 × X rank score <fave

36 num_unique_operators 0.3404 X × rank score ≥ fave

37 number_of_lines 0.3069 X × rank score ≥ fave

38 percent_comments 0.1244 × X rank score <fave

39 loc_total 0.2511 X × rank score ≥ fave
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Table 6.6: Features and their corresponding rank scores for the MW1 dataset (fave

= 0.217)
S/N Feature Rank score Selected Not selected Reason for selection/nonselection

1 loc_blank 0.3405 X × rank score ≥ fave

2 branch_count 0.2945 X × rank score ≥ fave

3 call_pairs 0.3711 X × rank score ≥ fave

4 loc_code_and_comment 0.0177 × X rank score <fave

5 loc_comments 0.3415 X × rank score ≥ fave

6 condition_count 0.3177 X × rank score ≥ fave

7 cyclomatic_complexity 0.2619 X × rank score ≥ fave

8 cyclomatic_density 0.0607 × X rank score <fave

9 decision_count 0.3146 X × rank score ≥ fave

10 decision_density 0.0964 × X rank score <fave

11 design_complexity 0.2771 X × rank score ≥ fave

12 design_density 0.0032 × X rank score <fave

13 edge_count 0.3539 X × rank score ≥ fave

14 essential_complexity 0.1584 × X rank score <fave

15 essential_density 0.0258 × X rank score <fave

16 loc_executable 0.3112 X × rank score ≥ fave

17 parameter_count 0.0171 × X rank score <fave

18 halstead_content 0.2934 X × rank score ≥ fave

19 halstead_difficulty 0.1351 × X rank score <fave

20 halstead_effort 0.1462 × X rank score <fave

21 halstead_error_est 0.2451 X × rank score ≥ fave

22 halstead_length 0.2482 X × rank score ≥ fave

23 halstead_level 0.1443 × X rank score <fave

24 halstead_prog_time 0.1462 × X rank score <fave

25 halstead_volume 0.2450 X × rank score ≥ fave

26 maintenance_severity 0.1053 × X rank score <fave

27 modified_condition_count 0.3076 X × rank score ≥ fave

28 multiple_condition_count 0.3007 X × rank score ≥ fave

29 node_count 0.3689 X × rank score ≥ fave

30 normalized_cyclomatic_complexity 0.0557 × X rank score <fave

31 num_operands 0.2542 X × rank score ≥ fave

32 num_operators 0.2415 X × rank score ≥ fave

33 num_unique_operands 0.3306 X × rank score ≥ fave

34 num_unique_operators 0.1636 × X rank score <fave

35 number_of_lines 0.3515 X × rank score ≥ fave

36 percent_comments 0.0751 × X rank score <fave

37 loc_total 0.3136 X × rank score ≥ fave

Table 6.7: Features and their corresponding rank scores for the PC1 dataset (fave =
0.192)
S/N Feature Rank score Selected Not selected Reason for selection/nonselection

1 McCabe’s line count of code (loc) 0.2676 X × rank score ≥ fave

2 McCabe’s "cyclomatic complexity" (v(g)) 0.1575 × X rank score <fave

3 McCabe’s "essential complexity" (ev(g)) 0.1134 × X rank score <fave

4 McCabe’s "design complexity" (iv(g)) 0.1548 × X rank score <fave

5 Halstead’s total operators + operands (n) 0.2215 X × rank score ≥ fave

6 Halstead’s "volume" (v) 0.2289 X × rank score ≥ fave

7 Halstead’s "program length" (l) 0.0047 × X rank score <fave

8 Halstead’s "difficulty" (d) 0.0946 × X rank score <fave

9 Halstead’s "intelligence" (i) 0.2136 X × rank score ≥ fave

10 Halstead’s "effort" (e) 0.1177 × X rank score <fave

11 Halstead’s error estimator (b) 0.2338 X × rank score ≥ fave

12 Halstead’s time estimator (t) 0.1177 × X rank score <fave

13 Halstead’s line count (lOCode) 0.2579 X × rank score ≥ fave

14 Halstead’s count of lines of comments (lOComment) 0.2653 X × rank score ≥ fave

15 Halstead’s count of blank lines (lOBlank) 0.2705 X × rank score ≥ fave

16 lOCodeAndComment 0.2347 X × rank score ≥ fave

17 unique operators (uniq_Op) 0.1971 X × rank score ≥ fave

18 unique operands (uniq_Opnd) 0.2829 X × rank score ≥ fave

19 total operators (total_Op) 0.2236 X × rank score ≥ fave

20 total operands (total_Opnd) 0.2171 X × rank score ≥ fave

21 branchCount 0.1505 × X rank score <fave
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Table 6.8: Features and their corresponding rank scores for the PC2 dataset (fave =
0.122)
S/N Feature Rank score Selected Not selected Reason for selection/nonselection

1 branch_count 0.1432 X × rank score ≥ fave

2 call_pairs 0.1113 × X rank score <fave

3 loc_code_and_comment 0.1861 X × rank score ≥ fave

4 loc_comments 0.1149 × X rank score <fave

5 condition_count 0.1001 × X rank score <fave

6 cyclomatic_complexity 0.1690 X × rank score ≥ fave

7 cyclomatic_density 0.0673 × X rank score <fave

8 decision_count 0.0884 × X rank score <fave

9 decision_density 0.0651 × X rank score <fave

10 design_complexity 0.1511 X × rank score ≥ fave

11 design_density 0.0796 × X rank score <fave

12 edge_count 0.1400 X × rank score ≥ fave

13 essential_complexity 0.0632 × X rank score <fave

14 essential_density 0.0227 × X rank score <fave

15 loc_executable 0.1115 × X rank score <fave

16 parameter_count 0.0332 × X rank score <fave

17 halstead_content 0.0652 × X rank score <fave

18 halstead_difficulty 0.1689 X × rank score ≥ fave

19 halstead_effort 0.2178 X × rank score ≥ fave

20 halstead_error_est 0.1636 X × rank score ≥ fave

21 halstead_length 0.1735 X × rank score ≥ fave

22 halstead_level 0.0455 × X rank score <fave

23 halstead_prog_time 0.2178 X × rank score ≥ fave

24 halstead_volume 0.1634 X × rank score ≥ fave

25 maintenance_severity 0.0708 × X rank score <fave

26 modified_condition_count 0.1102 × X rank score <fave

27 multiple_condition_count 0.1001 × X rank score <fave

28 node_count 0.1296 X × rank score ≥ fave

29 normalized_cyclomatic_complexity 0.0473 × X rank score <fave

30 num_operands 0.1647 X × rank score ≥ fave

31 num_operators 0.1781 X × rank score ≥ fave

32 num_unique_operands 0.1463 X × rank score ≥ fave

33 num_unique_operators 0.1475 X × rank score ≥ fave

34 number_of_lines 0.1786 X × rank score ≥ fave

35 percent_comments 0.0746 × X rank score <fave

36 loc_total 0.1800 X × rank score ≥ fave
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Table 6.9: Features and their corresponding rank scores for the PC3 dataset (fave =
0.108)
S/N Feature Rank score Selected Not selected Reason for selection/nonselection

1 loc_blank 0.3347 X × rank score ≥ fave

2 branch_count 0.0757 × X rank score <fave

3 call_pairs 0.1726 X × rank score ≥ fave

4 loc_code_and_comment 0.2233 X × rank score ≥ fave

5 loc_comments 0.2724 X × rank score ≥ fave

6 condition_count 0.0662 × X rank score <fave

7 cyclomatic_complexity 0.0784 × X rank score <fave

8 cyclomatic_density 0.1024 × X rank score <fave

9 decision_count 0.0593 × X rank score <fave

10 decision_density 0.1417 X × rank score ≥ fave

11 design_complexity 0.0804 × X rank score <fave

12 design_density 0.0782 × X rank score <fave

13 edge_count 0.0819 × X rank score <fave

14 essential_complexity 0.0302 × X rank score <fave

15 essential_density 0.0232 × X rank score <fave

16 loc_executable 0.1006 × X rank score <fave

17 parameter_count 0.0465 × X rank score <fave

18 halstead_content 0.1152 X × rank score ≥ fave

19 halstead_difficulty 0.0693 × X rank score <fave

20 halstead_effort 0.0010 × X rank score <fave

21 halstead_error_est 0.0515 × X rank score <fave

22 halstead_length 0.0753 × X rank score <fave

23 halstead_level 0.1019 × X rank score <fave

24 halstead_prog_time 0.0010 × X rank score <fave

25 halstead_volume 0.0517 × X rank score <fave

26 maintenance_severity 0.1729 X × rank score ≥ fave

27 modified_condition_count 0.0722 × X rank score <fave

28 multiple_condition_count 0.0734 × X rank score <fave

29 node_count 0.0826 × X rank score <fave

30 normalized_cyclomatic_complexity 0.1199 X × rank score ≥ fave

31 num_operands 0.0740 × X rank score <fave

32 num_operators 0.0759 × X rank score <fave

33 num_unique_operands 0.1492 X × rank score ≥ fave

34 num_unique_operators 0.1737 X × rank score ≥ fave

35 number_of_lines 0.1988 X × rank score ≥ fave

36 percent_comments 0.2401 X × rank score ≥ fave

37 loc_total 0.1166 X × rank score ≥ fave
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Table 6.10: Features and their corresponding rank scores for the PC4 dataset (fave

= 0.143)
S/N Feature Rank score Selected Not selected Reason for selection/nonselection

1 loc_blank 0.1782 X × rank score ≥ fave

2 branch_count 0.0051 × X rank score <fave

3 call_pairs 0.0906 × X rank score <fave

4 loc_code_and_comment 0.4243 X × rank score ≥ fave

5 loc_comments 0.0889 × X rank score <fave

6 condition_count 0.1530 X × rank score ≥ fave

7 cyclomatic_complexity 0.0011 × X rank score <fave

8 cyclomatic_density 0.1868 X × rank score ≥ fave

9 decision_count 0.1560 X × rank score ≥ fave

10 decision_density 0.3056 X × rank score ≥ fave

11 design_complexity 0.0188 × X rank score <fave

12 design_density 0.0892 × X rank score <fave

13 edge_count 0.0370 × X rank score <fave

14 essential_complexity 0.0612 × X rank score <fave

15 essential_density 0.0456 × X rank score <fave

16 loc_executable 0.1698 X × rank score ≥ fave

17 parameter_count 0.0828 × X rank score <fave

18 halstead_content 0.1167 × X rank score <fave

19 halstead_difficulty 0.1378 × X rank score <fave

20 halstead_effort 0.1339 × X rank score <fave

21 halstead_error_est 0.1762 X × rank score ≥ fave

22 halstead_length 0.1902 X × rank score ≥ fave

23 halstead_level 0.0869 × X rank score <fave

24 halstead_prog_time 0.1339 × X rank score <fave

25 halstead_volume 0.1765 X × rank score ≥ fave

26 maintenance_severity 0.1845 X × rank score ≥ fave

27 modified_condition_count 0.1484 X × rank score ≥ fave

28 multiple_condition_count 0.1462 X × rank score ≥ fave

29 node_count 0.0485 × X rank score <fave

30 normalized_cyclomatic_complexity 0.1668 X × rank score ≥ fave

31 num_operands 0.1912 X × rank score ≥ fave

32 num_operators 0.1819 X × rank score ≥ fave

33 num_unique_operands 0.1642 X × rank score ≥ fave

34 num_unique_operators 0.1365 × X rank score <fave

35 number_of_lines 0.1491 X × rank score ≥ fave

36 percent_comments 0.2909 X × rank score ≥ fave

37 loc_total 0.2397 X × rank score ≥ fave
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6.2 Outlier removal phase

The results obtained during the outlier removal phase using the NASA datasets are

presented in Table 6.11.

The results of outlier removal from the ELFF datasets are presented in Appendix A. Again,

these results are not tabulated here due to the large numbers of classes and methods

contained in the ELFF datasets. During data preprocessing, it was necessary to visualize

the imbalanced nature of the datasets to identify outliers. Figures 6.1-6.5 illustrate the

imbalanced nature of the class- and method-level datasets, using the NASA datasets as

examples.

(a) Scatter plot showing data imbalance in KC1 (b) Scatter plot showing data imbalance in KC2

Figure 6.1: Imbalance in KC1 and KC2
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(a) Scatter plot showing data imbalance in KC3 (b) Scatter plot showing data imbalance in MC1

Figure 6.2: Imbalance in KC3 and MC1

(a) Scatter plot showing data imbalance in MC2 (b) Scatter plot showing data imbalance in MW1

Figure 6.3: Imbalance in MC2 and MW11
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(a) Scatter plot showing data imbalance in PC1 (b) Scatter plot showing data imbalance in PC2

Figure 6.4: Imbalance in PC1 and PC2

(a) Scatter plot showing data imbalance in PC3 (b) Scatter plot showing data imbalance in PC4

Figure 6.5: Imbalance in PC3 and PC4

168

Univ
ers

iti 
Mala

ya



Table 6.11: Outliers present in the NASA datasets
Dataset Total number of outliers Outliers = minority class Outliers = majority class
KC1 20 12 8
KC2 5 5 0
KC3 2 1 1
MC1 53 6 47
MC2 1 0 1
MW1 4 1 3
PC1 6 2 4
PC2 42 3 39
PC3 7 0 7
PC4 10 4 6
Total 150 34 116

6.3 Assigning unique IDs to classes and methods for identifying defective mod-
ules

One of the necessary steps of data preprocessing is to assign unique identifiers to all

classes and methods in each dataset based on the optimal decision made for accurate

preprocessing. Based on these unique identifiers, the defective classes and methods can

be easily identified and recorded. Detailed lists of the identifiers of all defective classes

(minority class) in the NASA datasets are presented for illustration. If an identifier is listed,

this indicates that the corresponding method or class is defective. Defective methods and

classes were selected as follows: if the number of errors among the attributes of the dataset

was found to be greater than or equal to 1 for a given method or class, that method or

class was considered defective, whereas an error count of 0 indicated a defect-free method

or class. Through this means, it was possible to accurately determine the number and

percentage of defective classes or methods in each dataset. Considering the time and

energy required for data preprocessing, the identifiers of the defective instances in the

NASA datasets, which contain 22,838 instances in total, are explicitly presented. However,

the individual identifiers of the defective instances for the PC1 and KC1 projects are not

listed because they are consecutive. The identifiers of the defective instances for the KC1

project range from 2 to 327; thus, the defective modules constitute 326 of the 2109 total
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instances, corresponding to an error percentage of 15.46%. The PC1 dataset was found

to contain 77 defective instances out of 1109 total instances, with consecutive identifiers

ranging from 2 to 78; thus, the error percentage of PC1 is 6.94%. Tables 6.12 to 5.19

present the identifiers of the defective instances constituting the minority class in the KC2,

KC3, MC1, MC2, MW1, PC2, PC3 and PC4 datasets, respectively.

For the ELFF class- and method-level datasets, the identifiers of defective classes and

methods are not explicitly presented due to the large numbers of classes and methods in

these datasets. However, the percentages of defects found after accurately identifying the

defective classes and method are reported for each of these datasets.

Table 6.12 presents the identifiers of the defective classes used to identify the minority

class in the KC2 dataset during data preprocessing. The KC2 dataset was found to contain

107 defective instances out of 522 total instances with 21 attributes. This number of

defective instances represents 20.50% of the dataset.

Table 6.12: Identifiers of defective modules in KC2
2 3 4 5 6 7 422 423 424 425 426
427 428 429 430 431 432 433 434 435 436 437
438 439 440 441 442 443 444 445 446 447 448
449 450 451 452 453 454 455 456 457 458 459
460 461 462 463 464 465 466 467 468 469 470
471 472 473 474 475 476 477 478 479 480 481
482 483 484 485 486 487 488 489 490 491 492
493 494 495 496 497 498 499 500 501 502 503
504 505 506 507 508 509 510 511 512 513 514
515 516 517 518 519 520 521 522 - - -

Table 6.13 presents the identifiers of the defective modules used to identify the minority

class in the KC3 dataset during data preprocessing. The KC3 dataset contains 43 defective

instances out of 458 total instances with 39 attributes. This number of defective instances

represents 9.39% of the dataset.

Table 6.14 presents the identifiers of the defective modules used to identify the minority

class in the MC1 dataset during data preprocessing. The MC1 dataset contains 68 defective
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Table 6.13: Identifiers of defective modules in KC3
20 21 69 76 88 118 122 142 150 155 156
164 174 179 185 190 195 197 201 214 224 225
245 254 274 275 282 289 296 298 309 341 343
356 359 363 370 429 431 433 441 444 452 -

instances out of 9466 total instances with 38 attributes. This number of defective instances

represents 0.72% of the dataset.

Table 6.14: Identifiers of defective modules in MC1
279 354 448 542 560 797 806 878 938 1272 1274
1471 1515 1567 1622 1647 1763 2206 2255 2362 2448 2844
2926 2948 2998 3022 3054 3082 3296 3390 3437 3571 3764
3827 3963 4101 4186 4298 4402 4411 4460 4462 4574 4781
4922 5031 5236 5291 5310 5537 5557 5743 5998 6320 6719
6840 6973 7017 7049 8052 8239 8348 8384 8506 8574 8704
8803 9025 - - - - - - - - -

Table 6.15 presents the identifiers used to identify the minority class in the MC2 dataset

during data preprocessing. The MC2 dataset contains 48 defective instances out of 161

total instances with 39 attributes. This number of defective instances represents 29.81% of

the dataset.

Table 6.15: Identifiers of defective modules in MC2
2 5 12 14 16 21 26 28 33 37 40
44 45 46 50 53 59 60 65 68 77 78
86 87 91 92 93 96 100 102 106 125 128
130 136 138 142 143 144 146 147 148 149 150
151 154 158 160 - - - - - - -

Table 6.16 presents the identifiers used to identify the minority class in the MW1 dataset

during data preprocessing. The MW1 dataset contains 31 defective instances out of 403

total instances with 37 attributes. This number of defective instances represents 7.69% of

the dataset.

Table 6.16: Identifiers of defective modules in MW1
32 34 48 58 65 75 89 129 136 149 186
192 195 196 213 214 218 257 271 277 281 296
328 330 337 354 370 372 375 389 394 - -
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Table 6.17 presents the identifiers used to identify the minority class in the PC2 dataset

during data preprocessing. The PC2 dataset contains 21 defective instances out of 5589

total instances with 36 attributes. This number of defective instances represents 0.38% of

the dataset.

Table 6.17: Identifiers of defective modules in PC2
327 330 770 860 1418 1682 2069 2071 2193 2233 2938
2963 3136 3272 3310 3489 3605 4016 4758 4819 5061 -

Table 6.18 presents the identifiers used to identify the minority class in the PC3 dataset

during data preprocessing. The PC3 dataset contains 159 defective instances out of 1563

total instances with 37 attributes. This number of defective instances represents 10.17% of

the dataset. Table 6.19 presents the identifiers used to identify the minority class in the PC4

dataset during data preprocessing. The PC4 dataset contains 174 defective instances out

of 1458 total instances with 37 attributes. This number of defective instances represents

11.93% of the dataset.

Table 6.18: Identifiers of defective modules in PC3
8 17 47 59 75 81 100 109 110 117 127
131 134 141 161 175 183 185 186 194 203 214
227 235 236 237 244 263 300 315 317 327 348
368 390 394 407 415 436 449 458 464 467 471
482 489 492 493 500 506 516 517 533 558 582
588 590 593 610 616 621 654 660 676 727 735
744 746 761 763 770 799 800 815 834 841 845
850 853 866 879 882 888 900 907 914 917 926
939 948 955 964 965 966 970 975 977 984 1005
1024 1025 1030 1040 1045 1085 1107 1115 1118 1119 1124
1132 1138 1139 1148 1160 1204 1207 1212 1230 1241 1254
1262 1276 1279 1283 1284 1288 1294 1302 1303 1310 1312
1319 1322 1338 1340 1344 1348 1349 1361 1362 1384 1401
1415 1427 1429 1432 1434 1441 1443 1475 1489 1490 1495
1497 1501 1503 1509 1528 - - - - - -

6.4 Results obtained from further preprocessing of the datasets

After the assignment of unique identifiers to each class and method in the datasets, the

inliers in the datasets were further preprocessed to ensure the consistency and reliability
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Table 6.19: Identifiers of defective modules in PC4
9 46 49 59 60 67 76 95 101 103 105
106 129 134 146 180 186 195 197 199 204 217
221 224 227 250 253 255 263 269 290 292 308
334 347 349 352 355 363 373 382 383 393 400
410 419 432 437 441 454 468 470 479 483 491
492 501 515 516 533 543 559 567 569 602 621
623 646 654 662 682 687 690 691 704 705 719
722 730 733 739 744 777 779 791 797 798 811
813 816 821 822 830 831 836 838 852 875 878
892 895 908 911 919 921 935 942 958 960 964
974 979 985 987 989 992 1005 1006 1011 1028 1037
1049 1051 1065 1070 1076 1080 1109 1119 1138 1158 1163
1166 1170 1175 1177 1199 1200 1222 1225 1233 1236 1250
1253 1258 1268 1275 1287 1288 1290 1295 1309 1312 1313
1315 1316 1323 1324 1338 1341 1344 1345 1353 1354 1356
1390 1393 1399 1402 1410 1417 1431 1439 1447 - -

of the data applied in the experiments. In this stage of data preprocessing, the predictor

variables (defect density, defect velocity and defect introduction time) in each class- and

method-level dataset were derived to exploit their correlation with the number of defects.

After verifying the mathematical accuracy of the derived variables, a correlation analysis

was performed to determine the relationship between each derived variable and the number

of defects.

6.4.1 Correlation coefficient results

The results for the correlation coefficients of the derived predictor variables are presented

in Tables 6.20-6.22.

Table 6.20: Correlation coefficients between the predictor variables and the number
of defects for the NASA datasets

Variable Correlation Coefficient
Defect Introduction Time -30%

Defect Density 22%
Defect Velocity 98%

On the NASA datasets, the average defect introduction time was found to have a

correlation coefficient of -0.30, indicating a negative correlation with the number of

defects; the average defect density had a correlation coefficient of 0.22, indicating a weak
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Table 6.21: Correlation coefficients between the predictor variables and the number
of defects for the ELFF datasets at the class level

Variable Correlation Coefficient
Defect Introduction Time -11%

Defect Density 61%
Defect Velocity 94%

Table 6.22: Correlation coefficients between the predictor variables and the number
of defects for the ELFF datasets at the method level

Variable Correlation Coefficient
Defect Introduction Time -4%

Defect Density 60%
Defect Velocity 93%

positive correlation with the number of defects; and the average defect velocity had a

correlation coefficient of 0.98, showing a strong positive correlation with the number of

defects, as presented in Table 6.20. A similar class-level correlation analysis was also

performed using the ELFF datasets to determine the relationships between the predictor

variables and the number of defects. The average defect introduction time was found to

have a correlation coefficient of -0.11, similarly indicating a negative correlation with

the number of defects at the class level; the average defect density had a correlation

coefficient of 0.61, indicating a moderate positive correlation with the number of defects;

and the average defect velocity had a correlation coefficient of 0.94, similarly showing

a strong positive correlation with the number of defects, as presented in Table 6.21. To

confirm these correlation results, a method-level analysis was further conducted using

the ELFF datasets. The average defect introduction time was found to have a correlation

coefficient of -0.04, again indicating a negative correlation with the number of defects; the

average defect density had a correlation coefficient of 0.60, again indicating a moderately

positive correlation with the number of defects; and the average defect velocity had a high

correlation coefficient of 0.93, again showing a strong positive correlation with the number

of defects, as presented in Table 6.22.
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6.4.2 Statistics of the preprocessed class- and method-level datasets and graphi-
cal illustration of the impact of the derived optimal variables

The module-level statistics of the preprocessed NASA datasets are presented in Table

6.23. The statistics of the preprocessed class- andmethod-level ELFF datasets are presented

in Tables 6.24 and 6.25, respectively. Figure 6.6 (a and b) presents graphical illustrations

of the impacts of the defect density and defect introduction time on the number of defects

as found at the class level in the ELFF datasets, whereas Figure 6.7 illustrates the impact

of the defect velocity on the number of defects in the class-level ELFF datasets. Similarly,

Figure 6.8 (a and b) presents graphical illustrations of the impacts of the defect density and

defect introduction time on the number of defects as found at the method level in the ELFF

datasets, whereas Figure 6.9 illustrates the impact of the defect velocity on the number of

defects in the method-level ELFF datasets. In each plot in these figures, the number of

defects is plotted on the y-axis, whereas the corresponding predictor variable is plotted on

the x-axis.

(a) Effect of the defect density (b) Effect of the defect introduction time

Figure 6.6: Effects of the defect density and defect introduction time on the number
of defects at the class level in the ELFF datasets
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Figure 6.7: Effect of the defect velocity on the number of defects at the class level in
the ELFF datasets

(a) Effect of the defect density (b) Effect of the defect introduction time

Figure 6.8: Effects of the defect density and defect introduction time on the number
of defects at the method level in the ELFF datasets
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Figure 6.9: Effect of the defect velocity on the number of defects at the method level
in the ELFF datasets

Table 6.23: Module-level statistics of the preprocessed NASA datasets
Dataset No. of Modules No. of Defective Modules No. of Attributes % Defective Modules Defect

Density
(num/unit
project size)

Defect Intro-
duction Time
(days)

Defect
Velocity
(num/day)

KC1 2109 326 21 15.46 0.1545 165 25.49
KC2 522 107 21 20.50 0.205 71 14.56
KC3 458 43 39 9.39 0.0934 99 9.25
MC1 9466 68 38 0.72 0.0072 1622 11.68
MC2 161 48 39 29.81 0.2981 33 9.84
MW1 403 31 37 7.69 0.0769 102 7.84
PC1 1109 77 21 6.94 0.0694 179 12.42
PC2 5589 21 36 0.38 0.0038 1715 6.52
PC3 1563 159 37 10.17 0.1017 175 17.80
PC4 1458 174 37 11.93 0.1193 165 18.61
Total 22,838 1054 326 4.62 1.1293 4317 134.01
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Table 6.24: Class-level statistics of the preprocessed ELFF datasets
Project Name No. of Classes No. of Defects No. of Attributes % Defects Defect Den-

sity (num/u-
nit project
size)

Defect In-
troduction
Time (days)

Defect
Velocity
(num/day)

AutoPlot 2012 2800 192 42 6.86 0.0686 286 19.62
Cdk1 1678 0 42 0 0 0 0
Cdk1.1 1670 261 42 15.63 0.1563 146 22.82
Cdk1.2 1717 0 42 0 0 0 0
Cmusphinx3.6 665 15 42 2.26 0.0226 243 5.49
Cmusphinx3.7 665 10 42 1.5 0.015 298 4.47
Controltier3 1659 0 42 0 0 0 0
Controltier3.1 1658 117 42 7.06 0.0706 217 15.32
Controltier3.2 1683 0 42 0 0 0 0
Drjava2008 2697 1013 42 37.56 0.3756 120 45.07
Drjava2009 3196 774 42 24.22 0.2422 162 39.24
Drjava2010 3549 403 42 11.36 0.1136 250 28.4
Eclemma2 196 9 42 4.59 0.0459 92 4.22
Eclemma2.1 233 37 42 15.88 0.1588 54 8.58
Genoviz5.4 1111 827 42 74.44 0.7444 55 40.94
Genoviz6 1077 840 42 77.99 0.7799 53 41.33
Genoviz6.1 1059 817 42 77.15 0.7715 52 40.12
Genoviz6.2 1156 306 42 26.47 0.2647 93 24.62
Genoviz6.3 1242 226 42 18.2 0.182 117 21.29
HTMLUnit2008 497 427 42 85.92 0.8592 34 29.21
HTMLUnit2009 1059 121 42 11.43 0.1143 136 15.54
HTMLUnit2010 1296 364 42 28.09 0.2809 96 26.97
JEdit5.2 1265 13 42 1.03 0.0103 496 5.11
Jikesrvm2 1332 107 42 8.03 0.0803 182 14.61
Jikesrvm3 2098 440 42 20.97 0.2097 141 29.57
Jikesrvm3.1 2290 71 42 3.1 0.031 384 11.9
Jitterbit1.1 6141 533 42 8.68 0.0868 376 32.64
Jitterbit1.2 12247 145 42 1.18 0.0118 1441 17
Jmol2 268 38 42 14.18 0.1418 61 8.65
Jmol3 275 35 42 12.73 0.1273 66 8.4
Jmol4 297 81 42 27.27 0.2727 47 12.82
Jmol5 324 92 42 28.4 0.284 48 13.63
Jmol6 378 294 42 77.78 0.7778 31 24.11
Jmol7 405 248 42 61.23 0.6123 36 22.04
Jmol8 453 145 42 32.01 0.3201 53 16.97
Jmol9 459 176 42 38.34 0.3834 49 18.79
Jmol10 556 107 42 19.24 0.1924 76 14.62
Jmri2 2730 124 42 4.54 0.0454 347 15.75
Jmri2.2 3337 175 42 5.24 0.0524 357 18.71
Jmri2.4 3727 1388 42 37.24 0.3724 141 52.51
Jmri2.6 4059 252 42 6.21 0.0621 362 22.48
Jppf4 1933 258 42 13.35 0.1335 170 22.69
Jppf4.1 1934 133 42 6.88 0.0688 237 16.31
Jppf4.2 1956 135 42 6.9 0.069 238 16.42
Jppf5 1879 274 42 14.58 0.1458 161 23.47
Jppf5.1 1912 55 42 2.88 0.0288 364 10.48
Jtds23072009 156 35 42 22.44 0.2244 37 8.3
Jump1.5 2791 131 42 4.69 0.0469 345 16.18
Jump1.6 2909 104 42 3.58 0.0358 403 14.43
Jump1.7 3016 96 42 3.18 0.0318 436 13.86
Jump1.8 3064 107 42 3.49 0.0349 419 14.62
Jump1.9 3231 281 42 8.7 0.087 273 23.75
OmegaT3.1 1204 45 42 3.74 0.0374 254 9.49
OmegaT3.5 1391 96 42 6.9 0.069 201 13.87
OmegaT3.6 1476 97 42 6.57 0.0657 212 13.93
Runawfe3.5 5029 0 42 0 0 0 0
Runawfe3.6 5237 5 42 0.1 0.001 3236 3.24
Runawfe4.1 2882 369 42 12.8 0.128 212 27.14
Runawfe4.2 3408 0 42 0 0 0 0
Saros1.0.6 329 69 42 20.97 0.2097 56 11.74
Tango2008 4299 151 42 3.51 0.0351 495 17.37
Unicore1.2 412 90 42 21.84 0.2184 61 13.32
Unicore1.3 466 54 42 11.59 0.1159 90 10.43
Unicore1.4 477 202 42 42.35 0.4235 47 19.9
Unicore1.5 728 69 42 9.48 0.0948 124 11.76
Unicore1.6 834 234 42 28.06 0.2806 77 21.61
Xaware5 882 120 42 13.61 0.1361 114 15.52
Xaware5.1 994 51 42 5.13 0.0513 197 10.11
Xaware6 1001 0 42 0 0 0 0
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Table 6.25: Method-level statistics of the preprocessed ELFF datasets
Project Name No. of Methods No. of Defects No. of Attributes % Defects Defect Den-

sity (num/u-
nit project
size)

Defect In-
troduction
Time (days)

Defect
Velocity
(num/day)

AutoPlot 2012 15781 191 33 1.2 0.0121 1615 19.50
Cdk1 9576 0 33 0 0 0 0
Cdk1.1 4276 73 33 1.7 0.0171 707 12.10
Cdk1.2 4366 0 33 0 0 0 0
Cmusphinx3.6 4819 15 33 0.30 0.0031 1763 5.50
Cmusphinx3.7 4826 10 33 0.20 0.0021 2144 4.50
Controltier3 6078 0 33 0 0 0 0
Controltier3.1 5799 52 33 0.9 0.0089 1142 10.20
Controltier3.2 4946 0 33 0 0 0 0
Drjava2008 15748 1012 33 6.40 0.0643 700 45.00
Drjava2009 3333 130 33 3.90 0.039 413 16.10
Drjava2010 4946 100 33 0.2 0.0020 700 14.1
Eclemma2 896 9 33 1.00 0.0100 423 4.20
Eclemma2.1 1081 37 33 3.40 0.0.0342 251 8.6
Ejit3 3357 48 33 1.43 0.0143 685 9.80
Genoviz5.4 1451 141 33 9.7 0.0972 173 16.80
Genoviz6 1269 117 33 9.20 0.0922 166 15.30
Genoviz6.1 4701 504 33 10.70 0.1072 292 31.70
Genoviz6.2 5704 210 33 3.70 0.0368 557 20.50
Genoviz6.3 8509 221 33 2.6 0.0259 811 20.90
HTMLUnit2008 4715 427 33 9.00 0.0906 323 29.20
HTMLUnit2009 1096 16 33 1.50 0.0146 387 5.70
HTMLUnit2010 7747 259 33 3.30 0.0334 681 22.70
JEdit5.2 5400 9 33 0.17 0.0017 2521 4.30
Jikesrvm2 4489 43 33 0.96 0.0096 967 9.30
Jikesrvm3 5113 149 33 2.90 0.0291 593 17.30
Jikesrvm3.1 3890 20 33 0.50 0.0051 1235 6.30
Jitterbit1.1 1155 22 33 1.90 0.019 349 6.60
Jitterbit1.2 11246 26 33 0.23 0.0023 3127 7.20
Jmol2 1347 38 33 2.80 0.0282 309 8.70
Jmol3 1402 35 33 2.50 0.024 336 8.40
Jmol4 1419 81 33 5.70 0.0571 223 12.70
Jmol5 89 4 33 4.50 0.0449 63 2.80
Jmol6 2170 280 33 12.90 0.129 183 23.70
Jmol7 2484 248 33 9.98 0.0998 223 22.30
Jmol8 1910 85 33 4.50 0.0445 293 13.00
Jmol9 3433 176 33 5.12 0.0513 366 18.80
Jmol10 3957 81 33 2.05 0.0205 621 12.70
Jmri2 4910 42 33 0.85 0.0086 1066 9.20
Jmri2.2 17011 175 33 1.03 0.0103 1817 18.70
Jmri2.4 11564 802 33 6.90 0.0694 577 40.10
Jmri2.6 2637 30 33 1.13 0.0114 680 7.80
Jppf4 2054 57 33 2.78 0.0278 384 10.70
Jppf4.1 2058 28 33 1.36 0.0136 550 7.50
Jppf4.2 298 5 33 1.67 0.0168 188 3.20
Jppf5 448 16 33 3.57 0.0357 158 5.70
Jppf5.1 3618 19 33 0.53 0.0053 1168 6.20
Jtds23072009 2005 27 33 1.34 0.0135 545 7.40
Jump1.5 5194 51 33 0.98 0.0098 1030 10.10
Jump1.6 3692 30 33 0.81 0.0081 955 7.70
Jump1.7 4064 26 33 0.64 0.0064 1127 7.20
Jump1.8 3090 13 33 0.42 0.0042 1213 5.10
Jump1.9 11661 201 33 1.72 0.0172 1164 20.00
OmegaT3.1 4347 35 33 0.81 0.0081 1036 8.40
OmegaT3.5 1812 30 33 1.66 0.0166 467 7.80
OmegaT3.6 2331 34 33 1.46 0.0146 565 8.30
Runawfe3.5 3282 0 33 0 0 0 0
Runawfe3.6 470 0 33 0 0 0 0
Runawfe4.1 1402 46 33 3.28 0.0328 292 9.60
Runawfe4.2 2136 0 33 0 0 0 0
Saros1.0.6 749 31 33 4.13 0.0414 190 7.90
Tango2008 3246 18 33 0.55 0.0055 1086 6.00
Unicore1.2 1756 67 33 3.80 0.0382 303 11.60
Unicore1.3 952 21 33 2.20 0.0221 294 6.50
Unicore1.4 2575 202 33 7.84 0.0784 256 20.10
Unicore1.5 4007 69 33 1.72 0.0172 683 11.70
Unicore1.6 2171 113 33 5.20 0.052 289 15.00
Xaware5 792 18 33 2.27 0.0227 264 6.00
Xaware5.1 6033 43 33 0.71 0.0071 1304 9.30
Xaware6 2843 0 33 0 0 0 0
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6.5 Comparison of model performance before and after data preprocessing

For the purpose of comparing the performance of the proposed approach with models

trained on raw and preprocessed datasets, the detailed results obtained using only the

class-level datasets from both the NASA and ELFF projects will now be presented.

The average classification performances of the six selected classification models on the

NASA datasets before and after preprocessing are presented in Tables 6.26 and 6.27. The

results indicate that the NASA datasets contain a high number of inconsistencies and

consequently require considerable time and energy for preprocessing. The results obtained

after preprocessing show that the errors present in the datasets can hinder the proper

assessment of the average performance of the learning algorithms. These errors contribute

to the level of uncertainty in the datasets.

As seen from a comparison of the average classification performances of the six selected

classification models on the ELFF datasets before and after preprocessing, as presented in

Tables 6.28 and 6.29, the classifier performance results obtained after data preprocessing

are noteworthy. In particular, the results suggest that the ELFF datasets contain fewer

inconsistencies than the NASA datasets and consequently require less preprocessing time

and energy.

In terms of the levels of uncertainty in the datasets, the results show promising

average performances of the learning algorithms after preprocessing, indicating that the

preprocessed datasets contain less uncertainty. After the preprocessing of the NASA

datasets, the naïve Bayes model achieved the best performance in terms of the CA, recall,

specificity, AUC, F-score, MCC, J-coefficient and G-mean. The naïve Bayes model

achieved a CA of 80%, whereas the other learning algorithms each achieved a CA of 70%,

except the K-Nearest-Neighbors (KNN) algorithm, which achieved a CA of 60%. The Brier

score is an important performance metric for probabilistic prediction; a score of 100% is
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the worst achievable score, whereas a score close to 0% indicates good performance. The

naïve Bayes model, with a Brier score of 24.48%, achieved the best performance in terms

of this metric, whereas the other models showed worse performance, with Brier scores

higher than 24.48%.

Table 6.26: Average classifier performance before data preprocessing for the NASA
datasets
Classifier CA Sens Spec AUC F-score Prec Recall Brier MCC J-coef IS G-mean
Naïve Bayes 0.5929 0.6582 0.6582 0.7144 0.4892 0.4868 0.6582 0.7943 0.2314 0.3164 -1.6998 0.5328
LR 0.8978 0.5949 0.5949 0.8181 0.6194 0.7272 0.5949 0.1549 0.2865 0.1899 -0.1448 0.4030
Neural Network 0.8969 0.6183 0.6184 0.8399 0.6475 0.7351 0.6183 0.1524 0.3300 0.2368 0.0106 0.4489
KNN 0.8799 0.6427 0.6427 0.7459 0.6543 0.5213 0.6427 0.2720 0.3123 0.2854 0.0456 0.4768
SVM 0.8933 0.5581 0.5581 0.7348 0.5654 0.7292 0.5581 0.1656 0.2091 0.1163 0.0130 0.3145
RF 0.8930 0.5842 0.5842 0.8116 0.6076 0.7217 0.5842 0.1586 0.2679 0.1684 -0.0347 0.3794

Table 6.27: Average classifier performance after data preprocessing for the NASA
datasets
Classifier CA Sens Spec AUC F-score Prec Recall Brier MCC J-coef IS G-mean
Naïve Bayes 0.8000 0.7619 0.7619 0.9524 0.7619 0.7619 0.7619 0.2448 0.5238 0.5238 0.4969 0.6667
LR 0.7000 0.5952 0.5952 0.5238 0.6000 0.6250 0.5952 0.3997 0.2182 0.1904 0.1089 0.6050
Neural Network 0.7000 0.5000 0.5000 0.6667 0.4118 0.3500 0.5000 0.3711 0.0000 0.0000 0.0921 0.4184
KNN 0.6000 0.4286 0.4286 0.6190 0.6543 0.3700 0.3333 0.4286 0.4898 -0.2182 -0.1429 0.3780
SVM 0.7000 0.5000 0.5000 0.0000 0.4118 0.3500 0.5000 0.5073 0.0000 0.0000 -0.1134 0.4184
RF 0.7000 0.5000 0.5000 0.0000 0.4118 0.3500 0.5000 0.5447 0.0000 0.0000 -0.0140 0.4184

Table 6.28: Average classifier performance before data preprocessing for the ELFF
datasets
Classifier CA Sens Spec AUC F-score Prec Recall Brier MCC J-coef IS G-mean
Naïve Bayes 0.8551 0.8541 0.5267 0.5602 0.9148 0.9932 0.8541 0.2803 0.1714 0.3808 -0.5890 0.9210
LR 0.9755 0.9992 0.0203 0.5402 0.9876 0.9763 0.9992 0.0442 0.0583 0.0195 -0.0405 0.9877
Neural Network 0.9980 0.9994 0.6235 0.6663 0.9989 0.9986 0.9994 0.0029 0.6338 0.6229 0.1355 0.9989
KNN 0.9791 0.9965 0.1919 0.5443 0.9892 0.9822 0.9965 0.0346 0.2849 0.1915 0.0002 0.9893
SVM 0.9754 0.9996 0.0058 0.3769 0.9875 0.9758 0.9996 0.0469 0.0255 0.0054 -0.0146 0.9876
RF 0.9972 0.9992 0.6053 0.6665 0.9986 0.9979 0.9992 0.0050 0.6225 0.6045 0.0865 0.9985

Table 6.29: Average classifier performance after data preprocessing for the ELFF
datasets
Classifier CA Sens Spec AUC F-score Prec Recall Brier MCC J-coef IS G-mean
Naïve Bayes 0.9571 0.9754 0.9754 0.9939 0.9085 0.8637 0.9754 0.0856 0.8316 0.9508 0.3538 0.9139
LR 0.9857 0.9375 0.9375 0.9672 0.9626 0.9919 0.9375 0.0761 0.9278 0.8750 0.1174 0.9637
Neural Network 0.9429 0.7500 0.7500 0.8627 0.8175 0.9623 0.7500 0.1071 0.6850 0.5000 0.1871 0.8380
KNN 0.9857 0.9375 0.9375 0.9334 0.9626 0.9919 0.9375 0.0366 0.9278 0.8750 0.3970 0.9637
SVM 0.9405 0.9129 0.9129 0.9918 0.8723 0.8416 0.9129 0.0590 0.7511 0.8258 0.2389 0.8747
RF 0.9714 0.8750 0.8750 0.9805 0.9205 0.9842 0.8750 0.0505 0.8522 0.7500 0.3215 0.9250

On the ELFF datasets, both the LR and KNN classifiers achieved the same CA of

98.57%. The RF model achieved an average CA of 97.14%, while the naïve Bayes and

neural network models achieved CA values of 95.71% and 94.29%, respectively. Notably,
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the LR and KNN models appeared to tie in terms of the recall, specificity, F-score, MCC,

J-coefficient and G-mean, with average results of 93.75%, 96.26%, 92.78%, 87.50% and

96.37%, respectively. The naïve Bayes classifier achieved the best performance in terms of

the AUC, with an average value of 99.39%. The AUC captures all performance-related

information and allows the essential links related to classifier performance to be clearly

observed (Drummond & Holte, 2006). The KNN classifier achieved the best results

in terms of the Brier score and information score, with values of 3.66% and 39.70%,

respectively. Notably, the results of this study are significant compared with the results

reported by Xuan et al. (2015).

6.5.1 Researcher’s view of imbalanced datasets

Based on the results obtained, the researcher can report that the imbalanced nature of

the data itself does not have a significant impact on the average classifier performance

G. E. Batista et al. (2004) and Shepperd et al. (2014). Instead, care is required during

dataset preprocessing to avoid misclassification of the data. If the data are significantly

misclassified, this means that the applied preprocessing approach was poor. Therefore,

when addressing imbalanced data, both the minority and majority classes must be correctly

identified to avoid any misleading results during classification. Accordingly, in this

research, the classes were carefully identified to avoid misclassification, and the average

performance results for each target class were then compared to assess the performance of

the proposed approach when applied to imbalanced datasets. This performance evaluation

was conducted based on the six state-of-the-art classifiers considered in this research.

The findings show that incorrect preprocessing of a dataset can generate misleading

results in a defect prediction study. Moreover, there is a possibility that classifiers may lose

their performance capabilities when impurities, such as inconsistencies and uncertainties,

are present in a dataset.
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6.5.2 Average performance loss/gain of learning algorithms

The average performance loss/gain results, characterized by the information entropy

among the classification algorithms, are presented in Table 6.30.

Table 6.30: Average performance loss/gain results characterized by information
entropy

Classifier Specificity F-score Recall Precision G-mean
Naïve Bayes 15.6% gain 52.4% loss 15.6% loss 68.2% loss 37.5% loss

LR 77.5% loss 68.1% loss 77.5% gain 40.2% loss 25.2% loss
Neural Network 72.2% loss 62.1% loss 72.2% gain 38.9% loss 24.1% loss

KNN 63.2% loss 59% loss 63.2% gain 53.6% loss 32.7% loss
SVM 86.8% loss 79.6% loss 86.8% gain 37.7% loss 24.6% loss
RF 80.0% loss 70.4% loss 80.0% gain 40.4% loss 25.6% loss

Data imbalance remains a known problem in machine learning and can affect the per-

formance of learning algorithms (Chawla et al., 2004; G. Batista et al., 2012; Rodriguez

et al., 2014). As a result of variations in the data, classification performance can be

affected by class imbalance. The major differences in the average performances of the six

state-of-the-art classifiers tested here were observed in terms of the specificity, F-score,

recall, precision and G-mean, as presented in Table 6.30. Only the naïve Bayes classifier

showed a gain in specificity (of 15.6%); all other classifiers showed losses when the target

class was varied.

The naïve Bayes classifier suffered a loss in terms of recall, while the other classifiers

conversely gained in recall what they lost in specificity. All six state-of-the-art classifiers

showed losses in terms of the F-score, precision andG-mean. Based on these inconsistencies

in performance between the majority and minority classes, it can be concluded that there

is evidence of performance loss, characterized by the information entropy, that could be

due to the imbalanced nature of the data. It can also be concluded that the imbalanced

nature of the data does not totally hinder the performance of these learning algorithms.

However, data imbalance can affect the performances of prediction models (Japkowicz &
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Stephen, 2002; Van Hulse et al., 2007; Soda, 2011; Z. Sun et al., 2015; Mao et al., 2017;

Qiao et al., 2017). The findings obtained in this study indicate that a research study can

yield misleading results because of the use of an erroneous dataset and that imbalanced

data can lead to classifier performance loss when applied in any classification study.

The average levels of uncertainty are presented in terms of the information entropy in

bits in Tables 6.31 and 6.32.

Table 6.31: Average classifier information entropy in bits on the NASA datasets
Classifier CA Sens Spec AUC F-score Prec Recall Brier MCC J-coef IS G-mean

Naïve Bayes ≈ 0.72 ≈ 0.78 ≈ 0.78 ≈ 0.28 ≈ 0.78 ≈ 0.78 ≈ 0.78 ≈ 0.77 ≈ 0.64 ≈ 0.64 ≈ 0.99 ≈ 0.91
LR ≈ 0.87 ≈ 0.96 ≈ 0.96 ≈ 0.63 ≈ 0.96 ≈ 0.95 ≈ 0.96 ≈ 0.97 ≈ 0.75 ≈ 0.70 ≈ 0.49 ≈ 0.98

Neural Network ≈ 0.87 ≈ 1.00 ≈ 1.00 ≈ 0.91 ≈ 0.97 ≈ 0.94 ≈ 1.00 ≈ 0.95 ≈ 0.00 ≈ 0.00 ≈ 0.44 ≈ 0.97
KNN ≈ 0.96 ≈ 0.96 ≈ 0.96 ≈ 0.94 ≈ 0.91 ≈ 0.95 ≈ 0.88 ≈ 0.96 ≈ 0.99 ≈ 0.77 ≈ 0.51 ≈ 0.94
SVM ≈ 0.87 ≈ 1.00 ≈ 1.00 ≈ 0.00 ≈ 0.97 ≈ 0.94 ≈ 1.00 ≈ 0.98 ≈ 0.00 ≈ 0.00 ≈ 0.49 ≈ 0.97
RF ≈ 0.87 ≈ 1.00 ≈ 1.00 ≈ 0.00 ≈ 0.97 ≈ 0.94 ≈ 1.00 ≈ 0.97 ≈ 0.00 ≈ 0.00 ≈ 0.09 ≈ 0.97

Table 6.32: Average classifier information entropy in bits on the ELFF datasets
Classifier CA Sens Spec AUC F-score Prec Recall Brier MCC J-coef IS G-mean

Naïve Bayes ≈ 0.24 ≈ 0.16 ≈ 0.16 ≈ 0.05 ≈ 0.14 ≈ 0.56 ≈ 0.16 ≈ 0.41 ≈ 0.64 ≈ 0.13 ≈ 0.90 ≈ 0.41
LR ≈ 0.10 ≈ 0.33 ≈ 0.33 ≈ 0.20 ≈ 0.23 ≈ 0.07 ≈ 0.33 ≈ 0.38 ≈ 0.36 ≈ 0.54 ≈ 0.51 ≈ 0.22

Neural Network ≈ 0.31 ≈ 0.80 ≈ 0.80 ≈ 0.57 ≈ 0.68 ≈ 0.23 ≈ 0.80 ≈ 0.47 ≈ 0.92 ≈ 1.00 ≈ 0.66 ≈ 0.62
KNN ≈ 0.10 ≈ 0.33 ≈ 0.33 ≈ 0.35 ≈ 0.23 ≈ 0.07 ≈ 0.33 ≈ 0.22 ≈ 0.37 ≈ 0.54 ≈ 0.95 ≈ 0.22
SVM ≈ 0.32 ≈ 0.42 ≈ 0.42 ≈ 0.68 ≈ 0.55 ≈ 0.62 ≈ 0.42 ≈ 0.32 ≈ 0.78 ≈ 0.65 ≈ 0.78 ≈ 0.54
RF ≈ 0.18 ≈ 0.54 ≈ 0.54 ≈ 0.13 ≈ 0.39 ≈ 0.12 ≈ 0.54 ≈ 0.08 ≈ 0.60 ≈ 0.80 ≈ 0.90 ≈ 0.38

The results show that the NASA datasets contain a higher level of uncertainty due to

the erroneous nature of these data, as presented in Table 6.31. From a comparison of the

module-level information entropy results for the NASA and ELFF datasets, as presented

in Tables 6.31 and 6.32, respectively, it is clear that the ELFF datasets contain fewer

impurities. The higher information entropy values for the NASA datasets indicate higher

uncertainties, whereas the ELFF data have lower information entropy, indicating lower

uncertainties regarding the accuracy of the obtained results. The information entropy

reveals further details regarding the uncertainty of an event. If the outcome of an event

is already known, then this outcome has a low entropy. By contrast, high entropy or

uncertainty could characterize an event whose outcome is yet unknown. By using the

proposed optimal decision technique, reliable outcomes can be achieved with regard to
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classifier performance on imbalanced data.

This study has shown that average classifier performance can be characterized in terms

of the information entropy values of the learning algorithms in terms of the specificity,

F-score, recall, precision and G-mean, as presented in Table 6.30. Because some classifiers

maintained their average classification performance, it can be concluded that these classifiers

exhibit consistency in their average information entropies. As demonstrated in this thesis, to

accurately ascertain the performances of learning algorithms when applied to imbalanced

data, consistent and reliable information is necessary, which the proposed optimal decision

technique provides.

6.5.3 Analysis of the ROC curves

An analysis of the imbalanced nature of the NASA datasets is presented in Figures

6.5-6.9. The AUC performances of all six state-of-the-art classifiers were also compared

with respect to both the majority and minority classes. This was done because the ROC

curve is a graphical representation that simultaneously considers two aspects of the problem

(plotted on the x- and y-axes) and is suitable for analyzing cases of class imbalance; hence,

the NASA datasets are used as representative examples to illustrate the class imbalance.

The x-axis represents the false positive rate, that is, the number of instances that are negative

but are predicted to be positive, whereas the y-axis represents the true positive rate, i.e., the

number of instances that are actually positive and are also predicted to be positive. Another

reason for choosing to analyze the ROC curve is that it depicts all performance-related

information and allows the essential links related to classifier performance to be clearly

observed (Drummond & Holte, 2006). The prior target class probabilities for both the

majority and minority classes were obtained from the ROC curves in Figures 6.10 to 6.19.
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(a) ROC curve for KC1, target = True (b) ROC curve for KC1, target = False

Figure 6.10: ROC curves for KC1

(a) ROC curve for KC2, target = True (b) ROC curve for KC2, target = False

Figure 6.11: ROC curves for KC2

(a) ROC curve for KC3, target = True (b) ROC curve for KC3, target = False

Figure 6.12: ROC curves for KC3
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(a) ROC curve for MC1, target = True (b) ROC curve for MC1, target = False

Figure 6.13: ROC curves for MC1

(a) ROC curve for MC2, target = True (b) ROC curve for MC2, target = False

Figure 6.14: ROC curves for MC2

(a) ROC curve for MW1, target = True (b) ROC curve for MW1, target = False

Figure 6.15: ROC curves for MW1
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(a) ROC curve for PC1, target = True (b) ROC curve for PC1, target = False

Figure 6.16: ROC curves for PC1

(a) ROC curve for PC2, target = True (b) ROC curve for PC2, target = False

Figure 6.17: ROC curves for PC2

(a) ROC curve for PC3, target = True (b) ROC curve for PC3, target = False

Figure 6.18: ROC curves for PC3
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(a) ROC curve for PC4, target = True (b) ROC curve for PC4, target = False

Figure 6.19: ROC curves for PC4
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The y-axes of these graphs represent the true positive rates of the corresponding

classification algorithms, whereas the x-axes represent the true negative rates. The results

are presented in a different form in Table 6.33. It can be concluded that the number of

False instances (majority class) is greater than the number of True instances (minority

class) based on the fact that the actual percentage of False instances (majority class) is far

greater than the actual percentage of True instances (minority class). Such class imbalance

scenarios also arise in real-life situations, in which the number of nonfaulty modules in a

software system, which allow the software system to remain functional, is always greater

than the number of faulty modules, which cause system downtime.

In this study, the researcher hypothesized that even in a scenario in which proper data

preprocessing is applied, some classifiers will maintain their average performance when

applied to imbalanced data, whereas the average performance of other classifiers may be

affected. Based on this hypothesis, the researcher concluded that the overall performance

of a classification algorithm should depend on both the target class (defective or defect-free)

and the data imbalance. Notably, prediction model performance depends more on the

nature of the data on which the model was trained than on the choice of classifier. As

previously reported, the choice of classifier family affects the predictive accuracy (as

quantified by the MCC) with an impact factor of only 1.3%, compared with the 31% impact

factor related to the research group performing the study (Shepperd et al., 2014; Shepperd,

2015). The findings of this research further elaborate on this reported 31% impact of the

research group on the quality of the data applied in supervised machine learning defect

prediction studies. However, when prediction models are trained with noisy data, the

model performance may contradict this finding (Ghotra et al., 2015).
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Table 6.33: Actual class imbalance percentages
Dataset % Target Class = False % Target Class = True Total %

KC1 84 16 100
KC2 79 21 100
KC3 89 11 100
MC1 99 1 100
MC2 68 32 100
MW1 92 8 100
PC1 93 7 100
PC2 99 1 100
PC3 90 10 100
PC4 88 12 100

6.6 Results obtained using the regression models

This section presents the results obtained for the predicted numbers of class- and

method-level defects in new versions of software products and compare these results with

the actual numbers of defects present in the current version at both the class and method

levels. Table 6.34 presents the results of defect prediction at the class level for the ELFF

datasets.

From left to right, the columns show the project name, the number of classes, the

number of defects present at the class level in the current version, the predicted number

of defects in the future version and the percentage error of our prediction. The results

obtained are promising, with class-level prediction errors of less than 20%, implying that

the accuracy of the results at the class level is greater than 80%. Note that in some cases,

the predicted values are negative, implying that the number of predicted defects is less than

0. In such a scenario, the predicted number of defects is assumed to actually be 0. For

instance, if the predicted number of defects is -166, which is below 0, the corresponding

value is reported as 0 in Tables 6.34 and 6.35. In addition, not all prediction results are

presented because a certain number of the datasets were used to validate the proposed

approach.
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Table 6.34: Comparison between the actual and predicted numbers of defects at the
class level in the ELFF datasets and the corresponding percentage errors
Project Name No. of Classes No. of Defects in Current Version Predicted No. of Defects in New Version Percentage Error
Cdk1 1678 0 0 0%
Cdk1.2 1717 0 0 0%
Controltier3 1659 0 0 0%
Controltier3.2 1683 0 0 0%
Drjava2009 3196 774 691 11%
Genoviz5.4 1111 827 728 12%
Genoviz6 1077 840 736 12%
Genoviz6.1 1059 817 710 13%
Jikesrvm3 2098 440 482 10%
Jitterbit1.1 6141 533 548 3%
OmegaT3.1 1204 45 47 4%
Runawfe3.5 5029 0 0 0%
Xaware5.1 994 51 60 18%
Xaware6 1001 0 0 0%

Table 6.35: Comparison between the actual and predicted numbers of defects at the
method level in the ELFF datasets and the corresponding percentage errors
Project Name No. of Methods No. of Defects in Current Version Predicted No. of Defects in New Version Percentage Error
Cdk1 9576 0 0 0%
Cdk1.2 4366 0 0 0%
Controltier3 6078 0 0 0%
Controltier3.2 4946 0 0 0%
Genoviz6.1 4701 504 466 8%
HTMLUnit2008 4715 427 422 1.2%
HTMLUnit2010 7747 259 307 19%
Jitterbit1.1 1155 22 21 5%
Jitterbit1.2 11246 26 31 19%
Jmol6 2170 280 325 16%
Jmol7 2484 248 300 21%
Jppf5.1 3618 19 14 26%
Jump1.7 4064 26 32 23%
Jikesrvm3.1 3890 20 16 20%
Runawfe3.5 3282 0 0 0%
Runawfe3.6 470 0 0 0%
Runawfe4.2 2136 0 0 0%
Unicore1.3 952 21 19 10%
Xaware6 2843 0 0 0%

Table 6.36: Comparison between the actual and predicted numbers of defects at the
module level in the NASA datasets and the corresponding percentage errors
Project Name No. of Modules No. of Defects in Current Version Predicted No. of Defects in New Version Percentage Error
KC1 2109 326 296 9%
KC3 458 43 40 7%
MC2 161 48 49 2%
PC3 1563 159 174 9%
PC4 1458 174 187 8%

Table 6.35 presents the results of defect prediction at the method level for the ELFF

datasets. From left to right, the columns similarly show the project name, the number of

methods, the number of defects present at the method level in the current version of the

software, the predicted number of defects in the future version and the standard error of

the prediction in the form of a percentage. The method-level prediction errors are less

than 30%, implying that the accuracy of the results at the method level is greater than 70%.
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Table 6.36 presents the prediction results obtained for the NASA datasets. The class-level

prediction errors are less than 10%, implying that the accuracy of the results at the class

level is greater than 90%.

6.7 Regression statistics

To evaluate the significance of the impact of the derived optimal variables on the

numbers of class- and method-level defects, the significance of the regression models was

evaluated in terms of the p-value, the adjusted R-square and the F-statistic. The p-value

indicates how well a model performs; it represents the statistical significance of a model

(Carterette, 2015; Ioannidis, 2005). The F-statistic enables a comparison of the average

significance of the variables used in constructing the models. The adjusted R-square

measures the goodness of fit of a model and also indicates the influence of a significant

variable in a model. The adjusted R-square was considered in this study because its value

increases only when a significant variable is included in a model, as reported by Felix &

Lee (2017b). Tables 6.37, 6.38 and 6.39 present the statistical significance of the defect

density, defect introduction time and defect velocity, respectively.

Table 6.37: Defect density significance statistics

Dataset NASA module level ELFF class level ELFF method level
P-value 0.5317 <0.001 <0.001
F-statistic 0.4271 40.5640 37.3613
Adjusted R-square -0.0679 0.3678 0.3451

Table 6.38: Defect introduction time significance statistics

Dataset NASA module level ELFF class level ELFF method level
P-value 0.3852 0.3504 0.7718
F-statistic 0.4271 0.8842 0.0846
Adjusted R-square -0.0177 -0.0017 -0.0134

The results indicate that the defect density has inconsistent and weak significance

based on the regression statistics obtained for both the NASA and ELFF datasets. The
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Table 6.39: Defect velocity significance statistics

Dataset NASA module level ELFF class level ELFF method level
P-value <0.001 <0.001 <0.001
F-statistic 228.4909 470.3825 410.1905
Adjusted R-square 0.9619 0.8734 0.8557

inconsistency of this significance can be seen from the p-value: the defect density achieved

a significant p-value of <0.001 for both the class- and method-level ELFF datasets but

a nonsignificant p-value of 0.5317 for the NASA module-level datasets. Therefore,

the inconsistent significance of the defect density makes it unsuitable for constructing

regression models for defect prediction. In addition, the defect density achieved a relatively

low F-statistic, supporting the hypothesis that the defect density does not influence the

number of defects in a software product. In terms of the adjusted R-square, the defect

density achieved negative and inconsistent values on the NASA and ELFF datasets, further

indicating that the defect density has little impact on the increase in the number of defects

in a software program. The defect introduction time achieved the worst significance values

on both the NASA and ELFF datasets in terms of the p-value, F-statistic and adjusted

R-square. By contrast, the defect velocity showed a strong positive significance, with

p-values of <0.001 on all datasets at both the class and method levels and strong F-statistics

of 288.4909, 470.3825 and 410.1905 on the NASAmodule-level datasets, ELFF class-level

datasets and ELFF method-level datasets, respectively. The values of the adjusted R-square

further indicate that the defect velocity exhibits a high predictive value for defect modeling.

Based on the significance of the defect velocity, it was used to construct the regression

model for predicting the number of defects in a new software product.

Figures 6.20-6.25 illustrate the cumulative distributions and probability densities

representing the influence of the derived optimal variables on the number of defects. In

each of these figures, the y-axis represents the frequency, and the x-axis represents the
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(a) (b)

Figure 6.20: Cumulative distributions and probability densities representing the
influence of the defect density and defect introduction time on the number of defects
at the class level in the NASA datasets

Figure 6.21: Cumulative distribution and probability density representing the influ-
ence of the defect velocity on the number of defects at the class level in the NASA
datasets

variable distribution. Figure 6.20 (a and b) illustrates the cumulative distributions and

probability densities representing the influence of the defect density and defect introduction

time on the number of defects at the class level in the NASA datasets. It can be deduced

from Figure 6.20(a) that the cumulative distribution and probability density for the defect

density are inconsistent starting from the origin, indicating a weak probability that the defect

density has an impact on the number of defects throughout the Software Development Life
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(a) (b)

Figure 6.22: Cumulative distributions and probability densities representing the
influence of the defect density and defect introduction time on the number of defects
at the class level in the ELFF datasets

Figure 6.23: Cumulative distribution and probability density representing the influ-
ence of the defect velocity on the number of defects at the class level in the ELFF
datasets

Cycle (SDLC), even though the defect density of each software program varies depending

on the number of defects present in that program. Hence, by comparing the cumulative

distributions and probability densities corresponding to the defect density in Figures 6.22

and 6.24 for the ELFF datasets, we can deduce that the defect density varies with a weak

and inconsistent cumulative distribution. Figures 6.20(b), 6.22(b) and 6.24(b) illustrate the

cumulative distributions and probability densities representing the influence of the defect

introduction time on the numbers of defects at the class level in the NASA datasets and at
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(a) (b)

Figure 6.24: Cumulative distributions and probability densities representing the
influence of the defect density and defect introduction time on the number of defects
at the method level in the ELFF datasets

Figure 6.25: Cumulative distribution and probability density representing the influ-
ence of the defect velocity on the number of defects at the method level in the ELFF
datasets

the class and method levels in the ELFF datasets, respectively. We can similarly deduce

from these figures that the defect introduction time across the SDLC does not affect the

number of defects in a software program. The probability of defect introduction remains

constant throughout the SDLC, as illustrated in the figures. In contrast, Figures 6.21,

6.23 and 6.25 illustrate the consistent cumulative cumulative distributions and probability

densities representing the influence of the defect velocity in the NASA and ELFF datasets.
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These figures illustrate how the defect velocity influences the number of defects, beginning

in the initial phase of the SDLC. The defect velocity exhibits an exponential relationship

with the number of defects, as illustrated in these figures, which implies that the probability

of an increase in the number of defects becomes higher with an increase in the defect

velocity.

6.8 Threats to validity

This section presents the potential threats to the validity of this research. To this end,

three types of threats are distinguished, namely, construct, internal and external threats.

6.8.1 Construct threats

Mathematical modeling was performed in this research to demonstrate the relationships

between the derived variables and the numbers of class- and method-level defects. In

addition, equations were constructed to calculate the average performances and performance

losses/gains of the six state-of-the-art classifiers investigated in this study with the goal of

determining the overall performance of each classifier on imbalanced data for both the

majority and minority classes. These equations may pose some threat to the validity of

this study.

6.8.2 Internal threats

Although previous studies, such as that of Xuan et al. (2015), have achieved noteworthy

results in evaluating average performance for binary defect classification, this study also

investigated the average performances of the six selected state-of-the-art classifiers on binary

target classes (majority and minority classes) to obtain detailed and unbiased information

regarding the average performance of each classifier when applied to imbalanced data.

The use of the average information entropy as the performance indicator may have affected
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the validity of this study. Thus, a more accurate approach for evaluating average classifier

performance for binary defect classification is needed.

6.8.3 External threats

Experiments were conducted using datasets from the NASA and UCI repositories as

well as datasets obtained from the ELFF projects. These data could also pose some threat

to the validity of the results of this study. Notably, these datasets are widely used and

have been applied in several previous prediction studies, such as those of Elish & Elish

(2008), Q. Song et al. (2011), Z.-W. Zhang et al. (2017) and Qiao et al. (2017). The

correctness of the results obtained in this research depends on the ability to correctly apply

the proposed approach to identify the defective classes and methods in these datasets

during data preprocessing. Therefore, other researchers are encouraged to replicate this

study to improve the overall performance achieved in defect prediction studies.

6.9 Summary

This chapter presents the results obtained during the experimental analysis and evaluation

of the proposed optimal decision technique applied in this research. The proposed approach

was evaluated in various phases, including the filter-based feature selection phase, the

outlier removal phase, and the further preprocessing of the datasets, which includes the

assignment of unique identifiers to inliers. The results show that the datasets applied in

supervised machine learning studies require proper preprocessing to avoid misleading

results. A comparison of the results obtained on raw and preprocessed datasets has also

been presented in this chapter to serve as the basis for assessing the performance of the

proposed optimal decision framework for data preprocessing. The analysis presented in

this chapter shows that the datasets used in this research are highly imbalanced and contain

irrelevant and redundant features. The basis for and the results of selecting only highly
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predictive and relevant features from the datasets have also been presented in the current

chapter. Moreover, the results for the average information entropy, which characterizes the

inconsistent and imbalanced nature of the datasets, have been presented. The reason for

presenting these results is to enable an assessment of the uncertainty of the performance

of the proposed approach on the basis of several learning algorithms. Furthermore, the

results on the significance of the derived optimal variables have been presented, along

with the results on the predicted numbers of defects in future versions of software products

and their comparison with the numbers of defects in the current versions of the same

software products. Finally, this chapter has presented the cumulative distribution curves

and probability densities representing the influence of the derived optimal variables on

the number of defects throughout the SDLC. The researcher presents in Appendix B the

C++ code which can be used to automate the prediction of number of NASA module

level defects. The evidence of C++ code which can be used to automate the prediction of

number of ELFF class level defects is presented in Appendix C. The evidence of C++ code

which can be used to automate the prediction of number of ELFF method level defects is

presented in Appendix D whereas in Appendix E the researcher presents the evidence on

validation of the modeling technique applied in deriving the predictor variables.
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CHAPTER 7: CONCLUSION

This chapter concludes the work done in this research. The following sections present

(i) a summary of the main findings regarding the formulated research questions, (ii) a

summary of the research objectives, (iii) the limitations of statistical methods in supervised

machine learning, (iv) the benefits of the proposed optimal decision approach, and (v)

future work.

7.1 Summary of findings regarding the research questions

The research questions formulated for this research are reiterated and discussed below.

RQ1. How do researchers perform and report the techniques applied during data pre-

processing?

It is clear that the existing datasets suffer from numerous quality issues and that these

issues, if not addressed, will affect the performance of prediction models. A dataset will

be free from bias if almost all quality issues associated with it are addressed. As part of

this work, the researcher was able to locate studies that have reported means of partially

addressing some of the challenges associated with datasets, such as the class imbalance

issue, irrelevant and redundant features, noise in the data and collinearity among metrics.

A summary of the collected evidence on the existing techniques for addressing data-related

issues is presented in Chapter 2. The techniques applied to address these issues have

achieved noteworthy results. However, none of the existing studies has demonstrated a

holistic approach for thoroughly cleaning and preprocessing both class- and method-level

datasets applied in supervised machine learning studies. In contrast, the proposed optimal

decision approach applied in this research addresses all of the data quality issues associated

with existing class- and method-level datasets. This proposed approach consists of a

replicable step-by-step technique for addressing the inconsistencies associated with the
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datasets applied in supervised machine learning studies.

RQ1.1 Do the reported data preprocessing techniques satisfactorily address data incon-

sistency issues?

Although the techniques reported in the literature have achieved noteworthy results, in-

consistencies in the datasets still exist. The available evidence shows that the reported

data preprocessing techniques only partially address the issues associated with the existing

datasets. Consequently, if the remaining issues affecting a dataset are not addressed,

the prediction outcomes will be incorrect and misleading. Therefore, there is a need to

implement an approach that can address almost all, if not all, of the issues facing existing

class- and method-level datasets.

RQ1.2 Does a generally accepted data preprocessing technique exist?

As of yet, a generally accepted data preprocessing technique is lacking in the machine

learning community. As stated previously in Section 1.1 of Chapter 1, several studies have

proposed frameworks for addressing some of the challenges associated with the existing

datasets, including the frameworks of Menzies et al., Lessmann et al. and Song et al.

However, the reliability of these frameworks has been challenged by Wahono (2015), who

argued that these frameworks produce misleading findings while addressing the issues

associated with data inconsistencies. Based on this evidence, the researcher concludes that

a generally accepted data preprocessing technique is not yet available. Hence, an optimal

decision framework is proposed to address this lack.

RQ1.3 To what extent do the existing data preprocessing techniques offer suitable solu-

tions for data preprocessing?

The existing data preprocessing techniques offer suitable solutions to some of the data

quality issues affecting the outcomes of defect prediction. However, the solutions offered

by existing preprocessing techniques do not address the majority of the inconsistencies
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affecting a given dataset. Therefore, further efforts are still required to overcome the

remaining issues that the existing techniques do not address.

RQ2. How do existing prediction models perform?

The existing literature has confirmed that the performance of learning algorithms depends

on the quality of the data on which they are trained. The performances of learning

algorithms at both the class and method levels will ultimately depend on the quality of the

class- and method-level training datasets, respectively. There is evidence that the existing

models have achieved noteworthy performance, as presented in Chapter 2. However,

criticisms have also been leveled with regard to the quality of the data applied in such

studies, as previously reported. In addition, some of the existing studies have relied on

datasets prepared by others, and the researchers did not themselves ascertain the reliability

of these datasets. In such a situation, the results obtained can be misleading. Therefore,

to avoid further criticism of the results obtained by learning algorithms, a reliable data

preprocessing technique is required.

RQ2.1 Do classifiers exhibit degradation in their average performance as a result of

imbalanced data?

Inconsistencies in datasets can affect the performance of learning algorithms. However, if

datasets are properly preprocessed, the imbalanced nature of both class- and method-level

data may not have an adverse impact on the performance of learning algorithms. Specifi-

cally, the results of this research show that if datasets are properly preprocessed, not all

classifiers may show degradation in their average performance. Even in the case of highly

imbalanced classes and methods, some classifiers have the ability to maintain their average

performance when trained on unbiased data.

RQ2.2 Does data imbalance result in unfair and inaccurate evaluation outcomes?

Some studies have reported that classifiers may be biased as a result of imbalance in the
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datasets on which they are trained. For instance, H. He & Ma (2013), Stefanowski (2016),

Krawczyk et al. (2014) and Weiss & Provost (2003) have reported that classifiers may be

biased towards the minority classes and methods. However, the outcome of a classification

algorithm does not inherently depend on the class or method ratio within the datasets.

Rather, the outcome depends on the quality of the data applied in such a study. Therefore,

from the findings of this research, it can be concluded that data imbalance among the classes

and methods in a dataset does not result in unfair and inaccurate evaluation outcomes.

RQ2.3 Do classification algorithms learn independently from imbalanced data? Classi-

fication algorithms can learn independently from imbalanced data provided that the data

are unbiased. If the datasets applied in training the classification algorithms are biased,

then the algorithms will be unable to achieve independent learning. Such an algorithm may

suffer from overfitting and concept drift (a situation in which the prediction models are

trained and validated with biased datasets) and consequently produce misleading results.

Therefore, it is necessary to train classification algorithms with unbiased data to ensure

accurate and independent performance of these learning algorithms when faced with highly

imbalanced datasets.

RQ3. How do supervised classification algorithms perform on average when applied to

raw and preprocessed imbalanced data?

There is a clear distinction in performance between models trained on raw and preprocessed

datasets. One of the objectives of this research was to assess the average performance of

classification models built using the proposed optimal decision framework. The results

obtained show that classification algorithms trained on raw datasets tend to produce

misleading results due to the inconsistencies in the data. However, as clearly seen by

comparing the performance achieved by learning algorithms trained on raw datasets with

the performance of algorithms trained on preprocessed datasets, the removal of impurities
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from datasets allows a complete assessment of the performance of the learning algorithms

by ensuring more reliable model performance results.

RQ3.1 Do certain supervised classification algorithms outperform others on average

when applied to imbalanced data?

When applied in defect prediction studies, classification algorithms maintain certain

parameter settings. These parameter settings may cause some classifiers to outperform

others in terms of their average performance. Generally, some classification algorithms

can maintain their average performance when trained on properly preprocessed datasets,

even if these datasets are highly imbalanced in terms of classes and methods.

RQ3.2 How does class imbalance result in biased outcomes from supervised learning

algorithms?

Learning algorithms can yield biased outcomes if they are trained using raw or unprocessed

datasets. The impurities within the datasets may not allow the learning algorithms to

produce accurate and reliable results.

RQ3.3 To what extent do supervised classification algorithms maintain their average

information entropy when applied to imbalanced data?

The training of a classifier depends on the nature of the training dataset, that is, the numbers

of classes and methods in the dataset. The higher the numbers of classes and methods are,

the more training the classifier will receive. For instance, between the National Aeronautics

and Space Administration (NASA) and ELFF datasets, the ELFF projects contain higher

numbers of classes and methods. Hence, learning algorithms will tend to learn more

and produce more reliable results when trained on the ELFF datasets. Consequently, the

learning algorithms considered in this research could achieve classification accuracies of

up to 80% to 99% in the cases of the NASA and ELFF datasets, respectively.

RQ4. How do the derived optimal predictor variables aid in data preprocessing and
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influence the number of defects in a software project?

To enable the accurate determination of the values of the defect density, defect velocity

and defect introduction time at both the class and method levels, these derived optimal

variables are calculated during the further preprocessing stage of the proposed framework.

These optimal variables reveal the rates at which software defects occur and the exact

proportions of defects with respect to the project size at both the class and method levels

in a software project.

Furthermore, investigation of the derived optimal variables reveals strong positive correla-

tions between the defect velocity and the numbers of defects at both the class and method

levels. Based on these strong correlations, the defect velocity was applied in this research

to construct regression models to predict the numbers of defects at both the class and

method levels in a software program.

RQ4.1 How does the defect velocity impact the number of software defects?

As stated previously, the results of this research confirm that the defect velocity has a strong

correlation with the number of defects. The increase in the defect velocity throughout the

Software Development Life Cycle (SDLC) results in an increase in the number of defects

as a project transitions from one phase of the SDLC to the next. Based on this correlation,

the defect velocity is found to be a significant variable that can influence the number of

defects in a software program. In addition, the associated cumulative distributions and

probability densities show that the defect velocity exhibits a high probability of influencing

the numbers of defects in software at both the class and method levels.

RQ4.2 Does the defect density influence the number of software defects?

The defect density of a software program does not influence the numbers of class- and

method-level defects. However, the results of this research confirm that the defect density

varies from one software product to another depending on the number of defects present in
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each software program.

RQ4.3 Does the defect introduction time impact the number of software defects?

The defect introduction time was found to have a weak and negative correlation with the

numbers of class- and method-level defects in a software program. Hence, it does not

influence the number of software defects.

7.2 Summary of the research objectives

As presented in Section 1.5 of Chapter 1, there is a need for a cost-effective and

efficient framework for preprocessing both class- and method-level datasets. If properly

implemented, such a framework is expected to improve the quality of the datasets applied

in defect prediction studies. In addition, there is also a need for a demonstrated means of

predicting the numbers of class- and method-level defects in a new version of software.

These objectives were met in this research.

First, the issues associated with the existing imbalanced class- and method-level datasets

were investigated. The findings of this investigation are presented in Chapter 2, Section

2.1. Through these findings, research objective 1 was achieved.

Second, the performance and accuracy of the existing learning algorithms applied in

supervised machine learning studies were investigated. A summary of the corresponding

findings is presented in Chapter 2, Section 2.2. Through these findings, objective 2 of this

research was achieved. By means of the data preprocessing framework presented here, the

researcher was able to determine the average performance and accuracy of the learning

algorithms applied in this research.

Furthermore, the proposed data preprocessing framework revealed certain optimal

variables, namely, the defect density, defect velocity and defect introduction time, which

can be applied when constructing regression models to predict the numbers of defects in a

new software version at both the class and method levels using information available from
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the current version of the software, thus achieving objective 3 of this research, as presented

in Chapter 4. Finally, to achieve research objective 4, the proposed data preprocessing

framework and the approach for predicting the numbers of class- and method-level defects

in a new software version were evaluated. The details of the evaluation metrics applied in

this research are presented in Chapter 5.

7.3 Limitations of statistical methods in supervised machine learning

Most existing software defect prediction models show weak performance as a result

of their inability to capture the as-yet-unknown correlation between defects and failures

(Fenton & Neil, 1999). In the researcher’s opinion, this is because the predictor variables

that actually influence the number of defects in a software product have not been fully

exploited in the construction of a suitable prediction model. In this study, such predictor

variables were incorporated into the proposed models; according to the findings, the defect

velocity, which characterizes the defect introduction rate, exerts the greatest influence

on the numbers of class- and method-level defects in a software product. Therefore,

prediction models built using the defect velocity tend to produce reliable prediction

outcomes regarding the number of defects in a future version of software product. However,

statistical approaches such as those applied in this study are subject to certain limitations,

including limitations related to multicollinearity, model fitting and the quality of the data

points.

7.3.1 Multicollinearity

One of the most common problems encountered with the application of statistical

methods in the existing literature, multicollinearity occurs when two or more predictor

variables are highly positively or negatively correlated with each other (Fenton & Neil,

1999). Whenmulticollinearity arises in a statistical analysis, it may lead to inconsistent signs
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of the correlation coefficients and misleading conclusions. In this study, the correlation

coefficient between the number of defects and the defect introduction time had a negative

value. This negative correlation was consistent when tested on both the NASA and ELFF

datasets. Notably, linear regression models rely on the assumption that the correlations

between the predictor variables are always zero, meaning that they are independent of each

other (Manly & Alberto, 2016). In this study, it was ensured that the applied prediction

models did not suffer from multicollinearity issues since this issue is addressed in the early

phase of the proposed data preprocessing framework.

7.3.2 Model fitting

Almost all evaluations of prediction models are primarily concerned with model fitting,

with little focus on the quality of the data used in training the models. Instead, attempts are

typically made to demonstrate how well these models explain the historical data through

least-squares fitting and the goodness of fit. By contrast, this study focused on accurately

preprocessing the datasets, predicting the number of defects, and determining the effect of

each predictor variable on the number of defects. A reliable model is one that is capable of

predicting the number of defects in a future version of a software module (Fenton & Neil,

1999). Because of a lack of reliable data, the authors of some existing studies, such as

Compton & Withrow (1990) and Hatton (1970), have used only their own data for model

fitting, without performing a proper evaluation of these models on newer datasets, which

may lead to misleading research findings. Thus, to avoid misleading results, one of the

objectives of this research was to develop an optimal decision framework to ensure that the

datasets applied in model training are properly preprocessed. Accurately preprocessed

datasets will produce reliable results and prevent model overfitting and concept drift.
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7.3.3 Quality of the data points

It is somewhat challenging to determine which studies in the existing literature have

included procedures for controlling the quality of the data points during preprocessing,

although if such procedures were applied, some justification for doing so should be provided

(Fenton & Neil, 1999). In this study, the quality of the data points was addressed when

applying the proposed optimal decision framework. Data points were removed during

the data preprocessing phase based on the identification of incomplete attributes because

such incomplete data may impact model performance. These incomplete data points were

removed to enable us to gain full knowledge of the data while ensuring that further data

preprocessing and analysis would be performed using datasets with complete data points.

7.3.4 Limitations of the proposed solution

To achieve the objectives of this study, an optimal decision framework is proposed to

address some of the challenges associated with datasets applied in supervised machine

learning studies. However, there are some limitations of the proposed framework which

includes: (a) is time consuming, (b) is semi-automated and (c) margin of errors. Time

consuming: The proposed framework takes more time to be implemented during data

preprocessing and as such may not serve the intended purpose for use in a software industry.

Semi-automated: There are a lot ofmanually controlled aspects of the proposed framework,

for instance, the assignment of unique identifiers to classes and methods of each project.

This manual aspect of the proposed framework needs to be fully automated to reduce data

preprocessing time.

Margin of errors: The proposed framework contains some mathematical components

which may pose some threat to the validity of the results obtained. As such, the results

obtained through these mathematical components may subject the proposed framework to

certain degree of errors. Therefore, these limitations call for future work to improve the
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quality of the proposed solution.

7.4 Benefits of the proposed optimal decision approach

In terms of cost and quality, the proposed approach represents an easy-to-use and

cost-effective data preprocessing technique that can assist software companies in gaining a

comprehensive and accurate understanding of their existing datasets and in performing

appropriate preprocessing thereof. At the same time, the proposed approach requires fewer

lines of code and less time and energy than existing methods. Generally, good prediction

models are capable of learning independently and accurately from reliable data such that

they are able to produce reliable prediction results. Furthermore, the proposed approach

can assist managers in decision-making regarding the allocation of available resources

for software projects. The experimental results obtained in this study suggest that the

defect velocity is the primary factor affecting the number of defects in a software project;

consequently, software companies of all sizes must pay adequate attention to the rate at

which software projects transition from one phase to another. This does not imply that a

slow development approach should be adopted for software projects; rather, more attention

should be paid in every stage of the development process to reduce errors. However, the

initial phase of a software project may require more than the available number of experts

to accurately determine whether the project contains nearly zero defects and thus is ready

to transition to the next development phase. If an enormous software project is handled

by fewer than the required number of experts, then that project may be more prone to

errors, whereas a project that is attended to by the required number of experts is capable of

approaching nearly zero defects and can be delivered to the end user on time.

The challenges posed by software defects remain an important issue to be addressed in

software engineering. Software companies continue to seek possible ways of reducing

or eliminating errors in software products. The regression models applied in this study
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can assist managers in forecasting the future status of a software product by predicting

the number of defects that are likely to be present in a new product release. In addition,

these prediction models can support decision-making regarding the proper allocation of

available resources for a software project, which will lead to a more profitable future for

software companies.

7.5 Future work

The results of this work must be confirmed to verify the suitability of the proposed

optimal decision approach for both class- and method-level data preprocessing and defect

prediction. In future work, the researcher hopes to apply the most recent datasets from one

or more software companies to validate this method of predicting the number of defects in

an upcoming software release while also considering additional predictor variables. In

addition, the researcher hopes to fully automate the proposed data preprocessing framework

to reduce time required to clean the datasets as well to improve the effectiveness of the

proposed solution.
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