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LOW-LIGHT IMAGE ANALYSIS AND

CONTRAST ENHANCEMENT USING GAUSSIAN PROCESS

ABSTRACT

Low-light is an inescapable element in daily surroundings that greatly affects the effi-

ciency of human vision. However, current studies in low-light fundamentally lack an in-

depth understanding of natural vision in low-light that would strengthen the development

of effective algorithms. This has subsequently restricted the development of well-rounded

systems that would aid in low-light environments, such as assistive systems, surveillance,

and autonomous car driving. Therefore, this thesis aims to study low-light image data to

gain a better understanding of their characteristics, and then based on this understanding,

investigate a computer vision solution that would pave the way for the advancement of

future assistive systems to operate in low-light conditions. An obvious challenge faced in

this study is the lack of a go-to database in this domain, hence led to the first contribu-

tion that is a collection of 7,363 low-light images gathered from multiple sources, with

12 object classes annotation in order to facilitate the analysis for the purpose of appli-

cations. From this dataset, it was found that low-light environments can be categorized

into 10 illumination types, each with different global and local characteristics that could

have different impact on a system. The second contribution is an in-depth analysis of the

collected data, specifically, by studying the global and local pixel intensities, followed by

the performance and visualizations of hand-crafted and learned features. It is found that

characteristics of the low-light pixel intensities provide a great challenge to algorithms.

The design of conventional hand-crafted features are greatly rooted to the behaviors of

bright environments, that they are unable to adequately address noise and lack of details

accompanying low-light images. Whereas, learned features revealed that the same object

yields amply different features in bright and low-light conditions, and irregular illumi-
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nation greatly challenges the attention of the said features. These insights prompt the

third contribution, to propose a low-light contrast enhancement algorithm that is not only

able to improve the visibility but more importantly to reveal informative features to as-

sist high level applications. To this end, the Gaussian Process is studied as the contrast

enhancement approach to model the complexity of the local luminance variations, the pri-

mary difficulty in low-light images. Experimental results show that the proposed method

outperforms the state-of-the-art in the common visual quality measure, the peak signal-

to-noise ratio (PSNR) by 1.17dB. Additionally, novel information retrieval measurements

are proposed to better evaluate the usefulness of enhancement algorithms in applications,

namely the local features matching and l1-norm distance measure of intensity histogram.

Both of which the proposed method outperforms the state-of-the-art method by a large

margin, signifying the applicability of the proposal to support computer vision systems.

As a whole, the contributions of this study will push forward the advancement of com-

puter vision towards practicality in low-light environments which will be particularly

valuable in the development of assistive and surveillance systems that ensure the quality

of life and safety of the public.

Keywords: Low-light, image analysis, image enhancement, gaussian process.
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ANALISA IMEJ CAHAYA RENDAH DAN

PENINGKATAN KONTRAS MENGGUNAKAN PROSES GAUSSIAN

ABSTRAK

Cahaya rendah merupakan unsur semulajadi yang tidak dapat dielakkan dalam perseki-

taran dan ia menjejaskan kecekapan penglihatan manusia. Walaupun demikian, penye-

lidikan kini pada asasnya kurang pemahaman yang mendalam mengenai penglihatan

semulajadi dalam keadaan kurang cahaya yang mungkin membantu dalam pembangu-

nan algorithma yang berkesan. Akibatnya, pembangunan sistem seperti sistem ban-

tuan, pengawasan, dan kenderaan autonomi yang cekap dalam keadaan kurang cahaya

adalah terhad. Oleh sebab itu, tesis ini bertujuan menyelidik data imej yang ditangkap

dalam keadaan cahaya rendah untuk meningkatkan pemahaman terhadap ciri-cirinya.

Kemudiannya, pengetahuan ini digunakan untuk membina sistem penglihatan komputer

yang membantu kemajuan sistem bantuan yang boleh beroperasi dalam cahaya rendah.

Cabaran yang terbesar dalam penyelidikan ini ialah kekurangan sebuah pangkalan data,

oleh itu, sumbangan pertama kajian ini adalah pengumpulan imej cahaya rendah sebanyak

7,363 yang diambil dari pelbagai sumber dengan label bagi 12 kelas benda bagi kerja

analisa terhadap aplikasi yang seterusnya. Dalam dataset ini didapati bahawa suasana

kurang cahaya boleh dibahagi kepada 10 jenis pencahayaan yang mempunyai sifat-sifat

sejagat dan setempat yang tersendiri dan menghasilkan pengaruh yang berlainan terhadap

sesebuah sistem. Oleh sedemikian, sumbangan kedua ialah analysis yang terperinci men-

genai data yang telah dikumpulkan, khususnya, dengan meneliti keamatan piksel secara

menyeluruh dan tempatan, disamping prestasi dan vektor sifat yang diperolehi mengu-

nakan algorithma rekaan-tangan dan juga pembelajaran mesin melalui teknik pengam-

baran. Didapati bahawa ciri-ciri yang terkandung dalam piksel keamatan cahaya rendah

adalah amat mencabar untuk ditangani oleh algorithma. Kebanyakan kaedah-kaedah yang
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mengunakan rekaan-tangan lazim di reka bentuk mengikut unsur-unsur imej yang di-

tangkap dalam persekitaran yang mempunyai cahaya mencukupi, oleh itu kaedah-kaedah

tersebut tidak dapat mengendalikan hingar dan kekurangan butiran yang biasa mengiringi

imej kurang cahaya. Sebaliknya, pembelajaran mesin mendedahkan bahawa vektor sifat

yang diperoleh dalam keadaan cahaya mencukupi dan keadaan kurang cahaya adalah

berbeza, dan ketidaksekataan cahaya adalah amat mencabar untuk ditangani. Penemuan-

penemuan tersebut menuju kajian ini ke sumbangan yang ketiga, iaitu mencadangkan

teknik peningkatan kontras imej kurang cahaya yang bukan sahaja memperbaiki keterli-

hatan kandungan imej, tetapi yang lebih pentingnya boleh mendedahkan sifat-sifat yang

berguna bagi aplikasi tahap tinggi. Untuk melakukan sedemikian, teknik Gaussian Pro-

cess telah dikaji sebagai kaedah peningkatan kontras untuk pemodelan pencahayaan tem-

patan yang tidak serata, cabaran utama dalam imej kurang cahaya. Keputusan eksper-

imen menunjukkan kaedah yang dicadangkan mengatasi kaedah-kaedah yang terbaik

dan terkini dalam penilaian kualiti lazim, peak signal-to-noise ratio (PSNR) sebanyak

1.17dB. Tambahan lagi, cara penilaian baru yang berdasarkan pemulihan maklumat juga

diperkenalkan bagi menilai kegunaan teknik peningkatan kontras terhadap aplikasi, iaitu

local features matching dan l1-norm distance measure of intensity histogram. Teknik

yang dicadangkan juga mengatasi kaedah-kaedah terbaik sedia ada bagi kedua-dua peni-

lai baru ini dengan margin yang besar, menandakan kebolehgunaan cadangan ini untuk

menyokong sistem penglihatan komputer. Keseluruhannya, sumbangan-sumbangan dari

kajian ini akan memajukan sistem penglihatan komputer ke arah keberkesanan dalam

persekitaran cahaya rendah yang adalah amat bernilai bagi pembangunan sistem bantuan

dan pengawasan untuk menjamin mutu kehidupan dan keselamatan orang awam.

Kata kunci: Cahaya rendah, analisa imej, peningkatan imej, gaussian process.
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CHAPTER 1: INTRODUCTION

Low-light environment is an integral part of everyday activities. As day change to night,

the amount of available light decreases, causing the surroundings to be increasingly dark,

and subsequently affecting a person’s abilities to perform even menial tasks due to a

lack of visibility. As studied by Pedersen & Johansson (2016), surrounding illumination

affects even the simple action of walking where the reduction of light deteriorates walking

quality, whereas Fotios et al. (2015) analyzed that lighting is a key factor of pedestrian

reassurance.

On more severe circumstances, low-light can be a cause of accidents and even crim-

inal activity with dire consequences as shown in Fig. 1.11. To illustrate, Calabrese et al.

(2017) found that nighttime work are more hazardous for railroad workers with links to

darkness as a possible cause, and Pour-Rouholamin & Zhou (2016) identified the time 8

p.m. to 5.59 a.m. and darkness are associated with more severe injuries for pedestrians

involved with road accidents in the state of Illinois, United States. Anarkooli & Hossein-

lou (2016) investigated the effect of lighting conditions on crash severity which found

that dark environments impacts crashes of not only between moving vehicles but also be-

tween a moving vehicle and fixed objects due to low visibility, likewise data collected by

Khalilikhah & Heaslip (2017) showed that animal-vehicle collisions are higher at night

than daytime.

Similarly, research on crime patterns such as those conducted by Tompson & Bowers

(2013) found that darkness is significantly associated with increase of street robberies in

1Sources:
(a)http://www.dailymail.co.uk/news/article-4084276/BMW-driver-36-dies-horror-crash-car-left-road-
careered-gardens-leaving-looking-like-bomb-gone-off.html
(b)http://www.straitstimes.com/asia/se-asia/car-hits-teen-cyclists-in-jb-8-die-and-8-hurt
(c)https://www.washingtonpost.com/news/local/wp/2017/02/25/police-investigating-homicide-in-prince-
georges-county/?utm_term=.f4861e0c72f7
(d)https://www.nytimes.com/2017/08/19/us/police-shooting-florida-kissimmee.html
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(a) (b) (c) (d)

Figure 1.1: (a) A car moved off the road and crashed through several front gardens
of a neighborhood in Walsall, England on the night of January 2, 2017 at 10.20
p.m., killing the driver, (b) Road accident in Johor Baru, Malaysia on February 19,
2017 where eight teen cyclists were killed around 3.30 a.m., (c) Police investigating
a homicide that occurred in Prince George’s County, United States on February 25,
2017 after receiving a call at 2.40 a.m., (d) Scene of investigation where two police
officers were found shot dead on the night of August 18, 2017 at 9.30 p.m.

London and Glasglow, whereas de Melo et al. (2017) analyzed that severe crimes like

homicides, rapes, and robbery often occurs around 7 p.m. to 11 p.m. which is towards the

night. Additionally, Hanaoka (2016) reported a significantly higher rate of snatch-and-

run at nighttime as compared to daytime in the city of Osaka, Japan, and Montoya et al.

(2016) found that more than half of the burglaries in their data occurs at night as well.

Currently, the Close-Circuit Televisions (CCTVs) are increasingly deployed through-

out cities in the world especially for crime prevention, however studies have shown mixed

results in regards to their effectiveness (H. Lim et al. (2016)). It is noted that such CCTVs

are merely recording devices that acts as an archive whenever an incident has already

transpired, thus could be the reason that they are not significantly effective. For this rea-

son, computer vision research and systems aimed at assisting people in daily activities, as

well as improve safety and security could be especially helpful (Leo et al. (2017)). This

is because such systems can imbue CCTVs with artificial intelligence for instantaneous

response towards accidents or criminal activities, thus provide more effective assistance

and protection.

In the perspective of computer vision and image process, images or videos with low

contrast and low brightness/illumination are defined as captured in low-light conditions

2

Univ
ers

iti 
Mala

ya



and are challenging visual data to work with. However, in terms of research efforts,

the low-light domain commonly addresses the image enhancement problem that hardly

relates to assistive systems, or night vision surveillance that demands costly hardware

that is only practicable for military use at this phase. More relatable subjects, such as

object detection, that could help drivers identify “invisible” objects on dark roads or alert

authorities of criminal presence in dark alleys, are seldom given attention in low-light

research. Hence, it motivates this research to explore low-light vision and provide a

solution that would pave the way for future smart low-light assistive and surveillance

systems that would benefit the community.

1.1 Problems

There are several problems to be addressed in this work. Firstly, there is a significant

lack of data to facilitate and benchmark research efforts in low-light. Even in conspic-

uous fields, such as object detection that has achieved significant breakthroughs, they

evidently deal with bright images while significantly lacking for low-light. For instance,

well known public object datasets like PASCAL Visual Object Classes (PASCAL VOC)

(Everingham et al. (2010)), ImageNet (Russakovsky et al. (2015)), and Microsoft Com-

mon Objects in Context (MSCOCO) (Lin et al. (2014)), have played an integral role in

the advancements as they have provided large scale data for many to work on and as chal-

lenges that promote progress in object detection and recognition, as summarized in Table

1.1.

The PASCAL VOC were one of the earlier object datasets with comparatively large

amounts of images at that time, consisting many variations that could represent realistic

environments during a time where object datasets suffer from simplicity and bias (Tor-

ralba & Efros (2011)). Since the launch of the dataset in 2006, it has facilitated the de-

velopment of many handcrafted approaches for object centric applications (Felzenszwalb
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Table 1.1: Summary of renowned public object datasets.

Dataset PASCAL VOC ImageNet MSCOCO
Years active 2005 - 2012 2010 - present 2014 - present
Total classes 20 1,000 80
Annotation Image class,

bounding box,
segmentation

Image class,
bounding box,
SIFT features

Bounding box,
segmentation,
captions, people
keypoints

Total images 26,305 14,197,122 300,000
Approximate low-light
images

0.23% 0.03% 1.34%

et al. (2008)). In 2010, the rise of internet data mining has led to the collection of even

larger scale data, prominently ImageNet that led to the breakthrough of deep learning us-

ing Convolutional Neural Network (CNN) (Krizhevsky et al. (2012)), and subsequently

spark a whole new generation of deep learning works in computer vision and machine

learning domains. While datasets continue to grow in numbers, a new challenge arises in

the form of data annotation because it is difficult for the human annotators to cope with

the sheer numbers. Then enters MSCOCO in 2014, though not as large in numbers as

the ImageNet, it brings to the table comprehensive annotation covering a variety of tasks

which includes recognition, segmentation, and captioning. While the progress brought by

these datasets cannot be denied, there is a glaringly obvious lapse, that is, less than 2%

of the images provided by these influential datasets are captured in low-light. Moreover,

there are no other publicly available datasets that specifically provide low-light images

for object focused works to the best of my knowledge.

Subsequently, this led to the second problem, which is an insufficient understanding

of the low-light phenomenon in computer vision, especially application based studies.

Considering very early computer vision works, such as well-known feature extractors

(Dalal & Triggs (2005); Lowe (2004)), had already strove for illumination invariance in

their designs, low-light has been treated as an auxiliary element to other tasks. Conse-

quently, state-of-the-art works, both past and present (Felzenszwalb et al. (2008); He et al.
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(a) Scale (b) Intra-class variation (c) Occlusion (d) Clutter

Figure 1.2: Example of typical challenges faced in popular object datasets. (a) Scale:
Object scale within different images can vary from 90% to 10% of the image size;
(b)Intra-class variation: Objects from a single class but having somewhat different
appearances with one another; (c) Occlusion: Objects are blocked or only shown
partially in the image; (d) Clutter: Highly complex image containing objects of la-
beled and unlabeled classes. (Source: MSCOCO dataset (Lin et al. (2014)))

(2016); Krizhevsky et al. (2012); Simonyan & Zisserman (2014); J. Wang et al. (2010)),

have been designed in such a way to handle comparatively minuscule illumination varia-

tions (i.e. shadows) instead of full-fledged low-light conditions (e.g. nighttime). Though

not completely devoid of low-light samples in the experiments, they were also scarcely

analyzed in such works in favor of other challenges like scale, intra-class variation, oc-

clusion, and clutter as shown in Figure 1.2.

These two problems inadvertently influenced low-light and application based re-

searches to be on two different spectrums. Studies related to low-light itself commonly

work on one of two directions, either night vision or image enhancement. Night vision is

closely related to surveillance applications (Davis & Keck (2005); J. Dong et al. (2007);

Elguebaly & Bouguila (2013); Kang et al. (2014); Qi et al. (2014); Zhao et al. (2015)),

however, it hinges on sophisticated hardware that are more suited for military use instead

of largescale commercial deployment. On the other hand, low-light image enhancement

has been focused on improving visual quality (X. Fu, Zeng, Huang, Liao, et al. (2016);

X. Fu, Zeng, Huang, Zhang, & Ding (2016); Guo et al. (2017); L. Li et al. (2015)) with-

out substantial evaluations to show their value for applications like object detection or

face recognition. Figure 1.3 shows the common pipelines of these two fields where they

both have their own objectives and do not merge into a unified system. While these are
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(a) (b)

Figure 1.3: Common pipelines of low-light work. (a) Low-light object/person detec-
tion using night vision cameras where thermal or near infrared cameras are used to
capture a surveillance video, and detection algorithms are built to function based on
the characteristics of the videos/frames; (b) Low-light image enhancement where the
images are enhanced for better content visibility and aesthetic quality. Both areas of
research work on the low-light domain but have different aims.

worthwhile studies to be explored on itself, current works did not show the potential and

contribution to the development of a practical, effective and well-rounded intelligent vi-

sion system. For that reason, the third problem present is this gap between enhancement

and application, in particular, there is a lack of a framework that consolidates these two

aspects and improves both the practical performance of applications and the visibility of

contents in low-light images.

1.2 Objectives

This work has three objectives to address each of the problems stated in Section 1.1. The

first is the collection of a low-light image dataset so as to have a standard benchmarking

data to kick start the study. This dataset will not only be used to facilitate the next two

objectives of this work, but can also serve as a go-to data for the advancement of low-light

research in general.

The second objective is to conduct a comprehensive analysis using the collected data

to gain an understanding of the low-light phenomenon, not only from the perspective of

low-level vision, but also in the context of applications, such as object detection. This

is to gain specific insights that is lacking in the current literature, particularly on the
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characteristics and effects which low illumination imparts on computer vision which are

commonly simplified as “illumination variation”.

Finally, using the data and understanding gained to develop a computer vision so-

lution that would be the groundwork for the advancement of intelligent vision systems

towards low-light functionality. Particularly to bridge the gap between low-light en-

hancement with object detection, by proposing an image enhancement framework that

emphasizes on information retrieval while maintaining fair visual quality. In light of this

distinctive objective, new evaluation metrics are to be proposed as well for the assessment

of the framework in retrieving informative details as opposed to the image quality centric

metrics routinely used in the field.

1.3 Contributions

The contribution presented in this thesis is threefold, to achieve each of the aforemen-

tioned objectives in Section 1.2. Foremost, a low-light image only dataset, named the

Exclusively Dark (ExDark) dataset is proposed containing 7,363 low-light images from

very low-light environments to twilight, with 12 object classes annotated on both image

class level and local object bounding boxes, as shown in Figure 1.4. At the time of writing

this thesis, this is the largest low-light image dataset with object annotation to-date.

Secondly, an image pixel intensity analysis as well as a feature-based analysis were

studied on these low-light images. Specifically, by studying the intensity histograms of

low-light images and also the local intensity changes where it is found that low-light

images consist of global illumination variation between different low-light images and

local illumination variation where intensities vary with respect to light sources either cap-

ture within or outside the image. As for feature-based analysis, object proposal methods

were used to gage the performance of common hand-crafted features when applied on

low-light, while features learned by CNN were studied to gain insights on how machine
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Figure 1.4: Examples of images of every class with image and object level annotation
from the ExDark dataset.

perceives and deal with low-light as opposed to vision with sufficient illumination. Not

only have the analyses found that conventionally designed features are inadequate for

low-light images, but the features learned by machines showed that the illumination vari-

ations of low-light essentially require features that are distinct from bright images. This

discovery prompts a re-evaluation of the established perception and handling of low-light.

Lastly, based on the understanding that low-light consists of global and local illumi-

nation variations, the Gaussian Process (GP) regression (Williams & Rasmussen (2006))

is proposed for low-light image contrast enhancement due to its sophistication and robust-

ness in modeling localized data, supported by an intermediate CNN model to produce the

necessary priors learned from globally generalized large data. Figure 1.5 illustrates the

overall framework proposed. The standout advantage of this solution is its ability to re-

trieve informative details (i.e. features) in its enhancements while maintaining fair visual

quality, as affirmed by the conventional image quality metric, the PSNR), and new evalua-

tion metrics focused on features, namely, local features matching and intensity histogram

distance.
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Figure 1.5: Overall framework of the proposed low-light image enhancement using
GP with CNN data.

1.4 Outline

This chapter details the overall motivation, problems, objectives, and contributions of this

thesis. Brief outline of the remaining chapters are as follows:

Chapter 2 reviews the current literatures related to this work. In particular, the

existing object image datasets and their lack of low-light images, followed by the com-

mon datasets used in low-light research such as the night vision camera captured data.

Additionally, existing works on low-light image enhancement, their shortcomings and

inadequacy in supporting object detection are also discussed here.

Chapter 3 introduces the low-light image dataset, the ExDark dataset that would

be used throughout the study of this thesis. It includes discussions on the evolution of

the object datasets used in the computer vision research community throughout the years

and the manner in which it has inspired this work and the proposal of this dataset that is

yet unheard-of in the community to the best of my knowledge. The dataset content and

statistics are detailed in this chapter.

Chapter 4 describes the analysis of low-light images. Starting with low-level analy-

sis that looks into the variations of pixel intensities in both the global and local scale. This
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is followed by the high-level analysis, with the implementation of conventionally hand-

crafted features like edges, gradients, and superpixels through object proposal methods

and the comparison of their behaviors on both low-light and bright images are made clear.

Furthermore, details in regards to the employment of deep learning, namely CNN to learn

features, the scrutiny of the said features, and also the insights gain are explained here as

well.

Chapter 5 proposes the low-light image enhancement framework, namely Gaussian

Process with CNN data. This chapter contains a theoretical overview of the GP algo-

rithm, the justification of its use for low-light image enhancement, particularly for the

objective of information retrieval, as well as the rationale of the CNN data. Comprehen-

sive experiments were done using real and synthetic low-light images, with evaluations

using both the PSNR and the new metrics. Both qualitative and quantitative results in

comparison to current state-of-the-art methods are detailed, where the proposed method

shows promising results.

Chapter 6 concludes the work and findings obtained from this study with current

limitations and suggestions for the prospective future developments.
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CHAPTER 2: LITERATURE REVIEW

This chapter reviews literature related to the work of this thesis. It is divided into two main

categories, starting with the review on dataset related literatures, which are subdivided

into object datasets, low-light data, and alternative datasets. This is then followed by

review on low-light research works, particularly low-light image enhancement.

2.1 Datasets

Datasets are an important element in benchmarking all research works. For this work, a

low-light object dataset is required, however, it was found that current publicly available

object datasets do not have sufficient low-light data for adequate benchmarking whereas

data used in low-light research are neither suitable nor sufficient for this study.

2.1.1 Object Datasets

There has been three major publicly available object datasets that are renown to every

researcher in this field.

PASCAL VOC: The PASCAL VOC (Everingham et al. (2010)) object dataset grew

from 2005 till 2012, with annual challenges that encouraged researchers to develop ever

improving algorithms to outdo one another in the spirit of progress. It began with only

4 object classes and 3,787 images sourced from existing datasets. Initially containing

simple object images, it has been continuously improved with more challenging images,

and additional annotations. The last update to the dataset in 2012 puts the cumulative

total at 26,305 images with 20 object classes, including annotations for object region of

interest and segmentations.

ImageNet: ImageNet (Russakovsky et al. (2015)) was opened to public in 2010

as the largest object image dataset, and gained great interest from the community espe-
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cially in 2012 where its database of over 1 million images and 1,000 image level object

classes has allowed CNNs to excel and set a new benchmark in object image classifica-

tion (Krizhevsky et al. (2012)). The data provided are very challenging, where each of

the image is categorized into one of the object classes as long as there are instances of the

object, regardless if the objects are occluded or if the image contains other objects. Since

then, ImageNet has become the de facto dataset for object image works, either as the

main benchmark (Krizhevsky et al. (2012)) or as fundamental data for transfer learning

(Donahue et al. (2014); Lee et al. (2017); Tong et al. (2016)). In 2017, the dataset has

reach new heights with more than 14 million images, and 1,000 classes of which 200 of

them has bounding box annotation for object detection tasks.

MSCOCO: The latest of notable object datasets is the MSCOCO (Lin et al. (2014)),

released in 2014. The quantity of images provided are not up to that of ImageNet, though

its advantage is in the completeness of the image annotations. Providing more than 300

thousand images in 2017, there are 80 object classes annotated from bounding box for

detection, to pixel level for segmentation tasks, as well as captions for description of each

image. Similar to ImageNet, the content of the images are highly challenging where even

a small instance of an object’s part is annotated.

Though challenging and large, the number of low-light images in these 3 datasets are

considerably small, as shown in Table 2.1. This brings about a difficulty in understanding

the effects of low-light and insufficient as a benchmark.

2.1.2 Low-light Data

On the other hand, datasets used in low-light research for the most part are different

from typical object detection datasets. One of which is used in surveillance that can

be categorized as detection tasks, but the data used differ greatly from typical object

detection due to the use of different types of cameras. The other is in enhancement, where
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Table 2.1: Approximate number of low-light images in PASCAL VOC, ImageNet,
and MSCOCO. Even as the years progress, there is no significant increase of low-
light images in either of the datasets.

Dataset Total image Low-light image
MSCOCO Training 82,783 149 (0.18%)

Validation 40,504 163 (0.4%)
Testing 2014 (No annotation) 40,775 138 (0.34%)
Testing 2015 (No annotation) 81,434 115 (0.14%)

Total 245,496 565 (0.23%)
ImageNet Training 2012 1,300,000 255 (0.02%)

Validation 2012 50,000 38 (0.08%)
Testing 2012 100,000 51 (0.05%)

Validation 2013 4,599 12 (0.26%)
Testing 2013 9,251 22 (0.23%)
Training 2014 60,658 72 (0.12%)

Total 1,524,508 450 (0.03%)
PASCAL VOC 2007 9,936 123 (1.24%)

2008 4,340 72 (1.66%)
2009 2,722 43 (1.58%)
2010 3,503 50 (1.43%)
2011 3,640 48 (1.32%)
2012 2,164 17 (0.79%)
Total 26,305 353 (1.34%)

algorithms are proposed to improve the visibility of the contents in low-light images.

Low-light surveillance: Thermal and near infrared cameras are generally used to

counter limited light for surveillance operations at night. Surveillance works commonly

focus on face recognition (Kang et al. (2014); S. Z. Li et al. (2007)) and pedestrian de-

tection (Davis & Keck (2005); J. Dong et al. (2007); Qi et al. (2014); Zhao et al. (2015)).

Datasets in this field are usually acquired using sophisticated hardware such as thermal

sensors and Infrared (IR) cameras, as shown in Table 2.2. These equipment captures vi-

sual contents beyond the visible spectrum of humans, which overcomes the lack of light

encountered in nighttime and low-light environments.

Thermal imaging, or Far-Infrared (FIR), employs passive sensors to capture infrared

radiation emitted by objects from a scene. This radiation emission is associated with the

temperature where higher temperatures often corresponds to higher emissivity. Based on

this property, the visual data captured can clearly show objects (such as people having
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Table 2.2: Hardware and setups implemented to obtain data for research domains
beyond visible spectrum .

Domain Literature Hardware Setup

Pedestrian
detection

Davis
& Keck
(2005)

Raytheon
300D thermal
sensor

Mounted on rooftop of 8-story build-
ing

Davis &
Sharma
(2007)

Raytheon
PalmIR 250D;
Sony TRV87
Handycam

Mounted adjacently, approximately 3
stories above ground

Bilodeau et
al. (2014)

FLIR Ther-
movision
A40M; Sony
XCD-710CR

Indoor with fixed background and tem-
perature

Olmeda et
al. (2013)

Indigo Omage
Imager

Mounted on vehicle exterior to avoid
infrared filtering

Face
recognition

S. Z. Li et
al. (2007)

Specially designed NIR hardware using active
lights in the Near-Infrared (NIR) spectrum

Kang et al.
(2014)

Canon 600D
DSLR, Ray-
Max 300 NIR
illuminator

Stationary camera and illuminator po-
sitioning with specified emission di-
rection

Object de-
tection

Z. Wu et al.
(2014)

FLIR SC8000 -

warm bodies) from the background irrespective of light level, which is ideal for surveil-

lance, as seen in the top row of Figure 2.1. However, as shown in Table 2.2, these data

are either captured by advanced cameras or specially designed acquisition setup. Conse-

quently, such setup is not as commonplace as visible light cameras.

On the other hand, NIR uses the infrared spectrum from thermal sensors and less

affected by temperature. As shown in the bottom row of Figure 2.1, the appearance of the

captured contents capture by NIR are more similar to visible light images. However, as

the name suggests, the operational distance is very much shorter, as illustrated in Figure

2.1 where it is difficult to see the person at far distance, unlike thermal imaging. While

this limitation does not interfere with indoor and short distance monitoring, it greatly

obstructs its employability in outdoor surveillance.

Low-light enhancement: To the best of my knowledge, current low-light image
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Figure 2.1: Top row: Examples of thermal images and their corresponding images
captured in visible light. Bottom row: Example images of a person at short (1m) and
long (150m) distances captured using NIR in low-light and using digital camera in
bright environment.

enhancement works do not have a go-to benchmarking dataset. As a result, the data

used are varied and nonstandard, such as datasets catered for other type of enhancement

works. The IVC database (Le Callet & Autrusseau (2005)) is a quality metric data that is

commonly used by works involving quality assessment. Therefore, works like those done

by J. Lim et al. (2015); Lore et al. (2017), used this dataset by synthetically darkening

the images to simulate low-light conditions as shown in Figure 2.2; at the same time, the

original bright images are used as the groundtruth for evaluating the enhancement results.

While such synthetic darkening is practical for evaluation, there is only 235 images in the

IVC dataset, an awfully small amount when compared to datasets in the object detection

domain.

This is similarly seen in the data of real low-light images. S. Wang et al. (2013) has

proposed the Non-Uniform Illumination (NUI) dataset of images collected from online

websites with only 156 images, whereas other works like those done by X. Fu, Zeng,

Huang, Liao, et al. (2016); Guo et al. (2017); Huang et al. (2013); L. Li et al. (2015)

capture or download low-light images in an ad-hoc manner. Figure 2.2 shows examples

of these images. Not only were these data highly inconsistent, the images are catered for
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Figure 2.2: Examples of images used in low-light image enhancement works. First
row: IVC dataset; Second row: Example of synthetically darkened images of IVC
dataset; Third row: NUI dataset; Third row: Images used by Guo et al. (2017).

quality assessments instead of object based evaluation, i.e. low-light images of scenery

instead of images containing everyday objects. Hence, these current data are neither

adequate nor enough for the development and gaging of object detection in low-light.

2.1.3 Alternative Datasets

Alternatively, there are public datasets available from related research domains, namely

the Phos (Vonikakis et al. (2013)), DaLI (Simo-Serra et al. (2015)), Webcam (Verdie et

al. (2015)), and ALCN-2D (Rad et al. (2017)) datasets. Such datasets provide images for
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(a) (b)

(c) (d)

Figure 2.3: Examples of images from alternative datasets, (a) Phos, (b) DALI, (c)
Webcam, and (d) ALCN-2D.

illumination variation research works with fundamentally different motivations, where

the images are either captured under controlled environments (Phos, DALI, ALCN-2D)

or scenery images (Webcam), as shown in Fig. 2.3.

The Phos dataset is a database of images captured under different illumination condi-

tions. It provides a baseline exposure image as a recommended reference, captured under

uniform illumination achieved by multiple diffusive light sources distributed around the

objects and standard exposure. The dataset contains both uniform and non-uniform il-

lumination images, where various levels of uniform illumination images are captured by

reducing the intensity of the diffusive lights, while the non-uniform illumination images

are captured at reduced diffusive light strength with a strong directional light source on

the left.

Whereas, the DaLI and Webcam datasets are provided for feature descriptors and

keypoints evaluation works. The DaLI contains images with uneven illumination caused

by deformations like wrinkles on a t-shirt or paper, while the Webcam consists scenery

images of up to 6 locations. Lastly, the ALCN-2D provides data for object detection

under challenging lighting conditions with background clutter. However, the objects in

question are not common objects like those provided by MSCOCO but are only 3 small

objects made of different materials.
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Although these public datasets work on lighting research, they are fundamentally

different from the target data of this research which focuses on complex low-light images

of real low-light environments instead of controlled laboratory settings.

Tables 2.3 and 2.4 show a summary of the aforementioned publicly available datasets

related to this research work. On one hand, application based research data either lacks

low-light data or is compensated by using night vision hardware. On the other hand, the

data used in low-light related works are either too small, or captured under constrained

environments that do not represent the challenges of the real world. Therefore, their

unsuitability to facilitate a study on computer vision applications in real low-light envi-

ronments as well as a lack of a standard repository calls for a collection of a new database.

2.2 Low-light Image Enhancement

From the investigation on datasets, it is noted that research works in computer vision

tackle low-light problems from one of two angles, (1) through the use of hardware sup-

ports such as cameras equipped with thermal sensors and infrared cameras; or (2) using

enhancement algorithms on low-light images or videos (X. Dong et al. (2011); H. Fu et

al. (2012); X. Fu, Zeng, Huang, Liao, et al. (2016); X. Fu, Zeng, Huang, Zhang, & Ding

(2016); Guo et al. (2017); Huang et al. (2013); L. Li et al. (2015); J. Lim et al. (2015);

Łoza et al. (2013); X. Wu (2011); X. Zhang et al. (2012)). As discussed in Section 2.1.2,

hardware requirement are costly and to-date is uncommon and impractical for large-scale

deployment. Whereas the latter, namely low-light image enhancement are generally ap-

plied for image quality improvement, however these algorithms mainly deal with visible

light images which are significantly more easily found and produced. Thus, low-light

image enhancement holds more potential to support the development of intelligent com-

puter vision applications. The various proposed works of low-light image enhancement

can be categorized into three categories, statistical model and manipulation, transforma-
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Figure 2.4: Low-light image enhancement by histogram equalization and CLAHE.
The luminance histogram of a low-light image is concentrated towards the darker
regions. These methods pushes the luminance counts to a wider range for brighter
values.

tion model, and Retinex model.

Statistical model and manipulation: This category of approach manipulates the

distributions of low-light images, either intensities or high frequency coefficients, to im-

prove the image contrast and brightness (Huang et al. (2013); J. Lim et al. (2015); Łoza

et al. (2013)). This category includes the earliest approach for contrast enhancement, the

histogram equalization and its variants (Huang et al. (2013); Kaur et al. (2011)). Fig-

ure 2.4 shows example of the luminance histogram enhanced by histogram equalization

and Contrast Limited Adaptive Histogram Equalization (CLAHE) (Zuiderveld (1994)),

the most common methods in enhancing image contrast, where it can be seen that the

luminance histograms are notably modified. Later works incorporate more sophisticated

mechanisms, for example, J. Lim et al. (2015) used noise pixels to guide a selective his-

togram equalization scheme for simultaneous denoising and contrast enhancement. How-

ever, such approaches commonly expand or stretch the concentrated intensity histograms

of low-light images, hence loses contextual information and prone to under enhancement

or over enhancement.
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Transformation Model: This approach (H. Fu et al. (2012); Lore et al. (2017);

X. Wu (2011)) uses parameterized functions or trained models to perform transformation

mapping from low-light image space to bright image space, meanwhile preserving the

contextual information. Following the achievement of deep learning approaches in com-

puter vision, Lore et al. (2017) trained a deep auto-encoder model from large amounts

of data to obtain a general mapping model for contrast enhancement. The enhancement

of these methods are defined by inferring parameters that would produce satisfactory

outcomes for a variety of conditions. Nonetheless, they rely on generalization from a

database of images, and concentrate on contrast enhancement without investigating the

effects brought upon by local illumination variations, thus led to non-optimal enhance-

ment.

Retinex model: Based on the Retinex theory by Land et al. (1977), it takes into

consideration both the contextual information and light intensity of an image. The main

assumption is that a color image can be decomposed to reflectance and illumination com-

ponents to represent the aforementioned elements respectively. By manipulating the il-

lumination component and merging with the reflectance, various methods (X. Fu, Zeng,

Huang, Liao, et al. (2016); X. Fu, Zeng, Huang, Zhang, & Ding (2016); Guo et al. (2017))

had shown impressive results. X. Fu, Zeng, Huang, Liao, et al. (2016) used a fusion-based

method where the illumination is enhanced using multiple methods separately before fus-

ing them in multiple scales with heuristic weights for a final improved illumination to

form the enhanced image., whereas X. Fu, Zeng, Huang, Zhang, & Ding (2016) focused

on solving the reflectance and illumination decomposition problem using the proposed

weighted variational model where the reflectance gives better details while the illumi-

nation is only improved using gamma correction. On the other hand, Guo et al. (2017)

targets only the illumination where they estimate the illumination of each pixel individ-

ually to form a map, and then further refine it using a structure prior. These methods
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have achieved state-of-the-art performance in terms of quality, nonetheless they still suf-

fer from under enhancement, noise amplification, and unrealistic color.

Additionally, X. Dong et al. (2011); L. Li et al. (2015); X. Zhang et al. (2012) have

proposed methods that resemble the Retinex theory by implementing the dark channel

prior algorithm made for image dehazing (He et al. (2011)). This approach is mainly

sparked by the observation where inverted low-light images exhibit similar characteristics

to images captured in hazy weather. The work by L. Li et al. (2015) has showed state-of-

the-art results by combining an adaptive dehazing algorithm with superpixel denoising.

While the results are promising, under enhancement is still a prevailing problem that calls

for improvement. It is also noted that this approach has inspired works using the Retinex

model (X. Fu, Zeng, Huang, Liao, et al. (2016); Guo et al. (2017)) in their illumination

map estimation.

A comparative summary of the existing methods are shown in Table 2.5. The pro-

posed solution in this thesis is intrinsically different from these approaches due to the

distinctive motivation in performing low-light contrast enhancement. The GP is a so-

phisticated statistical modeling technique that interprets the enhancement operation from

a localized distribution of functions that is essentially dissimilar to direct manipulation

on histogram of pixels intensities, and estimations based on reference maps. Addition-

ally, the implementation of the CNN as an intermediate transformation model introduces

reference data that are optimized globally across large data to build the GP . Hence, the

localized model with support from globally optimized data is able to perform optimal

enhancements for each low-light image.
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CHAPTER 3: THE EXCLUSIVELY DARK LOW-LIGHT IMAGE DATASET

Dataset is an essential part of computer vision research. It represents the environment and

circumstances of the real world which intelligent vision systems would need to address.

Thus, a reliable and domain specific dataset is needed for an impartial and valuable re-

search. In this work, the target domain is intelligent low-light vision system, hence, the

relevant dataset would be images of objects in low-light environments.

3.1 Progression of Object Datasets

The data used throughout the years of vision research have been continuously evolving

to better represent the visual perception of the real world, especially for object based re-

search. Figure 3.1 shows a summary of the progression of object image datasets. In the

early days, object datasets are collected in a controlled laboratory environment with fixed

background, such as the Columbia Object Image Library (COIL) database (Nayar et al.

(1996); Nene et al. (1996)). Then, the Caltech dataset (Fei-Fei et al. (2007); Griffin et al.

(2007)) grew the nature of object data to include real world backgrounds as opposed to the

plain surroundings. Making use of online search engines and then manual filtering, two

Caltech datasets were released, the Caltech-101 and Caltech-256, in the years 2003 and

2005 respectively, containing over 30 thousand images with image level annotation for

the object classes. Sometime after, Microsoft Research in Cambridge (MSRC) proposed

the MSRC dataset (Winn et al. (2005)), though smaller in size, but it gives a stronger an-

notation using both localized bounding boxes and segmentation. Similarly, the LabelMe

(Russell et al. (2008)) provides a dataset with segmentation groundtruth and notably re-

leased an online annotation tool for labeling image databases of computer vision research.

Both the MSRC and LabelMe datasets also provide data that are somewhat more complex

than the object centric data of the Caltech datasets. Figure 3.2 shows examples of images
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Figure 3.1: Progression of modern object datasets from year 1995 to 2017.

(a) COIL (b) Caltech

(c) MSRC (d) LabelMe with annotation

Figure 3.2: Examples of images from early object datasets.

from these early object datasets.

After these datasets, the PASCAL VOC ushered in a new trend that not only relies

on data itself for advancement. While starting with less than 5 thousand object images

with only 4 object classes in 2005, it has continuously grown until 2012 to have over 20

thousand images and 20 object classes with images of objects in varying real world en-

vironments, as shown in Fig. 3.3a. More remarkably is the open performance evaluation

challenges that enabled researchers in the same field to compare their performances on the

same benchmark, which has promoted friendly competition between scientists and led to
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significant progress. Unfortunately, the growth of this dataset was cut short by the passing

of its main contributor. Though the efforts continues in spirit through other datasets, such

as the ImageNet with its ImageNet Large Scale Visual Recognition Challenge (ILSVRC),

and the MSCOCO dataset and challenge.

In 2008, the Tiny Images dataset (Torralba et al. (2008)) has amassed close to 80

million images that are downloaded from the internet using several search engines fol-

lowing approximately 75 thousand non-abstract nouns of the WordNet lexical dictionary.

However, due to storage constrains at the time, images of this dataset were kept at 32×32

pixels, as shown in Fig. 3.3b. Moreover, the sheer number of data makes it impractical to

ensure the quality and annotation using manpower. Thus, in 2009, two subsets were man-

ually extracted from Tiny Images, namely CIFAR-10 and CIFAR-100. Human labelers

were assigned to extract 6000 images of 10 object classes for the CIFAR-10, whereas 600

images were extracted of 100 classes exclusive from the CIFAR-10, makes up the CIFAR-

100. Thus, the images with strong labeling are lesser in comparison to the amount of data

that are actually gathered.

The ImageNet dataset (Russakovsky et al. (2015)) and the ILSVRC started in 2010,

but its rise in prominence in 2012 is closely linked to the advancement of Graphics Pro-

cessing Units (GPUs) and CNN technologies. The ImageNet data are similarly crawled

online based on the hierarchy of WordNet. With millions of images crawled, the quality

and annotation are done manually to have an average of 1000 images for 1000 categories

each and unlike Tiny Images, the images are not resized to accommodate for storage lim-

itations. The image categories provided are much more finegrained than the PASCAL

VOC or any dataset before that, such as dogs labeled following the breed instead of one

high level category of “dog”. The dataset now has over 14 million images and 1 million

object bounding box annotations as seen in Fig. 3.3c.

The immense amount images collected by Tiny Images and ImageNet are thanks to
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(a) PASCAL VOC

(b) Tiny Images

(c) ImageNet

(d) MSCOCO

Figure 3.3: Examples of images from large scale object datasets.

the rapid expansion of the internet and social media. While it has somewhat solved the

problem of data quantity, another obstacle arises in terms of reliable annotation. This

aspect is particularly important to the presently popular deep learning methods that needs

labeled data for training. Hence, the MSCOCO (Lin et al. (2014)), which is one of the lat-

est and arguably one of the most popular object image dataset now, focuses on providing

well labeled data for a wide range of object related tasks. Though only having 330 thou-

sand images, more than 200 thousand are labeled with 80 object categories and up to 1.5

million object instances. The object instances include both bounding box coordinates and

superpixel segmentation. Moreover, the dataset also has segmentation of up to 91 stuff

categories (i.e. non-object classes like grass, wall, and sky) and annotation of 5 captions

describing the content for each image. Examples of images from this dataset with their

segmentation annotations are shown in Fig. 3.3d.

Based on the progression of the past 20 years, it has become a standard for object
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datasets to have either if not all of the following traits:

• Complex images: objects are not necessarily central or dominant in the image, or

only partially seen.

• Large quantity: from thousands to millions of images.

• Thorough annotation: at least having image and bounding box annotation of ob-

jects.

3.2 The Exclusively Dark

A significant motivation in the effort to introduce a singular low-light image dataset is

that there are none available to-date to set the standards for research in this domain. As

seen from the progression, large scale object datasets (Everingham et al. (2010); Lin et

al. (2014); Russakovsky et al. (2015)) claim data variations and generalization, however

they hardly provide enough low-light data, as shown in Table 3.1, to represent the true

extend of environments and challenges faced in such conditions despite being an integral

element in daily vision. On the other hand, even in low-light image enhancement works,

real low-light images were mostly downloaded or captured on an ad-hoc basis (X. Fu,

Zeng, Huang, Liao, et al. (2016); Guo et al. (2017); Huang et al. (2013); L. Li et al.

(2015)). Hence, the ExDark is proposed in hopes of providing a staple collection of

data for benchmarking low-light research works, and bring together different areas of

expertise to focus on low-light, for instance, image understanding, image enhancement,

object detection, etc.

3.2.1 Data Collection

The ExDark is targeted to be a low-light object image dataset. An image is defined as

captured in low-light if it has low or significant variations in illumination that causes an
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Table 3.1: Approximate number of low-light images in public object datasets, and
the amount in the proposed ExDark dataset.

Dataset Low-light image
MSCOCO 565 (0.23%)
ImageNet 450 (0.03%)

PASCAL VOC 353 (1.34%)
ExDark 7,363 (100%)

image to have low contrast and brightness as well as low visibility of the image content.

12 object classes are established for this dataset, namely Bicycle, Boat, Bottle, Bus, Car,

Cat, Chair, Cup, Dog, Motorbike, People, and Table. These classes are derived from the

20 classes of common objects from the notable PASCAL VOC dataset and specifically

chosen for their relevance in assistive and surveillance operations, for example, the iden-

tification of such objects can help a person navigate around them in the dark, or warn

a driver of such objects obstructing a dark road. Following the success of past object

datasets, the collection and selection of images are aimed to satisfy the 3 common char-

acteristics, image complexity, quantity, and annotation.

As this is the first dataset of its kind, the collection of data is done through meticulous

manual selection instead of the automated download that would result in large amounts of

noisy images. The images are collected from a variety of sources targeting the specified

object classes, which include downloading from internet websites, sub-sampling from

existing datasets, extracting frames from movies and videos, and capturing using smart

phones.

Most of the low-light images were downloaded from internet websites and search en-

gines, namely Flickr.com, Photobucket.com, Imgur.com, Deviantart.com, Gettyimages.com,

and Google Search. Keywords related to low-light are used to manually search and down-

load images from these websites, such as dark, low-light, nighttime, twilight, darkness,

and shadow. Only images containing the relevant objects from the listed 12 classes are

downloaded for the dataset. Additionally, a combination of object class names and low-
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light related words are also used for the search to increase the search coverage for more

data.

Next, low-light images were sub-sampled from existing datasets, mainly PASCAL

VOC, ImageNet, and MSCOCO, where Table 3.1 shows the approximate mount extracted

from each of them. In addition, small amounts of images are also taken from other

datasets (Philbin et al. (2008); Russell et al. (2008)). In the same manner, only low-

light images containing the relevant objects are extracted for the ExDark. Additionally,

to increase the variation of the images, frames from low-light scenes from a collection of

movies were extracted as well (See Appendix A for list of sources). Lastly, low-light im-

ages were captured manually using different models of smart phones (e.g. Apple iPhone

5S, Samsung S7, Huawei P9).

Approximately 7,363 RGB color images were collected and processed to remove

digitally placed watermarks, either by cropping the image or blending it to the background

using appropriate coloring. No further processes were applied to the dataset images,

thus the dataset contains images of varying quality and sizes from 200× 200 pixels to

4000×3300 pixels. Furthermore, all the images are either jpeg or png formatted, as these

two are the most common types of image compression.

3.2.2 Object Annotations

The collected data is manually annotated on two levels, the first is image class annota-

tion where the images are sorted into the 12 classes based only on the object instances

regardless if the object is the dominant majority in the image. Second is bounding box

annotation of the objects, where every instance of any of the 12 classes are annotated in

all images using Piotr’s Computer Vision Matlab toolbox1 (Dollár (n.d.)). Piotr’s tool-

box provide an easy to operate user interface for multi-class object labeling as shown in

1https://pdollar.github.io/toolbox/
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(a) (b)

(c) (d)

Figure 3.4: Object annotation using Piotr’s Toolbox. To annotate, the object class
is first selected (a), then the bounding box is drawn by clicking and dragging from
the top left corner then bounding the object (b). The process is repeated for multiple
objects in the same image as shown in (c) and (d).

Fig. 3.4. The toolbox stores the upper left coordinate (x,y), width (w), and height (h) in

pixels, of the drawn bounding box and the corresponding object class into a txt file that

allows easy read and write (See Appendix B for examples).

Figures 3.5 - 3.7 show the statistics of the image amount and fraction with respect to

the annotations. Most of the images provide a single instance of the object as shown in

Figure 3.6a, but a considerable amount of the images has more instances with the max-

imum number of bounding box annotation found in an image is 58, as shown in Figure

3.6b. Images that contain multiple instances can be a mixture of different objects, as

shown in Figure 3.6b as well. While the number of images in the image level annotation
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Figure 3.5: Object instances per image of ExDark data.

(a) (b)

Figure 3.6: Example (a) image with least amount of object annotated, and (b) image
with the most objects annotated.

are kept relatively balanced as shown in Figure 3.7a, most of the bounding box annota-

tions are from the People class, as seen in Figure 3.7b and the examples shown in Fig.

3.8. In the total of 23,710 object instances annotated, there are 7,460 People, from single

person to a crowd, thus, this would be useful for pedestrian detection work as well.

3.2.3 Types of Low-light

From the collection of data, it was also identified that there are 10 types of low-light

conditions, of both indoor and outdoor environments, commonly captured in images.
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(a) (b)

Figure 3.7: (a) Fraction of image classes and (b) Object occurrence in ExDark
dataset.

Figure 3.8: Examples of images from every class containing the People object.

These image types are established based on observation of common characteristics found

in groups. Examples of the types are shown in Figure 3.9 and explained as follows:

• Low: Images with very low illumination and hardly visible details.

• Ambient: Images with weak illumination and the light source is not captured

within.

• Object: Images where there is/are brightly illuminated object2(s) but surroundings

are dark and the light source is not captured within.

• Single: Images where a single light source is visible.

2The illuminated object is not necessarily from the 12 specified classes.
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Figure 3.9: Examples of low-light image types in ExDark.

• Weak: Images with multiple visible but weak light sources.

• Strong: Images with multiple visible and relatively bright light sources.

• Screen: Indoor images with visible bright screens (i.e. computer monitors, televi-

sions).

• Window: Indoor images with bright windows as light sources.

• Shadow: Outdoor images captured in daylight but the objects are shrouded in shad-

ows.

• Twilight: Outdoor images captured in twilight (i.e. time of day between dawn and

sunrise, or between dusk and sunset).
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Figure 3.10: Statistic of image illumination types found in ExDark.

This categorization of low-light images has not been done before in any datasets

hence it would be valuable for future research, particularly low-light image enhancement,

as identifying the different illumination types could assist in the design of enhancement

algorithms to handle the over and under enhancement problem accordingly. Figure 3.10

shows the statistics of the different illumination types found in the dataset, and further

examples of the images from the ExDark can be found in Appendix C

3.3 Summary

This chapter has detailed the progression of object image datasets from earlier times of

computer vision research till now which prompt the next evolution of the object dataset.

This is followed by the information regarding the proposed ExDark low-light object im-

age dataset, including data collection procedures and sources, annotation tool and process,

as well as statistics of the data annotated.

The proposed ExDark contains 7,363 low-light images, encompassing 10 types of

low-light conditions. 12 object classes were annotated for each of the images, from image

level having one class represent the whole image, till object level using bounding box to

indicate the location of the object in the image. This is the first dataset of its kind, thus
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can act as a pioneering benchmark for both low-light image enhancement and object

detection research works. The dataset is available to the public at https://github.com/cs-

chan/Exclusively-Dark-Image-Dataset.
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CHAPTER 4: ANALYSIS OF LOW-LIGHT IMAGES

From investigations of notable datasets, it is found that low-light is commonly glossed

over in object dataset analyses (Everingham et al. (2015); Lin et al. (2014); Russakovsky

et al. (2015)) with the preferred emphasis on object instances, scale, occlusion, and quan-

tity. In consequence, the state-of-the-art object detectors, past and present (Felzenszwalb

et al. (2008); He et al. (2016); Krizhevsky et al. (2012); Simonyan & Zisserman (2014);

J. Wang et al. (2010)), are neither designed nor were they analyzed on low-light, given

the samples they had to work with. This has also indirectly led many to oversimplify

the diversity and challenges of low-light. Considering very early computer vision works,

such as well-known feature extractors (Dalal & Triggs (2005); Lowe (2004)), had already

strove for illumination invariance in their designs, it is understandable that many would

consider illumination or low-light as just an auxiliary element to other challenges without

going into a deeper understanding. Particularly, with the emergence of deep learning,

machine learning is expected to be able to counteract this problem with ease.

A crucial belief in this work is that the characterization of low-light as just “illumi-

nation variation” does not fully define the challenges as the “variations” encompass much

more. For example, low-light condition can emerge depending on the time of day (e.g.

twilight, nighttime), location (e.g. indoor, outdoor), and the availability of light sources

and their types (e.g. the sun, man-made lights). The combination of these three factors

can create a great deal of disparity between image to image or even within an image it-

self. The impact of these variations has been left unexplained in most works, especially

in object detection, however a grasp of their behavior can potentially advance the field.

Though, rather than disregarding the milestones of researches so far, the belief is simply

that a gap has been overlooked in the common object data and analysis. Thus, this chapter

details the analytical efforts of this work in gaining a better understanding of the low-light
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phenomenon in regards to computer vision.

4.1 Data

Before carrying out any analysis, the data which is to be studied needs to be established.

For this work, the proposed ExDark image dataset is used, and in order to establish a

comparison, the MSCOCO is chosen as the baseline dataset for its challenging nature to

represent the current trend of object datasets that are dominated by bright images. How-

ever, since the ExDark is considerably less in amount, images were sub-sampled from the

MSCOCO for the study. The sub-sampling was done on the training and validation sets

of the MSCOCO only as the annotation for these sets were provided. The criteria for an

image to be extracted is that it contains at least one of the 12 object classes of the ExDark

dataset irregardless of the presence of other object classes.

Generally, 150 images per class were extracted from the validation set and 500 im-

ages from the training set, except for the classes where there are insufficient images con-

taining the specified object, hence all the images were taken for such cases. Additionally,

following the nature of the images collected for the ExDark where similar objects are

categorized into a coarse class, the Bench, Chair and Couch classes from MSCOCO were

merged into a single Chair class in the subset, likewise for the Wine glass and Cup classes,

merged as only Cup. As for the annotations used for the analysis work, only the bounding

boxes of the 12 object classes were taken, and the image level annotation is set based on

the highest object instances found within a specific image. Table 4.1 shows the number

of images per class of the ExDark and the sub-sampled MSCOCO. There are a total of

23,710 object instances found in the ExDark, whereas the MSCOCO subset has 34,370

object instances.
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Table 4.1: Number of images per object class used for analyses.

Dataset ExDark MSCOCO
Class Number of Image Number of image

Bicycle 652 603
Boat 679 650

Bottle 547 650
Bus 527 564
Car 638 650
Cat 735 650

Chair 648 651
Cup 519 650
Dog 801 650

Motorbike 503 644
People 609 650
Table 505 650
Total 7,363 7,662

4.2 Analyses

The objective of analysis is to gain a better understanding of the subject matter and sub-

sequently develop an optimal solution based on the findings. Therefore, it is essential for

the medium of analysis to bring forward the appropriate aspects to achieve the specified

goals. In this study, the aim is to understand the effects of the low-light phenomenon in

images on applications, particularly object detection. Hence, the analysis is distinguished

into two approaches, low level and high level analyses.

Low-level analysis looks into the causes of the low-light phenomenon as well as the

characteristics of pixel intensities of the captured images by studying the global intensity

distributions and also local region intensity variations. On the other hand, high level anal-

ysis analyzes the performance of features commonly used in object detection works when

applied on low-light conditions. Specifically, object proposal algorithms that make use of

hand-crafted features (Cheng et al. (2014); Fang et al. (2016); Zitnick & Dollár (2014)),

and object classification CNN (He et al. (2016)) that learns features, were employed on

both low-light and bright images for a comparative study.
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Figure 4.1: Bright images and their global intensity histograms.

4.2.1 Low Level Analysis

The scene luminance of images captured in bright environments are typically very high

due to bright sources of light, such as the sun, that is able to encompass large areas.

As shown in Fig. 4.1, the content and details of the images are clearly perceivable due

to ample lighting, and the respective intensity histograms are well distributed across the

intensities. On the contrary, low-light images have low illumination where the appear-

ance of the captured object(s) lacks details and may look invisible as shown in Fig. 4.2.

Moreover, their intensity histograms are greatly biased towards the lower levels. This is

because the lighting in low-light environments are provided by limited sources that are

comparatively weaker, such as the setting sun (twilight), street lights, or car lights.

Looking into the causes of the many variations, it is found that the illumination dif-

ferences in low-light environments are highly dependent on the light sources where they

affect the luminance level of an image both globally and locally. For example, images that

are taken at dusk, dawn, and nighttime, either outdoor or indoor, each has different levels

of light from one another. Furthermore, artificial light sources are used in such environ-

ments which adds more variations, like street lights, table lamps, fluorescent lamps, and

LED bulbs to name a few. This diversity of light sources dictates the intensity that reaches

an object, subsequently affecting the image’s overall intensity and contrast captured by a

camera. This is reflected in the intensity histograms obtained from both the MSCOCO
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Figure 4.2: Low-light images and their global intensity histograms. Low light im-
age types, from upper left: Low, Ambient, Object, Single, Weak, Strong, Screen,
Window, Shadow, and Twilight.
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Figure 4.3: Average global intensity histograms of the MSCOCO subset (bright),
and the ExDark averaged based on the lighting types.

subset and ExDark shown in Fig. 4.3 where different lighting types has subtle differ-

ences between one another, while bright images histogram greatly deviates from them.

Therefore, this image to image difference is termed as global illumination variation.

On the other hand, in very low-light environments such as nighttime, objects are

only apparent when near to the light source but become increasingly obscure as they
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Figure 4.4: Average intensity values of local patches and heat maps of bright images
from Fig. 4.1.

move further away. This brings considerable illumination variations within one image.

Figures 4.4 and 4.5 show the patch intensity values and illustrated as heat maps of bright

and low-light images corresponding to Fig. 4.1 and 4.2 respectively. In Fig. 4.4, the

intensity values are relatively high and consistent throughout the image. However, in Fig.

4.5, it can be seen that the average intensities are in the much lower range and reduce as

the patches move away from the light source with very large differences, as illustrated

by the heat maps. Furthermore, when there are more than one light source available, the

intensity variation becomes even more severe, as seen in the Weak, Strong, and Screen

types in Fig. 4.5. Hence, these image specific variations are termed as local illumination

variation.

Based on this analysis, it is noted that both the global and local illumination varia-

tions requires specific attention in order to progress the development of a practical low-

light system.

4.2.2 High Level Analysis

Many higher level computer vision works, such as feature extractors and object detectors,

claim robustness in the designs that would handle the illumination problem, though there
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Figure 4.5: Average intensity values of local patches and heat maps of low-light
images from Fig. 4.2. Low light image types, from upper left: Low, Ambient, Object,
Single, Weak, Strong, Screen, Window, Shadow, and Twilight.

were no explicit assertion about their capability addressing the global and local illumi-

nation variation of low-light environments. Hence, the high level analysis in this section

serves to look into the effectiveness of existing object features, both hand-crafted and

learned, in addressing the low-light challenges.

4.2.2 (a) Performance of Hand-Crafted Features

Hand-crafted features are designed computations to extract meaningful information, based

on established insights on the behaviors of the image contents, as opposed to learned fea-

tures where computational models are trained to discover the meaningful information by

themselves. While the progress of deep learning in these few years has seen a shift in

preference towards learned features, hand-crafted features are still employed, particularly

for the object proposal task due to their high speed and low complexity nature. The inten-

44

Univ
ers

iti 
Mala

ya



tion of this analysis is to look into the abilities of classical hand-designed features when

handling object detection in low-light images, thus algorithms that use different types of

features are engaged for the comparison, namely Edge Boxes1 (Zitnick & Dollár (2014)),

Binarized Normed Gradients (BING)2 (Cheng et al. (2014)), and Adobe Boxes3 (Fang et

al. (2016)), instead of deep learning based proposers (Redmon et al. (2016); Ren et al.

(2015)). Descriptions of these methods are as follows:

• Edge Boxes, as stated in the name proposes object bounding boxes by grouping

edges, and uses the edge inside and overlapping the bounding box to compute a

score indicating the likelihood of an object, i.e. objectness. Given a bounding box

Bi in an image, wB(s j) ∈ [0,1] measures if an edge s j is fully inside or overlapping

Bi based on the affinity between edges. wBi(s j) = 1 indicates that the edge is fully

inside the box whereas edges overlapping or outside Bi is shown by wBi(s j) = 0.

The objectness score is computed by

hBi =
∑ j wBi(s j)m j

2(Bw
i +Bh

i )
κ
, (4.1)

where m j is the sum of edge pixel magnitudes, Bw
i and Bh

i are the width and height of

Bi respectively, and κ is the box size offset. A higher hBi denotes a higher possibility

that Bi encloses an object. Bounding boxes are searched by sliding windows where

the result is a set of bounding box proposals B = {Bi|i = 1, . . . ,n}.

• BING is based on the correlation between object boundaries and norm of image

gradients. The method uses a 64 dimension BING feature based on the Euclidean

norm of the gradients in 8×8 regions of an image in multiple scales to evaluate ob-

1https://github.com/pdollar/edges
2https://github.com/tfzhou/BINGObjectness
3https://github.com/fzw310/AdobeBoxes-v1.0-/tree/master/AdobeBoxes(v1.0)
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jectness. Initially, object boxes are searched by scanning over the image at different

scales using windows with predefined sizes and aspect ratio. Each of the windows

are scored using a linear SVM model given the BING features. This SVM model is

then trained using BING features of groundtruth object windows as positive sam-

ples and features from random background as negative samples. The classified ob-

ject windows are then refined using Non-Maximal Suppression (NMS)) to remove

windows less likely to contain objects, for example window size of 10×500 is less

likely an object as compared to 100×100 sized windows. The remaining windows

are then scored again using another linear SVM model that takes the score from the

previous model as input. This score is called the calibrated filter score, where it

calibrates the score from the previous model to get the final objectness score.

• Adobe Boxes uses groups of superpixels with high contrast from the background as

the representation of object parts, named adobes, to propose object bounding boxes.

The spatial concentration of adobes are used to calculate the objectness score, that

is, the closer or more compact the adobes, the more likely they constitute an ob-

ject. To extract object adobes, an image segmentation method is used to obtain

superpixels and histogram intersection distance is used to measure the distance be-

tween the superpixels. Given an initial window, the following sets of superpixels

are determined:

– Background superpixel set, Sb where the superpixels intersect with the win-

dow.

– Internel superpixel set, Si where the superpixels are located inside the window

and do not touch the boundary.

– Seed superpixel set, Ss where the superpixels are likely to belong to the object.

This is determined by calculating the local contrast of Si and selecting the ones

46

Univ
ers

iti 
Mala

ya



with highest probability.

– Candidate adobe set, Sc where the superpixels are inside of the window and

may touch the boundary, hence Si v Sc.

The final object adobe set of superpixels, So is then determined from the Sc by

comparing its contrast to the superpixels in Sb and Ss sets. If the contrast distance

of a superpixel s ∈ Sc is closer to Ss, the superpixel is an object adobe. Once the

object adobes are found, the window is refined to obtain the object bounding box.

The bounding boxes are then ranked using the adobe compactness which considers

that the more compactly the object adobes are spatially distributed, the more likely

it is for the box to capture the object. The score is defined as

AC(B) =
∑s∈So |s|
|B|

(4.2)

where s is a superpixel and B is the bounding box. For Adobe Boxes with the same

adobe coompactness, the larger bounding box is favored because it indicates that

the object is more salient and more parts were captured. This method can also be

used to refine proposals produced by other methods, e.g. the paper showed that it

works well when combined with BING (AdobeBING).

Quantitative Evaluation. This evaluation is to assess the ability of hand-crafted

features to detect objects in both bright and low-light images, disregarding the iden-

tity of the objects. Experiments were performed to compare the detection rate (detec-

tions/groundtruths) and recall (detections/proposals) between the datasets using each pro-

posal method. In the tests, the methods were set to produce a maximum of 1000 bounding

boxes, however the amount could be less depending on the algorithms ability to confi-

dently propose the boxes. As for the evaluation, the Intersection over Union (IoU) metric
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Figure 4.6: Illustration of IoU computation.

is used, where it calculates the overlap of the bounding boxes by dividing the area of in-

tersection between the proposals with the groundtruth boxes with the area of their union,

as shown in Fig. 4.6. In this analysis varying thresholds, from 0.5 to 1.0, were tested.

Implicitly, as the IoU increase, the detection rate and recall will reduce as the crite-

ria to constitute a detection becomes stricter, as seen in performance graphs in Fig. 4.7.

At lower IoU, the detection rate is higher for images from the ExDark but this condition

gradually inverts as the IoU increases. From the onset, the higher detection rate on the Ex-

Dark seems to indicate more object detections, however, the results in Table 4.2 show that

the average detection in low-light images are less than MSCOCO for all methods. Hence,

it is postulated that the reason for the higher detection rate is caused by the number of

groundtruth where the images in MSCOCO contain more objects that remain undetected.

These undetected objects can be attributed to the complexity of the MSCOCO images

where many of the objects are too small, occluded, or only partially shown in the image,

a common trait in challenging bright datasets. Whereas the images from ExDark mostly

contain the full objects where the main challenge comes from the illumination. Nonethe-
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Figure 4.7: Detection rate and recall of Edge boxes, BING, Adobe boxes, and BING
refined by Adobe boxes (AdobeBING), at maximum proposal of 1000 boxes. (The
solid lines are the performance on ExDark, and the dotted lines shows the perfor-
mance on MSCOCO)

Table 4.2: Average proposals, average detections, detection rate, and recall of tested
proposal methods at maximum proposal of 1000 and IoU of 0.7.

Methods Dataset Avg. Proposal/im Avg. Detection/im Detection Rate Recall
Edge
Boxes

MSCOCO 998 1.9871 0.4430 0.0020
ExDark 987 1.7050 0.5295 0.0017

BING MSCOCO 1000 0.6457 0.1439 0.0006
ExDark 1000 0.4483 0.1392 0.0004

Adobe
Boxes

MSCOCO 1000 1.6753 0.3735 0.0017
ExDark 999 1.1039 0.3428 0.0011

Adobe
BING

MSCOCO 1000 1.6010 0.3569 0.0016
ExDark 1000 1.0209 0.3170 0.0010

less, the low detection rate for ExDark at higher IoU is also an indication that it is more

challenging to get an accurate localization in low-light images as compared to the bright

images.

On the other hand, the recall on ExDark is obviously lower than the MSCOCO data

using any of the methods. This result infers that most of the proposals in the low-light

images are not valuable, even though the average proposal per image maybe lower than

that in MSCOCO, such as for the Edge Boxes and Adobe Boxes in Table 4.2.
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Qualitative Evaluation. Further study of the results of different features were con-

ducted by investigating some of the qualitative examples of both bright and low-light

images in Fig. 4.8 and Fig. 4.9 respectively, as well as visualizations of the features used

by the proposers.

In Fig. 4.8, it can be seen that the MSCOCO images has objects that are very small

compared to the image size, which causes the methods, particularly the Edge Boxes and

BING to fail. It can be understood by examining their respective edge and gradient im-

ages, that the features are unable to capture the details of really small objects. On the

other hand, Adobe Boxes and AdobeBING are better as superpixels are more precise in

segmenting the objects from background, but it still could not fully solve the problem as

seen in the undetected small objects in the last example of Fig. 4.8.

On the contrary, the failures in the ExDark are not due to the object scale, but from

factors related to low-light, as shown in Fig. 4.9. The first is the additional noise in

low-light images that causes the failure due to interference from extra features, as seen in

the first two rows of images in Fig. 4.9. Even for successful proposals, the alignment is

rather far from the groundtruth. These noises are usually caused by the high camera ISO

setting used to compensate the low-light level but at the same time it makes the camera

oversensitive to the surrounding light. The other cause is the blending of the objects

either to the background or to other objects, as seen in the last two rows of examples

in Fig. 4.9. The methods are especially weak for these types of conditions because

the gradient boundaries are unclear and the superpixels were unable to distinguish the

difference between the low valued pixels of objects and backgrounds.

Further Look into Low-light. The detection and recall of the methods were sep-

arated into the 10 types of low-light images that have been established for a further in-

vestigation into the effects of the results based on illumination. Figures 4.10 and 4.11

show the detection rate and recall respectively, where Edge Boxes performs the best for
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Figure 4.8: Examples of proposals on MSCOCO images and visualizations of their
respective features. (Red: undetected groundtruth; Green: detected groundtruth,
Green dotted: proposed box) From left: Edge Boxes, BING, Adobe Boxes, and
AdobeBING. (Maximum proposals = 1000; IoU = 0.7)
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Figure 4.9: Examples of proposals on ExDark images and visualizations of their re-
spective features. (Red: undetected groundtruth; Green: detected groundtruth,
Green dotted: proposed box) From left: Edge Boxes, BING, Adobe Boxes, and
AdobeBING. (Max. proposals = 1000; IoU = 0.7)

all types of low-light conditions. Images with Ambient and Single lighting show the best

detection rate, while Low and surprisingly Strong lighting are the weakest. Whereas for

the recall, the Object lighting type is the best while Low is the least. Figure 4.12 shows

examples of Edge Boxes detections in the different types of lighting.
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Figure 4.10: Detection rate of Edge boxes, BING, Adobe Boxes, and BING refined by
Adobe boxes (AdobeBING), sorted into low-light image types. (Maximum proposals
= 1000; IoU = 0.7)

Figure 4.11: Recall of Edge boxes, BING, Adobe Boxes, and BING refined by Adobe
boxes (AdobeBING), sorted into low-light image types. (Maximum proposals =
1000; IoU = 0.7)

The method performs quite well for the Ambient and Single light types because there

are still enough light in the image to highlight the object features, particularly when the

objects are nearer to the source of light. Whereas for very low light images, the objects are

more likely to blend into the background. On the other hand, images taken in strongly lit

low-light environments are expected to show more features, however, such environments
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Figure 4.12: Examples of Edge Boxes proposals (Max. proposals = 1000; IoU =
0.7) on different types of low-light images and visualizations of the edge features.
(Red: undetected groundtruth; Green: detected groundtruth, Green dotted: pro-
posed box) From left, first row: Low, Ambient, Object, Single, Weak; second row:
Strong, Screen, Window, Shadow, Twilight.

are also more cluttered with objects and irregular light sources that results in complex

images, subsequently deteriorating detection performance.

Considering the recall, very low light images have the lowest value because the con-

trast of the objects are either too low for the object features to be extracted or the image

is saturated with noise due to the camera’s high ISO setting. Images with a well illu-

minated object but low-light surroundings give the best recall because the well lit object

will mostly be detected even if the other objects in the low-light background are missed,

hence aiding in the recall evaluation. For the most part, the detection rates using these

hand-crafted approaches are below 70% for any type of low-light conditions, which leaves

room for improvement before a good low-light object detection system can be achieved.
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4.2.2 (b) Insights from Learned Features

After exploring the performance of hand-crafted features in Section 4.2.2 (a), here the ca-

pabilities of learned features in low-light are tested. In contrast to hand-crafted features,

learned features rely on the computation of machine learning algorithms to uncover the

best representations for a given task. At first, the features learned largely remain unknown

as the high dimensional representations generated by machines could not be fully com-

prehended. Nevertheless, many works have since visualized high dimensional data and

features (Donahue et al. (2014); Lee et al. (2017); Mahendran & Vedaldi (2015); Yosinski

et al. (2015); Zeiler & Fergus (2014)) to understand and find out what the machines “see”.

This section details the attempt to uncover the features in low-light images by vi-

sualizing a straight forward object classification CNN, as it has become the benchmark

in learning discriminative features for the task. Specifically, the pre-trained Resnet-50

model (He et al. (2016)) was fine-tuned, on the MSCOCO and ExDark data, and evalu-

ated their performance based on different ratios of bright and dark data used in the fine-

tuning. Then, the behavior of the learned representations are studied in two ways. First

off, the t-Distributed Stochastic Neighbor Embedding (t-SNE) (Maaten & Hinton (2008);

Van Der Maaten (2014)) is used to visualize a 2D mapping on the clustering behavior

achieved by the learned feature vectors. The other is the visualization of the activations

of convolution maps corresponding to the spatial location on the images (Yosinski et al.

(2015)) in order to find out which part of an image “triggers” the classification outcome,

i.e. the attention of the network.

Classification Performance. The Resnet model is chosen for this task because it is

currently one of the top performing architecture in both the ILSVRC and MSCOCO chal-

lenges. In a plain CNN, convolution and pooling operations, i.e. layers, are sequentially

stacked to form a network architecture that is trained with supervision to perform a task,
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Figure 4.13: The residual network architecture with 50 layers (Resnet-50). The dot-
ted lines show the shortcut connections that changes a regular CNN into a residual
network. The shortcuts are implemented on every block containing 3 convolution
layers, and there are 4 types of blocks (shown in varying colors) consisting different
convolution parameters. Varying amounts of blocks are stacked with the shortcuts
to form the network.

but it is able to learn features in an unsupervised manner. The Resnet is a CNN that im-

plements residual function learning in the layers with respect to the inputs, i.e. a shortcut

that bypass the layers as shown in Fig. 4.13. This architecture allows for easier network

optimization of substantially deeper CNN models, from tens to hundreds of layers.

However, a common problem in training a CNN, especially one as deep as the Resnet

architecture is overfitting, that is when the training data provided is not large enough the

trained model is not generalized and performs poorly in testing (Donahue et al. (2014);

LeCun et al. (2015)). Hence, on account that the amount of images in the ExDark is still

too small to train a full CNN model from scratch, the task was approached by fine-tuning

and the specific model chosen is the Resnet-50 that is pre-trained using ImageNet.

The Resnet-50 is chosen instead of its deeper counterparts to further minimize the

chances of overfitting, whereas the ImageNet pre-training is able to initialize the net-

work’s weights to the same tasks, that is object classification. The fine-tuning scheme
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Table 4.3: Accuracy of Resnet-50 models fine-tuned using different ratios of bright
images (MSCOCO) and low-light images (ExDark). MSCOCO: performance on
MSCOCO test images only, ExDark: performance on ExDark test images only,
Overall: performance on test images of both sets.

Training ratio Test Accuracy
Model MSCOCO:ExDark MSCOCO ExDark Overall

1 10:0 62.75% 43.15% 53.49%
2 9:1 63.31% 48.89% 56.50%
3 8:2 62.16% 52.75% 57.71%
4 7:3 61.25% 55.05% 58.32%
5 6:4 61.50% 55.64% 58.73%
6 5:5 61.18% 58.45% 59.89%
7 4:6 59.89% 58.99% 59.47%
8 3:7 58.00% 59.54% 58.73%
9 2:8 57.27% 61.45% 59.24%

10 1:9 55.38% 62.27% 58.64%
11 0:10 46.30% 62.58% 53.99%

introduces new classification layer(s) to an already trained CNN, and then trains the net-

work by using higher learning rates for the new layers, and lower learning rates for the

pre-trained layers. This is to preserve the pre-trained parameters that are already relatively

well generalized for the task and only make minor updates to adjust to the new classifica-

tion objective. Thus, in this particular work, the classification layer of the Resnet-50, the

fc1000 containing 1000 object classes from the ImageNet data in Fig. 4.13, was changed

into a 12 object classes layer. The learning rate for this new layer is set to 0.001, while

the remaining unchanged layers were set to have 0.0001 as the learning rate.

Using the data stated in Table 4.1, 400 images per class were set aside for the train-

ing, where 250 of them were used to fine-tune the model and 150 were used for validation.

Hence, both the MSCOCO and ExDark provide 4,800 training images each, while the re-

maining 2,862 and 2,563 respectively make up the test sets. Experimentation using ratios

from 10:0 (only bright images) to 0:10 (only low-light images) of bright to low-light

images to fine-tune the model were conducted to observe the classification outcomes.

A few inferences can be drawn from the results shown in Table 4.3. First, the no-

tion that the illumination variation of low-light can be addressed with the same manner
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as noise (small additions into the training data) is improper. As shown in the results, the

models that were fine-tuned with less amount of low-light images are weaker at classify-

ing them, and gradually increases with the ratio. On the other hand, there was a presump-

tion that balanced or generalized training data would enable the model to learn features

that are mutually useful for both types of images and subsequently achieve best classi-

fication performance, but this is proven to be indiscreet. While the overall classification

accuracy of Model 6 is the best, it appears to be a trade-off result as its performance is no

better than a model specifically trained and tested on either bright (Model 1) or low-light

(Model 11) images, even though they are addressing the same classification task. Hence,

further analysis into the features was done to understand this behavior.

Feature Analysis with t-SNE. The features learned by the Resnet-50 model fine-

tuned on 5:5 data ratio (Model 6) were analyzed using the t-SNE algorithm4 (Maaten &

Hinton (2008); Van Der Maaten (2014)). t-SNE is a dimensionality reduction technique

for visualizing high-dimensional data in a 2D or 3D plot, referred to as embedding. It

computes the pairwise similarities of the input data points, e.g. high-dimensional feature

vectors, and the pairwise similarities of a corresponding low-dimensional counterpart,

i.e. the 2D or 3D coordinates representing each vector. Then by minimizing the differ-

ence between these two distributions, the low-dimensional counterpart can sufficiently

represent each high-dimensional datum in relation to other data and be plotted in a 2D

or 3D space. Thus, it is noted that the resultant visualization by the t-SNE shows the

relationship between each data instead of the absolute representation of a single datum in

a lower dimension. However, this algorithm is computationally intensive, therefore the

Principal Component Analysis (PCA)5, a faster but less effective algorithm, is first used

4https://lvdmaaten.github.io/tsne/
5PCA is a dimension reduction technique implementing eigenvalues and eigenvectors to compute the

correlation between data points to give the minimum variables while maintaining maximum variation that
represents the original data.
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Figure 4.14: t-SNE embedding of features vectors from Resnet-50 fine-tuned on 5:5
ratio of bright and low-light images. Class 1-12: Bicycle, Boat, Bottle, Bus, Car, Cat,
Chair, Cup, Dog, Motorbike, People, and Table.

to reduce the high-dimensional vector into an intermediate dimension, before the t-SNE

further reduces it into the required dimension for embedding.

In the Resnet-50 model, the output produced by the last convolution layer is the

high level representation that goes through a pooling layer that reduces its dimension and

subsequently used by final fully connected layer for classification. Hence, to study the

behavior of the high level features, the feature vectors produced by the last pooling layer

of Model 6 when classifying the testing images were extracted. The PCA was used to

first reduce these 1× 1× 2048 dimension feature vectors into 50 dimensions and then

the t-SNE further reduces it into a 2 dimension embedding which shows the relationship

between the features.

Figures 4.14 and 4.15 show the embedding of the test images generated by t-SNE
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Figure 4.15: t-SNE embedding of features vectors from Resnet-50 fine-tuned on 5:5
ratio of bright and low-light images. Type 1-2: Bright (MSCOCO), and Low-light
(ExDark) images.

and color coordinated by the object classes, and image types. Noticeable grouping of

the object classes can be seen in Fig. 4.14, and classes that are relatively similar, such

as Cat (5-green) and Dog (9-dark blue) are grouped closely as well, as circled in red. It

is deduced that the learned features are able to capture high level abstraction of objects,

though considerable amounts of confusion are still present, as circled in black.

A further study of feature embeddings from another perspective was done by differ-

entiating the bright and low-light images, by marking the scatter points with two colors

as in Fig. 4.15. Surprisingly, it shows a clear separation between bright images from

the MSCOCO dataset (red) with the low-light images of ExDark (blue), which is a clear

indication that even though the model is trained on both types of image for the same task,

the features learned are inherently different. For example, the region for Cat and Dog
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Figure 4.16: t-SNE embedding of features vectors from Resnet-50 fine-tuned on 5:5
ratio low-light images only. Separated by indoor (‘x’) and outdoor (‘o’) and color
coded by the type of light conditions, 1-10: Low, Ambient, Object, Single, Weak,
Strong, Screen (indoor only), Window (indoor only), Shadow (Outdoor only), and
Twilight (outdoor only).

classes (circled in red) has a distinct split (red dotted line). Moreover, the region that do

not have a distinct clustering of classes (circled in black) are found within the low-light

image cluster, thus pointing out that the the features learned for low-light images maybe

not be as robust as those for bright images.

Furthermore, the embedding was examined by color coordinating the scatter plot

based on the types of low-light, as well as differentiating them by indoor and outdoor

environments, as illustrated in Fig. 4.16 and 4.17. Firstly, the features seem to be able to

distinguish indoor and outdoor by a small degree where the indoor images seem to cluster

to the upper half of the embedding while the outdoor images are scattered throughout. On

the other hand, the features appear to have the ability to distinguish certain types of low-
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Figure 4.17: t-SNE embedding of features vectors from Resnet-50 fine-tuned on 5:5
ratio low-light images only. Color coded by classes, Class 1-12: Bicycle, Boat, Bottle,
Bus, Car, Cat, Chair, Cup, Dog, Motorbike, People, and Table.

light images, such as Low (1-red), Strong (6-light blue), and Twilight (10-pink), though

this ability may interfere with its robustness for the object classification task. As shown

in the comparison between Fig. 4.16 and 4.17, the clustering of Low (1-red) and Window

(8-dark blue) illumination type features (circled in black) has caused confusion to Cat,

Chair, Dog, and People object classes. However, the clustering of the features may be

stronger for the classification task, such as the Boat class cluster (circled in red) grouping

both Strong and Twilight images together, though a separation can still be seen. Hence, it

can be surmised that CNN model unwittingly learns low-light properties which can be a

hindrance to the object classification task.

Attention Analysis with Activation Maps. This section delves into the activation

maps of the trained model to find out its attention when performing the classification, and
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Figure 4.18: Feature maps produced by convolution and pooling layers in a simple
CNN architecture. The dimensions of the feature maps get increasingly small while
the number of maps increase as the more convolution and pooling operations are
performed.

Figure 4.19: Visualization process for analyzing activation maps of Resnet-50.

if low-light elements are an influence to it. Activation maps are outputs produced by the

convolution and pooling layers of a CNN architecture. Figure 4.18 shows the flow of a

simple CNN and the feature maps produced after each operation, where it can be seen that

the dimension of the maps decreases while the number of maps increases. Based on the

findings of Yosinski et al. (2015), the early layers of a CNN captures lower level features

such as edges and textures, and as the layers progress, increasingly high level concepts

are encoded, which were then used for classification. Therefore, the crucial concepts

for classification performance are found in the deeper layers, which is the target for this

study.

Specifically, the activation maps before the last pooling layer of Model 6 (last con-

volution output before fully connected) was chosen to be visualized, so that the spatial

location of the activations are preserved. The visualization process is illustrated in Fig.

4.19. First the 7× 7× 2048 dimension activation maps of the Resnet-50 model when

classifying an image were extracted. These maps are then aggregated into a single map

by maximum pooling across the maps for every spatial location. Thus, the resultant ag-
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(a) Bicycle (b) Bottle (c) Car (d) Boat (e) Bus

(f) Bottle (g) Cup (h) Bottle (i) Car (j) People

(k) Cat (l) Dog (m) Bus (n) Chair (o) Cat

Figure 4.20: Test images (top) and the visualization of activation maps (bottom).
(a)-(e) Correctly classified low-light images; (f)-(j) Misclassified low-light images;
(k)-(o) Misclassified bright images. (Classification results in sub-caption; correct
class labels: (f) Cat, (g) Chair, (h) Cup, (i) Dog, (j) Motorbike, (k) Motorbike, (l)
People, (m) Dog, (n) Table, (o) Bicycle).

gregated map will either have high values for locations that are highly activated or gives

high contribution to the classifier. This map is then resized using bicubic interpolation to

the original image’s dimensions and superimpose onto the image, whereby the less infor-
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mative regions will be masked and the remaining regions show the model’s attention on

the image that lead to the classification result.

Figure 4.20 shows a few examples of the classified test images and their respective

activation regions. It is found that in the low-light images, the attention of the model

are often drawn to the bright sources of light, either partially or entirely. For example,

the activation maps of the correctly classified images in Fig. 4.20a - 4.20e show that

while the main attention is on the object of interest, the light sources are either within the

attention (Fig. 4.20a - 4.20c) or directly shined on the objects (Fig. 4.20d - 4.20e). While

the model can “overlook” the light sources, like in Fig. 4.20e, there are many cases,

such as Fig. 4.20f - 4.20j, where the attention of the model is overtaken by the brightest

areas and causes misclassification. Yet this is not an issue for bright images, where the

misclassification is commonly due to the attention being on another object instead of the

labeled class as shown in Fig. 4.20k - 4.20o.

4.3 Summary

This chapter detailed the extensive analyses performed on low-light images from the per-

spective of both low and high level computer vision. Low level analysis looks into the

pixel intensities of low-light images from global intensity histogram to local patch in-

tensity variations. It is found that not only are the intensity patterns of low-light images

greatly different from bright images, there exists subtle variations between the global

intensity histograms of different types of low-light images. Moreover, the local patch in-

tensity variations also greatly differ from one another due to the influence of light sources.

On the other hand, high level analysis digs deep into the behavior of common ob-

ject features, both hand-crafted and learned, in which interesting insights were found.

Foremost, the current design of hand-crafted features are mainly for bright conditions,

thus unable to adequately address cases of noise and lack of details that frequently exist
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in low-light images. Conversely, the investigation into learned features by visualizing the

feature vectors and activation maps of a CNN, has lead to the understanding that low-light

“alters” object features, i.e. the same object in bright and low-light yields amply differ-

ent features. Moreover, the irregularity of illumination greatly challenges the attention of

features that is not found in bright environments. Therefore, the low-light phenomenon in

computer vision is not to be trifled with lightly, but instead requires careful consideration.
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CHAPTER 5: LOW-LIGHT IMAGE CONTRAST ENHANCEMENT USING

GAUSSIAN PROCESS

Low-light is a condition that challenges computer vision systems that extends beyond the

common conception of illumination invariant features as discussed in Chapter 4. Thus,

instead of looking into feature designs and model optimizations, this research addresses

the challenges through the perspective of features retrieval via contrast enhancement.

Noting the global and local illumination variation, this chapter details the proposed

approach that is unlike previous works. Inspired by the localized and spatially non-linear

nature of human eyes in adaptation (Rose (1948); Vangorp et al. (2015)), the aim is to de-

velop a locally adaptable model to enhance the contrast of a single low-light image1 with

emphasis on retrieving informative details instead of aesthetic restoration. Specifically,

to enhance low-light images using localized functions exclusive to individual regions or

pixels, thus, distinct enhancements are assigned to different illuminations for optimal re-

sults. To this end, the GP regression is employed to construct a distribution of functions

for a precise enhancement due to its sophistication and robustness on such localized data.

5.1 Problem Formulation

Formally, the global and local illumination variation of low-light images are a result of

real world behavior of light defined by both the light source and the inverse-square law of

distance:

E(p) =
L(p)cos2θdA

l2 (5.1)

where E is the irradiance or intensity per unit area on the object, L is the radiance from

light source, cos θ is the foreshortening, dA is the unit area, and l is the distance between

1In this research, low-light images are the primary target for the contrast enhancement, instead of low
contrast images which can be either low-light or bright images.
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the light source and object. Due to this, the light intensity of an object depends on radiance

of the light source (e.g. midday, twilight, etc.) which is the global variation, and the

foreshortening and distance are the causes of local variation. It is noted that real bright

images also have the foreshortening effect caused by local illuminance variations, and

coincidentally brings out the details of contents within an image, therefore, considering

the third objective of this work, this characteristic is preserved instead of brightening

every dark region in low-light images.

Thus, the low-light image contrast enhancement is essentially improving the remain-

ing of the scene illuminance that was captured. Figuratively, this is achieved by reversing

the effect caused by largely varied light sources L and distances l on the intensity. Hence,

the low-light image enhancement can be modeled as:

IB(x) = ID(x)F(L, lx), (5.2)

s.t. L = {L1,L2, ...,Li} ; lx =
{

lx1, lx2, ..., lx j

}

where IB(x) is the enhanced image that has an appropriate contrast and relative uniform

intensity distribution, ID(x) is the captured low-light image that has relatively low illumi-

nance, low contrast and intensity variation, x is a pixel or small patch in the image, and

F(L, lx) is the mapping operator defined by the light source L and distance l. However,

estimating the mapping operator is not a simple task due to the following reasons:

• Diverse types of light sources L have individual light strength providing distinct

levels of intensity;

• Multiple sources of light {L1,L2, · · · ,Li} increase the non-uniformity of the scene

luminance;

• Any point of a scene can locate at a varying distance
{

lx1 , lx2, ..., lx j

}
between the
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object and source of light.

Therefore, Equation 5.2 is transformed into:

IB(x) = f (ID(x)) (5.3)

where f (·) is the enhancement function that models the relationship of pixels in the low-

light image, ID(x) with the target bright pixels of IB(x).

5.2 Proposed Method

To reiterate, the relationship of pixels between ID(x) and IB(x) are localized, hence f (·)

is not a single function acting on all pixels, but a collection of different functions that act

on the respective pixels. Therefore, GP is the reasonable framework for modeling such

relationships as it defines a distribution over functions.

5.2.1 Gaussian Process Overview

Williams & Rasmussen (2006) define the GP as a collection of random variables where

any finite number of which have (consistent) joint Gaussian distributions, i.e. the distri-

bution of a GP is the combined distribution of random variables. It is inherently different

from Gaussian Distribution (GD) such that, in a GD, individual random variables or in-

puts x in a vector are indexed by their position in the vector such that the distribution

is defined by the mean, µ which is a vector, and covariance, ∑ that is matrix. The GP

on the other hand, has the input x as the index associated with the random variable g(x)

which itself is a distribution, and the GP mean, m and covariance, k are functions. Simply

put, the GD is a distribution over vectors whereas GP is a distribution over functions as

illustrated in Fig. 5.1. The GD plots a single function that best fits the given input and
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(a) Gaussian Distribution (b) Gaussian Process

Figure 5.1: The GD is a single function that best fits the given data, whereas the GP
consists multiple functions (gray area) that are shaped by the data.

output data, whereas the GP is made up of multiple functions, shown as the gray area,

that are shaped by the given data.

Mathematically, the GP defines a distribution over function f that estimates an out-

put y from the marginal distribution of functions P( f (x1), f (x2), · · · , f (xk)) of finite in-

puts x = {x1,x2, · · · ,xk}. It is parameterized by a mean function m(x) and a covariance

function k(xtr,xts) such that f (x) ∼ GP(m(x),k(xtr,xts)), where the joint distribution of

training and test outputs is:

ytr

yts

∼N

m(xtr)

m(xts)

 ,
K(xtr,xtr) K(xtr,xts)

K(xts,xtr) K(xts,xts)


 . (5.4)

ytr refers to the training outputs and yts is the testing outputs in which y = [ytr,yts].

Similarly, x = [xtr,xts] are the training and testing inputs. K(xtr,xts) denotes the covari-

ance matrix between the training and testing inputs, along with K(xtr,xtr),K(xts,xtr), and

K(xts,xts) as the covariance of their respective pairings. Given the observation ytr from
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Figure 5.2: The intuition is to have localized enhancement functions for each re-
gion/pixel, the GP is used to govern them into a distribution of functions. (Top:
Low-light image, Bottom: Contrast enhanced image).

xtr, the output yts can be estimated with xts from the conditional distribution:

P(yts|xtr,ytr,xts)∼N (µ,Σ) (5.5)

where µ = m(xts)+K(xts,xtr)[K(xtr,xtr)]
−1(ytr−m(xtr)), (5.6)

Σ = K(xts,xts)−K(xts,xtr)[K(xtr,xtr)]
−1K(xtr,xts) (5.7)

5.2.2 Modeling Contrast Enhancement with Gaussian Process

The objective is to estimate a corresponding bright image IB given a single low-light

image ID. As previously established, the enhancement functions for low-light images are

localized, thus the distribution of functions P( f (x1), f (x2), · · · , f (xk)) are therefore the

varied local luminance mapping functions as shown in Fig. 5.2, where the inputs x refer

to either the local patches or pixels in the low-light image. Specifically, the implemented

testing inputs are the pixels from the low-light image, i.e. xts = {pD|pD ∈ ID}, while

the testing outputs are the corresponding enhanced image pixels, i.e. yts = {pB|pB ∈ IB}.

Figure 1.5 shows the overall flow of the proposed enhancement framework.
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The construction of the GP is specified by mean and covariance functions given the

data. Hence, for these priors, the zero mean function m(x) = 0 is used to simplify the

modeling process and allow the relationship between xtr and xts to be fully defined by

the covariance function k(xtr,xts). The squared exponential is chosen as the covariance

function:

k(xtr,xts) = σ
2
f exp

(
−(xtr− xts)

2

2d2

)
, (5.8)

where hyperparameters, σ2
f is the data variance, and d is the length scale that defines

the smoothness of the GP . These hyperparameters θGP =
{

σ f ,d
}

determines the form

of the distribution of functions, and are inferred from the low-light data using conjugate

gradients to optimize the log marginal likelihood:

L= logP(ytr|xtr,θGP). (5.9)

As the posterior distribution is data dependent, each image is therefore enhanced by image

exclusive optimal hyperparameters in the framework. For the training data, the patches

of m× n pixels of the given low-light image ID are defined as the training inputs xtr

whereas the training outputs ytr are patches of the similar pixels dimension and spatial

location from a corresponding bright image IE , as illustrated in Fig. 1.5. To this end,

the training inputs P̄D =
{

P̄D,1, P̄D,2, · · · , P̄D,k
}

and outputs P̄E =
{

P̄E,1, P̄E,2, · · · , P̄E,k
}

are

the average intensities of local patches, PD =
{

PD,1,PD,2, · · · ,PD,k|PD ⊆ ID
}

and PE ={
PE,1,PE,2, · · · ,PE,k|PE ⊆ IE

}
.

From a preliminary investigation, it was found that the sizes of PD and PE heavily

influence the posterior distribution and quality of the enhancement, where smaller sizes

give better results as shown in Fig. 5.3. This is because the region size constrains the pre-

cision of the mapping distribution. As the size decreases, more constraints are introduced
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Figure 5.3: Low-light image and enhancement results using GPs trained by different
patch sizes. From left: Original low-light image, results using patch sizes 4×4, 8×8,
16×16, and 32×32.

and brings more precise distribution. However, there is a trade-off where more constraints

will drastically increase the computational cost. Due to this reason, an inflection point is

found where the PD and PE are fixed as patches of 4×4 pixels. In addition, many patches

in an image bore a superficial resemblance, therefore the computation is further optimized

by using only one region-pair instead of multiple similar ones as shown in Fig. 5.4, i.e.

{xtr,ytr}= {PD,i,PE,i}

if
{

P̄D,i ≈ P̄D, j|
{

P̄D,i, P̄D, j
}
⊂ P̄D

}
∨
{

P̄E,i ≈ P̄E, j|
{

P̄E,i, P̄E, j
}
⊂ P̄E

}
where i 6= j

(5.10)

The average intensity of the patches are used as the similarity measure.

5.2.3 Gaussian Process Training Data Estimation

In order to build the GP , one will require the input and output training data, akin to

building any distribution functions as explained in Section 5.2.1 and illustrated in Fig.

5.1. For example, He et al. (2011) adopted the GP for single image super-resolution,

where training input and output were generated using upsampling and downsampling

operations.

In the low-light image enhancement task, the input data is the low-light image ID,

whereas the desired output data is the corresponding bright image. However, this image is
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Figure 5.4: GP training input ID (in luminance channel, Y ) and output IE , and train-
ing data optimization. Note that the training data xtr and ytr are corresponding
patches from ID and IE respectively, enabling edge/texture relationships to be pre-
served in the GP . If there are multiple patches pairs that are similar, only one pair
is used for training to minimize computational cost.

not readily available because the most precise reference would be the bright counterpart of

the exact same scene in order for specific relationships between the low-light and bright

pixels to be formed. This relationship is not transferable from the distribution of other

images because the texture and edge details within an image are different from another

image. Hence, as shown in Fig. 1.5, a CNN is employed as an intermediate transformation

model to generate the training output IE . This IE is also an enhancement of ID, but the

difference of it with IB is that it is not locally optimized. Even so, it is globally optimized

by the trained CNN on large low-light data and maintains sufficient details and textures

from ID, as shown in Fig. 5.4, to build the GP . The choice of CNN as the intermediate

model is due to the successful results of pixel-wise transformation works such as image

denoising (Jain & Seung (2009)) and super-resolution (C. Dong et al. (2015)). While

these are different domains of image enhancement, it shows a promising solution as a

subcomponent of the proposed framework.

The more profound reason is that low-light image enhancement is also considered as

a sparse coding problem where features such as textures and edges should be improved

in addition to brightening (Loh & Chan (2015)). The sparse representations of low-light

images and bright images are to be coded in dictionaries and a solver optimizes the non-
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Figure 5.5: CNN architecture modified from C. Dong et al. (2015)’s model, that is
used to generate the training output for GP .

linear mapping between these dictionaries. Representations of any low-light image are

projected onto the low-light dictionary, mapped to the bright dictionary, and subsequently

reconstructed into a bright image. It is made clear by C. Dong et al. (2015) that CNN is a

well optimized variant of sparse coding due to its exhaustive end-to-end optimization that

includes image representations, dictionaries and non-linear mapping operations. Hence,

their model’s architecture is modified by incorporating an additional layer, as shown in

Fig. 5.5, to increase network complexity for producing the training output of GP .

Let g : ID 7→ IE represent the mapping operation from the low-light image ID to the

reference image IE . The network consists of four convolution layers serving as repre-

sentation extraction, non-linear mapping, and image reconstruction operators as shown in

Fig. 5.5. The first layer acts as the patch based representation extractor with the following

operation:

g1(ID) = max(0,w1 ∗ ID +b1), (5.11)

where b1 is the bias and w1 is the learned feature extraction filters of size 9×9× c. This

operation is likened to local features extraction such as SIFT and HOG in the sparse

coding approach, but extracts optimal low-light representation instead of predefined esti-

mation of features. The c parameter refers to the number of channels in ID which can, but

not limited to be, 1 if it is the luminance channel or 3 for RGB color space. The second
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convolution performs the non-linear mapping operation:

g2(ID) = max(0,w2 ∗g1(ID)+b2). (5.12)

The bias, b2 and filters, w2 learn the mapping relationship between the low-light rep-

resentation and bright representation, similar to the sparse coding solver. The last two

convolution layer acts as the image reconstruction module:

g3(ID) = max(0,w3 ∗g2(ID)+b3). (5.13)

IE = g(ID) = w4 ∗g3(ID)+b4. (5.14)

The filters w3,w4 and biases b3,b4 in these layers project the bright representations back

to the image space similar to an inversion function that converts feature vectors back into

images. This double layer reconstruction is used because inverting features back into

images is an innately more complicated problem as compared to feature extraction, hence

requiring more non-linearity to address. The final image produced is the IE which has the

same c channels as ID.

5.2.3 (a) Loss Function

The training of the CNN model optimizes the parameters,

θCNN = {w1,w2,w3,w4,b1,b2,b3,b4} by minimizing a loss function, L. In this work, the

loss function used is the Mean Squared Error (MSE):

L(IE , IB) =
1
n

n

∑
i=1
‖IE − IB‖2 (5.15)

=
1
n

n

∑
i=1
‖g(ID|θCNN)− IB‖2 , (5.16)
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where n refers to the number of training data. This function is minimized by stochastic

gradient descent and backpropagation with the following weight and bias updates for each

layer:

wnew
i = wold

i −ηi
∂g
∂w

(wold
i ), bnew

i = bold
i −ηi

∂g
∂b

(bold
i ) (5.17)

where i = {1,2,3,4}, and ηi is the learning rate for the convolution layers. The values

are set as η1 = η2 = 10−4, and η3 = η4 = 10−5. Minimizing MSE updates the weight

to produce the reconstruction IE that possess high PSNR (C. Dong et al. (2015)), the

commonly used metric for image quality evaluation, which in turn setups a output training

data with sufficient quality for the GP . However, it is found that PSNR may not be the

ideal image quality measure in this problem, as detailed in Section 5.3.4.

5.2.3 (b) Transformation Model Training

Up till this point, there is no dataset of bright and low-light image pairs available publicly

that is large enough to sufficiently generalize a model, and it is impractical to capture the

pairs. Therefore, synthetic darkening of real bright images Ib is engaged to generate the

artificial low-light counterpart Id and subsequently use them as training pairs.

The darkening operation used is a combination of contrast scaling and gamma cor-

rection:

Id =ClimIγ

b , (5.18)

where Clim is the upper intensity limit of Id and γ is the gamma value. Different com-

binations of Clim and γ are applied to generate different levels of low-light images to be

learned. Section 5.3.1 (a) details the justification on using this scheme to generate data

that statistically approximates real low-light images.

While synthetic, the approximation towards real data is sufficient to train a reliable

transformation model and more importantly provides large enough data for the model to
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be optimized globally across many variations of low-light conditions. Subsequently, the

model produces reliable training data for the GP .

5.3 Experiments

This section describes the implementation details of the proposed method, including train-

ing data generation, and evaluation results in comparison to the latest work in low-light

image contrast enhancement. The conventional quality metric, i.e. PSNR as well as

a newly proposed information retrieval metric were employed to validate the proposed

method. In order to standardize the experimental data for quantitative evaluations, im-

ages are again sub-sampled from the validation set of MSCOCO to obtain 300 bright

images which were darkened according to the scheme stated in Section 5.2.3 (b). This

gives a total of 7,500 testing images, a similar amount to the analysis set in Chapter 4, for

quantitative evaluation. Additionally, 150 real low-light images were sampled from the

MSCOCO dataset as well for analysis in Section 5.3.1 (a) and qualitative assessment.

5.3.1 Implementation Details

Generally, the proposed method can be applied to images in RGB color space, grayscale,

or even luminance (Y ) channel. In this experimental implementation, the luminance chan-

nel Y is used whereas the chrominance components (CbCr) are unaltered and only used

for producing the final colored image. Similarly, the reference image estimated by the

CNN model is in the Y channel.

Two variants of the CNN model were trained for comparison. The first is trained

using the bright Ib and darkened Id images pairs resized to p×q pixels, referred as CNN1.

The other, CNN2 is trained using m×n pixels patches obtained by dividing the images Ib

and Id without any other spatial modifications.
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Figure 5.6: Distribution comparison of average intensities of image patches. (a) Be-
tween different patch sizes from the real low-light images only. (b) Between patches
from both the real and synthesized low-light images with patch size of 32×32.

5.3.1 (a) CNN Training Data Generation

Firstly, in the attempt to closely simulate the darkness conditions of real images to train a

reliable model to produce the GP training data, the intensity distributions of real low-light

images were to be studied. Hence, 150 of such images were extracted from the MSCOCO

dataset (non-overlapping with the testing images used in evaluations), inclusive of both

indoor and outdoor environments, for analysis. These images were divided into non-

overlapping patches and the average luminance of each patch was obtained. These values

were then binned and the distribution trend was observed for patch sizes of 9×9,17×17

and 32×32. As shown in Fig. 5.6a, the number of patches extracted in the real low-light

images logarithmically decrease as the intensity level increases, irrespective of the patch

sizes.

Based on this observation, it is expected that by synthetically darkening bright im-

ages using Equation 5.18, the low-light image patches could exhibit a similar trend. To

this end, 150 bright images were randomly sampled from the MSCOCO dataset, where

Fig. 5.6b shows that the distribution of average luminance in their patches (blue) greatly

differs from the low-light images (black). These bright images were then darkened with

the combination of Clim = {250,200,150,100,50} and γ = {1,2,3,4,5} to produce 25
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(a) (b) (c) (d) (e)

Figure 5.7: Examples of low-light images synthesized from one bright image using
different configurations. (a) Clim = 250,γ = 1; (b) Clim = 200,γ = 2; (c) Clim = 150,γ =
3; (d) Clim = 100,γ = 4; (e) Clim = 50,γ = 5.

levels of darkening for a single bright patch. Figure 5.7 shows examples of different

darkening levels of the same image. The intensity distribution of the synthesized patches

of size 32×32 shows a similar trend (red) as that of real low-light image patches in Fig.

5.6b, particularly for lower intensity levels. Hence, the CNN training pairs were synthe-

sized in this manner.

To build the training data, the entire MSCOCO training set which contains 82,783

images was used for the synthesis in order for good model generalization. Each image

provides 26 training pairs (including the original bright patch paired with itself), hence

providing a total of 2,152,358 images for CNN training and validation. For the CNN1

model trained using the full images, the data were resized to 256× 256 pixels and nor-

malized to the range of [0,1]. Whereas, the training data of CNN2 are 32× 32 pixels

non-overlapping patches that were extracted from the same image set and similarly nor-

malized. Additionally, the patches with average intensity of 0 were eliminated from the

training set as such patches have no contrast and moreover, it is illogical to train the CNN
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to predict details from a blank patch for an enhancement task.

5.3.2 State-of-the-art Methods

The proposed method is compared to the state-of-the-arts in low-light image contrast en-

hancement, which includes Luminance Adaptive Contrast Enhancement (LACE) (L. Li

et al. (2015)), Fushion-Based Enhancing (FBE) (X. Fu, Zeng, Huang, Liao, et al. (2016)),

Weighted Variational Model (WVM) (X. Fu, Zeng, Huang, Zhang, & Ding (2016)), and

Low-light IMage Enhancement (LIME) (Guo et al. (2017)). Following are the descrip-

tions of these methods:

• LACE, adopts the dark channel prior haze removal method by He et al. (2011) to

perform low-light image contrast enhancement. He et al. (2011) proposed the hazy

image model, H = t · J +(1− t) ·A where H is the hazy image, t is the light trans-

mission map, J is the restored haze-free image, A is the global atmospheric light

value, and (·) is the element-wise multiplication. This model can be applied to low-

light image enhancement based on the findings by X. Dong et al. (2011), where an

inverted low-light image exhibits characteristics of a hazy image. The LACE ap-

plies the dehazing model on the inverted low-light image using an adaptive weight

coefficient to estimate the t and then inverting the resultant J to obtain the enhanced

low-light image. The full proposed method by L. Li et al. (2015) includes a prior

denoising module, however, this component is not included in the experimental

comparison of this research in order to establish a fair comparison with other meth-

ods that do no explicitly deal with noise. The code of LACE was reimplemented

from the dark channel haze removal work by He et al. (2011)2 based on the details

given by the paper for the experiments in Sections 5.3.3 and 5.3.4.

2https://github.com/sjtrny/Dark-Channel-Haze-Removal
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• FBE is a Retinex-based method where a low-light image is decomposed into illumi-

nation and reflectance as Sc = Rc · I where S is low-light image, R is the reflectance,

I is the illumination, and c is the RGB color space. This method is executed in

four steps, where firstly the illumination is estimated by taking the maximum val-

ues among the RGB channels, inspired by the dark channel prior for dehazing (He

et al. (2011)), followed by smoothening and refinement. Step two derives three

inputs from the obtained illumination: (1) the illumination itself, (2) the illumina-

tion augmented using arc tangent transformation for improved global luminance,

and (3) the equalized illumination using CLAHE for enhanced local contrast. The

next step involves computing pixel-level weights that determine the fusion of the

three inputs based on the region quality of each input. Finally, a multi-scale fu-

sion approach is implemented, where the three derived inputs are decomposed into

Laplacian pyramids, while the generated weights are decomposed into Gaussian

pyramids for fusion and then multiplying the respective levels of the pyramids and

then upsampling for summation into a final enhanced illumination. This enhanced

illumination is combined with the reflectance to obtain the enhanced low-light im-

age. For evaluation and comparison, the code for this FBE3 was obtained from the

author for implementation.

• WVM is also a Retinex-type solution for low-light image enhancement. Its differ-

ence with FBE is that the WVM directly addresses the reflectance and illumination

estimation problem instead of just computing the R from an estimated I by R = S
L .

This approach transforms the model into the logarithmic domain and solves an

objective function that outputs both the illumination and the reflectance. By es-

timating the reflectance in such a way, details are effectively preserved and error

3http://smartdsp.xmu.edu.cn/weak-illumination.html
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propagation from the illumination is avoided. With these estimated components,

the enhancement is proceeded by adjusting the illumination using gamma correc-

tion with empirically determined gamma parameter. The implementation of this

WVM algorithm4 is also provided by the author.

• LIME is a method built upon the Retinex model but takes an untraditional approach

for the enhancement. This method uses a similar model, L = R ·T , however instead

of decomposing the image L into reflectance and illumination, the model defines

R as the desired image to be recovered and T as the illumination map. The T is

therefore a sort of transformation map that induces the low-light element into im-

ages and thus effectively simplifying the problem into estimating only a T instead

of two components. Similar to FBE, taking inspiration from the dehazing algorithm

by He et al. (2011), the T is first estimated using the maximum values among the

RGB channels. The map is then optimized using structure-aware prior to obtain the

final illumination map. Additionally, the recovered image R is denoised to improve

final image quality. Similar to the LACE, this component in the author provided

code for LIME5 is removed from the algorithm for fair comparisons in Sections

5.3.3 and 5.3.4.

5.3.3 Qualitative Evaluation

To demonstrate the significance of local luminance variation in this problem, the results

generated by the differently trained globally optimized CNN models (CNN1 and CNN2)

and their effect as the training output for the proposed locally optimized GP model

(GP(prior1) and GP(prior2) respectively) were first compared. Figures 5.8 and 5.9 show

examples of the models applied on real and synthesized low-light images respectively.

4http://smartdsp.xmu.edu.cn/cvpr2016.html
5https://sites.google.com/view/xjguo/lime
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Figure 5.8: Example of the contrast enhancement on a real low-light image using
2 variants of the CNN and the proposed method, and the intensity of each pixel
before and after enhancement (arranged in ascending order of pixel values from the
original image).

Judging from their appearance, the CNN results look more artificial than GP , mainly due

to the difference of globally and locally optimized modeling. Further inspection shows

that CNN1 reproduces better overall brightness, but CNN2 preserves more details than

CNN1 which looks blur. This could be due to the lost of details when down-sampling the

training images6 to lower resolution for the CNN1.

While both of the reference images display evident differences, it is less apparent

after the GP . The result of real low-light images using GP(prior1) has slightly better

contrast due to its bigger perception whereas GP(prior2) appears brighter, while there

are not much differences for synthesized low-light images. However, it is clear in the

pixel intensity distributions, that the CNN produces a scattered distribution whereas GP

6It is possible to use original images for training, but the computational cost is impractical.
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Figure 5.9: Example of the contrast enhancement on a synthesized low-light image
using 2 variants of the CNN and the proposed model, and the intensity of each pixel
before and after synthesis and enhancement (arranged in ascending order of pixel
values from the original bright image).

is able to govern them into a curve. Of particular interest is the results from enhancing

synthesized low-light image in Fig. 5.9, where the distribution of the GP enhancement

(the red scattered distribution) closely matches that of the original image’s pixel values

(the blue curve). This, including the obvious visual superiority proves the effectiveness

and importance of localized enhancement brought upon by the GP .

Next, the contrast enhancement results of the proposed method (GP(prior1)) were

evaluated in comparison to LACE, FBE, WVM, and LIME. The proposal’s results in Fig.

5.10 show better quality in terms of contrast and sharpness with minimum noise on real

low-light image. In the regions bounded by the blue boxes, it can seen that all methods

result in better contrast after the enhancement. However, in the output of the CNN only

model, many of the details were lost and the image appears blurred. The proposed method
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Figure 5.10: Example of the contrast enhancement on a real low-light image, and
the intensity of each pixel before and after enhancement of the respective methods
(arranged in ascending order of pixel values from the original low-light image).

and LIME show the best contrast and sharpness, for example, the bicycle wheel bounded

by the red boxes. However, LIME’s result has more noise and color distortion as shown

in the yellow bounding boxes. It can be observed that the area next to the light source

appears noisy with unnatural pinkish hue whereas the proposed method’s results look

more natural.

This observation is similar to the results of the synthesized low-light image in Fig.

5.11. The cow in the red bounding box and edges of the tree in the yellow bounding box of

the GP’s result have better contrast than FBE and WVM whereas both LACE and LIME

suffer from color distortions, such as the clouds in the blue bounding box where both show

a purplish hue. While both LACE and LIME have aesthetically more pleasing enhance-

ments contributed by their vibrant colors, the details retrieved by the proposed method are

still comparable even though not as apparent because human perceptions are sensitive to

colors. Thus, in attempt to further justify that the proposal indeed enhances the darkened
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Figure 5.11: Example of the contrast enhancement on a synthesized low-light image,
and the intensity of each pixel before and after synthesis and enhancement (arranged
in ascending order of pixel values from the original bright image).

sample towards the original image, the pixel intensity distributions are shown in Fig. 5.10

and 5.11. The GP results’ are very much less scattered than LACE and CNN, while the

distributions of FBE and WVM are very much lower than the pixel value of the original

bright image (blue curve) indicating under enhancement. As for LIME, the distribution

is able to match the original bright image but is relatively more scattered, moreover, in

the experiments, it is found to fail in certain images as shown in Fig. 5.13. Especially

notable for the synthesized image in Fig. 5.11, the proposed GP model produces a dis-

tribution that closely matches the original bright image. Additional examples of results

are shown in Fig. 5.12-5.13 for both real and synthetic low-light images respectively,

and more results are found in Appendix D. It should be noted that even though the pro-

posed enhancement results may lack in color vibrancy as compared to LIME, it is not a

hindrance to the target for higher level applications in the quantitative evaluations.
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Table 5.1: Average PSNR results.

Approach Darkened LACE FBE WVM LIME CNN1 GP(prior1) CNN2 GP(prior2)
PSNR (dB) 10.44 14.95 14.68 12.88 15.08 15.88 16.25 16.42 16.10

Table 5.2: Computational time.

Approach LACE FBE WVM LIME CNN1 GP(prior1) CNN2 GP(prior2)
Time (s) 15.97 0.17 3.03 0.07 0.13 1.25 0.13 1.29

5.3.4 Quantitative Evaluation

The quantitative assessments are carried out on 3 evaluation metrics: the PSNR, local

features matching, and l1-norm luminance histogram distance. The measures shown are

from the synthetically darkened test images, the approaches by LACE, FBE, WVM, and

LIME, the CNN, and the proposed GP framework.

5.3.4 (a) PSNR

In simple terms, the PSNR calculates how well the pixels of an image matches the pix-

els of the reference image. Given the enhanced low-light image I and the bright image

reference as R, the metric is calculated using the MSE (Eqn. 5.16) as follows:

PSNR = 10log10(
max(R)2

L(R, I)
) (5.19)

The unit of measurement for the PSNR is the logarithmic scale decibel (dB) where the

higher value indicates a better match, and thus a better enhancement result.

Table 5.1 shows the average PSNR results calculated for all RGB channels of the

tested images. Both the CNN models and the proposed method outperform the state-of-

the-art solutions with satisfactory computation time, as shown in Table 5.2. However, it is

obviously in conflict with the qualitative assessment in Fig. 5.10 and 5.11, where LACE,

FBE, and WVM produced images with better visual quality than the CNN models. Figure

5.14 additionally shows examples enhanced by all the methods where the PSNR displays
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inconsistency in evaluating the quality. While the PSNR for the CNN results are relatively

low in the top example of Fig. 5.14, both CNN1 and CNN2 record the highest PSNR for

second example in Fig. 5.14 respectively even though the results are clearly unnatural.

This is significant indicator that PSNR is not the ideal measure for low-light image

enhancement. Moreover, such quality measurements do not bring out the significance

of low-light image contrast enhancement for higher level application such as detection

and tracking. Therefore, new metrics are introduced in this work, namely the local fea-

ture matching and the histogram l1-norm distance, to evaluate the ability of enhancement

algorithms to improve valuable details of low-light images.

5.3.4 (b) Local Features Matching

Before the breakthrough of learned features, local features were the forerunners for de-

tection and recognition tasks, and are still used in part to this day (Khan et al. (2012);

Mottaghi et al. (2015); S. Zhang et al. (2015)). Hence, detected local features are capi-

talized as a gage for useful information content retrieved by enhancing low-light images.

Furthermore, the reliability of this measure is heightened by matching features detected

from the enhancement results to the original bright image to ensure the retrieved details

are not “false" features from noise and artifacts created by the enhancements. The pre-

cision Pr, recall Rc, and F-score were then calculated based on information retrieval

context as follows:

Pr =
|qrlv∩qrtv|

qrtv
;

Rc =
|qrlv∩qrtv|

qrlv
;

Fβ -score = (1+β
2)

Pr ·Rc
(β 2 ·Pr)+Rc

,

(5.20)
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Table 5.3: Average precision, recall, and F-scores of feature matching

Approach Precision Recall F1-score F2-score
Darkened 0.4514 0.1711 0.2090 0.1824

LACE 0.6358 0.4305 0.4820 0.4445
FBE 0.5959 0.4659 0.4831 0.4639

WVM 0.5794 0.3458 0.3722 0.3496
LIME 0.3205 0.6463 0.4076 0.5062
CNN1 0.3168 0.3779 0.2872 0.3221
GP(prior1) 0.4745 0.6563 0.5292 0.5871

CNN2 0.3815 0.4311 0.3699 0.3952
GP(prior2) 0.4664 0.6474 0.5202 0.5818

where qrlv refers to feature points extracted from the original bright image and qrtv are

feature points from the enhanced image, while |qrlv∩qrtv| indicates the correctly matched

points. β is the weight variable for the precision and recall in computing the F-score. A

higher β puts more weight on recall than precision.

The Scale Invariant Feature Transform (SIFT) (Lowe (2004)) is used as the local

feature for this evaluation. SIFT is a scale, rotation, illumination, and viewpoint invariant

feature that extract interest points from an image. Separated into two components, the

detector and descriptor, the detector implements the difference of Gaussian to locate key-

points based on edge response, whereas the descriptor describes the detected keypoints by

calculating the gradient magnitude and orientation to form orientation histograms. The

result is a 128 dimension vector that is robust to many transformations and descriptive

for applications like object recognition and image matching. This reason, coupled with

its lightweight computational requirement makes it a suitable feature for this evaluation

metric.

In the experiments, the peak threshold parameter for SIFT was set to be 10 so as

to only remain points detected from regions with strong contrast, and correctly matched

points are defined as features with matching descriptors, location, scale and orientation.

In order to emphasize on the useful information that enhancement can retrieve, the recall

is more weighted with β = 2 (F2-score). Table 5.3 shows that the proposed method out-
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performs all methods in recall and F2-score. It was analyzed and found that the LACE

method has the best precision because it retrieves less local features in total. Even so,

for the average scores where at equal weights for precision and recall in the F1-score, the

proposed method is still the highest scoring.

Figure 5.15 shows some examples of the features detected from the enhancement

results and matched to the features detected in the original bright images. The darkening

of the images significantly impacts the features extractable from the objects, particularly

in the second example of Fig. 5.15 where the synthesized low-light image does not have

any features matched. Nevertheless, each enhancement method is able to retrieve some

features, particularly, the proposed GP with the most retrievals. These examples and the

scores effectively show that the proposed approach retrieve more relevant local features

for further use.

5.3.4 (c) l1-norm

The second evaluation method proposed is the histogram distance measure using l1-norm.

Color histogram matching is commonly employed in tracking applications (Smeulders et

al. (2014)). Therefore, this assessment serves to evaluate the prospect of enhancement

results for tracking algorithms based on histogram similarity. The l1-norm is calculated

between color histograms of the original bright image and the enhanced images. The

comparison was performed on both global image intensity histogram and the histograms

of local patches in the image. The local histograms were obtained by dividing the image

into non-overlapping patches of 32×32 pixels and then calculate the average distance of

all the patches. The intensity histograms were set to have 32 bins for the assessment.

Figure 5.16 shows the comparison results divided into 25 darken levels, referring

to the combinations of the Clim and γ parameters in generating the synthetic low-light

images, and arranged in ascending order of distances between the synthetic low-light
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Figure 5.16: Comparison of l1-norm of intensity histograms with 32 bins for (a)
global image intensities (b) local 32×32 pixels patch intensities. Values (in the brack-
ets) of the legends indicate total average distances.

images and their respective original bright images. All of the methods are able to shorten

the distances for both local and global color histograms, except for levels below 3, where

the darkening is not severe. It is also for these initial levels where LACE, FBE, and

WVM perform well, but they gradually decline as the level increases. The proposed

method (GP(prior1) and GP(prior2)) consistently perform the best for levels above 5,

except for two levels where LIME is better. Even though the proposed method does not

explicitly enhance the color content like the others, it still outperforms them on average
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for this measure. Not only does this show the potential of the proposal to support low-

light tracking operations, but also suggests that the method brings the image closer to the

original state, although less pleasing to human observation.

5.3.5 Public Datasets

This section shows the comparison between the state-of-the-arts with the proposed method

on 4 public datasets related to lighting research that were discussed in Section 2.1.3, Phos

(Vonikakis et al. (2013)), DALI (Simo-Serra et al. (2015)), Webcam (Verdie et al. (2015)),

and ALCN-2D (Rad et al. (2017)). Figures 5.17 - 5.20 show example results from each

of these datasets and it can be seen that the proposed method fare rather well against the

others.

Inspecting the results in the Phos image of Fig. 5.17, the proposed method shows

a good contrast enhancement, as seen in the enlarged regions, without over-enhancing

bright regions (red box of first example). Moreover, the color of the results most closely

resemble the baseline image among all the methods, but with even better contrast than the

recommended baseline.

On the other hand, for the DALI dataset, the result of the GP shows a clear improve-

ment of the contrast as shown in the areas bounded by the colored boxes of the images

in Fig. 5.18. Though it is noted that the result darkens the shadowed areas in order to

accentuate the details.

Figures 5.19 - 5.20 are examples from the Webcam and ALCN-2D datasets respec-

tively. It can be seen that the proposed method is able to handle bright regions, without

over-enhancing them like the LIME method. Additionally, these two examples show that

the proposal do not amplify the noise content like the LACE method. Moreover, the

state-of-the-art methods tend to show a pinkish hue in their results, particularly seen in

the second example, bounded by the red boxes of Fig. 5.20.
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5.4 Summary

In summary, this chapter addresses the low-light challenge through contrast enhancement

from the perspective of information retrieval instead of aesthetic restoration. Consid-

ering the challenge in both global and local luminance variations, the low-light image

enhancement is modeled as a distribution of localized enhancement functions using the

GP assisted by a CNN as an intermediate model. The CNN is trained using large data

synthesized based on luminance statistics of real images so that it generates a globally

optimized training data for the GP .

Taking into account the objective of retrieving informative details that would con-

tribute to higher level object-based applications, new information retrieval assessments

are introduced to point out the practicability of the enhancement results. The proposed

framework is a new approach that is unlike typical low-light image enhancement methods

and it outperforms the state-of-the-art qualitatively and quantitatively in both the conven-

tional and the new evaluation metrics.
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CHAPTER 6: CONCLUSIONS

This chapter concludes the research work of this thesis with a summary of the work

done and findings, the limitations of the current work, and possible directions for future

progress.

6.1 Summary

This research work aims at looking into the low-light phenomenon in computer vision,

with three distinct objectives. The first is to establish a standard benchmarking dataset

for this work and also for the other research work in the low-light domain because of the

glaring lack of a standard data to encourage research in this direction. To this end, the

ExDark low-light object image dataset is proposed, containing 7,363 low-light images

with a first of its kind categorization into 10 types of illumination conditions. This new

categorization could lay the groundwork for image processing works in low-light that has

never been done before, as it brings to light the many different characteristics that were

previously assigned into a singular group of “low-light”. In particular, low-light enhance-

ment research, that has consistently faced the over or under enhancement problem due

to irregular illumination, can benefit from this illumination classification in the effort to

design more robust algorithms. Additionally, the dataset is annotated with 12 common

object classes including bounding box level annotation which also makes it the first object

image dataset that consist fully of low-light images. This will enable and encourage the

growth of research and development of applications such as object detection and recog-

nition in low-light. Thus, this contribution achieves the first objective by addressing the

lack of data problem and promote progress of low-light research.

The second objective is to gain insights on the characteristics of low-light to guide

the progression of computer vision in this direction. Through low-level analysis, that is by
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studying the global intensity histograms and local region intensities, it is found that low-

light image shows distinct illumination variations that are not only different from bright

images, but also diverse in terms of low-light image types. Using the new ExDark dataset

with the illumination categories, the global intensity histograms of the images show sub-

tle differences in their distributions based on their types. Whereas, local region intensities

showed that the illumination levels are locally irregular within a low-light image due to the

presence of light source(s) in certain low-light environment, a characteristic that is found

in the single, weak, strong, window, and screen types. These findings could be especially

useful for the low-light enhancement works where the understanding of such traits would

aid in designing robust algorithms that address such irregularities for effective enhance-

ment. On the other hand, high-level analysis using hand-crafted and learned features had

shown that the current state-of-the-arts of object based features are insufficient to solve

the challenges presented by low-light conditions. In the analysis using prominent hand-

crafted features, edges, gradients, and superpixels, for object localization, they noticeably

show difficulty to provide accurate localizations in low-light images. This is because the

low illumination and contrast cause objects to appear to blend to the background which

subsequently cause the lack of such features. Noting such shortcoming from this analysis,

future efforts to design feature extractors or object detectors would have to take this find-

ing into consideration. As for features learned using the state-of-the-art of deep learning

models, the Resnet-50, in object classification, the analyses showed that the features of an

object is altered by low-light. This is counter-intuitive to the common notion that learned

features disregard illumination effects as they capture higher level abstract features, but as

seen from the analysis, same object class gives different features in bright and low-light

conditions. Furthermore, a study on the attention maps of the learned model showed that

the irregular lighting of low-light environment distracts the model and causes misclassi-

fication, indicating that current learning models are still lacking. These findings serve as
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the second contribution of this thesis to not only show the challenges brought by low-light

as intended by the second objective, but also show the many directions where low-light

research can be expanded.

Lastly, the third objective of this thesis is to develop low-light image enhancement

framework that primarily retrieves features while maintaining fair visual quality, a target

that is different from the conventional aims of enhancement works. This objective was

approached based on the insights gained from the aforementioned analyses, particularly

the understanding of global and local illumination variations present in low-light image.

Hence, a low-light image contrast enhancement framework, using GP is proposed to re-

trieve useful features that would assist object-based computer vision tasks. This is in con-

sideration of the localized illumination variation of low-light images as well as the need

to emphasize object features, therefore specific functions for each local pixels or regions

is necessary to reach optimal enhancement. This is achievable by the GP as it models

data into a distribution of functions, i.e. localized enhancement functions are governed

within a single distribution. Subsequently, two new evaluation metrics, the local features

matching and l1-norm distance measure of intensity histogram, are proposed as well to

benchmark the practicability of contrast enhancement algorithms in supporting detection

and tracking applications respectively. The proposed method outperforms the state-of-

the-art low-light enhancement algorithms in the conventional PSNR measure by 1.17dB,

as well as the new evaluations where the F1-score of features matching is improved by

9.5% and the l1-norm distance of global and local intensity histograms are reduced by

7.1% and 3.2% respectively. These results asserts the proposed method as an algorithm

that not only performs visual enhancement on low-light images, but also retrieves features

that could support applications, thus achieving the third objective.
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6.2 Limitations

This research work possesses a few limitations. Firstly, while the proposed dataset, the

ExDark is the first of its kind with comparatively large amount of low-light data to any

object datasets available now, it is still far from the sheer numbers of bright data provided

by the current popular object datasets. This serves as barrier for works that require big

data, such as deep learning approaches, where currently there is a reliance on pre-training

on other larger data in order to work on smaller datasets such as this. As discussed in

Section 1.1, the significant breakthrough of deep learning for object classification was by

using the ImageNet data which at the time already amassed a staggering total of over 1

million images. Moreover, visual data is a representation of the visual environment that

people live in, hence, a larger amount of data is invaluable to demonstrate and provide

a reliable representation of real world environments, and subsequently guide computer

vision research to reach human vision capability and beyond.

The next limitation is in the proposed method where the computational time and

color content is still somewhat lacking. The current GP model is computationally in-

tensive and the time to process a single image takes more than 1 second as shown by

Table 5.2 in Section 5.3.4 (a). This is because the GP is significantly more complex than

other statistical or transformation models. Unlike statistical models that bin pixels into

histograms to be easily modified, or transformation models that has a ready model and

set parameters to process the pixels, the GP builds exclusive distributions for each image

it enhances. Furthermore, as discussed in Section 5.2.1, the GP computes the distribu-

tion of functions based on covariance functions, a dissimilar yet more computationally

demanding approach than general curve fitting regression models. Hence, the current

model of GP for low-light image enhancement still leaves room for optimization before

it can reach real-time performance where low-light systems such as surveillance truly

106

Univ
ers

iti 
Mala

ya



matters.

In regards to the color content, the current model does not improve this aspect as

it is of less importance to the targeted task. As stated in Section 5.3.1, the proposed

model uses the YCbCr color space and only enhances the luminance (Y ) channel while

the chrominance components (CbCr) remain untouched. This choice of action is also due

to the computation requirement that has made inclusion of the color into the enhance-

ment impractical. Nonetheless, this has caused rapid deterioration of the color especially

in very low-light conditions, where not only do the color reduce due to lack of light trans-

mission, it is reliant on the conversion from the RGB space to the YCbCr space, and the

decomposition into the respective channels. Therefore, the enhancement outcomes of the

proposed model appears less pleasing to the human observation and could affect more

fine-grained applications such as recognition tasks that require identification by color.

6.3 Future Works

Taking into consideration the limitations of the current stage, there are various directions

that can be taken to progress this line of research forward. One of which is to expand the

dataset of low-light object images. As discussed in Section 6.2, the amount of low-light

data is still very much smaller than bright object image datasets. Expanding the dataset

would be able to encourage more research efforts and overcome the lack of data issue

that plagues the research community especially those that work on or intend to implement

deep learning for low-light research.

On the other hand, a potential direction is in the development and improvement of the

solution for low-light object applications. One of which is to optimized the currently pro-

posed model for real time applications. Alternatively, deep neural network approaches

hold great potential as well in solving low-light challenges considering the successes

shown in other enhancement works (C. Dong et al. (2015); Jain & Seung (2009); Lars-
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son et al. (2016)). Moreover, Generative Adversarial Network (GAN) by Goodfellow et

al. (2014) has also been gaining traction in the computer vision community and could

potentially be valuable for the low-light domain considering its ability in estimating the

distribution of input data. This trait could be useful for low-light image enhancement as

it might be possible for a GAN to learn individualistic distributions for different low-light

conditions. Moreover, the adversarial training scheme that is implemented to optimize

the model could very well reduce the uncertainties brought upon by the diminished vi-

sion capability of humans in low-light conditions.
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