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Abstract 
 

Mobile Cloud Computing (MCC) enables computational intensive and ubiquitous mobile 
applications by leveraging the services of computational clouds. Human dependency on 
contemporary smartphones increases rapidly in various domains such as enterprise, e-
learning and entertainment, gamming, management information systems, and healthcare. 
However, mobile applications on the latest generation of smartphones and tablets are still 
constrained by battery power, CPU potentials and memory capacity of the Smart Mobile 
Devices (SMDs). Therefore, MCC employs computational offloading as a significant 
software level solution for alleviating the resources limitations in SMDs. Recently, a 
number of computational offloading frameworks are proposed for the processing of 
computational intensive mobile applications in MCC. The traditional computational 
offloading frameworks implement intensive techniques for computational offloading in 
MCC which results in high energy consumption and longer turnaround time of the mobile 
applications. Therefore, lightweight techniques are imperative for the processing of 
computational intensive applications in MCC. Lightweight techniques enable 
computational intensive mobile application deployment and execution with minimal 
resources utilization on SMDs. As a result, mobile users can utilize distributed cloud 
services with lower computational load on mobile devices, shorter turnaround time of the 
application and longer lasting battery lifetime. This research investigates the resources 
intensive features of traditional computational offloading frameworks and proposes a 
lightweight framework for the processing intensive mobile applications in MCC. The 
additional cost of runtime computational offloading is investigated by implementing 
application offloading mechanism in the real mobile cloud computing environment. 
Distributed and Elastic Application Processing (DEAP) framework is proposed as a 
lightweight solution for the intensive application processing in MCC. DEAP framework 
reduces the cost of migration of application binary file and data file of the running instances 
of the mobile application. As a result, the size of data transmission over the wireless 
network medium, turnaround time of the intensive operations and energy consumption cost 
on mobile device is reduced considerably. DEAP framework is evaluated in the emulation 
environment on the Android virtual device instance. The performance of DEAP framework 
is validated by benchmarking prototype application in the real mobile cloud computing 
environment. Results of different experimental scenarios are compared to validate the 
lightweight nature of DEAP framework. It is found that by employing DEAP framework 
the cost of migration of application binary file and data file of the running instances of the 
application is reduced. As a result, the size of data transmission over the wireless network 
medium, turnaround time of the intensive operations and energy consumption cost on 
mobile device is reduced.  DEAP framework reduces resources utilization and the cost of 
distributed processing of the prototype mobile application in MCC as follows: RAM 
allocation on mobile device by 71.5 percent, CPU utilization on mobile device by 55 
percent, the size of data transmission over the wireless network medium by 84 percent, 
turnaround time of the application by 79.8 percent and energy consumption cost by 81 
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percent. Hence, DEAP framework provides a lightweight application layer solution for 
intensive mobile application processing in MCC.  
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Abstrak 
 

Mobile Cloud Computing (MCC) membolehkan pengiraan intensif dan di mana-mana 
aplikasi mudah alih dengan memanfaatkan perkhidmatan awan pengiraan. Pergantungan 
manusia pada telefon pintar kontemporari meningkatkan pesat dalam pelbagai domain 
seperti perusahaan, e-pembelajaran dan hiburan, gamming, sistem maklumat pengurusan, 
dan penjagaan kesihatan. Walau bagaimanapun, aplikasi mudah alih pada generasi terbaru 
telefon pintar dan tablet masih dikekang oleh kuasa bateri, potensi CPU dan kapasiti 
memori Devices Pintar Bergerak (SMDS). Oleh itu, MCC menggunakan pengiraan 
pemunggahan sebagai perisian yang signifikan tahap penyelesaian untuk mengurangkan 
batasan sumber di SMDS. Baru-baru ini, beberapa rangka kerja pemunggahan pengiraan 
dicadangkan untuk memproses aplikasi intensif pengiraan mudah alih di MCC. Tradisional 
pengiraan pemunggahan rangka melaksanakan teknik intensif untuk Pemunggahan 
pengiraan di daerah yang menyebabkan penggunaan tenaga yang tinggi dan masa 
pemulihan yang lebih lama aplikasi mudah alih. Oleh itu, teknik ringan penting untuk 
pemprosesan aplikasi pengiraan intensif di daerah. Teknik Ringan membolehkan 
permohonan penempatan pengiraan intensif mudah alih dan pelaksanaan dengan sumber-
sumber yang minimum ke atas penggunaan SMDS. Hasilnya, pengguna telefon bimbit 
boleh menggunakan perkhidmatan awan diedarkan dengan beban pengiraan pada peranti 
mudah alih yang lebih rendah, pemulihan yang lebih pendek masa permohonan dan bateri 
lebih tahan lama seumur hidup. Kajian ini menyiasat sumber ciri-ciri kerangka tradisional 
pemunggahan pengiraan intensif dan mencadangkan satu rangka kerja ringan untuk aplikasi 
intensif pemprosesan mudah alih di MCC. Kos tambahan Pemunggahan pengiraan runtime 
disiasat dengan melaksanakan mekanisme permohonan pemunggahan dalam persekitaran 
pengkomputeran awan sebenar bimbit. Diedarkan dan Pemprosesan Permohonan Anjal 
(DEAP) rangka kerja yang dicadangkan sebagai penyelesaian ringan untuk memproses 
permohonan intensif dalam daerah. DEAP rangka kerja mengurangkan kos penghijrahan 
permohonan fail fail dan data perduaan keadaan berjalan aplikasi mudah alih. Akibatnya, 
saiz penghantaran data melalui medium rangkaian wayarles, masa pemulihan operasi 
intensif dan kos penggunaan tenaga pada peranti mudah alih dikurangkan dengan ketara. 
DEAP rangka kerja dinilai dalam persekitaran emulasi pada contoh peranti Android maya. 
Prestasi DEAP rangka kerja disahkan oleh aplikasi prototaip penandaarasan dalam awan 
sebenar persekitaran pengkomputeran mudah alih. Keputusan senario eksperimen yang 
berbeza berbanding untuk mengesahkan sifat ringan rangka kerja DEAP. Ia mendapati 
bahawa dengan menggunakan rangka kerja DEAP kos penghijrahan permohonan fail fail 
dan data perduaan keadaan berjalan permohonan dikurangkan. Akibatnya, saiz 
penghantaran data melalui medium rangkaian wayarles, masa pemulihan operasi intensif 
dan kos penggunaan tenaga pada peranti mudah alih dikurangkan. DEAP rangka 
mengurangkan penggunaan sumber dan kos pemprosesan diedarkan permohonan prototaip 
mudah alih di daerah seperti berikut: RAM peruntukan pada peranti mudah alih 79,8 
peratus, penggunaan CPU pada peranti mudah alih 77 peratus, saiz penghantaran data 
melalui rangkaian wayarles sederhana peratus 84, masa pemulihan peratus permohonan 
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80,6 dan penggunaan tenaga kos 69,9 peratus. Oleh itu, rangka kerja DEAP menyediakan 
lapisan permohonan penyelesaian ringan untuk memproses permohonan intensif mudah 
alih di MCC. 
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CHAPTER 1 
 
Introduction 

This chapter presents theoretical framework and motivations for the proposed 

research. It discusses the problem statement, states the objectives and describes the 

methodology used for the proposed research. The chapter is divided into six sections. 

Section 1.2 highlights motivations for the proposed research by explaining the importance 

of the proposed work and significance of the proposed solution. Section 1.3 summarizes the 

problem statement by highlighting issues in the traditional computational offloading 

frameworks. Section 1.4 highlights the research objectives. Section 1.5 summarizes the 

methodology used in this research and section 1.6 sketches the layout of the thesis. 

1.1 Background  

Cloud computing facilitates to increase the computing capabilities of resource 

constraint client devices by offering leased infrastructure and software applications. 

Therefore, Mobile Cloud Computing (MCC) enables computational intensive and 

ubiquitous mobile applications by leveraging the services of computational clouds. The 

compact design, resources constraints, mobile nature and wireless access medium features 

of Smart Mobile Devices (SMDs) require lightweight frameworks for the processing of 

intensive mobile applications in MCC. Mobile devices are predicated as the dominant 

future computing devices with high user expectations for accessing computational intensive 

applications analogous to powerful stationary computing machines. In spite of all the 

advancements in recent years, SMDs are still low potential computing devices which are 

limited in memory capacity, CPU speed and battery power lifetime (Shiraz et al., 2012).  
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MCC extends the services and resources of computational clouds  for alleviating the 

limitations of computing resources in SMDs. MCC utilizes the application processing 

services of computational clouds for the processing of computationally intensive mobile 

applications. In MCC, computational offloading is implemented as a software level solution 

for outsourcing the computationally intensive applications to powerful cloud server nodes. 

However, leveraging cloud resources and services for mobile devices with lightweight 

access techniques is highly challenging for the reasons of unique hardware architecture, 

heterogeneous operating system platforms and the intrinsic limitations associated with 

wireless network medium. This research focuses on the lightweight frameworks for the 

processing of intensive mobile applications in MCC. 

1.2 Motivation  

The report of Gartner Incorporation (Gartner, 2011) states that in the second quarter 

of 2011 worldwide sale of mobile devices increased 16.5 percent (428.7 million units) as 

compared to the second quarter of 2010 which is an evidence of the increasing use smart 

mobile devices. Similarly, the report of Juniper Research (Holman, 2010) states that the 

consumer and enterprise market for cloud based mobile applications is expected to raise 

$9.5 billion by 2014 which is an evidence of the increasing use of distributed mobile 

computing. Recently, a number of computing and communication devices are replaced by 

smartphones towards all-in-one ubiquitous computing devices such as PDAs, digital 

cameras, Internet browsing devices, and Global Positioning Systems (GPS) (Prosper 

Mobile Insights, 2011). Human dependency on the contemporary smartphones is increased 

rapidly in various domains such as enterprise, e-learning and entertainment, gamming, 

management information systems, and healthcare (Albanesius, 2011). SMDs are expected 

to perform intensive computing analogous to their powerful stationary counterparts.  
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Mobile applications on the latest generation of smartphones and tablets are still 

constrained by battery power, CPU potentials and memory capacity of the SMDs. Even 

though mobile hardware technology is developing increasingly, however powerful 

processing hardware is highly energy consuming. For instance, the processing cycles of 

CPU, memory refresh instances of primary memory and backlit pixels on the display screen 

are energy consuming features of mobile device. Therefore, software level solutions are 

endeavored for augmenting the computing capabilities of SMDs. MCC employs 

computational offloading as a significant software level solution for alleviating the 

resources limitations in SMDs.  

Recently, a number of computational offloading frameworks are proposed for the 

processing of computationally intensive mobile applications in MCC(Cuervo et al., 2010; 

Zhang et al., 2011; Huang et al., 2012).  The traditional computational offloading 

frameworks implement resources intensive techniques for the processing of 

computationally intensive applications in MCC, which results in high energy consumption 

and longer turnaround time of the intensive mobile applications. Therefore, lightweight 

techniques are required for the processing of computational intensive applications in MCC. 

Lightweight techniques enable computational intensive mobile application deployment and 

execution with minimal resources utilization on SMDs. As a result, mobile users can utilize 

distributed services with lower computational load on mobile devices, shorter turnaround 

time of the application and relatively long lasting battery lifetime. Achieving the aim of 

lightness in the processing of computational intensive applications for MCC is a 

challenging research perspective. This research investigates the resources intensive aspects 

of traditional computational offloading frameworks and proposes lightweight framework 

for the processing intensive mobile applications in MCC.  
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1.3 Statement of Problem 

Traditional computational offloading frameworks for MCC (Giurgiu et al., 2009; 

Chun et al., 2011; Cuervo et al., 2010; Zhang et al., 2011; Huang et al., 2012) require the 

configuration of ad-hoc distributed platform and partitioning of the mobile application at 

runtime which is resources intensive and time consuming. SMDs are required to select 

remote server node for each instance of component offloading at runtime, which increases 

the energy consumption cost and turnaround time of the application. The partitioning 

mechanism utilizes additional computing resources in runtime application profiling and 

solving which increases the computational load on mobile device (Satyanarayanan et al., 

2009; Dou et al., 2010; Giurgiu et al. 2009; Cuervo et al., 2010; Zhang et al., 2011). As a 

result, the computing resources (RAM, CPU) and battery of the mobile devices are utilized 

abundantly and for a longer period of time.   

Traditional computational offloading frameworks implement outsourcing of running 

instances of mobile application (Cuervo et al., 2010; Huang et al., 2012). The technique of 

outsourcing running instances to cloud server nodes includes the additional cost of saving 

the data states of the running application on mobile device and reconfiguration of the 

application on the remote service, which utilizes additional computing resources on mobile 

device.  

The management of runtime distributed platform requires continuous synchronization 

between local SMD and remote cloud server node. The implementation of uninterrupted 

synchronization mechanism in the wireless network medium requires keeping SMD in 

active state which is energy consuming mechanism. Further, traditional computational 

offloading involves runtime transmission of the binary code of the application and data files 

which increases the overhead of data transmission over the wireless network medium. 
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The VM migration based application offloading frameworks (Goyal, 2004; 

Satyanarayanan et al., 2009; Chun  et al., 2009; Chun et al., 2011 ), involve the overhead of 

VM deployment and management on SMD which results in additional resources and 

battery power utilization on SMD. Further, the migration of running instances of the 

application (partially or entirely) which are encapsulated in VM includes the issue of 

network attacks vulnerability.   

The traditional computational offloading frameworks lack in the consideration of 

additional resources utilization in runtime component offloading and emphasize on 

leveraging the Infrastructure as a Service (IaaS) provisioning model for computational 

offloading which is resources intensive and time consuming. Traditional computational 

offloading frameworks involve the cost of the migration of application binary file and data 

file of the running instances of the application. As a result, the size of data transmission 

over the wireless network medium, turnaround time of the intensive operations and energy 

consumption cost on mobile device is increased. Hence, the traditional computational 

offloading frameworks employ heavyweight procedures for the distributed processing of 

computational intensive mobile applications in MCC.  

1.4 Statement of Objectives  

We aim at proposing a lightweight framework for the processing of computationally 

intensive mobile applications in mobile cloud computing. The following are the objectives 

of the research. 

 To review the state-of-the-art for computational offloading in mobile cloud computing.  

 To investigate the additional cost (energy consumption, timing, data transmission) of 

computational offloading in the traditional computational offloading.   
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 To propose a lightweight framework for the processing of intensive mobile applications 

in mobile cloud computing.  

 To evaluate the proposed framework by testing synthetic workload in the emulation 

environment and validate the performance by benchmarking prototype application in 

the real time environment and comparing results of different experimental scenarios.   

1.5 Proposed Methodology 

We studied the state-of-the-art to identify issues in the current computational 

offloading frameworks for MCC. The traditional computational offloading frameworks are 

categorized on the basis of thematic taxonomy (Shiraz et al., 2012). We identify the issues 

in the traditional offloading frameworks, which hinder the optimization goals of cloud 

based application processing for MCC.  

The research problem is investigated by studying VM deployment for application 

processes in the simulation environment and implementing traditional runtime offloading 

technique in the real mobile cloud computing environment. Simulation is performed by 

using the CloudSim, which is a simulation toolkit for modeling the infrastructure as a 

service model of the computational clouds. CloudSim is employed for the evaluation of the 

impact of virtual machine deployment for application processing.  

We propose a lightweight Distributed and Elastic Application Processing (DEAP) 

framework for the processing of intensive mobile applications in MCC. The proposed 

framework implements a distributed architecture for minimizing the instances of runtime 

component offloading and implements runtime component offloading for addressing the 

issue of dynamic processing load on SMD.   

The proposed framework is evaluated in emulation and real time mobile cloud 

computing environment. Synthetic workload is tested on the Android virtual device 
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instance, which is enabled to operate in the distributed mobile cloud computing 

environment. Prototype application is developed for the Android device, which is tested 

with varying computational intensities in the distributed mobile cloud computing 

environment. Experimental results are validated by benchmarking prototype application 

with different computational intensities in the real mobile cloud computing environment.  

The execution behavior of the application is analyzed from the perspective of 

resources utilization on local mobile device and remote server node, size of data 

transmission on the wireless network medium, and execution time of the application in the 

traditional and proposed computational offloading techniques.  

Empirical data are collected by testing each component of the prototype application 

with 30 different computational intensities. The value of sample mean for each experiment 

is signified with 99% confidence interval for the sample space of 30 values. The 

lightweight nature of DEAP framework is validated by comparing experimental results in 

three different execution scenarios of the prototype application.  

1.6 Layout of Thesis 

This thesis is composed of seven chapters, which are structured as follows.  

Univ
ers

iti 
Mala

ya



Chapter: 1 Introduction   
 

8 
  

 

Figure 1. 1: Thesis Organization 

Chapter 2 presents the epistemology of mobile cloud computing and reviews the 

state-of-the-art in application offloading for mobile cloud computing.  It classifies current 

offloading models on the basis of thematic taxonomy and compares current frameworks on 

the basis of significant parameters. The challenges to traditional offloading models and 

issues in cloud-based application processing for MCC are identified.  

Chapter 3 analyzes additional resources utilization in traditional runtime 

computational offloading by testing the prototype application in the real mobile cloud 

computing environment. Traditional computational offloading is implemented by 

offloading the resource intensive service components (sort service and matrix 

multiplication service) with varying computational intensities to remote cloud server node.  

The measurement parameters for problem analysis include; energy consumption cost, 

turnaround time of the component offloaded at runtime and the size of data transmission 

over the wireless network medium. The cost of virtual machine deployment for application 

processing is analyzed in the simulation environment by using CloudSim. 
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Chapter 4 proposes a lightweight Distributed and Elastic Application Processing 

(DEAP) framework for intensive mobile applications. It explains the architecture of 

proposed framework, and distinct operating procedures of the proposed framework for the 

operating modes of the mobile application in accessing the services of cloud server node.    

Chapter 5 reports on the data collection method for the evaluation of the proposed 

framework. It explains the tools used for testing the proposed framework, data collection 

technique and the statistical method used for the processing of data. 

Chapter 6 presents the usefulness of the proposed framework by analyzing the 

experimental results presented in chapter 5. It discusses the significance of the proposed 

solution by analyzing the results of the experimentation and comparing the results of 

different experimental scenarios.  

Chapter 7 concludes the thesis by reporting on the reexamination of the research 

objectives. It explains the findings of the research work, highlights the significance of the 

proposed solution, states the limitations of the research work and proposes future directions 

of the research. 
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CHAPTER 2 

Literature Review  

This chapter presents theoretical framework for Mobile Clod Computing (MCC), 

reviews the state-of-the-art and provides thematic taxonomy for current computational 

offloading frameworks in MCC.  The chapter is organized into six sections. Section 2.1 

explains the fundamental concepts of cloud computing, mobile cloud computing, 

computational offloading for MCC and the distributed models deployed for processing of 

intensive mobile applications. Section 2.2 presents thematic taxonomy of the traditional 

offloading models, reviews current computational offloading frameworks and investigates 

the implications and critical aspects of the current offloading frameworks. Section 2.3 

compares current computational offloading frameworks by comparing the commonalities 

and deviations on the basis of significant parameters. Section 2.4 highlights the issues and 

challenges in computational offloading for MCC. Section 2.5 summarizes the chapter with 

conclusive remarks. 

2.1 Background 

This section elaborates the concept of cloud computing and mobile cloud computing. 

Further, it explains the mechanism of augmenting smartphone through computational 

clouds.   

2.1.1 Cloud Computing  

Cloud computing is the distributed computing model that implements the utility 

computing vision (Buyya et al., 2009), wherein computing services are provided on 

demand basis. Cloud service models enable with new IT business models such as on-
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demand, pay-as-you-go, and utility computing. The objective of the cloud computing model 

is to increase the capacity and capabilities of client devices by accessing leased 

infrastructure and software applications instead of owning them. Cloud computing has 

introduced new kind of information and services and new ways of communication and 

collaboration. Cloud has created online social networks in which scientists share data and 

analysis tools to build research communities (Kumar et al., 2010; Barga et al., 2011).  

In cloud computing, applications are delivered as services over the Internet and user 

access computing resources from centralized cloud servers through service providers 

(Armbrust et al., 2009). Computational clouds implement different types of service models 

for implementing the on demand computing vision (Buyya et al., 2009). Service providers 

provide services in the form of various service models; Software as a Service (SaaS), 

Infrastructure as a Service (IaaS), and Platform as a Service (PaaS). Figure 2.1 shows an 

abstract level layered cloud computing architecture.  

Cloud Physical Resources  Cloud Physical Resources  

Virtualized Resources Virtualized Resources 

Application Hosting PlatformApplication Hosting Platform

Cloud Applications Cloud Applications 

PaaS

SaaS

IaaSIaaS

 

Figure 2. 1: Layered Cloud Computing Architecture  

The hardware resources in the cloud datacenters are the physical resources of 

computational clouds.  Access to the physical resources is provided in the form of virtual 

machines. A middleware (hypervisor) masks access to the physical resources and is 

responsible for the deployment and management of virtual machines. The application 

hosting platform is composed of cloud programming environments and tools and 
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monitoring tools such as QoS negotiation, admission control, pricing and billing. The cloud 

applications run on the virtual machine instances in complete isolation.  

2.1.2 Mobile Cloud Computing  

Mobile cloud computing is the latest practical computing paradigm that extends 

utility computing vision of computational clouds to resources constrained SMDs. MCC is a 

distributed computing model for mobile applications wherein the storage and the data 

processing are outsourced from the mobile device to resources rich and powerful centralized 

computing datacenters in computational clouds (Shiraz et al., 2012). The centralized 

applications, services and resources are accessed over the wireless network technologies 

based on web browser on the SMDs. Successful practices of accessing computational 

clouds on demand for stationary computers motivate for leveraging cloud services and 

resources for SMDs. MCC has been attracting the attentions of business persons as a 

profitable business option that reduces the development and execution cost of mobile 

applications and mobile users are enabled to acquire new technology conveniently on 

demand basis. MCC enables to achieve rich experience of a variety of cloud services for 

SMD at low cost on the move (Hoang et al., 2011).  

MCC prolongs diverse services models of computational clouds for mitigating 

computing resources (battery, CPU, memory) limitations in SMDs. The objective of MCC 

is to augment computing potentials of SMDs by employing resources and services of 

computational clouds (Fernando et al., 2012).  MCC focuses on alleviating resources 

limitations in SMDs by employing different augmentation strategies; such as screen 

augmentation, energy augmentation, storage augmentation and application processing 

augmentation of SMD. Abolfazli et al. (2012) highlighted mobile augmentation techniques 

and proposed a taxonomy including three main approaches, namely high-end resource 
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production, native resource conservation, and resource requirement reduction. A number of 

approaches have been analyzed and it is argued that MCC lessens need to high-end hardware, 

reduces ownership and maintenance cost, and alleviates data safety and user privacy.  

The MCC model is composed of three major components; SMDs, internet wireless 

technology and computational cloud. SMDs use wireless network technology protocols 

such as 3G, LTE, or Wi-Fi to access the services of computational cloud in mobile 

environment. As SMD inherit its nature of mobility, it needs to execute location-aware 

services which consume resources and turned it to be a low-powered client.  Figure 2. 2 

shows a generic model of MCC in which the cloud that provides off-device storage, 

processing, queuing capabilities, and security mechanism is integrated with SMD via 

wireless network technologies. 

 

Figure 2. 2: Model of Mobile Cloud Computing (Shiraz et al. 2012) 

MCC utilizes cloud storage services (Amazon S3, Google Docs, MobileMe and Dropbox) 

for providing online storage and cloud processing services for augmenting processing 

capabilities of SMDs (Zhang et al., 2011). Processing capabilities of SMDs are augmented 

by outsourcing computational intensive components of the mobile applications to cloud 

datacenters. The following section discusses the concept of augmenting smartphones 

through computational clouds.  
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2.1.3 Computational Offloading for Mobile Cloud Computing 

MCC implements a number of augmentation procedures for leveraging resources and 

services of cloud datacenters. Examples of the augmentations strategies include; screen 

augmentation, energy augmentation, storage augmentation and application processing 

augmentation of SMD. In MCC, two categories of the cloud services are of special interest 

to research community; cloud contents and computing power. Cloud contents are provided 

in the form of centralized storage centers or sharing online contents such as live video 

streams from other mobile devices. A number of online file storage services are available 

on cloud server which augments the storage potentials by providing off-device storage 

services. Examples of the cloud storage services include Amzon S3 and DropBox. Mobile 

users outsource data storage by maintaining data storage on cloud server nodes. However, 

ensuring the consistency of data on the cloud server nodes and mobile devices is still a 

challenging research perspective.  

SmartBox (Zheng et al., 2009) is online file storage and management model which 

provides a significant approach for online cloud based storage and access management 

system. Similarly, the application processing services of the cloud datacenters is leveraged 

by outsourcing computational load to cloud server nodes. The technique of outsourcing 

computational task to remote server is called computational offloading or cyber foraging. 

The term “cyber foraging” is introduced by Satyanarayanan (2001) to augment the 

computing potentials of wireless mobile devices by utilizing the available stationary 

computers in the local environment. The process of outsourcing computational load to 

remote surrogates in the close proximity is called cyber foraging (Goyal. et al., 2004). 

Researchers implement process offloading techniques for Pervasive Computing (Oh et al., 

2006) , Grid Computing (Chunlin et al., 2010) and Cluster Computing (Begum et al., 
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2010).  The contemporary approaches for computational offloading in MCC employ the 

analogous approach of traditional computational offloading for pervasive computing. 

Mobile applications, which are attributed with the features of runtime partitioning are 

called elastic mobile applications (Shiraz et al., 2012). Elastic applications are partitioned at 

runtime for the establishment of distributed processing platform.  

Elastic mobile applications are attributed with the following features (Messer et al., 

2002) .  

 Ad-hoc platform creation is an important attribute of elastic mobile applications. 

Distributed application processing platform is established on ad-hoc basis at runtime in 

which elastic mobile application is partitioned dynamically and computational intensive 

components are migrated to remote server nodes.  Mobile clients dynamically arbitrate 

with cloud servers or surrogates to determine appropriate server node for remote 

application processing.  

 Elastic applications are designed in such a manner so that computational intensive 

components of the mobile application are separated dynamically at runtime.  

Applications are partitioned at different granularity level depending upon the design 

and partitioning policy of the offloading algorithm.  

  Adaptive offloading of the intensive components of the applications is a significant 

attribute of elastic mobile applications. Partitions of the application are offloaded to 

remote machines for remote execution which augments the computing capabilities of 

SMDs. Application offloading occurs whereas keeping in view different objective 

functions; such as energy saving, processing power, memory storage, and fast 

execution.  
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 Transparency in the distributed execution platform is a significant attribute of elastic 

applications. Transparency assures that elastic mobile application executes 

transparently on remote surrogates/server nodes. A transparent distributed processing 

environment gives the notion as entire application is being executed locally on SMD.  

All the complexities of remote execution are concealed from mobile users. Researchers 

determine applications offloading as an appropriate software level solution for 

alleviating resources limitations in SMDs. 

Currently application offloading is implemented in a number of ways. The application 

offloading frameworks outsource computational load of SMD at different granularity 

levels. The static application partitioning approach is used to separate the intensive 

components of mobile application only once. The dynamic partitioning approach is 

implemented to address the issue of dynamic application processing load on SMDs at 

runtime. Dynamic partitioning of the intensive mobile application at runtime is a robust 

technique for coping with the dynamic processing loads on SMD. In dynamic partitioning 

application is partitioned dynamically at runtime casually or periodically. In casual 

partitioning runtime profiling and solving mechanisms are activated in critical conditions to 

offload intensive components of mobile application. In periodic partitioning the runtime 

optimization mechanism evaluates computing resources utilization on SMD periodically.  

Current dynamic partitioning approaches analyze the resources utilization on SMDs, 

computational requirements of the mobile application and search for runtime solving of the 

problem of resource limitations on SMD. The profiling mechanism evaluates computing 

resources requirements of mobile application and the availability of resources on SMD. In 

critical condition (the unavailability of sufficient resources on SMD) elastic mobile 

application is partitioned and the computational intensive components of the application are 
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offloaded dynamically at runtime. SMDs negotiate with cloud servers for the selection of 

appropriate server node. At that moment, the partitions of the application are migrated to 

remote server node for remote processing. Upon successful execution of the remote 

components of the application, result is returned to main application running on SMD.  

Empirical analysis ascertains the significance of distributing application processing 

load to remote server nodes. However, the deployment of distributed application processing 

platform is obstructed by a number of unresolved challenges for MCC. The traditional and 

contemporary computational offloading frameworks focus on the establishment of dynamic 

distributed application processing platform at runtime.  For the selection of cloud server 

node, SMDs arbitrate with cloud server node dynamically at runtime. Therefore, the 

configuration of distributed processing platform at runtime is a resources starving and 

energy consuming mechanism. Dynamic runtime offloading involves the issues of dynamic 

application profiling and solving on SMD, runtime application partitioning, migration of 

intensive components and continuous synchronization for the entire duration of runtime 

execution platform.  Therefore, the development and deployment of intensive mobile 

applications on the basis of current algorithms is still a challenging research issue.   

2.1.4 Distributed Models for Computational Offloading  

Current offloading algorithms employ diverse models for the outsourcing 

computational load.  The following section discusses different mobile computing models, 

which are employed for application offloading.  

2.1.4.1 Local Surrogate Based Distributed Model 

In local surrogate based distributed model, SMD is enabled to select an appropriate 

surrogate for application offloading.  A remote surrogate is either a stationary computer or 

mobile device in local environment. The model implements a centralized server for the 
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establishment of distributed platform and provision of computing resources.  Goyal et al. 

(2004) implement a lightweight cyber foraging framework for outsourcing computational 

load to surrogates in the localized environment.  

2.1.4.2 Mobile Devices Based Ad-hoc Distributed Model 

In mobile devices based ad-hoc distributed model virtual or ad-hoc cloud computing 

environment is established among SMDs in the close proximity. In such an environment, 

sharing of the computing resources and services is restricted to the computing capabilities 

mobile devices in the virtual cloud environment. The virtual cloud lacks in the centralized 

management for the sharing of resources and services. The peer SMDs share computing 

resources and provides remote service for offload processing.  Canepa et al. (2010) 

implement virtual cloud model for sharing image processing load among peer SMDs in the 

close proximity.  

2.1.4.3 Centralized Server Based Mobile Devices Distributed Model 

In centralized server based mobile devices distributed model, remote computing 

services are provided by mobile worker nodes. However, a centralized server monitors the 

establishment and management of distributed application execution platform. In such a 

computing model, distributed resources and services provision are restricted to the 

computing potentials and services of worker nodes (SMDs). Dou and Kalogeraki (2010) 

implement MapReduce model for sharing the computational workload among mobile 

worker nodes.  

2.1.4.4 Cloud Datacenters Based Distributed Model 

The cloud datacenter based distributed model is composed of centralized monitoring 

mechanism for providing access to shared resources and services. The service providers 
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provide access to the widespread services on demand basis.  Zhang et al. (2011) implement 

elastic application model for outsourcing application partitions to cloud server nodes. 

Figure 2.3 highlights mobile computing models which are employed for application 

offloading. 

Distributed Application Processing ModelsDistributed Application Processing Models

Pervasive Model
(Virtual Cloud)

Pervasive Model
(Virtual Cloud)

Centralized Server Based 
Mobile Worker Nodes Model

Centralized Server Based 
Mobile Worker Nodes Model

Cloud Datacenter 
Based Model 

Cloud Datacenter 
Based Model 

Local Surrogate 
Model

Local Surrogate 
Model

 
Figure 2. 3:  Distributed Models for Computational Offloading 

 

2.2 Review of Traditional Computational Offloading Frameworks 

This section classifies the traditional computational offloading frameworks on the 

basis of thematic taxonomy and analyzes the implications and critical aspects of the 

traditional Distributed Application Processing Frameworks (DAPFs). Section 2.2.1 

explains the taxonomy of the traditional offloading models and section 2.2.2 reviews the 

traditional offloading frameworks on the basis of thematic taxonomy.   

2.2.1 Taxonomy of Distributed Application Processing Frameworks for MCC 

Thematic taxonomy is derived on the basis of the following attributes: framework 

nature, migration pattern, migration support, partitioning approach and objective functions. 

This section presents an introduction to the attributes of the thematic taxonomy. Section 

2.2.2 reviews current DAPFs on the basis of framework nature, whereas section 2.3 

contains a detailed discussion on objective functions, migration pattern, migration support, 
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migration granularity and partitioning approaches. Section 2.3 compares the traditional 

DAPFs on the basis of the parameters presented in the taxonomy.  

2.2.1.1 Framework Nature  

The nature of a framework represents the primary mechanism employed for the 

establishment of runtime distributed platform in offload processing. We categorize current 

DAPFs on the basis of virtual machine migration, entire application migration and 

application partitioning.  

a) Virtual Machine Migration: Virtual machine migration nature of DAPFs indicates that 

SMD offload mobile application (partially or entirely) by encapsulating the offloading 

component in VM instance on SMD. In VM migration based offloading mechanism the 

data states of the running application are saved (Chun and Maniatis, 2009) or the entire 

image of the running application is encapsulated in the VM instance (Satyanarayanan et 

al., 2009). The instantiated VM instance is migrated to the remote server nodes. A 

number of current DAPFs employ VM migration based approach for computational 

offloading (Hung et al., 2011; Zao et al., 2011).  

b) Entire Application Migration:  Entire application migration nature of DAPFs indicates 

that SMD offload entire processing job to remote server nodes. Current DAPFs offload 

entire application in two different manners. Running application is offloaded to remote 

server node (Canepa and Lee, 2010) or entire job is offloaded to remote server for 

outsourced processing (Liu et al., 2009). 

c) Application Partition: Application partitioning nature of the framework indicates the 

elastic nature of offloading framework. Elastic mobile applications have the attributes 

of dynamic runtime partitioning. The intensive partitions of the application are 

offloaded to remote server nodes at runtime (Cuervo et al., 2010; Zhang et al., 2011).  

Univ
ers

iti 
Mala

ya



Chapter 2: Literature Review  

21 

 

2.2.1.2  Partitioning Approach 

The partitioning approach of a framework indicates the mechanism of separating 

intensive components of the application. Current DAPFs implement runtime application 

partitioning in two different manners; static partitioning and dynamic partitioning. In static 

application partitioning the application partitioning logic is implemented only once either at 

compile time or runtime. The partitioning mechanism separates the locally annotated 

components for local execution on SMD, whereas the remotely annotated components are 

offloaded to remote server nodes.  

The dynamic partitioning mechanism follows dynamic evaluation mechanism for 

the evaluation of the computational load on SMD. In dynamic partitioning, the application 

partitioning algorithm continuously monitors the statistics of the resources allocated to 

mobile application on SMD. In critical conditions (availability of low computational 

resources on SMD) the pre-identified intensive (remotely annotated) components of the 

mobile application are offloaded to cloud server nodes.   

2.2.1.3 Migration Support 

The attribute of migration support indicates the level of support required for 

migrating application or partitions of the application at runtime. Currently, migration 

support is provided either at system level or application level. In system level migration the 

support of additional services is required on local operation system. For example the VM 

migration based offloading requires the additional support for VM deployment on SMD. In 

application level migration, the offloading logic is implemented at the application layer and 

does not require additional support at the operating system level.  
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2.2.1.4 Migration granularity  

The migration granularity attribute represents the granularity level at which 

application is migrated. Current DAPFs offload intensive components of the application at 

different granularity level. For example thread level granularity indicates that running 

thread is offloaded for remote processing. In the same way, method level granularity 

indicates that methods of the application are offloaded for remote processing.  

2.2.1.5 Migration pattern  

The migration pattern attribute represents the mechanism for transferring mobile 

application to remote server node. Current DAPFs employ a number of migration patterns 

such as VM migration, download using URL on remote host, mobile agent serving as 

courier for application transfer, binary code transfer of the application or copying entire 

proxy of the application on distributed computing nodes.  

2.2.1.6 Objective functions  

The objective function attribute indicates the primary objective of a framework for 

application offloading. Traditional application offloading frameworks implement a number 

of objective functions for making the decision of application offloading; such as saving 

energy on SMD, efficient bandwidth utilization, saving processing power on SMD, user 

preferences for fast application processing, or execution cost parameter. Figure 2.4 shows 

the thematic taxonomy of current DAPFs for MCC. Univ
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Figure 2. 4: Taxonomy of Mobile Application Offloading Frameworks for MCC (Shiraz et 

al., 2012) 

2.2.2 Review on Distributed Application Processing Frameworks  

This section reviews current DAPFs on the basis of framework nature presented in 

Figure 2.4. It also investigates the implications and critical aspects current DAPFs. 

2.2.2.1 VM Migration Based Computational Offloading  

Cyber foraging framework (Goyal et al., 2004) is employed to utilize computation 

resources of the computing devices (stationary or mobile) in the close proximity of the 

SMD. The framework implements client/server architecture. Mobile devices request for 

process offloading and surrogate server provides the services on demand. The framework 

supports configuration of multiple surrogate servers simultaneously and employs virtual 

machine technology for remote application processing.  A single surrogate server is capable 

to run a number of independent virtual servers in a controlled manner and simple cleanup 

mechanism is employed for releasing the resources allocated to VM instance. Each 

offloaded application executes on isolated virtual server. The framework ensures secure 
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communication by deploying cryptographic measures for communication between SMD 

and surrogate server.  

The framework includes the benefits of low latency, local accessibility of remote 

surrogates and fewer concerns of security and privacy. The critical aspects of such 

approach is the deployment of template based virtualization approach which is a highly 

time consuming and resources starving mechanism for VM deployment (Wang et al., 

2011).  The framework requires the annotation of individual components of the application 

as local or remote which is an additional effort for the application developers. Further, 

surrogate based cyber foraging is restricted to the availability of services and resources on 

local servers.  

VM based cloudlets framework (Satyanarayanan et al., 2009) differs from cyber 

foraging (Goyal and Carter, 2004) by migrating image of the running application to the 

explicitly designated remote server. A cloudlet is a trusted resource rich computer or cluster 

of computers which is accessible for SMDs. In the proposed model SMDs are employed as 

thin client which implement user interface components of the mobile application. The 

actual application processing is performed on the cloudlet in distributed environment.  

Virtual machine technology is deployed to rapidly copy customized service software on a 

nearby cloudlet and access the service in ubiquitous local area network environment.  

The framework implements hardware supported VM technology for the customization 

of cloudlet infrastructure. VM instance in the cloudlet machine separates the delegated 

guest application processing environment from the cloudlet infrastructure’s permanent host 

software environment. The framework employs different procedures for VM migration. 

The critical aspects are that the framework requires additional hardware level support for 

the implementation of VM technology and is based on cloning mobile device application 

processing environment to remote host. The mechanism of transferring the entire image of 
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mobile application involves the issues of VM deployment and management on SMD, 

privacy and access control in migrating the entire execution environment and security 

threats in the transmission of VM instance.  

 Chun and Maniatis (2009) proposed a clone cloud based framework which is a 

significant approach for offloading different types of mobile applications. Clone cloud 

differs from other approaches (Goyal and Carter, 2004; Satyanarayanan et al., 2009)   by 

employing three different offloading algorithms for different types of applications. 

However, the attribute of offloading image of the running states of the application to 

remote server resembles to the VM based Cloudlet approach (Satyanarayanan et al., 2009). 

The framework reduces the dynamic transmission overhead of application code by 

deploying a simple approach for synchronization.  

Clone cloud employs the mechanism of primary functionality outsourcing by 

offloading computational intensive tasks to remote host whereas simple tasks such as user 

interfaces are executed on mobile devices. Primary functionality outsourcing strategy is 

useful for applications which involve two types of processing; user interfaces which are 

displayed on the mobile devices, and high power resource starving computation.  Example 

of the application includes speech recognition, image processing and video indexing. 

Background augmentation mechanism offloads the entire application to remote host and 

returns result from the background process to the mobile device. The background 

augmentation strategy is useful for the applications which are composed of intensive 

processing loads and do not require frequent user interactions. Example of the applications 

includes scanning of files for viruses, indexing files for faster search. In these scenarios 

entire process is marked as remote by either; programmer, user or automatically inferred as 

background process at runtime. Mainline augmentation strategy is implemented which are 

resources intensive and requires frequent user interactions. Such type of applications need 
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to interact with other parts of the applications or users and having some computational 

intensive load. Examples of the applications include; fault tolerance and debugging.   

Clone cloud is a significant framework for offloaded processing which includes a 

simple approach for synchronization between SMD and remote server. The critical aspect 

of the Clone cloud is the migration of the execution environment of the application on 

SMD to remote server which involves the issues of security, privacy, access control, and 

the complications of VM deployment and management on SMD. The deployment of 

variant strategies for application migration on the basis of application nature results in 

enlarged overhead on mobile devices.  Clone cloud deploys a single thread approach which 

increases jitter in the execution time of the application components.  

The elastic CloneCloud (Chun et al., 2011) extends the concept of local Clone cloud 

(Chun and Maniatis, 2009) to remote cloud datacenters. The framework is based on 

partitioning of the application on thread basis and requires application level support for the 

establishment of distributed application processing platform at runtime. The framework is 

implemented in two phases; partitioning and migration. The partitioning phase determines 

the candidate intensive threads of the mobile application which are required to be migrated 

to the cloud server for remote execution. The partitioning phase involves static analysis, 

application dynamic profiling, and optimization solution. Static analysis is performed to 

identify migration and reintegration points in the code. The framework deploys some 

constraints for partition migration and ensures to follow the constraints for identifying 

migration and reintegration points in the application. 

In CloneCloud the partitioning and integration of the application occurs at application 

level. The running data states of the outsourcing components of the mobile application are 

encapsulated in VM instance and VM migration is employed for partition migration to 

cloud server node. The framework employs a centralized monitoring mechanism for the 
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establishment and management of distributed application execution platform. CloneCloud 

is a significant approach for extending the concept of VM based offloading from local 

distributed platform to centralized cloud servers. The framework considers the objective 

functions of application execution time and energy consumption at mobile device.  

CloneCloud implements a complicated architecture on SMD for the establishment and 

management of distributed platform. The framework is based on VM instance migration to 

the cloud node which involves the concerns of secure communication of running 

application states encapsulated in VM and privacy and access on remote server node. A 

major limitation of the architecture is that a single thread is migrated to the cloud at a time 

which reduces concurrency of the execution of application components. 

Hung et al. (2012) propose a virtualized execution environment for mobile 

applications. The framework utilizes application level process migration and employs 

Android platform for distributed application deployment. A running application is 

encapsulated in VM on SMD and VM is migrated to remote cloud computing environment. 

Cloud server creates fresh VM instance, and the delegated application VM is cloned into 

the newly created VM instance on the cloud server node. A synchronization mechanism is 

provided between SMD and cloud server. A middleware is placed between mobile device 

OS and hardware to support runtime workload migration and to better utilize the 

heterogeneous resources of mobile device and cloud servers. The framework deploys 

pause/resume scheme of the android platform for transferring . The framework employs 

application level process migration strategy for offload processing and employs hardware 

base trusted platform module. The framework provides mechanism for storing encryption 

keys and performs cryptographic operations on sensitive data. The critical aspects are that 

the framework requires heavy and traffic intensive synchronization mechanism for ensuring 

consistency between SMD and cloud server. The framework necessitates a separate 
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program called agent to be installed on SMD and cloud server which results in additional 

overhead on SMDs.   

Mirror server (Zao et al., 2011) is a distinct augmentation framework which employs 

Telecommunication Service Provider (TSP) based remote services. A TSP is a type of 

communications service provider which provides voice communication services such as 

land line telephone and cellular phone call services. The framework leverages cloud 

computing virtualization technique for the deployment of mirror server. A mirror server is a 

powerful server configured in TSP backbone which maintains VM template for different 

mobile devices platforms.  

The VM template for each mobile device is kept with default settings. A new VM 

instance is created for offloaded component of the mobile application.  The VM template 

for each mobile device is called its mirror and the server responsible for the deployment 

and management of the mirrors is called mirror server. The server creates fresh VM 

instance as per the platform of the requesting SMD. Mirror server is scalable and is capable 

to create hundreds of mirrors at a time. Mirror server augments smartphones by providing 

three different types of services; security (file scanning), storage (file caching) and 

computation offloading.  

The significant aspect of mirroring smartphone is that it provides reliable services 

through 3G network and addresses the challenging aspect of heterogeneity in SMDs 

platforms. The framework provides a lightweight protocol for SMDs for accessing remote 

services on mirror server and employs an optimized mechanism for downloading and 

offloading. The critical aspects of mirroring based DAPF is the deployment of TSP based 

mirror servers which are not basically designed for data processing, for that reason limited 

services can be acquired as compared to cloud datacenters.  
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The following section describes the generic sequence of operations for VM migration 

based application offloading. (a) The first step for application offloading is to arbitrate for 

appropriate surrogate or remote server host. Subsequently, the running application is 

encapsulated in VM on SMD which involves the creation of VM instance, VM 

configuration for running application and encapsulating all the state information of running 

application in VM instance. (b) The VM instance is migrated to the remote server through 

wireless medium. A new VM instance is created on remote server and the migrated VM is 

cloned onto the newly created VM instance on remote server. Running states of the 

application are resumed and application is executed on remote server host.  Finally, results 

are returned to the SMD. (c) Remote server ensures complete isolation of guest VM which 

means that the executing environment of guest VM is prevented from interference. Figure 

2.5 shows abstract level flowchart of VM migration based application offloading.  

StartStart

Encapsulation of Application in 
VM on SMD

Encapsulation of Application in 
VM on SMD

VM Migration VM Migration 

Application Resume on Cloud 
Server Node

Application Resume on Cloud 
Server Node

Remote Application Processing Remote Application Processing 

 Mobile Application on SMD Mobile Application on SMD

Pause Mobile ApplicationPause Mobile Application

StopStop

Selection of Remote Server HostSelection of Remote Server Host

 

Figure 2. 5: Generic Flowchart for the VM Migration Based Application Offloading 
(Shiraz et al., 2012)  

Virtual machines lead to high CPU utilization. VMs share the same CPU/core 

which increases the CPU scheduling latency for each VM (Wang et al., 2011). VM 

migration based offloading requires additional computing resources and time for the 
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deployment and management of VM on SMD. As a result, such approaches increase the 

execution cost and time of the application. Migration of the running application along with 

its data states is susceptible to security breaches and attacks. Further, a number of other 

research challenges such as privacy and access control are still addressable which obstruct 

the goals of optimal VM based migration algorithms for MCC (Shiraz et al., 2013).  

2.2.2.2 Entire Application Migration Based DAPFs 

Lightweight secure cyber foraging infrastructure (Goyal et al., 2004) employs Virtual 

Server Manager (VSM) which handles requests from SMDs for surrogate operations. SMD 

sends a request to VSM which is composed of URL to the program to be executed on 

surrogate. The entire program is downloaded on that URL and executed remotely. The 

background augmentation strategy of Clone cloud (Chun et al., 2009) employs entire 

application migration to remote host.  The application is migrated to remote local servers 

using VM instance migration and results are returned from background process to the 

mobile device.  

Canepa et al. (2010) propose the virtual cloud computing provider solution for mobile 

devices which is an ad-hoc cloud framework. The virtual cloud model focuses on the 

establishment of virtual cloud of SMDs. The virtual cloud computing environment is 

composed of SMDs in the proximity which remains in the same locality and stable mode. 

Mobile devices in the proximity set up an ad-hoc or virtual cloud environment and enables 

SMDs in the vicinity to share the computational load. The framework is composed of 

different components. The context manager component of the architecture maintains 

information regarding volunteer SMDs for resource sharing. The offloading manger 

component is responsible for sending and receiving entire applications, management of 
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runtime distributed environment and detecting failure and failure management. Offload 

manager coordinates with p2p component for application offloading and returning results. 

Universal Mobile Service Cell (UMSC) based framework (Liu et al., 2009) is a 

unique mobile agent based optimization solution which focuses on virtual cloud of mobile 

devices. The distinguishing features of the framework are the employment of mobile agent 

(UMSC) for application offloading and virtual cloud based service provision. The proposed 

architecture is composed of mobile hosts, UMSC, and mobile cloud units.  Cloud unit 

support several services such as offloaded computing and remote storage. The mobile cloud 

is composed of two kinds of cloud units such as local cloud unit and remote cloud unit. The 

framework uses UMSC for the offloading of entire application to remote cloud unit.  

UMSC serves as a mobile agent and works as a proxy for transmission between mobile 

cloud and mobile host.  UMSC is implemented as an intelligent software module which 

carries the requests of users. UMSC does not send request or responses to the network; 

instead UMSC itself migrates into the cloud to search response. The framework is 

composed of mobile agents in local mobile cloud computing environment for mobile 

devices and uses a genetic algorithm based scheduling policy for UMSC. The mobile 

environment is divided into a large number of cell regions. Each cell region is composed of 

several mobile cloud units. The cloud units in the cloud regions collectively form the 

virtual mobile cloud environment. Cloud units are the mobile support stations for providing 

services.  

The framework addresses the intrinsic issues associated with mobile computing; 

mobility, heterogeneity, and low bandwidth. UMSC based approach is a hybrid solution 

that combines mobile agent technology with virtual cloud model which is composed of 

SMDs. UMSC employs mobile IP to compensate the problem of mobility and provides a 

mechanism to overcome the problem of mobile host disconnection. UMSC guarantees the 
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quality and stability of wireless connections. The critical aspects are that distributed 

services are restricted to the availability of mobile nodes in virtual distributed wireless 

environment. The framework exploits localized approach for accessing distributed 

resources and involves a decentralized monitoring mechanism on SMDs which increases 

the demand for computing resources on SMDs. The framework implements management of 

mobile agents on mobile devices, which is a sophisticated and resource consuming 

mechanism. 

Chung et al. (2010) propose Distributed Shell System (DISHES) which is the 

extension of UNIX kernel shell to support ubiquitous distributed computing platform for 

SMDs. The architecture is composed of a centralized server, which contains a Service 

Directory (SD). The ambient computers register with the server which employs SD for 

maintaining database of all the nodes which are willing for sharing resources. Mobile 

clients make use of SD services for tracking appropriate remote server. DISHES serves as 

an interface middleware between a mobile user and network computers. SMD makes 

request for the availability of remote host for application processing, SD responds with the 

IP address of appropriate volunteer remote host for application process. SMD offloads 

entire application to remote host for remote processing and results are returned to SMD on 

successful completion of the remote processing.  

DISHES includes performance optimization mechanism to monitor network traffic 

and provides remote execution services in transparent manner. The critical aspects of 

DISHES are the decentralized approach, unavailability of centralized mechanism for the 

establishment and management of distributed platform and entire application migration for 

offloaded processing.  DISHES imposes additional assistant process creation on SMDs 

which involves intensive monitoring overhead on SMDs. 
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Dou and Kalogeraki (2010) propose Misco which extends the concept of MapReduce 

to the distributed cloud environment which is composed of centralized server and mobile 

worker nodes. MapReduce is a flexible distributed data processing framework which 

automatically parallelizes the processing of long running applications in cluster 

environment (Dean and Ghemawat, 2004). In Misco, the master server is a centralized 

monitoring entity which is responsible for the implementation of MapReduce framework. A 

distinctive feature of the framework is that SMDs are the worker nodes which serve as 

serving components for remote application processing. The worker nodes coordinate with 

the master server for getting workload and returning result. The communication between 

worker and master server occurs through HTTP Server. The download and upload between 

master server and workers is performed in the form of XML files. Application developers 

identify the Map and Reduce functions during the application development process.  

The framework provides a distributed platform for mobile applications. Misco 

provides a centralized monitoring mechanism for monitoring of the distributed execution 

platform.  The critical aspects are that the framework consists of worker mobile nodes 

which are intrinsically resources poor and therefore the availability of computing services is 

restricted to the computing potentials of SMDs. Misco requires the developers to annotate 

the methods as map or reduce functions and does not perform any centralized processing of 

application which results in communication overhead repeatedly between worker nodes and 

master server.  Communication overhead increases jitter in the process execution, 

bandwidth consumption and energy consumption.   

Liu et al. (2010) implement privacy algorithm for offloading entire image object to 

grid power server nodes. It highlights the tradeoff between energy savings and privacy 

protection in offloading processing. Stenographic techniques (Nguyen, et al., 2006) are 

explored for disguising actual image from grid powered servers. The authors focus on the 
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fact of privacy based offloading in which the contents of the offloaded components are 

hidden from the cloud node. The authors investigate the tradeoff between energy 

consumption and privacy of offloading and performed analysis of different execution 

patterns of the applications. Different parameters are involved in the energy consumption of 

mobile application processing; computation power of mobile, network power, idle power of 

mobile device, the speed of mobile system, speed of server, and bandwidth of network.   

Iyer et al. (2011) propose Cogniserve which focuses on the evolving feature of 

Mobile Augmented Reality (MAR) for image processing and speech recognition 

applications. Cogniserve architecture is composed of three main components; application 

cores for processing over cloud server, application specific recognition accelerators for 

performance improvement and decreasing latency, architectural support for general purpose 

programming and efficient communication between small cores and accelerators. The 

recognition server is composed of small cores connected via interconnect to an integrated 

memory controller for attaching it to DRAM. The design is composed of simple chip multi-

processor. Application specific accelerators are used to further enhance the recognition 

execution time. Three types of accelerators are deployed in the architecture; Gaussian 

mixture model for speech recognition, match accelerator and interest point detection for 

image recognition. The resulting architecture is heterogeneous by integrating small cores.  

CogniServe deploys the concept of instruction set architecture, in which there is 

direct user access from the small core to accelerator. As a result, the user to kernel mode 

transitions is eliminated. The architecture also utilizes the concept of common memory 

management units which lead the accelerator to share virtual memory space with the core; 

as a result of this it eliminates data movement overhead with the kernel to user mode 

transition. The framework deploys heterogeneous server architecture for recognition 

applications of mobile devices. CogniServe provides direct access between server cores and 
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accelerators instead of kernel to user space transition which eradicates address space 

transition and results in a low cost and energy efficient architecture. The critical aspects are 

that the framework requires special hardware level support for the implementation and is 

specially designed for recognition applications such as image processing and speech 

recognition applications. 

The virtualized framework (Hung et al., 2012) employs application level process 

migration and uses Android platform for the deployment. A running application is 

encapsulated in VM on SMD and VM is migrated to remote cloud computing environment 

for remote processing. Mirror server based approach (Zao et al., 2011) involves the 

migration of the state of the entire running application on the smartphone device to mirror 

instance on server. Application is executed in the mirror VM instance and result is return to 

the smart mobile device.  Figure 2.6 shows the generic flowchart of offloading entire 

application/job to remote server node.  

StartStart

Application/Job  MigrationApplication/Job  Migration

Remote Application Processing Remote Application Processing 

Mobile Application on SMDMobile Application on SMD

Pause Mobile ApplicationPause Mobile Application

StopStop

Selection of Remote Server HostSelection of Remote Server Host

 

Figure 2. 6: Generic Flowchart for Entire Application Migration Based DAPFs 
(Shiraz et al., 2012) 
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SMD arbitrate with cloud server nodes for the selection of remote server node, at that 

moment entire application or job is migrated to remote server node. Upon the successful 

execution of the application on remote server ultimate results are returned to SMD. 

2.2.2.3 Application Partitioning 

The latest DAPFs employ application partitioning based offloading mechanism for 

outsourcing the intensive components of the mobile application to remote server node. 

Current partitioning algorithms employ runtime application profiling and solving 

mechanism for evaluating the computational load of SMDs. Elastic application frameworks 

employ different objective functions for the identification of intensive components of the 

mobile application and making the decision of application offloading.  Application 

partitioning algorithms are classified in two broad categories; static partitioning and 

dynamic partition.  The following section reviews existing elastic application framework 

for MCC on the basis of aforementioned application partitioning approaches.  

2.2.2.4 Static Application Partitioning Based DAPFs 

In static application partitioning the mobile application is partitioned in fixed number 

of partitions either at compile time or runtime. The computational intensive partitions of the 

applications are outsourced to remote servers. In the primary functionality offloading 

(Satyanarayanan et al., 2009) application is statically partitioned in two major partitions. 

Such applications involve two types of processing; user interface which are required on 

mobile device; and computational intensive parts of the application are offloaded to remote 

surrogates or cloud servers.  In Misco (Dou  et al., 2010) the application is statically 

partitioned into two types of functions; map and reduce. Map function is applied on the set 

of input data and produces intermediary <key, value> pairs; such pairs are grouped into a 

number of partitions. All pairs in the same partition are passed to a reduce function which 
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produces the final results. Application developers are responsible for implementing the map 

and reduce functions and the system handles all the remaining mechanism. The worker 

nodes process map and reduce functions and results are returned to master server.  

2.2.2.5 Dynamic Application Partitioning Based DAPFs 

Dynamic partitioning of the intensive mobile application at runtime is a robust 

technique for coping with the dynamic processing loads on SMD. Current dynamic 

partitioning approaches analyze the resources consumption of SMDs, computational 

requirements of the mobile application. Such frameworks search for runtime solving the 

critical conditions of resources shortage on SMD. In dynamic partitioning application is 

partitioned dynamically at runtime casually or periodically. In casual partitioning runtime 

profiling and solving mechanisms are activated in critical conditions to offload intensive 

components of mobile application. In periodic partitioning the runtime optimization 

mechanism evaluates computing resources utilization on SMD periodically. Dynamic 

partitioning of the mobile application is implemented in different manners. In the follow 

section we review current dynamic application partitioning frameworks for MCC.   

AIDE (Messer et al., 2002) establishes distributed platform which is composed of 

different computing devices such as laptops, PC’s, PDA’s, and smartphones. The 

framework is composed of surrogate server and mobile device client.  SMD searches for 

suitable surrogate to share application processing load. The partitioning component of the 

AIDE partitions the application by following a partitioning policy. The framework 

exercises class level granularity for the partitioning of elastic mobile application. The 

application profiling component establishes the feasibility of offloading. Application 

profiler reflects on two parameters, the execution history of the application and prediction 
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of the future resources required for the application. Profiler aims for offloading the 

components that could improve the performance of the system.  

AIDE provides a transparent distributed application deployment framework for mobile 

applications. The sophistication of application migration and remote execution are masked 

from mobile users. AIDE employs a dynamic partitioning and migration approach for 

offloaded processing and employs computing services of the remote hosts in the local 

distributed environment. AIDE implements distributed execution platform in transparent 

manner and gives the notion of application being executed on local device. AIDE 

incorporates the option to use multiple surrogates for remote execution. The critical aspects 

of AIDE are that the runtime partitioning of the application requires additional computing 

resources exploitation for the establishment of distributed platform. AIDE is a decentralized 

distributed platform for dynamic partitioning and migration, therefore heavy monitoring 

overhead is implemented on SMD.  

Giurgiu et al. (2009) introduced a middleware framework for sharing the application 

processing load on SMD dynamically between cloud server node and mobile devices. 

Objective of the framework is to deploy the application in optimal mode by automatically 

and dynamically determining the execution location for modules of an application. 

Application profiling component of the architecture partitions the application in modules on 

the basis of its behavior and represents modules in the form of data flow graph known as 

consumption graph. The framework exercises existent module management such as R-

OSGi (Rellermeyer et al., 2008) and deployment tool such as AlfredO (OSGi Alliance, 

2007). The framework implements both static partitioning and dynamic partitioning 

strategies. K-Step and ALL algorithms are used for application partitioning. K-Step is 

deployed for dynamic partition at runtime, whereas ALL is employed for static partitioning 

of the application. Preprocessing of the consumption graph is performed before running the 
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algorithm to reduce search space. Preprocessing separates local and remote bundles of the 

application. The framework looks for outsourcing the components of mobile application 

which are feasible for offloading. It means that the intensive components of the mobile 

application with higher offloading cost than local execution are not offloaded.  

The implications of the framework are that it employs both static and dynamic 

partitioning algorithms for the establishment of runtime distributed platform between 

SMDs and cloud datacenters. A significant aspect of the framework is that SMDs are 

assigned application processing load on the basis of the availability of memory and 

processing capacity. The framework derives optimal solution for optimization problem in 

order to optimize different objective functions such as interaction time, communication 

cost, and memory consumption. The critical aspect of the framework is the runtime 

partitioning strategy which puts additional computational load on SMDs in dynamic 

analysis, profiling, synthesizing, partitioning and migration.  The framework requires 

SMDs to continuously synchronize with the cloud server node which requires maintaining 

SMD in active state for the entire duration of distributed platform which is an energy 

starving mechanism (Kelenyi et al. 2009; Pedersen, 2009). 

Mobile Assistance Using Infrastructure (MAUI) (Cuervo et al., 2010) is a dynamic 

partitioning framework which focuses on energy saving for the SMD. MAUI partitions the 

application dynamically at runtime in which the computational intensive components of the 

application are offloaded to the cloud server nodes. Programmers annotate the individual 

methods of the application as local or remote. MAUI profiler determines the remote 

methods of application to be offloaded to cloud server. Whenever a method is called, the 

profiler component evaluates it for energy saving which consumes additional computing 

resources (CPU, energy) on SMD.   
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MAUI solver decides the destination location for the execution of the method 

annotated as remote. The decision of MAUI solver is based upon the input of MAUI 

profiler. Proxies of the application are created for execution on both cloud server node and 

mobile device for communication between local methods and remotely executable 

methods. MAUI generates a wrapper for each method marked as remote at compile time. 

The type signature of the wrapper methods differs from two perspectives; one additional 

input argument, and one additional return type. Input argument is required for the state 

transfer of smartphone to MAUI server through client application proxy. The additional 

return value is used to transfer the application state back to smart mobile device using 

server proxy. State of the method is transferred in serialized form.  

MAUI is a cloud server based dynamic partitioning framework which considers energy 

saving on SMD as the main objective function for offloaded processing.  MAUI masks the 

complexity of remote application execution from mobile user and gives the notion as the 

entire application is being executed on SMD. The framework is based upon method state 

migration as a substitute of method code migration. MAUI copes with the mobility of the 

mobile user and provides optimized solution periodically to adapt to the changes in network 

and user location.  

The critical aspect of MAUI is the dynamic partitioning of the application at runtime 

which activates the profiler and solver component dynamically to determine execution 

point for application partitions. Development of the applications on the basis of MAUI 

requires additional developmental efforts for annotating the execution pattern of each 

individual method the application. MAUI deploys full proxies of the application on both 

SMD and cloud datacenter. MAUI obliges the overhead of dynamic application profiling, 

solving,   partitioning, migration, and reintegration on SMD. 
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CloneCloud (Chun et al., 2011) employs dynamic partitioning of the application at 

runtime. Partitioning phase of the framework involves; static analysis, application dynamic 

profiling, and optimization solution. Mobile device uses preprocess migratory thread to 

assist a process with suspending, packaging, resuming and merging thread states. Chun et 

al. (2010) address the issue of application partitioning between mobile devices and clouds. 

The optimization problem is modeled through a mathematical expression, which includes 

execution cost of each module on mobile device, execution cost of each module on cloud, 

and the cost of communication between the two modules. Variant objective functions are 

considered for partitioning, minimize execution time and minimize battery power 

consumption or cost of execution of the application.  

 Zhang et al. (2011) propose elastic application model for augmenting the computing 

capabilities of mobile devices.  Application is partitioned into weblets and migrated 

dynamically between mobile device and remote cloud server. Variant elastic patterns are 

used for the replication of weblets on the remote cloud. The execution destination for the 

weblet is determined dynamically at runtime. The framework employs different parameters 

for offloaded processing of the weblets such as status of the mobile device, cloud, 

application performance measures and user preferences which comprise power saving 

mode, high speed mode, low cost mode and offload mode. The framework implements an 

optimal cost model for the execution configuration of the weblets. The cost model 

considers different costing factors such as power consumption, monetary cost, performance 

attributes and security and privacy.  

The framework proposes a security mechanism for ensuring the integrity of 

communication between SMD and cloud server (Zhang et al., 2009). Whenever a weblet is 

downloaded on SMD, the integrity of each weblets is ensured by the installer of the device 

by re-computing hash value for each weblet and comparing it with the hash value stored in 
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the weblet.  The installer registers the application with Device Elasticity Manager (DEM). 

The DEM maintains a table of installed applications on the device which need elasticity 

manager support. The table maintains detailed information about weblets such as signed 

hashed values and migration settings.  Several parts of the elastic application are installed 

on Cloud Elasticity Service (CES). CES maintains installed applications for users. For this 

purpose users register with CES and authenticate with CES during installation. The cloud 

based application manager is able to download the application code from an application 

store instead of uploading from mobile device. The node manager executes the weblet 

binary provided by application manger. The local weblet can query DEM to obtain the list 

of all active weblets in the same session. The local weblet can broadcast the URLs returned 

by DEM to any other weblet that needs to communicate.  

The implications of elastic application model are that it accomplishes application level 

partitioning and migration of applications. The framework employs a comprehensive cost 

model to dynamically adjust execution configurations and optimizes application 

performance in terms of a set of objectives and user preferences. The framework provides a 

security mechanism for the authentication and authorization of weblets migration and 

reintegration and provides support for synchronization between application on mobile 

device and weblets running on cloud node. The critical aspect is the establishment of 

runtime distributed platform for SMD which requires additional computing resources for 

the establishment and management of distribute platform.  The framework deploys 

replication of the application both on the mobile device and application manager of the 

cloud server. The framework implements a sophisticated mechanism for the migration of 

weblets between SMD and remote cloud nodes. It imposes extensive overhead of 

application profiling, dynamic runtime partitioning, migration, reintegration, and rigorous 

synchronization on mobile devices for offload processing.  

Univ
ers

iti 
Mala

ya



Chapter 2: Literature Review  

43 

 

Figure 2.7 shows a generic flowchart for application partitioning based offloading 

frameworks. The profiling mechanism evaluates computing resources requirements of 

mobile application and the availability of resources on SMD. Profiling mechanism works 

differently in different frameworks. The critical situation indicates the unavailability of 

sufficient computing resources on SMD.  The computational intensive components of the 

application are separated at runtime. SMD negotiate with cloud servers for the selection of 

appropriate server node. The partitions of the application are migrated to remote server 

node for remote processing. Upon successful execution of the remote components of the 

application, result is returned to main application running on SMD.  

StartStart

Critical 
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Critical 

Condition

ProfilerProfiler

SolverSolver

Yes

MigratorMigrator Cloud Server NodeCloud Server Node

Execute on SMDExecute on SMD

Elastic Mobile 
Application

Elastic Mobile 
Application

StopStop

No

Partitioning Partitioning 

Remote Processing Remote Processing 

 

Figure 2. 7: Generic Flowchart for Flowchart Partitioning Migration Based DAPFs (Shiraz 
et al., 2012) 

2.3 Comparison of Distributed Application Processing Frameworks 

This section categorized current DAPFs on the basis of local resources utilization 

model and server resources utilization model. It investigates commonalities and deviations 

in such frameworks on the basis significant parameters such as offloading scope, 

partitioning approach, migration support, migration granularity, application developer 
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support, migration pattern and execution monitoring. The following section discusses such 

parameters in detail.  

2.3.1 Offloading Scope (OS)  

The offloading scope attribute of DAPFs represent the scope of distributed platform 

established at runtime. Current DAPFs deploy the following offloading scopes. 

a) Local Resources Utilization: The local resources utilization models utilize computing 

resources and services of local computing nodes. Current DAPFs implement the 

following three different types of decentralized computing resources utilization models.  

i) Decentralized distributed platform which is composed of stationary remote hosts or 

mobile nodes. In this model the distributed platform is established by utilizing 

computing resources of remote servers in close proximity.  

ii) Virtual or Ad-Hoc distributed platform which is composed of mobile nodes. In this 

model SMDs establish distributed platform in pervasive fashion in local environment. 

iii) Centralized distributed platform which is composed of centralized server and mobile 

worker nodes. In such a model management and monitoring is performed my 

centralized servers, however actual processing of the application is performed on the 

decentralized mobile worker nodes.  

b) Server Based Resources Utilization:  The server based resources utilization models 

utilize computing resources and services of the centralized servers.  Current DAPFs 

implement the following three different types of centralized computing resources 

utilization models.  

a) Grid server based distributed platform in which remote services are provided by grid 

servers.  
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b) Telecommunication Service Provider (TSP) based distributed platform wherein remote 

services are configured at TSP servers.  

c) Cloud servers based distributed platform in which remote services are configured at 

cloud datacenters.  

2.3.2 Partitioning Approach (PA) 

The partitioning approach attribute of offloading frameworks represent the partitioning 

strategy of the framework.  Current DAPFs implement application partitioning in two 

different ways.  Static partitioning in which the application is partitioned in fixed number of 

partitions either at compile time or runtime. Dynamic partitioning approach is used for 

partitioning of elastic mobile application at runtime. Static partitioning frameworks are 

represented as ‘static’, whereas the dynamic frameworks are represented with ‘dynamic’ 

The notation ‘n/a’ is used for non-partitioning DAPFs.  

2.3.3 Migration Granularity (MG) 

The migration granularity attribute of the traditional DAPFs represent the granularity of 

migrating component of the application. The possible granularity levels for currents DAPFs 

are as follows. a) Module level migration represents that entire module or bundle of the 

application is migrated to remote environment. b) Method level migration represents that 

partitioning occurs at application method level and intensive methods of the application are 

migrated to remote server.  c) Object level migration represents that entire object is 

migrated to remote environment for outsourced processing. d) Thread level migration 

represents thread level partitioning and migration of the application to remote environment. 

e) Entire application migration in which case entire application is offloaded to remote 

server.  
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2.3.4 Migration Support (MS) 

The migration support attribute of the offloading model represents the level of support 

required for the migration of application. Current DAPFs require two different levels of 

migration support. a) System level support requires additional operating system support for 

the migrating components of the application such as VM deployment and management.  b) 

Application level support means offloading is performed without additional support from 

operating system.  

2.3.5 Migration Pattern (MP) 

The migration pattern attribute represents the pattern of migration of application to 

remote node. The following MPs are implemented by current DAPFs.  

a) Application transfer is a migration pattern in which case the code of the application is 

outsourced to remote server.  

b) URL download represents a migration pattern in which case a URL is provided to 

remote host and application is downloaded from that URL as a substitute of transferring 

the application directly from SMD.  

c) VM Instance represents a migration pattern in which the application is encapsulated in 

VM instance (partially or entirely) and VM instance is migrated to remote server. A 

fresh VM instance is created on the remote server and guest VM instance is copied to 

the freshly created VM on remote server.  

d) UMSC is a migration pattern in which mobile agent is employed for the migration of 

outsourcing application. UMSC serve as a courier for the migration of the application 

between SMD and remote server.  
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e) File download represents a migration pattern in which the mobile application is 

offloaded by downloading the application file. The communication between SMD and 

remote server occurs in the form of XML files.   

f) Module/Bundle transfer represents a migration pattern in which case modules of the 

application are migrated to remote servers either by VM migration or code transfer.  

g)  Application proxy is a migration pattern in which entire proxies of the application are 

replicated on remote server.  

h) Object transfer is a migration pattern in which case entire object is outsourced to remote 

server at application level. 

2.3.6 Developer Support (DS) 

  A number of current DAPFs required developers support for defining execution 

scope of the components of application at different granularity level.  DS shows the 

requirement of additional support required for the development of the application. 

2.3.7 Execution Management (EM) 

The execution Management attribute shows the management policy for the 

deployment and management of runtime distributed application platform.  a) Decentralized 

management represents the unavailability of the centralized mechanism for the deployment 

and management of distributed platform. Therefore, SMDs are responsible for monitoring 

distributed platform and distributed application execution. b) Centralized management 

represents that a centralized management and monitoring mechanism is provided for the 

establishment of distributed platform and monitoring of application execution. 
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2.3.8 Security Support (SS) 

  SS represents the security provision attribute of the DAPFs. The availability of the 

security support mechanism in the framework is represented with the value ‘yes’, whereas 

unavailability of the security support in the offloading model is represented with the value 

‘no’.  Table 2.1 shows the commonalities and deviations in the local resources sharing 

based DAPFs on the basis of the aforementioned parameters 

 

Table 2. 1: Comparison of Local Resource Sharing Based Application Offloading 
Frameworks (Shiraz et al., 2012) 

Framework OS PA MG MS MP SS DS EM 
Distributed 
Platform for 
Resources 
Constrained 
Devices 
(Messer et al. 
2002) 

Local  Dyna
mic 

  Class 
Level 

Application 
Level 

Application 
Transfer 

No Not 
Required 

Decentralized 

Secure Cyber 
Foraging 
(Goyal et al., 
2004) 

Local  n/a Entire 
Applicatio
n 

System 
Level  for 
VM 

URL 
download 

Yes Required Decentralized 

Clone cloud 
(Chun and 
Maniatis, 2009) 

Local  Static Entire 
Applicatio
n/ 
Partitionin
g  

System level VM Instance No Required Decentralized 

Optimized 
Solution for 
Mobile Devices 
(Liu et al., 
2009) 

LocalAd
-Hoc 
Cloud  

n/a Entire 
Applicatio
n 

n/a UMSC No n/a Decentralized 

VM-Based 
Cloudlets 
(Satyanarayana
n et al., 2009) 

Local  n/a Entire 
Applicatio
n 

System 
Level 

VM Instance No n/a Decentralized 

DISHES 
(Chung et al., 
2010)  

Local  n/a Entire 
Applicatio
n 
Offloadin
g 

System 
Level 

Code 
Download/ 
Transfer. 

No Not 
required 

Centralized 

Virtual Cloud 
Computing 
(Canepa et al., 
2010) 

Local 
Ad-hoc 
Cloud  

n/a Entire 
Applicatio
n 

n/a Application 
Transfer 

Yes No Decentralized 

Misco (Dou. et 
al., 2010)  

Ad-hoc 
mobile 
cloud 

Static Method 
level 

Application 
Level 

File 
download 

No Yes Centralized 
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Local application offloading frameworks employ decentralized monitoring 

approach for process offloading which results in the extensive involvement of SMDs for 

the management of distributed processing.  Further, local offloading frameworks are 

deficient in the centralized management and the availability of resources for the provision 

of remote services.  In the scenario of unavailability of local remote service provider, 

remote services become inaccessible which hinders the objectives of availability and 

scalability of services in distributed computing paradigm.   To cope with the issues of 

decentralized DAPFs, centralized server based solutions are implemented.                     

Table 2.2 compares server based offloading frameworks in which centralized resources are 

available for the management and provision of remote services.  

Table 2. 2: Comparison of Server Based Application Offloading Frameworks (Shiraz et al., 
2012) 

Framework OS AP MG MS MP SS DS EM 
Calling the Cloud 
(Giurgiu et al., 
2009) 

Cloud 
Server 

Dynamic  Modules 
(Bundle) 

Application 
Level  

Bundles  
Transfer  

No Not 
Required 

Centralized  

MAUI (et al., 
2010) 

Cloud 
Server 

Dynamic  Method 
Level 

Application 
Level 

Applicati
on Proxy 

No Yes Centralized  

Dynamically 
Partitioning 
Applications 
(Chun et al., 2010) 

Cloud 
Server 

Dynamic Module level Application 
level 

Applicati
on 
Transfer 

No n/a Centralized 

Energy Savings 
and Privacy 
Protection (Liu. et 
al., 2010) 

Grid 
Server 

n/a Image 
Object 

Application 
Level 

Object 
Migration 

No Not 
Required 

Centralized 

CloneCloud (Chun 
et al., 2011) 

Cloud 
Server 

Dynamic  Thread  System 
Level 

VM 
Instance 

No Not 
Required 

Centralized  

COGNISERVE 
(Iyer et al., 2011) 

Cloud 
Server 

n/a Entire Job Application 
Level 

Object 
Migration 

No Na Centralized 

Elastic 
Application Model 
(Zhang et al., 
2011) 

Cloud 
Server 

Dynamic Bundles 
(Weblets) 

Application 
level 

URL 
download 

Yes No Centralized 

Mirroring 
Smartphones (Zao 
et al., 2011) 

TSP 
Based 
Server 

n/a Entire 
Application 

Application 
Level 

VM 
Instance 

Yes Not 
Required 

Centralized 

Virtualized 
Execution 
Environment 
(Hung et al., 2011) 

Cloud 
Server 

n/a Entire 
Application 

Application 
Level 

VM 
Instance 

No Not 
Required 

Centralized 
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Server based application offloading frameworks accomplish outsourced application 

processing in a number of ways. Several approaches exploit VM cloning; others focus on 

part(s) of the application to be offloaded. A number of approaches implement dynamic 

partitioning whereas other focus on entire job migration. Traditional server based 

offloading model implement diverse objective functions; such as saving processing power, 

efficient bandwidth utilization, saving energy consumption, user preferences, and execution 

cost. Server based DAPFs provide centralized management and ensure availability of 

remote services. However, a number of obstacles obstruct optimization goals of server 

based remote application processing. In the following section, we highlight key challenges 

to current DAPFs and identify general issues for the distributed processing of mobile 

applications for MCC.  

2.4 Issues and Challenges for Distributed Application Deployment in 
MCC 

The following section discusses issues in current offloading frameworks and 

identifies challenges to the cloud based application processing of resources intensive 

mobile applications.  

2.4.1 Scalability and Availability of Services and Resources   

Scalability of services is a challenging aspect of distributed application processing 

in mobile cloud computing. The traditional local DAPFs for remote application processing 

are deficient in centralized management of the distributed platform. A challenging issue in 

local DAPFs is the unavailability of centralized resources. For example; in the scenario of 

unavailability of remote service provider, remote services become inaccessible which 

hinders the objectives of availability of services in distributed computing paradigm.  
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Similarly, local resources are accessible to limited number of mobile devices in the 

local environment. Therefore, the possibility of inaccessibility of the remote services 

always remains associated in local distributed models. Whereas, scalable systems ensure 

the provision of services irrespective of the number of clients accessing the services. 

Therefore, unavailability of centralized resources and services and scalability of services is 

a challenging research issue for ad-hoc and virtual distributed models of MCC. It is 

challenging to implement peaceful degradation policy on SMDs in the critical conditions of 

unavailability of remote services. Scalable systems sustain the provision of services and 

resources for large number of clients whereas availability of services ensures the provision 

of remote services. It is imperative to ensure the scalability of services in cloud datacenters 

so that SMDs are enabled to access centralized services for distributed application 

deployment with high aim of scalable remote services.  

The centralized datacenter based computational cloud are resources rich and 

computational resources and services are provided on demand basis. Cloud resources and 

services are accessible to both stationary computer clients and SMDs. However, the unique 

architecture, compact design, operating platforms, low computing potentials, and portable 

mobile nature of smart mobile devices require special services for ensuring the availability 

of cloud services. The mobile nature and the intrinsic limitations associated with the 

wireless access medium of SMD necessitate availability of cloud services and resources 

homogeneously worldwide. It is challenging in cloud based processing of mobile 

applications to ensure the availability of services and identical access to cloud services over 

different types of wireless network technologies (Wi-Fi, 3G and LTE). Therefore, 

sustaining uninterrupted provision of cloud services and resources to SMDs is a 

challenging research perspective of mobile cloud computing.    
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2.4.2 Lightweight Distributed Application Deployment 

In current DAPFs, resources intensive distributed platform is established at runtime. 

Mobile applications offloading frameworks are developed on the basis of standalone 

application architecture, whereas the processing of application is performed in the 

distributed fashion.  Therefore, current DAPFs establish a resources intensive and complex 

computing environment at runtime. Application offloading techniques are primarily based 

on either entire application/job migration or application partition migration to remote 

servers. The implementation of distributed architecture for virtual mobile cloud is hindered 

by the following obstructs.  

1. Local distributed processing models lack in the availability of centralized management; 

for that reason it is difficult to configure explicitly defined client and server components 

for the mobile applications.  

2. Virtual clouds necessitate special requirements for the establishment of distributed 

platform which is challenging to maintain for mobile devices which are participating in 

ad-hoc cloud. The special requirements include; SMDs remain in the close proximity, 

follow the same movement patterns, voluntariness for service and provision, 

implementation of specific service architecture (Canepa et al., 2010).  

The additional computing resources of SMDs are utilized for the configuration of 

distributed platform and management of distributed services provision to the requesting 

client devices. Further, shorter battery life time of SMDs is major challenge in virtual/ad-

hoc distributed application processing models. Therefore, the ad-hoc and virtualized nature 

of local distributed platform is another obstacle in explicitly defining client and server 

components of the mobile application. However, the availability of centralized resources 

and services and centralized management mechanism in cloud datacenters are the 
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motivating factors for incorporating distributed architecture for the intensive mobile 

applications. It is challenging for distributed mobile application to incorporate the 

principles of distributed applications in such a manner so that mobile applications can 

operate in the situations of inaccessibility of cloud server nodes.  

2.4.3 Seamless Connectivity and Consistent Distributed Platform 

Mobility is an important attribute of SMDs.  Mobile users enjoy the freedom of 

computing and communication on move. However, a number of obstacles hinder the goals 

of seamless connectivity and consistency in the distributed platform of mobile applications; 

for example handoffs, traveling with high speed, diverse geographical locations and 

different environmental conditions. As a result, providing seamless connectivity and 

uninterrupted access to the centralized cloud datacenters in distributed application 

processing is a serious research issue for MCC.  

It is important that distributed application model provide versatile access to cloud 

resources and services on move with ubiquitous attributes and high degree of transparency. 

However, it is challenging to ensure the transparency of distributed environment. In 

particular to SMD, the issues and limitations in wireless medium hinder the transparency 

goals of distributed processing of mobile application. The seamless and transparent 

deployment of distributed platform for computational intensive applications is a 

challenging aspect for mobile cloud computing. It is mandatory for distributed model to 

mask the complexities of distributed environment from mobile user and give the notion as 

the entire application is being processed locally on SMD. Similarly, it is important to 

ensure successful execution of remote processing and returning results to SMD. Sustaining 

consistency of the offloaded components of the application with lightweight 

implementation procedures is a challenging aspect of DAPFs.  Consistency is an issue for 
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the components offloaded at runtime (Zhang et al., 2011), the replicated applications using 

proxies (Cuervo et al., 2010), and transactions involving related updates to different 

objects.  

It is important that the distribution and replication of intensive mobile applications 

and data should be transparent to the mobile users and application running client device. 

Cloud based distributed processing of mobile application are required to fulfill Atomic, 

Concurrency, Isolation and Durability (ACID) properties of the distributed systems. It is 

challenging to provide location transparency, replica transparency, concurrency 

transparency, and failure transparency in cloud based application processing of mobile 

applications.  

2.4.4 Homogenous and Optimal Distributed Platform  

Homogenous and optimal cloud based application processing is an important 

research perspective in mobile cloud computing. Heterogeneity of SMD architecture and 

operating platform is challenging for distributed application processing in MCC. Mobile 

device vendors employ different hardware architecture and operating system platforms for 

the specific mobile product. Traditional application offloading frameworks focus on the 

implementation of platform dependent procedures for outsourcing computational intensive 

loads. For example, Weblets (Zhang et al., 2011) and MAUI (Cuervo et al., 2010) are 

application offloading frameworks which are applicable for .Net framework, whereas 

virtualized execution framework (Hung et al., 2011) and mirror server (Zao et al., 2011) are 

suitable frameworks for android platform. Hence, homogenous access to cloud services are 

highly expected wherein SMD are enabled to access widespread computing services of 

computational clouds irrespective of the concerns about operating hardware architecture 
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and operating system platform.  A homogenous distributed application deployment solution 

for the heterogeneous available SMDs platforms is a challenging issue for MCC.  

Sanae et al., (2012) proposed a tripod of requirements with three legs of trust, 

energy efficiency, and ubiquity. It describes important metrics such as heterogeneity, under 

this tripod which are crucial for the success of cloud-mobile applications. Similarly, the 

deployment of distributed application processing platform at runtime is a resources 

intensive mechanism. It uses computing resources on SMDs for the evaluation of 

computing resources utilization on SMDs and partitioning of intensive mobile applications 

at runtime. Current, DAPFs necessitate continuous assessment of application execution 

requirements on SMD which is a resource intensive operation.  

DAPFs employ runtime profiling and solving mechanism on SMDs periodically or 

casually to evaluate application processing requirements and the availability of computing 

resources on SMD. The centralized distributed application deployment models require 

arbitration of SMD with centralized server for the selection of appropriate server node. As a 

result, computing resources (CPU, battery power) of SMD are exploited abundantly for the 

entire process of application profiling and solving. The deployment of distributed platform, 

management and operation of remote application processing in the optimal possible fashion 

is an important perspective of cloud based application processing. It is challenging to 

provide homogenous solution for heterogeneous devices, operating platforms and network 

technologies with minimum possible resources utilization on the SMDs.  

2.4.5 Security and Privacy in Cloud Based Application Processing  

Privacy in the distributed platform and security of data transmission between mobile 

device and cloud server node are important concerns in cloud based application processing. 

Privacy measures are required to ensure the execution of mobile application in isolated and 
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trustworthy environment, whereas security procedures are required to protect against 

network threats.  Security and privacy are very important aspects for the establishing and 

maintaining the trust of mobile users in cloud based application processing (Subashini  et 

al., 2010).  

Security in MCC is important from three different perspectives: security for mobile 

devices, security for data transmission over the wireless medium and security in the cloud 

datacenter nodes. SMDs are subjected to a number of security threats such as viruses and 

worms. SMDs are the attractive targets for attacker. According to a report (Protecting 

Portable Devices, n.d.) the number of new susceptibilities in mobile operating systems 

increased 42 percent from 2009 to 2010.  The number and complications of attacks on 

mobile phones is increasing speedily as compared to the countermeasures. Data 

transmission over the wireless networks is highly vulnerable to network security threats.  

For example, using radio frequencies, the risk of interruption is higher than with wired 

networks therefore attacker can easily compromise confidentiality (Choi et al., 2008). 

Similarly, in cloud datacenters the security threats are associated with the transmission 

between physical elements on the network, and traffic between the virtual elements in the 

network, such as between virtual machines within a single physical server. Therefore, in 

order to leverage the application processing services of computational clouds, a highly 

secure environment is expected at all the three entities of MCC model.    

 In current DAPFs, transmission of the running states of mobile application which is 

encapsulated in VM (Chun et al., 2009; Satyanarayanan et al., 2009; Giurgiu et al., 2009; ) 

or binary transfer of the application code at runtime (Giurgiu et al., 2009 ;Chung et al., 

2010;) is continuously subjected to security threats at mobile device, wireless medium and 

cloud datacenters. Therefore, secure transmission of the entire components of the 

application is a challenging issue for MCC.  
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It is important to implement reliable security measures for the data transmission, and 

synchronization between SMD and cloud datacenters in distributed processing platform. 

Similarly, access control, fidelity and privacy of distributed application components in the 

remote cloud datacenters is an important consideration for the distributed application 

processing in MCC. Cloud datacenters provide augmentation services which are 

unapproachable to mobile users. Therefore, it is highly demanding to ensure the privacy of 

data and computing operations in remote server nodes. A trustworthy distributed 

application model is highly expected to cope with such important issues and ensure the 

trustworthiness of remote computing environment. A reliable distributed environment is 

expected to provide authentic access to authorized mobile user for legitimate operations on 

cloud server nodes. 

    Considering the aforementioned research issues and challenges for distributed 

application deployment in MCC, lightweight and optimal distributed application 

deployment solution is extremely important. Such a solution should incorporate optimal 

procedures for the development, deployment and management of runtime distributed 

platform for MCC.  

2.5 Conclusion  

This chapter discusses the concept of cloud computing, mobile cloud computing and 

explains different techniques to augment the computing capabilities of SMDs based on 

resources available within the cloud. It analyzes current DAPFs by using thematic 

taxonomy and highlights the commonalties and deviations in such frameworks on the basis 

of significant parameters. It discusses issues in current DAPFs and highlights challenges to 

optimal and lightweight distributed application framework for MCC.   
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Current DAPFs accomplish process offloading in diverse modes. Several approaches 

employ entire application migration; others focus on part(s) of the application to be 

offloaded. A number of approaches employ static partitioning, others implement dynamic 

partitioning. Variant migration patterns are used; downloading application by providing 

URL to remote host, VM cloning, Mobile agent such as USMC, application binary transfer 

and use of proxies. Diverse objective functions are considered; saving processing power, 

efficient bandwidth utilization, saving energy consumption, user preferences, and execution 

cost. Objective of all approaches is to alleviate computing resources limitations of mobile 

devices in the processing of intensive mobile applications.  

Current DAPFs for MCC are the analogous extensions of traditional cyber foraging 

frameworks for pervasive computing or local distributed platforms. Hence, current DAPFs 

are deficient of the deployment of distributed system standard architectures. As a result, 

additional complications arise in the development, deployment and management of 

distributed platform. Current frameworks focus on the establishment of runtime distributed 

platform which results in the resources intensive distributed management overhead on 

SMDs for the entire duration of distributed platform. The additional computing resources of 

SMDs are utilized in arbitration with cloud servers for the selection of remote node, 

dynamic the availability of resources on SMDs and resources requirement of mobile 

application, dynamic application profiling, synthesizing and solving for application 

outsourcing, application migration and reintegration and continuous synchronization with 

cloud servers for the duration of distributed platform. As a result, additional computing 

resources of the SMDs are utilized for the runtime configuration of distributed platform.  

Hence, current computational offloading frameworks employ heavyweight procedures 

for distributed application deployment and management. The mobile nature, compact 

design, limited computing potential and wireless medium attributes of SMDs necessitate 

Univ
ers

iti 
Mala

ya



Chapter 2: Literature Review  

59 

 

for lightweight procedures for the distributed deployment and processing of computational 

intensive applications in MCC.  
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CHAPTER 3 

Problem Analysis 

This chapter investigates additional computing resources utilization in the traditional 

computational offloading frameworks for MCC.  The chapter is organized into four 

sections. Section 3.2 investigates the additional cost of energy consumption, timing cost 

and size of data transmission in traditional computational offloading for mobile cloud 

computing. Section 3.3 analyzes the impact of Virtual Machine (VM) deployment for 

application processing in MCC. Section 3.4 summarizes the chapter with conclusive 

remarks.  

3.1 Introduction 

The problem of additional resources utilization in traditional runtime computational 

offloading is analyzed by benchmarking the prototype application in the real mobile cloud 

computing environment. Traditional computational offloading is implemented by 

offloading the resource intensive service components of the prototype mobile application. 

Computational offloading to remote cloud server node is evaluated for varying 

computational intensities of the application.  The measurement parameters for problem 

analysis include energy consumption cost, time taken in runtime component offloading 

(timing cost), and size of data transmission over the wireless network medium. The impact 

of virtual machine deployment for application processing is analyzed by using CloudSim 

simulation toolkit.   
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3.2 Analysis of Traditional Computational Offloading for MCC  

The traditional Distributed Application Processing Frameworks (DAPFs) for MCC 

establish distributed platform at runtime, wherein additional computing resources are 

utilized on SMD. Traditional computational offloading frameworks employ runtime 

migration of the intensive components of the mobile application, wherein the intensive 

components of the mobile application are offloaded dynamically at runtime (Hung et al., 

2012). A number of application offloading frameworks implement dynamic application 

profiling and partitioning technique for application offloading (Messer et al., 2002; Giurgiu 

et al., 2009; Cuervo et al., 2010; Chun et al., 2011; Zhang et al. 2011). The traditional 

computational offloading frameworks focus on what components of the application to 

offload, how to offload and where to offload the application partitions. However, such 

frameworks lack of considering the additional cost of runtime distributed application 

deployment for MCC.  

This section analyzes the traditional computational offloading by outsourcing the 

resource intensive components of the mobile application with varying computational 

intensities to remote cloud server node.  A prototype application is developed for Android 

devices, which is composed of two computational intensive components; sorting service 

and matrix multiplication service. The sorting service component implements the logic of 

bubble sorting for sorting liner list of integer type values. The runtime computational 

offloading for sorting service of the application is evaluated with 30 different 

computational intensities (11000-40000).  The matrix multiplication service of the 

application implements the logic of computing the product of 2-D array of integer type 

values. Runtime computational offloading for matrix multiplication service component of 

the application is evaluated with 30 different computational intensities by varying the size 
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of the 2-D array between 160*160 and 450*450.  The total Energy consumption Cost (Ec), 

Timing Cost (Tc) and size of data transmission are evaluated in different experiments by 

offloading the service components of the mobile application at runtime.  

3.2.1 Analysis of the Energy Consumption Cost  

The additional energy consumed in runtime computation offloading is evaluated by 

Energy consumption cost (Ec) parameter in the units of Joules (J). Ec includes energy 

consumed in runtime component migration, energy consumed in saving the data states of 

running instance of the mobile application, energy consumed in uploading the data file to 

remote server node and energy consumed in returning the resultant data files to local 

mobile device. Hence, the total energy consumption cost for each component offloaded at 

runtime is given by the following equation.  

Ec = Em+ Es+ Eu + Ed                                                 (3.1)               

a) Energy consumed in component Migration (Em) represents energy consumed in 

transferring the binary code of the component of mobile application which is being 

offloaded.  

b) Energy consumed in Saving preferences (Es) represents energy consumed in saving the 

running instances of the mobile application.  

c) Energy consumed in Uploading preferences (Eu) represents energy consumed in 

uploading the data file (which is known as preferences file) to remote server node at 

runtime.  

d) Energy consumed in Downloading preferences (Ed) represents energy consumed in 

downloading the resultant data file (preferences file) to the local mobile device.  
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Let E is the finite set of the energy consumption cost of the components of mobile 

application which are offloaded at runtime. Hence, set E is given as: 

E= {the finite set of the energy consumption cost of the components of mobile application 

which are offloaded at runtime} 

Let Eca represents the energy consumption cost of offloading a single component of the 

mobile application at runtime. Where a=1, 2,…, n  

  E= {Ec1, Ec2,…, Ecn } 

Eca represents the energy consumption in offloading a single component of the mobile 

application which is a positive Real number. Therefore, by using set builder notation the 

Eca  is represented as:  

E = { Eca : Eca    Eca > 0 }                    Whereas, a=1, 2,…,n 

The energy consumption cost of offloading a single component of the mobile application 

belongs to the set of Real numbers and is greater than 0. The total energy consumption cost 

in runtime component offloading is the sum of energy consumption cost of all the instances 

a=1, 2,…, n of runtime component offloading. Let the total energy consumption of the 

runtime application offloading is represented by αe, which is the sum of energy consumed 

in all instances Eca=1,2,…,n of the runtime component offloading. Therefore, αc is represented 

as follows. 

   αe = (Ec1 + Ec2+…+ Ecn)                   Eca  E  |E| 1    whereas a=1,…, n 

By using summation notation the total energy consumption cost (αe) of the runtime 

computational offloading of the mobile application is represented as follows: 

αe =  
1

n

a
a

Ec


                                             Eca  E  |E|  1        (3.2) 

For all Eca, which denotes the energy consumption cost of the single instance of runtime 

component offloading of the mobile application belongs to the set E and the cardinality of 
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set E is greater than or equal to 1. E is the set of the energy consumption cost of the 

components of the mobile application which are offloaded at runtime. The precondition 

validates that E is none empty set.  

The energy consumption cost (Ec1) for offloading the sorting service component of the 

application at runtime is evaluated for 30 different computational intensities of sorting 

operation (11000-40000).  The energy consumption cost of transferring application binary 

code (Em), is evaluated in 30 experiments by offloading sorting service with 30 different 

computational intensities. It is examined that in all instances of offloading the binary code 

of the application, the size of binary application file (.apk) remains constant (44.4 KB). 

Hence, Em remains constant in offloading sorting service of the application with different 

intensities.  It is examined that the sample mean of Em is 6.1(+/) 0.6 J with 99% confidence 

for the sample space of 30 values which shows that the possible range for  Em is between 

5.5 and 6.7 J.  

The energy consumption cost of saving the data states (preferences file) on the 

mobile device is examined for 30 different computational intensities of the sorting service 

component of the application. It is examined that the sample mean of Es is 8.5(+/-)1 J with 

99% confidence for the sample space of 30 values which shows that the possible range for 

Es  is between 7.5 J and 9.5 J.  The energy consumption cost of uploading preferences file 

(Eu) to the cloud server node is examined for uploading the preferences file of 30 different 

computational intensities of the sorting service. It is examined that the sample mean of Eu  

is 36(+/-) 0.92 mJ with 99% confidence for the sample space of 30 values which shows that 

the possible range for Eu  is between 35 mJ and 36 mJ. The energy consumption cost of 

downloading the resultant preferences file (Ed) from the remote server node to the local 

mobile device is evaluated in 30 different experiments. It is examined that the confidence 
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interval for the average Ed is 10.9 (+/-) 0.28 J in downloading the resultant preferences file 

of sorting service for the sorting list length 11000-40000 values.  

The total Energy Consumption Cost (Ec1) in runtime computational offloading of 

sorting service is computed by using equation (3.1). Table 3.1 shows the total Ec1 in 

offloading sorting service by using traditional computational offloading technique. The 

attribute of sorting length shows the length of sorting operation, the Energy consumption 

cost attribute indicates the point estimator for the sample space of 30 values in each 

experiment and the standard deviation (SD) shows the variation in the values of the sample 

space. The confidence interval attribute shows the possible range of the sample mean with 

99% confidence for the sample space of 30 values in each experiment.  

Table 3. 1: Total Energy Consumption Cost (Ec1) in Traditional Offloading of Sorting 
Service 

Length of 
Sorting 
List 

Energy 
Consumption Cost 

(J) 

SD Confidence Interval  

11000 29.6749 5.7245 29.6749(+/-)2.6965 
12000 30.8829 4.4753 30.8829(+/-)2.1080 
13000 31.0835 4.2346 31.0835(+/-)1.9946 
14000 31.4911 3.7763 31.4911(+/-)1.7787 
15000 31.8917 3.8377 31.8917(+/-)1.8077 
16000 31.8919 4.1711 31.8919(+/-)1.9647 
17000 32.4915 3.9094 32.4915(+/-)1.8414 
18000 32.8923 3.835 32.8923(+/-)1.8064 
19000 33.092 4.1244 33.092(+/-)1.9428 
20000 33.2971 4.0274 33.2971(+/-)1.89707 
21000 33.2989 4.6845 33.2989(+/-)2.2066 
22000 33.6987 4.4209 33.6987(+/-)2.08242 
23000 34.3002 4.3997 34.3002(+/-)2.0724 
24000 34.7008 4.4183 34.7008(+/-)2.0812 
25000 34.9014 4.214 34.9014(+/-)1.9849 
26000 35.502 4.0472 35.502(+/-)1.90639 
27000 35.7036 4.7645 35.7036(+/-)2.2442 
28000 36.1034 4.8614 36.1034(+/-)2.2899 
29000 36.705 4.5308 36.705(+/-)2.1342 
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Length of 
Sorting 
List 

Energy 
Consumption Cost 

(J) 

SD Confidence Interval  

30000  37.7055 4.1596 37.7055(+/-)1.9594 
31000 38.507 4.616 38.507(+/-)2.17432 
32000 39.7078 4.9652 39.7078(+/-)2.3388 
33000 41.5086 4.7245 41.5086(+/-)2.2254 
34000 42.5095 4.3692 42.5095(+/-)2.05807 
35000 42.7109 4.7827 42.7109(+/-)2.2528 
36000 43.1131 5.0774 43.1131(+/-)2.3916 
37000 44.1151 4.9271 44.1151(+/-)2.3208 
38000 44.3154 5.0068 44.3154(+/-)2.3584 
39000 44.5168 5.3538 44.5168(+/-)2.5218 
40000 45.3191 5.5839 45.3191(+/-)2.6303 

 

Figure 3.1 shows the increase in the Ec1 for offloading sorting service at runtime. It 

is examined that  Em, and Es remains constant in offloading sorting service with varying 

sort list size.  However, the size of preferences files increases by increasing the length of 

sort list. Therefore, the cost of Eu and Ed increases accordingly. It is examined that the 

average cost of Eu is 9.8 mj for uploading preferences file of sorting list length 11000 

values, whereas the average cost of Eu  is 54 mJ for uploading preferences file of sorting list 

length 40000 values. Hence, the Eu increases 81.9 percent for uploading preferences file of 

sort list length 40000 values as compared to uploading preferences file of sort list length 

11000 values.   Similarly, it is examined that the cost Ed increases according the size of 

preferences file. For instance, 7.5 J energy is consumed in downloading preferences file for 

sorting list size 11000 values; whereas 15.3 J energy is consumed in downloading 

preferences file for sorting list size 4000. It shows that the cost of Ed increases 51 percent 

for in downloading the preferences file for the sorting list of 40000 as compared to the 

preferences file for the sorting list size 11000 values. It shows that increase in the Ec1 is the 

result of increase in uploading and downloading larger preferences files. The average total 
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energy consumption cost of offloading sorting service (Ec1) at runtime is determined as 

36.58 J. 

 

Figure 3. 1: Total Energy Consumption Cost (Ec1) in Traditional Offloading of Sorting 
Service 

The total Energy Consumption Cost (ECC) in offloaded execution of the sorting 

service varies for different intensities of the sorting operation. It is examined that total ECC 

in the remote execution of sorting operation increases with the increase in the length of 

sorting list. For instance, the total ECC of sorting list 11000 values is 49.8 J, whereas the 

total ECC of sorting list 40000 values is 201.4 J. It shows that the ECC increases 75.3 

percent for sorting the list of 40000 values as compared to sorting the list of 11000 values. 

The average total ECC cost in offloaded execution of sorting service for sorting the list of 

11000-40000 values is 111.2 J. with 42.2 percent RSD. The total energy consumption cost 

(Ec2) for offloading the matrix multiplication service component of the application at 

runtime is evaluated for 30 different computational intensities of matrix multiplication 

operation (160*160-450*450). The energy consumption cost of transferring application 

binary code (Em) for matrix multiplication service, is evaluated in 30 experiments by 
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offloading matrix multiplication service with 30 different computational intensities. It is 

examined that in all instances of offloading the binary code of the application the size of 

binary application file (.apk) remains constant (46 KB). Hence, Em remains constant in 

offloading matrix multiplication service of the application with different intensities.  It is 

examined that the sample mean of Em is 15.2(+/-)2.1 J with 99% confidence for the sample 

space of 30 values which shows that the possible range for Em is between 13.6 J and 17.3 J.  

The energy consumption cost of saving the data states (preferences file) on the local 

mobile device is examined for 30 different computational intensities of the matrix 

multiplication component of the application. It is examined that the sample mean of Es is 

4.6(+/-)0.9 with 99% confidence for the sample space of 30 values which shows that the 

possible range for Es is between 3.66 J and 5.46 J.  The energy consumption cost of 

uploading preferences file (Eu) to the cloud server node is examined for uploading the 

preferences file of 30 different computational intensities of the matrix multiplication 

service. It is examined that the sample mean of Eu is  273.9(+/-)1.4 mJ with 99% 

confidence for the sample space of 30 values which shows the possible range for Eu  is 

between  259.6 mJ and 288.1 mJ. The energy consumption cost of downloading the 

resultant preferences file (Ed) from the remote server node to the local mobile device is 

evaluated in 30 different experiments. It is examined that the confidence interval for the 

average Ed is 9.3(+/-) 1.4 J in downloading the resultant preferences file of matrix 

multiplication service for the matrix length 160*160-450*450 values.  

 

The energy consumption cost (Ec2) in runtime computational offloading of matrix 

multiplication service is computed by using equation (3.1). Table 3.2 shows the total Ec2 in 

offloading matrix multiplication service by using traditional computational offloading 
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technique. The attribute of length of matrix shows the size of 2-D arrays for matrix 

multiplication operation, the energy consumption cost attribute shows the point estimator 

for the sample space of 30 values in each experiment and the standard deviation (SD) 

attribute shows the variation in the values of the sample space. The confidence interval 

attribute shows the possible range of the sample mean with 99% confidence for the sample 

space of 30 values in each experiment.  

Table 3. 2: Energy Consumption Cost (Ec2) for Offloading Matrix Multiplication Service 
in Traditional Computational Offloading 

Matrix 
Length 

Energy 
Consumption 

Cost (J) 

SD Confidence Interval 

160*160 28.7898 9.3609 28.7898(+/-)4.4093 
170*170 28.9927 10.3147 28.9927(+/-)4.8586 
180*180 31.198 8.7939 31.198(+/-)4.1422 
190*190 31.5995 8.9789 31.5995(+/-)4.2294 
200*200 30.8027 9.6921 30.8027(+/-)4.5654 
210*210 31.8297 10.1287 31.8297(+/-)4.771 
220*220 31.8349 9.2277 31.8349(+/-)4.3466 
230*230 33.4504 9.3581 33.4504(+/-)4.4018 
240*240 33.4534 9.1811 33.4534(+/-)4.3247 
250*250 36.2603 7.3977 36.2603(+/-)3.4846 
260*260 36.8631 7.5401 36.8631(+/-)3.5517 
270*270 38.9291 8.2521 38.9291(+/-)3.8871 
280*280 38.5867 7.8341 38.5867(+/-)3.6902 
290*290 38.9974 7.7375 38.9974(+/-)3.6447 
300*300 38.0067 7.6129 38.0067(+/-)3.5860 
310*310 39.0187 8.1817 39.0187(+/-)3.8539 
320*320 40.0983 7.5075 40.0983(+/-)3.5363 
330*330 39.5353 8.5737 39.5353(+/-)4.0386 
340*340 40.8619 8.7749 40.8619(+/-)4.1333 
350*350 42.3617 7.8729 42.3617(+/-)3.7085 
360*360 41.8239 7.7127 41.8239(+/-)3.633 
370*370 42.0589 8.0985 42.0589(+/-)3.8147 
380*380 42.3943 7.5279 42.3943(+/-)3.546 
390*390 42.6383 7.5029 42.6383(+/-)3.5342 
400*400 42.2728 8.0943 42.2728(+/-)3.8128 
410*410 42.6444 7.7541 42.6444(+/-)3.6525 
420*420 44.3066 8.0657 44.3066(+/-)3.7993 
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Matrix 
Length 

Energy 
Consumption 

Cost (J) 

SD Confidence Interval 

430*430 45.6333 7.8499 45.6333(+/-)3.6976 
440*440 49.7541 9.2795 49.7541(+/-)4.371 
450*450 52.6952 7.9959 52.6952(+/-)3.7664 

 

Figure 3.2 shows the increase in the total Ec2 for offloading matrix multiplication 

service at runtime. It is examined that the cost of Em, and Es remains constant in offloading 

matrix multiplication service with varying matrix length values.  However, the size of 

preferences file increases by increasing the length of matrices. Therefore, the cost of Eu and 

Ed increases accordingly. It is examined that the average cost of Eu is 3.7 mJ for uploading 

preferences file of matrices length 160*160, whereas the average cost of Eu is 136.6 mJ, for 

uploading preferences file of matrices 450*450 length. Hence, the Eu increases 72.4 percent 

for uploading preferences file of matrices length 450*450 as compared to uploading 

preferences file of matrices length 160*160 values.    

Similarly, it is examined that the cost Ed increases according to the size of 

preferences file. For instance, 4.5 J energy is consumed in downloading preferences file for 

matrices of length 160*160 values; whereas 16.2 J energy is consumed in downloading 

preferences file for matrices of length 160*160 values. It shows that the cost of Ed increases 

72.2 percent in downloading the preferences file for matrices length 450*450 values as 

compared to the preferences file for the matrices length 160*160 values. It shows that 

increase in the Ec2 is the result of increase in uploading and downloading larger preferences 

files. The average energy consumption cost of offloading matrix multiplication service 

(Ec2) is determined 38.58 J.  
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Figure 3. 2: Energy Consumption Cost (Ec2) for Offloading Matrix Multiplication Service 
in Traditional Computational Offloading  

The total Energy Consumption Cost (ECC) in offloaded execution of the matrix 

multiplication service varies for different intensities of the matrix multiplication operation. 

It is examined that the total ECC in the remote execution of matrix multiplication operation 

increases with the increase in the length of matrices. For instance, the total ECC of 

multiplying matrices 160*160 length is 40 J, whereas the total ECC of multiplying matrices 

450*450 length is 131.7 J. It shows that the ECC increases 69.6 percent in multiplying 

matrices 160*160 length as compared to multiplying matrices 450*450 length. The average 

total ECC cost in offloaded execution of matrix multiplication service for multiplying 

matrices (160*160-450*450 length) is 79 J. with 37.4 percent RSD.  

Analysis of the results indicates that runtime computational offloading increases the 

ECC of distributed application execution considerably. For instance, the additional Ec1 in 

traditional offloading of sorting service is 59.6 percent for sort list length 11000, 44 percent 

for sort list length 20000, 30.1 percent for sort list length 30000 and 22.5 percent for sort 

list length 40000. The average increase in the Ec1 of runtime computational offloading for 

sorting service is 37.1 percent for sort list length 11000-40000. The additional Ec2 in 
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traditional offloading of matrix multiplication service is 72 percent for multiplying matrices 

160*160 length, 62.3 percent for multiplying matrices 260*260 length, 47.6 percent for 

multiplying matrices 340*340 length and 40 percent for multiplying matrices 450*450 

length. The average increase in the Ec2 of runtime computational offloading for matrix 

multiplication service constitutes 53.2 percent for multiplying matrices 160*160-450*450 

length. 

We know that Ec1 is 36.58 J (average energy consumption cost of offloading sorting 

service) and Ec2 is 38.58 J (average energy consumption cost of offloading matrix 

multiplication service), hence by using equation (3.2) the total energy consumed cost (αc) 

of runtime computational offloading for the mobile application is calculated as 75.15 J, 

which means that 39.4 percent additional energy is consumed in offloading the components 

of the mobile application at runtime.  

3.2.2 Analysis of the Timing Cost  

The additional time taken in runtime computation offloading is evaluated by using 

timing cost (Tc) parameter in the units of milliseconds (ms). Tc involves preferences saving 

time, binary code offloading time of the application, time taken in uploading the data states 

of the mobile application to remote server node, application download time to remote 

virtual device instance on the cloud server node, application reconfiguration and resuming 

time on the remote server node and time taken in returning the resultant data file to local 

mobile device. Therefore, the total offloading time of a single component of the mobile 

application which is being offloaded at runtime is given by the following equation.  

Tc= Tcm + Tps + Tpu + Tdv + Trr + Tpr                                               (3.3)               

a. Code Migration time (Tcm) represents time taken in transferring the binary code of the 

component of the mobile application to the remote server node.   
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b.  Preferences Saving Time (Tps) represents time taken in saving the data states 

(preferences file) of the running instance of the component of the mobile application 

which is being offloaded.  

c.  Preferences Upload Time (Tpu) represents time required for uploading the data state 

(preferences file) of the mobile application to remote server node.  

d. Download Time to remote Virtual Device (Tdv) represents time taken in downloading 

the offloaded application to remote virtual device instance.  

e. Reconfiguration and Resume Time (Trr) represents time required for the reconfiguration 

of the offloaded component of the mobile application and resuming the running state of 

the mobile application on the remote server node.  

f.  Preferences return Time (Tpr) represents time taken in returning the resultant 

preferences file from remote server node to the local mobile device. 

Let T is the finite set of the offloading time of the components of mobile application which 

are offloaded at runtime. Hence, set T is given as: 

T= {the finite set of the offloading time of the of the components of mobile application 

which are offloaded at runtime} 

Let Tca represents the timing cost in offloading a single component of the mobile 

application at runtime. Whereas,  a=1, 2,…, n  

  T= { Tc1, Tc2,…, Tcn } 

Tca represents the total time taken in offloading a single component of the mobile 

application. Therefore, by using set builder notation the Tca  is represented as:  

T = { Tca : Tca    Tca > 0 }                    Whereas, a=1, 2,…,n 

The timing cost of offloading a single component of the mobile application belongs to the 

set of Natural numbers and is greater than 0. The total additional time taken in runtime 
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computational offloading is the sum of the timing cost of all the components of the 

application which are offloaded at runtime. Let the total additional time taken in runtime 

application offloading is represented by αt, which is the sum of the timing cost of all the 

instances Tca =1,2,…,n of the runtime component offloading. Therefore, αt is represented 

as follows. 

   αt = (Tc1 + Tc2+…+ Tcn)                      Tca  T  |T|  1    where a=1,…, n 

By using summation notation the total additional time taken in runtime computational 

offloading of the mobile application is represented as follows: 

αt =  
1

n

a
a

Tc


                                             Tca  T  |T|  1        (3.4) 

For all Tca, which denotes the timing cost of offloading a single component of the mobile 

application belongs to the set T and the cardinality of set T is greater than or equal to 1, 

whereas T is the finite set of the offloading time of the components of mobile application 

which are offloaded at runtime. The precondition validates that T is none empty set.  

The timing cost (Tc1) for offloading the sorting service component of the application 

at runtime is evaluated for 30 different computational intensities of sorting operation 

(11000-40000).  The time taken in transferring application binary code (Tcm), is evaluated 

in 30 experiments by offloading sorting service. It is examined that in all instances of 

offloading the binary code of the application the size of binary application file (.apk) 

remains constant (44.4 KB). Hence, Tcm remains constant in offloading sorting service of 

the application with different computational intensities.  It is examined that the sample 

mean of Tcm is 77(+/-)16 ms with 99% confidence for the sample space of 30 values which 

shows that the possible range for Tcm is between 61 ms  and 93 ms.  

The timing cost of saving the data states (preferences file) on the local mobile device 

is examined for 30 different computational intensities of the sorting service component of 
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the application. It is examined that the sample mean of Tps is 5076(+/-) 568 ms with 99% 

confidence for the sample space of 30 values which shows that the possible range for Tps  is 

between 45081 ms and 5645 ms. The timing cost of uploading preferences file (Tpu) to the 

cloud server node is examined for uploading the preferences file of 30 different 

computational intensities of the sorting service. It is examined that the sample mean of Tpu  

is  608(+/-) 94  ms with 99% confidence for the sample space of 30 values, which shows 

that the possible range for Tpu is between 514 ms and 704 ms.  

The timing cost of downloading the application file to remote virtual device instance 

(Tdv) is evaluated in 30 different experiments. It is examined that the confidence interval for 

the average Tdv is 241(+/-)113 ms for the sample space of 30 values in each experiment, 

which shows the possible range of value for Tdv is between 128 ms and 354 ms. The timing 

cost of application reconfiguration on remote server node and resuming time (Trr) is 

evaluated in 30 different experiments. It is examined that the confidence interval for the 

average Trr is 6662(+/-)884 ms for the sample space of 30 values in each experiment, which 

shows the possible range of value for Trr  is between 5778 ms and 7547 ms.  

The timing cost of downloading the resultant preferences file (Tpd) from the remote 

server node to the local mobile device is evaluated in 30 different experiments. It is 

examined that the confidence interval for the average Tpd is 11113(+/-)1813 ms in 

downloading the resultant preferences file of sorting service for the sorting list length 

11000-40000 values. The total timing cost (Tc1) in runtime computational offloading of 

sorting service is computed by using equation (3.3). Table 3.3 shows the Tc1 in offloading 

sort service by using traditional computational offloading technique.  
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Table 3. 3: Timing Cost (Tc1) in Traditional Computational Offloading for Sorting Service 

Length of 
Sorting 

List 

Timing Cost 
(ms) 

SD in 
Timing Cost 

Confidence Interval 

11000 10931 855 10931(+/-)403 
12000 12050 1320 12050(+/-)622 
13000 13186 1025 13186(+/-)483 
14000 14197 1025 14197(+/-)483 
15000 14989 1082 14989(+/-)510 
16000 15146 1018 15146(+/-)480 
17000 16135 1044 16135(+/-)492 
18000 17971 1732 17971(+/-)816 
19000 18704 1464 18704(+/-)690 
20000 19688 1432 19688(+/-)675 
21000 20004 1637 20004(+/-)771 
22000 22077 1317 22077(+/-)620 
23000 23375 947 23375(+/-)446 
24000 23777 1336 23777(+/-)629 
25000 24807 1749 24807(+/-)824 
26000 25189 1408 25189(+/-)663 
27000 25671 1380 25671(+/-)650 
28000 26520 2015 26520(+/-)949 
29000 27000 1683 27000(+/-)793 
30000 27955 1402 27955(+/-)660 
31000 28612 2461 28612(+/-)1159 
32000 29284 2183 29284(+/-)1028 
33000 30045 1507 30045(+/-)710 
34000 30402 1111 30402(+/-)523 
35000 30793 1450 30793(+/-)683 
36000 31636 1637 31636(+/-)771 
37000 32770 2071 32770(+/-)976 
38000 33103 1506 33103(+/-)709 
39000 33555 2536 33555(+/-)1195 
40000 33796 1797 33796(+/-)846 

 

Figure 3.3 shows the increase in the timing cost (Tc1) for offloading sort service at 

runtime. It is examined that the Tcm, and Tdv remains constant in offloading sorting service 

with varying sort list size.  However, the size of preferences files increases by increasing 

the length of sort list. Therefore, the cost of Tps , Tpu , Tpd increases accordingly. It is 
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examined that the average Tps cost is 2438 ms for saving preferences file of sorting list 

length 11000 values, whereas the average Tps cost is 6739 ms for saving preferences file of 

sorting list length 40000 values. Hence, the Tps cost increases 63.8 percent for saving 

preferences file of sort list length 40000 values as compared to saving the preferences file 

of sort list length 11000 values.   

 Similarly, it is examined that the Tpu cost increases according the size of 

preferences file. For instance, 253 ms time is taken in uploading preferences file for sorting 

list size 11000 values; whereas 873 ms time is taken uploading preferences file for sorting 

list size 4000. It shows that Tpu cost increases 71 percent in uploading the preferences file 

for the sorting list of 40000 as compared to the preferences file for the sorting list size 

11000 values. It is examined that the Tpd cost increases according the size of preferences 

file downloaded to the local . For instance, 4620 ms time is taken in downloading the 

resultant preferences file for sorting list size 11000 values; whereas 16294 ms time is taken 

in downloading preferences file for sorting list size 4000. It shows that Tpd cost increases 

71.6 percent in downloading the preferences file for the sorting list of 40000 as compared 

to the preferences file for the sorting list size 11000 values. By using equation (3.3), the 

total timing cost of offloading sorting service (Tc1) is determined as 23779 ms. Analysis of 

the results indicates that saving preferences on the local, preferences uploading, 

reconfiguration on the remote server node and downloading resultant file to the local 

increase the timing cost in traditional computational offloading.    Univ
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Figure 3. 3: Timing Cost (Tc1) in Traditional Computational Offloading for Sort Service 

The Tc2 for offloading the matrix multiplication service component of the application 

at runtime is evaluated for 30 different computational intensities. The time taken in 

transferring application binary code (Tcm), is evaluated in 30 experiments by offloading 

matrix multiplication service application with 30 different computational intensities. It is 

examined that in all instances of offloading the binary code of the application, the size of 

binary application file (.apk) remains constant (46 KB). Hence, Tcm remains constant in 

offloading matrix multiplication service of the application with different computational 

intensities.  It is examined that the sample mean of Tcm is 52(+/-)5 ms with 99% confidence 

for the sample space of 30 values, which shows that the possible range for Tcm is between 

47 ms and 57 ms.  

The timing cost of saving the data states (preferences file) on the local mobile device 

is examined for 30 different computational intensities of the matrix multiplication service 

component of the application. It is examined that the sample mean of Tps is 28152(+/-) 

11141 ms with 99% confidence for the sample space of 30 values which shows that the 

possible range for Tps is between 17010 ms and 39293 ms.   The timing cost of uploading 
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preferences file (Tpu) to the cloud server node is examined for uploading the preferences file 

of 30 different computational intensities of the matrix multiplication service. It is examined 

that the sample mean of Tpu is 7177(+/-)3048 ms with 99% confidence for the sample space 

of 30 values, which shows that the possible range for Tpu is between 4128 ms and 10225 

ms.  

The timing cost of downloading the application file to remote virtual device instance 

(Tdv) is evaluated in 30 different experiments. It is examined that the confidence interval for 

the average Tdv is 205(+/-)15 ms for the sample space of 30 values in each experiment, 

which shows the possible range of value for Tdv is between 190 ms and 220 ms. The timing 

cost of application reconfiguration on remote server node and resuming time (Trr)  is 

evaluated in 30 different experiments. It is examined that the confidence interval for the 

average Trr is 10349(+/-)2307 ms for the sample space of 30 values in each experiment, 

which shows the possible range of value for Trr  is between  8041 ms and 12656 ms.   

The timing cost of downloading the resultant preferences file (Tpd) from the remote 

server node the local mobile device is evaluated in 30 different experiments. The sample 

mean of each experiment is determined with 99% confidence for the sample space of 30 

values in each experiment. It is examined that the confidence interval for the average Tpd is  

11238(+/-)2753 ms in downloading the resultant preferences file of matrix multiplication 

service for the matrices length 160*160-450*450 values.  

The total timing cost (Tc2) in runtime computational offloading of matrix 

multiplication is computed by using equation (3.3). Table 3.4 shows the total Tc2 in 

offloading matrix multiplication service by using traditional computational offloading 

technique.  
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Table 3. 4: Timing Cost (Tc2) in Traditional Computational Offloading for Matrix 
Multiplication Service 

Length of 
Matrix 

Timing Cost 
(ms) 

SD in Timing 
Cost 

Confidence Interval 

160*160 12001 596 12001(+/-)281 
170*170 13150 1142 13150(+/-)538 
180*180 15370 1984 15370(+/-)935 
190*190 16136 1881 16136(+/-)886 
200*200 18561 1454 18561(+/-)685 
210*210 19663 1169 19663(+/-)551 
220*220 20875 1185 20875(+/-)558 
230*230 23677 1767 23677(+/-)832 
240*240 26042 1451 26042(+/-)683 
250*250 29881 1218 29881(+/-)574 
260*260 31604 2017 31604(+/-)950 
270*270 33983 2008 33983(+/-)946 
280*280 36521 2612 36521(+/-)1230 
290*290 41451 1535 41451(+/-)723 
300*300 43681 2381 43681(+/-)1122 
310*310 44719 4649 44719(+/-)2190 
320*320 51008 6530 51008(+/-)3076 
330*330 53588 4616 53588(+/-)2174 
340*340 67642 5079 67642(+/-)2392 
350*350 66899 6069 66899(+/-)2859 
360*360 70484 5214 70484(+/-)2456 
370*370 76762 7473 76762(+/-)3520 
380*380 82148 6160 82148(+/-)2902 
390*390 89802 12813 89802(+/-)6035 
400*400 92389 7284 92389(+/-)3431 
410*410 102987 11737 102987(+/-)5529 
420*420 113381 12979 113381(+/-)6114 
430*430 131396 20749 131396(+/-)9774 
440*440 134848 20211 134848(+/-)9520 
450*450 154495 26891 154495(+/-)12667 

 

Figure 3.4 shows the increase in the timing cost (Tc2) for offloading matrix 

multiplication service at runtime. It is examined that the Tcm, and Tdv remains constant in 

offloading matrix multiplication service with varying matrices size.  However, the size of 

preferences files increases by increasing the length of matrices. Therefore, the cost of Tps , 

Univ
ers

iti 
Mala

ya



Chapter 3: Problem Analysis 
 

81 
 

Tpu, Tpd increases accordingly. The average Tps cost is examined 3294 ms for saving 

preferences file of matrices length 160*160, whereas the average Tps cost is 91038 ms for 

saving preferences file of matrices length 450*450.  

Hence, the Tps cost increases 96.3 percent for saving preferences file of matrices 

length 450*450 as compared to saving the preferences file of matrices length 160*160.   

Similarly, it is examined that the Tpu cost increases according the size of preferences file. 

For instance, 1518 ms time is taken in uploading preferences file for matrices length 

160*160; whereas 20878 ms time is taken uploading preferences file for matrices length 

450*450. It shows that Tpu cost increases 92.7 percent in uploading the preferences file for 

the matrices length 450*450 as compared to the preferences file for the matrices length 

160*160.  

It is examined that the Tpd cost increases according to the size of preferences file 

downloaded to the local mobile device. For instance, 3400 ms time is taken in downloading 

the resultant preferences file for matrices length 160*160 values; whereas 23015 ms time is 

taken in downloading preferences file for matrices length 450*450. It shows that Tpd cost 

increases 85.2 percent in downloading the preferences file for matrices length 450*450 as 

compared to the preferences file for the matrices length 160*160. By using equation (3.3) 

the total average timing (Tc2) is 57171 ms in offloading matrix multiplication service at 

runtime. Analysis of the results indicates that in traditional computational offloading, 

preferences saving on the local mobile device, preferences uploading, reconfiguration on 

the remote server node and downloading resultant file to the local increase the timing cost.    
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Figure 3. 4: Total Timing Cost (Tc2) in Traditional Computational Offloading for Matrix Multiplication 
Service 

The total Turnaround Time (TT) in remote execution of the matrix multiplication 

service varies for different intensities of the matrix multiplication operation. It is examined 

that TT in the remote execution of matrix multiplication operation increases with the 

increase in the length of matrices. For instance, the total TT of multiplying matrices 

160*160 length is 16431 ms, whereas the TT of multiplying matrices 450*450 length is 

262697 ms. It shows that the TT increases 93.7 percent in multiplying matrices 450*450 

length as compared to multiplying matrices 160*160 length. The average TT in offloaded 

execution of matrix multiplication service for multiplying matrices (160*160-450*450 

length) is 91567.5 with 74.7 percent RSD.  

Analysis of the results indicates that runtime computational offloading increase the 

TT of distributed application execution considerably. For instance, the additional timing 

cost (Tc1) in traditional offloading of sorting service is 45 percent for sort list length 11000, 

36 percent for sort list length 20000, 26 percent for sort list length 30000 and 20 percent for 

sort list length 40000. The average increase in the timing cost (Tc1) of runtime 

computational offloading for sorting service is 31.1 percent for sort list length 11000-
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40000. Similarly, the timing cost (Tc2) in traditional offloading of matrix multiplication 

service is 73 percent for multiplying matrices 160*160 length, 67.5 percent for multiplying 

matrices 260*260 length, 61.2 percent for multiplying matrices 340*340 length and 58.8 

percent for multiplying matrices 450*450 length. The average increase in the Tc2 of 

runtime computational offloading for matrix multiplication service constitutes 65.2 percent 

for multiplying matrices 160*160-450*450 length. 

We know that Tc1 is 23779 ms (average timing cost of offloading sorting service) 

and Tc2 is 57171 ms (average timing cost of offloading matrix multiplication service), 

hence by using equation (3.4) the total timing cost (αt) of runtime computational offloading 

for the mobile application is calculated as 80950 ms, which means that in traditional 

computational offloading, 45.5 percent additional time is taken in offloading the 

components of the mobile application at runtime.  

3.2.3 Analysis of the Size of Data Transmission  

The Size of Data transmission (Ds) in runtime computational offloading involves 

the size of application binary file migrated at runtime (Da), the size of preferences file 

uploaded to cloud server node (Dpu) and the size of resultant preferences file downloaded 

to the local  (Dpd). Therefore, the total size of data transmission of a single component of 

the mobile application which is being offloaded at runtime is given by the following 

equation.  

Ds = Da + Dpu + Dpd                                                (3.5)               

Let D is the finite set of the size of data transmission of the components of the mobile 

application which are offloaded at runtime. Hence, set D is given as: 

D= {the finite set of the size of data transmission of the components of the mobile 

application which are offloaded at runtime } 
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Let Dsa represents the total size of data transmission in offloading a single component of 

the mobile application at runtime. Whereas, a=1, 2,…, n  

  D= { Ds1, Ds2,…, Dsn } 

Dsa represents the total size of data transmission in offloading a single component of the 

mobile application. Therefore, by using set builder notation Dsa  is represented as follows.  

D = { Dsa : Dsa    Dsa > 0 }                    Whereas, a=1, 2,…,n 

The total size of data transmission in offloading a single component of the mobile 

application belongs to the set of positive Real numbers and is greater than 0. The total size 

of data transmission in runtime computational offloading is the sum of size of data 

transmission of all the components of the application which are being offloaded at runtime. 

Let the total size of data transmission in runtime application offloading is represented by αd 

, which is the sum of size of data transmission of all the instances Dsa =1,2,…,n of the runtime 

component offloading. Therefore, αd is represented as follows. 

   αd = (Ds1 + Ds2+…+ Dsn)                      Dsa  D  |D|  1    where a=1,…, n 

By using summation notation the total size of data transmission of the runtime application 

offloading of the mobile application is represented as follows: 

αd =  
1

n

a
a

Ds


                                           Dsa  D  |D|  1        (3.6) 

For all Dsa, which denotes the size of data transmission of the single instance of runtime 

component offloading of the mobile application belongs to the set D and the cardinality of 

set D is greater than or equal to 1, whereas D is the finite set of the total size of data 

transmission of the components of mobile application which are offloaded at runtime. The 

precondition validates that D is none empty set.  

The total size of data transmission in offloading sorting service (Ds1) and total size 

of data transmission in offloading matrix multiplication service (Ds2) of the application at 
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runtime is computed by using equation (3.5). Table 3.5 shows the total size of data 

transmission for offloading sort service and matrix multiplication service of the application 

for varying length of either operation.  

Table 3. 5: Size of Data Transmission in Runtime Computational Offloading for Sorting 
Service  and Matrix Multiplication Service  

Length of 
Sorting List 

Size  of Data 
Transmission 

(Ds1) KB 

Length of Matrix Size of Data 
Transmission 

(Ds2) KB 
11000 752.4 160*160 5739.44 
12000 820.4 170*170 6538.16 
13000 888.4 180*180 7377.84 
14000 950.4 190*190 8217.52 
15000 1026.4 200*200 9118.64 
16000 1086.4 210*210 10040.24 
17000 1162.4 220*220 11023.28 
18000 1230.4 230*230 12067.76 
19000 1298.4 240*240 13132.72 
20000 1360.4 250*250 14259.12 
21000 1420.4 260*260 15426.48 
22000 1480.4 270*270 16634.8 
23000 1572.4 280*280 17884.08 
24000 1632.4 290*290 19194.8 
25000 1694.4 300*300 20526 
26000 1754.4 310*310 21754.8 
27000 1846.4 320*320 23393.2 
28000 1914.4 330*330 24826.8 
29000 1982.4 340*340 26465.2 
30000 2042.4 350*350 28103.6 
31000 2092.4 360*360 29742 
32000 2153.84 370*370 31380.4 
33000 2215.28 380*380 33223.6 
34000 2276.72 390*390 34862 
35000 2399.6 400*400 36705.2 
36000 2399.6 410*410 38753.2 
37000 2461.04 420*420 39367.6 
38000 2522.48 430*430 42644.4 
39000 2583.92 440*440 44692.4 
40000 2645.36 450*450 46740.4 
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The size of data in transferring application binary code and preferences file is 

evaluated in 30 experiments for offloading both sorting service and matrix multiplication 

service of the application in 30 different experiments. It is examined that in all instances of 

sorting service offloading and matrix multiplication service offloading the size of binary 

application file (.apk) remains constant; 44.4 KB for sort service and 46 KB for matrix 

multiplication service. However, the size of preferences file uploaded to the cloud server 

node (Dpu) and the size of the resultant preferences file downloaded to the local  mobile 

device (Dpd) varies for different length of both operations.  

The size of data transmission in sorting service offloading is examined 752.4 KB for 

sort list length 11000, 1360.4 KB for sort list length 20000 and 2645.36 KB for sort list 

length 40000. It shows that the size of data transmission increases 71.6 percent in 

offloading sorting service with the length of sorting list 40000 as compared to the length of 

sorting list 11000.  Similarly, the size of data transmission in matrix multiplication service 

is examined 5739.44 KB for matrices length 160*160, 15426.5 KB for matrices length 

260*260 and 46740 KB for matrices length 450*450. It shows that the size of data 

transmission increases 87.8 percent for offloading matrix multiplication service with the 

matrices length 450*450 as compared to matrices length 160*160. The average size of data 

transmission (Ds1) for offloading sorting service with the sort list length 11000-40000 is 

determined 1722.2 KB.  Whereas, the average size of data transmission (Ds2) for offloading 

matrix multiplication service with the matrices length 160*160-450*450 is determined 

11474.3 KB. 

The size of data transmission for offloading power compute service (Ds3) at runtime 

is evaluated in 30 different experiments. It is examined that in all instances of offloading 

power compute service the size of binary application file (.apk) remains constant 42.7 KB , 
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the size of preferences file uploaded to the cloud server node (Dpu) is 1 KB and the size of 

the resultant preferences file downloaded to the local  (Dpd) is 1 KB. Hence, by using 

equation (3.5) the total size of data transmission in (Ds3) is 44.7 KB for offloading power 

compute service as runtime. By using equation (3.6) the total size of data transmission (αt) 

of runtime computational offloading for the mobile application is calculated as 13241.2 

KB. 

3.3 Analysis of VM Deployment for Application Processing  

Virtual machine deployment based application offloading is a dominant 

computational outsourcing mechanism for cloud based application processing (Goyal and 

Carter, 2004; Satyanarayanan et al., 2009; Chun et al., 2009; Chun et al., 2011; Hung et al. 

2011; Zao et al., 2011). In VM migration based application offloading, the deployment and 

management of VMs require additional computing resources on SMDs. The deployment of 

VM involves computing resources in the process of VM creation, VM configuration, VM 

OS setup, VM startup, and application deployment. The management of VM includes 

computing resources utilization in the monitoring of VM state transitions, CPU scheduling,  

VM migration,  application processing management,  VM state transitions and physical 

resources monitoring of computing host; allocation and de-allocation of physical resources 

such as CPU and memory. This section investigates the cost of VM deployment for 

application processing (Shiraz et al., 2013). We employ CloudSim for the evaluation of the 

impact of VM deployment for application processing. CloudSim is an extensible simulation 

framework that seamlessly models simulation and experimentation of cloud computing 

infrastructures and application services (Calheiros et al. 2011). The impact of VM 

deployment and management on the execution of the application is evaluated on the basis 

of the application allocation to VM time and application processing time.  

Univ
ers

iti 
Mala

ya



Chapter 3: Problem Analysis 
 

88 
 

The experimental model is composed of two major scenarios. First, we evaluate 

application allocation to VM time in different experiments. We conduct 30 different 

experiments to determine application allocation to VM time. The average value of each 

experiment is used for the analysis of application allocation to VM time. Second, the 

application execution time is evaluated in two different test beds. In test 1, the number of 

VMs equal to the number of applications in which case an individual VM is allocated to 

each application.  In test 2, the number of VMs is reduced to half of the number of 

applications in which case each VM is shared by multiple applications.  

In CloudSim, an application services is modeled by cloudlet. The execution of 

application in VM instance includes the following steps; application creation, application 

allocation to VM, application scheduling in VM, and application termination. In some 

scenarios application migration occurs in which case application is migrated to other VMs 

by deploying different migration policies. Application migration includes the computing 

cost for encapsulation of application states in VM, selection of appropriate remote host, 

transferring application to the remote host and allocation of application to a new VM in 

remote datacenter. It is examined that the average time consumed for the allocation of 

applications to VM increases for increasing number of VMs and applications. The 

allocation of two applications to two independent virtual machines takes on the average 10 

ms in all instances of the experimentation. The allocation of eight applications to VM takes 

on the average 48 ms with the Relative Standard Deviation (RSD) 8.6 percent. Similarly, 

the allocation of 45 applications to VM takes on the average 430 ms with the RSD 3.1 

percent.  

Figure 3.6 shows increase in the time required for the allocation of application to 

VM.  The mechanism of VM creation and application configuration in VM is time 
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consuming. Therefore, the average time required for the allocation of the application to VM 

increases by increasing the number of VMs. Analysis of the results shows that allocation of 

application to VM require additional computing resources for configuration of VM 

according to the predefined specifications and the encapsulation of application in VM. As a 

result, it increases the execution cost and time of the application in VM based application 

offloading.  

 

Figure 3. 5: Application Allocation to Virtual Machine Time (Shiraz et al., 2013a) 

In test 1 of scenario 2, we evaluate the Application Processing Time (APT) of the 

application by creating an individual VM for each application. Hence, it does not involve 

the cost of VM scheduling. The processing time of applications (cloudlets) changes with 

different number of VMs. Figure 3.7 indicates the increasing trend in average APT. The 

average time required for the processing of application increases by increasing the number 

of VMs. The APT increases 28 percent for 2-5 applications, 55 percent for 15-20 

applications and 65 percent for 30-15 applications. On the average the APT increases 49.8 

percent with the RSD 48.2 percent for 2-45 applications.  
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Figure 3. 6: Application Processing Time for None Shared VMs (Shiraz et al., 2013a) 

In test 2 of scenario 2, we evaluate the APT of the application by allocating multiple 

applications to each VM which results in the sharing of VM among multiple applications. 

Sharing of VM involves the cost of scheduling VM resources among multiple applications 

which affects the processing time of the application. Figure 3.8 indicates the APT of the 

application for shared VM scenario. The APT of applications (cloudlets) changes 

differently with different number of VMs.  

 

Figure 3. 7: Application Processing Time (APT) for Shared VMs  

Analysis of the results indicates that on the average APT increases for each 

application with the increase in number of VMs. APT increases 32 percent for (2-5) 
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applications, 60 percent for (10-15) applications, 77 percent for (20-25) applications, 70 

percent for (30-45) applications. On average the execution time of an application increases 

by 64.7 percent for (2-45) applications.  

Figure 3.9 compares the comparison of average application execution time in test 1 

and test 2 of scenario 2. The analysis of the results in test 1 and test 2 indicates that APT of 

the application is 7.7 percent higher for shared VMs as compare to none shared VMs. It 

means that sharing of VM involves the additional cost of sharing computing resources 

among multiple applications.  

 

Figure 3.8: Comparison of APT for Shared VMs & None Shared VMs (Shiraz et al., 

2013a) 

The comparison of application processing time in different test cases shows that 

average processing time of the application increases for both shared and none shared VMs. 

It shows the additional computing resources utilization for the deployment of VM in 

application processing. It concludes that VM migration based application offloading 

requires additional computing resources on SMD for the deployment and management of 

VM which affects the execution cost and time of mobile application.  
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3.4 Conclusion  

The traditional computational offloading frameworks for mobile cloud computing 

are the analogous extensions of earlier decentralized computational offloading frameworks 

for local distributed platforms. Current DAPFs are deficient in the deployment of 

distributed system architecture for the design and development of intensive mobile 

applications, which are offloaded to cloud server nodes. The traditional application 

offloading frameworks focus on the establishment of runtime distributed platform, which is 

a resources intensive mechanism. Therefore, resources intensive distributed application 

execution platform is established at runtime, which results in additional cost of application 

file and data file migration, high energy consumption cost in distributed application 

processing and longer turnaround time of mobile application.  

It is examined that 13241.2 KB data is transmitted in traditional computational 

offloading of three intensive components of the mobile application, 75.2 J additional energy 

is consumed and 80950 ms additional time is taken in offloading the intensive components 

at runtime. It shows that 39.4 percent additional energy is consumed and 45.5 percent 

additional time is taken in offloading the components of the mobile application at runtime. 

Further, it is examined that the deployment for VM for application affects the execution 

cost of the application. Therefore, VM migration based application offloading requires 

additional computing resources for the deployment and management of VM on mobile 

device.   

 

Traditional computational offloading frameworks lack of considering the intensity 

of runtime component offloading and focus on leveraging the IaaS service provisioning 

model for computational offloading which is resources intensive and time consuming.  
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Current frameworks lack of leveraging the application processing services of computational 

clouds by using the SaaS service provision model which provides fast and lightweight 

solution for cloud based application processing.  

Hence, the traditional computational offloading frameworks employ heavyweight 

procedures for the processing of intensive applications in MCC.  The resources limited 

features of mobile devices and the intrinsic limitations in the wireless access medium 

motivate for lightweight procedures for the processing of computationally intensive 

applications in MCC. 

.   
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CHAPTER 4 

Distributed and Elastic Application Processing (DEAP) 

Framework  

This chapter reports on the methods and procedures for solving the problem of 

additional computing resources utilization in the processing of intensive mobile 

applications in MCC.  The chapter is organized into four sections. Section 4.1 discusses 

introduction to the chapter. Section 4.2 explains the proposed framework for the distributed 

deployment of intensive mobile applications in MCC and explains the standard operation 

procedures of the proposed framework. Section 4.3 highlights the distinctive features of the 

proposed framework.  Section 4.4 draws conclusive remarks with highlighting the 

usefulness and applicability of the proposed model. 

4.1 Introduction  

Traditional computational offloading frameworks employ heavyweight procedures 

for the processing of intensive applications in MCC.  The resources limited features of 

mobile devices and the intrinsic limitations in the wireless access medium motivate for 

lightweight procedures for processing of computational intensive applications in MCC. 

Therefore, a lightweight framework is proposed for addressing the issue of additional 

computing resources utilization in the processing of intensive mobile applications in MCC. 

The architecture of the proposed solution is modeled and the operating procedure of the 

proposed framework is explained. The development of distributed applications on the basis 

of such lightweight framework results in substantial performance gains and enhancement in 

overall performance of application deployment and processing in MCC.  
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4.2 Proposed Lightweight Application Processing Framework  

We propose a novel lightweight Distributed and Elastic Application Processing 

(DEAP) framework for MCC.  DEAP addresses the issue of additional computing 

resources utilization in traditional computational offloading by focusing on minimal 

computing resources utilization in computational offloading and comparatively shorter 

turnaround time of the distributed application processing in MCC.  DEAP fulfills the gap of 

traditional computational offloading frameworks by incorporating SaaS model with IaaS 

model of computational clouds for leveraging the application processing services. DEAP 

provides comparatively lightweight solution for the processing of intensive mobile 

applications in MCC.  

DEAP incorporates the features of distributed application model with the elastic 

attributes of the traditional computational offloading frameworks. Therefore, the proposed 

model is distributed by design and elastic in nature. DEAP is attributed with the features of 

simple developmental procedures, standardized deployment principles and elastic 

processing management mechanism for intensive mobile applications. The distinctive 

features of DEAP are leveraging the SaaS model for the configuration of intensive 

components on the cloud server node and the incorporation of elasticity attributes for 

providing autonomy of mobile application and ensuring dynamic processing management 

on SMD. The distributed architectural attribute of DEAP framework allows mobile 

applications to use the application processing services of computational clouds without the 

additional cost of runtime application partitioning and component offloading. The issue of 

dependency on the preconfigured servers and autonomy of mobile application is addressed 

by including the elasticity features in mobile application. The elastic nature attribute of 

DEAP model enables mobile devices to offload the intensive components of the mobile 

application dynamically in critical conditions.   
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In traditional computational offloading frameworks computationally intensive 

components of the mobile application are annotated as local and remote at design time and 

the remotely annotated components are offloaded at runtime for remote processing (Messer 

et al., 2002; Giurgiu et al., 2009; Cuervo et al., 2010; Chun et al., 2011; Zhang et al. 2011 ), 

which results in additional cost of runtime component offloading. To address this issue, 

DEAP framework focuses on utilizing the SaaS service provision model of computational 

clouds for implementing preconfigured services on the cloud sever node which are accessed 

on demand basis. The preconfigured services include the resources intensive components of 

the mobile application which are not location aware and do not require user interaction.  

The preconfigured services are provided access by using the on demand business 

model of cloud computing. The configuration of resources intensive components of the 

mobile application on the cloud server nodes results in minimal instances of offloading the 

components of mobile application at runtime.  The significance of the utilization of 

preconfigured services in SaaS model on demand basis is twofold.  

 The computational intensity of the mobile application is reduced and the intensive 

computation is performed on the powerful virtual machines in the cloud datacenters. 

Hence, the turnaround time of the application is reduced and computational resources 

utilization and energy consumption on the smart mobile device is minimized.  

 Computational load of the mobile application is outsourced by eliminating the 

additional timing cost, energy consumption cost and the size of data transmission in 

computational offloading.   

DEAP implements the two tiered architecture of distributed applications by explicitly 

defining the client mobile application and server mobile application. The server application 

is composed of the intensive components of the mobile application which are identified at 
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design time. Client mobile application is a normal application with all the components 

available on local mobile device. However, two types of additional attributes are included 

in normal mobile application. 1) To implement the distributed features, the mobile 

application is enabled to switch to the client mode in the situations of accessing the services 

of preconfigured services on the cloud server node. 2) To implement the elastic features, 

mobile application is enabled to save its data states for the purpose of offloading at runtime.  

The architecture and operation procedure of DEAP framework is different from the 

traditional client/server applications. The traditional client/server applications are called 

thin client applications. The client applications provide user agents for interaction with the 

local computer, whereas the processing logic is implemented on the remote server 

machines. Examples of such applications include web application, email application, social 

network applications such as Facebook, and video conferencing applications such as Skype 

application. In the traditional client/server model, the client component of the application 

becomes insignificant in the situations of inaccessibility of the server component.  

Therefore, DEAP framework is attributed with the features of offline usability, on demand 

access of the preconfigured cloud services and offloading computational load of the local 

mobile device in the situation of unavailability of sufficient resources for the processing of 

mobile application on local mobile device. Figure 4.1 shows the architecture of the 

proposed DEAP framework.  Univ
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Figure 4. 1:  Architecture of the Proposed DEAP Framework 

DEAP configures the processing logic of the mobile application on the client mobile 

device and mobile application is enabled to be operated in the distributed and elastic 

manner on demand basis. Therefore, mobile applications are not completely dependent on 

the server component for application processing. The configuration of entire processing 

logic of the mobile application on local device assists in achieving the goals of rich user 

experiences and offline usability. It means that the client mobile application still remains 

functional in offline mode in the situations of unavailability of preconfigured services on 

the cloud server node. Mobile application is designed with the objectives to access the 

preconfigured services of DEAP server in the Primary Operating Procedure (POP) of 

distributed application processing and implement computational offloading at runtime in 

the Secondary Operation Procedure (SOP) of DEAP framework.  

Considering the mobile nature and intrinsic limitations with wireless medium, DEAP is 

based on processing slight intensive or tightly coupled components of the mobile 

application on SMD which contributes to the richness and smartness of local services and 

offline usability of the mobile application. However in the scenarios of inaccessibility of 

Univ
ers

iti 
Mala

ya



Chapter 4: DEAP Framework 

99 
 

remote servers the mobile application is capable to switch to offline mode, wherein the 

services of the local mobile application are activated to be executed on the local mobile 

device. Whenever, remote servers become accessible mobile application switches to the 

online mode to access the distributed services of clouds server node. The following section 

explains the components of the architecture of DEAP framework.  

a) Middleware: DEAP client uses the services of distributed middleware for the 

implementation of primary operation procedure. The communication between client 

mobile application and server application is implemented by using Inter Process 

Communication (IPC) mechanism. Middleware hides the complications of the 

communication between DEAP client application and DEAP server application. A 

mobile user is provided the notion as the entire application is being processed locally on 

SMD.  In the POP of DEAP framework, mobile application invokes the services of 

DEAP server application by using the distributed middleware.  

b) Application Orchestrator: The secondary operating procedure of DEAP client 

application uses the orchestrator component for the configuration of the operation 

modes of the client application. The orchestrator component monitors the operation of 

mobile application in two distinct modes on SMD; offline mode and online mode. In 

the offline mode the application offloading options are disabled and the components of 

the mobile application are executed on SMD. In the online mode the services of DEAP 

server are utilized in the POP for accessing the preconfigured services of the server 

application. Whereas, in the situation of of unavailability of preconfigured services in 

the DEAP server, the options of offloading application components are enabled and 

mobile users are capable to offload the selected components of the mobile application at 

runtime. In the SOP of online mode, application orchestrator activates the preferences 
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manager component to save the data states of the running mobile application. 

Application orchestrator is responsible for the configuration of the mobile application 

on SMD and remote server node. On the cloud server node, application orchestrator 

configures the delegated service application on the remote server node. Application 

orchestrator component on the remote server node resumes the running state of the 

delegated mobile application by accessing the preferences files from the persistent 

storage. The application orchestrator component of the DEAP client arbitrates with the 

remote server node for offloading the selected running component of the mobile 

application.  

c) Preferences Manager:  In the SOP of the mobile application, the orchestrator 

component is assisted by the preferences manager component. Mobile applications are 

associated with a separated preferences manger which provides access to the 

preferences file. Preference manager reads and writes the data states from persistent 

storage during the activation and deactivation of mobile application. In the SOP, the 

preferences manager component is activated to save the data states of the running 

component of the client mobile application. Preferences manager saves the data states 

to the persistent medium. The role of preferences manager is to provide access to the 

preferences of the mobile application. The preferences manager components copies the 

preferences file to the external storage device which is directly accessible for the upload 

manger and download manager component. The preferences manager component of the 

server node is responsible for providing access to the data files which are downloaded 

with the delegated service application. Similarly, whenever the service application 

completes execution on the remote server node, the preferences manger saves the final 

results to the preferences file.  
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d) Upload Manager: The upload manager component of DEAP client is responsible for 

uploading the preferences files of the application to remote server node in the SOP. The 

preferences files are stored on the persisted storage by the preferences manager which is 

accessible for upload manager. Whenever, the offloaded mobile application is installed 

on the remote virtual device instance, the synchronization manger component of the 

DEAP server connects to the upload manger component of the DEAP Client and make 

request for preferences file. Upload manager sends the requested preferences file to the 

synchronizer of the DEAP server. 

e) Download Manager: In the SOP of DEAP client, the download manager component of 

DEAP client is responsible for downloading the preferences files of the application 

from the remote server node in the SOP. Whenever, the offloaded component of the 

application completes execution, download manager component of the DEAP client is 

connected to return the resultant preferences file. Download manager receives the 

resultant data file and saves it to the persistent storage of the local mobile device.  

f) Synchronizer: The synchronizer component of the framework is responsible for the 

synchronization of transmission between SMD and remote server node. In POP of 

distributed processing, the synchronizer component is responsible for ensuring the 

consistency of transmission between mobile application on SMD and the server 

application running on the cloud server node. In SOP, whenever the states of the 

application are saved on the persisted medium, the synchronizer component is activated 

to offload the service application to remote server node. The orchestrator component 

searches for the configuration file of the identified intensive component on mobile 

device. Whenever the configuration of the service application is validated, the 

synchronizer component is activated to outsource the configuration files to remote 

server node. Synchronizer component of the remote server node is activated to receive 
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the delegated service application. Whenever, the configuration file of the delegated 

service application is received successfully on the remote server node, the orchestrator 

component of the server node is activated to configure the delegated service application 

and resume the running states from the preferences file.  

The synchronizer component is also responsible for the uploading and downloading 

of preferences files between SMD and remote server node. The synchronization manger 

component of the DEAP framework utilizes the services of download manager and upload 

manager for the synchronization of distributed application processing in the SOP DEAP 

framework. In the SOP DEAP client offloads the intensive components of the application 

to cloud datacenters which are executed on temporarily created server node. In such 

scenario the role of synchronizer is to coordinate between DEAP client mobile application 

and the offloaded components of the application. The primary responsibility of 

synchronizer is to ensure the consistency of transmissions between DEAP client and DEAP 

sever in POP and DEAP client application and temporarily allocated server node in the 

SOP.    

Figure 4.2 shows the flowchart for the interaction of the components of DEAP 

framework in leveraging application processing services of cloud server node. The DEAP 

client mobile application executes on SMD, whereas the DEAP server application is 

configured on the cloud sever node. Whenever, the client application requires the services 

of remotely configured component in DEAP server, it activates the component by using 

IPC. In the online mode the services of cloud server nodes are leveraged for the processing 

of intensive components of the mobile application. In the POP, DEAP client access the 

preconfigured services of DEAP server. However, in the scenario of unavailability of the 

preconfigured server, the elastic features of DEAP client are used to offload the intensive 

components of the application to the remote server node at runtime. 
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Figure 4. 2: Illustration of the Interaction of the Components of DEAP Framework in POP 
and SOP 

DEAP framework proposes two independent operating procedures for the 

implementation of distributed platform of intensive mobile applications in MCC. The 

Primary Operating Procedure (POP) of DEAP client application implements distributed 

middleware for accessing the services of explicitly configured DEAP server. Mobile 

application activates the preconfigured services of DEAP server on demand basis. The 

client application uses IPC procedures for invoking the services of remote server node. The 

POP of DEAP client follows a simple and optimal procedure for remote processing of 

intensive components of the mobile application. The significant aspect is that it provides 

cloud based processing of mobile application without the overhead of runtime application 
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partitioning and component offloading. Figure 4.3 shows the sequence diagram for POP of 

DEAP.  

 

Figure 4. 3: Sequence Diagram for Primary Operating Procedure of DEAP Framework 

The Secondary Operating Procedure (SOP) of DEAP incorporates the elasticity 

features for coping with the mobile application processing requirements and processing 

loads on SMD. DEAP client employs SOP in critical condition and online mode, wherein 

insufficient resources are available on local mobile device and the services of the 

preconfigured services are inaccessible. Therefore, DEAP client employs SOP for 

offloading the intensive component of mobile application at runtime.  In the SOP, DEAP 

client follows service level granularity for offloading the intensive components of the 

mobile application. Further, the proposed model reduces the overhead of application 

outsourcing by eliminating the mechanism of runtime application profiling and solving. In 

SOP, DEAP client mobile application starts execution on the SMD with the activity 

component of mobile application. The interface of mobile application displays the 
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operations for the operation mode of the mobile application. Figure 4.3 shows sequence 

diagram for the SOP of DEAP framework. 

 

Figure 4. 4: Sequence Diagram for Secondary Operating Procedure of DEAP Framework 

In the SOP of the online mode, mobile application is enabled to offloaded intensive 

components of the application. The synchronizer component arbitrates with the cloud 

datacenter for the selection of remote server node. A fresh VM instance is created on the 

cloud server node for the execution of delegated service application. At that time, the 

orchestrator on the mobile device saves the running states of the service application by 

activating the preferences manager and kills the selected service to release the systems 

resource occupied by the selected intensive service. The synchronizer component offloads 

the service application to remote service node. The orchestrator component configures the 

delegated service application and resumes the running states of the service application in 

the guest VM instance created on the server node. The synchronizer components of both 

the SMD and cloud server node communicate for the exchange of configuration and data 
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files. On successful execution of the service application components of the mobile 

application on SMD results of the mobile application are saved in the preferences file and 

returned to the SMD. The robust nature of SOP is that it allows mobile user to switch 

between online mode and offline mode at any instance of mobile application execution. 

Figure 4.5 shows the flowchart for the operational logic of DEAP framework. 
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Figure 4. 5: Illustration of the Operation Logic of DEAP Framework 

The important aspect of the SOP in DEAP framework is that the service application 

package is transferred only once to the remote server node. However, configuration and 

data files require repeated transmission for each instance of remote execution of the service 

application. It means that at first instance the entire service application package file and the 

other related files are transferred to cloud server node. However, if the same service is 

required to be executed again on the same cloud server node, it does not require the 
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application package to be migrated repeatedly. Instead, for the later instances of remote 

service execution require to upload the configuration and data files in order to synchronize 

the execution of service application on the remote server node.  It is important to highlight 

that the SOP does not utilize the services of explicitly defined DEAP server. It is possible 

that the explicitly configured server application and online delegated components of the 

mobile application execute on two separate server nodes. The synchronizer component of 

DEAP client arbitrates with cloud servers to facilitate remote execution services on casual 

basis.  

The distinctive aspects of DEAP framework are the design time classification of 

resources intensive services and the user preferences based migration of the running service 

application. The SOP of DEAP model employs simple developmental procedure. Unlike 

the traditional elastic application offloading models (Giurgiu et al., 2009; Cuervo et al., 

2010; Zhang et a., 2011), DEAP model does not bound application developers to classify 

and annotate the application components as local or remote at finer granularity level. DEAP 

models entire service level granularity for the application offloading, which reduces the 

overhead associated with finer level granularity nature of traditional application offloading 

frameworks (Giurgiu et al., 2009; Cuervo et al., 2010; Zhang et a., 2011).  It eradicates the 

cost of runtime application profiling and solving. The framework focuses on the user 

preferences for offloading the intensive components of the mobile application at runtime. 

Therefore, the service level migration is a lightweight mechanism for the establishment of 

distributed application processing platform at runtime. By deploying the SOP of DEAP 

framework mobile users have full control over the execution mode of the mobile 

application.  

In offline mode all the components of mobile application are executed locally on 

SMD. On the other side, mobile user is provided with the option to offload the intensive 
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services on demand basis. In the online mode, mobile application is enabled to access the 

preconfigured services of DEAP server and offload the intensive components of the 

application on demand basis. The dual operation modes of the DEAP client application 

provide robustness to the mobile applications. The applications are capable to operate with 

full functionalities in the situations of remote server access problems.  The offloading of 

active service to cloud server node involves complicated mechanism. However, mobile 

users remain unaware of the complications of the remote execution. Mobile user is given 

the notion as entire components of the mobile application are executed locally on SMD. 

The following section highlights the distinctive features of DEAP framework.  

4.3 Distinguishing Features of DEAP Framework 

The following are distinguishing features of the proposed DEAP framework which 

make it a distinct framework for intensive mobile application processing in MCC. 

4.3.1 Standardized Developmental and Deployment Procedures 

The DEAP framework focuses on design time identification of the intensive 

components of the mobile application which provides design time support for the 

distributed deployment of intensive mobile application.  Design time separation of the 

intensive mobile application reduces the developmental efforts of annotating all the 

individual components of the mobile application as local or remote, which makes the 

developmental procedures simple for the application developers. The DEAP framework 

explicitly defines the roles and responsibilities of the distributed components (client and 

server) of the mobile application. In current DAPFs the roles of distributed components 

participating in distributed platform remain unclear which results in complex runtime 

distributed platform. The DEAP framework incorporates two distinct operating procedures 

for inheriting the attributes of both distributed and elastic models as compared to the 
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traditional DAPFs which employ exclusive elasticity attributes for intensive mobile 

applications.  

4.3.2 Optimal Communication Procedures 

The POP of the proposed framework minimizes the communication cost between SMD 

and cloud datacenters by employing IPC procedures rather than intensive partition 

migration. The minimization of communication overhead results in the following 

performance gains: 

a) Communication over wireless medium is an energy starving operation, therefore 

minimizing data transmission overhead reduces energy consumption on SMD.  

b) Application partition migration involves the issues of security in the wireless medium, 

therefore DEAP framework reduces the threats of network security by minimizing the 

migration of actual application or partitions of the application and active data file.  

c) Current VM migration based DAPFs involves the overhead of VM deployment and 

management on SMD. However, DEAP implements application level IPC procedures 

for communication between DEAP client and DEAP server in POP and DEAP client 

and temporary cloud server in SOP which eliminates the deployment and 

communication overhead associated with VM deployment and migration for application 

transfer to the cloud servers. 

d) Communication overhead over the wireless medium is highly error prone and subjected 

to attenuation distortion. DEAP framework focuses on minimization of runtime mobile 

application transmission by configuration maximum possible intensive services of the 

mobile application on the DEAP server which indirectly reduces the error rate of 

communication between SMD and cloud datacenters.  
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4.3.3 Elasticity and Robustness in Deployment  

The proposed framework sustains the robustness and versatility of the elastic 

application models for coping with dynamic processing loads on SMD. The SOP of the 

DEAP framework is elastic and dynamic by nature. The elasticity attribute of the 

application enables SMD to dynamically offload computational load on the SMD to the 

remote server node. Current DAPFs employ runtime optimization either statically or 

periodically on SMD which are not appropriate for optimal deployment of distributed 

platform. The elasticity features of DEAP framework are employed for runtime intensive 

components optimization on the basis of user priorities. The SOP implements the activation 

of runtime optimizer whenever the critical condition occurs on SMD.  

4.3.4 Convenient Application Level Deployment  

DEAP model is based on the application level deployment of both the POP and 

SOP. The significant aspect of sustaining elasticity features in DEAP framework is the 

application partitioning and migration which does not require for additional operating 

system level support for partition migration as required in VM migration based approaches 

(Goyal and Carter, 2004; Satyanarayanan et al., 2009; Chun et al., 2009; Chun et al., 2011; 

Zao et al., 2011).  

4.3.5 Offline Usability, Richness of Local Services and Smartness in Behavior   

DEAP implements the two tiered architecture of distributed applications by explicitly 

defining the client mobile application and server mobile application. The server application 

is configured with the highly intensive components of the mobile application which are 

identified at design time. Mobile application is a normal application with all the 

components available on local mobile device. However, two types of additional attributes 

are included in normal mobile application. Mobile application is enabled to switch to the 
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client mode in the situations of accessing the services of preconfigured services on the 

cloud server node. Similarly, mobile application is enabled to save its data states for the 

purpose of offloading at runtime.  

DEAP focuses on the enrichment of services on SMD which contributes to the 

features of rich internet applications for MCC, smartness of client application and offline 

usability. DEAP framework is capable to provide local services on SMD in the failure or 

unavailability of internet access. However, the services DEAP server application is 

accessible only in online mode.  

4.4 Conclusion 

We propose distributed and elastic application processing framework for intensive 

mobile applications as a lightweight solution for the processing of intensive mobile 

applications in MCC. Traditional DAPFs are based on the establishment of distributed 

platform at runtime and lack of distributed architecture for the intensive mobile 

applications. The distinctive features of DEAP framework are leveraging the SaaS model 

for the configuration of intensive components on the cloud server node and the 

incorporation of elasticity attributes for providing autonomy of mobile application and 

ensuring dynamic processing management on SMD.  

The distributed architectural attribute of DEAP framework allows mobile 

applications to use the application processing services of computational clouds without the 

additional cost of runtime application partitioning and component offloading. The issue of 

dependency on the preconfigured servers and autonomy of mobile application is addressed 

by including the elasticity features in mobile application. The elastic nature attribute of 

DEAP framework enables mobile users to offload the intensive components of the mobile 

application dynamically in critical conditions.   
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The incorporation of distributed model with elastic attributes of the traditional 

DAPFs facilitates in the simple developmental procedures, mobile application distributed 

by design, explicitly defined roles of the distributed components of the application, optimal 

deployment procedures with minimal cost in the establishment of distributed platform and 

comparatively minimal data transmission for the processing of intensive mobile 

applications in MCC. The dual operating nature of the proposed framework contributes to 

the versatility and robustness of the distributed and elastic model for intensive mobile 

application in MCC. The elasticity attributes of client mobile application enables SMD to 

cope with the challenges of dynamic application processing loads. Further, the elastic 

nature of DEAP client contributes to the objectives of offline usability, smart client and rich 

internet applications for MCC.  It is concluded that DEAP framework provides a 

lightweight solution for the processing of intensive mobile applications in MCC.  
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CHAPTER 5 

Evaluation  

This chapter reports on the data collection method for the evaluation of proposed 

DEAP framework. It explains the tools used for testing the proposed framework, data 

collection technique and the statistical method used for the processing of data. The chapter 

is organized into seven sections. Section 5.1 presents an overview of the chapter, Section 

5.2 explains the experimental setup and programming tools used for the implementation 

and testing of the proposed DEAP framework and the statistical method used for the 

compilation of empirical data. Section 5.3 presents the data collected in evaluating the 

execution of mobile application on local mobile device. Section 5.4 summarizes data 

collected in evaluating application execution in the traditional runtime component 

offloading. Section 5.5 presents data collected for testing the operating procedures of 

DEAP framework. Section 5.6 presents mapping of data by comparing experimental results 

in different scenarios. Finally, section 5.7 extracts conclusive remarks.  

5.1 Introduction 

 DEAP framework provides a lightweight solution for the processing of intensive 

mobile applications in MCC. The significance of DEAP framework is evaluated in 

emulation and real mobile cloud computing environment. Synthetic workload is tested on 

the Android virtual device instance which is enabled to operate in the distributed mobile 

cloud computing environment. Experimental results are validated by benchmarking in the 

real distribute mobile cloud computing environment. A prototype application is developed 

for the Android devices, which is tested with varying computational intensities in three 

different experimental scenarios. The execution behavior of the application is analyzed 
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from the perspective of resources utilization on the mobile device, size of data transmission 

on the wireless network medium, and turnaround time of the application in the traditional 

and proposed computational offloading techniques. Empirical data are collected by testing 

each component of the prototype application with 30 different computational intensities. 

The experimental results of the application are analyzed by collecting data from 30 

samples. The sample mean for each sample space of 30 values is determined, which is 

signified by measuring the error estimate for 99% confidence interval. Finally, empirical 

results of testing the prototype application in the traditional and proposed technique are 

compared to validate the significance the proposed solution.  

5.2 Evaluation of the Proposed DEAP Framework 

This section presents the methodology used for the evaluation of DEAP framework. 

It discusses the experimental setup, prototype application used for the evaluation and the 

statistical method used for the compilation of results.   

5.2.1 Experimental Setup  

The proposed framework is evaluated by implementing synthetic workload in the 

emulation and real implementation on the physical mobile devices.  Synthetic workload is 

tested on the Android virtual device instance which is enabled to operate in the distributed 

mobile cloud computing environment. Experimental results are validated by benchmarking 

in the real distribute mobile cloud computing environment. The following section describes 

the experimental setup for the emulation and real implementation environment.  

The experimental setup for the emulation environment is composed of remote 

server machine and laptop computer. The server machine runs Microsoft Windows 7 

Professional 32-bit operating system with Intel® core(TM) i5-2500 CPU having 3.3GHz 

speed and 4.0 GB RAM capacity. The laptop computer runs Microsoft Windows 7 
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Professional 32-bit operating system with Intel® core(TM) i5-2410M CPU having 

2.30GHz speed and 4 GB RAM capacity. The emulator instance of the Android Virtual 

Device (AVD) runs on the laptop computer. The AVD instance runs Android 4.1-API 

Level-17 with ARMv7 Processor having 2389.08 BogoMIPS speed and 1GB RAM 

capacity. The AVD instance running on the laptop computer is connected to the D-Link 

Wireless Access Point providing 802.11g Wi-Fi wireless network connection of radio type 

802.11g, with the available physical layer data rates of 54 Mbps.  

Similarly, TP-Link wireless Wi-Fi modem is connected to the remote server 

machine in order to connect it to the Wi-Fi wireless network of radio type 802.11g. The 

experimental setup for testing the prototype application in the real wireless mobile network 

environment is composed of Wi-Fi wireless network of radio type 802.11g, Server machine 

and Samsung Galaxy SII mobile device. The Samsung smartphone runs Android 4.0.3, dual 

core ARMv7 Application Processor with 1.2 GHz (2389.08 BogoMIPS) speed, 16GB 

memory capacity and 1650mAh battery. Mobile device accesses the wireless network via 

Wi-Fi wireless network connection of radio type 802.11g, with the available physical layer 

data rates of 54Mbps.  

The DEAP client application runs on the mobile device, whereas the DEAP server 

component of the application runs on the remote cloud server machine. The server machine 

is configured for the provisioning of services to the mobile device in two distinct operating 

modes of the application. DEAP server application utilizes the Software as a Service (SaaS) 

model of cloud computing for the provisioning of distributed services in the POP of DEAP 

client application, whereas the Infrastructure as a Service (IaaS) model (Buyya et al., 2009) 

is employed for the provisioning of services in the SOP of DEAP client application. We 

employ the DEAP server application by using Microsoft Visual Studio 2010 ASP.NET 
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Web Service Application tool of Visual C#, whereas kSOAP2 API (kSOAP2) is employed 

for the configuration of DEAP client application.  

Java based Android Software development toolkit (Android Developers) is deployed for the 

development of DEAP client application. The Android ADB Plugin (Android Debug 

Bridge) is embedded in the Eclipse application development tool for the development of 

prototype application.  

The POP of the DEAP client application is implemented by using kSOAP2 library 

API on the mobile devices for accessing the preconfigured services of DEAP server 

application. The AVD instance is created on the remote server machine by using Android 

emulator for the execution of offloaded components of the DEAP client mobile application 

in the SOP.  Monitoring tools such as Android Debug Bridge (ADB) and Dalvik Debug 

Monitor System (DDMS) are used for the measurement of resources utilization (CPU and 

RAM), whereas Power Tutor tool is used for the measurement of battery power 

consumption in distributed application processing. 

5.2.2 Prototype Application  

The proposed DEAP framework is implemented by developing prototype 

application for Android devices. The prototype application is composed of three 

computational intensive service components and a single activity component.  The service 

components implement the computational logic of the application, whereas the activity 

component provides Graphical User Interface (GUI) for interacting with the mobile 

application. The computational logic of the application includes the following service 

components. 1) Sorting service component implements the logic of bubble sorting for 

sorting liner list of integer type values. The sorting logic of the application is tested with 30 

different computational intensities (11000-40000).  2) The matrix multiplication service of 
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the application implements the logic of computing the product of 2-D array of integer type 

values. Matrix multiplication logic of the application is tested with 30 different 

computational intensities by varying the length of the 2-D array between 160*160 and 

450*450). 3) The power compute service of the application implements the logic of 

computing b^e, whereas b is the base and e is the exponent. The power compute logic of 

the application is tested for 30 different computational intensities by varying the exponent 

between 1000000 and 200000000. The computational logic of the prototype application is 

tested with 30 different computational intensities. Empirical data are collected by sampling 

all computational intensities of the application in 30 different experiments. 

5.2.3 Data Gathering and Data Processing  

The primary data are collected by testing the prototype application on both the Android 

virtual device instance and real distributed mobile cloud environment in three different 

scenarios.  In the first scenario, all the components of the mobile application are executed 

on the local mobile device to analyze resources utilization and execution time of the 

application on the local mobile device. In the second scenario, the intensive components of 

the mobile application are offloaded at runtime by implementing the traditional 

computational offloading technique. In this scenario, the resources utilization in distributed 

processing of the application, data communication over the wireless network medium, and 

turnaround time of the application on the virtual device instance on the remote server 

machine are analyzed.  

In the third scenario, the prototype application is tested for the operating procedures of 

the proposed DEAP framework. We evaluate resources utilization and execution cost of the 

application in the POP and SOP of the DEAP framework. The following parameters are 
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used for analyzing the prototype application in the local and distributed processing of the 

application in the emulation and real time environment.  

1) CPU utilization in Millions of Instructions Per Second(MIPS), 

2) Memory allocation in Mega Bytes (MB),  

3) Energy consumption in Joule (J), 

4) Turnaround time of the application in Millisecond (ms). 

5) The size of data transmission over the wireless network in Kilo Bytes (KB).  

According to the sample central limit theorem, approximately 99% of the sample means 

fall within 2.58 standard deviation of the population mean, provided that the sample size is 

greater than or equal to 30 (n≥30). Hence, the prototype application is composed of three 

computational intensive service components, and each component of the application is 

evaluated on the basis of five parameters with 30 different computational intensities. The 

empirical data are collected for all the computational intensities of every component of the 

mobile application by executing the component of the mobile application in 30 

experiments. Each experiment is conducted 30 times for the evaluation of each parameter to 

derive the value of point estimator.  

The measurement of central tendency of the data sample of each experiment is 

calculated by using sample mean    , for the reason that sample mean is ascertained the 

better point estimate of the population mean as compared to median or mode (Confidence 

Intervals and Sample Size, n.d.). Data sampling involves the factor of sampling error; hence 

the sample mean can differ from the population mean. Hence, to signify the goodness of the 

calculated point estimate; the interval estimate of each sample is determined. The interval 

estimate of a parameter represents the interval or range of values used to estimate the 
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parameter. The confidence level of an interval estimate of a parameter indicates the 

probability that the interval estimate contains the parameter.  

Let E represents the error estimate for 99% confidence interval, which is calculated by 

using the following equation. 

E=        n )             (5.1) 

Whereas,   indicates the standard deviation in the sample values and n indicates the size of 

sample space. The interval estimate for each sample mean     of the primary data is 

calculated with 99% confidence interval by using the following equation. 

Confidence Interval=                                   (5.2) 

The following section presents the data collected in different experiments for the 

evaluation of DEAP Framework on the Android virtual devices and real time environment. 

The data are presented from the perspective of three different scenarios: 1) Execution of the 

application on local mobile device, 2) Execution of the application by employing 

contemporary runtime offloading method, and 3) Execution of the application by the POP 

and SOP of the proposed DEAP framework.   

5.3 Data Collected for Application Execution on the Local Mobile Device  

In this scenario mobile application is executed on the local mobile device in order to 

evaluate the RAM allocation, Turnaround Time (TT), total Energy Consumption Cost 

(ECC) and CPU utilization in the execution of application on the local mobile device.  

Table 5.1 represents the statistics of RAM allocation for the execution of sorting 

component of the application on local mobile device. The computational length attribute 

indicates the computational intensity of the sorting operation on local mobile device which 

varies from 11000-40000 values in 30 different experiments. The sample mean attribute 

shows the point estimator for 30 different samples of the application execution with the 
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identical computational intensity. The SD attribute shows the variation in the memory 

allocation to the application, whereas the %RSD attribute shows the percentage values of 

the variation in the sample space of 30 values in each experiment of evaluating RAM 

allocation on mobile device in sorting operation. 

Table 5. 1: RAM Allocation in the Execution of Sorting Service Component of the 
Application on Local Mobile Device  

Computational 
Length  

Sample Mean of 
RAM Allocation 

(MB) 

SD in 
RAM 

Allocation 

%RSD in 
RAM 
Allocation 

Confidence 
Interval  

11000 10.148 0.013 0.1281 10.148(+/-).0061 
12000 10.154 0.011 0.1083 10.154(+/-).0052 
13000 10.156 0.005 0.0492 10.156(+/-).0024 
14000 10.161 0.018 0.1771 10.161(+/-).0085 
15000 10.167 0.004 0.0393 10.167(+/-).0019 
16000 10.173 0.003 0.0295 10.173(+/-).0014 
17000 10.177 0.001 0.0098 10.177(+/-).0005 
18000 10.179 0.003 0.0295 10.179(+/-).0014 
19000 10.185 0.004 0.0393 10.185(+/-).0019 
20000 10.193 0.002 0.0196 10.193(+/-).0009 
21000 10.197 0.001 0.0098 10.197(+/-).0005 
22000 10.2 0.001 0.0098 10.2(+/-).0005 
23000 10.204 0.001 0.0098 10.204(+/-).0005 
24000 10.208 0.003 0.0294 10.208(+/-).0014 
25000 10.21 0.001 0.0098 10.21(+/-)0.0098 
26000 10.215 0.001 0.0098 10.215(+/-).0005 
27000 10.218 0.001 0.0098 10.218(+/-).0005 
28000 10.221 0.001 0.0098 10.221(+/-).0005 
29000 10.224 0.001 0.0098 10.224(+/-).0005 
30000 10.227 0.001 0.0098 10.227(+/-).0005 
31000 10.231 0.001 0.0098 10.231(+/-).0005 
32000 10.236 0.001 0.0098 10.236(+/-).00052 
33000 10.238 0.001 0.0098 10.238(+/-).00005 
34000 10.242 0.001 0.0098 10.242(+/-).0005 
35000 10.246 0.001 0.0098 10.246(+/-).0005 
36000 10.248 0.001 0.0098 10.248(+/-).0005 
37000 10.254 0.001 0.0098 10.254(+/-).0005 
38000 10.258 0.001 0.0097 10.258(+/-).0005 
39000 10.261 0.002 0.0195 10.261(+/-).0009 
40000 10.265 0.001 0.0097 10.265(+/-).0005 
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Table 5.2 shows the statistics of RAM allocation for matrix multiplication service 

component of the application on local mobile device. The computational length attribute 

shows the computational intensity of matrix multiplication operation in 30 different 

experiments. It shows the RAM allocation to matrix multiplication service with 30 different 

computational intensities (160*160-450*450).  The sample mean attribute shows the point 

estimator for 30 different samples of the application execution with the identical 

computational intensity. The SD attribute shows the variation in the memory allocation to 

the application, whereas the %RSD attribute shows the percentage values of the variation in 

the sample space of 30 values in each experiment of evaluating RAM allocation on mobile 

device in matrix multiplication operation. 

Table 5. 2: RAM Allocation in the Execution of the Matrix Multiplication Service 
Component of the Application on Local Mobile Device  

Computational 
Length 

Sample Mean of 
RAM Allocation 

(MB) 

SD in 
RAM 

Allocation 

%RSD in 
RAM 

Allocation 

Confidence 
Interval 

160*160 10.454 0.0029 0.0277 10.454(+/-).0014 
170*170 10.4552 0.0026 0.0249 10.4552(+/-).0012 
180*180 10.4967 0.0016 0.0152 10.4967(+/-).0008 
190*190 10.5389 0.0024 0.0228 10.5389(+/-).011 
200*200 10.5845 0.002 0.0189 10.5845(+/-).0009 
210*210 10.6318 0.0009 0.0085 10.6318(+/-).0004 
220*220 10.6828 0.0022 0.0206 10.6828(+/-).001 
230*230 10.7346 0.0017 0.0158 10.7346(+/-).0008 
240*240 10.7624 0.1406 1.3064 10.6605(+/-).1376 
250*250 10.8317 0.0183 0.1689 10.8317(+/-).0086 
260*260 10.9052 0.0023 0.0211 10.7986(+/-).1303 
270*270 10.9605 0.007 0.0639 10.9605(+/-).0033 
280*280 11.0115 0.0274 0.2488 11.0115(+/-).0129 
290*290 11.1404 0.1214 1.0897 11.1404(+/-).0572 
300*300 11.1617 0.0049 0.0439 11.4975(+/-).0886 
310*310 11.2622 0.0447 0.3969 11.2622(+/-).0211 
320*320 11.3826 0.1336 1.1737 11.3826(+/-).0629 
330*330 11.756 0.1493 1.27 11.756(+/-).0703 
340*340 11.78 0.178 1.511 11.78(+/-).0838 
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Computational 
Length 

Sample Mean of 
RAM Allocation 

(MB) 

SD in 
RAM 

Allocation 

%RSD in 
RAM 

Allocation 

Confidence 
Interval 

350*350 11.7915 0.2047 1.736 11.7915(+/-).0964 
360*360 11.8857 0.2342 1.9704 11.8857(+/-).1103 
370*370 11.8857 0.1039 0.8742 11.8857(+/-).0498 
380*380 12.3547 0.0037 0.0299 12.3547(+/-).0017 
390*390 12.4562 0.1085 0.8711 12.4562(+/-).0511 
400*400 12.5917 0.0057 0.0453 12.5917(+/-).0027 
410*410 12.7304 0.0182 0.143 12.7304(+/-).0086 
420*420 12.8516 0.0037 0.0288 12.8516(+/-).0017 
430*430 12.9499 0.0374 0.2888 12.9499(+/-).0176 
440*440 12.9726 0.0175 0.1349 12.656(+/-).1257 
450*450 13.1003 0.1591 1.2145 13.1003(+/-).0749 

 

Table 5.3 shows the statistics of RAM allocation for power compute service 

component of the application on local mobile device. The computational length attribute 

shows the computational length of power compute service component of the application. 

Memory allocation to power compute service is represented with 30 different 

computational intensities (2^100000-2^2000000000).  The sample mean attribute shows the 

point estimator for 30 different samples of the application execution with the identical 

computational intensity. The SD attribute shows the variation in the memory allocation to 

power compute service, whereas the %RSD attribute shows the percentage values of the 

variation in the sample space of 30 values in each experiment of evaluating RAM allocation 

on mobile device in power computing operation. 

Table  5. 3: RAM Allocation in the Execution of the Power Compute Service Component 
of the Application on Local 

Computational  
Length 

Sample Mean 
of RAM 
Allocation 
(MB) 

  SD in 
RAM 
Allocation  

%RSD in 
RAM 
Allocation 

Confidence 
Interval  

2^100000-
2^2000000000 10.11 0.0017 0.0168 

10.11(+/-
).00045 
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Table 5.4 shows the statistics of the Turnaround Time (TT) of the sorting service 

component of the application. The TT of the sorting service involves the execution time of 

completing the sorting operation and the time  taken in saving the preferences file (data 

file) on the local mobile device. The table shows computational length for the evaluation of 

TT of the sorting operation in 30 different experiment, the sample mean of sample space of 

30 values in each experiment, the variation in the values of the sample space, the 

percentage of difference in the values of the sample space of each experiment and the range 

of values for TT value of each experiment with 99% confidence for the sample space of 30 

values.  

Table 5. 4: Turnaround Time of Sorting Service on Mobile Application 

Computational 
Length 

Sample Mean 
of TT (ms) 

SD in 
TT 

%RSD 
in TT 

Confidence 
Interval  

11000 4876 706 14 4876(+/-)333 
12000 5510 1168 21 5510(+/-)550 
13000 6566 546 8 6566(+/-)257 
14000 6989 697 10 6989(+/-)328 
15000 7406 918 12 7406(+/-)432 
16000 7450 910 12 7450(+/-)429 
17000 10414 531 5 10414(+/-)250 
18000 11457 693 6 11457(+/-)326 
19000 11857 410 3 11857(+/-)193 
20000 13221 316 2 13221(+/-)149 
21000 13774 614 4 13774(+/-)289 
22000 14410 641 4 14410(+/-)302 
23000 15579 356 2 15579(+/-)168 
24000 16059 532 3 16059(+/-)251 
25000 16950 915 5 16950(+/-)431 
26000 17764 412 2 17764(+/-)194 
27000 18421 375 2 18421(+/-)177 
28000 19176 472 2 19176(+/-)222 
29000 20179 668 3 20179(+/-)315 
30000 20987 501 2 20987(+/-)236 
31000 21600 1467 7 21600(+/-)690 
32000 22565 933 4 22565(+/-)439 
33000 24701 455 2 24701(+/-)214 
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Computational 
Length 

Sample Mean 
of TT (ms) 

SD in 
TT 

%RSD 
in TT 

Confidence 
Interval  

34000 25687 430 2 25687(+/-)203 
35000 25825 670 3 25825(+/-)316 
36000 26432 635 2 26432(+/-)299 
37000 26910 931 3 26910(+/-)439 
38000 28859 658 2 28859(+/-)310 
39000 29968 1528 5 29968(+/-)720 
40000 31207 1365 4 31207(+/-)643 

 

Table 5.5 shows the statistics of the TT of the matrix multiplication component of 

the application. The TT of matrix multiplication service involves the execution time of 

completing the matrix multiplication operation and the time taken in saving the preferences 

file (data file) on the local mobile device. The table shows computational length for the 

evaluation of TT of the matrix multiplication operation in 30 different experiment, the 

sample mean of sample space of 30 values in each experiment, the variation in the values of 

the sample space, the percentage of difference in the values of the sample space of each 

experiment and the range of values for TT value of each experiment with 99% confidence 

for the sample space of 30 values.  

Table 5. 5: Turnaround Time of Matrix Multiplication Service on Mobile Application 

Computational 
Length 

Sample 
Mean of TT 

(ms) 

SD in 
TT 

%RSD 
in TT 

Confidence 
Interval 

160*160 3653 191 5 3653(+/-)90 
170*170 4276 656 15 4276(+/-)309 
180*180 4781 647 14 4781(+/-)305 
190*190 5030 1010 20 5030(+/-)476 
200*200 6321 575 9 6321(+/-)271 
210*210 7039 604 9 7039(+/-)285 
220*220 7777 669 9 7777(+/-)315 
230*230 8888 974 11 8888(+/-)459 
240*240 10735 826 8 10735(+/-)389 
250*250 13090 694 5 13090(+/-)327 
260*260 13642 1182 9 13642(+/-)557 

Univ
ers

iti 
Mala

ya



Chapter 5: Evaluation   

125 
 

Computational 
Length 

Sample 
Mean of TT 

(ms) 

SD in 
TT 

%RSD 
in TT 

Confidence 
Interval 

270*270 14471 1103 8 14471(+/-)520 
280*280 16411 1221 7 16411(+/-)575 
290*290 20524 341 2 20524(+/-)161 
300*300 20706 1625 8 20706(+/-)765 
310*310 21185 3849 18 21185(+/-)1813 
320*320 27028 5813 22 27028(+/-)2738 
330*330 28452 3611 13 28452(+/-)1701 
340*340 39691 3562 9 39691(+/-)1678 
350*350 38570 5495 14 38570(+/-)2588 
360*360 40096 4208 10 40096(+/-)1982 
370*370 44896 6246 14 44896(+/-)2942 
380*380 48088 4351 9 48088(+/-)2050 
390*390 55560 11604 21 55560(+/-)5466 
400*400 57339 6236 11 57339(+/-)2937 
410*410 62405 7461 12 62405(+/-)3514 
420*420 63159 5580 9 63159(+/-)2628 
430*430 74424 8255 11 74424(+/-)3888 
440*440 78163 13626 17 78163(+/-)6418 
450*450 99286 11260 11 99286(+/-)5304 

 

Table 5.6 shows the statistics of the TT of the power compute component of the 

application. The TT involves the execution time of completing the power compute 

operation. The table shows computational length for the evaluation of TT of the power 

compute operation in 30 different experiment, the sample mean of sample space of 30 

values in each experiment, the variation in the values of the sample space, the percentage of 

difference in the values of the sample space of each experiment and the range of values for 

TT value of each experiment with 99% confidence for the sample space of 30 values. 

Table 5. 6: Turnaround Time of Power Compute Service on Mobile Application 

Computational 
Length 

Sample 
Mean of 
TT (ms) 

SD in 
TT 

%RSD 
in TT 

Confidence 
Interval  

2^1000000 51 10 19.6 51(+/-)5 
2^2000000 80 9 11.3 80(+/-)4 
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Computational 
Length 

Sample 
Mean of 
TT (ms) 

SD in 
TT 

%RSD 
in TT 

Confidence 
Interval  

2^3000000 110 12 10.9 110(+/-)6 
2^4000000 140 11 7.9 140(+/-)6 
2^5000000 176 28 15.9 176(+/-)13 
2^6000000 206 16 7.8 206(+/-)8 
2^7000000 233 19 8.2 233(+/-)9 
2^8000000 269 25 9.3 269(+/-)12 
2^9000000 293 21 7.2 293(+/-)10 
2^10000000 341 30 8.8 341(+/-)14 
2^20000000 373 38 10.2 373(+/-)18 
2^30000000 920 43 4.7 920(+/-)20 
2^40000000 1216 45 3.7 1216(+/-)21 
2^50000000 1501 28 1.9 1501(+/-)13 
2^60000000 1767 32 1.8 1767(+/-)15 
2^70000000 2070 38 1.8 2070(+/-)18 
2^80000000 2334 37 1.6 2334(+/-)17 
2^90000000 2615 39 1.5 2615(+/-)18 
2^100000000 2896 40 1.4 2806(+/-)19 
2^200000000 6386 61 1 6386(+/-)29 
2^300000000 8509 54 0.6 8509(+/-)25 
2^400000000 11405 316 2.8 11405(+/-)149 
2^500000000 14105 56 0.4 14105(+/-)26 
2^600000000 16887 93 0.6 16887(+/-)44 
2^700000000 19182 1149 6 19182(+/-)541 
2^800000000 22480 160 0.7 22480(+/-)75 
2^900000000 25580 1064 4.2 25580(+/-)501 
2^100000000 28237 471 1.7 28237(+/-)222 
2^1900000000 68365 7598 11.1 68365(+/-)3579 
2^2000000000 69044 8807 12.8 69044(+/-)4148 

 

Table 5.7 presents the Energy Consumption Cost (ECC) in processing sorting 

service component of the application on local mobile device. The attribute of computational 

length shows the computational intensity of sorting logic of the mobile application. ECC is 

analyzed for 30 different computational intensities of the sorting operation. The energy of 

mobile device is consumed in processing the application on mobile device and saving the 

data files of the application on mobile device.  
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Hence, the total energy consumption cost of sorting service component of the 

application is computed as the sum of ECC of processing the application on the local 

mobile device and the ECC of saving the preferences (data file) in the data folder of the 

sorting service application on the mobile device. The sample mean attribute shows the point 

estimator for the ECC of sorting operation in the sample space of 30 values for each 

experiment. Standard Deviation shows the variation in values of the sample space each 

experiment and %RSD indicates the percent Relative Standard Deviation in the ECC of 

sorting operation in each experiment. The attribute of confidence interval shows the 

interval estimate for ECC of sorting operation in each experiment with 99% confidence for 

the sample space of 30 values.  

Table 5. 7: Energy Consumption Cost (ECC) of Sorting Service Operating on the Local 
Mobile Device 

Computational 
Length  

Sample 
Mean of 
ECC (J) 

SD in 
ECC 

%RSD 
in ECC 

Confidence 
Interval 

11000 16.2 2.8 17.3 16.2(+/-)1.3 
12000 16.7 2.6 15.6 16.7(+/-)1.2 
13000 18.1 4.1 22.7 18.1(+/-)1.9 
14000 18.3 2.5 13.7 18.3(+/-)1.2 
15000 18.6 2.5 13.4 18.6(+/-)1.2 
16000 20.2 2.7 13.4 20.2(+/-)1.3 
17000 20.8 2.8 13.5 20.8(+/-)1.3 
18000 21.8 2.8 12.8 21.8(+/-)1.3 
19000 22.9 6 26.2 22.9(+/-)2.8 
20000 23.1 3.7 16 23.1(+/-)1.7 
21000 25.2 5 19.8 25.2(+/-)2.4 
22000 28 5.2 18.6 28(+/-)2.4 
23000 28.1 4.5 16 28.1(+/-)2.1 
24000 28.2 3.9 13.8 28.2(+/-)1.8 
25000 30.4 3.3 10.9 30.4(+/-)1.6 
26000 31.9 4.5 14.1 31.9(+/-)2.1 
27000 33.8 3.3 9.8 33.8(+/-)1.6 
28000 36.4 4.6 12.6 36.4(+/-)2.2 
29000 38.3 3.3 8.6 38.3(+/-)1.6 
30000 39.2 3.5 8.9 39.2(+/-)1.6 
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Computational 
Length  

Sample 
Mean of 
ECC (J) 

SD in 
ECC 

%RSD 
in ECC 

Confidence 
Interval 

31000 40.9 3.5 8.6 40.9(+/-)1.6 
32000 42.1 3.4 8.1 42.1(+/-)1.6 
33000 44.3 3.1 7 44.3(+/-)1.5 
34000 47.8 3.8 7.9 47.8(+/-)1.8 
35000 48.4 2.9 6 48.4(+/-)1.4 
36000 49.7 4.3 8.7 49.7(+/-)2 
37000 51.4 2.8 5.4 51.4(+/-)1.3 
38000 52.5 3.2 6.1 52.5(+/-)1.5 
39000 53.2 2.4 4.5 53.2(+/-)1.1 
40000 55.1 3.7 6.7 55.1(+/-)1.7 

 

Table 5.8 presents the ECC in processing matrix multiplication component of the 

application on local mobile device. Energy consumption cost parameter is analyzed for 30 

different computational intensities of the matrix multiplication operation. Matrix 

multiplication operation involves saving the results of the matrix multiplication operating in 

the preferences file on the mobile device. Hence, the total ECC of matrix multiplication 

service component of the  application is computed as the energy consumption cost of 

processing the application on the local mobile device and the energy consumption cost of 

saving the preferences (data file) in the data folder of the sorting service application on the 

mobile device. The variation in the values of sample space for each experiment is 

represented with SD and the percentage difference in the sample space of each experiment 

is represented with %RSD. The sample mean of ECC is determined for the sample space of 

30 values in each experiment and the interval estimate for each experiment is presented 

with 99% confidence interval for the sample space of 30 values in each experiment.  
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Table 5. 8: Energy Consumption Cost (ECC) of Matrix Multiplication Operation on Local 
Mobile Device 

Computational 
Length 

Sample 
Mean of 
ECC (J) 

SD in 
ECC 

%RSD 
in ECC 

Confidence 
Interval 

160*160 12.9 2.8 21.7 12.9(+/-)1.3 
170*170 13.4 3 22.4 13.4(+/-)1.4 
180*180 14.7 8.1 55.1 14.7(+/-)3.8 
190*190 15.2 3.9 25.7 15.2(+/-)1.8 
200*200 16.3 6.5 39.9 16.3(+/-)3.1 
210*210 17.2 6 34.9 17.2(+/-)2.8 
220*220 20 7.7 38.5 20(+/-)3.6 
230*230 21.5 5.1 23.7 21.5(+/-)2.4 
240*240 22 6.5 29.5 22(+/-)3.1 
250*250 24.1 8.1 33.6 24.1(+/-)3.8 
260*260 24.2 2.2 9.1 24.2(+/-)1 
270*270 27.4 6.4 23.4 27.4(+/-)3 
280*280 28.7 3.2 11.1 28.7(+/-)1.5 
290*290 34.5 8.7 25.2 34.5(+/-)4.1 
300*300 35.2 4 11.4 35.2(+/-)1.9 
310*310 39.7 7 17.6 39.7(+/-)3.3 
320*320 41.1 5.5 13.4 41.1(+/-)2.6 
330*330 44.4 9.3 20.9 44.4(+/-)4.4 
340*340 45.5 9.8 21.5 45.5(+/-)4.6 
350*350 51.4 16.6 32.3 51.4(+/-)7.8 
360*360 54.3 14.2 26.2 54.3(+/-)6.7 
370*370 63.2 8.7 13.8 63.2(+/-)4.1 
380*380 65.7 9.8 14.9 65.7(+/-)4.6 
390*390 67 11.5 17.2 67(+/-)5.4 
400*400 67.4 10.8 16 67.4(+/-)5.1 
410*410 69.1 9.4 13.6 69.1(+/-)4.4 
420*420 69.2 9.4 13.6 69.2(+/-)4.4 
430*430 69.8 9.6 13.8 69.8(+/-)4.5 
440*440 70 10.4 14.9 70(+/-)4.9 
450*450 71.5 10.7 15 71.5(+/-)5 

 

Table 5.9 presents the ECC in processing power compute component of the 

application on local mobile device. The variation in the ECC values of sample space for 

each experiment is represented with SD and the percentage difference in the sample space 
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of each experiment is represented with %RSD. The sample mean of ECC is determined for 

the sample space of 30 values in each experiment and the interval estimate for each 

experiment is presented with 99% confidence interval for the sample space of 30 values in 

each experiment.  

Table 5. 9: Energy Consumption Cost of Power Compute Operation on Local Mobile 
Device 

Computational 
Length 

Sample Mean 
of ECC (J) 

SD in 
ECC 

%RSD 
in 

ECC 
Confidence 

Interval 
2^1000000 2.2 0.7 31.8 2.2(+/-)0.3 
2^2000000 2.3 0.3 13 2.3(+/-)0.1 
2^3000000 2.4 0.6 25 2.4(+/-)0.3 
2^4000000 2.5 0.5 20 2.5(+/-)0.2 
2^5000000 2.8 0.6 21.4 2.8(+/-)0.3 
2^6000000 3.9 1 25.6 3.9(+/-)0.5 
2^7000000 4.2 1 23.8 4.2(+/-)0.5 
2^8000000 5.2 2.2 42.3 5.2(+/-)1 
2^9000000 4.3 1.1 25.6 4.3(+/-)0.5 
2^10000000 4.8 0.8 16.7 4.8(+/-)0.4 
2^20000000 3.9 1 25.6 3.9(+/-)0.5 
2^30000000 5.3 1.5 28.3 5.3(+/-)0.7 
2^40000000 4.5 1.5 33.3 4.5(+/-)0.7 
2^50000000 4.5 0.8 17.8 4.5(+/-)0.4 
2^60000000 5.4 0.6 11.1 5.4(+/-)0.3 
2^70000000 6.1 1.3 21.3 6.1(+/-)0.6 
2^80000000 6.3 0.7 11.1 6.3(+/-)0.3 
2^90000000 6.4 1.3 20.3 6.4(+/-)0.6 
2^100000000 6.4 1.3 20.3 6.4(+/-)0.6 
2^200000000 12.7 1.4 11 12.7(+/-)0.7 
2^300000000 15.4 2.8 18.2 15.4(+/-)1.3 
2^400000000 21.8 5.5 25.2 21.8(+/-)2.6 
2^500000000 21.6 1.7 7.9 28.7(+/-)0.8 
2^600000000 25.3 2.9 11.5 25.3(+/-)1.4 
2^700000000 30.6 4 13.1 30.6(+/-)1.9 
2^800000000 34.3 1.3 3.8 34.3(+/-)0.6 
2^900000000 36.2 5.6 15.5 36.2(+/-)2.6 
2^100000000 38.9 8.5 21.9 38.9(+/-)4 
2^1900000000 61.7 11.9 19.3 61.7(+/-)5.6 
2^2000000000 67 7.6 11.3 67(+/-)3.6 
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Table 5.10 summarizes the average CPU utilization on local mobile device for 

different components of the mobile application. The percentage of CPU utilization on the 

local mobile devices varies for different components of the mobile application. It depends 

on the length of computational logic in the component of mobile application. The sample 

mean of CPU utilization is determined for the sample space of 900 values for each 

component of the mobile application and the interval estimate for each experiment is 

presented with 99% confidence interval for the sample space of 900 values for each 

component of the mobile application. The variation in the ECC values of sample space for 

each experiment is represented with SD and the percentage difference in the sample space 

of each experiment is represented with %RSD.  

Table 5. 10: Statistics of CPU Utilization on the Mobile Device in Local Application 
Processing 

Computational 
Service 

Computational 
Length  

% CPU 
Utilization  

SD % 
RSD 

Confidence 
Interval 

Average  
MIPS  

Sort  11000-40000 48.67 2.62 5.38 48.67(+/-)0.96 1163 
Matrix 
Multiplication   

160*160-
4560*450 

45.46 8.51 18.72 45.46(+/-)4.01 1086 

Power 
Compute 

2^1000000-
2^2000000000 

48.04 4.13 8.6 48.04(+/-)1.38 1148 

5.4 Data Collected for Application Execution in Traditional 
Computational Offloading  

In this scenario mobile application is executed in the distributed mobile cloud 

environment by offloading the components of the mobile application at runtime. The 

traditional runtime offloading technique is implemented for offloading the sort service and 

matrix multiplication service components of the mobile application. We evaluate the total 

TT of the application, total ECC and size of data transmission in offloading the service 

components of the mobile application at runtime.  
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Table 5.11 shows the total TT of sorting component of the application in traditional 

runtime computational offloading. The TT of sorting operation is the sum of the total 

timing cost runtime component offloading (equation 3.3) and execution time of the sorting 

operation on the remote server node. The sample mean of TT for sorting operation is 

determined for the sample space of 30 values in each experiment and the interval estimate 

for each experiment is presented with 99% confidence interval for the sample space of 30 

values in each experiment. The variation in the TT values of sample space for each 

experiment is represented with SD and the percentage difference in the sample space of 

each experiment is represented with %RSD.  

Table 5. 11: Turnaround Time of the Sorting Operation in Traditional Computational 
Offloading 

Computational 
Length 

Sample 
Mean of 
TT(ms) 

SD in 
TT 

%RSD 
in TT 

Confidence 
Interval 

11000 24331 3138 12.9 24331(+/-)1478 
12000 28267 3728 13.2 28267(+/-)1756 
13000 31609 2332 7.4 31609(+/-)1098 
14000 35115 3007 8.6 35115(+/-)1416 
15000 37010 4246 11.5 37010(+/-)2000 
16000 38571 4098 10.6 38571(+/-)1930 
17000 42244 3700 8.8 42244(+/-)1743 
18000 47714 3434 7.2 47714(+/-)1618 
19000 49481 1994 4 49481(+/-)939 
20000 54599 4257 7.8 54599(+/-)2005 
21000 58953 3002 5.1 58953(+/-)1414 
22000 63141 3689 5.8 63141(+/-)1738 
23000 69280 3983 5.7 69280(+/-)1876 
24000 73368 2530 3.4 73368(+/-)1192 
25000 76615 3473 4.5 76615(+/-)1636 
26000 81668 3495 4.3 81668(+/-)1646 
27000 87634 3691 4.2 87634(+/-)1739 
28000 92439 3206 3.5 92439(+/-)1510 
29000 97729 3047 3.1 97729(+/-)1435 
30000 107042 4370 4.1 107042(+/-)2058 
31000 119084 5179 4.3 119084(+/-)2440 
32000 120380 4779 4 120380(+/-)2251 
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Computational 
Length 

Sample 
Mean of 
TT(ms) 

SD in 
TT 

%RSD 
in TT 

Confidence 
Interval 

33000 124931 5086 4.1 124931(+/-)2396 
34000 128864 3418 2.7 128864(+/-)1610 
35000 135006 2938 2.2 135006(+/-)1384 
36000 139564 3559 2.6 139564(+/-)1676 
37000 148009 5461 3.7 148009(+/-)2572 
38000 154216 5115 3.3 154216(+/-)2409 
39000 157490 5862 3.7 157490(+/-)2761 
40000 166457 5333 3.2 166457(+/-)2512 

 

Table 5.12 shows the TT of matrix multiplication component of the application in 

traditional computational offloading. The TT of matrix multiplication operation is the sum 

of the total timing cost runtime component offloading (equation 3.3) and execution time of 

the matrix multiplication operation on the remote server node. The sample mean of TT for 

matrix multiplication operation is determined for the sample space of 30 values in each 

experiment and the interval estimate for each experiment is presented with 99% confidence 

interval for the sample space of 30 values in each experiment. The variation in the TT 

values of sample space for each experiment is represented with SD and the percentage 

difference in the sample space of each experiment is represented with %RSD. 

Table 5. 12: Turnaround Time of the Matrix Multiplication Operation in Traditional 
Computational Offloading 

Computational 
Length 

Sample Mean of 
TT (ms) 

SD in 
TT 

%RSD 
in TT 

Confidence 
Interval 

160*160 16431 818 5 16431(+/-)385 
170*170 18296 1837 10 18296(+/-)865 
180*180 21132 2676 12.7 21132(+/-)1261 
190*190 22170 2900 13.1 22170(+/-)1366 
200*200 26061 2137 8.2 26061(+/-)1007 
210*210 27927 1879 6.7 27927(+/-)885 
220*220 29878 1918 6.4 29878(+/-)903 
230*230 33920 2915 8.6 33920(+/-)1373 
240*240 38052 2413 6.3 38052(+/-)1137 
250*250 44310 2011 4.5 44310(+/-)947 
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Computational 
Length 

Sample Mean of 
TT (ms) 

SD in 
TT 

%RSD 
in TT 

Confidence 
Interval 

260*260 46841 3423 7.3 46841(+/-)1612 
270*270 50412 3498 6.9 50412(+/-)1648 
280*280 55178 4054 7.3 55178(+/-)1910 
290*290 64414 2116 3.3 64414(+/-)997 
300*300 67346 4720 7 67346(+/-)2223 
310*310 68692 8615 12.5 68692(+/-)4058 
320*320 80922 12431 15.4 80922(+/-)5856 
330*330 84709 8293 9.8 84709(+/-)3906 
340*340 110506 8874 8 110506(+/-)4180 
350*350 108677 11319 10.4 108677(+/-)5332 
360*360 114062 9008 7.9 114062(+/-)4243 
370*370 125149 13127 10.5 125149(+/-)6183 
380*380 134100 10567 7.9 134100(+/-)4977 
390*390 148747 24295 16.3 148747(+/-)11444 
400*400 156489 13573 8.7 156489(+/-)6393 
410*410 171252 19704 11.5 171252(+/-)9281 
420*420 184056 18618 10.1 184056(+/-)8770 
430*430 213507 29040 13.6 213507(+/-)13679 
440*440 221092 33793 15.3 221092(+/-)15918 
450*450 262697 37971 14.5 262697(+/-)17886 

 

Table 5.13 shows the total ECC in offloaded processing of the sorting service 

component of the application with 30 different computational intensities. The total ECC of 

sorting operation in traditional computational offloading is the sum of energy consumption 

cost of runtime component offloading (equation 3.1) and energy consumption cost of 

performing sorting operation on the remote cloud server node. The sample mean of ECC 

for sorting operation is determined for the sample space of 30 values in each experiment 

and the interval estimate for each experiment is presented with 99% confidence interval for 

the sample space of 30 values in each experiment. The variation in the ECC values of 

sample space for each experiment is represented with SD and the percentage difference in 

the sample space of each experiment is represented with %RSD.  
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Table 5. 13: Energy Consumption Cost (ECC) of Sorting Operation in Traditional 
Computational Offloading 

Computational 
Length 

Sample Mean 
of  ECC (J) 

SD in 
ECC 

%RTD 
in 

ECC Confidence Interval 
11000 49.7749 7.3245 14.7 49.7749(+/-)3.4501 
12000 53.7829 6.8753 12.8 53.7829(+/-)3.2386 
13000 56.4835 6.5346 11.6 56.4835(+/-)3.0781 
14000 60.5911 7.0763 11.7 60.5911(+/-)3.332 
15000 61.8917 6.4377 10.4 61.8917(+/-)3.0324 
16000 64.5919 6.3711 9.9 64.5919(+/-)3.0011 
17000 70.6915 6.5094 9.2 70.6915(+/-)3.0662 
18000 73.7923 6.335 8.6 73.7923(+/-)2.984 
19000 76.692 11.6244 15.2 76.692(+/-)5.4756 
20000 75.5971 8.3274 11 75.5971(+/-)3.9226 
21000 79.6989 8.3845 10.5 79.6989(+/-)3.9494 
22000 82.0987 7.2209 8.8 82.0987(+/-)3.4013 
23000 87.7002 7.0997 8.1 87.7002(+/-)3.3443 
24000 90.3008 8.1183 9 90.3008(+/-)3.8241 
25000 95.4014 8.514 8.9 95.4014(+/-)4.0104 
26000 105.702 8.0472 7.6 105.702(+/-)3.7906 
27000 109.1036 9.0645 8.3 109.1036(+/-)4.2698 
28000 114.9034 8.1614 7.1 114.9034(+/-)3.8444 
29000 120.505 8.1308 6.7 120.505(+/-)3.8299 
30000 125.1055 10.8596 8.7 125.1055(+/-)5.1153 
31000 131.607 6.916 5.3 131.607(+/-)3.2577 
32000 136.3078 18.8652 13.8 136.3078(+/-)8.8863 
33000 150.3086 10.5245 7 150.3086(+/-)4.9575 
34000 159.4095 10.6692 6.7 159.4095(+/-)5.0256 
35000 165.3109 10.7827 6.5 165.3109(+/-)5.0791 
36000 173.8131 8.0774 4.6 173.8131(+/-)3.8048 
37000 183.0151 9.1271 5 183.0151(+/-)4.2992 
38000 186.8154 10.2068 5.5 186.8154(+/-)4.8078 
39000 195.9168 9.5538 4.9 195.9168(+/-)4.5002 
40000 201.4191 12.5839 6.2 201.4191(+/-)5.9275 

 

Table 5.14 shows the ECC in offloaded processing of the matrix multiplication 

service component of the application. The total ECC of matrix multiplication operation in 

traditional computational offloading is the sum of energy consumption cost of runtime 

component offloading (equation 3.1) and energy consumption cost of performing matrix 
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multiplication operation on the remote cloud server node. The sample mean of ECC for 

matrix multiplication operation is determined for the sample space of 30 values in each 

experiment and the interval estimate for each experiment is presented with 99% confidence 

interval for the sample space of 30 values in each experiment. The variation in the ECC 

values of sample space for each experiment is represented with SD and the percentage 

difference in the sample space of each experiment is represented with %RSD. 

Table 5. 14: Energy Consumption Cost (ECC) of Matrix Multiplication Operation in 
Traditional Runtime Offloading 

Computational 
Length 

Sample Mean 
of ECC(J) 

SD in 
ECC 

%RSD 
in ECC Confidence Interval 

160*160 39.9898 11.7609 29.4 39.9898(+/-)5.5399 
170*170 40.9927 13.1147 32 40.9927(+/-)6.1776 
180*180 43.998 16.5939 37.7 43.998(+/-)7.8164 
190*190 44.5995 12.1789 27.3 44.5995(+/-)5.7368 
200*200 44.4027 15.4921 34.9 44.4027(+/-)7.2974 
210*210 46.5297 16.1287 34.7 46.5297(+/-)7.5973 
220*220 49.3349 15.8277 32.1 49.3349(+/-)7.4555 
230*230 52.1504 13.9581 26.8 52.1504(+/-)6.5748 
240*240 52.8534 14.8811 28.2 52.8534(+/-)7.0096 
250*250 58.0603 15.2977 26.3 58.0603(+/-)7.2059 
260*260 59.1631 9.6401 16.3 59.1631(+/-)4.5409 
270*270 64.5291 13.9521 21.6 64.5291(+/-)6.572 
280*280 65.4867 10.2341 15.6 65.4867(+/-)4.8207 
290*290 71.8974 13.3375 18.6 71.8974(+/-)6.2825 
300*300 71.9067 10.3129 14.3 71.9067(+/-)4.8578 
310*310 76.7187 13.2817 17.3 76.7187(+/-)6.2562 
320*320 79.2983 11.0075 13.9 79.2983(+/-)5.185 
330*330 82.7353 16.8737 20.4 82.7353(+/-)7.9482 
340*340 85.8619 17.5749 20.5 85.8619(+/-)8.2785 
350*350 93.1617 22.3729 24 93.1617(+/-)10.5386 
360*360 95.7239 21.1127 22.1 95.7239(+/-)9.945 
370*370 105.5589 14.7985 14 105.5589(+/-)6.9707 
380*380 109.1943 16.1279 14.8 109.1943(+/-)7.5969 
390*390 109.8383 16.0029 14.6 109.8383(+/-)7.538 
400*400 114.1728 16.5943 14.5 114.1728(+/-)7.8166 
410*410 115.1444 17.1541 14.9 115.1444(+/-)8.0803 
420*420 119.0066 16.5657 13.9 119.0066(+/-)7.8031 
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Computational 
Length 

Sample Mean 
of ECC(J) 

SD in 
ECC 

%RSD 
in ECC Confidence Interval 

430*430 121.4333 16.5499 13.6 121.4333(+/-)7.7957 
440*440 126.8541 18.4795 14.6 126.8541(+/-)8.7046 
450*450 131.6952 16.5959 12.6 131.6952(+/-)7.8174 

 

Table 5.15 shows the size of data transmission over the wireless network medium in 

offloading sort service component of the application with 30 different computational 

intensities at runtime. Total data size for either instance of list size includes the data size of 

application binary file, the size of preferences file uploaded to the remote server node at 

runtime and the size of preferences file downloaded to the mobile devices for returning 

results.  The length of sorting list attribute shows the length of one dimensional array. The 

attribute of preferences file size shows the size of data file size of the sorting component of 

the application. The attribute of total data size represent the amount of total data transmitted 

in each experiment of offloading sort service component of the application. The goodput 

attribute shows the number of bits delivered by the network to the remote cloud server node 

in the unit time. The goodput attribute is represented in the units of Kilo Bits per Second 

(Kbps). It indicates the application layer throughput of the data transmission irrespective of 

the transmission overhead of the underlying layers of the TCP/IP protocol stack.  

Table 5. 15: The Size of Data Transmission over the Wireless Network Medium for 
Sorting Component in Traditional Computational Offloading  

Length 
of Sort 

List 

Preferences 
Size (KB) 

Total Data 
Size (KB) 

Goodput 
(Kbps) 

11000 354 752.4 843.6 
12000 388 820.4 841.1 
13000 422 888.4 813.8 
14000 453 950.4 826.5 
15000 491 1026.4 823.3 
16000 521 1086.4 868.3 
17000 559 1162.4 869.1 
18000 593 1230.4 810.3 
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Length 
of Sort 

List 

Preferences 
Size (KB) 

Total Data 
Size (KB) 

Goodput 
(Kbps) 

19000 627 1298.4 782 
20000 658 1360.4 851.8 
21000 688 1420.4 844.9 
22000 718 1480.4 774.6 
23000 764 1572.4 769.8 
24000 794 1632.4 786.7 
25000 825 1694.4 789.3 
26000 855 1754.4 801.5 
27000 901 1846.4 832 
28000 935 1914.4 828.3 
29000 969 1982.4 842.9 
30000 999 2042.4 841.1 
31000 1024 2092.4 860.5 
32000 1054.72 2153.84 860.6 
33000 1085.44 2215.28 856.2 
34000 1116.16 2276.72 867.3 
35000 1177.6 2399.6 908.6 
36000 1177.6 2399.6 877.2 
37000 1208.32 2461.04 875.1 
38000 1239.04 2522.48 888.4 
39000 1269.76 2583.92 903.1 
40000 1300.48 2645.36 915.7 

 

Table 5.16 shows the size of data transmission over the wireless network medium in 

offloading matrix multiplication component of the application with 30 different 

computational intensities at runtime. The length of matrices attribute shows the length of 

two dimensional arrays used in the matrix multiplication. The attribute of preferences file 

size shows the size of data file size of the matrix multiplication component of the 

application. The attribute of total data size represent the amount of total data transmitted 

with either size 2-D array in matrix multiplication. Total data size for either instance of list 

size includes the data size of application binary file, the size of preferences file uploaded to 

the remote server node at runtime and the size of preferences file downloaded to the mobile 

devices for returning results. The goodput attribute shows the number of bits delivered by 
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the network to the remote cloud server node in the unit time for matrix multiplication 

component.  

Table 5. 16: The Size of Data Transmission over the Wireless Network Medium for Matrix 
Multiplication Component in Traditional Computational Offloading 

Length of 
Matrices 

Preferences 
Size (KB) 

Data 
Transmission 

(KB) Goodput(Kbps) 
160*160 2846.72 5739.44 9238.5 
170*170 3246.08 6538.16 9919.5 
180*180 3665.92 7377.84 9172.1 
190*190 4085.76 8217.52 9816.4 
200*200 4536.32 9118.64 9460.4 
210*210 4997.12 10040.24 10332.1 
220*220 5488.64 11023.28 11084.2 
230*230 6010.88 12067.76 10363 
240*240 6543.36 13132.72 10858 
250*250 7106.56 14259.12 10400.5 
260*260 7690.24 15426.48 10427.7 
270*270 8294.4 16634.8 10112.3 
280*280 8919.04 17884.08 10525.5 
290*290 9574.4 19194.8 10954.4 
300*300 10240 20526 10402.1 
310*310 10854.4 21754.8 10754.4 
320*320 11673.6 23393.2 11166.9 
330*330 12390.4 24826.8 11009.1 
340*340 13209.6 26465.2 11351.8 
350*350 14028.8 28103.6 11749.6 
360*360 14848 29742 11867.1 
370*370 15667.2 31380.4 11612.2 
380*380 16588.8 33223.6 11111.1 
390*390 17408 34862 11448.5 
400*400 18329.6 36705.2 11786.7 
410*410 19353.6 38753.2 10124.6 
420*420 19660.8 39367.6 8016 
430*430 21299.2 42644.4 7439.1 
440*440 22323.2 44692.4 7863 
450*450 23347.2 46740.4 8508.9 
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5.5 Data Collected for Application Execution by Employing DEAP 
Framework 

In this scenario the prototype mobile application is tested by implementing DEAP 

framework.  Application execution is evaluated in the Primary Operating Procedure (POP) 

and Secondary Operating Procedure (SOP) of the DEAP framework. The sorting service 

and matrix multiplication service components of the application are computational and data 

intensive. Therefore, sorting logic and matrix multiplication logic of the application is 

configured explicitly in the DEAP server. The POP of the DEAP client application is used 

to access the preconfigured services by employing SaaS cloud service provision model of 

computational clouds. However, the power compute service component of the application 

is offloaded at runtime in the SOP of the DEAP client application which utilizes IaaS 

service provisioning model of computational clouds. We evaluate the TT of the application, 

ECC in DEAP based processing of the application, size of data transmission in POP and 

SOP of the DEAP client application, RAM allocation and CPU utilization on local mobile 

device in leveraging the services of DEAP server.   

Table 5.17 shows the TT of sorting operation in POP of the DEAP client application. 

Turnaround time of the sorting operation in POP of DEAP client application is the sum of 

application processing time on the remote server node and the time taken in saving resultant 

data on the local mobile device. The sample mean of TT for sorting operation is determined 

for the sample space of 30 values in each experiment and the interval estimate for each 

experiment is presented with 99% confidence interval for the sample space of 30 values in 

each experiment. The variation in the TT values of sample space for each experiment is 

represented with SD and the percentage difference in the sample space of each experiment 

is represented with %RSD. 
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Table 5. 17: Turnaround Time for Sorting Operation in the POP of the DEAP client 
Application 

Computational 
Length 

Sample Mean 
of TT (ms) 

SD in 
TT 

%RSD 
in TT 

Confidence 
Interval 

11000 2559 446 17.4 2559(+/-)210 
12000 2902 715 24.6 3902(+/-)337 
13000 3132 454 14.5 3132(+/-)214 
14000 3345 308 9.2 3345(+/-)145 
15000 3494 519 14.9 3494(+/-)244 
16000 3757 694 18.5 3757(+/-)327 
17000 3888 402 10.3 3888(+/-)189 
18000 4379 316 7.2 4379(+/-)149 
19000 4579 587 12.8 4579(+/-)277 
20000 4864 238 4.9 4864(+/-)112 
21000 5222 308 5.9 5222(+/-)145 
22000 5461 227 4.2 5461(+/-)107 
23000 5838 444 7.6 5838(+/-)209 
24000 6171 248 4 6171(+/-)117 
25000 6770 334 4.9 6770(+/-)157 
26000 6844 388 5.7 6844(+/-)183 
27000 7377 194 2.6 7377(+/-)91 
28000 7885 167 2.1 7885(+/-)79 
29000 8436 667 7.9 8436(+/-)314 
30000 8525 861 10.1 8525(+/-)406 
31000 8989 369 4.1 8989(+/-)174 
32000 9378 3874 41.3 9378(+/-)1825 
33000 10042 949 9.5 10042(+/-)447 
34000 10328 630 6.1 10328(+/-)297 
35000 10790 474 4.4 10790(+/-)223 
36000 10914 1645 15.1 10914(+/-)775 
37000 11704 551 4.7 11704(+/-)260 
38000 12537 619 4.9 12537(+/-)292 
39000 13182 1133 8.6 13182(+/-)534 
40000 13416 598 4.5 13416(+/-)282 

 

Table 5.18 shows the TT of matrix multiplication in POP of the DEAP client 

application. Turnaround time of the matrix multiplication operation in POP of DEAP client 

application is the sum of matrix multiplication time on the remote server node and the time 

taken in saving resultant data on the local mobile device. The sample mean of TT for 
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matrix multiplication operation is determined for the sample space of 30 values in each 

experiment and the interval estimate for each experiment is presented with 99% confidence 

interval for the sample space of 30 values in each experiment. The variation in the TT 

values of sample space for each experiment is represented with SD and the percentage 

difference in the sample space of each experiment is represented with %RSD. 

Table 5. 18: Turnaround Time for Matrix Multiplication Operation in the POP of the 
DEAP Client Application 

Computational 
Intensity 

Sample 
Mean of 
TT (ms) SD in TT 

% RSD in 
TT 

Confidence Interval of 
TT 

160*160 4241 207 4.9 4241(+/-)98 
170*170 4983 701 14.1 4983(+/-)330 
180*180 5481 637 11.6 5481(+/-)300 
190*190 5676 1010 17.8 5676(+/-)476 
200*200 7038 579 8.2 7038(+/-)273 
210*210 7795 655 8.4 7795(+/-)309 
220*220 8560 598 7 8560(+/-)282 
230*230 9661 1009 10.4 9661(+/-)475 
240*240 11521 830 7.2 11521(+/-)391 
250*250 13766 578 4.2 13766(+/-)272 
260*260 14442 1192 8.3 14442(+/-)561 
270*270 15174 1149 7.6 15174(+/-)541 
280*280 17494 2238 12.8 17494(+/-)1054 
290*290 21148 597 2.8 21148(+/-)281 
300*300 21476 593 2.8 21476(+/-)279 
310*310 22025 3868 17.6 22025(+/-)1822 
320*320 27875 5953 21.4 27875(+/-)2804 
330*330 28900 3563 12.3 28900(+/-)1678 
340*340 38435 3987 10.4 38435(+/-)1878 
350*350 39074 5117 13.1 39074(+/-)2410 
360*360 40649 3562 8.8 40649(+/-)1678 
370*370 45182 5611 12.4 45182(+/-)2643 
380*380 48164 4250 8.8 48164(+/-)2002 
390*390 55381 11854 21.4 55381(+/-)5584 
400*400 57224 6180 10.8 57224(+/-)2911 
410*410 61358 7383 12 61358(+/-)3478 
420*420 62199 6288 10.1 62199(+/-)2962 
430*430 73466 8248 11.2 73466(+/-)3885 
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Computational 
Intensity 

Sample 
Mean of 
TT (ms) SD in TT 

% RSD in 
TT 

Confidence Interval of 
TT 

440*440 77068 13544 17.6 77068(+/-)6380 
450*450 97887 11002 11.2 97887(+/-)5182 
 

The ECC for accessing sorting service of DEAP server is the sum of energy 

consumed in accessing the sorting service and energy consumed in saving the resultant data 

on the local mobile device. The sorting operation service of the of the DEAP server 

application in the POP of the DEAP client application is evaluated for 30 different 

computational intensities, and data are collected for the sample space of 30 values for either 

computational intensity of the sorting operation.  

Table 5.19 shows the ECC of sorting operation in POP of the DEAP client 

application. The sample mean of ECC for sorting operation in POP of DEAP framework is 

determined for the sample space of 30 values in each experiment and the interval estimate 

for each experiment is presented with 99% confidence interval for the sample space of 30 

values in each experiment. The variation in the ECC values of sample space for each 

experiment is represented with SD and the percentage difference in the sample space of 

each experiment is represented with %RSD. 

Table 5. 19: Energy Consumption Cost (ECC) for Sorting Operation in the POP of the 
DEAP Framework 

Computational 
Length 

Sample 
Mean of 
ECC (J) 

SD in 
ECC 

%RSD 
in ECC 

Confidence 
Interval in ECC 

11000 7.4 1.3 17.6 7.4(+/-).6 
12000 8.3 2 24.1 8.3(+/-)1.8 
13000 9 1.8 20 9(+/-)1.6 
14000 9.3 2.1 22.6 9.3(+/-).9 
15000 9.3 2 21.5 9.3(+/-)1.8 
16000 9.5 1.6 16.8 9.5(+/-).7 
17000 10.7 2 18.7 10.7(+/-).9 
18000 10.8 1.6 14.8 10.8(+/-).7 
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Computational 
Length 

Sample 
Mean of 
ECC (J) 

SD in 
ECC 

%RSD 
in ECC 

Confidence 
Interval in ECC 

19000 11 4.1 37.3 11(+/-)1.9 
20000 11.2 3.7 33 11.2(+/-)1.7 
21000 12.3 2.3 18.7 12.3(+/-)1.1 
22000 12.5 2.7 21.6 12.5(+/-)1.3 
23000 12.7 2.4 18.9 12.7(+/-)1.1 
24000 12.7 1.8 14.2 12.7(+/-).8 
25000 14.1 3.2 22.7 14.1(+/-)1.5 
26000 14.6 2.8 19.2 14.6(+/-)1.3 
27000 14.8 2.8 18.9 14.8(+/-)1.6 
28000 14.8 2.1 14.2 14.8(+/-)1 
29000 14.9 3.1 20.8 14.9(+/-)1.4 
30000 15.3 2.2 14.4 15.3(+/-)1 
31000 15.3 1.8 11.8 15.3(+/-).8 
32000 15.4 2.5 16.2 15.4(+/-)1.2 
33000 17 3.6 21.2 17(+/-)1.7 
34000 17 2.6 15.3 17.2(+/-)1.2 
35000 17.3 3.7 21.4 17.3 
36000 17.5 2.8 16 17.5(+/-)1.3 
37000 17.6 2.1 11.9 17.6(+/-)1 
38000 18.5 3.4 18.4 18.5(+/-)1.6 
39000 21.8 3 13.8 21.8(+/-)1.4 
40000 23 5.6 24.3 23(+/-)2.6 

 

The ECC of matrix multiplication operation in the POP of DEAP client application 

is the sum of energy consumed in accessing the matrix multiplication operation service of 

the DEAP server application and energy consumed in saving the resultant preferences (data 

file) on the local mobile device. Table 5.20 shows the ECC of matrix multiplication 

operation in POP of the DEAP client application. The sample mean of ECC for matrix 

multiplication operation in POP of DEAP framework is determined for the sample space of 

30 values in each experiment and the interval estimate for each experiment is presented 

with 99% confidence interval for the sample space of 30 values in each experiment. The 

variation in the ECC values of sample space for each experiment is represented with SD 
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and the percentage difference in the sample space of each experiment is represented with 

%RSD. 

Table 5. 20: Energy Consumption Cost (ECC) for Matrix Multiplication Operation in the 
POP of the DEAP Client Application 

Computational 
Length 

Sample 
Mean of 

ECC 

SD in 
ECC 

%RSD 
in ECC 

Confidence 
Interval 

160*160 10.8 3.8 35.2 10.8(+/-)1.8 
170*170 11.2 3.5 31.3 11.2(+/-)1.6 
180*180 11.9 5.2 43.7 11.9(+/-)2.4 
190*190 12 3.4 28.3 12(+/-)1.6 
200*200 12.8 7 54.7 12.8(+/-)3.3 
210*210 13 4.7 36.2 13(+/-)2.2 
220*220 14.5 5.3 36.6 14.5(+/-)2.5 
230*230 15.5 4.2 27.1 15.5(+/-)2 
240*240 16.2 5.2 32.1 16.2(+/-)2.4 
250*250 17.3 5.5 31.8 17.3(+/-)2.6 
260*260 18.5 5.2 28.1 18.5(+/-)2.4 
270*270 19.3 6.8 35.2 19.3(+/-)3.2 
280*280 20.3 5.6 27.6 20.3(+/-)2.6 
290*290 23 6.9 30 23(+/-)3.3 
300*300 24.2 8.2 33.9 24.2(+/-)3.9 
310*310 25.6 10 39.1 25.6(+/-)4.7 
320*320 29.3 8.5 29 29.3(+/-)4 
330*330 31.5 12.3 39 31.5(+/-)5.8 
340*340 32.6 12 36.8 32.6(+/-)5.7 
350*350 35.7 14.9 41.7 35.7(+/-)7 
360*360 37 13.6 36.8 37(+/-)6.4 
370*370 41.6 7.6 18.3 41.6(+/-)3.6 
380*380 45 11 24.4 45(+/-)5.2 
390*390 47.3 13.5 28.5 47.3(+/-)6.4 
400*400 49.3 19.6 39.8 49.3(+/-)9.2 
410*410 53.7 11.4 21.2 53.7(+/-)5.4 
420*420 56.8 17.4 30.6 56.8(+/-)8.2 
430*430 57.1 10.2 17.9 57.1(+/-)4.8 
440*440 61.6 12.3 20 61.6(+/-)5.8 
450*450 65.3 10.8 16.5 65.3(+/-)5.1 
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The power compute service component of the application is offloaded at runtime by 

employing the SOP of the DEAP framework. Table 5.21 shows the time taken in of 

offloading power compute service in the SOP of DEAP client application. The sample 

mean of TT for power compute operation is determined for the sample space of 30 values 

and the interval estimate for each experiment is presented with 99% confidence interval for 

the sample space of 30 values. The variation in the TT values of sample space for each 

experiment is represented with SD and the percentage difference in the sample space of 

each experiment is represented with %RSD. 

Table 5. 21: Time Taken in Offloading Power Compute in the SOP of DEAP client 
Application 

 Sample 
Mean of 

Time (ms) 

SD in 
Time 

%RSD Confidence 
Interval 

Offloading  Time  52 9 17.3 52(+/-)4 
Download Time to 
Remote Virtual Device  

212 39 18.4 212(+/-)18 

Reconfiguration Time on 
the on Remote virtual 
Device 

6349 663 10.4 6349(+/-)312 

 

Table 5.22 shows the total time taken in the execution of power compute service 

component of the application in the SOP of DEAP client application. The sample mean of 

TT for power compute operation is determined for the sample space of 30 values in each 

experiment and the interval estimate for each experiment is presented with 99% confidence 

interval for the sample space of 30 values in each experiment. The variation in the TT 

values of sample space for each experiment is represented with SD and the percentage 

difference in the sample space of each experiment is represented with %RSD. 
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Table 5. 22: Turnaround Time of Offloading Power Compute in the SOP of DEAP client 
Application 

Computational 
Length  

Sample 
Mean for 
TT SD in TT 

%RSD in 
TT  

Confidence 
Interval  

2^1000000 7175 721.1 10.1 7175(+/-)340 
2^2000000 7587 717 9.5 7587(+/-)338 
2^3000000 7751 726.5 9.4 7751(+/-)342 
2^4000000 7779 719.7 9.3 7779(+/-)339 
2^5000000 7965 699 8.8 7965(+/-)329 
2^6000000 8071 692.7 8.6 8071(+/-)326 
2^7000000 8183 690.1 8.4 8183(+/-)325 
2^8000000 8283 690.5 8.3 8283(+/-)325 
2^9000000 8471 684.2 8.1 8471(+/-)322 
2^10000000 8658 724.3 8.4 8658(+/-)341 
2^20000000 9877 674.9 6.8 9877(+/-)318 
2^30000000 12029 1398.2 11.6 12029(+/-)659 
2^40000000 12999 719.5 5.5 12999(+/-)339 
2^50000000 13444 1212.1 9 13444(+/-)571 
2^60000000 15356 804.1 5.2 15356(+/-)379 
2^70000000 17067 918.7 5.4 17067(+/-)433 
2^80000000 18092 831.5 4.6 18092(+/-)392 
2^90000000 19188 1115 5.8 19188(+/-)525 
2^100000000 20389 1045.5 5.1 20389(+/-)492 
2^200000000 32645 1367.5 4.2 32645(+/-)644 
2^300000000 46475 876.3 1.9 46475(+/-)413 
2^400000000 61280 2107.4 3.4 61280(+/-)913 
2^500000000 75534 2123.2 2.8 75534(+/-)1000 
2^600000000 84686 1944.1 2.3 84686(+/-)916 
2^700000000 112309 5497.9 4.9 112309(+/-)2590 
2^800000000 126616 2987.1 2.4 126616(+/-)1407 
2^900000000 135190 2297.8 1.7 135190(+/-)1082 
2^100000000 138851 1379.6 1 138851(+/-)650 
2^1900000000 139471 3875.7 2.8 139471(+/-)1826 
2^2000000000 265724 5274.6 2 265724(+/-)2485 

 

Table 5.23 shows the total ECC in the execution of power compute service 

component of the application in the SOP of DEAP client application. The sample mean of 

ECC for matrix multiplication operation is determined for the sample space of 30 values in 

each experiment and the interval estimate for each experiment is presented with 99% 
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confidence interval for the sample space of 30 values in each experiment. The variation in 

the ECC values of sample space for each experiment is represented with SD and the 

percentage difference in the sample space of each experiment is represented with %RSD. 

Table 5. 23: Total Energy Consumption Cost in Offloading of Power Compute Service in 
the SOP of DEAP Client Application 

Compute Size Sample Mean 
of ECC(J) 

SD in 
ECC 

%RSD Confidence 
Interval 

2^1000000 5.4 1.4  25.9 5.4(+/-).7 
2^2000000 6.5 2.6 40 6.5(+/.-)1.2 
2^3000000 6.8 1 14.7 6.8(+/-)0.5 
2^4000000 7.9 3.2 40.5 7.9(+/-)1.5 
2^5000000 8.1 2.3 28.4 8.1(+/-)1.1 
2^6000000 8.6 2.3 26.7 8.6(+/-)1.1 
2^7000000 9.5 3.3 34.7 9.5(+/-)1.6 
2^8000000 9.6 1.6 16.7 9.6(+/-)0.8 
2^9000000 10 1.4 14 10(+/-)0.7 
2^10000000 10.5 2 19 10.5(+/-)0.9 
2^20000000 13.2 2.3 17.4 13.2(+/-)1.1 
2^30000000 15.1 1.9 12.6 15.1(+/-)0.9 
2^40000000 17.1 1.9 11.1 17.1(+/-)0.9 
2^50000000 19.8 1.3 6.6 19.8(+/-)0.6 
2^60000000 23.2 2.8 12.1 23.2(+/-)1.3 
2^70000000 25.1 1.9 7.6 25.1(+/-)0.9 
2^80000000 26.8 2.6 9.7 26.8(+/-)1.2 
2^90000000 30.2 1.1 3.6 30.2(+/-)0.5 
2^100000000 31.3 2.1 6.7 31.3(+/-)1 
2^200000000 56.1 2.3 4.1 56.1(+/-)1.1 
2^300000000 72.7 4.2 5.8 72.7(+/-)2 
2^400000000 79.6 4.4 5.5 79.6(+/-)2.1 
2^500000000 88.2 2.7 3.1 88.2(+/-)1.3 
2^600000000 106.4 1.6 1.5 106.4(+/-)0.8 
2^700000000 126.4 4.9 3.9 126.4(+/-)2.3 
2^800000000 143.3 5.9 4.1 143.3(+/-)2.8 
2^900000000 164.9 3.4 2.1 164.9(+/-)1.6 
2^100000000 181.1 6.5 3.6 181.1(+/-)3.1 
2^1900000000 343.6 5.9 1.7 343.6(+/-)1.7 
2^2000000000 351 15.7 4.5 351(+/-)4.5 
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Table 5.24 represents the statistics of RAM allocation on local mobile device for 

accessing the sorting service of DEAP server application. The sample mean of RAM 

allocation for matrix multiplication operation is determined for the sample space of 30 

values in each experiment and the interval estimate for each experiment is presented with 

99% confidence interval for the sample space of 30 values in each experiment. The 

variation in the RAM allocation values of sample space for each experiment is represented 

with SD and the percentage difference in the sample space of each experiment is 

represented with %RSD. 

Table 5. 24:  RAM Allocation on Local Mobile Device in Accessing Sorting Service of 
DEAP server Application 

Computational 
length 

Sample 
Mean for 

RAM 
Allocation 

(MB) 

SD in 
RAM 

Allocation 

%RSD in 
RAM 

Allocation 
Confidence 

Interval 
11000 1.165 0.06 5.2 1.165(+/-)0.028 
12000 1.232 0.027 2.2 1.232(+/-)0.013 
13000 1.248 0.011 0.9 1.248(+/-)0.005 
14000 1.442 0.139 9.6 1.442(+/-)0.065 
15000 1.559 0.021 1.3 1.559(+/-)0.01 
16000 1.566 0.019 1.2 1.566(+/-)0.009 
17000 1.654 0.111 6.7 1.654(+/-)0.052 
18000 1.925 0.024 1.2 1.925(+/-)0.011 
19000 1.938 0.006 0.3 1.938(+/-)0.003 
20000 1.938 0.002 0.1 1.938(+/-)0.001 
21000 2.324 0.002 0.1 2.324(+/-)0.001 
22000 2.355 0.008 0.3 2.355(+/-)0.004 
23000 2.356 0.085 3.7 2.314(+/-)0.04 
24000 2.376 0.055 2.3 2.376(+/-)0.026 
25000 2.382 0.043 1.8 2.382(+/-)0.02 
26000 2.426 1.871 77.1 2.426(+/-)0.881 
27000 2.854 0.077 2.7 2.854(+/-)0.036 
28000 2.883 0.037 1.3 2.883(+/-)0.017 
29000 2.891 0.091 3.1 2.891(+/-)0.043 
30000 2.898 0.008 0.3 2.898(+/-)0.004 
31000 2.922 0.026 0.9 2.922(+/-)0.012 
32000 3.186 0.1 3.1 3.186(+/-)0.047 
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Computational 
length 

Sample 
Mean for 

RAM 
Allocation 

(MB) 

SD in 
RAM 

Allocation 

%RSD in 
RAM 

Allocation 
Confidence 

Interval 
33000 3.518 0.001 0 3.518(+/-)0.0005 
34000 3.531 0.01 0.3 3.531(+/-)0.005 
35000 3.553 0.232 6.5 3.553(+/-)0.109 
36000 3.559 0.176 4.9 3.559(+/-)0.083 
37000 3.664 0.393 10.7 3.664(+/-)0.185 
38000 3.68 0.109 3 3.68(+/-)0.051 
39000 3.743 0.146 3.9 3.743(+/-)0.069 
40000 4.344 0.376 8.7 4.344(+/-)0.177 

 

Table 5.25 represents the statistics of RAM allocation on local mobile device for 

accessing the matrix multiplication service of the application on DEAP server application. 

The computational length of the matrix service varies in 30 different experiments 

(160*160-450*450), whereas the variation in the values of sample space in either 

computational intensity is shown with SD and %RSD. The confidence interval attribute 

shows the interval estimate of the sample mean with 99% confidence.  

Table 5. 25: RAM Allocation on Local Mobile Device in Accessing Matrix Multiplication 
Service of DEAP Server Application 

Computational 
Length 

Sample 
Mean for 

RAM 
Allocation 

(MB) 

SD  in 
RAM 

Allocation 

%RSD in 
RAM 

Allocation 
Confidence 

Interval 
160*160 1.695 0.16 9.4 1.695(+/-).08 
170*170 1.865 0.068 3.6 1.865(+/-)0.03 
180*180 2.094 0.068 3.2 2.094(+/-)0.03 
190*190 2.36 0.198 8.4 2.36(+/-)0.09 
200*200 2.438 0.071 2.9 2.438(+/-)0.03 
210*210 2.887 0.13 4.5 2.887(+/-)0.06 
220*220 3.119 0.162 5.2 3.119(+/-)0.08 
230*230 3.524 0.091 2.6 3.524(+/-)0.04 
240*240 3.576 0.12 3.4 3.576(+/-)0.06 
250*250 3.752 0.272 7.2 3.752(+/-)0.13 
260*260 4.193 0.13 3.1 4.193(+/-)0.06 
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Computational 
Length 

Sample 
Mean for 

RAM 
Allocation 

(MB) 

SD  in 
RAM 

Allocation 

%RSD in 
RAM 

Allocation 
Confidence 

Interval 
270*270 4.448 0.266 6 4.448(+/-)0.13 
280*280 4.842 0.238 4.9 4.842(+/-)0.13 
290*290 5.616 0.308 5.5 5.616(+/-)0.15 
300*300 5.888 0.076 1.3 5.888(+/-)0.04 
310*310 6.335 0.136 2.1 6.335(+/-)0.06 
320*320 6.498 0.279 4.3 6.498(+/-)0.13 
330*330 7.171 0.211 2.9 7.171(+/-)0.1 
340*340 7.344 0.226 3.1 7.344(+/-)0.11 
350*350 7.696 0.279 3.6 7.696(+/-)0.13 
360*360 8.311 0.351 4.2 8.311(+/-)0.17 
370*370 8.319 0.326 3.9 8.319(+/-)0.15 
380*380 9.141 0.197 2.2 9.141(+/-)0.09 
390*390 9.754 0.17 1.7 9.754(+/-)0.08 
400*400 9.88 0.082 0.8 9.88(+/-)0.04 
410*410 11.476 0.354 3.1 11.476(+/-)0.17 
420*420 11.912 0.35 2.9 11.912(+/-)0.16 
430*430 12.263 0.237 1.9 12.263(+/-)0.11 
440*440 12.549 0.209 1.7 12.549(+/-)0.1 
450*450 13.056 0.653 5 13.056(+/-)0.31 

 

The percentage of CPU utilization on the local mobile devices in DEAP based 

processing varies for different components of the mobile application. In the POP of DEAP 

framework, the processing logic of the service components is executed on the DEAP server 

application. However, a certain amount of CPU is still utilized for accessing the services of 

DEAP server application on the remote server node. Table 5.26 summarizes the average 

CPU utilization on local mobile device for accessing the services of DEAP server 

application.  
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Table 5. 26: Statistics of CPU Utilization on the Mobile Device in DEAP Based 
Application Processing 

Computation
al Service 

Computation
al Length  

% CPU 
Utilizatio
n  

SD in 
CPU 
Utilizatio
n 

%RSD 
in CPU 
Utilizatio
n 

Confidenc
e Interval Averag

e 
MIPS  

Sort  11000-40000 25.5 14.00375 54.9 25.5(+/-
)5.64 609.2 

Matrix 
Multiplication   

160*160-
4560*450 

35.4 17.8 50.3 35.4(+/-
)8.38 845.7 

Power 
Compute 

2^1000000-
2^200000000

0 

3 0.8 26.7 3(+/-)0.38 
71. 7 

 

Table 5.27 shows the size of data transmission over the wireless network medium in 

accessing the sorting service and matrix multiplication service on DEAP server application. 

The attribute of data size represent the amount of data transmitted with either list size of the 

sort array and matrix length.  

Table 5. 27: Data Transmission in the POP of DEAP client Application 

Length of 
Sorting List 

Data 
Transmission 
(KB) (Sorting 

Service) 

Length of 
Matrices 

Data 
Transmission 
(KB)  (Matrix 

Service) 
11000 183 160*160 463 
12000 200 170*170 528 
13000 218 180*180 595 
14000 235 190*190 664 
15000 253 200*200 639 
16000 270 210*210 705 
17000 288 220*220 774 
18000 306 230*230 847 
19000 323 240*240 923 
20000 341 250*250 1002 
21000 358 260*260 1084 
22000 376 270*270 1169 
23000 393 280*280 1258 
24000 411 290*290 1350 
25000 429 300*300 1445 
26000 446 310*310 1543 
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Length of 
Sorting List 

Data 
Transmission 
(KB) (Sorting 

Service) 

Length of 
Matrices 

Data 
Transmission 
(KB)  (Matrix 

Service) 
27000 464 320*320 1646 
28000 481 330*330 1754 
29000 499 340*340 1865 
30000 516 350*350 1979 
31000 534 360*360 21629 
32000 552 370*370 2219 
33000 568 380*380 2343 
34000 587 390*390 2471 
35000 604 400*400 2602 
36000 622 410*410 2737 
37000 639 420*420 2874 
38000 657 430*430 3015 
39000 675 440*440 3160 
40000 692 450*450 3308 

5.6 Comparison of Experimental Results   

This section presents the comparison of resources utilization in the application 

processing on the local device and remote server node. The comparison of experimental 

results is presented for Android virtual device and real time experimentation. Table 5.28 

shows the TT of the sorting service on the local virtual device and execution time in the 

performing sorting operation on the remote server using the POP of DEAP client 

application. Similarly, the table compares the ECC of sort service execution on local virtual 

device and ECC of DEAP client application for accessing sorting service on DEAP server 

application.  

Table 5. 28: Comparison of Sorting Service Execution on Local Android Virtual Device 
and POP of DEAP client Application 

Computational 
Length  

TT (ms) on 
Local AVD 

TT (ms) 
in DEAP  

ECC (J) 
on Local 
AVD 

ECC (J) 
in DEAP  

11000 13400 3246 20.1 13.3 
12000 16217 3475 22.9 13.6 
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Computational 
Length  

TT (ms) on 
Local AVD 

TT (ms) 
in DEAP  

ECC (J) 
on Local 
AVD 

ECC (J) 
in DEAP  

13000 18423 3782 25.4 15 
14000 20918 3954 29.1 15.4 
15000 22021 4541 30 16.2 
16000 23425 4816 32.7 16.2 
17000 26109 4928 38.2 16.3 
18000 29743 5476 40.9 16.4 
19000 30777 5827 43.6 16.5 
20000 34911 6215 42.3 16.7 
21000 38949 6237 46.4 17.8 
22000 41064 6839 48.4 17.4 
23000 45905 7571 53.4 18.7 
24000 49591 7659 55.6 18.7 
25000 51808 8081 60.5 18.9 
26000 56479 8221 70.2 20 
27000 61963 8560 73.4 20.2 
28000 65919 8717 78.8 20.8 
29000 70729 9435 83.8 20.9 
30000 79087 10283 87.4 21.5 
31000 90472 10564 93.1 21.3 
32000 91096 10883 96.6 22.2 
33000 94886 10899 108.8 22.9 
34000 98462 10913 116.9 23.6 
35000 104213 11308 122.6 24 
36000 107928 12179 130.7 24.9 
37000 115239 12689 138.9 26.9 
38000 121113 13216 142.5 28.2 
39000 123935 13435 151.4 31.2 
40000 132661 14093 156.1 32.5 

 

Table 5.29 compares execution time and energy consumption in the execution of 

matrix multiplication operation on local virtual device instance and DEAP based service 

execution by using Android virtual device. The TT of the matrix multiplication operation is 

compared for local execution on AVD and remote execution on remote server node. 

Similarly, the table compares the Energy Consumption Cost (ECC) of matrix multiplication 
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service execution on local virtual device and ECC of DEAP client application for accessing 

matrix multiplication service on DEAP server application. 

 

Table 5. 29:  Comparison of Matrix Multiplication Service Execution on Local Android 
Virtual Device and POP of DEAP client Application 

Computational  
Length 

TT (ms) on 
Local AVD 

TT (ms) in 
DEAP  

ECC (J) 
on Local 
AVD 

ECC (J) in 
DEAP  

160*160 4430 4488 11.2 11.8 
170*170 5146 4587 12 13.5 
180*180 5762 5439 12.8 14.2 
190*190 6034 5668 13 14.3 
200*200 7500 6120 13.6 14.3 
210*210 8264 6838 14.7 15.1 
220*220 9003 7485 17.5 15.7 
230*230 10243 8358 18.7 15.9 
240*240 12010 9069 19.4 16.5 
250*250 14429 9901 21.8 16.7 
260*260 15237 10101 22.3 17.4 
270*270 16429 10493 25.6 18.3 
280*280 18657 10666 26.9 18.8 
290*290 22963 11869 32.9 19.9 
300*300 23665 12228 33.9 20 
310*310 23973 13705 37.7 20 
320*320 29914 13724 39.2 22.2 
330*330 31121 14664 43.2 22.4 
340*340 42864 15405 45 22.4 
350*350 41778 15632 50.8 23.8 
360*360 43578 15938 53.9 25.8 
370*370 48387 18822 63.5 27.2 
380*380 51952 19010 66.8 27 
390*390 58945 18998 67.2 28.2 
400*400 64100 20828 71.9 28.2 
410*410 68265 21287 72.5 29.1 
420*420 70675 22200 74.7 30 
430*430 82111 24789 75.8 35.2 
440*440 86244 23674 77.1 35.7 
450*450 108202 24994 79 43.7 
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Table 5.30 compares execution time and energy consumption in the execution of 

power compute service on local AVD and remote DEAP server application by using 

Android virtual device. It compares the TT of the power compute service on the local 

virtual device and execution time in performing power compute operation on the remote 

server using the POP of DEAP client application. Similarly, the table compares the ECC of 

power compute service execution on local virtual device and ECC of DEAP client 

application for accessing power compute service on DEAP server application. 

Table 5. 30: Comparison of Power Compute Service Execution on Local Android Virtual 
Device and POP of DEAP client Application  

Computational 
Length   

TT (ms) 
on Local 
AVD 

TT (ms) 
in DEAP  

ECC 
(J) on 
Local 
AVD 

ECC 
(J) in 
DEAP  

2^1000000 562 173 3.1 2.9 
2^2000000 974 182 4.1 3.6 
2^3000000 1138 186 4.3 3.7 
2^4000000 1166 191 5.1 3.8 
2^5000000 1352 206 5.2 4.1 
2^6000000 1458 207 5.6 4.5 
2^7000000 1570 230 6.4 4.6 
2^8000000 1670 234 6.5 5.9 
2^9000000 1858 260 6.8 6.1 
2^10000000 2045 263 7.2 6.6 
2^20000000 3264 301 9.7 8.5 
2^30000000 5416 346 11.6 8.1 
2^40000000 6386 394 13.6 8.2 
2^50000000 6831 475 16.3 8.2 
2^60000000 8743 521 19.7 8.3 
2^70000000 10454 524 21.5 8.4 
2^80000000 11479 549 23.1 8.6 
2^90000000 12575 569 26.3 9.4 
2^100000000 13776 608 27.3 10.6 
2^200000000 26032 1108 51.5 10.6 
2^300000000 39862 1171 67.8 11.3 
2^400000000 54667 1445 74.6 11.3 
2^500000000 68921 2501 83 11.4 
2^600000000 78073 2948 100.5 13.4 
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2^700000000 105696 3312 119.5 13.5 
2^800000000 120003 4369 135.5 13.9 
2^900000000 128577 4846 156.8 14.1 
2^100000000 132238 5134 172.7 14.2 
2^1900000000 132858 9146 333.3 14.3 
2^2000000000 259111 9606 339.9 14.5 

 

Table 5.31 summarizes the comparison of the TT of sorting operating of the 

application in different scenarios of the real distributed mobile cloud computing 

environment. The contemporary approaches for application offloading implement runtime 

application profiling technique for outsourcing the computational load at runtime.  

Therefore, Local execution time is evaluated from two perspective.1) The execution time of 

the application is evaluated without involving the runtime profiling mechanism. 2) In order 

to evaluate the impact of runtime profiling, the execution time of the application is 

evaluated by including the runtime profiling mechanism. The TT in DEAP attribute shows 

total time taken in the executing the sort service on DEAP server application and returning 

the results to the local mobile device. The TT of the application in traditional offloading is 

represented from two perspectives. (a) The TT in traditional offloading without profiling 

shows the turnaround time of the sorting service operation by offloading the component 

without using runtime profiling on the local mobile. (b) Whereas, the TT in traditional 

offloading with profiling attribute represents the turnaround time of the application by 

including the profiling mechanism on local mobile device.  

Table 5. 31: Comparison of Turnaround Time (ms) of Sorting Operation in Local and 
Remote Execution 

Computational 
Length  

TT on 
Local 
SMD 

(Without 
Profiling) 

TT on  Local 
SMD ( 

Including 
Profiling)  

TT in  
POP of 
DEAP 

TT in 
Traditional 
Offloading 
(without 
Profiling) 

TT in 
Traditional  
Offloading 
(Including 
Profiling) 

11000 4876 20756 2559 24331 40211 
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Computational 
Length  

TT on 
Local 
SMD 

(Without 
Profiling) 

TT on  Local 
SMD ( 

Including 
Profiling)  

TT in  
POP of 
DEAP 

TT in 
Traditional 
Offloading 
(without 
Profiling) 

TT in 
Traditional  
Offloading 
(Including 
Profiling) 

12000 5510 25160 2902 28267 47917 
13000 6566 29298 3132 31609 54341 
14000 6989 32718 3345 35115 60844 
15000 7406 38820 3494 37010 68424 
16000 7450 47778 3757 38571 78899 
17000 10414 58773 3888 42244 90603 
18000 11457 68132 4379 47714 104389 
19000 11857 82182 4579 49481 119806 
20000 13221 92106 4864 54599 133484 
21000 13774 98885 5222 58953 144064 
22000 14410 107419 5461 63141 156150 
23000 15579 108969 5838 69280 162670 
24000 16059 118121 6171 73368 175430 
25000 16950 126903 6770 76615 186568 
26000 17764 134495 6844 81668 198399 
27000 18421 142275 7377 87634 211488 
28000 19176 150483 7885 92439 223746 
29000 20179 159581 8436 97729 237131 
30000 20987 169385 8525 107042 255440 
31000 21600 179592 8989 119084 277076 
32000 22565 190058 9378 120380 287873 
33000 24701 197576 10042 124931 297806 
34000 25687 205867 10328 128864 309044 
35000 25825 229236 10790 135006 338417 
36000 26432 230547 10914 139564 343679 
37000 26910 246572 11704 148009 367671 
38000 28859 252496 12537 154216 377853 
39000 29968 264108 13182 157490 391630 
40000 31207 275148 13416 166457 410398 

 

Table 5.32 compares the TT of the matrix multiplication operation of the 

application in different scenarios. The execution time on the local device represents the TT 

of the matrix multiplication operation and saving the preferences file on the local mobile 

device. The TT in DEAP attribute shows total time taken in the executing the matrix 
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multiplication operation on DEAP server application and returning the results to the local 

mobile device. The TT of the application in traditional offloading is represented from two 

perspectives. The TT in traditional offloading without profiling shows the turnaround time 

of the matrix multiplication operation by offloading the component without using runtime 

profiling on the local mobile. The TT in traditional offloading with profiling attribute 

represents the turnaround time of the application by including the profiling mechanism on 

local mobile device.  

Table 5. 32: Comparison of the Turnaround Time of the Matrix Multiplication Operation in 
Local and Remote Execution 

Computatio
nal Length  

TT on Local 
SMD 

(Without 
Profiling) 

TT on Local 
SMD ( 

Including 
Profiling)  

TT in 
DEAP 

TT in 
Traditional 
Offloading 
(without 
Profiling) 

TT in 
Traditional  
Offloading 
(Including 
Profiling) 

160*160 3653 4254 3294 16431 20326 
170*170 4276 5038 3889 18296 22947 
180*180 4781 5675 4308 21132 26334 
190*190 5030 5930 4451 22170 27521 
200*200 6321 7455 5661 26061 32856 
210*210 7039 8346 6287 27927 35521 
220*220 7777 9408 6929 29878 38438 
230*230 8888 10639 7916 33920 43587 
240*240 10735 12753 9589 38052 49659 
250*250 13090 15333 11724 44310 58277 
260*260 13642 16375 12177 46841 61751 
270*270 14471 17279 12805 50412 66025 
280*280 16411 19360 14546 55178 72673 
290*290 20524 24018 18448 64414 86481 
300*300 20706 24721 18599 67346 89960 
310*310 21185 25656 18883 68692 92046 
320*320 27028 31939 24444 80922 110277 
330*330 28452 33760 25317 84709 115334 
340*340 39691 45333 34666 110506 152657 
350*350 38570 44698 35016 108677 149821 
360*360 40096 46936 36406 114062 157308 
370*370 44896 52192 40720 125149 173165 
380*380 48088 55901 43402 134100 185315 
390*390 55560 62952 50381 148747 206520 
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Computatio
nal Length  

TT on Local 
SMD 

(Without 
Profiling) 

TT on Local 
SMD ( 

Including 
Profiling)  

TT in 
DEAP 

TT in 
Traditional 
Offloading 
(without 
Profiling) 

TT in 
Traditional  
Offloading 
(Including 
Profiling) 

400*400 57339 64397 51775 156489 215322 
410*410 62405 73252 55762 171252 237861 
420*420 63159 74057 56467 184056 251421 
430*430 74424 85789 67278 213507 292150 
440*440 78163 90390 70400 221092 303719 
450*450 99286 112628 91038 262697 367077 

 

Table 5.33 compares the execution time of the power compute operation of the 

application in local and remote execution scenarios. The execution time on the local device 

represents the turnaround time of the power compute operation on the local mobile device. 

The TT in POP of DEAP attribute shows total time taken in the executing power compute 

operation on DEAP server application and returning the results to the local mobile device. 

The TT in SOP of DEAP shows the turnaround time of the power compute operation by 

offloading the component at runtime.  

Table 5. 33:  Comparison of the Turnaround Time (ms) of the Power Compute Operation 
in Local and Remote Execution 

Computational 
Length 

TT on Local 
SMD   

TT in 
Traditional 

Computational  
Offloading 

without Profiling  

TT in SOP of 
DEAP Client 

including 
Profiling  

2^1000000 51 7175 7284 
2^2000000 80 7587 7786 
2^3000000 110 7751 8023 
2^4000000 140 7779 8150 
2^5000000 176 7965 8437 
2^6000000 206 8071 8617 
2^7000000 233 8183 8802 
2^8000000 269 8283 8980 
2^9000000 293 8471 9321 
2^10000000 341 8658 9582 
2^20000000 373 9877 11961 
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2^30000000 920 12029 14665 
2^40000000 1216 12999 16529 
2^50000000 1501 13444 17828 
2^60000000 1767 15356 20629 
2^70000000 2070 17067 23250 
2^80000000 2334 18092 25117 
2^90000000 2615 19188 27066 
2^100000000 2896 20389 29124 
2^200000000 6386 32645 49549 
2^300000000 8509 46475 73446 
2^400000000 11405 61280 108268 
2^500000000 14105 75534 142978 
2^600000000 16887 84686 173497 
2^700000000 19182 112309 220728 
2^800000000 22480 126616 223406 
2^900000000 25580 135190 282353 
2^100000000 28237 138851 304233 
2^1900000000 68365 139471 473860 
2^2000000000 69044 265724 622062 

 

Table 5.34 compares the ECC of sorting operating of the application in different 

scenarios. The ECC represents the energy consumed by executing the sorting service 

components of the application on mobile device and saving the resultant preferences file on 

the local mobile device. The ECC of the application is evaluated without involving the 

runtime profiling mechanism and by including the runtime profiling mechanism. The ECC 

in DEAP attribute shows total ECC of DEAP client application in accessing the sort service 

on DEAP server application and saving the resultant preferences file on the local mobile 

device. The ECC of the application in traditional offloading without profiling attribute 

shows the turnaround time of the sorting service operation by offloading the component 

without using runtime profiling on the local mobile. The ECC in traditional offloading with 

profiling attribute represents the total ECC of the application by including the profiling 

mechanism on local mobile device.  
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Table  5. 34: Comparison of Energy Consumption Cost of Sorting Operation in Local and 
Remote Execution 

Computational 
Length 

ECC  on 
Local 
SMD 

(Without 
Profiling) 

ECC on 
Local 
SMD 

(Including 
Runtime 
Profiling)  

ECC in 
POP of 
DEAP  

ECC in 
Traditional  
Offloading 
(Without  
Profiling ) 

ECC in 
Traditional 
Offloading 
(Including 
Profiling ) 

11000 21.1 21.6 7.4 49.8 50.3 
12000 23.3 30.9 8.3 53.8 61.4 
13000 25.1 35.4 9 56.5 66.8 
14000 25.3 36.4 9.3 60.6 71.7 
15000 25.3 43.8 9.3 61.9 80.4 
16000 27.2 46.5 9.5 64.6 83.9 
17000 28.9 53.8 10.7 70.7 95.6 
18000 29.4 59.5 10.8 73.8 103.9 
19000 30.4 64.6 11 76.7 110.9 
20000 30.8 70.5 11.2 75.6 115.3 
21000 33.1 76.4 12.3 79.7 123 
22000 35.9 83.9 12.5 82.1 130.1 
23000 36.5 90.8 12.7 87.7 142 
24000 34.8 97.5 12.7 90.3 153 
25000 37.1 104.7 14.1 95.4 163 
26000 38.9 112.9 14.6 105.7 179.7 
27000 40 120.2 14.8 109.1 189.3 
28000 43.4 129.1 14.8 114.9 200.6 
29000 45 137.8 14.9 120.5 213.3 
30000 46 147.4 15.3 125.1 226.5 
31000 47.6 154.8 15.3 131.6 238.8 
32000 48.9 165.4 15.4 136.3 252.8 
33000 52.8 175.4 17 150.3 272.9 
34000 56.6 186.1 17 159.4 288.9 
35000 56.9 196.3 17.3 165.3 304.7 
36000 57.9 206.5 17.5 173.8 322.4 
37000 59.7 217.9 17.6 183 341.2 
38000 61.7 230 18.5 186.8 355.1 
39000 65.3 241.1 21.8 195.9 371.7 
40000 68.6 253.6 23 201.4 386.4 
 

Table 5.35 compares the ECC of matrix multiplication operating of the application 

in in local and remote execution. The ECC represents the energy consumed by executing 
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the matrix multiplication components of the application on mobile device and saving the 

resultant preferences file on the local mobile device. The ECC of the application is 

evaluated without involving the runtime profiling mechanism and by including the runtime 

profiling mechanism. The ECC in DEAP attribute shows total ECC of DEAP client 

application in accessing the matrix multiplication operating on DEAP server application 

and saving the resultant preferences file on the local mobile device. The ECC of the 

application in traditional offloading without profiling attribute shows the total ECC of the 

matrix multiplication operating by offloading the component without using runtime 

profiling on the local mobile. The ECC in traditional offloading with profiling attribute 

represents the total ECC of the application by including the profiling mechanism on local 

mobile device.  

Table 5. 35: Comparison of Energy Consumption Cost of Matrix Operation in Local and 
Remote Execution 

Computational 
Length 

ECC on 
Local SMD 
(Without 
Profiling) 

ECC on 
Local SMD 
(Including 
Runtime 
Profiling)  

ECC in 
POP of 
DEAP  

ECC in 
Traditional 
Offloading 
(Without 
Profiling) 

ECC in 
Traditional 

Computational 
Offloading 
(Including 
Profiling) 

160*160 12.9 16 10.8 39.9898 43.1 
170*170 13.4 18.1 11.2 40.9927 45.7 
180*180 14.7 18.9 11.9 43.998 48.2 
190*190 15.2 19.3 12 44.5995 48.7 
200*200 16.3 19.9 12.8 44.4027 48 
210*210 17.2 21.4 13 46.5297 50.7 
220*220 20 25.1 14.5 49.3349 54.4 
230*230 21.5 26.5 15.5 52.1504 57.2 
240*240 22 27.3 16.2 52.8534 58.2 
250*250 24.1 29.8 17.3 58.0603 63.8 
260*260 24.2 32.4 18.5 59.1631 67.4 
270*270 27.4 35.9 19.3 64.5291 73 
280*280 28.7 37 20.3 65.4867 73.8 
290*290 34.5 42.8 23 71.8974 80.2 
300*300 35.2 45.7 24.2 71.9067 82.4 
310*310 39.7 50.2 25.6 76.7187 87.2 
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Computational 
Length 

ECC on 
Local SMD 
(Without 
Profiling) 

ECC on 
Local SMD 
(Including 
Runtime 
Profiling)  

ECC in 
POP of 
DEAP  

ECC in 
Traditional 
Offloading 
(Without 
Profiling) 

ECC in 
Traditional 

Computational 
Offloading 
(Including 
Profiling) 

320*320 41.1 51.8 29.3 79.2983 90 
330*330 44.4 55.3 31.5 82.7353 93.6 
340*340 45.5 57.3 32.6 85.8619 97.7 
350*350 51.4 63.4 35.7 93.1617 105.2 
360*360 54.3 66.6 37 95.7239 108 
370*370 63.2 78.5 41.6 105.5589 120.9 
380*380 65.7 81.2 45 109.1943 124.7 
390*390 67 82.6 47.3 109.8383 125.4 
400*400 67.4 83.5 49.3 114.1728 130.3 
410*410 69.1 83.3 53.7 115.1444 129.3 
420*420 69.2 83.8 56.8 119.0066 133.6 
430*430 69.8 87.8 57.1 121.4333 139.4 
440*440 70 90.6 61.6 126.8541 147.5 
450*450 71.5 91.8 65.3 131.6952 152 

  
Table 5.36 compares the ECC of power compute operating of the application in 

different scenarios. The ECC of the application is evaluated without involving the runtime 

profiling mechanism and by including the runtime profiling mechanism. The ECC of the 

application in SOP of DEAP client application attribute shows the total ECC of the power 

compute operating by offloading the component at runtime.  

Table 5. 36: Comparison of Energy Consumption Cost of Power Compute Operation in 
Local and Execution 

Compute 
length  

ECC on 
Local SMD  

ECC in the SOP of 
Runtime Offloading 
(Without Profiling) 

ECC in the SOP of DEAP 
client Application  

(Including Profiling) 
2^1000000 2.2 5.4 5.4 
2^2000000 2.3 6.5 6.8 
2^3000000 2.4 6.8 6.9 
2^4000000 2.5 7.9 7.9 
2^5000000 2.8 8.1 8.3 
2^6000000 3.9 8.6 8.9 
2^7000000 4.2 9.5 9.9 
2^8000000 5.2 9.6 9.9 
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Compute 
length  

ECC on 
Local SMD  

ECC in the SOP of 
Runtime Offloading 
(Without Profiling) 

ECC in the SOP of DEAP 
client Application  

(Including Profiling) 
2^9000000 4.3 10 11.3 
2^10000000 4.8 10.5 11.4 
2^20000000 3.9 13.2 15.1 
2^30000000 5.3 15.1 16.2 
2^40000000 4.5 17.1 20 
2^50000000 4.5 19.8 25.6 
2^60000000 5.4 23.2 28.6 
2^70000000 6.1 25.1 30.8 
2^80000000 6.3 26.8 34.1 
2^90000000 6.4 30.2 43.8 
2^100000000 6.4 31.3 45.6 
2^200000000 12.7 56.1 78.5 
2^300000000 15.4 72.7 101.8 
2^400000000 21.8 79.6 109.2 
2^500000000 21.6 88.2 128 
2^600000000 25.3 106.4 149.7 
2^700000000 30.6 126.4 173.3 
2^800000000 34.3 143.3 193.3 
2^900000000 36.2 164.9 218.9 
2^100000000 38.9 181.1 249.8 
2^1900000000 61.7 343.6 447.6 
2^2000000000 67 351 460.7 

 

Table 5.37 compares the RAM utilization for sorting operating of the application in 

different scenarios. The sorting length attribute shows the length of array which is being 

sorted in each instance of application execution. The RAM in local application execution 

attribute shows the amount of memory allocated to the sorting service component of the 

application on local mobile device. The attribute of RAM in remote application execution 

shows the amount of memory allocated to DEAP client application on local mobile device 

for accessing the sorting service on the remote DEAP server application.  
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Table 5. 37: Comparison of RAM Allocation to Sorting Service in Local Execution and 
POP of DEAP client Application 

Length of 
Sort List 

RAM in  Local 
Execution 

(MB) 

RAM in DEAP 
Client 

Application 
(MB) 

11000 10.148 1.165 
12000 10.154 1.232 
13000 10.15 1.248 
14000 10.209 1.442 
15000 10.167 1.559 
16000 10.173 1.566 
17000 10.177 1.654 
18000 10.179 1.925 
19000 10.185 1.938 
20000 10.193 1.938 
21000 10.197 2.324 
22000 10.2 2.355 
23000 10.204 2.314 
24000 10.213 2.376 
25000 10.21 2.382 
26000 10.215 2.426 
27000 10.218 2.854 
28000 10.221 2.883 
29000 10.224 2.891 
30000 10.227 2.898 
31000 10.231 2.922 
32000 10.236 3.186 
33000 10.257 3.518 
34000 10.242 3.531 
35000 10.246 3.553 
36000 10.248 3.559 
37000 10.254 3.664 
38000 10.258 3.68 
39000 10.261 3.743 
40000 10.265 5.344 

 

Table 5.38 compares the RAM utilization for matrix multiplication operation of the 

application in different scenarios. The matrix size attribute represents the size of 2-D array 

which are used in the matrix multiplication operation. The RAM in local application 
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execution attribute shows the amount of memory allocated to the matrix multiplication 

service component of the application on local mobile device. The attribute of RAM in 

remote application execution shows the amount of memory allocated to DEAP client 

application on local mobile device for accessing the sorting service on the remote DEAP 

server application. 

Table 5. 38: Comparison of RAM Allocation to Matrix Multiplication Service in Local 
Execution and POP of DEAP client Application 

Length of 
Matrices 

RAM in Local 
Execution  

RAM in DEAP 
Client Application  

160*160 2.78 1.695 
170*170 3.17 1.865 
180*180 3.58 2.094 
190*190 3.99 2.36 
200*200 4.43 2.438 
210*210 4.88 2.887 
220*220 5.36 3.119 
230*230 5.87 3.524 
240*240 6.39 3.576 
250*250 6.94 3.752 
260*260 7.51 4.193 
270*270 8.1 4.448 
280*280 8.71 4.842 
290*290 9.35 5.616 
300*300 10 5.888 
310*310 10.6 6.335 
320*320 11.4 6.498 
330*330 12.1 7.171 
340*340 12.9 7.344 
350*350 13.7 7.696 
360*360 14.5 8.311 
370*370 15.3 8.319 
380*380 16.2 9.141 
390*390 17 9.754 
400*400 17.9 9.88 
410*410 18.9 11.476 
420*420 19.2 11.912 
430*430 20.8 12.263 
440*440 21.8 12.549 
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Length of 
Matrices 

RAM in Local 
Execution  

RAM in DEAP 
Client Application  

450*450 22.8 13.056 
 

The power compute component of the application is offloaded to remote server 

node in the SOP of DEAP client application. Therefore, the execution takes place on the 

remote virtual device instance and therefore the cost of RAM allocation is eliminated on the 

local mobile device.  Table 5.39 compares the CPU utilization in execution of mobile 

application in different scenarios. The computational length attribute shows the range of 

computational intensities for which the CPU utilization is evaluated. Percentage of CPU 

utilization in local application execution, and percentage of CPU utilization for DEAP 

client application in the SOP and POP of DEAP server application are presented. The 

attribute of MIPS utilization shows CPU utilization in the units of Millions of Instruction 

Per Second on the mobile device for executing the application on local mobile devise and 

accessing the services of DEAP server application.  

Table 5. 39: Comparison of CPU Utilization in Local Application Execution and Remote 
DEAP Based Remote Application Execution 

Computational 
Service 

Computational 
Length  

%CPU in  
Local 
Execution 

Average 
MIPS in 
Local 
Execution  

%CPU in 
DEAP 
Based 
Execution 

Average 
MIPS in 
DEAP  
Based 
Execution 

Sort  11000-40000 48.67 1163 25.5 609.2 
Matrix 
Multiplication   

160*160-
4560*450 

45.46      1086 35.4 845.7 

Power 
Compute 

2^1000000-
2^2000000000 

48.04 1148 3 71. 7 

 

Table 5.40 compares the size of data transmitted over the wireless network medium 

for sorting service in offloading computational load in the proposed DEAP framework and 

traditional application offloading technique.  

Univ
ers

iti 
Mala

ya



Chapter 5: Evaluation   

169 
 

Table 5. 40: Comparison of the Data Transmission Using Traditional Offloading 
Technique and DEAP Framework for Sorting Service 

Length of 
Sort List  

Data Transmission 
in Traditional 
Offloading (KB) 

Data Transmission in 
DEAP Based 
Offloading (KB)  

11000 752.4 183 
12000 820.4 200 
13000 888.4 218 
14000 950.4 235 
15000 1026.4 253 
16000 1086.4 270 
17000 1162.4 288 
18000 1230.4 306 
19000 1298.4 323 
20000 1360.4 341 
21000 1420.4 358 
22000 1480.4 376 
23000 1572.4 393 
24000 1632.4 411 
25000 1694.4 429 
26000 1754.4 446 
27000 1846.4 464 
28000 1914.4 481 
29000 1982.4 499 
30000 2042.4 516 
31000 2092.4 534 
32000 2153.84 552 
33000 2215.28 568 
34000 2276.72 587 
35000 2399.6 604 
36000 2399.6 622 
37000 2461.04 639 
38000 2522.48 657 
39000 2583.92 675 
40000 2645.36 692 

 

Table 5.41 compares the size of data transmitted over the wireless network medium 

for matrix multiplication service in offloading computational load in the proposed DEAP 

framework and traditional application offloading technique.  
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Table 5. 41: Comparison of the Data Transmission Using Traditional Offloading 
Technique and DEAP Framework for Matrix Multiplication Operation 

Length of 
Matrices 

Data Transmission in 
Traditional Offloading 
(KB) 

Data Transmission in 
DEAP Framework 
Based Offloading 
(KB) 

160*160 5739.44 463 
170*170 6538.16 528 
180*180 7377.84 595 
190*190 8217.52 664 
200*200 9118.64 639 
210*210 10040.24 705 
220*220 11023.28 774 
230*230 12067.76 847 
240*240 13132.72 923 
250*250 14259.12 1002 
260*260 15426.48 1084 
270*270 16634.8 1169 
280*280 17884.08 1258 
290*290 19194.8 1350 
300*300 20526 1445 
310*310 21754.8 1543 
320*320 23393.2 1646 
330*330 24826.8 1754 
340*340 26465.2 1865 
350*350 28103.6 1979 
360*360 29742 21629 
370*370 31380.4 2219 
380*380 33223.6 2343 
390*390 34862 2471 
400*400 36705.2 2602 
410*410 38753.2 2737 
420*420 39367.6 2874 
430*430 42644.4 3015 
440*440 44692.4 3160 
450*450 46740.4 3308 
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5.7 Conclusion  

The proposed framework is tested on the Android virtual device and benchmarking is 

done by evaluating the prototype application on the real mobile device. Data are collected 

by sampling the evaluation parameters with 30 different computational intensities of mobile 

application. The point estimator of each experiment is determined by finding the sample 

mean of the sample space of 30 values in each experiment. The value of sample mean is 

signified by finding the interval estimate with 99% confidence for the sample space of 30 

values in each experiment.  

It is concluded that DEAP successfully leveraged the application processing services 

of computational cloud for outsourcing the resource intensive logic of mobile applications. 

DEAP framework successfully implemented the POP to access the services of DEAP server 

application by employing SaaS model of computational cloud. However, to sustain the 

feature of elasticity in mobile application, runtime computational offloading is successfully 

implemented in the SOP of DEAP framework which utilizes the IaaS services of 

computational cloud.  The evaluation of the DEAP framework on the Android virtual 

device indicates the viability of DEAP framework for leveraging the application processing 

services of computational clouds to resources constraint SMDs. Benchmarking of the 

prototype application with the diverse computational intensities of the application validates 

performance gains of the DEAP framework for intensive applications in mobile cloud 

computing. Univ
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CHAPTER 6 

Results and Discussion         

This chapter analyzes the experimental results presented in chapter 5 for signifying 

the usefulness of the proposed DEAP framework. The chapter is organized into five 

sections. Section 6.1 analyzes the results of application processing on local mobile device. 

Section 6.2 investigates results of distributed application processing in the traditional 

runtime computational offloading. Section 6.3 analyzes the results of application processing 

in DEAP based distributed processing of mobile application. Section 6.4 compares results 

of different experimental scenarios for local and distributed processing of mobile 

application. Section 6.5 concludes the chapter with the significance of DEAP framework.  

6.1 Analysis of Application Execution on Local Mobile Device 

The prototype mobile application is tested on local mobile device to evaluate 

resources utilization (CPU, RAM, and Battery power) and Turnaround Time of the mobile 

application. Table 5.1 shows RAM allocation for sorting service in 30 different 

experiments. The allocated RAM for sorting a list of 11000 values is determined as 

10.148(+/-) 0.0061MB with 99% confidence interval in the sample space of 30 values, 

which shows that the possible range of RAM allocation is between 10.1419 MB and 

10.1541MB. The value of SD for RAM allocation shows the variation in the values of same 

sample space for each experiment. For instance, the variation of RAM allocation varies 

0.013 MB for sorting a list of 11000 values in 30 different experiments which constitutes 

0.1281 percent of the average RAM allocation on SMD.  Similarly, the allocated RAM for 

sorting a list of 25000 values in the sample space of 30 values is determined as 10.21(+/-

)0.0098 MB with 99% confidence interval, which shows that the possible range of RAM 
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allocation is between 10.2095 MB and 10.2105 MB. The value of SD for RAM allocation 

shows 0.001 MB variation for sorting a list of 25000 values in 30 different experiments 

which constitutes 0.0098 percent of the average RAM allocation on SMD.  

Figure 6.1 shows the allocation of RAM to the sorting component of mobile 

application on local mobile device in 30 different experiments. The allocation of memory 

for the sorting service varies according to the length of the list being sorted. For instance, in 

sorting the list of 15000 values on the average 10.167 MB RAM is allocated, whereas in 

sorting the list of 40000 values 10.265 MB RAM is allocated on the SMD. Sorting service 

saves the preferences file of list being sorted on local SMD. For that reason, in saving the 

preferences file on local device the allocation of heap size and allocated RAM increases 

accordingly. The average RAM allocation for the sorting service on mobile device is 

determine as 10.21 MB for sorting list of 11000-40000 with the RSD 0.040 percent.  

 

Figure 6. 1:  Allocation of RAM for Sorting Service on SMD 

Table 5.2 summarized RAM allocation for matrix multiplication service in 30 

different experiments. For instance, the allocated RAM for 2-D array lists of 160*160 

values in the sample space of 30 values is determined 10.454(+/-).0014 with 99% 

confidence interval, which shows that the possible range of RAM allocation is between 

10.4526 MB and 10.4554 MB. The value of SD for RAM allocation shows the variation in 
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the values of same sample space for each experiment. For instance, the variation of RAM 

allocation varies 0.0029MB for multiplying list of 160*160 length in 30 different 

experiments which constitutes 0.0277 percent of the average RAM allocation on SMD.  

Similarly, the allocated RAM for sorting a list of 390*390 values in the sample space of 30 

values is determined as 12.4562(+/-).0511 MB with 99% confidence interval, which shows 

that the possible range of RAM allocation is between 12.4051 MB and 12.5073 MB. The 

value of SD for RAM allocation shows 0.1085 MB variation for matrix size of 290*290 in 

30 different experiments which constitute 0.8711 percent of the average RAM allocation on 

SMD.  

Figure 6.2 shows the allocation of RAM for matrix multiplication service of mobile 

application on local mobile device in 30 different experiments. The allocation of memory 

for the matrix multiplication service varies according to the length of the matrix being 

multiplied. For instance, in multiplying the matrix of size 250*250 values, on the average 

10.8317 MB, whereas in multiplying the matrix of size 450*450 values, 13.1003MB RAM 

is allocated on the SMD. Matrix multiplication service saves the preferences file of the 

resultant matrix on SMD. Therefore, in saving the preferences file on local device the 

allocation the heap size and allocated RAM increases accordingly. The average RAM 

allocation for the matrix multiplication service on mobile device is determine as 11.5034 

MB for matrix size of 160*160 – 450*450 with the RSD 7.7 percent.  Univ
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Figure 6. 2: RAM Allocation to Matrix Multiplication Service on Local SMD 

Table 5.3 summarized the allocation of RAM for the execution of power compute 

service component of the application on local mobile device. The computational intensity 

of power compute service varies between 2^1000000 and 2^2000000000. The allocated 

RAM for power compute service is determined as 10.11(+/-).00045 MB with 99% 

confidence interval, which shows that the possibility of RAM allocation for power compute 

service with different computational intensities is between 10.109 MB and 10.110 MB.  

The value of SD for RAM allocation shows the variation in the values of sample space for 

the experimentation of power compute service with 30 different computational intensities. 

Hence, the variation of RAM allocation varies 0.0017 MB for power compute service in 30 

different experiments which constitutes 0.016815035 percent of the average RAM 

allocation on SMD.   

Table 5.4 summarized the TT of the sorting service component of the application. 

The TT of sorting service is evaluated with 30 different computational intensities of the 

sorting operation (sort list size of 11000-40000). It is observed that the TT of the sorting 

operation varies with the computational intensity of sorting operation. For instance, the TT 

in sorting a list of 11000 values in the sample space of 30 values is determined as 4876(+/-
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)333 ms with 99% confidence interval, which shows that the possible range of TT is 

between  4543 ms and 5209 ms. The value of SD for TT shows the variation in the values 

of same sample space for each experiment. For instance, the variation of TT is 706 ms for 

sorting a list of 11000 values in 30 different experiments which constitutes 14 percent of 

the average TT on SMD.  Similarly, the TT for sorting a list of 25000 values in the sample 

space of 30 values is determined as 16950(+/-)431 ms with 99% confidence interval, which 

shows that the possible range of TT is between 16519 ms and 17381 ms. The value of SD 

for TT shows 915 ms variation for sorting a list of 25000 values in 30 different experiments 

which constitutes 5 percent of the average TT value.  

 Figure 6.3 shows the increase in TT of the sorting operation on local mobile device 

in 30 different experiments. The TT for the sorting service varies according to the length of 

the list being sorted. The value of TT includes the processing time for performing sorting 

operation and the time taken in saving the resultant preferences file to the data file of the 

local mobile device. It is observed that by increasing the length of sorting list, the 

processing time of performing sorting operation and the time taken in saving preferences 

file increases accordingly. For instance, sorting the list of 15000 values takes on the 

average 7406 ms, whereas sorting the list of 40000 values takes 31207 ms on the SMD. 

Experimental results indicate that the TT in sorting the list of 40000 values increases 84.4 

percent as compared to sorting the list of 11000 values. However, the average TT for the 

sorting service on mobile device is determine as 17426 ms for sorting list of 11000-40000 

with the 45.2 percent RSD. 
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Figure 6. 3: Turnaround Time of Sorting Service on Local SMD 

Table 5.5 summarized the TT of the matrix multiplication service component of the 

application on local mobile device. The TT of matrix multiplication service is evaluated 

with 30 different computational intensities of the matrix multiplication operation (matrix 

size 160*160-450*450). It is observed that the TT of the matrix multiplication operation 

varies with the computational intensity of matrix multiplication operation. For instance, the 

TT in multiplying 2-D arrays of 160*160 size in the sample space of 30 values is 

determined as 3653(+/-)90 ms with 99% confidence interval, which shows that the possible 

range of TT is between  3563 ms and 3563 ms. The value of SD for TT shows the variation 

in the values of same sample space for each experiment. For instance, the variation of TT is 

191 ms for sorting a list of 11000 values in 30 different experiments, which constitutes 5 

percent of the average TT on SMD.  Similarly, the TT in multiplying 2-D arrays of 

310*310 values in the sample space of 30 values is determined as 21185(+/-)1813 ms with 

99% confidence interval, which shows that the possible range of TT is between 19372 ms 

and 19372 ms. The value of SD for TT shows 3849 ms variation for multiplying 2-D arrays 

of size 310*310, in 30 different experiments which constitutes 18 percent of the average TT 

0

5000

10000

15000

20000

25000

30000

35000

11
00

0

13
00

0

15
00

0

17
00

0

19
00

0

21
00

0

23
00

0

25
00

0

27
00

0

29
00

0

31
00

0

33
00

0

35
00

0

37
00

0

39
00

0

T
ur

na
ro

un
d 

T
im

e 
(m

s)
 

Length of Sorting List 

Univ
ers

iti 
Mala

ya



Chapter: 6  Results and Discussion 
 

178 
 

value. Figure 6.4 shows the increase in TT of the matrix multiplication operation on local 

mobile device in 30 different experiments. The TT for the matrix multiplication varies 

according to the length of the 2-D arrays which are being multiplied. The value of TT 

includes the processing time for performing matrix multiplication operation and the time 

taken in saving the resultant preferences file to the data file of the local mobile device. It is 

observed that by increasing the size of 2-D arrays, the processing time of performing matrix 

multiplication operation and the time taken in saving preferences file increases accordingly.  

For instance, multiplying 2-D arrays of 200*200 values takes on the average 6321 

ms, whereas multiplying 2-D arrays of 450*450 values takes 99286 ms on the SMD. 

Experimental results indicate that the TT in multiplying the 2-D arrays of 450*450 

increases 96.3 percent as compared to multiplying the 2-D arrays of 160*160 values. The 

average TT for the Matrix multiplication service on mobile device is determine as 31190 

ms for multiplying 2-D arrays of 160*160-450*450 size with the RSD 12 percent. 

 

Figure 6. 4: Turnaround Time of Matrix Multiplication Operation on Local SMD 

Table 5.6 summarized the TT of the power compute service component of the 

application on local mobile device. The TT of power compute service is evaluated with 30 
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different computational intensities of the power computing operation (2^1000000-

2^2000000000). The TT in computing power of 2^1000000 in the sample space of 30 

values is determined as 51(+/-)5 ms with 99% confidence interval, which shows that the 

possible range of TT is between  46 ms and 51 ms. The variation of TT is 10 ms for 

computing the power of 2^1000000 in 30 different experiments which constitutes 19.6 

percent of the average TT on SMD.  Similarly, the TT in power computing operation of 

2^10000000 computational length is determined as 373(+/-)18 ms with 99% confidence 

interval in the sample space of 30 values, which shows that the possible range of TT is 

between 391 ms and 355 ms. The value of SD for TT shows 38 ms variation for computing  

2^10000000, in 30 different experiments which constitutes 10.2 percent of the average TT 

value. 

 Figure 6.5 shows the increase in the TT of the power compute operation on local 

mobile device in 30 different experiments. The TT for the power compute varies according 

to the computational length of the Power compute service. The value of TT includes the 

processing time for performing matrix multiplication operation. It is observed that by 

increasing the computational length of compute service, the processing time of performing 

power compute operation increases accordingly. For instance, computing 2^10000000 takes 

341 ms, whereas computing 2^2000000000 takes 69044 ms on the SMD. Experimental 

results indicate that the TT in computing 2^2000000000, increases 99.9 percent as 

compared to computing 2^1000000. However, the average TT for the Power compute 

service on mobile device is determine as 10259 ms for computational length of 2^100000-

2^2000000000. It is observed that the TT of the power computing operation varies 

according to the computational length of Power compute service (values of base and 

exponent). 
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Figure 6. 5: Turnaround Time of Power Compute Service of the Application on Local 
SMD 

Table 5.7 presented the ECC in processing sorting service component of the 

application on local mobile device. The ECC of sorting service is evaluated with 30 

different computational intensities of the sorting operation (sort list size of 11000-40000). It 

is observed that the ECC of the sorting operation varies with the computational intensity of 

sorting operation. For instance, the ECC for sorting a list of 11000 values is determined as 

16.2(+/-)1.3 J with 99% confidence interval in the sample space of 30 values, which shows 

that the possible range of ECC is between  14.9 J and 17.5 J.  

The value of SD for ECC shows the variation in the values of same sample space 

for each experiment. For instance, the variation of ECC is 2.8 J for sorting a list of 11000 

values in 30 different experiments which constitutes 17.3 percent of the average ECC on 

SMD.  Similarly, the ECC for sorting a list of 25000 values in the sample space of 30 

values is determined as 30.4(+/-)1.6 J with 99% confidence interval, which shows that the 

possible range of ECC is between 28.8 J and  32 J. The value of SD for ECC shows 3.3 J 

variation for sorting a list of 25000 values in 30 different experiments which constitutes 3.3 

percent of the average ECC value.  
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 Figure 6.6 shows the increase in ECC of the sorting operation on local mobile 

device in 30 different experiments. The ECC for the sorting service varies according to the 

length of the list being sorted.  

The value of ECC includes the energy consumed in performing sorting operation on 

SMD and the energy consumed in saving the resultant preferences file to the data file of the 

local mobile device. It is observed that by increasing the length of sorting list, the energy 

consumption cost of performing sorting operation and energy consumption cost in saving 

preferences file increases accordingly. For instance, sorting the list of 15000 values 

consumes on the average 18.6 J, whereas sorting the list of 40000 values consumes 55.1 J 

on the SMD. Experimental results indicate that the ECC in sorting the list of 40000 values 

increases 70.5 percent as compared to sorting the list of 11000 values. However, the 

average ECC for the sorting service on mobile device is determine as 33.4 J for sorting list 

of 11000-40000 with the 38 percent RSD. 

 
Figure 6. 6: Energy Consumption Cost of Sorting Service on Local SMD 

Table 5.8 presented the ECC in processing matrix multiplication service component 

of the application on local mobile device. The ECC of matrix multiplication is evaluated 

with 30 different computational intensities of the matrix multiplication (2-D array size 
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160*160*450-450). It is observed that the ECC of the matrix multiplication operation 

varies with the computational intensity of 2-D arrays. For instance, the ECC for multiplying 

2-D arrays of  size 160*160 values is determined as 12.9(+/-)1.3 J with 99% confidence 

interval in the sample space of 30 values, which shows that the possible range of ECC is 

between  14.4 J and 20 J. The value of SD for ECC shows the variation in the values of 

same sample space for each experiment. For instance, the variation of ECC is 2.8 J for 

multiplying 2-D arrays of size 160*160 in 30 different experiments, which constitutes 21.7 

J percent of the average ECC on SMD.  Similarly, the ECC for 2-D arrays of size310*310 

is determined as 39.7(+/-)3.3 J with 99% confidence interval in the sample space of 30 

values, which shows that the possible range of ECC is between 36.4 J and  43 J. The value 

of SD for ECC shows 7 J variation in multiplying 2-D arrays of size 310*310 in 30 

different experiments which constitutes 17.6 percent of the average ECC value.  

 Figure 6.7 shows the increase in ECC of the matrix multiplication operation on 

local mobile device in 30 different experiments. The ECC for the matrix multiplication 

varies according to the computational length of the matrix multiplication service. The value 

of ECC includes the energy consumed in performing matrix multiplication on SMD and the 

energy consumed in saving the resultant preferences file to the data file of the local mobile 

device. It is observed that by increasing the computational length, the energy consumption 

cost of performing matrix multiplication operation and energy consumption cost in saving 

preferences file increases accordingly. For instance, matrix multiplication of 200*200 2-D 

array length consumes on the average 16.3 J, whereas matrix multiplication of 200*200 

matrices length consumes 71.5 J on the SMD. Experimental results indicate that the ECC in 

matrix multiplication of 450*450 matrices length increases 81.95 percent as compared to 

matrix multiplication of 160*160 matrices length. The average ECC for the matrix 

Univ
ers

iti 
Mala

ya



Chapter: 6  Results and Discussion 
 

183 
 

multiplication service on mobile device is determine as 44.56 J for the computational length 

160*160-450*450, with 52.6 percent RSD. 

 

Figure 6. 7: Energy Consumption Cost of Matrix Multiplication Service on SMD 

Table 5.9 presented the ECC in processing power compute service component of 

the application on local mobile device. The ECC of power computing is evaluated with 30 

different computational intensities. It is observed that the ECC of the power compute 

operation varies with the computational intensities of power compute service. For instance, 

the ECC for computing 2^1000000 is determined as 2.2(+/-)0.3 J with 99% confidence 

interval in the sample space of 30 values, which shows that the possible range of ECC is 

between 1.9 J and 2.5 J. The value of SD for ECC shows the variation in the values of same 

sample space for each experiment. For instance, the variation of ECC is 0.7 J for computing 

2^1000000 in 30 different experiments, which constitutes 31.8 J percent of the average 

ECC on SMD.  Similarly, the ECC of computing 2^10000000 is determined as 4.8(+/-)0.4 J 

with 99% confidence interval in the sample space of 30 values, which shows that the 

possible range of ECC is between 4.4 J and 5.2 J. The value of SD for ECC shows 0.8 J 
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variation in computing 2^10000000 in 30 different experiments which constitutes 16.7 

percent of the average ECC value.  

 Figure 6.8 shows the increase in ECC of the power compute operation on local 

mobile device in 30 different experiments. The ECC for the power computing varies 

according to the computational length of the power compute service. The value of ECC 

includes the energy consumed in performing matrix multiplication on SMD. It is observed 

that by increasing the computational length, the energy consumption cost of performing 

power compute operation increases accordingly. For instance, computing 2^6000000 

consumes on the average 3.9 J, whereas computing 2^2000000000 consumes 67 J energy 

on the SMD. Experimental results indicate that the ECC for computing 2^2000000000 

increases 96.7 percent as compared to computing 2^1000000. The average ECC for the 

power compute service on mobile device is determine as 14.96 J for the computational 

length 2^1000000-2^2000000000 of the power compute service on SMD.  

 

Figure 6. 8: Energy Consumption Cost of Power Compute Service on SMD 

Table 5.10 summarized the average CPU utilization on local mobile device for 

different components of the mobile application. The CPU utilization of the mobile 

application depends on the computational intensities of mobile application. It is observed 

0

20

40

60

80

2^
10

00
00

0
2^

30
00

00
0

2^
50

00
00

0
2^

70
00

00
0

2^
90

00
00

0
2^

20
00

00
00

2^
40

00
00

00
2^

60
00

00
00

2^
80

00
00

00
2^

10
00

00
00

0
2^

30
00

00
00

0
2^

50
00

00
00

0
2^

70
00

00
00

0
2^

90
00

00
00

0
2^

19
00

00
00

00

E
ne

rg
y 

C
on

su
m

pt
io

n 
C

os
t (

J)
 

Computational Length of Power Compute Service Univ
ers

iti 
Mala

ya



Chapter: 6  Results and Discussion 
 

185 
 

that the execution of the intensive components utilizes the maximum possible CPU on the 

SMD.  Figure 6.9 shows the average CPU utilization for each of the three components of 

the mobile application on SMD. The CPU utilization for sorting service is evaluated with 

30 different computational intensities. Sorting operation utilizes 48.67(+/-)0.96 percent 

(1163(+/-)22.9 MIPS) of the CPU, which shows the range of CPU utilization for the sorting 

service between 47.7 percent (1139.8 MIPS) and 49.63 percent (1185.7 MIPS) on the local 

SMD. CPU utilization for the sorting service on the SMD varies 2.62 percent (62.59 MIPS) 

of the average CPU utilization for sorting service on SMD.  

Matrix multiplication operation utilizes 45.46(+/-)4.01 percent (1086(+/-)95.8 

MIPS), which shows that the possible range of CPU utilization for matrix multiplication 

operation on SMD is between 41.45 percent (990.27MIPS) and 49.47 percent (1181.9 

MIPS). CPU utilization for the matrix multiplication service on the SMD varies 2.62 

percent (203.3 MIPS) of the average CPU utilization for matrix multiplication operation on 

the local SMD.  

Power compute service utilizes 48.04(+/-)1.38 percent (1148 (+/-) 32.9MIPS), 

which shows that the possible range of CPU utilization for power computing operation on 

SMD is between 46.7 percent (1114.7 MIPS) and 49.42 percent (1180.7 MIPS). CPU 

utilization for the power compute service on the SMD varies 4.13 percent (98.6 MIPS) of 

the average CPU utilization for power compute operation on the local SMD.  Univ
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Figure 6. 9: Average CPU Utilization on SMD by the Components of Prototype 
Application 

6.2 Analysis of Traditional Computational Offloading for MCC  

Table 5.4 summarized the TT of the sorting service component of the application in 

traditional runtime computational offloading. Traditional computational offloading involves 

migration of the binary file of the mobile application and the corresponding data files at 

runtime.  

The total TT of the component offloaded at runtime includes: 1) the time taken in 

saving the data states of the running instance of the component of the mobile application 

which is being offloaded, 2) time  taken in transferring application binary code to the 

remote server, 3) time taken in downloading the delegated application binary code to the 

remote virtual machine on the cloud server node, 4) time taken in uploading the preferences 

(data states file) of the mobile application to remote server node, 5) time required for 

resuming the running state of the mobile application on the remote server node, 6) time 

taken in processing the application on remote machine, and 7) time taken in returning result 

file to the mobile device. It is observed that the TT of the components offloaded at runtime 

depends on two parameters. 1) The processing time of the offloaded component, this 

depends on the computational length of the offloaded component. 2) The data transmission 

1000

1050

1100

1150

1200

Sort Service Matrix
Multiplication

Service

Power
Compute
Service

C
PU

 U
til

iz
at

io
n 

on
 S

M
D

 
(M

IP
S)

 

Univ
ers

iti 
Mala

ya



Chapter: 6  Results and Discussion 
 

187 
 

time between the local and remote machine, which depends on the size of data transmission 

between local mobile device and remote machine. Therefore, the TT value is the total time 

taken in offloaded processing of the component of mobile application, which is the sum of 

the application processing time on the remote virtual device and timing cost of runtime 

component offloading (equation 3.3). 

The TT in offloaded processing of the sorting service component of the mobile 

application is evaluated with 30 different computational intensities of the sorting operation 

(sort list size of 11000-40000). For instance, the TT in sorting list of 11000 values is 

determined as 24331(+/-) 1478 ms with 99% confidence interval in the sample space of 30 

values, which shows that the possible range of total TT is between 22853 ms and 25809 

ms. The value of SD for TT shows the variation in the values of same sample space for 

each experiment. For instance, the variation of total TT is 3138 ms for sorting a list of 

11000 values in 30 different experiments which constitutes 12.9 percent of the average TT 

on SMD.  Similarly, the TT for sorting a list of 25000 values is determined as 76615(+/-) 

1636 ms with 99% confidence interval in the sample space of 30 values, which shows that 

the possible range of total TT is between 74979 ms and 78251 ms. The value of SD for 

total TT shows 3473 ms variation for sorting a list of 25000 values in 30 different 

experiments which constitutes 4.5 percent of the total TT value.  

Figure 6.10 shows the increase in TT of the sorting operation which is offloaded at 

runtime in 30 different experiments. For instance, sorting the list of 15000 values takes the 

TT  37010 ms, whereas sorting the list of 40000 values takes 166457 ms.  
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Figure 6. 10: Total Turnaround Time of Sorting Service in Traditional Computational 
Offloading 

The total TT of offloading the matrix multiplication service component of the 

mobile application is evaluated with 30 different computational intensities (160*160-

450*450). For instance, the total TT in offloading matrix multiplication service with 

computational length of matrices length 160*160 is determined as 16431(+/-)385 ms with 

99% confidence interval in the sample space of 30 values, which shows that the possible 

range of TT is between 16046 ms and 16816 ms.  

The value of SD for total TT shows the variation in the values of same sample space 

for each experiment. For instance, the variation of total TT is 818 ms in offloaded 

processing of matrix multiplication with the matrices length 160*160, in 30 different 

experiments, which constitutes 5 percent of the average total TT in offloaded processing.  

Similarly, the total TT for matrix multiplication with the matrices length of 310*310 values 

is determined as 68692(+/-)4058 ms with 99% confidence interval in the sample space of 

30 values, which shows that the possible range of TT is between 64634 ms and  72750 ms. 

The value of SD for total TT shows 8615 ms variation for the multiplication of matrices 
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length 310*310 in 30 different experiments which constitutes 12.5 percent of the average 

TT value.  

Figure 6.11  shows the increase in TT of the matrix multiplication which is 

offloaded at runtime in 30 different experiments.  The total TT is 18296 ms in offloaded 

processing of matrix multiplication operation with computational length of 1740*170 

(matrices length), whereas matrix multiplication operation with the computational length of  

450*450 matrices length is 37971 ms in traditional runtime offloaded processing. It 

indicates that the turnaround time of the application is increased in offloading highly 

intensive components of the mobile application at runtime.  

 

Figure 6. 11: Total Turnaround Time of Matrix Multiplication Service in Traditional 
Offloading 

The ECC of the component offloaded at runtime includes:  the energy consumed in 

saving the data states of the running instance of the component of the mobile application 

which is being offloaded, energy consumed in transferring application binary code over the 

wireless network medium to the remote server, energy consumed in uploading the 

preferences (data state file) of the mobile application to remote server node, energy 

consumed in processing the application on remote machine and energy consumed in 
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returning result file over the wireless network medium to the mobile device. Hence, total 

ECC is the sum of energy consumed in remote application processing and energy 

consumption cost of runtime component offloading (equation 3.1). 

Table 5.13 summarized the total energy consumed in offloaded processing of the 

sorting service component of the application with 30 different computational intensities. 

The total ECC is evaluated with 30 different computational intensities of the sorting 

operation (sort list size of 11000-40000). The total ECC in sorting list of 11000 values is 

determined as 49.7749(+/-)3.5 J with 99% confidence interval in the sample space of 30 

values, which shows that the possible range of total ECC is between  46.3 J and 53.2 J. The 

value of SD for total ECC shows the variation in the values of same sample space for each 

experiment in offloaded processing. For instance, the variation of total ECC is 7.3245 J for 

sorting a list of 11000 values in 30 different experiments which constitutes 14.7 percent of 

the average ECC in offloaded processing of the sorting service component.   Similarly, the 

total ECC for sorting a list of 25000 values is determined as 95.4014(+/-)4 J with 99% 

confidence interval in the sample space of 30 values, which shows that the possible range 

of total ECC is between 91.4 J and 99.4 J. The value of SD for total ECC shows 8.514 J 

variation for sorting a list of 25000 values in 30 different experiments which constitutes 8.9 

percent of the total ECC value.  

 Figure 6.11 shows the increase in total ECC in the offloaded processing of the 

sorting service component of the application. For instance, in offloaded processing of 

sorting service with list size of 15000 values 61.9 J energy is consumed, whereas in 

offloaded processing of sorting service with list size of 40000 values 201.1 J energy is 

consumed. It shows that the total ECC is increased 75 percent for offloaded processing 

sorting service with sorting length of 40000 values as compared to sorting length of 11000 

values. 
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Figure 6. 12: Total Energy Consumption in Offloaded Processing of Sorting Service 

Table 5.14 summarized the total energy consumed in offloaded processing of the 

matrix multiplication service component of the application with 30 different computational 

intensities. The total ECC is evaluated with 30 different computational intensities of the 

matrix multiplication (matrix size of 160*160-450*450). The total ECC in matrix 

multiplication of 160*160 values is determined as 39.9898(+/-)5.54 J with 99% confidence 

interval in the sample space of 30 values, which shows that the possible range of total ECC 

is 34.5 J and 45.5 J. The value of SD for total ECC shows the variation in the values of 

same sample space for each experiment in offloaded processing. For instance, the variation 

of total ECC is 11.8 J for multiplying 2matrices of length 160*160 in 30 different 

experiments which constitutes 29.4 percent of the average ECC in offloaded processing of 

the matrix multiplication service component.  

 Similarly, the total ECC in matrix multiplication of 450*450 values is determined 

as 131.6952(+/-)7.8 J with 99% confidence interval in the sample space of 30 values, which 

shows that the possible range of total ECC is  123.8 J and 139.5 J, the variation of total 

ECC is 16.6 J for multiplying matrixes of length 450*450 in 30 different experiments 
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which constitutes 12.6 percent of the average ECC in offloaded processing of the matrix 

multiplication service component.  

Figure 6.12  shows the total ECC in the offloaded processing of the matrix 

multiplication service component of the application. It indicates that total ECC in offloaded 

processing of the service increases according to the computational length of the matrix 

service component. For instance, 46.5 J energy is consumed in the offloaded processing of 

matrix multiplication service with the matrices length 210*210, whereas 119 J energy is 

consumed in offloaded processing of matrix multiplication service with the matrices length 

420*420. It shows that the total ECC is increased 69.6 percent for offloaded processing 

matrix multiplication service with multiplication length of 450*450 values as compared to 

multiplication length of 160*160 values. 

 

Figure 6. 13: Energy Consumption Cost of Matrix Multiplication Service in Offloaded 
Processing  

In the traditional computational offloading techniques, the binary file of application 

and the data states are transmitted over the wireless network medium. Hence, the size of 

data transmission over the wireless network medium is determined by measuring the size of 

application binary file size, application preferences files size uploaded to the remote virtual 
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machine and the application preferences file size returned to the mobile device after the 

completion of execution on the remote server node.   

Figure 6.14 shows the increase in data transmission over the wireless network 

medium in offloading sort service with respect to the varying size of sorting list in 30 

different experiments. It is observed that the size of application binary file remains constant 

in all instances of offloading sorting service application at runtime. However, the size of 

data file varies accordingly the size of list being sorted. For instance, linear list of 11000 

values is offloaded in data file of 354 KB, whereas the list of size 40000 values is offloaded 

in data file size of 1300.48 KB (as shown in Table 5.15).   Hence, the data file size is 

increased in offloading sort service component of the application with larger list size. It is 

observed that the average goodput of network is 841.7(+/-) 18.49 Kbps with 99.9% 

confidence in the sample space of 30 values for offloading sorting service at runtime.   

 

Figure 6. 14: Size of Data Transmission in Offloading Sorting Service at Runtime  

Figure 6.14 shows the increase in data transmission over the wireless network 

medium in offloading matrix multiplication service with respect to the varying size of 

matrix multiplication matrices in 30 different experiments. It is observed that the size of 

application binary file remains constant in all instances of offloading matrix multiplication 
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service at runtime. However, the size of data file varies according to the length of matrices 

being multiplied. For instance, matrices length 160*160 are offloaded in data file of 

2846.72 KB, whereas the matrices length 450*450 are offloaded in data file size of 23347.2 

KB.   Hence, the data file size is increased in offloading matrix multiplication service 

component of the application with larger matrix size (as shown in Table 5.16). It is 

observed that the average goodput of network is 10295.9(+/-) 557.2 Kbps with 99.9% 

confidence in the sample space of 30 values for offloading matrix multiplication service at 

runtime.   

 

Figure 6. 15:  Size of Data Transmission in Offloading Matrix Multiplication Service at 
Runtime 

6.3 Analysis of DEAP Based Computational Offloading for MCC 

This section discusses results of the application execution in the Primary Operating 

Procedure (POP) and Secondary Operating Procedure (SOP) procedures of DEAP 

framework. Table 5.17 summarized the TT of performing sorting operation in the POP of 

DEAP Client application. The TT of the sorting operation includes the execution time of 

performing the sorting operation on the DEAP server application and the time taken in 

saving the resultant preferences (data file) on the local mobile device.  
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The TT of sorting service is evaluated with 30 different computational intensities of 

the sorting operation (sort list size of 11000-40000). It is observed that the TT of the sorting 

operation varies with the computational intensity of sorting operation. For instance, the TT 

in sorting a list of 11000 values is determined as 2559(+/-)210 ms with 99% confidence 

interval in the sample space of 30 values, which shows that the possible range of TT is 

between  2349 ms and 2769 ms. The value of SD for TT shows the variation in the values 

of same sample space for each experiment. For instance, the variation of TT is 446 ms for 

sorting a list of 11000 values in 30 different experiments which constitutes 17.4 percent of 

the average TT.  Similarly, the TT for sorting list of 25000 values in the sample space of 30 

values is determined as 6770(+/-)157 ms with 99% confidence interval, which shows that 

the possible range of TT is between 6613 ms and 6927 ms. The value of SD for TT shows 

334 ms variation for sorting a list of 25000 values in 30 different experiments which 

constitutes 4.9 percent of the average TT value.  

 Figure 6.16 shows the increase in TT of the sorting operation in the POP of DEAP 

client application in 30 different experiments. The TT for the sorting service varies 

according to the length of the list being sorted. The value of TT includes the processing 

time for performing sorting operation and the time taken in saving the resultant preferences 

file on the local mobile device. It is observed that by increasing the length of sorting list, 

the processing time of performing sorting operation on DEAP server and the time taken in 

saving preferences file increases accordingly. For instance, sorting the list of 15000 values 

takes on the average 3494 ms, whereas sorting the list of 40000 values takes 13416 ms in 

the POP of DEAP client application. Experimental results indicate that the TT in sorting the 

list of 40000 values increases 80.92 percent as compared to sorting the list of 11000 values 

in the POP of DEAP client application. However, the average TT for the sorting service in 
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the POP of DEAP client is determined as 7224 ms for sorting list of 11000-40000 with the 

45.8 percent RSD. 

 

Figure 6. 16: Total Turnaround Time of Sorting Service in the POP of DEAP Client 
Application 

 

Table 5.18 summarized the total TT of performing matrix multiplication operation 

in the POP of DEAP client application. The TT of the matrix multiplication includes the 

turnaround time of performing the sorting operation on the DEAP server application and 

the time taken in saving the resultant preferences (data file) on the local mobile device.  

The TT of matrix multiplication service is evaluated with 30 different computational 

intensities of the multiplication operation (matrices length 160*160-450*450).  

It is found that the TT of the matrix multiplication service varies with the 

computational intensity of multiplying matrices length. For instance, the TT in multiplying 

matrices of length 160*160 is determined as 4241(+/-)98 ms with 99% confidence interval 

in the sample space of 30 values, which shows that the possible range of TT is between  

4143 ms and 4339 ms. The value of SD for TT shows the variation in the values of same 

sample space for each experiment. For instance, the variation of TT is 207 ms for 

multiplying matrix of size 160*160 in 30 different experiments which constitutes 4.9 

percent of the average TT.  Similarly, the TT in multiplying matrices of length 450*450 is 
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determined as 97887 ms with 99% confidence interval in the sample space of 30 values, 

which shows that the possible range of TT is between 92705 ms and 103069 ms. The 

variation of TT in the sample space of 30 values is 11002 ms for multiplying matrices of 

length 450*450 which constitutes 11.2 percent of the average TT.   

 Figure 6.17 shows the increase in TT of the matrix multiplication operation in the 

POP of DEAP Client application in 30 different experiments. The TT for the matrix 

multiplication service varies according to the computational length of matrix multiplication 

operation. The value of TT includes the processing time for performing matrix 

multiplication operation and the time taken in saving the resultant preferences file on the 

local mobile device.  

 

Figure 6. 17: Turnaround Time of Matrix Multiplication Service in POP of DEAP Client 
Application 

It is observed that by increasing the length of the matrix, the processing time of performing 

multiplication operation on DEAP Server and the time taken in saving preferences file 

increases accordingly. For instance, the total TT for multiplying matrices of size 200*200  

8560 ms, whereas the total TT for multiplying matrices of size 450*450 is 97887 ms in the 

POP of DEAP Client application. Experimental results indicate that the TT in multiplying 

matrices of length 450*450 increases 95.6 percent as compared to multiplying matrices of 
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length 160*160 in the POP of DEAP client application. However, the average TT for the 

matrix multiplication operation in the POP of DEAP client is determined as 31445 ms for 

matrices of length 160*160-450*450 with the 80.8 percent RSD. 

The total energy consumption cost (ECC) of the sorting operation in the POP of 

DEAP client application includes the energy consumed in accessing the sorting operation 

service of the DEAP server application, energy consumed in receiving the resultant sorted 

list from the remote server  and energy consumed in saving the resultant preferences (data 

file) on the local mobile device.  

Table 5.19 presented the total ECC of accessing sorting operation in POP of the 

DEAP client application. The ECC of sorting service is evaluated with 30 different 

computational intensities of the sorting operation (sort list size of 11000-40000). It is 

observed that the ECC of accessing the sorting service varies with the computational 

intensity of sorting list. For instance, the ECC in sorting a list of 11000 values is 

determined as 7.4(+/-).6 J with 99% confidence interval in the sample space of 30 values, 

which shows that the possible range of ECC is between  6.8 J and 8 J. The value of SD for 

ECC shows the variation in the values of same sample space for each experiment. For 

instance, the variation of ECC in 30 different experiments is 1.3 J for sorting a list of 11000 

values which constitutes 17.6 percent of the average ECC.  Similarly, the ECC in sorting a 

list of 40000 values is determined as 23(+/-)2.6 J with 99% confidence interval in the 

sample space of 30 values, which shows that the possible range of ECC is between  20.4 J 

and 25.6 J. The variation of ECC in 30 different experiments is 5.6 J for sorting the list of 

40000 values which constitutes 24.3 percent of the average ECC.   

 Figure 6.18 shows the increase in ECC of the sorting operation with respect to the 

length of sorting list in the POP of DEAP client application in 30 different experiments. 

The ECC for the sorting service varies according to the length of the list being sorted.  It is 
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observed that by increasing the length of sorting list, the energy consumed in accessing 

sorting operation on DEAP server, energy consumed in returning resultant list and the 

energy consumed in saving preferences file locally on SMD increases accordingly. For 

instance in the POP of DEAP client application, ECC in accessing the sorting service for 

sorting the list of 15000 values 9.3 J, whereas for accessing the sorting service in sorting 

the list of 40000 23 J energy is consumed. Experimental results indicate that the ECC in 

sorting the list of 40000 values increases 67.8 percent as compared to sorting the list of 

11000 values in the POP of DEAP client application. However, the average ECC for the 

sorting service in the POP of DEAP client is determined as 13.9 J for sorting list of 11000-

40000 with the 27.9 percent RSD. 

 

Figure 6. 18: Total Energy Consumption Cost of Sorting Service in POP of DEAP Client 
Application 

The ECC of the matrix multiplication operation in the POP of DEAP client 

application includes the energy consumed in accessing the matrix multiplication service of 

the DEAP server application, energy consumed in receiving the resultant data from the 

remote server  and energy consumed in saving the resultant preferences (data file) on the 

local mobile device. Table 5.20 presented the total ECC of accessing matrix multiplication 

service in POP of the DEAP Client application. The ECC of matrix multiplication service is 
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evaluated with 30 different computational intensities of the matrix multiplication operation 

(matrices of size 160*160-450*450).  

It is examined that the ECC of accessing the matrix multiplication service varies 

with the computational intensity of matrices. For instance, the ECC in multiplying matrices 

of length 160*160 is determined as 10.8(+/-)1.8 J with 99% confidence interval in the 

sample space of 30 values, which shows that the possible range of ECC is between  9 J and 

12.6 J. The value of SD for ECC shows the variation in the values of same sample space for 

each experiment. For instance, the variation of ECC in 30 different experiments is 3.8 J for 

accessing matrix multiplication service with the matrices of length 160*160, which 

constitutes 35.2 percent of the average ECC.  Similarly, the ECC in multiplication matrices 

of length 450*450 is determined as 65.3(+/-)5.1 J with 99% confidence interval in the 

sample space of 30 values, which shows that the possible range of ECC is between  60.2 J 

and 70.4 J. The variation of ECC in 30 different experiments is 10.8 J for accessing matrix 

multiplication service with the matrices of length 450*450, which constitutes 16.5 percent 

of the average ECC.   

 Figure 6.19 shows the increase in ECC in 30 different experiments of the matrix 

multiplication operation with respect to the size of matrices being multiplied in the POP of 

DEAP client application. It is observed that by increasing the size of matrices, the energy 

consumption cost increases accordingly in accessing matrix multiplication operation, 

returning resultant matrix and saving preferences file locally on SMD. For instance, in the 

POP of DEAP client application, the total ECC in accessing the matrix multiplication 

service for multiplying matrices of length 310*310 is 25.6 J, whereas for accessing matrix 

multiplication service for multiplying matrices of length 450*450, 65.3 J energy is 

consumed. Experimental results indicate that in the POP of DEAP client application, the 

ECC in multiplying matrices of length 450*450 increases 83.4 percent as compared to 
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multiplying matrices of length 160*160. However, the average ECC for the matrix 

multiplication service in the POP of DEAP client is determined as 30.3 J for multiplying 

matrices of size 160*160-450*450 with the 56.7 percent RSD. 

 

Figure 6. 19:  Energy Consumption Cost of Matrix Multiplication Service in POP of 
DEAP Client Application 

Power compute service of the application is offloaded at runtime in the SOP of 

DEAP client application. The TT of power compute service in the SOP includes time taken 

in transferring the binary file of the application, time taken in downloading the delegated 

application on the virtual device instance on the remote server node, time taken in the 

reconfiguration of delegated application service, and time taken in executing the service 

application and returning results to the local mobile device.  

Table 5.21 summarized the time taken in runtime component offloading for 30 

different experiments. Figure 6.20 shows time taken in different stages of offloading power 

compute service in the SOP of DEAP client application. The offloading time of power 

compute service is determined as 52(+/-)4 ms with 99% confidence interval in the sample 

space of 30 values, which shows that the possible range of offloading time for the power 

compute service is between 48 ms and 52 ms. The value of SD for offloading time of the 
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service varies 9 ms in the sample space of 30 experiments, which constitutes 17.3 percent 

of the service offloading time in the SOP of DEAP client application.  

The service download time to remote virtual device instance and reconfiguration 

time of the power compute service on remote machine is evaluated in 30 different 

experiments. It is examined that the download time to remote virtual device of the power 

compute service is 212(+/-)18 ms, which shows that the possible range of download time to 

remote virtual device on the server node is between 194 ms and 230 ms. The value of SD 

for service download time varies 9 ms in the sample space of 30 experiments, which 

constitutes 18.4 percent of the service download time to remote virtual device in the SOP of 

DEAP Client application.  

 

Figure 6. 20: Time Taken in Offloading Power Compute in the SOP of DEAP Client 
Application 

Similarly, the reconfiguration time of the power compute service on the remote 

server node is determined 6349(+/-)312 ms, which shows that the possible range of 

download time to remote virtual device on the server node is between 6037 ms and 6661 

ms. The variation in the reconfiguration time value of power compute service is 663 ms in 
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the sample space of 30 experiments, which constitutes 10.4 percent of the reconfiguration 

time on remote virtual device in the SOP of DEAP client application.  

Table 5.22 summarized the TT of the execution of power compute service component of 

the application in the SOP of DEAP client application. The TT of the power compute 

application includes the total time taken in runtime component offloading and execution 

time of the application on the remote server node.  

The total TT in offloaded processing of the power compute service component of 

the mobile application is evaluated with 30 different computational intensities of the power 

computing (2^1000000-2^2000000000). For instance, the TT in computing 2^1000000 is 

determined as 7175(+/-)340 ms with 99% confidence interval in the sample space of 30 

values, which shows that the possible range of TT is between  6835 ms and 7515 ms. The 

value of SD for TT shows the variation in the values of same sample space in 30 different 

experiments. For instance, the variation of TT is 721 ms for computing 2^1000000, which 

constitutes 10.1 percent of the average TT of compute service in the SOP of DEAP client 

application.  Similarly, the TT in computing 2^2000000000 is determined as 265724(+/-) 

2485 ms with 99% confidence interval in the sample space of 30 values, which shows that 

the possible range of TT is between 263239 ms and 268209 ms. The SD in TT is 5275 ms 

for computing 2^2000000000, which constitutes 2 percent of the average TT of compute 

service in SOP of DEAP client application. 

Figure 6.21 shows the increase in TT of the power compute service with respect to 

the computational length of the computing operation in 30 different experiments. It is 

examined that by varying the computational length of the power compute service, the 

average total time taken in runtime offloading remains constant. However, the execution 

time of the power computing on remote machine increases by increasing the computational 

intensity of the power compute service. For instance, the average time taken in runtime 
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offloading and reconfiguration is 6613 ms for all the instances of offloading power 

compute service in the SOP of DEAP Client application. Whereas, the TT of computing 

2^2000000 is determined as 7587 and the TT of computing 2^2000000000 is determined as 

265724 ms. Results indicate that TT increases 97.2 percent in computing 2^2000000000 as 

compared to computing 2^1000000.  

 

Figure 6. 21: Turnaround Time of Power Compute Service in the SOP of DEAP Client 
Application 

Table 5.23 summarized the total energy consumed in offloading power compute 

service in the SOP of DEAP client application. The total ECC is evaluated with 30 different 

computational intensities of the power compute operation (2^1000000-2^2000000000). The 

total ECC of the power compute application includes the energy consumed in runtime 

component offloading and energy consumed in remote application processing. The ECC for 

computing 2^1000000 on remote server node is determined as  5.4(+/-).7 J with 99% 

confidence interval in the sample space of 30 values, which shows that the possible range 

of total ECC is between 4.7 J and 6.1 J. The value of SD for total ECC shows the variation 

in the values of same sample space for each experiment in offloaded processing. For 

instance, the variation of total ECC is 1.4 J for remote processing of computing 2^1000000 

0
50000

100000
150000
200000
250000
300000

2^
10

00
00

0

2^
30

00
00

0

2^
50

00
00

0

2^
70

00
00

0

2^
90

00
00

0

2^
20

00
00

00

2^
40

00
00

00

2^
60

00
00

00

2^
80

00
00

00

2^
10

00
00

00
0

2^
30

00
00

00
0

2^
50

00
00

00
0

2^
70

00
00

00
0

2^
90

00
00

00
0

2^
19

00
00

00
00T
ur

na
ro

un
d 

T
im

e 
(m

s)
 

Compute Length  

Univ
ers

iti 
Mala

ya



Chapter: 6  Results and Discussion 
 

205 
 

which constitutes 25.9 percent of the average ECC in offloaded processing of the power 

compute service in the SOP of DEAP client application.   

The ECC for computing 2^2000000000 on remote server node is determined as  

351(+/-)4.5 J with 99% confidence interval in the sample space of 30 values, which shows 

that the possible range of total ECC is between 343.6 J and 58.4  J. The variation of total 

ECC is 15.7 J for remote processing of computing 2^2000000000, which constitutes 4.5 

percent of the average ECC in offloaded processing of the power compute service in the 

SOP of DEAP client application. Figure 6.22 shows the total ECC of power compute 

service in the SOP of DEAP client application.  

 

Figure 6. 22: Energy Consumption Cost of Power Compute Service in SOP of DEAP 
Client Application 

It is observed that the value of energy consumption in component offloading 

increases steadily (the average value is 4.7 J); however the value of ECC in performing 

compute operation increases quickly by increasing the computational length. For instance, 

10 J energy is consumed in computing 2^9000000, whereas 351 J energy is consumed in 

computing 2^2000000000 in SOP of the DEAP Client application. It shows that the total 
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ECC is increased 98.5 percent for computing 2^2000000000 as compared to 2^1000000 in 

offloaded processing of Power compute service in the SOP of DEAP client application.  

Table 5.24 summarized the increase in RAM allocation on local mobile device for 

accessing the sorting service in the POP of DEAP Client application. The increase in the 

allocated RAM for sorting a list of 11000 values is determined as 1.165(+/-)0.028 MB with 

99% confidence interval in the sample space of 30 values, which shows that the possible 

range of increase in RAM allocation is between  1.137 MB and 1.193MB. The increase in 

allocation of RAM for DEAP client application varies 0.06 MB for accessing sorting 

service with the sorting the list 11000 values in 30 different experiments. It shows that the 

increase in allocation of RAM on local mobile device varies 5.2 percent in accessing 

sorting service of DEAP Server application.    

The increase in allocated RAM for sorting a list of 25000 values in the sample space 

of 30 values is determined as 2.382(+/-)0.02 MB with 99% confidence interval, which 

shows that the possible range of increase in RAM allocation is between 2.362 MB and 

2.402 MB. Figure 6.23 shows the increase in allocation of RAM to DEAP client application 

in accessing sorting service of DEAP server application. The change in the allocation of 

RAM on mobile device for DEAP client application is evaluated in 30 different 

experiments. The allocation of RAM to DEAP client application in accessing the sorting 

service on DEAP server application varies according to the length of the resultant sorted list 

returned to local mobile device.  

It is examined that in returning the sorted list of 15000 values the average RAM 

allocation increases 1.6 MB, whereas in returning the list of 40000 values the average RAM 

allocation increases 5.3 MB for DEAP client application on local mobile device. Analysis 

of the results shows that in the process of saving the resultant preferences file on local 
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device, the heap size and allocated RAM allocation for DEAP client application increases 

as per the length of resultant values returned from DEAP Server application.  

 

Figure 6. 23: Increase in the RAM Allocation to DEAP Client Application for Accessing 
Sorting Service in POP 

Table 5.25 summarized the increase in RAM allocation on local mobile device for 

accessing the matrix multiplication service in the POP of DEAP client application. The 

increase in allocated RAM for DEAP client application on local mobile device in accessing 

matrix multiplications service for multiplying matrices of size 160*160 is determined as 

1.695(+/-).08 MB with 99% confidence interval in the sample space of 30 values, which 

shows that the possible range of increase in RAM allocation is between 1.615 MB and 

1.775 MB. The increase in allocation of RAM for DEAP client application varies 0.16 MB 

for accessing matrix multiplication service with the matrices size 160*160, which shows 

that the increase in allocation of RAM on local mobile device varies 9.4 percent in 

accessing matrix multiplication service of DEAP server application. 

The increase in allocated RAM for DEAP client application on local mobile device 

in accessing matrix multiplications service for multiplying matrices of length 450*450 is 

determined as 13.056(+/-)0.31 MB with 99% confidence interval in the sample space of 30 
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values, which shows that the possible range of increase in RAM allocation is between 

12.746 MB and 13.366 MB. The increase in allocation of RAM for DEAP client 

application varies 0.653 MB for accessing matrix multiplication service with the matrices 

of length 450*450, which shows that the increase in allocation of RAM on local mobile 

device varies 5 percent in accessing matrix multiplication service of DEAP server 

application.   

Figure 6.24 shows the increase in allocation of RAM to DEAP client application in 

accessing matrix multiplication of DEAP server application. The change in the allocation of 

RAM on mobile device for DEAP client application is evaluated in 30 different 

experiments. The allocation of RAM to DEAP client application in accessing the sorting 

service on DEAP Server application varies according to the length of the resultant matrix 

length returned to local mobile device . 

 

Figure 6. 24: Increase in the RAM Allocation to DEAP Client Application for Accessing 
Matrix Multiplication Service in POP  

 It is examined that in returning matrices of length 200*200 values the average 

RAM allocation increases 2.438 MB, whereas in returning matrices of length 450*450 

values the average RAM allocation increases 5.3 MB for DEAP client application on local 

mobile device. Analysis of the results shows that in the process of saving the resultant 
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preferences file on local device, the heap size and allocated RAM allocation for DEAP 

client application increases as per the length of resultant values returned from DEAP server 

application.  

Table 5.26 summarized the average CPU utilization on mobile device for DEAP 

client application in offloaded processing of different components of the mobile 

application. DEAP employs POP and SOP for computational offloading to cloud server 

node; hence, the CPU utilization of DEAP client application on local mobile device 

depends majorly on the size of resultant data returned from the remote server node.  

Analysis of the results for CPU utilization in the POP and SOP of DEAP framework 

indicates that minimal percentage (2-3%) of the CPU is utilized in offloaded processing of 

the components of the mobile application. However, the CPU utilization increases with 

increase in data size received as a result of remote processing. For instance, the CPU 

utilization for accessing all the three service components with varying computational 

intensities (sorting service (11000-40000), matrix multiplication service (160*160-

450*450), and power compute service (2^1000000-2^2000000000)) remains constant. 

However, the utilization of CPU on the local device increases while processing the resultant 

data received from the remote server node.   

Figure 6.25 shows the average CPU utilization in the POP and SOP of DEAP client 

application. The CPU utilization for accessing the sorting service is evaluated with 30 

different computational intensities (list size 11000-40000). DEAP client utilizes 25.5 

percent (609(+/-)134 MIPS) of the CPU, which shows the range of CPU utilization for 

accessing sorting service in the POP of DEAP client application between 19.9 percent 

(474.4 MIPS) and 31.1 percent (744 MIPS) on the local SMD. Relative standard deviation 

in CPU utilization for accessing the sorting service in the POP DEAP Client application is 

54.91 percent of the average CPU utilization on SMD.  
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The CPU utilization for accessing the matrix multiplication service is evaluated 

with 30 different computational intensities (matrices size 160*160-450*450). It is 

examined that DEAP client utilizes 35.4 percent (845.7(+/-)200MIPS) of the CPU, which 

shows the range of CPU utilization for accessing matrix multiplication service in the POP 

of DEAP client application is between 27 percent (645.4 MIPS) and 43.7 percent (1046 

MIPS) on the local SMD. Relative standard deviation in CPU utilization for accessing the 

sorting service in the POP of DEAP client application is 50.3 percent of the average CPU 

utilization on SMD.   

 

Figure 6. 25: CPU Utilization for DEAP Client Application on Local Mobile Device in 
POP and SOP 

The power compute component of the application is offloaded at runtime in SOP of 

DEAP client application. Hence, the average CPU utilization by DEAP client application in 

offloading power compute service is determined as 3(+/-)0.38 percent (71.6(+/-)9 MIPS), 

which shows that the range of CPU utilization for computing Power compute operation in 

the SOP of DEAP Client application is 2.62 percent (62.5 MIPS) and 3.38 percent (80.75 

MIPS) on the local mobile device. Relative standard deviation in CPU utilization for 
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performing power compute operation in the SOP of DEAP Client application is 26.7 

percent of the average CPU utilization on SMD.  

Figure 6.26 shows the increase in data transmission over the wireless network 

medium in accessing sort service on the DEAP Server application with respect to the 

varying size of sorting list. Analysis of the results for the data transmission over the 

wireless network medium for sorting service indicates that in the POP of DEAP 

framework, the data transmission over the wireless network medium involves the resultant 

values of the sorted list. Hence, the large list of values in the sorting operation results in 

returning a larger size of data. However, the data transmission cost of application binary 

offloading is eliminated in the POP of DEAP Client application.  

It is observed that sorting the list of 11000 values on DEAP server returns 123 KB 

data to DEAP client application, whereas sorting the list of 40000 values on DEAP server 

returns 692 KB of data to DEAP client application.   

 

 

Figure 6. 26: Size of Data Transmission in Accessing Sorting Service of DEAP Server 
Application  
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Figure 6.27 shows the increase in data transmission over the wireless network 

medium in accessing matrix multiplication service on the DEAP server application with 

respect to the varying size of matrices.  

Analysis of the results for the size of data transmission over the wireless network 

medium for matrix multiplication service indicates that in the POP of DEAP framework, 

the data transmission over the wireless network medium involves the resultant values of the 

matrix multiplication operation. Hence, larger size of matrices in matrix multiplication 

results in returning a larger size of data. For instance, multiplying matrices of size 160*160 

returns 463 KB of data to the DEAP client application, whereas multiplying matrices of 

size 450*450 returns 3308 KB of data to the DEAP client application. 

  
Figure 6. 27: Size of Data Transmission in Accessing Matrix Multiplication Service of 

DEAP Server Application 

The power compute service component is offloaded at runtime by using the SOP of DEAP 

client application. Therefore, the binary file of the service component is transmitted over 

the wireless network medium at runtime. The total data transmission size of the power 

compute service offloading is 42.7 KB with the network goodput ratio 65.96 Kbps. 
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6.4 Comparison of Experimental Results 

This section analyzes the comparison of experimental results in different scenarios. 

The usefulness of the proposed solution is verified by comparing experimental results from 

the following perspectives. 1) Application execution on local mobile device and traditional 

application offloading. 2) Application execution by including runtime application profiling 

and excluding runtime application profiling technique. 3) Application execution on local 

mobile device and the operating procedures of DEAP proposed framework. 4) Traditional 

computational offloading and DEAP based computational offloading.  

Initially, the prototype application is tested on the Android Virtual Device (AVD) in 

the emulation environment to test the viability of the proposed framework. Components of 

the mobile application are executed on the local AVD and remote DEAP server by 

employing the emulator. The POP of DEAP client application is implemented over the 

AVD in the emulation environment. Table 5.28 summarized the statistics of turnaround 

time and energy consumption cost of executing sorting service on local AVD and DEAP 

server application by using emulator.  

Figure 6.28 shows the comparison of TT for sorting service execution on the local 

Android Virtual Device (AVD) and in the POP of DEAP client application by using 

emulator. It is examined that the TT of the sorting services reduces significantly in the POP 

of DEAP client application. Experimental results indicate that the TT of sorting operation 

in the POP of DEAP reduces 75.8 percent for sort the list of 11000 values, 79.4 percent for 

sorting list 15000, 84.4 percent for sorting list 25000, 88.9 percent for sorting list of 340000 

values and 89.4 percent for sorting list 40000.  
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Figure 6. 28: Comparison of Turnaround Time of Sorting Operation on Local AVD and 
POP of DEAP 

Figure 6.29 shows the comparison of the ECC of sorting service execution on the 

local Android Virtual Device (AVD) and in the POP of DEAP client application by using 

emulator (as shown in table 5.28). The ECC of the sorting service reduces significantly in 

the POP of DEAP client application. Experimental results indicate that the ECC of sorting 

operation in the POP of DEAP reduces 33.8 percent for sort the list of 11000 values, 46 

percent for sorting list 15000, 68.8 percent for sorting list 25000, 79.8 percent for sorting 

list of 340000 values and 79.2 percent for sorting list 40000.  

 

Figure 6. 29: Comparison of Energy Consumption Cost of Sorting Operation on Local 
AVD and POP of DEAP 
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The reduction in the TT and ECC of the sorting service is for the reason of 

executing the intensive sorting operation on the remote server node which has higher 

computing potentials as compared to the local virtual device. Analysis of the empirical 

results for the sample space of 30 computational intensities with 1800 experiments 

conducted (both on local AVD and DEAP Server) for sorting operation indicates that in the 

POP of DEAP client application, battery consumption is reduced 66.2(+/-)6.5 percent with 

99% confidence for the sample space of 30 values and utilization of the computing 

resources (CPU, RAM) of the local device is reduced for minimum period of time 85(+/-

)1.8 percent with 99% confidence for the sample space of 30 values.  

Table 5.29 summarized the comparison of execution time and energy consumption 

in the execution of matrix multiplication operation on local virtual device instance and 

DEAP based service execution by using AVD emulator. Figure 6.30 shows the comparison 

the TT of matrix multiplication service execution on the local AVD and remote DEAP 

server application by using emulator. Experimental results indicate that the TT of matrix 

multiplication is greater (1.3 percent) in the POP of DEAP Client application as compared 

to the execution of the matrix service on local AVD. It indicates the unfeasibility of 

accessing the services of DEAP server for low intensive tasks of mobile application. 

However, the turnaround time of the matrix multiplication service with high computational 

length reduces significantly in the POP of DEAP client application.  

It is observed that reduction in the turnaround time of the matrix multiplication 

services increases gradually with the increase in computational intensity of the matrix 

multiplication operation. Experimental results indicate that the turnaround time of matrix 

multiplication operation in the POP of DEAP reduces 10.9 percent for multiplying matrices 

of 170*170 size, 31.4 percent for multiplying matrices of 250*250 size, 62.6 percent for 

multiplying matrices of 350*350 size and 76.9 percent for multiplying matrices of 450*450 
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size which shows increase in reduction of turnaround time of the matrix multiplication 

service with the increase of matrices size. The reduction in the turnaround time of the 

matrix multiplication service is for the reason of executing the intensive multiplication 

operation on the remote server node which has higher computing potentials as compared to 

the local virtual device.  

 

Figure 6. 30: Comparison of Turnaround Time of Matrix Multiplication Operation on 
Local AVD and POP of DEAP  

Figure 6.31 shows the comparison the ECC of matrix multiplication service 

execution on the local AVD and remote DEAP server application by using emulator. 

Experimental results indicate that for smaller computational intensity of matrix 

multiplication operation, the ECC of matrix multiplication is greater in the POP of DEAP 

client application as compared to the execution of the matrix service on local AVD. For 

instance in the POP of DEAP, ECC is greater 5.4 percent for matrices of length 160*160, 

12.5 percent for matrices of length 170*170, 10.9 percent for matrices of length 180*180, 

10 percent for matrices of length 190*190, 5.1 percent for matrices of length 200*200, and 

2.7 percent for matrices of length 210*210. It indicates the unfeasibility of accessing the 

services of DEAP server for low intensive tasks of mobile application.  
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However, the ECC of the matrix multiplication service with high computational 

intensity reduces significantly in the POP of DEAP client application. It is observed that 

reduction in the ECC of the matrix multiplication services increases gradually with the 

increase in computational intensity of the matrix multiplication operation. Experimental 

results indicate that the ECC of matrix multiplication operation in the POP of DEAP 

reduces 10.3 percent for multiplying matrices of 220*220 size, 28.5 percent for multiplying 

matrices of 270*270 size, 53.1 percent for multiplying matrices of 350*350 size and 60.8 

percent for multiplying matrices of 400*400 size which shows increase in reduction of 

ECC of the matrix multiplication service with the increase of matrices size.  

 

Figure 6. 31: Comparison of Energy Consumption Cost of Matrix Multiplication Service 
on Local AVD and POP of DEAP 

The reduction in the ECC of the matrix multiplication service is for the reason of 

executing the intensive multiplication operation on the remote server node which has higher 

computing potentials as compared to the local virtual device. Analysis of the empirical 

results for the sample space of 30 computational intensities with 1800 experiments 

conducted (both on local AVD and DEAP server) for matrix multiplication indicates that in 

the POP of DEAP client application; battery consumption is reduced (interval estimate 

0
10
20
30
40
50
60
70
80
90

E
ne

rg
y 

C
on

su
m

pt
io

n 
C

os
t (

J)
 

Length of Matrices  

ECC of Matrix Multiplication Operation on
Local AVD
ECC of Matrix Multiplication Operation in
POP of DEAP using AVD

Univ
ers

iti 
Mala

ya



Chapter: 6  Results and Discussion 
 

218 
 

32.2(+/-)11.8 percent with 99% confidence for the sample space of 30 values) and 

utilization of computing resources (RAM and CPU) of the local device is reduced for 

minimum period of time (interval estimate 43.79(+/-)11.2 percent with 99% confidence for 

the sample space of 30 values ).  

Table 5.30 summarized the comparison of TT and energy consumption in the execution of 

power compute service on local AVD and remote DEAP server application by using 

Android emulator. Figure 6.32 shows the comparison of the TT of power compute service 

execution on the local AVD and in the POP of DEAP client application by using emulator. 

The TT of the power compute service reduces significantly in the POP of DEAP client 

application.  

It is observed that reduction in the TT of the power compute multiplication services 

increases gradually with the increase in computational intensity of the power compute 

operation. The TT of power compute operation in the POP of DEAP reduces 69.2 percent 

for computing 2^1000000, 85.4 percent for computing 2^7000000, 93.8 percent for 

computing 2^40000000 and 96.3 percent for computing 2^2000000000, which shows 

increase in reduction of turnaround time of the power computing operation with the 

increase in computational length. The overall reduction in the TT of power computing in 

DEAP client application is 91 percent, with the 7 percent RSD. The reduction in TT of the 

power compute service is for the reason of leveraging the processing services of high 

computing potential remote server node.    Univ
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Figure 6. 32: Comparison of Turnaround Time of Power Compute Operation on Local 
AVD and POP of DEAP 

 

Figure 6.32 shows the comparison the ECC of power compute service execution on 

the local AVD and in the POP of DEAP Client application by using emulator. The ECC of 

the power compute service reduces significantly in the POP of DEAP client application. It 

is observed that reduction in the ECC of the power compute multiplication services 

increases gradually with the increase in computational intensity of the power compute 

operation. Experimental results indicate that the ECC of power compute operation in the 

POP of DEAP reduces 6.5 percent for computing 2^1000000, 28.1 percent for computing 

2^7000000, 60.9 percent for computing 2^40000000 and 95.7 percent for computing 

2^2000000000, which shows increase in reduction of ECC of the power computing 

operation with the increase in computational length. The overall reduction in the ECC of 

power computing in DEAP client application is 52.24 percent, with the 62.9 percent RSD.  
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Figure 6. 33: Comparison of Energy Consumption Cost of Power Compute Operation on 
Local AVD and POP of DEAP  

The empirical results for the sample space of 30 computational intensities with 1800 

experiments conducted (both on local AVD and DEAP Server) for power compute 

indicates that in the POP of DEAP Client application; battery consumption is reduced 

(interval estimate 52.2(+/-)15 percent with 99% confidence for the sample space of 30 

values) and the utilization of computing resources of the local device is reduced for 

minimum period of time (interval estimate 91(+/-)3 percent with 99% confidence for the 

sample space of 30 values). Hence, the experimental results in the emulation environment 

signify the usefulness of DEAP framework for computational offloading in mobile cloud 

computing. 

This section compares the Turnaround Time (TT) and Energy Consumption Cost 

(ECC) of the intensive operations of mobile application in different scenarios of the real 

mobile cloud computing environment. The TT and EEC of the components of the mobile 
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component of the application, and execution of the intensive component on the remote 
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execution without including profiling mechanism and with including profiling mechanism 

on the local mobile device. The contemporary application offloading frameworks 

implement runtime application profiling for the evaluation of resources utilization on SMD 

and making the decision of component offloading at runtime (Messer et al., 2002; Giurgiu 

et al., 2009; Cuervo et al., 2010; Chun et al., 2011; Zhang et al. 2011 ). Hence, the TT and 

ECC for each service component which is evaluated on the local mobile device is presented 

in two different scenarios; execution of service component without runtime profiling and 

execution of service component by activating the runtime profiling process.  

The value of TT and ECC for different service components of the prototype 

application is compared with 30 different computational intensities. The objective of this 

comparison is to analyze the additional resources utilization and additional time taken in 

runtime profiling of mobile application.  

Execution of the service component on the remote server node is presented from the 

perspective traditional runtime component offloading and DEAP based computational 

offloading in MCC. The traditional computational offloading frameworks implement 

runtime component migration techniques for outsourcing computational load of the mobile 

application (Liu et al. 2010; Iyer et al. 2011; Zao et al., 2011; Cuervo et al., 2010; Chun et 

al., 2011;  Zhang et al. 2011 and Hung et al., 2012). The traditional computational 

offloading technique reduces the computational load on the mobile devices which results in 

minimization of computing resources utilization on SMD. However, it is examined that the 

size of data transmission, TT and ECC of the offloaded component increases considerably 

in runtime computational offloading.  

The TT and ECC of sorting service and matrix multiplication component is 

compared by offloading without profiling process and including profiling mechanism on 

local mobile device. Finally, the TT and ECC of sorting service and matrix service are 
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compared with the value of TT in DEAP client application. Table 5.31 summarized the 

comparison of the TT of sorting operating of the application in different scenarios of the 

real distributed mobile cloud computing environment.  

Figure 6.34 shows the comparison the TT of sorting service execution in different 

scenarios. It is examined that the TT on the local SMD is smaller for performing sorting 

operation without runtime profiling. Experimental results indicate that by including the 

runtime profiling mechanism the value of TT increases 76.5 percent for sorting list of 

11000 values, 86.6 percent for sorting list of 22000 values, 87.6 percent for sorting list of 

30000 and 88.7 percent for sorting list of 40000 values. The overall increase in the TT of 

sorting service by including runtime profiling in the sorting operation is determined as 

85.4(+/-)1.7 with 99% confidence in the sample space of 30 values.  

The comparison of TT for sorting operation in local execution and traditional 

offloading technique shows that TT of the sorting service increases considerably in runtime 

component offloading. It is observed in offloading sorting service without employing 

runtime profiling on the local mobile device, the TT of the sorting service in remote 

processing compared to local execution of on mobile device increases by: 80 percent for 

sorting list of 11000 values, 75 percent for sorting list 17000 values, 80 percent for sorting 

list of 30000 values and 81 percent for sorting list of 40000 values. Similarly, in offloading 

sorting service by employing runtime profiling on the local mobile device, the TT of the 

sorting service in remote processing compared to local execution on mobile device 

increases by: 88 percent for sorting list of 11000 values, 91 percent for sorting list 25000 

values, 92 percent for sorting list of 35000 values and 93 percent for sorting list of 40000 

values.  The comparison of sorting service execution on local mobile device and the DEAP 

based execution signifies the decrease in TT of the sorting operation in the POP of DEAP 

client application. It is examined that by accessing the services of DEAP server application 
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in the POP of DEAP client application on mobile device, the TT of sorting services reduces 

48 percent for sorting list of 11000 values, 60 percent for sorting list of 25000 values and 

57 percent for sorting list of 40000 values. The overall reduction in TT value for sorting 

service in POP of DEAP client application is 57.8(+/-) 2 percent with 99% confidence in 

the sample space of 30 values.  

 

Figure 6. 34: Comparison of the Turnaround Time (TT) of the Sorting Service Execution 
in Local and Remote Execution 

The comparison of TT for the sorting operation in the POP of DEAP and traditional 

offloading signifies the lightweight nature of DEAP framework for computational 

offloading in MCC. Figure 6.34 shows the increasing trend of TT in offloading sorting 

service. The increase in TT of sorting service in runtime component offloading (without 

including profiling) as compared to the POP of DEAP is examined as follows: 89 percent 

for sorting list of 11000 values, 91 percent for sorting list of 20000 values, 92 percent for 

sorting list of 31000 values and 92 percent for sorting list of 40000 values. Similarly, the 

increase in TT of sorting service in runtime component offloading by including profiling on 

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

11
00

0
12

00
0

13
00

0
14

00
0

15
00

0
16

00
0

17
00

0
18

00
0

19
00

0
20

00
0

21
00

0
22

00
0

23
00

0
24

00
0

25
00

0
26

00
0

27
00

0
28

00
0

29
00

0
30

00
0

31
00

0
32

00
0

33
00

0
34

00
0

35
00

0
36

00
0

37
00

0
38

00
0

39
00

0
40

00
0

T
ur

na
ro

un
d 

T
im

e(
m

s)
 

Length of the Sorting List 

TT on Local SMD  Without Profiling
TT on Local SMD  Including Profiling
TT in POP of DEAP Client
TT in Traditional Runtime Offloading without Profiling
TT in Traditional Runtime Offloading including Profiling

Univ
ers

iti 
Mala

ya



Chapter: 6  Results and Discussion 
 

224 
 

SMD as compared to the POP of DEAP as follows: 93 percent for sorting list of 11000 

values, 96.4 percent for sorting list of 20000 values, 96.8 percent for sorting list of 31000 

values and 96.7 percent for sorting list of 40000 values.  

Table 5.32 summarized the comparison of matrix multiplication operation in local 

and remote execution scenarios. It is examined that the TT on the local SMD is smaller for 

performing matrix multiplication operation without runtime profiling as compared to matrix 

multiplication operation included with runtime profiling process.  Figure 6.35 compares the 

TT of matrix multiplication operation in local and remote execution. Experimental results 

indicate that by including the runtime profiling mechanism the value of TT increases by 

91.6 percent for multiplying matrices of length 160*160, 91.1 percent for matrices of length 

250*250, 93 percent for multiplying matrices of length 350*350 and 92.7 percent for 

multiplying matrices of length 450*450.  

The overall increase in the TT of matrix multiplication operation by including 

runtime profiling in the matrix multiplication operation is determined as 91.4(+/-)0.3 with 

99% confidence in the sample space of 30 values. The comparison of TT for matrix 

multiplication operation in local execution and traditional offloading technique shows that 

TT of the matrix multiplication increases considerably in runtime component offloading. It 

is observed in offloading matrix multiplication service without employing runtime profiling 

on the local mobile device the TT of the matrix multiplication service in remote processing 

compared to local execution on mobile device increases by 78 percent for multiplying 

matrices of length 160*160, 70 percent for multiplying matrices of length 250*250, 66 

percent for multiplying matrices of length 300*300 and 65 percent for multiplying matrices 

of length 450*450.  

Similarly, in offloading matrix multiplication service with employing runtime 

profiling on the local mobile device, the TT of the matrix multiplication service in remote 
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processing compared to local execution on mobile device increases by 81 percent for 

multiplying matrices of length 160*160, 76 percent for multiplying matrices of length 

250*250, 75 percent for multiplying matrices of length 300*300 and 72 percent for 

multiplying matrices of length 450*450.  

The comparison of matrix multiplication service execution on local mobile device 

and the DEAP based execution signifies the decrease in TT of matrix multiplication 

operation in the POP of DEAP client application. It is observed that by accessing the 

services of DEAP server application in the POP of DEAP client application on mobile 

device, the TT of matrix multiplication operation reduces by: 10 percent for matrices of 

length 160*160, 9 percent for multiplying matrices of length 350*350 and 8 percent for 

multiplying matrices of length 450*450. The overall reduction in TT for matrix 

multiplication service in POP of DEAP client application is found (10.3+/-) 0.5 percent 

with 99% confidence in the sample space of 30 values.  

The comparison of TT for the matrix multiplication operation in the POP of DEAP 

and traditional offloading signifies the usefulness of DEAP framework for computational 

offloading. Figure 6.35 shows the increasing trend of the TT in offloading matrix 

multiplication service. The increase in TT of matrix multiplication operation in runtime 

component offloading (without including profiling) as compared to the POP of DEAP is 

examined as follows: 74 percent for multiplying matrices of length 160*160, 72 percent for 

multiplying matrices of length 230*230, 64 percent for multiplying matrices of length 

350*350 and 63 percent for multiplying matrices of length 450*450. Similarly, the increase 

in TT of matrix multiplication operation in runtime component offloading by including 

profiling as compared to the POP of DEAP is examined as follows: 79 percent for 

multiplying matrices of length 160*160, 77.8 percent for multiplying matrices of length 
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230*230, 73.9 percent for multiplying matrices of length 350*350 and 73.3 percent for 

multiplying matrices of length 450*450.  

 

Figure 6. 35: Comparison of the Turnaround Time of the Matrix Multiplication Service 
Execution in Local and Remote Execution 

Figure 6.36 shows the comparison the TT of power compute service execution in 

different scenarios. It is examined that the TT on the local SMD is smaller for performing 

power compute operation without runtime profiling as compared to power compute 

operation included with runtime profiling process. Experimental results indicate that by 

including the runtime profiling mechanism the value of TT increases 68.1 percent for 

computing 2^1000000, 84.8 for computing 2^20000000, 80.5 for computing 2^400000000 

and 83.8 for computing 2^2000000000.    The overall increase in the TT of power compute 

service by including runtime profiling is determined as 76.8(+/-)2.4 with 99% confidence 

in the sample space of 30 values.  

The comparison of TT for power compute operation in local execution and 

traditional offloading technique shows that TT of the power computing increases 

considerably in runtime component offloading. It is examined that in offloading power 

compute service in the SOP of DEAP client application, the TT of power computing 
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increases as follows: 99.3 percent for computing 2^1000000, 96.2 percent for computing 

2^20000000, 81.4 percent for computing 2^400000000 and 74 for computing 

2^2000000000. Similarly, in offloading power compute service with employing runtime 

profiling on the local mobile device the TT of the power compute operation in remote 

processing as compared to local execution on mobile device increases by 99.3 percent for 

computing 2^1000000, 96.9 percent for computing 2^20000000, 89.5 percent for 

computing 2^400000000 and 88.9 percent for computing 2^2000000000.  

 

Figure 6. 36: Comparison of the Turnaround Time (of Power Compute Operation in in 
Local and Remote Execution 

The comparison of power compute service execution on local mobile device and the 

DEAP based execution indicates that TT of power compute operation is increased in the 

SOP of DEAP client application. The comparison of TT for power compute operation in 

local execution and SOP of offloading technique shows that TT of the power computing 

increases considerably in runtime component offloading. However, the increase in TT is 

higher in traditional runtime computational offloading with employing profiling mechanism 

as compared to the SOP of DEAP which offloads power compute service without 

employing profiling. The decrease in TT in SOP of DEAP client application as compared to 
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the traditional runtime computational offloading which includes profiling mechanism is 

examined as 2.6 percent for computing  2^2000000, 9.1 percent for computing 2^9000000, 

28 percent for computing 2^80000000 and 57.3 percent for computing 2^2000000000. The 

overall decrease in the TT of SOP of DEAP as compared to traditional computational 

offloading is 27(+/-)9.2 with 99% confidence for the sample space of 30 values. 

This section discusses the comparison of energy consumption cost  of different 

components of the prototype application in different scenarios. The ECC of the components 

of the mobile application is compared from the perspective of local execution of the 

intensive component of the application, and execution of the intensive component on the 

remote sever node. Table 5.34 summarized the comparison of energy consumption cost for 

sorting operation in different scenarios.  

Figure 6.37 shows the comparison the ECC of sorting service execution in different 

scenarios. It is examined that the ECC on the local SMD is smaller for performing sorting 

operation without runtime profiling. Experimental results indicate that by including the 

runtime profiling mechanism the value of ECC increases 2.3 percent for sorting list of 

11000 values, 57.2 percent for sorting list of 22000 values, 68.8 percent for sorting list of 

30000 and 72.9 percent for sorting list of 40000 values. The overall increase in the ECC of 

sorting service by including runtime profiling in the sorting operation is determined as 

97(+/-)1 with 99% confidence in the sample space of 30 values.  

The comparison of ECC for sorting operation in local execution and traditional 

offloading technique shows that ECC of the sorting service increases considerably in 

runtime component offloading. The increase in ECC of the sorting service in remote 

processing compared to local execution of on mobile device is examined as follows: 28.7 

percent for sorting list of 11000 values, 61.1 percent for sorting list 25000 values, 64.9 

percent for sorting list of 30000 values and 65.9 percent for sorting list of 40000 values. 
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Similarly, in offloading sorting service by employing runtime profiling on the local mobile 

device, the increase in ECC of the sorting service in remote processing compared to local 

execution on mobile device is as follows: 58 percent for sorting list of 11000 values, 77 

percent for sorting list 25000 values, 81 percent for sorting list of 35000 values and 82 

percent for sorting list of 40000 values.  

The comparison of sorting service execution on local mobile device and the DEAP 

based execution signifies the decrease in ECC of the sorting operation in the POP of DEAP 

client application. It is examined that by accessing the services of DEAP server application 

in the POP of DEAP client application on mobile device, the ECC of sorting services 

reduces 85.1 percent for sorting list of 11000 values, 85.2 percent for sorting list of 25000 

values and 88.6 percent for sorting list of 40000 values. The overall reduction in ECC value 

for sorting service in POP of DEAP client application is 86(+/-)0.9 percent with 99% 

confidence in the sample space of 30 values.  

The comparison of ECC for the sorting operation in the POP of DEAP and 

traditional offloading signifies the lightness of DEAP framework for computational 

offloading. Figure 6.37 shows the increasing trend of ECC in offloading sorting service at 

runtime. The ECC of sorting service in runtime component offloading (without including 

profiling) as compared to the POP of DEAP increases 85.1 percent for sorting list of 11000 

values, 85.1 percent for sorting list of 20000 values, 88.4 percent for sorting list of 31000 

values and 88.4 percent for sorting list of 40000 values. Whereas, ECC of sorting service in 

runtime component offloading by including profiling as compared to the POP of DEAP 

increases 85.2 percent for sorting list of 11000 values, 90.3 percent for sorting list of 20000 

values, 93.6 percent for sorting list of 31000 values and 94 percent for sorting list of 40000 

values.  
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Figure 6. 37: Comparison of Energy Consumption Cost for Sorting Service in Local and 
Remote Execution 

Table 5.35 summarized the comparison of the ECC of matrix multiplication 

operating of the application in local and remote execution. It is examined that the ECC on 

the local SMD is smaller for performing matrix multiplication without runtime profiling as 

compared to matrix multiplication included with runtime profiling process.  

Figure 6.38 shows the comparison the ECC of matrix multiplication service 

execution in different scenarios. Experimental results indicate that by including the runtime 

profiling mechanism the value of ECC increases by 19.4 percent for multiplying matrices 

of length 160*160, 19.1 percent for multiplying matrices of length 250*250, 18.9 percent 

for multiplying matrices of length 350*350 and 22.1 percent for multiplying matrices of 

length 450*450. The overall increase in the ECC of matrix multiplication service by 

including runtime profiling in the matrix multiplication operation is determined as 20(+/-)1 

with 99% confidence in the sample space of 30 values.  

The comparison of ECC for matrix multiplication operation in local execution and 

traditional offloading technique shows that ECC of the matrix multiplication increases 

considerably in runtime component offloading. It is examined that in offloading matrix 
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multiplication service without employing runtime profiling on the local mobile device the 

ECC of the matrix multiplication service in remote processing compared to local execution 

on mobile device increases by 68 percent for multiplying matrices of length 160*160, 59 

percent for multiplying matrices of length 250*250, 51 percent for multiplying matrices of 

length 300*300 and 46 percent for multiplying matrices of length 450*450.  

Similarly, in offloading matrix multiplication service with employing runtime 

profiling on the local mobile device, the ECC of the matrix multiplication service in remote 

processing compared to local execution on mobile device increases 70 percent for 

multiplying matrices of length 160*160, 62 percent for multiplying matrices of length 

250*250, 57 percent for multiplying matrices of length 300*300 and 53 percent for 

multiplying matrices of length 450*450.  

The comparison of matrix multiplication service execution on local mobile device 

and DEAP based execution signifies the decrease in ECC of matrix multiplication operation 

in the POP of DEAP client application. It is examined that in the POP of DEAP client 

application on mobile device, the ECC of matrix multiplication operation reduces 19.4 

percent for multiplying matrices of length 160*160, 42 percent for multiplying matrices of 

length 270*270, 44 percent for multiplying matrices of length 350*350 and  9.5 percent for 

multiplying matrices of length 450*450. The overall reduction in ECC value for matrix 

multiplication service in POP of DEAP client application is 34.9(+/-) 5.4 percent with 99% 

confidence in the sample space of 30 values.  

The comparison of ECC for the matrix multiplication operation in the POP of 

DEAP and traditional offloading signifies the lightness of DEAP framework for 

computational offloading. Figure 6.38 shows the increasing trend of ECC in offloading 

matrix multiplication service. The increase in ECC of matrix multiplication operation in 

runtime component offloading (without including profiling) as compared to the POP of 

Univ
ers

iti 
Mala

ya



Chapter: 6  Results and Discussion 
 

232 
 

DEAP is examined as follows: 73 percent for multiplying matrices of length 160*160, 70.3 

percent for multiplying matrices of length 230*230, 61.7 percent for multiplying matrices 

of length 350*350 and 50.4 percent for multiplying matrices of length 450*450. Whereas, 

the increase in ECC of matrix multiplication in runtime component offloading by including 

profiling as compared to the POP of DEAP is 74.9 percent for multiplying matrices of 

length 160*160, 72.9 percent for multiplying matrices of length 230*230, 66 percent for 

multiplying matrices of length 350*350 and 57 percent for multiplying matrices of length 

450*450.  

 

Figure 6. 38: Comparison of Energy Consumption Cost for Matrix Multiplication Service in Local and 
Remote Execution 

Table 5.36 summarized the comparison of the ECC of the power compute operation 

of the application in local and remote execution scenarios. It is examined that the ECC on 

the local SMD is smaller for performing power compute operation without runtime 

profiling as compared to power compute operation included with runtime profiling process. 

Figure 6.39 shows the comparison the ECC of power compute service execution in 

different scenarios.  Experimental results indicate that by including the runtime profiling 

mechanism the value of ECC increases by 11.5 percent for computing 2^2000000, 32.8 for 
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computing 2^2000000000.    The overall increase in the ECC of power compute service by 

including runtime profiling is determined as 40(+/-)12 with 99% confidence in the sample 

space of 30 values.  

The increase in the ECC of  offloading power compute service in the SOP of DEAP 

client application is examined as follows: 59.3 percent for computing 2^1000000, 70.5 

percent for computing 2^20000000, 72.6 percent for computing 2^400000000 and 80.9 for 

computing 2^2000000000. Similarly in offloading power compute service with traditional 

computational offloading by using profiling on the local mobile device the ECC of the 

power compute operation increases in remote processing compared to local execution on 

mobile device increases 59.3 percent for computing 2^1000000, 74.2 percent for computing 

2^20000000, 80 percent for computing 2^400000000 and 85.5 percent for computing 

2^2000000000.  

The comparison of power compute service execution on local mobile device and the 

DEAP based execution indicates that ECC of power compute operation is increased in the 

SOP of DEAP Client application. The comparison of ECC for power compute operation in 

local execution and SOP of offloading technique shows that ECC of the power computing 

increases considerably in runtime component offloading. However, the increase in ECC is 

higher in runtime computational offloading as compared to the SOP of DEAP which 

offloads power compute service without profiling. The decrease in ECC in SOP of DEAP 

client application as compared to the traditional runtime computational offloading which 

includes profiling mechanism is examined as 4.4 percent for computing  2^2000000, 14.5 

percent for computing 2^40000000, 31 percent for 2^500000000 and 23.8 percent for 

computing 2^2000000000. The overall decrease in the ECC of SOP of DEAP as compared 

to traditional computational offloading is 17(+/-)5.2 with 99% confidence for the sample 

space of 30 values.  
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Figure 6. 39: Comparison of Energy Consumption Cost for Power Compute Service in 
Local and Remote Execution 

Table 5.37 summarized the comparison of RAM utilization for sorting operation in 

executing sort service on local mobile device and remote execution in the POP of DEAP 

client application.  It is examined that RAM allocation on the mobile device increase for the 

sorting service with the increase in the length of sorting list. For instance sorting service is 

allocated 10.148 MB RAM in sorting  list of 11000 values, 10.21 MB in sorting list 25000 

values and  10.265 MB in sorting list 40000 values.  It indicates that the allocation of RAM 

on the mobile device varies with length of sorting list.  

The allocation of RAM to DEAP client application varies in accessing sorting 

service of the DEAP server application. It is examined that the allocation of RAM to the 

DEAP client application increases by increasing the length of sorting list while accessing 

sorting operation of the DEAP server application.  The size of resultant list returned to the 

local mobile device increases by increasing the length of sorting list, hence the size of 

RAM allocated to DEAP client application increases accordingly. 

The comparison of RAM allocation in local sorting service execution and DEAP 

based sorting operation signifies the usefulness of DEAP framework. It is examined that the 

interval estimate for allocated RAM for sorting service component of the application is 

10.20987(+/-) 0.016367 MB with 99% confidence for the sample space of 30 values, 
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whereas in accessing sorting service of the DEAP Server application, additional RAM 

allocated for DEAP client application is 2.6023(+/-)0.457 MB with 99% confidence for the 

sample space of 30 values. It indicates that RAM allocation on the local mobile device is 

reduced 74.5 percent in accessing sorting operation in the POP of DEAP client application. 

Figure 6.40 shows the comparison of RAM allocation for sorting service in local 

application execution and remote execution in the POP of DEAP Client application.  

 
Figure 6. 40: RAM Allocation for Sorting Operation on SMD Local Service Execution and 

in POP of DEAP 

Table 5.38 summarized the comparison of RAM utilization for matrix 

multiplication operation in executing matrix multiplication service on local mobile device 

and remote execution in the POP of DEAP client application.  

Figure 6.41 shows the comparison of RAM allocation in local execution of matrix 

multiplication service and accessing matrix multiplication service in the POP of DEAP 

client application. It is examined that RAM allocation on the mobile device increase for the 

matrix multiplication service with the increase in the length of multiplying matrices. For 

instance, matrix multiplication service is allocated 2.78 MB RAM in multiplying matrices 

of length 160*160, 6.94 MB in multiplying matrices of length 25*250, 13.7 MB in 

multiplying matrices of length 350*350 and 22.8 MB in multiplying matrices of length 
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450*450.  It indicates that the allocation of RAM on the mobile device varies with length of 

matrices being multiplied. Similarly, the allocation of RAM to DEAP client application 

varies in accessing matrix multiplication service of the DEAP server application.  

It is examined that   allocation of RAM to the DEAP client application increases by 

increasing the length of multiplying matrices size while accessing matrix multiplication 

service of the DEAP server application.  The size of resultant matrix returned to the local 

mobile device increases by increasing the length of multiplying matrix, hence the size of 

RAM allocated to DEAP client application increases accordingly. 

 

Figure 6. 41: Comparison of RAM Allocation in Local Execution of Matrix Multiplication 
Service and in the POP of DEAP  

The comparison of RAM allocation in local matrix multiplication service execution 

and DEAP based matrix multiplication operation signifies the usefulness of DEAP 

framework. It is examined that the sample mean for allocated RAM for matrix 

multiplication service component of the application is 11.205(+/-)2.866 with 99% 

confidence for the sample space of 30 values, whereas in accessing matrix multiplication 

service of the DEAP server application, additional RAM allocated for DEAP client 

application is 6.467(+/-)1.6723 MB with 99% confidence for the sample space of 30 
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values. Analysis of the results indicates that RAM allocation on the local mobile device is 

reduced 42.2 percent in accessing matrix multiplication operation in the POP of DEAP 

client application.  

The power compute service of the application is offloaded at runtime by employing 

SOP of DEAP client application. Hence, the entire logic of the power computing is 

executed on the remote server node. It is examined that in the SOP the allocation of RAM 

to the local mobile device remains constant and the increase in the RAM allocation is 

observed as zero percent. It is determined that sample mean for RAM allocation in local 

execution of power computing is 10.11(+/-).00045 MB with 99% confidence with the 

sample space of 30 values. However, the allocation of RAM is reduced to zero percent in 

SOP of DEAP Client application. Hence, the RAM allocation for power compute operation 

is saved up to 100% in the SOP of DEAP client application.   

In the POP of DEAP client application the entire logic of the intensive components 

of the mobile application is offloaded to the preconfigured server. Hence, the application 

running on the local mobile devices is not required to allocate RAM for the execution of 

offloaded components of the application. It is observed that the allocation of RAM for the 

DEAP client application on local mobile device remains constant for accessing the sorting 

operation, matrix multiplication operation and power compute operation on the DEAP 

server application.  It indicates that the increase in the RAM allocation for DEAP client 

application reduces to zero during the execution of services on the preconfigured server 

application on the remote server node. However, the allocation of RAM increases gradually 

whenever the size of data returned from the remote server node increases. For instance, the 

allocation of RAM for DEAP client application increases 1.14 percent for the returned 

sorted list of 40000 values as compared 11000 values. Similarly, the allocation of RAM for 
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DEAP client application increases 87.8 percent for the returned resultant 450*450 size 

matrix as compared 160*160 size matrix.  

Table 5.39 summarized the comparison of CPU utilization in the execution of 

mobile application on local mobile device and remote execution by employing the POP and 

SOP of DEAP framework. Figure 6.51 compares CPU utilization on the mobile device in 

local execution of components the mobile application and accessing the services of cloud 

server node. The execution of application on local mobile devices resulted in high CPU 

utilization for a longer period of time as compared to accessing the services of cloud server 

node.  

It is examined that the average CPU utilization for executing sorting service on 

local mobile device is 48.67 percent of the total CPU utilization on local mobile device for 

17427(+/-) 3707 ms duration. However, in accessing the sorting service of DEAP server 

application on the cloud server node, the CPU utilization for DEAP client application on 

local mobile device is observed as 25.5 percent of the total CPU utilization for 7224(+/-) 

1560 ms duration. Analysis of the comparison for CPU utilization between local sort 

service execution and accessing sorting service of cloud server node indicates the average 

CPU utilization for sorting operation reduces 47.6 percent on the local mobile device. 

Further, the period of CPU utilization on the local mobile device is reduced up to 58.5 

percent. 

The average CPU utilization for executing matrix multiplication service on local 

mobile device is 45.46 percent of the total CPU utilization on local mobile device for 

31190(+/-) 12270 ms duration. However, in accessing the matrix multiplication service of 

DEAP server application on the cloud server node, the CPU utilization for DEAP client 

application on local mobile device is observed as 35.4 percent of the total CPU utilization 

for 28085(+/-) 11132 ms duration. Analysis of the comparison for CPU utilization between 
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local matrix multiplication service execution and accessing matrix multiplication service of 

cloud server node indicates the average CPU utilization for matrix multiplication operation 

reduces 22.1 percent on the local mobile device. Further, the period of CPU utilization on 

the local mobile device is reduced up to 10 percent for matrix multiplication operation in 

DEAP based computational offloading.  

The average CPU utilization for executing power compute service on local mobile 

device is 48 percent of the total CPU utilization on local mobile device. However, it is 

examined that the CPU utilization for operating system CPU utilization increases up to 3 

percent on the Android virtual device, whereas for the physical mobile device the increase 

in CPU utilization is zero percent.  

 

Figure 6. 42: Comparison of CPU Utilization in Local Application Execution and DEAP 
Based Execution 

The comparison for CPU utilization between local power compute service execution 

and accessing power computing service of cloud server node indicates the average CPU 

utilization for power computing operation reduces 93.8 percent on the local mobile device. 

0
5

10
15
20
25
30
35
40
45
50

Sort Service Matrix Multiplication
Service

Power Compute
Service

Pe
rc

en
t C

PU
 U

til
iz

at
io

n 
 

Percent CPU in Local Application Execution
Percent CPU in DEAP Based Application Execution

Univ
ers

iti 
Mala

ya



Chapter: 6  Results and Discussion 
 

240 
 

Further, the period of CPU utilization on the local mobile device is reduced up to 90 

percent for power computing operation in DEAP based computational offloading.  

In the POP and SOP of DEAP client application the entire logic of the intensive 

components of the mobile application is offloaded to cloud sever node. Hence, the 

application running on the local mobile devices is not required to schedule CPU for the 

execution of offloaded components of the application. It is observed that the utilization of 

CPU for the DEAP client application on local mobile device remains constant for accessing 

the sorting operation, matrix multiplication operation and power compute operation on the 

DEAP server application.  It indicates that the increase in the CPU utilization for DEAP 

client application reduces to zero during the execution of services on the cloud server node.  

However, the results returned for the remote server node to mobile device are 

extracted from returned SOAP message which requires additional processing on the local 

mobile device. Hence, the percentage and the time period of CPU utilization for DEAP 

client application increases gradually whenever the size of data returned from the remote 

server node increases. For instance, CPU utilization for the returned sorted list of 40000 

values increases 22.5 percent and for the 72.6 percent longer period of time as compared to 

sorted list of 110000 values. Similarly, CPU utilization for the returned resultant of 

450*450 size matrix increases 32.4 percent and for the 96.38 longer period of time as 

compared to the resultant matrix of 160*160 size.  

Table 5.40 summarized the comparison of the size of data transmitted over the 

wireless network medium for sorting service in offloading computational load in the 

proposed DEAP framework and traditional application offloading technique. It is examined 

that larger amount of data is transmitted in traditional component offloading as compared to 

the DEAP based computational offloading. Figure 6.43 shows the comparison of data 
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transmission in traditional runtime application offloading and proposed DEAP based 

computational offloading for sort service component of the application.  

The size of data transmission over the wireless network medium varies for different 

length of sorting list. It is examined that the data transmission size for offloading sort 

service with the list of 11000 values is 752.4 KB, whereas the size of data transmission in 

accessing sorting service of DEAP server application is 183 KB. Similarly, the size of data 

transmission is 2645.4 KB for list of 40000 values in traditional computational offloading, 

whereas the size of data transmission in DEAP is 692 KB in accessing sorting service of 

DEAP server application. It shows that in DEAP based computational offloading the size of 

data transmission over the wireless medium is reduced 76 percent for sorting list of 1100 

values and 74 percent for sorting list of 40000 values. The average reduction of data 

transmission over the wireless network medium is 74.7 percent in DEAP based 

computational offloading for the sorting list of 11000-40000 values.  

 

Figure 6. 43: Comparison of the Size of Data Transmission in Traditional Offloading and 
DEAP Based Offloading for Sorting Operation 
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Table 5.41 summarized the comparison of the size of data transmitted over the 

wireless network medium for matrix multiplication service in offloading computational 

load in the proposed DEAP framework and traditional application offloading technique. It 

is examined that larger amount of data is transmitted in traditional component offloading as 

compared to the DEAP based computational offloading.  

Figure 6.44 shows the comparison of data transmission in traditional runtime 

application offloading and proposed DEAP based computational offloading for matrix 

service component of the application. The size of data transmission over the wireless 

network medium varies for different size of matrices. It is examined that the data 

transmission size for offloading matrix multiplication service with the size of matrix 

160*160 values is 5739.44 KB, whereas the size of data transmission in accessing matrix 

multiplication service of DEAP Server application is 463 KB. Similarly, the size of data 

transmission is 46740.4 KB for the size of matrix 450*450 values in traditional 

computational offloading, whereas the size of data transmission in DEAP is 3308 KB in 

accessing matrix multiplication service of DEAP server application. It shows that in DEAP 

based computational offloading the size data transmission over the wireless medium is 

reduced 91.9 percent for matrix size 160*160 and 92.2 percent for matrix size of 450*450 

values. The average reduction of data transmission over the wireless network medium is 92 

percent in DEAP based computational offloading for the matrices of size 160*160-

450*450.  Univ
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Figure 6. 44: Comparison of the Size of Data Transmission in Traditional Offloading and 
DEAP Based Offloading for Matrix Multiplication Operation 
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service to cloud server node in the SOP of DEAP framework. Similarly, CPU utilization is 

reduced 47.6 percent for sorting list 11000-40000 values, 22.2 percent in 93.8 percent in 

offloading power compute service in the SOP of DEAP framework.   

DEAP framework reduces the cost of migration of application binary file and data 

file of the running instances of the mobile application. As a result, the size of data 

transmission over the wireless network medium, turnaround time of the intensive 

operations and energy consumption cost on mobile device is reduced considerably. 

Analysis of the results signifies the lightweight nature of DEAP framework by reducing the 

size of data transmission, turnaround time and energy consumption cost in cloud based 

processing of the intensive component of mobile application. The data communication cost 

over the wireless network medium is reduced considerably in DEAP application. The 

distributed nature of DEAP results in the reduction of the size of data transmission over the 

wireless network medium.  It is observed that the POP of DEAP framework eliminates the 

additional cost application binary code migration and active data state migration to the 

cloud server node at runtime.  

Hence, the energy consumption cost and turnaround time of the component of the 

mobile application are reduced. For instance, the size of data transmission for sorting 

service is reduced 74.8 percent, turnaround time of sorting operation is reduced 91.3 

percent and energy consumption cost is reduced 86.7 percent compared to the traditional 

computational offloading technique. Similarly, the size of data transmission for matrix 

multiplication operation is reduced 92.8 percent, turnaround time is reduced 67.8 percent 

and energy consumption cost is reduced 64.2 percent compared to the traditional 

computational offloading technique.  It is concluded that DEAP framework provides a 

lightweight application layer solution for the distributed processing of intensive mobile 

applications in mobile cloud computing.  
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CHAPTER 7 

Conclusion   

This chapter reevaluates the research objectives, summarizes contribution of the 

research, discusses the scope and limitation, and future research directions of this research.   

The chapter is organized into four sections. Section 7.1 discusses the reappraisal of 

the objectives of this research work. Section 7.2 summarizes contribution of the research 

work. Section 7.3 discusses the scope of the research work. Section 7.4 proposes future 

directions of the research works 

7.1 Reappraisal of the Objectives Achievement 

This research investigates the problem of additional computing resources utilization 

in traditional computational offloading techniques and proposes a lightweight DEAP 

framework for the processing of intensive mobile applications in MCC. Section 1.4 

highlighted four objectives of this research, which are achieved as follows: 

A thematic taxonomy of traditional computational offloading frameworks is produced 

to achieve the objective of literature review. We studied state-of-the-art from web databases 

and online digital libraries (IEEE, ACM and ISI Web of Knowledge). We selected 250 

papers in the broader domain of cloud computing, mobile computing and mobile cloud 

computing and reviewed the latest literature for current DAPFs by selecting 25 frameworks 

for five years (2007-2012). Computational offloading frameworks are reviewed for four 

different distributed application processing models which are categorized into a thematic 

taxonomy (Section 2.2.1). Qualitative analysis is used to highlight the implications and 

critical aspects of current computational offloading frameworks (Section 2.2.2). Current 
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DAPFs are synthesized on the basis of taxonomy (Section 2.4) and the issues and 

challenges for computational offloading in MCC are highlighted.  

The research problem is established by quantitative analysis of runtime 

computational offloading and Virtual Machine (VM) deployment for application 

processing. A prototype application is benchmarked in the real mobile cloud computing 

environment for evaluating the additional energy consumption cost, timing cost and size of 

data transmission in the traditional computational offloading techniques (section 3.2). The 

impact of virtual machine deployment for application processing is analyzed in the 

simulation environment (section 3.3).  

A lightweight Distributed and Elastic Application Processing (DEAP) framework is 

proposed to achieve the objective of lightweight solution for the processing of intensive 

mobile applications in MCC. DEAP framework addresses the problem of additional 

computing resources utilization in distributed processing of intensive mobile applications. 

It proposes lightweight operation procedures for the processing of intensive mobile 

applications in MCC (Section 4.2). DEAP framework reduces the cost of migration of 

application binary file and data file of the running instances of the mobile application. As a 

result, the size of data transmission over the wireless network medium, turnaround time of 

the intensive operations and energy consumption cost on mobile device is reduced 

considerably. 

Synthetic workload is tested in the emulation environment on the Android virtual 

device instance to achieve the objective of evaluating DEAP. Virtual device instance is 

enabled to operate in the distributed mobile cloud computing environment. The 

performance of DEAP framework is validated by benchmarking prototype application in 

the real mobile cloud computing environment.  
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Results of different experimental scenarios are compared to validate the lightweight 

nature of DEAP framework. DEAP framework reduces resources utilization on SMD and 

the cost of distributed processing of the prototype application in MCC as follows: RAM 

allocation on mobile device 71.4 percent, CPU utilization on mobile device 55 percent, the 

size of data transmission over the wireless network medium 84 percent, turnaround time of 

the application 80.6 percent and energy consumption cost 69.9 percent. Hence, DEAP 

framework provides a lightweight application layer solution for intensive mobile 

application processing in MCC. 

7.2 Contribution of the Research   

This research produced a number of contributions to the body of knowledge which 

are summarized as follows: 

 Thematic Taxonomy: The taxonomy is used to analyze the implications and critical 

aspects of current computational offloading frameworks and compare current 

DAPFs on the basis of significant parameters. Literature review contributed to 

identify issues and challenges for computational offloading in MCC.   

 A Computational Intensive Prototype Application: We developed a prototype 

application to evaluate the additional computing resources utilization in traditional 

computational offloading. The prototype application is composed of computational 

intensive components which are offloaded at runtime to analyze additional resource 

utilization in traditional computational offloading technique. We develop 

monitoring application for implementing the algorithm of active service level 

component migration on Android devices. The required managerial components are 

developed for the runtime distributed deployment and management of intensive 

components of mobile application. The prototype application is evaluated for 
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establishing the research problem. The measurement parameters for the analysis of 

traditional computational offloading include energy consumption cost, timing cost 

and size of network data traffic.  

 An Extended Simulation Model: We simulated the IaaS service provision model of 

computational clouds by using CloudSim. Cloud computing environment is 

simulated by modeling datacenters, hosts and datacenter broker. We model two 

datacenters and each datacenter is composed of fifty computing hosts. Each 

datacenter contains a datacenter broker which is responsible for arbitrating 

negotiations between SaaS and cloud providers; such negotiations are driven by 

Quality of Service (QoS) requirements. We create different number of VMs in 

various scenarios. Cloudlet is modeled for cloud based application services (such as 

content delivery, social networking, and business workflow). CloudSim organizes 

the complexity of an application in terms of its computational requirements. Cloud 

application service (cloudlet) is simulated with pre-assigned instruction length and 

data size overhead which is undertaken during its lifecycle. VM is simulated with 

the required computing specifications.  Cloudlet is allocated to a certain VM inside 

the host of datacenter. VM deployment for application execution is evaluated in 

different scenarios.  

 A Simulation tool (SmartSim): We developed SmartSim for the partitioning of 

elastic mobile applications. SmartSim models the application processing attributes 

of SMDs in an easy to set up environment. The SmartSim toolkit is developed on 

the basis of CloudSim by using J2SE. It supports both the system and behavior 

modeling of SMD components such as application processor, memory, resources 

provision, computing resources utilization evaluation, dynamic processing 
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management policies and computational intensive mobile application modeling for 

SMD. Currently, SmartSim implements iterative algorithm for the partitioning of 

elastic mobile application on mobile device. SmartSim is a Java based platform 

independent and generic simulation toolkit which can be easily configured for the 

evaluation of the application partitioning algorithms for MCC.   

 A Lightweight DEAP Framework: We propose a novel Distributed and Elastic 

Application Processing (DEAP) framework for the processing of intensive mobile 

applications in MCC. DEAP framework focuses on reducing the cost of distributed 

application deployment and management for the processing of intensive mobile 

applications in MCC. DEAP bridges the gap of distributed design in current DAPFs 

for the processing of intensive mobile applications in MCC. The Primary Operating 

Procedure (POP) of DEAP framework employs the SaaS service provision model of 

computational clouds for the deployment of distributed processing of intensive 

mobile applications in MCC. The distributed aspect of DEAP employs lightweight 

procedure for the processing of intensive mobile applications in MCC. DEAP 

framework sustains robust features of the elasticity of traditional frameworks by 

employing runtime component offloading as Secondary Operation operating 

Procedure (SOP). The SOP of DEAP framework is significant for computational 

offloading of traditional mobile applications which lack in the distributed design for 

cloud based distributed processing.  

 DEAP Framework Based Prototype Application: We develop a prototype 

application to implement the algorithm of DEAP framework. The prototype 

application is evaluated with varying computational intensities to validate the 

usefulness of DEAP framework. We implement the operating procedures of DEAP 
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by developing our own Application Programming Interface (API) for enabling 

active service migration to cloud server nodes at runtime. Socket programming is 

employed for synchronization and data communication between the local mobile 

device and cloud server node. The API provides middleware services for masking 

the complexities of computational offloading at runtime. The API implements the 

services of uploading the computational load of the mobile device at runtime.  

 DEAP framework reduces the cost of migration of application binary file and data file of 

the running instances of the application. As a result, the size of data transmission over the 

wireless network medium, turnaround time of the intensive operations and energy 

consumption cost on mobile device is reduced considerably.  DEAP framework reduces 

additional resources utilization for the processing of intensive mobile application in MCC. 

Hence, DEAP framework provides a lightweight application layer solution for intensive 

mobile application processing in MCC.  

We were awarded the following distinctions while doing this research.  

Distinctions 

 Winner of the 3 Minutes Thesis (3MT) Competition at Faculty of Computer 

Science and Information Technology, University of Malaya, Malaysia in July 2013.  

 Best Research Paper Award in the 1st Post Graduate Symposium for Excellence 

organized by Faculty of Computer Science and Information Technology University 

of Malaya, Malaysia in September, 2011.  

 Runner up in the 2nd Post Graduate Symposium for Excellence organized by 

Faculty of Computer Science and Information Technology University of Malaya, 

Malaysia September, 2012. 
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We produced the following research papers from this research.  

Accepted Articles 

 Muhammad Shiraz, Ejaz Ahmed, Abdullah Gani, Qi Han Investigation on Runtime 

Partitioning of Elastic Mobile Applications for Mobile Cloud Computing Journal of 

Supercomputing, DOI:10.1007/s11227-013-0988-6, August 2013 (ISI Indexed Q2, 

Impact Factor 0.917) 

 Muhammad Shiraz, Abdullah Gani, Rashid Hafeez Khokhar, and Rajkumar Buyya, A 

Review on Distributed Application Processing Frameworks in Smart Mobile Devices 

for Mobile Cloud Computing, IEEE Communications Surveys & Tutorials, Volume 15, 

Issue 3, November 2012November 2012. (ISI Indexed Q1, Impact Factor 6.3, the top 

Most Journal of the Domain in ISI WoS Ranking for 2011) 

 Muhammad Shiraz,  Saeid Abolfazli, Zohreh Sanaei, Abdullah Gani A study on virtual 

machine deployment for application outsourcing in mobile cloud computing, 

Publication in Journal of Supercomputing, Volume 63, No. 3, pp. 946-964 March 2013 

(ISI Indexed Q3, Impact Factor 0.578) 

 Muhammad Shiraz, Abdullah Gani, Rashid Hafeez Khokar  An Extendable Simulation 

Framework for Modeling Application Processing Potentials of Smart Mobile Devices 

for Mobile Cloud Computing, Proceedings of Frontiers of Information Technology 

2012, Pakistan, 19-21 December 2012. (ACM, IEEE Indexed Publication) 

 Muhammad Shiraz, Abdullah Gani, Rashid Hafeez Khokar  Towards Lightweight 

Distributed Applications For Mobile Cloud Computing, 2012 IEEE International 

Conference on Computer Science and Automation Engineering (CSAE 2012), 
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Zhangjiajie, China, May 25-27, 2012 (Scopus, , Ei-Compendex and IEEE Indexed 

Publication Publication) 

 Muhammad Shiraz, Abdullah Gani “Mobile Cloud Computing: Critical Analysis of 

Application Deployment in Virtual Machines” 2012 Proceedings of ICICN, Singapore, 

2012, 26-28 February 2012 (Scopus and ISI Indexed) 

Articles under Review: 

 Muhammad Shiraz,Ejaz Ahmed, Mehdi Sookhak, Abdullah Gani, Rajkumar Buyya A 

Lightweight Distributed Framework for Computational Offloading in Mobile Cloud 

Computing, Pervasive and Mobile Computing, Under Review Since July 2013 (ISI 

Indexed Q1, Impact Factor 1.629) 

 Muhammad Shiraz, Abdullah Gani, Ejaz Ahmed, Rajkumar Buyya An Energy Efficient 

Computational Offloading Framework for Mobile Cloud Computing, Journal of Grid 

Computing, Under Review Since May 2013(ISI Indexed Q1, Impact Factor 1.607) 

 Muhammad Shiraz, Abdullah Gani, Ejaz Ahmed Computational Offloading for Mobile 

Cloud Computing, Issues and Challenges, Journal of Grid Computing, Under Review, 

Since April 2013(ISI Indexed Q1, Impact Factor 1.607) 

 Muhammad Shiraz, Abdullah Gani A Distributed and Elastic Application Processing 

Model for Mobile Cloud Computing, Frontiers of Computer Science, Under Review 

Since April 2013, (ISI Indexed Q3, Impact Factor 0.298) 

 Muhammad Shiraz, Abdullah Gani, Ejaz Ahmed, Qi Han,A Lightweight Active Service 

Migration Framework for Intensive Mobile Applications in Mobile Cloud Computing, 

Journal of Supercomputing, Under Review Since May 2013(ISI Indexed Q2, Impact 

Factor 0.807). 

This research has contributed to the following collaborative research articles.  
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Articles in Collaboration with Group Members 

 Liu Jie Yao, Muhammad Shiraz, Ejaz Ahmed,  Abdullah Gani,  Partitioning of Elastic 

Mobile Applications for Mobile Cloud Computing: Review, Issues and Challenges, 

IEEE Communication Surveys and Tutorials, Under Review, March, 2013 (ISI Indexed 

Q1, Impact Factor 6.3) 

 Ejaz Ahmed, Muhammad Shiraz, Abdullah Gani Seamless Application Execution in 

Mobile Cloud Computing, Review, Challenges and Issues,  IEEE Communication 

Surveys and Tutorials, Under Review, March, 2013 (ISI Indexed Q1, Impact Factor 

6.3) 

 Saeid Abolfazli, Zohreh Sanaei, Muhammad Shiraz, Abdullah Gani, MOMCC: Market-

Oriented Architecture for Mobile Cloud Computing Based on Service Oriented 

Architecture, MobiCC 2012 : 2012 Proceedings of IEEE Workshop on Mobile Cloud 

Computing, Beijing, China (ISI-Indexed Publication) 

 Zohreh Sanaei, Saeid Abolfazli, Abdullah Gani, Muhammad Shiraz, SAMI: Service-

Based Arbitrated Multi-Tier Infrastructure for Mobile Cloud Computing, MobiCC 2012 

Proceedings of IEEE Workshop on Mobile Cloud Computing, Beijing, China (ISI- 

Indexed Publication). 

 Laleh Boroumand, Muhammad Shiraz, Abdullah Gani A Review on Port-Knocking 

Authentication Methods for Mobile Cloud Computing, Computing, under review since 

June 2013 (ISI Indexed Q2, Impact Factor 0.807) 

 Laleh Boroumand, Muhammad Shiraz, Abdullah Gani, Rashid Hafeez Khokar Global 

healthcare village based on mobile cloud computing, Journal of Supercomputing, under 

review since June 2013 (ISI Indexed Q2, Impact Factor 0.917) 
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 Ejaz Ahmed, Muhammad Shiraz, Abdullah Gani, Spectrum-aware Distributed Channel 

Assignment in Cognitive Radio Wireless Mesh Networks, Malaysian Journal of 

Computer Science,  First Revision Submitted,August 2013(ISI Indexed Q4) 

 Ejaz Ahmed, Muhammad Shiraz, Abdullah Gani, A Survey on Design Perspectives of 

Seamless Distributed Application Execution Frameworks For Mobile Cloud 

Computing, Journal of Computer Networks and Applications, under review, May 2013, 

(ISI Indexed Q1, Impact Factor 1.065) 

 Abdullah Gani, Muhammad Shiraz,Golam Muhammad Naeem A Review on 

Interworking and Mobility Techniques for Seamless Connectivity in Mobile Cloud 

Computing, Journal of Computer Networks and Applications, under review since June 

2013 (ISI Indexed Q1, Impact Factor 1.46) 

 Mehdi Sookhak, Md Whaiduzzaman, Muhammad Shiraz, Abdullah Gani, A Survey on 

Remote Data Checking Auditing in Cloud Computing, ACM Computing Surveys, 

under review, since July 2013 (ISI Indexed Q1, Impact Factor 3.543) 

 Mehdi Sookhak, Md Whaiduzzaman, Muhammad Shiraz, Abdullah Gani, Anomaly 

Detection on Wormhole in Geographic Routing Protocols of Wireless Sensor Networks, 

Journal of Computer Networks and Applications, under review Since August 2013 (ISI 

Indexed Q1, Impact Factor 1.46) 

7.3 Research Scope and Limitations  

The scope of this research is limited to analyzing the problem of heaviness in 

traditional computational offloading and proposing lightweight solution for the processing 

of computational intensive mobile applications in MCC. This research lacks in the 

consideration of the supplementary issues which are associated in leveraging the 
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application processing services of computational clouds. The supplementary issues includes 

seamless application execution in mobile cloud computing, richness of local services and 

offline usability, privacy of the application processing on the cloud server nodes, security in 

the wireless communication network and cloud datacenters, consistency of parallel 

execution between local mobile device and remote server node and homogenous services 

provision for the heterogeneous mobile devices operating platforms.  

7.4 Future Work  

This research is focused on the lightness of distributed deployment for the processing 

of intensive mobile applications in MCC. It emphasizes on the minimization of computing 

resources utilization on smart mobile device in cloud based processing of intensive mobile 

applications. However, it lacks of considering supplementary issues associated with 

computational offloading for MCC. Hence, the future research work includes extending the 

scope this research to address the issues of seamless application execution, smart 

applications for mobile cloud computing and heterogeneous service provision for mobile 

devices operating platform. The following section discusses the future directions of this 

research. 

 The issue of seamless application execution in MCC is aimed to be addressed in our 

future research. The seamless features of mobile application include concealing the 

complexity of distributed application processing from mobile users. It is aimed to 

investigate optimal middleware solutions for achieving the goals of seamless 

application execution in computational offloading to cloud server nodes.  

 We aim to address the issue of rich user experiences in distributed processing of 

intensive mobile applications in our future research. Smart applications for mobile 

cloud computing are attributed with the features of offline usability and rich user 
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experience which can operate in the situations of inaccessibility of cloud server nodes. 

It is expected to analyze the incorporation of distributed application architecture for the 

design and development of smart mobile applications for mobile cloud computing.  

 The issue of heterogeneity in the operating system platform and hardware architecture 

of the smart mobile devices is aimed to be addressed in our future research. 

Homogenous solution is expected to provide a uniform service provisioning model for 

heterogeneous devices, operating platforms and network technologies with minimum 

possible resources utilization on the mobile device. We aim to investigate the 

deployment the SaaS service provisioning model on the cloud server nodes for 

addressing the issue of heterogeneity in mobile devices architectures and operating 

platforms.   
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