

A LIGHTWEIGHT FRAMEWORK FOR INTENSIVE MOBILE
APPLICATION PROCESSING IN MOBILE CLOUD COMPUTING

MUHAMMAD SHIRAZ

FACULTY OF COMPUTER SCIENCE AND INFORMATION
TECHNOLOGY

UNIVERSITI MALAYA
KUALA LUMPUR

2013

Univ
ers

iti
Mala

ya

A LIGHTWEIGHT FRAMEWORK FOR INTENSIVE MOBILE
APPLICATION PROCESSING IN MOBILE CLOUD

COMPUTING

MUHAMMAD SHIRAZ

THESIS SUBMITTED IN FULFILMENT

OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

 UNIVERSITY OF MALAYA

KUALA LUMPUR

2013 Univ
ers

iti
Mala

ya

ii

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Muhammad Shiraz

Registration/Matric No: WHA100052

Name of Degree: Doctor of Philosophy

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): Thesis

Field of Study: Mobile Cloud Computing

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted

purposes and any excerpt or extract from, or reference to or reproduction of any copyright work
has been disclosed expressly and sufficiently and the title of the Work and its authorship have
been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this
work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya
(“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or
use in any form or by any means whatsoever is prohibited without the written consent of UM
having been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any copyright whether
intentionally or otherwise, I may be subject to legal action or any other action as may be
determined by UM.

Candidate’s Signature Date 23/8/2013

Subscribed and solemnly declared before,

Witness’s Signature Date

Name:
Designation:

Univ
ers

iti
Mala

ya

iii

Abstract

Mobile Cloud Computing (MCC) enables computational intensive and ubiquitous mobile
applications by leveraging the services of computational clouds. Human dependency on
contemporary smartphones increases rapidly in various domains such as enterprise, e-
learning and entertainment, gamming, management information systems, and healthcare.
However, mobile applications on the latest generation of smartphones and tablets are still
constrained by battery power, CPU potentials and memory capacity of the Smart Mobile
Devices (SMDs). Therefore, MCC employs computational offloading as a significant
software level solution for alleviating the resources limitations in SMDs. Recently, a
number of computational offloading frameworks are proposed for the processing of
computational intensive mobile applications in MCC. The traditional computational
offloading frameworks implement intensive techniques for computational offloading in
MCC which results in high energy consumption and longer turnaround time of the mobile
applications. Therefore, lightweight techniques are imperative for the processing of
computational intensive applications in MCC. Lightweight techniques enable
computational intensive mobile application deployment and execution with minimal
resources utilization on SMDs. As a result, mobile users can utilize distributed cloud
services with lower computational load on mobile devices, shorter turnaround time of the
application and longer lasting battery lifetime. This research investigates the resources
intensive features of traditional computational offloading frameworks and proposes a
lightweight framework for the processing intensive mobile applications in MCC. The
additional cost of runtime computational offloading is investigated by implementing
application offloading mechanism in the real mobile cloud computing environment.
Distributed and Elastic Application Processing (DEAP) framework is proposed as a
lightweight solution for the intensive application processing in MCC. DEAP framework
reduces the cost of migration of application binary file and data file of the running instances
of the mobile application. As a result, the size of data transmission over the wireless
network medium, turnaround time of the intensive operations and energy consumption cost
on mobile device is reduced considerably. DEAP framework is evaluated in the emulation
environment on the Android virtual device instance. The performance of DEAP framework
is validated by benchmarking prototype application in the real mobile cloud computing
environment. Results of different experimental scenarios are compared to validate the
lightweight nature of DEAP framework. It is found that by employing DEAP framework
the cost of migration of application binary file and data file of the running instances of the
application is reduced. As a result, the size of data transmission over the wireless network
medium, turnaround time of the intensive operations and energy consumption cost on
mobile device is reduced. DEAP framework reduces resources utilization and the cost of
distributed processing of the prototype mobile application in MCC as follows: RAM
allocation on mobile device by 71.5 percent, CPU utilization on mobile device by 55
percent, the size of data transmission over the wireless network medium by 84 percent,
turnaround time of the application by 79.8 percent and energy consumption cost by 81

Univ
ers

iti
Mala

ya

iv

percent. Hence, DEAP framework provides a lightweight application layer solution for
intensive mobile application processing in MCC.

Univ
ers

iti
Mala

ya

v

Abstrak

Mobile Cloud Computing (MCC) membolehkan pengiraan intensif dan di mana-mana
aplikasi mudah alih dengan memanfaatkan perkhidmatan awan pengiraan. Pergantungan
manusia pada telefon pintar kontemporari meningkatkan pesat dalam pelbagai domain
seperti perusahaan, e-pembelajaran dan hiburan, gamming, sistem maklumat pengurusan,
dan penjagaan kesihatan. Walau bagaimanapun, aplikasi mudah alih pada generasi terbaru
telefon pintar dan tablet masih dikekang oleh kuasa bateri, potensi CPU dan kapasiti
memori Devices Pintar Bergerak (SMDS). Oleh itu, MCC menggunakan pengiraan
pemunggahan sebagai perisian yang signifikan tahap penyelesaian untuk mengurangkan
batasan sumber di SMDS. Baru-baru ini, beberapa rangka kerja pemunggahan pengiraan
dicadangkan untuk memproses aplikasi intensif pengiraan mudah alih di MCC. Tradisional
pengiraan pemunggahan rangka melaksanakan teknik intensif untuk Pemunggahan
pengiraan di daerah yang menyebabkan penggunaan tenaga yang tinggi dan masa
pemulihan yang lebih lama aplikasi mudah alih. Oleh itu, teknik ringan penting untuk
pemprosesan aplikasi pengiraan intensif di daerah. Teknik Ringan membolehkan
permohonan penempatan pengiraan intensif mudah alih dan pelaksanaan dengan sumber-
sumber yang minimum ke atas penggunaan SMDS. Hasilnya, pengguna telefon bimbit
boleh menggunakan perkhidmatan awan diedarkan dengan beban pengiraan pada peranti
mudah alih yang lebih rendah, pemulihan yang lebih pendek masa permohonan dan bateri
lebih tahan lama seumur hidup. Kajian ini menyiasat sumber ciri-ciri kerangka tradisional
pemunggahan pengiraan intensif dan mencadangkan satu rangka kerja ringan untuk aplikasi
intensif pemprosesan mudah alih di MCC. Kos tambahan Pemunggahan pengiraan runtime
disiasat dengan melaksanakan mekanisme permohonan pemunggahan dalam persekitaran
pengkomputeran awan sebenar bimbit. Diedarkan dan Pemprosesan Permohonan Anjal
(DEAP) rangka kerja yang dicadangkan sebagai penyelesaian ringan untuk memproses
permohonan intensif dalam daerah. DEAP rangka kerja mengurangkan kos penghijrahan
permohonan fail fail dan data perduaan keadaan berjalan aplikasi mudah alih. Akibatnya,
saiz penghantaran data melalui medium rangkaian wayarles, masa pemulihan operasi
intensif dan kos penggunaan tenaga pada peranti mudah alih dikurangkan dengan ketara.
DEAP rangka kerja dinilai dalam persekitaran emulasi pada contoh peranti Android maya.
Prestasi DEAP rangka kerja disahkan oleh aplikasi prototaip penandaarasan dalam awan
sebenar persekitaran pengkomputeran mudah alih. Keputusan senario eksperimen yang
berbeza berbanding untuk mengesahkan sifat ringan rangka kerja DEAP. Ia mendapati
bahawa dengan menggunakan rangka kerja DEAP kos penghijrahan permohonan fail fail
dan data perduaan keadaan berjalan permohonan dikurangkan. Akibatnya, saiz
penghantaran data melalui medium rangkaian wayarles, masa pemulihan operasi intensif
dan kos penggunaan tenaga pada peranti mudah alih dikurangkan. DEAP rangka
mengurangkan penggunaan sumber dan kos pemprosesan diedarkan permohonan prototaip
mudah alih di daerah seperti berikut: RAM peruntukan pada peranti mudah alih 79,8
peratus, penggunaan CPU pada peranti mudah alih 77 peratus, saiz penghantaran data
melalui rangkaian wayarles sederhana peratus 84, masa pemulihan peratus permohonan

Univ
ers

iti
Mala

ya

vi

80,6 dan penggunaan tenaga kos 69,9 peratus. Oleh itu, rangka kerja DEAP menyediakan
lapisan permohonan penyelesaian ringan untuk memproses permohonan intensif mudah
alih di MCC.

Univ
ers

iti
Mala

ya

vii

Acknowledgement

First of all, I am thankful to Almighty Allah who enabled me to complete my

studies with distinction. I would like to offer special thanks to my supervisor, Associate
Professor Dr. Abdullah Gani for his invaluable guidance, supervision, and encouragement
to me throughout this research. Dr. Abdullah Gani, not only provided helpful suggestions,
but also accepted responsibility to oversee this research, and guided me to the successful
completion of this thesis. He provided me the opportunity to broaden my professional
experience and prepare me for future challenges.

 I would like to express my sincerest gratitude and appreciation to my family for their
endless love and support during my life. Without their moral support, this dissertation
would never have been completed. No words can express my real feelings, so I dedicate my
first achievement in my life as a small gift to them. I would like to express my deep
appreciation to my dear lab friends, who provided so much support and encouragement
throughout this research and studies process. I wish them all the best in their future
undertaking.

Univ
ers

iti
Mala

ya

viii

Table of Contents

CHAPTER 1 .. 1

1.1 Background ... 1

1.2 Motivation ... 2

1.3 Statement of Problem .. 4

1.4 Statement of Objectives ... 5

1.5 Proposed Methodology .. 6

1.6 Layout of Thesis .. 7

CHAPTER 2 .. 10

2.1 Background ... 10

2.1.1 Cloud Computing ... 10

2.1.2 Mobile Cloud Computing .. 12

2.1.3 Computational Offloading for Mobile Cloud Computing 14

2.1.4 Distributed Models for Computational Offloading .. 17

2.2 Review of Traditional Computational Offloading Frameworks 19

2.2.1 Taxonomy of Distributed Application Processing Frameworks for MCC 19

2.2.2 Review on Distributed Application Processing Frameworks 23

2.3 Comparison of Distributed Application Processing Frameworks 43

2.3.1 Offloading Scope (OS) ... 44

2.3.2 Partitioning Approach (PA) ... 45

2.3.3 Migration Granularity (MG) .. 45

2.3.4 Migration Support (MS) ... 46

2.3.5 Migration Pattern (MP) .. 46

2.3.6 Developer Support (DS) ... 47

2.3.7 Execution Management (EM) .. 47

2.3.8 Security Support (SS) ... 48

2.4 Issues and Challenges for Distributed Application Deployment in MCC 50

2.4.1 Scalability and Availability of Services and Resources 50

2.4.2 Lightweight Distributed Application Deployment .. 52

Univ
ers

iti
Mala

ya

ix

2.4.3 Seamless Connectivity and Consistent Distributed Platform......................... 53

2.4.4 Homogenous and Optimal Distributed Platform.. 54

2.4.5 Security and Privacy in Cloud Based Application Processing....................... 55

2.5 Conclusion ... 57

CHAPTER 3 .. 60

3.1 Introduction ... 60

3.2 Analysis of Traditional Computational Offloading for MCC 61

3.2.1 Analysis of the Energy Consumption Cost .. 62

3.2.2 Analysis of the Timing Cost .. 72

3.2.3 Analysis of the Size of Data Transmission .. 83

3.3 Analysis of VM Deployment for Application Processing 87

3.4 Conclusion ... 92

CHAPTER 4 .. 94

4.1 Introduction ... 94

4.2 Proposed Lightweight Application Processing Framework 95

4.3 Distinguishing Features of DEAP Framework .. 108

4.3.1 Standardized Developmental and Deployment Procedures 108

4.3.2 Optimal Communication Procedures ... 109

4.3.3 Elasticity and Robustness in Deployment .. 110

4.3.4 Convenient Application Level Deployment... 110

4.3.5 Offline Usability, Richness of Local Services and Smartness in Behavior . 110

4.4 Conclusion ... 111

CHAPTER 5 .. 113

5.1 Introduction ... 113

5.2 Evaluation of the Proposed DEAP Framework ... 114

5.2.1 Experimental Setup .. 114

5.2.2 Prototype Application .. 116

5.2.3 Data Gathering and Data Processing.. 117

Univ
ers

iti
Mala

ya

x

5.3 Data Collected for Application Execution on the Local Mobile Device............. 119

5.4 Data Collected for Application Execution in Traditional
Computational Offloading ... 131

5.5 Data Collected for Application Execution by Employing DEAP Framework 140

5.6 Comparison of Experimental Results .. 153

5.7 Conclusion ... 171

CHAPTER 6 .. 172

6.1 Analysis of Application Execution on Local Mobile Device 172

6.2 Analysis of Traditional Computational Offloading for MCC 186

6.3 Analysis of DEAP Based Computational Offloading for MCC 194

6.4 Comparison of Experimental Results .. 213

6.5 Conclusion ... 243

CHAPTER 7 .. 245

7.1 Reappraisal of the Objectives Achievement.. 245

7.2 Contribution of the Research ... 247

7.3 Research Scope and Limitations ... 254

7.4 Future Work .. 255

References .. 257

 Univ
ers

iti
Mala

ya

xi

List of Figures

Figure 1. 1: Thesis Organization .. 8

Figure 2. 1: Layered Cloud Computing Architecture .. 11

Figure 2. 2: Model of Mobile Cloud Computing (Shiraz et al. 2012) 13

Figure 2. 3: Distributed Models for Computational Offloading ... 19

Figure 2. 4: Taxonomy of Mobile Application Offloading Frameworks for MCC
(Shiraz et al., 2012) ... 23

Figure 2. 5: Generic Flowchart for the VM Migration Based Application Offloading
(Shiraz et al., 2012) ... 29

Figure 2. 6: Generic Flowchart for Entire Application Migration Based DAPFs
(Shiraz et al., 2012) ... 35

Figure 2. 7: Generic Flowchart for Flowchart Partitioning Migration Based DAPFs
(Shiraz et al., 2012) ... 43

Figure 3. 1: Total Energy Consumption Cost (Ec1) in Traditional Offloading of Sorting
Service ... 67

Figure 3. 2: Energy Consumption Cost (Ec2) for Offloading Matrix Multiplication Service
in Traditional Computational Offloading .. 71

Figure 3. 3: Timing Cost (Tc1) in Traditional Computational Offloading for Sort Service 78

Figure 3. 4: Total Timing Cost (Tc2) in Traditional Computational Offloading for
Matrix Multiplication Service ... 82

Figure 3. 5: Application Allocation to Virtual Machine Time (Shiraz et al., 2013a) 89

Figure 3. 6: Application Processing Time for None Shared VMs (Shiraz et al., 2013a) 90

Figure 3. 7: Application Processing Time (APT) for Shared VMs...................................... 90

Figure 3.8: Comparison of APT for Shared VMs & None Shared VMs
(Shiraz et al., 2013a) ... 91

Figure 4. 1: Architecture of the Proposed DEAP Framework .. 98

Figure 4. 2: Illustration of the Interaction of the Components of DEAP Framework in POP
and SOP ... 103

Figure 4. 3: Sequence Diagram for Primary Operating Procedure of DEAP Framework . 104

Figure 4. 4: Sequence Diagram for Secondary Operating Procedure of
DEAP Framework ... 105

Figure 4. 5: Illustration of the Operation Logic of DEAP Framework 106

Figure 6. 1: Allocation of RAM for Sorting Service on SMD .. 173

Figure 6. 2: RAM Allocation to Matrix Multiplication Service on Local SMD................ 175

Figure 6. 3: Turnaround Time of Sorting Service on Local SMD 177

Figure 6. 4: Turnaround Time of Matrix Multiplication Operation on Local SMD 178

Univ
ers

iti
Mala

ya

xii

Figure 6. 5: Turnaround Time of Power Compute Service of the Application on Local
SMD .. 180

Figure 6. 6: Energy Consumption Cost of Sorting Service on Local SMD 181

Figure 6. 7: Energy Consumption Cost of Matrix Multiplication Service on SMD 183

Figure 6. 8: Energy Consumption Cost of Power Compute Service on SMD 184

Figure 6. 9: Average CPU Utilization on SMD by the Components of Prototype
Application .. 186

Figure 6. 10: Total Turnaround Time of Sorting Service in Traditional Computational
Offloading ... 188

Figure 6. 11: Total Turnaround Time of Matrix Multiplication Service in Traditional
Offloading ... 189

Figure 6. 12: Total Energy Consumption in Offloaded Processing of Sorting Service 191

Figure 6. 13: Energy Consumption Cost of Matrix Multiplication Service in Offloaded
Processing ... 192

Figure 6. 14: Size of Data Transmission in Offloading Sorting Service at Runtime 193

Figure 6. 15: Size of Data Transmission in Offloading Matrix Multiplication Service at
Runtime ... 194

Figure 6. 16: Total Turnaround Time of Sorting Service in the POP of DEAP Client
Application .. 196

Figure 6. 17: Turnaround Time of Matrix Multiplication Service in POP of DEAP Client
Application .. 197

Figure 6. 18: Total Energy Consumption Cost of Sorting Service in POP of DEAP Client
Application .. 199

Figure 6. 19: Energy Consumption Cost of Matrix Multiplication Service in POP of DEAP
Client Application ... 201

Figure 6. 20: Time Taken in Offloading Power Compute in the SOP of DEAP Client
Application .. 202

Figure 6. 21: Turnaround Time of Power Compute Service in the SOP of DEAP Client
Application .. 204

Figure 6. 22: Energy Consumption Cost of Power Compute Service in SOP of DEAP Client
Application .. 205

Figure 6. 23: Increase in the RAM Allocation to DEAP Client Application for Accessing
Sorting Service in POP ... 207

Figure 6. 24: Increase in the RAM Allocation to DEAP Client Application for Accessing
Matrix Multiplication Service in POP .. 208

Figure 6. 25: CPU Utilization for DEAP Client Application on Local Mobile Device in
POP and SOP .. 210

Figure 6. 26: Size of Data Transmission in Accessing Sorting Service of DEAP Server
Application .. 211

Figure 6. 27: Size of Data Transmission in Accessing Matrix Multiplication Service of
DEAP Server Application ... 212

Univ
ers

iti
Mala

ya

xiii

Figure 6. 28: Comparison of Turnaround Time of Sorting Operation on Local AVD and
POP of DEAP ... 214

Figure 6. 29: Comparison of Energy Consumption Cost of Sorting Operation on Local
AVD and POP of DEAP ... 214

Figure 6. 30: Comparison of Turnaround Time of Matrix Multiplication Operation on Local
AVD and POP of DEAP ... 216

Figure 6. 31: Comparison of Energy Consumption Cost of Matrix Multiplication Service on
Local AVD and POP of DEAP ... 217

Figure 6. 32: Comparison of Turnaround Time of Power Compute Operation on Local
AVD and POP of DEAP ... 219

Figure 6. 33: Comparison of Energy Consumption Cost of Power Compute Operation on
Local AVD and POP of DEAP ... 220

Figure 6. 34: Comparison of the Turnaround Time (TT) of the Sorting Service Execution in
Local and Remote Execution .. 223

Figure 6. 35: Comparison of the Turnaround Time of the Matrix Multiplication Service
Execution in Local and Remote Execution ... 226

Figure 6. 36: Comparison of the Turnaround Time (of Power Compute Operation in in
Local and Remote Execution .. 227

Figure 6. 37: Comparison of Energy Consumption Cost for Sorting Service in Local and
Remote Execution ... 230

Figure 6. 38: Comparison of Energy Consumption Cost for Matrix Multiplication Service
in Local and Remote Execution .. 232

Figure 6. 39: Comparison of Energy Consumption Cost for Power Compute Service in
Local and Remote Execution .. 234

Figure 6. 40: RAM Allocation for Sorting Operation on SMD Local Service Execution and
in POP of DEAP ... 235

Figure 6. 41: Comparison of RAM Allocation in Local Execution of Matrix Multiplication
Service and in the POP of DEAP .. 236

Figure 6. 42: Comparison of CPU Utilization in Local Application Execution and DEAP
Based Execution ... 239

Figure 6. 43: Comparison of the Size of Data Transmission in Traditional Offloading and
DEAP Based Offloading for Sorting Operation ... 241

Figure 6. 44: Comparison of the Size of Data Transmission in Traditional Offloading and
DEAP Based Offloading for Matrix Multiplication Operation 243

Univ
ers

iti
Mala

ya

xiv

List of Tables

Table 2. 1: Comparison of Local Resource Sharing Based Application Offloading
Frameworks (Shiraz et al., 2012) .. 48

Table 2. 2: Comparison of Server Based Application Offloading Frameworks
(Shiraz et al., 2012) ... 49

Table 3. 1: Total Energy Consumption Cost (Ec1) in Traditional Offloading of Sorting
Service ... 65

Table 3. 2: Energy Consumption Cost (Ec2) for Offloading Matrix Multiplication Service in
Traditional Computational Offloading .. 69

Table 3. 3: Timing Cost (Tc1) in Traditional Computational Offloading for
Sorting Service .. 76

Table 3. 4: Timing Cost (Tc2) in Traditional Computational Offloading for Matrix
Multiplication Service ... 80

Table 3. 5: Size of Data Transmission in Runtime Computational Offloading for Sorting
Service and Matrix Multiplication Service .. 85

Table 5. 1: RAM Allocation in the Execution of Sorting Service Component of the
Application on Local Mobile Device .. 120

Table 5. 2: RAM Allocation in the Execution of the Matrix Multiplication Service
Component of the Application on Local Mobile Device 121

Table 5. 3: RAM Allocation in the Execution of the Power Compute Service Component
of the Application on Local ... 122

Table 5. 4: Turnaround Time of Sorting Service on Mobile Application 123

Table 5. 5: Turnaround Time of Matrix Multiplication Service on Mobile Application ... 124

Table 5. 6: Turnaround Time of Power Compute Service on Mobile Application............ 125

Table 5. 7: Energy Consumption Cost (ECC) of Sorting Service Operating on the Local
Mobile Device ... 127

Table 5. 8: Energy Consumption Cost (ECC) of Matrix Multiplication Operation on Local
Mobile Device ... 129

Table 5. 9: Energy Consumption Cost of Power Compute Operation on Local Mobile
Device.. 130

Table 5. 10: Statistics of CPU Utilization on the Mobile Device in Local Application
Processing.. 131

Table 5. 11: Turnaround Time of the Sorting Operation in Traditional Computational
Offloading ... 132

Table 5. 12: Turnaround Time of the Matrix Multiplication Operation in Traditional
Computational Offloading .. 133

Univ
ers

iti
Mala

ya

xv

Table 5. 13: Energy Consumption Cost (ECC) of Sorting Operation in Traditional
Computational Offloading .. 135

Table 5. 14: Energy Consumption Cost (ECC) of Matrix Multiplication Operation in
Traditional Runtime Offloading ... 136

Table 5. 15: The Size of Data Transmission over the Wireless Network Medium for Sorting
Component in Traditional Computational Offloading 137

Table 5. 16: The Size of Data Transmission over the Wireless Network Medium for Matrix
Multiplication Component in Traditional Computational Offloading 139

Table 5. 17: Turnaround Time for Sorting Operation in the POP of the DEAP client
Application .. 141

Table 5. 18: Turnaround Time for Matrix Multiplication Operation in the POP of the DEAP
Client Application ... 142

Table 5. 19: Energy Consumption Cost (ECC) for Sorting Operation in the POP of the
DEAP Framework ... 143

Table 5. 20: Energy Consumption Cost (ECC) for Matrix Multiplication Operation in the
POP of the DEAP Client Application ... 145

Table 5. 21: Time Taken in Offloading Power Compute in the SOP of DEAP client
Application .. 146

Table 5. 22: Turnaround Time of Offloading Power Compute in the SOP of DEAP client
Application .. 147

Table 5. 23: Total Energy Consumption Cost in Offloading of Power Compute Service in
the SOP of DEAP Client Application ... 148

Table 5. 24: RAM Allocation on Local Mobile Device in Accessing Sorting Service of
DEAP server Application ... 149

Table 5. 25: RAM Allocation on Local Mobile Device in Accessing Matrix Multiplication
Service of DEAP Server Application ... 150

Table 5. 26: Statistics of CPU Utilization on the Mobile Device in DEAP Based
Application Processing ... 152

Table 5. 27: Data Transmission in the POP of DEAP client Application.......................... 152

Table 5. 28: Comparison of Sorting Service Execution on Local Android Virtual Device
and POP of DEAP client Application ... 153

Table 5. 29: Comparison of Matrix Multiplication Service Execution on Local Android
Virtual Device and POP of DEAP client Application 155

Table 5. 30: Comparison of Power Compute Service Execution on Local Android Virtual
Device and POP of DEAP client Application .. 156

Table 5. 31: Comparison of Turnaround Time (ms) of Sorting Operation in Local and
Remote Execution ... 157

Table 5. 32: Comparison of the Turnaround Time of the Matrix Multiplication Operation in
Local and Remote Execution .. 159

Table 5. 33: Comparison of the Turnaround Time (ms) of the Power Compute Operation in
Local and Remote Execution .. 160

Univ
ers

iti
Mala

ya

xvi

Table 5. 34: Comparison of Energy Consumption Cost of Sorting Operation in Local and
Remote Execution ... 162

Table 5. 35: Comparison of Energy Consumption Cost of Matrix Operation in Local and
Remote Execution ... 163

Table 5. 36: Comparison of Energy Consumption Cost of Power Compute Operation in
Local and Execution ... 164

Table 5. 37: Comparison of RAM Allocation to Sorting Service in Local Execution and
POP of DEAP client Application .. 166

Table 5. 38: Comparison of RAM Allocation to Matrix Multiplication Service in Local
Execution and POP of DEAP client Application .. 167

Table 5. 39: Comparison of CPU Utilization in Local Application Execution and Remote
DEAP Based Remote Application Execution ... 168

Table 5. 40: Comparison of the Data Transmission Using Traditional Offloading Technique
and DEAP Framework for Sorting Service .. 169

Table 5. 41: Comparison of the Data Transmission Using Traditional Offloading Technique
and DEAP Framework for Matrix Multiplication Operation 170

Univ
ers

iti
Mala

ya

xvii

 List of Acronyms

ACID Atomicity, Concurrency, Isolation and Durability
API Application Program Interface
APT Application Processing Time
ARM Advanced RISC Machine
CEU Client Execution Unit
CES Cloud Elasticity Service
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit
CFI Cloud Fabric Interface
CM Cloud Manager
DAPFs Distributed Application Processing Frameworks
DEMAC Distributed Environment for Mobility Aware Computing
DEM Device Elasticity Manager
DISHES Distributed Shell System
DVM Dalvik Virtual Machine
ECC Energy Consumption Cost
EC2 Elastic Cloud Compute
FTP File Transfer Protocol
GB Giga Byte
GPRS General Packet Radio Service
HMAC Hash-Based Message Authentication Code
HTTP Hypertext Transfer Protocol
I/O Input / Output
IP Internet Protocol
JVM Java Virtual Machine
MAUI Mobile Assistance Using Infrastructure
MB Mega Bytes
MIPS Millions of Instruction Per Second
NDIS Network Driver Interface Specification
LAN Local Area Network
MAC Medium Access Control
MB Mega Byte
MCC Mobile Cloud Computing
DEAP Distributed Elastic Application Processing
OS Operating System
P2P Peer to Peer
PC Personal Computer
PDA Personal Digital Assistant
POP Primary Operating Procedure
PIE Pipe I/O Exec Subsystem
RISC Reduced Instruction Set Computer
RAM Random Access Memory
RCP Rich Client Platform
RTT Round Trip Time
SAL Storage Abstraction Layer
SD Service Directory

Univ
ers

iti
Mala

ya

xviii

S3 Simple Storage Service
SOAP Simple Object Access Protocol
SOP Secondary Operating Procedure
SMD Smart Mobile Device
SSL Secure Socket Layer
TCP Transmission Control Protocol
TSL Transport Layer Security
TSP Telecommunication Service Provider
TT Turnaround Time
UDP User Datagram Protocol
UMSC Universal Mobile Service Cell
URL Uniform Resource Locator
VFS Virtual File Service
VM Virtual Machine
WiFi Wireless Fidelity
WSDL Web Service Description Language
XML Extensible Markup Language

Univ
ers

iti
Mala

ya

Chapter: 1 Introduction

1

CHAPTER 1

Introduction

This chapter presents theoretical framework and motivations for the proposed

research. It discusses the problem statement, states the objectives and describes the

methodology used for the proposed research. The chapter is divided into six sections.

Section 1.2 highlights motivations for the proposed research by explaining the importance

of the proposed work and significance of the proposed solution. Section 1.3 summarizes the

problem statement by highlighting issues in the traditional computational offloading

frameworks. Section 1.4 highlights the research objectives. Section 1.5 summarizes the

methodology used in this research and section 1.6 sketches the layout of the thesis.

1.1 Background

Cloud computing facilitates to increase the computing capabilities of resource

constraint client devices by offering leased infrastructure and software applications.

Therefore, Mobile Cloud Computing (MCC) enables computational intensive and

ubiquitous mobile applications by leveraging the services of computational clouds. The

compact design, resources constraints, mobile nature and wireless access medium features

of Smart Mobile Devices (SMDs) require lightweight frameworks for the processing of

intensive mobile applications in MCC. Mobile devices are predicated as the dominant

future computing devices with high user expectations for accessing computational intensive

applications analogous to powerful stationary computing machines. In spite of all the

advancements in recent years, SMDs are still low potential computing devices which are

limited in memory capacity, CPU speed and battery power lifetime (Shiraz et al., 2012).

Univ
ers

iti
Mala

ya

Chapter: 1 Introduction

2

MCC extends the services and resources of computational clouds for alleviating the

limitations of computing resources in SMDs. MCC utilizes the application processing

services of computational clouds for the processing of computationally intensive mobile

applications. In MCC, computational offloading is implemented as a software level solution

for outsourcing the computationally intensive applications to powerful cloud server nodes.

However, leveraging cloud resources and services for mobile devices with lightweight

access techniques is highly challenging for the reasons of unique hardware architecture,

heterogeneous operating system platforms and the intrinsic limitations associated with

wireless network medium. This research focuses on the lightweight frameworks for the

processing of intensive mobile applications in MCC.

1.2 Motivation

The report of Gartner Incorporation (Gartner, 2011) states that in the second quarter

of 2011 worldwide sale of mobile devices increased 16.5 percent (428.7 million units) as

compared to the second quarter of 2010 which is an evidence of the increasing use smart

mobile devices. Similarly, the report of Juniper Research (Holman, 2010) states that the

consumer and enterprise market for cloud based mobile applications is expected to raise

$9.5 billion by 2014 which is an evidence of the increasing use of distributed mobile

computing. Recently, a number of computing and communication devices are replaced by

smartphones towards all-in-one ubiquitous computing devices such as PDAs, digital

cameras, Internet browsing devices, and Global Positioning Systems (GPS) (Prosper

Mobile Insights, 2011). Human dependency on the contemporary smartphones is increased

rapidly in various domains such as enterprise, e-learning and entertainment, gamming,

management information systems, and healthcare (Albanesius, 2011). SMDs are expected

to perform intensive computing analogous to their powerful stationary counterparts.

Univ
ers

iti
Mala

ya

Chapter: 1 Introduction

3

Mobile applications on the latest generation of smartphones and tablets are still

constrained by battery power, CPU potentials and memory capacity of the SMDs. Even

though mobile hardware technology is developing increasingly, however powerful

processing hardware is highly energy consuming. For instance, the processing cycles of

CPU, memory refresh instances of primary memory and backlit pixels on the display screen

are energy consuming features of mobile device. Therefore, software level solutions are

endeavored for augmenting the computing capabilities of SMDs. MCC employs

computational offloading as a significant software level solution for alleviating the

resources limitations in SMDs.

Recently, a number of computational offloading frameworks are proposed for the

processing of computationally intensive mobile applications in MCC(Cuervo et al., 2010;

Zhang et al., 2011; Huang et al., 2012). The traditional computational offloading

frameworks implement resources intensive techniques for the processing of

computationally intensive applications in MCC, which results in high energy consumption

and longer turnaround time of the intensive mobile applications. Therefore, lightweight

techniques are required for the processing of computational intensive applications in MCC.

Lightweight techniques enable computational intensive mobile application deployment and

execution with minimal resources utilization on SMDs. As a result, mobile users can utilize

distributed services with lower computational load on mobile devices, shorter turnaround

time of the application and relatively long lasting battery lifetime. Achieving the aim of

lightness in the processing of computational intensive applications for MCC is a

challenging research perspective. This research investigates the resources intensive aspects

of traditional computational offloading frameworks and proposes lightweight framework

for the processing intensive mobile applications in MCC.

Univ
ers

iti
Mala

ya

Chapter: 1 Introduction

4

1.3 Statement of Problem

Traditional computational offloading frameworks for MCC (Giurgiu et al., 2009;

Chun et al., 2011; Cuervo et al., 2010; Zhang et al., 2011; Huang et al., 2012) require the

configuration of ad-hoc distributed platform and partitioning of the mobile application at

runtime which is resources intensive and time consuming. SMDs are required to select

remote server node for each instance of component offloading at runtime, which increases

the energy consumption cost and turnaround time of the application. The partitioning

mechanism utilizes additional computing resources in runtime application profiling and

solving which increases the computational load on mobile device (Satyanarayanan et al.,

2009; Dou et al., 2010; Giurgiu et al. 2009; Cuervo et al., 2010; Zhang et al., 2011). As a

result, the computing resources (RAM, CPU) and battery of the mobile devices are utilized

abundantly and for a longer period of time.

Traditional computational offloading frameworks implement outsourcing of running

instances of mobile application (Cuervo et al., 2010; Huang et al., 2012). The technique of

outsourcing running instances to cloud server nodes includes the additional cost of saving

the data states of the running application on mobile device and reconfiguration of the

application on the remote service, which utilizes additional computing resources on mobile

device.

The management of runtime distributed platform requires continuous synchronization

between local SMD and remote cloud server node. The implementation of uninterrupted

synchronization mechanism in the wireless network medium requires keeping SMD in

active state which is energy consuming mechanism. Further, traditional computational

offloading involves runtime transmission of the binary code of the application and data files

which increases the overhead of data transmission over the wireless network medium.

Univ
ers

iti
Mala

ya

Chapter: 1 Introduction

5

The VM migration based application offloading frameworks (Goyal, 2004;

Satyanarayanan et al., 2009; Chun et al., 2009; Chun et al., 2011), involve the overhead of

VM deployment and management on SMD which results in additional resources and

battery power utilization on SMD. Further, the migration of running instances of the

application (partially or entirely) which are encapsulated in VM includes the issue of

network attacks vulnerability.

The traditional computational offloading frameworks lack in the consideration of

additional resources utilization in runtime component offloading and emphasize on

leveraging the Infrastructure as a Service (IaaS) provisioning model for computational

offloading which is resources intensive and time consuming. Traditional computational

offloading frameworks involve the cost of the migration of application binary file and data

file of the running instances of the application. As a result, the size of data transmission

over the wireless network medium, turnaround time of the intensive operations and energy

consumption cost on mobile device is increased. Hence, the traditional computational

offloading frameworks employ heavyweight procedures for the distributed processing of

computational intensive mobile applications in MCC.

1.4 Statement of Objectives

We aim at proposing a lightweight framework for the processing of computationally

intensive mobile applications in mobile cloud computing. The following are the objectives

of the research.

 To review the state-of-the-art for computational offloading in mobile cloud computing.

 To investigate the additional cost (energy consumption, timing, data transmission) of

computational offloading in the traditional computational offloading.

Univ
ers

iti
Mala

ya

Chapter: 1 Introduction

6

 To propose a lightweight framework for the processing of intensive mobile applications

in mobile cloud computing.

 To evaluate the proposed framework by testing synthetic workload in the emulation

environment and validate the performance by benchmarking prototype application in

the real time environment and comparing results of different experimental scenarios.

1.5 Proposed Methodology

We studied the state-of-the-art to identify issues in the current computational

offloading frameworks for MCC. The traditional computational offloading frameworks are

categorized on the basis of thematic taxonomy (Shiraz et al., 2012). We identify the issues

in the traditional offloading frameworks, which hinder the optimization goals of cloud

based application processing for MCC.

The research problem is investigated by studying VM deployment for application

processes in the simulation environment and implementing traditional runtime offloading

technique in the real mobile cloud computing environment. Simulation is performed by

using the CloudSim, which is a simulation toolkit for modeling the infrastructure as a

service model of the computational clouds. CloudSim is employed for the evaluation of the

impact of virtual machine deployment for application processing.

We propose a lightweight Distributed and Elastic Application Processing (DEAP)

framework for the processing of intensive mobile applications in MCC. The proposed

framework implements a distributed architecture for minimizing the instances of runtime

component offloading and implements runtime component offloading for addressing the

issue of dynamic processing load on SMD.

The proposed framework is evaluated in emulation and real time mobile cloud

computing environment. Synthetic workload is tested on the Android virtual device

Univ
ers

iti
Mala

ya

Chapter: 1 Introduction

7

instance, which is enabled to operate in the distributed mobile cloud computing

environment. Prototype application is developed for the Android device, which is tested

with varying computational intensities in the distributed mobile cloud computing

environment. Experimental results are validated by benchmarking prototype application

with different computational intensities in the real mobile cloud computing environment.

The execution behavior of the application is analyzed from the perspective of

resources utilization on local mobile device and remote server node, size of data

transmission on the wireless network medium, and execution time of the application in the

traditional and proposed computational offloading techniques.

Empirical data are collected by testing each component of the prototype application

with 30 different computational intensities. The value of sample mean for each experiment

is signified with 99% confidence interval for the sample space of 30 values. The

lightweight nature of DEAP framework is validated by comparing experimental results in

three different execution scenarios of the prototype application.

1.6 Layout of Thesis

This thesis is composed of seven chapters, which are structured as follows.

Univ
ers

iti
Mala

ya

Chapter: 1 Introduction

8

Figure 1. 1: Thesis Organization

Chapter 2 presents the epistemology of mobile cloud computing and reviews the

state-of-the-art in application offloading for mobile cloud computing. It classifies current

offloading models on the basis of thematic taxonomy and compares current frameworks on

the basis of significant parameters. The challenges to traditional offloading models and

issues in cloud-based application processing for MCC are identified.

Chapter 3 analyzes additional resources utilization in traditional runtime

computational offloading by testing the prototype application in the real mobile cloud

computing environment. Traditional computational offloading is implemented by

offloading the resource intensive service components (sort service and matrix

multiplication service) with varying computational intensities to remote cloud server node.

The measurement parameters for problem analysis include; energy consumption cost,

turnaround time of the component offloaded at runtime and the size of data transmission

over the wireless network medium. The cost of virtual machine deployment for application

processing is analyzed in the simulation environment by using CloudSim.

Univ
ers

iti
Mala

ya

Chapter: 1 Introduction

9

Chapter 4 proposes a lightweight Distributed and Elastic Application Processing

(DEAP) framework for intensive mobile applications. It explains the architecture of

proposed framework, and distinct operating procedures of the proposed framework for the

operating modes of the mobile application in accessing the services of cloud server node.

Chapter 5 reports on the data collection method for the evaluation of the proposed

framework. It explains the tools used for testing the proposed framework, data collection

technique and the statistical method used for the processing of data.

Chapter 6 presents the usefulness of the proposed framework by analyzing the

experimental results presented in chapter 5. It discusses the significance of the proposed

solution by analyzing the results of the experimentation and comparing the results of

different experimental scenarios.

Chapter 7 concludes the thesis by reporting on the reexamination of the research

objectives. It explains the findings of the research work, highlights the significance of the

proposed solution, states the limitations of the research work and proposes future directions

of the research.

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

10

CHAPTER 2

Literature Review

This chapter presents theoretical framework for Mobile Clod Computing (MCC),

reviews the state-of-the-art and provides thematic taxonomy for current computational

offloading frameworks in MCC. The chapter is organized into six sections. Section 2.1

explains the fundamental concepts of cloud computing, mobile cloud computing,

computational offloading for MCC and the distributed models deployed for processing of

intensive mobile applications. Section 2.2 presents thematic taxonomy of the traditional

offloading models, reviews current computational offloading frameworks and investigates

the implications and critical aspects of the current offloading frameworks. Section 2.3

compares current computational offloading frameworks by comparing the commonalities

and deviations on the basis of significant parameters. Section 2.4 highlights the issues and

challenges in computational offloading for MCC. Section 2.5 summarizes the chapter with

conclusive remarks.

2.1 Background

This section elaborates the concept of cloud computing and mobile cloud computing.

Further, it explains the mechanism of augmenting smartphone through computational

clouds.

2.1.1 Cloud Computing

Cloud computing is the distributed computing model that implements the utility

computing vision (Buyya et al., 2009), wherein computing services are provided on

demand basis. Cloud service models enable with new IT business models such as on-

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

11

demand, pay-as-you-go, and utility computing. The objective of the cloud computing model

is to increase the capacity and capabilities of client devices by accessing leased

infrastructure and software applications instead of owning them. Cloud computing has

introduced new kind of information and services and new ways of communication and

collaboration. Cloud has created online social networks in which scientists share data and

analysis tools to build research communities (Kumar et al., 2010; Barga et al., 2011).

In cloud computing, applications are delivered as services over the Internet and user

access computing resources from centralized cloud servers through service providers

(Armbrust et al., 2009). Computational clouds implement different types of service models

for implementing the on demand computing vision (Buyya et al., 2009). Service providers

provide services in the form of various service models; Software as a Service (SaaS),

Infrastructure as a Service (IaaS), and Platform as a Service (PaaS). Figure 2.1 shows an

abstract level layered cloud computing architecture.

Cloud Physical Resources Cloud Physical Resources

Virtualized Resources Virtualized Resources

Application Hosting PlatformApplication Hosting Platform

Cloud Applications Cloud Applications

PaaS

SaaS

IaaSIaaS

Figure 2. 1: Layered Cloud Computing Architecture

The hardware resources in the cloud datacenters are the physical resources of

computational clouds. Access to the physical resources is provided in the form of virtual

machines. A middleware (hypervisor) masks access to the physical resources and is

responsible for the deployment and management of virtual machines. The application

hosting platform is composed of cloud programming environments and tools and

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

12

monitoring tools such as QoS negotiation, admission control, pricing and billing. The cloud

applications run on the virtual machine instances in complete isolation.

2.1.2 Mobile Cloud Computing

Mobile cloud computing is the latest practical computing paradigm that extends

utility computing vision of computational clouds to resources constrained SMDs. MCC is a

distributed computing model for mobile applications wherein the storage and the data

processing are outsourced from the mobile device to resources rich and powerful centralized

computing datacenters in computational clouds (Shiraz et al., 2012). The centralized

applications, services and resources are accessed over the wireless network technologies

based on web browser on the SMDs. Successful practices of accessing computational

clouds on demand for stationary computers motivate for leveraging cloud services and

resources for SMDs. MCC has been attracting the attentions of business persons as a

profitable business option that reduces the development and execution cost of mobile

applications and mobile users are enabled to acquire new technology conveniently on

demand basis. MCC enables to achieve rich experience of a variety of cloud services for

SMD at low cost on the move (Hoang et al., 2011).

MCC prolongs diverse services models of computational clouds for mitigating

computing resources (battery, CPU, memory) limitations in SMDs. The objective of MCC

is to augment computing potentials of SMDs by employing resources and services of

computational clouds (Fernando et al., 2012). MCC focuses on alleviating resources

limitations in SMDs by employing different augmentation strategies; such as screen

augmentation, energy augmentation, storage augmentation and application processing

augmentation of SMD. Abolfazli et al. (2012) highlighted mobile augmentation techniques

and proposed a taxonomy including three main approaches, namely high-end resource

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

13

production, native resource conservation, and resource requirement reduction. A number of

approaches have been analyzed and it is argued that MCC lessens need to high-end hardware,

reduces ownership and maintenance cost, and alleviates data safety and user privacy.

The MCC model is composed of three major components; SMDs, internet wireless

technology and computational cloud. SMDs use wireless network technology protocols

such as 3G, LTE, or Wi-Fi to access the services of computational cloud in mobile

environment. As SMD inherit its nature of mobility, it needs to execute location-aware

services which consume resources and turned it to be a low-powered client. Figure 2. 2

shows a generic model of MCC in which the cloud that provides off-device storage,

processing, queuing capabilities, and security mechanism is integrated with SMD via

wireless network technologies.

Figure 2. 2: Model of Mobile Cloud Computing (Shiraz et al. 2012)

MCC utilizes cloud storage services (Amazon S3, Google Docs, MobileMe and Dropbox)

for providing online storage and cloud processing services for augmenting processing

capabilities of SMDs (Zhang et al., 2011). Processing capabilities of SMDs are augmented

by outsourcing computational intensive components of the mobile applications to cloud

datacenters. The following section discusses the concept of augmenting smartphones

through computational clouds.

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

14

2.1.3 Computational Offloading for Mobile Cloud Computing

MCC implements a number of augmentation procedures for leveraging resources and

services of cloud datacenters. Examples of the augmentations strategies include; screen

augmentation, energy augmentation, storage augmentation and application processing

augmentation of SMD. In MCC, two categories of the cloud services are of special interest

to research community; cloud contents and computing power. Cloud contents are provided

in the form of centralized storage centers or sharing online contents such as live video

streams from other mobile devices. A number of online file storage services are available

on cloud server which augments the storage potentials by providing off-device storage

services. Examples of the cloud storage services include Amzon S3 and DropBox. Mobile

users outsource data storage by maintaining data storage on cloud server nodes. However,

ensuring the consistency of data on the cloud server nodes and mobile devices is still a

challenging research perspective.

SmartBox (Zheng et al., 2009) is online file storage and management model which

provides a significant approach for online cloud based storage and access management

system. Similarly, the application processing services of the cloud datacenters is leveraged

by outsourcing computational load to cloud server nodes. The technique of outsourcing

computational task to remote server is called computational offloading or cyber foraging.

The term “cyber foraging” is introduced by Satyanarayanan (2001) to augment the

computing potentials of wireless mobile devices by utilizing the available stationary

computers in the local environment. The process of outsourcing computational load to

remote surrogates in the close proximity is called cyber foraging (Goyal. et al., 2004).

Researchers implement process offloading techniques for Pervasive Computing (Oh et al.,

2006) , Grid Computing (Chunlin et al., 2010) and Cluster Computing (Begum et al.,

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

15

2010). The contemporary approaches for computational offloading in MCC employ the

analogous approach of traditional computational offloading for pervasive computing.

Mobile applications, which are attributed with the features of runtime partitioning are

called elastic mobile applications (Shiraz et al., 2012). Elastic applications are partitioned at

runtime for the establishment of distributed processing platform.

Elastic mobile applications are attributed with the following features (Messer et al.,

2002) .

 Ad-hoc platform creation is an important attribute of elastic mobile applications.

Distributed application processing platform is established on ad-hoc basis at runtime in

which elastic mobile application is partitioned dynamically and computational intensive

components are migrated to remote server nodes. Mobile clients dynamically arbitrate

with cloud servers or surrogates to determine appropriate server node for remote

application processing.

 Elastic applications are designed in such a manner so that computational intensive

components of the mobile application are separated dynamically at runtime.

Applications are partitioned at different granularity level depending upon the design

and partitioning policy of the offloading algorithm.

 Adaptive offloading of the intensive components of the applications is a significant

attribute of elastic mobile applications. Partitions of the application are offloaded to

remote machines for remote execution which augments the computing capabilities of

SMDs. Application offloading occurs whereas keeping in view different objective

functions; such as energy saving, processing power, memory storage, and fast

execution.

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

16

 Transparency in the distributed execution platform is a significant attribute of elastic

applications. Transparency assures that elastic mobile application executes

transparently on remote surrogates/server nodes. A transparent distributed processing

environment gives the notion as entire application is being executed locally on SMD.

All the complexities of remote execution are concealed from mobile users. Researchers

determine applications offloading as an appropriate software level solution for

alleviating resources limitations in SMDs.

Currently application offloading is implemented in a number of ways. The application

offloading frameworks outsource computational load of SMD at different granularity

levels. The static application partitioning approach is used to separate the intensive

components of mobile application only once. The dynamic partitioning approach is

implemented to address the issue of dynamic application processing load on SMDs at

runtime. Dynamic partitioning of the intensive mobile application at runtime is a robust

technique for coping with the dynamic processing loads on SMD. In dynamic partitioning

application is partitioned dynamically at runtime casually or periodically. In casual

partitioning runtime profiling and solving mechanisms are activated in critical conditions to

offload intensive components of mobile application. In periodic partitioning the runtime

optimization mechanism evaluates computing resources utilization on SMD periodically.

Current dynamic partitioning approaches analyze the resources utilization on SMDs,

computational requirements of the mobile application and search for runtime solving of the

problem of resource limitations on SMD. The profiling mechanism evaluates computing

resources requirements of mobile application and the availability of resources on SMD. In

critical condition (the unavailability of sufficient resources on SMD) elastic mobile

application is partitioned and the computational intensive components of the application are

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

17

offloaded dynamically at runtime. SMDs negotiate with cloud servers for the selection of

appropriate server node. At that moment, the partitions of the application are migrated to

remote server node for remote processing. Upon successful execution of the remote

components of the application, result is returned to main application running on SMD.

Empirical analysis ascertains the significance of distributing application processing

load to remote server nodes. However, the deployment of distributed application processing

platform is obstructed by a number of unresolved challenges for MCC. The traditional and

contemporary computational offloading frameworks focus on the establishment of dynamic

distributed application processing platform at runtime. For the selection of cloud server

node, SMDs arbitrate with cloud server node dynamically at runtime. Therefore, the

configuration of distributed processing platform at runtime is a resources starving and

energy consuming mechanism. Dynamic runtime offloading involves the issues of dynamic

application profiling and solving on SMD, runtime application partitioning, migration of

intensive components and continuous synchronization for the entire duration of runtime

execution platform. Therefore, the development and deployment of intensive mobile

applications on the basis of current algorithms is still a challenging research issue.

2.1.4 Distributed Models for Computational Offloading

Current offloading algorithms employ diverse models for the outsourcing

computational load. The following section discusses different mobile computing models,

which are employed for application offloading.

2.1.4.1 Local Surrogate Based Distributed Model

In local surrogate based distributed model, SMD is enabled to select an appropriate

surrogate for application offloading. A remote surrogate is either a stationary computer or

mobile device in local environment. The model implements a centralized server for the

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

18

establishment of distributed platform and provision of computing resources. Goyal et al.

(2004) implement a lightweight cyber foraging framework for outsourcing computational

load to surrogates in the localized environment.

2.1.4.2 Mobile Devices Based Ad-hoc Distributed Model

In mobile devices based ad-hoc distributed model virtual or ad-hoc cloud computing

environment is established among SMDs in the close proximity. In such an environment,

sharing of the computing resources and services is restricted to the computing capabilities

mobile devices in the virtual cloud environment. The virtual cloud lacks in the centralized

management for the sharing of resources and services. The peer SMDs share computing

resources and provides remote service for offload processing. Canepa et al. (2010)

implement virtual cloud model for sharing image processing load among peer SMDs in the

close proximity.

2.1.4.3 Centralized Server Based Mobile Devices Distributed Model

In centralized server based mobile devices distributed model, remote computing

services are provided by mobile worker nodes. However, a centralized server monitors the

establishment and management of distributed application execution platform. In such a

computing model, distributed resources and services provision are restricted to the

computing potentials and services of worker nodes (SMDs). Dou and Kalogeraki (2010)

implement MapReduce model for sharing the computational workload among mobile

worker nodes.

2.1.4.4 Cloud Datacenters Based Distributed Model

The cloud datacenter based distributed model is composed of centralized monitoring

mechanism for providing access to shared resources and services. The service providers

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

19

provide access to the widespread services on demand basis. Zhang et al. (2011) implement

elastic application model for outsourcing application partitions to cloud server nodes.

Figure 2.3 highlights mobile computing models which are employed for application

offloading.

Distributed Application Processing ModelsDistributed Application Processing Models

Pervasive Model
(Virtual Cloud)

Pervasive Model
(Virtual Cloud)

Centralized Server Based
Mobile Worker Nodes Model

Centralized Server Based
Mobile Worker Nodes Model

Cloud Datacenter
Based Model

Cloud Datacenter
Based Model

Local Surrogate
Model

Local Surrogate
Model

Figure 2. 3: Distributed Models for Computational Offloading

2.2 Review of Traditional Computational Offloading Frameworks

This section classifies the traditional computational offloading frameworks on the

basis of thematic taxonomy and analyzes the implications and critical aspects of the

traditional Distributed Application Processing Frameworks (DAPFs). Section 2.2.1

explains the taxonomy of the traditional offloading models and section 2.2.2 reviews the

traditional offloading frameworks on the basis of thematic taxonomy.

2.2.1 Taxonomy of Distributed Application Processing Frameworks for MCC

Thematic taxonomy is derived on the basis of the following attributes: framework

nature, migration pattern, migration support, partitioning approach and objective functions.

This section presents an introduction to the attributes of the thematic taxonomy. Section

2.2.2 reviews current DAPFs on the basis of framework nature, whereas section 2.3

contains a detailed discussion on objective functions, migration pattern, migration support,

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

20

migration granularity and partitioning approaches. Section 2.3 compares the traditional

DAPFs on the basis of the parameters presented in the taxonomy.

2.2.1.1 Framework Nature

The nature of a framework represents the primary mechanism employed for the

establishment of runtime distributed platform in offload processing. We categorize current

DAPFs on the basis of virtual machine migration, entire application migration and

application partitioning.

a) Virtual Machine Migration: Virtual machine migration nature of DAPFs indicates that

SMD offload mobile application (partially or entirely) by encapsulating the offloading

component in VM instance on SMD. In VM migration based offloading mechanism the

data states of the running application are saved (Chun and Maniatis, 2009) or the entire

image of the running application is encapsulated in the VM instance (Satyanarayanan et

al., 2009). The instantiated VM instance is migrated to the remote server nodes. A

number of current DAPFs employ VM migration based approach for computational

offloading (Hung et al., 2011; Zao et al., 2011).

b) Entire Application Migration: Entire application migration nature of DAPFs indicates

that SMD offload entire processing job to remote server nodes. Current DAPFs offload

entire application in two different manners. Running application is offloaded to remote

server node (Canepa and Lee, 2010) or entire job is offloaded to remote server for

outsourced processing (Liu et al., 2009).

c) Application Partition: Application partitioning nature of the framework indicates the

elastic nature of offloading framework. Elastic mobile applications have the attributes

of dynamic runtime partitioning. The intensive partitions of the application are

offloaded to remote server nodes at runtime (Cuervo et al., 2010; Zhang et al., 2011).

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

21

2.2.1.2 Partitioning Approach

The partitioning approach of a framework indicates the mechanism of separating

intensive components of the application. Current DAPFs implement runtime application

partitioning in two different manners; static partitioning and dynamic partitioning. In static

application partitioning the application partitioning logic is implemented only once either at

compile time or runtime. The partitioning mechanism separates the locally annotated

components for local execution on SMD, whereas the remotely annotated components are

offloaded to remote server nodes.

The dynamic partitioning mechanism follows dynamic evaluation mechanism for

the evaluation of the computational load on SMD. In dynamic partitioning, the application

partitioning algorithm continuously monitors the statistics of the resources allocated to

mobile application on SMD. In critical conditions (availability of low computational

resources on SMD) the pre-identified intensive (remotely annotated) components of the

mobile application are offloaded to cloud server nodes.

2.2.1.3 Migration Support

The attribute of migration support indicates the level of support required for

migrating application or partitions of the application at runtime. Currently, migration

support is provided either at system level or application level. In system level migration the

support of additional services is required on local operation system. For example the VM

migration based offloading requires the additional support for VM deployment on SMD. In

application level migration, the offloading logic is implemented at the application layer and

does not require additional support at the operating system level.

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

22

2.2.1.4 Migration granularity

The migration granularity attribute represents the granularity level at which

application is migrated. Current DAPFs offload intensive components of the application at

different granularity level. For example thread level granularity indicates that running

thread is offloaded for remote processing. In the same way, method level granularity

indicates that methods of the application are offloaded for remote processing.

2.2.1.5 Migration pattern

The migration pattern attribute represents the mechanism for transferring mobile

application to remote server node. Current DAPFs employ a number of migration patterns

such as VM migration, download using URL on remote host, mobile agent serving as

courier for application transfer, binary code transfer of the application or copying entire

proxy of the application on distributed computing nodes.

2.2.1.6 Objective functions

The objective function attribute indicates the primary objective of a framework for

application offloading. Traditional application offloading frameworks implement a number

of objective functions for making the decision of application offloading; such as saving

energy on SMD, efficient bandwidth utilization, saving processing power on SMD, user

preferences for fast application processing, or execution cost parameter. Figure 2.4 shows

the thematic taxonomy of current DAPFs for MCC. Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

23

Distributed Application
Processing Frameworks
Distributed Application
Processing Frameworks

Migration PatternMigration PatternMigration
Granularity
Migration

GranularityObjective FunctionObjective FunctionFramework NatureFramework Nature
Partitioning
Approach

Partitioning
Approach

Migration
Support

Migration
Support

Static
Partitioning

Static
Partitioning

Dynamic
Partitioning
Dynamic

Partitioning

System LevelSystem Level

Application
Level

Application
Level

Application
Proxy

Application
Proxy

Binary Code
Migration

Binary Code
Migration

Mobile AgentMobile Agent

URL Based
Download

URL Based
Download

VM MigrationVM Migration

Application Partitioning Based
Application Offloading

Application Partitioning Based
Application Offloading

Entire Application Migration
Based Application Offloading
Entire Application Migration
Based Application Offloading

Virtual Machine Migration Based
Application Offloading

Virtual Machine Migration Based
Application Offloading

Processor
Augmentation

Processor
Augmentation

Bandwidth
Utilization
Bandwidth
Utilization

Energy Saving Energy Saving

User PreferencesUser Preferences

Execution CostExecution Cost

Entire Process Entire Process

Module LevelModule Level

BundlesBundles

Class LevelClass Level

Method LevelMethod Level

Thread LevelThread Level

WebletsWeblets

Figure 2. 4: Taxonomy of Mobile Application Offloading Frameworks for MCC (Shiraz et

al., 2012)

2.2.2 Review on Distributed Application Processing Frameworks

This section reviews current DAPFs on the basis of framework nature presented in

Figure 2.4. It also investigates the implications and critical aspects current DAPFs.

2.2.2.1 VM Migration Based Computational Offloading

Cyber foraging framework (Goyal et al., 2004) is employed to utilize computation

resources of the computing devices (stationary or mobile) in the close proximity of the

SMD. The framework implements client/server architecture. Mobile devices request for

process offloading and surrogate server provides the services on demand. The framework

supports configuration of multiple surrogate servers simultaneously and employs virtual

machine technology for remote application processing. A single surrogate server is capable

to run a number of independent virtual servers in a controlled manner and simple cleanup

mechanism is employed for releasing the resources allocated to VM instance. Each

offloaded application executes on isolated virtual server. The framework ensures secure

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

24

communication by deploying cryptographic measures for communication between SMD

and surrogate server.

The framework includes the benefits of low latency, local accessibility of remote

surrogates and fewer concerns of security and privacy. The critical aspects of such

approach is the deployment of template based virtualization approach which is a highly

time consuming and resources starving mechanism for VM deployment (Wang et al.,

2011). The framework requires the annotation of individual components of the application

as local or remote which is an additional effort for the application developers. Further,

surrogate based cyber foraging is restricted to the availability of services and resources on

local servers.

VM based cloudlets framework (Satyanarayanan et al., 2009) differs from cyber

foraging (Goyal and Carter, 2004) by migrating image of the running application to the

explicitly designated remote server. A cloudlet is a trusted resource rich computer or cluster

of computers which is accessible for SMDs. In the proposed model SMDs are employed as

thin client which implement user interface components of the mobile application. The

actual application processing is performed on the cloudlet in distributed environment.

Virtual machine technology is deployed to rapidly copy customized service software on a

nearby cloudlet and access the service in ubiquitous local area network environment.

The framework implements hardware supported VM technology for the customization

of cloudlet infrastructure. VM instance in the cloudlet machine separates the delegated

guest application processing environment from the cloudlet infrastructure’s permanent host

software environment. The framework employs different procedures for VM migration.

The critical aspects are that the framework requires additional hardware level support for

the implementation of VM technology and is based on cloning mobile device application

processing environment to remote host. The mechanism of transferring the entire image of

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

25

mobile application involves the issues of VM deployment and management on SMD,

privacy and access control in migrating the entire execution environment and security

threats in the transmission of VM instance.

 Chun and Maniatis (2009) proposed a clone cloud based framework which is a

significant approach for offloading different types of mobile applications. Clone cloud

differs from other approaches (Goyal and Carter, 2004; Satyanarayanan et al., 2009) by

employing three different offloading algorithms for different types of applications.

However, the attribute of offloading image of the running states of the application to

remote server resembles to the VM based Cloudlet approach (Satyanarayanan et al., 2009).

The framework reduces the dynamic transmission overhead of application code by

deploying a simple approach for synchronization.

Clone cloud employs the mechanism of primary functionality outsourcing by

offloading computational intensive tasks to remote host whereas simple tasks such as user

interfaces are executed on mobile devices. Primary functionality outsourcing strategy is

useful for applications which involve two types of processing; user interfaces which are

displayed on the mobile devices, and high power resource starving computation. Example

of the application includes speech recognition, image processing and video indexing.

Background augmentation mechanism offloads the entire application to remote host and

returns result from the background process to the mobile device. The background

augmentation strategy is useful for the applications which are composed of intensive

processing loads and do not require frequent user interactions. Example of the applications

includes scanning of files for viruses, indexing files for faster search. In these scenarios

entire process is marked as remote by either; programmer, user or automatically inferred as

background process at runtime. Mainline augmentation strategy is implemented which are

resources intensive and requires frequent user interactions. Such type of applications need

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

26

to interact with other parts of the applications or users and having some computational

intensive load. Examples of the applications include; fault tolerance and debugging.

Clone cloud is a significant framework for offloaded processing which includes a

simple approach for synchronization between SMD and remote server. The critical aspect

of the Clone cloud is the migration of the execution environment of the application on

SMD to remote server which involves the issues of security, privacy, access control, and

the complications of VM deployment and management on SMD. The deployment of

variant strategies for application migration on the basis of application nature results in

enlarged overhead on mobile devices. Clone cloud deploys a single thread approach which

increases jitter in the execution time of the application components.

The elastic CloneCloud (Chun et al., 2011) extends the concept of local Clone cloud

(Chun and Maniatis, 2009) to remote cloud datacenters. The framework is based on

partitioning of the application on thread basis and requires application level support for the

establishment of distributed application processing platform at runtime. The framework is

implemented in two phases; partitioning and migration. The partitioning phase determines

the candidate intensive threads of the mobile application which are required to be migrated

to the cloud server for remote execution. The partitioning phase involves static analysis,

application dynamic profiling, and optimization solution. Static analysis is performed to

identify migration and reintegration points in the code. The framework deploys some

constraints for partition migration and ensures to follow the constraints for identifying

migration and reintegration points in the application.

In CloneCloud the partitioning and integration of the application occurs at application

level. The running data states of the outsourcing components of the mobile application are

encapsulated in VM instance and VM migration is employed for partition migration to

cloud server node. The framework employs a centralized monitoring mechanism for the

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

27

establishment and management of distributed application execution platform. CloneCloud

is a significant approach for extending the concept of VM based offloading from local

distributed platform to centralized cloud servers. The framework considers the objective

functions of application execution time and energy consumption at mobile device.

CloneCloud implements a complicated architecture on SMD for the establishment and

management of distributed platform. The framework is based on VM instance migration to

the cloud node which involves the concerns of secure communication of running

application states encapsulated in VM and privacy and access on remote server node. A

major limitation of the architecture is that a single thread is migrated to the cloud at a time

which reduces concurrency of the execution of application components.

Hung et al. (2012) propose a virtualized execution environment for mobile

applications. The framework utilizes application level process migration and employs

Android platform for distributed application deployment. A running application is

encapsulated in VM on SMD and VM is migrated to remote cloud computing environment.

Cloud server creates fresh VM instance, and the delegated application VM is cloned into

the newly created VM instance on the cloud server node. A synchronization mechanism is

provided between SMD and cloud server. A middleware is placed between mobile device

OS and hardware to support runtime workload migration and to better utilize the

heterogeneous resources of mobile device and cloud servers. The framework deploys

pause/resume scheme of the android platform for transferring . The framework employs

application level process migration strategy for offload processing and employs hardware

base trusted platform module. The framework provides mechanism for storing encryption

keys and performs cryptographic operations on sensitive data. The critical aspects are that

the framework requires heavy and traffic intensive synchronization mechanism for ensuring

consistency between SMD and cloud server. The framework necessitates a separate

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

28

program called agent to be installed on SMD and cloud server which results in additional

overhead on SMDs.

Mirror server (Zao et al., 2011) is a distinct augmentation framework which employs

Telecommunication Service Provider (TSP) based remote services. A TSP is a type of

communications service provider which provides voice communication services such as

land line telephone and cellular phone call services. The framework leverages cloud

computing virtualization technique for the deployment of mirror server. A mirror server is a

powerful server configured in TSP backbone which maintains VM template for different

mobile devices platforms.

The VM template for each mobile device is kept with default settings. A new VM

instance is created for offloaded component of the mobile application. The VM template

for each mobile device is called its mirror and the server responsible for the deployment

and management of the mirrors is called mirror server. The server creates fresh VM

instance as per the platform of the requesting SMD. Mirror server is scalable and is capable

to create hundreds of mirrors at a time. Mirror server augments smartphones by providing

three different types of services; security (file scanning), storage (file caching) and

computation offloading.

The significant aspect of mirroring smartphone is that it provides reliable services

through 3G network and addresses the challenging aspect of heterogeneity in SMDs

platforms. The framework provides a lightweight protocol for SMDs for accessing remote

services on mirror server and employs an optimized mechanism for downloading and

offloading. The critical aspects of mirroring based DAPF is the deployment of TSP based

mirror servers which are not basically designed for data processing, for that reason limited

services can be acquired as compared to cloud datacenters.

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

29

The following section describes the generic sequence of operations for VM migration

based application offloading. (a) The first step for application offloading is to arbitrate for

appropriate surrogate or remote server host. Subsequently, the running application is

encapsulated in VM on SMD which involves the creation of VM instance, VM

configuration for running application and encapsulating all the state information of running

application in VM instance. (b) The VM instance is migrated to the remote server through

wireless medium. A new VM instance is created on remote server and the migrated VM is

cloned onto the newly created VM instance on remote server. Running states of the

application are resumed and application is executed on remote server host. Finally, results

are returned to the SMD. (c) Remote server ensures complete isolation of guest VM which

means that the executing environment of guest VM is prevented from interference. Figure

2.5 shows abstract level flowchart of VM migration based application offloading.

StartStart

Encapsulation of Application in
VM on SMD

Encapsulation of Application in
VM on SMD

VM Migration VM Migration

Application Resume on Cloud
Server Node

Application Resume on Cloud
Server Node

Remote Application Processing Remote Application Processing

 Mobile Application on SMD Mobile Application on SMD

Pause Mobile ApplicationPause Mobile Application

StopStop

Selection of Remote Server HostSelection of Remote Server Host

Figure 2. 5: Generic Flowchart for the VM Migration Based Application Offloading
(Shiraz et al., 2012)

Virtual machines lead to high CPU utilization. VMs share the same CPU/core

which increases the CPU scheduling latency for each VM (Wang et al., 2011). VM

migration based offloading requires additional computing resources and time for the

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

30

deployment and management of VM on SMD. As a result, such approaches increase the

execution cost and time of the application. Migration of the running application along with

its data states is susceptible to security breaches and attacks. Further, a number of other

research challenges such as privacy and access control are still addressable which obstruct

the goals of optimal VM based migration algorithms for MCC (Shiraz et al., 2013).

2.2.2.2 Entire Application Migration Based DAPFs

Lightweight secure cyber foraging infrastructure (Goyal et al., 2004) employs Virtual

Server Manager (VSM) which handles requests from SMDs for surrogate operations. SMD

sends a request to VSM which is composed of URL to the program to be executed on

surrogate. The entire program is downloaded on that URL and executed remotely. The

background augmentation strategy of Clone cloud (Chun et al., 2009) employs entire

application migration to remote host. The application is migrated to remote local servers

using VM instance migration and results are returned from background process to the

mobile device.

Canepa et al. (2010) propose the virtual cloud computing provider solution for mobile

devices which is an ad-hoc cloud framework. The virtual cloud model focuses on the

establishment of virtual cloud of SMDs. The virtual cloud computing environment is

composed of SMDs in the proximity which remains in the same locality and stable mode.

Mobile devices in the proximity set up an ad-hoc or virtual cloud environment and enables

SMDs in the vicinity to share the computational load. The framework is composed of

different components. The context manager component of the architecture maintains

information regarding volunteer SMDs for resource sharing. The offloading manger

component is responsible for sending and receiving entire applications, management of

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

31

runtime distributed environment and detecting failure and failure management. Offload

manager coordinates with p2p component for application offloading and returning results.

Universal Mobile Service Cell (UMSC) based framework (Liu et al., 2009) is a

unique mobile agent based optimization solution which focuses on virtual cloud of mobile

devices. The distinguishing features of the framework are the employment of mobile agent

(UMSC) for application offloading and virtual cloud based service provision. The proposed

architecture is composed of mobile hosts, UMSC, and mobile cloud units. Cloud unit

support several services such as offloaded computing and remote storage. The mobile cloud

is composed of two kinds of cloud units such as local cloud unit and remote cloud unit. The

framework uses UMSC for the offloading of entire application to remote cloud unit.

UMSC serves as a mobile agent and works as a proxy for transmission between mobile

cloud and mobile host. UMSC is implemented as an intelligent software module which

carries the requests of users. UMSC does not send request or responses to the network;

instead UMSC itself migrates into the cloud to search response. The framework is

composed of mobile agents in local mobile cloud computing environment for mobile

devices and uses a genetic algorithm based scheduling policy for UMSC. The mobile

environment is divided into a large number of cell regions. Each cell region is composed of

several mobile cloud units. The cloud units in the cloud regions collectively form the

virtual mobile cloud environment. Cloud units are the mobile support stations for providing

services.

The framework addresses the intrinsic issues associated with mobile computing;

mobility, heterogeneity, and low bandwidth. UMSC based approach is a hybrid solution

that combines mobile agent technology with virtual cloud model which is composed of

SMDs. UMSC employs mobile IP to compensate the problem of mobility and provides a

mechanism to overcome the problem of mobile host disconnection. UMSC guarantees the

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

32

quality and stability of wireless connections. The critical aspects are that distributed

services are restricted to the availability of mobile nodes in virtual distributed wireless

environment. The framework exploits localized approach for accessing distributed

resources and involves a decentralized monitoring mechanism on SMDs which increases

the demand for computing resources on SMDs. The framework implements management of

mobile agents on mobile devices, which is a sophisticated and resource consuming

mechanism.

Chung et al. (2010) propose Distributed Shell System (DISHES) which is the

extension of UNIX kernel shell to support ubiquitous distributed computing platform for

SMDs. The architecture is composed of a centralized server, which contains a Service

Directory (SD). The ambient computers register with the server which employs SD for

maintaining database of all the nodes which are willing for sharing resources. Mobile

clients make use of SD services for tracking appropriate remote server. DISHES serves as

an interface middleware between a mobile user and network computers. SMD makes

request for the availability of remote host for application processing, SD responds with the

IP address of appropriate volunteer remote host for application process. SMD offloads

entire application to remote host for remote processing and results are returned to SMD on

successful completion of the remote processing.

DISHES includes performance optimization mechanism to monitor network traffic

and provides remote execution services in transparent manner. The critical aspects of

DISHES are the decentralized approach, unavailability of centralized mechanism for the

establishment and management of distributed platform and entire application migration for

offloaded processing. DISHES imposes additional assistant process creation on SMDs

which involves intensive monitoring overhead on SMDs.

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

33

Dou and Kalogeraki (2010) propose Misco which extends the concept of MapReduce

to the distributed cloud environment which is composed of centralized server and mobile

worker nodes. MapReduce is a flexible distributed data processing framework which

automatically parallelizes the processing of long running applications in cluster

environment (Dean and Ghemawat, 2004). In Misco, the master server is a centralized

monitoring entity which is responsible for the implementation of MapReduce framework. A

distinctive feature of the framework is that SMDs are the worker nodes which serve as

serving components for remote application processing. The worker nodes coordinate with

the master server for getting workload and returning result. The communication between

worker and master server occurs through HTTP Server. The download and upload between

master server and workers is performed in the form of XML files. Application developers

identify the Map and Reduce functions during the application development process.

The framework provides a distributed platform for mobile applications. Misco

provides a centralized monitoring mechanism for monitoring of the distributed execution

platform. The critical aspects are that the framework consists of worker mobile nodes

which are intrinsically resources poor and therefore the availability of computing services is

restricted to the computing potentials of SMDs. Misco requires the developers to annotate

the methods as map or reduce functions and does not perform any centralized processing of

application which results in communication overhead repeatedly between worker nodes and

master server. Communication overhead increases jitter in the process execution,

bandwidth consumption and energy consumption.

Liu et al. (2010) implement privacy algorithm for offloading entire image object to

grid power server nodes. It highlights the tradeoff between energy savings and privacy

protection in offloading processing. Stenographic techniques (Nguyen, et al., 2006) are

explored for disguising actual image from grid powered servers. The authors focus on the

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

34

fact of privacy based offloading in which the contents of the offloaded components are

hidden from the cloud node. The authors investigate the tradeoff between energy

consumption and privacy of offloading and performed analysis of different execution

patterns of the applications. Different parameters are involved in the energy consumption of

mobile application processing; computation power of mobile, network power, idle power of

mobile device, the speed of mobile system, speed of server, and bandwidth of network.

Iyer et al. (2011) propose Cogniserve which focuses on the evolving feature of

Mobile Augmented Reality (MAR) for image processing and speech recognition

applications. Cogniserve architecture is composed of three main components; application

cores for processing over cloud server, application specific recognition accelerators for

performance improvement and decreasing latency, architectural support for general purpose

programming and efficient communication between small cores and accelerators. The

recognition server is composed of small cores connected via interconnect to an integrated

memory controller for attaching it to DRAM. The design is composed of simple chip multi-

processor. Application specific accelerators are used to further enhance the recognition

execution time. Three types of accelerators are deployed in the architecture; Gaussian

mixture model for speech recognition, match accelerator and interest point detection for

image recognition. The resulting architecture is heterogeneous by integrating small cores.

CogniServe deploys the concept of instruction set architecture, in which there is

direct user access from the small core to accelerator. As a result, the user to kernel mode

transitions is eliminated. The architecture also utilizes the concept of common memory

management units which lead the accelerator to share virtual memory space with the core;

as a result of this it eliminates data movement overhead with the kernel to user mode

transition. The framework deploys heterogeneous server architecture for recognition

applications of mobile devices. CogniServe provides direct access between server cores and

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

35

accelerators instead of kernel to user space transition which eradicates address space

transition and results in a low cost and energy efficient architecture. The critical aspects are

that the framework requires special hardware level support for the implementation and is

specially designed for recognition applications such as image processing and speech

recognition applications.

The virtualized framework (Hung et al., 2012) employs application level process

migration and uses Android platform for the deployment. A running application is

encapsulated in VM on SMD and VM is migrated to remote cloud computing environment

for remote processing. Mirror server based approach (Zao et al., 2011) involves the

migration of the state of the entire running application on the smartphone device to mirror

instance on server. Application is executed in the mirror VM instance and result is return to

the smart mobile device. Figure 2.6 shows the generic flowchart of offloading entire

application/job to remote server node.

StartStart

Application/Job MigrationApplication/Job Migration

Remote Application Processing Remote Application Processing

Mobile Application on SMDMobile Application on SMD

Pause Mobile ApplicationPause Mobile Application

StopStop

Selection of Remote Server HostSelection of Remote Server Host

Figure 2. 6: Generic Flowchart for Entire Application Migration Based DAPFs
(Shiraz et al., 2012)

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

36

SMD arbitrate with cloud server nodes for the selection of remote server node, at that

moment entire application or job is migrated to remote server node. Upon the successful

execution of the application on remote server ultimate results are returned to SMD.

2.2.2.3 Application Partitioning

The latest DAPFs employ application partitioning based offloading mechanism for

outsourcing the intensive components of the mobile application to remote server node.

Current partitioning algorithms employ runtime application profiling and solving

mechanism for evaluating the computational load of SMDs. Elastic application frameworks

employ different objective functions for the identification of intensive components of the

mobile application and making the decision of application offloading. Application

partitioning algorithms are classified in two broad categories; static partitioning and

dynamic partition. The following section reviews existing elastic application framework

for MCC on the basis of aforementioned application partitioning approaches.

2.2.2.4 Static Application Partitioning Based DAPFs

In static application partitioning the mobile application is partitioned in fixed number

of partitions either at compile time or runtime. The computational intensive partitions of the

applications are outsourced to remote servers. In the primary functionality offloading

(Satyanarayanan et al., 2009) application is statically partitioned in two major partitions.

Such applications involve two types of processing; user interface which are required on

mobile device; and computational intensive parts of the application are offloaded to remote

surrogates or cloud servers. In Misco (Dou et al., 2010) the application is statically

partitioned into two types of functions; map and reduce. Map function is applied on the set

of input data and produces intermediary <key, value> pairs; such pairs are grouped into a

number of partitions. All pairs in the same partition are passed to a reduce function which

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

37

produces the final results. Application developers are responsible for implementing the map

and reduce functions and the system handles all the remaining mechanism. The worker

nodes process map and reduce functions and results are returned to master server.

2.2.2.5 Dynamic Application Partitioning Based DAPFs

Dynamic partitioning of the intensive mobile application at runtime is a robust

technique for coping with the dynamic processing loads on SMD. Current dynamic

partitioning approaches analyze the resources consumption of SMDs, computational

requirements of the mobile application. Such frameworks search for runtime solving the

critical conditions of resources shortage on SMD. In dynamic partitioning application is

partitioned dynamically at runtime casually or periodically. In casual partitioning runtime

profiling and solving mechanisms are activated in critical conditions to offload intensive

components of mobile application. In periodic partitioning the runtime optimization

mechanism evaluates computing resources utilization on SMD periodically. Dynamic

partitioning of the mobile application is implemented in different manners. In the follow

section we review current dynamic application partitioning frameworks for MCC.

AIDE (Messer et al., 2002) establishes distributed platform which is composed of

different computing devices such as laptops, PC’s, PDA’s, and smartphones. The

framework is composed of surrogate server and mobile device client. SMD searches for

suitable surrogate to share application processing load. The partitioning component of the

AIDE partitions the application by following a partitioning policy. The framework

exercises class level granularity for the partitioning of elastic mobile application. The

application profiling component establishes the feasibility of offloading. Application

profiler reflects on two parameters, the execution history of the application and prediction

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

38

of the future resources required for the application. Profiler aims for offloading the

components that could improve the performance of the system.

AIDE provides a transparent distributed application deployment framework for mobile

applications. The sophistication of application migration and remote execution are masked

from mobile users. AIDE employs a dynamic partitioning and migration approach for

offloaded processing and employs computing services of the remote hosts in the local

distributed environment. AIDE implements distributed execution platform in transparent

manner and gives the notion of application being executed on local device. AIDE

incorporates the option to use multiple surrogates for remote execution. The critical aspects

of AIDE are that the runtime partitioning of the application requires additional computing

resources exploitation for the establishment of distributed platform. AIDE is a decentralized

distributed platform for dynamic partitioning and migration, therefore heavy monitoring

overhead is implemented on SMD.

Giurgiu et al. (2009) introduced a middleware framework for sharing the application

processing load on SMD dynamically between cloud server node and mobile devices.

Objective of the framework is to deploy the application in optimal mode by automatically

and dynamically determining the execution location for modules of an application.

Application profiling component of the architecture partitions the application in modules on

the basis of its behavior and represents modules in the form of data flow graph known as

consumption graph. The framework exercises existent module management such as R-

OSGi (Rellermeyer et al., 2008) and deployment tool such as AlfredO (OSGi Alliance,

2007). The framework implements both static partitioning and dynamic partitioning

strategies. K-Step and ALL algorithms are used for application partitioning. K-Step is

deployed for dynamic partition at runtime, whereas ALL is employed for static partitioning

of the application. Preprocessing of the consumption graph is performed before running the

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

39

algorithm to reduce search space. Preprocessing separates local and remote bundles of the

application. The framework looks for outsourcing the components of mobile application

which are feasible for offloading. It means that the intensive components of the mobile

application with higher offloading cost than local execution are not offloaded.

The implications of the framework are that it employs both static and dynamic

partitioning algorithms for the establishment of runtime distributed platform between

SMDs and cloud datacenters. A significant aspect of the framework is that SMDs are

assigned application processing load on the basis of the availability of memory and

processing capacity. The framework derives optimal solution for optimization problem in

order to optimize different objective functions such as interaction time, communication

cost, and memory consumption. The critical aspect of the framework is the runtime

partitioning strategy which puts additional computational load on SMDs in dynamic

analysis, profiling, synthesizing, partitioning and migration. The framework requires

SMDs to continuously synchronize with the cloud server node which requires maintaining

SMD in active state for the entire duration of distributed platform which is an energy

starving mechanism (Kelenyi et al. 2009; Pedersen, 2009).

Mobile Assistance Using Infrastructure (MAUI) (Cuervo et al., 2010) is a dynamic

partitioning framework which focuses on energy saving for the SMD. MAUI partitions the

application dynamically at runtime in which the computational intensive components of the

application are offloaded to the cloud server nodes. Programmers annotate the individual

methods of the application as local or remote. MAUI profiler determines the remote

methods of application to be offloaded to cloud server. Whenever a method is called, the

profiler component evaluates it for energy saving which consumes additional computing

resources (CPU, energy) on SMD.

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

40

MAUI solver decides the destination location for the execution of the method

annotated as remote. The decision of MAUI solver is based upon the input of MAUI

profiler. Proxies of the application are created for execution on both cloud server node and

mobile device for communication between local methods and remotely executable

methods. MAUI generates a wrapper for each method marked as remote at compile time.

The type signature of the wrapper methods differs from two perspectives; one additional

input argument, and one additional return type. Input argument is required for the state

transfer of smartphone to MAUI server through client application proxy. The additional

return value is used to transfer the application state back to smart mobile device using

server proxy. State of the method is transferred in serialized form.

MAUI is a cloud server based dynamic partitioning framework which considers energy

saving on SMD as the main objective function for offloaded processing. MAUI masks the

complexity of remote application execution from mobile user and gives the notion as the

entire application is being executed on SMD. The framework is based upon method state

migration as a substitute of method code migration. MAUI copes with the mobility of the

mobile user and provides optimized solution periodically to adapt to the changes in network

and user location.

The critical aspect of MAUI is the dynamic partitioning of the application at runtime

which activates the profiler and solver component dynamically to determine execution

point for application partitions. Development of the applications on the basis of MAUI

requires additional developmental efforts for annotating the execution pattern of each

individual method the application. MAUI deploys full proxies of the application on both

SMD and cloud datacenter. MAUI obliges the overhead of dynamic application profiling,

solving, partitioning, migration, and reintegration on SMD.

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

41

CloneCloud (Chun et al., 2011) employs dynamic partitioning of the application at

runtime. Partitioning phase of the framework involves; static analysis, application dynamic

profiling, and optimization solution. Mobile device uses preprocess migratory thread to

assist a process with suspending, packaging, resuming and merging thread states. Chun et

al. (2010) address the issue of application partitioning between mobile devices and clouds.

The optimization problem is modeled through a mathematical expression, which includes

execution cost of each module on mobile device, execution cost of each module on cloud,

and the cost of communication between the two modules. Variant objective functions are

considered for partitioning, minimize execution time and minimize battery power

consumption or cost of execution of the application.

 Zhang et al. (2011) propose elastic application model for augmenting the computing

capabilities of mobile devices. Application is partitioned into weblets and migrated

dynamically between mobile device and remote cloud server. Variant elastic patterns are

used for the replication of weblets on the remote cloud. The execution destination for the

weblet is determined dynamically at runtime. The framework employs different parameters

for offloaded processing of the weblets such as status of the mobile device, cloud,

application performance measures and user preferences which comprise power saving

mode, high speed mode, low cost mode and offload mode. The framework implements an

optimal cost model for the execution configuration of the weblets. The cost model

considers different costing factors such as power consumption, monetary cost, performance

attributes and security and privacy.

The framework proposes a security mechanism for ensuring the integrity of

communication between SMD and cloud server (Zhang et al., 2009). Whenever a weblet is

downloaded on SMD, the integrity of each weblets is ensured by the installer of the device

by re-computing hash value for each weblet and comparing it with the hash value stored in

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

42

the weblet. The installer registers the application with Device Elasticity Manager (DEM).

The DEM maintains a table of installed applications on the device which need elasticity

manager support. The table maintains detailed information about weblets such as signed

hashed values and migration settings. Several parts of the elastic application are installed

on Cloud Elasticity Service (CES). CES maintains installed applications for users. For this

purpose users register with CES and authenticate with CES during installation. The cloud

based application manager is able to download the application code from an application

store instead of uploading from mobile device. The node manager executes the weblet

binary provided by application manger. The local weblet can query DEM to obtain the list

of all active weblets in the same session. The local weblet can broadcast the URLs returned

by DEM to any other weblet that needs to communicate.

The implications of elastic application model are that it accomplishes application level

partitioning and migration of applications. The framework employs a comprehensive cost

model to dynamically adjust execution configurations and optimizes application

performance in terms of a set of objectives and user preferences. The framework provides a

security mechanism for the authentication and authorization of weblets migration and

reintegration and provides support for synchronization between application on mobile

device and weblets running on cloud node. The critical aspect is the establishment of

runtime distributed platform for SMD which requires additional computing resources for

the establishment and management of distribute platform. The framework deploys

replication of the application both on the mobile device and application manager of the

cloud server. The framework implements a sophisticated mechanism for the migration of

weblets between SMD and remote cloud nodes. It imposes extensive overhead of

application profiling, dynamic runtime partitioning, migration, reintegration, and rigorous

synchronization on mobile devices for offload processing.

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

43

Figure 2.7 shows a generic flowchart for application partitioning based offloading

frameworks. The profiling mechanism evaluates computing resources requirements of

mobile application and the availability of resources on SMD. Profiling mechanism works

differently in different frameworks. The critical situation indicates the unavailability of

sufficient computing resources on SMD. The computational intensive components of the

application are separated at runtime. SMD negotiate with cloud servers for the selection of

appropriate server node. The partitions of the application are migrated to remote server

node for remote processing. Upon successful execution of the remote components of the

application, result is returned to main application running on SMD.

StartStart

Critical
Condition
Critical

Condition

ProfilerProfiler

SolverSolver

Yes

MigratorMigrator Cloud Server NodeCloud Server Node

Execute on SMDExecute on SMD

Elastic Mobile
Application

Elastic Mobile
Application

StopStop

No

Partitioning Partitioning

Remote Processing Remote Processing

Figure 2. 7: Generic Flowchart for Flowchart Partitioning Migration Based DAPFs (Shiraz
et al., 2012)

2.3 Comparison of Distributed Application Processing Frameworks

This section categorized current DAPFs on the basis of local resources utilization

model and server resources utilization model. It investigates commonalities and deviations

in such frameworks on the basis significant parameters such as offloading scope,

partitioning approach, migration support, migration granularity, application developer

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

44

support, migration pattern and execution monitoring. The following section discusses such

parameters in detail.

2.3.1 Offloading Scope (OS)

The offloading scope attribute of DAPFs represent the scope of distributed platform

established at runtime. Current DAPFs deploy the following offloading scopes.

a) Local Resources Utilization: The local resources utilization models utilize computing

resources and services of local computing nodes. Current DAPFs implement the

following three different types of decentralized computing resources utilization models.

i) Decentralized distributed platform which is composed of stationary remote hosts or

mobile nodes. In this model the distributed platform is established by utilizing

computing resources of remote servers in close proximity.

ii) Virtual or Ad-Hoc distributed platform which is composed of mobile nodes. In this

model SMDs establish distributed platform in pervasive fashion in local environment.

iii) Centralized distributed platform which is composed of centralized server and mobile

worker nodes. In such a model management and monitoring is performed my

centralized servers, however actual processing of the application is performed on the

decentralized mobile worker nodes.

b) Server Based Resources Utilization: The server based resources utilization models

utilize computing resources and services of the centralized servers. Current DAPFs

implement the following three different types of centralized computing resources

utilization models.

a) Grid server based distributed platform in which remote services are provided by grid

servers.

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

45

b) Telecommunication Service Provider (TSP) based distributed platform wherein remote

services are configured at TSP servers.

c) Cloud servers based distributed platform in which remote services are configured at

cloud datacenters.

2.3.2 Partitioning Approach (PA)

The partitioning approach attribute of offloading frameworks represent the partitioning

strategy of the framework. Current DAPFs implement application partitioning in two

different ways. Static partitioning in which the application is partitioned in fixed number of

partitions either at compile time or runtime. Dynamic partitioning approach is used for

partitioning of elastic mobile application at runtime. Static partitioning frameworks are

represented as ‘static’, whereas the dynamic frameworks are represented with ‘dynamic’

The notation ‘n/a’ is used for non-partitioning DAPFs.

2.3.3 Migration Granularity (MG)

The migration granularity attribute of the traditional DAPFs represent the granularity of

migrating component of the application. The possible granularity levels for currents DAPFs

are as follows. a) Module level migration represents that entire module or bundle of the

application is migrated to remote environment. b) Method level migration represents that

partitioning occurs at application method level and intensive methods of the application are

migrated to remote server. c) Object level migration represents that entire object is

migrated to remote environment for outsourced processing. d) Thread level migration

represents thread level partitioning and migration of the application to remote environment.

e) Entire application migration in which case entire application is offloaded to remote

server.

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

46

2.3.4 Migration Support (MS)

The migration support attribute of the offloading model represents the level of support

required for the migration of application. Current DAPFs require two different levels of

migration support. a) System level support requires additional operating system support for

the migrating components of the application such as VM deployment and management. b)

Application level support means offloading is performed without additional support from

operating system.

2.3.5 Migration Pattern (MP)

The migration pattern attribute represents the pattern of migration of application to

remote node. The following MPs are implemented by current DAPFs.

a) Application transfer is a migration pattern in which case the code of the application is

outsourced to remote server.

b) URL download represents a migration pattern in which case a URL is provided to

remote host and application is downloaded from that URL as a substitute of transferring

the application directly from SMD.

c) VM Instance represents a migration pattern in which the application is encapsulated in

VM instance (partially or entirely) and VM instance is migrated to remote server. A

fresh VM instance is created on the remote server and guest VM instance is copied to

the freshly created VM on remote server.

d) UMSC is a migration pattern in which mobile agent is employed for the migration of

outsourcing application. UMSC serve as a courier for the migration of the application

between SMD and remote server.

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

47

e) File download represents a migration pattern in which the mobile application is

offloaded by downloading the application file. The communication between SMD and

remote server occurs in the form of XML files.

f) Module/Bundle transfer represents a migration pattern in which case modules of the

application are migrated to remote servers either by VM migration or code transfer.

g) Application proxy is a migration pattern in which entire proxies of the application are

replicated on remote server.

h) Object transfer is a migration pattern in which case entire object is outsourced to remote

server at application level.

2.3.6 Developer Support (DS)

 A number of current DAPFs required developers support for defining execution

scope of the components of application at different granularity level. DS shows the

requirement of additional support required for the development of the application.

2.3.7 Execution Management (EM)

The execution Management attribute shows the management policy for the

deployment and management of runtime distributed application platform. a) Decentralized

management represents the unavailability of the centralized mechanism for the deployment

and management of distributed platform. Therefore, SMDs are responsible for monitoring

distributed platform and distributed application execution. b) Centralized management

represents that a centralized management and monitoring mechanism is provided for the

establishment of distributed platform and monitoring of application execution.

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

48

2.3.8 Security Support (SS)

 SS represents the security provision attribute of the DAPFs. The availability of the

security support mechanism in the framework is represented with the value ‘yes’, whereas

unavailability of the security support in the offloading model is represented with the value

‘no’. Table 2.1 shows the commonalities and deviations in the local resources sharing

based DAPFs on the basis of the aforementioned parameters

Table 2. 1: Comparison of Local Resource Sharing Based Application Offloading
Frameworks (Shiraz et al., 2012)

Framework OS PA MG MS MP SS DS EM
Distributed
Platform for
Resources
Constrained
Devices
(Messer et al.
2002)

Local Dyna
mic

 Class
Level

Application
Level

Application
Transfer

No Not
Required

Decentralized

Secure Cyber
Foraging
(Goyal et al.,
2004)

Local n/a Entire
Applicatio
n

System
Level for
VM

URL
download

Yes Required Decentralized

Clone cloud
(Chun and
Maniatis, 2009)

Local Static Entire
Applicatio
n/
Partitionin
g

System level VM Instance No Required Decentralized

Optimized
Solution for
Mobile Devices
(Liu et al.,
2009)

LocalAd
-Hoc
Cloud

n/a Entire
Applicatio
n

n/a UMSC No n/a Decentralized

VM-Based
Cloudlets
(Satyanarayana
n et al., 2009)

Local n/a Entire
Applicatio
n

System
Level

VM Instance No n/a Decentralized

DISHES
(Chung et al.,
2010)

Local n/a Entire
Applicatio
n
Offloadin
g

System
Level

Code
Download/
Transfer.

No Not
required

Centralized

Virtual Cloud
Computing
(Canepa et al.,
2010)

Local
Ad-hoc
Cloud

n/a Entire
Applicatio
n

n/a Application
Transfer

Yes No Decentralized

Misco (Dou. et
al., 2010)

Ad-hoc
mobile
cloud

Static Method
level

Application
Level

File
download

No Yes Centralized

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

49

Local application offloading frameworks employ decentralized monitoring

approach for process offloading which results in the extensive involvement of SMDs for

the management of distributed processing. Further, local offloading frameworks are

deficient in the centralized management and the availability of resources for the provision

of remote services. In the scenario of unavailability of local remote service provider,

remote services become inaccessible which hinders the objectives of availability and

scalability of services in distributed computing paradigm. To cope with the issues of

decentralized DAPFs, centralized server based solutions are implemented.

Table 2.2 compares server based offloading frameworks in which centralized resources are

available for the management and provision of remote services.

Table 2. 2: Comparison of Server Based Application Offloading Frameworks (Shiraz et al.,
2012)

Framework OS AP MG MS MP SS DS EM
Calling the Cloud
(Giurgiu et al.,
2009)

Cloud
Server

Dynamic Modules
(Bundle)

Application
Level

Bundles
Transfer

No Not
Required

Centralized

MAUI (et al.,
2010)

Cloud
Server

Dynamic Method
Level

Application
Level

Applicati
on Proxy

No Yes Centralized

Dynamically
Partitioning
Applications
(Chun et al., 2010)

Cloud
Server

Dynamic Module level Application
level

Applicati
on
Transfer

No n/a Centralized

Energy Savings
and Privacy
Protection (Liu. et
al., 2010)

Grid
Server

n/a Image
Object

Application
Level

Object
Migration

No Not
Required

Centralized

CloneCloud (Chun
et al., 2011)

Cloud
Server

Dynamic Thread System
Level

VM
Instance

No Not
Required

Centralized

COGNISERVE
(Iyer et al., 2011)

Cloud
Server

n/a Entire Job Application
Level

Object
Migration

No Na Centralized

Elastic
Application Model
(Zhang et al.,
2011)

Cloud
Server

Dynamic Bundles
(Weblets)

Application
level

URL
download

Yes No Centralized

Mirroring
Smartphones (Zao
et al., 2011)

TSP
Based
Server

n/a Entire
Application

Application
Level

VM
Instance

Yes Not
Required

Centralized

Virtualized
Execution
Environment
(Hung et al., 2011)

Cloud
Server

n/a Entire
Application

Application
Level

VM
Instance

No Not
Required

Centralized

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

50

Server based application offloading frameworks accomplish outsourced application

processing in a number of ways. Several approaches exploit VM cloning; others focus on

part(s) of the application to be offloaded. A number of approaches implement dynamic

partitioning whereas other focus on entire job migration. Traditional server based

offloading model implement diverse objective functions; such as saving processing power,

efficient bandwidth utilization, saving energy consumption, user preferences, and execution

cost. Server based DAPFs provide centralized management and ensure availability of

remote services. However, a number of obstacles obstruct optimization goals of server

based remote application processing. In the following section, we highlight key challenges

to current DAPFs and identify general issues for the distributed processing of mobile

applications for MCC.

2.4 Issues and Challenges for Distributed Application Deployment in
MCC

The following section discusses issues in current offloading frameworks and

identifies challenges to the cloud based application processing of resources intensive

mobile applications.

2.4.1 Scalability and Availability of Services and Resources

Scalability of services is a challenging aspect of distributed application processing

in mobile cloud computing. The traditional local DAPFs for remote application processing

are deficient in centralized management of the distributed platform. A challenging issue in

local DAPFs is the unavailability of centralized resources. For example; in the scenario of

unavailability of remote service provider, remote services become inaccessible which

hinders the objectives of availability of services in distributed computing paradigm.

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

51

Similarly, local resources are accessible to limited number of mobile devices in the

local environment. Therefore, the possibility of inaccessibility of the remote services

always remains associated in local distributed models. Whereas, scalable systems ensure

the provision of services irrespective of the number of clients accessing the services.

Therefore, unavailability of centralized resources and services and scalability of services is

a challenging research issue for ad-hoc and virtual distributed models of MCC. It is

challenging to implement peaceful degradation policy on SMDs in the critical conditions of

unavailability of remote services. Scalable systems sustain the provision of services and

resources for large number of clients whereas availability of services ensures the provision

of remote services. It is imperative to ensure the scalability of services in cloud datacenters

so that SMDs are enabled to access centralized services for distributed application

deployment with high aim of scalable remote services.

The centralized datacenter based computational cloud are resources rich and

computational resources and services are provided on demand basis. Cloud resources and

services are accessible to both stationary computer clients and SMDs. However, the unique

architecture, compact design, operating platforms, low computing potentials, and portable

mobile nature of smart mobile devices require special services for ensuring the availability

of cloud services. The mobile nature and the intrinsic limitations associated with the

wireless access medium of SMD necessitate availability of cloud services and resources

homogeneously worldwide. It is challenging in cloud based processing of mobile

applications to ensure the availability of services and identical access to cloud services over

different types of wireless network technologies (Wi-Fi, 3G and LTE). Therefore,

sustaining uninterrupted provision of cloud services and resources to SMDs is a

challenging research perspective of mobile cloud computing.

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

52

2.4.2 Lightweight Distributed Application Deployment

In current DAPFs, resources intensive distributed platform is established at runtime.

Mobile applications offloading frameworks are developed on the basis of standalone

application architecture, whereas the processing of application is performed in the

distributed fashion. Therefore, current DAPFs establish a resources intensive and complex

computing environment at runtime. Application offloading techniques are primarily based

on either entire application/job migration or application partition migration to remote

servers. The implementation of distributed architecture for virtual mobile cloud is hindered

by the following obstructs.

1. Local distributed processing models lack in the availability of centralized management;

for that reason it is difficult to configure explicitly defined client and server components

for the mobile applications.

2. Virtual clouds necessitate special requirements for the establishment of distributed

platform which is challenging to maintain for mobile devices which are participating in

ad-hoc cloud. The special requirements include; SMDs remain in the close proximity,

follow the same movement patterns, voluntariness for service and provision,

implementation of specific service architecture (Canepa et al., 2010).

The additional computing resources of SMDs are utilized for the configuration of

distributed platform and management of distributed services provision to the requesting

client devices. Further, shorter battery life time of SMDs is major challenge in virtual/ad-

hoc distributed application processing models. Therefore, the ad-hoc and virtualized nature

of local distributed platform is another obstacle in explicitly defining client and server

components of the mobile application. However, the availability of centralized resources

and services and centralized management mechanism in cloud datacenters are the

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

53

motivating factors for incorporating distributed architecture for the intensive mobile

applications. It is challenging for distributed mobile application to incorporate the

principles of distributed applications in such a manner so that mobile applications can

operate in the situations of inaccessibility of cloud server nodes.

2.4.3 Seamless Connectivity and Consistent Distributed Platform

Mobility is an important attribute of SMDs. Mobile users enjoy the freedom of

computing and communication on move. However, a number of obstacles hinder the goals

of seamless connectivity and consistency in the distributed platform of mobile applications;

for example handoffs, traveling with high speed, diverse geographical locations and

different environmental conditions. As a result, providing seamless connectivity and

uninterrupted access to the centralized cloud datacenters in distributed application

processing is a serious research issue for MCC.

It is important that distributed application model provide versatile access to cloud

resources and services on move with ubiquitous attributes and high degree of transparency.

However, it is challenging to ensure the transparency of distributed environment. In

particular to SMD, the issues and limitations in wireless medium hinder the transparency

goals of distributed processing of mobile application. The seamless and transparent

deployment of distributed platform for computational intensive applications is a

challenging aspect for mobile cloud computing. It is mandatory for distributed model to

mask the complexities of distributed environment from mobile user and give the notion as

the entire application is being processed locally on SMD. Similarly, it is important to

ensure successful execution of remote processing and returning results to SMD. Sustaining

consistency of the offloaded components of the application with lightweight

implementation procedures is a challenging aspect of DAPFs. Consistency is an issue for

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

54

the components offloaded at runtime (Zhang et al., 2011), the replicated applications using

proxies (Cuervo et al., 2010), and transactions involving related updates to different

objects.

It is important that the distribution and replication of intensive mobile applications

and data should be transparent to the mobile users and application running client device.

Cloud based distributed processing of mobile application are required to fulfill Atomic,

Concurrency, Isolation and Durability (ACID) properties of the distributed systems. It is

challenging to provide location transparency, replica transparency, concurrency

transparency, and failure transparency in cloud based application processing of mobile

applications.

2.4.4 Homogenous and Optimal Distributed Platform

Homogenous and optimal cloud based application processing is an important

research perspective in mobile cloud computing. Heterogeneity of SMD architecture and

operating platform is challenging for distributed application processing in MCC. Mobile

device vendors employ different hardware architecture and operating system platforms for

the specific mobile product. Traditional application offloading frameworks focus on the

implementation of platform dependent procedures for outsourcing computational intensive

loads. For example, Weblets (Zhang et al., 2011) and MAUI (Cuervo et al., 2010) are

application offloading frameworks which are applicable for .Net framework, whereas

virtualized execution framework (Hung et al., 2011) and mirror server (Zao et al., 2011) are

suitable frameworks for android platform. Hence, homogenous access to cloud services are

highly expected wherein SMD are enabled to access widespread computing services of

computational clouds irrespective of the concerns about operating hardware architecture

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

55

and operating system platform. A homogenous distributed application deployment solution

for the heterogeneous available SMDs platforms is a challenging issue for MCC.

Sanae et al., (2012) proposed a tripod of requirements with three legs of trust,

energy efficiency, and ubiquity. It describes important metrics such as heterogeneity, under

this tripod which are crucial for the success of cloud-mobile applications. Similarly, the

deployment of distributed application processing platform at runtime is a resources

intensive mechanism. It uses computing resources on SMDs for the evaluation of

computing resources utilization on SMDs and partitioning of intensive mobile applications

at runtime. Current, DAPFs necessitate continuous assessment of application execution

requirements on SMD which is a resource intensive operation.

DAPFs employ runtime profiling and solving mechanism on SMDs periodically or

casually to evaluate application processing requirements and the availability of computing

resources on SMD. The centralized distributed application deployment models require

arbitration of SMD with centralized server for the selection of appropriate server node. As a

result, computing resources (CPU, battery power) of SMD are exploited abundantly for the

entire process of application profiling and solving. The deployment of distributed platform,

management and operation of remote application processing in the optimal possible fashion

is an important perspective of cloud based application processing. It is challenging to

provide homogenous solution for heterogeneous devices, operating platforms and network

technologies with minimum possible resources utilization on the SMDs.

2.4.5 Security and Privacy in Cloud Based Application Processing

Privacy in the distributed platform and security of data transmission between mobile

device and cloud server node are important concerns in cloud based application processing.

Privacy measures are required to ensure the execution of mobile application in isolated and

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

56

trustworthy environment, whereas security procedures are required to protect against

network threats. Security and privacy are very important aspects for the establishing and

maintaining the trust of mobile users in cloud based application processing (Subashini et

al., 2010).

Security in MCC is important from three different perspectives: security for mobile

devices, security for data transmission over the wireless medium and security in the cloud

datacenter nodes. SMDs are subjected to a number of security threats such as viruses and

worms. SMDs are the attractive targets for attacker. According to a report (Protecting

Portable Devices, n.d.) the number of new susceptibilities in mobile operating systems

increased 42 percent from 2009 to 2010. The number and complications of attacks on

mobile phones is increasing speedily as compared to the countermeasures. Data

transmission over the wireless networks is highly vulnerable to network security threats.

For example, using radio frequencies, the risk of interruption is higher than with wired

networks therefore attacker can easily compromise confidentiality (Choi et al., 2008).

Similarly, in cloud datacenters the security threats are associated with the transmission

between physical elements on the network, and traffic between the virtual elements in the

network, such as between virtual machines within a single physical server. Therefore, in

order to leverage the application processing services of computational clouds, a highly

secure environment is expected at all the three entities of MCC model.

 In current DAPFs, transmission of the running states of mobile application which is

encapsulated in VM (Chun et al., 2009; Satyanarayanan et al., 2009; Giurgiu et al., 2009;)

or binary transfer of the application code at runtime (Giurgiu et al., 2009 ;Chung et al.,

2010;) is continuously subjected to security threats at mobile device, wireless medium and

cloud datacenters. Therefore, secure transmission of the entire components of the

application is a challenging issue for MCC.

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

57

It is important to implement reliable security measures for the data transmission, and

synchronization between SMD and cloud datacenters in distributed processing platform.

Similarly, access control, fidelity and privacy of distributed application components in the

remote cloud datacenters is an important consideration for the distributed application

processing in MCC. Cloud datacenters provide augmentation services which are

unapproachable to mobile users. Therefore, it is highly demanding to ensure the privacy of

data and computing operations in remote server nodes. A trustworthy distributed

application model is highly expected to cope with such important issues and ensure the

trustworthiness of remote computing environment. A reliable distributed environment is

expected to provide authentic access to authorized mobile user for legitimate operations on

cloud server nodes.

 Considering the aforementioned research issues and challenges for distributed

application deployment in MCC, lightweight and optimal distributed application

deployment solution is extremely important. Such a solution should incorporate optimal

procedures for the development, deployment and management of runtime distributed

platform for MCC.

2.5 Conclusion

This chapter discusses the concept of cloud computing, mobile cloud computing and

explains different techniques to augment the computing capabilities of SMDs based on

resources available within the cloud. It analyzes current DAPFs by using thematic

taxonomy and highlights the commonalties and deviations in such frameworks on the basis

of significant parameters. It discusses issues in current DAPFs and highlights challenges to

optimal and lightweight distributed application framework for MCC.

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

58

Current DAPFs accomplish process offloading in diverse modes. Several approaches

employ entire application migration; others focus on part(s) of the application to be

offloaded. A number of approaches employ static partitioning, others implement dynamic

partitioning. Variant migration patterns are used; downloading application by providing

URL to remote host, VM cloning, Mobile agent such as USMC, application binary transfer

and use of proxies. Diverse objective functions are considered; saving processing power,

efficient bandwidth utilization, saving energy consumption, user preferences, and execution

cost. Objective of all approaches is to alleviate computing resources limitations of mobile

devices in the processing of intensive mobile applications.

Current DAPFs for MCC are the analogous extensions of traditional cyber foraging

frameworks for pervasive computing or local distributed platforms. Hence, current DAPFs

are deficient of the deployment of distributed system standard architectures. As a result,

additional complications arise in the development, deployment and management of

distributed platform. Current frameworks focus on the establishment of runtime distributed

platform which results in the resources intensive distributed management overhead on

SMDs for the entire duration of distributed platform. The additional computing resources of

SMDs are utilized in arbitration with cloud servers for the selection of remote node,

dynamic the availability of resources on SMDs and resources requirement of mobile

application, dynamic application profiling, synthesizing and solving for application

outsourcing, application migration and reintegration and continuous synchronization with

cloud servers for the duration of distributed platform. As a result, additional computing

resources of the SMDs are utilized for the runtime configuration of distributed platform.

Hence, current computational offloading frameworks employ heavyweight procedures

for distributed application deployment and management. The mobile nature, compact

design, limited computing potential and wireless medium attributes of SMDs necessitate

Univ
ers

iti
Mala

ya

Chapter 2: Literature Review

59

for lightweight procedures for the distributed deployment and processing of computational

intensive applications in MCC.

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

60

CHAPTER 3

Problem Analysis

This chapter investigates additional computing resources utilization in the traditional

computational offloading frameworks for MCC. The chapter is organized into four

sections. Section 3.2 investigates the additional cost of energy consumption, timing cost

and size of data transmission in traditional computational offloading for mobile cloud

computing. Section 3.3 analyzes the impact of Virtual Machine (VM) deployment for

application processing in MCC. Section 3.4 summarizes the chapter with conclusive

remarks.

3.1 Introduction

The problem of additional resources utilization in traditional runtime computational

offloading is analyzed by benchmarking the prototype application in the real mobile cloud

computing environment. Traditional computational offloading is implemented by

offloading the resource intensive service components of the prototype mobile application.

Computational offloading to remote cloud server node is evaluated for varying

computational intensities of the application. The measurement parameters for problem

analysis include energy consumption cost, time taken in runtime component offloading

(timing cost), and size of data transmission over the wireless network medium. The impact

of virtual machine deployment for application processing is analyzed by using CloudSim

simulation toolkit.

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

61

3.2 Analysis of Traditional Computational Offloading for MCC

The traditional Distributed Application Processing Frameworks (DAPFs) for MCC

establish distributed platform at runtime, wherein additional computing resources are

utilized on SMD. Traditional computational offloading frameworks employ runtime

migration of the intensive components of the mobile application, wherein the intensive

components of the mobile application are offloaded dynamically at runtime (Hung et al.,

2012). A number of application offloading frameworks implement dynamic application

profiling and partitioning technique for application offloading (Messer et al., 2002; Giurgiu

et al., 2009; Cuervo et al., 2010; Chun et al., 2011; Zhang et al. 2011). The traditional

computational offloading frameworks focus on what components of the application to

offload, how to offload and where to offload the application partitions. However, such

frameworks lack of considering the additional cost of runtime distributed application

deployment for MCC.

This section analyzes the traditional computational offloading by outsourcing the

resource intensive components of the mobile application with varying computational

intensities to remote cloud server node. A prototype application is developed for Android

devices, which is composed of two computational intensive components; sorting service

and matrix multiplication service. The sorting service component implements the logic of

bubble sorting for sorting liner list of integer type values. The runtime computational

offloading for sorting service of the application is evaluated with 30 different

computational intensities (11000-40000). The matrix multiplication service of the

application implements the logic of computing the product of 2-D array of integer type

values. Runtime computational offloading for matrix multiplication service component of

the application is evaluated with 30 different computational intensities by varying the size

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

62

of the 2-D array between 160*160 and 450*450. The total Energy consumption Cost (Ec),

Timing Cost (Tc) and size of data transmission are evaluated in different experiments by

offloading the service components of the mobile application at runtime.

3.2.1 Analysis of the Energy Consumption Cost

The additional energy consumed in runtime computation offloading is evaluated by

Energy consumption cost (Ec) parameter in the units of Joules (J). Ec includes energy

consumed in runtime component migration, energy consumed in saving the data states of

running instance of the mobile application, energy consumed in uploading the data file to

remote server node and energy consumed in returning the resultant data files to local

mobile device. Hence, the total energy consumption cost for each component offloaded at

runtime is given by the following equation.

Ec = Em+ Es+ Eu + Ed (3.1)

a) Energy consumed in component Migration (Em) represents energy consumed in

transferring the binary code of the component of mobile application which is being

offloaded.

b) Energy consumed in Saving preferences (Es) represents energy consumed in saving the

running instances of the mobile application.

c) Energy consumed in Uploading preferences (Eu) represents energy consumed in

uploading the data file (which is known as preferences file) to remote server node at

runtime.

d) Energy consumed in Downloading preferences (Ed) represents energy consumed in

downloading the resultant data file (preferences file) to the local mobile device.

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

63

Let E is the finite set of the energy consumption cost of the components of mobile

application which are offloaded at runtime. Hence, set E is given as:

E= {the finite set of the energy consumption cost of the components of mobile application

which are offloaded at runtime}

Let Eca represents the energy consumption cost of offloading a single component of the

mobile application at runtime. Where a=1, 2,…, n

 E= {Ec1, Ec2,…, Ecn }

Eca represents the energy consumption in offloading a single component of the mobile

application which is a positive Real number. Therefore, by using set builder notation the

Eca is represented as:

E = { Eca : Eca   Eca > 0 } Whereas, a=1, 2,…,n

The energy consumption cost of offloading a single component of the mobile application

belongs to the set of Real numbers and is greater than 0. The total energy consumption cost

in runtime component offloading is the sum of energy consumption cost of all the instances

a=1, 2,…, n of runtime component offloading. Let the total energy consumption of the

runtime application offloading is represented by αe, which is the sum of energy consumed

in all instances Eca=1,2,…,n of the runtime component offloading. Therefore, αc is represented

as follows.

 αe = (Ec1 + Ec2+…+ Ecn)   Eca  E |E| 1 whereas a=1,…, n

By using summation notation the total energy consumption cost (αe) of the runtime

computational offloading of the mobile application is represented as follows:

αe =
1

n

a
a

Ec


   Eca  E |E|  1 (3.2)

For all Eca, which denotes the energy consumption cost of the single instance of runtime

component offloading of the mobile application belongs to the set E and the cardinality of

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

64

set E is greater than or equal to 1. E is the set of the energy consumption cost of the

components of the mobile application which are offloaded at runtime. The precondition

validates that E is none empty set.

The energy consumption cost (Ec1) for offloading the sorting service component of the

application at runtime is evaluated for 30 different computational intensities of sorting

operation (11000-40000). The energy consumption cost of transferring application binary

code (Em), is evaluated in 30 experiments by offloading sorting service with 30 different

computational intensities. It is examined that in all instances of offloading the binary code

of the application, the size of binary application file (.apk) remains constant (44.4 KB).

Hence, Em remains constant in offloading sorting service of the application with different

intensities. It is examined that the sample mean of Em is 6.1(+/) 0.6 J with 99% confidence

for the sample space of 30 values which shows that the possible range for Em is between

5.5 and 6.7 J.

The energy consumption cost of saving the data states (preferences file) on the

mobile device is examined for 30 different computational intensities of the sorting service

component of the application. It is examined that the sample mean of Es is 8.5(+/-)1 J with

99% confidence for the sample space of 30 values which shows that the possible range for

Es is between 7.5 J and 9.5 J. The energy consumption cost of uploading preferences file

(Eu) to the cloud server node is examined for uploading the preferences file of 30 different

computational intensities of the sorting service. It is examined that the sample mean of Eu

is 36(+/-) 0.92 mJ with 99% confidence for the sample space of 30 values which shows that

the possible range for Eu is between 35 mJ and 36 mJ. The energy consumption cost of

downloading the resultant preferences file (Ed) from the remote server node to the local

mobile device is evaluated in 30 different experiments. It is examined that the confidence

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

65

interval for the average Ed is 10.9 (+/-) 0.28 J in downloading the resultant preferences file

of sorting service for the sorting list length 11000-40000 values.

The total Energy Consumption Cost (Ec1) in runtime computational offloading of

sorting service is computed by using equation (3.1). Table 3.1 shows the total Ec1 in

offloading sorting service by using traditional computational offloading technique. The

attribute of sorting length shows the length of sorting operation, the Energy consumption

cost attribute indicates the point estimator for the sample space of 30 values in each

experiment and the standard deviation (SD) shows the variation in the values of the sample

space. The confidence interval attribute shows the possible range of the sample mean with

99% confidence for the sample space of 30 values in each experiment.

Table 3. 1: Total Energy Consumption Cost (Ec1) in Traditional Offloading of Sorting
Service

Length of
Sorting
List

Energy
Consumption Cost

(J)

SD Confidence Interval

11000 29.6749 5.7245 29.6749(+/-)2.6965
12000 30.8829 4.4753 30.8829(+/-)2.1080
13000 31.0835 4.2346 31.0835(+/-)1.9946
14000 31.4911 3.7763 31.4911(+/-)1.7787
15000 31.8917 3.8377 31.8917(+/-)1.8077
16000 31.8919 4.1711 31.8919(+/-)1.9647
17000 32.4915 3.9094 32.4915(+/-)1.8414
18000 32.8923 3.835 32.8923(+/-)1.8064
19000 33.092 4.1244 33.092(+/-)1.9428
20000 33.2971 4.0274 33.2971(+/-)1.89707
21000 33.2989 4.6845 33.2989(+/-)2.2066
22000 33.6987 4.4209 33.6987(+/-)2.08242
23000 34.3002 4.3997 34.3002(+/-)2.0724
24000 34.7008 4.4183 34.7008(+/-)2.0812
25000 34.9014 4.214 34.9014(+/-)1.9849
26000 35.502 4.0472 35.502(+/-)1.90639
27000 35.7036 4.7645 35.7036(+/-)2.2442
28000 36.1034 4.8614 36.1034(+/-)2.2899
29000 36.705 4.5308 36.705(+/-)2.1342

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

66

Length of
Sorting
List

Energy
Consumption Cost

(J)

SD Confidence Interval

30000 37.7055 4.1596 37.7055(+/-)1.9594
31000 38.507 4.616 38.507(+/-)2.17432
32000 39.7078 4.9652 39.7078(+/-)2.3388
33000 41.5086 4.7245 41.5086(+/-)2.2254
34000 42.5095 4.3692 42.5095(+/-)2.05807
35000 42.7109 4.7827 42.7109(+/-)2.2528
36000 43.1131 5.0774 43.1131(+/-)2.3916
37000 44.1151 4.9271 44.1151(+/-)2.3208
38000 44.3154 5.0068 44.3154(+/-)2.3584
39000 44.5168 5.3538 44.5168(+/-)2.5218
40000 45.3191 5.5839 45.3191(+/-)2.6303

Figure 3.1 shows the increase in the Ec1 for offloading sorting service at runtime. It

is examined that Em, and Es remains constant in offloading sorting service with varying

sort list size. However, the size of preferences files increases by increasing the length of

sort list. Therefore, the cost of Eu and Ed increases accordingly. It is examined that the

average cost of Eu is 9.8 mj for uploading preferences file of sorting list length 11000

values, whereas the average cost of Eu is 54 mJ for uploading preferences file of sorting list

length 40000 values. Hence, the Eu increases 81.9 percent for uploading preferences file of

sort list length 40000 values as compared to uploading preferences file of sort list length

11000 values. Similarly, it is examined that the cost Ed increases according the size of

preferences file. For instance, 7.5 J energy is consumed in downloading preferences file for

sorting list size 11000 values; whereas 15.3 J energy is consumed in downloading

preferences file for sorting list size 4000. It shows that the cost of Ed increases 51 percent

for in downloading the preferences file for the sorting list of 40000 as compared to the

preferences file for the sorting list size 11000 values. It shows that increase in the Ec1 is the

result of increase in uploading and downloading larger preferences files. The average total

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

67

energy consumption cost of offloading sorting service (Ec1) at runtime is determined as

36.58 J.

Figure 3. 1: Total Energy Consumption Cost (Ec1) in Traditional Offloading of Sorting
Service

The total Energy Consumption Cost (ECC) in offloaded execution of the sorting

service varies for different intensities of the sorting operation. It is examined that total ECC

in the remote execution of sorting operation increases with the increase in the length of

sorting list. For instance, the total ECC of sorting list 11000 values is 49.8 J, whereas the

total ECC of sorting list 40000 values is 201.4 J. It shows that the ECC increases 75.3

percent for sorting the list of 40000 values as compared to sorting the list of 11000 values.

The average total ECC cost in offloaded execution of sorting service for sorting the list of

11000-40000 values is 111.2 J. with 42.2 percent RSD. The total energy consumption cost

(Ec2) for offloading the matrix multiplication service component of the application at

runtime is evaluated for 30 different computational intensities of matrix multiplication

operation (160*160-450*450). The energy consumption cost of transferring application

binary code (Em) for matrix multiplication service, is evaluated in 30 experiments by

0

10

20

30

40

50

11
00

0
13

00
0

15
00

0
17

00
0

19
00

0
21

00
0

23
00

0
25

00
0

27
00

0
29

00
0

31
00

0
33

00
0

35
00

0
37

00
0

39
00

0E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Length of Sorting List

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

68

offloading matrix multiplication service with 30 different computational intensities. It is

examined that in all instances of offloading the binary code of the application the size of

binary application file (.apk) remains constant (46 KB). Hence, Em remains constant in

offloading matrix multiplication service of the application with different intensities. It is

examined that the sample mean of Em is 15.2(+/-)2.1 J with 99% confidence for the sample

space of 30 values which shows that the possible range for Em is between 13.6 J and 17.3 J.

The energy consumption cost of saving the data states (preferences file) on the local

mobile device is examined for 30 different computational intensities of the matrix

multiplication component of the application. It is examined that the sample mean of Es is

4.6(+/-)0.9 with 99% confidence for the sample space of 30 values which shows that the

possible range for Es is between 3.66 J and 5.46 J. The energy consumption cost of

uploading preferences file (Eu) to the cloud server node is examined for uploading the

preferences file of 30 different computational intensities of the matrix multiplication

service. It is examined that the sample mean of Eu is 273.9(+/-)1.4 mJ with 99%

confidence for the sample space of 30 values which shows the possible range for Eu is

between 259.6 mJ and 288.1 mJ. The energy consumption cost of downloading the

resultant preferences file (Ed) from the remote server node to the local mobile device is

evaluated in 30 different experiments. It is examined that the confidence interval for the

average Ed is 9.3(+/-) 1.4 J in downloading the resultant preferences file of matrix

multiplication service for the matrix length 160*160-450*450 values.

The energy consumption cost (Ec2) in runtime computational offloading of matrix

multiplication service is computed by using equation (3.1). Table 3.2 shows the total Ec2 in

offloading matrix multiplication service by using traditional computational offloading

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

69

technique. The attribute of length of matrix shows the size of 2-D arrays for matrix

multiplication operation, the energy consumption cost attribute shows the point estimator

for the sample space of 30 values in each experiment and the standard deviation (SD)

attribute shows the variation in the values of the sample space. The confidence interval

attribute shows the possible range of the sample mean with 99% confidence for the sample

space of 30 values in each experiment.

Table 3. 2: Energy Consumption Cost (Ec2) for Offloading Matrix Multiplication Service
in Traditional Computational Offloading

Matrix
Length

Energy
Consumption

Cost (J)

SD Confidence Interval

160*160 28.7898 9.3609 28.7898(+/-)4.4093
170*170 28.9927 10.3147 28.9927(+/-)4.8586
180*180 31.198 8.7939 31.198(+/-)4.1422
190*190 31.5995 8.9789 31.5995(+/-)4.2294
200*200 30.8027 9.6921 30.8027(+/-)4.5654
210*210 31.8297 10.1287 31.8297(+/-)4.771
220*220 31.8349 9.2277 31.8349(+/-)4.3466
230*230 33.4504 9.3581 33.4504(+/-)4.4018
240*240 33.4534 9.1811 33.4534(+/-)4.3247
250*250 36.2603 7.3977 36.2603(+/-)3.4846
260*260 36.8631 7.5401 36.8631(+/-)3.5517
270*270 38.9291 8.2521 38.9291(+/-)3.8871
280*280 38.5867 7.8341 38.5867(+/-)3.6902
290*290 38.9974 7.7375 38.9974(+/-)3.6447
300*300 38.0067 7.6129 38.0067(+/-)3.5860
310*310 39.0187 8.1817 39.0187(+/-)3.8539
320*320 40.0983 7.5075 40.0983(+/-)3.5363
330*330 39.5353 8.5737 39.5353(+/-)4.0386
340*340 40.8619 8.7749 40.8619(+/-)4.1333
350*350 42.3617 7.8729 42.3617(+/-)3.7085
360*360 41.8239 7.7127 41.8239(+/-)3.633
370*370 42.0589 8.0985 42.0589(+/-)3.8147
380*380 42.3943 7.5279 42.3943(+/-)3.546
390*390 42.6383 7.5029 42.6383(+/-)3.5342
400*400 42.2728 8.0943 42.2728(+/-)3.8128
410*410 42.6444 7.7541 42.6444(+/-)3.6525
420*420 44.3066 8.0657 44.3066(+/-)3.7993

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

70

Matrix
Length

Energy
Consumption

Cost (J)

SD Confidence Interval

430*430 45.6333 7.8499 45.6333(+/-)3.6976
440*440 49.7541 9.2795 49.7541(+/-)4.371
450*450 52.6952 7.9959 52.6952(+/-)3.7664

Figure 3.2 shows the increase in the total Ec2 for offloading matrix multiplication

service at runtime. It is examined that the cost of Em, and Es remains constant in offloading

matrix multiplication service with varying matrix length values. However, the size of

preferences file increases by increasing the length of matrices. Therefore, the cost of Eu and

Ed increases accordingly. It is examined that the average cost of Eu is 3.7 mJ for uploading

preferences file of matrices length 160*160, whereas the average cost of Eu is 136.6 mJ, for

uploading preferences file of matrices 450*450 length. Hence, the Eu increases 72.4 percent

for uploading preferences file of matrices length 450*450 as compared to uploading

preferences file of matrices length 160*160 values.

Similarly, it is examined that the cost Ed increases according to the size of

preferences file. For instance, 4.5 J energy is consumed in downloading preferences file for

matrices of length 160*160 values; whereas 16.2 J energy is consumed in downloading

preferences file for matrices of length 160*160 values. It shows that the cost of Ed increases

72.2 percent in downloading the preferences file for matrices length 450*450 values as

compared to the preferences file for the matrices length 160*160 values. It shows that

increase in the Ec2 is the result of increase in uploading and downloading larger preferences

files. The average energy consumption cost of offloading matrix multiplication service

(Ec2) is determined 38.58 J.

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

71

Figure 3. 2: Energy Consumption Cost (Ec2) for Offloading Matrix Multiplication Service
in Traditional Computational Offloading

The total Energy Consumption Cost (ECC) in offloaded execution of the matrix

multiplication service varies for different intensities of the matrix multiplication operation.

It is examined that the total ECC in the remote execution of matrix multiplication operation

increases with the increase in the length of matrices. For instance, the total ECC of

multiplying matrices 160*160 length is 40 J, whereas the total ECC of multiplying matrices

450*450 length is 131.7 J. It shows that the ECC increases 69.6 percent in multiplying

matrices 160*160 length as compared to multiplying matrices 450*450 length. The average

total ECC cost in offloaded execution of matrix multiplication service for multiplying

matrices (160*160-450*450 length) is 79 J. with 37.4 percent RSD.

Analysis of the results indicates that runtime computational offloading increases the

ECC of distributed application execution considerably. For instance, the additional Ec1 in

traditional offloading of sorting service is 59.6 percent for sort list length 11000, 44 percent

for sort list length 20000, 30.1 percent for sort list length 30000 and 22.5 percent for sort

list length 40000. The average increase in the Ec1 of runtime computational offloading for

sorting service is 37.1 percent for sort list length 11000-40000. The additional Ec2 in

0
10
20
30
40
50
60

16
0*

16
0

18
0*

18
0

20
0*

20
0

22
0*

22
0

24
0*

24
0

26
0*

26
0

28
0*

28
0

30
0*

30
0

32
0*

32
0

34
0*

34
0

36
0*

36
0

38
0*

38
0

40
0*

40
0

42
0*

42
0

44
0*

44
0E

ne
rg

y
C

on
su

m
pt

io
n

(J
)

Length of Matrix

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

72

traditional offloading of matrix multiplication service is 72 percent for multiplying matrices

160*160 length, 62.3 percent for multiplying matrices 260*260 length, 47.6 percent for

multiplying matrices 340*340 length and 40 percent for multiplying matrices 450*450

length. The average increase in the Ec2 of runtime computational offloading for matrix

multiplication service constitutes 53.2 percent for multiplying matrices 160*160-450*450

length.

We know that Ec1 is 36.58 J (average energy consumption cost of offloading sorting

service) and Ec2 is 38.58 J (average energy consumption cost of offloading matrix

multiplication service), hence by using equation (3.2) the total energy consumed cost (αc)

of runtime computational offloading for the mobile application is calculated as 75.15 J,

which means that 39.4 percent additional energy is consumed in offloading the components

of the mobile application at runtime.

3.2.2 Analysis of the Timing Cost

The additional time taken in runtime computation offloading is evaluated by using

timing cost (Tc) parameter in the units of milliseconds (ms). Tc involves preferences saving

time, binary code offloading time of the application, time taken in uploading the data states

of the mobile application to remote server node, application download time to remote

virtual device instance on the cloud server node, application reconfiguration and resuming

time on the remote server node and time taken in returning the resultant data file to local

mobile device. Therefore, the total offloading time of a single component of the mobile

application which is being offloaded at runtime is given by the following equation.

Tc= Tcm + Tps + Tpu + Tdv + Trr + Tpr (3.3)

a. Code Migration time (Tcm) represents time taken in transferring the binary code of the

component of the mobile application to the remote server node.

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

73

b. Preferences Saving Time (Tps) represents time taken in saving the data states

(preferences file) of the running instance of the component of the mobile application

which is being offloaded.

c. Preferences Upload Time (Tpu) represents time required for uploading the data state

(preferences file) of the mobile application to remote server node.

d. Download Time to remote Virtual Device (Tdv) represents time taken in downloading

the offloaded application to remote virtual device instance.

e. Reconfiguration and Resume Time (Trr) represents time required for the reconfiguration

of the offloaded component of the mobile application and resuming the running state of

the mobile application on the remote server node.

f. Preferences return Time (Tpr) represents time taken in returning the resultant

preferences file from remote server node to the local mobile device.

Let T is the finite set of the offloading time of the components of mobile application which

are offloaded at runtime. Hence, set T is given as:

T= {the finite set of the offloading time of the of the components of mobile application

which are offloaded at runtime}

Let Tca represents the timing cost in offloading a single component of the mobile

application at runtime. Whereas, a=1, 2,…, n

 T= { Tc1, Tc2,…, Tcn }

Tca represents the total time taken in offloading a single component of the mobile

application. Therefore, by using set builder notation the Tca is represented as:

T = { Tca : Tca   Tca > 0 } Whereas, a=1, 2,…,n

The timing cost of offloading a single component of the mobile application belongs to the

set of Natural numbers and is greater than 0. The total additional time taken in runtime

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

74

computational offloading is the sum of the timing cost of all the components of the

application which are offloaded at runtime. Let the total additional time taken in runtime

application offloading is represented by αt, which is the sum of the timing cost of all the

instances Tca =1,2,…,n of the runtime component offloading. Therefore, αt is represented

as follows.

 αt = (Tc1 + Tc2+…+ Tcn)   Tca  T |T|  1 where a=1,…, n

By using summation notation the total additional time taken in runtime computational

offloading of the mobile application is represented as follows:

αt =
1

n

a
a

Tc


   Tca  T |T|  1 (3.4)

For all Tca, which denotes the timing cost of offloading a single component of the mobile

application belongs to the set T and the cardinality of set T is greater than or equal to 1,

whereas T is the finite set of the offloading time of the components of mobile application

which are offloaded at runtime. The precondition validates that T is none empty set.

The timing cost (Tc1) for offloading the sorting service component of the application

at runtime is evaluated for 30 different computational intensities of sorting operation

(11000-40000). The time taken in transferring application binary code (Tcm), is evaluated

in 30 experiments by offloading sorting service. It is examined that in all instances of

offloading the binary code of the application the size of binary application file (.apk)

remains constant (44.4 KB). Hence, Tcm remains constant in offloading sorting service of

the application with different computational intensities. It is examined that the sample

mean of Tcm is 77(+/-)16 ms with 99% confidence for the sample space of 30 values which

shows that the possible range for Tcm is between 61 ms and 93 ms.

The timing cost of saving the data states (preferences file) on the local mobile device

is examined for 30 different computational intensities of the sorting service component of

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

75

the application. It is examined that the sample mean of Tps is 5076(+/-) 568 ms with 99%

confidence for the sample space of 30 values which shows that the possible range for Tps is

between 45081 ms and 5645 ms. The timing cost of uploading preferences file (Tpu) to the

cloud server node is examined for uploading the preferences file of 30 different

computational intensities of the sorting service. It is examined that the sample mean of Tpu

is 608(+/-) 94 ms with 99% confidence for the sample space of 30 values, which shows

that the possible range for Tpu is between 514 ms and 704 ms.

The timing cost of downloading the application file to remote virtual device instance

(Tdv) is evaluated in 30 different experiments. It is examined that the confidence interval for

the average Tdv is 241(+/-)113 ms for the sample space of 30 values in each experiment,

which shows the possible range of value for Tdv is between 128 ms and 354 ms. The timing

cost of application reconfiguration on remote server node and resuming time (Trr) is

evaluated in 30 different experiments. It is examined that the confidence interval for the

average Trr is 6662(+/-)884 ms for the sample space of 30 values in each experiment, which

shows the possible range of value for Trr is between 5778 ms and 7547 ms.

The timing cost of downloading the resultant preferences file (Tpd) from the remote

server node to the local mobile device is evaluated in 30 different experiments. It is

examined that the confidence interval for the average Tpd is 11113(+/-)1813 ms in

downloading the resultant preferences file of sorting service for the sorting list length

11000-40000 values. The total timing cost (Tc1) in runtime computational offloading of

sorting service is computed by using equation (3.3). Table 3.3 shows the Tc1 in offloading

sort service by using traditional computational offloading technique.

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

76

Table 3. 3: Timing Cost (Tc1) in Traditional Computational Offloading for Sorting Service

Length of
Sorting

List

Timing Cost
(ms)

SD in
Timing Cost

Confidence Interval

11000 10931 855 10931(+/-)403
12000 12050 1320 12050(+/-)622
13000 13186 1025 13186(+/-)483
14000 14197 1025 14197(+/-)483
15000 14989 1082 14989(+/-)510
16000 15146 1018 15146(+/-)480
17000 16135 1044 16135(+/-)492
18000 17971 1732 17971(+/-)816
19000 18704 1464 18704(+/-)690
20000 19688 1432 19688(+/-)675
21000 20004 1637 20004(+/-)771
22000 22077 1317 22077(+/-)620
23000 23375 947 23375(+/-)446
24000 23777 1336 23777(+/-)629
25000 24807 1749 24807(+/-)824
26000 25189 1408 25189(+/-)663
27000 25671 1380 25671(+/-)650
28000 26520 2015 26520(+/-)949
29000 27000 1683 27000(+/-)793
30000 27955 1402 27955(+/-)660
31000 28612 2461 28612(+/-)1159
32000 29284 2183 29284(+/-)1028
33000 30045 1507 30045(+/-)710
34000 30402 1111 30402(+/-)523
35000 30793 1450 30793(+/-)683
36000 31636 1637 31636(+/-)771
37000 32770 2071 32770(+/-)976
38000 33103 1506 33103(+/-)709
39000 33555 2536 33555(+/-)1195
40000 33796 1797 33796(+/-)846

Figure 3.3 shows the increase in the timing cost (Tc1) for offloading sort service at

runtime. It is examined that the Tcm, and Tdv remains constant in offloading sorting service

with varying sort list size. However, the size of preferences files increases by increasing

the length of sort list. Therefore, the cost of Tps , Tpu , Tpd increases accordingly. It is

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

77

examined that the average Tps cost is 2438 ms for saving preferences file of sorting list

length 11000 values, whereas the average Tps cost is 6739 ms for saving preferences file of

sorting list length 40000 values. Hence, the Tps cost increases 63.8 percent for saving

preferences file of sort list length 40000 values as compared to saving the preferences file

of sort list length 11000 values.

 Similarly, it is examined that the Tpu cost increases according the size of

preferences file. For instance, 253 ms time is taken in uploading preferences file for sorting

list size 11000 values; whereas 873 ms time is taken uploading preferences file for sorting

list size 4000. It shows that Tpu cost increases 71 percent in uploading the preferences file

for the sorting list of 40000 as compared to the preferences file for the sorting list size

11000 values. It is examined that the Tpd cost increases according the size of preferences

file downloaded to the local . For instance, 4620 ms time is taken in downloading the

resultant preferences file for sorting list size 11000 values; whereas 16294 ms time is taken

in downloading preferences file for sorting list size 4000. It shows that Tpd cost increases

71.6 percent in downloading the preferences file for the sorting list of 40000 as compared

to the preferences file for the sorting list size 11000 values. By using equation (3.3), the

total timing cost of offloading sorting service (Tc1) is determined as 23779 ms. Analysis of

the results indicates that saving preferences on the local, preferences uploading,

reconfiguration on the remote server node and downloading resultant file to the local

increase the timing cost in traditional computational offloading. Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

78

Figure 3. 3: Timing Cost (Tc1) in Traditional Computational Offloading for Sort Service

The Tc2 for offloading the matrix multiplication service component of the application

at runtime is evaluated for 30 different computational intensities. The time taken in

transferring application binary code (Tcm), is evaluated in 30 experiments by offloading

matrix multiplication service application with 30 different computational intensities. It is

examined that in all instances of offloading the binary code of the application, the size of

binary application file (.apk) remains constant (46 KB). Hence, Tcm remains constant in

offloading matrix multiplication service of the application with different computational

intensities. It is examined that the sample mean of Tcm is 52(+/-)5 ms with 99% confidence

for the sample space of 30 values, which shows that the possible range for Tcm is between

47 ms and 57 ms.

The timing cost of saving the data states (preferences file) on the local mobile device

is examined for 30 different computational intensities of the matrix multiplication service

component of the application. It is examined that the sample mean of Tps is 28152(+/-)

11141 ms with 99% confidence for the sample space of 30 values which shows that the

possible range for Tps is between 17010 ms and 39293 ms. The timing cost of uploading

0
5000

10000
15000
20000
25000
30000
35000

11
00

0

13
00

0

15
00

0

17
00

0

19
00

0

21
00

0

23
00

0

25
00

0

27
00

0

29
00

0

31
00

0

33
00

0

35
00

0

37
00

0

39
00

0

T
im

in
g

C
os

t (
m

s)

Length of Sorting List

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

79

preferences file (Tpu) to the cloud server node is examined for uploading the preferences file

of 30 different computational intensities of the matrix multiplication service. It is examined

that the sample mean of Tpu is 7177(+/-)3048 ms with 99% confidence for the sample space

of 30 values, which shows that the possible range for Tpu is between 4128 ms and 10225

ms.

The timing cost of downloading the application file to remote virtual device instance

(Tdv) is evaluated in 30 different experiments. It is examined that the confidence interval for

the average Tdv is 205(+/-)15 ms for the sample space of 30 values in each experiment,

which shows the possible range of value for Tdv is between 190 ms and 220 ms. The timing

cost of application reconfiguration on remote server node and resuming time (Trr) is

evaluated in 30 different experiments. It is examined that the confidence interval for the

average Trr is 10349(+/-)2307 ms for the sample space of 30 values in each experiment,

which shows the possible range of value for Trr is between 8041 ms and 12656 ms.

The timing cost of downloading the resultant preferences file (Tpd) from the remote

server node the local mobile device is evaluated in 30 different experiments. The sample

mean of each experiment is determined with 99% confidence for the sample space of 30

values in each experiment. It is examined that the confidence interval for the average Tpd is

11238(+/-)2753 ms in downloading the resultant preferences file of matrix multiplication

service for the matrices length 160*160-450*450 values.

The total timing cost (Tc2) in runtime computational offloading of matrix

multiplication is computed by using equation (3.3). Table 3.4 shows the total Tc2 in

offloading matrix multiplication service by using traditional computational offloading

technique.

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

80

Table 3. 4: Timing Cost (Tc2) in Traditional Computational Offloading for Matrix
Multiplication Service

Length of
Matrix

Timing Cost
(ms)

SD in Timing
Cost

Confidence Interval

160*160 12001 596 12001(+/-)281
170*170 13150 1142 13150(+/-)538
180*180 15370 1984 15370(+/-)935
190*190 16136 1881 16136(+/-)886
200*200 18561 1454 18561(+/-)685
210*210 19663 1169 19663(+/-)551
220*220 20875 1185 20875(+/-)558
230*230 23677 1767 23677(+/-)832
240*240 26042 1451 26042(+/-)683
250*250 29881 1218 29881(+/-)574
260*260 31604 2017 31604(+/-)950
270*270 33983 2008 33983(+/-)946
280*280 36521 2612 36521(+/-)1230
290*290 41451 1535 41451(+/-)723
300*300 43681 2381 43681(+/-)1122
310*310 44719 4649 44719(+/-)2190
320*320 51008 6530 51008(+/-)3076
330*330 53588 4616 53588(+/-)2174
340*340 67642 5079 67642(+/-)2392
350*350 66899 6069 66899(+/-)2859
360*360 70484 5214 70484(+/-)2456
370*370 76762 7473 76762(+/-)3520
380*380 82148 6160 82148(+/-)2902
390*390 89802 12813 89802(+/-)6035
400*400 92389 7284 92389(+/-)3431
410*410 102987 11737 102987(+/-)5529
420*420 113381 12979 113381(+/-)6114
430*430 131396 20749 131396(+/-)9774
440*440 134848 20211 134848(+/-)9520
450*450 154495 26891 154495(+/-)12667

Figure 3.4 shows the increase in the timing cost (Tc2) for offloading matrix

multiplication service at runtime. It is examined that the Tcm, and Tdv remains constant in

offloading matrix multiplication service with varying matrices size. However, the size of

preferences files increases by increasing the length of matrices. Therefore, the cost of Tps ,

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

81

Tpu, Tpd increases accordingly. The average Tps cost is examined 3294 ms for saving

preferences file of matrices length 160*160, whereas the average Tps cost is 91038 ms for

saving preferences file of matrices length 450*450.

Hence, the Tps cost increases 96.3 percent for saving preferences file of matrices

length 450*450 as compared to saving the preferences file of matrices length 160*160.

Similarly, it is examined that the Tpu cost increases according the size of preferences file.

For instance, 1518 ms time is taken in uploading preferences file for matrices length

160*160; whereas 20878 ms time is taken uploading preferences file for matrices length

450*450. It shows that Tpu cost increases 92.7 percent in uploading the preferences file for

the matrices length 450*450 as compared to the preferences file for the matrices length

160*160.

It is examined that the Tpd cost increases according to the size of preferences file

downloaded to the local mobile device. For instance, 3400 ms time is taken in downloading

the resultant preferences file for matrices length 160*160 values; whereas 23015 ms time is

taken in downloading preferences file for matrices length 450*450. It shows that Tpd cost

increases 85.2 percent in downloading the preferences file for matrices length 450*450 as

compared to the preferences file for the matrices length 160*160. By using equation (3.3)

the total average timing (Tc2) is 57171 ms in offloading matrix multiplication service at

runtime. Analysis of the results indicates that in traditional computational offloading,

preferences saving on the local mobile device, preferences uploading, reconfiguration on

the remote server node and downloading resultant file to the local increase the timing cost.

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

82

Figure 3. 4: Total Timing Cost (Tc2) in Traditional Computational Offloading for Matrix Multiplication
Service

The total Turnaround Time (TT) in remote execution of the matrix multiplication

service varies for different intensities of the matrix multiplication operation. It is examined

that TT in the remote execution of matrix multiplication operation increases with the

increase in the length of matrices. For instance, the total TT of multiplying matrices

160*160 length is 16431 ms, whereas the TT of multiplying matrices 450*450 length is

262697 ms. It shows that the TT increases 93.7 percent in multiplying matrices 450*450

length as compared to multiplying matrices 160*160 length. The average TT in offloaded

execution of matrix multiplication service for multiplying matrices (160*160-450*450

length) is 91567.5 with 74.7 percent RSD.

Analysis of the results indicates that runtime computational offloading increase the

TT of distributed application execution considerably. For instance, the additional timing

cost (Tc1) in traditional offloading of sorting service is 45 percent for sort list length 11000,

36 percent for sort list length 20000, 26 percent for sort list length 30000 and 20 percent for

sort list length 40000. The average increase in the timing cost (Tc1) of runtime

computational offloading for sorting service is 31.1 percent for sort list length 11000-

0
20000
40000
60000
80000

100000
120000
140000
160000

T
im

in
g

C
os

t (
m

s)

Length of Matrix

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

83

40000. Similarly, the timing cost (Tc2) in traditional offloading of matrix multiplication

service is 73 percent for multiplying matrices 160*160 length, 67.5 percent for multiplying

matrices 260*260 length, 61.2 percent for multiplying matrices 340*340 length and 58.8

percent for multiplying matrices 450*450 length. The average increase in the Tc2 of

runtime computational offloading for matrix multiplication service constitutes 65.2 percent

for multiplying matrices 160*160-450*450 length.

We know that Tc1 is 23779 ms (average timing cost of offloading sorting service)

and Tc2 is 57171 ms (average timing cost of offloading matrix multiplication service),

hence by using equation (3.4) the total timing cost (αt) of runtime computational offloading

for the mobile application is calculated as 80950 ms, which means that in traditional

computational offloading, 45.5 percent additional time is taken in offloading the

components of the mobile application at runtime.

3.2.3 Analysis of the Size of Data Transmission

The Size of Data transmission (Ds) in runtime computational offloading involves

the size of application binary file migrated at runtime (Da), the size of preferences file

uploaded to cloud server node (Dpu) and the size of resultant preferences file downloaded

to the local (Dpd). Therefore, the total size of data transmission of a single component of

the mobile application which is being offloaded at runtime is given by the following

equation.

Ds = Da + Dpu + Dpd (3.5)

Let D is the finite set of the size of data transmission of the components of the mobile

application which are offloaded at runtime. Hence, set D is given as:

D= {the finite set of the size of data transmission of the components of the mobile

application which are offloaded at runtime }

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

84

Let Dsa represents the total size of data transmission in offloading a single component of

the mobile application at runtime. Whereas, a=1, 2,…, n

 D= { Ds1, Ds2,…, Dsn }

Dsa represents the total size of data transmission in offloading a single component of the

mobile application. Therefore, by using set builder notation Dsa is represented as follows.

D = { Dsa : Dsa   Dsa > 0 } Whereas, a=1, 2,…,n

The total size of data transmission in offloading a single component of the mobile

application belongs to the set of positive Real numbers and is greater than 0. The total size

of data transmission in runtime computational offloading is the sum of size of data

transmission of all the components of the application which are being offloaded at runtime.

Let the total size of data transmission in runtime application offloading is represented by αd

, which is the sum of size of data transmission of all the instances Dsa =1,2,…,n of the runtime

component offloading. Therefore, αd is represented as follows.

 αd = (Ds1 + Ds2+…+ Dsn)   Dsa  D |D|  1 where a=1,…, n

By using summation notation the total size of data transmission of the runtime application

offloading of the mobile application is represented as follows:

αd =
1

n

a
a

Ds


  Dsa  D |D|  1 (3.6)

For all Dsa, which denotes the size of data transmission of the single instance of runtime

component offloading of the mobile application belongs to the set D and the cardinality of

set D is greater than or equal to 1, whereas D is the finite set of the total size of data

transmission of the components of mobile application which are offloaded at runtime. The

precondition validates that D is none empty set.

The total size of data transmission in offloading sorting service (Ds1) and total size

of data transmission in offloading matrix multiplication service (Ds2) of the application at

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

85

runtime is computed by using equation (3.5). Table 3.5 shows the total size of data

transmission for offloading sort service and matrix multiplication service of the application

for varying length of either operation.

Table 3. 5: Size of Data Transmission in Runtime Computational Offloading for Sorting
Service and Matrix Multiplication Service

Length of
Sorting List

Size of Data
Transmission

(Ds1) KB

Length of Matrix Size of Data
Transmission

(Ds2) KB
11000 752.4 160*160 5739.44
12000 820.4 170*170 6538.16
13000 888.4 180*180 7377.84
14000 950.4 190*190 8217.52
15000 1026.4 200*200 9118.64
16000 1086.4 210*210 10040.24
17000 1162.4 220*220 11023.28
18000 1230.4 230*230 12067.76
19000 1298.4 240*240 13132.72
20000 1360.4 250*250 14259.12
21000 1420.4 260*260 15426.48
22000 1480.4 270*270 16634.8
23000 1572.4 280*280 17884.08
24000 1632.4 290*290 19194.8
25000 1694.4 300*300 20526
26000 1754.4 310*310 21754.8
27000 1846.4 320*320 23393.2
28000 1914.4 330*330 24826.8
29000 1982.4 340*340 26465.2
30000 2042.4 350*350 28103.6
31000 2092.4 360*360 29742
32000 2153.84 370*370 31380.4
33000 2215.28 380*380 33223.6
34000 2276.72 390*390 34862
35000 2399.6 400*400 36705.2
36000 2399.6 410*410 38753.2
37000 2461.04 420*420 39367.6
38000 2522.48 430*430 42644.4
39000 2583.92 440*440 44692.4
40000 2645.36 450*450 46740.4

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

86

The size of data in transferring application binary code and preferences file is

evaluated in 30 experiments for offloading both sorting service and matrix multiplication

service of the application in 30 different experiments. It is examined that in all instances of

sorting service offloading and matrix multiplication service offloading the size of binary

application file (.apk) remains constant; 44.4 KB for sort service and 46 KB for matrix

multiplication service. However, the size of preferences file uploaded to the cloud server

node (Dpu) and the size of the resultant preferences file downloaded to the local mobile

device (Dpd) varies for different length of both operations.

The size of data transmission in sorting service offloading is examined 752.4 KB for

sort list length 11000, 1360.4 KB for sort list length 20000 and 2645.36 KB for sort list

length 40000. It shows that the size of data transmission increases 71.6 percent in

offloading sorting service with the length of sorting list 40000 as compared to the length of

sorting list 11000. Similarly, the size of data transmission in matrix multiplication service

is examined 5739.44 KB for matrices length 160*160, 15426.5 KB for matrices length

260*260 and 46740 KB for matrices length 450*450. It shows that the size of data

transmission increases 87.8 percent for offloading matrix multiplication service with the

matrices length 450*450 as compared to matrices length 160*160. The average size of data

transmission (Ds1) for offloading sorting service with the sort list length 11000-40000 is

determined 1722.2 KB. Whereas, the average size of data transmission (Ds2) for offloading

matrix multiplication service with the matrices length 160*160-450*450 is determined

11474.3 KB.

The size of data transmission for offloading power compute service (Ds3) at runtime

is evaluated in 30 different experiments. It is examined that in all instances of offloading

power compute service the size of binary application file (.apk) remains constant 42.7 KB ,

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

87

the size of preferences file uploaded to the cloud server node (Dpu) is 1 KB and the size of

the resultant preferences file downloaded to the local (Dpd) is 1 KB. Hence, by using

equation (3.5) the total size of data transmission in (Ds3) is 44.7 KB for offloading power

compute service as runtime. By using equation (3.6) the total size of data transmission (αt)

of runtime computational offloading for the mobile application is calculated as 13241.2

KB.

3.3 Analysis of VM Deployment for Application Processing

Virtual machine deployment based application offloading is a dominant

computational outsourcing mechanism for cloud based application processing (Goyal and

Carter, 2004; Satyanarayanan et al., 2009; Chun et al., 2009; Chun et al., 2011; Hung et al.

2011; Zao et al., 2011). In VM migration based application offloading, the deployment and

management of VMs require additional computing resources on SMDs. The deployment of

VM involves computing resources in the process of VM creation, VM configuration, VM

OS setup, VM startup, and application deployment. The management of VM includes

computing resources utilization in the monitoring of VM state transitions, CPU scheduling,

VM migration, application processing management, VM state transitions and physical

resources monitoring of computing host; allocation and de-allocation of physical resources

such as CPU and memory. This section investigates the cost of VM deployment for

application processing (Shiraz et al., 2013). We employ CloudSim for the evaluation of the

impact of VM deployment for application processing. CloudSim is an extensible simulation

framework that seamlessly models simulation and experimentation of cloud computing

infrastructures and application services (Calheiros et al. 2011). The impact of VM

deployment and management on the execution of the application is evaluated on the basis

of the application allocation to VM time and application processing time.

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

88

The experimental model is composed of two major scenarios. First, we evaluate

application allocation to VM time in different experiments. We conduct 30 different

experiments to determine application allocation to VM time. The average value of each

experiment is used for the analysis of application allocation to VM time. Second, the

application execution time is evaluated in two different test beds. In test 1, the number of

VMs equal to the number of applications in which case an individual VM is allocated to

each application. In test 2, the number of VMs is reduced to half of the number of

applications in which case each VM is shared by multiple applications.

In CloudSim, an application services is modeled by cloudlet. The execution of

application in VM instance includes the following steps; application creation, application

allocation to VM, application scheduling in VM, and application termination. In some

scenarios application migration occurs in which case application is migrated to other VMs

by deploying different migration policies. Application migration includes the computing

cost for encapsulation of application states in VM, selection of appropriate remote host,

transferring application to the remote host and allocation of application to a new VM in

remote datacenter. It is examined that the average time consumed for the allocation of

applications to VM increases for increasing number of VMs and applications. The

allocation of two applications to two independent virtual machines takes on the average 10

ms in all instances of the experimentation. The allocation of eight applications to VM takes

on the average 48 ms with the Relative Standard Deviation (RSD) 8.6 percent. Similarly,

the allocation of 45 applications to VM takes on the average 430 ms with the RSD 3.1

percent.

Figure 3.6 shows increase in the time required for the allocation of application to

VM. The mechanism of VM creation and application configuration in VM is time

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

89

consuming. Therefore, the average time required for the allocation of the application to VM

increases by increasing the number of VMs. Analysis of the results shows that allocation of

application to VM require additional computing resources for configuration of VM

according to the predefined specifications and the encapsulation of application in VM. As a

result, it increases the execution cost and time of the application in VM based application

offloading.

Figure 3. 5: Application Allocation to Virtual Machine Time (Shiraz et al., 2013a)

In test 1 of scenario 2, we evaluate the Application Processing Time (APT) of the

application by creating an individual VM for each application. Hence, it does not involve

the cost of VM scheduling. The processing time of applications (cloudlets) changes with

different number of VMs. Figure 3.7 indicates the increasing trend in average APT. The

average time required for the processing of application increases by increasing the number

of VMs. The APT increases 28 percent for 2-5 applications, 55 percent for 15-20

applications and 65 percent for 30-15 applications. On the average the APT increases 49.8

percent with the RSD 48.2 percent for 2-45 applications.

0

100

200

300

400

500

2 4 6 8 12 15 17 20 24 30 35 40 45

T
im

e
(m

s)

Number of Applications

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

90

Figure 3. 6: Application Processing Time for None Shared VMs (Shiraz et al., 2013a)

In test 2 of scenario 2, we evaluate the APT of the application by allocating multiple

applications to each VM which results in the sharing of VM among multiple applications.

Sharing of VM involves the cost of scheduling VM resources among multiple applications

which affects the processing time of the application. Figure 3.8 indicates the APT of the

application for shared VM scenario. The APT of applications (cloudlets) changes

differently with different number of VMs.

Figure 3. 7: Application Processing Time (APT) for Shared VMs

Analysis of the results indicates that on the average APT increases for each

application with the increase in number of VMs. APT increases 32 percent for (2-5)

0
5000000

10000000
15000000
20000000
25000000
30000000
35000000
40000000
45000000

2 5 10 15 20 25 30 45

T
im

e
 (n

s)

Number of Applications and VMs

0
10000000
20000000
30000000
40000000
50000000
60000000

2 5 10 15 20 25 30 45

 T
im

e
 (n

s)

Number of Applications

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

91

applications, 60 percent for (10-15) applications, 77 percent for (20-25) applications, 70

percent for (30-45) applications. On average the execution time of an application increases

by 64.7 percent for (2-45) applications.

Figure 3.9 compares the comparison of average application execution time in test 1

and test 2 of scenario 2. The analysis of the results in test 1 and test 2 indicates that APT of

the application is 7.7 percent higher for shared VMs as compare to none shared VMs. It

means that sharing of VM involves the additional cost of sharing computing resources

among multiple applications.

Figure 3.8: Comparison of APT for Shared VMs & None Shared VMs (Shiraz et al.,

2013a)

The comparison of application processing time in different test cases shows that

average processing time of the application increases for both shared and none shared VMs.

It shows the additional computing resources utilization for the deployment of VM in

application processing. It concludes that VM migration based application offloading

requires additional computing resources on SMD for the deployment and management of

VM which affects the execution cost and time of mobile application.

0

10000000

20000000

30000000

40000000

50000000

2 5 10 15 20 25 30 45

A
pp

lic
at

io
n

Pr
oc

es
si

ng
 T

im
e

(n
s)

Number of Applications

Application Execution Time for Shared VM

Application Execution Time for non Shared VM

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

92

3.4 Conclusion

The traditional computational offloading frameworks for mobile cloud computing

are the analogous extensions of earlier decentralized computational offloading frameworks

for local distributed platforms. Current DAPFs are deficient in the deployment of

distributed system architecture for the design and development of intensive mobile

applications, which are offloaded to cloud server nodes. The traditional application

offloading frameworks focus on the establishment of runtime distributed platform, which is

a resources intensive mechanism. Therefore, resources intensive distributed application

execution platform is established at runtime, which results in additional cost of application

file and data file migration, high energy consumption cost in distributed application

processing and longer turnaround time of mobile application.

It is examined that 13241.2 KB data is transmitted in traditional computational

offloading of three intensive components of the mobile application, 75.2 J additional energy

is consumed and 80950 ms additional time is taken in offloading the intensive components

at runtime. It shows that 39.4 percent additional energy is consumed and 45.5 percent

additional time is taken in offloading the components of the mobile application at runtime.

Further, it is examined that the deployment for VM for application affects the execution

cost of the application. Therefore, VM migration based application offloading requires

additional computing resources for the deployment and management of VM on mobile

device.

Traditional computational offloading frameworks lack of considering the intensity

of runtime component offloading and focus on leveraging the IaaS service provisioning

model for computational offloading which is resources intensive and time consuming.

Univ
ers

iti
Mala

ya

Chapter 3: Problem Analysis

93

Current frameworks lack of leveraging the application processing services of computational

clouds by using the SaaS service provision model which provides fast and lightweight

solution for cloud based application processing.

Hence, the traditional computational offloading frameworks employ heavyweight

procedures for the processing of intensive applications in MCC. The resources limited

features of mobile devices and the intrinsic limitations in the wireless access medium

motivate for lightweight procedures for the processing of computationally intensive

applications in MCC.

.

Univ
ers

iti
Mala

ya

Chapter 4: DEAP Framework

94

CHAPTER 4

Distributed and Elastic Application Processing (DEAP)

Framework

This chapter reports on the methods and procedures for solving the problem of

additional computing resources utilization in the processing of intensive mobile

applications in MCC. The chapter is organized into four sections. Section 4.1 discusses

introduction to the chapter. Section 4.2 explains the proposed framework for the distributed

deployment of intensive mobile applications in MCC and explains the standard operation

procedures of the proposed framework. Section 4.3 highlights the distinctive features of the

proposed framework. Section 4.4 draws conclusive remarks with highlighting the

usefulness and applicability of the proposed model.

4.1 Introduction

Traditional computational offloading frameworks employ heavyweight procedures

for the processing of intensive applications in MCC. The resources limited features of

mobile devices and the intrinsic limitations in the wireless access medium motivate for

lightweight procedures for processing of computational intensive applications in MCC.

Therefore, a lightweight framework is proposed for addressing the issue of additional

computing resources utilization in the processing of intensive mobile applications in MCC.

The architecture of the proposed solution is modeled and the operating procedure of the

proposed framework is explained. The development of distributed applications on the basis

of such lightweight framework results in substantial performance gains and enhancement in

overall performance of application deployment and processing in MCC.

Univ
ers

iti
Mala

ya

Chapter 4: DEAP Framework

95

4.2 Proposed Lightweight Application Processing Framework

We propose a novel lightweight Distributed and Elastic Application Processing

(DEAP) framework for MCC. DEAP addresses the issue of additional computing

resources utilization in traditional computational offloading by focusing on minimal

computing resources utilization in computational offloading and comparatively shorter

turnaround time of the distributed application processing in MCC. DEAP fulfills the gap of

traditional computational offloading frameworks by incorporating SaaS model with IaaS

model of computational clouds for leveraging the application processing services. DEAP

provides comparatively lightweight solution for the processing of intensive mobile

applications in MCC.

DEAP incorporates the features of distributed application model with the elastic

attributes of the traditional computational offloading frameworks. Therefore, the proposed

model is distributed by design and elastic in nature. DEAP is attributed with the features of

simple developmental procedures, standardized deployment principles and elastic

processing management mechanism for intensive mobile applications. The distinctive

features of DEAP are leveraging the SaaS model for the configuration of intensive

components on the cloud server node and the incorporation of elasticity attributes for

providing autonomy of mobile application and ensuring dynamic processing management

on SMD. The distributed architectural attribute of DEAP framework allows mobile

applications to use the application processing services of computational clouds without the

additional cost of runtime application partitioning and component offloading. The issue of

dependency on the preconfigured servers and autonomy of mobile application is addressed

by including the elasticity features in mobile application. The elastic nature attribute of

DEAP model enables mobile devices to offload the intensive components of the mobile

application dynamically in critical conditions.

Univ
ers

iti
Mala

ya

Chapter 4: DEAP Framework

96

In traditional computational offloading frameworks computationally intensive

components of the mobile application are annotated as local and remote at design time and

the remotely annotated components are offloaded at runtime for remote processing (Messer

et al., 2002; Giurgiu et al., 2009; Cuervo et al., 2010; Chun et al., 2011; Zhang et al. 2011),

which results in additional cost of runtime component offloading. To address this issue,

DEAP framework focuses on utilizing the SaaS service provision model of computational

clouds for implementing preconfigured services on the cloud sever node which are accessed

on demand basis. The preconfigured services include the resources intensive components of

the mobile application which are not location aware and do not require user interaction.

The preconfigured services are provided access by using the on demand business

model of cloud computing. The configuration of resources intensive components of the

mobile application on the cloud server nodes results in minimal instances of offloading the

components of mobile application at runtime. The significance of the utilization of

preconfigured services in SaaS model on demand basis is twofold.

 The computational intensity of the mobile application is reduced and the intensive

computation is performed on the powerful virtual machines in the cloud datacenters.

Hence, the turnaround time of the application is reduced and computational resources

utilization and energy consumption on the smart mobile device is minimized.

 Computational load of the mobile application is outsourced by eliminating the

additional timing cost, energy consumption cost and the size of data transmission in

computational offloading.

DEAP implements the two tiered architecture of distributed applications by explicitly

defining the client mobile application and server mobile application. The server application

is composed of the intensive components of the mobile application which are identified at

Univ
ers

iti
Mala

ya

Chapter 4: DEAP Framework

97

design time. Client mobile application is a normal application with all the components

available on local mobile device. However, two types of additional attributes are included

in normal mobile application. 1) To implement the distributed features, the mobile

application is enabled to switch to the client mode in the situations of accessing the services

of preconfigured services on the cloud server node. 2) To implement the elastic features,

mobile application is enabled to save its data states for the purpose of offloading at runtime.

The architecture and operation procedure of DEAP framework is different from the

traditional client/server applications. The traditional client/server applications are called

thin client applications. The client applications provide user agents for interaction with the

local computer, whereas the processing logic is implemented on the remote server

machines. Examples of such applications include web application, email application, social

network applications such as Facebook, and video conferencing applications such as Skype

application. In the traditional client/server model, the client component of the application

becomes insignificant in the situations of inaccessibility of the server component.

Therefore, DEAP framework is attributed with the features of offline usability, on demand

access of the preconfigured cloud services and offloading computational load of the local

mobile device in the situation of unavailability of sufficient resources for the processing of

mobile application on local mobile device. Figure 4.1 shows the architecture of the

proposed DEAP framework. Univ
ers

iti
Mala

ya

Chapter 4: DEAP Framework

98

Mobile ApplicationMobile Application

SynchronizerSynchronizer

Preferences
Manager

Preferences
Manager

OrchestratorOrchestrator

Operating System Operating System

Device HardwareDevice Hardware

Wireless
Medium

DEAP Client

MiddlewareMiddleware
IPC

Delegated Mobile
Application

Delegated Mobile
Application

Preferences
Manager

Preferences
Manager

OrchestratorOrchestrator

Virtual MachineVirtual Machine

MiddlewareMiddleware

Server ApplicationServer Application

SynchronizerSynchronizer

SaaS Virtual Device Instance

DEAP Server

Upload
Manager

Download
Manager

Operating System

Figure 4. 1: Architecture of the Proposed DEAP Framework

DEAP configures the processing logic of the mobile application on the client mobile

device and mobile application is enabled to be operated in the distributed and elastic

manner on demand basis. Therefore, mobile applications are not completely dependent on

the server component for application processing. The configuration of entire processing

logic of the mobile application on local device assists in achieving the goals of rich user

experiences and offline usability. It means that the client mobile application still remains

functional in offline mode in the situations of unavailability of preconfigured services on

the cloud server node. Mobile application is designed with the objectives to access the

preconfigured services of DEAP server in the Primary Operating Procedure (POP) of

distributed application processing and implement computational offloading at runtime in

the Secondary Operation Procedure (SOP) of DEAP framework.

Considering the mobile nature and intrinsic limitations with wireless medium, DEAP is

based on processing slight intensive or tightly coupled components of the mobile

application on SMD which contributes to the richness and smartness of local services and

offline usability of the mobile application. However in the scenarios of inaccessibility of

Univ
ers

iti
Mala

ya

Chapter 4: DEAP Framework

99

remote servers the mobile application is capable to switch to offline mode, wherein the

services of the local mobile application are activated to be executed on the local mobile

device. Whenever, remote servers become accessible mobile application switches to the

online mode to access the distributed services of clouds server node. The following section

explains the components of the architecture of DEAP framework.

a) Middleware: DEAP client uses the services of distributed middleware for the

implementation of primary operation procedure. The communication between client

mobile application and server application is implemented by using Inter Process

Communication (IPC) mechanism. Middleware hides the complications of the

communication between DEAP client application and DEAP server application. A

mobile user is provided the notion as the entire application is being processed locally on

SMD. In the POP of DEAP framework, mobile application invokes the services of

DEAP server application by using the distributed middleware.

b) Application Orchestrator: The secondary operating procedure of DEAP client

application uses the orchestrator component for the configuration of the operation

modes of the client application. The orchestrator component monitors the operation of

mobile application in two distinct modes on SMD; offline mode and online mode. In

the offline mode the application offloading options are disabled and the components of

the mobile application are executed on SMD. In the online mode the services of DEAP

server are utilized in the POP for accessing the preconfigured services of the server

application. Whereas, in the situation of of unavailability of preconfigured services in

the DEAP server, the options of offloading application components are enabled and

mobile users are capable to offload the selected components of the mobile application at

runtime. In the SOP of online mode, application orchestrator activates the preferences

Univ
ers

iti
Mala

ya

Chapter 4: DEAP Framework

100

manager component to save the data states of the running mobile application.

Application orchestrator is responsible for the configuration of the mobile application

on SMD and remote server node. On the cloud server node, application orchestrator

configures the delegated service application on the remote server node. Application

orchestrator component on the remote server node resumes the running state of the

delegated mobile application by accessing the preferences files from the persistent

storage. The application orchestrator component of the DEAP client arbitrates with the

remote server node for offloading the selected running component of the mobile

application.

c) Preferences Manager: In the SOP of the mobile application, the orchestrator

component is assisted by the preferences manager component. Mobile applications are

associated with a separated preferences manger which provides access to the

preferences file. Preference manager reads and writes the data states from persistent

storage during the activation and deactivation of mobile application. In the SOP, the

preferences manager component is activated to save the data states of the running

component of the client mobile application. Preferences manager saves the data states

to the persistent medium. The role of preferences manager is to provide access to the

preferences of the mobile application. The preferences manager components copies the

preferences file to the external storage device which is directly accessible for the upload

manger and download manager component. The preferences manager component of the

server node is responsible for providing access to the data files which are downloaded

with the delegated service application. Similarly, whenever the service application

completes execution on the remote server node, the preferences manger saves the final

results to the preferences file.

Univ
ers

iti
Mala

ya

Chapter 4: DEAP Framework

101

d) Upload Manager: The upload manager component of DEAP client is responsible for

uploading the preferences files of the application to remote server node in the SOP. The

preferences files are stored on the persisted storage by the preferences manager which is

accessible for upload manager. Whenever, the offloaded mobile application is installed

on the remote virtual device instance, the synchronization manger component of the

DEAP server connects to the upload manger component of the DEAP Client and make

request for preferences file. Upload manager sends the requested preferences file to the

synchronizer of the DEAP server.

e) Download Manager: In the SOP of DEAP client, the download manager component of

DEAP client is responsible for downloading the preferences files of the application

from the remote server node in the SOP. Whenever, the offloaded component of the

application completes execution, download manager component of the DEAP client is

connected to return the resultant preferences file. Download manager receives the

resultant data file and saves it to the persistent storage of the local mobile device.

f) Synchronizer: The synchronizer component of the framework is responsible for the

synchronization of transmission between SMD and remote server node. In POP of

distributed processing, the synchronizer component is responsible for ensuring the

consistency of transmission between mobile application on SMD and the server

application running on the cloud server node. In SOP, whenever the states of the

application are saved on the persisted medium, the synchronizer component is activated

to offload the service application to remote server node. The orchestrator component

searches for the configuration file of the identified intensive component on mobile

device. Whenever the configuration of the service application is validated, the

synchronizer component is activated to outsource the configuration files to remote

server node. Synchronizer component of the remote server node is activated to receive

Univ
ers

iti
Mala

ya

Chapter 4: DEAP Framework

102

the delegated service application. Whenever, the configuration file of the delegated

service application is received successfully on the remote server node, the orchestrator

component of the server node is activated to configure the delegated service application

and resume the running states from the preferences file.

The synchronizer component is also responsible for the uploading and downloading

of preferences files between SMD and remote server node. The synchronization manger

component of the DEAP framework utilizes the services of download manager and upload

manager for the synchronization of distributed application processing in the SOP DEAP

framework. In the SOP DEAP client offloads the intensive components of the application

to cloud datacenters which are executed on temporarily created server node. In such

scenario the role of synchronizer is to coordinate between DEAP client mobile application

and the offloaded components of the application. The primary responsibility of

synchronizer is to ensure the consistency of transmissions between DEAP client and DEAP

sever in POP and DEAP client application and temporarily allocated server node in the

SOP.

Figure 4.2 shows the flowchart for the interaction of the components of DEAP

framework in leveraging application processing services of cloud server node. The DEAP

client mobile application executes on SMD, whereas the DEAP server application is

configured on the cloud sever node. Whenever, the client application requires the services

of remotely configured component in DEAP server, it activates the component by using

IPC. In the online mode the services of cloud server nodes are leveraged for the processing

of intensive components of the mobile application. In the POP, DEAP client access the

preconfigured services of DEAP server. However, in the scenario of unavailability of the

preconfigured server, the elastic features of DEAP client are used to offload the intensive

components of the application to the remote server node at runtime.

Univ
ers

iti
Mala

ya

Chapter 4: DEAP Framework

103

StartStart

Server Component
Required

Server Component
Required

OrchestratorOrchestrator

Preferences
Manager

Preferences
Manager

SynchronizerSynchronizer Selection of Cloud
Server Node

Selection of Cloud
Server Node

DEAP ServerDEAP Server

No

DEAP ClientDEAP Client

POP

Critical
Condition
Critical

Condition

Yes

SOP

No

Remote Application
Processing

Remote Application
Processing

StopStop

Upload Manager Download Manager

Yes

Figure 4. 2: Illustration of the Interaction of the Components of DEAP Framework in POP
and SOP

DEAP framework proposes two independent operating procedures for the

implementation of distributed platform of intensive mobile applications in MCC. The

Primary Operating Procedure (POP) of DEAP client application implements distributed

middleware for accessing the services of explicitly configured DEAP server. Mobile

application activates the preconfigured services of DEAP server on demand basis. The

client application uses IPC procedures for invoking the services of remote server node. The

POP of DEAP client follows a simple and optimal procedure for remote processing of

intensive components of the mobile application. The significant aspect is that it provides

cloud based processing of mobile application without the overhead of runtime application

Univ
ers

iti
Mala

ya

Chapter 4: DEAP Framework

104

partitioning and component offloading. Figure 4.3 shows the sequence diagram for POP of

DEAP.

Figure 4. 3: Sequence Diagram for Primary Operating Procedure of DEAP Framework

The Secondary Operating Procedure (SOP) of DEAP incorporates the elasticity

features for coping with the mobile application processing requirements and processing

loads on SMD. DEAP client employs SOP in critical condition and online mode, wherein

insufficient resources are available on local mobile device and the services of the

preconfigured services are inaccessible. Therefore, DEAP client employs SOP for

offloading the intensive component of mobile application at runtime. In the SOP, DEAP

client follows service level granularity for offloading the intensive components of the

mobile application. Further, the proposed model reduces the overhead of application

outsourcing by eliminating the mechanism of runtime application profiling and solving. In

SOP, DEAP client mobile application starts execution on the SMD with the activity

component of mobile application. The interface of mobile application displays the

Univ
ers

iti
Mala

ya

Chapter 4: DEAP Framework

105

operations for the operation mode of the mobile application. Figure 4.3 shows sequence

diagram for the SOP of DEAP framework.

Figure 4. 4: Sequence Diagram for Secondary Operating Procedure of DEAP Framework

In the SOP of the online mode, mobile application is enabled to offloaded intensive

components of the application. The synchronizer component arbitrates with the cloud

datacenter for the selection of remote server node. A fresh VM instance is created on the

cloud server node for the execution of delegated service application. At that time, the

orchestrator on the mobile device saves the running states of the service application by

activating the preferences manager and kills the selected service to release the systems

resource occupied by the selected intensive service. The synchronizer component offloads

the service application to remote service node. The orchestrator component configures the

delegated service application and resumes the running states of the service application in

the guest VM instance created on the server node. The synchronizer components of both

the SMD and cloud server node communicate for the exchange of configuration and data

Univ
ers

iti
Mala

ya

Chapter 4: DEAP Framework

106

files. On successful execution of the service application components of the mobile

application on SMD results of the mobile application are saved in the preferences file and

returned to the SMD. The robust nature of SOP is that it allows mobile user to switch

between online mode and offline mode at any instance of mobile application execution.

Figure 4.5 shows the flowchart for the operational logic of DEAP framework.

StartStart

Preconfigured
Services Accessible

Preconfigured
Services Accessible

Save Running State Save Running State

Selection of Cloud
Server Node

Selection of Cloud
Server Node

Migrate Application
Binary File

Migrate Application
Binary File

Install Delegated
Application on Remote

Virtual Device

Install Delegated
Application on Remote

Virtual Device

Server ApplicationServer Application

Mobile ApplicationMobile Application

Critical
Condition
Critical

Condition

Yes

Upload Data States to
Remote Server Node

Upload Data States to
Remote Server Node

StopStop

Online ModeOnline Mode

Yes

NO

Local Execution of the
Applciation

Local Execution of the
Applciation NO

NO

Execute Component on
Remote Server Node

Return Resultant Data
File

POP

SOP

Figure 4. 5: Illustration of the Operation Logic of DEAP Framework

The important aspect of the SOP in DEAP framework is that the service application

package is transferred only once to the remote server node. However, configuration and

data files require repeated transmission for each instance of remote execution of the service

application. It means that at first instance the entire service application package file and the

other related files are transferred to cloud server node. However, if the same service is

required to be executed again on the same cloud server node, it does not require the

Univ
ers

iti
Mala

ya

Chapter 4: DEAP Framework

107

application package to be migrated repeatedly. Instead, for the later instances of remote

service execution require to upload the configuration and data files in order to synchronize

the execution of service application on the remote server node. It is important to highlight

that the SOP does not utilize the services of explicitly defined DEAP server. It is possible

that the explicitly configured server application and online delegated components of the

mobile application execute on two separate server nodes. The synchronizer component of

DEAP client arbitrates with cloud servers to facilitate remote execution services on casual

basis.

The distinctive aspects of DEAP framework are the design time classification of

resources intensive services and the user preferences based migration of the running service

application. The SOP of DEAP model employs simple developmental procedure. Unlike

the traditional elastic application offloading models (Giurgiu et al., 2009; Cuervo et al.,

2010; Zhang et a., 2011), DEAP model does not bound application developers to classify

and annotate the application components as local or remote at finer granularity level. DEAP

models entire service level granularity for the application offloading, which reduces the

overhead associated with finer level granularity nature of traditional application offloading

frameworks (Giurgiu et al., 2009; Cuervo et al., 2010; Zhang et a., 2011). It eradicates the

cost of runtime application profiling and solving. The framework focuses on the user

preferences for offloading the intensive components of the mobile application at runtime.

Therefore, the service level migration is a lightweight mechanism for the establishment of

distributed application processing platform at runtime. By deploying the SOP of DEAP

framework mobile users have full control over the execution mode of the mobile

application.

In offline mode all the components of mobile application are executed locally on

SMD. On the other side, mobile user is provided with the option to offload the intensive

Univ
ers

iti
Mala

ya

Chapter 4: DEAP Framework

108

services on demand basis. In the online mode, mobile application is enabled to access the

preconfigured services of DEAP server and offload the intensive components of the

application on demand basis. The dual operation modes of the DEAP client application

provide robustness to the mobile applications. The applications are capable to operate with

full functionalities in the situations of remote server access problems. The offloading of

active service to cloud server node involves complicated mechanism. However, mobile

users remain unaware of the complications of the remote execution. Mobile user is given

the notion as entire components of the mobile application are executed locally on SMD.

The following section highlights the distinctive features of DEAP framework.

4.3 Distinguishing Features of DEAP Framework

The following are distinguishing features of the proposed DEAP framework which

make it a distinct framework for intensive mobile application processing in MCC.

4.3.1 Standardized Developmental and Deployment Procedures

The DEAP framework focuses on design time identification of the intensive

components of the mobile application which provides design time support for the

distributed deployment of intensive mobile application. Design time separation of the

intensive mobile application reduces the developmental efforts of annotating all the

individual components of the mobile application as local or remote, which makes the

developmental procedures simple for the application developers. The DEAP framework

explicitly defines the roles and responsibilities of the distributed components (client and

server) of the mobile application. In current DAPFs the roles of distributed components

participating in distributed platform remain unclear which results in complex runtime

distributed platform. The DEAP framework incorporates two distinct operating procedures

for inheriting the attributes of both distributed and elastic models as compared to the

Univ
ers

iti
Mala

ya

Chapter 4: DEAP Framework

109

traditional DAPFs which employ exclusive elasticity attributes for intensive mobile

applications.

4.3.2 Optimal Communication Procedures

The POP of the proposed framework minimizes the communication cost between SMD

and cloud datacenters by employing IPC procedures rather than intensive partition

migration. The minimization of communication overhead results in the following

performance gains:

a) Communication over wireless medium is an energy starving operation, therefore

minimizing data transmission overhead reduces energy consumption on SMD.

b) Application partition migration involves the issues of security in the wireless medium,

therefore DEAP framework reduces the threats of network security by minimizing the

migration of actual application or partitions of the application and active data file.

c) Current VM migration based DAPFs involves the overhead of VM deployment and

management on SMD. However, DEAP implements application level IPC procedures

for communication between DEAP client and DEAP server in POP and DEAP client

and temporary cloud server in SOP which eliminates the deployment and

communication overhead associated with VM deployment and migration for application

transfer to the cloud servers.

d) Communication overhead over the wireless medium is highly error prone and subjected

to attenuation distortion. DEAP framework focuses on minimization of runtime mobile

application transmission by configuration maximum possible intensive services of the

mobile application on the DEAP server which indirectly reduces the error rate of

communication between SMD and cloud datacenters.

Univ
ers

iti
Mala

ya

Chapter 4: DEAP Framework

110

4.3.3 Elasticity and Robustness in Deployment

The proposed framework sustains the robustness and versatility of the elastic

application models for coping with dynamic processing loads on SMD. The SOP of the

DEAP framework is elastic and dynamic by nature. The elasticity attribute of the

application enables SMD to dynamically offload computational load on the SMD to the

remote server node. Current DAPFs employ runtime optimization either statically or

periodically on SMD which are not appropriate for optimal deployment of distributed

platform. The elasticity features of DEAP framework are employed for runtime intensive

components optimization on the basis of user priorities. The SOP implements the activation

of runtime optimizer whenever the critical condition occurs on SMD.

4.3.4 Convenient Application Level Deployment

DEAP model is based on the application level deployment of both the POP and

SOP. The significant aspect of sustaining elasticity features in DEAP framework is the

application partitioning and migration which does not require for additional operating

system level support for partition migration as required in VM migration based approaches

(Goyal and Carter, 2004; Satyanarayanan et al., 2009; Chun et al., 2009; Chun et al., 2011;

Zao et al., 2011).

4.3.5 Offline Usability, Richness of Local Services and Smartness in Behavior

DEAP implements the two tiered architecture of distributed applications by explicitly

defining the client mobile application and server mobile application. The server application

is configured with the highly intensive components of the mobile application which are

identified at design time. Mobile application is a normal application with all the

components available on local mobile device. However, two types of additional attributes

are included in normal mobile application. Mobile application is enabled to switch to the

Univ
ers

iti
Mala

ya

Chapter 4: DEAP Framework

111

client mode in the situations of accessing the services of preconfigured services on the

cloud server node. Similarly, mobile application is enabled to save its data states for the

purpose of offloading at runtime.

DEAP focuses on the enrichment of services on SMD which contributes to the

features of rich internet applications for MCC, smartness of client application and offline

usability. DEAP framework is capable to provide local services on SMD in the failure or

unavailability of internet access. However, the services DEAP server application is

accessible only in online mode.

4.4 Conclusion

We propose distributed and elastic application processing framework for intensive

mobile applications as a lightweight solution for the processing of intensive mobile

applications in MCC. Traditional DAPFs are based on the establishment of distributed

platform at runtime and lack of distributed architecture for the intensive mobile

applications. The distinctive features of DEAP framework are leveraging the SaaS model

for the configuration of intensive components on the cloud server node and the

incorporation of elasticity attributes for providing autonomy of mobile application and

ensuring dynamic processing management on SMD.

The distributed architectural attribute of DEAP framework allows mobile

applications to use the application processing services of computational clouds without the

additional cost of runtime application partitioning and component offloading. The issue of

dependency on the preconfigured servers and autonomy of mobile application is addressed

by including the elasticity features in mobile application. The elastic nature attribute of

DEAP framework enables mobile users to offload the intensive components of the mobile

application dynamically in critical conditions.

Univ
ers

iti
Mala

ya

Chapter 4: DEAP Framework

112

The incorporation of distributed model with elastic attributes of the traditional

DAPFs facilitates in the simple developmental procedures, mobile application distributed

by design, explicitly defined roles of the distributed components of the application, optimal

deployment procedures with minimal cost in the establishment of distributed platform and

comparatively minimal data transmission for the processing of intensive mobile

applications in MCC. The dual operating nature of the proposed framework contributes to

the versatility and robustness of the distributed and elastic model for intensive mobile

application in MCC. The elasticity attributes of client mobile application enables SMD to

cope with the challenges of dynamic application processing loads. Further, the elastic

nature of DEAP client contributes to the objectives of offline usability, smart client and rich

internet applications for MCC. It is concluded that DEAP framework provides a

lightweight solution for the processing of intensive mobile applications in MCC.

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

113

CHAPTER 5

Evaluation

This chapter reports on the data collection method for the evaluation of proposed

DEAP framework. It explains the tools used for testing the proposed framework, data

collection technique and the statistical method used for the processing of data. The chapter

is organized into seven sections. Section 5.1 presents an overview of the chapter, Section

5.2 explains the experimental setup and programming tools used for the implementation

and testing of the proposed DEAP framework and the statistical method used for the

compilation of empirical data. Section 5.3 presents the data collected in evaluating the

execution of mobile application on local mobile device. Section 5.4 summarizes data

collected in evaluating application execution in the traditional runtime component

offloading. Section 5.5 presents data collected for testing the operating procedures of

DEAP framework. Section 5.6 presents mapping of data by comparing experimental results

in different scenarios. Finally, section 5.7 extracts conclusive remarks.

5.1 Introduction

 DEAP framework provides a lightweight solution for the processing of intensive

mobile applications in MCC. The significance of DEAP framework is evaluated in

emulation and real mobile cloud computing environment. Synthetic workload is tested on

the Android virtual device instance which is enabled to operate in the distributed mobile

cloud computing environment. Experimental results are validated by benchmarking in the

real distribute mobile cloud computing environment. A prototype application is developed

for the Android devices, which is tested with varying computational intensities in three

different experimental scenarios. The execution behavior of the application is analyzed

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

114

from the perspective of resources utilization on the mobile device, size of data transmission

on the wireless network medium, and turnaround time of the application in the traditional

and proposed computational offloading techniques. Empirical data are collected by testing

each component of the prototype application with 30 different computational intensities.

The experimental results of the application are analyzed by collecting data from 30

samples. The sample mean for each sample space of 30 values is determined, which is

signified by measuring the error estimate for 99% confidence interval. Finally, empirical

results of testing the prototype application in the traditional and proposed technique are

compared to validate the significance the proposed solution.

5.2 Evaluation of the Proposed DEAP Framework

This section presents the methodology used for the evaluation of DEAP framework.

It discusses the experimental setup, prototype application used for the evaluation and the

statistical method used for the compilation of results.

5.2.1 Experimental Setup

The proposed framework is evaluated by implementing synthetic workload in the

emulation and real implementation on the physical mobile devices. Synthetic workload is

tested on the Android virtual device instance which is enabled to operate in the distributed

mobile cloud computing environment. Experimental results are validated by benchmarking

in the real distribute mobile cloud computing environment. The following section describes

the experimental setup for the emulation and real implementation environment.

The experimental setup for the emulation environment is composed of remote

server machine and laptop computer. The server machine runs Microsoft Windows 7

Professional 32-bit operating system with Intel® core(TM) i5-2500 CPU having 3.3GHz

speed and 4.0 GB RAM capacity. The laptop computer runs Microsoft Windows 7

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

115

Professional 32-bit operating system with Intel® core(TM) i5-2410M CPU having

2.30GHz speed and 4 GB RAM capacity. The emulator instance of the Android Virtual

Device (AVD) runs on the laptop computer. The AVD instance runs Android 4.1-API

Level-17 with ARMv7 Processor having 2389.08 BogoMIPS speed and 1GB RAM

capacity. The AVD instance running on the laptop computer is connected to the D-Link

Wireless Access Point providing 802.11g Wi-Fi wireless network connection of radio type

802.11g, with the available physical layer data rates of 54 Mbps.

Similarly, TP-Link wireless Wi-Fi modem is connected to the remote server

machine in order to connect it to the Wi-Fi wireless network of radio type 802.11g. The

experimental setup for testing the prototype application in the real wireless mobile network

environment is composed of Wi-Fi wireless network of radio type 802.11g, Server machine

and Samsung Galaxy SII mobile device. The Samsung smartphone runs Android 4.0.3, dual

core ARMv7 Application Processor with 1.2 GHz (2389.08 BogoMIPS) speed, 16GB

memory capacity and 1650mAh battery. Mobile device accesses the wireless network via

Wi-Fi wireless network connection of radio type 802.11g, with the available physical layer

data rates of 54Mbps.

The DEAP client application runs on the mobile device, whereas the DEAP server

component of the application runs on the remote cloud server machine. The server machine

is configured for the provisioning of services to the mobile device in two distinct operating

modes of the application. DEAP server application utilizes the Software as a Service (SaaS)

model of cloud computing for the provisioning of distributed services in the POP of DEAP

client application, whereas the Infrastructure as a Service (IaaS) model (Buyya et al., 2009)

is employed for the provisioning of services in the SOP of DEAP client application. We

employ the DEAP server application by using Microsoft Visual Studio 2010 ASP.NET

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

116

Web Service Application tool of Visual C#, whereas kSOAP2 API (kSOAP2) is employed

for the configuration of DEAP client application.

Java based Android Software development toolkit (Android Developers) is deployed for the

development of DEAP client application. The Android ADB Plugin (Android Debug

Bridge) is embedded in the Eclipse application development tool for the development of

prototype application.

The POP of the DEAP client application is implemented by using kSOAP2 library

API on the mobile devices for accessing the preconfigured services of DEAP server

application. The AVD instance is created on the remote server machine by using Android

emulator for the execution of offloaded components of the DEAP client mobile application

in the SOP. Monitoring tools such as Android Debug Bridge (ADB) and Dalvik Debug

Monitor System (DDMS) are used for the measurement of resources utilization (CPU and

RAM), whereas Power Tutor tool is used for the measurement of battery power

consumption in distributed application processing.

5.2.2 Prototype Application

The proposed DEAP framework is implemented by developing prototype

application for Android devices. The prototype application is composed of three

computational intensive service components and a single activity component. The service

components implement the computational logic of the application, whereas the activity

component provides Graphical User Interface (GUI) for interacting with the mobile

application. The computational logic of the application includes the following service

components. 1) Sorting service component implements the logic of bubble sorting for

sorting liner list of integer type values. The sorting logic of the application is tested with 30

different computational intensities (11000-40000). 2) The matrix multiplication service of

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

117

the application implements the logic of computing the product of 2-D array of integer type

values. Matrix multiplication logic of the application is tested with 30 different

computational intensities by varying the length of the 2-D array between 160*160 and

450*450). 3) The power compute service of the application implements the logic of

computing b^e, whereas b is the base and e is the exponent. The power compute logic of

the application is tested for 30 different computational intensities by varying the exponent

between 1000000 and 200000000. The computational logic of the prototype application is

tested with 30 different computational intensities. Empirical data are collected by sampling

all computational intensities of the application in 30 different experiments.

5.2.3 Data Gathering and Data Processing

The primary data are collected by testing the prototype application on both the Android

virtual device instance and real distributed mobile cloud environment in three different

scenarios. In the first scenario, all the components of the mobile application are executed

on the local mobile device to analyze resources utilization and execution time of the

application on the local mobile device. In the second scenario, the intensive components of

the mobile application are offloaded at runtime by implementing the traditional

computational offloading technique. In this scenario, the resources utilization in distributed

processing of the application, data communication over the wireless network medium, and

turnaround time of the application on the virtual device instance on the remote server

machine are analyzed.

In the third scenario, the prototype application is tested for the operating procedures of

the proposed DEAP framework. We evaluate resources utilization and execution cost of the

application in the POP and SOP of the DEAP framework. The following parameters are

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

118

used for analyzing the prototype application in the local and distributed processing of the

application in the emulation and real time environment.

1) CPU utilization in Millions of Instructions Per Second(MIPS),

2) Memory allocation in Mega Bytes (MB),

3) Energy consumption in Joule (J),

4) Turnaround time of the application in Millisecond (ms).

5) The size of data transmission over the wireless network in Kilo Bytes (KB).

According to the sample central limit theorem, approximately 99% of the sample means

fall within 2.58 standard deviation of the population mean, provided that the sample size is

greater than or equal to 30 (n≥30). Hence, the prototype application is composed of three

computational intensive service components, and each component of the application is

evaluated on the basis of five parameters with 30 different computational intensities. The

empirical data are collected for all the computational intensities of every component of the

mobile application by executing the component of the mobile application in 30

experiments. Each experiment is conducted 30 times for the evaluation of each parameter to

derive the value of point estimator.

The measurement of central tendency of the data sample of each experiment is

calculated by using sample mean , for the reason that sample mean is ascertained the

better point estimate of the population mean as compared to median or mode (Confidence

Intervals and Sample Size, n.d.). Data sampling involves the factor of sampling error; hence

the sample mean can differ from the population mean. Hence, to signify the goodness of the

calculated point estimate; the interval estimate of each sample is determined. The interval

estimate of a parameter represents the interval or range of values used to estimate the

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

119

parameter. The confidence level of an interval estimate of a parameter indicates the

probability that the interval estimate contains the parameter.

Let E represents the error estimate for 99% confidence interval, which is calculated by

using the following equation.

E=  n) (5.1)

Whereas,  indicates the standard deviation in the sample values and n indicates the size of

sample space. The interval estimate for each sample mean of the primary data is

calculated with 99% confidence interval by using the following equation.

Confidence Interval=  (5.2)

The following section presents the data collected in different experiments for the

evaluation of DEAP Framework on the Android virtual devices and real time environment.

The data are presented from the perspective of three different scenarios: 1) Execution of the

application on local mobile device, 2) Execution of the application by employing

contemporary runtime offloading method, and 3) Execution of the application by the POP

and SOP of the proposed DEAP framework.

5.3 Data Collected for Application Execution on the Local Mobile Device

In this scenario mobile application is executed on the local mobile device in order to

evaluate the RAM allocation, Turnaround Time (TT), total Energy Consumption Cost

(ECC) and CPU utilization in the execution of application on the local mobile device.

Table 5.1 represents the statistics of RAM allocation for the execution of sorting

component of the application on local mobile device. The computational length attribute

indicates the computational intensity of the sorting operation on local mobile device which

varies from 11000-40000 values in 30 different experiments. The sample mean attribute

shows the point estimator for 30 different samples of the application execution with the

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

120

identical computational intensity. The SD attribute shows the variation in the memory

allocation to the application, whereas the %RSD attribute shows the percentage values of

the variation in the sample space of 30 values in each experiment of evaluating RAM

allocation on mobile device in sorting operation.

Table 5. 1: RAM Allocation in the Execution of Sorting Service Component of the
Application on Local Mobile Device

Computational
Length

Sample Mean of
RAM Allocation

(MB)

SD in
RAM

Allocation

%RSD in
RAM
Allocation

Confidence
Interval

11000 10.148 0.013 0.1281 10.148(+/-).0061
12000 10.154 0.011 0.1083 10.154(+/-).0052
13000 10.156 0.005 0.0492 10.156(+/-).0024
14000 10.161 0.018 0.1771 10.161(+/-).0085
15000 10.167 0.004 0.0393 10.167(+/-).0019
16000 10.173 0.003 0.0295 10.173(+/-).0014
17000 10.177 0.001 0.0098 10.177(+/-).0005
18000 10.179 0.003 0.0295 10.179(+/-).0014
19000 10.185 0.004 0.0393 10.185(+/-).0019
20000 10.193 0.002 0.0196 10.193(+/-).0009
21000 10.197 0.001 0.0098 10.197(+/-).0005
22000 10.2 0.001 0.0098 10.2(+/-).0005
23000 10.204 0.001 0.0098 10.204(+/-).0005
24000 10.208 0.003 0.0294 10.208(+/-).0014
25000 10.21 0.001 0.0098 10.21(+/-)0.0098
26000 10.215 0.001 0.0098 10.215(+/-).0005
27000 10.218 0.001 0.0098 10.218(+/-).0005
28000 10.221 0.001 0.0098 10.221(+/-).0005
29000 10.224 0.001 0.0098 10.224(+/-).0005
30000 10.227 0.001 0.0098 10.227(+/-).0005
31000 10.231 0.001 0.0098 10.231(+/-).0005
32000 10.236 0.001 0.0098 10.236(+/-).00052
33000 10.238 0.001 0.0098 10.238(+/-).00005
34000 10.242 0.001 0.0098 10.242(+/-).0005
35000 10.246 0.001 0.0098 10.246(+/-).0005
36000 10.248 0.001 0.0098 10.248(+/-).0005
37000 10.254 0.001 0.0098 10.254(+/-).0005
38000 10.258 0.001 0.0097 10.258(+/-).0005
39000 10.261 0.002 0.0195 10.261(+/-).0009
40000 10.265 0.001 0.0097 10.265(+/-).0005

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

121

Table 5.2 shows the statistics of RAM allocation for matrix multiplication service

component of the application on local mobile device. The computational length attribute

shows the computational intensity of matrix multiplication operation in 30 different

experiments. It shows the RAM allocation to matrix multiplication service with 30 different

computational intensities (160*160-450*450). The sample mean attribute shows the point

estimator for 30 different samples of the application execution with the identical

computational intensity. The SD attribute shows the variation in the memory allocation to

the application, whereas the %RSD attribute shows the percentage values of the variation in

the sample space of 30 values in each experiment of evaluating RAM allocation on mobile

device in matrix multiplication operation.

Table 5. 2: RAM Allocation in the Execution of the Matrix Multiplication Service
Component of the Application on Local Mobile Device

Computational
Length

Sample Mean of
RAM Allocation

(MB)

SD in
RAM

Allocation

%RSD in
RAM

Allocation

Confidence
Interval

160*160 10.454 0.0029 0.0277 10.454(+/-).0014
170*170 10.4552 0.0026 0.0249 10.4552(+/-).0012
180*180 10.4967 0.0016 0.0152 10.4967(+/-).0008
190*190 10.5389 0.0024 0.0228 10.5389(+/-).011
200*200 10.5845 0.002 0.0189 10.5845(+/-).0009
210*210 10.6318 0.0009 0.0085 10.6318(+/-).0004
220*220 10.6828 0.0022 0.0206 10.6828(+/-).001
230*230 10.7346 0.0017 0.0158 10.7346(+/-).0008
240*240 10.7624 0.1406 1.3064 10.6605(+/-).1376
250*250 10.8317 0.0183 0.1689 10.8317(+/-).0086
260*260 10.9052 0.0023 0.0211 10.7986(+/-).1303
270*270 10.9605 0.007 0.0639 10.9605(+/-).0033
280*280 11.0115 0.0274 0.2488 11.0115(+/-).0129
290*290 11.1404 0.1214 1.0897 11.1404(+/-).0572
300*300 11.1617 0.0049 0.0439 11.4975(+/-).0886
310*310 11.2622 0.0447 0.3969 11.2622(+/-).0211
320*320 11.3826 0.1336 1.1737 11.3826(+/-).0629
330*330 11.756 0.1493 1.27 11.756(+/-).0703
340*340 11.78 0.178 1.511 11.78(+/-).0838

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

122

Computational
Length

Sample Mean of
RAM Allocation

(MB)

SD in
RAM

Allocation

%RSD in
RAM

Allocation

Confidence
Interval

350*350 11.7915 0.2047 1.736 11.7915(+/-).0964
360*360 11.8857 0.2342 1.9704 11.8857(+/-).1103
370*370 11.8857 0.1039 0.8742 11.8857(+/-).0498
380*380 12.3547 0.0037 0.0299 12.3547(+/-).0017
390*390 12.4562 0.1085 0.8711 12.4562(+/-).0511
400*400 12.5917 0.0057 0.0453 12.5917(+/-).0027
410*410 12.7304 0.0182 0.143 12.7304(+/-).0086
420*420 12.8516 0.0037 0.0288 12.8516(+/-).0017
430*430 12.9499 0.0374 0.2888 12.9499(+/-).0176
440*440 12.9726 0.0175 0.1349 12.656(+/-).1257
450*450 13.1003 0.1591 1.2145 13.1003(+/-).0749

Table 5.3 shows the statistics of RAM allocation for power compute service

component of the application on local mobile device. The computational length attribute

shows the computational length of power compute service component of the application.

Memory allocation to power compute service is represented with 30 different

computational intensities (2^100000-2^2000000000). The sample mean attribute shows the

point estimator for 30 different samples of the application execution with the identical

computational intensity. The SD attribute shows the variation in the memory allocation to

power compute service, whereas the %RSD attribute shows the percentage values of the

variation in the sample space of 30 values in each experiment of evaluating RAM allocation

on mobile device in power computing operation.

Table 5. 3: RAM Allocation in the Execution of the Power Compute Service Component
of the Application on Local

Computational
Length

Sample Mean
of RAM
Allocation
(MB)

 SD in
RAM
Allocation

%RSD in
RAM
Allocation

Confidence
Interval

2^100000-
2^2000000000 10.11 0.0017 0.0168

10.11(+/-
).00045

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

123

Table 5.4 shows the statistics of the Turnaround Time (TT) of the sorting service

component of the application. The TT of the sorting service involves the execution time of

completing the sorting operation and the time taken in saving the preferences file (data

file) on the local mobile device. The table shows computational length for the evaluation of

TT of the sorting operation in 30 different experiment, the sample mean of sample space of

30 values in each experiment, the variation in the values of the sample space, the

percentage of difference in the values of the sample space of each experiment and the range

of values for TT value of each experiment with 99% confidence for the sample space of 30

values.

Table 5. 4: Turnaround Time of Sorting Service on Mobile Application

Computational
Length

Sample Mean
of TT (ms)

SD in
TT

%RSD
in TT

Confidence
Interval

11000 4876 706 14 4876(+/-)333
12000 5510 1168 21 5510(+/-)550
13000 6566 546 8 6566(+/-)257
14000 6989 697 10 6989(+/-)328
15000 7406 918 12 7406(+/-)432
16000 7450 910 12 7450(+/-)429
17000 10414 531 5 10414(+/-)250
18000 11457 693 6 11457(+/-)326
19000 11857 410 3 11857(+/-)193
20000 13221 316 2 13221(+/-)149
21000 13774 614 4 13774(+/-)289
22000 14410 641 4 14410(+/-)302
23000 15579 356 2 15579(+/-)168
24000 16059 532 3 16059(+/-)251
25000 16950 915 5 16950(+/-)431
26000 17764 412 2 17764(+/-)194
27000 18421 375 2 18421(+/-)177
28000 19176 472 2 19176(+/-)222
29000 20179 668 3 20179(+/-)315
30000 20987 501 2 20987(+/-)236
31000 21600 1467 7 21600(+/-)690
32000 22565 933 4 22565(+/-)439
33000 24701 455 2 24701(+/-)214

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

124

Computational
Length

Sample Mean
of TT (ms)

SD in
TT

%RSD
in TT

Confidence
Interval

34000 25687 430 2 25687(+/-)203
35000 25825 670 3 25825(+/-)316
36000 26432 635 2 26432(+/-)299
37000 26910 931 3 26910(+/-)439
38000 28859 658 2 28859(+/-)310
39000 29968 1528 5 29968(+/-)720
40000 31207 1365 4 31207(+/-)643

Table 5.5 shows the statistics of the TT of the matrix multiplication component of

the application. The TT of matrix multiplication service involves the execution time of

completing the matrix multiplication operation and the time taken in saving the preferences

file (data file) on the local mobile device. The table shows computational length for the

evaluation of TT of the matrix multiplication operation in 30 different experiment, the

sample mean of sample space of 30 values in each experiment, the variation in the values of

the sample space, the percentage of difference in the values of the sample space of each

experiment and the range of values for TT value of each experiment with 99% confidence

for the sample space of 30 values.

Table 5. 5: Turnaround Time of Matrix Multiplication Service on Mobile Application

Computational
Length

Sample
Mean of TT

(ms)

SD in
TT

%RSD
in TT

Confidence
Interval

160*160 3653 191 5 3653(+/-)90
170*170 4276 656 15 4276(+/-)309
180*180 4781 647 14 4781(+/-)305
190*190 5030 1010 20 5030(+/-)476
200*200 6321 575 9 6321(+/-)271
210*210 7039 604 9 7039(+/-)285
220*220 7777 669 9 7777(+/-)315
230*230 8888 974 11 8888(+/-)459
240*240 10735 826 8 10735(+/-)389
250*250 13090 694 5 13090(+/-)327
260*260 13642 1182 9 13642(+/-)557

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

125

Computational
Length

Sample
Mean of TT

(ms)

SD in
TT

%RSD
in TT

Confidence
Interval

270*270 14471 1103 8 14471(+/-)520
280*280 16411 1221 7 16411(+/-)575
290*290 20524 341 2 20524(+/-)161
300*300 20706 1625 8 20706(+/-)765
310*310 21185 3849 18 21185(+/-)1813
320*320 27028 5813 22 27028(+/-)2738
330*330 28452 3611 13 28452(+/-)1701
340*340 39691 3562 9 39691(+/-)1678
350*350 38570 5495 14 38570(+/-)2588
360*360 40096 4208 10 40096(+/-)1982
370*370 44896 6246 14 44896(+/-)2942
380*380 48088 4351 9 48088(+/-)2050
390*390 55560 11604 21 55560(+/-)5466
400*400 57339 6236 11 57339(+/-)2937
410*410 62405 7461 12 62405(+/-)3514
420*420 63159 5580 9 63159(+/-)2628
430*430 74424 8255 11 74424(+/-)3888
440*440 78163 13626 17 78163(+/-)6418
450*450 99286 11260 11 99286(+/-)5304

Table 5.6 shows the statistics of the TT of the power compute component of the

application. The TT involves the execution time of completing the power compute

operation. The table shows computational length for the evaluation of TT of the power

compute operation in 30 different experiment, the sample mean of sample space of 30

values in each experiment, the variation in the values of the sample space, the percentage of

difference in the values of the sample space of each experiment and the range of values for

TT value of each experiment with 99% confidence for the sample space of 30 values.

Table 5. 6: Turnaround Time of Power Compute Service on Mobile Application

Computational
Length

Sample
Mean of
TT (ms)

SD in
TT

%RSD
in TT

Confidence
Interval

2^1000000 51 10 19.6 51(+/-)5
2^2000000 80 9 11.3 80(+/-)4

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

126

Computational
Length

Sample
Mean of
TT (ms)

SD in
TT

%RSD
in TT

Confidence
Interval

2^3000000 110 12 10.9 110(+/-)6
2^4000000 140 11 7.9 140(+/-)6
2^5000000 176 28 15.9 176(+/-)13
2^6000000 206 16 7.8 206(+/-)8
2^7000000 233 19 8.2 233(+/-)9
2^8000000 269 25 9.3 269(+/-)12
2^9000000 293 21 7.2 293(+/-)10
2^10000000 341 30 8.8 341(+/-)14
2^20000000 373 38 10.2 373(+/-)18
2^30000000 920 43 4.7 920(+/-)20
2^40000000 1216 45 3.7 1216(+/-)21
2^50000000 1501 28 1.9 1501(+/-)13
2^60000000 1767 32 1.8 1767(+/-)15
2^70000000 2070 38 1.8 2070(+/-)18
2^80000000 2334 37 1.6 2334(+/-)17
2^90000000 2615 39 1.5 2615(+/-)18
2^100000000 2896 40 1.4 2806(+/-)19
2^200000000 6386 61 1 6386(+/-)29
2^300000000 8509 54 0.6 8509(+/-)25
2^400000000 11405 316 2.8 11405(+/-)149
2^500000000 14105 56 0.4 14105(+/-)26
2^600000000 16887 93 0.6 16887(+/-)44
2^700000000 19182 1149 6 19182(+/-)541
2^800000000 22480 160 0.7 22480(+/-)75
2^900000000 25580 1064 4.2 25580(+/-)501
2^100000000 28237 471 1.7 28237(+/-)222
2^1900000000 68365 7598 11.1 68365(+/-)3579
2^2000000000 69044 8807 12.8 69044(+/-)4148

Table 5.7 presents the Energy Consumption Cost (ECC) in processing sorting

service component of the application on local mobile device. The attribute of computational

length shows the computational intensity of sorting logic of the mobile application. ECC is

analyzed for 30 different computational intensities of the sorting operation. The energy of

mobile device is consumed in processing the application on mobile device and saving the

data files of the application on mobile device.

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

127

Hence, the total energy consumption cost of sorting service component of the

application is computed as the sum of ECC of processing the application on the local

mobile device and the ECC of saving the preferences (data file) in the data folder of the

sorting service application on the mobile device. The sample mean attribute shows the point

estimator for the ECC of sorting operation in the sample space of 30 values for each

experiment. Standard Deviation shows the variation in values of the sample space each

experiment and %RSD indicates the percent Relative Standard Deviation in the ECC of

sorting operation in each experiment. The attribute of confidence interval shows the

interval estimate for ECC of sorting operation in each experiment with 99% confidence for

the sample space of 30 values.

Table 5. 7: Energy Consumption Cost (ECC) of Sorting Service Operating on the Local
Mobile Device

Computational
Length

Sample
Mean of
ECC (J)

SD in
ECC

%RSD
in ECC

Confidence
Interval

11000 16.2 2.8 17.3 16.2(+/-)1.3
12000 16.7 2.6 15.6 16.7(+/-)1.2
13000 18.1 4.1 22.7 18.1(+/-)1.9
14000 18.3 2.5 13.7 18.3(+/-)1.2
15000 18.6 2.5 13.4 18.6(+/-)1.2
16000 20.2 2.7 13.4 20.2(+/-)1.3
17000 20.8 2.8 13.5 20.8(+/-)1.3
18000 21.8 2.8 12.8 21.8(+/-)1.3
19000 22.9 6 26.2 22.9(+/-)2.8
20000 23.1 3.7 16 23.1(+/-)1.7
21000 25.2 5 19.8 25.2(+/-)2.4
22000 28 5.2 18.6 28(+/-)2.4
23000 28.1 4.5 16 28.1(+/-)2.1
24000 28.2 3.9 13.8 28.2(+/-)1.8
25000 30.4 3.3 10.9 30.4(+/-)1.6
26000 31.9 4.5 14.1 31.9(+/-)2.1
27000 33.8 3.3 9.8 33.8(+/-)1.6
28000 36.4 4.6 12.6 36.4(+/-)2.2
29000 38.3 3.3 8.6 38.3(+/-)1.6
30000 39.2 3.5 8.9 39.2(+/-)1.6

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

128

Computational
Length

Sample
Mean of
ECC (J)

SD in
ECC

%RSD
in ECC

Confidence
Interval

31000 40.9 3.5 8.6 40.9(+/-)1.6
32000 42.1 3.4 8.1 42.1(+/-)1.6
33000 44.3 3.1 7 44.3(+/-)1.5
34000 47.8 3.8 7.9 47.8(+/-)1.8
35000 48.4 2.9 6 48.4(+/-)1.4
36000 49.7 4.3 8.7 49.7(+/-)2
37000 51.4 2.8 5.4 51.4(+/-)1.3
38000 52.5 3.2 6.1 52.5(+/-)1.5
39000 53.2 2.4 4.5 53.2(+/-)1.1
40000 55.1 3.7 6.7 55.1(+/-)1.7

Table 5.8 presents the ECC in processing matrix multiplication component of the

application on local mobile device. Energy consumption cost parameter is analyzed for 30

different computational intensities of the matrix multiplication operation. Matrix

multiplication operation involves saving the results of the matrix multiplication operating in

the preferences file on the mobile device. Hence, the total ECC of matrix multiplication

service component of the application is computed as the energy consumption cost of

processing the application on the local mobile device and the energy consumption cost of

saving the preferences (data file) in the data folder of the sorting service application on the

mobile device. The variation in the values of sample space for each experiment is

represented with SD and the percentage difference in the sample space of each experiment

is represented with %RSD. The sample mean of ECC is determined for the sample space of

30 values in each experiment and the interval estimate for each experiment is presented

with 99% confidence interval for the sample space of 30 values in each experiment.

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

129

Table 5. 8: Energy Consumption Cost (ECC) of Matrix Multiplication Operation on Local
Mobile Device

Computational
Length

Sample
Mean of
ECC (J)

SD in
ECC

%RSD
in ECC

Confidence
Interval

160*160 12.9 2.8 21.7 12.9(+/-)1.3
170*170 13.4 3 22.4 13.4(+/-)1.4
180*180 14.7 8.1 55.1 14.7(+/-)3.8
190*190 15.2 3.9 25.7 15.2(+/-)1.8
200*200 16.3 6.5 39.9 16.3(+/-)3.1
210*210 17.2 6 34.9 17.2(+/-)2.8
220*220 20 7.7 38.5 20(+/-)3.6
230*230 21.5 5.1 23.7 21.5(+/-)2.4
240*240 22 6.5 29.5 22(+/-)3.1
250*250 24.1 8.1 33.6 24.1(+/-)3.8
260*260 24.2 2.2 9.1 24.2(+/-)1
270*270 27.4 6.4 23.4 27.4(+/-)3
280*280 28.7 3.2 11.1 28.7(+/-)1.5
290*290 34.5 8.7 25.2 34.5(+/-)4.1
300*300 35.2 4 11.4 35.2(+/-)1.9
310*310 39.7 7 17.6 39.7(+/-)3.3
320*320 41.1 5.5 13.4 41.1(+/-)2.6
330*330 44.4 9.3 20.9 44.4(+/-)4.4
340*340 45.5 9.8 21.5 45.5(+/-)4.6
350*350 51.4 16.6 32.3 51.4(+/-)7.8
360*360 54.3 14.2 26.2 54.3(+/-)6.7
370*370 63.2 8.7 13.8 63.2(+/-)4.1
380*380 65.7 9.8 14.9 65.7(+/-)4.6
390*390 67 11.5 17.2 67(+/-)5.4
400*400 67.4 10.8 16 67.4(+/-)5.1
410*410 69.1 9.4 13.6 69.1(+/-)4.4
420*420 69.2 9.4 13.6 69.2(+/-)4.4
430*430 69.8 9.6 13.8 69.8(+/-)4.5
440*440 70 10.4 14.9 70(+/-)4.9
450*450 71.5 10.7 15 71.5(+/-)5

Table 5.9 presents the ECC in processing power compute component of the

application on local mobile device. The variation in the ECC values of sample space for

each experiment is represented with SD and the percentage difference in the sample space

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

130

of each experiment is represented with %RSD. The sample mean of ECC is determined for

the sample space of 30 values in each experiment and the interval estimate for each

experiment is presented with 99% confidence interval for the sample space of 30 values in

each experiment.

Table 5. 9: Energy Consumption Cost of Power Compute Operation on Local Mobile
Device

Computational
Length

Sample Mean
of ECC (J)

SD in
ECC

%RSD
in

ECC
Confidence

Interval
2^1000000 2.2 0.7 31.8 2.2(+/-)0.3
2^2000000 2.3 0.3 13 2.3(+/-)0.1
2^3000000 2.4 0.6 25 2.4(+/-)0.3
2^4000000 2.5 0.5 20 2.5(+/-)0.2
2^5000000 2.8 0.6 21.4 2.8(+/-)0.3
2^6000000 3.9 1 25.6 3.9(+/-)0.5
2^7000000 4.2 1 23.8 4.2(+/-)0.5
2^8000000 5.2 2.2 42.3 5.2(+/-)1
2^9000000 4.3 1.1 25.6 4.3(+/-)0.5
2^10000000 4.8 0.8 16.7 4.8(+/-)0.4
2^20000000 3.9 1 25.6 3.9(+/-)0.5
2^30000000 5.3 1.5 28.3 5.3(+/-)0.7
2^40000000 4.5 1.5 33.3 4.5(+/-)0.7
2^50000000 4.5 0.8 17.8 4.5(+/-)0.4
2^60000000 5.4 0.6 11.1 5.4(+/-)0.3
2^70000000 6.1 1.3 21.3 6.1(+/-)0.6
2^80000000 6.3 0.7 11.1 6.3(+/-)0.3
2^90000000 6.4 1.3 20.3 6.4(+/-)0.6
2^100000000 6.4 1.3 20.3 6.4(+/-)0.6
2^200000000 12.7 1.4 11 12.7(+/-)0.7
2^300000000 15.4 2.8 18.2 15.4(+/-)1.3
2^400000000 21.8 5.5 25.2 21.8(+/-)2.6
2^500000000 21.6 1.7 7.9 28.7(+/-)0.8
2^600000000 25.3 2.9 11.5 25.3(+/-)1.4
2^700000000 30.6 4 13.1 30.6(+/-)1.9
2^800000000 34.3 1.3 3.8 34.3(+/-)0.6
2^900000000 36.2 5.6 15.5 36.2(+/-)2.6
2^100000000 38.9 8.5 21.9 38.9(+/-)4
2^1900000000 61.7 11.9 19.3 61.7(+/-)5.6
2^2000000000 67 7.6 11.3 67(+/-)3.6

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

131

Table 5.10 summarizes the average CPU utilization on local mobile device for

different components of the mobile application. The percentage of CPU utilization on the

local mobile devices varies for different components of the mobile application. It depends

on the length of computational logic in the component of mobile application. The sample

mean of CPU utilization is determined for the sample space of 900 values for each

component of the mobile application and the interval estimate for each experiment is

presented with 99% confidence interval for the sample space of 900 values for each

component of the mobile application. The variation in the ECC values of sample space for

each experiment is represented with SD and the percentage difference in the sample space

of each experiment is represented with %RSD.

Table 5. 10: Statistics of CPU Utilization on the Mobile Device in Local Application
Processing

Computational
Service

Computational
Length

% CPU
Utilization

SD %
RSD

Confidence
Interval

Average
MIPS

Sort 11000-40000 48.67 2.62 5.38 48.67(+/-)0.96 1163
Matrix
Multiplication

160*160-
4560*450

45.46 8.51 18.72 45.46(+/-)4.01 1086

Power
Compute

2^1000000-
2^2000000000

48.04 4.13 8.6 48.04(+/-)1.38 1148

5.4 Data Collected for Application Execution in Traditional
Computational Offloading

In this scenario mobile application is executed in the distributed mobile cloud

environment by offloading the components of the mobile application at runtime. The

traditional runtime offloading technique is implemented for offloading the sort service and

matrix multiplication service components of the mobile application. We evaluate the total

TT of the application, total ECC and size of data transmission in offloading the service

components of the mobile application at runtime.

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

132

Table 5.11 shows the total TT of sorting component of the application in traditional

runtime computational offloading. The TT of sorting operation is the sum of the total

timing cost runtime component offloading (equation 3.3) and execution time of the sorting

operation on the remote server node. The sample mean of TT for sorting operation is

determined for the sample space of 30 values in each experiment and the interval estimate

for each experiment is presented with 99% confidence interval for the sample space of 30

values in each experiment. The variation in the TT values of sample space for each

experiment is represented with SD and the percentage difference in the sample space of

each experiment is represented with %RSD.

Table 5. 11: Turnaround Time of the Sorting Operation in Traditional Computational
Offloading

Computational
Length

Sample
Mean of
TT(ms)

SD in
TT

%RSD
in TT

Confidence
Interval

11000 24331 3138 12.9 24331(+/-)1478
12000 28267 3728 13.2 28267(+/-)1756
13000 31609 2332 7.4 31609(+/-)1098
14000 35115 3007 8.6 35115(+/-)1416
15000 37010 4246 11.5 37010(+/-)2000
16000 38571 4098 10.6 38571(+/-)1930
17000 42244 3700 8.8 42244(+/-)1743
18000 47714 3434 7.2 47714(+/-)1618
19000 49481 1994 4 49481(+/-)939
20000 54599 4257 7.8 54599(+/-)2005
21000 58953 3002 5.1 58953(+/-)1414
22000 63141 3689 5.8 63141(+/-)1738
23000 69280 3983 5.7 69280(+/-)1876
24000 73368 2530 3.4 73368(+/-)1192
25000 76615 3473 4.5 76615(+/-)1636
26000 81668 3495 4.3 81668(+/-)1646
27000 87634 3691 4.2 87634(+/-)1739
28000 92439 3206 3.5 92439(+/-)1510
29000 97729 3047 3.1 97729(+/-)1435
30000 107042 4370 4.1 107042(+/-)2058
31000 119084 5179 4.3 119084(+/-)2440
32000 120380 4779 4 120380(+/-)2251

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

133

Computational
Length

Sample
Mean of
TT(ms)

SD in
TT

%RSD
in TT

Confidence
Interval

33000 124931 5086 4.1 124931(+/-)2396
34000 128864 3418 2.7 128864(+/-)1610
35000 135006 2938 2.2 135006(+/-)1384
36000 139564 3559 2.6 139564(+/-)1676
37000 148009 5461 3.7 148009(+/-)2572
38000 154216 5115 3.3 154216(+/-)2409
39000 157490 5862 3.7 157490(+/-)2761
40000 166457 5333 3.2 166457(+/-)2512

Table 5.12 shows the TT of matrix multiplication component of the application in

traditional computational offloading. The TT of matrix multiplication operation is the sum

of the total timing cost runtime component offloading (equation 3.3) and execution time of

the matrix multiplication operation on the remote server node. The sample mean of TT for

matrix multiplication operation is determined for the sample space of 30 values in each

experiment and the interval estimate for each experiment is presented with 99% confidence

interval for the sample space of 30 values in each experiment. The variation in the TT

values of sample space for each experiment is represented with SD and the percentage

difference in the sample space of each experiment is represented with %RSD.

Table 5. 12: Turnaround Time of the Matrix Multiplication Operation in Traditional
Computational Offloading

Computational
Length

Sample Mean of
TT (ms)

SD in
TT

%RSD
in TT

Confidence
Interval

160*160 16431 818 5 16431(+/-)385
170*170 18296 1837 10 18296(+/-)865
180*180 21132 2676 12.7 21132(+/-)1261
190*190 22170 2900 13.1 22170(+/-)1366
200*200 26061 2137 8.2 26061(+/-)1007
210*210 27927 1879 6.7 27927(+/-)885
220*220 29878 1918 6.4 29878(+/-)903
230*230 33920 2915 8.6 33920(+/-)1373
240*240 38052 2413 6.3 38052(+/-)1137
250*250 44310 2011 4.5 44310(+/-)947

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

134

Computational
Length

Sample Mean of
TT (ms)

SD in
TT

%RSD
in TT

Confidence
Interval

260*260 46841 3423 7.3 46841(+/-)1612
270*270 50412 3498 6.9 50412(+/-)1648
280*280 55178 4054 7.3 55178(+/-)1910
290*290 64414 2116 3.3 64414(+/-)997
300*300 67346 4720 7 67346(+/-)2223
310*310 68692 8615 12.5 68692(+/-)4058
320*320 80922 12431 15.4 80922(+/-)5856
330*330 84709 8293 9.8 84709(+/-)3906
340*340 110506 8874 8 110506(+/-)4180
350*350 108677 11319 10.4 108677(+/-)5332
360*360 114062 9008 7.9 114062(+/-)4243
370*370 125149 13127 10.5 125149(+/-)6183
380*380 134100 10567 7.9 134100(+/-)4977
390*390 148747 24295 16.3 148747(+/-)11444
400*400 156489 13573 8.7 156489(+/-)6393
410*410 171252 19704 11.5 171252(+/-)9281
420*420 184056 18618 10.1 184056(+/-)8770
430*430 213507 29040 13.6 213507(+/-)13679
440*440 221092 33793 15.3 221092(+/-)15918
450*450 262697 37971 14.5 262697(+/-)17886

Table 5.13 shows the total ECC in offloaded processing of the sorting service

component of the application with 30 different computational intensities. The total ECC of

sorting operation in traditional computational offloading is the sum of energy consumption

cost of runtime component offloading (equation 3.1) and energy consumption cost of

performing sorting operation on the remote cloud server node. The sample mean of ECC

for sorting operation is determined for the sample space of 30 values in each experiment

and the interval estimate for each experiment is presented with 99% confidence interval for

the sample space of 30 values in each experiment. The variation in the ECC values of

sample space for each experiment is represented with SD and the percentage difference in

the sample space of each experiment is represented with %RSD.

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

135

Table 5. 13: Energy Consumption Cost (ECC) of Sorting Operation in Traditional
Computational Offloading

Computational
Length

Sample Mean
of ECC (J)

SD in
ECC

%RTD
in

ECC Confidence Interval
11000 49.7749 7.3245 14.7 49.7749(+/-)3.4501
12000 53.7829 6.8753 12.8 53.7829(+/-)3.2386
13000 56.4835 6.5346 11.6 56.4835(+/-)3.0781
14000 60.5911 7.0763 11.7 60.5911(+/-)3.332
15000 61.8917 6.4377 10.4 61.8917(+/-)3.0324
16000 64.5919 6.3711 9.9 64.5919(+/-)3.0011
17000 70.6915 6.5094 9.2 70.6915(+/-)3.0662
18000 73.7923 6.335 8.6 73.7923(+/-)2.984
19000 76.692 11.6244 15.2 76.692(+/-)5.4756
20000 75.5971 8.3274 11 75.5971(+/-)3.9226
21000 79.6989 8.3845 10.5 79.6989(+/-)3.9494
22000 82.0987 7.2209 8.8 82.0987(+/-)3.4013
23000 87.7002 7.0997 8.1 87.7002(+/-)3.3443
24000 90.3008 8.1183 9 90.3008(+/-)3.8241
25000 95.4014 8.514 8.9 95.4014(+/-)4.0104
26000 105.702 8.0472 7.6 105.702(+/-)3.7906
27000 109.1036 9.0645 8.3 109.1036(+/-)4.2698
28000 114.9034 8.1614 7.1 114.9034(+/-)3.8444
29000 120.505 8.1308 6.7 120.505(+/-)3.8299
30000 125.1055 10.8596 8.7 125.1055(+/-)5.1153
31000 131.607 6.916 5.3 131.607(+/-)3.2577
32000 136.3078 18.8652 13.8 136.3078(+/-)8.8863
33000 150.3086 10.5245 7 150.3086(+/-)4.9575
34000 159.4095 10.6692 6.7 159.4095(+/-)5.0256
35000 165.3109 10.7827 6.5 165.3109(+/-)5.0791
36000 173.8131 8.0774 4.6 173.8131(+/-)3.8048
37000 183.0151 9.1271 5 183.0151(+/-)4.2992
38000 186.8154 10.2068 5.5 186.8154(+/-)4.8078
39000 195.9168 9.5538 4.9 195.9168(+/-)4.5002
40000 201.4191 12.5839 6.2 201.4191(+/-)5.9275

Table 5.14 shows the ECC in offloaded processing of the matrix multiplication

service component of the application. The total ECC of matrix multiplication operation in

traditional computational offloading is the sum of energy consumption cost of runtime

component offloading (equation 3.1) and energy consumption cost of performing matrix

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

136

multiplication operation on the remote cloud server node. The sample mean of ECC for

matrix multiplication operation is determined for the sample space of 30 values in each

experiment and the interval estimate for each experiment is presented with 99% confidence

interval for the sample space of 30 values in each experiment. The variation in the ECC

values of sample space for each experiment is represented with SD and the percentage

difference in the sample space of each experiment is represented with %RSD.

Table 5. 14: Energy Consumption Cost (ECC) of Matrix Multiplication Operation in
Traditional Runtime Offloading

Computational
Length

Sample Mean
of ECC(J)

SD in
ECC

%RSD
in ECC Confidence Interval

160*160 39.9898 11.7609 29.4 39.9898(+/-)5.5399
170*170 40.9927 13.1147 32 40.9927(+/-)6.1776
180*180 43.998 16.5939 37.7 43.998(+/-)7.8164
190*190 44.5995 12.1789 27.3 44.5995(+/-)5.7368
200*200 44.4027 15.4921 34.9 44.4027(+/-)7.2974
210*210 46.5297 16.1287 34.7 46.5297(+/-)7.5973
220*220 49.3349 15.8277 32.1 49.3349(+/-)7.4555
230*230 52.1504 13.9581 26.8 52.1504(+/-)6.5748
240*240 52.8534 14.8811 28.2 52.8534(+/-)7.0096
250*250 58.0603 15.2977 26.3 58.0603(+/-)7.2059
260*260 59.1631 9.6401 16.3 59.1631(+/-)4.5409
270*270 64.5291 13.9521 21.6 64.5291(+/-)6.572
280*280 65.4867 10.2341 15.6 65.4867(+/-)4.8207
290*290 71.8974 13.3375 18.6 71.8974(+/-)6.2825
300*300 71.9067 10.3129 14.3 71.9067(+/-)4.8578
310*310 76.7187 13.2817 17.3 76.7187(+/-)6.2562
320*320 79.2983 11.0075 13.9 79.2983(+/-)5.185
330*330 82.7353 16.8737 20.4 82.7353(+/-)7.9482
340*340 85.8619 17.5749 20.5 85.8619(+/-)8.2785
350*350 93.1617 22.3729 24 93.1617(+/-)10.5386
360*360 95.7239 21.1127 22.1 95.7239(+/-)9.945
370*370 105.5589 14.7985 14 105.5589(+/-)6.9707
380*380 109.1943 16.1279 14.8 109.1943(+/-)7.5969
390*390 109.8383 16.0029 14.6 109.8383(+/-)7.538
400*400 114.1728 16.5943 14.5 114.1728(+/-)7.8166
410*410 115.1444 17.1541 14.9 115.1444(+/-)8.0803
420*420 119.0066 16.5657 13.9 119.0066(+/-)7.8031

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

137

Computational
Length

Sample Mean
of ECC(J)

SD in
ECC

%RSD
in ECC Confidence Interval

430*430 121.4333 16.5499 13.6 121.4333(+/-)7.7957
440*440 126.8541 18.4795 14.6 126.8541(+/-)8.7046
450*450 131.6952 16.5959 12.6 131.6952(+/-)7.8174

Table 5.15 shows the size of data transmission over the wireless network medium in

offloading sort service component of the application with 30 different computational

intensities at runtime. Total data size for either instance of list size includes the data size of

application binary file, the size of preferences file uploaded to the remote server node at

runtime and the size of preferences file downloaded to the mobile devices for returning

results. The length of sorting list attribute shows the length of one dimensional array. The

attribute of preferences file size shows the size of data file size of the sorting component of

the application. The attribute of total data size represent the amount of total data transmitted

in each experiment of offloading sort service component of the application. The goodput

attribute shows the number of bits delivered by the network to the remote cloud server node

in the unit time. The goodput attribute is represented in the units of Kilo Bits per Second

(Kbps). It indicates the application layer throughput of the data transmission irrespective of

the transmission overhead of the underlying layers of the TCP/IP protocol stack.

Table 5. 15: The Size of Data Transmission over the Wireless Network Medium for
Sorting Component in Traditional Computational Offloading

Length
of Sort

List

Preferences
Size (KB)

Total Data
Size (KB)

Goodput
(Kbps)

11000 354 752.4 843.6
12000 388 820.4 841.1
13000 422 888.4 813.8
14000 453 950.4 826.5
15000 491 1026.4 823.3
16000 521 1086.4 868.3
17000 559 1162.4 869.1
18000 593 1230.4 810.3

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

138

Length
of Sort

List

Preferences
Size (KB)

Total Data
Size (KB)

Goodput
(Kbps)

19000 627 1298.4 782
20000 658 1360.4 851.8
21000 688 1420.4 844.9
22000 718 1480.4 774.6
23000 764 1572.4 769.8
24000 794 1632.4 786.7
25000 825 1694.4 789.3
26000 855 1754.4 801.5
27000 901 1846.4 832
28000 935 1914.4 828.3
29000 969 1982.4 842.9
30000 999 2042.4 841.1
31000 1024 2092.4 860.5
32000 1054.72 2153.84 860.6
33000 1085.44 2215.28 856.2
34000 1116.16 2276.72 867.3
35000 1177.6 2399.6 908.6
36000 1177.6 2399.6 877.2
37000 1208.32 2461.04 875.1
38000 1239.04 2522.48 888.4
39000 1269.76 2583.92 903.1
40000 1300.48 2645.36 915.7

Table 5.16 shows the size of data transmission over the wireless network medium in

offloading matrix multiplication component of the application with 30 different

computational intensities at runtime. The length of matrices attribute shows the length of

two dimensional arrays used in the matrix multiplication. The attribute of preferences file

size shows the size of data file size of the matrix multiplication component of the

application. The attribute of total data size represent the amount of total data transmitted

with either size 2-D array in matrix multiplication. Total data size for either instance of list

size includes the data size of application binary file, the size of preferences file uploaded to

the remote server node at runtime and the size of preferences file downloaded to the mobile

devices for returning results. The goodput attribute shows the number of bits delivered by

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

139

the network to the remote cloud server node in the unit time for matrix multiplication

component.

Table 5. 16: The Size of Data Transmission over the Wireless Network Medium for Matrix
Multiplication Component in Traditional Computational Offloading

Length of
Matrices

Preferences
Size (KB)

Data
Transmission

(KB) Goodput(Kbps)
160*160 2846.72 5739.44 9238.5
170*170 3246.08 6538.16 9919.5
180*180 3665.92 7377.84 9172.1
190*190 4085.76 8217.52 9816.4
200*200 4536.32 9118.64 9460.4
210*210 4997.12 10040.24 10332.1
220*220 5488.64 11023.28 11084.2
230*230 6010.88 12067.76 10363
240*240 6543.36 13132.72 10858
250*250 7106.56 14259.12 10400.5
260*260 7690.24 15426.48 10427.7
270*270 8294.4 16634.8 10112.3
280*280 8919.04 17884.08 10525.5
290*290 9574.4 19194.8 10954.4
300*300 10240 20526 10402.1
310*310 10854.4 21754.8 10754.4
320*320 11673.6 23393.2 11166.9
330*330 12390.4 24826.8 11009.1
340*340 13209.6 26465.2 11351.8
350*350 14028.8 28103.6 11749.6
360*360 14848 29742 11867.1
370*370 15667.2 31380.4 11612.2
380*380 16588.8 33223.6 11111.1
390*390 17408 34862 11448.5
400*400 18329.6 36705.2 11786.7
410*410 19353.6 38753.2 10124.6
420*420 19660.8 39367.6 8016
430*430 21299.2 42644.4 7439.1
440*440 22323.2 44692.4 7863
450*450 23347.2 46740.4 8508.9

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

140

5.5 Data Collected for Application Execution by Employing DEAP
Framework

In this scenario the prototype mobile application is tested by implementing DEAP

framework. Application execution is evaluated in the Primary Operating Procedure (POP)

and Secondary Operating Procedure (SOP) of the DEAP framework. The sorting service

and matrix multiplication service components of the application are computational and data

intensive. Therefore, sorting logic and matrix multiplication logic of the application is

configured explicitly in the DEAP server. The POP of the DEAP client application is used

to access the preconfigured services by employing SaaS cloud service provision model of

computational clouds. However, the power compute service component of the application

is offloaded at runtime in the SOP of the DEAP client application which utilizes IaaS

service provisioning model of computational clouds. We evaluate the TT of the application,

ECC in DEAP based processing of the application, size of data transmission in POP and

SOP of the DEAP client application, RAM allocation and CPU utilization on local mobile

device in leveraging the services of DEAP server.

Table 5.17 shows the TT of sorting operation in POP of the DEAP client application.

Turnaround time of the sorting operation in POP of DEAP client application is the sum of

application processing time on the remote server node and the time taken in saving resultant

data on the local mobile device. The sample mean of TT for sorting operation is determined

for the sample space of 30 values in each experiment and the interval estimate for each

experiment is presented with 99% confidence interval for the sample space of 30 values in

each experiment. The variation in the TT values of sample space for each experiment is

represented with SD and the percentage difference in the sample space of each experiment

is represented with %RSD.

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

141

Table 5. 17: Turnaround Time for Sorting Operation in the POP of the DEAP client
Application

Computational
Length

Sample Mean
of TT (ms)

SD in
TT

%RSD
in TT

Confidence
Interval

11000 2559 446 17.4 2559(+/-)210
12000 2902 715 24.6 3902(+/-)337
13000 3132 454 14.5 3132(+/-)214
14000 3345 308 9.2 3345(+/-)145
15000 3494 519 14.9 3494(+/-)244
16000 3757 694 18.5 3757(+/-)327
17000 3888 402 10.3 3888(+/-)189
18000 4379 316 7.2 4379(+/-)149
19000 4579 587 12.8 4579(+/-)277
20000 4864 238 4.9 4864(+/-)112
21000 5222 308 5.9 5222(+/-)145
22000 5461 227 4.2 5461(+/-)107
23000 5838 444 7.6 5838(+/-)209
24000 6171 248 4 6171(+/-)117
25000 6770 334 4.9 6770(+/-)157
26000 6844 388 5.7 6844(+/-)183
27000 7377 194 2.6 7377(+/-)91
28000 7885 167 2.1 7885(+/-)79
29000 8436 667 7.9 8436(+/-)314
30000 8525 861 10.1 8525(+/-)406
31000 8989 369 4.1 8989(+/-)174
32000 9378 3874 41.3 9378(+/-)1825
33000 10042 949 9.5 10042(+/-)447
34000 10328 630 6.1 10328(+/-)297
35000 10790 474 4.4 10790(+/-)223
36000 10914 1645 15.1 10914(+/-)775
37000 11704 551 4.7 11704(+/-)260
38000 12537 619 4.9 12537(+/-)292
39000 13182 1133 8.6 13182(+/-)534
40000 13416 598 4.5 13416(+/-)282

Table 5.18 shows the TT of matrix multiplication in POP of the DEAP client

application. Turnaround time of the matrix multiplication operation in POP of DEAP client

application is the sum of matrix multiplication time on the remote server node and the time

taken in saving resultant data on the local mobile device. The sample mean of TT for

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

142

matrix multiplication operation is determined for the sample space of 30 values in each

experiment and the interval estimate for each experiment is presented with 99% confidence

interval for the sample space of 30 values in each experiment. The variation in the TT

values of sample space for each experiment is represented with SD and the percentage

difference in the sample space of each experiment is represented with %RSD.

Table 5. 18: Turnaround Time for Matrix Multiplication Operation in the POP of the
DEAP Client Application

Computational
Intensity

Sample
Mean of
TT (ms) SD in TT

% RSD in
TT

Confidence Interval of
TT

160*160 4241 207 4.9 4241(+/-)98
170*170 4983 701 14.1 4983(+/-)330
180*180 5481 637 11.6 5481(+/-)300
190*190 5676 1010 17.8 5676(+/-)476
200*200 7038 579 8.2 7038(+/-)273
210*210 7795 655 8.4 7795(+/-)309
220*220 8560 598 7 8560(+/-)282
230*230 9661 1009 10.4 9661(+/-)475
240*240 11521 830 7.2 11521(+/-)391
250*250 13766 578 4.2 13766(+/-)272
260*260 14442 1192 8.3 14442(+/-)561
270*270 15174 1149 7.6 15174(+/-)541
280*280 17494 2238 12.8 17494(+/-)1054
290*290 21148 597 2.8 21148(+/-)281
300*300 21476 593 2.8 21476(+/-)279
310*310 22025 3868 17.6 22025(+/-)1822
320*320 27875 5953 21.4 27875(+/-)2804
330*330 28900 3563 12.3 28900(+/-)1678
340*340 38435 3987 10.4 38435(+/-)1878
350*350 39074 5117 13.1 39074(+/-)2410
360*360 40649 3562 8.8 40649(+/-)1678
370*370 45182 5611 12.4 45182(+/-)2643
380*380 48164 4250 8.8 48164(+/-)2002
390*390 55381 11854 21.4 55381(+/-)5584
400*400 57224 6180 10.8 57224(+/-)2911
410*410 61358 7383 12 61358(+/-)3478
420*420 62199 6288 10.1 62199(+/-)2962
430*430 73466 8248 11.2 73466(+/-)3885

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

143

Computational
Intensity

Sample
Mean of
TT (ms) SD in TT

% RSD in
TT

Confidence Interval of
TT

440*440 77068 13544 17.6 77068(+/-)6380
450*450 97887 11002 11.2 97887(+/-)5182

The ECC for accessing sorting service of DEAP server is the sum of energy

consumed in accessing the sorting service and energy consumed in saving the resultant data

on the local mobile device. The sorting operation service of the of the DEAP server

application in the POP of the DEAP client application is evaluated for 30 different

computational intensities, and data are collected for the sample space of 30 values for either

computational intensity of the sorting operation.

Table 5.19 shows the ECC of sorting operation in POP of the DEAP client

application. The sample mean of ECC for sorting operation in POP of DEAP framework is

determined for the sample space of 30 values in each experiment and the interval estimate

for each experiment is presented with 99% confidence interval for the sample space of 30

values in each experiment. The variation in the ECC values of sample space for each

experiment is represented with SD and the percentage difference in the sample space of

each experiment is represented with %RSD.

Table 5. 19: Energy Consumption Cost (ECC) for Sorting Operation in the POP of the
DEAP Framework

Computational
Length

Sample
Mean of
ECC (J)

SD in
ECC

%RSD
in ECC

Confidence
Interval in ECC

11000 7.4 1.3 17.6 7.4(+/-).6
12000 8.3 2 24.1 8.3(+/-)1.8
13000 9 1.8 20 9(+/-)1.6
14000 9.3 2.1 22.6 9.3(+/-).9
15000 9.3 2 21.5 9.3(+/-)1.8
16000 9.5 1.6 16.8 9.5(+/-).7
17000 10.7 2 18.7 10.7(+/-).9
18000 10.8 1.6 14.8 10.8(+/-).7

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

144

Computational
Length

Sample
Mean of
ECC (J)

SD in
ECC

%RSD
in ECC

Confidence
Interval in ECC

19000 11 4.1 37.3 11(+/-)1.9
20000 11.2 3.7 33 11.2(+/-)1.7
21000 12.3 2.3 18.7 12.3(+/-)1.1
22000 12.5 2.7 21.6 12.5(+/-)1.3
23000 12.7 2.4 18.9 12.7(+/-)1.1
24000 12.7 1.8 14.2 12.7(+/-).8
25000 14.1 3.2 22.7 14.1(+/-)1.5
26000 14.6 2.8 19.2 14.6(+/-)1.3
27000 14.8 2.8 18.9 14.8(+/-)1.6
28000 14.8 2.1 14.2 14.8(+/-)1
29000 14.9 3.1 20.8 14.9(+/-)1.4
30000 15.3 2.2 14.4 15.3(+/-)1
31000 15.3 1.8 11.8 15.3(+/-).8
32000 15.4 2.5 16.2 15.4(+/-)1.2
33000 17 3.6 21.2 17(+/-)1.7
34000 17 2.6 15.3 17.2(+/-)1.2
35000 17.3 3.7 21.4 17.3
36000 17.5 2.8 16 17.5(+/-)1.3
37000 17.6 2.1 11.9 17.6(+/-)1
38000 18.5 3.4 18.4 18.5(+/-)1.6
39000 21.8 3 13.8 21.8(+/-)1.4
40000 23 5.6 24.3 23(+/-)2.6

The ECC of matrix multiplication operation in the POP of DEAP client application

is the sum of energy consumed in accessing the matrix multiplication operation service of

the DEAP server application and energy consumed in saving the resultant preferences (data

file) on the local mobile device. Table 5.20 shows the ECC of matrix multiplication

operation in POP of the DEAP client application. The sample mean of ECC for matrix

multiplication operation in POP of DEAP framework is determined for the sample space of

30 values in each experiment and the interval estimate for each experiment is presented

with 99% confidence interval for the sample space of 30 values in each experiment. The

variation in the ECC values of sample space for each experiment is represented with SD

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

145

and the percentage difference in the sample space of each experiment is represented with

%RSD.

Table 5. 20: Energy Consumption Cost (ECC) for Matrix Multiplication Operation in the
POP of the DEAP Client Application

Computational
Length

Sample
Mean of

ECC

SD in
ECC

%RSD
in ECC

Confidence
Interval

160*160 10.8 3.8 35.2 10.8(+/-)1.8
170*170 11.2 3.5 31.3 11.2(+/-)1.6
180*180 11.9 5.2 43.7 11.9(+/-)2.4
190*190 12 3.4 28.3 12(+/-)1.6
200*200 12.8 7 54.7 12.8(+/-)3.3
210*210 13 4.7 36.2 13(+/-)2.2
220*220 14.5 5.3 36.6 14.5(+/-)2.5
230*230 15.5 4.2 27.1 15.5(+/-)2
240*240 16.2 5.2 32.1 16.2(+/-)2.4
250*250 17.3 5.5 31.8 17.3(+/-)2.6
260*260 18.5 5.2 28.1 18.5(+/-)2.4
270*270 19.3 6.8 35.2 19.3(+/-)3.2
280*280 20.3 5.6 27.6 20.3(+/-)2.6
290*290 23 6.9 30 23(+/-)3.3
300*300 24.2 8.2 33.9 24.2(+/-)3.9
310*310 25.6 10 39.1 25.6(+/-)4.7
320*320 29.3 8.5 29 29.3(+/-)4
330*330 31.5 12.3 39 31.5(+/-)5.8
340*340 32.6 12 36.8 32.6(+/-)5.7
350*350 35.7 14.9 41.7 35.7(+/-)7
360*360 37 13.6 36.8 37(+/-)6.4
370*370 41.6 7.6 18.3 41.6(+/-)3.6
380*380 45 11 24.4 45(+/-)5.2
390*390 47.3 13.5 28.5 47.3(+/-)6.4
400*400 49.3 19.6 39.8 49.3(+/-)9.2
410*410 53.7 11.4 21.2 53.7(+/-)5.4
420*420 56.8 17.4 30.6 56.8(+/-)8.2
430*430 57.1 10.2 17.9 57.1(+/-)4.8
440*440 61.6 12.3 20 61.6(+/-)5.8
450*450 65.3 10.8 16.5 65.3(+/-)5.1

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

146

The power compute service component of the application is offloaded at runtime by

employing the SOP of the DEAP framework. Table 5.21 shows the time taken in of

offloading power compute service in the SOP of DEAP client application. The sample

mean of TT for power compute operation is determined for the sample space of 30 values

and the interval estimate for each experiment is presented with 99% confidence interval for

the sample space of 30 values. The variation in the TT values of sample space for each

experiment is represented with SD and the percentage difference in the sample space of

each experiment is represented with %RSD.

Table 5. 21: Time Taken in Offloading Power Compute in the SOP of DEAP client
Application

 Sample
Mean of

Time (ms)

SD in
Time

%RSD Confidence
Interval

Offloading Time 52 9 17.3 52(+/-)4
Download Time to
Remote Virtual Device

212 39 18.4 212(+/-)18

Reconfiguration Time on
the on Remote virtual
Device

6349 663 10.4 6349(+/-)312

Table 5.22 shows the total time taken in the execution of power compute service

component of the application in the SOP of DEAP client application. The sample mean of

TT for power compute operation is determined for the sample space of 30 values in each

experiment and the interval estimate for each experiment is presented with 99% confidence

interval for the sample space of 30 values in each experiment. The variation in the TT

values of sample space for each experiment is represented with SD and the percentage

difference in the sample space of each experiment is represented with %RSD.

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

147

Table 5. 22: Turnaround Time of Offloading Power Compute in the SOP of DEAP client
Application

Computational
Length

Sample
Mean for
TT SD in TT

%RSD in
TT

Confidence
Interval

2^1000000 7175 721.1 10.1 7175(+/-)340
2^2000000 7587 717 9.5 7587(+/-)338
2^3000000 7751 726.5 9.4 7751(+/-)342
2^4000000 7779 719.7 9.3 7779(+/-)339
2^5000000 7965 699 8.8 7965(+/-)329
2^6000000 8071 692.7 8.6 8071(+/-)326
2^7000000 8183 690.1 8.4 8183(+/-)325
2^8000000 8283 690.5 8.3 8283(+/-)325
2^9000000 8471 684.2 8.1 8471(+/-)322
2^10000000 8658 724.3 8.4 8658(+/-)341
2^20000000 9877 674.9 6.8 9877(+/-)318
2^30000000 12029 1398.2 11.6 12029(+/-)659
2^40000000 12999 719.5 5.5 12999(+/-)339
2^50000000 13444 1212.1 9 13444(+/-)571
2^60000000 15356 804.1 5.2 15356(+/-)379
2^70000000 17067 918.7 5.4 17067(+/-)433
2^80000000 18092 831.5 4.6 18092(+/-)392
2^90000000 19188 1115 5.8 19188(+/-)525
2^100000000 20389 1045.5 5.1 20389(+/-)492
2^200000000 32645 1367.5 4.2 32645(+/-)644
2^300000000 46475 876.3 1.9 46475(+/-)413
2^400000000 61280 2107.4 3.4 61280(+/-)913
2^500000000 75534 2123.2 2.8 75534(+/-)1000
2^600000000 84686 1944.1 2.3 84686(+/-)916
2^700000000 112309 5497.9 4.9 112309(+/-)2590
2^800000000 126616 2987.1 2.4 126616(+/-)1407
2^900000000 135190 2297.8 1.7 135190(+/-)1082
2^100000000 138851 1379.6 1 138851(+/-)650
2^1900000000 139471 3875.7 2.8 139471(+/-)1826
2^2000000000 265724 5274.6 2 265724(+/-)2485

Table 5.23 shows the total ECC in the execution of power compute service

component of the application in the SOP of DEAP client application. The sample mean of

ECC for matrix multiplication operation is determined for the sample space of 30 values in

each experiment and the interval estimate for each experiment is presented with 99%

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

148

confidence interval for the sample space of 30 values in each experiment. The variation in

the ECC values of sample space for each experiment is represented with SD and the

percentage difference in the sample space of each experiment is represented with %RSD.

Table 5. 23: Total Energy Consumption Cost in Offloading of Power Compute Service in
the SOP of DEAP Client Application

Compute Size Sample Mean
of ECC(J)

SD in
ECC

%RSD Confidence
Interval

2^1000000 5.4 1.4 25.9 5.4(+/-).7
2^2000000 6.5 2.6 40 6.5(+/.-)1.2
2^3000000 6.8 1 14.7 6.8(+/-)0.5
2^4000000 7.9 3.2 40.5 7.9(+/-)1.5
2^5000000 8.1 2.3 28.4 8.1(+/-)1.1
2^6000000 8.6 2.3 26.7 8.6(+/-)1.1
2^7000000 9.5 3.3 34.7 9.5(+/-)1.6
2^8000000 9.6 1.6 16.7 9.6(+/-)0.8
2^9000000 10 1.4 14 10(+/-)0.7
2^10000000 10.5 2 19 10.5(+/-)0.9
2^20000000 13.2 2.3 17.4 13.2(+/-)1.1
2^30000000 15.1 1.9 12.6 15.1(+/-)0.9
2^40000000 17.1 1.9 11.1 17.1(+/-)0.9
2^50000000 19.8 1.3 6.6 19.8(+/-)0.6
2^60000000 23.2 2.8 12.1 23.2(+/-)1.3
2^70000000 25.1 1.9 7.6 25.1(+/-)0.9
2^80000000 26.8 2.6 9.7 26.8(+/-)1.2
2^90000000 30.2 1.1 3.6 30.2(+/-)0.5
2^100000000 31.3 2.1 6.7 31.3(+/-)1
2^200000000 56.1 2.3 4.1 56.1(+/-)1.1
2^300000000 72.7 4.2 5.8 72.7(+/-)2
2^400000000 79.6 4.4 5.5 79.6(+/-)2.1
2^500000000 88.2 2.7 3.1 88.2(+/-)1.3
2^600000000 106.4 1.6 1.5 106.4(+/-)0.8
2^700000000 126.4 4.9 3.9 126.4(+/-)2.3
2^800000000 143.3 5.9 4.1 143.3(+/-)2.8
2^900000000 164.9 3.4 2.1 164.9(+/-)1.6
2^100000000 181.1 6.5 3.6 181.1(+/-)3.1
2^1900000000 343.6 5.9 1.7 343.6(+/-)1.7
2^2000000000 351 15.7 4.5 351(+/-)4.5

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

149

Table 5.24 represents the statistics of RAM allocation on local mobile device for

accessing the sorting service of DEAP server application. The sample mean of RAM

allocation for matrix multiplication operation is determined for the sample space of 30

values in each experiment and the interval estimate for each experiment is presented with

99% confidence interval for the sample space of 30 values in each experiment. The

variation in the RAM allocation values of sample space for each experiment is represented

with SD and the percentage difference in the sample space of each experiment is

represented with %RSD.

Table 5. 24: RAM Allocation on Local Mobile Device in Accessing Sorting Service of
DEAP server Application

Computational
length

Sample
Mean for

RAM
Allocation

(MB)

SD in
RAM

Allocation

%RSD in
RAM

Allocation
Confidence

Interval
11000 1.165 0.06 5.2 1.165(+/-)0.028
12000 1.232 0.027 2.2 1.232(+/-)0.013
13000 1.248 0.011 0.9 1.248(+/-)0.005
14000 1.442 0.139 9.6 1.442(+/-)0.065
15000 1.559 0.021 1.3 1.559(+/-)0.01
16000 1.566 0.019 1.2 1.566(+/-)0.009
17000 1.654 0.111 6.7 1.654(+/-)0.052
18000 1.925 0.024 1.2 1.925(+/-)0.011
19000 1.938 0.006 0.3 1.938(+/-)0.003
20000 1.938 0.002 0.1 1.938(+/-)0.001
21000 2.324 0.002 0.1 2.324(+/-)0.001
22000 2.355 0.008 0.3 2.355(+/-)0.004
23000 2.356 0.085 3.7 2.314(+/-)0.04
24000 2.376 0.055 2.3 2.376(+/-)0.026
25000 2.382 0.043 1.8 2.382(+/-)0.02
26000 2.426 1.871 77.1 2.426(+/-)0.881
27000 2.854 0.077 2.7 2.854(+/-)0.036
28000 2.883 0.037 1.3 2.883(+/-)0.017
29000 2.891 0.091 3.1 2.891(+/-)0.043
30000 2.898 0.008 0.3 2.898(+/-)0.004
31000 2.922 0.026 0.9 2.922(+/-)0.012
32000 3.186 0.1 3.1 3.186(+/-)0.047

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

150

Computational
length

Sample
Mean for

RAM
Allocation

(MB)

SD in
RAM

Allocation

%RSD in
RAM

Allocation
Confidence

Interval
33000 3.518 0.001 0 3.518(+/-)0.0005
34000 3.531 0.01 0.3 3.531(+/-)0.005
35000 3.553 0.232 6.5 3.553(+/-)0.109
36000 3.559 0.176 4.9 3.559(+/-)0.083
37000 3.664 0.393 10.7 3.664(+/-)0.185
38000 3.68 0.109 3 3.68(+/-)0.051
39000 3.743 0.146 3.9 3.743(+/-)0.069
40000 4.344 0.376 8.7 4.344(+/-)0.177

Table 5.25 represents the statistics of RAM allocation on local mobile device for

accessing the matrix multiplication service of the application on DEAP server application.

The computational length of the matrix service varies in 30 different experiments

(160*160-450*450), whereas the variation in the values of sample space in either

computational intensity is shown with SD and %RSD. The confidence interval attribute

shows the interval estimate of the sample mean with 99% confidence.

Table 5. 25: RAM Allocation on Local Mobile Device in Accessing Matrix Multiplication
Service of DEAP Server Application

Computational
Length

Sample
Mean for

RAM
Allocation

(MB)

SD in
RAM

Allocation

%RSD in
RAM

Allocation
Confidence

Interval
160*160 1.695 0.16 9.4 1.695(+/-).08
170*170 1.865 0.068 3.6 1.865(+/-)0.03
180*180 2.094 0.068 3.2 2.094(+/-)0.03
190*190 2.36 0.198 8.4 2.36(+/-)0.09
200*200 2.438 0.071 2.9 2.438(+/-)0.03
210*210 2.887 0.13 4.5 2.887(+/-)0.06
220*220 3.119 0.162 5.2 3.119(+/-)0.08
230*230 3.524 0.091 2.6 3.524(+/-)0.04
240*240 3.576 0.12 3.4 3.576(+/-)0.06
250*250 3.752 0.272 7.2 3.752(+/-)0.13
260*260 4.193 0.13 3.1 4.193(+/-)0.06

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

151

Computational
Length

Sample
Mean for

RAM
Allocation

(MB)

SD in
RAM

Allocation

%RSD in
RAM

Allocation
Confidence

Interval
270*270 4.448 0.266 6 4.448(+/-)0.13
280*280 4.842 0.238 4.9 4.842(+/-)0.13
290*290 5.616 0.308 5.5 5.616(+/-)0.15
300*300 5.888 0.076 1.3 5.888(+/-)0.04
310*310 6.335 0.136 2.1 6.335(+/-)0.06
320*320 6.498 0.279 4.3 6.498(+/-)0.13
330*330 7.171 0.211 2.9 7.171(+/-)0.1
340*340 7.344 0.226 3.1 7.344(+/-)0.11
350*350 7.696 0.279 3.6 7.696(+/-)0.13
360*360 8.311 0.351 4.2 8.311(+/-)0.17
370*370 8.319 0.326 3.9 8.319(+/-)0.15
380*380 9.141 0.197 2.2 9.141(+/-)0.09
390*390 9.754 0.17 1.7 9.754(+/-)0.08
400*400 9.88 0.082 0.8 9.88(+/-)0.04
410*410 11.476 0.354 3.1 11.476(+/-)0.17
420*420 11.912 0.35 2.9 11.912(+/-)0.16
430*430 12.263 0.237 1.9 12.263(+/-)0.11
440*440 12.549 0.209 1.7 12.549(+/-)0.1
450*450 13.056 0.653 5 13.056(+/-)0.31

The percentage of CPU utilization on the local mobile devices in DEAP based

processing varies for different components of the mobile application. In the POP of DEAP

framework, the processing logic of the service components is executed on the DEAP server

application. However, a certain amount of CPU is still utilized for accessing the services of

DEAP server application on the remote server node. Table 5.26 summarizes the average

CPU utilization on local mobile device for accessing the services of DEAP server

application.

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

152

Table 5. 26: Statistics of CPU Utilization on the Mobile Device in DEAP Based
Application Processing

Computation
al Service

Computation
al Length

% CPU
Utilizatio
n

SD in
CPU
Utilizatio
n

%RSD
in CPU
Utilizatio
n

Confidenc
e Interval Averag

e
MIPS

Sort 11000-40000 25.5 14.00375 54.9 25.5(+/-
)5.64 609.2

Matrix
Multiplication

160*160-
4560*450

35.4 17.8 50.3 35.4(+/-
)8.38 845.7

Power
Compute

2^1000000-
2^200000000

0

3 0.8 26.7 3(+/-)0.38
71. 7

Table 5.27 shows the size of data transmission over the wireless network medium in

accessing the sorting service and matrix multiplication service on DEAP server application.

The attribute of data size represent the amount of data transmitted with either list size of the

sort array and matrix length.

Table 5. 27: Data Transmission in the POP of DEAP client Application

Length of
Sorting List

Data
Transmission
(KB) (Sorting

Service)

Length of
Matrices

Data
Transmission
(KB) (Matrix

Service)
11000 183 160*160 463
12000 200 170*170 528
13000 218 180*180 595
14000 235 190*190 664
15000 253 200*200 639
16000 270 210*210 705
17000 288 220*220 774
18000 306 230*230 847
19000 323 240*240 923
20000 341 250*250 1002
21000 358 260*260 1084
22000 376 270*270 1169
23000 393 280*280 1258
24000 411 290*290 1350
25000 429 300*300 1445
26000 446 310*310 1543

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

153

Length of
Sorting List

Data
Transmission
(KB) (Sorting

Service)

Length of
Matrices

Data
Transmission
(KB) (Matrix

Service)
27000 464 320*320 1646
28000 481 330*330 1754
29000 499 340*340 1865
30000 516 350*350 1979
31000 534 360*360 21629
32000 552 370*370 2219
33000 568 380*380 2343
34000 587 390*390 2471
35000 604 400*400 2602
36000 622 410*410 2737
37000 639 420*420 2874
38000 657 430*430 3015
39000 675 440*440 3160
40000 692 450*450 3308

5.6 Comparison of Experimental Results

This section presents the comparison of resources utilization in the application

processing on the local device and remote server node. The comparison of experimental

results is presented for Android virtual device and real time experimentation. Table 5.28

shows the TT of the sorting service on the local virtual device and execution time in the

performing sorting operation on the remote server using the POP of DEAP client

application. Similarly, the table compares the ECC of sort service execution on local virtual

device and ECC of DEAP client application for accessing sorting service on DEAP server

application.

Table 5. 28: Comparison of Sorting Service Execution on Local Android Virtual Device
and POP of DEAP client Application

Computational
Length

TT (ms) on
Local AVD

TT (ms)
in DEAP

ECC (J)
on Local
AVD

ECC (J)
in DEAP

11000 13400 3246 20.1 13.3
12000 16217 3475 22.9 13.6

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

154

Computational
Length

TT (ms) on
Local AVD

TT (ms)
in DEAP

ECC (J)
on Local
AVD

ECC (J)
in DEAP

13000 18423 3782 25.4 15
14000 20918 3954 29.1 15.4
15000 22021 4541 30 16.2
16000 23425 4816 32.7 16.2
17000 26109 4928 38.2 16.3
18000 29743 5476 40.9 16.4
19000 30777 5827 43.6 16.5
20000 34911 6215 42.3 16.7
21000 38949 6237 46.4 17.8
22000 41064 6839 48.4 17.4
23000 45905 7571 53.4 18.7
24000 49591 7659 55.6 18.7
25000 51808 8081 60.5 18.9
26000 56479 8221 70.2 20
27000 61963 8560 73.4 20.2
28000 65919 8717 78.8 20.8
29000 70729 9435 83.8 20.9
30000 79087 10283 87.4 21.5
31000 90472 10564 93.1 21.3
32000 91096 10883 96.6 22.2
33000 94886 10899 108.8 22.9
34000 98462 10913 116.9 23.6
35000 104213 11308 122.6 24
36000 107928 12179 130.7 24.9
37000 115239 12689 138.9 26.9
38000 121113 13216 142.5 28.2
39000 123935 13435 151.4 31.2
40000 132661 14093 156.1 32.5

Table 5.29 compares execution time and energy consumption in the execution of

matrix multiplication operation on local virtual device instance and DEAP based service

execution by using Android virtual device. The TT of the matrix multiplication operation is

compared for local execution on AVD and remote execution on remote server node.

Similarly, the table compares the Energy Consumption Cost (ECC) of matrix multiplication

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

155

service execution on local virtual device and ECC of DEAP client application for accessing

matrix multiplication service on DEAP server application.

Table 5. 29: Comparison of Matrix Multiplication Service Execution on Local Android
Virtual Device and POP of DEAP client Application

Computational
Length

TT (ms) on
Local AVD

TT (ms) in
DEAP

ECC (J)
on Local
AVD

ECC (J) in
DEAP

160*160 4430 4488 11.2 11.8
170*170 5146 4587 12 13.5
180*180 5762 5439 12.8 14.2
190*190 6034 5668 13 14.3
200*200 7500 6120 13.6 14.3
210*210 8264 6838 14.7 15.1
220*220 9003 7485 17.5 15.7
230*230 10243 8358 18.7 15.9
240*240 12010 9069 19.4 16.5
250*250 14429 9901 21.8 16.7
260*260 15237 10101 22.3 17.4
270*270 16429 10493 25.6 18.3
280*280 18657 10666 26.9 18.8
290*290 22963 11869 32.9 19.9
300*300 23665 12228 33.9 20
310*310 23973 13705 37.7 20
320*320 29914 13724 39.2 22.2
330*330 31121 14664 43.2 22.4
340*340 42864 15405 45 22.4
350*350 41778 15632 50.8 23.8
360*360 43578 15938 53.9 25.8
370*370 48387 18822 63.5 27.2
380*380 51952 19010 66.8 27
390*390 58945 18998 67.2 28.2
400*400 64100 20828 71.9 28.2
410*410 68265 21287 72.5 29.1
420*420 70675 22200 74.7 30
430*430 82111 24789 75.8 35.2
440*440 86244 23674 77.1 35.7
450*450 108202 24994 79 43.7

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

156

Table 5.30 compares execution time and energy consumption in the execution of

power compute service on local AVD and remote DEAP server application by using

Android virtual device. It compares the TT of the power compute service on the local

virtual device and execution time in performing power compute operation on the remote

server using the POP of DEAP client application. Similarly, the table compares the ECC of

power compute service execution on local virtual device and ECC of DEAP client

application for accessing power compute service on DEAP server application.

Table 5. 30: Comparison of Power Compute Service Execution on Local Android Virtual
Device and POP of DEAP client Application

Computational
Length

TT (ms)
on Local
AVD

TT (ms)
in DEAP

ECC
(J) on
Local
AVD

ECC
(J) in
DEAP

2^1000000 562 173 3.1 2.9
2^2000000 974 182 4.1 3.6
2^3000000 1138 186 4.3 3.7
2^4000000 1166 191 5.1 3.8
2^5000000 1352 206 5.2 4.1
2^6000000 1458 207 5.6 4.5
2^7000000 1570 230 6.4 4.6
2^8000000 1670 234 6.5 5.9
2^9000000 1858 260 6.8 6.1
2^10000000 2045 263 7.2 6.6
2^20000000 3264 301 9.7 8.5
2^30000000 5416 346 11.6 8.1
2^40000000 6386 394 13.6 8.2
2^50000000 6831 475 16.3 8.2
2^60000000 8743 521 19.7 8.3
2^70000000 10454 524 21.5 8.4
2^80000000 11479 549 23.1 8.6
2^90000000 12575 569 26.3 9.4
2^100000000 13776 608 27.3 10.6
2^200000000 26032 1108 51.5 10.6
2^300000000 39862 1171 67.8 11.3
2^400000000 54667 1445 74.6 11.3
2^500000000 68921 2501 83 11.4
2^600000000 78073 2948 100.5 13.4

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

157

2^700000000 105696 3312 119.5 13.5
2^800000000 120003 4369 135.5 13.9
2^900000000 128577 4846 156.8 14.1
2^100000000 132238 5134 172.7 14.2
2^1900000000 132858 9146 333.3 14.3
2^2000000000 259111 9606 339.9 14.5

Table 5.31 summarizes the comparison of the TT of sorting operating of the

application in different scenarios of the real distributed mobile cloud computing

environment. The contemporary approaches for application offloading implement runtime

application profiling technique for outsourcing the computational load at runtime.

Therefore, Local execution time is evaluated from two perspective.1) The execution time of

the application is evaluated without involving the runtime profiling mechanism. 2) In order

to evaluate the impact of runtime profiling, the execution time of the application is

evaluated by including the runtime profiling mechanism. The TT in DEAP attribute shows

total time taken in the executing the sort service on DEAP server application and returning

the results to the local mobile device. The TT of the application in traditional offloading is

represented from two perspectives. (a) The TT in traditional offloading without profiling

shows the turnaround time of the sorting service operation by offloading the component

without using runtime profiling on the local mobile. (b) Whereas, the TT in traditional

offloading with profiling attribute represents the turnaround time of the application by

including the profiling mechanism on local mobile device.

Table 5. 31: Comparison of Turnaround Time (ms) of Sorting Operation in Local and
Remote Execution

Computational
Length

TT on
Local
SMD

(Without
Profiling)

TT on Local
SMD (

Including
Profiling)

TT in
POP of
DEAP

TT in
Traditional
Offloading
(without
Profiling)

TT in
Traditional
Offloading
(Including
Profiling)

11000 4876 20756 2559 24331 40211

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

158

Computational
Length

TT on
Local
SMD

(Without
Profiling)

TT on Local
SMD (

Including
Profiling)

TT in
POP of
DEAP

TT in
Traditional
Offloading
(without
Profiling)

TT in
Traditional
Offloading
(Including
Profiling)

12000 5510 25160 2902 28267 47917
13000 6566 29298 3132 31609 54341
14000 6989 32718 3345 35115 60844
15000 7406 38820 3494 37010 68424
16000 7450 47778 3757 38571 78899
17000 10414 58773 3888 42244 90603
18000 11457 68132 4379 47714 104389
19000 11857 82182 4579 49481 119806
20000 13221 92106 4864 54599 133484
21000 13774 98885 5222 58953 144064
22000 14410 107419 5461 63141 156150
23000 15579 108969 5838 69280 162670
24000 16059 118121 6171 73368 175430
25000 16950 126903 6770 76615 186568
26000 17764 134495 6844 81668 198399
27000 18421 142275 7377 87634 211488
28000 19176 150483 7885 92439 223746
29000 20179 159581 8436 97729 237131
30000 20987 169385 8525 107042 255440
31000 21600 179592 8989 119084 277076
32000 22565 190058 9378 120380 287873
33000 24701 197576 10042 124931 297806
34000 25687 205867 10328 128864 309044
35000 25825 229236 10790 135006 338417
36000 26432 230547 10914 139564 343679
37000 26910 246572 11704 148009 367671
38000 28859 252496 12537 154216 377853
39000 29968 264108 13182 157490 391630
40000 31207 275148 13416 166457 410398

Table 5.32 compares the TT of the matrix multiplication operation of the

application in different scenarios. The execution time on the local device represents the TT

of the matrix multiplication operation and saving the preferences file on the local mobile

device. The TT in DEAP attribute shows total time taken in the executing the matrix

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

159

multiplication operation on DEAP server application and returning the results to the local

mobile device. The TT of the application in traditional offloading is represented from two

perspectives. The TT in traditional offloading without profiling shows the turnaround time

of the matrix multiplication operation by offloading the component without using runtime

profiling on the local mobile. The TT in traditional offloading with profiling attribute

represents the turnaround time of the application by including the profiling mechanism on

local mobile device.

Table 5. 32: Comparison of the Turnaround Time of the Matrix Multiplication Operation in
Local and Remote Execution

Computatio
nal Length

TT on Local
SMD

(Without
Profiling)

TT on Local
SMD (

Including
Profiling)

TT in
DEAP

TT in
Traditional
Offloading
(without
Profiling)

TT in
Traditional
Offloading
(Including
Profiling)

160*160 3653 4254 3294 16431 20326
170*170 4276 5038 3889 18296 22947
180*180 4781 5675 4308 21132 26334
190*190 5030 5930 4451 22170 27521
200*200 6321 7455 5661 26061 32856
210*210 7039 8346 6287 27927 35521
220*220 7777 9408 6929 29878 38438
230*230 8888 10639 7916 33920 43587
240*240 10735 12753 9589 38052 49659
250*250 13090 15333 11724 44310 58277
260*260 13642 16375 12177 46841 61751
270*270 14471 17279 12805 50412 66025
280*280 16411 19360 14546 55178 72673
290*290 20524 24018 18448 64414 86481
300*300 20706 24721 18599 67346 89960
310*310 21185 25656 18883 68692 92046
320*320 27028 31939 24444 80922 110277
330*330 28452 33760 25317 84709 115334
340*340 39691 45333 34666 110506 152657
350*350 38570 44698 35016 108677 149821
360*360 40096 46936 36406 114062 157308
370*370 44896 52192 40720 125149 173165
380*380 48088 55901 43402 134100 185315
390*390 55560 62952 50381 148747 206520

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

160

Computatio
nal Length

TT on Local
SMD

(Without
Profiling)

TT on Local
SMD (

Including
Profiling)

TT in
DEAP

TT in
Traditional
Offloading
(without
Profiling)

TT in
Traditional
Offloading
(Including
Profiling)

400*400 57339 64397 51775 156489 215322
410*410 62405 73252 55762 171252 237861
420*420 63159 74057 56467 184056 251421
430*430 74424 85789 67278 213507 292150
440*440 78163 90390 70400 221092 303719
450*450 99286 112628 91038 262697 367077

Table 5.33 compares the execution time of the power compute operation of the

application in local and remote execution scenarios. The execution time on the local device

represents the turnaround time of the power compute operation on the local mobile device.

The TT in POP of DEAP attribute shows total time taken in the executing power compute

operation on DEAP server application and returning the results to the local mobile device.

The TT in SOP of DEAP shows the turnaround time of the power compute operation by

offloading the component at runtime.

Table 5. 33: Comparison of the Turnaround Time (ms) of the Power Compute Operation
in Local and Remote Execution

Computational
Length

TT on Local
SMD

TT in
Traditional

Computational
Offloading

without Profiling

TT in SOP of
DEAP Client

including
Profiling

2^1000000 51 7175 7284
2^2000000 80 7587 7786
2^3000000 110 7751 8023
2^4000000 140 7779 8150
2^5000000 176 7965 8437
2^6000000 206 8071 8617
2^7000000 233 8183 8802
2^8000000 269 8283 8980
2^9000000 293 8471 9321
2^10000000 341 8658 9582
2^20000000 373 9877 11961

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

161

2^30000000 920 12029 14665
2^40000000 1216 12999 16529
2^50000000 1501 13444 17828
2^60000000 1767 15356 20629
2^70000000 2070 17067 23250
2^80000000 2334 18092 25117
2^90000000 2615 19188 27066
2^100000000 2896 20389 29124
2^200000000 6386 32645 49549
2^300000000 8509 46475 73446
2^400000000 11405 61280 108268
2^500000000 14105 75534 142978
2^600000000 16887 84686 173497
2^700000000 19182 112309 220728
2^800000000 22480 126616 223406
2^900000000 25580 135190 282353
2^100000000 28237 138851 304233
2^1900000000 68365 139471 473860
2^2000000000 69044 265724 622062

Table 5.34 compares the ECC of sorting operating of the application in different

scenarios. The ECC represents the energy consumed by executing the sorting service

components of the application on mobile device and saving the resultant preferences file on

the local mobile device. The ECC of the application is evaluated without involving the

runtime profiling mechanism and by including the runtime profiling mechanism. The ECC

in DEAP attribute shows total ECC of DEAP client application in accessing the sort service

on DEAP server application and saving the resultant preferences file on the local mobile

device. The ECC of the application in traditional offloading without profiling attribute

shows the turnaround time of the sorting service operation by offloading the component

without using runtime profiling on the local mobile. The ECC in traditional offloading with

profiling attribute represents the total ECC of the application by including the profiling

mechanism on local mobile device.

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

162

Table 5. 34: Comparison of Energy Consumption Cost of Sorting Operation in Local and
Remote Execution

Computational
Length

ECC on
Local
SMD

(Without
Profiling)

ECC on
Local
SMD

(Including
Runtime
Profiling)

ECC in
POP of
DEAP

ECC in
Traditional
Offloading
(Without
Profiling)

ECC in
Traditional
Offloading
(Including
Profiling)

11000 21.1 21.6 7.4 49.8 50.3
12000 23.3 30.9 8.3 53.8 61.4
13000 25.1 35.4 9 56.5 66.8
14000 25.3 36.4 9.3 60.6 71.7
15000 25.3 43.8 9.3 61.9 80.4
16000 27.2 46.5 9.5 64.6 83.9
17000 28.9 53.8 10.7 70.7 95.6
18000 29.4 59.5 10.8 73.8 103.9
19000 30.4 64.6 11 76.7 110.9
20000 30.8 70.5 11.2 75.6 115.3
21000 33.1 76.4 12.3 79.7 123
22000 35.9 83.9 12.5 82.1 130.1
23000 36.5 90.8 12.7 87.7 142
24000 34.8 97.5 12.7 90.3 153
25000 37.1 104.7 14.1 95.4 163
26000 38.9 112.9 14.6 105.7 179.7
27000 40 120.2 14.8 109.1 189.3
28000 43.4 129.1 14.8 114.9 200.6
29000 45 137.8 14.9 120.5 213.3
30000 46 147.4 15.3 125.1 226.5
31000 47.6 154.8 15.3 131.6 238.8
32000 48.9 165.4 15.4 136.3 252.8
33000 52.8 175.4 17 150.3 272.9
34000 56.6 186.1 17 159.4 288.9
35000 56.9 196.3 17.3 165.3 304.7
36000 57.9 206.5 17.5 173.8 322.4
37000 59.7 217.9 17.6 183 341.2
38000 61.7 230 18.5 186.8 355.1
39000 65.3 241.1 21.8 195.9 371.7
40000 68.6 253.6 23 201.4 386.4

Table 5.35 compares the ECC of matrix multiplication operating of the application

in in local and remote execution. The ECC represents the energy consumed by executing

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

163

the matrix multiplication components of the application on mobile device and saving the

resultant preferences file on the local mobile device. The ECC of the application is

evaluated without involving the runtime profiling mechanism and by including the runtime

profiling mechanism. The ECC in DEAP attribute shows total ECC of DEAP client

application in accessing the matrix multiplication operating on DEAP server application

and saving the resultant preferences file on the local mobile device. The ECC of the

application in traditional offloading without profiling attribute shows the total ECC of the

matrix multiplication operating by offloading the component without using runtime

profiling on the local mobile. The ECC in traditional offloading with profiling attribute

represents the total ECC of the application by including the profiling mechanism on local

mobile device.

Table 5. 35: Comparison of Energy Consumption Cost of Matrix Operation in Local and
Remote Execution

Computational
Length

ECC on
Local SMD
(Without
Profiling)

ECC on
Local SMD
(Including
Runtime
Profiling)

ECC in
POP of
DEAP

ECC in
Traditional
Offloading
(Without
Profiling)

ECC in
Traditional

Computational
Offloading
(Including
Profiling)

160*160 12.9 16 10.8 39.9898 43.1
170*170 13.4 18.1 11.2 40.9927 45.7
180*180 14.7 18.9 11.9 43.998 48.2
190*190 15.2 19.3 12 44.5995 48.7
200*200 16.3 19.9 12.8 44.4027 48
210*210 17.2 21.4 13 46.5297 50.7
220*220 20 25.1 14.5 49.3349 54.4
230*230 21.5 26.5 15.5 52.1504 57.2
240*240 22 27.3 16.2 52.8534 58.2
250*250 24.1 29.8 17.3 58.0603 63.8
260*260 24.2 32.4 18.5 59.1631 67.4
270*270 27.4 35.9 19.3 64.5291 73
280*280 28.7 37 20.3 65.4867 73.8
290*290 34.5 42.8 23 71.8974 80.2
300*300 35.2 45.7 24.2 71.9067 82.4
310*310 39.7 50.2 25.6 76.7187 87.2

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

164

Computational
Length

ECC on
Local SMD
(Without
Profiling)

ECC on
Local SMD
(Including
Runtime
Profiling)

ECC in
POP of
DEAP

ECC in
Traditional
Offloading
(Without
Profiling)

ECC in
Traditional

Computational
Offloading
(Including
Profiling)

320*320 41.1 51.8 29.3 79.2983 90
330*330 44.4 55.3 31.5 82.7353 93.6
340*340 45.5 57.3 32.6 85.8619 97.7
350*350 51.4 63.4 35.7 93.1617 105.2
360*360 54.3 66.6 37 95.7239 108
370*370 63.2 78.5 41.6 105.5589 120.9
380*380 65.7 81.2 45 109.1943 124.7
390*390 67 82.6 47.3 109.8383 125.4
400*400 67.4 83.5 49.3 114.1728 130.3
410*410 69.1 83.3 53.7 115.1444 129.3
420*420 69.2 83.8 56.8 119.0066 133.6
430*430 69.8 87.8 57.1 121.4333 139.4
440*440 70 90.6 61.6 126.8541 147.5
450*450 71.5 91.8 65.3 131.6952 152

Table 5.36 compares the ECC of power compute operating of the application in

different scenarios. The ECC of the application is evaluated without involving the runtime

profiling mechanism and by including the runtime profiling mechanism. The ECC of the

application in SOP of DEAP client application attribute shows the total ECC of the power

compute operating by offloading the component at runtime.

Table 5. 36: Comparison of Energy Consumption Cost of Power Compute Operation in
Local and Execution

Compute
length

ECC on
Local SMD

ECC in the SOP of
Runtime Offloading
(Without Profiling)

ECC in the SOP of DEAP
client Application

(Including Profiling)
2^1000000 2.2 5.4 5.4
2^2000000 2.3 6.5 6.8
2^3000000 2.4 6.8 6.9
2^4000000 2.5 7.9 7.9
2^5000000 2.8 8.1 8.3
2^6000000 3.9 8.6 8.9
2^7000000 4.2 9.5 9.9
2^8000000 5.2 9.6 9.9

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

165

Compute
length

ECC on
Local SMD

ECC in the SOP of
Runtime Offloading
(Without Profiling)

ECC in the SOP of DEAP
client Application

(Including Profiling)
2^9000000 4.3 10 11.3
2^10000000 4.8 10.5 11.4
2^20000000 3.9 13.2 15.1
2^30000000 5.3 15.1 16.2
2^40000000 4.5 17.1 20
2^50000000 4.5 19.8 25.6
2^60000000 5.4 23.2 28.6
2^70000000 6.1 25.1 30.8
2^80000000 6.3 26.8 34.1
2^90000000 6.4 30.2 43.8
2^100000000 6.4 31.3 45.6
2^200000000 12.7 56.1 78.5
2^300000000 15.4 72.7 101.8
2^400000000 21.8 79.6 109.2
2^500000000 21.6 88.2 128
2^600000000 25.3 106.4 149.7
2^700000000 30.6 126.4 173.3
2^800000000 34.3 143.3 193.3
2^900000000 36.2 164.9 218.9
2^100000000 38.9 181.1 249.8
2^1900000000 61.7 343.6 447.6
2^2000000000 67 351 460.7

Table 5.37 compares the RAM utilization for sorting operating of the application in

different scenarios. The sorting length attribute shows the length of array which is being

sorted in each instance of application execution. The RAM in local application execution

attribute shows the amount of memory allocated to the sorting service component of the

application on local mobile device. The attribute of RAM in remote application execution

shows the amount of memory allocated to DEAP client application on local mobile device

for accessing the sorting service on the remote DEAP server application.

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

166

Table 5. 37: Comparison of RAM Allocation to Sorting Service in Local Execution and
POP of DEAP client Application

Length of
Sort List

RAM in Local
Execution

(MB)

RAM in DEAP
Client

Application
(MB)

11000 10.148 1.165
12000 10.154 1.232
13000 10.15 1.248
14000 10.209 1.442
15000 10.167 1.559
16000 10.173 1.566
17000 10.177 1.654
18000 10.179 1.925
19000 10.185 1.938
20000 10.193 1.938
21000 10.197 2.324
22000 10.2 2.355
23000 10.204 2.314
24000 10.213 2.376
25000 10.21 2.382
26000 10.215 2.426
27000 10.218 2.854
28000 10.221 2.883
29000 10.224 2.891
30000 10.227 2.898
31000 10.231 2.922
32000 10.236 3.186
33000 10.257 3.518
34000 10.242 3.531
35000 10.246 3.553
36000 10.248 3.559
37000 10.254 3.664
38000 10.258 3.68
39000 10.261 3.743
40000 10.265 5.344

Table 5.38 compares the RAM utilization for matrix multiplication operation of the

application in different scenarios. The matrix size attribute represents the size of 2-D array

which are used in the matrix multiplication operation. The RAM in local application

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

167

execution attribute shows the amount of memory allocated to the matrix multiplication

service component of the application on local mobile device. The attribute of RAM in

remote application execution shows the amount of memory allocated to DEAP client

application on local mobile device for accessing the sorting service on the remote DEAP

server application.

Table 5. 38: Comparison of RAM Allocation to Matrix Multiplication Service in Local
Execution and POP of DEAP client Application

Length of
Matrices

RAM in Local
Execution

RAM in DEAP
Client Application

160*160 2.78 1.695
170*170 3.17 1.865
180*180 3.58 2.094
190*190 3.99 2.36
200*200 4.43 2.438
210*210 4.88 2.887
220*220 5.36 3.119
230*230 5.87 3.524
240*240 6.39 3.576
250*250 6.94 3.752
260*260 7.51 4.193
270*270 8.1 4.448
280*280 8.71 4.842
290*290 9.35 5.616
300*300 10 5.888
310*310 10.6 6.335
320*320 11.4 6.498
330*330 12.1 7.171
340*340 12.9 7.344
350*350 13.7 7.696
360*360 14.5 8.311
370*370 15.3 8.319
380*380 16.2 9.141
390*390 17 9.754
400*400 17.9 9.88
410*410 18.9 11.476
420*420 19.2 11.912
430*430 20.8 12.263
440*440 21.8 12.549

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

168

Length of
Matrices

RAM in Local
Execution

RAM in DEAP
Client Application

450*450 22.8 13.056

The power compute component of the application is offloaded to remote server

node in the SOP of DEAP client application. Therefore, the execution takes place on the

remote virtual device instance and therefore the cost of RAM allocation is eliminated on the

local mobile device. Table 5.39 compares the CPU utilization in execution of mobile

application in different scenarios. The computational length attribute shows the range of

computational intensities for which the CPU utilization is evaluated. Percentage of CPU

utilization in local application execution, and percentage of CPU utilization for DEAP

client application in the SOP and POP of DEAP server application are presented. The

attribute of MIPS utilization shows CPU utilization in the units of Millions of Instruction

Per Second on the mobile device for executing the application on local mobile devise and

accessing the services of DEAP server application.

Table 5. 39: Comparison of CPU Utilization in Local Application Execution and Remote
DEAP Based Remote Application Execution

Computational
Service

Computational
Length

%CPU in
Local
Execution

Average
MIPS in
Local
Execution

%CPU in
DEAP
Based
Execution

Average
MIPS in
DEAP
Based
Execution

Sort 11000-40000 48.67 1163 25.5 609.2
Matrix
Multiplication

160*160-
4560*450

45.46 1086 35.4 845.7

Power
Compute

2^1000000-
2^2000000000

48.04 1148 3 71. 7

Table 5.40 compares the size of data transmitted over the wireless network medium

for sorting service in offloading computational load in the proposed DEAP framework and

traditional application offloading technique.

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

169

Table 5. 40: Comparison of the Data Transmission Using Traditional Offloading
Technique and DEAP Framework for Sorting Service

Length of
Sort List

Data Transmission
in Traditional
Offloading (KB)

Data Transmission in
DEAP Based
Offloading (KB)

11000 752.4 183
12000 820.4 200
13000 888.4 218
14000 950.4 235
15000 1026.4 253
16000 1086.4 270
17000 1162.4 288
18000 1230.4 306
19000 1298.4 323
20000 1360.4 341
21000 1420.4 358
22000 1480.4 376
23000 1572.4 393
24000 1632.4 411
25000 1694.4 429
26000 1754.4 446
27000 1846.4 464
28000 1914.4 481
29000 1982.4 499
30000 2042.4 516
31000 2092.4 534
32000 2153.84 552
33000 2215.28 568
34000 2276.72 587
35000 2399.6 604
36000 2399.6 622
37000 2461.04 639
38000 2522.48 657
39000 2583.92 675
40000 2645.36 692

Table 5.41 compares the size of data transmitted over the wireless network medium

for matrix multiplication service in offloading computational load in the proposed DEAP

framework and traditional application offloading technique.

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

170

Table 5. 41: Comparison of the Data Transmission Using Traditional Offloading
Technique and DEAP Framework for Matrix Multiplication Operation

Length of
Matrices

Data Transmission in
Traditional Offloading
(KB)

Data Transmission in
DEAP Framework
Based Offloading
(KB)

160*160 5739.44 463
170*170 6538.16 528
180*180 7377.84 595
190*190 8217.52 664
200*200 9118.64 639
210*210 10040.24 705
220*220 11023.28 774
230*230 12067.76 847
240*240 13132.72 923
250*250 14259.12 1002
260*260 15426.48 1084
270*270 16634.8 1169
280*280 17884.08 1258
290*290 19194.8 1350
300*300 20526 1445
310*310 21754.8 1543
320*320 23393.2 1646
330*330 24826.8 1754
340*340 26465.2 1865
350*350 28103.6 1979
360*360 29742 21629
370*370 31380.4 2219
380*380 33223.6 2343
390*390 34862 2471
400*400 36705.2 2602
410*410 38753.2 2737
420*420 39367.6 2874
430*430 42644.4 3015
440*440 44692.4 3160
450*450 46740.4 3308

Univ
ers

iti
Mala

ya

Chapter 5: Evaluation

171

5.7 Conclusion

The proposed framework is tested on the Android virtual device and benchmarking is

done by evaluating the prototype application on the real mobile device. Data are collected

by sampling the evaluation parameters with 30 different computational intensities of mobile

application. The point estimator of each experiment is determined by finding the sample

mean of the sample space of 30 values in each experiment. The value of sample mean is

signified by finding the interval estimate with 99% confidence for the sample space of 30

values in each experiment.

It is concluded that DEAP successfully leveraged the application processing services

of computational cloud for outsourcing the resource intensive logic of mobile applications.

DEAP framework successfully implemented the POP to access the services of DEAP server

application by employing SaaS model of computational cloud. However, to sustain the

feature of elasticity in mobile application, runtime computational offloading is successfully

implemented in the SOP of DEAP framework which utilizes the IaaS services of

computational cloud. The evaluation of the DEAP framework on the Android virtual

device indicates the viability of DEAP framework for leveraging the application processing

services of computational clouds to resources constraint SMDs. Benchmarking of the

prototype application with the diverse computational intensities of the application validates

performance gains of the DEAP framework for intensive applications in mobile cloud

computing. Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

172

CHAPTER 6

Results and Discussion

This chapter analyzes the experimental results presented in chapter 5 for signifying

the usefulness of the proposed DEAP framework. The chapter is organized into five

sections. Section 6.1 analyzes the results of application processing on local mobile device.

Section 6.2 investigates results of distributed application processing in the traditional

runtime computational offloading. Section 6.3 analyzes the results of application processing

in DEAP based distributed processing of mobile application. Section 6.4 compares results

of different experimental scenarios for local and distributed processing of mobile

application. Section 6.5 concludes the chapter with the significance of DEAP framework.

6.1 Analysis of Application Execution on Local Mobile Device

The prototype mobile application is tested on local mobile device to evaluate

resources utilization (CPU, RAM, and Battery power) and Turnaround Time of the mobile

application. Table 5.1 shows RAM allocation for sorting service in 30 different

experiments. The allocated RAM for sorting a list of 11000 values is determined as

10.148(+/-) 0.0061MB with 99% confidence interval in the sample space of 30 values,

which shows that the possible range of RAM allocation is between 10.1419 MB and

10.1541MB. The value of SD for RAM allocation shows the variation in the values of same

sample space for each experiment. For instance, the variation of RAM allocation varies

0.013 MB for sorting a list of 11000 values in 30 different experiments which constitutes

0.1281 percent of the average RAM allocation on SMD. Similarly, the allocated RAM for

sorting a list of 25000 values in the sample space of 30 values is determined as 10.21(+/-

)0.0098 MB with 99% confidence interval, which shows that the possible range of RAM

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

173

allocation is between 10.2095 MB and 10.2105 MB. The value of SD for RAM allocation

shows 0.001 MB variation for sorting a list of 25000 values in 30 different experiments

which constitutes 0.0098 percent of the average RAM allocation on SMD.

Figure 6.1 shows the allocation of RAM to the sorting component of mobile

application on local mobile device in 30 different experiments. The allocation of memory

for the sorting service varies according to the length of the list being sorted. For instance, in

sorting the list of 15000 values on the average 10.167 MB RAM is allocated, whereas in

sorting the list of 40000 values 10.265 MB RAM is allocated on the SMD. Sorting service

saves the preferences file of list being sorted on local SMD. For that reason, in saving the

preferences file on local device the allocation of heap size and allocated RAM increases

accordingly. The average RAM allocation for the sorting service on mobile device is

determine as 10.21 MB for sorting list of 11000-40000 with the RSD 0.040 percent.

Figure 6. 1: Allocation of RAM for Sorting Service on SMD

Table 5.2 summarized RAM allocation for matrix multiplication service in 30

different experiments. For instance, the allocated RAM for 2-D array lists of 160*160

values in the sample space of 30 values is determined 10.454(+/-).0014 with 99%

confidence interval, which shows that the possible range of RAM allocation is between

10.4526 MB and 10.4554 MB. The value of SD for RAM allocation shows the variation in

10.05
10.1

10.15
10.2

10.25
10.3

11
00

0
13

00
0

15
00

0
17

00
0

19
00

0
21

00
0

23
00

0
25

00
0

27
00

0
29

00
0

31
00

0
33

00
0

35
00

0
37

00
0

39
00

0R
A

M
 A

llo
ca

tio
n

(M
B

)

Length of Sorting List

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

174

the values of same sample space for each experiment. For instance, the variation of RAM

allocation varies 0.0029MB for multiplying list of 160*160 length in 30 different

experiments which constitutes 0.0277 percent of the average RAM allocation on SMD.

Similarly, the allocated RAM for sorting a list of 390*390 values in the sample space of 30

values is determined as 12.4562(+/-).0511 MB with 99% confidence interval, which shows

that the possible range of RAM allocation is between 12.4051 MB and 12.5073 MB. The

value of SD for RAM allocation shows 0.1085 MB variation for matrix size of 290*290 in

30 different experiments which constitute 0.8711 percent of the average RAM allocation on

SMD.

Figure 6.2 shows the allocation of RAM for matrix multiplication service of mobile

application on local mobile device in 30 different experiments. The allocation of memory

for the matrix multiplication service varies according to the length of the matrix being

multiplied. For instance, in multiplying the matrix of size 250*250 values, on the average

10.8317 MB, whereas in multiplying the matrix of size 450*450 values, 13.1003MB RAM

is allocated on the SMD. Matrix multiplication service saves the preferences file of the

resultant matrix on SMD. Therefore, in saving the preferences file on local device the

allocation the heap size and allocated RAM increases accordingly. The average RAM

allocation for the matrix multiplication service on mobile device is determine as 11.5034

MB for matrix size of 160*160 – 450*450 with the RSD 7.7 percent. Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

175

Figure 6. 2: RAM Allocation to Matrix Multiplication Service on Local SMD

Table 5.3 summarized the allocation of RAM for the execution of power compute

service component of the application on local mobile device. The computational intensity

of power compute service varies between 2^1000000 and 2^2000000000. The allocated

RAM for power compute service is determined as 10.11(+/-).00045 MB with 99%

confidence interval, which shows that the possibility of RAM allocation for power compute

service with different computational intensities is between 10.109 MB and 10.110 MB.

The value of SD for RAM allocation shows the variation in the values of sample space for

the experimentation of power compute service with 30 different computational intensities.

Hence, the variation of RAM allocation varies 0.0017 MB for power compute service in 30

different experiments which constitutes 0.016815035 percent of the average RAM

allocation on SMD.

Table 5.4 summarized the TT of the sorting service component of the application.

The TT of sorting service is evaluated with 30 different computational intensities of the

sorting operation (sort list size of 11000-40000). It is observed that the TT of the sorting

operation varies with the computational intensity of sorting operation. For instance, the TT

in sorting a list of 11000 values in the sample space of 30 values is determined as 4876(+/-

0

5

10

15

16
0*

16
0

18
0*

18
0

20
0*

20
0

22
0*

22
0

24
0*

24
0

26
0*

26
0

28
0*

28
0

30
0*

30
0

32
0*

32
0

34
0*

34
0

36
0*

36
0

38
0*

38
0

40
0*

40
0

42
0*

42
0

44
0*

44
0A

llo
ca

te
d

R
A

M
 (M

B
)

Length of Matrices

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

176

)333 ms with 99% confidence interval, which shows that the possible range of TT is

between 4543 ms and 5209 ms. The value of SD for TT shows the variation in the values

of same sample space for each experiment. For instance, the variation of TT is 706 ms for

sorting a list of 11000 values in 30 different experiments which constitutes 14 percent of

the average TT on SMD. Similarly, the TT for sorting a list of 25000 values in the sample

space of 30 values is determined as 16950(+/-)431 ms with 99% confidence interval, which

shows that the possible range of TT is between 16519 ms and 17381 ms. The value of SD

for TT shows 915 ms variation for sorting a list of 25000 values in 30 different experiments

which constitutes 5 percent of the average TT value.

 Figure 6.3 shows the increase in TT of the sorting operation on local mobile device

in 30 different experiments. The TT for the sorting service varies according to the length of

the list being sorted. The value of TT includes the processing time for performing sorting

operation and the time taken in saving the resultant preferences file to the data file of the

local mobile device. It is observed that by increasing the length of sorting list, the

processing time of performing sorting operation and the time taken in saving preferences

file increases accordingly. For instance, sorting the list of 15000 values takes on the

average 7406 ms, whereas sorting the list of 40000 values takes 31207 ms on the SMD.

Experimental results indicate that the TT in sorting the list of 40000 values increases 84.4

percent as compared to sorting the list of 11000 values. However, the average TT for the

sorting service on mobile device is determine as 17426 ms for sorting list of 11000-40000

with the 45.2 percent RSD.

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

177

Figure 6. 3: Turnaround Time of Sorting Service on Local SMD

Table 5.5 summarized the TT of the matrix multiplication service component of the

application on local mobile device. The TT of matrix multiplication service is evaluated

with 30 different computational intensities of the matrix multiplication operation (matrix

size 160*160-450*450). It is observed that the TT of the matrix multiplication operation

varies with the computational intensity of matrix multiplication operation. For instance, the

TT in multiplying 2-D arrays of 160*160 size in the sample space of 30 values is

determined as 3653(+/-)90 ms with 99% confidence interval, which shows that the possible

range of TT is between 3563 ms and 3563 ms. The value of SD for TT shows the variation

in the values of same sample space for each experiment. For instance, the variation of TT is

191 ms for sorting a list of 11000 values in 30 different experiments, which constitutes 5

percent of the average TT on SMD. Similarly, the TT in multiplying 2-D arrays of

310*310 values in the sample space of 30 values is determined as 21185(+/-)1813 ms with

99% confidence interval, which shows that the possible range of TT is between 19372 ms

and 19372 ms. The value of SD for TT shows 3849 ms variation for multiplying 2-D arrays

of size 310*310, in 30 different experiments which constitutes 18 percent of the average TT

0

5000

10000

15000

20000

25000

30000

35000

11
00

0

13
00

0

15
00

0

17
00

0

19
00

0

21
00

0

23
00

0

25
00

0

27
00

0

29
00

0

31
00

0

33
00

0

35
00

0

37
00

0

39
00

0

T
ur

na
ro

un
d

T
im

e
(m

s)

Length of Sorting List

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

178

value. Figure 6.4 shows the increase in TT of the matrix multiplication operation on local

mobile device in 30 different experiments. The TT for the matrix multiplication varies

according to the length of the 2-D arrays which are being multiplied. The value of TT

includes the processing time for performing matrix multiplication operation and the time

taken in saving the resultant preferences file to the data file of the local mobile device. It is

observed that by increasing the size of 2-D arrays, the processing time of performing matrix

multiplication operation and the time taken in saving preferences file increases accordingly.

For instance, multiplying 2-D arrays of 200*200 values takes on the average 6321

ms, whereas multiplying 2-D arrays of 450*450 values takes 99286 ms on the SMD.

Experimental results indicate that the TT in multiplying the 2-D arrays of 450*450

increases 96.3 percent as compared to multiplying the 2-D arrays of 160*160 values. The

average TT for the Matrix multiplication service on mobile device is determine as 31190

ms for multiplying 2-D arrays of 160*160-450*450 size with the RSD 12 percent.

Figure 6. 4: Turnaround Time of Matrix Multiplication Operation on Local SMD

Table 5.6 summarized the TT of the power compute service component of the

application on local mobile device. The TT of power compute service is evaluated with 30

0

20000

40000

60000

80000

100000

T
ur

na
ro

un
d

T
im

e
(m

s)

Length of Matrices

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

179

different computational intensities of the power computing operation (2^1000000-

2^2000000000). The TT in computing power of 2^1000000 in the sample space of 30

values is determined as 51(+/-)5 ms with 99% confidence interval, which shows that the

possible range of TT is between 46 ms and 51 ms. The variation of TT is 10 ms for

computing the power of 2^1000000 in 30 different experiments which constitutes 19.6

percent of the average TT on SMD. Similarly, the TT in power computing operation of

2^10000000 computational length is determined as 373(+/-)18 ms with 99% confidence

interval in the sample space of 30 values, which shows that the possible range of TT is

between 391 ms and 355 ms. The value of SD for TT shows 38 ms variation for computing

2^10000000, in 30 different experiments which constitutes 10.2 percent of the average TT

value.

 Figure 6.5 shows the increase in the TT of the power compute operation on local

mobile device in 30 different experiments. The TT for the power compute varies according

to the computational length of the Power compute service. The value of TT includes the

processing time for performing matrix multiplication operation. It is observed that by

increasing the computational length of compute service, the processing time of performing

power compute operation increases accordingly. For instance, computing 2^10000000 takes

341 ms, whereas computing 2^2000000000 takes 69044 ms on the SMD. Experimental

results indicate that the TT in computing 2^2000000000, increases 99.9 percent as

compared to computing 2^1000000. However, the average TT for the Power compute

service on mobile device is determine as 10259 ms for computational length of 2^100000-

2^2000000000. It is observed that the TT of the power computing operation varies

according to the computational length of Power compute service (values of base and

exponent).

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

180

Figure 6. 5: Turnaround Time of Power Compute Service of the Application on Local
SMD

Table 5.7 presented the ECC in processing sorting service component of the

application on local mobile device. The ECC of sorting service is evaluated with 30

different computational intensities of the sorting operation (sort list size of 11000-40000). It

is observed that the ECC of the sorting operation varies with the computational intensity of

sorting operation. For instance, the ECC for sorting a list of 11000 values is determined as

16.2(+/-)1.3 J with 99% confidence interval in the sample space of 30 values, which shows

that the possible range of ECC is between 14.9 J and 17.5 J.

The value of SD for ECC shows the variation in the values of same sample space

for each experiment. For instance, the variation of ECC is 2.8 J for sorting a list of 11000

values in 30 different experiments which constitutes 17.3 percent of the average ECC on

SMD. Similarly, the ECC for sorting a list of 25000 values in the sample space of 30

values is determined as 30.4(+/-)1.6 J with 99% confidence interval, which shows that the

possible range of ECC is between 28.8 J and 32 J. The value of SD for ECC shows 3.3 J

variation for sorting a list of 25000 values in 30 different experiments which constitutes 3.3

percent of the average ECC value.

0
10000
20000
30000
40000
50000
60000
70000

T
ur

na
ro

un
d

T
im

e
(m

s)

Computational Length of Power Compute Service

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

181

 Figure 6.6 shows the increase in ECC of the sorting operation on local mobile

device in 30 different experiments. The ECC for the sorting service varies according to the

length of the list being sorted.

The value of ECC includes the energy consumed in performing sorting operation on

SMD and the energy consumed in saving the resultant preferences file to the data file of the

local mobile device. It is observed that by increasing the length of sorting list, the energy

consumption cost of performing sorting operation and energy consumption cost in saving

preferences file increases accordingly. For instance, sorting the list of 15000 values

consumes on the average 18.6 J, whereas sorting the list of 40000 values consumes 55.1 J

on the SMD. Experimental results indicate that the ECC in sorting the list of 40000 values

increases 70.5 percent as compared to sorting the list of 11000 values. However, the

average ECC for the sorting service on mobile device is determine as 33.4 J for sorting list

of 11000-40000 with the 38 percent RSD.

Figure 6. 6: Energy Consumption Cost of Sorting Service on Local SMD

Table 5.8 presented the ECC in processing matrix multiplication service component

of the application on local mobile device. The ECC of matrix multiplication is evaluated

with 30 different computational intensities of the matrix multiplication (2-D array size

0

10

20

30

40

50

60

E
ne

rg
y

C
on

su
m

pt
io

n
C

os
t

(J
)

Length of Sorting List

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

182

160*160*450-450). It is observed that the ECC of the matrix multiplication operation

varies with the computational intensity of 2-D arrays. For instance, the ECC for multiplying

2-D arrays of size 160*160 values is determined as 12.9(+/-)1.3 J with 99% confidence

interval in the sample space of 30 values, which shows that the possible range of ECC is

between 14.4 J and 20 J. The value of SD for ECC shows the variation in the values of

same sample space for each experiment. For instance, the variation of ECC is 2.8 J for

multiplying 2-D arrays of size 160*160 in 30 different experiments, which constitutes 21.7

J percent of the average ECC on SMD. Similarly, the ECC for 2-D arrays of size310*310

is determined as 39.7(+/-)3.3 J with 99% confidence interval in the sample space of 30

values, which shows that the possible range of ECC is between 36.4 J and 43 J. The value

of SD for ECC shows 7 J variation in multiplying 2-D arrays of size 310*310 in 30

different experiments which constitutes 17.6 percent of the average ECC value.

 Figure 6.7 shows the increase in ECC of the matrix multiplication operation on

local mobile device in 30 different experiments. The ECC for the matrix multiplication

varies according to the computational length of the matrix multiplication service. The value

of ECC includes the energy consumed in performing matrix multiplication on SMD and the

energy consumed in saving the resultant preferences file to the data file of the local mobile

device. It is observed that by increasing the computational length, the energy consumption

cost of performing matrix multiplication operation and energy consumption cost in saving

preferences file increases accordingly. For instance, matrix multiplication of 200*200 2-D

array length consumes on the average 16.3 J, whereas matrix multiplication of 200*200

matrices length consumes 71.5 J on the SMD. Experimental results indicate that the ECC in

matrix multiplication of 450*450 matrices length increases 81.95 percent as compared to

matrix multiplication of 160*160 matrices length. The average ECC for the matrix

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

183

multiplication service on mobile device is determine as 44.56 J for the computational length

160*160-450*450, with 52.6 percent RSD.

Figure 6. 7: Energy Consumption Cost of Matrix Multiplication Service on SMD

Table 5.9 presented the ECC in processing power compute service component of

the application on local mobile device. The ECC of power computing is evaluated with 30

different computational intensities. It is observed that the ECC of the power compute

operation varies with the computational intensities of power compute service. For instance,

the ECC for computing 2^1000000 is determined as 2.2(+/-)0.3 J with 99% confidence

interval in the sample space of 30 values, which shows that the possible range of ECC is

between 1.9 J and 2.5 J. The value of SD for ECC shows the variation in the values of same

sample space for each experiment. For instance, the variation of ECC is 0.7 J for computing

2^1000000 in 30 different experiments, which constitutes 31.8 J percent of the average

ECC on SMD. Similarly, the ECC of computing 2^10000000 is determined as 4.8(+/-)0.4 J

with 99% confidence interval in the sample space of 30 values, which shows that the

possible range of ECC is between 4.4 J and 5.2 J. The value of SD for ECC shows 0.8 J

0

20

40

60

80

16
0*

16
0

18
0*

18
0

20
0*

20
0

22
0*

22
0

24
0*

24
0

26
0*

26
0

28
0*

28
0

30
0*

30
0

32
0*

32
0

34
0*

34
0

36
0*

36
0

38
0*

38
0

40
0*

40
0

42
0*

42
0

44
0*

44
0

E
ne

rg
y

C
on

su
m

pt
io

n
C

os
t (

J)

Computational Length of Matrix Multiplication Service

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

184

variation in computing 2^10000000 in 30 different experiments which constitutes 16.7

percent of the average ECC value.

 Figure 6.8 shows the increase in ECC of the power compute operation on local

mobile device in 30 different experiments. The ECC for the power computing varies

according to the computational length of the power compute service. The value of ECC

includes the energy consumed in performing matrix multiplication on SMD. It is observed

that by increasing the computational length, the energy consumption cost of performing

power compute operation increases accordingly. For instance, computing 2^6000000

consumes on the average 3.9 J, whereas computing 2^2000000000 consumes 67 J energy

on the SMD. Experimental results indicate that the ECC for computing 2^2000000000

increases 96.7 percent as compared to computing 2^1000000. The average ECC for the

power compute service on mobile device is determine as 14.96 J for the computational

length 2^1000000-2^2000000000 of the power compute service on SMD.

Figure 6. 8: Energy Consumption Cost of Power Compute Service on SMD

Table 5.10 summarized the average CPU utilization on local mobile device for

different components of the mobile application. The CPU utilization of the mobile

application depends on the computational intensities of mobile application. It is observed

0

20

40

60

80

2^
10

00
00

0
2^

30
00

00
0

2^
50

00
00

0
2^

70
00

00
0

2^
90

00
00

0
2^

20
00

00
00

2^
40

00
00

00
2^

60
00

00
00

2^
80

00
00

00
2^

10
00

00
00

0
2^

30
00

00
00

0
2^

50
00

00
00

0
2^

70
00

00
00

0
2^

90
00

00
00

0
2^

19
00

00
00

00

E
ne

rg
y

C
on

su
m

pt
io

n
C

os
t (

J)

Computational Length of Power Compute Service Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

185

that the execution of the intensive components utilizes the maximum possible CPU on the

SMD. Figure 6.9 shows the average CPU utilization for each of the three components of

the mobile application on SMD. The CPU utilization for sorting service is evaluated with

30 different computational intensities. Sorting operation utilizes 48.67(+/-)0.96 percent

(1163(+/-)22.9 MIPS) of the CPU, which shows the range of CPU utilization for the sorting

service between 47.7 percent (1139.8 MIPS) and 49.63 percent (1185.7 MIPS) on the local

SMD. CPU utilization for the sorting service on the SMD varies 2.62 percent (62.59 MIPS)

of the average CPU utilization for sorting service on SMD.

Matrix multiplication operation utilizes 45.46(+/-)4.01 percent (1086(+/-)95.8

MIPS), which shows that the possible range of CPU utilization for matrix multiplication

operation on SMD is between 41.45 percent (990.27MIPS) and 49.47 percent (1181.9

MIPS). CPU utilization for the matrix multiplication service on the SMD varies 2.62

percent (203.3 MIPS) of the average CPU utilization for matrix multiplication operation on

the local SMD.

Power compute service utilizes 48.04(+/-)1.38 percent (1148 (+/-) 32.9MIPS),

which shows that the possible range of CPU utilization for power computing operation on

SMD is between 46.7 percent (1114.7 MIPS) and 49.42 percent (1180.7 MIPS). CPU

utilization for the power compute service on the SMD varies 4.13 percent (98.6 MIPS) of

the average CPU utilization for power compute operation on the local SMD. Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

186

Figure 6. 9: Average CPU Utilization on SMD by the Components of Prototype
Application

6.2 Analysis of Traditional Computational Offloading for MCC

Table 5.4 summarized the TT of the sorting service component of the application in

traditional runtime computational offloading. Traditional computational offloading involves

migration of the binary file of the mobile application and the corresponding data files at

runtime.

The total TT of the component offloaded at runtime includes: 1) the time taken in

saving the data states of the running instance of the component of the mobile application

which is being offloaded, 2) time taken in transferring application binary code to the

remote server, 3) time taken in downloading the delegated application binary code to the

remote virtual machine on the cloud server node, 4) time taken in uploading the preferences

(data states file) of the mobile application to remote server node, 5) time required for

resuming the running state of the mobile application on the remote server node, 6) time

taken in processing the application on remote machine, and 7) time taken in returning result

file to the mobile device. It is observed that the TT of the components offloaded at runtime

depends on two parameters. 1) The processing time of the offloaded component, this

depends on the computational length of the offloaded component. 2) The data transmission

1000

1050

1100

1150

1200

Sort Service Matrix
Multiplication

Service

Power
Compute
Service

C
PU

 U
til

iz
at

io
n

on
 S

M
D

(M

IP
S)

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

187

time between the local and remote machine, which depends on the size of data transmission

between local mobile device and remote machine. Therefore, the TT value is the total time

taken in offloaded processing of the component of mobile application, which is the sum of

the application processing time on the remote virtual device and timing cost of runtime

component offloading (equation 3.3).

The TT in offloaded processing of the sorting service component of the mobile

application is evaluated with 30 different computational intensities of the sorting operation

(sort list size of 11000-40000). For instance, the TT in sorting list of 11000 values is

determined as 24331(+/-) 1478 ms with 99% confidence interval in the sample space of 30

values, which shows that the possible range of total TT is between 22853 ms and 25809

ms. The value of SD for TT shows the variation in the values of same sample space for

each experiment. For instance, the variation of total TT is 3138 ms for sorting a list of

11000 values in 30 different experiments which constitutes 12.9 percent of the average TT

on SMD. Similarly, the TT for sorting a list of 25000 values is determined as 76615(+/-)

1636 ms with 99% confidence interval in the sample space of 30 values, which shows that

the possible range of total TT is between 74979 ms and 78251 ms. The value of SD for

total TT shows 3473 ms variation for sorting a list of 25000 values in 30 different

experiments which constitutes 4.5 percent of the total TT value.

Figure 6.10 shows the increase in TT of the sorting operation which is offloaded at

runtime in 30 different experiments. For instance, sorting the list of 15000 values takes the

TT 37010 ms, whereas sorting the list of 40000 values takes 166457 ms.

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

188

Figure 6. 10: Total Turnaround Time of Sorting Service in Traditional Computational
Offloading

The total TT of offloading the matrix multiplication service component of the

mobile application is evaluated with 30 different computational intensities (160*160-

450*450). For instance, the total TT in offloading matrix multiplication service with

computational length of matrices length 160*160 is determined as 16431(+/-)385 ms with

99% confidence interval in the sample space of 30 values, which shows that the possible

range of TT is between 16046 ms and 16816 ms.

The value of SD for total TT shows the variation in the values of same sample space

for each experiment. For instance, the variation of total TT is 818 ms in offloaded

processing of matrix multiplication with the matrices length 160*160, in 30 different

experiments, which constitutes 5 percent of the average total TT in offloaded processing.

Similarly, the total TT for matrix multiplication with the matrices length of 310*310 values

is determined as 68692(+/-)4058 ms with 99% confidence interval in the sample space of

30 values, which shows that the possible range of TT is between 64634 ms and 72750 ms.

The value of SD for total TT shows 8615 ms variation for the multiplication of matrices

0

50000

100000

150000

200000

11
00

0
13

00
0

15
00

0
17

00
0

19
00

0
21

00
0

23
00

0
25

00
0

27
00

0
29

00
0

31
00

0
33

00
0

35
00

0
37

00
0

39
00

0

T
ur

na
ro

un
d

T
im

e
(m

s)

Length of Sorting List

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

189

length 310*310 in 30 different experiments which constitutes 12.5 percent of the average

TT value.

Figure 6.11 shows the increase in TT of the matrix multiplication which is

offloaded at runtime in 30 different experiments. The total TT is 18296 ms in offloaded

processing of matrix multiplication operation with computational length of 1740*170

(matrices length), whereas matrix multiplication operation with the computational length of

450*450 matrices length is 37971 ms in traditional runtime offloaded processing. It

indicates that the turnaround time of the application is increased in offloading highly

intensive components of the mobile application at runtime.

Figure 6. 11: Total Turnaround Time of Matrix Multiplication Service in Traditional
Offloading

The ECC of the component offloaded at runtime includes: the energy consumed in

saving the data states of the running instance of the component of the mobile application

which is being offloaded, energy consumed in transferring application binary code over the

wireless network medium to the remote server, energy consumed in uploading the

preferences (data state file) of the mobile application to remote server node, energy

consumed in processing the application on remote machine and energy consumed in

0

100000

200000

300000

16
0*

16
0

18
0*

18
0

20
0*

20
0

22
0*

22
0

24
0*

24
0

26
0*

26
0

28
0*

28
0

30
0*

30
0

32
0*

32
0

34
0*

34
0

36
0*

36
0

38
0*

38
0

40
0*

40
0

42
0*

42
0

44
0*

44
0T
ur

na
ro

un
d

T
im

e
(m

s)

Length of Matrices

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

190

returning result file over the wireless network medium to the mobile device. Hence, total

ECC is the sum of energy consumed in remote application processing and energy

consumption cost of runtime component offloading (equation 3.1).

Table 5.13 summarized the total energy consumed in offloaded processing of the

sorting service component of the application with 30 different computational intensities.

The total ECC is evaluated with 30 different computational intensities of the sorting

operation (sort list size of 11000-40000). The total ECC in sorting list of 11000 values is

determined as 49.7749(+/-)3.5 J with 99% confidence interval in the sample space of 30

values, which shows that the possible range of total ECC is between 46.3 J and 53.2 J. The

value of SD for total ECC shows the variation in the values of same sample space for each

experiment in offloaded processing. For instance, the variation of total ECC is 7.3245 J for

sorting a list of 11000 values in 30 different experiments which constitutes 14.7 percent of

the average ECC in offloaded processing of the sorting service component. Similarly, the

total ECC for sorting a list of 25000 values is determined as 95.4014(+/-)4 J with 99%

confidence interval in the sample space of 30 values, which shows that the possible range

of total ECC is between 91.4 J and 99.4 J. The value of SD for total ECC shows 8.514 J

variation for sorting a list of 25000 values in 30 different experiments which constitutes 8.9

percent of the total ECC value.

 Figure 6.11 shows the increase in total ECC in the offloaded processing of the

sorting service component of the application. For instance, in offloaded processing of

sorting service with list size of 15000 values 61.9 J energy is consumed, whereas in

offloaded processing of sorting service with list size of 40000 values 201.1 J energy is

consumed. It shows that the total ECC is increased 75 percent for offloaded processing

sorting service with sorting length of 40000 values as compared to sorting length of 11000

values.

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

191

Figure 6. 12: Total Energy Consumption in Offloaded Processing of Sorting Service

Table 5.14 summarized the total energy consumed in offloaded processing of the

matrix multiplication service component of the application with 30 different computational

intensities. The total ECC is evaluated with 30 different computational intensities of the

matrix multiplication (matrix size of 160*160-450*450). The total ECC in matrix

multiplication of 160*160 values is determined as 39.9898(+/-)5.54 J with 99% confidence

interval in the sample space of 30 values, which shows that the possible range of total ECC

is 34.5 J and 45.5 J. The value of SD for total ECC shows the variation in the values of

same sample space for each experiment in offloaded processing. For instance, the variation

of total ECC is 11.8 J for multiplying 2matrices of length 160*160 in 30 different

experiments which constitutes 29.4 percent of the average ECC in offloaded processing of

the matrix multiplication service component.

 Similarly, the total ECC in matrix multiplication of 450*450 values is determined

as 131.6952(+/-)7.8 J with 99% confidence interval in the sample space of 30 values, which

shows that the possible range of total ECC is 123.8 J and 139.5 J, the variation of total

ECC is 16.6 J for multiplying matrixes of length 450*450 in 30 different experiments

0

50

100

150

200

250

E
ne

rg
y

C
on

su
m

tio
n

C
os

t
(J

)

Length of the Sorting List

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

192

which constitutes 12.6 percent of the average ECC in offloaded processing of the matrix

multiplication service component.

Figure 6.12 shows the total ECC in the offloaded processing of the matrix

multiplication service component of the application. It indicates that total ECC in offloaded

processing of the service increases according to the computational length of the matrix

service component. For instance, 46.5 J energy is consumed in the offloaded processing of

matrix multiplication service with the matrices length 210*210, whereas 119 J energy is

consumed in offloaded processing of matrix multiplication service with the matrices length

420*420. It shows that the total ECC is increased 69.6 percent for offloaded processing

matrix multiplication service with multiplication length of 450*450 values as compared to

multiplication length of 160*160 values.

Figure 6. 13: Energy Consumption Cost of Matrix Multiplication Service in Offloaded
Processing

In the traditional computational offloading techniques, the binary file of application

and the data states are transmitted over the wireless network medium. Hence, the size of

data transmission over the wireless network medium is determined by measuring the size of

application binary file size, application preferences files size uploaded to the remote virtual

0

20

40

60

80

100

120

140

16
0*

16
0

18
0*

18
0

20
0*

20
0

22
0*

22
0

24
0*

24
0

26
0*

26
0

28
0*

28
0

30
0*

30
0

32
0*

32
0

34
0*

34
0

36
0*

36
0

38
0*

38
0

40
0*

40
0

42
0*

42
0

44
0*

44
0E

ne
rg

y
C

on
su

m
tio

n
C

os
t (

J)

Computational Length of Matix Multiplication Service Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

193

machine and the application preferences file size returned to the mobile device after the

completion of execution on the remote server node.

Figure 6.14 shows the increase in data transmission over the wireless network

medium in offloading sort service with respect to the varying size of sorting list in 30

different experiments. It is observed that the size of application binary file remains constant

in all instances of offloading sorting service application at runtime. However, the size of

data file varies accordingly the size of list being sorted. For instance, linear list of 11000

values is offloaded in data file of 354 KB, whereas the list of size 40000 values is offloaded

in data file size of 1300.48 KB (as shown in Table 5.15). Hence, the data file size is

increased in offloading sort service component of the application with larger list size. It is

observed that the average goodput of network is 841.7(+/-) 18.49 Kbps with 99.9%

confidence in the sample space of 30 values for offloading sorting service at runtime.

Figure 6. 14: Size of Data Transmission in Offloading Sorting Service at Runtime

Figure 6.14 shows the increase in data transmission over the wireless network

medium in offloading matrix multiplication service with respect to the varying size of

matrix multiplication matrices in 30 different experiments. It is observed that the size of

application binary file remains constant in all instances of offloading matrix multiplication

0

1000

2000

3000

11
00

0
13

00
0

15
00

0
17

00
0

19
00

0
21

00
0

23
00

0
25

00
0

27
00

0
29

00
0

31
00

0
33

00
0

35
00

0
37

00
0

39
00

0

Si
ze

 o
f D

at
a

T
ra

ns
m

is
si

on

(K
bp

s)

Sorting List Size Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

194

service at runtime. However, the size of data file varies according to the length of matrices

being multiplied. For instance, matrices length 160*160 are offloaded in data file of

2846.72 KB, whereas the matrices length 450*450 are offloaded in data file size of 23347.2

KB. Hence, the data file size is increased in offloading matrix multiplication service

component of the application with larger matrix size (as shown in Table 5.16). It is

observed that the average goodput of network is 10295.9(+/-) 557.2 Kbps with 99.9%

confidence in the sample space of 30 values for offloading matrix multiplication service at

runtime.

Figure 6. 15: Size of Data Transmission in Offloading Matrix Multiplication Service at
Runtime

6.3 Analysis of DEAP Based Computational Offloading for MCC

This section discusses results of the application execution in the Primary Operating

Procedure (POP) and Secondary Operating Procedure (SOP) procedures of DEAP

framework. Table 5.17 summarized the TT of performing sorting operation in the POP of

DEAP Client application. The TT of the sorting operation includes the execution time of

performing the sorting operation on the DEAP server application and the time taken in

saving the resultant preferences (data file) on the local mobile device.

0

10000

20000

30000

40000

50000

16
0*

16
0

18
0*

18
0

20
0*

20
0

22
0*

22
0

24
0*

24
0

26
0*

26
0

28
0*

28
0

30
0*

30
0

32
0*

32
0

34
0*

34
0

36
0*

36
0

38
0*

38
0

40
0*

40
0

42
0*

42
0

44
0*

44
0Si

ze
 o

f D
at

a
T

ra
nm

is
si

on

(K
bp

s)

Length of Matrices

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

195

The TT of sorting service is evaluated with 30 different computational intensities of

the sorting operation (sort list size of 11000-40000). It is observed that the TT of the sorting

operation varies with the computational intensity of sorting operation. For instance, the TT

in sorting a list of 11000 values is determined as 2559(+/-)210 ms with 99% confidence

interval in the sample space of 30 values, which shows that the possible range of TT is

between 2349 ms and 2769 ms. The value of SD for TT shows the variation in the values

of same sample space for each experiment. For instance, the variation of TT is 446 ms for

sorting a list of 11000 values in 30 different experiments which constitutes 17.4 percent of

the average TT. Similarly, the TT for sorting list of 25000 values in the sample space of 30

values is determined as 6770(+/-)157 ms with 99% confidence interval, which shows that

the possible range of TT is between 6613 ms and 6927 ms. The value of SD for TT shows

334 ms variation for sorting a list of 25000 values in 30 different experiments which

constitutes 4.9 percent of the average TT value.

 Figure 6.16 shows the increase in TT of the sorting operation in the POP of DEAP

client application in 30 different experiments. The TT for the sorting service varies

according to the length of the list being sorted. The value of TT includes the processing

time for performing sorting operation and the time taken in saving the resultant preferences

file on the local mobile device. It is observed that by increasing the length of sorting list,

the processing time of performing sorting operation on DEAP server and the time taken in

saving preferences file increases accordingly. For instance, sorting the list of 15000 values

takes on the average 3494 ms, whereas sorting the list of 40000 values takes 13416 ms in

the POP of DEAP client application. Experimental results indicate that the TT in sorting the

list of 40000 values increases 80.92 percent as compared to sorting the list of 11000 values

in the POP of DEAP client application. However, the average TT for the sorting service in

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

196

the POP of DEAP client is determined as 7224 ms for sorting list of 11000-40000 with the

45.8 percent RSD.

Figure 6. 16: Total Turnaround Time of Sorting Service in the POP of DEAP Client
Application

Table 5.18 summarized the total TT of performing matrix multiplication operation

in the POP of DEAP client application. The TT of the matrix multiplication includes the

turnaround time of performing the sorting operation on the DEAP server application and

the time taken in saving the resultant preferences (data file) on the local mobile device.

The TT of matrix multiplication service is evaluated with 30 different computational

intensities of the multiplication operation (matrices length 160*160-450*450).

It is found that the TT of the matrix multiplication service varies with the

computational intensity of multiplying matrices length. For instance, the TT in multiplying

matrices of length 160*160 is determined as 4241(+/-)98 ms with 99% confidence interval

in the sample space of 30 values, which shows that the possible range of TT is between

4143 ms and 4339 ms. The value of SD for TT shows the variation in the values of same

sample space for each experiment. For instance, the variation of TT is 207 ms for

multiplying matrix of size 160*160 in 30 different experiments which constitutes 4.9

percent of the average TT. Similarly, the TT in multiplying matrices of length 450*450 is

0

5000

10000

15000

11
00

0
13

00
0

15
00

0
17

00
0

19
00

0
21

00
0

23
00

0
25

00
0

27
00

0
29

00
0

31
00

0
33

00
0

35
00

0
37

00
0

39
00

0T
ur

na
ro

ud
 T

im
e

(m
s)

Computational Length of Sorting Operation

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

197

determined as 97887 ms with 99% confidence interval in the sample space of 30 values,

which shows that the possible range of TT is between 92705 ms and 103069 ms. The

variation of TT in the sample space of 30 values is 11002 ms for multiplying matrices of

length 450*450 which constitutes 11.2 percent of the average TT.

 Figure 6.17 shows the increase in TT of the matrix multiplication operation in the

POP of DEAP Client application in 30 different experiments. The TT for the matrix

multiplication service varies according to the computational length of matrix multiplication

operation. The value of TT includes the processing time for performing matrix

multiplication operation and the time taken in saving the resultant preferences file on the

local mobile device.

Figure 6. 17: Turnaround Time of Matrix Multiplication Service in POP of DEAP Client
Application

It is observed that by increasing the length of the matrix, the processing time of performing

multiplication operation on DEAP Server and the time taken in saving preferences file

increases accordingly. For instance, the total TT for multiplying matrices of size 200*200

8560 ms, whereas the total TT for multiplying matrices of size 450*450 is 97887 ms in the

POP of DEAP Client application. Experimental results indicate that the TT in multiplying

matrices of length 450*450 increases 95.6 percent as compared to multiplying matrices of

0

20000

40000

60000

80000

100000

16
0*

16
0

18
0*

18
0

20
0*

20
0

22
0*

22
0

24
0*

24
0

26
0*

26
0

28
0*

28
0

30
0*

30
0

32
0*

32
0

34
0*

34
0

36
0*

36
0

38
0*

38
0

40
0*

40
0

42
0*

42
0

44
0*

44
0

T
ur

na
ro

un
d

T
im

e
(m

s)

Length of Matrices

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

198

length 160*160 in the POP of DEAP client application. However, the average TT for the

matrix multiplication operation in the POP of DEAP client is determined as 31445 ms for

matrices of length 160*160-450*450 with the 80.8 percent RSD.

The total energy consumption cost (ECC) of the sorting operation in the POP of

DEAP client application includes the energy consumed in accessing the sorting operation

service of the DEAP server application, energy consumed in receiving the resultant sorted

list from the remote server and energy consumed in saving the resultant preferences (data

file) on the local mobile device.

Table 5.19 presented the total ECC of accessing sorting operation in POP of the

DEAP client application. The ECC of sorting service is evaluated with 30 different

computational intensities of the sorting operation (sort list size of 11000-40000). It is

observed that the ECC of accessing the sorting service varies with the computational

intensity of sorting list. For instance, the ECC in sorting a list of 11000 values is

determined as 7.4(+/-).6 J with 99% confidence interval in the sample space of 30 values,

which shows that the possible range of ECC is between 6.8 J and 8 J. The value of SD for

ECC shows the variation in the values of same sample space for each experiment. For

instance, the variation of ECC in 30 different experiments is 1.3 J for sorting a list of 11000

values which constitutes 17.6 percent of the average ECC. Similarly, the ECC in sorting a

list of 40000 values is determined as 23(+/-)2.6 J with 99% confidence interval in the

sample space of 30 values, which shows that the possible range of ECC is between 20.4 J

and 25.6 J. The variation of ECC in 30 different experiments is 5.6 J for sorting the list of

40000 values which constitutes 24.3 percent of the average ECC.

 Figure 6.18 shows the increase in ECC of the sorting operation with respect to the

length of sorting list in the POP of DEAP client application in 30 different experiments.

The ECC for the sorting service varies according to the length of the list being sorted. It is

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

199

observed that by increasing the length of sorting list, the energy consumed in accessing

sorting operation on DEAP server, energy consumed in returning resultant list and the

energy consumed in saving preferences file locally on SMD increases accordingly. For

instance in the POP of DEAP client application, ECC in accessing the sorting service for

sorting the list of 15000 values 9.3 J, whereas for accessing the sorting service in sorting

the list of 40000 23 J energy is consumed. Experimental results indicate that the ECC in

sorting the list of 40000 values increases 67.8 percent as compared to sorting the list of

11000 values in the POP of DEAP client application. However, the average ECC for the

sorting service in the POP of DEAP client is determined as 13.9 J for sorting list of 11000-

40000 with the 27.9 percent RSD.

Figure 6. 18: Total Energy Consumption Cost of Sorting Service in POP of DEAP Client
Application

The ECC of the matrix multiplication operation in the POP of DEAP client

application includes the energy consumed in accessing the matrix multiplication service of

the DEAP server application, energy consumed in receiving the resultant data from the

remote server and energy consumed in saving the resultant preferences (data file) on the

local mobile device. Table 5.20 presented the total ECC of accessing matrix multiplication

service in POP of the DEAP Client application. The ECC of matrix multiplication service is

0

5

10

15

20

25

11
00

0
13

00
0

15
00

0
17

00
0

19
00

0
21

00
0

23
00

0
25

00
0

27
00

0
29

00
0

31
00

0
33

00
0

35
00

0
37

00
0

39
00

0E
ne

rg
y

C
on

su
m

pt
io

n
C

os
t (

J)

Length for Sorting List

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

200

evaluated with 30 different computational intensities of the matrix multiplication operation

(matrices of size 160*160-450*450).

It is examined that the ECC of accessing the matrix multiplication service varies

with the computational intensity of matrices. For instance, the ECC in multiplying matrices

of length 160*160 is determined as 10.8(+/-)1.8 J with 99% confidence interval in the

sample space of 30 values, which shows that the possible range of ECC is between 9 J and

12.6 J. The value of SD for ECC shows the variation in the values of same sample space for

each experiment. For instance, the variation of ECC in 30 different experiments is 3.8 J for

accessing matrix multiplication service with the matrices of length 160*160, which

constitutes 35.2 percent of the average ECC. Similarly, the ECC in multiplication matrices

of length 450*450 is determined as 65.3(+/-)5.1 J with 99% confidence interval in the

sample space of 30 values, which shows that the possible range of ECC is between 60.2 J

and 70.4 J. The variation of ECC in 30 different experiments is 10.8 J for accessing matrix

multiplication service with the matrices of length 450*450, which constitutes 16.5 percent

of the average ECC.

 Figure 6.19 shows the increase in ECC in 30 different experiments of the matrix

multiplication operation with respect to the size of matrices being multiplied in the POP of

DEAP client application. It is observed that by increasing the size of matrices, the energy

consumption cost increases accordingly in accessing matrix multiplication operation,

returning resultant matrix and saving preferences file locally on SMD. For instance, in the

POP of DEAP client application, the total ECC in accessing the matrix multiplication

service for multiplying matrices of length 310*310 is 25.6 J, whereas for accessing matrix

multiplication service for multiplying matrices of length 450*450, 65.3 J energy is

consumed. Experimental results indicate that in the POP of DEAP client application, the

ECC in multiplying matrices of length 450*450 increases 83.4 percent as compared to

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

201

multiplying matrices of length 160*160. However, the average ECC for the matrix

multiplication service in the POP of DEAP client is determined as 30.3 J for multiplying

matrices of size 160*160-450*450 with the 56.7 percent RSD.

Figure 6. 19: Energy Consumption Cost of Matrix Multiplication Service in POP of
DEAP Client Application

Power compute service of the application is offloaded at runtime in the SOP of

DEAP client application. The TT of power compute service in the SOP includes time taken

in transferring the binary file of the application, time taken in downloading the delegated

application on the virtual device instance on the remote server node, time taken in the

reconfiguration of delegated application service, and time taken in executing the service

application and returning results to the local mobile device.

Table 5.21 summarized the time taken in runtime component offloading for 30

different experiments. Figure 6.20 shows time taken in different stages of offloading power

compute service in the SOP of DEAP client application. The offloading time of power

compute service is determined as 52(+/-)4 ms with 99% confidence interval in the sample

space of 30 values, which shows that the possible range of offloading time for the power

compute service is between 48 ms and 52 ms. The value of SD for offloading time of the

0
10
20
30
40
50
60
70

16
0*

16
0

18
0*

18
0

20
0*

20
0

22
0*

22
0

24
0*

24
0

26
0*

26
0

28
0*

28
0

30
0*

30
0

32
0*

32
0

34
0*

34
0

36
0*

36
0

38
0*

38
0

40
0*

40
0

42
0*

42
0

44
0*

44
0

E
ne

rg
y

C
on

su
m

pt
io

n
C

os
t (

J)

Length of Matrices

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

202

service varies 9 ms in the sample space of 30 experiments, which constitutes 17.3 percent

of the service offloading time in the SOP of DEAP client application.

The service download time to remote virtual device instance and reconfiguration

time of the power compute service on remote machine is evaluated in 30 different

experiments. It is examined that the download time to remote virtual device of the power

compute service is 212(+/-)18 ms, which shows that the possible range of download time to

remote virtual device on the server node is between 194 ms and 230 ms. The value of SD

for service download time varies 9 ms in the sample space of 30 experiments, which

constitutes 18.4 percent of the service download time to remote virtual device in the SOP of

DEAP Client application.

Figure 6. 20: Time Taken in Offloading Power Compute in the SOP of DEAP Client
Application

Similarly, the reconfiguration time of the power compute service on the remote

server node is determined 6349(+/-)312 ms, which shows that the possible range of

download time to remote virtual device on the server node is between 6037 ms and 6661

ms. The variation in the reconfiguration time value of power compute service is 663 ms in

0
1000
2000
3000
4000
5000
6000
7000

Offloading Time Download Time
to Remote

Virtual Device

Reconfiguration
Time

T
im

e
(m

s)

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

203

the sample space of 30 experiments, which constitutes 10.4 percent of the reconfiguration

time on remote virtual device in the SOP of DEAP client application.

Table 5.22 summarized the TT of the execution of power compute service component of

the application in the SOP of DEAP client application. The TT of the power compute

application includes the total time taken in runtime component offloading and execution

time of the application on the remote server node.

The total TT in offloaded processing of the power compute service component of

the mobile application is evaluated with 30 different computational intensities of the power

computing (2^1000000-2^2000000000). For instance, the TT in computing 2^1000000 is

determined as 7175(+/-)340 ms with 99% confidence interval in the sample space of 30

values, which shows that the possible range of TT is between 6835 ms and 7515 ms. The

value of SD for TT shows the variation in the values of same sample space in 30 different

experiments. For instance, the variation of TT is 721 ms for computing 2^1000000, which

constitutes 10.1 percent of the average TT of compute service in the SOP of DEAP client

application. Similarly, the TT in computing 2^2000000000 is determined as 265724(+/-)

2485 ms with 99% confidence interval in the sample space of 30 values, which shows that

the possible range of TT is between 263239 ms and 268209 ms. The SD in TT is 5275 ms

for computing 2^2000000000, which constitutes 2 percent of the average TT of compute

service in SOP of DEAP client application.

Figure 6.21 shows the increase in TT of the power compute service with respect to

the computational length of the computing operation in 30 different experiments. It is

examined that by varying the computational length of the power compute service, the

average total time taken in runtime offloading remains constant. However, the execution

time of the power computing on remote machine increases by increasing the computational

intensity of the power compute service. For instance, the average time taken in runtime

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

204

offloading and reconfiguration is 6613 ms for all the instances of offloading power

compute service in the SOP of DEAP Client application. Whereas, the TT of computing

2^2000000 is determined as 7587 and the TT of computing 2^2000000000 is determined as

265724 ms. Results indicate that TT increases 97.2 percent in computing 2^2000000000 as

compared to computing 2^1000000.

Figure 6. 21: Turnaround Time of Power Compute Service in the SOP of DEAP Client
Application

Table 5.23 summarized the total energy consumed in offloading power compute

service in the SOP of DEAP client application. The total ECC is evaluated with 30 different

computational intensities of the power compute operation (2^1000000-2^2000000000). The

total ECC of the power compute application includes the energy consumed in runtime

component offloading and energy consumed in remote application processing. The ECC for

computing 2^1000000 on remote server node is determined as 5.4(+/-).7 J with 99%

confidence interval in the sample space of 30 values, which shows that the possible range

of total ECC is between 4.7 J and 6.1 J. The value of SD for total ECC shows the variation

in the values of same sample space for each experiment in offloaded processing. For

instance, the variation of total ECC is 1.4 J for remote processing of computing 2^1000000

0
50000

100000
150000
200000
250000
300000

2^
10

00
00

0

2^
30

00
00

0

2^
50

00
00

0

2^
70

00
00

0

2^
90

00
00

0

2^
20

00
00

00

2^
40

00
00

00

2^
60

00
00

00

2^
80

00
00

00

2^
10

00
00

00
0

2^
30

00
00

00
0

2^
50

00
00

00
0

2^
70

00
00

00
0

2^
90

00
00

00
0

2^
19

00
00

00
00T
ur

na
ro

un
d

T
im

e
(m

s)

Compute Length

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

205

which constitutes 25.9 percent of the average ECC in offloaded processing of the power

compute service in the SOP of DEAP client application.

The ECC for computing 2^2000000000 on remote server node is determined as

351(+/-)4.5 J with 99% confidence interval in the sample space of 30 values, which shows

that the possible range of total ECC is between 343.6 J and 58.4 J. The variation of total

ECC is 15.7 J for remote processing of computing 2^2000000000, which constitutes 4.5

percent of the average ECC in offloaded processing of the power compute service in the

SOP of DEAP client application. Figure 6.22 shows the total ECC of power compute

service in the SOP of DEAP client application.

Figure 6. 22: Energy Consumption Cost of Power Compute Service in SOP of DEAP
Client Application

It is observed that the value of energy consumption in component offloading

increases steadily (the average value is 4.7 J); however the value of ECC in performing

compute operation increases quickly by increasing the computational length. For instance,

10 J energy is consumed in computing 2^9000000, whereas 351 J energy is consumed in

computing 2^2000000000 in SOP of the DEAP Client application. It shows that the total

0

100000

200000

300000

2^
10

00
00

0

2^
30

00
00

0

2^
50

00
00

0

2^
70

00
00

0

2^
90

00
00

0

2^
20

00
00

00

2^
40

00
00

00

2^
60

00
00

00

2^
80

00
00

00

2^
10

00
00

00
0

2^
30

00
00

00
0

2^
50

00
00

00
0

2^
70

00
00

00
0

2^
90

00
00

00
0

2^
19

00
00

00
00T

ur
na

ro
un

d
T

Im
e(

m
s)

Compute Length

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

206

ECC is increased 98.5 percent for computing 2^2000000000 as compared to 2^1000000 in

offloaded processing of Power compute service in the SOP of DEAP client application.

Table 5.24 summarized the increase in RAM allocation on local mobile device for

accessing the sorting service in the POP of DEAP Client application. The increase in the

allocated RAM for sorting a list of 11000 values is determined as 1.165(+/-)0.028 MB with

99% confidence interval in the sample space of 30 values, which shows that the possible

range of increase in RAM allocation is between 1.137 MB and 1.193MB. The increase in

allocation of RAM for DEAP client application varies 0.06 MB for accessing sorting

service with the sorting the list 11000 values in 30 different experiments. It shows that the

increase in allocation of RAM on local mobile device varies 5.2 percent in accessing

sorting service of DEAP Server application.

The increase in allocated RAM for sorting a list of 25000 values in the sample space

of 30 values is determined as 2.382(+/-)0.02 MB with 99% confidence interval, which

shows that the possible range of increase in RAM allocation is between 2.362 MB and

2.402 MB. Figure 6.23 shows the increase in allocation of RAM to DEAP client application

in accessing sorting service of DEAP server application. The change in the allocation of

RAM on mobile device for DEAP client application is evaluated in 30 different

experiments. The allocation of RAM to DEAP client application in accessing the sorting

service on DEAP server application varies according to the length of the resultant sorted list

returned to local mobile device.

It is examined that in returning the sorted list of 15000 values the average RAM

allocation increases 1.6 MB, whereas in returning the list of 40000 values the average RAM

allocation increases 5.3 MB for DEAP client application on local mobile device. Analysis

of the results shows that in the process of saving the resultant preferences file on local

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

207

device, the heap size and allocated RAM allocation for DEAP client application increases

as per the length of resultant values returned from DEAP Server application.

Figure 6. 23: Increase in the RAM Allocation to DEAP Client Application for Accessing
Sorting Service in POP

Table 5.25 summarized the increase in RAM allocation on local mobile device for

accessing the matrix multiplication service in the POP of DEAP client application. The

increase in allocated RAM for DEAP client application on local mobile device in accessing

matrix multiplications service for multiplying matrices of size 160*160 is determined as

1.695(+/-).08 MB with 99% confidence interval in the sample space of 30 values, which

shows that the possible range of increase in RAM allocation is between 1.615 MB and

1.775 MB. The increase in allocation of RAM for DEAP client application varies 0.16 MB

for accessing matrix multiplication service with the matrices size 160*160, which shows

that the increase in allocation of RAM on local mobile device varies 9.4 percent in

accessing matrix multiplication service of DEAP server application.

The increase in allocated RAM for DEAP client application on local mobile device

in accessing matrix multiplications service for multiplying matrices of length 450*450 is

determined as 13.056(+/-)0.31 MB with 99% confidence interval in the sample space of 30

0

1

2

3

4

5

11
00

0
13

00
0

15
00

0
17

00
0

19
00

0
21

00
0

23
00

0
25

00
0

27
00

0
29

00
0

31
00

0
33

00
0

35
00

0
37

00
0

39
00

0

R
A

M
 A

llo
ca

tio
n

(M
B

)

Length of the List in Sort Service

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

208

values, which shows that the possible range of increase in RAM allocation is between

12.746 MB and 13.366 MB. The increase in allocation of RAM for DEAP client

application varies 0.653 MB for accessing matrix multiplication service with the matrices

of length 450*450, which shows that the increase in allocation of RAM on local mobile

device varies 5 percent in accessing matrix multiplication service of DEAP server

application.

Figure 6.24 shows the increase in allocation of RAM to DEAP client application in

accessing matrix multiplication of DEAP server application. The change in the allocation of

RAM on mobile device for DEAP client application is evaluated in 30 different

experiments. The allocation of RAM to DEAP client application in accessing the sorting

service on DEAP Server application varies according to the length of the resultant matrix

length returned to local mobile device .

Figure 6. 24: Increase in the RAM Allocation to DEAP Client Application for Accessing
Matrix Multiplication Service in POP

 It is examined that in returning matrices of length 200*200 values the average

RAM allocation increases 2.438 MB, whereas in returning matrices of length 450*450

values the average RAM allocation increases 5.3 MB for DEAP client application on local

mobile device. Analysis of the results shows that in the process of saving the resultant

0

5

10

15

16
0*

16
0

18
0*

18
0

20
0*

20
0

22
0*

22
0

24
0*

24
0

26
0*

26
0

28
0*

28
0

30
0*

30
0

32
0*

32
0

34
0*

34
0

36
0*

36
0

38
0*

38
0

40
0*

40
0

42
0*

42
0

44
0*

44
0

R
A

M
 A

llo
ca

tio
n

(M
B

)

Lengh of Matrices Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

209

preferences file on local device, the heap size and allocated RAM allocation for DEAP

client application increases as per the length of resultant values returned from DEAP server

application.

Table 5.26 summarized the average CPU utilization on mobile device for DEAP

client application in offloaded processing of different components of the mobile

application. DEAP employs POP and SOP for computational offloading to cloud server

node; hence, the CPU utilization of DEAP client application on local mobile device

depends majorly on the size of resultant data returned from the remote server node.

Analysis of the results for CPU utilization in the POP and SOP of DEAP framework

indicates that minimal percentage (2-3%) of the CPU is utilized in offloaded processing of

the components of the mobile application. However, the CPU utilization increases with

increase in data size received as a result of remote processing. For instance, the CPU

utilization for accessing all the three service components with varying computational

intensities (sorting service (11000-40000), matrix multiplication service (160*160-

450*450), and power compute service (2^1000000-2^2000000000)) remains constant.

However, the utilization of CPU on the local device increases while processing the resultant

data received from the remote server node.

Figure 6.25 shows the average CPU utilization in the POP and SOP of DEAP client

application. The CPU utilization for accessing the sorting service is evaluated with 30

different computational intensities (list size 11000-40000). DEAP client utilizes 25.5

percent (609(+/-)134 MIPS) of the CPU, which shows the range of CPU utilization for

accessing sorting service in the POP of DEAP client application between 19.9 percent

(474.4 MIPS) and 31.1 percent (744 MIPS) on the local SMD. Relative standard deviation

in CPU utilization for accessing the sorting service in the POP DEAP Client application is

54.91 percent of the average CPU utilization on SMD.

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

210

The CPU utilization for accessing the matrix multiplication service is evaluated

with 30 different computational intensities (matrices size 160*160-450*450). It is

examined that DEAP client utilizes 35.4 percent (845.7(+/-)200MIPS) of the CPU, which

shows the range of CPU utilization for accessing matrix multiplication service in the POP

of DEAP client application is between 27 percent (645.4 MIPS) and 43.7 percent (1046

MIPS) on the local SMD. Relative standard deviation in CPU utilization for accessing the

sorting service in the POP of DEAP client application is 50.3 percent of the average CPU

utilization on SMD.

Figure 6. 25: CPU Utilization for DEAP Client Application on Local Mobile Device in
POP and SOP

The power compute component of the application is offloaded at runtime in SOP of

DEAP client application. Hence, the average CPU utilization by DEAP client application in

offloading power compute service is determined as 3(+/-)0.38 percent (71.6(+/-)9 MIPS),

which shows that the range of CPU utilization for computing Power compute operation in

the SOP of DEAP Client application is 2.62 percent (62.5 MIPS) and 3.38 percent (80.75

MIPS) on the local mobile device. Relative standard deviation in CPU utilization for

0
100
200
300
400
500
600
700
800
900

Sort Matrix
Multiplication

Power Compute

C
PU

 U
til

iz
at

io
n

 (M
IP

S)

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

211

performing power compute operation in the SOP of DEAP Client application is 26.7

percent of the average CPU utilization on SMD.

Figure 6.26 shows the increase in data transmission over the wireless network

medium in accessing sort service on the DEAP Server application with respect to the

varying size of sorting list. Analysis of the results for the data transmission over the

wireless network medium for sorting service indicates that in the POP of DEAP

framework, the data transmission over the wireless network medium involves the resultant

values of the sorted list. Hence, the large list of values in the sorting operation results in

returning a larger size of data. However, the data transmission cost of application binary

offloading is eliminated in the POP of DEAP Client application.

It is observed that sorting the list of 11000 values on DEAP server returns 123 KB

data to DEAP client application, whereas sorting the list of 40000 values on DEAP server

returns 692 KB of data to DEAP client application.

Figure 6. 26: Size of Data Transmission in Accessing Sorting Service of DEAP Server
Application

0
100
200
300
400
500
600
700

11
00

0
13

00
0

15
00

0
17

00
0

19
00

0
21

00
0

23
00

0
25

00
0

27
00

0
29

00
0

31
00

0
33

00
0

35
00

0
37

00
0

39
00

0

Si
ze

 o
f D

at
a

T
ra

nm
is

si
on

 (K
B

)

Length of Sorting List

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

212

Figure 6.27 shows the increase in data transmission over the wireless network

medium in accessing matrix multiplication service on the DEAP server application with

respect to the varying size of matrices.

Analysis of the results for the size of data transmission over the wireless network

medium for matrix multiplication service indicates that in the POP of DEAP framework,

the data transmission over the wireless network medium involves the resultant values of the

matrix multiplication operation. Hence, larger size of matrices in matrix multiplication

results in returning a larger size of data. For instance, multiplying matrices of size 160*160

returns 463 KB of data to the DEAP client application, whereas multiplying matrices of

size 450*450 returns 3308 KB of data to the DEAP client application.

Figure 6. 27: Size of Data Transmission in Accessing Matrix Multiplication Service of

DEAP Server Application

The power compute service component is offloaded at runtime by using the SOP of DEAP

client application. Therefore, the binary file of the service component is transmitted over

the wireless network medium at runtime. The total data transmission size of the power

compute service offloading is 42.7 KB with the network goodput ratio 65.96 Kbps.

0
500

1000
1500
2000
2500
3000
3500

Si
ze

 o
f D

at
a

T
ra

nm
is

si
on

 (K
B

)

Length of Matrices

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

213

6.4 Comparison of Experimental Results

This section analyzes the comparison of experimental results in different scenarios.

The usefulness of the proposed solution is verified by comparing experimental results from

the following perspectives. 1) Application execution on local mobile device and traditional

application offloading. 2) Application execution by including runtime application profiling

and excluding runtime application profiling technique. 3) Application execution on local

mobile device and the operating procedures of DEAP proposed framework. 4) Traditional

computational offloading and DEAP based computational offloading.

Initially, the prototype application is tested on the Android Virtual Device (AVD) in

the emulation environment to test the viability of the proposed framework. Components of

the mobile application are executed on the local AVD and remote DEAP server by

employing the emulator. The POP of DEAP client application is implemented over the

AVD in the emulation environment. Table 5.28 summarized the statistics of turnaround

time and energy consumption cost of executing sorting service on local AVD and DEAP

server application by using emulator.

Figure 6.28 shows the comparison of TT for sorting service execution on the local

Android Virtual Device (AVD) and in the POP of DEAP client application by using

emulator. It is examined that the TT of the sorting services reduces significantly in the POP

of DEAP client application. Experimental results indicate that the TT of sorting operation

in the POP of DEAP reduces 75.8 percent for sort the list of 11000 values, 79.4 percent for

sorting list 15000, 84.4 percent for sorting list 25000, 88.9 percent for sorting list of 340000

values and 89.4 percent for sorting list 40000.

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

214

Figure 6. 28: Comparison of Turnaround Time of Sorting Operation on Local AVD and
POP of DEAP

Figure 6.29 shows the comparison of the ECC of sorting service execution on the

local Android Virtual Device (AVD) and in the POP of DEAP client application by using

emulator (as shown in table 5.28). The ECC of the sorting service reduces significantly in

the POP of DEAP client application. Experimental results indicate that the ECC of sorting

operation in the POP of DEAP reduces 33.8 percent for sort the list of 11000 values, 46

percent for sorting list 15000, 68.8 percent for sorting list 25000, 79.8 percent for sorting

list of 340000 values and 79.2 percent for sorting list 40000.

Figure 6. 29: Comparison of Energy Consumption Cost of Sorting Operation on Local
AVD and POP of DEAP

0

20000

40000

60000

80000

100000

120000

140000

T
ur

na
ro

un
d

T
im

e
(m

s)

Length of Sorting List

TT of Sorting Operation on Local AVD

TT of Sorting Operation in POP of DEAP using AVD

0
20
40
60
80

100
120
140
160
180

E
ne

rg
y

C
on

m
pt

io
n

(J
)

Length of Sorting List

ECC of Sorting Operation on
Local AVD
ECC of Sorting Operation in
the POP of DEAP using AVD

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

215

The reduction in the TT and ECC of the sorting service is for the reason of

executing the intensive sorting operation on the remote server node which has higher

computing potentials as compared to the local virtual device. Analysis of the empirical

results for the sample space of 30 computational intensities with 1800 experiments

conducted (both on local AVD and DEAP Server) for sorting operation indicates that in the

POP of DEAP client application, battery consumption is reduced 66.2(+/-)6.5 percent with

99% confidence for the sample space of 30 values and utilization of the computing

resources (CPU, RAM) of the local device is reduced for minimum period of time 85(+/-

)1.8 percent with 99% confidence for the sample space of 30 values.

Table 5.29 summarized the comparison of execution time and energy consumption

in the execution of matrix multiplication operation on local virtual device instance and

DEAP based service execution by using AVD emulator. Figure 6.30 shows the comparison

the TT of matrix multiplication service execution on the local AVD and remote DEAP

server application by using emulator. Experimental results indicate that the TT of matrix

multiplication is greater (1.3 percent) in the POP of DEAP Client application as compared

to the execution of the matrix service on local AVD. It indicates the unfeasibility of

accessing the services of DEAP server for low intensive tasks of mobile application.

However, the turnaround time of the matrix multiplication service with high computational

length reduces significantly in the POP of DEAP client application.

It is observed that reduction in the turnaround time of the matrix multiplication

services increases gradually with the increase in computational intensity of the matrix

multiplication operation. Experimental results indicate that the turnaround time of matrix

multiplication operation in the POP of DEAP reduces 10.9 percent for multiplying matrices

of 170*170 size, 31.4 percent for multiplying matrices of 250*250 size, 62.6 percent for

multiplying matrices of 350*350 size and 76.9 percent for multiplying matrices of 450*450

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

216

size which shows increase in reduction of turnaround time of the matrix multiplication

service with the increase of matrices size. The reduction in the turnaround time of the

matrix multiplication service is for the reason of executing the intensive multiplication

operation on the remote server node which has higher computing potentials as compared to

the local virtual device.

Figure 6. 30: Comparison of Turnaround Time of Matrix Multiplication Operation on
Local AVD and POP of DEAP

Figure 6.31 shows the comparison the ECC of matrix multiplication service

execution on the local AVD and remote DEAP server application by using emulator.

Experimental results indicate that for smaller computational intensity of matrix

multiplication operation, the ECC of matrix multiplication is greater in the POP of DEAP

client application as compared to the execution of the matrix service on local AVD. For

instance in the POP of DEAP, ECC is greater 5.4 percent for matrices of length 160*160,

12.5 percent for matrices of length 170*170, 10.9 percent for matrices of length 180*180,

10 percent for matrices of length 190*190, 5.1 percent for matrices of length 200*200, and

2.7 percent for matrices of length 210*210. It indicates the unfeasibility of accessing the

services of DEAP server for low intensive tasks of mobile application.

0

20000

40000

60000

80000

100000

120000

T
ur

na
ro

ud
n

T
im

e
(m

s)

Length of Matrices

TT of Matrix Multiplication
Operation on Local AVD

TT of Matrix Multiplication
Operation in POP of DEAP using
AVD

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

217

However, the ECC of the matrix multiplication service with high computational

intensity reduces significantly in the POP of DEAP client application. It is observed that

reduction in the ECC of the matrix multiplication services increases gradually with the

increase in computational intensity of the matrix multiplication operation. Experimental

results indicate that the ECC of matrix multiplication operation in the POP of DEAP

reduces 10.3 percent for multiplying matrices of 220*220 size, 28.5 percent for multiplying

matrices of 270*270 size, 53.1 percent for multiplying matrices of 350*350 size and 60.8

percent for multiplying matrices of 400*400 size which shows increase in reduction of

ECC of the matrix multiplication service with the increase of matrices size.

Figure 6. 31: Comparison of Energy Consumption Cost of Matrix Multiplication Service
on Local AVD and POP of DEAP

The reduction in the ECC of the matrix multiplication service is for the reason of

executing the intensive multiplication operation on the remote server node which has higher

computing potentials as compared to the local virtual device. Analysis of the empirical

results for the sample space of 30 computational intensities with 1800 experiments

conducted (both on local AVD and DEAP server) for matrix multiplication indicates that in

the POP of DEAP client application; battery consumption is reduced (interval estimate

0
10
20
30
40
50
60
70
80
90

E
ne

rg
y

C
on

su
m

pt
io

n
C

os
t (

J)

Length of Matrices

ECC of Matrix Multiplication Operation on
Local AVD
ECC of Matrix Multiplication Operation in
POP of DEAP using AVD

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

218

32.2(+/-)11.8 percent with 99% confidence for the sample space of 30 values) and

utilization of computing resources (RAM and CPU) of the local device is reduced for

minimum period of time (interval estimate 43.79(+/-)11.2 percent with 99% confidence for

the sample space of 30 values).

Table 5.30 summarized the comparison of TT and energy consumption in the execution of

power compute service on local AVD and remote DEAP server application by using

Android emulator. Figure 6.32 shows the comparison of the TT of power compute service

execution on the local AVD and in the POP of DEAP client application by using emulator.

The TT of the power compute service reduces significantly in the POP of DEAP client

application.

It is observed that reduction in the TT of the power compute multiplication services

increases gradually with the increase in computational intensity of the power compute

operation. The TT of power compute operation in the POP of DEAP reduces 69.2 percent

for computing 2^1000000, 85.4 percent for computing 2^7000000, 93.8 percent for

computing 2^40000000 and 96.3 percent for computing 2^2000000000, which shows

increase in reduction of turnaround time of the power computing operation with the

increase in computational length. The overall reduction in the TT of power computing in

DEAP client application is 91 percent, with the 7 percent RSD. The reduction in TT of the

power compute service is for the reason of leveraging the processing services of high

computing potential remote server node. Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

219

Figure 6. 32: Comparison of Turnaround Time of Power Compute Operation on Local
AVD and POP of DEAP

Figure 6.32 shows the comparison the ECC of power compute service execution on

the local AVD and in the POP of DEAP Client application by using emulator. The ECC of

the power compute service reduces significantly in the POP of DEAP client application. It

is observed that reduction in the ECC of the power compute multiplication services

increases gradually with the increase in computational intensity of the power compute

operation. Experimental results indicate that the ECC of power compute operation in the

POP of DEAP reduces 6.5 percent for computing 2^1000000, 28.1 percent for computing

2^7000000, 60.9 percent for computing 2^40000000 and 95.7 percent for computing

2^2000000000, which shows increase in reduction of ECC of the power computing

operation with the increase in computational length. The overall reduction in the ECC of

power computing in DEAP client application is 52.24 percent, with the 62.9 percent RSD.

0

50000

100000

150000

200000

250000

300000

T
ur

na
ro

ud
n

T
im

e
(m

s)

Power Compute Length

TT of Power Compute Operation on Local AVD

TT of Power Compute OPeration in POP of DEAP
using AVD

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

220

Figure 6. 33: Comparison of Energy Consumption Cost of Power Compute Operation on
Local AVD and POP of DEAP

The empirical results for the sample space of 30 computational intensities with 1800

experiments conducted (both on local AVD and DEAP Server) for power compute

indicates that in the POP of DEAP Client application; battery consumption is reduced

(interval estimate 52.2(+/-)15 percent with 99% confidence for the sample space of 30

values) and the utilization of computing resources of the local device is reduced for

minimum period of time (interval estimate 91(+/-)3 percent with 99% confidence for the

sample space of 30 values). Hence, the experimental results in the emulation environment

signify the usefulness of DEAP framework for computational offloading in mobile cloud

computing.

This section compares the Turnaround Time (TT) and Energy Consumption Cost

(ECC) of the intensive operations of mobile application in different scenarios of the real

mobile cloud computing environment. The TT and EEC of the components of the mobile

application are compared from the perspective of local execution of the intensive

component of the application, and execution of the intensive component on the remote

sever node. Local execution of the services is presented from the perspective of service

0
50

100
150
200
250
300
350
400

E
ne

rg
y

C
on

su
m

pt
io

n
C

os
t (

J)

Power Compute Length

ECC of Power Compute Operation on
Local AVD
ECC of Power Compute Operation in
POP of DEAP using AVD

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

221

execution without including profiling mechanism and with including profiling mechanism

on the local mobile device. The contemporary application offloading frameworks

implement runtime application profiling for the evaluation of resources utilization on SMD

and making the decision of component offloading at runtime (Messer et al., 2002; Giurgiu

et al., 2009; Cuervo et al., 2010; Chun et al., 2011; Zhang et al. 2011). Hence, the TT and

ECC for each service component which is evaluated on the local mobile device is presented

in two different scenarios; execution of service component without runtime profiling and

execution of service component by activating the runtime profiling process.

The value of TT and ECC for different service components of the prototype

application is compared with 30 different computational intensities. The objective of this

comparison is to analyze the additional resources utilization and additional time taken in

runtime profiling of mobile application.

Execution of the service component on the remote server node is presented from the

perspective traditional runtime component offloading and DEAP based computational

offloading in MCC. The traditional computational offloading frameworks implement

runtime component migration techniques for outsourcing computational load of the mobile

application (Liu et al. 2010; Iyer et al. 2011; Zao et al., 2011; Cuervo et al., 2010; Chun et

al., 2011; Zhang et al. 2011 and Hung et al., 2012). The traditional computational

offloading technique reduces the computational load on the mobile devices which results in

minimization of computing resources utilization on SMD. However, it is examined that the

size of data transmission, TT and ECC of the offloaded component increases considerably

in runtime computational offloading.

The TT and ECC of sorting service and matrix multiplication component is

compared by offloading without profiling process and including profiling mechanism on

local mobile device. Finally, the TT and ECC of sorting service and matrix service are

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

222

compared with the value of TT in DEAP client application. Table 5.31 summarized the

comparison of the TT of sorting operating of the application in different scenarios of the

real distributed mobile cloud computing environment.

Figure 6.34 shows the comparison the TT of sorting service execution in different

scenarios. It is examined that the TT on the local SMD is smaller for performing sorting

operation without runtime profiling. Experimental results indicate that by including the

runtime profiling mechanism the value of TT increases 76.5 percent for sorting list of

11000 values, 86.6 percent for sorting list of 22000 values, 87.6 percent for sorting list of

30000 and 88.7 percent for sorting list of 40000 values. The overall increase in the TT of

sorting service by including runtime profiling in the sorting operation is determined as

85.4(+/-)1.7 with 99% confidence in the sample space of 30 values.

The comparison of TT for sorting operation in local execution and traditional

offloading technique shows that TT of the sorting service increases considerably in runtime

component offloading. It is observed in offloading sorting service without employing

runtime profiling on the local mobile device, the TT of the sorting service in remote

processing compared to local execution of on mobile device increases by: 80 percent for

sorting list of 11000 values, 75 percent for sorting list 17000 values, 80 percent for sorting

list of 30000 values and 81 percent for sorting list of 40000 values. Similarly, in offloading

sorting service by employing runtime profiling on the local mobile device, the TT of the

sorting service in remote processing compared to local execution on mobile device

increases by: 88 percent for sorting list of 11000 values, 91 percent for sorting list 25000

values, 92 percent for sorting list of 35000 values and 93 percent for sorting list of 40000

values. The comparison of sorting service execution on local mobile device and the DEAP

based execution signifies the decrease in TT of the sorting operation in the POP of DEAP

client application. It is examined that by accessing the services of DEAP server application

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

223

in the POP of DEAP client application on mobile device, the TT of sorting services reduces

48 percent for sorting list of 11000 values, 60 percent for sorting list of 25000 values and

57 percent for sorting list of 40000 values. The overall reduction in TT value for sorting

service in POP of DEAP client application is 57.8(+/-) 2 percent with 99% confidence in

the sample space of 30 values.

Figure 6. 34: Comparison of the Turnaround Time (TT) of the Sorting Service Execution
in Local and Remote Execution

The comparison of TT for the sorting operation in the POP of DEAP and traditional

offloading signifies the lightweight nature of DEAP framework for computational

offloading in MCC. Figure 6.34 shows the increasing trend of TT in offloading sorting

service. The increase in TT of sorting service in runtime component offloading (without

including profiling) as compared to the POP of DEAP is examined as follows: 89 percent

for sorting list of 11000 values, 91 percent for sorting list of 20000 values, 92 percent for

sorting list of 31000 values and 92 percent for sorting list of 40000 values. Similarly, the

increase in TT of sorting service in runtime component offloading by including profiling on

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

11
00

0
12

00
0

13
00

0
14

00
0

15
00

0
16

00
0

17
00

0
18

00
0

19
00

0
20

00
0

21
00

0
22

00
0

23
00

0
24

00
0

25
00

0
26

00
0

27
00

0
28

00
0

29
00

0
30

00
0

31
00

0
32

00
0

33
00

0
34

00
0

35
00

0
36

00
0

37
00

0
38

00
0

39
00

0
40

00
0

T
ur

na
ro

un
d

T
im

e(
m

s)

Length of the Sorting List

TT on Local SMD Without Profiling
TT on Local SMD Including Profiling
TT in POP of DEAP Client
TT in Traditional Runtime Offloading without Profiling
TT in Traditional Runtime Offloading including Profiling

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

224

SMD as compared to the POP of DEAP as follows: 93 percent for sorting list of 11000

values, 96.4 percent for sorting list of 20000 values, 96.8 percent for sorting list of 31000

values and 96.7 percent for sorting list of 40000 values.

Table 5.32 summarized the comparison of matrix multiplication operation in local

and remote execution scenarios. It is examined that the TT on the local SMD is smaller for

performing matrix multiplication operation without runtime profiling as compared to matrix

multiplication operation included with runtime profiling process. Figure 6.35 compares the

TT of matrix multiplication operation in local and remote execution. Experimental results

indicate that by including the runtime profiling mechanism the value of TT increases by

91.6 percent for multiplying matrices of length 160*160, 91.1 percent for matrices of length

250*250, 93 percent for multiplying matrices of length 350*350 and 92.7 percent for

multiplying matrices of length 450*450.

The overall increase in the TT of matrix multiplication operation by including

runtime profiling in the matrix multiplication operation is determined as 91.4(+/-)0.3 with

99% confidence in the sample space of 30 values. The comparison of TT for matrix

multiplication operation in local execution and traditional offloading technique shows that

TT of the matrix multiplication increases considerably in runtime component offloading. It

is observed in offloading matrix multiplication service without employing runtime profiling

on the local mobile device the TT of the matrix multiplication service in remote processing

compared to local execution on mobile device increases by 78 percent for multiplying

matrices of length 160*160, 70 percent for multiplying matrices of length 250*250, 66

percent for multiplying matrices of length 300*300 and 65 percent for multiplying matrices

of length 450*450.

Similarly, in offloading matrix multiplication service with employing runtime

profiling on the local mobile device, the TT of the matrix multiplication service in remote

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

225

processing compared to local execution on mobile device increases by 81 percent for

multiplying matrices of length 160*160, 76 percent for multiplying matrices of length

250*250, 75 percent for multiplying matrices of length 300*300 and 72 percent for

multiplying matrices of length 450*450.

The comparison of matrix multiplication service execution on local mobile device

and the DEAP based execution signifies the decrease in TT of matrix multiplication

operation in the POP of DEAP client application. It is observed that by accessing the

services of DEAP server application in the POP of DEAP client application on mobile

device, the TT of matrix multiplication operation reduces by: 10 percent for matrices of

length 160*160, 9 percent for multiplying matrices of length 350*350 and 8 percent for

multiplying matrices of length 450*450. The overall reduction in TT for matrix

multiplication service in POP of DEAP client application is found (10.3+/-) 0.5 percent

with 99% confidence in the sample space of 30 values.

The comparison of TT for the matrix multiplication operation in the POP of DEAP

and traditional offloading signifies the usefulness of DEAP framework for computational

offloading. Figure 6.35 shows the increasing trend of the TT in offloading matrix

multiplication service. The increase in TT of matrix multiplication operation in runtime

component offloading (without including profiling) as compared to the POP of DEAP is

examined as follows: 74 percent for multiplying matrices of length 160*160, 72 percent for

multiplying matrices of length 230*230, 64 percent for multiplying matrices of length

350*350 and 63 percent for multiplying matrices of length 450*450. Similarly, the increase

in TT of matrix multiplication operation in runtime component offloading by including

profiling as compared to the POP of DEAP is examined as follows: 79 percent for

multiplying matrices of length 160*160, 77.8 percent for multiplying matrices of length

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

226

230*230, 73.9 percent for multiplying matrices of length 350*350 and 73.3 percent for

multiplying matrices of length 450*450.

Figure 6. 35: Comparison of the Turnaround Time of the Matrix Multiplication Service
Execution in Local and Remote Execution

Figure 6.36 shows the comparison the TT of power compute service execution in

different scenarios. It is examined that the TT on the local SMD is smaller for performing

power compute operation without runtime profiling as compared to power compute

operation included with runtime profiling process. Experimental results indicate that by

including the runtime profiling mechanism the value of TT increases 68.1 percent for

computing 2^1000000, 84.8 for computing 2^20000000, 80.5 for computing 2^400000000

and 83.8 for computing 2^2000000000. The overall increase in the TT of power compute

service by including runtime profiling is determined as 76.8(+/-)2.4 with 99% confidence

in the sample space of 30 values.

The comparison of TT for power compute operation in local execution and

traditional offloading technique shows that TT of the power computing increases

considerably in runtime component offloading. It is examined that in offloading power

compute service in the SOP of DEAP client application, the TT of power computing

0
50000

100000
150000
200000
250000
300000
350000
400000

T
ur

na
ro

un
d

T
Im

e
(m

s)

Length of Matrices

TT on Local SMD Without Profiling
TT on Local SMD Including Profiling
TT in POP of DEAP Client
TT in Traditional Runtime Offloading without Profiling
TT in Traditional Runtime Offloading including Profiling

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

227

increases as follows: 99.3 percent for computing 2^1000000, 96.2 percent for computing

2^20000000, 81.4 percent for computing 2^400000000 and 74 for computing

2^2000000000. Similarly, in offloading power compute service with employing runtime

profiling on the local mobile device the TT of the power compute operation in remote

processing as compared to local execution on mobile device increases by 99.3 percent for

computing 2^1000000, 96.9 percent for computing 2^20000000, 89.5 percent for

computing 2^400000000 and 88.9 percent for computing 2^2000000000.

Figure 6. 36: Comparison of the Turnaround Time (of Power Compute Operation in in
Local and Remote Execution

The comparison of power compute service execution on local mobile device and the

DEAP based execution indicates that TT of power compute operation is increased in the

SOP of DEAP client application. The comparison of TT for power compute operation in

local execution and SOP of offloading technique shows that TT of the power computing

increases considerably in runtime component offloading. However, the increase in TT is

higher in traditional runtime computational offloading with employing profiling mechanism

as compared to the SOP of DEAP which offloads power compute service without

employing profiling. The decrease in TT in SOP of DEAP client application as compared to

0
100000
200000
300000
400000
500000
600000
700000

T
ur

na
ro

un
d

T
im

e
(m

s)

Length of Power Computing

TT of Power Compute Operation on Local SMD

TT of Power Compute Operation in SOP of DEAP Client

TT of Power Compute Operation in Traditional
Computational offloading

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

228

the traditional runtime computational offloading which includes profiling mechanism is

examined as 2.6 percent for computing 2^2000000, 9.1 percent for computing 2^9000000,

28 percent for computing 2^80000000 and 57.3 percent for computing 2^2000000000. The

overall decrease in the TT of SOP of DEAP as compared to traditional computational

offloading is 27(+/-)9.2 with 99% confidence for the sample space of 30 values.

This section discusses the comparison of energy consumption cost of different

components of the prototype application in different scenarios. The ECC of the components

of the mobile application is compared from the perspective of local execution of the

intensive component of the application, and execution of the intensive component on the

remote sever node. Table 5.34 summarized the comparison of energy consumption cost for

sorting operation in different scenarios.

Figure 6.37 shows the comparison the ECC of sorting service execution in different

scenarios. It is examined that the ECC on the local SMD is smaller for performing sorting

operation without runtime profiling. Experimental results indicate that by including the

runtime profiling mechanism the value of ECC increases 2.3 percent for sorting list of

11000 values, 57.2 percent for sorting list of 22000 values, 68.8 percent for sorting list of

30000 and 72.9 percent for sorting list of 40000 values. The overall increase in the ECC of

sorting service by including runtime profiling in the sorting operation is determined as

97(+/-)1 with 99% confidence in the sample space of 30 values.

The comparison of ECC for sorting operation in local execution and traditional

offloading technique shows that ECC of the sorting service increases considerably in

runtime component offloading. The increase in ECC of the sorting service in remote

processing compared to local execution of on mobile device is examined as follows: 28.7

percent for sorting list of 11000 values, 61.1 percent for sorting list 25000 values, 64.9

percent for sorting list of 30000 values and 65.9 percent for sorting list of 40000 values.

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

229

Similarly, in offloading sorting service by employing runtime profiling on the local mobile

device, the increase in ECC of the sorting service in remote processing compared to local

execution on mobile device is as follows: 58 percent for sorting list of 11000 values, 77

percent for sorting list 25000 values, 81 percent for sorting list of 35000 values and 82

percent for sorting list of 40000 values.

The comparison of sorting service execution on local mobile device and the DEAP

based execution signifies the decrease in ECC of the sorting operation in the POP of DEAP

client application. It is examined that by accessing the services of DEAP server application

in the POP of DEAP client application on mobile device, the ECC of sorting services

reduces 85.1 percent for sorting list of 11000 values, 85.2 percent for sorting list of 25000

values and 88.6 percent for sorting list of 40000 values. The overall reduction in ECC value

for sorting service in POP of DEAP client application is 86(+/-)0.9 percent with 99%

confidence in the sample space of 30 values.

The comparison of ECC for the sorting operation in the POP of DEAP and

traditional offloading signifies the lightness of DEAP framework for computational

offloading. Figure 6.37 shows the increasing trend of ECC in offloading sorting service at

runtime. The ECC of sorting service in runtime component offloading (without including

profiling) as compared to the POP of DEAP increases 85.1 percent for sorting list of 11000

values, 85.1 percent for sorting list of 20000 values, 88.4 percent for sorting list of 31000

values and 88.4 percent for sorting list of 40000 values. Whereas, ECC of sorting service in

runtime component offloading by including profiling as compared to the POP of DEAP

increases 85.2 percent for sorting list of 11000 values, 90.3 percent for sorting list of 20000

values, 93.6 percent for sorting list of 31000 values and 94 percent for sorting list of 40000

values.

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

230

Figure 6. 37: Comparison of Energy Consumption Cost for Sorting Service in Local and
Remote Execution

Table 5.35 summarized the comparison of the ECC of matrix multiplication

operating of the application in local and remote execution. It is examined that the ECC on

the local SMD is smaller for performing matrix multiplication without runtime profiling as

compared to matrix multiplication included with runtime profiling process.

Figure 6.38 shows the comparison the ECC of matrix multiplication service

execution in different scenarios. Experimental results indicate that by including the runtime

profiling mechanism the value of ECC increases by 19.4 percent for multiplying matrices

of length 160*160, 19.1 percent for multiplying matrices of length 250*250, 18.9 percent

for multiplying matrices of length 350*350 and 22.1 percent for multiplying matrices of

length 450*450. The overall increase in the ECC of matrix multiplication service by

including runtime profiling in the matrix multiplication operation is determined as 20(+/-)1

with 99% confidence in the sample space of 30 values.

The comparison of ECC for matrix multiplication operation in local execution and

traditional offloading technique shows that ECC of the matrix multiplication increases

considerably in runtime component offloading. It is examined that in offloading matrix

0
50

100
150
200
250
300
350
400
450

E
ne

rg
y

C
on

su
m

pt
io

n
C

os
t

(J
)

Length of The Sorting List

ECC on Local SMD (Without Profiling)
ECC on Local SMD (Including Profiling)
ECC in POP of DEAP Client Application
ECC Traditional Runtime Offloading (Without Profling)
ECC Traditional Runtime Offloading (Including Profling)

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

231

multiplication service without employing runtime profiling on the local mobile device the

ECC of the matrix multiplication service in remote processing compared to local execution

on mobile device increases by 68 percent for multiplying matrices of length 160*160, 59

percent for multiplying matrices of length 250*250, 51 percent for multiplying matrices of

length 300*300 and 46 percent for multiplying matrices of length 450*450.

Similarly, in offloading matrix multiplication service with employing runtime

profiling on the local mobile device, the ECC of the matrix multiplication service in remote

processing compared to local execution on mobile device increases 70 percent for

multiplying matrices of length 160*160, 62 percent for multiplying matrices of length

250*250, 57 percent for multiplying matrices of length 300*300 and 53 percent for

multiplying matrices of length 450*450.

The comparison of matrix multiplication service execution on local mobile device

and DEAP based execution signifies the decrease in ECC of matrix multiplication operation

in the POP of DEAP client application. It is examined that in the POP of DEAP client

application on mobile device, the ECC of matrix multiplication operation reduces 19.4

percent for multiplying matrices of length 160*160, 42 percent for multiplying matrices of

length 270*270, 44 percent for multiplying matrices of length 350*350 and 9.5 percent for

multiplying matrices of length 450*450. The overall reduction in ECC value for matrix

multiplication service in POP of DEAP client application is 34.9(+/-) 5.4 percent with 99%

confidence in the sample space of 30 values.

The comparison of ECC for the matrix multiplication operation in the POP of

DEAP and traditional offloading signifies the lightness of DEAP framework for

computational offloading. Figure 6.38 shows the increasing trend of ECC in offloading

matrix multiplication service. The increase in ECC of matrix multiplication operation in

runtime component offloading (without including profiling) as compared to the POP of

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

232

DEAP is examined as follows: 73 percent for multiplying matrices of length 160*160, 70.3

percent for multiplying matrices of length 230*230, 61.7 percent for multiplying matrices

of length 350*350 and 50.4 percent for multiplying matrices of length 450*450. Whereas,

the increase in ECC of matrix multiplication in runtime component offloading by including

profiling as compared to the POP of DEAP is 74.9 percent for multiplying matrices of

length 160*160, 72.9 percent for multiplying matrices of length 230*230, 66 percent for

multiplying matrices of length 350*350 and 57 percent for multiplying matrices of length

450*450.

Figure 6. 38: Comparison of Energy Consumption Cost for Matrix Multiplication Service in Local and
Remote Execution

Table 5.36 summarized the comparison of the ECC of the power compute operation

of the application in local and remote execution scenarios. It is examined that the ECC on

the local SMD is smaller for performing power compute operation without runtime

profiling as compared to power compute operation included with runtime profiling process.

Figure 6.39 shows the comparison the ECC of power compute service execution in

different scenarios. Experimental results indicate that by including the runtime profiling

mechanism the value of ECC increases by 11.5 percent for computing 2^2000000, 32.8 for

computing 2^20000000, 57.6 percent for computing 2^400000000 and 62.1 percent for

0
20
40
60
80

100
120
140
160

E
ne

rg
y

C
on

su
m

pt
io

n
C

os
t (

J)

Length of Matrices

ECC on Local SMD (Without Profiling)
ECC on Local SMD (Including Profiling)
ECC in POP of DEAP Client Application
ECC Traditional Runtime Offloading (Without Profling)
ECC Traditional Runtime Offloading (Including Profling)

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

233

computing 2^2000000000. The overall increase in the ECC of power compute service by

including runtime profiling is determined as 40(+/-)12 with 99% confidence in the sample

space of 30 values.

The increase in the ECC of offloading power compute service in the SOP of DEAP

client application is examined as follows: 59.3 percent for computing 2^1000000, 70.5

percent for computing 2^20000000, 72.6 percent for computing 2^400000000 and 80.9 for

computing 2^2000000000. Similarly in offloading power compute service with traditional

computational offloading by using profiling on the local mobile device the ECC of the

power compute operation increases in remote processing compared to local execution on

mobile device increases 59.3 percent for computing 2^1000000, 74.2 percent for computing

2^20000000, 80 percent for computing 2^400000000 and 85.5 percent for computing

2^2000000000.

The comparison of power compute service execution on local mobile device and the

DEAP based execution indicates that ECC of power compute operation is increased in the

SOP of DEAP Client application. The comparison of ECC for power compute operation in

local execution and SOP of offloading technique shows that ECC of the power computing

increases considerably in runtime component offloading. However, the increase in ECC is

higher in runtime computational offloading as compared to the SOP of DEAP which

offloads power compute service without profiling. The decrease in ECC in SOP of DEAP

client application as compared to the traditional runtime computational offloading which

includes profiling mechanism is examined as 4.4 percent for computing 2^2000000, 14.5

percent for computing 2^40000000, 31 percent for 2^500000000 and 23.8 percent for

computing 2^2000000000. The overall decrease in the ECC of SOP of DEAP as compared

to traditional computational offloading is 17(+/-)5.2 with 99% confidence for the sample

space of 30 values.

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

234

Figure 6. 39: Comparison of Energy Consumption Cost for Power Compute Service in
Local and Remote Execution

Table 5.37 summarized the comparison of RAM utilization for sorting operation in

executing sort service on local mobile device and remote execution in the POP of DEAP

client application. It is examined that RAM allocation on the mobile device increase for the

sorting service with the increase in the length of sorting list. For instance sorting service is

allocated 10.148 MB RAM in sorting list of 11000 values, 10.21 MB in sorting list 25000

values and 10.265 MB in sorting list 40000 values. It indicates that the allocation of RAM

on the mobile device varies with length of sorting list.

The allocation of RAM to DEAP client application varies in accessing sorting

service of the DEAP server application. It is examined that the allocation of RAM to the

DEAP client application increases by increasing the length of sorting list while accessing

sorting operation of the DEAP server application. The size of resultant list returned to the

local mobile device increases by increasing the length of sorting list, hence the size of

RAM allocated to DEAP client application increases accordingly.

The comparison of RAM allocation in local sorting service execution and DEAP

based sorting operation signifies the usefulness of DEAP framework. It is examined that the

interval estimate for allocated RAM for sorting service component of the application is

10.20987(+/-) 0.016367 MB with 99% confidence for the sample space of 30 values,

0
100
200
300
400
500

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Length of Power Computing

ECC of Power Compute Operation on Local SMD
ECC of Power Compute Operation in SOP of DEAP Client
ECC of Power Compute Operation in Traditional Computational offloading

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

235

whereas in accessing sorting service of the DEAP Server application, additional RAM

allocated for DEAP client application is 2.6023(+/-)0.457 MB with 99% confidence for the

sample space of 30 values. It indicates that RAM allocation on the local mobile device is

reduced 74.5 percent in accessing sorting operation in the POP of DEAP client application.

Figure 6.40 shows the comparison of RAM allocation for sorting service in local

application execution and remote execution in the POP of DEAP Client application.

Figure 6. 40: RAM Allocation for Sorting Operation on SMD Local Service Execution and

in POP of DEAP

Table 5.38 summarized the comparison of RAM utilization for matrix

multiplication operation in executing matrix multiplication service on local mobile device

and remote execution in the POP of DEAP client application.

Figure 6.41 shows the comparison of RAM allocation in local execution of matrix

multiplication service and accessing matrix multiplication service in the POP of DEAP

client application. It is examined that RAM allocation on the mobile device increase for the

matrix multiplication service with the increase in the length of multiplying matrices. For

instance, matrix multiplication service is allocated 2.78 MB RAM in multiplying matrices

of length 160*160, 6.94 MB in multiplying matrices of length 25*250, 13.7 MB in

multiplying matrices of length 350*350 and 22.8 MB in multiplying matrices of length

0
2
4
6
8

10
12

R
A

M
 A

llo
ca

tio
n

(M
B

)

Length of Sorting List

RAM Allocationfor Sorting Operation on Mobile Device

RAM Allocation on Mobile Device in Accessing Sorting
Service in DEAP Client Application

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

236

450*450. It indicates that the allocation of RAM on the mobile device varies with length of

matrices being multiplied. Similarly, the allocation of RAM to DEAP client application

varies in accessing matrix multiplication service of the DEAP server application.

It is examined that allocation of RAM to the DEAP client application increases by

increasing the length of multiplying matrices size while accessing matrix multiplication

service of the DEAP server application. The size of resultant matrix returned to the local

mobile device increases by increasing the length of multiplying matrix, hence the size of

RAM allocated to DEAP client application increases accordingly.

Figure 6. 41: Comparison of RAM Allocation in Local Execution of Matrix Multiplication
Service and in the POP of DEAP

The comparison of RAM allocation in local matrix multiplication service execution

and DEAP based matrix multiplication operation signifies the usefulness of DEAP

framework. It is examined that the sample mean for allocated RAM for matrix

multiplication service component of the application is 11.205(+/-)2.866 with 99%

confidence for the sample space of 30 values, whereas in accessing matrix multiplication

service of the DEAP server application, additional RAM allocated for DEAP client

application is 6.467(+/-)1.6723 MB with 99% confidence for the sample space of 30

0

5

10

15

20

25

R
A

M
 A

llo
ca

tio
n

(M
B

)

Length of the Matrices

RAM Allocation Matrix Multiplication Operation on
Mobile Device
RAM Allocation on Mobile Device in Accessing Matrix
Multiplication Service in DEAP Client Application

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

237

values. Analysis of the results indicates that RAM allocation on the local mobile device is

reduced 42.2 percent in accessing matrix multiplication operation in the POP of DEAP

client application.

The power compute service of the application is offloaded at runtime by employing

SOP of DEAP client application. Hence, the entire logic of the power computing is

executed on the remote server node. It is examined that in the SOP the allocation of RAM

to the local mobile device remains constant and the increase in the RAM allocation is

observed as zero percent. It is determined that sample mean for RAM allocation in local

execution of power computing is 10.11(+/-).00045 MB with 99% confidence with the

sample space of 30 values. However, the allocation of RAM is reduced to zero percent in

SOP of DEAP Client application. Hence, the RAM allocation for power compute operation

is saved up to 100% in the SOP of DEAP client application.

In the POP of DEAP client application the entire logic of the intensive components

of the mobile application is offloaded to the preconfigured server. Hence, the application

running on the local mobile devices is not required to allocate RAM for the execution of

offloaded components of the application. It is observed that the allocation of RAM for the

DEAP client application on local mobile device remains constant for accessing the sorting

operation, matrix multiplication operation and power compute operation on the DEAP

server application. It indicates that the increase in the RAM allocation for DEAP client

application reduces to zero during the execution of services on the preconfigured server

application on the remote server node. However, the allocation of RAM increases gradually

whenever the size of data returned from the remote server node increases. For instance, the

allocation of RAM for DEAP client application increases 1.14 percent for the returned

sorted list of 40000 values as compared 11000 values. Similarly, the allocation of RAM for

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

238

DEAP client application increases 87.8 percent for the returned resultant 450*450 size

matrix as compared 160*160 size matrix.

Table 5.39 summarized the comparison of CPU utilization in the execution of

mobile application on local mobile device and remote execution by employing the POP and

SOP of DEAP framework. Figure 6.51 compares CPU utilization on the mobile device in

local execution of components the mobile application and accessing the services of cloud

server node. The execution of application on local mobile devices resulted in high CPU

utilization for a longer period of time as compared to accessing the services of cloud server

node.

It is examined that the average CPU utilization for executing sorting service on

local mobile device is 48.67 percent of the total CPU utilization on local mobile device for

17427(+/-) 3707 ms duration. However, in accessing the sorting service of DEAP server

application on the cloud server node, the CPU utilization for DEAP client application on

local mobile device is observed as 25.5 percent of the total CPU utilization for 7224(+/-)

1560 ms duration. Analysis of the comparison for CPU utilization between local sort

service execution and accessing sorting service of cloud server node indicates the average

CPU utilization for sorting operation reduces 47.6 percent on the local mobile device.

Further, the period of CPU utilization on the local mobile device is reduced up to 58.5

percent.

The average CPU utilization for executing matrix multiplication service on local

mobile device is 45.46 percent of the total CPU utilization on local mobile device for

31190(+/-) 12270 ms duration. However, in accessing the matrix multiplication service of

DEAP server application on the cloud server node, the CPU utilization for DEAP client

application on local mobile device is observed as 35.4 percent of the total CPU utilization

for 28085(+/-) 11132 ms duration. Analysis of the comparison for CPU utilization between

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

239

local matrix multiplication service execution and accessing matrix multiplication service of

cloud server node indicates the average CPU utilization for matrix multiplication operation

reduces 22.1 percent on the local mobile device. Further, the period of CPU utilization on

the local mobile device is reduced up to 10 percent for matrix multiplication operation in

DEAP based computational offloading.

The average CPU utilization for executing power compute service on local mobile

device is 48 percent of the total CPU utilization on local mobile device. However, it is

examined that the CPU utilization for operating system CPU utilization increases up to 3

percent on the Android virtual device, whereas for the physical mobile device the increase

in CPU utilization is zero percent.

Figure 6. 42: Comparison of CPU Utilization in Local Application Execution and DEAP
Based Execution

The comparison for CPU utilization between local power compute service execution

and accessing power computing service of cloud server node indicates the average CPU

utilization for power computing operation reduces 93.8 percent on the local mobile device.

0
5

10
15
20
25
30
35
40
45
50

Sort Service Matrix Multiplication
Service

Power Compute
Service

Pe
rc

en
t C

PU
 U

til
iz

at
io

n

Percent CPU in Local Application Execution
Percent CPU in DEAP Based Application Execution

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

240

Further, the period of CPU utilization on the local mobile device is reduced up to 90

percent for power computing operation in DEAP based computational offloading.

In the POP and SOP of DEAP client application the entire logic of the intensive

components of the mobile application is offloaded to cloud sever node. Hence, the

application running on the local mobile devices is not required to schedule CPU for the

execution of offloaded components of the application. It is observed that the utilization of

CPU for the DEAP client application on local mobile device remains constant for accessing

the sorting operation, matrix multiplication operation and power compute operation on the

DEAP server application. It indicates that the increase in the CPU utilization for DEAP

client application reduces to zero during the execution of services on the cloud server node.

However, the results returned for the remote server node to mobile device are

extracted from returned SOAP message which requires additional processing on the local

mobile device. Hence, the percentage and the time period of CPU utilization for DEAP

client application increases gradually whenever the size of data returned from the remote

server node increases. For instance, CPU utilization for the returned sorted list of 40000

values increases 22.5 percent and for the 72.6 percent longer period of time as compared to

sorted list of 110000 values. Similarly, CPU utilization for the returned resultant of

450*450 size matrix increases 32.4 percent and for the 96.38 longer period of time as

compared to the resultant matrix of 160*160 size.

Table 5.40 summarized the comparison of the size of data transmitted over the

wireless network medium for sorting service in offloading computational load in the

proposed DEAP framework and traditional application offloading technique. It is examined

that larger amount of data is transmitted in traditional component offloading as compared to

the DEAP based computational offloading. Figure 6.43 shows the comparison of data

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

241

transmission in traditional runtime application offloading and proposed DEAP based

computational offloading for sort service component of the application.

The size of data transmission over the wireless network medium varies for different

length of sorting list. It is examined that the data transmission size for offloading sort

service with the list of 11000 values is 752.4 KB, whereas the size of data transmission in

accessing sorting service of DEAP server application is 183 KB. Similarly, the size of data

transmission is 2645.4 KB for list of 40000 values in traditional computational offloading,

whereas the size of data transmission in DEAP is 692 KB in accessing sorting service of

DEAP server application. It shows that in DEAP based computational offloading the size of

data transmission over the wireless medium is reduced 76 percent for sorting list of 1100

values and 74 percent for sorting list of 40000 values. The average reduction of data

transmission over the wireless network medium is 74.7 percent in DEAP based

computational offloading for the sorting list of 11000-40000 values.

Figure 6. 43: Comparison of the Size of Data Transmission in Traditional Offloading and
DEAP Based Offloading for Sorting Operation

0

500

1000

1500

2000

2500

3000

D
at

a
T

ra
ns

m
is

si
on

 (K
B

)

Length of Sorting List

Size of Data Transmission in Traditional
Computational Offloading
Size of Data Transmission in DEAP
Based Computational Offloading

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

242

Table 5.41 summarized the comparison of the size of data transmitted over the

wireless network medium for matrix multiplication service in offloading computational

load in the proposed DEAP framework and traditional application offloading technique. It

is examined that larger amount of data is transmitted in traditional component offloading as

compared to the DEAP based computational offloading.

Figure 6.44 shows the comparison of data transmission in traditional runtime

application offloading and proposed DEAP based computational offloading for matrix

service component of the application. The size of data transmission over the wireless

network medium varies for different size of matrices. It is examined that the data

transmission size for offloading matrix multiplication service with the size of matrix

160*160 values is 5739.44 KB, whereas the size of data transmission in accessing matrix

multiplication service of DEAP Server application is 463 KB. Similarly, the size of data

transmission is 46740.4 KB for the size of matrix 450*450 values in traditional

computational offloading, whereas the size of data transmission in DEAP is 3308 KB in

accessing matrix multiplication service of DEAP server application. It shows that in DEAP

based computational offloading the size data transmission over the wireless medium is

reduced 91.9 percent for matrix size 160*160 and 92.2 percent for matrix size of 450*450

values. The average reduction of data transmission over the wireless network medium is 92

percent in DEAP based computational offloading for the matrices of size 160*160-

450*450. Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

243

Figure 6. 44: Comparison of the Size of Data Transmission in Traditional Offloading and
DEAP Based Offloading for Matrix Multiplication Operation

6.5 Conclusion

DEAP framework employs lightweight procedures for leveraging application

processing services of computational clouds. DEAP reduces computing resources (RAM

and CPU) utilization on mobile device by leveraging the service of cloud server node. It is

observed that in the POP of DEAP, the allocation of RAM and CPU utilization on mobile

device for the DEAP client application remains constant for accessing the sorting operation,

matrix multiplication operation and power compute operation on the DEAP server

application. It shows that the increase in the RAM allocation and CPU utilization for

DEAP client application reduces to zero during the execution of services on the

preconfigured server application on the remote server node. However, the allocation of

RAM on the local mobile device increases for processing the resultant data returned from

the clouds server node. It is examined that RAM allocation is reduced 74.5 percent in

sorting the list of 11000-40000 values, 42.28 percent in multiplying matrices of length

160*160-450*450 in the POP of DEAP framework and 100% in offloading power compute

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

Si
ze

 o
f D

at
a

T
ra

ns
m

is
si

on
(K

B
)

Length of Matrix

Size of Data Transmission in Traditional
Computational Offloading
Size of Data Transmission in DEAP Based
Computational Offloading

Univ
ers

iti
Mala

ya

Chapter: 6 Results and Discussion

244

service to cloud server node in the SOP of DEAP framework. Similarly, CPU utilization is

reduced 47.6 percent for sorting list 11000-40000 values, 22.2 percent in 93.8 percent in

offloading power compute service in the SOP of DEAP framework.

DEAP framework reduces the cost of migration of application binary file and data

file of the running instances of the mobile application. As a result, the size of data

transmission over the wireless network medium, turnaround time of the intensive

operations and energy consumption cost on mobile device is reduced considerably.

Analysis of the results signifies the lightweight nature of DEAP framework by reducing the

size of data transmission, turnaround time and energy consumption cost in cloud based

processing of the intensive component of mobile application. The data communication cost

over the wireless network medium is reduced considerably in DEAP application. The

distributed nature of DEAP results in the reduction of the size of data transmission over the

wireless network medium. It is observed that the POP of DEAP framework eliminates the

additional cost application binary code migration and active data state migration to the

cloud server node at runtime.

Hence, the energy consumption cost and turnaround time of the component of the

mobile application are reduced. For instance, the size of data transmission for sorting

service is reduced 74.8 percent, turnaround time of sorting operation is reduced 91.3

percent and energy consumption cost is reduced 86.7 percent compared to the traditional

computational offloading technique. Similarly, the size of data transmission for matrix

multiplication operation is reduced 92.8 percent, turnaround time is reduced 67.8 percent

and energy consumption cost is reduced 64.2 percent compared to the traditional

computational offloading technique. It is concluded that DEAP framework provides a

lightweight application layer solution for the distributed processing of intensive mobile

applications in mobile cloud computing.

Univ
ers

iti
Mala

ya

Chapter 7: Conclusion

245

CHAPTER 7

Conclusion

This chapter reevaluates the research objectives, summarizes contribution of the

research, discusses the scope and limitation, and future research directions of this research.

The chapter is organized into four sections. Section 7.1 discusses the reappraisal of

the objectives of this research work. Section 7.2 summarizes contribution of the research

work. Section 7.3 discusses the scope of the research work. Section 7.4 proposes future

directions of the research works

7.1 Reappraisal of the Objectives Achievement

This research investigates the problem of additional computing resources utilization

in traditional computational offloading techniques and proposes a lightweight DEAP

framework for the processing of intensive mobile applications in MCC. Section 1.4

highlighted four objectives of this research, which are achieved as follows:

A thematic taxonomy of traditional computational offloading frameworks is produced

to achieve the objective of literature review. We studied state-of-the-art from web databases

and online digital libraries (IEEE, ACM and ISI Web of Knowledge). We selected 250

papers in the broader domain of cloud computing, mobile computing and mobile cloud

computing and reviewed the latest literature for current DAPFs by selecting 25 frameworks

for five years (2007-2012). Computational offloading frameworks are reviewed for four

different distributed application processing models which are categorized into a thematic

taxonomy (Section 2.2.1). Qualitative analysis is used to highlight the implications and

critical aspects of current computational offloading frameworks (Section 2.2.2). Current

Univ
ers

iti
Mala

ya

Chapter 7: Conclusion

246

DAPFs are synthesized on the basis of taxonomy (Section 2.4) and the issues and

challenges for computational offloading in MCC are highlighted.

The research problem is established by quantitative analysis of runtime

computational offloading and Virtual Machine (VM) deployment for application

processing. A prototype application is benchmarked in the real mobile cloud computing

environment for evaluating the additional energy consumption cost, timing cost and size of

data transmission in the traditional computational offloading techniques (section 3.2). The

impact of virtual machine deployment for application processing is analyzed in the

simulation environment (section 3.3).

A lightweight Distributed and Elastic Application Processing (DEAP) framework is

proposed to achieve the objective of lightweight solution for the processing of intensive

mobile applications in MCC. DEAP framework addresses the problem of additional

computing resources utilization in distributed processing of intensive mobile applications.

It proposes lightweight operation procedures for the processing of intensive mobile

applications in MCC (Section 4.2). DEAP framework reduces the cost of migration of

application binary file and data file of the running instances of the mobile application. As a

result, the size of data transmission over the wireless network medium, turnaround time of

the intensive operations and energy consumption cost on mobile device is reduced

considerably.

Synthetic workload is tested in the emulation environment on the Android virtual

device instance to achieve the objective of evaluating DEAP. Virtual device instance is

enabled to operate in the distributed mobile cloud computing environment. The

performance of DEAP framework is validated by benchmarking prototype application in

the real mobile cloud computing environment.

Univ
ers

iti
Mala

ya

Chapter 7: Conclusion

247

Results of different experimental scenarios are compared to validate the lightweight

nature of DEAP framework. DEAP framework reduces resources utilization on SMD and

the cost of distributed processing of the prototype application in MCC as follows: RAM

allocation on mobile device 71.4 percent, CPU utilization on mobile device 55 percent, the

size of data transmission over the wireless network medium 84 percent, turnaround time of

the application 80.6 percent and energy consumption cost 69.9 percent. Hence, DEAP

framework provides a lightweight application layer solution for intensive mobile

application processing in MCC.

7.2 Contribution of the Research

This research produced a number of contributions to the body of knowledge which

are summarized as follows:

 Thematic Taxonomy: The taxonomy is used to analyze the implications and critical

aspects of current computational offloading frameworks and compare current

DAPFs on the basis of significant parameters. Literature review contributed to

identify issues and challenges for computational offloading in MCC.

 A Computational Intensive Prototype Application: We developed a prototype

application to evaluate the additional computing resources utilization in traditional

computational offloading. The prototype application is composed of computational

intensive components which are offloaded at runtime to analyze additional resource

utilization in traditional computational offloading technique. We develop

monitoring application for implementing the algorithm of active service level

component migration on Android devices. The required managerial components are

developed for the runtime distributed deployment and management of intensive

components of mobile application. The prototype application is evaluated for

Univ
ers

iti
Mala

ya

Chapter 7: Conclusion

248

establishing the research problem. The measurement parameters for the analysis of

traditional computational offloading include energy consumption cost, timing cost

and size of network data traffic.

 An Extended Simulation Model: We simulated the IaaS service provision model of

computational clouds by using CloudSim. Cloud computing environment is

simulated by modeling datacenters, hosts and datacenter broker. We model two

datacenters and each datacenter is composed of fifty computing hosts. Each

datacenter contains a datacenter broker which is responsible for arbitrating

negotiations between SaaS and cloud providers; such negotiations are driven by

Quality of Service (QoS) requirements. We create different number of VMs in

various scenarios. Cloudlet is modeled for cloud based application services (such as

content delivery, social networking, and business workflow). CloudSim organizes

the complexity of an application in terms of its computational requirements. Cloud

application service (cloudlet) is simulated with pre-assigned instruction length and

data size overhead which is undertaken during its lifecycle. VM is simulated with

the required computing specifications. Cloudlet is allocated to a certain VM inside

the host of datacenter. VM deployment for application execution is evaluated in

different scenarios.

 A Simulation tool (SmartSim): We developed SmartSim for the partitioning of

elastic mobile applications. SmartSim models the application processing attributes

of SMDs in an easy to set up environment. The SmartSim toolkit is developed on

the basis of CloudSim by using J2SE. It supports both the system and behavior

modeling of SMD components such as application processor, memory, resources

provision, computing resources utilization evaluation, dynamic processing

Univ
ers

iti
Mala

ya

Chapter 7: Conclusion

249

management policies and computational intensive mobile application modeling for

SMD. Currently, SmartSim implements iterative algorithm for the partitioning of

elastic mobile application on mobile device. SmartSim is a Java based platform

independent and generic simulation toolkit which can be easily configured for the

evaluation of the application partitioning algorithms for MCC.

 A Lightweight DEAP Framework: We propose a novel Distributed and Elastic

Application Processing (DEAP) framework for the processing of intensive mobile

applications in MCC. DEAP framework focuses on reducing the cost of distributed

application deployment and management for the processing of intensive mobile

applications in MCC. DEAP bridges the gap of distributed design in current DAPFs

for the processing of intensive mobile applications in MCC. The Primary Operating

Procedure (POP) of DEAP framework employs the SaaS service provision model of

computational clouds for the deployment of distributed processing of intensive

mobile applications in MCC. The distributed aspect of DEAP employs lightweight

procedure for the processing of intensive mobile applications in MCC. DEAP

framework sustains robust features of the elasticity of traditional frameworks by

employing runtime component offloading as Secondary Operation operating

Procedure (SOP). The SOP of DEAP framework is significant for computational

offloading of traditional mobile applications which lack in the distributed design for

cloud based distributed processing.

 DEAP Framework Based Prototype Application: We develop a prototype

application to implement the algorithm of DEAP framework. The prototype

application is evaluated with varying computational intensities to validate the

usefulness of DEAP framework. We implement the operating procedures of DEAP

Univ
ers

iti
Mala

ya

Chapter 7: Conclusion

250

by developing our own Application Programming Interface (API) for enabling

active service migration to cloud server nodes at runtime. Socket programming is

employed for synchronization and data communication between the local mobile

device and cloud server node. The API provides middleware services for masking

the complexities of computational offloading at runtime. The API implements the

services of uploading the computational load of the mobile device at runtime.

 DEAP framework reduces the cost of migration of application binary file and data file of

the running instances of the application. As a result, the size of data transmission over the

wireless network medium, turnaround time of the intensive operations and energy

consumption cost on mobile device is reduced considerably. DEAP framework reduces

additional resources utilization for the processing of intensive mobile application in MCC.

Hence, DEAP framework provides a lightweight application layer solution for intensive

mobile application processing in MCC.

We were awarded the following distinctions while doing this research.

Distinctions

 Winner of the 3 Minutes Thesis (3MT) Competition at Faculty of Computer

Science and Information Technology, University of Malaya, Malaysia in July 2013.

 Best Research Paper Award in the 1st Post Graduate Symposium for Excellence

organized by Faculty of Computer Science and Information Technology University

of Malaya, Malaysia in September, 2011.

 Runner up in the 2nd Post Graduate Symposium for Excellence organized by

Faculty of Computer Science and Information Technology University of Malaya,

Malaysia September, 2012.

Univ
ers

iti
Mala

ya

Chapter 7: Conclusion

251

We produced the following research papers from this research.

Accepted Articles

 Muhammad Shiraz, Ejaz Ahmed, Abdullah Gani, Qi Han Investigation on Runtime

Partitioning of Elastic Mobile Applications for Mobile Cloud Computing Journal of

Supercomputing, DOI:10.1007/s11227-013-0988-6, August 2013 (ISI Indexed Q2,

Impact Factor 0.917)

 Muhammad Shiraz, Abdullah Gani, Rashid Hafeez Khokhar, and Rajkumar Buyya, A

Review on Distributed Application Processing Frameworks in Smart Mobile Devices

for Mobile Cloud Computing, IEEE Communications Surveys & Tutorials, Volume 15,

Issue 3, November 2012November 2012. (ISI Indexed Q1, Impact Factor 6.3, the top

Most Journal of the Domain in ISI WoS Ranking for 2011)

 Muhammad Shiraz, Saeid Abolfazli, Zohreh Sanaei, Abdullah Gani A study on virtual

machine deployment for application outsourcing in mobile cloud computing,

Publication in Journal of Supercomputing, Volume 63, No. 3, pp. 946-964 March 2013

(ISI Indexed Q3, Impact Factor 0.578)

 Muhammad Shiraz, Abdullah Gani, Rashid Hafeez Khokar An Extendable Simulation

Framework for Modeling Application Processing Potentials of Smart Mobile Devices

for Mobile Cloud Computing, Proceedings of Frontiers of Information Technology

2012, Pakistan, 19-21 December 2012. (ACM, IEEE Indexed Publication)

 Muhammad Shiraz, Abdullah Gani, Rashid Hafeez Khokar Towards Lightweight

Distributed Applications For Mobile Cloud Computing, 2012 IEEE International

Conference on Computer Science and Automation Engineering (CSAE 2012),

Univ
ers

iti
Mala

ya

Chapter 7: Conclusion

252

Zhangjiajie, China, May 25-27, 2012 (Scopus, , Ei-Compendex and IEEE Indexed

Publication Publication)

 Muhammad Shiraz, Abdullah Gani “Mobile Cloud Computing: Critical Analysis of

Application Deployment in Virtual Machines” 2012 Proceedings of ICICN, Singapore,

2012, 26-28 February 2012 (Scopus and ISI Indexed)

Articles under Review:

 Muhammad Shiraz,Ejaz Ahmed, Mehdi Sookhak, Abdullah Gani, Rajkumar Buyya A

Lightweight Distributed Framework for Computational Offloading in Mobile Cloud

Computing, Pervasive and Mobile Computing, Under Review Since July 2013 (ISI

Indexed Q1, Impact Factor 1.629)

 Muhammad Shiraz, Abdullah Gani, Ejaz Ahmed, Rajkumar Buyya An Energy Efficient

Computational Offloading Framework for Mobile Cloud Computing, Journal of Grid

Computing, Under Review Since May 2013(ISI Indexed Q1, Impact Factor 1.607)

 Muhammad Shiraz, Abdullah Gani, Ejaz Ahmed Computational Offloading for Mobile

Cloud Computing, Issues and Challenges, Journal of Grid Computing, Under Review,

Since April 2013(ISI Indexed Q1, Impact Factor 1.607)

 Muhammad Shiraz, Abdullah Gani A Distributed and Elastic Application Processing

Model for Mobile Cloud Computing, Frontiers of Computer Science, Under Review

Since April 2013, (ISI Indexed Q3, Impact Factor 0.298)

 Muhammad Shiraz, Abdullah Gani, Ejaz Ahmed, Qi Han,A Lightweight Active Service

Migration Framework for Intensive Mobile Applications in Mobile Cloud Computing,

Journal of Supercomputing, Under Review Since May 2013(ISI Indexed Q2, Impact

Factor 0.807).

This research has contributed to the following collaborative research articles.

Univ
ers

iti
Mala

ya

Chapter 7: Conclusion

253

Articles in Collaboration with Group Members

 Liu Jie Yao, Muhammad Shiraz, Ejaz Ahmed, Abdullah Gani, Partitioning of Elastic

Mobile Applications for Mobile Cloud Computing: Review, Issues and Challenges,

IEEE Communication Surveys and Tutorials, Under Review, March, 2013 (ISI Indexed

Q1, Impact Factor 6.3)

 Ejaz Ahmed, Muhammad Shiraz, Abdullah Gani Seamless Application Execution in

Mobile Cloud Computing, Review, Challenges and Issues, IEEE Communication

Surveys and Tutorials, Under Review, March, 2013 (ISI Indexed Q1, Impact Factor

6.3)

 Saeid Abolfazli, Zohreh Sanaei, Muhammad Shiraz, Abdullah Gani, MOMCC: Market-

Oriented Architecture for Mobile Cloud Computing Based on Service Oriented

Architecture, MobiCC 2012 : 2012 Proceedings of IEEE Workshop on Mobile Cloud

Computing, Beijing, China (ISI-Indexed Publication)

 Zohreh Sanaei, Saeid Abolfazli, Abdullah Gani, Muhammad Shiraz, SAMI: Service-

Based Arbitrated Multi-Tier Infrastructure for Mobile Cloud Computing, MobiCC 2012

Proceedings of IEEE Workshop on Mobile Cloud Computing, Beijing, China (ISI-

Indexed Publication).

 Laleh Boroumand, Muhammad Shiraz, Abdullah Gani A Review on Port-Knocking

Authentication Methods for Mobile Cloud Computing, Computing, under review since

June 2013 (ISI Indexed Q2, Impact Factor 0.807)

 Laleh Boroumand, Muhammad Shiraz, Abdullah Gani, Rashid Hafeez Khokar Global

healthcare village based on mobile cloud computing, Journal of Supercomputing, under

review since June 2013 (ISI Indexed Q2, Impact Factor 0.917)

Univ
ers

iti
Mala

ya

Chapter 7: Conclusion

254

 Ejaz Ahmed, Muhammad Shiraz, Abdullah Gani, Spectrum-aware Distributed Channel

Assignment in Cognitive Radio Wireless Mesh Networks, Malaysian Journal of

Computer Science, First Revision Submitted,August 2013(ISI Indexed Q4)

 Ejaz Ahmed, Muhammad Shiraz, Abdullah Gani, A Survey on Design Perspectives of

Seamless Distributed Application Execution Frameworks For Mobile Cloud

Computing, Journal of Computer Networks and Applications, under review, May 2013,

(ISI Indexed Q1, Impact Factor 1.065)

 Abdullah Gani, Muhammad Shiraz,Golam Muhammad Naeem A Review on

Interworking and Mobility Techniques for Seamless Connectivity in Mobile Cloud

Computing, Journal of Computer Networks and Applications, under review since June

2013 (ISI Indexed Q1, Impact Factor 1.46)

 Mehdi Sookhak, Md Whaiduzzaman, Muhammad Shiraz, Abdullah Gani, A Survey on

Remote Data Checking Auditing in Cloud Computing, ACM Computing Surveys,

under review, since July 2013 (ISI Indexed Q1, Impact Factor 3.543)

 Mehdi Sookhak, Md Whaiduzzaman, Muhammad Shiraz, Abdullah Gani, Anomaly

Detection on Wormhole in Geographic Routing Protocols of Wireless Sensor Networks,

Journal of Computer Networks and Applications, under review Since August 2013 (ISI

Indexed Q1, Impact Factor 1.46)

7.3 Research Scope and Limitations

The scope of this research is limited to analyzing the problem of heaviness in

traditional computational offloading and proposing lightweight solution for the processing

of computational intensive mobile applications in MCC. This research lacks in the

consideration of the supplementary issues which are associated in leveraging the

Univ
ers

iti
Mala

ya

Chapter 7: Conclusion

255

application processing services of computational clouds. The supplementary issues includes

seamless application execution in mobile cloud computing, richness of local services and

offline usability, privacy of the application processing on the cloud server nodes, security in

the wireless communication network and cloud datacenters, consistency of parallel

execution between local mobile device and remote server node and homogenous services

provision for the heterogeneous mobile devices operating platforms.

7.4 Future Work

This research is focused on the lightness of distributed deployment for the processing

of intensive mobile applications in MCC. It emphasizes on the minimization of computing

resources utilization on smart mobile device in cloud based processing of intensive mobile

applications. However, it lacks of considering supplementary issues associated with

computational offloading for MCC. Hence, the future research work includes extending the

scope this research to address the issues of seamless application execution, smart

applications for mobile cloud computing and heterogeneous service provision for mobile

devices operating platform. The following section discusses the future directions of this

research.

 The issue of seamless application execution in MCC is aimed to be addressed in our

future research. The seamless features of mobile application include concealing the

complexity of distributed application processing from mobile users. It is aimed to

investigate optimal middleware solutions for achieving the goals of seamless

application execution in computational offloading to cloud server nodes.

 We aim to address the issue of rich user experiences in distributed processing of

intensive mobile applications in our future research. Smart applications for mobile

cloud computing are attributed with the features of offline usability and rich user

Univ
ers

iti
Mala

ya

Chapter 7: Conclusion

256

experience which can operate in the situations of inaccessibility of cloud server nodes.

It is expected to analyze the incorporation of distributed application architecture for the

design and development of smart mobile applications for mobile cloud computing.

 The issue of heterogeneity in the operating system platform and hardware architecture

of the smart mobile devices is aimed to be addressed in our future research.

Homogenous solution is expected to provide a uniform service provisioning model for

heterogeneous devices, operating platforms and network technologies with minimum

possible resources utilization on the mobile device. We aim to investigate the

deployment the SaaS service provisioning model on the cloud server nodes for

addressing the issue of heterogeneity in mobile devices architectures and operating

platforms.

Univ
ers

iti
Mala

ya

257

References

Abebe, E., & Ryan, C. (2012). Adaptive application offloading using distributed
abstract class graphs in mobile environments. Journal of Systems and Software, 85(12),
2755-2769.

Abolfazli, S., Sanaei. Z., & Gani. A., (2011). “Mobile Cloud Computing: A Review on
Smartphone Augmentation Approaches”. Proceedings of The 1st International
Conference on Computing, Information Systems and Communications, Singapore, 11-
13 May, 2012.

Albanesius, C. (n.d.). Smartphone shipments surpass PC shipments for first time.
what’s next? Accessed on 15th December 2011.

Ali, M. (2009) “Green Cloud on the Horizon.” Proceedings of the 1st International
Conference on Cloud Computing (CloudCom), Lecture Notes in Computer Science,
Springer, 5931, 451-459, 2009.

Amazon S3. http://status.aws.amazon.com/s3-20080720.html Accessed on 20th July,
2011

Android Developers developer.android.com/ Accessed on 1st January, 2012.

Android Debug Bridge developer.android.com/tools/help/adb.html Accessed on 1st
January, 2012

Armbrust, M., Fox, A., Grifth, A., Joseph, D. A., Katz, H. R., Konwinski, A., Lee, G.,
Patterson, A. D., Rabkin, A., Stoica, A., & Zaharia, M. (2009). Above the Clouds: A
Berkeley View of Cloud Computing. Electrical Engineering and Computer Sciences
University of California at Berkeley.

Bahl, P., Han., Y. R., Li., E. L., Satyanarayanan., M. (2012). Advancing the State of
Mobile Cloud Computing. MCS’12, Low Wood Bay, Lake District, UK, June 25, 2012.

Balan, K. R., Satyanarayanan, M., Park, Y. S., & Okoshi, T. (2003) Tactics-Based
Remote Execution for Mobile Computing. MobiSys‘03: Proceedings of the 1st
International conference on Mobile systems, applications and services, ACM Press, San
Francisco, CA, USA 5-8 May (pp. 273-286), 2003.

Baldauf, M., Dustdar, S., & Rosenberg. F. (2007). A Survey On Context-Aware
Systems. International Journal of Ad Hoc and Ubiquitous Computing, 2(4), 263–277.

Barga, R., Auban, B. J., Gannon, D., Gannon, C. (2009). Cloud Computing
Architecture and Application Programming, News Microsoft Corporation SIGACT,
ACM press, 40(2), June, 2009.

Univ
ers

iti
Mala

ya

258

Barga, R., Gannon, D., Reed, D. (2011). The Client and the Cloud Democratizing
Research Computing. IEEE Internet Computing IEEE Computer Society, 15(1), 72-75.

Begum, Y., & Mohamed. M. (2010). “A DHT-based process migration policy for
mobile clusters,” in 7th International Conference on Information Technology, Las
Vegas, 12-14 April (934–938), 2010.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud
computing and emerging IT platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Generation computer systems, 25(6), 599-616.

Caceres, R., Cox, L., Lim, H., Shakimov, A., Varshavsky, A. (2009) Virtual Individual
Servers as Privacy-Preserving Proxies for Mobile Devices, MobiHeld’09 Barcelona,
Spain, 17 -18 August (37-42), 2009, ACM.

Calheiros, N. R., Ranjan, R., Beloglazov, Rose, D. F. A. C., & Buyya, R. (2011)
CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments
and Evaluation of Resource Provisioning Algorithms. Software:Practice and
Experience, 41(1), 23–50, January 2011.

Canepa, H. G., & Lee, D. (2010) A Virtual Cloud Computing Provider for Mobile
Devices, ACM Workshop on Mobile Cloud Computing & Services: Social Networks
and Beyond MCS’10, San Francisco, California, USA ACM Press, 15 June, 2010.

Chandramouli, R., Kharrazi, M., & Memon, N. (2004). Image steganography and
steganalysis: Concepts and practice. In Digital Watermarking (pp. 35-49). Springer
Berlin Heidelberg.

Chetan, S., Kumar, G., Dinesh, K., Mathew, K., & Abhimanyu, M. A. (n.d.) Cloud
Computing for Mobile World. http://www.chetan.ueuo.com/projects/CCMW.pdf ,
Accessed on 28th June 2011

Choi, K. M., Robles, J. R., Hong, H. C., & Kim, H. T. (2008). Wireless Network
Security: Vulnerabilities, Threats and Countermeasures. International Journal of
Multimedia and Ubiquitous Engineering, 3(3), July, 2008.

Chow, R., Jakobsson, M., & Masuoka, R. (2010). Authentication in the Clouds: A
Framework and its Application to Mobile Users. CCSW’10, Chicago, Illinois, USA,
October, 2010, ACM Press

Chun, G. B., & Maniatis, P., (2009). Augmented Smartphone Applications Through
Clone Cloud Execution, Intel Research Berkeley.

Chun, G. B., & Maniatis, P. (2010). Dynamically Partitioning Applications between
Weak Devices and Clouds. Intel Labs Berkeley San Francisco, CA, USA, 15 June,
2010, ACM.

Univ
ers

iti
Mala

ya

259

Chun, G. B., Ihm, S., Maniatis, P., & Naik, M., Patti, A. (2011). CloneCloud: Elastic
Execution between Mobile Device and Cloud. EuroSys’11 Salzburg Austria, 10–13
April, 2011. ACM

Christensen, H. J. (2009). Using RESTful Web-Services and Cloud Computing to
Create Next Generation Mobile Applications. OOPSLA 2009, Orlando, Florida, USA,
25-29 October, 2009. ACM.

Chu, S. F., Chen, C. K., & Cheng, M. C. (2011). Towards green cloud computing.
Proceedings of the 5th International Conference on Ubiquitous Information
Management and Communication, Seoul, Korea, 21-23 February, 2011.

Chung, G., Lai, & Ko. S. R. (2010) DISHES: A Distributed Shell System Designed for
Ubiquitous Computing Environment. International Journal of Computer Networks &
Communications (IJCNC), 2(1), January 2010.

Chunlin, L. & Layuan. L. (2010). Energy constrained resource allocation optimization
for mobile grids. Journal of Parallel and Distributed Computing, 70(3), 245–258, 2010.

Cloud computing, http://en.wikipedia.org/wiki/ Cloud computing, Accessed on 16th
June 2011.

Confidence Intervals and Sample Size http://highered.mcgraw-
hill.com/sites/dl/free/0072549076/79745/ch07.pdf, Accessed on 25th December 2012.

Cuervo, E., Balasubramanian, A., Cho, K.D. Wolman, A., Saroiu, S., Chandra, R., &
Bahlx. P. (2010). MAUI: Making Smartphones Last Longer with Code Offload
MobiSys’10, San Francisco, California, USA. 15–18 June, 2010.

Cutsem, V. T., Dedecker, J., & Mostinckx, S. (2006). Ambient references: Addressing
Objects in Mobile Networks. The Companion to the 21st ACM SIGPLAN symposium
on Object-oriented programming systems, languages, and applications, Portland,
Oregon, USA 22–26 October, 2006.

Dean, J., & Ghemawat. S. (2004). MapReduce: Simplified Data Processing on Large
Clusters, Google, Inc.

Dey, A. K., & Abowd, G.D. (2000). The Context Toolkit: Aiding The Development Of
Context-Aware Applications. Workshop on Software Engineering for Wearable and
Pervasive Computing, Limerick, Ireland.

Dong, Y., Peng, J., Wang, D., Zhu, H., Wang, F., Chan, C. S., Mesnier, P. M. (2011).
RFS – A Network File System for Mobile Devices and the Cloud. ACM SIGOPS
Operating Systems Review archive, 45(1), January 2011.

Univ
ers

iti
Mala

ya

260

Dou, A., Kalogeraki, V., Gunopulos, D., Mielikainen, T., & Tuulos, H. V. (2010).
Misco: A MapReduce Framework for Mobile Systems, PETRA’10 Samos, Greece, 23
– 25 June, 2010ACM .

Dropbox http://www.dropbox.com. Accessed on 15th July 2011.

Elliot, K., Neustaedter, C., & Greenberg, S. (2005). Time, ownership and awareness:
The value of contextual locations in the home. In UbiComp 2005: Ubiquitous
Computing (pp. 251-268). Springer Berlin Heidelberg.

Fan, X., Cao, J., & Mao. H. (2011). A Survey of Mobile Cloud Computing ZTE
Communications, 9 (1), 8-12, March 2011.

Fernando, N. Loke, W. S., Rahayu, W. (2012). Mobile cloud computing: A survey.
Future Generation Computer Systems, 29(1), 84–106, January 2013.

Fortino, G., Mastroianni, C., Pathan, M., Vakali, A. (2009). Next Generation Content
Networks: Trends and Challenges, UPGRADE-CN’09, Munich, Germany. ACM Press,
9 June, 2009.

Gao, Y., Fu, L., Zhang, Z., Luo, S., & Lu, P. (2011). A Case for Cloud Based Mobile
Search ZTE Communications, 9(1), 37-40, March 2011.

Gartner (2011). Gartner Says Android to Command Nearly Half of Worldwide
Smartphone, Press Release Egham, UK, April 7, 2011.
http://www.gartner.com/it/page.jsp, Accessed on December 1st, 2011.

Google Docs http://docs.google.com Accessed on 15th July 2011.

Giurgiu, I., Riva, O., Juric, D., Krivulev, I., & Alonso. G. (2009). Calling the Cloud:
Enabling Mobile Phones As Interfaces To Cloud Applications. Middleware'09
Proceedings of the ACM/IFIP/USENIX 10th International conference on Middleware
pp. 83-102.

Goyal, S., Carter, J. (2004). A Lightweight Secure Cyber Foraging Infrastructure for
Resource-Constrained Devices. WMCSA 2004 6th IEEE Workshop, 2-3 Dec, 2004.

Hong, Y. J., Suh, H. E., & Kim, J. S. (2009). Context-Aware Systems: A Literature
Review and Classification. Expert Systems with Applications, 36(4), 8509–8522, May
2009.

Hoang, T., Dinh, Chonho. L., Dusit, N., & Ping, W. (2011). A Survey of Mobile Cloud
Computing: Architecture, Applications, and Approaches. Accepted for publication in
Wireless Communications and Mobile Computing , Wiley Publishers.

Huang, D., Zhang, X., Kang, M., & Luo, J. (2010). MobiCloud: Building Secure Cloud
Framework for Mobile Computing And Communication, IEEE Computing Society.

Univ
ers

iti
Mala

ya

261

Hung, H. S., Kuo, W.T., Shih, S.C., Sheih, P. J., Lee, P. C., Chang, W. C., & Wei. W. J.
(2011). A Cloud Based Virtualized Execution Environment for Mobile Applications
ZTE Communications 9(1), 19-25, March 2011.

Hung, H. S., Shih, S. C., Shieh, P. J., Lee, P. C., & Huang, H.Y. (2012). Executing
mobile applications on the cloud: Framework and Issues. Computers and Mathematics
with Applications, 63(2), 573–587, January 2012.

Iyer, R., Srinivasan, S., Tickoo, O., Fang, Z., Illikkal, R., Zhang, S., Chadha, V.,
Stillwell, M. P., & Lee, E. S. (2011). CogniServe: Heterogeneous Server Architecture
For Large-Scale Recognition, IEEE MICRO, 31(3), 20-31, May-Jun 2011.

Jiang, J., Wu, Y., Huang, X., Yang, G., & Zheng, W. (2010). Online Video Playing on
Smartphones: A Context-Aware Approach based on Cloud Computing. Journal of
Internet Technology, 11(6), 821-827, November 2010.

Kangarlou, A., Gamage, S., Kompella, R. R., & Xu, D. (2010). vSnoop: Improving
TCP Throughput in Virtualized Improving TCP Throughput in Virtualized
Environments via Acknowledgement Offload. SC10 New Orleans, Louisiana, USA,
IEEE Computer Society.

Kelenyi, I., & Nurminen, K. J. (2009) Bursty Content Sharing Mechanism for Energy,
PM2HW2N '09 Proceedings of the 4th ACM workshop on Performance monitoring and
measurement of heterogeneous wireless and wired networks.

Kelenyi, I., & Nurminen, K. J. (2010). CloudTorrent: Energy-Efficient BitTorrent
Content Sharing for Mobile Devices via Cloud Services, IEEE Communications
Society.

Klein, I., Mannweiler, C., Schneider, J., & Schotten. D. H. (2010). Access Schemes for
Mobile Cloud Computing. 11th International Conference on Mobile Data Management,
IEEE Computer Society.

Kloch, C., Petersen, B. E., & Madsen. B. O. (2011). Cloud Based Infrastructure, the
New Business Possibilities and Barriers, April 2011. Springer.

kSOAP2 http:// http://ksoap2.sourceforge.net/, Accessed on 15th July, 2012.

Kovachev, D., Renzel, D., Klamma, R., & Cao. Y. (2010). Mobile Community Cloud
Computing: Emerges and Evolves. 11th International Conference on Mobile Data
Management, IEEE Computing Society.

Kovachev, D. & Klamma. R. (2012). Framework for Computation Offloading in
Mobile Cloud Computing. International Journal of Interactive Multimedia and Artificial
Intelligence, 1(7), 6-15.

Univ
ers

iti
Mala

ya

262

Kumar, K., & Lu, H. Y. (2010). Cloud Computing For Mobile Users: Can Offloading
Computation Save Energy. Computer, 43(4), 51-56, April 2010, IEEE Computer
Society.

Lagar-Cavilla, A. H., Whitney, J., Scannell, A., Patchin, P., Rumble, M. S., Lara, E. D.,
Brudno. M., & Satyanarayanan. M. (2009). Snowflock: Rapid virtual machine cloning
for cloud computing. In Eurosys.

Lagar-Cavilla, A. H., Whitney, J., Scannell, A., Patchin, P., Rumble, M. S., Lara, E. D.,
Brudno, M., & Satyanarayanan. M. (2011). “SnowFlock: Virtual Machine Cloning as a
First-Class Cloud Primitive “ ACM Transactions on Computer Systems, 29(1),
February 2011.

Lai, C. C., & Ko, S. R. (2010). DISHES: A Distributed Shell System Designed for
Ubiquitous Computing Environment. International Journal of Computer Networks &
Communications, 2(1), January 2010.

Larus, R. J. (2011). Programming the Cloud, PPoPP’11 San Antonio, Texas, USA.,
February 12–16, 2011. ACM Press.

LaMarca, A. (2005). Self-Mapping in 802.11 Location Systems. In M. Beigl, S. Intille,
J. Rekimoto & H. Tokuda (Eds.), Proceedings of UbiComp 2005: Ubiquitous
Computing (Vol. 3660, pp. 87-104): Springer Berlin Heidelberg

Liang, H., Huang, D., Cai, X. L., Shen, S.X., & Peng. D. (2011). Resource Allocation
for Security Services in Mobile Cloud Computing, IEEE Computing Society.

Liu, Q., Jian, X., Hu, J., Zhao, H., & Zhang, S. (2009). An Optimized Solution for
Mobile Environment Using Mobile Cloud Computing, IEEE Computing Society.

Liu, J., Kumar, K., & Lu, H. Y. (2010). Tradeoff between Energy Savings and Privacy
Protection in Computation Offloading, ISLPED’10, Austin, Texas, USA, 18–20
August, 2010, ACM Press.

Luo, X. (2009). From Augmented Reality to Augmented Computing: A Look at Cloud-
Mobile Convergence. International Symposium on Ubiquitous Virtual Reality, IEEE
Computing Society.

Iyer, R., Srinivasan, S., Tickoo, O., Fang, Z., Illikkal. R. Zhang. S., Chadha. V., Jr. S.
M. P., & Lee. E. S. (2011). Cogniserve: Heterogeneous Server Architecture for Large-
Scale Recognition. IEEE MICRO, 31(3), 20-31 June 2011.

MobileMe. http://en.wikipedia.org/wiki/MobileMe Mao, Accessed on 15th June 2011.

Mao, H., Xiao, N., Shi, W., & Lu, Y. (2010). Wukong: Toward a Cloud-Oriented File
Service for Mobile Devices. 2010 IEEE International Conference on In Services
Computing (SCC), (pp. 498-505) , July 2010.

Univ
ers

iti
Mala

ya

263

Marinelli, E. E. (2009). Hyrax: Cloud Computing on Mobile Devices using
MapReduce, ANSI Std Z3, 9-18 September 2009.

Mei, L., Chan, K. W., & Tse, H. T. (2008). A Tale of Clouds: Paradigm Comparisons
and Some Thoughts on Research Issues. APSCC '08, 9-12 December, 2008, IEEE
Computing Society.

Messer, A., Greenberg, I., Bernadat, P., Milojicic, D., Chen, D., Giuli, J.T., & Gu, X.
(2002) Towards a Distributed Platform for Resource-Constrained Devices. Hewlett-
Packard Company.

Mun, M., Hao, S., Mishra, N., Shilton, K, Burke, J., Estrin, D., Hansen., M., Govindan,
R. (2010). Personal Data Vaults: A Locus of Control for Personal Data Streams,
CoNEXT 2010 Philadelphia, USA, 30 November – 3 December, 2010 ACM Press.

Nagin, K., Hadas, D., Dubitzky, Z., Glikson, A., Loy, I., Rochwerger, B., & Schour,
L.(2011) Inter-Cloud Mobility of Virtual Machines IBM Haifa Research Lab, ACM
SYSTOR ’11 Haifa, Israel, 30 May – 01 June, 2011.

Nguyen, B. C., Yoon, S. M., & Lee, H. K. (2006). Multi Bit Plane Image
Steganography. International Workshop on Digital Watermarking, In Digital
Watermarking, Springer Berlin Heidelberg, (pp.61-70).

OpenMobster http://code.google.com/p/openmobster/, Accessed on 24th June, 2011.

Oracle VMTemplates
http://www.oracle.com/technology/products/vm/templates/index.html, Accessed on 30th
July, 2011.

Oh, J., Lee. S., & Lee. E. (2006). An Adaptive Mobile System Using Mobile Grid
Computing In Wireless Network, Proceedings of the 6th International Conference on
Computational Science and its Applications (ICCSA 2006), Glasgow, UK, 8-11 May
(49–57), 2006.

Owens. D. (2010). Securing Elasticity in the Cloud, Communications of the ACM Press
53.

Holman, R. (2010). Mobile Cloud Computing: $9.5 billion by 2014 URL
http://www.juniperresearch.com/analyst-xpress-blog/2010/01/26/mobile-cloud-
application-revenues-to-hit-95-billion-by-2014-driven-by-converged-mobile-services/,
Accessed on 18th August 2011.

Prosper Mobile Insights, Smartphone/tablet user survey (2011). URL
http://prospermobileinsights.com/Default.aspx?pg=19, Accessed on 20th July, 2011.

Protecting Portable Devices: Physical Security, http://www.us-cert.gov/cas/tips/ST04-
017.html, Accessed on 15th September, 2012.

Univ
ers

iti
Mala

ya

264

Sanaei, Z., Abolfazli, S., Gani, A., & Khokhar. H. R. (2012). Tripod of Requirements in
Horizontal Heterogeneous Mobile Cloud Computing. Proceedings of the 1st
International Conference on Computing, Information Systems and Communications.
Singapore, 11-13 May, 2012.

Satyanarayanan, M. (2001). Pervasive computing: Vision and challenges. IEEE
Personal Communications, 8(4), 10–17.

Satyanarayanan, M., Bahl, P., & Caceres, R. (2009). The Case for VM-Based Cloudlets
in Mobile Computing, December, 2009, IEEE Computing Society.

Satyanarayanan, M. (2010). Mobile Computing: The Next Decade, ASP-DAC ‘08:
Proceedings of the 2008 Asia and South Pacific Design Automation Conference, June
2010, IEEE Computer Society Press.

Sokol, K., Andrius, A., Pan, H., Richard, M., & Xinwen, Z. ThinkAir: Dynamic
resource allocation and parallel execution in cloud for mobile code offloading,
INFOCOM, 2012 Proceedings IEEE, Orlando, 25-30 March (945- 953), 2012.

Shanklin. M. (n.d.) Mobile Cloud Computing http://www.google.com/mcc.html,
Accessed on 16th June, 2011.

Sharifi, M., Kafaie, S., Kashefi, O. (2011). A Survey and Taxonomy of Cyber Foraging
of Mobile Devices, IEEE Communications Surveys Tutorials, 14(4), 1232-1243,
November 2011.

Shiraz, M., Gani, A., & Rashid, H. K. (2011). Towards Lightweight Distributed
Applications in Mobile Cloud Computing, Proceedings of 2012 IEEE International
Conference on Computer Science and Automation Engineering, 25-27 May, 2012,
Zhangjiajie, China.

Shiraz, M., Gani, A., Khokhar, H. R., & Buyya, R., (2012). A Review on Distributed
Application Processing Frameworks in Smart Mobile Devices for Mobile Cloud
Computing, IEEE Communications Surveys & Tutorials, 15(3), 1294 – 1313,
November 2012.

Shiraz, M., Abolfazli, S., Sanaei, Z., & Gani, A. (2013a). A Study on Virtual Machine
Deployment for Application Outsourcing in Mobile Cloud Computing, The Journal of
Supercomputing, 63(3), 946-964, March 2013.

Shiraz, M., Ahmed, E., Gani, A., & Han, Q. (2013b). Investigation on Runtime
Partitioning of Elastic Mobile Applications for Mobile Cloud Computing, Accepted for
publication in Journal of Supercomputing, DOI:10.1007/s11227-013-0988-6, August
2013.

Univ
ers

iti
Mala

ya

265

Smartphone URL:http://en.wikipedia.org/wiki/Smartphone, Accessed on 20th July
2011.

Subashini, N. S., & Kavitha. V. (2010). A Survey on Security Issues in Service
Delivery Models of Cloud Computing, Journal of Network and Computer Applications,
34(1),1–11, June 2010.

Sud, S., Want, R., Pering. T., Lyons, K., Rosario, B., Gong, X. M. (2012). Dynamic
Migration of Computation Through Virtualization of the Mobile Platform, Mobile
Networks and Applications, 17(2), 206–215, February 2011.

Sun Micro Systems (2009) Introduction to Cloud Computing Architecture White Paper
1st Edition, June 2009.

Tso, P. F., Cui, L., Zhang, L., Jia, W. (2011). Building a Platform to Bridge Low End
Mobile Phones and Cloud Computing Services ZTE Communications, 9(1), 26-30
March 2011.

Vartiainen, E., Mattila,V. V. K. (2010). User Experience of Mobile Photo Sharing in
the Cloud, MUM '10 Limassol, Cyprus, ACM Press, December 1-3, 2010.

De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Pelosi, G., &
Samarati, P. (2008). Preserving Confidentiality of Security Policies in Data
Outsourcing. Proceedings of the 7th ACM workshop on Privacy in the electronic society
October (pp. 75-84) 2008.

Wang, K., Rao, J., Xu, & Z. C. (2011), Rethink the Virtual Machine Template VEE’11,
Newport Beach, California, USA., March 9–11, 2011, ACM.

Weiss, A. (2007) Computing in The Clouds, netWorker , 11 ACM.

What are Smartphones http://cellphones.about.com/od/smartphonebasics/a/-
what_is_smart.html. Accessed on 20th July 2011.

What is Smartphones URL:
http://cellphones.about.com/od/smartphonebasics/a/what_is_smart.html, Accessed on
20th July, 2011.

What-Makes-Smart-Phones-Smart, URL: http://www.samsung.com/.../what-makes-
smart-phones-smart, Accessed on 20th July, 2011

Wu & Tsai (2003). A Steganographic Method for Images by Pixel-value Differencing.
In Pattern Recognition Letters, pp.1613-626.

Zao, B., Xu, Z., Chi, C., Zhu, S. & Cao, G. (2011). Mirroring Smartphones for Good: A
Feasiblity Study. ZTE Communications 9(1), 13-18, March 2011.

Univ
ers

iti
Mala

ya

266

Zaplata, S., & Lamersdorf, W. (2010). Towards Mobile Process as a Service SAC’10
Sierre, Switzerland, 22-26 March, 2010 ACM.

Zheng, W., Xu, P., Huang, X. (2010). Design A Cloud Storage Platform For Pervasive
Computing Environments, Cluster Computing-The Journal of Networks Software Tools
and Applications, 13(2), 141-151, June 2010.

Zhang, X., Schiffman, J., Gibbs, S., Kunjithapatham, A., & Jeong, S. (2009). Securing
Elastic Applications on Mobile Devices for Cloud Computing. CCSW’09, Chicago,
Illinois, USA. November 13, 2009, ACM.

Zhang, X., Kunjithapatham, A., Jeong., S., & Gibbs. S. (2011). Towards an Elastic
Application Model for Augmenting the Computing Capabilities of Mobile Devices with
Cloud Computing, Mobile Networks & Applications, 16(3), 270-285, June 2011.

Univ
ers

iti
Mala

ya

