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ABSTRACT 

Having a significant amount of data is not useful unless the data can be processed for 

extracting knowledge and information. One of the elementary steps in crunching data is 

to break it down into groups. When the data is small and collected in a controlled manner, 

and when the training data is appropriately labelled, the trivial approach is to use 

supervised learning to perform the grouping. Supervised methods need training data and 

information about groups beforehand; however, in the current reality, with an avalanche 

of data, this information is not available. Nevertheless, the need for grouping data 

remains. Clustering, as an unsupervised method, helps in these situations to group the 

data. However, unsupervised methods are usually less accurate than their supervised 

counterparts. To solve this drawback, unsupervised methods are often used as a pre-

processing step, along with human judgment, to prune the data to create a reliable training 

set for the supervised process. One reason that clustering approaches do not yield 

desirable accuracy is that they will attempt to perform the procedure on all data, which 

may contain noise or outliers, and they do not have any mechanism by which to set aside 

the problematic data. Pulse-shape discrimination (PSD) for neutron and gamma-ray 

pulses that is addressed in this research is one example of a real-world case study that 

faces the same issues. Although the data utilised for this study is from a liquid scintillator, 

it can be applied to other signal detectors as well. Aside from this particular dataset, the 

proposed approach has been applied to a set of publicly available multivariate and time 

series datasets to prove the performance of the presented approach through an exploratory 

study. The evolving fuzzy clustering approach (EFCA) proposed in this study utilises a 

fuzzy membership matrix in fuzzy clustering to propose a new approach for clustering 

that embeds a heuristic post-pruning solution to address the aforementioned drawback. 

The method is an EFCA that attempts to find clusters of similar shapes with better 
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accuracy. It introduces an approach for post-pruning that is examined not only on neutron 

and gamma-ray discrimination but also on various datasets. The outcomes of the proposed 

method are evaluated against the traditional fuzzy C-means method and another well-

known crisp clustering method, namely, K-means. For neutron and gamma-ray 

discrimination, the EFCA improved the Rand index (RI) accuracy by almost 8%. For 

other multivariate and time series datasets utilised in this study, results demonstrate the 

achievement of significant accuracy improvements for some of these datasets after 

heuristic post-pruning, resulting in 100% RI accuracy for some of them. 

Keywords: Clustering, Fuzzy Clustering, Unsupervised Learning, Pre-processing, 

Pruning, Neutron and Gamma-ray discrimination 
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ABSTRAK 

Mempunyai sejumlah besar data tidak berguna melainkan data boleh diproses untuk 

mengekstrak pengetahuan dan maklumat. Salah satu langkah asas dalam memproses data 

adalah untuk memecahnya ke dalam kumpulan. Apabila data kecil dan dikumpulkan 

secara terkawal, dan apabila data latihan dilabel dengan tepat, pendekatan remeh adalah 

menggunakan pembelajaran yang diawasi untuk melaksanakan kumpulan. Kaedah yang 

diselia memerlukan data latihan dan maklumat mengenai kumpulan terlebih dahulu; 

Walau bagaimanapun, dalam realiti semasa dengan data yang mencurah-curah, maklumat 

ini tidak tersedia. Namun, keperluan untuk mengelompokkan data adalah kekal. Gugusan 

sebagai kaedah yang tidak diselia membantu dalam situasi ini untuk mengelompokkan 

data. Walau bagaimanapun, kaedah yang tidak diselia biasanya kurang tepat berbanding 

kaunterpart yang diawasi mereka. Untuk menyelesaikan kelemahan ini, kaedah yang 

tidak diselia sering digunakan sebagai langkah pra-pemprosesan bersama-sama dengan 

pertimbangan manusia untuk mengurangkan data bagi mewujudkan satu set latihan yang 

boleh dipercayai untuk proses yang diselia. Salah satu sebab bahawa pendekatan gugusan 

tidak menghasilkan ketepatan yang diingini ialah mereka akan cuba melaksanakan 

prosedur pada semua data yang mungkin mengandungi bunyi atau nilai terpencil dan 

mereka tidak mempunyai mekanisme untuk mengetepikan data bermasalah. Diskriminasi 

bentuk denyut jantung (PSD) untuk denyut nadi neutron dan sinar gamma yang 

dikemukan dalam kajian ini adalah satu contoh kajian kes dunia sebenar yang 

menghadapi masalah yang sama. Walaupun data yang digunakan untuk kajian ini adalah 

daripada bahan kelip cecair, ia boleh digunakan untuk pengesan isyarat yang lain juga. 

Selain daripada set data tertentu, pendekatan yang dicadangkan telah digunakan untuk 

satu set multivariat awam yang tersedia dan set data siri masa untuk membuktikan prestasi 

pendekatan yang dibentangkan melalui kajian teroka. Pendekatan gugusan kabur yang 

ditambah baik (EFCA) yang dicadangkan dalam kajian ini menggunakan matriks 

Univ
ers

iti 
Mala

ya



 

vi 

keahlian kabur dalam gugusan kabur untuk mencadangkan pendekatan baru bagi gugusan 

yang membenamkan penyelesaian pasca pengurangan heuristik untuk menangani 

kelemahan yang disebutkan di atas. Kaedah ini adalah EFCA yang cuba mencari gugusan 

bentuk yang serupa dengan ketepatan yang lebih baik. Ia memperkenalkan pendekatan 

untuk pengurangan semula yang diperiksa bukan sahaja terhadap diskriminasi neutron 

dan rayma tetapi juga pada pelbagai set data. Hasil daripada kaedah yang dicadangkan 

dinilai berdasarkan kaedah C-means kabur tradisional dan satu lagi kaedah gugusan yang 

terkenal, iaitu, K-means. Untuk diskriminasi neutron dan sinar gamma, EFCA 

meningkatkan ketepatan Rand index (RI) hampir 8%. Untuk kumpulan data multivariat 

dan siri masa lain yang digunakan dalam kajian ini, hasil menunjukkan pencapaian 

ketepatan yang ketara untuk sesetengah set data pasca pengurangan heuristik, 

mengakibatkan ketepatan RI 100% untuk sesetengahnya. 

Kata kunci: Gugusan, Gugusan Kabur, Pembelajaran Tidak Terselia, Pra-

pemprosesan, Pengurangan, diskriminasi Neutron dan sinar Gamma 
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INTRODUCTION 

1.1 Background: Radiation Detectors and Time Series Clustering 

In nuclear physics, differentiating between neutron and gamma-ray pulses is a necessary 

procedure. The main task of radiation detectors is to discriminate and count neutron and 

gamma rays. These detectors are broadly used in different applications such as space 

research, mines, cultural heritage analysis, tomographical imaging, nuclear material 

control, international safeguarding, and national security (Amiri, Přenosil, Cvachovec, 

Matěj, & Mravec, 2014; Shan, Chu, Ling, Cai, & Jia, 2016; Uchida et al., 2014; Yousefi, 

Lucchese, & Aspinall, 2009).  

The main problems in distinguishing neutrons from background gamma rays are as 

follows: first, signal pile-up and second, the difference in the energy of emitted signals 

that makes discrimination a challenging task. Traditional analogue pulse discrimination 

methods are less flexible and more time consuming than novel digital approaches. Digital 

technology has some significant privileges, such as clarity of energy, increased 

throughput, smaller size, easy upgrading and updating, automatic critical adjustments, 

multitasking operations, and automatic testing and verification. 

After the recent emergence of digital methods of discrimination between neutrons and 

gamma rays, machine learning and artificial intelligence methods are also finding their 

way into this area. However, the machine learning methods used for discriminating 

between neutron and gamma rays are mostly traditional algorithms (Sanderson, Scott, 

Flaska, Polack, & Pozzi, 2012; Savran, Löher, Miklavec, & Vencelj, 2010; Yildiz & 

Akkoyun, 2013). These methods, as mentioned in the literature, and to the best of our 

knowledge, are used as suggested in computer science, and they are not improved to 

address specific needs in the area of discrimination. These methods consequently suffer 

from low accuracy. To address this gap, this thesis aims to increase the accuracy of 
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clustering approaches for the discrimination problem by taking into account the specific 

needs of this method. 

Clustering is an unsupervised method of machine learning that has had a profound effect 

on various areas of knowledge discovery by addressing real-life problems (Aghabozorgi 

et al., 2014). The aim of clustering is to extract useful patterns among a series of data to 

prepare credible information; therefore, it can be applied as a base for the decision-

making process (Liao, 2005). 

Clustering can be defined as a method by which similar data are positioned in the same 

group, and different data are situated in different groups. The process of this method is 

unsupervised; that is, it does not need human supervision. Xu et al. (R. Xu & Wunsch, 

2005) believe that there is no generally agreed explanation for clustering; however, they 

represent a short definition of the task of clustering algorithms: "Clustering algorithms 

divide data into a certain number of clusters (categories, groups or subsets) in which a 

cluster is described by considering the internal homogeneity and the external separation." 

This definition of a cluster is common amongst several other researchers in the field 

(D’Urso, De Giovanni, & Massari, 2015; Gower, 1971; Rao, 1971). Clustering has been 

used in a range of fields from software science (word analysis, picture segmentation, 

internet mining) and health sciences (microbiology, genetics, biology) to environmental 

sciences (geology, distant sensing), humanities, and sociology. Furthermore, clustering is 

used as a pre-processing stage for other data mining methods. The more precise definition 

of clustering is represented below.  

Definition 1.1 Clustering: Given a dataset 𝐷 = {𝑣1, 𝑣2, … , 𝑣𝑛} of data vectors and an 

integer value k, the clustering problem is to define a mapping 𝑓: 𝐷 → {1, … , 𝑘}, where 

each 𝑣𝑖 is assigned to one cluster 𝐶𝑗 , 1 ≤ 𝑗 ≤ 𝑘. A cluster 𝐶𝑗 contains precisely those data 
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vectors mapped to it; that is, 𝐶𝑗 = {𝑣𝑖  | 𝑓(𝑡𝑖) = 𝐶𝑗, 1 ≤ 𝑖 ≤ 𝑛, 𝑎𝑛𝑑𝑣𝑖 ∈ 𝐷}. Moreover, 

𝑣1, 𝑣2 represent two data vectors defined as follows: 

𝑣1 = {𝑥1, 𝑥2, … , 𝑥𝑛} 

𝑣2 = {𝑦1, 𝑦2, … , 𝑦𝑛} 

where 𝑥𝑖 , 𝑦𝑖 are called attributes.  

Definition 1.4 Fuzzy clustering: Suppose that 𝐷 = {𝑣1, 𝑣2, … , 𝑣𝑛} is a set of data points. 

A fuzzy set 𝐴 is formed if a function 𝑓𝐴: 𝐷 → [0,1] exists such that each element 𝑎 ∈ 𝐴 

is of the form 𝑓𝐴(𝑡)  =  𝑎, for some 𝑡 ∈  𝑇. That is, each data point in 𝑇 is assigned a 

value between 0 and 1, which describes its degree of membership or the probability of its 

placement in the set 𝐴. Fuzzy clustering, then, results in data objects belonging to one or 

more clusters and their membership in a particular cluster corresponding to some 

probability. The results of a fuzzy clustering can be represented by the 𝑘 ×  𝑛 matrix 𝑈. 

The condition for fuzzy clustering is that for each entry of 𝑈, the form 𝑢𝑗𝑖 ∈ {0, 1} exists, 

where 𝑗 ∈ {1, … , 𝑘} and 𝑖 ∈ {1, … , 𝑛} index the cluster and data point, respectively. Each 

row corresponds to clusters and each column to data points, and ∑ 𝑗 = 1. 

Definition 1.5 Evolving fuzzy clustering of time series: In traditional clustering 

approaches, for a set of data points 𝐷 = {𝑣1, 𝑣2, … , 𝑣𝑛}, all of the data points would be 

clustered in one run. In contrast, in evolving clustering, data points are clustered gradually 

in a set of epochs 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑚}.  

1.2 Motivation 

Clustering time series data is challenging because they are often high-dimensional, and 

the datasets are enormous (Rani & Sikka, 2012). Neutron and gamma-ray pulses are also 

high-dimensional, and accurately discriminating them is the main problem. These pulses 
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are a set of energy levels of the particle that meets the scintillator; this set is collected 

over time and can be considered as a long time series. The pulse-shape discrimination 

(PSD) of n/gamma-ray has always been a challenging task, and distinguishing between 

high-energy and low-energy pulses requires different methods because of the difference 

in energy fluctuations (Amiri et al., 2014; Sosa, Flaska, & Pozzi, 2016). The clustering 

goal of the time series is to divide a large time series dataset into k clusters. Pulse-shape 

discrimination is a specific case of time series clustering when k = 2 because it wants to 

divide the dataset into two clusters of n/gamma-ray. As a result, time series clustering 

was used in some research works (Savran et al., 2010; Sayal & Kumar, 2011).  

The goal of time series clustering is to detect those data that are similar to one another 

and then group them in clusters. The temporary order, large dimension, and outliers are 

significant problems associated with clustering time series data (Rani & Sikka, 2012). To 

cluster similar time series, a process of similarity matching needs to occur to calculate the 

similarity of the whole time series. This process is called whole time series clustering, in 

which the whole sequence of a time series is studied when the distance is calculated. 

However, calculating similarity measures is not a simple task, because of the noise, 

outliers, and shift, all of which make it a great challenge (Zakaria, Mueen, Keogh, & 

Young, 2016). 

The clustering method coupled with a suitable similarity measure for dealing with the 

temporal order issue and dimensionality reduction that is supposed to tackle the last two 

issues.  In similarity measure calculations, the time series length has a direct effect on the 

complexity of the computation. As a result, dimensionality reduction can significantly 

reduce the execution time for the clustering. On the other hand, when assessing the 

interval between two unprocessed time series variables when they carry noise, it is likely 

that the clusters will be similar in terms of noise instead of in their shape, consequently 
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has a dramatic influence on distorted clusters (Ratanamahatana, Keogh, Bagnall, & 

Lonardi, 2005). Choosing the appropriate dimensionality reduction method is thus vital, 

since it has an impact on final clusters, and it can potentially increase or decrease the 

computational complexity. By considering neutron and gamma-ray pulses as time series 

data, PSD shares the same set of challenges, and solving these problems motivated the 

researcher to conduct this study to improve neutron and gamma-ray discrimination. 

1.3 Problem Statement 

The problem statement for this study is as follows: 

"Existing clustering algorithms have low accuracy and noise influences on the 

clustering outcome". 

The low accuracy in pulse discrimination (time series clustering) was addressed to 

solve this problem. The accuracy of time series clustering generally suffers from 

unsuitable clustering algorithms, inaccurate distance measures, and inappropriate or 

untreated raw data. 

Researchers have demonstrated that traditional machine learning algorithms produce 

an acceptable quality when they are used for particle discrimination (Akkoyun, 2013; 

Ronchi et al., 2009; Yu et al., 2015). However, much more work should be done for the 

discrimination problem and generally for time series because of their unique structure 

(Lin, Keogh, Lonardi, Lankford, & Nystrom, 2004; Savran et al., 2010).  

1.4 Research Objectives 

The primary objective of this research is to enhance the accuracy of clustering by 

introducing an evolving method that utilises the fuzzy membership matrix to divide the 

clustering task into multiple epochs. This main dataset that this research utilises is the 

neutron and gamma-ray dataset; however, the method has been evaluated on multiple 
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openly accessible datasets to prove its versatility. The objectives of this research are as 

follows: 

1. to develop a new method for clustering that is more accurate for neutron and 

gamma-ray pulses; 

2. to evaluate the capability of the suggested method for improving the accuracy 

of the clustering; and 

3. to improve the performance of neutron and gamma-ray clustering 

(discrimination). 

1.5 Research Questions 

The following questions are addressed in this study to achieve the research objectives: 

Objective 1: To develop a new method for clustering that is more accurate for neutron 

and gamma-ray pulses. 

RQ1: How does one develop a clustering approach that yields a more accurate clustering 

result? 

Objective 2: To evaluate the capability of the suggested method for improving the 

accuracy of the clustering. 

RQ2: What is the influence of this method on the accuracy of continuous data (whether 

it is time series or multivariate)? 

Objective 3: To improve the performance of neutron and gamma-ray clustering 

(discrimination). 

RQ3: How can this method improve neutron and gamma-ray discrimination? 
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1.6 Scope of Research 

To achieve the objective of the research in the designated period, the research scope 

must be clarified as follows: 

1. The focus will be on whole time series clustering and the discrimination of neutron 

and gamma-ray pulses coming from the liquid base scintillator of type BC501A. 

The method should, however, apply to other types of detectors showing a particle-

dependent pulse shape (Savran et al., 2010), as well as other datasets with 

continuous data. 

2. Since accuracy in the discrimination problem plays a vital role, the target of this 

research is the improvement of the accuracy of the clusters.  

3. This research focuses on finding the clusters based on their shapes; for this 

purpose, whole time series matching or "whole time series clustering" will be 

utilised (see Chapter 2). 

1.7 Chapter Organisation 

This section depicts the framework of the dissertation. The rest of the thesis is 

organised as follows: 

Chapter 2 first provides some definitions of the major components of the study, such 

as clustering and fuzzy clustering. Then, the focus shifts to the researches and methods 

that are discussed in the fuzzy clustering area, and clustering time series and fuzzy time 

series clustering are addressed. This is followed by a review of existing studies on neutron 

and gamma-ray discrimination and its links with time series clustering.  

Chapter 3 reviews the methodology employed in this study, clarifying how the 

objectives will be met and how the research questions will be answered. This chapter 

covers the implementation stages for the evolving fuzzy clustering approach (EFCA) for 
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neutron and gamma-ray discrimination. Furthermore, the evaluation plan is discussed to 

examine the quality of the proposed model. 

Chapter 4 discusses the application of the proposed EFCA on various datasets along 

with its implementation for discriminating neutrons and gamma-rays. This chapter deals 

with the primary objective of this research, which proposes a more precise clustering 

algorithm than traditional clustering methods that is used for discrimination. The section 

also includes the experimental results, a discussion of the datasets used, and an evaluation 

of the suggested method along with the pre-processing of the information. 

 Chapter 5 concludes the study by reviewing how the research objectives were fulfilled 

and answering the research questions. The main contributions of the study are discussed, 

and possible future works are introduced. 
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CHAPTER 2:   

LITERATURE REVIEW 

2.1 Introduction 

This study introduces an evolving approach using fuzzy clustering on time series data 

to solve the neuron and gamma-ray discrimination problem. Details about the method are 

discussed in Chapter 3; however, before elaborating on the new approach, this chapter 

reviews the research area of fuzzy clustering. First, definitions are provided for the major 

components of the study, such as clustering and fuzzy clustering; then, to contextualise 

the literature review, the focus shifts to the researches and methods that are discussed in 

the fuzzy clustering area. Time series, time series clustering, and fuzzy time series 

clustering are also discussed. Researchers have been working on fuzzy clustering by 

focusing on different perspectives. Some have focused on the type of time series, and 

some have focused on areas of application, while others have emphasise the method of 

fuzzy clustering itself. Since the application of the proposed method falls into the area of 

neutron and gamma-ray discrimination, clustering approaches that have been used in this 

area are also reviewed at the end of this chapter.  

2.2 Clustering  

Nowadays, the globe is filled with data. People find a great deal of information every 

day and store or describe it as data. A common way in which to cope with this information 

is to classify it or place it into a set of groups or clusters. This method is as ancient as the 

human need to classify and describe the outstanding traits of individuals and objects with 

a type, to identify groups of classes, and to assign items within them to suitable groups. 

Cluster identification is one of the essential methods for pattern recognition; in machine 

learning, this automatic process is called clustering. Most researchers define a cluster as 

internal similarity and external separation (Gordon, 1999; Jain & Dubes, 1988; Rao, 
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1971; Rui Xu & Wunsch, 2005). The primary characteristic of these clusters is that the 

objects in the same clusters are interrelated, while the objects in distinct clusters are 

distinct (Rodríguez-Fernández, Menéndez, & Camacho, 2017). Data points must be 

divided into clusters depending on their resemblance in unlabelled datasets. The data are 

structured in this manner into an effective representation that symbolises the sampled 

population. The following steps typically provide a clustering operation model (Jain & 

Dubes, 1988): 

 depiction of patterns (preferably with identification and choice of features);  

 definition of model proximity criteria suitable for the field; 

 aggregation or pairing;  

 integration of information (if necessary), and 

 evaluation of performance (if necessary). 

Clustering is widely used in pattern recognition in various fields (Shirkhorshidi, 

Aghabozorgi, Wah, & Herawan, 2014) including categorising, problem-solving and 

artificial intelligence, data retrieval (Khalifi, Cherif, Qadi, & Ghanou, 2019; Ye, Luo, 

Dong, He, & Min, 2019), image processing (Chen, Sun, Palade, Shi, & Liu, 2019), and 

pattern identification (Abd-Elaal & Hefny, 2013; Jain & Dubes, 1988; Mecca, Raunich, 

& Pappalardo, 2007; Nie & Zhang, 2013). It has a rich background in other fields as well, 

from scientific applications and engineering to advertising sciences. 

Definition: Clustering 

Given a dataset 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑛} of data instances and an integer value k, the clustering 

problem is to define a mapping 𝑓: 𝐷 → {1, … , 𝑘}, where each 𝑑𝑖 is assigned to one cluster 

𝐶𝑗 , 1 ≤ 𝑗 ≤ 𝑘. A cluster 𝐶𝑗 contains precisely those data instances mapped to it; that is, 

𝐶𝑗 = {𝑣𝑖  | 𝑓(𝑡𝑖) = 𝐶𝑗, 1 ≤ 𝑖 ≤ 𝑛, 𝑎𝑛𝑑𝑣𝑖 ∈ 𝐷}. The clustering structure is officially 
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considered to be a set of subsets 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑘} of D. Any instance in D accordingly 

applies to just one sub-set. However, for all these algorithms, the number c of clusters 

must be pre-assumed. Moreover, the number k should generally be unknown; 

therefore, the method of finding the optimal k is highly important. This type of issue is 

usually referred to as the validity of the cluster. 

Machine learning in information extraction is a sub-category divided into 

unsupervised and supervised learning methods, each of which is designed to serve distinct 

aims. While supervised machine learning is predictive, unsupervised methods are 

descriptive. Clustering would be an unsupervised learning approach, while classifications 

are supervised. 

In the literature, clustering is associated with various concepts, namely, unsupervised 

training (Guan, Yuen, & Coenen, 2019), vector quantisation (Shastri et al., 2019), and 

numerical taxonomy (Aparicio-Ruiz, Martín, Martín, & Achedad, 2019). The 

significance and collaborative character of clustering is evident throughout its vast 

literary works. 

2.3 Clustering Methods 

The primary reason that distinct clustering methods exist is the absence of an accurate 

definition of the concept of a “cluster”. Over the years, different perspectives have 

inspired different clustering algorithm taxonomies (Aghabozorgi, Shirkhorshidi, Ying 

Wah, Seyed Shirkhorshidi, & Ying Wah, 2015; Berkhin, 2006; Everitt, Landau, & Leese, 

2011; A. K. Jain, Murty, & Flynn, 1999). As a result, several clustering methods have 

been developed, each of which has a distinct preparation theory. Researching the literary 

works provides many solutions to clustering (Jain & Dubes, 1988; Jain, Murty, & Flynn, 

1999; Kolatch, 2001; Rao, 1971; Rui Xu & Wunsch, 2005); numerous clustering studies 

exist, such as the following: (Daxin Jiang, Chun Tang, & Aidong Zhang, 2004), (Xu & 
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Wunsch, 2005), and (Hruschka, Campello, Freitas, & de Carvalho, 2009a). In 1998, 

Farley and Raftery divided clustering methods into two significant categories, namely, 

hierarchical and partitional, and more recently, Han and Kamber (2006) expanded this 

categorisation to include three more categories: density-based, model-based, and grid-

based clustering methods. Figure 2 presents a summary of clustering methods, and the 

various methods of clustering are elaborated in the rest of this section. 

 

Figure 2: A summary of clustering methods 

2.3.1 Hierarchical clustering 

The hierarchical clustering method has a strong visualisation relative to other 

methods of clustering (Keogh & Kasetty, 2003). It generates a nested hierarchy of 

associated classes of items considering the pairwise distance matrix of the objects. 

The strength of this approach is that the user does not need to introduce parameters , 

such as the number of the groups, in advance. However, a shortcoming of this method 

is that its implementation is restricted to small datasets because of its quadratic 

computing complexity (Lin, Keogh, & Truppel, 2003). Hierarchical methods are 

categorised into two distinct kinds, namely, agglomerative and divisive methods, 

where clusters are formed by repeating the partitioning of a subject by way of top-

down (divisive) or bottom-up (agglomerative) methods. On the one hand, 

agglomerative hierarchical clustering has a bottom-up structure; therefore, each object 

represents its cluster in the beginning. Then, clusters are continually combined until 

the cluster's required larger structure is created. On the other hand, the design of the 

divisive method is the reverse; that is, a top-down system is applied. All items initially 
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correspond to one cluster in divisive hierarchical clustering. Then, the cluster splits 

into smaller sub-clusters that break into their sub-category. This method proceeds 

until the structure of the required cluster is formed. Figure 2-1 demonstrates the 

divisions of hierarchical clustering. 

 

Figure 2-1: Divisions of hierarchical clustering 

2.3.2 Density-based clustering 

Density-based methods (such as DBSCAN) continue to create a group until the cluster 

density (number of items or information points) reaches a certain limit. The items 

belonging to each group are presumed to be selected from a precise distribution of 

probability (Banfield & Raftery, 1993). A mixture of various distributions ought to be the 

general distribution of data. These methods attempt to define the clusters and their 

data distribution. 

2.3.3 Model-based clustering 

Model-based clustering suggests the use of (finite) clustering systems for clustering 

performance and attempts to improve the match between the data provided and some 
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mathematical designs. This method is different from conventional clustering that 

classifies data in that it provides each cluster’s feature characteristics, which represent a 

category or class. The method is intended to model an unknown distribution (or cluster) 

as a mixture of simpler distributions, sometimes called basis distributions. Decision trees 

and neural networks seem to be the most commonly utilised model-based methods. 

2.3.4 Grid-based method 

The grid-based method identifies a set of grid cells, divides objects into a fixed 

number of grid units, calculates each cell's density, and then removes cells with a lower 

predefined threshold density. Moreover, it forms clusters from nearby groups of dense 

cells (usually minimising a specified objective function). The approach's main advantage 

is its quick processing time (Han et al., 2006). However, a clustering difficulty relates to 

the number of grid cells that are occupied and not the number of items in the dataset. 

Some popular clustering methods based on the grid are the STatistical INformation Grid 

(STING) approach and the Clustering In QUEst (CLIQUE) approach (Saini & Rani, 

2017).  

2.3.5 Partitioning clustering 

Partitioning methods which are known as partitional methods are some of the data 

clustering methods that are most commonly used. They involve the movement of 

information from one group to another, beginning with an original partitioning. In these 

methods of clustering, data objects are typically directly assigned to a pre-set number of 

clusters (C partitions) that the user should pre-set, although selecting the number of 

required clusters is a problem. Partitional methods usually produce clusters based on 

some similarity measured by the objective function. 

A comprehensive iterator procedure of all feasible partitions is required to attain 

universal optimality in partitional clustering. However, as this is not feasible, in the 
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manner of iterative development, a highly specific method is used. A relocation 

technique, for example, migrates sample objects iteratively between k clusters. Partitional 

clustering itself is divided into two types of clustering, namely, crisp (hard) and fuzzy 

(soft). In crisp clustering, data points correspond to just one cluster at the moment; 

therefore, the clusters are separated into a hard clustering. In contrast, fuzzy clustering 

broadens the concept, where each piece of data is correlated with each cluster by way 

of the membership feature (Zadeh, 1965). In fuzzy clustering, data points can be members 

of several clusters, each to a different degree (A. K. Jain, Murty, Fynn, et al., 1999). 

Figure 2-2 illustrates different partition methods for clustering.  

 

Figure 2-2: Partitioning clustering methods 

 

The focus of this study is on partitional clustering – specifically its fuzzy approaches. In 

the following sections, different components of partitional clustering are discussed, as 

illustrated in Figure 2-3. 
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Figure 2-3: Different component of partitional clustering 

2.3.5.1 Similarity or dissimilarity measure 

Clustering is a collection of comparable objects or items; therefore, it may be necessary 

to determine whether two items are similar or different. One major consideration is the 

type of method that should be utilised to specify similarity or dissimilarity between a pair 

of objects, or between an object and a cluster, or between two clusters. To assess this 

connection, two primary measures are distance measurements and similarity 

measurements.  

(a) Dissimilarity (distance) measures:  

Many clustering methods make use of distance measurements for defining the 

resemblance or difference between any pair of objects. The distance between 𝑥𝑖 and 𝑥𝑗 

can be represented as 𝑑(𝑥𝑖 , 𝑥𝑗). A legitimate distance measurement should be 

symmetrical and achieve its minimum value in the event of exactly similar points (usually 

zero) (Rokch & Maion, 2005).  
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(b) Similarity measures:  

The similarity function 𝑠(𝑥𝑖, 𝑥𝑗) compares the two 𝑥𝑖 and 𝑥𝑗 vectors and is a concept 

contrary to that of distance. This function should be symmetrical – that is, 𝑠(𝑥𝑖, , 𝑥𝑗) =

𝑠(𝑥𝑗 , 𝑥𝑖) – it should also have a high value if 𝑥𝑖 and 𝑥𝑗 are “similar”, and it should yield 

the highest value for identical vectors (R. Xu & Wunsch, 2005). The following table 

presents the various similarities and dissimilarities, their applications, and their advantage 

and disadvantages for continuous data. 
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2.3.5.2 Evaluation Measures 

One of the problems after clustering is to assess whether a particular clustering is 

accurate. Bonner (1964) was one of the first to claim that there was no widespread 

description of what would be a perfect clustering. The evaluation is primarily a matter of 

Table 2-1: Similarity and dissimilarity measures for continuous data (in time complexity; 
n is the number of dimensions of x and y) 

Distance Measure Equation Time 
comp
lexity 

Advantages Disadvantages Applications 

Euclidean Distance 
𝑑𝑒𝑢𝑐 = [∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

]

1

2

 

 

O(n) It is common and easy to 
compute, and it works 
well with datasets with 
compact or isolated 
clusters (Gan, Ma, & Wu, 
2007; A. K. Jain, Murty, & 
Flynn, 1999). 

 

It is sensitive to the 
outliers (Gan et al., 
2007; A. K. Jain, 
Murty, & Flynn, 1999). 

K-means algorithm, fuzzy C-
means algorithm (Ji, Xie, & 
Ping, 2013). 

Average Distance 
𝑑𝑎𝑣𝑒 = (

1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

)

1

2

 

 

O(n) It is better at handling 
outliers in comparison 
with Euclidean distance 
(Legendre & Legendre, 
2012). 

Variables contribute 
independently to the 
measure of distance. 
Redundant values 
could dominate the 
similarity between data 
points (Hand, Mannila, 
& Smyth, 2001) 

K-means algorithm 

Weighted Euclidean 
𝑑𝑤𝑒 =  (∑ 𝑤𝑖(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

)

1

2

 

 

O(n) The weight matrix allows 
one to increase the effect 
of more important data 
points in comparison to 
less important points 
(Hand et al., 2001). 

Same as the 
disadvantages of 
average distance. 

Fuzzy C-means algorithm (Ji 
et al., 2013) 

Chord 
𝑑𝑐ℎ𝑜𝑟𝑑 = (2 − 2

∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1

‖𝑥‖2‖𝑦‖2
)

1

2

 
O(3n) It can work with un-

normalised data (Gan et 
al., 2007). 

It is not invariant to 
linear transformation 
(R. Xu & Wunsch, 
2005). 

Ecological resemblance 
detection (Legendre & 
Legendre, 2012) 

Mahalanobis dmah = √(x − y)S−1(x − y)T 

 

O(3n) Mahalanobis is a data-
driven measure and can 
lighten the distance 
distortion caused by a 
linear combination of 
attributes (Legendre & 
Legendre, 2012) . 

It can be expensive in 
terms of computation 
(R. Xu & Wunsch, 
2005) 

Hyper ellipsoidal clustering 
algorithm (Mao & Jain, 
1996) 

Cosine Measure 

 

Cosine(x, y) =
∑ xiyi

n
i=1

‖x‖2‖y‖2
  O(3n) It is independent of vector 

length and invariant to 
rotation (R. Xu & 
Wunsch, 2005). 

It is not invariant to 
linear transformation 
(R. Xu & Wunsch, 
2005). 

Mostly used in document 
similarity applications (Han 
et al., 2006; R. Xu & 
Wunsch, 2005). 

Manhattan 
𝑑𝑚𝑎𝑛 = ∑(𝑥𝑖 − 𝑦𝑖)

𝑛

𝑖=1

 

 

O(n) It is commonly used and, 
similarly to other 
Minkowski-driven 
distances, it works well 
with datasets with 
compact or isolated 
clusters(Gan et al., 2007). 

It is sensitive to the 
outliers (Gan et al., 
2007; A. K. Jain, 
Murty, & Flynn, 1999) 

K-means algorithm 

Mean Character 
Difference 𝑑𝑀𝐶𝐷 =

1

𝑛
∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 
O(n) *It results in accurate 

outcomes using the K-
medoids algorithm. 

*Low accuracy for 
high-dimensional 
datasets using K-
means.  

Partitioning and hierarchical 
clustering algorithms. 

Index of Association 
𝑑𝐼𝑂𝐴 =

1

𝑛
∑ |

𝑥𝑖

∑ 𝑥𝑖
𝑛
𝑖=1

−
𝑦𝑖

∑ 𝑦𝑖
𝑛
𝑖=1

|

𝑛

𝑖=1

 
O(3n) - *Low accuracy using 

K-means and K-
medoids algorithms. 

Partitioning and hierarchical 
clustering algorithms 

Canberra Metric 
𝑑𝑐𝑎𝑛𝑏 = ∑

|𝑥𝑖 − 𝑦𝑖|

(𝑥𝑖 + 𝑦𝑖)

𝑛

𝑖=1

 
O(n) *It results in accurate 

outcomes for high-
dimensional datasets 
using the K-medoids 
algorithm. 

- Partitioning and hierarchical 
clustering algorithms 

Czekanowski 
Coefficient 

𝑑𝑐𝑧𝑒𝑘𝑎𝑛

= 1 −
2 ∑ 𝑚𝑖𝑛( 𝑥𝑖 , 𝑦𝑖)𝑛

𝑖=1

∑ (𝑥𝑖 + 𝑦𝑖)𝑛
𝑖=1

 

O(2n) *It results in accurate 
outcomes for medium-
dimensional datasets 
using the K-means 
algorithm. 

- Partitioning and hierarchical 
clustering algorithms 

Coefficient of 
Divergence 𝑑𝑐𝑎𝑛𝑏 = (

1

𝑛
∑ (

𝑥𝑖 − 𝑦𝑖

𝑥𝑖 + 𝑦𝑖
)

2
𝑛

𝑖=1

)

1

2

 
O(n) *It results in accurate 

outcomes using the K-
means algorithm. 

- Partitioning and hierarchical 
clustering algorithms Univ
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opinion; nevertheless, the literature has recognised some evaluation criteria. The 

evaluation methods are usually split into three types: internal indexes, external indexes, 

and relative metrics. A similarity examination tests and estimates the relative value 

of two pieces of data. In (A. Jain & Dubes, 1988) and (C. H. Chen, Pau, Wang, & Dubes, 

1993), the factors used for assessment are addressed in detail. In the next two sections, 

internal and external quality indices are investigated.  

(a) Internal Quality Criteria 

The outcomes of clustering algorithms are generally assessed using internal validation 

measurements. An internal validity measurement uses the results of the clustering itself 

to measure the results’ validity. It attempts to determine whether the structure is 

essentially suitable for data, often based on two criteria: compactness and separation. 

Internal evaluations generally apply some indices of resemblance to evaluate cluster 

density. This method usually evaluates intra-cluster similarity and inter-cluster distance, 

or it can use a combination of both, and neither of these requires any external source other 

than its dataset (Liu, Li, Xiong, Gao, & Wu, 2010; Qamar, 2014). On the one hand, 

compactness measures intra-cluster similarity. Intra-cluster compactness is calculated by 

using the variance of cluster or distance between objects in the cluster. On the other hand, 

a maximum value is expected to be the distance between different clusters measured by 

separation criteria. The distance measurement can be the centre-to-centre cluster distance 

or the distance between cluster data points. Some of the measures for internal validation 

are as follows (Sivarathri & Govardhan, 2014):  

 the sum of squared error (SSE); 

 other minimum variance criteria; 

 scatter criteria; 

 Condorcet’s criterion; 
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 the C-criterion; 

 the category utility metric; and 

 edge cut metrics. 

(b) External Quality Criteria 

An external validity measurement may be useful to examine how similar the structures 

of the clusters (returned by the clustering algorithm) are to some predefined classification 

of the instances. It compares the obtained structure with the original one. Those external 

validity indicators are as follows (Rokch & Maion, 2005):  

 mutual information based measure; 

 precision-recall measure; 

 the Rand index (RI); and 

 the adjusted Rand index (ARI). 

In this research, the RI is selected (Rand, 1971) as an external measure of validity. The 

RI is a common criterion for calculating the resemblance of the clustering model C1 with 

the clustering framework C2. The RI can also be considered as a percentage of the 

algorithm's correct decisions. Let a (true positive) be the number of sets of items in a 

certain C1 group and the certain C2 group, and let b (false positive) be the number of sets 

of items in the C1 group but not in the C2 group union with the number of sets of items 

within the identical group in C2, while they are not in the similar group in C1. d (true 

negative) is the number of sets of items in identical cluster on C2 but just not in 

same class in C1 or the number of pairs of items allocated to distinct groups of C1 and 

C2. It is possible to interpret a and d as similarities, and b and c as differences. The RI 

will be described as follows: 
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𝑅𝐴𝑁𝐷 =
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
 2-1 

or, in other words, 

𝑅𝑎𝑛𝑑 𝐼𝑛𝑑𝑒𝑥 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 2-2 

The RI ranges from 0 to 1, and a high RI value indicates the highest accuracy. The RI 

will be 1 when there is a perfect agreement between the two partitions. However, a 

problem with the RI is that its estimated value of two random groups does not yield a 

consistent number (such as 0) when the two clusters do not completely match. To solve 

such a limitation, Hubert and Arabie (1985a) suggest the ARI. 

ADJUSTED RAND INDEX 

An issue with the RI matrix is that between the two random groups, the anticipated RI 

score is not a constant. Therefore, Hubert & Arabie (1985) recommend an adapted RI that 

aims to fix this issue by presuming a generalised hyper-geometric distribution as a random 

model. It also performs better than the RI and several other indicators (Milligan & 

Cooper, 1986; Steinley, 2004). The modified RI matrix has the highest value of 1 for 

random groups, and the predicted value is 0. The higher the ARI, the greater the 

agreement between the two partitions. Furthermore, for measuring agreement, the ARI is 

suggested, even if there are distinct cluster numbers for the comparative clusters. This 

approach has been satisfactorily used in the gene regulation database (Yeung, Fraley, 

Murua, Raftery, & Ruzzo, 2001; K. K. Yeung, Haynor, & Ruzzo, 2001). The ARI is 

calculated by the following equation: 

 

𝐴𝑅𝐼(𝐶, 𝐺) =
𝑅 −  𝐸[𝑅𝐼]

𝑚𝑎𝑥(𝑅𝐼)  −  𝐸[𝑅𝐼]
 2-3 
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2.4 Fuzzy Clustering  

Conventional clustering approaches, also known as hard clustering approaches, group 

information and make partitions with differentiated limits; each object is required to 

belong only to one cluster. Clusters are consequently mutually exclusive in a hard 

clustering. On the other hand, fuzzy clustering is non-linear in principle, and each object 

can have a degree of membership to other clusters, which provides more natural 

partitioning approaches; this implies more decision-making alternatives for the fuzzy 

clustering approach (Li & Lewis, 2016). This notion expands and suggests more diverse 

results that are soft representations of clusters. The word “fuzzy” refers to the cluster 

overlap where each component in a primary source belongs, to an extent, to one or even 

more clusters. In this situation, utilising the membership matrix, each element is bound 

to all clusters, suggesting that each group is a fuzzy cluster of all components. 𝑚𝑖𝑗, which 

represents membership in fuzzy clustering, issued to detect knowledge about item 

relationships and associated groups. There would be higher assurance in distributing the 

model to the cluster with higher membership scores. A hard clustering can also be attained 

through a threshold level of membership value from a fuzzy clustering (Rodríguez-

Fernández et al., 2017). 

Two main types of membership are generally considered in the fuzzy clustering 

literature: first, a relative type, called probabilistic membership, which indicates the 

percentage to which each cluster should be ascribed for a specified point, and second, an 

absolute or possible type, specifying the strength of the allocation to any group 

independent of the remainder (Masulli & Rovetta, 2006). The majority of analytical fuzzy 

clustering methods are derived from the main fuzzy C-means (FCM) algorithm. The FCM 

uses the probabilistic restriction that data point membership across classes sums to 1. 
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The Euclidean distance (ED) that is used in FCM, is widely used in various clusters to 

accomplish distance between elements in clusters and cluster centres, known as fuzzy 

membership (Abdulla & Al-Nassiri, 2015). It is the first choice for many applications 

because the ED results in spherically patterned clustering. Furthermore, Gustafson-

Kessel has used the Mahalanobis distance to assess various cluster patterns such as the 

ellipsoidal group, and Gath and Geva subsequently introduced maximum likelihood 

measurements to evaluate a comparative ellipsoidal pattern chance (Gath & Geva, 1989; 

J. Li & Lewis, 2016). Researchers have created fuzzy c variants, the optimised fuzzy 

clustering method, the FCM algorithm, the Gustafson-Kessel method, and the Gath-Geva 

method, motivated by yielding results with a more sensible pattern compare to previous 

methods (Jantzen, Norup, Dounias, & Bjerregaard, 2005). 

2.4.1 Types of fuzzy sets 

In areas such as monitoring and rule-based logic, fuzzy set techniques are 

common, since they have the potential to depict undefined categories and notions 

naturally. The illustration of such undefined categories or notions is accomplished 

through membership features described in the relevant discourse context in Zadeh's 

formulation of the fuzzy set theory (Zadeh, 1965, 1978). In fuzzy clustering, subjects 

share a percentage of membership in multiple groups. Fuzzy clustering enables the step-

by-step calculation of the membership of components in a cluster formed by the 

membership parameter between the interval of [0,1], and the total membership values for 

the study group will be 1. So, each element in fuzzy sets is assigned to [0,1] through the 

membership function  𝐴: 𝑋 → [0, 1] in which [0,1] means the real numbers from 0 to 

1 (including 0 and 1). As a result, functions assigning membership values to elements are 

specified as either a Type-I, Type-II, or intuitionist fuzzy set (IFS) (Gosain & Dahiya, 

2016). The following figure presents different fuzzy set theories. 
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Figure 2-4: Different fuzzy set theories 

2.4.1.1 Type-I fuzzy set 

Datasets in real application can have many uncertain factors, which result in 

uncertainties in the fuzzy set membership functions. Type-I fuzzy sets utilise crisp 

membership functions that are not able to model such uncertainties. Moreover, in Type-I 

fuzzy sets, a specialist would dictate the degree of membership. As an example, in Type-

I fuzzy sets, if one has three different green balls, then the first is green by a membership 

value of 65%, the second is green by 80%, and the third is green by 90%.  

2.4.1.2 Type-II fuzzy set 

Fuzzy set Type-II membership values themselves are defined by a fuzzy set. Zadeh 

(Zadeh, 1975) has presented this concept, which generalises Type-I fuzzy sets, thus 

enabling one to include uncertainty about the membership function in the fuzzy set 

approach (H. B. B. Mitchell, 2005; Yao & Weng, 2012). Fuzzy set Type-II was used to 

manage uncertainties in different contexts, where Type-I fuzzy sets are not performing 

satisfactorily. For example, Mitchell (H. B. Mitchell, 2003; H. B. B. Mitchell, 2005); 

Nakhostin (2012); and Zeng, Xie, and Liu (Zeng, Xie, & Liu, 2008) have applied the 

Type-II fuzzy set to manage pattern identification instability. Referring to the previous 

example, researchers cannot precisely determine the degree to which the characteristics 

are achieved in a Type-II fuzzy set. If one has three different green balls, for example, the 

first is green by 65% to 70%, the second is green by 80% to 95%, and the third is red by 

90% to 95%. Type-II fuzzy set thus provides an interval fuzzy set. 

Fuzzy Sets

Type I Type II Intuitionestic 
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The benefit of fuzzy sets and mechanisms in Type-II fuzzy sets is a three-dimensional 

membership feature to handle more uncertainty in actual problems (Mendel, 2007). 

Increased dynamism in a description implies enhanced capacity to logically and correctly 

manage incorrect data. A higher version of fuzzy association (e.g., Type-II) was 

conceived as one manner of increasing a relationship's fuzziness. One can extend this 

notion to Type-n of a fuzzy set (Qamar, 2014).  

In the case of linguistics, for example, Type-II fuzzy sets allow one to address language 

uncertainties that can be stated as, “for every person, each word can imply different 

things”. 

2.4.1.3 Intuitionistic fuzzy set  

Atanassov (K. T. Atanassov, 1986) extended Zadeh's fuzzy set by using two concepts 

to evaluate the component's membership and non-membership values, which pertain to 

the distance of [0,1], and its sum also relates to the same interval. On the other hand, it 

has been demonstrated that an IFS is more effective than a fuzzy set in coping with 

fuzziness and instability. However, in real life, it might not be true that the value of non-

membership of an object in a fuzzy set is equivalent to 1 minus the value of 

membership, because some level of uncertainty may be present. Therefore, an IFS 

combines the mentioned level of uncertainty (and is described as one minus the 

total sum of the degree of membership and non-membership). 

Many experts have investigated the IFS concept over the past decades, and they used 

it in different areas. Atanassov and Gargov (K. Atanassov & Gargov, 1989) added a 

general intuitive fuzzy set in standard fuzzy sets on the basis of a distance value and 

then proposed an intuitive fuzzy set according to the interval value (IVIFS). Then, in 

(Atanassov, 1986b; De, Biswas, & Roy, 2000; Deschrijver, Cornelis, & Kerre, 2004; 

Deschrijver & Kerre, 2007; Xu & Yager, 2006; Zeshui Xu, 2007), continuous studies 
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have been conducted regarding relationships, procedures, and operators linked to an 

IFS and IVIFS . Deschrijver and Kerre (Deschrijver & Kerre, 2003) have established 

relationships between I-Fuzzy sets, the interval-valued IFS, and L - FS (Goguen, 1967) 

and an IFS. A further fuzzy set named vague set similar to an IFS has been launched at 

(Bustince & Burillo, 1996; Gau & Buehrer, 1993). Furthermore, some techniques for 

measuring the correlation variables of an IFS and IVIFS were put in place (Bustince & 

Burillo, 1995, 1996b; Gerstenkorn & Mańko, 1991; Hong & Hwang, 1995; HUNG, 2003; 

Hung & Wu, 2002; Mitchell, 2004; Xu, 2006b). Xu (Xu, 2006c), in a detailed study of 

the correlation analysis of an IFS, stated that many of the current correlation methods 

could not guarantee that the IFS or IVIFS correlation ratio is equal to 1 only if these 

two are the same (Xu, Chen, & Wu, 2008). 

2.4.2 Application of fuzzy clustering  

Fuzzy clustering algorithms have been studied and applied in many different areas. 

They also turn into major cluster analysis methods. These applications open the door to 

research in fuzzy clustering. The literature recognises the practical importance of 

clustering in various disciplines such as classification, medicine, 

geography, finance, engineering technologies, and graphics processing. Fuzzy clustering 

has now been extensively researched and implemented in distinct scientific fields; for 

example, Type-II fuzzy sets and IFSs have been exploited in decision-making processes, 

the design of fuzzy relationship formulas, questioner processing, time series 

estimation, approximation operations, the equalisation of time variables, and portable 

robots regulation, amongst other things (Yao & Weng, 2012). An IFS has also been 

applied in various fields, such as decision-making processes (Castillo & Atanassov, 2019; 

Herrera, Martínez, & Sánchez, 2005; Hong & Choi, 2000; Li, Olson, & Qin, 2007; Liu & 

Wang, 2007; Pankowska & Wygralak, 2006; Saadati & Park, 2006; Szmidt & Kacprzyk, 

2002, 2003; Xu, 2007c, 2007d, 2007b, 2006a; Xu & Yager, 2006), economics and society 
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studies (Meier, Pedrycz, & Portmann, 2019), medical diagnoses (Hu, Pan, Yang, & Chen, 

2019; Szmidt & Kacprzyk, 2004), pattern recognition (Hung & Yang, 2007; Jin & Bai, 

2019; Mitchell, 2005c; Wang & Xin, 2005; Xu et al., 2008), and robotic systems 

(Narayanamoorthy, Geetha, Rakkiyappan, & Joo, 2019). These methods have become the 

key tools for analysing a cluster.  

2.5 Fuzzy Clustering Algorithm 

From the last century, when fuzzy clustering was introduced, it has been applied in 

many disciplines. However, today, with the significant amounts of internet information 

transfer, improving fuzzy clustering methods is still an open issue.  

Assume a set of 𝑛 objects 𝑋 =  {𝑥1,  𝑥2, . . . , 𝑥𝑛}, where 𝑥𝑖 is a 𝑑-dimensional point. A 

fuzzy clustering is a collection of 𝑘 clusters, {𝐶1, 𝐶2, . . . , 𝐶𝑘} , and a partition matrix 𝑊 =

 {𝑤𝑖,𝑗 ∈  [0, 1], 𝑓𝑜𝑟 𝑖 = 1 . . . 𝑛 𝑎𝑛𝑑 𝑗 = 1 . . . 𝑘}, where each element 𝑤𝑖,𝑗 is a weight that 

indicates the value of membership of item 𝑖 in the cluster of 𝐶𝑗. 

Kaufman (1990) describes the fuzzy algorithm, which aims to minimise the following 

objective function, J, consisting of cluster memberships and distances. 

J = ∑
∑ ∑ mi,k

2 mj,k
2 di,j

N
j=1

N
i=1

2 ∑ mj,k
2N

j=1

K

k=1

 2-4 

where 𝑚𝑖,𝑘 is the unknown membership of the object 𝑖 in cluster 𝑘, and 𝑑𝑖,𝑗 is the 

dissimilarity between objects 𝑖 and 𝑗. Memberships are subject to limitations that they 

must all be non-negative and that memberships must be summed up to 1 for a single item. 

That is, memberships have the same limitations they would have if they were the 

probabilities that an item belongs to each group (and can be defined as such). 
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A wide range of proposed algorithms exist for fuzzy clustering; these methods and 

their respective fuzzy category are presented in Figure 2-5. Several variations and 

generalisations of the fuzzy clustering algorithm are discussed in the following sections. 

  

2.5.1 Fuzzy C-means 

It could be claimed that the most common fuzzy clustering method is the FCM. In 

1984, Bezdek and his colleagues (Bezdek, Ehrlich, & Full, 1984) proposed the FCM as 

an expansion of Zadeh's (Zadeh, 1965) fuzzy set to resolve imprecision and uncertainty. 

It is a frequently used and effective method of clustering and classification. Fuzzy C-

means is a fuzzy variant of K-means and is better at avoiding local minima than the hard 

K-means approach; as with K-means, the FCM also seeks to reduce the SSE. FCM utilises 

the ED to evaluate differences like K-means; this enforces a spherical cluster shell without 

considering the real data distribution. The most significant issue with fuzzy clustering is 

the membership feature design; it can be based on the decomposition of similarities or 

Fu
zz

y 
Se

t

Type I

FCM

PCM

FPCM

PFCM

NC

FCM-σ

KFCM-σ

CFCM

DOFCM

Type II

T2FCM

KT2FCM

GMKIT2-FCM

GT2FCM

IT2-FCM

Intuitionistic

IFCM

IFCM-σ

KIFCM

KIFCM-σ

Figure 2-5: Fuzzy clustering method 
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cluster centroids. Furthermore, it uses fuzzy logic and fuzzy set theory concepts. In the 

FCM, an object can correspond to various clusters at the same time, with a certain degree 

known as the membership value, depending on the cluster centre’s likelihood. Therefore, 

the membership value is an indicator of similarity. The membership degree for an item 

can be a value between 0 and 1; greater similarity results in a higher membership value 

(Choudhry & Kapoor, 2016). Traditional set theory can thus be viewed as a special case 

in which membership values are limited to either 0 or 1. A noticeable reality about this 

type of method is the defect within the underlying accepted model: each point in X is 

categorically grouped with other members of “its” cluster and hence bears no obvious 

similarity to other members of X. For this discussion, it suffices to notice that hard 

partitions of Y are special types of fuzzy partitions, whereby each data point is grouped 

without ambiguity with its intra cluster neighbours. Anomalies (noise or otherwise) 

usually make a group of “unclassifiable” points; however, most standard models do not 

have any natural mechanism to handle the effect of noisy data. 

A fuzzy c-partition of X is one that defines the membership of each sample point 

through a membership function in all clusters that ranges from 0 to 1. Furthermore, the 

sum of the memberships for each sample point should be 1. 

Let 𝑌 =  {𝑌1,  𝑌2 . . . . . 𝑌𝑛} be a sample of 𝑛 observations in 𝑅𝑛 (n-dimensional 

Euclidean space); 𝑌𝑙 is the 𝑙-th feature vector, and 𝑌𝑙𝑗 is the 𝑗-th feature of 𝑌𝑙. If 𝑐 is an 

integer, 2 ≤  𝑐 , then a conventional (or "hard") c-partition of 𝑌 is a 𝑐-tuple 

(𝐶1, 𝐶2 , . . . . , 𝐶𝑐) of subsets of 𝑌 that satisfies three conditions: 

Ci ≠  ∅, 1 ≤ 𝑖 ≤ 𝑐; (1𝑎) 

C𝑖 ∩ C𝑗 = ∅;  𝑖 ≠ 𝑗 (1𝑏) 

∪𝑖=1
𝑐 C𝑖 = 𝑌 (1𝑐) 

2-5 
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Let 𝑈 be a real 𝑐 ×  𝑛 matrix, 𝑈 =  [𝑢𝑖𝑙]. Here, 𝑈 is the matrix representation of the 

partition {𝐶𝑖} in equation (1) in the situation 

𝑢𝑖(𝑦𝑙) = 𝑢𝑖,𝑙 {
1; 𝑦𝑙 ∈ 𝑌𝑖      

0;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
    (2𝑎) 

∑ 𝑢𝑖,𝑙

𝑛

𝑙=1

>  0   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖;               (2𝑏) 

∑ 𝑢𝑖,𝑙

𝑐

𝑖=1

=  1   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑙;          (2𝑐) 

 

2-6 

Defuzzification will be utilised at the final stage of the clustering procedure to 

determine the groups. The FCM algorithm is repetitious, and to accomplish it, the centre 

of the cluster and the membership degree are frequently updated. By setting the cost 

equation, these upgrading equations are created. Have 𝑋 = {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑁} represent 

a dataset with 𝑁 items. It must be split into c-clusters by minimising the price function 

(Choudhry & Kapoor, 2016). 

𝑗 = ∑ ∑ 𝑢𝑖,𝑗
𝑚

𝑐

𝑖=1

‖𝑥𝑗 − 𝑣𝑖‖
2

𝑁

𝑗=1

 2-7 

 

where 𝑢𝑖𝑗 denotes the affiliation of 𝑥𝑗 in the 𝑖𝑡ℎ cluster, 𝑣𝑖 would be the 𝑖th centre of the 

cluster, ‖. ‖ is a norm metric, and “𝑚” would be a constant. Moreover, parameter 

𝑚 determines the resulting partition's fuzziness. By attempting to take the derivative of 

the formula and making it equal to 0 through the use of the Lagrange technique, the 

following results are accomplished (Choudhry & Kapoor, 2016): 

𝑣𝑖

∑ 𝑢𝑖𝑗
𝑚𝑥𝑙

𝑁
𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑁

𝑗=1

 

𝑢𝑖𝑗 = ∑ (
‖𝑥𝑗 − 𝑣𝑖‖

‖𝑥𝑗 − 𝑣𝑘‖
)

2𝑐

𝑘=1

 
2-8 
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Different objective functions have shown a generalisation of the FCM algorithm. 

Many variations to the FCM have been suggested over the years because the traditional 

FCM could not operate excellently in the presence of outliers and inhomogeneity, which 

exist in real datasets. This results in centroids shifting toward outliers instead of the actual 

cluster centres (Qamar, 2014). These methods are suggested by using spatial data or 

assessing the diversity of the suspicion field or by altering the cost function to address 

limitations. These FCM variants are as follows (Gosain & Dahiya, 2016): 

 Bias-corrected fuzzy C-means (BCFCM); 

 Possibilistic fuzzy C-means (PFCM); 

 Spatial fuzzy C-means (SFCM); 

 FCM -S1 and FCM-S2; 

 Fuzzy local information C-means (FLICM); 

 Multi-dimensional fuzzy C-means (MDFCM); 

 Weighted image patch-based FCM (WIPFCM); 

 Kernel weighted fuzzy local information C-means (KWFLICM); and 

 Strong FCM. 

2.5.2 Gustafson-Kessel method 

Gustafson and Kessel introduced the G-K method (GKA) in (Gustafson & Kessel, 

2008) and (Babuška, 1998) to use an adaptive distance measure on cluster centres and 

data point covariance matrices to assess dissimilarity. Since the distance measure used in 

the GKA is in the form of the Mahalanobis standard, it may be taken into consideration 

that the GKA utilises ellipsoids to cluster data points. However, before iteratively 

calculating the cluster centres, the GKA assumes fixed ellipsoid volumes. The FCM and 

GKA are probabilistic fuzzy approaches to clustering.  
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2.5.3 Possibilistic clustering method 

Krishnapuram and Keller (1996; 1993b) proposed the possibilistic clustering method 

(PCM) as a practical method for pattern recognition and data analysis. Pal et al. (Pal, Pal, 

Keller, & Bezdek, 2005) examined the PCM on Iris dataset and stated that they tried a 

variety of initialisations to get the PCM to find three clusters, but it constantly produced 

coincident clusters and eventually returned only two clusters regardless of how they 

initialised the PCM. Several PCM versions were subsequently suggested to improve the 

efficiency of the original method.  

To enhance the PCM, Zhang and Leung (Zhang & Leung, 2004) introduced the fuzzy 

method to the PCM, thereby maximising the effectiveness of the possibilistic method. 

The typicality values calculated in the PCM would be low if the dataset contains many 

objects. Even though scaling appears to solve the problem of small values, scale values 

do not have additional data points’ information. The fuzzy and possibilistic C-means 

method (FPCM) suggested by Pal et al. (1997) intended to combine the characteristics of 

the FCM and the PCM, and it was hence called the mixed C-means (MCM) method. The 

FPCM provides memberships and the likelihood for each cluster, along with the standard 

prototype point or centre of clusters. 

Pal suggested the FPCM and PFCM, a combination of the PCM and FCM, to 

prevent coincident clusters. The drawback of the FCM about outlier sensitivity is avoided 

in the PFCM, and it prevents the coincidence cluster. Furthermore, the row sum restriction 

of the FPCM (𝑎 + 𝑏 = 1) is eliminated, so that the PFCM is an excellent fuzzy rule-based 

system classification. However, there are four parameters to learn from the PFCM model, 

and finding the best four parameters in an uncertain environment is difficult. The PFCM 

has three outputs compared to other fuzzy and possibilistic approaches that mostly 

generate two outputs. The PFCM's outputs are 𝑈, a fuzzy partition or membership matrix; 
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𝑇, a topicality matrix; and 𝑉, a set of 𝑐 prototype points. Variables 𝑎 and 𝑏 in the PFCM 

describe the comparative significance of prototyping and membership in computation of 

centroids. While in the presence of noise, the PCM and PFCM work better, they are also 

not perfect. The PCM performs poorly in finding optimal clusters in noisy datasets, and 

the PFCM performs poorly if the dataset includes anomalies and if clusters are 

imbalanced in size.  

Xie et al. suggested an improved PCM clustering method in (Xie, Wang, & Chung, 

2008), which partitioned the original data into the primary cluster and the assisted cluster 

to prevent the coincident clustering.  

The PCM can be used widely in the assessment and mining of big sensor data. Many 

datasets, however, suffer from incompleteness in big sensor data; that is, a dataset X may 

contain parameters that miss one or more ascribed values (Li, Gu, & Zhang, 2010). The 

PCM was unable to cluster such incomplete information sets in real time entirely. On the 

one hand, in incomplete datasets, the PCM could not measure the distance between two 

items, whereas uncompleted objects easily corrupt the accuracy of the PCM. On the other 

hand, in the presence of the substantial amount of data, meeting the actual-time 

requirement of clustering incomplete big data in the PCM is difficult. Zhang and Chen 

(Zhang & Chen, 2014) thus proposed a distributed weighted possibilistic C-means 

method (DWPCM) for clustering big incomplete data.  

2.5.4 Robust fuzzy C-means 

Tsai and Lin suggested that the traditional FCM should be changed to a fresh distance 

index called the FCM-σ by altering the distance measure used in the standard FCM (Kaur, 

Soni, & Gosain, 2011). 
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2.5.5 Type-2 fuzzy sets fuzzy C-means 

All the above-mentioned fuzzy clustering methods have Type-I membership values. 

An FCM Type-II by (Rhee & Hwang, 2001) expanded the membership value of the 

FCM to the Type-II FCM as well. The initial concept in Type-II fuzzy sets fuzzy C-means 

(T2FCM) is that not all input should contribute equally to cluster centre computing. 

Instead, points with greater membership status need to dominate in processing cluster 

centres. The concept of constructing the fuzzy sets Type-II is merely based on the 

principle that the secondary membership function must produce the greater possible 

value, which should be higher than the lower possible value for the same Type-I 

membership value. 

2.5.6 Kernel type-II fuzzy set fuzzy C-means 

Kernel Type-II fuzzy set fuzzy C-means (KT2FCM) was proposed to solve the 

T2FCM problem by adding kernel, tangent, and Lagrangian methods, which still have 

the objective function for the T2FCM method as well as improved clustering in the 

presence of noise (Kaur et al., 2011). 

2.5.7 Multi-kernel fuzzy clustering 

Multi-kernel fuzzy clustering (MKFC) is an effort into the FCM approach that tackles 

the problem of the restriction of spherical shape clusters (Huang, Chuang, & Chen, 2012). 

It uses different kernels and instantly changes the kernel measures to protect the system 

from inadequate kernels and insignificant features. 

2.5.8 Evolving fuzzy clustering method 

The evolving fuzzy clustering method (ECM) was introduced in 2002 by Kasabov and 

Song (Kasabov & Qun Song, 2002), and it is named the first evolutionary online 

clustering (Ravi, Srinivas, & Kasabov, 2008). Evolving fuzzy clustering works in two 
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phases: online tracking and offline tracking. The number of groups in the one-way 

method is predicted interactively in the offline stage. 

2.5.9 Intuitionistic fuzzy C-means 

Meanwhile, in the case of digital images, it is not possible to comprehend precisely 

which pixel corresponds to which group. Some sort of hesitation exists regarding the 

concept of the affiliation function. This idea provokes Atanassov's (Krassimir Atanassov 

& Georgiev, 1993) concept of the higher fuzzy, labelled as an intuitive fuzzy set. The 

objective function of the intuitionistic fuzzy C-means (IFCM) is based on two 

central terms: the IFS objective function and the new fuzzy intuitionist entropy (IFE) 

(Chaira, 2010). 

The IFCM expands the standard FCM by incorporating intuitive characteristics into 

the association and objective functions algorithm. It displayed better performance in 

comparison to available algorithms but was unable to cluster non-spherical separable 

samples effectively. Several IFCM versions were thus suggested to improve the 

efficiency of the original algorithm.  

To manage the distance fluctuation in each group, robust intuitionistic fuzzy C-means 

(IFCM-sigma) was suggested by Kaur, Soni, and Gosain (Kaur et al., 2011), 

acknowledging a distinct distance measure to the IFCM. Therefore, the IFCM-sigma 

performs better than the IFCM in cases where the clusters are non-spherical.  

Kernel intuitionistic fuzzy C-means (KIFCM) is another variation of the IFCM 

that implements the radial basis kernel feature to calculate the interval between the centre 

of cluster and items, was the recommendation of the KIFCM approaches (Gosain & 

Dahiya, 2016). The IFCM's precision was consequently enhanced to optimise the 

accuracies of intuitive FCM.  
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Another variation, radial basis kernel robust intuitionistic fuzzy C-means (KIFCM-

sigma) incorporates the IFCM, the kernel function, and innovative measuring distances 

to determine the interval between the cluster core and objects. It promotes clustering or 

centre point processing without considering noise and anomalies, thereby enhancing the 

precision of the IFCM by solving problems of the IFCM and FCM-σ (Gosain & Dahiya, 

2016). 

2.5.10 Noise clustering  

Dave's noise clustering (NC) method (Dave, 1991) indicates that a noise prototype 

distance from all points was defined as a constant value. The term “noise clustering” is 

implemented to designate the noise category to noisy data points. This method is designed 

for algorithms such as K-means or fuzzy K-means, which are objective-based function 

algorithms, to identify “excellent” clusters among noisy information.  

2.5.11 Credibility fuzzy C-means 

Credibility fuzzy C-means (CFCM) is another method that is explicitly suggested to 

operate with noisy records effectively. Instead of exactly identifying outliers, the NC and 

CFCM emphasise decreasing the impact of those outliers on the resulting clusters. The 

CFCM method proposed by Chintalapudi does this by applying a new matrix, named 

credibility, and it reduces the cluster computing effect that is caused by outliers. This 

demonstrates that the method strengthens centroid measurement. However, the centroid 

may not be accurate, since some outliers still exist in several clusters (Kaur, Soni, & 

Gosain, 2013).  

2.5.12 Density-oriented fuzzy C-means 

Density-oriented fuzzy C-means (DOFCM) (Kaur & Gosain, 2010) is another method 

developed to deal with outliers using a density factor, which is a group membership that 

would first evaluate the compactness of an object in a dataset by considering its 
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environment and then accomplish clusters considering actual data points. The DOFCM 

initially specifies outliers from a dataset with 𝑛 proper clusters and one anomalous cluster 

consisting of noise and outliers. Then, it creates 𝑛 clusters and one outlier cluster, which 

results in 𝑛 + 1 clusters. In this process, the density method was used to define outliers, 

and cluster membership in the FCM was modified. The location of the centroids in the 

DOFCM model was consequently not affected by noise in the dataset. 

2.5.13 Unsupervised fuzzy partitioning-optimum cluster number 

The unsupervised fuzzy partitioning-optimum cluster number (UFP-ONC) method, 

introduced by Gath and Geva (Gath & Geva, 1989), interprets the membership values as 

likelihood estimates with ideal results. It performs well in conditions where the cluster 

shapes, density, and number of objects in each group are highly variable. However UFP-

ONC is not suitable for application where memberships should be a demonstration of 

typicality or compatibility with a flexible restriction, as the memberships generated by 

this restriction are relative values (Zadeh, 1965, 1978).  

2.5.14 Dynamic fuzzy clustering 

An efficient method, called the dynamic fuzzy cluster, was introduced by Min Ji, 

Funding Xie, and Yu Ping (Ji et al., 2013) to actively group time series data by identifying 

main objectives and enhancing the FCM algorithm. It seems to operate by identifying the 

time series with uncertain category names and then dividing them into distinct clusters 

over the point of time. Compared to other existing algorithms, the primary advantage of 

this approach is that as time goes by, the characteristics of certain time series 

corresponding to specific groups can be largely found. The suggested algorithm may be 

implemented to fix some clustering issues in data analysis. A three-level dynamic fuzzy 

clustering (DFC) method includes: initial partitioning, a series of updating, and merging 

by using optimisation of a characterisation function, that is based solely on measures of 
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fuzziness in a set. Finally, in contrast to the conventional detection of separated 

preliminary clusters, the method can extract overlapping preliminary cluster boundaries 

when the feature space has ill-defined regions. 

2.5.15 The conventional k-nearest neighbours based fuzzy clustering methods 

A study on the development of fuzzy clustering methods from the conventional k-

nearest neighbours (kNN) method was primarily driven by fuzzy clustering method’s 

limitations. For instance, a clustering method centred on kNN is introduced by the authors 

in (C. S. Li, Wang, & Yang, 2010). This method is an ensemble approach that produces 

a data correlation matrix and then uses hierarchical clustering to accomplish final clusters.  

To summarise the ensemble data, the algorithm produces the data correlation matrix 

and then pertains hierarchical clusters to accomplish the ultimate 

clusters. Another example is by (Weng, Jiang, Chen, & Hong, 2007), who proposed a 

distinctive cluster alignment method that creates a connection between fuzzy clusters by 

setting up a brand new cluster association pairing system and big fuzzy membership. 

Furthermore, a new method of clustering is suggested based upon the kNN model in (Guo, 

Wang, Bell, Bi, & Greer, 2003). It is similar to the kNN model, but it instantly determines 

the number of k. The model is developed by generating several training data 

representatives that are engaged in the clustering and whose size is much smaller than the 

total training content. In (L. Chen, Guo, & Wang, 2012), the kNN model is improved by 

creating a training method based on the cluster to discover the best representation set. In 

addition, the kNN based dynamic evolving fuzzy clustering (KEFCM) method conducted 

by (Abdulla & Al-Nassiri, 2015) addresses the issues of the price calculation, modifying 

fuzzy clustering, and the traditional complication of clustering with kNN. It implements 

the least square method to identify the centre of the cluster and its cluster border, along 

with the ED measure to assess the degree of membership that the KEFCM presents to the 
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neural fuzzy inference model as a pre-processor (Shubair, Ramadass, & Altyeb, 2014). 

The approach to the KEFCM concerns the dynamic evolution that differentiates it from 

the development of kNN discussed above. Moreover, the KEFCM takes place in the 

offline and online stages. The partitions are made by the KEFCM throughout the offline 

stage, while in the online step, it clusters upcoming data and sequentially upgrades the 

clusters to evolve.  

2.5.16 Incremental fuzzy clustering 

Incremental clustering was proposed to properly manage large data that cannot fit 

completely into the memory. Single-pass fuzzy C-means (SpFCM) and online fuzzy C-

means (OFCM) are two representative incremental fuzzy clustering (IFC) methods that 

both extend the scalability of the FCM through piece-by-piece processing of the dataset.  

The incremental clustering assumption is that datasets can be viewed and allocated to 

the clusters one by one. In this method, adding new objects would not significantly affect 

the current clusters. Moreover, to reduce the required storage, only cluster centres would 

be kept in the main memory. 

The table below presents an overview of different fuzzy clustering. 

Table 2-2: Overview of different fuzzy clustering methods 
Fuzzy Set Type Method Reference Year Disadvantages Advantages 

Type I 

FCM (Bezdek et al., 
1984) 

1984 -Performs 
poorly in the 
presence of 
outliers 

-Sensitive to 
noise 

-Easy to 
understand 

-Used in 
many 
disciplines 

PCM (Raghu 
Krishnapuram & 
Keller, 1993a) 

1993 -Sensitive to 
noise (A. K. 
Jain, Murty, 
Fynn, et al., 
1999) 

-Highly 
sensitive to 

-Helpful in 
outlier 
detection 
(Pal et al., 
2005) 
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initialisations 
(N. Pal et al., 
2005) 

-Highly 
sensitive to 
parameter 
setting (N. Pal et 
al., 2005) 

FPCM (Pal et al., 1997) 1997 -When the 
number of n 
(number of data 
points) is large, 
the typicality 
values would be 
small (N. Pal et 
al., 2005) 

-Does not 
suffer from 
the 
sensitivity 
problem 
that the 
PCM seems 
to exhibit 

PFCM (Pal et al., 2005) 2005 -Performs 
poorly in the 
presence of 
outliers 

-Sensitive to 
unbalanced 
clusters (Kaur et 
al., 2013) 

 

 

 

NC (Dave, 1991) 1991 -Low accuracy 
in finding the 
right clusters 

-Reduces the 
effect of outliers 
but does not 
nullify them 

Works well 
in the 
presence of 
noise 

FCM-σ (Dave, 1993) 1993 Can only deal 
with linearly 
separable data 
points 

Improveme
nt over the 
FCM 

KFCM- σ (Tsai & Lin, 2011) 2011 Can be effected 
by noise 

Can handle 
non-
linearly 
separable 
data points. 

CFCM (Chintalapudi & 
Kam, 1998) 

1998 Low accuracy in 
finding the right 
clusters 

Works well 
in the 
presence of 
noise 

DOFCM (Kaur & Gosain, 
2010; Tasdemir & 
Merényi, 2011) 

2010  Works well 
in the 
presence of 
noise 
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Type II 

T2FCM (Rhee & Hwang, 
2001) 

2001 Not suitable for 
non-spherical 
and complex 
clusters 
(Bhaskar N. 
Patel, 2012) 

Generates 
better 
cluster 
centroids 
(Kaur et al., 
2011) 

KT2FCM (Tsai & Lin, 2011) 2011  -Generates 
better 
cluster 
centroids.  

-Performs 
well in the 
presence of 
noise (Kaur 
et al., 2011) 

GMKIT2-
FCM 

(Dinh Nguyen, 
Ngo, & Pham, 
2013) 

2013  Automatica
lly 
determines 
the optimal 
number of 
clusters  

GT2-
FCM 

(Linda & Manic, 
2012) 

2012  Provides 
increased 
robustness 
in situations 
where noisy 
or 
insufficient 
training 
data are 
present 
(Linda & 
Manic, 
2012) 

IT2-FCM (Hwang & Rhee, 
2007) 

2007  Improved 
clustering 
result 
compared 
to the FCM 

Intuitionistic 

IFCM (Kaur, Soni, 
Gosain, Soni, & 
Anjana Gosain, 
2012; Z. Xu et al., 
2008) 

2008 -Fails to identify 
non-spherical 
clusters.  

-Only can deal 
linearly 
separable data 
points. 

Low 
computatio
n cost 

IFCM- σ (Kaur et al., 2011) 2011  Ability to 
identify 
non-
spherical 
clusters 
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KIFCM (Kaur et al., 2012) 2012  More 
accurate 
than the 
IFCM 

KIFCM- 
σ 

(Kaur et al., 2012) 2012  Improveme
nt over the 
KIFCM 

EKIFCM (Lin, 2014) 2014  Combines 
advantages 
of 
intuitionisti
c fuzzy sets, 
kernel 
functions, 
and GA in 
actual 
clustering 
problems 

 

For all fuzzy clustering methods that have already been reviewed, the number 𝑘 of 

clusters must be pre-assumed. Since the number 𝑘 is usually unknown, the method of 

finding the optimal 𝑘 is important. This type of problem is usually referred to as cluster 

validity. 

In some way, the utilisation of the above-mentioned evolving clustering methods is 

successful. The features of an efficient clustering method should be as follows: fuzzy 

clustering, dynamic change, small operational price, and low prior effort. However, this 

method still has not been fulfilled.  

2.6 Clustering Time Series Data 

Many real-world situations require that the data be classified into homogeneous 

groups, although prior knowledge about the structure is not available. This makes 

clustering a better-suited tool for pre-processing information in a complex information 

mining process and an unlabelled data assessment method. 
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In disciplines such as economics, environmental sciences, astronomy, physics, 

chemistry, biology, and many others, data that changes with time are a frequent 

occurrence. Since the data’s trait values change as time passes, it is largely regarded as 

vibrant information, meaning that data is captured in continuous time intervals. As a result 

of enhanced information storage and handling capacity, real applications have been 

prepared to hold and retrieve information for a long period. Furthermore, because of 

infrastructure advancements that are prepared for all industries in the form of cloud 

computing and cloud storage, those industries have access to large data storage spaces at 

a significantly lower price. This enables businesses to keep all their information as time 

series over time. In addition, processing power is no longer an obstacle for analytics 

because of the development of new big data and cluster computing concepts. Time series 

data are then available in almost every industry, including finance, biomedical, physics 

particle analysis, biometrics data, air quality, and many more. 

An unsupervised grouping of a collection of unlabelled time series into classes or 

areas, in which all components are placed in the same group, is called time series data 

clustering. Data from time series are important because of their growing popularity in 

various disciplines, such as commerce, scientific technology, banking, business, medical 

care, and administration (Liao, 2005). Each time series is a collection of data points that 

has been collected in time intervals, and it can be considered as a single item. Clustering 

these multi-dimensional items could be useful to determine whether an interesting 

pattern exists in the datasets. Numerous studies have been conducted to address time 

series clustering challenges, such as the following: identifying changes that occur in time 

series, recognising the character, and detecting anomalies and noises (Deshmukh & 

Hwang, 2019; Faloutsos, Ranganathan, & Manolopoulos, 1994; Kant & Mahajan, 2019; 

Yang, Lv, & Wang, 2006). Section 2.6.5 discusses further applications of clustering time 

series data to emphasise the significance of or need for clustering datasets in time series.  
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Time series datasets are quite massive, and they cannot be treated well enough by 

human examiners. Therefore, many users prefer to handle standardised data instead of 

bulky amounts of data. As a result, time series data is illustrated either by collecting data 

in clusters that are not overlapped or by classifying it as a hierarchical system of an 

abstract concept as a collection of similar time series clusters. 

In time series studies, clustering and its branches, such as encoding, categorisation, 

and outlier recognition, are widely used as an exploratory method. Illustrating the 

cluster structures of time series as visible information (time series data visualisation) may 

enable a person to easily discover data frameworks, clusters, outliers, and other 

abnormalities in databases.  

Definition: Time series Clustering: Given a dataset of n time series data D =

{F1, F2, . . , Fn}, the process of unsupervised partitioning of D into C = {C1, C2, . . , Ck}, in 

such a way that homogenous time series are grouped together based on a certain similarity 

measure, is referred to as time series clustering. Then, Ci is called a cluster, where 𝐷 =

⋃ 𝐶𝑖
𝑘
𝑖=1  and 𝐶𝑖 ∩ 𝐶𝑗 = ∅ for i ≠ j (Aghabozorgi et al., 2015). 

Clustering of time series is difficult, since its data is usually much larger than system 

memory and therefore archived on external hard drives. This slows down the clustering 

process significantly. The second issue is that data from time series is usually high-

dimensional, making it difficult for many clustering algorithms to handle the data as well 

as slowing down the process of clustering. The third issue examines the metrics used to 

create the clusters by way of similarity (Keogh, Pazzani, Chakrabarti, & Mehrotra, 2000; 

Lin, Keogh, & Truppel, 2003). Similar time series are discovered based on their similarity 

values by use of a similarity metric. If the whole time series is utilised for the process of 

similarity calculation, it would be referred to as “whole sequence matching”. The method 

is nevertheless complex, as the time series database usually has noise and includes 
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anomalies and changes. These common issues posed a major problem for data 

specialists to find a similarity measure. Some of the most popular methods include the 

following: 

o Hidden Markov models; 

o Dynamic time warping; 

o Recurrent neural networks; 

o Dynamic Bayes nets; 

o Constructive induction of temporal features; 

o Extracting prototype examples; and 

o Applying relational learning methods. 

Clustering of time series can indeed be grouped into three categories: shape-level 

(whole time series) clustering whenever used on multiple different time series; structure-

level (subsequent time series) clustering when administered on a single, long time series; 

and finally, time point clustering, which is the cluster of time points according to their 

proximity and the similarity of their equivalent values. The first two categories were 

mentioned in 2005 (Mörchen, Ultsch, & Hoos, 2005). 

Furthermore, four major areas should be discussed in the study of time series 

clustering. These areas are illustrated in Figure 2-6 and discussed in the subsequent 

sections. 
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Figure 2-6: Four major areas of study in time series clustering 

 

2.6.1  Major time series clustering approaches  

Han and Kamber (2006) divided clustering for static data into five groups: density-

based, model-based, partitioning, hierarchical, and grid-based approaches. Of these five 

main types of clustering methods, partitioning, model-based, and hierarchical methods 

have either been used directly or been modified for clustering time series data. 

Partitioning methods, on the one hand, have been extensively used because of their fast 

response, particularly in comparison to other methods. However, since the number of 

clusters must be appointed in advance, they are often more acceptable for clustering time 

series that are of a similar length because of their dependence on cluster representatives. 

On the other hand, in the hierarchical approach, it is not necessary for a user to define the 

number of clusters in advance, and this approach also has ideal visualisation in time series 

clustering. Moreover, hierarchical clustering has other advantages over the partitioning 

methods; for example, it can be utilised for time series data of unequal lengths, and it is 

superior when it comes to evaluate dimensionality reduction or distance metrics. 
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However, hierarchical clustering can only be utilised for small datasets because of its 

quadratic complexity. The use of model-based and density-based clustering is scarce for 

almost the same slow process problem and complexity reasons. In addition, model-based 

clustering approaches mainly rely on the user assumption. Therefore, the utilisation of 

methods based on density or model is uncommon. Several types of research have recently 

committed to strengthening methods by presenting new solutions based primarily on the 

wide variety of methods, such as hybrid clustering or multi-step clustering methods 

(Aghabozorgi et al., 2015). 

Clustering of time series is among the interesting research on 

information retrieval concepts. Information collected in the time series is often massive, 

and there is the temporal ordering of elements of this type of data. As demonstrated in 

Figure 2-7, high dimensionality, temporal order, and noise are the main issues associated 

with the clustering of time series.  

 

Figure 2-7: Area of study in time series clustering 
 

Time series clustering is divided into three classes: temporal-proximity-based, if it 

operates directly on unprocessed data with respect to either degree or period of time; 

representation-based, when it acts indirectly by means of attributes driven 

from unprocessed information; and model-based, when it performs on the 

row information model (Rani & Sikka, 2012). 
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Figure 2-8: Grouping time series clustering based on how they treat raw data 

Temporal-proximity-based method: This method generally operates directly with 

unprocessed time series records; therefore, it is known as the raw dataset method. 

The fundamental change is to replace the distance or similarity measure of static data with 

the proper time series measurement. 

Representation-based method: Working directly with highly noisy raw data is not 

easy. This method first changes unprocessed information of time series to a parameter 

with low-dimensionality, and it then utilises clustering algorithms. One of the major 

problems in selecting representation techniques is indeed using a suitable and proper way 

of measuring similarity. Methods of representation and similarity measures are two main 

elements when handling time series information to accomplish efficiency and 

effectiveness. Time series information in principle has high-dimensionality, and it 

is costly to directly cope with information in its unprocessed format in terms of 

procedure and recording price. Therefore, developing classification strategies that can 

minimise dimensions while retaining the significant features of a specific information 

source is particularly necessary.  
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Model-based method: This method notices how every time series is generated on the 

basis of a pattern or possibility of occurrence. If the prototypes describing each series or 

the existing elements are similar after matching the model, then the time series will be 

regarded as similar. It relies on the individual’s parameter expectations. Since time series 

samples are sometimes wide and may carry anomalies, the recommended methods must 

be thoroughly examined. 

2.6.2 Time series clustering representation  

Many methods for representing time series with reduced dimensionality have been 

proposed in the literature (Ding, Trajcevski, Scheuermann, Wang, & Keogh; Rani & 

Sikka, 2012). These methods include “discrete Fourier transformation”, “single value 

decomposition”, “discrete cosine transformation”, “discrete wavelet transformation”, 

“piecewise aggregate approximation (PAA)”, “adaptive piecewise constant 

approximation”, “Chebyshev Polynomials”, “symbolic aggregate approximation”, 

“indexable piecewise linear approximation”, and “Symbolic Aggregate approXimation 

representation (SAX)” (Kadam & Appl, 2012). 

The reduction of dimensions is a popular approach for most clustering methods in 

whole time series; it is advocated in the written manuscripts (Lin, Keogh, Lonardi, & 

Chiu, 2003; Lin, Keogh, Lonardi, & Patel, 2002; Niennattrakul, Srisai, & 

Ratanamahatana, 2012; Nunthanid, Niennattrakul, & Ratanamahatana, 2011; Shieh & 

Keogh, 2008) and is recognised as the representation of time series. Although a decrease 

in dimension translates into faster clustering, it is undeniable that more information would 

be missed. Finding a balance between precision and speed in representation methods is 

thus a contentious and crucial task. In other words, the rate of dimensional reduction is a 

highly subjective matter, and it depends on the problem to be addressed and the type of 
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time series. Given its power in representing, the focus in this dissertation is on the SAX 

between all these representation methods that may have their strengths and faults. It is 

implemented to decrease data dimensionality, and it is a symbolic representation of time 

series datasets that has been utilised by over 50 teams in several data mining studies 

(Hruschka, Campello, Freitas, & de Carvalho, 2009b; Jessica Lin, Keogh, Wei, & 

Lonardi, 2007). 

Bagnall and Janacek (Bagnall & Janacek, 2005) indicate that in the presence of 

outliers, clustering precision is enhanced by the use of representative rather than 

unprocessed time series records. To summarise, SAX is as useful as any other familiar 

and commonly utilised classification method, such as discrete wavelet transform (DWT) 

and discrete Fourier transform (DFT), since less memory room is needed (Lin et al., 

2007). 

Symbolic aggregate approximation representation is indeed a two-step method that 

changes a time series to the PAA and relates the coefficients to symbols afterward. 

Consider �̅� =  {𝑓1̅, . . . , 𝑓�̅�} as a discretised time series by PAA transformation. Then �̂�, 

where �̂� = {𝑓1, . . . , 𝑓𝑤}, is defined by mapping the PAA coefficients to 𝑎 SAX symbols, 

where 𝑎 is the alphabet size (e.g., for the 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}, 𝑎 =  6), and the 

alphabets in SAX are defined by “breakpoints”. Based on the Keogh definition, a list of 

numbers 𝐵 = {𝛽1, . . . , 𝛽𝛼−1} is defined as “breakpoints” to determine the area of each 

symbol in the SAX transformation.  

2.6.3 Distance measures approach 

Clustering of time series relies heavily on the distance measurement. Different distance 

measurements are designed to define time series similarity. Agrawal et al. (1993) 

proposed the theoretical problem of time series similarity or dissimilarity, and it happened 

to be a primary theoretical concern for data mining research. Measures of similarity 
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applied in the study of time series could indeed be grouped into three main classifications: 

the distance of Lp-norm, statistical methods, and elastic measurements (Izakian et al., 

2013). The choice of a similarity metric in the evaluation of time series data relies on the 

quality of the input data and the characteristics of the application. The Lp-norm distance 

may be used to compare two time series with the required predetermined features; L1 

(Manhattan) and L2 (Euclidean) are the most commonly used examples of Lp-norm 

distances. Such distances may be used to make comparisons of time series in the original 

dataset or in dimensionality-reduced data (Izakian, Pedrycz, & Jamal, 2015). 

The literature contains more than a dozen distance measurements (Rani & Sikka, 2012) 

for time series data similarity, including the “ED”, “dynamic time warping (DTW)”, 

“distance based on longest common subsequence (LCSS)”, “edit distance with real 

penalty (ERP)”, “edit distance on real sequence (EDR)”, “DISSIM”, “sequence weighted 

alignment model (Swale)”, “spatial assembling distance (SpADe)”, and “similarity search 

based on threshold queries (TQuEST)” (Kadam & Appl, 2012).  

In (Izakian et al., 2013), (Izakian & Pedrycz, 2014a), and (Izakian & Pedrycz, 2014b), 

an improved model of the ED feature was discussed by authors for fuzzy clustering of 

datasets in time series. The initial time series data and different representation methods, 

as well as “DFT”, “DWT”, and “PAA”, have been researched for clustering aims. To 

analyse the objects in the new representation, D'Urso and Maharaj (2009) changed the 

time series data by correlation coefficient, and they also changed the ED utilised to 

compare objects in the new representation. Thereafter, the changed data was grouped 

using an FCM approach. In time series information, a clustering-based method for noise 

identification was researched for comparing data in the new feature representation 

domain. The clustering-based method was explored by Izakian and Pedrycz for outlier 

identification in time series information (Izakian et al., 2015). 
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Choosing an accurate distance measure is a challenging task in time series clustering. 

This choice relies much on the characteristics of time series, their length, their 

representation method, and generally the intention for clustering. By far the most popular 

approaches for measuring similarity in the clustering of time sequence data are the ED 

and DTW. The focus would be on the common distance measures for continuous data.  

The ED is the most popular measure for continuous data. Let 𝐹𝑖 and 𝐹𝑗 be two time 

series of length n. The ED between 𝐹𝑖 and 𝐹𝑗 is defined mathematically as follows: 

𝑑𝑖𝑠𝐸𝐷(𝐹𝑖, 𝐹𝑗) = √∑ (𝑓𝑖  −  𝑓𝑗)
2𝑛

𝑖=1
 2-9 

It is also possible to remove the square root phase of the above equation. The ED has 

been mentioned in many works as a simple, quick approach, and it has also been used to 

compare the efficiency of newly proposed distance measures. However, it may not always 

be the best option; the ED is highly dependent on the immediate problem and its time 

series features, and using it has some disadvantages in general:  

1. The time series being compared should have precisely the same dimension 

or duration. 

2. This metric is highly sensitive to small shifts in time (Keogh & Ratanamahatana, 

2004; Ratanamahatana & Keogh, 2005). For instance, estimating sequence 

similarity in the following way is not accurate: < 𝑎𝑑𝑎𝑎 >, < 𝑎𝑎𝑑𝑎 >. 

Studies have revealed that the ED in time series is relatively reasonable in terms of 

classification precision (Lkhagva, Suzuki, & Kawagoe, 2006). This dissertation focuses 

on a comparable ED approach, which corresponds one similar item to another and is used 

in most research (Bao, 2007; Reinert, Schbath, & Waterman, 2000). In this research, the 
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FCM has been applied on time series data, and the ED measure has been used as a distance 

measure.  

2.6.4 Time series clustering evaluation measures 

The efficiency of a time series clustering method must be assessed using certain 

criteria. There are two distinct types of measurements based on known labels and 

unknown labels (Liao & Warren Liao, 2005; Rani & Sikka, 2012). This section discusses 

the method of evaluating the clustering. Keogh and Kasetty (2003) performed a 

noteworthy investigation on several time series research articles and concluded that the 

analysis of mining in time series must adhere to the following recommended principles: 

 The verification of algorithms must be conducted in a different range of 

datasets (except when the algorithm is only generated for a particular dataset). 

 The dataset that is used must be easily available or published, and a cautious 

design of studies must prevent bias in implementation. 

 Wherever feasible, datasets and algorithms must be presented openly and 

publicly as free.  

 A comparison of new similarity measurement methods must also be made 

with simple and reliable measurements, such as the ED.  

Overall, assessing synthetic clusters with a lack of information labels is not a simple 

task and remains to be addressed. The interpretation of the cluster is subjective and mainly 

relies on the user who interprets the results and the application domain. For instance, the 

number and size of clusters, the concept of anomalies, and the clarification of the 

similarity between the time series are all principles that rely on the imminent condition 

and should be indicated personally. This has turned the clustering of time series into a 

significant issue in the field of information processing. Indeed, in the case where data 
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are tagged subjectively or are even synthesised by a generator, it is possible to evaluate 

the result using some measures.  

The evaluation process in this research is based on the RI. The values of this clustering 

metric range from 0 to 1, where 1 indicates that the ground truth and cluster are equal. 

Therefore, greater values of criteria are favoured in this matter. Regarding clustering 

algorithms in time series, this section discusses the measurements of evaluation used in 

the different methods. In the following sections, the methods for evaluation of 

each suggested model, as illustrated in Figure 2-9, are discussed. 

 

Figure 2-9: Hierarchy of measuring evaluation in the literature 

In measuring scalar accuracy, a real number reflects the accuracy of different 

clustering methods. Furthermore, numerical methods used to evaluate different 

prospects of cluster validity are categorised into two groups: external and internal metrics.  

2.6.4.1 External index 

The external index is the most common approach of cluster evaluation used to evaluate 

the similarity of clusters that are created with externally obtained labels or ground truth 

(Halkidi, Batistakis, & Vazirgiannis, 2001). As there is ground truth, this measure is also 

regarded in the literary works as an “external criterion”, “external validation”, an 
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“extrinsic method”, or a “supervised method”. External validation indices are the 

concordance metrics between two groups or divisions. One will generally be a 

common group, which is also regarded as representative (e.g., model), and the other is 

achieved from the clustering procedure. Moreover, the ground truth is the desirable 

cluster almost always created by human specialists. Ground truth exists throughout this 

type of evaluation, and the matrix assesses the degree to which the clustering corresponds 

to it (Manning, Raghavan, & Schutze, 2008). Elaborate and extensive evaluations and 

reviews of some commonly used practises can be found in the literature (Aljarah, Mafarja, 

Heidari, Faris, & Mirjalili, 2019; Amigó, Gonzalo, Artiles, & Verdejo, 2009; Gan et al., 

2007). Although several methods are available for clustering evaluation, there is no 

consensus and commonly acknowledged method for evaluating clustering approaches. 

Nevertheless, matching clusters with the ground truth is generally used as a method for 

external indices. Under these methods, some matrixes are addressed in various papers 

(Aghabozorgi et al., 2015): 

 Cluster purity. Cluster purity is one way in which to measure the quality of a 

cluster solution (Zhao & Karypis, 2004). It is a clear and straightforward measure 

of valuation. In view of 𝐺 = {𝐺1, 𝐺2, … , 𝐺𝑀} as a cluster of ground truth, 𝐶 =

{𝐶1, 𝐶2, … , 𝐶𝑀}. Clusters are developed by a clustering algorithm based on 

evaluation; therefore, to measure the cluster purity of 𝐶 with respect to 𝐺, each 

cluster is appointed to the most frequent class in the cluster group, and the validity 

of this application is subsequently assessed by dividing the number of properly 

appointed data by the total number of data in the cluster. A poor clustering has a 

value of 0 for purity, and an ideal clustering has a value of 1 for purity. Achieving 

high purity is not difficult when the number of clusters is high – especially when 

each item takes its very own cluster, purity will be 1. Accordingly, as a measure 
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of quality, one cannot rely solely on purity. Finally, purity was used in various 

studies to evaluate time series clustering (X. Wang, Smith, & Hyndman, 2006). 

 The Folkes and Mallow index (FM). This metric is utilised to evaluate the 

precision of time series in clustering multimedia datasets (H. Zhang, Ho, Zhang, 

& Lin, 2006). 

 The Jaccard score. Jaccard is a measurement utilised as an external index in 

different studies (Fowlkes & Mallows, 1983). 

 The RI. This is a famous quality metric for the assessment of time series clusters 

that mostly measures the similarity between two partitions and demonstrates the 

degree of similarity between the clustering results and the model (Rand, 1971; 

Xiong, Wu, & Chen, 2009).  

 The ARI. In a random cluster, the RI would not consider taking a 0 value (Hubert 

& Arabie, 1985). Accordingly, researchers have suggested an adjusted for the 

chance of the RI in which the performance is improved in respect to the RI and 

several other metrics (Milligan & Cooper, 1986; Steinley, 2004).  

 The cluster similarity measure (CSM). The CSM is a simple cluster validity 

metric in the time series domain (Liao, 2005). 

 The F-measure. The F-measure is a useful metric to assess the quality of 

any clustering method based on labels (Van Rijsbergen, 1979). It defines the 

degree to which each cluster is closed to a set of prototypes. This measurement 

has been applied in the clustering of time series data (Gullo, Ponti, Tagarelli, 

Tradigo, & Veltri, 2012) and for clustering evaluation in NLP (Kapitanov, 

Kapitanova, Troyanovskiy, Ilyushechkin, & Dorogova, 2019). 

 Normalised mutual information (NMI). As indicated above, when there are 

many groups, high purity is not an advantage for the purity measurement. 

Normalised mutual information (Studholme, Hill, & Hawkes, 1999) has been used 
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as a measure of quality to choose between the clustering quality and the number 

of it (Cai, Chen, & Zhang, 2007). Furthermore, since this metric is normalised, 

NMI can be utilised for analyses of clustering approaches with a different number 

of clusters. 

 Entropy. A cluster's entropy illustrates how spread-out the items are concerning 

the cluster (this has to be small). Entropy is a measure of item distribution in the 

generated cluster (Lin, Song, & Zhang, 2008; Rohlf, 1974). 

In general, external evaluation is among the most common methods for assessing the 

quality of resulted clusters. However, in reality, the ground truth is not available for 

datasets for unsupervised tasks. In this situation, the internal index, which is discussed in 

the next section, will be used. 

2.6.4.2 Internal index 

When no ground truth is provided, the internal index is used to evaluate the quality of 

a clustering framework. It is recognised in literary works as “intrinsic”, an “uncontrolled 

method”, an "inner criterion", and "internal validation". Internal monitoring focuses on 

comparing data fitness between each cluster. If there is no ground truth, then it is usually 

better to use internal validity indicators, which assess clustering outcomes based on the 

characteristics of data and information in a data collection. It should be noted, however, 

that this metric can only make comparisons between various methods of clustering that 

were produced by identical measure, otherwise it allows cluster structure presumptions. 

Numerous inner variables exist, such as the “semi-partial R-squared (SPR) index, SSE, 

silhouette index, Hubert-Levin (C-index), Dunn index, separation index, Hartigan index, 

R-squared index, weighted inter-intra index, Krzanowski-Lai index, homogeneity index, 

Davies Bouldin, Calinski-Harabasz, and root-mean-square standard deviation 

(RMSSTD)” (Aghabozorgi et al., 2015). An important feature that characterises a 
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cluster's coherence is the SSE, and "better" clusters are expected to yield lower SSE 

values (Jiawei. Han, Kamber, & Pei, 2011). The SSE, which is the error of a distance-

based metric, can be applied to assess the accuracy of clusters as the most common metric 

in various schemes (J. Lin et al., 2003; J. Lin, Vlachos, Keogh, & Gunopulos, 2004).  

2.6.5 Applications of time series data clustering 

Time series clustering has been used mainly to discover important features in data. The 

aim of time series clustering is twofold. First, it has been used to find the most frequent 

time series features and cluster them into groups that define overall patterns in datasets to 

anticipate the formation of a specific time series based on the corresponding group (J. Lin 

et al., 2003), such as gene expression profiling (Wu et al., 2019) and segmentation (Kim 

et al., 2019). Second, time series clustering has been used as a method for finding patterns 

that have surprisingly occurred in datasets, for example outlier identification (Mishra & 

Chawla, 2019) and trends discovery (Ohana-Levi et al., 2019).  

In short, in real-world problems, clustering time series can be of interest for the 

following issues: 

 Recognition of dynamic time series changes;  

 Clustering-based prediction and recommendation; 

 Discovery of patterns; and 

 Detection of the anomalies.  

Various applications of time series have been studied in geography, as large time series 

have been and still are to be obtained using contemporary data acquiring methods (Ji et 

al., 2013). Furthermore, an instant demand exists for new operational and productive 

methods of mining unfamiliar and unpredictable data from relatively large geographic 

datasets with wide dimensions and variations. Spatial information analysis and 

geometrical development have appeared as ongoing areas of study to tackle these 
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problems (Jeremy & Diansheng, 2009). Clustering spatial data in geography is a 

fundamental and vital issue. Some reported cases of time series cluster assessment 

focused on environmental information. For example, in Bode et al. (Bode, Schreiber, 

Baranski, & Müller, 2019) and in Meger et al. (Méger et al., 2019), time series clustering 

is applied to labelling building energy data and used for capturing crustal deformation 

respectively. Other instances can be discovered in medication, scientific research, 

computer science, and many more. New approaches were introduced by Wang and Chen 

(N. Y. Wang & Chen, 2009) and  Killick et. al  (2010) in which they presented a 

mathematical method centred on the means clustering method for managing 

ecological collected records to assess and estimate the power provided at a specified 

location by various green energy sources. Moreover, the clustering of developing 

countries was researched by Alonso et al. (Alonso, Berrendero, Hernández, & Justel, 

2006) based on contemporary CO2 pollution data. Other instances can be found in, inter 

alia, medication, science, and financing. 

2.7  Fuzzy Clustering Methods for Time Series Data 

Conventional time series analyses have several shortcomings, namely, the presence of 

noise, the need for expert judgement for enhancing the models, and an overall challenging 

modelling operation. Fuzzy time series clustering attempts to bring simplicity to 

modelling and enhances conventional time series approaches by reducing the influence 

of noise and managing the instability (Duru & Bulut, 2014). 

The fuzzy time series method can be illustrated through various aspects, such as the 

“rule-based forecasting method”, the “rule of thumb solution”, an “educated guess 

method”, “pattern recognition”, “time series clustering”, or “heuristic modelling.” All of 

these concepts denote the fuzzy version of time series and display their repackaging of 

information and uncertain case-based traits (Duru & Bulut, 2014). Furthermore, 
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approximate reasoning for automatic control systems is by far the most important 

achievement of fuzzy logic.  

The most important feature provided by fuzzy logic is approximate reasoning for 

automatic control systems, according to Zadeh (1979). The fuzzy time series is an 

excellent approach of approximate reasoning by using similarities, information, and the 

limitation of data within a specified framework.  

In clustering fuzzy time series, there are two crucial elements: selecting the correct 

distance and improving the degrees of membership. Coppi et al. (Coppi, D’Urso, & 

Giordani, 2006) and D'Urso (2005) briefly presented the two primary reasons for using 

the fuzzy strategy in time series clustering:  

1. Awareness is increased to capture the information that characterises the pattern of 

the time series. Conventional clustering methods are likely to neglect this 

fundamental structure in many areas because of cycling or changing dynamics. 

However, fuzzy clustering can handle changes from one time state to another in 

patterns or positions that are not clear and not specific to a certain time. 

2. If the time patterns are not too different, then there would be higher flexibility to 

define the centroid of the time series. In this case, the fuzzy cluster description 

enables the identification of the fundamental structures if they are expected to 

be within the specified time sequence.  

The use of fuzzy methods in time series is more reasonable than non-fuzzy methods 

because of the dynamic characteristics of time series in many real-world applications, 

leading to changing patterns over time (Maharaj & D’Urso, 2011). 

Dun (1973) proposed the FCM, and it is continuously upgraded by many researchers. 

It is an improvement on K-means whereby each record can become a part of 
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different groups with a membership degree. To address the issue of time series that are 

not aligned and to customise the FCM method, the cross-correlation clustering (CCC) 

method has been suggested by Höppner and Klawonn (Höppner & Klawonn, 2009). It 

may be applied for short-period time series (full system clustering) as well as to cluster 

succeeding time series (STS). Levet and others (Möller-Levet, Klawonn, Cho, & 

Wolkenhauer, n.d.) introduced a new FCM method, especially suitable for short time 

series and those with unevenly spaced sampling points. Another approach of fuzzy 

clustering relies on an autocorrelation characteristic of the time series. In this approach, 

a time series does not belong to a single cluster but to separate groups with different 

membership values (D’Urso & Maharaj, 2009; Ji et al., 2013). Furthermore, to cope with 

more complex datasets, Kannan et al. (Kannan, Ramathilagam, & Chung, 2012) 

suggested another extension of FCM clustering methods, named the quadratic entropy-

based FCM. This current research presents a new approach for using a fuzzy membership 

matrix to develop a clustering method that enables heuristic post-pruning of data after 

clustering. 

2.8 Critical Discussion  

Based on the literature regarding fuzzy clustering, new methods are developed to 

address shortfalls to ultimately improve the quality of fuzzy clustering. One of the issues 

after the main introduction of the FCM by Bezdek (Bezdek et al., 1984) was the sensitivity 

to outliers and noise. Some researchers opted to modify the algorithm to tackle the noise 

issue. For instance, Dave (Dave, 1991) introduced the noise clustering method to reduce 

the effect of noise. The method suggests defining a noise prototype, which is a universal 

entity, in a way that it is always at the same distance 𝑑 from every point in the dataset. 

This means that all the points would have an equal a priori probability of belonging to a 

noise cluster. The idea is that as the algorithm iterates, it will discover the noisy data, add 

them to the noise cluster, and keep the main partitions clean of noisy data. However, the 
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shortfall of the method is the specification of the noise cluster distance 𝑑. The pre-

specification of 𝑑 is not easy in practise, because in most cases, information to decide the 

value of 𝑑 is not available. Moreover, the value of 𝑑 would be different for different 

problems, and it would be based on the statistical parameters of the dataset.  

Other methods with a focus on algorithmic and conceptual changes are the PCM and 

PFCM, which performed better in the presence of noise when compared with the FCM; 

nevertheless, they have their own weaknesses. On the one hand, although the PCM deals 

better with outliers, it fails to find optimal clusters in the presence of noise. On the other 

hand, once outliers are present, the PFCM fails to produce proper results if there are two 

clusters that are highly unalike in size.  

Apart from the above-mentioned methods, other researchers decided to add additional 

fuzzy concepts to deal with the noise and outlier problem. For example, T2FCM is based 

on Type-II fuzzy sets, which enables some data to contribute more in computing 

appropriate cluster centroids; however, it fails when the data structure is non-spherical 

and complex. The intuitionistic fuzzy approach by the IFCM method is another concept 

of fuzzy sets that has been introduced to improve clustering. The IFCM improves the 

FCM by adding an intuitionistic feature to membership and objective functions, and it 

mainly improves cluster computation compared to existing algorithms; however, it could 

not resolve the clustering issue with non-spherically separable data. These methods have 

been receiving more attention from the big data community in recent years and across 

various disciplines. For example, Shukla and Muhuri (2019) are utilising Type-II fuzzy 

uncertainty modelling in gene expression datasets, and Kousar et al. (2020) are utilising 

Type-II fuzzy logic to improve hierarchical clustering to utilise in mobile wireless sensor 

networks. The intuitionistic fuzzy approach has received similar attention, and various 

new methods have recently been introduced, such as interval intuitionistic fuzzy 
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clustering (Lin, Duan, & Tian, 2020) and the interval intuitionistic fuzzy clustering 

algorithm (Lin et al., 2020). These methods are especially popular in the medicine 

discipline for MRI brain image segmentation (Kumar, Agrawal, & Singh Kirar, 2019; 

Kumar, Verma, Mehra, & Agrawal, 2019).  

Another issue with distance-based clustering algorithms is that they utilise the ED and 

are consequently bound to the limitations of this measure, and they can tackle mainly 

spherically separable data. Therefore, another group of works focused on improving 

existing algorithms to be able to work with more types of data. Methods referred to as 

robust and kernel-based approaches are primarily the focus in this type of issue. Methods 

such as the FCM-𝛿, K2FCM, KIFCM, and KIFCM-𝛿 are from this type of study.  

As per our discussion above, works in the fuzzy clustering area can generally be 

divided into three main categories: 

1. those focused on new concepts, approaches, and algorithms for better results in 

fuzzy clustering; 

2. those focused on similarity or distance measures to make existing algorithms more 

robust to deal with additional types of datasets; and 

3. those focused on utilising more fuzzy concepts in clustering algorithms.  

The current research work is opening up another frontier in research into fuzzy 

clustering that has not been carried out before, and that is the following: 

4. utilising the fuzzy membership matrix to improve the performance of the fuzzy 

clustering method.  
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2.9 Neutron and Gamma-Ray Discrimination 

The main issue in the detection of neutrons is the discrimination of neutrons from 

gamma rays. Identifying emitted protons that are produced by fast neutrons is the most 

popular approach of neutron detection, and the variety of neutron detector applications is 

growing rapidly. Neutron detectors are currently used in nuclear research, nuclear 

medicine implementations, neutron imaging methods, and safety. They are also applied 

in different science domains, such as nuclear physics, aviation, medicine, and security 

(Yanagida, Watanabe, Okada, & Kawaguchi, 2019). Moreover, neutrons precede any 

gamma-ray diffusion. Together with gamma rays, neutrons radiate from nuclei. The time-

of-flight (TOF) method is one of the well-recognised methods for discrimination between 

neutrons and gamma rays (Akkoyun, 2013), and the detector signal's PSD is another 

method used in various disciplines of nuclear physics. 

Figure 2-10 is a block diagram of the detector system and indicates two channels that 

are used for traditional TOF calculations. 

 

Anode 
Flash-ADC 

 

Figure 2-10: Block diagram of a scintillator and devices 

To calculating the TOF, two separate datasets are required: one coming from the 

scintillator (Ch1) and the other from the neutron source (Ch2). The TOF is defined as the 

time that it takes the particle to fly distance 𝑑 from the neutron source to the scintillator 
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detector. Figure 2-11 depicts the calculated TOF for our dataset. In the figure, the peak 

denotes gamma rays, while the bumpy part indicates neutrons.  

 

 

Figure 2-11: Traditional TOF discrimination method 

These recoil protons are extensively detected by organic scintillators. Fast neutron 

photons in organic scintillators generate recoil protons via (n, p) elastic dissipation, and 

a recoil proton's maximum energy level is equivalent to the neutron's energy (Budakovsky 

et al., 2007). Furthermore, a wide variety of radiation has frequently been detected and 

diffracted by organic scintillation detectors. Neutron detection has numerous applications 

in the fields of atomic material control and national security, amongst others. Neutron 

detection utilising organic scintillators is lately being used for tomographic imaging. 

Given that organic scintillators are indeed responsive to gamma-ray particles, there is a 

need for a method to discriminate the pulse shape between neutrons and gamma rays 

(Yousefi et al., 2009). 

Some organic scintillators are prime examples of this notion, which is implemented 

via PSD, such as stilbene and many industrial liquid scintillators. This is because of the 

significant variations caused by different radiations in the slow element trigger in these 

devices. While using organic scintillators as neutron sensors, PSD is crucial because all 

neutron areas are accompanied by a gamma ray. With different levels of success, several 
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PSD methods have been evaluated; the charge comparison method (Brooks, 1959) and 

the zero crossing method (Alexander & Goulding, 1961) are the most common. In 

analogue instrumentation, both methods are primarily applied, often in devoted 

electronics systems or nuclear instrument units (NIMs). As a result of the advancements 

in the digital domain, electronic devices have become available, and in recent years, both 

of the aforementioned methods have consequently been implemented for neutron and 

gamma-ray discrimination and have become industry norms to evaluate the 

new approaches, such as the correlation technique (N. V. Kornilov et al., 2003) and the 

method of curve fitting (Guofu Liu, Joyce, Ma, & Aspinall, 2010; Marrone et al., 2002). 

Improving fast analogue in digital adapters and utilising digital devices allow analogue 

methods to be applied in the field programmable gate array (FPGA) as well as in the 

implementation of recent PSD methods for digital image processing. The optimal PSD 

filter described by Gatti (E Gatti, 1962) nearly 40 years ago was digitally implemented 

by Barton et al. (Barton & Edgington, 2000). Later, in (Back et al., 2008), the optimum 

filter method of the Gatti approach was implemented in a liquid scintillator to differentiate 

between 𝛼 particles and 𝛽 particles. Gatti's approach focused on the calculation of a 𝐺 

variable, which was positive for 𝛼 electrons and negative for 𝛽 pulses. This variable 

demonstrates the probability of the coming waveform being generated by alpha or beta 

ionisation (Yousefi et al., 2009). 

Inorganic crystalline materials are the main tool in medical applications, and they have 

also been highly common in detectors in the security domain since the middle of the last 

century. Compared to most inorganic scintillators, organic scintillators are distinguished 

by a high light yield and fast decay times with an appropriate emission wavelength 

compared to the most conventional photodetectors, such as the photomultiplier tube 

(PMT). Anthracene is the most conventional organic scintillator and is available in a 
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standard ionising radiation measurement textbook (Knoll, 2010); this tool is considered 

to be a standard scintillator. Thanks to recent technological developments, several solid-

state scintillators have been proposed, for instance the introduction of a new chemical 

composition such as fluorocarbon materials (Hamel et al., 2014) and new structural 

challenges such as microsphere materials (Santiago, Bagán, Tarancón, & Garcia, 2014; 

Yanagida, Watanabe, & Fujimoto, 2015). On the other hand, liquid neutron scintillators 

offer the opportunity for the PSD of proton particle emissions. This is of significance 

because neutron identification often takes place in the presence of a powerful photon 

context.  

Dissociation is based on the reality that relative to photon-induced occurrences, 

incidents induced by neutrons generate pulses that have a higher portion of the longer 

scintillation component. A range of distinct methods was explored to translate this 

significant difference in sensor signal shape into a frequency for discrimination. The most 

commonly beneficial methods are the integration or delayed charge approach (Adams & 

White, 1978; Alexander & Goulding, 1961) and the zero crossing method (McBeth, 

Lutkin, & Winyard, 1971; Sperr, Spieler, Maier, & Evers, 1974), both of which have been 

applied for digital and analogue devices (Kaschuck & Esposito, 2005; Kornilov, Fabry, 

Oberstedt, & Hambsch, 2009; Moszyński et al., 1994; Söderström, Nyberg, & Wolters, 

2008; Wolski et al., 1995). For this form of scintillator, although the achieved 

discrimination performance of these methods should be near to the peak, the disadvantage 

is that the input factors, such as areas of integration or shaping periods usually needs 

cautious manual tuning. This is particularly unsatisfactory in the case of large scanner 

devices with several channels. These parameters are dependent on each specific sensor 

and may change based on the experimental circumstances. The main pulse shapes that are 

driven experimentally can be applied to modify these variables, as mentioned above, 
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because the ideal adjustment depends on the primary pulse shapes (Gatti, Martini, 1962; 

Roush, Wilson, & Hornyak, 1964; Söderström et al., 2008). 

The resulting composite curve for the large number of liquid organic detectors consists 

of two incremental disperses of the scintillator's fast and slow particles. Since the ratio of 

beam that appears in the slow element mostly depends on the type of current component, 

this reliance may be used to distinguish between different types of radioactivity. A liquid 

photon detector is among the most common radiation identification tools as it can be 

formed for a particular action according to the necessary magnitude. Another benefit of 

using this detector would be its useful PSD features and quick processing time (Yousefi 

et al., 2009). To create a molecular framework where unbinding p-electrons are expected 

to stimulate immediate radiation, organic scintillators of liquid and plastic form are 

generated. Such activation can contribute to stimulating p-electrons from the base state 

(𝑆0) to one of the stimulated regions (𝑆1, 𝑆2, 𝑆3, 𝑒𝑡𝑐. ). Later disintegration from 

this position results in the release of a ray with visible light and that occurs just a few 

milliseconds after excitation. Furthermore, the fluorescence intensity of an organic 

scintillator decays exponentially (Birks & Firk, 1965). Different decline mechanisms 

exist when an irritated p-electron experiences a spin shift from the spin 0 singlet 

situation to the spin one triplet condition, leading to a decay of T1-S0 and a larger-range 

wavelength in comparison to the light emitted from fluorescence (phosphorescence) 

(Birks & Firk, 1965).  

In a 𝑇1 state, a 𝜋-electron may achieve adequate energy to go back to the 𝑆1 position. 

This energy can be thermic, or the two 𝜋-electrons on the 𝑇1 position can possibly interact 

and leave one of them in the position 𝑆0 and the other in the state of 𝑆1 along with the 

particle emission (Brooks, 1979). The next decomposition of the 𝑆1 atom transmits late 
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ultraviolet light with the same characteristics of fluorescence, with the exception that 

strength does not decrease significantly (Miller, 2017). 

Since the triplet intensity is calculated by the level of power failure of the incident 

particle, heavier particles display a significantly higher rate of power loss and generate 

late fluorescence, resulting in subatomic particles that decay much slower than those of 

lighter rays. The difference between the waveforms arising from the collision of heavy 

elements in the atomic detector and those arising from the contact of light electrons and 

photons has been used in PSD and makes it possible to determine the radiological 

category (Yousefi et al., 2009). 

With effective applications across many areas, artificial neural network (ANN) 

platforms and the fuzzy systems (FS) method have appeared as advanced methods in 

recent years. They are especially efficient as pattern identification instruments and can 

therefore be used to classify neutron and gamma-ray incidents from the results conducted 

by organic liquid scintillation sensors using ANN. Furthermore, neural networks have 

recently been utilised to detect neutrons (Söderström et al., 2019). D'Mellow et al. (2007) 

viewed a computationally simple pulse gradient analysis (PGA) approach to 

discrimination (Guofu Liu et al., 2010). This method offers instant, digital representation 

of contexts in which both neutrons and gamma beams simultaneously exist. The 

effectiveness of the PGA method was analysed against the digital application of the 

classical charge comparative method, which demonstrated that the PGA method improves 

discrimination (Bao & Yang, 2008). Moreover, Ronchi et al. (2009) used an ANN for 

discrimination, and they experienced large performance advantages in comparison to 

other discrimination methods such as the Q1 - Q2 method and the Q-IRT method. In 

addition, Savran et al. (2010) deployed a combination of fuzzy logic and clustering, which 

is a machine learning method, to introduce a new approach for neutron and gamma-ray 
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discrimination. The robustness of this method stems from the fact that it is an 

unsupervised method and there is no need to assume the particular shapes (Joyce, 

Aspinall, Cave, Georgopoulos, & Jarrah, 2010; Guofu Liu et al., 2010). 

All these PSD methods use the signal's time-domain characteristics; for example, the 

application of the charge comparison method usually depends on the inclusion of the 

wave over two distinct periods, and the PGA approach is centred on comparing current 

sample peaks in the pulse running border . Yousefi et al. (2009) suggested a special PSD 

method capable of spotting neutrons and electrons in liquid detectors based on converting 

pulses. In this method, because the features of both low-frequency particles are obtained 

at 512 and 1,024 modules, the discriminatory matrix is less responsive to high-frequency 

pulses than the PMT-induced pulse signal frequency, which is visible in the frequency 

range of pulses. Furthermore, observational findings indicate that the wavelet-based 

method enhances the reduction of the overlap of neutron and ray occurrences as compared 

to the PGA method, reflected by figure of merit (FOM) increases. However, the wavelet-

based PSD method’s operational computation is harder than the PGA matrix and is 

therefore not as appropriate for immediate discrimination. In addition, the method’s 

efficiency may decrease at processing speeds aligned with the current system, in contrast 

to the comparatively endless headroom for the processing of the digital monitor spectrum 

analysers from which the spectrum was created (Guofu Liu et al., 2010).  

Conventional analogue pulse discrimination methods are less flexible and more time 

consuming than novel digital approaches. The main problem with traditional 

discrimination methods is that they require various sources of data to perform the 

discrimination task. By clustering, pulses originating from the scintillator detector will be 

separated based on their shapes. No dataset from the neutron source (Ch2) is consequently 

needed, so it will provide the flexibility to instantly distinguish neutrons’ rays from 
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gamma particles. Moreover, there is no need to wait to collect all datasets and start 

clustering, each pulse can be clustered as soon as it reaches Ch1 output. Additionally, 

digital technology affords some significant privileges, such as clarity of energy, 

increasing throughput, smaller size, easy upgrading and updating, automatic critical 

adjustments, multitasking operations, and automatic testing and verification. Table 2-3 

summarises the discrimination methods for neutron and gamma rays. As demonstrated in 

the table, early methods were analogue; the emergence of digital technology opened a 

new door to digital methods, and since then, many methods have been introduced to deal 

with digital signals.  

Table 2-3: Discrimination methods for neutron and gamma rays 

Method Reference Digital/Analogue 

Charge comparison method (Brooks, 1959) Analogue and 

digital 

Zero crossing method (Alexander & Goulding, 

1961) 

Analog and digital 

Frequency gradient analysis (FGA), 

based on Fourier transform. Pulse-

shape discrimination (PSD) method. 

(Guofu Liu et al., 2010) Digital 

Correlation method (Kornilov et al., 2003) Digital 

Curve-fitting method (Marrone et al., 2002) Digital 

Artificial neural network (ANN) (Liu, Aspinall, Ma, & 

Joyce, 2009) 

Digital 

Pulse gradient analysis (PGA) (D’Mellow et al., 2007) Digital 
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In the present work, the digital PSD using fuzzy clustering was investigated. The aim 

was to develop general-purpose PSD methods for particle identification, loosely coupled 

with detector or particle-type characteristics. Since the method is not targeted specifically 

to liquid scintillators, it is commonly used and can also be implemented in other types of 

sensors. The dataset for neutron and gamma rays used in this study is a real dataset 

provided by Savran et al. in (Savran et al., 2010). 

2.9.1 Clustering for finding principal pulse shapes 

In nuclear physics, a critical procedure is the differentiation of neutron and gamma-

ray pulses. Preceding methods of analogue or digital discrimination are predominantly 

based on the analysis of physical or chemical variables. and they involve distinct 

information sources, while there are signals from a scintillator in the clustering 

information source, which is coupled with a digitiser. The major problem with traditional 

methods of discrimination is that different sources of data are needed to perform the task 

of discrimination. Based on their shapes, pulses from the scintillator detector will be 

differentiated by clustering. Therefore, no dataset from the neutron source (Ch2) is 

needed, so it will offer the flexibility to differentiate neutron rays from gamma particles 

instantly because there is no need to wait to obtain all datasets and begin clustering, and 

almost every pulse can thus be clustered as soon as it reaches Ch1 output. In many 

scientific areas, clustering is a well-known method for the discovery of knowledge, and 

researchers in nuclear science have recently begun to take advantage of machine learning 

and artificial intelligence strategies for particle discrimination (Akkoyun, 2013; Doucet 

et al., 2018; G. Liu et al., 2009; Ronchi et al., 2009; Söderström et al., 2019). 

Particle classification by the evaluation of the pulse shape from a pulse detector is an 

efficient instrument in many fields of nuclear detection. The performance of such 

a detection (if any) is fundamentally limited by the sensor characteristics being used and 
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the various pulse shapes of varying emitted rays. Each type of particle relates to a certain 

prototype signal, and individual signals produced by a particular sort of particle 

match this model pulse shape, except the noise and statistical changes. These prototype 

signals related to various types of particles are known as the principal signals or prototype 

signal shapes. The role of the applied signal evaluation is to produce an image that 

somehow reflects the shape of a specified pulse so that distinct incident signals can be 

differentiated in each case. The way in which to identify (or measure) this amplitude 

might not be specific, and various methods may lead to different distinguishing qualities. 

In several instances, an appropriate signal shape amplitude is generated by evaluating 

integrals in different places of the signal coming from detectors, and variables (e.g., 

integration areas) need to be customised personally. Awareness of the principal signal 

shape for a specified incident signal and a specified sensor enables optimisation of the 

PSD's algorithm or may assist in modifying its parameters. The purpose of this research is 

to demonstrate that the proposed EFCA is a useful way in which to discriminate neutron 

and gamma rays. 

This research demonstrates how to use the proposed EFCA to determine such 

prototype pulse shapes based on several digitised pulses. 

The number of various prototypes is apparently the only entry variable; therefore, the 

method provides an unsupervised approach to evaluating the primary pulse patterns.Univ
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CHAPTER 3:  

METHODOLOGY 

3.1 Introduction  

This chapter elaborates on the methodology employed in this research. The motive and 

summary for time series clustering of the proposed evolving fuzzy method are discussed. 

The chapter also describes how the study is designed to accomplish the research 

objectives stated in Chapter 1. Furthermore, a description is provided regarding how the 

proposed method was evaluated as a general-purpose method for time series clustering, 

and its performance in this study’s focused area, which is neutron and gamma-ray 

discrimination, is discussed. Finally, a chapter summary concludes this chapter.  

3.2 Research Strategy  

The framework of the research methodology for this thesis is depicted in Figure 3 -1. 

 

Figure 3-1: Research strategy  

3.2.1 Reviewing related works 

An analysis of current approaches provides a broader view of clustering issues; 

therefore, the features and attributes of different clustering approaches were analysed 

based on a systematic review and investigation of different time series clustering methods 

in a discrimination task to represent their output and compare their quality of clustering.  

Reviewing the literature in this research was twofold. First, since neutron and gamma-

ray discrimination can be viewed as a clustering problem, the literature on current 

approaches to fuzzy clustering and time series fuzzy clustering required evaluation to 
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gain a broad view of the issues with fuzzy methods. Second, various methods used to 

discriminate neutrons and gamma-rays were studied, along with the data mining methods 

utilised directly in the discrimination of neutron and gamma-rays, and the possibility of 

using the proposed evolving fuzzy clustering approach (the EFCA) were investigated in 

this matter. 

The effects of various similarity factors on the outcomes of distance-based clustering 

methods were examined, compared, and evaluated because they are crucial in distance-

based partitioning clustering methods, regardless of whether they are soft approaches, 

such as the FCM (Bezdek et al., 1984), or hard clustering approaches, such as K-means 

or K-medoids.  

3.2.2 Problem formulation 

The problems with clustering methods are clearly explained in the literature review. 

Clustering is an unsupervised machine learning method that is used both individually and 

as a part of the pre-processing stage for supervised machine learning methods. Given its 

unsupervised nature, clustering results have less accuracy compared to supervised 

learning. However, most of the time-clustering results are not accurate enough and can 

result in deficient models. Therefore, it is desirable to have a smaller dataset (e.g., 80% 

or 50% of the primary dataset) but with a reasonable clustering accuracy, for instance 

80%, instead of having all datasets clustered with a low accuracy of around 55%. By 

considering neutron and gamma-ray pulses as time series data, PSD shares the same set 

of challenges, solving these problems motivated the researcher to conduct this study to 

ultimately improve neutron and gamma-ray discrimination. This thesis thus aims to 

increase the accuracy of clustering approaches for the neutron and gamma-ray 

discrimination problem.  
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3.2.3 Defining the research objective 

Based on the above-mentioned problem, the research objectives are as follows: 

1. to develop a new method for clustering that is more accurate for neutron and 

gamma-ray pulses; 

2. to evaluate the capability of the suggested method for improving the accuracy 

of the clustering; and 

3. to improve the performance of neutron and gamma-ray clustering 

(discrimination). 

To assess the capability of the proposed method to improve the accuracy of the 

clustering, the purpose of this study is to suggest an evolving fuzzy clustering method 

that can tackle the problems of neutron and gamma-ray discrimination using a fuzzy 

clustering method. A clustering model has been introduced in this study to achieve the 

objectives, as mentioned earlier. The proposed model is described in the following 

section.  

3.2.4 Proposed model 

This study seeks to introduce a new perspective in clustering by defining an approach 

for data pruning, namely, the EFCA, which enables clustering to use multiple sets of 

prototypes instead of only one set to improve clustering accuracy. This approach has the 

potential to be used independently or as part of the pre-processing stage to prepare 

purified data for the training step of a supervised learning approach. The EFCA utilises 

the fuzzy membership concept to break down clustering into epochs instead of running 

the clustering on all data at once. In some cases, for supervised learning, having a smaller 

subset of high-accuracy tagged data is preferable to having all dataset tagged with low 

accuracy. The EFCA’s "epoch cut" enables post-pruning ability to eliminate obscure data 

points, which results in higher clustering accuracy. 
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For this purpose, the proposed approach must utilise an appropriate distance measure. 

This study therefore first analyses and evaluates the distance measures available in the 

literature for continuous data to discover the best-performing one.  

3.2.4.1 Stage 1: Selection of similarity or dissimilarity measure for continuous data  

Similarity measures are not limited to clustering; however, many data mining 

algorithms effectively use similarity measures to some extent. It must be noted that they 

have an essential impact on clustering performance and that they are worth researching. 

In this section, experimental research was conducted in different fields to demonstrate the 

impact of each distance measurement on data analysis, and the outcomes obtained by 

various distance matrices were compared and evaluated. While it is generally not practical 

to introduce a "best" measure of similarity or the best performance measure, a 

comparative study might illustrate the performance and behaviour of the measures. A 

variety of continuous data similarity measures were examined on low- and high-

dimensional continuous datasets to define and evaluate the accuracy of each similarity 

metric in separate datasets with different dimensionalities, using 15 datasets (Dheeru, Dua 

and Karra Taniskidou, 2017; Fu & Medico, 2007; Gionis, Mannila, & Tsaparas, 2005; 

Veenman, Reinders, & Backer, 2002; Zahn, 1971), to analyse the impact of various 

distance measuring factors on the quality of the outcomes of the clustering algorithm. 

Figure 3-2 indicates that for a total of 12 distance measurements, 15 datasets were used 

with four distance-based algorithms. All distance measurements in Figure 3-2 were 

examined, except for the weighted ED, which depends on the dataset and the clustering 

purpose. Figure 3-3 explains the design of this section briefly. All four distance-based 

methods were examined for each dataset, and the clustering quality of each method was 

evaluated based on the application of each of the 12 distance measurements, as illustrated 

in Figure 3-2. The experiment provides a total of 720 tests to evaluate the impact of 

distance measurements. Representation and comparison of this substantial number of 
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tests is a difficult task and could not be achieved using regular graphs and tables. 

Therefore, a unique illustration technique was created using heat mapped tables to display 

all the outcomes in a manner that they could be read and grasped rapidly. This technique 

is described in Section 4.2. 

 

Figure 3-2: Process for evaluating distance measures 
 

 

Figure 3-3: Distance measure evaluation components 
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(a) Evaluation of similarities measures 

This analysis utilises the RI to evaluate clustering outcomes resulting from different 

distance measurements. The RI is commonly used to measure the performance of 

clustering. It is a metric of agreement between two groups of items: the first set is 

generated by the clustering methods, and the other is identified by internal criteria.  

(b) Analysis of variance (ANOVA) test 

An analysis of variance (ANOVA) test was used to demonstrate that distance 

measurements have a significant effect on the performance of clustering. For this reason, 

a null hypothesis was assumed: “distance measures have no critical impact on the 

performance of clustering”. In the ANOVA test, if the p-value is low, it implies that there 

is little chance that the null hypothesis is true, and it can therefore be rejected. The 

ANOVA test, developed by Ronald Fisher (Fisher, 1992), analyses the differences 

between variables. It is a type of statistical test that indicates whether the mean of several 

individuals is equivalent, and it generalises the t-test for more than two groups. 

Furthermore, it is helpful for testing the means for statistical significance of more than 

two groups or variables. Statistical significance in statistics is accomplished when a p-

value is less than the significance level (Cumming, 2011). The p-value is the possibility 

of achieving results that accept that the null hypothesis is true (Schlotzhauer, 2007).  

3.2.4.2 Stage 2: Pre-processing 

Before performing clustering analysis on pulses coming from the scintillator detector, 

a pre-processing phase must take place. The following figure presents the activities 

involved in the pre-processing phase.  
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Figure 3-4- Pre-processing stages 

 

3.2.4.3 Stage 3: The EFCA 

The EFCA consists of four steps: pre-processing, epoch generation, aggregation, and 

assignment stages. Figure 3-5 provides a summary of the process in the EFCA: 

 

Figure 3-5: The EFCA clustering stages 
 

Instant clustering approaches, regardless of the method, will cluster the whole dataset 

in a run and generate one set of cluster representation. In contrast, in evolving clustering, 

there are multiple epochs, and in each epoch, only a portion of data will be clustered, and 

a set of cluster representatives would exist for each epoch run. The EFCA attempts to 

cluster those data with more explicit clusters at early epochs, and data that are clustered 

 

Stage 1: Pre-

processing 

… 

Epoch1 

 

Epoch2 

 

Epoch 10 

 

Stage 2: 

Generating 

clusters for 

each epoch 

Stage 3: Aggregation of epochs prototypes Stage 4: Assignment of all data points to final clusters 

Univ
ers

iti 
Mala

ya



 

81 

in final epochs can consequently be dismissed because of their obscurity. Clustering will 

be broken down to multiple epochs, and in each epoch, a membership matrix is used to 

cluster only those data points that have high similarity to prototypes, while the rest of the 

data points will be passed for further clustering in the next epoch. 

(a) The motivation for epoch clustering 

The EFCA provides a mechanism that makes it possible to eliminate a portion of data 

that may contain noisy data, thereby leading to an improvement in the overall quality of 

clustering. This mechanism is based on two features, which are as follows: 

1. The expectation in the EFCA is that the data clustered in earlier epochs have better 

quality, since they are clustered in the presence of more information (data), and 

the quality can decrease as data become sparse in upcoming epochs. This can be 

the case especially in a noisy dataset. 

2. The EFCA provides an “epoch cut” – the option to disregard a few of the final 

epochs, which are estimated to contain noisy data.  

(b) Motivation for the post-pruning approach 

To automatically identify and disregard obscure data, a heuristic approach, called 

“post-pruning”, was introduced. The EFCA attempts to cluster data that are more explicit 

at early epochs, and later data that are clustered in final epochs can be disregarded because 

of their obscurity. The design of the EFCA clustering approach is illustrated in Figure 

3-6.  
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Figure 3-6: Design of the EFCA clustering approach 
 

3.2.5 Analysis methods 

After developing the proposed method, using the MATLAB software, all the steps 

were implemented. The EFCA was then applied to various datasets, and for each dataset, 

the proposed method was evaluated separately, then compared with standard methods, 

and finally analysed. Experimental details and results are discussed in CHAPTER 4:. 
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3.2.6 Evaluation method 

A measure is needed to compare the quality of the EFCA with standard methods, K-

means, and the FCM. In the presence of ground truth, an external clustering evaluation 

measure can be utilised. In this regard, the RI is a common performance metric for cluster 

assessment (Rand, 1971); it analyses the harmony between two partitions and 

demonstrates how near to ground truth the clustering outcomes are. It also compares 

EFCA cluster outcomes with conventional clustering methods. 

The proposed model was evaluated experimentally to address the second objective of 

this study. Keogh and Kasetty (2003) conducted a noteworthy investigation of several 

time series research articles and concluded that the evaluation of clustering methods 

should comply with the previously mentioned recommendations, which are restated 

below: 

 Verification of the method must be conducted on a different range of datasets 

(except when the method is only generated for a particular dataset). 

 The dataset that is used must be readily available or published. A cautious 

design of studies must prevent bias in implementation. 

 Wherever feasible, datasets and algorithms must be presented openly and 

publicly as free.  

 A comparison of new similarity measurement methods must also be made 

with simple and reliable measurements, such as the ED. 

The evaluation process is demonstrated in Figure 3-7. 
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Figure 3-7: Evaluation process of the proposed method 

3.3 Chapter Summary 

This chapter was intended to describe the methodology of this dissertation research. 

The method was chosen based on the problem statement and the research objectives. The 

chapter began with a research strategy, followed by a review of related work. Thereafter, 

the problem formulation was discussed, and the research objectives were defined. 

In addition, it was clarified that to implement the proposed method and accomplish the 

objectives that were mentioned, a prerequisite is to indicate an accurate distance measure. 

Hence, the details of each step to determine the right distance measure were explained. 

The method proposed in this study is called the EFCA, which utilises the fuzzy 

membership concept to break down clustering into epochs, instead of running the 

clustering on all data at once. The motivation for using an EFCA’s “epoch cut”, which 

enables post-pruning ability, to eliminate obscure data points was elaborated: it results in 

higher clustering accuracy. The details of the proposed model and the techniques used in 

each step were then described. Finally, the evaluation strategy for the suggested approach 

was clarified in the last step of the research methodology framework. As mentioned, the 

RI utilises various types of datasets to evaluate the accuracy of the suggested approach. 

Further details about each component are explained in the next chapter. 
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CHAPTER 4:  

IMPLEMENTATION AND EVALUATION  

4.1 Introduction 

Traditional methods of discriminating between neutron and gamma rays have been 

analogue-based; however, analogue-to-digital converters (ADCs) have recently opened 

the door to the digital world and provided the possibility to analyse the pulses coming 

from scintillators by digital approaches. Digital pulses can be treated as time series, and 

clustering is a method to group time series based on their similarity in shape. Unlike the 

TOF methodology, which is a common approach of discrimination, the clustering time 

series method requires no data source other than scintillator pulses. 

The pulses can consequently and rapidly be discriminated into a neutron or gamma-

ray, and even immediately after they come from the scintillator. This study aims to 

investigate different clustering methods in the discrimination task, it also presents a new 

approach, named the EFCA, and in this chapter, its implementation and the analysis are 

provided. The EFCA is tested against different clustering approaches and is analysed 

based on its quality of discrimination. 

For convenience, the researcher divided this study into three phases. The rest of this 

chapter is devoted to describing in detail the procedure and evaluation of each of those 

phases in the research.  

4.2  Phase 1: Investigating Accurate Distance Measures for Continuous Data  

Before presenting the similarity measures for continuous data, a description of 

clustering should be presented. Provided that k is the number of clusters to be 

generated, the clustering is summarised as follows (Dunham, 2003): 

Definition 1: 
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Given a dataset 𝐷 = {𝑣1, 𝑣2, … , 𝑣𝑛} of data vectors and an integer value k, the 

clustering problem is defining a mapping 𝑓: 𝐷 → {1, … , 𝑘}, where each 𝑣𝑖 is assigned to 

one cluster 𝐶𝑗 , 1 ≤ 𝑗 ≤ 𝑘. A cluster 𝐶𝑗 contains precisely those data vectors mapped to it; 

that is, 𝐶𝑗 = {𝑣𝑖 | 𝑓(𝑡𝑖) = 𝐶𝑗, 1 ≤ 𝑖 ≤ 𝑛, 𝑎𝑛𝑑 𝑣𝑖 ∈ 𝐷}. Here, 𝑣1, 𝑣2 represent two data 

vectors defined as 𝑣1 = {𝑥1, 𝑥2, … , 𝑥𝑛}, 𝑣2 = {𝑦1, 𝑦2, … , 𝑦𝑛}, where 𝑥𝑖 , 𝑦𝑖 are called 

attributes.  

4.2.1 Similarity or dissimilarity measures for continuous data 

Similarity metrics for continuous data are discussed in this section. Some of these 

measures are often used for clustering reasons, whereas others have hardly been found in 

the literature.  

4.2.1.1 Minkowski 

Two specific cases of the Minkowski family include the ED and the Manhattan 

distance (Cha & Sung-Hyuk, 2007; Gan et al., 2007; J Han et al., 2006). The Minkowski 

distance is well-defined by 𝑑𝑚𝑖𝑛 = (∑ |𝑥𝑖 − 𝑦𝑖|
𝑚𝑛

𝑖=1 )
1

𝑚 , 𝑚 ≥ 1, where 𝑚 is a positive 

real number, and 𝑥𝑖 and 𝑦𝑖 are two vectors in an 𝑛-dimensional space. The Minkowski 

distance works well when the clusters are separated from one another or, in other words, 

when data are compacted inside the clusters; if the dataset does not meet this requirement, 

then the large-scale attributes would overtake the others (A. K. Jain, Murty, & Flynn, 

1999; Mao & Jain, 1996). A problem the with Minkowski distance is that the largest 

attribute dominates the remainder of attributes. The solution to this issue is to normalise 

the continuous features (A. K. Jain, Murty, & Flynn, 1999).  

A new version of the Minkowski measure has been suggested to overcome clustering 

barriers. Wilson and Martinez, for instance, provided a distance based 
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on nominal features and enhanced the Minkowski measure for continuous features 

(Wilson & Martinez, 1997). 

4.2.1.2 Manhattan distance 

The Manhattan distance is a particular type of Minkowski distance at m = 1. As with 

the Minkowski measure, the Manhattan distance is vulnerable to outliers. When used in 

clustering algorithms, the cluster shape would be hyper-rectangular (R. Xu & Wunsch, 

2005). Research by Perlibakas demonstrated that one of the best distance measurements 

for PCA-based facial recognition is a modified model of this distance measure 

(Perlibakas, 2004). This measure is defined as 𝑑𝑚𝑎𝑛 = ∑ |𝑥𝑖 − 𝑦𝑖|
𝑛
𝑖=1 . 

4.2.1.3 Euclidean distance 

The ED is likely the most recognised distance measure used for numerical data. This 

is a particular case of the Minkowski measure when m = 2. If the dataset contains isolated 

clusters or compact clusters, then the ED will perform well (A. K. Jain, Murty, & Flynn, 

1999; Mao & Jain, 1996). However, although the ED is prevalent in clustering, it has a 

disadvantage: if two data points do not share feature characteristics, they may have a 

lower distance than the other pair of data points with the same feature values (A. K. Jain, 

Murty, & Flynn, 1999; Legendre & Legendre, 2012; Wang et al., 2002). A further concern 

with the ED as a Minkowski measurement family is that the data with 

the highest feature value would dominate the others. Using normalisation for the 

continuous feature can be the answer to such a problem (A. K. Jain, Murty, & Flynn, 

1999). 

4.2.1.4 Average distance  

With regard to the ED disadvantage listed above, the average distance was introduced 

as a modified version to improve the results (Gan et al., 2007; Legendre & Legendre, 
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2012). For two data points x, y in an 𝑛-dimensional space, the average distance is defined 

as  𝑑𝑎𝑣𝑒 = (
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1 )

1

2. 

4.2.1.5 Weighted Euclidean distance 

If the corresponding importance is accessible for each feature, then the weighted ED 

– another modified version of the ED – can be used (Hand et al., 2001). This distance is 

defined as 𝑑𝑤𝑒 =  (∑ 𝑤𝑖(𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1 )

1

2, where 𝑤𝑖 is the weight assigned to the 𝑖th 

component.  

This distance measure is the only metric that was not used in this comparison because 

the calculation of weights is strongly linked to the dataset and the researcher's purpose for 

cluster analysis. This measure has been used to suggest a dynamic form for the fuzzy 

clustering algorithm. Ji et al.’s research is an example of using this measure (Ji et al., 

2013).  

4.2.1.6 Chord distance 

Chord distance is another ED modification to tackle the deficiencies discussed above. 

It can also fix problems experienced by the measurement scale. Chord distance is 

described as the chord length that links two normalised pieces of data within a 

hypersphere with a radius value of 1. It is also possible to calculate this distance from un-

normalised data (Gan et al., 2007). Chord distance is defined as 𝑑𝑐ℎ𝑜𝑟𝑑 = (2 −

2
∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1

‖𝑥‖2‖𝑦‖2
)

1

2, where ‖𝑥‖2 is the 𝐿2-norm ‖𝑥‖2 = √∑ 𝑥𝑖
2𝑛

𝑖=1 . 

4.2.1.7 Mahalanobis distance 

Unlike the Euclidean and Manhattan distances, which are independent of the dataset from 

which the two data points are driven, the Mahalanobis distance is a data-driven metric 

(Boriah, Chandola, & Kumar, 2008; Xu & Wunsch, 2005). A regularised Mahalanobis 
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distance may be used to extract hyper ellipsoidal clusters (Mao & Jain, 1996). On the 

other hand, the Mahalanobis distance can reduce distortions produced by the linear 

correlation between attributes with the implementation of a whitening transformation to 

the data or by using the square Mahalanobis distance (A. K. Jain, Murty, & Flynn, 1999). 

The Mahalanobis distance is defined by 𝑑𝑚𝑎ℎ = √(𝑥 − 𝑦)S−1(𝑥 − 𝑦)𝑇, where S is the 

covariance matrix of the dataset (Gan et al., 2007; János Abonyi, 2007). 

4.2.1.8 Cosine measure 

The metric of cosine similarity is most often used in document similarity (J Han et al., 

2006; R. Xu & Wunsch, 2005) and is defined as 𝐶𝑜𝑠𝑖𝑛𝑒(𝑥, 𝑦) =
∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1

‖𝑥‖2‖𝑦‖2
, where ‖𝑦‖2 is 

the Euclidean norm of vector 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛), defined as ‖𝑦‖2 =

 √𝑦1
2 + 𝑦2

2 + ⋯ + 𝑦𝑛
2 . The cosine measure is invariant to rotation but is variant to linear 

transformations. It is also independent of vector length (Xu & Wunsch, 2005). 

4.2.1.9 Pearson correlation 

The Pearson correlation is extensively used in gene expression data clustering (Daxin 

Jiang et al., 2004; H. Wang et al., 2002; R. Xu & Wunsch, 2005). This metric of similarity 

assesses the similarity among the shapes of two patterns of gene expression. The Pearson 

correlation is defined by 𝑃𝑒𝑎𝑟𝑠𝑜𝑛(𝑥, 𝑦) =
∑ (𝑥𝑖−𝜇𝑥)(𝑦𝑖−𝜇𝑦)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑦𝑖)2𝑛
𝑖=1 √∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1

 , where 𝜇𝑥 and 𝜇𝑦 are the 

means for 𝑥 and 𝑦 respectively. The Pearson correlation has a shortcoming of being 

sensitive to outliers (Daxin Jiang et al., 2004; R. Xu & Wunsch, 2005).  

The measures described above are the most frequently used for continuous data 

clustering. Table 4-1 presents a summary of these measures, along with some highlights 

of each.  
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Information regarding the datasets used for the accuracy assessment of distance 

measurements is listed in Table 4-2, In addition, the major outcomes are discussed in the 

next section. 

Table 4-1: Similarity measures for continuous data (in time complexity; n is the number of 
dimensions of x and y) 

Distance Measure Equation Time 
complexity 

Advantages Disadvantages Applications 

Euclidean 
Distance 𝑑𝑒𝑢𝑐 = [∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

]

1

2

 

 

O(n) Common, easy to 
compute, and works well 
with datasets with 
compact or isolated 
clusters (Gan et al., 2007; 
A. K. Jain, Murty, & 
Flynn, 1999). 

 

Sensitive to outliers 
(Gan et al., 2007; A. 
K. Jain, Murty, & 
Flynn, 1999). 

K-means algorithm, fuzzy 
C-means algorithm (Ji et al., 
2013). 

Average Distance 
𝑑𝑎𝑣𝑒 = (

1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

)

1

2

 

 

O(n) Better at handling outliers 
than the Euclidean 
distance (Legendre & 
Legendre, 2012). 

Variables contribute 
independently to the 
measure of distance. 
Redundant values 
could dominate the 
similarity between 
data points (Hand et 
al., 2001). 

K-means algorithm. 

Weighted 
Euclidean 𝑑𝑤𝑒 =  (∑ 𝑤𝑖(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

)

1

2

 

 

O(n) The weight matrix allows 
for an increasing of the 
effect of more important 
data points than less 
important ones (Hand et 
al., 2001). 

Same as the 
disadvantages of 
average distance. 

Fuzzy C-means algorithm 
(Ji et al., 2013). 

Chord 
𝑑𝑐ℎ𝑜𝑟𝑑 = (2 − 2

∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1

‖𝑥‖2‖𝑦‖2
)

1

2

 
O(3n) Can work with un-

normalised data (Gan et 
al., 2007). 

It is not invariant to 
linear transformation 
(Xu & Wunsch, 
2005). 

Ecological resemblance 
detection (Legendre & 
Legendre, 2012). 

Mahalanobis 
Distance 

dmah = √(x − y)S−1(x − y)T 

 

O(3n) The Mahalanobis distance 
is a data-driven measure 
that can ease the distance 
distortion caused by a 
linear combination of 
attributes (Legendre & 
Legendre, 2012). 

It can be expensive 
in terms of 
computation (Xu & 
Wunsch, 2005). 

Hyper ellipsoidal clustering 
algorithm (Mao & Jain, 
1996). 

Cosine Measure 

 

Cosine(x, y) =
∑ xiyi

n
i=1

‖x‖2‖y‖2
  O(3n) Independent of vector 

length and invariant to 
rotation (Xu & Wunsch, 
2005). 

It is not invariant to 
linear transformation 
(Xu & Wunsch, 
2005). 

It is mostly used in 
document similarity 
applications (Han et al., 
2006; R. Xu & Wunsch, 
2005). 

Manhattan 
𝑑𝑚𝑎𝑛 = ∑(𝑥𝑖 − 𝑦𝑖)

𝑛

𝑖=1

 

 

O(n) Is common, and similarly 
to other Minkowski-
driven distances, it works 
well with datasets with 
compact or isolated 
clusters (Gan et al., 2007). 

Sensitive to outliers 
(Gan et al., 2007; 
Jain, Murty, & 
Flynn, 1999). 

K-means algorithm. 

Mean Character 
Difference 𝑑𝑀𝐶𝐷 =

1

𝑛
∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 
O(n) *Results in accurate 

outcomes using the K-
medoids algorithm. 

*Low accuracy for 
high-dimensional 
datasets using K-
means.  

Partitioning and hierarchical 
clustering algorithms. 

Index of 
Association 𝑑𝐼𝑂𝐴 =

1

𝑛
∑ |

𝑥𝑖

∑ 𝑥𝑖
𝑛
𝑖=1

−
𝑦𝑖

∑ 𝑦𝑖
𝑛
𝑖=1

|

𝑛

𝑖=1

 
O(3n) - *Low accuracy using 

K-means and K-
medoids algorithms. 

Partitioning and hierarchical 
clustering algorithms. 

Canberra Metric 
𝑑𝑐𝑎𝑛𝑏 = ∑

|𝑥𝑖 − 𝑦𝑖|

(𝑥𝑖 + 𝑦𝑖)

𝑛

𝑖=1

 
O(n) *Results in accurate 

outcomes for high-
dimensional datasets 
using the K-medoids 
algorithm. 

- Partitioning and hierarchical 
clustering algorithms. 

Czekanowski 
Coefficient 𝑑𝑐𝑧𝑒𝑘𝑎𝑛 = 1 −

2 ∑ 𝑚𝑖𝑛( 𝑥𝑖 , 𝑦𝑖)𝑛
𝑖=1

∑ (𝑥𝑖 + 𝑦𝑖)𝑛
𝑖=1

 
O(2n) *Results in accurate 

outcomes for medium-
dimensional datasets 
using the K-means 
algorithm. 

- Partitioning and hierarchical 
clustering algorithms. 

Coefficient of 
Divergence 𝑑𝑐𝑎𝑛𝑏 = (

1

𝑛
∑ (

𝑥𝑖 − 𝑦𝑖

𝑥𝑖 + 𝑦𝑖
)

2
𝑛

𝑖=1

)

1

2

 
O(n) *Results in accurate 

outcomes using the K-
means algorithm. 

- Partitioning and hierarchical 
clustering algorithms. 

Pearson 
coefficient 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛(𝑥, 𝑦) =
∑ (𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1 √∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1

 O(2n) *Results in accurate 
outcomes using the 
hierarchical single-link 
algorithm for high-
dimensional datasets. 

- Partitioning and hierarchical 
clustering algorithms. 

*Points marked by an asterisk are compiled based on this research’s experimental results. 
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Table 4-2: Dataset details 

Dataset Name Dimensions Clusters Vectors 
Aggregation 2 7 788 
Compound 2 6 399 
D31 2 31 3100 
Flame 2 2 240 
Path based 2 3 300 
R15 2 15 600 
Sensor_2 2 4 5456 
Spiral 2 3 312 
Iris 4 3 150 
Sensor_4 4 4 5456 
Data_User_Modeling 5 4 258 
Seeds 7 3 210 
Glass 9 7 214 
Sensor_24 24 4 5456 
Movement Libera 90 15 360 

 

 

4.2.2 Experiment 

The studies were carried out through distance-based partitioning (K-means and K-

medoids ) and hierarchical methods. While various clustering measures exist, such as 

entropy, Jaccard, purity, and the SSE, the RI is likely the most widely used cluster 

validation measure (Aghabozorgi et al., 2015; Hubert & Arabie, 1985; Santos & 

Embrechts, 2009). Assuming that 𝑆 = {𝑜1, 𝑜2, … , 𝑜𝑛} is a set of 𝑛 elements and that two 

partitions of 𝑆 are given to compare 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑟}, which is a partition of S into r 

subsets, and 𝐺 = {𝑔1, 𝑔2, … , 𝑔𝑠}, which is a partition of S into s subsets, the RI (R) is 

defined as follows:  

Definition 2: 

𝑅𝐼 =
𝑎 + 𝑏

𝑎 + 𝑏 + 𝑐 + 𝑑
 1 
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where 

 𝑎 is the number of pairs of vectors in 𝑆 that are in the same set in 𝐶 and in the same 

set in 𝐺. 

 𝑏 is the number of pairs of elements in 𝑆 that are in different sets in 𝐶 and in 

different sets in 𝐺. 

 𝑐 is the number of pairs of elements in 𝑆 that are in the same set in 𝐶 and in 

different sets in 𝐺. 

 𝑑 is the number of pairs of elements in 𝑆 that are in different sets in 𝐶 and in the 

same set in 𝐺. 

A revised version of the RI exists, namely, the ARI, which Hubert and Arabie have 

suggested (Hubert & Arabie, 1985) as a modification on the recognised RI’s main 

problems. These problems occur when the expected value of the RI for two random 

partition does not hold a constant value (e.g., 0) or when the RI approached its upper vale 

(1) as the number of clusters increases. However, because our data sources do not have 

these problems, and since the outcomes obtained using the ARI followed the same pattern 

of RI outcomes, the RI was utilised for clustering validation in this research because of 

its success in the clustering industry. 

Then, the values of the RI were normalised for the tests at this point. The normalised RI 

values are the interval of 0 and 1, and the following formula was used to address it: 

𝑧𝑖 =
𝑟𝑖 − min (𝑟)

max(𝑟) − min (𝑟)
 

 

where 𝑟 =  (𝑟1, … , 𝑟𝑛) is the array of RIs resulted by each similarity measure. 
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4.2.3 Illustration technique 

An overview of the outcomes of the normalised RI is shown in colour scale tables in 

Figure 4-1 and Figure 4-2. Given this study’s aim of examining and evaluating the 

accuracy of similarity measures for various dimensional datasets, the tables are arranged 

based on horizontally ascending dimensions of the dataset. Following the first column, 

which provides the names of the similarity measurements, the remaining table is split into 

two batches of columns (low- and high-dimensional), listing the normalised RIs for low- 

and high-dimensional datasets respectively. The final column, which is named “overall 

average” in this table, illustrates a general exploration of the most accurate measure of 

similarity. This form illustration design is used for all four algorithms. 

In this analysis, the K-means and K-medoids algorithms were implemented as 

partitioning algorithms, and the RI was used for accuracy assessment. Since the outcomes 

of the K-means and K-medoids algorithms rely on the initial, randomly selected centres, 

and sometimes their accuracy could be affected by the local minimum trap, the test was 

repeated 100 times for each similarity measure. Thereafter, the maximum RI was used 

for comparison. An overview of the outcomes of the normalised RI is depicted in colour 

scale tables in Figure 4-1 and Figure 4-2.  

 

Figure 4-1: K-means colour scale table for normalised Rand index values (green 
represents the highest, and it changes to red, which is the lowest Rand index value) 
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Figure 4-2: K-medoids colour scale table for normalised Rand index values (green 
is the highest, and it changes colour to red, which is the lowest Rand index value) 

 

The table for the ANOVA test with the framework is presented in Table 4-3, which 

displays all RI results for each dissimilarity measure and all pairs of datasets and methods. 

Each row reflects outcomes produced for a dataset and a clustering method with distance 

measurements.  

Table 4-3: Rand index values used for ANOVA test (in the table HAverage stands 
for hierarchical average method, and HSingle stands for hierarchical single link) 

 

Dataset Method 

Distance or Similarity Measures 

Eu
clid

e
an

 

A
verage

 

C
o

sin
e

 

C
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o
rd

 

M
ah

alan
o

b
is 

C
an

b
e

rra
 

C
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effD
iv 

C
ze

ka
n

 

In
d

O
fA

sso
c 

M
an

h
attan

 

M
C

h
arD

iff 

P
e

arso
n

 

sensor_2 

 

k-Means 0.722 0.733 0.659 0.659 0.725 0.744 0.741 0.765 0.662 0.729 0.729 0.403 

sensor_2 

 

k-

Medoids 

0.777 0.736 0.661 0.661 0.729 0.804 0.806 0.797 0.675 0.785 0.796 0.403 

sensor_2 

 

HSingle 0.432 0.432 0.355 0.355 0.432 0.432 0.432 0.431 0.365 0.432 0.432 0.405 

sensor_2 

 

HAverage 0.466 0.466 0.634 0.634 0.506 0.466 0.729 0.716 0.634 0.466 0.466 0.404 

Aggregation k-Means 0.929 0.929 0.798 0.799 0.927 0.921 0.904 0.949 0.799 0.927 0.927 0.636 

Aggregation k-

Medoids 

0.949 0.949 0.790 0.790 0.950 0.928 0.901 0.958 0.787 0.941 0.953 0.636 

Aggregation HSingle 0.926 0.926 0.574 0.574 0.926 0.619 0.927 0.927 0.550 0.926 0.926 0.635 

Aggregation HAverage 1.000 1.000 0.778 0.778 0.997 0.930 0.948 0.927 0.778 0.991 0.991 0.643 

Compound k-Means 0.919 0.914 0.746 0.746 0.926 0.890 0.908 0.886 0.744 0.906 0.904 0.497 

Compound k-

Medoids 

0.925 0.911 0.734 0.733 0.920 0.890 0.890 0.900 0.740 0.916 0.913 0.497 

Compound HSingle 0.890 0.890 0.415 0.415 0.896 0.895 0.898 0.891 0.415 0.712 0.712 0.497 

Compound HAverage 0.921 0.921 0.676 0.676 0.921 0.850 0.852 0.829 0.697 0.933 0.933 0.511 

Flame k-Means 0.756 0.756 0.569 0.569 0.750 0.716 0.498 0.710 0.557 0.750 0.750 0.536 

Flame k-

Medoids 

0.762 0.762 0.538 0.538 0.756 0.705 0.498 0.716 0.565 0.744 0.744 0.536 
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Flame HSingle 0.541 0.541 0.522 0.522 0.541 0.531 0.531 0.541 0.522 0.541 0.541 0.538 

Flame HAverage 0.721 0.721 0.503 0.503 0.847 0.512 0.529 0.501 0.503 0.689 0.689 0.538 

Pathbased k-Means 0.750 0.750 0.639 0.639 0.758 0.735 0.733 0.746 0.637 0.748 0.748 0.635 

Pathbased k-

Medoids 

0.746 0.746 0.606 0.606 0.756 0.743 0.745 0.745 0.667 0.741 0.741 0.635 

Pathbased HSingle 0.338 0.338 0.362 0.362 0.340 0.339 0.338 0.338 0.362 0.338 0.338 0.635 

Pathbased HAverage 0.738 0.738 0.699 0.699 0.754 0.438 0.377 0.708 0.629 0.724 0.724 0.635 

R15 k-Means 0.999 0.999 0.949 0.948 0.999 0.999 0.998 0.998 0.947 0.998 0.998 0.552 

R15 k-

Medoids 

0.999 0.999 0.947 0.945 0.988 0.998 0.988 0.998 0.947 0.999 0.998 0.552 

R15 HSingle 0.910 0.910 0.817 0.817 0.910 0.856 0.857 0.856 0.817 0.911 0.911 0.574 

R15 HAverage 0.999 0.999 0.917 0.917 0.999 0.981 0.963 0.990 0.914 0.998 0.998 0.566 

Spiral k-Means 0.554 0.554 0.562 0.562 0.555 0.550 0.552 0.553 0.562 0.556 0.556 0.496 

Spiral k-

Medoids 

0.555 0.554 0.555 0.555 0.555 0.571 0.555 0.557 0.551 0.556 0.564 0.496 

Spiral HSingle 1.000 1.000 0.383 0.383 1.000 0.781 0.781 0.781 0.383 1.000 1.000 0.497 

Spiral HAverage 0.537 0.537 0.528 0.528 0.557 0.424 0.499 0.498 0.428 0.540 0.540 0.497 

D31 k-Means 0.994 0.992 0.956 0.956 0.995 0.992 0.992 0.994 0.956 0.994 0.994 0.528 

D31 k-

Medoids 

0.994 0.992 0.956 0.956 0.992 0.990 0.988 0.991 0.956 0.991 0.994 0.528 

D31 HSingle 0.779 0.779 0.818 0.818 0.754 0.740 0.731 0.730 0.518 0.755 0.755 0.536 

D31 HAverage 0.994 0.994 0.950 0.950 0.996 0.977 0.979 0.986 0.952 0.996 0.996 0.537 

Iris k-Means 0.880 0.880 0.966 0.966 0.880 0.942 0.950 0.927 0.958 0.874 0.874 0.776 

Iris k-

Medoids 

0.912 0.912 0.966 0.966 0.824 0.927 0.950 0.906 0.950 0.880 0.880 0.776 

Iris HSingle 0.777 0.777 0.772 0.772 0.343 0.753 0.753 0.772 0.772 0.776 0.776 0.772 

Iris HAverage 0.892 0.892 0.772 0.772 0.343 0.753 0.753 0.778 0.772 0.886 0.886 0.776 

sensor_4 k-Means 0.612 0.624 0.637 0.637 0.619 0.745 0.709 0.737 0.649 0.726 0.728 0.670 

sensor_4 k-

Medoids 

0.707 0.711 0.711 0.711 0.656 0.740 0.722 0.709 0.690 0.696 0.716 0.656 

sensor_4 HSingle 0.341 0.341 0.345 0.345 0.346 0.451 0.339 0.333 0.345 0.338 0.338 0.651 

sensor_4 HAverage 0.338 0.338 0.561 0.561 0.338 0.479 0.479 0.480 0.544 0.376 0.376 0.653 

Data_User_Modeling 

 

k-Means 0.725 0.725 0.668 0.668 0.719 0.711 0.706 0.713 0.668 0.712 0.711 0.657 

Data_User_Modeling 

 

k-

Medoids 

0.725 0.712 0.654 0.654 0.728 0.285 0.285 0.285 0.646 0.734 0.745 0.659 

Data_User_Modeling 

 

HSingle 0.309 0.309 0.301 0.301 0.304 0.302 0.302 0.305 0.302 0.299 0.299 0.311 

Data_User_Modeling 

 

HAverage 0.659 0.659 0.301 0.301 0.337 0.302 0.302 0.307 0.309 0.645 0.645 0.594 

Seeds k-Means 0.876 0.874 0.884 0.884 0.876 0.859 0.782 0.891 0.890 0.872 0.872 0.359 

Seeds k-

Medoids 

0.874 0.874 0.842 0.842 0.798 0.872 0.771 0.876 0.865 0.867 0.867 0.359 

Seeds HSingle 0.357 0.357 0.340 0.340 0.337 0.340 0.337 0.340 0.340 0.340 0.340 0.358 

Seeds HAverage 0.887 0.887 0.691 0.691 0.337 0.879 0.581 0.802 0.688 0.802 0.802 0.362 

Glass k-Means 0.741 0.742 0.737 0.740 0.732 0.604 0.602 0.734 0.732 0.734 0.731 0.342 

Glass k-

Medoids 

0.735 0.736 0.738 0.732 0.711 0.633 0.582 0.737 0.735 0.737 0.739 0.342 

Glass HSingle 0.304 0.304 0.308 0.308 0.309 0.293 0.294 0.308 0.308 0.308 0.308 0.342 

Glass HAverage 0.329 0.329 0.570 0.570 0.309 0.328 0.323 0.415 0.415 0.415 0.415 0.369 

sensor_24 k-Means 0.610 0.615 0.614 0.617 0.596 0.618 0.621 0.613 0.610 0.604 0.611 0.626 

sensor_24 k-

Medoids 

0.624 0.623 0.623 0.622 0.588 0.652 0.634 0.630 0.629 0.620 0.617 0.613 

sensor_24 HSingle 0.347 0.347 0.346 0.346 0.353 0.346 0.347 0.346 0.346 0.345 0.345 0.349 

sensor_24 HAverage 0.353 0.353 0.538 0.538 0.347 0.498 0.516 0.518 0.521 0.428 0.428 0.446 
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Libras movement k-Means 0.914 0.917 0.913 0.917 0.915 0.911 0.914 0.910 0.913 0.914 0.912 0.918 

Libras movement k-

Medoids 

0.907 0.909 0.908 0.905 0.720 0.897 0.905 0.901 0.906 0.904 0.904 0.907 

Libras movement HSingle 0.187 0.187 0.202 0.202 0.131 0.183 0.183 0.187 0.192 0.187 0.187 0.296 

Libras movement HAverage 0.886 0.886 0.892 0.892 0.131 0.582 0.613 0.827 0.844 0.861 0.861 0.886 

 

The ANOVA test result from the above table is presented in Figure 4-3. 

 

Figure 4-3: ANOVA test result 

 

The small p-value of 0.0008 indicates that differences between the means of the 

columns are significant. This result suggests that similarity assessments have a significant 

effect on the performance of clustering. Later in this analysis, an investigation is 

conducted to determine how these similarity measures affect the performance of the 

clustering. 

4.2.4 Benchmarking similarity measures for partitioning methods 

The outcomes of the K-means method are presented in Figure 4-1. The figure 

illustrates that, on the one hand, the Mahalanobis distance measure has the highest scores 

among all similarity measures for low-dimensional datasets. One the other hand, the 

divergence coefficient is the most accurate, with the largest RI values for high-

dimensional data. Figure 4-2 contains outcomes for the K-medoids method. The mean 

character difference is the most accurate metric for low-dimensional datasets, whereas for 

high-dimensional datasets, the cosine metric reflects more accurate results. Overall, for 

most datasets, the mean character difference is highly accurate. 
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As an overall conclusion to the partitioning methods used in this research, average 

distance yields more accurate and reliable results for both methods. Moreover, it is the 

most accurate metric in the K-means method, and it also ranks second for the K-medoids 

method after mean character difference, with a small difference. 

From another perspective, similarity measures in the K-means algorithm can be 

evaluated to determine which of them would yield a faster implementation of K-means. 

However, because of the likelihood of falling into the local minimum trap, the 

convergence of K-means and K-medoid algorithms is not guaranteed. Therefore, the 

algorithm was run 100 times to avoid bias towards this deficiency. Figure 4-4 displays 

two sample box charts developed using normalised data, representing the normalised 

iteration number required to converge each similarity measurement. Outcomes were 

gathered after running the K-means algorithm 100 times for each similarity measure and 

dataset.  

 

Figure 4-4: Sample box charts for K-means iteration counts created with a 
collection of normalised results after repeating the algorithm 100 times for each 

similarity measure and dataset 
Figure 4-5 is a summarised colour scale table representing the mean and variance of 

iteration counts for all 100 algorithm runs. The Pearson measure has the fastest 

convergence in most datasets. After Pearson, the average and Euclidean distances are the 

fastest similarity measures in terms of convergence.  
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Figure 4-5: Colour scale table for iteration count mean and variance (green is the 
lowest, and it changes colour to red, which represents the greatest iteration count 

value) 
 

With regard to the RI and iteration rate, the average measure is demonstrated to be not 

only accurate in most datasets for both K-means and K-medoids algorithms, but also the 

second-fastest performance similarity measure after Pearson, rendering it a secure option 

when clustering is needed using K-means or K-medoids algorithms. 

4.2.5 Benchmarking similarity measures for hierarchical methods 

The impact of different similarity measures on K-means and K-medoids algorithms as 

partitioning algorithms was assessed and contrasted in the previous section. The findings 

for the single-link and group average algorithms, which are two hierarchical clustering 

algorithms, are now discussed in terms of the RI for each similarity measure in this 

section. Figure 4-6 and Figure 4-7 present the outcomes in sample bar charts, which 

include six sample datasets. Since bar charts would be jumbled for all datasets and 

similarity assessments, the findings are presented using colour scale tables for easier 

comprehension and discussion. As addressed in the last section, Figure 4-8 and Figure 
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4-9 are two colour scale tables depicting the normalised RI values for each similarity 

measure. The results in Figure 4-8 for the single-link algorithm illustrate that for low-

dimensional datasets, the Mahalanobis distance is the most accurate similarity measure, 

and Pearson is the best among other measures for high-dimensional datasets. 

Furthermore, the overall average column in this figure indicates that most of the time, 

Pearson presents the highest accuracy, and the average and Euclidean distances are among 

the most accurate measures. For the group average algorithm, as seen in Figure 4-9, the 

Euclidean and average distances are the best among all similarity measures for low-

dimensional datasets, whereas for high-dimensional datasets, cosine and chord are the 

most accurate measures. In the group average algorithm, the Manhattan distance and the 

mean character difference generally have the best overall RI results, followed by the ED 

and average distance measures. Considering the overall results, it is clear that the average 

measure is always among the best measurements, and it is best for both single-link and 

group average algorithms.  

 

Figure 4-6: Bar chart of normalised Rand index values for selected datasets using 
the single-link algorithm 
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Figure 4-7: Bar chart of normalised Rand index values for selected datasets using 
the group average algorithm 

 

 

Figure 4-8: Colour scale table of normalised Rand index values for the single-link 
method (green is the highest, and it changes colour to red, which represents the lowest 

Rand index value) 
 

 

Figure 4-9: Colour scale table of normalised Rand index values for group average 
(green is the highest, and it changes colour to red, which signifies the lowest Rand 

index value) 
An overview of the outcomes on the K-means, K-medoids, single-link, and group 

average algorithms suggests that the average and Euclidean measures are frequently 

among the most accurate measures for all four algorithms. On the one hand, Figure 4-10 

illustrates the overall average RI of all four algorithms, and all 15 datasets also uphold 

the same conclusion. Figure 4-11, on the other hand, presents the average RI for the four 
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algorithms separately. It can be inferred that the average and Euclidean measures are more 

accurate than other measures. 

Furthermore, by using the K-means algorithm, this similarity measure is the fastest 

after Pearson in terms of convergence.  

 

Figure 4-10: Overall RI average 

 

 

Figure 4-11: Average RI for four algorithms 

 

4.2.6 Concluding remarks  

Selecting the correct distance measure is one of the problems faced by experts and 

researchers when trying to implement a distance-based clustering algorithm in a dataset. 

The variety of similarity assessments can cause confusion and trouble in selecting 

an appropriate measurement. Moreover, these assessments can be performed differently 

for datasets with different dimensionalities. This research attempted to explain which 
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similarity measurements are more suitable for low-dimensional versus high-dimensional 

datasets. In this experiment, similarity measurements for numerical clustering data in 

distance-based algorithms were compared and benchmarked using 15 datasets classified 

as low- and high-dimensional datasets. The accuracy evaluation based on the RI was then 

studied for each similarity measurement, and the most appropriate similarity 

measurements were addressed for each of the low- and high-dimensional datasets for four 

well-known distance-based algorithms. Overall, the findings indicate that for all 

clustering algorithms used in this research, the average distance and ED are among the 

most accurate measures. Furthermore, when K-means is the target clustering algorithm, 

this measure is one of the fastest in terms of convergence. 

4.3 Phase 2: Pre-processing 

This study used a neutron and gamma-ray dataset collected by Savran et al. (2010). 

The pre-processing steps are briefly explained next. 

4.3.1 Reduction 

The first step is to determining the baseline of the pulse, which must be subtracted 

from the pulse. For the duration of pre-triggered, a constant baseline was defined to be10-

30 ns before the real pulse in this test (Savran et al., 2010). 

4.3.2 Filtering 

Using the DFT, a finite impulse response (FIR) filter [ 0.25, 0.25, 0.25, 0.25, 0.25 

],demonstrated in Equation 4-1, is implemented twice for the signals to decrease the 

impact of high-frequency noise signals (Savran et al., 2010).  

𝑦(𝑛) = ∑ ℎ(𝑘)𝑥(𝑛 − 𝑘)

𝑀−1

𝑘=0

 
4-1 
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4.3.3 Normalisation 

To prevent dependency of clustering on the height of the pulses, and as the ED is 

utilised in the clustering process as a distance measure, normalising signals before the 

clustering procedure is necessary. The following formula was used for normalising the 

pulses between 0 and 1: 

𝑖𝑓 𝑃𝑢𝑙𝑠𝑒 = 𝑝1, 𝑝2, … , 𝑝𝑛 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 (𝑝𝑖) =
𝑝𝑖 − 𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛
 

4-2 
 

where 𝑃𝑚𝑖𝑛 = 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑝𝑢𝑙𝑠𝑒 𝑃,   𝑃𝑚𝑎𝑥 =

𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑝𝑢𝑙𝑠𝑒 𝑃 

4.3.4 Outlier detection  

Last but not least is the outlier detection process. Pulses that are created or deformed 

by different types of noises, which are caused either by digital devices or when passing 

the wire, should be eliminated. To eliminate outliers, an average of the pulses was 

calculated, and then a maximum distance of 3 from the average was chosen as the border 

for accepted and outlier data. This means that pulses with a distance more than 3 from the 

average were flagged as outliers and eliminated from the dataset. In Figure 4-12, the 

distance of outliers is illustrated in chart (a), and the outlier pulse is depicted in chart (b).  Univ
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Figure 4-12: Pre-processing step for outlier detection 

4.4 Phase 3: Evolving fuzzy clustering approach (EFCA) 

In recent years, digital approaches have attracted researchers who are working on 

particle discrimination. Ronchi and colleagues (Ronchi et al., 2009) and another study by 

Akkoyun (Akkoyun, 2013) have demonstrated that ANNs can correctly classify gamma-

ray and neutron pulses. Furthermore, Savran and his colleagues (2010) recently 

demonstrated that the FCM clustering algorithm is well suited for discrimination 

purposes. 

This study is an attempt to introduce a new clustering method that can improve the 

accuracy of the clustering approach. To demonstrate that this new clustering approach is 

a general approach that can also be applied in other datasets, the method was evaluated 

not only on a neutron and gamma-ray dataset but also in a number of other multivariate 

and time series datasets. 

Let 𝑋 be defined as a dataset that can be shown as X = {x1, x2, … , xn}, where 𝑛 is the 

number of instances in a dataset, 𝑥𝑖 ∈ ℝ𝑛, 𝑘 is the number of clusters, and 𝑘 ∈ ℕ. 

Furthermore, 𝑝 is defined as the partitioning magnitude, which clarifies how much of the 
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data should be clustered in each epoch; 𝑝 is a value between 1 and 100, which divides 

100 (𝑝 |100), and 𝑚 number of epochs will be calculated with the following equation: 

𝑚 =
100

𝑝
,  {

0 < 𝑝 ≤ 100,
 𝑠. 𝑡.   𝑝 |100

 4-3 

and η is the number of data points in each epoch that can be obtained as follows: 

𝜂 = ⟦
𝑝𝑛

100
⟧ 4-4 

where 𝜂 is the round number to the nearest integer to 𝑝𝑛

100
. In those cases where 𝑝𝑛

100
 is 

not an integer, the final epoch will receive excessive or less data points.  

4.4.1 Epoch operation 

In each epoch, fuzzy clustering is run on 𝑋𝑙,  𝑙 = {1, … , 𝑚}, where 𝑙 is the number of 

epochs. The outcome is the membership matrix 𝑈𝑙, so that each element 𝑢𝑖𝑗 of this matrix 

expresses the membership value of data point 𝑗 to cluster 𝑖, which can be written as 

follows: 

𝐹𝐶𝑀(𝑋𝑙) → 𝑈𝑙 = (

𝑢1,1 ⋯ 𝑢1,𝜑𝑙

⋮ ⋱ ⋮
𝑢𝑘,1 ⋯ 𝑢𝑘,𝜑𝑙

) 4-5 

where 𝑘 is the number of clusters, and 𝜑𝑙 = 𝑛 − (𝑙 − 1)𝜂 is the number of data points 

that exist in the input dataset of the 𝑙𝑡ℎ epoch. 

Refinement Process (RP) in epoch l: In the next step, all elements of membership 

matrix 𝑈𝑙 are sorted from maximum to minimum. Furthermore, 𝑑𝑙,𝑞, { 1 ≤ 𝑞 ≤ 𝑘𝜑𝑙} is 

defined as the element of 𝑈𝑙 such that 𝑑𝑙,1 is the first element with the highest membership 

value in the 𝑈𝑙 membership matrix, so 𝑑𝑙,2 is the second element with the highest 

membership value in the membership matrix and so on, with the last element 𝑑𝑙,𝑘φ being 
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the minimum of all elements in the above matrix, where the 𝑘𝜑𝑙 = 𝑘 × 𝜑𝑙. In other 

words, 

𝐷𝑙 = {𝑑𝑙,𝑞⃒𝑑𝑙,𝑞 = 𝑢𝑖𝑗
𝑞 ≥ 𝑑𝑙,𝑞+1 = 𝑢𝑖𝑗

𝑞+1, 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝜑𝑙}         
4-6 

=  {𝑑𝑙,1, 𝑑𝑙,2, … , 𝑑𝑙,𝑘𝜑}  ,   1 ≤ 𝑞 ≤ 𝑘𝜑𝑙 

Therefore, all elements in 𝑈𝑙 are sorted out in epoch 𝑙 from maximum to minimum as 

follows: 

𝑑𝑙,1 ≥ 𝑑𝑙,2 ≥ ⋯ ≥ 𝑑𝑙,𝜑𝑙
 4-7 

The next step is to select 𝑑𝑙,1 to 𝑑𝑙,η from the above sorted array and assign their related 

data points to the respective clusters. The rest of the data points are neglected and passed 

to the dataset for the next epoch. 

Each epoch has three outputs, which are as follows: 

1. 𝑘 clusters and their respective data points; 

2. 𝑘 centroids for each cluster; and 

3. the remaining dataset for next epoch.  

This process is repeated for 𝑚 (number of epochs) times. 

4.4.2 Unifying the epoch centres 

After the epochs are finalised, two sets would be yielded as the output of the epochs: 

1. The first output is ℂ, which is the set of cluster centers that are generated in all 

epochs. In other words, 

ℂ = ⋃ 𝐶𝑙

𝑚

𝑙=1

 (4-8) 
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where 𝑚 is the number of epochs, such that 𝐶𝑙 is the set of all centroids that are 

generated in the 𝑙𝑡ℎ epoch, so that 

𝐶𝑙 = {𝑐 𝑙,1
, 𝑐 𝑙,2

, … , 𝑐 𝑙,𝑖
, … , 𝑐 𝑙,𝑘

},    1 < 𝑖 < 𝑘 (4-9) 

Therefore, ℂ can also be written as follows: 

ℂ = {𝑐 1,1
, … , 𝑐 1,𝑘

, 𝑐 2,1
, … , 𝑐 2,𝑘

, … , 𝑐 𝑙,1
, … , 𝑐 𝑙,𝑘

} (4-10) 

where 𝑘 is the number of clusters. Now each 𝑐 𝑙,𝑖
 is the centroid of cluster 𝑖 

generated in epoch 𝑙. 

2. The second output is �̅�, which is the set of datasets clustered in all epochs. In other 

words, 

�̅� = ⋃

𝑚

𝑙=1

𝔼𝑙 (4-11) 

such that 𝔼𝑙 is a set that is the union of all clustered data points that have been 

clustered after a refinement process in epoch 𝑙; that is, 

𝔼𝑙 = ⋃

𝑘

𝑖=1

𝐸𝑙,𝑖 (4-12) 

such that 𝐸𝑙,𝑖 is a set of data points in epoch 𝑙 that are assigned to the cluster 

with centroid 𝑐 𝑙,𝑖
. 

A one-to-one relationship exists between the set 𝐶𝑙 and 𝔼𝑙, which means that for each 

centroid in 𝐶𝑙, there is a dataset in 𝔼𝑙. 

To obtain the final result, which is the clustering of main dataset into 𝑘 clusters, a final 

round of clustering using the 𝑘-means method is executed on ℂ. This results in k clusters 

of centroids that can be demonstrated by 𝐶𝑖
𝐹, so that ⋃ 𝐶𝑖

𝐹𝑘
𝑖=1  (F indicates the final round 
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of clustering) is the set of all centroids generated by all epochs. Then, the data points 

related to each centroid are assigned to their respective cluster. This process results in 𝑘 

clusters of data points that were intended to obtain. These final clusters can be 

demonstrated by 𝐸𝑖
𝐹 , 1 ≤ 𝑖 ≤ 𝑘. 

4.4.3 Epoch cut 

The EFCA provides a mechanism that makes it possible to eliminate a portion of data 

that may contain noisy data, resulting in an improvement in the overall quality of 

clustering. This mechanism is based on the following two features: 

1) The expectation in the EFCA is that the data clustered in earlier epochs have better 

quality, since they are clustered in the existence of more data, and the quality can 

be decreased as data become sparse in upcoming epochs, especially when the 

dataset contains noisy data. 

2) The EFCA provides an “epoch cut”, which provides the option to disregard final 

epochs that may contain noisy data. 

The epoch cut is 𝜇, where 0 ≤ 𝜇 < 𝑚 is the number of epochs that are going to be 

eliminated from the final clustering step. This means that set ℂ should be replaced by set 

ℂ𝜇 as defined below: 

ℂ𝜇 = ⋃

𝑚−𝜇

𝑙=1

𝐶𝑙 4-13 

Therefore, in the final step, 𝑘-mean clustering takes place on ℂ𝜇 instead of ℂ. 

The above procedure is demonstrated in the pseudocode provided in Algorithm I. 
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Algorithm I: EFCA Pseudocode 
1: Procedure EFCA (𝑋, 𝑘, 𝑝, 𝜇) ►𝑘:number of clusters, 

𝑝:partitioning magnitude 

𝜇:epoch cut 
2: 𝑚 ← 100/𝑝  
3: 𝑛 ←  𝑙𝑒𝑛𝑔𝑡ℎ(𝑋)  
4: 𝜂 ← 𝑟𝑜𝑢𝑛𝑑((𝑝𝑛)/100)  
5: 𝑙 ← 1  
6: 𝑋[𝑙] ← 𝑋  
7: While l ≤ 𝑚 𝒅𝒐: ►𝑚 is the number of epochs 
8:    [𝑈[𝑙], 𝐶𝑒𝑛𝑡𝑒𝑟𝑠] ← 𝐹𝐶𝑀(𝑋, 𝑘) 
9:    𝐶[𝑙] ← 𝐶𝑒𝑛𝑡𝑒𝑟𝑠  

10:    𝐷[𝑙] ← top η maximum membership values in 𝑈[𝑙] 
11:    𝔼[𝑙] ← respective data points related to membership values in 𝐷 
12:    𝑋[𝑙 + 1] = 𝑋[𝑙] − 𝔼[𝑙] ►Eliminating clustered data 

points 
13:    𝑙 ← 𝑙 + 1  
14: end while  
15: ℂ_𝜇 ← creating a dataset of centroids in 𝐶 from epochs 1 to epoch 𝑚 − 𝜇 
16: [𝐶_𝐹, 𝐶_𝑙𝑎𝑏𝑒𝑙𝑠] ← 𝑘𝑚𝑒𝑎𝑛𝑠(ℂ_𝜇, 𝑘) ►running clustering on ℂ_𝜇 
17: 𝑙𝑎𝑏𝑒𝑙𝑠 ← Assigning each data point to its related centroid label 
18: Return 𝐶_𝐹, labels 

 

 

4.4.4 Datasets 

Clustering algorithms are developed either for a particular type of application or as a 

general solution that can be implemented in a variety of applications. In the first case, 

they are evaluated with one or more related datasets. For those that are proposed as a 

general solution, clustering methods should fulfil the following requirements to 

demonstrate their applicability as general methods: 

1. The algorithm should be validated on various ranges of datasets. 

2. The new algorithm should be compared with stable and widely used algorithms. 

3. Datasets should be publicly available. 

4. Experiments should avoid any type of bias. 

To fulfil these criteria, the evaluation in the EFCA was designed to cover both 

multivariate and time series datasets, and the results were compared to the FCM and K-

means, which are two of the most well-known and widely used algorithms. The datasets 
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utilised in this study are summarised in Table 4-4 and Table 4-5, and all are publicly 

available and accessible from (Dheeru, Dua and Karra Taniskidou, 2017). The only one 

that is not openly used is the Neutron and Gamma-ray dataset, which is a reduced 

dimensional version of the neutron and gamma-ray energy level. The experimental results 

of multivariate datasets and time series datasets are discussed in subsequent sections. In 

addition, the Gene Expression dataset was included in both categories of multivariate and 

time series datasets, because the UCI library classifies it as both types of datasets; it is 

thus included in both results for easier comparison with the results in each of these 

categories. 

Table 4-4: Multivariate datasets 
 

Dataset  Instances  Attributes  

User Knowledge  403  5  

Frog (Anuran Calls)  7,195  22  

Iris  150  4  

Seeds  210  7  

Pulsars Star (HTRU2)  17,898  9  

Gene Expression  801  20,531  

Seizure  11,500  179  

Wholesale  440  8  
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Table 4-5: Time series datasets 
 

Dataset  Instances  Attributes  

Gene Expression  801  20,531  

Earthquakes  900  128  

CBF  900  128  

Electric Devices  322  512  

Face All  1,690  131  

Faces UCR  2,050  131  

Inline Skate  550  1,882  

Italy Power Demand  1,029  24  

Phalanges Outline  1,800  80  

Neutron and Gamma Ray  1,000  5  

 

4.4.5 Obtained results and evaluation  

In the following sections, the evaluation of the results obtained from multivariate and 

time series datasets is elaborated. 

4.4.5.1 Multivariate datasets 

Instant clustering approaches, regardless of the method they use for clustering, will 

cluster the whole dataset in a run and generate one set of cluster representatives. However, 

in evolving clustering, there are multiple epochs, and in each epoch, only a portion of the 

data will be clustered. In this method, a set of cluster representatives would exist for each 

epoch run; accordingly, the EFCA clusters the dataset using multiple sets of prototypes 

in various epochs. Furthermore, it introduces an “epoch cut” to develop better accuracy 

by cutting obscure data. In this study, there are five epochs for each dataset, so every 

epoch has 20% of data in it. 
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Table 4-6 demonstrates the obtained RI result - which is the indicator of accuracy - for 

the EFCA approach in comparison to the one obtained by K-means and the FCM method 

for eight multivariate datasets. The performance of the EFCA can be seen on the 

multivariate dataset with epoch cut = 0 in the fourth column, in which there is no epoch 

cut in datasets. The comparison of the EFCA with the FCM and K-means demonstrates 

that, except for User Knowledge dataset, which does not display better performance, the 

EFCA has almost better results for other datasets compared to the FCM and K-means. It 

has almost a 23% improvement compared to K-means on the Pulsars Star dataset by rising 

from 0.6423 to 0.8695, 12% on the Seizure dataset (from 0.5438 to 0.6635), 10% on the 

Frog dataset (from 0.7534 to 0.8487), and 4% on the Iris (0.8797 to 0.9146) and Seeds 

(from 0.8744 to 0.9149) datasets. Furthermore, it exhibits little improvement (about 2%) 

on the Wholesale and N&G datasets and almost the same improvement on the Gene 

Expression dataset. Likewise, the method demonstrated a 30% improvement in 

comparison with the FCM on the Pulsars Star dataset (from 0.5723 to 0.8695); 17% on 

the Seizure dataset (from 0.5002 to 0.6635); 10% on the Frog dataset (from 0.7437 to 

0.8487); and 3.5–4.5% on the Iris (from 0.8797 to 0.9146), Seeds ( from 0.8744 to 

0.9149), and Wholesale (from 0.4898 to 0.5341) datasets, and it was almost the same for 

the Gene Expression and User Knowledge datasets. 

Regarding the performance of the EFCA on multivariate datasets with one epoch cut, 

shown in the fifth column, the EFCA displays much better performance compared to the 

FCM approach, especially on the Frog, Iris, and Pulsars Star datasets, with an RI of 

0.9757, 0.7460, and 1 respectively, which means a 23% improvement on the Frog dataset 

(from 0.7537 to 0.9757), 17% on the Pulsars Star dataset (from 05723 to 0.7460), 15% 

on the Iris dataset (from 0.8797 to 1), 12.5% on the Seizure dataset (from 0.5002 to 

0.6251), and less than 5% on other datasets. Similarly, the EFCA outperforms K-means 
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on the Frog, Iris, Pulsars Star, and Seizure dataset at almost the same rate as the FCM in 

most of the datasets.  

The performance of the EFCA on the multivariate dataset with two epoch cuts, shown 

in the sixth column, yielded an even better result for the EFCA, in which almost three RIs 

of 1 exist, thus demonstrating 100% accuracy in each cluster. This is an ideal result, 

considering that until now, achieving full accuracy was rare in clustering (although this 

seems to be too perfect to be real – this result is a consequence of a trade-off that the 

EFCA makes by eliminating obscure data in the last two epochs, which adds up to 40% 

of the data). The EFCA indicates more than a 22% improvement on the Frog dataset (from 

0.7534 to 0.9789) and 12% on the Iris (from 0.8797 to 1) and Seeds (from 0.8744 to 1) 

datasets in comparison to the K-means method. Furthermore, in the rest of the datasets, it 

performs better or at least the same as the other two methods. On the other hand, the same 

is true in comparison with the FCM, in which results revealed even more accuracy in 

some cases.  

The different epoch cuts are now compared on the quality of EFCA clustering when 

applied to multivariate data in the last three columns of Table 4-6. The positive effect of 

the increase in the number of epoch cuts is apparent, particularly in the Frog, Iris, and 

Seeds datasets with almost 100% accuracy, which connotes more than a 13% 

improvement. With the exception of the Pulsars Star dataset, increasing epoch cuts results 

in little fluctuation for the other datasets. It is apparent that the EFCA achieved significant 

improvements in clustering accuracy for some of these datasets, especially for those 

containing noisy data. This is a result of clustering the datasets using multiple sets of 

prototypes in various epochs. An “epoch cut” subsequently results in better accuracy by 

cutting obscure data in each cut. Furthermore, “post-pruning” automatically identifies and 
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eliminates obscure data. In Figure 4-13 to Figure 4-16, the results are also illustrated as 

bar charts in case the reader prefers a more visual comparison.  

Table 4-6: Comparing EFCA clustering Rand index results with epoch cuts (EC) 0,1 
and 2 with K-means and FCM on multivariate datasets 

Multi-Variate Dataset Name K-means RI FCM RI EFCA (EC = 0) 

RI 

EFCA (EC = 1) 

RI 

EFCA (EC = 2) RI 

User Knowledge 0.7292 0.7001 0.6959 0.7202 0.7109 

Frog 0.7534 0.7437 0.8487 0.9757 0.9789 

N&G 0.5878 0.5836 0.6115 0.6337 0.6337 

Iris 0.8797 0.8797 0.9146 1 1 

Seeds 0.8744 0.8744 0.9149 0.8997 1 

Pulsars Star 0.6423 0.5723 0.8695 0.746 0.7132 

Gene Expression 0.6548 0.6441 0.6523 0.6371 0.6455 

Seizure 0.5438 0.5002 0.6635 0.6251 0.626 

Wholesale 0.5168 0.4898 0.5341 0.5245 0.5425 

 

 

Figure 4-13: Performance of EFCA on multivariate dataset with no epoch cuts 
 

 

Figure 4-14: Performance of EFCA on multivariate dataset with one epoch cut 
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Figure 4-15: Performance of EFCA on multivariate dataset with two epoch cuts 

 

 

Figure 4-16: Comparison of different epoch cuts on the quality of EFCA clustering 
when applied to multivariate data 

 

4.4.5.2 Time series datasets 

A time series is a series of data points indexed (or listed or graphed) in time order. 

Most commonly, a time series is a sequence taken at successive, equally spaced points in 

time; thus, it is a sequence of discrete-time data. 

The EFCA attempts to cluster those data with more explicit clusters at early epochs, 

and data that are clustered in final epochs can consequently be dismissed because of their 

obscurity. To achieve this aim, clustering is broken down into multiple epochs, and in 

each epoch, a membership matrix is used to cluster only those data points that have high 

similarity to prototypes; the rest of the data points are passed for further clustering in the 

next epoch. Table 4-7 illustrates the obtained RI results indicating the accuracy of 

clustering results by using the EFCA approach in comparison to K-means and the FCM 

method for 10 time series datasets. 
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The fourth column represents the performance of the EFCA on a time series dataset 

with no epoch cuts. The quality of clustering is demonstrated to be almost the same as 

that by K-means and the FCM in the Gene Expression, Inline Skate, Italy Power Demand, 

and Phalanges Outlines datasets. It is less than 5% better in the N&G (from 0.5836 to 

0.6115) and CBF (from 0.701 to 0.7203) datasets, and 12% better in the Electric Devices 

dataset (from 0.6506 to 0. 7694) compared with the FCM approach. Furthermore, the 

EFCA has an excellent result on the Earthquake dataset (22–23% better) compared to K-

means (from 0.5165 to 0.7386) and the FCM (from 0.5083 to 0.7386). It also has a much 

better performance in comparison with the FCM: an approximate 17% improvement in 

the Face All dataset (from 0.6559 to 0.8315) and a more than 25% improvement in the 

Face UCR dataset (from 0.579 to 0.831). However, K-means works slightly better (less 

than 6%) in these two datasets. 

The performance of the EFCA on a time series dataset with one epoch cut, presented 

in the fifth column, indicates almost equal accuracy for the Gene Expression, Inline Skate, 

Italy Power Demand, and Phalanges Outlines datasets concerning these three methods. 

However, the EFCA not only performs somewhat better in the N&G and CBF datasets 

(from 0.701 to 0.7916), but also performs almost 11% better in the Electric Devices 

dataset (from 0.6506 to 0.7576), and it has much better performance in comparison with 

the FCM in the Face All (from 0.6559 to 0.7926) and Face UCR (from 0.579 to 0.7912) 

datasets: approximately 14% and 22% respectively. 

The performance of the EFCA on a time series dataset with two epoch cuts, presented 

in the sixth column, reveals no difference between the accuracy of clustering based on 

RIs between these three methods on the Gene Expression, Inline Skate, and Italy Power 

Demand datasets. However, it performs over 31% better on the Earth Quake dataset (from 

0.5083 to 0.8186), almost 15% better on the CBF dataset (from 0.701 to 0.8538), and 5% 
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better on the N&G dataset (0.5836 to 0.6337) with RIs than with the FCM. Such an 

improvement in accuracy is almost true in comparison with K-means as well. While in 

the Electric Devices, Face All, and Face UCR datasets, EFCA displays much better 

performance (from 0.6506, 0.6559, and 0.579 to 0.7235, 0.7245, and 0.7213 respectively) 

in comparison with FCM, which can be up to 15% in the last one, in the case of the Face 

All and Face UCR datasets, K-means works about 16% better than the EFCA (from 

0.8875, and 0.8884 to 0.7245 and 0.7213). 

A comparison of different epoch cuts on the quality of EFCA clustering when applied 

on time series data, as depicted in the last three columns, reveals that in the Gene 

Expression, Inline Skate, Italy Power Demand, and Phalanges Outlines datasets, there is 

little improvement (less than 5%) in performance accuracy with an increase in the number 

of epoch cuts, whereas for the N&G dataset, there is almost an 8% improvement. 

Furthermore, in the Earthquake (0.7386, 0.7455, 0.8186) and CBF (0.7203, 7916, 0.8538) 

datasets, there is much more improvement in accuracy (7-–14%). It is only in the Electric 

Devices (0.7694, 0.7576, 0.7235), Face All (0.8315, 0.7926, 0.7245), and Face UCR 

(0.831, 0.7212, 0.7213) datasets that the increase in the number of epoch cuts has a small 

backward effect (4.5% -10%). Overall, one can conclude that the epoch cut has resulted 

in better accuracy in more than 70% of the cases. In Figure 4-17 to Figure 4-20, the results 

are also demonstrated as bar charts for a visual comparison. 

Correspondingly, another conclusion of these results confirms the much better 

performance of the EFCA in multivariate compared to time series datasets: a remarkable 

result of up to 100% accuracy can be obtained in some instances. 
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Table 4-7:Comparing EFCA clustering Rand index results with epoch cuts (EC) 0,1 
and 2 with K-means and FCM on time series datasets 

Time Series Dataset Name K-means RI FCM RI EFCA (EC = 0) 

RI 

EFCA (EC = 1) 

RI 

EFCA (EC = 2) RI 

Gene Expression  0.6543 0.6507 0.6527 0.6478 0.6365 

Earthquakes  0.5165 0.5083 0.7386 0.7455 0.8186 

CBF  0.7114 0.701 0.7203 0.7916 0.8538 

Electric Devices  0.7572 0.6506 0.7694 0.7576 0.7235 

Face All  0.8875 0.6559 0.8315 0.7926 0.7245 

Faces UCR  0.8884 0.579 0.831 0.7912 0.7213 

Inline Skate  0.7487 0.749 0.7371 0.7162 0.7453 

Italy Power Demand  0.4999 0.5004 0.4996 0.5181 0.5 

Phalanges Outline  0.5 0.5 0.5001 0.5057 0.5411 

Neutron and Gamma Ray  0.5878 0.5836 0.6115 0.6337 0.6337 

 

 

Figure 4-17: Performance of EFCA on time series dataset with no epoch cuts 
 

 

Figure 4-18: Performance of EFCA on time series dataset with one epoch cut 
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Figure 4-19: Performance of EFCA on Time series dataset with two epoch cuts 
 

 

Figure 4-20: Comparison of different epoch cuts on the quality of EFCA clustering 
when applied on time series data 

 

The visualised graphs in Figure 4-21 to Figure 4-25 help to make the results more 

crystalline. Based on the definition provided earlier, there are multiple epochs in the 

evolving clustering, and in each epoch, only a prescribed percentage of data will be picked 

based on the highest membership value to the cluster representatives that are available for 

each epoch run, as there are multiple sets of prototypes in multiple epochs. The remaining 

data points will be passed over to the next epoch for further clustering. 

In Figure 4-21 to Figure 4-25, five epochs of the Iris dataset are considered with three 

clusters in each epoch as an example. The EFCA attempts to cluster all data with more 

explicit features in earlier epochs. In the first epoch, as illustrated in Figure 4-21, after 

clustering, 20% of the dataset with the highest membership value will be chosen. Then, 

the rest of the data that were clustered in that epoch will be passed down to the next epoch, 

and this process will be repeated in each epoch. The reason there are two clusters in the 
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first epoch is that these are the chosen data (20%) with the highest membership values in 

clusters in epoch one, and none of the data in this set belonged to the third cluster. The 

results of epochs 2, 3, 4, and 5 are presented in Figure 4-22 to Figure 4-25. In the fourth 

and fifth epochs, the clusters are not explicitly distinct from one another, and the 

borderlines of clusters are not clear. These figures visually demonstrate that data with 

explicit membership values are in the earlier epoch (1–3), and obscure data, which can be 

noisy data, are shifted to the last epochs (4–5). Considering this process, the exclusion of 

the last epoch can be expected to have a positive effect on the quality of the remaining 

data, and as a result, it can improve the quality and the accuracy of the next clusters.  

Next, consider the Iris dataset with 150 data points. Each epoch has 20% of data, so 

30 data points will be present in each epoch. After the exclusion of epochs 4 and 5 (60 

data points), the remaining 90 data points will be clustered at the end in such a way that 

centroids will first be clustered in three groups, and the correspondent datapoints will then 

accompany them accordingly. As a result, after omission of ambiguous data, or noisy 

data, the remaining datapoints (3/5 of data) will be clustered during the final procedure, 

which will significantly increase the accuracy of clustering up to 100% in this dataset, as 

demonstrated in Table 4-6. 
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Figure 4-21: First epoch for Iris data  
 

 

Figure 4-22: Second epoch for Iris 
data 

 

 

Figure 4-23: Third epoch for Iris data 
 

 

Figure 4-24: Fourth epoch for Iris data 
 

 

Figure 4-25: Fifth epoch for Iris data 
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The conclusion of these results confirms a much better performance of the EFCA in 

multivariate compared to time series datasets: a remarkable result of up to 100% accuracy 

can be obtained in some instances. 

This characteristic of the EFCA would be advantageous in the big-data era nowadays. 

It can be especially useful as a pre-processing method for supervised methods, in which 

the quality and the accuracy of clustering is critical. 

4.5 Significance of Findings 

This study yielded many significant findings. They can be summarised as follows: 

• The study, which was designed to determine which similarity or dissimilarity 

measure is most suitable for clustering continuous data overall, demonstrates that 

of all the similarity measures, the ED is one of the most suitable ones.  

• Introducing an intelligent evolving clustering method demonstrates improvement 

in both multivariate and time series clustering accuracy. This method increased 

the accuracy of clustering on the total data (without any epoch cuts) up to 30% for 

multivariate datasets and up to 25% on time series data.  

• The epoch cut notion, which enables heuristic data post-pruning to purify the data 

from noisy data, had a highly significant impact on multivariate data, resulting in 

an RI of 100%, which is perfect accuracy on some datasets. In time series datasets, 

epoch cuts resulted in an increase in accuracy of up to 31%.  

• Apart from being a better clustering method in the unsupervised area, the 

introduced post-pruning method can also influence the area of supervised 

methods, by providing a smaller but, in some cases, significantly better training 

set.  

• The EFCA also improved neutron and gamma-ray discrimination by 6% without 

epoch cuts and by 13% with them. 
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4.6 Summary of the Chapter 

This chapter was divided into three phases, namely, similarity or dissimilarity 

measures, pre-processing, and the EFCA. Each section was dedicated to the detailed 

discussion of the procedure and evaluation of the proposed method. To ensure its 

generality, the EFCA was evaluated against a series of multivariate and time series 

datasets. Moreover, the observational results were evaluated to demonstrate how the 

EFCA outcomes were produced and how this method boosts the accuracy of the final 

clusters. The chapter then reported the results obtained by applying the EFCA to the 

datasets, and an extensive discussion of the results followed. 

It has been confirmed that the EFCA outperforms other conventional clustering 

methods such as the FCM and K-means by testing on different datasets and demonstrating 

that accurate clusters are produced using multiple epochs and epoch cuts. The method 

proposed by the researcher can achieve the best results of clustering compared to several 

other popular methods.  
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CHAPTER 5: CONCLUSION 

5.1 Introduction 

This thesis launched with an investigation into the different types of clustering 

methods to investigate different well-known methods and represent their output and 

compare their quality of clustering. The proposed model was compared with existing 

traditional and well-known methods (the FCM and K-means). Several analyses of these 

methods were explored, and their capabilities were evaluated to satisfy the aims of this 

thesis. This chapter begins with a brief description of clustering and the method that is 

proposed, and then, in particular, it highlights the most important findings. Thereafter, it 

presents the main contributions of this thesis and elaborates on how the objectives were 

achieved. Finally, it concludes with a description of possible future work regarding the 

topics covered and the ways in which the proposed framework could be enhanced in the 

future. 

5.2 Clustering Method 

Clustering is an unsupervised machine learning method that is used both individually 

and as part of the pre-processing stage for supervised machine learning methods. The aim 

of clustering is to group similar data points into the same category, while grouping 

dissimilar data points into distinct clusters. Although clustering results can be used 

independently, in many instances, they are utilised as input for supervised learning 

methods. Given its unsupervised nature, clustering results in less accuracy compared to 

supervised learning. Therefore, most of the time, clustering results are not accurate 

enough and can result in unsuitable models. Considering this issue, having a smaller 

dataset with high clustering accuracy is preferable to having all datasets clustered with 

low accuracy. 
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Fuzzy clustering is different from hard clustering. In hard clusters, the item either 

is fit to a group or does not belong to it. In contrast, fuzzy clustering enables each item to 

pertain to several groups with some membership degrees from 0 to 1, depending on the 

distance between the item and cluster centres. In instant clustering approaches, regardless 

of the method they use for clustering, they will cluster the whole dataset in a run and 

generate one set of cluster representatives. This can also be described as dividing the 

dataset into various subgroups. This study presented a method for evolving fuzzy 

clustering that improves clustering accuracy by introducing a new perspective by using 

multiple sets of prototypes. To achieve this, clustering is broken down into multiple 

epochs instead of running the clustering on all data at once. In each epoch, a membership 

matrix is utilised to cluster only those data points that have high similarity to prototypes, 

and the rest of data points are passed for further clustering in the next epoch. Although 

much research has been carried out in the field of fuzzy clustering, this is the first time 

that membership values are used to generate multiple cluster prototypes. In the EFCA, 

prototypes are generated by a subset of data points in each epoch. Moreover, in each 

epoch, only a part of the dataset is clustered, unlike other fuzzy clustering methods that 

cluster all data at once. The EFCA employs one of the FCM features, which is the fuzzy 

membership matrix, to improve the clustering results. Then, instead of only one set of 

prototypes, the EFCA generates multiple sets of prototypes in multiple epochs and 

clusters the data gradually. 

5.3 Summary of Results 

This section summarises the major findings of the study by reviewing the 

achievements of the research.  
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5.3.1 Achievements of the study 

The study proposed a novel, elaborative method with the overall goal of improving 

accuracy in clustering. The achievements of the study are summarised by answering the 

questions posed in Chapter 1. 

The research questions answered in this thesis are listed below: 

Q1.  How does one develop a clustering approach that yields more accurate clustering 

results? 

In some cases, for supervised learning, it is desirable to have a smaller subset of highly 

accurate labelled data instead of having all datasets labelled with low accuracy. The 

EFCA epoch cut provides this ability to concentrate on clustering the data points, 

which possibly results in more accuracy. In each epoch, the membership matrix is 

used to cluster only those data points that have high similarity to prototypes, and the 

rest of the data points are passed for further clustering in the next epoch. Furthermore, 

to automatically identify and disregard obscure examples, a heuristic approach, called 

“post-pruning”, was introduced. The EFCA attempts to cluster more explicit data at 

early epochs, and later data clustered in final epochs can be disregarded because of 

their obscurity. 

Q2.  What is the influence of this method on the accuracy of continuous data (whether 

it is time series or multivariate)?  

Clustering methods are either developed specifically for a certain type of 

application and tested on one or a set of related datasets, or they are developed as 

a general solution that can be deployed on a variety of datasets. In the latter, a 
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proposed clustering method should fulfil the following requirements to 

demonstrate its applicability as a general method: (1) the method must be 

validated on a different set of data, (2) the proposed method should be compared 

with stable and widely used methods, (3) datasets should be publicly available, 

and (4) experiments should avoid any type of bias. To fulfil these criteria, the 

experiments on the EFCA were designed to cover both multivariate and time 

series datasets, and the results were compared to the FCM and 𝐾-means, which 

are two of the most well-known and widely used methods.  

Q 3. How can this method improve neutron and gamma-ray discrimination? 

In nuclear physics, a critical procedure is the differentiation between neutron 

and gamma-ray pulses. Clustering will distinguish pulses based on their shapes 

from the scintillator detector. It consequently provides the flexibility to separate 

neutron particles from gamma rays abruptly, and nearly every pulse can thus be 

clustered as soon as it arrives. The EFCA clusters a dataset in multiple epochs 

using multiple sets of prototypes; it also introduces an “epoch cut” to improve 

accuracy by cutting obscure data. Then, a final round of clustering is conducted 

using the K-means method on cluster centres that are obtained in all epochs in 

order to attain the final result, which is the clustering of the primary dataset into 

two clusters.  

5.3.2 Research objectives 

The main objectives are as follows: 

1. To develop a new method to clustering that is more accurate for neutron and 

gamma-ray pulses. 
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Discriminating neutrons from gamma rays is a vital task in nuclear physics and 

has been broadly used in different applications such as space research, mines, 

cultural heritage analysis, tomographical imaging, nuclear material control, 

international safeguarding, and national security. Traditional methods of 

discrimination have been analogue-based. However, ADCs have recently opened 

the door to the digital world and provided the possibility to analyse the pulses 

coming from scintillators by digital approaches. Digital pulses can be treated as 

time series, and clustering is a method to group time series based on their similarity 

in shape. Unlike the TOF approach, which is a widespread method for 

discrimination, the time series clustering approach does not need any data source 

other than pulses coming from the scintillator. 

The pulses can consequently and rapidly be discriminated into neutron and 

gamma-ray, sometimes even immediately after they come from the scintillator. 

This study presented a method for evolving fuzzy clustering (namely, the EFCA) 

that improves clustering accuracy by introducing a new perspective in clustering 

through the use of multiple sets of prototypes. To cluster similar time series, a 

process of similarity matching must take place to calculate the similarity of whole 

time series. This process is known as whole time series clustering, in which the 

whole sequence of time series is studied when the distance is calculated. However, 

calculating similarity measures is not a simple task because of the noise and 

outliers. To overcome this problem, in the presented method, clustering is broken 

down into multiple epochs. Instead of running the clustering on all data at once, a 

membership matrix is used in each epoch to cluster only those data points that have 

high similarity to prototypes; the rest of the data points are passed for further 
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clustering in the next epoch. Afterward, the process of agglomeration takes place, 

and finally, since the problem has a crisp nature, which means a particle is either a 

neutron or a gamma-ray particle, K-means is used at the end of this procedure to 

discriminate neutron and gamma rays. The implementation of the newly proposed 

method was explained in Chapter 4, and it is the answer to the second question and 

the accomplishment of the first research objective. 

2. To evaluate the capability of the suggested method for improving the accuracy of 

the clustering. 

The comparison of the EFCA with the FCM and K-means demonstrates 

that the EFCA performs better than the other two methods in most datasets. It 

achieved significant improvements in clustering accuracy for some datasets; 

especially for those that have noisy data, an “epoch cut” resulted in better accuracy 

by cutting obscure data to the extent that for some datasets, the EFCA achieved 

100% accuracy after epoch cut was applied. An epoch cut introduces a “post-

pruning” method that can automatically identify and eliminate obscure examples. 

This was demonstrated in the experimental evaluation explicated in Chapter 4, 

and the second objective has thus been met. 

3. To improve the performance of neutron and gamma-ray clustering 

(discrimination). 

In this study, the EFCA clustering method was evaluated and compared to 

other well-known methods for its accuracy to indicate its influence on the 

discrimination task. The method exhibited a better result for the Neutron and 

Gamma-Ray dataset. The EFCA for this dataset generated a better result than K-
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means and the FCM. Furthermore, the RI was used to evaluate the quality of the 

proposed method, and it was demonstrated that our proposed method has a higher 

quality compared to existing methods in most cases. This was proven in the 

experimental evaluation explained in Chapter 4, and it has addressed the third 

objective. 

5.4 Significance of the Study 

This study yielded a number of significant findings. They can be summarised as follows: 

• To the best of our knowledge, for the first time, the literature review in this thesis 

study gathers and classifies the works that have been done in the area of fuzzy 

clustering.  

• A thorough study was designed and carried out to determine which similarity/di-

similarity is most suitable for clustering continuous data overall.  

• The study introduces an intelligent evolving clustering method that demonstrates 

improvement in both multivariate and time series clustering accuracy. 

• The study introduces epoch cuts, which enable heuristic data post-pruning to 

purify the data from noisy data. 

• Apart from being a better clustering method in the unsupervised area, the 

introduced post-pruning method can also greatly influence the area of supervised 

methods by providing a smaller but, in some cases, significantly better training 

set.  

• The study improved neutron and gamma-ray discrimination by 6% without epoch 

cuts and 13% with epoch cuts. 
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This research can change the way in which clustering algorithms are perceived and 

shift the focus from pre-processing methods to post-pruning approaches. There is still 

much room for improvement in both the epoch operation and the post-pruning 

components of the proposed method.  

5.5 Limitation of Study 

This study mainly focused on continuous data and did not cover categorical and 

binomial data, and the result might therefore not be extendable to these types of data. 

However, this might be a topic for future research works. 

5.6 Future Works 

The method that has been proposed in this study still has much of room for further 

studies. Some of these potential studies are listed below: 

• Investigating the using of Type-II and intuitionistic fuzzy methods for evolution 

of the EFCA; 

• Customising the EFCA for other applications such as streaming data and big data; 

and 

• Utilising other distance measures for specific applications. 

5.7 Conclusion and Further Research 

The results of the experimental study suggest an unsupervised clustering method 

for clustering data that are affected by outliers or noise. This research implemented the 

EFCA on a set of multivariate and time series datasets to demonstrate the efficiency of 

the suggested method by experimental study. Experiments in this study indicate 

significant improvements in the clustering accuracy of some of the datasets, especially 

those containing noisy data. Furthermore, the results of the experimental study suggest 
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that the EFCA is a suitable unsupervised clustering method for clustering data affected 

by outliers or noise. 

As mentioned above, this study mainly focused on introducing a new way of 

clustering based on the evolving concept by utilising a fuzzy membership matrix of the 

FCM that enables heuristic post-pruning to eliminate obscure or outlier data. However, a 

number of other clustering methods in the literature address the same problem. Therefore, 

comparing these methods with the proposed EFCA can be the subject of further research. 

Future works can also utilise the same concept, but with different fuzzy clustering 

methods for clustering in each epoch. Another research opportunity is to use a method 

other than K-means in the final stage to combine clustered data points in different epochs.  
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