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COMPUTATIONAL INTELLIGENCE APPROACH FOR CLASSIFICATION

AND RISK QUANTIFICATION OF METABOLIC SYNDROME

ABSTRACT

Metabolic Syndrome (MetS) is clinically defined as the presence of three out of the

following five abnormalities - ihyperglycaemia, raised waist circumference, low High-

Density Lipoprotein-Cholesterol, ihypertriglyceridaemia and hypertension. MetS places

individuals at an unhealthy disadvantage and iis associated with an increased risk of

non-communicable diseases such as cardiovascular disease and diabetes. Currently used

non-clinical methods are not able to diagnose the risk of MetS in patients that fall very

close to the clinically defined threshold. Therefore, the aim of this study is to propose and

develop a novel non-clinical technique for the early risk quantification and classification of

MetS refered to as genetically optimized Bayesian adaptive resonance theory mapping

(GOBAM). Genetic Algorithm(GA) is used to optimize the order of sequence of the input

sample and the parameters of the Bayesian ARTMAP (BAM). The "Cohort study on

clustering of lifestyle risk factors and understanding its association with stress on health and

well-being among school teachers in Malaysia" (CLUSTer) dataset was used to compare the

performance of the proposed Genetically Optimised Bayesian ARTMAP (GOBAM) model

and three other classic Adaptive Resonance Theory Mapping (ARTMAP) models -Genetic

Algorithm Fuzzy ARTMAP (GAFAM), Fuzzy ARTMAP (FAM), and Bayesian ARTMAP

(BAM). GOBAM achieved higher of area under the receiver operating curve, sensitivity,

specificity, positive predictive value, negative predictive value, and Fscore performance

metrics of 91.45%, 96.3% , 88.3% , 98.32% , 85.71% , and 96.41% respectively. The

proposed GOBAM model was able to diagnose the risk of MetS efficiently with borderline

MRF measurements, by utilising a novel risk prediction index that ranged between 0 and 1.
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ABSTRAK

Pada definisi klinikal Sindrom metabolik (MetS), ia ditakrifkan tiga daripada lima

keabnormalan seperti - glukosa darah terjejas (hiperglisemia), meninggikan lilitan

pinggang, Ketumpatan Tinggi Lipoprotein-Kolesterol yang rendah, peningkatan trigliserida

(hypertriglyceridaemia) dan tekanan darah tings (hypertension). MetS menempatkan

individu pada kelemahan yang tidak sihat dan ia juga dikaitkan dengan peningkatan risiko

penyakit tidak berjangkit seperti penyakit kardiovaskular and diabetes.

Tambahan pula, sukar untuk mendiagnosis individu yang hadir dengan sempadan di

MetS risk factor (MRF) ukuran. Kaedah bukan klinikal semasa yang digunakan untuk

mendiagnosis risiko MetS juga tidak dapat mempertimbangkan pengukuran MRF yang

terlibat pada ambang klinikal yang ditetapkan. Oleh itu, matlamat kajian ini adalah

untuk mencadangkan dan membangunkan ramalan risiko dan kuantifikasi model untuk

kuantiti risiko awal dan ramalan MetS yang menggunakan semua lima keabnormalan

factor MRF. Model yang dicadangkan adalah pemetaan teori resonans adaptif Bayesian

genetik (GOBAM). Algoritma Genetik digunakan untuk mengoptimumkan susunan

urutan sampel input dan parameter daripada Bayesian ARTMAP (BAM). Model ini

dinilai dengan menggunakan kajian "Cohort pada clustering yang mengenai faktor risiko

gaya hidup dan memahami hubungannya dengan tekanan kesihatan dan kesejahteraan di

kalangan guru sekolah di Malaysia" (CLUSTer). Model GOBAM yang dicadangkan dapat

mendiagnosis risiko sindrom metabolik dengan berkesan dengan pengukuran MRF. Model

telah menggunakan kebarangkalian posterior yang berkisar antara 0 dan 1.
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CHAPTER 1: INTRODUCTION

In this chapter, an introduction is presented to metabolic syndrome, its various prediction

methods and themotivation behind this research. The problem statement, research questions,

objectives and scope are then explained. A brief description of the research significance

and contributions are further presented. Finally, a brief outline of the thesis is described.

1.1 Background

Hundreds of thousands die each year due to under diagnosed non-communicable

diseases which could be prevented by the early diagnosis of metabolic syndrome. In the era

of rising needs and challenges in the field of Non-Communicable Diseases (NCDs) care, a

number of studies on the healthcare system, which can extract and synthesis patient data,

have been carried out. The cluster of health risks that indicate metabolic and physiological

abnormalities was first called "syndrome X" in 1988 (Reaven, 1988). Syndrome X was

described as existence of several risk factors such as visceral obesity, glucose intolerance,

increased Triglycerides (TG), hyperinsulinemia, decreased High-Density Lipoprotein

Cholesterol (HDL-C), and hypertension. Several other terms have been used to describe

this clustering of abnormal risk factors, such as the Insulin Resistance Syndrome (Haffner

et al., 1992), the multiple MetS (Liese et al., 1997), and the MetS (S. Carroll, Cooke, &

Butterly, 2000; Maison, Byrne, Hales, Day, & Wareham, 2001).

The first definition of MetS was first stated by the World Health Organisation (WHO) in

the year 1999 (WHO, 1999). It was defined as the presence of Impaired Glucose Tolerance

(IGT), diabetes mellitus (DM) or insulin resistance together with two or more of the

components listed in column one of Table 1.1. Subsequently, the European Group for Study

of Insulin Resistance European Group for the Study of Insulin Resistance (EGIR) suggested

a variation to the WHO definition by defining MetS as insulin resistance syndrome (Balkau

1

Univ
ers

iti 
Mala

ya



& Charles, 1999). In this definition, the criteria for diagnosis include an elevated plasma

insulin together with two other MRFs as stated in column two of Table 1.1. The EGIR

gave more importance to the presence of abdominal obesity than WHO but removed

Type II Diabetes Mellitus (T2DM) because they regarded insulin as mainly a risk factor

for T2DM. The WHO definition was shortly followed by another definition released by

the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III)

(Expert Panel on Detection, 2001).

NCEP ATP III changed the name ‘insulin resistance syndrome’ to ‘metabolic syndrome’

because central obesity was regarded in this definition as the major MRF. In this definition,

MetS was defined as the presence of three or more of the MRFs itemised in column

three of Table 1.1. This definition is less focused on insulin resistance compared to the

WHO definition and replaced the term ‘insulin resistance syndrome’ with ‘metabolic

syndrome’ However, this definition recognised central obesity as the major risk factor of

MetS while removing the Body Mass Index (BMI), which is a parameter for generalised

obesity. Central obesity is measured using Waist Circumference (WC) instead of the

Waist – Hip Ratio (WHR) used in the WHO definition. The NCEP ATP III definition also

separated body lipids as a low level of HDL-C and a high level of TG. The threshold for

Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP) and HDL-C were also

lowered. The threshold for fasting blood glucose for the diagnosis of MetS was lowered

to 5.6 mmol/L. The NCEP ATP III definition was more practically applicable in clinical

settings because of the exclusion of the microalbuminuria. Other definitions of MetS were

also proffered by the International Diabetes Federation (IDF) (G. Alberti, Zimmet, Shaw,

Grundy, et al., 2006).
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In view of all these disparities in MetS definitions and the lack of agreement in WC

thresholds, a worldwide consensus definition of MetS which included race and gender

specific WC thresholds was released by the IDF (K. G. M. M. Alberti, Zimmet, & Shaw,

2006). This definition considered central obesity as the major risk factor of MetS and

diagnosed MetS as the presence of central obesity and any two of the MRFs as stated in

column 5 of Table 1.1.

However, a major problem occurred because contrasts existed during data generation due

to the adoption of the various MetS definitions (Hwu et al., 2008; Oda, Abe, Veeraveedu,

& Watanabe, 2007; Hunt, Resendez, Williams, Haffner, & Stern, 2004). For instance,

the sub-analysis of the nationwide survey of MetS in Malaysian adults identified MetS

in 32.1% according to the WHO definition while 34.3% were identified as having MetS

according to the NCEP ATP III definition and IDF definition identified the prevalence of

MetS as 37.1% (Mohamud et al., 2012).

Finally, a harmonised JIS (K. Alberti et al., 2009) of the IDF task Force in Epidemiology

and Prevention: the National Heart, Lung and Blood Institute: the American Heart

Association (NHLBI); theWorldHeart Federation (WHF); the International Atherosclerosis

Society; and the International Association for the Study of Obesity (IASO) suggested

the use of the IDF global consensus definition, but excluding the central obesity as a

compulsory parameter. They suggested the presence of any three or more out of the five

parameters as identified in the last column of Table 1.1 (K. Alberti et al., 2009). This

definition is also referred to as the harmonized definition of MetS and is at present the most

up-to-date and most widely accepted definition. The harmonized dichotomized definition

defines MetS as the presence of at least three out of the following five abnormalities:

1. Elevated WC: (ethnic- and country- specific);

2. Raised TG: TG ≥ 150 mg/dL(1.7 mmol/L);
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3. Reduced HDL-C: HDL-C < 50 mg/dL in women and HDL-C (1.3 mmol/L) <40

mg/dL (1.0 mmol/L) in men;

4. Raised Blood Pressure (BP): - SBP ≥ 130 mmHg and/or DBP ≥ 85 mmHg; and

5. Raised FPG: FPG ≥ 100 mg/dL (5.6 mmol/L).

The MetS structure depicting the MRFs is presented in Fig. 1.1

Figure 1.1: Metabolic syndrome hierarchy htructure.

Invariably, these MRFs are defined as continuous variables with differing measurement

metrics. Let us assume that a middle-aged female presents with FPG of 5.4 mmol/L,

WC of 78 cm, HDL-C of 1.1 mmol/L, TG of 1.8 mmol/L and SBP/DBP of 127/78 mm

Hg, then according to the dichotomous definition of MetS, she will not be diagnosed

as having MetS. The dichotomous definition will recognise only her TG and HDL-C as

having exceeded the recommended threshold. In this regard, studies have shown that

dichotomising the continuous variables of the MRFs based on cut-off points potentially

leads to misclassification especially when the MRF values are at the borderline of the

cut-off points (Ekelund et al., 2006). The dichotomous definition also assumes equal

weighting for all the five MRFs during diagnosis despite the different indications that the

MRFs represent (Simmons et al., 2010). Again, if we revisit the MRF values, it can be

clearly seen that she was not diagnosed with MetS because only two out of five MRFs were

considered in her diagnosis. The dichotomous method excludes any MRF that does not

exceed or meet up to the threshold values e.g.HDL-C in this case. For these aforementioned
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reasons, the dichotomous method incurs information loss in the its diagnosis. It has also

been suggested that despite the growing number of research on finding the definition of

MetS, an agreement of over a unified definition is yet to be apparent (Reaven, 1988). Thus,

it is crucial to evaluate and select efficient MetS risk quantification methods to supplement

the traditional binary/dichotomous method of MetS diagnosis.

1.2 Problem Statement

MetS is a continuing epidemic resulting from the concurrence of dyslipidemia,

hyperglycaemia, visceral obesity, and hypertension. Despite the varying prevalence

of MetS, studies have shown high global percentages of the existence of the abnormality.

The adult prevalence of MetS is 7.3% in China (Lao et al., 2012), 29.6% in Brazil (de

Carvalho Vidigal, Bressan, Babio, & Salas-Salvadó, 2013), 27.5 % in Malaysia (Rampal

et al., 2012), 33.5% in India (Prasad, Kabir, Dash, & Das, 2012), and 34.7% in the USA

(Aguilar, Bhuket, Torres, Liu, & Wong, 2015).

Its onset and existence significantly predisposes people to the risk of NCDs such

Cardiovascular Disease (CVD) (Lakka et al., 2002; Meigs et al., 2003), T2DM (Laaksonen

et al., 2002), premature mortality (Malik et al., 2004) and cancer. The prevalence of T2DM,

CVD and obesity are increasing worldwide resulting in a cascade of health disturbances

(Cani & Hul, 2015).

The clinical diagnosis of MetS is also known as the dichotomous definitions of MetS.

Although it is accepted as the gold standard for the clinical diagnosis of MetS, it is

faced with some drawbacks. The definitions of MetS shown in Table 1.1 are used to

diagnose MetS by dichotomising the results of the risk factors. However, the MRFs in

these definitions are more continuous than dichotomous. Therefore, loss of information

is incurred by dichotomising the continuous MRFs (Kahn, 2007; Ferreira et al., 2007).

Furthermore, dichotomising the MetS definition means that not all the MRFs contribute
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to the clinical diagnosis of MetS. Some MRFs are isolated in the process, risking their

important contributions to the diagnosis. For example, let’s assume an Asian middle-aged

female presents with MRF measurement in Table 1.2.

Table 1.2: MetS risk factor sample measurement for middle-aged Asian male

MRFs Patient MRF
measurements

JIS threshold JIS MetS
Assessment

FPG 5.0 mmol/L ≥ 5.6 mmol/L No
WC 108 cm > 102 cm Yes
TG 1.9 mmol/L ≥ 1.7mmol/L Yes
HDL-C 1.2 mmol/L < 1.0 mmol/L No
BP 129/80 mmHg ≥ 130/85 mmHg No

Looking at Table 1.2, the patient has only two abnormalities - increased WC and raised

TG according to the dichotomous definition. The other three MRFs are on the borderline

of the measurement thresholds. Therefore, according the dichotomous definition, these

MRFs are not abnormal. In this case, the patient is NOT diagnosed with MetS by any of

the clinical definitions of MetS in Table 1.1. This means that the patient will not be well

informed about her risk of both diabetes and hypertension due to the loss of information

incurred by applying the dichotomous definition of diagnosing MetS. However, it is clear

from the patient’s measurement he is obviously at risk of both hypertension and diabetes

given that her current measurements are close to the clinically defined cut-offs and she

needs to consider a lifestyle change to prevent the onset of MetS and its associated diseases.

Dichotomising the continuous MRFs therefore implies that not all them contribute equally

to the diagnosis (Hillier et al., 2006). Furthermore, this dichotomisation reduces statistical

power and correlative measurement of the MRFs (Wijndaele et al., 2006). However, every

single MRF plays a major role in rise and contribution to MetS and its associated NCDs

independent of the existence of the other MRFs (Sattar et al., 2003; McNeill et al., 2005).

These shortcomings of the dichotomous definition will hinder the early diagnosis of MetS.

People with MetS are three folds more likely to have one form of cardiovascular disease
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than those without the abnormality (Isomaa et al., 2001). MetS is thought to be one of

the precursors to non-communicable diseases such as diabetes (Brozova, Cechurova, &

Lacigova, 2016; Ford & Li, 2008; Demir et al., 2016), cardiovascular disease (Dekker

et al., 2005; Dragsbæk et al., 2016), kidney disease (J. Chen et al., 2004; Domingos &

Serra, 2014), obstructive sleep apnea (Drager, Togeiro, Polotsky, & Lorenzi-Filho, 2013).

Therefore, it is mainly used to predict the risk of T2DM (Laaksonen et al., 2002) and

CVD (Lakka et al., 2002; Galassi, Reynolds, & He, 2006). These plethora of health

complications have made the early diagnosis of MetS a major concern by both researchers

and medical practitioners alike.

Despite the significant of the early detection of the risk of MetS, very few researches

have applied the use of non-clinical methods to predict and diagnose the risk of MetS.

Principal Component Analysis (PCA) (Vikram, Pandey, Misra, Goel, & Gupta, 2009;

Ayubi, Khalili, Delpisheh, Hadaegh, & Azizi, 2015; S. J. Carroll et al., 2014; Wiley &

Carrington, 2016; Mochizuki, Miyauchi, Misaki, Ichikawa, & Goda, 2013), z-score (Batey

et al., 1997; Eisenmann, 2008; Wijndaele et al., 2009; Okosun, Lyn, Davis-Smith, Eriksen,

& Seale, 2010; Neto, de Campos, Dos Santos, & Junior, 2014; Heshmat et al., 2015), and

Confirmatory Factor Analysis (CFA) (Vikram et al., 2009; Ayubi et al., 2015; S. J. Carroll

et al., 2014; Wiley & Carrington, 2016; Mochizuki et al., 2013) are statistical techniques

that were first used to diagnose the risk of MetS. These non-clinical techniques derived a

value known as Continuous MetS (cMetS) score that represents the level of the risk of

MetS based on the MetS risk factor measurement values. However, the statistical methods

are sample specific and the same model cannot be applied to different populations. Also

the impact of all the MRF assume to be equal leading to unaccountability in their different

effects.

Machine learning techniques such as Multiple Logistic Regression (MLR), Support
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Vector Machine (SVM) (Van Schependom et al., 2015), Artificial Neural Network

(ANN) (Zhao et al., 2014; Hirose, Takayama, Hozawa, Hibi, & Saito, 2011), Bayesian

Network (BN), MediBoost (Kakudi, Loo, & Moy, 2017) and Decision Tree (DT) (Romero-

Saldana et al., 2016) have been used in the prediction of MetS. However, the DT, MLR,

MediBoost and SVM are black-box techniques. This means that the models developed

cannot be interpreted to predict the risk of MetS. Furthermore, these techniques tend

to overfit data and may not recognize the risk of MetS in patients with borderline MRF

measurements. Both SVM and ANN are black box techniques. This setback renders them

inefficient for the early diagnosis and interpretation of the risk of MetS as required for

prevention.

Thirdly, risk quantification techniques such as Areal Similarity Degree (ASD) (Jeong,

Jo, Shim, Choi, & Youn, 2014), the “siMS score” (Soldatovic, Vukovic, Culafic, Gajic, &

Dimitrijevic-Sreckovic, 2016), ASD with weights obtained by Quantum Particle Swarm

Optimisation (QPSO) (Kakudi, Loo, & Pasupa, 2017) have been applied to derive the

risk of MetS. However, these risk quantification techniques are data dependent and do not

create models from learning.

Taking into context the limitations of the existing non-clinical methods previously

used for the diagnosis of the risk of MetS and the capabilities of BAM and Genetic

Algorithm (GA) as stated in Sections 3.2.4 and 3.3.11, we propose the GOBAM as the

most appropriate and novel technique for the early diagnosis of the risk of MetS while

taking into consideration patients with MRF measurements close to the clinically accepted

thresholds of diagnosing MetS. GOBAM is able to predict the risk of MetS by generating

a risk quantification index.
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1.3 Aims of Research

The aim of this research is to apply GA in order to optimize the sequence order of input

data and parameters of the BAM to build a GOBAM model for the early diagnosis of the

risk of MetS while considering patients with MRF measurements that exceed the clinically

recognized thresholds and those with borderline MRF measurements.

1.4 Research Objectives

The objectives required to overcome the limitations of the previously applied non-clinical

approaches are as follows:

1. To identify non-clinical techniques and the challenges faced in diagnosing and

quantifying the risk of MetS.

2. To propose and develop a novel risk prediction and quantification model for the

early detection and diagnosis of MetS using the five clinically approved MRFs.

3. To evaluate the performance of the proposed model GOBAM with classical

ARTMAP.

1.5 Research Questions

In order to achieve these research objectives, the following research questions will be

answered:

i. What are the non-clinical techniques that have been used for the prediction, diagnosis

and risk quantification of MetS?

ii. How can a risk prediction and quantification model for the diagnosis of MetS be

developed?

iii. What is the predictive performance of the proposed GOBAM compared with other

classic ARTMAP models?
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iv. What is the significant difference between the predictive performance of the

GOBAM model and the other comparative models?

v. Can GOBAM be applied for the risk quantification of MetS in patients who present

with borderline MRF measurements?

1.6 Mapping the Objectives and the Research Questions

This section presents the connection between the objectives and the research questions

of thesis in Table 1.3.

Table 1.3: Mapping the research objectives to the research questions

Research objectives Research questions

1. To identify non-clinical techniques and the
challenges faced in diagnosing and quantifying the
risk of MetS.

i. What are the non-clinical techniques that have
been used for the prediction, diagnosis and risk
quantification of MetS?

2. To propose and develop a novel risk prediction
and quantification model for the early detection and
diagnosis of MetS using the five clinically approved
MRFs.

ii. How can a risk prediction and quantification model
for the diagnosis of MetS be developed?

3. To evaluate the performance of the proposed model
GOBAM with classical ARTMAP. iii. What is the predictive performance of the proposed

GOBAM compared with other classic ARTMAP
models?

vi. What is the significant difference between the
predictive performance of the GOBAM model and
the other comparative models?

v. Can GOBAM be applied for the risk quantification
ofMetS in patients who present with borderlineMRF
measurements?

1.7 Motivation

The prime motivation of this research is the global epidemic spread and economic

burden of MetS and its associated diseases. MetS is a pre-cursive abnormality to various

types of NCDs which include CVDs such as strokes, ischemic heart disease, atherosclerosis

and T2DM. The abnormalities of MetS hypertension, insulin resistance, dyslipidaemia,
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hypertriglyceridaemia and central obesity are leading causes of disability and mortality

independently or collectively. For example, hypertension leads to 12.8% and 3.7% of

the global premature death and total Disability Adjusted Life Years (DALY) respectively

(WHO, 2018). The primary reason for the diagnosis of MetS is to identify patients

who are at long term risk of developing CVDs and T2DM. The clinical definition of

MetS provides a threshold for the existence of abnormality in any of the five MRFs.

However, even individuals that present MRF measurements that are very close the specified

thresholds will still be diagnosed as NOT being at risk of MetS and its associated diseases.

However, disregarding these borderline MRF results will to to the progression and onset of

Metabolic Syndrome (MetS). Therefore, the early detection of MetS for both individuals

diagnosed with abnormality and those that have not been diagnosed according to the

clinical dichotomous definition is relevant for clinical practitioners and individuals alike.

Early knowledge of the nature and onset of MetS will enable the timely implementation of

health management and intervention schemes that will either prevent or reduce progression

to its associated diseases.

1.8 Methodology

This research begins with conducting a systematic literature review of all the existing

non-clinical approaches that have been used to diagnose the risk of MetS and identifies

their limitations from the literature. These limitations were used to formulate the problem

statement of this study. Subsequently, the aims, research objectives and questions were

defined form the problem statement. The data was collected as part of the CLUSTer (Moy

et al., 2014) which consists of MRF measurements. The data was cleaned and preprocessed

prior to input.

In this framework, we build a GOBAM that allows new data to be processed without

discarding existing knowledge. The GA is used to optimise the sequence order of the input
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sample of the MetS dataset and the parameters of the BAM (Vigdor & Lerner, 2007). The

trained model can then be used to diagnose the risk of MetS for patients. FAM (Carpenter,

Grossberg, & Reynolds, 1991), GAFAM (S. M. Liew, Doust, & Glasziou, 2011), BAM

models were also built with the same dataset in order to evaluate the performance of the

proposed GOBAM model. The FAM (Carpenter, Grossberg, & Reynolds, 1991), GAFAM

(S. M. Liew et al., 2011), BAM algorithms were the ART and ARTMAP algorithms

most recently used for model performance comprisons (W. S. Liew, Seera, & Loo, 2016;

Masuyama, Loo, & Dawood, 2018). Their results were compared using the Friedman test

to explore the significant difference in the performance of the other models against the

GOBAM. The built model was tested to see if it was able diagnose MRF measurements of

a patient with borderline measurement as being at risk of MetS.

1.9 Scope of Research

The focus of this research work is develop and implement a novel non-clinical model risk

prediction using BAM and GA. This model will be used to support the clinical diagnosis

of MetS in predicting the risk of MetS for patients with and without the abnormality

according to the clinical dichotomous definition. The dataset used for the evaluation of the

proposed model is collected specifically from the Malaysian population. The performance

of the proposed GOBAM model is compared to FAM, GAFAM, and BAM.

1.10 Thesis Contribution

This research make its contribution to two different fields: the machine learning

community and the medical practitioners.

The machine learning community

The primary contribution of this thesis is the development of a novel non-clinical model

that can be used to support the clinical diagnosis of MetS. Furthermore, this research work
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aims to identify significant advances and contributions of non-clinical methods used to

diagnose metabolic syndrome. The proposed approach developed in this research work is

an addition to other non-clinical techniques that have been proposed by previous researches.

Our approach improves the early diagnosis of MetS for patients who are at risk and for

those who present with MRF measurements close to the clinically defined thresholds.

The medical practitioners

Our proposed approach can be used to support the clinical diagnosis of MetS as an

early and accurate detection tool. This information will enable medical practitioners

to implement timely intervention systems for prevention and treatment of MetS and its

associated diseases

1.11 Thesis Organisation

Chapter 1 presents the background of the thesis. It also includes the problem statement,

aims, research objectives and questions, scope and contribution of the thesis. The research

methodology of the proposed research model is briefly described.

In Chapter 2, we present a systematic literature review in order to identify the non-

clinical approaches that have been previously used to diagnose MetS. Machine learning,

statistical and risk quantification techniques are described and their strength and limitations

are also presented.

The theoretical framework of the research is explained in Chapter 3. A detailed

description of Adaptive Resonance Theory (ART), ARTMAP, FAM, GAFAM, BAM and

GA is provided. The mathematical formulations, technique pseudo-code, flowchart and

diagrams of the algorithms are presented.

The description of the dataset, its collection, cleaning and preprocessing methods

are presented in Chapter 4. Subsequently, the development of the GOBAM for the
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diagnosis of the risk of MetS is explained in the detail. The pseudo-code, flowchart and

implementation of the proposed GOBAM model is presented. The experimental setup of

the implementation is also described in detail.

Chapter 5 presents the results of the experiments conducted in Chapter 4.7. The

performance comparison between ARTMAP, FAM, GAFAM, BAM, and the proposed

GOBAM is made. Detailed discussion of the results are presented.

The conclusions made from the empirical findings in Chapter 5 is presented Chapter 6.

Contributions of the study and future related works are highlighted.
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CHAPTER 2: SYSTEMATIC LITERATURE REVIEW

2.1 Introduction

This chapter presents a systematic literature review on the diagnosis of MetS using

non-clinical techniques. The diagnosis of MetS is a motivation for individuals towards

implementing healthy life style choices. Therefore, existing literature reviews have

answered several research questions relating to the characteristics and associated diseases

of MetS. Both Timar and colleagues, (Timar, Sestier, & Levy, 2000) and Lopez-Candales

(Lopez-Candales, 2001) present a summary of MetS by reviewing each MetS risk factor,

cut-off thresholds, and people most susceptible to the abnormalities. The review by Palomo

and colleagues (Palomo, Alarcon, Moore-Carrasco, & Argiles, 2006) showed that MetS is

characterised by alterations in hemostatis and fibrinolysis which is attributed to metabolic

abnormalities. In their survey, Gami and co workers (Gami et al., 2007) found thirty-seven

studies that ascertained the association between MetS and CVDs . They concluded that

individuals who present with the risk of MetS are highly at risk of developing CVDs which

could increase mortality rate if lifestyle and preventive interventions are not applied. Xue

and Michels, (Xue & Michels, 2007) reviewed available evidence that proved the existence

of a clear relation between MetS, T2DM, and the onset of breast cancer. More recently,

Wong and colleagues (Wong, Cook, Roderick, & Somani, 2016) noted a definite association

between breast cancer, kidney stone and MetS caused by the presence of abnormalities

such as obesity, hypertension, hyperinsulinemia and insulin resistance. Another study

(Hert, Schreurs, Vancampfort, & Winkel, 2009) noticed the increased risk of developing

MetS in patients treated with antipsychotic agents due sedentary lifestyle habits, unhealthy

food choices and high rate of smoking. These factors subsequently led to weight gain, and

increased prevalence of T2DM and CVDs. Motillo et al., (Mottillo et al., 2010) found
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that MetS is related with a 2-times increase in CVD and a 1.5 times increase in overall

mortality rate while Kaur et al., (Kaur, 2014) in their extensive review summarised existing

literature related to the definition of MetS, its epidemiology and intervention approaches.

In summary, all these reviews have only analysed the current state-of-the-art of MetS

and some of its associated diseases; however, none of them have examined the existing

non-clinical methods that support the clinical diagnosis of MetS. We consider that the

analysis of research activity in this domain is of utmost importance in order to investigate

more research possibilities aimed at early diagnosis and prevention of MetS.

This systematic review aims to identify and assess non-clinical techniques which

support the clinical diagnosis of MetS. The justification behind this systematic review

is based on the requirement of knowledge acquisition that could assist in improving the

quality of non-clinical methods for the diagnosis of MetS and subsequently to promote the

management of MetS in clinical practice.

2.2 Pathophysiology of MetS

Metabolic syndrome is not a disease. It is a constellation of metabolic abnormalities

which include central obesity, impaired glucose tolerance (IGT), hypertension and

dyslipidemia (K. Alberti et al., 2009). Insulin resistance is theorized as the primary

indicator of MetS (Eckel, Grundy, & Zimmet, 2005) which is the inability of the body to

competently respond to endogenous and exogenous insulin.

2.2.1 Central Obesity

Central obesity which is measured by the size of the waist circumference is a reliable

substitute for the estimation of abdominal fat adiposity besides using computer tomography

(CT) scans and dual-energy X-ray absorptiometry (DEXA) scans (Direk et al., 2013). Its

simplicity and cheapness makes it a convenient tool for use in routine clinical practice
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and health screen to assist in targeting early intervention of MetS. Central obesity and

insulin resistance are claimed to be closely related (Zadeh-Vakili, Tehrani, & Hosseinpanah,

2011). The excess visceral tissue in abdominal obesity which is in close proximity to

the liver releases free fatty acids (FFA) into the liver through the splanchnic circulation

(Ebbert & Jensen, 2013). This leads to insulin resistance (Eckel et al., 2005; U. J. Jung

& Choi, 2014) causing a failure to suppress gluconeogenesis in the liver, resulting to a

hyperglycemic state (M. T. Sheehan & Jensen, 2000). Some studies have suggested central

obesity as the earliest stage of MetS development and early weight decrease could prevent

the development of MetS and its ailments (Esposito et al., 2003; L. Palaniappan et al.,

2004). Central obesity is also a strong indicating factor of cardiovascular diseases (Seidell

et al., 1992; Wildman et al., 2005) and type II diabetes mellitus (Balkau et al., 2007).

2.2.2 Impaired Glucose Tolerance

Awell established relationship between impaired glucose tolerance and insulin resistance

has been investigated because insulin assists the muscle, fat and liver cells to absorb

glucose. Insulin resistance is identified as the core metabolic abnormality in MetS (Falkner

& Cossrow, 2014). Insulin resistance is the deficiency of insulin-mediated glucose uptake

which results in hyperglycemia (De Luca & Olefsky, 2008). There is also a failing to

suppress gluconeogenesis in the liver (J. P. Sheehan, 2004). Tomake up for the imperfection

in insulin activity, the insulin discharge is metrically increased to maintain normal glucose

levels. In any case, if the level of insulin secretion still fails to meet the normal requirement,

impaired glucose tolerance would still arise (Eckel et al., 2005).

2.2.3 Hypertension

Studies have associated essential hypertension with obesity and glucose intolerance

(Ferrannini & Cushman, 2012; Turpin et al., 2014; Morris, 2018). Obesity is a major
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risk factor in hypertension in MetS (Anderson et al., 2001; Morse, Zhang, Thakur, &

Reisin, 2005; Falkner & Cossrow, 2014). The hyper-insulinemia existing in obese people

excites the sympathetic nervous system (SNS) so as to preserve energy balance by elevating

metabolic rate (Landsberg, 2001). Therefore, the SNS leads to hypertension by applying

pro-hypertensive effects such as vasoconstriction, increased cardiac output and sodium

re-absorption in the blood vessels, kidneys and heart.

2.2.4 Dyslipidemia

An increase in visceral adiposity increases the release of FFA into the liver through

splanchnic circulation (Montague & O’rahilly, 2000), thereby, causing an elevated

production of very low-density lipoprotein (VLDL) and triglycerides (M. T. Sheehan &

Jensen, 2000). VLDL functions as a carrier of triglycerides from the liver to the circulatory

system (Ginsberg & MacCallum, 2009). In a normal state, insulin inhibits the production

of VLDL and triglycerides in the liver. However, in an abnormal insulin resistance state,

insulin looses this ability which causes hyper-triglyceridemia. The VLDL composed of

triglycerides will be converted to low density lipoprotein (LDL) and the high-density

lipoprotein (HDL) in exchange for cholesterol. Thereafter, the triglyceride filled with LDL

and HDL will be hydrolysed into small, dense LDL particles which atherogenic. This

results in dyslipidemia in MetS and is characterised by an elevated triglycerides and low

HDL-C factors.

2.3 Systematic Review Method

The systematic reviewmethod adopted in this chapter follows the procedures given by the

PRISMA guidelines (Moher, Liberati, Tetzlaff, & Altman, 2009). Therefore, we developed

the study protocol by designing the search strategy, enumerating inclusion/exclusion

criteria, extracting, and synthesising extracted data. Initially, we carried out the search
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strategy by identifying the search terms and the electronic database to carry out our search.

Relevant primary studies were selected as depicted in the PRISMA flow chart in Fig 2.1.

Next, we identified the quality of the selected studies based on a quality assessment

questionnaire designed to assess the quality of all the selected studies.

Figure 2.1: PRISMA flow chart for included and excluded studies in the systematic
review on metabolic syndrome diagnosis methods

2.3.1 Search Strategy

All searches were carried out from the earliest date in the database to July 2019 in the

following electronic data sources: Association of Computing Machinery (ACM) Digital

Library, PubMed, Science Direct, Web of Science, and IEEE Xplore Digital Library. These

electronic databases are the most frequently searched and widely accepted by various
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research communities (Saeed, Ab Hamid, & Mustafa, 2016).

The primary search term of the systematic review was "Metabolic Syndrome". The

secondary search terms consisted of relevant machine learning keywords with "Metabolic

Syndrome" using the "AND" and "OR" boolean concatenators in the Web of Science,

PubMed and IEEE Xplore digital libraries. However, to remove ambiguity of publications

results after searching, the search secondary keywords were broken into 6 sections. Table

2.1 shows the digital databases and the search terms.

Table 2.1: List of search terms conducted in the various databases

Databases Search terms

IEEE Xplore Digital Library 1. ("Metabolic Syndrome") AND ("Naive Bayes" OR "Bayesian Network"
OR "Decision tree" OR "Classification and regression tree" OR
"Chi-squared Automatic Interaction Detection" OR "Linear discriminant
analysis" OR "K-nearest neighbors algorithm");

2. ("Metabolic Syndrome") AND ("Learning vector quantization" OR
"Self-organizing map" OR "K-means" OR "Expectation-maximization"
OR "Hierarchical Clustering" OR "Fuzzy clustering" OR "Hierarchical
clustering" OR "Hidden Markov models");

3. "Metabolic Syndrome") AND ("Logistic regression" OR "Ordinary least
squares regression " OR "Linear regression" OR "Stepwise regression" OR
"AdaBoost" OR "Boosting" OR "Random Forest" OR "Gaussian mixture
models" OR "k-Means clustering");

4. ("Metabolic Syndrome") AND ("machine learning" or "deep learning"
OR "data mining" OR "predictive models" OR "Artificial neural network"
OR "Back-Propagation" OR "Multilayer Perceptron" OR "association rule
mining");

5. ("Metabolic Syndrome") AND (“Confirmatory factor analysis” OR
"Factor analysis" OR "Principal component regression" OR “Principal
Component Analysis”)

6. ("Metabolic Syndrome") AND (“Z score” OR “Risk Score” OR
“Continuous risk score” OR “Continuous Metabolic syndrome risk score“
OR "Severity Score" OR "Risk quantification")

PubMed

Science Direct

Web of Science

Association of Computing
Machinery (ACM) Digital
Library

A total of 42 search terms were used to collect the articles in this systematic review.

These search terms cut across the different types of statistical and machine learning

techniques that are most frequently used for classification and prediction. The whole

search was carried out through the University of Malaya library.

Only fully published, peer-reviewed papers reported in English were included.
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2.3.2 Study Selection

The whole initial search from the electronic databases revealed 2301 studies. These

studies were screened based on the objective of the review which sought to appraise the

empirical quality of the studies as well as evaluate the effectiveness of applying non clinical

methods to diagnose MetS. After removing duplicates, the first selection step included

screening the titles, abstracts, and keywords of the studies for eligibility in relation to the

following inclusion criterion:

i. The study participants were humans with or without metabolic syndrome and the

participant characteristics were clearly defined.

ii. The study objective involved the diagnosis of metabolic syndrome using a non

clinical approach in addition to or as opposed to the clinical dichotomous definition.

iii. At least an outcome for the non-clinical diagnosis of metabolic syndrome exists in

the study.

110 primary studies were left after the first screening. We were able to retrieve the full

text of 106 articles by searching online databases. We were not able to retrieve the full text

of 7 articles. The inclusion/exclusion criteria were independently tested by two reviewers

(Habeebah Adamu Kakudi (HAK) and Foong Ming Moy (FMM)) and a conclusion was

agreed upon after comprehensive discussions. The entire full text of the 107 primary

studies were screened by the two reviewers (HAK and FMM) based on the following

exclusion criteria:

i. Non-peer reviewed studies such as tutorials, reports, conference, and editorial

papers.

ii. Studies with adolescent and children participants.
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iii. Studies based on conceptual frameworks or structures without empirical analysis

and results.

The two researchers compared their results and where discrepancies existed between

two results of the same paper, a joint assessment was carried out with all the researchers

and an agreement was made to either include or exclude the study from the systematic

review. Finally, 50 studies were excluded and a total of 60 primary studies were identified

for inclusion into this systematic review.

2.3.3 Data Extraction

Reviewer HAK independently extracted data from the primary studies by filling a data

extraction form and gathering general information from each study such as author name,

publication year, title, study of dataset, country, study population, study design, MetS

diagnosis techniques and evaluation metrics results. Researchers HAK and Chu Kiong

Loo (CKL) verified the soundness of data by making sure that information extracted from

each study justified the aim of the research.

2.4 Results

This sections presents a comprehensive analysis on the taxonomy and results obtained

from the 61 primary studies included in this systematic review. First, we present a general

analysis of the primary studies including their quality scores obtained from the quality

assessment process. Subsequently, we present a detailed investigation of the results based

on the research question of the systematic review.

2.4.1 Characteristics of Primary Studies

The non-clinical methods identified from the 61 included studies are categorised as

follows:
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• Statistical techniques: Confirmatory Factor Analysis (CFA), Principal Component

Analysis (PCA), Principal Components Logistic Regression (PCLR), Generalized

Multifactor Dimensionality Reduction (GMDR) and Z-score;

• Machine learning techniques: Decision Trees (DT), Decision Trees Chaid (DT

Chaid), Random Forest (RF), Support Vector Machines (SVM), Gradient Boosted

Trees (GBT), Logistic Regression (LR), Neural Networks (NN), and Bayesian

Network (BN), Naive Bayes (NB), Association Rules; and

• Risk quantification techniques: Areal Similarity Degree (ASD), simScore, and

Framingham Risk Score (FRS).

Out of the 60 included studies, 27(45%) studies investigated the use of machine learning

techniques to predict MetS, while 30(48%) studies applied statistical techniques to calculate

a continuous MetS srisk score. Lastly, 4(7%) studies derived risk quantification formulas

for quantifying the risk of MetS. Demographic data extracted from the 60 included

studies are presented in Table 2.2 while the type of non-clinical technique applied and the

performance metrics of the included studies are presented in Table 2.3.
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2.4.1.1 Metabolic Syndrome Risk Factor Distribution

The MetS risk factors identified by the clinical definitions (See Table 1.1) are generally

classed into invasive and non-invasive measures (Romero-Saldana et al., 2016). Fasting

blood glucose (FBG), HDL-C , and Triglycerides (TG) are considered as invasive variables

because they require the drawing of blood sample and analysis. The non-invasive risk

factors are waist circumference (WC) and blood pressure (BP). WC is used to identify

central obesity in MetS . Other non-invasive measures used to identify central obesity in

the primary studies include waist-to-hip ratio, body mass index, and waist-to-height ratio.

Blood pressure is identified by measuring systolic and diastolic blood pressure readings. In

addition to the clinically identified MetS risk factors, some of the studies included in this

systematic review have identified and used other risk factors in the non-clinical methods

such as such as age, sex, smoking habits, literacy rank, physical activity, and alcohol

consumption. A single study, Lin et al., 2014 (Z. Lin et al., 2014) collected serum samples

and extracted single nucleotide polymorphisms (SNPs) associated with MetS traits for use

as input parameters in their studies. The remaining 33 studies used all the five clinically

defined MetS risk factors in Table 1.1.

2.4.1.2 Performance Metrics Used in Included Studies

The most frequently used metrics for comparing and evaluating the performance of the

non-clinical methods in the included studies are ACC, SEN, SPEC, PPV, AUC, and NPV.

Table 2.4 below presents the definitions of each performance metric.

2.5 What is the current state of art in non-clinical methods for the diagnosis of
metabolic syndrome?

The specification of a comprehensive taxonomy is a valid indication of the detailed

assessment and quality of extracted data in a systematic literature review (Malhotra, 2015).
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Table 2.4: Description of performance metric measures

Performance Metric Description
ACC The proportion of individuals correctly

classified as having or not having the diseases
over the total number of all the individuals
examined.

SEN The ability to correctly classify individuals
with the disease as having the disease.

SPEC The ability to correctly classify individuals
without the disease as not having the disease.

AUC It is the area under the ROC curve. ROC is
plotted with SEN (true positive rate) on the
Y-axis and 1-SPEC (false positive rate) on the
x-axis.

PPV The probability of individuals predicted as
having the disease that actually have the
disease.

NPV The probability of individuals predicted as
not having the disease that actually do not
have the disease.

Comparative Fitness Index (CFI) An incremental fit index which analyses the
model fit by examining the variance between
the data and the hypothesized model.

In this study, we discuss the state of art by iteratively examining and extracting relevant

information from the primary studies.

Although the 36 studies included in this systematic review have developed diagnosis

models using various types of techniques for the non-clinical diagnosis of MetS , the reason

why these non-clinical methods are required to support the existing clinical dichotomous

diagnosis approach should be visited. The rationale for developing these alternative

non-clinical diagnosis methods need to be identified in order to fully understand and

analyse the current state of art in the area of MetS diagnosis.

The clinical definitions of MetS shown in Table 1.1 are used to diagnose MetS by

dichotomising the measurement values of the five clinically recognised MetS risk factors

(FPG, WC, HDL-C , TG, BP-SBP, DBP). MetS is considered present when the requisite

number of MetS risk factors that exceed certain threshold is met (WHO, 1999; Balkau &
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Charles, 1999; Expert Panel on Detection, 2001; K. G.M.M. Alberti et al., 2006). However,

the MetS risk factors’ measurement values in these definitions are more continuous than

categorical and this results in loss of information on the outcome of the MetS diagnosis

(Kahn, 2007; Ferreira et al., 2007). Therefore, the clinical definition reduces statistical

power (Ragland, 1992; Wijndaele et al., 2006) and patients that have MetS may be excluded.

Furthermore dichotomising the continuous MetS risk scores implies that all the MetS risk

factors contribute equally to the diagnosis (Hillier et al., 2006), however the predictive

ability of someMetS risk factors towards CVD is higher than others (Simmons et al., 2010).

Dichotomising the continuous MetS risk factors based on ad hoc thresholds could lead to

mis-classification of the disorder, thereby reducing both statistical power and correlative

measurement of the MetS risk factors (Ragland, 1992; Wijndaele et al., 2006). Also,

summing up the MetS risk factors into a unitary value assumes that all the risk factors

contribute equally, yet some MetS risk factors are known to have more importance than

others (Simmons et al., 2010). Research has shown that there is a progressive relation

between MetS and CVD which might be unidentified by dichotomising the MetS risk

factors (Kahn, Buse, Ferrannini, & Stern, 2005; Wijndaele et al., 2006). Furthermore, both

CVD and T2DM increase progressively as the number of MetS risk factors that exceed the

threshold increase, thus eliminating to apply the dichotomous definition in the diagnosis of

MetS (Klein, Klein, & Lee, 2002; Kahn et al., 2005; Wijndaele et al., 2006).

From the primary studies included in this systematic review, the earliest solution used

to solve the limitation of the dichotomous clinical definition was the development of

a unitary continuous score (Franks et al., 2004; Hillier et al., 2006) referred to as the

continuous MetS risk (cMetS R) score. The cMetS R score was developed using three

types of statistical techniques, the principal component analysis (PCA), standardised zscore

and the confirmatory factor analysis (CFA). Most of the primary studies that derived a
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cMetRS score using statistical techniques use the score to measure the association between

interventions, and MetS because the use of the dichotomous definition limits association

detection power (Franks et al., 2004; Johnson et al., 2007). Therefore, the cMetS R score

is argued to represent and detect overall changes in the MetS dues its sensitivity to small

changes in the values of the MetS risk factors (Johnson et al., 2007). However the cMetS

R score was limited by its over dependence on the population sample from which it was

built. Subsequently, machine learning techniques were then used in the primary studies

to develop models for the non-clinical diagnosis of MetS . Intermittently, mathematical

quantification techniques were also developed as quick measures of diagnosing MetS .

From this systematic review, we have identified a detailed taxonomy of the techniques

that have been used to develop various non-clinical methods to support the clinical diagnosis

of MetS . This taxonomy and classification is presented in Fig 2.2.

2.5.1 Statistical Techniques

In this section, we discuss the state of art of the 17 studies that used statistical techniques.

These techniques include Confirmatory Factor Analysis (CFA), Principal Component

Analysis (PCA), principal components logistic regression (PCLR), generalized multifactor

dimensionality reduction (GMDR) and Z-score.

2.5.1.1 Principal Component Analysis

Dimension reduction models are approaches for data integration that best explains

the structure of datasets, and the variance both within and between variables (Meng et

al., 2016). Existing data is reduced into new variables known as components. These

components best explain the difference in observations of a dataset. Two dimension

reduction models were identified from the included studies: principal component analysis
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Figure 2.2: Classification and taxonomy of non-clinical methods

and confirmatory factor analysis. From the included studies, 6 studies used PCA, and 5

studies used CFA to calculate continuous MetS risk scores (cMetS R scores). One study

used PCA and logistic reg as PCLR. The continuous MetS risk score is a statistical score
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that was proposed to support the diagnosis of MetS (Eisenmann, 2008) by tackling the

limitations of the dichotomous definition.

PCA is a multivariate statistical technique that reduces the dimensions of observations

in a dataset (Jolliffe & Cadima, 2016). PCA is able to project the observations into a

one-dimensional space that explains the variance-covariance structure of the variables in a

data. The variance of the data is explained by extracting the most important information

(attribute) from the observation. PCA is used to predict cumulative risk scores which

enable the informative description of disease history and the development of appropriate

prevention and management strategies (Vikram et al., 2009).

In the studies included in this review paper, the PCA is applied to analyse the structure

of the MetS risk factors and the variability of their associations with MetS . Because the

first principal component of the PCA is the linear sum of measures with the maximum

possible variance, researchers have used it to identify the cMetS R score (Hillier et al.,

2006) in MetS diagnosis. Using PCA, the continuous MetS risk score (cMetS R score) is

derived as the linear sum of the principal component (PC) that explains the maximum total

variance, which is mostly the first principal component (PC1).

Hillier et al., (Hillier et al., 2006) created a nomogram by combining the sum of six

standardised MetS risk factor values weighted by the cMetSR score. The cMetSR score

is the first principal component defined from the principal component analysis which

explained 50% of the variance among the MetS risk factor values. They concluded that

their PCA derived cMetSR score was able to predict the incidence of diabetes even in

people whose FPG values were below the clinical threshold. Moreover, Wijndaele et. al.

in (Wijndaele et al., 2006) and (Wijndaele et al., 2009) also concluded that their PCA

derived cMetSR score is an effective measure of MetS analysis. Chang et al., (Chang et

al., 2010) developed an easy-single parameter screening index called the first principal
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component score (FPCS) by reducing only obesity (WC and BMI) and age into a single

variable using PCA. This index precludes the need for using all the five MetS risk factors

to test for the risk of MetS in the clinical definition. Even though the FPCS was found to

yield an AUC of 0.864, the computation of this parameter is inefficient for application in

clinical settings. Furthermore, Agarwal and colleagues, (Agarwal et al., 2012) investigated

the use of PCA in deriving a cMetSR score as a summary of the MetS risk factors and its

relation to the incident of T2DM and CVD. The PC1 from their PCA model explained

33% of the total variance of the MetS risk scores. They observed that the binary cMetSR

score was a better predictor of CVD than the dichotomous definition (ATP-NCEP III). The

cMetSR score in (Kang et al., 2012) was calculate by summing up the scores derived by

assigning points to each MetS risk factor based on the size of its regression coefficient from

a Cox proportional hazards model. The cMetSR was found to be useful in the prediction

of CVD using MetS risk factors. However,the cutoff point used is specific to only their

study’s participants. Mochizuki et al., (Mochizuki et al., 2013) perform PCA on five metS

risk factors. They extracted two principal components, PC1 and PC2, explained 336.6 and

21.9% of the variance in the population, respectively. Carroll and colleagues, (S. J. Carroll

et al., 2014) constructed a continuous clinical index of cardiometabolic risk (cCICR) by

first standardising each MetS risk factor using the Z-score to obtain the cCICR-Z. Then,

they applied PCA with orthogonal rotation on the standardised MetS risk factors before

finally taking the weighted sum of the two principal components (PC1 and PC2) to obtain

a cCICR-PCA. This study identified that the total variances explained by their two PCs

was higher in men (61.69%) than women 60.14%. They also demonstrated that both their

cCICR-Z and cCICR-PCA had higher accuracy in predicting the risks of CVD , T2DM

and MetS more adequately the clinical dichotomous method. The cMetSR score was also

computed by Gaio and colleagues, (Gaio et al., 2014) using PCA to identify the genetic
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factors associated with MetS. The first two principal component score, weighted by their

relative contribution in the explained variance was summed up to obtain the cMetSR score.

The score was able to explain the association of over 50% of the genetic phenotype with

MetS and establishing a significant association.

The cMetS R score was computed by Gaio and colleagues, (Gaio et al., 2014) using

PCA to identify the genetic factors relevant to the risk of MetS . The first two principal

component score, weighted by their relative contribution in the explained variance was

summed up to obtain the cMetS R score. The score was able to explain the association of

over 50% of the genetic phenotype with MetS and establishing a significant association.

Wiley and colleagues, (Wiley & Carrington, 2016) developed a MetS severity score (MetS

SS) also using PCA stratified by age, gender, medication and work overtime. PCA was

applied to MetS risk factor values standardised against clinical thresholds. The MetS SS

was able differentiate between adult with and without MetS by correctly identifying 82%

of adults with MetS . However, MetS SS requires further validation in different population

groups. The cMetS R was found to be useful in the prediction of CVD using MetS risk

factors. However,the cutoff point used is specific to only their study’s participants.

In (Ayubi et al., 2015), the PCA on MetS components identified components with

Eigenvalues ≥ 0.9, with 75% and 75% of the variance in males and females, respectively.

Dusseault-Belanger et al., (Dusseault-Belanger et al., 2013) examined the correlation

structure of MetS using principal component analysis. The first dimensionality explained

30% of the variance an was used for as the continuous MetS risk score. The score identified

MetS with a higher predictive value over the clinical definition. Even though the principal

components show associations of MetS with the clinically recognised risk factors, it is still

not clear if it is a measure of progression of MetS and its related diseases (Mochizuki et

al., 2013) Gurka et. al. (NIHMS865762, 2017) developed a sex and race-specific MetS
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severity score (MetSSS) to assist in the prediction of T2DM over a time frame of 7.8 years.

The MetSSS. The study found out that there an association between the increase of MetS

measured by the MetSSS and risk of T2DM if observed progressively over time.

2.5.1.2 Confirmatory Factor Analysis

CFA is a statistical technique that enables the possibility of assessing existing associations

between measured variables by measuring a model’s goodness of fit (Babyak & Green,

2010). The CFA constructs a hypothesized model by linking various risk factors with

hypothesized latent variables (Babyak & Green, 2010). In the included studies, the CFA

was used to develop single factor models using MetS risk factors for the identification and

diagnosis of MetS. CFA was used to establish the relationships between MetS risk factors

and MetS in order to ascertain the validity of a composite MetS risk score construct.

Gómez-Marcos and co-workers, developed four different cardio metabolic risk index

models to diagnose MetS using CFA. All the four models consisted of TG/HDL-C ratio,

HOMA-IR index, MAP and each with a different measure of central obesity - WC,

Waist-to-Height ratio, BMI, adiposity index. The model with waist circumfrerence had

the best metabolic syndrome index with an average value of -0.022 ±1.29 (-3.36 - 4.57)

in men and the model with the body mass index showed the best goodness of fit with a

metabolic index of 0.0001 ± 1.53(-3.17 - 5.55) in women. The risk index was used to find

associations between the MetS and physical activity.

In (Huo et al., 2013) the CFA was used to compare two models of MetS in a chinese

population. Both models consisted of WC, TG/HDL-C ratio, FPG, but with different

measures of blood presssure - mean arterial pressure (MAP) in Model 1 and systolic

blood pressure in Model 2. WC had the highest loading both models. This reiterates

the significance of central obesity in the diagnosis of MetS (K. G. M. M. Alberti et

al., 2006). Model 1 showed the highest good fitness with a comparative fit index of
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more than 0.96 and a standardised root mean square residual of less than 0.8. Smits and

colleagues (Smits et al., 2013), CFA was aplied to link new variables - adipocytokines,

CT-measured intra-abdominal fat (IAF), and insulin sensitivity (SI) as underlying factors

of MetS . The model the one factor model consisting of 6 MetS risk factors - CT-measured

intra-abdominal fat (IAF), insulin sensitivity (SI), systolic blood presure, diastolic blood

pressure, triglycerides and HDL-C had the best CFI of 0.99. However, the use of IAF and

SI makes their model difficult and slow to implement in clinical settings due to the high

costs and increased accessibility time of the these risk factors. In Povel et. al. (Povel et

al., 2012) CFA was used to develop a good MetS model-fit for the prediction of CVD

and T2DM. The CFA model was able to predict T2DM and CVD better than the clinical

definition with an integral discrimination index (IDI) of : 0.34 and 0.07) respectively.

Gomez-Marcos et. al. (Gomez-Marcos et al., 2013) developed a single factor model using

CFA to predict the risk of MetS. Gurka et al. (Gurka et al., 2014), DeBoer and coworkers,

(NIHMS735680, 2015), Gurka and colleagues, (NIHMS865762, 2017), and Musani et al.

(Musani et al., 2017) all used CFA to calculate a MetS severity score. This MetS severity

score is a continuous risk score developed from a one factor CFA model consisting of

the factor loadings of all the five clinically recognised MetS risk factors. In Gurka et al.

(Gurka et al., 2014), the MetS severity score revealed multiple variations in how each MetS

risk factor contributes to the overall MetS score based on racial/ethinic grouping. The CFA

was performed on z-score standardised MetS risk factor values. With an AUC ranging

from 0.77, the cMetSR score was able to predict diabetes in (NIHMS865762, 2017). The

linear associations between the MetS severity score in childhood and adulthood identified

the MetS severity score as a tool for the prediction of CVD (DeBoer, Gurka, Woo, &

Morrison, 2015) and as predictor of T2DM (NIHMS735680, 2015). The cMetS R score

also showed a high genetic correlation with MetS in (Musani et al., 2017). However, the
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diagnosis of MetS using the cMetS R score is heavily dependent on the score cut-off to

either emphasise specificity or sensitivity. Out of the five studies that applied the CFA,

four studies ((Huo et al., 2013), (Povel et al., 2012), (Smits et al., 2013), and (Gurka et al.,

2014)) reported the root mean square error of approximation (RMSEA), the standardised

root mean square residual (SRMR), and the comparative fit index (CFI) as presented in

Table 2.4. (Gomez-Marcos et al., 2013) reported an AUC of 89%. CFI, RMSEA and

SRMR are indices that evaluate the goodness of fit a statistical model. A model is said

to have a good fit if the CFI > 0.96, the RMSEA < 0.050 and the SRMR < 0.080 (Hu &

Bentler, 1999). The CFI reported for the four studies ranged from 0.917 to 0.991. The

SRMR ranged from 0.134 to 0.0212 and the RMSEA was from 0.125 to 0.045. These

results show that all the four studies had good model fits.

2.5.1.3 Z-Score

The Z score is another statistical technique identified from the included studies in this

systematic review. It is used to compute a continuous MetS risk (cMetS R) score which

represents the presence of MetS in a population sample. The Z score is computed by

subtracting the sample mean from each sample value and dividing by the sample standard

deviation. The higher the cMetS R score, the less favourable the MetS profile. In some

studies, each of the risk factors have been regressed on age, race, and gender to account

for age, race and gender-related differences in the risk factors (Eisenmann, 2008). It was

widely used to calculate a cMetSR score in previous studies (Franks et al., 2004; Ferreira et

al., 2007; Eisenmann, Wickel, Welk, & Blair, 2005; Johnson et al., 2007; NIHMS501834,

2011; Potteiger et al., 2012). Franks et al., (Franks et al., 2004), derived a cMetSR score

by summing up Z scores derived from each MetS risk factor in order to identify the

relationship between physical activity and MetS. The cMetSR score confirmed that an

increase in the physical activity of individuals significantly decreased their risk of MetS.
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Similarly, Ferriera et al. (Ferreira et al., 2007) observed the association of arterial stiffness

and MetS using a cMetSR score. The cMetSR score was derived by calculating the Z

scores of each MetS risk factor and taking the average. They concluded that MetS is a

significant predictor of arterial stiffness. Johnson et al. (Johnson et al., 2007), Bateman

and colleagues, (NIHMS501834, 2011) Potteiger et al., (Potteiger et al., 2012) also derived

a cMetSR z-score using the NCEP ATP III thresholds and the standard deviation (SD)

of the data from the entire population sample. The resulting equation is cMetSRz −

score = [(40 − HDL)/SD] + [(TG − 150)/SD] + [( f astingbloodglucose − 100)/SD] +

[(waistcircum f erence − 102)/SD] + [(meanarterialpressure − 100)/SD] for men and

cMetSRz − score = [(50 − HDL)/SD] + [(TG − 150)/SD] + [( f astingbloodglucose −

100)/SD] + [(waistcircum f erence − 88)/SD] + [(meanarterialpressure − 100)/SD]

for women. The cMetSR z-score showed that MetS was significantly lower (p ≤ 0.05)in

participants with higher levels of exercise(Johnson et al., 2007). (Janghorbani & Amini,

2016) and (Jiang et al., 2016) investigated the utility of the cMetS R score computed as the

standardised residuals of each MetS risk factors. The cMetS R score in (Janghorbani &

Amini, 2016) ranged from -8.98 to 17.57 with the upper bound indicating a higher risk of

MetS. (Jiang et al., 2016) showed that the cMetRS score was able to identify higher levels of

MetS in the future based on preserved information from the history of the same participants.

Thus, this suggests that cMetS R score can be applied for progressive monitoring of MetS

over time. In (Drehmer et al., 2016), Drehmer and co-workers calculated a cMetS R score

as the means of Z scores of the continuous MetS risk factors. The cMetS score was used

to identify if any association exists between dairy consumption, and fat intake, and MetS.

2.5.2 Machine Learning Techniques

Fifteen studies used different types of machine learning techniques to diagnose MetS.

In this section, the methods extracted from the primary studies which include DT, DT
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Chi-Squared Automatic Interaction Detection (CHAID) Random Forest (RF), SVM, ANN

and BN will be described.

2.5.2.1 Logistic Regression

Logistic regression is a statistical technique used to build predictionmodels for predicting

values of a dependent variable from independent variables of a set of predictor values. It

is a linear regression variant often applied for prediction problems where the dependent

variable is a. The value for prediction is the probability of an event, ranging from 0 to

1. Logistic regression also estimates risk prevalence ratios of presence of a disease and

differences variable contributions to the prediction model.

In (Hosseini et al., 2014), binary logistic was used to construct and validate a CMetSR

score for the diagnosis of MetS in Iranian Adults. In a bottom - up, CMetSR score

models were built from using two risk factors incrementally util all the fiver risk factors

were included in the prediction model. The CMetSR score that includes all the 4 MetS

risk factors including age and gender showed the highest performance with an AUC of

95.5%. (Obokata et al., 2015), used MLRto calculate a composite risk score for MetS

prediction using data from Japanese employees. The MetS risk score was used to identify

the incidence of MetS in a three year follow up of the population sample. A univariate

logistic regression was carried out to identify variables that would be included derivation

of the composite risk score. In citeTan2016, logistic regression was used to derive a

cMetSR score using data collected from questionnaires. The resulting cMetSR score was

able to predict MetS with an AUC of 94.2%, sensitivity of 90% and specificity of 74%.

(Tsou et al., 2014) applied MLR to identify the relationships between the MetS risk factors

and the risk of having MetS in elderly people. The results show a significant positive

association between all the MetS risk factors and MetS. Thus, measurement of central

obesity and high blood pressure may result in the early prevention of MetS.
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2.5.2.2 Artificial Neural Networks

ANN is an abstract computational structure which models nonlinear problems based

on the human brain. An ANN model consists of nodes called the artificial neuron which

are interconnected in a network of layers. The neuron is a simple structure capable of

receiving multiple input signals via its connections but it can only output one signal. The

typical ANN network constitutes of an input layer, an output layer and sometimes with

several intermediary layers (hidden layers) in-between. The neurons between layers are

linked by weighted connections which pass signals from one neuron to another. Six studies

out of the fourteen primary studies applied ANN in their MetS prediction.

In both studies, the ANN models were trained and evaluated by dividing the dataset

into training and testing sets respectively (Hirose et al., 2011; H. Chen et al., 2014). The

ANN model developed by Chen and colleagues was compared with a statistical technique,

the principal component logistic regression classification model and the ANN model

had a higher AUC value of 90.43% (H. Chen et al., 2014) . The sensitivity of the ANN

model was also higher with 88.49% than the 52.89% of the PCLR. Hirose et al. compared

their ANN model with a multiple logistic regression (MLR) model and the ANN model

outperformed the MLR model with a sensitivity of 93% (Hirose et al., 2011). Overall, we

see than the ANN model of Hirose et al. outperformed that of Chen and colleagues by

4.51%. This could be attributed to the isolation of three important MetS risk factors in

Chen et al. -FPG, HDL-C and TG (H. Chen et al., 2014). This information loss will result

in a model with low sensitivity.

Lin et al. (C. C. Lin et al., 2010), Murguía-Romero and colleagues, (Murguia-Romero,

Jimenez-Flores, Mendez-Cruz, & Villalobos-Molina, 2013) and Ivanovic et al., (Ivanovic

et al., 2016) proposed ANN models trained with the back propagation algorithm to predict

MetS. They explored a 3 layer network consisting of between 1 to 100 neurons in the
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middle layer. The network with the number of neurons with the highest PPV was chosen

as the best model. Lin et al. (C. C. Lin et al., 2010) compared their ANN model with a

multiple logistic regression model and the ANN model had a higher AUC of 93.4% and a

higher PPV of 67.5%. The ANN model proposed by Murguía-Romero and colleagues had

a PPV of 43.4% (Murguia-Romero et al., 2013). The highest PPV in Murguía-Romero

and colleagues was 45.4% in the network with 6 hidden neurons while in Ivanovic et al.,

the highest PPV was 85.79% in the network with 96 hidden neurons. However, in both

(Murguia-Romero et al., 2013) and (Ivanovic et al., 2016), comparison with other models

was not evident in the literature. It suffices to say the model built by Lin et al. (C. C. Lin et

al., 2010) has the highest PPV amongst these three studies because it included all the five

MetS risk factors as input parameters.

.

In a slightly different approach, Ushida et al., (Ushida et al., 2012) applied a fuzzy

neural network (FNN) to detect the significant combination of MetS risk factors that are

most highly associated with MetS. The FNN is a multilayer feed-forward network with

fuzzy logic as the activation function. The structure of a simple FNN consists of input

nodes, membership nodes, rule nodes and output nodes in a four layer network structure.

They were able to identify that the combination of γ-GTP level and the white blood count

was significantly associated with MetS. The comparison of the FNN result with that of

a multiple logistic regression model confirmed the significance of the MetS risk factor

combination obtained from the FNN model. The FNN model outperformed the multiple

linear regression model by 1%. However, the study data in Ushida et al. consists of male

subjects only (Ushida et al., 2012).

(Zhao et al., 2014) and (Ivanovic et al., 2016) developed various ANN network models

trained with the back propagation algorithm to predict MetS. BP enables small repetitive
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consistent adjustments of the weights to reduce overall error in the network. The ANN

model was trained and evaluated by dividing the dataset into training and testing sets

respectively (H. Chen et al., 2014). The ANN model developed by Chen and colleagues

was compared with a statistical technique, the principal component logistic regression

classification model and the ANN model had a higherAUC value of 90.43% (H. Chen et

al., 2014). The SEN of the ANN model was also higher with 88.49% than the 52.89%

of the PCLR. However, three important MetS risk factors - FPG, HDL-C and TG were

isolated from the ANN model in Chen et al. (H. Chen et al., 2014). In (Zhao et al., 2014),

the back propagation ANN model was used to select single nucleotide polymorphisms

(SNPs) that were associated with MetS. Their ANN model when compared with another

model built with MLR showed a higher significance in the prediction of MetS. However,

obtaining SNPs may not be cost and time efficient in clinical settings. (Ivanovic et al.,

2016) explored a 3 layer network consisting of 1 to 100 neurons in the middle layer. The

model with 96 hidden neurons had the highest PPV of 85.79%. However, comparison

with other models was not evident in the literature and the model was built with only two

MetS risk factors - waist-to-hip ratio and blood pressure (Ivanovic et al., 2016). The back

propagation ANN analysis results in black box model which has limited ability in explicitly

identifying possible causal relationship (Tu, 1996).

2.5.2.3 Decision Trees

Three studies investigated the use of decision trees to diagnose MetS and identify

combinations of the MetS risk factors significantly associated with its prediction. DT are

trees that classify data by recursive partitioning into hierarchical or sequential structures

(Murthy, 1998). DTs reduce the volume of data into an accurate informative summary

consisting of the most important characteristics of the data. The DT consist of nodes and

each node represents a decision rule that may split into two or more partition. These rules
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are automatically constructed and can be used for inferential decision making in clinical

diagnosis. Splitting of nodes occurs iteratively until a stopping criterion has been reached

for the terminal node which gives the final predicted response. Despite the ability of DT

models graphically display the tree, this classification algorithm does not support online

learning. This means every time a new input comes in, the model will have to be generated

from scratch, making it computationally expensive.

In (Romero-Saldana et al., 2016), Romero-Saldańa and colleagues used only non-

invasive MetS risk factors - WtHR and blood pressure. WtHR and blood pressure were

identified as the MetS risk factors with the highest association to the risk of MetS in the

decision tree model. They validated the method against the NCEP ATP III MetS definition

and reported an accuracy of 94.2%, a sensitivity and specificity of 91.6% and 95.7%

respectively. However, (Miller et al., 2014) utilised all the five clinically accepted MetS

risk factors used to define MetS . They reported a higher classification accuracy of 92.3%

than Romero-Saldańa and colleagues. This could be attributed to their adoption of more

MetS risk factors (5) which should expectedly yield a better performance decision tree

model.

A Naive tree model for predicting MetS was formed by (Van Schependom et al., 2015) in

psychiatric patients. The naive tree model outperformed ANN, MLR and SVM) models

with an accuracy, sensitivity and specificity of 83.9%, 78.8%, 86.8% respectively. The

naive tree model was based on only simple non-invasive MetS risk factors - obesity and

blood pressure. They conclude that MetS can be diagnosed using less complicated machine

learning techniques with non-invasive risk factors. However, the performance of their

model is highly dependent on schizophrenic patients with decreased central obesity.
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2.5.2.4 Random Forest

Paul et al., (Paul, Ueno, Iwata, Hayashi, & Honda, 2008) proposed the probabilistic

model building genetic algorithm (PMBGA) together with k-nearest neighbour (kNN)

and DT(C4.5) to identify the health risk and two risk factors of MetS: blood pressure and

triglyceride. The PMBGA plus C4.5 hybrid model outperformed the baseline method with

an AUC of 70%. Three studies, Szabo de Edelenyi et al., (de Edelenyi et al., 2008), Lin et.

al. (Z. Lin et al., 2014) and Worachartcheewan et. al. (Worachartcheewan et al., 2015)

applied the RF tree algorithm to predict the presence of MetS, determine its prevalence

and find significant risk factors related with the presence of MetS. RF is an ensemble

method which combines several individual decision trees for classification and prediction

(Breiman, 2001). The DT are trained by generating several bootstrap samples from the

training dataset Then each bootstrap sample is fit with an un-pruned DT. RF generalises by

using the bagging strategy to build each decision tree independently, thereby decreasing

variance (Strobl, Boulesteix, Zeileis, & Hothorn, 2007). The ensemble of individual trees

makes adjustment for the instability of individual trees thereby increasing the efficiency of

the RF method. Nevertheless, model interpretation from the RF trees is more complex

than from individual decision trees because the influence of the risk factors do not directly

correspond to the risk factor’s position in the tree. The Gini index identified TG as the

most important risk factor in the model. The model with 20 trees resulted in an accuracy,

sensitivity, and specificity of 98.12%, 94.80%, and 99.15% respectively on an external

dataset.

In the case of (Z. Lin et al., 2014), they investigate the metabolic profiling changes

using serum samples in MetS. First the MetS serum sample was analysed using Gas

chromatography–mass spectrometry (GC-MS). Then RF models were created using

metabolites from the metabolic profiling. Each MetS risk factor’s level of contribution
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to the RF model was calculated. A proximity matrix which identifies the structure in the

data was used to construct multi-dimensional scaling (MDS) plots. Similar samples have

high proximity. The accuracy for the RF model in (Z. Lin et al., 2014) was 86.5% while

the sensitivity and specificity were 89.86% and 84.04% respectively showing significant

discrimination between individuals with MetS and healthy controls. In Worachartcheewan

et. al. (Worachartcheewan et al., 2015) data was divided into 2 subsets using PCA. The

first subset is an internal dataset used for training the RF model by applying the 10-fold

cross validation procedure. The second subset is an external dataset for evaluation of the

RF model and FPG, WC, and BMI were the MetS risk factors with the highest association

to MetS according to the RF model. The importance of each MRF was evaluated using the

Gini index. The accuracy, sensitivity and specificity of their RF are 98.02%, 94.81% and

99.07% respectively.

2.5.2.5 Decision Trees with CHAID

Two studies Miller et al., (Miller et al., 2014), (Romero-Saldana et al., 2016) proposed

the use of decision trees with CHAID methodology for the early detection of MetS .

The chi-squared automatic interaction detection method is an algorithm used for finding

patterns in datasets by merging, splitting and finally applying a user-specified stopping

criteria(Kass, 1980). It is based on a stepwise regression for split selection procedure

based on a chi-square test statistic like a sequential cross-tabulation (Loh, 2014). In clinical

analysis, it classifies what risk factors are associated with the clinical outcome. The

algorithm specifies the combination of risk factors that best predict the binary outcome of

a disease. Search takes place sub-optimally to reduce computational time.
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2.5.2.6 Support Vector Machines

(Karimi-Alavijeh et al., 2016) explored the use of both SVM and DT to predict the risk

of MetS. SVM is a linear classifier that creates an optimal hyperplane which separates

samples of two classes using least square regression (Vapnik, 2013; Cortes & Vapnik,

1995). It can work with mixture of both numerical and categorical data. Even though it is

has accurate predictability, it is a black box technique that disallows interpretation of the

classification model. The SVM model proves to outperform the DT model with accuracy,

sensitivity and specificity of 75.7%, 77.4% and 74.0% respectively.

2.5.2.7 Bayesian Network, Markov Model and Naive Bayes

BN is a probabilistic modelling algorithm based on Bayes’ Theorem which defines the

probability of an event given the occurrence of another related event. It categorises data

by monitoring the probabilities that specific features are related to specific classifications.

The BN leverages on its ability to analyse results into meaningful information given an

existing knowledge domain. It has the ability to handle uncertainty in complex problems.

(Miyauchi & Nishimura, 2018) applied BN modelling to connect information from specific

health check-up data from Japan. Information from the BN was used to provide lifestyle

advice to patients identified as being at risk of MetS. The BNmodel was confirmed as being

a useful support tool in specific checkup and guidance system. It empowers individuals to

find problems in their lifestyle and appropriate medical and health solutions easily. Jia

et. al. (Jia et al., 2018) developed a 12-state Markov model to predict the risk of MetS

in a Chinese population. Their findings identified that the risk of MetS starts with the

states of overweight/obesity, hypertension or hyperglycemia, and is followed by the state

of dyslipidemia as MetRFs . J48 decision tree and Naïve Bayes methods were used to

developed MetS models for the long term prediction of T2DM in Perveen et. al. (Perveen
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et al., 2019). The models were developed using various sampling methods used to balance

the training datasets. Random under-sampling, random over-sampling, and K-Medoids

under-sampling were applied in then study. Both machine learning models were able to

predict future T2DM in patients. However, the Naive Bayes model outperformed the J48

model with higher AUC of 86% in the prediction of diabetes using the MetSR factors.

2.5.3 Risk Quantification Models

The ASD was a mathematical technique proposed by (Jeong et al., 2014) for MetS risk

quantification. The ASD is a similarity analysis between the MetS risk factor thresholds

and MetS risk factor sample measurements in a weighted radar chart. The outcome

of the similarity analysis is value which determines the presence or absence of MetS

based on a defined cut-off value. Although the proposed model was able to diagnose

MetS in individuals with borderline measurement presentations, it is sensitive to the

frequency of the population sample and the positioning of the MetS risk factors on

the weighted radar chart. (Soldatovic et al., 2016) developed and evaluated the siMS

score, continuous MetS score: siMSscore = 2 ∗Waist/Height + Gly/5.6 + Tg/1.7 +

T Asystolic/130−HDL/1.02 or 1.28 (for male or female subjects respectively). There was

a high correlation between the siMS score and the cMetSR scores derive from both

Z-score and PCA. The siMS also outperformed the cMetSR scores with an AUC of 92.6%.

(Yousefzadeh et al., 2015) and (Kang et al., 2012) investigated the use Framingham risk

score (FRS) for the prediction of MetS. TheFRS is clinical tool used to asses the risk level

of coronary artery disease and identifying the chance of developing any CVD in long-term

(P. W. Wilson et al., 1998; S. M. Liew et al., 2011; Sullivan, Massaro, & D’Agostino Sr,

2004). There was a significant association between the FRS and the presence of MetS in

predicting the risk of CVD in both men and women, 39.5% and 18% respectively. The

odd ratio of risk of MetS was 6.7 in the high-risk FRS group (P < 0.001).
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In 2018,

2.6 Discussion and Future Guidelines

The cMetSR score, developed using Z score, PCA and CFA, is a unitary score that has

been determined to have a higher MetS risk diagnosis result than the clinical dichotomous

definition (Olza et al., 2015). A high score indicates a high MetS risk while a lower

score is an indication of a less alarming risk of MetS. It is also capable of predicting the

incidence of T2DM (Janghorbani & Amini, 2016; Magnussen et al., 2016; S. J. Carroll et

al., 2014) and CVD (Hillier et al., 2006) compared with the clinical dichotomous definition.

Currently, the cMetSR score was frequently used to determine the association between

MetS and other emerging risk factors. However, despite its ability to maximise statistical

power (Ragland, 1992) on the cut-off point of the MetS risk factors by reducing loss of

information, the cMetSR score is limited in its diagnostic capacity because all MetS risk

factor measurements are assumed to have an equal contribution into the diagnosis of MetS

(Thivel et al., 2009). Furthermore, the cMetSR score is constrained in its application

because it is a sample - specific statistical measure. This indicates that the individual

score of a single patient cannot be the same in two different studies. There is also no

provision to compare mean scores derived from two different studies due to differences

in demographics distributions, measures of central tendency and variabilities related to

the sample data. Out of the 17 studies that used statistical techniques, only (Wiley &

Carrington, 2016) reported the accuracy of their model. Five other studies, (S. J. Carroll

et al., 2014), (Janghorbani & Amini, 2016), (NIHMS865762, 2017), (NIHMS735680,

2015), and (Gomez-Marcos et al., 2013) reported the AUC’s of their models. The four

studies, Huo et al. (Huo et al., 2013), (Povel et al., 2012), (Smits et al., 2013), (Gurka et al.,

2014) that used the CFA reported the goodness of fit of their models. Only three studies

(Wiley & Carrington, 2016), (Janghorbani & Amini, 2016), and (NIHMS865762, 2017)
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reported both the sensitivity and specificity of their statistical models. However, there

was no evidence of performance evaluation comparison with other statistical methods in

these studies. The predictive performance of the cMetSR score against other non-clinical

methods is required in order to ascertain its efficiency. More research is therefore required

to evaluate the cMetSR score against other types of MetS indexes.

The fourteen studies that used machine learning techniques evaluated their methods

using the performance metrics defined in Table 2.4. Only 10 studies ((Worachartcheewan

et al., 2013), (Zhao et al., 2014), (Van Schependom et al., 2015), (Karimi-Alavijeh et al.,

2016), (Tan et al., 2016), (Z. Lin et al., 2014), (Worachartcheewan et al., 2015), (Miller et

al., 2014), (Steinberg et al., 2014), (Romero-Saldana et al., 2016)) reported the accuracy

of their models. The average accuracy performance of each technique that was used in

the included studies is presented in Fig 2.3. The other four studies (H. Chen et al., 2014),

(Ivanovic et al., 2016), (Hosseini et al., 2014) and (Obokata et al., 2015) reported the

AUC of their models. It is clear from the graph that RF and DT were reported as the

most frequently accurate techniques and the least accurate is the GDMR. This is closely

followed by the accuracies of the ANN, the MLR and the REF techniques.

Figure 2.3: Overall average accuracy graph for each technique.
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Most of the studies that applied statistical techniques used the PCA to develop the

cMetS score. The PCA computes cMetS score using the principal component that explains

the largest variance while maintaining the structure of the data. However, the Zcore is only

a normalisation technique and data preservation less evident than in the PCA The most

frequently used machine learning techniques are ANN, BN, and variants of DTs. The use

of ANN could be ascribed to its efficiency in solving non-linear complex problems by

being able to model any functional relationships and data structure. However, the back

propagation algorithm which is used to train the neural network, is a gradient descent

technique that is characterised by getting stuck in local minima and slow convergence,

limiting its application to real life domains such as the prediction of MetS (Zweiri,

Whidborne, & Seneviratne, 2003). Also the BPNN depends heavily on its learning

parameter settings. The use of BNs for prediction and classification problems has been

successfully applied in the medical domain (Park & Cho, 2012). This could be due

to its ability to handle uncertainty and integrate previous knowledge to support causal

relationships. Nevertheless, performing inference creates an expensive computational

burden due to the inversion of finite elements. Additionally, DTs are favoured owing to

their ability to generate interpretable results.

Significant conclusions can therefore be drawn from the performance measures applied

to evaluate the prediction models. Consequently, the goal of machine learning models

for predicting MetS should be to have a high predictive performance and generalisation

capability that enables the diagnosis of the maximum number of individuals that have or

are at risk of MetS. Out of the 4 techniques mentioned, ANN, DT, SVM, and MLR the

machine models developed with ANN, DT, SVM can be said to consistently perform better

than the MLR. However, a clear winner is difficult to ascertain as the techniques show

varying performances with regards to their accuracy, sensitivity and specificity in different
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studies. This variance could be attributed to the difference in size and dimension of the

datasets. With regards to the RF, conclusions cannot be made until further studies have

been conducted which compares it with other relevant machine learning techniques.

Accordingly, more number of studies which perform comparative evaluation between

various machine learning techniques are required in order to ascertain more generalisable

models that can quickly and accurately diagnose MetS . Oversampling methods such as

SMOTE (Chawla, Bowyer, Hall, & Kegelmeyer, 2002) to balance the training dataset and

also to remove noise from the whole dataset (He & Garcia, 2009) should be applied in

preprocessing stages of MetS diagnosis. In addition, datasets should be cleaned using

data cleaning methods such as Tomeks links (Tomek, 1976) and Wilson’s Edited Nearest

Neighbour Rule (D. L. Wilson, 1972), to remove any overlapping that may occur with the

application of oversampling methods(He & Garcia, 2009). It is therefore essential to have

a combination of at least the five clinical MetS risk factors (FPG, WC, TG, HDL-C , BP) as

input features into a MetS prediction model (Murguia-Romero et al., 2013; Hosseini et al.,

2014). Development of algorithms that consider the different weights and contributions of

the MetS risk factors will contribute towards more accurate diagnosis of MetS in adults,

adolescents and the paediatric population (Thivel et al., 2009). Furthermore, more research

using different population samples is required for better generalizability of non-clinical

methods.

The techniques applied to develop the machine learning models in this systematic review

assume an outcome of either being at risk or not at risk of Metabolic syndrome. This binary

prediction only agrees with a correct or incorrect outcome. However, for the prediction of

the risk of MetS, it is recommended that machine learning algorithms that also predict the

probabilities of the binary outcome should be used in determining the impact of the risk

of MetS in the diagnosis. This probability will aid clinicians and individuals on the best
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management guidelines to follow for prevention and treatment procedures.

Furthermore, the generalisation of a machine learning model can also be determined

based on the number of algorithms used for its comparative evaluation. For the studies

in this systematic review that have conducted comparative model evaluation, it can be

argued that the number of machine learning algorithms used for evaluation are inadequate

for determining the efficiency of the proposed models. From the primary studies in this

category, only five studies ((Van Schependom et al., 2015), (Karimi-Alavijeh et al., 2016),

(Miller et al., 2014)) compared their proposed models with other existing machine learning

techniques. Even in these studies the number of comparable models for evaluation is less

than sufficient to determine the efficiency of a proposed model. However in majority of the

studies, appropriate procedures for evaluation, such as splitting the dataset into training,

testing, and validation sets or the use of cross-validation was applied. Therefore, for

proposed machine learning models which predict MetS, more number of existing machine

learning models should be used for comparative evaluation and predictive generalisation.

In the case of the risk quantification techniques, no performance metrics were reported

in any of the studies. Therefore, risk quantification techniques will need to be evaluated on

other population samples due to their high dependency on the examination results of the

population sample. Furthermore, the performance of these methods is required in order to

ascertain how well they can generalised in quantifying the risk of metabolic syndrome.

Majority of the primary studies are cross-sectional, making it difficult to identify the

impact of the different MetS risk factors on the disease outcome. More longitudinal studies

could be carried out to investigate how these factors interact with each other (Vikram et al.,

2009). This information may be useful in ascertaining the individual effects of each risk

factor in developing future algorithms. Finally, the growth in the non-clinical approaches

is encouraging with studies showing promising results. However, there is a need for further
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studies as follows:

1. Research that performcomparative performance evaluation using statistical techniques

with various population samples should be carried out, so as to obtain generalisable

statistical models.

2. Due to imbalance in MetS datasets, preprocessing techniques such as SMOTE

should be applied before deriving prediction models.

3. Studies using machine learning techniques should perform comparative evaluation

between new models derived and other relevant machine learning techniques in

order to ascertain the efficiency of the non-clinical models.

4. Inference basedmachine learning techniques should be applied to derive non-clinical

models due to their ability to present probabilistic values for MetS prediction.

5. Studies that evaluate mathematical quantification techniques using performance

metrics should be conducted.

2.7 Limitations

Our analysis was limited to only studies published in the searched databases and written

in English language. Secondly, due to the diverse algorithmic structures of the identified

methods (Fig 2.2), a direct comparison between all the studies could not be carried out. For

example, while machine learning algorithms have the ability to learn patterns from data,

mathematical quantification techniques cannot learn. Thirdly, data extraction bias might

have occurred because data was extracted by only one reviewer. Potentially, systematic

reviews are also prone to selection bias. However, two of the reviewers independently

selected the studies thereby minimising the risk of this bias. Other limitations beyond our

control such as publication bias could also be present. Often, most studies published in

peer reviewed journal tend to have positive results. .
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2.8 Conclusions

Our review shows that the threemain types of non-clinical methods used for the diagnosis

of MetS are statistical, machine learning, and mathematical quantification techniques.

The statistical techniques include principal component analysis, confirmatory factor

analysis, and standardised Z score. As the cMetSR score was mostly derived for the

purpose of finding associations between MetS and its related diseases (CVDs and T2DM)

and other risk factors, its effectiveness for use as a tool for the diagnosis of MetS in clinical

setting has not been evaluated. Therefore more studies are required to evaluate the use of

cMetSR score for clinical use.

The machine learning techniques used include artificial neural networks, decision trees,

random forests, support vector machines, multiple logistic regression, reverse engineering

and forward simulation, and Bayesian networks. The artificial neural network was the

most frequently used machine learning technique, nonetheless, highlighted proof based

on performance measures shows that the random forest technique is more applicable in

the development of non-clinical methods for the diagnosis of MetS. However, the random

forest model tends to create large trees which makes it inefficient for quick and easy clinical

application. Therefore, more alternative non-clinical methods using machine learning

techniques should be explored to develop applications that are readily and easily available

to support the clinical diagnosis of MetS in practical clinical settings.

Three mathematical quantification techniques, areal similarity degree, simScore and

Framingham risk score, were also used to develop the non-clinical methods. All the

models are risk quantification models which are heavily reliant on the examination results

of sample participants.

This study has several implications in personalised and public health management. It

provides an opportunity for researchers and health care practitioners to gain an insight
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into the current trends and development of existing machine learning, statistical and risk

quantification methods used for the diagnosis of metabolic syndrome. Indexes derived from

these non-clinical methods could be used as tools which serve as quick and early preventive

indicators to guide the treatment and monitoring of ongoing management of MetS and

its associated diseases such as T2DM and CVD . This study sought to equip researchers

and clinicians with a comprehensive analysis on the different existing classifications and

application of efficient algorithms for the early diagnosis, management, and prevention of

MetS and its associated diseases in health care management systems. The future guidelines

of this study will guide researchers in the process of developing and advanced.
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CHAPTER 3: THEORETICAL FRAMEWORK OF THE RESEARCH

3.1 Introduction

One of the major goals of Artificial Intelligence (AI) is to design intelligent machines

that simulate expert reasoning. These intelligent machines are driven by AI and Machine

Learning (ML) algorithms to predict in various extents, events such as the trajectories of

the planets and solar system, the weather patterns, the causes and trends of diseases, the fast

commute route to and from a destination, the rise and fall of financial stock markets and

economic growth, the spam filtering from personal emails, the grades and performances in

academic institutions and a myriad of other cultural, natural, and social phenomena. AI is

the broader term used to describe the process of building autonomous intelligent machines

that are capable of skilled performances in a complex environment while machine learning

refers to intelligent AI techniques developed for building computing systems that can

learn and adapt from past experiences (Dietterich, 1999). Some of these machine learning

techniques have been developed based on the idea of mimicking the capabilities of the

human brain. These biological and computational ML techniques such as the ANN and

genetic optimisations like GA were investigated aggressively by the research community

in the 1980’s (Mitchell, 1998).

The basic theories, structures, and processes of the ART and ARTMAP architectures,

and the genetic algorithm is briefly described in this chapter.

3.2 Adaptive Resonance Theory (ART)

The stability-plasticity dilemma is a prominent problem for both biological and ANN.

The principal concept is that intelligent systems once trained on a specific set of inputs

is incapable of learning anything new from the environment. However, these systems

require plasticity for the learning of new knowledge and also stability so as to restrain the
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loss of previous knowledge. Excess plasticity will lead to past learnt knowledge being

consistently disregarded, while excess stability will also inhibit the effective learning

of the knowledge in ANN. Plasticity is a common problem that is inherent in neural

networks where the learned network completely forgets any previous knowledge acquired

when presented with new information to learn from (McCloskey & Cohen, 1989; Ratcliff,

1990). It is a common problem that occurs in various types of ANNs from standard feed

forward back-propagation ANN to unsupervised neural networks such as self-organising

maps (Richardson & Thomas, 2008). The feedforward back-propagation neural networks

are highly sensitive to catastrophic forgetting due to their extremely distributed internal

structure (French, 1992). However, a theory designed to enable an intelligent system

to stay plastic by learning important events, and yet also remaining stable in reaction to

insignificant occurrences is the ART (Grossberg, 1976b, 1976a). The concept is designed

to adapt intelligent systems to new and dynamic environment that may be unpredictable

without consequently forgetting existing knowledge. ART is based on how the brain learns,

recognises, categorises, and predicts objects in the changing environment. In ART , top-

down learned knowledge direct attention on bottom-up information, such that past learned

experiences are protected from being removed by new learned experiences (Carpenter

& Grossberg, 1988). Thus, enabling newly acquired information to be automatically

integrated into the overall knowledge base of the ART system in a universally consistent

method.

3.2.1 ART Architecture

The ART architecture has been developed as a physical theory which predicts data

about cognitive information (Grossberg, 1982, 1987c, 1987a, 1987b). The adaptive pattern

recognition model in ART is based on the competitive learning model (Carpenter &

Grossberg, 1988). The progression of the ART characteristic neural architectures capable
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of learning, pattern recognition and hypothesis testing were developed from ART1, ART2,

and ART3 (Grossberg, 1982, 1987c, 1987a; Carpenter & Grossberg, 1988; Carpenter,

Grossberg, & Reynolds, 1991). The ART architecture is a neural network that has self-

organised stable perception capability in real-time when required to train random input data

sequences. In such ART architecture, the system of adaptive pattern recognition enables a

cognitive process of knowledge discovery, testing, searching, learning and classification.

The basic structure of the ART1 architecture is presented in Fig 3.1.

Figure 3.1: Adaptive resonance theory (ART) architecture

The ART1 network recieves a vectorised input and categorises it into one of the

categories of the existing patterns it resembles the most. The ART network is made up of

two units - computational and recognition units.

1. The computational unit: This unit further consists of two more sub-units, the input

and cluster layers.

a) Input layer: This layer is referred to as the F1 layer. It consists of the input

field, F1(a) sub layer and the comparison field, F1(b) sub layer.

i. F1(a) sub layer: The F1(a) sub layer receives an input vector only. No

computation process is carried out here. It sends the input it receives to

the F1(b) sub layer which compares the input pattern and expectations.
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ii. F1(b)sub layer: The F1(b) sub layer is referred to as the comparison field

which compares the input pattern and expectations. It connects to the F2

sub layer through bottom-up weights and the F2 sub layer is connected to

the F1(b) sub layer via top-down weights.

b) Cluster Unit (F2 layer): Competition relating which category a new input

should be mapped into is carried out in this layer. Category mapping is carried

out in a winner-take-all competition strategy. The cluster with the largest

number of input wins in this competition and is triggered to learn the new input

pattern. All the other non-winning activated clusters are then set back to 0.

c) Reset Mechanism: The reset mechanism is triggered when there is a mismatch

between an expectation and an input pattern in layer 1. The level similarity

between the top-down weight and the input vector determines whether or not a

cluster is triggered to learn. If this similarity is less than the vigilanc parmeter,

ρ, then the cluster is disallowed from learning the new pattern and a rest occurs.

2. The Supplement unit: Depending on the situation, the F2 layer can either be

inhibited from categorisation or be made available for categorisation when learning

occurs. Therefore two supplemental units, G1 and G2 are have been added together

with the reset unit R. These units are referred to as the gain control units. They

recieve and send signals to the other layers in the network.

ART 1 is the basic ART network which only accepts binary inputs. ART2 differs with

ART1 in that it accepts continuous inputs, while ART3 is a variant of both ART1 and

ART2 architectures.
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3.2.2 Predictive ART (ARTMAP)

The competency of ART to solve the stability-plasticity dilemma, i.e. the ability

to learn new input patterns while remaining stable to insignificant patterns, prompted

for its supervised learning adaptation called the ARTMAP (Carpenter, Grossberg, &

Reynolds, 1991). ARTMAP architecture is a predictive ART architecture that integrates

ART modules into its system to enable predictive learning. It consists of two unsupervised

ART1 networks, linked by an associative learning network and an internal controller that

can carry out fast and stable incremental learning as a supervised learning system. Given

an n - dimensional input vector a, ARTMAP predicts an m - dimensional output vector b.

This transformation from vectors in<n into vectors in<m defines a map which is learned

from the correlated pairs an, bn of sequential input vectors, n = 1,2, ... (Carpenter, 1989).

Fig. 3.2 illustrates the ARTMAP architecture.

Figure 3.2: ARTMAParchitecture adopted from (Carpenter, Grossberg&Reynolds,
1991).

Each ARTMAP network consists of a pair of unsupervised ART modules, ARTa and

ARTb that respond to arbitrary sequences of input patterns by creating stable recognition
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categories. In a supervised learning process, ARTa receives a sequence an of input patterns

and ARTb receives a sequence of bn target patterns, where bn is the target prediction given

the input pattern an. ARTa and ARTb are linked by an associative learning network and an

internal controller in a map field Fab. The controller is designed to ensure ARTMAP’s

autonomous operation in real time by creating the least number of ARTa recognition

clusters needed to match the criteria in ARTb. Complement coding is a preprocessing

method which transforms the Na-vector a into the 2Ma-vector, A = a,ac in the ARTa

network, where A is the input vector ARTa field Fa
0 . Likewise, the 2Mb-vector, B = b, bc

is the input sequence into the ARTb network.

When ARTb fails to make a prediction of a training input sequence from ARTa, the

network, in the map field, creates connections between categories through learning and

a match field inhibition is triggered which causes the ARTMAP match tracking rule.

Match tracking raises the ARTa vigilance parameter ρa when predictive error at ARTb

occurs (Carpenter, Grossberg, Markuzon, Reynolds, & Rosen, 1992)· ARTMAP minimises

predictive error and maximises predictive generalisation by making a match between a

winning category and a new input pattern using repetitive trials. The systems operates by

raising the vigilance parameter ρa of ARTa with the least value required make the Fa
1 to

Fa
0 match ratio |xa |/|A|. This causes an ARTa search which generates an ARTa category

that makes a correct prediction b or leads to a previously uncommitted category node in

ARTa (Carpenter, Grossberg, & Reynolds, 1991).

The FAM (Carpenter et al., 1992) which is a combination of Fuzzy logic (Zadeh, 1965)

and ART networks replaces the Fuzzy ART (FA) (Carpenter, Grossberg, & Rosen, 1991) for

ART1. FAM is a generalised version of ARTMAP for classifying analogue as well as binary

patterns. Fuzzy logic computations are incorporated into the ARTMAP systems. However,

FAM is sensitive to statistical overlapping between clusters (Koufakou, Georgiopoulos,
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Figure 3.3: Fuzzy-ARTMAP architecture adapted fromCarpenter et al., (Carpenter
et al., 1992)

Anagnostopoulos, & Kasparis, 2001; Marriott & Harrison, 1995). This problem results in

the creation of large number of pattern recognition clusters with overlapping allocation

of nodes referred to as category proliferation. Category proliferation creates an output

neural network architecture consisting of a redundant number of clusters which incurs a

high computational and memory allocation cost with reduction in classifier performance.

The ART-EMAP network (Carpenter & Ross, 1995) is a representation to improve the

performance of the FAM. It is a combination of ART and spatial and temporal evidence

for dynamic predictive mapping (EMAP). ARTMAP-IC (Carpenter & Grossberg, 1988)

extends the distribution sequence with a sample counting procedure and a different match

tracking algorithm that invariably enhances both predictive accuracy and code reduction

than the classic ARTMAP and ART-EMAP networks. Gaussian ARTMAP (Williamson,

1996; Carpenter & Markuzon, 1998), PROBART (Marriott & Harrison, 1995), and

ARTMAP-IC (Carpenter & Markuzon, 1998) are examples of FAM variants that have

been proposed as a solution to category proliferation problem.
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3.2.3 Bayesian ART

Progressively, a more successful approach to the problem associated with FA was

proposed as the Bayesian ART (BA) and BAM (Vigdor & Lerner, 2007). BA and BAM

architecture is an integration of the Bayes’ theorem into the ART and ARTMAP neural

network architecture. The BA makes changes in several characteristics of the FAM

algorithm such as:

1. changing the hyper-rectangular categorisation with to a Gaussian categorisation;

2. restricting themass of a chosen category, thereby enabling the growing and shrinking

of categories;

3. relating patterns with clusters and clusters with probability classes to ensure ART

and ARTMAP learning respectively; and

4. permitting class probability inference using all the related categories.

The BAM also computes class posterior probabilities and category, thereby ensuring

the insertion of various deficits into the classification task. In BA network, clusters are

represented by multidimensional Gaussian distributions with each cluster parametrised

by its mean, prior probability, and co-variance matrix. These three parameters give

a richer description about the Gaussian hyper-volume category as opposed to the FA

hyper-rectangular category’s weight vector. Therefore, instead of the FA’s category shallow

representation using a weight vector that is characterised by values of the hyper-rectangle’s

two corner ends, the Gaussian hypervolume category is distinctively characterised by its

column, structure of distribution and its superiority in comparison with other equivalent

categories in the same field. For instance, the FA category is most likely to have the same

weights independent of the number of samples (3 patterns or 3000 patterns) it clusters,

while in the case of the BA, the prior probabilities of a category will depend on the number

of samples it clusters. Additionally, the data dispersion in FA is not specified while the
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Table 3.1: Symbol notation of BAM

Symbol Description
x input vector for training sample
j index of cluster
D number of feature in each sample
ω j number of clusters
P(ω j) assumed prior probability of the j-th cluster
P

(
ω j |x

)
posterior probability of category ω j given x

NC number of clusters
p(x |ω j) conditional probability density of x given cluster ω j
µ j D-dimensional mean vector
Σ j D × D co-variance matrix of j-th cluster
G winning cluster
VG volume of the winning Gaussian hypersphere G
Vmax maximum volume of a hypersphere
ΣG product of each dimensions’ variances
Pmin posterior probability threshold
P(yi |G) winning class category
NG number of samples that are categorised by the G-th cluster

data dispersion for the BA is specified using a Gaussian function in the form of the data

co-variance matrix. Furthermore, complement coding is which needed in the FA input is

not required in the BA. Generation of the BAM structure consists of the following three

procedures (i) cluster choice, (ii) cluster match, and (iii) cluster learning. The symbol

notations of BAM are presented in Table 3.1.

3.2.3.1 Cluster Selection

All current clusters are eligible to be selected during training phase. The j-th cluster

of each D-dimensional sample x is represented by a posterior probability of category ω j

given x defined as follows:

P
(
ω j |x

)
=

p
(
x |ω j

)
P(ω j)∑NC

n=1 p(x |ωn)P(ωn)
, (3.1)
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where x is the sample input, ω j represents the number of cluster count, P(ω j) is the

assumed prior probability of the j-th cluster n j , defined as

P(ω j) =
n j∑NC

j=1 n j
(3.2)

where NC is the number of clusters. p(x |ω j) represents the conditional probability density

of x given cluster ω j defined as

p(x |ω j) =
1

(2π)D2 |Σ j |
1
2

exp
[
−

1
2

(
x − µ j

)T
Σ
−1
j

(
x − µ̂ j

) ]
, (3.3)

where µ j and Σ j are the D-dimensional mean vector and D × D co-variance matrix of j-th

cluster, respectively.

The cluster with the highest posterior probability is selected as the winning cluster G,

computed as

G = arg max
j∈N

(
P

(
ω j |x

) )
. (3.4)

The efficiency of the BA is enforced by selection of a winning, G cluster– ω j that either

has the largest value of the prior probability p(ω j) or the cluster with the closest distance to

the current sample input or both. The addition of the Bayes’ theorem as another condition

for selection also enables the accurate selection of a winning cluster.

3.2.3.2 Cluster Match (Vigilance Test)

The vigilance test is carried out to constrain the size of the winning cluster, G. The test

ensures that the volume, VG of the winning Gaussian hypersphere G does not exceed the

the maximum volume of a hypersphere, Vmax set for a winning cluster as follows:

VG ≤ Vmax. (3.5)
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where VG is the determinant of the Gaussian covariance matrix, ΣG computed as the

product of each dimensions’ variances, σ as follows:

VG , det (ΣG) =

d∏
i=1

σ2
Gd
, (3.6)

If the vigilance test (3.5) is passed by the winning cluster, then match tracking criterion

will be checked. However, if G fails the vigilance test, then it is removed from the current

competition by setting its posterior probability with (3.1) to zero, and the search continues

until a winning cluster that passes test is selected. If no cluster from the existing clusters

passes the vigilance test then a new cluster is created with a hypervolume that meets (3.5).

3.2.3.3 Match Tracking

In the map field of the BAM network, the class posterior probability is used to update

the winning class category P(yi |G). A class posterior probability threshold, Pmin, is set as

follows

P(yi |G) ≤ Pmin (3.7)

such that if it is less than the class posterior probability, then the i-th class will be associated

with the winning G category; P(yi |G) is derived from the BAM matrix K = [Ni j]Y×NC ,

where Y is the number of classes, NC is the number of clusters, and the i jth input into the

BAM matrix K , Ni j , is the number of training input samples that are associated to he jth

cluster and belonging to the ith class of the Y classes. P(yi |G) is calculated as

P(yi |G) =
Ni j∑Y

i=1
∑NC

j=1 Ni j
, (3.8)
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where i = 1, . . . ,Y , and G = 1, . . . ,NC . The full derivation of (3.8) using Bayes’ theorem

can be found in (Vigdor & Lerner, 2007).

Match tracking will occur if P(yi |G) satisfies (3.7) and the winning cluster G will be

associated with the class Yi. However, if the match tracking criterion is not met, then

matching tracking is triggered by decreasing the maximum hypervolume, Vmax, by a small

value δ as follows

Vmax,new = VG − δ, 0 < δ � VG . (3.9)

Vmax,new should be small enough to remove the current winning category VG from the

competition and initiate a search for a new winning cluster. The new winning cluster must

have a new hypervolume that is less than Vmax as in the vigilance test (3.5). This search

iterates until the new winning category is found.

3.2.3.4 Cluster Learning

If the selected categoryG meets the vigilance test (3.5) andmatch tracking criterion (3.7)

requirements, then the category parameters, mean vector µG and covariance matrix ΣG,

will be updated as follows:

µ̂Gnew =
NG

NG + 1
µ̂Gold +

1
NG + 1

x, (3.10)

Σ̂Gnew =
NG

NG + 1
Σ̂Gold +

I
NG + 1

(
x − µ̂Gnew

) (
x− µGnew

)T
, (3.11)

where Nnew
G = Nold

G + 1. NG is the number of samples that are categorised by the G-th

cluster and I is an identity matrix. Then the process will go back to cluster selection

step 3.2.3.1 to learn the next input sample.
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3.2.3.5 Cluster Creation

A new cluster is created using

NCnew = NCold + 1, nNC = 1, µ̂NC = x,

Σ̂NC = η(Vmax)
1/DI (3.12)

such that the parameters of the cluster (3.10), the mean of the cluster µ̂NC , and the variance

of the cluster Σ̂NC , are initialised with the training input sample x, and η(Vmax)
1/DI, where

η is a small positive value and I is a D × D identity matrix, respectively. The count of the

new cluster nNC which is an entry into (3.8) is initialised as 1.

3.2.3.6 Inference in BAM

Inference in the BAM network involves the use of all clusters associated to a class in

order to define the class label during testing. Therefore, the class selected for a test sample

x is defined as

yi = arg max
i

P(yi |x) (3.13)

where yi is the class label for the test sample x and P(yi |x) is defined as

p(yi |x) =

∑NC

j=1 P(yi |G)p(x |ω j)P(ω j)∑Y
i=1

∑NC

i=1 P(yi |G)P(x |ω j)P(ω j)
(3.14)

where P(yi |G), p(x |ω j), and P(ω j) are defined in (3.8), (3.3), and (3.2), respectively. The

pseudo-code for the BAM algorithm is represented in algorithm 1. BAM has the advantage

of solving the category proliferation problem by using Bayesian theory and probability

to create and update the clusters (Vigdor & Lerner, 2007; Masuyama et al., 2018). The

ategory proliferation is solved by allowing the formed clusters the ability to shrink and
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Algorithm 1 Algorithm for BAM
Require:

the samples : A = (x1, x2, . . . , xN ) (xn ∈ <
d),

the class label for each sample: y
a maximal hypervolume : Vmax.
a vigilance parameter bias: δV , and
a match tracking class probability threshold: Pmin ,

Ensure: the class posterior probability P(yi |G) as in (3.1)
1: Input a vector xn
2: if No clusters exist in ART network then
3: Create a new cluster as NCnew as in (3.12).
4: else
5: Compute a cluster posterior probability P

(
ω j |x

)
as in (3.1) .

6: Compute the index of winning cluster G as in (3.4).
7: Compute VG as (3.5).
8: if VGk

≥ Vmax then
9: if All the categories do not pass the vigilance test then

10: Create a new category NCnew as in (3.12).
11: else
12: Remove yG from selection and continue from step 6 with the next chosen

cluster.
13: end if
14: end if
15: end if
16: Update the category frequency count Ni j .
17: Compute the class posterior probability P(yi |G) as in (3.8).
18: if P(yi |G) ≥ Pmin then
19: The map field learning takes place.
20: Update µ̂G,new as in (3.10).
21: Update Σ̂G,new as in (3.11).
22: else
23: if Match tracking fails with all categories then
24: Create a new category as NCnew .
25: else
26: Remove µ̂G,new from selection.
27: Remove Σ̂G,new from selection.
28: Continue from step 17 with a next candidate category.
29: Update a maximal hypervolume Vmax as in (3.9).
30: end if
31: end if
32: if j < G then
33: Continue from step 1 with j ← j + 1
34: end if

expand while learning. Categories or clusters are created in Gaussian spheres which greatly

reduces thier number and thereby increasing the performance of BAM. BAM achieves

inference through the posterior probability. Clusters are illustrated as Gaussian hyper
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volumes. However, the maximum hyper volume parameter, Vmax, of the BAM is sensitive

to reiterative search that leads to high computational time and the creation of more clusters.

These resulting clusters reduces the predictive performance of the BAM. Moreover, BAM

is also sensitive to the sequence order of its input patterns. Therefore, these factors should

be considered to get the optimal solution.

3.2.4 Advantages of Bayesian ARTMAP

The advantages of BAM over the ANN include:

• The formation of clusters in the form of Gaussian hyperspheres shapes has the

ability to better represent multidimensional real distributed data.

• The Gaussian hypershere clusters have the ability to grow and shrink during training.

This reduces the unnecessary creation of small categories which increases predictive

accuracy (Williamson, 1996).

• The cluster prior probability resulting from the adoption of the Bayes’ theory

ensures that each class cluster is distinctively represented in relation to all the

existing clusters. Repetition of class clusters during inference is mininmised.

• It has a small number of parameters, requires no problem-specific system crafting

or choice of initial weight values

3.3 Genetic Algorithm

Evolutionary computation is a group of computational methods that simulate natural

evolution by generating a population consisting of individuals. GA was founded by John

Holland in the early 1970s as one of the methods of evolutionary computation (Holland,

1992). GA are abstract search algorithms that represent of the natural process of selection

where only the fittest individuals who survive in a population are selected. These fit

individuals are used to generate a new population using genetic operations and this cycle is
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repeated until only the fittest individuals survive (Negnevitsky, 2005). Genetic algorithms

have been applied to solve different types of optimisation problems such as numerical ,

discrete, multi-objective, and global optimisation problems (Sakawa, 2012). A concise

definition of GA is evident in the academic literature (Mitchell, 1998). However, GA is

described as a process that evaluates the fitness of a candidate solutions in a population

through a repetitive cycle of evaluation, selection, mutation, and crossover (Grefenstette,

1986).

3.3.1 Gene, Chromosome, Allele, Phenotype, Genotype and Breeding

The essential foundation of the GA is composed of Genes. A gene is a binary encoding

of model variables. Each gene comprises of different forms of allele that encode the

several characteristics of a gene. In abstract terms, a gene is encoded as a string of binary

digits- 0 or 1 in the form of an allele. A string of genes form the chromosome. The

chromosome represents a candidate solution of a problem. A typical chromosome is

represented as an array of elements. In this work, the terms chromosomes and candidate

solutions will be interchange where necessary. The encoded structure of genes, which is

the chromosome, is also known as the genotype while phenotype is the physical description

or decoded structure of the genotype as a model (Sivanandam & Deepa, 2008; Franz,

2006). Representations of these structures are presented in Fig. 3.5 and Fig. 3.6.

3.3.2 Encoding and Decoding

Encoding is the representation of the chromosomes as a string of characters in an array.

Different forms of encoding techniques have been used to represent candidateeee solutions

in the search space of GA. Different types of encoding representations such as binary, octal,

hexadecimal, permutation, value, and tree encoding are applied to genes in GA. The binary

encoding scheme is the most commonly used representation in GA. In Binary encoding,
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Figure 3.4: The Genetic Algorithm process

each gene is represented using a binary (bit) string. Binary encoding with 0s and 1s enables

a large number of chromosomes to be comfortably represented using a small amount of

alleles. Moreover, binary encoding makes it easy to represent integers and variations of

real numbers. These flexibility of the binary encoding scheme enabled its application in

this proposed algorithm. Other forms of encoding schemes include permutation encoding,
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Figure 3.5: Representation of allele, gene, chromosome and population

Figure 3.6: Representation of genotype and phenotype

value encoding, tree encoding and value encoding (Sakawa, 2012).

3.3.3 Fitness Function

In natural evolution, only the fittest in the population survives. GA follows this law

such that only the fittest chromosomes are chosen for the evolution processes. The fitness

landscape represents the space of all chromosomes defined by fitness function (Mitchell,

1998). The fitness function is used to assign a fitness score to each chromosome in the

population. This fitness value determines the ability of chromosome to form a candidate

solution for the problem to be solved. The fitness of a chromosome determines its chances

of selection from the population. The higher the fitness value, the more superior the

chromosome. Chromosomes with low fitness values are discarded from the evolution

process (Sakawa, 2012).

78

Univ
ers

iti 
Mala

ya



3.3.4 Population

A population in GA consists of a set of chromosomes that represent the candidate

solutions to the problem in the search space. The population consists Npop is represented

as a matrix of Npop × Nbits filled with chromosome vectors. In the GA process, an initial

set of population is randomly chosen for the first generation. The formation of a new

population requires the reproduction operators to be chosen depending on the choice of

the reproduction probabilities, Pc (crossover probability), Pm (mutation probability), and

Pr (direct reproduction probability), where Pc + Pm + Pr = 1. These are the parameters

that control the genetic algorithm and are determined by the user.

3.3.5 Selection

Selection occurs when chromosomes are selected to serve a parents in reproduction

operations. Various selection methods such as rank selection, roulette wheel selection,

tournament selection, and Boltzman selection, are used to select the fittest chromosomes

(Eiben, Smith, et al., 2003). Typically, a selection probability Pj is assigned to each

candidate solution j in the population according to the its fitness value. These sequence of

numbers is compared with the the population’s cummulative probability Ci =
∑i

j=1 Pi N

(Pencheva, Atanassov, & Shannon, 2009). The fittest individual i is chosen to participate in

the reproduction process is selected. The fitness of a chromosome determines its chances

of being selected as a parent chromosome for reproduction. The selection mechanism

enables the choosing of genetic components inside the population with an aim to improve

future generations of offspring using the reproduction operators. The selection cycle

illustrated in Fig. 3.7.
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Figure 3.7: The selection cycle

3.3.6 Crossover (bit-string)

The locus is a particular location of a gene in a chromosome. In a locus, an allele is

represented as either a 0 or a 1. The crossover and mutation are reproduction operators

which are tasked with the movement of genotype in the fitness search space determined by

the fitness function (Mitchell, 1998). The crossover operator allows genes to be exchanged

at a particular locus between a pair of parent chromosomes to form two new chromosomes

known as the offspring. These offspring or new individuals are entered into the population

for possible mutation and fitness evaluation. In bit-string or single point crossover, a

sub-sequence from a randomly selected locus in two randomly selected chromosomes are

swapped to form two new offspring. This process is presented in Figure 3.8.

The number of times a crossover operation is carried out in the GA is dependent up the

crossover probability. If the crossover probability is 100%, then all offspring of the new

generation are formed by crossover, otherwise if the probability is 0%, then all the offspring

of the new generation will be formed as the exact replicas of the parent generation. The

crossover operation is used to produce the best chromosomes. This offspring chromosomes
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Figure 3.8: Single point crossover

are subjected to mutation by the mutation operator. The crossover operation explain in this

section is the single-point crossover. Other crossover operations include the two-point,

multi-point, three parents and reduced surrogate crossover amongst others. However, the

simplicity and efficiency of the single-point crossover makes it the mostly commonly

adopted choice.

3.3.7 Mutation

The mutation operator enables the flipping of bits at a random point in a new offspring

chromosome. Genes in an offspring chromosome are subjected to mutation depending on a

probabilistic value. Mutation occurs to enforce uniqueness and hinders early convergence.

Mutation, however, does not introduce new information into the search space. After

running many generations of the GA, there is a possibility that the same bits may be

selected over again. This may lead to premature convergence which generate a satisfactory

but not the best solution to a problem (Whitley, 1994). Therefore, mutation is introduced to

preserve particular bits and alleles in fit chromosomes. Mutation works in the background

by sometimes making the flips of bits at random points.

3.3.8 Search Space

The space which consists of all candidate solutions of a problem is known a the search

space of the GA. The candidate solution represents a point in the search space. Each
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Figure 3.9: Chromosome mutation

candidate solution in the search space is defined by fitness function. During searching, the

value of the fitness function is used to evaluate each candidate solution for selection as a

solution. Due to complexity of searching, different types of searching techniques such as

the genetic algorithm are employed to find an appropriate solution. GA searching evolves

the populations of candidate solutions until an optimal solution is obtained. The genetic

process optimises the chance of reaching the optimal solution by providing a evaluating

the fitness of each candidate solution.

3.3.9 Reproduction

Depending on their fitness value, offspring bred by selected individuals are chosen such

that the population can either grow or shrink. The fittest individuals are passed over to form

the population of the next generation while those offspring with low fitness are discarded

from the process (Sivanandam & Deepa, 2008). These fit individuals are immune to

further recombination by the reproduction operators. They are, however, selected for the

next reproduction cycle. The reproduction cycle of selection, crossover and mutation will

be carried out on the low fit individuals to generate higher fit offspring.

3.3.10 Convergence and Search Termination

Convergence occurs when a suitable solution to the problem has been found. The

conditions for convergence are set by some stopping criteria such as when a certain given

percentage of the offspring are identical with the same fitness value and the best fitness

value stops changing for some specified number of generations (Coley, 1999). Other
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convergence occurrence stopping criteria includes the reaching a of maximum number of

generations by a GA process, the elapsing of a specified amount of computation time, and

the lack of improvement of the fitness values within a specified time limit (Sivanandam &

Deepa, 2008). Furthermore, a best fitness value could be set such that convergence occurs

if the least fitness in the population goes down. GA has the ability to jump out of any local

minimum because it proffers several solutions to a problem and chooses the best out of the

solutions. This feature of GA that enables to find an optimal minima is albeit one of its

major advantages.

3.3.11 Advantages of Genetic Algorithm

GA has the advantage of making a thorough global search in the search space using the

value of a fitness function. The use of the reproduction operators gives GA the ability to

evolve initial individuals in a population of the best candidate solutions. By choosing best

or fittest candidate solution, GA provides the best solution to problem solving. The GA

search always finds the best solution to the problem because it performs a parallel search

distributed evenly across the search space (Haupt & Haupt, 2004). It is able to perform

optimisation with both discrete and continuous variables without needing any derivative

knowledge. Thus, making it suitable for our proposed algorithm because all the variables

are continuous.

3.3.12 Summary

The theoretical frameworks and background of the ARTMAP, FAM BAM and GA

were discussed in this chapter. Furthermore, their mathematical equations and pictorial

representations were also presented. The theory of GA and its descriptive operators such

as population, reproduction, crossover and mutation were discussed and illustrated with

descriptive diagrams. The advantages of both the BAM and GA for diagnosis of the risk
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of MetS were explained.
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CHAPTER 4: DATASET AND EXPERIMENTAL SETUP

4.1 Introduction

The dataset used in this research is a real world data collected on site from teachers in

a prospective cohort study. Thus, the data requires cleaning and pre-processing in order

to provide an improved and optimised model performance. Data preprocessing activities

such as data collection, data cleaning and integration, and normalisation are presented in

this chapter. Finally, the chapter discussed the proposed approach and experimental setup

based on the pre-processed dataset.

4.2 Experimental Data Collection

The dataset used for the evaluation of the proposed model in this research was collected

in a prospective cohort study, the "Cohort study on clustering of lifestyle risk factors and

understanding its association with stress on health and well-being among school teachers

in Malaysia (CLUSTer)" (Moy et al., 2014) from March 2013 to December 2014. This

study was aimed at extensively studying the interaction of work related stress and the

clustering of lifestyle risk factors on teachers’ health and well-being in Malaysia. The study

population consisted of primary and secondary school teachers in Peninsular Malaysia. In

a multi-stage sampling method, five states out of the 12 states in Peninsular Malaysia are

selected as depicted in Figure 4.1.

Seventy percent (70% ) of primary and secondary schools from the selected states were

invited for the study. Teachers from the schools that accept the invitation are then invited to

a voluntary participation in the study. All permanently employed teachers that do not have

any form of psychiatric illness were eligible to participate in the data collection. Schools

qualified for the study were ranked based on the statistics of primary and secondary schools

from the Ministry of Education, Malaysia for the year 2013. Participants were asked
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Figure 4.1: Selected states of Peninsular Malaysia for data collection. Adapted from
(Moy et al., 2014)

to answer a questionnaire and also engage in the required health screening procedures.

Measurements of five MRFs were selected for the experiments in this study. These

MRFs - FPG, WC, HDL-C, TG, SBP, DBP - were selected based on their prominence in

diagnosing the risk of MetS in all the clinical definitions as presented in Table 1.1 . In the

anthropometric assessment, weight was measured without shoess to the nearest 0.1kg using

a digital calibrated floor scale (SECA 813, Hamburg, Germany). Height was measured

using a portable stadiometer (SECA 217, Hamburg, Germany) while waist circumference

was measured using a flexible tape measure (SECA 203, Hamburg, Germany) at the

umbilicus to the nearest 0.1cm. Hip circumference, fat mass and muscle mass were

also measured. The threshold for identifying visceral obesity among Malaysians was

set according to the Asian standards (Zimmet, Shaw, & Alberti, 2005) where the waist

circumference for males and females is 90cm and 80cm respectively.

A questionnaire was handed out to all participants. The required information included
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family and medical history of chronic diseases, and socio-demographic characteristics of

participants. Other questionnaires include a structured lifestyle questionnaire on alcohol

consumption, smoking and physical activities (IPAQ) (Craig et al., 2003); questions on

fruits, vegetables, and fats and oil consumption; the job content questionnaire (JCQ) (Hadi,

Naing, Daud, & Nordin, 2006); the depression, anxiety and stress scale (DASS21) (Gandek

et al., 1998); the health related quality of life (SF12-V2)(Ware Jr, Kosinski, & Keller,

1996); and the Voice Handicap Index 10 (VHI 10) (Rosen, Lee, Osborne, Zullo, & Murry,

2004) on voice disorder. Questions on chronic pain, sleep duration and obstetric history

for female participants were also asked.

The clinical health assessments that were conducted included systolic and diastolic blood

pressure measurement and biochemical analysis (fasting blood glucose, renal function test

and blood lipid profile). Blood pressure was measured in a sitting position, once on the

left arm using a validated oscillometric blood pressure monitor (Omron HEM 907, Japan)

(DuBose & McKune, 2014). For the biochemical analyses, four tubes of blood samples

were collected from each participant. The baseline measurements (health assessment)

of fasting blood glucose, blood lipids and renal function tests were analysed using the

Dimension clinical chemistry system known as in-vitro diagnostic test. A total of 12,429

samples was collected.

The Medical Ethics Committee of the University Malaya Medical Centre (UMMC)

granted the ethical approval (Reference Number: 950.1) for this study using human

subjects.

4.3 Data Description

The experimental dataset consists of 11,237 samples at baseline, (N = 2133) and female

(N =9104). The characteristics of the dataset is shown in Table 4.1. The dataset consists of

six attributes FPG, WC, HDL-C, TG, SBP, and DBP. The prevalence of MetS in Malaysian

87

Univ
ers

iti 
Mala

ya



women is higher than that of the men at 30.1% and 24.8%, respectively. Therefore, we

found it necessary to divide the dataset was into two groups based on to gender. The

prevalence increase in MetS is directly proportional to age (Walker, Gurka, Oliver, Johns,

& DeBoer, 2012). As such the severity of MetS is said to increase over time in individuals

(Vishnu, Gurka, & DeBoer, 2015).

Table 4.1: Characteristics of CLUSTer dataset after cleaning (Moy et. al, 2014)

Male Female
Number of Subjects, n (%) 2133 (19.00) 9104 (81.00)
Age, years 44.33±9.43 42.95±8.4

20-39 (young) 1397(19.71) 3410(82.25)
40-64 (middle-aged) 736(17.75) 5691(80.29)
65 and above (old) 0 3

Body Mass Index 44.43±7.45 Mn 23.9 40.38±7.78 Mn 19.3
(kg/m2) Mx 81.7 Mx 100

FPG 5.00±0.58 Mn 3.1 4.82±0.50 Mn 3.1
(mmol/L) Mx 7.6 Mx 7.1

WC 89.55±10.99 Mn 57 79.68±10.69 Mn 48
(cm) Mx 137 Mx 121

HDL-C 1.24±0.26 Mn 0.52 1.49±0.34 Mn 0.52
(mmol/L) Mx 2.3 Mx 3

TG 1.56±0.77 Mn 0.6 1.12±0.48 Mn 0.6
(mmol/L) Mx 5 Mx 3.3

SBP 132.37±15.13 Mn 76 123.43±16.51 Mn 65
(mm Hg) Mx 200 Mx 198

DBP 81.64±10.66 Mn 48 75.15±10.97 Mn 41
(mm Hg) Mx 124 Mx 121

T2DM n (%) 0 0
Hypertension 1 n (%) 182(8.50) 454(5.00)
Values are means ± SD or n(%); Mn, Minimum; Mx, Maximum.
Fasting blood glucose ≥ 5.5 (mmol/L) and/or physician diagnosed diabetes mellitus.
Systolic BP ≥ 130 mm Hg and/or diastolic BP ≥ 85 mm Hg and/ or physician diagnosed
hypertension

Therefore, the dataset was further divided into six subgroups based on the age of
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the participants. The classification into six subject categories by gender and by age is

categorised as: young (between 20 and 39 years old), middle-aged (between 40 and 64

years old), and old (exceeding 65 years old). However, there were no male participants

over the age of 65 and only three female participants were identified. Hence, only four

categories of datasets will be used for the training and evaluation of our proposed GOBAM

model–Young Male, Middle-age Male, Young Female, and Middle-age Female.

The prevalence of MetS is 22% and 34% in the young and middle-aged male groups

respectively. The young and middle-aged female groups have a MetS prevalence of 11%

and 21% respectively. The number of individuals with MetS are less than those without

MetS. This situation where the number of samples of one class is more dominant than the

other class in a dataset is referred to as the class imbalance (Japkowicz & Stephen, 2002).

Class imbalance has been known to occur in real world datasets that have been collected in

different areas of scientific research (Kubat, Holte, & Matwin, 1998; Chawla, Japkowicz,

& Kotcz, 2004; Rao, Krishnan, & Niculescu, 2006). It is obvious from Fig. 4.2 that the

CLUSTer dataset is skewed largely towards non-MetS in all the four subgroups of the

Cohort Study on Clustering of Lifestyle Risk Factors and Understanding its Association

wth Stress on Health and Wellbeing Among School Teachers in Malaysia (CLUSTer)

dataset. We shall see how this data characteristics affects the predictive performance of the

GOBAM classifier.

4.4 Analysis and Cleaning of Experimental Data

Collection of data from the real world is prone to human errors especially during

recording and input. Therefore, data is required to be cleaned and preprocessed to ensure

optimal quality for an efficient model performance. Although the data collection was

carried out meticulously with care and precision, thorough data exploration for outliers,

missing values and other inconsistencies was conducted. After conducting data exploration,

89

Univ
ers

iti 
Mala

ya



Figure 4.2: Pictorial representation of class imbalance in the CLUSTer dataset for
all the four subgroups

the dataset was found to contain outliers in the attributes. These outliers may be as a result

of human errors while collecting the data. For example, the WC attribute had a minimum

value of 1cm measurement. The samples with these extremely low measurements do

not match the characteristics of real world measurement of MRFs. They fall outside the

range of MRFs for adults. Therefore, the outliers samples were identified and removed

using the Mahalanobis distance (De Maesschalck, Jouan-Rimbaud, & Massart, 2000). The

Mahalanobis distance is a measure of distance between the attributes and their means. The

Mahalanobis distance assumes a Gaussian distribution for each attribute x, N(µ,M) and is

calculated as

d(x) =
√
(x − µ)M−1(x − µ)T (4.1)

where µ is the mean of the vector x and M is the covariance matrix.

It was necessary to remove the outliers before normalising due to the disparity between

the samples. The initial data collected consisted of 12,429 participants. This data set was

categorised based on gender resulting in a total of 11, 237 samples of males (N = 2432)
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and females (N =9997). Then the Mahalanobis distance was run on each group. For the

female group, the Mahalanobis distance detected 893 outliers in 8 runs while 299 outliers

were detected and removed from the male group in the same number of runs.

4.5 Normalisation of Experimental Data

Preliminary analysis of the dataset was carried out to determine the most suitable data

scale for the highest predictive performance. WC is measured in Centimeter (cm), TG,

HDL-C and FPG are measured in Millimoles Per Liter (mmol/L) while SBP and DBPis

measured in Millimeter Of Mercury (mmHg). For example, in Table 4.1, the range for WC

MRF is 57 - 137 cm while the range of HDL-C is 0.52 - 2.3 mmol/L. The order of these

two MRFs is different.

Due to these different scales of the MRFs measurements, it was necessary to normalise

the attributes to fit into a new range from 0 to 1 as follows:

xinew =
xi − ximin

ximax − ximin

. (4.2)

where xi is the i-th metabolic syndrome risk factor, xinew is the new normalised input value,

and ximax and ximin are the maximum and minimum values, respectively. By normalisation,

the disparity between the attributes will be nullified and this will lead to better prediction

performance of the proposed classifier. Furthermore, the vigilance parameter VG of the

BAM is unable to handle a large numeric disparity between sample features.

4.6 Genetically Optimised Bayesian ARTMAP (GOBAM)

GA can enable rapid convergence and a reduction of generalisation errors in classifiers.

Parameter optimisation has been proposed to tackle problems associated with FAM using

various evolutionary computation techniques (Cervantes, Lee, & Lee, 2007; Granger,
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Henniges, Oliveira, & Sabourin, 2006; R. Palaniappan & Eswaran, 2009; Loo, Liew, Seera,

& Lim, 2015). However, to the best of our knowledge, no one has attempted to optimise

the parameter settings and order of input sequence in the BAM neural network for medical

diagnosis. Therefore, we propose GOBAM to diagnose MetS in this thesis. As previously

mentioned, a biased training sequence (Masuyama et al., 2018) and under-tuned parameters

affects the BAM’s classification performance and its stability. Here, we utilise GA to

search for an optimal combination of parameter values and training sample sequence in

order to increase the predictive performance of BAM. The GOBAM flowchart is illustrated

in Fig. 4.5. The parameter values that affect the performance of BAM are as follows:

(i) maximal hyper-volume: Vmax, and

(ii) vigilance parameter bias: δV .

4.6.1 Chromosome design

The sequence of training samples and parameter settings of the BAM network will be

optimised using GA. Each chromosome g contains the following:

1. The training samples sequence, g1
T ∼ gN

T , where N is the total number of training

sample. g1
T ∼ gN

T is encoded using permutation encoding. Each element of this

chromosome subset must be a unique element representing the index of a training

sample input.

2. The maximum hyper-volume gVmax which is encoded using real values ranging

between [0] and [100].

3. The vigilance parameter bias: gδV represents the values of parameters δV .

Ten population of chromosomes g(pop), pop = 1, ...,10, are randomly initialised as

possible candidate solutions. The sequence numbers of the training samples are randomly

ordered and also the values of the BAM parameters. The initialised chromosomes are

92

Univ
ers

iti 
Mala

ya



passed into the BAM network for training and testing. The illustration in Fig 4.3 is a

representation of each chromosome in the search space.

Figure 4.3: GOBAM chromosome representation

4.6.2 Fitness Evaluation

Next, GOBAM evaluates the fitness of each candidate solution in the BAM network and

determines its fitness values using the fitness function. Our proposed algorithm is driven

by the fitness function which enables the GA’s search for optimal parameters and sequence

of input patterns for the BAM. The fitness evaluation of the proposed GOBAM algorithm

uses the AUC instead of accuracy because accuracy measures performance in relation

to the total number of only the correct predictions while AUC is a summary measure of

accuracy derived from the ROC curve. A detailed explanation of the AUC is presented in

Section 4.8.7.

4.6.3 Selection

The selection approach adopted in our proposed GOBAM is the roulette wheel developed

by Holland (Holland, 1992). The probability of selecting an individual using the roulette

wheel is given as

Pi =
fi∑N

j=1 f j
(4.3)

where Pi is the selection probability value of selecting a chromosome i, f j is the fitness

value of chromosome i, and N is the number of chromosomes in the population. The
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chromosomes with the best fitness relative to the fitness values of the other chromosomes

in the population have a higher chance of being selected. the roulette wheel operator

The selected parent chromosomes will be used to create new chromosomes using the GA

operations - crossover and mutation. The roulette wheel selection process is illustrated in

Fig 4.4.

Figure 4.4: The roulette wheel selection process

4.6.4 Crossover and Mutation

Crossover and mutation for the order of sample sequence and the BAM parameters is

carried out differently because of the difference in the encoding process.

As depicted in Fig. 4.6, Partially Mapped Crossover (PMX) (Goldberg & Lingle,

1985) technique is applied for generating the offspring of the sequence order chromosome

g1
T ∼ gN

T in order to get the sequence order with the best fitness value. This technique is

chosen because it does not allow for tie ranks in the offspring chromosome. After crossover,

each element in the offspring chromosomes has to be a unique entry as is required in the

sequence order of the training sample of the BAM network. Given two selected parents,

Parent A and Parent B, PMX generates two offspring chromosomes, Offspring A and

Offspring B, by uniformly selecting two random points in each of the parent chromosomes

and swapping the elements within the bounds of those points. Each element in Parent A
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Figure 4.5: Flow chart of genetically optimised Bayesian ARTMAP

is mapped to the element in the same position in Parent B. Subsequently, the remaining

blank fields in Offspring A are filled with elements from Parent A. However, if the element

to be copied from Parent A to Offspring A is already present in Offspring A, then that

element from Parent A will be exchanged with the element from Parent B which is mapped

to the element in Parent A. This pattern continues until all the blank chromosome fields

in Offspring A have been filled. Then the blank fields in Offspring B will be filled in by

elements in Parent B not already present in Offspring B in the same order. Fig 4.6 illustrates

the crossover and mutation process of generating an offspring chromosome. Mutation is

then carried out by randomly swapping two elements of each offspring chromosome.
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The single point crossover is applied to the BAM parameter which is encoded as a

real valued number. As shown in Fig. 4.6, this crossover technique generates offspring

chromosomes by selecting one crossover point and swapping all the elements from that

point between the parent chromosomes. The mutation of the BAM parameter offspring

chromosome involves the addition and subtraction of some random float numbers.
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Figure 4.6: Chromosome crossover and mutation of the training sequence and BAM
parameters.
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The GOBAM algorithm is described in algorithm 2.

Algorithm 2 Algorithm for GOBAM
Require:

the samples: (< x1, y1 >,< x2, y2 >, . . . , < xN, yN >) (xN ∈ <
D),

the training sample sequence chromosome: g1
T ∼ gN

T ,
the maximum hypervolume chromosome: gVmax ,
the vigilance parameter bias chromosome: gδV ,
the size of the population: pop,
the maximum number of generations maxGen.

Ensure: the best chromosome gbest from the population g(pop)
1: Initialise individual chromosomes g1

T ∼ gn
T , gVmax , gδV in population g(pop)

2: Evaluate the fitness fAUC of each chromosome in population g(pop)
3: while maximum iteration iter is not reached or convergence is not reached do
4: for x = 1 to maxGen do
5: Perform k-fold cross-validation of BAM
6: Calculate fitness fAUC for each chromosome g
7: end for
8: if Convergence occurs then
9: Return best chromosomes gbest
10: else
11: Select the best pair of chromosomes based on the value of fitness function fAUC
12: Perform crossover and mutation as described in section 4.6.1 to obtain new

chromosomes gnew
13: else
14: Increase selection value to include optimum solutions
15: Decrease mutation value to converge onto solutions
16: end if
17: Update population g(pop) with new chromosomes gnew
18: Update count iter
19: repeat
20: From step 2
21: until Convergence or stopping criteria reached
22: end while

4.7 Implementation

We implemented the proposed GOBAM algorithm in Matlab R2014a (8.3.0.532) on

an Intel(R) Core(TM) i5-4200U CPU @ 1.6GHz 64-bit computer with 8.00 GB RAM.

The algorithm was compared to standard ARTMAP algorithms such as FA, BAM, and

GAFAM on the CLUSTer (Moy et al., 2014) dataset shown in Table 4.1.
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4.7.1 Experimental Design

Cross-validation is widely acceptable for evaluating the performance of machine

learning algorithms and building prediction models. The cross-validation process is used

to certify the efficiency and generalisation of our proposed model. We used the K-fold

cross validation technique (Hastie, Tibshirani, Friedman, & Franklin, 2005) to calculate the

classification performance measures of our model. The K-fold cross-validation randomly

divides the training dataset into K equal-sized parts as shown in Fig. 4.7. Cross-validation

works by fitting the model into K − 1 parts of the training dataset while holding out k th

part for testing. The overall performance of the model is averaged on the results of the K

iterations as presented in Eq. (4.4).

R =
1
K

K∑
k−1

Rk (4.4)

where Rk is a performance metric for the kth partition. The K-fold cross validation is the

most reliable method for evaluating the performance of the proposed algorithm because it

provides an unbiased estimation of the model’s performance. It is used to evaluate the

efficiency of a model using any kind of performance metric. The experiments carried out

were averaged over 5 trials of 10-fold cross validation on each data set, while recording the

balanced crossed validation performance measure on the hold-out test fold.

The number of generations was set to 200. This is to reduce the bias of random sampling

from the training dataset. Two different criteria were applied to terminate the training: (i)

training was stopped if the mutation operator value is less than 0.01 and (ii) the training

was stopped if the crossover operator value was greater than 0.9. The mutation rate should

not be low in the GA search because a low mutation rate prevents exploration in search

space (Loo et al., 2015). The crossover rate should be large enough to allow the GA to

reach global optimum. This combination of mutation and crossover parameters allows the
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Figure 4.7: 10-fold cross-validation partitioning of datasets. Adopted from
Baunmann et al. (Baumann et al., 2018)

GA to avoid local optima convergence.

4.8 Performance evaluation methods

For machine learning classifiers where the problem requires a binary decision solution,

as is the case for theMetS diagnosis in this thesis, the performance of classifiers is evaluated

using performance metrics known as predictive bio-markers (Pepe, 2003): AUC, SEN,

SPEC, PPV, NPV and FSCORE. These quantitative performance metrics are derived using

the metric values from the confusion matrix in Table 4.2. The confusion matrix shows

the comparison between each predicted class with its actual class in four types of metrics
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values:

Table 4.2: Calculation of sensitivity and specificity for a specific cut-off point of the
predicted4 probability P.

Predicted

Actual
Metabolic
syndrome

Non-metabolic
syndrome Total cases

Metabolic
syndrome TP (true positive) FP (false positive) TP + FP

A B
Non-metabolic

syndrome FN (false negative) T N (true negative) FN + T N

C D
Total cases TP + FN FP + T N

1. Cell A contains the number of individuals from the test dataset who have been

correctly classified as having MetS by the proposed diagnostic method GOBAM and

also by the JIS harmonised criteria adopted for MetS diagnosis in this study. This

means that all individuals in cell A have the same diagnosis as the traditional MetS.

This value is referred to as the True Positives (TPs). TP is the count of actual people

with MetS and correctly classified as having MetS.

2. Cell B contains the number of individuals that GOBAM classifies as having MetS

but do not have MetS according to the clinical diagnosis of MetS. These are referred

to as the False Positives (FPs). FP is the count of actual people without MetS but

incorrectly classified as having MetS.

3. In cell C, the number of individuals who have been diagnosed as having MetS

by the proposed method but do not have MetS according to the clinical diagnosis.

According to the clinical diagnosis definition, these individuals have been wrongly

classified as having the abnormality. These are known as the True Negatives (TNs).

TN is the count of actual people with MetS but incorrectly classified as not having

MetS.

4. Cell D contains the number of individuals are classified as not having MetS by

GOBAM and also have the same diagnosis according to the clinical diagnosis
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definition. These individuals are not at risk of MetS according to both methods.

These are referred to as the TNs. False Negative (FN) is the count of actual people

without MetS incorrectly classified as having MetS.

Note that the actual classification of MetS is based on any of the clinical definition of

MetS such as the NCEP ATP III (Expert Panel on Detection, 2001). The metric values

from the confusion matrix in Table 4.2 are used to compute the other performance measures

that will be used to evaluate the proposed GOBAM. Below are the formulas for the various

performance evaluation methods .

4.8.1 Sensitivity

Sensitivity is the ability of a classifier to correctly diagnose MetS amongst when the

condition in present. It is the probability that the diagnosis result is positive given that the

abnormality exists in the individual.

Sensitivity =
TP

(TP + FN)
× 100 (4.5)

4.8.2 Specificity

Specificity is the ability of a classifier to correctly diagnose non-MetS amongst all

actual non-diseased classes. It the probability that the diagnosis result is negative given

that the abnormality does not exists in the individual.

Speci f icity =
T N

(FP + T N)
× 100 (4.6)
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4.8.3 Positive Predictive Value

PPV is the probability that people classified by the proposed model as having MetS,

actually have the abnormality.

PPV =
TP

(FP + TP)
× 100 (4.7)

4.8.4 Negative Predictive Value

NPV measure is the probability that the people classified as non-MetS actually do not

have the abnormality.

NPV =
T N

(FN + T N)
× 100 (4.8)

4.8.5 FScore

FSCORE is a weighted average of the SEN and the PPV.

NPV =
2TP

(2TP + FP + FN)
× 100 (4.9)

4.8.6 Receiver Operating Characteristic Curve

The ROC curve is a standard summary of accuracy used for the analysis of diagnostic

test performance (Heagerty, Lumley, & Pepe, 2000). The ROC curve is a graphic plot of

SEN on the y-axis against 1-SPEC on the x-axis. The ROC curve compares SEN against

SPEC across all the range of values in order to predict a dichotomous outcome (Fawcett,

2006). This outcome is ensured because the SEN and SPEC constitute the basic measures

of performance evaluation for diagnostic models as described equations (4.5) and (4.6).

An attractive feature of the ROC curve for medical diagnosis include its ability to internally

discriminate the capacity of a diagnostic test by attribution across all threshold ranges
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(Heagerty et al., 2000). It is a valid comparison approach even when the attributes of a

model differ in measurement scales.

4.8.7 Area Under the ROC curve

One summary index associated with the ROC curve is the AUC. The AUC is a

probabilistic interpretation that the diagnosis of a diseased individual chosen randomly

exceeds that of a non-diseased individual which is a summary of the ROC curve (Swets,

1988). As mentioned in section 4.8.6, the ROC curve is independent of disease prevalence

in the dataset. It is a performance measure of imbalanced datasets which makes is more

effective in evaluating classifier performance than the ACC metric (Saito & Rehmsmeier,

2015).

As mentioned in section 4.6.2, the AUC is used as the fitness function of the proposed

GOBAM model. The AUC is the estimated trapezoidal integration calculated in (4.10) as

follow (Bradley, 1997):

fAUC =
∑
ϕ

{
[sϕ · ∆(1 − t)] +

1
2
[∆s · ∆(1 − t)]

}
(4.10)

where r is the SEN, t is the SPEC,∆(1 − t) = (1 − t)ϕ − (1 − t)ϕ−1, ∆s = sϕ − sϕ−1, and ϕ

is an index. r in equation (4.10) is referred to as the True Positive Rate (TPR) while 1 − t

is known as the False Positive Rate (FPR).

The AUC provides more information about the predictive performance of a classification

model than the single ACC metric. It takes a value between 0 and 1 since both SEN and

SPEC are also values between 0 and 1. The overall diagnostic performance of a model

indicates reliable diagnosis when the AUC is closer to 1 and a model with an AUC value

reading exactly 1 is considered perfect at its prediction. Practically, the lower bound of the

AUC is set to 0.5. However, an AUC value of 0.5 interprets the diagnosis of the classifier
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to be based on pure chance for balanced datasets (Zhou, McClish, & Obuchowski, 2009).

Both the SEN and SPEC are independent of the prevalence of the disease in the population

dataset (Zhou et al., 2009). Therefore, the AUC also has this same feature which makes

it efficient as an evaluation metric when a classifier is implemented using a dataset that

has class imbalance (Veganzones & Séverin, 2018). This justifies the use of the AUC as a

fitness function for the proposed model.

4.9 Summary

This chapter presents a comprehensive description of experimental data collection

process. A detailed description of the characteristics of the dataset is also given. This is

followed by an analysis of the preprocessing methods applied to the dataset. A detailed

description of the proposed GOBAM algorithm is presented together with the flowcharts

and pseudo-codes of the algorithm. Subsequently, the experimental setup was described

and the definitions of the performance evaluation methods were also presented.
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CHAPTER 5: RESULTS AND DISCUSSIONS

This chapter presents the results of the experiments carried out for the proposed model

GOBAM and a discussion on the comparison of the performance evaluation between the

proposed model and three other classical Adaptive Resonance TheoryMapping (ARTMAP)

models - GAFAM (S. M. Liew et al., 2011), BAM (Vigdor & Lerner, 2007) and FAM

(Carpenter et al., 1992). The performance of the proposed model was evaluated from three

aspects: efficiency, reliability and improvement over existing models. First, preliminary

results using UCI benchmark datasets are presented in order to evaluate the efficiency of

the proposed GOBAM. Then, the results of experiments using the 10-fold cross validation

on the CLUSTer dataset are represented using ROC curves, AUC, ACC, SEN, SPEC,

PPV, NPV and FSCORE performance metrics. The fitness graphs generated from the

experiments of the two optimisation models GOBAM and GAFAM for the four subgroups

of the CLUSTer dataset are presented and discussed. In all result tables, the highest

performance metric values are highlighted in bold.

5.1 Analysis of Proposed Model’s Performance

As mentioned in Section 4.6.2, the ACC as a model performance metric was not used

in evaluating the performance of GOBAM using the CLUSTer dataset. The fact that the

CLUSTer dataset is characterised by a class imbalance where the non-MetS class is more

dominant makes the use of ACC ineffective as performance evaluation metric (Fawcett,

2006). However, an initial performance evaluation of the GOBAM was carried out in order

to ascertain its better performance, reliability and generalisation using some 2-dimensional

UCI benchmark datasets (Dheeru & Karra Taniskidou, 2017). The UCI datasets used for

the preliminary experiments are the Glass, Wisconsin Breast Cancer, Pima Indian Diabetes,

Iris, Thyroid, Crab, and Wine datasets. These UCI datasets are the popular datasets used
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for benchmarking (W. S. Liew et al., 2016).

The characteristics of the UCI datasets used is presented in Table 5.1.

Table 5.1: Characteristic of UCI datasets

Dataset Class Attribute Sample Size
Glass 7 9 214

Breast Cancer 2 9 569
Pima Indian 2 8 768

Iris 3 4 150
Thyroid 2 21 7 200
Crab 2 6 200
Wine 3 13 178

The AUC, ACC, SEN, SPEC, PPV, NPV and FSCORE results for the preliminary

experiments using the 10-fold cross validation on GOBAM, GAFAM, FAM and BAM are

presented in Table 5.2. In the Glass, Iris, Crab, and Wine UCI benchmark datasets, the

proposed GOBAM model has an ACCof 100% while its slightly less in the remaining

three datasets. The AUC results are the same as that of the ACC of the models.For the Iris,

Wine and Crab datasets the results show 100% performance for GOBAM and some of the

other three classic ARTMAP models.

GOBAM has also shown higher SEN values than the other ARTMAP models. Overall,

the results in Table 5.2 indicate the better performance of the GOBAM model across all

the seven performance metrics for the UCI benchmark datasets. These results confirm

the generalisation of GOBAM model as a efficient and reliable classifier for binary

classification.
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5.2 Training Performance Results

The performance of the learning curve for GOBAM and GAFAM is displayed as fitness

curves for the four subgroups in Figure 5.1 (young male), Figure 5.2 (middle-aged male),

Figure 5.3 (young female), Figure 5.4 (middle-aged female). The graphs depict learning

curves of using GA in the optimisation parameters and order of sample sequence in

GOBAM and GAFAM. The lines in all the graphs show a higher fitness function value for

our proposed GOBAM model than the GAFAM model. Furthermore, it can be seen that

GOBAM model converged earlier than the GAFAM model. These learning curves can

therefore be used to signify GOBAM as a stable model for the prediction of MetS.

Figure 5.1: GOBAM vs GAFAM fitness learning curves for the diagnosis of MetS in
the young male from the CLUSTer dataset
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Figure 5.2: GOBAM vs GAFAM fitness learning curves for the diagnosis of MetS in
the middle-aged male from the CLUSTer dataset

Figure 5.3: GOBAM vs GAFAM fitness learning curves for the diagnosis of MetS in
the young female from the CLUSTer dataset
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Figure 5.4: GOBAM vs GAFAM fitness learning curves for the diagnosis of MetS in
the middle-aged female from the CLUSTer dataset

5.3 Model Evaluation using ROC Curve and the AUC

The ability of our proposed model GOBAM to discriminate between individuals with

MetS and those who do not have the abnormality is displayed using the ROC curve. The

ROC curves of GOBAM vs GAFAM,FAM, and BAM of CLUSTer dataset is displayed

in Figure 5.5 (young male), Figure 5.6 (middle-aged male), Figure 5.7 (young female),

and Figure 5.8 (middle-aged female). The ROC curve was adopted as one of the model

evaluation tool due the class imbalance found the in the CLUSTer dataset as described

in 4.3. The model with an ROC curve that moves towards the upper right corner of the

graph is the model with the better predictive performance. An inspection of the ROC

curves of the GOBAM compared with other ARTMAP models for all the four subgroups

reveals that GOBAM has the highest AUC. These graphs show that the proposed GOBAM

model outperforms all the other classical ARTMAP models in the prediction of Metabolic

Syndrome (MetS).
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Figure 5.5: ROC curve comparing GOBAM with GAFAM, BAM, and FAM for
young male

Figure 5.6: ROC curve comparing GOBAM with GAFAM, BAM, and FAM for
middle-aged male
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Figure 5.7: ROC curve comparing GOBAM with GAFAM, BAM, and FAM for
young female

Figure 5.8: ROC curve comparing GOBAM with GAFAM, BAM, and FAM for
middle-aged female
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An AUC value of 0.5 indicates that a model cannot classify individuals with the

abnormality and a value of 1.0 indicates the ability of the model carry out a perfect

diagnosis. The AUC is a summary of ROC curve with respect to SEN and SPEC. An

inspection of the AUC values in Figure 5.9 for all the prediction of MetS using GOBAM

vs GAFAM, FAM, and BAM indicates that GOBAM outperforms the other ARTMAP

models for all the young male, middle-aged male, young female and middle-aged female

subgroups.

Figure 5.9: Comparative diagram of GOBAM with GAFAM, BAM, and FAM with
respect to AUC for all the CLUSTer dataset subgroups

5.4 Confusion Matrix

The average results of the confusion matrix generated from the 10-fold cross validation

experiment of GOBAM, GAFAM, BAM, and FAM are presented in Table 5.3 (young

male), Table 5.4 (middle-aged male), Table 5.5 (young female), and Table 5.6(middle-aged

female). The confusion matrices consists of the TP, FP, FN, and TN values which have

already been explained in Section 4.8. For the prediction of MetS, the TPs is the number of
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individuals who actually have MetS that GOBAM predicted as having MetS. The TNs are

the number of individuals who actually do not have MetS according to the dichotomous

definition that GOBAM also predicted as non-MetSs. However, FPs is the number of

individuals who do not have MetS but have been predicted by GOBAM as having MetS.

This value is also referred to as the Type I error. FNs are the number of individuals who

actually have MetS but were predicted by GOBAM as non-MetS. This value is known

as the type II error. For the purpose of predicting MetS in our study, one of our main

objectives is to predict MetS in individuals who actually do not have MetS according to the

clinical definition but present with RF measurements that are very close to the clinically

defined thresholds as described in Table 1.1.

Table 5.3: 10-fold cross validation average confusion matrix of GOBAM and the
three classic ARTMAP algorithms for the young male CLUSTer subgroup

Young Male
Actual

MetS Non-MetS

GOBAM Predicted
Non-MetS 12.3 3
MetS 3.9 54.8

GAFAM Predicted
Non-MetS 12.6 8.1
MetS 3.2 49.7

BAM Predicted
Non-MetS 11.2 3.5
MetS 4.7 54.2

FAM Predicted
Non-MetS 10.3 8.3
MetS 5.4 48.7
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Table 5.4: 10-fold cross validation average confusion matrix of GOBAM and the
three classic ARTMAP algorithms for the middle-aged male CLUSTer subgroup

Middle-aged Male
Actual

MetS Non-MetS

GOBAM Predicted
Non-MetS 37.4 7.9
MetS 10.2 84.5

GAFAM Predicted
Non-MetS 36.1 15.8
MetS 9.7 73

BAM Predicted
Non-MetS 36.6 12.8
MetS 10.1 79

FAM Predicted
Non-MetS 38.5 11.2
MetS 8.9 81.1

Table 5.5: 10-fold cross validation average confusion matrix of GOBAM and the
three classic ARTMAP algorithms for the young female CLUSTer subgroup

Young Female
Actual

MetS Non-MetS

GOBAM Predicted
Non-MetS 29.9 9
MetS 8.5 293.6

GAFAM Predicted
Non-MetS 27.6 15.1
MetS 10.4 285.5

BAM Predicted
Non-MetS 29.3 16.8
MetS 8.8 283.6

FAM Predicted
Non-MetS 30.4 9.8
MetS 8 292.8

From Tables 5.3, 5.4, 5.5 and 5.6, the FN values are accurately higher than the TP

values. This is because the number of non-MetS samples is higher than the number of

MetS samples. However, the AUC which is the objective function used in the GOBAM

model is impartial to the class imbalance problem.
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Table 5.6: 10-fold cross validation average confusion matrix of GOBAM and the
three classic ARTMAP algorithms for the middle-aged female CLUSTer subgroup

Middle-aged Female
Actual

MetS Non-MetS

GOBAM Predicted
Non-MetS 95.4 18.9
MetS 26.9 428.8

GAFAM Predicted
Non-MetS 27.6 42.5
MetS 27.2 399.7

BAM Predicted
Non-MetS 90.5 33.2
MetS 29.8 409.7

FAM Predicted
Non-MetS 98.6 21.4
MetS 23.7 425.4

5.5 Validity and Stability

In this section, the predictive performance of GOBAM was compared with that of the

three classical ARTMAP models - GAFAM, BAM and FAM. The predictive performance

metrics are displayed in Figure 5.10, Figure 5.11, Figure 5.12, Figure 5.13, and Figure 5.14

for SEN, SPEC, PPV, NPV and FSCORE respectively. An inspection of Figure 5.10 shows

that the SEN of GOBAM is higher than the SEN of all the other three ARTMAP models in

all but one (young female) of the CLUSTer subgroups. This means 94%, 92%, 96% of

individuals predicted with MetS by GOBAM are young males, middle-aged males and

middle-aged females that actually have MetS according to the the clinical definition. The

SEN of BAM is slightly higher than that of GOBAM for the young female subgroup.

Furthermore, the SPEC of GOBAM is higher for all the four subgroups where 78%,

83%, 88%, and 81% of individuals predicted by GOBAM as non-MetS are actually young

males, middle-aged males, young females and middle-aged females that do not have MetS

according to the clinical definition. In clinical settings, a valid test should have both high

SEN and SPEC (Boyce, 2017). Interestingly, an inspection of the GOBAM results in

Figure 5.10 and Figure 5.11 shows that a good balance between SEN and SPEC exists for

120

Univ
ers

iti 
Mala

ya



Figure 5.10: Comparative diagram of GOBAMwith GAFAM, BAM, and FAMwith
respect to SEN for all the CLUSTer dataset subgroups

the prediction of MetS. The SEN and SPEC values of GOBAM is in line with previous

studies that applied machine learning to predict MetS. (Worachartcheewan et al., 2013),

(Hosseini et al., 2014), (J. Chen et al., 2004), (Z. Lin et al., 2014), (Obokata et al., 2015),

(Van Schependom et al., 2015), (Worachartcheewan et al., 2015), and (Karimi-Alavijeh et

al., 2016) where they report various SEN and SPEC values as 99.85% & 99.86%, 89%

& 87.93%, 88.43% & 83.70%, 89.86% & 84.04%, 78% & 54%, 94.89% & 99.15%, and

77.4% & 74.0% respectively. Thus the GOBAM model with both high SEN and SPEC

reflect its ability for the early prediction of MetS. However, It can be observed that the

overall SEN is higher than the SPEC for all the ARTMAPmodels in all the subgroups. This

is because SPEC is influenced by the prevalence of a condition in the population sample

(Brenner & Gefeller, 1997). Therefore, in our experiments, the number of non-MetS

samples in the CLUSTer dataset are more than the number of MetS samples as depicted in

Figure 4.2.

The percentage of individuals that have been diagnosed with MetS by GOBAM and

that actually have MetS according to the clinical definition is the PPV of the model.
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Figure 5.11: Comparative diagram of GOBAMwith GAFAM, BAM, and FAMwith
respect to SPEC for all the CLUSTer dataset subgroups

GOBAM predicts correctly in Figure 5.12 that 93%, 91%, 98%, 95% of the young males,

middle-aged males, young females and middle-aged females that have MetS according

to the clinical definition are at risk of MetS. The NPV is the percentage of individuals

that have been predicted as non-MetS which actually do not have MetS according to the

clinical definition. So, GOBAM predicts correctly that 78%, 84%, 76% and 86% of the

young males, middle-aged males, young females and middle-aged females do not have

MetS actually do not have MetS according to the clinical definition. The results of AUC,

ACC, SEN, SPEC, PPV, NPV, and FSCORE for GOBAM, ARTMAP models - GAFAM,

BAM, and FAM are presented in Table B.1, Table B.2, Table B.3, Table B.4, Table B.5,

Table B.6, Table B.1 are presented in Appendix B.
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Figure 5.12: Comparative diagram of GOBAMwith GAFAM, BAM, and FAMwith
respect to PPV for all the CLUSTer dataset subgroups

In a two class problem such as the prediction of the risk of MetS, the predictive

model’s ability to maximise the percentage of cases with MetS is directly proportional to

maximising the PPV and/or sensitivity (true positive rate) percentage. MetS is not directly

a disease but a constellation of abnormalities which may result to diseases that are fatal

(K. Alberti et al., 2009). Therefore, the early diagnosis or prediction of MetS risk can be

used for the early prevention, identification or treatment of the associated diseases of MetS.

Consequently, a good predictive or diagnostic model is one with a high PPV or sensitivity

that maximises the number of people correctly diagnosed as being at risk of MetS. The

percentage of individuals diagnosed positively by GOBAM as having MetS who actually

have MetS according to the clinical definition is the PPV (Boyce, 2017). The percentage

of individuals diagnosed negatively by GOBAM as non-MetS who actually do not have

MetS according to the clinical definition is the NPV (Boyce, 2017).

A high positive diagnosis of the number of people is more required than the accuracy

of the prediction model. Hence, the PPV and/or sensitivity are seen as more efficient

performance metrics in both statistical and machine learning models that predict or
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diagnose the risk of MetS. Figure 5.15 presents the time complexity of the GOBAM,

GAFAM, BAM and FAM for the all the four subgroups. The time complexity the optimised

BAM and FAM is higher than that of the classic BAM and FAM. This is due to the GA’s

high processing time requirement. The dataset with largest number of samples has the

highest computational cost. Generally, GOBAM has the highest computational cost and is

consistent in all the datasets. This high time complexity is one of the limitations of this

work.

Figure 5.13: Comparative diagram of GOBAMwith GAFAM, BAM, and FAMwith
respect to NPV for all the CLUSTer dataset subgroups

5.6 Statistical Test

In order to analyse the statistical significance of the performance the proposed GOBAM

model, the Friedman test is applied (Friedman, 2001). The Friedman test is a non-

parametric test that ranks a performance measure of multiple algorithms for each data set

separately. The Friedman test can measure the statistical difference of machine learning

algorithms based on their predictive performance measure rankings. The algorithm with

the best performance measure is ranked highest, followed by the second best in rank
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Figure 5.14: Comparative diagram of GOBAMwith GAFAM, BAM, and FAMwith
respect to FSCORE for all the CLUSTer dataset subgroups

Figure 5.15: Comparative diagram of GOBAMwith GAFAM, BAM, and FAMwith
respect to time complexity for all the CLUSTer dataset subgroups

and so on. In the case where algorithms are tied, an average ranks are assigned. This

statistical test was conducted for each of the six predictive performance measures displayed

in Figure 5.10 (SEN), Figure 5.11 (SPEC), Figure 5.12 (PPV), Figure 5.13 (NPV), and

Figure 5.14 (FSCORE).

Table 5.7 shows the Friedman results for the average mean performance metrics of the
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Table 5.7: Friedman Test Results for comparison of GOBAM, BAM, GAFAM, and
FAM predictive performance metrics

Mean Ranks
AUC SEN SPEC PPV NPV FSCORE

GOBAM 4 4 4 3.5 3.5 2.5
BAM 3 2.25 2.75 3.5 3.25 4
GAFAM 1.75 2.75 2.25 1.5 1.25 1
FAM 1.25 1 1 1.5 2 2.5

four CLUSTer subgroups, young male, middle-aged male, young female and middle-aged

female for AUC, SEN, SPEC, PPV, NPV and FSCORE. Since there are four models,

GOBAM, BAM, GAFAM, and FAM, to be compared, the rank "1" indicates the model

with lowest predictive performance while the rank value "4" indicates the model with

the highest predictive performance. From Table 5.7, it can be seen that the proposed

GOBAM model ranks highest in AUC, SEN, SPEC, and NPV predictive performance

metrics. However, it ties with BAM in the PPV performance metric and ties with FAM for

the third place in th FSCORE performance metric. These results show the superiority of

the predictive performance and generalisability of the proposed MetS model over the other

ARTMAP models. Furthermore, it confirms validity of the proposed GOBAM as a tool

for risk quantification and prediction of MetS.

5.7 Clinical Utility ofMetabolic SyndromeRiskQuantification UsingGOBAM

Having ascertained the high predictive performance of GOBAM, it is now necessary to

discuss the clinical utility GOBAM. This research work also focuses on the prediction of

MetS in individuals who present with MRF measurements that are close to the clinically

defined thresholds as stated in Table 1.1. The proposed GOBAMmodel outputs a posterior

probability that is associated with the class category of an input. This probability value

ranges between 0 and 1. It is a probabilistic value that can be used as a risk quantification

measure related to the prediction of MetS by GOBAM. The clinical utility of GOBAM
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as risk quantification and prediction method of MetS can be explained in terms of this

value. The posterior probability value derived from the GOBAM model has the same

range as AUC, between 0 and 1. Therefore, this research work adopts the same value range

to defined the risk quantification of MetS using GOBAM. The risk quantification of MetS

is defined in Table 5.8.

Table 5.8: Risk quantification for MetS for borderline non-MetS diagnosis from the
GOBAM model

MetS class Risk Quantification Value Description
0 ( non-MetS ) 0.8 - 1 Very low risk of MetS

0.7 - 0.8 Low risk of MetS
0.6 - 0.7 Questionable risk of MetS
0.5 - 0.6 High risk of MetS
< 0.5 Very High risk of MetS

The MRF measurements in Table 5.9 will be used to describe the clinical utility of risk

quantification value derived from the GOBAM model. For example, let us assume that a

middle-aged male presents with a BMI of 28 kg/m2 and MRF measurements as shown in

Table 5.9. According to the JIS (K. Alberti et al., 2009) definition, he will not be diagnosed

as being at risk of MetS (See section 1.1) because only the WC and TG measurements have

exceeded the clinical thresholds. However, the FPG, HDL-C and BP MRF measurement

values are very close to the clinical thresholds and if unchecked, this individual will be at

risk of MetS in the nearest future. To identify these risks, GOBAM generates probability

estimations for each class prediction which can aid in ranking an individual with borderline

values. After running this sample through our proposed GOBAM model, this middle aged

male is classified as having non-MetS with 0.2567 posterior probability. This means that

although he has been classified correctly as not having MetS, the risk quantification of

having MetS is "very High" as stated in Table 5.9 and thus he is at risk of having MetS. This

results can be used for the early diagnosis of MetS in order to administer early intervention
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methods to prevent the progression of the MRF measurement values from exceeding the

clinical threshold.

Table 5.9: MetS risk factor sample measurement for middle-aged Asian male and
diagnosis according to JIS definition

MRFs Patient MRF
measurements

JIS threshold JIS MetS
Assessment

FPG 5.5 mmol/L ≥ 5.6 mmol/L No
WC 108 cm > 102 cm Yes
TG 1.9 mmol/L ≥ 1.7mmol/L Yes
HDL-C 1.2 mmol/L < 1.0 mmol/L No
BP 129/80 mmHg ≥ 130/85 mmHg No

5.8 Summary

The results of the initial preliminary experiments and the final experiments conducted

in this research work were presented. The preliminary experiments were conducted to

evaluate the overall efficiency and generalisability of the proposed GOBAM. A detailed

discussion on the evaluation of the predictive performance of GOBAM against GAFAM,

BAM and FAMwas presented. The results of the performance metrics of the four CLUSTer

subgroups, young male, middle-aged male, young female and middle-aged female for

AUC, SEN, SPEC, PPV, NPV and FSCORE were presented and discussed in detail. The

Friedman statistical test was also conducted to evaluate the generalisability and efficiency

of the proposed GOBAM model. And finally an example of the risk quantification utility

of the proposed GOBAM was presented.

128

Univ
ers

iti 
Mala

ya



CHAPTER 6: CONCLUSION

6.1 Introduction

This chapter presents a summary of the research findings on the computational

intelligence approach risk quantification and prediction of MetS. The aim of this research

is to investigate the development and application of machine learning techniques for

the prediction and risk quantification of MetS. This research also considers the risk

quantification and diagnosis of MetS in individuals who present with MRF measurements

that are close to the clinically defined threshold in Table 1.1. The MRF measurements was

collected from the CLUSTer dataset.

6.2 Summary of Research Findings

The challenges and demands in the area of diagnosis, monitoring and management

of MetS are increasing. These problems have lead a number of studies to be carried out

for the application of non-clinical techniques in order to support the clinical diagnosis

of MetS. The early diagnosis of MetS is important because it usually preceeds the onset

and development of major challenging NCDs such as T2DM. However, both the clinical

definitions and the existing non-clinical methods used to diagnose MetS have some

limitations as mentioned in Section 1.2. The clinical definition of MetS is mainly limited

by loss of information because it diagnosis MetS by dichotomising the five clinical MRF

measurements. Furthermore, it is difficult to diagnosis the risk of MetS in individuals who

present with borderline MRF measurements that are close to the clinically defined MRF

measurements. The non-clinical techniques used to diagnose the risk MetS are sample

specific, inefficient for early diagnosis of the risk of Metabolic Syndrome (MetS) and

cannot be generalised for use in clinical utility. In order to overcome these problems, this

research work addressed the following research objectives as presented in Section 1.4. We
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achieved the first objective by conducting an exhaustive literature review of existing studies

that applied non-clinical techniques to predict the risk of MetS in various populations.

Research Question 1 was answered in chapter 2 to achieve the Research Objective 1 in

Section 1.4.

The findings revealed that three categories of non-clinical techniques have been adopted

by various studies to predict the risk of MetS using various population samples. These

methods include statistical techniques, risk quantification and machine learning techniques.

Furthermore, it was realised that non of the studies identified used both prediction and

risk quantification at the same time to diagnose the risk of MetS. Furthermore, the

risk of MetS has not been predicted especially in individuals who present with MRF

measurements that are close to the clinically definedMRF thresholds as defined in Table 1.1.

Research Objective 2 was realised by proposing a non-clinical clinical approach for the

risk quantification and prediction of MetS based on the BAM and GA known as GOBAM.

This is a novel machine learning model that genetically optimises the parameters

and input sequence order of the BAM. The GOBAM model was able to quantify and

predict the risk of MetS while considering individuals who present with borderline MRF

measurements that are close to the clinically defined threshold.

In order to achieve the Research Objective Research Questions 3, Research Questions

4 and Research Questions 5 were answered. The CLUSTer dataset was used to conduct

preliminary and main experiments on the proposed GOBAM model and three other classic

ARTMAP models, GAFAM, FAM, and BAM. The six predictive performance metrics,

namely, ROC curves, AUC, SEN, SPEC, PPV, NPV and FSCORE were generated. A

comparative analysis was carried out to ascertain, the efficiency, validity and generalisability

of the GOBAM model against the other classical ARTMAP models.
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6.3 Research Contribution

This research work has applied GA and BAM in a computational intelligence approach

to develop a novel machine learning model GOBAM which can be used for the risk

quantification and prediction of MetS. The contributions of this research work include the

following:

• The use of GA to optimise the parameters and the sample sequence order of

the BAM has improved the predictive performance of the BAM as an variant of

ARTMAP.

• The proposed GOBAMmodel was able to predict the risk of MetS with a maximum

of 91.45% correctness probability.

• The computational intelligence of the GOBAM model was exhibited predicting the

risk quantification of MetS for individuals who present with MRF measurements

that are close to the clinically defined MRF thresholds.

• Comparison with classical ARTMAP models show that the GOBAM outperforms

GAFAM, FAM, and BAM in terms of ROC curve, AUC, SEN, SPEC, and NPV

predictive performance metrics.

• The GOBAM model exhibits clinical validity because its SEN and SPEC metric

performance values are balanced. Therefore it is sensitive to individuals with MetS

and specific to isolating non-MetS.

• Medical practitioners can use the proposed model to determine baseline risk of

future disease for their patients.

6.4 Future Work

The practical utility of the risk quantification and prediction of MetS for the temporal

progression and management of its two major associated diseases, T2DM and CVD will
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be carried out in future works. The proposed machine learning model will be applied in

a long term epidemiological study. The risk quantification and prediction of MetS will

be used to monitor and identify the both collective and isolated effects of the MRFs to

CVD and T2DM. The GA model used in this research work has many parameters that

require fine tuning. Therefore, we intend to use less demanding optimisation techniques to

improve the performance of the ARTMAP models in future research.

This research work proposed a novel MetS risk quantification and prediction model,

GOBAM. GOBAM is able to support the clinical diagnosis of MetS by resolving its

weaknesses. The proposed model also showed clinical validity by extensive performance

evaluation using a large population sample MRF examination results for young males,

middle-aged male, young females and middle-aged females. The evaluation results showed

that the proposed model can quantify and predict the risk of MetS and effectively. The

imbalance nature of the dataset will be investigated. Various imbalance techniques will be

applied to the dataset and the results of the experiments will be analysed in order to further

ascertain the efficiency of GOBAM.

Furthermore, GOBAM will be explored as an online and incremental learning model.

This features of the algorithm will be applied in tracking the progression of the risk of

MetS over time.

6.5 Limitations of the Study

This study has the following limitations. First, the cohort study for the dataset used

was restricted to Malaysian school teachers. Secondly, the incidence of MetS was low

in the dataset, hence the low rate of true positive predictions. This bias was decreased

by performing the 10-fold cross validation and averaging the results. Moreover, results

from the other classic ARTMAP algorithms are similar to our results from the proposed

GOBAM algorithm. This further ensures the high performance of the results obtained.
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Furthermore, the dataset is imbalanced with more samples not having MetS as the

clinical definition indicates. The problem of imbalanced datasets in predominant in

healthcare (Perveen et al., 2019). This is as a result of the real life nature of the dataset, in

this case and its population characteristic being teachers. The imbalance problem can be

tackled by preprocessing the dataset using various sampling methods (Melillo, De Luca,

Bracale, & Pecchia, 2013) in order to improve the performance of the risk prediction

model. The procedure may include testing the efficacy sampling methods like random

undersampling, ramdom oversampling, and the K-Medoids undersampling (Perveen et al.,

2019).
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