

PERFORMANCE ANALYSIS OF CONVOLUTIONAL NEURAL

NETWORKS EXTENDED WITH PREDEFINED KERNELS IN IMAGE

CLASSIFICATION

ARASH FATEHI

FACULTY OF COMPUTER SCIENCE AND INFORMATION

TECHNOLOGY

UNIVERSITI MALAYA

KUALA LUMPUR

2022

Univ
ers

iti
Mala

ya

PERFORMANCE ANALYSIS OF CONVOLUTIONAL
NEURAL NETWORKS EXTENDED WITH PREDEFINED

KERNELS IN IMAGE CLASSIFICATION

ARASH FATEHI

DISSERTATION SUBMITTED IN FULFILMENTOF

THE REQUIREMENTS FOR THE DEGREE OF MASTER
OF COMPUTER SCIENCE (APPLIED COMPUTING)

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITI MALAYA
KUALA LUMPUR

2022

Univ
ers

iti
Mala

ya

ii

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Arash Fatehi

Matric No: 17220613/1

Name of Degree: Master of Computer Science (Applied Computing)

Title of Thesis: Performance Analysis of Convolutional Neural Networks Extended

with Predefined Kernels in Image Classification

Field of Study: Artificial Neural Networks

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

Candidate’s Signature Date: 08/May/2022

Subscribed and solemnly declared before,

Witness’s Signature Date: 08/May/2022

Name:

Designation:

Univ
ers

iti
Mala

ya

iii

PERFORMANCE ANALYSIS OF CONVOLUTIONAL NEURAL
NETWORKS EXTENDED WITH PREDEFINED KERNELS IN

IMAGE CLASSIFICATION

ABSTRACT

While Machine Learning aims to solve more challenging problems, Artificial Neural

Networks (ANN) become deeper and more accurate. Convolutional Neural Network

(CNN) is not an exception and state-of-art architectures consist of millions of learnable

parameters. Aiming for better performance, these networks become more complex and

computation intensive. Also, with the rise of IoT devices and edge computing, the

importance of model acceleration and reduction of needed computing resources become

more curial for training neural networks. Model acceleration and compression techniques

often target reducing inference latency and memory usage, and research about reducing

the training time was limited to two previous studies. Considering numerous use cases of

CNNs, reducing the training time and processing cost is beneficial. CNNs are universal

functions and in the case of supervised learning, they will converge to a specific desired

function after training. In this research, predefined image processing kernels were merged

into CNN's architecture to help the network to converge faster for the use case of image

classification. This method can be applied to any classification task of multi-channel

sensory data. The efficiency of the method was tested through an experiment on

ImageNet, Cifar10, and Cifar100 datasets. The effects on performance were architecture

dependent. In the case of CNNs with residual blocks and skip connections, the model was

not able to leverage the provided information by image processing filters to converge

faster, but CNNs based on VGG had a significantly (up to 125%) faster training time,

which is beneficial for training models on embedded devices and edge computing.

Keywords: Deep Learning, Convolutional Neural Networks, Model Acceleration

Univ
ers

iti
Mala

ya

iv

ANALISIS PRESTASI RANGKAIAN SARAF KONVOLUSI YANG
DIPERLUASKAN DENGAN KERNELS DIJELASKAN DALAM

KLASIFIKASI IMEJ

ABSTRAK

Walaupun Pembelajaran Mesin bertujuan untuk menyelesaikan masalah yang lebih

mencabar, Rangkaian Neural Buatan (ANN) adalah lebih mendalam dan tepat. Rangkaian

Neural Konvolusi (CNN) tidak terkecuali dan seni bina terkini terdiri daripada berjuta-

juta parameter yang boleh dipelajari. Menyasarkan prestasi yang lebih baik, rangkaian ini

menjadi lebih kompleks dan pengiraan lebih intensif. Juga, dengan peningkatan peranti

IoT dan pengkomputeran tepi, kepentingan pecutan model dan pengurangan sumber

pengkomputeran yang diperlukan menjadi lebih penting untuk melatih rangkaian saraf.

Teknik pecutan dan mampatan model menyasarkan pengurangan kependaman inferens

dan penggunaan ingatan, dan kajian tentang mengurangkan masa latihan dihadkan kepada

dua kajian terdahulu. Mengambilkira kes penggunaan CNN, mengurangkan masa latihan

dan kos pemprosesan adalah berfaedah. CNN ialah fungsi universal dan dalam kes

pembelajaran diselia, ia akan bertumpu kepada fungsi tertentu yang dikehendaki selepas

latihan. Dalam kajian ini, kernel pemprosesan imej yang telah ditetapkan telah

digabungkan ke dalam seni bina CNN untuk membantu rangkaian menumpu lebih cepat

untuk kes penggunaan klasifikasi imej. Kaedah ini boleh digunakan untuk sebarang tugas

pengelasan data sensor berbilang saluran. Kecekapan kaedah telah diuji melalui

eksperimen pada dataset ImageNet, Cifar10, dan Cifar100. Hasil ke atas prestasi adalah

bergantung kepada seni bina. Dalam kes CNN dengan baki blok dan sambungan langkau,

model tidak dapat memanfaatkan maklumat yang diberikan oleh penapis pemprosesan

imej untuk menumpu lebih cepat, tetapi CNN berdasarkan VGG mempunyai masa latihan

yang lebih pantas (sehingga 125%), iaitu bermanfaat untuk model latihan pada peranti

terbenam dan pengkomputeran tepi.

Kata kunci: Pembelajaran Dalam, Rangkaian Neural Konvolusi, Pemprocesan Model

Univ
ers

iti
Mala

ya

vi

TABLE OF CONTENTS

Abstract ... iii

Abstrak ... iv

Table of Contents ... vi

List of Tables .. xi

List of Symbols and Abbreviations ... xii

CHAPTER 1: INTRODUCTION .. 1

1.1. Research Background .. 1

1.2. Problem Statement ... 4

1.3. Research Questions .. 5

1.4. Research Objectives ... 5

1.5. Research Significance .. 5

1.6. Expected Outcomes ... 6

1.7. Summary .. 6

CHAPTER 2: LITERATURE REVIEW .. 7

2.1. Introduction .. 7

2.2. CNN Architectures .. 8

2.3. Model Acceleration.. 13

2.4. Summary .. 21

CHAPTER 3: RESEARCH DESIGN ... 23

3.1. Introduction .. 23

3.2. Filter Layer .. 26

3.3. Image Processing Filters .. 28

Univ
ers

iti
Mala

ya

vii

3.3.1 Second Order Filters .. 31

3.3.2 DCT Filter .. 32

3.3.3 Sharpening and Blurring Filters ... 33

3.3.4 Embossing Filter .. 34

3.3.5 Compass Gradient Filters... 35

3.4. Quantitative Analysis ... 39

3.5. Network`s Architecture.. 40

3.4.1 Fusion of Filter and Convolutional Layers .. 41

3.4.2 Batch Normalization and Dropout ... 42

3.4.3 Network`s Schematics ... 42

3.5. Summary .. 44

CHAPTER 4: RESULTS .. 45

4.1. Introduction .. 45

4.2. Baseline and GFNN VGGs Trained on Cifar10 .. 49

4.3. Baseline and GFNN ResNets Trained on Cifar10 ... 54

4.4. Baseline and GFNN VGGs trained on Cifar100 dataset 59

4.5. Baseline and GFNN ResNets trained on Cifar100 dataset 64

4.6. Baseline and GFNN VGGs trained on ImageNet_64x64 dataset 68

4.7. Baseline and GFNN ResNets trained on ImageNet_64x64 dataset 73

4.8. Summary .. 78

CHAPTER 5: CONCLUSION ... 80

References ... 82

Univ
ers

iti
Mala

ya

viii

LIST OF FIGURES

Figure 2.1: Number of publications with the keyword: Deep Learning 7

Figure 2.2: Number of publications with the keyword: CNN ... 7

Figure 2.3: Knowledge Map.. 21

Figure 3.1: Research Design ... 25

Figure 3.2: Difference Between Convolutional and Filter Layer.................................... 27

Figure 3.3: A Schematic View of The Filters (Expect DCT).. 30

Figure 3.4: A Sample from Imagenet_64x64 Dataset ... 31

Figure 3.5: Result of Second Order Filters Applied on The Sample 32

Figure 3.6: Result of Sharpening Filter Applied on The Sample 34

Figure 3.7: Result of Blurring Filter Applied on The Sample .. 34

Figure 3.8: Result of Embossing Filter Applied on The Sample 35

Figure 3.9: Result of Compass Gradient Filters (1-5) Applied on The Sample 37

Figure 3.10: Result of Compass Gradient Filters (6-10) Applied on The Sample 38

Figure 3.11: Schematic of GFNN VGG for ImageNet_64x64 43

Figure 3.12: Schematic of GFNN ResNet for ImageNet_64x64 43

Figure 4.1: Accuracy by Epoch - VGGs - Training (Cifar10) .. 50

Figure 4.2: Accuracy by Time - VGGs - Training (Cifar10) .. 50

Figure 4.3: Accuracy by Epoch - VGGs - Validation (Cifar10) 51

Figure 4.4: Accuracy by Time - VGGs - Validation (Cifar10) 52

Figure 4.5: Loss Value - VGGs - Training (Cifar10) .. 52

Figure 4.6: Loss Value - VGGs - Validation (Cifar10) .. 53

Figure 4.7: Relative Training Time -VGGs (Cifar10) .. 53

Figure 4.8: Accuracy by Epoch – ResNets - Training (Cifar10) 55

Univ
ers

iti
Mala

ya

ix

Figure 4.9: Accuracy by Time - ResNets - Training (Cifar10) 55

Figure 4.10: Accuracy by Epoch - ResNets - Validation (Cifar10) 56

Figure 4.11: Accuracy by Time - ResNets - Validation (Cifar10) 56

Figure 4.12: Loss Value - ResNets - Training (Cifar10)... 57

Figure 4.13: Loss Value - ResNets - Validation (Cifar10) ... 57

Figure 4.14: Relative Training Time - ResNets (Cifar10) .. 58

Figure 4.15: Accuracy by Epoch - VGGs - Training (Cifar100) 59

Figure 4.16: Accuracy by Time - VGGs - Training (Cifar100) 60

Figure 4.17: Accuracy by Epoch - VGGs - Validation (Cifar100) 60

Figure 4.18: Accuracy by Time - VGGs - Validation (Cifar100) 61

Figure 4.19: Loss Value - VGGs – Training (Cifar100) ... 62

Figure 4.20: Loss Value - VGGs - Validation (Cifar100)... 62

Figure 4.21: Relative Training Time - VGGs (Cifar100) ... 63

Figure 4.22: Accuracy by Epoch – ResNets - Training (Cifar100) 64

Figure 4.23: Accuracy by Time - ResNets - Training (Cifar100) 65

Figure 4.24: Accuracy by Epoch - ResNets - Validation (Cifar100) 65

Figure 4.25: Accuracy by Time - ResNets - Validation (Cifar100) 66

Figure 4.26: Loss Value - ResNets - Training (Cifar100)... 66

Figure 4.27: Loss Value - ResNets - Validation (Cifar100) ... 67

Figure 4.28: Relative Training Time - ResNets (Cifar100) .. 67

Figure 4.29: Accuracy by Epoch - VGGs - Training (ImageNet_64x64) 69

Figure 4.30: Accuracy by Time -VGGs - Training (ImageNet_64x64) 69

Figure 4.31: Accuracy by Epoch – VGGs - Validation (ImageNet_64x64) 70

Figure 4.32: Accuracy by Time – VGGs - Validation (ImageNet_64x64) 71

Univ
ers

iti
Mala

ya

x

Figure 4.33: Loss Value - VGGs - Training (ImageNet_64x64) 71

Figure 4.34: Loss Value - VGGs - Validation (ImageNet_64x64) 72

Figure 4.35: Relative Training Time - VGGs (ImageNet_64x64) 72

Figure 4.36: Accuracy by Epoch - ResNets - Training (ImageNet_64x64).................... 74

Figure 4.37: Accuracy by Time - ResNets - Training (ImageNet_64x64) 74

Figure 4.38: Accuracy by Epoch - ResNets - Validation (ImageNet_64x64) 75

Figure 4.39: Accuracy by Time - ResNets - Validation (ImageNet_64x64) 75

Figure 4.40: Loss Value - ResNets – Training (ImageNet_64x64) 76

Figure 4.41: Loss Value - ResNets - Validation (ImageNet_64x64) 76

Figure 4.42: Relative Training Time - ResNets (ImageNet_64x64) 77

Univ
ers

iti
Mala

ya

xi

LIST OF TABLES

Table 2.1: Modern CNN architectures and their properties .. 9

Table 2.2: Different approaches to model acceleration and compression 14

Table 2.3: Overview of model acceleration techniques .. 15

Table 3.1: Datasets and their characteristics ... 23

Table 3.2: Quantitative Variables.. 39

Table 3.3: Designed Networks Information .. 40

Table 4.1: Result of Quantitative Variables for VGGs on Cifar10 49

Table 4.2: Result of Quantitative Variables for ResNets on Cifar10 54

Table 4.3: Result of Quantitative Variables for VGGs on Cifar100 59

Table 4.4: Result of Quantitative Variables for ResNets on Cifar100 64

Table 4.5: Result of Quantitative Variables for VGGs on ImageNet_64x64 68

Table 4.6: Result of Quantitative Variables for ResNets on ImageNet_64x64 73

 Univ
ers

iti
Mala

ya

xii

LIST OF SYMBOLS AND ABBREVIATIONS

ANN : Artificial Neural Network

CNN : Convolutional Neural Network

ML : Machine Learning

RNN : Recurrent Neural Network

GAN : Generative Adversarial Network

VAE : Variational Auto Encoder

GO : Gradient Optimization

FFD : Feed Forward Network

SR : Super Resolution

GFNN : Generalized Filter Neural Network

DCT : Discrete Cosine Transform

Univ
ers

iti
Mala

ya

xiii

Univ
ers

iti
Mala

ya

1

CHAPTER 1: INTRODUCTION

1.1. Research Background

Complex spatial pattern recognition like detecting and labeling objects in an image,

for a long time considered a daunting, if not an impossible task, till a breakthrough

happened and Krizhevsky et al. (2012) showed that Artificial Neural Networks (ANN)

can be trained for the tasks like image classification or object detection and are capable

of much more. In contrast to classic programs, an ANN will be trained instead of

programmed. The idea behind ANNs based on simulating the activation of neurons, and

in most ANN architectures, stacks of artificial neurons construct a layer, and the

connection between these layers causes neurons in the next layer to activate. There are

numerous ANN architectures with diverse applications, including Feed Forward Neural

Networks (J. Wang et al., 2018), Recurrent Neural Network (RNN) (Chandra & Sharma,

2017), Convolutional Neural Networks (CNN) (Krizhevsky et al., 2017), Generative

Adversarial Networks (GAN) (Creswell et al., 2018), Variational Auto-Encoders (VAE)

(Hou et al., 2017), etc.

Convolutional Neural Network combines the concept of convolutions with ANN.

During the training, the convolutions will learn how to extract useful features from the

datasets. Performing the daunting task of feature extraction automatically, combined with

their high accuracy, makes CNN a perfect choice for many use cases like Image

Processing, Natural Language Processing, Data-Driven Personalized Advertising (J. A.

Choi & Lim, 2020), Genome Mapping (Agarwal & Shendure, 2020), etc. The focus of

this work is on using CNNs in Image Classification. Image Classification is a

classification task in machine learning that maps a set of raster data to their labels. Image

classification with CNNs has many real-world applications, for example: CNNs play an

essential role in cancer recognition. Goyal et al. (2020) have used CNNs for detecting

Univ
ers

iti
Mala

ya

2

skin cancers, Y. Liu et al. (2019) did the same for detecting lung cancer. Adarme et al.

(2020) suggests that CNN-based techniques have the best performance in autonomous

deforesting detection in satellite images using image classification. Dung & Anh (2019)

demonstrate autonomous crack detection in concrete using CNNs, Fujiyoshi et al. (2019)

shows the role of CNNs in autonomous driving. Many use cases exist for the combination

of CNNs and image classification which implies their importance in modern science and

industry.

For image classification, CNNs are often used in a supervised manner and the network

should be trained via samples and their known labels, which involves massive matrix

calculations for feedforward and backpropagation phases. As machine learning aims to

solve more challenging tasks, the complexity of neural networks increases. Also,

advances in the field focus on improving accuracy by making the networks deeper. And

the processing power and memory needed for training rise rapidly when the number of

network layers increases which makes training of a production ready network costly. To

mention a few examples, DenseNet-k=24 (Huang et al., 2017) with 100 layers contains

17.2 million learnable parameters, ResNet-50 (He et al., 2016) with 50 layers contains 26

million parameters, Xception (Chollet, 2017) with 71 layers have 23 million learnable

parameters, additionally these models should be trained on massive datasets like

ImageNet (Jia Deng et al., 2009) that contains more than 14 million images.

With the extensive usage of CNNs and the training cost of a production-ready model,

it is crucial to optimize the networks both at the training and interference phases and this

work focuses on the model acceleration of CNNs when used in a supervised manner in

image classification. There exist several model acceleration methods focused on different

aspects of the model’s performance that target the inference latency and memory usage.

The stat of art model acceleration methods is discussed extensively in Chapter 2. But, to

Univ
ers

iti
Mala

ya

3

refer to a few of them here: Zhang & Li (2020) suggest performing the convolutional

operation in the furrier domain. C. Liu et al. (2019) introduces a method to use redundant

kernel removal for gradient optimization (GO) in using CNNs for Super-Resolution (SR).

Szegedy et al. (2016) proposed asymmetrical convolution where a d×d convolution is

spatially factorized as a sequence of two layers with d×1 and 1×d convolutions which are

used in the Inception model, etc.

In some cases, transfer learning solves the problem of costly training by reusing

already trained convolutional layers in the target network architecture. The trained

convolutional layers are specialized for the original dataset and should be trained for new

content to achieve the desired performance, but the needed time and processing is

relatively minimal. But using pre-trained convolutional layers is practical only if features

of the destination dataset have similarities with the original dataset. Otherwise, domain

adaptation would become an obstacle in using transfer learning.

Another approach to model acceleration is to focus on the network architecture, often

the first layer of convolutions in trained CNNs becomes similar to edge detection filters,

suggesting that adding predefined edge detection kernels to their first layer might help

the network to converge faster and reduce the training time. The idea suggested by Jung

et al. (2018) and the networks have been termed "Generalized Filter Neural Network

(GFNN)". The architecture was implemented and tested by the author on the MNIST

dataset, but at the time of writing, no analysis about its performance and side effects when

used on more complex datasets has been found during the literature review.

The " Generalized Filter Neural Network" have the potential to decrease the training

time with minimal degradation in accuracy and can be useful for training models on

Univ
ers

iti
Mala

ya

4

embedded or edge devices if verified. But the idea was tested only on the MNIST dataset.

The MNIST dataset is not complex enough to validate the efficiency of the method, and

a more comprehensive experiment is needed. It is necessary to test the method on different

architecture and analyze their performance on more complex datasets like ImageNet,

Cifar100, and Cifar10. This research will design and implement multiple GFNNs and will

analyze and compare their performance on ImageNet_Resized (Jia Deng et al., 2009),

Cifar100 (Krizhevsky & Hinton, 2009), and Cifar10 (Krizhevsky & Hinton, 2009) with

their equivalent baseline versions in terms of accuracy, training time, and overfitting.

1.2. Problem Statement

With advances in the field of deep neural networks, state-of-the-art CNN architectures

have become more memory and computation intensive, that is troublesome in the case of

training CNNs on embedded devices and edge computing (Xu et al., 2018). With the rise

of IoT devices and edge computing, it has been critical to develop model acceleration

techniques compatible with low memory and processing environments (Chandakkar et

al., 2017). Most model acceleration techniques focus on inference and even add

complexity to the training phase, thus focusing on reducing the training time of CNNs is

beneficial to address the mentioned problem. Extension of Convolutional Neural Network

with General Image Processing Kernels (Jung et al., 2018) is a potential technique to

reduce the training time in the use case of image classification, but the method is not

compatible with multi-sensory input data and their performance has never been

empirically tested on datasets with complex features and a high number of classes. Also,

by applying the technique the number of learnable parameters reduces that might have a

potential side effect of overfitting of the neural network that has not been tested yet.

Univ
ers

iti
Mala

ya

5

1.3. Research Questions

i. What are model acceleration techniques and how do they apply to CNNs?

ii. Can model acceleration techniques result in a reducing the training time of

CNNs?

iii. How to alter GFNNs to be applicable to multi-channel sensory data?

iv. How do GFNNs perform on multi-channel sensory data? And what is its side

effect on the accuracy of the network?

1.4. Research Objectives

i. To review and compare CNN’s model acceleration techniques.

ii. To review and find model acceleration techniques that target reducing the

training time.

iii. To design and implement a filter architecture to combine image processing

kernels with Convolutional layers when applied to multi-channel sensory data.

iv. To validate the performance of GFNNs on multi-channel datasets

experimentally.

1.5. Research Significance

CNNs play an important role in the field of machine learning, they are used in various

use cases and are applied to different types of input data. Current embedded and edge

devices are powerful enough for the inference phase of most of the CNNs, but for the

training, a much more powerful computer that is equipped with accelerators like GPUs is

necessary. The needed computation and memory for the training of CNNs hinders the

embedded devices to learn from the data independently and with the rise of IoT devices

and edge computing, it is necessary to develop or modify CNNs architectures to be more

compatible with the processing and memory constraint of embedded devices. By reducing

the processing and memory footprint of the model while training, it becomes more

Univ
ers

iti
Mala

ya

6

feasible to implement standalone AI agents that leverage CNNs in their learning pipeline.

This research focuses on the reduction of CNNs training resources by merging images

processing filters into their architecture to help them converge faster.

1.6. Expected Outcomes

To apply the GFNNs on color images, a new method is developed for merging the

image processing filters into the CNNs architectures that is compatible with multi-

channel sensory data. The efficiency of the method is measured experimentally to answer

below questions:

• Do the GFNNs reach a higher accuracy within a certain number of epochs?

• Do the GFNNs reach a certain accuracy sooner? What is the difference for max

possible accuracy of networks?

• Are the GFNNs more vulnerable to overfitting?

1.7. Summary

CNNs have a wide variety of use cases and while aim to solve more complex machine

learning problems with high accuracy, they have become more memory and computation-

intensive, and state of the art architectures consist of millions if not billions of learnable

parameters. Most model acceleration techniques focus on reducing the inference latency

and even add complexity to the training. Thus, to have independent AI agents capable of

learning which leverage CNNs capabilities, it is needed to develop methods of making

CNNs architecture more suitable for low memory and processing environment. This

research provides such a method by combining image processing filters into the CNN

architectures to help them converge faster.

Univ
ers

iti
Mala

ya

7

CHAPTER 2: LITERATURE REVIEW

2.1. Introduction

After AlexNet’s breakthrough (Krizhevsky et al., 2012) in 2012, deep learning has

become the center of attention. Different types of ANNs developed and have been used

in multi-disciplinary research. CNN is one of these architectures which received the most

attention. Figure 2.1 and Figure 2.2 demonstrate the growth in the number of publications

in Web of Science, Science Direct, and IEEE Xplore with "Deep Learning" and

"Convolutional Neural Network" in their title, abstract, or keywords.

Figure 2.1: Number of publications with the keyword: Deep Learning

As showed in Figure 2.2, considerable portion of research in Deep learning is about

Convolutional neural networks.

Figure 2.2: Number of publications with the keyword: CNN

0
5000
10000
15000
20000
25000
30000
35000
40000

202020192018201720162015

Web of Science Science Direct IEEE Xplore

0

5000

10000

15000

20000

25000

30000

202020192018201720162015

Web of Science Science Direct IEEE Xplore

Univ
ers

iti
Mala

ya

8

CNN's good performance on difficult and sometimes ill-posed machine learning

problems in addition to the increasing attention toward them has led to the development

of novel CNN architectures. Table 2.1 demonstrates a list of impactful CNN architectures

with their properties and contribution. In most architectures, the number of neurons along

with the depth of the CNN has a direct relation with the needed processing, and it is

reasonable to consider these variables as an indication of the continuous growth of needed

memory and computation.

2.2. CNN Architectures

Convolutional neural networks combine the idea of convolutions with artificial neural

networks, in the case of most architectures, the network consists of two separate sections.

The convolutional layers learn how to extract the sample features during the training and

a feed-forward layer is in charge of classification based on features delivered by

convolutional layers. But not all the architectures have a simple architecture, for example,

architecture of ResNet consist of residual blocks instead of standalone convolutional

layers, and as explained in detail later, these residual blocks consist of a skip connection

between their convolutional layers.

In case of AlexNet (Krizhevsky et al., 2012), the convolutional layers are preceded

with overlapping max pooling layer that reduces the height and width of their output and

produces thinner tensors for the next convolutional layer and finally the result of the last

convolutional layer is fed to a feed-forward neural network, it also attaches ReLU

activation layers after every convolutional and feed-forward layer.

VGG (Simonyan & Zisserman, 2015) has a uniform architecture, the convolutional

part consists of 16 convolutional layers, similar to AlexNet the convolutions are 3x3 but

with a greater number of kernels for every layer.

Univ
ers

iti
Mala

ya

9

Deep neural networks often suffer from gradient vanishing in which the changes to the

learnable parameters become infinitely small because of repeated multiplication. ResNet

(He et al., 2016) uses the concept of residual blocks that consists of skip connections to

jump over some layers to mitigate vanishing gradient when the network becomes deeper.

He et al. (2016) provide evidence that network with residual blocks is easier to optimize

and can gain more accuracy from their less vulnerability to gradient vanishing that leads

to deeper networks.

Table 2.1: Modern CNN architectures and their properties

Architecture Contribution Params Error (%) Depth Study

AlexNet
Uses Relu,
dropout and
overlap Pooling

60 M ImageNet: 16.4 8
(Krizhevsky et al.,

2012)

VGG
Homogenous
topology, Uses
small size kernels

138 M ImageNet: 7.3 19
(Simonyan &

Zisserman, 2015)

Inception-V4

Split transform
and merge idea,
Uses asymmetric
filters

35 M ImageNet: 4.01 70
(Szegedy et al.,

2017)

Inception -
ResNet

Uses split
transform merge
idea and residual
links

55.8 M ImageNet: 3.52 572
(Szegedy et al.,

2017)

ResNet

Residual
learning, Identity
mapping-based
skip connections

25.6 M

1.7 M

ImageNet: 3.6

CIFAR-10: 6.43

152

 110
(He et al., 2016)

DelugeNet

Allows cross
layer information
flow in deep
network

20.2 M CIFAR-10: 3.76
CIFAR-100: 19.02 146 (Kuen et al., 2017)

WideResNet

Width is
increased and
depth is
decreased

36.5 M
CIFAR-10: 3.89

CIFAR-100: 18.85

28

-

(Zagoruyko &
Komodakis, 2016)

Xception

Depth wise
convolution
followed by point
wise convolution

22.8 M ImageNet: 5.5 126 (Chollet, 2017)

ResNeXt

Cardinality,
Homogeneous
topology,
Grouped
convolution

68.1 M

CIFAR-10: 3.58

CIFAR-100: 17.3

 ImageNet: 4.4

29

-

101

(Xie et al., 2017)

Univ
ers

iti
Mala

ya

10

Table 2.1: Continued

DenseNet Cross-layer
information flow

25.6 M

25.6 M

15.3 M

15.3 M

CIFAR-10+: 3.46

CIFAR100+:17.18

CIFAR-10: 5.19

CIFAR-100: 19.64

190

190

250

250

(Huang et al., 2017)

PyramidalNet Increases width
gradually per unit

116.4 M

27.0 M

27.0 M

ImageNet: 4.7

CIFAR-10: 3.48

CIFAR-100: 17.01

200

164

164

(Han et al., 2017)

ResNeXt101
(32x4d) +
CBAM

Exploits both
spatial and
feature-map
information

48.96 M ImageNet: 5.59 101 (Woo et al., 2018)

CMPESE-
WRN-28

Residual and
identity mappings
both are used for
rescaling the
feature-map

36.92 M

36.90 M

CIFAR-10: 3.58

CIFAR-100: 18.47
152 (Hu et al., 2018)

FixEfficientNet-
L2

Using FixRes
method for fixing
the train-test
resolution
discrepancy

480 M ImageNet: 1.3 -
(Touvron et al.,

2019)

Note. Partially retrieved from (Khan et al., 2020)

ResNet suffers from the problem of “diminishing feature reuse” which happens when

only a small portion of convolutional layers contribute to extracting useful features. In

another word, the network can avoid learning. WideResNet (Zagoruyko & Komodakis,

2016) is a variant of ResNet where the author proves that the network performs better by

increasing the width and reducing the depth of networks. This was achieved using wide

residual blocks. In addition to their dimensions, the major difference between residual

block and wide residual blocks is that wide residual blocks perform back normalization

and ReLU before convolutions while they are after convolutions in the case of original

residual blocks.

Univ
ers

iti
Mala

ya

11

Inception network (Szegedy et al., 2017) consists of inception blocks, each block take

advantage of having multiple kernel size in separate branches of calculation, and the

results of all four branches concatenate at the end of the block. The branches have

different kernel size for convolutional layers, first layer consists of 1x1 convolutions,

second layer 3x3 convolutions, third layer 5x5 convolutions, and forth layer 3x3 max

pooling. Additionally, Inception-v3 introduces the concept of separable convolutions that

consists of depth-wise and point-wise convolutions which are explained later while

focusing on Xception architecture.

ResNeXt (Xie et al., 2017) combines the ideas behind ResNet, VGG, and Inception.

Inception layers should be highly customized, hence adapting the network for new

datasets is difficult. Each ResNeXt block is a module with many uniform branches that

are repeated through the architecture. ResNeXt adds a new dimension termed cardinality

that refers to the number of branches in each block and the result of all branches is

aggregated using summation.

Xception (Chollet, 2017) introduces the concept of modified separable convolution

which is based on depth-wise and point-wise convolutions. A depth-wise convolution is

a combination of per channel n×n spatial kernel that produce the same number of channels

as input, in another word, each kernel in depth-wise convolution is applied on a single

channel and is responsible for only one of the channels in the output. Depth-wise

convolutions are lighter in comparison to conventional convolutional layers as each

kernel is not applied across all the channels. On the other hand, a point-wise convolution

is a 1×1 convolution to change the dimension of the output. Xception defines a modified

version of separable convolutions. In the original design of separable convolutions in

Inception-v3 (Szegedy et al., 2017) the point-wise convolution is performed after the

depth-wise convolution, but in Xception the order of operations is reversed. Also, in

Univ
ers

iti
Mala

ya

12

Xception separable layer there is no intermediate ReLU nonlinearity in oppose to

separable layers in Inception-v3. According to the author of Xception (Chollet, 2017), the

Xception without any intermediate activation function outperformed using either ELU or

ReLU. It also uses skip connection through the architecture and achieved higher accuracy

with the skip connection. The exit flow of the network is like other architectures and the

extracted features are forwarded to a fully connected feed-forward network. Xception is

claimed to have similar model size to Inception-v3 while outperforming VGG, ResNet,

and Inception-v3 while using the residual architecture and skip connections are

implemented. But without the skip connections its performance is lower than Inception-

v3 and might be fairer to compare the performance of Xception with Residual Inception-

v3 instead.

DenseNet (Huang et al., 2017) extends the idea behind ResNet, and each layer receives

additional information from all of its preceding layers. In ResNet each residual block

passes its stat to the next one, but DenseNet block receives a collective knowledge about

the stat of all previous layers. Each DenseNet block consists of Batch-Normalization,

ReLU, and a 3x3 convolutional layer that produces feature maps of k channel, which k is

a configurable. To reduce the model size a combination of Batch-Normalization, ReLU,

and a 1x1 convolutional layer is used first. As a result, the network can be thinner and

more compact with a smaller number of kernels in each block, thus it has higher

computation and memory efficiency. DenseNet has numerous advantages to ResNet, due

to the skip connections the error can be directly propagated to the earlier layers that

leading to strong gradient flow. As mentioned earlier, DenseNet is more efficient

computationally, also, since each layer in DenseNet receives the result of all preceding

layers, it tends to have a more diversified feature.

Univ
ers

iti
Mala

ya

13

PyramidalNet (Han et al., 2017) steadily increases the width of residual blocks instead

of keeping the same spatial dimension before the down-sampling. Han et al. (2017) claims

that CNNs learning capabilities are limited because of the significant rise in feature maps

when the networks are deep, and PyramidalNet design helps to solve the problem.

With significant improvements in CNN’s architecture and performance, they consist

of millions of learnable parameters that should be trained on millions of samples to

achieve high accuracy. Also, with the help of model acceleration techniques, these models

achieve reasonable inference latency after training, but as described in the next section,

most of these techniques add extra complexity to the training phase. Thus, new methods

or architectures are needed to train CNN on edge or embedded devices and create

independent AI agents that leverage CNN’s capabilities. In the next section state of the

art model acceleration techniques are reviewed and their effects on training time,

inference latency, and memory consumption are examined.

2.3. Model Acceleration

To accurately handle machine learning problems, CNNs are becoming deeper and

contain millions of learnable parameters, training them on large datasets would be costly

in terms of time and money. In addition to using hardware accelerators and optimized

frameworks, Transfer learning and model acceleration techniques are used to tackle this

problem. Transfer learning is a well-studied field, it refers to the techniques used to

transfer the acquired knowledge of an already trained ANN to another network. In the

case of CNNs, pre-trained convolutional layers are used in the new model by connecting

a Feed Forward Network (FFN) on top of pre-trained convolutional layers. The new

network will benefit from the already trained convolutions and adapt to the new dataset

in a shorter time. Transfer learning is beneficial when the source and target samples are

Univ
ers

iti
Mala

ya

14

relatively similar. In Transfer learning, domain adaptation is focused on correcting

marginal distribution differences or the conditional distribution differences between the

source and target domains which have their problems and limitations (Weiss et al., 2016).

On the other hand, most model acceleration techniques focus on the reduction of inference

latency and memory consumption. Table 2.2 summarizes model acceleration methods.

Table 2.2: Different approaches to model acceleration and compression

Category Description Attributes

Parameter Pruning
and Quantization

Reduces redundant
parameters which are
not affecting the
performance

Robust to various settings, can achieve
good performance, can support both
training from scratch and pre-trained
models

Low-Rank
Factorization

Uses Tensor
decomposition to
estimate the
informative parameters

Standardized pipeline, easily to be
implemented, can support both training
from scratch and pre-trained models

Transferred/Compact
convolutional filters

Uses special structural
convolutional filters to
save parameters

Algorithms are dependent on
applications, usually achieve good
performance, only support training from
scratch

Knowledge
Distillation

Trains a new compact
neural network with
distilled knowledge of
a large model

The performance is sensitive to
applications and network structure, only
support training from scratch

Note. Retrieved from (Cheng et al., 2017)

Parameter pruning is an acceleration method that removes insignificant connections

between neurons and reduces redundancy in convolution kernels. Pruning and

quantization should be configured based on the target hardware. For example, a CPU-like

architecture with no parallelization may fully exploit the reduction of computations by

unstructured pruning to improve speed, but a GPU-like massive parallel architecture

would not.

The large number of neurons increases the inference latency and makes models

challenging to implement in low-memory environments such as mobile phones and IoT

devices. Low-Rank Factorization uses tensor decomposition to replace layers with an

Univ
ers

iti
Mala

ya

15

approximation of their most important weights, this way both the memory and latency of

the model decrease with minimal performance degradation. Transferred/Compact

convolutional filters act in a similar way and are techniques based on group theory to find

the equivalent of convolutions that reduce the parameter space and save memory and

computation.

The Knowledge Distillation method trains a compact and shallow network based on a

deep network to mimic its output. Its performance is sensitive to applications and network

structure that results to retraining the model from scratch.

Most of the mentioned methods have been more focused on inference latency and less

on training time and have added an extra computation intensive step after training to the

production pipeline. Table 2.3 demonstrates an overview of state of art model acceleration

techniques.

Table 2.3: Overview of model acceleration techniques

Study Concept

Acceleration Method

Remarks

Param
eter Pruning and Q

uantization

Low
-Rank Factorization

Transferred/Com
pact convolutional

filters

K
now

ledge D
istillation

O
ther

(Jung et
al., 2019)

Proposed a metric that can measure the
influence of a node in a layer of a neural
network on a node in subsequent layers

🗸 × × × ×

Introduced the influential
scores and applied them to
interpret the outcome of
the models

(J. Liu et
al., 2021)

Introduces dynamic kernel
convolutional neural networks (DK-
CNNs), an enhanced type of CNN, by
performing line-by-line scanning
regular convolution to generate a latent
dimension of kernel weights

× × 🗸 × 🗸

The proposed DK-CNNs
were compared with
different network
structures with and
without a latent dimension
on the CIFAR and
FashionMNIST datasets.
The experimental results
show that DK-CNNs can
achieve better
performance than regular
CNNs.

Univ
ers

iti
Mala

ya

16

Table 2.3: Continued

Study
Concept

(Research motivation)

Acceleration Method

Remarks

Param
eter Pruning and Q

uantization

Low
-Rank Factorization

Transferred/Com
pact convolutional

filters

K
now

ledge D
istillation

O
ther

(C. Liu et
al., 2019)

Proposes two computation-performance
optimization methods to reduce the
redundant convolution kernels of a
CNN with performance and architecture
constraints

🗸 × × × ×

Optimizations achieve
about 50% size reduction
but only cause a minor
performance drop.

(Li et al.,
2020)

The method aims to exploit the
discriminant and geometrical structure
of data manifold by optimally
preserving the local neighborhood
information.

× × × × 🗸

The experimental results
on Extended Yale B, AR,
FERET, YTF datasets
show that the proposed
model outperforms the
most recent state-of-the-
art models.

(Jung et
al., 2018)

Applied pre-defined kernels also known
as filters or masks developed for image
processing to convolution neural
networks. Instead of letting neural
networks find their first layer kernels,
41 different general-purpose kernels of
blurring, edge detecting, sharpening,
discrete cosine transformation, etc. was
used

× × × × 🗸

The method reaches the
accuracy of 90% even
with only 500 training
samples on the MNIST
dataset that is four times
faster than the traditional
CNN

(Liang et
al., 2020)

Aiming at channel compression, a novel
convolutional construction named
compact convolution is proposed to
embrace the progress in spatial
convolution, channel grouping, and
pooling operation.

× 🗸 × × ×

Unlike traditional
methods for dimensional
reduction in CNN which
introduce considerable
learnable weights, the
compact convolution can
squeeze the channel
dimension of feature maps
with no extra parameters.
Extensive experimental
results demonstrated that
the proposed method can
not only cut down the run
time on CPU and GPU but
also produce promising
performance.

(Xia et al.,
2020)

In the proposed method the pooling
layer is replaced by two continuous
convolutional layers with a 3×3
convolution kernel, which a dropout
layer in-between reduce overfitting, and
cross-entropy kernel is used as a loss
function

× × × × 🗸

Through experimental
comparison with AlexNet,
VG- GNet, and
GoogLenet network
models on two different
data sets, it is concluded
that the improved network
structure in this paper has
obvious advantages in
terms of recognition
accuracy, convergence
speed, and recognition
stability.

Univ
ers

iti
Mala

ya

17

Table 2.3: Continued

Study
Concept

(Research motivation)

Acceleration Method

Remarks

Param
eter Pruning and Q

uantization

Low
-Rank Factorization

Transferred/Com
pact convolutional

filters

K
now

ledge D
istillation

O
ther

(W. Wang
et al.,
2019)

Presents a novel pruning criterion based
on channel-level pruning to compress
CNN models. The approach utilizes
layer-wise feature maps to identify
redundant filters.

🗸 × × × ×

The pruning algorithm
proposed in this paper can
greatly compress the
original VGG-16 into a
very small model (only
0.76 MB) without any loss
and achieve even an extra
gain in performance.

(H. Choi
et al.,
2020)

Proposed an approach called block
change learning that performs local and
global knowledge distillation by
changing blocks comprised of layers.
The method focuses on the knowledge
transfer without losing information in a
large teacher model, as the approach
considers intra-relationships between
layers using local knowledge distillation
and inter-relationships between
corresponding blocks.

× × × 🗸 ×

Tested the BCL approach
in object classification and
feature extraction.
Specifically for feature
extraction tasks, BCL
showed only about 5%
degradation in
performance relative to
approximately 17% for
other methods.

(Lym et
al., 2019)

Proposed PruneTrain, a CNN training
acceleration mechanism that, unlike
prior work, prunes the model during
training from scratch with the
sparsification process starting during the
first training epoch.

🗸 × × × ×

PruneTrain reduces the
computations of ResNet50
for ImageNet by 40%, the
memory traffic of
memory-bound layers
(e.g. batch normalization)
by 37%, and the inter-
GPU communication cost
by 55% compared to the
dense baseline training.

(Cho &
Lee,

2019)

Proposed a strategy to automatically
determine the number of parameters of
a network by utilizing group sparsity
and knowledge distillation (KD) in the
training process and a feedback control
mechanism based on the proportional
control theory. The feedback control
logic determines the amount of
emphasis to be put on network sparsity
during training and is controlled based
on the comparative accuracy losses of
the teacher and student models in the
training

× × × 🗸 ×

Demonstrates that
incorporating knowledge
distillation when
compressing the network
with group sparsity
achieves better
performance, a student
network trained by the
proposed strategies
achieved better accuracy
than when trained by a
model with the same
sparsity.

(Chen et
al., 2018)

Introduces a knowledge distillation
framework to improve the performance
of smaller and shallower network
models.

× × × 🗸 ×

Results show that the
proposed training method
was effective and
increased overall accuracy
(3% in AID experiments,
5% in UCMerced
experiments, 1% in
NWPU-RESISC and
EuroSAT experiments)

Univ
ers

iti
Mala

ya

18

Table 2.3: Continued

Study
Concept

(Research motivation)

Acceleration Method

Remarks

Param
eter Pruning and Q

uantization

Low
-Rank Factorization

Transferred/Com
pact convolutional

filters

K
now

ledge D
istillation

O
ther

(Hao-Ting
et al.,
2019)

A novel Layer Selectivity Learning
(LSL) framework is proposed for
learning deep models

× × × 🗸 ×

Compared to the baseline
method at most, 12.6%,
5.1%, and 6.5%
improvement of
classification accuracy
was achieved using the
three datasets.

(Wen et
al., 2016)

A Structured Sparsity Learning (SSL)
method proposed to regularize the
structures (i.e., filters, channels, filter
shapes, and layer depth) of DNNs.
Which can learn a compact structure
from a bigger DNN to reduce
computation cost; and obtain a
hardware-friendly structured sparsity of
DNN to efficiently accelerate the
DNN’s evaluation

🗸 × × × ×

The method can enforce
the DNN to dynamically
learn more compact
structures without
accuracy loss. The
structured compactness of
the DNN achieves
significant speedups for
the DNN evaluation both
on CPU and GPU with
off-the-shelf libraries.

(Zhou et
al., 2016)

This research shows that, by
incorporating sparse constraints into the
objective function, it is possible to
decimate the number of neurons during
the training stage.

🗸 × × × ×

After applying the
compression method,
compact CNN contains
only 30% of the original
neurons without any
degradation of the top-1
classification accuracy

(Alvarez
&

Salzmann,
2017)

Introduces a regularizer that encourages
the parameter matrix of each layer to
have a low rank during training.

🗸 × × × ×

The experiments in the
research have
demonstrated that this
approach can achieve
higher compression rates
than state-of-the-art
methods at the time of
publishing, thus
evidencing the benefits of
taking compression into
account during training.

(Lei et al.,
2019)

This paper proposed a dilated CNN
model which is built by replacing the
convolution kernels of traditional CNN
with the dilated convolution kernels, the
dilated CNN model has been tested on
the MNIST handwritten digits data set

× × 🗸 × ×

Experiments showed that
the dilated CNN model is
less time-consuming and
has higher training
accuracy on the MNIST
data set compared with
the traditional CNN
model.

(Mathieu
et al.,
2014)

Computing convolutions as pointwise
products in the Fourier domain while
reusing the same transformed feature
map many times

× × 🗸 × ×

Presented a fast algorithm
that outperforms known
state-of-the-art
implementations in terms
of speed

Univ
ers

iti
Mala

ya

19

Most research in Table 2.3 were focused on model compression to reduce memory and

model acceleration to decrease inference latency. Despite being fruitful for the inference

phase, they didn't emphasize reducing training time and some even add complexity to the

training.

In the case of parameter pruning Wen et al. (2016), Zhou et al. (2016) and Alvarez &

Salzmann (2017b) deployed pruning during the training but didn`t apply it on the source

network, thus their implementation did not decrease the training time. Lym et al. (2019)

work while being effective in reducing the training time is targeting multi-GPU clusters.

The reduction of training time was the result of the combination of reducing computation,

reducing off-chip memory access, and reducing inter-accelerator communication. The

hardware setup for this research is a single GPU solution and the models are designed to

fit into the graphical memory. Therefore, this work cannot benefit from the reduction of

off-chip memory access and inter-accelerator commination mentioned in (Lym et al.,

2019). Lym et al. (2019)’s method is applicable to single GPU setups but it is not

predictable how effective it is while it cannot leverage reduction of off-chip memory

access and inter-accelerator commination in a single GPU setup and testing the efficiency

of the method on a single GPU setup can be a topic for future research. Thus, this work

does not target Lym et al. (2019)’s method as its baseline.

Additionally, Jung et al. (2018) proposed GFNNs for the reduction of training time

that is architecture and dataset independent and can be applied to any supervised use case

of CNNs. CNNs are universal functions (Wiatowski & Bolcskei, 2018) that during the

training, will converge to any desired function. In the case of image classification, the

function maps the input tensors to the labels, and the proposed method tries to help CNNs

to converge faster by adding fixed image processing filters to the first layer of CNNs. The

proposed method is applicable to all hardware as the solution works at the architecture

Univ
ers

iti
Mala

ya

20

level and directly affects the time and needed number of necessary epochs in training.

Also, the method is not limited to images and image processing filters, these filters can

be replaced by any domain specific kernels when dealing with a spatial sensory data like

voice, MRI result, etc. The original research only tested the technique on the MNIST

dataset, which consists of binary 28x28 images with only 10 classes, which is not

sufficient for verification of efficiency of the methods due to the lack of complexity of

features in the input data. On the other hand, the side effects of the method, like its effects

on overfitting should be tested.

This research aims to address the mentioned shortcomings in the original method,

Figure 2.3 demonstrates the gap in the knowledge that this research is focused on. The

architecture of filter layers is altered to support multi-channel sensory data and its

performance is assessed through an experiment. As described in the next

chapter, six GFNNs architectures are designed along with their equivalent baseline

CNNs. The experiment targets three different datasets with color images and in addition

to performance metrics, its effect on overfitting is also analyzed.

Univ
ers

iti
Mala

ya

21

Figure 2.3: Knowledge Map

2.4. Summary

CNNs have a crucial role in deep learning, much research in the field is focused on

them, and they have a good performance on many difficult and ill-posed problems in

machine learning. Image classification is one of the useful use cases of CNNs. Used in

lots of multidisciplinary research, they have been used in cancer detection, autonomous

deforestation detection, autonomous driving, etc. The state of art CNNs aim to solve more

difficult problems and most of the research has been focused on increasing the

performance of the network leading to their increased processing and memory

consumption. State of the art CNNs consist of millions if not billions of learnable

parameters that make the training challenging and increases the inference latency. Model

acceleration techniques like parameter pruning and quantization, low-rank factorization,

transferred/compact convolutional filters, and knowledge distillation aim to reduce the

Model
Acceleration

Parameter Pruning Low-Rank Factorization

Transferred/Compact
convolutional filters

Knowledge
Distillation

Transfer Learning Deep Learning

CNNs RNNs

GANs Etc.

Multi-
Channel
Images Extending CNNs with

Image processing filters

(Jung et al., 2018)

Segmentation Classification

Computer Vision Etc.

Binary
Images

Gap in the Knowledge

Targeted by this research

VGG

ResNet

Etc.

Univ
ers

iti
Mala

ya

22

needed processing and memory of the deployed model. After or while training, these

techniques alter the architecture of the final model and make them suitable for

deployment. Some model acceleration methods are hardware dependent and are effective

only when using a specific type of hardware or accelerator and most of them add

complexity to the training of the model and extend the training time. Jung et al. (2018)

claims by merging the image processing filters inside the CNNs architecture, it is possible

to help the network to converge faster, and the CNNs are capable of using the extracted

feature by image processing filters that results in faster training of the CNN. But the

method was only tested on MNIST handwritten digits dataset that lacks the feature

complexity to prove the efficiency of the method, also, the method is only applicable to

single-channel images. This research aims to address the shortcoming of the original

method by modify it to apply to multi-channel images. Also, the efficiency of the method

is examined empirically through an experiment that applies the method on different

CNNs.

Univ
ers

iti
Mala

ya

23

CHAPTER 3: RESEARCH DESIGN

3.1. Introduction

The main objective of this research is to first, alter the first layer of GFNNs to support

multi-channel images and then verify their performance on three datasets through an

experiment. Table 3.1 demonstrates the characteristics of the target datasets.

Table 3.1: Datasets and their characteristics

Dataset Sample size No of samples No of classes Reference

ImageNet_64x64 64x64x3 1,331,167 1,000 (Chrabaszcz et
al., 2017)

Cifar100 32x32x3 60,000 100 (Krizhevsky &
Hinton, 2009)

Cifar10 32x32x3 60,000 10 (Krizhevsky &
Hinton, 2009)

The MNIST dataset consists of binary 28x28 images. In contrast, Cifar10 and Cifar100

contain color images with a resolution of 32x32. And ImageNet_64x64 consists of 64x64

color images. Having multiple channels of non-binary sensory data alone leads to much

more complex features compared to a single-channel binary data. Additionally, the

number of classes is much higher in Cifar100 (100 classes) and ImageNet_64x64 (1000

classes). Therefore, the neural network is forced to extract more complex features to differ

between high number of classes.

For each dataset, two pairs of CNNs are designed. Each pair of networks contains a

baseline CNN and a GFNN. The baseline architectures are custom implementations of

ResNet and VGG. Each dataset has different characteristics, thus the architecture of

CNNs (e.g., dimensionality of input layer, size of hidden layers, size of flatten fully

connected layer and the size of output layer) for each dataset are different.

Overall, 12 CNN architectures are designed and benchmarked.

Univ
ers

iti
Mala

ya

24

All datasets are balanced; thus, accuracy is reported as the performance metric.

Additionally, loss function and training time are collected per epoch. Table 3.2 shows the

collected quantitative variables through the experiment.

The GFNNs have not been tested on datasets with color images and complex features,

thus, to overcome this shortcoming, in this research three datasets with different attributes

are chosen. ImageNet_64x64 (Chrabaszcz et al., 2017) is the biggest among them with

1,331,167 samples and 1,000 classes. It is the one of hardest datasets to achieve high

accuracy with because data samples are low resolution (64x64) while having a large

number of classes. ImageNet_64x64 is based on ImageNet dataset and has the same

labels, but the samples are resized and have a lower number of samples. Cifar100

(Krizhevsky & Hinton, 2009) has samples with lower resolution (32x32), it has 100

classes and 60,000 samples. Cifar10 (Krizhevsky & Hinton, 2009) have similar attributes,

except the number of classes is limited to 10, and among these three is the easiest to

achieve high accuracy with.

Figure 3.1 demonstrates the flow of the experiment, first baseline versions of CNNs

are designed based on their target dataset attributes, then their equivalent GFNNs that

contains image processing filters are implemented. Each model is trained for 5 iterations

on its target dataset.

Table 3.2 shows the list of collected quantitative variables, the average value of each

variable is used for visualization and analysis. This is to average out the random effects

of cache warm up, operating system scheduler overhead, TensorFlow runtime

optimization on graph operations, etc. to make the comparison of baseline and GFNNs

more accurate. The accuracy of the baseline and GFNNs are demonstrated and compared

using graphs and tables in Chapter 4, and also the overfitting of the models is monitored

by comparing the loss and accuracy of the models on training and validation samples.

Univ
ers

iti
Mala

ya

25

Figure 3.1: Research Design

All neural networks in this research are designed and implemented from scratch using

TensorFlow’s functional API. Because of limited time and processing power, only two

architectures of CNNs are selected as baselines for the experiment. The first architecture

that is called traditional CNN through this research is a custom implementation of VGG

architecture with the same design principle. The second architecture is based on ResNet,

it contains residual blocks and a feed-forward classifier similar to ResNet, but the exact

configuration varies for each dataset. ResNet and VGG were selected as the base for the

design of CNNs in this research because they represent two different types of CNNs

architecture. In the case of VGG there is no skip connection between the layers. After the

training, the first layer of VGG model extracts features that look similar to what edge

detection filters produce, and it would be possible for the network to use these features if

provided by image processing filters. ResNet and other architectures with skip

connections use more diversified features due to the concatenation of information from

ImageNet_64x64 Cifar100 Cifar10

Datasets

ResNet

VGG GFNN VGG

GFNN ResNet

Designing the Models

Collect Accuracy and Loss for validation
and test inputs after training

Collect Accuracy and Loss per epoch for
validation inputs

Training – Five iterations for averaging

Collect the average time of finishing one
epoch for each CNN

Detect potential overfitting

Visualization of collected metrics

Analysis

Reporting the result

Developing GFNNs for
multi-channel images
(Design of filter layer)

Literature Review

CNNs Model Acceleration

Univ
ers

iti
Mala

ya

26

previous blocks and the network might use different strategies to adapt itself to the

extracted feature. The first layer of the network called the filter layer in this research, is

the only difference between the baseline implementation of the neural networks and their

equivalent GFNN. The image processing filters or any other potential mathematical

formula that can be implemented using convolutional operations are suitable to replace

some of the kernels in CNNs architecture. In this research the image processing filters

merged into the CNNs by replacing the first layer’s kernels with 16 filters. There exist 3

extra design choices for GFNNs, first is the choice of baseline architecture, this method

is applicable on any neural network with convolutional layers, and in this research, a

custom implementation of VGG and ResNet are chosen. Hardware and time limitation

was the reason for this decision and testing the method on other architectures is a potential

topic for the future research. The type and number of filters is the second choice and

location of filters in the network is the third. The layers can partially consist of

convolutional kernels and image processing filters. Also, different types of filters might

have a different effect when used in first versus hidden layers. In this research first

convolutional layer of baseline networks is replace by image processing filters, due to the

hardware limitations, it was not possible to test multiple combinations of filter location

and type, thus a specific list of filters with similar output to the first layer of normal CNNs

after training were chosen. The next chapter discusses the filter layer, and the image

processing filters.

3.2. Filter Layer

The first layer of GFNNs termed "Filter Layer" and instead of convolutions with

learnable weights, consists of image processing filters. These filters provide the input for

the second layer of normal convolutional layers. The original architecture was applied

only on a binary dataset, so it is necessary to expand the concept to apply it to the multi-

channel datasets targeted in this research. Because filters do not have learnable

Univ
ers

iti
Mala

ya

27

parameters, if they combine the results of channels, the network will lose its ability to

extract features in different color channels. As shown in Figure 3.2, in contrast to

convolutions, each filter should deliver output for each channel separately. The filter

layer's output is a rank 3 tensor, with the dimensionality of 32x32x3 for Cifar datasets,

and 64x64x3 for ImageNet_64x64.

Figure 3.2: Difference Between Convolutional and Filter Layer

To keep the baseline and GFNN networks computationally comparable, the

dimensionality of the Filter Layer’s output should be similar to the first convolutional

Univ
ers

iti
Mala

ya

28

layer of the baseline model. Because each filter produces three channels as opposed to

one channel in the case of convolutional layers, to keep the number of needed calculations

relatively similar in baseline and GFNNs, the number of convolutions in the first layer of

baseline networks should be three times of the number of filters in the GFNN version.

The number of needed calculations for the filter layer will differ because filters don’t have

any learnable parameters, thus they won’t cost any calculation in backpropagation

algorithms. Also, each convolutional kernel will perform three times more calculations

per output channel. Because the filters are applied to each channel separately, but the

convolutional kernel applies to all channels. But by keeping the dimensionality output of

the filter layer the same as the first convolutional layer, the networks remain

computationally comparable.

3.3. Image Processing Filters

Compass gradient filters outnumber other types of filters because they have similar

characteristics to the first layer of convolutions in a trained CNNs. The list of

implemented filters is as below:

• two second-order filters

• one DCT filter

• one sharpening filter

• one blurring filer

• one embossing filter

• ten compass gradient filters

Totally 16 filters are applied to the input sample producing a rank 3 tensor with the

dimensionality of 64x64x48 as output (in case of ImageNet_64x64), which will be

equivalent of using 48 convolutions for baseline networks. Figure 3.3 demonstrates a

schematic view of used filters.

Univ
ers

iti
Mala

ya

29

In comparison with the original work by Jung et al. (2018) , the number of filters

reduced from 41 to 16. This was a necessary design choice, because every filter in the

new architecture produces 3 channels of data (one for each one of the RGB channels).

Thus, including all 41 filters would lead to 123 channels of data as input of second layer

of the network that will increase the memory consumption and also results in slower

training and inference latency. Figures 3.11 and 3.12 demonstrate the schematics of the

designed networks in the case of ImageNet_64x64, especially in the case of GFNN

ResNet having a high dimensional tensor input propagates through the architecture of the

network because in each residual block the dimensionality of the layer is the same. Even

in the case of GFNN VGG, memory consumption almost tripled during the training when

123 layers has been used. The neural network framework (TensorFlow) needs to store the

intermediatory result of every operation to later calculate the gradient during the

backpropagation. Thus, the memory consumption of the model has a linear relation with

the number of filters. An Nvidia 2060 GPU with 6 GB of graphical memory, Ryzen

4800H CPU and 16GB of DDR4 system memory were the hardware limits for this

research and either the batch size or the number of filters should be reduced. During the

implementation of the networks, multiple configurations of batch size and the number of

filters were tested, and the result was better for a higher batch size with a reduced number

of filters. The training time increased and the accuracy did not change with a higher

number of filters. Therefore, it is suggestible that decreasing the number of filters in the

case of multi-channel implementation performs better than decreasing the batch size.

To be faithful to the design of the GFNNs, the chosen filters are the same type of the

original work and only the number of filters has decreased. Jung et al. (2018) didn’t

provide details about the implemented kernels, but the kernel types and number of kernels

were mentioned in the original research. Because applying the method on multi-channel

data triples the memory consumption of the networks, either number of filters or batch

Univ
ers

iti
Mala

ya

30

size should be reduced. Therefore, the number of sharpening filters reduced from 3 to 1,

the number of blurring filters reduced from 2 to 1, and the number of compass gradient

filters reduced from 32 to 10. The number of filters is the same for the rest.

The major decrease in the number of filters was for compass gradient filters which

amplify information about the edges in one direction of the 2D surface. Thus, compass

gradient filters were picked in a way to cover 8 major directions in the 2D space. This

way the memory consumption is reduced with minimal loss of information (because of

the similarity of the output of compass gradient filters). The optimal number of filters

suitable for the memory limitation of this research was chosen during the network design,

while a different combination of batch size and filters has been tested.

Figure 3.3: A Schematic View of The Filters (Expect DCT)

The filter layer implemented through a custom FilterLayer class in TensorFlow, below

steps define the behavior of the operation:

1. The filter layer separates the input`s channels

Univ
ers

iti
Mala

ya

31

2. Applies each of the 16 filters to each of the channels separately

3. Stores the result of each filter in the memory as a matrix

4. Stacks all the matrixes on top of each other to create a rank 3 tensor

The produced rank 3 tensor is a 48-channel data that is the input for next convolutional

layer of the network.

Figure 3.4 shows a sample input from ImageNet_64x64 along with its RGB channels.

For each set of the filters explained in the proceeding chapters, corresponding figures

demonstrate the output of filter layer for each channel of the sample.

Figure 3.4: A Sample from Imagenet_64x64 Dataset

3.3.1 Second Order Filters

In addition to edge detection filters that approximate the first order of derivatives of

pixel values in an image, it is possible to create the filters based on second order

derivatives. While using the first order derivatives, it is possible to detect horizontal or

vertical edges in the image and then combine their result, but the second order derivates

can extract both at once. There are also some disadvantages to the use of second order

derivatives. First, the second order derivative operators exaggerated the noise twice as

first order operators, also, they don’t provide any directional information about the edges.

Univ
ers

iti
Mala

ya

32

That is why first order operators are also used in the filter layer in addition to second order

filters.

Laplacian operator is a famous second order operator that is used in the filter layer,

both the convolutional kernel and image processing filters in CNNs are 3x3. In the case

of second order filters, the 3x3 grid of numbers should be a discrete approximation of the

Laplacian operator. Two filters based on the Laplacian operator are integrated into the

filter layer.

Figure 3.5: Result of Second Order Filters Applied on The Sample

3.3.2 DCT Filter

Discrete cosine transform (DCT) transfers the image from the spatial domain into the

frequency domain. It represents the image as the summation of sinusoids with different

magnitudes and frequencies. For a typical image, most of the visually important

information is concentrated into a few of the sinusoid’s coefficients and for this reason,

DCT is used in image compression algorithms. Only one DCT filter is used in the filter

Univ
ers

iti
Mala

ya

33

layer of GFNN networks, monitoring the ability of CNNs in using the information

provided in the frequency domain can be a topic for future research. In contrast to other

filters, the DCT filter is defined based on the dimensions of the input and it is not a kernel

that goes through the image, instead, it is a mask with the same dimensions of the input

image that will be applied on the image. The DCT filter needs a much lower computation

compared to convolutional layers, but this difference is neglectable when compared to

the whole network’s needed computation, thus the GFNN version would be still

computationally comparable with baseline. The DCT filter is applied to each channel

separately and produces three channels and the same as other filters is replaced with three

convolutional kernels in baseline networks.

The DCT filter result are not demonstrated because they are not visually relatable to

the source image for human eye, as they are in frequency domain and its output channels

is passed to the next layer and not merged together to form a human understandable result.

3.3.3 Sharpening and Blurring Filters

Both sharpening and blurring filers work in the spatial domain and compare the value

of pixels with their neighbors. Sharpening filters enhance these differences; thus, it is a

process of differentiation, but blurring filters average out the differences and is a process

of integration. Two 3x3 filters with predefined values act as sharpening and blurring

filters in the filter layer, each producing three channels of output with the same dimension

of the input image. The sharpening filters are very sensitive to noise in opposed to blurring

filters that reduces the noise in the image, thus they provide different types of features for

the next convolutional layers.

Univ
ers

iti
Mala

ya

34

Figure 3.6: Result of Sharpening Filter Applied on The Sample

Figure 3.7: Result of Blurring Filter Applied on The Sample

3.3.4 Embossing Filter

The output of an embossing filter is an embossed image whose pixels are replaced by

a shadow or a highlight. They are also termed directional difference filters and can

enhance the edge in the direction of the filter. In another word they can remove the

image’s features except for the edges in the direction of the filter, thus the proceeding

convolutions after the filter layer will receive simplified features that contain only

information about the edges in the input image. Traditionally embossing filters when

applied on color images followed the same rule as to when applied to gray scale images,

the filter is applied to each of the color channels and the result is combined based on a

mathematical formula, but the GFNNs are free to use each of these channels separately,

thus the difference between the implementation of embossing filters in filter layer with

Univ
ers

iti
Mala

ya

35

their traditional definition is that their result is not combined and each output is passed to

the next layer of the network in a separate channel. So, each embossing filter produces

three channels in the output and should be replaced with three convolutional kernels of

baseline networks.

Figure 3.8: Result of Embossing Filter Applied on The Sample

3.3.5 Compass Gradient Filters

Compass gradient filters are first order filters that measure the slope of values of pixels

in a specific direction. They are less sensitive to noise and provide information about the

direction of the detected edges. Thus, the GFNN network can prioritize a specific

direction by tuning its weight and biases of next convolutional layer, to give the GFNN

network flexibility of emphasizing on a specific direction. 10 compass gradient filters are

implemented in the filter layer, 8 of them refer to directions of north, north-west, west,

south-west, south, south-east, east, and north-east. The other two are high pass filters that

emphasize sudden changes in pixel values. The fact that GFNN networks are capable of

emphasizing edges in a specific direction doesn’t mean they are not rotation invariant, as

this emphasis only happens when the input data set have distinguishable features in form

of edges in a specific direction, for example, this approach might be beneficial in OCR

software where the general shape of the alphabet is predefined and the input is

Univ
ers

iti
Mala

ya

36

preprocessed to be in a proper orientation before being fed to the model. But the network

will still be able to give equal importance to all these filters and act as an orientation

invariant classifier. Gradient compass filters apply to image channels separately, thus

each filter produces three channels and should be replaced by three convolutions in the

baseline network. The gradient compass filters outnumber other types of image

processing filters because opposed to second order filters, they can provide information

about the direction of the features while being less sensitive to noise. Also, they can

ensure that the network has access to all edges in every direction which is not possible

with other types of filters. The high contrast filters were implemented only in direction of

north and east, as increasing the number of filters would lead to a drastic increase of

memory and processing in training. Also, opposed to normal gradient compass filters,

high contrast filters are not dependent to the direction. And these two filters provide the

GFNNs enough information about the sudden changes in pixel values.

One major difference between these filters in the filter layer to their traditional

implementation is the lack of a combination for channels in the filter layer. Most of the

mentioned filters have a combination formula for concatenation of extracted information

while applied to color images. In the filter layer, the combination of extracted features

from the different color channels is handled via the rest of the neural network’s

architecture, thus the raw output of the filters is passed to the convolutional layers that

will decide how to use them during the training.

Univ
ers

iti
Mala

ya

37

Figure 3.9: Result of Compass Gradient Filters (1-5) Applied on The Sample

Univ
ers

iti
Mala

ya

38

Figure 3.10: Result of Compass Gradient Filters (6-10) Applied on The Sample

Univ
ers

iti
Mala

ya

39

3.4. Quantitative Analysis

The objective of GFNNs is to reduce the training time with minimal degradation of

accuracy compared to the baseline CNNs. Thus, the network should reach the desired

accuracy with a smaller number of epochs. Also, a shorter training time per epoch is

expected due to the lower number of learnable parameters. Table 3.2 demonstrates the

qualitative variables that are collected.

The answer to the below questions is retrieved from the analysis of collected variables.

• Do GFNNs reach a higher accuracy within a certain number of epochs?

• Do GFNNs reach a certain accuracy sooner? What is the difference for max

possible accuracy of networks?

• Are GFNNs more vulnerable to overfitting?

Table 3.2: Quantitative Variables

Name Description Frequency

ep_tr_ti Training time of one epoch Per epoch

ep_tr_ac_tr Accuracy of network on training data within the epoch Per epoch

ep_tr_ac_vl Accuracy of network on validation data within the epoch Per epoch

ep_tr_ls_ti Value of loss function on training data Per epoch

ep_tr_ls_vl Value of loss function on validation data Per epoch

tot_tr_ti Total training time Per training

tot_tr_ac_tr Accuracy of network on training data after training Per training

tot_tr_ac_vl Accuracy of network on validation data after training Per training

Training of each of twelve networks reiterates five times and the average is considered

as the result to minimize the random impact of operating system, bus interface overhead,

etc.

Univ
ers

iti
Mala

ya

40

3.5. Network`s Architecture

Different characteristics of datasets result in a different architecture of CNNs, so the

number of learnable parameters, is different for each of the designed networks. The

resolution of input samples dictates the dimensionality of filter layer, and consequently

affect the dimensionality of the convolutional layers. Also, number of classes affects

number of learnable parameters in fully connected section of the networks. Also, because

of hardware limitations, the neural networks in this research do not aim for the highest

possible accuracy. Instead, the research focuses on applicability of the method on multi-

channel images and monitoring the effect of adding the filter layer on the accuracy and

inference latency.

For each dataset, a baseline version of either the traditional CNN or ResNet is

compared with its GFNN version. The traditional CNN architecture is a simplified version

of VGG (Simonyan & Zisserman, 2015) and the ResNet (He et al., 2016) consist of six

residual blocks.

Table 3.3: Designed Networks Information

Dataset Architecture Learnable None
Learnable

Layers Learning
Rate

Epochs Activation
Function

Dropout
Rate

Cifar10 Baseline VGG 692,383 672 29 0.001 40 ReLu 0.5

Cifar10 GFNN VGG
690,063 1,344 29 0.001 40 ReLu 0.5

Cifar10 Baseline ResNet 1,574,959 2,454 51 0.001 40 ReLu N/A

Cifar10 GFNN ResNet
1,573,615 2,784 51 0.001 40 ReLu N/A

Cifar100 Baseline VGG 1,125,426 672 29 0.002 60 ReLu 0.5

Cifar100 GFNN VGG 1,122,178 2,454 29 0.002 60 ReLu 0.5

Cifar100 Baseline ResNet
1,693,714 1,454 51 0.002 60 ReLu N/A

Cifar100 GFNN ResNet 1,692,370 2,784 51 0.002 60 ReLu N/A

ImageNet_64 Baseline VGG
20,580,628 672 29 0.001 30 ReLu 0.5

ImageNet_64 GFNN VGG 20,579,218 1,344 29 0.001 30 ReLu 0.5

ImageNet_64 Baseline ResNet
7,673,764 2,454 51 0.001 30 ReLu N/A

ImageNet_64 GFNN ResNet 7,672,420 2,784 51 0.001 30 ReLu N/A

Univ
ers

iti
Mala

ya

41

The number of layers is the same for baseline and GFNNs, but the dimensionality of

tensors that are passed between these layers is different. Table 3.3 includes the number

of trainable parameters for each of the designed networks. The networks were

intentionally extensively trained to determine whether the GFNNs have a different

behavior regarding the overfitting or not. The next chapter discusses the result of the

experiment and visualizes the comparison of baseline and GFNN versions for each

dataset.

3.4.1 Fusion of Filter and Convolutional Layers

If the filter layer acts like convolutional layers and combines the information of all

three channels into a single matrix, the color information would be lost as the filter layer

does not poses any learnable parameter, and it produces the same output for a specific

input sample. To mitigate this problem, as mentioned in Chapter 3.2, each filter of filter

layer is applied to each channel of data separately. Also, each of the filters produce 3

separate matrixes as output corresponding to each channel. Therefore, practical

consideration is needed to prepare the output for its next convolutional layer.

 The convolution operation in neural networks receive a rank 3 tensor as input, the

dimensionality of this input tensor, along with kernel size and stride determine the number

of parameters in the convolutional kernel. In case of filter layers the dimensionality of

input tensor is (64, 64, 48) in case of ImageNet_64x64 and (32, 32, 48) in case of Cifar

datasets.

The fusion of filter layer and convolutional layer implemented using TensorFlow’s

functional API. The operations in TensorFlow follow an object-oriented pattern design.

Therefore, the filter layer is implemented by inheriting FilterLayer class. It separates each

Univ
ers

iti
Mala

ya

42

channel of color, then applies each of the 16 filters on them and stores the results in the

memory. Then stacks the 48 produced matrixes and provides the needed rank 3 tensor to

the next convolutional layer.

3.4.2 Batch Normalization and Dropout

In addition to filter layer and convolutional layers, Dropout (Srivastava et al., 2014)

and Batch-Normalization (Ioffe & Szegedy, 2015) are used in the architecture of

networks. Thus, before demonstrating a schematic for the architecture of the networks,

this chapter quickly describes them.

When using Dropout during the training, a random set of parameters get ignored. This

forces the layer before Dropout to act like a layer with different weights. In effect, the

updates to the network would happen with a different view of configured layers. Thus, it

is a regularization method that helps prevent overfitting.

Batch-Normalization is a technique for training of deep neural networks. It

standardizes the input for the next layer in each mini-batch. And dynamically reduces the

number of needed epochs for training of the network. The problem that Batch-

Normalization aims to solves is called “internal covariate shift”. It happens when the

distribution of input of layer changes with each update of mini-batch, and this change

causes the learning algorithm to chase a moving target. Batch-Normalization prevents

this by standardizing the input of the layer after the update of mini-batch.

3.4.3 Network`s Schematics

In this section, the schematics of GFNN VGG and GFNN ResNet designed for

ImageNet_64x64 are shown. Also, Adam used as backpropagation algorithm and sparse

categorical cross entropy used as the loss function.

Univ
ers

iti
Mala

ya

43

Figure 3.11: Schematic of GFNN VGG for ImageNet_64x64

Figure 3.12: Schematic of GFNN ResNet for ImageNet_64x64

Univ
ers

iti
Mala

ya

44

3.5. Summary

To test the GFNNs on datasets with color images, 6 pairs of CNNs are designed for

ImageNet_64x64, Cifar100, and Cifar10 datasets. First baseline CNNs are designed

according to the dataset’s attributes, then their GFNN equivalent is implemented by

replacing their first convolutional layer with 16 image processing filters. The first layer

of GFNNs called the Filter Layer, consists of a customs operation defined in TensorFlow

using functional API that applies the filter to each color channel separately and instead of

combining the data into a single channel produces 3 different channels per filter as output.

This way the GFNN network won’t lose the information about different color channels

of the input. Second order, DCT, sharpening, blurring, embossing, and compass gradient

filters are used in the filter layer and each filter produces three channels, thus using 16

image processing filters in the filter layer is computationally equivalents to 48

convolutional layers. The compass gradient filters outnumber other types of filters

because after training, the extracted features in the first layer of CNNs are similar to the

output of edge detection filters. Each of the implemented models is trained on its target

dataset for 5 iterations and the average of the collected quantitative variables is used for

visualization and analysis of the result. A costume implementation of ResNet and VGG

is chosen as baseline architectures and the networks are intentionally trained extensively

to determine whether the behavior of the GFNN network is different about overfitting or

not. Also, the number of layers in the baseline and their GFNN equivalent is the same,

but the dimensionality of tensors that are passed between layers differs. The training time,

loss and accuracy of the networks are collected per epoch both on training and validation

datasets, because all three of the datasets are balanced, only accuracy is used as the

performance metric, Also, Adam used as backpropagation algorithm and sparse

categorical cross entropy used as the loss function for all 12 designed CNNs.

Univ
ers

iti
Mala

ya

45

CHAPTER 4: RESULTS

4.1. Introduction

This chapter demonstrates the result of the experiment by visualizing the collected

quantitative variables. Each subsection is devoted to a baseline and GFNN network that

have been trained on their target dataset. Thus, proceeding six subsections are related to:

• Baseline and GFNN VGGs trained on Cifar10 dataset

• Baseline and GFNN ResNets trained on Cifar10 dataset

• Baseline and GFNN VGGs trained on Cifar100 dataset

• Baseline and GFNN ResNets trained on Cifar100 dataset

• Baseline and GFNN VGGs trained on ImageNet_64x64 dataset

• Baseline and GFNN ResNets trained on ImageNet_64x64 dataset

Below questions are answered at each subsection based on the analysis of the

demonstrated variables:

1. Do the GFNNs reach a higher accuracy within a certain number of epochs?

2. Do the GFNNs reach a certain accuracy sooner? What is the difference for max

possible accuracy of networks?

3. Are the GFNNs more vulnerable to overfitting?

To average out random parameters that affects the performance like OS scheduler,

cache warmup, etc., the average of five iterations of training for quantitative variables of

Table 2.3 were collected. Also, to be sure that hardware performance does not vary the

frequency of CPU, GPU, Memories, and bus interface was statically set and have been

monitored during the experiment.

Univ
ers

iti
Mala

ya

46

The results are demonstrated by seven graphs per network pairs as listed below:

1. Accuracy by epoch for training dataset (Line Chart)

2. Accuracy by time for training dataset (Line Chart)

3. Accuracy by epoch for validation dataset (Line Chart)

4. Accuracy by time for validation dataset (Line Chart)

5. Loss by epoch for training dataset (Line Chart)

6. Loss by epoch for validation dataset (Line Chart)

7. Cumulative training time by epoch (Line Chart)

Each graph contains the result for both baseline networks and GFNNs. The networks

were trained for 40 epochs on Cifar10, 60 epochs on Cifar100, and 30 epochs on

ImageNet_64x64.

In addition of line charts, the collected quantitative variables are demonstrated in form

of a table, the table for each pair of baseline network and GFNN contains the average of

variable:

• Training time of one epoch (𝑒𝑝_𝑡𝑟_𝑡𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅)

And also, the absolute value of variables:

• Total training time (𝑡𝑜𝑡_𝑡𝑟_𝑡𝑖)

• Accuracy of network on training data after training (𝑡𝑜𝑡_𝑡𝑟_𝑎𝑐_𝑡𝑟)

• Accuracy of network on validation data after training (𝑡𝑜𝑡_𝑡𝑟_𝑎𝑐_𝑣𝑙)

Also, the line charts are created using the collected variables, the relation between the

charts and variables is described below.

Univ
ers

iti
Mala

ya

47

In the line chart “Accuracy by epoch for training dataset”, the horizontal axis is the

number of epoch and the vertical axis is the value of the variable 𝑒𝑝_𝑡𝑟_𝑎𝑐_𝑡𝑟 which is

the accuracy on training dataset at the end of the epoch. The value of 𝑒𝑝_𝑡𝑟_𝑎𝑐_𝑡𝑟 is

drawn for the nth epoch for both of the baseline and GFNN.

In the line chart “Accuracy by time for training dataset”, the horizontal axis is time

and the vertical axis is the value of the variable 𝑒𝑝_𝑡𝑟_𝑎𝑐_𝑡𝑟 at a specific time. The value

of 𝑒𝑝_𝑡𝑟_𝑎𝑐_𝑡𝑟 is drawn for the nth epoch of both the baseline and GFNN. But instead of

no of epochs, the spanned time till the end of the nth epoch is calculated and drawn using

the variable 𝑒𝑝_𝑡𝑟_𝑡𝑖 that stores the training time for each epoch. The chart demonstrates

the needed training time of each network to achieve a specific accuracy on the training

dataset.

In the line chart “Accuracy by epoch for validation dataset”, the horizontal axis is the

no of epoch and the vertical axis is the value of the variable 𝑒𝑝_𝑡𝑟_𝑎𝑐_𝑣𝑙 which is the

accuracy on validation dataset at the end of the epoch. The value of 𝑒𝑝_𝑡𝑟_𝑎𝑐_𝑣𝑙 is drawn

for the nth epoch for both of the baseline and GFNN.

In the line chart “Accuracy by time for validation dataset”, the horizontal axis is time

and the vertical axis is the value of the variable 𝑒𝑝_𝑡𝑟_𝑎𝑐_𝑣𝑙 at a specific time. The value

of 𝑒𝑝_𝑡𝑟_𝑎𝑐_𝑣𝑙 is drawn for the nth epoch of both the baseline and GFNN. But instead of

no of epochs, the spanned time till the end of the nth epoch is calculated and drawn using

the variable 𝑒𝑝_𝑡𝑟_𝑡𝑖 that stores the training time for each epoch. The chart demonstrates

the needed training time of each network to achieve a specific accuracy on the validation

dataset.

In the line chart “Loss by epoch for training dataset”, the horizontal axis is the no of

epoch and the vertical axis is the value of the variable 𝑒𝑝_𝑡𝑟_𝑙𝑠_𝑡𝑖 which is the value of

Univ
ers

iti
Mala

ya

48

loss function while training on training dataset at the end of the epoch. The value of

𝑒𝑝_𝑡𝑟_𝑙𝑠_𝑡𝑖 is drawn for the nth epoch for both of the baseline and GFNN.

In the line chart “Loss by epoch for validation dataset”, the horizontal axis is the no of

epoch and the vertical axis is the value of the variable 𝑒𝑝_𝑡𝑟_𝑙𝑠_𝑣𝑙 which is the value of

loss function while training on validation dataset at the end of the epoch. The value of

𝑒𝑝_𝑡𝑟_𝑙𝑠_𝑣𝑙 is drawn for the nth epoch for both of the baseline and GFNN.

In the line chart “Cumulative training time by epoch” the vertical axis is the no of

epochs and horizontal axis is the time needed for nth epochs of training. The spanned

time for nth epoch is the cumulative value of variable 𝑒𝑝_𝑡𝑟_𝑡𝑖. The value has been

calculated and drawn for each of the baseline and GFNN to demonstrate the training speed

of the GFNNs.

The GFNNs can train faster if they can reach a specific accuracy within a lower number

of epochs, or if each epoch takes less time to train. Graph no. 7 demonstrates the timing

difference between epochs of the GFNNs and baseline networks and is enough to evaluate

the differences of per epoch training time. Graphs no.2 and no.4 are used to evaluate and

compare the needed time to reach a specific accuracy for each architecture.

In addition to accuracy and training time, the behavior of GFNN about overfitting and

gradient explosion are important. Overfitting happens when the neural network maps a

relation between the input data and the answer and instead of extracting useful feature

from the input data, learns what is the correct answer for a specific sample. If overfitting

happens the network might not perform well when receives an unseen input.

Overfitting is detected using a combination of information from graphs No.1, No.3,

and No.6. If overfitting happens the value of loss function for validation dataset starts to

Univ
ers

iti
Mala

ya

49

increase and the accuracy for validation dataset starts to decrease while the accuracy of

training dataset continues to improve.

Also graphs No.5 and No.6 can detect gradient explosions if it happens. Gradient

explosion happens when large error gradients accumulate. In this case, large updates will

be applied to the weights and biases of the network, and the network will lose its

functionality. Gradient explosion can be detected by sudden changes in the value of loss

function. In all experiments, the models were intentionally over-trained to analyze the

behavior of GFNNs when overfitting.

4.2. Baseline and GFNN VGGs Trained on Cifar10

Table 4.1 demonstrates the value of collected quantitative variable as described in

Chapter 4.1 for the baseline VGG and GFNN VGGs.

Table 4.1: Result of Quantitative Variables for VGGs on Cifar10

 𝒕𝒐𝒕_𝒕𝒓_𝒕𝒊 𝒆𝒑_𝒕𝒓_𝒕𝒊̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒕𝒓 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒗𝒍

Baseline 521.00 13.54 89 83

GFNN 296.79 7.76 84 79

GFNN VGG has significantly lower training time when used on Cifar10, Training of

the GFNN version finished 75% faster than the baseline while having only a 4% decrease

in accuracy on validation samples. Univ
ers

iti
Mala

ya

50

Figure 4.1: Accuracy by Epoch - VGGs - Training (Cifar10)

As demonstrated in Figure 4.1, the accuracy of GFNN VGG on training samples has a

faster growth at the beginning, but its accuracy is lower than baseline at the end of the

training, Figure 4.1 shows the accuracy per epoch, next Figure demonstrates the training

time of the networks.

Figure 4.2: Accuracy by Time - VGGs - Training (Cifar10)

Figure 4.2 compares the needed time to achieve a certation accuracy for each of the

networks, despite achieving lower final accuracy, the GFNN always is on top and has

been trained faster compared to the baseline. The training time per epoch reduces

significantly in the middle of the training, the reason is related to TensorFlow

Univ
ers

iti
Mala

ya

51

optimization on graph execution of models, in the case of GFNN VGG, the framework

was able to optimize the execution more effectively.

Figure 4.3: Accuracy by Epoch - VGGs - Validation (Cifar10)

While comparing the performance on validation dataset, despite having less learnable

parameters GFNN VGGs can benefit from provided information by Filter Layer and have

relatively identical performance to the baseline in terms of accuracy. Figure 4.3 compares

the accuracy of GFNN and baseline VGG on Cifar10 validation dataset, again, the GFNN

VGG’s accuracy grows faster at the beginning, but the final accuracy of baseline is

marginally higher. The next figure will compare the needed training time of the networks

for achieving a certain accuracy.

 Univ
ers

iti
Mala

ya

52

Figure 4.4: Accuracy by Time - VGGs - Validation (Cifar10)

As Figure 4.4 shows, the GFNN reaches to high accuracy significantly faster than the

baseline, but the acceleration is due to faster training time per epoch rather than achieving

higher accuracy with a lower number of epochs.

Figure 4.5: Loss Value - VGGs - Training (Cifar10)

The GFNN and baseline loss function values had an almost identical behavior on

training samples, but as Figure 4.6 demonstrates the baseline’s loss has more fluctuation

in the case of validation dataset.

Univ
ers

iti
Mala

ya

53

Figure 4.6: Loss Value - VGGs - Validation (Cifar10)

Both networks have a smooth decrease in loss function with no signs of overfitting,

however, the GFNN had less fluctuation compared to baseline. This behavior reappears

in other experiments in both cases of VGG and ResNet architectures.

Figure 4.7: Relative Training Time -VGGs (Cifar10)

Figure 4.7 compares training time of the GFNN versus baseline and on average the

GFNN’s training finished 75% faster. In both cases an increase in the slope of the graphs

suggests that the training time per epoch changed in the middle of the training. The reason

is related to TensorFlow`s optimization on graph execution of the models, the framework

was able to better optimize the execution of the GFNN.

Univ
ers

iti
Mala

ya

54

According to the result of experiment of GFNN and baseline VGG on Cifar10:

Do the GFNNs reach a higher accuracy within a certain number of epochs? GFNN

VGG has only achieved higher accuracy with lower number of epochs at the begging of

the training, and generally their final performance is worse than the baseline version.

Do GFNNs reach a certain accuracy sooner? What is the difference for max possible

accuracy of networks? GFNN VGG has significantly lower training time when used on

Cifar10, Training of the GFNN version finished 75% faster than the baseline while having

only a 4% decrease in accuracy on validation samples.

Are GFNNs more vulnerable to overfitting? The GFNN and baseline networks had an

almost identical behavior in terms of overfitting, extending the network with image

processing filters and lowering the number of learnable parameters had not affected the

overfitting of the networks in this specific combination of CNN architecture and dataset.

4.3. Baseline and GFNN ResNets Trained on Cifar10

Table 4.2 demonstrates the value of collected quantitative variable as described in

Chapter 4.1 for the baseline and GFNN ResNets.

Table 4.2: Result of Quantitative Variables for ResNets on Cifar10

 𝒕𝒐𝒕_𝒕𝒓_𝒕𝒊 𝒆𝒑_𝒕𝒓_𝒕𝒊̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒕𝒓 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒗𝒍

Baseline 1185.91 30.82 100 84

GFNN 1192.62 30.99 100 85

In contrast to traditional CNN (VGG implementation), ResNet architecture did not

fully benefited from filter layer when trained on Cifar10 dataset and for most of the

metrics the GFNN and baseline networks had similar behavior. This trend suggests the

Univ
ers

iti
Mala

ya

55

architectures with skip connection and residual blocks might need a different initial

feature as input and edge detection image processing filters were not suitable for them to

use the extracted features more efficiently. But achieved the max possible accuracy in

less epochs, and consequently had a shorter training time.

Figure 4.8: Accuracy by Epoch – ResNets - Training (Cifar10)

The Figure 4.8 demonstrates the accuracy of the networks per epochs and the baseline

and GFNN version had an identical behavior in the case of training samples.

Figure 4.9: Accuracy by Time - ResNets - Training (Cifar10)

In the case of ResNet the TensorFlow framework optimization of graph execution was

identical for both networks, the training time reduced per epoch after certain number of

Univ
ers

iti
Mala

ya

56

epochs, but the difference between training time per epoch for GFNN and baseline

networks was in the margin of error.

Figure 4.10: Accuracy by Epoch - ResNets - Validation (Cifar10)

Figure 4.11: Accuracy by Time - ResNets - Validation (Cifar10)

Because training time per epoch was similar for GFNN and baseline networks, Figures

4.10 and 4.11 show an identical trend for accuracy of networks on validation dataset. As

showed in Figure 4.10, the GFNN ResNet achieved the max accuracy approximately 13

epochs sooner than the baseline, and despite having an equal training time per epoch, the

GFNN ResNet was faster for training the model to achieve the max possible accuracy.

Univ
ers

iti
Mala

ya

57

Figure 4.12: Loss Value - ResNets - Training (Cifar10)

Figure 4.13: Loss Value - ResNets - Validation (Cifar10)

The loss function of GFNN and baseline ResNet had similar behavior as demonstrated

in Figure 4.12, in the case of validation dataset, the GFNN ResNet converged slightly

faster in early epochs, which is reflected in Figure 4.13, the accuracy of the GFNN version

improves faster in the early epochs, but the improvement is minor. Despite having similar

trend in the case of loss value for validation samples, the loss value of the GFNN network

had less fluctuations compared to the baseline network, this effect has been seen on VGG

implementations as well.

Univ
ers

iti
Mala

ya

58

Figure 4.14: Relative Training Time - ResNets (Cifar10)

The training time per epoch for GFNN and baseline versions of ResNet is almost

identical as showed in Figure 4.14, but it doesn’t mean the training time of the network

are the same as the GFNN ResNet achieved highest accuracy in a smaller number of

epochs.

According to the result of experiment of GFNN and baseline ResNets on Cifar10:

Do the GFNN CNNs reach a higher accuracy within a certain number of epochs?

GFNN ResNet achieved the highest possible accuracy on validation samples

approximately 13 epochs sooner, which suggests the GFNN ResNet could reach a higher

accuracy with a smaller number of epochs.

Do the GFNNs reach a certain accuracy sooner? What is the difference for max

possible accuracy of networks? The max accuracy for both networks were the same, also,

training time per epoch were similar, thus training time could be faster only if the network

can achieve higher accuracy in a smaller number epoch which was the case for GFNN

ResNet on Cifar10.

Are the GFNNs more vulnerable to overfitting? The GFNN and baseline networks had

an almost identical behavior in terms of overfitting, extending the network with image

Univ
ers

iti
Mala

ya

59

processing filters and lowering the number of learnable parameters had not affected the

overfitting of the networks in this specific combination of CNN architecture and dataset.

4.4. Baseline and GFNN VGGs trained on Cifar100 dataset

Table 4.3 demonstrates the value of collected quantitative variable as described in

Chapter 4.1 for the baseline and GFNN VGGs.

Table 4.3: Result of Quantitative Variables for VGGs on Cifar100

 𝒕𝒐𝒕_𝒕𝒓_𝒕𝒊 𝒆𝒑_𝒕𝒓_𝒕𝒊̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒕𝒓 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒗𝒍

Baseline 743.23 12.74 78 56

GFNN 409.54 7.05 69 49

Similar to Cifar10, GFNN VGG had a good performance on Cifar100. The training for

GFNN version finished 82% faster than the baseline version while having 7% decrease

in accuracy on validation samples.

Figure 4.15: Accuracy by Epoch - VGGs - Training (Cifar100)

As demonstrated in Figure 4.15, the accuracy of GFNN VGG on training samples has

a faster growth at the beginning, but its accuracy is lower than baseline at the end of the

Univ
ers

iti
Mala

ya

60

training, the difference of their accuracy is higher than Cifar10, in the case of Cifar100,

GFNN VGG’s accuracy had the biggest drop compared to the baseline network. Figure

4.15 shows the accuracy of the networks per epoch.

Figure 4.16: Accuracy by Time - VGGs - Training (Cifar100)

Figure 4.16 compares the needed time to achieve a certation accuracy for each of the

networks, the GFNN network always is on top and has been trained faster compared to

the baseline. The training time per epoch reduces significantly in the middle of the

training, the reason is TensorFlow’s optimization on graph execution of models, in the

case of GFNN VGG, the framework was able to optimize the execution more effectively.

Figure 4.17: Accuracy by Epoch - VGGs - Validation (Cifar100)

Univ
ers

iti
Mala

ya

61

As reflected in figure 4.17, despite taking much less time for per epoch training, the

accuracy of GFNN is comparable with the baseline. The difference between baseline and

GFNN version was bigger in case of training samples, but the final accuracy degradation

was 7% on validation data. Limiting the ability of the network to extract the features of

the first layer and reduction of learnable parameters had a direct impact on max

achievable accuracy of the model, but as demonstrated in next figure the training time

was much lower.

Figure 4.18: Accuracy by Time - VGGs - Validation (Cifar100)

As Figure 4.18 shows, GFNN reaches to its highest accuracy significantly faster than

the baseline, but this result is due to faster training time per epoch rather than achieving

higher accuracy with a lower number of epochs. Univ
ers

iti
Mala

ya

62

Figure 4.19: Loss Value - VGGs – Training (Cifar100)

The loss function for validation samples is demonstrated in Figure 4.20, the GFNN

converges faster in the earlier epochs, but the rest is the same for both models. The

networks trained for sixty epochs and according to Figure 4.19 and 4.20 there is no sign

of gradient explosion.

Figure 4.20: Loss Value - VGGs - Validation (Cifar100)

The GFNN and baseline loss function value had an almost identical behavior on

training samples, but as Figure 4.20 demonstrates the baseline’s loss has more fluctuation

in the case of validation dataset.

Univ
ers

iti
Mala

ya

63

Figure 4.21: Relative Training Time - VGGs (Cifar100)

Figure 4.21 demonstrates training time of GFNN versus the baseline, the training for

GFNN version finished 82% faster than the baseline version while having 7% decrease

in accuracy on validation samples. In both cases an increase in the slope of the graphs

suggests that the training time per epoch changed in the middle of the training. The reason

is related to TensorFlow`s optimizations on graph execution of the models, the framework

was able to better optimize the execution of the GFNN network.

According to the result of experiment of GFNN and baseline VGGs on Cifar100:

Do the GFNNs reach a higher accuracy within a certain number of epochs? GFNN

VGG has only achieved higher accuracy with lower number of epochs at the begging of

the training, and generally their final performance is worse than the baseline version.

Do the GFNNs reach a certain accuracy sooner? What is the difference for max

possible accuracy of networks? GFNN VGG has significantly lower training time when

used on Cifar100, Training of the GFNN version finished 82% faster than the baseline

while having a 7% decrease in accuracy on validation samples.

Univ
ers

iti
Mala

ya

64

4.5. Baseline and GFNN ResNets trained on Cifar100 dataset

Table 4.4 demonstrates the value of collected quantitative variable as described in

Chapter 4.1 for the baseline and GFNN ResNets.

Table 4.4: Result of Quantitative Variables for ResNets on Cifar100

 𝒕𝒐𝒕_𝒕𝒓_𝒕𝒊 𝒆𝒑_𝒕𝒓_𝒕𝒊̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒕𝒓 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒗𝒍

Baseline 1786.40 30.56 99 53

GFNN 1776.20 30.39 99 55

In contrast to traditional CNN (VGG implementation), ResNet architecture did not

fully benefited from filter layer and the GFNN and baseline networks had similar

behavior. In contrast to when trained on Cifar10, the GFNN version did not achieve the

max accuracy faster than the baseline, also, the ResNet networks had a gradient explosion

after epoch 41 in this experiment, the excessive training was intentional and meant to

cause overfitting and gradient explosion to monitor the behavior of GFNN networks.

Figure 4.22: Accuracy by Epoch – ResNets - Training (Cifar100)

Univ
ers

iti
Mala

ya

65

The Figure 4.22 demonstrates the accuracy of the networks per epochs and the base

line and GFNn version had an identical behavior in the case of training samples.

Figure 4.23: Accuracy by Time - ResNets - Training (Cifar100)

As Figure 4.22 and 4.23 show, the GFNN ResNet could not benefit from the filter

layer when trained on Cifar100 and its accuracy and training time was like the baseline

on training samples.

Figure 4.24: Accuracy by Epoch - ResNets - Validation (Cifar100)

As demonstrated in Figure 2.24 the accuracy of the GFNN and baseline ResNet was

almost identical on training samples. Also, the graph information is only valid before

Univ
ers

iti
Mala

ya

66

gradient explosion that occurred after epoch 41 and the training was continued only to

monitor the differences between two networks in the case of gradient explosion.

Figure 4.25: Accuracy by Time - ResNets - Validation (Cifar100)

Despite not being faster in the training, the GFNN ResNet had better final accuracy.

Also, the GFNN version was slightly more resilient to gradient explosion, but this can be

the result of random initialization of the model’s parameters.

Figure 4.26: Loss Value - ResNets - Training (Cifar100)

Univ
ers

iti
Mala

ya

67

Figure 4.27: Loss Value - ResNets - Validation (Cifar100)

The loss function of GFNN and baseline ResNet had similar behavior as demonstrated

in Figure 4.27, except for the delayed gradient explosion, the GFNN version did not have

any different behavior regarding the overfitting and gradient explosion and the value of

loss function was similar in case of both models. The identical behavior of loss value

aligns with the almost identical accuracy of the GFNN and baseline models.

Figure 4.28: Relative Training Time - ResNets (Cifar100)

Univ
ers

iti
Mala

ya

68

The training time for GFNN and baseline versions of ResNet is almost identical as

showed in Figure 4.28 when applied on Cifar100 dataset. The GFNN ResNet was slightly

faster, but the difference is in the margin of error.

According to the result of experiment of GFNN and baseline ResNets on Cifar100:

Do the GFNNs reach a higher accuracy within a certain number of epochs? Ext GFNN

ended and baseline ResNet network had almost identical behavior and the GFNN ResNet

could not benefit from filter layer to achieve higher accuracy in a lower number of epochs.

Do the GFNNs reach a certain accuracy sooner? What is the difference for max

possible accuracy of networks? The training time of both networks were comparable, the

GFNN model achieves slightly higher accuracy and was trained slightly faster.

Are the GFNNs more vulnerable to overfitting? The gradient explosion happened in

the approximately same epoch number for both networks and they had similar respond to

it, thus, the GFNN and baseline networks had an almost identical behavior in terms of

overfitting, GFNN the network with image processing filters and lowering the number of

learnable parameters had not affected the overfitting of the networks in this specific

combination of CNN architecture and dataset.

4.6. Baseline and GFNN VGGs trained on ImageNet_64x64 dataset

Table 4.5 demonstrates the value of collected quantitative variable as described in

Chapter 4.1 for the baseline and GFNN VGG.

Table 4.5: Result of Quantitative Variables for VGGs on ImageNet_64x64

 𝒕𝒐𝒕_𝒕𝒓_𝒕𝒊 𝒆𝒑_𝒕𝒓_𝒕𝒊̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒕𝒓 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒗𝒍

Baseline 29488.33 1017.07 45 37

GFNN 13022.00 449.22 46 33

Univ
ers

iti
Mala

ya

69

In the case of ImageNet_64x64, the GFNN converged faster and had a significantly

faster training time per epoch versus the baseline.

Figure 4.29: Accuracy by Epoch - VGGs - Training (ImageNet_64x64)

As demonstrated in Figure 4.29, the GFNN network achieves higher accuracy for

training samples and converges faster compared to the baseline, this is not necessarily

meaning the GFNN network outperform the baseline, the accuracy of the validation

samples determines the model’s performance.

Figure 4.30: Accuracy by Time -VGGs - Training (ImageNet_64x64)

Univ
ers

iti
Mala

ya

70

Figure 4.30 compares the needed time to achieve a certation accuracy for each of the

networks, the GFNN network has the higher accuracy all the time and always is on top

while has been trained significantly faster compared to the baseline.

Figure 4.31: Accuracy by Epoch – VGGs - Validation (ImageNet_64x64)

While comparing the performance on the validation dataset, despite having less

learnable parameters GFNN VGGs can benefit from provided information by filter layer

and have relatively identical performance to the baseline in terms of accuracy. Figure 4.31

compares the accuracy of GFNN and baseline VGG on ImageNet_64x64 validation

dataset, the GFNN VGG’s accuracy grows faster at the beginning, but the final accuracy

of the baseline is marginally higher. The next figure will compare the needed training

time of the networks for achieving a certain accuracy. Univ
ers

iti
Mala

ya

71

Figure 4.32: Accuracy by Time – VGGs - Validation (ImageNet_64x64)

The GFNNs had their best performance when trained on ImageNet_64x64, as Figure

4.32 shows the training finished 125% faster. The faster training is due to faster training

time per epoch rather than achieving higher accuracy with a lower number of epochs.

Figure 4.33: Loss Value - VGGs - Training (ImageNet_64x64)

The GFNN network converges faster and have a lower loss value on training samples,

which matches with their its performance compared to the baseline.

Univ
ers

iti
Mala

ya

72

Figure 4.34: Loss Value - VGGs - Validation (ImageNet_64x64)

As demonstrated in Figure 4.34, the GFNN converged faster in the first 10 epochs, and

then, the loss value plateaued afterward, the GFNN`s loss has less fluctuation and

decreases smoothly.

Figure 4.35: Relative Training Time - VGGs (ImageNet_64x64)

Figure 4.35 demonstrates training time of the GFNN versus the baseline per epoch.

The training of GFNN version was 125% faster than the baseline, while having 5%

decrease in accuracy on validation samples.

According to the result of experiment of GFNN and baseline VGGs on

ImageNet_64x64:

Univ
ers

iti
Mala

ya

73

Do the GFNNs reach a higher accuracy within a certain number of epochs? GFNN

VGG has only achieved higher accuracy at the begging of the training, and generally their

final performance is worse than the baseline version.

Do the GFNNs reach a certain accuracy sooner? What is the difference for max

possible accuracy of networks? GFNN VGG has significantly lower training time when

used on ImageNet_64x64, training of the GFNN version finished 125% faster than the

baseline while having only a 5% decrease in accuracy on validation samples.

Are the GFNNs more vulnerable to overfitting? The GFNN network had not downside

regarding the overfitting compared to the baseline model.

4.7. Baseline and GFNN ResNets trained on ImageNet_64x64 dataset

Table 4.6 demonstrates the value of collected quantitative variable as described in

Chapter 4.1 for the baseline and GFNN ResNets.

Table 4.6: Result of Quantitative Variables for ResNets on ImageNet_64x64

 𝒕𝒐𝒕_𝒕𝒓_𝒕𝒊 𝒆𝒑_𝒕𝒓_𝒕𝒊̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒕𝒓 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒗𝒍

Baseline 78755.20 2716.85 95 40

GFNN 77139.73 2660.69 94 41

Similar to what happened in the case of Cifar100, the GFNN ResNet had no a faster

training time and could not benefit from the filter layer, thus the training time and

performance metrics of the GFNN network were identical to the baseline.

Univ
ers

iti
Mala

ya

74

Figure 4.36: Accuracy by Epoch - ResNets - Training (ImageNet_64x64)

The Figure 4.36 demonstrates the accuracy of the GFNN and baseline networks per

epochs, and they had an identical behavior in the case of training samples.

Figure 4.37: Accuracy by Time - ResNets - Training (ImageNet_64x64)

As Figure 4.37 and 4.36 show, the GFNN ResNet could not benefit from the filter

layer when trained on Imgenet_64x64 and its accuracy and training time was like the

baseline on training samples. The training of the GFNN network was slightly faster, but

like the case of Cifar100, the difference is not considerable.

Univ
ers

iti
Mala

ya

75

Figure 4.38: Accuracy by Epoch - ResNets - Validation (ImageNet_64x64)

As demonstrated in Figures 4.38 and 4.39, both networks start overfitting after the

sixth epoch with identical behavior. But the GFNN network achieves the highest possible

accuracy despite being limited by lower learnable parameters and not being free to

determine the extracted features of the first layer.

Figure 4.39: Accuracy by Time - ResNets - Validation (ImageNet_64x64)

Because training time per epoch was similar for GFNN and baseline networks, Figures

4.38 and 4.39 show an identical trend for accuracy of networks on validation dataset.

Univ
ers

iti
Mala

ya

76

Figure 4.40: Loss Value - ResNets – Training (ImageNet_64x64)

Figure 4.41 suggests both GFNN and baseline networks have started overfitting after the

sixth epoch, it is also reflected in Figures 4.38 and 4.39 where the accuracy on validation

samples starts to decrease. Identical behavior in GFNN and baseline version suggests that

filter layer did not have any negative impact on overfitting.

Figure 4.41: Loss Value - ResNets - Validation (ImageNet_64x64)

The loss value of both networks on validation samples starts to increase while

overfitting which matches with the decrease in accuracy of validation samples. The

network was intentionally trained excessively to overfit and as demonstrated in Figure

Univ
ers

iti
Mala

ya

77

4.41, the GFNN network is not more vulnerable to overfitting and has a similar loss and

accuracy to baseline while overfitting.

Figure 4.42: Relative Training Time - ResNets (ImageNet_64x64)

The training time for the GFNN and baseline versions of ResNet is almost identical as

shown in Figure 4.42. Training of GFNN model was slightly faster, but the difference is

in the margin of error. Also, the accuracy of the GFNN model was slightly higher in the

case of validation samples.

According to the result of experiment of GFNN and baseline ResNets on

ImageNet_64x64:

Do the GFNNs reach a higher accuracy within a certain number of epochs? The GFNN

ResNet had an identical behavior to the baseline while applied to the ImageNet_64x64,

generally ResNet architecture could not benefit from the provided information in the filter

layer, but this effect exacerbated when applied on more complex datasets.

Do the GFNNs reach a certain accuracy sooner? What is the difference for max

possible accuracy of networks? The GFNN network achieved a slightly higher accuracy,

Univ
ers

iti
Mala

ya

78

also, training time per epoch were similar, thus training time could be faster only if the

network can achieve higher accuracy in a smaller number epoch. This was not the case

when trained the GFNN ResNet on ImageNet_64x64, interestingly a similar architecture

was achieving the max accuracy in less epochs in case of the Cifar10 dataset, suggesting

that ResNet cannot benefit from filter layer when the network become more complex.

Are the GFNNs more vulnerable to overfitting? The GFNN and baseline networks had

an almost identical behavior in terms of overfitting, extending the network with image

processing filters lowering the number of learnable parameters had not affected the

overfitting of the networks in this specific combination of CNN architecture and dataset,

the overfitting happened in both network with identical trends of loss and accuracy,

suggesting filter layer had not any effect on the overfitting.

4.8. Summary

The effect of extending CNNs with filter layer was different based on the architecture

and complexity of the dataset. The GFNN models based on VGG had a significant boost

in their training time while having slight degradation in their max accuracy. The worst

accuracy degradation was 7% happened while training the VGG based networks on the

Cifar100 dataset. The VGG based GFNN networks achieved 75% faster training in the

case of Cifar10, 82% faster training in the case of Cifar100, and 125% faster training in

the case of ImageNet_64x64.

The ResNet based GFNN networks on the other hand were minimally affected by the

filter layer except for Cifar10. The GFNN ResNet managed to achieve its max accuracy

13 epoch earlier than the baseline while trained on Cifar10, but in the case of Cifar100

Univ
ers

iti
Mala

ya

79

and ImageNet_64x64, the GFNN and baseline models had identical behavior while

GFNN networks having slightly higher accuracy on validation datasets.

Regarding the overfitting and gradient explosion, both ResNet based and VGG based

GFNN networks had no vulnerability compared with their baseline versions, suggesting

that extending the network with the filter layer did not have any negative effects on

overfitting and gradient explosion.

Univ
ers

iti
Mala

ya

80

CHAPTER 5: CONCLUSION

In this work, the effects of extending CNNs with image processing filters were

evaluated experimentally. The model acceleration technique was altered to support multi-

channel sensory data. For each of Cifar10, Cifar100, and ImageNet_64 datasets, two pairs

of networks based on VGG and ResNet were designed as the baseline, and their

performance and training time were compared with their GFNN peers.

The results suggest that, extending CNNs with image processing kernels can improve

training time of the models in specific cases. Its effectiveness depends on the complexity

of the dataset and the network's architecture. Opposed to ResNet, where improvements

were minimal, training time of VGG based GFNNs reduced significantly. Extending

VGG based CNNs with the filter layer accelerated training time, 75% on Cifar10, 82%

on Cifar100, and 125% on ImageNet_64x64, with a maximum 7% accuracy degradation.

Also, the GFNN networks didn't have any disadvantages regarding overfitting or gradient

explosion. The GFNNs are beneficial to accelerate the training time of CNNs on edge

devices or embedded devices with limited processing power. Also, the method can be

applied to color images or any other multi-dimensional sensory data.

Hardware was the major limitation of this experiment that hindered testing of the

method on a variety of CNN architecture with different sets of image processing filters.

Achieving a higher accuracy is also definitely possible for the used datasets, but to fulfill

the objectives of this research some attributes of the hardware like CPU, GPU frequency,

processes affinity, PCI-E bus power-saving state, etc. should be configured and monitored

during the training. Thus, using the cloud services was not possible as they don’t provide

low-level access to hardware, therefore this research was limited to the available GPU at

the time. And the focus of the research was on the applicability of the method for multi-

channel data rather than on achieving high accuracy.

Univ
ers

iti
Mala

ya

81

Future work can focus on the effects of different types of image processing filters or

effective merging of them with residual CNN architectures. Also, it can target other

classification problems and implement the filter layer based on the mathematical

properties of a target dataset's domain.

Univ
ers

iti
Mala

ya

82

REFERENCES

Adarme, M. O., Feitosa, R. Q., Happ, P. N., Almeida, C. A. de, & Gomes, A. R. (2020).

Evaluation of deep learning techniques for deforestation detection in the brazilian

amazon and cerrado biomes from remote sensing imagery. Remote Sensing, 12(6),

910. https://doi.org/10.3390/rs12060910

Agarwal, V., & Shendure, J. (2020). Predicting mRNA Abundance Directly from

Genomic Sequence Using Deep Convolutional Neural Networks. Cell Reports,

31(7), 107663. https://doi.org/10.1016/j.celrep.2020.107663

Alvarez, J. M., & Salzmann, M. (2017). Compression-Aware Training of Deep Networks.

Proceedings of the 31st International Conference on Neural Information Processing

Systems, 856–867.

Chandakkar, P. S., Li, Y., Ding, P. L. K., & Li, B. (2017). Strategies for Re-Training a

Pruned Neural Network in an Edge Computing Paradigm. 2017 IEEE International

Conference on Edge Computing (EDGE), 244–247.

https://doi.org/10.1109/IEEE.EDGE.2017.45

Chandra, B., & Sharma, R. K. (2017). On improving recurrent neural network for image

classification. Proceedings of the International Joint Conference on Neural

Networks, 2017-May, 1904–1907. https://doi.org/10.1109/IJCNN.2017.7966083

Chen, G., Zhang, X., Tan, X., Cheng, Y., Dai, F., Zhu, K., Gong, Y., & Wang, Q. (2018).

Training Small Networks for Scene Classification of Remote Sensing Images via

Knowledge Distillation. Remote Sensing, 10(5), 719.

https://doi.org/10.3390/rs10050719

Univ
ers

iti
Mala

ya

83

Cheng, Y., Wang, D., Zhou, P., & Zhang, T. (2017). A survey of model compression and

acceleration for deep neural networks. In arXiv.

Cho, J., & Lee, M. (2019). Building a compact convolutional neural network for

embedded intelligent sensor systems using group sparsity and knowledge

distillation. Sensors (Switzerland), 19(9), 4307. https://doi.org/10.3390/s19194307

Choi, H., Lee, Y., Yow, K. C., & Jeon, M. (2020). Block change learning for knowledge

distillation. Information Sciences, 513, 360–371.

https://doi.org/10.1016/j.ins.2019.10.074

Choi, J. A., & Lim, K. (2020). Identifying machine learning techniques for classification

of target advertising. In ICT Express (Vol. 6, Issue 3, pp. 175–180).

https://doi.org/10.1016/j.icte.2020.04.012

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions.

Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition,

CVPR 2017, 1800–1807. https://doi.org/10.1109/CVPR.2017.195

Chrabaszcz, P., Loshchilov, I., & Hutter, F. (2017). A downsampled variant of ImageNet

as an alternative to the CIFAR datasets. ArXiv.

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., & Bharath, A. A.

(2018). Generative Adversarial Networks: An Overview. IEEE Signal Processing

Magazine, 35(1), 53–65. https://doi.org/10.1109/MSP.2017.2765202

Dung, C. V., & Anh, L. D. (2019). Autonomous concrete crack detection using deep fully

convolutional neural network. Automation in Construction, 99, 52–58.

https://doi.org/10.1016/j.autcon.2018.11.028

Univ
ers

iti
Mala

ya

84

Fujiyoshi, H., Hirakawa, T., & Yamashita, T. (2019). Deep learning-based image

recognition for autonomous driving. In IATSS Research (Vol. 43, Issue 4, pp. 244–

252). https://doi.org/10.1016/j.iatssr.2019.11.008

Goyal, M., Knackstedt, T., Yan, S., & Hassanpour, S. (2020). Artificial intelligence-based

image classification methods for diagnosis of skin cancer: Challenges and

opportunities. Computers in Biology and Medicine, 127, 104065.

https://doi.org/https://doi.org/10.1016/j.compbiomed.2020.104065

Han, D., Kim, J., & Kim, J. (2017). Deep pyramidal residual networks. Proceedings -

30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,

6307–6315. https://doi.org/10.1109/CVPR.2017.668

Hao-Ting, L., Shih-Chieh, L., Cheng-Yeh, C., & Chen-Kuo, C. (2019). Layer-Level

Knowledge Distillation for Deep Neural Network Learning. Applied Sciences, 9(10),

1966.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image

recognition. Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 770–778. https://doi.org/10.1109/CVPR.2016.90

Hou, X., Shen, L., Sun, K., & Qiu, G. (2017). Deep Feature Consistent Variational

Autoencoder. 2017 IEEE Winter Conference on Applications of Computer Vision

(WACV), 1133–1141. https://doi.org/10.1109/WACV.2017.131

Hu, Y., Wen, G., Luo, M., Dai, D., Ma, J., & Yu, Z. (2018). Competitive inner-imaging

squeeze and excitation for residual network. In arXiv.

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected

convolutional networks. Proceedings - 30th IEEE Conference on Computer Vision

Univ
ers

iti
Mala

ya

85

and Pattern Recognition, CVPR 2017, 2017-Janua, 2261–2269.

https://doi.org/10.1109/CVPR.2017.243

Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift. Proceedings of the 32nd

International Conference on International Conference on Machine Learning -

Volume 37, 448–456.

Jia Deng, Wei Dong, Socher, R., Li-Jia Li, Kai Li, & Li Fei-Fei. (2009). ImageNet: A

large-scale hierarchical image database. CVPR09, 248–255.

https://doi.org/10.1109/cvprw.2009.5206848

Jung, J. H., Shin, Y., & Kwon, Y. (2018). Extension of Convolutional Neural Network

with General Image Processing Kernels. TENCON 2018 - 2018 IEEE Region 10

Conference, 1436–1439. https://doi.org/10.1109/TENCON.2018.8650542

Jung, J. H., Shin, Y., & Kwon, Y. (2019). A Metric to Measure Contribution of Nodes in

Neural Networks. 2019 IEEE Symposium Series on Computational Intelligence,

SSCI 2019, 1508–1515. https://doi.org/10.1109/SSCI44817.2019.9002851

Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent

architectures of deep convolutional neural networks. Artificial Intelligence Review,

53, 5455–5516. https://doi.org/10.1007/s10462-020-09825-6

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny

images. Cs.Toronto.Edu, 1–58. http://www.cs.toronto.edu/~kriz/cifar.html

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep

convolutional neural networks. Advances in Neural Information Processing

Systems. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001284

Univ
ers

iti
Mala

ya

86

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep

convolutional neural networks. Communications of the ACM, 60(6), 84–90.

https://doi.org/10.1145/3065386

Kuen, J., Kong, X., Wang, G., & Tan, Y. P. (2017). DelugeNets: Deep Networks with

Efficient and Flexible Cross-Layer Information Inflows. Proceedings - 2017 IEEE

International Conference on Computer Vision Workshops, ICCVW 2017.

https://doi.org/10.1109/ICCVW.2017.117

Lei, X., Pan, H., & Huang, X. (2019). A Dilated CNN Model for Image Classification.

IEEE Access, 7, 124087–124095. https://doi.org/10.1109/ACCESS.2019.2927169

Li, Y., Cao, G., & Cao, W. (2020). LMDAPNet: A Novel Manifold-Based Deep Learning

Network. IEEE Access, 8, 65938–65946.

https://doi.org/10.1109/ACCESS.2020.2985128

Liang, J., Zhang, T., & Feng, G. (2020). Channel Compression: Rethinking Information

Redundancy Among Channels in CNN Architecture. IEEE Access, 8, 147265–

147274. https://doi.org/10.1109/ACCESS.2020.3015714

Liu, C., Lin, T., Wu, Y., Lin, Y., Lee, H., Tsao, Y., & Chien, S. (2019). Computation-

Performance Optimization of Convolutional Neural Networks With Redundant

Filter Removal. IEEE Transactions on Circuits and Systems I: Regular Papers,

66(5), 1908–1921. https://doi.org/10.1109/TCSI.2018.2885953

Liu, J., Chao, F., Lin, C. M., Zhou, C., & Shang, C. (2021). DK-CNNs: Dynamic kernel

convolutional neural networks. Neurocomputing, 422, 95–108.

https://doi.org/10.1016/j.neucom.2020.09.005

Univ
ers

iti
Mala

ya

87

Liu, Y., Wang, H., Gu, Y., & Lv, X. (2019). Image classification toward lung cancer

recognition by learning deep quality model. Journal of Visual Communication and

Image Representation, 63, 102570. https://doi.org/10.1016/j.jvcir.2019.06.012

Lym, S., Choukse, E., Zangeneh, S., Wen, W., Sanghavi, S., & Erez, M. (2019).

PruneTrain: Fast neural network training by dynamic sparse model reconfiguration.

International Conference for High Performance Computing, Networking, Storage

and Analysis, SC, 1–13. https://doi.org/10.1145/3295500.3356156

Mathieu, M., Henaff, M., & LeCun, Y. (2014). Fast training of convolutional networks

through FFTS. 2nd International Conference on Learning Representations, ICLR

2014 - Conference Track Proceedings, 1–9.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale

image recognition. 3rd International Conference on Learning Representations,

ICLR 2015 - Conference Track Proceedings.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).

Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of

Machine Learning Research, 15(56), 1929–1958.

http://jmlr.org/papers/v15/srivastava14a.html

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception-

ResNet and the impact of residual connections on learning. 31st AAAI Conference

on Artificial Intelligence, AAAI 2017, 4278–4284.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the

Inception Architecture for Computer Vision. Proceedings of the IEEE Computer

Univ
ers

iti
Mala

ya

88

Society Conference on Computer Vision and Pattern Recognition, 2016-Decem,

2818–2826. https://doi.org/10.1109/CVPR.2016.308

Touvron, H., Vedaldi, A., Douze, M., & Jegou, H. (2019). Fixing the Train-Test

Resolution Discrepancy. In Proceedings of the 33rd International Conference on

Neural Information Processing Systems (pp. 8252–8262). Curran Associates Inc.

Wang, J., Zhang, B., Sun, Z., Hao, W., & Sun, Q. (2018). A novel conjugate gradient

method with generalized Armijo search for efficient training of feedforward neural

networks. Neurocomputing, 275, 308–316.

https://doi.org/10.1016/j.neucom.2017.08.037

Wang, W., Zhu, L., & Guo, B. (2019). Reliable identification of redundant kernels for

convolutional neural network compression. Journal of Visual Communication and

Image Representation, 63, 102582. https://doi.org/10.1016/j.jvcir.2019.102582

Weiss, K., Khoshgoftaar, T. M., & Wang, D. D. (2016). A survey of transfer learning.

Journal of Big Data, 3(1). https://doi.org/10.1186/s40537-016-0043-6

Wen, W., Wu, C., Wang, Y., Chen, Y., & Li, H. (2016). Learning structured sparsity in

deep neural networks. Advances in Neural Information Processing Systems, 2082–

2090.

Wiatowski, T., & Bolcskei, H. (2018). A Mathematical Theory of Deep Convolutional

Neural Networks for Feature Extraction. IEEE Transactions on Information Theory,

64(3), 1845–1866. https://doi.org/10.1109/TIT.2017.2776228

Woo, S., Park, J., Lee, J. Y., & Kweon, I. S. (2018). CBAM: Convolutional block

attention module. Lecture Notes in Computer Science (Including Subseries Lecture

Univ
ers

iti
Mala

ya

89

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3–19.

https://doi.org/10.1007/978-3-030-01234-2_1

Xia, Y., Zhou, J., Xu, T., & Gao, W. (2020). An improved deep convolutional neural

network model with kernel loss function in image classification. Mathematical

Foundations of Computing, 3(1), 51–64. https://doi.org/10.3934/mfc.2020005

Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual

transformations for deep neural networks. Proceedings - 30th IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2017, 5987–5995.

https://doi.org/10.1109/CVPR.2017.634

Xu, X., Ding, Y., Hu, S. X., Niemier, M., Cong, J., Hu, Y., & Shi, Y. (2018). Scaling for

edge inference of deep neural networks. Nature Electronics, 1(4), 216–222.

https://doi.org/10.1038/s41928-018-0059-3

Zagoruyko, S., & Komodakis, N. (2016). Wide Residual Networks. British Machine

Vision Conference 2016, BMVC 2016. https://doi.org/10.5244/C.30.87

Zhang, Y., & Li, X. (2020). Fast Convolutional Neural Networks with Fine-Grained

FFTs. Proceedings of the ACM International Conference on Parallel Architectures

and Compilation Techniques, 255–265. https://doi.org/10.1145/3410463.3414642

Zhou, H., Alvarez, J. M., & Porikli, F. (2016). Less is more: Towards compact CNNs.

Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 662–677.

https://doi.org/10.1007/978-3-319-46493-0_40

Univ
ers

iti
Mala

ya

