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PERFORMANCE ANALYSIS OF CONVOLUTIONAL NEURAL 
NETWORKS EXTENDED WITH PREDEFINED KERNELS IN 

IMAGE CLASSIFICATION 

ABSTRACT 

While Machine Learning aims to solve more challenging problems, Artificial Neural 

Networks (ANN) become deeper and more accurate. Convolutional Neural Network 

(CNN) is not an exception and state-of-art architectures consist of millions of learnable 

parameters. Aiming for better performance, these networks become more complex and 

computation intensive. Also, with the rise of IoT devices and edge computing, the 

importance of model acceleration and reduction of needed computing resources become 

more curial for training neural networks. Model acceleration and compression techniques 

often target reducing inference latency and memory usage, and research about reducing 

the training time was limited to two previous studies. Considering numerous use cases of 

CNNs, reducing the training time and processing cost is beneficial. CNNs are universal 

functions and in the case of supervised learning, they will converge to a specific desired 

function after training. In this research, predefined image processing kernels were merged 

into CNN's architecture to help the network to converge faster for the use case of image 

classification. This method can be applied to any classification task of multi-channel 

sensory data. The efficiency of the method was tested through an experiment on 

ImageNet, Cifar10, and Cifar100 datasets. The effects on performance were architecture 

dependent. In the case of CNNs with residual blocks and skip connections, the model was 

not able to leverage the provided information by image processing filters to converge 

faster, but CNNs based on VGG had a significantly (up to 125%) faster training time, 

which is beneficial for training models on embedded devices and edge computing. 

Keywords: Deep Learning, Convolutional Neural Networks, Model Acceleration 
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ANALISIS PRESTASI RANGKAIAN SARAF KONVOLUSI YANG 
DIPERLUASKAN DENGAN KERNELS DIJELASKAN DALAM 

KLASIFIKASI IMEJ 

ABSTRAK 

Walaupun Pembelajaran Mesin bertujuan untuk menyelesaikan masalah yang lebih 

mencabar, Rangkaian Neural Buatan (ANN) adalah lebih mendalam dan tepat. Rangkaian 

Neural Konvolusi (CNN) tidak terkecuali dan seni bina terkini terdiri daripada berjuta-

juta parameter yang boleh dipelajari. Menyasarkan prestasi yang lebih baik, rangkaian ini 

menjadi lebih kompleks dan pengiraan lebih intensif. Juga, dengan peningkatan peranti 

IoT dan pengkomputeran tepi, kepentingan pecutan model dan pengurangan sumber 

pengkomputeran yang diperlukan menjadi lebih penting untuk melatih rangkaian saraf. 

Teknik pecutan dan mampatan model menyasarkan pengurangan kependaman inferens 

dan penggunaan ingatan, dan kajian tentang mengurangkan masa latihan dihadkan kepada 

dua kajian terdahulu. Mengambilkira kes penggunaan CNN, mengurangkan masa latihan 

dan kos pemprosesan adalah berfaedah. CNN ialah fungsi universal dan dalam kes 

pembelajaran diselia, ia akan bertumpu kepada fungsi tertentu yang dikehendaki selepas 

latihan. Dalam kajian ini, kernel pemprosesan imej yang telah ditetapkan telah 

digabungkan ke dalam seni bina CNN untuk membantu rangkaian menumpu lebih cepat 

untuk kes penggunaan klasifikasi imej. Kaedah ini boleh digunakan untuk sebarang tugas 

pengelasan data sensor berbilang saluran. Kecekapan kaedah telah diuji melalui 

eksperimen pada dataset ImageNet, Cifar10, dan Cifar100. Hasil ke atas prestasi adalah 

bergantung kepada seni bina. Dalam kes CNN dengan baki blok dan sambungan langkau, 

model tidak dapat memanfaatkan maklumat yang diberikan oleh penapis pemprosesan 

imej untuk menumpu lebih cepat, tetapi CNN berdasarkan VGG mempunyai masa latihan 

yang lebih pantas (sehingga 125%), iaitu bermanfaat untuk model latihan pada peranti 

terbenam dan pengkomputeran tepi. 
 

Kata kunci: Pembelajaran Dalam, Rangkaian Neural Konvolusi, Pemprocesan Model 
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CHAPTER 1: INTRODUCTION 

1.1. Research Background 

Complex spatial pattern recognition like detecting and labeling objects in an image, 

for a long time considered a daunting, if not an impossible task, till a breakthrough 

happened and Krizhevsky et al. (2012) showed that Artificial Neural Networks (ANN) 

can be trained for the tasks like image classification or object detection and are capable 

of much more. In contrast to classic programs, an ANN will be trained instead of 

programmed. The idea behind ANNs based on simulating the activation of neurons, and 

in most ANN architectures, stacks of artificial neurons construct a layer, and the 

connection between these layers causes neurons in the next layer to activate. There are 

numerous ANN architectures with diverse applications, including Feed Forward Neural 

Networks (J. Wang et al., 2018), Recurrent Neural Network (RNN) (Chandra & Sharma, 

2017), Convolutional Neural Networks (CNN) (Krizhevsky et al., 2017), Generative 

Adversarial Networks (GAN) (Creswell et al., 2018), Variational Auto-Encoders (VAE) 

(Hou et al., 2017), etc. 

Convolutional Neural Network combines the concept of convolutions with ANN. 

During the training, the convolutions will learn how to extract useful features from the 

datasets. Performing the daunting task of feature extraction automatically, combined with 

their high accuracy, makes CNN a perfect choice for many use cases like Image 

Processing, Natural Language Processing, Data-Driven Personalized Advertising (J. A. 

Choi & Lim, 2020), Genome Mapping (Agarwal & Shendure, 2020), etc. The focus of 

this work is on using CNNs in Image Classification. Image Classification is a 

classification task in machine learning that maps a set of raster data to their labels. Image 

classification with CNNs has many real-world applications, for example: CNNs play an 

essential role in cancer recognition. Goyal et al. (2020) have used CNNs for detecting 
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skin cancers, Y. Liu et al. (2019) did the same for detecting lung cancer. Adarme et al. 

(2020) suggests that CNN-based techniques have the best performance in autonomous 

deforesting detection in satellite images using image classification. Dung & Anh (2019) 

demonstrate autonomous crack detection in concrete using CNNs, Fujiyoshi et al. (2019) 

shows the role of CNNs in autonomous driving.  Many use cases exist for the combination 

of CNNs and image classification which implies their importance in modern science and 

industry. 

For image classification, CNNs are often used in a supervised manner and the network 

should be trained via samples and their known labels, which involves massive matrix 

calculations for feedforward and backpropagation phases. As machine learning aims to 

solve more challenging tasks, the complexity of neural networks increases. Also, 

advances in the field focus on improving accuracy by making the networks deeper. And 

the processing power and memory needed for training rise rapidly when the number of 

network layers increases which makes training of a production ready network costly. To 

mention a few examples, DenseNet-k=24 (Huang et al., 2017) with 100 layers contains 

17.2 million learnable parameters, ResNet-50 (He et al., 2016) with 50 layers contains 26 

million parameters, Xception (Chollet, 2017) with 71 layers have 23 million learnable 

parameters, additionally these models should be trained on massive datasets like 

ImageNet (Jia Deng et al., 2009) that contains more than 14 million images. 

 

With the extensive usage of CNNs and the training cost of a production-ready model, 

it is crucial to optimize the networks both at the training and interference phases and this 

work focuses on the model acceleration of CNNs when used in a supervised manner in 

image classification. There exist several model acceleration methods focused on different 

aspects of the model’s performance that target the inference latency and memory usage. 

The stat of art model acceleration methods is discussed extensively in Chapter 2. But, to 
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refer to a few of them here: Zhang & Li (2020) suggest performing the convolutional 

operation in the furrier domain. C. Liu et al. (2019) introduces a method to use redundant 

kernel removal for gradient optimization (GO) in using CNNs for Super-Resolution (SR). 

Szegedy et al. (2016) proposed asymmetrical convolution where a d×d convolution is 

spatially factorized as a sequence of two layers with d×1 and 1×d convolutions which are 

used in the Inception model, etc.  

 

In some cases, transfer learning solves the problem of costly training by reusing 

already trained convolutional layers in the target network architecture. The trained 

convolutional layers are specialized for the original dataset and should be trained for new 

content to achieve the desired performance, but the needed time and processing is 

relatively minimal. But using pre-trained convolutional layers is practical only if features 

of the destination dataset have similarities with the original dataset. Otherwise, domain 

adaptation would become an obstacle in using transfer learning. 

 

Another approach to model acceleration is to focus on the network architecture, often 

the first layer of convolutions in trained CNNs becomes similar to edge detection filters, 

suggesting that adding predefined edge detection kernels to their first layer might help 

the network to converge faster and reduce the training time. The idea suggested by Jung 

et al. (2018) and the networks have been termed "Generalized Filter Neural Network 

(GFNN)". The architecture was implemented and tested by the author on the MNIST 

dataset, but at the time of writing, no analysis about its performance and side effects when 

used on more complex datasets has been found during the literature review.  

 

The " Generalized Filter Neural Network" have the potential to decrease the training 

time with minimal degradation in accuracy and can be useful for training models on 
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embedded or edge devices if verified. But the idea was tested only on the MNIST dataset. 

The MNIST dataset is not complex enough to validate the efficiency of the method, and 

a more comprehensive experiment is needed. It is necessary to test the method on different 

architecture and analyze their performance on more complex datasets like ImageNet, 

Cifar100, and Cifar10. This research will design and implement multiple GFNNs and will 

analyze and compare their performance on ImageNet_Resized (Jia Deng et al., 2009), 

Cifar100 (Krizhevsky & Hinton, 2009), and Cifar10 (Krizhevsky & Hinton, 2009) with 

their equivalent baseline versions in terms of accuracy, training time, and overfitting. 

 

1.2. Problem Statement 

With advances in the field of deep neural networks, state-of-the-art CNN architectures 

have become more memory and computation intensive, that is troublesome in the case of 

training CNNs on embedded devices and edge computing (Xu et al., 2018). With the rise 

of IoT devices and edge computing, it has been critical to develop model acceleration 

techniques compatible with low memory and processing environments (Chandakkar et 

al., 2017). Most model acceleration techniques focus on inference and even add 

complexity to the training phase, thus focusing on reducing the training time of CNNs is 

beneficial to address the mentioned problem. Extension of Convolutional Neural Network 

with General Image Processing Kernels (Jung et al., 2018) is a potential technique to 

reduce the training time in the use case of image classification, but the method is not 

compatible with multi-sensory input data and their performance has never been 

empirically tested on datasets with complex features and a high number of classes. Also, 

by applying the technique the number of learnable parameters reduces that might have a 

potential side effect of overfitting of the neural network that has not been tested yet. 
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1.3. Research Questions 

i. What are model acceleration techniques and how do they apply to CNNs? 

ii. Can model acceleration techniques result in a reducing the training time of 

CNNs? 

iii. How to alter GFNNs to be applicable to multi-channel sensory data? 

iv. How do GFNNs perform on multi-channel sensory data? And what is its side 

effect on the accuracy of the network? 

1.4. Research Objectives 

i. To review and compare CNN’s model acceleration techniques. 

ii. To review and find model acceleration techniques that target reducing the 

training time. 

iii. To design and implement a filter architecture to combine image processing 

kernels with Convolutional layers when applied to multi-channel sensory data. 

iv. To validate the performance of GFNNs on multi-channel datasets 

experimentally. 

1.5. Research Significance 

CNNs play an important role in the field of machine learning, they are used in various 

use cases and are applied to different types of input data. Current embedded and edge 

devices are powerful enough for the inference phase of most of the CNNs, but for the 

training, a much more powerful computer that is equipped with accelerators like GPUs is 

necessary. The needed computation and memory for the training of CNNs hinders the 

embedded devices to learn from the data independently and with the rise of IoT devices 

and edge computing, it is necessary to develop or modify CNNs architectures to be more 

compatible with the processing and memory constraint of embedded devices. By reducing 

the processing and memory footprint of the model while training, it becomes more 
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feasible to implement standalone AI agents that leverage CNNs in their learning pipeline. 

This research focuses on the reduction of CNNs training resources by merging images 

processing filters into their architecture to help them converge faster. 

 

1.6. Expected Outcomes 

To apply the GFNNs on color images, a new method is developed for merging the 

image processing filters into the CNNs architectures that is compatible with multi-

channel sensory data. The efficiency of the method is measured experimentally to answer 

below questions: 

• Do the GFNNs reach a higher accuracy within a certain number of epochs? 

• Do the GFNNs reach a certain accuracy sooner? What is the difference for max 

possible accuracy of networks? 

• Are the GFNNs more vulnerable to overfitting? 

1.7. Summary 

CNNs have a wide variety of use cases and while aim to solve more complex machine 

learning problems with high accuracy, they have become more memory and computation-

intensive, and state of the art architectures consist of millions if not billions of learnable 

parameters.  Most model acceleration techniques focus on reducing the inference latency 

and even add complexity to the training. Thus, to have independent AI agents capable of 

learning which leverage CNNs capabilities, it is needed to develop methods of making 

CNNs architecture more suitable for low memory and processing environment. This 

research provides such a method by combining image processing filters into the CNN 

architectures to help them converge faster.
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CHAPTER 2: LITERATURE REVIEW 

2.1. Introduction 

After AlexNet’s breakthrough (Krizhevsky et al., 2012) in 2012, deep learning has 

become the center of attention. Different types of ANNs developed and have been used 

in multi-disciplinary research. CNN is one of these architectures which received the most 

attention. Figure 2.1 and Figure 2.2 demonstrate the growth in the number of publications 

in Web of Science, Science Direct, and IEEE Xplore with "Deep Learning" and 

"Convolutional Neural Network" in their title, abstract, or keywords. 

 

Figure 2.1: Number of publications with the keyword: Deep Learning 

As showed in Figure 2.2, considerable portion of research in Deep learning is about 

Convolutional neural networks.

 

Figure 2.2: Number of publications with the keyword: CNN 
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CNN's good performance on difficult and sometimes ill-posed machine learning 

problems in addition to the increasing attention toward them has led to the development 

of novel CNN architectures. Table 2.1 demonstrates a list of impactful CNN architectures 

with their properties and contribution. In most architectures, the number of neurons along 

with the depth of the CNN has a direct relation with the needed processing, and it is 

reasonable to consider these variables as an indication of the continuous growth of needed 

memory and computation. 

2.2. CNN Architectures 

Convolutional neural networks combine the idea of convolutions with artificial neural 

networks, in the case of most architectures, the network consists of two separate sections. 

The convolutional layers learn how to extract the sample features during the training and 

a feed-forward layer is in charge of classification based on features delivered by 

convolutional layers. But not all the architectures have a simple architecture, for example, 

architecture of ResNet consist of residual blocks instead of standalone convolutional 

layers, and as explained in detail later, these residual blocks consist of a skip connection 

between their convolutional layers. 

In case of AlexNet (Krizhevsky et al., 2012), the convolutional layers are preceded 

with overlapping max pooling layer that reduces the height and width of their output and 

produces thinner tensors for the next convolutional layer and finally the result of the last 

convolutional layer is fed to a feed-forward neural network, it also attaches ReLU 

activation layers after every convolutional and feed-forward layer. 

VGG (Simonyan & Zisserman, 2015) has a uniform architecture, the convolutional 

part consists of 16 convolutional layers, similar to AlexNet the convolutions are 3x3 but 

with a greater number of kernels for every layer.  
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Deep neural networks often suffer from gradient vanishing in which the changes to the 

learnable parameters become infinitely small because of repeated multiplication. ResNet 

(He et al., 2016) uses the concept of residual blocks that consists of skip connections to 

jump over some layers to mitigate vanishing gradient when the network becomes deeper. 

He et al. (2016) provide evidence that network with residual blocks is easier to optimize 

and can gain more accuracy from their less vulnerability to gradient vanishing that leads 

to deeper networks. 

Table 2.1: Modern CNN architectures and their properties   

Architecture Contribution Params Error (%) Depth  Study 

AlexNet 
Uses Relu, 
dropout and 
overlap Pooling 

60 M ImageNet: 16.4 8 
(Krizhevsky et al., 

2012) 

VGG 
Homogenous 
topology, Uses 
small size kernels 

138 M ImageNet: 7.3 19 
(Simonyan & 

Zisserman, 2015) 

Inception-V4 

Split transform 
and merge idea, 
Uses asymmetric 
filters 

35 M ImageNet: 4.01 70 
(Szegedy et al., 

2017) 

Inception -
ResNet 

Uses split 
transform merge 
idea and residual 
links 

55.8 M ImageNet: 3.52 572 
(Szegedy et al., 

2017) 

ResNet 

Residual 
learning, Identity 
mapping-based 
skip connections 

25.6 M  

1.7 M 

ImageNet: 3.6  

CIFAR-10: 6.43 

152 

 110 
(He et al., 2016) 

DelugeNet 

Allows cross 
layer information 
flow in deep 
network 

20.2 M CIFAR-10: 3.76 
CIFAR-100: 19.02 146 (Kuen et al., 2017) 

WideResNet 

Width is 
increased and 
depth is 
decreased 

36.5 M 
CIFAR-10: 3.89 

CIFAR-100: 18.85 

28 

- 

(Zagoruyko & 
Komodakis, 2016) 

Xception 

Depth wise 
convolution 
followed by point 
wise convolution 

22.8 M ImageNet: 5.5 126 (Chollet, 2017) 

ResNeXt 

Cardinality, 
Homogeneous 
topology, 
Grouped 
convolution 

68.1 M 

CIFAR-10: 3.58  

CIFAR-100: 17.3 

 ImageNet: 4.4 

29 

- 

101 

(Xie et al., 2017) 
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Table 2.1: Continued   

DenseNet Cross-layer 
information flow 

25.6 M 

25.6 M 

15.3 M 

15.3 M 

CIFAR-10+: 3.46 

CIFAR100+:17.18 

CIFAR-10: 5.19 

CIFAR-100: 19.64 

190 

190 

250 

250 

(Huang et al., 2017) 

PyramidalNet Increases width 
gradually per unit 

116.4 M 

27.0 M 

27.0 M 

ImageNet: 4.7 

CIFAR-10: 3.48 

CIFAR-100: 17.01 

200 

164 

164 

(Han et al., 2017) 

ResNeXt101 
(32x4d) + 
CBAM 

Exploits both 
spatial and 
feature-map 
information 

48.96 M ImageNet: 5.59 101 (Woo et al., 2018) 

CMPESE-
WRN-28 

Residual and 
identity mappings 
both are used for 
rescaling the 
feature-map 

36.92 M 

36.90 M 

CIFAR-10: 3.58 

CIFAR-100: 18.47 
152 (Hu et al., 2018) 

FixEfficientNet-
L2 

Using FixRes 
method for fixing 
the train-test 
resolution 
discrepancy 

480 M ImageNet: 1.3 - 
(Touvron et al., 

2019) 

Note. Partially retrieved from (Khan et al., 2020) 

ResNet suffers from the problem of “diminishing feature reuse” which happens when 

only a small portion of convolutional layers contribute to extracting useful features. In 

another word, the network can avoid learning. WideResNet (Zagoruyko & Komodakis, 

2016) is a variant of ResNet where the author proves that the network performs better by 

increasing the width and reducing the depth of networks. This was achieved using wide 

residual blocks. In addition to their dimensions, the major difference between residual 

block and wide residual blocks is that wide residual blocks perform back normalization 

and ReLU before convolutions while they are after convolutions in the case of original 

residual blocks. 
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Inception network (Szegedy et al., 2017) consists of inception blocks, each block take 

advantage of having multiple kernel size in separate branches of calculation, and the 

results of all four branches concatenate at the end of the block. The branches have 

different kernel size for convolutional layers, first layer consists of 1x1 convolutions, 

second layer 3x3 convolutions, third layer 5x5 convolutions, and forth layer 3x3 max 

pooling. Additionally, Inception-v3 introduces the concept of separable convolutions that 

consists of depth-wise and point-wise convolutions which are explained later while 

focusing on Xception architecture. 

ResNeXt (Xie et al., 2017) combines the ideas behind ResNet, VGG, and Inception. 

Inception layers should be highly customized, hence adapting the network for new 

datasets is difficult. Each ResNeXt block is a module with many uniform branches that 

are repeated through the architecture. ResNeXt adds a new dimension termed cardinality 

that refers to the number of branches in each block and the result of all branches is 

aggregated using summation.  

Xception (Chollet, 2017) introduces the concept of modified separable convolution 

which is based on depth-wise and point-wise convolutions. A depth-wise convolution is 

a combination of per channel n×n spatial kernel that produce the same number of channels 

as input, in another word, each kernel in depth-wise convolution is applied on a single 

channel and is responsible for only one of the channels in the output. Depth-wise 

convolutions are lighter in comparison to conventional convolutional layers as each 

kernel is not applied across all the channels. On the other hand, a point-wise convolution 

is a 1×1 convolution to change the dimension of the output. Xception defines a modified 

version of separable convolutions. In the original design of separable convolutions in 

Inception-v3 (Szegedy et al., 2017) the point-wise convolution is performed after the 

depth-wise convolution, but in Xception the order of operations is reversed. Also, in 
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Xception separable layer there is no intermediate ReLU nonlinearity in oppose to 

separable layers in Inception-v3. According to the author of Xception (Chollet, 2017), the 

Xception without any intermediate activation function outperformed using either ELU or 

ReLU. It also uses skip connection through the architecture and achieved higher accuracy 

with the skip connection. The exit flow of the network is like other architectures and the 

extracted features are forwarded to a fully connected feed-forward network. Xception is 

claimed to have similar model size to Inception-v3 while outperforming VGG, ResNet, 

and Inception-v3 while using the residual architecture and skip connections are 

implemented. But without the skip connections its performance is lower than Inception-

v3 and might be fairer to compare the performance of Xception with Residual Inception-

v3 instead.  

DenseNet (Huang et al., 2017) extends the idea behind ResNet, and each layer receives 

additional information from all of its preceding layers. In ResNet each residual block 

passes its stat to the next one, but DenseNet block receives a collective knowledge about 

the stat of all previous layers. Each DenseNet block consists of Batch-Normalization, 

ReLU, and a 3x3 convolutional layer that produces feature maps of k channel, which k is 

a configurable. To reduce the model size a combination of Batch-Normalization, ReLU, 

and a 1x1 convolutional layer is used first. As a result, the network can be thinner and 

more compact with a smaller number of kernels in each block, thus it has higher 

computation and memory efficiency. DenseNet has numerous advantages to ResNet, due 

to the skip connections the error can be directly propagated to the earlier layers that 

leading to strong gradient flow. As mentioned earlier, DenseNet is more efficient 

computationally, also, since each layer in DenseNet receives the result of all preceding 

layers, it tends to have a more diversified feature.  
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PyramidalNet (Han et al., 2017) steadily increases the width of residual blocks instead 

of keeping the same spatial dimension before the down-sampling. Han et al. (2017) claims 

that CNNs learning capabilities are limited because of the significant rise in feature maps 

when the networks are deep, and PyramidalNet design helps to solve the problem. 

With significant improvements in CNN’s architecture and performance, they consist 

of millions of learnable parameters that should be trained on millions of samples to 

achieve high accuracy. Also, with the help of model acceleration techniques, these models 

achieve reasonable inference latency after training, but as described in the next section, 

most of these techniques add extra complexity to the training phase. Thus, new methods 

or architectures are needed to train CNN on edge or embedded devices and create 

independent AI agents that leverage CNN’s capabilities. In the next section state of the 

art model acceleration techniques are reviewed and their effects on training time, 

inference latency, and memory consumption are examined. 

 

2.3. Model Acceleration 

To accurately handle machine learning problems, CNNs are becoming deeper and 

contain millions of learnable parameters, training them on large datasets would be costly 

in terms of time and money. In addition to using hardware accelerators and optimized 

frameworks, Transfer learning and model acceleration techniques are used to tackle this 

problem. Transfer learning is a well-studied field, it refers to the techniques used to 

transfer the acquired knowledge of an already trained ANN to another network. In the 

case of CNNs, pre-trained convolutional layers are used in the new model by connecting 

a Feed Forward Network (FFN) on top of pre-trained convolutional layers. The new 

network will benefit from the already trained convolutions and adapt to the new dataset 

in a shorter time. Transfer learning is beneficial when the source and target samples are 
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relatively similar. In Transfer learning, domain adaptation is focused on correcting 

marginal distribution differences or the conditional distribution differences between the 

source and target domains which have their problems and limitations (Weiss et al., 2016). 

On the other hand, most model acceleration techniques focus on the reduction of inference 

latency and memory consumption. Table 2.2 summarizes model acceleration methods. 

Table 2.2: Different approaches to model acceleration and compression 

Category Description Attributes 

Parameter Pruning 
and Quantization 

Reduces redundant 
parameters which are 
not affecting the 
performance 

Robust to various settings, can achieve 
good performance, can support both 
training from scratch and pre-trained 
models 

Low-Rank 
Factorization 

Uses Tensor 
decomposition to 
estimate the 
informative parameters 

Standardized pipeline, easily to be 
implemented, can support both training 
from scratch and pre-trained models 

Transferred/Compact 
convolutional filters 

Uses special structural 
convolutional filters to 
save parameters 

Algorithms are dependent on 
applications, usually achieve good 
performance, only support training from 
scratch 

Knowledge 
Distillation 

Trains a new compact 
neural network with 
distilled knowledge of 
a large model 

The performance is sensitive to 
applications and network structure, only 
support training from scratch 

Note. Retrieved from (Cheng et al., 2017) 

Parameter pruning is an acceleration method that removes insignificant connections 

between neurons and reduces redundancy in convolution kernels. Pruning and 

quantization should be configured based on the target hardware. For example, a CPU-like 

architecture with no parallelization may fully exploit the reduction of computations by 

unstructured pruning to improve speed, but a GPU-like massive parallel architecture 

would not. 

The large number of neurons increases the inference latency and makes models 

challenging to implement in low-memory environments such as mobile phones and IoT 

devices. Low-Rank Factorization uses tensor decomposition to replace layers with an 
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approximation of their most important weights, this way both the memory and latency of 

the model decrease with minimal performance degradation. Transferred/Compact 

convolutional filters act in a similar way and are techniques based on group theory to find 

the equivalent of convolutions that reduce the parameter space and save memory and 

computation. 

The Knowledge Distillation method trains a compact and shallow network based on a 

deep network to mimic its output. Its performance is sensitive to applications and network 

structure that results to retraining the model from scratch. 

Most of the mentioned methods have been more focused on inference latency and less 

on training time and have added an extra computation intensive step after training to the 

production pipeline. Table 2.3 demonstrates an overview of state of art model acceleration 

techniques.  

Table 2.3: Overview of model acceleration techniques 

Study Concept 

Acceleration Method 

Remarks 

Param
eter Pruning and Q

uantization 

Low
-Rank Factorization 

Transferred/Com
pact convolutional 

filters 

K
now

ledge D
istillation 

O
ther 

(Jung et 
al., 2019) 

Proposed a metric that can measure the 
influence of a node in a layer of a neural 
network on a node in subsequent layers 

🗸 × × × × 

Introduced the influential 
scores and applied them to 
interpret the outcome of 
the models 

(J. Liu et 
al., 2021) 

Introduces dynamic kernel 
convolutional neural networks (DK-
CNNs), an enhanced type of CNN, by 
performing line-by-line scanning 
regular convolution to generate a latent 
dimension of kernel weights 

× × 🗸 × 🗸 

The proposed DK-CNNs 
were compared with 
different network 
structures with and 
without a latent dimension 
on the CIFAR and 
FashionMNIST datasets. 
The experimental results 
show that DK-CNNs can 
achieve better 
performance than regular 
CNNs. 
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Table 2.3: Continued 

Study 
Concept 

(Research motivation) 

Acceleration Method 

Remarks 

Param
eter Pruning and Q

uantization 

Low
-Rank Factorization 

Transferred/Com
pact convolutional 

filters 

K
now

ledge D
istillation 

O
ther 

(C. Liu et 
al., 2019) 

Proposes two computation-performance 
optimization methods to reduce the 
redundant convolution kernels of a 
CNN with performance and architecture 
constraints 

🗸 × × × × 

Optimizations achieve 
about 50% size reduction 
but only cause a minor 
performance drop. 

(Li et al., 
2020) 

The method aims to exploit the 
discriminant and geometrical structure 
of data manifold by optimally 
preserving the local neighborhood 
information. 

× × × × 🗸 

The experimental results 
on Extended Yale B, AR, 
FERET, YTF datasets 
show that the proposed 
model outperforms the 
most recent state-of-the-
art models. 

(Jung et 
al., 2018) 

Applied pre-defined kernels also known 
as filters or masks developed for image 
processing to convolution neural 
networks. Instead of letting neural 
networks find their first layer kernels, 
41 different general-purpose kernels of 
blurring, edge detecting, sharpening, 
discrete cosine transformation, etc. was 
used 

× × × × 🗸 

The method reaches the 
accuracy of 90% even 
with only 500 training 
samples on the MNIST 
dataset that is four times 
faster than the traditional 
CNN 

(Liang et 
al., 2020) 

Aiming at channel compression, a novel 
convolutional construction named 
compact convolution is proposed to 
embrace the progress in spatial 
convolution, channel grouping, and 
pooling operation. 

× 🗸 × × × 

Unlike traditional 
methods for dimensional 
reduction in CNN which 
introduce considerable 
learnable weights, the 
compact convolution can 
squeeze the channel 
dimension of feature maps 
with no extra parameters. 
Extensive experimental 
results demonstrated that 
the proposed method can 
not only cut down the run 
time on CPU and GPU but 
also produce promising 
performance. 

(Xia et al., 
2020) 

In the proposed method the pooling 
layer is replaced by two continuous 
convolutional layers with a 3×3 
convolution kernel, which a dropout 
layer in-between reduce overfitting, and 
cross-entropy kernel is used as a loss 
function 

× × × × 🗸 

Through experimental 
comparison with AlexNet, 
VG- GNet, and 
GoogLenet network 
models on two different 
data sets, it is concluded 
that the improved network 
structure in this paper has 
obvious advantages in 
terms of recognition 
accuracy, convergence 
speed, and recognition 
stability. 
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Table 2.3: Continued 

Study 
Concept 

(Research motivation) 

Acceleration Method 

Remarks 

Param
eter Pruning and Q

uantization 

Low
-Rank Factorization 

Transferred/Com
pact convolutional 

filters 

K
now

ledge D
istillation 

O
ther 

(W. Wang 
et al., 
2019) 

Presents a novel pruning criterion based 
on channel-level pruning to compress 
CNN models. The approach utilizes 
layer-wise feature maps to identify 
redundant filters. 

🗸 × × × × 

The pruning algorithm 
proposed in this paper can 
greatly compress the 
original VGG-16 into a 
very small model (only 
0.76 MB) without any loss 
and achieve even an extra 
gain in performance. 

(H. Choi 
et al., 
2020) 

Proposed an approach called block 
change learning that performs local and 
global knowledge distillation by 
changing blocks comprised of layers. 
The method focuses on the knowledge 
transfer without losing information in a 
large teacher model, as the approach 
considers intra-relationships between 
layers using local knowledge distillation 
and inter-relationships between 
corresponding blocks. 

× × × 🗸 × 

Tested the BCL approach 
in object classification and 
feature extraction. 
Specifically for feature 
extraction tasks, BCL 
showed only about 5% 
degradation in 
performance relative to 
approximately 17% for 
other methods. 

(Lym et 
al., 2019) 

Proposed PruneTrain, a CNN training 
acceleration mechanism that, unlike 
prior work, prunes the model during 
training from scratch with the 
sparsification process starting during the 
first training epoch. 

🗸 × × × × 

PruneTrain reduces the 
computations of ResNet50 
for ImageNet by 40%, the 
memory traffic of 
memory-bound layers 
(e.g. batch normalization) 
by 37%, and the inter-
GPU communication cost 
by 55% compared to the 
dense baseline training. 

(Cho & 
Lee, 

2019) 

Proposed a strategy to automatically 
determine the number of parameters of 
a network by utilizing group sparsity 
and knowledge distillation (KD) in the 
training process and a feedback control 
mechanism based on the proportional 
control theory. The feedback control 
logic determines the amount of 
emphasis to be put on network sparsity 
during training and is controlled based 
on the comparative accuracy losses of 
the teacher and student models in the 
training 

× × × 🗸 × 

Demonstrates that 
incorporating knowledge 
distillation when 
compressing the network 
with group sparsity 
achieves better 
performance, a student 
network trained by the 
proposed strategies 
achieved better accuracy 
than when trained by a 
model with the same 
sparsity. 

(Chen et 
al., 2018) 

Introduces a knowledge distillation 
framework to improve the performance 
of smaller and shallower network 
models. 

× × × 🗸 × 

Results show that the 
proposed training method 
was effective and 
increased overall accuracy 
(3% in AID experiments, 
5% in UCMerced 
experiments, 1% in 
NWPU-RESISC and 
EuroSAT experiments) 
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Table 2.3: Continued 

Study 
Concept 

(Research motivation) 

Acceleration Method 

Remarks 

Param
eter Pruning and Q

uantization 

Low
-Rank Factorization 

Transferred/Com
pact convolutional 

filters 

K
now

ledge D
istillation 

O
ther 

(Hao-Ting 
et al., 
2019) 

A novel Layer Selectivity Learning 
(LSL) framework is proposed for 
learning deep models 

× × × 🗸 × 

Compared to the baseline 
method at most, 12.6%, 
5.1%, and 6.5% 
improvement of 
classification accuracy 
was achieved using the 
three datasets. 

(Wen et 
al., 2016) 

A Structured Sparsity Learning (SSL) 
method proposed to regularize the 
structures (i.e., filters, channels, filter 
shapes, and layer depth) of DNNs. 
Which can learn a compact structure 
from a bigger DNN to reduce 
computation cost; and obtain a 
hardware-friendly structured sparsity of 
DNN to efficiently accelerate the 
DNN’s evaluation 

🗸 × × × × 

The method can enforce 
the DNN to dynamically 
learn more compact 
structures without 
accuracy loss. The 
structured compactness of 
the DNN achieves 
significant speedups for 
the DNN evaluation both 
on CPU and GPU with 
off-the-shelf libraries. 

(Zhou et 
al., 2016) 

This research shows that, by 
incorporating sparse constraints into the 
objective function, it is possible to 
decimate the number of neurons during 
the training stage. 

🗸 × × × × 

After applying the 
compression method, 
compact CNN contains 
only 30% of the original 
neurons without any 
degradation of the top-1 
classification accuracy 

(Alvarez 
& 

Salzmann, 
2017) 

Introduces a regularizer that encourages 
the parameter matrix of each layer to 
have a low rank during training. 

🗸 × × × × 

The experiments in the 
research have 
demonstrated that this 
approach can achieve 
higher compression rates 
than state-of-the-art 
methods at the time of 
publishing, thus 
evidencing the benefits of 
taking compression into 
account during training. 

(Lei et al., 
2019) 

This paper proposed a dilated CNN 
model which is built by replacing the 
convolution kernels of traditional CNN 
with the dilated convolution kernels, the 
dilated CNN model has been tested on 
the MNIST handwritten digits data set 

× × 🗸 × × 

Experiments showed that 
the dilated CNN model is 
less time-consuming and 
has higher training 
accuracy on the MNIST 
data set compared with 
the traditional CNN 
model. 

(Mathieu 
et al., 
2014) 

Computing convolutions as pointwise 
products in the Fourier domain while 
reusing the same transformed feature 
map many times 

× × 🗸 × × 

Presented a fast algorithm  
that outperforms known 
state-of-the-art 
implementations in terms 
of speed 
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Most research in Table 2.3 were focused on model compression to reduce memory and 

model acceleration to decrease inference latency. Despite being fruitful for the inference 

phase, they didn't emphasize reducing training time and some even add complexity to the 

training.  

In the case of parameter pruning Wen et al. (2016), Zhou et al. (2016) and Alvarez & 

Salzmann (2017b) deployed pruning during the training but didn`t apply it on the source 

network, thus their implementation did not decrease the training time. Lym et al. (2019) 

work while being effective in reducing the training time is targeting multi-GPU clusters. 

The reduction of training time was the result of the combination of reducing computation, 

reducing off-chip memory access, and reducing inter-accelerator communication. The 

hardware setup for this research is a single GPU solution and the models are designed to 

fit into the graphical memory. Therefore, this work cannot benefit from the reduction of 

off-chip memory access and inter-accelerator commination mentioned in (Lym et al., 

2019). Lym et al. (2019)’s method is applicable to single GPU setups but it is not 

predictable how effective it is while it cannot leverage reduction of off-chip memory 

access and inter-accelerator commination in a single GPU setup and testing the efficiency 

of the method on a single GPU setup can be a topic for future research. Thus, this work 

does not target Lym et al. (2019)’s method as its baseline. 

Additionally, Jung et al. (2018) proposed GFNNs for the reduction of training time 

that is architecture and dataset independent and can be applied to any supervised use case 

of CNNs. CNNs are universal functions (Wiatowski & Bolcskei, 2018) that during the 

training, will converge to any desired function. In the case of image classification, the 

function maps the input tensors to the labels, and the proposed method tries to help CNNs 

to converge faster by adding fixed image processing filters to the first layer of CNNs. The 

proposed method is applicable to all hardware as the solution works at the architecture 
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level and directly affects the time and needed number of necessary epochs in training. 

Also, the method is not limited to images and image processing filters, these filters can 

be replaced by any domain specific kernels when dealing with a spatial sensory data like 

voice, MRI result, etc. The original research only tested the technique on the MNIST 

dataset, which consists of binary 28x28 images with only 10 classes, which is not 

sufficient for verification of efficiency of the methods due to the lack of complexity of 

features in the input data. On the other hand, the side effects of the method, like its effects 

on overfitting should be tested.  

This research aims to address the mentioned shortcomings in the original method, 

Figure 2.3 demonstrates the gap in the knowledge that this research is focused on. The 

architecture of filter layers is altered to support multi-channel sensory data and its 

performance is assessed through an experiment. As described in the next 

chapter, six GFNNs architectures are designed along with their equivalent baseline 

CNNs. The experiment targets three different datasets with color images and in addition 

to performance metrics, its effect on overfitting is also analyzed. 
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Figure 2.3: Knowledge Map 

 

2.4. Summary 

CNNs have a crucial role in deep learning, much research in the field is focused on 

them, and they have a good performance on many difficult and ill-posed problems in 

machine learning. Image classification is one of the useful use cases of CNNs. Used in 

lots of multidisciplinary research, they have been used in cancer detection, autonomous 

deforestation detection, autonomous driving, etc. The state of art CNNs aim to solve more 

difficult problems and most of the research has been focused on increasing the 

performance of the network leading to their increased processing and memory 

consumption. State of the art CNNs consist of millions if not billions of learnable 

parameters that make the training challenging and increases the inference latency. Model 

acceleration techniques like parameter pruning and quantization, low-rank factorization, 

transferred/compact convolutional filters, and knowledge distillation aim to reduce the 
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needed processing and memory of the deployed model. After or while training, these 

techniques alter the architecture of the final model and make them suitable for 

deployment. Some model acceleration methods are hardware dependent and are effective 

only when using a specific type of hardware or accelerator and most of them add 

complexity to the training of the model and extend the training time. Jung et al. (2018) 

claims by merging the image processing filters inside the CNNs architecture, it is possible 

to help the network to converge faster, and the CNNs are capable of using the extracted 

feature by image processing filters that results in faster training of the CNN. But the 

method was only tested on MNIST handwritten digits dataset that lacks the feature 

complexity to prove the efficiency of the method, also, the method is only applicable to 

single-channel images. This research aims to address the shortcoming of the original 

method by modify it to apply to multi-channel images. Also, the efficiency of the method 

is examined empirically through an experiment that applies the method on different 

CNNs. 
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CHAPTER 3: RESEARCH DESIGN 

3.1. Introduction 

The main objective of this research is to first, alter the first layer of GFNNs to support 

multi-channel images and then verify their performance on three datasets through an 

experiment. Table 3.1 demonstrates the characteristics of the target datasets. 

Table 3.1: Datasets and their characteristics 

Dataset Sample size No of samples No of classes Reference 

ImageNet_64x64 64x64x3 1,331,167 1,000 (Chrabaszcz et 
al., 2017) 

Cifar100 32x32x3 60,000 100 (Krizhevsky & 
Hinton, 2009) 

Cifar10 32x32x3 60,000 10 (Krizhevsky & 
Hinton, 2009) 

 

The MNIST dataset consists of binary 28x28 images. In contrast, Cifar10 and Cifar100 

contain color images with a resolution of 32x32. And ImageNet_64x64 consists of 64x64 

color images. Having multiple channels of non-binary sensory data alone leads to much 

more complex features compared to a single-channel binary data. Additionally, the 

number of classes is much higher in Cifar100 (100 classes) and ImageNet_64x64 (1000 

classes). Therefore, the neural network is forced to extract more complex features to differ 

between high number of classes. 

For each dataset, two pairs of CNNs are designed. Each pair of networks contains a 

baseline CNN and a GFNN. The baseline architectures are custom implementations of 

ResNet and VGG. Each dataset has different characteristics, thus the architecture of 

CNNs (e.g., dimensionality of input layer, size of hidden layers, size of flatten fully 

connected layer and the size of output layer) for each dataset are different. 

Overall, 12 CNN architectures are designed and benchmarked. 
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All datasets are balanced; thus, accuracy is reported as the performance metric. 

Additionally, loss function and training time are collected per epoch. Table 3.2 shows the 

collected quantitative variables through the experiment. 

The GFNNs have not been tested on datasets with color images and complex features, 

thus, to overcome this shortcoming, in this research three datasets with different attributes 

are chosen. ImageNet_64x64 (Chrabaszcz et al., 2017) is the biggest among them with 

1,331,167 samples and 1,000 classes. It is the one of hardest datasets to achieve high 

accuracy with because data samples are low resolution (64x64) while having a large 

number of classes. ImageNet_64x64 is based on ImageNet dataset and has the same 

labels, but the samples are resized and have a lower number of samples. Cifar100 

(Krizhevsky & Hinton, 2009) has samples with lower resolution (32x32), it has 100 

classes and 60,000 samples. Cifar10 (Krizhevsky & Hinton, 2009) have similar attributes, 

except the number of classes is limited to 10, and among these three is the easiest to 

achieve high accuracy with. 

Figure 3.1 demonstrates the flow of the experiment, first baseline versions of CNNs 

are designed based on their target dataset attributes, then their equivalent GFNNs that 

contains image processing filters are implemented. Each model is trained for 5 iterations 

on its target dataset. 

Table 3.2 shows the list of collected quantitative variables, the average value of each 

variable is used for visualization and analysis. This is to average out the random effects 

of cache warm up, operating system scheduler overhead, TensorFlow runtime 

optimization on graph operations, etc. to make the comparison of baseline and GFNNs 

more accurate. The accuracy of the baseline and GFNNs are demonstrated and compared 

using graphs and tables in Chapter 4, and also the overfitting of the models is monitored 

by comparing the loss and accuracy of the models on training and validation samples. 
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Figure 3.1: Research Design 

All neural networks in this research are designed and implemented from scratch using 

TensorFlow’s functional API. Because of limited time and processing power, only two 

architectures of CNNs are selected as baselines for the experiment. The first architecture 

that is called traditional CNN through this research is a custom implementation of VGG 

architecture with the same design principle. The second architecture is based on ResNet, 

it contains residual blocks and a feed-forward classifier similar to ResNet, but the exact 

configuration varies for each dataset. ResNet and VGG were selected as the base for the 

design of CNNs in this research because they represent two different types of CNNs 

architecture. In the case of VGG there is no skip connection between the layers. After the 

training, the first layer of VGG model extracts features that look similar to what edge 

detection filters produce, and it would be possible for the network to use these features if 

provided by image processing filters. ResNet and other architectures with skip 

connections use more diversified features due to the concatenation of information from 
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previous blocks and the network might use different strategies to adapt itself to the 

extracted feature. The first layer of the network called the filter layer in this research, is 

the only difference between the baseline implementation of the neural networks and their 

equivalent GFNN. The image processing filters or any other potential mathematical 

formula that can be implemented using convolutional operations are suitable to replace 

some of the kernels in CNNs architecture. In this research the image processing filters 

merged into the CNNs by replacing the first layer’s kernels with 16 filters. There exist 3 

extra design choices for GFNNs, first is the choice of baseline architecture, this method 

is applicable on any neural network with convolutional layers, and in this research, a 

custom implementation of VGG and ResNet are chosen. Hardware and time limitation 

was the reason for this decision and testing the method on other architectures is a potential 

topic for the future research. The type and number of filters is the second choice and 

location of filters in the network is the third. The layers can partially consist of 

convolutional kernels and image processing filters. Also, different types of filters might 

have a different effect when used in first versus hidden layers. In this research first 

convolutional layer of baseline networks is replace by image processing filters, due to the 

hardware limitations, it was not possible to test multiple combinations of filter location 

and type, thus a specific list of filters with similar output to the first layer of normal CNNs 

after training were chosen. The next chapter discusses the filter layer, and the image 

processing filters.  

3.2. Filter Layer 

The first layer of GFNNs termed "Filter Layer" and instead of convolutions with 

learnable weights, consists of image processing filters. These filters provide the input for 

the second layer of normal convolutional layers. The original architecture was applied 

only on a binary dataset, so it is necessary to expand the concept to apply it to the multi-

channel datasets targeted in this research. Because filters do not have learnable 
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parameters, if they combine the results of channels, the network will lose its ability to 

extract features in different color channels. As shown in Figure 3.2, in contrast to 

convolutions, each filter should deliver output for each channel separately. The filter 

layer's output is a rank 3 tensor, with the dimensionality of 32x32x3 for Cifar datasets, 

and 64x64x3 for ImageNet_64x64. 

 

Figure 3.2: Difference Between Convolutional and Filter Layer 

To keep the baseline and GFNN networks computationally comparable, the 

dimensionality of the Filter Layer’s output should be similar to the first convolutional 
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layer of the baseline model. Because each filter produces three channels as opposed to 

one channel in the case of convolutional layers, to keep the number of needed calculations 

relatively similar in baseline and GFNNs, the number of convolutions in the first layer of 

baseline networks should be three times of the number of filters in the GFNN version. 

The number of needed calculations for the filter layer will differ because filters don’t have 

any learnable parameters, thus they won’t cost any calculation in backpropagation 

algorithms. Also, each convolutional kernel will perform three times more calculations 

per output channel. Because the filters are applied to each channel separately, but the 

convolutional kernel applies to all channels. But by keeping the dimensionality output of 

the filter layer the same as the first convolutional layer, the networks remain 

computationally comparable. 

3.3. Image Processing Filters 

Compass gradient filters outnumber other types of filters because they have similar 

characteristics to the first layer of convolutions in a trained CNNs. The list of 

implemented filters is as below: 

• two second-order filters 

• one DCT filter 

• one sharpening filter 

• one blurring filer 

• one embossing filter 

• ten compass gradient filters 

Totally 16 filters are applied to the input sample producing a rank 3 tensor with the 

dimensionality of 64x64x48 as output (in case of ImageNet_64x64), which will be 

equivalent of using 48 convolutions for baseline networks. Figure 3.3 demonstrates a 

schematic view of used filters.  
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In comparison with the original work by Jung et al. (2018) , the number of filters 

reduced from 41 to 16. This was a necessary design choice, because every filter in the 

new architecture produces 3 channels of data (one for each one of the RGB channels). 

Thus, including all 41 filters would lead to 123 channels of data as input of second layer 

of the network that will increase the memory consumption and also results in slower 

training and inference latency. Figures 3.11 and 3.12 demonstrate the schematics of the 

designed networks in the case of ImageNet_64x64, especially in the case of GFNN 

ResNet having a high dimensional tensor input propagates through the architecture of the 

network because in each residual block the dimensionality of the layer is the same. Even 

in the case of GFNN VGG, memory consumption almost tripled during the training when 

123 layers has been used. The neural network framework (TensorFlow) needs to store the 

intermediatory result of every operation to later calculate the gradient during the 

backpropagation. Thus, the memory consumption of the model has a linear relation with 

the number of filters.  An Nvidia 2060 GPU with 6 GB of graphical memory, Ryzen 

4800H CPU and 16GB of DDR4 system memory were the hardware limits for this 

research and either the batch size or the number of filters should be reduced. During the 

implementation of the networks, multiple configurations of batch size and the number of 

filters were tested, and the result was better for a higher batch size with a reduced number 

of filters. The training time increased and the accuracy did not change with a higher 

number of filters. Therefore, it is suggestible that decreasing the number of filters in the 

case of multi-channel implementation performs better than decreasing the batch size. 

To be faithful to the design of the GFNNs, the chosen filters are the same type of the 

original work and only the number of filters has decreased. Jung et al. (2018) didn’t 

provide details about the implemented kernels, but the kernel types and number of kernels 

were mentioned in the original research. Because applying the method on multi-channel 

data triples the memory consumption of the networks, either number of filters or batch 
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size should be reduced. Therefore, the number of sharpening filters reduced from 3 to 1, 

the number of blurring filters reduced from 2 to 1, and the number of compass gradient 

filters reduced from 32 to 10. The number of filters is the same for the rest.  

The major decrease in the number of filters was for compass gradient filters which 

amplify information about the edges in one direction of the 2D surface. Thus, compass 

gradient filters were picked in a way to cover 8 major directions in the 2D space. This 

way the memory consumption is reduced with minimal loss of information (because of 

the similarity of the output of compass gradient filters). The optimal number of filters 

suitable for the memory limitation of this research was chosen during the network design, 

while a different combination of batch size and filters has been tested. 

 

Figure 3.3: A Schematic View of The Filters (Expect DCT) 

The filter layer implemented through a custom FilterLayer class in TensorFlow, below 

steps define the behavior of the operation: 

1. The filter layer separates the input`s channels 
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2. Applies each of the 16 filters to each of the channels separately 

3. Stores the result of each filter in the memory as a matrix 

4. Stacks all the matrixes on top of each other to create a rank 3 tensor 

The produced rank 3 tensor is a 48-channel data that is the input for next convolutional 

layer of the network. 

Figure 3.4 shows a sample input from ImageNet_64x64 along with its RGB channels. 

For each set of the filters explained in the proceeding chapters, corresponding figures 

demonstrate the output of filter layer for each channel of the sample. 

 

Figure 3.4: A Sample from Imagenet_64x64 Dataset  

 

3.3.1 Second Order Filters 

In addition to edge detection filters that approximate the first order of derivatives of 

pixel values in an image, it is possible to create the filters based on second order 

derivatives. While using the first order derivatives, it is possible to detect horizontal or 

vertical edges in the image and then combine their result, but the second order derivates 

can extract both at once. There are also some disadvantages to the use of second order 

derivatives. First, the second order derivative operators exaggerated the noise twice as 

first order operators, also, they don’t provide any directional information about the edges. 
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That is why first order operators are also used in the filter layer in addition to second order 

filters. 

Laplacian operator is a famous second order operator that is used in the filter layer, 

both the convolutional kernel and image processing filters in CNNs are 3x3. In the case 

of second order filters, the 3x3 grid of numbers should be a discrete approximation of the 

Laplacian operator. Two filters based on the Laplacian operator are integrated into the 

filter layer. 

 

Figure 3.5: Result of Second Order Filters Applied on The Sample 

3.3.2 DCT Filter 

Discrete cosine transform (DCT) transfers the image from the spatial domain into the 

frequency domain. It represents the image as the summation of sinusoids with different 

magnitudes and frequencies. For a typical image, most of the visually important 

information is concentrated into a few of the sinusoid’s coefficients and for this reason, 

DCT is used in image compression algorithms. Only one DCT filter is used in the filter 
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layer of GFNN networks, monitoring the ability of CNNs in using the information 

provided in the frequency domain can be a topic for future research. In contrast to other 

filters, the DCT filter is defined based on the dimensions of the input and it is not a kernel 

that goes through the image, instead, it is a mask with the same dimensions of the input 

image that will be applied on the image. The DCT filter needs a much lower computation 

compared to convolutional layers, but this difference is neglectable when compared to 

the whole network’s needed computation, thus the GFNN version would be still 

computationally comparable with baseline. The DCT filter is applied to each channel 

separately and produces three channels and the same as other filters is replaced with three 

convolutional kernels in baseline networks. 

The DCT filter result are not demonstrated because they are not visually relatable to 

the source image for human eye, as they are in frequency domain and its output channels 

is passed to the next layer and not merged together to form a human understandable result. 

 

3.3.3 Sharpening and Blurring Filters 

Both sharpening and blurring filers work in the spatial domain and compare the value 

of pixels with their neighbors. Sharpening filters enhance these differences; thus, it is a 

process of differentiation, but blurring filters average out the differences and is a process 

of integration. Two 3x3 filters with predefined values act as sharpening and blurring 

filters in the filter layer, each producing three channels of output with the same dimension 

of the input image. The sharpening filters are very sensitive to noise in opposed to blurring 

filters that reduces the noise in the image, thus they provide different types of features for 

the next convolutional layers.  
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Figure 3.6: Result of Sharpening Filter Applied on The Sample 

 

Figure 3.7: Result of Blurring Filter Applied on The Sample 

 

3.3.4 Embossing Filter 

The output of an embossing filter is an embossed image whose pixels are replaced by 

a shadow or a highlight. They are also termed directional difference filters and can 

enhance the edge in the direction of the filter. In another word they can remove the 

image’s features except for the edges in the direction of the filter, thus the proceeding 

convolutions after the filter layer will receive simplified features that contain only 

information about the edges in the input image. Traditionally embossing filters when 

applied on color images followed the same rule as to when applied to gray scale images, 

the filter is applied to each of the color channels and the result is combined based on a 

mathematical formula, but the GFNNs are free to use each of these channels separately, 

thus the difference between the implementation of embossing filters in filter layer with 
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their traditional definition is that their result is not combined and each output is passed to 

the next layer of the network in a separate channel. So, each embossing filter produces 

three channels in the output and should be replaced with three convolutional kernels of 

baseline networks. 

 

Figure 3.8: Result of Embossing Filter Applied on The Sample 

 

3.3.5 Compass Gradient Filters 

Compass gradient filters are first order filters that measure the slope of values of pixels 

in a specific direction. They are less sensitive to noise and provide information about the 

direction of the detected edges. Thus, the GFNN network can prioritize a specific 

direction by tuning its weight and biases of next convolutional layer, to give the GFNN 

network flexibility of emphasizing on a specific direction. 10 compass gradient filters are 

implemented in the filter layer, 8 of them refer to directions of north, north-west, west, 

south-west, south, south-east, east, and north-east. The other two are high pass filters that 

emphasize sudden changes in pixel values. The fact that GFNN networks are capable of 

emphasizing edges in a specific direction doesn’t mean they are not rotation invariant, as 

this emphasis only happens when the input data set have distinguishable features in form 

of edges in a specific direction, for example, this approach might be beneficial in OCR 

software where the general shape of the alphabet is predefined and the input is 

Univ
ers

iti 
Mala

ya



36 

preprocessed to be in a proper orientation before being fed to the model. But the network 

will still be able to give equal importance to all these filters and act as an orientation 

invariant classifier. Gradient compass filters apply to image channels separately, thus 

each filter produces three channels and should be replaced by three convolutions in the 

baseline network. The gradient compass filters outnumber other types of image 

processing filters because opposed to second order filters, they can provide information 

about the direction of the features while being less sensitive to noise. Also, they can 

ensure that the network has access to all edges in every direction which is not possible 

with other types of filters. The high contrast filters were implemented only in direction of 

north and east, as increasing the number of filters would lead to a drastic increase of 

memory and processing in training. Also, opposed to normal gradient compass filters, 

high contrast filters are not dependent to the direction. And these two filters provide the 

GFNNs enough information about the sudden changes in pixel values. 

One major difference between these filters in the filter layer to their traditional 

implementation is the lack of a combination for channels in the filter layer. Most of the 

mentioned filters have a combination formula for concatenation of extracted information 

while applied to color images. In the filter layer, the combination of extracted features 

from the different color channels is handled via the rest of the neural network’s 

architecture, thus the raw output of the filters is passed to the convolutional layers that 

will decide how to use them during the training. 
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Figure 3.9: Result of Compass Gradient Filters (1-5) Applied on The Sample 
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Figure 3.10: Result of Compass Gradient Filters (6-10) Applied on The Sample 
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3.4. Quantitative Analysis 

The objective of GFNNs is to reduce the training time with minimal degradation of 

accuracy compared to the baseline CNNs. Thus, the network should reach the desired 

accuracy with a smaller number of epochs. Also, a shorter training time per epoch is 

expected due to the lower number of learnable parameters. Table 3.2 demonstrates the 

qualitative variables that are collected.  

The answer to the below questions is retrieved from the analysis of collected variables.  

• Do GFNNs reach a higher accuracy within a certain number of epochs? 

• Do GFNNs reach a certain accuracy sooner? What is the difference for max 

possible accuracy of networks? 

• Are GFNNs more vulnerable to overfitting? 

Table 3.2: Quantitative Variables 

Name Description Frequency 

ep_tr_ti Training time of one epoch Per epoch 

ep_tr_ac_tr Accuracy of network on training data within the epoch Per epoch 

ep_tr_ac_vl Accuracy of network on validation data within the epoch Per epoch 

ep_tr_ls_ti Value of loss function on training data  Per epoch 

ep_tr_ls_vl Value of loss function on validation data  Per epoch 

tot_tr_ti Total training time Per training 

tot_tr_ac_tr Accuracy of network on training data after training Per training 

tot_tr_ac_vl Accuracy of network on validation data after training Per training 

 

Training of each of twelve networks reiterates five times and the average is considered 

as the result to minimize the random impact of operating system, bus interface overhead, 

etc. 
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3.5. Network`s Architecture 

Different characteristics of datasets result in a different architecture of CNNs, so the 

number of learnable parameters, is different for each of the designed networks. The 

resolution of input samples dictates the dimensionality of filter layer, and consequently 

affect the dimensionality of the convolutional layers. Also, number of classes affects 

number of learnable parameters in fully connected section of the networks.  Also, because 

of hardware limitations, the neural networks in this research do not aim for the highest 

possible accuracy. Instead, the research focuses on applicability of the method on multi-

channel images and monitoring the effect of adding the filter layer on the accuracy and 

inference latency. 

For each dataset, a baseline version of either the traditional CNN or ResNet is 

compared with its GFNN version. The traditional CNN architecture is a simplified version 

of VGG (Simonyan & Zisserman, 2015) and the ResNet (He et al., 2016) consist of six 

residual blocks.  

Table 3.3: Designed Networks Information 

Dataset Architecture Learnable None 
Learnable 

Layers Learning 
Rate  

Epochs Activation 
Function 

Dropout 
Rate 

Cifar10 Baseline VGG 692,383 672 29 0.001 40 ReLu 0.5 

Cifar10 GFNN VGG 
690,063 1,344 29 0.001 40 ReLu 0.5 

Cifar10 Baseline ResNet 1,574,959 2,454 51 0.001 40 ReLu N/A 

Cifar10 GFNN ResNet 
1,573,615 2,784 51 0.001 40 ReLu N/A 

Cifar100 Baseline VGG 1,125,426 672 29 0.002 60 ReLu 0.5 

Cifar100 GFNN VGG 1,122,178 2,454 29 0.002 60 ReLu 0.5 

Cifar100 Baseline ResNet 
1,693,714 1,454 51 0.002 60 ReLu N/A 

Cifar100 GFNN ResNet 1,692,370 2,784 51 0.002 60 ReLu N/A 

ImageNet_64 Baseline VGG 
20,580,628 672 29 0.001 30 ReLu 0.5 

ImageNet_64 GFNN VGG 20,579,218 1,344 29 0.001 30 ReLu 0.5 

ImageNet_64 Baseline ResNet 
7,673,764 2,454 51 0.001 30 ReLu N/A 

ImageNet_64 GFNN ResNet 7,672,420 2,784 51 0.001 30 ReLu N/A 
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The number of layers is the same for baseline and GFNNs, but the dimensionality of 

tensors that are passed between these layers is different. Table 3.3 includes the number 

of trainable parameters for each of the designed networks. The networks were 

intentionally extensively trained to determine whether the GFNNs have a different 

behavior regarding the overfitting or not. The next chapter discusses the result of the 

experiment and visualizes the comparison of baseline and GFNN versions for each 

dataset.   

3.4.1 Fusion of Filter and Convolutional Layers 

If the filter layer acts like convolutional layers and combines the information of all 

three channels into a single matrix, the color information would be lost as the filter layer 

does not poses any learnable parameter, and it produces the same output for a specific 

input sample. To mitigate this problem, as mentioned in Chapter 3.2, each filter of filter 

layer is applied to each channel of data separately. Also, each of the filters produce 3 

separate matrixes as output corresponding to each channel. Therefore, practical 

consideration is needed to prepare the output for its next convolutional layer. 

 The convolution operation in neural networks receive a rank 3 tensor as input, the 

dimensionality of this input tensor, along with kernel size and stride determine the number 

of parameters in the convolutional kernel. In case of filter layers the dimensionality of 

input tensor is (64, 64, 48) in case of ImageNet_64x64 and (32, 32, 48) in case of Cifar 

datasets. 

The fusion of filter layer and convolutional layer implemented using TensorFlow’s 

functional API. The operations in TensorFlow follow an object-oriented pattern design. 

Therefore, the filter layer is implemented by inheriting FilterLayer class. It separates each 
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channel of color, then applies each of the 16 filters on them and stores the results in the 

memory. Then stacks the 48 produced matrixes and provides the needed rank 3 tensor to 

the next convolutional layer. 

3.4.2 Batch Normalization and Dropout  

In addition to filter layer and convolutional layers, Dropout (Srivastava et al., 2014) 

and Batch-Normalization (Ioffe & Szegedy, 2015) are used in the architecture of 

networks. Thus, before demonstrating a schematic for the architecture of the networks, 

this chapter quickly describes them. 

When using Dropout during the training, a random set of parameters get ignored. This 

forces the layer before Dropout to act like a layer with different weights. In effect, the 

updates to the network would happen with a different view of configured layers. Thus, it 

is a regularization method that helps prevent overfitting. 

Batch-Normalization is a technique for training of deep neural networks. It 

standardizes the input for the next layer in each mini-batch. And dynamically reduces the 

number of needed epochs for training of the network. The problem that Batch-

Normalization aims to solves is called “internal covariate shift”. It happens when the 

distribution of input of layer changes with each update of mini-batch, and this change 

causes the learning algorithm to chase a moving target. Batch-Normalization prevents 

this by standardizing the input of the layer after the update of mini-batch. 

3.4.3 Network`s Schematics 

In this section, the schematics of GFNN VGG and GFNN ResNet designed for 

ImageNet_64x64 are shown. Also, Adam used as backpropagation algorithm and sparse 

categorical cross entropy used as the loss function. 
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Figure 3.11: Schematic of GFNN VGG for ImageNet_64x64 

 

 

Figure 3.12: Schematic of GFNN ResNet for ImageNet_64x64 
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3.5. Summary 

To test the GFNNs on datasets with color images, 6 pairs of CNNs are designed for 

ImageNet_64x64, Cifar100, and Cifar10 datasets. First baseline CNNs are designed 

according to the dataset’s attributes, then their GFNN equivalent is implemented by 

replacing their first convolutional layer with 16 image processing filters. The first layer 

of GFNNs called the Filter Layer, consists of a customs operation defined in TensorFlow 

using functional API that applies the filter to each color channel separately and instead of 

combining the data into a single channel produces 3 different channels per filter as output. 

This way the GFNN network won’t lose the information about different color channels 

of the input. Second order, DCT, sharpening, blurring, embossing, and compass gradient 

filters are used in the filter layer and each filter produces three channels, thus using 16 

image processing filters in the filter layer is computationally equivalents to 48 

convolutional layers. The compass gradient filters outnumber other types of filters 

because after training, the extracted features in the first layer of CNNs are similar to the 

output of edge detection filters. Each of the implemented models is trained on its target 

dataset for 5 iterations and the average of the collected quantitative variables is used for 

visualization and analysis of the result. A costume implementation of ResNet and VGG 

is chosen as baseline architectures and the networks are intentionally trained extensively 

to determine whether the behavior of the GFNN network is different about overfitting or 

not. Also, the number of layers in the baseline and their GFNN equivalent is the same, 

but the dimensionality of tensors that are passed between layers differs. The training time, 

loss and accuracy of the networks are collected per epoch both on training and validation 

datasets, because all three of the datasets are balanced, only accuracy is used as the 

performance metric, Also, Adam used as backpropagation algorithm and sparse 

categorical cross entropy used as the loss function for all 12 designed CNNs. 
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CHAPTER 4: RESULTS 

4.1. Introduction 

This chapter demonstrates the result of the experiment by visualizing the collected 

quantitative variables. Each subsection is devoted to a baseline and GFNN network that 

have been trained on their target dataset. Thus, proceeding six subsections are related to: 

• Baseline and GFNN VGGs trained on Cifar10 dataset 

• Baseline and GFNN ResNets trained on Cifar10 dataset 

• Baseline and GFNN VGGs trained on Cifar100 dataset 

• Baseline and GFNN ResNets trained on Cifar100 dataset 

• Baseline and GFNN VGGs trained on ImageNet_64x64 dataset 

• Baseline and GFNN ResNets trained on ImageNet_64x64 dataset 

Below questions are answered at each subsection based on the analysis of the 

demonstrated variables: 

1. Do the GFNNs reach a higher accuracy within a certain number of epochs? 

2. Do the GFNNs reach a certain accuracy sooner? What is the difference for max 

possible accuracy of networks? 

3. Are the GFNNs more vulnerable to overfitting? 

To average out random parameters that affects the performance like OS scheduler, 

cache warmup, etc., the average of five iterations of training for quantitative variables of 

Table 2.3 were collected. Also, to be sure that hardware performance does not vary the 

frequency of CPU, GPU, Memories, and bus interface was statically set and have been 

monitored during the experiment.  
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The results are demonstrated by seven graphs per network pairs as listed below: 

1. Accuracy by epoch for training dataset (Line Chart) 

2. Accuracy by time for training dataset (Line Chart) 

3. Accuracy by epoch for validation dataset (Line Chart) 

4. Accuracy by time for validation dataset (Line Chart) 

5. Loss by epoch for training dataset (Line Chart) 

6. Loss by epoch for validation dataset (Line Chart) 

7. Cumulative training time by epoch (Line Chart) 

Each graph contains the result for both baseline networks and GFNNs. The networks 

were trained for 40 epochs on Cifar10, 60 epochs on Cifar100, and 30 epochs on 

ImageNet_64x64. 

In addition of line charts, the collected quantitative variables are demonstrated in form 

of a table, the table for each pair of baseline network and GFNN contains the average of 

variable:  

• Training time of one epoch (𝑒𝑝_𝑡𝑟_𝑡𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

And also, the absolute value of variables: 

• Total training time (𝑡𝑜𝑡_𝑡𝑟_𝑡𝑖) 

• Accuracy of network on training data after training (𝑡𝑜𝑡_𝑡𝑟_𝑎𝑐_𝑡𝑟) 

• Accuracy of network on validation data after training (𝑡𝑜𝑡_𝑡𝑟_𝑎𝑐_𝑣𝑙) 

Also, the line charts are created using the collected variables, the relation between the 

charts and variables is described below.  
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In the line chart “Accuracy by epoch for training dataset”, the horizontal axis is the 

number of epoch and the vertical axis is the value of the variable 𝑒𝑝_𝑡𝑟_𝑎𝑐_𝑡𝑟 which is 

the accuracy on training dataset at the end of the epoch. The value of 𝑒𝑝_𝑡𝑟_𝑎𝑐_𝑡𝑟 is 

drawn for the nth epoch for both of the baseline and GFNN. 

In the line chart “Accuracy by time for training dataset”, the horizontal axis is time 

and the vertical axis is the value of the variable 𝑒𝑝_𝑡𝑟_𝑎𝑐_𝑡𝑟 at a specific time. The value 

of 𝑒𝑝_𝑡𝑟_𝑎𝑐_𝑡𝑟 is drawn for the nth epoch of both the baseline and GFNN. But instead of 

no of epochs, the spanned time till the end of the nth epoch is calculated and drawn using 

the variable 𝑒𝑝_𝑡𝑟_𝑡𝑖 that stores the training time for each epoch. The chart demonstrates 

the needed training time of each network to achieve a specific accuracy on the training 

dataset. 

In the line chart “Accuracy by epoch for validation dataset”, the horizontal axis is the 

no of epoch and the vertical axis is the value of the variable 𝑒𝑝_𝑡𝑟_𝑎𝑐_𝑣𝑙 which is the 

accuracy on validation dataset at the end of the epoch. The value of 𝑒𝑝_𝑡𝑟_𝑎𝑐_𝑣𝑙 is drawn 

for the nth epoch for both of the baseline and GFNN. 

In the line chart “Accuracy by time for validation dataset”, the horizontal axis is time 

and the vertical axis is the value of the variable 𝑒𝑝_𝑡𝑟_𝑎𝑐_𝑣𝑙 at a specific time. The value 

of 𝑒𝑝_𝑡𝑟_𝑎𝑐_𝑣𝑙 is drawn for the nth epoch of both the baseline and GFNN. But instead of 

no of epochs, the spanned time till the end of the nth epoch is calculated and drawn using 

the variable 𝑒𝑝_𝑡𝑟_𝑡𝑖 that stores the training time for each epoch. The chart demonstrates 

the needed training time of each network to achieve a specific accuracy on the validation 

dataset. 

In the line chart “Loss by epoch for training dataset”, the horizontal axis is the no of 

epoch and the vertical axis is the value of the variable 𝑒𝑝_𝑡𝑟_𝑙𝑠_𝑡𝑖 which is the value of 
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loss function while training on training dataset at the end of the epoch. The value of 

𝑒𝑝_𝑡𝑟_𝑙𝑠_𝑡𝑖 is drawn for the nth epoch for both of the baseline and GFNN. 

In the line chart “Loss by epoch for validation dataset”, the horizontal axis is the no of 

epoch and the vertical axis is the value of the variable 𝑒𝑝_𝑡𝑟_𝑙𝑠_𝑣𝑙 which is the value of 

loss function while training on validation dataset at the end of the epoch. The value of 

𝑒𝑝_𝑡𝑟_𝑙𝑠_𝑣𝑙 is drawn for the nth epoch for both of the baseline and GFNN. 

In the line chart “Cumulative training time by epoch” the vertical axis is the no of 

epochs and horizontal axis is the time needed for nth epochs of training. The spanned 

time for nth epoch is the cumulative value of variable 𝑒𝑝_𝑡𝑟_𝑡𝑖. The value has been 

calculated and drawn for each of the baseline and GFNN to demonstrate the training speed 

of the GFNNs. 

The GFNNs can train faster if they can reach a specific accuracy within a lower number 

of epochs, or if each epoch takes less time to train. Graph no. 7 demonstrates the timing 

difference between epochs of the GFNNs and baseline networks and is enough to evaluate 

the differences of per epoch training time. Graphs no.2 and no.4 are used to evaluate and 

compare the needed time to reach a specific accuracy for each architecture.  

In addition to accuracy and training time, the behavior of GFNN about overfitting and 

gradient explosion are important. Overfitting happens when the neural network maps a 

relation between the input data and the answer and instead of extracting useful feature 

from the input data, learns what is the correct answer for a specific sample. If overfitting 

happens the network might not perform well when receives an unseen input. 

Overfitting is detected using a combination of information from graphs No.1, No.3, 

and No.6. If overfitting happens the value of loss function for validation dataset starts to 
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increase and the accuracy for validation dataset starts to decrease while the accuracy of 

training dataset continues to improve. 

Also graphs No.5 and No.6 can detect gradient explosions if it happens. Gradient 

explosion happens when large error gradients accumulate. In this case, large updates will 

be applied to the weights and biases of the network, and the network will lose its 

functionality. Gradient explosion can be detected by sudden changes in the value of loss 

function. In all experiments, the models were intentionally over-trained to analyze the 

behavior of GFNNs when overfitting. 

4.2. Baseline and GFNN VGGs Trained on Cifar10 

Table 4.1 demonstrates the value of collected quantitative variable as described in 

Chapter 4.1 for the baseline VGG and GFNN VGGs. 

Table 4.1: Result of Quantitative Variables for VGGs on Cifar10 

 𝒕𝒐𝒕_𝒕𝒓_𝒕𝒊 𝒆𝒑_𝒕𝒓_𝒕𝒊̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒕𝒓 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒗𝒍 

Baseline 521.00 13.54 89 83 

GFNN 296.79 7.76 84 79 

 

GFNN VGG has significantly lower training time when used on Cifar10, Training of 

the GFNN version finished 75% faster than the baseline while having only a 4% decrease 

in accuracy on validation samples. Univ
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Figure 4.1: Accuracy by Epoch - VGGs - Training (Cifar10) 

As demonstrated in Figure 4.1, the accuracy of GFNN VGG on training samples has a 

faster growth at the beginning, but its accuracy is lower than baseline at the end of the 

training, Figure 4.1 shows the accuracy per epoch, next Figure demonstrates the training 

time of the networks. 

 

Figure 4.2: Accuracy by Time - VGGs - Training (Cifar10) 

Figure 4.2 compares the needed time to achieve a certation accuracy for each of the 

networks, despite achieving lower final accuracy, the GFNN always is on top and has 

been trained faster compared to the baseline. The training time per epoch reduces 

significantly in the middle of the training, the reason is related to TensorFlow 
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optimization on graph execution of models, in the case of GFNN VGG, the framework 

was able to optimize the execution more effectively. 

 

Figure 4.3: Accuracy by Epoch - VGGs - Validation (Cifar10) 
 

While comparing the performance on validation dataset, despite having less learnable 

parameters GFNN VGGs can benefit from provided information by Filter Layer and have 

relatively identical performance to the baseline in terms of accuracy. Figure 4.3 compares 

the accuracy of GFNN and baseline VGG on Cifar10 validation dataset, again, the GFNN 

VGG’s accuracy grows faster at the beginning, but the final accuracy of baseline is 

marginally higher. The next figure will compare the needed training time of the networks 

for achieving a certain accuracy. 
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Figure 4.4: Accuracy by Time - VGGs - Validation (Cifar10) 

 

As Figure 4.4 shows, the GFNN reaches to high accuracy significantly faster than the 

baseline, but the acceleration is due to faster training time per epoch rather than achieving 

higher accuracy with a lower number of epochs.  

 

Figure 4.5: Loss Value - VGGs - Training (Cifar10) 

The GFNN and baseline loss function values had an almost identical behavior on 

training samples, but as Figure 4.6 demonstrates the baseline’s loss has more fluctuation 

in the case of validation dataset. 
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Figure 4.6: Loss Value - VGGs - Validation (Cifar10) 

 

Both networks have a smooth decrease in loss function with no signs of overfitting, 

however, the GFNN had less fluctuation compared to baseline. This behavior reappears 

in other experiments in both cases of VGG and ResNet architectures. 

 

Figure 4.7: Relative Training Time -VGGs (Cifar10) 

Figure 4.7 compares training time of the GFNN versus baseline and on average the 

GFNN’s training finished 75% faster. In both cases an increase in the slope of the graphs 

suggests that the training time per epoch changed in the middle of the training. The reason 

is related to TensorFlow`s optimization on graph execution of the models, the framework 

was able to better optimize the execution of the GFNN. 
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According to the result of experiment of GFNN and baseline VGG on Cifar10: 

Do the GFNNs reach a higher accuracy within a certain number of epochs? GFNN 

VGG has only achieved higher accuracy with lower number of epochs at the begging of 

the training, and generally their final performance is worse than the baseline version. 

Do GFNNs reach a certain accuracy sooner? What is the difference for max possible 

accuracy of networks? GFNN VGG has significantly lower training time when used on 

Cifar10, Training of the GFNN version finished 75% faster than the baseline while having 

only a 4% decrease in accuracy on validation samples. 

Are GFNNs more vulnerable to overfitting? The GFNN and baseline networks had an 

almost identical behavior in terms of overfitting, extending the network with image 

processing filters and lowering the number of learnable parameters had not affected the 

overfitting of the networks in this specific combination of CNN architecture and dataset. 

4.3. Baseline and GFNN ResNets Trained on Cifar10 

Table 4.2 demonstrates the value of collected quantitative variable as described in 

Chapter 4.1 for the baseline and GFNN ResNets. 

Table 4.2: Result of Quantitative Variables for ResNets on Cifar10 

 𝒕𝒐𝒕_𝒕𝒓_𝒕𝒊 𝒆𝒑_𝒕𝒓_𝒕𝒊̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒕𝒓 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒗𝒍 

Baseline 1185.91 30.82 100 84 

GFNN 1192.62 30.99 100 85 

 

In contrast to traditional CNN (VGG implementation), ResNet architecture did not 

fully benefited from filter layer when trained on Cifar10 dataset and for most of the 

metrics the GFNN and baseline networks had similar behavior. This trend suggests the 
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architectures with skip connection and residual blocks might need a different initial 

feature as input and edge detection image processing filters were not suitable for them to 

use the extracted features more efficiently. But achieved the max possible accuracy in 

less epochs, and consequently had a shorter training time. 

 

Figure 4.8: Accuracy by Epoch – ResNets - Training (Cifar10) 

The Figure 4.8 demonstrates the accuracy of the networks per epochs and the baseline 

and GFNN version had an identical behavior in the case of training samples. 

 

Figure 4.9: Accuracy by Time - ResNets - Training (Cifar10) 

In the case of ResNet the TensorFlow framework optimization of graph execution was 

identical for both networks, the training time reduced per epoch after certain number of 
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epochs, but the difference between training time per epoch for GFNN and baseline 

networks was in the margin of error. 

 

Figure 4.10: Accuracy by Epoch - ResNets - Validation (Cifar10) 

 

Figure 4.11: Accuracy by Time - ResNets - Validation (Cifar10) 

Because training time per epoch was similar for GFNN and baseline networks, Figures 

4.10 and 4.11 show an identical trend for accuracy of networks on validation dataset. As 

showed in Figure 4.10, the GFNN ResNet achieved the max accuracy approximately 13 

epochs sooner than the baseline, and despite having an equal training time per epoch, the 

GFNN ResNet was faster for training the model to achieve the max possible accuracy. 
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Figure 4.12: Loss Value - ResNets - Training (Cifar10) 

 

Figure 4.13: Loss Value - ResNets - Validation (Cifar10) 

The loss function of GFNN and baseline ResNet had similar behavior as demonstrated 

in Figure 4.12, in the case of validation dataset, the GFNN ResNet converged slightly 

faster in early epochs, which is reflected in Figure 4.13, the accuracy of the GFNN version 

improves faster in the early epochs, but the improvement is minor. Despite having similar 

trend in the case of loss value for validation samples, the loss value of the GFNN network 

had less fluctuations compared to the baseline network, this effect has been seen on VGG 

implementations as well.  
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Figure 4.14: Relative Training Time - ResNets (Cifar10) 

The training time per epoch for GFNN and baseline versions of ResNet is almost 

identical as showed in Figure 4.14, but it doesn’t mean the training time of the network 

are the same as the GFNN ResNet achieved highest accuracy in a smaller number of 

epochs. 

According to the result of experiment of GFNN and baseline ResNets on Cifar10: 

Do the GFNN CNNs reach a higher accuracy within a certain number of epochs? 

GFNN ResNet achieved the highest possible accuracy on validation samples 

approximately 13 epochs sooner, which suggests the GFNN ResNet could reach a higher 

accuracy with a smaller number of epochs. 

Do the GFNNs reach a certain accuracy sooner? What is the difference for max 

possible accuracy of networks? The max accuracy for both networks were the same, also, 

training time per epoch were similar, thus training time could be faster only if the network 

can achieve higher accuracy in a smaller number epoch which was the case for GFNN 

ResNet on Cifar10. 

Are the GFNNs more vulnerable to overfitting? The GFNN and baseline networks had 

an almost identical behavior in terms of overfitting, extending the network with image 
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processing filters and lowering the number of learnable parameters had not affected the 

overfitting of the networks in this specific combination of CNN architecture and dataset. 

4.4. Baseline and GFNN VGGs trained on Cifar100 dataset 

Table 4.3 demonstrates the value of collected quantitative variable as described in 

Chapter 4.1 for the baseline and GFNN VGGs. 

Table 4.3: Result of Quantitative Variables for VGGs on Cifar100 

 𝒕𝒐𝒕_𝒕𝒓_𝒕𝒊 𝒆𝒑_𝒕𝒓_𝒕𝒊̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒕𝒓 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒗𝒍 

Baseline 743.23 12.74 78 56 

GFNN 409.54 7.05 69 49 

 

Similar to Cifar10, GFNN VGG had a good performance on Cifar100. The training for 

GFNN version finished 82% faster than the baseline version while having 7% decrease 

in accuracy on validation samples. 

 

Figure 4.15: Accuracy by Epoch - VGGs - Training (Cifar100) 

As demonstrated in Figure 4.15, the accuracy of GFNN VGG on training samples has 

a faster growth at the beginning, but its accuracy is lower than baseline at the end of the 
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training, the difference of their accuracy is higher than Cifar10, in the case of Cifar100, 

GFNN VGG’s accuracy had the biggest drop compared to the baseline network. Figure 

4.15 shows the accuracy of the networks per epoch. 

  

Figure 4.16: Accuracy by Time - VGGs - Training (Cifar100) 

Figure 4.16 compares the needed time to achieve a certation accuracy for each of the 

networks, the GFNN network always is on top and has been trained faster compared to 

the baseline. The training time per epoch reduces significantly in the middle of the 

training, the reason is TensorFlow’s optimization on graph execution of models, in the 

case of GFNN VGG, the framework was able to optimize the execution more effectively. 

 

Figure 4.17: Accuracy by Epoch - VGGs - Validation (Cifar100) 
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As reflected in figure 4.17, despite taking much less time for per epoch training, the 

accuracy of GFNN is comparable with the baseline. The difference between baseline and 

GFNN version was bigger in case of training samples, but the final accuracy degradation 

was 7% on validation data. Limiting the ability of the network to extract the features of 

the first layer and reduction of learnable parameters had a direct impact on max 

achievable accuracy of the model, but as demonstrated in next figure the training time 

was much lower. 

 

Figure 4.18: Accuracy by Time - VGGs - Validation (Cifar100) 

As Figure 4.18 shows, GFNN reaches to its highest accuracy significantly faster than 

the baseline, but this result is due to faster training time per epoch rather than achieving 

higher accuracy with a lower number of epochs. Univ
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Figure 4.19: Loss Value - VGGs – Training (Cifar100) 

The loss function for validation samples is demonstrated in Figure 4.20, the GFNN 

converges faster in the earlier epochs, but the rest is the same for both models. The 

networks trained for sixty epochs and according to Figure 4.19 and 4.20 there is no sign 

of gradient explosion. 

 

Figure 4.20: Loss Value - VGGs - Validation (Cifar100) 

The GFNN and baseline loss function value had an almost identical behavior on 

training samples, but as Figure 4.20 demonstrates the baseline’s loss has more fluctuation 

in the case of validation dataset. 
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Figure 4.21: Relative Training Time - VGGs (Cifar100) 

 

Figure 4.21 demonstrates training time of GFNN versus the baseline, the training for 

GFNN version finished 82% faster than the baseline version while having 7% decrease 

in accuracy on validation samples. In both cases an increase in the slope of the graphs 

suggests that the training time per epoch changed in the middle of the training. The reason 

is related to TensorFlow`s optimizations on graph execution of the models, the framework 

was able to better optimize the execution of the GFNN network. 

According to the result of experiment of GFNN and baseline VGGs on Cifar100:  

Do the GFNNs reach a higher accuracy within a certain number of epochs? GFNN 

VGG has only achieved higher accuracy with lower number of epochs at the begging of 

the training, and generally their final performance is worse than the baseline version. 

Do the GFNNs reach a certain accuracy sooner? What is the difference for max 

possible accuracy of networks? GFNN VGG has significantly lower training time when 

used on Cifar100, Training of the GFNN version finished 82% faster than the baseline 

while having a 7% decrease in accuracy on validation samples. 
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4.5. Baseline and GFNN ResNets trained on Cifar100 dataset 

Table 4.4 demonstrates the value of collected quantitative variable as described in 

Chapter 4.1 for the baseline and GFNN ResNets. 

Table 4.4: Result of Quantitative Variables for ResNets on Cifar100 

 𝒕𝒐𝒕_𝒕𝒓_𝒕𝒊 𝒆𝒑_𝒕𝒓_𝒕𝒊̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒕𝒓 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒗𝒍 

Baseline 1786.40 30.56 99 53 

GFNN 1776.20 30.39 99 55 

 

In contrast to traditional CNN (VGG implementation), ResNet architecture did not 

fully benefited from filter layer and the GFNN and baseline networks had similar 

behavior. In contrast to when trained on Cifar10, the GFNN version did not achieve the 

max accuracy faster than the baseline, also, the ResNet networks had a gradient explosion 

after epoch 41 in this experiment, the excessive training was intentional and meant to 

cause overfitting and gradient explosion to monitor the behavior of GFNN networks.  

 

Figure 4.22: Accuracy by Epoch – ResNets - Training (Cifar100) 
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The Figure 4.22 demonstrates the accuracy of the networks per epochs and the base 

line and GFNn version had an identical behavior in the case of training samples. 

 

Figure 4.23: Accuracy by Time - ResNets - Training (Cifar100) 

As Figure 4.22 and 4.23 show, the GFNN ResNet could not benefit from the filter 

layer when trained on Cifar100 and its accuracy and training time was like the baseline 

on training samples. 

 

Figure 4.24: Accuracy by Epoch - ResNets - Validation (Cifar100) 

As demonstrated in Figure 2.24 the accuracy of the GFNN and baseline ResNet was 

almost identical on training samples. Also, the graph information is only valid before 
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gradient explosion that occurred after epoch 41 and the training was continued only to 

monitor the differences between two networks in the case of gradient explosion. 

 

Figure 4.25: Accuracy by Time - ResNets - Validation (Cifar100) 

Despite not being faster in the training, the GFNN ResNet had better final accuracy. 

Also, the GFNN version was slightly more resilient to gradient explosion, but this can be 

the result of random initialization of the model’s parameters. 

 

 

Figure 4.26: Loss Value - ResNets - Training (Cifar100) 
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Figure 4.27: Loss Value - ResNets - Validation (Cifar100) 

 

The loss function of GFNN and baseline ResNet had similar behavior as demonstrated 

in Figure 4.27, except for the delayed gradient explosion, the GFNN version did not have 

any different behavior regarding the overfitting and gradient explosion and the value of 

loss function was similar in case of both models. The identical behavior of loss value 

aligns with the almost identical accuracy of the GFNN and baseline models. 

 

 

Figure 4.28: Relative Training Time - ResNets (Cifar100) 
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The training time for GFNN and baseline versions of ResNet is almost identical as 

showed in Figure 4.28 when applied on Cifar100 dataset. The GFNN ResNet was slightly 

faster, but the difference is in the margin of error. 

According to the result of experiment of GFNN and baseline ResNets on Cifar100:  

Do the GFNNs reach a higher accuracy within a certain number of epochs? Ext GFNN 

ended and baseline ResNet network had almost identical behavior and the GFNN ResNet 

could not benefit from filter layer to achieve higher accuracy in a lower number of epochs. 

Do the GFNNs reach a certain accuracy sooner? What is the difference for max 

possible accuracy of networks? The training time of both networks were comparable, the 

GFNN model achieves slightly higher accuracy and was trained slightly faster. 

Are the GFNNs more vulnerable to overfitting? The gradient explosion happened in 

the approximately same epoch number for both networks and they had similar respond to 

it, thus, the GFNN and baseline networks had an almost identical behavior in terms of 

overfitting, GFNN the network with image processing filters and lowering the number of 

learnable parameters had not affected the overfitting of the networks in this specific 

combination of CNN architecture and dataset. 

4.6. Baseline and GFNN VGGs trained on ImageNet_64x64 dataset 

Table 4.5 demonstrates the value of collected quantitative variable as described in 

Chapter 4.1 for the baseline and GFNN VGG. 

Table 4.5: Result of Quantitative Variables for VGGs on ImageNet_64x64 

 𝒕𝒐𝒕_𝒕𝒓_𝒕𝒊 𝒆𝒑_𝒕𝒓_𝒕𝒊̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒕𝒓 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒗𝒍 

Baseline 29488.33 1017.07 45 37 

GFNN 13022.00 449.22 46 33 
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In the case of ImageNet_64x64, the GFNN converged faster and had a significantly 

faster training time per epoch versus the baseline. 

 

Figure 4.29: Accuracy by Epoch - VGGs - Training (ImageNet_64x64) 

As demonstrated in Figure 4.29, the GFNN network achieves higher accuracy for 

training samples and converges faster compared to the baseline, this is not necessarily 

meaning the GFNN network outperform the baseline, the accuracy of the validation 

samples determines the model’s performance. 

 

Figure 4.30: Accuracy by Time -VGGs - Training (ImageNet_64x64) 

Univ
ers

iti 
Mala

ya



70 

Figure 4.30 compares the needed time to achieve a certation accuracy for each of the 

networks, the GFNN network has the higher accuracy all the time and always is on top 

while has been trained significantly faster compared to the baseline.  

 

Figure 4.31: Accuracy by Epoch – VGGs - Validation (ImageNet_64x64) 

While comparing the performance on the validation dataset, despite having less 

learnable parameters GFNN VGGs can benefit from provided information by filter layer 

and have relatively identical performance to the baseline in terms of accuracy. Figure 4.31 

compares the accuracy of GFNN and baseline VGG on ImageNet_64x64 validation 

dataset, the GFNN VGG’s accuracy grows faster at the beginning, but the final accuracy 

of the baseline is marginally higher. The next figure will compare the needed training 

time of the networks for achieving a certain accuracy. Univ
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Figure 4.32: Accuracy by Time – VGGs - Validation (ImageNet_64x64) 

The GFNNs had their best performance when trained on ImageNet_64x64, as Figure 

4.32 shows the training finished 125% faster. The faster training is due to faster training 

time per epoch rather than achieving higher accuracy with a lower number of epochs. 

 

Figure 4.33: Loss Value - VGGs - Training (ImageNet_64x64) 

The GFNN network converges faster and have a lower loss value on training samples, 

which matches with their its performance compared to the baseline. 
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Figure 4.34: Loss Value - VGGs - Validation (ImageNet_64x64) 

As demonstrated in Figure 4.34, the GFNN converged faster in the first 10 epochs, and 

then, the loss value plateaued afterward, the GFNN`s loss has less fluctuation and 

decreases smoothly. 

 

Figure 4.35: Relative Training Time - VGGs (ImageNet_64x64) 

Figure 4.35 demonstrates training time of the GFNN versus the baseline per epoch. 

The training of GFNN version was 125% faster than the baseline, while having 5% 

decrease in accuracy on validation samples. 

According to the result of experiment of GFNN and baseline VGGs on 

ImageNet_64x64: 
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Do the GFNNs reach a higher accuracy within a certain number of epochs? GFNN 

VGG has only achieved higher accuracy at the begging of the training, and generally their 

final performance is worse than the baseline version. 

Do the GFNNs reach a certain accuracy sooner? What is the difference for max 

possible accuracy of networks? GFNN VGG has significantly lower training time when 

used on ImageNet_64x64, training of the GFNN version finished 125% faster than the 

baseline while having only a 5% decrease in accuracy on validation samples. 

Are the GFNNs more vulnerable to overfitting? The GFNN network had not downside 

regarding the overfitting compared to the baseline model. 

4.7. Baseline and GFNN ResNets trained on ImageNet_64x64 dataset 

Table 4.6 demonstrates the value of collected quantitative variable as described in 

Chapter 4.1 for the baseline and GFNN ResNets. 

Table 4.6: Result of Quantitative Variables for ResNets on ImageNet_64x64 

 𝒕𝒐𝒕_𝒕𝒓_𝒕𝒊 𝒆𝒑_𝒕𝒓_𝒕𝒊̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒕𝒓 𝒕𝒐𝒕_𝒕𝒓_𝒂𝒄_𝒗𝒍 

Baseline 78755.20 2716.85 95 40 

GFNN 77139.73 2660.69 94 41 

 

Similar to what happened in the case of Cifar100, the GFNN ResNet had no a faster 

training time and could not benefit from the filter layer, thus the training time and 

performance metrics of the GFNN network were identical to the baseline. 
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Figure 4.36: Accuracy by Epoch - ResNets - Training (ImageNet_64x64) 

The Figure 4.36 demonstrates the accuracy of the GFNN and baseline networks per 

epochs, and they had an identical behavior in the case of training samples. 

 

Figure 4.37: Accuracy by Time - ResNets - Training (ImageNet_64x64) 

As Figure 4.37 and 4.36 show, the GFNN ResNet could not benefit from the filter 

layer when trained on Imgenet_64x64 and its accuracy and training time was like the 

baseline on training samples. The training of the GFNN network was slightly faster, but 

like the case of Cifar100, the difference is not considerable. 
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Figure 4.38: Accuracy by Epoch - ResNets - Validation (ImageNet_64x64) 

As demonstrated in Figures 4.38 and 4.39, both networks start overfitting after the 

sixth epoch with identical behavior. But the GFNN network achieves the highest possible 

accuracy despite being limited by lower learnable parameters and not being free to 

determine the extracted features of the first layer. 

 

Figure 4.39: Accuracy by Time - ResNets - Validation (ImageNet_64x64) 

Because training time per epoch was similar for GFNN and baseline networks, Figures 

4.38 and 4.39 show an identical trend for accuracy of networks on validation dataset. 

Univ
ers

iti 
Mala

ya



76 

 

Figure 4.40: Loss Value - ResNets – Training (ImageNet_64x64) 

Figure 4.41 suggests both GFNN and baseline networks have started overfitting after the 

sixth epoch, it is also reflected in Figures 4.38 and 4.39 where the accuracy on validation 

samples starts to decrease. Identical behavior in GFNN and baseline version suggests that 

filter layer did not have any negative impact on overfitting. 

 

Figure 4.41: Loss Value - ResNets - Validation (ImageNet_64x64) 

The loss value of both networks on validation samples starts to increase while 

overfitting which matches with the decrease in accuracy of validation samples. The 

network was intentionally trained excessively to overfit and as demonstrated in Figure 
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4.41, the GFNN network is not more vulnerable to overfitting and has a similar loss and 

accuracy to baseline while overfitting. 

 

Figure 4.42: Relative Training Time - ResNets (ImageNet_64x64) 

 

The training time for the GFNN and baseline versions of ResNet is almost identical as 

shown in Figure 4.42. Training of GFNN model was slightly faster, but the difference is 

in the margin of error. Also, the accuracy of the GFNN model was slightly higher in the 

case of validation samples. 

According to the result of experiment of GFNN and baseline ResNets on 

ImageNet_64x64: 

Do the GFNNs reach a higher accuracy within a certain number of epochs? The GFNN 

ResNet had an identical behavior to the baseline while applied to the ImageNet_64x64, 

generally ResNet architecture could not benefit from the provided information in the filter 

layer, but this effect exacerbated when applied on more complex datasets. 

Do the GFNNs reach a certain accuracy sooner? What is the difference for max 

possible accuracy of networks? The GFNN network achieved a slightly higher accuracy, 
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also, training time per epoch were similar, thus training time could be faster only if the 

network can achieve higher accuracy in a smaller number epoch. This was not the case 

when trained the GFNN ResNet on ImageNet_64x64, interestingly a similar architecture 

was achieving the max accuracy in less epochs in case of the Cifar10 dataset, suggesting 

that ResNet cannot benefit from filter layer when the network become more complex. 

Are the GFNNs more vulnerable to overfitting? The GFNN and baseline networks had 

an almost identical behavior in terms of overfitting, extending the network with image 

processing filters lowering the number of learnable parameters had not affected the 

overfitting of the networks in this specific combination of CNN architecture and dataset, 

the overfitting happened in both network with identical trends of loss and accuracy, 

suggesting filter layer had not any effect on the overfitting. 

 

4.8. Summary 

The effect of extending CNNs with filter layer was different based on the architecture 

and complexity of the dataset. The GFNN models based on VGG had a significant boost 

in their training time while having slight degradation in their max accuracy. The worst 

accuracy degradation was 7% happened while training the VGG based networks on the 

Cifar100 dataset. The VGG based GFNN networks achieved 75% faster training in the 

case of Cifar10, 82% faster training in the case of Cifar100, and 125% faster training in 

the case of ImageNet_64x64. 

The ResNet based GFNN networks on the other hand were minimally affected by the 

filter layer except for Cifar10. The GFNN ResNet managed to achieve its max accuracy 

13 epoch earlier than the baseline while trained on Cifar10, but in the case of Cifar100 
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and ImageNet_64x64, the GFNN and baseline models had identical behavior while 

GFNN networks having slightly higher accuracy on validation datasets. 

Regarding the overfitting and gradient explosion, both ResNet based and VGG based 

GFNN networks had no vulnerability compared with their baseline versions, suggesting 

that extending the network with the filter layer did not have any negative effects on 

overfitting and gradient explosion. 
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CHAPTER 5: CONCLUSION 

In this work, the effects of extending CNNs with image processing filters were 

evaluated experimentally. The model acceleration technique was altered to support multi-

channel sensory data. For each of Cifar10, Cifar100, and ImageNet_64 datasets, two pairs 

of networks based on VGG and ResNet were designed as the baseline, and their 

performance and training time were compared with their GFNN peers. 

The results suggest that, extending CNNs with image processing kernels can improve 

training time of the models in specific cases. Its effectiveness depends on the complexity 

of the dataset and the network's architecture. Opposed to ResNet, where improvements 

were minimal, training time of VGG based GFNNs reduced significantly. Extending 

VGG based CNNs with the filter layer accelerated training time, 75% on Cifar10, 82% 

on Cifar100, and 125% on ImageNet_64x64, with a maximum 7% accuracy degradation. 

Also, the GFNN networks didn't have any disadvantages regarding overfitting or gradient 

explosion. The GFNNs are beneficial to accelerate the training time of CNNs on edge 

devices or embedded devices with limited processing power. Also, the method can be 

applied to color images or any other multi-dimensional sensory data. 

Hardware was the major limitation of this experiment that hindered testing of the 

method on a variety of CNN architecture with different sets of image processing filters. 

Achieving a higher accuracy is also definitely possible for the used datasets, but to fulfill 

the objectives of this research some attributes of the hardware like CPU, GPU frequency, 

processes affinity, PCI-E bus power-saving state, etc. should be configured and monitored 

during the training. Thus, using the cloud services was not possible as they don’t provide 

low-level access to hardware, therefore this research was limited to the available GPU at 

the time. And the focus of the research was on the applicability of the method for multi-

channel data rather than on achieving high accuracy. 
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Future work can focus on the effects of different types of image processing filters or 

effective merging of them with residual CNN architectures. Also, it can target other 

classification problems and implement the filter layer based on the mathematical 

properties of a target dataset's domain. 
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