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GEODESIC DEVIATION EQUATION IN SYMMETRIC TELEPARALLEL

GRAVITY

ABSTRACT

This dissertation surveys mathematical concepts of pseudo-Riemannian manifolds, reviews

several gravity theories and describes the geodesic deviation equation in 𝑓 (𝑄) gravity.

Symmetric teleparallel gravity was introduced, and its equivalence to general relativity was

shown. Moreover, three formalisms of 𝑓 (𝑅) gravity were explored, which is then followed

by the 𝑓 (𝑄) gravity theory. By using the notions of one-parameter family of curves, the

geodesic deviation equation was formulated. The standard cosmological model called

the Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology was briefly discussed. In

the background of FLRW model, the geodesic deviation equation in 𝑓 (𝑄) gravity was

presented. Lastly, the two particular cases which are the geodesic deviation for fundamental

observers and for past-directed null vector fields were investigated.

Keywords: Geodesic deviation equation, symmetric teleparallel gravity, modified gravity

theories, 𝑓 (𝑄) gravity, FLRW universe.
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PERSAMAAN SISIHAN GEODESIK DALAM GRAVITI TELEPARALLEL

SIMETRI

ABSTRAK

Disertasi ini meninjau konsep matematik manifold pseudo-Riemannian, mengkaji be-

berapa teori graviti dan menerangkan persamaan sisihan geodesik dalam 𝑓 (𝑄) graviti.

Graviti teleparallel simetri telah diperkenalkan, dan kesetaraannya dengan relativiti am

ditunjukkan. Selain itu, tiga formalisme graviti 𝑓 (𝑅) telah diterokai, yang kemudiannya

diikuti oleh teori graviti 𝑓 (𝑄). Dengan menggunakan tanggapan keluarga satu parameter

lengkung, persamaan sisihan geodesik telah dirumuskan. Model kosmologi piawai yang

dipanggil kosmologi Friedmann-Lemaître-Robertson-Walker (FLRW) telah dibincangkan

secara ringkas. Dalam latar belakang model FLRW, persamaan sisihan geodesik da-

lam 𝑓 (𝑄) graviti telah dibentangkan. Akhir sekali, dua kes tertentu yang merupakan

sisihan geodesik untuk pemerhati asas dan untuk medan vektor nol terarah lalu telah disiasat.

Kata kunci: Persamaan sisihan geodesik, graviti teleselari simetri, teori graviti diubah

suai, graviti 𝑓 (𝑄), alam semesta FLRW.
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CHAPTER 1: INTRODUCTION

1.1 Background of the Study

One of the most fascinating theories in Physics is the general relativity (GR) proposed by

Einsten (1928). It provided a remarkable narrative of the cosmological observational data

and created new insights into the concepts of space and time. The mathematical framework

of this geometrical theory of gravity is based on pseudo-Riemannian geometry. In short,

this theory models spacetime as a 4-dimensional Lorentzian manifold and describes

the properties of the gravitational field by using the curvature tensor of the spacetime.

Generally, the two fundamental equations in GR are the Einstein’s field equations and the

geodesic deviation equation. The former equation represents the distribution of matter

and energy influences the metric and lead to curvature of spacetime; the latter provides a

relationship between the curvature tensor and the relative acceleration of two nearby test

particles that depicts the relative motion of free falling particles to bend towards or away

from each other, under the influence of gravitational field. However, despite its undeniable

success, increasing technological ability in modern observational cosmology posed new

questions to GR. It turns out that the validity of GR might only be up to the astrophysical

scales not exceeding the Solar system (Brax, 2018; Nojiri et al., 2017).

To resolve the imperfection of GR, one of the approaches is to modify the matter section

of the field equations by adding some additional ‘dark’ components to the energy budget

of the universe, and the other one is to modify the gravitational sector. The most common

modifications in the latter direction are achieved by generalizing the Einstein-Hilbert action

term, precisely by replacing the Ricci scalar 𝑅 with an arbitrary function of 𝑅 which

produces the so called 𝑓 (𝑅) gravity theory, first proposed by Buchdahl (1970). Besides

that, one of the significances of GR is that the formulation is based on a very special and
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unique connection, the torsionless and metric-compatible Levi-Civita connection. The

Levi-Civita connection ensures that the connection coefficients can be written as a function

of the metric tensor only. In fact, there are other gravity theories equivalent to GR, such

as the teleparallel gravity and symmetric teleparallel gravity unhindered to this special

connection.

The idea of teleparallelism was first employed by Einstein on his failed attempt to unite

electromagnetism and gravitation (Einsten, 1928). Subsequently, Moller (1961) with the

use of tetrad description of gravitational fields and reformulate teleparallelism as a gravity

theory. After that, the very first paper of the symmetric teleparallel gravity was published

by Nester and Yo (1999). Since then, several contributions to teleparallel gravity (TG) and

symmetric teleparallel gravity (STG) have been made by different authors (Adak, 2006;

Aldrovandi & Pereira, 2013; Järv et al., 2018; Jimenez et al., 2018; Nester & Yo, 1999).

Unlike GR, where the gravity is depicted by the curvature of spacetime, in both these

theories the curvature is set to be zero, and the torsion of the connection represents the

gravity in TG and the non-metricity of the connection does so in STG. Inspired by the

𝑓 (𝑅) theory, the modified 𝑓 (𝑇) and 𝑓 (𝑄) gravity theories were considered where the

Ricci scalar 𝑅 in GR is replaced by the torsion scalar 𝑇 in TG and the non-metricity scalar

𝑄 in STG (Wu & Yu, 2010; Xu et al., 2020, 2019; Zhang et al., 2011). However, both

these theories have some drawback in which the consistency of the theory depend on the

choice of tetrad in TG and the choice of coordinates in STG (Tamanini & Boehmer, 2012;

Zhao, 2021).

The geodesic deviation equation (GDE) is a useful tool for studying timelike, null, and

spacelike structure of spacetime. Ellis and Elst (1997) apply the GDE to investigate these

structures in the Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology. As a natural

extension to GR, the GDE was then formulated in 𝑓 (𝑅) gravity (Guarnizo et al., 2011,
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2015), followed by Baffou et al. (2015). Although equivalent to GR, TG is a conceptually

different theory. In GR, the motion of particle is described by the curvature of spacetime

and the trajectories are subject to geodesics, instead of force equation. On the flip side, in

TG, the torsion appeared as a real force, namely, the tidal force. Consequently, there is no

geodesic equation in TG, but only force equation. Nevertheless, the teleparallel depiction

of the gravitational interaction is totally equivalent to that of GR (Aldrovandi & Pereira,

2013), so it is completely natural to convert the force equation in TG to a geodesic equation

in GR. In this way, the corresponding GDE in TG can be obtained. This approach is done

by Darabi et al. (2015).

1.2 Objective of the Study

1. To investigate the properties of pseudo-Riemannian manifolds in order to appreciate

the geometric description of gravity.

2. To establish the equivalence of general relativity and symmetric teleparallel gravity.

3. To express the geodesic deviation equation for FLRW cosmology in 𝑓 (𝑄) gravity

theory.

1.3 Scope and Methodology

The scope of the study includes the mathematical prerequisites to begin investigating

general relativity and foundations of cosmology, which is then followed by the investigation

of symmetric teleparallel gravity and the modified 𝑓 (𝑄) gravity. The technical methodology

for this research project includes the review of mathematical prerequisites such as smooth

manifolds, connections and curvature tensors, which is then followed by a discussion on

general relativity. This is then proceeded by deriving the field equations of general relativity,

𝑓 (𝑅) gravity, symmetric teleparallel gravity and 𝑓 (𝑄) gravity. After that, the notion of

geodesic deviation equation is introduced, followed by the review of FLRW cosmology
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included the concepts of observer, Robertson-Walker spacetime, Hubble parameter, and

redshift parameter. By using the results obtained, we express the GDE in 𝑓 (𝑄) gravity with

FLRW model and discuss some of its cosmological applications such as the generalized

Raychaudhuri equation and Mattig relation.

1.4 Outline of the Report

This thesis begins with a chapter of mathematical preliminaries. The notion of smooth

manifolds is introduced, which is then followed by tangent spaces, vector fields, one-forms,

and tensor fields. These are essentially the least differential topology knowledge that needed

to pursue a study on differential geometry. After that, we introduce pseudo-Riemannian

manifolds with the concept of metric tensors. The notions of affine connections and

geodesics were reviewed, and used to describe the curvature tensors. Chapter 2 ends with

brief introduction on the Levi-Civita connection. Chapter 3 is to reviews several gravity

theories, beginning with the basic implications of general relativity. The uniqueness

of this chapter lies in the construction of the symmetric teleparallel gravity and the

derivation of the 𝑓 (𝑄) gravity field equations. The chapter ends with a discussion on the

equivalence between the general relativity and the symmetric teleparallel gravity. Lastly,

this dissertation ends with the presentation on the geodesic deviation equation in 𝑓 (𝑄)

gravity. A short section on FLRW cosmology is provided. The chapter ends with the two

important results which is the GDE for fundamental observers and for past-directed null

vector fields.
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CHAPTER 2: MATHEMATICAL PRELIMINARIES

2.1 Introduction

This chapter is a survey of the basic definitions of differential geometry that will be used

throughout this manuscript. The main goal of this chapter is not to exhibit the rigorous

formulations, but to fix notations, in local coordinates, as they will be needed for the rest of

the chapters and physical applications. The main references used for this chapter include

J. Lee (2009); J. M. Lee (1997, 2013); O’neil (1983); W.Tu (2010).

The first four sections will focus on the smooth manifold theory. Smooth manifolds are

essentially specific topological spaces with an additional smooth structure and coordinate

charts are commonly known as coordinate systems by physicists. We present the tangent

space to a manifold at a point, which is a linear approximation for the manifold near the

point, and define a tangent vector on a manifold as a derivation at a point so that we can

perform calculus on manifolds. A vector field on manifold as a linear map that assigns

to each point a tangent vector, whereas one-forms assign to each point a covector which

is linear functional on the tangent space at a point. We define the notions of tensors and

tensor fields on manifolds by generalizing from linear mappings to multilinear ones. The

language of tensors have important implication on physics and will pervade the rest of the

thesis.

For the later sections, geometry is introduced into smooth manifold theory. We need an

additional structure known as the metric tensor to define geometric concepts like lengths

and distances. A smooth manifold with a well defined metric tensor is called a pseudo-

Riemannian manifold, whereby the Riemannian and Lorentzian manifolds are the special

cases. To study the notion of geodesics and curvature on pseudo-Riemannian manifolds, we

need to introduce a new object called a connection. An affine connection allow us to connect
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tangent spaces at different point of a manifold and define parallel transport of vectors along

curves. Geodesics are essentially curves that have parametrizations with zero acceleration.

Curvature is defined as a tensor that measure the failure of second covariant derivatives to

commute. In the last section, we present two properties: symmetry and compatibility with

the metric, that determine a unique connection on every pseudo-Riemannian manifold,

called the Levi-Civita connection.

2.2 Smooth Manifolds

Definition 2.1. Let 𝑀 be a topological space. Then 𝑀 is a 𝑛-dimensional topological

manifold if 𝑀 is a second-countable Hausdorff space such that for every 𝑝 ∈ 𝑀, there

is a homeomorphism 𝜙 : 𝑀 ⊇ 𝑈 → 𝜙(𝑈) ⊆ R𝑛 which maps the open subset 𝑈 ∋ 𝑝

of 𝑀 onto an open subset 𝜙(𝑈) ⊆ R𝑛. A coordinate chart is a pair (𝑈, 𝜙), where

𝑈 is called a coordinate neighborhood and 𝜙 is called a coordinate map. Let 𝑝 ∈ 𝑈

and 𝜙(𝑝) = (𝑥1(𝑝), . . . , 𝑥𝑛 (𝑝)). Then the functions (𝑥1, . . . , 𝑥𝑛) are called the local

coordinates on 𝑈.

Definition 2.2. Let 𝑀 be a topological manifold, and (𝑈𝛼, 𝜙𝛼), (𝑈𝛽, 𝜙𝛽) be the charts

on 𝑀 with 𝑈𝛼 ∩ 𝑈𝛽 ≠ ∅. If the homeomorphism 𝜙𝛼 ◦ 𝜙−1
𝛽

: R𝑛 ⊇ 𝜙𝛽 (𝑈𝑖 ∩ 𝑈 𝑗 ) →

𝜙𝛼 (𝑈𝛼 ∩ 𝑈𝛽) ⊆ R𝑛, (𝑥1, ..., 𝑥𝑛) ↦→ (𝑦1, ..., 𝑦𝑛), called the transition map or change of

coordinates is smooth, then the charts are said to be smoothly compatible. A smooth atlas

on 𝑀 is a collection A = {(𝑈Λ, 𝜙Λ)} on 𝑀 such that 𝑀 =
⋃

(𝑈Λ,𝜙Λ)∈A𝑈, and any two

charts are smoothly compatible to one another. A smooth atlas on 𝑀 is maximal if it is not

contained in any other larger smooth atlas.

Definition 2.3. A 𝑛-dimensional smooth manifold is a pair (𝑀,A), where 𝑀 is a

𝑛-dimensional topological manifold and A is a maximal smooth atlas on 𝑀 .
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For convention, we usually denote 𝑀 as a smooth manifold or 𝑀𝑛 whenever we want to

emphasize the dimension. It is also common to denote (𝑈, (𝑥𝜇)) as a coordinate chart or

coordinate system, where (𝑥𝜇) is the local coordinate on 𝑈.

Example 2.1. Let 𝑀𝑚 and 𝑁𝑛 be smooth manifolds and 𝑀 × 𝑁 be the Cartesian product.

Suppose (𝑈, 𝜙) is a chart on 𝑀 and (𝑉, 𝜓) is a chart on 𝑁 . Then the map

𝜙 × 𝜓 : 𝑈 ×𝑉 → R𝑚 × R𝑛 (2.1)

is an atlas on 𝑀 × 𝑁 called the product atlas. With a maximal product atlas, 𝑀 × 𝑁 is

called a product manifold.

Definition 2.4. Let 𝑓 : 𝑀 → 𝑁 , (𝑈, 𝜙) be a coordinate chart on 𝑀𝑚, with 𝑝 ∈ 𝑈 and

(𝑉, 𝜓) be a coordinate chart on 𝑁𝑛, with 𝑓 (𝑝) ∈ 𝑉 . Then, 𝑓 is smooth at 𝑝 if, 𝑓 (𝑈) ⊆ 𝑉

and the composition 𝜓 ◦ 𝑓 ◦ 𝜙−1 : R𝑚 ⊇ 𝜙(𝑈) → 𝜓(𝑉) ⊆ R𝑛 is smooth at 𝜙(𝑝). The map

𝑓 is called a smooth map if it is smooth at 𝑝, ∀𝑝 ∈ 𝑀 .

The smoothness of 𝑓 is independent to the choice of coordinate charts. A representative

map 𝑓 = 𝜓 ◦ 𝑓 ◦ 𝜙−1 is defined on open subset of R𝑚, where 𝑚 is the dimension of 𝑀.

Since the dimension of 𝑁 is 𝑛, so 𝑓 = ( 𝑓 1, . . . , 𝑓 𝑛) where each 𝑓 𝜇 is a 𝑚-valued function.

If we denote the points in R𝑚 as (𝑥1, . . . , 𝑥𝑚), and (𝑦1, . . . , 𝑦𝑛) in R𝑛, then we may write

𝑦𝜇 = 𝑓 𝜇 (𝑥1, . . . , 𝑥𝑚). In common, the hat over the 𝑓 ’s are dropped. In particular, we also

said a function 𝑓 : 𝑀 → R is smooth at 𝑝 ∈ 𝑀 , if 𝑓 ◦ 𝜙−1 : R𝑛 ⊇ 𝜙(𝑈) → R is smooth at

𝜙(𝑝) for some coordinate chart (𝑈, 𝜙) with 𝑝 ∈ 𝑈. Consequently, 𝑓 is a smooth function

if it is smooth at every 𝑝 ∈ 𝑀. The set of all smooth maps from 𝑀 to 𝑁 is denoted by

𝐶∞(𝑀, 𝑁), while 𝐶∞(𝑀) for the special case 𝐶∞(𝑀,R).

Definition 2.5. Let (𝑈, (𝑥𝜇)) be a coordinate chart on 𝑀𝑛 with 𝑝 ∈ 𝑈. If 𝑓 ∈ 𝐶∞(𝑀),
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then partial derivative of 𝑓 on 𝑈 is defined by

𝜕 𝑓

𝜕𝑥𝜇
(𝑝) = 𝜕 ( 𝑓 ◦ 𝜙−1)

𝜕𝑢𝜇
(𝜙(𝑝)) (2.2)

where (𝑢1, . . . , 𝑢𝑛) is the standard coordinates on R𝑛.

2.3 Tangent Spaces

Definition 2.6. A tangent vector at 𝑝 ∈ 𝑀 is a linear map 𝑣 : 𝐶∞(𝑀) → R that satisfies

the Leibniz rule

𝑣( 𝑓 · 𝑔) = 𝑓 (𝑝)𝑣(𝑔) + 𝑔(𝑝)𝑣( 𝑓 ), ∀ 𝑓 , 𝑔 ∈ 𝐶∞(𝑀). (2.3)

This implies that a tangent vector is a derivation at 𝑝 ∈ 𝑀. At each 𝑝 ∈ 𝑀, we let

𝑇𝑝𝑀 denote the set of all tangent vectors to 𝑀 at 𝑝. The set 𝑇𝑝𝑀 form a vector space

with the operations defined as (𝑣 + 𝑤) 𝑓 = 𝑣 𝑓 + 𝑤 𝑓 and (𝑎𝑣) 𝑓 = 𝑎(𝑣 𝑓 ), called the tangent

space to 𝑀 at 𝑝. Suppose (𝑈, (𝑥𝜇)) is a coordinate chart on 𝑀𝑛 with 𝑝 ∈ 𝑀, we define

the operator 𝜕𝜇 |𝑝 ≡ 𝜕
𝜕𝑥𝜇

��
𝑝

: 𝐶∞(𝑀) → R by

𝜕

𝜕𝑥𝜇

����
𝑝

𝑓 =
𝜕 𝑓

𝜕𝑥𝜇
(𝑝) . (2.4)

Clearly, 𝜕𝜇 |𝑝 is a derivation at 𝑝 and so an element of 𝑇𝑝𝑀. It can be shown that the

𝑛-tuple (𝜕1 |𝑝, . . . , 𝜕𝑛 |𝑝) form a basis for the tangent space 𝑇𝑝𝑀 , called a coordinate basis.

Therefore, for any 𝑣 ∈ 𝑇𝑝𝑀 , we can write 𝑣 = 𝑣𝜇𝜕𝜇 |𝑝, where 𝑣𝜇 = 𝑣(𝑥𝜇).

Definition 2.7. Let 𝑓 ∈ 𝐶∞(𝑀, 𝑁) be a smooth map. For every 𝑝 ∈ 𝑀 , a map

𝑑𝑓𝑝 : 𝑇𝑝𝑀 → 𝑇 𝑓 (𝑝)𝑁 (2.5)
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which maps 𝑣 to 𝑑𝑓𝑝 (𝑣) ≡ 𝑣 𝑓 , is called the differential of 𝑓 at 𝑝, where 𝑣 𝑓 is defined by

𝑣 𝑓 (𝑔) = 𝑣(𝑔 ◦ 𝑓 ), ∀𝑣 ∈ 𝑇𝑝𝑀 and 𝑔 ∈ 𝐶∞(𝑁).

Notice 𝑣 is linear implies that 𝑣 𝑓 is linear, and 𝑣 𝑓 also satisfies the Leibniz rule. Thus,

𝑣 𝑓 ∈ 𝑇 𝑓 (𝑝)𝑁 and the definition is well-defined. Let (𝑈, (𝑥𝜇)) be a chart on 𝑀𝑚 at 𝑝 and

(𝑉, (𝑦𝜇)) be a chart on 𝑁𝑛 at 𝑓 (𝑝). Then we can show that

𝑑𝑓𝑝

(
𝜕

𝜕𝑥𝜈

����
𝑝

)
=
𝜕 (𝑦𝜇 ◦ 𝜙)

𝜕𝑥𝜈
(𝑝) 𝜕

𝜕𝑦𝜇

����
𝑓 (𝑝)

. (2.6)

The matrix
(
𝜕 (𝑦𝜇◦𝜙)
𝜕𝑥𝜈

(𝑝)
)
𝜇,𝜈

is the Jacobian matrix of 𝑓 with respect to (𝑥𝜇) and (𝑦𝜇).

Definition 2.8. The tangent bundle of 𝑀 is the disjoint union of tangent spaces at all

points in 𝑀 , denoted as

𝑇𝑀 =
∐
𝑝∈𝑀

𝑇𝑝𝑀 = {(𝑝, 𝑣) | 𝑝 ∈ 𝑀, 𝑣 ∈ 𝑇𝑝𝑀} . (2.7)

Definition 2.9. A parametrized smooth curve is a smooth map 𝛾 : 𝐼 ⊆ R→ R𝑛, where 𝐼

is an open interval in R.

Thus, for every 𝑡 ∈ 𝐼, we could write 𝛾(𝑡) = (𝑥1(𝑡), . . . , 𝑥𝑛 (𝑡)) ∈ R𝑛, so 𝛾 is smooth

if and only if each 𝑥𝑖 (𝑡) is smooth. Given a smooth curve 𝛾, we can define the tangent

vector or the velocity of 𝛾 at 𝑡0 ∈ 𝐼 as ¤𝛾(𝑡0) = ( ¤𝑥1(𝑡), . . . , ¤𝑥𝑛 (𝑡)), where dot represents the

derivative with respect to 𝑡.

Definition 2.10. Let 𝛾 : 𝐼 → 𝑀 be a smooth curve. The velocity of 𝛾 at 𝑡0 ∈ 𝐼 is

𝛾′(𝑡0) = 𝑑𝛾

(
𝑑

𝑑𝑡

����
𝑡0

)
∈ 𝑇𝛾(𝑡0)𝑀 (2.8)

where 𝑑/𝑑𝑡 |𝑡0 is the coordinate basis vector in 𝑇𝑡0R.
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Since ¤𝛾(𝑡0) is the tangent vector at 𝑡0, it can be acts on smooth function 𝑓 by

¤𝛾(𝑡0) 𝑓 = 𝑑𝛾

(
𝑑

𝑑𝑡

����
𝑡0

)
𝑓 =

𝑑

𝑑𝑡

����
𝑡0

( 𝑓 ◦ 𝛾) = ( 𝑓 ◦ 𝛾)′(𝑡0) . (2.9)

This implies that ¤𝛾(𝑡0) is simply the derivation at 𝛾(𝑡0) obtained by taking the derivative

of a function along 𝛾. Suppose (𝑈, 𝜙) is a coordinate chart on 𝑀, such that 𝛾(𝐼) ⊆ 𝑈,

then for any 𝑡 ∈ 𝐼, we have

𝜙 ◦ 𝛾(𝑡) = (𝑥1 ◦ 𝛾(𝑡), . . . , 𝑥𝑛 ◦ 𝛾(𝑡)) = (𝛾1(𝑡), . . . , 𝛾𝑛 (𝑡)) . (2.10)

To simplify the notation, we often express the coordinate representation of 𝛾 as 𝛾(𝑡) =

(𝛾1(𝑡), . . . , 𝛾𝑛 (𝑡)), or 𝛾(𝑡) = (𝑥1(𝑡), . . . , 𝑥𝑛 (𝑡)) by using the identification between 𝑈 and

R𝑛. Thus, we have ¤𝛾(𝑡0) = ¤𝛾𝑖 (𝑡0)𝜕𝜇 |𝛾(𝑡0) .

2.4 Vector Fields and One-Forms

Definition 2.11. A vector field 𝑋 on 𝑀 is a smooth map 𝑋 : 𝑀 → 𝑇𝑀, that assigns

each point 𝑝 ∈ 𝑀 to a tangent vector 𝑋𝑝 ∈ 𝑇𝑝𝑀. The smoothness of 𝑋 implies that,

∀ 𝑓 ∈ 𝐶∞(𝑀), the function 𝑋 𝑓 : 𝑀 → R defined by (𝑋 𝑓 ) (𝑝) = 𝑋𝑝 ( 𝑓 ) is smooth ∀𝑝 ∈ 𝑀 .

We denote 𝔛(𝑀) as the set of all vector fields on 𝑀. Let 𝑋,𝑌 ∈ 𝔛(𝑀). Then the

addition and multiplication of smooth vector fields are defined as (𝑋 + 𝑌 )𝑝 = 𝑋𝑝 + 𝑌𝑝

and ( 𝑓 𝑋)𝑝 = 𝑓 (𝑝)𝑋𝑝. This implies that 𝔛(𝑀) is a module over the ring 𝐶∞(𝑀). Let

(𝑈, (𝑥𝜇)) be a coordinate chart on 𝑀 . Then the vector fields defined on 𝑈,

𝜕

𝜕𝑥𝜇
: 𝑝 ↦→ 𝜕

𝜕𝑥𝜇

����
𝑝

(2.11)

is called the coordinate vector field. Thus, for every 𝑋 ∈ 𝔛(𝑀) on 𝑈, we can write
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𝑋 = 𝑋𝜇𝜕𝜇 = 𝑋 (𝑥𝜇)𝜕𝜇. In addition, given a vector field 𝑋 on 𝑀, we can view these

vector fields like a linear map 𝑋 : 𝐶∞(𝑀) → 𝐶∞(𝑀) which satisfy the Leibniz rule,

𝑋 ( 𝑓 𝑔) = 𝑓 𝑋𝑔 + 𝑔𝑋 𝑓 , ∀ 𝑓 , 𝑔 ∈ 𝐶∞(𝑀). In other words, 𝑋 is a derivation on 𝐶∞(𝑀). In

fact, every derivation on 𝐶∞(𝑀) is a vector field.

Definition 2.12. Let 𝑓 ∈ 𝐶∞(𝑀) and 𝑋,𝑌 ∈ 𝔛(𝑀). The Lie bracket of 𝑋 and 𝑌 is a map

[𝑋,𝑌 ] : 𝐶∞(𝑀) → 𝐶∞(𝑀) defined by [𝑋,𝑌 ] 𝑓 = 𝑋𝑌 𝑓 − 𝑌𝑋 𝑓 .

It is clear that [𝑋,𝑌 ] is a vector field on 𝑀. Also, we can write [𝑋,𝑌 ] at 𝑝 ∈ 𝑀 as

[𝑋,𝑌 ] 𝑝 𝑓 = 𝑋𝑝 (𝑌 𝑓 ) − 𝑌𝑝 (𝑋 𝑓 ). Let (𝑈, (𝑥𝜇)) be a chart on 𝑈, and 𝑋,𝑌 ∈ 𝔛(𝑀). Then

𝑋 = 𝑋𝜇𝜕𝜇 and 𝑌 = 𝑌 𝜈𝜕𝜈 and hence

[𝑋,𝑌 ] =
(
𝑋𝜇 𝜕𝑌

𝜈

𝜕𝑥𝜇
− 𝑌 𝜇 𝜕𝑋

𝜈

𝜕𝑥𝜇

)
𝜕

𝜕𝑥𝜈
. (2.12)

It follows that [𝜕𝜇, 𝜕𝜈] = 0.

Definition 2.13. Let 𝑓 ∈ 𝐶∞(𝑀, 𝑁), 𝑋 ∈ 𝔛(𝑀) and 𝑌 ∈ 𝔛(𝑁). Then vector fields 𝑋 and

𝑌 are said to be 𝑓 -related, if for all 𝑝 ∈ 𝑀 , 𝑑𝑓 (𝑋𝑝) = 𝑌 𝑓 (𝑝) .

Definition 2.14. The cotangent space of 𝑀 at 𝑝 is the dual space of 𝑇𝑝𝑀 , denoted as 𝑇∗
𝑝𝑀 .

The elements of the cotangent space 𝑣∗ ∈ 𝑇∗
𝑝𝑀 are called covectors, which are linear maps

𝑣∗ : 𝑇𝑝𝑀 → R. The cotangent bundle of 𝑀 is the disjoint union of cotangent spaces of 𝑀 ,

denoted by

𝑇𝑀∗ =
∐
𝑝∈𝑀

𝑇∗
𝑝𝑀 = {(𝑝, 𝑣∗) | 𝑝 ∈ 𝑀, 𝑣∗ ∈ 𝑇∗

𝑝𝑀} . (2.13)

Definition 2.15. A one-form 𝜃 on 𝑀 is a smooth map 𝜃 : 𝑀 → 𝑇𝑀∗ assigning each

𝑝 ∈ 𝑀 to a covector 𝜃𝑝 ∈ 𝑇∗
𝑝𝑀. The smoothness of 𝜃 implies that, ∀𝑋 ∈ 𝔛(𝑀), the

function 𝜃𝑋 : 𝑀 → R defined by 𝜃𝑋 (𝑝) = 𝜃𝑝 (𝑋𝑝) is smooth ∀𝑝 ∈ 𝑀 .
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In analogous to vector fields, 𝔛∗(𝑀) denotes the set of all one-forms on 𝑀 , which form

a module over the ring 𝐶∞(𝑀).

Definition 2.16. The differential of 𝑓 ∈ 𝐶∞(𝑀) is the one-form 𝑑𝑓 : 𝑀 → 𝑇𝑀∗, 𝑝 ↦→ 𝑑𝑓𝑝

such that for any tangent vector 𝑣 ∈ 𝑇𝑝𝑀 , 𝑑𝑓 (𝑣) = 𝑣( 𝑓 ) implying (𝑑𝑓 )𝑝 : 𝑇𝑝𝑀 → R.

Since 𝑣𝑝 ∈ 𝑇𝑝𝑀 is linear, then (𝑑𝑓 )𝑝 : 𝑣 ↦→ 𝑣𝑝 ( 𝑓 ) is linear. Let 𝑋 ∈ 𝔛(𝑀). Then

𝑑𝑓 (𝑋) = 𝑋 𝑓 which is known to be smooth. Assume (𝑈, (𝑥𝜇)) is a chart on 𝑀. Then

(𝑑𝑥1, . . . , 𝑑𝑥𝑛) are called the coordinate one-forms on𝑈. Note that (𝑑𝑥𝜇) are the dual bases

to the coordinate vector fields (𝜕𝜈), since for all 𝑝 ∈ 𝑈, we have 𝑑𝑥𝜇 (𝜕𝜈) = 𝜕𝜈 (𝑑𝑥𝜇) = 𝛿
𝜇
𝜈 .

Thus, for every 𝜃 ∈ 𝔛∗(𝑀) on 𝑈, we can write 𝜃 = 𝜃𝜇𝑑𝑥
𝜇 = 𝜃 (𝜕𝜇)𝑑𝑥𝜇. Similar to the case

that vector fields were derivations on 𝐶∞(𝑀), the differentials can also be viewed as a

linear map 𝑑 : 𝐶∞(𝑀) → 𝔛∗(𝑀) that satisfy the Leibniz rule. Thus, 𝑑 is a derivation on

𝐶∞(𝑀).

2.5 Tensor Fields

Definition 2.17. Let

𝔛∗(𝑀)𝑟 = 𝔛∗(𝑀) × · · · × 𝔛∗(𝑀)︸                       ︷︷                       ︸
𝑟 copies

and 𝔛(𝑀)𝑠 = 𝔛(𝑀) × · · · × 𝔛(𝑀)︸                    ︷︷                    ︸
𝑠 copies

.

A tensor field of type (𝑟, 𝑠) is a 𝐶∞(𝑀)-multilinear function

𝜏 : 𝔛∗(𝑀)𝑟 × 𝔛(𝑀)𝑠 → 𝐶∞(𝑀)

(𝜃1, . . . , 𝜃𝑟 , 𝑋1, . . . , 𝑋𝑠) ↦→ 𝑓 = 𝜏(𝜃1, . . . , 𝜃𝑟 , 𝑋1, . . . , 𝑋𝑠) (2.14)

where the index 𝑟 is called the contravariant type and 𝑠 is called the covariant type.
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Let T 𝑟
𝑠 (𝑀) denotes the set of all (𝑟, 𝑠) tensor fields on 𝑀 which is a module over

𝐶∞(𝑀). In particular, T 0
0 (𝑀) = 𝐶∞(𝑀).

Definition 2.18. Let 𝜏 ∈ T 𝑟
𝑠 (𝑀) and 𝜏′ ∈ T 𝑟 ′

𝑠′ . The tensor product between tensor fields

𝜏 ⊗ 𝜏′ : 𝔛∗(𝑀)𝑟+𝑟 ′ × 𝔛(𝑀)𝑠+𝑠′ → 𝐶∞(𝑀) is defined as

𝜏 ⊗ 𝜏′(𝜃1, . . . , 𝜃𝑟+𝑟
′
, 𝑋1, . . . , 𝑋𝑠+𝑠′)

= 𝜏(𝜃1, . . . , 𝜃𝑟 , 𝑋1, . . . , 𝑋1, . . . , 𝑋𝑠)𝜏′(𝜃𝑟+1, . . . , 𝜃𝑟+𝑟
′
, 𝑋𝑠+1, . . . , 𝑋𝑠+𝑠′) (2.15)

and 𝜏 ⊗ 𝜏′ ∈ T 𝑟+𝑟 ′
𝑠+𝑠′ (𝑀).

It is clearly multilinear and associative. In particular, let 𝜃 ∈ 𝔛∗(𝑀). Then we can

define a tensor field 𝜏𝜃 ∈ T 0
1 (𝑀) such that 𝜏𝜃 : 𝑋 ↦→ 𝜃 (𝑋). In fact, all (0, 1) tensor

fields are defined in such a way, which means T 0
1 (𝑀) = 𝔛∗(𝑀) and so all one-forms are

(0, 1) tensor fields. In a similar way, every vector field 𝑋 ∈ 𝔛(𝑀) leads to a tensor field

𝜏𝑋 ∈ T 1
0 (𝑀) such that 𝜏𝑋 : 𝜃 ↦→ 𝜃 (𝑋), and T 1

0 (𝑀) = 𝔛(𝑀) implying that all vector fields

are (1, 0) tensor fields.

Definition 2.19. Tensor fields of type (0, 𝑠) are called covariant fields, and type (𝑟, 0) are

called contravariant fields. Consequently, all one-forms are covariant fields, and all vector

fields are contravariant fields.

Let 𝑣 ∈ 𝑇𝑝𝑀 and 𝑣∗ ∈ 𝑇∗
𝑝𝑀. Suppose 𝜏 ∈ T 𝑟

𝑠 (𝑀), at each point 𝑝 ∈ 𝑀 define 𝜏𝑝 :

(𝑇∗
𝑝𝑀)𝑟 × (𝑇𝑝𝑀)𝑠 → R by 𝜏𝑝 (𝑣1∗, . . . , 𝑣𝑟∗, 𝑣1, . . . , 𝑣𝑠) = 𝜏(𝜃1, . . . , 𝜃𝑟 , 𝑋1, . . . , 𝑋𝑠) (𝑝)

such that 𝜃𝜇 |𝑝 = 𝑣𝜇∗ and 𝑋𝜈 |𝑝 = 𝑣𝜈, for all 𝜇 ∈ {1, . . . , 𝑟} and 𝜈 ∈ {1, . . . , 𝑠}. It follows

that 𝜏𝑝 is R-multilinear, so it is an (𝑟, 𝑠) tensor over 𝑇𝑝𝑀 . Hence, we have the following

definition.
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Definition 2.20. A (𝑟, 𝑠) tensor bundle of 𝑀 is a disjoint union of (𝑟, 𝑠) tensor spaces over

𝑇𝑝𝑀 , for all 𝑝 ∈ 𝑀 , denoted by

TM𝑟
𝑠 =

∐
𝑝∈𝑀

𝑇𝑟
𝑠 (𝑇𝑝𝑀))

= {𝜏𝑝 ∈ 𝐿 ((𝑇∗
𝑝𝑀)𝑟 × (𝑇𝑝𝑀)𝑠;R) | 𝑝 ∈ 𝑀} . (2.16)

Thus, every tensor field 𝜏 ∈ T 𝑟
𝑠 (𝑀) is also a map 𝜏 : 𝑀 → TM𝑟

𝑠 that assigning to

each 𝑝 ∈ 𝑀 the tensor 𝜏𝑝. Recall that if (𝑈, (𝑥𝜇)) is a chart on 𝑀, then we can write

𝑋 ∈ 𝔛(𝑀) and 𝜃 ∈ 𝔛∗(𝑀) as 𝑋 = 𝑋 (𝑥𝜇)𝜕𝜇 and 𝜃 = 𝜃 (𝜕𝜇)𝑑𝑥𝜇.

Definition 2.21. Let (𝑈, (𝑥𝜇)) be a coordinate chart on 𝑀. If 𝜏 ∈ T 𝑟
𝑠 (𝑀), then the

components of 𝜏 relative to (𝑥𝜇) are

𝜏
𝜇1,...,𝜇𝑟
𝜈1,...,𝜈𝑠 = 𝜏(𝑑𝑥𝜇1 , . . . , 𝑑𝑥𝜇𝑟 , 𝜕𝜈1 , . . . , 𝜕𝜈𝑠 ) (2.17)

which is a real-valued functions on 𝑈 and all the indices run from 1 to 𝑛.

Analogous to a vector field or one-form, any tensor has a unique expression on 𝑈 in

terms of its components relative to (𝑥𝜇). For 𝜇1, . . . , 𝜇𝑟 , 𝜈1, . . . , 𝜈𝑠 ∈ {1, . . . , 𝑛},

𝜕𝜇1 ⊗ · · · ⊗ 𝜕𝜇𝑟 ⊗ 𝑑𝑥𝜈1 ⊗ · · · ⊗ 𝑑𝑥𝜈𝑠 (2.18)

is a (𝑟, 𝑠) tensor field on 𝑈 called the coordinate tensor field. Thus, if 𝜏 ∈ T 𝑟
𝑠 (𝑀), then on

𝑈,

𝜏 = 𝜏
𝜇1,...,𝜇𝑟
𝜈1,...,𝜈𝑠 𝜕𝜇1 ⊗ · · · ⊗ 𝜕𝜇𝑟 ⊗ 𝑑𝑥𝜈1 ⊗ · · · ⊗ 𝑑𝑥𝜈𝑠 (2.19)
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where each index is summed from 1 to 𝑛.

A contraction is a tool to reduce (𝑟, 𝑠) tensor to (𝑟 − 1, 𝑠 − 1) tensor. In tensor fields, it

is a unique linear map 𝐶
𝜇
𝜈 : T 𝑟

𝑠 (𝑀) → T 𝑟−1
𝑠−1 (𝑀) defined by

𝐶
𝜇
𝜈 (𝜃1⊗· · ·⊗𝜃𝜇⊗· · ·⊗𝜃𝑟 ⊗𝑋1⊗· · ·⊗𝑋𝜈⊗· · ·⊗𝑋𝑠) = 𝜃𝜇𝑋𝜈 (𝜃1⊗· · ·⊗𝜃𝑟 ⊗𝑋1⊗· · ·⊗𝑋𝑠)

(2.20)

called the (𝜇, 𝜈) contraction. Consequently, if 𝜏 ∈ T 𝑟
𝑠 (𝑀), which has components

𝜏
𝜇1,...,𝜇𝑟
𝜈1,...,𝜈𝑠 with respect to some coordinate chart, then the contracted tensor field 𝐶

𝜇
𝜈 (𝜏) has

components 𝜏𝜇1,...,𝜆,...,𝜇𝑟
𝜈1,...,𝜆,...,𝜈𝑠

where 𝜆 is inserted at the 𝜇th contravariant index and 𝜈th covariant

index.

Definition 2.22. Let 𝑓 ∈ 𝐶∞(𝑀, 𝑁) and 𝜏 ∈ T 0
𝑠 (𝑁). The pullback of 𝜏 by 𝑓 denoted by

𝑓 ∗(𝜏) is defined as

( 𝑓 ∗𝜏) (𝑣1, ..., 𝑣𝑠) = 𝜏(𝑑𝑓 (𝑣1), ..., 𝑑𝑓 (𝑣𝑠)) (2.21)

∀𝑣𝜇 ∈ 𝑇𝑝𝑀 , 𝑝 ∈ 𝑀 .

2.6 Metric Tensors

Definition 2.23. Let 𝑉 be a finite-dimensional vector space. A symmetric bilinear form 𝑔

on 𝑉 is a R-bilinear function 𝑔 : 𝑉 ×𝑉 → R such that 𝑔(𝑣, 𝑤) = 𝑔(𝑤, 𝑣), for all 𝑣, 𝑤 ∈ 𝑉 .

If 𝑔(𝑣, 𝑤) = 0, for all 𝑤 ∈ 𝑉 implies that 𝑣 = 0, then 𝑔 is said to be nondegenerate. A

nondegenerate symmetric bilinear form is called a scalar product on 𝑉 . A scalar product

space is pair (𝑉, 𝑔) where 𝑔 is a scalar product. If 𝑔(𝑣, 𝑣) ≥ 0 (𝑔(𝑣, 𝑣) ≤ 0) for all 𝑣 ∈ 𝑉 ,

and 𝑔(𝑣, 𝑣) = 0 implies 𝑣 = 0, then 𝑔 is said to be positive (negative) definite. A positive

definite symmetric bilinear form is called an inner product and the pair (𝑉, 𝑔) is an inner
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product space.

Definition 2.24. The index of a symmetric bilinear form 𝑔, denoted as ind(𝑔), is the

dimension of the largest subspace 𝑈 ≤ 𝑉 such that 𝑔 |𝑈 is negative definite.

Definition 2.25. Let (𝑉, 𝑔) be a scalar product space,𝑈,𝑊 be subspaces of𝑉 , and 𝑢, 𝑣 ∈ 𝑉 .

Then, 𝑢 is mutually orthogonal to 𝑣, if 𝑔(𝑢, 𝑣) = 0, and 𝑈 is orthogonal to 𝑊 , denoted

𝑈 ⊥ 𝑊 , if 𝑔(𝑢, 𝑤) = 0, for all 𝑢 ∈ 𝑈, 𝑤 ∈ 𝑊 .

Definition 2.26. Let (𝑉, 𝑔) be a scalar product space and 𝑣 ∈ 𝑉 . The norm or length of

𝑣 is defined as ∥𝑣∥ =
√︁
|𝑔(𝑣, 𝑣) |. If ∥𝑣∥ = 1, that is, 𝑔(𝑣, 𝑣) = ±1, then 𝑣 is called a unit

vector.

Definition 2.27. Let (𝑉, 𝑔) be a scalar product space with dim(𝑉) = 𝑛. Then, (𝑒1, . . . , 𝑒𝑛)

is called an orthonormal basis, if 𝑔(𝑒𝜇, 𝑒𝜈) = 𝜖𝜇𝛿𝜇𝜈, for all 𝜇, 𝜈 ∈ {1, . . . , 𝑛}, where

𝜖𝜇 = 𝑔(𝑒𝜇, 𝑒𝜇) = ±1. The list (𝜖1, . . . , 𝜖𝑛) is called the signature of 𝑔.

Definition 2.28. Let (𝑉1, 𝑔1) and (𝑉2, 𝑔2) be scalar product spaces. Then, an isomorphism

𝜙 : 𝑉1 → 𝑉2 is called a linear isometry if 𝑔1(𝑣, 𝑤) = 𝑔2(𝜙𝑣, 𝜙𝑤), ∀𝑣, 𝑤 ∈ 𝑉1.

An isometry preserves the scalar product and so 𝑔1 and 𝑔2 have the same signature.

Furthermore, we often denote 𝑔(𝑣, 𝑤) as ⟨𝑣, 𝑤⟩ without confusion. Next, we extend the

metric tensors to smooth manifolds.

Definition 2.29. Let 𝑀 be a smooth manifold. A Riemannian metric tensor 𝑔 is a (0, 2)

tensor field 𝑔 ∈ T 0
2 (𝑀) that is symmetric and positive definite at 𝑇𝑝𝑀 , for all 𝑝 ∈ 𝑀 . A

Riemannian manifold is a pair (𝑀, 𝑔), where 𝑔 is a Riemannian metric.

Thus, 𝑔𝑝 : 𝑇𝑝𝑀 × 𝑇𝑝𝑀 → R, for all 𝑝 ∈ 𝑀. Moreover, it is obvious that 𝑔 has a

constant index, that is, 𝑔𝑝 has the same index for every 𝑝 ∈ 𝑀 , since ind(𝑔) = 0.
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Definition 2.30. A pseudo-Riemannian (or semi-Riemannian) metric tensor 𝑔 is a (0, 2)

tensor field 𝑔 ∈ T 0
2 (𝑀) that is nondegenerate, symmetric and has a constant index on

𝑀 . A pseudo-Riemannian (or semi-Riemannian) manifold is a pair (𝑀, 𝑔), where 𝑔 is a

pseudo-Riemannian metric.

Definition 2.31. A Lorentzian manifold is a pseudo-Riemannian manifold with signature

(−1, +1, +1, . . .), provided dim(𝑀) ≥ 2.

An example of a pseudo-Riemannian metric is R𝑛 with the metric 𝑔 defined as

⟨𝑥, 𝑦⟩𝑘 = −
𝑘∑︁
𝑖=1

𝑥𝑖𝑦𝑖 +
𝑛∑︁

𝑗=𝑘+1
𝑥 𝑗 𝑦 𝑗 (2.22)

where 𝑘 = ind(𝑔), we denote such a scalar product space as R𝑛
𝑘
, called a pseudo-Euclidean

space. Therefore, Riemannian and Lorentzian manifolds are simply the special case of

pseudo-Riemannian manifolds. Note that if 𝑋,𝑌 ∈ 𝔛(𝑀), then 𝑔(𝑋,𝑌 ) = ⟨𝑋,𝑌⟩ is a

smooth function on 𝑀 so that ⟨𝑋,𝑌⟩(𝑝) = ⟨𝑋𝑝, 𝑌𝑝⟩, where 𝑋𝑝, 𝑌𝑝 ∈ 𝑇𝑝𝑀 .

Consider a coordinate chart (𝑈, (𝑥𝜇)) on 𝑀 , then

𝑔 = 𝑔𝜇𝜈𝑑𝑥
𝜇 ⊗ 𝑑𝑥𝜈 (2.23)

where 𝑔𝜇𝜈 = 𝑔(𝜕𝜇, 𝜕𝜈) = ⟨𝜕𝜇, 𝜕𝜈⟩. Hence, if 𝑋 = 𝑋𝜇𝜕𝜇 and 𝑌 = 𝑌 𝜈𝜕𝜈 on 𝑈, then

⟨𝑋,𝑌⟩ = 𝑔𝜇𝜈𝑋
𝜇𝑌 𝜈. At point 𝑝 ∈ 𝑈, the matrix [𝑔𝜇𝜈 (𝑝)] is clearly nondegenerate, that

is, the det[𝑔𝜇𝜈 (𝑝)] ≠ 0, so 𝑔𝜇𝜈 (𝑝) is invertible and the inverse is denoted as 𝑔𝜇𝜈 (𝑝).

Furthermore, at each point 𝑝 ∈ 𝑀 , let 𝑞(𝑋𝑝) = ⟨𝑋𝑝, 𝑋𝑝⟩. Then 𝑞 provides the associated

quadratic form of the metric tensor at 𝑝. Frequently, 𝑞 is called the line element of 𝑀,
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denoted by 𝑑𝑠2. In terms of a coordinate chart, we have

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 . (2.24)

In addition, with the notion of metric, we can now define a local smooth frame (𝑒1, . . . , 𝑒𝑛)

for 𝑀 on an open subset 𝑈 ⊆ 𝑀 as a local smooth orthonormal frame if (𝑒1 |𝑝, . . . , 𝑒𝑛 |𝑝)

form an orthonormal basis for 𝑇𝑝𝑀 , for all 𝑝 ∈ 𝑈, or equivalently, ⟨𝑒𝜇, 𝑒𝜈⟩ = 𝜖𝜇𝛿𝜇𝜈. One

can easily show that there always exists a local smooth orthonormal frame at every point

of a pseudo-Riemannian manifold. Note that, however, it does not guarantee that there are

local coordinates on a neighborhood of 𝑝 for which the coordinate frame is orthonormal.

Definition 2.32. Let (𝑀, 𝑔) be a Lorentzian manifold. A tangent vector 𝑣 ∈ 𝑇𝑝𝑀 is called

spacelike if ⟨𝑣, 𝑣⟩ > 0 or 𝑣 = 0, null if ⟨𝑣, 𝑣⟩ = 0 and 𝑣 ≠ 0, timelike if ⟨𝑣, 𝑣⟩ < 0.

The category into which a given tangent vector falls indicate the casual character. The

set of all null vectors in 𝑇𝑝𝑀 is called the nullcone at 𝑝 ∈ 𝑀 . The set C(𝑣) = {𝑤 ∈ 𝑇𝑝𝑀 :

⟨𝑣, 𝑤⟩ < 0} is called the timecone at 𝑝 ∈ 𝑀. This implies that there are exactly two

timecones at each 𝑝 ∈ 𝑀 and their union is the set of all timelike vectors at point 𝑝.

Definition 2.33. A smooth curve 𝛾 : 𝐼 → 𝑀 is called spacelike, null, or timelike if

¤𝛾(𝑡) ∈ 𝑇𝛾(𝑡)𝑀 is spacelike, null, or timelike respectively, for all 𝑡 ∈ 𝐼. A vector field

𝑋 ∈ 𝔛(𝑀) is called spacelike, null, or timelike if 𝑋𝑝 is spacelike, null, or timelike

respectively, for all 𝑝 ∈ 𝑀 .

Definition 2.34. A Lorenztian manifold (𝑀, 𝑔) is said to be time-orientable if there exists a

timelike vector field 𝑋 ∈ 𝔛(𝑀). A time orientation of 𝑀 is a smooth function that assigns

each 𝑝 ∈ 𝑀 to a timecone C+(𝑝) ∈ 𝑇𝑝𝑀 such that there exists a timelike 𝑋 ∈ 𝔛(𝑀) with

𝑋𝑝 ∈ 𝐶+(𝑝) for each 𝑝. The timecone 𝐶+(𝑝) is called the future timecone at 𝑝, while the
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other timecone denoted as 𝐶−(𝑝) is called the past timecone at 𝑝. Timelike vectors in

the future timecone are said to be future directed or future pointing and those in the past

timecone are past directed or past pointing.

In this way, the meaning of a future directed timelike curve is well defined.

Definition 2.35. Let 𝑔 and 𝑔′ be pseudo-Riemannian metrics on 𝑀. Then 𝑔 and 𝑔′ are

said to be conformally related to each other if there exists a positive function 𝑓 ∈ 𝐶∞(𝑀)

such that 𝑔′ = 𝑓 𝑔.

Definition 2.36. Let (𝑀, 𝑔) and (𝑀′, 𝑔′) be pseudo-Riemannian manifolds. If there is a

diffeomorphism 𝜓 : 𝑀 → 𝑀′ such that the the pullback of 𝑔′ is conformally related to 𝑔,

that is, 𝜓∗𝑔′ = 𝑓 𝑔 for some positive 𝑓 ∈ 𝐶∞(𝑀), then (𝑀, 𝑔) and (𝑀′, 𝑔′) are said to be

conformally equivalent.

Definition 2.37. Let (𝑀, 𝑔) be a pseudo-Riemannian manifold. Then (𝑀, 𝑔) is said to be

conformally flat if every point of 𝑀 has a neighborhood that is conformally equivalent to

an open subset in (R𝑛, 𝑔̄), where 𝑔̄ denotes the pseudo-Euclidean metric.

2.7 Affine Connections and Geodesics

Definition 2.38. Let 𝑀 be a smooth manifold. An affine connection on 𝑀 is a map

∇ : 𝔛(𝑀) × 𝔛(𝑀) → 𝔛(𝑀) which maps (𝑋,𝑌 ) to ∇𝑋𝑌 and satisfies

1. ∇( 𝑓 𝑋+𝑔𝑌 )𝑍 = 𝑓∇𝑋𝑍 + 𝑔∇𝑌𝑍

2. ∇𝑋 (𝑌 + 𝑍) = ∇𝑋𝑌 + ∇𝑋𝑍

3. ∇𝑋 ( 𝑓𝑌 ) = 𝑓∇𝑋𝑌 + (𝑋 𝑓 )𝑌

for all 𝑓 , 𝑔 ∈ 𝐶∞(𝑀) and 𝑋,𝑌, 𝑍 ∈ 𝔛(𝑀). Given 𝑋 ∈ 𝔛(𝑀), the map ∇𝑋 : 𝔛(𝑀) →

𝔛(𝑀), 𝑌 ↦→ ∇𝑋𝑌 is called the covariant derivative of 𝑌 in the direction 𝑋 .
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Definition 2.39. Let (𝑈, (𝑥𝜇)) be a coordinate chart and ∇ be an affine connection on 𝑀 .

The connection coefficients of ∇ with respect to (𝑥𝜇) are the smooth functions Γ𝜆
𝜇𝜈 : 𝑈 → R

such that

∇𝜕𝜇𝜕𝜈 = Γ𝜆
𝜇𝜈𝜕𝜆 . (2.25)

Let 𝑋,𝑌 ∈ 𝔛(𝑀), in a coordinate chart (𝑈, (𝑥𝜇)). We can write 𝑋 = 𝑋𝜇𝜕𝜇 and

𝑌 = 𝑌 𝜈𝜕𝜈. It follows that,

∇𝑋𝑌 = 𝑋𝜇 (𝜕𝜇𝑌𝜆 + Γ𝜆
𝜇𝜈𝑌

𝜈)𝜕𝜆

= 𝑋𝜇 (∇𝜇𝑌
𝜆)𝜕𝜆 (2.26)

where ∇𝜇𝑌
𝜆 = 𝜕𝜇𝑌

𝜆 + Γ𝜆
𝜇𝜈𝑌

𝜈 is called the components of ∇𝜕𝜇𝑌 . This can be easily extend

to tensor fields. Example, for 𝜏 ∈ T 1
1 (𝑀), the components of ∇𝜕𝜇𝜏 is given by

∇𝜇𝜏
𝜆
𝜈 = 𝜕𝜇𝜏

𝜆
𝜈 + Γ𝜆

𝜇𝛼𝜏
𝛼
𝜈 − Γ𝛼

𝜈𝜇𝜏
𝜆
𝛼 . (2.27)

Note that connection ∇ is not a tensor, so the connection coefficients do not obey the usual

transformation rule under change of coordinates. However, a simple calculation claim that

the difference between two connection is a tensor.

Proposition 2.40. If ∇ and ∇̂ are affine connections on 𝑀 , then a map 𝑆 : 𝔛(𝑀)×𝔛(𝑀) →

𝔛(𝑀) defined by

𝑆(𝑋,𝑌 ) = ∇̂𝑋𝑌 − ∇𝑋𝑌 (2.28)

is a (1, 2)-tensor field.
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Definition 2.41. Suppose 𝛾 : 𝐼 → 𝑀 is a smooth curve. A vector field along a curve 𝛾 is

a smooth map 𝑉 : 𝐼 → 𝑇𝑀 such that 𝑉 (𝑡) ∈ 𝑇𝛾(𝑡)𝑀 , for all 𝑡 ∈ 𝐼.

The set of all vector field along 𝛾 denoted by 𝔛(𝛾) is a module over the ring 𝐶∞(𝐼).

An example of 𝑉 ∈ 𝔛(𝛾) is the velocity vector ¤𝛾(𝑡) ∈ 𝑇𝛾(𝑡)𝑀 , for all 𝑡 ∈ 𝐼.

Definition 2.42. A vector field 𝑉 ∈ 𝔛(𝛾) is extendible if there exists a 𝑉̃ ∈ 𝔛(𝑀)

on a neigborhood of the image 𝛾(𝐼) such that 𝑉 is induced by 𝑉̃ in the sense that

𝑉 (𝑡) = 𝑉̃𝛾(𝑡) ,∀𝑡 ∈ 𝐼.

Theorem 2.43. Let ∇ be an affine connection on 𝑀 and 𝛾 : 𝐼 → 𝑀 be a smooth curve.

Then, there exist a unique operator 𝐷𝑡 : 𝔛(𝛾) → 𝔛(𝛾) which satisfy

1. 𝐷𝑡 (𝑉 +𝑊) = 𝐷𝑡 (𝑉) + 𝐷𝑡 (𝑊)

2. 𝐷𝑡 ( 𝑓 𝑉) = 𝑓 ′𝑉 + 𝑓 𝐷𝑡 (𝑉)

3. if 𝑉 is extendible and induced 𝑉̃ ∈ 𝔛(𝑀) such that 𝑉 (𝑡) = 𝑉̃𝛾(𝑡) , then

𝐷𝑡 (𝑉) = ∇𝛾′(𝑡)𝑉̃ (2.29)

∀𝑉,𝑊 ∈ 𝔛(𝛾), 𝑓 ∈ 𝐶∞(𝐼) and 𝐷𝑡𝑉 is called the covariant derivative of 𝑉 along 𝛾.

Suppose (𝑈, (𝑥𝜇)) is a chart on 𝑀 such that 𝛾(𝐼) ⊆ 𝑈. Then 𝑉 ∈ 𝔛(𝛾) can be written

𝑉 (𝑡) = 𝑉 𝜈 (𝑡)𝜕𝜈. Since 𝜕𝜈 is extendible, we obtain

𝐷𝑡𝑉 =
( ¤𝑉𝜆 + ¤𝛾𝜇𝑉 𝜈Γ𝜆

𝜇𝜈 (𝛾)
)
𝜕𝜆 . (2.30)

Definition 2.44. Let 𝛾 : 𝐼 → 𝑀 be a smooth curve. The acceleration of 𝛾 is the vector

field 𝐷𝑡 ¤𝛾 along 𝛾. In particular, a curve is said to be a geodesic with respect to ∇ if

𝐷𝑡 ¤𝛾 = 0.
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By writing the components of 𝛾 with respect to a chart as 𝛾(𝑡) = (𝑥1(𝑡), . . . , 𝑥𝑛 (𝑡)), we

have

𝐷𝑡 ¤𝛾 =
(
¥𝑥𝜆 + ¤𝑥𝜇 ¤𝑥𝜈Γ𝜆

𝜇𝜈 (𝑥)
)
𝜕𝜆 (2.31)

so 𝛾 is a geodesic provided that

¥𝑥𝜆 + ¤𝑥𝜇 ¤𝑥𝜈Γ𝜆
𝜇𝜈 (𝑥) = 0 (2.32)

which is called the geodesic equation.

Definition 2.45. Let 𝛾 be a smooth curve on 𝑀. Then 𝑉 ∈ 𝔛(𝛾) is parallel transported

along 𝛾 with respect to ∇ if 𝐷𝑡𝑉 = 0.

Hence, it is clear that the velocity vector field of a curve is parallel along the curve.

2.8 Curvature Tensors

Definition 2.46. Let (𝑀, 𝑔) be a pseudo-Riemannian manifold with affine connection ∇.

The curvature tensor is a map 𝑅𝑚 : 𝔛(𝑀) × 𝔛(𝑀) × 𝔛(𝑀) → 𝔛(𝑀) defined by

𝑅𝑚(𝑋,𝑌 )𝑍 = ∇𝑋∇𝑌𝑍 − ∇𝑌∇𝑋𝑍 − ∇[𝑋,𝑌 ]𝑍 (2.33)

for all 𝑋,𝑌, 𝑍 ∈ 𝔛(𝑀).

It is clear that 𝑅𝑚 is a (1, 3) tensor field. It measures the failure of ∇𝑋 and ∇𝑌 to

commute. In addition, 𝑅𝑚 could also viewed as a map 𝑅𝑚(𝑋,𝑌 ) : 𝔛(𝑀) → 𝔛(𝑀) for

each pair of 𝑋,𝑌 ∈ 𝔛(𝑀). Let (𝑈, (𝑥𝜇)) be a coordinate chart on 𝑀 . Then the curvature
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tensor can be written as

𝑅𝑚 = 𝑅𝜌
𝜎𝜇𝜈 𝜕𝜌 ⊗ 𝑑𝑥𝜎 ⊗ 𝑑𝑥𝜇 ⊗ 𝑑𝑥𝜈 (2.34)

where the components 𝑅𝜌
𝜎𝜇𝜈 are defined by

𝑅(𝜕𝜇, 𝜕𝜈)𝜕𝜎 = 𝑅𝜌
𝜎𝜇𝜈𝜕𝜌 . (2.35)

A straightforward calculation shows that

𝑅𝜌
𝜎𝜇𝜈 = 𝜕𝜇Γ

𝜌
𝜈𝜎 − 𝜕𝜈Γ

𝜌
𝜇𝜎 + Γ

𝜌

𝜇𝜆
Γ𝜆
𝜈𝜎 − Γ

𝜌

𝜈𝜆
Γ𝜆
𝜇𝜎 . (2.36)

Note that the curvature tensor here has only one obvious symmetry, which is the antisym-

metric in the last two indices, 𝑅𝜌
𝜎𝜇𝜈 = −𝑅𝜌

𝜎𝜈𝜇.

Definition 2.47. A pseudo-Riemannian manifold (𝑀, 𝑔) is said to be flat if the curvature

tensor is identically zero, that is ∇𝑋∇𝑌𝑍 − ∇𝑌∇𝑋𝑍 = ∇[𝑋,𝑌 ]𝑍 .

Theorem 2.48. Let (𝑀, 𝑔) be a pseudo-Riemannian manifold. If 𝑋 ∈ 𝔛(𝑀), and let 𝜃𝑋 ∈

𝔛∗(𝑀) such that 𝜃𝑋 (𝑌 ) = ⟨𝑋,𝑌⟩, for any 𝑌 ∈ 𝔛(𝑀), then the map 𝜙 : 𝔛(𝑀) → 𝔛∗(𝑀)

that maps 𝑋 ↦→ 𝜃𝑋 is a 𝐶∞(𝑀)-linear isomorphism.

This shows that every vector field can be transformed to a unique one-form, due to the

isomorphism, which implies T 1
0 (𝑀) ≃ T 0

1 (𝑀). This approach can be extend to arbitrary

dimensions of tensor fields. Let 𝜏 ∈ T 𝑟
𝑠 (𝑀). The corresponding lowered index tensor
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field 𝜏∗ ∈ T 𝑟−1
𝑠+1 (𝑀) is defined as

(𝜏∗) (𝜃1, ..., 𝜃𝑟−1, 𝑋1, ..., 𝑋𝑠+1)

= 𝜏(𝜃1, ..., 𝜃𝛼−1, 𝑋∗
𝛽, 𝜃

𝛼+1, ..., 𝜃𝑟−1, 𝑋1, ..., 𝑋𝛽−1, 𝑋𝛽+1, ..., 𝑋𝑠) (2.37)

where 𝛼 ∈ {1, ..., 𝑟} and 𝛽 ∈ {1, ..., 𝑠}. Then the function 𝜙(𝜏) = 𝜏∗ transform a vector

field in the 𝛽th position to a one-form, in the 𝛼th position. Since 𝜙 is an isomorphism, so

𝜙−1 exists, and it follows that 𝜙−1(𝜏) = 𝜏∗ where 𝜏∗ ∈ T 𝑟+1
𝑠−1 , which represents the raising

index operation. Recall that 𝑑𝑥𝜇 (𝜕𝜈) = 𝜕𝜈 (𝑑𝑥𝜇) = 𝛿
𝜇
𝜈 with respect to a chart (𝑈, (𝑥𝜇)).

Therefore, for any 𝑌 ∈ 𝔛(𝑀), we have ⟨𝜕𝜆, 𝑌⟩ = 𝑔𝜆𝜈𝑑𝑥
𝜈 (𝑌 ), so the unique isomorphism

can be defined as 𝜕𝜆 ↦→ 𝑔𝜆𝜈𝑑𝑥
𝜈 with the corresponding inverse 𝑑𝑥𝜆 ↦→ 𝑔𝜆𝜈𝜕𝜈. Thus, any

vector field 𝑋 ∈ 𝔛(𝑀) can be transformed by 𝜙(𝑋) = 𝜙(𝑋𝜇𝜕𝜇) = 𝑋𝜇𝜙(𝜕𝜇) = 𝑋𝜇𝑔𝜇𝜈𝑑𝑥
𝜈

which clearly determines a unique one-form in 𝔛∗(𝑀). Similar argument holds for

one-form.

With these notions, we could also have a curvature tensor 𝑅𝑚∗ : 𝔛(𝑀) × 𝔛(𝑀) ×

𝔛(𝑀) × 𝔛(𝑀) → 𝐶∞(𝑀) defined by 𝑅𝑚∗(𝑋,𝑌, 𝑍,𝑊) = ⟨𝑅𝑚(𝑋,𝑌 )𝑍,𝑊⟩. It is clear

that 𝑅𝑚∗ is the lowered index of the curvature tensor, which is a (0, 4) tensor field. In

terms of local coordinates, we have

𝑅𝑚∗ = (𝑅𝜌
𝜎𝜇𝜈 𝑔𝜌𝜆𝑑𝑥

𝜆) ⊗ 𝑑𝑥𝜇 ⊗ 𝑑𝑥𝜈 ⊗ 𝑑𝑥𝜎

= (𝑅𝜆
𝜎𝜇𝜈 𝑔𝜌𝜆)𝑑𝑥𝜌 ⊗ 𝑑𝑥𝜇 ⊗ 𝑑𝑥𝜈 ⊗ 𝑑𝑥𝜎

= 𝑅𝜌𝜎𝜇𝜈 𝑑𝑥
𝜌 ⊗ 𝑑𝑥𝜇 ⊗ 𝑑𝑥𝜈 ⊗ 𝑑𝑥𝜎 (2.38)

where 𝑅𝜌𝜎𝜇𝜈 = 𝑅𝜆
𝜎𝜇𝜈 𝑔𝜌𝜆 is the components of 𝑅𝑚∗.

Definition 2.49. Let 𝑅𝑚 be a curvature tensor on 𝑀 . The Ricci tensor 𝑅𝑐 is the contraction
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𝐶1
3 (𝑅𝑚) ∈ T 0

2 (𝑀). The Ricci scalar 𝑅 is the contraction 𝐶12(𝑅𝑐) ∈ 𝐶∞(𝑀).

In a coordinate chart (𝑈, (𝑥𝜇)), the Ricci tensor 𝑅𝑐 are given as

𝑅𝑐 = 𝑅𝜇𝜈 𝑑𝑥
𝜇 ⊗ 𝑑𝑥𝜈 (2.39)

where

𝑅𝜇𝜈 = 𝑅𝜆
𝜇𝜆𝜈 = 𝜕𝜆Γ

𝜆
𝜈𝜇 − 𝜕𝜈Γ

𝜆
𝜆𝜇 + Γ𝜆

𝜆𝜌Γ
𝜌
𝜈𝜇 − Γ𝜆

𝜈𝜌Γ
𝜌

𝜆𝜇
(2.40)

and the Ricci scalar

𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈 . (2.41)

Note that the Ricci tensor is defined from a contraction of the curvature tensor without

using the metric and the Ricci scalar is uniquely defined.

Definition 2.50. Let (𝑀𝑛, 𝑔) be a pseudo-Riemannian manifold, 𝑅𝑚 be a curvature tensor,

𝑅𝑐 be the Ricci tensor and 𝑅 be the Ricci scalar. Suppose (𝑈, (𝑥𝜇)) is a coordinate chart

on 𝑀 . The Weyl tensor of 𝑔 is a (0,4) tensor field defined by

𝐶𝛼𝛽𝛾𝛿 = 𝑅𝛼𝛽𝛾𝛿 +
1

𝑛 − 2
(𝑅𝛼𝛿𝑔𝛽𝛾 − 𝑅𝛼𝛾𝑔𝛽𝛿 + 𝑅𝛽𝛾𝑔𝛼𝛿 − 𝑅𝛽𝛿𝑔𝛼𝛾)

+ 1
(𝑛 − 1) (𝑛 − 2) 𝑅(𝑔𝛼𝛾𝑔𝛽𝛿 − 𝑔𝛼𝛿𝑔𝛽𝛾) . (2.42)

An important consequent of the formula of Weyl tensor is that if 𝑔 is conformally flat

provided 𝑛 ≥ 4, then its Weyl tensor vanishes identically, that is, 𝐶𝛼𝛽𝛾𝛿 = 0.
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2.9 Levi-Civita Connection

Definition 2.51. Let (𝑀, 𝑔) be a pseudo-Riemannian manifold with affine connection

∇. Then ∇ is said to be a metric connection or to be compatible with 𝑔, if for any

𝑋,𝑌, 𝑍 ∈ 𝔛(𝑀), we have

∇𝑋 ⟨𝑌, 𝑍⟩ = ⟨∇𝑋𝑌, 𝑍⟩ + ⟨𝑌,∇𝑋𝑍⟩ . (2.43)

From the definition of the covariant derivative, we can write

(∇𝑔) (𝑋,𝑌, 𝑍) = (∇𝑋𝑔) (𝑌, 𝑍) = 𝑋 (𝑔(𝑌, 𝑍)) − 𝑔(∇𝑋𝑌, 𝑍) − 𝑔(𝑌,∇𝑋𝑍) . (2.44)

It follows that ∇𝑔 = 0 if and only if (2.43) is satisfied for all 𝑋,𝑌, 𝑍 . Thus, it is equivalent

to said that ∇ is compatible with 𝑔 if and only if ∇𝑔 = 0. A metric connection is also said

to be have vanishing non-metricity.

Definition 2.52. Let (𝑀, 𝑔) be a pseudo-Riemannian manifold with affine connection ∇.

The torsion of ∇ is a map 𝑇 : 𝔛(𝑀) × 𝔛(𝑀) → 𝔛(𝑀) defined by

𝑇 (𝑋,𝑌 ) = ∇𝑋𝑌 − ∇𝑌𝑋 − [𝑋,𝑌 ] (2.45)

for all 𝑋,𝑌 ∈ 𝔛(𝑀).

The torsion 𝑇 is a (1, 2) tensor field, called the torsion tensor. If the torsion vanishes,

that is, [𝑋,𝑌 ] = ∇𝑋𝑌 −∇𝑌𝑋 , then the connection ∇ is said to be symmetric or torsion-free.

In any coordinate chart, the connection is symmetric if and only if Γ𝜆
𝜇𝜈 = Γ𝜆

𝜈𝜇.

Theorem 2.53. Let (𝑀, 𝑔) be a pseudo-Riemannian manifold. There exists a unique

connection ∇̊ on M that is symmetric and compatible with 𝑔, called the Levi-Civita
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connection.

The complete proof can be found in J. M. Lee (1997). The theorem ensures that in any

coordinate chart on 𝑀 , the connection coefficients of the Levi-Civita connection ∇̊, often

called the Christoffel symbols are determined by

Γ̊𝜆
𝜇𝜈 =

1
2
𝑔𝜆𝜌 (𝜕𝜇𝑔𝜈𝜌 + 𝜕𝜈𝑔𝜇𝜌 − 𝜕𝜌𝑔𝜇𝜈) . (2.46)

Consequently, we also express the curvature tensor defined by ∇̊ as

𝑅̊𝜌
𝜎𝜇𝜈 = 𝜕𝜇Γ̊

𝜌
𝜈𝜎 − 𝜕𝜈Γ̊

𝜌
𝜇𝜎 + Γ̊

𝜌

𝜇𝜆
Γ̊𝜆
𝜈𝜎 − Γ̊

𝜌

𝜈𝜆
Γ̊𝜆
𝜇𝜎 . (2.47)

so as the Ricci tensor 𝑅̊𝜇𝜈 = 𝑅̊𝜆
𝜇𝜆𝜈 and the Ricci scalar 𝑅̊ = 𝑔𝜇𝜈 𝑅̊𝜇𝜈. Due to the symmetric

property of ∇̊, we have 𝑅̊𝜌𝜎𝜇𝜈 = −𝑅̊𝜎𝜌𝜇𝜈 = −𝑅̊𝜌𝜎𝜈𝜇 = 𝑅̊𝜇𝜈𝜌𝜎.

Lastly, we emphasize that connections are defined independently to the metric. Roughly

speaking, the metric encodes distances and angles, while the connection alone defines

covariant derivatives and parallel transport. Note that curvature, torsion, and non-metricity

are generally all properties of the connection. Riemann-Cartan geometry is obtained by

vanishing non-metricity, teleparallel geometry is obtained by vanishing curvature, and

torsion-free geometry is obtained by vanishing torsion. We could also impose double

conditions on the connection. Vanishing torsion and non-metricity gives us the Levi-Civita

connection and so pseudo-Riemannian geometry. The Weitzenböck connection is based

on the assumption that curvature and non-metricity are both zero. Taking curvature and

torsion vanish, resulting symmetric teleparallel geometry. Finally, setting all three to zero

yields Minkowski geometry.
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CHAPTER 3: GRAVITY THEORIES

3.1 Introduction

This chapter begins with a brief overview of the fundamentals of general relativity

based on Hawking and Ellis (1973); Heller (1992); Wald (1984). The main concerns

of the general relativity are the two postulates, called the equivalence principle and the

local conservation of energy and momentum principle. The former said that freely falling

objects are geodesics in spacetime, while the latter suggested the form of the Einstein field

equations. As a mean to overcome certain limitations of GR, we introduce the concept of

modified gravity theories and their significances. In particular, we present a quick review

on the 𝑓 (𝑅) gravity theory in section 3.3. A complete review of the 𝑓 (𝑅) gravity can be

found in Sotiriou (2007); Sotiriou and Faraoni (2010).

Next, we consider a relatively new gravity theory, called the symmetric teleparallel

gravity (Jimenez et al., 2018; Lu et al., 2019). The full construction of the symmetric

teleparallel gravity is presented in section 3.4. The result is then applied to section 3.5,

to show the modified gravity theory, namely, 𝑓 (𝑄) gravity. We end this chapter with the

comment on the equivalence between the general relativity and the symmetric teleparallel

gravity.

3.2 General Relativity

In Einstein’s theory of general relativity (GR), the mathematical model of the universe is

a spacetime manifold, defined as a triple (𝑀, 𝑔, ∇̊), where 𝑀 is a time-oriented connected

4-dimensional smooth manifold, 𝑔 is a Lorentz metric with signature (−1, +1, +1, +1) on

𝑀 and ∇̊ is the Levi-Civita connection. The points of spacetime 𝑀 are called events. An

observer is a timelike future-directed curve 𝛾 : 𝐼 → 𝑀 such that |𝛾′(𝜏) | = 1 for all 𝜏 ∈ 𝐼,

where 𝜏 is called the proper time of the observer. Otherwise, if ⟨𝛾′, 𝛾′⟩ = −𝑚2, then 𝛾 is
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called a particle with the rest mass 𝑚. A lightlike particle such as photon or light beam is

a null future-directed geodesic. For any kind of particle, the image 𝛾(𝐼) ⊆ 𝑀 of the curve

𝛾 : 𝐼 → 𝑀 is a one-dimensional submanifold of 𝑀 called the worldline of observer or

particle.

The first postulate of general relativity is very depend on the principles of special relativity.

In short, the equivalence principle said that an observer cannot discriminate between

reciprocal cases of spacetime accelerating through him/her, or his/her own acceleration

through spacetime which implies that a gravitational field cannot be distinguished from a

appropriately chosen accelerated reference frame. Thus, the equivalence between inertial

mass and gravitational mass. Given that there is no difference between a test particle at

rest in a gravitational field and a test particle accelerated by a force equal to gravity, freely

falling objects under the influence of gravity can be classified as objects moving along

geodesics on a spacetime manifold. Suppose 𝛾 is a freely falling observer, that means 𝛾 is

a geodesic and so must satisfies the geodesic equation (2.32). Let (𝑥𝜇) = (𝑥0, 𝑥1, 𝑥2, 𝑥3)

be a coordinate system. Then the geodesic equation can be written as

𝑑2𝑥𝜆

𝑑𝜏2 = −1
2
𝑔𝜆𝜌

(
𝜕𝑔𝜈𝜌

𝜕𝑥𝜇
+
𝜕𝑔𝜇𝜌

𝜕𝑥𝜈
−
𝜕𝑔𝜇𝜈

𝜕𝑥𝜌

)
𝑑𝑥𝜇

𝑑𝜏

𝑑𝑥𝜈

𝑑𝜏
(3.1)

where the Christoffel symbols Γ̊𝜆
𝜇𝜈 are written out explicitly. The non-vanishing of Γ̊𝜆

𝜇𝜈

indicates the presence of inertial forces due to the non inertial reference frame. Nevertheless,

it is always possible to choose coordinates at an event 𝑝 ∈ 𝑀 such that Γ̊𝜆
𝜇𝜈 vanishes at

that point. This implies that at that point, gravity and relative acceleration are precisely

balanced. But in general, there is no coordinate system in which Γ̊𝜆
𝜇𝜈 vanish in a coordinate

chart, except if the metric is locally flat.

The second postulate, often called the local conservation of energy and momentum
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principle stated that the curvature of spacetime is caused by energy-momentum tensor 𝑇 ,

provided the divergence of the tensor 𝑇 is identically zero. This gives the intuition for

Einstein to relate geometric quantities such as the metric tensor, Ricci tensor, and Ricci

scalar to the the energy-momentum tensor 𝑇 , which is a physical quantity. The tensor 𝑇 is

to be determined based on physical considerations, as its physical meaning is to manage

matter fields which describes the distribution of matter and energy. In local coordinates,

the Einstein field equations (EFE) can be written as

𝑅̊𝜇𝜈 −
1
2
𝑅̊𝑔𝜇𝜈 = 𝜅𝑇𝜇𝜈 (3.2)

where 𝜅 = 8𝜋. In addition, we can define the Einstein tensor 𝐺 as the symmetric (0, 2)

tensor field describing the left hand side of the EFE where 𝐺̊𝜇𝜈 = 𝑅̊𝜇𝜈 − 1
2 𝑅̊𝑔𝜇𝜈. Due to

the divergence property of the second postulate, we have the conservation laws

∇̊𝜈𝑇
𝜇𝜈 = 0 . (3.3)

The Einstein tensor follows equally to have

∇̊𝜈𝐺̊
𝜇𝜈 = 0 . (3.4)

Consequently, the EFE provide only six non-linear partial differential equations in the

metric and its first two derivatives.

Alternatively, the EFE can be derived from the Einstein-Hilbert (EH) action through
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the principle of least action. The action is given as

𝑆 =

∫
L𝑑 (4)𝑉 =

∫
(L𝐸𝐻 + L𝑚)𝑑 (4)𝑉

=
1

2𝜅

∫
𝑑4𝑥

√−𝑔𝑅̊ +
∫

𝑑4𝑥
√−𝑔L𝑚

= 𝑆𝐸𝐻 + 𝑆𝑚 (3.5)

where 𝑔 = det( [𝑔𝜇𝜈]) is the determinant of the metric tensor matrix, L is the Lagrange

density and the integral is take over the whole spacetime. In particular, L𝑚 = 0 in the

vacuum case. The principle of least action requires that 𝛿𝑆 = 0, where the variation is

with respect to 𝑔𝜇𝜈. Varying 𝑆𝐸𝐻 with respect to 𝑔𝜇𝜈, we obtain

𝛿𝑆𝐸𝐻 =
1

2𝜅

∫
𝑑4𝑥

√−𝑔(𝑅̊𝜇𝜈 −
1
2
𝑅̊𝑔𝜇𝜈)𝛿𝑔𝜇𝜈 . (3.6)

Then, by applying the definition of the energy-momentum tensor

𝑇𝜇𝜈 = − 2
√−𝑔

𝛿𝑆𝑚

𝛿𝑔𝜇𝜈
(3.7)

with 𝛿𝑆 = 0, we obtain the EFE

𝑅̊𝜇𝜈 −
1
2
𝑅̊𝑔𝜇𝜈 = 𝜅𝑇𝜇𝜈 (3.8)

and so the trace

𝑅̊ = −𝜅𝑇 (3.9)
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where 𝑇 = 𝑔𝜇𝜈𝑇𝜇𝜈. To include the cosmological constant Λ, the action can be modified as

𝑆 =
1

2𝜅

∫
𝑑4𝑥

√−𝑔(𝑅̊ − 2Λ) +
∫

𝑑4𝑥
√−𝑔L𝑚 . (3.10)

It follows that the EFE with cosmological constant is

𝑅̊𝜇𝜈 −
1
2
𝑅̊𝑔𝜇𝜈 + Λ𝑔𝜇𝜈 = 𝜅𝑇𝜇𝜈 . (3.11)

3.3 𝑓 (𝑅) Gravity

One of the most basic attempts to modify the GR is adding higher order invariants

to the Einstein-Hilbert action, resulting in so called higher-order gravity theories. The

𝑓 (𝑅) gravity theory is under one of this class which is to replace the Ricci scalar in (3.5)

with an arbitrary function of 𝑅. There are essentially three formalisms to calculate the

variation, each yielding a different field equations. Variation with respect to the metric

gives metric 𝑓 (𝑅) gravity, variation with respect to the metric and the connection while the

matter action is independent of the connection gives Palatini 𝑓 (𝑅) gravity and variation

with respect to the metric and the connection while the matter Lagrangian depends on the

connection gives metric-affine 𝑓 (𝑅) gravity.

The action for metric 𝑓 (𝑅) gravity is given by

𝑆 = 𝑆𝑚𝑒𝑡 + 𝑆𝑚

=
1

2𝜅

∫
𝑑4𝑥

√−𝑔 𝑓 (𝑅̊) + 𝑆𝑚 . (3.12)

The variation of the action in (3.12) with respect to the inverse metric 𝑔𝜇𝜈 gives

𝛿𝑆𝑚𝑒𝑡 =
1

2𝜅

∫
𝑑4𝑥

√−𝑔
(
𝑓 ′(𝑅̊) 𝑅̊𝜇𝜈 −

1
2
𝑓 (𝑅̊)𝑔𝜇𝜈 − ∇̊𝜇∇̊𝜈 𝑓

′(𝑅̊) + 𝑔𝜇𝜈□ 𝑓 ′(𝑅̊)
)
𝛿𝑔𝜇𝜈
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(3.13)

where ∇̊ is the Levi-Civita connection and □ is the d’Alembert operator defined as

□ = ∇̊𝜇∇̊𝜇 = 𝑔𝜇𝜈∇̊𝜇∇̊𝜈. Applying the same energy-momentum tensor stated in (3.7) and

using the least action principle, we obtain the fourth order field equations

𝑓 ′(𝑅̊) 𝑅̊𝜇𝜈 −
1
2
𝑓 (𝑅̊)𝑔𝜇𝜈 − ∇̊𝜇∇̊𝜈 𝑓

′(𝑅̊) + 𝑔𝜇𝜈□ 𝑓 ′(𝑅̊) = 𝜅𝑇𝜇𝜈 (3.14)

which has trace

𝑓 ′(𝑅̊) 𝑅̊ − 2 𝑓 (𝑅̊) + 3□ 𝑓 ′(𝑅̊) = 𝜅𝑇 . (3.15)

Note that when 𝑓 (𝑅̊) = 𝑅̊, the field equations reduce to EFE as expected. Moreover, in

contrast to (3.9),𝑇 = 0 does not imply 𝑅̊ = 0 in (3.15). This suggests that the field equations

of 𝑓 (𝑅) gravity will allow for a wider range of solutions than GR. The conservation of

energy-momentum is satisfied since we still have ∇̊𝜈𝑇
𝜇𝜈 = 0. Furthermore, if we rearrange

(3.14) as

𝑅̊𝜇𝜈 −
1
2
𝑅̊𝑔𝜇𝜈 =

𝜅𝑇𝜇𝜈

𝑓 ′(𝑅̊)
− 𝑅̊ 𝑓 ′(𝑅̊) − 𝑓 (𝑅̊)

2 𝑓 ′(𝑅̊)
𝑔𝜇𝜈 +

∇̊𝜇∇̊𝜈 𝑓
′(𝑅̊) − 𝑔𝜇𝜈□ 𝑓 ′(𝑅̊)

𝑓 ′(𝑅̊)
(3.16)

and define the effective energy-momentum tensor

𝑇
(𝑒)
𝜇𝜈 =

1
𝜅

(
𝑓 (𝑅̊) − 𝑅̊ 𝑓 ′(𝑅̊)

2
𝑔𝜇𝜈 + ∇̊𝜇∇̊𝜈 𝑓

′(𝑅̊) − 𝑔𝜇𝜈□ 𝑓 ′(𝑅̊)
)

(3.17)

then the field equations of 𝑓 (𝑅) gravity can be rewritten in the form of EFE as

𝑅̊𝜇𝜈 −
1
2
𝑅̊𝑔𝜇𝜈 = 𝜅

(
𝑇𝜇𝜈 + 𝑇

(𝑒)
𝜇𝜈

)
. (3.18)
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This simplification is very useful in calculation and determining suitable 𝑓 (𝑅) models.

For Palatini formalism, the connection is independent to the metric, denoted by ∇̄.

For clarity, we denote the Ricci tensor and Ricci scalar constructed with ∇̄ as 𝑅̄𝜇𝜈 and

𝑅̄ respectively. However, we assert that the independent connection ∇̄ does not define

covariant derivative and the geometry is really pseudo-Riemannian. In other words, the

covariant derivative is still defined by the Levi-Civita connection of the metric. Thus, the

action now takes the form

𝑆𝑝𝑎𝑙 =
1

2𝜅

∫
𝑑4𝑥

√−𝑔 𝑓 (𝑅̄) . (3.19)

By using the equation

𝛿𝑅̄𝜇𝜈 = ∇̄𝜆𝛿Γ̄
𝜆
𝜇𝜈 − ∇̄𝜈𝛿Γ̄

𝜆
𝜇𝜆 (3.20)

and varying the action (3.19) independently with respect to the metric and the connection

yields

𝑓 ′(𝑅̄) 𝑅̄(𝜇𝜈) −
1
2
𝑓 (𝑅̄)𝑔𝜇𝜈 = 𝜅𝑇𝜇𝜈 (3.21)

−∇̄𝜆

(√−𝑔 𝑓 ′(𝑅̄)𝑔𝜇𝜈) + ∇̄𝜎

(√−𝑔 𝑓 ′(𝑅̄)𝑔𝜎(𝜇)𝛿𝜈)
𝜆
= 0 (3.22)

where 𝑇𝜇𝜈 is defined as stated in (3.7). Taking the trace of (3.22), we can easily shown that

∇̄𝜎

(√−𝑔 𝑓 ′(𝑅̄)𝑔𝜎𝜇
)
= 0 . (3.23)
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Hence, the field equations reduce to

𝑓 ′(𝑅̄) 𝑅̄(𝜇𝜈) −
1
2
𝑓 (𝑅̄)𝑔𝜇𝜈 = 𝜅𝑇𝜇𝜈 (3.24)

∇̄𝜆

(√−𝑔 𝑓 ′(𝑅̄)𝑔𝜇𝜈) = 0. (3.25)

In the case 𝑓 (𝑅̄) = 𝑅̄ and so 𝑓 ′(𝑅̄) = 1, (3.25) turns into the definition of the Levi-Civita

connection for the independent connection ∇̄. Therefore, 𝑅̄𝜇𝜈 = 𝑅̊𝜇𝜈, 𝑅̄ = 𝑅̊ and (3.24)

reproduces Einstein field equations. The energy-momentum tensor is conserved by the

covariant derivative defined with Levi-Civita connection, that is, ∇̊𝜈𝑇
𝜇𝜈 = 0, but ∇̄𝜈𝑇

𝜇𝜈 ≠ 0.

It is now clear that generalizing the action in the Palatini formalism to be an arbitrary

function of 𝑅̄ is just as natural as generalizing the Einstein-Hilbert action in the metric

formalism.

The metric-affine formalism is too tedious to be discuss here. In short, besides

considering the connection is independent to the metric, we also drop the assumption

that the connection is symmetric and metric compatible. In addition, this connection

defines the covariant derivative and parallel transport, unlike Palatini formalism which

remains to the Levi-Civita connection. Therefore, the geometry is completely different

to pseudo-Riemannian and is usually called the Einstein-Cartan-Weyl geometry (Adak,

2006). In fact, this forces the matter action of the metric-affine theory to be depend on

the connection, that is, 𝑆𝑚 = 𝑆𝑚
(
𝑔𝜇𝜈, Γ̄

𝜆
𝜇𝜈, 𝜓

)
, where 𝜓 represents the matter fields. In this

way, we have

𝛿𝑆𝑚 =

∫
𝑑4𝑥

𝛿𝑆𝑚

𝛿𝑔𝜇𝜈
𝛿𝑔𝜇𝜈 +

∫
𝑑4𝑥

𝛿𝑆𝑚

𝛿Γ̄𝜆
𝜇𝜈

𝛿Γ̄𝜆
𝜇𝜈 (3.26)
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where we also define a new tensor called the hypermomentum as

Δ𝜆
𝜇𝜈 = − 2

√−𝑔
𝛿𝑆𝑚

𝛿Γ̄𝜆
𝜇𝜈

. (3.27)

The vanishing ofΔ𝜆
𝜇𝜈 actually imply independence of the matter action from the connection.

The full explanation and the field equations can be refer to Sotiriou and Liverati (2007).

3.4 Symmetric Teleparallel Gravity

Because general relativity is essentially a geometric theory expressed in pseudo-

Riemannian space, another interesting route for to generalized gravity theories is to

look for more universal geometric structures that can represent the gravitational field.

Weitzenböck’s study, which established what is currently known as teleparallelism, resulted

in an approach that did find significant physical applications. The core idea underlying

the teleparallel approach the gravity is to replace the fundamental variable describing

gravitational features, the metric 𝑔𝜇𝜈 of spacetime, with a set of tetrad fields. Therefore,

the torsion produced by the tetrad fields can be utilised to fully describe gravitational

effects, with the curvature being replaced by the torsion. As a result, we obtain the so

called teleparallel equivalent of general relativity (Hayashi & Shirafuji, 1979), and then

leads to the 𝑓 (𝑇) gravity theory. Thus, in teleparallel theory, torsion totally compensates

curvature, resulting in the spacetime becoming flat. The field equations of the 𝑓 (𝑇) gravity

theory are of second order, as opposed to fourth order field equations in the metric 𝑓 (𝑅)

gravity. Also, 𝑓 (𝑇) theory has been widely applied to the study of cosmology, where it is

used to explain the late time accelerating expansion of the Universe, without the necessity

of introducing dark energy.

General relativity can be described in two equivalent geometric representations, ac-

cording to the above presentation: the curvature representation in which torsion and
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non-metricity vanish, and the teleparallel representation in which curvature and non-

metricity vanish. Nevertheless, a third comparable representation in which the fundamental

geometric variable characterizing the features of the gravitational interaction is represented

by the non-metricity, which geometrically describes the variation of the length of a vector

in parallel transport, is also conceivable. This approach is called the symmetric teleparallel

gravity and it has the advantages that calculation can be done in local coordinates instead

of tetrad fields. To begin, let us clarify that STG is differs from metric-affine gravity theory

which extends GR by allowing connection to have torsion and non-metricity in addition

to curvature, whereas such additional geometric structures often require specific types

or properties of matter to excite and investigate. By enforcing vanishing curvature and

torsion, the GR gravitational action is reinterpreted in terms of non-metricity in STG, and

all gravitational effects associated to curvature in GR are now equivalently attributed to

non-metricity. Hence, in STG, the matter content can remain unchanged, and non-metricity

is generated by the usual matter energy-momentum, which is analogous to Einstein’s

equations.

Let ∇ be a flat and torsion-free affine connection on 𝑀 and ∇̊ be the Levi-Civita

connection on 𝑀 . Define a map 𝐿 : 𝔛(𝑀) × 𝔛(𝑀) → 𝔛(𝑀) by 𝐿 (𝑋,𝑌 ) = ∇𝑋𝑌 − ∇̊𝑋𝑌 ,

for all 𝑋,𝑌 ∈ 𝔛(𝑀). Suppose (𝑈, (𝑥𝜇)) is a coordinate chart on 𝑀 . Then

𝐿 (𝜕𝜇, 𝜕𝜈) = (Γ𝜆
𝜇𝜈 − Γ̊𝜆

𝜇𝜈)𝜕𝜆 . (3.28)

Hence, with respect to (𝑈, (𝑥𝜇)), we can write

𝐿 = 𝐿𝜆
𝜇𝜈𝜕𝜆 ⊗ 𝑑𝑥𝜇 ⊗ 𝑑𝑥𝜈 (3.29)

where 𝐿𝜆
𝜇𝜈 = Γ𝜆

𝜇𝜈 − Γ̊𝜆
𝜇𝜈 are the components of 𝐿. It is clear that 𝐿 is a (1, 2)-tensor field
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which is symmetric with respect to the second and third indices. Consequently, 𝐿 can be

expressed as

𝐿 (𝑋,𝑌 ) = 1
2
(
𝐿 (𝑋,𝑌 ) − 𝐿 (𝑌, 𝑋)

)
+ 1

2
(
𝐿 (𝑋,𝑌 ) + 𝐿 (𝑌, 𝑋)

)
= 𝐴(𝑋,𝑌 ) + 𝑆(𝑋,𝑌 ) (3.30)

where 𝐴(𝑋,𝑌 ) = 1
2
(
𝐿 (𝑋,𝑌 ) − 𝐿 (𝑌, 𝑋)

)
is antisymmetric and 𝑆(𝑋,𝑌 ) = 1

2
(
𝐿 (𝑋,𝑌 ) +

𝐿 (𝑌, 𝑋)
)

is symmetric parts of 𝐿. Thus, with respect to (𝑈, (𝑥𝜇)), the components of 𝐴

are

𝐴𝜆
𝜇𝜈 =

1
2
(
Γ𝜆
𝜇𝜈 − Γ̊𝜆

𝜇𝜈 − Γ𝜆
𝜈𝜇 + Γ̊𝜆

𝜈𝜇

)
=

1
2
(Γ𝜆

𝜇𝜈 − Γ𝜆
𝜈𝜇) = 0 (3.31)

and the components of 𝑆 are

𝑆𝜆𝜇𝜈 =
1
2
(Γ𝜆

𝜇𝜈 − Γ̊𝜆
𝜇𝜈 + Γ𝜆

𝜈𝜇 − Γ̊𝜆
𝜈𝜇) =

1
2
(Γ𝜆

𝜇𝜈 + Γ𝜆
𝜈𝜇) − Γ̊𝜆

𝜇𝜈 = Γ𝜆
𝜇𝜈 − Γ̊𝜆

𝜇𝜈 (3.32)

because Γ𝜆
𝜇𝜈 = Γ𝜆

𝜈𝜇 for torsion-free connection. Thus, the components of 𝐿 become

𝐿𝜆
𝜇𝜈 = Γ𝜆

𝜇𝜈 − Γ̊𝜆
𝜇𝜈 (3.33)

and 𝐿 is called the disformation tensor. By using the formula for the Levi-Civita connection
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(2.46), we obtain

𝐿𝜆
𝜇𝜈 = Γ𝜆

𝜇𝜈 −
1
2
𝑔𝜆𝛼 (𝜕𝜇𝑔𝜈𝛼 + 𝜕𝜈𝑔𝜇𝛼 − 𝜕𝛼𝑔𝜇𝜈)

= Γ𝜆
𝜇𝜈 −

1
2
𝑔𝜆𝛼

(
∇𝜇𝑔𝜈𝛼 + 𝑔𝜌𝛼Γ

𝜌
𝜈𝜇 + 𝑔𝜈𝜌Γ

𝜌
𝛼𝜇

+ ∇𝜈𝑔𝜇𝛼 + 𝑔𝜌𝛼Γ
𝜌
𝜇𝜈 + 𝑔𝜇𝜌Γ

𝜌
𝛼𝜈

− ∇𝛼𝑔𝜇𝜈 − 𝑔𝜌𝜈Γ
𝜌
𝜇𝛼 − 𝑔𝜇𝜌Γ

𝜌
𝜈𝛼

)
= Γ𝜆

𝜇𝜈 −
1
2
𝑔𝜆𝛼 (∇𝜇𝑔𝜈𝛼 + ∇𝜈𝑔𝜇𝛼 − ∇𝛼𝑔𝜇𝜈) − 𝛿𝜆𝜌Γ

𝜌
𝜇𝜈

= −1
2
𝑔𝜆𝛼 (∇𝜇𝑔𝜈𝛼 + ∇𝜈𝑔𝜇𝛼 − ∇𝛼𝑔𝜇𝜈) . (3.34)

Since ∇ is a non-metric connection, that is, ∇𝑔 ≠ 0, so we define the non-metricity tensor

𝑄𝜆𝜇𝜈 = ∇𝜆𝑔𝜇𝜈 . (3.35)

It follows that 𝑄 is symmetric with respect to its second and third indices, or equivalently,

𝑄𝜆𝜇𝜈 = 𝑄𝜆(𝜇𝜈) . Hence, (3.34) can be rewritten as

𝐿𝜆
𝜇𝜈 = −1

2
𝑔𝜆𝛼 (𝑄𝜇𝛼𝜈 +𝑄𝜈𝛼𝜇 −𝑄𝛼𝜇𝜈)

=
1
2
(𝑄𝜆

𝜇𝜈 −𝑄𝜇
𝜆
𝜈 −𝑄𝜈

𝜆
𝜇) . (3.36)

This implies that 𝐿 is fully determined by the non-metricity tensor. Moreover, we denote

the trace of 𝑄 on first two and last two pair of indices by

𝑄̃𝜇 ≡ 𝑔𝜈𝜆𝑄𝜈𝜆𝜇 = 𝑄𝜈
𝜈
𝜇 , 𝑄𝜇 ≡ 𝑔𝜈𝜆𝑄𝜇𝜈𝜆 = 𝑄𝜇

𝜈
𝜈 . (3.37)
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Consequently, we also have

𝐿𝜈
𝜈
𝜇 = −1

2
𝑄𝜇 , 𝐿𝜇

𝜈
𝜈 =

1
2
𝑄𝜇 − 𝑄̃𝜇 . (3.38)

Furthermore, in terms of components, we know that the curvature tensor is given by

𝑅𝜌
𝜎𝜇𝜈 = 𝜕𝜇Γ

𝜌
𝜈𝜎 − 𝜕𝜈Γ

𝜌
𝜇𝜎 + Γ

𝜌

𝜇𝜆
Γ𝜆
𝜈𝜎 − Γ

𝜌

𝜈𝜆
Γ𝜆
𝜇𝜎 . (3.39)

It follows from (3.33), the two curvature tensors can be related by

𝑅𝜌
𝜎𝜇𝜈 = 𝑅̊𝜌

𝜎𝜇𝜈 + ∇̊𝜇𝐿
𝜌
𝜈𝜎 − ∇̊𝜈𝐿

𝜌
𝜇𝜎 + 𝐿𝜌

𝜇𝜆𝐿
𝜆
𝜈𝜎 − 𝐿𝜌

𝜈𝜆𝐿
𝜆
𝜇𝜎 . (3.40)

But since ∇ is flat, that is, 𝑅𝜌
𝜎𝜇𝜈 = 0, so we have

𝑅̊𝜌
𝜎𝜇𝜈 = −∇̊𝜇𝐿

𝜌
𝜈𝜎 + ∇̊𝜈𝐿

𝜌
𝜇𝜎 − 𝐿𝜌

𝜇𝜆𝐿
𝜆
𝜈𝜎 + 𝐿𝜌

𝜈𝜆𝐿
𝜆
𝜇𝜎 . (3.41)

By taking the contraction of the curvature tensor on its first and third indices, we obtain

the Ricci tensor

𝑅̊𝜎𝜈 = −1
2
∇̊𝜈𝑄𝜎 − ∇̊𝜌𝐿

𝜌
𝜈𝜎 + 1

2
𝑄𝜆𝐿

𝜆
𝜈𝜎 + 𝐿𝜌

𝜈𝜆𝐿
𝜆
𝜌𝜎 (3.42)

and thereby the Ricci scalar

𝑅̊ = ∇̊𝜆𝑄̃
𝜆 − ∇̊𝜆𝑄

𝜆 + 1
4
𝑄𝜆𝑄

𝜆 − 1
2
𝑄𝜆𝑄̃

𝜆 + 𝐿𝜌𝜈𝜆𝐿
𝜆𝜌𝜈 . (3.43)

To obtain the field equations in symmetric teleparallel gravity, we construct an invariant,
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called the non-metricity scalar

𝑄 = 𝑔𝜇𝜈 (𝐿𝛼
𝛽𝜇𝐿

𝛽
𝜈𝛼 − 𝐿𝛼

𝛽𝛼𝐿
𝛽
𝜇𝜈) (3.44)

and the non-metricity conjugate (or superpotential)

𝑃𝜆
𝜇𝜈 = −1

2
𝐿𝜆
𝜇𝜈 +

1
4
(
𝑄𝜆 − 𝑄̃𝜆

)
𝑔𝜇𝜈 −

1
4
𝛿𝜆(𝜇𝑄𝜈) . (3.45)

By doing so, we obtain

𝑄 = 𝑄𝜆𝜇𝜈𝑃
𝜆𝜇𝜈 = −1

2
𝑄𝜆𝜇𝜈𝐿

𝜆𝜇𝜈 + 1
4
𝑄𝜆𝑄

𝜆 − 1
2
𝑄𝜆𝑄̃

𝜆 . (3.46)

Then, the action for symmetric teleparallel gravity is defined by

𝑆 = 𝑆𝑆𝑇𝐺 + 𝑆𝑚

=
1

2𝜅

∫
𝑑4𝑥

√−𝑔 𝑄 + 𝑆𝑚 . (3.47)

Note that from (3.43) and (3.46), one finds that

𝑄 = 𝑅̊ + ∇̊𝜆 (𝑄𝜆 − 𝑄̃𝜆) (3.48)

and so

𝑆𝑆𝑇𝐺 =
1

2𝜅

∫
𝑑4𝑥

√−𝑔 [𝑅̊ + ∇̊𝜆 (𝑄𝜆 − 𝑄̃𝜆)] (3.49)

This shows that the action is identical to the Einstein-Hilbert action in the GR up to a

boundary term. Thus, the symmetric teleparallel gravity theory is equivalent to general
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relativity. Before taking the variation of the action, we have to assume that Γ𝜆
𝜇𝜈 = 0, so all

the covariant derivatives reduce to the partial derivatives, ∇𝜆 = 𝜕𝜆 because the variation 𝛿

and the covariant derivative ∇𝜆 is not commute. However, a flat and torsion-free connection

only implies that there exists some coordinate systems (𝑦𝜇) in which Γ𝜆
𝜇𝜈 = 0. This special

coordinate system is called the coincident gauge based on Lin and Zhai (2021). As shown

in Zhao (2021), in any other coordinate systems (𝑥𝜇) in which the connection does not

vanish, the connection coefficients will take the form,

Γ𝜆
𝜇𝜈 =

𝜕𝑥𝜆

𝜕𝑦𝛼
𝜕𝜇𝜕𝜈𝑦

𝛼 (3.50)

which is purely inertial. These term only devote into the boundary term in the action (3.49)

and has no effect on the equation of motion. Thus, we can always assume the coincident

gauge and so the metric is the only fundamental variable. Then, varying 𝑆𝑆𝑇𝐺 with respect

to the inverse metric 𝑔𝜇𝜈 gives

𝛿𝑆𝑆𝑇𝐺

=
1

2𝜅

∫
𝑑4𝑥

√−𝑔
[

2
√−𝑔𝜕𝜆 (

√−𝑔𝑃𝜆
𝜇𝜈) −

1
2
𝑄𝑔𝜇𝜈 + (𝑄𝜇𝜌𝜎𝑃𝜈

𝜌𝜎 − 2𝑄𝜌𝜎𝜈𝑃
𝜌𝜎
𝜇 )

]
𝛿𝑔𝜇𝜈 .

(3.51)

Once again define the energy-momentum tensor

𝑇𝜇𝜈 = − 2
√−𝑔

𝛿𝑆𝑚

𝛿𝑔𝜇𝜈
(3.52)

and using the least action principle, 𝛿𝑆 = 0, we obtain the second-order field equations

2
√−𝑔𝜕𝜆 (

√−𝑔𝑃𝜆
𝜇𝜈) −

1
2
𝑄𝑔𝜇𝜈 + (𝑄𝜇𝜌𝜎𝑃𝜈

𝜌𝜎 − 2𝑄𝜌𝜎𝜈𝑃𝜇
𝜌𝜎) = 𝜅𝑇𝜇𝜈 . (3.53)
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3.5 𝑓 (𝑄) Gravity

A straightforward attempt to modify the symmetric teleparallel gravity is to replace

the non-metricity scalar 𝑄 in the action (3.47) with an arbitrary function of 𝑄, called the

𝑓 (𝑄) gravity theory. Thus, the action of 𝑓 (𝑄) gravity is

𝑆 𝑓 (𝑄) =
1

2𝜅

∫
𝑑4𝑥

√−𝑔 𝑓 (𝑄) . (3.54)

In this case, the action can no longer be written in (3.49), so both the connection and the

metric are dynamic variable. If we assume the coincident gauge, that is, Γ𝜆
𝜇𝜈 = 0 and

varying 𝑆 𝑓 (𝑄) with respect to 𝑔𝜇𝜈, then we have the field equations

2
√−𝑔∇𝜆 (

√−𝑔 𝑓𝑄𝑃𝜆
𝜇𝜈) −

1
2
𝑓 𝑔𝜇𝜈 + 𝑓𝑄 (𝑄𝜇𝜌𝜎𝑃𝜈

𝜌𝜎 − 2𝑄𝜌𝜎𝜈𝑃𝜇
𝜌𝜎) = 𝜅𝑇𝜇𝜈 (3.55)

where 𝑓𝑄 = 𝜕 𝑓 /𝜕𝑄. We call this field equations as the type-I 𝑓 (𝑄) field equations. The

complete derivation of this field equations is presented in Appendices. Since we have

applied the coincident gauge, the type-I field equations are only valid in some coordinate

system in which Γ𝜆
𝜇𝜈 = 0. This also suggested by the fact that the first term of the left hand

side in (3.55) is not in tensor form. To avoid this problem and for a better understanding of

the field equations, we transform it into a form similar to EFE. According to Appendices,

the type-I field equations in (3.55) can be rewritten as

𝑓𝑄

(
𝑅̊𝜇𝜈 −

1
2
𝑔𝜇𝜈 𝑅̊

)
+ 1

2
𝑔𝜇𝜈 (𝑄 𝑓𝑄 − 𝑓 ) + 2 𝑓𝑄𝑄∇𝜆𝑄𝑃𝜆

𝜇𝜈 = 𝜅𝑇𝜇𝜈 (3.56)

where 𝑓𝑄𝑄 = 𝜕 𝑓𝑄/𝜕𝑄. This is called the type-II 𝑓 (𝑄) field equations. Notice that (3.56)

is in tensor form which implies that it is actually coordinate independent. As a result, the

type-II field equations will be applied in later sections, since it is valid in all coordinate
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systems. Alternatively, the 𝑓 (𝑄) gravity theory can be formulated in a covariant way. This

approach is presented in Zhao (2021), but in our case, the coincident gauge condition will

be sufficient.

3.6 Discussion

At the classical level, gravitation has a fairly peculiar property in which given the same

initial conditions and follow the same path, particles with distinct masses experience it

acquire the same acceleration. The equivalence principle reflects this phenomena, which

is known as universality of free fall. It is gravity’s most unique and strange property, as

no other fundamental interaction in nature display it. Non-gravitational effects, on the

other hand, have been recognized for a long time and are felt equally by all particles. They

are called the inertial effects such as the Coriolis and centrifugal forces on Earth. The

inspiration of Einstein for developing general relativity was based on the universality of

both gravitational and inertial effects.

Another point that inspire Einstein was the notion of field, since each of the known

forces can be described mathematically as a field. If gravitation is also to be represented by

a field, then the field must be universal and felt by all particles equally. Thus, it is believed

that gravitation changes spacetime itself and the most straightforward method to do so is to

change the metric, which appears to be the most fundamental field. In short, the existence

of a gravitational field is indicated by a change in the metric of spacetime. Nevertheless,

the metric tensor does not define curvature or non-metricity on its own. In fact, curvature

and non-metricity both demand a connection to be defined. On a given spacetime, several

different connections can be defined, each with a different curvature and non-metricity

tensor. Therefore, determining the appropriate connection to depict the gravitational field

became difficult. For example, the Levi-Civita connection which has vanishing torsion and

non-metricity was selected by Einstein such that the connection is fully determined by the
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ten components of the metric tensor. The gravitational field is described by its curvature.

Nevertheless, this is not the only possible choice. The other possibilities are to choose a

flat connection that have non-vanishing torsion or non-metricity tensor. The gravitational

theory that appears from these choice are the teleparallel gravity and symmetric teleparallel

gravity. In both cases, curvature is supposed to vanish from the very beginning while

the gravitational effect is depicted by a force, and particle trajectories are force equations

with torsion or non-metricity act as force instead of geodesics. But it cannot be denied

that Einstein’s choice seems to be most natural in terms of universality. Gravitation can

be simply visualized by assuming that it generates a curvature in spacetime causing all

particles follow a geodesic on the curved spacetime regardless of their masses. In this

approach, the universality of free fall is obviously merged into gravitation. The notion

of force is substituted by geometry while the trajectories are solutions to a geodesic

equation rather than a force equation. However, since such a geometrization is based on

the equivalence principle, the general-relativistic depiction of gravitation would fail in the

absence of universality.

On the flip side, general relativity and symmetric teleparallel gravity are found to

produce equivalent depiction of the gravitational interaction, despite their conceptual

differences. This equivalence has the direct consequence that curvature and non-metricity

are essentially different ways of characterising the gravitational field. The fact that the

symmetric matter energy-momentum tensor appears as the source of curvature in general

relativity and non-metricity in symmetric teleparallel gravity supports this idea. Both

general relativity and symmetric teleparallel gravity, according to this explanation, are

complete theories, and Einstein did not make a mistake by ignoring non-metricity.

There is a common perception that gravity causes a curvature in spacetime, based on

the geometric description of general relativity which uses the Levi-Civita connection. As
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a result, the entire Universe should be curved. Nevertheless, with the arrival of symmetric

teleparallel gravity, this idea is no longer applicable. In fact, due to the equivalence of

general relativity and symmetric teleparallel gravity, describing the gravitational interaction

in terms of curvature or non-metricity has become a matter of convention. This means that

attributing curvature to spacetime is a model-dependent statement rather than an absolute.

Certainly, cosmology due to general relativity is not inaccurate in the least. Nevertheless,

an assessment due to symmetric teleparallel gravity may suggest a new perspective on how

to perceive and understand the cosmos. We may then argue that symmetric teleparallel

gravity is a new way of looking at all gravitational phenomenon, including those that shape

the Universe itself, instead of simply a theory that is equivalent to general relativity.
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CHAPTER 4: GEODESIC DEVIATION EQUATION IN 𝒇 (𝑸)

4.1 Introduction

In this chapter, we begin by deriving the Jacobi equation or also commonly known

as geodesic deviation equation, which is an ordinary differential equation satisfied by

the variation field of any one-parameter family of geodesics. A vector field satisfying

this equation along a geodesic is called a Jacobi field. This section is mainly inspired by

J. M. Lee (1997).

In section 4.3, we show the construction of the standard cosmology model, called the

Friedmann-Lemaître-Robertson-Walker (FLRW) model based on Heller (1992); O’neil

(1983). We first introduce the notion of perfect fluids which are idealized matter models

that have no viscosity and shear stresses. Next, the concept of warped product is introduced,

which is then followed by the Robertson-Walker spacetime. We end this section with a

brief discussion of the observational aspects of the standard cosmological model.

Next, in section 4.4, we express the GDE in 𝑓 (𝑄)-gravity with the background of

FLRW cosmology. We also show the generalized Friedmann equations in section 4.5 as a

comparison to the Fridemann equations in GR. Two special cases of the GDE which are

the GDE for fundamental observers and for past-directed null vector fields will be studied

in section 4.6 and 4.7 respectively.

4.2 Geodesic Deviation Equation

In this section, (𝑀, 𝑔) denotes an arbitrary pseudo-Riemannian manifold.

Definition 4.1. Let 𝐼, 𝐽 ⊆ R be intervals, a smooth map Γ : 𝐼 × 𝐽 → 𝑀 is called a

one-parameter family of curves where the partial maps 𝑡 ↦→ Γ𝑠 (𝑡) = Γ(𝑡, 𝑠) are called the

main curves, and the curves 𝑠 ↦→ Γ(𝑡, 𝑠) are called the transverse curves.
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This implies that if 𝑋 ∈ 𝔛(Γ), then we can calculate the covariant derivative of 𝑋

along either the main curves or the transverse curves resulting the vector field along Γ

denoted by 𝐷𝑡𝑋 and 𝐷𝑠𝑋 respectively. We express the velocity vector fields of the main

and transverse curves by 𝜕𝑡Γ(𝑡, 𝑠) and 𝜕𝑠Γ(𝑡, 𝑠) respectively, which are examples of the

vector field along Γ.

Lemma 4.2. Suppose Γ : 𝐼 × 𝐽 → 𝑀 is a one-parameter family of curves in 𝑀 . Then for

every vector field 𝑋 along Γ,

𝐷𝑠𝐷𝑡𝑋 − 𝐷𝑡𝐷𝑠𝑋 = 𝑅(𝜕𝑠Γ, 𝜕𝑡Γ)𝑋 . (4.1)

Proof. For each (𝑡, 𝑠) ∈ 𝐼 × 𝐽, consider a coordinate chart defined on Γ(𝑡, 𝑠) and write

Γ(𝑡, 𝑠) =
(
𝛾1(𝑡, 𝑠), . . . , 𝛾𝑛 (𝑡, 𝑠)

)
, 𝑋 (𝑡, 𝑠) = 𝑋𝜇 (𝑡, 𝑠)𝜕𝜇 |Γ(𝑡,𝑠) . (4.2)

By using formula (2.30), we get

𝐷𝑡𝑋 =
𝜕𝑋𝜇

𝜕𝑡
𝜕𝜇 + 𝑋𝜇𝐷𝑡𝜕𝜇 . (4.3)

Thus, by applying (2.30), we obtain

𝐷𝑠𝐷𝑡𝑋 =
𝜕2𝑋𝜇

𝜕𝑠𝜕𝑡
𝜕𝜇 +

𝜕𝑋𝜇

𝜕𝑡
𝐷𝑠𝜕𝜇 +

𝜕𝑋𝜇

𝜕𝑠
𝐷𝑡𝜕𝜇 + 𝑋𝜇𝐷𝑠𝐷𝑡𝜕𝜇 . (4.4)

Interchanging the indices 𝑠 and 𝑡 and subtracting, the only survive terms are

𝐷𝑠𝐷𝑡𝑋 − 𝐷𝑡𝐷𝑠𝑋 = 𝑋𝜇 (𝐷𝑠𝐷𝑡𝜕𝜇 − 𝐷𝑡𝐷𝑠𝜕𝜇). (4.5)
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To compute the commutator in parentheses, we first write

𝜕𝑡Γ =
𝜕𝛾𝜆

𝜕𝑡
𝜕𝜆 , 𝜕𝑠Γ =

𝜕𝛾𝜈

𝜕𝑠
𝜕𝜈 . (4.6)

Since 𝜕𝜇 is extendible,

𝐷𝑡𝜕𝜇 = ∇𝜕𝑡Γ𝜕𝜇 =
𝜕𝛾𝜈

𝜕𝑡
∇𝜕𝜈𝜕𝜇 , (4.7)

and also because ∇𝜕𝜈𝜕𝜇 is extendible,

𝐷𝑠𝐷𝑡𝜕𝜇 = 𝐷𝑠

(
𝜕𝛾𝜈

𝜕𝑡
∇𝜕𝜈𝜕𝜇

)
=
𝜕2𝛾𝜈

𝜕𝑠𝜕𝑡
∇𝜕𝜈𝜕𝜇 +

𝜕𝛾𝜈

𝜕𝑡
∇𝜕𝑠Γ (∇𝜕𝜈𝜕𝜇)

=
𝜕2𝛾𝜈

𝜕𝑠𝜕𝑡
∇𝜕𝜈𝜕𝜇 +

𝜕𝛾𝜈

𝜕𝑡

𝜕𝛾𝜆

𝜕𝑠
∇𝜕𝜆∇𝜕𝜈𝜕𝜇 . (4.8)

Interchanging 𝑠 ↔ 𝑡 and 𝜈 ↔ 𝜆 and subtracting, we have

𝐷𝑠𝐷𝑡𝜕𝜇 − 𝐷𝑡𝐷𝑠𝜕𝜇 =
𝜕𝛾𝜈

𝜕𝑡

𝜕𝛾𝜆

𝜕𝑠
(∇𝜕𝜆∇𝜕𝜈𝜕𝜇 − ∇𝜕𝜈∇𝜕𝜆𝜕𝜇)

=
𝜕𝛾𝜈

𝜕𝑡

𝜕𝛾𝜆

𝜕𝑠
𝑅(𝜕𝜆, 𝜕𝜈)𝜕𝜇

= 𝑅(𝜕𝑠Γ, 𝜕𝑡Γ)𝜕𝜇 . (4.9)

Substituting this into (4.5) yields the result. □

Lemma 4.3. Suppose Γ : 𝐼 × 𝐽 → 𝑀 is a one-parameter family of curves in 𝑀 . Then

𝐷𝑠𝜕𝑡Γ = 𝐷𝑡𝜕𝑠Γ . (4.10)
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Proof. In local coordinates (𝑥𝜇), we write the components of Γ as

Γ(𝑡, 𝑠) = (𝑥1(𝑡, 𝑠), . . . , 𝑥𝑛 (𝑡, 𝑠)) (4.11)

and then

𝜕𝑡Γ =
𝜕𝑥𝜆

𝜕𝑡
𝜕𝜆 , 𝜕𝑠Γ =

𝜕𝑥𝜆

𝜕𝑠
𝜕𝜆 . (4.12)

By applying formula (2.30), we get

𝐷𝑠𝜕𝑡Γ =

(
𝜕2𝑥𝜆

𝜕𝑠𝜕𝑡
+ 𝜕𝑥𝜇

𝜕𝑡

𝜕𝑥𝜈

𝜕𝑠
Γ𝜆
𝜈𝜇

)
𝜕𝜆 (4.13)

𝐷𝑡𝜕𝑠Γ =

(
𝜕2𝑥𝜆

𝜕𝑡𝜕𝑠
+ 𝜕𝑥𝜇

𝜕𝑠

𝜕𝑥𝜈

𝜕𝑡
Γ𝜆
𝜈𝜇

)
𝜕𝜆 . (4.14)

By interchanging 𝜇 and 𝜈 in the second equation above and using the symmetry condition

Γ𝜆
𝜈𝜇 = Γ𝜆

𝜇𝜈, we conclude the proof. □

Definition 4.4. A variation of a smooth curve 𝛾 : 𝐼 → 𝑀 is a one-parameter family of

curves Γ : 𝐼 × (−𝜖, 𝜖) → 𝑀 such that 𝛾(𝑡) = Γ0(𝑡) for all 𝑡 ∈ 𝐼. The curve 𝛾 is called the

centre curve. The variation field of Γ is the vector field 𝜂(𝑡) = 𝜕𝑠Γ(𝑡, 0) along 𝛾.

Definition 4.5. A variation Γ such that each of the main curves 𝑡 ↦→ Γ𝑠 (𝑡) is a geodesic is

called a one-parameter of geodesics or geodesic congruence.

Definition 4.6. Let 𝛾 be a geodesic. A vector field 𝑋 ∈ 𝔛(𝛾) along 𝛾 that satisfies the

Jacobi equation:

𝐷2
𝑡 𝑋 = 𝑅(𝛾′, 𝑋)𝛾′ (4.15)
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is called a Jacobi field.

Theorem 4.7. Suppose Γ is a one-parameter of geodesics. The variation field of Γ is a

Jacobi field.

Proof. From the geodesic equation, we have 𝐷𝑡𝜕𝑡Γ = 0 and so 𝐷𝑠𝐷𝑡𝜕𝑡Γ = 0. By using

Lemma 4.2 and Lemma 4.3, we compute

0 = 𝐷𝑠𝐷𝑡𝜕𝑡Γ

= 𝐷𝑡𝐷𝑠𝜕𝑡Γ + 𝑅(𝜕𝑠Γ, 𝜕𝑡Γ)𝜕𝑡Γ

= 𝐷𝑡𝐷𝑡𝜕𝑠Γ + 𝑅(𝜕𝑠Γ, 𝜕𝑡Γ)𝜕𝑡Γ . (4.16)

Evaluating at 𝑠 = 0, where 𝜕𝑠Γ(𝑡, 0) = 𝜂(𝑡) and 𝜕𝑡Γ(𝑡, 0) = 𝛾′(𝑡), we obtain

𝐷2
𝑡 𝜂 = 𝑅(𝛾′, 𝜂)𝛾′ . (4.17)

□

Due to this result, the Jacobi equation is also called the geodesic deviation equation.

Intuitively, if we imagine a geodesic congruence Γ of 𝛾 as a one-parameter family of freely

falling particles, then the variation field 𝜂 gives the position, relative to 𝛾, of arbitrarily

nearby particles. Hence, the derivative 𝐷𝑡𝜂 gives relative velocity and 𝐷2
𝑡 𝜂 relative

acceleration. That means the Jacobi equation can be interpreted as Newton’s second law

with the curvature vector 𝑅(𝛾′, 𝜂)𝛾′ play the role of force, called the tidal force.

4.3 Friedmann-Lemaître-Robertson-Walker Cosmology

Definition 4.8. A perfect fluid in spacetime is the triple (𝑢, 𝜌, 𝑝), where 𝑢 is a unit timelike

vector field, called the flow vector field, 𝜌 is the energy density, and 𝑝 is the pressure. In
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local coordinates (𝑥𝜇), the energy-momentum tensor of the perfect fluid is defined as

𝑇𝜇𝜈 = (𝜌 + 𝑝)𝑢𝜇𝑢𝜈 + 𝑝𝑔𝜇𝜈 . (4.18)

In this form, the perfect fluid is isotropic which is free from shear and viscosity. It

follows that the components of the energy-momentum tensor are

𝑇00 = 𝜌 , 𝑇𝑖 𝑗 = 𝑝𝑔𝑖 𝑗 , (𝑖, 𝑗 = 1, 2, 3). (4.19)

Hence, the trace of 𝑇 is

𝑇 = 3𝑝 − 𝜌 . (4.20)

If 𝑝 = 0, the perfect fluid is called dust, and if 𝑝 = 1
3𝜌, the perfect fluid is called radiation.

Definition 4.9. Let (𝐵, 𝑔𝐵) and (𝐹, 𝑔𝐹) be pseudo-Riemannian manifolds and 𝑓 > 0 be a

smooth function on 𝐵. The warped product 𝑀 = 𝐵 × 𝑓 𝐹 is the product manifold 𝐵 × 𝐹

equipped with metric tensor

𝑔 = pr∗1(𝑔𝐵) + ( 𝑓 ◦ pr1)2 pr∗2(𝑔𝐹) (4.21)

where pr1 : 𝐵 × 𝐹 → 𝐵 and pr2 : 𝐵 × 𝐹 → 𝐹 are projection maps.

Commonly, 𝐵 is called the base of 𝑀 , 𝐹 is the fibre and 𝑓 is the warping function. The

function 𝑓 = 𝑓 ◦ pr1 defined on 𝑀 = 𝐵 × 𝑓 𝐹 is called the lift of the function 𝑓 to the

warped product 𝑀 . Likewise, if 𝑋 ∈ 𝔛(𝐵), the lift of 𝑋 to 𝑀 is the unique vector field 𝑋̃

of 𝔛(𝑀) which is pr1-related to 𝑋 . Thus, without confusion, we can always write 𝑋 to

represent both the vector field on the base and its lift.
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Definition 4.10. Let 𝐼 be an open interval of the R1
1, 𝑆 be a connected three-dimensional

Riemannian manifold with constant curvature 𝑘 = −1, 0, or +1, and 𝑎(𝑡) > 0, 𝑡 ∈ 𝐼 be a

smooth function on 𝐼. The warped product M = 𝐼 ×𝑎 𝑆 is called a Robertson-Walker (RW)

spacetime.

Thus, a RW spacetime is a manifold 𝐼 × 𝑆 with the line element

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2(𝑡)𝑑𝜎2 (4.22)

where 𝑑𝜎2 is the line element of 𝑆 lifted to 𝐼 × 𝑆. The value of 𝑘 gives the spatial curvature

of the metric, where 𝑘 = 1 implies that the Universe has positive spatial curvature, 𝑘 = −1

implies that the Universe has negative spatial curvature and 𝑘 = 0 implies that the Universe

is spatially flat. In this case, the warping function 𝑎(𝑡) is called the scaling function and

its value 𝑎(𝑡0), for an instant 𝑡0 ∈ 𝐼, called the scale factor. In addition, let 𝑑/𝑑𝑡 be the

standard vector field on 𝐼 ⊆ R1
1 and 𝑢 = 𝜕𝑡 be its lifting to 𝐼 × 𝑆. For each 𝑝 ∈ 𝑆, the curve

𝐼 × 𝑝 parametrized by 𝛾𝑝 (𝑡) = (𝑡, 𝑝) is an observer, called a fundamental observer. Hence,

the parameter 𝑡 represent the proper time of fundamental observer, which is usually called

the cosmic time. It can be easily shown that ⟨𝑢, 𝑢⟩ = −1 and 𝑢 ⊥ 𝑆(𝑡), for all 𝑡 ∈ 𝐼. That

means for each 𝑡 ∈ 𝐼, 𝑆(𝑡) is a spacelike hypersurface, called the spacelike slice.

A RW spacetime is spatially isotropic and homogeneous. Intuitively, the concept of

spatial isotropic said that there are no privileged directions with respect to a point, while

the concept of spatial homogeneous means there are no privileged points in the given

space. This two results play an important rule in observational motivation of the choice of

a RW spacetime for the standard cosmological model. We can express the line element
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𝑑𝜎2 of RW spacetime in standard spherical coordinates as

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2(𝑡)
(

𝑑𝑟2

1 − 𝑘𝑟2 + 𝑟2𝑑Ω2
)

(4.23)

where 𝑑Ω2 = 𝑑𝜃2 + sin2 𝜃𝑑𝜙2. By putting 𝑑𝑡 = 𝑎(𝑡)𝑑𝜏, the RW metric (4.23) can be

rewritten to the form

𝑑𝑠2 = 𝑎2(𝑡)
(
− 𝑑𝜏2 + 𝑑𝑟2

1 − 𝑘𝑟2 + 𝑟2𝑑Ω2
)

(4.24)

which is clearly conformally flat in the case of 𝑘 = 0. It immediately implies that the

Weyl tensor of the RW metric vanishes in the spatially flat case. In fact, the Weyl tensor

also vanishes for 𝑘 = −1 and 𝑘 = +1 (Lihoshi et al., 2007). By using the RW metric, the

Ricci tensor and Ricci scalar can be easily calculated, and assuming the cosmological

background of the Universe as a perfect fluid where the energy momentum tensor is given

in (4.18), followed by substituting the values into EFE with the cosmological constant

yields the Friedmann equations

(
¤𝑎
𝑎

)2
=

𝜌

3
− 𝑘

𝑎2 + Λ

3
(4.25)

¥𝑎
𝑎
= −𝜌 + 3𝑝

6
+ Λ

3
. (4.26)

The Hubble parameter 𝐻 which measures the rate of expansion of the Universe is a

time dependent scalar that is constant in space defined by

𝐻 =
¤𝑎(𝑡)
𝑎(𝑡) . (4.27)

Given any RW spacetime, 𝐻 > 0 implies an expanding Universe. Let 𝑡 = 0 as the
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beginning of time for an expanding RW Universe, set 𝑎(0) = 𝑎0 and 𝑡0 to denote present

time, representing the age of the Universe. It is clear that 𝑎(𝑡0) > 0 and ¤𝑎(𝑡0) > 0 which

represents an expansive Universe, but in fact expansion is accelerating which means

¥𝑎(𝑡0) > 0. The redshift parameter 𝑧 which is characterized by the relative difference

between the observed and emitted wavelengths of light beam is defined by

𝑧 =
𝑎(𝑡0)
𝑎(𝑡) − 1 . (4.28)

The fact that the Universe is expanding implies that 𝑎(𝑡0) > 𝑎(𝑡) and so 𝑧 > 0. The density

parameter expressed as

Ω =
𝜌 + Λ

3𝐻2 = 1 + 𝑘

𝑎2𝐻2 (4.29)

which is to determines the overall geometry of the Universe. Note that if 𝑘 = 0, then Ω = 1

and the Universe is said to be flat. Based on the observational evidence, the Universe is

believed to be nearly flat. That means the Universe should be well approximated by a

model where the spatial curvature 𝑘 is zero. Therefore, with 𝑘 = 0, we obtain the density

parameter

Ω =
𝜌

3𝐻2
0

(4.30)

where 𝐻0 represents 𝐻 (𝑡0), and the Friedmann equations can be rewritten as

𝐻2 =

(
¤𝑎
𝑎

)2
=

𝜌

3
(4.31)

¤𝐻 + 𝐻2 =
¥𝑎
𝑎
= −𝜌 + 3𝑝

6
(4.32)
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where Λ is ignored for comparison in the following sections.

4.4 GDE For FLRW Universe In 𝑓 (𝑄)-Gravity

Let (M, 𝑔) be a time-oriented Robertson-Walker spacetime and Γ be a one-parameter

family of geodesics with the centre geodesic Γ0 = 𝛾 parametrized by the arc length

𝜏. To simplify the notation, we denote 𝑉 (𝜏) = 𝛾′(𝜏) the velocity vector field, so

⟨𝑉,𝑉⟩ = 𝑉𝛼𝑉
𝛼 = 𝜖 , where 𝜖 = +1, 0,−1, if the geodesic 𝛾 is spacelike, null, or timelike

respectively. Furthermore, we restrict the variation field 𝜂 ∈ 𝔛(𝛾) such that 𝜂(𝜏) ⊥ 𝑉 (𝜏)

for all 𝜏. Hence, we have ⟨𝜂,𝑉⟩ = 𝜂𝛼𝑉
𝛼 = 0. We may decompose the vector field 𝑉 into

𝑉 = 𝐸𝑢 + 𝑃𝑒 (4.33)

where 𝑒 is a unit spacelike vector field orthogonal to 𝑢, that is, ⟨𝑒, 𝑒⟩ = 1, ⟨𝑢, 𝑒⟩ = 0,

and 𝐸 = −⟨𝑉, 𝑢⟩, 𝑃 = (𝜖 + 𝐸)1/2. Since 𝑉 and 𝑢 might not parallel to each other, so

additionally to ⟨𝜂,𝑉⟩ = 0, we also set ⟨𝜂, 𝑢⟩ = 0 which means the vector field 𝜂 lies in the

two-dimensional spacelike slice orthogonal to both 𝑉 and 𝑢.

With these setting, we now proceed to derive the GDE in 𝑓 (𝑄) gravity. For convenience,

the rest of the calculation will be carried out in component form. Recall from Chapter 2,

the field equations in 𝑓 (𝑄) gravity can be written as

𝑓𝑄 (𝑅̊𝜇𝜈 −
1
2
𝑔𝜇𝜈 𝑅̊) +

1
2
𝑔𝜇𝜈 (𝑄 𝑓𝑄 − 𝑓 ) + 2 𝑓𝑄𝑄∇𝜆𝑄𝑃𝜆

𝜇𝜈 = 𝜅𝑇𝜇𝜈 . (4.34)

Contracting with 𝑔𝜇𝜈 and rearrange, we obtain the Ricci scalar

𝑅̊ =
1
𝑓𝑄

(2𝑄 𝑓𝑄 − 2 𝑓 + 2 𝑓𝑄𝑄𝑃
𝜆𝜌

𝜌∇𝜆𝑄 − 𝜅𝑇) . (4.35)

56

Univ
ers

iti 
Mala

ya



Inserting this formula back into the field equations, we have the Ricci tensor

𝑅̊𝜇𝜈 =
1
𝑓𝑄

[
1
2
𝑔𝜇𝜈 (𝑄 𝑓𝑄 − 𝑓 + 2 𝑓𝑄𝑄𝑃

𝜆𝜌
𝜌∇𝜆𝑄 − 𝜅𝑇) − 2 𝑓𝑄𝑄𝑃

𝜆
𝜇𝜈∇𝜆𝑄 + 𝜅𝑇𝜇𝜈

]
. (4.36)

As mentioned in previous section, RW spacetime is conformally flat and so the Weyl tensor

vanishes, that is, 𝐶𝛼𝛽𝛾𝛿 = 0. Hence, from (2.42) and the above equations, we can express

the curvature tensor as

𝑅̊𝛼𝛽𝛾𝛿 =
1

2 𝑓𝑄

[
𝜅(𝑔𝛼𝛾𝑇𝛿𝛽 − 𝑔𝛼𝛿𝑇𝛾𝛽 + 𝑔𝛽𝛿𝑇𝛾𝛼 − 𝑔𝛽𝛾𝑇𝛿𝛼)

+
(
𝑄 𝑓𝑄

3
− 𝑓

3
− 2𝜅𝑇

3
+ 4

3
𝑓𝑄𝑄𝑃

𝜆𝜌
𝜌∇𝜆𝑄

)
(𝑔𝛼𝛾𝑔𝛿𝛽 − 𝑔𝛼𝛿𝑔𝛾𝛽)

+ (𝑔𝛼𝛾D𝛿𝛽 − 𝑔𝛼𝛿D𝛾𝛽 + 𝑔𝛽𝛿D𝛾𝛼 − 𝑔𝛽𝛾D𝛿𝛼) 𝑓𝑄
]

(4.37)

where

D𝜇𝜈 := −2𝑃𝜆
𝜇𝜈∇𝜆𝑄𝜕𝑄 . (4.38)

By taking the perfect fluid form of the energy-momentum tensor stated in (4.18) and (4.20),

the above equation reduces to

𝑅̊𝛼𝛽𝛾𝛿 =
1

2 𝑓𝑄

[
𝜅(𝜌 + 𝑝) (𝑔𝛼𝛾𝑢𝛿𝑢𝛽 − 𝑔𝛼𝛿𝑢𝛾𝑢𝛽 + 𝑔𝛽𝛿𝑢𝛾𝑢𝛼 − 𝑔𝛽𝛾𝑢𝛿𝑢𝛼)

+
(
𝑄 𝑓𝑄

3
− 𝑓

3
+ 2𝜅𝜌

3
+ 4

3
𝑓𝑄𝑄𝑃

𝜆𝜌
𝜌∇𝜆𝑄

)
(𝑔𝛼𝛾𝑔𝛿𝛽 − 𝑔𝛼𝛿𝑔𝛾𝛽)

+ (𝑔𝛼𝛾D𝛿𝛽 − 𝑔𝛼𝛿D𝛾𝛽 + 𝑔𝛽𝛿D𝛾𝛼 − 𝑔𝛽𝛾D𝛿𝛼) 𝑓𝑄
]
. (4.39)
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Contracting with 𝑉 𝛽𝑉 𝛿 and since 𝑉𝛼𝑉
𝛼 = 𝜖 , we have

𝑅̊𝛼𝛽𝛾𝛿𝑉
𝛽𝑉 𝛿 =

1
2 𝑓𝑄

[
𝜅(𝜌 + 𝑝) [𝑔𝛼𝛾 (𝑢𝛽𝑉 𝛽)2 − 2(𝑢𝛽𝑉 𝛽)𝑉(𝛼𝑢𝛾) + 𝜖𝑢𝛼𝑢𝛾]

+
(
𝑄 𝑓𝑄

3
− 𝑓

3
+ 2𝜅𝜌

3
+ 4

3
𝑓𝑄𝑄𝑃

𝜆𝜌
𝜌∇𝜆𝑄

)
(𝜖𝑔𝛼𝛾 −𝑉𝛼𝑉𝛾)

+ [(𝑔𝛼𝛾D𝛿𝛽 − 𝑔𝛼𝛿D𝛾𝛽 + 𝑔𝛽𝛿D𝛾𝛼 − 𝑔𝛽𝛾D𝛿𝛼) 𝑓𝑄]𝑉 𝛽𝑉 𝛿

]
. (4.40)

By raising the 𝛼 index in the curvature tensor and contracting with 𝜂𝛾, we obtain

𝑅̊𝛼
𝛽𝛾𝛿𝑉

𝛽𝜂𝛾𝑉 𝛿 =
1

2 𝑓𝑄

[
𝜅(𝜌 + 𝑝) [(𝑢𝛽𝑉 𝛽)2𝜂𝛼 − (𝑢𝛽𝑉 𝛽)𝑉𝛼 (𝑢𝛾𝜂𝛾)

− (𝑢𝛽𝑉 𝛽)𝑢𝛼 (𝑉𝛾𝜂
𝛾) + 𝜖𝑢𝛼 (𝑢𝛾𝜂𝛾)]

+
(
𝑄 𝑓𝑄

3
− 𝑓

3
+ 2𝜅𝜌

3
+ 4

3
𝑓𝑄𝑄𝑃

𝜆𝜌
𝜌 ∇𝜆𝑄

)
(𝜖𝜂𝛼 −𝑉𝛼 (𝑉𝛾𝜂

𝛾))

+ [(𝛿𝛼𝛾D𝛿𝛽 − 𝛿𝛼𝛿D𝛾𝛽 + 𝑔𝛽𝛿D𝛼
𝛾 − 𝑔𝛽𝛾D𝛼

𝛿 ) 𝑓𝑄]𝑉
𝛽𝜂𝛾𝑉 𝛿

]
. (4.41)

Since 𝑉𝛼𝑢
𝛼 = −𝐸 and 𝜂𝛼𝑢

𝛼 = 𝜂𝛼𝑉
𝛼 = 0, so

𝑅̊𝛼
𝛽𝛾𝛿𝑉

𝛽𝜂𝛾𝑉 𝛿

=
1

2 𝑓𝑄

[
𝜅(𝜌 + 𝑝)𝐸2 + 𝜖

(
2𝜅𝜌

3
+
𝑄 𝑓𝑄

3
− 𝑓

3
+ 4

3
𝑓𝑄𝑄𝑃

𝜆𝜌
𝜌∇𝜆𝑄

)]
𝜂𝛼

+ 1
2 𝑓𝑄

[
(𝛿𝛼𝛾D𝛿𝛽 − 𝛿𝛼𝛿D𝛾𝛽 + 𝑔𝛽𝛿D𝛼

𝛾 − 𝑔𝛽𝛾D𝛼
𝛿 ) 𝑓𝑄𝑉

𝛽𝑉 𝛿

]
𝜂𝛾 . (4.42)

To further simplify, we have to deal with the ∇𝜆𝑄. As shown in (3.46), the non-metricity

scalar 𝑄 is not in a very simplified form and hence ∇𝜆𝑄. Thus, we have to impose a

particular coordinate system so that 𝑄 can be simplified. But as mentioned in Chapter 3,

the field equations are only valid in some specific coordinate systems such that Γ𝜆
𝜇𝜈 = 0. A

simplest example that agree on both is the Cartesian coordinate system. Therefore, we

consider the spatially flat RW metric in Cartesian coordinate where the line element can
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be written as

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2(𝑡) (𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) . (4.43)

This implies that the only non-vanishing metric components are

𝑔𝑡𝑡 = −1, 𝑔𝑥𝑥 = 𝑔𝑦𝑦 = 𝑔𝑧𝑧 = 𝑎2(𝑡) . (4.44)

Hence, we obtain

𝑄𝜆𝜇𝜈𝑄
𝜆𝜇𝜈 = −∇𝜆𝑔𝜇𝜈∇𝜆𝑔𝜇𝜈 = −12𝐻2 (4.45)

𝑄𝜆𝜇𝜈𝑄
𝜇𝜆𝜈 = −∇𝜆𝑔𝜇𝜈∇𝜇𝑔𝜆𝜈 = 0 (4.46)

𝑄𝜆𝑄
𝜆 = (𝑔𝜇𝜌∇𝜆𝑔

𝜇𝜌) (𝑔𝜈𝛾∇𝜆𝑔𝜈𝛾) = −36𝐻2 (4.47)

𝑄𝜆𝑄̃
𝜆 = (𝑔𝜇𝜌∇𝜆𝑔

𝜇𝜌) (∇𝜈𝑔
𝜆𝜈) = 0 . (4.48)

It follows from (3.46), we have

𝑄 = −1
4
(−12𝐻2) + 1

4
(−36𝐻2) = −6𝐻2 . (4.49)

Therefore, the scalar 𝑄 is only time-dependent and consequently

∇𝜆𝑄 = 12𝐻 ¤𝐻𝑢𝜆 . (4.50)

After a cumbersome calculation as shown in Appendices, we found that

1
2 𝑓𝑄

[
(𝛿𝛼𝛾D𝛿𝛽−𝛿𝛼𝛿D𝛾𝛽+𝑔𝛽𝛿D𝛼

𝛾 −𝑔𝛽𝛾D𝛼
𝛿 ) 𝑓𝑄𝑉

𝛽𝑉 𝛿

]
𝜂𝛾 =

1
2 𝑓𝑄

[−24𝐻2 ¤𝐻 𝑓𝑄𝑄 (2𝜖+𝐸2)]𝜂𝛼
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(4.51)

and

4
3
𝜂𝛼 𝑓𝑄𝑄𝑃

𝜆𝜈
𝜈∇𝜆𝑄 = 48𝐻2 ¤𝐻 𝑓𝑄𝑄𝜖𝜂

𝛼 . (4.52)

Thus, (4.42) reduces to

𝑅̊𝛼
𝛽𝛾𝛿𝑉

𝛽𝜂𝛾𝑉 𝛿 =
1

2 𝑓𝑄

[
(𝜅𝜌 + 𝜅𝑝 − 24𝐻2 ¤𝐻 𝑓𝑄𝑄)𝐸2 +

(
2𝜅𝜌

3
+
𝑄 𝑓𝑄

3
− 𝑓

3

)
𝜖

]
𝜂𝛼 (4.53)

which is considered to be the generalized Pirani equation. Finally, the GDE in 𝑓 (𝑄)

gravity can be written as

𝐷2𝜂𝛼

𝐷𝜏2 = − 1
2 𝑓𝑄

[
(𝜅𝜌 + 𝜅𝑝 − 24𝐻2 ¤𝐻 𝑓𝑄𝑄)𝐸2 +

(
2𝜅𝜌

3
+
𝑄 𝑓𝑄

3
− 𝑓

3

)
𝜖

]
𝜂𝛼 . (4.54)

Notice that in this GDE only the magnitude of the deviation vector 𝜂𝛼 is changed along the

geodesics, which reflects the homogeneity and isotropy of the FLRW universe.

4.5 Generalized Friedmann equations

Given the previous construction of FLRW cosmology using EFE, the next logical step is

to consider deriving a similar equation using the 𝑓 (𝑄) field equations presented in (3.56).

Consider the previously defined spatially flat RW metric in (4.43) and the non-vanishing

metric components in (4.44), the only non-vanishing Christoffel symbols are

Γ̊0
𝑖𝑖 = 𝑎 ¤𝑎 , Γ̊𝑖

0𝑖 =
¤𝑎
𝑎
= Γ̊𝑖

𝑖0 . (4.55)
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Consequently, the (00) and (𝑖𝑖) components of the Ricci tensor are

𝑅̊00 = −3
¥𝑎
𝑎

(4.56)

𝑅̊𝑖𝑖 = 𝑎 ¥𝑎 + 2 ¤𝑎2 (4.57)

and so the Ricci scalar

𝑅̊ = 6
(
¤𝑎2

𝑎2 + ¥𝑎
𝑎

)
. (4.58)

Substitute the above results of the Ricci tensor and Ricci scalar into the field equation

(3.56) while considering the perfect fluid (4.18), followed by some lengthy rearrangement,

we obtain the generalized Friemann equations as

3𝐻2 =
1
𝑓𝑄

[
𝜅𝜌 + 1

2
(𝑄 𝑓𝑄 − 𝑓 )

]
(4.59)

2 ¤𝐻 + 3𝐻2 = − 1
𝑓𝑄

[
𝜅𝑝 − 1

2
(𝑄 𝑓𝑄 − 𝑓 ) − 24 𝑓𝑄𝑄𝐻

2 ¤𝐻
]
. (4.60)

In both the case of GR and 𝑓 (𝑄), the conservation of energy-momentum applies which

means that 𝑓 (𝑄) gravity is only a modification of the gravitational theory rather than

an alteration to the matter content. Nevertheless, note that the generalized Friedmann

equations are far more complex than the GR case, which implies that there are much fewer

exact cosmological solutions.

4.6 GDE for fundamental observers

In this situation, we have 𝑉𝛼 = 𝑢𝛼 for the centre geodesic. That means the arclength

parameter coincides with the proper time of the centre fundamental observer, that is, 𝜏 = 𝑡.
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Therefore,

𝜖 = 𝑉𝛼𝑉
𝛼 = 𝑢𝛼𝑢

𝛼 = −1 (4.61)

𝐸 = −𝑉𝛼𝑢
𝛼 = −𝑢𝛼𝑢𝛼 = 1 . (4.62)

Inserting these two values into (4.53), we obtain

𝑅̊𝛼
𝛽𝛾𝛿𝑢

𝛽𝜂𝛾𝑢𝛿 =
1
𝑓𝑄

(
𝜅𝜌

6
+ 𝜅𝑝

2
−
𝑄 𝑓𝑄

6
+ 𝑓

6
− 12𝐻2 ¤𝐻 𝑓𝑄𝑄

)
𝜂𝛼 . (4.63)

If we set the variation field 𝜂𝛼 = 𝑙𝑒𝛼, where 𝑒𝛼 is parallel transported along 𝑡, then

𝐷𝑒𝛼

𝐷𝑡
= 0 (4.64)

and so

𝐷2𝜂𝛼

𝐷𝑡2
=
𝑑2𝑙

𝑑𝑡2
𝑒𝛼 . (4.65)

Thus, by using (4.63) and (4.65), we get

𝑑2𝑙

𝑑𝑡2
= − 1

𝑓𝑄

(
𝜅𝜌

6
+ 𝜅𝑝

2
−
𝑄 𝑓𝑄

6
+ 𝑓

6
− 12𝐻2 ¤𝐻 𝑓𝑄𝑄

)
𝑙 . (4.66)

By letting 𝑙 = 𝑎(𝑡), we have

¥𝑎
𝑎
= − 1

𝑓𝑄

(
𝜅𝜌

6
+ 𝜅𝑝

2
−
𝑄 𝑓𝑄

6
+ 𝑓

6
− 12𝐻2 ¤𝐻 𝑓𝑄𝑄

)
. (4.67)

This equation can be considered as a special case of the generalized Raychaudhuri equation.
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4.7 GDE for past-directed null vector fields

Under these circumstances, we have 𝑉𝛼 = 𝑘𝛼, where 𝑘 is a past-directed null vector

fields, 𝑘𝛼𝑘𝛼 = 0 and 𝑘0 < 0. This implies that

𝜖 = 𝑉𝛼𝑉
𝛼 = 𝑘𝛼𝑘

𝛼 = 0. (4.68)

Hence, (4.53) becomes

𝑅̊𝛼
𝛽𝛾𝛿𝑘

𝛽𝜂𝛾𝑘𝛿 =
1

2 𝑓𝑄
(𝜅𝜌 + 𝜅𝑝 − 24𝐻2 ¤𝐻 𝑓𝑄𝑄)𝐸2𝜂𝛼 . (4.69)

This equation can be explained as the Ricci focusing in 𝑓 (𝑄) gravity. If we consider

𝜂𝛼 = 𝜂𝑒𝛼, 𝑒𝛼𝑒
𝛼 = 1, 𝑒𝛼𝑢𝛼 = 𝑒𝛼𝑘

𝛼 = 0 and 𝐷𝜏𝑒
𝛼 = 𝑘 𝛽∇𝛽𝑒

𝛼 = 0, in which 𝑒𝛼 is parallel

transported and orthogonal to 𝑢𝛼 and 𝑘𝛼, then the GDE can be written in a new form

𝑑2𝜂

𝑑𝜏2 = − 1
2 𝑓𝑄

(𝜅𝜌 + 𝜅𝑝 − 24𝐻2 ¤𝐻 𝑓𝑄𝑄)𝐸2𝜂 . (4.70)

As in the case of GR in Ellis and Elst (1997), all past-directed null geodesics experience

focusing if 𝜅(𝜌 + 𝑝) > 0 except the special case with the equation of state 𝑝 = −𝜌. Thus,

it is clear that (4.70) indicates the focusing condition for the 𝑓 (𝑄)-gravity, which is

𝜅(𝜌 + 𝑝)
𝑓𝑄

>
24𝐻2 ¤𝐻 𝑓𝑄𝑄

𝑓𝑄
. (4.71)

When involving dynamical problem, we have to express the quantities in (4.70) in term of

the redshift parameter 𝑧, defined in (4.28). First, we write

𝑑

𝑑𝜏
=

𝑑𝑧

𝑑𝜏

𝑑

𝑑𝑧
(4.72)
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which implies that

𝑑2

𝑑𝜏2 =
𝑑𝑧

𝑑𝜏

𝑑

𝑑𝑧

(
𝑑

𝑑𝜏

)
=

(
𝑑𝜏

𝑑𝑧

)−2
[
−

(
𝑑𝜏

𝑑𝑧

)−1
𝑑2𝜏

𝑑𝑧2
𝑑

𝑑𝑧
+ 𝑑2

𝑑𝑧2

]
. (4.73)

For the null geodesics, we have

(1 + 𝑧) = 𝑎0
𝑎

=
𝐸

𝐸0
(4.74)

which implies that

𝑑𝑧

1 + 𝑧
= −𝑑𝑎

𝑎
(4.75)

where 𝑎0 = 𝑎(𝑡0) the present value of the scale factor. For the past-directed case, we set

𝐸0 = −1, so

𝑑𝑧 = −(1 + 𝑧) 1
𝑎

𝑑𝑎

𝑑𝜏
𝑑𝜏 = −(1 + 𝑧) ¤𝑎

𝑎
𝐸𝑑𝜏 = 𝐻 (1 + 𝑧)2𝑑𝜏 (4.76)

and so

𝑑𝜏

𝑑𝑧
=

1
𝐻 (1 + 𝑧)2 . (4.77)

Consequently,

𝑑2𝜏

𝑑𝑧2 = − 1
𝐻 (1 + 𝑧)3

[
1
𝐻
(1 + 𝑧) 𝑑𝐻

𝑑𝑧
+ 2

]
(4.78)
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where

𝑑𝐻

𝑑𝑧
=
𝑑𝜏

𝑑𝑧

𝑑𝑡

𝑑𝜏

𝑑𝐻

𝑑𝑡
= − 1

𝐻 (1 + 𝑧)
𝑑𝐻

𝑑𝑡
(4.79)

and we make use of 𝑑𝑡
𝑑𝜏

= 𝐸 = −(1 + 𝑧). From (4.27), we get

¥𝑎
𝑎
= ¤𝐻 + 𝐻2 (4.80)

and so

¤𝐻 = − 1
𝑓 ′

(
𝜅𝜌

6
+ 𝜅𝑝

2
−
𝑄 𝑓𝑄

6
+ 𝑓

6
− 12𝐻2 ¤𝐻 𝑓𝑄𝑄

)
− 𝐻2 . (4.81)

Hence,

𝑑2𝜏

𝑑𝑧2 = − 3
𝐻 (1 + 𝑧)3

[
1 + 1

3𝐻2 𝑓𝑄

(
𝜅𝜌

6
+ 𝜅𝑝

2
−
𝑄 𝑓𝑄

6
+ 𝑓

6
− 12𝐻2 ¤𝐻 𝑓𝑄𝑄

)]
. (4.82)

Putting this equation in (4.73), we have

𝑑2𝜂

𝑑𝜏2 = (𝐻 (1 + 𝑧)2)2
[
𝑑2𝜂

𝑑𝑧2 + 3
(1 + 𝑧)

[
1 + 1

3𝐻2 𝑓𝑄

(
𝜅𝜌

6
+ 𝜅𝑝

2

−
𝑄 𝑓𝑄

6
+ 𝑓

6
− 12𝐻2 ¤𝐻 𝑓𝑄𝑄

)]
𝑑𝜂

𝑑𝑧

]
. (4.83)

Finally, by using (4.70), the null GDE can be written in the form

𝑑2𝜂

𝑑𝑧2 + 3
(1 + 𝑧)

[
1 + 1

3𝐻2 𝑓𝑄

(
𝜅𝜌

6
+ 𝜅𝑝

2
−
𝑄 𝑓𝑄

6
+ 𝑓

6
− 12𝐻2 ¤𝐻 𝑓𝑄𝑄

)]
𝑑𝜂

𝑑𝑧

+
𝜅(𝜌 + 𝑝) − 24𝐻2 ¤𝐻 𝑓𝑄𝑄

2𝐻2(1 + 𝑧)2 𝑓𝑄
𝜂 = 0 . (4.84)

The above equation is useful for cosmological applications. Assume the matter content
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of the universe is dust and radiation field, so the 𝑝 and 𝜌 can be be expressed as

𝜅𝑝 = 𝐻2
0Ω𝑟0 (1 + 𝑧)4, 𝜅𝜌 = 3𝐻2

0Ω𝑚0 (1 + 𝑧)3 + 3𝐻2
0Ω𝑟0 (1 + 𝑧)4 (4.85)

where 𝑝𝑚 = 0 and 𝑝𝑟 =
1
3𝜌𝑟 . From (4.85) , we could express 𝐻2 as

𝐻2 =
𝐻2

0
𝑓𝑄

[Ω𝑚0 (1 + 𝑧)3 +Ω𝑟0 (1 + 𝑧)4 +Ω𝐷𝐸 ] (4.86)

where

Ω𝐷𝐸 :=
1
𝐻2

0

(
𝑄 𝑓𝑄

6
− 𝑓

6

)
(4.87)

is the Dark Energy parameter. Therefore, by applying (4.85) and (4.86), the null GDE in

(4.84) can be written as

𝑑2𝜂

𝑑𝑧2 + P(𝐻, ¤𝐻, 𝑧) 𝑑𝜂
𝑑𝑧

+ Q(𝐻, ¤𝐻, 𝑧)𝜂 = 0 (4.88)

where

P(𝐻, ¤𝐻, 𝑧) =
7
2Ω𝑚0 (1 + 𝑧)3 + 4Ω𝑟0 (1 + 𝑧)4 + 2Ω𝐷𝐸

(1 + 𝑧) [Ω𝑚0 (1 + 𝑧)3 +Ω𝑟0 (1 + 𝑧)4 +Ω𝐷𝐸 ]

−
12 ¤𝐻 𝑓 ′′

𝑓 ′ [Ω𝑚0 (1 + 𝑧)3 +Ω𝑟0 (1 + 𝑧)4 +Ω𝐷𝐸 ]
(1 + 𝑧) [Ω𝑚0 (1 + 𝑧)3 +Ω𝑟0 (1 + 𝑧)4 +Ω𝐷𝐸 ]

(4.89)

Q(𝐻, ¤𝐻, 𝑧) =
3Ω𝑚0 (1 + 𝑧)3 + 4Ω𝑟0 (1 + 𝑧)4

2(1 + 𝑧)2 [Ω𝑚0 (1 + 𝑧)3 +Ω𝑟0 (1 + 𝑧)4 +Ω𝐷𝐸 ]

−
24 ¤𝐻 𝑓 ′′

𝑓 ′ [Ω𝑚0 (1 + 𝑧)3 +Ω𝑟0 (1 + 𝑧)4 +Ω𝐷𝐸 ]
2(1 + 𝑧)2 [Ω𝑚0 (1 + 𝑧)3 +Ω𝑟0 (1 + 𝑧)4 +Ω𝐷𝐸 ]

. (4.90)
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In a particular case, where 𝑓 (𝑄) = 𝑄 − 2Λ, so 𝑓𝑄 = 1 and 𝑓𝑄𝑄 = 0. Thus, Ω𝐷𝐸 in (4.87)

reduces to

Ω𝐷𝐸 =
1
𝐻2

0

(
𝑄

6
− 𝑄 − 2Λ

6

)
=

Λ

3𝐻2
0
=: ΩΛ . (4.91)

This implies that the 𝐻2 in (4.86) becomes the same as the case in GR

𝐻2 = 𝐻2
0 [Ω𝑚0 (1 + 𝑧)3 +Ω𝑟0 (1 + 𝑧)4 +ΩΛ] (4.92)

which confirms the obtained results. Moreover, P (4.89) and Q (4.90) turns into

P(𝑧) =
7
2Ω𝑚0 (1 + 𝑧)3 + 4Ω𝑟0 (1 + 𝑧)4 + 2ΩΛ

(1 + 𝑧) [Ω𝑚0 (1 + 𝑧)3 +Ω𝑟0 (1 + 𝑧)4 +ΩΛ]
(4.93)

Q(𝑧) =
3Ω𝑚0 (1 + 𝑧) + 4Ω𝑟0 (1 + 𝑧)2

2[Ω𝑚0 (1 + 𝑧)3 +Ω𝑟0 (1 + 𝑧)4 +ΩΛ]
. (4.94)

Then, the GDE for null vector fields becomes

𝑑2𝜂

𝑑𝑧2 +
7
2Ω𝑚0 (1 + 𝑧)3 + 4Ω𝑟0 (1 + 𝑧)4 + 2ΩΛ

(1 + 𝑧) [Ω𝑚0 (1 + 𝑧)3 +Ω𝑟0 (1 + 𝑧)4 +ΩΛ]
𝑑𝜂

𝑑𝑧

+
3Ω𝑚0 (1 + 𝑧) + 4Ω𝑟0 (1 + 𝑧)2

2[Ω𝑚0 (1 + 𝑧)3 +Ω𝑟0 (1 + 𝑧)4 +ΩΛ]
𝜂 = 0 . (4.95)

We set ΩΛ = 0 and Ω𝑚0 +Ω𝑟0 = 1 for the original Mattig relation, so we have

𝑑2𝜂

𝑑𝑧2 +
7
2Ω𝑚0 (1 + 𝑧)3 + 4Ω𝑟0 (1 + 𝑧)4

(1 + 𝑧) [Ω𝑚0 (1 + 𝑧)3 +Ω𝑟0 (1 + 𝑧)4]
𝑑𝜂

𝑑𝑧

+
3Ω𝑚0 (1 + 𝑧) + 4Ω𝑟0 (1 + 𝑧)2

2[Ω𝑚0 (1 + 𝑧)3 +Ω𝑟0 (1 + 𝑧)4]
𝜂 = 0 . (4.96)
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This implies that (4.88) is the generalized Mattig relation in 𝑓 (𝑄) gravity. In FLRW

universe, the angular diametral distance 𝐷𝐴 (𝑧) is given by

𝐷𝐴 (𝑧) =

√︄����𝑑𝐴(𝑧)𝑑Ω

���� (4.97)

where 𝑑𝐴 is the area of the object and 𝑑Ω is the solid angle. Thus, from (4.88), the GDE

in terms of the angular diametral distance is

𝑑2𝐷𝐴

𝑑𝑧2 + P(𝐻, ¤𝐻, 𝑧) 𝑑𝐷𝐴

𝑑𝑧
+ Q(𝐻, ¤𝐻, 𝑧)𝐷𝐴 = 0 (4.98)

where P and Q is given in (4.89) and (4.90). This equation satisfies the initial conditions

(for 𝑧 ≥ 𝑧0)

𝐷𝐴 (𝑧) |𝑧=𝑧0 = 0 (4.99)

𝑑𝐷𝐴

𝑑𝑧
(𝑧) |𝑧=𝑧0 =

𝐻0
𝐻 (𝑧0) (1 + 𝑧0)

(4.100)

where 𝐻 (𝑧0) is the modified Friedmann equation (4.86) at 𝑧 = 𝑧0.
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CHAPTER 5: CONCLUSION

In this dissertation, we have provided the differential geometric constructions of

Einstein’s general relativity. We also established an equivalence between the general

relativity and symmetry teleparallel gravity. We have shown the 𝑓 (𝑄) gravity field

equations in a form analogous to the EFE. The 𝑓 (𝑄) field equations is then applied to

calculate the Ricci tensor and Ricci scalar. By using the coincident gauge, the GDE in

𝑓 (𝑄) gravity with FLRW cosmology was shown. Moreover, the Friedmann equations

were modified using the 𝑓 (𝑄) field equations yielding a generalized Friedmann equations

describing a spatially flat Universe. Furthermore, we have focused on two particular

cases, the GDE for fundamental observers and the past-directed null vector fields in FLRW

universe. Within these cases, we have obtained the generalized Raychaudhuri equation, the

generalized Mattig relation, and the diametric angular distance differential for 𝑓 (𝑄) gravity

theory. In addition, the focusing condition for past-directed null geodesics for 𝑓 (𝑄) gravity

is investigated. Though we have been quite optimistic, there are many more viabilities and

obstacles that were not reviewed here. Thus, future work would include replacing 𝑓 (𝑄)

with 𝑓 (𝑄,𝑇) gravity theory, where the 𝑇 represents the trace of the energy-momentum

tensor, or considering the cosmology in anisotropic universe, often called the Bianchi

models.
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