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FERROPTOSIS-RELATED LONG NONCODING RNA SIGNATURE 
PREDICTSTHE PROGNOSIS OF CLEAR CELL RENAL  

CARCINOMA 

ABSTRACT 

Clear Cell Renal Cell Carcinoma (ccRCC) is very common and accounts for most kidney 

cancer deaths. While many studies are being conducted in finding the prognosis 

signatures of ccRCC, we believe that ferroptosis, that involves programmed cell death 

dependent on iron accumulation has therapeutic potential in ccRCC. Recent research 

showed that long noncoding RNAs (lncRNAs) have been shown to be involved in 

ferroptosis-related tumor processes and are closely related to survival in patients with 

ccRCC. Hence in this study we aim to further explore the role of ferroptosis-related 

lncRNAs (FRLs) in ccRCC, hoping to establish a signature to predict the survival 

outcome of ccRCC. Here we analyzed transcriptome data from The Cancer Genome Atlas 

database (TCGA) and ferroptosis-related genes (FRGs) from FerrDb to identify FRLs 

using Pearson’s correlation. Lasso Cox regression analysis and multivariate Cox 

proportional hazards models screened seventeen optimal FRLs for developing prognostic 

signatures. Kaplan–Meier survival curves and receiver operating characteristic (ROC) 

curves were then plotted for validating the sensitivity, specificity, and accuracy of the 

identified signatures. CIBERSORT algorithm were deployed to explore the role of these 

FRLs in tumor microenvironment (TME). It was concluded that these models 

demonstrate excellent performance in predicting prognosis among patients with ccRCC 

and which also indicated association with the clinicopathologic parameters such as tumor 

grade, tumor stage and tumor immune infiltration. In conclusion, our findings provide 

novel insights into ferroptosis-related lncRNAs in ccRCC which are important targets for 

investigating the tumorigenesis of ccRCC.  
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FERROPTOSIS-RELATED LONG NONCODING RNA SIGNATURE 
PREDICTSTHE PROGNOSIS OF CLEAR CELL RENAL  

CARCINOMA 

ABSTRAK 

Clear Cell Renal Cell Carcinoma (ccRCC) merupakan punca kematian dalam kebayakan 

kes barah buah pinggang. Walaupun banyak kajian sedang dijalankan untuk mencari 

“signature prognosis” ccRCC, kami percaya bahawa ferroptosis, yang melibatkan 

kematian sel yang diprogramkan bergantung pada pengumpulan besi mempunyai potensi 

untuk terapi dalam ccRCC. Penyelidikan terkini menunjukkan bahawa “long noncoding 

RNAs” (lncRNA) telah terbukti terlibat dalam proses tumor yang berkaitan dengan 

ferroptosis dan berkait rapat dengan jangka hidup pesakit dengan ccRCC. Oleh itu, kajian 

ini bertujuan untuk meneroka dengan lebih lanjut peranan lncRNA dalam ferroptosis-

related lncRNAs (FRLs) bagi ccRCC, untuk meramalkan jangka masa hidup pesakit 

ccRCC. Di sini kami menganalisa data transkrip dari pangkalan data The Cancer Genome 

Atlas (TCGA) dan gen yang berkaitan dengan ferroptosis (FRG) dari FerrDb untuk 

mengenal pasti FRL menggunakan korelasi Pearson. Analisis regresi Lasso Cox dan 

model “multivariate Cox proportional hazards” telah menyaring tujuh belas FRL 

optimum untuk mengembangkan “prognostic signatures”. Lengkung jangka hidup 

Kaplan–Meier dan lengkung “receiver operating characteristic” (ROC) dibina untuk 

mengesahkan kepekaan, pengkhususan, dan ketepatan “signature” yang dikenal pasti. 

Algoritma CIBERSORT digunakan untuk meneroka peranan FRL ini dalam persekitaran 

mikro tumor. Secara kesimpulannya, model-model ini menunjukkan prestasi yang sangat 

baik dalam meramalkan prognosis di kalangan pesakit dengan ccRCC dan yang juga 

menunjukkan kaitan dengan parameter “clinicopathologic” seperti gred tumor, tahap 

tumor dan “tumor immune infiltration”. Kesimpulannya, penemuan kami memberikan 
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pandangan baru mengenai lncRNA yang berkaitan dengan ferroptosis dalam ccRCC yang 

merupakan sasaran penting untuk menyiasat tumorigenesis ccRCC. 

Kata kunci: clear cell renal cell carcinoma, ferroptosis, long non-coding RNA, prognosis, 

biomarker 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Ferroptosis as a novel form of cell death was first proposed in 2012. It morphologically, 

biochemically, and genetically differs from other types of cell death such as apoptosis, 

autophagy, and necrosis (Dixon et al., 2012). A growing number of studies have revealed 

the emerging roles of aberrant ferroptosis in diverse cancer types and in cancer treatment 

(Mou et al., 2019). Long noncoding RNAs, regulating gene expression at transcriptional 

levels and translational levels, essentially involved in tumorigenesis and tumor metastasis 

(Jiang et al., 2019). Recent studies showed that long noncoding RNAs implicated in 

ferroptosis-related tumor process (Luo et al., 2021) and closely related to the survival of 

patients with ccRCC (Zhang et al., 2019b). Therefore, establishing a ferroptosis-related 

long noncoding RNAs signature was proposed to help predicting the prognosis of patients 

with clear cell renal cell carcinoma. 

1.2 Problem Statement 

1. The role of ferroptosis-related genes associated with long noncoding RNAs in

clear cell renal cell carcinoma remains unknown. Hence a research revealing the

relationship between ferroptosis-related long noncoding RNA and overall patient

survival is needed.

2. Few patients benefit from immunotherapy, treatment strategies still need to be

improved. Hence the tumor immune microenvironment of patients with clear cell

renal cell carcinoma should be further explored to determine effective biomarkers.
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1.3 Research Objectives 

This study uses a data science approach to establish FRLs in predicting the prognosis 

in ccRCC patients. The following are the specific objectives: 

1. To determine a robust ferroptosis-related long noncoding RNA signature for 

predicting overall survival of patients with clear cell renal cell carcinoma. 

2. To explore the tumor microenvironment of patients with clear cell renal cell 

carcinoma. 

 

1.4 Scope of Research  

Due to limited time, this research only focuses on constructing a ferroptosis-related 

long noncoding RNAs signature for predicting the overall survival of patients with clear 

cell renal cell carcinoma. The exploration of whether the signature is applicable to other 

cancer types such as liver cancer, lung cancer and so on is not included in this research 

work. 

 

1.5 Significant of Research 

The prognostication and treatment of patients with clear cell renal cell carcinoma are 

principally guided by tumor stage in recent years clinical practice (Ljungberg et al., 2015; 

Motzer et al., 2015). However, due to molecular heterogeneity, the outcomes are still 

different for patients with the same tumor stage (Molina et al., 2014). Therefore, 

identifying individualized biomarkers is of great significance. On one hand, it helps to 

identify patients at high risk of death. On the other hand, it helps to optimize treatment 

effect by stratifying patients for individual treatment.  
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1.6 Dissertation organization 

This dissertation consists of six chapters. In this chapter, research background, 

problem statement, research objectives, the scope of research, significance and the 

organization of the dissertation were discussed. 

Chapter two is literature review. It begins with the discussion of clear cell renal cell 

carcinoma, ferroptosis and long noncoding RNAs, followed by the relationship between 

ferroptosis and long noncoding RNAs and several relevant ferroptosis-related long 

noncoding RNAs signatures, tumor microenvironment and data science techniques were 

also presented before the chapter summary. 

Chapter three describes the methodology. It begins with the collection of the relevant 

data, data quality control, the identification of the ferroptosis-related lncRNAs, following 

by the development and validation of the ferroptosis-related lncRNA prognostic signature. 

Then, statistical analysis was presented in end of the chapter. 

 Chapter four presents the result of the research. The enrichment analysis of ferroptosis-

related, the result of Ferroptosis-related lncRNAs in ccRCC, the construction of 

ferroptosis-related lncRNAs signature, the validation process of the prognostic score, the 

Nomogram establishing and clinical utility of the risk score were presented in this chapter.  

 Chapter five is the discussion on the result and finding in the research. The research 

finding, analysis and the limitation of the research were presented. 

 Chapter six is the conclusion, and the last chapter, chapter seven is the reference list.  Univ
ers
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Mala

ya
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

The first part of this chapter is the discussion of clear cell renal cell carcinoma followed 

by ferroptosis and the role of long noncoding RNAs in cancer. The relationship between 

ferroptosis and long noncoding RNAs is demonstrated next. The relevant work about 

ferroptosis-related long noncoding RNAs signature were further discussed before the 

summary is presented. 

 

2.2 Clear cell renal cell carcinoma  

According to Sung et al. (2021), there are 431,288 new diagnostic cases and 179,368 

deaths in renal cell carcinoma (RCC) all over the world in 2020. Excess body weight, 

tobacco use, and hypertension are the major established risk factor for developing RCC 

(American Cancer Society, 2021). Although several therapeutic options such as surgery, 

partial nephrectomy, radical nephrectomy, targeted therapies and immunotherapy are 

available (Hsieh et al., 2017), the 5-year survival rate is only 13% if RCC has spread to a 

distant part of the body (American Cancer Society, 2021). One of the most common RCC 

is ccRCC which is responsible for approximately 70-75% of all renal cell carcinoma cases 

(Störkel et al., 1997). Moreover, each of these traditional options has limitations. Thus, it 

is urgent to identify potential valuable molecular biomarkers to improve the patient 

survival. Several of pathological and molecular prognosis biomarkers such as tumor size, 

histological subtypes and nuclear grade, can be used to predict overall survival (Lam et 

al., 2008). Clinical factors, particularly tumor stage, are the main predictable indicators 

of survival for most patients with ccRCC, but these factors do not predict accurately 

because of the molecular and genetic heterogeneity (Ljungberg et al., 2015; Motzer et al., 

2015). Therefore, identifying new prognostic biomarkers is one of the effective 
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approaches to improve patients’ prognosis. This will also help in the identification of 

patients that are at a greater risk of death situation. 

 

2.3 Ferroptosis 

2.3.1 The concept of ferroptosis 

There are three types of cancer cells deaths which are apoptosis, autophagy and 

necrosis during tumor treatment (Lu et al., 2018). Recently, ferroptosis, a new type of 

iron-dependent programmed cell death was first proposed by Dixon in 2012(Dixon et al., 

2012) . Ferroptosis is caused by the abnormal levels of iron, that is, iron overload triggers 

the abnormal activation of the mitochondrial oxidative phosphorylation pathway, 

meanwhile high levels of reactive oxygen species (ROS) are yielded when ATP is 

produced, then when ROS concentration surpass the clearance level of antioxidant 

systems, it can directly or indirectly destroy the structure and functions of cells by 

oxidizing unsaturated fatty acids and forming lipid peroxides. This kind of cell death is 

call ferroptosis. it is securely related to glutathione (GSH) metabolism, iron metabolism, 

and lipid peroxidation. Thus, transferrin receptor 1 (TFR1), ferritin, cystine/glutamic acid 

reverse transporter (system Xc-), glutathione peroxidase 4 (GPX4), and lipoxygenase are 

involved in the occurrence of ferroptosis (Xie & Guo, 2021). 

 

2.3.2 The role of ferroptosis in cancer 

Due to the importance of ferroptosis in cell death, recent studies have begun to unravel 

the role of ferroptosis genes in cancer survival and cell death. Interestingly, p53, a key 

tumor suppressor that contains homozygous mutations in ~50–60% of human cancers has 

been reported to induce ferroptosis (Baugh et al., 2018; Jiang et al., 2015). It was also 

reported that ferroptosis could potentially contribute to the tumor-suppressive activity of 

p53 (Jiang et al., 2015).  Sensitivity profiling in 177 cancer cell lines showed that GPX4 
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is the key ferroptosis regulator in diffusing large B cell lymphomas and renal cell 

carcinomas  (Yang et al., 2014).  A recent study on ferroptosis by Li et al. (2020a) 

indicated that ferroptosis was induced in pancreatic cancer, hepatocellular carcinoma, 

gastric cancer, colorectal cancer, breast cancer, lung cancer and clear cell renal cell 

carcinoma. Another study by Eling et al. (2015) demonstrated that artesunate (ART) 

induces ROS production and stimulates ferroptosis in pancreatic ductal adenocarcinoma 

cell lines. Based on aforementioned studies, it is very likely that ferroptosis may offer 

potential therapeutic options in tumor therapy. Evidence also shows that a number of 

ferroptosis inducers can effectively kill tumor cells in various preclinical animal 

experiments    (Hassannia et al., 2019; Stockwell & Jiang, 2020). Hence, ferroptosis-

inducing agents show potential as novel therapeutic for the tumor treatments. A recent 

study discovered that immunotherapy-activated CD8+ T cells improved the ferroptosis-

specific lipid peroxidation in cancer cells, and these improved ferroptosis was essential 

in enhancing the immunotherapy efficacy (Wang et al., 2019). Therefore, the mechanism 

of T cell-stimulated tumor ferroptosis may provide a new therapeutic approach for 

treating cancer.  

 

2.4 The role of long noncoding RNAs in cancer 

Long noncoding RNA is receiving more and more attention in current cancer research. 

It is defined as RNAs longer than 200 nucleotides that could mediate gene regulation 

through binding with DNA, RNA, or proteins and then measure tumor progression, 

recurrence, and metastasis (Hauptman & Glavač, 2013). lncRNAs function as key 

modulator, participating in chromatin organization, transcription, post-translational 

regulation such as mRNA splicing  (Choudhari et al., 2020) and regulating signaling 

pathways including p53, NF-κB, PI3K/AKT and Notch (Peng et al., 2017). More 

importantly, lncRNAs play significant roles in biological process such as tumor 
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carcinogenesis promotion and inhibition, drug resistance and cancer metastasis (Du et al., 

2020). 

A lot of studies have shown that lncRNA involved in cancer initiation and/or 

progression. For example, dysregulated lncRNAs play a key role in tumor suppressive 

and oncogenic function in thyroid cancer cells and circulating blood lncRNA have great 

potential as biomarker to detect thyroid cancer(Sedaghati & Kebebew, 2019). Studies by 

Yang and Deng (2014); Zou et al. (2015) revealed that lncRNAs participated in the 

modulation of cell proliferation, differentiation, migration and invasion in head and neck 

cancer by functioning as oncogenes and tumor suppressors. Other studies also confirmed 

that dysregulation of lncRNA implicated in glioblastoma, breast cancer, colorectal cancer, 

liver cancer and leukemia (Fang & Fullwood, 2016). Interestingly, in clear cell renal cell 

carcinoma, lncRNA MIR4435-2HG facilitate the malignant progression via miR-513a-

5p/KLF6 axis (Zhu et al., 2020). lncRNA SNHG16 promotes migration and invasion by 

inhibiting CDKN1A (Liu et al., 2020). However, lncRNA lnc-DILC inhibit the tumor 

progression (Zhang et al., 2019a). 

Recent works by many investigators have shown that lncRNA is strongly linked to 

various cancer development and can be effectively detected, thereby lncRNAs may be a 

novel class of cancer biomarkers (Bolha et al., 2017). For instance, Zhong et al. (2017) 

established a six-lncRNA model predicting the clinical outcome of ER-positive breast 

cancer patients by analyzing lncRNA expression profiles of more than 600 patients from 

TCGA. Chen et al. (2017) used differential expression analysis and functional analysis to 

obtain a novel four-lncRNA signature which provided a reliable theoretical basis of 

molecular mechanisms of gliomas. Moreover, Zhang et al. (2019b) found an 11-lncRNA 

signature indicating the potential biochemical functions of 11 selected lncRNAs in 

ccRCC and demonstrated LINC00488 and HOTTIP promote tumour proliferation. 
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2.5 The relationship between ferroptosis and long noncoding RNAs 

Several studies have reported that lncRNA is important for regulating ferroptosis. A 

research by Wang et al. (2019) demonstrated that lncRNA LINC00336 serves as a 

competing endogenous RNA to inhibit ferroptosis in lung cancer. Similarly, a research 

by Lu et al. (2020) revealed that lncRNA PVT1 regulated ferroptosis via miR-

214/TFR1/TP53 axis. In recent research, Ma et al. (2021) proved that silencing lncRNA 

MEG8 induces the ferroptosis and inhibits the proliferation of hemangioma endothelial 

cells by regulating miR497-5P/NOTCH2 pathway. Wu and Liu (2021) explained that 

targeting long noncoding RNA NEAT1 or ACSL4 may be a viable treatment for non-

small-cell lung cancer by proving that NEAT1 regulates ferroptosis and regulates 

ferroptosis sensitivity based on ACSL4. To date, what is not yet clear is the impact of 

FRLs from sequence data on the overall survival in ccRCC patients. 

 

2.6 The relevant work about ferroptosis-related long noncoding RNAs signature 

Several ferroptosis-related lncRNAs signatures have been developed. For instance, Cai 

et al. (2021) constructed a signature consisting of seven ferroptosis-related lncRNAs 

(LINC01503, AC004687.1, AC010973.2, AP001189.3, ARRDC1-AS1, OIP5-AS1, and 

NCK1-DT) for colon cancer to provide individualized predictions for patients’ prognosis. 

Tang et al. (2021) revealed a signature based on 25 ferroptosis-related lncRNAs impacts 

on the prognosis of head and neck squamous cell carcinoma and the signature as well as 

tumor stage are independent prognosis factors of overall survival. Interestingly, Chen et 

al. (2021a) found a signature comprising 20 lncRNAs have potential to be diagnostic and 

prognostic biomarkers for gastric cancer. Study by Zheng et al. (2021) constructed a 

model involving 10 ferroptosis-related lncRNAs that associated with the immune 

response, providing novel insights into finding new therapies for lung adenocarcinoma.  
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2.7 Tumor microenvironment 

The characteristics of the tumor microenvironment seriously influence the body of the 

disease as well as influence the systemic therapy response (Vuong et al., 2019). Tumor 

microenvironment is comprised of cancer stem cells, cancer-associated endothelial cells, 

cancer-associated fibroblasts and infiltrated immune cells, all of which are involved in 

complex crosstalk with tumor cells, thus influencing tumor progression. Various 

infiltrated immune cells work together to help cancer cells escape immune surveillance 

by acting as an important part of TME, thereby forming a tumor-promoting 

microenvironment for proliferation and metastasis of cancer cells (Zhou et al., 2020). 

ccRCC has been confirmed to be a highly immune infiltrated tumor based on multiple 

clinical and genomic studies  (Şenbabaoğlu et al., 2016). Growing numbers of studies 

highlighted TME in relevant research of ccRCC due to its important role in immune 

surveillance. For instance, Xu et al. (2019) used ESTIMATE algorithm to reveal the 

correlation of TME and ccRCC prognosis and precision immunotherapy. Pan et al. (2020) 

found that dendritic cells resting, dendritic cells activated, mast cells resting, mast cells 

activated, and eosinophils were correlated with favorable prognosis, whereas B cells 

memory, T cells follicular helper and T cells regulatory (Tregs) were related to poorer 

outcome by integrating gene expression profiles of ccRCC from TCGA and GEO. 

2.8 Data Science Techniques  

2.8.1 Statistics 

 Principal Component analysis is a widely used technique which increase 

interpretability but minimize information loss for dimensionality reduction of 

datasets(Jolliffe & Cadima, 2016). It is a crucial step for genomic data performing quality 

control. Benjamini & Hochberg method is a practical and powerful procedure to control 

the false discovery rate(Benjamini & Hochberg, 1995). It is popular applied for 

identifying differentially expressed genes in bioinformatics. The Kaplan-Meier curve 

with log- rank test was often used to estimate the probability of survival since the log-
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rank test is considered a nonparametric test and makes no assumptions about the shape of 

the survival curve(Koletsi & Pandis, 2017). There are a lot of studies have adopted log-

rank test to compare the OS between the high-risk and low risk groups. For example, Wu 

et al. (2020b) and He and Zuo (2019) used log-rank test to assess survival difference 

between high-risk and low-risk groups. Pearson correlation coefficient is a measure of 

the strength of statistical relationship or association(Schober et al., 2018). It is widely 

used in measuring how strong a relationship between two variables. For instance, Zhang 

et al. (2021b) used Pearson correlation to investigate autophagy-related lncRNAs 

between lncRNAs and autophagy-related genes setting criteria of correlation coefficient  > 

0.3 and P < 0.001. Another work by Wang et al. (2021) screen out 765 immune-related 

lncRNAs using Pearson correlation for establish an immune-related lncRNA risk model. 

 

2.8.2 Data Science  

 CIBERSORT algorithm is a computational approach that identify Cell-type by 

estimating relative subsets of RNA transcripts. It can accurately calculate the relative 

fractions of diverse cell subsets in gene expression profiles of complex tissues(Newman 

et al., 2015).  In malignant tumors, the level of infiltrating immune cells is closely related 

to tumor growth, progression and patient outcome(Hanahan & Weinberg, 2011). Thereby 

it is popular to use CIBERSORT algorithm to explore the infiltration pattern of immune 

cells in tumor microenvironment. For example, Wu et al. (2020a) extracted infiltrating 

percentage of 22 immune cells from 27 normalized datasets of prostate cancer, the result 

show that infiltrating M1 macrophages and neutrophils are associated with the prognosis 

of patients and supported that M1 macrophages and neutrophils could be potential targets 

for patient’s diagnosis and prognosis of treatment. Another work by Mo et al. (2020) 

focused on using CIBERSORT algorithm to investigate the correlation between signature 

and immune cells, suggesting that  memory activated CD4+ T cell and M0 macrophages 

had a significant infiltration in high-risk group patients. 
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2.9 Summary 

Form the literature review we found that lncRNA is of great value in cancer research 

as it is strongly related to cancer development. Ferroptosis as a new form of cell death 

provide a new direction for cancer treatment. The signature based on ferroptosis-related 

lncRNAs for predicting prognosis of patients have been established for colon cancer, head 

and neck squamous cell carcinoma, gastric cancer, and lung adenocarcinoma but ccRCC. 

In this study we aim to develop a FRLs- based signature for predicting prognosis of 

ccRCC patients and explore the role of the signature in tumor microenvironment (TME).  
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CHAPTER 3: MATERIALS AND METHODS  

3.1 Introduction 

 This chapter describes the methodology. It begins with the collection of relevant data, 

data quality control, identification of the ferroptosis-related lncRNAs, following by the 

development and validation of the ferroptosis-related lncRNA prognostic signature. Then, 

gene set enrichment and statistical analysis was presented in the end of the chapter. The 

specific flowchart of our study is displayed in Figure 1. 

 

Figure 1: The flowchart of research 
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3.2 Data collection 

The level 3 RNA-Seq transcriptome data of patients with ccRCC and clinically 

relevant data were downloaded from The Cancer Genome Atlas (TCGA) GDC data portal 

(https://portal.gdc.cancer.gov/). The data comprised of 539 tumor samples and 72 

normal samples.  

The Genome Reference Consortium Human Build 38 (GRCh38) annotation file for 

long noncoding RNA was derived from the GENCODE website 

(https://www.gencodegenes.org/human/). 14086 lncRNAs were identified in the TCGA 

dataset according to the Ensemble IDs. 259 ferroptosis-related genes (Driver: 108; 

suppressor: 69; marker: 111) were obtained from FerrDb (Zhou & Bao, 2020), a database 

that provide comprehensive information of ferroptosis regulators and markers and 

ferroptosis-disease associations. Immune infiltration data was derived from CIBERSORT 

(https://cibersort.stanford.edu/) which include 22 types of tumor-infiltrating immune cells, 

referring to B cells naive, B cells memory, Plasma cells, T cells CD8, T cells CD4 naive, 

T cells CD4 memory resting, T cells CD4 memory activated, T cells follicular helper, T 

cells regulatory (Tregs), T cells gamma delta, NK cells resting, NK cells activated, 

Monocytes, Macrophages M0, Macrophages M1, Macrophages M2, Dendritic cells 

resting, Dendritic cells activated, Mast cells resting, Mast cells activated, Eosinophils, 

and Neutrophils, as mentioned in Zhang et al. (2021a). 

 

3.3 Data quality control 

 Patients with incomplete recording of clinical information including age, gender, 

tumor grade, tumor stage and survival or OS < 30 days were excluded. We used Principal 

Component Analysis (PCA) to conduct data quality control. It can be obviously observed 

that one sample is abnormal by drawing PCA plot (Figure 2A). Then abnormal sample 

was removed, and the tumor samples and normal samples are seen clearly separated 
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(Figure 2B). After data cleaning, 501 patients were selected for further analysis. The 

clinical characteristics of patients are displayed in Table S1.  

 
Figure 2: PCA plot for quality control. 

 

3.4  Identification of ferroptosis-related lncRNAs 

 The Limma package (Ritchie et al., 2015) was adopted for recognizing significant 

differential expressed ferroptosis-related genes (FRGs) and differential expressed 

lncRNAs (DELs) between ccRCC tissues and healthy tissues according to log2FC. 

Subsequently, biological pathways associated with FRGs were assessed using 

“clusterProfiler” package (Yu et al., 2012) to perform Gene ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG), with the inclusion criteria of P value < 

0.05 and q value <0.05. 

Co-expression analysis was then performed between FRGs and DELs based on 

Pearson correlation analysis. Following the study by Liang et al. (2021), a cut-off of 

Pearson correlation coefficient > 0.3 and P value < 0.001 for lncRNA was perceived as 

FRL. 
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3.5  Development and validation of the ferroptosis-related lncRNA prognostic 
signature 

We first screened prognosis-related lncRNAs (P value < 0.001) by univariate cox 

regression analysis. The 501 patients were first randomly stratified into training and 

validation (1st validation) dataset at the ratio of 5:5 using the “caret” package (Kuhn, 

2020). Subsequently, these 501 patients were then randomly divided into two validation 

datasets (2nd and 3rd validation dataset at the ratio of 7:3). The training and validation 

datasets were used for constructing and testing the FRL-related prognostic risk signature, 

respectively. All the FRLs were used in the subsequent least absolute shrinkage and 

selection operator (Lasso) analysis. After filtrating by Lasso analysis, a risk model from 

the selected lncRNAs was constructed by multivariate Cox proportional hazards model. 

The coefficients obtained from multivariate Cox proportional hazards model were utilized 

to produce the following risk score (RS) equation: RS = coefficient a ´ expression level 

of lncRNA a + coefficient b ´ expression level of lncRNA b + …… + coefficient n ´ 

expression level of lncRNA n. Based on this equation, the RS per ccRCC patient was 

independently calculated in the training dataset and validation datasets. Finally, the 

ccRCC patients were assigned to high- and low-risk groups by the median value of the 

RS. 

Kaplan–Meier survival curves were used to assess the predictive power of the FRLs 

using “survival” package (Therneau & Grambsch, 2000) and “survminer” (Kassambara 

et al., 2021) package. To evaluate the predictive accuracy of the FRLs, receiver operating 

characteristic (ROC) curve and area under the ROC curve (AUC) were computed by 

“survivalROC” package (Heagerty & Saha-Chaudhuri, 2013). Univariate and 

multivariate analysis were implemented to verify the independent prognostic factor. 

Nomogram was further established by package “rms” (Jr, 2021), for predictive of the 

probable 1-, 3-, and 5-year survival of the ccRCC patients. To further examine the effect 
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of the signature on the tumor immune microenvironment (TME) of ccRCC, we estimated 

the immune infiltrate level between high- and low-risk groups. 

  

3.6 Statistical Analysis 

Data was processed using Bioconductor packages in R software (version 4.0.5, 

http://www.R-project.org) in our study. PCA was applied to data quality control in our 

study. Benjamini & Hochberg method was used to identify the differently expressed 

FRGs and DELs, based on FDR. The sensitivity and specificity of FRLs-based prognostic 

signature compared with other clinicopathological characteristics was evaluated using 

ROC curve. The Kaplan–Meier method and log- rank test was used to compare the OS 

between the high-risk   and low-risk groups. Pearson correlation test was used to identify 

FRLs. Clinicopathological characteristics were compared within the training and 1st 

validation datasets, 2nd and 3rd validation dataset, using the Chi-square test.  
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CHAPTER 4: RESULTS 

4.1 Introduction 

Chapter four is the result of the research. The enrichment analysis of ferroptosis-

related, the result of Ferroptosis-related lncRNAs in ccRCC, the construction of 

ferroptosis-related lncRNAs signature, the validation process of the prognostic score, the 

Nomogram establishing and clinical utility of the risk score and the gene set enrichment 

analysis were presented in this chapter.   

 

4.2 Enrichment analysis of ferroptosis-related genes 

According to the criteria of |log2FC|>1 and FDR<0.05, we found 77 FRGs (37 

upregulated and 40 downregulated) (Table S2). Through the KEGG analysis, the FRGs 

were mainly involved in HIF-1 signaling pathway, MicroRNA in cancer, Ferroptosis, PD-

L1 expression and PD-1 checkpoint pathway in cancer, IL-17 signaling pathway, renal 

cell carcinoma, pancreatic cancer, bladder cancer (Figure 3A; Table S3). Biological 

Process (BP) regulated response to oxidative stress, cellular response to chemical stress 

and reactive oxygen species metabolic process. Cellular Component (CC) mainly 

participated in apical part of cell, organelle outer membrane and basolateral plasma 

membrane. Molecular Function (MF) was enriched in iron ion binding, ferric iron binding 

and oxidoreductase activity, acting on NADPH (Figure 3B; Table S3). 
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Figure 3: KEGG and GO analysis for FRGs. (A) KEGG and (B) GO. 

 

4.3  Ferroptosis-related lncRNAs in ccRCC 

956 DELs were uncovered by setting the cutoff of |log2FC|>2 and FDR<0.05. DELs 

were displayed in volcano plot via package “ggplot2” (Wickham, 2016) (Figure 4A). 

Among these FRGs and DELs, 688 FRLs were confirmed by co-expression analysis 

(Pearson correlation coefficient > 0.3 and P value < 0.001) (Figure S1). 

 
Figure 4: Volcano plot displaying the differentially expressed lncRNAs between 
ccRCC and normal tissue samples where upregulated lncRNAs are represented by 
red dots, downregulated represented by green dots and black dots represents 
lnRNAs with insignificant difference. 
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4.4  Construction of ferroptosis-related lncRNAs signature 

Univariate cox regression analysis was fulfilled for FRLs, and the result showed that 

140 lncRNAs were significantly associated with the OS of ccRCC (P < 0.001) (Figure 

S2). 

To further explore the prognostic predictive effect of the lncRNA in ccRCC patients, 

we conducted the LASSO regression analysis and multivariate Cox proportional hazards 

model on 140 lncRNAs in the training cohort. Initially, the lncRNAs expression data was 

merged with survival data of each patient. The baseline clinicopathological features of 

the training cohort and three validation cohorts, were summarized in Table 1A and Table 

1B, separately. There is no statistical difference in clinical characteristics (age, gender, 

grade, stage) among the different cohorts, with P > 0.05. The prognostic risk signature 

was established using the training dataset and was validated using three validation 

datasets. The Lasso regression analysis was first utilized to identify the most significant 

lncRNAs by selecting the optimal penalty parameter l correlated with the minimum 10-

fold cross-validation (Figure 5A and B). The Multivariate Cox Regression model further 

yielded seventeen optimal prognostic FRLs (Figure 5C). Among them, 10 lncRNAs 

(AC008742.1, AC010980.2, AC011700.1, AC084876.1, AC090337.1, AC139491.2, 

LINC01271, MANCR, PRKAR1B−AS1, TMEM246−AS1) are risk factors, 7 lncRNAs 

(AC004066.1, AC005722.3, AC007406.3, AC093583.1, AL928921.1, LINC02073, 

PSORS1C3) are protective factors, as shown in the Sankey diagram (Figure 5D), which 

reveal the association between prognostic FRLs, ferroptosis-related genes, and risk types. 

The RS equation was calculated as: RS = (-0.1779 ´ AL928921.1 expression) + (0.1840 

´ AC011700.1 expression) + (0.1974 ´ AC008742.1 expression) – (0.2883 ´ 

AC007406.3 expression) + (0.1428 ´ AC090337.1 expression) + (0.2899 ´ LINC01271 

expression) – (0.2070 ´ AC005722.3 expression) + (0.2169 ´ PRKAR1B-AS1 

expression) – (0.1990 ´ AC004066.1 expression) + (0.1480 ´ MANCR expression) – 
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(0.1458 ´ AC093583.1 expression) – (0.1822 ´ PSORS1C3 expression) + (0.3154 ´ 

AC084876.1 expression) + (0.1754 ´ AC010980.2 expression) – (0.1401 ´ LINC02073 

expression) + (0.1127 ´ AC139491.2 expression) + (0.3129 ´ TMEM246-AS1 

expression). As shown in Figure 6, the distribution of the RS, OS status, and expression 

profiles of the signature based on 17 FRLs was displayed in the training and validation 

cohorts. In the training cohort, the high-risk groups had evidently higher value of risk 

score (Figure 6A) and lower survival rate (Figure 6B). Moreover, with the risk score 

increasing, the expression of protective lncRNA (AL928921.1, AC007406.3, 

AC005722.3, AC004066.1, AC093583.1, PSORS1C3, LINC02073) decreased, whereas 

those of risk lncRNA (AC011700.1, AC008742.1, AC090337.1, LINC01271, 

PRKAR1B-AS1, MANCR, AC084876.1, AC010980.2, AC139491.2, TMEM246-AS1) 

increased（Figure 6C）. Similar results were obtained in 1st validation (Figure 6D, 6E, 

6F), 2nd validation (Figure 6G, 6H, 6I), 3rd validation (Figure 6J, 6K, 6L) cohorts. 
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Table 1: The baseline clinicopathological features for training dataset and 1st 
validation dataset (A), 2nd validation dataset and 3rd validation dataset (B). 
Covariates Type Total Test Train P value 

Age 
<=65 332(66.27%) 103(69.13%) 229(65.06%) 0.4368 

>65 169(33.73%) 46(30.87%) 123(34.94%)   

Gender 
Female 172(34.33%) 49(32.89%) 123(34.94%) 0.7336 

Male 329(65.67%) 100(67.11%) 229(65.06%)   

Grade 
Grade 1-2 228(45.51%) 69(46.31%) 159(45.17%) 0.892 

Grade 3-4 273(54.49%) 80(53.69%) 193(54.83%)   

Stage 
Stage I-II 304(60.68%) 89(59.73%) 215(61.08%) 0.8553 

Stage III-IV 197(39.32%) 60(40.27%) 137(38.92%)   

(A) 
Covariates Type Total Test Train P value 

Age 
<=65 332(66.27%) 172(69.08%) 160(63.49%) 0.2197 

>65 169(33.73%) 77(30.92%) 92(36.51%)   

Gender 
Female 172(34.33%) 76(30.52%) 96(38.1%) 0.0909 

Male 329(65.67%) 173(69.48%) 156(61.9%)   

Grade 
Grade 1-2 228(45.51%) 115(46.18%) 113(44.84%) 0.8319 

Grade 3-4 273(54.49%) 134(53.82%) 139(55.16%)   

Stage 
Stage I-II 304(60.68%) 155(62.25%) 149(59.13%) 0.5327 

Stage III-IV 197(39.32%) 94(37.75%) 103(40.87%)   
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Figure 5: (A) Partial likelihood deviance for tuning parameter selection in the Lasso 
analysis in the training dataset. (B) Lasso coefficient profiles in the Lasso analysis in 
the training dataset. (C) The Hazard Ratio (HR) value and its 95% confidence 
interval with associated p-value of the multivariate Cox proportional hazards model 
were showed in the forest plot. HR >1 represents the high expressions of lncRNA 
were unfavourable for prognosis, HR <1 indicates the high expressions of lncRNA 
were favourable for prognosis. (D) The Sankey diagram showed the association 
between prognostic FRLs, ferroptosis-related genes, and risk types. The lncRNAs 
linked to red is protective lncRNAs, linked to dark purple represents risk lncRNAs. Univ
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Figure 6: The RS distribution, survival status, and lncRNA expression in the 
datasets. (A, B, C) Training dataset, (D, E, F) 1st validation dataset, (G, H, I) 2nd 
validation dataset, and 3rd validation dataset (J, K, L). 

 

4.5  Validation of the prognostic score 

To assess the prognostic prediction accuracy of the signature, we performed ROC in 

the training dataset and validation datasets. As presented in Figure 7A to D, the 3- and 5-

year survival rates were 0.829 and 0.851 in the training dataset and were 0.751 and 0.755 
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in the 1st validation dataset, the AUCs for the 3- and 5-year survival prediction were 

0.751 and 0.755. Similar trend was found in the 2nd validation dataset (Figure 7E, F) and 

3rd validation dataset (Figure 7G, H). These results showed that our signature had an 

excellent performance for the prognosis of patients with ccRCC. The survival analysis 

was also performed for training dataset and validation datasets.  

The Kaplan–Meier curve in the training dataset revealed poorer survival in the high-

risk group than in the low- risk group (p < 0.001) (Figure 7I). Likewise, the same tendency 

was discovered in the validation datasets with all P value < 0.001(1st validation dataset: 

Figure 7J; 2nd validation dataset: Figure 7K; 3rd validation dataset: Figure 7L). Taken 

together, the results showed that the RS based on the prognostic risk signature could 

accurately indicate the prognosis of ccRCC patients. 
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Figure 7: Kaplan–Meier curves of overall survival for the high-risk and low-risk 
groups and ROC curve for 3- and 5-year for predicting survival in the datasets. 
(A)(B) ROC for 3- and 5 -year in the training dataset. (C)(D) ROC for 3- and 5 -year 
in the 1st validation dataset. (E)(F) ROC for 3- and 5 -year in the 2nd validation 
dataset. (G)(H) ROC for 3- and 5 -year in the 3rd validation dataset. (I) The training 
dataset. (J) 1st validation dataset. (K) 2nd validation dataset. (L) 3rd validation dataset. 

 
To determine the prognostic values of the RS and various clinicopathological factors 

in ccRCC, uni- and multi- Cox regression analyses were performed on each cohort. Uni-

analysis indicated that age (p = 0.004), stage (p < 0.001) and risk score (p < 0.001) have 

significant effect on the OS in the training cohort (Figure 8A). Subsequently, these factors 

were also included into multi-Cox regression analysis, which further confirm age (p = 

0.014), stage (p < 0.001) and risk score (P < 0.001) as independent prognostic factors 

(Figure 8B). Simultaneously, the same tendency was acquired in the three validation 

ohorts (Figure 8C-H). 
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Figure 8: Forest plots of the univariate and multivariate Cox regression analysis 
indicated that the RS, age and stage were independent risk factor for OS in the 
training dataset (A, B), 1st validation dataset (C, D), 2nd validation dataset (E, F) and 
the 3rd validation dataset (G, H). 
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4.6  The Nomogram Establishing and Clinical utility of the Risk Score 

For studying the 1-, 3-, and 5-year prognosis of the patients with ccRCC, a nomogram 

was plotted using the training dataset by integrating the independent prognostic factors 

(age, stage, risk score) (Figure 9A). Interestingly, the same tendency was acquired in the 

validation dataset (Figure S3). Using the nomogram, the 1-, 3-, and 5-year survival rates 

could be predicted by the corresponding value of total points based on the independent 

prognostic factors (Zhang et al., 2021a). 

 
Figure 9: (A) A nomogram plot was built to qualify risk assessment for ccRCC 
patients. (B) Relationships between the risk score and tumor stage in clear cell renal 
carcinoma. (C) Relationships between the risk score and tumor grade in clear cell 
renal carcinoma. 
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AC010980.2, AC139491.2, TMEM246-AS1), RS, and clinicopathologic features (age, 

gender, grade, stage) (Table 2). The RS was found distinctly higher in advanced-stage 

tumor and higher-grade tumor (Figure 9B, C). the Same tendency were acquired in the 

validation cohorts (Table S4, Figure S4). This finding provides for that the risk score 

based on our signature can also reflect tumor progression. 

In order to further explore the prognostic value of the 17 lncRNAs, the Kaplan Meier 

curve was plotted to confirm the relationship between these lncRNAs and OS. In our 

analysis, a total of 11 of the 17 lncRNAs (LINC01271, AC010980.2, AC011700.1, 

MANCR, AC008742.1, AC084876.1, AC090337.1, AC093583.1, LINC02073, 

AL928921.1, AC004066.1) were identified. The results indicated that the 11 ferroptosis-

related lncRNAs were correlated to the OS in ccRCC patients (Figure 10). 

 

Figure 10: Validation the prognostic value of these 17 ferroptosis-related lncRNAs 
in clear cell renal cell carcinoma by Kaplan Meier curve. 
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Table 2: Association of the RS and the risk genes with clinical factors in ccRCC. 

lncRNA 
Age(<=65/>65
) 

Gender(Femal
e/Male) 

Grade(1&2/3
&4) 

Stage (I-II/III-
IV) 

AC011700.1 -1(0.318) -0.862(0.390) -0.629(0.530) -0.551(0.582) 

AC008742.1 0.199(0.843) 1.234(0.219) -0.789(0.431) -1.755(0.081) 

AC090337.1 -0.237(0.813) 1.013(0.312) -0.032(0.975) -2.74(0.007) 

LINC01271 -0.249(0.804) -0.286(0.775) -3.26(0.001) 

-3.99(8.877e-

05) 

PRKAR1B-

AS1 -0.493(0.623) -2.477(0.014) -0.819(0.414) 

-4.076(6.363e-

05) 

MANCR 0.424(0.672) -2.868(0.005) -2.277(0.024) -3.134(0.002) 

AC084876.1 -1.76(0.080) 1.475(0.141) -3.03(0.003) -2.891(0.004) 

AC010980.2 -0.904(0.367) 0.592(0.555) 

-3.871(1.384e-

04) 

-3.893(1.388e-

04) 

AC139491.2 -0.867(0.387) -1.227(0.221) -1.338(0.182) -1.111(0.268) 

TMEM246-

AS1 -0.353(0.725) 

3.613(3.908e-

04) 1.825(0.069) 1.325(0.186) 

riskScore -1.366(0.174) 0.828(0.409) -2.46(0.015) 

-4.407(2.527e-

05) 
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We also evaluated the relationship between the RS and immune cell infiltration. At 

first, the immune landscape of all the samples was plotted (Figure 11A). Next, the number 

of immune cells which showed significant difference between the low- and high-risk 

groups were identified. Ten types of immune cells were identified with differences in 

infiltration between the two groups, namely, Plasma cells, T cells follicular helper, Tregs, 

Monocytes, Macrophages M0, Dendritic cells resting, Dendritic cells activated, Mast 

cells resting, Mast cells activated, Eosinophils (Figure 11B). 

 

Figure 11: (A) The immune landscape of all ccRCC patients included in this study. 
(B) Relationships between the risk score and the immune cell infiltration in ccRCC 
patients. (A) The immune landscape of all ccRCC patients included in this study. (B) 
Relationships between the risk score and the immune cell infiltration in ccRCC 
patients. 
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CHAPTER 5: DISCUSSION AND CONCLUSION 

For decades, the diagnosis and treatment in ccRCC patients was still based on 

clinicopathological factors (Ljungberg et al., 2015; Motzer et al., 2015). While patients 

may have similar clinical characteristics, the therapeutic effect and the prognosis of them 

has a massive gap. Hence, in this study, we explored the various techniques available in 

the data science to predict prognosis of ccRCC using ferroptosis-related lncRNAs as 

potential biomarkers. To the best of our knowledge, this is the first study that attempted 

to predict prognosis signatures of ccRCC based on FRLs. 

This study was inspired by Lu et al. (2018) who highlighted the importance of further 

research in ferroptosis and its mechanism with regard to diagnosis of cancers. As 

aforementioned ferroptosis has been known to be involved in the progression of ccRCC 

(Li et al., 2020a). This is confirmed in our study which revealed 77 differential expressed 

ferroptosis-related genes. GO analysis show that most of the FRGs in Biological Process 

(BP) regulated response to oxidative stress, cellular response to chemical stress and 

reactive oxygen species metabolic process. Cellular Component (CC) mainly participated 

in apical part of cell, organelle outer membrane and basolateral plasma membrane. 

Molecular Function (MF) was enriched in iron ion binding, ferric iron binding and 

oxidoreductase activity, acting on NADPH. KEGG further revealed most of the FRGs 

participated in HIF-1 signaling pathway, MicroRNA in cancer, Ferroptosis, PD-L1 

expression and PD-1 checkpoint pathway in cancer, IL-17 signaling pathway, renal cell 

carcinoma, pancreatic cancer, bladder cancer. A recent study by Li et al. (2020b) 

demonstrated that the achievement of FG-4592 (an inhibitor of prolyl hydroxylase of HIF) 

pretreatment is mainly based on decreasing ferroptosis at the early stage of FA-induced 

kidney injury via Akt/GSK-3β-mediated Nrf2 activation. Tang et al. (2020) reported that 

the IL-17 signaling pathway is a potential target affected by erastin (ferroptosis inducer), 
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which indicated that the ferroptosis inducer erastin may be regarded as a potential agent 

of cancer immunotherapy. 

Several research have reported that lncRNAs play diverse roles in cancer (Carlevaro-

Fita et al., 2020; Schmitt & Chang, 2016). For example, LncRNA BX357664 regulates 

cell proliferation through regulating TGF-b1/p38/HSP27 axis in RCC (Liu et al., 2016). 

LncRNA SNHG11 facilitates tumor metastasis by interacting with and stabilizing HIF-

1α (Xu et al., 2020). LncRNA HANR promotes tumorigenesis in hepatocellular 

carcinoma (Xiao et al., 2017). In this study, we identified 956 DELs in ccRCC. In 

accordance with the present results, our studies demonstrated that lncRNAs are strongly 

associated with the malignancy in ccRCC. Moreover, lncRNAs have been reported to 

have important roles in ferroptosis. Mao et al. (2018) illustrated that lncRNA P53RRA 

can directly interact with the functional domain of signaling proteins in the cytoplasm, 

thereby modulating p53 modulators to suppress cancer progression. Yang et al. (2020) 

reported that silencing of lncRNA ZFAS1 attenuated ferroptosis by functioning as 

ceRNA. In our study, we implemented a co-expression analysis among FRGs and DELs, 

thus 688 lncRNAs were identified as FRLs. The result showed strong link between FRGs 

and FRLs in ccRCC samples, suggesting that FRLs are related to the tumorigenicity of 

ccRCC. 

Seventeen lncRNA out of all FRLs, referring to AC008742.1, AC010980.2, 

AC011700.1, AC084876.1, AC090337.1, AC139491.2, LINC01271, MANCR, 

PRKAR1B−AS1, TMEM246−AS1, AC004066.1, AC005722.3, AC007406.3, 

AC093583.1, AL928921.1, LINC02073, PSORS1C3, associated with prognosis 

independently and hence were used as the prognostic signature. ROC curve (AUC at 3 

years:0.829; AUC at 5 years:0.851) in training dataset and in three validation datasets 

with similar results confirmed excellent specificity and sensitivity of our prognostic 

signature. Survival curves with p value < 0.001 in each dataset exhibited good efficacy 
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of our signature in stratifying patients into high and low risk of mortality. Univariate and 

multivariate Cox analysis further demonstrated age, stage and risk score were 

independent prognostic factors. We also verified the effect of our risk score in the patients 

with same tumor stage and same tumor grade, which we can see the risk score of stage 

III-IV obviously higher than stage I-II, the risk score of grades 3-4 distinctly higher than 

grade 1-2. All of the analyses show that our ferroptosis-related lncRNA signature may be 

a beneficial supplement for better stratifying patients and for providing a more 

individualized treatment method. We further integrated three independent prognostic 

factors (age, stage, risk score) to develop a nomogram for calculating points which could 

reflect survival. 

Ferroptosis either promoted or suppressed tumor progression with the release of 

multiple signaling molecules, which depends on the release of damage-associated 

molecular patterns and the activation of immune response triggered by ferroptotic damage 

within the tumor microenvironment (Chen et al., 2021b; Jiang et al., 2020). Increasing 

studies support the involvement of lncRNAs in complicated tumor-stromal crosstalk and 

stimulation of tumor microenvironments (Zhou et al., 2020). To explore the TME in 

patients with ccRCC, we plotted the immune landscape for all samples. Indeed, we made 

a comparison of the infiltration level of 22 immune cell types between high and low risk 

group. Plasma cells, T cells follicular helper, T cells regulatory (Tregs), Monocytes, 

Macrophages M0, Dendritic cells resting, Dendritic cells activated, Mast cells resting, 

Mast cells activated, and Eosinophils were identified to be differentially infiltrated in 

ccRCC. These results supported that our risk signature was implicated in the ccRCC 

microenvironment and provided valuable reference for immunotherapy. 

We first identified differentially expressed FRGs and DELs, FRLs were screened 

between FRGs and DELs by Pearson correlation coefficient. Then univariate cox 

regression analysis was used to obtain prognostic lncRNAs, lasso regression analysis and 
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multivariate cox proportional hazards model were performed to conduct a 17-lncRNA 

signature. To estimate the prognostic prediction accuracy of the signature, we explored 

the distribution of RS, OS, OS status of the signature, ROC curve and Kaplan Meier curve 

of the signature. Next, univariate and multivariate cox regression analysis were performed 

to determine whether the RS independently predicted the prognosis of ccRCC patients. A 

nomogram was plotted for studying the 1-, 3-, and 5-year prognosis of the patients with 

ccRCC. Moreover, the relationship between RS and immune cell infiltration was 

evaluated.  

The results of our study have significant implications. The Kaplan-Merier curve and 

ROC curve showed that the RS could accurately predict the prognosis of ccRCC patients. 

The distinctly different RS between stage I-II and III-IV and between grade 1-2 and 3-4 

is of great significance supporting that our risk signature may be a helpful complement to 

better patient stratification. The result that the signature was implicated in the ccRCC 

microenvironment is significantly providing an important reference for immunotherapy. 

In conclusion, this study scientifically assessed prognostic value, role in the tumor 

immune microenvironment, and regulatory mechanisms of 17 ferroptosis-related 

lncRNA-based signature in patients with ccRCC. This study highlights novel insights into 

ferroptosis-related lncRNAs in ccRCC which are important targets for investigating the 

tumorigenesis of ccRCC. This could be further analyzed to develop personalized and 

individualized treatment strategies.  

Undeniably, there are limitations in our study.  The patients in our study were obtained 

only from TCGA, hence we could not perform any validation. Our findings need to be 

tested by multicenter cohorts in clinical domain. In future, our signature needs to be tested 

by multicenter cohorts in clinical field.  Individual lncRNA based on our signature need 

to be verified by more RNA-Seq transcriptome data. Moreover, whether the signature is 

applicable to other cancer types is included in future work.  
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