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QUADRATIC INFERENCE FUNCTION WITH RIDGE ESTIMATOR FOR

MYOPIC REGRET-REGRESSION: THE SHORT-TERM STRATEGY IN

OPTIMAL DYNAMIC TREATMENT REGIMES

ABSTRACT

A dynamic treatment regime (DTR) is a multi-stage decision rule based on treatment

history. The focus in this research is on the improvement of estimation in optimal dynamic

treatment regime (ODTR). This research is motivated by the regret-regression method

where it is a combination of the regret function with regression modeling. A short-term

strategy called the myopic regret-regression (MRr) is an alternative to regret-regression

where it estimates the mean response at each time-point. This strategy has the same

performance as regret-regression but MRr calculation is faster in estimation and more

practical in application. However, it has a limitation on correlated data. The quadratic

inference functions in myopic regret-regression (QIF-MRr) has overcome the limitation

of MRr by combining the myopic regret-regression with quadratic inference functions.

It is more robust and efficient regardless of any type of working correlation structure.

However, singularity problem happen when estimating the parameters using QIF-MRr and

more complex in computations. Hence, the ridge quadratic inference functions for myopic

regret-regression (rQIF-MRr) is proposed where a ridge estimator is used to overcome the

computational problem and shorten the calculation time. Comparison between methods

was performed to check the efficiency and consistency in estimation using simulation with

different sample sizes.

Keywords: Longitudinal data analysis, Optimal dynamic treatment regimes, Regret-

regression, Ridge estimator, Quadratic inference functions.
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FUNGSI PENTAKBIRAN KUADRATIK DENGAN PENGANGGAR RABUNG

UNTUK REGRET-REGRESI MYOPIK: STRATEGI JANGKA PENDEK DALAM

REGIM RAWATAN DINAMIK OPTIMAL

ABSTRAK

Rejim rawatan dinamik (DTR) adalah aturan keputusan pelbagai peringkat berdasarkan

kepada sejarah rawatan. Fokus dalam penyelidikan ini adalah pada penambah baikkan

estimasi dalam rejim rawatan dinamik optimum (ODTR). Penyelidikan ini didorong oleh

kaedah regresi-kesalan di mana ia adalah gabungan fungsi kesalan dengan pemodelan

regresi. Strategi jangka pendek yang diberi nama regresi-kesalan miopia (MRr), adalah

alternatif kepada regresi-kesalan di mana ia menganggarkan tindak balas min pada

setiap titik waktu. Strategi ini mempunyai prestasi yang sama dengan regresi-kesalan

tetapi pengiraan MRr adalah lebih cepat dalam anggaran dan lebih praktikal dalam

aplikasi. Namun, ia mempunyai limitasi pada data yang berkorelasi. Fungsi pentakbiran

kuadratik dalam regresi-kesalan miopia (QIF-MRr) telah mengatasi limitasi MRr dengan

menggabungkan regresi-kesalan miopia dengan fungsi pentakbiran kuadratik. Ia lebih

mantap dan cekap tanpa mengira jenis struktur korelasi kerja. Walau bagaimanapun,

masalah singulariti berlaku apabila menganggar parameter menggunakan QIF-MRr dan

lebih kompleks dalam pengiraan. Oleh itu, fungsi pentakbiran kuadratik rabung dalam

regresi-kesalan miopia (rQIF-MRr) dicadangkan dimana penganggar rabung digunakan

untuk mengatasi masalah komputasi dan menyingkatkan masa pengiraan. Perbandingan

antara kaedah dilakukan untuk memeriksa kecekapan dan konsistensi dalam anggaran

menggunakan simulasi dengan ukuran sampel yang berbeza.

Kata kunci: Analisis data longitud, Rejim rawatan dinamik optimum, Regresi-kesalan,

Penganggar rabung, Fungsi pentakbiran kuadratik.
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CHAPTER 1: INTRODUCTION

1.1 Personalized Medicine

Dynamic treatment regime is a branch of personalized medicine that uses information

from the patient to minimize health problems. In reality, the response of treatment for each

patient is different, which inspires the development of the framework. The advantage of

the personalized medicine includes the cutback in the total cost of health care, the patient

received an option on intensive health care by deciding an optimal decision, and increase

compliance and devotion towards treatment (Chakraborty & Moodie, 2013). Personalized

medicine is a well known area of study in medicine, but less known for a statistician. It

is a challenge to introduce the area in a statistical study that is often beyond the study

area (scope) of traditional quantitative tools due to the evidenced-based or data-driven

methodologies.

Dynamic Treatment Regimes (DTR), also known as adaptive strategies, adaptive

interventions or treatment policies, is a multi-stage decision rule of personalized medicine.

It defines a set of decision rules to determine the treatment individually based on their health

condition and treatment history. The term ’dynamic’ indicates a variation of treatment

using the patient’s current state and previous treatment received. The treatment varies

through time, and at each visit, the clinician will consider a new set of treatments based on

the treatment history. An Optimal Dynamic Treatment Regimes (ODTR) is optimal when

the final mean response, 𝐸 (𝑌 ) is the highest. This indicates that the decision is optimal,

where there is no regret in decision rules (Chakraborty & Moodie, 2013; Murphy, 2003).

Chronic diseases such as HIV infection, mental health disorder (such as depression,

anxiety disorders, schizophrenia), drug and alcohol abuse, diabetes, and others need an

ongoing medical intervention. Medical intervention refers to a medical treatment given
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to improve a medical disorder. Personalized medicine and DTR can provide the best

treatment to patients who suffer from the diseases. For example, Rosthøj et al. (2006)

described observational longitudinal anticoagulant data in analyzing an optimal reactive

dose-changing strategy. The anticoagulant was given to patients with a history or at risk of

thrombosis (an abnormal blood clotting). The goal was to ensure that the international

normalized ratio (INR) value of the patient’s prothrombin time stayed within the target

range. The dose increased or decreased to ensure that the INR value stay within the target

range for the next visit.

Another example is the study on the patient with HIV infection (Robins, Orellana,

& Rotnitzky, 2008). From the study, the patient should receive highly active retroviral

therapy when the CD4 cell count starts to fall below 200 cells/𝜇𝑙. The process of treating

a patient with HIV infection is a multi-stage decision rule. The multi-stage decision rule is

a sequence of decision rules where the decision made at one stage will affect the decision

to be made at the another.

The Promotion of Breastfeeding Intervention Trial (PROBIT) (Kramer et al., 2001) was

used by Moodie et al. (2009) to optimize the infant growth by estimating the decision rules

on the duration of breastfeeding. The mother-infant was scheduled a followup visit at 6

time intervals for 12 months. Variables such as weight, length, number of hospitalizations

and others were measured. At each visit, the clinician inquired whether the infant was

breastfeed, or the infant had consume other liquid or solid foods. Moodie et al. (2009)

estimates decision rules with the G-estimation method (Robins, 2004) which considered a

long-term and short-term strategy to analyze the PROBIT data set.

The long-term strategy is a decision rule that measures the intervention outcome at the

final visit. For example, to maximize the infant growth of PROBIT data set, the response

is observed when the study is completed. Clinician observed the final response after the

2
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6th interval where the 6th interval (9-12 months) is this final interval of 0-1 month, 1-2

months, 2-3 months, 3-6 months, 6-9 months and 9-12 months intervals.

Meanwhile, the short-term strategy is a decision rule that measured the outcome at each

clinical visit. In short-term strategy, the response is measured at each interval where at the

1st interval (0-1 month), the clinician measured the first response. Then, followed by the

second response measured at the 2nd interval (1-2 months), and so forth until it reach the

measurement of the final or 6th interval (9-12 months).

Earlier works (Murphy, 2003; Robins, 2004; Moodie et al., 2007, 2009) on both

the long-term and short-term strategies considered the treatment decision (measured by

the regret function) and not the state function. Henderson et al. (2010) proposed the

regret-regression that considered both the regret function and state function to optimize

the mean outcome of the DTR. The response of the regret-regression were measured at

the end of the time interval after the final time interval is reached, and considered as the

long-term strategy.

The myopic regret-regression (MRr) (Mohamed, 2013) is a short-term strategy of the

regret-regression, where it also considered both the regret function and state function.

The mean response of the MRr was modelled at each time interval. For the short-term

strategy, each time interval is treated as the only interval that we are interested in and the

future measurements were ignored. The MRr provides a good estimates for longitudinal

outcomes where the outcome is measured through time. However, there is no attention

been given to the correlation within-subject. To solve this problem, Mohamed (2013)

proposed the quadratic inference functions for myopic regret-regression (QIF-MRr), which

incorporate the mean response of the MRr into the quadratic inference functions (QIF).

The QIF-MRr gives consistent and efficient estimates, but often facing singularity issues

during estimation.

3
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1.2 Problem Statement

Over the years, researchers have developed optimal decision rules for providing the best

possible actions to the patients based on patient treatment history. Previous methods only

consider the relationships between the response across time without any consideration

of the relation within-subject. Considering the relation within-subject will shows the

effect of the decision been made at each time interval individually. Note that, subject in

this study referring to the patient itself. The earlier works appear to have instability and

computational problems that result in poor performance, as well as singularity problems

that occur during parameter estimation. A new estimation strategy known as rQIF-MRr is

proposed to overcome the computational problem, which will be described further in this

dissertation.

1.3 Objectives

This study has three objectives to be fulfilled:

1. To propose a ridge estimator in quadratic inference functions for myopic regret-

regression (QIF-MRr) to overcome the computational problem and shorten the

calculation time.

2. To make comparison between QIF-MRr and the proposed method to check efficiency

and consistency in estimations.

3. To illustrate the proposed method using a simulation data set with different sample

sizes.

1.4 Thesis Outline

This thesis is designated as follows. Chapter 2 reviewed the previous works on the

estimation strategy of ODTR. In this Chapter, we will discussed the framework of the

dissertation in detail which includes notations and assumptions used throughout the

4
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dissertation. The methods used in the longitudinal analysis will be reviewed, which are the

generalized estimating equations (GEE) and QIF. Then, literature for penalized method

will be discussed.

The methodology of the estimation strategy used will be discussed in Chapter 3. The

short-term strategy for ODTR, MRr and the QIF-MRr will be introduced and the estimation

strategy called the ridge quadratic inference functions for myopic regret-regression (rQIF-

MRr) will be proposed.

The performance of the proposed method will be illustrated by application to a simulated

data set in Chapter 4. The estimation results which compare QIF-MRr with rQIF-MRr

will be provided in this chapter. Discussion on which method gives better estimates and

more efficient in estimation will be discussed in this chapter.

Finally, Chapter 5 will include the conclusions and further discussion on the future

works for this research area.

5

Univ
ers

iti 
Mala

ya



CHAPTER 2: LITERATURE REVIEW

2.1 Overview

In this Chapter, we give a review of the estimation strategy for ODTR. Methods for

analyzing longitudinal data will be reviewed in this chapter together with the penalized

method, which will be used in the proposed method for the next chapter.

2.2 Longitudinal Data

Longitudinal data can be obtained when the outcomes or responses of each individual

or subject are recorded throughout the course of treatment. Many longitudinal studies are

focusing on investigating how the variability of the responses may be handled in time with

covariates (Diggle et al., 1994, 2002; Qu & Song, 2004; Zeger & Liang, 1986; Asparouhov

& Muthén, 2020).

The disadvantages of a longitudinal study are when the participants or subjects suddenly

drop out from the studies which cause the sample size to be trimmed down. For example,

Tallgren (2003) had to reduce the sample due to death, the subject moved to another area

and other reasons. Reducing the sample will cause some missing data which will be

problematic when the model needs a full dataset in investigating or analyzing the data.

Longitudinal study also requires an enormous of time in collecting the data, and it is

also expensive. Since the timeline is long for collecting the data, therefore the budget is

high-cost.

The advantages of a longitudinal study is to allowed researchers to detect the effectiveness,

development and changes in the characteristic of the target population for the group and

individual levels. Longitudinal data also provide a series of events that can be extended to

a single moment of time that can be used in the DTR studies. In DTR, researchers must

observe the effectiveness, development and changes in the time-varying treatment. There
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are several methods available for analyzing longitudinal data and the most common one is

GEE by (Liang & Zeger, 1986). The extension of GEE, the QIF (Qu & Lindsay, 2000) is

used to improve the estimation of the parameter for longitudinal data.

2.3 Causal Inference

The aim of a statistical inference is to quantify the causal relationship between the

action that is given with the outcome obtained from the decision that has been made.

For example, we want to confidently say that the action given to the patients improves

their health condition (Chakraborty & Moodie, 2013, p.9). To make certain decisions,

knowledge on the data-generating process is needed which neither be computed from

the data alone nor obtained from the distributions that regulate the data. It can be done

by using a causal analysis, which aims to deduce the beliefs or probabilities for static

conditions as well as for dynamic of beliefs given the changing conditions. For example,

the changes caused by treatment or external intervention (Pearl, 2009).

The causal effect is defined to be a comparison of an individual patient’s or a group of

patient’s potential outcomes for different possible action that can be given to the patient.

Hernán (2004) has discussed the use of the causal effect in causal inference where the

illustrated scenario showed how the individual effect work. In scenario 1, patient U had

a heart transplant on 1st January. On the 6th January that year (after 5 days), he died.

Imagine that if U had not received the transplant where all other things or factor in U life

remain unchanged, he might still be alive. In this scenario, the heart transplant cause U to

die. The intervention which is the interference of one’s states in the affairs of another had

a causal effect on U’s five-day survival.

In scenario 2, patient V also had a heart transplant on 1st January. On the 6th January,

V still alive. Imagine if V had not received the heart transplant where all other things and

factors in V life remain unchanged, V would still be alive. The transplant did not have a

7

Univ
ers

iti 
Mala

ya



causal effect on V’s five-day survival.

To form causal inference which is an important aspect in modeling ODTR, some

assumptions are followed throughout this work. We follows assumptions on consistency,

no unmeasured confounders and positivity which will be further elaborated in Section 2.4.

In causal inference, there are three main scopes which are sequential equation modeling

(SEM), graphical models and potential outcomes also known as counterfactual.

2.3.1 Structural Equation Modeling (SEM)

Structural equation modeling (SEM) is used to figure out how much the theoretical

model takes to explain the sample data (Schumacker & Lomax, 2004). Generally, SEM

examine the theoretical model by utilizing hypothesis testing to improve understanding

on complex relationships between constructs. There are several reasons why SEM is

popular. SEM is frequently used by researchers to quantitatively confirm theoretical

hypotheses. Moreover, it considers measurement error when analyzing statistical data.

Besides that, SEM gives alternative ways to the researchers for its capability to analyze

advanced theoretical models for a complex situation. For example, Wang et al. (2018) used

the SEM-path analysis approach to analyze complex relationships between psychological

variables that trigger suicidal thoughts among people living with HIV/AIDS. Another

example, Hui et al. (2017) determined an academic description using the SEM method in

food security studies and proposed a basic structure based on family food security and

children’s environmental sustainability.

The history of SEM starts when Wright (1921) used a combination of equations and

graph to mathematically expressed the understanding of a symptom which do not cause

diseases. Given the linear system of

𝑍 = 𝛼𝑍 + 𝛽𝑊𝑍𝑤 + 𝛽𝑋𝑍𝑥 (2.1)
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𝑌 = 𝛼𝑌 + 𝛽𝑊𝑌𝑢 + 𝛽𝑋𝑌𝑥 + 𝛽𝑍𝑌 𝑧 (2.2)

where 𝑤, 𝑥 and 𝑧 are the specific values of 𝑊, 𝑋 and 𝑍 . The intercept 𝛼𝑌 and 𝛼𝑍 are

unmeasured random disturbances of 𝑍 and 𝑌 . Meanwhile, 𝛼𝑌 , 𝛼𝑍 ,𝑊 and 𝑋 are assumed

to be jointly independent between each other.

2.3.2 Graphical Models

(b)

W

Y

X

Z

βWZ

βXZ

βXY

βZY

βWY

(a)

QP
β

UQUP

S1 S2

A1 A2

Y

(g)

U

(f)(e)

(d)

(b)(a)

(c)

(c)

Figure 2.1: (a) Simple "path" diagram (b) Causal diagram for Equation 2.1 and Equation 2.2
(c) Two-stage DAG illustrating time-varying confounding and mediation

Figure 2.1(a) gives a simple “path diagram” to interpret causal inference using causal

diagram also known as directed acyclic graphs (DAG) (Pearl & Robins, 1995; Pearl, 2009;

Chakraborty & Moodie, 2013). A graph is said to be directed if all the inter-variable

relationships are connected by arrows indicating that one variable causes changes in

another, and acyclic if it has no closed loops (no feedback between variables). It is natural

to use kinship relation in interpreting the path diagram such as parent and child.
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A graph is causal if every arrow represents the presence of an effect of the causal

(parent) variable on the affected (child) variable. In Figure 2.1(a), we denote P as a parent

of Q and Q as a child of P. The diagram in (a) shows a presence of causal influence of

P to Q (directly) while, and the absence of causal influence of Q to P. The arrows are

drawn from cause (P) to the effect (Q), and the absence of an arrow (Q to P) makes the

empirical claim that Nature assigns values to one variable irrespective of another. The

equation can be represented in the diagram as 𝑞 = 𝛽𝑝 + 𝑢𝑄 and 𝑝 = 𝑢𝑃, where 𝛽 is a “path

coefficient” which quantifies the causal effect of P to Q (directly). The variables𝑈𝑃 and

𝑈𝑄 are named “exogenous” to describe the observed or unobserved background factors

that the investigator choose to keep unexplained. Figure 2.1(b) give a causal diagram or a

path diagram for Equation 2.1 and Equation 2.2.

Figure 2.1(c) shows an example for two-stage DAG which illustrate the time-varying

confounding and mediation (Chakraborty & Moodie, 2013). The data are collected at

three time visits 𝑡1 (sometimes called baseline), 𝑡2 and 𝑡3. 𝑆1 and 𝑆2 are the states or

covariates measured at visit 1 and 2. The action 𝐴1 was given at visit 1 in the interval of

[0, 𝑡2) while, action 𝐴2 were given at visit 2 in the interval [𝑡2, 𝑡3), and the outcome 𝑌

is measured at visit 3, 𝑡3. From the diagram, 𝐴1 acts directly on 𝑌 denoted by path (g),

and it acts indirectly through 𝑆2 by path (e) and (d) with mediator 𝑆2. Meanwhile, state

𝑆2 confound the relation between 𝐴2 and 𝑌 by path (d) and (f). To obtain the unbiased

estimation of the effect of 𝐴2 and 𝑌 , 𝑆2 needed some adjustment. However, there will be

an issue when we had an unmeasured factor, 𝑉 which also act as confounders.

2.3.3 Potential Outcome

In formalizing the theory of causal inference, Robins (1986) extended the work from

Neyman (1923, 1990) and Rubin (1978) to determine the direct and indirect effect of

time-varying treatments from experimental or observational longitudinal studies. In
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explaining the method for the observational data, the notion of potential outcome or

counterfactual is needed. The potential outcome is defined to be a person’s outcome if

he had been given a certain treatment regime, probably different from the regime that he

was actually been given. It is an outcome that is different from the fact, in another word,

counter the fact (Rubin, 1978).

Suppose we want to investigate the causal effect of taking treatment 𝑎 instead of treatment

𝑎′. A person will have an observed outcome 𝑌 of the potential outcome “𝑌 under treatment

𝑎′’ denoted as 𝑌 (𝑎), and that same person will also have an unobserved potential outcome

𝑌 denoted as 𝑌 (𝑎′) which correspond to the treatment 𝑎′. At individual-level, a causal

parameter can be considered as a difference in person’s outcome under treatment a with

outcome under treatment 𝑎′ which denoted as 𝑌 (𝑎) − 𝑌 (𝑎′). The individual-level causal

effect is not possible to be observed which make it impossible for the outcome of treatment

𝑎 and 𝑎′ to be observed without extra assumptions and further data. However, average

causal effect or population-level causal parameters can be identified for observational

studies with some assumptions which will be discussed in Section (2.4).

2.4 Framework for Optimal Dynamic Treatment Regime

2.4.1 Notations

Throughout the thesis, we consider a longitudinal data with sample size, 𝑛. Let 𝐾 be

the last number of visit for a patient. At visit 𝑗 = {1, 2, . . . , 𝐾}, the clinician will measure

the current state of the patient, 𝑆 𝑗 , and the action given or treatment decision, 𝐴 𝑗 . The

treatment is given based on the information of the current state and previous treatments,

(𝑆 𝑗 , �̄� 𝑗−1) also known as treatment history.

Denote that 𝑆 𝑗 = {𝑆1, 𝑆2, . . . , 𝑆 𝑗 }, be the cumulative information of the state measured

from the first visit to 𝑗 𝑡ℎ visit (i.e. history of states measured up to visit 𝑗), and

�̄� 𝑗 = {𝐴1, 𝐴2, . . . , 𝐴 𝑗 } be the cumulative action given from the first visit until 𝑗 𝑡ℎ visit
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(i.e. history of actions given up to visit 𝑗). The action given at visit 𝑗 depending on the

state of the patient at visit 𝑗 and the action given at the previous visit, 𝐴 𝑗−1. The final

outcome, 𝑌 is measured at the last visit, 𝐾, which is the cumulative information of the

state, 𝑆𝐾 and action, �̄�𝐾 . The observational order of the dynamic treatment regimes is

given as (𝑆1, 𝐴1, 𝑆2, 𝐴2, . . . , 𝑆𝐾 , 𝐴𝐾 , 𝑌 ).

From the notion of the potential outcome or counterfactual (Rubin, 1978; Hernán, 2004)

which has been discussed in Section (2.3), we denote 𝑎 𝑗 to be a set of all possible actions

that can be given at visit 𝑗 , where 𝑆 𝑗 (�̄� 𝑗−1) = (𝑆1, 𝑆2(𝑎1), . . . , 𝑆 𝑗 (�̄� 𝑗−1)) is the potential

state history under the possible action �̄� 𝑗−1. We denote 𝑌 (�̄�𝐾) as the potential outcome

under the possible action �̄�𝐾 .

We denote 𝐸 (𝑌 (𝑑𝑜𝑝𝑡
𝑗

) |𝑆 𝑗 , �̄� 𝑗−1) as the expected value of the potential outcome or

counterfactual final responses and 𝐸 (𝑌 (𝑎 𝑗 , 𝑑𝑜𝑝𝑡𝑗+1) |𝑆 𝑗 , �̄� 𝑗−1) as the expected value of the

potential outcome if action 𝑎 𝑗 is chosen at time 𝑗 and then subsequently the optimal

decision rules are followed.

We define a dynamic treatment regime, 𝑑 as a set of decision rules where 𝑑 =

{𝑑1(𝑆1), . . . , 𝑑 𝑗 (𝑆 𝑗 , �̄� 𝑗−1), . . . , 𝑑𝐾 (𝑆𝐾 , �̄�𝐾−1)}. 𝑑1(𝑆1) is taken to be a decision rule at

the first visit using the information on state at the first visit, while, 𝑑 𝑗 (𝑆 𝑗 , �̄� 𝑗−1) is the

decision made or action to be taken using all the information from the previous actions

and states including the current state 𝑗 . Then, we denote 𝑑𝑜𝑝𝑡
𝑗

to be the optimal dynamic

treatment regimes which optimize the expected value of outcome 𝑌 .

2.4.2 Assumptions

Three main assumptions in the potential outcome framework are consistency, no

unmeasured confounders and positivity. We make a consistency assumption that the

observed outcome 𝑌 is equal to the potential outcome 𝑌 (�̄�𝐾) and the observed state history

𝑆𝐾 is equal to the potential state history 𝑆�̄�𝐾−1 under the observed treatment 𝑎𝐾 = 𝐴𝐾 . The
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treatment is given in a way that it is possible for all the treatment options to be assigned to

all patients in the population under consideration.

We also make an assumption on no unmeasured confounders where the decision for the

treatment does not depend on the potential future states or the potential outcome except

through the observed states and treatment history. For any regime, �̄�𝐾 , the action given at

visit 𝑗 , 𝐴 𝑗 is independent of any future or potential states or outcome given the previous

history,

𝐴𝐾 ⊥ (𝑆 𝑗+1(�̄� 𝑗 ), . . . , 𝑆𝐾 (�̄�𝐾−1), 𝑌 (�̄�𝐾) |𝑆 𝑗 , �̄� 𝑗−1)

for 𝑗 = 1, 2, . . . , 𝐾 . If there is no drop-out, the assumption is equivalent to the exchange-

ability. If the patient or subjects are censored, a further assumption that censoring is

non-informative conditional on history is needed. That is, the potential outcome of a

censored patients will follow the same distribution as the uncensored patients.

The third assumption is positivity where the optimal treatment regime has a nonzero

or positive probability of being observed in the data. In continuous treatment, the

optimal treatment regime is identifiable from the observed data. The assumption may be

theoretically and practically violated. Theoretical violation happened when the design of

the study prohibit a patient from taking a certain treatment. Meanwhile, practical violation

happened when a part of the patients has a very low probability of receiving the treatment

(Cole & Hernàn, 2008; Chakraborty & Moodie, 2013; Barrett et al., 2014).

2.5 Optimal Dynamic Treatment Regimes (ODTR)

In DTR, it is said to be optimal if the final mean outcome 𝑌 is maximized or optimized

which is often called as ODTR. In other word, ODTR is a method that gives the highest

value of the mean response at visit 𝐾 using all the information of the previous treatment

history. Hence, in this study, we will focus on the estimation of the semi-parametric
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method which modelled the contrasts of the conditional mean outcome. There are two

strategies that the researchers put an interest to which are G-estimation (Robins, 1997,

2004) and iterative minimization of regrets (IMOR) (Murphy, 2003).

2.5.1 Structural Nested Mean Models (SNMM)

Structural nested mean models (SNMM) is an extension work from structural nested

models (SNM). The SNM was used to model and estimate the joint effects of a sequence

of actions. The idea of SNM is to confound the variables affected by treatment. It

reparameterizes the parameter of the DAG that represent contrasts between the marginal

distribution of the outcome in the manipulated graph with action, 𝐴 is set to a particular

value 𝑎 (Robins, 1997). SNM is somewhat similar to ordinary regression models, where it

parameterizes the conditional treatment effects. However, SNM does not take a condition

on post-treatment variables but instead modelling the outcome at each visit conditional on

the treatment and covariate history up to that visit. SNM removed the effects of future

treatment to solve the unique contributions of each treatment at each visit (Vansteelandt &

Joffe, 2014; Robins, 2000).

There are two kinds of SNM. The first one is the model for the effect of an action on the

mean of an outcome. This includes SNMM that is related to structural nested cumulative

failure time model (SNCFTM) for survival outcome. While the second one models the

effect of an action on the whole distribution of an outcome. This includes structural nested

distribution model (SNDM) which related to structural nested failure time model (SNFTM)

for survival outcome (Vansteelandt & Joffe, 2014; Robins, 2000). Since we do not take

any interest in the distribution of an outcome variable and the survival outcome, we will

put our focus more on the SNMM.

SNMM is defined to be the expected difference between the potential outcome (or

counterfactual responses) of a patient on a designated treatment regime from visit 𝑗 + 1
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onwards and on another designated treatment regime from visit 𝑗 given the previous

history. Robins’s g-estimation method is derived from the optimal blip functions which is

a particular class of SNMM.

Robins (2004) defined the optimal blip-to-reference function to be

𝛾 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) = 𝐸 [𝑌 (�̄� 𝑗 , 𝑑𝑜𝑝𝑡𝑗+1) |𝑆 𝑗 , �̄� 𝑗−1)] − 𝐸 [𝑌 (�̄� 𝑗−1, 𝑑
𝑟𝑒 𝑓

𝑗
, 𝑑

𝑜𝑝𝑡

𝑗+1) |𝑆 𝑗 , �̄� 𝑗−1)] . (2.3)

In between 𝑌 (�̄� 𝑗 , 𝑑𝑜𝑝𝑡𝑗+1) and 𝑌 (�̄� 𝑗−1, 𝑑
𝑟𝑒 𝑓

𝑗
, 𝑑

𝑜𝑝𝑡

𝑗+1), there are at least one counterfactual

outcome unless 𝛾 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) = 0, where the patient are optimally treated at visit 𝑗

onward. The term optimal is to indicate the treatment subsequent to visit 𝑗 , while, the

term blip indicate a single-stage change in treatment at visit 𝑗 . Hence, the Equation (2.3)

is defined to be the expected difference of the outcome when a reference regime, 𝑑𝑟𝑒 𝑓
𝑗

is

used instead of the action given, 𝑎 𝑗 at visit 𝑗 given the previous history (𝑆 𝑗 , �̄� 𝑗−1) who

subsequently receive the optimal regime, 𝑑𝑜𝑝𝑡
𝑗+1.

There are two special cases of the SNMM which are optimal blip-to-zero and regret

function. In optimal blip-to-zero, the reference regime, 𝑑𝑟𝑒 𝑓
𝑗

is taken to be a zero regime

where it is defined to be a substantively meaningful treatment such as placebo (i.e. a

substance that do not have any pharmacological effect but is given to satisfy a patient who

supposes it to be medicine) or standard care. Hence, the optimal blip-to-zero is written as

𝛾 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) = 𝐸 [𝑌 (�̄� 𝑗 , 𝑑𝑜𝑝𝑡𝑗+1) |𝑆 𝑗 , �̄� 𝑗−1)] − 𝐸 [𝑌 (�̄� 𝑗−1, 𝑑
𝑟𝑒 𝑓

𝑗
= 0, 𝑑𝑜𝑝𝑡

𝑗+1) |𝑆 𝑗 , �̄� 𝑗−1)] .

(2.4)

We will refer the optimal blip-to-zero function as optimal blip for future reference.

Another case, Moodie et al. (2007) have shown that the regret function of Murphy
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(2003) at visit 𝑗

𝜇 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) = 𝐸 [𝑌 (�̄� 𝑗−1, 𝑑
𝑜𝑝𝑡

𝑗
|𝑆 𝑗 , �̄� 𝑗−1)] − 𝐸 [𝑌 (�̄� 𝑗 , 𝑑𝑜𝑝𝑡𝑗+1 |𝑆 𝑗 , �̄� 𝑗−1) (2.5)

is actually a negative of the optimal blip, 𝛾 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) which will be further discussed

in Section (2.5.3.1).

Meanwhile, the standard form of the SNMM considered the difference of the expected

outcome of using the reference regime, 𝑑𝑟𝑒 𝑓
𝑗

instead of action given, 𝑎 𝑗 at visit 𝑗 based on

the previous history, (𝑆 𝑗 , �̄� 𝑗−1) for patients who received a zero regime instead of being

treated optimally in optimal SNMM. To specify the optimal regime, the standard SNMM

need an information regarding the distribution of the states and the outcomes. Furthermore,

to estimate optimal decision rule, a specific parametric information of the distribution

for the state variables is needed but, this is what we want to avoid when estimating the

semi-parametric models as in G-estimation and IMOR.

2.5.2 G-estimation

G-estimation is a method used to estimate the parameter estimate, say 𝜓 of the optimal

blip function or the regret function. It is developed based on the knowledge of the decision

or action process, 𝐴. The G-estimation method is under the same roof as the generalized

methods of moments (GMM) (Hansen, 1982). One of the advantages of the GMM is

that it is not computationally burdened to perform inference without a need to specified

the likelihood function (Hall, 2005, p. 2). GMM is almost similar to ordinary regression

methods as it realizes control for measured confounders through conditioning (Vansteelandt

& Joffe, 2014).

𝐺 𝑗 (𝜓) function is defined as the outcome adjusted by the expected difference of the

mean outcome for patient who received treatment 𝑎 𝑗 and for another patient who was
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given the optimal decision at the beginning of visit 𝑗 , where both of them had the same

treatment and the same covariate history, (𝑆 𝑗 , �̄� 𝑗−1) from the beginning of visit 𝑗 − 1 and

were treated optimally onwards. In other word, the function 𝐺 𝑗 (𝜓) gives the estimate of

the expected outcome in the counterfactual event where the optimal decisions are followed

at visit 𝑗 onwards (Barrett et al., 2014). Hence, 𝐺 𝑗 (𝜓) is

𝐺 𝑗 (𝜓) = 𝑌 +
𝐾∑︁
𝑘= 𝑗

[𝛾𝑘 (𝑑𝑜𝑝𝑡𝑘
|𝑆 𝑗 , �̄� 𝑗−1;𝜓) − 𝛾𝑘 (𝑎𝑘 |𝑆 𝑗 , �̄� 𝑗−1;𝜓)] (2.6)

= 𝑌 +
𝐾∑︁
𝑘= 𝑗

𝐸 [{𝑌 (�̄�𝑘−1, 𝑑
𝑜𝑝𝑡

𝑘
) − 𝑌 (�̄�𝑘−1, 𝑑

𝑟𝑒 𝑓

𝑘
= 0, 𝑑𝑜𝑝𝑡

𝑘+1)}

− {𝑌 (�̄�𝑘 , 𝑑𝑜𝑝𝑡𝑘+1) − 𝑌 (�̄�𝑘−1, 𝑑
𝑟𝑒 𝑓

𝑘
= 0, 𝑑𝑜𝑝𝑡

𝑘+1)}|𝑆 𝑗 , �̄� 𝑗−1]

= 𝑌 +
𝐾∑︁
𝑘= 𝑗

𝐸 [𝑌 (�̄�𝑘−1, 𝑑
𝑜𝑝𝑡

𝑘
) − 𝑌 (�̄�𝑘 , 𝑑𝑜𝑝𝑡𝑘+1) |𝑆 𝑗 , �̄� 𝑗−1]

= 𝑌 +
𝐾∑︁
𝑘= 𝑗

𝜇𝑘 (𝐴𝑘 |𝑆𝑘 , �̄�𝑘−1;𝜓).

The probability of receiving treatment 𝑎 𝑗 was specified as 𝑝 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) and thus,

the estimating equation of the G-estimation is written as

𝑈 (𝜓) =
𝐾∑︁
𝑗=1
𝐺 𝑗 (𝜓)

{
𝑔 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) − 𝐸𝐴 𝑗 [𝑔 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1)]

}
(2.7)

for some 𝑔 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) having the same dimension as 𝜓. The function 𝑔 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1)

is taken to be a vector-valued function chosen to enclose the variables thought to interact

with the treatment to effect a difference in the outcome (Chakraborty & Moodie, 2013,

p. 61).

The expected value of the estimating equation, 𝐸 [𝑈 (𝜓)] = 0 is an unbiased estimating

equation by the assumption of no unmeasured confounder where 𝐺 𝑗 (𝜓) is independent of

any function of past states and actions. By using a correct specification of the treatment
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distribution 𝑝 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1), the value of �̂� to 𝐸 [𝑈 (𝜓)] = 0 can be used to estimate the

optimal dynamic treatment regimes.

However,𝑈 (𝜓) is not efficient because the estimators are not semi-parametric efficient.

Semi-parametric efficiency refer to an identical approach in efficiency for simple parametric

case. Thus, Robins (2004) introduced a doubly-robust version of the G-estimation also

known as efficient G-estimation.

2.5.2.1 Efficient G-estimation

To tackle the inefficiency of the G-estimation method as mention above, Robins (2004)

modify the estimating equation of the𝑈 (𝜓) making it doubly-robust by adding the term

𝐸 [𝐺 𝑗 (𝜓) |𝑆 𝑗 , �̄� 𝑗−1] into Equation (2.7). Hence, the estimating equation of the efficient

G-estimation is given as

𝑈𝑒 𝑓 (𝜓) =
𝐾∑︁
𝑗=1

(
𝐺 𝑗 (𝜓)−𝐸 [𝐺 𝑗 (𝜓) |𝑆 𝑗 , �̄� 𝑗−1]

)
×
{
𝑔 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1)−𝐸𝐴 𝑗 [𝑔 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1)]

}
(2.8)

The Equation (2.8) will gives consistent parameter estimate, �̂� given that the either

the treatment allocation probability, 𝑝 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) or 𝐸 [𝐺 𝑗 (𝜓) |𝑆 𝑗 , �̄� 𝑗−1] is modelled

correctly.

There are two choices of the function 𝑔 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) that we can choose from as

emphasized by Moodie et al. (2007). The first choice is simply taking

𝑔
𝑠𝑖𝑚𝑝

𝑗
(𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) = 𝐸

(
𝜕𝜇 𝑗

𝜕𝜓

����𝑆 𝑗 , �̄� 𝑗 ) (2.9)
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which can be obtained from 𝜇 𝑗 (𝜓). Another choice will be

𝑔
𝑒 𝑓

𝑗
(𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) = 𝐸

(
𝜕𝐺 𝑗

𝜕𝜓

����𝑆 𝑗 , �̄� 𝑗 ) (2.10)

= 𝐸

( 𝐾∑︁
𝑘= 𝑗

𝜕𝜇𝑘

𝜕𝜓

����𝑆 𝑗 , �̄� 𝑗 )

which gives the locally efficient semi-parametric estimates for 𝜓. Robins (2004) has

shown that the 𝑔𝑒 𝑓
𝑗

is more efficient than 𝑔𝑠𝑖𝑚𝑝
𝑗

but more complicated to calculate as it

needs the expected value of 𝜇𝑘 conditional on (𝑆 𝑗 , �̄� 𝑗 ) for 𝑘 > 𝑗 which needed a detailed

information on the states and actions development process.

2.5.2.2 Recursive G-estimation

A modification on the G-estimation method has been made to accommodate the required

search algorithm when the blips are not linear and the parameters are shared across the

visits. The modified G-estimation is given as

𝐺𝑚𝑜𝑑
𝑗 (𝜓) = 𝑌 − 𝛾 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1;𝜓) +

𝐾∑︁
𝑘= 𝑗+1

[𝛾𝑘 (𝑑𝑜𝑝𝑡𝑘
|𝑆 𝑗 , �̄� 𝑗−1;𝜓) − 𝛾𝑘 (𝑎𝑘 |𝑆 𝑗 , �̄� 𝑗−1;𝜓)]

(2.11)

which indicate the response of a patient modified by the expected difference between the

mean outcome for someone who received 𝑎 𝑗 and someone who was given the zero regime

at stage 𝑗 , where both had the same previous history (𝑆 𝑗 , �̄� 𝑗−1) and were treated optimally

starting at the future visit 𝑗 + 1.

Under the assumption of additive local rank preservation, 𝐺𝑚𝑜𝑑
𝑗

(𝜓) = 𝑌 (�̄� 𝑗−1, 𝑑
𝑟𝑒 𝑓

𝑗
=

0, 𝑑𝑜𝑝𝑡
𝑗

). Recursive estimation, �̂� can be estimated using 𝐺𝑚𝑜𝑑
𝑗

(𝜓), by obtaining the

estimate of the �̂� starting from the last stage and then going backwards until it reach the

first stage. Recursive G-estimation is particularly useful when parameters are not shared

across stages. In fact, it still can be used when parameters are shared. This can be done
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by first assuming there is no sharing across the stage, and then take the average of the

inverse-covariance weighted or even the simple average of the stage-specific estimates.

𝐺𝑚𝑜𝑑
𝑗

(𝜓) can also be used in Equation (2.7) or Equation (2.8) without recursion.

2.5.3 The Regret-based Method for Optimal Dynamic Treatment Regimes

Several estimation strategies used the regret function to find the parameter estimates

of the mean outcome. Murphy (2003) first introduced the regret function where the

parameters are estimated using IMOR. Then, Henderson et al. (2010) remodelled the mean

response by implementing the regret functions into a regression model for observational

responses. Barrett et al. (2014) form a doubly-robust method of the regret-regression which

is shown to be equivalently the same as the reduced form of the efficient G-estimation

method by Robins (2004).

2.5.3.1 Regret Function and Iterative Minimization of Regrets (IMOR)

Murphy (2003) developed a regret function

𝜇 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) = 𝐸 [𝑌 (�̄� 𝑗−1, 𝑑
𝑜𝑝𝑡

𝑗
) |𝑆 𝑗 , �̄� 𝑗−1] − 𝐸 [𝑌 (�̄� 𝑗 , 𝑑𝑜𝑝𝑡𝑗+1) |𝑆 𝑗 , �̄� 𝑗−1] (2.12)

which satisfies

inf
𝑎 𝑗 ,𝑝 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1)

{𝜇 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1)} = 0.

The regret function measures the expected difference between the best we can expect to do

given what has happened so far (i.e. 𝐸 [𝑌 (�̄� 𝑗−1, 𝑑
𝑜𝑝𝑡

𝑗
) |𝑆 𝑗 , �̄� 𝑗−1]), and that we select 𝑎 𝑗 at

time 𝑗 (i.e. 𝐸 [𝑌 (�̄� 𝑗 , 𝑑𝑜𝑝𝑡𝑗+1) |𝑆 𝑗 , �̄� 𝑗−1]). The optimal action, 𝑎𝑜𝑝𝑡
𝑗

at visit 𝑗 can be achieved

if the regret function 𝜇 𝑗 (𝑎𝑜𝑝𝑡𝑗
|𝑆 𝑗 , �̄� 𝑗−1) is equal to zero.
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In term of the regret function, the mean of 𝑌 can be written as

𝐸 [𝑌 |𝑆𝐾 , �̄�𝐾] = 𝛽0 +
𝐾∑︁
𝑗=1

𝜙 𝑗 (𝑆 𝑗 |𝑆 𝑗−1, �̄� 𝑗−1) −
𝐾∑︁
𝑗=1

𝜇 𝑗 (𝐴 𝑗 |𝑆 𝑗 �̄� 𝑗−1;𝜓) (2.13)

where 𝜙(𝑆 𝑗 |𝑆 𝑗−1, �̄� 𝑗−1) = 𝐸 (𝑌 (𝑑𝑜𝑝𝑡
𝑗

) |𝑆 𝑗−1, �̄� 𝑗−1, 𝑆 𝑗 ) − 𝐸 (𝑌 (𝑑𝑜𝑝𝑡𝑗+1) |𝑆 𝑗−1, �̄� 𝑗−1). To ob-

tained outcome 𝑌 , it depends on the initial condition (from 𝛽0), chance of development

over time of the states, 𝑆 𝑗 (from 𝜙(.) function in Equation (2.13)), and the chosen actions,

𝐴 𝑗 (from the regret, 𝜇(.)function in Equation (2.13)). For estimation, Murphy (2003) only

parameterized the regret function, and considered the initial condition and 𝜙(.) function as

nuisance which is equivalent to zero.

To estimate the parameter, 𝜓 in ODTR, Murphy (2003) proposed a method called IMOR

by searching for (�̂�, 𝑐) which satisfy

𝐾∑︁
𝑗=1
P𝑛 [𝑌 + 𝑐 +

𝐾∑︁
𝑘=1

𝜇𝑘 (𝑎𝑘 |𝑆𝑘 , �̄�𝑘−1; �̂�) −
∑︁
𝑎

𝜇 𝑗 (𝑎 |𝑆 𝑗 , �̄� 𝑗−1; �̂�) (𝑝 𝑗 (𝑎 |𝑆 𝑗 , �̄� 𝑗−1)]2

≤
𝐾∑︁
𝑗=1
P𝑛 [𝑌 + 𝑐 +

𝐾∑︁
𝑘≠ 𝑗

𝜇𝑘 (𝑎𝑘 |𝑆𝑘 , �̄�𝑘−1; �̂�) + 𝜇 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1;𝜓)

−
∑︁
𝑎

𝜇 𝑗 (𝑎 |𝑆 𝑗 , �̄� 𝑗−1;𝜓)𝑝 𝑗 (𝑎 |𝑆 𝑗 , �̄� 𝑗−1)]2

(2.14)

for 𝜓 and 𝑐. Note that, P𝑛 is the empirical average function and 𝑐 is a scalar quantity.

2.5.3.2 Relationship between IMOR and G-estimation

Moodie et al. (2007) has shown that the G-estimation and IMOR are actually related

to each other, and the regret function is a negative of the optimal blip function with the

reference regime being the optimal regime at visit 𝑗 . It can be formulated as

𝜇 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) = 𝛾𝑟𝑒 𝑓𝑗
(𝑑𝑜𝑝𝑡

𝑗
|𝑆 𝑗 , �̄� 𝑗−1) − 𝛾𝑟𝑒 𝑓𝑗

(𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1). (2.15)

21

Univ
ers

iti 
Mala

ya



At binary and continuous outcome, Moodie et al. (2007) has showed that,

𝜇 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) = max
𝑗
𝛾
𝑟𝑒 𝑓

𝑗
(𝑑𝑜𝑝𝑡

𝑗
|𝑆 𝑗 , �̄� 𝑗−1) − 𝛾𝑟𝑒 𝑓𝑗

(𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1)

𝑜𝑟

𝛾 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) = 𝜇 𝑗 (𝑑𝑟𝑒 𝑓𝑗
|𝑆 𝑗 , �̄� 𝑗−1) − 𝜇 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1)

(2.16)

Robins (2004, Corollary 9.2) has showed that, for an optimal blip 𝛾 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) with

parameter 𝜓 𝑗 , the unique function 𝑓 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) minimizing

𝐸

[{
𝑌 − 𝑓 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) +

𝐾∑︁
𝑘= 𝑗+1

[𝛾𝑘 (𝑑𝑜𝑝𝑡𝑘
|𝑆𝑘 , �̄�𝑘−1;𝜓𝑘 ) − 𝛾𝑘 (𝑎𝑘 |𝑆𝑘 , �̄�𝑘−1;𝜓𝑘 )]

− 𝐸 [𝑌 − 𝑓 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) +
𝐾∑︁

𝑘= 𝑗+1
[𝛾𝑘 (𝑑𝑜𝑝𝑡𝑘

|𝑆𝑘 , �̄�𝑘−1, 𝜓𝑘 ) − 𝛾𝑘 (𝑎𝑘 |𝑆𝑘 , �̄�𝑘−1)]
}]2

(2.17)

subject to 𝑓 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) = 0 for 𝑎 𝑗 = 𝑑
𝑟𝑒 𝑓

𝑗
= 0 (i.e. action from the set of possible

action which is not observed) is 𝛾 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1). It is necessary to estimate 𝜓𝑘 for

𝑘 = 𝑗 + 1, . . . , 𝐾 before estimating 𝜓 𝑗 . In G-estimation, we can avoid simultaneous

minimization by estimating the parameter recursively. For example, first we estimate

𝜓𝐾 , then 𝜓𝐾−1 and so on until we estimates all the parameters. At the minimum,

𝑓 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) = 𝛾 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1). Thus,

𝑌 − 𝑓 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) +
𝐾∑︁

𝑘= 𝑗+1

[
𝛾 𝑗 (𝑑𝑜𝑝𝑡𝑘

|𝑆𝑘 , �̄�𝑘−1;𝜓𝑘 ) − 𝛾 𝑗 (𝑎𝑜𝑝𝑡𝑘
|𝑆𝑘 , �̄�𝑘−1;𝜓𝑘 )] = 𝐺𝑚𝑜𝑑

𝑗 (𝜓 𝑗 ).

Equation (2.17) will have the same form as Equation (2.8) using a modified version of

counterfactual quantity 𝐺 𝑗 (𝜓), when 𝑔 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) = − 𝜕
𝜕𝜓 𝑗

𝑓 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1).

Another recursive minimization method is IMOR. At any visit 𝑗 , taking

𝑓 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) = 𝛾 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1;𝜓 𝑗 ) = 𝜇 𝑗 (𝑑𝑟𝑒 𝑓𝑗
= 0|𝑆 𝑗 , �̄� 𝑗−1;𝜓 𝑗 ) − 𝜇 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1;𝜓 𝑗 )
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in Equation (2.17) will results to the RHS of Equation (2.14) with

− 𝑐 = 𝜇 𝑗 (𝑑𝑟𝑒 𝑓𝑗
= 0|𝑆 𝑗 , �̄� 𝑗−1;𝜓 𝑗 ) +

𝑗−1∑︁
𝑘=1

𝜇𝑘 (𝑎𝑘 |𝑆𝑘 , �̄�𝑘−1; �̂�𝑘 )

− 𝐸 [𝜇 𝑗 (𝑑𝑟𝑒 𝑓𝑗
= 0|𝑆 𝑗 , �̄� 𝑗−1;𝜓 𝑗 ) +

𝐾∑︁
𝑘= 𝑗+1

𝜇𝑘 (𝑎𝑘 |𝑆𝑘 , �̄�𝑘−1; �̂�𝑘 ) − 𝑌 ]

= 𝐸 [𝐺𝑚𝑜𝑑
𝑗 (𝜓)] + 𝜇 𝑗 (𝑑𝑟𝑒 𝑓𝑗

= 0|𝑆 𝑗 , �̄� 𝑗−1;𝜓 𝑗 ) +
𝑗−1∑︁
𝑘=1

𝜇𝑘 (𝑎𝑘 |𝑆𝑘 , �̄�𝑘−1; �̂�𝑘 )

− 𝐸 [𝜇 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1;𝜓 𝑗 )]

(2.18)

IMOR and G-estimation are generally not equivalent because the parameter 𝑐 in

Equation (2.14) changes from stage to stage. IMOR obtains the solution by using the

regret function and 𝑐 instead of expressing 𝐸 [𝐺𝑚𝑜𝑑
𝑗

(𝜓)] explicitly. Both IMOR and

G-estimation are equivalent for a single-stage case when the null hypothesis of no treatment

effect, 𝑐 = 𝐸 [𝐺𝑚𝑜𝑑
𝑗

(𝜓)] = 𝐸 [𝑌 ] when 𝐸 [𝐺𝑚𝑜𝑑
𝑗

(𝜓)] is modelled with a constant and

𝑔 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) = − 𝜕
𝜕𝜓 𝑗

𝑓 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1).

Robins (2004) made an argument that we can correctly specify the model easily with

the blip function because we can visualize a reference regime easily compared to an

unspecified optimal regime. However, it can be computationally challenging to determine

the optimal regime from the blip function compared to optimal action as the optimal action

is taken from the regret function straight away.

2.5.3.3 Regret-regression

In IMOR and G-estimation, the focus is only on the treatment decision without

considering the importance of the covariates or the state function, where the information

of the states lie in the 𝜙 𝑗 (𝑆 𝑗 |𝑆 𝑗−1, �̄� 𝑗−1) function. Henderson et al. (2010) proposed a

method called a regret-regression method, which take the importance on both the states

and treatments into its model.
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Instead of parameterizing the mean outcome semi-parametrically by avoiding the

nuisance functions, 𝜙 𝑗 (𝑆 𝑗 |𝑆 𝑗−1, �̄� 𝑗−1), Henderson et al. (2010) modelled the nuisance

function as a linear combination of residuals between 𝑆 𝑗 and the expected value of 𝑆 𝑗

given (𝑆 𝑗−1, �̄� 𝑗−1) defined as 𝑍 𝑗 = 𝑆 𝑗 − 𝐸 (𝑆 𝑗 |𝑆 𝑗−1, �̄� 𝑗−1). From Equation (2.13), the

mean response of the regret-regression is rewritten as

𝐸 (𝑌 |𝑆𝐾 , �̄�𝐾) = 𝛽0(𝑆1) +
𝐾∑︁
𝑗=2

𝛽𝑇𝑗 (𝑆 𝑗−1, �̄� 𝑗−1)𝑍 𝑗 −
𝐾∑︁
𝑗=1

𝜇 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1;𝜓), (2.19)

where 𝛽0 and 𝛽 𝑗 (𝑆 𝑗−1, �̄� 𝑗−1) are coefficients that measured the states at visit 𝑗 after

allowing for (𝑆 𝑗−1, �̄� 𝑗−1) while assuming that the optimal actions are given from visit

𝑗 onwards. Parameters 𝛽 and 𝜓 can be estimated using the ordinary least squares by

minimizing

𝑆𝑆𝑅𝑟 =

𝑛∑︁
𝑖=1

(
𝑌𝑖−𝛽0(𝑆1)−

𝐾∑︁
𝑗=2

𝛽𝑇𝑗 (𝑆 𝑗−1,𝑖, �̄� 𝑗−1,𝑖)𝑍 𝑗 ,𝑖+
𝐾∑︁
𝑗=1

𝜇 𝑗 (𝐴 𝑗 ,𝑖 |𝑆 𝑗 ,𝑖, �̄� 𝑗−1,𝑖, 𝜓)
)2
. (2.20)

The advantage of the regret-regression is it allows model checking and diagnostic assessment

since it is a regression-based method.

A doubly-robust version of the regret-regression was developed by Barrett et al. (2014)

to overcome the limitation of the action or state process when the model is misspecified.

This method is similar to a reduced form of an efficient G-estimation method (Robins,

2004).

Doubly robust regret-regression (DRRr) is defined to be robust to misspecification of

either 𝜙 𝑗 (𝑆 𝑗 |𝑆 𝑗−1, �̄� 𝑗−1) or the probability density 𝑝 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1) of assigning action 𝐴 𝑗 .

Barrett et al. (2014) rewrite the estimating equation for the regret-regression (denoted

24

Univ
ers

iti 
Mala

ya



as 𝐸𝐸𝑅𝑟) of Equation (2.20) as

𝐸𝐸𝑅𝑟 (𝜓) =
(
𝑌 − 𝐸 (𝑌 |𝑆𝐾 , �̄�𝐾)

)∑︁
𝑗

𝜕𝜇 𝑗

𝜕𝜓
(2.21)

by focusing on estimating the parameters of the regret function, 𝜇 𝑗 . Barrett et al. (2014)

showed that the expected value of the estimating equation of Equation (2.21) is equal to

zero provided that the states and the regret functions is correctly specified.

Let �̃� 𝑗 and �̃� 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1;𝜓) be the postulated models of 𝑍 𝑗 and 𝜇 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1;𝜓)

respectively. Thus, the postulated expected mean outcome is given as

𝐸 (𝑌 |𝑆𝐾 , �̄�𝐾) = 𝛽0(𝑆1) +
𝐾∑︁
𝑘=2

𝛽𝑇𝑗 (𝑆 𝑗−1, �̄� 𝑗−1) �̃� 𝑗 −
𝐾∑︁
𝑘=1

�̃� 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1;𝜓).

The expectation of the estimating equations for the regret-regression over all random

variables is then written as

𝐸𝑆𝐾 , �̄�𝐾 ,𝑌
(
𝐸𝐸𝑅𝑟 (𝜓)

)
= 𝐸𝑆𝐾 , �̄�𝐾 ,𝑌

{(
𝑌 − 𝛽0 −

𝑗∑︁
𝑘=2

𝛽𝑇𝑗 (𝑆 𝑗−1, �̄� 𝑗−1) �̃� 𝑗 +
𝐾∑︁
𝑘=1

�̃� 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1;𝜓)
)∑︁

𝑗

𝜕�̃� 𝑗

𝜕𝜓

}
= 𝐸𝑆𝐾 , �̄�𝐾

{
𝛽0 +

𝐾∑︁
𝑘=2

𝛽𝑇𝑗 (𝑆 𝑗−1, �̄� 𝑗−1)𝑍 𝑗 − 𝜇 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1;𝜓) − 𝛽0

−
𝑗∑︁

𝑘=2
𝛽𝑇𝑗 (𝑆 𝑗−1, �̄� 𝑗−1) �̃� 𝑗 +

𝐾∑︁
𝑘=1

�̃� 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1;𝜓)
)∑︁

𝑗

𝜕�̃� 𝑗

𝜕𝜓

}
, (2.22)

where Equation (2.22) is used to take the expectation of 𝑌 . The expression will be equal to

zero provided that the regret function, 𝜇 𝑗 and the states are correctly specified, 𝛽0 = 𝛽0,

𝛽𝑇
𝑗
(𝑆 𝑗−1, �̄� 𝑗−1) �̃� 𝑗 = 𝛽𝑇𝑗 (𝑆 𝑗−1, �̄� 𝑗−1)𝑍 𝑗 and �̃� 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1;𝜓) = 𝜇 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1;𝜓).

Barrett et al. (2014) extended the estimating equation of Equation (2.21) by taking the

contribution of the final term to obtained doubly-robust property of the regret-regression.
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Thus, the estimating equation of the DRRr is

𝐸𝐸𝐷𝑅𝑅𝑟 (𝜓) =
(
𝑌 − 𝐸 (𝑌 |𝑆𝐾 , �̄�𝐾)

) (
𝜕𝜇𝐾

𝜕𝜓
− 𝐸𝐴𝐾

(
𝜕𝜇𝐾

𝜕𝜓

))
, (2.23)

where parameter �̂� is consistent if the expected value of the estimating equation equal to

zero.

Other literature related to the regret-regression include Clairon et al. (2017) which

developed a new treatment strategy based on the regret-regression and non-minimal state-

space methods which are robust to misspecification and measurement error. Meanwhile,

Mohamed (2013) had introduced a short-term strategy of the regret-regression method

called the myopic regret-regression (MRr). The decision rules using the MRr method are

considered at each clinical visit which will explained in detail in Section 3.2.1.

2.6 Marginal Mean Models

For analyzing longitudinal data, GEE and QIF have become the focal methods used

by the researchers. These two methods are very popular since there is no requirement on

specifying the probability distribution when analyzing longitudinal data. The marginal

mean can be modelled without knowing the correlation structure of the longitudinal data

although we do usually specify a working correlation matrix and the choice of that may

affect the efficiency of the model. Under the QIF method, we only need to know the type

of working correlation but not the parameter values.

2.6.1 Generalized Estimating Equations (GEE)

In GEE, the relationship between the response and covariates is modelled separately

from the correlation between repeated measurements on the same individual. A working

correlation matrix between successive measurements, is needed when estimating the model
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parameters (Diggle et al., 2002; Liang & Zeger, 1986). The GEE is an extension of the

quasi-likelihood approach in analyzing longitudinal and correlated data which does not

require any distributional assumptions. The correlation of outcomes within an individual

can be estimated and enable to estimate the robust regression parameters with the standard

errors.

Let 𝑦𝑖 𝑗 be the outcome variable and 𝑥𝑖 𝑗 be a (𝑝 × 1) vector of covariates. The

observation is observed for subjects 𝑖 = 1, 2, . . . , 𝑛 at times 𝑗 = 1, 2, . . . , 𝐾. Assuming

that the observation between subject, 𝑖 is independent, the marginal mean 𝜐𝑖 𝑗 is a function

of the covariates with link function ℎ(𝜐𝑖 𝑗 ) = 𝑥𝑇𝑖 𝑗𝜃. Then, the variance of outcome 𝑦𝑖 𝑗 is a

function of the mean var(𝑦𝑖 𝑗 ) = 𝜁𝑉 (𝜐𝑖 𝑗 ), where 𝜁 is the dispersion parameter (Song et al.,

2009).

The GEE solves the equation

𝑛∑︁
𝑖=1

¤𝜐𝑇𝑖 𝑉−1
𝑖 (𝑌𝑖 − 𝜐𝑖) = 0 (2.24)

where for each 𝑖, ¤𝜐𝑖 = 𝜕𝜐𝑖/𝜕𝜃 has a dimension of 𝐾 × 𝑝 with 𝑝 being the number of

parameters 𝜃, and 𝑉𝑖 = 𝐷1/2
𝑖
𝑅𝑖 (𝜌)𝐷1/2

𝑖
is the working correlation structure. Denote that,

𝐷𝑖 is the diagonal matrix of marginal variances, and 𝑅𝑖 (𝜌) is the working correlation

matrix with parameter 𝜌.

Zeger et al. (1988) applied the GEE method to fit the two types of approaches which

are the subject-specific (SS) and population-averaged (PA) for discrete and continuous

outcomes. Ye and Pan (2006) proposed an approach for joint modelling of the mean and

covariance structures of longitudinal data using GEE approach. Ye and Pan (2006) used

the modified Cholesky decomposition from Pourahmadi (1999) instead of the sandwich

type of working covariance structure.
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Shults et al. (2009) considered the criteria for selecting an appropriate working

correlation structure when dealing with binary data by choosing the nearest structure for

which the model-based and the sandwich-based estimator of the covariance matrix and

choose the structure that minimizes the weighted error sum of squares. Warton (2011)

improvised the GEE method to analyzed high dimensional data by using a regularized

sandwich estimator with general structure correlation matrix. In order to improvised its

numerical suitability, Warton (2011) reduced the sample estimate toward the working

correlation matrix.

Sitlani et al. (2015) illustrated the potential for increased power using GEE analyses by

conducting single-study and meta-analyses for 3 large cohort studies and Nikoloulopoulos

(2016) introduced the weighted scores method for generalized linear model (GLM) margins.

This parametric method is a likelihood based where for model selection, the composite

likelihood information criteria have been proposed as an intermediate step. Huang et al.

(2016) used the GEE bias correction methods in cluster randomized trials and found that

the method is suitable to deal even with a small number of clusters. Meanwhile, Kwon et

al. (2017) proposed a stabilized working correlation matrix of GEE using linear shrinkage

method where the minimum eigenvalue is bounded with a small positive number.

2.6.2 Quadratic Inference Functions (QIF)

The purpose of the QIF is to extend the effectiveness of GEE in analyzing longitudinal or

correlated data. In QIF, the working correlation matrix is expressed as a linear combination

of unknown constants and known basis matrices (Qu & Lindsay, 2000). This linear

expression is substituted back to a quasi-likelihood function to obtain an extended score

vector with a generalized method of moments (Hansen, 1982). To developed an adaptive

estimating equations in the quasilikelihood equations, Qu and Lindsay (2003) approximate

the inverse of the variance matrix without requiring any assumptions on the working
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correlations. A multivariate generalization of the conjugate gradient method can be used

to find the estimating equations that sustained the information well at fixed low dimensions

(Qu & Lindsay, 2003). It is very beneficial when the estimator of the covariance matrix is

singular or close to singular, or impossible to invert owing to its large size.

Qu and Lindsay (2000) defined the inverse function of working correlation matrix,

𝑅−1
𝑖
(𝜌) as

𝑅−1
𝑖 (𝜌) =

𝑚∑︁
𝑙=1

𝜏𝑙𝑀𝑙 (2.25)

where 𝑀1, . . . , 𝑀𝑚 are known basis matrices and 𝜏1, . . . , 𝜏𝑚 are unknown coefficients.

Then, substituting Equation (2.25) into Equation (2.24), the estimating functions can

be rewritten as

𝑛∑︁
𝑖=1

¤𝜐𝑇𝑖 𝐷
− 1

2
𝑖

(𝜏1𝑀1 + . . . + 𝜏𝑚𝑀𝑚)𝐷
− 1

2
𝑖

(𝑌𝑖 − 𝜐𝑖) = 0. (2.26)

Note that, in QIF we do not require the estimation of linear coefficients 𝜏𝑚 which can be

treated as nuisance parameters. Thus, the extended score is

𝑔𝑁 (𝜃) =
1
𝑁

𝑁∑︁
𝑖=1

𝑔𝑖 (𝜃) =
1
𝑁

©«

∑𝑁
𝑖=1 ¤𝜐𝑇

𝑖
𝐷

− 1
2

𝑖
𝑀1𝐷

− 1
2

𝑖
(𝑌𝑖 − 𝜐𝑖)∑𝑁

𝑖=1 ¤𝜐𝑇
𝑖
𝐷

− 1
2

𝑖
𝑀2𝐷

− 1
2

𝑖
(𝑌𝑖 − 𝜐𝑖)

...∑𝑁
𝑖=1 ¤𝜐𝑇

𝑖
𝐷

− 1
2

𝑖
𝑀𝑚𝐷

− 1
2

𝑖
(𝑌𝑖 − 𝜐𝑖)

ª®®®®®®®®®®®¬
(2.27)

is a vector with length 𝑚𝑝 where 𝑚 is a number of basis matrices. Using the generalized

method of moments Hansen (1982) where there are more equations than the unknown

parameters, the QIF maximizes

𝑄𝑁 (𝜃) = 𝑔𝑇𝑁𝐶−1
𝑁 𝑔𝑁 (2.28)
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where

𝐶𝑁 =
1
𝑁2

𝑁∑︁
𝑖=1

𝑔𝑇𝑖 (𝜃)𝑔𝑖 (𝜃).

Some development in QIF method include a modification on the QIF to overcome

the weakness on the non-invertible estimation of the optimal weighting matrix (Han &

Song, 2011). The modification work by substituting the sample covariance matrix with a

linear shrinkage estimator in order to estimate the optimal weighting matrix. The linear

shrinkage estimator was proved to be consistent and asymptotically optimal under the

expected quadratic loss and has a more stable numerical performance compared to the

sample covariance matrix. Other modification is from Yang and Liao (2017) that modified

the extended score function of the QIF method by presenting it with a robust variance

estimator.

Westgate and Braun (2012) shows that the QIF can produce estimates with a large

variability when there is an imbalance in the covariates and cluster size where the result is

obtained from the empirical nature of weighting QIF rather than the differences in estimating

equations classes. The asymptotic covariance formula is used in the QIF to obtain standard

errors. Meanwhile, Westgate (2012) showed that the standard errors are biased downward in

small to moderately sample size thus, inflating test size and decreasing coverage probability.

To eliminate finite-sample biases which lead to substantial improvements in standard error

estimates, inference and coverage, Westgate (2012) proposed adjustments to the asymptotic

covariance formula. Meanwhile, Westgate and Braun (2013) proposed an alternative

weighting matrix for the QIF, which asymptotically is an optimally weighted combination

of the empirical covariance matrix and its model-based version, which is derived by

minimizing its expected quadratic loss. The use of the weighting matrix maintains the

large-sample advantages the QIF has over GEE and improves small-sample parameter

estimation.
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Recently, Yu, Tong, and Li (2020) solved each set of score equations by providing an

alternative solution to the QIF which also combined the solutions. This solutions gives

an understanding that an optimally weighted combination of estimators gained separately

from the distinct sets of score equations is asymptotically equivalent to the estimator

obtained via the QIF. Other recent works includes (Dumitrescu, Qian, & Rao, 2020; Lai,

Liang, Wang, & Zhang, 2020).

2.7 Penalized Methods

Although the QIF method is possible to analyze longitudinal outcome, however when the

dimension of the parameters is bigger than the correlation matrix, a complex computational

problem such as singularity issues may occurs. To overcome this problem, the penalized

term may be added to the estimating equations of the GEE and QIF.

There are several types of penalty, for example, least absolute shrinkage and selection

operator (LASSO) (Tibshirani, 1996), and smoothly clipped absolute deviation (SCAD)

(Fan & Li, 2001). Fu (2003) considered the bridge penalty model,
∑𝑝

𝑣=1 |𝜃𝑣 |
𝛾 for estimating

equations and apply the bridge penalty to the generalized estimating equations (GEE).

Note that, when 𝛾 = 1, it is defined as Lasso estimator, meanwhile, if the value of 𝛾 = 2

then it is known as a ridge. In addition, there are other method such as the elastic net

method for regularization and variable selection method (Zou & Hastie, 2005). It is a

convex combination of the LASSO and ridge penalty.

2.7.1 Ridge Estimator

The ridge regression model has been introduced as an alternative to the least squares

estimation for poor design matrix. Hoerl and Kennard (1970) introduced a biased estimators

called ridge estimators and proposed a ridge trace method to show the effects of non-

orthogonality in two dimensions. The ridge estimators also known as ridge penalty can
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control the inflation and general instability related with the least squares estimates. In

addition, the ridge penalty can also solve the multicollinearity problem in dataset. Hence,

in this study, we will use the ridge penalty also known as 𝐿2 penalty to improve the

estimation in ODTR and to solve the singularity issues which gives more stability in

computation.

To estimate the parameter of the ridge regression, first consider a normal linear model

where 𝑌 is normally distributed with mean 𝑋𝜃 and variance 𝜎2, 𝑌 ∼ 𝑁 (𝑋𝜃, 𝜎2). The

penalized residual sum of squares of the ridge regression given by Hoerl and Kennard

(1970) is

𝑟𝑅𝑆𝑆(𝜃) = 𝑅𝑆𝑆(𝜃) + 𝜆
𝑝∑︁
𝑣=1

|𝜃𝑣 |2 (2.29)

=

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑋𝑖𝜃)𝑇 (𝑌𝑖 − 𝑋𝑖𝜃) + 𝜆
𝑝∑︁
𝑣=1

|𝜃𝑣 |2,

where 𝜆 is the tuning parameter.

Taking the derivative of Equation (2.29),

𝜕𝑟𝑅𝑆𝑆(𝜃)
𝜕𝜃

= −2𝑋𝑇 (𝑌 − 𝑋𝜃) + 2𝜆𝜃𝑣 (2.30)

and solving𝑈 (𝜃) = 𝑋𝑇 (𝑌 − 𝑋𝜃) − 𝜆𝜃 equal to zero gives the estimate of 𝜃 (𝜆),

𝜃 (𝜆) = (𝑋𝑇𝑋 + 𝜆𝐼𝑝)−1𝑋𝑇𝑌 .
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The residual of the ridge regression is

𝑒(𝜆) = 𝑌 − 𝑌 (2.31)

= 𝑌 − 𝑋𝜃

= 𝑌 − 𝑋 (𝑋𝑇𝑋 + 𝜆𝐼𝑝)−1𝑋𝑇𝑌

= (𝐼 − 𝑋 (𝑋𝑇𝑋 + 𝜆𝐼𝑝)−1𝑋𝑇 )𝑌

= (𝐼 − 𝐻 (𝜆))𝑌 .

where the 𝐻 (𝜆) is the hat matrix of the ridge regression

𝐻 (𝜆) = 𝑋 (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇 . (2.32)

Now, suppose that there is a weight associated with each observation. Then, we have 𝑌

to be normally distributed with mean 𝑋𝜃 and covariance Σ, 𝑌 ∼ 𝑁 (𝑋𝜃, Σ). The penalized

weighted sum of squares using ridge regression is

𝑟𝑊𝑆𝑆(𝜃) =
𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑋𝑖𝜃)𝑇Σ−1(𝑌𝑖 − 𝑋𝑖𝜃) + 𝜆
𝑝∑︁
𝑣=1

|𝜃𝑣 |2. (2.33)

Taking the derivative of Equation (2.33) gives

𝜕𝑟𝑊𝑆𝑆(𝜃)
𝜕𝜃

= −2𝑋𝑇Σ−1(𝑌 − 𝑋𝜃) + 2𝜆𝜃, (2.34)

where the weighted score function𝑈 (𝜃) = 𝑋𝑇Σ−1(𝑌 − 𝑋𝜃) − 𝜆𝜃 is equivalent to solving

𝑋𝑇Σ−1(𝑌 − 𝑋𝜃) − 𝜆𝜃 = 0. (2.35)
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Thus, the parameter estimates, 𝜃 (𝜆) for the weighted ridge regression is

𝜃 (𝜆) = (𝑋𝑇Σ−1𝑋 + 𝜆𝐼𝑝)−1𝑋𝑇Σ−1𝑌 .

The residual of the weighted ridge regression is

𝑒(𝜆) = 𝑌 − 𝑌 (2.36)

= 𝑌 − 𝑋𝜃

= 𝑌 − 𝑋 (𝑋𝑇Σ−1𝑋 + 𝜆𝐼𝑝)−1𝑋𝑇Σ−1𝑌

= (𝐼 − 𝐻 (𝜆))𝑌,

and the hat matrix, 𝐻 (𝜆) for the weighted ridge regression is

𝐻 (𝜆) = 𝑋 (𝑋𝑇Σ−1𝑋 + 𝜆𝐼𝑝)−1𝑋𝑇Σ−1. (2.37)

The penalty function are widely been used in model selection for high dimensional

data where the number of predictors are bigger than the sample size. For longitudinal

data analysis, Mũller et al. (2017) note that the function 𝐶𝑁 of the QIF method faced

singularity problem for autogressive with order 1, AR(1) and exchangeable working

correlation structures. To counter this problem, Mũller et al. (2017) defined the method

called rQIF by applying the ridge penalty into the 𝐶𝑁 function. Meanwhile, Song et al.

(2009) used penalty approach to compose model selection through the QIF method where

model selection is practically been employ on high dimensional data. The data is said to

be high in dimension when the variables are bigger than the sample sizes.

When the errors are correlated, Akdeniz and Roozbeh (2019) proposed a generalized

difference-based almost unbiased ridge estimator for the parameter in partially linear
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model. From the analysis, Akdeniz and Roozbeh (2019) noticed that the degree of

correlation is the main factors that affecting the performance of the estimators. In the

context of robust regression, a ridge rank regression estimator can be used when there is

a multicollinearity. Roozbeh et al. (2020) proposed and demonstrated that a generalized

cross-validation criterion allows the shrinkage ridge rank regression to perform well in the

term of minimum risk function. The generalized cross-validation method strikes a balance

between the estimators’ precision and the bias introduced by ridge estimation (Arashi et

al., 2021).

2.8 Summary

In this chapter, we have reviewed estimation strategies for ODTR which are SNMM,

G-Estimation, IMOR, and regret-regression. To begin with, we start by explaining the

longitudinal data and causal inference. Then, we give a framework for ODTR which

includes the notation and assumptions needed. After introducing the estimation strategies

for ODTR, we reviewed methods for analyzing longitudinal data which are GEE and QIF.

Next, we reviewed the ridge estimator that is for the proposed method in Chapter 3.
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CHAPTER 3: METHODOLOGY

3.1 Introduction

We begin with the MRr introduced by Mohamed (2013) which is a short-term strategy

of the regret-regression. In MRr, the response considered is a longitudinal outcome where

the response is measured at a current visit 𝑗 and the model is fitted at each visit 𝑗 . The

myopic decision rules is defined to be a sequence of decision rules that maximizes a

short-term criteria, where all future measurement are ignored, and each visit is treated

to be the only visit that we are interested in. Then, we give a methodology for QIF-MRr

which is a combination between the MRr with QIF to analyze ODTR. Then, we extend the

work by proposing rQIF-MRr to overcome the limitations of QIF-MRr in estimating small

sample sizes and handling singularity issue.

3.2 Estimating Optimal Dynamic Treatment Regimes (ODTR) for Longitudinal
Outcomes

For each subject 𝑖, suppose 𝑌𝑖 = (𝑌𝑖1, 𝑌𝑖2, . . . , 𝑌𝑖𝐾)𝑇 be the vector of longitudinal

outcomes for 𝑗 = 1, 2, . . . , 𝐾, and let the mean vector ℎ𝑖 = 𝐸 (𝑌𝑖 |𝑆𝑖, �̄�𝑖, 𝜃). Note that,

𝑆𝑖 = (𝑆𝑖1, 𝑆𝑖2, . . . , 𝑆𝑖𝐾)𝑇 and �̄�𝑖 = (𝐴𝑖1, 𝐴𝑖2, . . . , 𝐴𝑖𝐾)𝑇 are the vector of states and action

given for subject 𝑖 respectively.

The states and actions, (𝑆𝑖, �̄�𝑖) are assumed to be independent between the subjects and

dependent within a subject. The difference between the regret-regression with the MRr

is that, the MRr estimate the ODTR at each visit, while, the regret-regression estimate

the ODTR at the end of visit (after the observations for the case study has fully obtained).

Figure 3.1 illustrates different types of observational sequence. Figure 3.1 (a) shows the

general observational order of the dynamic treatment regimes. Figure 3.1 (b) and (c) give

the observational order for the regret-regression and MRr respectively.
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S2S1 S3 SKA1 A2 A3 AK Y...a)

S2S1 S3 SKA1 A2 A3 AK YK...b)

Z2 Z3 ZK

Y1

S2S1 S3 SK

Z2 Z3 ZK

A1 A2 A3 AK

YKY2 Y3

...c)

Z1

Figure 3.1: (a) General observational order (b) Observational order for regret-regression (c)
Observational order for MRr

3.2.1 Myopic Regret-regression (MRr)

The mean response of MRr for 𝑗 = 1, 2, . . . , 𝐾 is

𝐸 (𝑌 𝑗 |𝑆 𝑗 , �̄� 𝑗 , 𝛽, 𝜓) = 𝛽𝑇𝑗 (𝑆 𝑗−1, �̄� 𝑗−1)𝑍 𝑗 − 𝜇 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1, 𝜓), (3.1)

where 𝜇 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1, 𝜓) is a regret function. Note that, 𝛽 𝑗 (𝑆 𝑗−1, �̄� 𝑗−1) are coefficients

that measure the states at visit 𝑗 after allowing for (𝑆 𝑗−1, �̄� 𝑗−1) while assuming that the

optimal actions are given from visit 𝑗 onwards, and 𝑍 𝑗 = 𝑆 𝑗 − 𝐸 (𝑆 𝑗 |𝑆 𝑗−1, �̄� 𝑗−1) is a linear

combination of residuals between 𝑆 𝑗 and the expected value of 𝑆 𝑗 given (𝑆 𝑗−1, �̄� 𝑗−1) as

in Section (2.5.3.3). Similar to Equation (2.13) in Murphy (2003), Equation (3.1) can be

37

Univ
ers

iti 
Mala

ya



rewritten as

𝐸 (𝑌 𝑗 |𝑆 𝑗 , �̄� 𝑗 , 𝛽, 𝜓) = 𝛽0 + 𝜙 𝑗 (𝑆 𝑗 |𝑆 𝑗−1, �̄� 𝑗−1 |𝛽) − 𝜇 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1, 𝜓), (3.2)

where 𝜙 𝑗 (𝑆 𝑗 |𝑆 𝑗−1, �̄� 𝑗−1 |𝛽) is a state function.

Let 𝜃 = (𝛽, 𝜓), then for each interval 𝑗 , the sum of squares of error for the MRr is

𝑆𝑆𝑀𝑅𝑟 (𝜃) =
𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝐸 (𝑌 𝑗 |𝑆 𝑗 , �̄� 𝑗 , 𝜃))2 (3.3)

=

𝑛∑︁
𝑖=1

{
𝑌2
𝑖 − 2𝐸 (𝑌 𝑗 |𝑆 𝑗 , �̄� 𝑗 , 𝜃)𝑌𝑖 + 𝐸 (𝑌 𝑗 |𝑆 𝑗 , �̄� 𝑗 , 𝜃)2

}
.

Taking the derivative of Equation (3.3) will gives

𝜕𝑆𝑆𝑀𝑅𝑟 (𝜃)
𝜕𝜃

=

𝑛∑︁
𝑖=1

{
− 2

(
𝜕𝐸 (𝑌 𝑗 |𝑆 𝑗 , �̄� 𝑗 , 𝜃)

𝜕𝜃

)
𝑌𝑖 + 2

(
𝜕𝐸 (𝑌 𝑗 |𝑆 𝑗 , �̄� 𝑗 , 𝜃)

𝜕𝜃

)
𝐸 (𝑌 𝑗 |𝑆 𝑗 , �̄� 𝑗 , 𝜃)

}
.

(3.4)

Solving Equation (3.4) equal to zero gives

𝑛∑︁
𝑖=1

{(
𝜕𝐸 (𝑌 𝑗 |𝑆 𝑗 , �̄� 𝑗 , 𝜃)

𝜕𝜃

)
(𝑌𝑖 − 𝐸 (𝑌 𝑗 |𝑆 𝑗 , �̄� 𝑗 , 𝜃))

}
= 0. (3.5)

The parameter estimate, 𝜃 can be obtained by using the ordinary least squares method

by minimizing the estimating equations of the MRr method as in Equation (3.6). 𝜃 is

consistent when the expectation of the estimating equation of the MRr is zero. Following

the proof on consistency by Barrett et al. (2014), we will show that 𝐸 (𝐸𝐸𝑀𝑅𝑟 (𝜃)) = 0

provided that the states and regret functions are modeled correctly.
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For all 𝑖 = 1, 2, . . . , 𝑛, the estimating equation of MRr for each 𝑗 is

𝐸𝐸𝑀𝑅𝑟 (𝜃) = (𝑌 𝑗 − 𝐸 (𝑌 𝑗 |𝑆 𝑗 , �̄� 𝑗 ))
(
𝜕𝐸 (𝑌 𝑗 |𝑆 𝑗 , �̄� 𝑗 )

𝜕𝜃

)
. (3.6)

Let 𝛽0, 𝜙 𝑗 (𝑆 𝑗 |𝑆 𝑗−1, �̄� 𝑗−1 |𝛽) and �̃� 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1, 𝜓) be the postulated models for

𝜙 𝑗 (𝑆 𝑗 |𝑆 𝑗−1, �̄� 𝑗−1 |𝛽) and 𝜇 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1, 𝜓) respectively. Thus, the postulated model for

𝐸 (𝑌 𝑗 |𝑆 𝑗 , �̄� 𝑗 ) is then

𝐸 (𝑌 𝑗 |𝑆 𝑗 , �̄� 𝑗 ) = 𝛽0 + 𝜙 𝑗 (𝑆 𝑗 |𝑆 𝑗−1, �̄� 𝑗−1 |𝛽) − �̃� 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1, 𝜓), (3.7)

and the expectation of the estimating equation over all random variables is

𝐸𝑆 𝑗 , �̄� 𝑗 (𝐸𝐸
𝑀𝑅𝑟 (𝜃)) = 𝐸𝑆 𝑗 , �̄� 𝑗

(
(𝑌 𝑗 − 𝛽 − 𝜙 𝑗 (𝑆 𝑗 |𝑆 𝑗−1, �̄� 𝑗−1 |𝛽) (3.8)

+ �̃� 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1, 𝜓))
(
𝜕𝐸 (𝑌 𝑗 |𝑆 𝑗 , �̄� 𝑗 , 𝜃)

𝜕𝜃

))
,

Then, substituting Equation (3.2) into Equation (3.8) gives

𝐸𝑆 𝑗 , �̄� 𝑗 (𝐸𝐸
𝑀𝑅𝑟 (𝜃)) = 𝐸𝑆 𝑗 , �̄� 𝑗

(
(𝛽0 − 𝜙 𝑗 (𝑆 𝑗 |𝑆 𝑗−1, �̄� 𝑗−1 |𝛽) + 𝜇 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1, 𝜓) (3.9)

− 𝛽0 − 𝜙 𝑗 (𝑆 𝑗 |𝑆 𝑗−1, �̄� 𝑗−1 |𝛽) + �̃� 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1, 𝜓))
(
𝜕𝐸 (𝑌 𝑗 |𝑆 𝑗 , �̄� 𝑗 , 𝜃)

𝜕𝜃

))
.

Therefore, the expression of Equation (3.9) is equal to zero provided that the state and the

regret functions are modeled correctly 𝛽0 = 𝛽0, 𝜙 𝑗 (𝑆 𝑗 |𝑆 𝑗−1, �̄� 𝑗−1 |𝛽) = 𝜙 𝑗 (𝑆 𝑗 |𝑆 𝑗−1, �̄� 𝑗−1 |𝛽)

and 𝜇 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1, 𝜓) = �̃� 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1, 𝜓).

The relation between MRr with regret-regression is that the summation of the mean

response at each time 𝑗 from Equation (3.1) is equivalent to the mean response of the
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regret-regression. Suppose, the first visit ( 𝑗 = 1),

𝛽𝑇𝑗 (𝑆 𝑗−1, �̄� 𝑗−1)𝑍 𝑗 = 𝛽0(𝑆1).

Then,

𝐾∑︁
𝑗=1

𝐸 (𝑌 𝑗 |𝑆 𝑗 , �̄� 𝑗 ) =
𝐾∑︁
𝑗=1

(
𝛽𝑇𝑗 (𝑆 𝑗−1, �̄� 𝑗−1)𝑍 𝑗 − 𝜇 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1;𝜓)

)
(3.10)

= 𝛽0(𝑆1) +
𝐾∑︁
𝑗=2

𝛽𝑇𝑗 (𝑆 𝑗−1, �̄� 𝑗−1)𝑍 𝑗 −
𝐾∑︁
𝑗=1

𝜇 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1;𝜓)

= 𝐸 (𝑌 |𝑆𝐾 , �̄�𝐾).

3.2.2 Quadratic Inference Functions in Myopic Regret-regression (QIF-MRr)

Referring to Section (2.6.2), suppose 𝑅(𝜌) be the working correlation matrix with pa-

rameter 𝜌, and the inverse function of 𝑅−1(𝜌) can be approximated by a linear combination

of several basis matrices defined as

𝑅−1(𝜌) =
𝑚∑︁
𝑙=1

𝜏𝑙𝑀𝑙 . (3.11)

There are several types of working correlation structures commonly used such as

(i) independent,

(ii) exchangeable,

(iii) first order autoregressive, AR(1),

(iv) unspecified.

For an independent working correlation structure, 𝑅(𝜌) is an identity matrix where

𝑅−1(𝜌) = 𝜏0𝑀0 (3.12)
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and

𝑀0 =

©«

1 0 . . . 0

0 1 . . . 0

...
...
. . .

...

0 0 . . . 1

ª®®®®®®®®®®®¬
. (3.13)

Meanwhile, for an exchangeable working correlation structure, 𝑅(𝜌) consists of 1’s on the

diagonal and 𝜌’s everywhere off-diagonal. Then, 𝑅−1 is given as

𝑅−1(𝜌) = 𝜏0𝑀0 + 𝜏1𝑀1 (3.14)

where 𝑀0 is an identity matrix

𝑀0 =

©«

1 0 . . . 0

0 1 . . . 0

...
...
. . .

...

0 0 . . . 1

ª®®®®®®®®®®®¬
(3.15)

and 𝑀1 is a matrix with diagonal elements 0 and off-diagonal elements 1

𝑀1 =

©«

0 1 . . . 1

1 0 . . . 1

...
...
. . .

...

1 1 . . . 0

ª®®®®®®®®®®®¬
. (3.16)

Note that, 𝜏0 = −{(𝐾 − 2)𝜌 + 1}/{(𝐾 − 1)𝜌2 − (𝐾 − 2)𝜌 − 1} and 𝜏1 = 𝜌/{(𝐾 − 1)𝜌2 −

(𝐾 − 2)𝜌 − 1} and 𝐾 is the dimension of 𝑅. For the AR(1) working correlation structure,
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the inverse working correlation structure can be written as

𝑅−1(𝜌) = 𝜏0𝑀0 + 𝜏1𝑀1 + 𝜏2𝑀2 (3.17)

where 𝑀0 is an identity matrix

𝑀0 =

©«

1 0 . . . 0

0 1 . . . 0

...
...
. . .

...

0 0 . . . 1

ª®®®®®®®®®®®¬
, (3.18)

𝑀1 is a matrix with 1 on the two main off-diagonals and 0 elsewhere,

𝑀1 =

©«

0 1 . . . 0

1 0 1 . . . 0

0 1 0 1 . . . 0

...
...

. . .
. . .

. . .
...

0 . . . . . . . . . . . . 0

ª®®®®®®®®®®®®®®®¬

(3.19)

and 𝑀2 is a matrix with 1 on the corners (1, 1) and (𝐾, 𝐾) and 0 elsewhere

𝑀2 =

©«

1 0 . . . 0

0 0 . . . 0

...
...
. . .

...

0 0 . . . 1

ª®®®®®®®®®®®¬
. (3.20)

Here 𝜏0 = (1 + 𝜌2)/(1 − 𝜌2), 𝜏1 = (−𝜌)/(1 − 𝜌2) and 𝜏2 = (−𝜌2)/(1 − 𝜌2).

The unspecified working correlation structure can be used to determine the working
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correlation structure when there is some difficulty and challenges in obtaining it. For the

unspecified working correlation structure, the basis matrices 𝑀0 = 𝐼𝑛 and 𝑀1 = �̂�, where

�̂� =
1
𝑁
Σ(𝑌𝑖 − ℎ𝑖) (𝑌𝑖 − ℎ𝑖)𝑇 , (3.21)

and the matrix �̂� is a consistent estimator of the variance matrix of 𝑌 (Qu & Lindsay,

2003).

Let ℎ𝑖 = 𝐸 (𝑌 𝑗 |𝑆 𝑗 , �̄� 𝑗 ), substituting the marginal mean, 𝜐𝑖 𝑗 from Section (2.6.1) of

Equation (2.24) with the mean vector of MRr, ℎ𝑖, the GEE in MRr solves the equation

𝑛∑︁
𝑖=1

(
𝜕ℎ𝑖

𝜕𝜃

)𝑇
𝑉−1
𝑖 (𝑌𝑖 − ℎ𝑖) = 0 (3.22)

where the partial derivative 𝜕ℎ𝑖/𝜕 (𝜃) for each 𝑖 has a dimension of 𝐾 × 𝑝 with 𝑝 being the

number of parameters 𝜃. Then, the estimating functions can be rewritten as

𝑛∑︁
𝑖=1

(
𝜕ℎ𝑖

𝜕𝜃

)𝑇
𝐷

− 1
2

𝑖
(𝜏1𝑀1 + . . . + 𝜏𝑚𝑀𝑚)𝐷

− 1
2

𝑖
(𝑌𝑖 − ℎ𝑖). (3.23)

The extended score of QIF-MRr

𝑔𝑁 (𝜃) =
1
𝑁

𝑁∑︁
𝑖=1

𝑔𝑖 (𝜃) =
1
𝑁

©«

∑𝑁
𝑖=1

(
𝜕ℎ𝑖
𝜕𝜃

)𝑇
𝐷

− 1
2

𝑖
𝑀1𝐷

− 1
2

𝑖
(𝑌𝑖 − ℎ𝑖)∑𝑁

𝑖=1

(
𝜕ℎ𝑖
𝜕𝜃

)𝑇
𝐷

− 1
2

𝑖
𝑀2𝐷

− 1
2

𝑖
(𝑌𝑖 − ℎ𝑖)

...∑𝑁
𝑖=1

(
𝜕ℎ𝑖
𝜕𝜃

)𝑇
𝐷

− 1
2

𝑖
𝑀𝑚𝐷

− 1
2

𝑖
(𝑌𝑖 − ℎ𝑖)

ª®®®®®®®®®®®®¬
. (3.24)

The QIF-MRr function is then

𝑄𝑁 (𝜃) = 𝑔𝑇𝑁𝐶−1
𝑁 𝑔𝑁 , (3.25)
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where

𝐶𝑁 =
1
𝑁2

𝑁∑︁
𝑖=1

𝑔𝑇𝑖 (𝜃)𝑔𝑖 (𝜃).

The parameter estimates of 𝜃 can be obtained by minimizing the 𝑄𝑁 (𝜃),

𝜃 = arg min
𝜃
𝑔𝑇𝑁𝐶

−1
𝑁 𝑔𝑁 . (3.26)

3.3 The Proposed Method

Ridge penalty also known as the 𝐿2 penalty was first introduced by Hoerl and Kennard

(1970). In this section, the ridge QIF-MRr (rQIF-MRr) is proposed to solve singularity

problem when estimating the ODTR. Although the QIF-MRr works efficiently in estimating

ODTR, however, the singularity issues often arise during computation. The singularity

problem can be solved by applying the ridge penalty into the estimating equations. Applying

the ridge penalty into the QIF-MRr will help stabilizing the estimation.

3.3.1 Ridge Quadratic Inference Functions in Myopic Regret-regression (rQIF-
MRr)

Dziak (2006) described a penalized QIF as

𝑄P
𝑛 (𝜃) = 𝑔𝑇𝑁𝐶−1

𝑁 𝑔𝑁 + 𝑘𝑛P(𝜃) (3.27)

where 𝑘𝑛 is a multiplier to scale a penalty function and P(𝜃) is a penalty function.

Thus, by applying the penalized QIF defined above, we propose the penalized quadratic

inference functions using ridge penalty for MRr (ridge quadratic inference functions in

myopic regret-regression, rQIF-MRr) as

𝑟𝑄𝑁 (𝜃, 𝜆) = 𝑔𝑇𝑁𝐶−1
𝑁 𝑔𝑁 + 𝜆

𝑝∑︁
𝑣=1

|𝜃𝑣 |2;𝜆 ≥ 0 (3.28)
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where 𝜆 is the tuning parameter, and
∑𝑝

𝑣=1 |𝜃𝑣 |
2 is a penalty function. The penalty function

act as a weight during estimation, and stabilized the estimation of the parameter in

computation.

Minimizing the 𝑟𝑄𝑁 (𝜃, 𝜆) function from Equation (3.28) will gives

𝜃 = arg min
𝜃
𝑔𝑇𝑁𝐶

−1
𝑁 𝑔𝑁 + 𝜆

𝑝∑︁
𝑣=1

|𝜃𝑣 |2. (3.29)

3.4 Conclusions

In this chapter, we begin by describing the MRr estimation strategy and proceed with

describing the QIF-MRr for correlated data. The MRr, is a short-term strategy of the

regret-regression where it estimate the parameters at each visit. Meanwhile, the QIF-MRr is

a combination of the MRr with QIF. The QIF were majorly used in analyzing longitudinal or

correlated data because it has the advantages of not requiring any distributional assumption.

We proposed the rQIF-MRr estimation strategy by applying the ridge estimator into

the QIF-MRr to solve singularity problem during computation. There are several types

of working correlation structures commonly used which are independent, exchangeable,

AR(1) and unspecified working correlation structures. We will apply these working

correlation structures into the QIF-MRr and the rQIF-MRr strategy for the application to a

simulated data set in Chapter 4.
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CHAPTER 4: SIMULATION STUDIES AND DISCUSSIONS

4.1 Simulation Procedure

The performance of the MRr, QIF-MRr and rQIF-MRr estimation methods were

measured using simulations, that aim is to optimize the response 𝑌 𝑗 at each time point.

The simulation scenario was taken from Murphy (2003), although just one action is taken

into account. Let 𝑖 = {1, 2, . . . , 𝑛} be the subject observed and 𝑛 is the sample size. Then,

𝑗 = 1, 2, . . . , 𝐾 be the time point where 𝐾 = 10 is the final time point. For each subject

𝑖, the first state 𝑆1 was generated from normal distribution with mean 0.5 and variance

0.01, i.e. 𝑆1 ∼ 𝑁 (0.5, 0.01). For the second state onward where 𝑗 = {2, 3, . . . , 𝐾}, states

𝑆 𝑗 were generated from normal distribution with mean, 𝑚 𝑗 = 0.5 + 0.2𝑆 𝑗−1 − 0.07𝐴 𝑗−1,

and variance 0.01, i.e. 𝑆 𝑗 ∼ 𝑁 (𝑚 𝑗 , 0.01). The action, 𝐴 𝑗 were generated from uniform

distribution 𝐴 𝑗 ∼ 𝑈{0, 1, 2, 3}. The regret function is defined as

𝜇 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1;𝜓) = 𝜓1 |𝑎 𝑗 − 𝜓2 − 𝜓3𝑆 𝑗 |

where 𝜇 𝑗 (𝑎 𝑗 |𝑆 𝑗 , �̄� 𝑗−1;𝜓) ≥ 0.

The outcomes, 𝑌 𝑗 is generated from normal distribution with variance 0.64 and mean

𝐸 (𝑌 𝑗 |𝑆 𝑗 , �̄� 𝑗 ) = 𝛽0 + 𝛽1𝑍 𝑗 − 𝜇 𝑗 (𝐴 𝑗 |𝑆 𝑗 , �̄� 𝑗−1;𝜓),

where 𝑍 𝑗 = 𝑆 𝑗 − 𝑚 𝑗 .

The true parameter value of 𝜃 = {𝛽, 𝜓} = {3,−5, 1.5, 0.1, 5.5} and the tuning parameter

𝜆 = 0.01. We generate the data using AR(1) correlation structure with the correlation

parameter 𝜌 = 0.1, 0.5, 0.95. 𝜌 = 0.1 indicate a low correlation in the data within subject,

𝜌 = 0.5 is a medium correlation and 𝜌 = 0.95 is when the data were highly correlated.
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The simulation was repeated 1000 times with 3 different sample size 𝑛 = {25, 250, 500}.

Using the Cochran Test (Twisk, 2013),

𝑛0 =
𝑍2

0 𝑝0𝑞0

𝑒2
0

where 𝑒0 is a margin of error, 𝑝0 is the proportion of the population, 𝑞0 = 1− 𝑝0, and 𝑍0 is

a z-value from standardized normal population, and assuming that 𝑝0 and 𝑞0 are 0.5, and

the 𝑍0 is 1.96 for 95% confidence, then at least 𝑛0 = 385 is an ideal sample size. Therefore,

𝑛 = 25 and 𝑛 = 250 are considered small sample sizes.

To estimate the parameter 𝜃, we used the 𝑜𝑝𝑡𝑖𝑚 built-in function in R. The results in

Section (4.2) reported the mean of the parameter estimates (Mean), standard error (SE),

different between the estimated value with the true value (Bias), the root mean square error

(RMSE) and the percentage of the convergence rate (CR).

A bootstrap resampling of 𝐵 = 1000 repetitions to obtain the mean value of the estimated

parameter 𝜃 is

𝐸 (𝜃) = 1
𝐵

𝐵∑︁
𝑏=1

𝜃𝑏 .

We obtained the SE by calculating the standard deviation (SD) of the parameter estimates

for 1000 repetitions. Bias is calculated by taking the difference between the estimated

mean of 𝜃 with the true value, 𝜃. Denote that, the negative value of the bias is when the

mean of the 𝜃 is bigger than the true value of 𝜃, and the positive value of the bias is when

the mean of the 𝜃 is smaller than the true value of 𝜃. The sign of the Bias value acts as an

indicator only. Then, we calculated the RMSE as

RMSE =
√︁
𝑆𝐸2 + 𝐵𝑖𝑎𝑠2.
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The number of successful converged iterations divided by the total number of repetitions

multiplied by 100 percent is the convergence rate (%).

The results were given in the Section (4.2) and divided into 4 parts. First part will

be the estimation results for MRr. Note that, the MRr is when the working correlation

structure is independent where there is no correlation in the data set. The second to the

fourth part is the comparison results in estimation between QIF-MRr with rQIF-MRr using

AR(1), exchangeable and unspecified working correlation structure.

4.2 Simulation Results

4.2.1 Result on Parameter Estimates for MRr with Different Sample Sizes

Table 4.1: Parameter estimates using myopic regret-regression (MRr) with 1000 repetitions
for sample size, 𝒏 = {25, 250, 500}.

n True Mean SE Bias RMSE CR
value

25

𝛽0 = 3.0 3.0107 0.1997 0.0107 0.2000
𝛽1 = −5.0 -4.9620 0.7016 0.0380 0.7026
𝜓1 = 1.5 1.4995 0.0566 -0.0005 0.0566 100%
𝜓2 = 0.1 0.0902 0.1533 -0.0098 0.1536
𝜓3 = 5.5 5.5343 0.3680 0.0343 0.3696

250

𝛽0 = 3.0 2.9987 0.0611 -0.0013 0.0611
𝛽1 = −5.0 -5.0023 0.2090 -0.0023 0.2090
𝜓1 = 1.5 1.5004 0.0175 0.0004 0.0175 100%
𝜓2 = 0.1 0.0990 0.0459 -0.0010 0.0459
𝜓3 = 5.5 5.5021 0.1099 0.0021 0.1099

500

𝛽0 = 3.0 3.0006 0.0441 0.0006 0.0441
𝛽1 = −5.0 -4.9959 0.1578 0.0041 0.1579
𝜓1 = 1.5 1.4999 0.0129 -0.0001 0.0129 100%
𝜓2 = 0.1 0.0992 0.0328 -0.0008 0.0328
𝜓3 = 5.5 5.5038 0.0802 0.0038 0.0803

Results in Table (4.1) give the parameter estimates for MRr method with 25, 250 and

500 sample sizes. Here, we assume that there is no correlation when generating the dataset.

For 𝑛 = 25, the estimates are slightly biased compared to the 𝑛 = 250 and 𝑛 = 500. The

estimated mean are closer to the true value and the standard error and RMSE are smaller
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at 𝑛 = 500 compared to 𝑛 = 25 and 𝑛 = 250. The parameter estimates for the MRr

are consistent, since the estimates are getting closer to the true value as the sample size

increases. The convergence rate of the parameter estimates for the MRr are 100% when

there is no correlation in the dataset.
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4.2.2 Comparison Result on Parameter Estimates Between QIF-MRr and rQIF-
MRr for AR(1) Working Correlation Structures

Table 4.2: Parameter estimates of QIF-MRr and rQIF-MRr simulated using AR(1) working
correlation structure for sample size, 𝒏 = 25 with different correlation parameters, 𝝆 =
{0.1, 0.5, 0.95}.

Method 𝜌 True Mean SE Bias RMSE CR
value

QIF-MRr

𝜌=0.1

𝛽0 = 3.0 3.0442 0.3685 0.0442 0.3712
𝛽1 = −5.0 -4.9017 0.1962 0.0983 0.2195
𝜓1 = 1.5 1.5558 0.3601 0.0558 0.3644 24%
𝜓2 = 0.1 0.1956 0.2691 0.0956 0.2856
𝜓3 = 5.5 5.6546 0.2147 0.1546 0.2646

𝜌=0.5

𝛽0 = 3.0 3.0311 0.3521 0.0311 0.3535
𝛽1 = −5.0 -4.9223 0.1916 0.0777 0.2067
𝜓1 = 1.5 1.6086 0.3687 0.1086 0.3844 20.8%
𝜓2 = 0.1 0.2245 0.3203 0.1245 0.3436
𝜓3 = 5.5 5.6301 0.2163 0.1301 0.2524

𝜌=0.95

𝛽0 = 3.0 3.0824 0.3606 0.0824 0.3699
𝛽1 = −5.0 -4.8987 0.2140 0.1013 0.2367
𝜓1 = 1.5 1.5349 0.3998 0.0349 0.4013 22.8 %
𝜓2 = 0.1 0.2027 0.2925 0.1027 0.3100
𝜓3 = 5.5 5.6263 0.2216 0.1263 0.2551

rQIF-MRr

𝜌=0.1

𝛽0 = 3.0 3.0528 0.2974 0.0528 0.3020
𝛽1 = −5.0 -4.9154 0.1731 0.0846 0.1926
𝜓1 = 1.5 1.5316 0.3404 0.0316 0.3419 100%
𝜓2 = 0.1 0.2168 0.2530 0.1168 0.2786
𝜓3 = 5.5 5.6035 0.1928 0.1035 0.2188

𝜌=0.5

𝛽0 = 3.0 3.0352 0.3101 0.0352 0.3121
𝛽1 = −5.0 -4.9165 0.1789 0.0835 0.1974
𝜓1 = 1.5 1.5513 0.3242 0.0513 0.3282 100%
𝜓2 = 0.1 0.2155 0.2656 0.1155 0.2896
𝜓3 = 5.5 5.6063 0.2031 0.1063 0.2292

𝜌=0.95

𝛽0 = 3.0 3.0503 0.2901 0.0503 0.2944
𝛽1 = −5.0 -4.9251 0.1698 0.0749 0.1856
𝜓1 = 1.5 1.5355 0.3352 0.0355 0.3371 100%
𝜓2 = 0.1 0.2267 0.2618 0.1267 0.2908
𝜓3 = 5.5 5.6058 0.1846 0.1058 0.2127

The results in Table (4.2) show that the convergence rate of the QIF-MRr is poor

compared to the rQIF-MRr due to the singularity problem in computation. The result

is not converge when the estimation using R gives an error code. The mean values of
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the parameter estimates for both methods are unbiased and close to the true value. The

rQIF-MRr is more efficient than the QIF-MRr where the standard error (SE) and RMSE

are smaller.
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Table 4.3: Parameter estimates of QIF-MRr and rQIF-MRr simulated using AR(1) working
correlation structure for sample size, 𝒏 = 250 with different correlation parameters, 𝝆 =
{0.1, 0.5, 0.95}.

Method 𝜌 True Mean SE Bias RMSE CR
value

QIF-MRr

𝜌=0.1

𝛽0 = 3.0 3.0342 0.3545 0.0342 0.3561
𝛽1 = −5.0 -4.9183 0.2123 0.0817 0.2275
𝜓1 = 1.5 1.5646 0.3748 0.0646 0.3803 22%
𝜓2 = 0.1 0.2417 0.3076 0.1417 0.3387
𝜓3 = 5.5 5.6450 0.2363 0.1450 0.2773

𝜌=0.5

𝛽0 = 3.0 3.0896 0.3185 0.0896 0.3308
𝛽1 = −5.0 -4.9437 0.1981 0.0563 0.2060
𝜓1 = 1.5 1.5444 0.3787 0.0444 0.3813 22.3%
𝜓2 = 0.1 0.2342 0.3026 0.1342 0.3311
𝜓3 = 5.5 5.6534 0.2264 0.1534 0.2735

𝜌=0.95

𝛽0 = 3.0 3.0243 0.3712 0.0243 0.3720
𝛽1 = −5.0 -4.9229 0.2128 0.0771 0.2263
𝜓1 = 1.5 1.6100 0.3426 0.1100 0.3598 20.4%
𝜓2 = 0.1 0.2049 0.2893 0.1049 0.3077
𝜓3 = 5.5 5.6477 0.2220 0.1477 0.2666

rQIF-MRr

𝜌=0.1

𝛽0 = 3.0 3.0548 0.3040 0.0548 0.3089
𝛽1 = −5.0 -4.9193 0.1771 0.0807 0.1946
𝜓1 = 1.5 1.5253 0.3608 0.0253 0.3617 100%
𝜓2 = 0.1 0.2401 0.2608 0.1401 0.2961
𝜓3 = 5.5 5.5929 0.1889 0.0929 0.2105

𝜌=0.5

𝛽0 = 3.0 3.0439 0.3021 0.0439 0.3052
𝛽1 = −5.0 -4.9328 0.1803 0.0672 0.1924
𝜓1 = 1.5 1.5293 0.3573 0.0293 0.3585 100%
𝜓2 = 0.1 0.2535 0.2708 0.1535 0.3113
𝜓3 = 5.5 5.6064 0.1857 0.1064 0.2140

𝜌=0.95

𝛽0 = 3.0 3.0584 0.2920 0.0584 0.2978
𝛽1 = −5.0 -4.9248 0.1784 0.0752 0.1936
𝜓1 = 1.5 1.5153 0.3729 0.0153 0.3732 100%
𝜓2 = 0.1 0.2270 0.2671 0.1270 0.2958
𝜓3 = 5.5 5.5995 0.1937 0.0995 0.2178

Table (4.3) show the parameter estimates of QIF-MRr and rQIF-MRr using AR(1)

working correlation structure for sample size, 𝑛 = 250. Results show that the parameter

estimates using both method are unbiased with the mean of the parameter estimates is

closer to the true value with small standard error and RMSE. However, the convergence

rate for the rQIF-MRr is 100% compared to the QIF-MRr.
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Table 4.4: Parameter estimates of QIF-MRr and rQIF-MRr simulated using AR(1) working
correlation structure for sample size, 𝒏 = 500 with different correlation parameters, 𝝆 =
{0.1, 0.5, 0.95}.

Method 𝜌 True Mean SE Bias RMSE CR
value

QIF-MRr

𝜌=0.1

𝛽0 = 3.0 3.0596 0.3803 0.0596 0.3850
𝛽1 = −5.0 -4.8988 0.2135 0.1012 0.2362
𝜓1 = 1.5 1.5561 0.3894 0.0561 0.3934 22.5%
𝜓2 = 0.1 0.2037 0.2665 0.1037 0.2859
𝜓3 = 5.5 5.6269 0.2171 0.1269 0.2515

𝜌=0.5

𝛽0 = 3.0 3.0292 0.3428 0.0292 0.3441
𝛽1 = −5.0 -4.9212 0.1961 0.0788 0.2113
𝜓1 = 1.5 1.5549 0.3340 0.0549 0.3384 20%
𝜓2 = 0.1 0.2323 0.2759 0.1323 0.3060
𝜓3 = 5.5 5.6416 0.2295 0.1416 0.2697

𝜌=0.95

𝛽0 = 3.0 3.0514 0.3118 0.0514 0.3160
𝛽1 = −5.0 -4.9067 0.2045 0.0933 0.2248
𝜓1 = 1.5 1.5637 0.3731 0.0637 0.3785 22.3%
𝜓2 = 0.1 0.2107 0.2674 0.1107 0.2894
𝜓3 = 5.5 5.6302 0.2201 0.1302 0.2557

rQIF-MRr

𝜌=0.1

𝛽0 = 3.0 3.0324 0.3120 0.0324 0.3137
𝛽1 = −5.0 -4.9166 0.1656 0.0834 0.1854
𝜓1 = 1.5 1.5333 0.3342 0.0333 0.3358 100%
𝜓2 = 0.1 0.2400 0.2625 0.1400 0.2975
𝜓3 = 5.5 5.6036 0.1999 0.1036 0.2252

𝜌=0.5

𝛽0 = 3.0 3.0448 0.2970 0.0448 0.3003
𝛽1 = −5.0 -4.9266 0.1720 0.0734 0.1870
𝜓1 = 1.5 1.5363 0.3446 0.0363 0.3465 100%
𝜓2 = 0.1 0.2428 0.2522 0.1428 0.2899
𝜓3 = 5.5 5.6026 0.1939 0.1026 0.2194

𝜌=0.95

𝛽0 = 3.0 3.0339 0.3014 0.0339 0.3033
𝛽1 = −5.0 -4.9098 0.1679 0.0902 0.1907
𝜓1 = 1.5 1.5332 0.3613 0.0332 0.3628 100%
𝜓2 = 0.1 0.2281 0.2720 0.1281 0.3007
𝜓3 = 5.5 5.6060 0.1979 0.1060 0.2245

Results in Table (4.4) show the parameter estimates using both QIF-MRr and rQIF-MRr

are unbiased and efficient. The standard error and RMSE for the rQIF-MRr are slightly

better than the QIF-MRr, and the convergence rate for the rQIF-MRr is better than the

QIF-MRr with 100% convergence rate.
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4.2.3 Comparison Result on Parameter Estimates Between QIF-MRr and rQIF-
MRr for Exchangeable Working Correlation Structures

Table 4.5: Parameter estimates of QIF-MRr and rQIF-MRr simulated using exchangeable
working correlation structure for sample size, 𝒏 = 25 with different correlation parameters,
𝝆 = {0.1, 0.5, 0.95}.

Method 𝜌 True Mean SE Bias RMSE CR
value

QIF-MRr

𝜌=0.1

𝛽0 = 3.0 3.0645 0.3672 0.0645 0.3728
𝛽1 = −5.0 -4.8821 0.2071 0.1179 0.2383
𝜓1 = 1.5 1.5157 0.4074 0.0157 0.4077 20.9%
𝜓2 = 0.1 0.1980 0.2941 0.0980 0.3100
𝜓3 = 5.5 5.6276 0.1952 0.1276 0.2332

𝜌=0.5

𝛽0 = 3.0 3.0382 0.4092 0.0382 0.4110
𝛽1 = −5.0 -4.8863 0.1930 0.1137 0.2240
𝜓1 = 1.5 1.5769 0.3343 0.0769 0.3430 20.5%
𝜓2 = 0.1 0.1984 0.2691 0.0984 0.2865
𝜓3 = 5.5 5.6305 0.2191 0.1305 0.2550

𝜌=0.95

𝛽0 = 3.0 3.0917 0.3967 0.0917 0.4071
𝛽1 = −5.0 -4.9110 0.2219 0.0890 0.2391
𝜓1 = 1.5 1.5109 0.3888 0.0109 0.3890 22%
𝜓2 = 0.1 0.2113 0.2789 0.1113 0.3003
𝜓3 = 5.5 5.6337 0.2271 0.1337 0.2635

rQIF-MRr

𝜌=0.1

𝛽0 = 3.0 3.0552 0.3411 0.0552 0.3455
𝛽1 = −5.0 -4.9108 0.1659 0.0892 0.1883
𝜓1 = 1.5 1.5284 0.3452 0.0284 0.3464 100%
𝜓2 = 0.1 0.2122 0.2545 0.1122 0.2781
𝜓3 = 5.5 5.5959 0.2063 0.0959 0.2275

𝜌=0.5

𝛽0 = 3.0 3.0594 0.3355 0.0594 0.3407
𝛽1 = −5.0 -4.9105 0.1606 0.0895 0.1838
𝜓1 = 1.5 1.5171 0.3443 0.0171 0.3447 100%
𝜓2 = 0.1 0.2007 0.2496 0.1007 0.2691
𝜓3 = 5.5 5.6083 0.1878 0.1083 0.2168

𝜌=0.95

𝛽0 = 3.0 3.0282 0.3621 0.0282 0.3632
𝛽1 = −5.0 -4.8960 0.1728 0.1040 0.2016
𝜓1 = 1.5 1.5156 0.3482 0.0156 0.3485 100%
𝜓2 = 0.1 0.2070 0.2559 0.1070 0.2774
𝜓3 = 5.5 5.6102 0.2042 0.1102 0.2320

The results in Table (4.5) show that when the data has low, medium, or high correlation,

the convergence rate of the QIF-MRr using exchangeable working correlation structure is

poor. Meanwhile, the rQIF-MRr with an exchangeable working correlation structure gives
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a 100% convergence rate. The parameter estimates for both methods are unbiased and

efficient, but the rQIF-MRr is slightly more efficient than the QIF-MRr, with a smaller

standard error and RMSE.
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Table 4.6: Parameter estimates of QIF-MRr and rQIF-MRr simulated using exchangeable
working correlation structure for sample size, 𝒏 = 250 with different correlation parameters,
𝝆 = {0.1, 0.5, 0.95}.

Method 𝜌 True Mean SE Bias RMSE CR
value

QIF-MRr

𝜌=0.1

𝛽0 = 3.0 3.0795 0.3696 0.0795 0.3780
𝛽1 = −5.0 -4.9115 0.2317 0.0885 0.2480
𝜓1 = 1.5 1.5328 0.4134 0.0328 0.4147 21.1%
𝜓2 = 0.1 0.1970 0.2822 0.0970 0.2984
𝜓3 = 5.5 5.6384 0.2324 0.1384 0.2705

𝜌=0.5

𝛽0 = 3.0 3.0373 0.3334 0.0373 0.3354
𝛽1 = −5.0 -4.8848 0.1855 0.1152 0.2184
𝜓1 = 1.5 1.5131 0.3891 0.0131 0.3893 22%
𝜓2 = 0.1 0.2420 0.2996 0.1420 0.3315
𝜓3 = 5.5 5.6305 0.2254 0.1305 0.2604

𝜌=0.95

𝛽0 = 3.0 3.0604 0.3821 0.0604 0.3868
𝛽1 = −5.0 -4.8904 0.2038 0.1096 0.2314
𝜓1 = 1.5 1.5262 0.4200 0.0262 0.4208 22.2%
𝜓2 = 0.1 0.1985 0.2870 0.0985 0.3034
𝜓3 = 5.5 5.6425 0.2210 0.1425 0.2630

rQIF-MRr

𝜌=0.1

𝛽0 = 3.0 3.0766 0.3419 0.0766 0.3504
𝛽1 = −5.0 -4.9144 0.1771 0.0856 0.1968
𝜓1 = 1.5 1.4879 0.4009 -0.0121 0.4011 100%
𝜓2 = 0.1 0.2089 0.2664 0.1089 0.2878
𝜓3 = 5.5 5.6075 0.1978 0.1075 0.2251

𝜌=0.5

𝛽0 = 3.0 3.0504 0.3508 0.0504 0.3544
𝛽1 = −5.0 -4.9122 0.1692 0.0878 0.1906
𝜓1 = 1.5 1.5298 0.3617 0.0298 0.3629 100%
𝜓2 = 0.1 0.2082 0.2476 0.1082 0.2702
𝜓3 = 5.5 5.6161 0.1887 0.1161 0.2215

𝜌=0.95

𝛽0 = 3.0 3.0405 0.3516 0.0405 0.3540
𝛽1 = −5.0 -4.9118 0.1652 0.0882 0.1873
𝜓1 = 1.5 1.5146 0.3526 0.0146 0.3529 100%
𝜓2 = 0.1 0.2040 0.2494 0.1040 0.2702
𝜓3 = 5.5 5.6124 0.1995 0.1124 0.2290

Results in Table (4.6) show that the parameter estimates of QIF-MRr and rQIF-MRr

using exchangeable working correlation structure for sample size, 𝑛 = 250 are unbiased

and efficient. The convergence rate for the rQIF-MRr is 100% compared with a smaller

standard error and RMSE compared to the QIF-MRr.
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Table 4.7: Parameter estimates of QIF-MRr and rQIF-MRr simulated using exchangeable
working correlation structure for sample size, 𝒏 = 500 with different correlation parameters,
𝝆 = {0.1, 0.5, 0.95}.

Method 𝜌 True Mean SE Bias RMSE CR
value

QIF-MRr

𝜌=0.1

𝛽0 = 3.0 3.0790 0.3613 0.0790 0.3699
𝛽1 = −5.0 -4.8961 0.2096 0.1039 0.2340
𝜓1 = 1.5 1.5514 0.3795 0.0514 0.3830 21.2%
𝜓2 = 0.1 0.1909 0.2613 0.0909 0.2767
𝜓3 = 5.5 5.6270 0.2277 0.1270 0.2607

𝜌=0.5

𝛽0 = 3.0 3.0596 0.4076 0.0596 0.4119
𝛽1 = −5.0 -4.8863 0.1998 0.1137 0.2298
𝜓1 = 1.5 1.5301 0.3806 0.0301 0.3818 20.7%
𝜓2 = 0.1 0.2049 0.2762 0.1049 0.2954
𝜓3 = 5.5 5.6194 0.1988 0.1194 0.2319

𝜌=0.95

𝛽0 = 3.0 3.0433 0.3566 0.0433 0.3593
𝛽1 = −5.0 -4.8956 0.1836 0.1044 0.2112
𝜓1 = 1.5 1.5925 0.3413 0.0925 0.3536 23.4%
𝜓2 = 0.1 0.2072 0.2833 0.1072 0.3030
𝜓3 = 5.5 5.6022 0.1977 0.1022 0.2226

rQIF-MRr

𝜌=0.1

𝛽0 = 3.0 3.0373 0.3554 0.0373 0.3573
𝛽1 = −5.0 -4.9051 0.1643 0.0949 0.1897
𝜓1 = 1.5 1.5199 0.3650 0.0199 0.3656 100%
𝜓2 = 0.1 0.1989 0.2618 0.0989 0.2799
𝜓3 = 5.5 5.6178 0.1911 0.1178 0.2245

𝜌=0.5

𝛽0 = 3.0 3.0422 0.3355 0.0422 0.3382
𝛽1 = −5.0 -4.9146 0.1771 0.0854 0.1966
𝜓1 = 1.5 1.5107 0.3758 0.0107 0.3759 100%
𝜓2 = 0.1 0.2083 0.2561 0.1083 0.2781
𝜓3 = 5.5 5.6162 0.1998 0.1162 0.2311

𝜌=0.95

𝛽0 = 3.0 3.0463 0.3371 0.0463 0.3402
𝛽1 = −5.0 -4.9026 0.1741 0.0974 0.1995
𝜓1 = 1.5 1.5032 0.3687 0.0032 0.3687 100%
𝜓2 = 0.1 0.2198 0.2571 0.1198 0.2836
𝜓3 = 5.5 5.5970 0.1978 0.0970 0.2203

The parameter estimates in Table (4.7) show that estimation for large sample size using

rQIF-MRr with exchangeable working correlation structure are unbiased and efficient. The

convergence rate for the rQIF-MRr is 100% compared to the QIF-MRr which have low

convergence rate. The mean value of the parameter estimates for the rQIF-MRr is closer to

the true value compared to the QIF-MRr with a smaller standard error and RMSE.
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4.2.4 Comparison Result on Parameter Estimates Between QIF-MRr and rQIF-
MRr for Unspecified Working Correlation Structures

Table 4.8: Parameter estimates of QIF-MRr and rQIF-MRr simulated using unspecified
working correlation structure for sample size, 𝒏 = 25 with different correlation parameters,
𝝆 = {0.1, 0.5, 0.95}.

Method 𝜌 True Mean SE Bias RMSE CR
value

QIF-MRr

𝜌=0.1

𝛽0 = 3.0 2.9806 0.4761 -0.0194 0.4765
𝛽1 = −5.0 -4.9094 0.2694 0.0906 0.2843
𝜓1 = 1.5 1.5900 0.5022 0.0900 0.5103 20%
𝜓2 = 0.1 0.2376 0.3304 0.1376 0.3579
𝜓3 = 5.5 5.6526 0.2461 0.1526 0.2896

𝜌=0.5

𝛽0 = 3.0 3.0109 0.4180 0.0109 0.4181
𝛽1 = −5.0 -4.9027 0.2338 0.0973 0.2533
𝜓1 = 1.5 1.5958 0.4666 0.0958 0.4764 20%
𝜓2 = 0.1 0.2211 0.3208 0.1211 0.3429
𝜓3 = 5.5 5.6165 0.2055 0.1165 0.2363

𝜌=0.95

𝛽0 = 3.0 3.0447 0.4625 0.0447 0.4646
𝛽1 = −5.0 -4.8935 0.1912 0.1065 0.2189
𝜓1 = 1.5 1.5760 0.4772 0.0760 0.4832 20.9%
𝜓2 = 0.1 0.2113 0.2811 0.1113 0.3023
𝜓3 = 5.5 5.6389 0.2353 0.1389 0.2732

rQIF-MRr

𝜌=0.1

𝛽0 = 3.0 3.0111 0.4069 0.0111 0.4071
𝛽1 = −5.0 -4.9116 0.1951 0.0884 0.2142
𝜓1 = 1.5 1.5272 0.4894 0.0272 0.4902 100%
𝜓2 = 0.1 0.2339 0.2960 0.1339 0.3249
𝜓3 = 5.5 5.6149 0.2122 0.1149 0.2413

𝜌=0.5

𝛽0 = 3.0 3.0182 0.4152 0.0182 0.4156
𝛽1 = −5.0 -4.9158 0.1944 0.0842 0.2118
𝜓1 = 1.5 1.5059 0.4972 0.0059 0.4972 100%
𝜓2 = 0.1 0.2308 0.2858 0.1308 0.3143
𝜓3 = 5.5 5.6149 0.2098 0.1149 0.2392

𝜌=0.95

𝛽0 = 3.0 3.0027 0.4507 0.0027 0.4507
𝛽1 = −5.0 -4.9160 0.2012 0.0840 0.2180
𝜓1 = 1.5 1.5389 0.4213 0.0389 0.4231 100%
𝜓2 = 0.1 0.2321 0.2768 0.1321 0.3067
𝜓3 = 5.5 5.6229 0.2122 0.1229 0.2452

Table (4.8) show the parameter estimates for rQIF-MRr are unbiased and efficient

with 100% convergence rate. The mean of the parameter estimates for small sample size

(𝑛 = 25) is closer to the true value with small standard error and RMSE compared to the
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QIF-MRr.
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Table 4.9: Parameter estimates of QIF-MRr and rQIF-MRr simulated using unspecified
working correlation structure for sample size, 𝒏 = 250 with different correlation parameters,
𝝆 = {0.1, 0.5, 0.95}.

Method 𝜌 True Mean SE Bias RMSE CR
value

QIF-MRr

𝜌=0.1

𝛽0 = 3.0 3.0205 0.4501 0.0205 0.4505
𝛽1 = −5.0 -4.8732 0.2274 0.1268 0.2604
𝜓1 = 1.5 1.5134 0.5704 0.0134 0.5705 21%
𝜓2 = 0.1 0.2207 0.2386 0.1207 0.2674
𝜓3 = 5.5 5.6430 0.2163 0.1430 0.2593

𝜌=0.5

𝛽0 = 3.0 3.0134 0.4927 0.0134 0.4929
𝛽1 = −5.0 -4.9163 0.2173 0.0837 0.2329
𝜓1 = 1.5 1.5621 0.5429 0.0621 0.5464 23.9%
𝜓2 = 0.1 0.2426 0.3007 0.1426 0.3328
𝜓3 = 5.5 5.6344 0.2296 0.1344 0.2661

𝜌=0.95

𝛽0 = 3.0 3.0244 0.4812 0.0244 0.4818
𝛽1 = −5.0 -4.8983 0.2477 0.1017 0.2677
𝜓1 = 1.5 1.5518 0.4906 0.0518 0.4933 22.7%
𝜓2 = 0.1 0.2234 0.3386 0.1234 0.3604
𝜓3 = 5.5 5.6366 0.2348 0.1366 0.2717

rQIF-MRr

𝜌=0.1

𝛽0 = 3.0 3.0147 0.4235 0.0147 0.4238
𝛽1 = −5.0 -4.9023 0.1808 0.0977 0.2056
𝜓1 = 1.5 1.5090 0.5238 0.0090 0.5239 100%
𝜓2 = 0.1 0.2143 0.2458 0.1143 0.2711
𝜓3 = 5.5 5.6126 0.1896 0.1126 0.2205

𝜌=0.5

𝛽0 = 3.0 3.0168 0.4375 0.0168 0.4378
𝛽1 = −5.0 -4.9080 0.1873 0.0920 0.2086
𝜓1 = 1.5 1.5150 0.5350 0.0150 0.5352 100%
𝜓2 = 0.1 0.2217 0.2578 0.1217 0.2851
𝜓3 = 5.5 5.6188 0.1978 0.1188 0.2307

𝜌=0.95

𝛽0 = 3.0 3.0010 0.4080 0.0010 0.4080
𝛽1 = −5.0 -4.9048 0.1868 0.0952 0.2096
𝜓1 = 1.5 1.4896 0.4994 -0.0104 0.4995 100%
𝜓2 = 0.1 0.2384 0.2704 0.1384 0.3038
𝜓3 = 5.5 5.6298 0.1930 0.1298 0.2326

The parameter estimates of the QIF-MRr and rQIF-MRr using an unspecified working

correlation structure for sample size, 𝑛 = 250, are unbiased and efficient, as shown in

Table (4.9).The convergence rate for the rQIF-MRr is 100%. The standard error and

RMSE for rQIF-MRr are smaller than the QIF-MRr, and the mean value of the parameter

estimates for the rQIF-MRr is closer to the true value.
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Table 4.10: Parameter estimates of QIF-MRr and rQIF-MRr simulated using unspecified
working correlation structure for sample size, 𝒏 = 500 with different correlation parameters,
𝝆 = {0.1, 0.5, 0.95}.

Method 𝜌 True Mean SE Bias RMSE CR
value

QIF-MRr

𝜌=0.1

𝛽0 = 3.0 2.9593 0.4881 -0.0407 0.4898
𝛽1 = −5.0 -4.9037 0.2389 0.0963 0.2576
𝜓1 = 1.5 1.5900 0.5650 0.0900 0.5721 20.5%
𝜓2 = 0.1 0.2361 0.2575 0.1361 0.2913
𝜓3 = 5.5 5.6581 0.2357 0.1581 0.2838

𝜌=0.5

𝛽0 = 3.0 3.0342 0.4024 0.0342 0.4038
𝛽1 = −5.0 -4.9305 0.2197 0.0695 0.2304
𝜓1 = 1.5 1.6050 0.5100 0.1050 0.5207 21.8%
𝜓2 = 0.1 0.2631 0.2868 0.1631 0.3300
𝜓3 = 5.5 5.5904 0.2032 0.0904 0.2224

𝜌=0.95

𝛽0 = 3.0 3.0129 0.4968 0.0129 0.4970
𝛽1 = −5.0 -4.9421 0.2372 0.0579 0.2442
𝜓1 = 1.5 1.5813 0.4911 0.0813 0.4978 19.4%
𝜓2 = 0.1 0.2701 0.3556 0.1701 0.3941
𝜓3 = 5.5 5.6423 0.2583 0.1423 0.2948

rQIF-MRr

𝜌=0.1

𝛽0 = 3.0 2.9980 0.3949 -0.0020 0.3949
𝛽1 = −5.0 -4.9123 0.1928 0.0877 0.2119
𝜓1 = 1.5 1.5415 0.5086 0.0415 0.5103 100%
𝜓2 = 0.1 0.2326 0.2512 0.1326 0.2840
𝜓3 = 5.5 5.6203 0.1876 0.1203 0.2228

𝜌=0.5

𝛽0 = 3.0 2.9904 0.4173 -0.0096 0.4174
𝛽1 = −5.0 -4.9178 0.1868 0.0822 0.2041
𝜓1 = 1.5 1.5257 0.5301 0.0257 0.5307 100%
𝜓2 = 0.1 0.2471 0.2620 0.1471 0.3005
𝜓3 = 5.5 5.6232 0.1913 0.1232 0.2275

𝜌=0.95

𝛽0 = 3.0 2.9941 0.3957 -0.0059 0.3957
𝛽1 = −5.0 -4.9011 0.1739 0.0989 0.2000
𝜓1 = 1.5 1.5199 0.4691 0.0199 0.4696 100%
𝜓2 = 0.1 0.2415 0.2448 0.1415 0.2827
𝜓3 = 5.5 5.6142 0.1927 0.1142 0.2240

The parameter estimates of the QIF-MRr and rQIF-MRr using unspecified working

correlation structure in Table (4.10) for sample size, 𝑛 = 500 are unbiased and efficient.

The mean of the parameter estimate for rQIF-MRr is closer to the true value, and the

standard error and RMSE are smaller compared to the QIf-MRr for low, medium and high

correlation. The convergence rate for rQIF-MRr is high compared to the QIF-MRr.
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4.3 Discussion

When there is no correlation in the dataset, we can estimate the parameter using the

MRr method. Table (4.1) show that estimation using MRr is unbiased and efficient. The

mean of the parameter estimates is close to the true value with small standard error and

RMSE. The convergence rate using the MRr method in estimating the ODTR is 100%.

Tables (4.2) to (4.4) give simulation results of the QIF-MRr and rQIF-MRr using

AR(1) working correlation structure with 25, 250 and 500 sample sizes. In these tables,

we assume that there is a correlation in the dataset. The convergence rates of the QIF-MRr

are lower compared to the rQIF-MRr method, which had a 100% convergence rate. The

results show that the parameter estimates for the rQIF-MRr are unbiased and efficient, as

the mean value of the parameter estimates is closer to the true value, and the standard error

and RMSE are small compared to the QIF-MRr method for all correlation levels in the

dataset.

Tables (4.5) to (4.7) give the results on the parameter estimates of the QIF-MRr and

rQIF-MRr using exchangeable working correlation structures for sample size 25, 250 and

500. For small and large sample sizes, the rQIF-MRr has a 100% convergence rate, which

is better than the QIF-MRr for low, medium, and high correlation. Parameter estimates

using rQIF-MRr are unbiased and more efficient than those using QIF-MRr where the

mean of the parameter estimates is closer to the true value with a small standard error and

RMSE.

The parameter estimates of QIF-MRr and rQIF-MRr with an unspecified working

correlation structure are given in Tables (4.8) to (4.10) for sample sizes 25, 250 and 500.

Compared to the AR(1) and exchangeable working correlation structures, the mean of the

parameter estimates using the unspecified working correlation structure is closer to the

true value. However, the standard error and RMSE for the unspecified are slightly larger
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than the AR(1) and exchangeable working correlation structures. The convergence rate of

the rQIf-MRr for low, medium, and high correlation is 100%.

Estimation using AR(1) working correlation structure gives slightly smaller standard

error and RMSE compared to the exchangeable and unspecified working correlation

structures for sample sizes 25, 250, and 500 at low, medium, and high correlation. The

mean of the parameter estimates using AR(1), exchangeable and unspecified working

correlation structures are overall close to the true value where the value for the bias are

small.

Overall, although the QIF-MRr gives unbiased and efficient parameter estimates,

however, the convergence rate are small due to computational and singularity issues.

Applying the ridge estimator into the QIF-MRr thus helped in stabilizing the estimation by

increasing the convergence rate of the rQIF-MRr to 100%. The rQIF-MRr is suitable to

use for small or large sample size at any correlation level in the dataset. Different types of

working correlation structures can be used in estimation using rQIF-MRr since it gives

unbiased and efficient parameter estimates.

4.4 Conclusions

The MRr approach is preferable when there is no correlation in the data set since it is

less complex in computation. The computation will be much easier than the QIF-MRr and

rQIF-MRr because the correlation structure does not need to be specified. In ODTR, the

QIF-MRr and rQIF-MRr can be used for estimation if the dataset has a correlation. The

QIF-MRr and rQIF-MRr have the advantage of not requiring the probability distribution to

be specified.

Estimation using rQIF-MRr for small and large sample sizes provides unbiased and

efficient parameter estimates with small standard error and RMSE, and the mean of the

parameter estimates is closer to the true value. The use of a ridge estimator in QIF-MRr
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aids in solving the singularity problem during computation, and the rQIF-MRr has a 100%

convergence rate for AR(1), exchangeable, and unspecified working correlation structures.
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CHAPTER 5: CONCLUSION AND FUTURE WORK

5.1 Summary of the Study

The study of ODTR is a branch of personalized medicine and it is a promising and

developing field. In personalized medicine, the patient’s health was optimized based on

the systematic use of individual patient information. It can be observed as a fulfillment of

specific decision rules where these rules prescribe an action to be given following the given

state of the patient. The ODTR is a multi-stage decision rule of personalized medicine,

where the state of the patient was observed at several time-point and the action was given

at each time-point the patient being observed. Note that, the decision is made at that time

point may affect future decision.

Several methods for estimating ODTR have been studied and explained where the

main focus on the regret function. Murphy (2003) introduced the regret function and

proposed IMOR method to estimate the ODTR. Chakraborty and Moodie (2013) showed

that IMOR may not converge when the sample sizes are small. In addition, the researchers

may not postulate good initial values for the search algorithm in a simulation study, and

misspecification of the model may cause convergence issues. Note that, Murphy (2003)

only estimates the parameter of the regret functions instead of fully estimates the mean

response of ODTR.

The regret-regression by Henderson et al. (2010) fully estimates the mean response

of ODTR by combining the regret function with regression model. It modeled both

the state function and the regret function for the estimation of parameters. Since the

regret-regression is a regression-based model, it is possible to apply the usual diagnostics

checking, but to estimate the parameters, one needs to obtain the observation needed till

the end of the time-point of the study of interest (i.e. long-term strategy). The mean

65

Univ
ers

iti 
Mala

ya



response of the regret-regression was modeled using the cumulative information of the

patient obtained from the first time-point to the last time-point.

The MRr introduced by Mohamed (2013) is a short-term strategy of the regret-regression.

In a short-term strategy, the ODTR was estimated at each time-point. Thus, it can estimate

ODTR at the current time-point. For example, for time-point 𝑗 = {1, 2, . . . , 𝑗 , 𝑗 +1, . . . , 𝐾}

the observation being observed right now is at 𝑗 𝑡ℎ time-point. Therefore, it is possible to

estimate ODTR based on the information from time-point 1 to time-point 𝑗 for the short-

term strategy, but impossible for the long-term strategy. Hence, there is no requirement to

wait until the final time-point, 𝐾 .

Mohamed (2013) proposed the QIF-MRr where it is a combination of the MRr with QIF.

The QIF-MRr can overcome the limitation of MRr on correlated data. When estimating the

parameters of the ODTR using QIF-MRr, however, a singularity issue commonly appears

during computation. To overcome this problems, a newly proposed method, the rQIF-MRr

is discussed in this dissertation.

5.2 Significant of the Study

The rQIF-MRr was proposed to improve the parameter estimate in estimating ODTR.

The ridge estimator was incorporated into the QIF-MRr to form rQIF-MRr. In estimation,

the rQIF-MRr had overcome the disadvantages of the QIF-MRr. The estimated mean of

rQIF-MRr was closer to the initial values with small standard errors and RMSE compared

to the QIF-MRr. In addition, the rQIF-MRr had also overcome the singularity issues that

often happen during the computation of QIF-MRr and had shorten the computation time.

5.3 Future Work

There is huge potential to explore rQIF-MRr in personalized medicine particularly

in estimating ODTR. Since the rQIF-MRr was build to analyze correlated data, thus it
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can be apply on the longitudinal observational study. For example the anticoagulant data

(Rosthøj et al., 2006). The objective is to find the best dosing strategy in preventing

thrombotic complications by controlling the prothrombin time measured by the International

Normalized Ratio (INR). For a healthy person, he or she will take about 15 seconds for the

blood to clot and controlled thromboplastin will have INR equals to 1. In anticoagulant

treatment, it is essential to ensure that the INR is within a target range.

It is our interest in the future to apply different types of penalty estimators in improvising

the estimation for ODTR. For example, we may consider LASSO (Tibshirani, 1996),

bridge (Fu, 2003), SCAD (Fan & Li, 2001) and others which may give different efficiency

in estimation.

Clairon et al. (2021) had proposed a control theory method called H∞-synthesis for

ODTR by applying the regret function from Murphy (2003). The H∞-synthesis method

holds the advantages in dealing with noisy or missing data. In a real application, missing

data is a very common occurrence. This will be one of our future works where we would

propose a method that can be applied when there are missing data in observation for

ODTR.

In addition, in the future, it is our interest to improvise the rQIF-MRr that can be used

to estimate ODTR with survival outcomes. Simoneau et al. (2020) had proposed a method

for estimating ODTR with survival outcomes subject to right-censoring which requires

solving a series of weighted GEE. Since the QIF is an improved version of the GEE,

therefore it is possible to extend Simoneau et al. (2020) work by applying the QIF method

in estimation and further testing the method for the short-term strategy.
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