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A LIGHTWEIGHT INTRUSION DETECTION FRAMEWORK USING FOCAL

LOSS VARIATIONAL AUTOENCODER FOR INTERNET OF THINGS

ABSTRACT

Internet of Things (IoT) generates imbalanced network traffic; thus, the connected objects

in the IoT face security issues, including different and unknown attack types. Even though

traditional learning-based techniques have been used for intrusion detection in IoT, the

detection of low-frequency attacks is lacking due to the imbalanced nature of network

traffic. For example, conventional learning-based techniques suffer from lower detection

accuracy, higher False Positive Rate (FPR), and lower minority-class attacks detection rates.

Moreover, due to the constrained nature of IoT, the conventional heavyweight intrusion

detection models are not suitable for IoT. To overcome these issues, this research aims

to establish and evaluate a lightweight intrusion-detection framework using Class-wise

Focal Loss Variational Autoencoder (CFLVAE) for IoT. In establishing the proposed

framework, a data generation model was developed using CFLVAE. Precisely, the CFLVAE

model utilizes an efficient and cost-sensitive objective function called Class-wise Focal

Loss (CFL) to train Variational AutoEncoder (VAE) to solve the data imbalance problem.

Additionally, a highly imbalanced NSL-KDD intrusion dataset is employed to conduct

extensive experimentation of the proposed model. Furthermore, a Lightweight Deep

Neural Network (LDNN) model is established for intrusion detection in the IoT and

trained using the balanced intrusion dataset created from the CFLVAE model to improve

the intrusion detection performance. To maintain lightweight criteria, feature reduction

using Mutual Information (MI) method and network compression using the Quantization

technique are applied. The results demonstrate that the proposed CFLVAE with LDNN
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(CFLVAE-LDNN) framework obtains promising performance in generating realistic new

intrusion data samples and achieves superior intrusion detection performance. Specifically,

the CFLVAE-LDNN achieves 88.08% overall intrusion detection accuracy and 3.77%

false positive rate. It also achieved 79.25%, and 67.5% for Root to Local (R2L) and User

to Root (U2R) low-frequency attacks detection rates, respectively. More significantly,

low memory and CPU time consumption confirm that the proposed model is suitable for

resource-constrained IoT. Overall, the proposed model benefits researchers and practitioners

with intrusion detection in IoT.

Keywords: Internet of Things, Intrusion Detection, Data Imbalance, Focal Loss Variational

Autoencoder, Deep Neural Network.
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MODEL PENGESANAN PENCEROBOHAN RINGAN MENGGUNAKAN FOCAL

LOSS VARIATIONAL AUTOENCODER UNTUK INTERNET BENDA

ABSTRAK

Internet Benda (IoT) menjana trafik rangkaian yang tidak seimbang; oleh itu, objek

bersambungan dalam IoT menghadapi isu keselamatan termasuk jenis serangan yang

berbeza dan tidak diketahui. Walaupun teknik berasaskan pembelajaran tradisional

telah digunakan untuk pengesanan pencerobohan dalam IoT, pengesanan serangan yang

mempunyai frekuensi/bilangan yang rendah adalah kurang disebabkan sifat trafik rangkaian

yang tidak seimbang. Contohnya, teknik berasaskan pembelajaran konvensional mengalami

ketepatan pengesanan yang lebih rendah, Kadar Positif Palsu (FPR) yang lebih tinggi

dan kadar pengesanan serangan kelas minoriti yang lebih rendah. Selain itu, disebabkan

sifat IoT yang terhad, model pengesanan pencerobohan wajaran berat konvensional tidak

sesuai untuk IoT. Untuk mengatasi isu ini, penyelidikan ini bertujuan untuk mewujudkan

dan menilai model pengesanan pencerobohan ringan menggunakan Class-wise Focal

Loss Variational Autoencoder (CFLVAE) untuk IoT. Dalam mewujudkan model yang

dicadangkan, model penjanaan data telah dibangunkan menggunakan CFLVAE. Tepatnya,

model CFLVAE menggunakan fungsi objektif yang cekap dan sensitif kos yang dipanggil

Class-wise Focal Loss (CFL) untuk melatih Variational AutoEncoder (VAE) untuk

menyelesaikan masalah ketidakseimbangan data. Selain itu, set data pencerobohan

NSL-KDD yang sangat tidak seimbang digunakan untuk menjalankan eksperimen yang

meluas bagi model yang dicadangkan. Tambahan pula, model Rangkaian Neural Dalam

Ringan (LDNN) ringan telah dibina untuk pengesanan pencerobohan dalam IoT dan dilatih

menggunakan set data pencerobohan seimbang yang dihasilkan daripada model CFLVAE

untuk meningkatkan prestasi pengesanan pencerobohan. Untuk mengekalkan kriteria
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ringan, pengurangan ciri menggunakan kaedah Mutual Information (MI) dan pemampatan

rangkaian menggunakan teknik Quantization digunakan. Keputusan menunjukkan bahawa

rangka kerja CFLVAE dengan LDNN (CFLVAE-LDNN) yang dicadangkan memperoleh

prestasi yang menjanjikan dalam menjana sampel data pencerobohan baharu yang realistik

dan mencapai prestasi pengesanan pencerobohan yang unggul. Secara khusus, CFLVAE-

LDNN mencapai 88.08% ketepatan pengesanan pencerobohan keseluruhan dan 3.77%

kadar positif palsu. Ia juga mencapai 79.25%, dan 67.5% untuk kadar pengesanan serangan

frekuensi rendah Root to Local (R2L) dan User to Root (U2R) masing-masing. Lebih

ketara, memori yang rendah dan penggunaan masa CPU mengesahkan bahawa model yang

dicadangkan sesuai untuk IoT yang dikekang oleh sumber. Secara keseluruhan, model

yang dicadangkan memberi manfaat kepada penyelidik dan pengamal dengan pengesanan

pencerobohan dalam IoT.

Kata kunci: Internet Benda, Pengesanan Pencerobohan, Ketidakseimbangan Data,

Autoenkoder Variasi Kehilangan Fokus, Rangkaian Neural Dalam.
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CHAPTER 1: INTRODUCTION

1.1 Background

With the constant growth and extensive application of the Internet of Things (IoT), big

data, cloud computing, smart applications, and advanced network technologies, billions of

devices are connected to the internet. The application of IoT has already been witnessed in

all walks of life (Alaba et al., 2017). However, due to the constrained nature of IoT on

memory, processor, power and information transmission, it suffers from significant security

risks. Furthermore, because several IoT nodes gather and store an enormous volume of

users’ sensitive data, IoT has become an ultimate target for cyber adversaries (Alaba et al.,

2017; Khanam et al., 2020). For instance, one of the leading aluminum companies named

Norsk Hydro, was invaded on March 18, 2019, by LockerGoga (a variant of ransomware)

(Briggs, 2019). The ransomware caused a shutdown of automated production lines of the

aluminum company in Europe and the USA. Therefore, it is crucial to detect cyber-attacks

on time to safeguard the network and its devices.

An Intrusion Detection System (IDS) is used to prevent and protect network devices from

such security threats and vulnerabilities. Due to recent developments, IDS can identify and

detect the attack types using Machine Learning (ML) and Deep Learning (DL) algorithms

(Ahmad et al., 2021; H. Liu & Lang, 2019). ML approaches include Support Vector

Machine (SVM), K-Nearest Neighbour (KNN), Decision Tree (DT), Random Forest (RF),

Naïve Bayes (NB) (Chang et al., 2017; Jianhong, 2015; Zaman & Lung, 2018), and others.

The efficiency of such learning methods has been applied and verified using several publicly

available datasets, such as KDD99, NSL-KDD, UNSWNB15, and Kyoto (Janarthanan

& Zargari, 2017; Moustafa & Slay, 2015; Protić, 2018), and they achieved significant

intrusion detection performance. Also, DL approaches include DNN, Convolutional Neural
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Networks (CNN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM),

AutoEncoder (AE), Variational AutoEncoders (VAE) (Althubiti et al., 2018; Doersch,

2016; Hochreiter & Schmidhuber, 1997; Sajjad et al., 2019; Sak et al., 2014; Socher et al.,

2011; Sutskever, 2013; Vaiyapuri & Binbusayyis, 2020; Y. Xiao et al., 2019; Y. Yang et al.,

2020), along with others. ML and DL approaches have gained much research attention

for their increasing popularity in high detection accuracy (Moustafa & Slay, 2015; Protić,

2018; Tavallaee et al., 2009a).

Notwithstanding the significant overall accuracy achieved by shallow ML and DL

algorithms, current intrusion detection approaches for IoT still suffer from a high False

Positive Rate (FPR) and inferior intrusion detection rates because of the imbalanced

nature of real-network datasets (Chawla, 2009; H. He & Garcia, 2009; H. He & Ma,

2013; Jiang et al., 2020; Napierala & Stefanowski, 2016; Zuech et al., 2021). Due to the

high dimension of real network data traffic, which is also imbalanced, the conventional

deep learning algorithms still suffer from inefficiency in learning and classifying network

attacks. Data imbalance refers to the state in which the class distribution is disproportional

among multiple samples. The real network traffic is always imbalanced. For instance, the

NSL-KDD dataset (Tavallaee et al., 2009a) contains five intrusion classes with imbalanced

network traffic (I.e., benign traffic with 13449 samples, Denial of Service (DoS) attacks

with 9234 samples, Probe with 2289 samples, Remote to Local (R2L) with 209 and User

to Root (U2R) with 11 samples). When Many researchers considered the NSL-KDD

dataset for intrusion detection in IoT because it contains diverse useful information to mark

malicious network traffic (Dhanabal & Shantharajah, 2015; K. Singh et al., 2021; Su et al.,

2020; W. Xu et al., 2021).

Two common approaches to dealing with such data imbalance problems are the data-

driven approach and the algorithm-driven approach (Chawla et al., 2002; Hamad et al.,
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2020; H. He et al., 2008; Kotsiantis et al., 2006; More, 2016; H. M. Nguyen et al., 2012).

The data-driven methods focus on handling the distribution of the classes by bringing them

to an equilibrium state by either oversampling (copying and adding minority samples)

or under-sampling (removing majority class samples) (More, 2016; H. M. Nguyen et al.,

2012). The data augmentation/generation algorithm is a well-known technique that solves

the sample imbalance issue, and a lot of research has been proposed on this area since

(Chawla et al., 2002; H. He et al., 2008) years ago. The research on data imbalance issue

in intrusion detection on IoT is still a hot research topic. This is because the learning

algorithms showed promising intrusion detection performance as they learn from a large

volume of data. The performance degrades notably in the case of learning from imbalanced

class samples (J. Lee & Park, 2021; Leevy et al., 2021; Parsaei et al., 2016).

Sampling techniques work by simply replicating or synthesizing the observed data. The

most common data oversampling algorithm that uses the data-oriented approach is the

Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al., 2002). SMOTE

works by feature space interpolation and generates synthetic data for the minority class.

Some recent advancements in VAE (Osada et al., 2017; X. Xu et al., 2020; Y. Yang et

al., 2019), Conditional Variational AutoEncoders (CVAE) (Lopez-Martin et al., 2017),

and Generative Adversarial Networks (GAN) (Creswell et al., 2018; Goodfellow et al.,

2020) algorithms are applied to solve data imbalance issue by generating synthetic samples.

Remarkably, the VAE (Doersch, 2016) and CVAE (Lopez-Martin et al., 2017) have

proven proficiency in the intricate representation of visual data, e.g., images and motion

pictures. The algorithm-oriented approach highly depends on the cost sensitivity of learning

algorithms. The cost matrices can be customized for better learning of miss-classified

samples using cost-sensitive learning (Chawla et al., 2004; H. He & Garcia, 2009; Kingma

et al., 2014; Kingma & Welling, 2013). The represented cost matrix is used to reduce the
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probability of miss-classification.

1.2 Motivation

Many research works on IoT security issues, and challenges have been published. Some

focused on classifying security attacks, and some studied autonomic and cryptographic

countermeasures to those security issues. There are several review studies on the security

of IoT. Some of these studies focused on security challenges, whereas others focused on

security solutions based on different techniques and methodologies. The survey by Hassija

et al. (Hassija et al., 2019) provided several IoT security challenges and further discussed

fog, edge computing, blockchain, and machine learning technologies as the various means

of scaling up IoT security. Another survey (Sharma et al., 2020) focused on physical

layer security, protocols and handover defenses for mobile IoT. The authors compared the

existing security measures for mobile IoT applications. A systematic review study (Liao

et al., 2020) investigated hardware and software-based security measures for IoT mobile

computing devices. The study (A. Kim et al., 2020) examined insider IoT threats based

on various data sources such as IoT deployment environments and IoT architectures. The

authors compared different data sources from different IoT layers and investigated the

limitations on the potential utilization of the data sources and methodologies.

Some researchers surveyed recent developments in learning-based intrusion detection

systems for IoT. For instance, the studies (Al-Garadi et al., 2020; Hussain et al., 2020)

reviewed machine and deep learning-based security solutions for IoT and identified the

limitations of each method. The authors (Hussain et al., 2020) also provided future

research challenges and directions. The existing surveys and reviews on IoT security

focused on security challenges and discussed measures, which only focused on a specific

type of methodology. Other studies focused on security challenges concerning mobile-IoT,

location-based or commercial IoT. Others yet focused on a specific type of security
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countermeasures such as either learning-based or cryptographic-based measures. However,

the existing studies have not considered providing a comprehensive and up-to-date analysis

of intrusion in IoT and security countermeasures within the current trends in encryption

methods, learning-based and autonomic approaches.

Secondly, the traditional intrusion detection methods suffer from the following draw-

backs. Due to the data imbalance problem, the majority attack class overrides the learning

algorithms, and the minority attack classes may not be learned effectively, hence leading

to a high FPR, low minority class detection rate, and low overall detection accuracy. This

issue could be solved by developing an appropriate data oversampling algorithm. In

oversampling approach, new samples are created from the existing data points and added

to the low-frequency classes in order to balance the data set. However, most conventional

oversampling methods are trained with widely used cost-sensitive learning Cross Entropy

(CE) loss function. By utilizing the CE loss function, the majority class samples overwhelm

the loss curve, which cannot enhance the quality and diversity of the synthesized minority

class intrusion data samples. CE loss function passes equal weights to each data instance,

and this leads the model to oversee minority class samples. When training a model with an

imbalanced dataset, the accumulation of the small losses over the majority class samples

can overwhelm the overall loss. This leads to degenerated models (Fernando & Tsokos,

2021).

Recently, a technique called Focal Loss (FL) has emerged to enhance the power of CE

as an alternative cost-sensitive learning to amplify the efficiency of learning algorithms

(Aljohani et al., 2021; T.-Y. Lin et al., 2017; Pasupa et al., 2020; Tian et al., 2018). The

idea behind FL loss is it down-weights the correctly predicted records and assigns large

weight to misclassified records. Hence, the model is able to learn all the class samples

more efficiently (T.-Y. Lin et al., 2017; Yun et al., 2019). FL was also implemented in

5

Univ
ers

iti 
Mala

ya



intrusion detection very recently (Z. Cheng & Chai, 2020; Mulyanto et al., 2021). The

authors evaluated the FL objective function and achieved a noteworthy enhancement in

the performance of intrusion detection. Likewise, the FL loss performed much better

in learning from data than traditional CE loss in computer vision and IoT applications

(Awalgaonkar et al., 2020; T.-Y. Lin et al., 2017; Mulyanto et al., 2021).

This research explored the use of the Class-wise Focal Loss (CFL) objective function

instead of the conventional reconstruction CE loss in order to develop an appropriate data

generation method. With the CFL loss function, this research focuses on the minority

class samples more to learn a better representation of data for each class. In the learning

process, the class-wise cost-sensitive approach including oversampling approaches, aim to

modify and re-weight the minority class samples. As a result, the Variational AutoEncoder

(VAE) is able to generate minority class samples as close to the original input, which will,

in turn, lead to better performance of our intrusion detector and reduce the FPR of the

minority and unknown attacks. Using the FL loss, the generative model learns a better

representation of minority class samples and generates high-quality, diverse, and realistic

synthetic data to solve the data imbalance problem.

1.3 Problem Statement

The existing research on IoT security focused on security challenges and discussed

measures, which only focused on a specific type of intrusion detection system which does

not provide the readers with a comprehensive idea (Hassija et al., 2019; A. Kim et al.,

2020). Other studies focused on security challenges concerning mobile-IoT, location-based

or commercial IoT (Sharma et al., 2020). Others yet focused on a specific type of security

countermeasures such as either learning-based or cryptography-based measures (Al-Garadi

et al., 2020; Hussain et al., 2020; Liao et al., 2020). However, the existing studies have

not considered current IoT attack categories such as multi-layer attacks, and security
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measures of IoT in terms of its characteristics and diversities. There is a need to undertake

a holistic investigation of autonomic, learning-based, and encryption-based IoT security

countermeasures. This research aims at providing a comprehensive and up-to-date analysis

of security countermeasures within the current trends in cryptography or encryption

methods, learning-based strategies and autonomic approaches. The study also aims to

provide useful comprehensive insights and opens a research gateway for future researchers

who are interested in IoT security challenges and solutions.

Furthermore, although the existing intrusion detection approaches succeeded with

satisfactory performance, they yet suffer from inferior detection rates, and high false-

positive rates in low-frequent, minority and unknown attack classes. The majority

of network traffic in a real environment is uneven, which means the attack traffic is

considerably lower compared to normal network traffic. This leads to a class imbalance

problem (R. George & Roy, 2022), and imbalanced class degrades classification accuracy

and escalates the FPR of the training model. Some recent research has focused on

addressing the data imbalance problem to improve detection accuracy. Many oversampling

methods exist, such as Random Over Sampling (ROS) (Hayaty et al., 2020), Synthetic

Minority Oversampling Technique (SMOTE) (Chawla et al., 2002), and Adaptive Synthetic

Sampling Approach (ADASYN) (H. He et al., 2008), and some recent developments

such as Generative Adversarial Network (GAN) (Goodfellow et al., 2014, 2020), AE

(Albahar & Binsawad, 2020) and their variations have been implemented to balance uneven

real-network dataset for better performance of IDS.

Yang et al. (Y. Yang et al., 2019) have also explored the usage of CVAE for data synthesis

for intrusion detection. An improved version of Conditional Variational AutoEncoder

(ICVAE) is used to overcome the data imbalance problem, and a Deep Neural Network

(DNN) is utilized for classifying intrusions in the system. The learned weights of ICAVE
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are used to initialize the operation in DNN hidden layers. The ICVAE-DNN model

improved overall detection accuracy. However, the method lacks detection accuracy of

minority attack categories, such as U2R, R2L, Probes, and DoS attacks. Additionally,

the overall detection accuracy and False Positive Rate (FPR) could be improved. This

is due to the fact that they neglected the cost sensitivity of imbalanced intrusion data to

generate high-quality synthetic data samples for minority intrusion classes. For instance,

the minority samples are so small that the reconstruction loss is dominated by the majority

class and the minority class samples are neglected. Hence, the reconstruction of minority

class samples deviates significantly from the observed samples. The default CE loss in

ICVAE may not be able to optimize the latent distribution in the decoder and may lead to

degrading the quality of decoded samples. The CE loss function assigns equal weights to

each data sample. When training ICVAE with the imbalanced dataset, the majority class

overwhelms the overall loss. Hence, the minority classes cannot be learned efficiently,

thus, generating data far from the original data. Therefore, the generated data samples

deviate from observed data which leads the classifier to perform poorly. This results in

degrading the intrusion detection rates for minority attack classes and overall intrusion

detection accuracy.

To overcome these issues, this work proposes a novel intrusion detection framework

called CFLVAE-LDNN. CFLVAE-LDNN inherits the strengths of Variational AutoEncoder

(VAE) and utilizes improved Class-wise Focal Loss CFL) as an objective function instead of

the traditional reconstruction loss (CE) to train the VAE model by replacing the traditional

loss function with focal loss. To better apprehend the representation and the property in

the observed intrusion data for its minority attack classes, this research designs a novel

objective function called CFL and develops an appropriate data generative model using

VAE. The model focuses on the minority attack classes and adjusts weights for each class
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sample individually. CFLVAE-LDNN framework consists of two models: 1) CFLVAE

model is trained to generate realistic synthetic data to balance, and 2) Lightweight Deep

Neural Network (LDNN) classification model is used for classifying the attack categories.

The proposed technique generates realistic synthetic data for the classifier to provide high

detection accuracy. The problem statements (PS) of this research are as follows:

• PS1: IoT suffers from security threats, attacks, intrusions and vulnerabilities; and

there are limitations associated with present security solutions utilized for intrusion

detection in IoT.

• PS2: Real network traffic is imbalanced, which leads the learning-based classifier to

perform poorly in intrusion detection for minority class attacks.

• PS3: Deep learning-based intrusion detection and classification model is not

suitable for resource-constrained IoT devices; therefore, it is necessary to establish

and evaluate a lightweight deep learning intrusion detection and classification model

for IoT.

1.4 Research Objectives and Questions

1.4.1 Research Objectives

This research aims to establish and evaluate a lightweight deep neural network framework

for Intrusion Detection Using Class-wise Focal Loss Variational Autoencoder for IoT. The

objectives of this research are as follows:

• RO1: To identify existing security threats, attacks, intrusions, and vulnerabilities,

and to recognize current solutions used for intrusion detection associated with the

Internet of Things (IoT) and their limitations.

• RO2: To develop a data generation model to balance a intrusion detection dataset.

• RO3: To establish a lightweight deep learning model for intrusion detection in IoT.
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• RO4: To evaluate the performance of the proposed lightweight intrusion detection

model for IoT.

1.4.2 Research Questions

IoT security mechanisms could serve as a useful manual of existing security threats in

the IoT and educate researchers on numerous solving techniques. It will also serve as a

reference point for future research in improving and unifying the IoT security framework.

The questions of this research are as follows:

• RQ1: What are existing security threats, attacks and vulnerabilities associated with

IoT?

• RQ2: What current security solutions are used for intrusion detection in IoT?

• RQ3: What limitations are associated with present security solutions utilized for

intrusion detection in IoT?

• RQ4: How to utilize the deep data generation model for balancing IoT intrusion

detection dataset?

• RQ5. How to overcome the limitation of the current data generation model to solve

the data imbalance issue by generating diverse and realistic samples for intrusion

detection?

• RQ6. How to establish a lightweight intrusion detection and classification model

for IoT?

• RQ7: How can the generated data improve intrusion detection accuracy?

• RQ8: What improvements can be achieved when using the lightweight intrusion

detection classification model with a balanced intrusion dataset for intrusion detection

in IoT?

Table 1.1 presents the map between the problem statements, research objectives, and
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research questions.

Table 1.1: Research Components Mapping

Problem Statement Research Objectives Research Questions

PS1. IoT suffers from se-
curity threats, attacks, in-
trusions and vulnerabili-
ties; and there are lim-
itations associated with
present security solutions
utilized for intrusion de-
tection in IoT.

RO1. To identify exist-
ing security threats, attacks,
intrusions, and vulnerabil-
ities, and to recognize cur-
rent solutions used for intru-
sion detection associated
with the Internet of Things
(IoT) and their limitations.

RQ1. What are existing se-
curity threats, attacks, and
vulnerabilities associated
with IoT.
RQ2. What current secu-
rity solutions are used for
intrusion detection in IoT?
RQ3. What limitations are
associated with present se-
curity solutions utilized for
intrusion detection in IoT?

PS2. Real network traffic
is imbalanced, which
leads the learning-based
classifier to perform
poorly in intrusion detec-
tion for minority class
attacks..

RO2. To develop a data
generation model to bal-
ance a intrusion detection
dataset.

RQ4. How to utilize
the deep data generation
model using VAE for bal-
ancing IoT intrusion detec-
tion dataset?
RQ5. How to overcome
the limitation of current
data generation model to
solve data imbalance issue
by generating diverse and
realistic samples for intru-
sion detection?

PS3. Deep learning-
based intrusion detection
and classification model is
not suitable for resource-
constrained IoT devices;
therefore, it is necessary
to establish and evaluate a
lightweight deep learning
intrusion detection and
classification model for
IoT.

RO3. To establish a
lightweight deep learning
model for intrusion detec-
tion in IoT.
RO4. To evaluate the per-
formance of the proposed
lightweight intrusion detec-
tion model for IoT.

RQ6. How to establish
a lightweight intrusion de-
tection and classification
model for IoT?
RQ7. How can the gener-
ated data improve intrusion
detection accuracy?
RQ8. What improvements
can be achieved when us-
ing the lightweight intru-
sion detection classifica-
tion model with a balanced
intrusion dataset for intru-
sion detection in IoT?

1.5 Thesis Organization

This research work is categorized into six chapters, as briefed below.

Chapter 2: Literature Review
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This chapter presents an overview, architecture and enabling technologies of IoT. This

chapter also discusses security issues in different IoT domains and provides a classification

of possible security attacks on IoT. Moreover, this chapter explores existing security

solutions and their limitations for IoT.

Chapter 3: Methodology

This chapter illustrates the methodology, design, and development of a novel intrusion

detection framework. The experimental test-bed is described along with its mathematical

derivations.

Chapter 4: Experimentation

This chapter exposes the research problem in more detail through implemented experi-

ments. The experimental test-bed is described along with its experiments carried out are

listed.

Chapter 5: Results and Discussion

This chapter presents and discusses the detection performance of the proposed intrusion

detection framework and elaborates on comparative studies.

Chapter 6: Conclusion and Future work

Finally, this chapter concludes the study and suggests recommendations and future

work.

1.6 Chapter Summary

This chapter has given a brief background to the research, describing the motivation,

problem statements, and research questions addressed. It has also set out the aims, and

objectives. The original contribution has been highlighted and the thesis structure is

outlined.
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CHAPTER 2: LITERATURE REVIEW

This chapter presents an overview of IoT, its architecture, enabling technologies and

protocols. A number of literature on different IoT application domains and their security

issues, threats, attacks, and vulnerabilities are studied. Additionally, a comparative study

of conventional Internet security with IoT security is presented, and the limitations and

necessities of the security for IoT are discussed.

Furthermore, this chapter explores, addresses, and brings together the extensive

and up-to-date security attacks taxonomy. It provides a state-of-the-art taxonomy and

analytical comparison of security attacks based on three-layer IoT architecture. Moreover,

this chapter explores and compares different intrusion detection techniques, including

encryption algorithms and autonomic and learning-based techniques and finally, justifies

the suitability of implementing them in IoT. This chapter aims to provide a useful user

manual of those security aspects for a heterogeneous IoT environment by discussing a

range of possible solutions to guide researchers to improve the security issues in the context

of IoT.

2.1 Definition of IoT

IoT is defined as a world of networked smart objects, where every physical "thing"

with a digital element is interconnected. An official definition of IoT provided by the

international telecommunication union (ITU) is as follows(Sundmaeker et al., 2010):

“A global infrastructure for the information society enabling advanced services by

interconnecting (physical and virtual) things based on, existing and evolving, interoperable

information and communication technologies”.

A similar definition is also provided by (Amaral et al., 2011). IoT enables the inter-

connectivity of billions of devices to aid computing and communications. Digital entities
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such as sensors, Radio-Frequency Identification (RFID), the Internet and localization

technology make it possible to transform everyday objects into smart objects capable of

interpreting and interacting with each other (Amaral et al., 2011). The embedded sensors in

smart objects monitor, sense, and collect various data about equipment, environment, and

human social life (Yan et al., 2014). IoT is not only about connecting or communicating

but also exchanging information, which has and will continue to affect every aspect of our

daily lives.

The information represents the link between the cyber and physical world with the

primary concern for security susceptibility. The connections among humans, devices,

sensors, and services are universal and continuous. No matter how meticulously designed,

intelligently configured, implemented and properly maintained a security system is, it

will have to rely on human intervention. The Human element is the most appealing

and overarching security concern as dealing with it is challenging. Therefore, designing

cybersecurity solutions without considering the human element is just an illusion (Svensson,

2013). Although innovations and technological developments have made security solutions

more impressive, the large scale of security relies upon our hands (Frangopoulos et al.,

2013).

Interestingly, IoT enables the interconnectivity of several heterogeneous devices and

networks using different communication technologies. According to (Al-Fuqaha et al.,

2015; Horrow & Sardana, 2012), communication may occur between machine-to-machine

(M2M) or thing-to-thing (T2T), human-to-thing (H2T) or human-to-human (H2H) through

different means of connectivity. IoT aims to provide smart and advanced services to its

users through information networks formed by consistent integration of physical objects

(e.g., personal computers, smartphones, wearable devices, washing machines, fridges,

lights, microwave ovens, and medicines). The things are interconnected or connected to
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the Internet or humans and are capable of transmitting real-time information about patients,

property, traffic, and electricity (Botta et al., 2016). These smart objects are also capable of

delivering the collected lightweight data around the globe. Furthermore, devices equipped

with actuators can extract data, process them and boost communication efficiency among

smart objects.

IoT is distributed and heterogeneous, and therefore, the issues related to security need to

be given considerable attention. However, IoT differs from conventional Internet in several

contexts, including security. IoT also differs in terms of technology and deployment. IoT

devices are connected under the constraints of Low Power and Lossy Networks (LLNs),

which are weak in energy, memory and processing capabilities (Botta et al., 2016; Yan et

al., 2014). Furthermore, unlike typical IT infrastructure, IoT is globally connected through

compressed Internet Protocol Version 6 (IPv6).

The main objective of IoT is to offer integration among software, sensors, inter-operable

communication protocols, network infrastructures, and physical objects anywhere and

anytime (Aazam et al., 2016; Yan et al., 2014). With the advancement of smartphone

technology, an enormous number of objects are capable of being part of IoT. However,

the necessity of rapid and large-scale deployment of IoT devices can lead to a significant

security concern. The authentication, authorization, system configuration, verification,

access control, information storage, and management verification, to name a few, are the

main security challenges and issues in the IoT realm (Jing et al., 2014). Embedded devices

and smartphones, for instance, offer many digital services, making our lives easy and

worry-free. These devices can easily control, operate other devices, and share data from

long distances. However, the security of these devices, information and users’ privacy is

not guaranteed. Users’ vital information may leak or tamper with anytime and anywhere.
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2.2 Imbalanced IoT Data

The advancement of IoT and big data significantly affects businesses, organizations, and

individuals. A large number of communication devices in the IoT produce and transmit from

one device to another as network traffic. The network traffic may contain intrusion/attack

data in some cases. Data collecting IoT devices sense and transmit data using embedded

sensing and communication modules. The volume of data generated by sensors, devices,

and different IoT applications is continuously increasing (Khushi et al., 2021; Y. Ma et

al., 2012; Taherkordi et al., 2017; ?). The generated large amounts could be structured,

unstructured, or semi-structured. These data are generally voluminous, heterogeneous and

generated from different IoT applications with distributed and decentralized settings.

The enormous volume of these data produced by IoT applications could be utilized to

develop business analysis systems, business recommendation systems, intrusion detec-

tion/prediction systems (J. Gao et al., 2021; Khushi et al., 2021; Y. Ma et al., 2012; Marjani

et al., 2017), and so on. However, the collected IoT network data traffic is of different

types and comes with higher real-time requirements. These various types of data can be

utilized to create manufacturing datasets that often have a dramatically skewed distribution.

For example, in an IoT application, the network traffic may contain a huge number of

normal/benign data samples and fewer attack samples. As a result, this network traffic

creates an imbalanced dataset. An imbalanced dataset refers to an unequal distribution

of class samples in a particular dataset (Japkowicz & Stephen, 2002; Khushi et al., 2021;

X.-Y. Liu et al., 2008). The class with a more significant number of samples is called the

majority class, with fewer samples known as the minority class. Minority class is also

known as low-frequency or unknown class. So, the minority class is simply that has the

lower frequency in the class distribution of the training dataset (Japkowicz & Stephen,

2002; X.-Y. Liu et al., 2008).
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The imbalanced datasets are normally utilized to build predictive models. However,

building a predictive or intrusion detection model on an imbalanced dataset would cause

a model to perform poorly when predicting classes that appear fewer times in a dataset

(Ding et al., 2022; X.-Y. Liu et al., 2008). Because of this, the model would not be able

to generalize well to the new data in the low-frequency class (Johnson & Khoshgoftaar,

2019; Telikani & Gandomi, 2021). It is important to look into these imbalanced datasets

to build models that aim for high prediction/detection accuracy for minority classes. Many

researchers are looking into the imbalanced nature of datasets that are typically encountered

in IoT applications.

2.3 IoT Security Concerns

Robust security is essential to provide users with the feeling of privacy over personal

information to embrace the blessings of the broad deployment of IoT (F. Li et al., 2016; S. Li

et al., 2016). For instance, on January 29, 2018, several cyber-attacks were launched against

the top three banks in the Netherlands to make the internet banking service unavailable

and block their websites (Hague, 2018). One of the leading aluminium companies, Norsk

Hydro, was invaded on March 18, 2019, by LockerGoga (a variant of ransomware) (Briggs,

2019). The ransomware caused a shutdown of automated production lines of the aluminium

company in Europe and the USA. National Cyber Security Centre (NCSC) reported that

the Labor Party in the UK was hit by massive Distributed Denial of Service (DDoS) attacks

on November 12, 2019 (Palmer, 2019). The DDoS attacks flooded millions of message

requests, targeted the party’s website, and destroyed the campaign tools and platforms of

the party.

The surveys conducted (Button et al., 2016; Finnerty et al., 2019, 2018; Johns, 2020;

Klahr et al., 2017; Miller et al., 2015; Vaidya, 2019) reveal that security breaches have

increased drastically in the past years. Furthermore, they reported the security breaches
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and attacks witnessed by large and small businesses in the United Kingdom. Figure 2.1

depicts the rate of security breaches experienced by large and small organizations between

2015 and 2020 in the UK.

In 2015, 90% of large organizations had suffered security breaches; also, 74% of entities

of small business organizations reported that they suffered security breaches (Miller et al.,

2015). Surveys conducted in 2016 and 2017 (Button et al., 2016; Klahr et al., 2017), listed

that 65% of large firms and 33% of small firms identified breaches in the last 12 months,

52% of large, and 68% of small firms suffered security breaches in the past 12 months

(Finnerty et al., 2019, 2018; Vaidya, 2019). According to reports conducted in 2018 and

2019, 72% and 61% of large firms and 47% and 52% of small firms experienced security

attacks, respectively. 2021 report (Johns, 2020) showed, 64% of large organizations had

suffered security breaches and 39% of entities of small business organizations reported

that they suffered security breaches in 2020.

Figure 2.1: The organizations experienced security breaches or attacks in the UK
(Button et al., 2016; Finnerty et al., 2019, 2018; Johns, 2020; Klahr et al., 2017; Miller
et al., 2015; Vaidya, 2019).

IoT produces a massive amount of data for organizations and businesses, which makes

it a target and an alluring venture for adversaries who seek to steal business information for
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ransom or other intents resulting in financial losses on the part of the organization. Since

IoT is becoming a mission-critical element of small, medium, and large organizations and

their businesses, security has become an essential component and a requirement of IoT. It

is also evident that security solutions of IoT have improved over time (Sudqi Khater et al.,

2019), yet security threats are also evolving in more far-reaching and destructive ways.

Figure 2.2 presents security attack scenarios of some key IoT applications. IoT

applications are deployed in almost every aspect of our daily lives, including homes,

hospitals and industries. Multiple sensors in an application area (e.g., smart home, smart

hospital, smart industry, and smart transportation) communicate with each other and

transmit vital information. Considering a scenario where a driver uses a Global Positioning

System (GPS) to navigate a destination in order to catch up with an urgent meeting, the car’s

GPS device will usually be connected to multiple devices and utilizes different networks,

which are exposed to cyber-attacks. An attacker can potentially bypass the firewall and may

launch a DoS attack, making the navigation service unavailable or sending a wrong signal

that misleads the driver. In another scenario based on the same figure, remote operation of

the smart home appliances exposes private data to an attacker, or the smart lock of the

home could be broken to gain access to home appliances.
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Figure 2.2: IoT Security attack scenarios in different application areas.

In another scenario shown in Figure 2.2, patients get treatment and medication at home

or by a healthcare service provider from a remote hospital. However, the patient’s sensitive

information may risk being stolen or manipulated by the invader who bypasses the hospital

firewall, sitting either at the local network or on the cloud Internet. The highlighted

scenarios present issues that are related to hacking, terrorism, and sabotage, which could

potentially affect large-scale intelligent IoT infrastructures such as electricity, hospitals,

offices, industries and buildings.

2.4 IoT Architecture

Despite the wide-ranging opportunities and benefits to users and businesses, there

are yet significant IoT security concerns that must be addressed. IoT applications

generate a vast amount of data for individuals and organizations, which are prone to

security attacks. Since low-power IoT devices are commonly deployed in hostile physical

environments, more robust security approaches must be implemented in addition to
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conventional Internet security approaches. This section provides an overview of IoT and

introduces its architecture.

Given the continuous development and expansion, IoT requires a universal and adaptable

architecture that suits its heterogeneity and the diverse scope of its application. Currently,

there is no universally adopted architecture. Several researchers have proposed many

different architectures for IoT (R. Khan et al., 2012; Sethi & Sarangi, 2017; Z. Yang et al.,

2011). This research adopted the three-layered architecture (Alaba et al., 2017; Z. Yang et

al., 2011) and outlined the critical concept of IoT. Figure 2.3 presents a typical architecture

of IoT, which is divided into three basic layers together with their functionalities. The

layers are presented and discussed next.

Figure 2.3: IoT functionalities, enabling technologies, and applications in different
IoT layers.
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2.4.1 Application Layer

This layer consists of an array of smart IoT application solutions (Jing et al., 2014;

R. Khan et al., 2012; Z. Yang et al., 2011). The IoT market has enormous potential

that attracts the development of smart applications in almost every aspect. Many IoT

applications have already been deployed in specific domains such as smart buildings,

including homes and offices, smart cities, wearable bands for health monitoring, smart

traffic systems, environment monitoring, smart alarm system, and smart personal assistants

(Alaba et al., 2017; R. Khan et al., 2012; Sethi & Sarangi, 2017; Z. Yang et al., 2011). The

IoT application layer is the highest layer within the IoT architecture, which provides an

interface between objects and networks. It offers a variety of functionalities such as data

formation, presentation, monitoring of device conditions, notifications, alerts, controlling

device functions, management and processing of data, device performance optimization and

autonomous operations, providing quality-of-service to end-users (Čolaković & Hadžialić,

2018; M. Wu et al., 2010).

Moreover, a typical application layer includes a service support platform, middleware,

computing and communication software (Yaqoob et al., 2017). A survey by (Donta et

al., 2021) presented real-time applications, conventional and recent developments in IoT

application layer protocols. The main goal of the IoT application layer is to provide different

application services to the end-users. Data Confidentiality, Integrity and Availability (CIA)

should be guaranteed at this layer by securing applications from unauthorized access,

ensuring software/logs integrity and keeping the application service available at any time

(Reshan & Saleh, 2021). During the processing of sensitive data, issues such as illegal

access and malicious modification of data may arise (W. Zhang & Qu, 2013). This layer

could also be susceptible to a number of security attacks such as Spoofing, Message

Forging, Viruses and Worm, among others.
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2.4.2 Network Layer

IoT Network Layer is comprised of software, protocols, and technologies that enable

object-to-object and object-to-internet connectivity (Čolaković & Hadžialić, 2018). It

is mainly formed using either local area networks such as the wireless or wired net-

work. This layer also consists of personal area network (e.g., ZigBee), Near Field

Communication (NFC), Bluetooth and wide area networks such as Global System for

Mobiles (GSM), Long Term Evolution (LTE), 5th Generation (5G) mobile network,

and cloud computing (Domingo, 2012; R. Khan et al., 2012; Pongle & Chavan, 2015).

The variations of the IoT communication model have been outlined by (Tschofenig et

al., 2015) as Machine-to-Machine (M2M) communications, machine-to-gateway model,

machine-to-cloud communications, and back-end data-sharing model.

Furthermore, the main function of this layer is to transmit gathered data in the form

of a digital signal, which is collected from the physical layer of corresponding platforms

via a connected network. This layer is vulnerable to a number of security threats and

attacks (Alaba et al., 2017). Common attacks in this layer include Denial of Service (DoS),

Sinkhole, Hello Flood, and Blackhole, to name a few. Therefore, it is essential for the

network layer to have communication security for secure data transmission over a public

network (Airehrour et al., 2016; Naru et al., 2017).

2.4.3 Physical Layer

The bottom layer of IoT architecture is known as the physical layer. In IoT, this layer is

also referred to as the perception layer (Alaba et al., 2017; R. Khan et al., 2012; Z. Yang et

al., 2011). It includes physical world objects and virtual entities. The main task of this

layer is to collect data from the environment through various sensors and transmit them

to the network or other devices. Accordingly, IoT devices are embedded with electrical

and mechanical hardware components such as sensors, antennas, actuators, and processors
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(Čolaković & Hadžialić, 2018). Smartphones, RFID technology (Domingo, 2012; Jing

et al., 2014), and wearable devices are capable of processing, identifying, connecting,

communicating and storing data. In the perception layer, the sensors or RFID convert the

collected raw data of the physical objects to readable digital signals. For instance, IoT

objects sense and gathers data from the physical world, such as temperature, humidity, and

proximity, to name but a few. However, this layer of IoT is prone to many security attacks

such as Jamming, Tampering and Collusion (Alaba et al., 2017).

2.5 IoT Enabling Protocols and Technologies

Numerous protocols connect and work together; thus, an appropriate communication

system architecture should be used to ensure inter-operation. Nevertheless, there are still

issues with interoperability among diverse network technologies. For example, authors in

(Palattella et al., 2016) state that the standardization of the latest progress is the only way

to the future development of IoT. Evolving new IoT-based protocols and technologies will

play significant roles in the future. The protocols used in conventional Internet for data

sharing are not compliant options for low-power IoT constraints. Therefore, there have

been standardized protocols for IoT to connect smart things and end-user applications.

IoT protocol stack and enabling elements are presented in Figure 2.3. This figure also

demonstrates the functionalities of the protocols for each layer of IoT. Some of these

significant protocols are presented below.

The Constrained Application Protocol (CoAP) is a widely used application protocol for

IoT. On the other hand, CoAPs are the secure version of CoAP which utilizes Datagram

Transport Layer Security (DTLS) to protect data between two applications (Čolaković &

Hadžialić, 2018; Elhadi et al., 2018; Raza et al., 2013; Sethi & Sarangi, 2017). Next, the

Message Queuing Telemetry Transport (MQTT) for Sensor Networks (MQTT-SN), Data

Distribution Services (DDS), Extensible Messaging and Presence Protocol (XMPP), and
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Advanced Message Queuing Protocol (AMQP) are some other application layer protocols

for IoT (Čolaković & Hadžialić, 2018; Elhadi et al., 2018). Moreover, a Quick Constrained

Application Protocol Internet Connection (QUIC) is an IoT transport layer protocol (L. Lin

Yang, 2018). QUIC was designed by Google to offer security protection, and flow control

over User Datagram Protocol (UDP) and to avoid congestion as well as reduce transport

latency by using congestion control mechanisms similar to Transmission Control Protocol

(TCP). IPv6 is one of the key internet layer protocols appropriate for IoT (Jara et al., 2013;

Raza et al., 2013).

Namely, IPv6 offers end-to-end IP datagram transmission for the packet-switched

network through multiple IP networks. IPv6 over Low Power Wireless Personal Area

Network (6LoWPAN) is a low-power and low-cost communication network that connects

IoT devices to the Internet through IPv6. Routing Protocol for Low Power and Lossy

Networks (RPL) is a standardized IPv6 protocol for constrained IoT networks. RPL is the

IPv6 routing protocol standardized for IoT (Gulzar & Abbas, 2019; Tahir, 2018).

Consequently, IoT is envisioned to integrate different wireless technologies. Bluetooth

Low Energy (BLE), Z-Wave, and EPCglobal are some of the IoT physical layer protocols.

RFID and NFC (Catarinucci et al., 2015; Y. Choi et al., 2017; Dragomir et al., 2016;

Ray, 2018) are technologies for short-range communication for IoT. IEEE 802.15.4 is the

Low-Rate Wireless Personal Area Networks (LR-WPANs) (Ray, 2018) utilized for IoT due

to security, authentication, encryption, reliable communication, high message throughput,

and to accommodate a huge number of nodes (Andrews, 2013). Bluetooth operates in the

2.4 GHz frequency, and it is one of the key technologies for short-range communication.

Likewise, IEEE 802.11 is another physical layer specification for Wireless Fidelity

(WiFi) or Wireless Local Area Network (WLAN). The energy consumption is higher in

WiFi than that of Bluetooth and ZigBee (Palattella et al., 2016). Cellular technologies such

25

Univ
ers

iti 
Mala

ya



as 2G (GSM), 2.5G (GPRS), 3G (UMTS/WCDMA, HSPA), 4G LTE, 5G can also be used

for IoT communication. As all the protocols for IoT are designed for resource-constrained

devices and networks, these protocols could be susceptible to security attacks to a large

degree. The constrained devices are vulnerable to attacks from inside the 6LoWPAN

network and the global Internet. Therefore, lightweight security solutions are to be

developed for these constrained devices and networks (Suo et al., 2012).

2.6 IoT Applications

IoT applications have become an integral part of our everyday lives. These applications

are growing rapidly. However, IoT applications suffer from a number of security threats,

privacy and trust issues. The type of security threats and attacks vary from application to

application, and industry to industry. Nevertheless, effective security solutions should be

enforced on different IoT domains based on the nature of applications and functionalities

to ensure secure communication and let people enjoy the complete benefit of IoT without

compromising their privacy. This section presents some recent application domains and

discusses their respective security issues, trust and privacy.

• Smart Home: Some modern homes are equipped with smart and automated appliances,

such as smart lighting, refrigerator, washer, air-conditioner, electric meters, alarm

systems and CCTV. Additionally, these homes are powered by smart cameras, sensors,

smart locks, and alarm systems to ensure safety. These smart appliances can be operated

through the Internet from long distances. The usage of such smart technologies provides

a high level of comfort in smart homes and enhances overall security, trust and privacy

while reducing overall expenditure (Komninos et al., 2014; Samuel, 2016). Moreover,

to ensure security and to protect smart houses from theft or intrusion, criteria such as

confidentiality, auto-immunity, and reliability must be met (Komninos et al., 2014). IoT
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devices installed in smart homes should be password-protected, and user login must be

confidential.

• Industrial IoT: The cyber-physical system is the basis of industrial IoT, which is capable

of real-time monitoring, diagnosing and controlling physical processes and production

remotely. Meanwhile, IoT-equipped smart industries and factories optimize production

processes, enable the manufacture of smart products and provide knowledge-based

smart services by utilizing resources with the help of the data gathered by the IoT system.

Smart products are usually powered by RFID for digital identity that also can collect

and store data (Virat et al., 2018). However, the industrial IoT and its products attached

to the digital entity are vulnerable to many security issues such as trust, privacy and

confidentiality. They also introduce challenges such as standardization of the production

system and social and legal aspects. Consequently, the diverse industrial IoT devices

demand highly scalable addressing systems, security solutions and data privacy. Due

to resource limitations, the industrial IoT architecture requires low-cost, low-powered

infrastructures yet fully integrated with robust security solutions.

• Smart City: The concept of a smart city comes from the integration of different IoT

applications in various sectors. In a smart city, the integration of multiple services

supports its stakeholders in a distributed and dependable manner (Kotsev et al., 2016).

However, providing privacy and trust among the stakeholders in the smart city ap-

plications remains an important issue. Undoubtedly, there are security issues related

to hacking, terrorism,and physical damage which could destroy the infrastructure of

smart city applications in areas such as electricity supply, healthcare, corporate offices,

factories and traffic systems (Colding & Barthel, 2017).

• IoT Healthcare System: It is one of the most prominent and fascinating application

areas of IoT (Pang, 2013). The smart hospital-based treatment or remote healthcare

27

Univ
ers

iti 
Mala

ya



services have gained popularity in recent years. IoT medical services such as distant

health monitoring, elderly care, chronic healthcare and fitness programs are some of the

potentially rising applications (Baker et al., 2017).

However, a patient’s private and sensitive information may be at risk of being stolen or

manipulated. Patients’ personal information is confidential, and thus, it is important to

secure them from exposure to any unauthorized access. Likewise, if the medical report

of a patient is leaked and altered, the doctor may end up treating the patient erroneously,

which can be lethal and life-threatening for the patient. Therefore, patient data privacy

and authentication are of immense importance; therefore, medical applications of IoT

should be highly secured (Mathur et al., 2016).

• Smart Traffic System: RFIDs and various sensors make urban driving pleasant and

traffic management more efficient. Smart traffic applications of IoT give people a sense

of ’living in the future. For example, an IoT-enabled traffic system provides route

information such as the number of cars in a particular route or lane; parking information

such as availability and directions to the parking space; public transport information such

as the number of occupants and availability of seats on a bus or train. Similarly, sensors

are already used in urban vehicles for safe driving (Alonso et al., 2011). However, the

automation of the system may bring security and trust issues for passengers (Stefansson

& Lumsden, 2009). As smart cars, buses, and trains, among others, are connected to the

Internet, the passengers’ data become exposed to the risk of being compromised.

• Smart Grid: The smart electrical supply system is known as a smart grid, which is

mainly a network of electric transmission lines, transmitters, and substations to distribute

electricity across homes and businesses from the power plant in the most efficient

way. Smart meters, sustainable energy resources, smart machines and efficient energy

properties are some of the power functions of a smart grid (Komninos et al., 2014;
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Mahmoud et al., 2015). The use of IoT in electric grids makes the energy distribution and

management much more efficient through two-way communication between them and

reduces the impacts on climate (Borgia, 2014). Technological improvements in smart

electric grid systems increase their security vulnerabilities and threats. Undoubtedly,

authentication, confidentiality, trust, integrity, and availability represent the key areas of

concern that should be addressed when dealing with a smart power grid.

• Smart Farming: Integration of different sensors and RFID technologies make con-

ventional agriculture, animal and fish farming smarter. Various sensors are capable of

monitoring temperature, humidity, soil moisture, and microbial contaminants in smart

farming (Hassija et al., 2019). Sensors and RFID attached to the animal’s body or fish

farm are able to monitor health conditions, keep track of their activities and notify the

stakeholder remotely. However, smart farming industries are prone to several security

issues. The agricultural products can be damaged, or fish and animals can be carted

away if the security of such applications is not ensured.

2.7 IoT Security Goals

The security goal or necessity of IoT is discussed in this section. The traditional and

common security goals include Confidentiality, Integrity and Availability (CIA). However,

apart from this CIA triad, other requirements such as privacy, lightweight solutions,

authenticity, and standardized policies have become very important. Figure 2.4 shows the

security goals for IoT including lightweight security solutions, privacy and CIA triad. The

following security principles should be considered to achieve secure communication for

IoT.
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Figure 2.4: IoT security goals.

2.7.1 Lightweight Solution

IoT devices are resource constrained. Hence, conventional heavy security solutions are

not suitable for IoT. Therefore, lightweight security solutions can be introduced as a unique

feature since IoT devices are considered computationally less powerful and embedded

with limited memory (Thakor et al., 2021). The lightweight approach must be considered

a security requirement while designing, developing and implementing encryption or

authentication protocols for IoT (Mahmoud et al., 2015).For example, RFID tags in

e-passports can suffer from un-traceability attacks; hence, lightweight yet robust security

solutions must be designed for such ultralight protocols. Furthermore, as the security

algorithms or protocols are meant to be run on IoT devices, these must be compatible with

the device’s limited capabilities (Thakor et al., 2021).
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2.7.2 Authenticity

Authenticity validates the legitimate parties involved in communication. It guarantees

that the data originates from the actual user it claimed to be from (K. Grover & Lim,

2015). Therefore, a thin and robust authentication protocol is essential. To address the

constraints of IoT, it is essential to verify and validate the users involved in communication.

A comprehensive review of authentication mechanisms has been presented in (Nandy et al.,

2019). Recently, a lightweight authentication mechanism has been proposed for resource-

constrained devices (Chuang et al., 2018). RFID tags and NFC are few examples of such

advanced innovations, which IoT devices may benefit from as an authentication scheme.

An NFC-based authentication mechanism has been proposed by (Petrov et al., 2014) to

ensure that energy and processors are not in use at end nodes. However, conventional

authentication methods may not be suitable for IoT. For instance, literature (Mahalle et

al., 2014) suggests a group-based authentication method for IoT. The method validates

the authenticity of all the devices which take part in the communication. Biometric

technologies such as fingerprint and face tracking authentications are also not considered

secure for IoT devices (Ren et al., 2013). Other than these, trust management, data, device,

and user authentication are also important. The following subsections briefly elaborate on

some authentication requirements for IoT.

• Context Authentication: Obtained sensed data and control information, functional

properties, and states of the devices are to be authenticated as a prerequisite.

Monitoring also may include device faults detection, configuration changes, and

collecting and monitoring performance data. In this case, identify and authenticate

the devices that participate in monitoring such services (Battat et al., 2014).

• Trust Management: Trust management is essential as it reduces risk factors and

allows customer acceptance. Adaptive routing in the smart grid is an entirely trust-
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based scheme for IoT components which is reported in (Xiang et al., 2014). Trust

management does not only contribute to IoT security, but it also improves the overall

network performance (D. He et al., 2012). There are different data aggregation

algorithms or machine learning approaches available to obtain trustworthy data in

IoT (Yan et al., 2014).

• User and Device Authentication:IoT devices and the central unit should au-

tonomously be able to authenticate a user identity that is demanding a certain action.

In this process, a single-sign-on mechanism can be applied as once authenticated; the

users may interact with several devices. Likewise, ensuring data flow is generated by

a certain entity and the device authentication is required. Traditionally, public key

cryptography is widely used for such purposes. However, it is a complex framework

and too heavy for light-duty nodes (Huang et al., 2016).

2.7.3 Confidentiality

Confidentiality is one of the key features for securing IoT. All information must be

protected from unauthorized nodes during any transmission (Nasiri et al., 2019). This

assures that only those who have authority to access certain information can view them

and it also guarantees that transmitted information is not revealed, viewed or understood

by any third-party users as data passes through intermediate nodes (Mahmoud et al., 2015;

F. Muhammad et al., 2015). This can be done by using a shared key, where both sender

and receiver use this key to encrypt and decrypt data. The following subsections briefly

elaborate on some confidentiality requirements for IoT.

• Storing data: The autonomic decision should be made to protect confidentiality

during storage of vital data locally and in the cloud.

• Security Keys: The underlying system should constantly be able to use a self-
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protection mechanism to monitor and manage security keys where message or

communication confidentiality is vital (Nasiri et al., 2019). In addition, the system

should be able to use a self-healing mechanism if any security breach occurs

and switch to a failsafe mode or generate new keys. Developing an autonomic

system when it comes to confidentiality is challenging due to the constrained nature

of IoT (Ashraf & Habaebi, 2015; Nasiri et al., 2019; Thakor et al., 2021). The

organization and communication aspects should also be taken into consideration.

While comparing symmetric cryptography, the asymmetric cryptographic schemes

are more resource-consuming for IoT. A few lightweight encryption approaches

are still under development. An adequate research effort is required to overcome

the challenges to support the autonomic version of such key management schemes.

Symmetric key schemes may support IoT with acceptable overhead (Ashraf &

Habaebi, 2015; Thakor et al., 2021).

2.7.4 Integrity

Data integrity ensures that the information remains unchanged during transmission

(Mahmoud et al., 2015; F. Muhammad et al., 2015). A symmetric cryptographic algorithm

is typically used to help data under transmission by creating signatures for them. Another

approach, namely, Message Integrity Check (MIC), is used to verify the integrity of

received data (Wara & Yu, 2020). However, such typical cryptographic solutions require a

huge amount of energy and bandwidth to operate. An autonomic security solution may

provide an acceptable level of data integrity for IoT regardless of inadequate resources

(Ashraf & Habaebi, 2015; Nasiri et al., 2019). The autonomic decision-making integrity

components are as follows.

• Logs integrity: The intrusion detection system should have the ability to expose the
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path by generating activity logs in case any changes were made by anyone. These

logs are also to be reserved either locally or centrally for a short-term or long-term

basis (Ashraf & Habaebi, 2015).

• Software Integrity: Tiny software runs on IoT devices. That software integrity

also to be ensured by the intrusion detection mechanism. The mechanism must be

able to monitor if the device is seized or network is flooded with messages by an

adversary (Ashraf & Habaebi, 2015).

2.7.5 Availability

Data availability refers to continuous access to the system data. It guarantees that the

entire system, its components, functional properties, and required services are available at

any time. The availability of these services and components may hamper due to security

attacks (Mahmoud et al., 2015; F. Muhammad et al., 2015). For example, DoS, malware,

and Jamming are the common types of availability attacks in this regard. Such attacks may

physically harm IoT nodes and networks. The malicious node makes constant queries to

an IoT device to launch this kind of attack, which make the device more functional and

due to that, the battery-driven IoT devices may run out of power. These issues require

proper attention and a robust security model for IoT system is needed to prevent and

recover from such attacks on the availability. The connected things should be available

and functional whenever they are required (Nasiri et al., 2019). The following security

goals on availability must be considered for constant data and system availability.

• Fault Tolerance: The system must be able to use the self-protection approach along

with self-healing in case of a failure or an attack (Nasiri et al., 2019).

• Scalability: The system must be scalable in terms of adding new resources. IoT

nodes can be organized hierarchically to support scalability; however, RPL is not
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a hierarchical protocol. The packet flow can be centralized to achieve this feature

(A. Ahmed et al., 2017). The system must make an autonomic decision on duty

cycling on the network on when to switch off or on without losing functionality

(Ashraf et al., 2014).

2.7.6 Privacy

Privacy refers to the state or condition in which data or service is meant to be accessed

by an individual. This is a hot research topic and a lot of research has been conducted

on conceptual security frameworks for privacy issues (Kalloniatis et al., 2008; Y. Yang,

Wu, et al., 2017). However, as different IoT layers and systems require different privacy

requirements, these solutions are appropriate for issues only at the application layer. To

keep the nodes scalable and to consider various IoT applications, a robust privacy policy

is required to be developed, which should match with individual node identification and

consider providing some level of control to the user. IoT devices are equipped with RFID

tags, which can be tracked easily. The privacy of those devices should be protected.

Some aspects of privacy include location, context privacy, non-link-ability, anonymity

trust management, and identity management (Vidalis & Angelopoulou, 2014). Several

research works have been investigated to provide privacy for IoT (Ali et al., 2020; Garms

& Lehmann, 2019; Gu et al., 2020; Kortesniemi et al., 2019; Vijayakumar et al., 2019).

The privacy goals are categorized as follows (Ashraf & Habaebi, 2015).

• Non-Link-Ability: It refers to specified private data that is not linkable to any

user. Unauthorized users should not be able to create a profile from the personal

data of other users. An attacker may not be able to search for patterns to reverse

engineer any sniffed data. The group-signature-based approach was reported to

tackle non-link-ability problems in (Garms & Lehmann, 2019).
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• Location Privacy: The intrusion detection system should guarantee that the location

of a device is not exposed to an unauthorized person. The authors (Vijayakumar et al.,

2019) proposed an effective technique for preserving location privacy. The technique

is anonymous authentication for wireless body area networks which ensures lower

computational cost.

• Data Privacy: Wearable devices connect the human body to the Internet, thus

personal information (e.g., healthcare) should be kept secured.

• Device Privacy: RFID tags make the sensor nodes to be traceable and identifiable.

Anonymous communication is required to hide the identity of devices for resource-

constrained communication protocols. The authors (Kortesniemi et al., 2019)

proposed a decentralized identifier-based method to provide privacy for IoT devices.

The authors claimed that the model could be deployed in small IoT devices.

2.7.7 Service Level Agreements

In order to protect and transmit data in an efficient way, there must be standardized

policies and mechanisms to enforce the policies. It is also important to ensure that the

standards and policies are applied to every entity in the network (Girs et al., 2020; S. Li et

al., 2020). All services should clearly identify a Service Level Agreement (SLA), which

is one way of maintaining the policies and standards. Considering the nature of IoT, the

classical SLAs may not be applicable; thus, there should be an autonomous decision on

policies to meet SLAs according to diverse services (Girs et al., 2020). These policies are

to be enforced in order to foster trust in the IoT paradigm.

2.8 Security Threats, Attacks and Vulnerabilities in IoT

Security attacks may lead to millions of dollars in losses to large businesses and

intellectual property theft. The major security threats, challenges, methods of security
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attacks and actual security attacks are presented in the following sections.

2.8.1 Security Threats or Challenges

This section provides the security challenges while implementing security in IoT for

application, network and physical layers. The representation of different types of attacks

based on the properties of IoT assets and their available solutions are provided in this

section. The adversary may be an insider or outsider of a network and can be a threat

to these assets, such as communication channels, a protocol stack, devices, and personal

information (HaddadPajouh et al., 2021). Based on device, network, location or other

properties, the adversary performs malicious activities to interrupt IoT services, obtain

unauthorized access or physically damage the device. The following sections provide the

taxonomy of types of security attacks based on IoT assets and their properties according to

the literature (Hossain et al., 2015).

2.8.1.1 Threats based on Device Property

IoT devices are heterogeneous. Therefore, an invader may attack IoT devices based on

device properties. Two such methods are given below.

• Threats on Low-End Devices: Devices with low memory, power and computational

capabilities are considered low-end devices. The attacker uses such devices to launch

attacks on other IoT devices (Ojo et al., 2018). For example, an adversary may utilize

low-end IoT devices such as a smartwatch to launch attacks on a smart TV or smart

refrigerator to threaten privacy, integrity or confidentiality (Hahm et al., 2015).

• Threats on High-End Device: A high-end device refers to a powerful and fully-

functional device (Ojo et al., 2018). An adversary may launch attacks using high-end

devices (i.e., PC, laptop) in order to gain access and cause damage to IoT devices

and networks from anywhere.
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2.8.1.2 Threats based on Location Property

IoT devices are connected globally and are prone to attacks from the Internet or within

6LoWPAN networks. The methods of such attacks are as follows (Bairagi et al., 2016).

• Internal Threats: An adversary’s attack from a local network either using his/her

own device or a compromised legitimate device. Such attacks may include routing

attacks, namely Flooding, Blackhole, and Sinkhole attacks (HaddadPajouh et al.,

2021).

• External Threats: Initiating an attack on IoT devices or networks, the attacker

might be deployed outside and far from a native network. Examples of such security

challenges are Brute-force, malware, Secure Sockets Layer (SSL), and Domain

Name System (DNS) attacks (HaddadPajouh et al., 2021).

2.8.1.3 Threat Level

An adversary may attack IoT devices or networks at different levels, such as active

attacks to disrupt usual functionality or passive attacks in order just to acquire vital

information. The security challenges based on threat level are described below.

• Active Threats: An attacker initiates direct attacks to interrupt the regular service-

ability of IoT networks or devices are known as active security challenge (Uthumansa

& Shantha, 2020). DoS, and Blackhole attacks are two examples of such attacks

(Alaba et al., 2017).

• Passive Threats: These types of attacks are launched to gather important information

from IoT networks and devices, but the normal functionality of a device or network

is not disrupted (Uthumansa & Shantha, 2020). These attacks are initiated to disrupt

the privacy of IoT, such as eavesdropping, and monitoring of data transmission.
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2.8.1.4 Threat Strategy

An attacker may belong to different interest groups. Therefore they may attack the IoT

device or network using different strategies based on their interest levels as follows.

• Physical Threats: The attacks are launched in order to cause physical damage to IoT

devices or change device configurations. Malicious Node Injection and Tampering

are examples of physical attacks (Andrea et al., 2015; Deogirikar & Vidhate, 2017).

• Logical Threats: The attacks are initiated in order to make IoT devices or networks

dysfunctional without doing any physical damage to them. Traffic analysis of the

communication channel is an example of a logical security challenge (Khanam et

al., 2020).

2.8.1.5 Damage Level

IoT devices, networks, and applications are prone to a multitude of security attacks,

which may cause different levels of damage. They may range from information leaks and

service disruptions to physical damage to the IoT device. Two such threats are provided as

follows.

• Service Unavailability: Service shut down, or power outage may occur naturally.

However, resource exhaustion may occur from DoS attacks, which in turn makes

service unavailable (HaddadPajouh et al., 2021; Khanam et al., 2020). Service may

be interrupted by such attacks. Thus, recovery mechanisms for such interruptions

should be available (Suo et al., 2012). Such attacks can be detected using an effective

intrusion detection system.

• Interruption: In this type of threat, an invader sits between two IoT nodes, intercepts

the communication and tricks them by communicating with both (Tertytchny et

al., 2020). In other words, the attacker listens to the private messages which
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are transmitted through private communication links. Eavesdropping, Alteration,

Fabrication, and Man-in-the-Middle (MitM) attacks are examples of such kinds.

These attacks may mislead or create confusion among IoT users (Alaba et al., 2017;

Khanam et al., 2020). The intruder may alter or fabricate additional data. Such

security challenges can be made either externally or internally, and messages lose

their integrity. Such attacks threaten message confidentiality. RFID devices are

vulnerable to such security challenges (Laurie, 2007).

2.8.1.6 Host-Based Threats

The devices used in IoT are embedded with software that may contain private information,

cryptographic keys and other sensitive information. The data can be targets of the attackers.

Some of these attack methods are as follows.

• User Credential: An adversary may trick a user into discovering their personal

credentials, such as usernames and passwords. User credentials should be protected

or shared in a secured manner (Khanam et al., 2020).

• Software Compromise: IoT devices and their embedded software are not much

powerful. Therefore, the operating system and other software might be vulnerable

to security threats (HaddadPajouh et al., 2021; Khanam et al., 2020). An adversary

may take advantage of that and compromise the embedded software.

• Hardware Compromise: An adversary can damage IoT devices by extracting

hardware credentials such as keys, data, or program code that are embedded in the

devices (HaddadPajouh et al., 2021). Physical access is usually required to initiate

such attacks. IoT devices should be tamper-resistant in order to remain protected

from such attacks.
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2.8.1.7 Protocol Level Threats

Malicious attackers compromise standard protocols of IoT devices and networks in

order to disrupt communication among the devices (HaddadPajouh et al., 2021). Examples

of such attacks include the following.

• Protocol Deviation: An adversary breaches and diverges from standard communi-

cation or application protocols and becomes an insider in order to launch attacks

(HaddadPajouh et al., 2021).

• Protocol Disruption: An intruder may disrupt standard protocols such as synchro-

nization, data aggregation or key management protocols from inside or outside a

network (HaddadPajouh et al., 2021).

2.8.2 Layer-based IoT Security Attack Taxonomy

IoT architecture comprises different technologies which work independently to make a

complete system. In section 2.3, we explored the three-layered IoT architecture. In this

section, we classify IoT attacks based on the three-layered architecture that consists of

application, network and physical layers. The following sub-sections present the proposed

attack taxonomy, which is summarized in Figure 2.5.

Some attacks are categorized as multi-layer/dimensional attacks as they exploit more

than one layer of the IoT architecture; for instance, DoS or cryptanalysis attacks may take

place in the application, network and physical layers of IoT. Tables 2.1 and 2.2 provide an

analytical comparison of different attacks in different IoT layers, the method of launching

them and the impact of those attacks on IoT.
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Figure 2.5: Layer-based IoT security attack taxonomy.
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Table 2.1: Summary of Different Attacks

Layer Attack
names Objective Methods

of attack Impact

A
pp

lic
at

io
n

La
ye

r

Virus &
Malware
(Tahir, 2018)

To hack and attack
confidentiality
of application,
steal user credential
and system shutdown

In the form of
trojans, Spams,
Worms

Cause damage
or harm to IoT
high-end device,
applications and
Bluetooth
technologies

Spyware
(Tahir, 2018)

To spy or monitor
users’ activities
and gain users’
credential

In the form of the
application
installed in the
user device

Indirect harm to
users or device

Flooding
(Aluvala et al., 2016)

To exhaust node
resources

By broadcasting a
multitude of
messages

Reduces device
lifetime

Spoofing
(Schaffer et al., 2012)

To hamper
authentication
and user privacy

By impersonating
a node

May cause losing
trust and
confidentiality

Message
Forging
(Shim, 2019)

To send wrong
information
to the user

By modifying or
creating a message

Mislead user
by different
message other
than the original
may cause great
harm

Code
injection
(F. Muhammad et al., 2015)

To steal user ID and
password

By injecting
malicious code
into an application

Hack into users
vital account

Intersection
(Lu et al., 2015)

To hamper system
privacy

By gaining the
system’s secondary
information

May lead to other
attacks

N
et

w
or

k
La

ye
r

Hello flood
(Aluvala et al., 2016)

To mislead routing
path

By broadcasting many
invalid routing paths

Hello messages
from intruder
may exhaust
system

Sinkhole
(Y. Liu et al., 2018)

To launch several
other attacks

By making the
central node of
the network
unavailable

Network failure

Replay
(Elsaeidy et al., 2020)

To exhaust network/
system/database
resources

By re-transmitting
packets

Network failure or
system unavailable

Sybil
(Tandon & Srivastava, 2019)

To eliminate original
and valid node from
the network

By creating its
own numerous
identities

Lead to dropping
packets

Clone ID
(Morales-Molina et al., 2021)

To gain and access
user traffic

By cloning
identity of
a legitimate node

Missing of user
data
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Table 2.2: Summary of Different Attacks (cont... Table 2.1)

Layer Attack
names Objective Methods

of attack Impact
N

et
w

or
k

La
ye

r SF
(Patel & Jinwala, 2022)

To deprive bandwidth
and delay network
transmission

By dropping
certain incoming
packets

compromising
of availability
and confidentiality

Blackhole
(Sivaganesan, 2021)

To affect network
operation

By dropping all
incoming packets

The entire
network
may fail

Eavesdropping
& Traffic
analysis
(Zou & Wang, 2015)

To gain information
to launch other types
of attacks

Gain information
by sending control
message and make
an analysis of the
gained messages

Affect user
privacy and
confidentiality

Ph
ys

ic
al

La
ye

r

Tag cloning
(F. Muhammad et al., 2015)

To make the victim
confuse about genuine
tags

By replicating data
from direct access to
RFID device or by
reverse engineering

To hamper the
authenticity
of an object,
cause financial
loss, jeopardize
personal safely

RF Jamming
(Salameh et al., 2018)

To make the sharing
bandwidth ineffective

By interrupting
radio frequency
and by making
interference

May cause
interference
and noise in
the signal.
May lead to
DoS attack

Node
injection
(Deogirikar & Vidhate, 2017)

To take part in
communication
among the legitimate
node and may

By deploying
additional node in a
network topology

Take control of the
network traffic

Tampering
(Pathak et al., 2021)

To modify, add or delete
data from end device

By physical capture
and compromise of
an end node

To hamper
confidentiality
and accessibility

Physical
damage
(Deogirikar & Vidhate, 2017)

To deactivate the network
or to make service
unavailable to the user

By removing node
physically or
deactivating
a node by sending
kill command

Shutting down
a network node
makes service
unavailable
to the user

Exhaustion
(Ashraf & Habaebi, 2015)

To exhaust network
resources

By launching other
attacks such as
retransmission,
flooding, repay attack.

Reduces node
and network
lifetime.

M
ul

ti-
la

ye
rA

tta
ck

s Cryptanalysis
(Andrea et al., 2015) To find encryption key

In the form of trial
and error by guessing
every possible key

Break encryption
system and gain
access to
ciphertext

Side Channel
Information
Attacks
(Gnad et al., 2019).

To recover key
information

By time, power, fault
analysis of a system

Lead to other
attacks

DoS
(Y. Lee et al., 2017)

To make service
unavailable

One way is to attack by
exhausting network

Service
unavailability
may cause
serious damage
to large
organization

44

Univ
ers

iti 
Mala

ya



2.8.2.1 Application Layer Attacks

Since global standards and policies are yet to be established for IoT to govern the

development and interactions for IoT applications, the IoT application layer is still

susceptible to many security attacks. Diverse applications of IoT use different authentication

techniques, which makes it difficult to integrate them in order to ensure authentication and

data privacy. The number of applications is growing, and a huge number of devices are

being connected that will share a tremendous volume of data. Applications, which analyze

those data or information, may have a large overhead, and service may become unavailable

due to security attacks. The major attacks on the IoT application layer and their impacts

are described below.

• Virus and Malware: These attacks are targeted at the system with the goal of

breaching confidentiality. They usually occur in the form of applications such as

Trojans, spams, worms or other viruses (N. K. Gyamfi & Owusu, 2018; Tahir, 2018).

In IoT networks, smartphones, sinks or gateways, and other high-end IoT devices

are significantly at higher risk of these kinds of attacks than sensor-based motes.

Furthermore, Bluetooth technologies such as 802.15.4 enabled devices are at high

risk (Ashraf & Habaebi, 2015). Therefore, mitigation of such viruses and malware

in IoT applications must be taken into serious consideration.

• Spyware: Spyware is a program that is installed on users’ IoT devices without the

users’ consent. The main goal of this attack is to spy on or monitor users’ behavior

and gather sensitive information such as user IDs, passwords, keystrokes, and credit

card information. Spyware generally does not cause any damage to the IoT devices or

users directly; it mainly steals private information and sends it back to the distributor

(Tahir, 2018). The information is then used as the basis for marketing analysis

or pop-up ads. Traditional Spyware detection approaches are signature, behavior,
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and specification-based techniques. Signature-based techniques detect only known

Spyware; therefore, unknown Spyware instances remain unattended (N. K. Gyamfi

& Owusu, 2018).

• Spoofing: An attacker may impersonate a node to launch a spoofing attack. A

spoofing attack is one of the high-risk attacks due to its attacking method. With

a suitable portable reader, a transmission might be recorded. As the attacker

impersonates the node, the re-transmission might appear from a valid node. This

attack may exist in all three IoT layers. Spoofing attacks by impersonating nodes are

categorized as attacks of authentication, and it also violates the privacy principle

(Schaffer et al., 2012).

• Code Injection: An attacker inserts malicious code into a smart application/system

by misusing faulty programs (F. Muhammad et al., 2015). The attacker launches

such attacks in order to gain access, steal users’ sensitive data, take over the system

control or transmit worms (W. Zhang & Qu, 2013). Code injection attacks may take

place in a variety of forms, such as HTML script injection and shell injection. This

attack may compromise users’ privacy, or a system may lose control, resulting in a

total system shutdown.

• Message Forging: This attack occurs when a malicious node modifies or creates a

message to deliver contents other than the original (Shim, 2019). It can be classified

as a type of Replay attack in the case of modifying information synchronization.

• Intersection: This attack is also known as a composition attack. It targets the

system’s privacy by gaining secondary information from the system (Erdin et al.,

2015; Lu et al., 2015). The attackers gather such information from third-party

sources or public records (Ganta et al., 2008). The adversary targets and makes use

of the non-linkable element. The anonymized data of the privacy information from
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different sources are then being used to link them.

2.8.2.2 Network Layer Attacks

IoT network layer communication differs from conventional Internet due to M2M

communication between heterogeneous devices. As a result, this layer may suffer from

security compatibility issues and is prone to different security attacks such as Hello Flood,

Sybil and Blackhole attacks. Examples of such attacks are as follows.

• Hello Flood: Message flooding is one of the major attacks in the network layer

where an attacker aims to exhaust network or node resources such as battery or

bandwidth by sending multiple route establishment requests (Aluvala et al., 2016;

Pongle & Chavan, 2015). Destination Oriented Directed Acyclic Graph (DODAG)

Information Object Message, namely DIO, is used for advertising information about

destination/root that is used to build the topology of RPL.

Any node that receives a hello message considers that it originates from within

the network and marks it as a communication route. In this case, an attacker or

intruder whose intention is to place his/herself as a neighbor of other nodes in the

network may convince other nodes that it is a normal node. It means the attacker

node will broadcast a hello message to all nodes on the network to let them know

that the attacker is a neighboring node (Pongle & Chavan, 2015). This may lead to

bandwidth and network throughput inefficiency as the attacker drops the incoming

packets; therefore, that packet(s) will be lost. Hello Flood attack may also result

from unequal transmission areas. It is considered as a low-impact attack.

• Replay Attack: This attack commonly occurs during synchronization to mislead the

destination node such that a malicious node stores transmitted information and only

to re-transmit it at a later time. Missed frame re-transmission request is usually made
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by transmitting packets repeatedly across a network with the sequence numbers

to senders and receiver nodes. For example, it may occur during communication

between an RFID reader and a tag (Elsaeidy et al., 2020; Mitrokotsa et al., 2010b).

This attack exhausts network/system resources such as RFID and back-end database

resources (memory, battery and processor).

Additionally, the adversary may broadcast the radio signal in order to gain reader

grant access (Mitrokotsa et al., 2010a, 2010b). Replay attacks are classified as

high-risk attacks, but they can be mitigated and prevented relatively easily. However,

network efficiency will drop if the mitigation of this attack fails.

• Sinkhole: In this kind of attack, an attacker trespasses and compromises a central

node of a network in order to make it unavailable which leads to packet dropping

as well as DoS attacks. The risk level of sinkhole attacks is very high, where a

large number of nodes can be compromised (Y. Liu et al., 2018). Regarding the

infrastructure-based system, the sinkhole attacks could control the whole network.

• Sybil Attack: Sybil Attack is launched by creating a node and presenting its own

numerous identities in the network in order to gain huge influence, which in turn

leads to the elimination of original active nodes from the routing table. Here, the

system’s weakness depends on a few factors such as the ease with which those

multiple identities are created, and the level of influence to which the system agrees

to take inputs from a trusted entity, which is not linked to a chain of trust. A survey

on Sybil attacks and its available defense mechanisms for IoT is presented (Tandon

& Srivastava, 2019; Y. Zhang & Pengfei, 2014). Based on the attacker’s skills, the

authors categorized Sybil attacks into three different types, namely, SA-1, SA-2, and

SA-3.

• Clone ID: The name implies that the adversary clones the identity of legitimate
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IoT node in order to gain access to user data traffic(Morales-Molina et al., 2021;

Pongle & Chavan, 2015). The malicious clone node can be identified by storing the

geographical location and identity of each node at 6BR (6LoWPAN border router).

It can also be traced using a distributed hash table.

• Selective Forwarding (SF) attack: In SF attacks, a malicious attacker enters into a

network and drops selective packets. The adversary casually drops some packets

and selectively forwards some to the next node. IoT networks are lossy by nature;

therefore, it is difficult to identify the real reason for packet dropping (Mathur et al.,

2016; Patel & Jinwala, 2022). This may lead to bandwidth deprivation and delay in the

entire network (Bysani & Turuk, 2011). This can result in compromising availability

and confidentiality. Possible solutions to this attack may include redundancy checks

and probing. Some solutions focus on providing network complete recovery, whereas

others try to lessen the damage being caused (Bysani & Turuk, 2011).

• Blackhole Attack: During a Blackhole attack, the malicious node drops all the

packets that it encounters and the entire network operations get affected. This attack

is classified as a high-impact attack as it absorbs all routing information. An intruder

floods out malicious routing information to claim the best route to the destination

(Pongle & Chavan, 2015; Raza et al., 2013; Sivaganesan, 2021). The sender then

chooses the malicious route to transmit the packets. The attacker frequently sends

fake route-reply (RREP) to the sender. The source node keeps transmitting its

packets through the malicious route, the attacker drops all the packets, and he/she

does not forward any traffic to the destination.

• Eavesdropping/Traffic Analysis: These attacks can be active or passive. They act

as prerequisites for other types of security attacks. A network is usually unaware of

the existence of such attacks (Dai et al., 2013). In active eavesdropping, an attacker
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transmits a control message to initiate the attacks and the replies from the destination

device are analyzed further to pave the way for other attacks. Passive eavesdropping,

on the other hand, overhears the communication traffic to extract vital information

from the transmission medium to launch other attacks. These attacks may affect

users’ privacy and data confidentiality. Information can eavesdrop at either M2M,

network or cloud layers (Zou & Wang, 2015). Eavesdropping attacks are relatively

easier on the M2M layer; however, the attacker can overhear only a selected part(s) of

the system, and in most cases, raw data is not as useful (Rabbachin et al., 2011). IoT

devices on a wireless medium are greatly vulnerable to such attacks. MitM attack

(Conti et al., 2016) is one of the examples of an active attack, where the attacker acts

as a router and connects with both sender and destination nodes independently and

transfers information between them. The vital information is captured to analyze

further and modify.

2.8.2.3 Physical Layer Attacks

The main components of the physical layer are sensors, RFID tags, Wireless Sensor

Networks (WSNs), cameras, and so on. This layer of IoT suffers from a number of

security attacks and threats. There are some solutions available to those attacks. However,

implementing autonomic security solutions in the hardware at the physical layer is more

robust and faster. Complex schemes are usually more costly and should be avoided.

Lightweight approaches should be implemented in order to increase device lifetime and

reduce complexity. Attacks in the physical layer are described as follows.

• Tag Cloning: RFID tags can easily be cloned by an adversary. This attack can be

launched by attaining the required information by direct access to a device or using

reverse engineering (W. Zhang & Qu, 2013). The literature (F. Muhammad et al.,
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2015) presented a tag cloning attack where an RFID reader is unable to distinguish

between genuine and compromised tags.

• RF Jamming: Radio Frequency (RF) Jamming causes the sharing of wireless

bandwidth to be ineffectual for the underlying devices. There is a significant

threat level from Jamming based attacks in IoT because of the feature of remote,

unmonitored deployment of smart devices. It is a physical layer attack in which

RFs are interrupted for interference and saturated noise signals. A DoS attack can

result from RF signal Jamming of underlying channels. Proper monitoring of the

cognitive spectrum may prevent it (W. Liu et al., 2013; Salameh et al., 2018).

• Node Injection Attack: This attack is a variation of the MitM attack. It is one

of the most powerful attacks on the physical layer of IoT. The attacker injects or

deploys an additional node between two or more IoT nodes in the network topology.

The injected node takes part in communication and takes control of the traffic in the

network (Deogirikar & Vidhate, 2017).

• Tampering: This attack violates confidentiality and accessibility. In this type of

attack, the information of the end device is modified, added, or deleted by an attacker.

The attacker physically captures and compromises an end node from the network.

Thus, all information can be collected by the attacker. In addition, reprogramming,

redeployment and recovery of data from the field can be carried out by such an

attack. An attacker recovers the format and type of transmitted information, and

then tampers and regenerates the same type of data (Andrea et al., 2015; Pathak

et al., 2021). Therefore, the precision of data generated by the network becomes

remarkably doubtful.

• Physical Damage: An attacker physically damages IoT nodes by removing or

deactivating them. Hence, the service becomes unavailable (Deogirikar & Vidhate,
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2017). As a result, the necessity of mitigation methods for such an attack is significant

for IoT. Today, smart cities are packed with IoT elements such as sensors, cameras

and smart lights that can easily be damaged or stolen by adversaries. The adversary

tries to attack the interface of IoT nodes to shut down or physically damage them. A

multitude of these attacks will cause the network to fail (Andrea et al., 2015).

• Exhaustion Attack: Jamming or previously mentioned DoS attacks may result in

exhaustion attacks. Particularly, the battery-operated devices may suffer from energy

exhaustion if an attacker continuously attacks the network (Ashraf & Habaebi, 2015).

Repeated attempts of re-transmission may cause collisions in IoT MAC protocols,

which leads to high-energy exhaustion. Exhaustion is considered a high-impact DoS

attack and is linked to deactivating IoT devices in order to reduce the network size

and permanently remove the nodes from the network.

2.8.2.4 Multi-layer/dimensional Attacks

The following attacks may take place in different layers based on their architectures and

policies. These attacks are discussed below.

• Cryptanalysis Attack: The cryptanalyst or attacker, in this kind of attack, tries

to access an encrypted message without owning the encryption key (Andrea et al.,

2015). A Brute-force attack is one of the cryptanalysis attacks in which the attacker

systematically tries and guesses every possible passphrase or password combination.

The cryptanalyst eventually finds the correct one to gain access to the system. The

Known-plaintext attack, Ciphertext-only attack and Chosen-plaintext attack are some

of the other examples of cryptanalysis attacks (Andrea et al., 2015).

• Side-Channel Information Attacks: During the process of the encryption operation,

the attacker obtains information and performs a reverse-engineering process to gather
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the cryptographic credentials of an IoT device (Gnad et al., 2019; Sayakkara et

al., 2019). This information can be gained from the encryption devices, not from

plaintext or ciphertext during the encryption process. Timing attacks, power or fault

analysis and electromagnetic attacks are some of the instances of such attacks. The

adversary makes use of information leakages and recovers block cipher keys. The

Side-Channel attacks can be succeeded by directly defeating the intrusion prevention

system using Boolean Masking (Dubey et al., 2020).

• MitM attacks: The adversary sits between two IoT devices to monitor, control, and

get access to private information and interfere in communication between the two

IoT nodes (Agyemang et al., 2019). MitM attacks are the kind of attacks which

can be devastating to all the IoT layers. In this case, the cryptanalyst tries to sit

between two nodes to gain access to the ciphertext and break the encryption system

to find the encryption key. The cryptanalyst then obtains access to the plaintext and

possibly alters the message of those two parties without their consent.

• DoS/DDoS: Denial of Service (DoS) and Distributed DoS attacks may shut down

any IoT device, network or application and make service inaccessible to its users.

These attacks may occur in many forms. One way to attack is by generating huge

network traffic and broadcasting a tremendous request to the victim. The main

purpose of this attack is to make devices, software, network services, and resources

unavailable to the target consumers (F. Muhammad et al., 2015; W. Zhang & Qu,

2013). Additionally, the adversary may leak users’ sensitive information. The DDoS

attack is more dangerous than that of DoS attack, which combines several attacking

platforms to invade one or more systems. The impact of DoS attacks on IoT gateway

has been assessed in (Y. Lee et al., 2017). The authors developed a prototype using

wired and wireless interfaces to analyze the DoS attacks.

53

Univ
ers

iti 
Mala

ya



2.9 Current Security Solutions (Countermeasures) for Security Attacks of IoT

Using the conventional and existing security approaches directly in the resource-

constrained IoT devices is not straightforward. In short, the security approaches, models

and architectures of the conventional network are designed based on the users’ perspective,

which may not always be suitable for M2M communication. Each IoT layer comprises a

set of security protocols, techniques, algorithms, and security kits employed to make it

harder for an adversary to attack or hack into the system. A better understanding of these

notions will enable the researchers to analyze the security breaches and the level of defense

needed. In addition, IDS, Intrusion Prevention Systems (IPS), and other complete security

solutions can be applied to protect IoT from security threats.

The security threats, attacks and vulnerabilities may be similar for both conventional

Internet and IoT, but the solution techniques and approaches are different for each network

(Kortesniemi et al., 2019). This section brings the existing countermeasures, including

learning-based, encryption-based, autonomic, and other methods, together to secure IoT

systems from the application, network and physical layers. We present learning-based,

encryption-based and autonomic approaches and discuss their relevance for constrained

IoT.

2.9.1 Autonomic Approaches

Security approaches should be dynamic and with minimal human intervention. Although

different security attacks/issues may require different security solutions, however, some

researchers proposed self-secure/autonomic approaches. The term ‘autonomic’ refers

to ‘self-sufficient’ or ‘self-healing’, and ‘self-protection’ mechanism, which manages the

resources of the security system without user intervention (Ashraf & Habaebi, 2015;

Nasiri et al., 2019). Self-healing solutions use specific countermeasures after an attack

has been detected, and self-protection is used to prevent the attacks before they happen
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(J. Zhang et al., 2018). Self-protection refers to a system which is capable of identifying and

protecting itself from random attacks. The combination of a self-healing and self-protecting

mechanism is called a hybrid approach. This section presents and analyzes the possible

solution approaches that are classified based on different IoT architectures. Different

intrusion mitigation and detection approaches follow autonomous methods for securing

IoT.

An autonomic manager module is used in self-sufficient mechanisms, which manages

resource elements using a structural arrangement called MAPE (monitoring, analysis,

planning, and execution) control loop (Ashraf & Habaebi, 2015; J. Zhang et al., 2018).

Autonomic approaches are the most popular techniques for mitigating IoT attacks. The

basic working principle of MAPE architecture in an autonomic approach is as follows.

Sensors collect information from the external environment. This symbolizes the monitoring

segment of the MAPE architecture. This information is matched with recognized patterns

and acute values for certain parameters in the analyzing module. This helps the self-

regulatory body to analyze the operational state of the system in order to predict future

behavior (J. Zhang et al., 2018). The planning module is responsible for further planning

system goals and objectives on the basis of system constraints. Finally, the executing

module implements the plan (Jahan et al., 2020; J. Zhang et al., 2018). In the autonomic

approach, authentication and device identities are properly checked for self-protection.

Table 2.3 exhibits the up-to-date autonomic countermeasure approaches and summarises

each approach’s objectives, advantages and limitations.
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2.9.1.1 Countermeasures to Application Layer Attacks

In the MAPE architecture, viruses or malware patterns can be classified by analyzing

them, and then they can be mitigated by executing the mitigation service(s)(Canzanese et al.,

2013; J. Zhang et al., 2018). A constant vulnerability scan is one of the mitigation solutions

which applies risk mitigation services and malware pattern classification. The authors in

(Sharmeen et al., 2018) studied industrial mobile-IoT malware detection techniques and

analyzed them in terms of static, dynamic, and hybrid approaches. A hybrid approach is

proposed in (G. Kaur et al., 2015) for detecting Spyware using and comparing various

antivirus software. This technique is based on three parameters: description mapping,

interface analysis and source code analysis. These parameters determine the malicious

behavior of an application.

An autonomic solution is necessary to mitigate Spoofing attacks. A detection algorithm

called Enhanced Location Spoofing detection using Audibility (ELSA) was developed

for IoT (Koh et al., 2016). The implementation of the proposed algorithm can be at the

existing IoT backend server. The authors (Alnabulsi et al., 2018) proposed a tool called the

Gathering Multiple Signatures Approach (GMSA) to defend against code injection attacks

and showed an accuracy of 99.45% for the proposed algorithm. Interested readers also

can refer to the framework proposed by (T. K. George et al., 2018)and (T. K. George et

al., 2019) to detect such attacks. A model called differential-linear cryptanalysis has been

presented in (Rao & Premchand, 2018) to evaluate a combined Cryptanalysis attack. The

evaluation was performed on a complex cryptographic security system.

The authors (Stiawan et al., 2019) investigated the patterns of various Brute Force

attacks to help IoT researchers and administrators to further analyze the attack type. They

utilized a time-sensitive statistical relationship approach to identify the pattern and its

configuration. The various forms of Forging attacks and their design and implementation
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were presented in (J. Grover et al., 2013). They proposed an infrastructure supported

detection approach for detecting Forging attacks in vehicular networks. Intersection attacks

can be mitigated by using a self-protecting approach. K-anonymity technique was proposed

by (Sweeney, 2002) to mitigate intersection attacks. The authors (Wolinsky et al., 2013)

proposed a systematic design for resisting an intersection attack called Buddies in practical

anonymity systems. In this design, users are able to choose appropriate mitigation policies

for each pseudonym.

2.9.1.2 Countermeasures to Network Layer Attacks

The existing security solutions may not be suitable for IoT. The integration of autonomic

approaches may protect the IoT network efficiently. The authors (Mehmood et al.,

2018) proposed Naïve Bayes classification-based IDS by using multi-agents to detect

misbehaving traffic of the network nodes to detect DoS attacks. Flooding attacks can

be mitigated using an automatic self-protection mechanism by establishing connection

barriers (Ashraf & Habaebi, 2015). One way to mitigate the Hello Flood attack is by means

of a parameter, namely the link-layer metric, while selecting a default route (Wallgren

et al., 2013). The authors in (Yi et al., 2006) proposed a solution to recover exhausted

bandwidth automatically to save resources and defend against Flooding attacks. However,

due to continuous broadcasts of route requests by an intruder, the interference may not

be prevented by this solution. The authors in (V. P. Singh et al., 2010) presented a

fundamental solution for countermeasure, which is an acknowledgement-based system.

However, acknowledgement-based solutions require huge energy resources, which IoT

devices are not capable of supplying. A puzzle scheme in (Koh et al., 2013) was proposed

to mitigate this attack. This scheme and the use of the authentication mechanism can be

included in the autonomic solution to mitigate Hello Flood attacks.

An IDS scheme is known as a compression header analyzer intrusion detection system
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(CHA-IDS) is proposed in (Napiah et al., 2018), which analyzes compression header

information. This scheme is capable of eradicating both individual and combined routing

attacks in 6LoWPAN. Several countermeasures exist to mitigate Replay attacks, such as

TDMA-based approach (Campagnaro et al., 2020; Ghosal et al., 2012; Marigowda et al.,

2018). However, TDMA-based countermeasures are vulnerable due to several attempts of

re-transmission where the authorized node’s time slot is consumed, and the packet gets lost.

Other countermeasures are presented in (Manzo et al., 2005), where two separate methods

are explained for both single and multi-hop routing. Data encryption is also an effective

method against Replay attacks. The authors in (Mahalle et al., 2014) proposed a group

authentication called TCGA approach for IoT, which changes the session key dynamically

to confront the Replay attack.

Many self-healing approaches have been proposed for sinkhole attacks. A semi-auto

profiling RPL specification-based IDS was proposed by (Le et al., 2016) to protect from

sinkhole attacks. However, this system may fail to detect Sinkhole attacks due to the

centralization approach. This detection mechanism becomes non-functional if the IDS

agent shuts down because of such attacks or low power. The authors in (B. G. Choi et al.,

2009) proposed an IDS-based routing protocol using Link Quality Indication (LQI) and

managed to detect the Sinkhole attacks for the network layer. However, once the detection

occurs, such an autonomic system urges to take reactive action. Another IDS-based

detection of Sinkhole attacks on 6LoWPAN for IoT called INTI has been presented in

(Cervantes et al., 2015). This scheme analyzes the behavior of IoT devices by associating

reputation, watchdog and trust policies for detecting the adversary. A model (Al Hayajneh

et al., 2020) is proposed to mitigate MitM attacks for software-defined IoT networks. The

authors made use of a traffic separation mechanism using deep packet inspection. They

implemented the proposed model in Raspberry Pi. Combined with an intrusion detection
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technique, a hybrid routing protocol is designed and proposed in order to prevent MitM

attacks (J. J. Kang et al., 2019). The authors utilized a trusted third party to best deal with

the performance difference of the protocol across various networks.

Sybil attacks are better mitigated using hybrid approaches. A Local Sybil Resistance

(LSR) scheme has been presented in (X. Lin, 2013). It studied the accessibility of a

Roadside Unit (RSU) to detect and stand against Sybil attacks in vehicular networks. The

authors in (Zhou et al., 2011) aim to detect Sybil attacks on vehicular networks through

workload and passive overhearing by preserving privacy and minimal network delay and

overhead. A lightweight detection scheme mentioned in (Abbas et al., 2012), is able to

identify new Sybil attacks without any centralized third party or any additional hardware.

However, this scheme might not work well in all circumstances as the measures depend

on the Received Signal Strength Indicator (RSSI) values; however, a powerful attacker

may bypass the scheme. A comprehensive study of the behavior of a Sybil attack has been

presented in (Mishra et al., 2018), which may help to formulate an effective countermeasure

to defend IoT from such attacks. Authors defined the defense mechanisms as Behavior

Classification-Based Sybil Detection (BCSD), Mobile Sybil Detection (MSD), and Social

Graph-Based Sybil Detection (SGSD) (Y. Zhang & Pengfei, 2014) to defend against such

attacks in IoT.

Another network layer attack is called the Clone ID attack, that can be prevented by

using the instances’ tracking number of each node. A lightweight and efficient mobile

agent-based detection algorithm against the Clone ID attack is presented by (Sathish &

Kumar, 2013). A scheme presented in (Shila & Anjali, 2008) consists of detection and

localization phases to detect Selective Forwarding (SF) attacks. In this scheme, a packet

counter is used to monitor a sequence of control messages from the wireless link. A

method called SVELTE was proposed for mitigating SF attacks in 6LoWPAN-based IoT
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(Raza et al., 2013). The authors designed and implemented their IDS in the Contiki

operating system and evaluated using Cooja simulator. Game theory-based detection

model presented in (Khanam et al., 2012; Pathan et al., 2013) to model and detect SF

attacks for Wireless Mesh Networks (WMNs) efficiently. The authors in (Pandarinath,

2011) proposed a solution which allows breaking the data packets into a number of smaller

pieces. Those smaller packets transmitted through specific routes detect the presence of an

attacker. Some autonomic solutions such as message-based detection, redundancy and

probing can be used to protect IoT from SF attacks.

In (Chugh et al., 2012), the Blackhole attack was studied and tested on the 6LoWPAN

network. The simulation was done in ContikiRPL, using the Cooja simulator (Kugler

et al., 2013). IDS and autonomic solutions for detecting, preventing, and confronting

such attacks still require further research. An efficient sensor scheduling technique for

protecting wireless transmission against eavesdropping attacks for the smart industry has

been reported in (Zou & Wang, 2015). In this scheme, a node with the capacity of the

highest secrecy is scheduled in order to transmit data to its sink node.

2.9.1.3 Countermeasures to Physical Layer Attacks

The mitigation approaches to Jamming attacks usually fall under the self-healing

paradigm. The system executes a suitable mitigation method when a possible Jamming

attack is assumed. Inside the Jammer area, the hearing range of the wireless devices is

analyzed using the technique proposed by (Z. Liu et al., 2010). The cancellation and the

usage of different parts of the spectrum are introduced for neutralizing the Jammer signals,

whereas some attempt to estimate the position of the Jammer for further action (T. Kang et

al., 2013; Shoreh et al., 2014). Some of them have utilized autonomic computing (Ashraf

et al., 2016; Cai et al., 2013; Hussein et al., 2017) to detect Jammer’s location. Node

Injection is another vital attack in the physical layer. Monitoring and verification of device
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identity may prevent Node Injection attacks. A unified security solution that integrates

both self-protecting and self-healing methods are required to detect and mitigate this attack

appropriately (Nasiri et al., 2019). The authors in (Bu et al., 2015) proposed a deterministic

detection and presented three protocols, namely BASE, DeClone, and DeClone+, in order

to detect Tag Cloning attacks in large anonymous RFID systems.

Tampering attacks can be mitigated by implementing the MAPE framework. For instance,

nodes generate data packets which are monitored by the MAPE system periodically to

see whether the node has been compromised or not. Suspicious data generation can be

mitigated based on this data control method. For example, the system may remotely control

the node for deleting data in it (i.e., security patch). A Tamper Detection (TD) mechanism

has been proposed for IoT healthcare applications to deal with security violations (Elngar,

2018).

Physical damage to IoT nodes is considered a high-risk attack and cannot effectively

be protected using software methods. The software method may disable the remote kill

command, but physical damage of the device cannot be stopped (Ashraf & Habaebi, 2015).

The only way to protect the smart devices is to ensure physical security by surrounding

them with a protective case. The IoT devices should be monitored physically as these

attacks are more physical. Exhaustion in end nodes can be prevented and mitigated through

the use of timers, rate limitation and cross-layer designing cognitive adaptation (D. Feng et

al., 2012). The autonomic system decides on duty cycling and cognitive adaption, which

protects the availability and prolongs network lifetime (Ashraf & Habaebi, 2015).

2.9.2 Encryption-based Countermeasures

In this section, we discuss various existing symmetric and asymmetric cryptographic

countermeasures for securing IoT. Cryptography is the representation of standard math-

ematical methods to defend against cyber-security attacks against confidentiality, entity
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authentication, integrity and authentication (Jeba et al., 2011). The network of things is

composed of several constrained nodes that communicate with each other using IPv6-6BR.

Figure 2.6 depicts the basic symmetric and asymmetric encryption mechanisms.

Figure 2.6: Symmetric and asymmetric encryption mechanisms.

Table 2.4 summarizes some up-to-date encryption-based countermeasures for IoT.

The table analyzes and presents the techniques used in the schemes, their objectives,

advantages, limitations, and applied area. The following variations of encryption-based

countermeasures are applicable to different attacks of IoT architecture.

2.9.2.1 Countermeasures using Symmetric Key Cryptography

Symmetric Key Cryptography is also known as secret-key encryption, where the

sender and receiver share a single key for both encryption and decryption. Some of

them are Advanced Encryption Standard (AES), Data Encryption Standard (DES), 3DES,

International Data Encryption Algorithm (IDEA), Tiny Encryption Algorithm (TEA),

Twofish, RC6 and Blowfish (Chandra et al., 2014; Chaudhari & Patel, 2014; Eisenbarth et

al., 2007).

Various symmetric encryption distributions are available for IoT, like Probabilistic Key

Distribution where a shared symmetric key or bytes are selected randomly from a secured

key pool and flashed at a constrained IoT device (Abualghanam et al., 2019). For instance,
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the authors (K. Muhammad et al., 2018a) proposed a fast probabilistic, lightweight and

robust, encryption algorithm suitable for IoT systems. The scheme encrypts the visual

contents using image encryption prior to transmission. The algorithm is capable of

producing a number of ciphered images with limited processing and memory requirements

and ensures a high level of security. In Deterministic Key Distribution, a key pool is created,

and the keys are distributed homogeneously in such a way that a common key is utilized for

every two nodes to guarantee secure connectivity (Banupriya et al., 2021). An intelligent

deterministic approach is proposed for secure device-to-device (D2D) communication for

delay-sensitive IoT user equipment (Nauman et al., 2019).

Next, other types of key distributions are also available for IoT. For instance, in Offline

Key Distribution, where either each node shares one key in the same network or two nodes

share a network key pairwise depending on the utilized protocol. This scheme is also

known as an offline key distribution (Meshram et al., 2019). There are several existing

approaches based on the offline key distributed mechanism available that may be applicable

in the context of IoT. Few such schemes, namely SPIN, BROSK and SNAKE (Lai et al.,

2002) generate session keys without the necessity of a key server. A master secret key is

shared among all nodes in the same network in these schemes. In the SNAKE scheme, two

random nonces are hashed to obtain the secret key. The communicating nodes generate

random nonce using a pre-shared key. In BROSK approach, the session key is constructed

from a broadcasted nonce in the network.

Furthermore, a standard IPsec is implemented into IP-based WSNs using 6LoWPAN in

(Raza et al., 2011). In this work, the authors proposed a header compression mechanism to

support both the Authentication Header (AH) and Encapsulation Security Payload (ESP)

header. However, one drawback of offline key distribution schemes is, that they do not

support the re-keying services. The Protocol for Carrying for Network Access (PANA) has
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been proposed as a key distribution solution for IoT based on an external assisted server

(Forsberg et al., 2008). Pre-shared key distribution is one of the authentication methods

supported by Extensible Authentication Protocol (EAP) and PANA, and it uses EAP and

runs over UDP. An improved version of PANA is proposed by (Kanda & Chasko, 2012),

which can be adopted by resource-constrained IoT. In this work, the authors have removed

unnecessary PANA header fields and minimized the number of cryptographic primitives.

However, it may reduce the code size for implementation, but it might not be suitable for

IoT in terms of response time or energy consumption.

Another type of symmetric encryption is known as Server-Based Key Distribution

(K. T. Nguyen et al., 2015). In such schemes, two or more nodes and one or more trusted

and powerful servers engage in message exchanges. The server acts as a Key Distribution

Centre (KDC). Many sessions can be created during the communication process and

each session can be secured through the forward secrecy technique (Q. Feng et al., 2018).

Forward secrecy is an encryption technique for safeguarding communications conducted

over the Internet. This method prevents an adversary from accessing past data from a set

of transmission sessions. In forward secrecy, the key use in one session has no relation to

the key use for another session.

A lightweight encryption algorithm has been proposed for IoT by (Baskar et al., 2016),

which uses a chaos map-based key applied in the Field-Programmable Gate Array (FPGA).

The scheme uses 1550 logic gates and 128 bits of key size and achieves 200 kbps of

maximum throughput. In (Du et al., 2006), a scheme which depends on the deployment

knowledge is provided. This scheme gets rid of excessive key assignments. A mitigation

technique (Gnad et al., 2019) was proposed for side-channel attacks called leaky noise.

The authors carried out a leakage assessment and characterized noise using statistical

methods for IoT devices. They provided key recovery using the AES method. However,
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the method is not robust in terms of mitigating the attacks. Authors in (Ito et al., 2007)

proposed a solution in which they mapped the keys on two-dimensional states. The authors

added a probability density function to it in order to offer better key connectivity.

The authors in (Hussen et al., 2013) proposed a Secure Authentication and Key

Establishment Scheme (SAKES) for IP-based M2M communication between an external

internet host and a sensor node. In this scheme, an authentication module is deployed in

unconstrained 6LBR to create trust relationships between the IoT nodes, 6LBR and remote

Internet server. Diffie-Hellman (DH) (Rescorla, 1999) key agreement is then applied with

the distant server, and the session key (SK) is calculated for the IoT device. Finally, using

the SK, which the sensor node received from PBS, it can communicate securely with the

server placed remotely.
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2.9.2.2 Countermeasures using Asymmetric Key Cryptography

Asymmetric Key Cryptography (AKC) is a well-known approach to forming an efficient

and secure communication among nodes and is also known as Public-Key Cryptography

(PKC) (Du et al., 2005). In the AKC, the sender encrypts a message using the recipient’s

public key. The receiver decrypts the message by using his private key. Various asymmetric

algorithms have been developed and implemented in IoT (Shah et al., 2020), such as

Rivest–Shamir–Adleman (RSA), DH, Elliptic-Curve Cryptography (ECC), and Pretty

Good Privacy (PGP) (N. Ahmed & Khan, 2021; AlMajed & AlMogren, 2020; R. Cheng et

al., 2021; Kavin & Ganapathy, 2020; M. A. Khan et al., 2020; C.-K. Wu, 2021). AKC

is also used to create Message Digest-5 (MD5) and Digital Signature Algorithms (DSA)

(Chandra et al., 2014; Karim et al., 2021; S. Xiao et al., 2021). The major drawbacks of

AKCs application for IoT are higher energy consumption and computation and operating

costs. Regardless of those drawbacks, researchers still pursue applying AKCs in the IoT

environment (K. T. Nguyen et al., 2015). It is because AKCs are a very powerful tool to

secure communication over the Internet.

Furthermore, in AKC, if a public key or private key is used to encrypt a message, the

same algorithm and the matching private key or public key can only be able to decrypt

that message (Bala & Kumar, 2015). There are many variations of AKC algorithms.

Key Transport Based Scheme is similar to the conventional key transport scheme that

emphasizes the secure transmission of information using the public key. In order to

establish safe and secure communication between two nodes in IoT, a Certificate-Based

Encryption algorithm is the best choice. Each node in IoT maintains a certificate signed by

a well-known and trusted third party (i.e., a CA). In fact, the CA guarantees the trustable

relationship between the nodes (K. T. Nguyen et al., 2015).

Identity-Based Encryption (IBE) allows an arbitrary string to be the public key such as
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a receiver’s email address. In IBE, a Public Key Generator (PKG) generates the private key

from its public key of each node. Attribute-Based Encryption (ABE) (Oualha & Nguyen,

2016) has changed the traditional concept of public-key cryptography relatively recently.

It is the extension of the IBE scheme. Key Agreement Based Scheme is another technique

based on asymmetric primitives and key agreement protocols by sharing the secret key

among two or more parties in IoT.

Likewise, NtruEncrypt (Gaubatz et al., 2005) and Rabin’s approach (Rabin, 1979) are

examples of Raw Public Key (RPK) encryption methods that have been proposed for

WSNs. Rabin’s approach is similar to the conventional RSA algorithm. This scheme

consumes the same energy for decrypting messages like that of the RSA algorithm with the

same level of security. As one squaring is needed for encrypting a message, this encryption

scheme is much faster. Lattice-based cryptosystems, namely NtruEncrypt algorithms are

proposed for IoT (Hoffstein et al., 2009; Seyhan et al., 2021). The schemes is suitable and

efficient for highly resource-limited things such as RFID tags and smartcards. With the

inspiration from (Boneh & Franklin, 2001), the authors (L. Yang et al., 2013)proposed

the IBAKA approach using pairing-based cryptography, which is mainly a combination

of the IBE-ECDH scheme. However, in order to establish a session key, the IBE scheme

is tailored into an Elliptic Curve Diffie-Hellman exchange (ECDH) (De Meulenaer et al.,

2008) key exchange.

Lightweight encryption for smart home, namely LES (Al Salami et al., 2016), was

proposed for home applications and the scheme consists of two sub-algorithms, called

“KEYEncrypt” for session key encryption and “DATAEncrypt” for encrypting data. The

scheme achieves confidentiality, adaptability and reduces overhead costs. Other type of

AKC approach is known as Attribute-Based Encryption (ABE) (Ali et al., 2020; La Manna

et al., 2021; J. Li et al., 2020; L. Li et al., 2020). The feasibility of implementing ABE in

69

Univ
ers

iti 
Mala

ya



IoT is still under investigation. A CP-ABE based lightweight ABE security approach is

proposed in (Oualha & Nguyen, 2016). Again, a lightweight with a no-pairing method

using the ECC scheme for IoT has been presented in (Yao et al., 2015). This is an efficient

scheme for broadcasting encryption and access control based on the ciphertext.

Lately, another lightweight scheme was proposed in (Y. Yang, Zheng, & Tang, 2017),

which aids distributed access control of Protected Health Information (PHI) among different

healthcare applications by providing an efficient keyword search. Major heavy calculations

are performed by a semi-trusted computation center in the data encryption phase. The

security of this scheme is based on Elliptic Curve Decisional Diffie–Hellman (ECDDH)

technique. An efficient Host Identity Protocol (HIP) based lightweight encryption has

been proposed to ensure end-to-end security for IoT (Sahraoui & Bilami, 2015). It is

a 6LoWPAN header compression of HIP packets. This scheme significantly reduces

communication overhead, energy, and memory consumption.

2.9.2.3 Countermeasures using Hybrid Key Cryptography

Symmetric and asymmetric ciphers are combined to form a cryptographic technique

called Hybrid Key Cryptography (HKC). Hybrid schemes utilize the benefits of the

strengths of both approaches (Yehia et al., 2015). A great number of researches have shown

that the combination of symmetric and asymmetric cryptography utilizes the strengths of

both schemes and makes it suitable for IoT networks (Kavitha & Caroline, 2015; Mushtaq

et al., 2017; Xin, 2015; Y. Zhang & Pengfei, 2014). However, more research works are

still needed to improve hybrid security schemes to be a more lightweight and a stronger

solution at the same time. Existing hybrid schemes are advantageous for large hierarchical

networks, which can utilize the benefits of both public and secret key schemes.

There are numerous versions of hybrid cryptography available for resource-limited

devices and networks. An Efficient and Hybrid Key Management (EHKM) (Y. Zhang &
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Pengfei, 2014) is a hybrid scheme which is mainly designed for heterogeneous WSNs. The

lightweight public key encryption method, ECC is placed at cluster heads and BSs, while

adjacent nodes in the same cluster use a one-way hash function based symmetric encryption

method. A hybrid lightweight encryption algorithm for IoT called LEA-IoT has been

proposed in (Habib et al., 2018). This hybrid algorithm utilizes asymmetric encryption

based on a linear block cipher and symmetric encryption based on a conventional private

key and achieves data security. Key generation time and data encryption-decryption time

were calculated as the lowest. This scheme achieved low-latency communication.

Secure IoT (SIT) utilizes symmetric key encryption of 64-bit block cipher with 64-bits

key size and had five rounds. It is a lightweight hybrid solution based on Feistel and

Substitution-Permutation (SP) networks (Usman et al., 2017). Some researchers proposed

the Compressive Sensing (CS) technique to provide signal compression to make the scheme

lightweight and encryption simultaneously. For instance, a Lightweight Secure Scheme

(LSS) is proposed by (Aziz & Singh, 2019) to secure IoT networks from Chosen Plaintext

Attack (CPA) and to prolong the network lifetime. LSS consists of three stages; key

generation stage where BS and IoT nodes generate random numbers, key exchange stage

where BS and nodes exchange the number in a secure way, and compression/encryption

stage to generate secret compressed samples in order to mitigate CPA.

2.9.3 Learning-Based Countermeasures

Learning-based algorithms are based on Artificial Intelligence (AI) that allow systems

to predict the future events without requiring explicit programming. The historical data of

a particular application is used as input for predicting future behavior of that application.

Learning-based algorithms are capable of solving real-time problems that lead to maximize

the efficiency of a system (Adnan et al., 2021; Lansky et al., 2021). Learning-based

approaches have been extensively used in almost all areas, including intrusion detection

71

Univ
ers

iti 
Mala

ya



because of their distinctive nature of resolving real-time problems. ML/DL methods

mainly learn from existing data and predict the future behavior of a system. The DL

approach is a specific type of ML algorithm. It can improve system performance by

classifying normal or abnormal behavior of a system. ML algorithms require explicit

feature engineering processes to prepare the dataset for training the model. In contrast, DL

approaches are capable of extracting features during model training. The performance

of such learning-based models could be evaluated in terms of classification accuracy.

There are three categories of a learning algorithm in practice, such as supervised, semi-

supervised, and unsupervised learning (E. Gyamfi & Jurcut, 2022). Supervised learning

approaches use labelled input data to train the learning models. In contrast, unsupervised

learning approaches learn from an unlabelled dataset and extracts useful information.

The semi-supervised learning approach is a combination of supervised and unsupervised

methods which make use of both labeled data and unlabeled data (E. Gyamfi & Jurcut,

2022; Lansky et al., 2021).

Since learning-based approaches learn from historical data, hence, datasets are essential

part while designing an IDS model. Datasets contain network traffic of normal and

abnormal observations of a particular application. The innovative learning-based detective

and predictive algorithms make a well-designed dataset an inevitable part of learning

models for IoT applications and networks. These datasets are commonly the IoT network

packets retrieved from network flows, logs and sessions. Collecting and preparing well

defined datasets for IoT intrusion detection can be intricate, time consuming and costly

(E. Gyamfi & Jurcut, 2022; Lansky et al., 2021).

The intrusion detection of leaning-based models is usually in two phases, the training

and detection phase. In the training phase, the model learns the distribution of features,

while in the detection phase, the abnormalities are detected using the learned features
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(Dua et al., 2019; Janarthanan & Zargari, 2017; Soe et al., 2019). Features are important

information for classification and can be extracted from raw data. The features in intrusion

dataset determine the effectiveness of a learning-based IDS, and they contain dependents

and independent variables. The dependent variable is the class labels, which are the

attack categories in the intrusion dataset. Normally, the class labels in network traffic are

imbalanced, which also plays a vital role in the performance of learning-based algorithms.

Sometimes the data contain insignificant and redundant features. Hence, it is necessary

to select important features and reduce the feature set. This could lead to improvement

of intrusion detection performance of learning-based IDS and result in making the IDS

to be of lightweight to fit for resource-constrained devices. The major benefits of feature

reduction have been stated in (Manikandan & Abirami, 2018) as follows. A feature

reduction method:

1. Meets the storage requirements of resource-constrained devices

2. Increases the speed of the learning algorithm.

3. Gets rid of noisy and redundant features.

4. Speeds up data analysis.

5. Improves data quality.

6. Increases model performance.

7. Optimizes resources such as memory and energy during detecting intrusion.

The three most used feature reduction/selection techniques are Genetic Algorithm (GA),

Principle Component Analysis (PCA) and Information Gain (IG). Other methods include

embedded, wrapper and filter approach. Among them, the filter method better optimizes

the selection process and is more suitable for a high-dimensional dataset.

Meanwhile, various learning-based techniques are available for detecting intrusions in

73

Univ
ers

iti 
Mala

ya



IoT, such as Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM),

Artificial Neural Networks (ANN), Deep Neural Network (DNN), Recurrent Neural

Network (RNN), Deep Eigenspace Learning (DEL), Deep Belief Network (DBN), Auto-

Encoder (AE), Principle Component Analysis (PCA) and Convolutional Neural Networks

(CNN) (Ahmad et al., 2021; Alsoufi et al., 2021; Thakkar & Lohiya, 2021) etc. A lot

of studies are conducted on ML and DL for IoT security. Interested readers can refer to

the literature (Aldweesh et al., 2020) for working principles and applicability of various

ML/DL methods in IoT security. In this section, we are focusing on analyzing and reporting

some advanced countermeasures approaches for IoT security based on learning algorithms.

Table 2.5 presents some state-of-the-art learning-based security countermeasures for IoT in

different layers. The table summarizes the objectives, advantages, performance accuracy,

dataset used, and limitations of each learning-based security measure.
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2.9.3.1 Countermeasures to Application Layer Attacks:

A linear SVM algorithm is proposed (Ham et al., 2014) to detect malware in Android.

They analyzed the detection accuracy of SVM with other machine-learning algorithms in

terms of malware detection accuracy and showed that the proposed approach outperforms

other algorithms. A novel distributed deep learning method was proposed to detect

attacks in fog-to-things computing (Abeshu & Chilamkurti, 2018). The results prove that

deep-learning models are better than shallow models in terms of detection accuracy, false

alarm rate, and scalability. The authors (Fang et al., 2020) proposed a method with a

combination of the Elman Neural Network and the SVM algorithm. They introduced Back

Propagation Through Time (BPTT) algorithm to transform the processing of the network

at various times into a forward network.

Besides, the authors (Aminanto et al., 2017) presented a three-layer architecture to

detect impersonation attacks using the AWID dataset. First, the feature extraction is

performed using stacked sparse AE, and feature selection is made using SVM, DT, and

ANN algorithms. Finally, normal or abnormal traffic is classified using the ANN algorithm.

The experimental results showed that the SVM had better detection accuracy; however, it

took the longest training time.

2.9.3.2 Countermeasure to Network Layer Attacks

A Deep Belief Network (DBN) approach based on a Deep Neural Network (DNN) has

been proposed by (Thamilarasu & Chawla, 2019) to detect network attacks. They created

a dataset using the Cooja simulator, which is trained to detect sinkhole attacks, DDoS,

Blackhole, and Wormhole attacks. Their deep-learning model utilized supervised training

and binary classification for identifying abnormal activities. The proposed intrusion

detection system can detect real-world intrusions effectively. They achieved an average

precision rate of 95% and a recall rate of 97% for different attack scenarios.
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Next, an Optimum-Path Forest (OPF) based on the ML method using graph theory has

been proposed to detect suspicious nodes of SF, sinkhole, and wormhole attacks (Bostani

& Sheikhan, 2017). In this method, specification and anomaly-based agents were assigned

in the router and root nodes, respectively, to analyze the behavior of the host node and

incoming data packets. They achieved a detection accuracy of 96.02%. In (Vinayakumar

et al., 2019), a Scale-Hybrid-IDS-AlertNet based on the MLP-DNN model was compared

with various existing datasets. The hybrid alert technique applied a highly scalable DL

architecture to analyze the network and host-level activities. The proposed framework

provides better accuracy than traditional machine learning classifiers.

Furthermore, a simple DL algorithm was deployed to train the IRAD dataset, which

was created using Cooja simulator to detect Version Number, Blackhole, and Hello Flood

attacks (Yavuz et al., 2018). After pre-processing, the datasets were labelled and mixed

with attack and benign data. These datasets were then fed to a deep learning algorithm.

The model achieved very high training accuracy of up to 99.5% and F1-scores up to 99%.

The authors (Aminanto et al., 2017) presented a three-layer architecture to detect

impersonation attacks using the AWID dataset. First, the feature extraction is carried

out using stacked sparse AE, and feature selection is made using SVM, DT, and ANN

algorithm. Finally, the normal or abnormal traffic is classified using the ANN algorithm.

The experiment results showed that the SVM had better accuracy; however, it took the

longest training time. Next, the authors used the same dataset to benchmark their detection

results with (N. Gao et al., 2014) and the hybrid method (Jiao et al., 2015). Their

experiments provided a high accuracy of 97.9% compared with (Jiao et al., 2015)and

(N. Gao et al., 2014), which had an accuracy rate of 93.94% and 92.1%, respectively.
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2.9.3.3 Countermeasures to Physical Layer Attacks

Q-learning and Dyna-Q-based on Reinforcement Learning (RL) are applied to detect

physical-layer spoofing (L. Xiao et al., 2016). Moreover, this method is based on interactions

between a receiver and Spoofers as a zero-sum spoofing detection game. Simulation

results show that the spoofing detection is robust against environmental changes. Again,

the authors (Erpek et al., 2018; Shi et al., 2018) initiated a Jamming attack using a deep

neural network and proposed mitigation methods for this type of attack. However, this

protection system does not adapt the information of the Jammer and permits the transmitter

to regulate its protection level on the fly based on its attained throughput.

Likewise, dynamic watermarking (Ferdowsi & Saad, 2018a, 2018b) is an algorithm that

is capable of detecting and preventing cyber-physical attacks such as Code Injection and

Eavesdropping. In addition, the method is based on the Long Short-Term Memory (LSTM)

framework that allows IoT devices to extract a set of stochastic properties from their

produced signals and dynamically watermarks these features into the signal. Interestingly,

this algorithm enables the IoT gateway to authenticate the reliability of the signals effectively.

However, authentication requires high computational resources.

A scheme based on channel-based machine learning was proposed (Chen et al., 2020) to

detect both Clone and Sybil attacks. Simulations and experiments have been carried out in

real environments. Certainly, both results confirm that the accuracy rate of authentication

of the method achieves 84% without requiring manual labeling. The authors (Sayakkara

et al., 2019) recently proposed a learning-based algorithm to detect side-channel attacks

and showed 82% and 90% detection accuracy on high-end and low-end IoT devices,

respectively.
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2.10 Limitations Associated with Present Security Solutions

Undoubtedly, this chapter has addressed the key security issues, presented existing

advanced countermeasures, and emphasized the areas that require further research. The

following subsections provide an analytical discussion, suggest the appropriate security

schemes for IoT, and propose future research directions for the researchers.

2.10.1 Existing Security Approaches

Several learning-based, autonomous, symmetric, asymmetric security schemes or

mechanisms are mentioned above. However, not all of them are suitable for IoT. This section

analyzes and discusses the advantages and trade-offs among existing countermeasures.

• Autonomic Approaches: The autonomic approaches have the advantages of an

automatic architecture where different modules accomplish different tasks to detect

and mitigate attacks. It is encouraged to design security solutions where human

physical intervention requirement is low instead of relying on a complete autonomic

solution.

Moreover, integration between software and network virtualization helps to achieve

the CIA triad with self-healing and self-protecting capacity in the IoT environment

(Nasiri et al., 2019). Some autonomic systems demand complex cognitive structures

to provide a self-repair mechanism. However, due to the resource limitation, it is

encouraged to design a lightweight and energy-efficient autonomic system for the IoT.

Furthermore, IoT devices transfer data to other devices or a central location; therefore,

autonomic security solutions should be compatible with dynamic communication

protocols and heterogeneous environments.

Indeed, designing autonomic security without considering the complexity level

is a roadblock to evaluating and implementing them in the IoT system. Existing
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self-securing standards require a constant power supply to keep them operational.

An intelligent power monitor and control system is necessary to keep the autonomic

system running without energy exhaustion.

However, developing a fully automated security solution remains a shared vision

among researchers. Contemporary researchers are still working towards designing a

complete, portable, and robust self-securing system. Currently, a fully autonomic

solution does not exist, and such an anticipated solution remains under continuous

research consideration. Therefore, there is a need for more research in this vital field

in order to develop a holistic, dynamic, and robust autonomic security solution for

current and future IoT architecture.

Encryption Algorithms: Whenever asymmetric cryptography is used, the light-duty

nodes will experience performance inefficiency. On the other hand, the heavy-duty

nodes will lose the opportunity for better security implementation using symmetric

cryptography. In order to resolve this dilemma, a security system should be able

to adapt automatically to the cryptographic capabilities (Holzer & de Meer, 2011).

Generating suitable small keys is challenging using public-key cryptography. The

existing cryptosystems are designed to provide security for a specific security goal.

However, achieving all the security goals at the time using conventional encryption-

based countermeasure may not be possible. Therefore, research work has been

initiated to discover quantum cryptography. Indeed, quantum cryptography is still in

its infancy stage. Designing and developing such cryptosystems should consider the

compatibility issue that might arise with the diverse IoT technology and protocols.

The main criteria for evaluating IoT key management schemes include computational,

communicational, energy and storage complexity; connectivity; scalability, and

security resilience. These measures are usually used to validate the effectiveness of
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security schemes. Communication capacity refers to the number and size of packets

transmitted and received by IoT nodes. Connectivity refers to the probability of

connection for a pair of nodes with the same pre-distributed key or sets up a key

path among them. The applied key scheme must be scalable so that the network

supports adding or removing IoT nodes anytime. Finally, resilience refers to the

probability of an attacker compromising a link or whole network depending on the

number of nodes captured by an attacker.

The above are important factors in evaluating the performance of the cryptographic

schemes (J. Zhang & Varadharajan, 2010). Due to less computational complexity,

the symmetric-key techniques are commonly used as they are appropriate for

the resource-limited characteristics of the IoT networks. However, the efficient

symmetric key cryptography shortages for IoT are also obvious. Moreover, there is

still some weakness in the existing approaches, such as security resilience, connection

probability, and scalability.

Learning-Based Countermeasures: The efficiency of learning-based approaches

depends on attack detection accuracy, true and false-positive rates, F1-score, and

some other performance metrics. These metrics tell how efficiently a model can

detect an intrusion. True and false positive rates represent the rate of intrusions

identified as true intrusions or normal traffics identified as intrusions by the model,

respectively. F1-score is also a critical accuracy measure of a learning model

on an intrusion dataset (E. Gyamfi & Jurcut, 2022; Lansky et al., 2021). The

training time of the model also plays a vital role in the selection of the model.

There are trade-offs among ML/DL-based algorithms. Deep learning algorithms

can be trained on devices with relatively high processing and memory capabilities

because they require large datasets, and the structure of neural networks are complex.
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Conventional machine learning algorithms, on the other hand, can be trained on

devices with somewhat lower processor and memory properties.

Notwithstanding, in terms of performance, the DL approaches provide higher

accuracy and reliability compared to ML algorithms. Due to their superiority in

terms of accuracy when trained with enormous amounts of data, DL algorithms

are becoming increasingly popular. Deep learning can extract useful information

from structured and unstructured data more efficiently than machine learning. Some

learning algorithms are less computationally costly; some are complex in terms of

their structures. For example, a Decision Tree algorithm can be constructed with

only a few or several trees for either simple or complex classification. Naive Bayes

classifiers are incapable of finding relationships among features to be learned from.

Consequently, they classify the intrusions inaccurately. RNN algorithms suffer from

vanishing gradients.

Meanwhile, some learning-based algorithms (e.g., CNN and SVM) are capable of

breaking cryptographic implementations (Y. Yu et al., 2021). Further research is

required to investigate these algorithms in terms of their purposes and performances.

The structure of DL algorithms is more complex than that of ML algorithms and

requires a larger dataset to be trained. DL methods’ training time and computational

complexity depend on how complex the structure is. Various tools and inbuilt

libraries are available such as Keras, Tensorflow, and so on, to automate the training

process. Ensemble-based and stack-based DL algorithms are computationally

costly. The deployment of these methods may create bottlenecks during real-time

implementation. Therefore, designing and developing a learning-based algorithm

must be considered when adapting it to real implementation.

Additionally, learning-based methods depend on the existing data or information
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from where the models learn and classify the incoming traffic as normal or abnormal.

These datasets can be either smaller or larger. However, finding a real-world

IoT-dedicated dataset to train learning-based algorithms is challenging. Machine

learning algorithms require smaller datasets to train the model compared to deep

learning algorithms. Finding publicly available intrusion detection datasets is

another challenge, as very few datasets are available on public platforms.

Moreover, ML and DL algorithms may produce a higher false-positive rate if the

dataset used in training is not realistic. Therefore, high-quality real-world and

comprehensive IoT training datasets are required to train these methods. However,

generating a high-quality training dataset remains challenging for contemporary

scholars in IoT-related academic investigations.

2.10.2 Data Imbalanced Problem

Recent advancements in deep learning have helped to establish intrusion detection

systems as an essential part of IoT applications. Despite the success of these learning models

in solving intrusion detection in real-world applications, learning from an imbalanced

dataset is still challenging. Most learning models suffer from low detection accuracy due

to the highly skewed class distributions where there are only a few intrusion samples for

specific classes in collected network traffic. Due to this, the rare instances, unknown and

low-frequency attacks aren’t easily detected, and hence, it becomes a challenging task for

standard intrusion detection techniques to attain high accuracy in detecting the minority

class attacks. Different approaches to tackling data imbalance problems can be grouped into

three main categories: data-driven, algorithm-based and hybrid approaches. Among them,

the data-driven models now offer promising performance. The application to conventional

ML/DL algorithms fails to provide efficient performance. Indeed, when data samples

are limited to a certain class, the intrusion detection models tend to be biased towards
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the majority class. This results in increasing the probability of misclassification of the

low-frequency attacks. In the context of IoT applications, this bias in classification models

leads to the majority of unknown intrusions remaining unnoticed, and this significantly

impacts the standard IoT services. The impact of not detecting the attacks is much more

detrimental to the quality of service than misclassifying the attacks.

2.10.3 Lightweight Solutions

As mentioned in earlier sections, IoT devices are often deployed in remote areas

and might be unattended, which may result in physical layer attacks in particular. The

sensor-equipped connected things are often battery operated, embedded with small memory

chips, and limited computation and communication capabilities. Therefore, there exists a

roadblock in implementing complex and robust security protocols. Designing a lightweight

solution with all security features is also a challenge. The communication may take place

via popular wireless technologies, which are easier to compromise and vulnerable to

interference and interception attacks. DoS attack may result in a single point of failure

and severe service unavailability due to centralized communication. Finally, providing a

complete self-securing and autonomic security architecture is necessary, but it is incredibly

challenging to implement because of the IoT features like resource-limited characteristics.

2.11 Related Work on Intrusion Detection

In recent years, the use of the machine and deep learning algorithms to identify

different types of network intrusion has become the prime research interest. Despite

the promising outcomes that can be achieved by both ML and DL approaches, the DL

algorithms outperform the shallow ML method due to their ability to automatic and

high-level feature extraction. The DL algorithms are capable of performing complex

intrusion detection tasks. Therefore, intrusion detection using deep learning techniques
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has attained widespread research attention among researchers in recent days. Neither

ML/DL methods nor cryptography is an individual algorithm, as they do not follow a

single specified process to perform an intrusion analysis. Specifically, the learning-based

approach is a family of techniques. ML/DL approaches learn from real network traffic and

find the attack patterns using the learned model. The learning-based techniques are to be

explored, evaluated, and compared in this research. Hence, this section provides some

state-of-the-art related works based on learning algorithms and identifies the research gap

for us to address in the next chapter.

A lot of solutions have been proposed for providing innovative and efficient intrusion

detection for IoT. Some of them utilized different conventional machine learning algorithms,

whereas others proposed deep learning methods. The authors (Shone et al., 2018) proposed

an AutoEncoder-based deep intrusion detection model named Stacked Non-symmetric

Deep AutoEncoders (S-NDAE). Their model consists of two main parts: 1) S-NDAE is

used for feature extraction, and 2) trained S-NDAE and Random Forest (RF) are used for

intrusion classification. The proposed S-NDAE experimented on NSL-KDD and KDD

Cup’99 datasets. The model showed promising intrusion detection rates and achieved as

high as 85.42% accuracy.

Ma et al. in (T. Ma et al., 2016) proposed a hybrid IDS called Spectral Clustering Deep

Neural Network (SCDNN). SCDNN uses Spectral Clustering (SC) to cluster the training

and testing dataset into multiple subsets to train and evaluate the train SCDNN model.

Authors (Alrawashdeh & Purdy, 2016) utilized the Restricted Boltzmann Machine (RBM)

algorithm to detect DoS, U2R, and probing attacks. They used an RBM method for feature

learning and then forwarded the weighted result to next RBM layer to form a Deep Belief

Network (DBN). Finally, multi-class intrusion detection was performed with a softmax

activation function.
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Lopez-martin et al. (Lopez-Martin et al., 2017) reported an intrusion detection approach

using Conditional VAE called ID-CVAE. The proposed ID-CVAE is an encoder-decoder

network and is based on unsupervised learning. ID-CVAE achieves 80.10% intrusion

detection accuracy on the NSL-KDD dataset. Although the model performs well in

intrusion detection, it is not suitable for resource-constrained IoT devices as the model

performs high level feature reconstruction. This makes the model computationally costly

and heavy for a low-memory device. Yin et al. in (Yin et al., 2017) proposed an

RNN-based intrusion detection model called RNN-IDS. They experimented with different

hyper-parameters such as learning rates and the number of hidden nodes to obtain optimal

training time and detection accuracy. The model was evaluated using KDDTest+ and

KDDTest-21 datasets (Tavallaee et al., 2009b) and obtained 83.28% and 68.55% accuracy,

respectively.

Li et al. (Z. Li et al., 2019) experimented on a different number of hidden layers on Long

Short-Term Memory (LSTM and) Gated Recurrent Unit (GRU) based deep RNNs approach.

The model consists of an extended learning system to perform intrusion classification.

The experiments on two benchmark datasets, namely NSL-KDD and BGP, showed the

significance of hidden layers in detection accuracy for the proposed neural network. The

model obtained significant detection accuracy and F1-score. Despite the promising overall

detection accuracy, the proposed model is heavyweight and complex. The proposed

model is memory and CPU inefficient for IoT edge devices. The authors, Vinayakumar

et al. (Vinayakumar et al., 2019) proposed a scale-hybrid-IDS-AlertNet (SHIA) model

based on deep neural networks to monitor network traffic. The proposed system can

identify the malicious events for both network and host levels to further alert network

administrators. SHIA model evaluated on multiple intrusion datasets and performed better

than state-of-the-art machine learning models.
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Most network traffic in a real environment is uneven, meaning the attack traffic is

considerably lower compared to normal network traffic. This leads to a class imbalance

problem which degrades classification accuracy and escalates the FPR of the learning

model (Abdulhammed et al., 2018; Vu et al., 2017; Zuech et al., 2021). Some recent

research has focused on addressing the data imbalance problem to improve detection

accuracy. Many oversampling methods exist, such as ROS (Hayaty et al., 2020), SMOTE

(Chawla et al., 2002), ADASYN (H. He et al., 2008), GAN (Alotaibi, 2020; Creswell et al.,

2018; Goodfellow et al., 2020), AE (Albahar & Binsawad, 2020; Shone et al., 2018) to

solve data/class imbalance problem.

The authors (X. Xu et al., 2020) proposed a deep learning-based intrusion detection

model called Log-cosh Conditional Variational AutoEncoder (LCVAE). The model is

capable of capturing the complex distribution of original input and generating new samples

for specific classes. They utilized the log hyperbolic cosine (log-cosh) loss function in

the proposed model. The authors utilized on Convolutional Neural Network (CNN) for

intrusion detection. The results show that the proposed model outperforms several state-of-

the-art intrusion detection methods. However, the working principle of the log-cosh loss

function is similar to mean squared error, which does not strongly affect the occasional

wildly wrong prediction. The intrusion detection by the proposed LCVAE model lacks

minority attack class detect on rates, and the overall detection rates can further be improved.

The authors (Y. Yang et al., 2019) explored the significance of CVAE to augment data

and solve data imbalanced issues in order to improve intrusion classification. An improved

CVAE (ICVAE) is used to augment new data samples, and DNN is utilized for classifying

intrusion in the system. The ICVAE-DNN model outperforms in detecting minority attack

categories. However, they may neglect the cost sensitivity of imbalance intrusion data to

generate high-quality synthetic data. The traditional Cross-entropy (CE) loss in ICVAE
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may not be able to optimize the latent distribution and may lead to degrading the quality of

decoded samples. Therefore, the generated data deviate from observed data, leading the

classifier to perform poorly in terms of detecting minority class attacks. For instance, the

proposed model obtains only 11.00% and 44.41% of U2R and R2L minority class attack

detection rates, respectively.

Although the aforementioned intrusion detection approaches, including data generation

methods, succeeded with satisfactory performance, they yet suffer from inferior detection

rates, high FPR, and low detection performance of low-frequent, minority, and unknown

attack classes. Apart from the minority attack class detection rates, most of the approaches

mentioned above did not consider the resource-constrained nature of IoT devices. The

proposed models lack lightweight evaluation.

To overcome the data imbalance issues and build a suitable lightweight classification

model for IoT, this work proposes a novel intrusion detection Framework, called CFLVAE-

LDNN. The CFLVAE-LDNN framework inherits the strengths of VAE and utilizes

improved Class-wise Focal Loss (CFL) as an objective function instead of the traditional

CE to train the CFLVAE model. CFLVAE-LDNN framework consists of two models and

phases: 1) CFLVAE model is trained to generate realistic synthetic data, and 2) Lightweight

Deep Neural Network (LDNN) classification model is developed to classify the attack

categories. The motive is to improve the intrusion detection accuracy for minority class

attacks and make the classification model lightweight and suitable for resource-constrained

IoT.

2.12 Chapter Summary

This chapter studied and presented an overview of IoT and its enabling technologies

and compared the factors related to implementing a comprehensive security approach in

IoT with the traditional Internet. A focus has been given on security attacks based on
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IoT architecture. Attack taxonomy and comparisons have been provided. It is crucial to

consider IoT architecture, its limitations, and diversity when providing comprehensive

protection. Furthermore, the chapter discussed the different factors related to the capacity

and limitations of IoT in the design of security solutions. In this regard, the chapter

considered the need for IoT security, including the conventional Confidentiality, Integrity,

and Availability (CIA) triad.

Unlike other studies, this research aggregated and discussed various advanced security

countermeasures, including cryptography, autonomic, and learning-based schemes ensuring

secure IoT communication. In contrast, the existing reviews considered only certain types

of countermeasures. This review study in this chapter will serve as a useful manual for

researchers to access a wide range of security attacks and solutions that may be of benefit

to them. Finally, we discussed existing security approaches and their implementation

challenges and provided future research directions. For example, although many researchers

have proposed lightweight IoT schemes, more research in this field is needed to design

holistic, unified, and well-suited security countermeasures for the IoT as a whole.

This chapter also reported how this research derived the research gap by studying a range

of the existing literature. This research will provide an in-depth analysis and demonstrate

how the data imbalance problem in network traffic affects the performance of learning

algorithms in the subsequent chapters.
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CHAPTER 3: METHODOLOGY

This chapter proposes a novel intrusion detection framework called CFLVAE-LDNN.

The CFLVAE stands for Class-wise Focal Loss Variational Autoencoder, which inherits

the strengths of Variational AutoEncoder (VAE) and utilizes improved Focal Loss as an

objective function instead of the traditional reconstruction loss (CE). Class-wise FL (CFL)

is used to train the VAE model by focusing on the minority class and adjusting weights for

each class sample individually.

This chapter reports the finding of a suitable dataset, data preprocessing steps, devel-

opment of the data generation model and proposing an intrusion detection model. First,

a data generation model is developed and trained to balance the intrusion dataset. The

proposed data generation technique generates realistic synthetic data for the classifier to

provide high detection accuracy. Then, lightweight intrusion detection model is developed

to classify and detect intrusion in IoT.

Section 3.1 provides the research process where a summary of the proposed research

phases are described. Then, research design and development with its derivative equations

are elaborated in section 3.2, followed by the intrusion detection model is proposed and

detailed in section 3.3. Finally, section 3.4 summarizes this chapter.

3.1 Research Process

The processes involved in this research in three main phases are described as follows:

Phase one: Problem Definition

In this phase, an extensive studies of the existing research efforts on the problem domain

were studied. Security attacks, vulnerabilities and their current countermeasures are

studied, analyzed and reported in chapter two.

Phase two: Research Design ad Development
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This phase involves developing a security attack model for IoT in the field of study. This

phase involved defining CFLVAE-LDNN framework, which consists of four (4) stages:

1) develop and train CFLVAE, 2) data collection and preprocessing, 3) generate realistic

synthetic data from trained CFLVAE and balance the training dataset, 4) develop and

evaluate lightweight DNN classifier to classify the attack categories. Research design and

development are explained in the current chapter.

Phase three: Experimentation, Evaluation and Reporting

This phase involves experimentation and evaluation. The experimentation and im-

plementation details are elaborated on and reported in chapter four. The evaluation

performance of the proposed CFLVAE-LDNN model is reported, and comparative studies

with the state-of-the-art techniques are reported and shown in chapter five. The evaluation

is made in terms of accuracy, precision, recall, F1-score, FPR, class-wise detection rate,

AUC_ROC measure, CPU time, memory and energy consumption. The following tools

and methods will be used to validate our research results:

• Dataset: Many recent studies relied on the well-known NSL-KDD dataset to validate

the proposed CFLVAE-LDNN framework. NSL-KDD is a highly imbalanced

network intrusion dataset.

• Environment: This study utilized Python programming language using Keras

framework and Tensorflow in the backend. The implementation is done in a Goggle

Colaboratory environment in 12GB of RAM. The lightweight DNN classification

model is evaluated using the Keras library.

91

Univ
ers

iti 
Mala

ya



Figure 3.1: Research process.

3.2 Research Design and Development

The proposed CFLVAE-LDNN framework inherits the property of VAE for data

generation. However, the VAE is improved by adding CFL as an objective function. The

CFL objective function assigns different weight properties to the different target class,

leading to generate high quality, diverse and realistic data for minority class attacks. The

following sections explain the VAE and how the proposed CFL is incorporated with VAE.

3.2.1 AutoEncoder (AE) and Variational AutoEncoder (VAE)

AutoEncoder (AE) is an artificial neural network that learns how to compress and

encode data effectively before learning how to reconstruct data as near to the original

input data as feasible (Tschannen et al., 2018). AutoEncoders are used to generate new

data samples from existing samples. AutoEncoder (AE) is a type of unsupervised deep

learning feature extraction or data generative algorithm, which works by learning best

parameters, encoding or compressing input data, utilizing an activation function and finally

decompressing/decoding the data back (Shone et al., 2018; Tschannen et al., 2018). The

architecture is based on the encoder-latent space-decoder paradigm, which is conventionally
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used for dimensionality reduction. The latent space is a fixed vector or data point with a

compressed lower dimension (Dong et al., 2018). AE and its variations have been used

as a new content generator and a hot research topic for solving data imbalance problems.

However, there is no effective way to generate new samples from it as the latent core of AE

is not regularized enough.

VAE is a variation of AutoEncoder, which can also generate synthetic data, however,

from a probability distribution instead of a fixed data point (Shone et al., 2018). A VAE is

different from AE in the sense that the VAE infers the input data samples have some form of

latent probability distribution, and then it aims to uncover the properties of the distribution.

In other words, VAE learns the input’s probability distribution, while autoencoders map

each data source directly to a value. A VAE architecture consists of an probabilistic

encoder 𝑄𝜙 (𝑍 |𝑋) with the learnable parameter 𝜙, a latent space 𝑍 and a probabilistic

decoder 𝑃𝜃 (𝑋 |𝑍) with the learnable parameter 𝜃 (Kingma & Welling, 2013; Y. Yang et al.,

2019).

The architecture is based on the encoder-latent space-decoder paradigm. The latent

space of VAE is a distribution with mean and variance. Figure 3.2. depicts the VAE

architecture with traditional cross-entropy (CE) loss function. In VAE, the encoder

transforms the input data to a lower dimension with a probability distribution.
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Figure 3.2: Variational AutoEncoder with CE loss.

The working principle of VAE is shown in detail in figure 3.2. Input 𝑋 has a distribution,

and the encoder tends to produce latent code that looks as if they were sampled from

Gaussian distribution (N(0, 𝐼)) with a mean (𝜇) and variance (𝜎). That is, the encoding

process of input 𝑋 takes place through the encoder in the means of forward-propagation.

After encoding, we get the latent space 𝑍 which is Gaussian distribution with the property

of mean (𝜇) and variance (𝜎). The 𝑍 is then passed to the decoder for decoding it to

reconstruct the original dimension �̄� . During training, the sum of loss (CE + KLD) is

backpropagated in order to reduce the total loss through several iterations.

For the latent space 𝑍 to have a meaningful abstract property to reconstruct the observed

data, the distribution is regularized, and VAE learns variational inference during the

training. The encoder network’s weight parameter 𝜙 is learned to encode the input

samples to produce encoded feature representation 𝑍 . In contrast, the decoder network’s

weight parameter 𝜃 is trained to reproduce new samples by mapping the encoded space 𝑍 .

However, during the training process, some information is lost and not recovered while

decoding. The main goal is to obtain the best encoder-decoder pair that ensures maximum

information gain during encoding and has minimum reconstruction error during decoding.
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VAE model is widely used to generate data by passing sampled 𝑍 to the decoder. During

the forward propagation, the reconstruction error (e.g., CE loss) and Kullback–Leibler

(KL) divergence loss, 𝐷𝐾𝐿 [𝑄(𝑍 |𝑋) | |𝑃(𝑍)] is computed, and the network back-propagates

the computed error value.

Hence, the lower bound loss function of VAE is expressed as the equation below

(Doersch, 2016; Kingma & Welling, 2013; Y. Yang et al., 2019):

L𝑣𝑎𝑒 (𝜙, 𝜃,X) = E[log P(X|Z)] − D𝐾𝐿 [Q(Z|X) | |P(Z)] (3.1)

where, E[logP(X|Z)] is the reconstruction loss which is traditionally CE loss used in

VAE. Hence, the variation lower bound of VAE can be re-written as:

L𝑣𝑎𝑒 (𝜙, 𝜃, X) = − log (p𝑡) − D𝐾𝐿 [Q(Z|X) | |P(Z)] (3.2)

The first part, (− log (p𝑡)) is the CE loss and the second part is the KL divergence loss.

The CE loss is further elaborated on in the next section.

3.2.2 Proposed Class-wise Focal Loss Variational AutoEncoder (CFLVAE)

As mentioned in section 3.2.1, the VAE is used to sample data points from a probability

distribution, which matches the prior distribution 𝑃(𝑋), where 𝑋 is a random variable of

input data. VAE aims to reconstruct the input data with minimum reconstruction error and

reduce the log-likelihood probability of 𝑃(𝑋). The improved version of VAE is known as

CVAE. The only difference between VAE and CVAE is that in CVAE, the class label 𝑦

(shown in figure 3.3) is added to train the model for encoding to get the latent space 𝑍 for

the particular class.
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Figure 3.3: Conditional Variational AutoEncoder with CE loss.

The encoder of CVAE can then be expressed as 𝑄𝜙 (𝑍 |𝑋, 𝑦) and decoder as 𝑃𝜃 (𝑋 |𝑍)

(Kingma et al., 2014; Sohn et al., 2015; Y. Yang et al., 2019). During training, the network

learns to encode the best latent distribution 𝑍 for a specific class label 𝑦. The latent vector

𝑍 is then passed to the decoder to reconstruct a new attack vector 𝑋 for class label 𝑦. The

loss function of CVAE is computed using the following equation (Kingma et al., 2014;

Y. Yang et al., 2019):

L𝑐𝑣𝑎𝑒 (𝜙, 𝜃, X, y) = − log(𝑝𝑡) − D𝐾𝐿 [Q(Z|X, y) | |P(Z| X)] (3.3)

where, L𝑐𝑣𝑎𝑒 (𝜙, 𝜃,X, y) is the variation lower bound of CVAE. The first term is called

reconstruction loss log(𝑋 |𝑍, 𝑦), which is the typical cross-entropy loss (X. Li et al.,

2019) that makes the decoder network learn to recreate back the input data. The second

item is known as Kullback–Leibler divergence, 𝐷𝐾𝐿 [𝑄(𝑍 |𝑋, 𝑦) | |𝑃(𝑍 |𝑋). It lowers the

distance between encoder 𝑄𝜙 (𝑍 |𝑋) and the prior 𝑃(𝑍) distribution. In other words, 𝐷𝐾𝐿

encourages the learned distribution 𝑄𝜙 (𝑍 |𝑋) to be as close to the prior distribution 𝑃(𝑍).

Therefore, the objective of CVAE is to escalate the probability of data reconstruction

log 𝑃𝜃 (𝑋 |𝑍, 𝑦) and reduce the difference between the prior and posterior distribution. The
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cross-entropy (CE) loss (X. Li et al., 2019) is defined as follows:

𝐶𝐸 (p,y) =


− log (p), if y=1

− log (1 − p), otherwise

(3.4)

Modifying by refactoring the above CE loss function in simplistic terms, we get p𝑡 :

p𝑡 =


−p, y=1

−(1 − p), otherwise

(3.5)

Finally, the CE loss is therefore expressed as follows by putting eq. 3.5 into eq. 3.4:

𝐶𝐸 (p𝑡) = − log(p𝑡) (3.6)

While using CE as reconstruction loss, the majority attack class in an imbalanced dataset

dominates the loss and governs the gradient. Hence, the reconstruction of low-frequency

attack class samples differ significantly from the original samples. Consequently, this may

result in degrading the quality of generated samples. The generated data combined with

the original data is used to train ML/DL classifiers. When the generated data deviates from

the original data, these classifiers cannot identify a particular sample belonging to which

class. As a result, the learning-based classifier performs poorly in detecting low-frequency

attacks.

This research utilized Class-wise Focal Loss CFL to train the VAE in a supervised

manner which we termed CFLVAE. To better apprehend the representation and the property

in the observed intrusion data and its minority class, this chapter designs a novel objective

function called the CFL function for the proposed VAE generative model. In other words,

we aim to reconstruct data for a specific minority class and hence, the VAE model is trained
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by adding sample data with the class label 𝑦 using Class-wise Focal Loss. In our proposed

model, we passed class label 𝑦 to both the encoder and decoder. Thus the model encoder

of CFLVAE can then be expressed as 𝑄𝜙 (𝑍 |𝑋, 𝑦) and decoder as 𝑃𝜃 (𝑋 |𝑍, 𝑦).

The architecture and working principle of the proposed CFLVAE is shown in figure

3.4 in detail. Input 𝑋 has a distribution, and the encoder tends to produce latent code that

looks as if they were sampled from Gaussian distribution (N(0, 𝐼)) with a mean (𝜇) and

variance (𝜎). That is, the encoding process of input 𝑋 for a particular class label 𝑦 takes

place through the encoder in the means of forward propagation. After encoding, we get the

latent space 𝑍 for each class label 𝑦, which is Gaussian distribution with the property of

mean (𝜇) and variance (𝜎). The 𝑍 is concatenated with class label 𝑦 and then passed to the

decoder for decoding it to reconstruct the original dimension �̄� for individual class label 𝑦.

During training, the sum of loss (CFL + KLD) is backpropagated in order to reduce the

total loss through several iterations. This process minimizes the loss, and minority attack

samples are learned effectively.

As mentioned above, the traditional CE loss in CVAE may not be able to optimize

the latent distribution. By using CE as reconstruction loss, the majority class in an

imbalanced dataset dominates the loss and governs the gradient. On the other hand,

the CFL loss function focuses on the minority class and adjusts weights for each class

sample individually, which allows VAE to generate realistic and diverse data to solve data

imbalance problems for intrusion detection.

98

Univ
ers

iti 
Mala

ya



Figure 3.4: Proposed Class-wise Focal Loss Variational AutoEncoder (CFLVAE).

We added a modulating factor (1 − p𝑡)𝛾 with tune-able parameter 𝛾 to overcome the

issues with CE loss, which is called FL loss (T.-Y. Lin et al., 2017). (1 − p𝑡) is used to

consider the hard/misclassified and easy/true negative samples. When 𝑝𝑡 is small, (1 − p𝑡)

is close to 1 and the loss is unaffected. As 𝑝𝑡 → 1, (1 − p𝑡) goes to 0 and the loss for

well-classified examples is down-weighted. Formally, the mathematical expression of FL

(T.-Y. Lin et al., 2017) is as follows:

FL(p𝑡) = −𝛼𝑡 (1 − p𝑡)𝛾 log (p𝑡) (3.7)

where, 𝛼𝑡 term is added to handle the class imbalance problem where,

𝛼𝑡 =


−𝛼 𝑖 𝑓 y = 1

−(1 − 𝛼) otherwise

(3.8)

𝛼𝑡 is a weighted term whose value is −(𝛼) for positive class and −(1 − 𝛼) for negative

class. The term 𝛼 balances the significance of majority/minority examples.

We set different values of 𝛾 > 0 for different classes depending on their imbalance

nature to minimize the relative errors for minority classes by paying more attention to
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them. The hyper-parameter 𝛾 regulates the nature of the loss curve. A larger value of 𝛾

leads to a lower loss for minority class samples. We considered several values of 𝛾𝜖 [0, 10],

as shown in chapter 4, table 4.1, along with other implementation details. The focusing

parameter 𝛾 smoothly adjusts the rate at which easy examples are down-weighted.

The idea behind the FL loss is to minimize error input from well-recognized examples

and maximize the error value for the examples which accept a low loss. Hence, the final

CFL loss equation of our proposed CFLVAE model is formulated as below:

L𝑐 𝑓 𝑙𝑣𝑎𝑒 (𝜙, 𝜃,X, y) = −𝛼𝑡 (1 − p𝑡)𝛾 log (p𝑡) − D𝐾𝐿 [Q(Z|X, y) | |P(Z| y)] (3.9)

The first term is the CFL loss (−𝛼𝑡 (1 − 𝑝𝑡)𝛾 log (𝑝𝑡)), which is the reconstruction loss

of our proposed CFLVAE.

It is worth mentioning that the effectiveness of Focal Loss has been applied and tested

for object detection and computer vision in an imbalanced dataset and attained incredible

performance (T.-Y. Lin et al., 2017). The authors implemented FL for imbalance object

detection and showed the superiority to CE loss. FL loss is used for cost-sensitive learning

to stabilize cross-entropy loss, so rare examples are learned efficiently. Figure 3.5. depicts

the comparison between CE and FL loss taken from (T.-Y. Lin et al., 2017). However, the

usefulness of FL is not restricted to only computer vision; it is also applied to intrusion

detection for imbalanced data issues (Z. Cheng & Chai, 2020).
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Figure 3.5: Focal Loss vs Cross Entropy loss (T.-Y. Lin et al., 2017).

3.3 Proposed Intrusion Detection Model

The architecture of the proposed CFLVAE-LDNN framework is presented in figure 3.6.

The CFLVAE-LDNN framework is mainly comprised of four stages:

• Data preparation: Firstly, discrete features are converted to numeric values.

Secondly, the features with mostly zeros are eliminated and then, data are normalized

between 0 and 1. Finally, feature space is reduced using Mutual Information (MI)

technique.

• Training CFLVAE: Class-wise FL is added to VAE for cost-sensitive learning to

better model the minority class intrusion data. The model is trained to learn a better

representation of minority class samples.

• Data generation: Generating realistic and diverse synthetic samples for specified

minority classes using trained CFLVAE and balancing the dataset.

• Intrusion detection: Using the balanced dataset generated from the CFLVAE to

train the Lightweight DNN (LDNN) classifier to classify the intrusions.

All these four stages are detailed in the following sections.
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Figure 3.6: Proposed CFLVAE-LDNN framework.

3.3.1 Data Preparation

Data preparation is required for the learning model to be trained efficiently. As shown

in figure 3.6, the first stage of CFLVAE-LDNN framework is to prepare the imbalanced

data. The dataset is preprocessed using the following steps using Algorithm 1.

Algorithm 1 Data Preparation
Input: Imbalanced raw dataset
Output: Preprocessed dataset

1 Function:
2 Numeration← One-Hot-Encoding to convert data
3 Feature filtering← filters out features with 90% of zeros
4 Normalization← perform min-max normalization
5 Feature reduction←MI technique to select the best features
6 Return scaled dataset with important features
7 End of the function

• Feature numeration: One-Hot encoding (Al-Shehari & Alsowail, 2021; Cassel

& Lima, 2006; L. Yu et al., 2022) is one of the most simple, effective and widely

used techniques to convert categorical or discrete features to numerical features. It

transforms the categorical values to binary vectors with 0s and 1s. 1 corresponds

to the existence of a particular categorical value. In the NSL-KDD dataset, there
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are three discrete features such as protocol type, service, and flag. We utilized the

strength of One-Hot encoding to convert all discrete values to numeric values.

• Feature filtering: We eliminated all irrelevant features. The ratio of zeros is

computed for each numerical feature, and the features with more than 90% of zero

value are removed. The first stage in figure 3.6 depicts the percentage of zeros of

each feature in the NSL-KDD dataset, which has been eliminated.

• Data normalization: It is important to scale the values to a certain range for the

deep learning models to be trained efficiently. NSL-KDD datasets include values

with dynamic range. In the linear conversion of the original input, all feature values

are scaled to the range [0 – 1] using min-max normalization (Patro & Sahu, 2015)

as the following equation:

𝑥
′
=

𝑥 − 𝑚𝑖𝑛(𝑥)
𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥) (3.10)

where, 𝑥 ′ is the normalized value, and 𝑥 is the original value of a dataset.

• Dimensionality reduction: Reduction of feature dimension not only simplifies the

model but also makes the model lightweight in terms of size, memory and energy

consumption during intrusion detection. Additionally, it may help to find the most

important features which contribute the most to intrusion detection. Moreover, it

minimizes the training time of the model. Feature reduction is made by selecting a

subset of the most important features from a large set of related features.

In this research, a filer method has been used in ranking features according to

their level of relevance via several criteria, such as the value of information and

correlation. Furthermore, due to the low space and complexity reduction of an IoT

device, a common feature selection approach called Mutual Information (MI) has

been utilized for feature/dimensionality reduction on the basis of the information
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value. According to the authors (Beraha et al., 2019; Dhindsa et al., 2021), The MI

between two random variables, X and Y, can be defined as:

𝑀𝐼 (𝑋;𝑌 ) = 𝐻 (𝑋) − 𝐻 (𝑋 |𝑌 ) (3.11)

where, 𝑀𝐼 (𝑋;𝑌 ) is the mutual information value for variable 𝑋 and𝑌 , 𝐻 (𝑋) denotes

the entropy for variable 𝑋 , and 𝐻 (𝑋 |𝑌 ) represents the conditional entropy for 𝑋

given 𝑌 . The output is denoted as the units of bits. MI is an estimation of mutual

dependency between two random variables. As such, the measure is symmetrical,

meaning that 𝑀𝐼 (𝑋;𝑌 ) = 𝑀𝐼 (𝑌 ; 𝑋). The final 87 features are selected to train both

CFLVAE and LDNN networks.

3.3.2 Training CFLVAE

The second stage of the CFLVAE-LDNN framework is to train the CFLVAE model for

data generation. The dataset is processed and transformed into 87-dimensional features in

section 3.3.1. The converted dataset is used to train the CFLVAE model. The architecture

of CFLVAE consists of an encoder and a decoder, as shown in figure 3.5. For the encoder

𝑄𝜙 (𝑍 |𝑋, 𝑦) and decoder as 𝑃𝜃 (𝑋 |𝑍, 𝑦) we use a multivariate Gaussian distribution. The

training of the CFLVAE model consists of the following processes. Firstly, the encoder

is trained to obtain the best distribution of latent code 𝑍 . The encoding process of input

𝑋 for particular class label 𝑦 takes place through the encoder in the means of forward

propagation. After encoding, we get the latent space 𝑍 for each class label 𝑦, which is

Gaussian distribution with the property of mean (𝜇) and variance (𝜎). Secondly, the

𝑍 is concatenated with class label 𝑦 and then passed to the decoder for decoding it to

reconstruct the original dimension �̄� for individual class labels 𝑦. The decoder is trained

to recreate the data sample from learned latent distribution 𝑍 . The main objective is to
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train the proposed CFLVAE to reduce the divergence between the reconstructed sample

𝑋 and the observed sample 𝑋 , that is, to decrease the 𝐷𝐾𝐿 loss to recreate data from

the Gaussian prior 𝑃(𝑍) and to reduce the CFL loss by learning weights for each class.

In other words, the sum of loss (CFL + KLD) is backpropagated in order to reduce the

total loss through several iterations. Through this training process, the minority class

samples are trained efficiently. In addition, the CFLVAE measures the disparity between

the reconstructed samples and the observed sample during the encoding and decoding

processes. This leads the CFLVAE to generate high-quality, realistic and diverse data

samples for minority classes in the data generation phase.

The training procedure is done in a number of mini-batches and epochs in order for

the weight parameters 𝜙 and 𝜃 of the CFLVAE networks to be converged effectively.

This research utilized rectified linear unit 6 (ReLU6) (H. Kim et al., 2021; Yarotsky,

2017) as an activation function and Adam optimizer (Kingma & Ba, 2014) to train the

CFLVAE generation model. ReLU6 is an improved version of the ReLU function where

the maximum size of activation output is limited to 6. This increases robustness when

used with low-precision computation. Adam optimizer manually changes the learning rate

for each network weight.

3.3.3 Data Generation

After completing the training of the CFLVAE model, the third stage is to generate the

new attack samples in order to balance the intrusion dataset. This research made use of

a random sampling method to sample data points from the trained CFLVAE. The target

minority class label 𝑦 is concatenated with data points from 𝑍 from the trained encoder

and fed into the decoder network. In other words, after training the CFLVAE with CFL

loss, we pass the encoded 𝑍 distribution to the decoder along with its respective class level

𝑦 to generate the desired number of synthetic attack samples. In the encoder network,
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standard normal distribution 𝑄𝜙 (𝑍 |𝑋, 𝑦) is used to obtain latent space 𝑍 . A point from 𝑍

is then passed to the decoder 𝑃𝜃 (𝑋 |𝑍, 𝑦), added with standard normal distributionN(0, 𝐼)

for respective minority class label 𝑦 to generate a new training attack sample (𝑥, �̂�), that is,

the generated attack sample corresponds to specific attack class 𝑦.

Algorithm 2 CFLVAE for generating synthetic data samples
Input: Imbalanced training dataset 𝑋𝑡𝑟𝑎𝑖𝑛 = 𝑥1, 𝑥2, . . . ..𝑥𝑛, hidden layer ℎ =

ℎ1, ℎ2. . . ., ℎ𝑚, weight matrix W, latent variable Z, learning rate lr, training
epochs ep, batch size m, hyper-parameters 𝛼 and 𝛾, class label 𝑦.

Output: Balanced dataset �̂�
1 init: 𝑊𝑖 𝑗 , 𝑏𝑖, for 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛.
2 init: define CFLVAE network architecture
3 Train CFLVAE with Gaussian normal distribution:
4 Repeat
5 for training epochs ep = 1, 2, . . . , 𝑇
6 for divisible batches 𝑚 = 0, 1, . . . . . . ., 𝑘 − 1
7 Calculate L𝑐 𝑓 𝑙𝑣𝑎𝑒 (𝜙, 𝜃, 𝑋, 𝑦) according to eq. (3.9).
8 Optimize CFLVAE by back-propagating L𝑐 𝑓 𝑙𝑣𝑎𝑒 (𝜙, 𝜃, 𝑋, 𝑦)
9 according to eq. (3.9) and update weights of the CFLVAE network.

10 end
11 end
12 Return converged L𝑐 𝑓 𝑙𝑣𝑎𝑒 (𝜙, 𝜃, 𝑋, 𝑦) of eq. (3.9).
13 Generate new intrusion sample (𝑥, �̂�)𝜖𝑋 from trained CFLVAE.
14 Merge generated data with original imbalance data to obtain final balanced training

dataset �̂� .

3.3.4 Lightweight DNN for Intrusion Detection

The fourth or final stage of our proposed CFLVAE-LDNN framework to detecting

intrusions using the balanced dataset generated from the previous stage. This work proposes

a Lightweight Deep Neural Network (LDNN) model as a classifier with a customized

architecture for intrusion detection, as shown in figure 3.6, stage four. LDNN is a neural

network model comprised of one input, one output and several hidden layers (Aleesa et al.,

2021). Our proposed LDNN model is a fully connected feedforward neural network. Apart

from the input and output layers, the LDNN architecture initially consists of six hidden

layers. We utilized ReLU6 (H. Kim et al., 2021; Yarotsky, 2017) as the activation function

of all hidden layers and softmax for the output layer. Figure 3.7 is the elaboration of figure
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3.6, stage four, which depicts the LDNN model and its steps in intrusion detection. The

first step is to define the model, find the best architecture of the model and train it using the

balanced train dataset. In the second step, we compress the network and train again for a

few epochs. Then network compression technique is elaborated in section 3.3.4.2. The

third and final step is to classify the attacks by feeding the test data into the trained LDNN

model.

Figure 3.7: Proposed LDNN Model.

As the input dimension of LDNN classifier classifier is the same as the CFLVAE

networks, our LDNN model is expected to perform well. The LDNN classifier is able

to extract the most relevant attributes automatically. The classifier’s weight initialization

is done in the same way as CFLVAE networks. The generated minority class samples

merged with observed samples are fed into LDNN to train the classifier. However, in

order to achieve a lightweight model suitable for IoT in addition to obtaining an optimal

intrusion detection performance, finding suitable parameters is necessary when modelling

the LDNN classifier (Bisong, 2019; Harrington, 2012). The proposed architecture of our

LDNN classification model is formulated as below:

Input layer: The input layer is the first layer of the LDNN model, which takes a number

of features of the dataset.
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Fully connected hidden layer: The full connectivity of all units in the preceding layer

to all units of the succeeding layer is referred to as a fully connected layer. Extraction of

high features is achievable using a fully connected layer which leads the classifier to output

higher detection performance. In order to achieve a lightweight model suitable for IoT

and obtain an outstanding intrusion detection performance, we have experimented with

several hidden layers in search of an optimal architecture. The activation function used is

the ReLU6 for fully connected hidden layers.

Batch normalization and regularization: This experiment employs dropout probability

with a 0.01 value and batch normalization for the fully connected layers to obviate over-

fitting and to ensure a speedup training process of the model (T. Kim, 2021). Since the

proposed LDNN is a relatively small network, 10% dropout is used as is a weight constraint

on the hidden layers to regularize and approximate the neural network (T. Kim, 2021).

Classification (output) layer: The last layer is fully connected, and it outputs the

classification of multi-class attacks by making use of the softmax activation function.

Cost function: The most frequently implemented loss function for multi-class clas-

sification task is the categorical cross-entropy (𝐶𝐸𝑐) loss function (Jayasinghe et al.,

2021; Koidl, 2013). For our LDNN classifier, the 𝐶𝐸𝑐 loss function is defined as follows

(Jayasinghe et al., 2021; Koidl, 2013):

𝐶𝐸𝑐 =

𝑛∑︁
i
𝑦i. log 𝑦i (3.12)

where, �̂� is the predicted class label.

The proposed LDNN classifier is elaborated in Algorithm 3.
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Algorithm 3 LDNN Classifier
Input: Balanced train dataset �̂� , learning rate lr, training epochs ep, batch size m, test

dataset
Output: Classification results

1 split balanced data set into train and validation sets
2 init: 𝑊𝑖 𝑗 , 𝑏𝑖, for 𝑖 = 1, . . . ., m, 𝑗 = 1, . . . , 𝑛
3 init: define LDNN network architecture
4 Repeat
5 for training epochs ep = 1, 2, . . . , T
6 for divisible batches m = 0, 1,. . . . . . . , k -1
7 Train LDNN network
8 Calculate loss according to Eq. (3.12)
9 Optimize LDNN network by back-propagating the according to Eq. (3.12)

10 Validate LDNN using validation dataset 𝑋𝑣𝑎𝑙𝑖𝑑
11 end
12 end
13 until Eq. (3.12) gains convergence
14 Input test data to trained LDNN model to evaluate the model performance
15 Return classification report

3.3.4.1 Finding Best LDNN Architecture

The aim is to find an optimal classifier for efficient memory, energy and testing time

in order to maintain the lightweight criteria. Our LDNN classifier contains one input,

one output, and several hidden layers. They are fully connected layers, which is a

hyperparameter. This research implemented different network architecture by changing the

number of hidden layers from six (6) layers to one (1). The optimal network architecture

is essential to achieve the optimal detection accuracy and fit the model into resource-

constrained IoT devices. The selected model should be as light as possible, taking a

low detection time, energy, and memory efficiency simultaneously. In addition it should

provide an optimal detection accuracy.

3.3.4.2 Network Compression to Reduce Complexity

The IoT device is energy, memory and processor constrained. However, the DNN model

is significantly large to fit into IoT devices. Therefore deploying and running this large

model in an IoT device may not be suitable. Hence, the model needs to be optimized to
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reduce the model size. Once the model size is minimized, it fits the requirements of limited

resources of IoT devices, and the inference becomes much faster (Lei et al., 2020). This

section proposes a network compression technique for deploying the detection model on

IoT devices. Several ways of neural network compression are available, such as Network

Pruning and Network Quantization (Gholami et al., 2021; Liang et al., 2021). Pruning and

Quantization are network conversion/compression techniques that minimize model size

and improve CPU and hardware accelerator latency. Thus, the model becomes lightweight

in terms of size, memory, and CPU consumption in order for the model to be deployed

in resource-constrained devices (Chung et al., 2020; Shang et al., 2020; Sudharsan et al.,

2020).

Network pruning is an essential network compression method utilize for memory and

bandwidth reduction (S. Gao et al., 2021; Liang et al., 2021). Network pruning techniques

were introduced to convert a large network into a much smaller one. Network pruning is

applied to a trained network which does not require retraining the model (S. Gao et al.,

2021; Liang et al., 2021; Molchanov et al., 2019). This technique gets rid of insignificant

parameters which do not contribute much to the model performance. Pruning, therefore,

minimizes the computational complexity, and as the network size gets smaller, it helps the

machine learning model to be deployed in resource-constrained IoT devices (Gholami et

al., 2021; Liang et al., 2021). While training, the Network Pruning (also known as weight

pruning) gradually zeroes out model weights to reduce the model size (Z. Liu et al., 2018).

Network pruning is done via network compression. With this technique, the model can

be improved in terms of weights and latency up to 6 times with a minimum amount of

degradation in detection accuracy.

Network Quantization on the other hand, compresses the learning model by reducing

the width of the datatype (Gholami et al., 2021; Liang et al., 2021). Approximation
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of continuous signal with a collection of discrete or numeric values is referred to as

quantization. For instance, the compression is performed via converting 32-bits floating

points (FP32) with 16-bits or 8-bits integers. The information is preserved through

encoding. Quantization of neural network was introduced in the early 1990s (Fiesler et al.,

1990). FP32 numbers have traditionally been used to train most neural networks (Sze et al.,

2017). However, it has more precision than is required. Quantization can convert this extra

precision into lower bits to save computation, energy, memory and storage costs. There are

two types of quantization available: 1) Quantization Aware Training (QAT) and 2) Post

Training Quantization (PTQ). QAT refers to the quantization that takes into account during

the model’s training. PTQ is, on the other hand, performed after a model’s training. PTQ

is a compression technique that can reduce model size with some degradation in model

accuracy. In contrast, QAT results in non-negligible accuracy loss (Gholami et al., 2021;

Liang et al., 2021). Hence, in this research, we utilized QAT of the LDNN model, which

compresses the precision values from 32 bits floating points to 8 bits integers. Thus, the

model becomes much more lightweight in terms of size and computational complexity,

reducing memory and CPU consumption. The compressed and lightweight classifier is

created with the help of Tensorflowlite. As a result, the compressed model gets four times

smaller.

3.4 Chapter Summary

In this chapter, an intrusion detection framework called CFLVAE-LDNN was designed

and developed. The CFLVAE-LDNN framework consists of two models: CFLVAE data

generation model and LDNN intrusion detection model. CFLVAE data generation model

combines VAE and Class-wise Focal Loss to reconstruct the observed data samples

better and balance the intrusion dataset. The CFLVAE model was proposed to generate

diverse and realistic samples for the undetectable minority-class attacks. A Lightweight
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Deep Neural Network (LDNN) classification model was designed on generated balanced

dataset. Additionally, to meet lightweight criteria for resource-constrained devices, a

further improvement is proposed by utilizing the dimensionality reduction and network

compression techniques for the LDNN classifier.
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CHAPTER 4: EXPERIMENTATION

The proposed model in chapter 3 is extensively experimented with by utilizing the

dataset and parameters in this chapter. This study selected a highly imbalanced NSK-KDD

intrusion dataset to evaluate the proposed CFLVAE-LDNN model. This chapter presents

the details about the benchmark dataset, its preprocessing steps and the implementation

details. The dataset and parameters are detailed in sections 4.1 and 4.2. The performance

or evaluation metrics of the proposed model are outlined in section 4.3. Finally, section

4.4 summarizes this chapter.

4.1 Imbalanced Dataset

Many recent studies relied on the well-known NSL-KDD dataset (Jianhong, 2015; J. Liu

et al., 2020; Lopez-Martin et al., 2017; Ravipati & Abualkibash, 2019; Shone et al., 2018;

Tavallaee et al., 2009b; Thomas & Pavithran, 2018) to validate Network IDS (NIDS) and its

ML algorithms. NSL-KDD is a highly imbalanced network intrusion dataset. This thesis

studies specific intrusions present in this dataset that can impact devices and networks in

IoT settings. The dataset comprises of four attack vectors (DoS, Probe, R2L, U2R) and

normal network traffic. However, the total attack techniques are not limited to these four.

The class imbalance of this dataset is shown in figure 4.1.

Figure 4.1: Imbalanced original records of NSL-KDD dataset.
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Moreover, NSL-KDD has a variety of useful information to detect and mark malicious

network traffic. Some of the important features comprise the ability to extract data from

the packet header, thereby uncovering the required information. Its content features carry

the information about the actual payloads. Time-dependent features enable the study of the

traffic request over two seconds. The host-based features access the dynamic behavior over

a sequence of active connections. The IPv4&6, TCP, and UDP are widely used protocols

in WSNs, whereas FTP, SNMP, ARP, and XTerm are uncommon in WSN environments.

Furthermore, few attacks are created for Windows and Linux Operating Systems only.

More precisely, DoS and Probe attacks are interesting to be tested in resource-constrained

environments.

NSL-KDD dataset is an upgraded version of the KDD-99 (Tavallaee et al., 2009a),

aimed to address the redundant records problem of the earlier. The NSL-KDD dataset

comprises 125973 samples in total, and there are 25192 (20%) training samples and 22544

(KDDTest+) and 11850 (KDDTest-21) test samples. We utilized 25192 (20%) training

samples to train and both test datasets to evaluate our model. NSL-KDD dataset has 41

features: 38 continuous and 3 categorical (discrete values). This study has performed

additional data transformation as well.

Furthermore, the skewness of several attack classes present in the NSL-KDD dataset

makes it harder to examine the attacks by just using the original class labels. Some

intrusion vectors only exist in the test dataset but not in the train dataset, which makes the

classifier perform inefficiently. The following section defines the DoS, Probe, R2L and

U2R attacks (J. Liu et al., 2020; Tavallaee et al., 2009a) in detail:

DoS – the invader exhausts available computational power or memory space, making

the system victim of resource shortage and users are unable to handle routine requests and

features.
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Probe - this attack enumerates the possible flows or defenselessness of the target network

that it leverages to initiate further attacks.

R2L - invader lacks direct access to the target system, so it attempts to obtain local/remote

access to a device of the system.

U2R – an intruder tries to enter the network as a benign user and utilizes the weakness

of such a system to obtain root access.

4.2 Implementation Details

The proposed CFLVAE-LDNN framework was implemented in Python using Tensor-

Flow1 as backend with Keras2 higher-level framework on the GPU-enabled Google Colab3

with 12 GB RAM. In our proposed CFLVAE, we used fully connected networks for both

the encoder and decoder. Apart from the input and output layers, we defined three hidden

layers. We implemented the RELU6 (H. Kim et al., 2021; Yarotsky, 2017) activation

function to avoid vanishing gradient issues for all hidden layers of encoder and decoder

networks. However, Sigmoid is implemented as an activation function for the final layer of

the decoder network. The hyper-parameters are defined in table 4.1.

1 TensorFlow: https://www.tensorflow.org/
2 Keras: https://keras.io/
3 Google Colab: https://colab.research.google.com/
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Table 4.1: Hyperparameters

Parameters Value
CFLVAE architecture 87-40-20-10-20-40-87
LDNN architecture 87-40-20-10-5
Latent space dimension (𝑍) 10
Weight initializer GlorotNormal
Optimizer Adam
Learning rate(lr) Value(lr):

Scheduler name:
Decay step:
Power:

10−3 to 10−5

Polynomial Decay
10
0.5

Focal loss (Gamma value) 0.50, 1.00, 1.30, 1.50, 2.00, 5.00, 10.00
Focal loss (Alpha value) 0.5 and 0.6
Batch size m 64
Epochs ep (CFLVAE and LDNN) 500 and 200

The optimal network architecture of the proposed generator CFLVAE network is 87-

40-20-10-20-40-87 with two hidden layers (e.g., 40 nodes and 20 nodes) for the encoder

and two hidden layers (e.g., 20 nodes and 40 nodes) for the decoder and a latent space

𝑍 (e.g., 10 nodes). The architecture of the LDNN network is 87-40-20-10-5 with three

(e.g., 40, 20 and 10 nodes) hidden layers. In order for the classifier to be lightweight, we

have selected three hidden layers after several experiments with multiple hidden layers.

Both networks consist of one input (e.g., 87 nodes fore CFLVAE and LDNN) and one

output layer (87 nodes for CFLVAE and 5 nodes for LDNN). We proposed novel CFL as

the reconstruction objective function and the optimal value of hyper-parameter Gamma (𝛾)

and Alpha (𝛼). The initial value of 𝛾 was set to 0.5; according to eq. 7. Seven datasets are

created using seven different 𝛾 values and used to classify the intrusion detection efficiency

for each dataset. After several experiments, the optimal values of 𝛾 in the CFL function

are obtained as 1.30, which fits for two top minority classes (DoS and Probe) samples, and

1.50 for bottom minority classes (R2L and U2R). The 𝛼 values in the CFL loss function

are set to 0.5 for DoS and Probe and 0.6 for R2L and U2R minority classes.

Thereafter, for both generator and classifier, we use the Adam (Kingma & Ba, 2014)
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algorithm with an initial learning rate of 0.001. The learning rate is scheduled with a

polynomial decay function with decay steps 10 and a power of 0.5 to optimize the learning

parameters of the optimizer (Bukhari & Mohy-ud Din, 2021; Gupta et al., 2019). We

utilized GlorotNormal4 as a weight initializer. The GlorotNormal initializer works fine

for our networks as it eliminates the need to guess proper values of fixed limits. The

weight matrix is obtained randomly from the normal distribution. Next, we utilized a bias

regularizer and the learning is optimized by Adam optimization algorithm (Kingma & Ba,

2014). Adam optimizer has various advantages that make it popular. It has been used

as a benchmark for deep learning research and is suggested as the default optimization

approach. Furthermore, the method is simple to use, has a shorter running time, consumes

less memory, and requires less tuning than other optimization techniques. The value of the

bias regularizer is set to 0.0005 for all layers in both generator (CFLVAE) and classifier

(LDNN). To evaluate the classifier, we fed the NSL-KDDTest+ and NSL-KDDTest-21 test

datasets into trained LDNN to obtain intrusion detection performance.

This research implemented three-fold cross-validation to validate our LDNN classifier.

We divide the training dataset into three subsets with an equal fraction of every target class

of data. During each training procedure of the classifier, one subset holds out for a testing

purpose, and the rest 2 subsets are utilized for training the model. By training the LDNN

classifier three times, each subset of the sample takes part in both training and testing.

The learning behaviour of the CFLVAE model and LDNN classifier in the proposed

CFLVAE-LDNN framework are depicted in figure 4.2, 4.3 and 4.4. It can be observed that

the CFLAVE network converges considerably faster with a minimum number of epochs.

The loss reaches very close to four (4) for the CFLVAE and close to 0.05 for the LDNN

classifier. The training of the LDNN model also reaches high accuracy faster and converges

4 Layer weight initialization: https://keras.io/api/layers/initializers
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at only 200 epochs.

Figure 4.2: CFLVAE average loss.

Figure 4.3: LDNN average loss.
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Figure 4.4: LDNN average accuracy.

4.3 Evaluation Metrics

For an adequate evaluation of our proposed intrusion detection model, we have

considered the seven most widely used performance metrics, including accuracy, precision,

recall, F1-score, False Positive Rate (FPR), and Receiver Operating Characteristic (ROC).

In addition, Area Under the ROC Curve (AUC) is also measured to evaluate the performance

of our proposed model. The parameters are mainly obtained out of the confusion matrix of

detection algorithms (Rácz et al., 2019; Tharwat, 2020).

Likewise, the confusion matrix is formed based on the true positive (𝑡 𝑝), true negative

(𝑡𝑛), false positive ( 𝑓 𝑝), and false negative ( 𝑓 𝑛) matrix. Correctly predicted traffic is called

𝑡 𝑝; meanwhile, 𝑡𝑛 is the number of benign network traffic, which is correctly classified,

𝑓 𝑝 is the number of misclassified traffic and finally, 𝑓 𝑛 the number of traffic incorrectly

predicted as benign traffic (Rácz et al., 2019). Indeed, the higher the accuracy, precision,

recall, and F1-score, the better the performance of the intrusion detection algorithm.

Similarly, the lower value of the FPR is expected for better performance of the detection

algorithm.

• Accuracy: Accuracy is defined as the ratio of the number of accurately classified
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attacks and benign traffic to the total traffic. The higher the accuracy, the better

performance of the intrusion detection algorithm. Accuracy is mathematically

expressed as follows:

Accuracy =
𝑡 𝑝 + 𝑡𝑛

𝑡 𝑝 + 𝑡𝑛 + 𝑓 𝑝 + 𝑓 𝑛 (4.1)

• Recall: The recall or Detection Date (DR) is defined as the percentage of correctly

predicted actual attacks. The recall is also known as sensitivity or True Positive

Rate (TPR). The higher the recall, the better. The mathematical expression of DR is

as follows:

DR/Recall = 𝑡 𝑝

𝑡 𝑝 + 𝑓 𝑛 (4.2)

• Precision: Precision is the probability of all classified attack traffic, which are true

attack traffic. Like accuracy and recall, the higher value of precision confirms the

better intrusion detection performance. The precision can be expressed as below:

Precision =
𝑡 𝑝

𝑡 𝑝 + 𝑓 𝑝 (4.3)

• F1-score: Another performance metric we are considering to evaluate our model

is the F1-score. The F1-score is computed as the harmonic averages of accuracy

and detection rate. The F1-score is used to observe the overall performance of the

detection model. The higher value of the F1-score ensures a better intrusion detector,

with 0 being the worst possible and 1 being the best. The equation of F1-score is

defined as:

F1-score =
𝑡 𝑝

𝑡 𝑝 + 𝑓 𝑝 + 𝑓 𝑛 (4.4)
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• False Positive Rate (FPR): FPR is the measure of the probability of incorrectly

predicted benign data traffic. The lower value of the FPR is expected for better

detection algorithm performance. The equation of FPR is expressed as:

FPR =
𝑓 𝑝

𝑡𝑛 + 𝑓 𝑝 (4.5)

• ROC-AUC measures: The Receiver Operating Characteristic curve (ROC) is a

graphical representation demonstrating a classification model’s efficiency over all

diverse threshold values. The ROC is a two-dimensional curve of FPR and TPR with

possible thresholds for the transition of observation to a particular target variable.

The AUC refers to area under ROC curve (Bowers & Zhou, 2019; Narkhede, 2018).

A higher value of AUC ensures the superior performance of a classifier. The ideal

value of AUC is between 0.5 and 1 for an excellent classifier (Sauka et al., 2022).

AUC is expressed as:

AUC =

1∫
0

𝑡 𝑝

𝑡 𝑝 + 𝑓 𝑛 𝑑
𝑓 𝑝

𝑡𝑛 + 𝑓 𝑝 (4.6)

While ROC denotes of a probability curve, the AUC refers to the degree of separability.

It is also can be termed as AUROC (Area Under the ROC). It measures the model’s

capability to distinguish among various classes in multiclass classification problems.

The steeping rate of ROC curve is very important in order to maximize TPR and

minimize FPR.

4.4 Chapter Summary

This chapter presented the implementation details, including hyperparameters derived

and utilized for this research. A highly imbalanced NSL-KDD intrusion dataset is employed
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for the experiments. This chapter also elaborated the evaluation metrics which are used to

evaluate the model performance. Since, the proposed CFLVAE-LDNN framework consists

of two models: data generation and intrusion detection models. The data generation model

is trained with 500 epochs, and the LDNN classification model is trained with 200 epochs.

122

Univ
ers

iti 
Mala

ya



CHAPTER 5: RESULTS AND DISCUSSION

The proposed CFLVAE-LDNN model has experimented on a highly imbalanced

dataset in a Python environment. This chapter presents and discusses the detection

performance of CFLVAE-LDNN and comparative studies. Section 5.1 illustrates the

model performance, including data generation and intrusion detection performance. The

lightweight assessments of the proposed model are also elaborated on with obtained results

in this section. Section 5.2 outlines and discusses the comparative hlstudies of our proposed

CFLVAE-LDNN with popular data generation models, machine learning algorithms and

state-of-the-art approaches. Finally, section 5.3 summarizes this chapter.

5.1 Model Performance

The proposed model generates diverse and realistic data samples for minority classes

using Class-wise Focal Loss Variational Autoencoder (CFLVAE) to balance the uneven

intrusion dataset. The diverse and realistic generated data samples are merged with the

original dataset, and then the diverse, balanced dataset is utilized for training a deep

learning-based classifier called Lightweight Deep Neural Network (LDNN) model. The

LDNN is a fully connected model with a minimum number of hidden layers and nodes, as

mentioned in chapter 3. The following subsections explicitly illustrate the data generation

performance of the CFLVAE model and intrusion detection performances of the LDNN

model.

5.1.1 Data Generation to Balance Intrusion Dataset

The proposed CFLVAE data augmentation model successfully generates high-quality,

diverse and realistic data samples for the minority attack classes. Figure 5.1(a) depicts the

severely imbalanced NSL-KDD dataset. It can be seen that the minority classes (i.e., R2L

and U2R) contain only a few data samples compared majority class (i.e., Normal) which
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(a) Imbalanced original records (b) Generated records (c) Balanced dataset

Figure 5.1: NSL-KDD dataset.

contains a large number of data samples. The data samples are generated by CFLVAE for

each minority class and is shown in figure 5.1(b). Finally, the generated data samples are

merged with the original data samples to creatre a balanced dataset. Figure 5.1(c) presents

the balanced datasets.

5.1.2 Intrusion Detection on Lightweight DNN Model

The balanced dataset is used to train the LDNN classifier for intrusion detection. The

performance is extracted with regard to the performance matrix mentioned in the section

4.3. The evaluation performance for accuracy, recall, F1-score, precision and FPR of our

proposed lightweight DNN classifier is illustrated in this section. Table 5.1 presents the

overall performance of our proposed lightweight DNN classification model on generated

data using CFLVAE. The overall performance (in %) of our model is demonstrated in table

5.1 as follows: accuracy of 88.08%, recall of 88.02%, precision of 88.73% and F1-score of

87.69% when tested with KDDtest+ test dataset and accuracy of 76.22%, recall of 76.21%,

precision of 80.16% and F1-score of 76.66% when tested by KDDtest-21 test dataset. As

we mentioned in chapter four that these datasets are dedicated test datasets belonging to

the NSL-KDD intrusion detection dataset. Our lightweight deep neural network (LDNN)

classification model achieved significantly lower FPR as 3.77% and 6.51% KDDtest+

KDDtest-21 test datasets, respectively.

One of the primary objectives of this research is to address and improve minority or
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unknown attack detection rates. This research proposed a minority class data generation

model which successfully generated diverse and realistic data samples. The generated

minority class data samples significantly improved the low frequency attacks detection

rates when classifying using the proposed LDNN model. It is interesting to observe that the

CFLVAE-LDNN improved the overall performance of minority attack classes. The class-

wise detection scores for minority classes are 88.87%, 87.01%, 79.26%, 67.5% for DoS,

Probe, R2L and U2R, respectively for the KDDtest+ dataset and 72.28%, 82.82%, 79.25%,

66.00% for the same minority attacks while tested the trained model with KDDtest-21

test dataset. The CFLVAE-LDNN significantly improved the low-frequency attack class

detection rates.

Table 5.1: Intrusion detection performance (in %) of our proposed CFLVAE-LDNN
model

In addition, the ROC curves and AUC values are shown figures 5.2(a) and 5.2(b) for

KDDtest+ and KDDtest-21 datasets, respectively. These values play a vital role in order to

analyze the overall performance of learning models. ROC is a graphical representation

of FPR on the X-axis versus TPR on the Y-axis, which demonstrates the efficiency of a

classification model over diverse threshold values. The area under the ROC curve is known

as AUC. A higher value of AUC ensures the better performance of the classifier. The ideal

value of AUC is between 0.5 and 1 for a good classifier. It is shown in the figures that

the AUC values of all classes range between 0.79% and 0.95%, which validates that the
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(a) AUC-ROC curve on the KDDTest+

(b) AUC-ROC curve on the KDDTest-21

Figure 5.2: AUC-ROC curve on NSL-KDD test datasets.

proposed CFLVAE-LDNN generates a high-level classification outcome. Hence, the area

under ROC curve is inside 0.79% and 0.95% area. This indicates that the classifier with

generated data obtained a high TPR and a low FPR.

5.1.2.1 Detection Performance on Different Gamma Values

This research proposed novel CFL as the reconstruction objective function and the

optimal value of hyper-parameter Gamma (𝛾) and Alpha (𝛼) to generate high-quality,

diverse and realistic data samples for low-frequency attacks. The initial value of 𝛾 was
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set to 0.5, according to eq. 3.2 the optimal value of 𝛾 in the CFL function is obtained

as 1.30, the value fit for two top minority classes (DoS and Probe) samples, and 1.50 for

bottom minority classes (R2L and U2R). This research obtained the (𝛾) values with trial

and error experiments. Figure 5.3 shows the detection performance of the LDNN classifier

on different datasets generated using different 𝛾 values. It is worth mentioning that, we

managed to generate seven (7) different datasets using multiple 𝛾 values in our proposed

CFL loss function for the CFLVAE data generation model. Similarly, the 𝛼 values in the

CFL loss function are set to 0.5 for DoS and Probe and 0.6 for R2L and U2R minority

classes. It is interesting to observe that the LDNN classification model obtained very close

to 89% and 88% overall accuracy, recall, precision and F1-score when data was generated

using 1.30 and 1.5 𝛾 values. The figure also clearly shows that the FPR values are the

lowest using the mentioned 𝛾 values.

Figure 5.3: The result of intrusion detection performance with different Gamma (𝛾)
values of CFL loss function.

5.1.2.2 Detection Performance on Reduced Network Layers

In this section, the overall intrusion detection performance of the different network

architectures has been presented. This research considered several network architectures

of the LDNN classification model. The base architecture consists of one input, one output
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(a) Overall performance

(b) Class-wise detection performance

Figure 5.4: Comparison of (a) Overall detection rates and (b) Class-wise detection
performance on different numbers of hidden layers used in LDNN classification model
(in %).

and six (6) hidden layers. The results of different hidden layers are demonstrated in figure

5.4. To find an optimal network architecture which obtains the highest intrusion detection

accuracy while meeting the lightweight criteria, we experimented the classifier model six

times with a different number of hidden layers.

Overall detection rates are shown in figure 5.4(a), and Class-wise detection performance
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is shown in 5.4(b) on different numbers of hidden layers used in the LDNN classification

model. It is interesting to observe that the intrusion detection performance changes with a

different number of hidden layers of the LDNN classifier. The highest overall detection

performance was achieved using two hidden layers, and the lowest performance was

obtained using only one hidden layer on generated data using CFLVAE. The classifier with

two (2) hidden layers obtained 88.08% overall intrusion detection accuracy while ensuring

the higher low-frequency attacks detection rates of 83.87%, 83.01%, 79.26%, and 67.5%

for DoS, Probe, R2L, and U2R attacks, respectively. This also contributes to the proposed

LDNN model to become lightweight and suitable for resource-constrained IoT devices.

5.1.2.3 Detection Performance on Reduced Features

In this section, the performance of the feature reduction and feature selection methods

are discovered in terms of overall intrusion detection. The Mutual Information (MI) feature

selection method (as discussed in section 3.3.1) is utilized to keep the most important

features and thus eliminate irrelevant features. The detection results of different values are

demonstrated in figure 5.5.

Overall detection rates are shown in figure 5.5(a), and Class-wise detection performance

is shown in 5.5(b) on different values of MI used in the LDNN classification model.

Remarkably, the intrusion detection performance changes with varying values of MI of

the LDNN classifier. This is because different number of feature sets are selected using

MI values. For instance, an MI value greater than 40% selects 108 features, an MI value

greater than 48% selects 95 features, an MI value greater than 50% selects 87 features, and

MI value greater than 52% selects 80 features for our proposed LDNN architecture on

generated data using CFLVAE.

The highest overall detection performance (89.5% accuracy) was achieved using MI

value greater than 40%, and the lowest performance (86.73% accuracy) was obtained using
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(a) Overall performance

(b) Class-wise detection performance

Figure 5.5: Comparison of (a) Overall detection rates and (b) Class-wise detection
performance on different values of Mutual Information(MI) used in LDNN classifica-
tion model on generated data using CFLVAE (in %).
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an MI value greater than 48%. The model also performed significantly well when the

features selected using an MI value greater than 50%. In this case, the overall accuracy

is obtained as 88.84%. It is worth mentioning that the hidden layers of the LDNN

architecture are selected as two (2) layers since the architecture provides the highest

detection performance, as stated in the previous section. Therefore, considering the

analysis, it can be deduced that the model can perform better, provided it contains all the

features. However, due to the lightweight requirements, we would like to keep 87 (with MI

value greater than 50%) features for our proposed LDNN classifier without compromising

the accuracy much. The lightweight assessments are done in section 5.1.3.

5.1.2.4 Detection Performance on Compressed Model

The deep learning model is heavy and not suitable for IoT devices. This section

demonstrated the intrusion detection performance of the lightweight version of our

classifier. The study utilized the Quantization Aware Training (QAT) (Gholami et al., 2021;

Liang et al., 2021) technique (as mentioned in section 3.3.4) to compress our proposed

LDNN classifier in order to make it suitable for resource-constrained IoT devices. Table

5.2 shows the detection performance of our lightweight DNN classifier on generated data

using CFLVAE. The detection performance is presented for a compressed LDNN classifier

using the QAT technique. Overall detection rates and class-wise detection performance is

shown for both KDDest+ and KDDTest-21 test datasets.

Table 5.2: Detection performance of Quantization Aware Training (QAT) used in
LDNN classification model on generated data from CFLVAE (in %)
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It is worthwhile to state that this performance is deduced after applying the feature

reduction method, reducing the number of LDNN hidden layers, and finally utilizing the

network compression technique. Hence, this research concludes the model’s intrusion

detection performance as depicted in table 5.2.

5.1.3 Model Size, Memory Consumption, and CPU Time

Evaluation of lightweight parameters is as illustrated in the subsequent sections.

Evaluation of model size, CPU usage and Memory consumption are considered. The

analysis takes place in explorations of components that help achieve a lightweight intrusion

detection classifier for resource-constrained IoT devices.

5.1.3.1 Model Size

This research analyzed the size of our model based on hidden layers, feature numbers,

and compression techniques to evaluate lightweight requirements to make the intrusion

detection classifier suitable for IoT devices.

This research experimented on different network architectures for our proposed LDNN

classifier to evaluate lightweight parameters. Figure 5.6 shows that the model size (in KB)

reduces with the reduced number of hidden layers of the LDNN classifier. The model

contains the largest size of 295KB, which has six hidden layers, and the smallest size of

102KB, which has only one hidden layer. However, we observed from section 5.1.2.2

that the model architecture with two hidden layers provides the most promising intrusion

detection performance. Hence, to satisfy both lightweight and intrusion detection criteria,

we select the model with two hidden layers.

Moreover, different MI values are utilized to obtain the important features to reduce

model size. MI values greater than 40% results in 108 features, whereas MI>48% returns

95 features, MI>50% returns 87 important features, and finally, MI>52% returns 80
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important features. From figure 5.7, it is evident that the model size in kilobytes (KB)

reduces with the reduced number of features. Utilizing an MI value greater than 48%

provides 146KB of model size and an MI value greater than 50% provides a model size

140KB, as shown in figure 5.7. However, we observed from section 5.1.2.3 that the model

with 108 features (MI>0.40) obtains the highest overall detection accuracy. To meet

lightweight criteria, we choose the model with 87 features. The reason is the model with

MI>0.50 (87 features) also obtains satisfactory intrusion detection performance with a

reduced model size.

Figure 5.8 demonstrates the effect of reducing the model size significantly using the

Quantization techniques. Interestingly, the model size was reduced to 19KB using Post

Training Quantization (PTQ) and only 7KB using Quantization Aware Training (QAT). In

contrast, the model size without compression is 141KB. Thus, the conclusion can be drawn

from the above analysis and considering figures 5.6, 5.7, and 5.8 that the combination

of two hidden layers and 87 features and the QAT compression technique is the optimal

lightweight DNN model size with better intrusion detection performance.

Figure 5.6: Model size with different LDNN architecture.
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Figure 5.7: Model size on reduced features using MI technique.

Figure 5.8: Model size using network compression technique.

5.1.3.2 Memory Consumption

In addition, for evaluating lightweight requirements, this research also analyzed the

memory consumption by our model during the intrusion detection phase. Figures 5.9, 5.10

and 5.11 presents the memory consumption for intrusion detection by the LDNN classifier

using different hidden layers, features, and network compression techniques.

In figure 5.9, it is clearly shown the highest memory consumed by the model, which

utilized six (6) hidden layers which is near to 4000 Bytes. The lowest amount of memory

is used by the model with only one (1) hidden layer, which is about 2000 Bytes. It is

interesting to observe that the memory consumption reduces gradually with the reduction

of hidden layers in the LDNN model. In the same fashion, in figure 5.10, it is clearly shown
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the highest memory (2300 Bytes) consumed by the model, which utilized 108 features

(MI>40%), and the lowest amount of memory (1700 Byes) is consumed by the the model

with 86 features (MI>52%). In this case, the memory consumption also reduces with the

reduced number of features.

Furthermore, figure 5.11 presents the memory consumption by the LDNN model

before and after compression. We compared two most popular network compression

techniques: Post Training Quantization (PTQ) and Quantization Aware Training (QAT).

A significant improvement in memory consumption is seen after network compression.

Before compression, with the reduced number of features and hidden layers, the model

consumes approximately 2000 Bytes memory during testing of the trained model. The

LDNN consumes around 1700 Bytes memory when applying PTQ compressing technique.

Using the QAT compression technique, the model only consumes an average of 1500

Bytes of memory during the detection of an intrusion.

Figure 5.9: memory consumption using different LDNN architecture.
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Figure 5.10: memory consumption on reduced features using MI technique.

Figure 5.11: Memory consumption using network compression technique.

5.1.3.3 CPU time

This study considers the analysis of CPU time (testing time) of our classification model

to evaluate of lightweight requirements of the intrusion detection classifier. Figures 5.12,

5.13, and 5.14 denote the evaluation of CPU time of the LDNN classifier based on hidden

layers, feature numbers, and compression techniques. For example, figure 5.13 indicate

the CPU time taken by a different number of hidden layers of the LDNN classifier. The

model takes a minimum testing time (0.17 seconds) while using one hidden layer and a

maximum testing time (0.32 seconds) using six hidden layers.

In contrast, figure 5.13 depicts slightly different results on the test time (CPU time).

Different MI values are utilized to obtain the important features to reduce CPU time.
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The model takes a minimum testing time (0.163 seconds) with 80 features (MI>52%).

The model obtains a maximum testing time (0.18 seconds) with 108 features (MI>40%).

However, due to the highest intrusion detection rates obtained from 87 features, we consider

utilizing a MI value greater than 50% (MI>50%).

Furthermore, figure 5.14 demonstrates the effect on the CPU time by the proposed

LDNN model before and after compression. It is observed from the figure that the CPU

time improved slightly during intrusion detection by the model after model compression.

The test time of the LDNN model without network compression is 0.15 seconds and 0.13

after utilizing the QAT model compression technique.

Figure 5.12: CPU time (testing) using different LDNN architecture.

Figure 5.13: CPU time (testing) on reduced features using MI technique.
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Figure 5.14: CPU time (testing) on network compression technique.

To summarize, it can be concluded that the classifier with two hidden layers, 87 features,

and the QAT compression technique provides better overall memory, CPU time efficiency,

and acceptable model size without penalizing much overall intrusion detection accuracy

and is an optimal lightweight LDNN intrusion detection model.

5.2 Comparative Study

5.2.1 Comparative Study with Data Generation Methods

As mentioned above, the data generation method solves data imbalance issues, resulting

in improved overall classification accuracy, including detection rates of the minority class

attacks. Random Over Sampler (ROS) (Hayaty et al., 2020), Synthetic Minority Over-

sampling Technique (SMOTE) (Chawla et al., 2002), and Adaptive Synthetic (ADASYN)

(H. He et al., 2008) are the most popular oversampling/data generation methods which

have shown significant performance improvement in recent years. Our proposed CFLVAE-

LDNN model augment samples for minority and low-frequency attack classes to improve

the intrusion detection performance of a deep neural network-based classifier. This research

utilized the same LDNN model as the classifier to compare the overall classification result

of the proposed CFLVAE-LDNN with the above three most popular data augmentation

methods.
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(a) Overall performance

(b) Class-wise detection performance

Figure 5.15: Comparison of (a) Overall detection performance and (b) Class-wise
detection performance of popular data generation techniques on the KDDTest+
dataset (in %).
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(a) Overall performance

(b) Class-wise detection performance

Figure 5.16: Comparison of (a) Overall detection rates and (b) Class-wise detection
performance of data generation techniques on the KDDTest-21 dataset (in %).
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Figures 5.15 and 5.16 depict the comparative results of all three methods with the

proposed CFLVAE-LDNN. Figure 5.15(a) provides overall performance accuracy, 5.15(b)

provides the class-wise detection performance for the KDDTest+ test dataset, figure 5.16(a)

provides overall performance accuracy, figure 5.16(b) provides the class-wise detection

performance for KDDTest-21 test dataset. It is observed that the CFLVAE-LDNN has

achieved the highest overall accuracy, recall, precision, F1-score, and detection rates

of minority classes. The proposed CFLVAE-LDNN model achieved approximately 8%,

10%, and 9% higher overall accuracy compared to the ROS-DNN, SMOTE-DNN, and

ADASYN-DNN models when testing with the KDDTest+ dataset. Notably, our model

achieved approximately 14%, 53%, and 57% higher minority attack class detection rates

for Probe, R2L, and U2R classes, respectively, compared with the three mentioned data

generation methods. In the case of the KDDTest-21 dataset, our model also achieved the

highest overall accuracy, minority class detection rates for all classes, and lowest FPR.

Our model has also achieved the lowest FPR (e.g., 3.77% & 6.51% for KDDTest+ and

KDDTest-21, respectively). These comparative studies demonstrate that the CFLVAE

generates more quality and diverse synthetic samples for the minority attack classes.

The most significant difference between the mentioned benchmark data generation

techniques and our proposed CFLVAE is the capability to reconstruct intrusion features from

particular attack samples and produce diverse and realistic samples for them. The CFLVAE

can generate a corresponding intrusion sample with its properties. The experimental

results confirm that data augmented from CFLVAE using class-wise focal loss are more

diverse and realistic than the data generated from the benchmark techniques.

5.2.2 Comparative Study with Learning-Based Classifiers

This research compares the performance of the proposed CFLVAE-LDNN with seven

popular and frequently used ML and DL based classifiers, namely, K-Nearest Neighbor
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(KNN), Gaussian Naive Bayes (GaussianNB), Decision Tree (DT), Random Forest (RF),

Support Vector Machine (SVM), Deep Belief Network (DBN), and Deep Neural Network

(DNN) (Chang et al., 2017; Jianhong, 2015; Y. Yang et al., 2020; Zaman & Lung, 2018).

These algorithms are well-established classifiers for their promising performance in

intrusion detection and can be found in several pieces of literature. It is worth mentioning

that these classifiers are tested on the NSL-KDD original imbalanced dataset. Remarkably,

the DNN model is tested without network compression being applied. The DNN model

contains six (6) hidden layers.

The summary of the comparative studies is presented in figures 5.17 to 5.18. As is

observed from figures 5.17(a) and 5.18(a), the CFLVAE-LDNN has a superior detection

accuracy (88.08% and 76.22%) and lower FPR (3.77% and 6.51%) among all the well-

known classifiers on both the KDDtest+ and KDDtest-21 test datasets. Figure 5.17(a)

demonstrates that the proposed CFALVAE-LDNN model achieves the highest recall (by

~18% higher than benchmark) and F1-score (by ~7% higher than benchmark). The

precision is slightly higher in KNN (by ~4%), SVM (by ~3%), and DBN (by ~4% )

algorithms than our proposed model. The original DNN model without data generation

tested on an imbalanced dataset achieved almost 8%, 18%, and 7% lower accuracy, recall

and F1-score, respectively, compared to our data generation and classification CFLVAE-

LDNN model when tested with the KDDtest+ test dataset. In the KDDtest-21 data in

figure 5.18(a), our model obtains the highest overall accuracy, recall, and F1-score. The

precision is slightly lower (by ~10%). The FPR of our model is the lowest as 3.77% and

6.51% among all the well-known classifiers for both the KDDtest+ and KDDtest-21 test

datasets.

Likewise, figures 5.17(b) and 5.18(b) show that the CFLVAE-LDNN obtains the highest

class-wise detection rates for minority attack classes in both the NSL-KDDtest+ and
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(a) Overall performance

(b) Class-wise detection performance

Figure 5.17: Comparison of (a) Overall performance and (b) Class-wise detection
rates of learning-based classifiers on the NSL-KDD (KDDTest+) dataset (in %).
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(a) Overall performance

(b) Class-wise detection performance

Figure 5.18: Comparison of (a) Overall performance and (b) Class-wise detection
rates of learning-based classifiers on the NSL-KDD (KDDTest-21) dataset (in %).
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NSL-KDDtest-21 datasets. Compared with other detection models, the proposed CFLVAE-

LDNN obtains the highest detection accuracy (in %) on all minor and significant attack

types, namely DoS (88.80), Probe (93.14), R2L (56.53) and U2R (68.80) NSL-KDDtest+

and DoS (72.28), Probe (82.82), R2L (79.25) and U2R (66.00) NSL-KDDtest-21 datasets.

Hence, the CFLVAE-LDNN model achieves higher detection performance for all classes

by synthesizing diverse and realistic data for unknown/minority attack types.

5.2.3 Comparative Study with Related Works

Last but not least, this research has compared the detection performance of our proposed

CFLVAE-LDNN with some recently reported intrusion detection techniques to demonstrate

the performance of CFLVAE-LDNN. The selected state-of-the-art IDS that are reported in

the following research: Improved Conditional Variational AutoEncoder (ICVAE-DNN)

(Y. Yang et al., 2019), intrusion detection method based on a Conditional Variational

AutoEncoder (ID-CVAE) (Lopez-Martin et al., 2017) Scale-Hybrid-IDS-AlertNet (SHIA)

framework (Vinayakumar et al., 2019), Recurrent Neural Network (RNN-IDS) (Yin et al.,

2017), Stacked Non-symmetric Deep AutoEncoders (S-NDAE) (Shone et al., 2018), and

Log-cosh Conditional Variational AutoEncoder (LCVAE) (X. Xu et al., 2020).

Table 5.3 demonstrates the performance comparisons based on the NSL-KDDTest+

dataset, as the majority of the reported state-of-the-art techniques did not consider the

NSL-KDDTest-21 dataset for the evaluation of their models. Therefore, the comparison

is made with regard to the performance metrics. It can be concluded that, our proposed

obtains the highest overall detection and minority attacks detection rates among all of the

related intrusion detection models.

It can be derived from the table that our CFLVAE-LDNN obtains the best detection

results in terms of overall accuracy, recall and F1-score among all of the mentioned

intrusion detection models. One of the most important evaluation metrics is F1-score
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Table 5.3: Comparative study (in %) of CFLVAE-LDNN with the state-of-the-art
techniques on the KDDTest+ dataset (NA means not available, *ranked first, **ranked
second).

Model Accuracy Recall Precision F1-score FPR Normal DoS Probe R2L U2R
ICVAE-DNN (Y. Yang et al., 2019) 85.97 77.43 97.39 86.27 2.74* 97.26 85.65 74.97 44.41 11.00
ID-CVAE (Lopez-Martin et al., 2017) 80.1 80.1 81.59 79.00 8.18 91.8 84.41 72.78 33.59 0.057
SHIA (Vinayakumar et al., 2019) 78.5 78.5 80.1 76.5 NA 97.4 76.6 66.3 67.2 24.2
RNN-IDS (Yin et al., 2017) 83.28 73.125 NA 83.22 3.44** NA 83.49 83.4 24.69 11.5
LCVAE (X. Xu et al., 2020) 85.51 68.9 97.61** 80.78 NA NA NA NA NA NA
S-NDAE (Shone et al., 2018) 85.82 85.82 100* 87.37 14.58 99.49 99.79 98.74 9.31 NA
CFLVAE-LDNN (ours) 88.08* 88.02* 88.25 87.69* 3.77 95.28 88.87** 87.01** 79.26* 67.50*

which is the harmonic mean between precision and recall. Although the precision of our

model is negligibly inferior (by 9%) to S-NDAE (Shone et al., 2018) model, the proposed

CFLVAE-DNN achieved the highest F1-score among all the cited models.

The main aim of CFLVAE-LDNN is to improve the minority attacks defection rates,

in addition to improving overall detection performance by solving the data imbalance

problem. Our proposed CFLVAE-LDNN achieved the highest detection rates for the two

rarest unknown attack vectors. The proposed CFLVAE-LDNN obtained the minority

attacks class detection rates of 79.26% and 67% against 44.41% achieved by ICVAE-DNN

and 24.2% achieved by SHIA models, for R2L and U2R attacks, respectively. It is observed

from the table that, by generating a high-quality sample by the proposed CFLVAE model,

our DNN algorithm obtains the highest minority attacks detection rates among all other

benchmark models.

The ICVAE-DNN (Y. Yang et al., 2019) scored slightly lower FPR (only 1.01%

difference) than our CFLVAE-LDNN model. However, the ICVAE-DNN reported inferior

detection accuracy, recall, and F1-score compared to our proposed model. To sum up, the

comparative studies demonstrate that the CFLVAE-LDNN intrusion detection is superior

in detecting network intrusion effectively. This indicates that the proposed CFLVAE model

generates diverse, high-quality, realistic data samples for minority classes to balance the

dataset. Furthermore, this led the LDNN classifier to achieve the highest overall accuracy,
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F1-score, and minority attack detection rates.

5.2.4 Comparative Study of Model Size, Memory and CPU Time Consumption

To make the model suitable for resource-constrained IoT devices, this research analyzed

the model size, memory consumption, and testing time (CPU time). The subsequent

sections demonstrate these parameters and comparative study in order for our proposed

model to be suitable for IoT. Figures 5.19, 5.20, and 5.21 present the comparative studies of

different learning-based algorithms with our LDNN model in terms of model size, memory

consumption, and CPU time consumption while utilizing the balanced data from CFLVAE

model. The reported results are the averages of 10 instances.

Figure 5.19: CPU time (testing).

Figure 5.20: Comparative Study of CPU time (testing).
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Figure 5.21: CPU time (testing) on reduced features using MI technique.

It is interesting to observe in figure 5.19 that depicts the smallest model size is achieved

by our proposed CFLVAE-LDNN, which is only 7KB. This proves that the model is

very lightweight for resource-constrained IoT. On the contrary, Random Forest (RF)

algorithm seems very heavyweight (6700KB) and Support Vectior Macine (SVM) contains

3600KB of the model size. In terms of memory consumption, figure 5.20 shows the

different memory consumption by other algorithms. Interestingly, our proposed model

only consumes 1.5KB of memory during intrusion detection, while the conventional DNN

model consumes as high as 146970KB of memory while testing the trained model with an

instance. According to figure 5.21, the lowest CPU usage is reported by the GaussianNB

model (0.012 seconds) followed by the KNN model (0.016 seconds). However, our model

consumes a bit higher CPU time of 0.15 seconds. The highest CPU usage is reported by

the SVM model.

It can be concluded from figures 5.19, 5.20, and 5.21 that our proposed LDNN model is

suitable for resource-constrained IoT systems.

5.3 Chapter Summary

This chapter reported the experimental results of the proposed CFLVAE-LDNN frame-

work. The performance of intrusion detection and lightweight analysis are thoroughly
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investigated and illustrated in the figures and tables in terms of performance metrics. This

chapter also reported the comparative studies of the proposed CFLVAE-LDNN framework

with several existing data generation models, learning-based models, and state-of-the-art

intrusion detection models. It is interesting to conclude from the findings that the proposed

framework improved the intrusion detection accuracy and minimized FPR. The model also

improved the low-frequency attack detection rates by many folds. In terms of lightweight

assessments, the proposed CFLVAE-LDNN is lightweight and suitable for the Internet of

Things (IoT).
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK

This chapter concludes the thesis, highlights the important findings, and suggests

some future works. Section 6.1 provides a summary of how this research was conducted.

The main finding in the concluding remarks is presented in Section 6.2, followed by the

contributions and novelty of this research in section 6.3. Section 6.4 outlines some key

strengths and limitations. Subsequently, some possible further research directions are

suggested in section 6.5. The chapter ends with some final words in section 6.6.

6.1 Summary

In the first part of the thesis, the literature review was conducted and uncovered the

limitations reported in the existing literature. IoT suffers from numerous intrusions, threats,

and vulnerabilities. This research outlined those potential intrusions and vulnerabilities.

Moreover, numerous studies adopted many intrusion detection techniques, including

learning-based and cryptography approaches. This research illustrated the present intrusion

detection techniques and reported their advantages ( e.g., high overall intrusion detection

accuracy) and limitations (e.g., inferior minority-class detection rate) in chapter two.

Various methodological aspects were discovered while conducting investigations on

existing literature. One of those aspects is considered for further analysis: the impact of

the data imbalance problem in intrusion detection. An experimental study was conducted

to confirm that this is undeniably a vital challenge in detecting intrusions, particularly

detecting low-frequency attacks. As a matter of fact, data imbalance is one of the many

reasons that many traditional machine learning algorithms are inefficient in spotting a

specific class of intrusion. Hence, this necessitates us to design and develop a data

generation model by combining VAE and Focal Loss to reconstruct the observed data

samples better and balance the dataset.
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The proposed intrusion detection framework is detailed in chapter three. The proposed

model, referred to as CFLVAE, was proved to be effective in generating diverse and realistic

samples for undetectable minority-class attacks. Furthermore, the generated balanced

dataset is utilized for training and testing a Lightweight Deep Neural Network (LDNN)

classification model. However, to meet lightweight criteria for resource-constrained

devices, further improvements are implemented by investigating the different architecture

of the LDNN model and utilizing the dimensionality reduction and network compression

techniques. However, to maintain a lightweight model, there is a negligible trade-off in

intrusion detection performances of the lightweight DNN model.

6.2 Findings and Conclusions

The research aims to establish a data generative model using Class-wise Focal Loss

Variational Autoencoder and to propose and evaluate a lightweight deep neural network

model for Intrusion Detection for IoT. This section outlines the findings and conclusions

related to the objectives of this thesis. The findings on RO1 are highlighted in section

6.2.1, RO2 is summarized in section 6.2.2, RO3 in section 6.2.3, and RO4 is recapped in

section 6.2.4.

6.2.1 RO1: To identify existing security threats, attacks, intrusions, and vulner-
abilities, and to recognize current solutions used for intrusion detection
associated with the Internet of Things (IoT) and their limitations.

To achieve RO1, this research has studied and presented security intrusions/attacks

based on IoT architecture, and their taxonomy and comparative studies have been discussed

in chapter two, section 2.7. Furthermore, this thesis illustrated the aspects related to the

capacity and limitations of IoT in the design of intrusion detection approaches. Thus, the

research considered the need for IoT security outlined the methods of security attacks and

analyzed the actual attacks/intrusions regarding IoT. Likewise, this thesis will serve as
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a useful manual for researchers to retrieve a comprehensive list of intrusions that may

interest them. Security attacks taxonomy and comparisons have been provided for IoT.

Furthermore, this thesis investigated and reported various intrusion countermeasures,

including cryptography, autonomic, and learning-based schemes, detailed in chapter two,

section 2.8. Moreover, a discussion on existing intrusion detection approaches, their

advantages, and their limitations is provided. Finally, implementation challenges of such

intrusion detection algorithms in resource-constrained IoT systems are outlined. Chapter

two also reported some state-of-the-art security solutions by studying the range of the

existing literature.

6.2.2 RO2: To develop a data generation model to balance a intrusion detection
dataset.

This thesis proposes a unique data generative model called CFLVAE for intrusion

detection to achieve RO2, elaborated in chapter three, sections 3.2 and 3.3. The model can

reconstruct and generates samples for continuous and discrete features present in the NSL-

KDD intrusion dataset. CFLVAE incorporates the strength of Variational AutoEncoder and

the benefits of Class-wise Focal Loss (CFL) cost-sensitive learning to synthesize the data

similar to original data with enough diversity. By implementing the CFL loss function, the

minority class attack samples receive more attention, and the CFLVAE data generative

model is able to extract the high-level feature distribution of observed samples.

Interestingly, the unique aspect of the model is the ability to generate samples for specific

intrusion classes to which the new samples should belong. This improves the intrusion

detection performance for minority-class intrusions of deep learning-based classifiers. As

a result, the model achieved as high as 88.08% intrusion detection accuracy; 88.87%,

87.01%, 79.26%, and 67.5% for DoS, Probe, R2L, and U2R minority-class attack detection

rates, respectively. The high detection rates of minority-class attacks signify that the
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proposed CFLVAE is able to produce diverse, quality, and realistic intrusion data samples

for specific attack classes.

6.2.3 RO3: To establish a lightweight deep learning model for intrusion detection
in IoT.

Chapter three, section 3.3.4, established a Lightweight Deep Neural Network (LDNN)

based classifier with unique architecture to achieve RO3 to achieve superior detection

performance. The diverse, balanced dataset is used to train the LDNN classifier, which

enables the classifier to achieve higher overall detection performance, higher class-wise

detection rates, and lower false-positive rates. The experimental results showed that the

proposed CFLVAE-LDNN model achieved improved minority-class intrusions detection

rates and overall superior performance compared with state-of-the-art data generation and

traditional machine learning models on the NSL-KDD dataset.

Moreover, this research experimented with different architectures to make the classifier

lightweight and utilized dimensional reduction and network compression techniques. The

empirical results demonstrated that the classifier with one input, one output, and two

hidden layers. The 87 features and QAT compression provide an overall lightweight model

size, memory usage, and CPU time without much penalizing the overall intrusion detection

performance. The LDNN achieved 88.08% of overall intrusion detection accuracy, 88.02%

recall, 88.25% precision, 87.69% F1-score and as low as 3.77% false positive rate (FPR).

The model size, memory, and energy consumption ensure that the model is suitable for IoT

devices.

6.2.4 RO 4: To evaluate the performance of the proposed lightweight intrusion
detection model for IoT.

This research carried out and reported comparative studies of the intrusion detection

performance of the proposed CLFVAE-LDNN model with three popular data over-sampling
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algorithms, namely, ROS, SMOTE, and ADASYN. The research also studied comparative

analysis using the most common learning-based classifiers such as SVM, DT, RF, NB,

DBN, and Gaussian Naive Bayes. The experimental results showed that the synthetic data

generated by the proposed CFLVAE offer better overall intrusion detection performance

in terms of accuracy, recall, F-measure, and FPR when using the LDNN model as an

intrusion classifier. The results also showed that the CFLVAE-LDNN model outperformed

the existing over-sampling, learning-based and state-of-the-art classifiers in terms of

minority-class intrusion detection rates. This indicates that the data generated with the

proposed model is closer to the original data and can better reproduce the probability

distribution of its features.

Moreover, the proposed LDNN with different architectures, feature numbers, and network

compression techniques is trained with the balanced dataset. The results demonstrated

that the model is lightweight in terms of size, memory, and CPU time consumption and is

suitable for resource-constrained IoT systems.

6.3 Contribution and Novelty

To bring up the rear, the contributions of this research are manifold:

• The research investigated the security threats, intrusions, and vulnerabilities of IoT.

• It studied present security solutions, including learning-based and encryption-based

countermeasures for IoT systems.

• It presents an insightful comparative studies of the current intrusions and their

countermeasures.

• This research designed and developed a novel data generation model called Class-

wise Focal Loss (CFL) Variational AutoEncoder (CFLVAE) in order to solve the

data imbalance issue. The CFL objective function focuses on the different minority
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class samples differently and learns the best distribution of observed data, leading

the CFLVAE to generate more realistic, diverse, and quality intrusion data.

• This research fine-tuned and optimized the Alpha (𝛼) and Gamma (𝛾) parameters

for the proposed CFL in our intrusion dataset.

• This thesis utilized the strength of Deep Neural Network (DNN) to learn the

features of high-dimensional balanced intrusion data to achieve high attack detection

performance and inferior FPR.

• This research utilized feature reduction and network compression techniques to

reduce the complexity of the LDNN classifier to maintain lightweight criteria for

resource-constrained IoT.

• Finally, this research evaluated our proposed CFLVAE-LDNN model on the NSL-

KDD dataset, provided a detailed comparative analysis with relevant state-of-the-art

intrusion detection techniques, and verified superior performance in detecting

minority-class attacks in addition to overall detection accuracy.

6.4 Strengths and Limitations

Based on the results of this research, the strengths of the proposed CFLVAE-LDNN

model are highlighted below:

1. The CFLVAE is able to produce realistic and diverse intrusion data samples

2. The CFLVAE-LDNN improves overall intrusion detection accuracy and minimizes

the False Positive Rate.

3. The model improves minority-attacks detection rates.

4. The classifier is lightweight and suitable for resource-constrained IoT devices.

a) The size of the proposed lightweight classifier is only 7 KB, which can perfectly

be implemented in IoT devices.
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b) The memory consumption of 1.5 MB and consumption of CPU time of 0.14

seconds ensure the model is suitable for resource-constrained IoT systems.

Based on the results of this research, the limitations of the proposed CFLVAE-LDNN

model are highlighted below:

1. Including other IoT intrusion datasets to conduct extensive experiments might be

interesting. It is difficult to find publicly available IoT intrusion datasets.

2. It is difficult to find publicly available IoT intrusion dataset.

3. The VAE model might not be as successful as other data generative models.

4. The findings outlined here prove that the model is suitable for IoT. However, it will

be interesting to implement the proposed CFLVAE-LDNN in resource-constrained

IoT.

6.5 Future Research Directions

The findings presented in this thesis are relevant to the deep learning and cyber security

community. Hence, conducting further investigations on various IoT intrusion datasets will

be worthwhile. NSL-KDD dataset has already been examined for imbalance learning and

intrusion detection. Interestingly, it will be more advantageous to include various datasets

with other properties of IoT and conventional Internet in the experiments. Based on the

experimental results reported in this thesis, the CFLVAE-LDNN framework should be

successful in intrusion detection with conflicting attack categories. There may be intrusion

classification problems that do not have distinguished attack properties. For such cases,

the CFLVAE-LDNN may not be as beneficial as other intrusion detection approaches.

The data generated using the cost-sensitive focal loss may improve intrusion detection.

However, in the future, it will be interesting to investigate other objective functions and

different data generation techniques to enhance data imbalance problems in intrusion
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detection. The findings reported in this thesis ensure the suitability of the model for IoT.

However, it will be interesting to implement the model in resource-constrained IoT devices.

6.6 Final Words

This thesis established and reported an intrusion detection framework called CFLVAE-

LDNN. The CFLVAE-LDNN framework consists of CFLVAE data generation and LDNN

intrusion detection phases. The CFLVAE data generation model combines VAE and

Class-wise Focal Loss for better reconstructing the observed data samples to balance

the intrusion dataset. The proposed CFLVAE model was proposed to generate diverse

and realistic samples for the undetectable minority-class attacks. A Lightweight Deep

Neural Network (LDNN) classification model was designed for intrusion detection; then

trained and tested using generated balanced dataset. Additionally, to meet lightweight

criteria for resource-constrained devices, a further improvement is proposed by utilizing

the dimensionality reduction and network compression techniques for the LDNN classifier.

Overall, it is interesting to present the proposed CFLVAE-LDNN framework to help the

researchers and practitioners with intrusion detection in the IoT.
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