
QoS ENABLED CROSS-LAYERED CLUSTERING FOR
MITIGATING FLOODING QUERIES IN INTERNET OF

THING NETWORKS

FAWAD ALI KHAN

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITI OF MALAYA
KUALA LUMPUR

 2022

Univ
ers

iti
Mala

ya

 QoS ENABLED CROSS-LAYERED CLUSTERING FOR
MITIGATING FLOODING QUERIES IN INTERNET OF

THING NETWORKS

FAWAD ALI KHAN

THESIS SUBMITTED IN FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF
PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITI OF MALAYA
KUALA LUMPUR

2022

Univ
ers

iti
Mala

ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Fawad Ali Khan

Matric No: WHA150064 (17035745/1)

Name of Degree: Doctor of Philosophy

Title of Thesis: QoS Enabled Cross-Layered Clustering For Mitigating Flooding

Queries In Internet Of Thing Networks.

Field of Study: Mobile Computing (Computer Science)

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work.
(2) This Work is original.
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyrighted work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work.

(4) I do not have any actual knowledge, nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every right in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work, I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action,
or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

 Witness’s Signature Date:

Name:

Designation:

01 AUGUST 2022

Univ
ers

iti
Mala

ya

Khan1
Typewriter
1 August 2022

Khan1
Typewriter

iii

QoS ENABLED CROSS-LAYERED CLUSTERING FOR MITIGATING
FLOODING QUERIES IN INTERNET OF THING NETWORKS

ABSTRACT

The Internet of Things (IoT) has received a lot of attention in recent years since it connects

everyday things across a wide range of applications and domains. The IoT is intended to

improve human lives through the rapid creation of resource-constrained gadgets and the

rising connectivity of physical embedded devices that interact using present Internet

infrastructure. To exchange queries among heterogeneous IoT networks, numerous

sensors require bandwidth and network resources. Network flooding is a vital method for

successful query exchange. However, the risk of the intended flooding queries is that they

will result in unwanted and redundant network queries, resulting in increased network

traffic. The leading cause of inefficient resources utilization is redundant, unwanted and

flooding queries. Therefore, in this interconnected world of resource-controlled gadgets,

the key issues are to mitigate redundant, unwanted and flooding queries. In this way, IoT

devices need a lot of energy and take a long time to compute. More queries lead to

increased bandwidth consumption and poor Quality-of-Service (QoS). Existing

techniques are primarily concerned with how to speed up fundamental routing, have

limited features, and only give QoS solutions to particular IoT layers. However, a sole

QoS enabled cross-layered solutions for flooding suitable for both physical and network

layers devices have not been studied yet. In this research, A QoS enabled cross-layered

clustering (Cluster Based Flooding) an interoperable solution for network and sensor

layer devices is proposed. The proposed system can minimize energy consumption, delay,

network flooding, detect and eliminate redundant flooding queries by using a query

control mechanism (QCM). The core idea behind the Cluster based flooding (CBF) is to

split the network into various clusters. Inside the cluster Intralayer cluster (IALC) is

responsible to maintain the local query information proactively. While outside the cluster

Univ
ers

iti
Mala

ya

iv

Interlayer cluster (IELC) is used to reactively transfer the routing queries outside the

cluster. The CBF is a hybrid method that can be more effective compared to conventional

systems in terms of query traffic generation. However, if proper redundant query

detection and termination mechanisms are not used, the CBF may generate more control

traffic than typical flooding techniques. In this study, we employed the Cooja network

simulator to assess the QoS performance of the proposed CBF. Based on the simulation

results, the proposed technique is superior to traditional flooding and state-of-the-art in

terms of traffic delays, network throughput and energy consumption under various

performance metrics. Further, this study also contributes a testbed that is based on real-

time scenarios.

Keywords: Quality-of-Service (QoS) , Internet of Things, redundant queries, clustering,

flooding.

Univ
ers

iti
Mala

ya

v

QoS DIDAYAKAN PENGGUMPULAN MERENTAS LAPISAN UNTUK
MENGURANGKAN PERTANYAAN BANJIR DALAM INTERNET

RANGKAIAN BENDA

ABSTRAK

Internet Benda (IoT) semakin mendapat perhatian dalam tahun kebelakangan ini

kerana keupayaan untuk menghubungkan pelbagai peranti dalam segenap aplikasi dan

domain. IoT bertujuan untuk menambah baik kehidupan manusia melalui penciptaan

deras peranti yang berkekangan sumber dan juga peningkatan keterhubungan peranti

terbenam fizikal yang berhubung menggunakan infrastruktur Internet sedia ada. Untuk

saling bertukar kueri dalam kalangan rangkaian IoT heterogen, banyak pengesan

memerlukan lebar jalur dan sumber rangkaian. Pembanjiran rangkaian adalah satu

kaedah penting untuk menukar kueri dengan jayanya. Walau bagaimanapun, risiko

pembanjiran kueri adalah ia dapat mengakibatkan kueri rangkaian lewah dan tidak

diperlukan, sekali gus meningkatkan trafik rangkaian. Punca utama penggunaan

sumber yang kurang cekap adalah kueri yang tidak diperlukan, lewah dan

pembanjiran. Oleh itu, dalam dunia yang saling terhubung melalui peranti dengan

sumber terkawal, isu utama adalah untuk mengelakkan kueri yang tidak diperlukan,

lewah dan pembanjiran. Melalui kaedah ini, peranti IoT memerlukan tenaga yang

banyak dan mengambil masa yang lama untuk berfungsi. Peningkatan kueri

mengakibatkan peningkatan penggunaan lebar jalur dan kualiti perkhidmatan (QoS)

yang lemah. Kaedah sedia ada lebih menumpukan tentang cara meningkatkan kelajuan

penghalaan di peringkat asas, mempunyai ciri-ciri yang terhad dan memberi

penyelesaian QoS kepada lapisan IoT yang tertentu sahaja. Walau bagaimanapun,

sebuah penyelesaian tunggal silang lapisan menggunakan QoS untuk pembanjiran

yang sesuai bagi kedua-dua lapisan fizikal dan rangkaian masih belum diteroka. Dalam

kajian ini, sebuah penyelesaian kluster silang lapisan menggunakan QoS (Cluster

Univ
ers

iti
Mala

ya

vi

Based Flooding) untuk peranti lapisan rangkaian dan pengesan telah dicadangkan.

Sistem cadangan ini dapat mengurangkan penggunaan tenaga, lengah, pembanjiran

rangkaian, mengesan dan menyingkirkan pembanjiran kueri lewah menggunakan

mekanisma kawalan kueri (QCM). Idea utam di sebalik pembanjiran berasaskan

kluster (CBF) adalah untuk memisahkan rangkaian kepada pelbagai kluster. Kluster

antara-lapisan kluster dalaman (IALC) bertanggungjawab memelihara maklumat kueri

tempatan secara proaktif. Sementara kluster antara-lapisan kluster luaran (IELC)

digunakan untuk memindahkan kueri penghalaan secara reaktif di luar kluster. CBF

adalah satu kaedah hibrid yang lebih efektif jika dibandingkan dengan sistem

konvensional dari segi penjanaan trafik kueri. Walau bagaimanapun, jika pengesanan

dan penyingkiran kueri lewah yang sesuai tidak digunakan, CBF berkemungkinan

menjana lebih banyak trafik kawalan daripada kaedah pembanjiran biasa. Kajian ini

telah menggunakan penyelaku rangkaian Cooja untuk menilai prestasi QoS dalam

CBF yang dicadangkan. Berdasarkan kepada keputusan simulasi, kaedah yang

dicadangkan lebih baik daripada kaedah pembanjiran biasa dan juga kaedah terkini

dari segi kelengahan trafik, pengeluaran rangkaian dan penggunaan tenaga di bawah

pelbagai penilaian prestasi. Tambahan lagi, kajian ini turut menyumbang sebuah tapak

uji yang berdasarkan senario masa nyata.

Kata kunci: Kualiti Perkhidmatan (QoS), Internet Benda, kueri lewah, kluster,

pembanjiran

Univ
ers

iti
Mala

ya

vii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my profound gratitude to Almighty

Allah for his goodness and mercy throughout my study. I want to extend my special

thanks to my supervisor, Professor Dr. Rafidah Md Noor, for her immense contributions

toward realizing all the works presented in this thesis. You made me see far beyond my

peers by standing on your giant academic experiences and knowledge. Your time,

continuous support, kindness, care, and thoughtful consideration made my journey less

stressful. I would also like to thank Professor DR. Miss Laiha Binti Mat Kiah for being

always disposed to help me in the uncountable obstacles that we eluded in the road to

complete this work.

In the same way, I would like to express my special thanks to my mother, and my

father Hashtmat Ali Qureshi, for their moral and financial support throughout my Ph.D.

I am deeply grateful to my wife and son, for their love, care, prayer, and emotional support

throughout my Ph.D. I am also thankful to Mr. and Mrs. Saifullah Khan for their

motivational support. It would not have been possible for me to reach the hill of doctoral-

level research work in a foreign country without your prayers and emotional support. I

also would like to thank my Lil chums Zubair Ali Qureshi and Prof Sb for their continuous

support to accomplish this task. It’s my pleasure to extend my gratitude to Qurat ul Ain

Mastoi, who always stands behind me in my difficult times.

Last but not least, I am indebted to my mother and my father for their sacrifices

for me. I got my strength to continue my Ph.D. thesis from my family and their kind

words which encouraged me to reach this stage.

Univ
ers

iti
Mala

ya

viii

TABLE OF CONTENTS

Abstract .. iii

Abstrak .. v

Acknowledgements ... vii

Table of Contents ... viii

List of Figures .. xiv

List of Tables... xvii

CHAPTER 1: INTRODUCTION .. 1

1.1 Introduction.. 1

 1.1.1 Network Querying ... 5

1.2 Motivation.. 6

1.3 Problem Statement ... 8

1.4 Research Question ... 10

1.5 Research Aim and Objectives .. 11

1.6 Significance and Contribution of the study ... 12

1.7 Layout of Thesis .. 15

CHAPTER 2: LITERATURE REVIEW .. 17

2.1 Background .. 18

2.1.1 Local / Stationary Wireless Sensor Network ... 18

 Simple Monitoring .. 20

 Surveillance of Security or Emergencies 21

 Object Tracking ... 22

2.1.2 Distributed Wireless Sensor Networks .. 22

Univ
ers

iti
Mala

ya

ix

2.2 IoT Networks ... 24

2.3 Query Processing in WSNs/IoT... 26

 2.3.1 Query Processing in Static WSN ... 27

 Aggregation Based Query ... 28

 2.3.2 Query Aggregation in IoT.. 29

 2.3.3 Aggregation Functions ... 44

2.4 Querying Distributed WSNs towards the IoT ... 45

 2.4.1 Role of Distributed WSNs in IoT .. 45

 2.4.2 Querying Distributed Sensor Data in IoT .. 47

 Priority Queries ... 47

 Flooding .. 49

2.5 QoS in WSN/IoT query processing ... 56

 2.5.1 QoS Support for Query in IoT ... 56

 2.5.2 QoS Enabled Cross Layer Architecture, Design in the IoTs (IoT):

Issues and Possible Solutions. ... 61

 Cross Layer Design Model .. 63

 2.5.3 The Architecture of Cross Layer Platform in the IoTs 63

 2.5.4 Cross-Layer QoS Strategies ... 69

 Service-Differentiated Real-Time Communication Scheme

(SDRCS). ... 69

 Network Layer QoS Support Enforced by a Cross-Layer

Controller (NLQS) .. 70

 Cooperative MAC Protocol for Multihop Networks (MCMAC).

 70

 Cluster-Based Cooperative Routing (CBCR) Protocol. 70

Univ
ers

iti
Mala

ya

x

 Adaptive Cross-Layer Forward Error Correction (ACFEC). 71

 Balanced Cross-Layer Fuzzy Logic (BCFL) 72

 Minimum Hop Disjoint Multipath Routing Algorithm with Time

Slice Load-Balancing Congestion Control Scheme. 72

 Cross-Layer Optimal Design (CLOD) 73

2.6 Conclusion ... 77

CHAPTER 3: CROSS-LAYERED CBF (FOR MITIGATING REDUNDANT

QUERIES IN IOT) .. 79

3.1 Methodology .. 80

3.2 Flooding Strategy... 83

3.3 Cluster Based Flooding (CBF) for IoT .. 84

 3.3.1 CBF Assumptions .. 85

 3.3.2 Neighbor Mote Discovery Phase (MDP) ... 86

 3.3.3 The IntraLayer Clustering (IALC) ... 87

 3.3.4 The Interlayer Clustering (IELC) .. 88

3.4 Query Control Mechanism .. 93

3.5 Model Formation for Cluster Based Flooding (CBF) ... 96

3.6 Conclusion ... 100

CHAPTER 4: FORMAL VERIFICATION AND ANALYSIS 102

4.1 Motivation for Formal Verification and Modeling in Event-B 102

 4.1.1 Event-B Method ... 103

4.2 Model refinement... 105

4.3 Overview of Cluster Based Flooding .. 106

Univ
ers

iti
Mala

ya

xi

 4.3.1 Informal description ... 106

 4.3.2 System Requirements .. 107

4.4 Environment assumptions .. 110

4.5 Formal Development ... 111

 4.5.1 Environmental Modeling ... 112

 4.5.2 Formation of Cluster .. 115

 4.5.3 Route Query Discovery Process .. 124

 4.5.4 Updating Cluster Routes .. 131

 4.5.5 Validating the Model ... 135

4.6 Conclusion ... 139

CHAPTER 5: QoS ENABLED QCM TESTBED .. 140

5.1 Introduction.. 140

5.2 Existing Testbeds ... 141

 5.2.1 FIT IoT-LAB: .. 141

 5.2.2 INDRIYA 2: .. 141

 5.2.3 MoteLab: .. 142

 5.2.4 The TKN WIreless NetworkS Testbed: ... 142

 5.2.5 FlockLab: ... 142

 5.2.6 SensLAB: ... 143

5.3 Experimental Tools and Schematic ... 143

 5.3.1 Arduino Controller ... 143

 5.3.2 IR Sensor: .. 145

 5.3.3 RFID Sensor: Radio Frequency Identifier 145

 5.3.4 Indicators: .. 146

Univ
ers

iti
Mala

ya

xii

 5.3.5 Cloud / Edge Servers: .. 146

 5.3.6 Layered Description and Schematic .. 146

5.4 Query Control Mechanism (Testbed) .. 148

 5.4.1 Smart Query Mitigation ... 149

5.4.1.1 Loop-Back Mitigation (LM) ... 150

5.4.1.2 Smart Query Detection (SQD(a) / SQD(b)) 151

5.4.1.3 Early Mitigation (EM) ... 152

5.4.1.4 Selective Flooding ... 154

5.5 Evaluation of Query Control Mechanism (QCM) ... 155

5.6 Performance Results .. 156

5.7 Conclusion and Future work .. 160

 5.7.1 Future Work ... 161

 Making the Testbed Accessible ... 161

 Intelligent Testbed ... 161

CHAPTER 6: RESULTS AND DISCUSSIONS .. 162

6.1 The Implementation Details .. 162

6.2 Results and Discussion .. 164

 6.2.1 Average Energy Consumption ... 167

 6.2.2 Traffic Delay .. 170

 6.2.3 Throughput... 173

6.3 Performance Evaluation and Validation of QCM ... 176

 6.3.1 Evaluation Methodology.. 176

6.4 Results ………………………………………………………………………….179

6.5 Discussion (Hypothesis Testing) ... 191

Univ
ers

iti
Mala

ya

xiii

6.6 Conclusions and Future Work ... 193

CHAPTER 7: CONCLUSION ... 195

7.1 Reappraisal of the Research Objectives and Research Questions 195

7.2 Research Scope and Limitation ... 201

7.3 Future Work ... 201

7.4 Summary .. 202

References ... 203

List of Publications and Papers Presented .. 237

Univ
ers

iti
Mala

ya

xiv

LIST OF FIGURES

Figure 1.1: Layer-based system model with different motes communicating redundantly
in IoT 3

Figure 1.2: A search strategy of level-based flooding for the IoT 8

Figure 1.3: Thesis Layout ... 15

Figure 2.1: Basic WSN Architecture .. 18

Figure 2.2: Applications of WSN 20

Figure 2.3: Everyday objects connected to the Internet . .. 22

Figure 2.4: Query Processing in WSN/ IoT. ... 26

Figure 2.5: Query Aggregation in WSN/IoT network ... 27

Figure 2.6: Data aggregation mechanism ... 29

Figure 2.7: Tree-based mechanism 30

Figure 2.8: Cluster based mechanism 35

Figure 2.9: Centralized based mechanism ... 38

Figure 2.10: Issues regarding distributed WSNs towards IoT………………………….44

Figure 2.11: Layer of IoT ... 45

Figure 2.12: Layer based QoS architecture in IoT ... 52

Figure 2.13: IoT Architecture (End-to-End) ... 55

Figure 3.1: Research Methodology ... 73

Figure 3.2: Sink mote, destination mote, and redundant mote system model 76

Figure 3.3: Proposed CBF Architecture .. 78

Figure 3.4(a): MDP-Query-Packet-format-and-Neighbor-mote-table 82

Figure 3.4(b): The neighbor-mote discovery protocol (MDP).. 83

Univ
ers

iti
Mala

ya

xv

Figure 3.5(a): Intralayer cluster protocol (IALC). .. 84

Figure 3.5(b): The intralayer cluster (IALC) algorithm. ... 85

Figure 3.6: Interlayer cluster protocol (IELC) .. 86

Figure 3.7: Flowchart of the CBF process. ... 90

Figure 3.8: Cluster-based flooding (CBF) model formulation…………………….......91

Figure 4.1: Flooded IoT Network during exchange of Queries 101

Figure 4.2: Network Topology for model validation .. 130

Figure 5.1: Pinout Schematic of ATMega 2650. .. 139

Figure 5.2: Schematic of the QCM Testbed. .. 142

Figure 5.3: Desired search direction of overlapping clusters 144

Figure 5.4: Loop-back Mitigation (LM). .. 145

Figure 5.5: Smart Query Detection SQD(a) / SQD(b) ... 147

Figure 5.6: Early Mitigation. ... 148

Figure 5.7: Selective Flooding (SF). ... 150

Figure 5.8: IALC Traffic .. 152

Figure 5.9: IELC Traffic (Full Flooding) ... 153

Figure 5.10: IELC Traffic per route query Discovery ... 154

Figure 5.11: Delay of IELC Route Query Discovery .. 155

Figure 6.1(a): Average consumption of energy with respect to different interval of traffic
 ... 164

Figure 6.1(b): Average consumption of energy with malicious motes...........................164

Figure 6.1(c): Average consumption of energy malicious motes with realistic condition
 ... 164

Figure 6.1(d): Average consumption of energy with different mobility speed 164

Univ
ers

iti
Mala

ya

xvi

Figure 6.1(e): Average consumption of energy with different simulation area 164

Figure 6.1(f): Average consumption of energy with different pause time 164

Figure 6.2(a): Delay with respect to different interval of traffic 167

Figure 6.2(b): Delay with malicious motes. .. 167

Figure 6.2(c): Delay with malicious motes with realistic condition 167

Figure 6.2(d): Delay with different mobility speed . .. 167

Figure 6.2(e): Delay with different simulation area .. 167

Figure 6.2(f): Delay with different pause time.. 167

Figure 6.3(a): Throughput with respect to different interval of traffic 170

Figure 6.3(b): Throughput with malicious motes. .. 170

Figure 6.3(c): Throughput with malicious motes with realistic condition 170

Figure 6.3(d): Throughput with different mobility speed …………………………….170

Figure 6.3(e): Throughput with different simulation area .. 170

Figure 6.3(f): Throughput with different pause time .. 170

Figure 6.4: Energy Consumption with respect to different scenarios 177

Figure 6.5: Delay with different intervals of traffic .. 181

Figure 6.6: Throughput with different intervals of traffic... 184

 Univ
ers

iti
Mala

ya

xvii

LIST OF TABLES

Table 2.1: A Comparison of tree-based mechanism in data aggregation 34

Table 2.2: A comparison of cluster based mechanism in data aggregation. 37

Table 2.3: . Comparison of centralized mechanism in data aggregation. 41

Table 2.4: Overview of data aggregation Methods along with its features 42

Table 2.5: Summarization of the various methods to provide QoS in IoT 50

Table 2.6: A summary of some reviewed cross-layered models65

Table 5.1: Specification of Mega 2650. .. 140

Table 5.2: Layered description of Hardware... 142

Table 6.1: Simulation parameters. .. 158

Table 6.2: Configuration of Simulation Scenario Parameters with Varied Mobility Speed
 ... 161

Table 6.3: Configuration of Simulation Scenario Parameters with Varied Simulation area
 ... 162

Table 6.4: Configuration of Simulation Scenario Parameters with Varied Pause Time..162

Table 6.5: Illustration of symbols and notations used in the chapter

Table 6.6: Inferential analysis of the proposed QCM algorithm in terms of energy
consumption scenarios ... 178

Table 6.7: ANOVA statistics in terms of “energy consumption” scenarios 180

Table 6.8: Inferential analysis in terms of “delay” scenarios.. 182

Table 6.9: ANOVA statistics in terms of “Delay” scenarios 183

Table 6.10: Inferential analysis in terms of “Throughput” scenarios 185

Table 6.11: ANOVA statistics in terms of “Throughput” scenarios 186

Table 7.1: A summary of proof obligation…………………………………………….193

Univ
ers

iti
Mala

ya

xviii

 LIST OF SYMBOLS AND ABBREVIATIONS

Univ
ers

iti
Mala

ya

1

CHAPTER 1: INTRODUCTION

This chapter demonstrates a synopsis of the research which is conducted in this

thesis. The research work is focusing on the QoS enabled cross-layered clustering for

mitigating flooding queries in IoT (IoT) networks. The overview of the work is explained

in several sub-sections as follows. Section 1.1 provides the introduction of the Chapter.

Section 1.2 discusses the motivation of the Research Work, and the Statement of the

Problem is presented in Section 1.3. Whereas Section 1.4 and Section 1.5 describes the

Research Questions and Objectives respectively. Section 1.6 represents a significance and

contribution of the study. Finally, Section 1.6 provides a layout of the thesis.

1.1 Introduction

The IoT has gained a tremendous fame in the recent years. Many of our everyday

devices are becoming connected to us, spanning a wide range of characteristics such as

autonomy, sensing, and contextual awareness (David et al., 2015). IoT is the outcome of

the progress of the Internet, and the innovative creation of intelligent equipment helped

in the development of recent prototype. The IoT is the next radical technology in

transforming today's communication infrastructure into a wholly futuristic network

(Krishnapriya, S and Joby, 2015). The IoT is planned to include a massive number of

sensors that collect and transmit data on ambient conditions, such as physiological

assessments, machine operational data, and so on. The IoT allows numerous sensors and

things to connect with each other without the need of human mediation (Koike et al.,

2016).

The prime purpose of IoT is to enable data sharing between devices and applications

in the real-world environment (Laxmi, P and Deepthi, 2017). Consequently, the IoT is

built on the combination of numerous communication systems, identification and

Univ
ers

iti
Mala

ya

2

tracking technologies, different sensor and actuator networks, and distributed intelligent

devices (Yan-e, 2011). These objects/devices are linked together and communicate with

one another via the same network. These gadgets are connected to a sensor, allowing

them to detect specific environmental variables, analyze the situation, and respond

appropriately. In addition, IoT devices are scheduled to automatically take decisions or

advise the user of the best choice (Huang et al., 2017). This interconnected network has

the potential to offer significant advancements in the application-technology and services,

resulting in economic advantages to worldwide corporate advancement. Several devices

are connected to the Internet to communicate local data in information superhighway.

An IoT network comprises hundreds or thousands of small, dispersed autonomous

devices known as sensors (Alqahtani et al., 2016). Sensors can work together to detect,

quantify, and collect data on physical or environmental variables and then transfer that

data into a single hop or multi-hop transmission to one or more sinks, depending on the

local decision process. Sinks may receive duplicate and redundant data due to the link

between spatial position and data characteristics. As a result, sinks read sensor input in a

meaningful way and respond appropriately (White et al., 2017).

Moreover, the IoT has the capacity to provide a smart environment with significant

time, energy, resource savings and a high Quality-of-Service (QoS). In the IoT , vibrant

resource scheduling for diverse workloads is crucial for maintaining QoS, energy

consumption on each mote, and data transmission traffic delay (Dhumane et al., 2016)

(Alqahtani et al., 2016). Data transmission in an IoT network is prioritized, energy

consumption, QoS, and delay are the most demanding needs for IoT networks (White et

al., 2017). Furthermore, it is widely recognized that IoT has the capacity for a broad range

of applications like health, agriculture, education, transportation, poultry, supply chain,

farming, crop protection, and irrigation (Riadi et al., n.d.).

Univ
ers

iti
Mala

ya

3

Heavy control packet exchange between sensor nodes for obtaining an efficient

forwarding route to the base station results in reducing overall network lifetime.

Hierarchical transmission in WSN and IoT is considered one of the preferred ways

for energy efficient routing of data packets toward the destination. In this kind of

architecture, sensor nodes are divided into different layers with different tasks (Masoud

et al., 2019).

Clustering is a technique where different sensor nodes divided into groups and sub

groups, they transmit their sensed data to the CH node and they in turn forward these

packets toward the sink in hierarchical fashion. Recently, different routing techniques

were proposed for three layer clustering topology in Wireless Sensor Network (WSN)

which outperform the basic two layer clustering hierarchy. The problem that remains in

these approaches is the heavy control packet exchange between nodes after every round

in order to choose efficient lower layer heads. Among these techniques is Hybrid

Hierarchical Clustering Approach (HHCA). According to HHCA, the upper layer heads

are centrally selected by base station, while sensor nodes only have to select lower layer

heads distributivity (Ullah et al., 2019) (Lahane & Jariwala, 2021).

Every application necessitates numerous sensors to link and converse with one

another, potentially lowering network QoS due to wasteful resource utilization, traffic

delays due to superfluous messages/queries, and energy consumption because each

device has explicit approach to the cloud resources (O. Liang et al., 2007; Salehi et al.,

2013), as illustrated in Figure 1.1. Univ
ers

iti
Mala

ya

4

Figure 1.1: Layer Based Communication Model for Heterogeneous IoT
Devices.

Cross-layer designed is an escape from the pure waterfall-like concept of the

traditional communications model with virtually strict boundaries between layers. Figure

1.1 depicts a communication model with multiple sensor motes interacting with one

another at the network and physical (sensor) layers of the IoT (Arkian et al., 2015). Cross-

layer designed is an escape from the pure waterfall-like concept of the

traditional communications model with virtually strict boundaries between layers. The

cross layer approach transports feedback dynamically via the layer boundaries to enable

the compensation of QoS parameters such as unwanted routing queries, delay,

throughput or other mismatch of requirements and resources by any control input to

another layer.

Strict boundaries between layers are enforced in the original networking model, where

data is kept strictly within a given layer. Cross-layer removes such strict boundaries to

allow communication between layers by permitting one layer to access the data of another

layer to exchange information and enable interaction.

Univ
ers

iti
Mala

ya

5

Furthermore, due to the energy-constrained nature of IoT devices, resolving these

issues in IoT networks is demanding. Currently, no cross-layered mechanisms have been

established for the identification and termination of redundant queries in this domain. The

following subsection describe the challenges in network querying.

1.1.1 Network Querying

Network querying is regarded as a critical job in a Wireless Sensor Network

(WSN) / IoT since it permits users to obtain information based on sensors. The only way

to extract the essential information accurately and as per needs of the applications is to

query the WSN/IoT. For instance, the authority can collect temperature or humidity data

from specific locations to satisfy different goals such as statistical analysis, storage of

records, events detection, etc., to meet requirements in a particular range or period in

environmental monitoring WSN. In addition, at urgency, in cases of battlefield or in

military use, it can be vital to determine the location of opponent's vehicles inside a

certain perimeter as soon as possible. From all the above instances, it is detected that the

query emitter needs specifically the particular sensor data meeting the query conditions

on time location or range. As a result, data recovery from all WSN and IoT sensors are

unnecessary and redundant in such instances. Furthermore, it can fail to produce an

accurate query result in a timely manner. Therefore, it is vital to create a proper query

execution methodology that considers all distinguishing WSN and IoT characteristics.

WSN is typically considered as a dispersed and geographically scattered database that

obtains data from environment dynamically rather than being entered by an operator. The

specification of collaborative querying and job allocation through a straightforward

interface that conceals the internal processes within the WSN. In addition, the majority

of WSN real-time applications necessitate a quick and accurate query response. Apart

from deploying sensors on mobile platforms, one of the most difficult challenges is

Univ
ers

iti
Mala

ya

6

gaining access to sensor data, which necessitates the development of effective and

distributed systems for query compiling, data organization, and storing. Decisions must

be taken regarding the rate of recurrence and nature of data to be collected. Data can, for

instance, be taken routinely at regular periods from unified WSNs, or need based, i.e.,

only when asked from the appropriate WSNs. Other essential issues in IoT and WSN

applications include efficient query processing in context of processing time, ideal

storage plan, and several operations for large-scale data. Using sensor technology,

capturing enormous volumes of data has been very fast; querying and mining large-sized

data is computationally expensive, especially when the analysis is required with adequate

accuracy in real-time. As a result, implementing delay and accuracy-sensitive query

processing approaches in WSNs, and the IoT provides several major research issues that

inspire the work discussed in this thesis.

1.2 Motivation

While many studies have been done on various critical areas of IoT like

architecture, network protocols, coverage, and so on, providing Quality-of-Service (QoS)

of network queries in IoT remains a largely unexplored study area. This is due to the

distinctive nature of IoT and WSN in comparison to conventional networks. Therefore,

the compact definition the QoS parameters of an IoT query is unclear. Similarly, it applies

to the query processing approaches that dynamically support them. The primary Quality-

of-Service (QoS) metrics for query processing in heterogeneous IoT networks are energy

consumption, delay, and network throughput. Even if low energy consumption is

typically considered, the essential design need of IoT, real-time communication in time-

sensitive applications such as safety monitoring, object tracing, health monitoring,

mission-critical applications, etc., are nevertheless more and more significant. The

Univ
ers

iti
Mala

ya

7

assurance of a query response accompanying a shortest likely delay is the fundamental

real-time requirement of these applications. In addition, some applications can explicitly

specify the time limit when the query is issued and require the best response in the long

term. For instance, to detect a crucial hazard scenario like a bushfire, the application needs

to know the surroundings temperature, the direction of wind, and other information in a

matter of seconds. Due to the emergency, less accurate data can be accepted in such

scenarios. In such instances, receiving an estimated but immediate response that meets

the delay bound remains the highest priority for detecting the event and initiating the

appropriate actions. As a result, maintaining timeliness in giving a real-time priority to a

query response with the highest level of accuracy in terms of throughput is critical (Ruan

et al., 2020).

Priority query is another critical Quality-of-Service (QoS) metric for IoT query

processing such as environment monitoring, machine/structural health maintenance, etc.

It is feasible to attain the best throughput in terms of accuracy by gathering the most

recent data from all network's sensors to respond to every application-generated query

(Thakare et al., 2020). However, given the resource-restricted types of the sensors, this

strategy of gathering the entire sensory data at the time of query implementation is not

always practical or cost-valuable. Therefore, the most efficient and effective use of

energy restricted IoT resources and the least possible query delay are needed to achieve

the best resource utilization.

Again, depending on the conditions, some applications require sensor data with

shorter delay or higher precision or a mix of specific latency and accuracy requirements.

For instance, very accurate sensor data are necessary to maintain the desired environment

in typical working settings in a food storage controller. However, changes must be

reported immediately (i.e., the high temperature that causes a fire), and the system needs

Univ
ers

iti
Mala

ya

8

approximate sensor data to address an incident to regain from any abrupt and unusual

change in one or more recorded parameters. (i.e., delay is the top priority).

Furthermore, sensors necessitate network resources and bandwidth to exchange

queries among dissimilar IoT networks. For a successful exchange of queries, network

flooding is a vital probing strategy. However, the downside of the intended flooding

queries is that they will result in unwanted and redundant network queries, resulting in

high network traffic. The leading cause of wasteful usage of resources are redundant,

undesired, and flooding queries. In this networked world of resource-controlled gadgets,

the key issues are alleviating redundant, unwanted, and flooding queries. In addition,

because of unwanted and redundant queries, IoT devices use additional energy and

require computational time, which leads to more bandwidth consumption and miserable

QoS. Existing techniques are primarily concerned with how to speed up fundamental

routing, have limited features, and only give QoS solutions to specific IoT layers.

However, a sole QoS enabled cross-layered solutions for flooding suitable for both

physical and network layers devices has not been studied yet (Premila et al., 2015).

The research presented in this thesis is a step towards improve the QoS of IoT

networks by preventing and mitigating the unwanted and redundant flooding queries for

both physical and network layers devices and can become the part of future IoT-QoS

technologies.

1.3 Problem Statement

In recent decades, the IoT has gained a lot of attention. However, IoT is planned

to include a massive number of sensors that collect and transmit data on ambient

conditions, physiological assessments, machine operational data, etc (Özdoğan & Ayhan,

2019). Due to the large number of connected devices or sensors and exchange of

information on network the redundant and unwanted queries becomes the major cause of

Univ
ers

iti
Mala

ya

9

network flooding which leads to an inefficient utilization of resources and may reduce

the QoS (Conti et al., 2014)(O. Liang et al., 2007)(J. Jin et al., 2012). Network flooding

continues even after the destination found which may affect the overall performance of

the network(Benenson et al., 2006)(Gluhak et al., 2011).

IoT devices are more susceptible to redundant and unwanted flooding queries, which

may disrupt data transmission, causing them to delays, require more bandwidth and

energy to transmit the query to the destination which may reduce the QoS of IoT network

in context of energy consumption, cost, delays and network throughput. There is also a

lack of mechanism to identify the priority queries from the network (Talal et al., 2019)

(Qiu et al., 2012), (Kumar & Chaurasiya, 2019), (Cheng et al., 2018), (Baddeley et al.,

2019), (Yamazaki et al., 2020).

There is no compatible solution for priority and redundant undesired flooding

queries among all existing studies for physical and network layer devices. In addition,

present techniques primarily focus on accelerating basic routing with limited

functionality and providing a QoS solution only to a certain IoT layers (Ullah et al., 2019).

Figure 1.2: A Level-Based Flooding Search Strategy of Internet of Things.

Univ
ers

iti
Mala

ya

10

In Figure 1.2 sink / sender mote searching for target / destination mote and target

mote send data back reply to sender node in disordered way. Intermediate motes

rebroadcast the query automatically which leads to flood the whole network. Generate

heavy network traffic and redundant queries by utilizing excessive energy and bandwidth

which may leads to more delay and overall degradation of QoS. Note that among all the

existing techniques, there is no interoperable solution both for physical and network layer

devices. Based on the discussion, it is concluded that IoT demand a QoS enabled cross-

layered clustering approach that will help in monitoring network flooding, detect and

terminate the redundant queries and reduce the energy consumption, delay and prioritize

the queries as it has been neglected to date (Tandon et al., 2021), (Delgado-Rajo et al.,

2020).

1.4 Research Question

This study addresses the following research questions to achieve the objectives.

RQ1: How can we analyze and identify the limitations of existing mechanism used to

prioritize, detect and terminate the redundant / unwanted flooding queries in sensor and

network layer of IoT networks?

RQ2: What mechanism is required to prioritize, detect, and terminate the redundant and

unwanted flooding queries for sensor and network layer to enhance the QoS of IoT

network?

RQ3: How can we formulate cross-layered clustering for redundant and unwanted

flooding queries to be developed?

Univ
ers

iti
Mala

ya

11

RQ4: How can a real-time QoS enabled testbed can detect and terminate the redundant

and unwanted queries in IoT network and to reduce the number of duplicate/overlapping

queries in IoT networks to improve QoS.

RQ5: How does the proposed mechanism improves the network performance in terms of

energy consumption, delay, and throughput?

1.5 Research Aim and Objectives

This research aims to address the problem of redundant queries and network

flooding in the IoT networks and to propose a QoS enabled cross-layered clustering

approach. Following objectives are defined to be achieved to attain the aim of this

research.

1. To investigate the state-of-the-art solution and identify the issues and

limitations to prioritize, detect and terminate the redundant and unwanted

flooding queries over the sensor and network layer of IoT network.

2. To develop a cross-layered Cluster Based Flooding (CBF) technique for priority

and redundant queries. Two new algorithms are introduced as below:

o Interlayer Clustering (IELC) algorithm for network layer that uses

advance query control mechanism (QCM) for detecting and terminating

the redundant and unwanted queries and network flooding.

o Intralayer Clustering (IALC) algorithm for physical layer that maintains

priority queries information locally.

3. To formulate the cross-layered Cluster Based Flooding (CBF) using Sets in

Prob B.

4. To design real time QoS enabled Query Control Mechanism (QCM) testbed

used to detect and terminate the redundant and unwanted queries in IoT

Univ
ers

iti
Mala

ya

12

networks. The QCM testbed aims to reduce the number of

duplicate/overlapping queries in IoT networks to improve QoS.

5. To evaluate our Cluster Based Flooding (CBF) approach using simulation

tools under realistic scenarios and compare the results with the state-of-the-

art approaches in the literature as well as validate the results using a statistical

analysis tool.

1.6 Significance and Contribution of the study

The significance and keyβcontributions of thisβdissertation are as follows,

1. An exhaustive and deep review of literature for the state-of-the-art solutions in

WSN/IoT to devise a comprehensiveβthematic taxonomy. The studyβanalyzed each

state-of-the-art query solution toβidentify theβdistinguishing WSN/IoTβfeatures utilized

for each solution and the exactβproblem addressed by a particularβtechnique together

with theβsimulation or emulationβenvironment of the correspondingβtechnique. The

criticalβdiscussion extendedβthe knowledge of the domain of the currentβquery

processing trends in the WSN/IoT networks, the major strengths of potential, and the

research gaps that required thoroughβinvestigations. This study concluded that a sole QoS

enabled cross-layer solution for flooding (suitable for both physical and network layers

devices) was not addressed previously.

2. Design of QoS enabled cross-layered clustering technique to mitigate flooding

queries in IoT networks. The QoS enabled cross-layered clustering was significantly

implemented asβinteroperable solutionβboth for physicalβlayer andβnetwork layer

devices. Since the cross-layeredβCBF divides theβwhole network into differentβclusters,

being localβquery informationβproactively maintainedβby theβIALC, CBF

wasβinvestigated asβpotentially moreβefficientβagainst traditionalβschemes in terms of

queryβtrafficβgeneration. However, βthe CBF wasβfound insignificantβin the absence

Univ
ers

iti
Mala

ya

13

ofβappropriate redundantβquery detectionβand termination techniquesβsince the CBF

generateβmore controlβtraffic comparedβto standard floodingβtechniques. Thus, the

adoptedβInterlayer clusteringβ (IELC) composedβof advanced queryβdetection and

terminationβtechniques (QCM), βlinked signalβstrength andβQuery Limit Threshold

(QLT) valuesβfor detectingβflooding. The techniqueβwas validated asβit was capable of

minimizingβthe energyβconsumption, network flooding, and identifying and eliminating

unwanted and redundant routing queries inβIoT networks. The study also investigated

this techniqueβmore accountableβfor checkingβfurther localityβand queryβdetection

strength in an IoT network during flooding. This study observed theβstrength ofβquery

detection forβverifying anyβvariation concerningβthe signal strengthβof query packet,

and theβQLT. The QoS enabled solution outperformed the existing solutions.

The outcome of this research contribution was published [Khan, F. A., Noor, R. M., Mat

Kiah, M. L., Noor, N. M., Altowaijri, S. M., & Rahman, A. U. (2019). QoS Enabled

Layered Based Clustering for Reactive Flooding in the IoT. Symmetry, 11(5), 634].

3. Design of a Formal Method for CBF Employing Event- B Criteria to Deeply

Examine the CBF in IoT Context. This study designed formal method inspired by

formal verification, significantly enhanced the quality of the verification system, backed

by rigorous mathematical proofs. Since the existing studies lacked the important formal

validation of cross-layered routing protocols, the formal specification design of cross-

layered cluster-based flooding CBF at event B proved the correctnessβof the

routeβdiscovery mechanism. Having a refinement-basedβmethod, it significantly

improved the way to add system details to the corresponding model progressively,

resulting in modeling and authentication easier for the user.

4. Development of QoS Enabled QCM Testbed. This study developed a QoSβenabled

Univ
ers

iti
Mala

ya

14

QCM testbed to detect and mitigate the redundant and unwanted queries in IoT networks.

The QCM testbed significantly reduced the number of duplicate/overlapping queries in

IoT networks to improve QoS by a prompt calculation of all the overlapping clusters

within the query space. The testbed successfully implemented the smart query detection

and mitigation to manage the redundant queries issue to provide a better QoS.

5. Inferential Validation of Implemented Outcomes of Research Study. The last

research contribution of this study is the successful validation of achieved outcomes of

comparative analysis of our solution with the existing studies. The study incorporated the

inferential analysis and validation of QoS enabled QCM mechanism employing ANOVA

and t-tests. The research outcomes accomplished the 95% confidence interval, and the

probability was found less than 0.05, demonstrating the significance of achieving the

rejection of NULL hypothesis.

The outcome of this research contribution was published [Khan, F. A., Noor, R.

M., Kiah, M. L. M., Ahmedy, I., Yamani, M., Soon, T. K., & Ahmad, M. (2020).

Performance Evaluation and Validation of QCM (Query Control Mechanism) for QoS-

Enabled Layered-Based Clustering for Reactive Flooding in the IoT. Sensors, 20(1), 283].

Univ
ers

iti
Mala

ya

15

1.7 Layout of Thesis

The remainder of this thesis is presented below.

Figure 1.3: Thesis Layout

Chapter 2: This Chapter examines several existing research on sensor data models, query

routing paths, and QoS of query processing approaches, as well as risks and challenges

related to IoT Layers. The review focuses on our research objectives and covers relevant

research into a single WSN and multiple WSNs connected with the IoT. The advantages

and disadvantages are discussed for each method, and recommendations for future

research are identified.

Chapter 3: This Chapter proposed a QoS enabled cross-layered clustering technique for

mitigating flooding queries in IoT networks. It explains the phases in the Cluster Based

Flooding (CBF) along with the algorithms IALC, IELC and QCM presented in each

phase. The distinct features of the CBF are also highlighted.

Chapter 4: This Chapter presents a formal analysis of the cluster-based flooding (CBF)

using Event-B method and as a case study use to examine the CBF in IoT.

Univ
ers

iti
Mala

ya

16

Additionally, this Chapter demonstrate system requirements and environment

assumptions taken during development. It depicts the whole process of formal

development, including the formalization with Event-B and the validation with the

ProB.

Chapter 5: This Chapter presents QoS enabled query control mechanism (QCM) testbed

used to detect and terminate the redundant and unwanted queries in IoT networks. The

QCM testbed aims to reduce the number of duplicate/overlapping queries in IoT networks

to improve QoS. The query control mechanism is aware of all the query information.

Therefore, all the overlapping clusters in the whole query space can be easily calculated.

Chapter 6: This Chapter reports the results obtained from different experiments and

analyzed the effectiveness of our method. This study also compares and contrast

experimental results of this research with the benchmark results of the state-of-the-art

methods. The statistical validation is performed to know the significant differences

between the QCM and state-of-the-art methods.

Chapter 7: This Chapter completes the thesis by explaining how the research objectives

have been achieved. It also lists the limitations of study along with the future research

directions of the proposed method.

 Univ

ers
iti

Mala
ya

17

CHAPTER 2: LITERATURE REVIEW

 The Chapter previews the Wireless Sensor Networks and IoT architecture,

followed by the essential concepts to help readers comprehend the notions of WSN/IoT.

This chapter demonstrates a thorough review of the query processing, and associated

challenges in heterogeneous WSN/IoT Networks. This Chapter devise a contemporary

taxonomy of the reported redundant/unwanted queries in cross layers to clarify the

important categories of QoS implications (for each layer of the IoT and wireless sensor

network). Additionally, this Chapter comprehensively analyzes the possible unwanted

and query threats impacting the QoS. It also focuses on a specific layer in conjunction

with a compact solution to design QoS enabled solution to mitigate the redundant queries.

The subsequent Chapter demonstrates the state-of-the-art solutions in WSN/IoT

considering the most primitive to the most modern trends. The structure follows the

fundamental solutions categories and presents the critical analysis and discussion in

formulating a thorough thematic taxonomy. This Chapter also analyzes each state-of-the-

art query solution to recognize the differentiating WSN/IoT features employed for

individual solutions. It relates the exact problem solved by a specific technique presented

with the simulation or emulation environment of the related technique and finally extend

the critical discussion based on the domain knowledge of the current query processing trends

in the WSN/IoT Networks, the major strengths, and the research gaps required for

thorough investigations.

The subsequent of Chapter is as follows. Section 2.1 provides a comprehensive

overview of WSN, including its services and potential areas of application. Next, the

concept of how distributed and heterogeneous WSN collaborates in the IoT can

significantly extend the services provided by the IoT layer and extend the redundant query

Univ
ers

iti
Mala

ya

18

threats that the layer faces. Section 2.2 presents an importance of IoT network in detail.

Section 2.3 centers on the state of the art on in-network query processing in WSN /IoT.

The query handling issues in the distributed and heterogeneous WSNs towards IoT are

discussed in Section 2.4. Section 2.5 is charted by a review on the Quality-of-Service

(QoS) of WSN/IoT query processing along with cross-layered architecture and

challenges. Finally, Section 2.6 concludes with summarizing the Chapter.

2.1 Background

 This Section provides a comprehensive overview of WSN, including its

services and potential areas of application. Next, the concept of how distributed and

heterogeneous WSN collaborates in the IoT can significantly extend the services provided

by the IoT layer and extend the redundant query threats that the layer faces.

2.1.1 Local / Stationary Wireless Sensor Network

A local/fixed Wireless Sensor Network (WSN), also called stand-alone WSN,

consists of hundreds of small dispersed autonomous devices called "Sensor Nodes" (Yick

et al., 2008). In cooperation with sensors, physical or environmental conditions can be

sensed, measured, and collected locally. Some WSNs may be equipped with multiple

fusion nodes spread between the sensors for specific purposes, such as data collection,

data aggregation, or some other pro-active computational operation. Fusion nodes are

usually a tiny bit strong than the usual sensor node and used to appropriately control a

group of neighboring sensor node. Due to the local decision mechanism, sensors can

transmit sensed data to one or more gateways and sink nodes via the fusion nodes in one

hop or multi-hop communication process. Sink or gateway nodes have more computing

capacity, battery life, and transmission range and relay data in return to the base station

as presented in Figure 2.1.

Univ
ers

iti
Mala

ya

19

Figure 2.1: Basic WSN Architecture

WSN/IoT infrastructure is either unstructured, with a complicated number of sensor

nodes employed ad-hoc, or organized, with fewer sensor nodes installed in a pre-planned

manner and proper coverage of the area. Different types of WSN influence different design

factors (such as fault tolerance, network size, cost, operating environment, topology, hardware

limitations, power consumption, and transmission media). WSN has many distinguishing

features that set it apart from other traditional networks such as wireless, MANET, Bluetooth,

etc. Sensor nodes can integrate different sensors and transceivers in a resource-limited

environment, and They can also organize, transmit and exchange information with end-users

in their surroundings. Nodes are generally static upon deployment, and some can self-organize,

referring to the system's ability to attain the necessary organizational structures with no human

involvement. Each node is powered by a small low-capacity battery and cannot be replaced

after a deployment, limiting the architecture of the data flowing through the network to

preserve battery life and prevent users from overwhelming. Additional important features of

WSN can be defined as intensive computing, data-centric, application-specific architecture,

and cross-layered optimization in network protocols (Mukherjee et al., 2021).

The most popular wireless sensor network applications (Akyildiz et al., 2002) can be

Univ
ers

iti
Mala

ya

20

categorized as follows and presented in Figure 2.2.

 Simple Monitoring

Following are few examples of monitoring application scenarios:

 Collection of Environmental Data

Researchers collect sensor data from a series of sensors installed in an area for a number

of months or years to identify long-term and seasonal trends in the atmosphere and then

analyze the data offline (Cerpa, Elson, Estrin, et al., 2001; Mainwaring et al., 2002).

 Military Surveillance

 Through sensor networks, leaders and commanders may track the position, condition,

and availability of soldiers, vehicles, equipment, etc.

 Environmental Bio-complexity Mapping

 With low cost and operating overhead, sensing technology can detect any form of

spatial or temporal resolution of a geometric field (Cerpa, Elson, Estrin, et al., 2001;

Cerpa, Elson, Hamilton, et al., 2001; Keitt et al., 1997).

 Human Physiological Data Monitoring

Sensor networks can capture and preserve human psychological data for extended

periods, which can then be used for medical research (Noury et al., 2000).

Univ

ers
iti

Mala
ya

21

Figure 2.2: Applications of WSN

 Surveillance of Security or Emergencies

The following are some examples of security or emergency handling applications:

 Surveillance on the Battlefield

Sensors can be placed along every route on the battlefield to keep an eye on all activities.

 Detection of Nuclear, Biological, and Chemical Attacks

In all types of nuclear, biological, or chemical anomalies, sensor networks are used as an

alert mechanism.

 Detection of Forest Fire

The fire's source can be detected by remote deployment of sensor nodes in a forest.

 Detection of Flood

A variety of sensors such as rainfall, water level, and weather sensors are used to detect

floods.

 Healthcare Diagnostic

Sensor networks can track and detect the behavior of the elderly and thus help doctors

to recognize the symptoms on time (Young Han Nam et al., 2002).

Univ
ers

iti
Mala

ya

22

 Object Tracking

Object tracking is another application for sensor networks. It is necessary to track

the whereabouts of valuable goods or persons in various situations. Some examples

of tracking applications are as follows:

 Control system for Inventory

The sensor network's object tracking function helps to monitor the number of

items in a vast inventory and manage them.

 Military targeted Intelligence sensor networks may be used to detect military

anomalies.

 Medical monitoring: heart rate, blood pressure, allergies, and other data can be

detected using tiny, lightweight sensors that can be affixed to each patient. Doctors

may also carry a sensor node to help them find their way around the hospital.

2.1.2 Distributed Wireless Sensor Networks

Today the extensive use of Internet networks worldwide is carried out by devices

such as computers and cell phones directly by humans anytime and anywhere. However,

the field of information and communication technology has recently introduced a new

dimension: accessibility for everything, at any time and from any place. Not only the

Internet of the future will enable people to communicate with one another and access

information, but it will also allow machines to communicate with one another and with

people in their immediate vicinity. It opens up a range of development platforms

concerned with increasing intelligence in daily communication than with faster

broadband (L. Tan & Wang, 2010). The future Internet is entering a new age of

Univ
ers

iti
Mala

ya

23

pervasiveness known as the IoT, in which new modes of communication between humans

and things, as well as between things, will emerge. It is reasonable to describe IoT as

"The things have identities and virtual individuals operating in smart environments using

intelligent interfaces for social, environmental and user context communication " (Zorzi

et al., 2010). According to the IoT concept as mentioned in Figure 2.3, the gadgets must

be capable of sensing to be aware of their state on numerous physical characteristics such

as temperature, humidity, light, speed, proximity, and so on. In addition, cooperation

between various WSNs is mandatory to achieve the ubiquitous view of IoT. For instance,

controlling a car's speed (a node in a vehicle sensor network) may require road traffic and

weather conditions. The former information is retrieved from the vehicle sensor network,

while the latter is obtained from environmental monitoring sensors. A driver may also

search from the same vehicle for the status of the security devices/home devices that have

to be installed on the home network.

 Figure 2.3: Everyday Objects Connected to the Internet

Univ
ers

iti
Mala

ya

24

This highlights the significance of distributed and collaborative WSNs in IoT. It

introduces the notion of the Sensor Web, characterized as a collection of comprehensive,

universally distributed diverse sensors related to one or more WSNs that are linked by a

communication material and share data via interoperable interfaces. By using various

types of queries, users and web applications can access and control the sensors. This work

is concerned with query processing in WSNs and IoT.

2.2 IoT Networks

The rapid growth of IoT, grid computing, cloud computing and distributed

Internet-based systems recently led to the explosion of data creation in nearly every area

of engineering and business (Hajizadeh & Jafari Navimipour, 2017; Jafari Navimipour &

Fouladi, 2017; X. Jin et al., 2015). Also, an increasing quantity of physical objects are

being connected rapidly, indicating the IoT concept (Piccialli et al., 2017; Qin et al.,

2016; Whitmore et al., 2015). With the introduction of wireless networking, the Internet,

and ubiquitous computing, a new concept known as the IoT has emerged; IoT consists of

physical devices that can be tracked and managed over the Internet (Mao et al., 2016;

Moschakis & Karatza, 2015; Z. Yan et al., 2014). Various actuators and sensors linked to

the Internet through a wireless sensor network can monitor billions of things in the IoT

(Abdollahzadeh & Navimipour, 2016). The IoT's key characteristics are connectivity,

sensing, and accessibility between things (Levi & Sarimurat, 2017). IoT connects objects

to the internet via a variety of technologies, including cellular technology

(2G/3G/4G/LTE/5G), Machine-to-Machine (M2M), and radio features such as Bluetooth

(IEEE 802.15.1), Wi-Fi (IEEE 702.11), and ZigBee (IEEE 802.15.4). Regardless of IoT

device heterogeneity (Baccelli et al., 2014), data from IoT applications (such as home

automation, smart buildings, and energy management services) can be easily combined,

connected, contrasted, and integrated to achieve the set objectives (Piccialli et al., 2017).

Univ
ers

iti
Mala

ya

25

Small batteries and energy supplies often operate tiny gadgets in the IoTs (Baker et al.,

2015). Several IoT applications are designed to track critical circumstances such as fire

detection, smoke detection, building health surveillance, and intrusion detection in

undesired network latency or jitter cases. In such applications, the network must be stable

enough, and the routing of this data must be optimized to deliver data to a designated

system within a defined period. Since most nodes in a multi-hop routing scheme sleep

to conserve energy, the nearest nodes of the sink should be compelled to wake up to

gather and send data to the sink node without delay and without sacrificing energy

efficiency (Liu et al., 2016). As a result, long-term applications like continuous

surveillance systems are vital to lengthen their life (Choi et al., 2015). Moreover, the rate

of data obtained by the base station is usually tremendous (Rahman et al., n.d.). As a

result, data aggregation from diverse locations is an efficient approach in a network where

nodes are resource and energy-constrained (Chao & Hsiao, 2014) (Accettura et al., 2013)

. The query aggregation strategy's primary goal is to efficiently aggregate and gather data

packets to control energy consumption, prolong the network lifetime, traffic bottlenecks,

and data correctness (A. R. Khan & Chishti, 2020), (Prakash et al., 2006). Furthermore,

removing redundancies and reducing the volume of transmitted data would save network

resources (Dhand & Tyagi, 2016). The effectiveness of aggregation depends on the

structure of the network and the sensing data size. Since the scale of the sensing data is

so large, it is vital to reduce the network's top communication (F. Xie & Ye, 2015).

In addition, the flooder motes can attack the aggregator nodes during the query

aggregation process (Merad Boudia et al., 2015) Thus, the base station cannot guarantee

the accuracy of aggregated data if the intermediate node is down. (Parmar & Jinwala,

2016).

Univ
ers

iti
Mala

ya

26

2.3 Query Processing in WSNs/IoT

This section addresses the relevance of WSNs, and IoT-based queries and the

specific features and challenges related to WSN and IoT query processing. WSN seeks

to provide users with access to relevant information derived from data gathered by various

sensor nodes. In real-world applications, a significant number of sensors are employed to

track any physical environment (Meguerdichian et al., 2001). Such networks, therefore,

produce huge amounts of data. However, query processing in WSN is needed to extract

relevant information from the massive amount of sensor data. The primary reason for

generating queries in WSN / IoT is as follows:

 Query processing can reveal complex patterns in unstructured sensor data,

allowing the information of interest to be identified.

 End users can communicate with sensors by querying the sensor network without

worrying about the complexities of networking.

 A query may be scheduled flexibly to collect data on demand or at defined

intervals, depending on the application requirement.

 An event is a pattern or notable change that occasionally appears in the observed

environment in different forms (P. Wan & Lemmon, 2009) like continuous or

gradual. Query processing in WSN helps to detect any unusual event in the

environment.

Univ
ers

iti
Mala

ya

27

Figure 2.4: Query processing in WSN/ IoT

The subsequent section elaborates a summary of challenges stated in existing

state-of-the-art studies for query processing tasks in single and distributed WSNs. Figure

2.4 depicts the general outline of the discussion, which will be expanded on one by one

in the following sections.

The subsequent section elaborates a summary of challenges stated in existing

state-of-the-art studies for query processing tasks in single and distributed WSNs. Figure

2.4 depicts the general outline of the discussion, which will be expanded on one by one

in the following Sections.

2.3.1 Query Processing in Static WSN

As mentioned previously, WSNs are composed of sensor, fusion and sink nodes

which forming a three-tier architecture. Where sensor, fusion and sink nodes are

responsible for forming the bottom level, middle level, and top-level network hierarchy.

In query based WSN, regardless of query type, high-level user queries are received at the

sink, updated, and directed towards the appropriate sensors through the fusion nodes.

As shown in Figure 2.5, sensor nodes process queries and return query results to sinks in

the reverse hierarchy. In network query processing is a query processing model that

pushes query into the sensor network, closer to the data source (Noury et al., 2000). WSN

queries can be planned to execute in various ways, such as an aggregation-based query,

depending on the query execution strategy.

Univ
ers

iti
Mala

ya

28

 Aggregation Based Query

As previously mentioned, WSN queries require data from sensors that meet

spatial, temporal, or value range specifications. Many sensor nodes are highly resourced

limited and need to maintain as little energy consumption when communicating data and

processing queries.

Figure 2.5: Query Aggregation in WSN/IoT Network

In most sensors, data transmission consumes the more power compared to data

processing. Therefore, it is very desirable to reduce the amount of data through local

processing while providing query response. The user entity would be linked to the root

node, which would issue queries, and the sensors would cooperate to produce an accurate

result. According to Fasolo et al. (2007) in-network aggregation of query response data

can be divided into two approaches based on various factors such as application type,

available bandwidth, network parameters, etc.

 In-network Aggregation with Size Reduction: This method incorporates data from

Univ
ers

iti
Mala

ya

29

various sources to minimize the amount of data be transmitted. Assume that a sensor gets

multiple temperature measurements from two different sensors. It may aggregate data

according to application requirements, such as average or maximum temperature, instead

of forwarding two readings and thereby minimize the amount of transmitted data by

sacrificing the accuracy of data. It is typically not possible to restore all the original data

ideally after the aggregation process.

 In-network Aggregation without Size Reduction: Instead of more processing, this

approach lowers the quantity of transferred data by merging several data packets into one.

A sensor, for example, collects pressure and temperature data from two separate sensors.

Since the data types vary, it is impractical to merge them into a single data set, such as an

aggregate or maximum value. As a result, it may combine all data packets into one,

reducing the volume of data transmitted. At the sink, this method preserves the original

data.

2.3.2 Query and Data Aggregation in IoT

The core objective of the query aggregation is to enhance the network lifetime

and also reduce the energy consumption (Tripathi, A., Gupta, S., Chourasiya, 2014).

However, any node may store, aggregate, and send aggregated queries, received from

subsequent nodes or produced by itself over a certain length of time. (Upadhyayula &

Gupta, 2007). This eliminates redundant and unwanted queries from raw data and reduces

communications expenses (Z. Li et al., 2017) . Here, more than one query is considered

as data in the network.

 Nodes in the IoTs usually are resource-constrained and battery limited (Raza et

al., 2017) . To save energy and resources, data need to be aggregated (P. Zhang et al.,

2018). The data aggregation is a process by which specific nodes or simply a single node

combined the results of other nodes (Goudarzi et al., 2019), (Nguyen et al., 2021). The

Univ
ers

iti
Mala

ya

30

node handles the collected data to reduce transmission either with the base station or with

an outside user having the authorization to connect to the network (Pourghebleh &

Navimipour, 2017), (Sanyal & Zhang, 2018), (Kiran Maraiya, Kamal Kant, n.d.). Figure.

2.6 depicts the aggregation of data through a process in the IoT. By selecting the most

appropriate route, the collected data is transmitted to the sink (Dagar, M., Mahajan, 2013).

In general, data aggregation approaches have the following several benefits:

 It aids in improving the quality and accuracy of data, which is

accomplished across the entire network (Mishra, 2012).

 Since the data collected from nodes contains specific redundancy, this

procedure is needed to reduce unnecessary data which can also decreases

traffic load and conserves the resources of the nodes. (Mishra, 2012) .

 Figure 2.6: Data Aggregation Mechanism

This Section covers the most critical existing data aggregation techniques, along with

their variations, advantages, and drawbacks. This Section elaborates the three categories

of aggregation mechanisms for IoT that are based on tree, cluster, and centralized

aggregation frameworks.

Univ
ers

iti
Mala

ya

31

(a) Tree-based

All nodes in the tree-based method are supposed to be deployed in the shape of a

tree, implying that data aggregation will be performed by a hierarchical and intermediate

node (Dagar, M., Mahajan, 2013). Figure 2.7 depicts the data aggregation mechanism in

this technique. Each node needs a parent node in transferring the sensed data. The data

communication process initiates at the leaf nodes and terminates at the sink and is

performed by the parent nodes via the aggregation process (Mishra, 2012). The main

feature of the tree method is to offer energy efficiency (Dagar, M., Mahajan, 2013). The

following subsections describe the chosen tree-based mechanisms.

 Figure 2.7: Tree-based Mechanism

Search technique for IoT services via hierarchical nodes has developed by (Fredj

et al., 2013) which comprising intelligent spaces in which IoT systems reveal various

capabilities.. The tree-based structure is a kind of practical illustration. The search

technique employs clustering and data aggregation employing a quasi-metric. This

approach identifies all the services, which reply to a request and are fit for matching costs,

compared to other methods. Furthermore, depending on the request's description, it

imposes a limit on the number of nodes to which it can be transmitted. Consequently, all

nodes have a significantly lower probability of flooding. However, this mechanism does

Univ
ers

iti
Mala

ya

32

not study the costs of retaining the discovery platform. It is resource-intensive in a

variable scenario. In addition Z. Zhou et al. (2014) proposed a tree index approach which

is highly efficient while forming sensor nodes to a tree architecture which is skewed in

their distribution of sensor nodes.

The method's key contributions are integrating proximate sub-regions having

similar message forwarding distances between two sub-regions. In comparison to current

comparable methods, this technique reduces the amount of dead space in upper-level sub-

regions. Therefore, queries consume less energy than the existing index tree-based

frameworks.

According to experimental results, this process is more energy efficient. It takes no

account of the heterogeneity of the nodes. A lifetime balanced data aggregation technique

is designed by (Z. Li et al., 2017) for the IoT network. Which is based on end-to-end

delay requirements regulated by specified application. The proposed approach extends

the life of an IoT network and reduces end-to-end network restrictions while preserving

the delay in required data delivery. To balance the lifetime of adjacent devices with no

raising the end-to-end delay, the aggregation delays of adjacent devices are balanced

together collaboratively. Furthermore, aggregation delays are only adjusted locally across

neighbors. Consequently, dealing with network heterogeneity and complexities quickly

is regarded as one of its capabilities. Aggregation delays are adjusted as soon as the

lifespan between neighboring devices gets imbalanced because of connectivity. It can

control aggregation behavior, for instance, packet loss, route changing, and so on,

dynamically. Thus, it is practical in realistic situations. Finally, the heterogeneous

networks will make a compromise within network life and the end-to-end latency. In this

mechanism, the precision of the results is also enhanced by the problem of battery

leakage. However, the effects of working with multiple sinks are not improved.

Univ
ers

iti
Mala

ya

33

In addition, Hitchhiker a feature linking model is designed by (Ramachandran et al.,

2016) to assist multifunctional data aggregation and management inside IoT. The

bindings are graded as a high or low priority in this mechanism. In this mechanism,

metadata is used to provide multi-hop data aggregation through component bindings. To

facilitate low priority end-to-end routing queries, it can adopt a central meta manager to

discover routing query requests in multi-hop networks. This method also offers certain

advantages, such as lower energy usage, latency, and the capacity to tolerate data loss.

However, it don’t address the accuracy and node heterogeneity issues.

Sruthi & Geethakumari, (2016) proposed a method for IoT data aggregation that is both

efficient and secure. The computational and communication shortcomings of the IoT

network are addressed in this mechanism, while security features are linked to the

creation of a perfectly secure data aggregation system. This system thus ensures the safety

and is subject to heavy traffic loads. Zimos et al. (2016) proposed data aggregation

technique, which is suitable for the vast implementation of IoT devices for air quality

monitoring. The proposed mechanism reduced mean-squared error significantly while

recovering the data against distributed and other compressed sensing approaches

employing experimental findings.

The proposed method reduces required network traffic, data rates, and device life

expectancy. The proposed design equally demonstrates tolerance in case of noise

occurring in measurement and communication. However, extreme calculation does not

incorporate sensor nodes. On the other hand, latency is not considered. Furthermore,

Koike et al. (2016) developed a data combination approach, as well as the requirements

and application for deploying it over a wide-area network to assist IoT traffic. From an

architectural point of view, this method produces overlay networks that lower the load of

Univ
ers

iti
Mala

ya

34

data transmission in the router and builds a logical network based on information sent

over the Internet.

This method merely aggregates packets and makes no changes to the data

contained within them. As a result, this technique is reversible and safeguards the

payload's information. The suggested aggregation method decreases the load on the

underlying network and energy utilization. It, on the other hand, has a high latency.

Finally, (Alghamdi et al., 2016) Proposed a secure approach for aggregating IoT data. An

elliptic-curve-based seed exchange technique and a Hilbert-curve-based data

transformation are used to encrypt sensor data in the given mechanism. As a result,

determining the flooder nodes is quite challenging.

According to the performance review, this technique surpasses existing

approaches in terms of privacy and energy savings. A tree-based design was adopted to

carry out intermediate aggregations. The studies suggest that the data protection,

performance, precision, and data integrity requirements should meet the desired method

of aggregation. This measurement is used to detect the space and conduct an algorithm

tradeoff. Compared with current methods, the life of the network and the aggregated rate

of data participation in this process have increased but are subject to high traffic.

The selected tree-based study is discussed in this section. These mechanisms have

solved energy and network existence problems, but latency, data consistency, QoS, and

problems with redundancy in the future should be considered. The key advantages and

disadvantages of each of the studies are compared in Table 2.1.

Table 2.1: A Comparison of Tree-Based Mechanism in Data Aggregation

Studies Method Strength Limitation
(Fredj et al., 2013) A secure data

aggregation method
Highly scalable Low energy

consumption

Univ
ers

iti
Mala

ya

35

(Z. Zhou et al.,
2014)

Energy-efficient
index tree

Minimal
consumption of
energy

Lack of
assortment

(Ramachandran et
al., 2016)

Component binding
model

Minimal
consumption of
energy
Minimum delay
Supported fault
tolerant

Accuracy
and heterogeneity
are not considered

(Sruthi &
Geethakumari,
2016)

An efficient and
secure data
aggregation method

Highly secure Generate more
traffic

(Alghamdi et al.,
2016)

A secure data
aggregation scheme

Stable lifetime of
network
Minimal
consumption of
energy
Highly accurate
High secure

Generate more
traffic

(Koike et al.,
2016)

Packet aggregation
scheme

Generate minimum
traffic
Minimal
consumption of
energy

Produce more
delay

(Zimos et al.,
2016)

An efficient and
secure data
aggregation method

Stable lifetime of
network
Highly scalable
Generate minimum
traffic

Latency is not
considered

(Z. Li et al., 2017) Lifetime balanced
data aggregation
method

Stable lifetime of
network
Highly scalable
Highly accurate
Support
heterogeneity
Minimal
consumption of
energy
Minimum delay

Don’t support
more than one
sinks

Univ
ers

iti
Mala

ya

36

(b) Cluster-based

This Section addresses cluster-based procedures of data aggregation in the IoT

and selected studies for cluster-based mechanisms. The methods described are finally

compared and discussed.

Figure 2.8: Cluster Based Mechanism

The cluster-based method splits the network into several clusters. Every cluster is

made up of several sensor nodes. Every cluster keeps a header node, recognized as a

cluster-head. Additionally, bandwidth overhead can be reduced with the number of

transmitted query packets (Sirsikar & Anavatti, 2015). Figure. 2.8 depicts the data

aggregation mechanism in this technique.

For data aggregation in the IoT the authors in (Liu et al., 2014) proposed trust

analysis tool based on a node behavior detection. A trust record queue is used to record

node trust records and malicious detection, which portrays the kind of trust evaluation.

This mechanism lowers communication costs between storage and nodes and ensures

failure tolerance, although it does not take account of the heterogeneity of the nodes. In

addition, Jiang et al. (2015) have proposed a stable and scalable IoT storage system that

Univ
ers

iti
Mala

ya

37

meets data mining and analytics requirements with extensive aggregate data in context of

flexibility, stability, and reliability.

The framework is built around a revamped secret sharing scheme that ensures data

protection without the need for complicated key management. At the device level, a

distributed IoT storage foundation is organized to provide reliability and scalability. The

multiple IoT storage servers’ cloud be combined to increase capacity or to isolate for

greater flexibility. The proposed mechanism tolerates packet loss, but it has limitations

due to the dispatcher's low availability and heavy traffic load.

 F. Xie (2014) suggested a Chinese Remainder Theorem (CRT) employing an IoT

data aggregation coding algorithm. This method is appropriate for data sensing. The

benefit of the CRT transform is that it compresses large sensing data into several residues.

The aggregator node will receive all sensing data in the proposed mechanism, conduct

aggregation, and transfer the results to the decision server. Also, the proposed mechanism

transmits sensing data to residual data. The mechanism decreases traffic load and

increases the reliability of data transmission while the final aggregation results are of low

accuracy. In addition, González-Manzano et al. (2016) have offered an IoT-friendly

aggregation method that provides the possibility of multi-attribute accumulation clusters

allowing value correlations that protect privacy.

This mechanism allows data to be aggregated in one procedure concerning

multiple attributes of each entity to ensure validity and privacy of data. Furthermore, the

proposed system can cope with broad situations that allow malicious handling of

aggregated data to be detected. Privacy protection, collision resistance, verifiable

aggregation, and correlative aggregation are among the aims of the proposed mechanism.

This technique provides an associated combination that allows the sink to achieve both

the total amount and the association between the values of the attribute. An incorrect

Univ
ers

iti
Mala

ya

38

discovery procedure is also given for aggregators to keep away from redundant

aggregators. This approach is suitable for use in a broad IoT environment with a core

server and several nodes that work in an application based on the assessment results. The

primary downside of this scheme is that it has higher latency.

Finally, a cross-layer design for data aggregation is proposed by (Alkhamisi et al.,

2016). This technique functions without a static infrastructure for mobile ad-hoc

environments. This technique is an interoperable method for both application and

network layers and is favorable in managing fault and failure tolerance. This technique

has the advantage of minimizing traffic load and conserve energy consumption in real-

time.

The previous section analyzed some selected cluster-based studies. In addition,

each study included a description of the process, advantages, and weaknesses. The most

important advantages and disadvantages in each study are comparatively described in

Table 2.2.

Table 2.2: A Comparison of Cluster-Based Mechanism in Data Aggregation.

Studies Method Strength Limitations
(F. Xie, 2014) Chinese remainder

theorem-based
algorithm

Generate less
traffic

Lack of accuracy

(Liu et al., 2014) A novel trust-based
secure data
aggregation

Highly accurate
Highly secure
Support fault
tolerance

Lack of
heterogeneity

(Jiang et al., 2015) Secure and
scalable IoT
storage system data
aggregation

Highly scalable
Highly Secure
Support fault
tolerance

Generate less traffic

(Alkhamisi et al.,
2016)

Cross-layer
Framework

Generate less
traffic
Minimal
consumption of

Latency is High

Univ
ers

iti
Mala

ya

39

energy, Support
fault tolerance

(González-
Manzano et al.,
2016)

Privacy
maintaining
aggregation
protocol

Highly scalable
Highly Secure
Support fault
tolerance

Latency is high

(c) Centralized Mechanism

This mechanism permits each node to transmit data to a central node by adopting

a shortest possible route. All nodes transmit their triggered query packets to a powerful

node that connects all the other nodes. This node refers as header node.

The header node combines data from all other nodes, and the aggregation process

results in a single packet (Sirsikar & Anavatti, 2015). Figure 2.9 depicts the centralized

data aggregation mechanism.

Figure 2.9: Centralized Mechanism

 Sándor et al. (2015) proposed an IoT platform architecture for data aggregation

that integrates WSN and standard ICT infrastructures with publish-subscribe data

distribution capabilities. It has also provided a comprehensive risk analysis that considers

reliability, accessibility, and privacy. The experimental impact of a case study is assessed

Univ
ers

iti
Mala

ya

40

at the laboratory scale of IoT-based applications. On the other hand, the sophistication of

data aggregator systems reveals various flooding threats to these infrastructures.

 Zhu et al. (2017) proposed a service-oriented distributed architecture to gather

information from multiple data nodes common to several IoT applications. Each

manufacturer provides services for its products. In this architecture, the information

collected is stored in the data node by itself. This method is scalable since every query

node is responsible for its own product and each data node is responsible for only the data

it collects. Requests for query/registers are answered as addresses of linked nodes can be

settled with the product URIs directly. The mechanism's assortment issues can be

resolved with semantic and service-oriented technologies. This mechanism would

minimize network traffic and will serve as a versatile mechanism for data sharing through

various applications. However, it has the issue of single-point failure.

 Wan et al. (2019) designed a multidimensional data indexing scheme that is both

energy and time-efficient and is structured to respond to range queries. Specifically, to

have a more effective routing at lower latency, the proposed approaches used for data

indexing are utilizing hierarchical indexing structures using Binary Space Partitioning

(BSP), such as K-means clustering and Voronoi-based methods. The algorithm of the

Voronoi Diagram (VD) reduces the total energy consumption and the response time for

query requests. This work is restricted because the VD data indexing model can only be

used for general query operations in O (log n) time cells, e.g., for processing the location-

based service. The proposed work lacks real-world prototype for evaluating its

usefulness.

Currently, the IoT-based WSN is an immense ongoing research area due to

multiple applications and services in the numerous fields. In this regard, a large amount

of data can be sensed by the sensor nodes, and some of the data are redundant. This

Univ
ers

iti
Mala

ya

41

redundancy degrades the performance of the network by creating some demerits. To

overcome this issue, (Kumar & Chaurasiya, 2019) presents a duplication elimination

technique to eliminate duplicate/overlap queries. It performs data mining to pick the

relevant details until forwarding data to a base station or a cluster head. This method

removes redundancy from data query packets sensed by nodes before sending them to the

cluster head or base station for pre-processing. In the IoT, the network of sensor nodes

operates in two ways: First, the data are sensed and collected spatially by its neighboring

nodes. Second, the data are sensed and observed temporally at the given intervals of time.

The proposed approach performs better in both cases. Specific characteristics and

properties of the sensed data must be present to avoid redundancy. The proposed solution

enables load balancing, traffic accounting, and data management while providing

Quality-of-Service (QoS) for various applications and services. The main drawback of

this approach is that it doesn’t support dynamic scenarios and is only limited to cover few

QoS metrics. In (Dietzel et al., 2016) the authors have developed a resilient aggregation

framework that uses existing communication redundancy to recognize and filter fake

aggregates with the help of data consistency tests. In this model, an attacker cannot

monitor all these paths but can still affect most incoming paths to a destination based on

network topology. As a result, the filtering mechanism's architecture restricts information

distribution to node-disjoint paths, potentially reducing the impact of flooder nodes. It

employs a filtering mechanism with clustering to identify and delete conflicting

information. It is limited to single-point failure, covers few QoS parameters. The most

significant advantages and disadvantages of each study are presented in Table 2.3.

Table 2.4 summarizes the mentioned data aggregation techniques and their

essential features, including energy consumption, fault tolerance, accuracy, latency,

Univ
ers

iti
Mala

ya

42

heterogeneity, network longevity, scalability, protection, and traffic load, as well as the

impact of these factors either be beneficial or detrimental.

Table 2.3: Comparison of Centralized Mechanism in Data Aggregation.

Studies Method Strength Limitation
(Sándor et al.,
2015)

Security assessment
of modern data
aggregation
platforms

Highly secure Lack of fault
tolerance

(Dietzel et al.,
2016)

Filtering
mechanism

Scalable Support few QoS,
Support only single
point failure

(T. Zhu et al.,
2017)

Distributed service-
oriented
architecture

Highly secure
Support
heterogeneity
Generate less
traffic

Lack of fault
tolerance

(Kumar &
Chaurasiya, 2019)

Duplication
elimination
technique

Load balancing,
traffic accounting,
and data
management

Don’t support
dynamic scenarios
and is only limited
to cover few QoS
metrics

(S. Wan et al.,
2019)

Multidimensional
data indexing
scheme

Energy and time
efficient, low
latency

Does not have a
real-world
prototype

 Table 2.4: Overview of data aggregation Methods along with its features.

QoS Parameters

T
yp

e

St
ud

ie
s

H
et

er
og

en
ei

ty

T
ra

ff
ic

 lo
ad

E
ne

rg
y

co
ns

um
pt

io
n

Sc

al
ab

ili
ty

Se
cu

ri
ty

C
ro

ss
-la

ye
re

d

N
et

w
or

k
lif

et
im

e

R
ed

un
da

nt
 Q

ue
ry

L
at

en
cy

Fa
ul

t t
ol

er
an

t

A
cc

ur
ac

y

T
re

e

(Alghamdi
et al., 2016)

N N Y N Y N Y N N N Y

(Sruthi &
Geethakuma
ri, 2016)

N N N N Y N N N N N N

Univ
ers

iti
Mala

ya

43

(Ramachand
ran et al.,
2016)

N N Y N N N N N Y Y N

(Koike et
al., 2016)

N Y Y N N N N N N N N

(Zimos et
al., 2016)

N Y N Y N N Y N N N N

(Z. Li et al.,
2017)

Y Y Y Y N N Y N Y N Y

(Z. Zhou et
al., 2014)

N N Y N N N N N N N N

 (Fredj et al.,
2013)

N N N Y N N N N N N Y

C
en

tr
al

iz
ed

 (T. Zhu et
al., 2017)

Y Y N N Y N N N N N N

(Sándor et
al., 2015)

N N N N Y N N N N N N

C
lu

st
er

ed

(Alkhamisi
et al., 2016)

N Y Y N N N N N N Y N

(González-
Manzano et
al., 2016)

N N N Y Y N N N N Y N

(F. Xie,
2014) N Y N N N N N N N N N

(Jiang et al.,
2015) N N N Y Y N N N N Y N

(Liu et al.,
2014) N N N N Y N N N N Y Y

Researchers focused on QoS metrics such as energy consumption, tolerance for

faults/failures, security, scalability, and network traffic in the selected studies. However,

many data aggregation techniques fail to consider accuracy, latency, network life, the

cross-layered, and redundant query issues.

Query transmission is typically believed to make up a small portion of total data

transmission in an IoT sensor network. However, in certain instances, the presumption

Univ
ers

iti
Mala

ya

44

does not hold, which requires aggregation of queries before they are spread to the

network.

2.3.3 Aggregation Functions

Query transmission is typically believed to make up a small portion of total data

transmission in an IoT sensor network. However, in certain instances, the presumption

does not hold, which requires queries aggregation function before they are spread to the

network. The aggregated functions (Polyvyanyy et al., 2017), (Sun et al., 2017),

(Huysmans et al., 2008), (Shafagh et al., 2015) of the different applications are closely

linked to the specific sensor. They can be categorized as follows:

 Lossy and Lossless Aggregation: By using a lossy aggregation function,

the fundamental values are lost after combining. Furthermore, as compared

to sending all readings uncompressed, the transmitted data can lose

precision. On the other hand, the lossless method enables compression by

retaining the original data, allowing the entire readings to be thoroughly

reproduced from aggregated form.

 Duplicate-Sensitive and Insensitive: A sensor node can be needed to

accumulate multiple copies of the same data. It should determine whether

to discard duplicate data depending on the feature type or not. For

instances, if an aggregate function calculates the mean value of received

data, duplicate values will affect the result. Conversely, duplicate-

insensitive only considers the lowest value among the data. Furthermore,

various devices may be better suited to different types of operations (Lu

et al., 2008), which must be accomplished when designing aggregation

functions.

Univ
ers

iti
Mala

ya

45

2.4 Querying Distributed WSNs towards the IoT

As previously stated, integrating various enabling technologies such as

recognition, sensing, and communication technologies, as well as retrieving relevant

information from them, is needed to bring the IoT concept to life in the real world. The

core objective of this section is to deliver an overview related to distributed WSNs in IoT

(Alam et al., 2010; Gračanin et al., 2006; W. Li et al., 2011; Mainetti et al., 2011; Sánchez

López et al., 2012), what are the difficulties and strategies in managing massive and

heterogeneous sensor data in the IoT, and what are the methodologies and processing

blocks of performing the query on that sensor data (Figure 2.10).

Figure 2.10: Issues Regarding Distributed WSNs towards IoT

2.4.1 Role of Distributed WSNs in IoT

Since the IoT should be able to link a large number of disparate objects through

the Internet, there is a strong reliance on a dynamic layered architecture (Ikram et al.,

2015; Johnson et al., 2017; C. Zhang et al., 2017). The IoT architecture must ensure its

operations, which connects the virtual and physical worlds (Mustafee Navonil, 2015)(Su

et al., 2015). The IoTs links a massive number of devices, resulting in significantly

increased traffic and even more data storage requirements. As a result, a new IoT

architecture is needed to resolve several issues such as scalability, QoS, interoperability,

Univ
ers

iti
Mala

ya

46

and reliability etc. Also, technological growth, different types of new businesses, and

application models determine IoT progress (Tsai et al., 2014) .

The traditional IoT layers are shown in Figure. 2.11 (Khan et al., 2012). The

following is a depiction of these layers:

Figure 2.11: Layers of IoT

 Sensor/Perception layer: According to (Al-Fuqaha et al., 2015) the Object

or edge technology layer refers to the perception/Sensor layer or sensing layer.

It's the bottom layer, often known as the hardware or physical layer. This layer

manages data gathering with the help of tiny connected sensors (Liao & Hsiao,

2014). This layer converts information into signals to transmit over networks

for related applications (J. Tan & Koo, 2014).

 Network Layer: The network layer aims to link everything and allow

anything to share data (Atzori et al., 2012; S. Li et al., 2015). This layer secures

data transmission from source nodes to the core unit (R. Khan et al., 2012).

WLAN, Bluetooth, Zigbee, 3G, UMB, infrared technology, and so on are the

primary technologies used in this layer (Wu et al., 2010).

 Middleware Layer: This layer integrates service and request according to

address and name. It enables IoT application developers to work with

Univ
ers

iti
Mala

ya

47

heterogeneous objects without focusing on a specific platform (Al-Fuqaha et

al., 2015). The information is retrieved from the network and saved in the

database by using this layer (R. Khan et al., 2012).

 Application Layer: Typically, information from other layers is integrated and

evaluated in this layer (Tsai et al., 2014). This layer provides high-quality

services to meet the needs of customers queries (Al-Fuqaha et al., 2015).

 Business Layer: The business layer can handle the whole activity and service

by developing flowcharts, business models, and related designs (Al-Fuqaha et

al., 2015). The achievement of IoT technology is determined by the value of

applied technology, creativity, and the business model's viability. (Wu et al.,

2010).

The following Sections go through the existing studies on querying distributed

sensor data in the IoTs.

2.4.2 Querying Distributed Sensor Data in IoT

As previously mentioned, the IoT includes a massive amount of sensor data from

distributed and heterogeneous WSNs. Existing research looks at different methods for

querying sensor data. Some approaches store sensor data in the upper layer of the IoT

hierarchy and pose queries against it. In contrast, others send the query directly to the

cloud or base station, which collects the appropriate sensor data. The following section

addresses several extensive works on priority and flooding queries.

 Priority Queries

Recently, manyβapplicationβscenariosβlikeβmilitaryβsurveillance, βinfrastructure

protectionβandβenvironmentalβmonitoringβhaveβbeenβaccomplishedβbyβIoT.

Inβsome cases, applicationsβinβWSN/IoTβareβtimeβrestricted, leadingβto theβneed

Univ
ers

iti
Mala

ya

48

ofβreal-time schedulingβof dataβpackets. Nowadays, manyβcommunication

packageβschedule policies inβWSN/IoT applyβalgorithms inβview ofβFirst-Come-First-

Servedβ (FCFS). However, thereβareβmanyβproblems inβFCFS; includingβnode-to-

nodeβcommunication packages transport delay as well as starvation in real-time

packages. Besides, these schemesβcannot respond dynamic inputsβquickly (Wang &

Zhang, 2016). Inβdataβcenters, theβoccurrence ofβtimeout forβpriority

queriesβdramatically causing problemsβlike queryβcompletionβtime. Toβmitigate

timeouts, theβtransportβprotocol should tryβto maintainβa smallβswitch queueβto

avoidβtheβpacketβlossβand recover lostβpacketsβquickly. Recentβwork

suggestsβusingβExplicitβCongestionβNotification (ECN), Round Trip Time (RTT)

orβtheβin-network signalβtoβachieveβthat. However, theseβsolutions eitherβstillβsuffer

fromβmanyβtimeoutsβwhenβtheβnumberβof concurrent flowsβbecomes largerβor

require theβnontrivialβhardware support (Ruan et al., 2020)

Theβauthorsβin Rajendranath & Hency (2019) proposedβPRITRAPSβ(Priority-based

Task aware Pre-processing and Scheduling) mechanismβthat isβemployedβin real time

scenariosβofβindustries. Inβwhichβdifferentβapplications units are accessing the

gatewayβunitβtoβmeasureβandβmonitorβtheβparametersβofβdifferentβserviceβtypes.

PRITRAPSβemploysβpriorityβamongβtheβtasksβtoβreduceβtheβnetworkβload.

Theβscheduling algorithmβemployedβinβPRITRAPSβisβEDF (Earliest Deadline

First). Theβpre-processingβtaskβunitβdecreasesβtheβnumberβofβtasksβbyβchoosing

theβtasksβhavingβsimilarβspatialβandβtemporalβrequirements. The residualβenergy of

theβsensor nodesβcanβhelpβtheβschedulerβforβdecidingβtheβsensor nodes in respective

of queryβtaskβrequirements. Theβschedulerβfindsβtheβbestβpotentialβnodesβand

Univ
ers

iti
Mala

ya

49

assignsβthemβtoβtheβqueryβtaskβforβprocessing. This method is not energy efficient

and lacks Qos parameters.

Theβauthorsβin VasudevanVijay et al. (2009) suggestedβreducingβRTOminβtoβthe

granularityβofβmicroseconds. However, thisβmethodβrequiresβtheβspecificβkernel

version (2.6.18 or later) andβmayβcauseβtheβmassiveβspuriousβretransmission (J.

Zhang et al., 2013). OtherβprotocolsβsuchβasβSABβandβTFCβcontrolβtheβqueue

length using theβcustomizedβswitch. The basic idea of SAB isβto uniformlyβallocateβthe

switchβbufferβtoβeachβflow. Theβallocationβresultβisβfedβbackβtoβeachβflowβasβits

congestion window. Inβthisβway, theβinjectedβtrafficβofβallβflowsβcannotβexceedβthe

switchβbuffer. OneβtargetβofβTFCβisβtoβachieveβzero-queueing. Itβrepresentsβthe

linkβbandwidthβresourceβasβtokensβandβallocatesβthemβtoβflowsβsomeβtime. TFC

guarantees that the aggregatedβinjectedβtrafficβwouldβnotβexceedβthe capacity of the

pipeline. Inβtheseβtwoβprotocols, packetsβareβrarelyβlostβandβthe probability

ofβtimeout isβgreatly reduced (J. Zhang et al., 2014)(J. Zhang et al., 2016).

 Flooding Queries

Flooding queries is usually used for route discovery, route maintenance and

topology update in IoTs. In large-scale WSNs and IoT, this flooding causes such

excessive message collisions that the network efficiency is reduced. However, the

flooding queries has obvious advantages over the location-based unicast/multicast in

complexity and economic cost without additional equipment.

Three critical mechanisms can be used to scan for nodes with emergency data:

flooding, managed flooding, and random walk (Cui, 2009), (Benenson et al., 2006),

(Benenson et al., 2006). The random walk has a lot of latency, so it's not suitable for time-

sensitive applications. The simple flooding mechanism overloads the network with

Univ
ers

iti
Mala

ya

50

redundant query packets, generating heavy load and rapid energy depletion.

As a result, the authors in (Qiu et al., 2012) present Level-Based Flooding as a

new search mechanism (LBF). It can calculate the shortest path between the sink and

target nodes. The nodes in LBF are organized into a hierarchy, and the sink node is aware

of the node levels. When a sink node receives a query, it may broadcast the query cost-

effectively based on the nodes' level information.

In Yuan et al. (2013), the author proposed a level and cluster-based routing

approach for a wireless sensor network. This approach divides the whole network into

different levels as per hops to the central node. Every node must have a level number. A

sensor node forwards information to a sink node more efficiently using level information,

and a sink node can quickly locate other sensor nodes which can helps to balance the

network. Unlike all other cluster routing methods, instead of sensing, a cluster head

schedules jobs for sensor nodes in the cluster based on their remaining resources. This

study also presents several algorithms for developing, querying, and scheduling a wireless

sensor network. The proposed research considered factors such as energy consumption,

interoperability, and rapid response. The shortcoming of this study is observed that it only

concentrates on energy usage and was not beneficial in mobility scenarios. Do not accept

cross-layered solutions and are only limited to network layer systems.

The study in Cheng et al. (2018) mainly focused on minimizing the delay and

energy consumption while constructing the flooding tree taking into account duty-cycle

activity and unstable wireless links. It demonstrates the presence of delay and

energy consumption during flooding. The problem is formulated as an undetermined-

delay-constrained minimum spanning tree (UDC-MST) problem with an a posteriori

known delay constraint. Since the UDC-MST problem is NP-complete, a distributed

Minimum-Delay Energy-efficient flooding Tree (MDET) algorithm is designed to create

Univ
ers

iti
Mala

ya

51

an optimal energy tree with flooding delay bounding. This research achieves a potent

combination of flooding delay and energy efficiency.

 Baddeley et al. (2019) introduced a novel synchronous flooding (SF). SF

protocols dynamically meets specific SDN control criteria. By using Atomic-SDN, it

offers substantial performance improvements over other low-power IoT networks while

implementing in SDN. SF methods are capable of providing latency and reliable

assurance to SDN controllers at the local mesh scales. Atomic-SDN increases SDN

control by orders of magnitude in terms of reliability, latency, and energy consumption.

In addition to this analysis, the spread of control messages across the flood network can

be facilitated with unique control schedules. The Atomic-SDN enables the SDN layer to

function without knowing the topology information and benefits from the spatial and

temporal diversity of flood protocols.

The authors in Yamazaki et al. (2020) have proposed a simple route request

(RREQ) flooding system based on the rest of the node's power without using control

messages and complicated tasks. Initially, the limit of node density shows the significance

of proposed plan in context of energy efficiency (bits/J), considering energy utilization

and throughput. Further, since the proposed system assumes the flood times as constant,

all the nodes would almost carry same time to drain the battery. Consequently, if the

nodes are static, they last longer than in the traditional approach of proposed method. The

drawback of this work is that it is not well-performing in complex and uncertain

scenarios. It is only based on a few QoS parameters and was not favorable in dynamic

environment. Do not endorse a solution for the cross-layered but only for the network

layer.

Univ
ers

iti
Mala

ya

52

The authors in (Abdulridha et al., 2019) developed FSFS approach that can be

classified under Flat approaches; it is simple and very quick in delivering the packet to

the sink and can be used for routing and propagation issues. Depending on a simplistic

system within WSN that provides all nodes of a simple routing table, FSFS takes

improvement over Flooding, Gossiping, and Floosping. It presents a sweet way to load

balance in power consumption among the sensors with the least number of sending

operations. The conclusion that should be mentioned here is that, as far as the number of

nodes in WSN grows larger, FSFS gives high achievement. On the other hand, FSFS is

running only with structured Topology (Mesh) which means each sensor node has a

predetermined place and recognizes its neighbors. It is suitable for the monitoring

applications in a civil or military environment; on the other hand, FSFS still suffers from

redundant information at the base station. Table 2.5 summarizes different flooding queries

mechanism fall under different categories and their essential features,

Table 2.5: Analysis of various flooding queries mechanisms

Protocol

C
la

ss
ifi

ca
tio

n

M
em

or
y

R
eq

ui
re

m
en

t

L
oc

al
iz

at
io

n

D
at

a
A

gg
re

ga
tio

n

C
lu

st
er

in
g

M

an
ne

r

In
tr

a-
C

lu
st

er

T
op

ol
og

y

R
ed

un
da

nt

Q
ue

ry

LBF Control overhead
reduction Low No Yes Proactive Multi-

hope Yes

 2L-OFFIS Control overhead
reduction Low Yes Yes Proactive Multi-

hope Yes

 ARPEES Energy
consumption
mitigation

Low No Yes Reactive Single-
hope Yes

 MDET Energy
consumption
mitigation

Low Yes Yes Reactive Single-
hope Yes

 DMSTRP Energy
consumption
mitigation

Low No Yes Proactive Multi-
hope No

FSFS Energy
consumption
mitigation

Low Yes No Reactive Single-
hope Yes

Univ
ers

iti
Mala

ya

53

Memory Requirement. The memory requirements of the whole network depend on

whether each node has to store some query or routing information, such as the query

packets which are waiting to be forwarded, neighbor information, cluster information,

route information and so on. This can be represented by a polynomial which is related to

the parameter n concerning the number of the nodes. For instance, a method of event-

based clustering is proposed in (Quang & Miyoshi, 2008), this method requires the nodes

nearby the event store their neighbor information, we assume that the events occurs in the

whole network, and thus all the nodes of the network need to store the neighbor

information instead of particular nodes. With the network density enhancing caused by

the increase of the network size, the nodes need to store many more information. Due to

the limited memory capacity of the large-scale WSNs, however, how to efficiently utilize

these storage resources is of great significance for enhancing.

Localization. Position information is of great help to enhance the accuracy and the

efficiency of routing protocols. In (Jamalipour & Azim, 2016), the nodes can get the

position information, and that makes the directed transmission substitute for broadcast

communication of the control packet. Therefore the control overhead is decreased.

Data Aggregation. The advantage of hierarchical networks over flat networks is

apparent, because in the former network data aggregation could be conducted at cluster

head nodes. These nodes collect the sensed messages from its member nodes, and remove

the redundant part, thus reducing the total messages towards the sink nodes. By this

means, the network energy efficiency is improved.

RREQ Energy
consumption
mitigation

Medium Yes No Proactive Multi-
hope No

Univ
ers

iti
Mala

ya

54

Clustering Manner. “Proactive” means that the clustering of the network is operating

before the network operates. Because the clustering is carried out in the entire network

and it needs a long time to maintain, it will create more energy cost than “reactive”

clustering which is triggered on demand, such as the occurrence of some event. In some

emergent cases, the performance of “reactive” routing is not time-sensitive enough.

Intra-cluster Topology. In a cluster, the single hop topology can reduce the end-to-

end delay to a certain degree, whereas a significant advantage of the multi-hop topology

is energy-efficiency. Especially the topology of the spanning tree, which consists of the

multi-hop structure, not only reduces the transmission energy through decreasing the

average transmission distance, but also alleviates the collisions in clusters with a schedule

scheme utilizing the tree structure.

Cluster Head Election. According to the different objectives of each protocol, these

protocols have different ways of electing the cluster heads. “Residual energy” is chosen

as the criteria to select cluster head to ensure that the cluster head has enough residual

energy to process and deliver data packets. That makes the nodes energy-balanced to a

certain degree.

Multi-Path Routing. Multi-path routing means the traffic is delivered along several

paths in order to balance the energy consumption of sensors along the single path. By this

method, the query packets could still be delivered successfully in the case of path failure,

thus ensuring the reliable delivery of query packets. However, a deficiency is that much

more overhead may be incurred owing to several sensor nodes must be selected as the

next hops. In hierarchical routing protocols, some sensor nodes are grouped to efficiently

relay the sensed data to the sink. The cluster-head plays the specialized role of performing

Univ
ers

iti
Mala

ya

55

data aggregation and sending it to the sink on behalf the nodes within its cluster. Thus,

how to form the cluster is a more interesting and essential research issue concerning such

protocols so that the energy consumption and various communication metrics such as

latency are optimized. In addition, due to the number of sensor nodes is substantially

increased in large-scale WSNs, the nodes nearby the sink will assume more query

forwarding tasks so the energy of these nodes is depleted rapidly. That makes the

hierarchical routing protocol design challenging.

Redundant Query. Redundant queries ensures reliable data for decision making.

Reliable data plays a very important role in the analysis, monitoring and forecasting of

system behaviour whereas bad quality data may provide erroneous result in decision

scheme. In Wireless Sensor Network (WSNs), nodes are densely deployed in a region to

collect information. Sensors sense the similar data and forwards to sink. This similar data

sometimes leads to redundancy at the sink. The redundant data results in more accuracy,

reliability and security whereas elimination helps in energy saving as most of the energy

of sink node gets waste in dealing with the redundant data. Data accuracy still needs to

be preserved even if there is increase in network cost and/or time. Therefore, there is

requirement of a mechanism in which we can extract information from the redundant data

and be able to provide a more consistent, accurate and reliable data set in an energy

efficient manner (Verma & Singh, 2018).

It can be concluded that the query flooding is usually used for route discovery, route

maintenance and topology update in most of the routing protocols mentioned. In large-

scale WSNs, this flooding causes such excessive message collisions that the network

efficiency is reduced. However, the flooding has obvious advantages over the location-

Univ
ers

iti
Mala

ya

56

based unicast/multicast in complexity and economic cost without additional equipment.

Therefore, research on flooding technique is necessary.

2.5 QoS in WSN/IoT Query Processing

The term Quality-of-Service (QoS) relates to the reliability of a service provided

by a network to the related application. A collection of observable attributes typically

describes the QoS level depends on the application type (Kumar Kumar et al., 2019). This

section addresses QoS-aware query support in IoT and presents significant works that

have been done on QoS-enabled cross layer query execution in IoT Networks.

2.5.1 QoS Support for Query in IoT

The QoS parameters of the IoT network can be seen from different perspectives

and dimensions, including bandwidth, latency, packet drop, prevent jitter and

interference. Therefore, QoS should be described in a different way for diverse

technologies. It is challenging to accomplish QoS effectively in wireless networks

because of the segment gap caused by management and resource distribution of shared

wireless media (Gubbi et al., 2013). J. M. Liang et al. (2013), proposed the 3GPP LTE-

A mechanism ensuring traffic bit rate, packet delay, and loss rate with IoT devices in an

energy-saving QoS context. To optimally use the LTE air interface resources, the authors

in (Piri & Pinola, 2016) measured packets of various sizes in the LTE uplink. The results

showed that packets of smaller size achieved approximately half the throughput of larger-

sized packets. This result allows packet aggregating to optimize many QoS parameters

such as latency, packet loss, jitter, and bandwidth usage required by a large number of

small query packets on the mobile edge of the IoT gateway. Duan et al. (2011), developed

QoS architecture, which provides a framework for the control of translation from top to

bottom layer. The cross-layer management facility and brokers of this architecture often

Univ
ers

iti
Mala

ya

57

feature lower layer controls. With the help of this architecture, researchers may further

optimize the QoS of IoT. Different QoS methods for achieving QoS in IoT are described

in Table 2.6

Table 2.6: Summary of Different Methods Providing QoS in IoT

Citation Objectives Strength Evaluation Limitations
(M. Zhou & Ma,
2013)

To provide
QoS
requirements
of IoT
composite
services

The algorithm
is fast enough
to meet real-
time
requirements
of IoT.

Testbed Uncertainty
analysis of
QoS is not
performed in
this method.

(L. Li et al., 2014) To present a
QoS
scheduling
model (based
on three layers)
for service
oriented IoT.

This method
minimizes the
resource costs
to optimize
the
scheduling
performance.
It also
presents QoS
support to
definite
applications
of IoT and
enhances IoT
network's
lifetime.

Simulation In case of
congestion,
packet loss,
delay, and
issues of
control
mechanism.

(Vithya &
Vinayagasundaram,
2014)

To provide
QoS routing
method by
establishing
priority
criterion in the
network.

Focuses on
prioritizing
packets under
priority queue
to gain best
transmission
with low
latency.

Testbed The priority
criteria take
highest
number of
cluster frames,
making it
critical for low
priority frames
to wait for turn
indefinitely.

(Awan et al., 2014) To examine the
QoS in context

Robust to
both traffic

Simulation This method is
only an

Univ
ers

iti
Mala

ya

58

of delay,
matching
traffic
generated over
the network.

variations and
topology
failures.
Provides an
analytical
model for
evaluating the
performance
of smart
devices under
different
traffic states
to meet the
QoS
constraints.
Uses buffer
management,
makes high
priority traffic
continues its
arrival by
impel out low
priority traffic
to circumvent
loss of
emergency
related data
packets.

analytical
model, which
is not validated
in real time
scenario.

(Aazam et al.,
2016)

To increase
QoS based on
previous
Quality of
Experience
(QoE) and Net
Promoter
Score (NPS)
records.

Fog
computing
provides the
solution by
bringing
cloud
resources to
the edge of
the
underlying
IoT and other
end nodes.
Provides
better

Simulation
& Testbed

Vigorous in
predicting the
consumed
resources by
diverse
devices. Univ

ers
iti

Mala
ya

59

reliability and
reduces jitter.

(X. Xu et al., 2018) To improve
QoS by
communication
link reliability
and reduce
delay for loss-
and-delay
WSN/IoTs

Reducing
delay,
improving
reliability,
balancing
energy
consumption
aimed at
increasing the
transmission
power of
nodes

Simulation Only limited to
optimize few
QoS
parameters

(X. Li et al., 2018) To Reduce
energy
consumption
and guarantee
delay under
corresponding
QoS
requirement
constraints.

Reducing
delay,
improving
lifetime,
increasing
energy
efficiency
without
performance
degradation
of data
transmission

Simulation Only limited to
optimize few
QoS
parameters

(Kyung & Kim,
2020)

The QoS-
aware flexible
mobility
management
scheme
that classifies
flows into four
classes

Flexible
network
resource
utilization,
differential
handover for
different flow
classes,
absence
of service
degradation.

Simulation Based on
heuristic
approach

(Shafique et al.,
2020)

The SDN-
Based
Application-
aware
Distributed

Load
balancing,
application-
aware data
transmission,

Simulation Only focus on
bandwidth
utilization

Univ
ers

iti
Mala

ya

60

adaptive
Flow Iterative
Reconfiguring
(SADFIR)
routing
protocol

heterogeneity
aware

(Latif et al., 2020) To Reduce
nodal
propagation
delay,
maximizing
throughput,
improving
network
lifetime, and
minimizing
energy
consumption.

Reducing the
number of
re-
transmissions,
good energy
conservation,
enhancing
throughput

Simulation This method is
only an
analytical
model, which
is not validated
in real time
scenario.

In the traditional IoT query propagation paradigm, sensors transmit queries to the

network's access point or central gateway motes. Table 2.6 provides a brief argument for

the use of the testbed. This access point handles requests and then forwards them to the

appropriate network destinations using the underlying routing system. The traditional IoT

query propagation paradigm has certain drawbacks, such as the fact that sensors may send

queries that are redundant or duplicate, or that a single sensor may convey an undesirable

query intended for another application or sensor. This is because there are queries that

overlap in multiple clusters. The overall amount of energy that is used consequently

increases when the size of the query is increased. In such situations, device resources (in

terms of bandwidth or energy for the sensor node) are lost due to too many redundant

network query transmissions that can result in obvious degradation in QoS transmission

(Fathallah et al., 2019). It is essential to notice that none of these testbeds solely focused

on elimination of redundant and unwanted queries in IoT networks to enhance QoS. There

Univ
ers

iti
Mala

ya

61

is a need of a testbed equipped with query control mechanism (QCM) that focus on

mitigation of multiple and overlapping cluster queries in IoT networks.

2.5.2 QoS Enabled Cross Layer Architecture, Design in the IoTs (IoT): Issues and

Possible Solutions.

IoT's layer-based architecture will hierarchically manage queries by ensuring the

QoS in all layers. IoT needs to compromise between query delays and reliability based

on application requirements in line with the demand for a single sensor network. The

work addresses service time, service delay, service accuracy, service load, and service

priority, among other QoS specifications. It proposes a QoS architecture for IoT that

describes how the quality assurance criteria are transmitted and converted from top to

bottom. Detailed layer based QoS architecture in IoT is depicted in Figure 2.12.

Figure 2.12. Layer Based QoS Architecture in IoT

Upper layers communicate QoS specifications to ground layers, and lower layers,

in turn, share QoS feedback to higher layers. The architecture includes a QoS

management facility, QoS brokers, and separate QoS requirements for each layer. For all

Univ
ers

iti
Mala

ya

62

three layers, QoS management offers cross-layer features. The broker's job in the network

and perception layer is to address QoS requests from the upper layer and translate them

for use in the local layer.

More issues occur as of the increased quantity of smart devices in IoT,

necessitating the use of cross-layer models to address. The cross-layer models discuss

several issues related to the increased use of smart devices and applications on the IoT.

The cross-layer architecture is simply coordinating different layers in integrating

resources to create an extremely adaptable network (Foh et al., 2007; Papandriopoulos

et al., 2008).

Cross-layer architecture is typically essential in addressing communication

issues among IoTs devices (IoT). As a model, the cross-layer architecture aids in

removing the precise boundaries of the OSI networking model, enabling data access

from another layer. Data exchange on the IoT is employed on several layers, making

it a challenge to share data across multiple layers. By using the architecture model for

cross-layers, different layers share information to communicate more practically.

Cross-layer communication protocols are regarded as one of the most important

methods for improving interlayer communication in IoT. Some of the main issues

relating to cross-layer networking protocols are energy management in wireless

networks and bandwidth for better performance. The conventional layered structure

of the IoT has been criticized for the major flaws discovered with the usage IoT

technology has increased. Authentication, encryption, georeferencing, and timing are

now possible with IoT infrastructure by adopting Trustful Space-Time Protocol

(TSTP). The TSTP has been essential in removing data duplication across the system,

allowing messaging to be more efficient. In contrast to the standard TCP/IP model,

the TSTP cross-layer model improves the filtering process for the efficiency of IoT

Univ
ers

iti
Mala

ya

63

data sharing.

 Cross Layer Design Model

The main challenge or issue with the TCP/IP model is that it offers end-to-end

connectivity for the application layer only. In this case, the application, transport,

network, data link layers, and physical layer are the five major concern layers. The

TCP/IP offers a small contact, as only the two neighboring layers are communicated (Ma

et al., 2004)(Magagula & Chan, 2008). It is impossible to communicate between any other

layer that isn't an IoT neighbor on the Internet. The communication issues are referred to

as information sharing because layers, not neighbors on the IoT, cannot exchange

information under the TCP/IP model. Moreover, information exchange between two

layers leads to several other problems in the IoT (Luo et al., 2010). In the absence of a

framework for data sharing between layers, the issue is generally obscured so that during

the diagnosis, it cannot be identified. Many other issues occur in IoT in the event of noise

on the network (Bandyopadhyay & Sen, 2011). It demands reconnection from one level

to the next, which takes a lot of time to overcome the main problems. The cross-layer

architecture is adopted to address these critical challenges

2.5.3 The Architecture of Cross Layer Platform in the IoTs

The IoT architecture is critical in resolving concerns such as Quality-of-Service

(QoS), device stability, integrity, and privacy. Several different IoT architectures have

been proposed. Simple layered architecture is one example. Three to five layers are

possible in a simple layered architecture. The perception layer, network layer, and

application layer build up a three-layered architecture. The five-layer architecture consists

of objects, abstraction of objects, service management, application, and business layer.

Sensors such as Zigbee and RFID are used in the perception layer of the IoT architecture

(Jing et al., 2014). The compilation and storage of data are the responsibility of these

Univ
ers

iti
Mala

ya

64

sensor units. There are specific sensor devices installed for network data collection and

storage. The IoT architecture also includes a network layer. This layer manages to transfer

data from the observation layer to the higher layer. The network layer is also essential in

ensuring confidential data and information acquired by sensor devices. The end-to-end

IoT architecture is shown in the Figure 2.13. It comprises of four network components:

wireless sensor modules, data connectivity, a cloud management framework, and a

management portal.

Figure. 2.13: IoTs (IoT) Architecture (End-to-End)

The communication functionality can be described as a cross-layer design and

control as an adaptive solution to the system using a resource allocation approach. In

IoTs, a centralized optimization model is critical for managing parameters at the physical

layer. These primarily include channel error correction as well as modulation. Cross-layer

architecture aids MAC and error management in the link layer, while it aids addressing

and routing in the network layer (Z. Yan et al., 2014). Via these roles, the device can

achieve optimal results in line with the independent goal functions of the cross-layer

designs on the IoTs.

Univ
ers

iti
Mala

ya

65

In the IoT, cross-layer architecture is also essential for multi-objective

optimization. Essentially, the IoT is expected to provide differentiated application

services, such that the Quality-of-Service (QoS) provided to various applications. As a

result, multi-objective optimization is used to solve a wide range of problems in the IoT.

Multiple competing goals within the IoT are overcome with the multi-target optimization.

These are primarily delays, energy utilization, and end-to-end packet errors.

The cross-layer technology is made up of layers that assist in improving the

performance of the IoTs. The application layer, network layer, and sensor layer are the

three main layers of the cross-layer architecture. Each layer is essential in improving the

performance of the IoT platform. The sensor layer of the cross-layer architecture, for

example, serves as the application foundation for the IoT platform. In the IoT, the network

layer roles as a connection between the sensor and the application layer. This layer also

contributes to computational technology. The application layer of the cross-layer

architecture is liable for displaying the IoT business to the customer. These layers have a

vital role to play in the IoTs. Essentially, cross-layer architecture assists in coordination

between the network layer and the application layer regarding the data collection and

cleansing. The key objective of the strategy is to provide the different IoT users with both

fluid and intelligent services. Following are essential problems concern with the cross-

layer design.

(a) A. Routing and Communication Among Heterogeneous Devices:

Although IoT technology has been effective in improving intelligent-based

communication worldwide, it also has many issues and challenges to be faced. The IoT

defines global cyber-physical networks, allowing various applications such as e-health,

transportation and tracking of commodities. This application is based on the

heterogeneity of the hardware for the IoT requirement for different routing and

Univ
ers

iti
Mala

ya

66

communication applications. The cross layer communication schemes have been used to

solve the problems encountered in the use of IoT applications (R. Xie et al., 2012)(Guan

et al., 2010). The modified Grey Wolf optimizer framework is one of the most critical

cross-layer functionalities in solving IoT problems. The optimizer assists in determining

the best routing paths and communication criteria. In IoT, the interrelationships between

the different functionalities of the application layers are investigated. In realistic scenarios

in the physical layer, the cross-layer model is used to validate and optimize the application

(Yu & Leung, 2002). The novel updated Grey Wolf Optimizer architecture resolves the

standard layered solutions to the IoT to achieve optimal global connectivity. Furthermore,

the Delta diagram facilitates global end-to-end connectivity in IoT. Essentially, the

method improves both the IoT protection matrix and hardware synthesis.

(b) Application of 6L0WPAN:

The implementation of the 6L0WPAN is also an essential issue in the IoT. Unlike

Bluetooth and ZigBee, personal wireless networks help to compress headers in IoT and

also compression (L. Da Xu et al., 2014). The data loss in the network caused by low

power can be identified using the cross-layer architecture model. The cross-layer

mechanism is included to allow the border routers to obtain power from the power grid

to detect not only the issue of data loss but also to optimize network communication

(Ameigeiras et al., 2010). The cross-layer model is essential considering that it helps

routers to collect the complete data context. Cross-layer approaches prevent the packet

drop in stage during network communication.

(c) Data Sharing Among IOT Devices:

In the modern world, the fundamental IoT has been significantly changed to

consider several other things. For example, the current IoT has been extended to consider

the vast number of communications, intelligence, and numerous other remotely

Univ
ers

iti
Mala

ya

67

accessible objects, such as smartphones, sensors, and vehicles. Although IoT is being

built in a challenging environment where big data is managed, it is vital that complex data

management practices, such as cross-layer architecture, become inevitable with increased

data sharing/communication in IoT (Z. Li et al., 2010). Big data and cloud computing

techniques will be needed to handle more data. Wireless sensor networks are commonly

used in IoT since they link many wireless sensor devices. With the increased number of

IoT devices, it is critical to manage efficiency and performance adequately. The IoT is

expected to evolve dramatically in the next century, with more data being shared by

different devices. The cross-layer architecture is proposed to assist in improving the

efficacy and reliability of data sharing within the IoT (Bu et al., 2012; R. Xie et al., 2012).

(d) Privacy and Scalability:

It is worth noting that the modern world is heavily reliant on the use of smart

devices. As a result of this trend, more devices will be available to meet the human needs

soon. As a result, as the use of smart devices grows, more problems will inevitably arise.

Security, privacy, and scalability are just a few of the anticipated challenges (Sheng et

al., 2013). Since smartphones are designed to be used by a single user, security is a

significant concern. The implication is that smartphones contain private and personal

information. Security, access controls, confidentiality, and authentication are all

addressed using the cross-layer architecture. To build a cross-layer architecture for

authentication and authorization, non-repudiation is needed. Encapsulation in IoTs

provides authentication and data confidentiality. The datagram transport layer protocol is

used to authenticate IoT devices.

(e) Energy Consumption in IoT application:

Energy conservation is one of the significant problems with WSN technology in

the IoT. Scavenging or rechargeable batteries can provide energy for the WSN. Whatever

Univ
ers

iti
Mala

ya

68

the case, energy management needs to be improved efficiently. Solution : Besides

reducing communication and calculating loads, cross-layer designs can be implemented

to minimize energy consumption (L. Zhu et al., 2012), (L. Zhu et al., 2011). The WSN

communication layers within the IoT affect the impairments of the intrinsic wireless

medium, low power radio connections, medium interferences leading to packet losses and

path loss.

(f) Middleware for IoT:

With technical advances, a modern IoT architecture has emerged that is more

successful in managing major issues within IoT applications. The new IoT architecture

includes pattern identification services. This is evident in the physical layer, as well as

the middleware and applications layers. The new IoT architecture allows the solution to

apply the distinguished algorithms to various environments and devices. In contrast to

receiving raw data from the physical layer and others, the application can directly retrieve

data from the middleware. This means that the IoT infrastructure would work better. This

is frequently due to the new application's ability to retrieve all contextualized data from

other layers, regardless of the neighborhood. As a result, the Linksmart middleware

represents a significant advancement in the management of the IoT architecture. The

diagram below depicts the general design of the middleware between the physical and

application layers. The physical layer consists of sensors that collect weather data, event

data, bus service data (Souza, AMC da and Amazonas, 2015).

The different layers that make up the Linksmart application serve a variety of

functions. For example, the physical layer of the Linksmart middleware cross-layer

design hosts the resource layer for smart devices and sensors. This is related to the

Linksmart middleware to facilitate data transfer and algorithm detection. Within the IoT

scheme, the middleware layer is responsible for pattern recognition and configuration.

Univ
ers

iti
Mala

ya

69

Since it contains the configuration parameters for both the resource managers and the

application layers, this layer is essential because it allows cross-layer communication.

On the other hand, the application layer is vital for carrying bidirectional

communication and the various configuration features for cross-layer communication.

Cross-layer communication is an essential aspect of the architecture (Yu &

Krishnamurthy, 2007). The architecture allows nodes in IoTs to access, execute, and

transmit information through each physical node. The network access points, the

middleware layers, and the application nodes all communicate effectively throughout the

network. It is a distinguishing feature in IoT that is critical in improving inter-node

connectivity across the application layers, middleware, and physical layers.

2.5.4 Cross-Layer QoS Strategies

This section presents various QoS technologies in IoT from the MAC, network,

and cross-layer models. The threats and opportunities in each of the layers are evaluated

for these QoS strategies. Finally, the future research directions for QoS strategies for

research and implementation are addressed before concluding this section.

 Service-Differentiated Real-Time Communication Scheme (SDRCS).

SDRCS is powered by events, it routes real-time traffic via a cross-layer packet

architecture that integrated real-time routing into a modern priority MAC scheme. Based

on this architecture, the protocol approximates distributed packet speed classification and

traffic control. It also localizes decision-making by giving priority to packet transfers to

optimize packet speed (Xue et al., 2011).

This approach can be used to prevent the degradation of bandwidth by un-

scheduled data packets. It is event-based and can be easily adapted to changes to the

network. In addition to locating the multi-channel transmission, no additional hardware

Univ
ers

iti
Mala

ya

70

is required. (Bhandary et al., 2016). This approach lacks several QoS parameters, has a

high computational cost, and does not provide a solution for redundant query packets.

 Network Layer QoS Support Enforced by a Cross-Layer Controller (NLQS)

This scheme allows for the distinction of packet-level service depending on the

throughput, packet error rate, and latency (Melodia & Akyildiz, 2010). This method can

improve QoS at the network layer. It includes an interlayer control unit (XLCU) for

networking functions in physical, MAC, and network layers to be configured and

controlled (Bernard et al., 2019). This method allows the interactions between cross-

layers to be managed without weakening device upgradability, simplicity, and modularity

(Melodia & Akyildiz, 2010).

 Cooperative MAC Protocol for Multihop Networks (MCMAC).

M-CMAC, CoopMAC, is designed to assist low data rate stations with high data

rate stations in forwarding traffic for broadcasting. (Jacob & Shamna, 2015). Helpers

have often selected keeping the two fast-hop transmissions by replacing with one slow-

hop transmission. Every node has a cooperative table (CT) of possible helpers, including

the destination and helper MAC addresses and the Euclidean distance and total distance

through the helper. It ensures a higher throughput compared to IEEE 802.11 DCF (Jacob

& Shamna, 2015).

 Cluster-Based Cooperative Routing (CBCR) Protocol.

The CBCR protocol includes a multi-hop data-forwarding feature at the link layer,

which is implemented with cooperative links that use M-CMAC. This protocol includes

two phases: the selection step of the routing relay and data transmission.

i. Routing Relay Selection Stage: All node sends periodic beacon messages to its

neighbors containing the node's MAC address. Each of these creates a relay table

that lists all the neighbors with whom it can communicate. In case of changes in

Univ
ers

iti
Mala

ya

71

its entries after its previous broadcast, the Node will further broadcast its next list.

The MAC addresses of nodes adjacent to node X are located in column one of its

relay table, and the row of the neighbor node contains MAC addresses for

neighbors of the adjacent node. Each node selects routing relays independently

based on its relay table. The number of nodes connected by a relay node is

determined by the number of nodes that it connects (Jacob & Shamna, 2015).

ii. Step of Data Forwarding: a node having query should transmit packets by first

confirming the recipient being in the same cluster. If the receiver owns a helper,

the packet is forwarded to them, but the packet is sent directly to the receiver if

they are unavailable. When the intended recipient is within a separate cluster, the

relay table is examined to see whether the recipient is accessible via other routing

relays. If reachable, packets are sent directly or through a helper, to the routing

relay if the relay contains one. When a destination is not reachable through relays,

the node broadcasts packets to all relays, it has the advantage to multicast the

packets (Jacob & Shamna, 2015).

 Adaptive Cross-Layer Forward Error Correction (ACFEC).

The ACFEC model exchanges data packets between nodes through the access point

(AP) that runs the infrastructure mode whereby the FEC is included in the multimedia

data. (Rao & Shama, 2012). These data are processed via the RTP packets by

encapsulation using a streaming server. An adaptive FEC controller detects the packet

class from the RTP header and retrieves the packet header from UDP. The encoder creates

some error-correcting packets, which is calculated by the block's source packet number.

The controller monitors multimedia transmissions using MAC failure data, and if a

transmission fails, its counter is increased by one. The controller uses the failure counter

to adjust the packet number produced after a block is transmitted (Bernard et al., 2019).

Univ
ers

iti
Mala

ya

72

If packets are lost, the redundancy rates are changed, and extra packets are generated to

replace the lost ones and satisfy the receiving node's requirements (Rao & Shama, 2012).

The FEC packet number is increased or decreased to meet the receiver's requirements and

prevent packet errors. This is accomplished by detecting packet losses accurately and

adjusting redundancy thresholds. It guarantees better QoS by reducing the packet loss and

adjusting the redundancy rate. (Sun et al., 2011)

 Balanced Cross-Layer Fuzzy Logic (BCFL)

(M. Li et al., 2013) developed a new fuzzy logic-based routing algorithm (BCFL)

that takes the distribution of cross-layer parameters as an input to the fuzzy logic inference

scheme. Based on the value of distribution, each cross-layer parameter has a dynamic

weight. The concept incorporates the following innovations:

It reduces algorithmic complexity significantly; the size of its distribution list

determines the parameter's weight. It is built on straightforward if-then rules that remain

constant even as the constraints increase. It is easily adaptable to changes in network

conditions. The algorithm can be used to choose a CH in the protocols of cluster routing

(M. Li et al., 2013).

 Minimum Hop Disjoint Multipath Routing Algorithm

with Time Slice Load-Balancing Congestion Control Scheme.

MHDMwTS is a two-stage routing protocol consisting of route construction and

path recognition phases. There are three disjointed paths: primary, alternating, and

backup paths, each with different sources. The path build-up process begins when the

source node requests to build a route to the nearest hop neighbor (Alamri & Abdullah,

2016). Initially, the source activation process starts in the first stage by adding its numbers

and timestamps to the desired path construct node and sending it to the next least hop-

Univ
ers

iti
Mala

ya

73

count node. This process continues until the least latency sink has received the necessary

data to construct the main path (Sun et al., 2011). In the second stage, route extraction

occurs when a new packet from a different path arrives, comparing the extracted path

with the primary path. In the case of a shared node, the packet needs to reject, or an

alternate path will be sought as a backup by comparing previously taken paths. In the

third phase, the sink returned the ACK packet to a sender with path information and time

data after the timestamp is calculated. This protocol is limited to cover only a few QoS

parameters, i.e. latency and congestion control (Bernard et al., 2019)(Alamri & Abdullah,

2016).

 Cross-Layer Optimal Design (CLOD)

Authors in (M. Li et al., 2013) proposed a CLOD for data link layer scheduling,

network layer routing, and transport layer congestion control under the assumption of

fixed link capacity. Energy performance is increased by means of congestion

management. The congestion of node at the transport layer is reduced by compressed

sensing (CS), which reduces the transmitted bits, While the optimal allocation of

resources reduces the congestion at the data link layer (J. Yan et al., 2016). It increases

energy efficiency by extending the network lifespan and performing congestion

management.

Table 2.7: A summary of some reviewed cross-layer models

Univ
ers

iti
Mala

ya

74

Univ
ers

iti
Mala

ya

75

Table 2.7 summarizes these cross-layer models and makes a few observations. In real

network, multiple layers perform various roles and provide various essential services. A

layer can only interact with its neighbors. Because of the numerous features in wireless

Univ
ers

iti
Mala

ya

76

communication, the layered model degrades device efficiency. Routing protocols share

QoS parameters in the layers of IoT to maximize performance. However, cross-layer

models as mentioned in Table 2.7 is a vital solution to handle the query flooding. The

cross layer design is more scalable, efficient, flexible with very low propagation delay,

can regulate congestion, improve QoS and can be used to improve routing efficiency by

terminating redundant queries during the communication process (Bhandary et al., 2016).

In CLD, the physical layer is extremely important. To improve QoS, rate

adaptation and channel allocation occur at the physical layer through signal processing.

CLD provides solutions for power management, minimizing energy consumption,

managing network flow and congestion, and fault tolerance, making it an attractive option

for designers considering other layers. It is also desired to design CLDs to influence QoS

network activity, terminate unnecessary and redundant query packets, and minimize

network flooding in the IoT (Bernard et al., 2019).

Network flooding has been studied in a range of fields. For instance, Hy-IoT was

proposed for a hybrid energy-aware clustering protocol to the heterogeneous IoT network

(Sadek, 2018). To manage a heterogeneous IoT network, Hy-IoT delivers a real-world

cyber IoT architecture centered on clusters. It also provides an effective means of picking

cluster heads, enhancing the use of motes energy, therefore increasing the network life

and the transmission rate for the packets to the base station. A vital issue in this method

is dealing with redundant queries in both the population of motes and the network density

in order to integrate an IoT controller. Haddad et al. (2017) also proposed a three-level

architecture for IoT redundancy control. To regulate service query redundancy on three

scales: macro, meso, and micro scale in IoT networks correspondingly, the framework

employs the Explicit Spatio-Temporal model. Several other essential elements, like the

Univ
ers

iti
Mala

ya

77

functional architecture, algorithms generating redundancy data and related complexity,

and the framework's proactive redundancy control mechanism, are not considered.

(Abdelaal et al., 2016) developed a strategy for increasing energy efficiency in QoS-

Constrained WSNs using the Divide-and-Conquer (DnC) method. The fundamental

principle underlying DnC is that the QoS parameters should be controlled while giving

the right amount of network life. However, a real testbed is required to assess the

suggested technique more realistically.

Alqahtani et al. (2016) Proposed End-to-End (E2E) QoS design and supervising

plan for IoT networks. The authors employed Service Level Agreements (SLA) to find

the flooding problems in numerous IoT devices like smart environment, smart water,

smart water, smart metering, smart agriculture, smart farming, industrial control, e-health,

logistics, home automation and domestic. SLA don’t accommodate unified/standard

processes to collect the needed metrics across-layer and from various providers for E2E.

2.6 Conclusion

This Chapter explains the concept, underlying research strategies and simultaneous

works in context to query processing in both WSN and IoT Networks. It analyzes QoS issues

of query execution mechanism of IoT and WSN by devising a thematic taxonomy that

presents various parameters. It provides insight into various redundant and unwanted queries

that affect the network resources. It discusses state-of-the- art techniques used to detect

flooding queries. Moreover, a brief discussion is presented to highlight possible solutions

for efficient network flooding in IoT and WSN. Finally, various challenges are

highlighted regarding handling the redundant routing queries.

Various defensive mechanisms are designed and developed to handle flooding in

IoT networks. As previously mentioned, redundant and undesired transmissions flood the

Univ
ers

iti
Mala

ya

78

network, potentially increasing network queries. It also increases the use of network

resources and decreases QoS over the link.

With the increased use of smart devices, more challenges emerge in the

performance of the IoT. The cross-layer design is normally used to resolve prominent

problems in the IoT, comprising of such as security, privacy, energy consumption and

efficiency among other error. To address these challenges, cross-layer designs have been

embraced. The proposed cross-layered design enables the query exchange with the rest

of the layers thereby creating a better Quality-of-Service (QoS).

Based on the shortcomings of the present techniques, which focus mainly on how

to enhance the basic routing queries scheme for IoT devices, have limited feature and

only provide individual QoS solution to IoT Layers. However, a sole QoS enabled cross-

layered solutions for flooding suitable for both physical and network layers devices are

not being addressed previously. This study proposed a QoS enabled cross-layered Cluster

Based Flooding solution for IoT network. The proposed technique is a solution that is

compatible with both physical and network layer devices.

Univ
ers

iti
Mala

ya

79

CHAPTER 3: CROSS-LAYERED CBF (FOR MITIGATING REDUNDANT

QUERIES IN IOT)

This chapter presents a QoS enabled cross-layered clustering technique for

mitigating flooding queries in IoT networks. The cross-layered cluster-based flooding

mechanism can provide interoperable solution for the devices of network and sensor

layers. This method split the network into various clusters. Inside cluster, the Intralayer

cluster (IALC) is used to proactively maintain local query information, on the other hand

Interlayer cluster (IELC) is used to reactively acquire routingβqueries to the receiver

outsideβthe cluster. Cluster based flooding (CBF)βis a hybrid method that can be

moreβeffective comparedβto conventional systems in termsβof query traffic generation.

However, if proper redundant query detection and termination mechanisms are not used,

the CBFβmay generateβmore control traffic than typical flooding βtechniques. For the

purpose to minimize the control traffic, energy consumption and network flooding IELC

uses an advance query control mechanism (QCM) which corelate the signal strength with

a predefined threshold value (QLT) QueryLimitThreshold to identify and terminate

redundant and unwanted routing queries.

The mote localization and queryβdetection strength of an IoTβnetwork is checked

in flooding using this approach. The strengthβof queryβdetection is examined for

verification and any fluctuation in the signalβstrength of the queryβpacket and theβQLT.

The mote's positionβstability is dependent on the locationβinformation of its valid mote

neighbors, combined withβits fixedβQLT, and monitored over time at various intervals.

This study also carriedβout a formalβanalysis using the salient features of Set Theory and

Game Theory (Abdalzaher et al., 2016) that helps to identify diverse network flooding

patterns in the sensor and network layers of the IoT Networks.

Univ
ers

iti
Mala

ya

80

This Chapter is organized into five sections. Section 3.1 provides detailed

methodology of the study. Section 3.2 starts with an overview of flooding strategy. It

followed the design principle of the proposed method in Section 3.3, which provide a

description of the state transitions along its event generation for each phase. Section 3.4

and 3.5 elaborates the (CBF and QCM) with detail description of each of its phase. Also,

each phase explains along with its algorithms to have an insight of its working steps.

Finally, this chapter is concluded in Section 4.6.

3.1 Methodology

The entire study is divided into five phases, as depicted in Figure 3.1. This study

investigated the QoS implications of the entire WSN and IoT networks with the exact

state of the art solution pondering the most basic to the latest trends. A review and analysis

are carried out of the QoS vulnerabilities, unwanted and redundant network queries, and

potential IoTs Network (IoT) challenges. The study uncovers the contemporary layered

based clustering of the reported redundant and unwanted queries, and associated

challenges to the IoT in context of main categories of QoS implications relating to each

IoT layer. Moreover, it highlights the possible redundant and unwanted flooding queries

impacting the performance of individual layer and suggests the compact solution in design

of QoS enabled IoT.

Existing cutting-edge outcomes are also critically examined in developing a

comprehensive thematic taxonomy. Furthermore, this study examines each cutting-edge

QoS solution to determine the distinguishing IoT aspects used, and the problem addressed

by a specific technique, as well as the simulation or emulation environment of the related

technique. This research also examines the impact of each state-of-the-art QoS-based

query solution on the appropriate IoT layers. The critical examination of existing state-

of-the-art flooding solutions broadens domain knowledge of current IoT QoS trends,

Univ
ers

iti
Mala

ya

81

significant strengths of prospective IoT, and research gaps that require further

exploration. It is evidently noticed that flooding query remains the fundamental issue and a

challenge that affects the QoS of the IoT network.

Figure 3.1: Research Methodology

A complete investigation is carried out in the real-world scenario of IoT to establish the

problem. This study conducted a formal analysis of the prominent features that assist identify

various network flooding patterns in the sensor and network layers of IoT Networks using the

Event-B method (Set Theory and Game Theory).

The research validates the system exploiting formal proof on a theoretical

mathematical model of the system that comprehensively verifies and confirms the

expected behavior of the CBF Approach, as opposed to simulation and testing. This

research also exhibited and assessed the impact of redundant flooding on IoT controllers and the

detection accuracy behavior and analysis of some of the most current state-of-the-art. This study

examines different techniques to address redundant/unwanted communication inside the

IoT network to comprehend the sequence of measures taken during flooding and propose

the cluster-based flooding (CBF) technique. Both physical and network layer devices can

Univ
ers

iti
Mala

ya

82

use the CBF technique because it is an interoperable solution. CBF splits the network into

various clusters. Intralayer clustering (IALC) keeps the local queries proactively, while

interlayer clustering (IELC) ensures that the routing queries to destinations beyond the

cluster are obtained reactively. CBF is a hybrid technique that has the capability to be

more efficient in context of query traffic generation than classical schemes. CBF is

vulnerable to cause more control traffic than traditional flooding techniques without

adequate redundant query detection and termination mechanism. Interlayer clustering

(IELC), composed of an advance query detection and termination technique (QCM),

employs strength of link signal, and a query limit value to detect flooding. It can minimize

the network flooding, energy consumption, identification, and elimination of

redundant/unwanted flooded queries in IoT networks. The findings of the simulation

reveal higher performance in the context of traffic delay, throughput, and energy

consumption against state-of-the-art techniques under different performance metrics

compared to conventional flooding and state-of-the-art systems.

This study also exhibits statistical performance and evaluation of query control

mechanism to minimize energy consumption, delays, and network throughput. In

Particular, it assessed the performance gauge of Query Control Mechanism (QCM) for

QoS-enabled layered-based clustering for flooding on the IoTs. This study used statistical

methods to determine that the QCM algorithm beat the existing techniques for identifying

and eliminating redundant flooding queries. Such as Divide-and-Conquer (DnC), Service

Level Agreements (SLA), and Hybrid Energy-aware Clustering Protocol for IoT (Hy-

IoT). The study inferentially analyzed for performance- measures of algorithms in context

of three different scenarios, i.e., energy consumption, delays, and throughput with

Univ
ers

iti
Mala

ya

83

different intervals of traffic, malicious mote, malicious mote with realistic condition,

Scenario based on a varied mobility speed varied simulation area and varied pause time

The results showed that the QCM algorithm performed significantly as against the

existing algorithms depicting a statistical probability value “P” less than 0.05. It indicated

that the performance of QCM achieved the 95% confidence interval. Thus, the study

inferred the performance of the QCM as substantial against other algorithms.

3.2 Flooding Strategy

ThisβSection presents a modelling strategy for floodingβin IoT networks. It

elaboratesβthe interchange of queryβmessages among distinct motes and specifies the

number of query streams. In addition, system modelling provides an overview of mote

functionality and query flow among end-users and motes (Bourke et al., 2014; Elsayed et

al., 2013; Yang et al., 2006). Figure 4.1 depicted the system model of redundant/flooder,

sender/sink, and destination motes. The flooding is only feasible onceβthe flooderβmote

is located betweenβthe receiver and the transmitter. According to the system's geometric

shape, the flooder's transmitted signal gets received by the destination before it completes

transmitting or establishing a new connection. Equation (1) denotes the fraction of each

mote interval that must stay unflooded for successful communications and represents the

different regulated distances D3, D2 and D1.

𝐷2 + 𝐷3 ≤ (λ𝑋𝑠 − 𝑋𝑓)𝑐 + 𝐷1 (1)

Xs denotes mote duration i.e sum of valid motes, where λ is a constant value

allocated to every authentic mote in the network and it varies between 1 and 10, Xf

denotes the flooder's processing time which is the time it takes the flooder motes to strike

the network. The distances between the motes are denoted by D1, D2, and D3, while the

Univ
ers

iti
Mala

ya

84

speed of light is denoted by c, as seen in Figure 3.2. The flooder moteβconstantly observes

theβcommunication channel, and when it detects a queryβpacket transmission, it quickly

emits a radio signal to generate a receiver-side collision. The flooder mote can transmit

enough energy to lower receivedβbits of queryβmessages, leading to cyclic redundancy

(CRC) failure. A flooding attack usually meets the followingβcriteria: tremendous energy

efficiency (use very minimal energy), low detection probability (near zero), highβlevels

ofβDoS, i.e., to disturbβcommunications to the intended or maximum degree and to be

resistantβto flood control techniques of the PHY layer, i.e., to block the signalβprocessing

techniques to handle the flooding. In all situations, a flooder mote tries to preserve

efficiency according to these criteria. This allows the flooder mote to adopt stable

approaches with behaviors in the sensor and network layer to maintain a minimal

detection opportunity.

Figure 3.2: SinkβMote, DestinationβMote, and RedundantβMote System

model.

3.3 Cluster Based Flooding (CBF) for IoT

The CBF's fundamental principle is to divide the whole network into several

routing clusters. Proactiveβmaintenance with the aid of routeβquery exchange

Univ
ers

iti
Mala

ya

85

andβupdate queryβpackets is done by Intralayer clustering (IALC). In theβcase of a

broken orβestablished connection between the directlyβconnected neighbor mote, the

MDP-level MAC begins routeβupdates which are specified as the directlyβconnected

neighbor mote and share a communicationβlink. Mote discovery and media access

control protocols provide the services to identify the neighbors of all connected motes.

On the other hand, Interlayer clustering (IELC) providesβservices of reactively transfer

queryβpackets to the motes which resides outside of the cluster by means of route query

reply. IELC sends routing queries to its borders or outlying motes via a broadcast delivery

service. IELC uses IALC tables to keep track of updated route clustering information for

peripheral motes.; based on the QueryLimitThreshold (QLT) value, this information is

then utilized to evaluate if the query forβdestination mote relates to theirβcluster. QLT

enables the maximum motes transmitting capacitance to be regulatedβto send the

maximumβnumber of query packets and enables network flooding detection to occur.

Figure 3.3 elaborates the CBF architecture.

3.3.1 CBF Assumptions

The following is a listβof the CBFβnetwork assumptions:

 n number of sensor motes are deployed randomly.

 All motes provide the same capacity with respect to functionality,

every mote has an IPβaddress and may function as a sensorβgateway, allowing

query messages to be exchanged.

 The modeβof communicationβis single-hopβand multi-hop for allβconnected

motes.

Any mote can launch a flood attack. The flood begins when it detects any activity

and begins interrupting the communication.

Univ
ers

iti
Mala

ya

86

The flooder and regular motes have the same capabilities, however the flooder

mote may additionally generate duplicate query messages (i.e., random flooding queries).

Figure:3.3: The CBF Architecture

Formal definition, MDP algorithm, IALC, IELC, QCM, and network assumptions are explained

in the following subsection.

3.3.2 NeighborβMote DiscoveryβPhase (MDP)

In thisβSection a neighborβmote discovery algorithmβwill look after the

maintenanceβof neighbor and clusterβrouting tables. All motes have the information

tables of its neighbors and cluster. The neighbor-mote table holds accessible QoS

parameterβvalues along the linkβbetween itself andβits neighbor-mote, as well as the

Univ
ers

iti
Mala

ya

87

neighbor-mote addresses. The intralayer clustering algorithm requires these parameters

forβselecting the bestβavailable routes in the cluster. During this phase, every mote sends

beacons to its neighbors on a regular basis. Everyβmote refreshes its neighbor table with

appropriateβvalues when it receives these queryβpackets from a nearby mote. Every

moteβexchanges neighbor tables with its appropriate neighbors and build cluster routing

tables (Gammarano et al., 2018), (Kharche & Pawar, 2017).

Everyβmote periodically transmits "hello" beaconsβto its directly connected

motes to ensure their status. When a mote delivers a beacon, it immediately updates the

neighboring table and records the source of the beacon. Every mote checks its neighbors’

mote tables at periodic sample intervals to verify their neighbors’ state. If a neighbor

beepsβno beacons throughout theβMax_previous_list intervalβsamplings, it is considered

lost. If the neighbor beepsβbeacons, it is deemed found. Whether a neighbor is found or

lost, a notificationβof an updated link is forwarded toβIALC. Figure 3.4(a, b) shows the

protocols.

3.3.3 The IntraLayer Clustering (IALC)

The motes measure the routes of intralayerβclustering based on linkβstate

information for each extended cluster of motes. Anβinterrupt raised by moteβdiscovery

protocol (MDP) βor IALC link state queryβpacket may become the sources to generate a

mote information, received by the link state updates table. All the related link states

information is maintained by the link state table. Moreover, it is necessary to recompute

the clustering table with any recent updates related to waiting link state. Additionally, the

link state tables get updated when the outlier links have been removed. The most recent

released updates of linkβstate (with itsβsources) are propagated to the mote’sβneighbor

contained by the cluster. Finally, a newly discovered neighbor received the entireβintra-

Univ
ers

iti
Mala

ya

88

cluster link stateβinformation from the mote. The protocol is described in Figureβ3.5

(a,b).

3.3.4 The InterlayerβClustering (IELC)

The underlying job of theβIELC is to find out routesβto the hosts (that lie outside

the mote’sβcluster). If IALC local clustering table does not contain the destination mote's

information, then a link query request is initiated by the IELC at the networkβlayer. Each

route queryβrequest allocate with a query-id (unique to the sourceβmote id). A

combination of query-id and source-mote-id might uniquely identify the route query

request in the network. Figure 3.6 despite the protocol.

Once the request packet records theβquery-id andβsource-mote-id, then the query

packet may forward to allβthe border or peripheralβmotes of the cluster. The βdetected-

queries-table then records the route query request from the mote including other

information i.e., the query-id, source-mote-id, broadcasting-mote, and last-hop. The mote

then investigates the routingβtable to find the desiredβdestination mote (if any)

residingβinside the cluster. The moteβresponds to the queryβsource, in case the

destination mote is found, and replies with a routeβquery reply (carrying a pathβidentified

by the last hop information stored in the spotted queries table. In case, theβdestination

mote does not exist in the mote’s cluster, the mote, subsequently broadcastsβthe rout

queryβrequest to all the outer motes to find the destinationβmote outside the cluster. The

broadcasting mote mayβgenerate more controlβtraffic (compared to flooding) if a suitable

query control scheme is not available.

An alloy (query detection and early termination) of advanced query control

mechanism can exploit to investigate the strength of cluster-based querying. Aβmote will

stop transmitting route queryβrequests (on the departingβlink based on the

Univ
ers

iti
Mala

ya

89

informationβstored in the discovered queriesβtable), in case the broadcastβreceiver mote

intends to accept the route queryβrequest packet.

Figure 3.4(a) MDPβQuery Packet formatβand Neighbor moteβtable.

MDP_Query_Packet_Format

0 4 8 12 16 20 24 28 32
_Version _Traffic class _Flow label

_Payload _Next hop _Limit of hops

Source_mote_address_ (mote_id)

Destination_mote_address

_ (mote_id) _

_Neighbor_mote_table_

_Neighbor_mote_

_ (mote_id)_

Arrival_(Boolean) _Previous_list _

(int)

Initial_Setting:

Timer-xmit-beacon=_random-uniform_(tbeacons. 2);

Timer-mote-table-update=_random-uniform_(tbeacons. 2);

Transmission of Mote Beacon:

// sporadically transmission of “Hello” beacons to neighbor-motes

Mote-source = mote-id;

Payload(query-packet);

Announce(query-packet);

Timer-xmit-beacon = tbeacons ++;

Delivery of Mote Beacon:

//From delivered mote beacons, noted down detected neighbor-motes in Neighbor

Mote Table

Univ
ers

iti
Mala

ya

90

Algorithm 1. MDPβneighbor table update.

//Identify and eliminate the missing and lost neighbors-mote. Every note has
neighbor-mote-table.

Begin (Mote-Table)
Input : Mote-Table[neighbor-mote].previous_list, Mote-Table [neighbor-mote].
Arrive.
Output: Update-Timer -Mote-Table,
1: If (Mote- Table[neighbor- mote]. Arrive ==Not True) Then
 2: If(Mote- Table[neighbor- mote]. previous_list ≥ Max_previous_list)Then
 i: Eliminate (Mote-Table[neighbor- mote]);

//If previous_list has not received the neighbor’s-mote beacon then
eliminate the neighbor-mote from the mote-table.

 ii: Interrupt-load- params (neighbor- mote);
 iii: Set-interrupt (IALC, “neighbor-mote-lost”, “Update IALC Routing

Table”);
 Endif
3:Else Mote-Table[neighbor-mote]. previous_list ++;
//Increase number of cycles that neighbor-mote’s beacon has not been received.
Endif
4: If (Mote-Table[neighbor-mote]. previous_list == −1) Then
//Immediately, alert and update the IALC, if a new neighbor-mote found.

i: Interrupt-load-params (neighbor-mote);
ii:Set-interrupt (IALC, “neighbor-mote-found”, “Update IALC Routing Table”);
iii: Mote-Table [neighbor-mote]. previous_list = 0;

Endif
6: Mote-Table [neighbor-mote]. Arrive = Not True;
7: Update-Timer -Mote-Table = T ++;
8:End

Figure 3.4 (b). The Neighbor-Mote DiscoveryβProtocol (MDP).

IALC QueryβPacket Format

0 4 8 12 16 20 24 28 32
Source of the Link (mote-id)

Destination of the Link (mote-id)

Sourceβof pk (mote_id)

Id-link-state (unsigned
int)

Reserved

Link State Table

Univ
ers

iti
Mala

ya

91

Source of the Link
(mote_id)

Destination of the Link
(mote_id)

Id-link-state (unsigned
int)

Pending Link State Table

Source of pk
(mote_id)

Source of the
Link (mote-
id)

Destination of
the Link
(mote-id)

Id-link-state
(unsigned int)

Status of Link
(Boolean)

Cluster Routing Table

Destination (mote_id) Is_cluster_member$(Boolean) Source routes (mote-id-
list)

Figure 3.5 (a): Intralayer Cluster Protocol (IALC).

Algorithm 2.βIntralayer cluster (IALC) βalgorithm.

//IALCβmight be triggeredβby either from anβinterrupt made byβthe mote
discovery protocolβ(MDP) or link stateβquery packetβupdates.

Begin
Input : query-packet arrived, Interrupt-extract-params, destination-link , Found
Neighbor-mote

 Output: My-id-link-state, Status-link.
β1:βIf (query-packet arrived) βThen

i: βExtract(query-packet);
ii: βMy-changed-link = NotβTrue;

2:βElseif Interrupt-extract-paramsβ(&destination-link); Then
i: Source-link =βmy-mote-id;
ii: Source-pk =βmy-mote-id;
iii: Id-link-state =βmy-id-link-state;

3:βElseif (Interrupt-type =β“Found Neighbor-mote)βThen
i: Status-linkβ= Up;
//βShare all intra clusterβlink states informationβto the new

discoveredβneighbor-mote.
4:βElseif (neighbot-mote! (Link State Table, my-mote-id, link-destination)) Then

Univ
ers

iti
Mala

ya

92

i: βForward-link-state-tableβ(Link State Table,βlink-destination);
ii: βMy-id-link-state ++;

5:βElse
i: Status-link =βDown;

6: Endif
7:βIf (neighbot-moteβis (Link StateβTable, my-mote-id, βlink-destination))

Then
i: My-id-link-state ++;

8:βEndif
9: End.

Figure 3.5 (b): The intralayer cluster (IALC) algorithm.

IELC Query Packet Format

0 4 8 12 16 20 24 28 32
Source of the Query (mote-id)

Destination of the Query (mote-id)

Last_hop (mote_id)

Broadcasting-from-mote (mote_id)

Query-id

(unsigned int)

Type-

pk

(char)

Marker-link

(unsigned int)

Hops-maximum (unsigned int)

Route-source [mote 0] (mote_id)

Route-source [mote 1] (mote_id)

To

Route-source [mote N] (mote_id)

Table for Detected Queries

Source (mote_id) Query-id (unsigned

int)

Last-hop (mote-id-

list)
Net-query-

coverage

Figure 3.6: Interlayer cluster protocol (IELC).

Univ
ers

iti
Mala

ya

93

3.4 QueryβControl Mechanism

Asβstated earlier, the important aspect of the flooderβmote is required toβgenerate

redundant or unwantedβrouting queries so that theβlink remains busy, andβthe authentic

mote should be stopped for sending wanted or important query packets. There is a need

of mechanism to quantify the amount of totalβtime spent in waiting for theβlink to get

free, alsoβto ensure the signalβstrength related to queryβpacket along with

locationβconsistency of mote. Then, these metrics are compared with the regularβtime of

traffic and estimateβthe link for redundantβqueries. Thus, queryβcontrol mechanism has

beenβintroduced toβexecute and implement such tasks. As described in equation (2), the

QCMβmethod employs a change inβQueryLimitThreshold (QLT) for detection and

termination of unwanted or redundant query packets. It is noticed that the QCM is

significant to boost the performanceβof IoT network in context of the signal strength of

query packets, and thus can improve the locationβconsistency for ensuring the connected

motes. This helps in protectingβthe network for reactiveβflooding attacks. Let calculate

theβQLT as described in Equation (2):

 ∑ 𝑀𝑑𝑖 = 𝑃𝑓
𝑛

𝑖=1
 (2)

In Equation (2), M represents the maximumβquery request packets for neighbor

motes, βn depicts the net quantity ofβmotes, di shows the distance between each mote and

QLT (demonstrating the distance between the communicating motes, with i as

theβnumber of relevant motes, ranging 1βto n) and Pf (Pfβinvestigates any possible

flooding attack onβthe network), respectively.

TheβQCM method employs signalβstrength of link in investigating the

consistencyβof query packet looking for, if theβQLT is counter to normal pack

transformation value. The transmitting note, sendingβQLT, is significantly tested and

Univ
ers

iti
Mala

ya

94

compared with the current value, to find the position of floodingβin the network. A mote

is a flooder if it's QLT crosses the highest queryβpacket of a mote. In addition, a mote is

not considered to be a flooder if the QLTβvalue is less than the highest queryβpacket.

Algorithm 3. Query control mechanism (QCM)
Begin
Parameters: n, MaxQuery(M): M ∈ Neighbor motes
Input: query limit value, x0, y0, xn , yn :

Output: Dist, Query limit value (∆) ;
1: If (MaxQuery(M) < QueryLimitThreshold(QLT) Then

i: Check (SignalStrengthConsistancy(SSC));
ii: Check (Sending QueryLimitThreshold(QLT));
iii: Check-link = ((SignalStrengthConsistancy(SSC), MaxQuery(M));

2: Elseif (Check-link =Not True) Then
i:Flooding occurred;

3: Endif
4: If(MaxQuery(M) > QueryLimitThreshold(QLT) Then

i: Z0 =(x0, y0) = mote_location;
ii: Zn =(xn, yn) = find_mote_location;
iii: Check-link = Query Packet Sent;

5: Elseif (Check-link= Not True) Then
i: Flooding occurred;

Endif
End

When the QCM detects a flooder mote, an alert is generated and passed to all

connected neighboring motes so that to switch the motes' routing paths leading to the

flooder mote. By this means, QCM eventually removes the flooderβmote from the

network. The QCMβalgorithm is stated in Algorithm 3.

Univ
ers

iti
Mala

ya

95

n presents the quantity of motesβwithin the network, βZ0 refers to the initialβmote

position (x0, y0), Zn describes the current position of theβmote (xn, yn), and M portrays

neighboring motes.

The QCM algorithm contains twoβlevels. The QueryLimitThreshold (QLT)

information is achieved at initial level, followed by verifying the

βSignalStrengthConsistancy (SSC) of eachβmote. Since allβmotes can disseminate

information reaching a particular duration, queries' volume passed by each mote can be

recorded. Because of sending QueryLimitThreshold (QLT), the

SignalStrengthConsistancy (SSC) need to be validate.

It is supposed that a particular mote can be in one of three states/conditions in the

network: typical (normal state of the mote), fishy (the suspicious condition of the mote),

and flooder (mote behaves as a flooder). Initially, the motes in the network areβin the

typical state and queryβpackets could be exchanged by them using aβsingle- or a multi-

hopβcommunication pattern. Theβfishy state carries the path analysis relying on the type

of communication (eitherβsingle- or multi-hop). This can be further exploited by the

motesβto queryβexchange of data. In case, the fishyβsender mote relies on a single hop

communication pattern. On the other hand, the analysis of mote can be achieved based

on multi hop if the fishy mode relies on multi hop communication pattern, this can help

to query the packetsβthat were transmitted byβall motes. Finally, a mote is considered to

be a flooder if a pattern contradicting the normal pattern of queries arise, and the way the

mote transmits the query packets. A mote can be considered to be in a typical state if the

quantity ofβMaxPacket(M) is analogous toβQueryLimitThreshold (QLT). Eventually, the

QCM removes all the flooder motes, because of updating the connected neighbor motes

by modifying the communicationβchannels and links (approaching from the

flooderβmote). Figure 3.7 elaborate the whole process related to cluster-based flooding.

Univ
ers

iti
Mala

ya

96

Figure 3.7: Flowchart of the CBF process.

3.5 Model Formation for ClusterβBased Flooding (CBF)

This study designed theβcluster-based floodingβmodel as either oneβof two kinds

of games: βproactively (intralayer) advantageous for the sensorβlayer and reactively

(interlayer) beneficialβfor the network layer. Theβintralayer clustering aims at employing

more network resources in achieving the recent information related to the motes in

handling priority packet queries, and to reduce the delaysβin theβIoT network employing

the table-driven mechanism. A static topology of the network is assumed, in addition to

assuming that intralayer clustering (IALC)βis aware of variation in topology. Intralayer

clustering (IALC) eventually improvesβCBF by repairing the query route and it caches

inside the cluster. This method owns aβsignificant feature of non-dependent on any

assumptions relating to the size of individual mote’s cluster. Finally, the proofβof

Univ
ers

iti
Mala

ya

97

correctness implies to the networks owning the same cluster radius for every mote, and it

also refers to the networks handling the individual mote's ownβcluster.

As depicted inβFigure 3.8, suppose m(t)βbe the collection of queriedβmotes

residing within the clusterβ(IALC), being anβinterior or a peripheral mote at

timeβinterval t. The queried motes, for instance, motes having been visited already and

directly reachable to the sourceβmote. Likely, theβremaining collection of unqueried

motes are described by mc (t), unqueried motes are termed as the motes not been visited

yet, residing in the outer cluster, and not being directly approachable to the source mote.

Suppose B(t) be the subset of m(t), denoted asβperipheral or borderβmotes.

Everyβperipheral mote B(t) carries about one neighbor in case of unqueried motes mc (t)

(B(t) mC(t)), peripheral motesβare the covered motes, constructing a border

betweenβqueried and unqueried clusters of theβnetwork. It is already lists inβEquation

(3).

Figure 3.8: Cluster-BasedβFlooding (CBF) ModelβFormulation

𝑚(𝑡1) ⊂ 𝑚(𝑡2) 𝑎𝑛𝑑 𝑚𝐶(𝑡2) ⊂ 𝑚𝐶(𝑡1), 𝑓𝑜𝑟 𝑡 1 ≤ 𝑡2 (3)

Equation (3) depicts that a mote once queried, βit cannot be unqueriedβor

uncovered. Therefore, βm(t1) ⊂ m(t2).

Peripheral/border motes of the

queried cluster

In
te

ri
o

r
m

o
te

s
o

f
th

e
q

u
er

ie
d

 c
lu

st
er

Peripheral/border motes of the

unqueried cluster

S

mc (t)

m(t) B(t)

Univ
ers

iti
Mala

ya

98

The fundamentalβset principle refers thatβmC(t2) ⊂ mC(t1), as presented in

Equation (4):

|𝑚𝐶(𝑡)| > 0, |𝐵(𝑡)| > 0 (4)

βEquation (4) describes allβmotes belonging to uncoverdβmote m ∈ mC(t)βare

reachable by the otherβmotes, having aβcovered peripheralβneighbor b ∈ B(t) (b denote

the collection of queriedβmotes, residing on the clusterβboundary). Thus, βperipheral

moteβb was visitedβby a query, Besides, b can be anβinterior or a peripheralβmote

(relating to the sourceβmote). If b is an interiorβmote, then everyβb’s neighbor means to

be queriedβas well. Though, even some of b’s neighbors areβunqueried, stated as

uncovered motes m ∈ mC(t). Consequently, b requiresβto be the border, or a peripheral

moteβof a source mote as presented inβEquation (5):

𝑏 ∈ 𝐵(𝑡1): 𝑏 ∉ 𝐵(𝑡2); |𝑀𝑐(𝑡2)| < |𝑀𝑐 (𝑡1)| (5)

Referring toβEquation (5), suppose thatβNb is denoted as the collection ofβmotes

that are neighborsβof mote b.βThen, p will be occurred by the following two conditions:

1. Ifβ(b ∈ B(t1),βthen mC(t1) ∩ Nb ≠ ∅

2. Ifβ(b ∉ B(t2),βthen mC(t2) ∩ Nb ≠ ∅

The aboveβconditions indicate thatβmC(t1) ≠ mC(t2), here also presented earlier

thatβmC(t2) ⊂ mC(t1), so |mC(t2)| < |mC(t1)|.

In case, a mote b is aβbroadcast receiver (relating to the sourceβmote) and carries

the updated routeβquery for interval t2 thenβb ∉ B(t2). Referring to, whenβmote b

achieves the updated routeβquery for interval t2, βit initiates looking for

queriedβdestination mote, so revising all itsβassociated motes ofβtheir cluster. Hence, it

should cover all mote b’s neighbors and b ∉ B(t2).

Univ
ers

iti
Mala

ya

99

Theβsecond kind ofβinterlayer/reactive depicts aβtwo-player game. Here, one

player "1" has a role of a “maximizer” βand second player "2" roles as a “minimizer”.

The maximizer (player 1) aims at achieving the maximum possibleβvolume of energy

gains, whereas theβminimizer (player 2) attempts to preserve the least volume of energy

gains. This mechanism is adopted since every mote (player) of IoT network can possibly

exploit the resources of network gains duringβtransmission of the routeβquery packets.

These players hold a role of observer mote and are responsible in detection of unwanted

flooding in the network. Equation 6 denotes the playersβas X1 and X2,βwhere X1 refers

to inspectingβmote and X2 describes the flooderβmote.

 𝑋 = { 𝑋1, 𝑋2} (6)

(Ic) and (Ip) denote the constant inspecting and periodic inspecting respectively

in back andβforth of the cluster-basedβflooding (CBF). This allows the communicating

motesβto examine the link eitherβconstantly or with a predetermined interval of time.

“ReFa” refers as the assumed strategy of reactiveβflooding. The mote uses the (Ic, Ip)

strategies to check the communication link, represented as:

𝑋 = 𝑋1 ∗ 𝑋2 (7)

 𝑋1 = {𝐼𝑐, 𝐼𝑝} (7a)

 𝑋2 = {𝑅𝑒𝐹𝑎} (7b)

Here, X1βand X2 denote player 1 andβ2, respectively.

The efficacy of inspectingβmote can be presented by assuming the playerβutility

function, to authenticate whether the floodingβattacks could be detected significantly or

not. Consider the falseβpositive and rate of detection as to primary utility functions to

inspect the mote. The flooderβutility aims at stopping the successful dissimilation of

Univ
ers

iti
Mala

ya

100

query packets to reduce the network throughput, Quality-of-Service (QoS) , by achieving

the strikes of redundant query. The utility function (Fu) are set as follows, Fu 1 and Fu 2

represent the detection rate and flooding attack gains, respectively:

{𝐹𝑢} = {𝐹𝑢1, 𝐹𝑢2} (8)

Equations (2), (6), and (7) formulate the strategy of reactive flooding attack based

on Ic andβIp presented below. Here, Fd denotes the durationβof the floodingβattack, Fdg

depicts for the gain of detection of flooding, t describes the Ip time interval, Fag denotes

the gain of a remarkably flung floodingβattack. The payoff of the reactive flooding is

denoted with Prefa, and both (Pc, Pp) are theβpayoffs when (Ic, Ip) areβused to sense the

floodingβattack. Payoff describes the cost of starting or detectingβan attack:

 𝐼𝑐 = 𝐹𝑑(𝐹𝑎𝑔 − 𝑃𝑟𝑒𝑓𝑎), (𝐹𝑑𝑔 − 𝑃𝑐) (9)

 𝐼𝑝 = 𝐹𝑑(𝑡𝐹𝑎𝑔 − 𝑃𝑟𝑒𝑓𝑎), 𝑡(𝐹𝑑𝐹𝑑𝑔 − 𝑃𝑝) (10)

The strategy of the reactive flooding attack can be expressed by Equation (9) and

(10) for both (Ic, Ip). It is noticed that the flooderβmote can instantly triggerβan attack if

it identifies any activity in theβcommunication link.

3.6 Conclusion

This Chapter presents a QoS enabled cross-layered clustering technique forβflooding

queries in IoT networks. The QCM is based on an understandableβsolution that applies

to both physicalβand network layer devices. Cross-layered CBF segments the entire

networkβinto numerous clusters, maintaining proactively the localβquery information

using IALC, whereas IELC is held responsible for reactive achievement of

routingβqueries to their destinationsβ (outside the boundary of cluster). CBF carries the

potential as an efficient solution compared to conventional schemes in context of query

Univ
ers

iti
Mala

ya

101

traffic generation. However, when query detection is absent or terminated, the CBFβmay

generate more controlβtraffic as compared with the standard floodingβtechniques. The

cluster-based flooding model in this study was built as one of two types of games:

proactive (intralayer) for the sensor layer and reactively (interlayer) for the network layer.

Intralayer clustering seeks to use more network resources to obtain the most up-to-date

information about motes to handle priority packet queries and reduce delays in the IoT

network using a table-driven approach.

Univ
ers

iti
Mala

ya

102

CHAPTER 4: FORMAL VERIFICATION AND ANALYSIS

This Chapter discuss a formal verification and analysis for Cluster Based Flooding

using Event-B method and as a case study use to examine the CBF in IoT.

This Chapter is structured into six sections. Section 4.1 and 4.2 briefly presents

the motivation for Formal Verification and Modeling in Event-B along with model

refinement. Whereas Section 4.3 and 4.4 describes CBF Framework, system requirements

and environment assumptions deemed in our development. Section 4.5 presents the entire

formal development process, containing the formalization with Event-B and the

validation with the ProB. Finally, Section 4.6 concludes the Chapter.

4.1 Motivation for Formal Verification and Modeling in Event-B

Formal methods, mainly formal verification, can improve the quality of the

verification system. Formal verification technology can use rigorous mathematical proofs

to determine if a system has a particular property. So far, a lot of work has been done to

verify route protocols utilizing the model and theorem verification (Bourke et al., 2014;

Elsayed et al., 2013; Yang et al., 2006)

Few studies pay attention to the formal validation of cross-layered routing

protocols. This chapter proposes a formal specification of cross-layered cluster-based

flooding CBF at event B and proves the correctness of the route discovery mechanism. It

is a refinement-based method, an improved way to add system details to the

corresponding model gradually. It makes modeling and authentication easier for the user

by allowing later versions to keep all the proven attributes in the previous model. The

basic Rodin (Abrial et al., 2010) auxiliary tool automatically divides proof tasks into

sections based on the model structure. This approach has also been extended to systems

in a variety of disciplines. Each node in the CBF cluster broadcasts link-state queries

Univ
ers

iti
Mala

ya

103

regularly. To model periodic broadcast/flooding activity, some time constraints must be

included in the formalization. Also, formalization should limit the spread of node link-

state query information within the cluster. Instead of using reactive protocols for

broadcasting, nodes typically use a flooding mechanism called border casting services to

handle routing requests.

Furthermore, if there are changes inside the cluster or it receives route queries

replies carrying discovered routes, a node then updates its routing table accordingly. As

a result, formalizing the CBF is more complicated than formalizing a sole proactive or

reactive approach protocol. This is an important issue that needs to be discussed and

formally specifying this challenge in a significant way. By improving the method, it

allows us to design a system from abstract to tangible. The proof obligations ensure the

correctness for refinements. A Rodin plugin known as ProB is employed as an animation

tool. It is used to authenticate the model and ensure that it has formalized the device

specifications.

4.1.1 Event-B Method

Event-B is a state-of-the-art systematic approach for modeling and analysis at the

device level (Elsayed et al., 2013) . The B-Method(Yang et al., 2006) has been

simplified and expanded to Event B. Set theory, and first-order predicate logic is used to

construct Event-B.(Hoang et al., 2013) includes the syntax specification for the Event-B

language. This procedure has already been used to validate a variety of complex

structures (Abrial et al., 2010; Cansell & Méry, 2006; Elsayed et al., 2013). The context

and system construct the Event-B model. The system defines the dynamic part of the

model, while the context describes the static role. The following are the apparent

meanings of context and machine. The background structure is composed of a tuple, as

follows.

Univ
ers

iti
Mala

ya

104

Definition 1: S denotes a set of user-defined sets, C represents a set of constants,

A denotes a set of axioms that S and C must obey, and T indicates a set of theorems.

Definition 2: Machine structure is composed of a tuple denoted as (V, I, T, VA,

E), in which V and I represent as the states of the system and set of predicates that

determine the characteristics of variables, respectively. The set of predicates in I should

be maintained by each reachable state of the system. The set of theorems that need to be

proved for the machine is denoted by T. Each machine has some convergent events that

need to be defined and denoted by VA. The behavior of the system is model by events

denoted by E. The state set or before-after predicate is associated with an event and

consists of two major parts: guards that define the preconditions for each event

compilation and behavior, which allocates variables values.(Robinson, 2010) elaborates

the summary of the Event-B notation:

The following is the most basic type of an event:

𝑎𝑛𝑦 𝑃 𝑤ℎ𝑒𝑟𝑒 𝐺𝑢(𝑃, 𝑉𝑟) 𝑡ℎ𝑒𝑛 𝐴𝑐(𝑃, 𝑉𝑟)

Where the collection of parameters represented by 𝑃, variables set is defined as

𝑉𝑟, aggregation of some guards and actions is denoted as 𝐺𝑢(𝑃, 𝑉𝑟) and 𝐴𝑐(𝑃, 𝑉𝑟)

respectively. The guard and parameters are non-compulsory and can be omitted to

simplify the event. Actions are made up of multiple tasks that are meant to happen at the

same time. A before-after predicate can be used to define the change of variable for each

assignment.

 The Rodin (Abrial et al., 2010; Jastram, Michael, 2014) is used to create and

verify the Event-BModels; verification is done either automatically or manually called

proof obligation. Further, it provides plugin architecture which makes it more

configurable and extensible (Romanovsky & Thomas, 2013). The ProB (Clark et al.,

Univ
ers

iti
Mala

ya

105

2016; Leuschel & Butler, 2008) plugin, a tool used for checking and animation of a

model

4.2 Model refinement

Refinement is a magnificent modeling method that helps to construct a step-by-

step model (El Mimouni & Bouhdadi, 2018). By using the refinement process, both

machine and context can be expanded to design a concrete model. Context holds the static

information and can extend to more than one context. A machine is a dynamic part of

refinement. It can only refine one prevailing machine, but it can see numerous contexts.

The abstract variables can be replaced by concrete ones and refine abstract events.

An event can be maintained by alienating numerous concrete events. In another

way, an event can be refined in another event by adding new actions and guards. To

guarantee the refinement are made correctly, there is a need for some proof obligation

that ensure (a) When the concrete event, known as guard strengthening, is activated, the

abstract event is enabled as well, (b) for the variables of the concrete and abstract

machines the gluing invariants are preserved. (c) Every activity in the abstract event

stimulates the concrete event that corresponds to it. The following description shows the

created rules for the proof obligations.

Definition 3: let consider 𝜀1 , 𝜀2 are the events and 𝑚𝑎1, 𝑚𝑎2 are the machines

∋ 𝜀1 ∈ 𝑚𝑎1, 𝜀2 ∈ 𝑚𝑎2 . if 𝑚𝑎2 refines 𝑚𝑎1 then 𝜀2 also refines 𝜀1. Furthermore, set of

axioms seen to 𝑚𝑎2 is denoted by 𝐴𝑥 , set of theorems and invariants are defined in 𝑚𝑎1

and 𝑚𝑎2 is represented by 𝑇 and I respectively. Guards of 𝜀2 is represented by 𝐺𝑢,

whereas the gluing invariant defined in 𝜀2 and 𝑚𝑎2 is denoted by J. An action of 𝜀1 and

𝜀2 know as before-after predicate is represented by 𝐵𝐴𝑝1 and 𝐵𝐴𝑝2 which is used by

abstract variable and concrete behavior.

Univ
ers

iti
Mala

ya

106

Then it is necessary to prove the conjunction of 𝜀1 guards is denoted by 𝐴𝑥 , 𝑇, I, 𝐺𝑢 ⊢

𝑔𝑟𝑑 ; whereas 𝐽𝑚 is the modified 𝐽

𝐴𝑥 , 𝑇, I, 𝐺𝑢 ⊢ 𝐽𝑚;

𝐴𝑥 , 𝑇, I, 𝐺𝑢, 𝐵𝐴𝑝2 ⊢ 𝐵𝐴𝑝1;

4.3 Overview of Cluster Based Flooding

4.3.1 Informal description

The fundamental idea of CBF is to segment the entire network into different

routing clusters. Intralayer clustering (IALC) is employed for proactive maintenance on

the sensor layer, with an assistance of route query exchange and update query packets.

The MDP-level MAC introduces route updates to IALC for broken or established links

among the directly connected neighbor mote. Neighbor-motes are defined to be directly

connected and sharing a communication link (called one mote away). The MDP-level

(MAC) media access control protocol identifies mote’s neighbor. At the same time,

interlayer clustering (IELC) reactively transfers route query packets to motes on the

network layer. These packets exist outside of the mote’s cluster through query-reply

packets. IELC employs a broadcast delivery service in transmitting the routing queries to

its border or peripheral motes. IELC keeps updated route clustering information of

peripheral motes using IALC tables. Finally, this information can determine whether the

query for destination mote signifies to their cluster.

IoT devices are more vulnerable to redundant and unwanted queries, which may

disrupt data transmission, causing them to delay, require more bandwidth and energy to

transmit the query to the destination, which may reduce the QoS of IoT Network in terms

of energy consumption, cost, delays, and network throughput.

Univ
ers

iti
Mala

ya

107

Figure 4.1: Flooded IoT Network During Exchange of Queries

In Figure 4.1 sink / Sender mote searching for target / destination mote and target

send data back to sender node in disordered way. Intermediate motes rebroadcast the

query automatically which leads to flood the whole network. Generate heavy network

traffic and redundant queries by utilizing excessive energy and bandwidth which may

leads to more delay and overall degradation of QoS.

4.3.2 System Requirements

During the development process, the sequence number is used to monitor a node's

link state history and avoid outdated link-state information. The reactive component

ensures the loop freedom of newly discovered query routes. Furthermore, the whole

network has a uniform cluster radius. CBF immediately becomes a reactive element if the

cluster width is one hop. To concentrate on the unique features of the CBF, the special

interest was on identifying the general situation in which the cluster radius is larger than

one hop.

Univ
ers

iti
Mala

ya

108

The main system requirements are as follows:

REQ-1: Cluster-Based Flooding mechanism is a network routing mechanism that

uses a hybrid technique. Its goal is to analyze a new route network on request in a dynamic

network environment using local cluster information.

REQ-2: If a valid path exists in the whole network, a route query between two

distinct nodes will eventually be discovered.

The REQ-1 explains the protocol's goal. Since a communication network can vary

dramatically, a linked connection can go down after a couple of seconds. As a result,

when the query source gets the discovered path, it can be invalid. However, if there is a

path between the source and the destination in the network topology, the route between

them can be discovered eventually.

REQ-2 indicates this requirement. Eventually, this Chapter demonstrate the

definition of the correct route.

Definition 4: (Accurate Route) let consider 𝜗1, … … . . , 𝜗𝑘′, where 𝑘′ states as a positive

natural number and k is greater than one and network of random distinctive nodes. The

query route that has been discovered is denoted by 𝑟𝑜𝑢𝑡𝑒𝑞𝑢𝑒𝑟𝑦 = {𝜗1 ⟼

 𝜗2, … . , 𝜗𝑘′−1 ⟼ 𝜗𝑘′} if it satisfies the criteria for the source 𝑠 and destination 𝑑, it is

appropriate.

 𝑠 and 𝑡 represented as motes in the network

 For each 𝜗𝑖 ⟼ 𝜗𝑖+1 ∈ 𝑟𝑜𝑢𝑡𝑒 with respect to 𝑖 ∈ 1 … 𝑘′ − 1, 𝜗𝑖, 𝜗𝑖+1 are

motes which belongs to the network.

 The route does not have a loop.

 Complete path from 𝑠 to 𝑡 is known as route_query.

Univ
ers

iti
Mala

ya

109

REQ-3: Each node can acquire the connection status of its nearest neighbors on

a regular basis and then exchange such knowledge with the other nodes.

REQ-4: Clusters restrict the range of connection state updates.

REQ-5: Each mote in the network cluster proactively maintains the updated

topological map. As a result, all nodes have routes to the destinations within the cluster.

The mote collaborates with the nearest neighbor information given by the MDP

on a periodical basis. Then it broadcasts the state of its links to the rest of the cluster.

According to REQ-3 to REQ-5, every mote sees the local cluster from a new perspective.

Since the nodes' perspective can differ from the actual network topology, these

requirements ensure that nodes' views in a real-time manner.

REQ-6: The discovery of route query depends on the cluster. If the existence of

the route is not present in the route towards the destination in its routing table, the source

mote then begins the discovery of the route to the destination. To broadcast the service,

the source mote sends the path query request towards the subset of neighbors. It is not

necessary that all neighbors receive the same request.

REQ-7: The routing query request will only obtain by the designated destinations

decided by the last forwarded motes

REQ-8: Depending on whether the destination is inside the cluster radius, the

expected recipient's reaction may be one of the following: (a) It sends a route query

response to the source within the cluster, (b) Alternatively, it adds the address to an

aggregate route and send flood broadcasts the query request.

REQ-9: With the QoS-enabled cluster-based query control scheme, a route query

request can be driven away from the source of query and the regions included by request.

As per the query control scheme, a node marks its cluster as reached if it entertains the

Univ
ers

iti
Mala

ya

110

request or the reply. After that, it is insignificant to reprocess the request. The next

requirement relates the routing update.

REQ-10: Each mote rebroadcasts information or relays query route reply to

packets if there are any changes within its cluster. Once the source mote found an

authentic route query message, it notifies the directly connected motes about the newly

found route in real-time scenarios.

4.4 Environment assumptions

Before proceeding towards the formal development, consider the following CBF

network assumptions:

Assumptions

ENV-1: n number of sensor motes are randomly deployed. All motes carry the same

capacity in terms of functionality. every mote equipped with an IP address for the sake

to work as sensor gateway to exchange query messages. For all connected nodes, mode

of communication was adopted as single and multi-hop. Every mote can instigate

flooding. In case of some activity detection, the flooder begins to interrupt through the

link. There is similarity between the capabilities of the flooder and normal motes. In

addition, the flooder mote can also generate redundant query messages (i.e., random

flooding queries).

ENV-2: Intermediate status for pairs of different motes might be up or down by using

bidirectional links.

ENV-3: Every mote m is aware of broken or uplinks in the network.

ENV-4: In case of null activity for a long time in the network, every mote must know the

updated topology map of its surroundings.

Univ
ers

iti
Mala

ya

111

According to Env-2, it is assumed that sender and receiver motes can

communicate simultaneously, and the links are bidirectional in the network. So, it can

broadcast route query replies of discovered routes to the source mote. If mote m and n

are directly connected, it might indicate directed links from m → n and n → m and

considered up in the network environment.

According to ENV-3, every mote can sense its external links. It is not required

that a mote detects the network changes immediately.

Based on ENV-4, if the network is static for a long time, the system will consider

being in a stable state, and every mote is aware of their clusters topology.

4.5 Formal Development

This Section describes the formal development of Cluster Based Flooding (CBF).

Initially, the refinement strategy is elaborated for analysis; with the help of a step-by-step

refinement process, a model formalization is derived from achieving the correctness for

REQ1 and REQ2. Model validation is presented at the end of the chapter.

Model initialization: The dynamic network architecture is built using this model.

Refinement 1: In this stage, abstract update events for the routing and link state table are

introduced. Furthermore, the stability of the system is considered in a quiescent way.

Refinement 2: This refinement briefly formalizes links state updates and periodically

links state broadcasting of each mote.

Refinement 3: The model for the cluster radius is constructed based on refinement 2

using a uniform cluster radius. sequence numbers are utilized to keep track of each query

packets and to avoid the processing of old link information.

Refinement 4: Variables are used to keep track of all connected links' distributed

behavior and record their transmitted information.

Univ
ers

iti
Mala

ya

112

Refinement 5: This refinement analyzes the route query request phase in detail,

initially, formalization for border-casting is carried out without any query control

mechanism.

Refinement 6: This refinement develops concrete events that indicate that a route request

has been received and handled by the intended recipient.

Refinement 7: In this refinement, a cluster-based query control mechanism is considered

during the route query process.

Refinement 8: This refinement modeled the route reply process. A mote updates its

routing table in response to an IALC notification or a received route reply. Routing table

updates for the cluster are also refined in this step. Modeling the interactions between the

system and its environment is possible with Event-B formalism. The initial model

formalizes the dynamic network environment.

Such as refinement 2 considers environment 3 and Req 3, and req6 and req7 are

ensured in refinement 5. According to definition 4, points 1 and 2 were proved in

refinement 1, discovered routes validity and freedom of loop are ensured in refinement 5

and 8, respectively. The final model ensured the correctness of discovered route queries.

The Req-1 is impartially general and include in each step of refinement. Finally, Req-1

and 2 completes in final refinement.

4.5.1 Environmental Modeling

In the initial context, a carrier set motes were introduced, which represent the

collection of all motes in the networks. Based on Environment 1, Motes are axiomatized

as a finite set.

The following theorem follows a relation established over finite sets (thm1). It

will help to prove the tasks simpler.

Univ
ers

iti
Mala

ya

113

𝑎𝑥𝑚1: 𝑓𝑖𝑛𝑖𝑡𝑒(𝑀𝑜𝑡𝑒𝑠)

𝑡ℎ𝑚1: ∀𝑎, 𝑏, 𝑓. 𝑎 ∈ ℙ(𝑀𝑜𝑡𝑒𝑠)⋀𝑏 ∈ ℙ(𝑀𝑜𝑡𝑒𝑠)⋀𝑓 ∈ 𝑎 ⟷ 𝑏

 ⟹ (𝑓𝑖𝑛𝑖𝑡𝑒(𝑎)⋀𝑓𝑖𝑛𝑖𝑡𝑒(𝑏) ⟹ 𝑓𝑖𝑛𝑖𝑡𝑒(𝑓))

A variable Neighbor_Link is defined to record the uplink information. The

D_Neighbor_Link variable represents the set of links that are presently down and

previously up. It can be seen from thm1 and Neighbor_Link that the network topology

has a finite number of connected links. As a result, a route query request can be

propagated through the entire network. Three events have been created for the purpose to

formalize the changes in network topology: Link_New_Add, Link_Brocken_Add,

Link_Remove. According to the first two events, initially, the two different motes are

connected, and subsequently, the associated links are added to Neighbor_Link.

Link_Remove clears the invalid links from Neighbor_Link, which were up links at some

stage in the past.

 𝐿𝑖𝑛𝑘_𝑁𝑒𝑤_𝐴𝑑𝑑
𝒂𝒏𝒚 𝑀𝑜𝑡𝑒 1 𝑀𝑜𝑡𝑒 2 𝒘𝒉𝒆𝒓𝒆
𝑀𝑜𝑡𝑒 1 ∈ 𝑀𝑜𝑡𝑒𝑠
𝑀𝑜𝑡𝑒 2 ∈ 𝑀𝑜𝑡𝑒𝑠
𝑀𝑜𝑡𝑒 1 ≠ 𝑀𝑜𝑡𝑒2

𝑀𝑜𝑡𝑒 1 ↦ 𝑀𝑜𝑡𝑒2 ∉ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘
⋀𝑀𝑜𝑡𝑒 2 ↦ 𝑀𝑜𝑡𝑒1 ∉ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘
𝑀𝑜𝑡𝑒 1 ↦ 𝑀𝑜𝑡𝑒2 ∉ 𝐷_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘
𝑀𝑜𝑡𝑒 1 ↦ 𝑀𝑜𝑡𝑒2 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘
⋀𝑀𝑜𝑡𝑒 2 ↦ 𝑀𝑜𝑡𝑒1 ∈ 𝐷_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘

then
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 ≔ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘𝑈

{ 𝑀𝑜𝑡𝑒 1 ↦ 𝑀𝑜𝑡𝑒2, 𝑀𝑜𝑡𝑒 2 ↦

 𝑀𝑜𝑡𝑒1}

Univ
ers

iti
Mala

ya

114

Link_Remove requires the deleted links to be located in the Neighbor_Link, and

then add these links to the set D_Neighbor_Link.

Some Invariants has added to establish Env 2. Neighbor_Link is made up of

unique motes for each link (inv3). Furthermore, in a case Neighbor_Link hold a dedicated

𝐿𝑖𝑛𝑘_𝐵𝑟𝑜𝑘𝑒𝑛_𝐴𝑑𝑑
𝒂𝒏𝒚 𝑀𝑜𝑡𝑒 1 𝑀𝑜𝑡𝑒 2 𝒘𝒉𝒆𝒓𝒆
𝑀𝑜𝑡𝑒 1 ∈ 𝑀𝑜𝑡𝑒𝑠
𝑀𝑜𝑡𝑒 2 ∈ 𝑀𝑜𝑡𝑒𝑠
𝑀𝑜𝑡𝑒 1 ≠ 𝑀𝑜𝑡𝑒2

𝑀𝑜𝑡𝑒 1 ↦ 𝑀𝑜𝑡𝑒2 ∉ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘
⋀𝑀𝑜𝑡𝑒 2 ↦ 𝑀𝑜𝑡𝑒1 ∉ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘
𝑀𝑜𝑡𝑒 1 ↦ 𝑀𝑜𝑡𝑒2 ∉ 𝐷_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘
𝑀𝑜𝑡𝑒 1 ↦ 𝑀𝑜𝑡𝑒2 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘
⋀𝑀𝑜𝑡𝑒 2 ↦ 𝑀𝑜𝑡𝑒1 ∈ 𝐷_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘

then
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 ≔ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘𝑈

{ 𝑀𝑜𝑡𝑒 1 ↦ 𝑀𝑜𝑡𝑒2, 𝑀𝑜𝑡𝑒 2 ↦

 𝑀𝑜𝑡𝑒1}
𝐷_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 ≔ 𝐷_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘\

{ 𝑀𝑜𝑡𝑒 1 ↦ 𝑀𝑜𝑡𝑒2, 𝑀𝑜𝑡𝑒 2 ↦

 𝑀𝑜𝑡𝑒1}

𝐿𝑖𝑛𝑘_𝑅𝑒𝑚𝑜𝑣𝑒
𝒂𝒏𝒚 𝑀𝑜𝑡𝑒 1 𝑀𝑜𝑡𝑒 2 𝒘𝒉𝒆𝒓𝒆
𝑀𝑜𝑡𝑒 1 ∈ 𝑀𝑜𝑡𝑒𝑠
𝑀𝑜𝑡𝑒 2 ∈ 𝑀𝑜𝑡𝑒𝑠
𝑀𝑜𝑡𝑒 1 ≠ 𝑀𝑜𝑡𝑒2

𝑀𝑜𝑡𝑒 1 ↦ 𝑀𝑜𝑡𝑒2 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘
⋀𝑀𝑜𝑡𝑒 2 ↦ 𝑀𝑜𝑡𝑒1 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘

then
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 ≔ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘\

{ 𝑀𝑜𝑡𝑒 1 ↦ 𝑀𝑜𝑡𝑒2, 𝑀𝑜𝑡𝑒 2 ↦

 𝑀𝑜𝑡𝑒1}
𝐷_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 ≔ 𝐷_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘𝑈

{ 𝑀𝑜𝑡𝑒 1 ↦ 𝑀𝑜𝑡𝑒2, 𝑀𝑜𝑡𝑒 2 ↦

 𝑀𝑜𝑡𝑒1}

Univ
ers

iti
Mala

ya

115

link i.e mote1 → mote2, then the opposite of this link mote1 → mote2 must be resides in

the Neighbor_Link (inv4). Neighbor_Link and D_Neighbor_Link are separate (inv5).

4.5.2 Formation of Cluster

 This development aims to formalize a model according to the assumptions and

requirements of the system environment.

First Refinement. In the first refinement, Cessation (closure) is defined to denote the

transitive cessation of link.

𝑎𝑥𝑚1: 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛 ∈ (𝑀𝑜𝑡𝑒𝑠 ⟷ 𝑀𝑜𝑡𝑒𝑠)

⟶ (𝑀𝑜𝑡𝑒𝑠 ⟷ 𝑀𝑜𝑡𝑒𝑠)
𝑎𝑥𝑚2: ∀𝑟. 𝑟 ⊆ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑟)
𝑎𝑥𝑚3: ∀𝑟. 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑟); 𝑟 ⊆ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑟)
𝑎𝑥𝑚4: ∀𝑟. 𝑠. 𝑟 ⊆ 𝑠 ∧ 𝑠 ; 𝑟 ⊆ 𝑠

⟹ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑟) ⊆ 𝑠
𝑎𝑥𝑚5: ∀𝑟. 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑟) ; 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑟) ⊆ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑟)

A variable Table_Link_State is used to specify the information of the link-state

stored in each mote. The add_links and remove_links are two disjoint sets used to update

𝑖𝑛𝑣1: 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟷ 𝑀𝑜𝑡𝑒𝑠
𝑖𝑛𝑣2: 𝐷_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 ∈ 𝑀𝑜𝑡𝑒𝑠

⟷ 𝑀𝑜𝑡𝑒𝑠
𝑖𝑛𝑣3: ∀𝑚𝑜𝑡𝑒 1, 𝑚𝑜𝑡𝑒2. 𝑚𝑜𝑡𝑒 1 ∈ 𝑀𝑜𝑡𝑒𝑠⋀𝑚𝑜𝑡𝑒2

∈ 𝑀𝑜𝑡𝑒𝑠⋀
 𝑚𝑜𝑡𝑒 1 ↦ 𝑚𝑜𝑡𝑒2 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 ⟹ 𝑚𝑜𝑡𝑒 1

≠ 𝑚𝑜𝑡𝑒2
𝑖𝑛𝑣4: ∀𝑚𝑜𝑡𝑒 1, 𝑚𝑜𝑡𝑒2. 𝑚𝑜𝑡𝑒 1 ∈ 𝑀𝑜𝑡𝑒𝑠⋀𝑚𝑜𝑡𝑒2

∈ 𝑀𝑜𝑡𝑒𝑠⋀
 𝑚𝑜𝑡𝑒 1 ↦ 𝑚𝑜𝑡𝑒2 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘
 ⟹ 𝑚𝑜𝑡𝑒 2 ↦ 𝑚𝑜𝑡𝑒1

∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘
𝑖𝑛𝑣5: 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 ∩ 𝐷_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘

= ∅

Univ
ers

iti
Mala

ya

116

mote’s link state table. To model the above case initially, old neighbor information needs

to be removed and then add the updated received information of the neighbor.

Links_Update
𝒂𝒏𝒚 𝑚𝑜𝑡𝑒 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 𝒘𝒉𝒆𝒓𝒆

𝑚𝑜𝑡𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠
𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟷ 𝑀𝑜𝑡𝑒𝑠

𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟷ 𝑀𝑜𝑡𝑒𝑠
Then

𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒)

≔ (𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒)\𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠) ∪ 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠
The mote’s routing table of the cluster is the collection of links, and it is

specified by the variable Table_Routing_Cluster.

𝑖𝑛𝑣1: 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟶ (𝑀𝑜𝑡𝑒𝑠 ⟷ 𝑀𝑜𝑡𝑒𝑠)
𝑖𝑛𝑣2: 𝑇𝑎𝑏𝑙𝑒_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟶ (𝑀𝑜𝑡𝑒𝑠 ⟷

𝑀𝑜𝑡𝑒𝑠)
𝑖𝑛𝑣3: ∀𝑛, 𝑛 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟹ 𝑇𝑎𝑏𝑙𝑒_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑛) ⊆ 𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠

Update_Routing_TableAn event Update_Table_Routing is defined to model

routing update for each mote. If no links are to add or remove, then the mote’s routing

table remains the same. Some links are intersecting at Routes_Add and Routes_Remove.

So, it is desired to initially eliminate the outdated link before adding the recent routes.

Update_Routing_Table
𝒂𝒏𝒚 𝑚𝑜𝑡𝑒 𝑅𝑜𝑢𝑡𝑒𝑠_𝐴𝑑𝑑 𝑅𝑜𝑢𝑡𝑒𝑠_𝑅𝑒𝑚𝑜𝑣𝑒

Where
𝑚𝑜𝑡𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠

𝑅𝑜𝑢𝑡𝑒𝑠_𝐴𝑑𝑑 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟷ 𝑀𝑜𝑡𝑒𝑠
𝑅𝑜𝑢𝑡𝑒𝑠_𝑅𝑒𝑚𝑜𝑣𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟷ 𝑀𝑜𝑡𝑒𝑠

¬(𝑅𝑜𝑢𝑡𝑒𝑠_𝐴𝑑𝑑 = ∅ ∧ 𝑅𝑜𝑢𝑡𝑒𝑠_𝑅𝑒𝑚𝑜𝑣𝑒 = ∅)
Then

𝑇𝑎𝑏𝑙𝑒_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑚𝑜𝑡𝑒)

≔ (𝑇𝑎𝑏𝑙𝑒_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑚𝑜𝑡𝑒)\𝑅𝑜𝑢𝑡𝑒𝑠_𝑅𝑒𝑚𝑜𝑣𝑒)

∪ 𝑅𝑜𝑢𝑡𝑒𝑠_𝐴𝑑𝑑

Univ
ers

iti
Mala

ya

117

An event named stabilize is defined to denote the system stability state. Once the

stabilize event becomes enabled, the state f the system is considered stable. This step

formalizes ENV-4.

Stabilize
𝒂𝒏𝒚 𝑚𝑜𝑡𝑒𝑠 𝒘𝒉𝒆𝒓𝒆
𝑚𝑜𝑡𝑒𝑠 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟶ ℙ(𝑀𝑜𝑡𝑒𝑠)

∀𝑚, 𝑛. 𝑚 ↦ 𝑛 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝐿𝑖𝑛𝑘 ⇔ 𝑚 ↦ 𝑛 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚)
∀𝑚, 𝑛. 𝑚 ↦ 𝑛 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝐿𝑖𝑛𝑘) ∧ 𝑛 ∈ 𝑚𝑜𝑡𝑒𝑠(𝑚)

⟹ (∀𝑥. 𝑚 ↦ 𝑥 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑛) ⇔ 𝑚 ↦ 𝑥 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚)
Second Refinement: Every node in the IALC shares neighbor information with other

nodes and maintains an updated view of its neighbors. This refinement model exchange

procedure by defining some constant that classifies the stationary part of the model.

𝑖𝑛𝑣1: 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠

⟶ ((𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) ↛ ℕ)
𝑖𝑛𝑣2: 𝑇𝑖𝑚𝑒

∈ ℕ1)
𝑖𝑛𝑣3: 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑇𝑖𝑚𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠

⟶ ℕ1)
𝑖𝑛𝑣4: ∀𝑛. 𝑛 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟹ (∀𝑙. 𝑙

∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑛))
 ⇔ 𝑙 ∈ 𝑑𝑜𝑚(𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑛)))

𝑖𝑛𝑣5: ∀𝑛. 𝑛 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟹ 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑇𝑖𝑚𝑒(𝑛)

≤ 𝑇𝑖𝑚𝑒
𝑖𝑛𝑣6: ∀𝑚, 𝑛. 𝑚 ↦ 𝑛 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚) ⟹ (𝑚 ↦ 𝑛

∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑛𝑘 ∨ 𝑚 ↦ 𝑛
 ∈ 𝐷𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑛𝑘)

𝑖𝑛𝑣7: ∃𝑚, 𝑛. 𝑚 ↦ 𝑛 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚) ∧ 𝑚 ↦ 𝑛

∉ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑛𝑘
 ∧ 𝑚 ↦ 𝑛 ∈ 𝐷𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑛𝑘
 ⟹ ¬(∀𝑞, 𝑝. 𝑞 ↦ 𝑝 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑛𝑘 ⇔ 𝑞 ↦ 𝑝

∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑞)))
𝑖𝑛𝑣8: ∃𝑚, 𝑛. 𝑚 ↦ 𝑛 ∉ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚) ∧ 𝑚 ↦ 𝑛

∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑛𝑘
 ⟹ ¬(∀𝑞, 𝑝. 𝑞 ↦ 𝑝 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑛𝑘 ⇔ 𝑞 ↦ 𝑝

∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑞)))

Univ
ers

iti
Mala

ya

118

The Links_Update abstract is divided into three

sections: Links_Obtain, Links_Transfer, and Links_Refresh. Links_Obtain is responsible

for the link information of the mote's neighbor. Every mote must know the link

information of its neighbors. Add_links in this event is the set of links between motes and

their newly discovered neighbor. Remove_links is responsible for the collection of links

among motes and their invalid connected neighbors. Rest is defined to keep track of

residual link insertion timing to the state table of motes.

Links_Obtain refines Links_Update
𝑎𝑛𝑦 𝑚𝑜𝑡𝑒 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 𝑟𝑒𝑠𝑡

𝑤ℎ𝑒𝑟𝑒
 ⊕ 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 = {𝑝 ↦ 𝑚|𝑝 = 𝑚𝑜𝑡𝑒 ∧ 𝑝 ↦ 𝑚 ∈

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝐿𝑖𝑛𝑘
 ∧ 𝑝 ↦ 𝑚 ∉ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑝)}

⊕ 𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 = {𝑝 ↦ 𝑚|𝑝 = 𝑚𝑜𝑡𝑒 ∧ 𝑝 ↦ 𝑚 ∉ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝐿𝑖𝑛𝑘
∧ 𝑝 ↦ 𝑚 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑝)}

⊕ 𝑇𝑖𝑚𝑒 − 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑇𝑖𝑚𝑒(𝑚𝑜𝑡𝑒) ≥ 𝑝𝑒𝑟𝑖𝑜𝑑
⊕ 𝑟𝑒𝑠𝑡 = 𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 ⊲ 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑚𝑜𝑡𝑒)

then
⊕ 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑚𝑜𝑡𝑒) ≔ 𝑟𝑒𝑠𝑡

⟵ ((({𝑚𝑜𝑡𝑒} ⊲ 𝑑𝑜𝑚(𝑟𝑒𝑠𝑡)) ∪ 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠) × {𝑇𝑖𝑚𝑒})

⊕ 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑇𝑖𝑚𝑒(𝑚𝑜𝑡𝑒) ≔ 𝑇𝑖𝑚𝑒

Links_Transfer refines Links_Update
𝒂𝒏𝒚 𝑠𝑒𝑛𝑑𝑒𝑟 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑚𝑜𝑡𝑒 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑 𝑙𝑖𝑛𝑘𝑠

𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠
 where

⊖ 𝑚𝑜𝑡𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠
⊕ 𝑠𝑒𝑛𝑑𝑒𝑟 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠

⊕ 𝑠𝑒𝑛𝑑𝑒𝑟 ≠ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∧ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ≠ 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑀𝑜𝑡𝑒
 ⊕ 𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑠𝑒𝑛𝑑𝑒𝑟)

⊕ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟷ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑑𝑜𝑚(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑙𝑖𝑛𝑘𝑠) = {𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒}
⊕ 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 = 𝑟𝑒𝑐𝑖𝑒𝑣𝑒_𝑙𝑖𝑛𝑘𝑠

 ⊕ 𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 = {𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒} ⊲

𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)

Univ
ers

iti
Mala

ya

119

 The old link routing information of Links_Transfer recorded by

the remove_link needs to be removed before taking the record of the updated received

link recorded by the add_links.

 Links_Refresh is the event responsible for updating the link state table without

considering the link sources that have quit from the mote’s cluster radius. A new event,

Clock_time, is defined to model the time growth process. The REQ-3 and ENV-3 are

implemented in this step.

Third Refinement: The emphasis of this refinement is on the design of the cluster radius.

Instead of the entire network, each mote in CBF keeps cluster information within its

With
𝑚𝑜𝑡𝑒 = 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟

 Then
⊖ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒)

≔ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒)\𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠

∪ 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠
⊕ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)

≔ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)

\𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 ∪ 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠
⊕ 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)

≔ (𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 ⊲ 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟))

∪ (𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 × {𝑇𝑖𝑚𝑒})

Links_Refresh refines Links_Update
𝒂𝒏𝒚 𝑚𝑜𝑡𝑒 𝑜𝑙𝑑_𝑙𝑖𝑛𝑘𝑠

Where
⊕ 𝑜𝑙𝑑𝑙𝑖𝑛𝑘𝑠 = {𝑥 ↦ 𝑦|𝑥 ↦ 𝑦 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒) ∧ 𝑥 ≠ 𝑚𝑜𝑡𝑒 ∧

(𝑇𝑖𝑚𝑒 − 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑚𝑜𝑡𝑒)(𝑥 ↦ 𝑦) ≥ 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒)}
With

𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 = ∅
 𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 = 𝑜𝑙𝑑_𝑙𝑖𝑛𝑘𝑠
Then

⊖ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒)

≔ (𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒)\𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠) ∪ 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠
⊕ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒) ≔ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒)\𝑜𝑙𝑑_𝑙𝑖𝑛𝑘𝑠

⊕ 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑚𝑜𝑡𝑒) ≔ 𝑜𝑙𝑑_𝑙𝑖𝑛𝑘𝑠 ⊲ 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑚𝑜𝑡𝑒) Univ
ers

iti
Mala

ya

120

cluster radius. A constant cluster radius is used to represent cluster radius, and its value

is > 1. A TTL variable is defined to store the value of TTL. While a mote broadcasts its

connected neighbor information, the TTL value is set as cluster radius – 1. This broadcast

terminates once the TTL value reaches 0. A variable Seq_Num is defined to track the

history of the link-state packet for every mote.

An event discard_Links is used to discards the received mote link-state

information having a smaller sequence number. The mote uses transfer_Links to process

this packet and record the sequence number to reduce the TTL value.

Links_Transfer refines Links_transfer
𝑎𝑛𝑦 𝑠𝑒𝑛𝑑𝑒𝑟 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 𝑟𝑒𝑐𝑖𝑒𝑣𝑒_𝑙𝑖𝑛𝑘𝑠

𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑇𝑇𝐿 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑆𝑒𝑞_𝑁𝑢𝑚
𝑤ℎ𝑒𝑟𝑒

 ⊕ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑇𝑇𝐿 > 0 ∧
𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑆𝑒𝑞_𝑁𝑢𝑚 > 0

⊕ 𝑆𝑒𝑞_𝑁𝑢𝑚(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒_𝑀𝑜𝑡𝑒) ≤ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑆𝑒𝑞_𝑁𝑢𝑚
then

⊕ 𝑇𝑇𝐿(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔ 𝑇𝑇𝐿(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ⟵
{𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑇𝑇𝐿 − 1}

⊕ 𝑆𝑒𝑞_𝑁𝑢𝑚(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔ 𝑆𝑒𝑞_𝑁𝑢𝑚(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ⟵
{𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑆𝑒𝑞_𝑁𝑢𝑚}

𝑖𝑛𝑣1: 𝑇𝑇𝐿 ∈ 𝑀𝑜𝑡𝑒𝑠 → (𝑀𝑜𝑡𝑒𝑠 → ℕ)
𝑖𝑛𝑣2: 𝑆𝑒𝑞_𝑁𝑢𝑚 ∈ 𝑀𝑜𝑡𝑒𝑠 → (𝑀𝑜𝑡𝑒𝑠 → ℕ)
𝑖𝑛𝑣3: ∀𝑚, 𝑝. 𝑝 ∈ 𝑑𝑜𝑚(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒𝑚) ⇒ 𝑆𝑒𝑞_𝑁𝑢𝑚(𝑚)(𝑝) > 0
𝑖𝑛𝑣4: ∀𝑚, 𝑝. 𝑝 ∈ 𝑑𝑜𝑚(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒) ∧ 𝑚 ↦ 𝑛 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛

 (𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚)) ∧ (∃𝑥. 𝑚 ↦ 𝑛 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚) ∧
 ¬𝑚 ↦ 𝑛 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑛))
 ⇒ ¬(∀𝑥. 𝑚 ↦ 𝑛 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚) ⇔ 𝑚 ↦ 𝑛

∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑛))

Univ
ers

iti
Mala

ya

121

For the Stabilize, Let add two Conditions:

(1) 𝑀𝑜𝑡𝑒𝑠 = 𝜆𝑥. 𝑥 ∈ 𝑀𝑜𝑡𝑒𝑠|𝑑𝑜𝑚(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑥)),
(2) ∀𝑥, 𝑦. 𝑥 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑦 ∈ 𝑚𝑜𝑡𝑒𝑠(𝑥)

i. ⇒ 𝑥 ↦ 𝑦 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑥)),

To describe the scope of the link-state propagation. The stabilization property of

the system is derived as a theorem.

Theorem 1 If the system is stable, and there exists a path in the network topology

between node m and node n, and n is in the routing cluster of m, then there exists a route

from m to n in m’s link state table. Let Guards be the conjunction of all guards of

stabilizing event. Then, the formalization of the statement is

𝐺𝑢𝑎𝑟𝑑𝑠 ⇒ (∀𝑚, 𝑛. 𝑚 ↦ 𝑛 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝐿𝑖𝑛𝑘)

⇆∧ 𝑛 ∈ 𝑟𝑎𝑛(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚))

⇒ 𝑚 ↦ 𝑛 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚)).

As a result of this refinement, each mote has the updated cluster radius

information. This refinement ensures the Req 4 and Req 5.

Fourth Refinement: Transmitted_Link is defined as stopping a mote from retrieving

other mote’s private information. Transmitted _Seq_Num and Transmitted _TTL is

defined to stipulate the sequence number and TTL values being transmitted. A variable

flag indicates whether a mote can receive information of link state from another mote.

𝑖𝑛𝑣1: 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘 ∈ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) → (𝑀𝑜𝑡𝑒𝑠 →
 (𝑀𝑜𝑡𝑒𝑠 ↔ 𝑀𝑜𝑡𝑒𝑠))

𝑖𝑛𝑣2: 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚 ∈ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) → (𝑀𝑜𝑡𝑒𝑠 → ℕ)
𝑖𝑛𝑣3: 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑇𝐿 ∈ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) → (𝑀𝑜𝑡𝑒𝑠 → ℕ)
𝑖𝑛𝑣4: 𝐹𝑙𝑎𝑔 ∈ 𝑀𝑜𝑡𝑒𝑠 → (𝑀𝑜𝑡𝑒𝑠 → 𝐵𝑂𝑂𝐿)

Univ
ers

iti
Mala

ya

122

𝑖𝑛𝑣5: ∀𝑚, 𝑛, 𝑝. 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑚 ↦ 𝑛)(𝑝) ≠ ∅ ∧ 𝑛 ≠ 𝑝
 ⇒ 𝑚 ↦ 𝑛 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚)

𝑖𝑛𝑣6: ∀𝑚, 𝑛, 𝑝. 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑚 ↦ 𝑛)(𝑝) ≠ ∅ ∧ 𝑛 ≠ 𝑝
 ⇒ 𝑑𝑜𝑚(𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑚 ↦ 𝑛)(𝑝)) = {𝑝}

Further, send_Links, receive_Links, discard_Links, and cancel_SendingLinks

are adopted to model the dispersed behavior of packet transmission. The Send_links is

enabled when the transfer mote link information is empty, and its TTL is > 0. Or else

the mote is just required to refresh the flag by Cancel_Sending_Links.

Send_Links
𝑎𝑛𝑦 𝑠𝑒𝑛𝑑𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒𝐿𝑖𝑛𝑘𝑠

𝑤ℎ𝑒𝑟𝑒
𝑠𝑒𝑛𝑑𝑒𝑟 ∈ 𝑀𝑜𝑡𝑒𝑠

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑀𝑜𝑡𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑀𝑜𝑡𝑒 ∈ 𝑑𝑜𝑚(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑠𝑒𝑛𝑑𝑒𝑟))

𝑙𝑖𝑛𝑘𝑠 = {𝑥 ↦ 𝑦|𝑥 = 𝑠𝑒𝑛𝑑𝑒𝑟 ∧ 𝑥 ↦ 𝑦 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑥)}
∀𝑙. 𝑙 ∈ 𝑙𝑖𝑛𝑘𝑠 ⇒ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑙𝑖𝑛𝑘𝑠(𝑙)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒) = ∅

 𝑇𝑇𝐿(𝑠𝑒𝑛𝑑𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒) > 0
then

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘 ≔ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘 ⟵ (𝜆𝑙. 𝑙 ∈ 𝑙𝑖𝑛𝑘𝑠|
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑𝐿𝑖𝑛𝑘 ⟵ {𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑀𝑜𝑡𝑒 ↦

{𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒} ⊲ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑠𝑒𝑛𝑑𝑒𝑟)})
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚 ≔ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚 ⟵ (𝜆𝑙. 𝑙 ∈ 𝑙𝑖𝑛𝑘𝑠|

 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚(𝑙) ⟵ {𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 ↦

𝑆𝑒𝑞_𝑁𝑢𝑚(𝑠𝑒𝑛𝑑𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒)})
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑇𝐿 ≔ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑇𝑇𝐿 ⟵ (𝜆𝑙. 𝑙 ∈ 𝑙𝑖𝑛𝑘𝑠|

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑇𝐿(𝑙) ⟵ {𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 ↦ 𝑇𝑇𝐿(𝑠𝑒𝑛𝑑𝑒𝑟) ≔ 𝐹𝑙𝑎𝑔(𝑠𝑒𝑛𝑑𝑒𝑟) ⟵
{𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 ↦ 𝑇𝑅𝑈𝐸}

 Receive_Links and refining Transfer_Links is used to stop the receiver mote from

accessing the sender's private information and direct the receiver to deal with the required

link-state information. This link information can be obtained through connected

Univ
ers

iti
Mala

ya

123

links sender_mote → receiver_mote. The point that is mentioned in with section denotes

the assignments of this received information. Receive_Links and Discard_Links must

reset the link information that is currently being

transmitted sender_mote → receiver_mote.

Receive_Links refines Transfer_Links
𝑎𝑛𝑦 𝑠𝑒𝑛𝑑𝑒𝑟 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠

 𝑤ℎ𝑒𝑟𝑒
⊖ 𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑠𝑒𝑛𝑑𝑒𝑟)

⊖ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 ∈ 𝑀𝑜𝑡𝑒𝑠 ↔ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑑𝑜𝑚(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑙𝑖𝑛𝑘𝑠) = {𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒}
⊖ 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 = 𝑟𝑒𝑐𝑖𝑒𝑣𝑒_𝑙𝑖𝑛𝑘𝑠

⊖ 𝑆𝑒𝑞_𝑁𝑢𝑚(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑀𝑜𝑡𝑒) ≤ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚
⊖ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑇𝑇𝐿 > 0 ∧ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚 > 0

⊕ 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 ≔ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒)
⊕ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) (𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒) ≠ ∅
⊕ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒) > 0

∧ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒) > 0
 ⊕ 𝐹𝑙𝑎𝑔(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑀𝑜𝑡𝑒) = 𝑇𝑅𝑈𝐸

⊕ 𝑠𝑒𝑞_𝑁𝑢𝑚(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒) ≤
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒)

with
𝑟𝑒𝑐𝑖𝑒𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 = 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒)
𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑇𝑇𝐿 = 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑇𝐿(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒)

𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚 = 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚(𝑠𝑒𝑛𝑑𝑒𝑟

↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒)
then

⊕ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)

≔ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)
⟵ {𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 ↦ ∅}

⊕ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ⟵ {𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 ↦ ∅}

⊕ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑇𝐿(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑇𝐿(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ⟵ {𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 ↦ ∅}

⊕ 𝐹𝑙𝑎𝑔(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔ 𝐹𝑙𝑎𝑔(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ⟵ {𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 ↦ 𝐹𝐴𝐿𝑆𝐸}

Univ
ers

iti
Mala

ya

124

𝑖𝑛𝑣7: ∀𝑚, 𝑛, 𝑝. 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑚 ↦ 𝑛)(𝑝) ≠ ∅ ∧ 𝑛 ≠ 𝑝
 ⇒ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑇𝐿(𝑚 ↦ 𝑛)(𝑝) > 0

𝑖𝑛𝑣8: ∀𝑙, 𝑝. 𝑙 ∈ 𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑙)(𝑝) = ∅
 ⇒ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑇𝐿(𝑙)(𝑝) = 0

𝑖𝑛𝑣9: ∀𝑚, 𝑛, 𝑝. 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑚 ↦ 𝑛)(𝑝) ≠ ∅ ∧ 𝑛 ≠ 𝑝
 ⇒ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚(𝑚 ↦ 𝑛)(𝑝) > 0

𝑖𝑛𝑣10: ∀𝑙, 𝑝. 𝑙 ∈ 𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑙)(𝑝) = ∅
 ⇒ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚(𝑚 ↦ 𝑛)(𝑝) = 0

4.5.3 Route Query Discovery Process

In the previous refinements, cluster radius has been formalized. The below steps

elaborate on the designing of route query request and route query reply to phases in the

dynamic environment. By utilizing the bordercast service for route query requests

following points is vital to consider.

 The design and development of bordercast tree in order to determine the targeted

forwarding motes.

 The records of the routes that have been accumulated.

 Selecting routes in the cluster radius of a motes with its destination.

 The cluster-based query control mechanism which is used to stay away from the

route query request from the already covered cluster

In the next refinement, the first and second points are defined. In subsequent

refinements, other points are eventually formalized.

Fifth Refinement: Five new variables are defined in this refinement.

Variable Route_Request is defined to represent the set of route query

requests. Intended_Neighbor is defined to specify that the bordercast mote must know the

set of forwarding neighbors for sending or receiving route query request.

Univ
ers

iti
Mala

ya

125

The Accumulated_Path variable tracks the accumulated paths with query

requests. Two variables are defined to describe the corresponding being transmitted data

to understand the system's distributed behavior. Transmitted_Tag is used to decide if a

neighbor is an intended recipient, and Transmitted_Path describes the cumulative routes

being transmitted.

𝑖𝑛𝑣1: 𝑅𝑜𝑢𝑡𝑒_𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ∈ 𝑀𝑜𝑡𝑒𝑠 ↔ 𝑀𝑜𝑡𝑒𝑠

𝑖𝑛𝑣2: 𝐼𝑛𝑡𝑒𝑛𝑑𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ∈ (𝑀𝑜𝑡𝑒𝑠 × (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠))

 → ℙ(𝑀𝑜𝑡𝑒𝑠)
𝑖𝑛𝑣3: 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ ∈ (𝑀𝑜𝑡𝑒𝑠 × (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠)

 ↛ (𝑀𝑜𝑡𝑒𝑠 ↔ 𝑀𝑜𝑡𝑒𝑠))
𝑖𝑛𝑣4: 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔 ∈ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) ⟶

 ((𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) ⟶ ℕ)
𝑖𝑛𝑣5: 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑃𝑎𝑡ℎ ∈ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) ⟶

 ((𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) ⟶ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠))
𝑖𝑛𝑣6: ∀𝑠, 𝑑. 𝑠 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑑 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑠 ↦ 𝑑 ∈

𝑅𝑜𝑢𝑡𝑒_𝑅𝑒𝑞𝑢𝑒𝑠𝑡
 ⟹ 𝑠 ≠ 𝑑

𝑖𝑛𝑣7: ∀𝑠, 𝑛. 𝑠 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑛 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑠 ≠ 𝑛 ⟹ (∀𝑟. 𝑠 =

𝑝𝑟𝑗1(𝑟) ∧
 𝑟 ∈ 𝑑𝑜𝑚(𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑛))
 ⟹ 𝑟 ∈ 𝑑𝑜𝑚(𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑠)))

Though the query control mechanism is not analyzed in this phase, it is to keep in

mind that a mote must not deal with a processed route query request. The route query

request process is initiated. When there is no path to the destination in the cluster routing

table of the source mote, the Source_Forward_Request event is defined to model this

behavior. A variable mote represents the set of forwarding neighbors in the sender's

bordercast tree.

Each mote has at least one route within the source cluster radius to one of the

peripheral motes and must be a nonempty set. The source then places the request on the

Univ
ers

iti
Mala

ya

126

determined links with an empty path and specifies the recipients with

update Transmitted_Tag.

Source_Forward_Request
𝑎𝑛𝑦 𝑠𝑜𝑢𝑟𝑐𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑚𝑜𝑡𝑒𝑠 𝑙𝑖𝑛𝑘𝑠

𝑤ℎ𝑒𝑟𝑒
𝑠𝑜𝑢𝑟𝑐𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∈ 𝑀𝑜𝑡𝑒𝑠
𝑟𝑒𝑞𝑢𝑒𝑠𝑡 = 𝑠𝑜𝑢𝑟𝑐𝑒 ↦ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ∉ 𝑅𝑜𝑢𝑡𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡
𝑠𝑜𝑢𝑟𝑐𝑒 ≠ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

𝑠𝑜𝑢𝑟𝑐𝑒 ↦ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∉ 𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝑅𝑜𝑢𝑡𝑖𝑛𝑔𝑇𝑎𝑏𝑙𝑒(𝑠𝑜𝑢𝑟𝑐𝑒))
𝑚𝑜𝑡𝑒𝑠 = {𝑞|𝑠𝑜𝑢𝑟𝑐𝑒 ↦ 𝑞 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑠𝑜𝑢𝑟𝑐𝑒 ∧

(∃𝑝, 𝑐. 𝑐 ⊆ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑠𝑜𝑢𝑟𝑐𝑒) ∧ 𝑞 ↦ 𝑝 ∈ 𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝑐) ∧
 𝑐𝑎𝑟𝑑(𝑐) = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑎𝑑𝑖𝑢𝑠 − 1 ∧

(∀𝑠. 𝑠 ⊆ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑠𝑜𝑢𝑟𝑐𝑒) ∧ 𝑞 ↦ 𝑝 ∈ 𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝑠)
 ∧ 𝑐𝑎𝑟𝑑(𝑠) ≥ 𝑐𝑎𝑟𝑑(𝑐)))}

𝑚𝑜𝑡𝑒𝑠 ≠ ∅
𝑙𝑖𝑛𝑘𝑠 = {𝑝 ↦ 𝑞|𝑝 = 𝑠𝑜𝑢𝑟𝑐𝑒 ∧ 𝑞 ∈ 𝑚𝑜𝑡𝑒𝑠}

∀𝑙. 𝑙 ∈ 𝑙𝑖𝑛𝑘𝑠 ⇒ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔(𝑙)(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) = 0
𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ∉ 𝑑𝑜𝑚(𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑝𝑎𝑡ℎ(𝑠𝑜𝑢𝑟𝑐𝑒))

Then
𝑅𝑜𝑢𝑡𝑒_𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ≔ 𝑅𝑜𝑢𝑡𝑒_𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ∪ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡}

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑝𝑎𝑡ℎ ≔ 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑝𝑎𝑡ℎ ⟵ {𝑠𝑜𝑢𝑟𝑐𝑒 ↦
(𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑝𝑎𝑡ℎ(𝑠𝑜𝑢𝑟𝑐𝑒) ⟵ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ↦ ∅})}

𝐼𝑛𝑡𝑒𝑛𝑑𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ≔ 𝐼𝑛𝑡𝑒𝑛𝑑𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ⟵
{(𝑠𝑜𝑢𝑟𝑐𝑒 ↦ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡) ↦ 𝑚𝑜𝑡𝑒𝑠}

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔 ≔ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔 ⟵
𝜆𝑙. 𝑙 ∈ 𝑙𝑖𝑛𝑘𝑠|𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔 ⟵ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ↦ 1})

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑃𝑎𝑡ℎ ≔ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑃𝑎𝑡ℎ ⟵
𝜆𝑙. 𝑙 ∈ 𝑙𝑖𝑛𝑘𝑠|𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑃𝑎𝑡ℎ ⟵ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ↦ ∅})

If the intended_forwarding_neighbours aren't empty, the mote will use the

bordercast_Request event to bordercast the request. They are both abstract.

𝑖𝑛𝑣8: ∀𝑛, 𝑚, 𝑟. 𝑛 ≠ 𝑚 ∧ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑛 ↦ 𝑚)(𝑟) ≠ ∅
 ⇒ 𝑟 ∈ 𝑑𝑜𝑚(𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑛))

𝑖𝑛𝑣9: ∀𝑛, 𝑚, 𝑟, 𝑝𝑎𝑡ℎ. 𝑛 ≠ 𝑚 ∧ 𝑚 ∈ 𝐼𝑛𝑡𝑒𝑛𝑑𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑛 ↦ 𝑟)
 ⇒ (𝑟 ↦ 𝑝𝑎𝑡ℎ ∈ 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑛)
 ∧ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔(𝑛 ↦ 𝑚)(𝑟) ≠ 0

 ⇒ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑𝑃𝑎𝑡ℎ(𝑛 ↦ 𝑚)(𝑟) = 𝑝𝑎𝑡ℎ)

Univ
ers

iti
Mala

ya

127

𝑖𝑛𝑣10: ∀𝑛, 𝑚, 𝑟. 𝑛 ≠ 𝑚 ∧ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔(𝑛 ↦ 𝑚)(𝑟) ≠ ∅
 ⇒ 𝑚 ∈ 𝐼𝑛𝑡𝑒𝑛𝑑𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑛 ↦ 𝑟)

𝑖𝑛𝑣11: ∀𝑙, 𝑟, 𝑙 ∈ 𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔(𝑙)(𝑟) = 0
 ⇒ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑙)(𝑟) = ∅

𝑖𝑛𝑣12: ∀𝑛, 𝑟. 𝑛 ∈ 𝑀𝑜𝑡𝑒 ∧ 𝑟 ∈ 𝑅𝑜𝑢𝑡𝑒_𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ∧ 𝑟 ∈
 𝑑𝑜𝑚(𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑛)) ⇒ 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑛)(𝑟)
 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟷ 𝑀𝑜𝑡𝑒𝑠

𝑖𝑛𝑣13: ∀𝑛, 𝑠, 𝑡. 𝑛 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑠 ↦ 𝑡 ∈ 𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠 ∧
 𝑠 ↦ 𝑡 ∈ 𝑑𝑜𝑚(𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑛))
 ⇒ (∀𝑚, 𝑝𝑎𝑡ℎ. 𝑝𝑎𝑡ℎ = 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑝𝑎𝑡ℎ(𝑛)(𝑠 ↦ 𝑡)
 ∧ 𝑚 ∈ 𝑑𝑜𝑚(𝑝𝑎𝑡ℎ) ⇒ ¬(𝑚 ↦ 𝑚 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑝𝑎𝑡ℎ))))

Receive_Request need to be refined to more concrete events. This refinement

ensures the Req 6 and Req 7 of system requirements.

Receive_Request
𝑎𝑛𝑦 𝑠𝑒𝑛𝑑𝑒𝑟 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑚𝑜𝑡𝑒𝑠 𝑝𝑎𝑡ℎ

𝑤ℎ𝑒𝑟𝑒
𝑠𝑒𝑛𝑑𝑒𝑟 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑠𝑒𝑛𝑑𝑒𝑟 ≠ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟

𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ∈ 𝑅𝑜𝑢𝑡𝑒_𝑅𝑒𝑞𝑢𝑒𝑠𝑡
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) = 1

𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ∉ 𝑑𝑜𝑚(𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟))
𝑚𝑜𝑡𝑒𝑠 ∈ ℙ(𝑀𝑜𝑡𝑒𝑠)

𝑝𝑎𝑡ℎ ∈ 𝑀𝑜𝑡𝑒𝑠 ↔ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∈ 𝑝𝑎𝑡ℎ
∀𝑛. 𝑛 ∈ 𝑑𝑜𝑚(𝑝𝑎𝑡ℎ) ⇒ ¬𝑛 ↦ 𝑛 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛{𝑝𝑎𝑡ℎ}

𝑡ℎ𝑒𝑛
𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ← {𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ↦ 𝑝𝑎𝑡ℎ}
𝐼𝑛𝑡𝑒𝑛𝑑𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ≔ 𝐼𝑛𝑡𝑒𝑛𝑑𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

← {(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ↦ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡) ↦ 𝑚𝑜𝑡𝑒𝑠}
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ← {𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ↦ 0}
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ← {𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ↦ ∅}

Sixth Refinement: Receive Request has been split into two events in this refinement,

depending on if the recipient has legitimate routes to the destinations within its cluster

Univ
ers

iti
Mala

ya

128

radius. One is Receive_Request_NoRoute, which indicates that the destination is not

within the cluster radius of the receiver. The mote must first create the bordercast tree

with the calculated recipients denoted by motes before forwarding this request with the

updated path.

Receive_Request_No_Route refine Receive_Request ∃ ∀≠ ∈ ∉∧⊆≥ ↦⇒↔∪ ℙ ⊕

⊝⊝ ∀∅
𝑎𝑛𝑦 𝑠𝑒𝑛𝑑𝑒𝑟 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑚𝑜𝑡𝑒𝑠 𝑝𝑎𝑡ℎ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

𝑤ℎ𝑒𝑟𝑒
⊝ 𝑚𝑜𝑡𝑒𝑠 ∈ ℙ(𝑀𝑜𝑡𝑒𝑠)

⊝ 𝑝𝑎𝑡ℎ ∈ 𝑀𝑜𝑡𝑒𝑠 ↔ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∈ 𝑝𝑎𝑡ℎ
⊕ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 𝑝𝑟𝑗2(𝑟𝑒𝑞𝑢𝑒𝑠𝑡)

⊕ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ↦ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∉
𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟))

⊕ 𝑚𝑜𝑡𝑒𝑠 ⊆ {𝑞|𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ↦ 𝑞 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ∧
(∃𝑝, 𝑐. 𝑐 ⊆ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ∧ 𝑞 ↦ 𝑝 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑐) ∧

𝑐𝑎𝑟𝑑(𝑐) = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑎𝑑𝑖𝑢𝑠 − 1 ∧
(∀𝑠. 𝑠 ⊆ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ∧ 𝑞 ↦ 𝑝 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑠) ∧

𝑐𝑎𝑟𝑑(𝑠) ≥ 𝑐𝑎𝑟𝑑(𝑐))))}
⊕ 𝑚𝑜𝑡𝑒𝑠 ≠ ∅

⊕ 𝑝𝑎𝑡ℎ = 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑟𝑒𝑞𝑢𝑒𝑠𝑡)
∪ {𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟}

Receive_Request_Has_Route refine Receive_Request
𝑎𝑛𝑦 𝑠𝑒𝑛𝑑𝑒𝑟 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑚𝑜𝑡𝑒𝑠 𝑝𝑎𝑡ℎ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑜𝑢𝑡𝑒𝑠
𝑤ℎ𝑒𝑟𝑒

⊝ 𝑝𝑎𝑡ℎ ∈ 𝑀𝑜𝑡𝑒𝑠 ↔ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∈ 𝑝𝑎𝑡ℎ
⊕ 𝑚𝑜𝑡𝑒𝑠 = ∅

⊕ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 𝑝𝑟𝑗2(𝑟𝑒𝑞𝑢𝑒𝑠𝑡)
⊕ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ↦ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∈

𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟))
⊕ 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = {𝑆|𝑆 ⊆ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ∧

𝑐𝑎𝑟𝑑(𝑆) ≤ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑎𝑑𝑖𝑢𝑠 ∧
𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ↦ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑆)}

⊕ 𝑟𝑜𝑢𝑡𝑒𝑠 = 𝑢𝑛𝑖𝑜𝑛({𝑅|∀𝑆. 𝑆) ∈ 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ∧
𝑅 ∈ 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ∧ 𝑐𝑎𝑟𝑑(𝑅) ≤ 𝑐𝑎𝑟𝑑(𝑆)})

Univ
ers

iti
Mala

ya

129

⊕ 𝑝𝑎𝑡ℎ = 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑟𝑒𝑞𝑢𝑒𝑠𝑡)
∪ {𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟} ∪ 𝑟𝑜𝑢𝑡𝑒𝑠

Another event, receive_Request_Has_Route, is responsible for creating route

query reply along with the route that has been discovered. In the receiver's cluster radius,

there is at least one route to the targeted mote. As a result, appropriate routes without

redundant links should be chosen based on certain metrics, such as range (hops).To

measure the union of all shortest paths, two guards collection and routes have been added.

 The variable card represents the cardinality of a finite input set is sets be an empty

set because it is unnecessary to border cast this request. As a result, the cumulative path,

which a receiver constructs with the destination within its cluster radius, comprises the

entire route from the sender mote to the target mote (thm1).

Req 8 is ensured in this refinement.

𝑖𝑛𝑣1: ∀𝑠, 𝑛. 𝑠 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑛 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑠 ≠ 𝑛
 ⇒ (∀𝑟, 𝑝𝑎𝑡ℎ. 𝑟 ∈ 𝑅𝑜𝑢𝑡𝑒_𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ∧
 𝑟 ↦ 𝑝𝑎𝑡ℎ ∈ 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑛) ∧ 𝑠 = 𝑝𝑟𝑗1(𝑟)
 ⇒ 𝑠 ↦ 𝑛 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛 (𝑝𝑎𝑡ℎ))

𝑡ℎ𝑚1: ∀𝑠, 𝑡, 𝑛. 𝑠 ↦ 𝑡 ∈ 𝑅𝑜𝑢𝑡𝑒_𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ∧ 𝑛 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑠 ≠ 𝑛
 ⇒ (∀𝑟, 𝑝𝑎𝑡ℎ. 𝑟 = 𝑠 ↦ 𝑡 ∧
 𝑟 ↦ 𝑝𝑎𝑡ℎ ∈ 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑃𝑎𝑡ℎ(𝑛)
 ∧ 𝑛 ↦ 𝑡 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑝𝑎𝑡ℎ) ⇒ 𝑠 ↦ 𝑡 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑝𝑎𝑡ℎ))

Seventh Refinement: The cluster-based query control mechanism aims to steer route

requests away from the already covered cluster and sender mote. The query control

mechanism is considered in this refinement. When constructing a border cast tree, a mote

must be aware of the coverage information within its cluster radius.

Univ
ers

iti
Mala

ya

130

Avariable Cluster_Coverage ∈ Motes → ((Motes × Motes) → P(Motes)) is

defined to describe this information. A source node launches the route request and

forwards it to the neighbors in its border cast tree, so its cluster radius is covered. Source

mote initiates the route query request and forwards it to its bordercast tree neighbors,

ensuring that its cluster radius is already covered. The cluster radius is marked as covered

by refining source_Forward_Request. Cluster is the set of motes inside the source cluster

radius.

Source_Forward_Request refines Source_Forward_Request
𝑎𝑛𝑦 𝑠𝑜𝑢𝑟𝑐𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑚𝑜𝑡𝑒𝑠 𝑙𝑖𝑛𝑘𝑠 𝑧𝑜𝑛𝑒

Where
⊕ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = {𝑚|𝑠𝑜𝑢𝑟𝑐𝑒 ↦ 𝑚 ∈

𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑠𝑜𝑢𝑟𝑐𝑒)) ∨ 𝑚 = 𝑠𝑜𝑢𝑟𝑐𝑒}
⊕ 𝑠𝑜𝑢𝑟𝑐𝑒 ∉ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑠𝑜𝑢𝑟𝑐𝑒)(𝑟𝑒𝑞𝑢𝑒𝑠𝑡)

then
⊕ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑠𝑜𝑢𝑟𝑐𝑒) ≔ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑠𝑜𝑢𝑟𝑐𝑒) ⟵

{𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ↦ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟}

In addition, if the received route request has been sent, a bordercaster cluster

radius is identified as covered (refine bordercast_Request). A new event send_Reply is

defined to mark the cluster radius as covered.

Send_Reply
𝑎𝑛𝑦 𝑚𝑜𝑡𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑡ℎ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

Where
𝑚𝑜𝑡𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠

𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ∈ 𝑅𝑜𝑢𝑡𝑒_𝑅𝑒𝑞𝑢𝑒𝑠𝑡
𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑝𝑟𝑗1(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) ∧ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 𝑝𝑟𝑗2(𝑟𝑒𝑞𝑢𝑒𝑠𝑡)

𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ∈ 𝑑𝑜𝑚(𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑚𝑜𝑡𝑒))
𝑝𝑎𝑡ℎ = 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑚𝑜𝑡𝑒)(𝑟𝑒𝑞𝑢𝑒𝑠𝑡)

𝑠𝑜𝑢𝑟𝑐𝑒 ↦ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑝𝑎𝑡ℎ)
𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = {𝑞|𝑚𝑜𝑡𝑒 ↦ 𝑞 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒))

𝑣𝑞 = 𝑚𝑜𝑡𝑒}
then

Univ
ers

iti
Mala

ya

131

𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑚𝑜𝑡𝑒) ≔ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑚𝑜𝑡𝑒) ⟵
{𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ↦ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟}

 To prune the branches that lead to the motes that are already covered on the

periphery, receive_Request_No_Route is refined with two conditions to calculate

the motes. This refinement establishes the system requirement REQ-9.

Receive_Request_No_Route refines Receive_Request_No_Route
𝑎𝑛𝑦 𝑠𝑒𝑛𝑑𝑒𝑟 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑚𝑜𝑡𝑒𝑠 𝑝𝑎𝑡ℎ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

where
⊝ 𝑚𝑜𝑡𝑒𝑠 ⊆ {𝑞|𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ↦ 𝑞 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ∧

(∃𝑝, 𝑐. 𝑐 ⊆ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ∧ 𝑞 ↦ 𝑝 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑐)
∧ 𝑐𝑎𝑟𝑑(𝑐) = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑎𝑑𝑖𝑢𝑠 − 1 ∧

(∀𝑠. 𝑠 ⊆ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ∧ 𝑞 ↦ 𝑝 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑠)
∧ 𝑐𝑎𝑟𝑑(𝑠) ≥ 𝑐𝑎𝑟𝑑(𝑐)))}

⊕ 𝑚𝑜𝑡𝑒𝑠 = {𝑞|𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ↦ 𝑞 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ∧
(∃𝑝, 𝑐. 𝑐 ⊆ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ∧ 𝑞 ↦ 𝑝 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑐)

∧ 𝑐𝑎𝑟𝑑(𝑐) = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑎𝑑𝑖𝑢𝑠 − 1 ∧
(∀𝑠. 𝑠 ⊆ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ∧ 𝑞 ↦ 𝑝 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑠)

∧ 𝑐𝑎𝑟𝑑(𝑠) ≥ 𝑐𝑎𝑟𝑑(𝑐)) ∧
𝑝 ∉ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑟𝑒𝑞𝑢𝑒𝑠𝑡)) ∧ 𝑞 ≠ 𝑠𝑒𝑛𝑑𝑒𝑟}

4.5.4 Updating Cluster Routes

To formalize the cluster routing updates, four new variables have been

defined. Reply_Sender is defined to describe the responses received from previous

senders. Reply_Path sets out the routes obtained with the route query replies.

Furthermore, Transmitted_Sender and Transmitted_Reply_Path reflect the information

being transmitted.

𝑖𝑛𝑣1: 𝑅𝑒𝑝𝑙𝑦_𝑆𝑒𝑛𝑑𝑒𝑟 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟶ (𝑀𝑜𝑡𝑒𝑠) ↔ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠))
𝑖𝑛𝑣2: 𝑅𝑒𝑝𝑙𝑦𝑃𝑎𝑡ℎ ∈ 𝑀𝑜𝑡𝑒𝑠 ⟶ (𝑀𝑜𝑡𝑒𝑠) ↔ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) →

 (𝑀𝑜𝑡𝑒𝑠 ↔ 𝑀𝑜𝑡𝑒𝑠))

Univ
ers

iti
Mala

ya

132

𝑖𝑛𝑣3: 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑛𝑑𝑒𝑟 ∈ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) ⟶ (𝑀𝑜𝑡𝑒𝑠

↔ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠))
 (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠))

𝑖𝑛𝑣4: 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ ∈ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) ⟶
 ((𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) ⟶ (𝑀𝑜𝑡𝑒𝑠 ↔ 𝑀𝑜𝑡𝑒𝑠))

𝑖𝑛𝑣5: ∀𝑛, 𝑚, 𝑟. 𝑛 ≠ 𝑚 ∧ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ (𝑛 ↦ 𝑚)(𝑟) ≠
 ∅ ⇒ 𝑛 ↦ 𝑟 ∈ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑛𝑑𝑒𝑟 (𝑛 ↦ 𝑚)

𝑖𝑛𝑣6: ∀𝑛, 𝑠, 𝑑, 𝑟𝑞, 𝑝𝑎𝑡ℎ. 𝑛 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑠 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑑 ∈

𝑀𝑜𝑡𝑒𝑠 ∧
 𝑟𝑞 = 𝑠 ↦ 𝑑 ∧ 𝑝𝑎𝑡ℎ = 𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ(𝑛)(𝑠 ↦ 𝑟𝑞) ∧ 𝑝𝑎𝑡ℎ ≠ ∅
 ⇒ 𝑠 ↦ 𝑑 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑝𝑎𝑡ℎ)

Update_Cluster_Table is further refined into two concrete events to demonstrate

how motes update their cluster information using Req 10. One

is Update_Cluster_Table_IALC.

It aims to keep the cluster routing details based on the neighborhood's existing

connectivity. A mote's table can include routes to destinations outside the cluster radius.

The motes that move out of the cluster radius must be identified, and their associated

routes must be excluded. The variables add_Routes and remove_Routes are defined to

gather all the link information of existing and prior cluster radius. The last guard is

responsible for any changes in the cluster radius of the mote, which is a vital prerequisite

for the update.

Update_Cluster_Table_IALC refines Update_Cluster_Table
𝑎𝑛𝑦 𝑚𝑜𝑡𝑒 𝑎𝑑𝑑_𝑅𝑜𝑢𝑡𝑒𝑠 𝑟𝑒𝑚𝑜𝑣𝑒_𝑅𝑜𝑢𝑡𝑒𝑠 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑚𝑜𝑡𝑒𝑠

𝑤ℎ𝑒𝑟𝑒
⊕ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = {𝑚|𝑚𝑜𝑡𝑒 ↦ 𝑚 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒))

∨ 𝑚 = 𝑚𝑜𝑡𝑒}
⊕ 𝑎𝑑𝑑_𝑅𝑜𝑢𝑡𝑒𝑠 = {𝑝, 𝑞. 𝑝 ↦ 𝑞 ∈ 𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠 ∧

𝑝 ↦ 𝑞 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒)|𝑝 ↦ 𝑞}
⊕ 𝑚𝑜𝑡𝑒𝑠 = {𝑚|𝑚𝑜𝑡𝑒 ↦ 𝑚 ∈ 𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒)) ∧

(∃𝑐. 𝑐 ⊆ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝑇𝑎𝑏𝑙𝑒(𝑚𝑜𝑡𝑒) ∧ 𝑚𝑜𝑡𝑒 ↦ 𝑚 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑐) ∧
𝐶𝑎𝑟𝑑(𝑐) ≤ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑎𝑑𝑖𝑢𝑠)}

⊕ 𝑟𝑒𝑚𝑜𝑣𝑒_𝑅𝑜𝑢𝑡𝑒𝑠 = (𝑚𝑜𝑡𝑒 ∪ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟) ⊲ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝑇𝑎𝑏𝑙𝑒(𝑚𝑜𝑡𝑒) ⊳

Univ
ers

iti
Mala

ya

133

(𝑚𝑜𝑡𝑒 ∪ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟)
⊕ 𝑚𝑜𝑡𝑒𝑠 ≠ ∅ ∨ ¬(𝑎𝑑𝑑_𝑅𝑜𝑢𝑡𝑒𝑠 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟) ⊲ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝑇𝑎𝑏𝑙𝑒(𝑚𝑜𝑡𝑒)

⊳ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟)

Update_Cluster_Table_Reply has defined to model the up-to-date routing

information of a mote which obtains a route query reply packet. Links belongs to other

routes are meaningless and not necessary to record. It satisfies the fact that the reversed

cumulative path returns a route response to the query source. The entire query route is

denoted by the path.

Every relaying mote must be aware of the routes which lead to the destination.

Thus, the route from the source to the current relaying mote is removed from the path.

Add_Routes is defined to denote the result links which are not included in the cluster

table.

Update_Routung_Table_Reply refines Update_Cluster_Table
𝑎𝑛𝑦 𝑠𝑒𝑛𝑑𝑒𝑟 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 𝑎𝑑𝑑_𝑅𝑜𝑢𝑡𝑒𝑠 𝑟𝑒𝑚𝑜𝑣𝑒_𝑅𝑜𝑢𝑡𝑒𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑝𝑎𝑡ℎ

𝑤ℎ𝑒𝑟𝑒
⊝ 𝑚𝑜𝑡𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠

⊝ ¬(𝑎𝑑𝑑_𝑅𝑜𝑢𝑡𝑒𝑠 = ∅ ∧ 𝑟𝑒𝑚𝑜𝑣𝑒_𝑅𝑜𝑢𝑡𝑒𝑠 = ∅)
⊕ 𝑠𝑒𝑛𝑑𝑒𝑟 ∈ 𝑀𝑜𝑡𝑒𝑠

⊕ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∈ 𝑀𝑜𝑡𝑒𝑠
⊕ ¬(𝑎𝑑𝑑_𝑅𝑜𝑢𝑡𝑒𝑠 = ∅ ∧ 𝑟𝑒𝑚𝑜𝑣𝑒_𝑅𝑜𝑢𝑡𝑒𝑠 = ∅)

⊕ 𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ∈
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑛𝑑𝑒𝑟(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)

⊕ 𝑝𝑎𝑡ℎ ≠ ∅ ∧ 𝑝𝑎𝑡ℎ =
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑟𝑒𝑞𝑢𝑒𝑠𝑡)

⊕ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ∈ 𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝑝𝑎𝑡ℎ)
⊕ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∈ (𝑑𝑜𝑚(𝑝𝑎𝑡ℎ){𝑝|𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑝 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑝𝑎𝑡ℎ)

∨ 𝑝 = 𝑠𝑒𝑛𝑑𝑒𝑟})
⊕ 𝑎𝑑𝑑_𝑅𝑜𝑢𝑡𝑒𝑠 = {𝑝|𝑝 ∈ 𝑑𝑜𝑚(𝑝𝑎𝑡ℎ) ∧

𝑝 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑝𝑎𝑡ℎ) ⊲ 𝑝𝑎𝑡ℎ
⊕ ¬𝑎𝑑𝑑𝑅𝑜𝑢𝑡𝑒𝑠 ⊆ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝑇𝑎𝑏𝑙𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)

With
𝑚𝑜𝑡𝑒 = 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟

Univ
ers

iti
Mala

ya

134

then
⊕ 𝑅𝑒𝑝𝑙𝑦_𝑆𝑒𝑛𝑑𝑒𝑟(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔ 𝑅𝑒𝑝𝑙𝑦_𝑆𝑒𝑛𝑑𝑒𝑟(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ∪

{𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟}
⊕ 𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔ 𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ⊲

{(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ↦ 𝑝𝑎𝑡ℎ}
⊕ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑛𝑑𝑒𝑟(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑛𝑑𝑒𝑟(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)\
{𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟}

⊕ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ⊲

{𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ↦ ∅}

Send_Reply is refined to begin the route query reply process, and a new

event Forward_Reply is introduced to forward the route query reply to the next mote

determined by the cumulative distance. Until responding, a mote first ensures that it is

connected to the next mote. Inside Send_Reply, the mote directs the already discovered

paths to the next mote, determined by the path. The node and path information is then

placed next to the link node mote → next.

Send_Reply refines Send_Reply
𝑎𝑛𝑦 𝑚𝑜𝑡𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑡ℎ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑛𝑒𝑥𝑡

Where
⊕ 𝑛𝑒𝑥𝑡 ↦ 𝑚𝑜𝑡𝑒 ∈ 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑚𝑜𝑡𝑒)(𝑟𝑒𝑞𝑢𝑒𝑠𝑡)

⊕ 𝑚𝑜𝑡𝑒 ↦ 𝑛𝑒𝑥𝑡 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒)
⊕ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ(𝑚𝑜𝑡𝑒 ↦ 𝑛𝑒𝑥𝑡)(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) = ∅

then
⊕ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑛𝑑𝑒𝑟(𝑚𝑜𝑡𝑒 ↦ 𝑛𝑒𝑥𝑡) ≔

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑛𝑑𝑒𝑟(𝑚𝑜𝑡𝑒 ↦ 𝑛𝑒𝑥𝑡) ∪ {𝑚𝑜𝑡𝑒 ↦ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡}
⊕ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ(𝑚𝑜𝑡𝑒 ↦ 𝑛𝑒𝑥𝑡) ≔

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ(𝑚𝑜𝑡𝑒 ↦ 𝑛𝑒𝑥𝑡) ← {𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ↦ 𝑝𝑎𝑡ℎ}

The formalization ensure Requirements Req 1 , Req 2 and Req 10. Figure 2

depicts the synchronization of the established events.

Univ
ers

iti
Mala

ya

135

4.5.5 Validating the Model

The ProB, an animation and modeling checking tool, is used to validate the model,

a plugin provided by Rodin. It enables the animation of Event-B models without requiring

them to be translated into specific ProB models. In addition, this animator facilitates step-

by-step animation as well as non-deterministic tasks. The ProB perspective in Rodin

displays a summary of a machine's current state, a collection of all allowed events, and

proper argument configurations. As a result, users can modify the system state by

selecting an active event with possible arguments. There may be an infinite number of

system states because the motes in the network, the broadcast time, and the cluster radius

are not specified in this formalization.

Figure 4.2: Network Topology for Model Validation

Auxiliary context is provided to assign the given set, Motes, and a few constants

presented below to avoid state explosions and validate the model properly. A predicate,

Divider (S, s1, . . ., sn), is defined to form partitions of set S s1.........sn, further

Time_Clock is set to one indicating that the time is increment by one.

𝑎𝑥𝑚1:
𝐷𝑖𝑣𝑖𝑑𝑒𝑟(𝑀𝑜𝑡𝑒𝑠, {𝑚1}, {𝑚2}, {𝑚3}, {𝑚4}, {𝑚5}, {𝑚6}, {𝑚7})

𝑎𝑥𝑚2: 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 = 4
𝑎𝑥𝑚3: 𝑝𝑒𝑟𝑖𝑜𝑑 = 2
𝑎𝑥𝑚4: 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑎𝑑𝑖𝑢𝑠 = 2

Univ
ers

iti
Mala

ya

136

In this model, a Cessation (closure) function is defined to calculate the transitive

closure. It is necessary to simplify this computation to make the animation smooth. As a

result, the network topology in Figure. 4.4 is static. This network's connectivity is defined

by the variable Neighbor_Link, which is treated as a constant (axm5). After that, a

constant variable closureN L (axm6) is defined to describe the transitive closure

of Neighbor_Link (axm7). It is noticed that the stabilize event needs to be stimulated first

for the system's stability state.

𝑎𝑥𝑚5: Divider(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝐿𝑖𝑛𝑘,

 {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦ 𝑚6},
 {𝑚2 ↦ 𝑚1, 𝑚2 ↦ 𝑚3}, {𝑚3 ↦ 𝑚2, 𝑚3 ↦ 𝑚4, 𝑚3 ↦ 𝑚7},
 {𝑚4 ↦ 𝑚3}, {𝑚5 ↦ 𝑚1}, {𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7},
 {𝑚7 ↦ 𝑚6, 𝑚7 ↦ 𝑚3})

𝑎𝑥𝑚6: 𝑐𝑙𝑜𝑠𝑢𝑟𝑒𝑁𝐿 ∈ 𝑀𝑜𝑡𝑒𝑠 ↔ 𝑀𝑜𝑡𝑒𝑠
𝑎𝑥𝑚7: 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑐𝑙𝑜𝑠𝑢𝑟𝑒𝑁𝐿, 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑛𝑘,

 {𝑚1 ↦ 𝑚3, 𝑚1 ↦ 𝑚4, 𝑚1 ↦ 𝑚7},
 {𝑚2 ↦ 𝑚4, 𝑚2 ↦ 𝑚5, 𝑚2 ↦ 𝑚6, 𝑚2 ↦ 𝑚7},
 {𝑚3 ↦ 𝑚1, 𝑚3 ↦ 𝑚5, 𝑚3 ↦ 𝑚6},
 {𝑚4 ↦ 𝑚1, 𝑚4 ↦ 𝑚2, 𝑚4 ↦ 𝑚5, 𝑚4 ↦ 𝑚6, 𝑚4 ↦ 𝑚7},
 {𝑚5 ↦ 𝑚2, 𝑚5 ↦ 𝑚3, 𝑚5 ↦ 𝑚4, 𝑚5 ↦ 𝑚6, 𝑚5 ↦ 𝑚7},
 {𝑚6 ↦ 𝑚2, 𝑚6 ↦ 𝑚3, 𝑚6 ↦ 𝑚4, 𝑚6 ↦ 𝑚5},
 {𝑚7 ↦ 𝑚1, 𝑚7 ↦ 𝑚2, 𝑚7 ↦ 𝑚4, 𝑚7 ↦ 𝑚5},

𝑎𝑥𝑚8: 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ∈ 𝑀𝑜𝑡𝑒𝑠 ↔ 𝑀𝑜𝑡𝑒𝑠
𝑎𝑥𝑚9: 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 = {𝑚1 ↦ 𝑚4}

According to the above-mentioned network topology, it is intended to discover a

path from m1 to m4. A variable Request is defined to record this route query information

from sender m1 and receiver m4. The preliminary model was changed by introducing this

auxiliary context and eliminating the current machine that defined variation in the

network topology. The corresponding refinements are formalized according to this

context.

Univ
ers

iti
Mala

ya

137

1.Time_Clock(1)
2. timeClock(1)

𝑇𝑖𝑚𝑒 = 3

3. Links_Obtain(𝑚1, {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦

𝑚6}, …)
4. Links_Obtain (𝑚2, {𝑚2 ↦ 𝑚1, 𝑚2 ↦ 𝑚3}, . .)
5. Links_Obtain (𝑚3, {𝑚3 ↦ 𝑚2, 𝑚3 ↦ 𝑚4, 𝑚3 ↦

𝑚7}, . .)
6. Links_Obtain (𝑚6, {𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7}, …)
7. Links_Obtain (𝑚7, {𝑚7 ↦ 𝑚3, 𝑚7 ↦ 𝑚6}, …)

𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒 = {𝑚1 ↦ {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦ 𝑚6},
𝑚2 ↦ {𝑚2 ↦ 𝑚1, 𝑚2 ↦ 𝑚3}

𝑚3 ↦ {𝑚3 ↦ 𝑚2, 𝑚3 ↦ 𝑚4, 𝑚3 ↦ 𝑚7}, 𝑚4 ↦ ∅, 𝑚5 ↦ ∅,

𝑚6 ↦ {𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7, 𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1

↦ 𝑚6} …)

8.Send_Links(𝑚1, {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦

𝑚6}, …)
9.Links_Recieve (𝑚2, {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦

𝑚6}, . .)
10. recieveLinks(𝑚6, {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦

𝑚6}, …)

𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒 = {𝑚2

↦ {𝑚2 ↦ 𝑚1, 𝑚2 ↦ 𝑚3, 𝑚1 ↦ 𝑚5, 𝑚1

↦ 𝑚6},
… , 𝑚6 ↦ {𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7, 𝑚1 ↦ 𝑚5, 𝑚1 ↦

 𝑚6}, … },

11. Send_Links(𝑚2, {𝑚2 ↦ 𝑚1, 𝑚2 ↦ 𝑚3}, . .)
12. Links_Recieve (𝑚1, {𝑚2 ↦ 𝑚1, 𝑚2 ↦ 𝑚3}, . .)
13. Links_Recieve (𝑚3, {𝑚2 ↦ 𝑚1, 𝑚2 ↦ 𝑚3}, . .)

𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒 = {𝑚1

↦ {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦ 𝑚6, 𝑚2

↦ 𝑚1, 𝑚2 ↦ 𝑚3},
… , 𝑚3 ↦ {𝑚3 ↦ 𝑚2, 𝑚3 ↦ 𝑚4, 𝑚3 ↦ 𝑚7, 𝑚2 ↦

 𝑚1, 𝑚2 ↦ 𝑚3}, … },

14. Send_Links(𝑚3, {𝑚3 ↦ 𝑚2, 𝑚3 ↦ 𝑚4, 𝑚3 ↦

𝑚7}, . .)
15.Links_Recieve (𝑚2, {𝑚3 ↦ 𝑚2, 𝑚3 ↦

𝑚4, 𝑚3 ↦ 𝑚7}, . .)
16.Links_Recieve (𝑚7, {𝑚3 ↦ 𝑚2, 𝑚3 ↦

𝑚4, 𝑚3 ↦ 𝑚7}, . .)

𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒 = {… , 𝑚

↦ {𝑚2 ↦ 𝑚1, 𝑚2 ↦ 𝑚3, 𝑚1 ↦ 𝑚2, 𝑚1

↦ 𝑚5, 𝑚1 ↦ 𝑚6, 𝑚3 ↦ 𝑚2, 𝑚3

↦ 𝑚4, 𝑚3 ↦ 𝑚7}, …,
𝑚7 ↦ {𝑚7 ↦ 𝑚3, 𝑚7 ↦ 𝑚6, 𝑚3 ↦ 𝑚2, 𝑚3 ↦ 𝑚4, 𝑚3 ↦

 𝑚7}, … },

17.Send_Links(𝑚6, {𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7}, . .)
18. Links_Recieve (𝑚1, {𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7}, . .)
19. Links_Recieve (𝑚7, {𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7}, . .)

𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒 = {𝑚1

↦ {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦ 𝑚6, 𝑚2

↦ 𝑚1, 𝑚2 ↦ 𝑚3, 𝑚6 ↦ 𝑚1, 𝑚6

↦ 𝑚7}, …,
𝑚7 ↦ {𝑚7 ↦ 𝑚3, 𝑚7 ↦ 𝑚6, 𝑚3 ↦ 𝑚2, 𝑚3 ↦ 𝑚4, 𝑚3 ↦

 𝑚7, 𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7}, … },

20. Send_Links(𝑚7, {𝑚7 ↦ 𝑚3, 𝑚7 ↦ 𝑚6}, . .)
21. Links_Recieve (𝑚3, {𝑚7 ↦ 𝑚3, 𝑚7 ↦ 𝑚6}, . .)
22. Links_Recieve (𝑚6, {𝑚7 ↦ 𝑚3, 𝑚7 ↦ 𝑚6}, . .)

𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒 = {… , 𝑚3

↦ {𝑚3 ↦ 𝑚2, 𝑚3 ↦ 𝑚4, 𝑚3 ↦ 𝑚7, 𝑚2

↦ 𝑚1, 𝑚2 ↦ 𝑚3, 𝑚7 ↦ 𝑚3, 𝑚7

↦ 𝑚6}, …,
𝑚6 ↦ {𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7, 𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦

 𝑚6, 𝑚7 ↦ 𝑚3, 𝑚7 ↦ 𝑚6}, … },

23.Update_Table_Routing_IALC(𝑚1, . .)
24. Update_Table_Routing_IALC (𝑚2, . .)
25. Update_Table_Routing_IALC (𝑚3, . .)
26. Update_Table_Routing_IALC (𝑚6, . .)
27. Update_Table_Routing_IALC (𝑚7, . .)

𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝑇𝑎𝑏𝑙𝑒 = {𝑚1

↦ {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦ 𝑚6, 𝑚2

↦ 𝑚1, 𝑚2 ↦ 𝑚3, 𝑚6 ↦ 𝑚1, 𝑚6

↦ 𝑚7}, 𝑚2

↦ {𝑚2 ↦ 𝑚1, 𝑚2 ↦ 𝑚3, 𝑚1 ↦ 𝑚2, 𝑚1

↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦ 𝑚6, 𝑚3

↦ 𝑚2, 𝑚3 ↦ 𝑚4, 𝑚3 ↦ 𝑚7}, 𝑚3

↦ {𝑚3 ↦ 𝑚2, 𝑚3 ↦ 𝑚4, 𝑚3 ↦ 𝑚7, 𝑚2

↦ 𝑚1, 𝑚2 ↦ 𝑚3, 𝑚7 ↦ 𝑚3, 𝑚7

↦ 𝑛6}, 𝑛4 ↦ ∅, 𝑚5 ↦ ∅, 𝑛6

↦ {𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7, 𝑚1 ↦ 𝑚2, 𝑚1

↦ 𝑚5, 𝑚1 ↦ 𝑚6, 𝑚7 ↦ 𝑚3, 𝑚7

↦ 𝑚6}, 𝑚7

↦ {𝑚7 ↦ 𝑚3, 𝑚7 ↦ 𝑚6, 𝑚3 ↦ 𝑚2, 𝑚3

↦ 𝑚4, 𝑚3 ↦ 𝑚7, 𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7}}

Univ
ers

iti
Mala

ya

138

The Cessation (closure) predicates are replaced with some other predicates

regarding the cluster radius 2 for the following refinements. The radius of the cluster is

set to 2, whereas motes(x) denotes the set of x’s neighbors.

To verify the existing routes that reside in the x’s neighbors, it is required

that x → y must be in (x). It's worth noting that those changes only apply to models with

a specific cluster radius 2.

 Few statements, such as inv1 and thm1 in the sixth refinement, cannot be changed

because they contain the Cessation (closure) function with an unspecified path. Hence,

the Cessation (closure) function is neglected, and more attention needs to pay to manually

check their correctness while animating the models. To discover routes from m1 to m4,

some operations are enabled manually by this model. The sequence of operations is used

to discover the route query in the network topology.

28.Source_Forward_Request(𝑚1, 𝑚1 ↦ 𝑚4, … .) 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ = {𝑚1 ↦ {(𝑚1 ↦ 𝑚4) ↦ ∅, … }, … }
𝐼𝑛𝑡𝑒𝑛𝑑𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 = {(𝑚1 ↦ {(𝑚1 ↦ 𝑚4)) ↦ {𝑚2, 𝑚6}, … }

29.Recieve_Request_Has_Route(𝑚2, 𝑚1 ↦ 𝑚4, … .)
30. Receive_Request_No_Route(𝑚6, 𝑚1 ↦ 𝑚4, … .)

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ = {𝑚2

↦ {(𝑚1 ↦ 𝑚4)

↦ {𝑚1 ↦ 𝑚2, 𝑚2 ↦ 𝑚3, 𝑚3

↦ 𝑚4}, … }, … , 𝑚6

↦ {(𝑚1 ↦ 𝑚4){𝑚1 ↦ 𝑚6}, … }, . . }
𝐼𝑛𝑡𝑒𝑛𝑑𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 = {… , (𝑚6 ↦ (𝑚1 ↦ 𝑚4)) ↦ {𝑚7}, … }

31.Bordercast_Request(𝑚6, 𝑚1 ↦ 𝑚4, {𝑚6 ↦

𝑚7}, … .)
32. Receive_Request_Has_Route(𝑚7, 𝑚1 ↦ 𝑚4, …)

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ = {… , 𝑚7

↦ {(𝑚1 ↦ 𝑚4)

↦ {𝑚1 ↦ 𝑚6, 𝑚6 ↦ 𝑚7, 𝑚7 ↦ 𝑚3, 𝑚3

↦ 𝑚4}, … }, … }
33.Send_Reply(𝑚2, 𝑚1 ↦ 𝑚4, …)
34.Send_Reply(𝑚7, 𝑚1 ↦ 𝑚4, …)

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑅𝑒𝑝𝑙𝑦𝑃𝑎𝑡ℎ = {(𝑚2 ↦ 𝑚1)

↦ {(𝑚1 ↦ 𝑚4)

↦ {𝑚1 ↦ 𝑚2, 𝑚2 ↦ 𝑚3, 𝑚3

↦ 𝑚4}, … }, … , (𝑚7 ↦ 𝑚6)

↦ {(𝑚1 ↦ 𝑚4)

↦ {𝑚1 ↦ 𝑚6, 𝑚6 ↦ 𝑚7, 𝑚7 ↦ 𝑚3, 𝑚3

↦ 𝑚4}, … }, … }
35.Update_Routing_Table_Reply(𝑚1, 𝑚1 ↦ 𝑚4, …)
36. Update_Routing_Table_Reply(𝑚6, 𝑚1 ↦

𝑚4, …)

𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝑇𝑎𝑏𝑙𝑒 = {𝑚1

↦ {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦ 𝑚6, 𝑚2

↦ 𝑚1, 𝑚2 ↦ 𝑚3, 𝑚6 ↦ 𝑚1, 𝑚6

↦ 𝑚7, 𝑚3 ↦ 𝑚4}, … , 𝑚6

↦ {𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7, 𝑚1 ↦ 𝑚2, 𝑚1

↦ 𝑚5, 𝑚1 ↦ 𝑚6, 𝑚7 ↦ 𝑚6, 𝑚7

↦ 𝑚3, 𝑚3 ↦ 𝑚4}, … }
37.Forward_Reply(𝑚6, 𝑚1 ↦ 𝑚4, 𝑚1 …)
38.Update_Cluster_Routing_Table_Reply(𝑚1, 𝑚1 ↦

𝑚4, …)

𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝑇𝑎𝑏𝑙𝑒 = {𝑛1

↦ {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦ 𝑚6, 𝑚2

↦ 𝑚1, 𝑚2 ↦ 𝑚3, 𝑚6 ↦ 𝑚1, 𝑚6

↦ 𝑚7, 𝑚3 ↦ 𝑚4, 𝑚7 ↦ 𝑚3}, … }

Univ
ers

iti
Mala

ya

139

 [m1 → m2, m2 → m3, m3 → m4] and [m1 → m6, m6 → m7, m7 → m3, m3
→ m4]

The animation example is elaborated in Figure 4.2. A list of step-by-step

operations is carried out to enhance the readability, including some additional parameters

to discover the entire route discovery from m1 → m4. Steps 3-7 are used to obtain the

neighbor information for m1, m2, m3, m6, and m7, and the current value

of Table_Link_State is displayed on the right side. Static parts of variables are represented

by “. . .”. During the animation, the axioms and invariants remain true.

4.6 Conclusion

This Chapter used a refinement-based process to design a formal specification of

cluster-based flooding. The aim is to use the border casting service to examine the route

discovery process. Every mote in the dynamic network environment sends information

to its neighbors in the cluster radius. This model is not only limited to formally describes

the above issues but also takes account of the system's stabilization property. The system

is considered stable if the network environment is idle for a long time. Every mote in the

cluster has a route to any other mote within its radius.

Some invariants are also defined to validate the route discovery properties. It is to

be noted that the CBF's target is to use a border casting service rather than broadcasting

or flooding to find the appropriate routes. It has formed approximately 400 proof

obligations, of which half are automatically proven.

The rest, which includes an arithmetic or set operations, are proven manually.

Discharging the generated proof obligation ensures that the refinements are correct, and

the properties (invariants) are preserved. The development can also be used to explore

other cross-layered routing protocols.

Univ
ers

iti
Mala

ya

140

CHAPTER 5: QoS ENABLED QCM TESTBED

5.1 Introduction

In the conventional IoT query propagation model, sensors send requests to the

access point or central gateway mote of the network. This access point handles the queries

first and then transfers queries using the underlying routing mechanism to the right

locations of the network.

There are shortcomings to this simplistic approach: sensors may send redundant

and duplicate queries i.e one sensor may carry unwanted query of another application or

sensor. This is because of the overlapping cluster queries. The total energy usage

therefore grows as the query size is enlarged. In such situations, device resources (in

terms of bandwidth or energy for the sensor node) are lost due to too many redundant

network query transmissions that can result in detectable QoS transmission (Fathallah et

al., 2019).

 This Chapter discusses the QoS enabled QCM testbed used to detect and

terminate the redundant and unwanted queries in IoT networks. The QCM testbed aims

to reduce the number of duplicate/overlapping queries in IoT networks to improve QoS.

The query control mechanism is aware of all the query information. Therefore, all the

overlapping clusters in the whole query space can be easily calculated.

The Chapter is organized into the following sections. Section 5.1 presents the

Introduction, Section 5.2 explains the benchmarking testbeds, Section 5.3 elaborates the

experimental tools and schematic of the testbed, Section 5.4 presents the QCM in detail

and elaborate different query detection and termination scenarios to evaluate the

performance of QCM, Section 5.5 presents evaluation, Section 5.6 mentions the

performance results and Finally, Section 5.7 concluded the Chapter.

Univ
ers

iti
Mala

ya

141

5.2 Existing Testbeds

All around the planet, there are several existing testbeds for related purposes.

Different testbeds or laboratories concentrate on multiple facts. Some state-of-the-art

testbeds are mentioned below. It is essential to notice that none of the below testbeds

solely focused on elimination of redundant and unwanted queries in IoT networks to

enhance QoS. The QCM testbed is purely for the purpose of mitigation of multiple and

overlapping cluster queries in IoT networks.

5.2.1 FIT IoT-LAB:

FIT IoT is an open source testbed composed of 2728 low-power remote motes

and 117 portable robots that are being utilized to explore different research and

experiments regarding the huge scope IoT usage (Adjih et al., 2015). It features low-level

and advanced Internet-level protocols and is deployed at six sites across France.

Even though all the destinations have distinctive sensor gateway hub and equipment

abilities, every one of them are associated and accessible through a similar online

interface, normal REST interfaces and reliable CLI devices. It makes a platform for

heterogeneous testing and is totally open source.

5.2.2 INDRIYA 2:

This testbed is the modern version of INDRIYA 1, installed at Singapore national

university in a 3-dimensional way (Doddavenkatappa et al., 2012). This testbed is

specifically intended for testing in programming environments for sensor networks,

communication protocols and device architecture, etc. It provides the research platform

with public access round the clock. At any given stage, anybody can upload executables,

build jobs over the motes, and schedule them to run. Then, via the web portal, the tracking

and visualization portion is completed. Deployment-wise Indriya 2nd version is

Univ
ers

iti
Mala

ya

142

essentially the same as the previous. This solves some of the problems such as having

different types of motes, more scalability, and having only one language base for

development to make it easier to manage and update (Appavoo et al., 2019).

5.2.3 MoteLab:

It is a network-based testbed that has a series of nodes permanently installed that

are connected to a central server that has a web interface that stores information and

schedules activities. By logging the data with the assistance of automation, it smoothes

production and debugging, which then ensures that the performance of the sensor network

system is tested offline. It also provides access to the test bed for both local and remote

users with the web interface. The scheme that takes care of the planning quota means that

there is a rational system of sharing. It is completely open source and deployed at the

University of Harvard (Werner-Allen et al., 2005).

5.2.4 The TKN WIreless NetworkS Testbed:

The TKN WIreless NetworkS Testbed (TWIST) has been planned and developed

at the Technische Universität, Berlin, by the Telecommunication Networks Company

(TKN). Another open-source indoor WSN testbed is versatile and supports experimenting

with multiple node setups, network-wide scripting, and various debugging methods. It

also offers support for a heterogeneous network setup and has self-configuration

capability using generic interfaces on the hardware (S.-F. Li et al., 2005).

5.2.5 FlockLab:

The FlockLab is a testbed developed and operated at the Swiss Federal Institute

of Technology in Zurich, Switzerland by the Electronic Engineering and Networks

Laboratory. This testbed that requires several services to run through all nodes

concurrently and synchronously.

Univ
ers

iti
Mala

ya

143

This testbed has an additional function, as all the nodes are equipped with GPIO

pins to store all logical events. It uses GPIO tracing as a debugging method for time-

sensitive code (Lim et al., 2013). It embraces several target architectures, which in

essence, when it comes to the same physical topology, enables a comparative study of

applications and protocols. Users can apply power profiling and GPIO tracing against all

targets to compare power and logical occurrences. They may also dynamically change

the target supply voltage to strongly imitate battery consumption.

5.2.6 SensLAB:

It is an open WSN testbed that has been established and implemented on a vast

scale to enable scalable testing in the WSN domain. The testbed is made up of 1024 nodes

and is scattered around four areas. To provide a broad variety of features and

implementations, every position has an equal proportion of 256 sensor nodes with unique

characteristics. Two sites have links to mobile nodes, and all 256 nodes can connect with

each other using the radio interfaces inside any given location. Each node can also serve

as a sink node and can also connect with the entire network's other sink nodes or any

external computer on the internet (Burin des Rosiers et al., 2012) .

5.3 Experimental Tools and Schematic

This Section explained the tools used to evaluate testbed for Query Control

Mechanism along with IoT controller used to provide centralized control of the entire

network. In the QCM testbed, 16 heterogeneous IoT sensors are deployed with Arduino

Mega 2650 controller.

5.3.1 Arduino Controller

Arduino is an open-source hardware project that designs and manufactures single-

board microcontrollers and microcontrollers to sense and control physical and digital

Univ
ers

iti
Mala

ya

144

objectives for digital frame devices and interactive purposes (Arduino -

ArduinoBoardMega2560, n.d.), (Badamasi, 2014), (Barrett, 2013).

ATmega2560 is a 54 digital input/output pin dependent microcontroller board

where 14 are often used as PWM outputs. Sixteen analog inputs, 4 UART serial hardware

ports, a 16 MHz crystal oscillator, a USB link, a power jack, an ICSP header, and a reset

button. It includes everything and needs to help the microcontroller; plug it into a USB

cable device or power it to get started with an AC to DC converter or charger. Figure 5.1

and Table 5.1 illustrates Pinout diagram and technical specification for ATmega2560.

Figure 5.1: Pinout Schematic of ATmega 2650

The Arduino Mega is explicitly designed for projects requiring more memory

space and complex circuits. Other boards available on the market that make Arduino

Mega unusual for regular projects can do most of the electronic projects well. However,

due to its ability to store more instructions in the code memory and several digital and

analog I/O pins, some projects are carried out exclusively by Arduino Mega, such as

making 3D printers or controlling more than one device.

In this testbed all traffic management is controlled by a central IoT controller.

This testbed used Gunino Mega 2650. IoT Controller is responsible to collect data sensed

Univ
ers

iti
Mala

ya

145

by IR and RFID sensors and to take appropriate action for each input based on the

appropriate algorithm.

Table 5.1: Specification of Mega 2650

5.3.2 IR Sensor:

Infrared sensors are the electronic devices used to sense different characteristics

of their surroundings (i.e heat, motion, etc). IR sensors play a key role in this testbed by

sensing the arrival of the query on every cluster for calculating the query traffic on each

cluster and transfer the counts to the main controller. Furthermore, the IoT controller

calculates and analyzes the query traffic by counting the number of queries on a particular

cluster and decide in a centralized manner accordingly (Zappi et al., 2010), (IR Sensor :

Circuit Diagram, Types Working with Applications, n.d.).

5.3.3 RFID Sensor: Radio Frequency Identifier

RFID is a promising technology for automated object identification with high

accuracy. RFID sensors are deployed for the detection and identification of special

queries on each cluster. In the IoT network, WSNs and RFID are the enabling

technologies that form the basic building blocks for sensing and communication among

devices and objects connected to the network (Su, Jian and Liu, Alex X and Sheng,

Zhengguo and Chen, 2020). The inexpensive nature of RFID and its strong support

Univ
ers

iti
Mala

ya

146

towards the business community make it the leading enabling technology in the IoT

domain because it can transform ordinary objects into smart objects (Landt, 2005).

Wireless sensor networks are composed of heterogeneous technologies which include

sensors, wireless, and fixed communications devices. Constructing IoT is significantly

based on sensors and RFID. IoT provides a platform for people and different objects to

connect and communicate together anytime and anywhere with anything in real-time

provided they be online.

5.3.4 Indicators:

The QCM testbed is equipped with RGB indicators to notify the user about the

flooding. These indicators are dynamically integrated with the IoT controller and change

its state according to the mentioned criteria (imposed by IoT controller).

5.3.5 Cloud / Edge Servers:

 Cloud server is a central entity with huge storage and computing capabilities.

Whereas the edge server is a small cloud near the end-user. In the QCM testbed cloud

and edge servers are used only when the local IoT controller is unable to perform complex

computation due to its limited storage and computing capabilities. in such cases, tasks

and computation are offloaded to the local edge or centralized cloud servers. Cloud

servers are also used to analyze statistical data and intelligent future decision (Xiong et

al., 2018), (Peng et al., 2020), (Ren et al., 2019).

5.3.6 Layered Description and Schematic

The QCM testbed schematic is classified based on the architectural design of each

component used in developing the QoS enabled QCM testbed. Each component used and

their description is provided in Table 5.2.

Univ
ers

iti
Mala

ya

147

Table 5.2: Layered Description of Hardware

Network layer NRF Model 324G (nRF241,01+1) , WIFI, xigbee etc

Wifi Serial Module (ESP-8266)

Sensor Layer Arduino Board Mega Rev 3

IR sensor Low-Cost Ranging Module , PIR sensors ,

Ultrasonic , Water Moister , RFID

RFID Tag and Reader

From the IoT layered description mentioned in Table 5.2, a circuit is developed

by combining all the components discussed in Section 5.3 and Figure 5.2. which helped

to achieve the aims and objectives of QoS enabled QCM testbed.

Figure 5.2: Schematic of the QCM Testbed

The testbed is capable of detection and termination of overlapping and redundant

network queries that reappear in the same cluster that has been already queried. The QCM

testbed also has a unique feature to monitor the mote location and its signal strength for

Univ
ers

iti
Mala

ya

148

the purpose to identify the flooding queries and transfer them to the controller for

termination and further processing.

The testbed used heterogeneous IoT Sensors, i.e., IR, Ultrasonic, RFID,

temperature, sound, LDR, and water sensing for generating queries. It acts as the input

unit for the testbed that monitors and sensed each query in their vicinity. The testbed uses

embedded devices provided in Table 5.2 to carry out its essential operation. Embedded

devices are being used in this system due to their advantages such as user-friendly, easy

to program, and simplicity.

The retrieved information was then sent to the Arduino controller for a certain

processing amount on the sensors query. Then forward the sent queries to computational

servers, i.e., Cloud and local servers via ZigBee or Wi-Fi to be processed further for

sharing and storing purposes. The controller is also responsible for the computation of

channel signal strength and mote location.

5.4 Query Control Mechanism (Testbed)

In Cluster Based Flooding, clusters are heavily overlap due to which route queries

are extended to multiple network motes. In fact, the query network has been effectively

streamlined to reach all network motes, effectively flood the network. However, a more

disappointing result is that the IELC generates much more traffic than the flooding itself

since when the flood is in operation, the query is sent on a path the length of which is

equal to the radius of the cluster. In this case, an adequate query termination criterion is

needed then the traditional approaches provided. To understand the cause of CBF control

traffic, one of the main characteristics of the routing cluster needs to be highlighted: the

mote reply to a query request may have provided detailed information about the entire

Univ
ers

iti
Mala

ya

149

cluster of the mote. From this perspective, additional path query traffic can be viewed

because of query threads overlapping, that is overlapped visited cluster. Therefore, the

query control procedures' purpose is to reduce the route query traffic by directing the

threads outward from the visited cluster. This issue can be tackled by identification,

termination and prevention of visited cluster overlap. See Figure 5.3.

Figure 5.3: Desired Search Direction of Overlapping Clusters

5.4.1 Smart Query Mitigation

The conventional method to eliminate the query thread is to remove once it

appears in the last queried mote. Thus, it does not entirely leverage the cluster structure.

 A more comprehensive technique is to drop a thread that occurs in a cluster that

has already been queried. This criterion poses the first obstacle to designing an efficient

termination process: identifying the already visited cluster when only a single mote has

been queried (the central mote).

Univ
ers

iti
Mala

ya

150

5.4.1.1 Loop-Back Mitigation (LM)

When all motes are configured with the same cluster radius, cluster membership

is commutative (i.e., if mote1 belongs to node m2’s cluster, then node m2 belongs to m1’s

cluster). It is identifying a thread which returns to a cluster that it has already queried is

reasonably straightforward. To decide whether every hop (excluding the most recent hop)

lies within its cluster, a mote merely examines the acquired path in the obtained route

query packet. The thread is abandoned when the loop-back event persists. Figure 5.4

demonstrates this scheme's instance, which refers to as Loop-back mitigation (LM). Mote

m8 send a query route to m6, which forward it to m10, m10 send the same query message

to m12. m12 eliminates the query and will not broadcast the query to m8 because it also

lies in the m12’s cluster. LM is an effective loopback thread handling mechanism since

the cumulative path's knowledge is adequate to classify all loopback events.

Figure 5.4: Loop-Back Mitigation (LM)

Univ
ers

iti
Mala

ya

151

(a) LM termination criteria:

1. mote ∈ route

2. i < j, where route[i] = = mote and route[j] = = prev_periph

3. mote ∈ {cluster}

4. mote ∉ {border motes}

5.4.1.2 Smart Query Detection (SQD(a) / SQD(b))

The main cause of redundant queries in the cluster is because of it has been visited

by another query. In contrast to the loopback scenario as mentioned previously, most of

the thread overlapping occurs by a thread appearing in a cluster that was previously

queried by another thread. Unlike the loop-back case just described, in this case, the

ability to reduce and terminate enormously relies on the motes' ability to identify a cluster

they belong to, has already been visited. The source mote in the cluster who processed

the query clearly understands that the same query has already visited its cluster. To inform

the rest of the cluster motes, some type of 'spying' techniques needs to be implemented

without adding unnecessary control traffic. According to the CBF design principle, it is a

more suitable way to perform query detection smartly. The initial level of smart query

detection SQD(a) is to permit the interior motes responsible for forwarding the queries to

cluster edge for detecting and revoking these queries. Any mote can sense queries within

the range of a query-transmitting mote on single-channel networks. The SQD(b) can

expand query detection functionality by providing route queries using IP broadcasts.

Figure 5.5: illustrates both levels of smart query detection.

Univ
ers

iti
Mala

ya

152

Figure 5.5: Smart Query Detection SQD(a) / SQD(b)

Mote identification is also recorded in terms of ID, which first broadcast the

detected query thread. Redundant queries that can transmit by the same mote are not

automatically revoked to ensure full network coverage. For instance, two border motes

m1 and m8 received a flooding query from m6. Using SQD(a), the interior motes m5 and

m7 can detect redundant queries passing through it. In another way, when SQD(b) is

applied, mote m2 can "eavesdrop" on the transmissions of m5 and record the query thread.

5.4.1.3 Early Mitigation (EM)

The thread termination can further be improved by a throw away the query thread

on entering to already queried cluster. When only the border motes are allowed to

terminate the query thread, it is possible that redundant queries may enter the already

visited areas, resulting in excessive traffic generation.

Univ
ers

iti
Mala

ya

153

The termination capability may extend to the interior motes that forward the query

thread to eliminate this excessive traffic generation. This method is referred as Early

Mitigation (EM) as mentioned in Figure 5.6. in the Figure 5.6 a route query is broadcasted

by m6 to m11, first this query is received by mote 10 and forward it to mote 8 for delivery

to the destination mote 11 which is reside on the border of the cluster. Mote m8 terminates

the thread instead of delivering the query to mote m11 because another thread of the same

query was already detected. It is noted that EM only permits the partial involvement of

the interior motes to process the route queries. Interior motes are forbidden to issue new

queries, or else the CBF would convert into a flooding protocol.

Figure 5.6: Early Mitigation

Univ
ers

iti
Mala

ya

154

(a) EM termination criteria:

1. Query {source,id} ∈ detected queries

2. Query prev_periph > min {detected queries[] prev_periph}

5.4.1.4 Selective Flooding

Now to solve the more complicated problem of thread overlap prevention. By

focusing on eliminating local overlaps, a certain degree of control can be exerted on the

direction of thread distribution, thereby reducing the overlap of threads farther in the

network. Local thread overlap is caused by the overlap of peripheral motes in the cluster,

particularly with cluster radius enlargement.

Instead of flood queries to all the border motes, a method called selective flooding

(SF) can be used to provide the same coverage by flood the queries to a subset of

selected/chosen border motes. SF must be aware of the network topology of extended

cluster information provided by the IALC, which is twice the cluster radius before

forwarding, initially, a mote needs first to specify the subset of outer border motes visited

by its given inner border motes.

Sender mote needs to flood the query to the subset of given inner border motes,

which in turn minimize the partitioning set of outer border motes. An illustrative example

of SF operation is provided in Figure 5.7.

The inner border motes of m10 are m5, m6 and m7, whereas the outer border

motes of m10 are m0, m1, m2, m3, m4 and m8. As seen because of the overlapping

cluster, the inner border motes (m2 and m3) of m6 are also inner border motes of m5 and

m7.

Univ
ers

iti
Mala

ya

155

Hence, m6 can choose to be eliminated from the forwarding recipient list of m10.

Mote5 can cover m0, m1 and m2, while m7 can give coverage to m3, m4 and m8,

avoiding overlapping cluster queries over extended clusters with maximum coverage.

Figure 5.7: Selective Flooding (SF)

5.5 Evaluation of Query Control Mechanism (QCM)

The efficiency of the QCM testbed was assessed by using 16 heterogeneous IoT

motes having a cluster radius (r). Effectiveness of the QCM was measured by the

generation of control traffic. Instead of measuring the control traffic in term of packets,

it measures it in ID fields which are transmitted at the IELC (i.e. network layer).It is

because the route accumulation length of IELC control traffic is variable. Total control

traffic can be seen as the addition of ID fields in the query packet transmitted by the

intracluster update and intercluster reply to queries. Hello or alive beacons used for mote

discovery are exempted from the control traffic

Univ
ers

iti
Mala

ya

156

To accommodate the computational load of testbed, the IALC and IELC are

emulated separately. The Mega 2560 microcontroller from Arduino family, based on the

ATmega2560P microcontroller by Atmel with 16 heterogeneous IoT sensors were

deployed to gauge the efficacy of IALC in each radius of a cluster. Initially, the IALC

algorithm was executed for 300 seconds

The IALC algorithm was run for 300 seconds. None of the queries was recorded

for the first ten seconds of the emulation to prevent it from additional measurements and

to stabilize the initial Intracluster path query discovery process. The IELC algorithm

assumes that the network topology may be static during the route request process.It is

often presumed that the total network load is low. The delays in query propagation and

mote processing are relatively insignificant.

5.6 Performance Results

The following statistics present the findings of the smart QCM testbed. Figure 5.8

indicates the cluster radius (r) dependency of intracluster control packets on different

network reconfiguration. The full flooding and selective flooding methods are different

because the selective flooding allows the IALC to retain an extended cluster of radius =

(2). It is demonstrated that the rise in IALC traffic resulting from the extended cluster is

quite significant. The sum of IALC control traffic for each mote depends on the cluster's

radius r* for both selective and full flooding. It is expected because the amount of IALC

traffic per mote is directly proportional to the number of queried motes in the cluster. As

shown, when the cluster radius r = 1, the control overhead for intracluster is none because

all the motes in a radius of r=1 are by default directly connected motes and considered

neighbors. Further, MDP is responsible for propagating information required to maintain

the mote connectivity inside the cluster.

Univ
ers

iti
Mala

ya

157

Figure 5.8: IALC Traffic

To analyze the IELC control traffic, initially, the full flooding and selective

flooding were examined separately.

The efficiency of the query mitigation strategies, which are useful in managing

the distribution of IELC traffic in conjunction with full flooding, is seen in Figure 5.9.

The amount of IELC traffic per Route query is expected to decrease the cluster radius to

be considered successful. To properly spread the query packet, some form of smart query

detection technique (either SQD(a) or SQD(b) is required. Approximately 40 percent less

reactive path discovery traffic could be encountered by single-channel networks that can

implement SQD(b) than those that only implement SQD (a).

Early mitigation is shown to be not an effective technique by itself, but it delivers

a significant performance in term of IELC traffic reduction when combined with other

Univ
ers

iti
Mala

ya

158

methods. The amount of traffic by IELC seems to be decreasing by extended the query

detection capabilities, and the elimination criteria become stricter.

Figure 5.9: IELC Traffic (Full Flooding)

The extent to suppress redundant query traffic is clearly illustrated in Figure 5.9,

with the deployment of the QCM. As mentioned earlier, the amount of reactive traffic

would increase while increasing the cluster radius without an efficient query management

technique. It is noted that the volume of control query traffic rises linearly with the cluster

radius while none of the suggested query control schemes are used. For example, when

radius r=3, the IELC produces almost twice as much traffic as flooding without proper

query control and about 10 - 50 times as much traffic as the most useful query control

methods. The best comparative IELC traffic performance by implementing the full

flooding and selective flooding is illustrated in Figure 5.10. Under all the same

conditions, selective flooding can significantly reduce IELC traffic compared to full

Univ
ers

iti
Mala

ya

159

flooding. When (r = 1), selective flooding will generate approximately 20% of the total

flooding. As the cluster increases, the impact is even more significant.

Figure 5.10: IELC Traffic Per Route Query Discovery

Figure 5.11: Delay of IELC Route Query Discovery

Univ
ers

iti
Mala

ya

160

The performance of the CBF was also measured in term of delay while

discovering the route queries. As shown in Figure 5.11, the routing query discovery delay

is the same as the IELC control traffic, which decreases with the cluster radius. The same

factors that oversee the IELC traffic pattern essentially influence this relationship. The

transmission time for query propagation is initially minimized because of the aggregate

queries' shorter size for the clusters having an extended radius. Second, because of the

increased separation gap between border motes, each query encounters least IELC

queuing delays. For small cluster size, selective flooding schemes show better delay

performance than full flooding schemes but marginally deficient performance in term of

delay for enormous cluster radius.

With a small cluster radius, selective flooding results from the decreased queuing

latency for every border mote. However, the increased list of assigned internal border

mote can be comparatively large within a wider cluster radius, creating additional

communication delays, thereby reducing the advantages of minimizing queuing delays,

remembering that selective flooding's performance is more favorable when the cluster

radius is small. As seen, the full flooding performance in term of rout query responding

is little as 1/3 time compared to selective flooding.

5.7 Conclusion and Future work

An undesirable side effect of flooding is the overlapping of query threads. Which

may lead to the propagation of redundant and unwanted queries, resulting in excessive

resource utilization and may reducing QoS. This chapter introduced and analyzed the

smart query detection and mitigation techniques (LM, SQD(a)/SQD(b), EM and SF)

which effectively combat the redundant querying, while generating no additional control

traffic and requiring negligible computational overhead. Further reduction of the

intercluster control traffic can be achieved by preventing thread overlap locally through

Univ
ers

iti
Mala

ya

161

selective flooding. When the CBF is configured to minimize total routing control traffic,

it is evident that full flooding responds to route queries at least three times faster than a

selective flooding implementation. Based on these results, selective flooding may be a

suitable platform for the IELC in multiple channel networks where conservation of

bandwidth is more important than delay performance. In all other cases, it appears that

the simpler full flooding is the preferred query propagation mechanism.

5.7.1 Future Work

The testbed needs to handle additional functionality and more possibilities for

research and needs to adapt continually. This section aims to cover how more QoS-related

problems can be encouraged and discussed on the IoTs. If the extension of testbeds is an

obvious path forward for more diverse IoT-related innovations and protocols, additional

attractive aspects are often considered.

 Making the Testbed Accessible

To build all kinds of test cases, it will be beneficial to make the project open

source for the community of IoT developers. This can be done by making the testbed

available via the web and monitoring all motes with the correct logging.

 Intelligent Testbed

One of the next moves will also be to use specialized Machine Learning, and

Artificial Intelligence approaches to handle sophisticated IoT network QoS analyses and

provide appropriate redundant query recognition systems.

Univ
ers

iti
Mala

ya

162

CHAPTER 6: RESULTS AND DISCUSSIONS

6.1 The Implementation Details

This Chapterβpresents the detailed implementation of our method. The study

employs a well-known Contiki Cooja network simulator for formation of redundant

flooding queries (Thomson et al., 2016) (Romdhani et al., 2016). Table 6.1 presents a

comprehensive specification of the simulation parameters. These parameters are

standardized as per IEEEβ802.15.4 radioβregulation. The study employs a random

topology to cater the heterogeneousβnature of IoTβdevices to reflect the capabilities of

sensorβmote connectivity. The study chooses a networkβsize of 1 to 64 motes as

simulation model, deployed randomly under anβarea of 100-to-300-meter square. The

motes are kept as activeβtransmitters and active receivers. Moreover, the study evaluates

the simulation model having six differentβscenarios (i.e., withβdifferent interval of

traffic, with different number of malicious motes, realistic scenarios, varied mobility

speed, varied simulation area, and varied pause time). The study keeps the inner arrival

time as exponential. The study explores various levels of network saturation based on

traffic intensity that varies from lowβsaturated networksβ(pmax = 0.1) to high

saturatedβnetworks (pmax > 1). Table 6.1 highlights theβfoundation of suitable assessment

parameters in flooding.

Table 6.1: Parameters Values of Simulation Scenario.

Mote Type Sky Mote
Initial state Energy 100 J
Power (idle state) 31 Mw

Power (receiving state) 35 Mw
Power (sending state) 31 Mw

Power (sleep state) 15 µW
Simulation name QoS Enabled CBF
Radio medium UDGM with Distance Loss
Startup Delay 1 ms
Random Seed 123,456 (Default)

Positioning Random

Univ
ers

iti
Mala

ya

163

Topology Random
Number of Motes 16

The Unit Disk Graph Medium (UDGM: distance loss) is the radio medium used

for simulation withβa transmission range ofβ50 m andβinterference range ofβ100 m. It

carries an initialβenergy of 100βjoules. Each deviceβmoves randomly withβstartup delay

of oneβmillisecond. Each moteβconsumes 31 mW energyβin an ideal state andβ15 µW

in the sleepingβstate. A total ofβ35 and 31 mWβenergy is consumed duringβdata

receiving and sendingβstates, respectively. Moreover, the transmissionβdelay for high-

speedβlinks is insignificant. Forβexample, aβ1500-byte packet transmitted overβa 155

Mbps STM-1/OC-3 link would takeβonly 0.08 ms. Following formulas are used to

calculate the performance metrics and then convert it to percentage accordingly.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = (𝐵𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅)) × 100

𝐵 = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

𝑆𝐼𝑁𝑅 = 𝑆𝑖𝑔𝑛𝑎𝑙 𝑡𝑜 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑙𝑢𝑠 𝑁𝑜𝑖𝑠𝑒 𝑅𝑎𝑡𝑖𝑜

𝑆𝐼𝑁𝑅 =
𝑃𝑚𝑔𝑛−1

𝑛

∑ 𝑃𝑚𝑔𝑉
𝑅 + 𝜎2𝑛

𝑛−1≠𝑉

𝑃𝑚 = 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑤𝑒𝑟 𝐹𝑟𝑜𝑚 𝑛𝑜𝑑𝑒𝑛 𝑡𝑜 𝑛𝑜𝑑𝑒𝑛−1

𝑔𝑛−1
𝑛 = 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑔𝑎𝑖𝑛 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒𝑛 𝑡𝑜 𝑛𝑜𝑑𝑒𝑛−1

𝜎2 = 𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑤ℎ𝑖𝑡𝑒 𝑔𝑢𝑎𝑠𝑠𝑖𝑎𝑛 𝑛𝑜𝑖𝑠𝑒

Energy Consumption: in our case we have four different powers that is idle power,

sleep power, sending power, receiving power.

Univ
ers

iti
Mala

ya

164

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 = 𝑃𝐼𝑑𝑙𝑒 + 𝑃𝑠𝑙𝑒𝑒𝑝 + 𝑃𝑠𝑒𝑛𝑑 + 𝑃𝑟𝑒𝑐𝑖𝑒𝑣𝑖𝑛𝑔

𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟

𝐸. 𝐶 =
𝐵. 𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅)

∑ 𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟
× 100

𝐷𝑒𝑙𝑎𝑦 = (
𝑇𝑖𝑚𝑒 𝑅𝑒𝑐𝑖𝑒𝑣𝑒𝑑 − 𝑇𝑖𝑚𝑒 𝑠𝑒𝑛𝑑

103
) × 100

6.2 Results and Discussion

This Section presents the performance evaluation and analysis of the existing

techniques i.e., DnC, SLA(Abdelaal et al., 2016), (Alqahtani et al., 2016) and Hy-IoT

(Sadek, 2018) with the QCM method. The comparative analysis is based on the tracing

and alleviating the redundant (unwanted) reactive flooding. The study considers MDP

protocol forβContiki and routingβprotocol as ad hoc routing protocols. The study

performs 60 times simulation to achieve the suitable outcomes of this experimentation

considering following six special scenarios:

 Different traffic intervals: this scenario is vital to ensure the suitability of flooding

attacks in regulating the defensive strategies under different traffic intervals. The

traffic intervals range from 1 to 10 seconds, where 1 second is treated as faster

and 10 seconds are considered slower.

 Different number of mischievous nodes: this scenario is suitable in context to

analyze the impactβof flooding attack over the network. It helps toβtake suitable

action to combat mischievousβmotes. This study treats motes 2, β6, 10, and 15 as

mischievous motes. as described previously the fastest traffic is considered as 1

second.

Univ
ers

iti
Mala

ya

165

 Realistic scenario: in this scenario, the study restricts the motes for not

transferring the information of routing query simultaneously. Motes are allowed

to transfer information of the routing, at different time intervals, randomly set to

1 to 10 seconds.

 Scenario based on a varied mobility speed of motes: The importance of motes

mobility motivates us to evaluate the proposed schemes with varied mobility

speed. The topology with more speedy motes is more dynamic and vice versa. In

this scenario, the mobility speed of motes is kept changing such as 5,10,15,20 and

25 m/seconds as shown in the following table 6.2.

Table 6.2: Configuration Simulation Scenario Parameters with Varied
Mobility Speed

Parameter Value
Number of Nodes 64

Pause Time 1 second
Maximum Speed 5,10,15,20,25 m/sec

Area 200 m2
Mobility Model Random Way Point

Positioning Random
Topology Random

 Scenario based on a varied simulation area: The area in which motes moves

and communicate effects the performance of wireless sensor networks. In this

scenario, the simulation area is kept changing such as 100, 150, 200, 250 and

300 m2 as shown in Table 6.3.

Univ
ers

iti
Mala

ya

166

Table 6.3: Configuration Simulation Scenario Parameters with Varied Simulation

area

 Scenario based on a varied pause time: Pause time in a scenario also effect

performance of wireless sensor networks such as energy consumption, delay

and throughput. In this scenario, the varied pause time such as 3, 6, 9, 12 15

seconds is used to find the effect of pause time on proposed scheme as

mentioned in table. 6.4.

Table 6.4: Configuration Simulation Scenario Parameters with Varied Pause Time

Parameter Value
Number of Nodes 64

Pause Time 3, 6, 9, 12 15 seconds
Maximum Speed 15 meter/seconds

Area 100 m2
Mobility Model Random Way Point

Positioning Random
Topology Random

Here, it’s worth to mentioned that the sensor motes fallow the random mobility model

and have random topology that are positioned randomly in most of the realistic simulation

scenarios. This study focused on to find the changing behaviors (values) of six

simulations parameters (that is traffic intervals, number of mischievous motes, mobility

speed, simulation area and pause time) that have an impact on the performance of the

QoS enabled cross-layered clustering (Cluster Based Flooding) protocol.

Parameter Value
Number of Nodes 64

Pause Time 1 second
Maximum Speed 15 m/sec
Area 100,150,200,250, 300 m2
Mobility Model Random Way Point

Positioning Random
Topology Random

Univ
ers

iti
Mala

ya

167

6.2.1 Average Energy Consumption

Figure 6.1 presents the average energy consumption and numberβof malicious

motes having different intervalsβof time. Figure 6.1(a) depicts the comparison of the

proposed QCM approach withβDnC, SLA, βand Hy-IoT methods in context of reduction

in theβaverage energy consumption. The proposed method can detect flooderβmotes and

can detach themβfrom the network, thus reducing the energyβconsumption levels (arising

under redundant (unwanted) flooding attacks. While we notice the average energy

consumption of prevailingβDnC, and SLA as about 21 andβ18%, respectively, under 1–

5 sβintervals, resulting in rise of thisβratio continuously as theβinterval increases.

Nevertheless, the QCM consumes energy under 6% compared to theβ13% of the

prevailingβHy-IoT method.

Clearly, the average consumption of energy stays directly associated to the time

interval for all methods, the consumption of energy increases with the increase in time

interval. The study noticed that the flooder mote consumed highest energy since it directly

transmits unwanted queries when it detects the communication activity over the network.

Figure 6.1(b) presents the average energy consumption having different number of

mischievous motes stated as 2, 6, 10, 15.

(a) (b)

Univ
ers

iti
Mala

ya

168

(c) (d)

(e) (f)

Figure 6.1: Average Energy Consumption in Context of Different Traffic
Intervals with (a) MaliciousβMotes (b), Malicious Motesβwith Realistic
Condition (c), Different Mobility Speed (d) Different Simulation Area (e)
Different Pause Time (f)

This study conducted a realisticβanalysis of QCM to investigate the level of

mischievous motes in context of network expansion under flooding. It can be notice from

the results that energy consumption is increased with the presence of malicious motes.

For instance, the mote 2 consumes energy approximately 5% and 8% for SLA and DnC

methods respectively. The malicious mote 15 consumes energy approximately 48% and

40% for both methods. Thus, the presentation of QCM helps us to decrease energy to

about 2%, 4%, 20% at malicious modes 2, 6, 15 respectively. it can be notice that the

Univ
ers

iti
Mala

ya

169

proposed QCM outperformed the existing methods approximatelyβ3% and 8% with

malicious motes 2βand 6 respectively and gradually increase toβ32% at mote 15.

The QCM can reduce the energy level consumptionβby halting the flooder mote

(under unwanted transmission to its activeβstate), by significant treating the flooding

attacks.

Figureβ6.1(c) presents average energy consumption addressed with realistic

condition and malicious modes. The random dissipation of packets related to route query

are referred under the realistic condition at different intervals of time. During the time of

unwanted flooding attack, the simulation of realistic condition is very important to know

about efficiency of simulated methods. The results describe that average energy

consumption ofβDnC & SLA, under maliciousβmote 1 is aboutβ18% and 15%

respectively. Thisβconsumption elevates to approximately 70% and 56% under malicious

mote 15, whereas the QCM addresses theβconsumption reducing to 3% and 24%

approximately under malicious motes 1 and 15 respectively. Moreover, the energy

consumption is about 6% lowerβthan the conventionalβHy-IoT at malicious moteβ1 and

20% at malicious mote 15 having theβsame scenario.

Theβperformance of the QCM is analyzed with varied mobility speeds, area and

pause time of motes as mentioned in Figure 6.1(d, e and f). Mote’s moments increase

with increase in speed causes more energy consumption. Connection breaking ratio also

increase with increase in speed due to quickly change in the position and intermediate

nodes. These phenomena also increase in delay and decrease in throughput of QCM and

other protocols with increase in mobility speed of motes. In Figure 6.1(d), QCM has

outperformed theβDNC, SLA and Hy-IoT by having minimum increaseβin energy

consumption of 2%. QCM has lowest 10.8% average energy consumption. In case of

increasing simulation area, QCM has comparatively consume less energy of 11.08% as

Univ
ers

iti
Mala

ya

170

mentioned in Figure 6.1(e). The increase in pause time motivates toward lower energy

consumption in wireless sensor networks. The QCM has lowest possible energy

consumption with varied pause time scenario as shown in Figure 6.1(f). The increase in

pause time causes less connection breaking ratio and the topology is more static.

These results of energy consumption with various simulations scenarios proved

that the proposed QCM significantly improved the performance of the network.

6.2.2 Traffic Delay

The proximity of trafficβdelay to different cases including maliciousβmotes, time

interval, maliciousβmotes (realisticβcondition), varied mobility speed, varied simulation

area and varied pause time Figures 6.2 (a–f), respectively. In Figure 6.2(a), QCM

performed significant as against the existing methodsβDnC, SLA, andβHy-IoT

demonstrating minimum trafficβdelays. The study investigated the QCM as a good

detector, pause manager, and detacher for flooding motes from the network.

(a) (b) Univ
ers

iti
Mala

ya

171

(c) (d)

(e) (f)

Figure 6.2: Delay in Context of Different Traffic Intervals with (a)
MaliciousβMotes (b), MaliciousβMotes with RealisticβCondition (c),
Different Mobility Speed (d) Different Simulation Area (e) Different Pause
Time (f).

These measures greatly improved the performance. Further, this could also

remove the redundant (unwanted) queries by disengaging the flooding motes. DnC and

SLA exhibited a traffic delay of 26%βand 20%, respectively forβinterval 1, as presented

inβFigure 6.2(a). The proposed algorithm reduced the traffic delay to about 10% in the

network at the same interval. QCM could achieve a drop in traffic delay about 4% lower

than the conventional Hy-IoT. Thus, the percentage increases with the increase in

interval, since the percentage is directly associated with the interval.

Univ
ers

iti
Mala

ya

172

Figure 6.2(b) presents the traffic delay scenario in context of increase inβnumber

of maliciousβmotes. Under normal reactive flooding scenario, the delay in traffic for

algorithmsβDnC and SLA are approximatelyβ37% and 35% respectively. Any increase

of number of malicious motes, we can notice that delay in traffic also increases. For

malicious mote 15, the largest delay in traffic forβDnC and SLA are observed as about

85%βand 75% respectively. The QCM algorithm performed significant as compared with

existing Hy-IoT for maliciousβmotes 2 and 15, and it lowers the delay to approximately

7%βand 37% gradually. Withβthe same malicious motesβ2 and 15, theβQCM performs

comparatively better with respect to delay in traffic having about 15% and 49% delay

respectively. The study observed that the link waiting time was largely decreased by the

QCM algorithm with respect to decrease in traffic delay.

Figure 6.2(c) presents the realistic network scenario in context of evaluating the

performance of existing and flooding techniques under increasing number of malicious

motes. It is observed thatβDnC and SLA depicted a traffic delay of about 45% and 30%,

at malicious mote, respectively. Whereas the delay was noticed to be increased to

approximately 89% and 81%, forβDnC and SLA, under maliciousβmote 15, respectively.

we noticed the outperformance of the QCM attaining approximatelyβ11% and 45% of

trafficβdelays under malicious motesβ1 and 15, respectively. This pointed out a profound

decrease in traffic delay achieved by QCM by approximately 6% and 15% compared with

prevailing Hy-IoT under motes 1 and 15, respectively.

The QCM and other protocols such asβDnC, SLA, and Hy-IoT are thoroughly

analyzed using varied mobility speed, varied simulation area and varied pause time to

find the effect on their traffic delay. Although the traffic delay of QCM and other variants

(DnC, βSLA, and Hy-IoT) increasesβwith increase in mobility speed as shown in Figure

6.2(d) due to increase in connection breakup ratio and topology changes between the

Univ
ers

iti
Mala

ya

173

sender and destination. QCM outperform the DnC (44.2%), SLA (37.5%), and Hy-IoT

(29.63%) by minimum average delay of 23.7%. In case of varied simulation area, the

QCM shows lowest average delay of 26.1% as comparedβto DnC (49%), SLA (40.3%),

andβHy-IoT (35.03%) as shown in Figure 6.2(e). Traffic delays increase with increase in

simulation area as the distance between communicating motes increases. The varied

pause time scenario shows that QCM has lower average traffic delay of 19.14% as

comparedβto DnC (34.21%),βSLA (29.68%), andβHy-IoT (22.85%) as mentioned in

Figure 6.2(f). QCM has lowest average traffic delay to its mechanism that effectively

control the redundant and unwanted flooding.

6.2.3 Throughput

The study also evaluated the performance of algorithms to assess the network

throughput as shown in Figure 6.3. The throughput is assessed in context of six scenarios,

such as interval of time, increasing in the number ofβmalicious motes, maliciousβmotes

with realisticβnetwork conditions, varied mobility speed, varied simulation area and

varied pause time. In Figure 6.3(a), βnetwork throughput of DnC and SLA are

decreasesβup to approximately (44%βand 61%), respectivelyβat an interval ofβ1 s.

While, βwith theβQCM the throughput boostsβto approximatelyβ85%, this resultβis 9%

better asβcompared to existingβHy-IoT at theβsame time intervalβ1 s.

Univ
ers

iti
Mala

ya

174

(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Throughput in Context of Different Traffic Intervals with (a)
MaliciousβMotes (b), MaliciousβMotes with RealisticβCondition (c),
Different Mobility Speed (d) Different Simulation Area (e) Different Pause
Time (f).

Accordingβto the result asβshown, the performanceβof networkβthroughput is

inversely proportionalβto the timeβinterval, as throughput decreasesβwith the increaseβin

the interval. Flooderβmotes keep engaged the transmissionβlink, whichβgenerates

unwantedβand redundant routingβrequest queries and directlyβaffects the QoSβof the

IoTβnetworks.

Univ
ers

iti
Mala

ya

175

Figure 6.3(b) presents the throughput of QCM and existing algorithmsβDnC,

SLA, and Hy-IoTβ, assessed at increasing the numberβof maliciousβmotes. At first, under

maliciousβmote 2, theβ throughput ofβDnC and SLAβis about 39%βand 44% that

gradually lowers to 30% and 35% respectively for maliciousβmote 15. TheβQCM

achieved 86% throughput at malicious mote 2, that gradually decreased to about 53% at

malicious mote 15. These findings are about 9% and 6% significant than the existingβHy-

IoT at malicious motesβ2 andβ15, respectively. The significance in results depicted the

prompt link access to different motesβduring the unwanted queryβattacks.

The study also figured out the throughput of QCM and other algorithms

DnC,βSLA, andβHy-IoT under realisticβnetwork conditions by observing the increments

of numberβof maliciousβmotes, demonstrated in Figure 6.3(c). The findings showed that

the network throughput remained 34% and 37% forβDnC andβSLA, respectively under

maliciousβmote 1. This performance dropped to about 17% and 25%, respectively for

maliciousβmote 15. From the results it is noticed that 80% and 49% throughput achieved

by the QCM for maliciousβmotes 1 and 15, βrespectively. QCM could achieve 12% and

5% throughput significant than theβexisting Hy-IoTβat malicious motesβ1 and 15,

βrespectively under realistic conditions.

The Figure 6.3(d) shows that throughput of QCM exceeds by having 88.8 % as

compared to other variants such as DnC (45.9%), SLA (66.7%), and Hy-IoT (75.9%) with

increase in mobility speed. In case of varied simulation area, the increase in throughput

for QCM is very higher throughput of 90.2%. Other variants have comparatively low

throughput such as DnC (44.3%), SLA (62.7%), and Hy-IoT (77.9%) as mentioned in

Figure 6.3(e). The throughput of these variants increases with increase in pause time as

shown in Figure 6.3(f) since the topology is more static with higher pause time. Here,

the QCM outperformed by having higher average throughput of 92.8% as compared to

Univ
ers

iti
Mala

ya

176

DnC (50.3%), SLA (70.7%), and Hy-IoT (83.1%). The efficient underlying mechanism

of QCM by controlling unwanted queries and providing fast link for communication

motivates to have higher throughput as compared to other variants.

6.3 Performance Evaluation and Validation of QCM

This Section demonstrates the statistical evaluation (performance) of various

query control methods in context of reducing energyβconsumption, costβand network

flooding. Particularly, this section measure theβperformance ofβQCM algorithm. Using

statistical measurements, we draw the significant conclusions achieved by the QCM

algorithm against the existingβalgorithms i.e., βDnC, SLA, andβHy-IoT. This

performance was evaluated by eliminating redundant flooding queries. We evaluated the

inferential statistics of different algorithms under six different scenarios i.e at different

traffic intervals, maliciousβmote, maliciousβmote with realisticβcondition, simulation

areas, pause time, and mobility speed. The results demonstrated that the QCM algorithm

performed significant as compared to existingβalgorithms and the significant probability

remained less than 0.05 indicating the excellent performanceβof QCM algorithm. We

ensured that QCM achieves 95% confidenceβinterval, demonstrating that

QCMβalgorithm perform robust as compared to other existing algorithms.

6.3.1 Evaluation Methodology

This study is relyingβon the hypothesisβthat the proposed QCM (QueryβControl

Mechanism) algorithmβ(Khan, F. A., Noor, R. M., Mat Kiah, M. L., Noor, N. M.,

Altowaijri, S. M., & Rahman, A. U., 2019)βoutperforms the otherβexisting algorithms,

i.e., βDnC, SLA, andβHy-IoT in context of QoS-enabledβlayered clustering, under

reactiveβflooding for IoTβdevices.

This study incorporates two research hypotheses for inferential analysis,

Univ
ers

iti
Mala

ya

177

1. Null hypothesis H0 (µ2−µ1 = 0): The null hypothesis states that the study

could not achieve a significant difference in the performance evaluation

of existing and the proposed method (DnC, SLA, Hy-IoT, and QCM).

2. Alternative hypothesis H1 (µ2−µ1 > 0): The alternative hypothesis states

that the study could achieve a significant difference in the performance

evaluation of existing and the proposed method (DnC, SLA, Hy-IoT, and

QCM).

Next, the study analyzed the T-test and ANOVA statistics for hypothesis testing.

Suppose the sample mean difference is

�̅� = µ2−µ1 (4)

where µ1 and µ2 are the sample means of dataset of first and second algorithms

respectively. Sample standard deviation

𝑆𝐷 = √
1

𝑁 − 1
∑(𝑥𝑖 − d)2

𝑁

𝑖=1

 (5)

Here, data points are 𝑥1 ,𝑥2,𝑥3, , ,𝑥𝑁 refer to the data points of results inβtwo

comparableβalgorithms. PairedβSample T-test:

𝑇 =
𝑑 − 0

𝑆𝐷 √𝑛⁄
 (3)

Here, n depicts theβobservations. The study evaluates that the probability value

has a significant number for the two hypotheses. The probability value is ensured to

achieve the 95% confidence interval. The statistical test measures the probability value

based on the data points. As a benchmark value, we kept the confidence interval has 0.05

for statistical significance. Any algorithm that achieves the probability value larger than

0.05 is considered insignificant in terms of inferential analysis of its data points.

Univ
ers

iti
Mala

ya

178

Inβaddition, the study alsoβperformed an “ANOVA test” (Ahmad et al., 2016,

2017) to investigate performanceβmeasure ofβalgorithms. The ANOVAβtest

containsβthe following features,

Meanβsquare forβsamples,

𝑀𝑆𝑅 =
𝑆𝑆𝑅

𝑘−1
 (6)

Similarly, βthe mean squareβfor error,

𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑛−𝑘
 (7)

Now the F statistics becomes

𝐹 =
𝑀𝑆𝑅

𝑀𝑆𝐸
 (8)

The study investigates the performanceβof different QoS-enabledβlayered-based

clusteringβalgorithms for reactiveβflooding in the Internetβof Things withβthe following

measures.

1. InferentialβAnalysis in Termsβof EnergyβConsumption

a. Having differentβintervals of traffic

b. With maliciousβmote

c. Having maliciousβmote with a realisticβcondition

d. With different simulation area

e. With respect to pause time

f. With respect to mobility speed

2. InferentialβAnalysis in Termsβof Delay

a. Withβdifferentβintervals of traffic

b. With maliciousβmote

c. With maliciousβmote under a realisticβcondition

d. Having different simulation area

e. With respect to pause time

Univ
ers

iti
Mala

ya

179

f. With respect to mobility speed

3. InferentialβAnalysis in Termsβof Throughput

a. Having differentβintervals ofβtraffic

b. With maliciousβmote

c. With malicious mote under a realistic condition

d. With different simulation area

e. With respect to pause time

f. With respect to mobility speed

The significance value, represented by probability value "P" is a statistical

measure forβthe performance evaluationβof QCM and existing algorithms in terms of

accepting or rejecting the null and alternative hypothesis.

6.4 Results

βThis section describesβthe inferential analysisβof experimentalβresults related

toβthe performanceβevaluation and validationβof the QCMβ(Query Control

Mechanism) algorithm (Khan, F. A., Noor, R. M., Mat Kiah, M. L., Noor, N. M.,

Altowaijri, S. M., & Rahman, A. U., 2019). which present the rejection of the Null

hypothesisβand acceptanceβof the alternativeβhypothesis sinceβthe QCMβalgorithm

outperforms (95%βconfidence interval) βthe existing algorithms, i.e., βDnC, SLA, βand

Hy-IoT forβQoS-enabledβlayered-based clusteringβfor reactiveβflooding in the Internet

ofβThings.

Case 1: InferentialβAnalysis in Termsβof EnergyβConsumption

Figure 6.4 presents the average energy consumption and numberβof malicious

motesβhaving different intervalsβof time depicting the comparison of the proposed QCM

approach withβDnC, SLA, andβHy-IoT methods in context of reduction in the average

Univ
ers

iti
Mala

ya

180

energy consumption. The QCM can detect flooderβmotes and can detach them from the

network, thus reducing the energyβconsumption levels (arising under redundant

(unwanted) flooding attacks. While, it is noticed that the averageβenergy consumptionβof

prevailingβDnC, andβSLA as aboutβ21 and 18%,βrespectively, underβ1–5 sβintervals,

resulting in rise of this ratioβcontinuously as theβinterval increases. Nevertheless, the

QCM consumes energy under 6%βcompared to theβ13% of the prevailing Hy-

IoTβmethod.

Figure 6.4: EnergyβConsumption withβRespect to DifferentβScenarios.

Clearly, the average consumption of energy stays directly associated to the time

interval for all methods, the consumption of energy increases with the increase in time

interval. The study noticed that the flooder mote consumed highest energy since it directly

transmits unwanted curries when it detects the communication activity over the network.

Table 6.6 demonstrates the inferential analysis of data related toβQCM and other

existingβalgorithms. It can be βseen that theβstatistically significant valueβP is less than

ourβchosen confidenceβinterval of 0.05βwhich is evidenceβthat βQCM algorithm

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

With different Intervals of
traffic

With
malicious

mote

With
malicious
mote with

realistic
condition

With different
simulation

areas

With different
pause time

With different
mobility
speed

En
er

gy
 c

o
n

su
m

p
ti

o
n

Different Scenarios of Energy Consumption

Inferential analysis in terms of Energy Consumption

DNC SLA Hy-IoT QCM

Univ
ers

iti
Mala

ya

181

outperformsβthe existingβalgorithms. Hence, Nullβhypothesis isβrejected andβQCM

achieves theβsignificant prediction βvalue in the desiredβconfidenceβinterval.

Table 6.6: InferentialβAnalysis of theβQCM Algorithm inβTerms of Energy

ConsumptionβScenarios.

“Energy consumption” with "different intervals of traffic"
Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT"

P. Correlation 0.995 0.985 0.998
t Stat −7.234 −7.658 −5.902

Prob.(1-tail) 0.000 0.000 0.000
t Critic. (1-tail) 1.8331 1.833 1.833
Prob.(2-tail) 0.000 0.000 0.000

t Critic. (2-tail) 2.262 2.262 2.262
“Energy consumption” with "malicious mote"

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT"

P.βCorrelation 0.991 0.990 0.997
t Stat −3.691 −3.080 −2.910

Prob.(1-tail) 0.010 0.018 0.021
t Critic. (1-tail) 2.131 2.131 2.131
Prob.(2-tail) 0.020 0.0369 0.043

t Critic. (2-tail) 2.776 2.776 2.776
“Energy consumption” with "malicious mote with realistic conditions"

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT"

P.βCorrelation 0.988 0.997 0.985
t Stat −5.475 −5.744 −5.700

Prob.(1-tail) 0.002 0.002 0.002
t Critic. (1-tail) 2.131 2.131 2.131
Prob.(2-tail) 0.005 0.004 0.004

t Critic. (2-tail) 2.776 2.776 2.776
“Energy consumption” with "different simulation areas"

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT"

P.βCorrelation 0.998 0.998 0.995
t Stat 82.405 142.770 35.598

Prob.(1-tail) 0.000 0.000 0.000
t Critic. (1-tail) 2.131 2.131 2.131
Prob.(2-tail) 0.000 0.000 0.000

t Critic. (2-tail) 2.776 2.776 2.776
“Energy consumption” with "pause time"

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT"

P. Correlation 1 1 1
t Stat 28.991 42.573 7.289

Prob.(1-tail) 0.000 0.000 0.000
t Critic. (1-tail) 2.131 2.131 2.131
Prob.(2-tail) 0.000 0.000 0.001

t Critic. (2-tail) 2.776 2.776 2.776
“Energy consumption” with "mobility speed"

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT"

P. Correlation 1 1 1

Univ
ers

iti
Mala

ya

182

t Stat 237.352 76.519 72.124
Prob.(1-tail) 0.000 0.000 0.000

t Critic. (1-tail) 2.131 2.131 2.131
Prob.(2-tail) 0.000 0.000 0.000

t Critic. (2-tail) 2.776 2.776 2.776

This study conducted a realisticβanalysis of QCMβto investigate the levelβof

mischievousβmotes in context of network expansion under flooding. It is evident from

the results that energy consumption is increased with the presence of malicious motes.

For instance, the mote 2 consumes energy approximately 5% and 8% for SLA and DnC

methods respectively. The malicious mote 15 consumes energy approximately 48% and

40% for both methods. Thus, the presentation of QCM helps us to decrease energy to

about 2%, 4%, 20% at malicious modes 2, 6, 15 respectively. In addition, the QCM

achieved excellent probability “P-value” at different simulation areas, pause time, and

mobility speed. In all the above cases, the algorithm outperforms the other existing

algorithms at 95% confidence interval.

Table 6.7 presents the ANOVAβtest statistics of theβQCM algorithm compared

withβother algorithms. It can be found here that “F statistics” valuesβare sufficiently

largerβthan “F criticalβvalues”. In addition, βthe “P values” are less thanβ0.05, which

achievesβour 95% confidenceβinterval, showingβthat theβQCM algorithm outperforms

theβexisting algorithmsβevaluated through inferentialβanalysis.

Table 6.7: ANOVA statistics inβterms of “energy consumption” scenarios

“Energy consumption” with "different intervals of traffic"

Variationβ SSβ βD
f MSβ Fβ P-

valueβ
F

critβ

Univ
ers

iti
Mala

ya

183

Case 2: InferentialβAnalysis in Termsβof Delay

BetweenβGrou
ps

1454.17
0 3 484.72

3 7.408 0.000 2.86
6

WithinβGroups 2355.43
9 36 65.428

Totalβ 3809.60
9 39

“Energy consumption” with "malicious mote"

Variationβ SSβ βD
f MSβ Fβ P-

valueβ
F

critβ
BetweenβGrou

ps 673.109 3 224.36
9 4.334 0.029 3.23

8

WithinβGroups 2690.59
6 16 168.16

2

Totalβ 3363.70
5 19

“Energy consumption” with "malicious mote with realistic conditions"

Variationβ SSβ βD
f MSβ Fβ P-

valueβ
F

critβ
BetweenβGrou

ps
2399.97

4 3 799.99
1 3.349 0.045 3.23

8

WithinβGroups 3821.94
8 16 238.87

1

Totalβ 6221.92
2 19

“Energy consumption” with "different simulation areas"

Variationβ SSβ βD
f MSβ Fβ

P-
valueβ

F
critβ

BetweenβGrou
ps

1046.38
1 3

348.79
3 60.448 0.000

3.23
8

WithinβGroups 92.321 16 5.770

Totalβ 1138.70
2 19

“Energy consumption” with "pause time"

Variationβ SSβ βD
f MSβ Fβ P-

valueβ
F

critβ
BetweenβGrou

ps 860.920 3
286.97
3 91.260 0.000

3.23
8

WithinβGroups 50.313 16 3.144
Totalβ 911.233 19

“Energy consumption” with "mobility speed"

Variationβ SSβ βD
f MSβ Fβ P-

valueβ

F
critβ

BetweenβGrou
ps

1116.19
1 3

372.06
3

279.36
6 0.000

3.23
8

WithinβGroups 21.309 16 1.331
Totalβ 1137.5 19

Univ
ers

iti
Mala

ya

184

The proximity of traffic delay to different cases including maliciousβmotes, time

βinterval, maliciousβmotes (realisticβcondition), varied mobility speed, varied

simulation area and varied pause time respectively. QCM performed significant as against

the existing methodsβDnC, SLA, andβHy-IoT demonstrating minimum trafficβdelays.

The study investigated the QCM as a good detector, pause manager, and detacher for

flooding motes from the network. These measures greatly improved the performance.

Further, we could also remove the redundant (unwanted) queries by disengaging the

flooding motes. DnC and SLA exhibited a traffic delay of 26% and 20%, respectively for

interval 1, as presented in Figure 6.2(a). The proposed algorithm reduced the traffic delay

to about 10% in the network at the same interval. QCM could achieve a drop in traffic

delay about 4% lower than the conventional Hy-IoT. Thus, the percentage increases with

the increase in interval, since the percentage is directly associated with the interval.

Figure 6.5: Delayβwith DifferentβIntervals of Traffic

Figure 6.5 depicts the “delay” in context to differentβscenarios, i.e., various traffic

βintervals, maliciousβmote, with realisticβconditions, different simulation areas, pause

time, and mobility speed. The significant performance can be notice achieved by QCM

having lowest delay as against other existing algorithms.

0
20
40
60
80

100

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

With different Intervals
of traffic

With
malicious

mote

With
malicious
mote with

realistic
condition

with
different

simulation
area

with pause
time

With
mobility
speed

D
el

ay

Different Scenarios of Delay

Inferential analysis in terms of Delay

DNC SLA Hy-IoT QCMUniv
ers

iti
Mala

ya

185

Table 6.8 portrays the inferentialβanalysis of data points of QCMβand other

existing algorithms. A statistically significant P value can be noticed, lower than chosen

confidenceβinterval of 0.05, depicting that theβQCM algorithm performed excellent as

against the existing algorithms. Thus, we can reject the Null hypothesis.

 Table 6.8: Inferential analysis inβterms of “delay” scenarios.

"Delay" with "different intervals of traffic"
Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT"

P. Correlation 0.994 0.988 0.996
t Stat −35.043 −28.821 −8.856

Prob.(1-tail) 0.000 0.000 0.000
t Critic. (1-tail) 1.833 1.833 1.833
Prob.(2-tail) 0.000 0.000 0.000

t Critic. (2-tail) 2.262 2.262 2.262
"Delay" with "malicious mote"

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT"

P. Correlation 0.971 0.941 0.960
t Stat −8.753 −7.964 −5.894

Prob.(1-tail) 0.000 0.000 0.002
t Critic. (1-tail) 2.131 2.131 2.131
Prob.(2-tail) 0.000 0.001 0.004

t Critic. (2-tail) 2.776 2.776 2.776
"Delay" with "malicious mote with realistic conditions"

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT"

P. Correlation 0.978 0.971 0.994
t Stat −11.515 −7.200 −7.656

Prob.(1-tail) 0.000 0.000 0.000
t Critic. (1-tail) 2.131 2.131 2.131
Prob.(2-tail) 0.000 0.001 0.001

t Critic. (2-tail) 2.776 2.776 2.776
"Delay" with "different simulation areas"

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT"

P. Correlation 1 1 1
t Stat 21.593 28.688 8.831

Prob.(1-tail) 0.000 0.000 0.000
t Critic. (1-tail) 2.131 2.1318 2.131
Prob.(2-tail) 0.000 0.000 0.000

t Critic. (2-tail) 2.776 2.776 2.776
"Delay" with "different pause time"

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT"

P. Correlation 1 1 1
t Stat 17.131 19.964 10.544

Prob.(1-tail) 0.000 0.000 0.000
t Critic. (1-tail) 2.131 2.131 2.131
Prob.(2-tail) 0.000 0.000 0.000

t Critic. (2-tail) 2.776 2.776 2.776
"Delay" with "different mobility speed"

Univ
ers

iti
Mala

ya

186

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT"

P. Correlation 1 1 1
t Stat 96.637 39.032 119.804

Prob.(1-tail) 0.000 0.000 0.000
t Critic. (1-tail) 2.131 2.131 2.131
Prob.(2-tail) 0.000 0.000 0.000

t Critic. (2-tail) 2.776 2.776 2.776

Table 6.9 presentsβthe ANOVAβtest statistics of theβQCM algorithm compared

withβother algorithms. It is viableβthat “F statistics” values areβsufficiently largerβthan

“F critical values”. In addition, the “P values” are less than 0.05, which achieves our 95%

confidenceβinterval, showing that theβQCM algorithm outperformsβthe existing

algorithmsβevaluated throughβinferential analysis.

Table 6.9: ANOVA statistics inβterms of “Delay” scenarios

"Delay" with "different intervals of traffic"

Variationβ SSβ β
Df MSβ Fβ P-

valueβ
F critβ

BetweenβGro
ups

1454.1
71 3 484.72

3 7.408 0.000 2.866

WithinβGrou
ps

2355.4
39 36 65.428

86

Totalβ 3809.6
1 39

"Delay" with "malicious mote"

Variationβ SSβ β
Df MSβ Fβ P-

valueβ
F critβ

BetweenβGro
ups

673.10
95 3 224.36

9 4.334 0.029 3.238

WithinβGrou
ps

2690.5
96 16 168.16

2

Total 3363.7
06 19

"Delay" with "malicious mote with realistic conditions"

Variationβ SSβ β
Df MSβ Fβ P-

valueβ
F critβ

BetweenβGro
ups

2399.9
74 3 799.99

1 3.349 0.045 3.238

WithinβGrou
ps

3821.9
48 16 238.87

1

Totalβ 6221.9
22 19

"Delay" with "different simulation area"

Univ
ers

iti
Mala

ya

187

Variationβ SSβ β
Df MSβ Fβ P-

valueβ
F critβ

BetweenβGro
ups

1380.5
23 3

460.17
4 16.271 0.000 3.238

WithinβGrou
ps

452.48
9 16 28.280

Totalβ 1833.0
12 19

"Delay" with "different pause time"

Variationβ SSβ β
Df MSβ Fβ P-

valueβ
F critβ

BetweenβGro
ups

945.07
9 3

315.02
6

115.36
7 0.000

3.23887
2

WithinβGrou
ps 43.69 16 2.730

Totalβ 988.76
9 19

"Delay" with "mobility speed"

Variationβ SS Df MS F P-

value
F crit

BetweenβGro
ups

1206.2
08 3

402.06
9

81.878
49 0.000 3.238

WithinβGrou
ps 78.569 16 4.910

Total 1284.7
77 19

Case 3: InferentialβAnalysis inβTerms ofβThroughput

Networkβthroughput ofβDnC andβSLA are decreasesβup to approximatelyβ

(44% and 61%), respectivelyβat an intervalβof 1 s. While βwith theβQCM the throughput

boosts to approximatelyβ85%, this resultβis 9% better asβcompared toβexisting Hy-

IoTβat the same timeβinterval 1 s. Accordingβto the result asβshown in figureβ6.6,

theβperformance of networkβthroughput is inversely proportionalβto the timeβinterval,

as QoSβdecreases withβthe increase inβthe interval. Flooderβmotes keep engagedβthe

transmission link, which generatesβunwanted and redundantβrouting requestβqueries and

directlyβaffects the QoSβof the IoTβnetworks.

Univ
ers

iti
Mala

ya

188

Figure 6.6. Throughputβwith Different Intervalsβof Traffic.

Table 6.10 portrays the inferentialβanalysis of data points of QCMβand other

existingβalgorithms. A statistically significant P value can be noticed, lower than chosen

confidenceβinterval of 0.05, depictingβthat theβQCM algorithm performed excellent as

against the existing algorithms. Thus, we can reject the Null hypothesis.

Table 6.10. Inferential Analysis in Terms of “Throughput” Scenarios

"Throughput" with "different intervals of traffic"
Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT"

P. Correlation 0.993 0.992 0.997823573
t Stat 59.533 29.609 28.80340889

Prob.(1-tail) 0.000 0.000 0.000000
t Critic. (1-tail) 1.833 1.833 1.833112933
Prob.(2-tail) 0.000 0.000 0.000000

t Critic. (2-tail) 2.262 2.262 2.262157163
"Throughput" with "malicious mote"

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT"

P. Correlation 0.903 0.986 0.988
t Stat 6.867 6.871 6.044

Prob.(1-tail) 0.001 0.001 0.001
t Critic. (1-tail) 2.131 2.131 2.131
Prob.(2-tail) 0.002 0.002 0.003

t Critic. (2-tail) 2.776 2.776 2.776
"Throughput" with "malicious mote with realistic conditions"

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT"

P. Correlation 0.960 0.938 0.989

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

With different Intervals
of traffic

With
malicious

mote

With
malicious
mote with

realistic
condition

With
different

simulation
area

With
different

pause time

With
different
mobility
speed

Th
ro

u
gh

p
u

t

Different Scenarios of Throughput

Inferential analysis in terms of Throughput

DNC SLA Hy-IoT QCM

Univ
ers

iti
Mala

ya

189

t Stat 12.246 9.025 5.969
Prob.(1-tail) 0.000 0.000 0.001

t Critic. (1-tail) 2.131 2.131 2.131
Prob.(2-tail) 0.000 0.000 0.003

t Critic. (2-tail) 2.776 2.776 2.776
"Throughput" with "different simulation area"

Method QCM and DNC QCM and SLA QCM and Hy-IoT

P. Correlation 1 1 1
t Stat -18.031 -13.889 -9.663

Prob.(1-tail) 0.000 0.000 0.000
t Critic. (1-tail) 2.131 2.131 2.131
Prob.(2-tail) 0.000 0.000 0.000

t Critic. (2-tail) 2.776 2.776 2.776
"Throughput" with "different pause time"

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT"

P. Correlation -1 1 1
t Stat -31.6337 -106.066 -27.435

Prob.(1-tail) 0.000 0.000 0.000
t Critic. (1-tail) 2.131847 2.131 2.131
Prob.(2-tail) 0.000 0.000 0.000

t Critic. (2-tail) 2.776 2.776 2.776
"Throughput" with "different mobility speed"

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT"

P. Correlation 1 1 1
t Stat -28.890 -312.541 -8.687

Prob.(1-tail) 0.000 0.000 0.000
t Critic. (1-tail) 2.131 2.131 2.131
Prob.(2-tail) 0.000 0.000 0.000

t Critic. (2-tail) 2.776 2.776 2.776

Table 6.11 demonstrates the ANOVA testβstatistics of theβQCM algorithm

comparedβwith otherβalgorithms. It can be noticed that “F statistics” valuesβare

sufficiently largerβthan “F critical values”. βIn addition, the “P values” areβless than 0.05,

whichβachieves our 95% confidenceβinterval, showing that theβQCM algorithm

outperformsβthe existing algorithmsβevaluated throughβinferential analysis.

Table 6.11: ANOVA Statistics in Termsβof “Throughput” Scenarios
"Throughput" with "different intervals of traffic"

Variationβ SSβ β
Df MSβ Fβ P-

valueβ
F

critβ
BetweenβGrou

ps
1454.1
70 3 484.72

3 7.408 0.000 2.866

Univ
ers

iti
Mala

ya

190

WithinβGroup
s

2355.4
39 36 65.428

Totalβ 3809.6
09 39

"Throughput" with "malicious mote"

Variationβ SSβ β
Df MSβ Fβ P-

valueβ
F

critβ
BetweenβGrou

ps
673.10
9 3 224.36

9
4.3342
46 0.029 3.238

WithinβGroup
s

2690.5
96 16 168.16

2

Totalβ 3363.7
05 19

"Throughput" with "malicious mote with realistic conditions"

Variationβ SSβ β
Df MSβ Fβ P-

valueβ
F

critβ
BetweenβGrou

ps
2399.9
74 3 799.99

1 3.349 0.045 3.238

WithinβGroup
s

3821.9
48 16 238.87

1

Totalβ 6221.9
22 19

"Throughput" with "different simulation area"

Variationβ SSβ β
Df MSβ Fβ P-

valueβ
F

critβ
BetweenβGrou

ps
5891.1
38 3

1963.7
13 88.956 0.000 3.238

WithinβGroup
s 353.2 16 22.075

Totalβ 6244.3
38 19
"Throughput" with "different pause time"

Variationβ SSβ β
Df MSβ Fβ P-

valueβ
F

critβ
BetweenβGrou

ps
5057.8
38 3

1685.9
46

1266.4
38 0.000 3.238

WithinβGroup
s 21.3 16

1.3312
5

Totalβ 5079.1
38 19

"Throughput" with "different mobility speed"

Variationβ SSβ β
Df MSβ Fβ P-

valueβ
F

critβ
BetweenβGrou

ps
4890.6
38 3

1630.2
13

97.435
19 0.000 3.238

WithinβGroup
s 267.7 16 16.731

Totalβ 5158.3
38 19

Univ
ers

iti
Mala

ya

191

6.5 Discussion (Hypothesis Testing)

The study centered the hypothesis that theβQCM (QueryβControl Mechanism)

algorithm (Khan, F. A., Noor, R. M., Mat Kiah, M. L., Noor, N. M., Altowaijri, S. M., &

Rahman, A. U., 2019) outperforms the other existing algorithms, i.e., DnC, SLA, and Hy-

IoT for QoS-enabled layered-based clustering for reactive flooding onβthe IoTs.βThe

study expounded several defensiveβtechniques counter to redundant/unwantedβrouting

queries, that cause massive network traffic, and thus results in flooding under IoT

networks. In this research, theβauthors instigated theβInterlayer clusteringβ(IELC) of

CBF by proposing a queryβcontrol mechanism (QCM) for detection and termination of

redundant queries. The proposal relied on strength of link signal, query packet

consistency, and limit threshold.

The scientific findings of this study clearly demonstrated that the proposed QCM

algorithm performed significant against other stateβof the art defensing algorithms in

context ofβaverage energyβconsumption, delay inβtraffic, and throughput. The study

observed that the QCM significantly reduced the average energy consumption under

different traffic intervals. Theβperformance of QCM wasβalso realized better in context

ofβaverage energyβconsumption with malicious mods as compared to conventional

algorithms at different motes. Besides, the QCM also demonstrated very profound

performance in context of networkβdelay as comparedβto the state-of-the-art algorithms

by decreasing the delay considerably.

In addition, under maliciousβmotes scenario, theβQCM algorithm decreased the

delayβin network traffic to a significant extent. Finally, the QCM greatly enhanced the

throughput asβcompared toβHy-IoT.

Univ
ers

iti
Mala

ya

192

The comparative analysis of results revealed the difference betweenβQCM

algorithm and the existingβalgorithms. This study plans to enhance the work in future by

considering a discreet componentβcircuit implementation model employing

Bouali'sβsystem for detection of other attacks. This will help in enhancing the quantity

and types of motes to validate theβreliability of QCM under the scenario of different

motes. In addition, the study plans to consider the proactiveβpart Interlayer clustering of

CBF, that is appealing in high priorityβIoT networks, requiring smaller delays, i.e., in

context of smart transportation, health, security and other types of physical prototype

models.

The statistical evaluation of the proposed and the existing methods reveal that the

significant "P value”, based on the data points of differentβalgorithms, demonstrated that

the proposed algorithm outperformed the existing algorithms by achieving the "P value"

lower than 0.05, and ensuring the achievement of 95% confidence interval. The

inferential analysis demonstrated that the study could reject the nullβhypothesis and can

accept the alternativeβhypothesis sinceβthe QCMβalgorithm performed significant as

compared to other existing algorithms.

This research utilized statistical measures in performance evaluation ofβdifferent

QoS-enabledβlayered-based clusteringβalgorithms in context of reactive flooding in IoT.

The study performed the inferentialβanalysis in terms of EnergyβConsumption under

different cases including maliciousβmotes, timeβinterval, maliciousβmotes (realistic

condition), varied mobility speed, varied simulation area and varied pause time.

Similarly, Inferentialβanalysis was also taken inβterms of Delay under different cases

including maliciousβmotes, timeβinterval, maliciousβmotes (realisticβcondition), varied

mobility speed, varied simulation area and varied pause time. βFurther, the research

estimatedβthe inferential measuresβin the context ofβThroughput havingβdifferent

Univ
ers

iti
Mala

ya

193

cases including maliciousβmotes, timeβinterval, maliciousβmotes (realistic condition),

varied mobility speed, varied simulation area and varied pause time

6.6 Conclusionsβand Future Work

This Chapterβhas presented different defensiveβtechniques in context of

redundant routing queries, that leadβto heavy network traffic, causingβflooding in IoT

networks. The study implemented the reactiveβpart Interlayerβclustering of CBF and

presented a queryβcontrol mechanism for detection and termination of redundant curries,

based on strength of link signal, query consistency and query limit threshold. The

performance evaluation of different algorithms revealed that theβQCM algorithm

outperformed the existing state of theβart defensiveβalgorithms in termsβof average

energyβconsumption, trafficβdelay, and qualityβof service.

In context of average energy consumption, the proposed method can detect flooder

βmotes and can detach themβfrom the network, thus reducing the energyβconsumption

levels (arising under redundant (unwanted) flooding attacks. While it is noticed that

theβaverage energy consumption of prevailingβDnC, andβSLA as aboutβ21 and 18%,

respectively, under 1–5 sβintervals, resulting in rise of thisβratio continuously as the

intervalβincreases. Nevertheless, the QCM method consumes energy under

6%βcompared to theβ13% of the prevailingβHy-IoT method. In terms of traffic delays,

the study investigated the QCM as a good detector, pause manager, and detacher for

flooding motes from the network. These measures greatly improved the performance.

Further, the redundant (unwanted) queries could also remove by disengaging the flooding

motes. DnC and SLA exhibited a traffic delay of 26% and 20%, respectively for interval

1. The proposed algorithm reduced the traffic delay to about 10% in the network at the

same interval. QCM could achieve a drop in traffic delay about 4% lower than the

conventional Hy-IoT. In terms of networkβthroughput (QoS), the throughput ofβDnC and

Univ
ers

iti
Mala

ya

194

SLAβdecreased up to approximately (44%βand 61%), respectivelyβat an interval ofβ1 s.

While, with theβQCM the QoS boosts toβapproximately 85%, βthis result is 9%βbetter

as comparedβto existingβHy-IoT at the sameβtime interval 1 s.

Univ
ers

iti
Mala

ya

195

CHAPTER 7: CONCLUSION

This Chapterβconcludes the thesisβby presenting andβreappraising theβresearch

questions and objectives presented in Sectionβ1.4 andβSection 1.5. The problems

identified in this study, the research objectives, and accomplishments have been mapped

to highlight the research. Furthermore, thisβchapter presents limitationsβof the

currentβstudy and researchβdirections worthyβof pursuingβfuture researchβdirections.

7.1 Reappraisalβof the ResearchβObjectives andβResearch Questions

Inβthis sectionβof the thesis, variousβobjectives areβmapped against theβresearch

to discussβthe findingβof the study.

Objective 1: To investigate the state-of-the-art solution and identify the issues and

limitations to prioritize, detect and terminate the redundant and unwanted flooding

queries over the sensor and network layer of IoT network.

To achieve this objective, the study conducted an extensive review of literature

employing numerous academicβdatabases namely, βthe web of science, βScopus,

ScienceDirect, βIEEE Xplore,βMedline, PubMed,βSpringerLink, and ACM. Theβarea of

interests conductedβusing these academicβdatabases include query flooding, Quality-of-

Service (QoS) aspects of clustering, query control mechanism in IoT networks, and

prioritization of vital queries. Moreover, the study investigated the limitations of existing

solutions and identified the research gap to propose a robust and enhanced solution.

Objective 2: To design cross-layered Cluster Based Flooding (CBF) technique for

priority and redundant queries. Two new algorithms are introduced as below:

Univ
ers

iti
Mala

ya

196

 Interlayer Clustering (IELC) algorithm for network layer that uses advance query

control mechanism (QCM) for detecting and terminating the redundant and

unwanted queries and network flooding.

 Intralayer Clustering (IALC) algorithm for physical layer that maintain

priority queries information locally.

The study achieved this research objective by developing a QoS enabled cross-layered

clustering technique for mitigating flooding queries in IoT networks. The proposed

method that based on an interoperableβsolution worked well for bothβphysical and

networkβlayer devices. Since cross-layeredβCBF segments the entire network into

different clusters, the IALC maintained the local query information proactively, while

IELC is responsible for reactive achievement of routingβqueries to destinationsβ(outside

the cluster). The study presented CBFβas a hybridβapproach, havingβthe capability to

beβmore effective against conventional schemes in context of queryβtraffic generation.

βInterlayer clustering (IELC) was found effective since it contained advanced

queryβdetection and termination techniquesβ (QCM) that associated the signalβstrength

andβQueryLimitThreshold (QLT) values to detect flooding. It was found significant to

minimize the energyβconsumption, networkβflooding, and identification and elimination

of redundantβrouting queries inβIoT networks.

A query control mechanism is essentially required for prioritizing, detection and

termination of the redundant/unwanted flooding queries. TheβQCM technique employed

a changeβin QueryLimitThresholdβ(QLT) for detection andβtermination of redundant

queryβrequest packets. Theβmechanism was found elegant in enhancing the functioning

of the IoT’sβnetwork in context of strength of signal of queryβpackets, and enhancing the

locationβconsistency verifying connected motes, thus shielding the network for reactive

flooding attacks. The core idea of CBF was to segment the wholeβnetwork into different

Univ
ers

iti
Mala

ya

197

routingβclusters. Proactive maintenance was done by the Intralayer clustering (IALC) by

exploiting route query exchange and update query packets. Interlayer clustering (IELC)

contributed in reactivelyβtransfer route query packetsβto motes, residing outsideβof the

mote’s cluster through query-replyβpackets.

Objective 3: To formulate the cross-layered Cluster Based Flooding (CBF) using the

Sets and (Pro B).

 The study achieved this objective by designing a refinement-based process in design

of a formal specification of cluster-based flooding. The border casting service was

adopted to examine the route discovery process. Since every mote in the dynamic network

environment sent information to its neighbors in the cluster radius, the proposed model

was not only limited to formally described stated issues but also took account of the

system's stabilization property. To achieve the objective, the study also defined some

invariants to validate the route discovery properties. It is to be noted that the CBF's target

was to use a border casting service rather than broadcasting or flooding to find the

appropriate routes. The statistics for discharged proof obligations are summarized in

Table 7.1 as mentioned below.

Table 7.1: A summary of proof obligation

Model Total number
of POs

Automatically
discharged

Manually
discharged

Initial Model 15 13 2
Refinement 1 16 14 2
Refinement 2 60 37 23
Refinement 3 29 17 12
Refinement 4 97 54 43
Refinement 5 79 38 41
Refinement 6 21 14 7
Refinement 7 19 13 6
Refinement 8 65 40 25
Total 401 240 (60%) 161 (40%)

Univ
ers

iti
Mala

ya

198

It had formed approximately more than 300 proof obligations, of which half were

automatically proven. Dischargingβthe generated proofβobligation ensured that

theβrefinements were correct, and theβproperties (invariants) wereβpreserved.

Since the existing studies lack the formal validation of cross-layered routing

protocols, this study emphasized on formal specification of cross-layered cluster-based

flooding CBF at event B and proved the correctnessβof the route discoveryβmechanism.

As a refinement-basedβmethod, an improved way was required to add system details to

the corresponding model gradually. It made modeling and authentication easier for the

user by allowing later versions to keep all the proven attributes in the previous model.

Each node in the CBF cluster broadcasted link-state queries regularly. To model periodic

broadcast/flooding activity, the study applied constraints in the formalization. As

formalization of CBF is moreβcomplicated than formalizing a sole proactiveβor reactive

approach protocol, this study took it as an important issue needed to be formally specified

in a significant way. By improving the method, it permitted toβdevelop a system from

abstractβto concrete. The correctnessβfor refinements wasβassured through discharging

some proofβobligations. The study adopted the ProB, an animation tool to validate the

model and ensured the formalization of the device specifications.

Objective 4: To design real time QoS enabled Query Control Mechanism (QCM) testbed

used to detect and terminate the redundant and unwanted queries in IoT networks. The

proposed testbed aims to reduce the number of duplicate/overlapping queries in IoT

networks to improve QoS.

This research objective was achieved by design of a QoS enabled QCM testbed

to detect and mitigate the redundant and unwanted queries in IoT networks. The proposed

Univ
ers

iti
Mala

ya

199

testbed significantly reduced the number of duplicate/overlapping queries in IoT

networks to improve QoS. The designed solution investigated the overlapping clusters in

the whole query space promptly. Further, the proposed system employed heterogeneous

IoT Sensors, i.e., IR, Ultrasonic, RFID, temperature, sound, LDR, and water sensing for

generating queries. It acted as the input unit for the proposed system that monitors and

sensed each query in their vicinity.

The severe drawbacks of flooding appear as the overlapping of query threads.

This phenomenon massively propagates redundant and unwanted queries, harvest

excessive resource utilization, and thus reduce. The real-timeβQoS enabled testbed

significantly analyzed the smart query detection and mitigation by effectively managing

the unwanted querying. The solution also did not generate any additionalβcontrol traffic

and required a negligible computationalβoverhead. The studyβfurther observed that an

intercluster controlβtraffic can be achievedβby preventingβthread overlap

locallyβthrough selective flooding. Since the queryβcontrol mechanism, being aware of

the query information, the testbed could significantly manage all the overlapping clusters

in the entire query space.

Objective 5: To evaluate our proposed approach using simulation tools under realistic

scenarios and compare the results with theβstate-of-the-art approaches in the literature as

well as validate the results using a statistical analysis tool.

This research objective was achieved by evaluating the performance of proposed

model employing Contiki Cooja network simulator as a state-of-the-art simulation tool

for redundant flooding scenario. To achieve the best outcomes of this evaluation, this

study considered the customized parameterization of simulator on realistic scenarios by

consideringβenergy consumption, delay, and throughputβwith differentβintervals of

traffic, maliciousβmote, maliciousβmote with realisticβcondition, different simulation

Univ
ers

iti
Mala

ya

200

areas, pause time, and mobility speed. TheβQCM technique outperformedβcompared

toβDnC, SLA, andβHy-IoT approachesβin terms of droppingβthe averageβconsumption

ofβenergy, traffic delay, and by boosting the considerable throughput.

Further, to evaluate the performance of QCM, this study employed ANOVA and

t-tests in context of special scenarios i.e., in terms ofβenergy consumption, delay, and

βthroughput. These three scenarios were evaluated in terms of intervalsβof traffic,

maliciousβmote, maliciousβmote with realisticβconditions, different simulation area,

pause time, and mobility speed. The inferential analysis statistics depicted that “F and t”

valuesβare sufficientlyβlarger than corresponding criticalβvalues. Inβaddition, the “P

values” wereβless thanβ0.05, which achieved the 95%βconfidence interval, showingβthat

theβQCM algorithmβoutperformed the existingβalgorithms.

A deep and exhaustive review of existing solutions, this study investigated that an

undesirableβside effect of flooding is theβoverlapping of queryβthreads. Which may lead

to the propagation of redundant and unwanted queries, resulting in excessive resource

utilization and may reducing QoS in termβof energyβconsumption, networkβdelay and

throughput. The QCM mechanism analyzed the smart query detection and mitigation

techniques to effectivelyβcombat the redundantβquerying, whileβgenerating no

additionalβcontrol trafficβand requiring negligibleβcomputational overhead. Further

reduction of the intercluster controlβtraffic could beβachieved by preventingβthread

overlap locallyβthrough selective flooding. When the CBF was configuredβto minimize

totalβrouting controlβtraffic, the study found that full flooding responded to

routeβqueries at least threeβtimes faster thanβa selective floodingβimplementation.

In context of average energy consumption, the proposed method can detectβflooder

motes and can detach them fromβthe network, thus reducing the energyβconsumption

levels (arising under redundant (unwanted)βfloodingβattacks. We noticed the average

Univ
ers

iti
Mala

ya

201

energyβconsumption of prevailingβDnC, andβSLA as aboutβ21 and 18%, respectively,

under 1–5 s intervals, resulting in rise of this ratio continuously as the interval increases.

Nevertheless, the QCM method consumes energy under 6% comparedβto the 13%βof the

prevailingβHy-IoT method. In terms of traffic delays, the study investigated the QCM as

a good detector, pause manager, and detacher for flooding motes from the network. These

measures greatly improved the performance. Further, the redundant (unwanted) queries

could also remove by disengaging the flooding motes. DnC and SLA exhibited a traffic

delay of 26% and 20%, respectively for interval 1. The proposed algorithm reduced the

traffic delay to about 10% in the network at the same interval. QCM could achieve a drop

in traffic delay about 4% lower than the conventional Hy-IoT. In terms of network

throughputβ(QoS), the throughputβof DnC andβSLA decreased up toβapproximately

(44% andβ61%), respectivelyβat an intervalβof 1 s. While βwith theβQCM the QoS

boostsβto approximatelyβ85%, thisβresult is 9%βbetter as comparedβto existing Hy-IoT

at theβsame time intervalβ1 s.

7.2 ResearchβScope and Limitation

The scopeβof this study is contained under IoT sensors/devices, delay, QoS,

Energy Consumption, throughput, redundant query, flooding, and cloud.

This study is limited to two layers only and are covering all the layers of IoT.

Further, the study requires to build a cross-layered prototype, the IALC Intralayer only

focus on priority queries need to improve it further. Moreover, the flooding created by

the priority queries needs to be rectified.

7.3 Future Work

In this Section, enlist a possibleβfuture work thatβcan be elevated from this

research study.

Univ
ers

iti
Mala

ya

202

1. The testbed needs to handle additional functionality and more possibilities for research

and needs to adapt continually. If the extension of testbeds is anβobvious path forward

for moreβdiverse IoT-related innovations and protocols, additional attractive aspects are

often considered.

2. To build all kinds of test cases, it is suggested to keep the project as open-source project

for scientific community and IoT developers. The testbed can be made publicly available

through web with a well-managed monitoring of motes using their correct logging

3. In future, the employment of customized Machine Learning, and Artificial Intelligence

approaches can handle sophisticated IoT network QoS analyses and can provide

appropriate redundant query recognition systems.

7.4 Summary

ThisβChapter demonstrated the accomplishments of researchβobjectives of thisβstudy,

along with mapping theβresearch objectives with the research questions. In addition, it

also provided a proximity association between the problem statement, objectives, and the

proposed solutions. Further, the scope andβlimitations of this were discussed. The

Chapter glimpsed the future directions of work in context of testbed enhancement to

mitigate the query flooding using machine learning techniques.

Univ
ers

iti
Mala

ya

203

REFERENCES

Aazam, M., St-Hilaire, M., Lung, C. H., & Lambadaris, I. (2016, June). MeFoRE: QoE

based resource estimation at Fog to enhance QoS in IoT. 2016 23rd International

Conference on Telecommunications, ICT 2016.

https://doi.org/10.1109/ICT.2016.7500362

Abdalzaher, M. S., Seddik, K., Elsabrouty, M., Muta, O., Furukawa, H., & Abdel-

Rahman, A. %J S. (2016). Game theory meets wireless sensor networks security

requirements and threats mitigation: A survey. 16(7), 1003.

Abdelaal, M., Theel, O., Kuka, C., Zhang, P., Gao, Y., Bashlovkina, V., Nicklas, D., &

Fränzle, M. %J I. J. of D. S. N. (2016). Improving energy efficiency in QoS-

constrained wireless sensor networks. 12(5), 1576038.

Abdollahzadeh, S., & Navimipour, N. J. (2016). Deployment strategies in the wireless

sensor network: A comprehensive review. In Computer Communications (Vols. 91–

92, pp. 1–16). Elsevier B.V. https://doi.org/10.1016/j.comcom.2016.06.003

Abdulridha, M., Adday, G., Jiaotong, I. A.-J. of S., & 2019, undefined. (2019). Fast

simple flooding strategy in wireless sensor networks. Jsju.Org, 54(6).

https://doi.org/10.35741/issn.0258-2724.54.6.12

Abrial, J. R., Butler, M., Hallerstede, S., Hoang, T. S., Mehta, F., & Voisin, L. (2010).

Rodin: An open toolset for modelling and reasoning in Event-B. International

Journal on Software Tools for Technology Transfer, 12(6), 447–466.

https://doi.org/10.1007/s10009-010-0145-y

Univ
ers

iti
Mala

ya

204

Accettura, N., Palattella, M. R., Boggia, G., Grieco, L. A., & Dohler, M. (2013).

Decentralized Traffic Aware Scheduling for multi-hop Low power Lossy Networks

in the Internet of Things. 2013 IEEE 14th International Symposium on a World of

Wireless, Mobile and Multimedia Networks, WoWMoM 2013.

https://doi.org/10.1109/WoWMoM.2013.6583485

Adjih, C., Baccelli, E., Fleury, E., Harter, G., Mitton, N., Noel, T., Pissard-Gibollet, R.,

Saint-Marcel, F., Schreiner, G., Vandaele, J., & Watteyne, T. (2015). FIT IoT-LAB:

A large scale open experimental IoT testbed. IEEE World Forum on Internet of

Things, WF-IoT 2015 - Proceedings. https://doi.org/10.1109/WF-IoT.2015.7389098

Ahmad, M., Jung, L. T., Bhuiyan, A.-A. %J B. S. P., & Control. (2017). From DNA to

protein: Why genetic code context of nucleotides for DNA signal processing? A

review. 34, 44–63.

Ahmad, M., Jung, L. T., Bhuiyan, M. A.-A. %J C. in biology, & medicine. (2016). On

fuzzy semantic similarity measure for DNA coding. 69, 144–151.

Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor

networks: A survey. Computer Networks. https://doi.org/10.1016/S1389-

1286(01)00302-4

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015).

Internet of Things: A Survey on Enabling Technologies, Protocols, and

Applications. IEEE Communications Surveys and Tutorials, 17(4), 2347–2376.

https://doi.org/10.1109/COMST.2015.2444095

Alam, S., Chowdhury, M. M. R., & Noll, J. (2010). SenaaS: An event-driven sensor

Univ
ers

iti
Mala

ya

205

virtualization approach for internet of things cloud. 2010 IEEE International

Conference on Networked Embedded Systems for Enterprise Applications, NESEA

2010. https://doi.org/10.1109/NESEA.2010.5678060

Alamri, A., & Abdullah, M. (2016). Cross-layer quality of service protocols for wireless

multimedia sensor networks 02\70*2 View project Wireless Multimedia Sensor

Networks View project Cross-layer quality of service protocols for wireless

multimedia sensor networks.

Alghamdi, A., Alshamrani, M., Alqahtani, A., Al Ghamdi, S. S. A., & Harrathi, R. (2016,

November). Secure data aggregation scheme in wireless sensor networks for IoT.

2016 International Symposium on Networks, Computers and Communications,

ISNCC 2016. https://doi.org/10.1109/ISNCC.2016.7746071

Alkhamisi, A., Nazmudeen, M. S. H., & Buhari, S. M. (2016, September). A cross-layer

framework for sensor data aggregation for IoT applications in smart cities. IEEE 2nd

International Smart Cities Conference: Improving the Citizens Quality of Life, ISC2

2016 - Proceedings. https://doi.org/10.1109/ISC2.2016.7580853

Alqahtani, A., Solaiman, E., Buyya, R., & Ranjan, R. (2016). End-to-End QoS

Specification and Monitoring in the Internet of Things. Https://Eprints.Ncl.Ac.Uk.

Ameigeiras, P., Ramos-Munoz, J. J., Navarro-Ortiz, J., Mogensen, P., & Lopez-Soler, J.

M. (2010). QoE oriented cross-layer design of a resource allocation algorithm in

beyond 3G systems. Computer Communications, 33(5), 571–582.

https://doi.org/10.1016/j.comcom.2009.10.016

Appavoo, P., William, E. K., Chan, M. C., & Mohammad, M. (2019). Indriya2: A

Univ
ers

iti
Mala

ya

206

Heterogeneous Wireless Sensor Network (WSN) Testbed. Lecture Notes of the

Institute for Computer Sciences, Social-Informatics and Telecommunications

Engineering, LNICST. https://doi.org/10.1007/978-3-030-12971-2_1

Arduino - ArduinoBoardMega2560. (n.d.).

Arkian, H. R., Atani, R. E., Pourkhalili, A., & Kamali, S. %J J. I. S. E. (2015). A Stable

Clustering Scheme Based on Adaptive Multiple Metric in Vehicular Ad-hoc

Networks. 31(2), 361–386.

Atzori, L., Iera, A., Morabito, G., & Nitti, M. (2012). The social internet of things (SIoT)

- When social networks meet the internet of things: Concept, architecture and

network characterization. Computer Networks, 56(16), 3594–3608.

https://doi.org/10.1016/j.comnet.2012.07.010

Awan, I., Younas, M., & Naveed, W. (2014). Modelling qos in iot applications. 2014

17th International Conference on Network-Based Information Systems, 99–105.

Baccelli, E., Hahm, O., Gunes, M., Wahlisch, M., & Schmidt, T. (2014). RIOT OS:

Towards an OS for the Internet of Things. 79–80.

https://doi.org/10.1109/infcomw.2013.6970748

Badamasi, Y. A. (2014). The working principle of an Arduino. Proceedings of the 11th

International Conference on Electronics, Computer and Computation, ICECCO

2014. https://doi.org/10.1109/ICECCO.2014.6997578

Baddeley, M., Raza, U., Stanoev, A., Oikonomou, G., Nejabati, R., Sooriyabandara, M.,

& Simeonidou, D. (2019). Atomic-SDN: Is Synchronous Flooding the Solution to

Univ
ers

iti
Mala

ya

207

Software-Defined Networking in IoT? IEEE Access, 7, 96019–96034.

https://doi.org/10.1109/ACCESS.2019.2920100

Baker, T., Al-Dawsari, B., Tawfik, H., Reid, D., & Ngoko, Y. (2015). GreeDi: An energy

efficient routing algorithm for big data on cloud. Ad Hoc Networks, 35, 83–96.

https://doi.org/10.1016/j.adhoc.2015.06.008

Bandyopadhyay, D., & Sen, J. (2011). Internet of things: Applications and challenges in

technology and standardization. Wireless Personal Communications, 58(1), 49–69.

https://doi.org/10.1007/s11277-011-0288-5

Barrett, S. F. (2013). Arduino Microcontroller Processing for Everyone! Third Edition.

Synthesis Lectures on Digital Circuits and Systems, 43, 1–515.

https://doi.org/10.2200/S00522ED1V01Y201307DCS043

Benenson, Z., Freiling, F. C., Hammerschmidt, E., Lucks, S., & Pimenidis, L. (2006).

Authenticated query flooding in sensor networks. IFIP International Information

Security Conference, 38–49.

Bernard, M. S., Pei, T., Li, Z., & Li, K. (2019). QoS strategies for wireless multimedia

sensor networks in the context of IoT. Lecture Notes of the Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 275,

228–253. https://doi.org/10.1007/978-3-030-16042-5_21

Bhandary, V., Malik, A., & Kumar, S. (2016). Routing in wireless multimedia sensor

networks: A survey of existing protocols and open research issues. In Journal of

Engineering (United Kingdom) (Vol. 2016). Hindawi Limited.

https://doi.org/10.1155/2016/9608757

Univ
ers

iti
Mala

ya

208

Bourke, T., van Glabbeek, R., Höfner, P., & van Glabbeek, R. (2014). A mechanized

proof of loop freedom of the (untimed) AODV routing protocol. Lecture Notes in

Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 8837, 47–63. https://doi.org/10.1007/978-3-319-

11936-6_5

Bu, S., Richard Yu, F., Cai, Y., & Liu, X. P. (2012). When the smart grid meets energy-

efficient communications: Green wireless cellular networks powered by the smart

grid. IEEE Transactions on Wireless Communications, 11(8), 3014–3024.

https://doi.org/10.1109/TWC.2012.052512.111766

Burin des Rosiers, C., Chelius, G., Fleury, E., Fraboulet, A., Gallais, A., Mitton, N., &

Noël, T. (2012). SensLAB. https://doi.org/10.1007/978-3-642-29273-6_19

Cansell, D., & Méry, D. (2006). Formal and incremental construction of distributed

algorithms: On the distributed reference counting algorithm. Theoretical Computer

Science, 364(3), 318–337. https://doi.org/10.1016/j.tcs.2006.08.015

Cerpa, A., Elson, J., Estrin, D., Girod, L., Hamilton, M., & Zhao, J. (2001). Habitat

monitoring: Application driver for wireless communications technology. Computer

Communication Review. https://doi.org/10.1145/844193.844196

Cerpa, A., Elson, J., Hamilton, M., Zhao, J., Estrin, D., & Girod, L. (2001). Habitat

monitoring: Application driver for wireless communications technology.

SIGCOMM LA 2001 - Workshop on Data Communication in Latin America and the

Caribbean. https://doi.org/10.1145/371626.371720

Chao, C. M., & Hsiao, T. Y. (2014). Design of structure-free and energy-balanced data

Univ
ers

iti
Mala

ya

209

aggregation in wireless sensor networks. Journal of Network and Computer

Applications, 37(1), 229–239. https://doi.org/10.1016/j.jnca.2013.02.013

Cheng, L., Niu, J., Luo, C., Shu, L., Kong, L., Zhao, Z., & Gu, Y. (2018). Towards

minimum-delay and energy-efficient flooding in low-duty-cycle wireless sensor

networks. Computer Networks, 134, 66–77.

https://doi.org/10.1016/j.comnet.2018.01.012

Choi, C., Park, J. H., Na, M., & Jo, S. (2015). Low latency 5G architecture for mission-

critical IoT (Internet of Things). ITC-CSCC :International Technical Conference on

Circuits Systems, Computers and Communications, 58–59.

Clark, J., Bendisposto, J., Hallerstede, S., Hansen, D., & Leuschel, M. (2016). Generating

event-B specifications from algorithm descriptions. Lecture Notes in Computer

Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 9675, 183–197. https://doi.org/10.1007/978-3-319-33600-

8_11

Conti, M., Di Pietro, R., & Spognardi, A. (2014). Clone wars: Distributed detection of

clone attacks in mobile WSNs. Journal of Computer and System Sciences, 80(3),

654–669. https://doi.org/10.1016/j.jcss.2013.06.017

Cui, Y. R. (2009). Data query protocol with restriction flooding in wireless sensor

networks. Proceedings - International Conference on Networks Security, Wireless

Communications and Trusted Computing, NSWCTC 2009.

https://doi.org/10.1109/NSWCTC.2009.325

Dagar, M., Mahajan, S. (2013). Data aggregation in wireless sensor network: A survey.

Univ
ers

iti
Mala

ya

210

Int. J. Inf. Comput. Technol. (IJICT), 3(3), 167–174.

David, D. R., Nait-Sidi-moh, A., Durand, D., & Fortin, J. (2015). Using Internet of Things

technologies for a collaborative supply chain: Application to tracking of pallets and

containers. Procedia Computer Science, 56(1), 550–557.

https://doi.org/10.1016/j.procs.2015.07.251

Delgado-Rajo, F., Melian-Segura, A., Guerra, V., Perez-Jimenez, R., & Sanchez-

Rodriguez, D. (2020). Hybrid RF/VLC Network Architecture for the Internet of

Things. Sensors 2020, Vol. 20, Page 478, 20(2), 478.

https://doi.org/10.3390/S20020478

Dhand, G., & Tyagi, S. S. (2016). Data Aggregation Techniques in WSN:Survey.

Procedia Computer Science, 92, 378–384.

https://doi.org/10.1016/j.procs.2016.07.393

Dhumane, A., Prasad, R., & Prasad, J. (2016). Routing issues in internet of things: a

survey. Proceedings of the International Multiconference of Engineers and

Computer Scientists, 1, 16–18.

Dietzel, S., Gürtler, J., & Kargl, F. (2016). A resilient in-network aggregation mechanism

for VANETs based on dissemination redundancy. Ad Hoc Networks, 37, 101–109.

https://doi.org/10.1016/j.adhoc.2015.09.002

Doddavenkatappa, M., Chan, M. C., & Ananda, A. L. (2012). Indriya: A low-cost, 3D

wireless sensor network testbed. Lecture Notes of the Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering.

https://doi.org/10.1007/978-3-642-29273-6_23

Univ
ers

iti
Mala

ya

211

Duan, R., Chen, X., & Xing, T. (2011). A QoS architecture for IOT. Proceedings - 2011

IEEE International Conferences on Internet of Things and Cyber, Physical and

Social Computing, IThings/CPSCom 2011, 717–720.

https://doi.org/10.1109/iThings/CPSCom.2011.125

El Mimouni, S., & Bouhdadi, M. (2018). A mechanized formal refinement proof of

modbus communication using Event-B proof system. International Journal of

Intelligent Engineering and Systems, 11(4), 97–106.

https://doi.org/10.22266/ijies2018.0831.10

Elsayed, E., El-Sharawy, G., & El-Sharawy, E. (2013). INTEGRATION OF

AUTOMATIC THEOREM PROVERS IN EVENT-B PATTERNS. International

Journal of Software Engineering & Applications (IJSEA), 4(1).

https://doi.org/10.5121/ijsea.2013.4103

Fasolo, E., Rossi, M., Widmer, J., & Zorzi, M. (2007). In-network aggregation techniques

for wireless sensor networks: A survey. IEEE Wireless Communications.

https://doi.org/10.1109/MWC.2007.358967

Fathallah, K., Abid, M. A., & Hadj-Alouane, N. Ben. (2019). Routing of spatial queries

over IoT enabled wireless sensor networks. 2019 15th International Wireless

Communications and Mobile Computing Conference, IWCMC 2019.

https://doi.org/10.1109/IWCMC.2019.8766512

Foh, C. H., Zhang, Y., Ni, Z., Cai, J., & Ngan, K. N. (2007). Optimized cross-layer design

for scalable video transmission over the IEEE 802.11e networks. IEEE Transactions

on Circuits and Systems for Video Technology, 17(12), 1665–1678.

Univ
ers

iti
Mala

ya

212

https://doi.org/10.1109/TCSVT.2007.903808

Fredj, S. Ben, Boussard, M., Kofman, D., & Noirie, L. (2013). A scalable IoT service

search based on clustering and aggregation. Proceedings - 2013 IEEE International

Conference on Green Computing and Communications and IEEE Internet of Things

and IEEE Cyber, Physical and Social Computing, GreenCom-IThings-CPSCom

2013, 403–410. https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.86

Gammarano, N., Schandy, J., & Steinfeld, L. (2018). Q-SAND: A quick neighbor

discovery protocol for wireless networks with sectored antennas. 2018 9th Argentine

Symposium and Conference on Embedded Systems, CASE 2018, 19–24.

https://doi.org/10.23919/SASE-CASE.2018.8542163

Gluhak, A., Krco, S., Nati, M., Pfisterer, D., Mitton, N., & Razafindralambo, T. %J I. C.

M. (2011). A survey on facilities for experimental internet of things research. 49(11),

58–67.

González-Manzano, L., Fuentes, J. M. D., Pastrana, S., Peris-Lopez, P., & Hernández-

Encinas, L. (2016). PAgIoT - Privacy-preserving Aggregation protocol for Internet

of Things. Journal of Network and Computer Applications, 71, 59–71.

https://doi.org/10.1016/j.jnca.2016.06.001

Goudarzi, S., Kama, N., Anisi, M. H., Zeadally, S., & Mumtaz, S. (2019). Data collection

using unmanned aerial vehicles for Internet of Things platforms. Computers and

Electrical Engineering, 75, 1–15.

https://doi.org/10.1016/j.compeleceng.2019.01.028

Gračanin, D., Adams, K. P., & Eltoweissy, M. (2006). Data replication in collaborative

Univ
ers

iti
Mala

ya

213

sensor network systems. Conference Proceedings of the IEEE International

Performance, Computing, and Communications Conference.

https://doi.org/10.1109/.2006.1629431

Guan, Q., Yu, F. R., & Jiang, S. (2010). Prediction-based topology control and routing in

cognitive radio mobile ad hoc networks. Proceedings - IEEE INFOCOM.

https://doi.org/10.1109/INFCOMW.2010.5466716

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT):

A vision, architectural elements, and future directions. Future Generation Computer

Systems, 29(7), 1645–1660. https://doi.org/10.1016/j.future.2013.01.010

Haddad, H., Bouyahia, Z., & Jabeur, N. %J P. C. S. (2017). Towards a Three-Level

Framework for IoT Redundancy Control through an Explicit Spatio-Temporal Data

Model. 109, 664–671.

Hajizadeh, R., & Jafari Navimipour, N. (2017). A method for trust evaluation in the cloud

environments using a behavior graph and services grouping. Kybernetes, 46(7).

https://doi.org/10.1108/K-02-2017-0070

Hoang, T. S., Fürst, A., & Abrial, J. R. (2013). Event-B patterns and their tool support.

Software and Systems Modeling, 12(2), 229–244. https://doi.org/10.1007/s10270-

010-0183-7

Huang, J., Duan, Q., Zhao, Y., Zheng, Z., & Wang, W. (2017). Multicast Routing for

Multimedia Communications in the Internet of Things. IEEE Internet of Things

Journal, 4(1), 215–224. https://doi.org/10.1109/JIOT.2016.2642643

Univ
ers

iti
Mala

ya

214

Huysmans, S., Rigole, P., Berbers, Y., & Huysmans Peter Rigole Yolande Berbers, S.

(2008). Query by Combination in the Internet of Things. David Coudert.

Ikram, A., Anjum, A., Hill, R., Antonopoulos, N., Liu, L., & Sotiriadis, S. (2015).

Approaching the Internet of things (IoT): a modelling, analysis and abstraction

framework. Concurrency and Computation: Practice and Experience, 27(8), 1966–

1984. https://doi.org/10.1002/cpe.3131

IR Sensor : Circuit Diagram, Types Working with Applications. (n.d.).

Jacob, L., & Shamna, H. R. (2015). Efficient Cooperative MAC and Routing in Wireless

Networks. Transactions on Networks and Communications, 3(5), 79–79.

https://doi.org/10.14738/tnc.35.1586

Jafari Navimipour, N., & Fouladi, P. (2017). Human resources ranking in a cloud-based

knowledge sharing framework using the quality control criteria. Kybernetes, 46(5).

https://doi.org/10.1108/K-01-2017-0007

Jamalipour, A., & Azim, M. A. (2006). Two-layer optimized forwarding for cluster-based

sensor networks. IEEE International Symposium on Personal, Indoor and Mobile

Radio Communications, PIMRC, May.

https://doi.org/10.1109/PIMRC.2006.254170

Jastram, Michael, and P. M. B. (2014). Rodin User’s Handbook: Covers Rodin v. 2.8.

Jiang, H., Shen, F., Chen, S., Li, K. C., & Jeong, Y. S. (2015). A secure and scalable

storage system for aggregate data in IoT. Future Generation Computer Systems, 49,

133–141. https://doi.org/10.1016/j.future.2014.11.009

Univ
ers

iti
Mala

ya

215

Jin, J., Gubbi, J., Luo, T., & Palaniswami, M. (2012). Network architecture and QoS

issues in the internet of things for a smart city. 2012 International Symposium on

Communications and Information Technologies (ISCIT), 956–961.

Jin, X., Wah, B. W., Cheng, X., & Wang, Y. (2015). Significance and Challenges of Big

Data Research. Big Data Research, 2(2). https://doi.org/10.1016/j.bdr.2015.01.006

Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., & Qiu, D. (2014). Security of the Internet of

Things: perspectives and challenges. Wireless Networks, 20(8), 2481–2501.

https://doi.org/10.1007/s11276-014-0761-7

Johnson, A. P., Patranabis, S., Chakraborty, R. S., & Mukhopadhyay, D. (2017). Remote

dynamic partial reconfiguration: A threat to Internet-of-Things and embedded

security applications. Microprocessors and Microsystems, 52, 131–144.

https://doi.org/10.1016/j.micpro.2017.06.005

Keitt, T. H., T. Urban, D. & Milne, & B. (1997). Detecting critical scales in fragmented

landscapes: Detecting critical scales in fragmented landscapes. - Conservation

Ecology 1. Ecology and Society.

Khan, A. R., & Chishti, M. A. (2020). Data aggregation mechanisms in the internet of

things: A study, qualitative and quantitative analysis. International Journal of

Computing and Digital Systems, 9(2), 289–297.

https://doi.org/10.12785/IJCDS/090214

Khan, R., Khan, S. U., Zaheer, R., & Khan, S. (2012). Future internet: The internet of

things architecture, possible applications and key challenges. Proceedings - 10th

International Conference on Frontiers of Information Technology, FIT 2012, 257–

Univ
ers

iti
Mala

ya

216

260. https://doi.org/10.1109/FIT.2012.53

Kharche, S., & Pawar, S. (2017). Node level energy consumption analysis in 6LoWPAN

network using real and emulated Zolertia Z1 motes. 2016 IEEE International

Conference on Advanced Networks and Telecommunications Systems, ANTS 2016.

https://doi.org/10.1109/ANTS.2016.7947870

Kiran Maraiya, Kamal Kant, N. G. (n.d.).

Wireless_Sensor_Network_A_Review_on_Data_Aggregation.

Koike, A., Ohba, T., & Ishibashi, R. (2016). IoT network architecture using packet

aggregation and disaggregation. Proceedings - 2016 5th IIAI International Congress

on Advanced Applied Informatics, IIAI-AAI 2016, 1140–1145.

https://doi.org/10.1109/IIAI-AAI.2016.221

Krishnapriya, S and Joby, P. (2015). QoS aware resource scheduling in internet of things-

cloud environment. International Journal of Scientific \& Engineering Research, 6,

4.

Kumar Kumar, S., Sheikh, A., Ambhaikar, A., & Kumar, S. (2019). Quality of Services

Improvement for Secure Iot Networks. International Journal of Engineering and

Advanced Technology (IJEAT), 9, 2249–8958.

https://doi.org/10.35940/ijeat.B3757.129219

Kumar, S., & Chaurasiya, V. K. (2019). A Strategy for Elimination of Data Redundancy

in Internet of Things (IoT) Based Wireless Sensor Network (WSN). IEEE Systems

Journal, 13(2), 1650–1657. https://doi.org/10.1109/JSYST.2018.2873591

Univ
ers

iti
Mala

ya

217

Kyung, Y., & Kim, T.-K. (2020). QoS-Aware Flexible Handover Management in

Software-Defined Mobile Networks. Applied Sciences 2020, Vol. 10, Page 4264,

10(12), 4264. https://doi.org/10.3390/APP10124264

Lahane, S. R., & Jariwala, K. N. (2021). Secured cross-layer cross-domain routing in

dense wireless sensor network: A new hybrid based clustering approach.

International Journal of Intelligent Systems, 36(8), 3789–3812.

https://doi.org/10.1002/INT.22438

Landt, J. (2005). The history of RFID. IEEE Potentials.

https://doi.org/10.1109/MP.2005.1549751

Latif, K., Javaid, N., Ullah, I., Kaleem, Z., Malik, Z. A., & Nguyen, L. D. (2020). DIEER:

Delay-Intolerant Energy-Efficient Routing with Sink Mobility in Underwater

Wireless Sensor Networks. Sensors 2020, Vol. 20, Page 3467, 20(12), 3467.

https://doi.org/10.3390/S20123467

Laxmi, P and Deepthi, G. L. (2017). Smart Water Management Process Architecture with

IoT Based Reference. Int. J. Comput. Sci. Mob. Comput, 6, 271–276.

Leuschel, M., & Butler, M. (2008). ProB: An automated analysis toolset for the B method.

International Journal on Software Tools for Technology Transfer, 10(2), 185–203.

https://doi.org/10.1007/s10009-007-0063-9

Levi, A., & Sarimurat, S. (2017). Utilizing hash graphs for key distribution for mobile

and replaceable interconnected sensors in the IoT context. Ad Hoc Networks, 57, 3–

18. https://doi.org/10.1016/j.adhoc.2016.08.013

Univ
ers

iti
Mala

ya

218

Li, L., Li, S., & Zhao, S. (2014). QoS-Aware scheduling of services-oriented internet of

things. IEEE Transactions on Industrial Informatics, 10(2), 1497–1507.

https://doi.org/10.1109/TII.2014.2306782

Li, M., Jing, Y., & Li, C. (2013). A Robust and Efficient Cross-Layer Optimal Design in

Wireless Sensor Networks. Wireless Pers Commun, 72, 1889–1902.

https://doi.org/10.1007/s11277-013-1111-2

Li, S.-F., Handziski, V., Köpke, A., Kubisch, M., & Wolisz, A. (2005). A Wireless Sensor

Network Testbed Supporting Controlled In-building Experiments. 12. Sensor

Kongress.

Li, S., Xu, L. Da, & Zhao, S. (2015). The internet of things: a survey. Information Systems

Frontiers, 17(2), 243–259. https://doi.org/10.1007/s10796-014-9492-7

Li, W., Bao, J., & Shen, W. (2011). Collaborative wireless sensor networks: A survey.

Conference Proceedings - IEEE International Conference on Systems, Man and

Cybernetics. https://doi.org/10.1109/ICSMC.2011.6084070

Li, X., Liu, W., Xie, M., Liu, A., Zhao, M., Xiong, N. N., Zhao, M., & Dai, W. (2018).

Differentiated Data Aggregation Routing Scheme for Energy Conserving and Delay

Sensitive Wireless Sensor Networks. Sensors 2018, Vol. 18, Page 2349, 18(7), 2349.

https://doi.org/10.3390/S18072349

Li, Z., Yu, F. R., & Huang, M. (2010). A distributed consensus-based cooperative

spectrum-sensing scheme in cognitive radios. IEEE Transactions on Vehicular

Technology, 59(1), 383–393. https://doi.org/10.1109/TVT.2009.2031181

Univ
ers

iti
Mala

ya

219

Li, Z., Zhang, W., Qiao, D., & Peng, Y. (2017). Lifetime balanced data aggregation for

the internet of things. Computers and Electrical Engineering, 58, 244–264.

https://doi.org/10.1016/j.compeleceng.2016.09.025

Liang, J. M., Chen, J. J., Cheng, H. H., & Tseng, Y. C. (2013). An energy-efficient sleep

scheduling with QoS consideration in 3GPP LTE-advanced networks for internet of

things. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,

3(1), 13–22. https://doi.org/10.1109/JETCAS.2013.2243631

Liang, O., Ahmet Şekercioǧlu, Y., & Mani, N. (2007). A low-cost flooding algorithm for

wireless sensor networks. IEEE Wireless Communications and Networking

Conference, WCNC, 3495–3500. https://doi.org/10.1109/WCNC.2007.641

Liao, Y. P., & Hsiao, C. M. (2014). A secure ECC-based RFID authentication scheme

integrated with ID-verifier transfer protocol. Ad Hoc Networks, 18, 133–146.

https://doi.org/10.1016/j.adhoc.2013.02.004

Lim, R., Ferrari, F., Zimmerling, M., Walser, C., Sommer, P., & Beutel, J. (2013).

FlockLab: A testbed for distributed, synchronized tracing and profiling of wireless

embedded systems. IPSN 2013 - Proceedings of the 12th International Conference

on Information Processing in Sensor Networks, Part of CPSWeek 2013.

https://doi.org/10.1145/2461381.2461402

Liu, Y., Gong, X., & Xing, C. (2014). A novel trust-based secure data aggregation for

Internet of Things. Proceedings of the 9th International Conference on Computer

Science and Education, ICCCSE 2014, 435–439.

https://doi.org/10.1109/ICCSE.2014.6926499

Univ
ers

iti
Mala

ya

220

Liu, Y., Liu, A., Hu, Y., Li, Z., Choi, Y. J., Sekiya, H., & Li, J. (2016). FFSC: An Energy

Efficiency Communications Approach for Delay Minimizing in Internet of Things.

IEEE Access, 4, 3775–3793. https://doi.org/10.1109/ACCESS.2016.2588278

Lu, X., Spear, M., Levitt, K., Matloff, N. S., & Wu, S. F. (2008). Using soft-line recursive

response to improve query aggregation in wireless sensor networks. IEEE

International Conference on Communications.

https://doi.org/10.1109/ICC.2008.440

Luo, C., Yu, F. R., Ji, H., & Leung, V. C. M. (2010). Cross-layer design for TCP

performance improvement in cognitive radio networks. IEEE Transactions on

Vehicular Technology, 59(5), 2485–2495.

https://doi.org/10.1109/TVT.2010.2041802

Ma, L., Yu, F., Leung, V. C. M., & Randhawa, T. (2004). A new method to support

UMTS/WLAN vertical handover using SCTP. In IEEE Wireless Communications

(Vol. 11, Issue 4, pp. 44–51). https://doi.org/10.1109/MWC.2004.1325890

Magagula, L. A., & Chan, H. A. (2008). IEEE802.21-assisted cross-layer design and

PMIPv6 mobility management framework for next generation wireless networks.

Proceedings - 4th IEEE International Conference on Wireless and Mobile

Computing, Networking and Communication, WiMob 2008, 159–164.

https://doi.org/10.1109/WiMob.2008.46

Mainetti, L., Patrono, L., & Vilei, A. (2011). Evolution of wireless sensor networks

towards the Internet of Things: A survey. 2011 International Conference on

Software, Telecommunications and Computer Networks, SoftCOM 2011.

Univ
ers

iti
Mala

ya

221

Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., & Anderson, J. (2002). Wireless

sensor networks for habitat monitoring. https://doi.org/10.1145/570738.570751

Mao, Y., Li, J., Chen, M. R., Liu, J., Xie, C., & Zhan, Y. (2016). Fully secure fuzzy

identity-based encryption for secure IoT communications. Computer Standards and

Interfaces, 44, 117–121. https://doi.org/10.1016/j.csi.2015.06.007

Masoud, M. Z., Jaradat, Y., Zaidan, D., & Jannoud, I. (2019). To Cluster or Not to

Cluster: A Hybrid Clustering Protocol for WSN. 2019 IEEE Jordan International

Joint Conference on Electrical Engineering and Information Technology, JEEIT

2019 - Proceedings, 678–682. https://doi.org/10.1109/JEEIT.2019.8717524

Meguerdichian, S., Koushanfar, F., Potkonjak, M., & Srivastava, M. B. (2001). Coverage

problems in wireless ad-hoc sensor networks. Proceedings - IEEE INFOCOM.

Melodia, T., & Akyildiz, I. F. (2010). Cross-layer QoS-aware communication for ultra

wide band Wireless Multimedia Sensor Networks. IEEE Journal on Selected Areas

in Communications, 28(5), 653–663. https://doi.org/10.1109/JSAC.2010.100604

Merad Boudia, O. R., Senouci, S. M., & Feham, M. (2015). A novel secure aggregation

scheme for wireless sensor networks using stateful public key cryptography. Ad Hoc

Networks, 32, 98–113. https://doi.org/10.1016/j.adhoc.2015.01.002

Mishra, S. (2012). Features of WSN and Data Aggregation techniques in WSN: A Survey

Opinion Mining View project machine learning View project. International Journal

of Engineering and Innovative Technology (IJEIT), 1(4).

Moschakis, I. A., & Karatza, H. D. (2015). Towards scheduling for Internet-of-Things

Univ
ers

iti
Mala

ya

222

applications on clouds: a simulated annealing approach. Concurrency and

Computation: Practice and Experience, 27(8), 1886–1899.

https://doi.org/10.1002/cpe.3105

Mukherjee, A., Jain, D. K., & Yang, L. (2021). On-Demand Efficient Clustering for Next

Generation IoT Applications: A Hybrid NN Approach. IEEE Sensors Journal,

21(22), 25457–25464. https://doi.org/10.1109/JSEN.2020.3026647

Mustafee Navonil, N. B. (2015). The Internet of Things: shaping the new Internet space.

Concurrency and Computation: Practice and Experience, 27(8), 1815–1818.

Nguyen, T. D., Le, D. T., Vo, V. V., Kim, M., & Choo, H. (2021). Fast Sensory Data

Aggregation in IoT Networks: Collision-Resistant Dynamic Approach. IEEE

Internet of Things Journal, 8(2), 766–777.

https://doi.org/10.1109/JIOT.2020.3007329

Noury, N., Hervé, T., Rialle, V., Virone, G., Mercier, E., Morey, G., Moro, A., &

Porcheron, T. (2000). Monitoring behavior in home using a smart fall sensor and

position sensors. 1st Annual International IEEE-EMBS Special Topic Conference

on Microtechnologies in Medicine and Biology - Proceedings.

https://doi.org/10.1109/MMB.2000.893857

Özdoğan, E., & Ayhan, O. (2019). HYBRID APPLICATION LAYER PROTOCOL

DESIGN FOR IOT ENVIRONMENTS. 267–286.

https://doi.org/10.5121/csit.2019.91322

Papandriopoulos, J., Dey, S., & Evans, J. (2008). Optimal and distributed protocols for

cross-layer design of physical and transport layers in MANETs. IEEE/ACM

Univ
ers

iti
Mala

ya

223

Transactions on Networking, 16(6), 1392–1405.

https://doi.org/10.1109/TNET.2008.918099

Parmar, K., & Jinwala, D. C. (2016). Concealed data aggregation in wireless sensor

networks: A comprehensive survey. In Computer Networks (Vol. 103, pp. 207–227).

Elsevier B.V. https://doi.org/10.1016/j.comnet.2016.04.013

Peng, K., Huang, H., Wan, S., & Leung, V. C. M. (2020). End-edge-cloud collaborative

computation offloading for multiple mobile users in heterogeneous edge-server

environment. Wireless Networks 2020, 1–12. https://doi.org/10.1007/S11276-020-

02385-1

Piccialli, F., Chianese, A., & Jung, J. J. (2017). Cultural Heritage on Internet of Things

(IoT) systems: Trends and challenges. In Concurrency Computation (Vol. 29, Issue

11). https://doi.org/10.1002/cpe.4155

Piri, E., & Pinola, J. (2016). Performance of LTE uplink for IoT backhaul. 2016 13th

IEEE Annual Consumer Communications and Networking Conference, CCNC 2016,

6–11. https://doi.org/10.1109/CCNC.2016.7444723

Polyvyanyy, A., Ouyang, C., Barros, A., & van der Aalst, W. M. P. %J D. S. S. (2017).

Process querying: Enabling business intelligence through query-based process

analytics. 100, 41–56.

Pourghebleh, B., & Navimipour, N. J. (2017). Data aggregation mechanisms in the

Internet of things: A systematic review of the literature and recommendations for

future research. In Journal of Network and Computer Applications (Vol. 97, pp. 23–

34). Academic Press. https://doi.org/10.1016/j.jnca.2017.08.006

Univ
ers

iti
Mala

ya

224

Prakash, T. S., Badrinatht, G. S., Venugopal, K. R., & Patnaik, L. M. (2006). Energy

aware topology management in ad hoc wireless networks. Second International

Conference on Systems and Networks Communications, ICSNC 2006.

https://doi.org/10.1109/ICSNC.2006.36

Premila, D., Research Scholar, B. T., Rabara, A., & Research Scholar, J. A. (2015).

Quality of Service Architecture for Internet of Things and Cloud Computing. In

International Journal of Computer Applications (Vol. 128, Issue 7).

Qin, Y., Sheng, Q. Z., Falkner, N. J. G., Dustdar, S., Wang, H., & Vasilakos, A. V. (2016).

When things matter: A survey on data-centric internet of things. Journal of Network

and Computer Applications, 64. https://doi.org/10.1016/j.jnca.2015.12.016

Qiu, T., Ding, Y., Xia, F., & Ma, H. %J S. (2012). A search strategy of level-based

flooding for the internet of things. 12(8), 10163–10195.

Quang, V. T., & Miyoshi, T. (2008). Adaptive Routing Protocol with Energy Efficiency

and Event Clustering for Wireless Sensor Networks. IEICE Transactions on

Communications, E91.B(9), 2795–2805. https://doi.org/10.1093/IETCOM/E91-

B.9.2795

Rahman, H., Ahmed, N., & Hussain, I. (n.d.). Comparison of data aggregation techniques

in Internet of Things (IoT). 2016 International Conference on Wireless

Communications, Signal Processing and Networking (WiSPNET).

Rajendranath, U. N. V. P., & Hency, V. B. (2019). Priority-based Task Pre-processing in

IoT Sensory Environments. Recent Patents on Engineering, 14(3), 357–365.

https://doi.org/10.2174/1872212113666190515120232

Univ
ers

iti
Mala

ya

225

Ramachandran, S., Presnell, B., & Richards, R. (2016). Serious games for team training

and knowledge retention for long-duration space missions. IEEE Aerospace

Conference Proceedings, 2016-June. https://doi.org/10.1109/AERO.2016.7500503

Rao, S., & Shama, K. (2012). CROSS LAYER PROTOCOLS FOR MULTIMEDIA

TRANSMISSION IN WIRELESS NETWORKS. International Journal of

Computer Science & Engineering Survey (IJCSES), 3(3).

https://doi.org/10.5121/ijcses.2012.3302

Raza, S., Misra, P., He, Z., & Voigt, T. (2017). Building the Internet of Things with

bluetooth smart. Ad Hoc Networks, 57, 19–31.

https://doi.org/10.1016/j.adhoc.2016.08.012

Ren, J., Yu, G., He, Y., & Li, G. Y. (2019). Collaborative Cloud and Edge Computing

for Latency Minimization. IEEE Transactions on Vehicular Technology, 68(5),

5031–5044. https://doi.org/10.1109/TVT.2019.2904244

Riadi, I., Prayudi, Y., & Rizal, R. (n.d.). Network Forensics for Detecting Flooding Attack

on Internet of Things (IoT) Device.

Robinson, K. (2010). A Concise Summary of the Event B mathematical toolkit.

Romanovsky, A., & Thomas, M. (2013). Industrial deployment of system engineering

methods. In Industrial Deployment of System Engineering Methods (Vol.

9783642331). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-

642-33170-1

Romdhani, I., Qasem, M., Al-Dubai, A. Y., & Ghaleb, B. %J E. N. U. (2016). Cooja

Univ
ers

iti
Mala

ya

226

simulator manual.

Ruan, C., Wang, J., Jiang, W., Min, G., & Pan, Y. (2020). PTCP: A priority-based

transport control protocol for timeout mitigation in commodity data center. Future

Generation Computer Systems, 102, 619–632.

https://doi.org/10.1016/J.FUTURE.2019.08.036

Sadek, R. A. (2018). Hybrid energy aware clustered protocol for IoT heterogeneous

network. Future Computing and Informatics Journal, 3(2), 166–177.

https://doi.org/10.1016/j.fcij.2018.02.003

Salehi, S. A., Razzaque, M. A., Naraei, P., & Farrokhtala, A. (2013). Detection of

sinkhole attack in wireless sensor networks. 2013 IEEE International Conference

on Space Science and Communication (IconSpace), 361–365.

Sánchez López, T., Ranasinghe, D. C., Harrison, M., & McFarlane, D. (2012). Adding

sense to the Internet of Things. Personal and Ubiquitous Computing.

https://doi.org/10.1007/s00779-011-0399-8

Sándor, H., Genge, B., & Gál, Z. (2015). Security Assessment of Modern Data

Aggregation Platforms in the Internet of Things. Undefined.

Sanyal, S., & Zhang, P. (2018). Improving quality of data: IoT data aggregation using

device to device communications. IEEE Access, 6, 67830–87840.

https://doi.org/10.1109/ACCESS.2018.2878640

Shafagh, H., Hithnawi, A., Dröscher, A., Duquennoy, S., & Hu, W. (2015). Talos:

Encrypted query processing for the Internet of Things. SenSys 2015 - Proceedings

Univ
ers

iti
Mala

ya

227

of the 13th ACM Conference on Embedded Networked Sensor Systems, 197–210.

https://doi.org/10.1145/2809695.2809723

Shafique, A., Cao, G., Aslam, M., Asad, M., & Ye, D. (2020). Application-Aware SDN-

Based Iterative Reconfigurable Routing Protocol for Internet of Things (IoT).

Sensors 2020, Vol. 20, Page 3521, 20(12), 3521. https://doi.org/10.3390/S20123521

Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., McCann, J., & Leung, K. (2013). A survey

on the ietf protocol suite for the internet of things: Standards, challenges, and

opportunities. IEEE Wireless Communications, 20(6), 91–98.

https://doi.org/10.1109/MWC.2013.6704479

Sirsikar, S., & Anavatti, S. (2015). Issues of data aggregation methods in Wireless Sensor

Network: A survey. Procedia Computer Science, 49(1), 194–201.

https://doi.org/10.1016/j.procs.2015.04.244

Souza, AMC da and Amazonas, J. de. (2015). A new internet of things architecture with

cross-layer communication. Proceedings of the 7th International Conference on

Emerging Networks and Systems Intelligence Emerging.

Sruthi, S. S., & Geethakumari, G. (2016). An Efficient Secure Data Aggregation

Technique for Internet of Things Network: An Integrated Approach Using DB-MAC

and Multi-path Topology. Proceedings - 6th International Advanced Computing

Conference, IACC 2016, 599–603. https://doi.org/10.1109/IACC.2016.116

Su, Jian and Liu, Alex X and Sheng, Zhengguo and Chen, Y. (2020). A partitioning

approach to RFID identificatione. IEEE/ACM Transactions on Networking, 28(5),

2160--2173.

Univ
ers

iti
Mala

ya

228

Su, X., Riekki, J., Nurminen, J. K., Nieminen, J., & Koskimies, M. (2015). Adding

semantics to internet of things. Concurrency and Computation: Practice and

Experience, 27(8), 1844–1860. https://doi.org/10.1002/cpe.3203

Sun, G., Chang, V., Ramachandran, M., Sun, Z., Li, G., Yu, H., & Liao, D. (2017).

Efficient location privacy algorithm for Internet of Things (IoT) services and

applications. Journal of Network and Computer Applications, 89, 3–13.

https://doi.org/10.1016/j.jnca.2016.10.011

Sun, G., Qi, J., Zang, Z., & Xu, Q. (2011). A reliable multipath routing algorithm with

related congestion control scheme in wireless multimedia sensor networks.

ICCRD2011 - 2011 3rd International Conference on Computer Research and

Development, 4, 229–233. https://doi.org/10.1109/ICCRD.2011.5763902

Talal, M., Zaidan, A. A., Zaidan, B. B., Albahri, A. S., Alamoodi, A. H., Albahri, O. S.,

Alsalem, M. A., Lim, C. K., Tan, K. L., Shir, W. L., & Mohammed, K. I. (2019).

Smart Home-based IoT for Real-time and Secure Remote Health Monitoring of

Triage and Priority System using Body Sensors: Multi-driven Systematic Review.

Journal of Medical Systems 2019 43:3, 43(3), 1–34.

https://doi.org/10.1007/S10916-019-1158-Z

Tan, J., & Koo, S. G. M. (2014). A survey of technologies in internet of things.

Proceedings - IEEE International Conference on Distributed Computing in Sensor

Systems, DCOSS 2014, 269–274. https://doi.org/10.1109/DCOSS.2014.45

Tan, L., & Wang, N. (2010). Future Internet: The Internet of Things. ICACTE 2010 -

2010 3rd International Conference on Advanced Computer Theory and

Univ
ers

iti
Mala

ya

229

Engineering, Proceedings. https://doi.org/10.1109/ICACTE.2010.5579543

Tandon, A., Kumar, P., Rishiwal, V., Yadav, M., & Yadav, P. (2021). A bio-inspired

hybrid cross-layer routing protocol for energy preservation in WSN-assisted IoT.

KSII Transactions on Internet and Information Systems, 15(4), 1317–1341.

https://doi.org/10.3837/tiis.2021.04.008

Thakare, A., Lee, E., Kumar, A., Nikam, V. B., & Kim, Y. G. (2020). PARBAC: Priority-

Attribute-Based RBAC Model for Azure IoT Cloud. IEEE Internet of Things

Journal, 7(4), 2890–2900. https://doi.org/10.1109/JIOT.2019.2963794

Thomson, C., Romdhani, I., Al-Dubai, A., Qasem, M., Ghaleb, B., & Wadhaj UK, I. %J

E. N. U. E. (2016). Cooja Simulator Manual.

Tripathi, A., Gupta, S., Chourasiya, B. (2014). Survey on data aggregation techniques for

wireless sensor networks. Int. J. Adv. Res. Comput. Commun. Eng, 7366–7371.

Tsai, C. W., Lai, C. F., & Vasilakos, A. V. (2014). Future Internet of Things: open issues

and challenges. Wireless Networks, 20(8), 2201–2217.

https://doi.org/10.1007/s11276-014-0731-0

Ullah, M. F., Imtiaz, J., & Maqbool, K. Q. (2019). Enhanced Three Layer Hybrid

Clustering Mechanism for Energy Efficient Routing in IoT. Sensors 2019, Vol. 19,

Page 829, 19(4), 829. https://doi.org/10.3390/S19040829

Upadhyayula, S., & Gupta, S. K. S. (2007). Spanning tree based algorithms for low

latency and energy efficient data aggregation enhanced convergecast (DAC) in

wireless sensor networks. Ad Hoc Networks, 5(5), 626–648.

Univ
ers

iti
Mala

ya

230

https://doi.org/10.1016/j.adhoc.2006.04.004

VasudevanVijay, PhanishayeeAmar, ShahHiral, KrevatElie, G., A., R., G., A., G., &

MuellerBrian. (2009). Safe and effective fine-grained TCP retransmissions for

datacenter communication. ACM SIGCOMM Computer Communication Review,

39(4), 303–314. https://doi.org/10.1145/1594977.1592604

Verma, N., & Singh, D. (2018). Data Redundancy Implications in Wireless Sensor

Networks. Procedia Computer Science, 132, 1210–1217.

https://doi.org/10.1016/j.procs.2018.05.036

Vithya, G., & Vinayagasundaram, B. (2014). QOS by priority routing in internet of

things. Research Journal of Applied Sciences, Engineering and Technology, 8(21),

2154–2160. https://doi.org/10.19026/rjaset.8.1213

Wan, P., & Lemmon, M. D. (2009). Event-triggered distributed optimization in sensor

networks. 2009 International Conference on Information Processing in Sensor

Networks, IPSN 2009.

Wan, S., Zhao, Y., Wang, T., Gu, Z., Abbasi, Q. H., & Choo, K. K. R. (2019). Multi-

dimensional data indexing and range query processing via Voronoi diagram for

internet of things. Future Generation Computer Systems, 91, 382–391.

https://doi.org/10.1016/j.future.2018.08.007

Wang, Y., & Zhang, S. (2016). An enhanced dynamic priority packet scheduling

algorithm in wireless sensor networks. Proceedings - 2016 UKSim-AMSS 18th

International Conference on Computer Modelling and Simulation, UKSim 2016,

311–316. https://doi.org/10.1109/UKSIM.2016.31

Univ
ers

iti
Mala

ya

231

Werner-Allen, G., Swieskowski, P., & Welsh, M. (2005). MoteLab: A wireless sensor

network testbed. 2005 4th International Symposium on Information Processing in

Sensor Networks, IPSN 2005. https://doi.org/10.1109/IPSN.2005.1440979

White, G., Nallur, V., Clarke, S. %J J. of S., & Software. (2017). Quality of service

approaches in IoT: A systematic mapping. 132, 186–203.

Whitmore, A., Agarwal, A., & Da Xu, L. (2015). The Internet of Things—A survey of

topics and trends. Information Systems Frontiers, 17(2).

https://doi.org/10.1007/s10796-014-9489-2

Wu, M., Lu, T. J., Ling, F. Y., Sun, J., & Du, H. Y. (2010). Research on the architecture

of Internet of Things. ICACTE 2010 - 2010 3rd International Conference on

Advanced Computer Theory and Engineering, Proceedings, 5.

https://doi.org/10.1109/ICACTE.2010.5579493

Xie, F. (2014). CaCa: Chinese Remainder Theorem Based Algorithm for Data

Aggregation in Internet of Things on Ships. Applied Mechanics and Materials, 701–

702, 1098–1101. https://doi.org/10.4028/www.scientific.net/amm.701-702.1098

Xie, F., & Ye, X. H. (2015). Endada: An Efficient Network Design Algorithm Based on

Weighted Graph for Data Aggregation in Internet of Things on Marine Ships.

Applied Mechanics and Materials, 740, 648–651.

https://doi.org/10.4028/www.scientific.net/amm.740.648

Xie, R., Yu, F. R., & Ji, H. (2012). Dynamic resource allocation for heterogeneous

services in cognitive radio networks with imperfect channel sensing. IEEE

Transactions on Vehicular Technology, 61(2), 770–780.

Univ
ers

iti
Mala

ya

232

https://doi.org/10.1109/TVT.2011.2181966

Xiong, Y., Sun, Y., Xing, L., & Huang, Y. (2018). Extend cloud to edge with KubeEdge.

Proceedings - 2018 3rd ACM/IEEE Symposium on Edge Computing, SEC 2018,

373–377. https://doi.org/10.1109/SEC.2018.00048

Xu, L. Da, He, W., & Li, S. (2014). Internet of things in industries: A survey. In IEEE

Transactions on Industrial Informatics (Vol. 10, Issue 4, pp. 2233–2243). IEEE

Computer Society. https://doi.org/10.1109/TII.2014.2300753

Xu, X., Yuan, M., Liu, X., Liu, A., Xiong, N. N., Cai, Z., & Wang, T. (2018). A Cross-

Layer Optimized Opportunistic Routing Scheme for Loss-and-Delay Sensitive

WSNs. Sensors 2018, Vol. 18, Page 1422, 18(5), 1422.

https://doi.org/10.3390/S18051422

Xue, Y., Ramamurthy, B., & Vuran, M. C. (2011). SDRCS: A service-differentiated real-

time communication scheme for event sensing in wireless sensor networks.

Computer Networks, 55(15), 3287–3302.

https://doi.org/10.1016/j.comnet.2011.06.018

Yamazaki, S., Abiko, Y., & Mizuno, H. (2020). A Simple and Energy-Efficient Flooding

Scheme for Wireless Routing. Wireless Communications and Mobile Computing,

2020. https://doi.org/10.1155/2020/8832602

Yan-e, D. (2011). Design of intelligent agriculture management information system

based on IoT. 2011 Fourth International Conference on Intelligent Computation

Technology and Automation, 1, 1045–1049.

Univ
ers

iti
Mala

ya

233

Yan, J., Zhou, M., & Ding, Z. (2016). Recent Advances in Energy-Efficient Routing

Protocols for Wireless Sensor Networks: A Review. In IEEE Access (Vol. 4, pp.

5673–5686). Institute of Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/ACCESS.2016.2598719

Yan, Z., Zhang, P., & Vasilakos, A. V. (2014). A survey on trust management for Internet

of Things. Journal of Network and Computer Applications, 42, 120–134.

https://doi.org/10.1016/j.jnca.2014.01.014

Yang, H., Zhang, X., & Wang, Y. (2006). A correctness proof of the SRP protocol. 20th

International Parallel and Distributed Processing Symposium, IPDPS 2006, 2006,

7–13. https://doi.org/10.1109/IPDPS.2006.1639687

Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer

Networks. https://doi.org/10.1016/j.comnet.2008.04.002

Young Han Nam, Zeehun Halm, Young Joon Chee, & Kwang Suk Park. (2002).

Development of remote diagnosis system integrating digital telemetry for medicine.

https://doi.org/10.1109/iembs.1998.747079

Yu, F., & Krishnamurthy, V. (2007). Optimal joint session admission control in

integrated WLAN and CDMA cellular networks with vertical handoff. IEEE

Transactions on Mobile Computing, 6(1), 126–139.

https://doi.org/10.1109/TMC.2007.250676

Yu, F., & Leung, V. (2002). Mobility-based predictive call admission control and

bandwidth reservation in wireless cellular networks. Computer Networks, 38(5),

577–589. https://doi.org/10.1016/S1389-1286(01)00269-9

Univ
ers

iti
Mala

ya

234

Yuan, K. L., Qiao, L., & Han, L. (2013). Level and cluster based routing for wireless

sensor network. Applied Mechanics and Materials, 321–324, 515–522.

https://doi.org/10.4028/www.scientific.net/AMM.321-324.515

Zappi, P., Farella, E., & Benini, L. (2010). Tracking motion direction and distance with

pyroelectric IR sensors. IEEE Sensors Journal, 10(9), 1486–1494.

https://doi.org/10.1109/JSEN.2009.2039792

Zhang, C., Lai, C. F., Lai, Y. H., Wu, Z. W., & Chao, H. C. (2017). An inferential real-

time falling posture reconstruction for Internet of healthcare things. Journal of

Network and Computer Applications, 89, 86–95.

https://doi.org/10.1016/j.jnca.2017.02.006

Zhang, J., Ren, F., Shu, R., & Cheng, P. (2016). TFC: Token flow control in data center

networks. Proceedings of the 11th European Conference on Computer Systems,

EuroSys 2016. https://doi.org/10.1145/2901318.2901336

Zhang, J., Ren, F., Tang, L., & Lin, C. (2013). Taming TCP incast throughput collapse in

data center networks. Proceedings - International Conference on Network

Protocols, ICNP. https://doi.org/10.1109/ICNP.2013.6733609

Zhang, J., Ren, F., Yue, X., Shu, R., & Lin, C. (2014). Sharing bandwidth by allocating

switch buffer in data center networks. IEEE Journal on Selected Areas in

Communications, 32(1), 39–51. https://doi.org/10.1109/JSAC.2014.140105

Zhang, P., Wang, J., Guo, K., Wu, F., & Min, G. (2018). Multi-functional secure data

aggregation schemes for WSNs. Ad Hoc Networks, 69, 86–99.

https://doi.org/10.1016/j.adhoc.2017.11.004

Univ
ers

iti
Mala

ya

235

Zhou, M., & Ma, Y. (2013). QoS-aware computational method for IoT composite service.

Journal of China Universities of Posts and Telecommunications, 20(SUPPL. 1), 35–

39. https://doi.org/10.1016/S1005-8885(13)60252-6

Zhou, Z., Tang, J., Zhang, L. J., Ning, K., & Wang, Q. (2014). EGF-tree: An energy-

efficient index tree for facilitating multi-region query aggregation in the internet of

things. Personal and Ubiquitous Computing, 18(4), 951–966.

https://doi.org/10.1007/s00779-013-0710-y

Zhu, L., Yu, F. R., Ning, B., & Tang, T. (2011). Cross-layer design for video

transmissions in metro passenger information systems. IEEE Transactions on

Vehicular Technology, 60(3), 1171–1181.

https://doi.org/10.1109/TVT.2011.2107927

Zhu, L., Yu, F. R., Ning, B., & Tang, T. (2012). Cross-layer handoff design in MIMO-

enabled WLANs for Communication-Based Train Control (CBTC) systems. IEEE

Journal on Selected Areas in Communications, 30(4), 719–728.

https://doi.org/10.1109/JSAC.2012.120506

Zhu, T., Dhelim, S., Zhou, Z., Yang, S., & Ning, H. (2017). An architecture for

aggregating information from distributed data nodes for industrial internet of things.

Computers and Electrical Engineering, 58, 337–349.

https://doi.org/10.1016/j.compeleceng.2016.08.018

Zimos, E., Mota, J. F. C., Rodrigues, M. R. D., & Deligiannis, N. (2016, June). Internet-

of-Things data aggregation using compressed sensing with side information. 2016

23rd International Conference on Telecommunications, ICT 2016.

Univ
ers

iti
Mala

ya

236

https://doi.org/10.1109/ICT.2016.7500418

Zorzi, M., Gluhak, A., Lange, S., & Bassi, A. (2010). From today’s INTRAnet of things

to a future INTERnet of things: A wireless- and mobility-related view. IEEE

Wireless Communications. https://doi.org/10.1109/MWC.2010.5675777

Univ
ers

iti
Mala

ya

