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QoS ENABLED CROSS-LAYERED CLUSTERING FOR MITIGATING 
FLOODING QUERIES IN INTERNET OF THING NETWORKS 

 
ABSTRACT 

The Internet of Things (IoT) has received a lot of attention in recent years since it connects 

everyday things across a wide range of applications and domains. The IoT is intended to 

improve human lives through the rapid creation of resource-constrained gadgets and the 

rising connectivity of physical embedded devices that interact using present Internet 

infrastructure. To exchange queries among heterogeneous IoT networks, numerous 

sensors require bandwidth and network resources. Network flooding is a vital method for 

successful query exchange. However, the risk of the intended flooding queries is that they 

will result in unwanted and redundant network queries, resulting in increased network 

traffic. The leading cause of inefficient resources utilization is redundant, unwanted and 

flooding queries. Therefore, in this interconnected world of resource-controlled gadgets, 

the key issues are to mitigate redundant, unwanted and flooding queries. In this way, IoT 

devices need a lot of energy and take a long time to compute. More queries lead to 

increased bandwidth consumption and poor Quality-of-Service (QoS). Existing 

techniques are primarily concerned with how to speed up fundamental routing, have 

limited features, and only give QoS solutions to particular IoT layers. However, a sole 

QoS enabled cross-layered solutions for flooding suitable for both physical and network 

layers devices have not been studied yet. In this research, A QoS enabled cross-layered 

clustering (Cluster Based Flooding) an interoperable solution for network and sensor 

layer devices is proposed. The proposed system can minimize energy consumption, delay, 

network flooding, detect and eliminate redundant flooding queries by using a query 

control mechanism (QCM). The core idea behind the Cluster based flooding (CBF) is to 

split the network into various clusters. Inside the cluster Intralayer cluster (IALC) is 

responsible to maintain the local query information proactively. While outside the cluster 
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Interlayer cluster (IELC) is used to reactively transfer the routing queries outside the 

cluster. The CBF is a hybrid method that can be more effective compared to conventional 

systems in terms of query traffic generation. However, if proper redundant query 

detection and termination mechanisms are not used, the CBF may generate more control 

traffic than typical flooding techniques. In this study, we employed the Cooja network 

simulator to assess the QoS performance of the proposed CBF. Based on the simulation 

results, the proposed technique is superior to traditional flooding and state-of-the-art in 

terms of traffic delays, network throughput and energy consumption under various 

performance metrics. Further, this study also contributes a testbed that is based on real-

time scenarios. 

Keywords: Quality-of-Service (QoS) , Internet of Things, redundant queries, clustering,  

flooding.   
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QoS DIDAYAKAN PENGGUMPULAN MERENTAS LAPISAN UNTUK 
MENGURANGKAN PERTANYAAN BANJIR DALAM INTERNET 

RANGKAIAN BENDA 
 

ABSTRAK 

Internet Benda (IoT) semakin mendapat perhatian dalam tahun kebelakangan ini 

kerana keupayaan untuk menghubungkan pelbagai peranti dalam segenap aplikasi dan 

domain. IoT bertujuan untuk menambah baik kehidupan manusia melalui penciptaan 

deras peranti yang berkekangan sumber dan juga peningkatan keterhubungan peranti 

terbenam fizikal yang berhubung menggunakan infrastruktur Internet sedia ada. Untuk 

saling bertukar kueri dalam kalangan rangkaian IoT heterogen, banyak pengesan 

memerlukan lebar jalur dan sumber rangkaian. Pembanjiran rangkaian adalah satu 

kaedah penting untuk menukar kueri dengan jayanya. Walau bagaimanapun, risiko 

pembanjiran kueri adalah ia dapat mengakibatkan kueri rangkaian lewah dan tidak 

diperlukan, sekali gus meningkatkan trafik rangkaian. Punca utama penggunaan 

sumber yang kurang cekap adalah kueri yang tidak diperlukan, lewah dan 

pembanjiran. Oleh itu, dalam dunia yang saling terhubung melalui peranti dengan 

sumber terkawal, isu utama adalah untuk mengelakkan kueri yang tidak diperlukan, 

lewah dan pembanjiran. Melalui kaedah ini, peranti IoT memerlukan tenaga yang 

banyak dan mengambil masa yang lama untuk berfungsi. Peningkatan kueri 

mengakibatkan peningkatan penggunaan lebar jalur dan kualiti perkhidmatan (QoS) 

yang lemah. Kaedah sedia ada lebih menumpukan tentang cara meningkatkan kelajuan 

penghalaan di peringkat asas, mempunyai ciri-ciri yang terhad dan memberi 

penyelesaian QoS kepada lapisan IoT yang tertentu sahaja. Walau bagaimanapun, 

sebuah penyelesaian tunggal silang lapisan menggunakan QoS untuk pembanjiran 

yang sesuai bagi kedua-dua lapisan fizikal dan rangkaian masih belum diteroka. Dalam 

kajian ini, sebuah penyelesaian kluster silang lapisan menggunakan QoS (Cluster 
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Based Flooding) untuk peranti lapisan rangkaian dan pengesan telah dicadangkan. 

Sistem cadangan ini dapat mengurangkan penggunaan tenaga, lengah, pembanjiran 

rangkaian, mengesan dan menyingkirkan pembanjiran kueri lewah menggunakan 

mekanisma kawalan kueri (QCM). Idea utam di sebalik pembanjiran berasaskan 

kluster (CBF) adalah untuk memisahkan rangkaian kepada pelbagai kluster. Kluster 

antara-lapisan kluster dalaman (IALC) bertanggungjawab memelihara maklumat kueri 

tempatan secara proaktif. Sementara kluster antara-lapisan kluster luaran (IELC) 

digunakan untuk memindahkan kueri penghalaan secara reaktif di luar kluster. CBF 

adalah satu kaedah hibrid yang lebih efektif jika dibandingkan dengan sistem 

konvensional dari segi penjanaan trafik kueri. Walau bagaimanapun, jika pengesanan 

dan penyingkiran kueri lewah yang sesuai tidak digunakan, CBF berkemungkinan 

menjana lebih banyak trafik kawalan daripada kaedah pembanjiran biasa. Kajian ini 

telah menggunakan penyelaku rangkaian Cooja untuk menilai prestasi QoS dalam 

CBF yang dicadangkan. Berdasarkan kepada keputusan simulasi, kaedah yang 

dicadangkan lebih baik daripada kaedah pembanjiran biasa dan juga kaedah terkini 

dari segi kelengahan trafik, pengeluaran rangkaian dan penggunaan tenaga di bawah 

pelbagai penilaian prestasi. Tambahan lagi, kajian ini turut menyumbang sebuah tapak 

uji yang berdasarkan senario masa nyata. 

Kata kunci: Kualiti Perkhidmatan (QoS), Internet Benda, kueri lewah, kluster, 

pembanjiran 
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CHAPTER 1: INTRODUCTION 

This chapter demonstrates a synopsis of the research which is conducted in this 

thesis. The research work is focusing on the QoS enabled cross-layered clustering for 

mitigating flooding queries in IoT (IoT) networks. The overview of the work is explained 

in several sub-sections as follows. Section 1.1 provides the introduction of the Chapter. 

Section 1.2 discusses the motivation of the Research Work, and the Statement of the 

Problem is presented in Section 1.3. Whereas Section 1.4 and Section 1.5 describes the 

Research Questions and Objectives respectively. Section 1.6 represents a significance and 

contribution of the study. Finally, Section 1.6 provides a layout of the thesis. 

1.1 Introduction  

The IoT has gained a tremendous fame in the recent years. Many of our everyday 

devices are becoming connected to us, spanning a wide range of characteristics such as 

autonomy, sensing, and contextual awareness (David et al., 2015). IoT is the outcome of 

the progress of the Internet, and the innovative creation of intelligent equipment helped 

in the development of recent prototype. The IoT is the next radical technology in 

transforming today's communication infrastructure into a wholly futuristic network 

(Krishnapriya, S and Joby, 2015). The IoT is planned to include a massive number of 

sensors that collect and transmit data on ambient conditions, such as physiological 

assessments, machine operational data, and so on. The IoT allows numerous sensors and 

things to connect with each other without the need of human mediation (Koike et al., 

2016).  

The prime purpose of IoT is to enable data sharing between devices and applications 

in the real-world environment (Laxmi, P and Deepthi, 2017). Consequently, the IoT is 

built on the combination of numerous communication systems, identification and 
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tracking technologies, different sensor and actuator networks, and distributed intelligent 

devices (Yan-e, 2011). These objects/devices are linked together and communicate with 

one another via the same network. These gadgets are connected to a sensor, allowing 

them to detect specific environmental variables, analyze the situation, and respond 

appropriately. In addition, IoT devices are scheduled to automatically take decisions or 

advise the user of the best choice (Huang et al., 2017). This interconnected network has 

the potential to offer significant advancements in the application-technology and services, 

resulting in economic advantages to worldwide corporate advancement. Several devices 

are connected to the Internet to communicate local data in information superhighway. 

An IoT network comprises hundreds or thousands of small, dispersed autonomous 

devices known as sensors (Alqahtani et al., 2016). Sensors can work together to detect, 

quantify, and collect data on physical or environmental variables and then transfer that 

data into a single hop or multi-hop transmission to one or more sinks, depending on the 

local decision process. Sinks may receive duplicate and redundant data due to the link 

between spatial position and data characteristics. As a result, sinks read sensor input in a 

meaningful way and respond appropriately (White et al., 2017). 

Moreover, the IoT has the capacity to provide a smart environment with significant 

time, energy, resource savings and a high Quality-of-Service (QoS). In the IoT , vibrant 

resource scheduling for diverse workloads is crucial for maintaining QoS, energy 

consumption on each mote, and data transmission traffic delay (Dhumane et al., 2016)  

(Alqahtani et al., 2016). Data transmission in an IoT network is prioritized, energy 

consumption, QoS, and delay are the most demanding needs for IoT networks (White et 

al., 2017). Furthermore, it is widely recognized that IoT has the capacity for a broad range 

of applications like health, agriculture, education, transportation, poultry, supply chain, 

farming, crop protection, and irrigation (Riadi et al., n.d.).  
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Heavy control packet exchange between sensor nodes for obtaining an efficient 

forwarding route to the base station results in reducing overall network lifetime. 

Hierarchical transmission in WSN and IoT is considered one of the preferred ways 

for energy efficient routing of data packets toward the destination. In this kind of 

architecture, sensor nodes are divided into different layers with different tasks (Masoud 

et al., 2019). 

Clustering is a technique where different sensor nodes divided into groups and sub 

groups, they transmit their sensed data to the CH node and they in turn forward these 

packets toward the sink in hierarchical fashion. Recently, different routing techniques 

were proposed for three layer clustering topology in Wireless Sensor Network (WSN) 

which outperform the basic two layer clustering hierarchy. The problem that remains in 

these approaches is the heavy control packet exchange between nodes after every round 

in order to choose efficient lower layer heads. Among these techniques is Hybrid 

Hierarchical Clustering Approach (HHCA). According to HHCA, the upper layer heads 

are centrally selected by base station, while sensor nodes only have to select lower layer 

heads distributivity (Ullah et al., 2019) (Lahane & Jariwala, 2021). 

Every application necessitates numerous sensors to link and converse with one 

another, potentially lowering network QoS due to wasteful resource utilization, traffic 

delays due to superfluous messages/queries, and energy consumption because each 

device has explicit approach to the cloud resources (O. Liang et al., 2007; Salehi et al., 

2013), as illustrated in Figure 1.1. Univ
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Figure 1.1: Layer Based Communication Model for Heterogeneous IoT 
Devices.  

Cross-layer designed is an escape from the pure waterfall-like concept of the 

traditional communications model with virtually strict boundaries between layers.  Figure 

1.1 depicts a communication model with multiple sensor motes interacting with one 

another at the network and physical (sensor) layers of the IoT (Arkian et al., 2015).  Cross-

layer designed is an escape from the pure waterfall-like concept of the 

traditional communications model with virtually strict boundaries between layers. The 

cross layer approach transports feedback dynamically via the layer boundaries to enable 

the compensation of QoS parameters such as  unwanted routing queries, delay, 

throughput or other mismatch of requirements and resources by any control input to 

another layer. 

Strict boundaries between layers are enforced in the original networking model, where 

data is kept strictly within a given layer. Cross-layer removes such strict boundaries to 

allow communication between layers by permitting one layer to access the data of another 

layer to exchange information and enable interaction.  
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Furthermore, due to the energy-constrained nature of IoT devices, resolving these 

issues in IoT networks is demanding. Currently, no cross-layered mechanisms have been 

established for the identification and termination of redundant queries in this domain. The 

following subsection describe the challenges in network querying. 

1.1.1  Network Querying 

Network querying is regarded as a critical job in a Wireless Sensor Network 

(WSN) / IoT since it permits users to obtain information based on sensors. The only way 

to extract the essential information accurately and as per needs of the applications is to 

query the WSN/IoT. For instance, the authority can collect temperature or humidity data 

from specific locations to satisfy different goals such as statistical analysis, storage of 

records, events detection, etc., to meet requirements in a particular range or period in 

environmental monitoring WSN. In addition, at urgency, in cases of battlefield or in 

military use, it can be vital to determine the location of opponent's vehicles inside a 

certain perimeter as soon as possible. From all the above instances, it is detected that the 

query emitter needs specifically the particular sensor data meeting the query conditions 

on time location or range. As a result, data recovery from all WSN and IoT sensors are 

unnecessary and redundant in such instances. Furthermore, it can fail to produce an 

accurate query result in a timely manner. Therefore, it is vital to create a proper query 

execution methodology that considers all distinguishing WSN and IoT characteristics. 

WSN is typically considered as a dispersed and geographically scattered database that 

obtains data from environment dynamically rather than being entered by an operator. The 

specification of collaborative querying and job allocation through a straightforward 

interface that conceals the internal processes within the WSN. In addition, the majority 

of WSN real-time applications necessitate a quick and accurate query response. Apart 

from deploying sensors on mobile platforms, one of the most difficult challenges is 
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gaining access to sensor data, which necessitates the development of effective and 

distributed systems for query compiling, data organization, and storing. Decisions must 

be taken regarding the rate of recurrence and nature of data to be collected. Data can, for 

instance, be taken routinely at regular periods from unified WSNs, or need based, i.e., 

only when asked from the appropriate WSNs. Other essential issues in IoT and WSN 

applications include efficient query processing in context of processing time, ideal 

storage plan, and several operations for large-scale data. Using sensor technology, 

capturing enormous volumes of data has been very fast; querying and mining large-sized 

data is computationally expensive, especially when the analysis is required with adequate 

accuracy in real-time. As a result, implementing delay and accuracy-sensitive query 

processing approaches in WSNs, and the IoT provides several major research issues that 

inspire the work discussed in this thesis. 

1.2 Motivation  

While many studies have been done on various critical areas of IoT like 

architecture, network protocols, coverage, and so on, providing Quality-of-Service (QoS) 

of network queries in IoT remains a largely unexplored study area. This is due to the 

distinctive nature of IoT and WSN in comparison to conventional networks. Therefore, 

the compact definition the QoS parameters of an IoT query is unclear. Similarly, it applies 

to the query processing approaches that dynamically support them. The primary Quality-

of-Service (QoS) metrics for query processing in heterogeneous IoT networks are energy 

consumption, delay, and network throughput. Even if low energy consumption is 

typically considered, the essential design need of IoT, real-time communication in time-

sensitive applications such as safety monitoring, object tracing, health monitoring, 

mission-critical applications, etc., are nevertheless more and more significant. The 
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assurance of a query response accompanying a shortest likely delay is the fundamental 

real-time requirement of these applications. In addition, some applications can explicitly 

specify the time limit when the query is issued and require the best response in the long 

term. For instance, to detect a crucial hazard scenario like a bushfire, the application needs 

to know the surroundings temperature, the direction of wind, and other information in a 

matter of seconds. Due to the emergency, less accurate data can be accepted in such 

scenarios. In such instances, receiving an estimated but immediate response that meets 

the delay bound remains the highest priority for detecting the event and initiating the 

appropriate actions. As a result, maintaining timeliness in giving a real-time priority to a 

query response with the highest level of accuracy in terms of throughput is critical (Ruan 

et al., 2020). 

Priority query is another critical Quality-of-Service (QoS) metric for IoT query 

processing such as environment monitoring, machine/structural health maintenance, etc. 

It is feasible to attain the best throughput in terms of accuracy by gathering the most 

recent data from all network's sensors to respond to every application-generated query 

(Thakare et al., 2020). However, given the resource-restricted types of the sensors, this 

strategy of gathering the entire sensory data at the time of query implementation is not 

always practical or cost-valuable. Therefore, the most efficient and effective use of 

energy restricted IoT resources and the least possible query delay are needed to achieve 

the best resource utilization. 

Again, depending on the conditions, some applications require sensor data with 

shorter delay or higher precision or a mix of specific latency and accuracy requirements. 

For instance, very accurate sensor data are necessary to maintain the desired environment 

in typical working settings in a food storage controller. However, changes must be 

reported immediately (i.e., the high temperature that causes a fire), and the system needs 
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approximate sensor data to address an incident to regain from any abrupt and unusual 

change in one or more recorded parameters. (i.e., delay is the top priority). 

Furthermore, sensors necessitate network resources and bandwidth to exchange 

queries among dissimilar IoT networks. For a successful exchange of queries, network 

flooding is a vital probing strategy. However, the downside of the intended flooding 

queries is that they will result in unwanted and redundant network queries, resulting in 

high network traffic. The leading cause of wasteful usage of resources are redundant, 

undesired, and flooding queries. In this networked world of resource-controlled gadgets, 

the key issues are alleviating redundant, unwanted, and flooding queries. In addition, 

because of unwanted and redundant queries, IoT devices use additional energy and 

require computational time, which leads to more bandwidth consumption and miserable 

QoS. Existing techniques are primarily concerned with how to speed up fundamental 

routing, have limited features, and only give QoS solutions to specific IoT layers. 

However, a sole QoS enabled cross-layered solutions for flooding suitable for both 

physical and network layers devices has not been studied yet (Premila et al., 2015).  

The research presented in this thesis is a step towards improve the QoS of IoT 

networks by preventing and mitigating the unwanted and redundant flooding queries for 

both physical and network layers devices and can become the part of future IoT-QoS 

technologies. 

1.3 Problem Statement 

In recent decades, the IoT has gained a lot of attention. However, IoT is planned 

to include a massive number of sensors that collect and transmit data on ambient 

conditions, physiological assessments, machine operational data, etc (Özdoğan & Ayhan, 

2019). Due to the large number of connected devices or sensors and exchange of 

information on network the redundant and unwanted queries becomes the major cause of 
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network flooding which leads to an inefficient utilization of resources and may reduce 

the QoS (Conti et al., 2014)(O. Liang et al., 2007)(J. Jin et al., 2012). Network flooding 

continues even after the destination found which may affect the overall performance  of 

the network(Benenson et al., 2006)(Gluhak et al., 2011). 

IoT devices are more susceptible to redundant and unwanted flooding queries, which 

may disrupt data transmission, causing them to delays, require more bandwidth and 

energy to transmit the query to the destination which may reduce the QoS of IoT network 

in context of energy consumption, cost, delays and network throughput. There is also a 

lack of mechanism to  identify the priority queries from the network (Talal et al., 2019) 

(Qiu et al., 2012), (Kumar & Chaurasiya, 2019), (Cheng et al., 2018), (Baddeley et al., 

2019), (Yamazaki et al., 2020). 

There is no compatible solution for priority and redundant undesired flooding 

queries among all existing studies for physical and network layer devices. In addition, 

present techniques primarily focus on accelerating basic routing with limited 

functionality and providing a QoS solution only to a certain IoT layers (Ullah et al., 2019).  

 

 

 

 

 

 

 

Figure 1.2: A Level-Based Flooding Search Strategy of Internet of Things. 
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In Figure 1.2 sink / sender mote searching for target / destination mote and target 

mote send data back reply to sender node in disordered way. Intermediate motes 

rebroadcast the query automatically which leads to flood the whole network. Generate 

heavy network traffic and redundant queries by utilizing excessive energy and bandwidth 

which may leads to more delay and overall degradation of QoS. Note that among all the 

existing techniques, there is no interoperable solution both for physical and network layer 

devices. Based on the discussion, it is concluded that IoT demand a QoS enabled cross-

layered clustering approach that will help in monitoring network flooding, detect and 

terminate the redundant queries and reduce the energy consumption, delay and prioritize 

the queries as it has been neglected to date (Tandon et al., 2021), (Delgado-Rajo et al., 

2020). 

1.4 Research Question 

This study addresses the following research questions to achieve the objectives. 

RQ1: How can we analyze and identify the limitations of existing mechanism used to 

prioritize, detect and terminate the redundant / unwanted flooding queries in sensor and 

network layer of IoT networks? 

RQ2: What mechanism is required to prioritize, detect, and terminate the redundant and 

unwanted flooding queries for sensor and network layer to enhance the QoS of IoT 

network? 

RQ3: How can we formulate cross-layered clustering for redundant and unwanted 

flooding queries to be developed? 
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RQ4: How can a real-time QoS enabled testbed can detect and terminate the redundant 

and unwanted queries in IoT network and to reduce the number of duplicate/overlapping 

queries in IoT networks to improve QoS. 

RQ5: How does the proposed mechanism improves the network performance in terms of 

energy consumption, delay, and throughput? 

1.5 Research Aim and Objectives 

This research aims to address the problem of redundant queries and network 

flooding in the IoT networks and to propose a QoS enabled cross-layered clustering 

approach. Following objectives are defined to be achieved to attain the aim of this 

research. 

1. To investigate the state-of-the-art solution and identify the issues and 

limitations to prioritize, detect and terminate the redundant and unwanted 

flooding queries over the sensor and network layer of IoT network. 

2. To develop a cross-layered Cluster Based Flooding (CBF) technique for priority 

and redundant queries. Two new algorithms are introduced as below: 

o Interlayer Clustering (IELC) algorithm for network layer that uses 

advance query control mechanism (QCM) for detecting and terminating 

the redundant and unwanted queries and network flooding. 

o Intralayer Clustering (IALC) algorithm for physical layer that maintains 

priority queries information locally. 

3. To formulate the cross-layered Cluster Based Flooding (CBF) using Sets in 

Prob B. 

4. To design real time QoS enabled Query Control Mechanism (QCM) testbed 

used to detect and terminate the redundant and unwanted queries in IoT 
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networks. The QCM testbed aims to reduce the number of 

duplicate/overlapping queries in IoT networks to improve QoS. 

5. To evaluate our Cluster Based Flooding (CBF) approach using simulation 

tools under realistic scenarios and compare the results with the state-of-the-

art approaches in the literature as well as validate the results using a statistical 

analysis tool. 

1.6 Significance and Contribution of the study  

The significance and keyβcontributions of thisβdissertation are as follows, 

1. An exhaustive and deep review of literature for the state-of-the-art solutions in 

WSN/IoT to devise a comprehensiveβthematic taxonomy. The studyβanalyzed each 

state-of-the-art query solution toβidentify theβdistinguishing WSN/IoTβfeatures utilized 

for each solution and the exactβproblem addressed by a particularβtechnique together 

with theβsimulation or emulationβenvironment of the correspondingβtechnique. The 

criticalβdiscussion extendedβthe knowledge of the domain of the currentβquery 

processing trends in the WSN/IoT networks, the major strengths of potential, and the 

research gaps that required thoroughβinvestigations. This study concluded that a sole QoS 

enabled cross-layer solution for flooding (suitable for both physical and network layers 

devices) was not addressed previously. 

2. Design of QoS enabled cross-layered clustering technique to mitigate flooding 

queries in IoT networks. The QoS enabled cross-layered clustering was significantly 

implemented asβinteroperable solutionβboth for physicalβlayer andβnetwork layer 

devices. Since the cross-layeredβCBF divides theβwhole network into differentβclusters, 

being localβquery informationβproactively maintainedβby theβIALC, CBF 

wasβinvestigated asβpotentially moreβefficientβagainst traditionalβschemes in terms of 

queryβtrafficβgeneration. However, βthe CBF wasβfound insignificantβin the absence 
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ofβappropriate redundantβquery detectionβand termination techniquesβsince the CBF 

generateβmore controlβtraffic comparedβto standard floodingβtechniques. Thus, the 

adoptedβInterlayer clusteringβ (IELC) composedβof advanced queryβdetection and 

terminationβtechniques (QCM), βlinked signalβstrength andβQuery Limit Threshold 

(QLT) valuesβfor detectingβflooding. The techniqueβwas validated asβit was capable of 

minimizingβthe energyβconsumption, network flooding, and identifying and eliminating 

unwanted and redundant routing queries inβIoT networks. The study also investigated 

this techniqueβmore accountableβfor checkingβfurther localityβand queryβdetection 

strength in an IoT network during flooding. This study observed theβstrength ofβquery 

detection forβverifying anyβvariation concerningβthe signal strengthβof query packet, 

and theβQLT. The QoS enabled solution outperformed the existing solutions. 

The outcome of this research contribution was published [Khan, F. A., Noor, R. M., Mat 

Kiah, M. L., Noor, N. M., Altowaijri, S. M., & Rahman, A. U. (2019). QoS Enabled 

Layered Based Clustering for Reactive Flooding in the IoT. Symmetry, 11(5), 634].   

 

3. Design of a Formal Method for CBF Employing Event- B Criteria to Deeply 

Examine the CBF in IoT Context. This study designed formal method inspired by 

formal verification, significantly enhanced the quality of the verification system, backed 

by rigorous mathematical proofs. Since the existing studies lacked the important formal 

validation of cross-layered routing protocols, the formal specification design of cross-

layered cluster-based flooding CBF at event B proved the correctnessβof the 

routeβdiscovery mechanism. Having a refinement-basedβmethod, it significantly 

improved the way to add system details to the corresponding model progressively, 

resulting in modeling and authentication easier for the user. 

4. Development of QoS Enabled QCM Testbed. This study developed a QoSβenabled 
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QCM testbed to detect and mitigate the redundant and unwanted queries in IoT networks. 

The QCM testbed significantly reduced the number of duplicate/overlapping queries in 

IoT networks to improve QoS by a prompt calculation of all the overlapping clusters 

within the query space. The testbed successfully implemented the smart query detection 

and mitigation to manage the redundant queries issue to provide a better QoS. 

5. Inferential Validation of Implemented Outcomes of Research Study. The last 

research contribution of this study is the successful validation of achieved outcomes of 

comparative analysis of our solution with the existing studies. The study incorporated the 

inferential analysis and validation of QoS enabled QCM mechanism employing ANOVA 

and t-tests. The research outcomes accomplished the 95% confidence interval, and the 

probability was found less than 0.05, demonstrating the significance of achieving the 

rejection of NULL hypothesis.    

The outcome of this research contribution was published [Khan, F. A., Noor, R. 

M., Kiah, M. L. M., Ahmedy, I., Yamani, M., Soon, T. K., & Ahmad, M. (2020). 

Performance Evaluation and Validation of QCM (Query Control Mechanism) for QoS-

Enabled Layered-Based Clustering for Reactive Flooding in the IoT. Sensors, 20(1), 283].  
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1.7 Layout of Thesis 

The remainder of this thesis is presented below. 

Figure 1.3: Thesis Layout 

Chapter 2: This Chapter examines several existing research on sensor data models, query 

routing paths, and QoS of query processing approaches, as well as risks and challenges 

related to IoT Layers. The review focuses on our research objectives and covers relevant 

research into a single WSN and multiple WSNs connected with the IoT. The advantages 

and disadvantages are discussed for each method, and recommendations for future 

research are identified. 

Chapter 3: This Chapter proposed a QoS enabled cross-layered clustering technique for 

mitigating flooding queries in IoT networks. It explains the phases in the Cluster Based 

Flooding (CBF) along with the algorithms IALC, IELC and QCM presented in each 

phase. The distinct features of the CBF are also highlighted. 

Chapter 4: This Chapter presents a formal analysis of the cluster-based flooding (CBF) 

using Event-B method and as a case study use to examine the CBF in IoT. 
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Additionally, this Chapter demonstrate system requirements and environment 

assumptions taken during development. It depicts the whole process of formal 

development, including the formalization with Event-B and the validation with the 

ProB. 

Chapter 5: This Chapter presents QoS enabled query control mechanism (QCM) testbed 

used to detect and terminate the redundant and unwanted queries in IoT networks. The 

QCM testbed aims to reduce the number of duplicate/overlapping queries in IoT networks 

to improve QoS. The query control mechanism is aware of all the query information. 

Therefore, all the overlapping clusters in the whole query space can be easily calculated. 

Chapter 6: This Chapter reports the results obtained from different experiments and 

analyzed the effectiveness of our method. This study also compares and contrast 

experimental results of this research with the benchmark results of the state-of-the-art 

methods. The statistical validation is performed to know the significant differences 

between the QCM and state-of-the-art methods. 

Chapter 7:  This Chapter completes the thesis by explaining how the research objectives 

have been achieved. It also lists the limitations of study along with the future research 

directions of the proposed method. 

 

 
 Univ

ers
iti 

Mala
ya



 

17 

 

CHAPTER 2: LITERATURE REVIEW 

 The Chapter previews the Wireless Sensor Networks and IoT architecture, 

followed by the essential concepts to help readers comprehend the notions of WSN/IoT. 

This chapter demonstrates a thorough review of the query processing, and associated 

challenges in heterogeneous WSN/IoT Networks. This Chapter devise a contemporary 

taxonomy of the reported redundant/unwanted queries in cross layers to clarify the 

important categories of QoS implications (for each layer of the IoT and wireless sensor 

network). Additionally, this Chapter comprehensively analyzes the possible unwanted 

and query threats impacting the QoS. It also focuses on a specific layer in conjunction 

with a compact solution to design QoS enabled solution to mitigate the redundant queries. 

The subsequent Chapter demonstrates the state-of-the-art solutions in WSN/IoT 

considering the most primitive to the most modern trends. The structure follows the 

fundamental solutions categories and presents the critical analysis and discussion in 

formulating a thorough thematic taxonomy. This Chapter also analyzes each state-of-the-

art query solution to recognize the differentiating WSN/IoT features employed for 

individual solutions. It relates the exact problem solved by a specific technique presented 

with the simulation or emulation environment of the related technique and finally extend 

the critical discussion based on the domain knowledge of the current query processing trends 

in the WSN/IoT Networks, the major strengths, and the research gaps required for 

thorough investigations. 

The subsequent of Chapter is as follows. Section 2.1 provides a comprehensive 

overview of WSN, including its services and potential areas of application. Next, the 

concept of how distributed and heterogeneous WSN collaborates in the IoT can 

significantly extend the services provided by the IoT layer and extend the redundant query 
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threats that the layer faces. Section 2.2 presents an importance of IoT network in detail. 

Section 2.3 centers on the state of the art on in-network query processing in WSN /IoT. 

The query handling issues in the distributed and heterogeneous WSNs towards IoT are 

discussed in Section 2.4. Section 2.5 is charted by a review on the Quality-of-Service 

(QoS) of WSN/IoT query processing along with cross-layered architecture and 

challenges. Finally, Section 2.6 concludes with summarizing the Chapter. 

2.1 Background  

      This Section provides a comprehensive overview of WSN, including its 

services and potential areas of application. Next, the concept of how distributed and 

heterogeneous WSN collaborates in the IoT can significantly extend the services provided 

by the IoT layer and extend the redundant query threats that the layer faces. 

2.1.1 Local / Stationary Wireless Sensor Network 

A local/fixed Wireless Sensor Network (WSN), also called stand-alone WSN, 

consists of hundreds of small dispersed autonomous devices called "Sensor Nodes" (Yick 

et al., 2008). In cooperation with sensors, physical or environmental conditions can be 

sensed, measured, and collected locally. Some WSNs may be equipped with multiple 

fusion nodes spread between the sensors for specific purposes, such as data collection, 

data aggregation, or some other pro-active computational operation. Fusion nodes are 

usually a tiny bit strong than the usual sensor node and used to appropriately control a 

group of neighboring sensor node. Due to the local decision mechanism, sensors can 

transmit sensed data to one or more gateways and sink nodes via the fusion nodes in one 

hop or multi-hop communication process. Sink or gateway nodes have more computing 

capacity, battery life, and transmission range and relay data in return to the base station 

as presented in Figure 2.1.  
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Figure 2.1:  Basic WSN Architecture  

WSN/IoT infrastructure is either unstructured, with a complicated number of sensor 

nodes employed ad-hoc, or organized, with fewer sensor nodes installed in a pre-planned 

manner and proper coverage of the area. Different types of WSN influence different design 

factors (such as fault tolerance, network size, cost, operating environment, topology, hardware 

limitations, power consumption, and transmission media). WSN has many distinguishing 

features that set it apart from other traditional networks such as wireless, MANET, Bluetooth, 

etc. Sensor nodes can integrate different sensors and transceivers in a resource-limited 

environment, and They can also organize, transmit and exchange information with end-users 

in their surroundings. Nodes are generally static upon deployment, and some can self-organize, 

referring to the system's ability to attain the necessary organizational structures with no human 

involvement. Each node is powered by a small low-capacity battery and cannot be replaced 

after a deployment, limiting the architecture of the data flowing through the network to 

preserve battery life and prevent users from overwhelming. Additional important features of 

WSN can be defined as intensive computing, data-centric, application-specific architecture, 

and cross-layered optimization in network protocols (Mukherjee et al., 2021).  

The most popular wireless sensor network applications (Akyildiz et al., 2002) can be 
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categorized as follows and presented in Figure 2.2. 

 

 Simple Monitoring 

Following are few examples of monitoring application scenarios: 

 Collection of Environmental Data  

Researchers collect sensor data from a series of sensors installed in an area for a number 

of months or years to identify long-term and seasonal trends in the atmosphere and then 

analyze the data offline  (Cerpa, Elson, Estrin, et al., 2001; Mainwaring et al., 2002). 

 Military Surveillance  

 Through sensor networks, leaders and commanders may track the position, condition, 

and availability of soldiers, vehicles, equipment, etc. 

 Environmental Bio-complexity Mapping 

 With low cost and operating overhead, sensing technology can detect any form of 

spatial or temporal resolution of a geometric field (Cerpa, Elson, Estrin, et al., 2001; 

Cerpa, Elson, Hamilton, et al., 2001; Keitt et al., 1997). 

 Human Physiological Data Monitoring 

Sensor networks can capture and preserve human psychological data for extended 

periods, which can then be used for medical research  (Noury et al., 2000).     
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Figure 2.2: Applications of WSN 

 Surveillance of Security or Emergencies 

The following are some examples of security or emergency handling applications: 

 Surveillance on the Battlefield 

Sensors can be placed along every route on the battlefield to keep an eye on all activities. 

 Detection of Nuclear, Biological, and Chemical Attacks 

In all types of nuclear, biological, or chemical anomalies, sensor networks are used as an 

alert mechanism. 

 Detection of Forest Fire 

The fire's source can be detected by remote deployment of sensor nodes in a forest. 

 Detection of Flood 

A variety of sensors such as rainfall, water level, and weather sensors are used to detect 

floods. 

 Healthcare Diagnostic  

Sensor networks can track and detect the behavior of the elderly and thus help doctors 

to recognize the symptoms on time (Young Han Nam et al., 2002). 
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 Object Tracking 

Object tracking is another application for sensor networks. It is necessary to track 

the whereabouts of valuable goods or persons in various situations. Some examples 

of tracking applications are as follows: 

 Control system for Inventory 

The sensor network's object tracking function helps to monitor the number of 

items in a vast inventory and manage them.  

 Military targeted Intelligence sensor networks may be used to detect military 

anomalies. 

 Medical monitoring: heart rate, blood pressure, allergies, and other data can be 

detected using tiny, lightweight sensors that can be affixed to each patient. Doctors 

may also carry a sensor node to help them find their way around the hospital. 

2.1.2 Distributed Wireless Sensor Networks 

Today the extensive use of Internet networks worldwide is carried out by devices 

such as computers and cell phones directly by humans anytime and anywhere. However, 

the field of information and communication technology has recently introduced a new 

dimension: accessibility for everything, at any time and from any place. Not only the 

Internet of the future will enable people to communicate with one another and access 

information, but it will also allow machines to communicate with one another and with 

people in their immediate vicinity. It opens up a range of development platforms 

concerned with increasing intelligence in daily communication than with faster 

broadband (L. Tan & Wang, 2010). The future Internet is entering a new age of 
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pervasiveness known as the IoT, in which new modes of communication between humans 

and things, as well as between things, will emerge. It is reasonable to describe IoT as 

"The things have identities and virtual individuals operating in smart environments using 

intelligent interfaces for social, environmental and user context communication " (Zorzi 

et al., 2010). According to the IoT concept as mentioned in Figure 2.3, the gadgets must 

be capable of sensing to be aware of their state on numerous physical characteristics such 

as temperature, humidity, light, speed, proximity, and so on. In addition, cooperation 

between various WSNs is mandatory to achieve the ubiquitous view of IoT. For instance, 

controlling a car's speed (a node in a vehicle sensor network) may require road traffic and 

weather conditions. The former information is retrieved from the vehicle sensor network, 

while the latter is obtained from environmental monitoring sensors. A driver may also 

search from the same vehicle for the status of the security devices/home devices that have 

to be installed on the home network. 

 

     Figure 2.3: Everyday Objects Connected to the Internet  
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This highlights the significance of distributed and collaborative WSNs in IoT. It 

introduces the notion of the Sensor Web, characterized as a collection of comprehensive, 

universally distributed diverse sensors related to one or more WSNs that are linked by a 

communication material and share data via interoperable interfaces. By using various 

types of queries, users and web applications can access and control the sensors. This work 

is concerned with query processing in WSNs and IoT. 

2.2 IoT Networks  

The rapid growth of IoT, grid computing, cloud computing and distributed  

Internet-based systems recently led to the explosion of data creation in nearly every area 

of engineering and business (Hajizadeh & Jafari Navimipour, 2017; Jafari Navimipour & 

Fouladi, 2017; X. Jin et al., 2015). Also, an increasing quantity of physical objects are 

being connected rapidly, indicating the IoT concept  (Piccialli et al., 2017; Qin et al., 

2016; Whitmore et al., 2015). With the introduction of wireless networking, the Internet, 

and ubiquitous computing, a new concept known as the IoT has emerged; IoT consists of 

physical devices that can be tracked and managed over the Internet (Mao et al., 2016; 

Moschakis & Karatza, 2015; Z. Yan et al., 2014). Various actuators and sensors linked to 

the Internet through a wireless sensor network can monitor billions of things in the IoT 

(Abdollahzadeh & Navimipour, 2016). The IoT's key characteristics are connectivity, 

sensing, and accessibility between things (Levi & Sarimurat, 2017). IoT connects objects 

to the internet via a variety of technologies, including cellular technology 

(2G/3G/4G/LTE/5G), Machine-to-Machine (M2M), and radio features such as Bluetooth 

(IEEE 802.15.1), Wi-Fi (IEEE 702.11), and ZigBee (IEEE 802.15.4). Regardless of IoT 

device heterogeneity (Baccelli et al., 2014), data from IoT applications (such as home 

automation, smart buildings, and energy management services) can be easily combined, 

connected, contrasted, and integrated to achieve the set objectives (Piccialli et al., 2017). 
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Small batteries and energy supplies often operate tiny gadgets in the IoTs (Baker et al., 

2015).  Several IoT applications are designed to track critical circumstances such as fire 

detection, smoke detection, building health surveillance, and intrusion detection in 

undesired network latency or jitter cases. In such applications, the network must be stable 

enough, and the routing of this data must be optimized to deliver data to a designated 

system within a defined period.   Since most nodes in a multi-hop routing scheme sleep 

to conserve energy, the nearest nodes of the sink should be compelled to wake up to 

gather and send data to the sink node without delay and without sacrificing energy 

efficiency (Liu et al., 2016). As a result, long-term applications like continuous 

surveillance systems are vital to lengthen their life (Choi et al., 2015). Moreover, the rate 

of data obtained by the base station is usually tremendous (Rahman et al., n.d.). As a 

result, data aggregation from diverse locations is an efficient approach in a network where 

nodes are resource and energy-constrained (Chao & Hsiao, 2014) (Accettura et al., 2013) 

. The query aggregation strategy's primary goal is to efficiently aggregate and gather data 

packets to control energy consumption, prolong the network lifetime, traffic bottlenecks, 

and data correctness (A. R. Khan & Chishti, 2020), (Prakash et al., 2006). Furthermore, 

removing redundancies and reducing the volume of  transmitted data would save network 

resources (Dhand & Tyagi, 2016). The effectiveness of aggregation depends on the 

structure of the network and the sensing data size. Since the scale of the sensing data is 

so large, it is vital to reduce the network's top communication (F. Xie & Ye, 2015).  

In addition, the flooder motes can attack the aggregator nodes during the query 

aggregation process  (Merad Boudia et al., 2015) Thus, the base station cannot guarantee 

the accuracy of aggregated data if the intermediate node is down. (Parmar & Jinwala, 

2016). 
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2.3 Query Processing in WSNs/IoT 

This section addresses the relevance of WSNs, and IoT-based queries and the 

specific features and challenges related to WSN and IoT query processing. WSN seeks 

to provide users with access to relevant information derived from data gathered by various 

sensor nodes. In real-world applications, a significant number of sensors are employed to 

track any physical environment (Meguerdichian et al., 2001). Such networks, therefore, 

produce huge amounts of data. However, query processing in WSN is needed to extract 

relevant information from the massive amount of sensor data. The primary reason for 

generating queries in WSN / IoT is as follows: 

 Query processing can reveal complex patterns in unstructured sensor data, 

allowing the information of interest to be identified. 

 End users can communicate with sensors by querying the sensor network without 

worrying about the complexities of networking. 

 A query may be scheduled flexibly to collect data on demand or at defined 

intervals, depending on the application requirement. 

 An event is a pattern or notable change that occasionally appears in the observed 

environment in different forms (P. Wan & Lemmon, 2009) like continuous or 

gradual. Query processing in WSN helps to detect any unusual event in the 

environment.  
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Figure 2.4: Query processing in WSN/ IoT 

The subsequent section elaborates a summary of challenges stated in existing 

state-of-the-art studies for query processing tasks in single and distributed WSNs. Figure 

2.4 depicts the general outline of the discussion, which will be expanded on one by one 

in the following sections. 

The subsequent section elaborates a summary of challenges stated in existing 

state-of-the-art studies for query processing tasks in single and distributed WSNs. Figure 

2.4 depicts the general outline of the discussion, which will be expanded on one by one 

in the following Sections. 

2.3.1 Query Processing in Static WSN 

As mentioned previously, WSNs are composed of sensor, fusion and sink nodes 

which forming a three-tier architecture. Where sensor, fusion and sink nodes are 

responsible for forming the bottom level, middle level, and top-level network hierarchy. 

In query based WSN, regardless of query type, high-level user queries are received at the 

sink, updated, and directed towards the appropriate sensors through the fusion nodes. 

As shown in Figure 2.5, sensor nodes process queries and return query results to sinks in 

the reverse hierarchy. In network query processing is a query processing model that 

pushes query into the sensor network, closer to the data source (Noury et al., 2000). WSN 

queries can be planned to execute in various ways, such as an aggregation-based query, 

depending on the query execution strategy. 
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 Aggregation Based Query 

As previously mentioned, WSN queries require data from sensors that meet 

spatial, temporal, or value range specifications. Many sensor nodes are highly resourced 

limited and need to maintain as little energy consumption when communicating data and 

processing queries. 

 

Figure 2.5: Query Aggregation in WSN/IoT Network 

In most sensors, data transmission consumes the more power compared to data 

processing. Therefore, it is very desirable to reduce the amount of data through local 

processing while providing query response. The user entity would be linked to the root 

node, which would issue queries, and the sensors would cooperate to produce an accurate 

result. According to  Fasolo et al. (2007) in-network aggregation of query response data 

can be divided into two approaches based on various factors such as application type, 

available bandwidth, network parameters, etc. 

 

 In-network Aggregation with Size Reduction: This method incorporates data from 
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various sources to minimize the amount of data be transmitted. Assume that a sensor gets 

multiple temperature measurements from two different sensors. It may aggregate data 

according to application requirements, such as average or maximum temperature, instead 

of forwarding two readings and thereby minimize the amount of transmitted data by 

sacrificing the accuracy of data. It is typically not possible to restore all the original data 

ideally after the aggregation process. 

 In-network Aggregation without Size Reduction: Instead of more processing, this 

approach lowers the quantity of transferred data by merging several data packets into one. 

A sensor, for example, collects pressure and temperature data from two separate sensors. 

Since the data types vary, it is impractical to merge them into a single data set, such as an 

aggregate or maximum value. As a result, it may combine all data packets into one, 

reducing the volume of data transmitted. At the sink, this method preserves the original 

data. 

2.3.2 Query and Data Aggregation in IoT 

The core objective of the query aggregation is to enhance the network lifetime 

and also reduce the energy consumption (Tripathi, A., Gupta, S., Chourasiya, 2014). 

However, any node may store, aggregate, and send aggregated queries, received from 

subsequent nodes or produced by itself over a certain length of time. (Upadhyayula & 

Gupta, 2007). This eliminates redundant and unwanted queries from raw data and reduces 

communications expenses (Z. Li et al., 2017) .  Here, more than one query is considered 

as data in the network.  

 Nodes in the IoTs usually are resource-constrained and battery limited (Raza et 

al., 2017) . To save energy and resources, data need to be aggregated (P. Zhang et al., 

2018). The data aggregation is a process by which specific nodes or simply a single node 

combined the results of other nodes (Goudarzi et al., 2019), (Nguyen et al., 2021). The 
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node handles the collected data to reduce transmission either with the base station or with 

an outside user having the authorization to connect to the network (Pourghebleh & 

Navimipour, 2017), (Sanyal & Zhang, 2018), (Kiran Maraiya, Kamal Kant, n.d.). Figure. 

2.6 depicts the aggregation of data through a process in the IoT. By selecting the most 

appropriate route, the collected data is transmitted to the sink (Dagar, M., Mahajan, 2013). 

In general, data aggregation approaches have the following several benefits: 

 It aids in improving the quality and accuracy of data, which is 

accomplished across the entire network (Mishra, 2012). 

 Since the data collected from nodes contains specific redundancy, this 

procedure is needed to reduce unnecessary data which can also decreases 

traffic load and conserves the resources of the nodes. (Mishra, 2012) . 

 

                                       Figure 2.6: Data Aggregation Mechanism 

This Section covers the most critical existing data aggregation techniques, along with 

their variations, advantages, and drawbacks. This Section elaborates the three categories 

of aggregation mechanisms for IoT that are based on tree, cluster, and centralized 

aggregation frameworks.  
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(a) Tree-based 

All nodes in the tree-based method are supposed to be deployed in the shape of a 

tree, implying that data aggregation will be performed by a hierarchical and intermediate 

node  (Dagar, M., Mahajan, 2013). Figure 2.7 depicts the data aggregation mechanism in 

this technique. Each node needs a parent node in transferring the sensed data. The data 

communication process initiates at the leaf nodes and terminates at the sink and is 

performed by the parent nodes via the aggregation process (Mishra, 2012). The main 

feature of the tree method is to offer energy efficiency (Dagar, M., Mahajan, 2013). The 

following subsections describe the chosen tree-based mechanisms. 

 

                         Figure 2.7: Tree-based Mechanism 

Search technique for IoT services via hierarchical nodes has developed by (Fredj 

et al., 2013) which comprising intelligent spaces in which IoT systems reveal various 

capabilities.. The tree-based structure is a kind of practical illustration. The search 

technique employs clustering and data aggregation employing a quasi-metric. This 

approach identifies all the services, which reply to a request and are fit for matching costs, 

compared to other methods. Furthermore, depending on the request's description, it 

imposes a limit on the number of nodes to which it can be transmitted. Consequently, all 

nodes have a significantly lower probability of flooding. However, this mechanism does 
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not study the costs of retaining the discovery platform. It is resource-intensive in a 

variable scenario. In addition Z. Zhou et al. (2014) proposed a tree index approach which 

is highly efficient while forming sensor nodes to a tree architecture which is skewed in 

their distribution of sensor nodes. 

The method's key contributions are integrating proximate sub-regions having 

similar message forwarding distances between two sub-regions. In comparison to current 

comparable methods, this technique reduces the amount of dead space in upper-level sub-

regions. Therefore, queries consume less energy than the existing index tree-based 

frameworks.  

According to experimental results, this process is more energy efficient. It takes no 

account of the heterogeneity of the nodes. A lifetime balanced data aggregation technique 

is designed by  (Z. Li et al., 2017) for the IoT network. Which is based on end-to-end 

delay requirements regulated by specified application. The proposed approach extends 

the life of an IoT network and reduces end-to-end network restrictions while preserving 

the delay in required data delivery. To balance the lifetime of adjacent devices with no 

raising the end-to-end delay, the aggregation delays of adjacent devices are balanced 

together collaboratively. Furthermore, aggregation delays are only adjusted locally across 

neighbors. Consequently, dealing with network heterogeneity and complexities quickly 

is regarded as one of its capabilities. Aggregation delays are adjusted as soon as the 

lifespan between neighboring devices gets imbalanced because of connectivity. It can 

control aggregation behavior, for instance, packet loss, route changing, and so on, 

dynamically. Thus, it is practical in realistic situations. Finally, the heterogeneous 

networks will make a compromise within network life and the end-to-end latency. In this 

mechanism, the precision of the results is also enhanced by the problem of battery 

leakage. However, the effects of working with multiple sinks are not improved. 
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In addition, Hitchhiker a feature linking model is designed by (Ramachandran et al., 

2016) to assist multifunctional data aggregation and management inside IoT. The 

bindings are graded as a high or low priority in this mechanism. In this mechanism, 

metadata is used to provide multi-hop data aggregation through component bindings. To 

facilitate low priority end-to-end routing queries, it can adopt a central meta manager to 

discover routing query requests in multi-hop networks. This method also offers certain 

advantages, such as lower energy usage, latency, and the capacity to tolerate data loss. 

However, it don’t address the accuracy and node heterogeneity issues. 

Sruthi & Geethakumari, (2016) proposed a method for IoT data aggregation that is both 

efficient and secure. The computational and communication shortcomings of the IoT 

network are addressed in this mechanism, while security features are linked to the 

creation of a perfectly secure data aggregation system. This system thus ensures the safety 

and is subject to heavy traffic loads.  Zimos et al. (2016) proposed data aggregation 

technique, which is suitable for the vast implementation of IoT devices for air quality 

monitoring. The proposed mechanism reduced mean-squared error significantly while 

recovering the data against distributed and other compressed sensing approaches 

employing experimental findings. 

The proposed method reduces required network traffic, data rates, and device life 

expectancy. The proposed design equally demonstrates tolerance in case of noise 

occurring in measurement and communication. However, extreme calculation does not 

incorporate sensor nodes. On the other hand, latency is not considered.  Furthermore, 

Koike et al. (2016) developed a data combination approach, as well as the requirements 

and application for deploying it over a wide-area network to assist IoT traffic. From an 

architectural point of view, this method produces overlay networks that lower the load of 
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data transmission in the router and builds a logical network based on information sent 

over the Internet. 

This method merely aggregates packets and makes no changes to the data 

contained within them. As a result, this technique is reversible and safeguards the 

payload's information. The suggested aggregation method decreases the load on the 

underlying network and energy utilization. It, on the other hand, has a high latency. 

Finally, (Alghamdi et al., 2016) Proposed a secure approach for aggregating IoT data. An 

elliptic-curve-based seed exchange technique and a Hilbert-curve-based data 

transformation are used to encrypt sensor data in the given mechanism. As a result, 

determining the flooder nodes is quite challenging. 

According to the performance review, this technique surpasses existing 

approaches in terms of privacy and energy savings. A tree-based design was adopted to 

carry out intermediate aggregations. The studies suggest that the data protection, 

performance, precision, and data integrity requirements should meet the desired method 

of aggregation. This measurement is used to detect the space and conduct an algorithm 

tradeoff. Compared with current methods, the life of the network and the aggregated rate 

of data participation in this process have increased but are subject to high traffic. 

The selected tree-based study is discussed in this section. These mechanisms have 

solved energy and network existence problems, but latency, data consistency, QoS, and 

problems with redundancy in the future should be considered. The key advantages and 

disadvantages of each of the studies are compared in Table 2.1. 

Table 2.1: A Comparison of Tree-Based Mechanism in Data Aggregation 

Studies Method Strength Limitation 
(Fredj et al., 2013) A secure data 

aggregation method 
Highly scalable  Low energy 

consumption 
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(Z. Zhou et al., 
2014) 

Energy-efficient 
index tree 

Minimal 
consumption of 
energy  

Lack of 
assortment 

(Ramachandran et 
al., 2016) 

Component binding 
model 

Minimal 
consumption of 
energy  
Minimum delay 
Supported fault 
tolerant 

Accuracy 
and heterogeneity 
are not considered 

(Sruthi & 
Geethakumari, 
2016) 

An efficient and 
secure data 
aggregation method 

Highly secure Generate more 
traffic 

(Alghamdi et al., 
2016) 

A secure data 
aggregation scheme 

Stable lifetime of 
network  
Minimal 
consumption of 
energy  
Highly accurate 
High secure 

Generate more 
traffic 

(Koike et al., 
2016) 

Packet aggregation 
scheme 

Generate minimum 
traffic  
Minimal 
consumption of 
energy  

Produce more 
delay 

(Zimos et al., 
2016) 

An efficient and 
secure data 
aggregation method 

Stable lifetime of 
network  
Highly scalable 
Generate minimum 
traffic  

Latency is not 
considered  

(Z. Li et al., 2017) Lifetime balanced 
data aggregation 
method 

Stable lifetime of 
network  
Highly scalable 
Highly accurate 
Support 
heterogeneity 
Minimal 
consumption of 
energy  
Minimum delay 

Don’t support 
more than one 
sinks 
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(b) Cluster-based  

This Section addresses cluster-based procedures of data aggregation in the IoT 

and selected studies for cluster-based mechanisms. The methods described are finally 

compared and discussed. 

 

Figure 2.8: Cluster Based Mechanism 

The cluster-based method splits the network into several clusters. Every cluster is 

made up of several sensor nodes. Every cluster keeps a header node, recognized as a 

cluster-head. Additionally, bandwidth overhead can be reduced with the number of 

transmitted query packets (Sirsikar & Anavatti, 2015). Figure. 2.8 depicts the data 

aggregation mechanism in this technique. 

For data aggregation in the IoT the authors in (Liu et al., 2014)  proposed trust 

analysis tool based on a node behavior detection. A trust record queue is used to record 

node trust records and malicious detection, which portrays the kind of trust evaluation. 

This mechanism lowers communication costs between storage and nodes and ensures 

failure tolerance, although it does not take account of the heterogeneity of the nodes. In 

addition, Jiang et al. (2015) have proposed a stable and scalable IoT storage system that 
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meets data mining and analytics requirements with extensive aggregate data in context of 

flexibility, stability, and reliability.  

The framework is built around a revamped secret sharing scheme that ensures data 

protection without the need for complicated key management. At the device level, a 

distributed IoT storage foundation is organized to provide reliability and scalability. The 

multiple IoT storage servers’ cloud be combined to increase capacity or to isolate for 

greater flexibility. The proposed mechanism tolerates packet loss, but it has limitations 

due to the dispatcher's low availability and heavy traffic load. 

 F. Xie (2014) suggested a Chinese Remainder Theorem (CRT) employing an IoT 

data aggregation coding algorithm. This method is appropriate for data sensing. The 

benefit of the CRT transform is that it compresses large sensing data into several residues. 

The aggregator node will receive all sensing data in the proposed mechanism, conduct 

aggregation, and transfer the results to the decision server. Also, the proposed mechanism 

transmits sensing data to residual data. The mechanism decreases traffic load and 

increases the reliability of data transmission while the final aggregation results are of low 

accuracy. In addition, González-Manzano et al. (2016) have offered an IoT-friendly 

aggregation method that provides the possibility of multi-attribute accumulation clusters 

allowing value correlations that protect privacy. 

This mechanism allows data to be aggregated in one procedure concerning 

multiple attributes of each entity to ensure validity and privacy of data. Furthermore, the 

proposed system can cope with broad situations that allow malicious handling of 

aggregated data to be detected. Privacy protection, collision resistance, verifiable 

aggregation, and correlative aggregation are among the aims of the proposed mechanism. 

This technique provides an associated combination that allows the sink to achieve both 

the total amount and the association between the values of the attribute. An incorrect 
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discovery procedure is also given for aggregators to keep away from redundant 

aggregators. This approach is suitable for use in a broad IoT environment with a core 

server and several nodes that work in an application based on the assessment results. The 

primary downside of this scheme is that it has higher latency. 

Finally, a cross-layer design for data aggregation is proposed by (Alkhamisi et al., 

2016). This technique functions without a static infrastructure for mobile ad-hoc 

environments. This technique is an interoperable method for both application and 

network layers and is favorable in managing fault and failure tolerance. This technique 

has the advantage of minimizing traffic load and conserve energy consumption in real-

time. 

The previous section analyzed some selected cluster-based studies. In addition, 

each study included a description of the process, advantages, and weaknesses. The most 

important advantages and disadvantages in each study are comparatively described in 

Table 2.2. 

Table 2.2: A Comparison of Cluster-Based Mechanism in Data Aggregation. 

Studies  Method Strength  Limitations 
(F. Xie, 2014) Chinese remainder 

theorem-based 
algorithm 

Generate less 
traffic 

Lack of accuracy 

(Liu et al., 2014) A novel trust-based 
secure data 
aggregation 

Highly accurate 
Highly secure 
Support fault 
tolerance 

Lack of 
heterogeneity 

(Jiang et al., 2015) Secure and 
scalable IoT 
storage system data 
aggregation 

Highly scalable 
Highly Secure  
Support fault 
tolerance 

Generate less traffic 

(Alkhamisi et al., 
2016) 

Cross-layer 
Framework 

Generate less 
traffic  
Minimal 
consumption of 

Latency is High 
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energy, Support 
fault tolerance 

(González-
Manzano et al., 
2016) 

Privacy 
maintaining 
aggregation 
protocol 

Highly scalable 
Highly Secure  
Support fault 
tolerance 

Latency is high 

 

(c) Centralized Mechanism 

This mechanism permits each node to transmit data to a central node by adopting 

a shortest possible route. All nodes transmit their triggered query packets to a powerful 

node that connects all the other nodes. This node refers as header node.  

The header node combines data from all other nodes, and the aggregation process 

results in a single packet (Sirsikar & Anavatti, 2015). Figure 2.9 depicts the centralized 

data aggregation mechanism. 

 

Figure 2.9: Centralized Mechanism 

 Sándor et al. (2015) proposed an IoT platform architecture for data aggregation 

that integrates WSN and standard ICT infrastructures with publish-subscribe data 

distribution capabilities. It has also provided a comprehensive risk analysis that considers 

reliability, accessibility, and privacy. The experimental impact of a case study is assessed 
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at the laboratory scale of IoT-based applications. On the other hand, the sophistication of 

data aggregator systems reveals various flooding threats to these infrastructures. 

 Zhu et al. (2017)  proposed a service-oriented distributed architecture to gather 

information from multiple data nodes common to several IoT applications. Each 

manufacturer provides services for its products. In this architecture, the information 

collected is stored in the data node by itself. This method is scalable since every query 

node is responsible for its own product and each data node is responsible for only the data 

it collects. Requests for query/registers are answered as addresses of linked nodes can be 

settled with the product URIs directly. The mechanism's assortment issues can be 

resolved with semantic and service-oriented technologies. This mechanism would 

minimize network traffic and will serve as a versatile mechanism for data sharing through 

various applications. However, it has the issue of single-point failure.  

 Wan et al. (2019) designed a multidimensional data indexing scheme that is both 

energy and time-efficient and is structured to respond to range queries. Specifically, to 

have a more effective routing at lower latency, the proposed approaches used for data 

indexing are utilizing hierarchical indexing structures using Binary Space Partitioning 

(BSP), such as K-means clustering and Voronoi-based methods. The algorithm of the 

Voronoi Diagram (VD) reduces the total energy consumption and the response time for 

query requests. This work is restricted because the VD data indexing model can only be 

used for general query operations in O (log n) time cells, e.g., for processing the location-

based service. The proposed work lacks real-world prototype for evaluating its 

usefulness. 

Currently, the IoT-based WSN is an immense ongoing research area due to 

multiple applications and services in the numerous fields. In this regard, a large amount 

of data can be sensed by the sensor nodes, and some of the data are redundant. This 
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redundancy degrades the performance of the network by creating some demerits. To 

overcome this issue, (Kumar & Chaurasiya, 2019) presents a duplication elimination 

technique to eliminate duplicate/overlap queries. It performs data mining to pick the 

relevant details until forwarding data to a base station or a cluster head. This method 

removes redundancy from data query packets sensed by nodes before sending them to the 

cluster head or base station for pre-processing. In the IoT, the network of sensor nodes 

operates in two ways: First, the data are sensed and collected spatially by its neighboring 

nodes. Second, the data are sensed and observed temporally at the given intervals of time. 

The proposed approach performs better in both cases. Specific characteristics and 

properties of the sensed data must be present to avoid redundancy. The proposed solution 

enables load balancing, traffic accounting, and data management while providing 

Quality-of-Service (QoS) for various applications and services. The main drawback of 

this approach is that it doesn’t support dynamic scenarios and is only limited to cover few 

QoS metrics. In (Dietzel et al., 2016) the authors have developed a resilient aggregation 

framework that uses existing communication redundancy to recognize and filter fake 

aggregates with the help of data consistency tests. In this model, an attacker cannot 

monitor all these paths but can still affect most incoming paths to a destination based on 

network topology. As a result, the filtering mechanism's architecture restricts information 

distribution to node-disjoint paths, potentially reducing the impact of flooder nodes. It 

employs a filtering mechanism with clustering to identify and delete conflicting 

information. It is limited to single-point failure, covers few QoS parameters. The most 

significant advantages and disadvantages of each study are presented in Table 2.3. 

Table 2.4 summarizes the mentioned data aggregation techniques and their 

essential features, including energy consumption, fault tolerance, accuracy, latency, 
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heterogeneity, network longevity, scalability, protection, and traffic load, as well as the 

impact of these factors either be beneficial or detrimental. 

Table 2.3: Comparison of Centralized Mechanism in Data Aggregation. 

Studies  Method Strength  Limitation 
(Sándor et al., 
2015) 

Security assessment 
of modern data 
aggregation 
platforms 

Highly secure Lack of fault 
tolerance 

(Dietzel et al., 
2016) 

Filtering 
mechanism 

Scalable  Support few QoS, 
Support only single 
point failure 

(T. Zhu et al., 
2017) 

Distributed service-
oriented 
architecture 

Highly secure  
Support 
heterogeneity  
Generate less 
traffic 

Lack of fault 
tolerance 

(Kumar & 
Chaurasiya, 2019) 

Duplication 
elimination 
technique 

Load balancing, 
traffic accounting, 
and data 
management 

Don’t support 
dynamic scenarios 
and is only limited 
to cover few QoS 
metrics 

(S. Wan et al., 
2019) 

Multidimensional 
data indexing 
scheme  

Energy and time 
efficient, low 
latency 

Does not have a 
real-world 
prototype 

 

        Table 2.4: Overview of data aggregation Methods along with its features. 
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(Ramachand
ran et al., 
2016) 

N N Y N N N N N Y Y N 

(Koike et 
al., 2016) 

N Y Y N N N N N N N N 

(Zimos et 
al., 2016) 

N Y N Y N N Y N N N N 

(Z. Li et al., 
2017) 

Y Y Y Y N N Y N Y N Y 

(Z. Zhou et 
al., 2014) 

N N Y N N N N N N N N 

 (Fredj et al., 
2013) 

N N N Y N N N N N N Y 

C
en
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 (T. Zhu et 
al., 2017) 

Y Y N N Y N N N N N N 

(Sándor et 
al., 2015) 

N N N N Y N N N N N N 

C
lu

st
er

ed
 

(Alkhamisi 
et al., 2016) 

N Y Y N N N N N N Y N 

(González-
Manzano et 
al., 2016) 

N N N Y Y N N N N Y N 

(F. Xie, 
2014) N Y N N N N N N N N N 

(Jiang et al., 
2015) N N N Y Y N N N N Y N 

(Liu et al., 
2014) N N N N Y N N N N Y Y 

 

Researchers focused on QoS metrics such as energy consumption, tolerance for 

faults/failures, security, scalability, and network traffic in the selected studies. However, 

many data aggregation techniques fail to consider accuracy, latency, network life, the 

cross-layered, and redundant query issues.  

Query transmission is typically believed to make up a small portion of total data 

transmission in an IoT sensor network. However, in certain instances, the presumption 
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does not hold, which requires aggregation of queries before they are spread to the 

network. 

2.3.3 Aggregation Functions 

Query transmission is typically believed to make up a small portion of total data 

transmission in an IoT sensor network. However, in certain instances, the presumption 

does not hold, which requires queries aggregation function before they are spread to the 

network. The aggregated functions (Polyvyanyy et al., 2017), (Sun et al., 2017), 

(Huysmans et al., 2008), (Shafagh et al., 2015) of the different applications are closely 

linked to the specific sensor. They can be categorized as follows:  

 Lossy and Lossless Aggregation: By using a lossy aggregation function, 

the fundamental values are lost after combining. Furthermore, as compared 

to sending all readings uncompressed, the transmitted data can lose 

precision. On the other hand, the lossless method enables compression by 

retaining the original data, allowing the entire readings to be thoroughly 

reproduced from aggregated form. 

 Duplicate-Sensitive and Insensitive: A sensor node can be needed to 

accumulate multiple copies of the same data. It should determine whether 

to discard duplicate data depending on the feature type or not. For 

instances, if an aggregate function calculates the mean value of received 

data, duplicate values will affect the result. Conversely, duplicate-

insensitive only considers the lowest value among the data. Furthermore, 

various devices may be better suited to different types of operations  (Lu 

et al., 2008), which must be accomplished when designing aggregation 

functions. 
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2.4 Querying Distributed WSNs towards the IoT 

As previously stated, integrating various enabling technologies such as 

recognition, sensing, and communication technologies, as well as retrieving relevant 

information from them, is needed to bring the IoT concept to life in the real world. The 

core objective of this section is to deliver an overview related to distributed WSNs in IoT 

(Alam et al., 2010; Gračanin et al., 2006; W. Li et al., 2011; Mainetti et al., 2011; Sánchez 

López et al., 2012),  what are the difficulties and strategies in managing massive and 

heterogeneous sensor data in the IoT, and what are the methodologies and processing 

blocks of performing the query on that sensor data (Figure 2.10). 

 

Figure 2.10: Issues Regarding Distributed WSNs towards IoT  

2.4.1 Role of Distributed WSNs in IoT 

Since the IoT should be able to link a large number of disparate objects through 

the Internet, there is a strong reliance on a dynamic layered architecture  (Ikram et al., 

2015; Johnson et al., 2017; C. Zhang et al., 2017). The IoT architecture must ensure its 

operations, which connects the virtual and physical worlds (Mustafee Navonil, 2015)(Su 

et al., 2015). The IoTs links a massive number of devices, resulting in significantly 

increased traffic and even more data storage requirements. As a result, a new IoT 

architecture is needed to resolve several issues such as scalability, QoS, interoperability, 
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and reliability etc. Also, technological growth, different types of new businesses, and 

application models determine IoT progress (Tsai et al., 2014) . 

The traditional IoT layers are shown in Figure. 2.11 (Khan et al., 2012). The 

following is a depiction of these layers: 

 

Figure 2.11: Layers of IoT 

 Sensor/Perception layer: According to  (Al-Fuqaha et al., 2015) the  Object 

or edge technology layer refers to the perception/Sensor layer or sensing layer. 

It's the bottom layer, often known as the hardware or physical layer. This layer 

manages data gathering with the help of tiny connected sensors (Liao & Hsiao, 

2014). This layer converts information into signals to transmit over networks 

for related applications (J. Tan & Koo, 2014). 

 Network Layer: The network layer aims to link everything and allow 

anything to share data (Atzori et al., 2012; S. Li et al., 2015). This layer secures 

data transmission from source nodes to the core unit (R. Khan et al., 2012). 

WLAN, Bluetooth, Zigbee, 3G, UMB, infrared technology, and so on are the 

primary technologies used in this layer  (Wu et al., 2010). 

 Middleware Layer: This layer integrates service and request according to 

address and name. It enables IoT application developers to work with 
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heterogeneous objects without focusing on a specific platform  (Al-Fuqaha et 

al., 2015). The information is retrieved from the network and saved in the 

database by using this layer (R. Khan et al., 2012). 

 Application Layer: Typically, information from other layers is integrated and 

evaluated in this layer (Tsai et al., 2014). This layer provides high-quality 

services to meet the needs of customers queries (Al-Fuqaha et al., 2015).  

 Business Layer: The business layer can handle the whole activity and service 

by developing flowcharts, business models, and related designs (Al-Fuqaha et 

al., 2015). The achievement of IoT technology is determined by the value of 

applied technology, creativity, and the business model's viability. (Wu et al., 

2010). 

The following Sections go through the existing studies on querying distributed 

sensor data in the IoTs. 

2.4.2 Querying Distributed Sensor Data in IoT 

As previously mentioned, the IoT includes a massive amount of sensor data from 

distributed and heterogeneous WSNs. Existing research looks at different methods for 

querying sensor data. Some approaches store sensor data in the upper layer of the IoT 

hierarchy and pose queries against it. In contrast, others send the query directly to the 

cloud or base station, which collects the appropriate sensor data. The following section 

addresses several extensive works on priority and flooding queries. 

 Priority Queries  

Recently, manyβapplicationβscenariosβlikeβmilitaryβsurveillance, βinfrastructure 

protectionβandβenvironmentalβmonitoringβhaveβbeenβaccomplishedβbyβIoT. 

Inβsome cases, applicationsβinβWSN/IoTβareβtimeβrestricted, leadingβto theβneed 
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ofβreal-time schedulingβof dataβpackets. Nowadays, manyβcommunication 

packageβschedule policies inβWSN/IoT applyβalgorithms inβview ofβFirst-Come-First-

Servedβ (FCFS). However, thereβareβmanyβproblems inβFCFS; includingβnode-to-

nodeβcommunication packages transport delay as well as starvation in real-time 

packages. Besides, these schemesβcannot respond dynamic inputsβquickly (Wang & 

Zhang, 2016). Inβdataβcenters, theβoccurrence ofβtimeout forβpriority 

queriesβdramatically causing problemsβlike queryβcompletionβtime. Toβmitigate 

timeouts, theβtransportβprotocol should tryβto maintainβa smallβswitch queueβto 

avoidβtheβpacketβlossβand recover lostβpacketsβquickly.  Recentβwork 

suggestsβusingβExplicitβCongestionβNotification (ECN), Round Trip Time (RTT) 

orβtheβin-network signalβtoβachieveβthat. However, theseβsolutions eitherβstillβsuffer 

fromβmanyβtimeoutsβwhenβtheβnumberβof concurrent flowsβbecomes largerβor 

require theβnontrivialβhardware support (Ruan et al., 2020)  

Theβauthorsβin Rajendranath & Hency (2019) proposedβPRITRAPSβ(Priority-based 

Task aware Pre-processing and Scheduling) mechanismβthat isβemployedβin real time 

scenariosβofβindustries. Inβwhichβdifferentβapplications units are accessing the 

gatewayβunitβtoβmeasureβandβmonitorβtheβparametersβofβdifferentβserviceβtypes. 

PRITRAPSβemploysβpriorityβamongβtheβtasksβtoβreduceβtheβnetworkβload.  

Theβscheduling algorithmβemployedβinβPRITRAPSβisβEDF (Earliest Deadline 

First). Theβpre-processingβtaskβunitβdecreasesβtheβnumberβofβtasksβbyβchoosing 

theβtasksβhavingβsimilarβspatialβandβtemporalβrequirements. The residualβenergy of 

theβsensor nodesβcanβhelpβtheβschedulerβforβdecidingβtheβsensor nodes in respective 

of queryβtaskβrequirements. Theβschedulerβfindsβtheβbestβpotentialβnodesβand 
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assignsβthemβtoβtheβqueryβtaskβforβprocessing. This method is not energy efficient 

and lacks Qos parameters.  

Theβauthorsβin VasudevanVijay et al. (2009) suggestedβreducingβRTOminβtoβthe 

granularityβofβmicroseconds. However, thisβmethodβrequiresβtheβspecificβkernel 

version (2.6.18 or later) andβmayβcauseβtheβmassiveβspuriousβretransmission (J. 

Zhang et al., 2013). OtherβprotocolsβsuchβasβSABβandβTFCβcontrolβtheβqueue 

length using theβcustomizedβswitch. The basic idea of SAB isβto uniformlyβallocateβthe 

switchβbufferβtoβeachβflow. Theβallocationβresultβisβfedβbackβtoβeachβflowβasβits 

congestion window. Inβthisβway, theβinjectedβtrafficβofβallβflowsβcannotβexceedβthe 

switchβbuffer. OneβtargetβofβTFCβisβtoβachieveβzero-queueing. Itβrepresentsβthe 

linkβbandwidthβresourceβasβtokensβandβallocatesβthemβtoβflowsβsomeβtime. TFC 

guarantees that the aggregatedβinjectedβtrafficβwouldβnotβexceedβthe capacity of the 

pipeline. Inβtheseβtwoβprotocols, packetsβareβrarelyβlostβandβthe probability 

ofβtimeout isβgreatly reduced (J. Zhang et al., 2014)(J. Zhang et al., 2016). 

 Flooding Queries 

Flooding queries is usually used for route discovery, route maintenance and 

topology update in IoTs. In large-scale WSNs and IoT, this flooding causes such 

excessive message collisions that the network efficiency is reduced. However, the 

flooding queries has obvious advantages over the location-based unicast/multicast in 

complexity and economic cost without additional equipment. 

Three critical mechanisms can be used to scan for nodes with emergency data: 

flooding, managed flooding, and random walk (Cui, 2009), (Benenson et al., 2006), 

(Benenson et al., 2006). The random walk has a lot of latency, so it's not suitable for time-

sensitive applications. The simple flooding mechanism overloads the network with 
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redundant query packets, generating heavy load and rapid energy depletion.  

As a result, the authors in (Qiu et al., 2012)  present Level-Based Flooding as a 

new search mechanism (LBF). It can calculate the shortest path between the sink and 

target nodes. The nodes in LBF are organized into a hierarchy, and the sink node is aware 

of the node levels. When a sink node receives a query, it may broadcast the query cost-

effectively based on the nodes' level information. 

In Yuan et al. (2013), the author proposed a level and cluster-based routing 

approach for a wireless sensor network. This approach divides the whole network into 

different levels as per hops to the central node. Every node must have a level number. A 

sensor node forwards information to a sink node more efficiently using level information, 

and a sink node can quickly locate other sensor nodes which can helps to balance the 

network. Unlike all other cluster routing methods, instead of sensing, a cluster head 

schedules jobs for sensor nodes in the cluster based on their remaining resources. This 

study also presents several algorithms for developing, querying, and scheduling a wireless 

sensor network. The proposed research considered factors such as energy consumption, 

interoperability, and rapid response. The shortcoming of this study is observed that it only 

concentrates on energy usage and was not beneficial in mobility scenarios. Do not accept 

cross-layered solutions and are only limited to network layer systems. 

The study in  Cheng et al. (2018)  mainly focused on minimizing the delay and 

energy consumption while constructing the flooding tree taking into account duty-cycle 

activity and unstable wireless links. It demonstrates the presence of delay and 

energy consumption during flooding. The problem is formulated as an undetermined-

delay-constrained minimum spanning tree (UDC-MST) problem with an a posteriori 

known delay constraint. Since the UDC-MST problem is NP-complete, a distributed 

Minimum-Delay Energy-efficient flooding Tree (MDET) algorithm is designed to create 
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an optimal energy tree with flooding delay bounding. This research achieves a potent 

combination of flooding delay and energy efficiency. 

 Baddeley et al. (2019) introduced a novel synchronous flooding (SF). SF 

protocols dynamically meets specific SDN control criteria. By using Atomic-SDN, it 

offers substantial performance improvements over other low-power IoT networks while 

implementing in SDN. SF methods are capable of providing latency and reliable 

assurance to SDN controllers at the local mesh scales. Atomic-SDN increases SDN 

control by orders of magnitude in terms of reliability, latency, and energy consumption. 

In addition to this analysis, the spread of control messages across the flood network can 

be facilitated with unique control schedules. The Atomic-SDN enables the SDN layer to 

function without knowing the topology information and benefits from the spatial and 

temporal diversity of flood protocols.  

The authors in Yamazaki et al. (2020) have proposed a simple route request 

(RREQ) flooding system based on the rest of the node's power without using control 

messages and complicated tasks. Initially, the limit of node density shows the significance 

of proposed plan in context of energy efficiency (bits/J), considering energy utilization 

and throughput.  Further, since the proposed system assumes the flood times as constant, 

all the nodes would almost carry same time to drain the battery. Consequently, if the 

nodes are static, they last longer than in the traditional approach of proposed method. The 

drawback of this work is that it is not well-performing in complex and uncertain 

scenarios. It is only based on a few QoS parameters and was not favorable in dynamic 

environment. Do not endorse a solution for the cross-layered but only for the network 

layer. 
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The authors in (Abdulridha et al., 2019) developed FSFS approach that can be 

classified under Flat approaches; it is simple and very quick in delivering the packet to 

the sink and can be used for routing and propagation issues. Depending on a simplistic 

system within WSN that provides all nodes of a simple routing table, FSFS takes 

improvement over Flooding, Gossiping, and Floosping. It presents a sweet way to load 

balance in power consumption among the sensors with the least number of sending 

operations. The conclusion that should be mentioned here is that, as far as the number of 

nodes in WSN grows larger, FSFS gives high achievement. On the other hand, FSFS is 

running only with structured Topology (Mesh) which means each sensor node has a 

predetermined place and recognizes its neighbors. It is suitable for the monitoring 

applications in a civil or military environment; on the other hand, FSFS still suffers from 

redundant information at the base station. Table 2.5 summarizes different flooding queries 

mechanism fall under different categories and their essential features,  

Table 2.5:  Analysis of various flooding queries mechanisms 
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LBF Control overhead 
reduction Low No Yes Proactive Multi-

hope Yes 

  2L-OFFIS Control overhead 
reduction Low Yes Yes Proactive Multi-

hope Yes 

  ARPEES  Energy 
consumption 
mitigation 

Low No Yes Reactive Single-
hope Yes 

   MDET Energy 
consumption 
mitigation 

Low Yes Yes Reactive Single-
hope Yes 

  DMSTRP  Energy 
consumption 
mitigation 

Low No       Yes Proactive Multi-
hope No 

FSFS Energy 
consumption 
mitigation 

Low Yes No Reactive Single-
hope Yes 
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Memory Requirement. The memory requirements of the whole network depend on 

whether each node has to store some query or routing information, such as the query 

packets which are waiting to be forwarded, neighbor information, cluster information, 

route information and so on. This can be represented by a polynomial which is related to 

the parameter n concerning the number of the nodes. For instance, a method of event-

based clustering is proposed in (Quang & Miyoshi, 2008),  this method requires the nodes 

nearby the event store their neighbor information, we assume that the events occurs in the 

whole network, and thus all the nodes of the network need to store the neighbor 

information instead of particular nodes. With the network density enhancing caused by 

the increase of the network size, the nodes need to store many more information. Due to 

the limited memory capacity of the large-scale WSNs, however, how to efficiently utilize 

these storage resources is of great significance for enhancing. 

Localization. Position information is of great help to enhance the accuracy and the 

efficiency of routing protocols. In (Jamalipour & Azim, 2016), the nodes can get the 

position information, and that makes the directed transmission substitute for broadcast 

communication of the control packet. Therefore the control overhead is decreased.  

Data Aggregation. The advantage of hierarchical networks over flat networks is 

apparent, because in the former network data aggregation could be conducted at cluster 

head nodes. These nodes collect the sensed messages from its member nodes, and remove 

the redundant part, thus reducing the total messages towards the sink nodes. By this 

means, the network energy efficiency is improved. 

RREQ Energy 
consumption 
mitigation 

Medium Yes No Proactive Multi-
hope No 
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Clustering Manner. “Proactive” means that the clustering of the network is operating 

before the network operates. Because the clustering is carried out in the entire network 

and it needs a long time to maintain, it will create more energy cost than “reactive” 

clustering which is triggered on demand, such as the occurrence of some event. In some 

emergent cases, the performance of “reactive” routing is not time-sensitive enough. 

Intra-cluster Topology. In a cluster, the single hop topology can reduce the end-to-

end delay to a certain degree, whereas a significant advantage of the multi-hop topology 

is energy-efficiency. Especially the topology of the spanning tree, which consists of the 

multi-hop structure, not only reduces the transmission energy through decreasing the 

average transmission distance, but also alleviates the collisions in clusters with a schedule 

scheme utilizing the tree structure. 

Cluster Head Election. According to the different objectives of each protocol, these 

protocols have different ways of electing the cluster heads. “Residual energy” is chosen 

as the criteria to select cluster head to ensure that the cluster head has enough residual 

energy to process and deliver data packets. That makes the nodes energy-balanced to a 

certain degree. 

Multi-Path Routing. Multi-path routing means the traffic is delivered along several 

paths in order to balance the energy consumption of sensors along the single path. By this 

method, the query packets could still be delivered successfully in the case of path failure, 

thus ensuring the reliable delivery of query packets. However, a deficiency is that much 

more overhead may be incurred owing to several sensor nodes must be selected as the 

next hops. In hierarchical routing protocols, some sensor nodes are grouped to efficiently 

relay the sensed data to the sink. The cluster-head plays the specialized role of performing 
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data aggregation and sending it to the sink on behalf the nodes within its cluster. Thus, 

how to form the cluster is a more interesting and essential research issue concerning such 

protocols so that the energy consumption and various communication metrics such as 

latency are optimized. In addition, due to the number of sensor nodes is substantially 

increased in large-scale WSNs, the nodes nearby the sink will assume more query 

forwarding tasks so the energy of these nodes is depleted rapidly. That makes the 

hierarchical routing protocol design challenging. 

Redundant Query. Redundant queries ensures reliable data for decision making. 

Reliable data plays a very important role in the analysis, monitoring and forecasting of 

system behaviour whereas bad quality data may provide erroneous result in decision 

scheme. In Wireless Sensor Network (WSNs), nodes are densely deployed in a region to 

collect information. Sensors sense the similar data and forwards to sink. This similar data 

sometimes leads to redundancy at the sink. The redundant data results in more accuracy, 

reliability and security whereas elimination helps in energy saving as most of the energy 

of sink node gets waste in dealing with the redundant data. Data accuracy still needs to 

be preserved even if there is increase in network cost and/or time. Therefore, there is 

requirement of a mechanism in which we can extract information from the redundant data 

and be able to provide a more consistent, accurate and reliable data set in an energy 

efficient manner (Verma & Singh, 2018).  

It can be concluded that the query flooding is usually used for route discovery, route 

maintenance and topology update in most of the routing protocols mentioned. In large-

scale WSNs, this flooding causes such excessive message collisions that the network 

efficiency is reduced. However, the flooding has obvious advantages over the location-
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based unicast/multicast in complexity and economic cost without additional equipment. 

Therefore, research on flooding technique is necessary. 

2.5 QoS in WSN/IoT Query Processing 

The term Quality-of-Service (QoS) relates to the reliability of a service provided 

by a network to the related application. A collection of observable attributes typically 

describes the QoS level depends on the application type (Kumar Kumar et al., 2019). This 

section addresses QoS-aware query support in IoT and presents significant works that 

have been done on QoS-enabled cross layer query execution in IoT Networks. 

2.5.1 QoS Support for Query in IoT 

The QoS parameters of the IoT network can be seen from different perspectives 

and dimensions, including bandwidth, latency, packet drop, prevent jitter and 

interference. Therefore, QoS should be described in a different way for diverse 

technologies. It is challenging to accomplish QoS effectively in wireless networks 

because of the segment gap caused by management and resource distribution of shared 

wireless media (Gubbi et al., 2013).  J. M. Liang et al. (2013), proposed the 3GPP LTE-

A mechanism ensuring traffic bit rate, packet delay, and loss rate with IoT devices in an 

energy-saving QoS context. To optimally use the LTE air interface resources, the authors 

in (Piri & Pinola, 2016) measured packets of various sizes in the LTE uplink. The results 

showed that packets of smaller size achieved approximately half the throughput of larger-

sized packets. This result allows packet aggregating to optimize many QoS parameters 

such as latency, packet loss, jitter, and bandwidth usage required by a large number of 

small query packets on the mobile edge of the IoT gateway.  Duan et al. (2011), developed 

QoS architecture, which provides a framework for the control of translation from top to 

bottom layer. The cross-layer management facility and brokers of this architecture often 
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feature lower layer controls. With the help of this architecture, researchers may further 

optimize the QoS of IoT. Different QoS methods for achieving QoS in IoT are described 

in Table 2.6 

Table 2.6: Summary of Different Methods Providing QoS in IoT 

Citation Objectives Strength Evaluation Limitations 
(M. Zhou & Ma, 
2013) 

To provide 
QoS 
requirements 
of IoT 
composite 
services 

The algorithm 
is fast enough 
to meet real-
time 
requirements 
of IoT. 

Testbed Uncertainty 
analysis of 
QoS is not 
performed in 
this method. 

(L. Li et al., 2014) To present a 
QoS 
scheduling 
model (based 
on three layers) 
for service 
oriented IoT. 

This method 
minimizes the 
resource costs 
to optimize 
the 
scheduling 
performance. 
It also 
presents QoS 
support to 
definite 
applications 
of IoT and 
enhances IoT 
network's 
lifetime. 

Simulation   In case of 
congestion, 
packet loss, 
delay, and 
issues of 
control 
mechanism. 

(Vithya & 
Vinayagasundaram, 
2014) 

To provide 
QoS routing 
method by 
establishing 
priority 
criterion in the 
network. 

Focuses on 
prioritizing 
packets under 
priority queue 
to gain best 
transmission 
with low 
latency. 

Testbed The priority 
criteria take 
highest 
number of 
cluster frames, 
making it 
critical for low 
priority frames 
to wait for turn 
indefinitely. 

(Awan et al., 2014) To examine the 
QoS in context 

Robust to 
both traffic 

Simulation   This method is 
only an 
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of delay, 
matching 
traffic 
generated over 
the network. 

variations and 
topology 
failures. 
Provides an 
analytical 
model for 
evaluating the 
performance 
of smart 
devices under 
different 
traffic states 
to meet the 
QoS 
constraints. 
Uses buffer 
management, 
makes high 
priority traffic 
continues its 
arrival by 
impel out low 
priority traffic 
to circumvent 
loss of 
emergency 
related data 
packets. 

analytical 
model, which 
is not validated 
in real time 
scenario. 

(Aazam et al., 
2016) 

To increase 
QoS based on 
previous 
Quality of 
Experience 
(QoE) and Net 
Promoter 
Score (NPS) 
records. 

Fog 
computing 
provides the 
solution by 
bringing 
cloud 
resources to 
the edge of 
the 
underlying 
IoT and other 
end nodes. 
Provides 
better 

Simulation 
& Testbed 

Vigorous in 
predicting the 
consumed 
resources by 
diverse 
devices. Univ
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reliability and 
reduces jitter. 

(X. Xu et al., 2018) To improve 
QoS by 
communication 
link reliability 
and reduce 
delay for loss-
and-delay 
WSN/IoTs 

Reducing 
delay, 
improving 
reliability, 
balancing 
energy 
consumption 
aimed at 
increasing the 
transmission 
power of 
nodes 

Simulation Only limited to 
optimize few 
QoS 
parameters 

(X. Li et al., 2018) To Reduce 
energy 
consumption 
and guarantee 
delay under 
corresponding 
QoS 
requirement 
constraints. 

Reducing 
delay, 
improving 
lifetime, 
increasing 
energy 
efficiency 
without 
performance 
degradation 
of data 
transmission 

Simulation Only limited to 
optimize few 
QoS 
parameters 

(Kyung & Kim, 
2020) 

The QoS-
aware flexible 
mobility 
management 
scheme 
that classifies 
flows into four 
classes 

Flexible 
network 
resource 
utilization, 
differential 
handover for 
different flow 
classes, 
absence 
of service 
degradation. 

Simulation Based on 
heuristic 
approach 

(Shafique et al., 
2020) 

The SDN-
Based 
Application-
aware 
Distributed 

Load 
balancing, 
application-
aware data 
transmission, 

Simulation  Only focus on 
bandwidth 
utilization  
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adaptive 
Flow Iterative 
Reconfiguring 
(SADFIR) 
routing 
protocol 

heterogeneity 
aware 

(Latif et al., 2020) To Reduce 
nodal 
propagation 
delay, 
maximizing 
throughput, 
improving 
network 
lifetime, and 
minimizing 
energy 
consumption. 

Reducing the 
number of 
re-
transmissions, 
good energy 
conservation, 
enhancing 
throughput 

Simulation  This method is 
only an 
analytical 
model, which 
is not validated 
in real time 
scenario. 

 

In the traditional IoT query propagation paradigm, sensors transmit queries to the 

network's access point or central gateway motes. Table 2.6 provides a brief argument for 

the use of the testbed. This access point handles requests and then forwards them to the 

appropriate network destinations using the underlying routing system. The traditional IoT 

query propagation paradigm has certain drawbacks, such as the fact that sensors may send 

queries that are redundant or duplicate, or that a single sensor may convey an undesirable 

query intended for another application or sensor. This is because there are queries that 

overlap in multiple clusters. The overall amount of energy that is used consequently 

increases when the size of the query is increased. In such situations, device resources (in 

terms of bandwidth or energy for the sensor node) are lost due to too many redundant 

network query transmissions that can result in obvious degradation in QoS transmission 

(Fathallah et al., 2019). It is essential to notice that none of these testbeds solely focused 

on elimination of redundant and unwanted queries in IoT networks to enhance QoS. There 
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is a need of a testbed equipped with query control mechanism (QCM) that focus on 

mitigation of multiple and overlapping cluster queries in IoT networks. 

 

2.5.2 QoS Enabled Cross Layer Architecture, Design in the IoTs (IoT): Issues and 

Possible Solutions. 

IoT's layer-based architecture will hierarchically manage queries by ensuring the 

QoS in all layers. IoT needs to compromise between query delays and reliability based 

on application requirements in line with the demand for a single sensor network. The 

work addresses service time, service delay, service accuracy, service load, and service 

priority, among other QoS specifications. It proposes a QoS architecture for IoT that 

describes how the quality assurance criteria are transmitted and converted from top to 

bottom. Detailed layer based QoS architecture in IoT is depicted in Figure 2.12.  

 

Figure 2.12. Layer Based QoS Architecture in IoT 

Upper layers communicate QoS specifications to ground layers, and lower layers, 

in turn, share QoS feedback to higher layers. The architecture includes a QoS 

management facility, QoS brokers, and separate QoS requirements for each layer. For all 
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three layers, QoS management offers cross-layer features. The broker's job in the network 

and perception layer is to address QoS requests from the upper layer and translate them 

for use in the local layer. 

More issues occur as of the increased quantity of smart devices in IoT, 

necessitating the use of cross-layer models to address. The cross-layer models discuss 

several issues related to the increased use of smart devices and applications on the IoT. 

The cross-layer architecture is simply coordinating different layers in integrating 

resources to create an extremely adaptable network  (Foh et al., 2007; Papandriopoulos 

et al., 2008). 

Cross-layer architecture is typically essential in addressing communication 

issues among IoTs devices (IoT). As a model, the cross-layer architecture aids in 

removing the precise boundaries of the OSI networking model, enabling data access 

from another layer. Data exchange on the IoT is employed on several layers, making 

it a challenge to share data across multiple layers. By using the architecture model for 

cross-layers, different layers share information to communicate more practically. 

Cross-layer communication protocols are regarded as one of the most important 

methods for improving interlayer communication in IoT. Some of the main issues 

relating to cross-layer networking protocols are energy management in wireless 

networks and bandwidth for better performance. The conventional layered structure 

of the IoT has been criticized for the major flaws discovered with the usage IoT 

technology has increased. Authentication, encryption, georeferencing, and timing are 

now possible with IoT infrastructure by adopting Trustful Space-Time Protocol 

(TSTP). The TSTP has been essential in removing data duplication across the system, 

allowing messaging to be more efficient. In contrast to the standard TCP/IP model, 

the TSTP cross-layer model improves the filtering process for the efficiency of IoT 

Univ
ers

iti 
Mala

ya



 

63 

 

data sharing.   

  Cross Layer Design Model 

The main challenge or issue with the TCP/IP model is that it offers end-to-end 

connectivity for the application layer only. In this case, the application, transport, 

network, data link layers, and physical layer are the five major concern layers. The 

TCP/IP offers a small contact, as only the two neighboring layers are communicated (Ma 

et al., 2004)(Magagula & Chan, 2008). It is impossible to communicate between any other 

layer that isn't an IoT neighbor on the Internet. The communication issues are referred to 

as information sharing because layers, not neighbors on the IoT, cannot exchange 

information under the TCP/IP model. Moreover, information exchange between two 

layers leads to several other problems in the IoT (Luo et al., 2010). In the absence of a 

framework for data sharing between layers, the issue is generally obscured so that during 

the diagnosis, it cannot be identified. Many other issues occur in IoT in the event of noise 

on the network (Bandyopadhyay & Sen, 2011). It demands reconnection from one level 

to the next, which takes a lot of time to overcome the main problems. The cross-layer 

architecture is adopted to address these critical challenges 

2.5.3 The Architecture of Cross Layer Platform in the IoTs  

The IoT architecture is critical in resolving concerns such as Quality-of-Service 

(QoS), device stability, integrity, and privacy. Several different IoT architectures have 

been proposed. Simple layered architecture is one example. Three to five layers are 

possible in a simple layered architecture. The perception layer, network layer, and 

application layer build up a three-layered architecture. The five-layer architecture consists 

of objects, abstraction of objects, service management, application, and business layer. 

Sensors such as Zigbee and RFID are used in the perception layer of the IoT architecture 

(Jing et al., 2014). The compilation and storage of data are the responsibility of these 
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sensor units. There are specific sensor devices installed for network data collection and 

storage. The IoT architecture also includes a network layer. This layer manages to transfer 

data from the observation layer to the higher layer. The network layer is also essential in 

ensuring confidential data and information acquired by sensor devices. The end-to-end 

IoT architecture is shown in the Figure 2.13. It comprises of four network components: 

wireless sensor modules, data connectivity, a cloud management framework, and a 

management portal. 

 

 

Figure. 2.13: IoTs (IoT) Architecture (End-to-End)  

The communication functionality can be described as a cross-layer design and 

control as an adaptive solution to the system using a resource allocation approach. In 

IoTs, a centralized optimization model is critical for managing parameters at the physical 

layer. These primarily include channel error correction as well as modulation. Cross-layer 

architecture aids MAC and error management in the link layer, while it aids addressing 

and routing in the network layer (Z. Yan et al., 2014). Via these roles, the device can 

achieve optimal results in line with the independent goal functions of the cross-layer 

designs on the IoTs. 
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In the IoT, cross-layer architecture is also essential for multi-objective 

optimization. Essentially, the IoT is expected to provide differentiated application 

services, such that the Quality-of-Service (QoS) provided to various applications. As a 

result, multi-objective optimization is used to solve a wide range of problems in the IoT. 

Multiple competing goals within the IoT are overcome with the multi-target optimization. 

These are primarily delays, energy utilization, and end-to-end packet errors. 

The cross-layer technology is made up of layers that assist in improving the 

performance of the IoTs. The application layer, network layer, and sensor layer are the 

three main layers of the cross-layer architecture. Each layer is essential in improving the 

performance of the IoT platform. The sensor layer of the cross-layer architecture, for 

example, serves as the application foundation for the IoT platform. In the IoT, the network 

layer roles as a connection between the sensor and the application layer. This layer also 

contributes to computational technology. The application layer of the cross-layer 

architecture is liable for displaying the IoT business to the customer. These layers have a 

vital role to play in the IoTs. Essentially, cross-layer architecture assists in coordination 

between the network layer and the application layer regarding the data collection and 

cleansing. The key objective of the strategy is to provide the different IoT users with both 

fluid and intelligent services. Following are essential problems concern with the cross-

layer design. 

(a) A. Routing and Communication Among Heterogeneous Devices: 

Although IoT technology has been effective in improving intelligent-based 

communication worldwide, it also has many issues and challenges to be faced. The IoT 

defines global cyber-physical networks, allowing various applications such as e-health, 

transportation and tracking of commodities. This application is based on the 

heterogeneity of the hardware for the IoT requirement for different routing and 
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communication applications. The cross layer communication schemes have been used to 

solve the problems encountered in the use of IoT applications (R. Xie et al., 2012)(Guan 

et al., 2010). The modified Grey Wolf optimizer framework is one of the most critical 

cross-layer functionalities in solving IoT problems. The optimizer assists in determining 

the best routing paths and communication criteria. In IoT, the interrelationships between 

the different functionalities of the application layers are investigated. In realistic scenarios 

in the physical layer, the cross-layer model is used to validate and optimize the application 

(Yu & Leung, 2002). The novel updated Grey Wolf Optimizer architecture resolves the 

standard layered solutions to the IoT to achieve optimal global connectivity. Furthermore, 

the Delta diagram facilitates global end-to-end connectivity in IoT. Essentially, the 

method improves both the IoT protection matrix and hardware synthesis. 

(b)  Application of 6L0WPAN: 

The implementation of the 6L0WPAN is also an essential issue in the IoT. Unlike 

Bluetooth and ZigBee, personal wireless networks help to compress headers in IoT and 

also compression (L. Da Xu et al., 2014). The data loss in the network caused by low 

power can be identified using the cross-layer architecture model. The cross-layer 

mechanism is included to allow the border routers to obtain power from the power grid 

to detect not only the issue of data loss but also to optimize network communication 

(Ameigeiras et al., 2010). The cross-layer model is essential considering that it helps 

routers to collect the complete data context. Cross-layer approaches prevent the packet 

drop in stage during network communication. 

(c) Data Sharing Among IOT Devices: 

In the modern world, the fundamental IoT has been significantly changed to 

consider several other things. For example, the current IoT has been extended to consider 

the vast number of communications, intelligence, and numerous other remotely 
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accessible objects, such as smartphones, sensors, and vehicles.   Although IoT is being 

built in a challenging environment where big data is managed, it is vital that complex data 

management practices, such as cross-layer architecture, become inevitable with increased 

data sharing/communication in IoT (Z. Li et al., 2010). Big data and cloud computing 

techniques will be needed to handle more data. Wireless sensor networks are commonly 

used in IoT since they link many wireless sensor devices. With the increased number of 

IoT devices, it is critical to manage efficiency and performance adequately. The IoT is 

expected to evolve dramatically in the next century, with more data being shared by 

different devices. The cross-layer architecture is proposed to assist in improving the 

efficacy and reliability of data sharing within the IoT (Bu et al., 2012; R. Xie et al., 2012).  

(d) Privacy and Scalability: 

It is worth noting that the modern world is heavily reliant on the use of smart 

devices. As a result of this trend, more devices will be available to meet the human needs 

soon. As a result, as the use of smart devices grows, more problems will inevitably arise. 

Security, privacy, and scalability are just a few of the anticipated challenges (Sheng et 

al., 2013). Since smartphones are designed to be used by a single user, security is a 

significant concern. The implication is that smartphones contain private and personal 

information. Security, access controls, confidentiality, and authentication are all 

addressed using the cross-layer architecture. To build a cross-layer architecture for 

authentication and authorization, non-repudiation is needed. Encapsulation in IoTs 

provides authentication and data confidentiality. The datagram transport layer protocol is 

used to authenticate IoT devices. 

(e) Energy Consumption in IoT application: 

Energy conservation is one of the significant problems with WSN technology in 

the IoT. Scavenging or rechargeable batteries can provide energy for the WSN. Whatever 
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the case, energy management needs to be improved efficiently. Solution : Besides 

reducing communication and calculating loads, cross-layer designs can be implemented 

to minimize energy consumption (L. Zhu et al., 2012), (L. Zhu et al., 2011). The WSN 

communication layers within the IoT affect the impairments of the intrinsic wireless 

medium, low power radio connections, medium interferences leading to packet losses and 

path loss. 

(f)  Middleware for IoT: 

With technical advances, a modern IoT architecture has emerged that is more 

successful in managing major issues within IoT applications. The new IoT architecture 

includes pattern identification services. This is evident in the physical layer, as well as 

the middleware and applications layers. The new IoT architecture allows the solution to 

apply the distinguished algorithms to various environments and devices. In contrast to 

receiving raw data from the physical layer and others, the application can directly retrieve 

data from the middleware. This means that the IoT infrastructure would work better. This 

is frequently due to the new application's ability to retrieve all contextualized data from 

other layers, regardless of the neighborhood. As a result, the Linksmart middleware 

represents a significant advancement in the management of the IoT architecture. The 

diagram below depicts the general design of the middleware between the physical and 

application layers. The physical layer consists of sensors that collect weather data, event 

data, bus service data (Souza, AMC da and Amazonas, 2015).  

The different layers that make up the Linksmart application serve a variety of 

functions. For example, the physical layer of the Linksmart middleware cross-layer 

design hosts the resource layer for smart devices and sensors. This is related to the 

Linksmart middleware to facilitate data transfer and algorithm detection. Within the IoT 

scheme, the middleware layer is responsible for pattern recognition and configuration. 
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Since it contains the configuration parameters for both the resource managers and the 

application layers, this layer is essential because it allows cross-layer communication.  

On the other hand, the application layer is vital for carrying bidirectional 

communication and the various configuration features for cross-layer communication. 

Cross-layer communication is an essential aspect of the architecture (Yu & 

Krishnamurthy, 2007). The architecture allows nodes in IoTs to access, execute, and 

transmit information through each physical node. The network access points, the 

middleware layers, and the application nodes all communicate effectively throughout the 

network. It is a distinguishing feature in IoT that is critical in improving inter-node 

connectivity across the application layers, middleware, and physical layers. 

2.5.4 Cross-Layer QoS Strategies 

This section presents various QoS technologies in IoT from the MAC, network, 

and cross-layer models. The threats and opportunities in each of the layers are evaluated 

for these QoS strategies. Finally, the future research directions for QoS strategies for 

research and implementation are addressed before concluding this section. 

 Service-Differentiated Real-Time Communication Scheme (SDRCS). 

SDRCS is powered by events, it routes real-time traffic via a cross-layer packet 

architecture that integrated real-time routing into a modern priority MAC scheme. Based 

on this architecture, the protocol approximates distributed packet speed classification and 

traffic control. It also localizes decision-making by giving priority to packet transfers to 

optimize packet speed  (Xue et al., 2011).  

This approach can be used to prevent the degradation of bandwidth by un-

scheduled data packets. It is event-based and can be easily adapted to changes to the 

network. In addition to locating the multi-channel transmission, no additional hardware 
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is required.   (Bhandary et al., 2016). This approach lacks several QoS parameters, has a 

high computational cost, and does not provide a solution for redundant query packets. 

 Network Layer QoS Support Enforced by a Cross-Layer Controller (NLQS) 

This scheme allows for the distinction of packet-level service depending on the 

throughput, packet error rate, and latency (Melodia & Akyildiz, 2010).  This method can 

improve QoS at the network layer. It includes an interlayer control unit (XLCU) for 

networking functions in physical, MAC, and network layers to be configured and 

controlled (Bernard et al., 2019). This method allows the interactions between cross-

layers to be managed without weakening device upgradability, simplicity, and modularity 

(Melodia & Akyildiz, 2010). 

 Cooperative MAC Protocol for Multihop Networks (MCMAC). 

M-CMAC, CoopMAC, is designed to assist low data rate stations with high data 

rate stations in forwarding traffic for broadcasting. (Jacob & Shamna, 2015). Helpers 

have often selected keeping the two fast-hop transmissions by replacing with one slow-

hop transmission. Every node has a cooperative table (CT) of possible helpers, including 

the destination and helper MAC addresses and the Euclidean distance and total distance 

through the helper. It ensures a higher throughput compared to IEEE 802.11 DCF (Jacob 

& Shamna, 2015). 

 Cluster-Based Cooperative Routing (CBCR) Protocol. 

The CBCR protocol includes a multi-hop data-forwarding feature at the link layer, 

which is implemented with cooperative links that use M-CMAC. This protocol includes 

two phases: the selection step of the routing relay and data transmission. 

i. Routing Relay Selection Stage: All node sends periodic beacon messages to its 

neighbors containing the node's MAC address. Each of these creates a relay table 

that lists all the neighbors with whom it can communicate. In case of changes in 
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its entries after its previous broadcast, the Node will further broadcast its next list. 

The MAC addresses of nodes adjacent to node X are located in column one of its 

relay table, and the row of the neighbor node contains MAC addresses for 

neighbors of the adjacent node. Each node selects routing relays independently 

based on its relay table. The number of nodes connected by a relay node is 

determined by the number of nodes that it connects (Jacob & Shamna, 2015).  

ii. Step of Data Forwarding: a node having query should transmit packets by first 

confirming the recipient being in the same cluster. If the receiver owns a helper, 

the packet is forwarded to them, but the packet is sent directly to the receiver if 

they are unavailable. When the intended recipient is within a separate cluster, the 

relay table is examined to see whether the recipient is accessible via other routing 

relays. If reachable, packets are sent directly or through a helper, to the routing 

relay if the relay contains one. When a destination is not reachable through relays, 

the node broadcasts packets to all relays, it has the advantage to multicast the 

packets (Jacob & Shamna, 2015). 

 Adaptive Cross-Layer Forward Error Correction (ACFEC).  

The ACFEC model exchanges data packets between nodes through the access point 

(AP) that runs the infrastructure mode whereby the FEC is included in the multimedia 

data. (Rao & Shama, 2012). These data are processed via the RTP packets by 

encapsulation using a streaming server. An adaptive FEC controller detects the packet 

class from the RTP header and retrieves the packet header from UDP. The encoder creates 

some error-correcting packets, which is calculated by the block's source packet number. 

The controller monitors multimedia transmissions using MAC failure data, and if a 

transmission fails, its counter is increased by one. The controller uses the failure counter 

to adjust the packet number produced after a block is transmitted (Bernard et al., 2019). 
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If packets are lost, the redundancy rates are changed, and extra packets are generated to 

replace the lost ones and satisfy the receiving node's requirements (Rao & Shama, 2012). 

The FEC packet number is increased or decreased to meet the receiver's requirements and 

prevent packet errors. This is accomplished by detecting packet losses accurately and 

adjusting redundancy thresholds. It guarantees better QoS by reducing the packet loss and 

adjusting the redundancy rate. (Sun et al., 2011)  

 Balanced Cross-Layer Fuzzy Logic (BCFL)  

(M. Li et al., 2013)  developed a new fuzzy logic-based routing algorithm (BCFL) 

that takes the distribution of cross-layer parameters as an input to the fuzzy logic inference 

scheme. Based on the value of distribution, each cross-layer parameter has a dynamic 

weight. The concept incorporates the following innovations: 

It reduces algorithmic complexity significantly; the size of its distribution list 

determines the parameter's weight. It is built on straightforward if-then rules that remain 

constant even as the constraints increase. It is easily adaptable to changes in network 

conditions. The algorithm can be used to choose a CH in the protocols of cluster routing 

(M. Li et al., 2013). 

  Minimum Hop Disjoint Multipath Routing Algorithm 

with Time Slice Load-Balancing Congestion Control Scheme.  

MHDMwTS is a two-stage routing protocol consisting of route construction and 

path recognition phases. There are three disjointed paths: primary, alternating, and 

backup paths, each with different sources. The path build-up process begins when the 

source node requests to build a route to the nearest hop neighbor (Alamri & Abdullah, 

2016). Initially, the source activation process starts in the first stage by adding its numbers 

and timestamps to the desired path construct node and sending it to the next least hop-
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count node. This process continues until the least latency sink has received the necessary 

data to construct the main path (Sun et al., 2011). In the second stage, route extraction 

occurs when a new packet from a different path arrives, comparing the extracted path 

with the primary path. In the case of a shared node, the packet needs to reject, or an 

alternate path will be sought as a backup by comparing previously taken paths. In the 

third phase, the sink returned the ACK packet to a sender with path information and time 

data after the timestamp is calculated. This protocol is limited to cover only a few QoS 

parameters, i.e. latency and congestion control (Bernard et al., 2019)(Alamri & Abdullah, 

2016). 

 Cross-Layer Optimal Design (CLOD)  

Authors in (M. Li et al., 2013) proposed a CLOD for data link layer scheduling, 

network layer routing, and transport layer congestion control under the assumption of 

fixed link capacity. Energy performance is increased by means of congestion 

management. The congestion of node at the transport layer is reduced by compressed 

sensing (CS), which reduces the transmitted bits, While the optimal allocation of 

resources reduces the congestion at the data link layer  (J. Yan et al., 2016). It increases 

energy efficiency by extending the network lifespan and performing congestion 

management. 

Table 2.7: A summary of some reviewed cross-layer models 
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Table 2.7 summarizes these cross-layer models and makes a few observations. In real 

network, multiple layers perform various roles and provide various essential services. A 

layer can only interact with its neighbors. Because of the numerous features in wireless 
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communication, the layered model degrades device efficiency. Routing protocols share 

QoS parameters in the layers of IoT to maximize performance. However, cross-layer 

models as mentioned in Table 2.7 is a vital solution to handle the query flooding. The 

cross layer design is more scalable, efficient, flexible with very low propagation delay, 

can regulate congestion, improve QoS and can be used to improve routing efficiency by 

terminating redundant queries during the communication process (Bhandary et al., 2016).  

In CLD, the physical layer is extremely important. To improve QoS, rate 

adaptation and channel allocation occur at the physical layer through signal processing. 

CLD provides solutions for power management, minimizing energy consumption, 

managing network flow and congestion, and fault tolerance, making it an attractive option 

for designers considering other layers. It is also desired to design CLDs to influence QoS 

network activity, terminate unnecessary and redundant query packets, and minimize 

network flooding in the IoT (Bernard et al., 2019). 

Network flooding has been studied in a range of fields. For instance, Hy-IoT was 

proposed for a hybrid energy-aware clustering protocol to the heterogeneous IoT network 

(Sadek, 2018). To manage a heterogeneous IoT network, Hy-IoT delivers a real-world 

cyber IoT architecture centered on clusters. It also provides an effective means of picking 

cluster heads, enhancing the use of motes energy, therefore increasing the network life 

and the transmission rate for the packets to the base station. A vital issue in this method 

is dealing with redundant queries in both the population of motes and the network density 

in order to integrate an IoT controller. Haddad et al. (2017) also proposed a three-level 

architecture for IoT redundancy control. To regulate service query redundancy on three 

scales: macro, meso, and micro scale in IoT networks correspondingly, the framework 

employs the Explicit Spatio-Temporal model. Several other essential elements, like the 
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functional architecture, algorithms generating redundancy data and related complexity, 

and the framework's proactive redundancy control mechanism, are not considered. 

(Abdelaal et al., 2016) developed a strategy for increasing energy efficiency in QoS-

Constrained WSNs using the Divide-and-Conquer (DnC) method. The fundamental 

principle underlying DnC is that the QoS parameters should be controlled while giving 

the right amount of network life. However, a real testbed is required to assess the 

suggested technique more realistically. 

Alqahtani et al. (2016) Proposed End-to-End (E2E) QoS design and supervising 

plan for IoT networks. The authors employed Service Level Agreements (SLA) to find 

the flooding problems in numerous IoT devices like smart environment, smart water, 

smart water, smart metering, smart agriculture, smart farming, industrial control, e-health, 

logistics, home automation and domestic. SLA don’t accommodate unified/standard 

processes to collect the needed metrics across-layer and from various providers for E2E. 

2.6 Conclusion  

This Chapter explains the concept, underlying research strategies and simultaneous 

works in context to query processing in both WSN and IoT Networks. It analyzes QoS issues 

of query execution mechanism of IoT and WSN by devising a thematic taxonomy that 

presents various parameters. It provides insight into various redundant and unwanted queries 

that affect the network resources. It discusses state-of-the- art techniques used to detect 

flooding queries. Moreover, a brief discussion is presented to highlight possible solutions 

for efficient network flooding in IoT and WSN. Finally, various challenges are 

highlighted regarding handling the redundant routing queries. 

Various defensive mechanisms are designed and developed to handle flooding in 

IoT networks. As previously mentioned, redundant and undesired transmissions flood the 
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network, potentially increasing network queries. It also increases the use of network 

resources and decreases QoS over the link. 

With the increased use of smart devices, more challenges emerge in the 

performance of the IoT. The cross-layer design is normally used to resolve prominent 

problems in the IoT, comprising of such as security, privacy, energy consumption and 

efficiency among other error. To address these challenges, cross-layer designs have been 

embraced. The proposed cross-layered design enables the query exchange with the rest 

of the layers thereby creating a better Quality-of-Service (QoS).  

Based on the shortcomings of the present techniques, which focus mainly on how 

to enhance the basic routing queries scheme for IoT devices, have limited feature and 

only provide individual QoS solution to IoT Layers. However, a sole QoS enabled cross-

layered solutions for flooding suitable for both physical and network layers devices are 

not being addressed previously. This study proposed a QoS enabled cross-layered Cluster 

Based Flooding solution for IoT network. The proposed technique is a solution that is 

compatible with both physical and network layer devices. 
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CHAPTER 3: CROSS-LAYERED CBF (FOR MITIGATING REDUNDANT 

QUERIES IN IOT)  

This chapter presents a QoS enabled cross-layered clustering technique for 

mitigating flooding queries in IoT networks.  The cross-layered cluster-based flooding 

mechanism can provide interoperable solution for the devices of network and sensor 

layers. This method split the network into various clusters. Inside cluster, the Intralayer 

cluster (IALC) is used to proactively maintain local query information, on the other hand 

Interlayer cluster (IELC) is used to reactively acquire routingβqueries to the receiver 

outsideβthe cluster. Cluster based flooding (CBF)βis a hybrid method that can be 

moreβeffective comparedβto conventional systems in termsβof query traffic generation. 

However, if proper redundant query detection and termination mechanisms are not used, 

the CBFβmay generateβmore control traffic than typical flooding βtechniques.  For the 

purpose to minimize the control traffic, energy consumption and network flooding IELC 

uses an advance query control mechanism (QCM) which corelate the signal strength with 

a predefined threshold value (QLT) QueryLimitThreshold to identify and terminate 

redundant and unwanted routing queries.     

The mote localization and queryβdetection strength of an IoTβnetwork is checked 

in flooding using this approach. The strengthβof queryβdetection is examined for 

verification and any fluctuation in the signalβstrength of the queryβpacket and theβQLT. 

The mote's positionβstability is dependent on the locationβinformation of its valid mote 

neighbors, combined withβits fixedβQLT, and monitored over time at various intervals. 

This study also carriedβout a formalβanalysis using the salient features of Set Theory and 

Game Theory (Abdalzaher et al., 2016) that helps to identify diverse network flooding 

patterns in the sensor and network layers of the IoT Networks. 
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This Chapter is organized into five sections. Section 3.1 provides detailed 

methodology of the study. Section 3.2 starts with an overview of flooding strategy. It 

followed the design principle of the proposed method in Section 3.3, which provide a 

description of the state transitions along its event generation for each phase. Section 3.4 

and 3.5 elaborates the (CBF and QCM) with detail description of each of its phase. Also, 

each phase explains along with its algorithms to have an insight of its working steps. 

Finally, this chapter is concluded in Section 4.6. 

3.1 Methodology 

The entire study is divided into five phases, as depicted in Figure 3.1. This study 

investigated the QoS implications of the entire WSN and IoT networks with the exact 

state of the art solution pondering the most basic to the latest trends. A review and analysis 

are carried out of the QoS vulnerabilities, unwanted and redundant network queries, and 

potential IoTs Network (IoT) challenges. The study uncovers the contemporary layered 

based clustering of the reported redundant and unwanted queries, and associated 

challenges to the IoT in context of main categories of QoS implications relating to each 

IoT layer. Moreover, it highlights the possible redundant and unwanted flooding queries 

impacting the performance of individual layer and suggests the compact solution in design 

of QoS enabled IoT. 

Existing cutting-edge outcomes are also critically examined in developing a 

comprehensive thematic taxonomy. Furthermore, this study examines each cutting-edge 

QoS solution to determine the distinguishing IoT aspects used, and the problem addressed 

by a specific technique, as well as the simulation or emulation environment of the related 

technique. This research also examines the impact of each state-of-the-art QoS-based 

query solution on the appropriate IoT layers. The critical examination of existing state-

of-the-art flooding solutions broadens domain knowledge of current IoT QoS trends, 
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significant strengths of prospective IoT, and research gaps that require further 

exploration. It is evidently noticed that flooding query remains the fundamental issue and a 

challenge that affects the QoS of the IoT network. 

  

Figure 3.1: Research Methodology 

A complete investigation is carried out in the real-world scenario of IoT to establish the 

problem. This study conducted a formal analysis of the prominent features that assist identify 

various network flooding patterns in the sensor and network layers of IoT Networks using the 

Event-B method (Set Theory and Game Theory). 

The research validates the system exploiting formal proof on a theoretical 

mathematical model of the system that comprehensively verifies and confirms the 

expected behavior of the CBF Approach, as opposed to simulation and testing. This 

research also exhibited and assessed the impact of redundant flooding on IoT controllers and the 

detection accuracy behavior and analysis of some of the most current state-of-the-art.  This study 

examines different techniques to address redundant/unwanted communication inside the 

IoT network to comprehend the sequence of measures taken during flooding and propose 

the cluster-based flooding (CBF) technique. Both physical and network layer devices can 
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use the CBF technique because it is an interoperable solution. CBF splits the network into 

various clusters. Intralayer clustering (IALC) keeps the local queries proactively, while 

interlayer clustering (IELC) ensures that the routing queries to destinations beyond the 

cluster are obtained reactively. CBF is a hybrid technique that has the capability to be 

more efficient in context of query traffic generation than classical schemes. CBF is 

vulnerable to cause more control traffic than traditional flooding techniques without 

adequate redundant query detection and termination mechanism. Interlayer clustering 

(IELC), composed of an advance query detection and termination technique (QCM), 

employs strength of link signal, and a query limit value to detect flooding. It can minimize 

the network flooding, energy consumption, identification, and elimination of 

redundant/unwanted flooded queries in IoT networks. The findings of the simulation 

reveal higher performance in the context of traffic delay, throughput, and energy 

consumption against state-of-the-art techniques under different performance metrics 

compared to conventional flooding and state-of-the-art systems. 

This study also exhibits statistical performance and evaluation of query control 

mechanism to minimize energy consumption, delays, and network throughput. In 

Particular, it assessed the performance gauge of Query Control Mechanism (QCM) for 

QoS-enabled layered-based clustering for flooding on the IoTs. This study used statistical 

methods to determine that the QCM algorithm beat the existing techniques for identifying 

and eliminating redundant flooding queries. Such as Divide-and-Conquer (DnC), Service 

Level Agreements (SLA), and Hybrid Energy-aware Clustering Protocol for IoT (Hy-

IoT). The study inferentially analyzed for performance- measures of algorithms in context 

of three different scenarios, i.e., energy consumption, delays, and throughput with 
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different intervals of traffic, malicious mote, malicious mote with realistic condition, 

Scenario based on a varied mobility speed varied simulation area and varied pause time 

The results showed that the QCM algorithm performed significantly as against the 

existing algorithms depicting a statistical probability value “P” less than 0.05. It indicated 

that the performance of QCM achieved the 95% confidence interval. Thus, the study 

inferred the performance of the QCM as substantial against other algorithms. 

3.2 Flooding Strategy 

ThisβSection presents a modelling strategy for floodingβin IoT networks. It 

elaboratesβthe interchange of queryβmessages among distinct motes and specifies the 

number of query streams. In addition, system modelling provides an overview of mote 

functionality and query flow among end-users and motes (Bourke et al., 2014; Elsayed et 

al., 2013; Yang et al., 2006). Figure 4.1 depicted the system model of redundant/flooder, 

sender/sink, and destination motes. The flooding is only feasible onceβthe flooderβmote 

is located betweenβthe receiver and the transmitter. According to the system's geometric 

shape, the flooder's transmitted signal gets received by the destination before it completes 

transmitting or establishing a new connection. Equation (1) denotes the fraction of each 

mote interval that must stay unflooded for successful communications and represents the 

different regulated distances D3, D2 and D1. 

𝐷2 + 𝐷3 ≤ (λ𝑋𝑠 −  𝑋𝑓)𝑐 + 𝐷1  (1) 

Xs denotes mote duration i.e sum of valid motes, where λ is a constant value 

allocated to every authentic mote in the network and it varies between 1 and 10, Xf  

denotes the flooder's processing time which is the time it takes the flooder motes to strike 

the network. The distances between the motes are denoted by D1, D2, and D3, while the 
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speed of light is denoted by c, as seen in Figure 3.2. The flooder moteβconstantly observes 

theβcommunication channel, and when it detects a queryβpacket transmission, it quickly 

emits a radio signal to generate a receiver-side collision. The flooder mote can transmit 

enough energy to lower receivedβbits of queryβmessages, leading to cyclic redundancy 

(CRC) failure. A flooding attack usually meets the followingβcriteria: tremendous energy 

efficiency (use very minimal energy), low detection probability (near zero), highβlevels 

ofβDoS, i.e., to disturbβcommunications to the intended or maximum degree and to be 

resistantβto flood control techniques of the PHY layer, i.e., to block the signalβprocessing 

techniques to handle the flooding. In all situations, a flooder mote tries to preserve 

efficiency according to these criteria. This allows the flooder mote to adopt stable 

approaches with behaviors in the sensor and network layer to maintain a minimal 

detection opportunity. 

 

Figure 3.2:  SinkβMote, DestinationβMote, and RedundantβMote System 

model. 

3.3 Cluster Based Flooding (CBF) for IoT 

The CBF's fundamental principle is to divide the whole network into several 

routing clusters. Proactiveβmaintenance with the aid of routeβquery exchange 
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andβupdate queryβpackets is done by Intralayer clustering (IALC). In theβcase of a 

broken orβestablished connection between the directlyβconnected neighbor mote, the 

MDP-level MAC begins routeβupdates which are specified as the directlyβconnected 

neighbor mote and share a communicationβlink. Mote discovery and media access 

control protocols provide the services to identify the neighbors of all connected motes. 

On the other hand, Interlayer clustering (IELC) providesβservices of reactively transfer 

queryβpackets to the motes which resides outside of the cluster by means of route query 

reply. IELC sends routing queries to its borders or outlying motes via a broadcast delivery 

service. IELC uses IALC tables to keep track of updated route clustering information for 

peripheral motes.; based on the QueryLimitThreshold (QLT) value, this information is 

then utilized to evaluate if the query forβdestination mote relates to theirβcluster. QLT 

enables the maximum motes transmitting capacitance to be regulatedβto send the 

maximumβnumber of query packets and enables network flooding detection to occur.  

Figure 3.3 elaborates the CBF architecture.  

3.3.1 CBF Assumptions 

The following is a listβof the CBFβnetwork assumptions: 

  n number of sensor motes are deployed randomly.  

 All motes provide the same capacity with respect to functionality,  

every mote has an IPβaddress and may function as a sensorβgateway, allowing 

query messages to be exchanged. 

 The modeβof communicationβis single-hopβand multi-hop for allβconnected 

motes. 

Any mote can launch a flood attack. The flood begins when it detects any activity 

and begins interrupting the communication. 
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The flooder and regular motes have the same capabilities, however the flooder 

mote may additionally generate duplicate query messages (i.e., random flooding queries). 

 

Figure:3.3: The CBF Architecture 

Formal definition, MDP algorithm, IALC, IELC, QCM, and network assumptions are explained 

in the following subsection. 

3.3.2 NeighborβMote DiscoveryβPhase (MDP) 

In thisβSection a neighborβmote discovery algorithmβwill look after the 

maintenanceβof neighbor and clusterβrouting tables. All motes have the information 

tables of its neighbors and cluster. The neighbor-mote table holds accessible QoS 

parameterβvalues along the linkβbetween itself andβits neighbor-mote, as well as the 
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neighbor-mote addresses. The intralayer clustering algorithm requires these parameters 

forβselecting the bestβavailable routes in the cluster. During this phase, every mote sends 

beacons to its neighbors on a regular basis. Everyβmote refreshes its neighbor table with 

appropriateβvalues when it receives these queryβpackets from a nearby mote. Every 

moteβexchanges neighbor tables with its appropriate neighbors and build cluster routing 

tables (Gammarano et al., 2018), (Kharche & Pawar, 2017). 

Everyβmote periodically transmits "hello" beaconsβto its directly connected 

motes to ensure their status. When a mote delivers a beacon, it immediately updates the 

neighboring table and records the source of the beacon. Every mote checks its neighbors’ 

mote tables at periodic sample intervals to verify their neighbors’ state. If a neighbor 

beepsβno beacons throughout theβMax_previous_list intervalβsamplings, it is considered 

lost. If the neighbor beepsβbeacons, it is deemed found. Whether a neighbor is found or 

lost, a notificationβof an updated link is forwarded toβIALC. Figure 3.4(a, b) shows the 

protocols. 

3.3.3 The IntraLayer Clustering (IALC) 

The motes measure the routes of intralayerβclustering based on linkβstate 

information for each extended cluster of motes. Anβinterrupt raised by moteβdiscovery 

protocol (MDP) βor IALC link state queryβpacket may become the sources to generate a 

mote information, received by the link state updates table. All the related link states 

information is maintained by the link state table. Moreover, it is necessary to recompute 

the clustering table with any recent updates related to waiting link state. Additionally, the 

link state tables get updated when the outlier links have been removed. The most recent 

released updates of linkβstate (with itsβsources) are propagated to the mote’sβneighbor 

contained by the cluster. Finally, a newly discovered neighbor received the entireβintra-
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cluster link stateβinformation from the mote. The protocol is described in Figureβ3.5 

(a,b). 

3.3.4 The InterlayerβClustering (IELC) 

The underlying job of theβIELC is to find out routesβto the hosts (that lie outside 

the mote’sβcluster). If IALC local clustering table does not contain the destination mote's 

information, then a link query request is initiated by the IELC at the networkβlayer. Each 

route queryβrequest allocate with a query-id (unique to the sourceβmote id). A 

combination of query-id and source-mote-id might uniquely identify the route query 

request in the network. Figure 3.6 despite the protocol. 

Once the request packet records theβquery-id andβsource-mote-id, then the query 

packet may forward to allβthe border or peripheralβmotes of the cluster. The βdetected-

queries-table then records the route query request from the mote including other 

information i.e., the query-id, source-mote-id, broadcasting-mote, and last-hop. The mote 

then investigates the routingβtable to find the desiredβdestination mote (if any) 

residingβinside the cluster. The moteβresponds to the queryβsource, in case the 

destination mote is found, and replies with a routeβquery reply (carrying a pathβidentified 

by the last hop information stored in the spotted queries table. In case, theβdestination 

mote does not exist in the mote’s cluster, the mote, subsequently broadcastsβthe rout 

queryβrequest to all the outer motes to find the destinationβmote outside the cluster. The 

broadcasting mote mayβgenerate more controlβtraffic (compared to flooding) if a suitable 

query control scheme is not available. 

An alloy (query detection and early termination) of advanced query control 

mechanism can exploit to investigate the strength of cluster-based querying. Aβmote will 

stop transmitting route queryβrequests (on the departingβlink based on the 
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informationβstored in the discovered queriesβtable), in case the broadcastβreceiver mote 

intends to accept the route queryβrequest packet.  

 

Figure 3.4(a) MDPβQuery Packet formatβand Neighbor moteβtable. 

  

MDP_Query_Packet_Format 

0             4             8             12              16              20             24              28             32 
_Version _Traffic class _Flow label 

_Payload _Next hop _Limit of hops 

Source_mote_address_ (mote_id) 

Destination_mote_address 

_ (mote_id) _ 

_Neighbor_mote_table_ 

_Neighbor_mote_ 

_ (mote_id)_ 

Arrival_(Boolean) _Previous_list _ 

(int) 

   

   

 

Initial_Setting: 

_Timer-xmit-beacon_=_random-uniform_(tbeacons. 2); 

_Timer-mote-table-update_=_random-uniform_(tbeacons. 2); 

Transmission of Mote Beacon: 

// sporadically transmission of “Hello” beacons to neighbor-motes 

Mote-source = mote-id; 

Payload(query-packet); 

Announce(query-packet); 

Timer-xmit-beacon = tbeacons ++; 

Delivery of Mote Beacon: 

//From delivered mote beacons, noted down detected neighbor-motes in Neighbor 

Mote Table 
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Algorithm 1. MDPβneighbor table update. 

//Identify and eliminate the missing and lost neighbors-mote. Every note has 
neighbor-mote-table. 

Begin (Mote-Table ) 
Input : Mote-Table[neighbor-mote].previous_list, Mote-Table [neighbor-mote]. 
Arrive. 
Output: Update-Timer -Mote-Table,  
1: If (Mote- Table[neighbor- mote]. Arrive ==Not True ) Then 
         2: If(Mote- Table[neighbor- mote]. previous_list ≥  Max_previous_list )Then 
                  i: Eliminate (Mote-Table[neighbor- mote]); 

//If previous_list has not received the neighbor’s-mote beacon then    
eliminate the neighbor-mote from the mote-table. 

                  ii: Interrupt-load- params (neighbor- mote); 
                  iii: Set-interrupt (IALC,   “neighbor-mote-lost”,  “Update IALC Routing 

Table”);          
            Endif 
3:Else Mote-Table[neighbor-mote]. previous_list ++; 
//Increase number of cycles that neighbor-mote’s beacon has not been received. 
Endif 
4: If (Mote-Table[neighbor-mote].  previous_list == −1) Then 
//Immediately, alert and update the IALC, if a new neighbor-mote found. 

i: Interrupt-load-params (neighbor-mote); 
ii:Set-interrupt (IALC,  “neighbor-mote-found”, “Update IALC Routing Table”); 
iii: Mote-Table [neighbor-mote]. previous_list = 0;  

Endif 
6: Mote-Table [neighbor-mote]. Arrive = Not True; 
7: Update-Timer -Mote-Table = T ++;  
8:End 

Figure 3.4 (b). The Neighbor-Mote DiscoveryβProtocol (MDP). 

IALC QueryβPacket Format 

0             4             8             12              16              20             24              28             32 
Source of the Link (mote-id) 

Destination of the Link (mote-id) 

Sourceβof pk (mote_id) 

Id-link-state (unsigned 
int) 

Reserved 

Link State Table 
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Source of the Link 
(mote_id) 

Destination of the Link 
(mote_id) 

Id-link-state (unsigned 
int) 

   
Pending Link State Table 

Source of pk 
(mote_id) 

Source of the 
Link (mote-
id) 

Destination of 
the Link 
(mote-id) 

Id-link-state 
(unsigned int) 

Status of Link 
(Boolean) 

     
Cluster Routing Table 

Destination (mote_id) Is_cluster_member$(Boolean) Source routes (mote-id-
list) 

   
 

 

Figure 3.5 (a): Intralayer Cluster Protocol (IALC). 

Algorithm 2.βIntralayer cluster (IALC) βalgorithm. 

//IALCβmight be triggeredβby either from anβinterrupt made byβthe mote 
discovery protocolβ(MDP) or link stateβquery packetβupdates. 

Begin 
Input : query-packet arrived,  Interrupt-extract-params, destination-link , Found 
Neighbor-mote 

     Output: My-id-link-state,  Status-link. 
β1:βIf (query-packet arrived) βThen 

i: βExtract(query-packet); 
ii: βMy-changed-link = NotβTrue; 

2:βElseif  Interrupt-extract-paramsβ(&destination-link); Then 
i:   Source-link =βmy-mote-id; 
ii:  Source-pk =βmy-mote-id; 
iii: Id-link-state =βmy-id-link-state; 

3:βElseif (Interrupt-type =β“Found Neighbor-mote)βThen 
i:   Status-linkβ= Up; 
//βShare all intra clusterβlink states informationβto the new 

discoveredβneighbor-mote. 
4:βElseif (neighbot-mote! (Link State Table, my-mote-id, link-destination)) Then 

Univ
ers

iti 
Mala

ya



 

92 

 

i: βForward-link-state-tableβ(Link State Table,βlink-destination); 
ii: βMy-id-link-state ++; 

5:βElse 
i:  Status-link =βDown; 

6:  Endif 
7:βIf (neighbot-moteβis (Link StateβTable, my-mote-id, βlink-destination)) 

Then 
i:  My-id-link-state ++; 

8:βEndif 
9:  End. 

Figure 3.5 (b): The intralayer cluster (IALC) algorithm. 

IELC Query Packet Format 

0             4             8             12              16              20             24              28             32 
Source of the Query (mote-id) 

Destination of the Query (mote-id) 

Last_hop (mote_id) 

Broadcasting-from-mote (mote_id) 

Query-id 

(unsigned int) 

Type-

pk 

(char) 

Marker-link 

(unsigned int) 

Hops-maximum (unsigned int) 

Route-source [mote 0] (mote_id) 

Route-source [mote 1] (mote_id) 

To 

Route-source [mote N] (mote_id) 

Table for Detected Queries 

Source (mote_id) Query-id (unsigned 

int) 

Last-hop (mote-id-

list) 
Net-query-

coverage 

    
 

 

Figure 3.6: Interlayer cluster protocol (IELC). 
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3.4 QueryβControl Mechanism 

Asβstated earlier, the important aspect of the flooderβmote is required toβgenerate 

redundant or unwantedβrouting queries so that theβlink remains busy, andβthe authentic 

mote should be stopped for sending wanted or important query packets. There is a need 

of mechanism to quantify the amount of totalβtime spent in waiting for theβlink to get 

free, alsoβto ensure the signalβstrength related to queryβpacket along with 

locationβconsistency of mote. Then, these metrics are compared with the regularβtime of 

traffic and estimateβthe link for redundantβqueries. Thus, queryβcontrol mechanism has 

beenβintroduced toβexecute and implement such tasks. As described in equation (2), the 

QCMβmethod employs a change inβQueryLimitThreshold (QLT) for detection and 

termination of unwanted or redundant query packets. It is noticed that the QCM is 

significant to boost the performanceβof IoT network in context of the signal strength of 

query packets, and thus can improve the locationβconsistency for ensuring the connected 

motes. This helps in protectingβthe network for reactiveβflooding attacks. Let calculate 

theβQLT as described in Equation (2): 

  ∑ 𝑀𝑑𝑖 = 𝑃𝑓   
𝑛

𝑖=1
 (2) 

In Equation (2), M represents the maximumβquery request packets for neighbor 

motes, βn depicts the net quantity ofβmotes, di shows the distance between each mote and 

QLT (demonstrating the distance between the communicating motes, with i as 

theβnumber of relevant motes, ranging 1βto n) and Pf (Pfβinvestigates any possible 

flooding attack onβthe network), respectively. 

TheβQCM method employs signalβstrength of link in investigating the 

consistencyβof query packet looking for, if theβQLT is counter to normal pack 

transformation value. The transmitting note, sendingβQLT, is significantly tested and 
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compared with the current value, to find the position of floodingβin the network. A mote 

is a flooder if it's QLT crosses the highest queryβpacket of a mote. In addition, a mote is 

not considered to be a flooder if the QLTβvalue is less than the highest queryβpacket. 

 

 

Algorithm 3. Query control mechanism (QCM) 
Begin 
Parameters: n, MaxQuery(M): M ∈ Neighbor motes 
Input: query limit value, x0, y0, xn , yn : 

Output: Dist, Query limit value (∆) ; 
1: If (MaxQuery(M) < QueryLimitThreshold(QLT) Then 

i: Check (SignalStrengthConsistancy(SSC)); 
ii: Check (Sending QueryLimitThreshold(QLT) ); 
iii: Check-link = ((SignalStrengthConsistancy(SSC), MaxQuery(M) ); 

2: Elseif (Check-link =Not True) Then 
i:Flooding occurred;  

3: Endif 
4: If(MaxQuery(M) > QueryLimitThreshold(QLT) Then 

i:   Z0 =(x0, y0 ) = mote_location; 
ii:  Zn =(xn, yn ) = find_mote_location; 
iii: Check-link = Query Packet Sent; 

5: Elseif (Check-link= Not True) Then 
i: Flooding occurred;  

Endif 
End 

 

 

When the QCM detects a flooder mote, an alert is generated and passed to all 

connected neighboring motes so that to switch the motes' routing paths leading to the 

flooder mote. By this means, QCM eventually removes the flooderβmote from the 

network. The QCMβalgorithm is stated in Algorithm 3.  
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n presents the quantity of motesβwithin the network, βZ0 refers to the initialβmote 

position (x0, y0), Zn describes the current position of theβmote (xn, yn), and M portrays 

neighboring motes.  

The QCM algorithm contains twoβlevels. The QueryLimitThreshold (QLT) 

information is achieved at initial level, followed by verifying the 

βSignalStrengthConsistancy (SSC) of eachβmote. Since allβmotes can disseminate 

information reaching a particular duration, queries' volume passed by each mote can be 

recorded. Because of sending QueryLimitThreshold (QLT), the 

SignalStrengthConsistancy (SSC) need to be validate.  

It is supposed that a particular mote can be in one of three states/conditions in the 

network: typical (normal state of the mote), fishy (the suspicious condition of the mote), 

and flooder (mote behaves as a flooder). Initially, the motes in the network areβin the 

typical state and queryβpackets could be exchanged by them using aβsingle- or a multi-

hopβcommunication pattern. Theβfishy state carries the path analysis relying on the type 

of communication (eitherβsingle- or multi-hop). This can be further exploited by the 

motesβto queryβexchange of data. In case, the fishyβsender mote relies on a single hop 

communication pattern. On the other hand, the analysis of mote can be achieved based 

on multi hop if the fishy mode relies on multi hop communication pattern, this can help 

to query the packetsβthat were transmitted byβall motes. Finally, a mote is considered to 

be a flooder if a pattern contradicting the normal pattern of queries arise, and the way the 

mote transmits the query packets. A mote can be considered to be in a typical state if the 

quantity ofβMaxPacket(M) is analogous toβQueryLimitThreshold (QLT). Eventually, the 

QCM removes all the flooder motes, because of updating the connected neighbor motes 

by modifying the communicationβchannels and links (approaching from the 

flooderβmote). Figure 3.7 elaborate the whole process related to cluster-based flooding.  
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Figure 3.7: Flowchart of the CBF process. 

3.5 Model Formation for ClusterβBased Flooding (CBF) 

This study designed theβcluster-based floodingβmodel as either oneβof two kinds 

of games: βproactively (intralayer) advantageous for the sensorβlayer and reactively 

(interlayer) beneficialβfor the network layer. Theβintralayer clustering aims at employing 

more network resources in achieving the recent information related to the motes in 

handling priority packet queries, and to reduce the delaysβin theβIoT network employing 

the table-driven mechanism. A static topology of the network is assumed, in addition to 

assuming that intralayer clustering (IALC)βis aware of variation in topology. Intralayer 

clustering (IALC) eventually improvesβCBF by repairing the query route and it caches 

inside the cluster. This method owns aβsignificant feature of non-dependent on any 

assumptions relating to the size of individual mote’s cluster. Finally, the proofβof 
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correctness implies to the networks owning the same cluster radius for every mote, and it 

also refers to the networks handling the individual mote's ownβcluster.  

As depicted inβFigure 3.8, suppose m(t)βbe the collection of queriedβmotes 

residing within the clusterβ(IALC), being anβinterior or a peripheral mote at 

timeβinterval t. The queried motes, for instance, motes having been visited already and 

directly reachable to the sourceβmote. Likely, theβremaining collection of unqueried 

motes are described by mc (t), unqueried motes are termed as the motes not been visited 

yet, residing in the outer cluster, and not being directly approachable to the source mote. 

Suppose B(t) be the subset of m(t), denoted asβperipheral or borderβmotes. 

Everyβperipheral mote B(t) carries about one neighbor in case of unqueried motes mc (t) 

(B(t) mC(t)), peripheral motesβare the covered motes, constructing a border 

betweenβqueried and unqueried clusters of theβnetwork. It is already lists inβEquation 

(3). 

 

 

 

 

Figure 3.8: Cluster-BasedβFlooding (CBF) ModelβFormulation 

𝑚(𝑡1)  ⊂  𝑚(𝑡2) 𝑎𝑛𝑑 𝑚𝐶(𝑡2)  ⊂  𝑚𝐶(𝑡1), 𝑓𝑜𝑟  𝑡 1 ≤  𝑡2  (3) 

Equation (3) depicts that a mote once queried, βit cannot be unqueriedβor 

uncovered. Therefore, βm(t1) ⊂ m(t2).  
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The fundamentalβset principle refers thatβmC(t2) ⊂ mC(t1), as presented in 

Equation (4): 

|𝑚𝐶(𝑡)|  >  0, |𝐵(𝑡)|  > 0  (4) 

βEquation (4) describes allβmotes belonging to uncoverdβmote m ∈ mC(t)βare 

reachable by the otherβmotes, having aβcovered peripheralβneighbor b ∈ B(t) (b denote 

the collection of queriedβmotes, residing on the clusterβboundary). Thus, βperipheral 

moteβb was visitedβby a query, Besides, b can be anβinterior or a peripheralβmote 

(relating to the sourceβmote). If b is an interiorβmote, then everyβb’s neighbor means to 

be queriedβas well. Though, even some of b’s neighbors areβunqueried, stated as 

uncovered motes m ∈ mC(t). Consequently, b requiresβto be the border, or a peripheral 

moteβof a source mote as presented inβEquation (5): 

𝑏 ∈  𝐵(𝑡1): 𝑏 ∉  𝐵(𝑡2); |𝑀𝑐(𝑡2)| <  |𝑀𝑐 (𝑡1)|     (5) 

Referring toβEquation (5), suppose thatβNb is denoted as the collection ofβmotes 

that are neighborsβof mote b.βThen, p will be occurred by the following two conditions: 

1. Ifβ(b ∈ B(t1),βthen mC(t1) ∩ Nb ≠ ∅ 

2. Ifβ(b ∉ B(t2),βthen mC(t2) ∩ Nb ≠ ∅ 

The aboveβconditions indicate thatβmC(t1) ≠ mC(t2), here also presented earlier 

thatβmC(t2) ⊂ mC(t1), so |mC(t2)| < |mC(t1)|. 

In case, a mote b is aβbroadcast receiver (relating to the sourceβmote) and carries 

the updated routeβquery for interval t2 thenβb ∉ B(t2). Referring to, whenβmote b 

achieves the updated routeβquery for interval t2, βit initiates looking for 

queriedβdestination mote, so revising all itsβassociated motes ofβtheir cluster. Hence, it 

should cover all mote b’s neighbors and b ∉ B(t2).  
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Theβsecond kind ofβinterlayer/reactive depicts aβtwo-player game. Here, one 

player "1" has a role of a “maximizer” βand second player "2" roles as a “minimizer”. 

The maximizer (player 1) aims at achieving the maximum possibleβvolume of energy 

gains, whereas theβminimizer (player 2) attempts to preserve the least volume of energy 

gains. This mechanism is adopted since every mote (player) of IoT network can possibly 

exploit the resources of network gains duringβtransmission of the routeβquery packets. 

These players hold a role of observer mote and are responsible in detection of unwanted 

flooding in the network. Equation 6 denotes the playersβas X1 and X2,βwhere X1 refers 

to inspectingβmote and X2 describes the flooderβmote. 

  𝑋 = { 𝑋1, 𝑋2}  (6) 

(Ic) and (Ip) denote the constant inspecting and periodic inspecting respectively 

in back andβforth of the cluster-basedβflooding (CBF). This allows the communicating 

motesβto examine the link eitherβconstantly or with a predetermined interval of time. 

“ReFa” refers as the assumed strategy of reactiveβflooding. The mote uses the (Ic, Ip) 

strategies to check the communication link, represented as: 

𝑋 = 𝑋1 ∗ 𝑋2  (7) 

 𝑋1 = {𝐼𝑐, 𝐼𝑝}   (7a) 

 𝑋2 = {𝑅𝑒𝐹𝑎}   (7b) 

Here, X1βand X2 denote player 1 andβ2, respectively. 

The efficacy of inspectingβmote can be presented by assuming the playerβutility 

function, to authenticate whether the floodingβattacks could be detected significantly or 

not. Consider the falseβpositive and rate of detection as to primary utility functions to 

inspect the mote. The flooderβutility aims at stopping the successful dissimilation of 
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query packets to reduce the network throughput, Quality-of-Service (QoS) , by achieving 

the strikes of redundant query. The utility function (Fu) are set as follows, Fu 1 and Fu 2 

represent the detection rate and flooding attack gains, respectively:  

{𝐹𝑢} = {𝐹𝑢1, 𝐹𝑢2}   (8) 

Equations (2), (6), and (7) formulate the strategy of reactive flooding attack based 

on Ic andβIp presented below. Here, Fd denotes the durationβof the floodingβattack, Fdg 

depicts for the gain of detection of flooding, t describes the Ip time interval, Fag denotes 

the gain of a remarkably flung floodingβattack. The payoff of the reactive flooding is 

denoted with Prefa, and both (Pc, Pp) are theβpayoffs when (Ic, Ip) areβused to sense the 

floodingβattack. Payoff describes the cost of starting or detectingβan attack: 

       𝐼𝑐 =  𝐹𝑑(𝐹𝑎𝑔 − 𝑃𝑟𝑒𝑓𝑎), (𝐹𝑑𝑔 − 𝑃𝑐)     (9) 

        𝐼𝑝 =  𝐹𝑑(𝑡𝐹𝑎𝑔 − 𝑃𝑟𝑒𝑓𝑎), 𝑡(𝐹𝑑𝐹𝑑𝑔 − 𝑃𝑝)   (10) 

The strategy of the reactive flooding attack can be expressed by Equation (9) and 

(10) for both (Ic, Ip). It is noticed that the flooderβmote can instantly triggerβan attack if 

it identifies any activity in theβcommunication link.  

3.6 Conclusion 

This Chapter presents a QoS enabled cross-layered clustering technique forβflooding 

queries in IoT networks. The QCM is based on an understandableβsolution that applies 

to both physicalβand network layer devices. Cross-layered CBF segments the entire 

networkβinto numerous clusters, maintaining proactively the localβquery information 

using IALC, whereas IELC is held responsible for reactive achievement of 

routingβqueries to their destinationsβ (outside the boundary of cluster). CBF carries the 

potential as an efficient solution compared to conventional schemes in context of query 
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traffic generation. However, when query detection is absent or terminated, the CBFβmay 

generate more controlβtraffic as compared with the standard floodingβtechniques. The 

cluster-based flooding model in this study was built as one of two types of games: 

proactive (intralayer) for the sensor layer and reactively (interlayer) for the network layer. 

Intralayer clustering seeks to use more network resources to obtain the most up-to-date 

information about motes to handle priority packet queries and reduce delays in the IoT 

network using a table-driven approach. 
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CHAPTER 4: FORMAL VERIFICATION AND ANALYSIS   

This Chapter discuss a formal verification and analysis for Cluster Based Flooding 

using Event-B method and as a case study use to examine the CBF in IoT. 

This Chapter is structured into six sections. Section 4.1 and 4.2 briefly presents 

the motivation for Formal Verification and Modeling in Event-B along with model 

refinement. Whereas Section 4.3 and 4.4 describes CBF Framework, system requirements 

and environment assumptions deemed in our development. Section 4.5 presents the entire 

formal development process, containing the formalization with Event-B and the 

validation with the ProB. Finally, Section 4.6 concludes the Chapter. 

4.1 Motivation for Formal Verification and Modeling in Event-B 

Formal methods, mainly formal verification, can improve the quality of the 

verification system. Formal verification technology can use rigorous mathematical proofs 

to determine if a system has a particular property. So far, a lot of work has been done to 

verify route protocols utilizing the model and theorem verification (Bourke et al., 2014; 

Elsayed et al., 2013; Yang et al., 2006) 

Few studies pay attention to the formal validation of cross-layered routing 

protocols. This chapter proposes a formal specification of cross-layered cluster-based 

flooding CBF at event B and proves the correctness of the route discovery mechanism. It 

is a refinement-based method, an improved way to add system details to the 

corresponding model gradually. It makes modeling and authentication easier for the user 

by allowing later versions to keep all the proven attributes in the previous model. The 

basic Rodin  (Abrial et al., 2010) auxiliary tool automatically divides proof tasks into 

sections based on the model structure. This approach has also been extended to systems 

in a variety of disciplines. Each node in the CBF cluster broadcasts link-state queries 
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regularly. To model periodic broadcast/flooding activity, some time constraints must be 

included in the formalization. Also, formalization should limit the spread of node link-

state query information within the cluster. Instead of using reactive protocols for 

broadcasting, nodes typically use a flooding mechanism called border casting services to 

handle routing requests. 

Furthermore, if there are changes inside the cluster or it receives route queries 

replies carrying discovered routes, a node then updates its routing table accordingly. As 

a result, formalizing the CBF is more complicated than formalizing a sole proactive or 

reactive approach protocol. This is an important issue that needs to be discussed and 

formally specifying this challenge in a significant way. By improving the method, it 

allows us to design a system from abstract to tangible. The proof obligations ensure the 

correctness for refinements. A Rodin plugin known as ProB is employed as an animation 

tool. It is used to authenticate the model and ensure that it has formalized the device 

specifications. 

4.1.1 Event-B Method 

Event-B is a state-of-the-art systematic approach for modeling and analysis at the 

device level (Elsayed et al., 2013)  . The B-Method(Yang et al., 2006)   has been 

simplified and expanded to Event B. Set theory, and first-order predicate logic is used to 

construct Event-B.(Hoang et al., 2013) includes the syntax specification for the Event-B 

language. This procedure has already been used to validate a variety of complex 

structures (Abrial et al., 2010; Cansell & Méry, 2006; Elsayed et al., 2013). The context 

and system construct the Event-B model. The system defines the dynamic part of the 

model, while the context describes the static role. The following are the apparent 

meanings of context and machine. The background structure is composed of a tuple, as 

follows.  
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Definition 1:  S denotes a set of user-defined sets, C represents a set of constants, 

A denotes a set of axioms that S and C must obey, and T indicates a set of theorems. 

Definition 2: Machine structure is composed of a tuple denoted as (V, I, T, VA, 

E), in which V and I represent as the states of the system and set of predicates that 

determine the characteristics of variables, respectively. The set of predicates in I should 

be maintained by each reachable state of the system. The set of theorems that need to be 

proved for the machine is denoted by T. Each machine has some convergent events that 

need to be defined and denoted by VA. The behavior of the system is model by events 

denoted by E. The state set or before-after predicate is associated with an event and 

consists of two major parts: guards that define the preconditions for each event 

compilation and behavior, which allocates variables values.(Robinson, 2010) elaborates 

the  summary of the Event-B notation:  

The following is the most basic type of an event: 

𝑎𝑛𝑦 𝑃 𝑤ℎ𝑒𝑟𝑒 𝐺𝑢(𝑃, 𝑉𝑟) 𝑡ℎ𝑒𝑛 𝐴𝑐(𝑃, 𝑉𝑟)                                                                                   

Where the collection of parameters represented by 𝑃,  variables set is defined as 

𝑉𝑟, aggregation of some guards and actions is denoted as  𝐺𝑢(𝑃, 𝑉𝑟) and 𝐴𝑐(𝑃, 𝑉𝑟) 

respectively. The guard and parameters are non-compulsory and can be omitted to 

simplify the event. Actions are made up of multiple tasks that are meant to happen at the 

same time. A before-after predicate can be used to define the change of variable for each 

assignment.   

 The Rodin (Abrial et al., 2010; Jastram, Michael, 2014)   is  used to create and 

verify the Event-BModels; verification is done either automatically or manually called 

proof obligation. Further, it provides plugin architecture which makes it more 

configurable and extensible (Romanovsky & Thomas, 2013). The ProB (Clark et al., 
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2016; Leuschel & Butler, 2008)  plugin, a tool used for checking and animation of a 

model 

4.2  Model refinement 

Refinement is a magnificent modeling method that helps to construct a step-by-

step model (El Mimouni & Bouhdadi, 2018). By using the refinement process, both 

machine and context can be expanded to design a concrete model. Context holds the static 

information and can extend to more than one context. A machine is a dynamic part of 

refinement. It can only refine one prevailing machine, but it can see numerous contexts. 

The abstract variables can be replaced by concrete ones and refine abstract events. 

An event can be maintained by alienating numerous concrete events. In another 

way, an event can be refined in another event by adding new actions and guards. To 

guarantee the refinement are made correctly, there is a need for some proof obligation 

that ensure (a) When the concrete event, known as guard strengthening, is activated, the 

abstract event is enabled as well, (b) for the variables of the concrete and abstract 

machines the gluing invariants are preserved. (c) Every activity in the abstract event 

stimulates the concrete event that corresponds to it.   The following description shows the 

created rules for the proof obligations. 

Definition 3: let consider 𝜀1 , 𝜀2 are the events and 𝑚𝑎1, 𝑚𝑎2 are the machines 

∋  𝜀1 ∈ 𝑚𝑎1, 𝜀2 ∈ 𝑚𝑎2 . if 𝑚𝑎2 refines 𝑚𝑎1 then 𝜀2 also refines 𝜀1. Furthermore, set of 

axioms seen to 𝑚𝑎2 is denoted by 𝐴𝑥 , set of theorems and invariants are defined in 𝑚𝑎1 

and 𝑚𝑎2 is represented by 𝑇 and I respectively. Guards of  𝜀2 is represented by 𝐺𝑢, 

whereas the gluing invariant defined in 𝜀2 and 𝑚𝑎2  is denoted by J. An action of  𝜀1 and 

𝜀2 know as before-after predicate is represented by   𝐵𝐴𝑝1 and 𝐵𝐴𝑝2  which  is used by 

abstract variable and concrete behavior. 
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Then it is necessary to prove the conjunction of 𝜀1 guards is denoted by  𝐴𝑥 , 𝑇, I, 𝐺𝑢 ⊢ 

𝑔𝑟𝑑 ; whereas 𝐽𝑚 is the modified 𝐽 

𝐴𝑥  , 𝑇, I, 𝐺𝑢 ⊢ 𝐽𝑚; 

𝐴𝑥 , 𝑇, I, 𝐺𝑢,  𝐵𝐴𝑝2 ⊢  𝐵𝐴𝑝1; 

4.3 Overview of Cluster Based Flooding 

4.3.1   Informal description 

The fundamental idea of CBF is to segment the entire network into different 

routing clusters. Intralayer clustering (IALC) is employed for proactive maintenance on 

the sensor layer, with an assistance of route query exchange and update query packets. 

The MDP-level MAC introduces route updates to IALC for broken or established links 

among the directly connected neighbor mote. Neighbor-motes are defined to be directly 

connected and sharing a communication link (called one mote away). The MDP-level 

(MAC) media access control protocol identifies mote’s neighbor. At the same time, 

interlayer clustering (IELC) reactively transfers route query packets to motes on the 

network layer. These packets exist outside of the mote’s cluster through query-reply 

packets. IELC employs a broadcast delivery service in transmitting the routing queries to 

its border or peripheral motes. IELC keeps updated route clustering information of 

peripheral motes using IALC tables. Finally, this information can determine whether the 

query for destination mote signifies to their cluster. 

IoT devices are more vulnerable to redundant and unwanted queries, which may 

disrupt data transmission, causing them to delay, require more bandwidth and energy to 

transmit the query to the destination, which may reduce the QoS of IoT Network in terms 

of energy consumption, cost, delays, and network throughput. 
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Figure 4.1: Flooded IoT Network During Exchange of Queries  

In Figure 4.1 sink / Sender mote searching for target / destination mote and target 

send data back to sender node in disordered way. Intermediate motes rebroadcast the 

query automatically which leads to flood the whole network. Generate heavy network 

traffic and redundant queries by utilizing excessive energy and bandwidth which may 

leads to more delay and overall degradation of QoS. 

4.3.2  System Requirements 

During the development process, the sequence number is used to monitor a node's 

link state history and avoid outdated link-state information. The reactive component 

ensures the loop freedom of newly discovered query routes. Furthermore, the whole 

network has a uniform cluster radius. CBF immediately becomes a reactive element if the 

cluster width is one hop. To concentrate on the unique features of the CBF, the special 

interest was on identifying the general situation in which the cluster radius is larger than 

one hop. 
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The main system requirements are as follows: 

REQ-1: Cluster-Based Flooding mechanism is a network routing mechanism that 

uses a hybrid technique. Its goal is to analyze a new route network on request in a dynamic 

network environment using local cluster information. 

REQ-2: If a valid path exists in the whole network, a route query between two 

distinct nodes will eventually be discovered. 

The REQ-1 explains the protocol's goal. Since a communication network can vary 

dramatically, a linked connection can go down after a couple of seconds. As a result, 

when the query source gets the discovered path, it can be invalid. However, if there is a 

path between the source and the destination in the network topology, the route between 

them can be discovered eventually.  

REQ-2 indicates this requirement. Eventually, this Chapter demonstrate the 

definition of the correct route. 

Definition 4: (Accurate Route) let consider 𝜗1, … … . . , 𝜗𝑘′, where 𝑘′ states as a positive 

natural number and k is greater than one and network of random distinctive nodes. The 

query route that has been discovered is denoted by 𝑟𝑜𝑢𝑡𝑒𝑞𝑢𝑒𝑟𝑦 = {𝜗1 ⟼

 𝜗2, … . , 𝜗𝑘′−1 ⟼   𝜗𝑘′} if it satisfies the criteria for the source 𝑠 and destination 𝑑, it is 

appropriate. 

 𝑠 and 𝑡 represented as motes in the network 

 For each 𝜗𝑖 ⟼  𝜗𝑖+1 ∈ 𝑟𝑜𝑢𝑡𝑒 with respect to 𝑖 ∈ 1 … 𝑘′ − 1, 𝜗𝑖, 𝜗𝑖+1 are 

motes which belongs to the network. 

 The route does not have a loop. 

 Complete path from  𝑠 to  𝑡 is known as route_query. 
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REQ-3: Each node can acquire the connection status of its nearest neighbors on 

a regular basis and then exchange such knowledge with the other nodes. 

REQ-4: Clusters restrict the range of connection state updates. 

REQ-5: Each mote in the network cluster proactively maintains the updated 

topological map. As a result, all nodes have routes to the destinations within the cluster. 

The mote collaborates with the nearest neighbor information given by the MDP 

on a periodical basis. Then it broadcasts the state of its links to the rest of the cluster. 

According to REQ-3 to REQ-5, every mote sees the local cluster from a new perspective. 

Since the nodes' perspective can differ from the actual network topology, these 

requirements ensure that nodes' views in a real-time manner. 

REQ-6: The discovery of route query depends on the cluster. If the existence of 

the route is not present in the route towards the destination in its routing table, the source 

mote then begins the discovery of the route to the destination. To broadcast the service, 

the source mote sends the path query request towards the subset of neighbors. It is not 

necessary that all neighbors receive the same request. 

REQ-7: The routing query request will only obtain by the designated destinations 

decided by the last forwarded motes 

REQ-8: Depending on whether the destination is inside the cluster radius, the 

expected recipient's reaction may be one of the following: (a) It sends a route query 

response to the source within the cluster, (b) Alternatively, it adds the address to an 

aggregate route and send flood broadcasts the query request. 

REQ-9: With the QoS-enabled cluster-based query control scheme, a route query 

request can be driven away from the source of query and the regions included by request. 

As per the query control scheme, a node marks its cluster as reached if it entertains the 
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request or the reply. After that, it is insignificant to reprocess the request. The next 

requirement relates the routing update. 

REQ-10: Each mote rebroadcasts information or relays query route reply to 

packets if there are any changes within its cluster. Once the source mote found an 

authentic route query message, it notifies the directly connected motes about the newly 

found route in real-time scenarios. 

4.4 Environment assumptions 

Before proceeding towards the formal development, consider the following CBF 

network assumptions: 

Assumptions 

ENV-1: n number of sensor motes are randomly deployed. All motes carry the same 

capacity in terms of functionality. every mote equipped with an IP address for the sake 

to work as sensor gateway to exchange query messages. For all connected nodes, mode 

of communication was adopted as single and multi-hop. Every mote can instigate 

flooding. In case of some activity detection, the flooder begins to interrupt through the 

link. There is similarity between the capabilities of the flooder and normal motes. In 

addition, the flooder mote can also generate redundant query messages (i.e., random 

flooding queries). 

ENV-2: Intermediate status for pairs of different motes might be up or down by using 

bidirectional links.  

ENV-3: Every mote m is aware of broken or uplinks in the network. 

ENV-4: In case of null activity for a long time in the network, every mote must know the 

updated topology map of its surroundings.   
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According to Env-2, it is assumed that sender and receiver motes can 

communicate simultaneously, and the links are bidirectional in the network. So, it can 

broadcast route query replies of discovered routes to the source mote. If mote m and n 

are directly connected, it might indicate directed links from m → n and n → m and 

considered up in the network environment.  

According to ENV-3, every mote can sense its external links. It is not required 

that a mote detects the network changes immediately. 

Based on ENV-4, if the network is static for a long time, the system will consider 

being in a stable state, and every mote is aware of their clusters topology. 

4.5  Formal Development 

This Section describes the formal development of Cluster Based Flooding (CBF). 

Initially, the refinement strategy is elaborated for analysis; with the help of a step-by-step 

refinement process, a model formalization is derived from achieving the correctness for 

REQ1 and REQ2. Model validation is presented at the end of the chapter. 

Model initialization: The dynamic network architecture is built using this model. 

Refinement 1: In this stage, abstract update events for the routing and link state table are 

introduced. Furthermore, the stability of the system is considered in a quiescent way. 

Refinement 2: This refinement briefly formalizes links state updates and periodically 

links state broadcasting of each mote. 

Refinement 3: The model for the cluster radius is constructed based on refinement 2 

using a uniform cluster radius. sequence numbers are utilized to keep track of each query 

packets and to avoid the processing of old link information.   

Refinement 4: Variables are used to keep track of all connected links' distributed 

behavior and record their transmitted information. 
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Refinement 5: This refinement analyzes the route query request phase in detail, 

initially, formalization for border-casting is carried out without any query control 

mechanism. 

Refinement 6: This refinement develops concrete events that indicate that a route request 

has been received and handled by the intended recipient. 

Refinement 7: In this refinement, a cluster-based query control mechanism is considered 

during the route query process. 

Refinement 8: This refinement modeled the route reply process. A mote updates its 

routing table in response to an IALC notification or a received route reply. Routing table 

updates for the cluster are also refined in this step. Modeling the interactions between the 

system and its environment is possible with Event-B formalism. The initial model 

formalizes the dynamic network environment.  

Such as refinement 2 considers environment 3 and Req 3, and req6 and req7 are 

ensured in refinement 5. According to definition 4, points 1 and 2 were proved in 

refinement 1, discovered routes validity and freedom of loop are ensured in refinement 5 

and 8, respectively. The final model ensured the correctness of discovered route queries. 

The Req-1 is impartially general and include in each step of refinement. Finally, Req-1 

and 2 completes in final refinement. 

4.5.1 Environmental Modeling  

In the initial context, a carrier set motes were introduced, which represent the 

collection of all motes in the networks. Based on Environment 1, Motes are axiomatized 

as a finite set.  

The following theorem follows a relation established over finite sets (thm1). It 

will help to prove the tasks simpler. 
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𝑎𝑥𝑚1: 𝑓𝑖𝑛𝑖𝑡𝑒(𝑀𝑜𝑡𝑒𝑠) 

𝑡ℎ𝑚1: ∀𝑎, 𝑏, 𝑓. 𝑎 ∈ ℙ(𝑀𝑜𝑡𝑒𝑠)⋀𝑏 ∈ ℙ(𝑀𝑜𝑡𝑒𝑠)⋀𝑓 ∈ 𝑎 ⟷ 𝑏 

 ⟹ (𝑓𝑖𝑛𝑖𝑡𝑒(𝑎)⋀𝑓𝑖𝑛𝑖𝑡𝑒(𝑏) ⟹ 𝑓𝑖𝑛𝑖𝑡𝑒(𝑓)) 

A variable Neighbor_Link is defined to record the uplink information. The 

D_Neighbor_Link variable represents the set of links that are presently down and 

previously up. It can be seen from thm1 and Neighbor_Link that the network topology 

has a finite number of connected links. As a result, a route query request can be 

propagated through the entire network. Three events have been created for the purpose to 

formalize the changes in network topology: Link_New_Add, Link_Brocken_Add, 

Link_Remove. According to the first two events, initially, the two different motes are 

connected, and subsequently, the associated links are added to Neighbor_Link. 

Link_Remove clears the invalid links from Neighbor_Link, which were up links at some 

stage in the past. 

 

 

 

 

 

 

 

 

 𝐿𝑖𝑛𝑘_𝑁𝑒𝑤_𝐴𝑑𝑑  
𝒂𝒏𝒚 𝑀𝑜𝑡𝑒 1 𝑀𝑜𝑡𝑒 2 𝒘𝒉𝒆𝒓𝒆 
𝑀𝑜𝑡𝑒 1 ∈  𝑀𝑜𝑡𝑒𝑠 
𝑀𝑜𝑡𝑒 2 ∈  𝑀𝑜𝑡𝑒𝑠 
𝑀𝑜𝑡𝑒 1 ≠  𝑀𝑜𝑡𝑒2 

𝑀𝑜𝑡𝑒 1 ↦  𝑀𝑜𝑡𝑒2 ∉ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 
⋀𝑀𝑜𝑡𝑒 2 ↦  𝑀𝑜𝑡𝑒1 ∉ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 
𝑀𝑜𝑡𝑒 1 ↦  𝑀𝑜𝑡𝑒2 ∉ 𝐷_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 
𝑀𝑜𝑡𝑒 1 ↦  𝑀𝑜𝑡𝑒2 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 
⋀𝑀𝑜𝑡𝑒 2 ↦  𝑀𝑜𝑡𝑒1 ∈ 𝐷_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 

then 
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 ≔ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘𝑈 

{ 𝑀𝑜𝑡𝑒 1 ↦  𝑀𝑜𝑡𝑒2, 𝑀𝑜𝑡𝑒 2 ↦

 𝑀𝑜𝑡𝑒1} 
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Link_Remove requires the deleted links to be located in the Neighbor_Link, and 

then add these links to the set D_Neighbor_Link. 

 

 

 

 

 

 

Some Invariants has added to establish Env 2. Neighbor_Link is made up of 

unique motes for each link (inv3). Furthermore, in a case Neighbor_Link hold a dedicated 

𝐿𝑖𝑛𝑘_𝐵𝑟𝑜𝑘𝑒𝑛_𝐴𝑑𝑑   
𝒂𝒏𝒚 𝑀𝑜𝑡𝑒 1 𝑀𝑜𝑡𝑒 2 𝒘𝒉𝒆𝒓𝒆 
𝑀𝑜𝑡𝑒 1 ∈  𝑀𝑜𝑡𝑒𝑠 
𝑀𝑜𝑡𝑒 2 ∈  𝑀𝑜𝑡𝑒𝑠 
𝑀𝑜𝑡𝑒 1 ≠  𝑀𝑜𝑡𝑒2 

𝑀𝑜𝑡𝑒 1 ↦  𝑀𝑜𝑡𝑒2 ∉ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 
⋀𝑀𝑜𝑡𝑒 2 ↦  𝑀𝑜𝑡𝑒1 ∉ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 
𝑀𝑜𝑡𝑒 1 ↦  𝑀𝑜𝑡𝑒2 ∉ 𝐷_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 
𝑀𝑜𝑡𝑒 1 ↦  𝑀𝑜𝑡𝑒2 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 
⋀𝑀𝑜𝑡𝑒 2 ↦  𝑀𝑜𝑡𝑒1 ∈ 𝐷_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 

then 
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 ≔ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘𝑈 

{ 𝑀𝑜𝑡𝑒 1 ↦  𝑀𝑜𝑡𝑒2, 𝑀𝑜𝑡𝑒 2 ↦

 𝑀𝑜𝑡𝑒1} 
𝐷_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 ≔ 𝐷_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘\ 

{ 𝑀𝑜𝑡𝑒 1 ↦  𝑀𝑜𝑡𝑒2, 𝑀𝑜𝑡𝑒 2 ↦

 𝑀𝑜𝑡𝑒1} 

𝐿𝑖𝑛𝑘_𝑅𝑒𝑚𝑜𝑣𝑒  
𝒂𝒏𝒚 𝑀𝑜𝑡𝑒 1 𝑀𝑜𝑡𝑒 2 𝒘𝒉𝒆𝒓𝒆 
𝑀𝑜𝑡𝑒 1 ∈  𝑀𝑜𝑡𝑒𝑠 
𝑀𝑜𝑡𝑒 2 ∈  𝑀𝑜𝑡𝑒𝑠 
𝑀𝑜𝑡𝑒 1 ≠  𝑀𝑜𝑡𝑒2 

𝑀𝑜𝑡𝑒 1 ↦  𝑀𝑜𝑡𝑒2 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 
⋀𝑀𝑜𝑡𝑒 2 ↦  𝑀𝑜𝑡𝑒1 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 

then 
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 ≔ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘\ 

{ 𝑀𝑜𝑡𝑒 1 ↦  𝑀𝑜𝑡𝑒2, 𝑀𝑜𝑡𝑒 2 ↦

 𝑀𝑜𝑡𝑒1} 
𝐷_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 ≔ 𝐷_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘𝑈 

{ 𝑀𝑜𝑡𝑒 1 ↦  𝑀𝑜𝑡𝑒2, 𝑀𝑜𝑡𝑒 2 ↦

 𝑀𝑜𝑡𝑒1} 
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link i.e mote1 → mote2, then the opposite of this link mote1 → mote2 must be resides in 

the Neighbor_Link (inv4). Neighbor_Link and D_Neighbor_Link are separate (inv5). 

4.5.2  Formation of Cluster 

 This development aims to formalize a model according to the assumptions and 

requirements of the system environment.   

 

First Refinement. In the first refinement, Cessation (closure) is defined to denote the 

transitive cessation of link. 

𝑎𝑥𝑚1: 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛 ∈ (𝑀𝑜𝑡𝑒𝑠 ⟷ 𝑀𝑜𝑡𝑒𝑠)

⟶ (𝑀𝑜𝑡𝑒𝑠 ⟷ 𝑀𝑜𝑡𝑒𝑠) 
𝑎𝑥𝑚2: ∀𝑟. 𝑟 ⊆ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑟) 
𝑎𝑥𝑚3: ∀𝑟. 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑟); 𝑟 ⊆ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑟) 
𝑎𝑥𝑚4: ∀𝑟. 𝑠. 𝑟 ⊆  𝑠 ∧ 𝑠 ; 𝑟 ⊆ 𝑠 

⟹ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑟) ⊆ 𝑠 
𝑎𝑥𝑚5: ∀𝑟. 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑟) ;  𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑟) ⊆  𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑟) 

 

A variable Table_Link_State is used to specify the information of the link-state 

stored in each mote. The add_links and remove_links are two disjoint sets used to update 

𝑖𝑛𝑣1: 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 ∈  𝑀𝑜𝑡𝑒𝑠 ⟷ 𝑀𝑜𝑡𝑒𝑠 
𝑖𝑛𝑣2: 𝐷_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘  ∈  𝑀𝑜𝑡𝑒𝑠

⟷ 𝑀𝑜𝑡𝑒𝑠  
𝑖𝑛𝑣3: ∀𝑚𝑜𝑡𝑒 1, 𝑚𝑜𝑡𝑒2. 𝑚𝑜𝑡𝑒 1 ∈  𝑀𝑜𝑡𝑒𝑠⋀𝑚𝑜𝑡𝑒2

∈   𝑀𝑜𝑡𝑒𝑠⋀ 
 𝑚𝑜𝑡𝑒 1 ↦  𝑚𝑜𝑡𝑒2 ∈   𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘   ⟹    𝑚𝑜𝑡𝑒 1

≠   𝑚𝑜𝑡𝑒2 
𝑖𝑛𝑣4: ∀𝑚𝑜𝑡𝑒 1, 𝑚𝑜𝑡𝑒2. 𝑚𝑜𝑡𝑒 1 ∈  𝑀𝑜𝑡𝑒𝑠⋀𝑚𝑜𝑡𝑒2

∈   𝑀𝑜𝑡𝑒𝑠⋀ 
 𝑚𝑜𝑡𝑒 1 ↦  𝑚𝑜𝑡𝑒2 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 
 ⟹ 𝑚𝑜𝑡𝑒 2 ↦  𝑚𝑜𝑡𝑒1

∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 
𝑖𝑛𝑣5: 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘 ∩ 𝐷_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑛𝑘

= ∅ 
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mote’s link state table. To model the above case initially, old neighbor information needs 

to be removed and then add the updated received information of the neighbor. 

Links_Update  
𝒂𝒏𝒚 𝑚𝑜𝑡𝑒 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 𝒘𝒉𝒆𝒓𝒆 

𝑚𝑜𝑡𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠 
𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟷ 𝑀𝑜𝑡𝑒𝑠 

𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟷ 𝑀𝑜𝑡𝑒𝑠 
Then 

𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒)

≔ (𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒)\𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠) ∪ 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 
The mote’s routing table of the cluster is the collection of links, and it is 

specified by the variable Table_Routing_Cluster.  

𝑖𝑛𝑣1: 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟶ (𝑀𝑜𝑡𝑒𝑠 ⟷ 𝑀𝑜𝑡𝑒𝑠) 
𝑖𝑛𝑣2:   𝑇𝑎𝑏𝑙𝑒_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟶ (𝑀𝑜𝑡𝑒𝑠 ⟷

𝑀𝑜𝑡𝑒𝑠) 
𝑖𝑛𝑣3: ∀𝑛, 𝑛 ∈  𝑀𝑜𝑡𝑒𝑠 ⟹ 𝑇𝑎𝑏𝑙𝑒_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑛) ⊆ 𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠 

 
Update_Routing_TableAn event Update_Table_Routing is defined to model 

routing update for each mote. If no links are to add or remove, then the mote’s routing 

table remains the same. Some links are intersecting at Routes_Add and Routes_Remove. 

So, it is desired to initially eliminate the outdated link before adding the recent routes. 

  

Update_Routing_Table 
𝒂𝒏𝒚 𝑚𝑜𝑡𝑒 𝑅𝑜𝑢𝑡𝑒𝑠_𝐴𝑑𝑑  𝑅𝑜𝑢𝑡𝑒𝑠_𝑅𝑒𝑚𝑜𝑣𝑒 

Where 
𝑚𝑜𝑡𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠 

𝑅𝑜𝑢𝑡𝑒𝑠_𝐴𝑑𝑑 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟷ 𝑀𝑜𝑡𝑒𝑠 
𝑅𝑜𝑢𝑡𝑒𝑠_𝑅𝑒𝑚𝑜𝑣𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟷ 𝑀𝑜𝑡𝑒𝑠 

¬(𝑅𝑜𝑢𝑡𝑒𝑠_𝐴𝑑𝑑 = ∅ ∧ 𝑅𝑜𝑢𝑡𝑒𝑠_𝑅𝑒𝑚𝑜𝑣𝑒 = ∅) 
Then 

𝑇𝑎𝑏𝑙𝑒_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑚𝑜𝑡𝑒)

≔ (𝑇𝑎𝑏𝑙𝑒_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑚𝑜𝑡𝑒)\𝑅𝑜𝑢𝑡𝑒𝑠_𝑅𝑒𝑚𝑜𝑣𝑒)

∪ 𝑅𝑜𝑢𝑡𝑒𝑠_𝐴𝑑𝑑 

Univ
ers

iti 
Mala

ya



 

117 

 

An event named stabilize is defined to denote the system stability state. Once the 

stabilize event becomes enabled, the state f the system is considered stable. This step 

formalizes ENV-4. 

Stabilize 
𝒂𝒏𝒚 𝑚𝑜𝑡𝑒𝑠 𝒘𝒉𝒆𝒓𝒆 
𝑚𝑜𝑡𝑒𝑠 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟶ ℙ(𝑀𝑜𝑡𝑒𝑠) 

∀𝑚, 𝑛. 𝑚 ↦ 𝑛 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝐿𝑖𝑛𝑘 ⇔ 𝑚 ↦ 𝑛 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚)  
∀𝑚, 𝑛. 𝑚 ↦ 𝑛 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝐿𝑖𝑛𝑘) ∧  𝑛 ∈ 𝑚𝑜𝑡𝑒𝑠(𝑚) 

⟹ (∀𝑥. 𝑚 ↦ 𝑥 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑛)  ⇔ 𝑚 ↦ 𝑥 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚) 
Second Refinement: Every node in the IALC shares neighbor information with other 

nodes and maintains an updated view of its neighbors. This refinement model exchange 

procedure by defining some constant that classifies the stationary part of the model. 

𝑖𝑛𝑣1: 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠

⟶ ((𝑀𝑜𝑡𝑒𝑠 ×  𝑀𝑜𝑡𝑒𝑠) ↛ ℕ) 
𝑖𝑛𝑣2: 𝑇𝑖𝑚𝑒 

∈ ℕ1) 
𝑖𝑛𝑣3: 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑇𝑖𝑚𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠

⟶ ℕ1 ) 
𝑖𝑛𝑣4: ∀𝑛. 𝑛 ∈  𝑀𝑜𝑡𝑒𝑠 ⟹ (∀𝑙. 𝑙

∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑛)) 
 ⇔ 𝑙 ∈ 𝑑𝑜𝑚(𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑛))) 

𝑖𝑛𝑣5: ∀𝑛. 𝑛 ∈  𝑀𝑜𝑡𝑒𝑠 ⟹ 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑇𝑖𝑚𝑒(𝑛)

≤ 𝑇𝑖𝑚𝑒 
𝑖𝑛𝑣6: ∀𝑚, 𝑛. 𝑚 ↦ 𝑛 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚) ⟹ (𝑚 ↦ 𝑛

∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑛𝑘 ∨ 𝑚 ↦ 𝑛 
  ∈ 𝐷𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑛𝑘) 

𝑖𝑛𝑣7: ∃𝑚, 𝑛. 𝑚 ↦ 𝑛 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚) ∧ 𝑚 ↦ 𝑛

∉ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑛𝑘 
  ∧ 𝑚 ↦ 𝑛 ∈ 𝐷𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑛𝑘 
 ⟹ ¬(∀𝑞, 𝑝. 𝑞 ↦ 𝑝 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑛𝑘 ⇔  𝑞 ↦ 𝑝

∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑞))) 
𝑖𝑛𝑣8: ∃𝑚, 𝑛. 𝑚 ↦ 𝑛 ∉  𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚) ∧ 𝑚 ↦ 𝑛

∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑛𝑘 
 ⟹ ¬(∀𝑞, 𝑝. 𝑞 ↦ 𝑝 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑛𝑘 ⇔  𝑞 ↦ 𝑝

∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑞))) 
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The Links_Update abstract is divided into three 

sections: Links_Obtain,  Links_Transfer, and Links_Refresh. Links_Obtain is responsible 

for the link information of the mote's neighbor. Every mote must know the link 

information of its neighbors. Add_links in this event is the set of links between motes and 

their newly discovered neighbor. Remove_links is responsible for the collection of links 

among motes and their invalid connected neighbors. Rest is defined to keep track of 

residual link insertion timing to the state table of motes. 

Links_Obtain refines Links_Update    
𝑎𝑛𝑦 𝑚𝑜𝑡𝑒 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 𝑟𝑒𝑠𝑡 

𝑤ℎ𝑒𝑟𝑒 
 ⊕ 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 = {𝑝 ↦ 𝑚|𝑝 = 𝑚𝑜𝑡𝑒 ∧ 𝑝 ↦ 𝑚 ∈

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝐿𝑖𝑛𝑘  
 ∧ 𝑝 ↦ 𝑚 ∉ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑝)} 

⊕ 𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 = {𝑝 ↦ 𝑚|𝑝 = 𝑚𝑜𝑡𝑒 ∧ 𝑝 ↦ 𝑚 ∉ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝐿𝑖𝑛𝑘 
∧ 𝑝 ↦ 𝑚 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑝)} 

⊕ 𝑇𝑖𝑚𝑒 − 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑇𝑖𝑚𝑒(𝑚𝑜𝑡𝑒) ≥ 𝑝𝑒𝑟𝑖𝑜𝑑 
⊕ 𝑟𝑒𝑠𝑡 = 𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 ⊲ 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑚𝑜𝑡𝑒) 

then 
⊕ 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑚𝑜𝑡𝑒) ≔ 𝑟𝑒𝑠𝑡

⟵ ((({𝑚𝑜𝑡𝑒} ⊲ 𝑑𝑜𝑚(𝑟𝑒𝑠𝑡)) ∪ 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠) × {𝑇𝑖𝑚𝑒}) 

⊕ 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑇𝑖𝑚𝑒(𝑚𝑜𝑡𝑒) ≔ 𝑇𝑖𝑚𝑒 

Links_Transfer  refines  Links_Update 
𝒂𝒏𝒚 𝑠𝑒𝑛𝑑𝑒𝑟 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑚𝑜𝑡𝑒 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑 𝑙𝑖𝑛𝑘𝑠 

𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 
 where 

⊖ 𝑚𝑜𝑡𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠 
⊕ 𝑠𝑒𝑛𝑑𝑒𝑟 ∈ 𝑀𝑜𝑡𝑒𝑠  ∧ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠 

⊕ 𝑠𝑒𝑛𝑑𝑒𝑟 ≠ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∧  𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ≠  𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑀𝑜𝑡𝑒 
 ⊕ 𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑠𝑒𝑛𝑑𝑒𝑟) 

⊕ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟷ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑑𝑜𝑚(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑙𝑖𝑛𝑘𝑠) = {𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒} 
⊕ 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 = 𝑟𝑒𝑐𝑖𝑒𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 

 ⊕ 𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 = {𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒} ⊲

𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) 
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 The old link routing information of Links_Transfer recorded by 

the remove_link needs to be removed before taking the record of the updated received 

link recorded by the add_links. 

 Links_Refresh is the event responsible for updating the link state table without 

considering the link sources that have quit from the mote’s cluster radius. A new event, 

Clock_time, is defined to model the time growth process. The REQ-3 and ENV-3 are 

implemented in this step.  

Third Refinement: The emphasis of this refinement is on the design of the cluster radius. 

Instead of the entire network, each mote in CBF keeps cluster information within its 

With 
𝑚𝑜𝑡𝑒 = 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 

  Then 
⊖  𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒)

≔ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒)\𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠

∪ 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 
⊕  𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)

≔ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)

\𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 ∪ 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 
⊕  𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)

≔ (𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 ⊲ 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟))

∪ (𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 × {𝑇𝑖𝑚𝑒})  

Links_Refresh refines Links_Update  
𝒂𝒏𝒚 𝑚𝑜𝑡𝑒 𝑜𝑙𝑑_𝑙𝑖𝑛𝑘𝑠 

Where 
⊕ 𝑜𝑙𝑑𝑙𝑖𝑛𝑘𝑠 = {𝑥 ↦ 𝑦|𝑥 ↦ 𝑦 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒) ∧ 𝑥 ≠ 𝑚𝑜𝑡𝑒 ∧ 

(𝑇𝑖𝑚𝑒 − 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑚𝑜𝑡𝑒)(𝑥 ↦ 𝑦) ≥ 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒)} 
With 

𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 = ∅ 
  𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 = 𝑜𝑙𝑑_𝑙𝑖𝑛𝑘𝑠 
Then 

⊖  𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒)

≔ (𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒)\𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠) ∪ 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 
⊕ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒) ≔ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒)\𝑜𝑙𝑑_𝑙𝑖𝑛𝑘𝑠 

⊕ 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑚𝑜𝑡𝑒) ≔ 𝑜𝑙𝑑_𝑙𝑖𝑛𝑘𝑠 ⊲ 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑚𝑜𝑡𝑒) Univ
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cluster radius. A constant cluster radius is used to represent cluster radius, and its value 

is > 1. A TTL variable is defined to store the value of TTL. While a mote broadcasts its 

connected neighbor information, the TTL value is set as cluster radius – 1. This broadcast 

terminates once the TTL value reaches 0. A variable Seq_Num is defined to track the 

history of the link-state packet for every mote.  

 

An event discard_Links is used to discards the received mote link-state 

information having a smaller sequence number. The mote uses transfer_Links to process 

this packet and record the sequence number to reduce the TTL value.  

Links_Transfer refines Links_transfer 
𝑎𝑛𝑦 𝑠𝑒𝑛𝑑𝑒𝑟 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 𝑟𝑒𝑐𝑖𝑒𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 

𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑇𝑇𝐿 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑆𝑒𝑞_𝑁𝑢𝑚 
𝑤ℎ𝑒𝑟𝑒 

 ⊕  𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑇𝑇𝐿 > 0 ∧ 
𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑆𝑒𝑞_𝑁𝑢𝑚 > 0 

⊕ 𝑆𝑒𝑞_𝑁𝑢𝑚(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒_𝑀𝑜𝑡𝑒) ≤ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑆𝑒𝑞_𝑁𝑢𝑚 
then 

⊕ 𝑇𝑇𝐿(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔ 𝑇𝑇𝐿(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ⟵ 
{𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑇𝑇𝐿 − 1} 

⊕ 𝑆𝑒𝑞_𝑁𝑢𝑚(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔ 𝑆𝑒𝑞_𝑁𝑢𝑚(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ⟵ 
{𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑆𝑒𝑞_𝑁𝑢𝑚} 

 

 

𝑖𝑛𝑣1: 𝑇𝑇𝐿 ∈ 𝑀𝑜𝑡𝑒𝑠 → (𝑀𝑜𝑡𝑒𝑠 → ℕ) 
𝑖𝑛𝑣2: 𝑆𝑒𝑞_𝑁𝑢𝑚 ∈ 𝑀𝑜𝑡𝑒𝑠 → (𝑀𝑜𝑡𝑒𝑠 → ℕ) 
𝑖𝑛𝑣3: ∀𝑚, 𝑝. 𝑝 ∈ 𝑑𝑜𝑚(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒𝑚) ⇒ 𝑆𝑒𝑞_𝑁𝑢𝑚(𝑚)(𝑝) > 0 
𝑖𝑛𝑣4: ∀𝑚, 𝑝. 𝑝 ∈ 𝑑𝑜𝑚(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒) ∧ 𝑚 ↦ 𝑛 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛 

 (𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚)) ∧ (∃𝑥. 𝑚 ↦ 𝑛 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚) ∧ 
 ¬𝑚 ↦ 𝑛 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑛)) 
 ⇒ ¬(∀𝑥. 𝑚 ↦ 𝑛 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚) ⇔ 𝑚 ↦ 𝑛

∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑛)) 
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For the Stabilize, Let add two Conditions: 

(1) 𝑀𝑜𝑡𝑒𝑠 = 𝜆𝑥. 𝑥 ∈ 𝑀𝑜𝑡𝑒𝑠|𝑑𝑜𝑚(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑥)), 
(2) ∀𝑥, 𝑦. 𝑥 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑦 ∈ 𝑚𝑜𝑡𝑒𝑠(𝑥) 

i. ⇒ 𝑥 ↦ 𝑦 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑥)), 

To describe the scope of the link-state propagation. The stabilization property of 

the system is derived as a theorem. 

Theorem 1 If the system is stable, and there exists a path in the network topology 

between node m and node n, and n is in the routing cluster of m, then there exists a route 

from m to n in m’s link state table. Let Guards be the conjunction of all guards of 

stabilizing event. Then, the formalization of the statement is 

𝐺𝑢𝑎𝑟𝑑𝑠 ⇒ (∀𝑚, 𝑛. 𝑚 ↦ 𝑛 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝐿𝑖𝑛𝑘) 

⇆∧ 𝑛 ∈ 𝑟𝑎𝑛(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚)) 

⇒ 𝑚 ↦ 𝑛 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚)). 

As a result of this refinement, each mote has the updated cluster radius 

information. This refinement ensures the Req 4 and Req 5. 

Fourth Refinement: Transmitted_Link is defined as stopping a mote from retrieving 

other mote’s private information. Transmitted _Seq_Num and Transmitted _TTL is 

defined to stipulate the sequence number and TTL values being transmitted. A variable 

flag indicates whether a mote can receive information of link state from another mote. 

𝑖𝑛𝑣1: 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘 ∈ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) → (𝑀𝑜𝑡𝑒𝑠 → 
 (𝑀𝑜𝑡𝑒𝑠 ↔ 𝑀𝑜𝑡𝑒𝑠)) 

𝑖𝑛𝑣2: 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚 ∈ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) → (𝑀𝑜𝑡𝑒𝑠 → ℕ) 
𝑖𝑛𝑣3: 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑇𝐿 ∈ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) → (𝑀𝑜𝑡𝑒𝑠 → ℕ) 
𝑖𝑛𝑣4: 𝐹𝑙𝑎𝑔 ∈ 𝑀𝑜𝑡𝑒𝑠 → (𝑀𝑜𝑡𝑒𝑠 → 𝐵𝑂𝑂𝐿) 
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𝑖𝑛𝑣5: ∀𝑚, 𝑛, 𝑝. 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑚 ↦ 𝑛)(𝑝) ≠ ∅ ∧ 𝑛 ≠ 𝑝 
 ⇒ 𝑚 ↦ 𝑛 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚) 

𝑖𝑛𝑣6: ∀𝑚, 𝑛, 𝑝. 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑚 ↦ 𝑛)(𝑝) ≠ ∅ ∧ 𝑛 ≠ 𝑝 
 ⇒ 𝑑𝑜𝑚(𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑚 ↦ 𝑛)(𝑝)) = {𝑝} 

 

Further, send_Links, receive_Links, discard_Links, and cancel_SendingLinks 

are adopted to model the dispersed behavior of packet transmission. The Send_links is 

enabled when the transfer mote link information is empty, and its TTL is > 0. Or else 

the mote is just required to refresh the flag by Cancel_Sending_Links. 

Send_Links 
𝑎𝑛𝑦 𝑠𝑒𝑛𝑑𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒𝐿𝑖𝑛𝑘𝑠 

𝑤ℎ𝑒𝑟𝑒 
𝑠𝑒𝑛𝑑𝑒𝑟 ∈ 𝑀𝑜𝑡𝑒𝑠 

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑀𝑜𝑡𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠 
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑀𝑜𝑡𝑒 ∈ 𝑑𝑜𝑚(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑠𝑒𝑛𝑑𝑒𝑟)) 

𝑙𝑖𝑛𝑘𝑠 = {𝑥 ↦ 𝑦|𝑥 = 𝑠𝑒𝑛𝑑𝑒𝑟 ∧ 𝑥 ↦ 𝑦 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑥)} 
∀𝑙. 𝑙 ∈ 𝑙𝑖𝑛𝑘𝑠 ⇒ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑙𝑖𝑛𝑘𝑠(𝑙)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒) = ∅ 

 𝑇𝑇𝐿(𝑠𝑒𝑛𝑑𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒) > 0 
then 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘 ≔ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘 ⟵ (𝜆𝑙. 𝑙 ∈ 𝑙𝑖𝑛𝑘𝑠| 
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑𝐿𝑖𝑛𝑘 ⟵ {𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑀𝑜𝑡𝑒 ↦ 

{𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒} ⊲ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑠𝑒𝑛𝑑𝑒𝑟)}) 
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚 ≔ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚 ⟵  (𝜆𝑙. 𝑙 ∈ 𝑙𝑖𝑛𝑘𝑠| 

 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚(𝑙) ⟵ {𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 ↦

𝑆𝑒𝑞_𝑁𝑢𝑚(𝑠𝑒𝑛𝑑𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒)}) 
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑇𝐿 ≔ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑇𝑇𝐿 ⟵ (𝜆𝑙. 𝑙 ∈ 𝑙𝑖𝑛𝑘𝑠| 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑇𝐿(𝑙) ⟵ {𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 ↦  𝑇𝑇𝐿(𝑠𝑒𝑛𝑑𝑒𝑟) ≔ 𝐹𝑙𝑎𝑔(𝑠𝑒𝑛𝑑𝑒𝑟) ⟵ 
{𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 ↦ 𝑇𝑅𝑈𝐸} 

 

 Receive_Links and refining Transfer_Links is used to stop the receiver mote from 

accessing the sender's private information and direct the receiver to deal with the required 

link-state information. This link information can be obtained through connected 
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links sender_mote → receiver_mote. The point that is mentioned in with section denotes 

the assignments of this received information. Receive_Links and Discard_Links must 

reset the link information that is currently being 

transmitted sender_mote → receiver_mote. 

Receive_Links refines Transfer_Links 
𝑎𝑛𝑦 𝑠𝑒𝑛𝑑𝑒𝑟 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 

 𝑤ℎ𝑒𝑟𝑒 
⊖ 𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑠𝑒𝑛𝑑𝑒𝑟) 

⊖ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 ∈ 𝑀𝑜𝑡𝑒𝑠 ↔ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑑𝑜𝑚(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑙𝑖𝑛𝑘𝑠) = {𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒}  
⊖ 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 = 𝑟𝑒𝑐𝑖𝑒𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 

⊖ 𝑆𝑒𝑞_𝑁𝑢𝑚(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑀𝑜𝑡𝑒) ≤ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚 
⊖ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑇𝑇𝐿 > 0 ∧ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚 > 0 

⊕ 𝑎𝑑𝑑_𝑙𝑖𝑛𝑘𝑠 ≔ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒) 
⊕ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) (𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒) ≠ ∅ 
⊕ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒) > 0 

∧ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒) > 0 
 ⊕ 𝐹𝑙𝑎𝑔(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑀𝑜𝑡𝑒) = 𝑇𝑅𝑈𝐸 

⊕ 𝑠𝑒𝑞_𝑁𝑢𝑚(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒) ≤ 
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒) 

with 
𝑟𝑒𝑐𝑖𝑒𝑣𝑒_𝑙𝑖𝑛𝑘𝑠 =  𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒) 
𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑇𝑇𝐿 =  𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑇𝐿(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒) 

𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚 =  𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚(𝑠𝑒𝑛𝑑𝑒𝑟

↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒) 
then 

⊕  𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)

≔ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) 
⟵ {𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 ↦ ∅} 

⊕ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔ 
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ⟵ {𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 ↦ ∅} 

⊕  𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑇𝐿(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔ 
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑇𝐿(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ⟵ {𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 ↦ ∅} 

⊕ 𝐹𝑙𝑎𝑔(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔ 𝐹𝑙𝑎𝑔(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)  ⟵ {𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑀𝑜𝑡𝑒 ↦ 𝐹𝐴𝐿𝑆𝐸} 
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𝑖𝑛𝑣7: ∀𝑚, 𝑛, 𝑝. 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑚 ↦ 𝑛)(𝑝) ≠ ∅ ∧ 𝑛 ≠ 𝑝 
 ⇒ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑇𝐿(𝑚 ↦ 𝑛)(𝑝) > 0 

𝑖𝑛𝑣8: ∀𝑙, 𝑝. 𝑙 ∈ 𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑙)(𝑝) = ∅ 
 ⇒ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑇𝐿(𝑙)(𝑝) = 0 

𝑖𝑛𝑣9: ∀𝑚, 𝑛, 𝑝. 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑚 ↦ 𝑛)(𝑝) ≠ ∅ ∧ 𝑛 ≠ 𝑝 
  ⇒ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚(𝑚 ↦ 𝑛)(𝑝) > 0 

𝑖𝑛𝑣10: ∀𝑙, 𝑝. 𝑙 ∈ 𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝐿𝑖𝑛𝑘(𝑙)(𝑝) = ∅ 
 ⇒ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑞𝑁𝑢𝑚(𝑚 ↦ 𝑛)(𝑝) = 0 

 

4.5.3  Route Query Discovery Process 

In the previous refinements, cluster radius has been formalized. The below steps 

elaborate on the designing of route query request and route query reply to phases in the 

dynamic environment. By utilizing the bordercast service for route query requests 

following points is vital to consider. 

 The design and development of bordercast tree in order to determine the targeted 

forwarding motes. 

 The records of the routes that have been accumulated. 

 Selecting routes in the cluster radius of a motes with its destination. 

 The cluster-based query control mechanism which is used to stay away from the 

route query request from the already covered cluster 

In the next refinement, the first and second points are defined. In subsequent 

refinements, other points are eventually formalized. 

Fifth Refinement: Five new variables are defined in this refinement. 

Variable Route_Request is defined to represent the set of route query 

requests. Intended_Neighbor is defined to specify that the bordercast mote must know the 

set of forwarding neighbors for sending or receiving route query request.  
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The Accumulated_Path variable tracks the accumulated paths with query 

requests. Two variables are defined to describe the corresponding being transmitted data 

to understand the system's distributed behavior. Transmitted_Tag is used to decide if a 

neighbor is an intended recipient, and Transmitted_Path describes the cumulative routes 

being transmitted. 

𝑖𝑛𝑣1: 𝑅𝑜𝑢𝑡𝑒_𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ∈ 𝑀𝑜𝑡𝑒𝑠 ↔ 𝑀𝑜𝑡𝑒𝑠 

𝑖𝑛𝑣2: 𝐼𝑛𝑡𝑒𝑛𝑑𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ∈ (𝑀𝑜𝑡𝑒𝑠 × (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠)) 

 → ℙ(𝑀𝑜𝑡𝑒𝑠) 
𝑖𝑛𝑣3: 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ ∈ (𝑀𝑜𝑡𝑒𝑠 × (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) 

 ↛ (𝑀𝑜𝑡𝑒𝑠 ↔ 𝑀𝑜𝑡𝑒𝑠)) 
𝑖𝑛𝑣4: 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔 ∈ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) ⟶ 

 ((𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) ⟶ ℕ) 
𝑖𝑛𝑣5: 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑃𝑎𝑡ℎ ∈ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) ⟶ 

 ((𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) ⟶ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠)) 
𝑖𝑛𝑣6:  ∀𝑠, 𝑑. 𝑠 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑑 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑠 ↦ 𝑑 ∈

𝑅𝑜𝑢𝑡𝑒_𝑅𝑒𝑞𝑢𝑒𝑠𝑡 
 ⟹ 𝑠 ≠ 𝑑 

𝑖𝑛𝑣7:  ∀𝑠, 𝑛. 𝑠 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑛 ∈  𝑀𝑜𝑡𝑒𝑠 ∧ 𝑠 ≠ 𝑛 ⟹ (∀𝑟. 𝑠 =

𝑝𝑟𝑗1(𝑟) ∧  
 𝑟 ∈ 𝑑𝑜𝑚(𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑛)) 
 ⟹ 𝑟 ∈ 𝑑𝑜𝑚(𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑠))) 

 

Though the query control mechanism is not analyzed in this phase, it is to keep in 

mind that a mote must not deal with a processed route query request. The route query 

request process is initiated. When there is no path to the destination in the cluster routing 

table of the source mote, the Source_Forward_Request event is defined to model this 

behavior. A variable mote represents the set of forwarding neighbors in the sender's 

bordercast tree. 

Each mote has at least one route within the source cluster radius to one of the 

peripheral motes and must be a nonempty set. The source then places the request on the 
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determined links with an empty path and specifies the recipients with 

update Transmitted_Tag. 

Source_Forward_Request 
𝑎𝑛𝑦 𝑠𝑜𝑢𝑟𝑐𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑚𝑜𝑡𝑒𝑠 𝑙𝑖𝑛𝑘𝑠 

𝑤ℎ𝑒𝑟𝑒 
𝑠𝑜𝑢𝑟𝑐𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠  

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∈ 𝑀𝑜𝑡𝑒𝑠  
𝑟𝑒𝑞𝑢𝑒𝑠𝑡 = 𝑠𝑜𝑢𝑟𝑐𝑒 ↦ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ∉ 𝑅𝑜𝑢𝑡𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡 
𝑠𝑜𝑢𝑟𝑐𝑒 ≠  𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

𝑠𝑜𝑢𝑟𝑐𝑒 ↦ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∉ 𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝑅𝑜𝑢𝑡𝑖𝑛𝑔𝑇𝑎𝑏𝑙𝑒(𝑠𝑜𝑢𝑟𝑐𝑒)) 
𝑚𝑜𝑡𝑒𝑠 = {𝑞|𝑠𝑜𝑢𝑟𝑐𝑒 ↦ 𝑞 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑠𝑜𝑢𝑟𝑐𝑒 ∧ 

(∃𝑝, 𝑐. 𝑐 ⊆ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑠𝑜𝑢𝑟𝑐𝑒) ∧ 𝑞 ↦ 𝑝 ∈ 𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝑐) ∧ 
 𝑐𝑎𝑟𝑑(𝑐) = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑎𝑑𝑖𝑢𝑠 − 1 ∧ 

(∀𝑠. 𝑠 ⊆ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑠𝑜𝑢𝑟𝑐𝑒) ∧ 𝑞 ↦ 𝑝 ∈ 𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝑠) 
 ∧ 𝑐𝑎𝑟𝑑(𝑠) ≥ 𝑐𝑎𝑟𝑑(𝑐)))} 

𝑚𝑜𝑡𝑒𝑠 ≠ ∅ 
𝑙𝑖𝑛𝑘𝑠 = {𝑝 ↦ 𝑞|𝑝 = 𝑠𝑜𝑢𝑟𝑐𝑒 ∧ 𝑞 ∈ 𝑚𝑜𝑡𝑒𝑠} 

∀𝑙. 𝑙 ∈ 𝑙𝑖𝑛𝑘𝑠 ⇒ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔(𝑙)(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) = 0 
𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ∉ 𝑑𝑜𝑚(𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑝𝑎𝑡ℎ(𝑠𝑜𝑢𝑟𝑐𝑒)) 

Then 
𝑅𝑜𝑢𝑡𝑒_𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ≔ 𝑅𝑜𝑢𝑡𝑒_𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ∪ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡} 

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑝𝑎𝑡ℎ ≔ 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑝𝑎𝑡ℎ ⟵ {𝑠𝑜𝑢𝑟𝑐𝑒 ↦ 
(𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑝𝑎𝑡ℎ(𝑠𝑜𝑢𝑟𝑐𝑒) ⟵ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ↦ ∅})} 

𝐼𝑛𝑡𝑒𝑛𝑑𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ≔ 𝐼𝑛𝑡𝑒𝑛𝑑𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ⟵ 
{(𝑠𝑜𝑢𝑟𝑐𝑒 ↦ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡) ↦ 𝑚𝑜𝑡𝑒𝑠} 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔 ≔ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔 ⟵ 
𝜆𝑙. 𝑙 ∈ 𝑙𝑖𝑛𝑘𝑠|𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔 ⟵ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ↦ 1}) 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑃𝑎𝑡ℎ ≔  𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑃𝑎𝑡ℎ ⟵ 
𝜆𝑙. 𝑙 ∈ 𝑙𝑖𝑛𝑘𝑠|𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑃𝑎𝑡ℎ ⟵ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ↦ ∅}) 

If the intended_forwarding_neighbours aren't empty, the mote will use the 

bordercast_Request event to bordercast the request. They are both abstract. 

𝑖𝑛𝑣8: ∀𝑛, 𝑚, 𝑟. 𝑛 ≠ 𝑚 ∧ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑛 ↦ 𝑚)(𝑟) ≠ ∅ 
 ⇒ 𝑟 ∈ 𝑑𝑜𝑚(𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑛)) 

𝑖𝑛𝑣9: ∀𝑛, 𝑚, 𝑟, 𝑝𝑎𝑡ℎ. 𝑛 ≠ 𝑚 ∧ 𝑚 ∈ 𝐼𝑛𝑡𝑒𝑛𝑑𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑛 ↦ 𝑟) 
 ⇒ (𝑟 ↦ 𝑝𝑎𝑡ℎ ∈ 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑛) 
 ∧ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔(𝑛 ↦ 𝑚)(𝑟) ≠ 0 

 ⇒ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑𝑃𝑎𝑡ℎ(𝑛 ↦ 𝑚)(𝑟) = 𝑝𝑎𝑡ℎ) 
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𝑖𝑛𝑣10: ∀𝑛, 𝑚, 𝑟. 𝑛 ≠ 𝑚 ∧ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔(𝑛 ↦ 𝑚)(𝑟) ≠ ∅ 
 ⇒ 𝑚 ∈ 𝐼𝑛𝑡𝑒𝑛𝑑𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑛 ↦ 𝑟) 

𝑖𝑛𝑣11: ∀𝑙, 𝑟, 𝑙 ∈ 𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔(𝑙)(𝑟) = 0 
 ⇒ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑙)(𝑟) = ∅ 

𝑖𝑛𝑣12: ∀𝑛, 𝑟. 𝑛 ∈ 𝑀𝑜𝑡𝑒 ∧ 𝑟 ∈ 𝑅𝑜𝑢𝑡𝑒_𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ∧ 𝑟 ∈ 
 𝑑𝑜𝑚(𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑛)) ⇒ 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑛)(𝑟) 
 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟷ 𝑀𝑜𝑡𝑒𝑠 

𝑖𝑛𝑣13: ∀𝑛, 𝑠, 𝑡. 𝑛 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑠 ↦ 𝑡 ∈ 𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠 ∧ 
 𝑠 ↦ 𝑡 ∈ 𝑑𝑜𝑚(𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑛)) 
 ⇒ (∀𝑚, 𝑝𝑎𝑡ℎ. 𝑝𝑎𝑡ℎ = 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑝𝑎𝑡ℎ(𝑛)(𝑠 ↦ 𝑡) 
 ∧ 𝑚 ∈ 𝑑𝑜𝑚(𝑝𝑎𝑡ℎ) ⇒ ¬(𝑚 ↦ 𝑚 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑝𝑎𝑡ℎ)))) 

 

Receive_Request need to be refined to more concrete events.  This refinement 

ensures the Req 6 and Req 7 of system requirements. 

Receive_Request    
𝑎𝑛𝑦 𝑠𝑒𝑛𝑑𝑒𝑟 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑚𝑜𝑡𝑒𝑠 𝑝𝑎𝑡ℎ 

𝑤ℎ𝑒𝑟𝑒 
𝑠𝑒𝑛𝑑𝑒𝑟 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑠𝑒𝑛𝑑𝑒𝑟 ≠ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟   

𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ∈ 𝑅𝑜𝑢𝑡𝑒_𝑅𝑒𝑞𝑢𝑒𝑠𝑡 
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) = 1 

𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ∉ 𝑑𝑜𝑚(𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)) 
𝑚𝑜𝑡𝑒𝑠 ∈ ℙ(𝑀𝑜𝑡𝑒𝑠) 

𝑝𝑎𝑡ℎ ∈ 𝑀𝑜𝑡𝑒𝑠 ↔ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∈ 𝑝𝑎𝑡ℎ 
∀𝑛. 𝑛 ∈ 𝑑𝑜𝑚(𝑝𝑎𝑡ℎ) ⇒ ¬𝑛 ↦ 𝑛 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛{𝑝𝑎𝑡ℎ} 

𝑡ℎ𝑒𝑛 
𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔ 

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ← {𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ↦ 𝑝𝑎𝑡ℎ} 
𝐼𝑛𝑡𝑒𝑛𝑑𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ≔ 𝐼𝑛𝑡𝑒𝑛𝑑𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 

← {(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟  ↦  𝑟𝑒𝑞𝑢𝑒𝑠𝑡)  ↦ 𝑚𝑜𝑡𝑒𝑠} 
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔ 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ← {𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ↦ 0} 
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔ 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑇𝑎𝑔(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ← {𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ↦ ∅} 
 

Sixth Refinement: Receive Request has been split into two events in this refinement, 

depending on if the recipient has legitimate routes to the destinations within its cluster 
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radius. One is Receive_Request_NoRoute, which indicates that the destination is not 

within the cluster radius of the receiver. The mote must first create the bordercast tree 

with the calculated recipients denoted by motes before forwarding this request with the 

updated path. 

Receive_Request_No_Route refine Receive_Request ∃ ∀≠ ∈ ∉∧⊆≥ ↦⇒↔∪ ℙ ⊕

⊝⊝ ∀∅ 
𝑎𝑛𝑦 𝑠𝑒𝑛𝑑𝑒𝑟 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑚𝑜𝑡𝑒𝑠 𝑝𝑎𝑡ℎ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

𝑤ℎ𝑒𝑟𝑒  
⊝ 𝑚𝑜𝑡𝑒𝑠 ∈  ℙ(𝑀𝑜𝑡𝑒𝑠) 

⊝ 𝑝𝑎𝑡ℎ ∈ 𝑀𝑜𝑡𝑒𝑠 ↔ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∈ 𝑝𝑎𝑡ℎ 
⊕ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 𝑝𝑟𝑗2(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) 

⊕ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ↦  𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∉ 
𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)) 

⊕ 𝑚𝑜𝑡𝑒𝑠 ⊆ {𝑞|𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ↦ 𝑞 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ∧ 
(∃𝑝, 𝑐. 𝑐 ⊆ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)  ∧ 𝑞 ↦ 𝑝 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑐) ∧ 

𝑐𝑎𝑟𝑑(𝑐) = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑎𝑑𝑖𝑢𝑠 − 1 ∧ 
(∀𝑠. 𝑠 ⊆ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)  ∧ 𝑞 ↦ 𝑝 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑠) ∧ 

𝑐𝑎𝑟𝑑(𝑠) ≥ 𝑐𝑎𝑟𝑑(𝑐))))} 
⊕ 𝑚𝑜𝑡𝑒𝑠 ≠ ∅ 

⊕ 𝑝𝑎𝑡ℎ = 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) 
∪ {𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟} 

 

Receive_Request_Has_Route refine Receive_Request 
𝑎𝑛𝑦 𝑠𝑒𝑛𝑑𝑒𝑟 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑚𝑜𝑡𝑒𝑠 𝑝𝑎𝑡ℎ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑜𝑢𝑡𝑒𝑠 
𝑤ℎ𝑒𝑟𝑒  

⊝ 𝑝𝑎𝑡ℎ ∈ 𝑀𝑜𝑡𝑒𝑠 ↔ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∈ 𝑝𝑎𝑡ℎ 
⊕ 𝑚𝑜𝑡𝑒𝑠 = ∅ 

⊕ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 𝑝𝑟𝑗2(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) 
⊕ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ↦  𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∈ 

𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)) 
⊕ 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = {𝑆|𝑆 ⊆ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)  ∧ 

𝑐𝑎𝑟𝑑(𝑆) ≤ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑎𝑑𝑖𝑢𝑠 ∧ 
𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ↦  𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑆)} 

⊕ 𝑟𝑜𝑢𝑡𝑒𝑠 = 𝑢𝑛𝑖𝑜𝑛({𝑅|∀𝑆. 𝑆) ∈ 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ∧ 
𝑅 ∈ 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ∧ 𝑐𝑎𝑟𝑑(𝑅) ≤ 𝑐𝑎𝑟𝑑(𝑆)}) 
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⊕  𝑝𝑎𝑡ℎ = 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) 
∪ {𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟} ∪ 𝑟𝑜𝑢𝑡𝑒𝑠 

 

Another event, receive_Request_Has_Route, is responsible for creating route 

query reply along with the route that has been discovered. In the receiver's cluster radius, 

there is at least one route to the targeted mote. As a result, appropriate routes without 

redundant links should be chosen based on certain metrics, such as range (hops).To 

measure the union of all shortest paths, two guards collection and routes have been added. 

 The variable card represents the cardinality of a finite input set is sets be an empty 

set because it is unnecessary to border cast this request. As a result, the cumulative path, 

which a receiver constructs with the destination within its cluster radius, comprises the 

entire route from the sender mote to the target mote (thm1). 

Req 8 is ensured in this refinement. 

𝑖𝑛𝑣1: ∀𝑠, 𝑛. 𝑠 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑛 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑠 ≠ 𝑛  
 ⇒ (∀𝑟, 𝑝𝑎𝑡ℎ. 𝑟 ∈ 𝑅𝑜𝑢𝑡𝑒_𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ∧  
 𝑟 ↦ 𝑝𝑎𝑡ℎ ∈ 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑛) ∧  𝑠 = 𝑝𝑟𝑗1(𝑟)  
  ⇒  𝑠 ↦ 𝑛 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛 (𝑝𝑎𝑡ℎ)) 

𝑡ℎ𝑚1: ∀𝑠, 𝑡, 𝑛. 𝑠 ↦ 𝑡 ∈ 𝑅𝑜𝑢𝑡𝑒_𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ∧ 𝑛 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑠 ≠ 𝑛 
 ⇒ (∀𝑟, 𝑝𝑎𝑡ℎ. 𝑟 =  𝑠 ↦ 𝑡 ∧ 
 𝑟 ↦ 𝑝𝑎𝑡ℎ ∈ 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑃𝑎𝑡ℎ(𝑛) 
 ∧ 𝑛 ↦ 𝑡 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛( 𝑝𝑎𝑡ℎ) ⇒ 𝑠 ↦ 𝑡 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛( 𝑝𝑎𝑡ℎ)) 

 

Seventh Refinement: The cluster-based query control mechanism aims to steer route 

requests away from the already covered cluster and sender mote. The query control 

mechanism is considered in this refinement. When constructing a border cast tree, a mote 

must be aware of the coverage information within its cluster radius.  
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Avariable Cluster_Coverage ∈ Motes → ((Motes × Motes) → P(Motes)) is 

defined to describe this information. A source node launches the route request and 

forwards it to the neighbors in its border cast tree, so its cluster radius is covered. Source 

mote initiates the route query request and forwards it to its bordercast tree neighbors, 

ensuring that its cluster radius is already covered. The cluster radius is marked as covered 

by refining source_Forward_Request. Cluster is the set of motes inside the source cluster 

radius. 

Source_Forward_Request refines Source_Forward_Request 
𝑎𝑛𝑦 𝑠𝑜𝑢𝑟𝑐𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑚𝑜𝑡𝑒𝑠 𝑙𝑖𝑛𝑘𝑠 𝑧𝑜𝑛𝑒 

Where 
⊕ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = {𝑚|𝑠𝑜𝑢𝑟𝑐𝑒 ↦ 𝑚 ∈  

𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑠𝑜𝑢𝑟𝑐𝑒)) ∨ 𝑚 = 𝑠𝑜𝑢𝑟𝑐𝑒} 
⊕ 𝑠𝑜𝑢𝑟𝑐𝑒 ∉ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑠𝑜𝑢𝑟𝑐𝑒)(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) 

then 
⊕ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑠𝑜𝑢𝑟𝑐𝑒) ≔ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑠𝑜𝑢𝑟𝑐𝑒) ⟵ 

{𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ↦ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟} 
 

In addition, if the received route request has been sent, a bordercaster cluster 

radius is identified as covered (refine bordercast_Request). A new event send_Reply is 

defined to mark the cluster radius as covered. 

Send_Reply 
𝑎𝑛𝑦 𝑚𝑜𝑡𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑡ℎ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 

Where 
𝑚𝑜𝑡𝑒 ∈ 𝑀𝑜𝑡𝑒𝑠 

𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ∈ 𝑅𝑜𝑢𝑡𝑒_𝑅𝑒𝑞𝑢𝑒𝑠𝑡  
𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑝𝑟𝑗1(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) ∧ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 𝑝𝑟𝑗2(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) 

𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ∈ 𝑑𝑜𝑚(𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑚𝑜𝑡𝑒)) 
𝑝𝑎𝑡ℎ =  𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑚𝑜𝑡𝑒)(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) 

𝑠𝑜𝑢𝑟𝑐𝑒 ↦ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∈  𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑝𝑎𝑡ℎ) 
𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = {𝑞|𝑚𝑜𝑡𝑒 ↦ 𝑞  ∈  𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒)) 

𝑣𝑞 = 𝑚𝑜𝑡𝑒} 
then 
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𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑚𝑜𝑡𝑒) ≔  𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑚𝑜𝑡𝑒) ⟵ 
{𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ↦ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟} 

 

 To prune the branches that lead to the motes that are already covered on the 

periphery, receive_Request_No_Route is refined with two conditions to calculate 

the motes. This refinement establishes the system requirement REQ-9. 

Receive_Request_No_Route   refines Receive_Request_No_Route 
𝑎𝑛𝑦 𝑠𝑒𝑛𝑑𝑒𝑟 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟   𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑚𝑜𝑡𝑒𝑠  𝑝𝑎𝑡ℎ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

where 
⊝ 𝑚𝑜𝑡𝑒𝑠 ⊆ {𝑞|𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ↦ 𝑞  ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)  ∧ 

(∃𝑝, 𝑐. 𝑐 ⊆  𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)  ∧ 𝑞 ↦ 𝑝 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑐) 
∧ 𝑐𝑎𝑟𝑑(𝑐) = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑎𝑑𝑖𝑢𝑠 − 1 ∧ 

(∀𝑠. 𝑠 ⊆  𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)  ∧ 𝑞 ↦ 𝑝 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑠) 
∧ 𝑐𝑎𝑟𝑑(𝑠) ≥  𝑐𝑎𝑟𝑑(𝑐)))} 

⊕ 𝑚𝑜𝑡𝑒𝑠 = {𝑞|𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ↦ 𝑞  ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)  ∧ 
(∃𝑝, 𝑐. 𝑐 ⊆  𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)  ∧ 𝑞 ↦ 𝑝 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑐) 

∧ 𝑐𝑎𝑟𝑑(𝑐) = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑎𝑑𝑖𝑢𝑠 − 1 ∧ 
(∀𝑠. 𝑠 ⊆  𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)  ∧ 𝑞 ↦ 𝑝 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑠) 

∧ 𝑐𝑎𝑟𝑑(𝑠) ≥  𝑐𝑎𝑟𝑑(𝑐)) ∧ 
𝑝 ∉ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑟𝑒𝑞𝑢𝑒𝑠𝑡)) ∧ 𝑞 ≠ 𝑠𝑒𝑛𝑑𝑒𝑟} 

 

4.5.4 Updating Cluster Routes  

To formalize the cluster routing updates, four new variables have been 

defined. Reply_Sender is defined to describe the responses received from previous 

senders. Reply_Path sets out the routes obtained with the route query replies. 

Furthermore, Transmitted_Sender and Transmitted_Reply_Path reflect the information 

being transmitted. 

𝑖𝑛𝑣1: 𝑅𝑒𝑝𝑙𝑦_𝑆𝑒𝑛𝑑𝑒𝑟 ∈ 𝑀𝑜𝑡𝑒𝑠 ⟶ (𝑀𝑜𝑡𝑒𝑠) ↔ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠)) 
𝑖𝑛𝑣2: 𝑅𝑒𝑝𝑙𝑦𝑃𝑎𝑡ℎ ∈ 𝑀𝑜𝑡𝑒𝑠 ⟶ (𝑀𝑜𝑡𝑒𝑠) ↔ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) → 

 (𝑀𝑜𝑡𝑒𝑠 ↔ 𝑀𝑜𝑡𝑒𝑠)) 
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𝑖𝑛𝑣3: 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑛𝑑𝑒𝑟 ∈ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) ⟶ (𝑀𝑜𝑡𝑒𝑠

↔ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠)) 
 (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠)) 

𝑖𝑛𝑣4: 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ ∈ (𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) ⟶ 
 ((𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠) ⟶ (𝑀𝑜𝑡𝑒𝑠 ↔ 𝑀𝑜𝑡𝑒𝑠)) 

𝑖𝑛𝑣5: ∀𝑛, 𝑚, 𝑟. 𝑛 ≠ 𝑚 ∧  𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ (𝑛 ↦  𝑚)(𝑟) ≠ 
 ∅ ⇒ 𝑛 ↦  𝑟 ∈  𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑛𝑑𝑒𝑟 (𝑛 ↦  𝑚) 

𝑖𝑛𝑣6:  ∀𝑛, 𝑠, 𝑑, 𝑟𝑞, 𝑝𝑎𝑡ℎ. 𝑛 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑠 ∈ 𝑀𝑜𝑡𝑒𝑠 ∧ 𝑑 ∈

𝑀𝑜𝑡𝑒𝑠 ∧ 
 𝑟𝑞 = 𝑠 ↦  𝑑 ∧ 𝑝𝑎𝑡ℎ = 𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ(𝑛)(𝑠 ↦ 𝑟𝑞)  ∧ 𝑝𝑎𝑡ℎ ≠ ∅ 
 ⇒  𝑠 ↦  𝑑 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑝𝑎𝑡ℎ) 

 

Update_Cluster_Table is further refined into two concrete events to demonstrate 

how motes update their cluster information using Req 10. One 

is Update_Cluster_Table_IALC. 

It aims to keep the cluster routing details based on the neighborhood's existing 

connectivity. A mote's table can include routes to destinations outside the cluster radius. 

The motes that move out of the cluster radius must be identified, and their associated 

routes must be excluded. The variables add_Routes and remove_Routes are defined to 

gather all the link information of existing and prior cluster radius. The last guard is 

responsible for any changes in the cluster radius of the mote, which is a vital prerequisite 

for the update. 

Update_Cluster_Table_IALC refines Update_Cluster_Table 
𝑎𝑛𝑦 𝑚𝑜𝑡𝑒 𝑎𝑑𝑑_𝑅𝑜𝑢𝑡𝑒𝑠 𝑟𝑒𝑚𝑜𝑣𝑒_𝑅𝑜𝑢𝑡𝑒𝑠 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑚𝑜𝑡𝑒𝑠 

𝑤ℎ𝑒𝑟𝑒 
⊕ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = {𝑚|𝑚𝑜𝑡𝑒 ↦ 𝑚 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒)) 

∨ 𝑚 = 𝑚𝑜𝑡𝑒} 
⊕ 𝑎𝑑𝑑_𝑅𝑜𝑢𝑡𝑒𝑠 = {𝑝, 𝑞. 𝑝 ↦ 𝑞 ∈ 𝑀𝑜𝑡𝑒𝑠 × 𝑀𝑜𝑡𝑒𝑠 ∧ 

𝑝 ↦ 𝑞 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒)|𝑝 ↦ 𝑞} 
⊕ 𝑚𝑜𝑡𝑒𝑠 = {𝑚|𝑚𝑜𝑡𝑒 ↦ 𝑚 ∈ 𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒)) ∧ 

(∃𝑐. 𝑐 ⊆ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝑇𝑎𝑏𝑙𝑒(𝑚𝑜𝑡𝑒)  ∧ 𝑚𝑜𝑡𝑒 ↦ 𝑚 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑐)  ∧ 
𝐶𝑎𝑟𝑑(𝑐) ≤ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑎𝑑𝑖𝑢𝑠)} 

⊕ 𝑟𝑒𝑚𝑜𝑣𝑒_𝑅𝑜𝑢𝑡𝑒𝑠 = (𝑚𝑜𝑡𝑒 ∪ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟) ⊲ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝑇𝑎𝑏𝑙𝑒(𝑚𝑜𝑡𝑒) ⊳ 
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(𝑚𝑜𝑡𝑒 ∪ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟) 
⊕ 𝑚𝑜𝑡𝑒𝑠 ≠ ∅ ∨ ¬(𝑎𝑑𝑑_𝑅𝑜𝑢𝑡𝑒𝑠 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟) ⊲ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝑇𝑎𝑏𝑙𝑒(𝑚𝑜𝑡𝑒)  

⊳  𝑐𝑙𝑢𝑠𝑡𝑒𝑟) 
 

Update_Cluster_Table_Reply has defined to model the up-to-date routing 

information of a mote which obtains a route query reply packet. Links belongs to other 

routes are meaningless and not necessary to record. It satisfies the fact that the reversed 

cumulative path returns a route response to the query source. The entire query route is 

denoted by the path.  

Every relaying mote must be aware of the routes which lead to the destination. 

Thus, the route from the source to the current relaying mote is removed from the path. 

Add_Routes is defined to denote the result links which are not included in the cluster 

table.  

Update_Routung_Table_Reply refines Update_Cluster_Table 
𝑎𝑛𝑦 𝑠𝑒𝑛𝑑𝑒𝑟 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 𝑎𝑑𝑑_𝑅𝑜𝑢𝑡𝑒𝑠 𝑟𝑒𝑚𝑜𝑣𝑒_𝑅𝑜𝑢𝑡𝑒𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 

𝑤ℎ𝑒𝑟𝑒 
⊝ 𝑚𝑜𝑡𝑒 ∈   𝑀𝑜𝑡𝑒𝑠 

⊝ ¬(𝑎𝑑𝑑_𝑅𝑜𝑢𝑡𝑒𝑠 = ∅ ∧ 𝑟𝑒𝑚𝑜𝑣𝑒_𝑅𝑜𝑢𝑡𝑒𝑠 = ∅) 
⊕ 𝑠𝑒𝑛𝑑𝑒𝑟 ∈ 𝑀𝑜𝑡𝑒𝑠 

⊕ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∈ 𝑀𝑜𝑡𝑒𝑠 
⊕ ¬(𝑎𝑑𝑑_𝑅𝑜𝑢𝑡𝑒𝑠 = ∅ ∧ 𝑟𝑒𝑚𝑜𝑣𝑒_𝑅𝑜𝑢𝑡𝑒𝑠 = ∅) 

⊕ 𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ∈ 
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑛𝑑𝑒𝑟(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) 

⊕ 𝑝𝑎𝑡ℎ ≠ ∅ ∧ 𝑝𝑎𝑡ℎ = 
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) 

⊕ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ∈ 𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝑝𝑎𝑡ℎ) 
⊕ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∈ (𝑑𝑜𝑚(𝑝𝑎𝑡ℎ){𝑝|𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑝 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑝𝑎𝑡ℎ) 

∨ 𝑝 = 𝑠𝑒𝑛𝑑𝑒𝑟}) 
⊕ 𝑎𝑑𝑑_𝑅𝑜𝑢𝑡𝑒𝑠 = {𝑝|𝑝 ∈ 𝑑𝑜𝑚(𝑝𝑎𝑡ℎ)  ∧ 

𝑝 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 ∈ 𝐶𝑒𝑠𝑠𝑎𝑡𝑖𝑜𝑛(𝑝𝑎𝑡ℎ) ⊲ 𝑝𝑎𝑡ℎ 
⊕ ¬𝑎𝑑𝑑𝑅𝑜𝑢𝑡𝑒𝑠 ⊆ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝑇𝑎𝑏𝑙𝑒(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) 

With 
𝑚𝑜𝑡𝑒 = 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 
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then 
⊕ 𝑅𝑒𝑝𝑙𝑦_𝑆𝑒𝑛𝑑𝑒𝑟(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔ 𝑅𝑒𝑝𝑙𝑦_𝑆𝑒𝑛𝑑𝑒𝑟(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ∪ 

{𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟} 
⊕ 𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔ 𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ(𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ⊲ 

{(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ↦ 𝑝𝑎𝑡ℎ} 
⊕ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑛𝑑𝑒𝑟(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔ 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑛𝑑𝑒𝑟(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟)\ 
{𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟} 

⊕ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ≔ 
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ(𝑠𝑒𝑛𝑑𝑒𝑟 ↦ 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟) ⊲ 

{𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ↦ ∅} 
 

Send_Reply is refined to begin the route query reply process, and a new 

event Forward_Reply is introduced to forward the route query reply to the next mote 

determined by the cumulative distance. Until responding, a mote first ensures that it is 

connected to the next mote. Inside Send_Reply, the mote directs the already discovered 

paths to the next mote, determined by the path. The node and path information is then 

placed next to the link node mote → next. 

Send_Reply refines Send_Reply 
𝑎𝑛𝑦 𝑚𝑜𝑡𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑡ℎ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑛𝑒𝑥𝑡 

Where 
⊕ 𝑛𝑒𝑥𝑡 ↦ 𝑚𝑜𝑡𝑒 ∈ 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑚𝑜𝑡𝑒)(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) 

⊕ 𝑚𝑜𝑡𝑒 ↦ 𝑛𝑒𝑥𝑡 ∈ 𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒(𝑚𝑜𝑡𝑒) 
⊕ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ(𝑚𝑜𝑡𝑒 ↦ 𝑛𝑒𝑥𝑡)(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) = ∅ 

then 
⊕ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑛𝑑𝑒𝑟(𝑚𝑜𝑡𝑒 ↦ 𝑛𝑒𝑥𝑡) ≔ 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑆𝑒𝑛𝑑𝑒𝑟(𝑚𝑜𝑡𝑒 ↦ 𝑛𝑒𝑥𝑡) ∪ {𝑚𝑜𝑡𝑒 ↦ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡} 
⊕ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ(𝑚𝑜𝑡𝑒 ↦ 𝑛𝑒𝑥𝑡) ≔ 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑅𝑒𝑝𝑙𝑦_𝑃𝑎𝑡ℎ(𝑚𝑜𝑡𝑒 ↦ 𝑛𝑒𝑥𝑡) ← {𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ↦ 𝑝𝑎𝑡ℎ} 
 

The formalization ensure Requirements Req 1 , Req  2 and Req 10. Figure 2 

depicts the synchronization of the established events.  
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4.5.5 Validating the Model 

The ProB, an animation and modeling checking tool, is used to validate the model, 

a plugin provided by Rodin. It enables the animation of Event-B models without requiring 

them to be translated into specific ProB models. In addition, this animator facilitates step-

by-step animation as well as non-deterministic tasks. The ProB perspective in Rodin 

displays a summary of a machine's current state, a collection of all allowed events, and 

proper argument configurations. As a result, users can modify the system state by 

selecting an active event with possible arguments. There may be an infinite number of 

system states because the motes in the network, the broadcast time, and the cluster radius 

are not specified in this formalization. 

 

Figure 4.2: Network Topology for Model Validation 

Auxiliary context is provided to assign the given set, Motes, and a few constants 

presented below to avoid state explosions and validate the model properly. A predicate, 

Divider (S, s1, . . ., sn), is defined to form partitions of set S s1.........sn, further 

Time_Clock is set to one indicating that the time is increment by one. 

𝑎𝑥𝑚1:  
𝐷𝑖𝑣𝑖𝑑𝑒𝑟(𝑀𝑜𝑡𝑒𝑠, {𝑚1}, {𝑚2}, {𝑚3}, {𝑚4}, {𝑚5}, {𝑚6}, {𝑚7}) 

𝑎𝑥𝑚2: 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 = 4 
𝑎𝑥𝑚3: 𝑝𝑒𝑟𝑖𝑜𝑑 = 2 
𝑎𝑥𝑚4: 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑎𝑑𝑖𝑢𝑠 = 2 
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In this model, a Cessation (closure) function is defined to calculate the transitive 

closure. It is necessary to simplify this computation to make the animation smooth. As a 

result, the network topology in Figure. 4.4 is static. This network's connectivity is defined 

by the variable Neighbor_Link, which is treated as a constant (axm5). After that, a 

constant variable closureN L (axm6) is defined to describe the transitive closure 

of Neighbor_Link (axm7).  It is noticed that the stabilize event needs to be stimulated first 

for the system's stability state.   

 
𝑎𝑥𝑚5: Divider(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝐿𝑖𝑛𝑘, 

 {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦ 𝑚6}, 
 {𝑚2 ↦ 𝑚1, 𝑚2 ↦ 𝑚3}, {𝑚3 ↦ 𝑚2, 𝑚3 ↦ 𝑚4, 𝑚3 ↦ 𝑚7}, 
 {𝑚4 ↦ 𝑚3}, {𝑚5 ↦ 𝑚1}, {𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7}, 
 {𝑚7 ↦ 𝑚6, 𝑚7 ↦ 𝑚3}) 

𝑎𝑥𝑚6: 𝑐𝑙𝑜𝑠𝑢𝑟𝑒𝑁𝐿 ∈ 𝑀𝑜𝑡𝑒𝑠 ↔ 𝑀𝑜𝑡𝑒𝑠 
𝑎𝑥𝑚7: 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑐𝑙𝑜𝑠𝑢𝑟𝑒𝑁𝐿, 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑛𝑘, 

 {𝑚1 ↦ 𝑚3, 𝑚1 ↦ 𝑚4, 𝑚1 ↦ 𝑚7}, 
 {𝑚2 ↦ 𝑚4, 𝑚2 ↦ 𝑚5, 𝑚2 ↦ 𝑚6, 𝑚2 ↦ 𝑚7},  
 {𝑚3 ↦ 𝑚1, 𝑚3 ↦ 𝑚5, 𝑚3 ↦ 𝑚6}, 
 {𝑚4 ↦ 𝑚1, 𝑚4 ↦ 𝑚2, 𝑚4 ↦ 𝑚5, 𝑚4 ↦ 𝑚6, 𝑚4 ↦ 𝑚7}, 
 {𝑚5 ↦ 𝑚2, 𝑚5 ↦ 𝑚3, 𝑚5 ↦ 𝑚4, 𝑚5 ↦ 𝑚6, 𝑚5 ↦ 𝑚7}, 
 {𝑚6 ↦ 𝑚2, 𝑚6 ↦ 𝑚3, 𝑚6 ↦ 𝑚4, 𝑚6 ↦ 𝑚5}, 
 {𝑚7 ↦ 𝑚1, 𝑚7 ↦ 𝑚2, 𝑚7 ↦ 𝑚4, 𝑚7 ↦ 𝑚5}, 

𝑎𝑥𝑚8: 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ∈  𝑀𝑜𝑡𝑒𝑠 ↔  𝑀𝑜𝑡𝑒𝑠 
𝑎𝑥𝑚9: 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 = {𝑚1 ↦ 𝑚4} 

 

According to the above-mentioned network topology, it is intended to discover a 

path from m1 to m4. A variable Request is defined to record this route query information 

from sender m1 and receiver m4. The preliminary model was changed by introducing this 

auxiliary context and eliminating the current machine that defined variation in the 

network topology. The corresponding refinements are formalized according to this 

context. 
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1.Time_Clock(1) 
2. timeClock(1) 

𝑇𝑖𝑚𝑒 = 3 

3. Links_Obtain(𝑚1, {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦

𝑚6}, … ) 
4. Links_Obtain (𝑚2, {𝑚2 ↦ 𝑚1, 𝑚2 ↦ 𝑚3}, . . ) 
5. Links_Obtain (𝑚3, {𝑚3 ↦ 𝑚2, 𝑚3 ↦ 𝑚4, 𝑚3 ↦

𝑚7}, . . ) 
6. Links_Obtain (𝑚6, {𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7}, … ) 
7. Links_Obtain (𝑚7, {𝑚7 ↦ 𝑚3, 𝑚7 ↦ 𝑚6}, … ) 

𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒 = {𝑚1 ↦ {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦ 𝑚6}, 
𝑚2 ↦ {𝑚2 ↦ 𝑚1, 𝑚2 ↦ 𝑚3} 

𝑚3 ↦ {𝑚3 ↦ 𝑚2, 𝑚3 ↦ 𝑚4, 𝑚3 ↦ 𝑚7}, 𝑚4 ↦ ∅, 𝑚5 ↦ ∅, 
 

𝑚6 ↦ {𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7, 𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1

↦ 𝑚6} … ) 

8.Send_Links(𝑚1, {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦

𝑚6}, … ) 
9.Links_Recieve (𝑚2, {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦

𝑚6}, . . ) 
10. recieveLinks(𝑚6, {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦

𝑚6}, … ) 

𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒 = {𝑚2

↦ {𝑚2 ↦ 𝑚1, 𝑚2 ↦ 𝑚3, 𝑚1 ↦ 𝑚5, 𝑚1

↦ 𝑚6}, 
… , 𝑚6 ↦ {𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7, 𝑚1 ↦  𝑚5, 𝑚1 ↦

 𝑚6}, … }, 
 
 

11. Send_Links(𝑚2, {𝑚2 ↦ 𝑚1, 𝑚2 ↦ 𝑚3}, . . ) 
12. Links_Recieve (𝑚1, {𝑚2 ↦ 𝑚1, 𝑚2 ↦ 𝑚3}, . . ) 
13. Links_Recieve (𝑚3, {𝑚2 ↦ 𝑚1, 𝑚2 ↦ 𝑚3}, . . ) 

𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒 = {𝑚1

↦ {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦ 𝑚6, 𝑚2

↦ 𝑚1, 𝑚2 ↦ 𝑚3}, 
… , 𝑚3 ↦ {𝑚3 ↦ 𝑚2, 𝑚3 ↦ 𝑚4, 𝑚3 ↦  𝑚7, 𝑚2 ↦

 𝑚1, 𝑚2 ↦  𝑚3}, … }, 
 

 
14. Send_Links(𝑚3, {𝑚3 ↦ 𝑚2, 𝑚3 ↦ 𝑚4, 𝑚3 ↦

𝑚7}, . . ) 
15.Links_Recieve (𝑚2, {𝑚3 ↦ 𝑚2, 𝑚3 ↦

𝑚4, 𝑚3 ↦ 𝑚7}, . . ) 
16.Links_Recieve (𝑚7, {𝑚3 ↦ 𝑚2, 𝑚3 ↦

𝑚4, 𝑚3 ↦ 𝑚7}, . . ) 

𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒 = {… , 𝑚

↦ {𝑚2 ↦ 𝑚1, 𝑚2 ↦ 𝑚3, 𝑚1 ↦ 𝑚2, 𝑚1

↦ 𝑚5, 𝑚1 ↦ 𝑚6, 𝑚3 ↦ 𝑚2, 𝑚3

↦ 𝑚4, 𝑚3 ↦ 𝑚7}, …, 
𝑚7 ↦ {𝑚7 ↦ 𝑚3, 𝑚7 ↦ 𝑚6, 𝑚3 ↦  𝑚2, 𝑚3 ↦  𝑚4, 𝑚3 ↦

 𝑚7}, … }, 
 

17.Send_Links(𝑚6, {𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7}, . . ) 
18. Links_Recieve (𝑚1, {𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7}, . . ) 
19. Links_Recieve (𝑚7, {𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7}, . . ) 

𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒 = {𝑚1

↦ {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦ 𝑚6, 𝑚2

↦ 𝑚1, 𝑚2 ↦ 𝑚3, 𝑚6 ↦ 𝑚1, 𝑚6

↦ 𝑚7}, …, 
𝑚7 ↦ {𝑚7 ↦ 𝑚3, 𝑚7 ↦ 𝑚6, 𝑚3 ↦  𝑚2, 𝑚3 ↦  𝑚4, 𝑚3 ↦

 𝑚7, 𝑚6 ↦  𝑚1, 𝑚6 ↦ 𝑚7}, … }, 
 

20. Send_Links(𝑚7, {𝑚7 ↦ 𝑚3, 𝑚7 ↦ 𝑚6}, . . ) 
21. Links_Recieve (𝑚3, {𝑚7 ↦ 𝑚3, 𝑚7 ↦ 𝑚6}, . . ) 
22. Links_Recieve (𝑚6, {𝑚7 ↦ 𝑚3, 𝑚7 ↦ 𝑚6}, . . ) 

𝑇𝑎𝑏𝑙𝑒_𝐿𝑖𝑛𝑘_𝑆𝑡𝑎𝑡𝑒 = {… , 𝑚3

↦ {𝑚3 ↦ 𝑚2, 𝑚3 ↦ 𝑚4, 𝑚3 ↦ 𝑚7, 𝑚2

↦ 𝑚1, 𝑚2 ↦ 𝑚3, 𝑚7 ↦ 𝑚3, 𝑚7

↦ 𝑚6}, …, 
𝑚6 ↦ {𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7, 𝑚1 ↦  𝑚2, 𝑚1 ↦  𝑚5, 𝑚1 ↦

 𝑚6, 𝑚7 ↦  𝑚3, 𝑚7 ↦ 𝑚6}, … }, 
 

23.Update_Table_Routing_IALC(𝑚1, . . ) 
24. Update_Table_Routing_IALC (𝑚2, . . ) 
25. Update_Table_Routing_IALC (𝑚3, . . ) 
26. Update_Table_Routing_IALC (𝑚6, . . ) 
27. Update_Table_Routing_IALC (𝑚7, . . ) 
 
 
 
 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝑇𝑎𝑏𝑙𝑒 = {𝑚1

↦ {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦ 𝑚6, 𝑚2

↦ 𝑚1, 𝑚2 ↦ 𝑚3, 𝑚6 ↦ 𝑚1, 𝑚6

↦ 𝑚7}, 𝑚2

↦ {𝑚2 ↦ 𝑚1, 𝑚2 ↦ 𝑚3, 𝑚1 ↦ 𝑚2, 𝑚1

↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦ 𝑚6, 𝑚3

↦ 𝑚2, 𝑚3 ↦ 𝑚4, 𝑚3 ↦ 𝑚7}, 𝑚3

↦ {𝑚3 ↦ 𝑚2, 𝑚3 ↦ 𝑚4, 𝑚3 ↦ 𝑚7, 𝑚2

↦ 𝑚1, 𝑚2 ↦ 𝑚3, 𝑚7 ↦ 𝑚3, 𝑚7

↦ 𝑛6}, 𝑛4 ↦ ∅, 𝑚5 ↦ ∅, 𝑛6

↦ {𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7, 𝑚1 ↦ 𝑚2, 𝑚1

↦ 𝑚5, 𝑚1 ↦ 𝑚6, 𝑚7 ↦ 𝑚3, 𝑚7

↦ 𝑚6}, 𝑚7

↦ {𝑚7 ↦ 𝑚3, 𝑚7 ↦ 𝑚6, 𝑚3 ↦ 𝑚2, 𝑚3

↦ 𝑚4, 𝑚3 ↦ 𝑚7, 𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7}} 
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The Cessation (closure) predicates are replaced with some other predicates 

regarding the cluster radius 2 for the following refinements. The radius of the cluster is 

set to 2, whereas motes(x) denotes the set of x’s neighbors. 

To verify the existing routes that reside in the x’s neighbors, it is required 

that x → y must be in (x). It's worth noting that those changes only apply to models with 

a specific cluster radius 2. 

 Few statements, such as inv1 and thm1 in the sixth refinement, cannot be changed 

because they contain the Cessation (closure) function with an unspecified path. Hence, 

the Cessation (closure) function is neglected, and more attention needs to pay to manually 

check their correctness while animating the models. To discover routes from m1 to m4, 

some operations are enabled manually by this model.  The sequence of operations is used 

to discover the route query in the network topology. 

28.Source_Forward_Request(𝑚1, 𝑚1 ↦ 𝑚4, … . ) 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ = {𝑚1 ↦ {(𝑚1 ↦ 𝑚4) ↦ ∅, … }, … } 
𝐼𝑛𝑡𝑒𝑛𝑑𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 = {(𝑚1 ↦ {(𝑚1 ↦ 𝑚4)) ↦ {𝑚2, 𝑚6}, … } 

29.Recieve_Request_Has_Route(𝑚2, 𝑚1 ↦ 𝑚4, … . ) 
30. Receive_Request_No_Route(𝑚6, 𝑚1 ↦ 𝑚4, … . ) 

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ = {𝑚2

↦ {(𝑚1 ↦ 𝑚4)

↦ {𝑚1 ↦ 𝑚2, 𝑚2 ↦ 𝑚3, 𝑚3

↦ 𝑚4}, … }, … , 𝑚6

↦ {(𝑚1 ↦ 𝑚4){𝑚1 ↦ 𝑚6}, … }, . . } 
𝐼𝑛𝑡𝑒𝑛𝑑𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 = {… , (𝑚6 ↦ (𝑚1 ↦ 𝑚4)) ↦ {𝑚7}, … } 

31.Bordercast_Request(𝑚6, 𝑚1 ↦ 𝑚4, {𝑚6 ↦

𝑚7}, … . ) 
32. Receive_Request_Has_Route(𝑚7, 𝑚1 ↦ 𝑚4, … ) 

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑃𝑎𝑡ℎ = {… , 𝑚7

↦ {(𝑚1 ↦ 𝑚4)

↦ {𝑚1 ↦ 𝑚6, 𝑚6 ↦ 𝑚7, 𝑚7 ↦ 𝑚3, 𝑚3

↦ 𝑚4}, … }, … } 
33.Send_Reply(𝑚2, 𝑚1 ↦ 𝑚4, … ) 
34.Send_Reply(𝑚7, 𝑚1 ↦ 𝑚4, … ) 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑅𝑒𝑝𝑙𝑦𝑃𝑎𝑡ℎ = {(𝑚2 ↦ 𝑚1)

↦ {(𝑚1 ↦ 𝑚4)

↦ {𝑚1 ↦ 𝑚2, 𝑚2 ↦ 𝑚3, 𝑚3

↦ 𝑚4}, … }, … , (𝑚7 ↦ 𝑚6)

↦ {(𝑚1 ↦ 𝑚4)

↦ {𝑚1 ↦ 𝑚6, 𝑚6 ↦ 𝑚7, 𝑚7 ↦ 𝑚3, 𝑚3

↦ 𝑚4}, … }, … } 
35.Update_Routing_Table_Reply(𝑚1, 𝑚1 ↦ 𝑚4, … ) 
36. Update_Routing_Table_Reply(𝑚6, 𝑚1 ↦

𝑚4, … ) 

 
𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝑇𝑎𝑏𝑙𝑒 = {𝑚1

↦ {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦ 𝑚6, 𝑚2

↦ 𝑚1, 𝑚2 ↦ 𝑚3, 𝑚6 ↦ 𝑚1, 𝑚6

↦ 𝑚7, 𝑚3 ↦ 𝑚4}, … , 𝑚6

↦ {𝑚6 ↦ 𝑚1, 𝑚6 ↦ 𝑚7, 𝑚1 ↦ 𝑚2, 𝑚1

↦ 𝑚5, 𝑚1 ↦ 𝑚6, 𝑚7 ↦ 𝑚6, 𝑚7

↦ 𝑚3, 𝑚3 ↦ 𝑚4}, … } 
37.Forward_Reply(𝑚6, 𝑚1 ↦ 𝑚4, 𝑚1 … ) 
38.Update_Cluster_Routing_Table_Reply(𝑚1, 𝑚1 ↦

𝑚4, … ) 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝑇𝑎𝑏𝑙𝑒 = {𝑛1

↦ {𝑚1 ↦ 𝑚2, 𝑚1 ↦ 𝑚5, 𝑚1 ↦ 𝑚6, 𝑚2

↦ 𝑚1, 𝑚2 ↦ 𝑚3, 𝑚6 ↦ 𝑚1, 𝑚6

↦ 𝑚7, 𝑚3 ↦ 𝑚4, 𝑚7 ↦ 𝑚3}, … } 
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 [m1 → m2, m2 → m3, m3 → m4] and [m1 → m6, m6 → m7, m7 → m3, m3 
→ m4]    

The animation example is elaborated in Figure 4.2. A list of step-by-step 

operations is carried out to enhance the readability, including some additional parameters 

to discover the entire route discovery from m1 → m4. Steps 3-7 are used to obtain the 

neighbor information for m1, m2, m3, m6, and m7, and the current value 

of Table_Link_State is displayed on the right side. Static parts of variables are represented 

by “. . .”. During the animation, the axioms and invariants remain true. 

4.6 Conclusion 

This Chapter used a refinement-based process to design a formal specification of 

cluster-based flooding. The aim is to use the border casting service to examine the route 

discovery process. Every mote in the dynamic network environment sends information 

to its neighbors in the cluster radius. This model is not only limited to formally describes 

the above issues but also takes account of the system's stabilization property. The system 

is considered stable if the network environment is idle for a long time. Every mote in the 

cluster has a route to any other mote within its radius. 

Some invariants are also defined to validate the route discovery properties. It is to 

be noted that the CBF's target is to use a border casting service rather than broadcasting 

or flooding to find the appropriate routes. It has formed approximately 400 proof 

obligations, of which half are automatically proven. 

The rest, which includes an arithmetic or set operations, are proven manually. 

Discharging the generated proof obligation ensures that the refinements are correct, and 

the properties (invariants) are preserved. The development can also be used to explore 

other cross-layered routing protocols. 
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CHAPTER 5: QoS ENABLED QCM TESTBED  

5.1 Introduction 

In the conventional IoT query propagation model, sensors send requests to the 

access point or central gateway mote of the network. This access point handles the queries 

first and then transfers queries using the underlying routing mechanism to the right 

locations of the network. 

There are shortcomings to this simplistic approach:  sensors may send redundant 

and duplicate queries i.e one sensor may carry unwanted query of another application or 

sensor. This is because of the overlapping cluster queries. The total energy usage 

therefore grows as the query size is enlarged. In such situations, device resources (in 

terms of bandwidth or energy for the sensor node) are lost due to too many redundant 

network query transmissions that can result in detectable QoS transmission (Fathallah et 

al., 2019).  

 This Chapter discusses the QoS enabled QCM testbed used to detect and 

terminate the redundant and unwanted queries in IoT networks. The QCM testbed aims 

to reduce the number of duplicate/overlapping queries in IoT networks to improve QoS. 

The query control mechanism is aware of all the query information. Therefore, all the 

overlapping clusters in the whole query space can be easily calculated. 

The Chapter is organized into the following sections. Section 5.1 presents the 

Introduction, Section 5.2 explains the benchmarking testbeds, Section 5.3 elaborates the 

experimental tools and schematic of the testbed, Section 5.4 presents the QCM in detail 

and elaborate different query detection and termination scenarios to evaluate the 

performance of QCM, Section 5.5 presents evaluation, Section 5.6 mentions the 

performance results and Finally, Section 5.7 concluded the Chapter. 
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5.2 Existing Testbeds 

All around the planet, there are several existing testbeds for related purposes. 

Different testbeds or laboratories concentrate on multiple facts. Some state-of-the-art 

testbeds are mentioned below. It is essential to notice that none of the below testbeds 

solely focused on elimination of redundant and unwanted queries in IoT networks to 

enhance QoS. The QCM testbed is purely for the purpose of mitigation of multiple and 

overlapping cluster queries in IoT networks. 

5.2.1 FIT IoT-LAB: 

FIT IoT is an open source testbed composed of 2728 low-power remote motes 

and 117 portable robots that are being utilized to explore different research and 

experiments regarding the huge scope IoT usage (Adjih et al., 2015). It features low-level 

and advanced Internet-level protocols and is deployed at six sites across France. 

Even though all the destinations have distinctive sensor gateway hub and equipment 

abilities, every one of them are associated and accessible through a similar online 

interface, normal REST interfaces and reliable CLI devices. It makes a platform for 

heterogeneous testing and is totally open source. 

5.2.2 INDRIYA 2: 

This testbed is the modern version of INDRIYA 1, installed at Singapore national 

university in a 3-dimensional way (Doddavenkatappa et al., 2012). This testbed is 

specifically intended for testing in programming environments for sensor networks, 

communication protocols and device architecture, etc. It provides the research platform 

with public access round the clock. At any given stage, anybody can upload executables, 

build jobs over the motes, and schedule them to run. Then, via the web portal, the tracking 

and visualization portion is completed. Deployment-wise Indriya 2nd version is 
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essentially the same as the previous. This solves some of the problems such as having 

different types of motes, more scalability, and having only one language base for 

development to make it easier to manage and update (Appavoo et al., 2019). 

5.2.3 MoteLab: 

It is a network-based testbed that has a series of nodes permanently installed that 

are connected to a central server that has a web interface that stores information and 

schedules activities. By logging the data with the assistance of automation, it smoothes 

production and debugging, which then ensures that the performance of the sensor network 

system is tested offline. It also provides access to the test bed for both local and remote 

users with the web interface. The scheme that takes care of the planning quota means that 

there is a rational system of sharing. It is completely open source and deployed at the 

University of Harvard  (Werner-Allen et al., 2005). 

5.2.4 The TKN WIreless NetworkS Testbed: 

The TKN WIreless NetworkS Testbed (TWIST) has been planned and developed 

at the Technische Universität, Berlin, by the Telecommunication Networks Company 

(TKN). Another open-source indoor WSN testbed is versatile and supports experimenting 

with multiple node setups, network-wide scripting, and various debugging methods. It 

also offers support for a heterogeneous network setup and has self-configuration 

capability using generic interfaces on the hardware (S.-F. Li et al., 2005). 

5.2.5 FlockLab: 

The FlockLab is a testbed developed and operated at the Swiss Federal Institute 

of Technology in Zurich, Switzerland by the Electronic Engineering and Networks 

Laboratory. This testbed that requires several services to run through all nodes 

concurrently and synchronously.  
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This testbed has an additional function, as all the nodes are equipped with GPIO 

pins to store all logical events. It uses GPIO tracing as a debugging method for time-

sensitive code (Lim et al., 2013). It embraces several target architectures, which in 

essence, when it comes to the same physical topology, enables a comparative study of 

applications and protocols. Users can apply power profiling and GPIO tracing against all 

targets to compare power and logical occurrences. They may also dynamically change 

the target supply voltage to strongly imitate battery consumption. 

5.2.6 SensLAB: 

It is an open WSN testbed that has been established and implemented on a vast 

scale to enable scalable testing in the WSN domain. The testbed is made up of 1024 nodes 

and is scattered around four areas. To provide a broad variety of features and 

implementations, every position has an equal proportion of 256 sensor nodes with unique 

characteristics. Two sites have links to mobile nodes, and all 256 nodes can connect with 

each other using the radio interfaces inside any given location. Each node can also serve 

as a sink node and can also connect with the entire network's other sink nodes or any 

external computer on the internet (Burin des Rosiers et al., 2012) . 

 

5.3 Experimental Tools and Schematic  

This Section explained the tools used to evaluate testbed for Query Control 

Mechanism along with IoT controller used to provide centralized control of the entire 

network. In the QCM testbed, 16 heterogeneous IoT sensors are deployed with Arduino 

Mega 2650 controller. 

5.3.1 Arduino Controller 

Arduino is an open-source hardware project that designs and manufactures single-

board microcontrollers and microcontrollers to sense and control physical and digital 
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objectives for digital frame devices and interactive purposes (Arduino - 

ArduinoBoardMega2560, n.d.), (Badamasi, 2014), (Barrett, 2013). 

ATmega2560 is a 54 digital input/output pin dependent microcontroller board 

where 14 are often used as PWM outputs. Sixteen analog inputs, 4 UART serial hardware 

ports, a 16 MHz crystal oscillator, a USB link, a power jack, an ICSP header, and a reset 

button. It includes everything and needs to help the microcontroller; plug it into a USB 

cable device or power it to get started with an AC to DC converter or charger. Figure 5.1 

and Table 5.1 illustrates Pinout diagram and technical specification for ATmega2560.  

 

Figure 5.1: Pinout Schematic of ATmega 2650 

The Arduino Mega is explicitly designed for projects requiring more memory 

space and complex circuits. Other boards available on the market that make Arduino 

Mega unusual for regular projects can do most of the electronic projects well. However, 

due to its ability to store more instructions in the code memory and several digital and 

analog I/O pins, some projects are carried out exclusively by Arduino Mega, such as 

making 3D printers or controlling more than one device.  

In this testbed all traffic management is controlled by a central IoT controller. 

This testbed used Gunino Mega 2650.  IoT Controller is responsible to collect data sensed 
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by IR and RFID sensors and to take appropriate action for each input based on the 

appropriate algorithm. 

Table 5.1: Specification of Mega 2650 

 

5.3.2 IR Sensor:  

Infrared sensors are the electronic devices used to sense different characteristics 

of their surroundings (i.e heat, motion, etc). IR sensors play a key role in this testbed by 

sensing the arrival of the query on every cluster for calculating the query traffic on each 

cluster and transfer the counts to the main controller. Furthermore, the IoT controller 

calculates and analyzes the query traffic by counting the number of queries on a particular 

cluster and decide in a centralized manner accordingly (Zappi et al., 2010), (IR Sensor : 

Circuit Diagram, Types Working with Applications, n.d.).     

5.3.3     RFID Sensor: Radio Frequency Identifier 

RFID is a promising technology for automated object identification with high 

accuracy. RFID sensors are deployed for the detection and identification of special 

queries on each cluster. In the IoT network, WSNs and RFID are the enabling 

technologies that form the basic building blocks for sensing and communication among 

devices and objects connected to the network (Su, Jian and Liu, Alex X and Sheng, 

Zhengguo and Chen, 2020). The inexpensive nature of RFID and its strong support 
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towards the business community make it the leading enabling technology in the IoT 

domain because it can transform ordinary objects into smart objects (Landt, 2005). 

Wireless sensor networks are composed of heterogeneous technologies which include 

sensors, wireless, and fixed communications devices. Constructing IoT is significantly 

based on sensors and RFID. IoT provides a platform for people and different objects to 

connect and communicate together anytime and anywhere with anything in real-time 

provided they be online. 

5.3.4 Indicators:  

The QCM testbed is equipped with RGB indicators to notify the user about the 

flooding. These indicators are dynamically integrated with the IoT controller and change 

its state according to the mentioned criteria (imposed by IoT controller). 

5.3.5 Cloud / Edge Servers: 

 Cloud server is a central entity with huge storage and computing capabilities. 

Whereas the edge server is a small cloud near the end-user. In the QCM testbed cloud 

and edge servers are used only when the local IoT controller is unable to perform complex 

computation due to its limited storage and computing capabilities. in such cases, tasks 

and computation are offloaded to the local edge or centralized cloud servers. Cloud 

servers are also used to analyze statistical data and intelligent future decision (Xiong et 

al., 2018), (Peng et al., 2020), (Ren et al., 2019).  

5.3.6 Layered Description and Schematic 

The QCM testbed schematic is classified based on the architectural design of each 

component used in developing the QoS enabled QCM testbed. Each component used and 

their description is provided in Table 5.2. 
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Table 5.2: Layered Description of Hardware 

Network layer NRF Model 324G (nRF241,01+1) , WIFI, xigbee etc 

Wifi Serial Module (ESP-8266) 

Sensor Layer Arduino Board Mega Rev 3 

IR sensor Low-Cost Ranging Module , PIR sensors , 

Ultrasonic , Water Moister , RFID 

RFID Tag and Reader 

 

From the IoT layered description mentioned in Table 5.2, a circuit is developed 

by combining all the components discussed in Section 5.3 and Figure 5.2. which helped 

to achieve the aims and objectives of QoS enabled QCM testbed. 

 

Figure 5.2: Schematic of the QCM Testbed 

The testbed is capable of detection and termination of overlapping and redundant 

network queries that reappear in the same cluster that has been already queried. The QCM 

testbed also has a unique feature to monitor the mote location and its signal strength for 
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the purpose to identify the flooding queries and transfer them to the controller for 

termination and further processing. 

The testbed used heterogeneous IoT Sensors, i.e., IR, Ultrasonic, RFID, 

temperature, sound, LDR, and water sensing for generating queries. It acts as the input 

unit for the testbed that monitors and sensed each query in their vicinity. The testbed uses 

embedded devices provided in Table 5.2 to carry out its essential operation. Embedded 

devices are being used in this system due to their advantages such as user-friendly, easy 

to program, and simplicity.  

The retrieved information was then sent to the Arduino controller for a certain 

processing amount on the sensors query. Then forward the sent queries to computational 

servers, i.e., Cloud and local servers via ZigBee or Wi-Fi to be processed further for 

sharing and storing purposes. The controller is also responsible for the computation of 

channel signal strength and mote location. 

5.4 Query Control Mechanism (Testbed) 

In Cluster Based Flooding, clusters are heavily overlap due to which route queries 

are extended to multiple network motes. In fact, the query network has been effectively 

streamlined to reach all network motes, effectively flood the network. However, a more 

disappointing result is that the IELC generates much more traffic than the flooding itself 

since when the flood is in operation, the query is sent on a path the length of which is 

equal to the radius of the cluster. In this case, an adequate query termination criterion is 

needed then the traditional approaches provided. To understand the cause of CBF control 

traffic, one of the main characteristics of the routing cluster needs to be highlighted: the 

mote reply to a query request may have provided detailed information about the entire 
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cluster of the mote. From this perspective, additional path query traffic can be viewed 

because of query threads overlapping, that is overlapped visited cluster. Therefore, the 

query control procedures' purpose is to reduce the route query traffic by directing the 

threads outward from the visited cluster. This issue can be tackled by identification, 

termination and prevention of visited cluster overlap. See Figure 5.3.   

 

Figure 5.3: Desired Search Direction of Overlapping Clusters 

5.4.1 Smart Query Mitigation 

The conventional method to eliminate the query thread is to remove once it 

appears in the last queried mote. Thus, it does not entirely leverage the cluster structure. 

 A more comprehensive technique is to drop a thread that occurs in a cluster that 

has already been queried. This criterion poses the first obstacle to designing an efficient 

termination process: identifying the already visited cluster when only a single mote has 

been queried (the central mote). 
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5.4.1.1 Loop-Back Mitigation (LM) 

When all motes are configured with the same cluster radius, cluster membership 

is commutative (i.e., if mote1 belongs to node m2’s cluster, then node m2 belongs to m1’s 

cluster). It is identifying a thread which returns to a cluster that it has already queried is 

reasonably straightforward. To decide whether every hop (excluding the most recent hop) 

lies within its cluster, a mote merely examines the acquired path in the obtained route 

query packet. The thread is abandoned when the loop-back event persists. Figure 5.4 

demonstrates this scheme's instance, which refers to as Loop-back mitigation (LM). Mote 

m8 send a query route to m6, which forward it to m10, m10 send the same query message 

to m12. m12 eliminates the query and will not broadcast the query to m8 because it also 

lies in the m12’s cluster. LM is an effective loopback thread handling mechanism since 

the cumulative path's knowledge is adequate to classify all loopback events. 

 

Figure 5.4: Loop-Back Mitigation (LM) 
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(a) LM termination criteria: 

1. mote ∈ route 

2. i < j, where route[i] = = mote and route[j] = = prev_periph 

3. mote ∈ {cluster} 

4. mote ∉ {border motes} 

5.4.1.2 Smart Query Detection (SQD(a) / SQD(b)) 

The main cause of redundant queries in the cluster is because of it has been visited 

by another query. In contrast to the loopback scenario as mentioned previously, most of 

the thread overlapping occurs by a thread appearing in a cluster that was previously 

queried by another thread. Unlike the loop-back case just described, in this case, the 

ability to reduce and terminate enormously relies on the motes' ability to identify a cluster 

they belong to, has already been visited. The source mote in the cluster who processed 

the query clearly understands that the same query has already visited its cluster. To inform 

the rest of the cluster motes, some type of 'spying' techniques needs to be implemented 

without adding unnecessary control traffic. According to the CBF design principle, it is a 

more suitable way to perform query detection smartly. The initial level of smart query 

detection SQD(a) is to permit the interior motes responsible for forwarding the queries to 

cluster edge for detecting and revoking these queries. Any mote can sense queries within 

the range of a query-transmitting mote on single-channel networks. The SQD(b) can 

expand query detection functionality by providing route queries using IP broadcasts. 

Figure 5.5:  illustrates both levels of smart query detection. 
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Figure 5.5: Smart Query Detection SQD(a) / SQD(b)                          

Mote identification is also recorded in terms of ID, which first broadcast the 

detected query thread. Redundant queries that can transmit by the same mote are not 

automatically revoked to ensure full network coverage. For instance, two border motes 

m1 and m8 received a flooding query from m6. Using SQD(a), the interior motes m5 and 

m7 can detect redundant queries passing through it. In another way, when SQD(b) is 

applied, mote m2 can "eavesdrop" on the transmissions of m5 and record the query thread. 

5.4.1.3 Early Mitigation (EM) 

The thread termination can further be improved by a throw away the query thread 

on entering to already queried cluster. When only the border motes are allowed to 

terminate the query thread, it is possible that redundant queries may enter the already 

visited areas, resulting in excessive traffic generation.  
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The termination capability may extend to the interior motes that forward the query 

thread to eliminate this excessive traffic generation. This method is referred as Early 

Mitigation (EM) as mentioned in Figure 5.6. in the Figure 5.6 a route query is broadcasted 

by m6 to m11, first this query is received by mote 10 and forward it to mote 8 for delivery 

to the destination mote 11 which is reside on the border of the cluster. Mote m8 terminates 

the thread instead of delivering the query to mote m11 because another thread of the same 

query was already detected. It is noted that EM only permits the partial involvement of 

the interior motes to process the route queries. Interior motes are forbidden to issue new 

queries, or else the CBF would convert into a flooding protocol. 

 

 

Figure 5.6: Early Mitigation  
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(a) EM termination criteria: 

1. Query  {source,id} ∈ detected queries 

2. Query  prev_periph > min {detected queries[]  prev_periph} 

5.4.1.4 Selective Flooding 

Now to solve the more complicated problem of thread overlap prevention. By 

focusing on eliminating local overlaps, a certain degree of control can be exerted on the 

direction of thread distribution, thereby reducing the overlap of threads farther in the 

network. Local thread overlap is caused by the overlap of peripheral motes in the cluster, 

particularly with cluster radius enlargement. 

Instead of flood queries to all the border motes, a method called selective flooding 

(SF) can be used to provide the same coverage by flood the queries to a subset of 

selected/chosen border motes. SF must be aware of the network topology of extended 

cluster information provided by the IALC, which is twice the cluster radius before 

forwarding, initially, a mote needs first to specify the subset of outer border motes visited 

by its given inner border motes. 

Sender mote needs to flood the query to the subset of given inner border motes, 

which in turn minimize the partitioning set of outer border motes. An illustrative example 

of SF operation is provided in Figure 5.7.  

The inner border motes of m10 are m5, m6 and m7, whereas the outer border 

motes of m10 are m0, m1, m2, m3, m4 and m8. As seen because of the overlapping 

cluster, the inner border motes (m2 and m3) of m6 are also inner border motes of m5 and 

m7. 
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Hence, m6 can choose to be eliminated from the forwarding recipient list of m10. 

Mote5 can cover m0, m1 and m2, while m7 can give coverage to m3, m4 and m8, 

avoiding overlapping cluster queries over extended clusters with maximum coverage. 

 

 

Figure 5.7: Selective Flooding (SF) 

5.5 Evaluation of Query Control Mechanism (QCM) 

The efficiency of the QCM testbed was assessed by using 16 heterogeneous IoT 

motes having a cluster radius (r). Effectiveness of the QCM was measured by the 

generation of control traffic. Instead of measuring the control traffic in term of packets, 

it measures it in ID fields which are transmitted at the IELC (i.e. network layer).It is 

because the route accumulation length of IELC control traffic is variable. Total control 

traffic can be seen as the addition of ID fields in the query packet transmitted by the 

intracluster update and intercluster reply to queries. Hello or alive beacons used for mote 

discovery are exempted from the control traffic  
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To accommodate the computational load of testbed, the IALC and IELC are 

emulated separately. The Mega 2560 microcontroller from Arduino family, based on the 

ATmega2560P microcontroller by Atmel with 16 heterogeneous IoT sensors were 

deployed to gauge the efficacy of IALC in each radius of a cluster. Initially, the IALC 

algorithm was executed for 300 seconds 

The IALC algorithm was run for 300 seconds. None of the queries was recorded 

for the first ten seconds of the emulation to prevent it from additional measurements and 

to stabilize the initial Intracluster path query discovery process. The IELC algorithm 

assumes that the network topology may be static during the route request process.It is 

often presumed that the total network load is low. The delays in query propagation and 

mote processing are relatively insignificant. 

5.6 Performance Results 

The following statistics present the findings of the smart QCM testbed. Figure 5.8 

indicates the cluster radius (r) dependency of intracluster control packets on different 

network reconfiguration. The full flooding and selective flooding methods are different 

because the selective flooding allows the IALC to retain an extended cluster of radius = 

(2). It is demonstrated that the rise in IALC traffic resulting from the extended cluster is 

quite significant. The sum of IALC control traffic for each mote depends on the cluster's 

radius r* for both selective and full flooding. It is expected because the amount of IALC 

traffic per mote is directly proportional to the number of queried motes in the cluster. As 

shown, when the cluster radius r = 1, the control overhead for intracluster is none because 

all the motes in a radius of r=1 are by default directly connected motes and considered 

neighbors. Further, MDP is responsible for propagating information required to maintain 

the mote connectivity inside the cluster.  
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Figure 5.8: IALC Traffic  

To analyze the IELC control traffic, initially, the full flooding and selective 

flooding were examined separately. 

The efficiency of the query mitigation strategies, which are useful in managing 

the distribution of IELC traffic in conjunction with full flooding, is seen in Figure 5.9. 

The amount of IELC traffic per Route query is expected to decrease the cluster radius to 

be considered successful. To properly spread the query packet, some form of smart query 

detection technique (either SQD(a) or SQD(b) is required. Approximately 40 percent less 

reactive path discovery traffic could be encountered by single-channel networks that can 

implement SQD(b) than those that only implement SQD (a). 

Early mitigation is shown to be not an effective technique by itself, but it delivers 

a significant performance in term of IELC traffic reduction when combined with other 
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methods. The amount of traffic by IELC seems to be decreasing by extended the query 

detection capabilities, and the elimination criteria become stricter. 

 

Figure 5.9: IELC Traffic (Full Flooding) 

The extent to suppress redundant query traffic is clearly illustrated in Figure 5.9, 

with the deployment of the QCM. As mentioned earlier, the amount of reactive traffic 

would increase while increasing the cluster radius without an efficient query management 

technique. It is noted that the volume of control query traffic rises linearly with the cluster 

radius while none of the suggested query control schemes are used. For example, when 

radius r=3, the IELC produces almost twice as much traffic as flooding without proper 

query control and about 10 - 50 times as much traffic as the most useful query control 

methods. The best comparative IELC traffic performance by implementing the full 

flooding and selective flooding is illustrated in Figure 5.10. Under all the same 

conditions, selective flooding can significantly reduce IELC traffic compared to full 
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flooding. When (r = 1), selective flooding will generate approximately 20% of the total 

flooding. As the cluster increases, the impact is even more significant. 

 

Figure 5.10: IELC Traffic Per Route Query Discovery 

 

 

 

 

 

 

Figure 5.11: Delay of IELC Route Query Discovery 
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The performance of the CBF was also measured in term of delay while 

discovering the route queries. As shown in Figure 5.11, the routing query discovery delay 

is the same as the IELC control traffic, which decreases with the cluster radius. The same 

factors that oversee the IELC traffic pattern essentially influence this relationship. The 

transmission time for query propagation is initially minimized because of the aggregate 

queries' shorter size for the clusters having an extended radius. Second, because of the 

increased separation gap between border motes, each query encounters least IELC 

queuing delays. For small cluster size, selective flooding schemes show better delay 

performance than full flooding schemes but marginally deficient performance in term of 

delay for enormous cluster radius. 

With a small cluster radius, selective flooding results from the decreased queuing 

latency for every border mote. However, the increased list of assigned internal border 

mote can be comparatively large within a wider cluster radius, creating additional 

communication delays, thereby reducing the advantages of minimizing queuing delays, 

remembering that selective flooding's performance is more favorable when the cluster 

radius is small. As seen, the full flooding performance in term of rout query responding 

is little as 1/3 time compared to selective flooding. 

5.7 Conclusion and Future work  

An undesirable side effect of flooding is the overlapping of query threads. Which 

may lead to the propagation of redundant and unwanted queries, resulting in excessive 

resource utilization and may reducing QoS. This chapter introduced and analyzed the 

smart query detection and mitigation techniques (LM, SQD(a)/SQD(b), EM and SF) 

which effectively combat the redundant querying, while generating no additional control 

traffic and requiring negligible computational overhead. Further reduction of the 

intercluster control traffic can be achieved by preventing thread overlap locally through 
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selective flooding. When the CBF is configured to minimize total routing control traffic, 

it is evident that full flooding responds to route queries at least three times faster than a 

selective flooding implementation. Based on these results, selective flooding may be a 

suitable platform for the IELC in multiple channel networks where conservation of 

bandwidth is more important than delay performance. In all other cases, it appears that 

the simpler full flooding is the preferred query propagation mechanism. 

5.7.1 Future Work 

The testbed needs to handle additional functionality and more possibilities for 

research and needs to adapt continually. This section aims to cover how more QoS-related 

problems can be encouraged and discussed on the IoTs. If the extension of testbeds is an 

obvious path forward for more diverse IoT-related innovations and protocols, additional 

attractive aspects are often considered. 

 Making the Testbed Accessible 

To build all kinds of test cases, it will be beneficial to make the project open 

source for the community of IoT developers. This can be done by making the testbed 

available via the web and monitoring all motes with the correct logging. 

 Intelligent Testbed 

One of the next moves will also be to use specialized Machine Learning, and 

Artificial Intelligence approaches to handle sophisticated IoT network QoS analyses and 

provide appropriate redundant query recognition systems. 
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CHAPTER 6: RESULTS AND DISCUSSIONS 

6.1 The Implementation Details 

This Chapterβpresents the detailed implementation of our method. The study 

employs a well-known Contiki Cooja network simulator for formation of redundant 

flooding queries (Thomson et al., 2016) (Romdhani et al., 2016). Table 6.1 presents a 

comprehensive specification of the simulation parameters. These parameters are 

standardized as per IEEEβ802.15.4 radioβregulation. The study employs a random 

topology to cater the heterogeneousβnature of IoTβdevices to reflect the capabilities of 

sensorβmote connectivity. The study chooses a networkβsize of 1 to 64 motes as 

simulation model, deployed randomly under anβarea of 100-to-300-meter square. The 

motes are kept as activeβtransmitters and active receivers. Moreover, the study evaluates 

the simulation model having six differentβscenarios (i.e., withβdifferent interval of 

traffic, with different number of malicious motes, realistic scenarios, varied mobility 

speed, varied simulation area, and varied pause time). The study keeps the inner arrival 

time as exponential. The study explores various levels of network saturation based on 

traffic intensity that varies from lowβsaturated networksβ(pmax = 0.1) to high 

saturatedβnetworks (pmax > 1). Table 6.1 highlights theβfoundation of suitable assessment 

parameters in flooding. 

Table 6.1: Parameters Values of Simulation Scenario. 

Mote Type Sky Mote 
Initial state Energy  100 J 
Power (idle state) 31 Mw 

Power (receiving state) 35 Mw 
Power (sending state) 31 Mw 

Power (sleep state) 15 µW 
Simulation name QoS Enabled CBF 
Radio medium UDGM with Distance Loss 
Startup Delay 1 ms  
Random Seed 123,456 (Default) 

Positioning Random 
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Topology Random 
Number of Motes 16 

The Unit Disk Graph Medium (UDGM: distance loss) is the radio medium used 

for simulation withβa transmission range ofβ50 m andβinterference range ofβ100 m. It 

carries an initialβenergy of 100βjoules. Each deviceβmoves randomly withβstartup delay 

of oneβmillisecond. Each moteβconsumes 31 mW energyβin an ideal state andβ15 µW 

in the sleepingβstate. A total ofβ35 and 31 mWβenergy is consumed duringβdata 

receiving and sendingβstates, respectively. Moreover, the transmissionβdelay for high-

speedβlinks is insignificant. Forβexample, aβ1500-byte packet transmitted overβa 155 

Mbps STM-1/OC-3 link would takeβonly 0.08 ms. Following formulas are used to 

calculate the performance metrics and then convert it to percentage accordingly. 

 
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = (𝐵𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅)) × 100 

𝐵 = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 

𝑆𝐼𝑁𝑅 = 𝑆𝑖𝑔𝑛𝑎𝑙 𝑡𝑜 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑙𝑢𝑠 𝑁𝑜𝑖𝑠𝑒 𝑅𝑎𝑡𝑖𝑜 

𝑆𝐼𝑁𝑅 =
𝑃𝑚𝑔𝑛−1

𝑛

∑ 𝑃𝑚𝑔𝑉
𝑅 + 𝜎2𝑛

𝑛−1≠𝑉

 

𝑃𝑚 = 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑤𝑒𝑟 𝐹𝑟𝑜𝑚 𝑛𝑜𝑑𝑒𝑛 𝑡𝑜 𝑛𝑜𝑑𝑒𝑛−1 

𝑔𝑛−1
𝑛 = 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑔𝑎𝑖𝑛 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒𝑛 𝑡𝑜 𝑛𝑜𝑑𝑒𝑛−1 

𝜎2 = 𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑤ℎ𝑖𝑡𝑒 𝑔𝑢𝑎𝑠𝑠𝑖𝑎𝑛 𝑛𝑜𝑖𝑠𝑒 

Energy Consumption: in our case we have four different powers that is idle power, 

sleep power, sending power, receiving power. 
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𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 = 𝑃𝐼𝑑𝑙𝑒 + 𝑃𝑠𝑙𝑒𝑒𝑝 + 𝑃𝑠𝑒𝑛𝑑 + 𝑃𝑟𝑒𝑐𝑖𝑒𝑣𝑖𝑛𝑔 

𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟
 

𝐸. 𝐶 =
𝐵. 𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅)

∑ 𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟
× 100 

𝐷𝑒𝑙𝑎𝑦 = (
𝑇𝑖𝑚𝑒 𝑅𝑒𝑐𝑖𝑒𝑣𝑒𝑑 − 𝑇𝑖𝑚𝑒 𝑠𝑒𝑛𝑑

103
) × 100 

6.2 Results and Discussion 

This Section presents the performance evaluation and analysis of the existing 

techniques i.e., DnC, SLA(Abdelaal et al., 2016), (Alqahtani et al., 2016) and Hy-IoT 

(Sadek, 2018) with the QCM method. The comparative analysis is based on the tracing 

and alleviating the redundant (unwanted) reactive flooding. The study considers MDP 

protocol forβContiki and routingβprotocol as ad hoc routing protocols. The study 

performs 60 times simulation to achieve the suitable outcomes of this experimentation 

considering following six special scenarios: 

 Different traffic intervals: this scenario is vital to ensure the suitability of flooding 

attacks in regulating the defensive strategies under different traffic intervals. The 

traffic intervals range from 1 to 10 seconds, where 1 second is treated as faster 

and 10 seconds are considered slower. 

 Different number of mischievous nodes: this scenario is suitable in context to 

analyze the impactβof flooding attack over the network. It helps toβtake suitable 

action to combat mischievousβmotes. This study treats motes 2, β6, 10, and 15 as 

mischievous motes. as described previously the fastest traffic is considered as 1 

second. 
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 Realistic scenario: in this scenario, the study restricts the motes for not 

transferring the information of routing query simultaneously. Motes are allowed 

to transfer information of the routing, at different time intervals, randomly set to 

1 to 10 seconds. 

 Scenario based on a varied mobility speed of motes: The importance of motes 

mobility motivates us to evaluate the proposed schemes with varied mobility 

speed.  The topology with more speedy motes is more dynamic and vice versa.  In 

this scenario, the mobility speed of motes is kept changing such as 5,10,15,20 and 

25 m/seconds as shown in the following table 6.2. 

Table 6.2: Configuration Simulation Scenario Parameters with Varied 
Mobility Speed 

Parameter Value 
Number of Nodes 64 

Pause Time 1 second 
Maximum Speed 5,10,15,20,25 m/sec 

Area 200 m2 
Mobility Model  Random Way Point 

Positioning Random 
Topology Random 

 

 Scenario based on a varied simulation area:  The area in which motes moves 

and communicate effects the performance of wireless sensor networks. In this 

scenario, the simulation area is kept changing such as 100, 150, 200, 250 and 

300 m2 as shown in Table 6.3.  
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Table 6.3: Configuration Simulation Scenario Parameters with Varied Simulation 

area 

 

 

 

 Scenario based on a varied pause time: Pause time in a scenario also effect 

performance of wireless sensor networks such as energy consumption, delay 

and throughput. In this scenario, the varied pause time such as 3, 6, 9, 12 15 

seconds is used to find the effect of pause time on proposed scheme as 

mentioned in table. 6.4. 

Table 6.4: Configuration Simulation Scenario Parameters with Varied Pause Time 

Parameter Value 
Number of Nodes 64 

Pause Time 3, 6, 9, 12 15 seconds 
Maximum Speed 15 meter/seconds 

Area 100 m2 
Mobility Model  Random Way Point 

Positioning Random 
Topology Random 

 

Here, it’s worth to mentioned that the sensor motes fallow the random mobility model 

and have random topology that are positioned randomly in most of the realistic simulation 

scenarios. This study focused on to find the changing behaviors (values) of six 

simulations parameters (that is traffic intervals, number of mischievous motes, mobility 

speed, simulation area and pause time) that have an impact on the performance of the 

QoS enabled cross-layered clustering (Cluster Based Flooding) protocol. 

Parameter Value 
Number of Nodes 64 

Pause Time 1 second 
Maximum Speed 15 m/sec 
Area 100,150,200,250, 300 m2 
Mobility Model  Random Way Point 

Positioning Random 
Topology Random 
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6.2.1 Average Energy Consumption 

Figure 6.1 presents the average energy consumption and numberβof malicious 

motes having different intervalsβof time. Figure 6.1(a) depicts the comparison of the 

proposed QCM approach withβDnC, SLA, βand Hy-IoT methods in context of reduction 

in theβaverage energy consumption. The proposed method can detect flooderβmotes and 

can detach themβfrom the network, thus reducing the energyβconsumption levels (arising 

under redundant (unwanted) flooding attacks. While we notice the average energy 

consumption of prevailingβDnC, and SLA as about 21 andβ18%, respectively, under 1–

5 sβintervals, resulting in rise of thisβratio continuously as theβinterval increases. 

Nevertheless, the QCM consumes energy under 6% compared to theβ13% of the 

prevailingβHy-IoT method.  

Clearly, the average consumption of energy stays directly associated to the time 

interval for all methods, the consumption of energy increases with the increase in time 

interval. The study noticed that the flooder mote consumed highest energy since it directly 

transmits unwanted queries when it detects the communication activity over the network. 

Figure 6.1(b) presents the average energy consumption having different number of 

mischievous motes stated as 2, 6, 10, 15. 

  
(a) (b) 
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(c)                                                                                   (d) 

 
(e)                                                                 (f) 

 

 

Figure 6.1: Average Energy Consumption in Context of Different Traffic 
Intervals with (a) MaliciousβMotes (b), Malicious Motesβwith Realistic 
Condition (c), Different Mobility Speed (d) Different Simulation Area (e) 
Different Pause Time (f) 

This study conducted a realisticβanalysis of QCM to investigate the level of 

mischievous motes in context of network expansion under flooding. It can be notice from 

the results that energy consumption is increased with the presence of malicious motes. 

For instance, the mote 2 consumes energy approximately 5% and 8% for SLA and DnC 

methods respectively. The malicious mote 15 consumes energy approximately 48% and 

40% for both methods. Thus, the presentation of QCM helps us to decrease energy to 

about 2%, 4%, 20% at malicious modes 2, 6, 15 respectively. it can be notice that the 
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proposed QCM outperformed the existing methods approximatelyβ3% and 8% with 

malicious motes 2βand 6 respectively and gradually increase toβ32% at mote 15. 

The QCM can reduce the energy level consumptionβby halting the flooder mote 

(under unwanted transmission to its activeβstate), by significant treating the flooding 

attacks. 

Figureβ6.1(c) presents average energy consumption addressed with realistic 

condition and malicious modes. The random dissipation of packets related to route query 

are referred under the realistic condition at different intervals of time. During the time of 

unwanted flooding attack, the simulation of realistic condition is very important to know 

about efficiency of simulated methods. The results describe that average energy 

consumption ofβDnC & SLA, under maliciousβmote 1 is aboutβ18% and 15% 

respectively. Thisβconsumption elevates to approximately 70% and 56% under malicious 

mote 15, whereas the QCM addresses theβconsumption reducing to 3% and 24% 

approximately under malicious motes 1 and 15 respectively. Moreover, the energy 

consumption is about 6% lowerβthan the conventionalβHy-IoT at malicious moteβ1 and 

20% at malicious mote 15 having theβsame scenario. 

Theβperformance of the QCM is analyzed with varied mobility speeds, area and 

pause time of motes as mentioned in Figure 6.1(d, e and f). Mote’s moments increase 

with increase in speed causes more energy consumption. Connection breaking ratio also 

increase with increase in speed due to quickly change in the position and intermediate 

nodes. These phenomena also increase in delay and decrease in throughput of QCM and 

other protocols with increase in mobility speed of motes. In Figure 6.1(d), QCM has 

outperformed theβDNC, SLA and Hy-IoT by having minimum increaseβin energy 

consumption of 2%. QCM has lowest 10.8% average energy consumption. In case of 

increasing simulation area, QCM has comparatively consume less energy of 11.08% as 

Univ
ers

iti 
Mala

ya



 

170 

 

mentioned in Figure 6.1(e). The increase in pause time motivates toward lower energy 

consumption in wireless sensor networks. The QCM has lowest possible energy 

consumption with varied pause time scenario as shown in Figure 6.1(f). The increase in 

pause time causes less connection breaking ratio and the topology is more static.  

These results of energy consumption with various simulations scenarios proved 

that the proposed QCM significantly improved the performance of the network. 

6.2.2 Traffic Delay 

The proximity of trafficβdelay to different cases including maliciousβmotes, time 

interval, maliciousβmotes (realisticβcondition), varied mobility speed, varied simulation 

area and varied pause time Figures 6.2 (a–f), respectively. In Figure 6.2(a), QCM 

performed significant as against the existing methodsβDnC, SLA, andβHy-IoT 

demonstrating minimum trafficβdelays. The study investigated the QCM as a good 

detector, pause manager, and detacher for flooding motes from the network.  
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(c)                                                              (d) 

 
(e)                                                              (f) 

 

 

 

Figure 6.2: Delay in Context of Different Traffic Intervals with (a) 
MaliciousβMotes (b), MaliciousβMotes with RealisticβCondition (c), 
Different Mobility Speed (d) Different Simulation Area (e) Different Pause 
Time (f). 

These measures greatly improved the performance. Further, this could also 

remove the redundant (unwanted) queries by disengaging the flooding motes. DnC and 

SLA exhibited a traffic delay of 26%βand 20%, respectively forβinterval 1, as presented 

inβFigure 6.2(a). The proposed algorithm reduced the traffic delay to about 10% in the 

network at the same interval. QCM could achieve a drop in traffic delay about 4% lower 

than the conventional Hy-IoT. Thus, the percentage increases with the increase in 

interval, since the percentage is directly associated with the interval. 

Univ
ers

iti 
Mala

ya



 

172 

 

Figure 6.2(b) presents the traffic delay scenario in context of increase inβnumber 

of maliciousβmotes. Under normal reactive flooding scenario, the delay in traffic for 

algorithmsβDnC and SLA are approximatelyβ37% and 35% respectively. Any increase 

of number of malicious motes, we can notice that delay in traffic also increases. For 

malicious mote 15, the largest delay in traffic forβDnC and SLA are observed as about 

85%βand 75% respectively.  The QCM algorithm performed significant as compared with 

existing Hy-IoT for maliciousβmotes 2 and 15, and it lowers the delay to approximately 

7%βand 37% gradually. Withβthe same malicious motesβ2 and 15, theβQCM performs 

comparatively better with respect to delay in traffic having about 15% and 49% delay 

respectively. The study observed that the link waiting time was largely decreased by the 

QCM algorithm with respect to decrease in traffic delay.  

Figure 6.2(c) presents the realistic network scenario in context of evaluating the 

performance of existing and flooding techniques under increasing number of malicious 

motes. It is observed thatβDnC and SLA depicted a traffic delay of about 45% and 30%, 

at malicious mote, respectively. Whereas the delay was noticed to be increased to 

approximately 89% and 81%, forβDnC and SLA, under maliciousβmote 15, respectively. 

we noticed the outperformance of the QCM attaining approximatelyβ11% and 45% of 

trafficβdelays under malicious motesβ1 and 15, respectively. This pointed out a profound 

decrease in traffic delay achieved by QCM by approximately 6% and 15% compared with 

prevailing Hy-IoT under motes 1 and 15, respectively. 

The QCM and other protocols such asβDnC, SLA, and Hy-IoT are thoroughly 

analyzed using varied mobility speed, varied simulation area and varied pause time to 

find the effect on their traffic delay. Although the traffic delay of QCM and other variants 

(DnC, βSLA, and Hy-IoT) increasesβwith increase in mobility speed as shown in Figure 

6.2(d) due to increase in connection breakup ratio and topology changes between the 
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sender and destination. QCM outperform the DnC (44.2%), SLA (37.5%), and Hy-IoT 

(29.63%) by minimum average delay of 23.7%.  In case of varied simulation area, the 

QCM shows lowest average delay of 26.1% as comparedβto DnC (49%), SLA (40.3%), 

andβHy-IoT (35.03%) as shown in Figure 6.2(e). Traffic delays increase with increase in 

simulation area as the distance between communicating motes increases. The varied 

pause time scenario shows that QCM has lower average traffic delay of 19.14% as 

comparedβto DnC (34.21%),βSLA (29.68%), andβHy-IoT (22.85%) as mentioned in 

Figure 6.2(f).  QCM has lowest average traffic delay to its mechanism that effectively 

control the redundant and unwanted flooding. 

6.2.3 Throughput 

The study also evaluated the performance of algorithms to assess the network 

throughput as shown in Figure 6.3. The throughput is assessed in context of six scenarios, 

such as interval of time, increasing in the number ofβmalicious motes, maliciousβmotes 

with realisticβnetwork conditions, varied mobility speed, varied simulation area and 

varied pause time. In Figure 6.3(a), βnetwork throughput of DnC and SLA are 

decreasesβup to approximately (44%βand 61%), respectivelyβat an interval ofβ1 s. 

While, βwith theβQCM the throughput boostsβto approximatelyβ85%, this resultβis 9% 

better asβcompared to existingβHy-IoT at theβsame time intervalβ1 s.  
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(a) (b) 

 

(c)                                                                                 (d) 

 
(e)                                                                               (f) 

 

 

Figure 6.3: Throughput in Context of Different Traffic Intervals with (a) 
MaliciousβMotes (b), MaliciousβMotes with RealisticβCondition (c), 
Different Mobility Speed (d) Different Simulation Area (e) Different Pause 
Time (f). 

 

Accordingβto the result asβshown, the performanceβof networkβthroughput is 

inversely proportionalβto the timeβinterval, as throughput decreasesβwith the increaseβin 

the interval. Flooderβmotes keep engaged the transmissionβlink, whichβgenerates 

unwantedβand redundant routingβrequest queries and directlyβaffects the QoSβof the 

IoTβnetworks. 

Univ
ers

iti 
Mala

ya



 

175 

 

Figure 6.3(b) presents the throughput of QCM and existing algorithmsβDnC, 

SLA, and Hy-IoTβ, assessed at increasing the numberβof maliciousβmotes. At first, under 

maliciousβmote 2, theβ throughput ofβDnC and SLAβis about 39%βand 44% that 

gradually lowers to 30% and 35% respectively for maliciousβmote 15. TheβQCM 

achieved 86% throughput at malicious mote 2, that gradually decreased to about 53% at 

malicious mote 15. These findings are about 9% and 6% significant than the existingβHy-

IoT at malicious motesβ2 andβ15, respectively. The significance in results depicted the 

prompt link access to different motesβduring the unwanted queryβattacks.  

The study also figured out the throughput of QCM and other algorithms 

DnC,βSLA, andβHy-IoT under realisticβnetwork conditions by observing the increments 

of numberβof maliciousβmotes, demonstrated in Figure 6.3(c). The findings showed that 

the network throughput remained 34% and 37% forβDnC andβSLA, respectively under 

maliciousβmote 1. This performance dropped to about 17% and 25%, respectively for 

maliciousβmote 15. From the results it is noticed that 80% and 49% throughput achieved 

by the QCM for maliciousβmotes 1 and 15, βrespectively. QCM could achieve 12% and 

5% throughput significant than theβexisting Hy-IoTβat malicious motesβ1 and 15, 

βrespectively under realistic conditions. 

The Figure 6.3(d) shows that throughput of QCM exceeds by having 88.8 % as 

compared to other variants such as DnC (45.9%), SLA (66.7%), and Hy-IoT (75.9%) with 

increase in mobility speed. In case of varied simulation area, the increase in throughput 

for QCM is very higher throughput of 90.2%. Other variants have comparatively low 

throughput such as DnC (44.3%), SLA (62.7%), and Hy-IoT (77.9%) as mentioned in 

Figure 6.3(e).   The throughput of these variants increases with increase in pause time as 

shown in Figure 6.3(f) since the topology is more static with higher pause time.  Here, 

the QCM outperformed by having higher average throughput of 92.8% as compared to 
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DnC (50.3%), SLA (70.7%), and Hy-IoT (83.1%).   The efficient underlying mechanism 

of QCM by controlling unwanted queries and providing fast link for communication 

motivates to have higher throughput as compared to other variants. 

6.3 Performance Evaluation and Validation of QCM 

This Section demonstrates the statistical evaluation (performance) of various 

query control methods in context of reducing energyβconsumption, costβand network 

flooding. Particularly, this section measure theβperformance ofβQCM algorithm. Using 

statistical measurements, we draw the significant conclusions achieved by the QCM 

algorithm against the existingβalgorithms i.e., βDnC, SLA, andβHy-IoT. This 

performance was evaluated by eliminating redundant flooding queries. We evaluated the 

inferential statistics of different algorithms under six different scenarios i.e at different 

traffic intervals, maliciousβmote, maliciousβmote with realisticβcondition, simulation 

areas, pause time, and mobility speed. The results demonstrated that the QCM algorithm 

performed significant as compared to existingβalgorithms and the significant probability 

remained less than 0.05 indicating the excellent performanceβof QCM algorithm. We 

ensured that QCM achieves 95% confidenceβinterval, demonstrating that 

QCMβalgorithm perform robust as compared to other existing algorithms. 

6.3.1 Evaluation Methodology 

This study is relyingβon the hypothesisβthat the proposed QCM (QueryβControl 

Mechanism) algorithmβ(Khan, F. A., Noor, R. M., Mat Kiah, M. L., Noor, N. M., 

Altowaijri, S. M., & Rahman, A. U., 2019)βoutperforms the otherβexisting algorithms, 

i.e., βDnC, SLA, andβHy-IoT in context of QoS-enabledβlayered clustering, under 

reactiveβflooding for IoTβdevices. 

This study incorporates two research hypotheses for inferential analysis, 
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1. Null hypothesis H0 (µ2−µ1 = 0): The null hypothesis states that the study 

could not achieve a significant difference in the performance evaluation 

of existing and the proposed method (DnC, SLA, Hy-IoT, and QCM). 

2. Alternative hypothesis H1 (µ2−µ1 > 0): The alternative hypothesis states 

that the study could achieve a significant difference in the performance 

evaluation of existing and the proposed method (DnC, SLA, Hy-IoT, and 

QCM).  

Next, the study analyzed the T-test and ANOVA statistics for hypothesis testing. 

Suppose the sample mean difference is 

�̅� = µ2−µ1 (4) 

where µ1 and µ2 are the sample means of dataset of first and second algorithms 

respectively. Sample standard deviation 

𝑆𝐷 = √
1

𝑁 − 1
∑(𝑥𝑖 − d )2

𝑁

𝑖=1

 (5) 

Here, data points are 𝑥1 ,𝑥2,𝑥3,   ,    ,𝑥𝑁  refer to the data points of results inβtwo 

comparableβalgorithms. PairedβSample T-test: 

𝑇 =
𝑑 − 0

𝑆𝐷 √𝑛⁄
 (3) 

Here, n depicts theβobservations. The study evaluates that the probability value 

has a significant number for the two hypotheses. The probability value is ensured to 

achieve the 95% confidence interval. The statistical test measures the probability value 

based on the data points. As a benchmark value, we kept the confidence interval has 0.05 

for statistical significance. Any algorithm that achieves the probability value larger than 

0.05 is considered insignificant in terms of inferential analysis of its data points.  
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Inβaddition, the study alsoβperformed an “ANOVA test” (Ahmad et al., 2016, 

2017) to investigate performanceβmeasure ofβalgorithms. The ANOVAβtest 

containsβthe following features, 

Meanβsquare forβsamples, 

𝑀𝑆𝑅 =
𝑆𝑆𝑅

𝑘−1
    (6) 

Similarly, βthe mean squareβfor error, 

𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑛−𝑘
    (7) 

Now the F statistics becomes 

𝐹 =
𝑀𝑆𝑅

𝑀𝑆𝐸
    (8) 

The study investigates the performanceβof different QoS-enabledβlayered-based 

clusteringβalgorithms for reactiveβflooding in the Internetβof Things withβthe following 

measures. 

1. InferentialβAnalysis in Termsβof EnergyβConsumption 

a. Having differentβintervals of traffic 

b. With maliciousβmote 

c. Having maliciousβmote with a realisticβcondition 

d. With different simulation area 

e. With respect to pause time 

f. With respect to mobility speed 

2. InferentialβAnalysis in Termsβof Delay 

a. Withβdifferentβintervals of traffic 

b. With maliciousβmote 

c. With maliciousβmote under a realisticβcondition 

d. Having different simulation area 

e. With respect to pause time 
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f. With respect to mobility speed 

3. InferentialβAnalysis in Termsβof Throughput 

a. Having differentβintervals ofβtraffic 

b. With maliciousβmote 

c. With malicious mote under a realistic condition 

d. With different simulation area 

e. With respect to pause time 

f. With respect to mobility speed 

The significance value, represented by probability value "P" is a statistical 

measure forβthe performance evaluationβof QCM and existing algorithms in terms of 

accepting or rejecting the null and alternative hypothesis. 

6.4 Results 

βThis section describesβthe inferential analysisβof experimentalβresults related 

toβthe performanceβevaluation and validationβof the QCMβ(Query Control 

Mechanism) algorithm (Khan, F. A., Noor, R. M., Mat Kiah, M. L., Noor, N. M., 

Altowaijri, S. M., & Rahman, A. U., 2019). which present the rejection of the Null 

hypothesisβand acceptanceβof the alternativeβhypothesis sinceβthe QCMβalgorithm 

outperforms (95%βconfidence interval) βthe existing algorithms, i.e., βDnC, SLA, βand 

Hy-IoT forβQoS-enabledβlayered-based clusteringβfor reactiveβflooding in the Internet 

ofβThings. 

 

Case 1: InferentialβAnalysis in Termsβof EnergyβConsumption 

Figure 6.4 presents the average energy consumption and numberβof malicious 

motesβhaving different intervalsβof time depicting the comparison of the proposed QCM 

approach withβDnC, SLA, andβHy-IoT methods in context of reduction in the average 
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energy consumption. The QCM can detect flooderβmotes and can detach them from the 

network, thus reducing the energyβconsumption levels (arising under redundant 

(unwanted) flooding attacks. While, it is noticed that the averageβenergy consumptionβof 

prevailingβDnC, andβSLA as aboutβ21 and 18%,βrespectively, underβ1–5 sβintervals, 

resulting in rise of this ratioβcontinuously as theβinterval increases. Nevertheless, the 

QCM consumes energy under 6%βcompared to theβ13% of the prevailing Hy-

IoTβmethod.  

 

Figure 6.4: EnergyβConsumption withβRespect to DifferentβScenarios. 

Clearly, the average consumption of energy stays directly associated to the time 

interval for all methods, the consumption of energy increases with the increase in time 

interval. The study noticed that the flooder mote consumed highest energy since it directly 

transmits unwanted curries when it detects the communication activity over the network. 

Table 6.6 demonstrates the inferential analysis of data related toβQCM and other 

existingβalgorithms. It can be βseen that theβstatistically significant valueβP is less than 

ourβchosen confidenceβinterval of 0.05βwhich is evidenceβthat βQCM algorithm 
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outperformsβthe existingβalgorithms. Hence, Nullβhypothesis isβrejected andβQCM 

achieves theβsignificant prediction βvalue in the desiredβconfidenceβinterval. 

Table 6.6: InferentialβAnalysis of theβQCM Algorithm inβTerms of Energy 

ConsumptionβScenarios. 

“Energy consumption” with "different intervals of traffic" 
Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT" 

P. Correlation 0.995 0.985 0.998 
t Stat −7.234 −7.658 −5.902 

Prob.(1-tail) 0.000 0.000 0.000 
t Critic. (1-tail) 1.8331 1.833 1.833 
Prob.(2-tail) 0.000 0.000 0.000 

t Critic. (2-tail) 2.262 2.262 2.262 
“Energy consumption” with "malicious mote" 

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT" 

P.βCorrelation 0.991 0.990 0.997 
t Stat −3.691 −3.080 −2.910 

Prob.(1-tail) 0.010 0.018 0.021 
t Critic. (1-tail) 2.131 2.131 2.131 
Prob.(2-tail) 0.020 0.0369 0.043 

t Critic. (2-tail) 2.776 2.776 2.776 
“Energy consumption” with "malicious mote with realistic conditions" 

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT" 

P.βCorrelation 0.988 0.997 0.985 
t Stat −5.475 −5.744 −5.700 

Prob.(1-tail) 0.002 0.002 0.002 
t Critic. (1-tail) 2.131 2.131 2.131 
Prob.(2-tail) 0.005 0.004 0.004 

t Critic. (2-tail) 2.776 2.776 2.776 
“Energy consumption” with "different simulation areas" 

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT" 

P.βCorrelation 0.998 0.998 0.995 
t Stat 82.405 142.770 35.598 

Prob.(1-tail) 0.000 0.000 0.000 
t Critic. (1-tail) 2.131 2.131 2.131 
Prob.(2-tail) 0.000 0.000 0.000 

t Critic. (2-tail) 2.776 2.776 2.776 
“Energy consumption” with "pause time" 

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT" 

P. Correlation 1 1 1 
t Stat 28.991 42.573 7.289 

Prob.(1-tail) 0.000 0.000 0.000 
t Critic. (1-tail) 2.131 2.131 2.131 
Prob.(2-tail) 0.000 0.000 0.001 

t Critic. (2-tail) 2.776 2.776 2.776 
“Energy consumption” with "mobility speed" 

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT" 

P. Correlation 1 1 1 
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t Stat 237.352 76.519 72.124 
Prob.(1-tail) 0.000 0.000 0.000 

t Critic. (1-tail) 2.131 2.131 2.131 
Prob.(2-tail) 0.000 0.000 0.000 

t Critic. (2-tail) 2.776 2.776 2.776 
 

This study conducted a realisticβanalysis of QCMβto investigate the levelβof 

mischievousβmotes in context of network expansion under flooding. It is evident from 

the results that energy consumption is increased with the presence of malicious motes. 

For instance, the mote 2 consumes energy approximately 5% and 8% for SLA and DnC 

methods respectively. The malicious mote 15 consumes energy approximately 48% and 

40% for both methods. Thus, the presentation of QCM helps us to decrease energy to 

about 2%, 4%, 20% at malicious modes 2, 6, 15 respectively. In addition, the QCM 

achieved excellent probability “P-value” at different simulation areas, pause time, and 

mobility speed. In all the above cases, the algorithm outperforms the other existing 

algorithms at 95% confidence interval. 

Table 6.7 presents the ANOVAβtest statistics of theβQCM algorithm compared 

withβother algorithms. It can be found here that “F statistics” valuesβare sufficiently 

largerβthan “F criticalβvalues”. In addition, βthe “P values” are less thanβ0.05, which 

achievesβour 95% confidenceβinterval, showingβthat theβQCM algorithm outperforms 

theβexisting algorithmsβevaluated through inferentialβanalysis. 

 

 

 

Table 6.7: ANOVA statistics inβterms of “energy consumption” scenarios 

 

“Energy consumption” with "different intervals of traffic" 

Variationβ SSβ  βD
f MSβ Fβ P-

valueβ 
F 

critβ 
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Case 2: InferentialβAnalysis in Termsβof Delay 

BetweenβGrou
ps 

1454.17
0 3 484.72

3 7.408 0.000 2.86
6 

WithinβGroups 2355.43
9 36 65.428    

Totalβ 3809.60
9 39         

“Energy consumption” with "malicious mote" 

Variationβ SSβ  βD
f MSβ Fβ P-

valueβ 
F 

critβ 
BetweenβGrou

ps 673.109 3 224.36
9 4.334 0.029 3.23

8 

WithinβGroups 2690.59
6 16 168.16

2    

Totalβ 3363.70
5 19         

“Energy consumption” with "malicious mote with realistic conditions" 

Variationβ SSβ  βD
f MSβ Fβ P-

valueβ 
F 

critβ 
BetweenβGrou

ps 
2399.97

4 3 799.99
1 3.349 0.045 3.23

8 

WithinβGroups 3821.94
8 16 238.87

1    

Totalβ 6221.92
2 19         

“Energy consumption” with "different simulation areas" 

Variationβ SSβ  βD
f MSβ Fβ 

P-
valueβ 

F 
critβ 

BetweenβGrou
ps 

1046.38
1 3 

348.79
3 60.448 0.000 

3.23
8 

WithinβGroups 92.321 16 5.770    

Totalβ 1138.70
2 19         

“Energy consumption” with "pause time" 

Variationβ SSβ  βD
f MSβ Fβ P-

valueβ 
F 

critβ 
BetweenβGrou

ps 860.920 3 
286.97
3 91.260 0.000 

3.23
8 

WithinβGroups 50.313 16 3.144    
Totalβ 911.233 19         

“Energy consumption” with "mobility speed" 

Variationβ SSβ  βD
f MSβ Fβ P-

valueβ 

F 
critβ 

BetweenβGrou
ps 

1116.19
1 3 

372.06
3 

279.36
6 0.000 

3.23
8 

WithinβGroups 21.309 16 1.331    
Totalβ 1137.5 19         
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The proximity of traffic delay to different cases including maliciousβmotes, time 

βinterval, maliciousβmotes (realisticβcondition), varied mobility speed, varied 

simulation area and varied pause time respectively. QCM performed significant as against 

the existing methodsβDnC, SLA, andβHy-IoT demonstrating minimum trafficβdelays. 

The study investigated the QCM as a good detector, pause manager, and detacher for 

flooding motes from the network. These measures greatly improved the performance. 

Further, we could also remove the redundant (unwanted) queries by disengaging the 

flooding motes. DnC and SLA exhibited a traffic delay of 26% and 20%, respectively for 

interval 1, as presented in Figure 6.2(a). The proposed algorithm reduced the traffic delay 

to about 10% in the network at the same interval. QCM could achieve a drop in traffic 

delay about 4% lower than the conventional Hy-IoT. Thus, the percentage increases with 

the increase in interval, since the percentage is directly associated with the interval. 

Figure 6.5: Delayβwith DifferentβIntervals of Traffic 

Figure 6.5 depicts the “delay” in context to differentβscenarios, i.e., various traffic 

βintervals, maliciousβmote, with realisticβconditions, different simulation areas, pause 

time, and mobility speed. The significant performance can be notice achieved by QCM 

having lowest delay as against other existing algorithms. 
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Table 6.8 portrays the inferentialβanalysis of data points of QCMβand other 

existing algorithms. A statistically significant P value can be noticed, lower than chosen 

confidenceβinterval of 0.05, depicting that theβQCM algorithm performed excellent as 

against the existing algorithms. Thus, we can reject the Null hypothesis. 

         Table 6.8: Inferential analysis inβterms of “delay” scenarios. 

"Delay" with "different intervals of traffic" 
Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT" 

P. Correlation 0.994 0.988 0.996 
t Stat −35.043 −28.821 −8.856 

Prob.(1-tail) 0.000 0.000 0.000 
t Critic. (1-tail) 1.833 1.833 1.833 
Prob.(2-tail) 0.000 0.000 0.000 

t Critic. (2-tail) 2.262 2.262 2.262 
"Delay" with "malicious mote" 

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT" 

P. Correlation 0.971 0.941 0.960 
t Stat −8.753 −7.964 −5.894 

Prob.(1-tail) 0.000 0.000 0.002 
t Critic. (1-tail) 2.131 2.131 2.131 
Prob.(2-tail) 0.000 0.001 0.004 

t Critic. (2-tail) 2.776 2.776 2.776 
"Delay" with "malicious mote with realistic conditions" 

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT" 

P. Correlation 0.978 0.971 0.994 
t Stat −11.515 −7.200 −7.656 

Prob.(1-tail) 0.000 0.000 0.000 
t Critic. (1-tail) 2.131 2.131 2.131 
Prob.(2-tail) 0.000 0.001 0.001 

t Critic. (2-tail) 2.776 2.776 2.776 
"Delay" with "different simulation areas" 

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT" 

P. Correlation 1 1 1 
t Stat 21.593 28.688 8.831 

Prob.(1-tail) 0.000 0.000 0.000 
t Critic. (1-tail) 2.131 2.1318 2.131 
Prob.(2-tail) 0.000 0.000 0.000 

t Critic. (2-tail) 2.776 2.776 2.776 
"Delay" with "different pause time" 

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT" 

P. Correlation 1 1 1 
t Stat 17.131 19.964 10.544 

Prob.(1-tail) 0.000 0.000 0.000 
t Critic. (1-tail) 2.131 2.131 2.131 
Prob.(2-tail) 0.000 0.000 0.000 

t Critic. (2-tail) 2.776 2.776 2.776 
"Delay" with "different mobility speed" 
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Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT" 

P. Correlation 1 1 1 
t Stat 96.637 39.032 119.804 

Prob.(1-tail) 0.000 0.000 0.000 
t Critic. (1-tail) 2.131 2.131 2.131 
Prob.(2-tail) 0.000 0.000 0.000 

t Critic. (2-tail) 2.776 2.776 2.776 

 

Table 6.9 presentsβthe ANOVAβtest statistics of theβQCM algorithm compared 

withβother algorithms. It is viableβthat “F statistics” values areβsufficiently largerβthan 

“F critical values”. In addition, the “P values” are less than 0.05, which achieves our 95% 

confidenceβinterval, showing that theβQCM algorithm outperformsβthe existing 

algorithmsβevaluated throughβinferential analysis. 

Table 6.9: ANOVA statistics inβterms of “Delay” scenarios 

"Delay" with "different intervals of traffic" 

Variationβ SSβ  β
Df MSβ Fβ P-

valueβ 
F critβ 

BetweenβGro
ups 

1454.1
71 3 484.72

3 7.408 0.000 2.866 

WithinβGrou
ps 

2355.4
39 36 65.428

86    

Totalβ 3809.6
1 39         

"Delay" with "malicious mote" 

Variationβ SSβ  β
Df MSβ Fβ P-

valueβ 
F critβ 

BetweenβGro
ups 

673.10
95 3 224.36

9 4.334 0.029 3.238 

WithinβGrou
ps 

2690.5
96 16 168.16

2    

Total 3363.7
06 19         

"Delay" with "malicious mote with realistic conditions" 

Variationβ SSβ  β
Df MSβ Fβ P-

valueβ 
F critβ 

BetweenβGro
ups 

2399.9
74 3 799.99

1 3.349 0.045 3.238 

WithinβGrou
ps 

3821.9
48 16 238.87

1    

Totalβ 6221.9
22 19         

"Delay" with "different simulation area" 
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Variationβ SSβ  β
Df MSβ Fβ P-

valueβ 
F critβ 

BetweenβGro
ups 

1380.5
23 3 

460.17
4 16.271 0.000 3.238 

WithinβGrou
ps 

452.48
9 16 28.280    

Totalβ 1833.0
12 19         

"Delay" with "different pause time" 

Variationβ SSβ  β
Df MSβ Fβ P-

valueβ 
F critβ 

BetweenβGro
ups 

945.07
9 3 

315.02
6 

115.36
7 0.000 

3.23887
2 

WithinβGrou
ps 43.69 16 2.730    

Totalβ 988.76
9 19         

"Delay" with "mobility speed" 

Variationβ SS Df MS F P-

value 
F crit 

BetweenβGro
ups 

1206.2
08 3 

402.06
9 

81.878
49 0.000 3.238 

WithinβGrou
ps 78.569 16 4.910    

Total 1284.7
77 19         

 

Case 3: InferentialβAnalysis inβTerms ofβThroughput 

Networkβthroughput ofβDnC andβSLA are decreasesβup to approximatelyβ 

(44% and 61%), respectivelyβat an intervalβof 1 s. While βwith theβQCM the throughput 

boosts to approximatelyβ85%, this resultβis 9% better asβcompared toβexisting Hy-

IoTβat the same timeβinterval 1 s. Accordingβto the result asβshown in figureβ6.6, 

theβperformance of networkβthroughput is inversely proportionalβto the timeβinterval, 

as QoSβdecreases withβthe increase inβthe interval. Flooderβmotes keep engagedβthe 

transmission link, which generatesβunwanted and redundantβrouting requestβqueries and 

directlyβaffects the QoSβof the IoTβnetworks. 
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Figure 6.6. Throughputβwith Different Intervalsβof Traffic. 

Table 6.10 portrays the inferentialβanalysis of data points of QCMβand other 

existingβalgorithms. A statistically significant P value can be noticed, lower than chosen 

confidenceβinterval of 0.05, depictingβthat theβQCM algorithm performed excellent as 

against the existing algorithms. Thus, we can reject the Null hypothesis. 

Table 6.10. Inferential Analysis in Terms of “Throughput” Scenarios 

"Throughput" with "different intervals of traffic" 
Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT" 

P. Correlation 0.993 0.992 0.997823573 
t Stat 59.533 29.609 28.80340889 

Prob.(1-tail) 0.000 0.000 0.000000 
t Critic. (1-tail) 1.833 1.833 1.833112933 
Prob.(2-tail) 0.000 0.000 0.000000 

t Critic. (2-tail) 2.262 2.262 2.262157163 
"Throughput" with "malicious mote" 

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT" 

P. Correlation 0.903 0.986 0.988 
t Stat 6.867 6.871 6.044 

Prob.(1-tail) 0.001 0.001 0.001 
t Critic. (1-tail) 2.131 2.131 2.131 
Prob.(2-tail) 0.002 0.002 0.003 

t Critic. (2-tail) 2.776 2.776 2.776 
"Throughput" with "malicious mote with realistic conditions" 

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT" 

P. Correlation 0.960 0.938 0.989 
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t Stat 12.246 9.025 5.969 
Prob.(1-tail) 0.000 0.000 0.001 

t Critic. (1-tail) 2.131 2.131 2.131 
Prob.(2-tail) 0.000 0.000 0.003 

t Critic. (2-tail) 2.776 2.776 2.776 
"Throughput" with "different simulation area" 

Method QCM and DNC QCM and SLA QCM and Hy-IoT 

P. Correlation 1 1 1 
t Stat -18.031 -13.889 -9.663 

Prob.(1-tail) 0.000 0.000 0.000 
t Critic. (1-tail) 2.131 2.131 2.131 
Prob.(2-tail) 0.000 0.000 0.000 

t Critic. (2-tail) 2.776 2.776 2.776 
"Throughput" with "different pause time" 

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT" 

P. Correlation -1 1 1 
t Stat -31.6337 -106.066 -27.435 

Prob.(1-tail) 0.000 0.000 0.000 
t Critic. (1-tail) 2.131847 2.131 2.131 
Prob.(2-tail) 0.000 0.000 0.000 

t Critic. (2-tail) 2.776 2.776 2.776 
"Throughput" with "different mobility speed" 

Method "QCM", "DNC" "QCM", "SLA" "QCM", "Hy-IoT" 

P. Correlation 1 1 1 
t Stat -28.890 -312.541 -8.687 

Prob.(1-tail) 0.000 0.000 0.000 
t Critic. (1-tail) 2.131 2.131 2.131 
Prob.(2-tail) 0.000 0.000 0.000 

t Critic. (2-tail) 2.776 2.776 2.776 

 

Table 6.11 demonstrates the ANOVA testβstatistics of theβQCM algorithm 

comparedβwith otherβalgorithms. It can be noticed that “F statistics” valuesβare 

sufficiently largerβthan “F critical values”. βIn addition, the “P values” areβless than 0.05, 

whichβachieves our 95% confidenceβinterval, showing that theβQCM algorithm 

outperformsβthe existing algorithmsβevaluated throughβinferential analysis. 

 

Table 6.11: ANOVA Statistics in Termsβof “Throughput” Scenarios 
"Throughput" with "different intervals of traffic" 

Variationβ SSβ  β
Df MSβ Fβ P-

valueβ 
F 

critβ 
BetweenβGrou

ps 
1454.1
70 3 484.72

3 7.408 0.000 2.866 
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WithinβGroup
s 

2355.4
39 36 65.428    

Totalβ 3809.6
09 39         

"Throughput" with "malicious mote" 

Variationβ SSβ  β
Df MSβ Fβ P-

valueβ 
F 

critβ 
BetweenβGrou

ps 
673.10
9 3 224.36

9 
4.3342
46 0.029 3.238 

WithinβGroup
s 

2690.5
96 16 168.16

2    

Totalβ 3363.7
05 19         

"Throughput" with "malicious mote with realistic conditions" 

Variationβ SSβ  β
Df MSβ Fβ P-

valueβ 
F 

critβ 
BetweenβGrou

ps 
2399.9
74 3 799.99

1 3.349 0.045 3.238 

WithinβGroup
s 

3821.9
48 16 238.87

1    

Totalβ 6221.9
22 19         

"Throughput" with "different simulation area" 

Variationβ SSβ  β
Df MSβ Fβ P-

valueβ 
F 

critβ 
BetweenβGrou

ps 
5891.1
38 3 

1963.7
13 88.956 0.000 3.238 

WithinβGroup
s 353.2 16 22.075    

Totalβ 6244.3
38 19         
"Throughput" with "different pause time" 

Variationβ SSβ  β
Df MSβ Fβ P-

valueβ 
F 

critβ 
BetweenβGrou

ps 
5057.8
38 3 

1685.9
46 

1266.4
38 0.000 3.238 

WithinβGroup
s 21.3 16 

1.3312
5    

Totalβ 5079.1
38 19         

"Throughput" with "different mobility speed" 

Variationβ SSβ  β
Df MSβ Fβ P-

valueβ 
F 

critβ 
BetweenβGrou

ps 
4890.6
38 3 

1630.2
13 

97.435
19 0.000 3.238 

WithinβGroup
s 267.7 16 16.731    

Totalβ 5158.3
38 19         
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6.5 Discussion (Hypothesis Testing) 

The study centered the hypothesis that theβQCM (QueryβControl Mechanism) 

algorithm (Khan, F. A., Noor, R. M., Mat Kiah, M. L., Noor, N. M., Altowaijri, S. M., & 

Rahman, A. U., 2019) outperforms the other existing algorithms, i.e., DnC, SLA, and Hy-

IoT for QoS-enabled layered-based clustering for reactive flooding onβthe IoTs.βThe 

study expounded several defensiveβtechniques counter to redundant/unwantedβrouting 

queries, that cause massive network traffic, and thus results in flooding under IoT 

networks. In this research, theβauthors instigated theβInterlayer clusteringβ(IELC) of 

CBF by proposing a queryβcontrol mechanism (QCM) for detection and termination of 

redundant queries. The proposal relied on strength of link signal, query packet 

consistency, and limit threshold. 

The scientific findings of this study clearly demonstrated that the proposed QCM 

algorithm performed significant against other stateβof the art defensing algorithms in 

context ofβaverage energyβconsumption, delay inβtraffic, and throughput. The study 

observed that the QCM significantly reduced the average energy consumption under 

different traffic intervals. Theβperformance of QCM wasβalso realized better in context 

ofβaverage energyβconsumption with malicious mods as compared to conventional 

algorithms at different motes. Besides, the QCM also demonstrated very profound 

performance in context of networkβdelay as comparedβto the state-of-the-art algorithms 

by decreasing the delay considerably. 

In addition, under maliciousβmotes scenario, theβQCM algorithm decreased the 

delayβin network traffic to a significant extent. Finally, the QCM greatly enhanced the 

throughput asβcompared toβHy-IoT.  
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The comparative analysis of results revealed the difference betweenβQCM 

algorithm and the existingβalgorithms. This study plans to enhance the work in future by 

considering a discreet componentβcircuit implementation model employing 

Bouali'sβsystem for detection of other attacks. This will help in enhancing the quantity 

and types of motes to validate theβreliability of QCM under the scenario of different 

motes. In addition, the study plans to consider the proactiveβpart Interlayer clustering of 

CBF, that is appealing in high priorityβIoT networks, requiring smaller delays, i.e., in 

context of smart transportation, health, security and other types of physical prototype 

models. 

The statistical evaluation of the proposed and the existing methods reveal that the 

significant "P value”, based on the data points of differentβalgorithms, demonstrated that 

the proposed algorithm outperformed the existing algorithms by achieving the "P value" 

lower than 0.05, and ensuring the achievement of 95% confidence interval. The 

inferential analysis demonstrated that the study could reject the nullβhypothesis and can 

accept the alternativeβhypothesis sinceβthe QCMβalgorithm performed significant as 

compared to other existing algorithms. 

This research utilized statistical measures in performance evaluation ofβdifferent 

QoS-enabledβlayered-based clusteringβalgorithms in context of reactive flooding in IoT. 

The study performed the inferentialβanalysis in terms of EnergyβConsumption under 

different cases including maliciousβmotes, timeβinterval, maliciousβmotes (realistic 

condition), varied mobility speed, varied simulation area and varied pause time. 

Similarly, Inferentialβanalysis was also taken inβterms of Delay under different cases 

including maliciousβmotes, timeβinterval, maliciousβmotes (realisticβcondition), varied 

mobility speed, varied simulation area and varied pause time. βFurther, the research 

estimatedβthe inferential measuresβin the context ofβThroughput havingβdifferent 
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cases including maliciousβmotes, timeβinterval, maliciousβmotes (realistic condition), 

varied mobility speed, varied simulation area and varied pause time 

6.6 Conclusionsβand Future Work 

This Chapterβhas presented different defensiveβtechniques in context of 

redundant routing queries, that leadβto heavy network traffic, causingβflooding in IoT 

networks. The study implemented the reactiveβpart Interlayerβclustering of CBF and 

presented a queryβcontrol mechanism for detection and termination of redundant curries, 

based on strength of link signal, query consistency and query limit threshold. The 

performance evaluation of different algorithms revealed that theβQCM algorithm 

outperformed the existing state of theβart defensiveβalgorithms in termsβof average 

energyβconsumption, trafficβdelay, and qualityβof service. 

In context of average energy consumption, the proposed method can detect flooder 

βmotes and can detach themβfrom the network, thus reducing the energyβconsumption 

levels (arising under redundant (unwanted) flooding attacks. While it is noticed that 

theβaverage energy consumption of prevailingβDnC, andβSLA as aboutβ21 and 18%, 

respectively, under 1–5 sβintervals, resulting in rise of thisβratio continuously as the 

intervalβincreases. Nevertheless, the QCM method consumes energy under 

6%βcompared to theβ13% of the prevailingβHy-IoT method. In terms of traffic delays, 

the study investigated the QCM as a good detector, pause manager, and detacher for 

flooding motes from the network. These measures greatly improved the performance. 

Further, the redundant (unwanted) queries could also remove by disengaging the flooding 

motes. DnC and SLA exhibited a traffic delay of 26% and 20%, respectively for interval 

1. The proposed algorithm reduced the traffic delay to about 10% in the network at the 

same interval. QCM could achieve a drop in traffic delay about 4% lower than the 

conventional Hy-IoT. In terms of networkβthroughput (QoS), the throughput ofβDnC and 
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SLAβdecreased up to approximately (44%βand 61%), respectivelyβat an interval ofβ1 s. 

While, with theβQCM the QoS boosts toβapproximately 85%, βthis result is 9%βbetter 

as comparedβto existingβHy-IoT at the sameβtime interval 1 s. 
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CHAPTER 7: CONCLUSION 

This Chapterβconcludes the thesisβby presenting andβreappraising theβresearch 

questions and objectives presented in Sectionβ1.4 andβSection 1.5. The problems 

identified in this study, the research objectives, and accomplishments have been mapped 

to highlight the research. Furthermore, thisβchapter presents limitationsβof the 

currentβstudy and researchβdirections worthyβof pursuingβfuture researchβdirections.  

7.1 Reappraisalβof the ResearchβObjectives andβResearch Questions 

Inβthis sectionβof the thesis, variousβobjectives areβmapped against theβresearch 

to discussβthe findingβof the study.  

Objective 1: To investigate the state-of-the-art solution and identify the issues and 

limitations to prioritize, detect and terminate the redundant and unwanted flooding 

queries over the sensor and network layer of IoT network. 

To achieve this objective, the study conducted an extensive review of literature 

employing numerous academicβdatabases namely, βthe web of science, βScopus, 

ScienceDirect, βIEEE Xplore,βMedline, PubMed,βSpringerLink, and ACM. Theβarea of 

interests conductedβusing these academicβdatabases include query flooding, Quality-of-

Service (QoS) aspects of clustering, query control mechanism in IoT networks, and 

prioritization of vital queries. Moreover, the study investigated the limitations of existing 

solutions and identified the research gap to propose a robust and enhanced solution.  

Objective 2: To design cross-layered Cluster Based Flooding (CBF) technique for 

priority and redundant queries. Two new algorithms are introduced as below: 
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 Interlayer Clustering (IELC) algorithm for network layer that uses advance query 

control mechanism (QCM) for detecting and terminating the redundant and 

unwanted queries and network flooding. 

 Intralayer Clustering (IALC) algorithm for physical layer that maintain 

priority queries information locally. 

The study achieved this research objective by developing a QoS enabled cross-layered 

clustering technique for mitigating flooding queries in IoT networks. The proposed 

method that based on an interoperableβsolution worked well for bothβphysical and 

networkβlayer devices. Since cross-layeredβCBF segments the entire network into 

different clusters, the IALC maintained the local query information proactively, while 

IELC is responsible for reactive achievement of routingβqueries to destinationsβ(outside 

the cluster). The study presented CBFβas a hybridβapproach, havingβthe capability to 

beβmore effective against conventional schemes in context of queryβtraffic generation. 

βInterlayer clustering (IELC) was found effective since it contained advanced 

queryβdetection and termination techniquesβ (QCM) that associated the signalβstrength 

andβQueryLimitThreshold (QLT) values to detect flooding. It was found significant to 

minimize the energyβconsumption, networkβflooding, and identification and elimination 

of redundantβrouting queries inβIoT networks. 

A query control mechanism is essentially required for prioritizing, detection and 

termination of the redundant/unwanted flooding queries. TheβQCM technique employed 

a changeβin QueryLimitThresholdβ(QLT) for detection andβtermination of redundant 

queryβrequest packets. Theβmechanism was found elegant in enhancing the functioning 

of the IoT’sβnetwork in context of strength of signal of queryβpackets, and enhancing the 

locationβconsistency verifying connected motes, thus shielding the network for reactive 

flooding attacks. The core idea of CBF was to segment the wholeβnetwork into different 
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routingβclusters. Proactive maintenance was done by the Intralayer clustering (IALC) by 

exploiting route query exchange and update query packets. Interlayer clustering (IELC) 

contributed in reactivelyβtransfer route query packetsβto motes, residing outsideβof the 

mote’s cluster through query-replyβpackets. 

Objective 3: To formulate the cross-layered Cluster Based Flooding (CBF) using the 

Sets and (Pro B).  

      The study achieved this objective by designing a refinement-based process in design 

of a formal specification of cluster-based flooding. The border casting service was 

adopted to examine the route discovery process. Since every mote in the dynamic network 

environment sent information to its neighbors in the cluster radius, the proposed model 

was not only limited to formally described stated issues but also took account of the 

system's stabilization property. To achieve the objective, the study also defined some 

invariants to validate the route discovery properties. It is to be noted that the CBF's target 

was to use a border casting service rather than broadcasting or flooding to find the 

appropriate routes. The statistics for discharged proof obligations are summarized in 

Table 7.1 as mentioned below.  

Table 7.1: A summary of proof obligation 

Model Total number 
of POs 

Automatically 
discharged 

Manually 
discharged 

Initial Model 15 13 2 
Refinement 1 16 14 2 
Refinement 2 60 37 23 
Refinement 3 29 17 12 
Refinement 4 97 54 43 
Refinement 5 79 38 41 
Refinement 6 21 14 7 
Refinement 7 19 13 6 
Refinement 8 65 40 25 
Total 401 240 (60%) 161 (40%) 
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It had formed approximately more than 300 proof obligations, of which half were 

automatically proven. Dischargingβthe generated proofβobligation ensured that 

theβrefinements were correct, and theβproperties (invariants) wereβpreserved. 

Since the existing studies lack the formal validation of cross-layered routing 

protocols, this study emphasized on formal specification of cross-layered cluster-based 

flooding CBF at event B and proved the correctnessβof the route discoveryβmechanism. 

As a refinement-basedβmethod, an improved way was required to add system details to 

the corresponding model gradually. It made modeling and authentication easier for the 

user by allowing later versions to keep all the proven attributes in the previous model. 

Each node in the CBF cluster broadcasted link-state queries regularly. To model periodic 

broadcast/flooding activity, the study applied constraints in the formalization. As 

formalization of CBF is moreβcomplicated than formalizing a sole proactiveβor reactive 

approach protocol, this study took it as an important issue needed to be formally specified 

in a significant way. By improving the method, it permitted toβdevelop a system from 

abstractβto concrete. The correctnessβfor refinements wasβassured through discharging 

some proofβobligations. The study adopted the ProB, an animation tool to validate the 

model and ensured the formalization of the device specifications. 

 

Objective 4: To design real time QoS enabled Query Control Mechanism (QCM) testbed 

used to detect and terminate the redundant and unwanted queries in IoT networks. The 

proposed testbed aims to reduce the number of duplicate/overlapping queries in IoT 

networks to improve QoS. 

This research objective was achieved by design of a QoS enabled QCM testbed 

to detect and mitigate the redundant and unwanted queries in IoT networks. The proposed 
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testbed significantly reduced the number of duplicate/overlapping queries in IoT 

networks to improve QoS. The designed solution investigated the overlapping clusters in 

the whole query space promptly. Further, the proposed system employed heterogeneous 

IoT Sensors, i.e., IR, Ultrasonic, RFID, temperature, sound, LDR, and water sensing for 

generating queries. It acted as the input unit for the proposed system that monitors and 

sensed each query in their vicinity. 

The severe drawbacks of flooding appear as the overlapping of query threads. 

This phenomenon massively propagates redundant and unwanted queries, harvest 

excessive resource utilization, and thus reduce. The real-timeβQoS enabled testbed 

significantly analyzed the smart query detection and mitigation by effectively managing 

the unwanted querying. The solution also did not generate any additionalβcontrol traffic 

and required a negligible computationalβoverhead. The studyβfurther observed that an 

intercluster controlβtraffic can be achievedβby preventingβthread overlap 

locallyβthrough selective flooding. Since the queryβcontrol mechanism, being aware of 

the query information, the testbed could significantly manage all the overlapping clusters 

in the entire query space. 

Objective 5: To evaluate our proposed approach using simulation tools under realistic 

scenarios and compare the results with theβstate-of-the-art approaches in the literature as 

well as validate the results using a statistical analysis tool.  

This research objective was achieved by evaluating the performance of proposed 

model employing Contiki Cooja network simulator as a state-of-the-art simulation tool 

for redundant flooding scenario. To achieve the best outcomes of this evaluation, this 

study considered the customized parameterization of simulator on realistic scenarios by 

consideringβenergy consumption, delay, and throughputβwith differentβintervals of 

traffic, maliciousβmote, maliciousβmote with realisticβcondition, different simulation 
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areas, pause time, and mobility speed. TheβQCM technique outperformedβcompared 

toβDnC, SLA, andβHy-IoT approachesβin terms of droppingβthe averageβconsumption 

ofβenergy, traffic delay, and by boosting the considerable throughput.    

Further, to evaluate the performance of QCM, this study employed ANOVA and 

t-tests in context of special scenarios i.e., in terms ofβenergy consumption, delay, and 

βthroughput. These three scenarios were evaluated in terms of intervalsβof traffic, 

maliciousβmote, maliciousβmote with realisticβconditions, different simulation area, 

pause time, and mobility speed. The inferential analysis statistics depicted that “F and t” 

valuesβare sufficientlyβlarger than corresponding criticalβvalues. Inβaddition, the “P 

values” wereβless thanβ0.05, which achieved the 95%βconfidence interval, showingβthat 

theβQCM algorithmβoutperformed the existingβalgorithms. 

A deep and exhaustive review of existing solutions, this study investigated that an 

undesirableβside effect of flooding is theβoverlapping of queryβthreads. Which may lead 

to the propagation of redundant and unwanted queries, resulting in excessive resource 

utilization and may reducing QoS in termβof energyβconsumption, networkβdelay and 

throughput.  The QCM mechanism analyzed the smart query detection and mitigation 

techniques to effectivelyβcombat the redundantβquerying, whileβgenerating no 

additionalβcontrol trafficβand requiring negligibleβcomputational overhead. Further 

reduction of the intercluster controlβtraffic could beβachieved by preventingβthread 

overlap locallyβthrough selective flooding. When the CBF was configuredβto minimize 

totalβrouting controlβtraffic, the study found that full flooding responded to 

routeβqueries at least threeβtimes faster thanβa selective floodingβimplementation.  

In context of average energy consumption, the proposed method can detectβflooder 

motes and can detach them fromβthe network, thus reducing the energyβconsumption 

levels (arising under redundant (unwanted)βfloodingβattacks. We noticed the average 
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energyβconsumption of prevailingβDnC, andβSLA as aboutβ21 and 18%, respectively, 

under 1–5 s intervals, resulting in rise of this ratio continuously as the interval increases. 

Nevertheless, the QCM method consumes energy under 6% comparedβto the 13%βof the 

prevailingβHy-IoT method. In terms of traffic delays, the study investigated the QCM as 

a good detector, pause manager, and detacher for flooding motes from the network. These 

measures greatly improved the performance. Further, the redundant (unwanted) queries 

could also remove by disengaging the flooding motes. DnC and SLA exhibited a traffic 

delay of 26% and 20%, respectively for interval 1. The proposed algorithm reduced the 

traffic delay to about 10% in the network at the same interval. QCM could achieve a drop 

in traffic delay about 4% lower than the conventional Hy-IoT. In terms of network 

throughputβ(QoS), the throughputβof DnC andβSLA decreased up toβapproximately 

(44% andβ61%), respectivelyβat an intervalβof 1 s. While βwith theβQCM the QoS 

boostsβto approximatelyβ85%, thisβresult is 9%βbetter as comparedβto existing Hy-IoT 

at theβsame time intervalβ1 s.  

7.2 ResearchβScope and Limitation  

The scopeβof this study is contained under IoT sensors/devices, delay, QoS, 

Energy Consumption, throughput, redundant query, flooding, and cloud. 

This study is limited to two layers only and are covering all the layers of IoT. 

Further, the study requires to build a cross-layered prototype, the IALC Intralayer only 

focus on priority queries need to improve it further. Moreover, the flooding created by 

the priority queries needs to be rectified.    

7.3 Future Work 

In this Section, enlist a possibleβfuture work thatβcan be elevated from this 

research study.  
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1. The testbed needs to handle additional functionality and more possibilities for research 

and needs to adapt continually. If the extension of testbeds is anβobvious path forward 

for moreβdiverse IoT-related innovations and protocols, additional attractive aspects are 

often considered. 

2. To build all kinds of test cases, it is suggested to keep the project as open-source project 

for scientific community and IoT developers. The testbed can be made publicly available 

through web with a well-managed monitoring of motes using their correct logging 

3. In future, the employment of customized Machine Learning, and Artificial Intelligence 

approaches can handle sophisticated IoT network QoS analyses and can provide 

appropriate redundant query recognition systems. 

7.4 Summary 

ThisβChapter demonstrated the accomplishments of researchβobjectives of thisβstudy, 

along with mapping theβresearch objectives with the research questions. In addition, it 

also provided a proximity association between the problem statement, objectives, and the 

proposed solutions. Further, the scope andβlimitations of this were discussed. The 

Chapter glimpsed the future directions of work in context of testbed enhancement to 

mitigate the query flooding using machine learning techniques. 
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