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 DEVELOPMENT OF FUNCTIONAL ELECTRICAL STIMULATION SYSTEM 

USING MECHANOMYOGRAPHY AS MUSCLE STATE FEEDBACK FOR 

PARAPLEGICS 

ABSTRACT 

Functional electrical stimulation (FES) supported exercises aid purposeful muscle 

contractions to restore the lost motor functions with associated health benefits in 

individuals with spinal cord injury (SCI). The use of this device globally is majorly still 

restricted to the laboratory, especially in developing countries such as countries in Asia. 

This challenge is principally due to the high cost of the device for home care use and even 

for clinical deployment and the complexity of the commercially available options. One 

limitation of the available options is the inefficient muscle stimulation outcome due to 

the early onset of muscle fatigue. The reversal of motor unit recruitment in FES-evoked 

muscle contractions is one of the reasons for quicker muscle fatigue than the natural 

muscle contractions that occur from the central nervous system in a healthy person. The 

FES systems with sensor feedback are used to lessen this limitation with improved 

functional outcomes. The use of muscle contraction signals such as electromyography 

marred with stimulation artefacts, and the removal of these artefacts often presents 

another challenge. The studies reported in this thesis proposed and developed an FES 

system to monitor muscle condition using mechanomyography (MMG) without the 

limitation of stimulation artefacts. Before the implementation, a unique Mel-frequency 

cepstral coefficient (MFCC) feature of the MMG signal was introduced to classify the 

fresh muscle and muscle fatigue contractions in cycling exercise. Using this MFCC 

feature of MMG, 90.7% average classification accuracy was achieved, while the root 

mean square (RMS) feature of MMG had an accuracy of 74.5%. However, the 

computational cost needed for this research is supported using the RMS amplitude feature 

of MMG. This is also based on the literature that the MMG-RMS has a positive and 
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primarily linear relationship with torque generated from FES-evoked muscle actions. The 

developed FES system created sufficient stimulation power to support standing exercise 

and monitor muscle condition using MMG signal related to knee-buckling, which 

indicates muscle fatigue. 

Furthermore, the developed FES system was applied to detect muscle fatigue in real-

time using the MMG-RMS feature during isometric knee extension. The torque generated 

when tested on the isometric dynamometer was related to 70% drop in MMG-RMS 

threshold as actual muscle fatigue. Finally, an investigation of different modes of user 

control strategies of FES standing was simulated as the increase of amplitude by button 

pressing to sustain standing and detect muscle fatigue using the MMG-RMS feature. The 

outcome of this investigation showed that the single press 10 s mode provides optimal 

standing duration compared to other modes. Overall, this research shows the development 

of real-time muscle monitoring and prevention FES system with MMG sensor. 

Keywords: Functional Electrical Stimulation, Mechanomyography, Spinal Cord Injury 
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PEMBANGUNAN SISTEM RANGSANGAN ELEKTRIK BERFUNGSI 

MENGGUNAKAN MEKANOMIOGRAFI SEBAGAI MAKLUMBALAS 

KEADAAN OTOT UNTUK PARAPLEGIK 

ABSTRACT 

Bantuan senaman yang disokong oleh Rangsangan Elektrik Berfungsi (FES) untuk 

kontraksi otot bertujuan untuk membantu pemulihan kemahiran motor dan kesihatan 

individu dengan kecederaan saraf tunjang (SCI). Penggunaan peranti FES ini masih 

terhad kepada kegunaan makmal terutamanya dalam keadaan ekonomi negara-negara 

membangun seperti negara-negara di Asia. Kegunaan peranti untuk kegunaan di rumah 

mahupun penggunaan klinikal melibatkan kos yang tinggi dan merupakan cabaran asas 

bagi pengguna. Kerumitan peranti FES sedia ada secara komersial juga adalah satu lagi 

cabaran yang perlu dihadapi oleh pihak pengguna. Limitasi pilihan peranti FES sedia ada 

ialah rangsangan otot yang tidak cekap. Ini berkaitan dengan kelesuan otot lumpuh yang 

dirangsang oleh FES berlaku lebih awal daripada kontraksi otot sihat yang dirangsang 

melalui fisiologi normal. Hal ini disebabkan oleh kontraksi unit motor secara terbalik oleh 

FES apabila dibandingkan dengan kontraksi otot secara semula jadi yang dikawal oleh 

sistem saraf pusat yang utuh dalam individu sihat. Sistem FES yang dilengkapi dengan 

sistem maklumbalas keadaan otot telah dipromosikan untuk mengurangkan limitasi ini 

dengan hasil fungsi otot yang lebih baik. Penggunaan isyarat kontraksi otot seperti 

elektromiografi boleh dicemari oleh artifak dari rangsangan FES dan usaha untuk 

menyingkirkan artifak ini telah menimbulkan cabaran-cabaran lain. Kajian yang 

dilaporkan di dalam tesis ini mencadangkan dan membangunkan satu sistem FES yang 

dilengkapi sistem maklumbalas yang menggunakan isyarat kontraksi otot berdasarkan 

mekanomiografi (MMG) yang tidak dibatasi oleh artifak rangsangan FES. Perlaksanaan 

ciri pekali cepstral kekerapan-Mel (MFCC) yang unik dalam isyarat MMG telah 

diperkenalkan untuk mengkelaskan otot segar dan otot lesu sepanjang senaman berbasikal 
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yang dirangsang oleh FES. Dengan menggunakan ciri MFCC MMG, purata ketepatan 

pengelasan sebanyak 90.7% telah diperoleh manakala ciri ’root mean square’ (RMS) 

MMG mempunyai ketepatan sebanyak 74.5%. Ini sangat berguna dalam profil kontraksi 

otot yang dinamik seperti berbasikal. Namun begitu, kos pengiraan MFCC yang tinggi 

sebaliknya menyokong penggunaan ciri amplitud MMG-RMS dalam aktiviti yang 

melibatkan pergerakan stabil seperti berdiri dengan FES. Ini adalah berdasarkan tinjauan 

literatur yang melaporkan hubungan positif dan linear antara MMG-RMS dan tork yang 

dihasilkan oleh aktiviti otot yang dirangsang oleh FES. Pembangunan sistem FES beserta 

maklumbalas status otot telah dapat menghasilkan kuasa rangsangan yang cukup untuk 

menyokong senaman unjuran kaki secara isometrik dan semasa berdiri. Tork yang dijana 

secara rangsangan elektrik melalui FES pada dinamometer isometrik adalah berkaitan dan 

boleh dipantau melalui amplitud MMG-RMS. Tork otot yang dibangkitkan semasa 

aktiviti berdiri dengan FES juga boleh dipantau secara tidak langsung menerusi MMG-

RMS lebih awal daripada kejatuhan sudut lutut disebabkan oleh keletihan otot. Penemuan 

ini mencadangkan bahawa MMG-RMS boleh digunakan untuk memantau kelesuan otot 

dan menggalakkan aktiviti yang dirangsang oleh FES bertahan lebih lama menerusi 

maklumbalas keadaan otot dan penggunaan parameter rangsangan FES yang optimal. 

Akhirnya, untuk membuktikan kemampuan sistem FES yang dilengkapi maklumbalas 

status otot ini dalam memanjangkan tempoh berdiri dengan FES, satu kajian simulasi 

telah dijalankan untuk menunjukkan kesan pelbagai mod berdiri dengan menggunakan 

MMG-RMS sebagai isyarat maklum balas terhadap pelbagai mod berdiri termasuk secara 

lingkaran terbuka, iaitu tanpa sebarang maklumbalas berkenaan status otot yang 

dirangsang oleh FES. Kajian ini mencadangkan penggunaan amplitud rangsangan yang 

dioptimumkan menggunakan MMG-RMS sebagai maklum balas untuk kegunaan masa 

nyata untuk aktiviti berdiri dengan FES yang lebih efektif dan berguna dari segi klinikal. 

Pada masa hadapan, sistem FES yang dikawal oleh MMG dapat dibangunkan untuk 
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menyokong senaman tangan pula seperti melunjurkan dan melenturkan pergelangan 

tangan untuk meningkatkan aktiviti kehidupan harian. 

Kata kunci: Rangsangan Elektrik Berfungsi (FES), mekanomiografi, kecederaan saraf 
tunjang
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Spinal cord injury (SCI) leads to partial or complete paralysis in the affected 

individuals depending on the level of injury. The secondary complications of this injury 

may include pressure sores (Liu, Moody, Traynor, Dyson, & Gall, 2014), muscle 

spasticity (Elbasiouny, Moroz, Bakr, & Mushahwar, 2010), loss of muscle strength, 

impaired muscle functions (Galea, 2012; Jayaraman et al., 2006), cardiovascular disease 

(Furlan & Fehlings, 2008) and osteoporosis (Tan, Battaglino, & Morse, 2013). One 

significant consequence of impaired muscle function is the loss of motor function 

responsible for executing physical tasks. The functional electrical stimulation (FES) 

technique has been used widely for restoring lost motor function through muscle 

strengthening related exercise in spinal cord injured persons (Gorgey, Dolbow, Dolbow, 

Khalil, & Gater, 2015; Hamid & Hayek, 2008). Technically, FES applies a series of 

modulated electrical pulses to the skin surface or percutaneously using a pair of electrodes 

to affect muscle contractions, as shown in Figure 1.1 (Popovic, Masani, & Micera, 2012). 

 

Figure 1.1: Functional electrical stimulation muscle activation after spinal cord 
injury. Reused with permission from the publisher (Popovic et al., 2012) 
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However, muscle fatigue is one of the limitations in the application of FES to evoke 

muscle contractions. Muscle fatigue is defined as the decline in muscle response during 

continuous and steady muscle contractions (Ibitoye, Hamzaid, Hasnan, Wahab, & Davis, 

2016a). Muscle fatigue during electrically-evoked functional muscle response is 

complicated (Thrasher, Graham, & Popovic, 2005) as the muscle contraction pattern is 

nonlinear (Dorgan & O'Malley, 1997). Therefore, optimising the performance of FES-

evoked contractions and subduing the early onset of muscle fatigue (Cogan, Ludwig, 

Welle, & Takmakov, 2016) is of research interest. One method is the promotion of 

continuous FES-evoked exercises for a longer duration. Several methods measure muscle 

fatigue as FES-induced torque, angle, and speed (Spendiff, Longford, & Winter, 2002). 

However, these techniques suffer some limitations in the clinical or home use applications 

due to the bulkiness of their sensors and the complication of associated signal processing 

methods.  

While surface electromyography (sEMG) has gained prominence in studying the 

muscle response during voluntary muscle contractions, applications of this signal to study 

muscle performance, i.e., force/torque generation, during FES-evoked muscle activities 

is debatable (Ibitoye, Estigoni, Hamzaid, Wahab, & Davis, 2014a; Popović, 2014) due to 

the intensity of stimulation artefacts with the EMG signals (Merletti, Knaflitz, & DeLuca, 

1992).  

Due to this limitation of EMG signal, application of Mechanomyography (MMG) 

signal for muscle performance assessment during FES-evoked contractions is 

recommended (Ibitoye et al., 2016b; Yamamoto & Takano, 1994; Yoshitake & Moritani, 

1999). MMG signals measure muscle contractions in mechanical muscle response, i.e., 

vibration generated by electrical stimulation, representing muscle activities. Hence this 

signal modality is free from stimulation artefacts due to its mechanism.  
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The selection of appropriate MMG features is an important step to detect muscle 

fatigue. Furthermore, it also depends on the experimental settings and the type of FES-

evoked contraction used (i.e., isometric contraction, isokinetic contraction, etc.), and the 

nature of physical exercise adopted, such as FES cycling. To interpret the muscle 

responses, MMG features in time (Ibitoye et al., 2016b), frequency (Ryan, Cramer, Egan, 

Hartman, & Herda, 2008b), and joint time-frequency (TF) (Al-Mulla & Sepulveda, 2014) 

domain are necessary to analyse FES-evoked muscle contractions. However, MMG 

responses in the time and frequency domain of dynamic evoked-muscle contractions such 

as hand grasp have been reported to be nonlinear (Hong-Bo, Yong-Ping, & Jing-Yi, 

2009). Also, the signal nature is considered non-stationary during functional muscle 

activities such as FES cycling exercise (Bonato, Roy, Knaflitz, & Luca, 2001). This 

nonlinearity may be due to several factors, including changes in the muscle fiber length, 

the number of active firing rate of the motor units, and tissue thickness between muscle 

fibers (Bonato et al., 2001; Cramer et al., 2005).  

In order to analyse the non-stationary MMG signals, wavelet transform (WT), short-

time Fourier transform (STFT), and Wigner-Ville transform as joint TF signal processing 

technique has been proposed (Akataki, Mita, & Watakabe, 2004; Barry & Cole, 1990; 

Hong-Bo et al., 2009). Beck et al. (2009) also proposed a new wavelet analysis method 

to analyse MMG signals where eleven nonlinearly scaled wavelet filter banks. The 

authors proposed that the intensity of the MMG signals can be useful for statistical pattern 

identification of dynamic muscle contractions. Furthermore, Ryan et al. (2008b) 

compared the short-time Fourier transform (STFT) feature with the continuous wavelet 

transform (CWT) feature for MMG signal analysis during voluntary isometric contraction 

and showed that the two methods had similar performance in the time-frequency domain. 

Another study by Silva, Heim, and Chau (2004) acquired MMG signals from a 

microphone-accelerometer-based MMG sensor pair to classify two activities of the 
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prosthesis to control wrist extension and wrist flexion using root mean square (RMS) 

feature and compared with EMG. The author applied RMS feature to classify muscle 

contractions, and reported approximately 70% accuracy for both subjects. This result 

could be adjudged satisfactory when compared to EMG based estimation system.  

Another potentially viable MMG feature extraction method is MFCC. The MFCC 

feature is most commonly used in automatic speech recognition because in speech 

recognition, speech is dynamic (McQueen, Norris, & Cutler, 2006) due to different 

uttered speech frequency changes with sound generated by the vocal cord; hence speech 

feature is extracted using MFCC to detect different frequency ranges of sound. During 

contractions, muscles generate low-frequency vibration (5-50 Hz) (Silva, Heim, & Chau, 

2005), similar to the generated changes in frequency in uttered human speech. Similarly, 

the nature of muscle contraction, which also generates low-frequency vibration, 

hypothesized that MMG signal classification using the MFCC feature could be applied to 

detect muscle fatigue contractions in FES cycling exercise. The support vector machine 

(SVM) classifier will classify the non-fatigue and fatigue contractions during cycling 

exercises. For the implementation of a cycling setup, functional electrical stimulation will 

be run by three fixed parameters, including pulse amplitude (mA), pulse frequency (Hz), 

and pulse width (Doucet, Lam, & Griffin, 2012; Naeem, Amelia, Sheroz, & Yasir, 2013). 

The experiment will be such that the pre-set stimulation parameter will remain unchanged 

throughout the training session (Newham & Donaldson, 2007) to ensure muscle fatigue 

occurs during the cycling session. 

In the available FES systems, the onset and parameters of FES are controlled by a pre-

set time scheme or by user input. Currently, most of the clinically available FES systems 

operate in an open-loop mode. In these types of FES systems, users have the additional 

responsibility of predefining the stimulation parameter (e.g., pulse amplitude) or change 

parameters manually during stimulation to achieve the desired task without sensory 
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feedback information used to monitor the muscle condition (Li et al., 2016) to optimise 

FES system performance.  

Conversely, to overcome the limitation of the open-loop FES systems, a closed-loop 

FES system has been introduced (Braz, Russold, & Davis, 2009; Ibitoye, Hamzaid, 

Hayashibe, Hasnan, & Davis, 2019). A closed-loop FES system employs feedback signals 

to maintain desired muscle contraction output by controlling joint angle control, while 

stimulation parameters will be adjusted automatically with this control system (Lynch & 

Popovic, 2005). In a closed-loop FES system, various types of sensors are used as control 

signal inputs, including electromyographic (EMG) signals (Yochum, Binczak, Bakir, 

Jacquir, & Lepers, 2010), movement detected with kinematic sensors with generated 

signals (Veltink et al., 1998), and gait control using position sensors and signals (Chen, 

Li, Kuo, & Lai, 2001). Although there are many ongoing research studies on closed-loop 

FES systems, this effort has not been extensively applied in clinical settings. This thesis 

aims to explore implementing the MFCC feature to classify muscle fatigue in cycling and 

develop a real-time MMG sensor-based FES system muscle monitoring system to detect 

and prevent muscle fatigue during FES-isometric and standing exercises in SCI 

individuals. 

1.2 Statement of problem and research scope 

Muscle fatigue is one of the critical limitations of FES-evoked muscle contractions, 

especially for dynamic exercise training such as FES cycling (Leung et al., 2017; Thrasher 

et al., 2005). Detection of muscle fatigue before the critical stage is an important research 

question. One crucial way to achieve this is by selecting appropriate MMG features to 

detect various muscle states or conditions.  

Dynamic muscle contraction responses are mainly analysed using time-frequency 

domain analysis methods for MMG features extraction such as wavelet transform, short-
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time Fourier transform, short wavelet transform, wavelet packet transform (Qian & Chen, 

1999), and others. One other method for MMG signal feature extraction is Mel Frequency 

Cepstral Coefficient, widely used in automatic speech recognition to detect human voices 

because the human voice is also very sensitive to changes of uttered speech, similar to 

muscle contractions generated by low-frequency vibrations, i.e., MMG signals. 

Detection of muscle fatigue by this method will aid the implementation of an FES 

system for worthwhile clinical exercise with safety in persons with SCI. For this 

implementation, the stimulation parameters will be fix before the cycling exercise begins. 

Most MMG-based FES system research focuses on offline analysis (Dzulkifli et al., 2018; 

Ibitoye et al., 2020b). Thus, it is essential to develop MMG based real-time FES system 

to monitor muscle fatigue and prevent over-stimulation, which may cause tissue damage. 

To prevent muscle fatigue and extend the exercise session, such as FES supported 

standing and isometric knee extension, the muscle will be monitored using an MMG 

sensor in real-time using the developed FES system and stimulation will be stopped 

before the critical muscle fatigue stage. 

1.3 Research objectives  

This research aims to design and develop a real-time FES system using MMG signal 

as a feedback signal to monitor muscle conditions. Specifically, the following objectives 

are going to address the general aim. These specific objectives are: 

1. To implement MFCC feature extraction method to detect muscle fatigue using 

MMG sensor during FES cycling with SCI individuals. 

2. To develop MMG-based FES system to monitor muscle condition in real-time. 

3. To apply the developed FES system to detect and prevent muscle fatigue in 

real-time during isometric knee extension using MMG signal. 
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4. To investigate the simulation effect of different stimulation modes on standing 

duration in individuals with SCI to prevent muscle fatigue with MMG 

feedback. 

1.4 Significance of the research 

The application of FES to rehabilitate motor and sensory functions in individuals with 

SCI improves their quality of life as this technology provides physical, psychological, 

and functional benefits. Typically, efficient selection of stimulator parameters is key to 

effectively controlling these benefits. However, due to the unnatural activation of muscle 

by FES, rapid muscle fatigue onset precludes efficient muscle response to the FES-evoked 

muscle contraction and joint actions for task execution. Therefore, efficient control of 

muscle response following FES-supported movements is a significant limitation for using 

FES in clinical rehabilitation. One crucial clinical rehabilitation exercise is FES-

supported cycling. During FES cycling, muscle contraction signal behavior is dynamic 

and nonlinear, making muscle analysis complex during this exercise. 

To monitor muscle responses using MMG as a physical sensor for the muscle response 

is well established to study muscle behavior and performance. Considering the non-

stationarity of the MMG signals during FES-supported cycling, information on muscle 

responses are sparse in the literature. Therefore, in this present research study, the MFCC 

method and its features are introduced to study MMG response during FES-supported 

cycling task, and the MFCC features used to classify MMG signals into muscle fatigue 

and non-fatigue contraction states with the support vector machine (SVM) classifier. 

Secondly, for muscle fatigue monitoring system using MMG sensor, a custom FES 

system was developed to enable users to have easy access to control the FES seamlessly 

and improve its performance outcome in clinical rehabilitation. This semi-automated 

custom-made FES device was developed by incorporating MMG sensors to use MMG 
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signals as feedback to control muscle contractions and monitor muscle condition. This 

device was tested in real-time for critical muscle fatigue management during FES-

supported isometric muscle contraction exercise using the MMG-amplitude feature. 

Finally, different stimulation modes are simulated (user button press modes) to prolong 

standing exercise in individuals with SCI using MMG feedback in the presence of 

unavoidable muscle fatigue. Clinical clearance is approved by the University Malaya 

medical center ethical committee to implement the developed FES system in the SCI 

individuals. 

1.5 Scope of research 

This thesis comprises developing and testing a functional electrical stimulation system 

using mechanomyography as the muscle state feedback signal in real-time. The developed 

semi-automated system was tested during stand and isometric knee extension. Different 

user control strategies were investigated for standing exercises with SCI to test their 

effectiveness in delaying muscle fatigue with MMG feedback. The device's performance 

for delaying muscle fatigue during other clinically useful exercise regimens such as gait 

could be a promising research study for future studies, which is beyond the scope of this 

thesis. The clinical subjects recruited in this study were those with motor and sensory 

incompleteness due to SCI. Other clinical populations, especially those with stroke, were 

not considered in this research. 

1.6 Thesis organization 

This thesis consists of seven Chapters. This thesis is based on article thesis format and, 

therefore, apart from Chapters One, Two, and Seven, which are Introduction, Literature 

Review, and Conclusion, respectively, each of the other Chapters uniquely presents each 

thesis objective as a standalone article.  
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Chapter One presents the general background to the thesis objectives and introduces 

the problem of the FES applications to solve in this thesis. The Chapter also provides an 

overview of the thesis aim and describes the challenges of FES application for clinical 

rehabilitation of persons with SCI. This chapter also presents the thesis scope, objectives, 

and significance.  

Chapter Two covers the literature review, which is the previously reported studies 

related to this current work. Furthermore, this Chapter presents relevant information to 

understand better the problem identified in the literature and the systematic solution 

offered to solve the problem by this thesis. 

Chapter Three presents the MFCC feature and SVM application to classify muscle 

contractions into fresh contraction and fatiguing and contractions during FES-assisted 

cycling exercise using MMG signals collected from SCI individuals. The Chapter 

essentially contains the author’s manuscript texts that have been published and presented 

with permission from the publisher. 

Chapter Four describes developing a semi-automated and custom-made FES system 

that uses MMG signals as feedback to monitor muscle conditions and control stimulation 

parameters for FES optimisation in clinical rehabilitation. 

Chapter Five discusses the muscle fatigue detection and safety shut-off procedure in 

real-time FES during isometric knee extension exercise in SCI individuals using MMG 

signal as feedback. The Chapter essentially contains the author’s manuscript texts that 

have been published and are now representing with permission from the publisher. 

Chapter Six reports the five modes of FES standing stimulation implementation in 

simulation from experimental data using MMG feedback to prolong FES-aided standing 

in individuals with SCI. Finally, Chapter Seven summarises the implications of the results 
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obtained in the previous Chapters. The Chapter briefly presents the thesis limitations and 

provides valuable recommendations for researchers in the related field of study.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

Functional Electrical Stimulation (FES) has been widely used to evoke muscle 

contraction for muscle strengthening and lost motor function restoring in spinal cord 

injured persons (Hamid & Hayek, 2008). The FES uses short-duration electrical pulses 

(Figure 2.1) on the skin surface to elicit muscle contractions by activating nerve cells.  

 

 

 

Figure 2.1: Functional electrical stimulation parameter (biphasic square wave) 

For reaching to ambulation, FES-assisted leg exercise needs to be promoted. One 

common leg exercise is FES-supported cycling for lower limb muscle training to regain 

muscle functionality (Donaldson, Perkins, Fitzwater, Wood, & Middleton, 2000). 

However, muscle fatigue limits FES-evoked contractions and cycling exercises (Kesar, 

Chou, & Binder-Macleod, 2008). There is no specific reason that tells the exact reason of 

muscle fatigue which occurs early due to unnatural stimulation, has not been clearly 

defined, perhaps due to its nonlinear nature (Giat, Mizrahi, & Levy, 1993).  

Although there are several methods to track the onset of muscle fatigue, including 

muscle force/joint torque measurement, joint angle measurement, and speed of muscle 

contraction (Spendiff et al., 2002), these methods are not perfect. Surface 

Electromyography (sEMG) has been commonly used to quantify muscle condition by 

directly measuring electrical activities of muscle contractions (Rainoldi, Melchiorri, & 

Caruso, 2004). The sEMG signal remains a good alternative for voluntary force/torque 

estimation following voluntary muscle contractions (Ibitoye et al., 2014a). In contrast, 
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the sensitivity of the EMG signals is limited due to skin impedance changes due to 

perspiration when in use (Yamamoto & Takano, 1994), external electromagnetic 

interference. The stimulation artefacts merged with EMG signal especially during 

NMES-evoked contractions (Frigo, Ferrarin, Frasson, Pavan, & Thorsen, 2000; Orizio, 

1993). Furthermore, the reliability of sEMG estimation of muscle force production during 

NMES-evoked muscle contractions is questionable due to the magnitude of stimulation 

artefacts current (Merletti et al., 1992; Popović, 2014).  

Thus, quantification of NMES-evoked force production by sEMG alone during muscle 

contraction may be adjudged deficient (Levin, Mizrahi, & Isakov, 2000). Because of these 

limitations of sEMG signals, the current research by Yamamoto and Takano (1994) 

recommended to apply Mechanomyography (MMG) signals to assess muscle 

performance. When muscle contracts, it produces low-frequency muscle vibration or 

sound. The MMG sensor reads the movement or vibration of muscle during muscle 

activities. The three most common types of MMG sensors used to read muscle 

contractions are acousticmyography (AMG), vibromyography (VMG), and 

phonomyography (PMG). The AMG sensor reads generated sound during muscle 

contraction, in which sound becomes stronger when muscle contraction force increases. 

The PMG sensor’s functionality is similar to the AMG sensor, which records the low-

frequency sounds using a microphone generated during muscle contraction. However, 

these two methods of mechanomyography sensor require more processing, such as noise 

removal from actual signal and need to be carefully placed on the skin for better contact 

to reduce sensor tissue signal loss. On the other hand, the VMG sensor reads muscle 

vibration when muscle contracts and is most common in the muscle monitoring system. 

Therefore, this research uses an accelerometer as VMG type sensor.  

 To accurately capture specific muscle action using the MMG signals, several feature 

extraction and classification methods have been proposed and applied (Beck et al., 2009; 
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Beck et al., 2007; Beck et al., 2005b; Ibitoye, Hamzaid, Zuniga, Hasnan, & Wahab, 

2014b). Sub-sessions 2.2 and 2.3 discuss the literature elaborately on MMG signal 

features, extraction methods, classification, section 2.4 includes a discussion of closed-

loop systems with non-muscle and muscle feedback, and section 2.5 discusses FES 

parameter optimisation methods in standing support. 

2.2 MMG feature extraction methods 

The application of MMG signal features for the assessment of muscle is gaining wider 

prominence in rehabilitation engineering and related fields.  Time-domain and frequency 

domains (Beck et al., 2005a; Ibitoye et al., 2014b; Orizio, 1993) analyses of MMG signals 

have been mostly applied. However, due to some helpful information that may not be 

ordinarily evident in the time or frequency domain, the joint time-frequency (TF) domain 

(Beck et al., 2009; Ibitoye et al., 2014b) has been suggested for the joint time-frequency 

domain representations of MMG signal features. Time-domain and frequency-domain 

analyses have been applied to study isometric and dynamic muscle actions. The joint TF 

method has been proposed due to the non-stationary behavior of MMG signals that is 

useful for some applications relating to the study of motor unit activation strategies 

(Akataki, Mita, Watakabe, & Itoh, 2001). Therefore, the selection of MMG features and 

methods are application-dependent during FES-evoked muscle contractions. During 

muscle contractions, either isometric or dynamic, muscle typically undergoes 

dimensional changes. For example, dynamic muscle contractions entail several changes, 

including muscle length, tissue thickness between muscles, and the number of motor units 

activated for task execution (Frangioni, Kwan-Gett, Dobrunz, & McMahon, 1987; 
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Jaskólska et al., 2004). Due to these changes, the application of the classical time series 

analysis methods may have limited application.  

The prominent time-domain features of MMG signals include root mean square (RMS) 

amplitude, peak to peak (PTP) amplitude, and mean average value (MAV) (Ibitoye et al., 

2016c). The standard frequency-domain features of MMG signals include mean power 

frequency (MPF) (Perry et al., 2001), median frequency (MDF), center frequency (CF), 

and frequency variance (Malek & Coburn, 2012). The various algorithms are suggested 

for the joint time-frequency domain representations of the MMG signal include short-

time Fourier transform (STFT), wavelet transform (WT), and the recently suggested time 

scale representations (Beck et al., 2008; Ibitoye et al., 2014b). These modalities have been 

widely used to estimate the muscle contractile information embedded in the MMG 

signals. However, to reliably and accurately capture and utilise the information contained 

in MMG signals, it is essential to observe some signal conditioning rules, including MMG 

signal acquisition using appropriate sensors, signal amplification if necessary, signal 

filtering, parameter extraction followed by classification and pattern recognition. These 

processes are required to identify the MMG signals that contain the muscle contraction 

information needed to access muscle performance and for related applications in clinical 

rehabilitation, sports medicine, and related fields. 

Specifically, the sequel to the observance of the highlighted procedures, the MMG 

signal features can be used for different applications, including muscle function 
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monitoring such as muscle force assessment (Sarlabous, Torres, Fiz, Morera, & Jané, 

2013) and applications in neuroprosthesis. The MMG signal could also be used to 

describe motor unit activation strategies (Beck et al., 2007) to understand motor unit 

recruitment and firing rate. In addition, the MMG signals could also be applied to 

discriminate muscle fiber types in different muscle types, whether in healthy or diseased 

conditions (Herda et al., 2010). This signal could also be helpful for clinical examination 

of neuromuscular disorders and aid the rehabilitation physician or other allied 

professionals in making informed decisions on the appropriate disease management plan. 

During FES-evoked muscle contractions, MMG signals have been recommended to 

control muscle activation patterns (Barry, Leonard, Gitter, & Ball, 1986; Gobbo, Cè, 

Diemont, Esposito, & Orizio, 2006). Table 2.1 summarises the common MMG signal 

features, their domains, and areas of application.   
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2.3 Muscle action classification using MMG signals  

There are several feature extraction methods from which muscle contractions could be 

classified during FES-related activities, hence could be used to detect muscle fatigue. 

Fresh muscle contraction activities are typically preceded by fatiguing muscle contraction 

during FES stimulation, which indicates exhaustion. Accurate and reliable muscle fatigue 

is of research and clinical interest depending on the muscle state and health condition. 

Several previous studies on MMG signals analysis have been on muscle fatigue 

identification because the study of muscle fatigue onset and progression would provide 

helpful information about the recruitment strategies of motor units and firing frequency 

during fatiguing contraction being within the continuum of purposeful muscle 

contractions.  

Many studies have documented the MMG signal response to muscle contraction, 

mostly involuntary muscle contractions, rarely in FES-induced muscle contractions. For 

example, the muscle fatigue contraction study by Enoka and Stuart (1992) showed that a 

reduction of motor unit firing rate led to a lesser vibration or pressure and was reflected 

as a reduction in MMG signal amplitude. In terms of the pattern of MMG signal response 

and muscle contractions, Søgaard, Orizio, and Sjøgaard (2006) showed a linear 

relationship between the MMG signal amplitude and the muscle force generated from the 

biceps brachii at different contraction levels up to about 70% maximum voluntary 

contraction (MVC). Using MMG amplitude characteristics, the authors also reported that 

the inability of the MMG amplitude to increase with the intramuscular pressure beyond 

approximately 70% MVC could describe by the “fusion-like” motor unit contractions due 

to high motor unit firing frequency (Søgaard et al., 2006).  

In the time domain, the muscle activity performance used to estimate muscle torque 

may be assessed by the MMG signal amplitude parameters RMS and peak-to-peak (PTP) 

features (Lei, Tsai, Lin, & Lee, 2011). Basmajian and De Luca (1985) had recommended 
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that RMS is the most crucial parameter of muscle electromyographic signal in time-

domain analysis. This amplitude parameter of muscle MMG signals which is the 

mechanical counterpart of EMG” (Beck et al., 2005a), has demonstrated various patterns 

depending on the nature of muscle action.  

Perry-Rana et al. (2002) reported that the relationship between MMG signal amplitude 

and the workload was quadratic during incremental isokinetic muscle contractions of 

vastus medialis muscles. Akataki et al. (2004) investigated the relationship between 

MMG signals (i.e., amplitude and frequency responses) and voluntary force production 

to understand the motor unit activation strategy underlying the incremental and voluntary 

muscle force generation. The authors identified that MMG amplitude could be used to 

explain the motor units’ recruitments responsible for muscle contractions, while the 

MMG frequency may explain the motor unit rate coding or firing rates (Akataki et al., 

2004). This observation is important in understanding the recruitment strategy of slow 

and fast-twitch muscle fibers that work during muscle contraction. MMG signals are 

consistently applied to study fresh muscle and muscle fatigue contractions, mostly during 

voluntary muscle contractions and paralysed muscle contraction in healthy or SCI 

volunteers. 

MMG peak-to-peak (PTP) amplitude, is defined by the “distance between the signal 

peak (highest amplitude value), and the trough (lowest amplitude value)” (Ibitoye et al., 

2014b) has also been used to assess muscle performance. However, the application of this 

parameter is still rudimentary in studying muscle performance, especially in muscle 

fatigue contraction. The MMG PTP amplitude feature was previously studied in muscle 

fatigue, involuntary muscle contractions (Orizio et al., 1999), and electrically-evoked 

muscle contractions to monitor muscle property changes. The consistent reduction (i.e., 

suggestive of lack of motor unit recovery) in the MMG PTP amplitude showed the 

reduction of muscle force production during the period of muscle stretching (Esposito, 

Univ
ers

iti 
Mala

ya



20 

Limonta, & Cè, 2011), sustained muscle contractions, or muscle fatigue (Gobbo et al., 

2006; Orizio et al., 1999). 

The non-stationarity nature of the MMG signals explain the changes in the muscle 

fiber length during muscle contractions, the number of active motor units recruitment for 

a particular muscle action (Alves & Chau, 2008; Alves & Chau, 2010a) and motor units 

firing rates during different types of muscle actions (Cramer et al., 2005). These variables 

were identified to vary with the thickness of the tissue between the muscle of interest and 

the MMG sensor used for MMG signal acquisition (Cramer et al., 2005). The analysed 

non-stationarity nature of the MMG signal time-frequency domain analysis could also be 

used. This procedure has enabled the MMG signals to reflect rapid muscle changes 

underlying various muscle movements during different task execution. 

The wavelet transform (WT), short-time Fourier transform (STFT), Wigner-Ville 

transform were the common joint TF signal processing techniques that have been 

proposed and applied in MMG signal analyses (Akataki et al., 2004; Barry & Cole, 1990; 

Beck et al., 2005a). For example, wavelet transform was used to analyse the MMG signals 

to classify fresh and fatigue muscle contraction in healthy individuals (Al-Mulla & 

Sepulveda, 2014; Beck et al., 2005b) for prosthesis control amputees during voluntary 

muscle contractions. For the wavelet transform analysis, the inverse Fourier transform 

converted the time domain signals into real and imaginary wavelet transformed MMG 

signals (Beck et al., 2009; Ibitoye et al., 2014b). This study also showed that wavelet 

bands were different for different muscles, and this was specific to a different ratio of 

maximum voluntary contraction in isometric muscle contractions over the total MMG 

signal amplitude (Beck et al., 2009).  

Beck et al. (2009) proposed a new wavelet analysis technique where eleven 

“nonlinearly scaled wavelet filter banks” were used for MMG signal analysis. MMG 
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signal analysis using wavelet transform could analyse dynamic muscle contractions as 

the MMG signals used for this analysis are non-stationary (Beck et al., 2009).  

In pursuit of excellent analysis methods for MMG signal, Ryan et al. (2008b) 

compared short-time fourier transform (STFT) and continuous wavelet transform (CWT) 

using MMG center frequency after the signal was transformed. This study showed 

similarities in the pattern of responses of these analysis methods (Ryan et al., 2008b). One 

possible explanation could be the study was conducted on isometric muscle contractions, 

which may be considered stationary.  

Armstrong (2011) investigated the MMG intensity as a stochastic signal and a function 

of time and frequency by applying a filter bank of eleven morlet wavelets and showed an 

effectual output on the muscle fatigue analysis and postural control. Tarata (2011) 

investigated the dynamic muscle contractions using CWT combined with the “Mexican 

Hat” wavelet on fatiguing MMG signals. The authors showed that the MMG signals could 

show small changes in the muscle contractions, especially during muscle fatigue 

contractions. 

To date, research studies on muscle fatigue classification are sparse; the majority of 

the available evidence are on prosthetic control using MMG signal and some types of 

classifiers. Specifically, Xie, Zheng, and Guo (2009) used a “linear discriminant analysis 

(LDA) classifier” to classify the decomposed MMG signals using “wavelet packet 

transform,” “singular value decomposition,” and a distance evaluation criteria’s feature 

selection and achieved 89.7% accuracy between two classes of data (i.e., wrist flexion 

and extension) which showed a better accuracy compared to using short-time fourier 

transformation (STFT), stationary wavelet transforms (SWT), and S-transform combined 

with singular value decomposition (SVD) for MMG signals’ feature extraction and 

decomposition. This study focused on upper limb muscles only and assumed that the 
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MMG signal was stationary. There is a possibility that dynamic muscle contractions may 

change the accuracy reported.  

Alves and Chau (2010b) recorded MMG signals from the flexor carpi radialis and 

extensor carpi radialis muscles in 12 able-bodied using two accelerometers to classify 

three muscle activities of these muscles using pattern classifier. The data obtained were 

segmented into 256 ms for MMG feature extraction. The accuracy achieved was 89% 

over five sessions. Furthermore, their study showed that accuracy did not reduce for short-

time signals. This classification study was also conducted on upper limbs (i.e., forearm 

muscle activity). Silva et al. (2005) used MMG signal collected from below elbow during 

wrist flexion and extension tasks to classify between the two classes of muscle activities 

to control prosthesis hand to open and closed based on intention infusion with EMG 

emulation board. Their study sought to classify MMG signals using the RMS amplitude 

feature for prosthetic control. The classification accuracy of 88% and 71% was 

subsequently reported in this study for subjects 1 and 2. This research study was 

conducted only on two individuals, which might be responsible for the low accuracy 

reported.  

Alves, Sejdić, Sahota, and Chau (2010) studied the effect of the location of the MMG 

sensor (i.e., accelerometer) to classify MMG signal obtained from a single-site forearm 

in twelve able-bodied individuals. A set of features such as time, frequency, and time-

frequency domain features in a total of 70 features were extracted from the MMG signals 

using a Genetic Algorithm (Gang, Zhiguo, Xiao, Hongbo, & Zhizhong, 2006) with the 

application of linear discriminant analysis (LDA) classifier to find the accuracy of sensor 
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placement at a different location. This research study reported accuracy of up to 73% and 

found that the sensor placement affected the performance of the classifiers.  

 Amaral, Dias, Wolczowski, and Fernão Pires (2012) applied a linear neural network 

to classify surface EMG and MMG signals for prosthetic control. The classification error 

reported was 28.4% and 11.1% for MMG and EMG, respectively. This research study 

was conducted on one participant only, and the experimental setting was not standardised 

to prevent the activation of extrinsic muscles, which might have contaminate the signal 

obtained.  

Furthermore, apart from LDA, other notable classifiers have been used for MMG 

signals classifier following the appropriate signal feature extractions. For example, 

thirteen healthy volunteers had MMG signals acquired from bicep muscle to classify fresh 

muscle and fatigue muscle contractions during dynamic fatiguing biceps muscle 

contractions in healthy individuals. The authors used a genetic algorithm to develop a 

novel pseudo-wavelet function to classify the MMG signals. An accuracy of 80.63% was 

obtained, which improved the classification accuracy obtained when compared to the 

results obtained from the standard wavelet functions. Kurzynski, Krysmann, Trajdos, and 

Wolczowski (2016) proposed a new method for prosthetic control using multi-classifiers. 

The experiment was conducted on healthy persons using both EMG and MMG signals 

with a microphone sensor. The results obtained showed that the combined MMG and 

EMG signals’ accuracy for the multi classifier was up to 94%.   

 These studies suggested that the MMG signals can be applied to complement the 

performance of surface EMG signals for classification purposes in prosthetic control. The 

research outcome showed why many classification methods which were already 

established for sEMG classification were introduced and applied to classify MMG signals 

for prosthetic control. For example, genetic programming/genetic algorithm was used for 
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sEMG signal feature extraction, and classifications (Al-Mulla, Sepulveda, & Colley, 

2011; Kattan, Al-Mulla, Sepulveda, & Poli, 2009). Mel Frequency Cepstral Coefficients 

(MFCC) has also been applied for sEMG signal classification by Szu-Chen, Maier-Hein, 

Schultz, and Waibel (2006).  

MFCC is the most common and widely used feature extraction method in automatic 

speech recognition (ASR), and its effectiveness for MMG signal feature extraction for 

classification was not investigated previously. The literature showed that research studies 

had not been carried out on applying the MFCC feature for MMG signal feature 

extractions for clinical applicability. Apart from the dearth of studies on MFCC for MMG 

feature extractions, the studies discussed so far are limited only to voluntary muscle 

contractions. The application of FES-evoked muscle contractions (i.e., involving 

isometric and/or dynamic) may pose different challenges and may be attractive to 

clinicians managing people with SCI. One of such common clinically relevant activities 

is FES-supported cycling. Therefore, a new MMG signal feature extraction method using 

MFCC has been proposed in the current research. The extracted MMG signal features 

will classify the muscle state into fresh and fatigue contraction during FES cycling. A 

support vector machine (SVM) classifier will be used for training non-fatigued and 

fatigue contraction and muscle fatigue pattern recognition during cycling exercises. The 

principle of FES stimulation is discussed next for involuntary muscle contraction and 

cycling exercise in persons with SCI. 

2.4 The principle of FES system 

The electrical stimulation of muscle is the process of artificial elicitation of muscle 

contractions using electrical signals at tolerable and acceptable thresholds (Enoka, 

Amiridis, & Duchateau, 2019). For many reasons, this technology is gaining tremendous 

research and clinical attention. For example, electrical stimulation or neuromuscular 

stimulation can be used to train strength in abled volunteers, especially athletes. The 
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technology has also been widely used and continues to be re-assessed as a rehabilitative 

tool to promote functional restoration following a partial or complete motor or sensory 

loss in persons with paralysis due to SCI, stroke, or other neuromuscular related diseases 

(Carson & Buick, 2019; Maffiuletti, Minetto, Farina, & Bottinelli, 2011). Essentially, the 

electrical impulses are delivered by a network of stimulating electrodes to artificially 

replicate the action potential sent by the central nervous system to activate muscle 

contractions (Martin, Sadowsky, Obst, Meyer, & McDonald, 2012; Rattay, 1999). The 

muscle contraction is controlled by providing electrical impulses at predetermined 

amplitude/voltage, frequency, and pulse width to the specified specialised electrodes 

placed on the target muscle for contraction. 

Typically, an FES system comprises of (a) a controller, (b) a stimulator, and (c) 

electrodes. The main focus of this research in on the controlling methods being the thesis 

focus. The literature review discussion mainly covers the FES control system and the 

feature extraction methods for the feedback signal to control the FES system. The FES 

controller controls the stimulation parameters amplitude, pulse width, and frequency 

generated by electrical circuits and also be able to monitor muscle using sensor feedback. 

The stimulator circuit produces either voltage or current controlled monophasic or 

biphasic electrical pulses, while electrodes deliver the produced electrical pulses to the 

nerve. (K. W. E. Cheng et al., 2004; Fisekovic & Popovic, 2001). Broadly categorised, 

two methods are used in developing an FES system, including (1) an open-loop system 

and (2) a closed-loop system.  

In an open-loop system, the stimulator operation does not consider any changes in the 

muscle performance, such as muscle fatigue or muscle response, and lacks adaptive FES 

parameters control (Li et al., 2018). Such a system only receives the stimulation command 

from the controller to the stimulator for delivering electrical pulses to the muscle via a 

pair of stimulating electrodes. In this case, there is no feedback on muscle performance 
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to improve the FES system performance in an open-loop FES system. This technique was 

used in earlier designs due to its comparative ease of design, implementation, and use 

(Ibitoye, Hamzaid, Abdul Wahab, Hasnan, & Davis, 2020a; Jezernik, Wassink, & Keller, 

2004; Li et al., 2016). 

Most of the available FES systems operate in open-loop and are used for therapy 

(Benoussaad et al., 2015; Ibitoye et al., 2020a). However, in the application of this FES 

technology to rehabilitate persons with SCI, early onset of muscle fatigue is a significant 

limitation (Ibitoye et al., 2016a; Koutsou, Moreno, Ama, Rocon, & Pons, 2016; Ruslee, 

Miller, & Gollee, 2019) and this generally characterises artificial muscle stimulation by 

FES technologies (Buckmire, Arakeri, Reinhard, & Fuglevand, 2018). As the clinical 

conditions of persons with SCI may deprive them of sensation, they are unable to 

manually regulate the parameters of the FES system for optimal performance and 

clinically significant benefits. The open-loop performance can often be worse in the 

presence of muscle fatigue and/or muscle spasm. The inability to regulate the FES 

administration manually may lead to muscle damage and other secondary complications 

(Fouré et al., 2014; Nosaka, Aldayel, Jubeau, & Chen, 2011).  

Therefore, for optimal application of FES technology for the rehabilitation of persons 

with SCI, a closed-loop model of the FES system has been recommended (Lynch & 

Popovic, 2008). The closed-loop system incorporates feedback or response from the 

muscle performance to regulate or control the FES system operation (Figure 2.2). The 

FES parameters can be modified and optimised according to the stimulator's performance 

response or reference point with this arrangement.  
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Figure 2.2: A scheme of a closed-loop FES system modified from (Lynch & 
Popovic, 2008) 

 
2.4.1 Overview of closed-loop FES system  

This subsection describes the rationale and strategies for realising a closed-loop FES 

control system applicable to the current research field. The closed-loop FES system, 

which is designed to remedy the limitation of open-loop FES systems, is based on the 

general principle of a closed-loop system. One way to realise a closed-loop FES system 

is to give feedback on the muscle performance/response signal to regulate the FES 

parameters. The significant advantage of this approach is that individual muscle 

responses, which may differ from one person to another, will be used to regulate the FES 

operation. Therefore, efficient muscle performance monitoring using an accurate and 

reliable muscle performance proxy would be beneficial to achieving this system (Ibitoye 

et al., 2016a). The muscle performance proxy should be robust enough to discriminate 

among different muscle states based on the type of activities under consideration. The 

muscle performance proxy should identify the fresh muscle contractions and differentiate 

this from fatiguing muscle contractions using an appropriate classifier through pattern 

recognition.  

2.4.1.1 FES closed-loop system with non-muscle response feedback  

There are several approaches to realised closed-loop control of FES systems, and these 

can be categorised into non-muscle and muscle response feedback systems. Extensive 
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research efforts have been expended on applying the biopotential of muscle origin (i.e., 

sEMG and MMG) proxy for muscle performance. Specifically, there have been many 

ongoing research studies for SCI to control the FES-evoked muscle contractions during 

fresh and muscle fatigue contractions for optimal rehabilitation outcomes. The main 

objective of a closed-loop FES system is performance optimisation and elimination of 

manual control methods whereby the only muscle response indicator is the feedback to 

control the FES system. Many approaches have been investigated in the literature to 

realise the feedback control signal. 

One way to realise this had been previously investigated (Gwo-Ching et al., 1997), 

where knee joint control was used to control knee activity during a knee exercise on a 

Cyber 350 dynamometer. These authors designed a neuro-controlled system to control 

knee joint position using FES stimulation of quadriceps muscles in a person with 

paraplegia and a healthy volunteer. The experiment was conducted on a Cybex 350 

isokinetic dynamometer (Gwo-Ching et al., 1997). The control algorithm used consisted 

of a proportional-integral differential (PID) and neuro-PID controller in series with a 

nonlinear function that related PID output (i.e., the muscle force needed for the desired 

knee angle maintenance) (Figure 2.3) to the stimulation pulses’ duration. The 

performance of their designed controller was evaluated by applying a disturbance that 

caused the study’s participants to bend at the hip. After that, the speed of disturbance 

rejection by the controller was recorded for assessment. The result showed that for the 

healthy subject, the tracking RMS error was 7.24º for the neuro-PID controller, 8.15º for 

the neural controller alone, and 17.86º reported for the PID controller alone. While for 

paraplegic neural controllers alone and neuro-PID controller tracking, RMS error was 

9.57° and 7.18° subsequently. The performance of the PID controller alone was 

significantly less than the other two controllers. 
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Figure 2.3: The block diagram of a neuro-PID control system. Reproduced with 
permission from the publisher (Gwo-Ching et al., 1997) 

As the patient's safety is essential, designing a safe FES control study protocol has 

been an exciting research objective. The nature and characteristics of the study 

participants and the target population should be considered in the experimental setup to 

preclude the adverse effect of the controller’s response during testing as the action may 

be from the controller or whether the participant’s stabilisation is voluntary with a support 

bar. One standard controller that is frequently used in the FES closed-loop system is the 

PID controller. A servo potentiometer was also used to measure the joint angle as 

feedback to the controller (Wood & Dunkerley, 1999). Their results showed that the PID 

controller aided paraplegic standing, though with some reported physiological 

complications due to the setting of parameters. The authors suggested that the 

experimental setting may require better stimulator parameter tuning to prevent muscle 

spasms and other related physiological abnormalities. 

In another study, PID controller was used in closed-loop control of the standing-up 

movement of paraplegic individuals (Yu, Chen, & Ju, 2001) and compared knee end-

velocity (KEV) with open-loop and on/off control methods. Two paraplegic subjects were 

included in the standing control experiment. The result showed that KEV was 164.63 

deg/s (minimum) and 223.71 deg/s (average) in four different ramp-up values, while 

average KEV was very minimal compared to open-loop is 13.41 deg/s in on/off control 
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method. On the other hand, PID controller KEV was 11.37 deg/s, near the on/off control 

system. The authors suggested that the closed-loop control system can delay muscle 

fatigue. 

One research group Hunt, Jaime, and Gollee (2001), proposed another FES controller’s 

approach based on H∞ to control ankle moment (Figure 2.4). The H∞ controller ensures 

stability, especially when the nominal models of the plant and the uncertainties in the 

system are accurate and can compensate for the included perturbations in the plant model. 

This study showed that the tracking of the ankle moment and the disturbance-rejection 

tests were adequately maintained by the H∞ in healthy volunteers. Testing FES 

controllers’ performance on healthy subjects may be challenging as they might 

inadvertently contract their muscles voluntarily. Therefore, the results obtained for able-

bodied people may differ from the outcomes expected from persons with SCI.  

 

Figure 2.4: Nested-loop control structure.  Reproduced with permission from 
the publisher (Hunt et al., 2001) 

Furthermore, Ferrarin, Palazzo, Riener, and Quintern (2001), conducted a study on 

two trained persons with SCI using four controllers based on knee angle measurement 

with the electrogoniometer as feedback. When tracking a sinusoidal reference, the RMS 

errors for each controller after 2 min of adaptation were (i) 11.70, (ii) 6.00, (iii) 4.60, and 

(iv) less than 100 for open-loop, closed-loop PID controller, feed-forward feedback 
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controller, and adaptive controller subsequently (Figure 2.5). In addition, the average lag 

for the same tracking task was reported as (i) 0.18 s, (ii) 0.29 s, and (iii) 0.18 s. However, 

the lag was not reported for the adaptive controller because the lag changed during the 

adaptation process. These results showed that the performance of the combined 

feedforward feedback controller was the best. Additionally, the imperfection of the 

inverse model could also be noted as it neglected the “noninvertible model components” 

(i.e., time delays and saturation effects), which could significantly degrade the 

feedforward-feedback controller’s performance. 

 

Figure 2.5: The control systems evaluated in (Ferrarin et al., 2001)’s study. (a) 
Open-loop controller. (b) Closed-loop PID controller (c) Combination feed-

forward feedback controller. (d) Adaptive controller 

Chen et al. (2001) proposed a real-time closed-loop control FES system developed 

using a position sensor as the feedback to the stimulator. This sensor could be 

automatically adjusted during gait training, which was evident in the hemiplegic patient 

recruited for their study (Chen et al., 2001). The results obtained showed significant 

improvement in the patient’s “mean velocity, cadence, stride length, active ankle motion 

range, and functional ambulation category.”. This outcome was encouraging despite only 
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one subject was recruited for this closed-loop study which may be considered low number 

of participants. 

In another study (Jezernik et al., 2004), a novel FES closed-loop system was designed 

using a mathematical neuromuscular skeletal model (Figure 2.6). The study was based on 

a computer simulation and experimental study with six healthy volunteers and two 

individuals with SCI. Their results revealed that the RMS tracking errors of knee angle 

were 2.92º and 4.33º, respectively, for the computer simulation and experimental studies. 

These values could encourage and promote optimisation (Gwo-Ching et al., 1997) for 

FES control systems. However, physiological muscle conditions, including muscle 

fatigue, muscle spasm, and others, may warrant additional features to be analysed to 

design a robust FES control system. Nonetheless, other researchers Ebrahimpour and 

Erfanian (2008), observed the limitation of this FES control design. Their observation 

had to do with the approximation in the derivation of the control law that may violate the 

reaching condition, which could introduce some parasitic unmodeled dynamics in the 

sliding-mode control loop. 

 

Figure 2.6: FES sliding mode controller. Reproduced with permission from the 
publisher (Gwo-Ching et al., 1997) 

To improve the performance of some notable controllers, Previdi, Ferrarin, Savaresi, 

and Bittanti (2005) designed a closed-loop FES system to support standing up and sitting 
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down using FES with the flexion goniometer as the response feedback (Figure 2.7). In 

the control of this strategy, two loops were used. The first loop consisted of a PID 

controller to make the system stable, and the second loop was the outer loop virtual 

reference feedback tuning (VRFT) used to deal with the linear and nonlinear control 

behavior. The simulation results showed that the proposed method was effective within 

the tracking deviation range of ±0.6 to the nonlinear test. However, the controller 

response was not tested on humans, which might have a different outcome. 

 

Figure 2.7: Schematic of the experimental setup. Reused with permission from 
the publisher (Previdi et al., 2005) 

Lynch and Popovic (2012) investigated three different closed-loop control systems for 

FES applications. These controllers are PID control (Re, Krans, Schultheiss, & Gerber, 

1994), gain scheduling control (GSC), and sliding mode control (SMC). These controllers 

were used to control the knee movement when the FES was applied on the quadriceps 

muscle of three individuals with SCI and one able-bodied volunteer. After introducing 

naturally occurring disturbances (i.e., muscle spasm, muscle fatigue, and other muscle 

responses due to muscle retraining) in the simulation, all the tested controllers 

demonstrated significant degradation. The authors suggested fine-tuning the control 

methods and algorithms for better performance, especially in real-world situations.  
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In another study, Itakura, Fujita, Kubo, Iguchi, and Minamitani (1988) applied the 

Kitamori controller to control FES-evoked muscle contractions. This controller was 

unstable with the unavoidable change in muscle response to FES during contractions. 

This situation could be improved by introducing an adaptable stimulation parameter 

system (i.e., to vary the stimulation parameter based on the muscle properties during 

contractions). However, the adaptive system was less stable when compared to the 

Kitamori controller. The results of the simulation conducted by the authors revealed a 

better control system that included an adaptive controller and a hybrid PI (proportional-

integral). Popov, Đozić, Stanković, Krajoski, and Stanišić (2015) also designed an FES-

closed-loop system using Proportional-Integral (PI) controller method using the flexion 

angle to control the joint torque. While keeping the pulse amplitude and frequency 

constant and controlling the stimulation by varying the pulse width, the authors concluded 

that the PI controller can control joint torque based on the results obtained.  

Downey, Bellman, Kawai, Gregory, and Dixon (2015) developed an FES closed-loop 

controller for asynchronised stimulation to reduce the early onset of muscle fatigue using 

knee angle feedback measurement. Four healthy volunteers were recruited to test the 

performance of the controller. The method applied in their study (Downey et al., 2015) 

included four channels of asynchronous stimulation with the conventional single-channel 

stimulation strategy. This control system was designed to avoid the complex “knee-shank 

tracking” of the desired trajectory instead of a switching simulation channel to reduce 

muscle fatigue (Downey et al., 2015; McDonnall, Clark, & Normann, 2004). Their results 

showed that the applied asynchronous stimulation prolonged the stimulation duration, 

which could be used for feedback control to the stimulator.  
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2.4.1.2 FES closed-loop system with muscle response feedback  

This subsection discusses the closed-loop FES systems that use muscle feedback 

sensors in the control system. Zhang and co-authors (Zhang, Hayashibe, & Azevedo-

Coste, 2013) proposed biopotential of muscle origin based on sEMG signal as an input 

signal to control the FES closed-loop system. The artificial neural network implemented 

this to control joint torque (Figure 2.8). The experimental study was conducted on two 

able-bodied volunteers. Their results showed that the average RMS error with torque was 

<4.5%, while the sEMG-based RMS error was <10.5% without the torque. These results 

could be ajudged satisfactory for use in FES closed-loop systems. However, the 

application of this method of control in persons with SCI was not verified. 

 

Figure 2.8: The structure of the stimulated muscle model for model 
identification. Note that the muscle contraction dynamics model relates sEMG to 

torque and the excitation dynamics model relates stimulation to sEMG. 
Reproduced with permission from the publisher (Zhang et al., 2013) 

It is important to test the controller in isolation of voluntary muscle contractions to 

ensure that the controller's performance is efficient. This practice will ensure that any 

muscle contraction results from FES-evoked contractions via the FES controller and not 

by the voluntary effort of the subject. This exercise can be achieved by recruiting 

individuals with a motor complete SCI. Once the efficacy of a closed-loop FES controller 

is established this way, the controller can apply to other types of FES closed-loop systems 
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for efficient stimulation of individuals who have different types of SCI either affecting 

only their sensory, only their motor, or both functions. 

Another closed-loop FES system was proposed by Yusoff and Hamzaid (2014). This 

study was designed to measure the voltage (Figure 2.9) across the muscle during FES-

evoked muscle contractions in four able-bodied volunteers to find the pattern of 

relationships between the FES-evoked contractions and the generated voltage from 

contracting muscle based on Ohm’s law. 

 

Figure 2.9: Example of stimulation electrodes and voltage measuring electrode 
placements. Reproduced with permission from the publisher (Yusoff & Hamzaid, 

2014) 

The study (Yusoff & Hamzaid, 2014) showed that the range of measured voltage least 

affected by noise was above 0.1 V at room temperature. It was observed that the recorded 

voltages satisfied Ohm's law with the recorded voltage that had a stimulating current 

relationship that was positively linear (r = 0.98). However, complex muscle behavior such 

as muscle fatigue and spasm that often characterise FES-evoked muscle contractions were 

not investigated. 

Li, Hayashibe, Andreu, and Guiraud (2015) conducted a study to control muscle 

activation through online modulation of FES pulse width (Figure 2.10) using eEMG 
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feedback system. The experimental study was conducted on one able-bodied volunteer, 

and four reference points were given to validate the FES closed-loop system. RMSE error 

of 0.05 ± 0.01 and the mean value account for (VAF) 92.70 ± 2.33 (%) were obtained.  

 

Figure 2.10: Process of predictive model control of FES-muscle activation. 
Reproduced with permission from the publisher (Li et al., 2015) 

A pilot study by (Braz et al., 2016) presented a novel motion sensor-driven FES closed-

loop system for gait control. The authors applied four miniaturized motion sensors as 

kinetic feedback sensors with finite-state controlled method in two persons with complete 

paraplegia. The proposed system controlled the knee extension using quadriceps and 

gluteus muscle stimulation during stance. When evaluated against the conventional open-

loop FES system during leg swing, the results showed that the closed-loop FES system 

performed more efficiently. However, some adjustments were suggested for significant 

improvement of this method on the traditional open-loop FES methods.  

Another closed-loop study was conducted by Li et al. (2017) using eEMG sensor as 

feedback for a real-time closed-loop FES system to control muscle activation by 

modulating stimulation pulse width on triceps surae and tibialis muscle group. The 

experiment was performed on five SCI and three able-bodied volunteers. The sEMG 

signals were acquired by the Biopac data acquisition system and processed in the closed-

loop controller as a reference point to produce muscle activation patterns by sending 
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computed pulse width signals to the stimulator using the basic access network controller. 

The muscle activation control result for healthy volunteer average variance (VAF) was 

90.71% ± 5.10 with an average root mean square error of 6.59% ± 2.60%. While for SCI 

volunteers average, VAF and RMSE were 81.40% ± 6.44% and 8.08% ± 4.80% 

subsequently. However, the resulting outcome was computed with unequal trial sets for 

both healthy and SCI volunteers, which might have affect the results.  

From the literature discussed so far, most of the available closed-loop systems 

depended on the joint angle, torque (i.e., often difficult to assess directly during muscle 

contractions), or sEMG, which is a reliable signal with muscle response during FES-

evoked muscle contraction, remains debatable due to stimulation artefacts. On the other 

hand, researchers are currently exploring in developing other FES closed-loop systems 

using MMG as a feedback signal. MMG relationship with muscle response has been 

applied to control both lower and upper limbs prostheses (Hong-liu, Sheng-nan, & Jia-

hua, 2010; Wilson & Vaidyanathan, 2017) during static and dynamic muscle actions 

(Antonelli, Zobel, & Giacomin, 2009; Silva et al., 2005; Xie et al., 2009). Unlike sEMG, 

MMG is not affected by factors such as sweat or skin impedance (Wilson & 

Vaidyanathan, 2017; Woodward, Stokes, Shefelbine, & Vaidyanathan, 2019) and is 

insensitive to stimulation artefacts during FES-evoked contractions (Woods, 

Subramanian, Shafti, & Faisal, 2018). MMG-based closed-loop FES system in cycling 

was proposed using pedal force and MMG sensor to control cycling speed. The system 

was prepared to adjust stimulation parameters to maintain the desired cycling speed based 

on the PID controller's feedback. However, due to encoder angle measurement error, the 

MMG sensor was not used in the closed-loop algorithm. 

The application of the MMG as a reliable muscle performance indicator was 

investigated previously during voluntary and FES-evoked contractions (Ibitoye et al., 
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2014b; Orizio et al., 1999). Dzulkifli, Hamzaid, Davis, and Hasnan (2018) where artificial 

neural network (ANN) was used to monitor knee torque production during FES-assisted 

knee extension and standing in persons with SCI. The average correlation of 0.87 and 

0.84 was reported between the knee extension and generated torque with root mean square 

(RMS)-MMG amplitude only and with RMS and zero-crossing (ZC)-MMG. Another 

study (Ibitoye et al., 2016c) estimated the FES-evoked knee extension torque using MMG 

in eight able-bodied volunteers. Support vector regression modeling technique was used 

to predict torque from the MMG. The torque prediction accuracy reaching up to 94% has 

been reported. As these observations could not be used to infer the model response of 

FES-evoked contractions in persons with SCI due to lack of motor function, researchers 

(Ibitoye et al., 2020b) assessed the support vector modeling performance using persons 

with complete motor SCI. Prediction accuracy of up to 94% and RMSE of not more than 

9.82% was reported by Ibitoye et al. (2020b). 

 
2.5  Procedure for FES parameter optimisation to support standing 

Physical activity restoration following SCI is a priority for an individual with a 

physical disability due to SCI. FES-supported activities are one way to achieve 

independence after SCI. Earlier researchers (Andrews, 1988; Bajd, Kralj, & Turk, 1982) 

also implemented FES-supported standing exercises to improve the quality of life of 

paraplegic individuals by assisting standing and walking. Muscle fatigue limits FES 

standing due to synchronised high-frequency stimulation on the quadriceps (Andrews, 

1988). However, FES performance depends on how efficiently its parameters could be 

optimised for efficient utilisation for standing support. Previous studies (Bijak et al., 

2005; Cameron & Alo, 1998; Rouhani, Rodriguez, Bergquist, Masani, & Popovic, 2017) 

have explored several methods of FES parameters optimisation (i.e., to prevent rapid 

onset of muscle fatigue which could preclude the optimal performance of FES) for 

function restoration. As a significant limitation of FES for application in neuroprosthesis 
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(Rouhani et al., 2017), rapid onset of muscle fatigue could be put under control with 

efficient FES parameter optimisation procedures (Ibitoye et al., 2016a; Karu, Durfee, & 

Barzilai, 1995; Thrasher et al., 2005). Among the commonly used methods for efficient 

FES parameter optimisation are stimulation patterns (Gorgey et al., 2015; Karu et al., 

1995) modification and stimulation electrode positioning optimisation (Downey et al., 

2015; Popovicc & Malesevic, 2009).  

Rouhani et al. (2017) introduced a pulse amplitude and pulse duration optimisation 

algorithm for a current-controlled FES system to minimise muscle fatigue and achieve a 

set ankle joint torque level. This procedure facilitated the fatigue reduction by an average 

of 22.5% and 6.6% based on the fatigue-time and torque-time integral, respectively. Bijak 

et al. (2005) aimed to achieve natural leg movement during gating by optimising the 

delivery of stimulation parameters using eight different stimulation channels. 

Unfortunately, with this approach, while an improved knee trajectory could be achieved, 

the participants’ demand for safety that warranted overstimulation led to the early onset 

of muscle fatigue. 

Based on the discussed literature information and the previous knowledge on muscle 

assessment, exploration of MMG signal as an indicator of muscle response during FES-

evoked contractions, especially during physical task execution such as cycling and 

standing, needs further investigation. This current thesis aims to answer this question and 

advance the MMG application as a feedback signal for real-time control of closed-loop 

FES systems during cycling and standing in persons with SCI. Table 2.2 summarises the 

findings of FES systems using different control algorithms and stimulator parameters in 

their experiments for the desired outcomes. 
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CHAPTER 3: MECHANOMYOGRAPHY-BASED MUSCLE FATIGUE 

DETECTION DURING ELECTRICALLY-ELICITED CYCLING IN PATIENTS 

WITH SPINAL CORD INJURY 

3.1 Introduction 

Spinal cord injury (SCI) could lead to partial or complete paralysis of the upper and/or 

lower limbs, depending on the level and severity of the injury. SCI causes complications 

including pressure sores (Liu et al., 2014), muscle spasticity (Elbasiouny et al., 2010), 

loss of muscle strength, cardiovascular disease (Julio & Michael, 2008), and osteoporosis 

(Tan et al., 2013). Functional electrical stimulation (FES)-evoked cycling can improve 

health benefits, including increased muscle strength, volume, insulin sensitivity, glucose 

metabolism, and endurance (G. M. Davis, Hamzaid, & Fornusek, 2008). In all FES 

applications, however, fast muscle fatigue is apparent due to the inverse recruitment of 

motor units (Chou & Binder-Macleod, 2007). It has also been reported that overloading 

the stimulated muscle might lead to muscle damage (Fouré et al., 2014). These drawbacks 

limit the FES functional capacity which needs be overcome to optimise the training and 

functional benefits of FES. As a result, monitoring muscle condition during FES-evoked 

cycling is required when training the muscle for a longer period. 

Physiologically, muscle fatigue is defined as the drop of muscle force during a 

continuous steady muscle contraction (Wigmore, Befroy, Lanza, & Kent-Braun, 2008). 

Several methods evaluate muscle fatigue, including torque response (Kent-Braun, 

Callahan, Fay, Foulis, & Buonaccorsi, 2014) and joint angle measurement (Weir, 

McDonough, & Hill, 1996). Surface electromyography (EMG) is another non-invasive 

method to evaluate FES-evoked muscle contraction and fatigue. However, this technique 

is not well adopted practically due to the interference from the electrical stimulus and 

motion artefacts or the surrounding noise. Incorporating additional circuits can help to 

avoid amplifier saturation and blank stimulation artefacts. Nevertheless, the complexity 
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of these circuits (Islam, Sundaraj, Ahmad, & Ahamed, 2013) may lead to challenging 

fatigue evaluation. 

Mechanomyography (MMG), a technique that measures mechanical muscle response, 

including muscle vibration, has been used to evaluate muscle activities (Islam et al., 2013) 

and muscle fatigue (Tarata, 2003) involuntary contractions (Xiaogang, William, & Nina, 

2014). Dynamic muscle contractions, including concentric and eccentric contractions, 

produce force (Mohamad, Hamzaid, Davis, Abdul Wahab, & Hasnan, 2017). Such 

contractions, which are caused by the recruitment of motor units (MU) in response to the 

MU firing rate, can be monitored using MMG. Several studies have reported the 

correlation of MU recruitment and firing rate of the muscle fibers with MMG amplitude 

during motor nerve stimulation (Barry & Cole, 1990; Orizio, 1992; Orizio, Liberati, 

Locatelli, Grandis, & Veicsteinas, 1996). MMG parameters in time, frequency (Ryan et 

al., 2008b), and joint time-frequency (TF) (Al-Mulla & Sepulveda, 2014) domains were 

analysed during isometric FES-evoked contractions. However, given the inconsistent 

loading and non-stationary nature of muscle contraction during FES cycling (Bonato et 

al., 2001) MMG responses in the time and/or frequency domains of dynamic evoked-

muscle force patterns were reported to be nonlinear (Hong-Bo et al., 2009). This 

nonlinearity may be due to several factors, including changes in the muscle fiber length, 

the number of active motor units, firing rates, and thickness of the tissue between muscles 

(Bonato et al., 2001; Cramer et al., 2005).  

In order to analyse the non-stationary MMG signals, wavelet transform (WT), short-

time Fourier transform (STFT), and Wigner-Ville transform as joint TF signal processing 

techniques were proposed (Akataki et al., 2004; Barry & Cole, 1990; Xie et al., 2009). 

The wavelet transform has been used in several kinds of research to describe non-

stationary MMG signals produced during dynamic muscle contractions. Beck et al. 

(2009) proposed a new wavelet analysis method where 11 non-linearly scaled wavelet 
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filter banks were used to analyse MMG signals. The intensity of the MMG signals was 

proposed to be used in statistical pattern identification of dynamic muscle contractions.  

 Furthermore, Ryan et al. (2008b) compared short-time Fourier transform (STFT) with 

continuous wavelet transform (CWT) for MMG signal analysis and showed that these 

two were similar in response. Xie et al. (2009) proposed several features such as STFT, 

short wavelet transform (SWT), wavelet packet transform (WPT), and S-transform joined 

with singular value decomposition to classify different hand motion patterns including 

wrist flexion, extension, open and grasp using MMG signals for prosthetic control that 

achieved 89.7% accuracy. 

A work by Silva et al. (2004) acquired MMG signals from a microphone-accelerometer 

sensor pair to classify two activities of the prosthesis to control wrist extension and wrist 

flexion using the RMS feature. The classification accuracy achieved from the two subjects 

was around 70% based on their cross-validation tests. However, this work focused on the 

RMS feature and did not consider any time-frequency domain features. Subsequently, in 

another work, Silva et al. (2005) improved the RMS-based MMG signal classification 

accuracy of muscle activity for opening and closing the prosthesis by coupling the 

accelerometer-microphone sensor and MMG socket to eliminate the interference of the 

recorded signal. The experiment was performed on two subjects, and the improved 

accuracies attained were 88% and 71% for each subject, respectively. However, the 

number of recruited subjects was relatively low for classification. 

 Alves et al. (2010) used a Genetic Algorithm for MMG signal feature extraction based 

on a linear discriminant analysis (LDA) classifier to determine the effect of the single-

site forearm accelerometer location. It was reported that the placement of five 

accelerometers on a single-site forearm achieved group accuracy of nearly 73% for all 
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three classes of muscle actions. However, the classifiers were vulnerable to the changes 

in forearm position and longitudinal and transverse displacements of the sensors. 

Many researchers have extracted features from MMG signals using genetic 

programming, genetic algorithms (Al-Mulla & Sepulveda, 2014; Kattan et al., 2009), 

statistical analysis (Al-Mulla & Sepulveda, 2010; Al-Mulla, Sepulveda, Colley, & Al-

Mulla, 2009), and wavelet transform (Beck et al., 2005b). However, to date, Mel 

Frequency Cepstral Coefficients (MFCC) feature has not been introduced to perform 

MMG signal analysis of dynamic muscle contraction.  

The most prevalent and widely used MFCC feature was in automatic sppech 

recognition applications. In speech recognition, uttered speech is considered dynamic due 

to its frequency changes with each speech signal. Similarly, muscle generates low 

frequency (5-50 Hz) vibration (Silva et al., 2005). Additionally, several researchers have 

reported that MMG frequency (mean power frequency, median frequency) signal pattern 

changes when the muscle is artificially stimulated (Esposito, Orizio, & Veicsteinas, 1998; 

Kouzaki, Shinohara, & Fukunaga, 1999; Orizio, 1992; Peters & Fuglevand, 1999). One 

related work by Doulah and Fattah (Doulah & Fattah, 2014) proposed the MFCC feature 

application to classify normal and neuromuscular diseased muscles using EMG. The 

researchers employed the MFCC feature with motor unit action potential rather than the 

direct MFCC feature of an EMG signal by template matching decomposition method. 

The MFCC feature achieved a total classification accuracy of up to 92.50%. 

This study hypothesized that dynamic muscle force response of eccentric and 

concentric contractions (muscle length changes) during FES-evoked cycling can be 

extracted directly from the muscle surface using MMG-derived MFCC feature and 

evaluated with a Support Vector Machine (SVM) and that the MMG signals can be 

classified as “non-fatigued” and “fatigued.” The proposed MFCC classification accuracy 
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was compared to RMS features. The accuracy of fatigue prediction among subjects using 

MFCC in comparison to the generally adopted RMS feature was analysed. 

3.2 Methods 

 

3.2.1 Participants 

Five individuals with SCI with American Spinal Injury Association Impairment Scale 

(ASIAIS) classification A and B, implying no voluntary motor control (Kirshblum et al., 

2011), were recruited from the University of Malaya Medical Centre, Kuala Lumpur, 

Malaysia. Participants volunteered to participate in this study (Table 3.1) after giving their 

informed consent. This study was granted by the University of Malaya Research Ethics 

Committee (Approval No: 1003.14 (1)). All participants understood the study protocol. 

The subjects’ exclusion criteria were: subjects with metal implanted in the stimulated 

limb, cognitive impairment or without tolerance to FES sensation, severe spasticity 

(Elbasiouny et al., 2010), which is related to muscle tone and stiffness (Moon, Choi, & 

Park, 2017), and undesirable muscle responses (i.e., muscle spasm) from quadriceps 

muscle as determined by a certified physician. Participants were asked to abstain from 

any FES-related exercise at least 48 hours before the testing (Bickel, Slade, VanHiel, 

Warren, & Dudley, 2004). 
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Table 3.1: Participant demography 

Pa
rti
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(k

g/
m

2 )
 

1 M 45 82.0 172 T4 B 14 27.7 

2 M 49 62.4 171 C7 B 11 21.3 

3 M 28 79.6 162 T1 A 3 30.3 

4 M 33 71.6 179 C6 B 13 22.3 

5 F 47 72.0 165 C6 B 15 26.4 

Mean  40.4 73.5 169.8   11.2 25.6 

SD  9.3 7.7 6.6   4.8 3.36 

  
Abbreviation: ASIAIS – American Spinal Injury Association Impairment Scale, TAI – 
Time after injury, F – Female, M – Male, BMI – Body Mass Index, ASIAIS A - Sensory 
and Motor Complete Impairment, ASIAIS B - Motor Complete Impairment. 

 

3.2.2 FES experimental protocol 

All participants were seated in their manual wheelchair comfortably during the FES 

cycling session with their feet safely secured to the pedals using physiotherapy straps. 

Each participant underwent a 30 min FES cycling session on an FES cycle ergometer 

(MOTOmed Viva 2, RECK-Medizintechnik GmbH, Betzenweiler, Germany) interfaced 

with the RehaMove 2 FES system at a cycling speed of 40 revolutions per minute (rpm). 

This protocol aimed to induce peripheral muscle fatigue through continuously repetitive 

muscle contraction. A commercial electrical stimulator (Rehabstim2, HASOMED 

GmbH, Magdeburg, Germany) that produces biphasic rectangular current-controlled 

stimulation pulses were synchronized with the motor resisted cycling ergometer. The 

stimulation (maximum 120 mA, 30 Hz, biphasic, pulse width ± 400 µs) started every time 

the pedal reached a crank angle of 45° and ended at 135°. At a 40rpm cycling speed, a 
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total rotation of 360° takes 1.5 s (Figure 3.1). The duration of the stimulus pulse train was 

0.4 s which contained a total of 12 stimulation pulses. However, as the muscle fatigues, 

the cycling speed might decrease, increasing stimulus duration. 

Figure 3.1: Schematic diagram of pulse train synchronized with ergometer 
pedal angle position in early non-fatigued condition, at 40 rpm 

The stimulation parameters were set as follows: biphasic current amplitude adjusted 

up to 120 mA (peak) or the highest tolerable current of each participant depending on the 

patient's comfort level; pulse frequency was fixed at 30 Hz, and the biphasic pulse width 

was set at 400 µs + 400 µs (positive + negative phase). Initially, a 1-minute warm-up 

session (Fazio, 2014) was initiated using the same stimulation parameters, the current set 

to produce weak muscle contractions. Electrical stimulation pulses were delivered to the 

quadriceps, hamstrings, and glutei muscles via self-adhesive electrodes (size 9 cm x 15 

cm, RehaTrode, HASOMED, Germany). The first electrode was positioned between 6 

and 8 cm near the proximal position of the patellar border, and the second electrode was 

placed approximately 1/3 of the distance between the region of the inguinal line and the 

superior patellar border and slightly lateral to the muscle center line to ensure stimulation 

coverage over the three muscle bellies of vastus lateralis (VL), rectus femoris (RF), and 

vastus medialis (VM) (Szecsi, Straube, & Fornusek, 2014) (Figure 3.2). The main 

superficial quadriceps muscles are VL, RF, and VM. Each muscle behavior is different 

(Ouamer, Boiteux, Petitjean, Travens, & Salès, 1999) and can be detected using external 

sensors placed on the skin. 
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Figure 3.2: (a) Experimental setup, and (b) MMG sensor placement over the 

muscles (RF: rectus femoris, VL: vastus lateralis, VM: vastus medialis) 
represented by the solid black circles 

3.2.3 MMG signal acquisition 

In this research, the sensors were attached to the skin with double-sided adhesive tape 

over the belly of VL, RF, and VM muscles (Islam et al., 2018). The three MMG sensors 

used were accelerometer-based Sonostics BPS-IIVMG transducers (frequency range 20 

Hz-200 Hz, sensitivity 30 V/g, diameter 32.6 mm, thickness 12.5 mm, mass 10 g). Other 

researchers described their usage for muscle assessment (Herzog, Zhang, Vaz, 

Guimaraes, & Janssen, 1994). Sensor locations were marked with a permanent marker to 

ensure consistent placement. The effect of skin thickness and fat were not considered in 

this study as it has been reported that no relationship was found between skinfold 

thickness and MMG RMS (voltage-force correlation) (Cooper, Herda, Vardiman, 

Gallagher, & Fry, 2014), and no strong correlation was reported between skinfold 

thickness as well as MMG median and peak frequency (Jaskólska et al., 2004). 

 

3.2.4 Signal processing 

MMG sensors were interfaced with a personal computer using the “ACQKnowledge” 

data acquisition and analysis software package (BIOPAC, Santa Barbara, CA, Inc. USA). 
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The raw signals were sampled at 2 kHz and band pass filtered (fourth-order Butterworth) 

at 20-200 Hz to reduce additional noise that might have originated from motion artefacts. 

The signals were then processed using MATLAB (Version 2013, The Mathworks, Natick, 

MA) for segmentation and classification. They were segmented by each contraction 

automatically using a peak detection algorithm whereby only the propulsion phase (0.25 

s) of the contraction (minimum 0.4 s) was segmented. The MFCC and RMS features were 

then extracted from each contraction and used for training and testing the SVM.  

3.3 MMG Classification 

 

3.3.1 MFCC Feature 

The first stage of the MFCC feature extraction method was to apply STFT analysis 

(Irino, Minami, Nakatani, Tsuzaki, & Tagawa, 2002; Obuchi, 2004) with window frames 

of 25 ms to the signal that was considered as stationary (Gil-Pita, lopez-Garrido, & Rosa-

Zurera, 2015). The power spectrum was computed for every 25 ms frame with a 10 ms 

forward shift throughout the 250 ms MMG signal. Typically, window lengths are in the 

20 ms-40 ms range because of the consensus that at higher window lengths, the signal 

may not be stationary while a shorter frame may not have enough information to extract 

significant signal features (Shang-Ming, Shi-Hau, Jeih-weih, & Lin-Shan, 2001; Wei, 

Cheong-Fat, Chiu-Sing, & Kong-Pang, 2006). This was followed by the Mel-filterbank 

equation (3.1) (Gupta, Jaafar, Ahmad, & Bansal, 2013) designed with 26 triangular filters 

uniformly spaced on the mel scale between lower and upper-frequency limits. The Mel 

scale is defined as a perceptual scale of frequency when measured at its original 

frequency. 

To calculate filterbank energies (FBEs) (26 filters per frame), the filterbank was 

applied to the magnitude spectrum values. The 26 log filterbank energies consisting of 
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compressed FBEs were then de-correlated using the discrete cosine transform (DCT) 

equation as given in equation (3.2) (Young et al., 2002). The Cn of the MFCC feature 

calculated from Equation 3.2 was fed into Equation 3.3 as the feature vector x, as 

expressed in Equation 3.3. From the results, 13 out of the 26 DCT coefficients were 

discarded from our application based on common practice from the literature (Gupta et 

al., 2013; Jong-Hwan, Ho-Young, Te-Won, & Soo-Young, 2000; Wahyuni, 2017). The 

reasons include that fast changes in the filterbank can degrade recognition performance 

and computational cost (Wahyuni, 2017). 

𝑚𝑒𝑙(𝑓) = 1127 ln (1 +
𝑓

700
)                   (3.1) 

𝐶𝑛 = √
2

𝑁
∑ 𝑚𝑗

𝑁

𝑗−1

cos (
𝜋𝑖

𝑁
(𝑗 − 0.5))       (3.2) 

where N is the number of the filter banks, mj is the log filter bank amplitudes. 

The MFCC process flow is presented in Figure 3.3. The selected 13 out of the 26 DCT 

coefficients were used to train the SVM classifier.  

 

Figure 3.3: Block diagram of the MFCC algorithm 

Figure 3.4 shows typical non-fatigued (a) and fatigued (b) MMG signals recorded from 

the three localized sensors of RF, VL, and VM. The fatigued signals in (b) have generally 

smaller amplitudes than (a), and the duration of contraction is longer in (b) compared to 

(a) because fatigued muscle requires more time to complete a single contraction cycle. 
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Significant differences in MMG signals among RF, VL, and VM can also be observed in 

Figure 3.4.  

 

Figure 3.4: Typical normalized (to gmax) MMG signals during one revolution of 
cycling: (a) non-fatigued and (b) fatigue muscle contractions from sensors placed 

at RF (top), VL (mid), and VM (bottom) 

The MFCC generates only frequency coefficients from the time series of MMG signals 

(250 ms) as shown in Figure 3.5; Figure 3.6 shows the MMG recognition steps from the 

input MMG signals to the training and recognition of MMG signals.  

 

Figure 3.5: Time series of MFCC Cepstrum index plot in frame index of 0.25s 
MMG signal 
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Figure 3.6: Block diagram of MMG signal training and recognition method 

For each test subject, their corresponding MMG responses as described above were 

recorded for 30 minutes. Data from each subject’s MMG signals captured from RF, VL, 

and VM muscles were separated into two groups. Out of all data, 75% of the total 

contraction signals were used as training data, while 25% were used for testing. For the 

training data, the MMG signals were partitioned into two categories: non-fatigued muscle 

contractions and fatigue muscle contractions. Grouping the two muscle conditions was 

based on the assumption that the first 10 minutes of the cycling session represent the 

responses of a non-fatigued muscle and the last 10 minutes of a fatigued muscle (Islam et 

al., 2018). From the recorded data, 400 non-fatigued contraction and 400 fatigued 

contraction samples were extracted from each RF, VL, and VM MMG response, 

respectively, totaling 1200 samples for fatigue and non-fatigued each. 

 Results were validated with the k-fold cross-validation (Xu & Liang, 2001) method in 

which out of each muscle’s 400 contractions set, 300 contractions were used for training 

and 100 for testing. Therefore, a total of 900 non-fatigued and 900 fatigued contractions 

from the three sensors (RF, VL, VM) were used to train in the SVM classifier and later 

tested with 300 contractions. Figure 3.7 illustrates the contraction training and testing 

methods from one sensor. 
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Figure 3.7: Selection of contractions used for training and testing from a cycling 
session 

 
3.3.2 Support vector machine (SVM) 

In the application of biomedical signal classification, Support Vector Machine (SVM) 

is a widely used machine learning technique (Subasi, 2013). SVM consists of an optimal 

hyperplane with a margin that separates the two data classes with a maximum distance 

between them (Cutajar, Gatt, Grech, Casha, & Micallef, 2013). Therefore, the boundary 

partition between the two classes of information was maximized. The optimal placement 

of the hyperplane was dependent on the portion of the training data, referred to as support 

vectors, which lies near the hyperplane. The optimal hyperplane is described in Equation 

(3.3).   

𝑤𝑇 . 𝑥 + 𝑏 = 0                (3.3) 

where w is the weight vector, x is the input vector from input space, and b is the bias. 

During the training phase, the data from class 1 were labeled as +1, and class 2 were 

labeled as -1 (Figure 3.8). At the classification detection phase the data was classified as 

+1 if wT.x+b >= +1 and when wT.x+b <= -1 it was classified as -1. 

For testing stage classification, equation 3.4 can be written as  

𝑓(𝑦) = 𝑤𝑇 . 𝑥 + 𝑏          (3.4) 

ℎ𝑒𝑛𝑐𝑒, 𝑤𝑇 = ∑ 𝛼𝑖𝑘(𝑥𝑖𝑦𝑖)

𝑁

𝑖=1
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Equation 3.4 can be written as  

  f(y) = ∑ αik(xiyi) + b          (3.5)N
i=1   

K(x,y) is the kernel function that calculates the dot product of two vectors x and y in 

high-dimensional feature space. Where yi is the tested vector of MMG signal, xi is the 

support vectors (Figure 4.8) calculated from the training data set, and αi is their weights, 

and constant bias is b. The radial basis function (RBF) kernels (Equation 3.6) were 

considered due to their better performance than the linear kernel.  

𝐾𝑅𝐵𝐹(𝑥, 𝑦) = exp (−𝛾||𝑥 − 𝑦||
2

)             (3.6) 

where ᵧ is a control parameter (kernel width) and ||.|| denotes the Euclidean norm. 

 

Figure 3.8: SVM hyper plane separated by Support Vectors (Hashem & 
Mabrouk, 2014) 

In Figure 3.8, SVM classification with a hyperplane that maximizes the separating 

margin between two classes is indicated by “◊” and “O” and support vectors are the 

elements of the training set that lies on the boundary hyperplane between the two classes 

(Akay, 2009). However, in a real case scenario, there could be more than one hyperplane. 

In our case, two classes of muscle contractions of non-fatigued (Class 1) and fatigued 

(Class 2) were considered for the training and testing subgroups. 
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3.3.3 Muscle fatigue prediction among subjects 

During electrical stimulation throughout the FES cycling exercise among the SCI 

individuals, their muscle fatigue responses may be similar yet distinct in different 

individuals to a certain extent. This may suggest different individual training and 

performance accuracy compared to training and prediction algorithms using cumulative 

subject data. Therefore, inter-subject prediction accuracy was generated to determine the 

accuracy when one subject’s trained model was tested with the other subjects’ non-fatigue 

and fatigue contraction signals.  

Furthermore, results were validated using 4-fold cross-validation methods where all 

the data was used for training and testing the classifier. The prediction accuracy was 

calculated in 3 different models used: the MFCC feature, the RMS, and the combined 

MFCC and RMS features. Individual muscle prediction accuracy performance was also 

analysed. 

3.4 Result and analysis 

Over the 30 minutes cycling period, the cycling speed (measured with the built-in 

speed monitor) was used as an indicator of fatigue, i.e., when the speed drops significantly 

compared to the initial speed. From the experiment, the subjects’ average cycling speed 

usually decreased throughout the 30 minutes of training. The duration of an example 

contraction was 1.43 s from the first 10 minutes and 1.82 s from the last 10 minutes 

(Figure 3.4). 

3.4.1 MFCC and RMS features predicted contractions and accuracy 

The predicted and expected results of all participants’ muscle contractions using the 

MFCC feature (Table 3.2) and RMS feature (Table 3.3) are presented as a confusion 

matrix (Khezri & Jahed, 2007) for the fourth fold of repetition. Hence, the confusion 

matrix shows the expected and recognized number of contractions diagonally.  
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The accuracy was calculated by the ratio of the total number of contractions detected 

correctly to the total number of contractions shows in equation 3.7. Overall, the average 

prediction accuracy using the MFCC and RMS feature is 92.2% and 75.9%, respectively. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛
× 100              (3.7)  

Table 3.2: Number of Expected and Predicted Contractions sample in confusion 
matrix and accuracy using MFCC feature. Each subject’s first and second row 

shows expected (first row: expected True, second row: expected False) and 
predicted number (first row: predict) 

Subject 
Expected result Predicted contractions Accuracy 

(%) Non-Fatigue Fatigue Non-fatigue Fatigue 

1 
300 0 293 7 

96.3 
0 300 15 285 

2 
300 0 295 5 

98.8 
0 300 2 298 

3 
300 0 276 24 

85.5 
0 300 63 273 

4 
300 0 289 11 

96.3 
0 300 11 289 

5 
300 0 218 82 

84.0 
0 300 14 286 
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Table 3.3: Number of Expected and Predicted Contractions sample in confusion 
matrix and accuracy using RMS feature. Each subject’s first and second row 

shows expected and predicted number of contractions (first row: expected and 
predicted True, second row: expect) 

Subject 
Expected result Predicted contractions Accuracy 

(%) Non-Fatigue Fatigue Non-fatigue Fatigue 

1 
300 0 299 1 

87.5 
0 300 74 226 

2 
300 0 300 0 

97.6 
0 300 14 286 

3 
300 0 280 20 

59.6 
0 300 222 78 

4 
300 0 163 137 

48.3 
0 300 173 127 

5 
300 0 278 22 

86.5 
0 300 59 241 

Based on Table 3.2, subjects number 1, 2, and 4 obtained more than 95% accuracy 

based on MFCC features. The highest accuracy was in subject 2, where the maximum 

number of 298 contractions for fatigued and 295 contractions as non-fatigue were 

predicted correctly. The same level of accuracy was achieved for subjects 1 and 4 at 

96.3%. Subject 1 had the least prediction error of fresh contractions, with two contractions 

identified as fatigued contraction compared to the other subjects. The lowest accuracy of 

contractions was for subject 5, at an accuracy of 84%. 

Table 3.3, on the other hand, presents the prediction accuracy based on the RMS 

feature of the MMG signals. Similar to the MFCC feature, subject 2 had the highest 

accuracy, with all non-fatigue contractions were predicted correctly, but a total of 14 

fatigue contractions failed to be predicted. The accuracy obtained for subject 3 was less 
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than 60% and for subject 4 was less than 50%. The lowest number of non-fatigue 

contractions was predicted for subject 4, which was only 163 contractions over the 

expected 300 non-fatigue contractions.  

 

3.4.2 Muscle fatigue prediction accuracy among subjects 

An inter-subject prediction is when one subject's training data is used to create a model 

and then tested with another subject’s data which is expected to be non-fatigue or fatigue. 

The inter-subject prediction accuracy of muscle fatigue using the MFCC feature is 

presented in Table 3.4, while prediction accuracy based on the RMS feature is shown in 

Table 3.5. 

Table 3.4: Predicted inter-subject accuracy using MFCC feature 

Trained 

subject 

Test subject accuracy (%) 

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Subject 1  78 49 50 50 

Subject 2 71  49.8 51 44 

Subject 3 59.1 68.5  50 50.6 

Subject 4 44.1 38.5 50  57.1 

Subject 5 49 38 58.1 74.1  
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Table 3.5: Predicted inter-subject accuracy using RMS feature 

Trained 

subject 

Test subject accuracy (%) 

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Subject 1  97.1 48.1 48.3 85.8 

Subject 2 90.6  49.5 47.8 87.1 

Subject 3 65.8 67.5  59.8 65.5 

Subject 4 89.3 97.3 49.1  87.1 

Subject 5 88.8 97.3 48.8 48.1  

 

If one subject's test data was fed into the other subject's training data, and vice versa, 

the inter-subject correlation assumed high prediction accuracy. This was demonstrated in 

Table 3.4, whereby when test data of subject 2 was fed into subject 1 trained data, it 

achieved the highest accuracy of 78% and 71% vice versa, using the MFCC features. This 

was again demonstrated in Table 3.5 when both subjects 1 and 2 displayed high accuracy 

based on each other’s training and testing data using the RMS feature. 

3.4.3 Cross-validation of the combined results of three sensors (RF, VL, and VM) 

For results validation, all the non-fatigue and fatigue contractions samples were used 

for training and testing. Four-fold cross-validation used a total of 1200 contractions (three 

sensors), of which 75% were used for training and 25% for testing.  
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Table 3.6: Accuracy results for MFCC features with four repetitions 

Su
bj

ec
t Repetition accuracy (%) Mean ± SD 

First Second Third Fourth 

1 93.3 88.8 85 96.3 90.8 ± 4.9 

2 96.5 95.1 81.6 98.8 93.0 ± 7.7 

3 96.3 83.6 72.6 85.5 81.7 ± 9.7 

4 100 100 85 96.3 92.8 ± 7.1 

5 94.1 94.3 86.8 84 89.8 ± 5.2 

M
ea

n 
± 

SD
  

96.0 ± 2.6 

 

92.4 ± 6.3 

 

82.2 ± 5.6 

 

92.1 ± 6.8 

 

 

Table 3.7 indicated that, when compared to RMS, MFCC performed better overall with 

all four repetitions in Table 3.6. However, the mean accuracy of four repetitions for 

subjects 1 and 2 was higher (93.9% and 98.9%) in RMS than MFCC (90.8% and 93%). 

The RMS of subjects 3 and 4 depicts the lowest performance compared to MFCC. 

However, the effect of repetition standard deviation for the MFCC feature was below 

10%. On the other hand, the standard deviation of the RMS feature reached 13.2% for 

subject 4, and for subject 5 it reached 19.8%. 
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Table 3.7: Accuracy results for RMS features 

Su
bj

ec
t Repetition accuracy (%) 

Mean ± SD 
First Second Third Fourth 

1 97.1 100 91.3 87.5 93.9 ± 5.6 

2 99.3 99.8 99.1 97.6 98.9 ± 0.9 

3 59.3 66.83 57.8 59.6 60.8 ± 4.0 

4 40.1 22.83 53.1 48.3 41.0 ± 13.2 

5 92.5 84.3 48.6 86.5 77.9 ± 19.8 

M
ea

n 
± 

SD
 

77.66 ± 26.5 74.752 ± 32 69.98 ± 23.4 75.9 ± 20.8  

 

Table 3.8: Accuracy for combined MFCC and RMS features 

Subject 
Repetition accuracy (%) 

Mean ± SD 
First Second Third Fourth 

1 90.6 96.1 83.8 80.8 87.8 ± 6.8 

2 100 99.8 75.6 98.8 93.5 ± 11.9 

3 97 85 73 78.5 83.1 ± 10.3 

4 96.5 95.1 81.1 95.3 92.0 ± 7.2 

5 93.6 95.1 81.5 80.1 87.5 ± 7.8 

Mean ± SD 95.5 ± 3.5 94.2 ± 5.5 79 ± 4.5 86.7 ± 9.5  

Table 3.8 demonstrates that the combined MFCC and RMS features reached a 

maximum mean accuracy of up to 93%, while the lowest was 83%, and the standard 

deviation reached a maximum of about 12%. Results also show that the first and second 

repetitions have higher accuracy than the third and fourth repetitions.  
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3.5 Discussion  

Classification of non-fatigue and fatigue muscle contractions using the MFCC feature 

was hypothesized to have a higher prediction ability among subjects than the generally 

adopted RMS feature. Hence, the overall performance of MFCC might be higher because 

the MFCC feature incorporates inherent calculations of frequency components and power 

spectrum of MMG signals in the time and frequency domain. 

However, the average inter-subject correlation prediction accuracy of MFCCs was 

around 50%, which was a deficient performance in classification measurement. 

Interestingly, the overall inter-subject accuracy based on the RMS feature resulted in 

better performance than the MFCC feature. However, in both MFCC and RMS features, 

there was insufficient prediction consistency observed among subjects. 

Results revealed that FES muscle fatigue classification of dynamic FES cycling using 

the MFCC feature projected better accuracy than the RMS feature. The number of 

correctly identified contractions as non-fatigued and fatigued was higher in MFCC when 

compared to RMS. Some non-fatigued muscle contractions overlapped with other 

fatiguing contractions using both MFCC and RMS features. This might be due to the 

inaccurate assumption that the muscles were not fatigued in the first 10 minutes when the 

muscles might be undergoing early muscle fatigue within the first 10 minutes of cycling. 

This is backed by the research findings that suggested that electrical muscle activation is 

responsible for faster muscle fatigue than voluntary contractions (Marsolais & Edwards, 

1988). This is also related to the inability to modulate motor units' firing frequency or 

recruitment pattern (Bickel, Gregory, & Dean, 2011) and the “inverse recruitment.” 

Moreover, the captured muscle responses might contain motion artefacts (Ibitoye et 

al., 2014b) since the subjects in the sitting position on the wheelchair were not completely 

fixed, and their limbs were moving during cycling. 
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Furthermore, different muscle properties of RF, VL, and VM and variations in the 

placement of MMG sensors may have also affected the signals. Table 3.9 shows each of 

the three individual VM, VL, and RF muscle performance accuracy of MFCC and RMS 

features. The mean accuracy of the MFCC feature is higher than the RMS feature in RF, 

VL, and VM muscles. When compared to MFCC on subjects 1 and 5, the RMS feature 

shows higher accuracy in the three muscle groups. The standard deviation accuracy of 

three muscles in each subject was higher in MFCC, yet the overall mean accuracy of RMS 

was lower than MFCC. It is interesting to highlight that inter-individual and intra-

individual sensors for each patient have different accuracy in detecting muscle fatigue 

due to the geometry of each muscle structure (Orizio, 1993). Using the MFCC feature, it 

could be suggested that one sensor on RF muscle can quantify the whole quadriceps 

muscle assessment. 

Table 3.9: Individual three muscles performance accuracy of RF, VL, and VM. 

Su
bj

ec
t MFCC feature 

accuracy% 
 

Mean ± SD 
RMS feature Accuracy 

% 
 Mean± SD 

 RF VL VM  RF VL VM  

1 77 90 66.5 77.8 ± 11.7 94 100 99.5 97.8 ± 3.3 

2 100 98 99 99.0 ± 1.0 97 98.5 100 98.5 ± 1.5 

3 94 78 62.3 78.1 ± 15.8 61 63 56 60 ± 3.6 

4 98 99.5 89 95.5 ± 5.6 12 75 42 43 ± 31.5 

5 88 86.5 65 79.8 ± 12.8 92 98.5 90 93.5 ± 4.4 

M
ea

n±
 S

D
 

91
.4

 ±
 9

.2
 

90
.4

 ±
 8

.7
 

76
.3

 ±
 1

6.
5 

 

71
.2

 ±
 3

6.
1 

87
 ±

 1
6.

9 

77
.5

 ±
 2

6.
7 
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Several studies have documented the change in MMG mean power frequency 

(Esposito et al., 1998; Orizio, 1992; Peters & Fuglevand, 1999) and median frequency 

(Kouzaki et al., 1999) over the stimulation time due to the inverse recruitment of motor 

units. These were the basis on which MFCC features could retrieve frequency 

components from the muscle contractions. 

Many studies have been conducted to investigate muscle contraction classification and 

prosthetic control based on MMG signals using various feature extraction methods such 

as the RMS, wavelet transform, SWT, and STFT, as well as genetic algorithms (Al-Mulla 

& Sepulveda, 2014; Silva et al., 2005; Xie et al., 2009).  

Two types of muscle contractions for wrist extension and flexion were investigated by 

Saliva et al., which used the RMS feature, while Xie et al. (2009) studied the STFT, SWT, 

WPT, and S-transform features to classify hand motion patterns (Silva et al., 2005; Xie 

et al., 2009). However, in their work, the classification accuracy achieved was below 

90%. Alves et al. (2010) reported that the classification accuracy of three classes of 

movement of MMG signal wrist flexion, wrist extension, and semi-pronation of the 

single-site forearm based on sensor placement was about 73%. The authors conveyed that 

accuracy degradation might be influenced by several factors, including sensor placement, 

classifier complexity, training method, signal feature, and muscle architecture.  

Another recent study (Al-Mulla & Sepulveda, 2014) has implemented wavelet 

transform and modified pseudo-wavelet by using SVM classifier to investigate non-

fatigue and fatigue contractions and achieved approximately 80.63% accuracy, though 

during the experiment a very small number of trials (73 trials) were used for training 

compared to this study. Madeleine, Hansen, and Samani (2014) suggested that linear and 

nonlinear analyses of the MMG signal of the wrist extensor could be assessed using 

average rectified values (ARV) of the MMG output or RMS linear feature with variations 
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in sensor load, location, contraction type, and time. Their results show that a higher ARV 

value was observed in load variations compared to variations in location and contraction 

type, while the variance ratio in the percentage of recurrence and percentage of 

determinism was 22.8% and 0.1%, respectively. Variations in location revealed that ARV 

was lowest with 31.2 ms-2 and, 9.9% recurrence and 43.6% determinism, while varying 

the time revealed ARV of 89.4 ms-2, with 27% recurrence and 6.6% determinism.  

However, this research focused on ARV or RMS features only. Sarlabous et al. (2013) 

used the dog model to quantify the stochastic nature of MMG signals to estimate muscle 

force using ARV or RMS parameters based on the Lempel-Ziv algorithm. Both studies 

emphasized that non-linear analyses are found promising when analyzing muscle fatigue 

or muscle force. In this study, RMS and MFCC features of the MMG signal were 

classified using the SVM classifier with the RBF kernel to map the data in higher 

dimensions for non-linear MMG data separation.  

The MFCC feature represents the short-term power spectrum of a signal based on 

a linear cosine transform of a logarithmic power spectrum on a nonlinear Mel scale of 

frequency. Therefore, the non-linear MMG signal feature during cycling was deemed to 

be more suitable for MFCC than classical STFT in dynamic muscle contraction 

classification. Moreover, the computational costs of short wavelet transform or wavelet 

packet transform are higher than MFCC, which plays an important role in real-time 

applications. 

The total accuracy for the MFCC feature of the MMG signal achieved up to 96% 

accuracy for non-fatigue and fatigue classification for the first fold repetition, and the 

average accuracy of 4-fold was 90.7%. The combined MFCC and RMS feature with an 

average accuracy of 88.8% did not significantly improve accuracy. Studies on FES and 
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fatigue-related exercise can benefit from our findings by implementing MFCC feature 

extraction of the MMG signal. 

The results of fatigue detection correlation among subjects illustrate a good correlation 

between subjects 1 and 2 in both MFCC and RMS. However, generally, higher accuracy 

was found in RMS feature adoption. The relationship between these two subjects could 

be a similarity in muscular behavior during stimulation (Vromans & Faghri, 2018). These 

results may suggest the possibility of using identified similarly performing muscles, as in 

subjects 1 and 2, to pool the other subjects’ data to improve their fatigue prediction 

learning and ability or to use one subject’s trained algorithm to predict another’s. The 

RMS feature showed better-correlated accuracy among the subjects, but the results were 

not consistently high in all subjects. Therefore, more investigation of muscle responses is 

required during stimulation to find out the correlation among subjects. 

A new method of MFCC feature extraction for MMG signal classification during FES 

cycling has been successfully implemented using the SVM classifier. The outcomes of 

this study, however, were limited by the number of trials within each subject due to 

challenges in multiple subject recruitment and sessions. Thus, increasing the repetition of 

trials, in the long run, would positively influence the accuracy of the results (Alves et al., 

2010). However, the effect of different window lengths of MMG signals on accuracy 

could be an exciting topic for future researchers. 

3.6 Conclusions 

This study is the first to demonstrate the adoption of the MFCC feature, which had 

been primarily applied in the “Automatic Speech Recognition” domain, for MMG 

classification of fatigued and non-fatigued contractions throughout dynamic FES cycling. 

The MFCC feature showed better accuracy, up to 90.7%, compared to the RMS feature, 

with an accuracy of 74.5%. Thus, the proposed features can be used in muscle fatigue 
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prediction in dynamic and cyclical evoked muscle contraction as long as the system is 

trained with data from the monitored subject. Inter-subject prediction accuracy is 

inconsistent and has low accuracy, indicating the need to have a larger pool of training 

data. Further investigations will help understand the nature of the MMG signals better 

and influence factors such as physiological properties and physical milieu. The method 

introduced in this study could be implemented in FES systems to monitor muscle fatigue 

to increase patient safety and optimise patient training by adapting the FES parameters 

during electrically-evoked contractions in individuals with motor complete SCI.
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CHAPTER 4: DEVELOPMENT OF FES SYSTEM WITH 

MECHANOMYOGRAPHY FEEDBACK FOR COMPLETE SPINAL CORD 

INJURY STANDING 

4.1 Introduction 

Spinal cord injury (SCI) may lead to partial or complete paralysis depending on the 

level of injury in the spinal cord region (Weld & Dmochowski, 2000). As a result of 

thoracic or cervical levels of SCI, affected individuals may be unable to move their lower 

limbs to perform functional activities of daily living such as standing, walking, and related 

functional activities. Several methods promote functional activity recovery following SCI 

to improve the victims’ quality of life. One popular rehabilitation method is through the 

use of functional electrical stimulation (FES) technology.  

FES applies modulated and tolerable electrical pulses to specific muscles via motor 

points or nerves to energize paralyzed muscles using a pair of surface electrodes to 

activate the nerves to affect muscle contractions. FES provides pulses to generate artificial 

muscle contractions missing in people with motor paralysis following SCI. Several 

studies (Mushahwar, Jacobs, Normann, Triolo, & Kleitman, 2007; Popovic, Curt, Keller, 

& Dietz, 2001) have shown that FES-related exercises have functional benefits for the 

people with motor paralysis, such as standing and walking. To achieve such functional 

benefits, a complex control method of stimulation of different muscle groups may be 

required. While open-loop FES administration has limited functional applications 

(Jezernik et al., 2004; Sinkjaer, Haugland, Inmann, Hansen, & Nielsen, 2003), the closed-

loop FES system alternative has been widely promoted for neuromuscular stimulation, 

particularly for improved muscle condition monitoring and prevention of overstimulation 

to prevent tissue damage (Cogan et al., 2016). Over-stimulation can be prevented by 

monitoring muscle response as a feedback indicator in the closed-loop FES systems. 

Therefore, selecting sensors to capture the useful muscle response 
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information/biopotentials is vital in a closed-loop control system for real-time FES 

applications based on cost, size, and reliability in the presence of external interference. 

One good option is mechanomyography (MMG) (Beck et al., 2007; Ebersole et al., 1999; 

Orizio et al., 1999), considering the cost, size, and reliability in the presence of electrical 

stimulation artefacts.  

The MMG signal represents a mechanical representation of low-frequency muscle 

contraction signals that could be obtained non-invasively (Beck et al., 2007; Orizio, 1993; 

Yoshitake & Moritani, 1999). Using proprietary FES systems in open-loop mode, 

previous studies have promoted the application of this signal in tracking muscle 

contraction patterns during muscle extension/flexion exercise (Ibitoye et al., 2020a; 

Ibitoye et al., 2016b) and standing tasks (Dzulkifli et al., 2018) in people with SCI. In the 

present study, this research aimed to develop a real-time functional electrical stimulation 

(FES) system to support functional, efficient, and secure physical exercise, including 

standing and monitoring muscle conditions in people with SCI. 

4.2 Design of proposed FES system 

A portable two-channel Bluetooth-controlled FES device was designed using a voltage 

step-up circuit and H bridge circuit, and each channel’s stimulation parameters were able 

to be controlled by the microcontroller independently. This study mainly tests the closed-

loop system responses from the graphical user interface and MMG to visualize muscle 

responses with standing support and fatigue detection in relation to knee angle drop. For 

the test of the developed FES system to monitor muscle using the MMG sensor, 

parameters change in four phases when knee-buckling begins. In addition, the developed 

FES system also has features to integrate other sensors, such as goniometer for 

modulation and optimisation. This study's main objective is to develop an FES system to 

generate sufficient muscle power to support standing for SCI individuals and monitor 

muscle condition using an MMG sensor. 
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4.2.1 Block diagram of the proposed closed-loop system 

Figure 4.1 shows the block diagram of the developed FES system. This system consists 

of four sections: (1) the stimulator which generates electrical pulses to stimulate the 

muscle, (2) the stimulation electrodes and muscle of interest for the task to be performed, 

(3) the MMG sensor arrangement and data acquisition system for signal acquisition and 

processing, (4) the control interface that uses the information from section (3) to modulate 

and optimise the performance of the stimulation device.  

 

Figure 4.1: Block diagram of the proposed closed-loop system 
 

4.2.2 Stimulator 

The stimulator consists of a step-up power controller and output stage controller for 

each channel of stimulation. A rechargeable 3.7 V lithium-ion battery powers the 

stimulator. Initially, the battery voltage is stepped up to 5 V using a dc-dc boost converter 

circuit to supply power to the microcontroller and stimulator power circuit. To step up 

the battery voltage from 3.7 V to 5V, an MT3608 chip is used, which is most commonly 

used for a 5 V DC supply. A sliding-type switch is used to turn on the power of the 

stimulator. The stimulator control signal is supposed to be received by Bluetooth serial 

communication. Figure 4.2 represents the voltage step-up circuit diagram (block diagram 

section 1) for the stimulator.  
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Figure 4.2: Voltage step-up circuit 

Voltage step-up for the circuit (Figure 4.2), the input voltage was 5 V, and the output 

voltage could achieve up to 120 Vp-p maximum for a 1 kOhm load resistor. To output 

voltage control in a step of 1 V, 8-bit digital-to-analog converter (DAC) values are used 

to control pulse width modulation (PWM) to regulate voltage from Microcontroller 

(ATmega328) Unit (MCU). The components’ values of this circuit were selected based 

on test and trial methods as follows: inductance (L), capacitance (C), resistor R1, and 

resistor R2 were 220 μH, 4.7 μF, 10 MΩ, and 10 KΩ, respectively.  

The voltage output stage of the biphasic square pulses was designed to be generated 

from the H-bridge circuit configuration (Figure 4.3). The stimulation frequency and pulse 

width were controlled by on/off transistor switches, while the amplitude was controlled 

by the pulse width modulated signals from the microcontroller. The four switches of the 

H-bridge circuit are T1, T2, T3, and T4, which were precisely controlled by the MCU’s 

digital output pins DO1, DO2, DO3, and DO4 that determined the time duration of each 

pulse (Figure 4.3). 
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Figure 4.3: Circuit diagram of the output stage 

All the transistors used in this device could handle high voltage and large currents. The 

pattern generation table closely followed the operation of the output stage in Figure 4.4. 

In the table depicted in Figure 4.4, turning off T1 and T4 determined the positive output 

voltage while T2 and T3 determined the negative output voltage.  

 

Figure 4.4: Stimulation pattern generation table 

The stimulator pulse width ranges from 50 µs to 600 µs, while the frequency range is 

between 10 Hz to 200 Hz. These values were meant to generate both low and high muscle 

contractions. Figure 4.5 depicts the biphasic square wave pulse generated across 1 kOhm 

resistor load.  
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Figure 4.5: Biphasic square wave output across 1K Ohm resistor 

The fourth section of this design includes the graphical user interface (GUI), sets the 

stimulator parameter, and sends the control signal to the stimulator. This section is mainly 

controlled by the processed MMG signal after processing and feature extraction. 

 

Figure 4.6: Graphical User interface to send control signal and to process MMG 
signal 

The LabView program (Figure 4.6) was used in this fourth section to design a GUI for 

user compatibility and interaction. The National Instrument data acquisition card was 

used for the applied MMG features to record the raw MMG signal in the GUI. The GUI 
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system displays the processed raw MMG signals, the filtered MMG signal, and useful 

extracted features saved in a file for further usage.  

4.2.3  MMG Sensor 

An accelerometer sensor (ADXL335, Figure 4.7) was used to collect the MMG 

signals. The accelerometer can collect data along with the x, y, and z-axis of vibration. 

For this experiment, only the x-axis is used to acquire the MMG signals. The dimension 

of the accelerometer was 18 mm × 15 mm × 2 mm, including its PCB board. A custom-

designed 3D printed plastic casing of 30 mm diameter in the depth of 4 mm (inside to 

outer surface thickness of 1 mm) was used to house the sensor to obtain maximum muscle 

vibration from the skin surface.  

 

Figure 4.7: MMG sensor setup 

4.3 FES experiment during standing 

4.3.1 Subject 

Two experienced FES users volunteered to participate in this experiment. However, 

following clinical assessment and physical examination, one subject was excluded from 

the experiment because he was found unfit. The included SCI participant (one male) was 

classified in American Spinal Injury Association (ASIA) impairment scale as A. The participant 

was aged 35 years with 72 kg body weight and 15 years post-injury for the experiment. 
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The participant was found to be physically and psychologically fit for the experiment. A 

consent form was given to the participant to endorse before the experiment. The 

experimental procedure used in this study was approved by the University of Malaya 

ethical committee with approval No: MECID.NO: 20164 – 2366. 

4.3.2 Apparatus  

The customed-developed (two-channel) pair of wireless FES stimulators were used in 

this study to stimulate quadriceps and gluteus maximus muscles to support the standing 

exercise using surface electrodes with size (i.e., 9 cm x 15 cm, RehaTrode, HASOMED, 

Germany). LabView software was used to communicate with the stimulator through 

Bluetooth serial communication.  

An accelerometer MMG sensor (ADXL335) was placed over the volunteer’s rectus 

femoris muscle belly to collect the muscle responses for analysis and application. The 

MMG signals were recorded in the LabView environment using the National Instrument 

data acquisition card model USB-6343 (Austin, TX, USA), and a fourth-order bandpass 

filter filtered the signals at 5 - 100 Hz (Perry et al., 2001) with a sampling rate of 2 kHz. 

The participant was passively supported by the Biodex harness (Biodex Offset 

Unweighing System) to prevent sudden falls. For stabilization of the upper body, the 

subject had access to the sidebars provided by the harness system (Figure 4.8). The 

sidebars could be held as desired by the participant. This experiment did not consider 

force from the upper limb or partial weight-bearing support force. A goniometer was used 

to measure knee flexion angle. A 30° knee flexion indicated standing failure due to muscle 

fatigue and the stimulation was terminated at the time. At 30°, knee flexion showed 

standing failure due to muscle fatigue and stop stimulation. 
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Figure 4.8: FES supported standing 
 

4.3.3 Protocol 

The FES standing exercise was conducted in two days to achieve 4 trials in all. Before 

the commencement of the experiment, the stimulation amplitude was slowly increased to 

set the starting amplitude for a full knee extension. On the first day, the first trial began 

with fixed stimulation parameters (i.e., amplitude: 80 Vp-p, pulse width: 350 µs, and 

frequency: 35 Hz). After completing the first trial, the participant was made to rest for 30 

minutes to allow the muscle to recover from fatigue. After the recovery time, the second 

trial commenced with parameter optimisation settings by visual observation of the 

goniometer's knee angle drops to 30° as a total standing failure.  

The stimulation parameters were optimised in four phases; in each phase of transition, 

stimulation voltage was increased by 20% and frequency reduced by 10% from the initial 
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set parameters (i.e., 80 Vp-p, and frequency of a 35 Hz). This referred to when each phase 

transition happens, the amplitude of the initial 80 Vp-p increases 20%, and frequency 

reduces 10% from the initial set value of 35 Hz. These four phases are implemented by 

visual inspection of the knee angle that starts to drop, then immediately increases current 

and reduces the frequency in the stimulator by receiving a command from the LabView 

program. Whereas in the last phase, when the knee angle drop was more than 30°, the 

stimulator was switched off to avoid overstimulation. For muscle fatigue recovery from 

the first-day trial, the second-day trial was separated by 48 hours. To avoid bias in the 

second-day trial, the first trial of the day was with parameter optimisation, and similarly, 

30 minutes of recovery time for the second trial was allowed between trials. 

4.4 Result and discussion 

The standing duration of the two days’ trials was found to be as follows: for the first-

day trial with fixed stimulation parameters, the standing duration was 17 s, while for the 

second trial that used optimised parameters, the standing duration was up to 39 s. The 

second-day optimised standing trial duration of 81 s was comparatively higher than the 

standing duration for the fixed stimulation parameter trial of 48 s only. 

 Figure 4.9 (A) showed the fixed-parameter MMG signals when the knee angle 

dropped to 30°, and the stimulation was switched off. The MMG signal pattern after 15 s 

of stimulation indicated muscle fatigue. In Figure 4.9 (B), which is the MMG signal 

pattern during the parameter optimisation session, after the initialization of the 

stimulation, the MMG signal pattern after 15 s showed a drop simultaneously with the 

knee angle reduction. This was closely followed by the second phase of the set parameters 

with increased amplitude. This second phase's standing duration climbed up to 24 s from 

16 s, while the third phase was activated from 24 s and continued to about 12 s, and the 
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final phase continued only for 3 s as the muscle power generation was unable to sustain 

standing further.  

 

Figure 4.9: (A) MMG signal in fixed-parameter (B) MMG signal in parameter 
optimization 

  

Figure 4.10: A shows the subject started to stand by FES, B shows the knee 
angle started to drop, and C clearly shows that the knee angle drops to 30° 

The shorter average standing duration of the first-day trial, compared to the second-

day trials, might be due to the fast-twitch muscle fibers becoming fatigued on an earlier 

day and later-day muscle becoming the fatigue-resistant cause of delay (Thrasher et al., 

2005). That could cause the second standing session with a fixed parameter trial of up to 

48 s. As the high frequency promotes the rapid onset of muscle fatigue (Rongsawad & 

Ratanapinunchai, 2018), the parameter optimisation method in different stimulation 

phases increases stimulation amplitude to reduce the stimulation frequency for a long-
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standing duration. Open-loop FES standing studies usually adopt high amplitude 

(Dzulkifli et al., 2018; Ibitoye et al., 2020a), leading to maximum muscle power 

generation. With this approach, once muscle begins to fatigue, it becomes difficult to 

prevent it. High stimulation amplitude also promotes high knee joint velocity that may be 

challenging to manage using control algorithms (Davood & Andrews, 1998). For 

optimised stimulation, the experiment started with a minimum stimulation amplitude that 

could support standing, while the other two parameters (i.e., frequency and pulse width) 

were set as found in the common FES standing studies (Braz et al., 2015; Ibitoye et al., 

2020a). As hypothesized, iterative changes in stimulation parameters promoted longer 

standing duration when compared to the fixed-parameter stimulation trials. One limitation 

of this pilot experiment is based on the use of only one person with SCI. Also, although 

the stimulation parameters were updated manually, this could be implemented in the 

LabView algorithm using the MMG feedback signal. This is evident as recent studies 

(Dzulkifli et al., 2018; Ibitoye et al., 2016b) have shown a strong positive correlation 

between FES-induced isometric torque and MMG-RMS feature during fresh and 

fatiguing muscle contractions.  

Future work may further explore the prolongation of FES-supported standing duration 

using MMG amplitude feature such as MMG root mean square as a feedback signal in 

the control algorithm. This will employ parameter modulation using stimulation 

amplitude, frequency, or pulse width in the stimulator. However, this study successfully 

implemented FES parameter optimisation based on knee angle and MMG signals to 

support the prolonged standing exercise. 

4.5 Conclusion 

This work presented the development and implementation of a closed-loop FES 

system, and stimulation parameter optimisation could be used to prolong FES standing 

duration. The study has also discovered that the stimulation parameter optimisation that 
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was based on the MMG signal was also related to the standing duration and muscle fatigue 

as indicated by knee buckle measurement. Another important message from this research 

study is that MMG could be used alone as a feedback signal in the closed-loop FES 

standing exercise to monitor muscle fatigue and optimise FES parameters. 
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CHAPTER 5: ELECTRICAL STIMULATOR WITH 

MECHANOMYOGRAPHY-BASED REAL-TIME MONITORING, MUSCLE 

FATIGUE DETECTION, AND SAFETY SHUT-OFF: A PILOT STUDY 

5.1 Introduction 

Functional electrical stimulation (FES) is a neuroprosthetics technique to assist 

individuals with spinal cord injury (SCI) to train and strengthen their paralyzed muscles 

(Krajl, Bajd, Turk, & Benko, 1986; Kralj & Bajd, 1989; Veltink & Donaldson, 1998). In 

general, the electrical stimulation parameters, i.e., pulse amplitude, width, and frequency, 

are preset before the stimulation training begins (Newham & Donaldson, 2007) and can 

be changed manually throughout the session to achieve a certain amount of muscle output. 

In an open-loop stimulation system such as FES cycling, these parameters may not be 

changed automatically even if the muscle output drops as a result of muscle fatigue. 

Systems that monitor the output in some ways and adopt the parameters accordingly are 

generally referred to as “closed-loop systems”. 

Various types of feedback sensory have been used in previous studies, e.g., 

electromyography (EMG) signals (Ibitoye et al., 2014a), kinematic sensors to detect 

movement (Taylor, Picard, & Widrick, 2011), user-controlled buttons (Newham & 

Donaldson, 2007), and position sensor for gait control (Y. L. Chen et al., 2001). (Y. L. 

Chen et al., 2001). Sensors such as proximity (Hodkin et al., 2018), kinetic (Simonsen, 

Spaich, Hansen, & Andersen, 2016), motion (Braz et al., 2016), and stretch (Shimada et 

al., 2001) sensors have been reported to be used in closed-loop systems or to monitor the 

FES evoked activities online. Even though there has been research on several closed-loop 

FES systems, they have not been extensively applied in clinical applications (Ibitoye et 

al., 2016c). Evoked-EMG is one of the most popular methods for closed-loop FES 

systems because it correlates relatively well with the muscle contraction force. 
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Alternatively, a mechanomyography (MMG) sensor can be used to record the mechanical 

activities of the muscle.   

Zhang et al. (2013) developed a closed-loop FES system to control knee joint torque 

with real-time feedback of the evoked-electromyography (eEMG) on able-bodied 

volunteers using EMG-feedback predictive control (EFPC) to control joint torque. 

Results showed adequate torque tracking with an RMS error of approximately 2.2 N m. 

However, their techniques for removing stimulation artefacts from the eEMG signal 

remain unclear, and the experiment was limited to able-bodied volunteers and did not 

consider muscle fatigue. 

 Li et al. (2016) proposed an eEMG controlled real-time closed-loop FES system to 

estimate induced joint torque and muscle activation on both healthy and SCI volunteers. 

Results showed that joint torque prediction and muscle activation tracking and control of 

FES were satisfactory. However, a large number of subjects could vary the results of 

muscle activation tracking and joint torque prediction accuracy using the Kalman filter 

neural network. Another EMG-based real-time closed-loop control FES system was 

proposed by Li et al. (2017) to control four muscle activation patterns in triceps surae and 

tibialis muscle by adjusting the pulse width. Three able-bodied and five SCI patients were 

investigated. Results showed satisfactory tracking of the muscle activation by pulse width 

modulation and EMG feedback. However, the researcher did not consider muscle fatigue 

in the experiment and any detection technique. An alternative to the EMG signal can be 

the MMG signal (Tanaka, Okuyama, & Saito, 2011). The MMG sensors have been 

reported to quantify muscle fatigue during FES muscle contractions (Ebersole et al., 

1999). Furthermore, the MMG signal is not influenced by stimulation artifacts. Studies 

on MMG applications in FES systems have found a strong correlation between MMG 

parameters and FES induced torque (Hill et al., 2016; Ibitoye et al., 2016b). 
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Krueger, Scheeren, Nogueira-Neto, Button, and Nohama (2017) used two MMG 

features, RMS and mean frequency (MF), to investigate a possible relationship between 

healthy volunteers and SCI patients in their rectus femoris and vastus lateralis. The result 

showed that RMS and MF were not consistent between healthy volunteers and SCI 

patients due to differences in slow and fast-twitch muscle fiber composition and 

responses. Moreover, RMS and MF were inversely correlated, which could be due to the 

usage of monophasic pulses and the charge imbalance at the activated nerve. The 

researcher focused on off-line analysis but suggested implementing an MMG sensor in a 

closed-loop application. Ibitoye et al. (2016b) estimated NMES-evoke knee extension 

(KE) torque using the MMG signal and a Support Vector Regression (SVR) model with 

a kernel function. Results of eight healthy volunteers showed that the knee torque 

prediction accuracy achieved was up to 94% and 89% for actual and predicted torque 

values, respectively, in a cross plot of training and testing data set.  

Wu, Wang, Huang, and Gao (2018) introduced real-time voluntary knee motion 

recognition using a multichannel mechanomyography signal from MMG sensors, 

attached to clothes. Eight able-bodied subjects were selected to classify six knee motions 

with the support vector machine (SVM) using four features, namely the mean standard 

deviation (STD), autoregressive coefficients (AR(3)), the difference in mean absolute 

value (DMAV), and power spectral density (PSD). The mean accuracy achieved was 

88%. The system's accuracy increased up to 91% with the proposed DMAV feature. 

However, MMG knee motion classification in real-time closed-loop FES induced knee 

motion can be challenging. 

Most of the closed-loop studies in real-time applications use EMG sensors to monitor 

or control the contraction strength of the muscle. MMG sensor applications in the FES 

system have been mostly used to perform muscle assessment or torque estimation. 
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However, based on the literature, researchers have not yet reported any MMG sensor-

based real-time FES system that monitors SCI patients’ muscle performance and prevents 

overstimulation. Muscle fatigue is one of the limitations of FES applications and must be 

monitored to avoid overstimulation of the muscles.  This pilot study proposed a novel 

MMG sensor-based FES system that uses the MMG-RMS feature in real-time to detect 

muscle fatigue. The proposed FES system was configured to automatically terminate the 

stimulation session, depending on the fatigue-related drop of the MMG-RMS signal. To 

validate the system, isometric torque was measured throughout the experiment. 

5.2 Experiment Protocol 

5.2.1 Participants:  

This pilot study was conducted in the Department of Rehabilitation, University of 

Malaya Medical Centre. Three subjects with motor complete SCI were included, 

according to the American Spinal Injury Association (ASIA) impairment scale (AIS) A 

and B, implying complete motor loss. The SCI subjects were 30, 47, and 51 years of age 

with a level of injury at T4, C7, and T1 and time post-injury 5, 13, and 15 years. AIS scale 

B for the first two and AIS scale A for the last one. Before starting the experiment 

procedure, each subject signed the consent form as approved by the University Malaya 

Medical Centre ethics committee (Approval No: 1003.14 (1)). All subjects were 

experienced FES users. 

5.2.2 Experiment setup 

A constant voltage, wireless controlled stimulator (custom developed) was used in this 

experiment. The stimulator waveform was a biphasic charged balanced square wave. The 

amplitude was set according to the patients’ maximum tolerable current to reach 

maximum possible muscle contraction (Ibitoye et al., 2016b), and amplitude was adjusted 

(80-90 Vp-p) for each individual to generate a complete unloaded knee extension prior to 
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the experiment (Krueger, Scheeren, Nogueira-Neto, Button, and Nohama 2017). 

However, the maximum tolerable amplitude level was limited to the patient’s comfort 

when high stimulation current contracts the muscle.   

The frequency and pulse width were fixed at 35 Hz and 350 μs according to the 

recommendations of Vargas Luna José, Krenn, Cortés Jorge, and Mayr (2013). Two 9 x 

15 cm self-adhesive skin surface electrodes (RehaTrode, HASOMED, Germany) were 

placed proximally 7-10 cm above the patella and the second one 7-10 cm higher in the 

proximal distance (Gargiulo et al., 2008; Gobbo, Maffiuletti, Orizio, & Minetto, 2014; 

Kralj & Bajd, 1989). Figure 5.1 illustrates the experimental setup. 

 The subject is seated on the Biodex chair for isometric torque recording. Stimulation 

electrodes are attached on the quadriceps muscle. The MMG sensor was mounted on the 

skin surface over the rectus femoris muscle belly. Signals are recorded using a DAQ card 

and then processed on a laptop computer using LabView Software.  

 

Figure 5.1: Experimental setup for the proposed real-time monitoring FES 
system 
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5.2.3 Instrumentation 

Isometric torque was measured with the Biodex dynamometer System 4 (Biodex 

Medical Systems, Shirley, NY, USA) and concurrently recorded with muscle MMG 

signal. The MMG sensor was connected to the National Instruments (Austin, TX, USA) 

Multifunction I/O Device USB-6343, which is connected via USB to a laptop computer 

running LabView (National Instruments, Austin, TX, 2014) for further data processing 

and controlling the stimulator remotely via serial port. 

5.2.3.1 MMG measurement  

An accelerometer sensor (ADXL335) was used to collect MMG signals (Islam et al., 

2014). (Islam et al., 2014). The dimension of the accelerometer on the PCB board is 18 

mm × 15 mm × 2 mm. A plastic casing of 30 mm diameter and 4 mm height (inside to 

outer surface thickness 1 mm) was used to obtain maximum muscle vibration from the 

skin surface. The sensor sensitivity was 300 mV/g. The MMG sensor was placed on the 

muscle belly over the rectus femoris using double-sided tape to ensure gentle placement 

on the skin (Ryan et al., 2008a). The knee joint angle was set to 30° using the Biodex 

knee attachment module (Mohamad, Hamzaid, Davis, Abdul Wahab, & Hasnan, 2017). 

During the electrically evoked muscle contraction, the MMG signals were acquired at 

a 1 kHz sampling rate. To reduce movement-related noise and artifacts (Beck et al., 2009; 

Madeleine, Bajaj, Søgaard, & Arendt-Nielsen, 2001) the acquired raw signal was digitally 

filtered with a zero-phase 4th order Butterworth bandpass filter with cut-off frequencies 

of 5Hz and 100Hz. Data was recorded in three trials for left and the right legs with 15 

minutes of rest between each trial per day. The resting period ensures that the muscles are 

completely recovered at the beginning of each trial. Each SCI individual participated in 

three sessions, with a minimum duration of 48 hours between session days (Kesar & 

Binder-Macleod, 2006).  
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The recorded data was processed in real-time using a LabView program for extracting 

the RMS feature of the MMG signals. The MMG-RMS feature was calculated every 

second and compared with its initial RMS value starting from the third seconds (avoiding 

the first two seconds to allow sensor readings to stabilize). The FES-evoked muscle 

fatigue was defined as the percentage drop in MMG-RMS value compared to the initial 

value and was compared with the drop in isometric torque. Three threshold values were 

defined; 50% (thr50), 60% (thr60), and 70% (thr70) drop from initial MMG-RMS value. 

A custom-written algorithm (Figure 5.2) was incorporated in the LabView software to 

automatically terminate the stimulation session when the MMG-RMS value dropped to 

the threshold value. Isometric torque, measured with the Biodex dynamometer, was 

additionally recorded for offline analysis and to validate the MMG response.  

 

Figure 5.2: Flow chart of the FES system with MMG-based real-time fatigue 
monitoring and safety shut off. 
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5.3 Results and analysis 

Figure 5.3 and 5.4 show the mean and standard deviation of the MMG-RMS and the 

isometric torque for 3 trials at different threshold values. The threshold level thr70 shows 

longer stimulation time as well as MMG-RMS and torque drop the lowest from its initial 

value. It can be seen from Figure 5.4 that the torque dropped below 9 N-m from the 

maximum mean torque of 18 N-m. When stimulation starts to reach the peak torque as 

displayed on the Biodex-system, the response time is higher, while the MMG-RMS 

response is instantaneous (less than a second). 

 

Figure 5.3: MMG-RMS over stimulation time of three trials with safety-shutoff 
at thr50, thr60 and thr70 for Subject 1, right leg 

 

Figure 5.4: Isometric torque over stimulation time with safety-shutoff at thr50, 
thr60, and thr70 drop for Subject 1, right leg 
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Table 5.1 shows the mean auto-termination time of all trials for all 3 subjects in both 

legs for RMS threshold levels thr50, thr60, and thr70. The stimulation time of thr70 is 

significantly longer than thr50 (p=0.01). 

Table 5.1: Average stimulation time for different RMS threshold drops. 

RMS Threshold 

Level 
Trials˄ time, s (Mean , SD) 

thr50 18 22.7 ± 9.9 

thr60 18 25.6 ±11.2 

thr70 18 31.2 ± 8.7* 

* Indicates a significant difference. ˄ Each leg 3 trials in 1 day, 3 days 9 trials for one 
leg, both legs 18 trials. 

The stimulation times to reach the threshold thr50 and thr60 are statistically not 

different (p=0.38) as well as the stimulation times to reach thr60 and thr70 (p=0.09).  

Overall, the stimulation time increased as the threshold level decreased. Table 5.2 

summarises the mean stimulation time for all 3 subjects for both legs. Subjects 1 and 2 

had their mean stimulation time increased when the MMG-RMS was allowed to drop to 

a lower threshold, i.e., 11 s to 20.6 s when dropping from thr50 to thr70 (Subject 1, right 

leg). For subject 3, thr60 and thr70 showed a similar time of about 39 s with a lower 

stimulation time of 28 s at thr50. 
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Table 5.1: Stimulation end time (s) at different RMS threshold drop 

Su
bj

ec
t 

 
N

um
be

r 
of

 tr
ia

ls
 

Stimulation end time, s 

 

thr50 

 

thr60 

 

thr70 

Left Right Left Right Left Right 
1 3 27.3 ± 2.5   11 ± 3.6 21.6 ± 6.5   16 ± 3.0 28.6 ± 3.0   20.6 ± 3.7 

2 3 19.3 ± 6.4   13.3 ± 1.5   18 ± 5.2   18 ± 4.3    34 ± 6.5   23.6 ± 2.0 
3 3 37 ± 4.3   28.3 ± 3.5   41 ± 1.7   39.3 ± 1.1 42.6 ± 2.5   38 ± 5.2 

To
ta

l 9 27.8 ± 8.8   17.5 ± 9.3 26.8 ± 12.3   24.4 ± 13    35 ± 7.0    27 ± 9.3 

Ti
m

e 
  

(%
)  79.4 50 76.5 69.7 100 77.1 

*Data in Mean ± SD  

The stimulation time in the left leg did not show a consistent increment from thr50 to 

thr60 for all subjects. However, for subjects 1 and 2, their stimulation time significantly 

increased by about 7 s and 16 s for threshold thr60 to thr70 in the left leg. On the other 

hand, in subject 3's left leg, the mean stimulation time remained in the range of 37 s – 42 

s for all threshold levels.  

5.4 Discussion 

A real-time MMG-RMS-based FES system that automatically terminates an electrical 

stimulation session when critical muscle fatigue occurs was successfully implemented on 

3 SCI individuals on both legs. This study focused on muscle monitoring using an MMG 

sensor to detect muscle fatigue using the RMS feature of MMG. One of the most 

important features for monitoring muscle condition is the RMS feature of MMG. Two 

studies reported a linear relationship between RMS and isometric torque prediction (X. 

Chen et al., 2012). In our study, muscle fatigue was evaluated using a Biodex torque 

measurement device, while MMG-RMS values were computed every second. The mean 
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stimulation time for both legs increased as the threshold decreased, as expected, and 

manifested by the longer stimulation time before safety shutoff occurs. Overall mean 

stimulation times in thr50 and thr60 were reportedly similar, suggesting that any future 

deployment of MMG-RMS as feedback in a closed-loop system should only consider 

thr70 MMG-RMS drop for critical fatigue detection.  

The monitoring of muscle fatigue to prevent tissue damage during an isometric 

electrical stimulation training session was demonstrated. In future projects, MMS-RMS 

monitoring might be considered to prolong dynamic training sessions like FES cycling, 

which usually continues up to one hour (de Sousa, Harvey, Dorsch, Leung, & Harris, 

2016). However, it must be considered that FES cycling employs periodic stimulation of 

different muscle groups, so the reliability of the sensor must be proven for such dynamic 

movement. The significantly longer time to fatigue in FES cycling (1 hour) compared to 

the stimulation time in this study (less than 1 min) is explained by the on-off stimulation 

regime in cycling, other than the simple continuous knee extension as presented in this 

study.    

MMG-RMS thr50 and thr70 were significantly different (p=0.013) in stimulation time 

that indicates the thr70 MMG-RMS drop prolongs the stimulation time and influences the 

torque drop below 50% of initial torque, which indicates critical muscle fatigue 

(Yoshitake, Ue, Miyazaki, & Moritani, 2001). The produced torque (out of 18 trials) did 

not drop to 50% at MMG-RMS thr50 (drops 3 out of 18) and thr60 (drops 5 out of 18) as 

compared to thr70 (drops 14 out of 18). Therefore, a thr70 selection can be used as a 

muscle fatigue monitoring indicator, which is the proxy of the external torque 

measurement. 

Considering that a drop of muscle torque to 50% of the initial value indicates the 

beginning of critical muscle fatigue (Cheng & Rice, 2010; Enoka & Duchateau, 2008), 
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thr70 is the related threshold to stop stimulation. Therefore, thr70 combines the 

advantages of the longest stimulation duration with timely safety shutoff. 

Results also indicated longer stimulation time in the left leg compared to the right leg 

(Table 5.2), meaning, the right leg tends to get fatigued more quickly than the left leg. 

Interestingly, stimulation times for thr50, thr60, thr70 did not change significantly for 

subject 3 in the left leg (Table 5.2). This could be due to physiological changes in the 

muscle properties and blood oxygenation (Hasnan et al., 2018; Hunt et al., 2006) that 

changed differently in both legs during stimulation (Laubacher et al., 2019), which 

affected muscle fatigue. In addition, psychological factors of an individual during FES 

exercise may also affect on early muscle fatigue. In (Belza, 1994), the authors defined 

muscle fatigue as a complex physiological and psychological  phenomenon. As 

demonstrated in this study, the longest stimulation time was at the thr70 and shortest at 

thr50. 

Moreover, total auto-termination time (all trials) for subjects 1 and 3 in between both 

their legs was significant (subject1 p=0.0071, subject2 p=0.05). On the other hand, 

subject 3 shows no significant changes in the performance of both legs (p=0.145). This 

indicates that the same stimulation parameter could have different effects on different 

legs of the same individual (Laubacher et al., 2019), which could be an effect of side 

dominance, whereby one side maybe naturally stronger than the other. The results 

confirm that the set-up of stimulation parameters should be adjusted individually before 

starting any long-duration exercise such as FES cycling.  

This study was limited to monitoring muscle fatigue only using the threshold of the 

MMG-RMS feature. As the number of subjects in this study is small, it is difficult to 

generalize the inter-subject’s correlation of muscle fatigue time based on MMG-RMS as 

the stimulation shut-off source. Further investigations of the real-time MMG might 
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qualify the sensor to be included in closed-loop systems that can vary in real-time any 

FES parameters to control muscle contraction and simultaneously monitor muscle 

fatigue. This study shows that MMG-based real-time closed-loop application may replace 

additional fatigue-monitoring torque measurement systems, reducing the amount of 

equipment and the effort for manual monitoring. In combination with the results of this 

study, MMG demonstrated its potential to serve as a feedback signal in  real-time control 

of FES applications such  as FES standing (Dzulkifli, Hamzaid, Davis, & Hasnan, 2018). 

5.5 Conclusion 

In conclusion, this study presented a real-time fatigue monitoring FES system, based 

on the MMG-RMS feature. Each SCI subject’s mean stimulation time depends on the 

MMG-RMS drop from its initial stimulation time. MMG-RMS thr70 drop allowed a 

longer stimulation time compared to thr50 and thr60 and was able to successfully detect 

muscle fatigue, as defined by the 50% drop in torque. Besides, this study found that each 

muscle performs differently, even in the same SCI individual. However, due to the 

dynamic muscle responses which affect each individual’s fatigue time, further 

investigation is required to use features of the MMG sensor to monitor FES-related 

exercise or training sessions. FES-evoked activities such as cycling, hand dynamometry, 

and standing for SCI patients could be performed safer, and more conveniently with 

minimal manual intervention. 
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CHAPTER 6: SIMULATION OF DIFFERENT MODES OF USER CONTROL 

STRATEGY TO SUSTAIN STANDING DURATION WITH SCI TO PREVENT 

MUSCLE FATIGUE WITH MMG FEEDBACK 

6.1 Introduction  

Functional electrical stimulation (FES) has been widely used to restore lost motor 

function after spinal cord injury (SCI). FES standing is an essential exercise since it could 

stimulates lower limb muscles and bones, including increasing the muscle force 

production following sufficient training (Gordon & Mao, 1994). This exercise also has 

the advantage of improving physiological and musculoskeletal outcomes (Abreu, Cliquet, 

Rondina, & Cendes, 2008; Previdi et al., 2005; Riener, Ferrarin, Pavan, & Frigo, 2000). 

The main limitations to achieving these benefits and other positive outcomes of the 

FES standing exercise are the complexity of motor unit recruitment and firing frequency 

and the consequent rapid muscle fatigue onset. The literature (Ibitoye et al., 2016a) 

indicates that rapid muscle fatigue impedes prolonged FES standing as muscle fatigue 

cannot be eliminated from FES induced contractions. Ongoing research efforts to 

attenuate muscle fatigue effects to prolong the FES standing exercise duration using 

different control methods and controllers are being undertaken. Common control methods 

include the proportional integral derivative (PID) controller, fuzzy logic controller, neural 

network (NN) controller, and the on-off controller. These methods were mainly used for 

FES parameters optimisation for better control in muscle contraction. For example, a 

computer simulation-based reinforcement machine learning method (Davood & 

Andrews, 1998) was used by implementing a fuzzy logic controller in FES to support the 

sit-to-stand exercise. In (Davis, Houdayer, Andrews, & Barriskill, 1999), a complex 

implanted stimulator to prolong FES closed-loop standing exercise was implemented on 

two paraplegic people. At a 10° knee angle drop, this study presents a control system for 
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knee angle correction using goniometer feedback sensing. The implanted stimulation and 

knee angle feedback showed that people with paraplegia could maintain an upright stance 

for ≥ 60 min. Before this study, Davis, Houdayer, Andrews, Emmons, and Patrick (1997) 

also applied FES-closed-loop using surface electrodes to achieve uninterrupted standing 

for ≤ 30 min. However, in this experiment, the application of the muscle fatigue 

monitoring system was not considered, hence, no reporting on the standing duration. 

 In another study by Yu et al. (2001), a PID controller was applied to FES in standing 

to control knee-end velocity (Yu et al., 2001). The experiment was implemented by 

stimulating quadriceps and hamstring muscles and compared with an open-loop and 

on/off control system in people with SCI. The study employed an electrogoniometer to 

capture knee angular velocity as a feedback signal in the PID control system. The 

controller performed best in reducing knee extension velocity rate when compared to the 

other two stimulation methods based on open-loop control of stimulation. Another FES 

closed-loop study on smooth standing outcome was reported by Jaime, Matjacic, and 

Hunt (2002). Their experiment was conducted in real-time by varying stimulator 

parameters (i.e., amplitude, pulse width, and frequency) modulation to control standing 

balance using a force plate as a reference track in a person with paraplegia. 

 Bijak and co-researchers (Bijak et al., 2005) conducted an FES-supported standing 

and stepping study in SCI patients by stimulation parameters optimisation. The authors 

(Bijak et al., 2005) reported a smooth upward movement in standing by stimulation onset 

duration between 0.2-0.4 s for quadriceps and gluteus muscle activation. This study did 

not consider the limiting influence of muscle fatigue. Generally, none of those above 

studies applied signals of muscle origin that are immune to stimulation artefacts (Ibitoye 

et al., 2014b), such as our proposed method that utilizes an MMG signal that is sent as a 
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feedback signal to optimise the stimulation parameters and at the same time monitors 

muscle performance during the standing exercise. 

Dzulkifli et al. (2018) conducted an FES standing study to predict FES induced torque 

using MMG-RMS and RMS-zero crossing as a feedback signal for artificial NN 

controller in individuals with SCI. However, the NN controller was trained with a very 

small number of data sets, which may have affected the accuracy of their study. 

Additionally, optimisation of stimulation parameters was not considered to prolong 

standing duration in their study. In a recent experimental study by (Ibitoye et al., 2020a), 

MMG amplitude was identified as a proxy of muscle fatigue during standing exercise in 

people with SCI. These studies did not consider the importance of the stimulation 

parameters selection criterion for extending standing time or reducing fatigue time. In this 

study, stimulation of different modes is simulated in control of standing by an SCI user 

by pressing a button to increase the amplitude. 

6.2 Methodology 

This study was in two stages. In the first stage of the study, an FES standing experiment 

was conducted on SCI individuals to collect MMG signals from their rectus femoris (RF), 

vastus lateralis (VL), and vastus medialis (VM). This was done to obtain the MMG-RMS 

values for application, such as feedback signal for FES standing optimisation to attenuate 

the effect of the early onset of unavoidable muscle fatigue. In the second stage of this 

study, a simulation environment was created using a python programming language with 

the experimental MMG-RMS values representing standing duration and contraction 

strength. Each participant with SCI underwent two experimental trials separated by 48 

hours following the standard procedure to check the muscle fatigue effect. 
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6.2.1 Study population 

Five experienced FES users with SCI (four male and one female) voluntarily 

participated in this experiment. All the participants had motor-complete SCI and were 

unable to do voluntarily contract their lower limb muscles. Their injury levels were A and 

B (i.e., according to AIS (Fawcett et al., 2007); injury levels were between C6 and T4; 

age: 40 ± 9 years; body mass: 73 ± 7 kg; postinjury duration: 11 ± 5 years; and body 

height: 171 ± 6 cm. The participants were made to stand with Biodex harness support for 

safety. The following exclusion criterion for the participants' recruitment is (1) severe 

contractures, (2) pressure sores, and (3) severe spasticity, which could have prevented 

smooth and upright standing posture. Throughout the experimental sessions, participants 

were continuously being monitored, especially their blood pressure and heart rate, by a 

rehabilitation physician to ensure their medical fitness. Each participant endorsed a 

written informed consent form before participation. The experimental procedure was 

approved by the University of Malaya ethical committee with approval No: MECID.NO: 

20164 – 2366. 

6.2.2 FES set up and MMG signal acquisition 

In the standing experiment, two different stimulation frequencies of 20 Hz and 35 Hz 

were chosen to vary the muscle fatigue onset time (Eser, Donaldson, Knecht, & Stussi, 

2003; Ibitoye et al., 2016a). Based on an earlier proof of concept study that was published 

in our laboratory (Ibitoye et al., 2020a), stimulation was stopped manually when the 

observed knee buckle angle was up to 30°. This was in accordance to the study of Braz 

et al. (2015), which identified this knee position as the point of critical muscle fatigue 

measured by a goniometer. The stimulation pulse width was fixed at 300 µs in both 

frequencies’ trials. Stimulation current was delivered via current-controlled 

neuromuscular stimulator (RehaStim™, Hasomed GmbH, Magdeburg, Germany) 

through pairs of surface electrodes (9 cm × 15 cm; Hasomed GmbH, D-39114 
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Magdeburg, Germany) and were placed on quadriceps and gluteal muscles (Ibitoye et al., 

2020a) (Figure 6.1). It is important to note that the delivered/selected stimulation currents 

vary depending on the individuals based on their muscle size and tolerance, ranging 

between 80 mA and 120 mA, for quadriceps, while the gluteal current was 20% less 

compared to the quadriceps as recommended in (Braz et al., 2015). 

 

Figure 6.1: The experimental setup for FES supported standing, one MMG 
sensor showing at the lateral side only 

The MMG signals were collected and recorded at a 2 kHz sampling rate using the 

BIOPAC system (MP150, BIOPAC Systems Inc., Goleta, CA, USA), and the signals 

were digitally filtered between 20 Hz and 200 Hz as recommended in (Dzulkifli et al., 

2018). Furthermore, the MMG-RMS values were extracted from the processed MMG 

signals at every second in the FES five modes of simulation stage, which is the second 

stage of this study. 

 
6.2.3 FES five modes of simulation 

The simulation environment was created using a python script. The simulation 

environment was designed to emulate actual SCI user activity, such as manually pressing 

a button using one’s hand to increase stimulation current and preset settings to sustain 
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longer standing duration. The simulation environment was separated into five settings: (i) 

open-loop; (ii) single press increase at 5 s; (iii) single press at 10 s; (iv) double; and (v) 

triple press increase. 

In the open-loop setting, the stimulation parameter (i.e., current) remains unchanged 

for all users. For the single press 5 s setting mode, the current increases on the 5th, 10th, 

and 15th seconds. The single press 10 s setting raises current values on the tenth, 

twentieth, and thirtieth seconds. While the double press and triple setting modes, as shown 

in Figure 6.2, increase current at the 10th, 20th, and 30th second twice and three times. 

 

Figure 6.2: Five settings for simulation environment adopted in this study   

For the simulation, the input signal was MMG-RMS values. Three sensors' MMG-

RMS values were combined (i.e., affixed to RF, VL, VM) to get a single MMG-RMS 

value in the combination of sensors (RF-VL, RF-VM, VL-VM) to randomize the 

simulation. The increment and decrement of MMG-RMS values in different settings (i.e., 

single, double, and triple press) were simulated randomly to avoid bias in simulation 

results. Every single button press gives the effect of the current increase to reflect in the 

MMG-RMS increase up to 10-20% from the maximum MMG-RMS value depending on 
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individual participant muscle responses. The rate of increment of MMG-RMS in the 

double and triple press settings is made to be lower than the preset of the single press for 

the simulation to reflect the dynamic response from the user. Conversely, the effect the 

simulated decrement rate after increment in the MMG-RMS values was also random. This 

was because when multiple presses occur, the rate of decrement is usually faster, and this 

could be caused by muscle fatigue in random as muscle may not be able to sustain a long 

time due to the quick increment (Braz et al., 2015). 

The simulation stopped automatically when MMG-RMS values dropped by 80% from 

the initial value, which indicated critical muscle fatigue. The threshold value was selected 

to confirm that all the trials become fatigued in actual torque measurement. The analysis 

ignored the first two seconds of MMG-RMS values due to signal instability during 

stimulation onset. To analyse and compare simulated and standing data, the IBM SPSS 

software (version 20, IBM SPSS for Windows, Armonk, NY, USA) was used to find the 

relationship between the trials, participants, and simulated setting mode. Statistically 

significant (p ≤ 0.05) was set as the acceptance level. 

6.3 Result 

Figure 6.3 depicts the results of the simulated output for all five settings when the 

MMG-RMS dropped below 80% for a subject at 20 Hz frequency. From the figure, it can 

be seen that the MMG-RMS value dropped quickly for the double and triple press 

settings. In the figure, actual-RMS depicts computed MMG-RMS from experiment data. 

The highest simulation time was achieved in the 10 s setting compared to other setting 

modes. The single press 10 s setting simulation time was near the actual standing time, 

which could be referred to as the point of 30o knee buckle or critical muscle fatigue 

(Dzulkifli et al., 2018; Ibitoye et al., 2020a). 
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Figure 6.3: Simulated MMG-RMS output of 20 Hz for five settings of subject 2 
as a representative case 

Furthermore, since the simulation time also depends on each participant due to 

different dynamic muscle responses when electrical stimulation is applied (Lynch, 

Graham, & Popovic, 2011), the average simulation times observed for the five subjects 

were 64 ± 40 s, 125 ± 63 s, 80 ± 43 s, 51 ± 21 s, 45 ± 15 s for participants one to five, 

respectively. A summary of the simulated standing time for the two stimulation 

frequencies is given in Table 6.1. 

From the table, the average standing time was higher for the 20 Hz frequency when 

compared to the 35 Hz frequency because higher frequency results in a faster onset of 

muscle fatigue (Ibitoye et al., 2020a). The recorded first trial stimulation time was higher 

than the second trial simulation. This could be due to inadequate fatigue recovery time 

for the same muscle group resulting in earlier fatigue onset on the second trial, preventing 

longer standing duration (Ibitoye et al., 2020b). Overall, the standing duration between 
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the low frequency 20 Hz and high frequency 35 Hz stimulation was statistically 

significantly different (p ≤ 0.001). 

Table 6.1: Average simulation time of sensors combinations in 20 and 35 Hz 
frequency in five subjects 

Su
bj

ec
t N

o.
 20 Hz 35 Hz 

Trial1 
time (s) 

 

Trial2 
time (s) 

Trial1 
Time (s) 

Trial2 
Time (s) 

1 128 ± 72 98 ± 62 68 ± 43 52 ± 30 

2 156 ± 65 98 ± 19 58 ± 34 47 ± 16 

3 83 ± 67 96 ± 73 94 ± 58 64 ± 20 

4 58 ± 25 64 ± 20 53 ± 22 35 ± 5 

5 51 ± 12 53 ± 14 70 ± 25 36 ± 3 

 

The different simulation setting modes (i.e., the manually controlled settings) also 

affected the standing duration and muscle fatigue time, as shown in Table 6.2. In the 

open-loop mode for participants 1, 3, 4, and 5, the average standing duration was below 

70 s, while for participant 2, the standing duration was about double the values recorded 

for open-loop, which indicated the fatigue duration differences for these two cases. 

Compared to the single press 5 s setting, the double press, and the triple press settings, 

the standing duration was also lower. However, the highest standing duration of 10 s was 

found in single press mode. For the 10 s mode, the stimulation current increased in a 

single unit at a time, then the muscle stayed in the resting position compared to other 

setting modes. 
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Table 6.2: Average simulation time of three sensor combinations for the 
different five setting modes 

Su
bj

ec
t N

o.
 

Open-

loop 

duration 

(s) 

Single 

press 

mode 

Single 

press 

mode 

Double 

press 

mode 

Triple 

press 

mode 

10s 5s 10s 10s 

1 62 ± 37 153 ± 58 110 ± 57 62 ± 35 44 ± 12 

2 98 ± 67 141 ± 67 91 ± 48 61 ± 25 57 ± 25 

3 66 ± 27 174 ± 61 91 ± 28 47 ± 7 43 ± 8 

4 48 ± 14 81 ± 24 52 ± 19 42 ± 7 36 ± 7 

5 47 ± 11 74 ± 29 56 ± 12 42 ± 9 42 ± 7 

  

Statistically, there were significant differences between setting modes. The open-loop 

mode is only significantly different in standing time (p ≤ 0.001) from the single press 10 

s mode only, while other setting modes did not show any statistical significance in terms 

of the p-value of 0.315 for the open-loop single press (5 s), and p-value of 0.748 for the 

open-loop-double press, and p-value of 0.088 for the open-loop-triple press. Furthermore, 

the single press 5 s was not significantly different (p > 0.005) compared to the single press 

10 s, while other modes are significantly different.  

On the other hand, double press and triple press mode were significant to single press 

10 s and single press 5 s mode. All in all, statistical analysis shows that single press 10 s 

mode systems performance was better in extending the FES standing exercise duration 

when compared to other setting modes. These results also show that the application of the 

MMG signal may be useful in monitoring muscle fatigue during standing exercise. 

Although the single press 10 s setting showed good performance in the designed 

simulation environment, further practical FES supported standing in a wider population 
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may be needed to generalize the good performance obtained in this study, and this may 

also influence statistical inferences. 

6.4 Discussion 

Muscle fatigue prevents FES users from continuing standing exercises for a long 

duration. In FES-supported standing, in some situations, users may desire to control the 

level of stimulation current ‘strength’ by themselves during standing. However, due to 

the users' lack of understanding of muscle fatigue and stimulation intensity relations, the 

standing durations can be significantly affected when stimulation parameters are 

manually controlled by the SCI users or by a physiotherapist who may also be due to the 

unavailable or inaccessible appropriate feedback measure during FES-assisted standing. 

In general, standing stimulation operates in an open-loop where the stimulation 

parameters are fixed, and fatigue can happen faster when parameters do not fit the SCI 

individuals. Available literature showed a strong correlation between MMG-RMS and 

muscle fatigue (Ibitoye et al., 2019). Thus, this research shows how muscle fatigue can 

affect standing duration in different settings modes of stimulation in a simulation 

environment.  

The open-loop stimulation requires very laborious attention to monitor muscle fatigue 

by visual inspection when the knee buckle occurs and stop stimulation at the right time. 

Having a feedback system to the stimulator helps to monitor SCI individuals accurately 

when muscle fatigue happens. Figure 6.3 shows that in the open-loop mode, the standing 

duration reaches about 191 s while the actual standing duration is about 242 s. This shows 

that muscle fatigue occurs much earlier than assumed when no intervention was made 

during the standing session. The single press 10 s mode standing duration reached a 

duration close to the actual experimental standing duration from stage 1 because of 
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stimulation amplitude changes in a controlled manner, which delayed fatigue time rather 

than the fixed amplitude parameter settings in open-loop.  

Muscle fatigue was also compared between trials and two frequencies in Table 6.1. 

Higher stimulation frequency causes muscle fatigue to happen faster than lower 

frequency (Kesar & Binder-Macleod, 2006). For subjects 1, 2, and 4, with lower 

frequency (20 Hz), the average standing durations in all trials are higher than 35 Hz. On 

the other hand, for subjects 3 and 5, their standing duration only fit the hypothesized 

frequency strategy in the second trial. The outcome of this finding suggests that the 

selection of stimulation frequency plays an important role in standing duration. 

Importantly, through this simulation exercise, the result shows that muscle fatigue 

detection by MMG-RMS threshold and thus termination of FES standing occur earlier 

than all the experimental trials done through observation of knee buckles. 

Table 6.2 shows the simulated standing time in five modes of settings for each individual. 

The user control modes significantly affect the standing time by pressing a button multiple 

times to increase the stimulation power. Simulated modes were assumed to have a 

layperson understanding of FES current control effect and are not advanced in 

understanding control stimulation parameters by themselves and also do not have direct 

access to the state of their muscle fibers, thus being uninformed about their muscles' 

fatiguability prospect. The simulation modes were also considered stressful situations 

such as FES-evoked standing body imbalance and heightened security demand during 

standing, and they could press the ‘current increase’ button multiple times to increase the 

current amplitude. Thus, in the simulated environment, the effect of multiple presses 

(double and triple press) modes on the standing duration becomes shorter than in open-

loop for all subjects. This is very likely due to the fact that multiple presses cause more 

increases in amplitude, and consequently, the muscles fail to sustain a long-standing 
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duration. The most recommended strategy in terms of prolonged standing duration would 

be a preset 10 s single amplitude increment, which could deliver the highest standing 

duration (mean 124 s) compared to all other modes (open-loop: 64 s, single press 5 s: 80 

s, double press 10 s: 51 s, and triple press 10s: 44 s). These results show that the 

application of the MMG signal may be useful in monitoring muscle fatigue during 

standing exercise. The single press 10 s setting showed good performance in the designed 

simulation environment; further trials on FES supported standing in a wider SCI 

population may be needed to generalize the favorable performance obtained in this study, 

which may also influence its statistical inferences. Although this study did not develop 

an adaptive stimulation parameter controller, these different modes of settings will help 

researchers to design a closed-loop MMG based electrically evoked standing system and 

conduct experiments more efficiently. 

6.5 Conclusion 

In clinical applications of FES-supported standing, safety is of high priority and is 

always desirable for objective clinical deployment. Because of random button pressing, 

unnecessary current increase, and thus faster fatigue onset, manually-controlled standing 

using stimulation button pressing may promote over-stimulation and, as a result, faster 

knee buckle. In this research, five modes of stimulations are simulated for optimal 

parameter selection purposes for standing exercises. The double press and triple press 

settings tended to shorten the standing duration and induced faster muscle fatigue. The 

single press 10 s mode proved efficient in achieving a relative maximum standing 

duration using MMG-RMS feedback. Thus, this research benefits rehabilitation 

physicians using the FES standing training program to improve the FES-standing protocol 

of people with SCI. 
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CHAPTER 7: CONCLUSION AND RECOMMENDATION 

This Chapter discusses the conclusion derived from the results obtained following the 

research studies conducted in this thesis. The Chapter also describes the thesis contributes 

to knowledge, the limitations of the thesis, and future recommendations of this thesis. 

7.1 Conclusion 

This thesis focused on developing and implementing a real-time muscle monitoring 

FES system using mechanomyography as a feedback signal for individuals with spinal 

cord injury. Following several experimental studies, the results obtained from these 

studies have answered the research questions in the thesis objectives. 

The first thesis objective was to deploy and implement mel-frequency cepstral 

coefficients (MFCC) feature extraction method to detect muscle fatigue from MMG 

signals collected from quadriceps muscles in persons with SCI during FES cycling using 

support vector machine classifiers. This was meant to demonstrate that the MMG signal 

could be used to track muscle contraction patterns during FES supported physical exercise 

such as cycling. Chapter 3 of this thesis was published in  Medical & 

Biological Engineering & Computing and showed that MFCC features of the MMG 

signals were able to classify non-fatiguing contractions and fatiguing contractions during 

FES supported cycling exercise in individuals with SCI. Specifically, the MFCC feature 

demonstrated higher accuracy with up to 90.7% in classification than the RMS feature of 

74.5% accuracy in RF, VL, VM muscles with SVM classifier. 

The average classification accuracy of the three sensors in each subject varied with a 

small standard deviation, and the outcome suggests that a single sensor may be sufficient 

to monitor muscle fatigue in quadriceps muscles. The accuracy of the RMS feature was 

lower than that of the MFCC feature of MMG, however the computation cost was lower 

in RMS compared to that of MFCC. Overall, the purpose of the first objective was 
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fulfilled by introducing new feature extraction methods for MMG signals to detect muscle 

fatigue using MFCC. 

The second objective of this thesis was the development of a real-time muscle 

monitoring FES system using MMG sensor. The study conducted on this objective was 

reported in Chapter 4 of the thesis, and the study is in preparation for publication. This 

study described the design and development of a stimulator system to monitor muscle 

condition in real-time using MMG sensor during standing. For implementation, a pair of 

two-channel Bluetooth controlled FES was used for control communicate to elicit 

sufficient muscle power to support standing exercise in individuals with SCI. The MMG 

responses from induced quadriceps muscle contractions showed a clear relationship 

between the drop in knee angle and MMG signal drops. Furthermore, the control signal 

responses were instantly sent from the graphical user interface to control stimulator 

parameter’s when knee-buckling began. 

The third thesis objective focused on implementing MMG signal for muscle fatigue 

detection during isometric muscle contractions evoked by the developed stimulator. This 

study on MMG-based real-time muscle fatigue detection has been published in the journal 

Biomedizinische Technik, De Gruyter. The experiment was conducted in a secured and 

controlled laboratory environment using Biodex Isokinetic Dynamometer to measure 

isometric knee torque. This was done in order to be able to compare the fresh and 

fatiguing muscle contraction with the MMG-RMS feature. In the experiment, the 

stimulation was made to automatically switch off during the isometric knee extension 

task once there was a drop in MMG-RMS compared to the preset threshold value. It was 

identified that the thr 70% (i.e., when RMS amplitude dropped to 70% from initial value) 

setting related to the drop in MMG-RMS had the maximum number of trials matched to 

detect muscle fatigue time with dynamometer’s torque measurement. In general, this 
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study uniquely provided evidence on the relationship between MMG signal and isometric 

muscle fatiguing contractions in individuals with SCI using the developed stimulator to 

evoke muscle contractions. 

The fourth objective of this thesis was to simulate different modes of stimulation for 

standing exercise using MMG-RMS as the feedback signal. This was done to investigate 

if this practice could objectively prolong standing duration. This study sought to simulate 

different modes of settings to optimise stimulation parameters from the experimental 

standing data. The experimental standing data of MMG-RMS was used to simulate five 

modes of control actions from SCI users. The button press was used to increase amplitude 

to sustain upright standing. Among the different settings for stimulation control strategies, 

the single press 10 s mode system supported the maximum simulated standing duration 

while the other simulated modes led to shortened standing duration. Overall, this thesis 

has presented the design and development of muscle condition monitoring FES system 

using MMG as the feedback signal. This was validated to recognize fresh and fatiguing 

isometric muscle contractions and standing exercise in individuals with SCI. 

7.2 Study contributions  

The main contribution of this study was to develop an FES device using MMG as the 

feedback signal. The thesis also investigated the device's performance during isometric 

knee extension, cycling, and standing exercise. Although this thesis mainly focused on 

lower limb rehabilitation, the results could also be applied to rehabilitate upper limb 

functions such as wrist extension and flexion. While the FES system was developed with 

MMG as the feedback signal, other sensors such as a goniometer, force-sensitive resistor, 

and similar sensors can be integrated in the future. 

Furthermore, while most of the commercially available stimulator’s firmware is 

restricted to the modifying of stimulation parameters by the user, the developed FES 
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system in this thesis stood out with the integrated FES controlled FES algorithm for 

automatic parameter optimisation. The outcomes of the studies conducted in this thesis 

also broaden the rehabilitation research application of MFCC for MMG feature analysis 

and extraction. In addition, the parameter selection criterion in this thesis could also aid 

our better understanding of how stimulation parameters affect muscle fatigue time when 

applied in clinical settings. Overall, this thesis has contributed to developing a viable and 

clinically useful FES system with MMG feedback to promote physical exercises in 

individuals with SCI. 

7.3 Study limitation  

One obvious limitation of the studies reported in this thesis under the clinical 

evaluation of the developed device was the small number of participants due to the 

unavailability of a suitable clinical population. A larger population may have aided results 

generalization. This is valid for training artificial intelligence algorithms to use a large 

pool of training datasets for better results. Another limitation of this thesis is because the 

developed device used surface electrodes for stimulation. By implication, the strength of 

the stimulation will always depend on the skin impedance, skinfold, and other anatomical 

characteristics of the potential users. Implanted electrode for stimulation would have been 

immune from all these limitations with a better muscle/nerve selectivity. However, most 

users prefer surface stimulation due to the invasive nature of the implanted stimulation 

and the fact that the mode of stimulation is also prone to infection if not professionally 

managed. 

7.4 Future work and recommendations 

Although the design and development of the FES system using MMG as a feedback 

signal meet the aim of the thesis as specified by the thesis’s objectives, there are still some 

areas for further improvement. 
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1. In the developed FES system, the laboratory's processing and analysis of MMG 

signals require a computer and data acquisition card. For portability, the MMG 

data acquisition and processing could be implemented in an integrated board 

such as raspberry Pi to make the system independent. 

2. In the different modes of the FES stimulation, only the amplitude parameter of 

the stimulation was considered for optimisation to prolong standing duration. 

Parameter optimisation of other stimulation parameters such as frequency and 

pulse width could also be investigated in the future, with implementation using 

appropriate artificial intelligence methods for better standing control and 

safety. 

3. Integration of this FES system on the conventional exercise supports and 

methods such as cycling ergometer, standing and stepping harness, isokinetic 

dynamometers could also be explored in the future. 
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