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MICROZOOPLANKTON DYNAMICS IN RELATION TO THE MICROBIAL 

LOOP IN MATANG ESTUARINE WATERS 

ABSTRACT 

Microzooplankton (20-200 μm), along with phytoplankton, bacteria and heterotrophic 

nanoplankton in a tropical estuary (Matang Mangrove Forest Reserve, MMFR) were 

investigated to evaluate their abundance in relation to the various environmental and 

biotic parameters, along with their interactions in the microbial food web to elucidate the 

role of microzooplankton in the estuarine water. This study looked into the 

microzooplankton composition, taxonomically and abundance (Chapter 4) and their 

feeding interaction with the other microbial component in the estuary (Chapter 5). With 

this information gathered we can thus fill the knowledge gap of the carbon flow in the 

estuary. A total of 39 microzooplankton taxa comprising of four major groups, i.e. loricate 

ciliates (37.72 %), aloricate ciliates (29.46 %), dinoflagellates (24.33 %) and 

meroplanktonic nauplius (8.49 %) were identified. The loricate ciliates were the most 

diverse group with 31 taxa recorded. Four major species of loricate ciliates were 

identified, i.e. Tintinnopsis beroidea, Tintinnopsis rotundata, Stenosemella avellana and 

Tintinnidium primitivum, while Strombidiidae and Strobilidiidae dominated the aloricate 

ciliates. Although small loricate ciliates were ubiquitous, redundancy analysis shows 

marked shifts in microzooplankton community structure, from one that was dominated 

by loricate ciliates during the drier South West (SW) monsoon, to aloricate ciliates at the 

onset of the wet North east (NE) monsoon, and then to dinoflagellates towards the end of 

the drier NE monsoon period.  These shifts were associated with rainfall, dissolved 

inorganic nutrients, salinity, temperature and microbial food abundance. There was no 

clear lunar effect on abundance of microzooplankton except for Favella ehrenbergii and 

copepod nauplii that were more abundant during neap than spring tide. 
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Rain-driven monsoonal effects showed significant impacts on microzooplankton 

herbivory and primary production; both significantly higher during the drierSouth West 

monsoon. The MMFR was characterised by high primary production (148 to 4021 µgC l-

1d-1; 1190 ± 249.6 µgC l-1d-1 ) and low bacterial production (1 to 6.1 µgC l-1d-1 ; 3.7 ± 1.5 

µgC l-1d-1). There is no coupling observed among bacterial production and primary 

production. Microzooplankton grazing on primary production was profound (887.02 µgC 

l-1d-1), followed by heterotrophic nanoplankton (1.33µgC l-1d-1) and bacterial production 

(1.28µgC l-1d-1). More than 70% of the primary production was transferred to the 

microzooplankton via grazing, compared to only about 30% of both bacterial production 

and HNP production. The present study highlighted the role of microzooplankton as an 

important consumer of phytoplankton production in the highly turbid but productive 

mangrove estuary. 

 

Keywords: Microzooplankton - tropical estuary – temporal distribution - primary 

production - microbial dynamic – herbivory  
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DINAMIK MIKROZOOPLANKTON DI HUTAN PAYA LAUT MATANG 

SEHUBUNGAN DENGAN LINGKARAN MIKROB 

ABSTRAK 

Mikrozooplankton (20-200 μm), fitoplankton, bakteria dan nanoplankton heterotrofik di 

sebuah muara tropika (Hutan Paya Laut Matang, MMFR) telah disiasat untuk menilai 

kelimpahannya berkaitan dengan pelbagai parameter persekitaran dan biotik, bersama 

dengan interaksi mereka dalam web makanan mikrob. Sebanyak 39 mikrozooplankton 

taksa yang terdiri daripada empat kumpulan utama, iaitu loricate ciliates (37.72%), 

aloricate ciliates (29.46%), dinoflagellates (24.33%) dan meroplanktonic nauplius 

(8.49%) telah dikenal pasti. Loricate ciliate adalah kumpulan yang paling pelbagai 

dengan 31 taksa dicatatkan. Empat spesies utama loricate ciliate dikenal pasti, iaitu 

Tintinnopsis beroidea, Tintinnopsis rotundata, Stenosemella avellana dan Tintinnidium 

primitivum, sementara Strombidiidae dan Strobilidiidae mendominasi aloricate 

ciliates. Struktur komuniti microzooplankton didapati berubah dari semasa ke semasa, di 

mana analisi redundansi menunjukkan perubahannya yang ketara. Pertaburan loricate 

ciliate yang kecil amat seragam sepanjang penyiasatan. Semasa musim monsoon Barat 

Daya yang lebih kering, komuniti dikuasai oleh loricate ciliate; semasa permulaan musim 

monsoon Timur Laut yang lebih lembab pula kelihatan lebih aloricate ciliate; 

dinoflagellate pula timbul sebagai dominasi semasa perakhiran musim monsoon Timur 

Laut di mana hujan telah berkurangan. Perubahan komuniti ini dikaitkan dengan hujan, 

nutrien tak organik terlarut, kemasinan, suhu dan kelimpahan makanan mikroba. Faktor 

air pasang surut tidak menunjukkan kesan yang jelas terhadap kelimpahan 

mikrozooplankton kecuali Favella ehrenbergii dan copepod nauplii yang lebih banyak 

pada waktu air surut daripada waktu air pasang.  

Musim monsoon yang paling berbeza dari jumlah hujan menunjukkan kesan yang 

signifikan terhadap kegiatan herbivori mikrozooplankon dan pengeluaran primer; kedua-
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duanya jauh lebih tinggi semasa musim monsoon Barat Daya yang kering. Di Hutan Paya 

Laut Matang, pengeluaran primer yang tinggi (150 hingga 4020 µgC l-1d-1) dan 

pengeluaran bakteria rendah (3.7 ± 1.5 µgC l-1d-1) menjadikan ianya keunikan antara 

ekosistem lain. Mikrozooplankton telah bergantung sangat terhadap pengeluaran primer 

(887.02 µgC l-1d-1), diikuti oleh nanoplankton heterotrofik (1.33µgC l-1d-1) dan 

pengeluaran bakteria (1.28µgC l-1d-1). Lebih daripada 70% pengeluaran primer 

disalurkan ke mikrozooplankton melalui penggembalaan, manakala hanya 30% dari 

pengeluaran bakteria dan pengeluaran heterotrofik nanoplankton digunakan oleh 

microzooplankton. Kajian ini menekankan peranan mikrozooplankton sebagai pengguna 

paling utama bagi pengeluaran fitoplankton di muara bakau yang sangat keruh tetapi 

produktif. 

 

Kata Kunci: Mikrozooplankton – muara tropika – pertaburan musim – penghasilan 

primer – dinamik mikrob – herbivori 
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CHAPTER 1: INTRODUCTION 

Microorganisms are very small yet very abundant in the ocean ecosystem, with a total 

number of cells of more than 1029 that inevitably outnumber macroorganisms; more than 

90% of marine biomass is microbial. (Bar-On et al., 2018). Microorganisms have a very 

important role fulfilling key ecosystem functions. They exhibit a wide diversity of sizes 

and forms; and by being small, they interact with the environment more rapidly than any 

due to their high surface area to volume ratio. Hence, the distribution of these very small 

organisms forms the many critical processes in various ecosystems, including mangrove 

estuary. Almost exclusively, microbes carry out large-scale ecosystem processes of 

production, decomposition, and nutrient cycling; and each of these is closely linked 

together. In turn, they contribute greatly to ecosystem biogeochemical resilience, trophic 

dynamics, and resistance to invasion (Azam & Malfatti, 2007).  

 The microbial community forms the microbial loop, which recycles the dissolved 

organic matter (via bacteria respiration) released by phytoplankton in the water body 

(Figure 1.1). The microbial loop theory suggests that heterotrophic bacteria are key to 

control the trophic linkages between dissolved organic matter (DOM), particulate organic 

matter (POM), and inorganic nutrients in aquatic ecosystems. This ideal model suggested 

that, i. phytoplankton utilized 10-50% of carbon fixed by photosynthesis and their 

concentration correlates with bacterial biomass; ii. top down control of bacteria biomass 

by microzooplankton and other heterotrophic nanoflagellates (Azam et al., 1983). A 

typical planktonic food web displays two pathways of carbon transfer: particles that are 

directly consumed by phagotrophic organisms and dissolved organic carbon (DOC) that 

is consumed by bacteria. DOC in the water is supplied by phytoplankton (through 

photosynthesis and decomposition) and released during phagotrophy when other 

microbes feed. Microbial food webs often act as a sink for organic matter – heterotrophic 
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bacteria remineralize organic nutrients into inorganic forms to be taken up primary 

producers, and at the same time, converting a portion of the organic matter into new 

bacterial biomass to be grazed by bacterivores. These microbes together remineralize and 

oxidise most of the organic matter they consume, giving themselves a critical role in the 

ecosystem. These trophic linkages are tightly coupled when the main organic matter 

supply from phytoplankton and nutrients are scarce. 

 

Figure 1.1 Microbial loop as described linking dissolved organic matter to higher trophic 
levels. 

 

However, in mangrove estuaries where organic matter and nutrients are abundant, the 

microbial food web linkages may be different. An estuary is defined as a semi enclosed 

coastal body of water which has a free connection to the open sea and within which sea 

water is measurably diluted with freshwater derived from land drainage (Pritchard, 1967). 

With elevated primary productivity, multiple sources of organic matter, limited residence 

time, changes in the abundance and types of grazers, interactions with sediments and 

other surfaces, and strong gradient in temperature and salinity, microbial food web 
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linkages in mangrove estuary should differ greatly from the open ocean paradigm (Figure 

1.2).  

 

Figure 1.2 Detrital food chain and planktonic food web of estuary (Day et al., 2012) 

 

In the microbial food web, nonlinear changes such as increased average cell size of 

phytoplankton, elevated growth efficiency of bacteria, and primary production can also 

affect the trophic linkages in the food web (Day et al., 2012). The microbial community 

of estuaries made up with all five general groups of microbes: bacteria, algae, protozoa, 

fungi, and viruses, ranging from 0.1µm to 2000µm (Figure 1.3). The metabolic 

dominance of bacteria (0.2-0.6 µm) is undeniable as the total mass of heterotrophic 

bacteria in the ocean exceeds the combined mass of zooplankton and fishes. Flagellates 

(2-20 µm) are less abundant compared to bacteria and are often found to be heterotrophs 

or mixotrophs whereas ciliates (20 – 200 µm) are even lesser in abundance than 

flagellates. 
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Figure 1.3 Size fractions of microbial community in estuary, size classification of 
plankton base on Sieburth et al., 1978. (From Day et al., 2012)  

 

Microzooplankton (20-200µm in size) are classified as a group of heterotrophic and 

mixotrophic organisms and are the top down control factor of microbial food web. 

Among the microzooplankton, ciliates (subclass Spirotrichea, Oligotrichia and 

Choreotrichia) and dinoflagellates are predominant ranging between 60-100% 

(Jyothibabu et al., 2003; Sherr & Sherr, 2007; Sanders, 1987). It also includes 

foraminiferans, small metazoans, such as copepod nauplii, copepodites, and some 

meroplanktonic larvae (Calbet, 2008). Ciliates comprise of loricate and aloricate 

components, for example tintinnids, naked oligotrich ciliates, benthic ciliates, and pelagic 

ciliates. Dinoflagellates comprise of auto-heterotrophic dinoflagellates, such as the naked 

dinoflagellates (Gyrodinium sp.) and the toxic dinoflagellates (causing red tides).  

Together with bacteria and phytoplankton, microzooplankton are recognized as one of 

the most important groups in marine geochemical cycles of bioactive elements (Sheer & 

Sheer 2002; Calbet & Landry, 2004). Microzooplankton have higher weight-specific 

physiological rates such as feeding, respiration, excretion and growth rates as compared 

to larger metazoans. This enables them to cope better with strong fluctuations in the 

environment, especially with the constant flushing of estuary and upwelling systems 

(Calbet, 2008). The smaller microzooplankton are also able to utilize pico- and 
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nanozooplankton, which are unable to be utilized by larger metazoans. In turn, these 

organisms act as trophic intermediaries (Uye et al., 1996; Jyothibabu et al., 2003; Calbet, 

2008), transferring materials and energy from the microbial loop to higher trophic level 

metazoans such as mesozooplankton. Grazing of microzooplankton was shown to 

regulate bacteria and nanophytoplankton population (Verity, 1986; McManus & 

Fuhrman, 1988). As a major consumer of phytoplankton primary production, Calbet and 

Landry (2004) showed that microzooplankton grazed an average of 60% primary 

production, but larger mesozooplankton only consume about 10% of the primary 

production; in turn, microzooplankton become part of mesozooplankton’s diet (Kleppel, 

1993; Calbet & Saiz, 2005). Microzooplankton are implicated in the control of harmful 

dinoflagellates bloom (Sherr & Sherr, 2007).   

Although important, there are very few studies on estuarine microzooplankton relative 

to their truly marine counterparts (Godhantaraman & Uye, 2003). Although the estimated 

biomass of microzooplankton is always found to be higher than mesozooplankton 

biomass in the estuary (Buskey, 1993), most of the zooplankton studies have focused on 

mesozooplankton rather than microzooplankton. This is mainly due to the small size of 

microzooplankton, limited methods for sample collection and preservation, and 

difficulties in taxonomic identification (Godhataraman, 2002).   

In Malaysia, the Matang Mangrove Forest Reserve (MMFR) has long been the study 

ground for tropical mangrove in this region and is one of the most sustainable ecosystems 

in the world despite supporting the community with obvious economic value (Alongi et 

al., 2004, FAO 2007). Various studies have been conducted in MMFR; from the flora 

(Gong & Ong, 1990; Eong, 1993) to various fauna such as zooplankton (Chew et al., 

2012, 2015; Ramarn et al., 2012), fishes (Ooi & Chong, 2011), mammals (Hoffman et 

al., 2017), wave impacts (Ismail et al., 2017), and also on its sustainability (Goessens et 
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al., 2014; Otero et al., 2017). MMFR waters and its sediments are also well-characterised 

(Alongi et al., 1998a, 2003, 2004, Bong & Lee, 2008). However, the microbial food web 

and its components remained missing from the above studies.   

There are six chapters in the thesis, Chapter 1 is an introduction of the 

microzooplankton in the microbial loop, Chapter 2 is literature review of this study, 

Chapter 3 is a methodology description of the community study and grazing relationship, 

Chapters 4 and 5 are the experimental results, and Chapter 6 is a general conclusion for 

this study. The major goal of this study is to investigate microzooplankton, the potential 

key player of the estuary dynamic, thus enable better understanding of the estuary 

trophodynamics. Therefore, the objectives of this study are  

(1) to determine the community structure and abundance of the microzooplankton in 

Matang mangrove estuaries;  

(2) to determine the environmental drivers causing the variations in microzooplankton 

abundance and community structure, and  

(3) to map the flow of carbon sources in the estuary among the microbial components by 

their production and grazing rates with the focus on microzooplankton. 

In this study, the following hypotheses will be tested: 

 (1) Microzooplankton community structure is dependent on the environmental 

factors changing with monsoon. 

(2) Primary production in the estuary mainly consumed by microzooplankton, thus 

supported the microbial food web rather than bacterial production. 
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To achieve the above objectives, the following studies were conducted: 

(1) Elucidation of the temporal abundance of microzooplankton in relation to different 

environmental factors (Chapter 4) 

(2) Determining production and biomass of each component of microbial loop 

(Chapter 5) 
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CHAPTER 2: LITERATURE REVIEW 

2.1  Microzooplankton: Classification and Major Groups 

Planktonic communities of the aquatic ecosystem are made up of a diverse collection 

of organisms. As they are unable to swim against the current, they are adapted 

physiologically and morphologically to live in the water column. Plankton in the water 

used to be only in two categories – zooplankton and phytoplankton. Both drifters in the 

water, phytoplankton produce whereas zooplankton consume. In the light of the 

advancement in plankton studies, Sieburth et al. (1978) proposed the classification by 

body size for both zooplankton and phytoplankton (Fig. 1.3). For microzooplankton, the 

prefix micro- is now added to narrow them to the body size of between 20 and 200µm 

(Sieburth et al., 1978).  

Microzooplankton belongs to the holoplankton – they are planktonic throughout their 

life cycles. This group of organisms can be mixotrophs or heterotrophs, ranging from 

unicellular organisms to small metazoan. They are among the most morphologically 

diverse groups in the plankton community. There are many classifications of 

microzooplankton and here, we adapt the classification proposed by Calbet (2008). We 

grouped them into protist and metazoan, protist includes the group of ciliates (Class: 

Spirotrichea; subclass: Oligotrichia, Choreotrichia), flagellates, dinoflagellates, 

acantharids, radiolarians, foraminiferans; whereas metazoan includes organisms such as 

rotifers, and larvae of zooplankton in that size range. This highly diverse group made up 

a significant component of the plankton community in many marine environments (Olson 

& Strom, 2002; Leonard & Paerl, 2005; Paterson et al., 2007).  
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2.1.1 Ciliated Protozoan 

Ciliated protozoan is recognised as the main group of the microzooplankton, mainly 

due to the conspicousness of loricate ciliates – they retain in the plankton nets (Porter et 

al., 1985; Pomeroy & Wiebe, 1988; Lynn & Montagnes, 1991). Ciliates itself is 

taxonomically diverse. Morphologically, ciliates can be classified into two major groups, 

the loricate ciliates, the shell-bearing ciliates (subclass: choreotrich) and aloricate ciliates, 

the naked ciliates (subclass: oligotrich). Loricate ciliates carry a species-specific external 

shell or lorica, made of protein with the shape of bowl or vase or tube, hence it can be 

easily preserved and identified. Fossils record of tintinnids loricate was first recorded by 

Rüst (1885); of those tintinnids that are from Proterozoic era (~2500mya). Detailed 

morphology description for identification was published as early as 1929 (Kofoid & 

Campbell, 1929) whereas aloricate ciliate only came into systematic classification after 

Corliss (1961). Quantitatively, aloricate ciliates often outnumber loricate ciliates (Leakey 

et al., 1993; Huang et al., 2012). To date, classification of ciliates still under revision after 

Corliss (2016) published the latest book on ciliated protozoa.  

Among the loricate ciliates, tintinnids (Order: Tintinnida), are a large subgroup of over 

1200 species in 75 genera. Lorica of the ciliates could appear to accumulate with foreign 

particles (Family: Tintinnidiidae, Codonellidae, Codonellopsidae, Coxliellidae), or 

appear as clean and transparent (Family: Favallidae, Undellidae) (Marshall, 1969). With 

the easy identification of their lorica morphology, tintinnid emerged as an ideal 

component to study species distributions, diversity, and changes in the community 

structure of microzooplankton (Sarkar, 2015). Study of tintinnids are well established; 

covering major parts of the ocean including North Atlantic (Campbell, 1942; Lindley, 

1975), Pacific (Kofoid & Campbell, 1939), Mediterranean Sea (Jörgensen, 1924), 

Western Arabian Sea (Zeitzschel, 1969, 1982), coast of India (Godhantaraman, 2002; 
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Rakshit et al., 2014; Sarkar, 2015), the Adriatic Sea (Krsinic, 1988), Japan (Yamamoto 

et al., 1981; Uye et al., 1996) and China (Wang et al., 2014a; Li et al., 2016; Li et al., 

2019). Pierce & Turner (1993) showed that most species of tintinnids are cosmopolitan 

but in their study, information from tropical Southeast Asia is close to unknown (Fig 2.1, 

Table 2.1). 

 

Figure 2.1 Literature record of tintinnid distribution (Pierce and Turner, 1993). Note 
that tropical Southeast Asian water remains unknown in the review. 

 

Within the phylum Ciliophora Doflein, 1901, there is a vast assemblage of 

morphologically and ecologically diverse organisms exploiting a variety of food 

resources, and interacting within the ecosystem (Fauré-Fremiet, 1924). Dolan (1991) 

showed that ciliates can be classified into three different trophic groups, (a) 

macrophagous that consumes nanoplankton-size or larger prey), (b) microphagous 

(consumers of picoplankton—size prey), or (c) predatory (consumer of other ciliates). 

Each guild plays significant roles in top down and bottom up control. The macrophagous 
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ciliates (herbivory ciliates), consumes more than 75% of primary production (Putland & 

Iverson, 2007; Calbet, 2008) and serves as a competitor of herbivory mesozooplankton 

(Calbet, 2008). The microphagous ciliates, or the bacterivorous ciliates, are important in 

regulating bacterioplankton populations, both quantitatively (Gast, 1985; Sheer et al., 

1986a,b; Albright et al., 1987; Bernard & Rassoulzadegan, 1990; Kalinowska, 2020; Shi 

et al., 2020; Simo-Matchim, 2020), and qualitatively through selective feeding (Gonzalez 

et al., 1990; Matz et al., 2002). Finally, the predatory ciliates, or the carnivorous ciliates, 

with higher clearance rate than mesozooplankton, help to regulate the ciliate community 

(Robertson, 1983; Stoecker & Capuzzo, 1990). In Dolan (1991), ciliates biomass of 

Chesapeake Bay consists of 73% macrophagous ciliates, 15% microphagous, and the rest 

were predatory ciliates.  The macrophages ciliates were seen dominating elsewhere, such 

as Inland Sea of Japan (Uye et al., 1996), Parangipettai, southeast coast of India 

(Godhantaraman, 2002), São Sebastião Channel, Brazil (Eskinazi-Sant Anna et al., 2006), 

and many others. 
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Table 2.1 Comparison between maximum abundance (ind l-1) of tintinnids found in 
different parts of the world’s ocean (From Zhang & Wang, 2000) 

Maximum 
abundance Location References 

1 Adriatic Sea  Krsinic, 1982  
91 Gullmar Fjord, Norway Hedin, 1975  
100 Larzarev Sea  Froneman et al., 1996b 
219 Funka Bay, Japan  Dohi, 1982 
288 Bay of Mali Ston  Krsinic, 1987a  
300 Northern Arabian Sea  Garrison et al., 1998  
402 Georges Bank, Northwest Atlantic  Stoecker et al., 1989  
422 Adriatic Sea  Krsinic, 1987b  
504 Southern Ocean  Froneman & Perissinotto, 1996a,b  
600 Bellingshausen Sea, Antarctic  Burkill et al., 1995  
780 Western Pacific  Suzuki & Taniguchi, 1998  
1000 Solent estuary, England  Burkill, 1982 
>1000  Chesapeake Bay, U.S.A.  Coats & Heisler, 1989  

1200 Gullmar Fjord, Swedish west 
coast  Hernroth, 1983  

1400 Greenland  Nielsen & Hansen, 1995  
1440 Halifax Harbour, Nova Scotia Gifford, 1988  
1500 Irish Sea  Graziano, 1989  
2000 Dokai Inlet, Japan  Uye et al., 1998  
2000 Washington Coast  Landry & Hassett, 1982  
3636 West Coast of Norway  Cordeiro et al., 1997  
5000 Southern California, U.S.A.  Beers & Stewart, 1970  
5700 The Seto Inland Sea, Japan  Kamiyama & Tsujino, 1996  
6700 Laizhou Bay, Bohai Sea, China  Zhang and Wang, 2000  

7000 Damariscotta River estuary, 
U.S.A.  Sanders, 1987  

9600a  Long Island Sound  Capriulo & Carpenter, 1980  
9765 West coast of Denmark  Cordeiro et al., 1997  
11 300  Bahia Blanca Estuary, Argentina  Barria de Cao, 1992  
12 600  Long Island Sound, U.S.A.  Capriulo & Carpenter, 1983  
15 000  North Coast of Denmark  Cordeiro et al., 1997  
23 000  Seto Inland Seam, Japan  Kamiyama, 1994  
270 000  Narragansett Bay, U.S.A.  Verity, 1987  
729 000  Flodevigen Bay, Norway  Dale & Dahl, 1987 

 

2.1.2 Dinoflagellates 

Dinoflagellates are often heterotrophic (Lessard & Swift, 1985; Lessard, 1991; Verity 

et al. 1993). They were observed feeding on bacteria (Lessard & Swift, 1985), large 
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diatoms (Hansen, 1992), copepod larvae and nauplii (Sekiguchi & Kato, 1976). 

Heterotrophic dinoflagellates were often associated with diatom blooms and could make 

up to 50% of microzooplankton biomass during such events (Sheer & Sheer, 2007). These 

dinoflagellates are fed by phagocytosis and consume a significant portion of bloom 

forming diatoms relative to copepods and other mesozooplankton (Sheer & Sheer, 2007). 

On the other hand, dinoflagellates serve as an important food source for mesozooplankton 

(Calbet, 2008). 

2.1.3 Metazoans 

Copepod nauplii make up the greatest number of multicellular organisms of 

microzooplankton (Calbet, 2008). These are the larval form of copepods and other pelagic 

and benthic crustaceans, for instance, adults and copepodites of calanoid genera such as 

Paracalanus, Clausocalanus, and Acartia; cyclopoid genera such as Oithona, Oncaea, 

and Corycaeus; planktonic harpacticoids of the genus Microsetella; and nauplii of almost 

all copepod species (Turner, 2004).  Relative to their adults, the small copepod nauplii 

are often found to record higher biomass (Hopcroft et al., 1998; Turner 2004). They are 

predatory and depending on genera, copepod nauplii appear to be opportunistic feeders 

or show food selectivity (Turner, 2004). 

Rotifers were also commonly found within this size range in coastal communities. This 

group of metazoans often decreases in biomass as salinity increases (Park & Marshall, 

2000); they are more commonly seen in freshwater environments. Park & Marshall 

(2000) demonstrated that rotifers seasonally replace copepod nauplii (achieving over 50% 

of annual biomass) in Chesapeake Bay. Relative to protists, rotifers have better swimming 

ability because of the beating cilia around their mouth. These organisms are predators, 

sharing prey with copepod nauplii and ciliates. Lionard et al. (2005) showed that rotifers 

are non-selective grazers on phytoplankton.  
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2.2  Ecological Importance of Microzooplankton 

The role of microzooplankton as the primary grazers of marine food webs has emerged 

in recent years (Calbet & Landry, 2004; Huang et al., 2011; Schmoker et al., 2013; Zhou 

et al., 2015a,b) especially since Landry and Hasset (1982) developed the dilution 

technique with minimal equipment requirement. This technique allows the estimation of 

grazing impact of microzooplankton on natural communities of marine phytoplankton in 

concurrent with an estimation of primary production. Similar grazing experiments were 

also conducted on calanoid copepod Eurytemora affinis, the cyclopoid copepods 

Acanthocyclops robustus and Cyclopsvicinus and the cladocera Chydorus sphaericus, 

Moina affins and Daphnia magna/pulex that showed no significant grazing (Lionard et 

al., 2005). This further assures the role of microzooplankton as the main grazer of primary 

production in the water.  

Microzooplankton is widely known for their importance as trophic intermediaries in 

the marine food web – recycling nutrients, grazing phytoplankton, and linking the 

microbial loop (Calbet & Landry, 2004). With their small body size and high abundance, 

microzooplankton stands an advantage of having higher physiological rate. Relative to 

mesozooplankton, microzooplankton has only about one tenth of the size of 

mesozooplankton. According to Rubner’s Law (Fenchel, 1987), ingestion rate of 

microzooplankton on primary production is about 178 times lower than 

mesozooplankton, but because microzooplankton has about 1000-fold higher in 

abundance than mesozooplankton, microzooplankton can clear up over 5 times more 

phytoplankton than mesozooplankton (Dolan et al., 2013). With their small body size 

also, they are able to ingest smaller food particles that is unavailable to mesozooplankton 

(Robertson, 1983; Stoecker & Capuzzo, 1990).   
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Microzooplankton removes about half of the primary production (Tsuda et al., 2010; 

Landry & Calbet, 2004), and they also graze on bacteria and other smaller protozoans 

(Gonsalves et al., 2017; Rejas et al., 2005; Sherr & Sherr, 1987). With their intense 

grazing on phytoplankton, microzooplankton is seen as a key control on blooms in many 

coastal waters (Christaki et al., 2021; Yang et al., 2020; Irigioen et al., 2005).  Since 

Landry and Hasset (1982)’s dilution technique, the microzooplankton grazing is well 

studied globally but studies in tropical mangrove waters are focused only in India 

(Gonsalves et al., 2017; Gauns et al., 2015; Jyothibabu et al., 2008a,b) and tropical South 

America (Conroy et al., 2016; MacManus et al., 2007; First et al., 2007). There is yet a 

study from tropical Southeast Asia even though Southeast Asia comprises a vast span of 

tropical estuaries that have high chlorophyll a concentration. Tropical estuaries in 

Southeast Asia have the highest phytoplankton growth rate among other habitats (oceanic 

and coastal), and with most of the chlorophyll a produced grazed by microzooplankton 

(Table 2.2) (Calbet & Landry, 2004). Of all of the parameters, tropical water showed the 

highest value whereas polar regions exhibited the lowest (Table 2.2). This marked the 

intense knowledge gap in the field with the missing information from tropical waters. 

Table 2.2 Summary of dilution experiments on regional comparisons of oceanic, 
coastal, and estuarine habitats (upper table), tropical, temperate and polar habitats 
(lower table). Mean values (± standard errors) are given for initial Chl a, phytoplankton 
growth rate (µ), grazing mortality (m), % Chl a grazed day -1, and % primary 
production (PP) grazed day-1 (From Calbet & Landry, 2004) 

 
Chl a  
(µg L-1) 

µ 
(day-1)  

m  
(day-l)  

% Chl a 
grazed  % PP grazed  

Oceanic  0.58±0.03 0.59±0.02  0.39±0.01  41.5±1.4  69.6± 1.5  
Coastal  3.06±0.53  0.67±0.05  0.40+0.04  47.3±4.4  59.9±3.3  
Estuarine  13.0±1.8  0.97±0.07  0.53 +0.04  78.7±7.3  59.7±2.7  
 

Tropical  

 

1.01 ±0.21  

 

0.72±0.02  

 

0.50±0.02  

 

55.1 ±2.3  

 

74.5 +2.0  
Temperate  5.18±0.66  0.69±0.03  0.41±0.02  51.4±2.9  60.8±1.8  
Polar  0.62±0.06  0.44±0.05  0.16±0.01  19.5±2.1  59.2±3.3 
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Apart from primary production, microzooplankton were shown to feed on bacteria. 

Bacterivory in microzooplankton were mainly by oligotrich ciliates (aloricate ciliates), 

including Stromnidium (Fenchel & Jonsson, 1988) and Strombidium (Paranjape & Gold, 

1982). These oligotrichs consumed approximately 1 to 38% of bacterial production 

(Pierce & Turner, 1992). However, high levels of bacteria biomass (ranging from 106 to 

108 cell ml-1 concentration) are needed to support exclusively bacterivorous ciliates (Gast, 

1985); therefore, only estuaries and/or areas polluted by sewage could support such 

assemblage. In general, bacterivory in microzooplankton are often seen as opportunistic. 

Aside from grazing on primary production, microzooplankton is an important food 

source of mesozooplankton (Calbet & Saiz, 2005). Copepods such as Acartia, Calanus, 

Eucalanus feed heavily on tintinnids, whereas Tortanus feed selectively on tintinnids 

(Robertson, 1983; Ayukai, 1987; Pierce & Turner, 1992). Aloricate ciliates such as 

Strombilidium are also part of the copepod’s diet.  

2.3 Microbial Loop - Microzooplankton Community in the Estuary  

Before Azam et al. (1983) highlighted the energetic role of microbes and brought up the 

term ‘microbial loop’, these highly diverse, actively growing assemblages of Archaea, 

bacteria and protists were often neglected. Since then, a whole new microbial world was 

discovered and many questions on marine microbial carbon flux were answered (Azam, 

1998; Calbet & Landry, 2004; Lee & Bong, 2006)  yet the role of bacteria as a sink or 

link in the microbial loop is still being debated. Bacteria could package the dissolved 

organic matter (DOM) as bacterial carbon and transfer it into the higher trophic level, as 

a link; but metazoans could consume labile particulate organic matter without going 

through bacteria (Pozzato et al., 2013; Sherr et al., 1987; Ducklow et al., 1986). With that, 

the role of other microorganism as a link in the place of bacteria in different ecosystem 

attracted major interest.  
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2.3.1 Bacterial Production and Primary Production 

Traditionally, primary production was thought to be only consumed by the herbivores 

in the water. Through grazing the organic carbon fixed by photosynthesis transferred to 

higher trophic levels. But as study advanced, Azam et al. (1983) showed that major flux 

of organic matter moves via dissolved organic matter into bacteria and the microbial loop; 

up to 5 to 50% of carbon fixed by primary production is utilised by bacteria. Within the 

ideal microbial loop model, bacteria are the key component responsible for recycling 

organic matter, hence bacterial production becomes a key process in determining the 

carbon flux of the system (Azam et al., 1983).  

Bacterial production and phytoplankton production dynamics played a significant role 

in the trophic interaction. Strong correlation between phytoplankton and bacterial 

production were shown in most of the water body implying phytoplankton as the most 

important autochthonous source of bacterioplankton growth substance or both 

phytoplankton and bacteria grew in response to a common factor (Cole et al., 1988; 

Almeida et al., 2005; Lee & Bong, 2008). On the other hand, weak coupling suggests the 

allochthonous source of organic carbon as playing a more important role (Findlay et al., 

1991; Tranvik, 1992). However the elevated primary production of estuarine water often 

complicates this relationship (Table 2.2, Table 2.3). 

 

 

 

Table 2.3: Chlorophyll a concentration and primary production in some tropical coastal 
systems of Asia. 
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Country & 
Location 

Habitat Chl a 
concentration 
(µg l-1) 

Primary 
Production (µgC 
l-1 day-1) 

Reference 

Malaysia, 
MMFR 

Estuarine 
mangrove 

7 - 45  2 - 751 Alongi et al., 2003 

Malaysia, Port 
Klang 

estuarine 0.20 - 4.47 30 - 1380 Lim et al., 2015 

Malaysia, Port 
Dickson 

Coastal 
water 

0.14 - 2.76 30 - 2000 Lim et al., 2015 

Malaysia, 
MMFR 

Estuarine 
mangrove 

5.1 – 54.7 148 – 4021 Current study 

India, Zuari 
estuary 

Estuarine 
mangrove 

4.4 – 39.8 60 - 662 Gomes et al., 1991 

India, Cochin 
Estuary 

Estuarine 
mangrove 

1.7 - 47 n/a Madhu et al., 2007 

India,Bay of 
Bengal 

Coastal 
water 

13 - 18 242–265 Jyothibabu et al., 
2008b 

India, Zuari 
estuary 

Estuarine 
mangrove 

0.18 – 12.78 27.6 - 81 Gauns et al., 2015 

Thailand, Sawi 
Bay 

Estuarine 
mangrove 

2 - 12 200 - 600 Ayukai & Alongi, 
2000 

 

2.4 Mangrove Ecosystem  

Being one of the most dynamic ecosystems on earth; mangrove forests cover 

approximately 181 000 km2 of tropical, subtropical, and warm-temperate coastlines 

(Alongi, 2002). Mangroves are highly variable ecosystems where variations in waves, 

tides, river flow, and rainfall shape the unique characteristics of each mangrove 

(Wolanski, 1992). As a result, different salinity regimes generated by advective and 

longitudinal mixing, and trapping of coastal water encourage different communities of 

micro and macroorganisms to flourish (Alongi, 2009). Freshwater input during the wet 

season is a key factor of allochthonous nutrient enrichment (Trott & Alongi, 1999; Wong, 

2003) especially phosphorus as atmospheric phosphorus is almost negligible (Tyrell, 

1999).  

Mangrove estuaries have been known to serve as nursery and feeding grounds for a 

variety of fish and prawns including those of commercially important species (Chong, 

2007). Several hypotheses have been proposed to explain why mangrove habitats are 
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attractive to juvenile fish and prawns. One hypothesis that has received the most attention 

states the juvenile fish and prawns are attracted to the food supply from the detritus food 

web. Based on the examination of fish stomach contents, zooplankton especially 

copepods and hyperbenthic shrimps (i.e. acetes and mysids) constituted a large proportion 

of juvenile fish diet in the Matang mangrove estuaries, Malaysia (Chew et al., 2007). 

Given that zooplankton (Robertson et al., 1988; Chew & Chong, 2011) and benthic 

animals (Muhammad Ali et al., 1999) are more abundant in mangrove estuaries and 

nearshore waters compared to offshore waters, it is apparent that mangrove estuaries are 

food-rich ecosystems supporting various trophic level consumers in the food webs 

(Robertson & Blaber, 1992; Laegdsgaard & Johnson, 2001).  As mangrove detritus 

contributes a large proportion of the organic matter in mangrove estuaries, Odum & Heald 

(1975) advanced their idea that mangrove and coastal food webs must be fueled by 

mangrove carbon directly or indirectly via microorganisms that decompose mangrove 

detritus. It is on this premise that many subsequent works in the 80s had rested arguments 

on.  With technological advancement, the role of mangrove (versus phytoplankton) as the 

primary producer or nutritional source for marine consumers has become a bone of 

contention.   

Matang Mangrove Forest Reserve (MMFR) has long been the study ground for 

tropical mangrove in the region. Various study been conducted in MMFR; from the flora 

(Gong & Ong, 1990; Eong, 1993), to various fauna such as the zooplankton (Chew et al., 

2012, 2014; Ramarn et al., 2012), fishes (Ooi & Chong, 2011), mammals (Hoffman et 

al., 2017), wave actions ( Ismail et al., 2017), the microbe Escherichia coli (Ghaderpour 

et al., 2015), its waters and sediments (Alongi et al., 1998b, 2003, 2004, Bong & Lee, 

2008), and also its sustainability (Otero et al., 2017; Goessens et al., 2014). Since Tarutani 

et al. (2007) showed the lack of relationship between the mesozooplankton production 

and phytoplankton production in the estuary, there has yet to be studies on the key to the 
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missing link – microzooplankton production. This study of microzooplankton community 

and its trophic role alludes to the importance of microzooplankton in the highly 

productive estuarine mangrove water.  
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CHAPTER 3: MATERIALS AND METHODS 

3.1  Sampling Site Description 

The chosen study site was at the Terusan channel, a 6 m-deep mangrove creek located 

in the Matang Mangrove Forest Reserve (MMFR) in the state of Perak, west coast of 

Peninsular Malaysia. Terusan channel (4°526'N, 100°341'E) interconnects the Selinsing 

and Sangga Besar channels downstream of the Matang estuary (Figure 3.1). The MMFR 

is a silvicultural mangrove production forest planted with mainly the favoured mangrove 

species, Rhizophora apiculata Blume. The large mangrove reserve of approximately 

41,000 ha consists of mangrove forests situated on the coast and several deltaic islands 

drained by the tributaries and interconnecting channels of three main rivers, the Sepetang, 

Larut and Terong. The tidal regime in the MMFR is semidiurnal, with MHWS, MHWN, 

MLWN and MLWS of 2.1, 1.5, 0.9 and 0.3 m above Chart Datum, respectively (National 

Hydrographic Centre, Malaysia). The deltaic estuary is relatively shallow with an average 

depth of 4.2 m, but depths ranged from 0.5 m to 14.4 m. A strong estuarine stratification 

in the upper estuary is evident during the northeast (NE) monsoon season (November – 

March) during heavy rainfall when large quantities of freshwater is flushed into the 

estuaries. On the other hand, no significant stratification is observed during the southwest 

(SW) monsoon season (May-September) when the rainfall is relatively lower (Chew et 

al., 2015). Nevertheless, freshwater inflows and weak vertical mixing during the SW 

monsoon particularly during neap tide may form a temporary salt wedge that could extend 

as far as 10 km upstream from the river mouth (Tanaka & Choo, 2000). The water column 

is generally vertically well mixed during spring tides (Chew et al., 2015).  
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Figure 3.1 Map of Matang Mangrove Forest Reserve. Filled circle indicates the location      
of Terusan channel where samples were taken. 

 

The Terusan channel connects between two large rivers, the Sangga Besar and 

Selinsing (Figure 3.1). The study site was chosen because of its location away from the 

main fishing village of Kuala Sepetang and aquaculture (cage fish) activities at the river 

mouths. There were no other human activities in or around the Terusan including clear-

felling of mangrove trees at the time of study.   

In the present study, different empirical investigations were carried out in the Matang 

mangrove estuaries and adjacent coastal waters to elucidate the dynamics and ecological 

importance of microzooplankton in this mangrove system.       
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3.2  Field Sampling  

Semimonthly samplings (during spring and neap tide) were conducted at sampling 

station in the deltaic estuary (Fig. 3.1), from April to August 2013 (SW monsoon) and 

from October 2013 to February 2014 (NE monsoon), to collect both live samples and 

preserved sample of microzooplankton and their potential food components viz. 

phytoplankton, bacteria and heterotrophic nanoplankton (HNP). A sampling strategy to 

collect largely non-active swimmers from a continuous flow of water in opposite 

directions (flood and ebb flow) within the channel was adopted. No particular tide (flood 

versus ebb) was favoured for samplings since preliminary studies had indicated no 

systematic bias between tides.  

3.2.1   Routine Sampling of Microbial Community 

Water samples at 1 m from the surface were collected using a 4.2-L vertical Van Dorn 

sampler during daytime (1000 hr to 1400 hr). Surface water sampling was favoured since 

bottom samples contained less microzooplankton and were subsets of surface samples 

(Dolan et al., 2002). Five-hundred ml of the collected water sample were poured into a 

bottle for estimation of chlorophyll a and dissolved inorganic nutrients concentrations, 

30 ml for bacteria and protists counts and two litre for large phytoplankton and 

microzooplankton enumeration, respectively. Duplicate samples were made at each 

sampling station. Samples for bacteria and protists were preserved immediately with 

filtered glutaraldehyde (0.2 µm pore size) to a final concentration of 4%, while samples 

for large phytoplankton and microzooplankton were fixed with 0.4% Lugol’s iodine. All 

samples were kept in ice before laboratory analyses. 

On top of the above, two 10-l acid washed jerry cans were filled carefully to avoid      

bubbles with the water collected by Van Dorn water sampler for live samples of the 

microbials components. Hydrographic measurements, i.e. salinity (ppt), dissolved 
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oxygen (mg l-1), pH and temperature (°C) were taken using a YSI 556 handheld 

multiparameter probe. Light transparency of the water column was measured using a 

Secchi disc. In all, 40 water samples from the Terusan station were examined during the 

study. Rainfall data from the nearest meteorological station (Taiping Hospital, 10km to 

the east of MMFR) were obtained from the Malaysian Meteorological Department at 

Kuala Lumpur. 

3.3  Laboratory Analysis 

3.3.1   Chlorophyll a and Dissolved Inorganic Nutrients       

For estimation of chlorophyll a concentration, the water sample was filtered through 

a Whatman GF/C 47-mm filter paper and chlorophyll pigments      retained on the filter 

paper were extracted using 90% acetone. The concentration of chlorophyll a was 

determined by a fluorometric method (Parson et al., 1984) using a Perkin Elmer LS55 

spectrofluorometer. Samples were analysed as soon as possible (< 7 days) so as to avoid 

further pigment degradation. Filtered seawater was analysed for dissolved inorganic 

nutrients (DIN, i.e. nitrite, nitrate, ammonium, silicate, and phosphate) using standard 

methods (Parson et al., 1984) and a Hitachi U1900 spectrophotometer. 

 

3.3.2   Bacteria and Heterotrophic Nanoplankton Abundance 

Both bacteria and heterotrophic nanoplankton (HNP) were counted using a direct-

count method with a U-MWU filter cassette (excitor 330-385 nm, dichroic mirror 400 

nm, barrier 420 nm) epifluorescent microscope under 1000x magnification (Olympus 

BX50, Tokyo, Japan). For bacteria, a 0.5 ml sample was filtered onto a black 0.2 µm pore 

size isopore filter. The filter was then stained with 4',6-Diamidino-2-Phenylindole (DAPI, 

1 µg ml-1 final concentration) for seven minutes. A 5 ml sample of HNP was filtered onto 

a black 0.8 µm pore size isopore filter and then stained with 250 mg l-1 primuline for 10 
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minutes (Caron, 1983).  Slides were kept frozen and their microscopy fields were 

photographed within three days. A minimum of 10 microscope fields or 300 cells were 

counted for bacteria, and at least 50 microscope fields or 30 cells were observed for HNP. 

To estimate the photoautotrophs, each microscope field was also viewed under the U-

MWG filter cassette (excitor 510-550 nm, dichroic mirror 570 nm, barrier 590 nm) for 

the autofluorescence of chlorophyll a. The abundance of photoautotrophs was subtracted 

from HNP counts. Later, both biomass of bacteria and heterotrophic nanoplankton were 

converted into C biomass from the biovolume according to the following conversion 

factor.     

Bacteria: 13.9 ± 6.7 fg C cell-1, n=311 (Lee and Bong, 2008) 

HNP: biovolume * 0.22 pg C µm-3 (Børsheim and Bratbak, 1987) 

3.3.3   Phytoplankton and Microzooplankton Abundance 

Samples fixed with 0.4% Lugol’s iodine were allowed to stand for at least 48 hours at 

the laboratory before 1.5 l of the clear top liquid was siphoned off.  The remaining 500 

ml sample was gently tilted back and forth in its bottle to homogenize the mixture before 

pouring it into a sedimentation chamber (Utermöhl, 1958). The plankton samples were 

allowed to settle down for at least another 48 hours before 25 ml concentrate was 

collected from the cavity base. Lugol’s iodine (2 ml) was added to the plankton 

concentrates to obtain a final concentration of 10% iodine for long term preservation 

(Stoecker, 1994). Enumeration was done by transferring 1 ml of concentrated sample onto 

a Sedgwick-Rafter chamber and viewed under an inverted microscope (Leica DM IL 

LED) at 200x. The entire chamber was examined; tintinnids were identified to species 

based on lorica size and shape whereas the other microzooplankton were identified to the 

lowest taxa possible under magnification of 200x (Kofoid & Campbell, 1929; Marshall, 

Univ
ers

iti 
Mala

ya



 

26 

 

1934; Marshall, 1969; Zhang et al., 2012). Phytoplankton, which was enumerated at the 

same time, were identified to genus level (Tomas, 1997).  

Measurements for the microzooplankton (length and width) were taken accordingly. 

For loricate ciliates, the lorica volume was estimated by using different combinations of 

geometrical shapes according to Bryansteva & Kurilov, 2003 (see appendix)From lorica 

volume (LV, μm3), the carbon body weight of a tintinnid (Ct, pg) was calculated by using 

the regression equation: Ct = 444.5 + 0.053LV (Verity & Lagdon, 1984). Lorica 

occupancy was assumed to be 100%. For aloricate ciliates, carbon weight was converted 

from cell volume by using a factor of 0.14 pg C μm–3 (Putt & Stoecker, 1989) whereas 

for copepod nauplius, carbon content (ng) was calculated from body length (BL, μm) 

using the regression equation:  

Cc = 1.51 × 10–5BL2.94 (Uye unpublished, in Uye et al., 1996). 

 

3.4  Microbial Process Rate Measurements 

Concurrent estimations of primary production and microzooplankton grazing rates 

were carried out according to the dilution method by Landry & Hassett (1982). Seawater 

was prefiltered with a 200 µm sieve to remove mesozooplankton. Seawater was also 

filtered through a 0.2-μm membrane filter to generate particle-free seawater which was 

then used to dilute the prefiltered seawater sample to give the following fractions: 0.2, 

0.4, 0.6, 0.8 and 1.0 (undiluted). Each treatment was duplicated and incubated at in situ 

water temperatures and corrected to a 12 h light: 12 h dark cycle (Lim et al., 2015). The 

growth rate of phytoplankton in each fraction was plotted against dilution factor, and the 

potential phytoplankton growth rate (μPP) was determined from the y-intercept. The 

microzooplankton grazing rate (g) was determined when the linear regression slope was 
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negative. Apparent production and grazing rate were calculated by multiplying μPP and g 

with the in situ chlorophyll a concentration, which was then converted to C biomass 

(Carbon:Chlorophyll-a conversion factor = 78) according to Lim et al., (2017).  

The production rate of the microzooplankton (P, mg C m–3d–1, unit equivalent to µg C 

l-1d-1) was estimated as P = B × G where B is the carbon biomass (mg C m–3, unit 

equivalent to µg C l-1) and G is the empirically-determined instantaneous growth rate (d–

1). G is determined according to the following equation from Mülller & Geller (1993): G 

= 1.52 ln T – 0.27 ln CVol – 1.44, where T is the average temperature of the present study 

site (29.3°C) and CVol is the cell volume (µm3). 

Bacterial production, HNP production and grazing losses were estimated using a 

modified method from Wright & Coffin (1984). Plankton in seawater collected were 

fractionated into its <2-µm, <20-µm and <200-µm components of pico-, nano- and 

microplankton by using sieves of the appropriate mesh sizes to remove the larger 

components. It was assumed that the <2-µm sieve-fraction contained only bacteria; <20-

µm sieve-fraction contained HNP and bacteria, and the < 200-µm sieve-fraction 

contained bacteria, HNP and microzooplankton.  A 100 ml sample of each filtrate was 

taken in duplicate to be incubated in the dark at in-situ temperatures for 12 h (Lee & 

Bong, 2008). An incubation time of 12 h was found to prevent significant microbial and 

chemical changes that often occurred after 18 h of incubation (Peduzzi & Herndl, 1992; 

Agis et al., 2007). 

In the <2-µm sieve-fraction, bacterial growth rate (μ) was expressed as µ = (In N2- In 

N1)/T, where N1 and N2 are the bacterial counts at the beginning and end of an incubation 

period T. HNP increase in the <20-µm sieve-fraction was expressed as HNP growth rate 

(h–1). HNP production was then estimated from the multiplication of both growth rate and 

biomass. In the <20-µm sieve-fraction, bacteria grew with HNP grazing pressure (µ20-µm), 
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and the difference between µ2-µm and µ20-µm was calculated as HNP grazing rate. The 

amount of HNP grazed by the microzooplankton was also estimated via the changes in 

HNP in the <200-µm (HNP200-µm) and <20-µm (HNP20-µm) fractions. As 

microzooplankton grazing should be more pronounced in the <200-µm fraction, the 

difference between HNP20-µm and HNP200-µm should reflect the HNP grazed by 

microzooplankton. 

 

3.5  Data And Statistical Analysis 

Prior to ANOVA, the abundance of bacteria, HNP, phytoplankton, chlorophyll a data 

were log10 (x+1)-transformed to meet parametric assumptions. Most microzooplankton 

taxa abundance did not meet parametric assumptions even after data transformation. 

Hence, non-parametric methods were used to test for significant difference. The Mann-

Whitney test was performed to examine separately the monsoonal and lunar effect on the 

abundance of microzooplankton. One-way Kruskal-Wallis test was then carried out to 

test the combined effects of monsoon and tide, namely, SW-spring, SW-neap, NE-spring 

and NE-neap. Spearman rank order correlation was used to determine the significant 

relationship (if any) among environmental and microzooplankton variables. All statistical 

tests were performed using the Statistica Version 8 program (StatSoft Inc., 2007).  

Redundancy analysis (RDA) is a constrained ordination technique used to 

construct ordination axes that are also linear combinations of the environmental variables 

(Ter Braak & Smilauer, 2002).  Here, the method was used to relate the microzooplankton 

abundance to the measured environmental parameters. The top 30 most abundant 

microzooplankton species and 14 environmental and biological parameters (i.e. rainfall, 

salinity, dissolved oxygen, temperature, Secchi disc depth, dissolve inorganic ammonia, 

nitrate, nitrite, phosphate, and silicate, bacteria abundance, HNP abundance, and 
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phytoplankton abundance) were selected for RDA. All biological data were log10 (x+1)-

transformed.  RDA was performed by CANOCO 4.5 program (Ter Braak & Smilauer, 

2002). 

For microbial process rate measurements, the least-square linear regression test 

was carried out for each dilution test. Correlation analysis was used to show relationships 

between the different environmental and biological parameters measured. All statistical 

tests were carried out using STATISTICA 8 (StatSoft, Tulsa, USA).  
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CHAPTER 4: RESULT AND DISCUSSION - MICROZOOPLANKTON 

ABUNDANCE AND COMMUNITY STRUCTURE IN THE TERUSAN 

MANGROVE CREEK 

Work done in this chapter is published in  

Yong, Y.L., Chew, L.L., Lee, C.W. & Chong, V.C. (2016). Monsoonal and lunar 

variability in microzooplankton abundance and community structure in the Terusan 

mangrove creek (Malaysia). Marine Biology Research. 12(3):278-93. 

 

4.1  Environmental Parameters 

Environmental parameters in the Matang estuary were strongly influenced by 

monsoon season. Rainfall, temperature, salinity, pH and chlorophyll a concentration 

showed significant differences between monsoons. The SW monsoon started off with 

decreasing rainfall from April (308.2 mm) to July (93.8 mm; Fig, 4.1). During this period 

the Terusan channel was characterized by higher mean salinity (22.2 ± 0.7 ppt), warm 

water (30.1 ± 0.3 °C), and higher chlorophyll a concentration (24.79 ± 3.77 µg l-1) relative 

to other months. Towards the late SW monsoon (August) and with the onset of NE 

monsoon (October), the rainfall increased 2 to 3 folds (Figure 4.1), ranging from 204.4 

mm (August 2013) to 481.3 mm (November). During the peak NE monsoon (October 

2013 to January 2014), the channel become enriched with higher dissolved inorganic 

nutrients (nitrate and phosphate; p<0.05; Table 4.1). Temperature, salinity, and 

chlorophyll a concentration became lower at 28.4 ± 0.2 °C, 18.4 ± 0.1 ppt and 10.57 ± 

1.47 µg l-1, respectively. The NE monsoon then ended with a dry spell in February. 

Rainfall decreased (74.9 mm) and water in the channel turned warmer (30.4 ± 0.3 °C; 

with higher salinity 27.4 ± 0.3 ppt). Chlorophyll a concentration increased relative to the 
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peak NE monsoon (16.71 ± 2.36 µg l-1). Water transparency as measured by Secchi disc 

depth and dissolved oxygen concentration showed no difference between monsoons 

(Table 4.1).  

Mean Secchi disc depth was significantly higher during neap than spring tide (p < 

0.01, Table 4.1). No lunar phase effects (p>0.05) were observed for other water 

parameters. Although there was no significant difference in concentration between lunar 

phases for all DIN, the concentration of all DIN was comparatively higher during spring 

tide than neap tide (Table 4.1, Fig. 4.2).  

 

 

Figure 4.1: Monthly total rainfall and number of rainy days recorded from April 2013 
to February 2014 at Taiping located 10 km east of the study site. Shaded region 
indicates SW monsoon period (April-September); unshaded region indicates NE 
monsoon period (October-Feb).  
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Table 4.1: Summary results of two-way ANOVA on environmental parameters and microbial food components at Terusan channel with respect to 
monsoon and lunar effects. Interaction between monsoon effect and lunar effect is not significant.  
 
Variables Source of Variations   

 Monsoon effect  Lunar effect  
 SW NE Neap Spring 
n 20 20 20 20 
Physical Parameters    

Rainfall (mm) 188.52 ± 16.05 *** 323.48 ± 32.3 *** 256 ± 29.38  256 ± 29.83 
Temperature (°C) 29.9 ± 0.3 ** 28.8 ± 0.2 ** 29.5 ± 0.3 29.2 ± 0.2 
Secchi depth (m) 0.48 ± 0.05 0.45 ± 0.02  0.54 ± 0.04 *** 0.38 ± 0.02 *** 
Salinity (ppt) 23.0 ± 0.7 * 20.0 ± 0.9 * 21.0 ± 0.9 22.0 ± 0.8 
DO (mg l-1) 2.81 ± 0.27 3.17 ± 0.33 3.22 ± 0.36 2.76 ± 0.22 
pH 7.6 ± 0.2 ** 7.1 ± 0.1 ** 7.3 ± 0.1 7.3 ± 0.1 
Chlorophyll a (µg l-1) 21.82 ± 3.31 * 11.56 ± 1.14 * 16.67 ± 2.97 16.71 ± 2.49 
Dissolved inorganic nutrients (µM)   
NH4

+ 2.40 ± 0.5 3.23 ± 0.98 1.98 ± 0.33 3.7 ± 1.04 
NO2

- 2.56 ± 0.34 2.55 ± 0.43 2.50 ± 0.4 2.62 ± 0.36 
NO3

- 1.16 ± 0.32 * 2.84 ± 0.39 * 2.1 ± 0.37 2.51 ± 0.42 
PO4

3- 1.08 ± 0.07 ** 1.62 ± 0.17 ** 1.30 ± 0.11 1.37 ± 0.17 
SiO2 68.19 ± 8.43 88.01 ± 9.72 72.06 ± 9.52 83.72 ± 8.83 
Diversity measures    
H' 2.47 ± 0.05 *** 1.94 ± 0.12 *** 2.13 ± 0.13 2.28 ± 0.9 
J’ 0.82 ± 0.01 *** 0.66 ± 0.04 *** 0.72 ± 0.04 0.77 ± 0.03 
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Table 4.1 continued 

Variables Source of Variations   

 Monsoon effect  Lunar effect  
 SW NE Neap Spring 
n 20 20 20 20 
Microbial food components (cell l-1)   
Bacteria 4.80 ± 0.29 × 109 4.65 ± 0.53 × 109 4.94 ± 0.52 × 109 4.51 ± 0.32 × 109 
HNP 2.72 ± 1.26 × 107 * 1.24 ± 0.58 × 107* 1.24 ± 0.49 × 107 2.73 ± 1.29 × 107 
Phytoplankton 1.24 ± 0.16 × 105* 8.8 ± 0.6 × 104* 9.74 ±1.17 × 104 1.15 ± 0.14 × 105 
Microzooplankton 4.21 ± 0.53 × 103*** 1.33 ± 0.27 × 104*** 1.09 ± 0.28 × 104 6.6 ± 1.16 × 103 
Significance: *** p<0.001, ** p<0.01, * p<0.1
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Figure 4.2 Monthly mean of (a) physical parameters, (b) dissolved inorganic nutrients 
and (c) microzooplankton potential food components. N denotes neap tide; S denotes 
spring tide. Error bars (S.E.) are indicated. 

Univ
ers

iti 
Mala

ya



 

35 

 

4.2  Bacteria, HNP, and Phytoplankton Abundance 

Bacteria abundance was constant (p > 0.05) throughout the sampling period (2.42 × 

109 to 1.14 × 1010 cell l-1) despite a slight peak that occurred in November 2013 (Figure 

4.2). Compared to bacteria, abundance of HNP was more variable among sampling 

months with peaks recorded in June 2013 (1.96 × 108 cell l-1) and February 2014 (7.48 × 

107 cell l-1) respectively (Figure 4.2). Mean abundance of HNP (1.98 × 107 ± 4.38 × 107 

cell l-1) was approximately three orders of magnitude lower than bacteria abundance (4.72 

× 109 ± 1.88 × 109 cell l-1)  and was significantly more abundant during the SW monsoon 

than the NE monsoon (p < 0.05, Table 4.1). Phytoplankton abundance and chlorophyll a 

concentration ranged from 3.46 × 104 cell l-1 to 3.69 × 105 cell l-1 and 5.14 µg l-1 to 54.71 

µg l-1, respectively. Both chlorophyll a concentration and phytoplankton abundance were 

significantly higher during the drier SW monsoon.  Phytoplankton community was 

dominated by Skeletonema costatum, composing 64% of phytoplankton abundance. 

There was no significant difference in abundance of bacteria, HNP and phytoplankton 

and chlorophyll a concentration between lunar phases (p > 0.05; Table 4.1) 

 

4.3  Microzooplankton Diversity, Abundance, and Composition 

A total of 39 microzooplankton taxa were identified in the sampling period. The 

highest species richness, S (26 taxa) was recorded during spring tide in both June 2013 

and February 2014 and the lowest S (14 taxa) was recorded during neap tide in November 

2013.  Both Shannon-Wiener diversity index (H’) and Pielou’s evenness (J’) were 

significantly lower during the NE monsoon as compared to the SW monsoon (p < 0.01; 

Table 4.1) due to the dominance of the aloricate cyclotrichs in October 2013 (> 80% of 

total abundance; Table 4.2, Fig. 4.3). Both H’ and J’ were not significantly different 

between the lunar phases (p > 0.05, Table 4.2). 
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The overall mean microzooplankton abundance was 8.74 ± 9.65 × 103 ind l-1. Mean 

total abundance of microzooplankton was significantly higher during the NE monsoon as 

compared to the SW monsoon (p < 0.05; Table 4.1, Figure 4.2); peak microzooplankton 

abundance occurred in October 2013 and lowest abundance in August 2013 (Figure 4.3). 

The microzooplankton were predominated by loricate ciliates during the SW monsoon 

(50.92 ± 5.82 %), while the aloricate ciliates were predominant during the NE monsoon 

(38.99 ± 8.83 %; Figure 4.3). Copepod nauplii were always the least abundant component 

between both monsoons and lunar effects, ranging from 60 ind l-1 to 1275 ind l-1 across 

months. 

Out of the 39 identified microzooplankton taxa, 29 taxa belonged to the loricate 

ciliates. Four major species of loricate ciliates (> 95% occurrence; see Table 4.2) were 

identified, namely, Tintinnopsis beroidea, Tintinnopsis rotundata, Stenosemella avellana 

and Tintinnidium primitivum. Tintinnopsis rotundata occurred more during the SW 

monsoon, while Tintinnidium primitivum dominated during the NE monsoon (Table 4.3). 

Except T. primitivum and T. acuminata, most of the loricate ciliates were commonly more 

abundant during the SW monsoon. All three Leprotintinnus species were present almost 

the year round (Table 4.2) and only showed significantly higher abundance during SW 

monsoon (Table 4.3). Most of the loricate ciliates did not exhibit significant difference in 

abundance between lunar phases except for Favella ehrenbergii and Tintinnopsis nana. 

The large F. ehrenbergii was only observed during neap tide while T. nana was 

significantly higher in abundance during spring tide (Table 4.2 and 4.3). There were eight 

rare species with relatively low abundance of less than 1%, namely, Tintinnopsis 

mortenensis, T.  vasculum, T.  acuminata, T. butschlii, Tintinnidium incerta, Rhizodomus 

tagatzi, Eutintinnus sp., Amphorellopsis spp. (Table 4.2). Interestingly, these rare species 

were all collected only once during SW monsoon, except for Eutintinnus spp. which were 

collected twice during the spring tide, one each during SW monsoon and NE monsoon.  
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The aloricate ciliates were represented by five major families from Mesodiniidae, 

Strombidiidae, Strobilidiidae, Pleuronematidae and Vorticellidae. Aloricate ciliates were 

more abundant during NE monsoon, with Strombidiidae, Strobilidiidae and Mesodiniidae 

showing significant difference between monsoon periods. In particular, the monotypic 

Mesodiniidae in the Cyclotrichiida, was only present during the rainy months of NE 

monsoon (October to January, Table 4.2). An exceptional peak abundance of cyclotrichs 

was recorded in October 2013, reaching 36,250 ind l-1. Lunar effect on the aloricate ciliate 

community was not significant.  

Five genera of dinoflagellates (i.e. Peridinium, Ceratium, Dinophysis, Noctiluca and 

Prorocentrum) were identified. Peridinium, Prorocentrum and Ceratium showed the 

same distribution; they were significantly higher during the NE monsoon, reaching 

maximum abundance towards the end of NE monsoon as the dry spell began. Of all the 

dinoflagellates genera, Ceratium spp. recorded an exceptional peak (11,313 ind l-1), about 

5 folds its average abundance during the end of NE monsoon when the local climate was 

at its driest (74.9 mm, Table 4.2). No significant lunar phase effect was observed in the 

dinoflagellate community. 

Copepod nauplii were present in all samplings. As opposed to most microzooplankton 

which did not exhibit lunar phase difference, copepod nauplii recorded significantly 

higher (p<0.001) mean abundance during neap tide. 

 

Table 4.2 Ranked monthly abundance of microzooplankton in Terusan channel, MMFR 
during the study period April 2013-February 2014. Abbreviations used: percentage 
occurrence (%Occ), neap (n), spring (s). Individuals per litre: 2 = 11–50; 3 = 51–100; 4 
= 101–500; 5 = 501–1000; 6 = 1001–2500; 7 = 2501–5000; 8 = 5001–10,000; 9 = 10,001–
20,000 10 ≥ 20,001. 

%Occ Apr  
13' 

May  
13' 

Jun  
13' 

Jul  
13' 

Au
g  
13'  

Oct  
13' 

Nov  
13' 

Dec  
13'  

Jan  
14' 

Feb  
14' 
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Species 
 

n s n s n s n s n s n s n s n s n s n s 
Loricate Ciliate                               
Tintinnopsis. rotundata 100 3 4 4 3 4 4 3 4 2 3 4 3 2 3 4 3 2 2 3 3 
Tintinnidium primitivum 100 3 2 4 2 4 4 4 2 4 2 5 4 6 3 4 5 5 5 4 5 
T. beroidea 95 4 5 2 4 4 4 3 2 

 
4 5 4 4 4 4 5 4 4 4 2 

Stenosemella avellana 95 4 4 3 4 
 

4 4 4 2 4 4 4 8 3 4 4 2 4 6 2 
T. minata 90 2 4 2 4 4 4 2 4 

 
3 2 2 4 2 

 
2 2 3 7 3 

T. tubulosa 90 
 

  4 4 4 3 3 2 4 2 4 3 4 3 3 4 2 3 3 3 
T. nana 85 2 3 3 4 2 4 

 
2 2 3 2 2 3 2 2 3 4 5 

 
  

L. elongatus 80 2 4 2 2 4 2 2 3 3 3 
 

  2   2 2 2 3 
 

4 
T. meuneri 75 5 4 4 4 4 2 

 
2 3 2 

 
4 

 
  

 
4 4 4 3 2 

Leprotintinnus 
nordqvisti 75 4 3 3 4 4 2 2 4 2 4 

 
  

 
  2 2 

 
2 3 5 

T. tocatinensis 65 4 4 3 4 4 2 2 2 2 3 
 

  
 

  
 

  
 

2 4 4 
L. bottnicus 65 3 2 2 3 2 2 

 
4 2 2 

 
  

 
2 

 
  2   2 3 

Codonellopsis spp. 50 4 3 2 3 4   3   2 2 
 

  
 

  
 

  
 

  4 2 
Tintinnidium incerta 50 

 
  

 
  

 
3 2 2 2 2 

 
2 2   

 
  2   2 2 

T. chinglannensis 45 2 3 
 

4 2   2   
 

2 
 

  
 

  2   
 

  2 2 
T. mortenensi 40 3 2 

 
  3 2 

 
  

 
  

 
2 2   

 
  

 
2 

 
2 

T. directa 30 3   
 

  2   
 

2 
 

2 
 

  
 

  
 

  
 

  2 4 

T. acuminata 30 
 

  
 

  
 

  
 

  
 

  4   2 4 1
0 2 2   

 
  

Favella ehrenbergii 30 
 

  2   3   
 

  
 

  2   3   3   
 

  2   
T. tubolosoides 25 

 
4 

 
  4 2 

 
  

 
2 

 
  

 
  

 
4 

 
  

 
  

T. lobianci 10 4 3 
 

  
 

  
 

  
 

  
 

  
 

  
 

  
 

  
 

  
Rhizodomus tagatzi 10 

 
  

 
  

 
  

 
  2 2 

 
  

 
  

 
  

 
  

 
  

Eutintinnus spp 10 
 

  
 

  
 

2 
 

  
 

  
 

  
 

  
 

  
 

2 
 

  
T. vasculum 5 

 
2 

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

T. annulata 5 4   
 

  
 

  
 

  
 

  
 

  
 

  
 

  
 

  
 

  
T. butschlii 5 2   

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

Amphorellopsis spp. 5 
 

  
 

  
 

  
 

  
 

  
 

  
 

  
 

  
 

  2   
Aloricate ciliate 

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

Strombidiidae 85 
 

  4 4 6 4 6 4 4 3 4 6 
 

6 6 6 5 6 7 4 
Strobilidiidae 80 

 
  2   2 3 4 3 4 2 6 6 

 
4 4 2 2 4 3 2 

Pleuronematine 65 
 

  2   
 

2 2 4 4   3 3 3 4 3 3 
 

  2 2 

Mesodiniiidae 30 
 

  
 

  
 

  
 

  
 

  1
0 

  
 

7 4 5 4 4 
 

  

Vorticellidae 30 
 

6 
 

  
 

4 
 

5 
 

  
 

  
 

  
 

  4   5 5 
Dinoflagellates   

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
        

Peridinium spp. 100 5 4 4 4 5 4 4 4 4 4 6 5 4 5 4 6 3 3 6 5 
Ceratium spp. 95 2   4 4 6 3 6 3 2 4 4 4 2 4 4 7 4 6 7 9 
Dinophysis spp. 85 

 
  3 4 5 2 3 3 

 
4 2 3 2 3 4 4 2 4 6 4 

Prorocentrum spp. 75 3   2   
 

2 4   2 2 4 4 5 5 4 4 2   6 2 
Noctiluca spp. 30 4   

 
2 4   2   

 
2 

 
  

 
  

 
  

 
  

 
2 

Others 65 
 

  
 

  2 2 2 2 
 

2 3 2 
 

2 
 

2 2 2 2 3 
Nauplius 

 
  

 
        

 
     

 
  

 
        

Nauplius <200µm 100 6 3 5 4 6 4 6 4 4 4 5 4 6 3 4 4 4 4 6 5 
Table 4.3 Summary results of two-way ANOVA on environmental parameters and 
microbial food components at Terusan channel with respect to monsoon and lunar effects. 

 Mann-Whitney Test Kruskal-Wallis ANOVA 
 Effects p-value p-value Effects 
Loricate ciliates     
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Tintinnopsis rotundata SW > 
NE 

0.029   

Tintinnidium 
primitivum 

NE > 
SW 

<0.001 0.001 NE-s, NE-n > SW-s, SW-
n 

Stenosemella avellana   0.007 NE-s, NE-n, SW-s > SW-
n 

T. minata   0.008 SW-s > SW-n, NE-s, NE-
n 

T. nana s > n 0.046   
Leprotintinnus 
elongatus 

SW > 
NE 

0.004   

T. meunieri SW > 
NE 

0.027   

L. nordqvisti SW > 
NE 

<0.001 0.002 SW-n, SW-s > NE-n, NE-
s 

T. tocatinensis SW > 
NE 

0.003   

L. bottnicus SW > 
NE 

0.007   

Codonellopsis spp. SW > 
NE 

0.041   

T. acuminata NE > 
SW 

0.022   

Favella ehrenbergii n > s 0.001   
T. tubolosoides SW > 

NE 
0.05   

Stenosemella spp.  0.009   
Aloricate ciliates     

Strombidiidae 
NE > 
SW 

0.007 0.008 NE-s > SW-n, SW-s, NE-
n 

Strobilidiidae 
NE > 
SW 

0.033   

Mesodiniidae 
NE > 
SW 

<0.001   

Dinoflagellates     

Peridinium spp. 
NE > 
SW 

0.037   

Ceratium spp. 
NE > 
SW 

0.008 0.015 NE-s > SW-n, SW-s, NE-
n 

Prorocentrum spp. 
NE > 
SW 

<0.001 <0.001 NE-s, NE-n > SW-s, SW-
n 

Noctiluca spp. 
NE > 
SW 

   

Nauplius     

Nauplius 
NE > 
SW 

<0.001 <0.001 SW-n, NE-n > SW-n, 
SW-s 
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Figure 4.3 Monthly abundance and composition of major microzooplankton groups, 
including species diversity and species evenness index in Terusan channel, from April 
2013 to February 2014. Error bars indicate standard error for total abundance. 
Abbreviations are as given in Figure 4.2.] 

 

4.4  Species-environment Relationship  

The relationship between environmental parameters and 30 microzooplankton species 

(those with >30% of occurrence) is depicted as an ordination triplot in Figure 4.5, derived 

from redundancy analysis (RDA). The first two canonical axes explained 44.8% of the 

total variance in the species data and 55.3% of the species-environment relation. Monthly 

total rainfall which was relatively higher during the NE monsoon (compared to SW 

monsoon) was correlated to most DIN concentrations, positively with NO2
-, PO4

3-, SiO2, 

NO3
- (upper-right quadrant), dissolved oxygen and negatively with salinity (diagonally 

opposite quadrant). Temperature and chlorophyll a concentration were correlated and 

relatively higher during the SW monsoon. Pearson’s correlation test further verified the 

significant correlations between dissolved inorganic nitrate, phosphate and silicate with 

rainfall (0.38 ≤ r ≤ 0.52) and salinity (-0.52 ≤ r ≤ -0.41). Among all the dissolved inorganic 
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nitrogen, nitrate appeared to affect the community to greater extent as compared to 

ammonium and nitrite (Table 4.4).  

For potential food sources of microzooplankton, HNP which had higher abundance 

during the SW monsoon was positively and highly correlated with salinity (and 

negatively correlated with rainfall), and to a lesser extent with temperature, chlorophyll 

a concentration and dissolved oxygen (see also Table 4.4). Bacteria abundance as 

indicated by the short arrow was not obviously related to the physical and chemical 

parameters, showed no significant changes throughout the sampling.  Both bacteria and 

phytoplankton were not closely related to any particular monsoon period. Except for 

bacteria, both HNP and chlorophyll a exhibited negative correlation with dissolved 

inorganic nutrients (Table 4.4), i.e. their arrow heads pointed in opposite directions 

(Figure 4.5). Among all potential food sources, phytoplankton as represented by 

chlorophyll a concentration showed the most significant relationship with 

microzooplankton (Table 4.4). Scanning electron micrograph (Figure 4.4) further 

confirms that the microzooplankton do not only rely on phytoplankton for food but also 

to built their lorica hence the close correlation. 

Based on the (monthly) sample distribution and the rainfall arrow on the ordination 

triplot (Figure 4.5), axis 1 on the right (positive) was interpreted to indicate the trend of 

increasing rainfall and the dominant effect of the NE monsoon, whereas axis 1 on the left 

(negative) indicates higher temperature and the dominant effect of the SW monsoon.  On 

the other hand, axis 2 on the top (positive) indicates higher DO and at the bottom 

(negative) indicates higher salinity.  Thus, there is a clear separation in community 

structure of microzooplankton between the SW and NE monsoon.  

Microzooplankton community was represented by large-bodied loricate ciliates with 

an affinity for higher salinity and temperature during the SW monsoon (negative axis of 
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RDA1). The large-bodied loricate tintinnid species (ca. 150 µm in total length) included 

Leprotintinnus nordqvisti (Lnor), L. elongatus (Lelo), L.  bottnicus (Lbot), Tintinnopsis 

meuneri (Tmeu), T. tocatinensis (Ttoc), T. chinglanensis (Tching) and Codonellopsis spp. 

(Cod). These species also show strong positive correlations with chlorophyll a 

concentration (0.38 ≤ R ≤ 0.64) and HNP (0.38 ≤ R ≤ 0.68; Table 4.4). 

The relatively small loricate tintinnid species (ca. 80 µm) Stenosemella avellana 

(Save), Tintinnopsis nana (Tnan), T. rotundata (Trot) and T. beroidea (Tber) were 

sampled throughout the sampling months. Except Stenosemella avellana which showed 

significant correlation with phytoplankton, all species did not show any association with 

changes in their food abundance (Table 4.4). Although loricate ciliates were more 

abundant during SW monsoon, Tintinnopsis tubulosa (Ttub). T. acuminata (Tacu) and 

Tintinnidium primitivum (Tnpri) were among the tintinnids that were more abundant 

during the NE monsoon. The aloricate ciliates, strobilidiids (Strob), strombilidiids 

(Strom) and Pleuronematine (Pleu) were sampled throughout the sampling period, but 

they peaked in abundance during the NE monsoon (positive axis 1). These aloricate 

families were also probably influenced by DIN concentrations.  Only Vorticella among 

the aloricate ciliates showed negative correlation with rainfall (R= -0.41, p<0.05), 

Dinoflagellates Ceratium spp. (Cer), Dinophysis spp. (Dphys) and Prorocentrum (Pror) 

were also found to be more abundant during the NE monsoon as compared to the SW 

monsoon. The former two genera bloomed during the latter part of the NE monsoon when 

total rainfall decreased. Noctiluca was the only dinoflagellate that showed greater 

abundance during the SW monsoon. 

Copepod nauplii, the only metazoan group in the microzooplankton was positioned on 

the negative side of axis 2; it was neither associated with any potential food nor rainfall. 
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Abundance of copepod nauplii however showed significant correlation with dissolved 

oxygen and Secchi disc depth (Table 4.4).  

 

   

Figure 4.4 Scanning Electron Microscope imagae of Tintinnopsis beroidea. Upper 2 
images we zoomed in to show that shells of tintinnids were made up by diatoms. 

Univ
ers

iti 
Mala

ya



 

44 

 

Table 4.4: Spearman Rank Order correlation matrix among environmental parameters, microzooplankton potential food components and key taxa of 
microzooplankton in Terusan channel. Abbreviations used: bacteria (Bact), heterotrophic nanoplankton (HNP), phytoplankton (Phyto), Chlorophyll a 
(Chl a), salinity (Sal), rainfall (Rain), temperature (Temp), Secchi depth (Secc), dissolved oxygen (DO). Species arranged with percentage occurrence, 
from highest to lowest in each category. Only significant correlations are shown; pairwise N = 40. 
 
  Bact HNP Phyto Chl a H' J Rain Temp Sal DO Secc  NH4

+ NO2
- NO3

- PO4
3- SiO2 

Bact          
 

      

HNP    0.34   -0.77 0.64 0.69 
 

   -0.75 -0.66 -0.38 
Phyto    0.35             

Chl a  0.34 0.35     0.68    -0.48 -0.35  -0.42 -0.61 
H'      0.91         -0.43  

J         0.91                   -0.32   
T. rotundata     0.39 0.37    0.37       

T. primitivum     -0.5 -0.56  -0.34 -0.43  0.37    0.41 0.44 
Tintinnopsis beroidea       0.49  -0.38      0.33  

Stenosemella avellana   -0.5              

T. minata  0.45  0.42   -0.39 0.49 0.41        

T. tubulosa   -0.33              

T. nana         -0.37       0.37 
L. elongatus    0.38   -0.37 0.38 0.35        

T. meuneri   0.33 0.47 0.37 0.36  0.41    -0.39     

Leprotintinnus nordqvisti  0.67 0.33 0.64 0.31  -0.68 0.66 0.68 -0.35   -0.4 -0.53 -0.68 -0.63 
T. tocatinensis  0.68  0.61 0.36  -0.65 0.71 0.63 -0.36    -0.64 -0.6 -0.65 
L. bottnicus  0.49 0.34 0.37   -0.48 0.62 0.51    -0.44 -0.43 -0.43 -0.46 
Codonellopsis spp.  0.61  0.49   -0.51 0.56 0.51 -0.49    -0.67 -0.48 -0.69 
Tintinnidium incerta       -0.37  0.43        
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T. chinglannensis    0.46    0.4 0.32     -0.4  -0.4 
T. mortenensi    0.48             

T. directa  0.49  0.5   -0.46 0.48 0.55 -0.53  -0.38 -0.64 -0.53 -0.62 -0.69 
T. acuminata  -0.46  -0.41   0.55 -0.47 -0.44     0.37 0.42 0.38 
Favella ehrenbergii     -0.39               0.53           
Strombidiis    -0.48    -0.49  

 
      

Strobilidiids  -0.32  -0.71    -0.71    0.39  0.4   

Pleuronematine 0.32   -0.49    -0.45         

Cyclotrich  -0.53  -0.54 -0.35 -0.33 0.51 -0.55 -0.63     0.46 0.57 0.54 
Vorticella  0.38 0.31    -0.41 0.38 0.39        

Peridinium spp.      -0.32           

Ceratium spp.          -0.45       

Dinophysis spp.          -0.36       

Prorocentrum spp.   -0.46 -0.34 -0.37 -0.49 0.37          

Noctiluca spp.   0.42   0.56     -0.32 0.37   -0.5   -0.32   -0.44 -0.53 -0.6 
Nauplius <200µm                   -0.4 0.6     -0.47   -0.41 
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Figure 4.5: Ordination triplot from RDA of environmental parameters (bold arrows with 
large arrow heads) and microzooplankton taxa (fine colored arrows with small arrow 
heads) in Terusan channel, MMFR. Environmental parameters: DO - dissolved oxygen, 
Phyto- phytoplankton, Chl a -chlorophyll a, Temp- temperature, HNP- heterotrophic 
nanoplankton, Rainfall- monthly mean rainfall, Salinity- monthly mean salinity, Secchi 
– secchi disc depth.   Microzooplankton: Blue arrows indicate loricate ciliatesviz. Trot - 
Tintinnopsis rotundata, Tber T. beroidea, Tnana T. nana, Save Stenosemella avellana, , 
Tacu T. acuminata, Fehr Favella ehrenbergii, Tnpri Tintinnidium primitivum, Ttub 
Tintinnopsis tubulosa, Tninc Tintinnidium incerta, Tdir Tintinnopsis directa, Tmin T. 
minata, Tmeu T. meunieri, Tching T. chinglanensis, Ttoc T. tocatinensis, Lelo 
Leprotintinnus elongatus, Lbot Leprotintinnus bottnicus, Lnor Leprotintinnus nordqvisti; 
red arrows indicate aloricate ciliates viz. Pleuro pleuronematine, Strob stobilidiid, Strom 
stombidiid Cyclo cycloltrich, Vor vorticella; green arrows indicate dinoflagellates viz. 
Cer Ceratium spp., Dphys Dinophysis spp., Pror Prorocentrum spp., Perid Peridinium 
spp., Noct Noctiluca spp.; black arrows indicate copepod larvae, Naup nauplius. Symbols: 
○ SW-spring, □SW-neap, ●NE-spring, ■ NE-neap; numeric letter represents sampling 
month, e.g. 4 = April. Ellipsoids group the microzooplankton taxa into four categories, 
large loricate ciliates, small loricate ciliates, aloricate ciliates and dinoflagellates. 
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4.5  Discussion  

This is the first study in Malaysia and one of a few studies in tropical waters to 

investigate the temporal dynamics of microzooplankton in mangrove estuary.  As in 

agreement with other studies in tropical (Godhantaraman, 2002; Sarkar, 2015), temperate 

(Paterson et al., 2007; Asha Devi et al., 2010; Stoecker et al., 2014), polar (Dolan et al., 

2013; Dolan & Pierce, 2014) and freshwater (Hambright et al., 2007; Kalinowska, 2004) 

environments, the microzooplankton in the Matang estuary are dominated by both 

aloricate and loricate ciliates. Most of the tintinnid ciliate species (e.g. Tintinnopsis, 

Leprotintinnus, Favella and Codonellopsis) found in the present study are however 

known to be cosmopolitan species (Pierce & Turner, 1993). Tintinnid and aloricate ciliate 

concentrations are comparable with those of other tropical estuarine and coastal waters 

(Sarkar, 2015; Rakshit et al., 2014; Agatha, 2011; Jyothibabu et al., 2008a,b). Thus, the 

microzooplankton in tropical estuarine waters as in Matang are rich in diversity, although 

community structure and species abundance are highly variable temporally. The temporal 

variations of microzooplankton abundance in the Matang estuary appear to be closely 

linked to rainfall, salinity, temperature and their likely microbial prey. In temperate 

waters, the abundance of ciliates normally peaks in spring and summer primarily due to 

high phytoplankton food abundance and temperature (Kamiyama, 1994; Barria de Cao et 

al., 2005; Bojanic et al., 2004). Unlike temperate waters, tropical mangrove waters like 

in Matang is conditioned by the monsoonal climate rather than temperature 

(Godhantaraman, 2002; Jyothibabu et al., 2008; Asha Devi et al., 2010). In Matang, the 

causal link of the temporal variations of microzooplankton is species-dependent. High 

salinity, temperature and phytoplankton abundance during the SW monsoon are 

favourable to the growth of the large-bodied tintinnids (i.e. Leprotintinnus bottnicus, L. 

nordqvisti, L. elongatus, Tintinnopsis tocatinensis). Ciliate biomass is correlated with 

chlorophyll a concentration as phytoplankton serves as one of their major food sources 
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(Jiang et al., 2013; Yu et al., 2013; Wang et al., 2014b; Sarkar, 2015). Positive correlation 

of loricate ciliates with phytoplankton or chlorophyll a shows a nutritional dependence 

(Kimor & Golandsky, 1977).  Degrading phytoplankton cells and materials are also 

advantageous to large-bodied tintinnids which are more conspicuous and vulnerable to 

predators since they need these materials to build their protective lorica (Capriulo, 1982).  

In contrast, the small-bodied tintinnids such as Stenosemalla avellana, 

Tintinnopsis beroidea, T. nana and T. rotundata are ubiquitous being present throughout 

the sampling period.  This suggests that salinity, temperature and phytoplankton which 

are variable factors are not the prime factors controlling their temporal abundance 

(Sarkar, 2015, Dolan & Gallegos, 2001). Apart from being eurythermal and euryhaline 

(Rakshit et al., 2014), small-bodied tintinnids, with a seemingly lack of temporal 

variability in their abundance, may depend on the unlimited bacterial food present 

throughout the year. There are however two exceptions; two low salinity tintinnid species 

Tintinnopsis tubulosa and Tintinnidium primitivum were more abundant in low salinity 

environment during the NE monsoon. Rakshit et al. (2014) demonstrated weak negative 

correlation between T. primitivum abundance and salinity, while T. tubolosa 

predominated in summer with higher rainfall and runoffs (Kamiyama & Tsujino, 1997). 

The freshwater input into the estuary significantly increases the amount of 

ammonium, nitrate and silicate, resulting in higher concentrations of these nutrients 

during the rainy NE monsoon. The higher rainfall during the NE monsoon apparently 

triggers the proliferation of aloricate ciliates but not the large-bodied tintinnids in Matang 

estuary. In particular, cyclotrich ciliates bloom during the early part of the NE monsoon 

when increased riverine discharges dilute estuarine waters bringing down the salinity but 

increasing the DIN.  Microzooplankton samplings conducted from upstream to 

downstream of the Sepetang, Selinsing and Sangga Besar channels revealed that 
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cyclotrich ciliates were low in numbers at the upper and mid sections of Selinsing and 

absent in the lower section of the Sepetang including all other areas during the SW 

monsoon (Yong et al. unpublished data). The salinity tolerance of the cyclotrich ciliates 

ranges from 5 ppt (Crowford & Lindholm, 1997) to 35ppt (Proença, 2004). Thus, the 

blooms of cyclotrich ciliates in the estuary are unlikely to be ciliates that originated from 

upstream or those that were flushed downstream during the NE monsoon. Cloern et al. 

(1994) showed that with heavy precipitation and runoffs, cyclotrichs are very likely to 

bloom. It has been reported that the endosymbiotic chloroplasts found in the cyclotrich 

ciliates can uptake the ambient dissolved inorganic nitrogen to bloom (Wilkerson & 

Grunseich, 1990; Liu et al., 2012). Therefore, the cyclotrich blooms during the NE 

monsoon is probably triggered by high DIN in the estuary. Given that the cyclotrich 

ciliates are the main prey for dinoflagellates (Nagai et al., 2008), the gradual 

disappearance of the cyclotrich ciliates towards the end of the NE monsoon is likely due 

to such predation and their declining reproductivity as dissolved inorganic nitrogen 

became limiting for cell replication.  

Although most of the microzooplankton abundance appeared not to be influenced 

by lunar phase, the predatory tintinnid F. ehrenbergii was sampled in considerable 

numbers during neap tide (>17 ind l-1) but was not present during spring tide. Similarly, 

the abundance of copepod nauplius was significantly higher during neap than spring tide 

in both SW and NE monsoon. In term of body size, these two groups were the largest 

among the microzooplankton. Both of them are known to feed on other ciliates 

(Robertson, 1983; Buskey & Stoecker, 1989), placing them in the upper trophic level of 

the microzooplankton. These organisms were also the few microzooplankton (2 taxa) that 

were significantly correlated with water transparency (Secchi reading); all others were 

not, indicating the generally high water turbidity in Terusan channel (Table 4). 

Nevertheless, it is not clear why less turbid or clearer water favoured F. ehrenbergii and 
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copepod nauplii; it may due to the higher light intensity that also attracts their prey.  

Nonetheless, it may explain why Favella ehrenbergii and copepod nauplius were more 

abundant during neap tide (clearer water) than spring tide. However, the lunar difference 

in abundance may also be explained by their reproductive timing and swimming ability 

so as to prevent population loss by strong tidal advection during spring tide. Compared 

to mesozooplankton, planktonic ciliates are less capable of independent swimming 

movement against currents and tides (Fenchel, 1987; Dolan et al., 2013). They rely more 

on water diffusion and either swimming at the water boundaries or drift with the flow 

(Zhu et al., 2013).  However, larger ciliates such as F. ehrenbergii are capable of 

directional swimming towards food and against gravity (Jonsson, 1989, Harvey & 

Manden-Deuer, 2011). Interestingly and in contrast, the adult copepods of Acartia 

spinicauda were more abundant during spring than neap tide at the same sampling site 

(Kong et al., 2015).  Apparently, the need for upstream penetration and population 

retention necessitates such a behaviour mediated through tidally-induced vertical 

migration (Schmitt et al., 2011; Chew et al., 2015). However, since larval copepods are 

weak swimmers, the timing of copepod spawnings during neap tide is clearly an adaptive 

strategy to avoid more serious advective losses of their young stages during spring tide.    

Many studies have been conducted to investigate the correlation between 

microzooplankton and environmental parameters. Some suggest physicalcontrol, for 

examples by temperature, salinity and current (Verity, 1986; Sanders, 1987; Cordeiro et 

al., 1997; Eskinazi-Sant'anna & Björnberg, 2006), whereas others suggest a top-down 

control, such as by predators (Dolan & Gallegos, 2001; Urrutxurtu et al., 2003). However, 

both bottom-up and top-down controls such as temperature, light, tidal effect, oxygen 

concentration, nutrients, prey and predator abundance, can affect the formation of ciliate 

cysts (Dolan et al., 2012; Lynn, 2010; Kamiyama, 1994; Jonsson, 1994). With the great 
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environmental fluctuations in the estuary, both encystment and excystment of ciliates 

could well explain the ‘disappearance’ and ‘bloom’ of certain species.  

The present study used both cell density and chlorophyll a concentration of 

phytoplankton as measures of the potential autotrophic food source for 

microzooplankton. Although both variables were highly correlated, only DIN was 

significantly correlated (albeit negatively) with chlorophyll a concentration but not 

phytoplankton density. This is likely due to the poorer preservation of the smaller-size or 

soft-bodied phytoplankton other than diatoms by Lugol’s iodine. Fresh field samples 

compared to iodine-preserved samples conserve more of the actual phytoplankton 

community (Rodríguez-Ramos et al., 2014). Thus, ‘phytoplankton’ in our study 

contained more diatoms and much less of the smaller size fraction which included the 

phytoflagellates and coccoliths; therefore, cell density of the preserved phytoplankton 

was likely underestimated when viewed under the light microscope.  On the other hand, 

chlorophyll a concentration from filtered fresh phytoplankton cells comprising both 

diatoms and the smaller-size phytoplankton thus appeared accountable for its negative 

correlation with DIN probably due to rapid uptake and depletion of the nutrients.  

The r/K selection theory was applied to tintinnid and aloricate ciliates by Margalef 

(1982) to explain their adaptation strategies, but he did not provide experimental or field 

data to show that tintinnids grow slower than aloricate ciliates. However, the growth rates 

of ciliates tend to decrease with bigger body size but increase with higher temperature 

and favourable environment (Müller & Geller, 1993). If we assumed that the drier SW 

monsoon offers a less favourable condition for ciliate growth such as lower DIN, the 

larger loricate tintinnids would represent K-adapted species since they accumulate their 

biomass (or abundance) slowly but persistently at low nutrient concentrations, while 

expending substantial energy on lorica building (Dolan et al., 2013). On the other hand, 
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the aloricate ciliates represent the r-adapted species since they are smaller, reproduce and 

grow rapidly when the environment is favourable such as in the NE monsoon (this study, 

Figure 4.3). Nonetheless, our study could not provide direct evidence of the higher growth 

rates of aloricate ciliates except by proxy, i.e. their high abundance. Thus, more studies 

on how size and environment affect ciliate reproduction and growth are required to verify 

the hypothesized r/K adaptive strategies in small and large ciliates. 

 

Univ
ers

iti 
Mala

ya



 

53 

 

CHAPTER 5: RESULTS AND DISCUSSION - MICROZOOPLANKTON 

GRAZING IN RELATION TO MICROBIAL LOOP DYNAMICS IN A 

HIGHLY TURBID MANGROVE ESTUARY. 

5.1 Biomass of Microbial Components 

The abundance and biomassof phytoplankton (Chl a) and other microorganisms in 

Matang have already been reported (Chapter 4) and their seasonal averages ranged by a 

few orders. Here, we reported them in carbon biomass so as to more accurately reflect 

the contribution of each component to the planktonic and microbial food web (Figure 5.1) 

hence to elucidate the carbon pathway.  

The average bacterial biomass observed was similar during the SWM (67.3 ± 17.2 

µgC .l−1) and NEM (64.6 ± 33.2 µgC l−1) season, whereas the average HNP during the 

NEM (132 ± 84 µgC l−1) was nearly double that of the SWM (74 ± 26 µgC l−1). Biomass 

of bacteria was not significantlt higher than HNP.  In certain months (May, January, and 

February) biomass of HNP was higher than bacteria biomass. Although the biomass of 

phototrophs, as estimated from Chl a concentration was nearly double in SWM (1703 ± 

1172 µgC l−1) than in NEM (902 ± 390 µgC l−1) , the difference was not statistically 

significant probably due to the large variance observed. In terms of variation throughout 

the sampling period, bacterial biomass varied within a smaller range (coefficient of 

variation or CV = 39%) relative to the other microbes (CVs for HNP: 66%, MZP: 75%, 

Chl a: 94%). 

Biomass of microzooplankton was estimated by biovolume. A total of 566 individuals 

were measured; 37 species were identified, and others were grouped according to shapes 

and sizes. Dinoflagellates were identified to genus and biovolume was estimated 

accordingly (Table 5.1). Only the MZP biomass was significantly higher in NEM (152 ± 

98 µgC l−1) than SWM (80 ± 59 µgC l−1) (t=2.49, df=14, p<0.05). Biomass of loricate 
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ciliates was the highest among the microzooplankton, with a maximum record of 59.5 

µgC l-1. The aloricate ciliate marked a peak in October (38.6 µgC l-1), dinoflagellates 

marked its peak in February (169.9 µgC l-1). Difference among categories domination in 

biomass throughout the study were shown in Figure 5.2. Among categories of 

microzooplankton, only the loricate ciliates, tintinnids showed a positive correlation with 

phytoplankton biomass (r2 = 0.52, p<0.05, Figure 5.3) while the rest do not exhibit 

correlation with phytoplankton biomass.  

 

Figure 5.1: Monthly biomass of different microbial components in MMFR. 
Phytoplankton biomass was one order higher than the rest of the microbial components. 
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Figure 5.2 Monthly biomass of microzooplankton categories by percentage.  

 

  

 

  

 
Figure 5.3 Relationships between biomass of various microzooplankton taxonomic 
groups (μgC l–1, x-axis) and phytoplankton biomass (μgC l–1, y-axis). Only cases with 
significant (p < 0.05) positive correlation are presented with the regression line.  
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Table 5.1 A synoptic account for the microzooplankton recorded in MMFR 2013-2014. TL: total length, OD: oral diameter. 
 

n TL (µm) OD (µm) TL/OD Biovolume (µm3) body carbon weight (µg) 
Tintinnopsis beroidea 38 58 ± 11 26.2 ± 3.1 2.21 ± 0.32 3.46 ± 1.73 × 104   2.28 ± 0.92 × 10-3 
Tintinnopsis rotundata 19 87.3 ± 8.1 33.4 ± 2.7 2.63 ± 0.27 8.33 ± 2.36 × 104 4.86 ± 1.25 × 10-3 
Tintinnopsis nana 4 42.4 ± 2.5 17 ± 1.3 2.51 ± 0.31 8.71 ± 2.12 × 103 9.06 ± 1.12 × 10-4 
Tintinnopsis minata 22 43.9 ± 2.8 26.7 ± 1.5 1.65 ± 0.15 8.67 ± 1.23 × 103 9.04 ± 0.66 × 10-4 
Tintinnopsis meuneri 18 73.7 ± 11 47.8 ± 4.1 1.54 ± 0.16 2.97 ± 0.44 × 105 1.62 ± 0.23 × 10-2 
Tintinnopsis tocatinensis 11 116.5 ± 12 23.1 ± 2 5.06 ± 0.51 4.43 ± 0.78 × 104 3.22 ± 0.41 × 10-3 
Tintinnopsis mortenensi 4 62.6 ± 4.8 98.6 ± 15 0.65 ± 0.11 40.66 ± 2.47 × 105 2.52 ± 1.31 × 10-2 
Tintinnopsis directa 2 111.5 ± 55.6 102.9 ± 37.8 1.06 ± 0.15 5.73 ± 6.89 × 105 3.08 ± 3.65 × 10-2 
Tintinnopsis tubulosa 38 58 ± 11 26.2 ± 3.1 2.21 ± 0.32 3.46 ± 1.73 × 104 2.28 ± 0.92 × 10-3 
Tintinnopsis tubolosoides 66 98.4 ± 16.4 29.5 ± 6.1 3.38 ± 0.36 8.01 ± 3.63 × 104 4.69 ± 1.92 × 10-3 
Tintinnopsis chinglannensis 12 86.3 ± 5.3 25.5 ± 2.6 3.42 ± 0.43 8.63 ± 2.05 × 104 5.02 ± 1.09 × 10-3 
Tintinnopsis spp1 9 75.4 ± 11.2 25.4 ± 2.4 2.97 ± 0.41 4.44 ± 1.94 × 104 2.80 ± 1.03 × 10-3 
Tintinnopsis vasculum 3 61.9 ± 0.3 39.5 ± 7.2 1.61 ± 0.32 6.91 ± 0.4 × 104 4.11 ± 0.21 × 10-3 
Tintinnopsis lobianci 19 204.7 ± 54.2 61.5 ± 19.6 3.4 ± 0.75 6.52 ± 5.54 × 105 7.88 ± 0.16 × 10-3 
Tintinnopsus acuminata 12 76.5 ± 2.5 25.1 ± 1.4 3.06 ± 0.17 4.77 ± 0.43 × 104 2.97 ± 0.23 × 10-3 
Tintinnopsis annulata 19 204.7 ± 54.2 61.5 ± 19.6 3.4 ± 0.75 6.52 ± 5.54 × 105 7.88 ± 0.16 × 10-3 
Tintinnopsis butschlii 38 58 ± 11 26.2 ± 3.1 2.21 ± 0.32 3.46 ± 1.73 × 104 2.28 ± 0.92 × 10-3 
Tintinnopsis spp2 6 270.3 ± 11.1 62 ± 1.1 4.37 ± 0.25 6.10 ± 0.41 × 105 3.28 ± 0.22 × 10-2 
Rhizodomus tagatzi 6 177.1 ± 24.2 34.1 ± 2.3 5.21 ± 0.77 1.63 ± 0.32 × 105 8.17 ± 1.70 × 10-3 
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Table 5.1, continued 

Leprotintinnus nordqvisti 8 145.2 ± 55 80.6 ± 9.7 1.82 ± 0.68 4.92 ± 1.30 × 105 2.65 ± 0.69 × 10-2 
Leprotintinnus elongatus 11 179.8 ± 32 36.7 ± 6.6 5.01 ± 0.95 2.01 ± 0.68 × 105 1.11 ± 0.36 × 10-2 
Leprotintinnus bottnicus 5 254.5 ± 14.2 47.5 ± 5.2 5.39 ± 0.44 1.71 ± 0.44 × 104 9.48 ± 2.33 × 10-3 
Stenosemella avellana 5 28.9 ± 2.5 26.7 ± 1.8 1.09 ± 0.1 1.08 ± 0.16 × 104 9.97 ± 1.01 × 10-4 
Stenosemella spp 2 34.4 ± 8.4 24.9 ± 6.2 1.47 ± 0.7 21.4 ± 5.88 × 104 9.05 ± 0.22 × 10-4 
Eutintinnus spp 3 166.5 ± 14.1 49.1 ± 8.1 3.44 ± 0.49 3.24 ± 1.12 × 105 1.76 ± 0.59 × 10-2 
Favella ehrenbergii 19 304.9 ± 54.6 111.7 ± 6.8 2.71 ± 0.36 2.07 ± 0.6 × 106 1.10 ± 0.32 × 10-1 
Coxiella spp. 5 230.1 ± 24.7 111.9 ± 5.9 2.06 ± 0.18 1.92 ± 0.3 × 106 1.02 ± 0.18 × 10-1 
Codonellopsis spp. 3 109.2 ± 6.2 92 ± 7.5 1.19 ± 0.08 7.94 ± 1.90 × 105 4.25 ± 1.01 × 10-2 
Amphorellopsis spp. 2 133.2 ± 18.4 35.5 ± 2.4 3.74 ± 0.27 1.34 ± 0.36 × 105 7.52 ± 1.91 × 10-3 
Tintinnidium incerta 3 131.8 ± 40.8 30.6 ± 4 4.28 ± 0.97 1.01 ± 0.52 × 105 5.81 ± 2.74 × 10-3 
Tintinnidium primitivum 20 86.7 ± 17.2 21.4 ± 4.4 4.12 ± 0.74 3.36 ± 1.87 × 104 2.22 ± 0.99 × 10-3 
Strombidiis 28 77 ± 19.4 40.6 ± 10 

 
7.16 ± 4.84 × 104 1.00 ± 0.68 × 10-2 

Strobilidiids 31 68.5 ± 19.4 26.4 ± 6 
 

2.26 ± 1.96 × 104 3.17 ± 2.75 × 10-3 
Pleuronematine 6 35.7 ± 6.6 20.9 ± 3 

 
8.60 ± 3.49 × 103 1.20 ± 0.49 × 10-3 

Euploites 8 71.5 ± 18.9 28.1 ± 5.2 
 

2.04 ± 1.40 × 104 2.86 ± 1.95 × 10-3 
Cyclotrich 14 17.5 ± 3.9 12 ± 3.9 

 
9.49 ± 5.53 × 102 1.33 ± 0.77 × 10-4 

Vorticella 6 35.7 ± 6.6 20.9 ± 3 
 

8.60 ± 3.49 × 103 1.20 ± 0.49 × 10-3 
Ciliates >50µm 8 75.3 ± 33.6 

  
3.61 ± 5.32 × 105 5.05 ± 7.45 × 10-2 

Nauplius <200µm 19 125.5 ± 30.1 
   

2.60 ± 1.90 Χ 10-2 
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Table 5.1, continued 

Peridinium spp. 3 81 ± 18.1 52.5 ± 20.1 
 

7.93 ± 8.37 × 105 7.32 ± 7.36 × 10-2 
Dinophysis spp. 3 80.7 ± 4.3 49.9 ± 2 

 
2.71 ± 0.3 × 104 3.15 ± 0.33 × 10-3 

Ceratium spp. 2 314.2 ± 11.7 258.3 ± 6.3 
 

5.59 ± 2.27 × 104 6.18 ± 2.36 × 10-3 
Noctiluca spp. 3 81 ± 18.1 52.5 ± 20.1 

 
7.93 ± 8.37 × 105 7.32 ± 7.36 × 10-2 

Prorocentrum spp. 3 80.7 ± 4.3 49.9 ± 2 
 

2.71 ± 0.3 × 104 3.15 ± 0.33 × 10-3  
566 
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5.2 Microbial Productions 

Primary production as estimated by the dilution technique ranged 148 to 4021 µgC 

l−1d−1 and was clearly higher than the production rates of other microbes (Figure 5.5). 

Although primary production did not exhibit significant differences among moon phases 

(p>0.05), it was significantly higher during the drier SWM than in the NEM (t=2.42, 

df=18, p<0.05). The highest production estimated was 4021 µgC l-1d-1 and occurred at 

the beginning of the SWM (April 2013) although larger fluctuations occurred during the 

drier SWM. Production was lower during the wetter NEM, with the lowest recorded in 

October (148 µgC l-1d-1; Figure 5.5).  Primary production in this study was found to show 

correlation with temperature (r2=0.42, p<0.005). 

A total of 20 sets of incubation were carried out to estimate bacterial production. Of 

these 20 incubations, only 1 did not produce a significant growth curve (Figure 5.4). The 

mean bacterial production of 3.7 ± 1.5 µgC l-1d-1 was about two order lower than primary 

production. (Table 5.2). Bacterial production varied within a smaller range (CV: 42%; 

CV = standard deviation / mean × 100), and with no significant difference between the 

SWM and NEM season (t-test, p>0.05). Bacterial production was highest in May (6.14 

µgC l-1d-1) and lowest in August (1 µgC l-1d-1). In this study, bacterial production showed 

a significant positive correlation with rainfall (r2=0.24, p<0.05; n=20). 

HNP growth rates were measurable for a total of eight occasions. The other sets of 

HNP samples (i.e. the <20 µm sieve-fraction) for twelve occasions had negative growth; 

and the regression line was not significant at the end of the incubation period. HNP 

production varied within a wide range from 1.55 to 24.24 µgC l-1d-1 (CV: 73%), and on 

average was 12.7 ± 9.3 µgC l-1d-1. There was no difference in HNP production between 

monsoons. HNP production too showed significant correlation with temperature (r2=0.59, 

p<0.05). 
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Microzooplankton production, as estimated from abundance and biovolume varied 

widely (CV: 65%), with an average of 121.7±90.8 µgC l-1d-1. Among microzooplankton 

groups, primary production showed positive correlation with tintinnids production 

(r2=0.3, p<0.05) while showing negative correlation with naked ciliate production (r2 =  -

0.31, p<0.05). Both nauplius (r2=0.38, p<0.05) and dinoflagellates (r2=0.44, p<0.05) 

exhibit positive correlation with dissolved oxygen ;. 
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Figure 5.4: Monthly bacterial production from April 2013 to February 2014. X-axis 
shows time of incubation while y-axis shows bacterial abundance after ln-transformation. 
First incubation in April showed a negative growth which is excluded from subsequent 
analysis. 
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Figure 5.4 continued. 
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Table 5.2 Seasonal variation of biomass, production, and grazing of microbial 
components in MMFR.  
 
Biomass, Production and Grazing Monsoon   
 SW NE Average 
Bacteria       
Biomass (µgC/l) 67.3 58.0 62.0 
Production (µgC/l/d) 3.7 3.7 3.7 
Grazing by HNP (µgC/l/d) 1.6 1.2 1.3 
  Grazing by microzooplankton 
(µgC/l/d) 1.5 1.2 1.3 

Phytoplankton    
Biomass (µgC/l) 1703.0 901.7 1302.3 
Production (µgC/l/d) 1682.1** 607.2** 1081.7 
Grazing by microzooplankton 
(µgC/l/d) 1587.4** 387.82** 887.0 

HNP    
Biomass (µgC/l) 73.5 102.5 89.9 
Production (µgC/l/d) 13.2 6.9 10.7 
Grazing by microzooplankton 
(µgC/l/d) 4.3 1.2 3.5 

Microzooplankton    
Biomass (µgC/l) 75.4 119.5 97.4 
Production (µgC/l/d) 83.7 159.8 121.7  

**p<0.001 
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Figure 5.5: Monthly production of different microbial components in MMFR.  

 

5.3 Grazing Activities 

The diet of microzooplankton consisted of phytoplankton, HNP and bacteria. In this 

study, phytoplankton was found to be a more substantial food source for the 

microzooplankton. A total of 20 dilution experiment were carried out throughout this 

study (Figure 5.6). As measured from the Landry-Hassett dilution method for herbivory, 

the microzooplankton grazing rate in the estuary ranged from 106 to 3599 µgC l-1d-1, and 

averaged 1029 ± 1045 µgC l-1d-1. Microzooplankton grazing took up a substantial amount 

of the primary production (83±27%: Fig. 5.7),  and the grazing rate was higher in SWM 

(1636 ± 1188 µgC l-1d-1) than in NEM (421 ± 271 µgC l-1d-1) (t=3.15, df=10, p<0.01).  
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In this study, herbivory activity was correlated with chlorophyll a concentration 

(r=0.97), temperature (r=0.8), pH (r=0.78) and SiO2 (r=-0.55). The HNP’s consumption 

by microzooplankton was estimated at 31% of total HNP production, ranging from 14% 

to 52% throughout the sampling period (Table 5.2).  Of the eight successful incubation 

sets, only three showed grazing activities of microzooplankton on HNP, ranging from 2.2 

to 6.2 µgC l-1d-1. 

Bacterivory by microzooplankton and HNP were both examined through a 24-hour 

incubation. Unfortunately, of the twenty sets of incubation carried out, only six of the 

microzooplankton grazing experiments were significant, and fourteen of the HNP grazing 

experiments were significant (Fig. 5.4). There were three additional samplings carried 

out for bacterivory activities by microzooplankton and HNP during November and 

December 2015 (wet season), but only one sampling gave significant grazing results. On 

average, 42±22% of the bacteria production was estimated to be taken up by HNP (1.52 

± 1.17 µgC l-1day-1), with the highest grazing recorded in July (73%, 3.43 µgC l-1day-1). 

Despite not showing any correlation with the environmental parameters, the highest 

grazing record coincided with one of the lower rainfall months of the year. An estimated 

32% (1.25 ± 0.69 µgC l-1day-1) of the bacteria production was consumed by 

microzooplankton (ranging from 9% to 52% of the total bacteria production). Bacterivory 

of microzooplankton showed negative correlation with dissolved oxygen (r=-0.87) but 

did not correlate with the abundance of microzooplankton groups. Bacterivory by both 

microzooplankton and HNP did not differ significantly between dry and wet season (T-

test, p>0.05). 
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Figure 5.6 Dilution experiment from April 2013 to February 2014. X-axis shows 
dilution factor and y-axis shows phytoplankton growth as measure by chlorophyll a. 
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Figure 5.6, continued. 
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Figure 5.7: Temporal variations of primary production and herbivory activity of 
microzooplankton as estimated by the dilution technique. 
 
 

 
Figure 5.8: Temporal variations of bacterial production and bacterivory activity of HNP 
and microzooplankton (MZP). Note that on some occasions (no reading), there was no 
significant grazing (p>0.05). 
 
 
 
5.4 Discussion 

5.4.1  Seasonal Changes in Microbial Biomass 

The phototrophic biomass of the highly turbid Terusan estuary in the MMFR was the 

highest among the microbes measured in this study. As in most studies, phytoplankton 

production is most important in sustaining the microbial food web, similar to other 
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tropical estuaries such as in India (Jyothibabu et al., 2008a,b; Gauns et al., 2015), Mexico 

(Rivera-Monroy et al., 1998) and Costa Rica (Gocke et al., 2002).  

The heterotrophic biomass of bacteria, HNP and microzooplankton were only 5%, 8% 

and 9% of phototrophic biomass, respectively. This huge difference in biomass suggested 

an overflow of nutrients into the highly productive Matang mangrove as similarly 

observed in the estuary (Van Meerssche & Pinckney, 2019). In terms of seasonal 

difference, only the microzooplankton biomass was significantly different being higher 

in NEM than in SWM. Among the microzooplankton components, ciliated protozoans 

(tintinnids and aloricate ciliates) were predominant and accounted for >50% of the total 

microzooplankton biomass (Yong et al., 2016), similar to other tropical estuaries (Beers 

et al., 1980; Madhu et al., 2007; Gauns et al., 2015).  

In this study, it was observed that the phototrophic biomass decreased as NO3
− and 

SiO2 increased (NO3
−: R = −0.461, p<0.05; SiO2: R = −0.633, p<0.01). A similar trend 

has been observed in nutrient-rich lakes where phototrophic biomass decreased beyond a 

threshold level of nutrients (Filstrup & Downing, 2017). Such a decrease in phototrophic 

biomass under high nutrient condition could occur due to the production of reactive 

oxygen species that could damage the phytoplankton (Filstrup & Downing, 2017). Other 

factors responsible for the high nutrient – low chlorophyll waters include shifts in nutrient 

limitation (Smith & Shapiro, 1981), light availability (Jones et al., 2008), phytoplankton 

composition and chlorophyll content (Felip & Catalan, 2000), and grazing pressure 

(Dröscher et al., 2009). However, as phototrophic biomass is the sum of primary 

production after grazing loss or export, knowing what drives the primary production rates 

may better explain the observed trend in the phototrophic biomass. 
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5.4.2  Primary Production and Microzooplankton Grazing 

Primary production measured in the present study varied widely from 150 to 4020 µgC 

l-1d-1. However, 65% of the measured readings were less than 1000 µgC l-1 d-1 (Figure 

5.7).  Due to the skewed distribution, the median was the best measure of central 

tendency, i.e. 690 µgC l-1d-1.  The exceptionally high values that exceeded 2,500 ugC l-1 

d-1 (Fig. 5.7) on three occasions are not without precedence since even higher value of 

5,000 ugC had been reported for a coastal mangrove lagoon in the Ivory Coast (Iltis, 

1984).  Although the nearest cage fish farms were located 10km away from the study site, 

it is not known whether nutrient plumes emanating from farm activities could reach the 

study site thereby spiking high primary production in April and May.  However, a study 

by Chong (2004) on cage culture effects on water quality of Sangga Besar estuary (see 

Fig. 3.1) shows that plumes of high nutrient concentration were largely trapped within 

the farm due to the dense linearly-arranged cage units, while any that escaped outside it 

quickly dispersed and became diluted by water column mixing.  Chlorophyll 

concentration inside the cages (10-65 ug/L) were not always higher than controls (no 

cages) (10-45 ug/L) and attributed this to turbidity and zooplankton grazing which could 

reduce phytoplankton biomass. Another study on cage fish culture effects by Alongi et 

al. (2003) in the same estuary, at a time when cage culture was more dense than during 

the present study, shows that nutrient enrichment from aquaculture was not an issue as 

compared to the higher organic inputs from the large mangrove forest and main village. 

These authors provided primary production figures on two occasions that ranged from 2-

355 mgC m-3d-1 (July 1999) and 114 - 751 mgC m-3 d-1 (April 2000). In the same 

mangrove estuary, Lee and Bong (2008) gave an estimated mean primary production of 

355 µgC l-1d-1. Nonetheless, high primary production in tropical estuaries is generally not 

rare. The upper ranges of the primary production observed in other tropical mangroves 

e.g. Thailand (200-600 µgC l-1d-1), New Guinea (22-693 µgC l-1d-1 ) and Brazil (110-500 
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µgC l-1d-1 ) (Ayukai & Alongi, 2000, Robertson et al., 1993, Barrera-Alba et al., 2008) 

are quite similar to the present median estimate for the Matang mangrove estuary. 

Primary production in the Matang mangrove estuary is higher relative to other coastal 

sites in Peninsular Malaysia, e.g. Port Dickson (249 ± 33 µgC l-1d-1), Port Klang (394 ± 

127 µgC l-1d-1) and Kuantan (246 ± 88 µgC l-1d-1) (Lee & Bong, 2008).  Except for Port 

Klang which is located near mangroves, all others are non-mangrove sites. In MMFR, the 

high primary production rates explicated the predominant phototrophic biomass, pointing 

to its highly productive waters.  

In this study, primary production was not only correlated with NO3
−, PO4

3− and SiO2 

(NO3
−: R=−0.458, p<0.05; PO4

3−: R=−0.488, p<0.05; SiO2: R=−0.689, p<0.001) but also 

with temperature (R=0.777, p<0.001). Using multivariate linear regression, we showed 

that among the independent variables, temperature was the most important factor that 

affected primary production rates (F=8.10, p<0.001). From a comparative study of 

eutrophic and mesotrophic tropical water systems in Peninsular Malaysia, Lim et al. 

(2015) suggested a threshold concentration of 4 µM NO3
− and 20 µM SiO2 for primary 

production. Since the average NO3
− (4.4 ± 2.5 µM) and SiO2 (76.9 ± 38.3 µM) 

concentrations at MMFR were above these threshold levels, temperature was probably a 

more important factor than inorganic nutrient concentration affecting primary production 

in Matang waters. 

Although the primary production rate at MMFR was high, we observed that a 

substantial amount of primary production was grazed by microzooplankton. 

Microzooplankton grazing increased as primary production increased (r2 = 0.91, df=18, 

p<0.001) (Figure 5.9), and the linear relationship showed that even at the upper ranges of 

primary production, microzooplankton still grazed >80% of primary production. Among 

the microzooplankton in this study, tintinnids were the main contributors as tintinnid 
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production was correlated with primary production (R=0.684, p<0.001). As a herbivorous 

microzooplankton, the importance of tintinnids has been reported in the Ganges River 

Estuary (Rakshit 2014, Sarkar 2015), Southeastern Arabian Sea and Cochin backwaters 

(Jyothibabu et al. 2008b, 2006), and South Coast of India (Godhantaraman 2002). 

Tintinnids are the main food source for calanoid copepods which predominate in the 

Matang estuary (Chew & Chong, 2010). Thus, the strong coupling between primary 

production and microzooplankton grazing suggests the importance of microzooplankton 

as a trophic link channelling basal energy to higher trophic levels. 

 

Figure 5.9: Regression analysis between primary production and grazing by 
microzooplankton (µg C/l/day). Linear regression slope and coeff of determination (r2) 
is shown. 
 

5.4.3 Temperature Dependency of Primary Production versus Microzooplankton 

Grazing 

Microzooplankton grazing was also correlated with temperature (R=0.792, p<0.001). 

Since we found that primary production was correlated to temperature, and 

microzooplankton grazing is related to primary production (Figure 5.9), we therefore 

Univ
ers

iti 
Mala

ya



 

73 

 

compared the response of both primary production and microzooplankton grazing to sea 

temperature rise. Such a comparison would be useful to predict future sea warming 

scenarios of primary production due to climate change. Temperature dependency is 

described as activation energy using the Arrhenius equation (Allen et al., 2005). 

Relationship between natural logarithm of phytoplankton growth (ln µ) and 

microzooplankton grazing loss (ln g) rates versus seawater temperature (1/kT) were 

plotted where temperature (T) was in Kelvin (K) and k is the Boltzmann’s constant (8.617 

× 10–5 eV K–1). In this study, µ increased with temperature (F = 5.65, R= 0.489, p<0.05), 

and the activation energy (± SE) for µ was 1.29 ± 0.54 eV. g also increased with 

temperature (F=10.49, R=0.607, p<0.01), and the activation energy (± SE) for g was 2.05 

± 0.63 eV. Activation energy for microzooplankton grazing loss was higher than 

phytoplankton growth, suggesting that MMFR will trend towards net heterotrophy with 

sea warming (Chen et al., 2012, Regaudie-de-Gioux & Duarte, 2012). We observed that 

the heterotrophic process slightly overtook the phototrophic process at the upper 

temperature range of 38.03°C (Figure 5.10). Therefore, with the projected rise of 2°C by 

the year 2100 (IPCC 2007), pelagic waters in MMFR is projected to be more 

heterotrophic in nature.  
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Figure 5.10: Arrhenius plot of primary production and grazing activity of 
microzooplankton in the estuary. (µ - phytoplankton growth and g - microzooplankton 
grazing loss) 
 

5.4.4 Phytoplankton − Bacteria – HNP Coupling 

Primary production also contributes to the dissolved organic carbon pool which is 

utilized or repackaged by bacteria into a form utilizable by HNPs. The coupling between 

phytoplankton – bacteria – HNP forms the microbial loop that drives an alternative food 

chain alongside the classical phytoplankton – microzooplankton - mesozooplankton food 

chain (Azam et al., 1983). However, both food chains are interconnected. In most waters, 

bacteria – phytoplankton coupling either in terms of biomass or process rates are observed 

(Cole et al., 1988; Lee & Bong, 2008). In selected tropical waters of Peninsular Malaysia, 

bacterial production correlates with primary production in the range of 170 to 540 µgC 

l−1d−1 (Lee & Bong, 2008). However, in the present study in the MMFR, bacterial 

production did not correlate with primary production. Primary productivity was on the 

upper range, from 148 to 4021 µgC l−1d−1, and the uncoupling could be due to the highly 

productive nature of MMFR where the substrate for bacterial production was in excess. 

Moreover, the DOC pool in MMFR was about 450 µM. Although DOC was measured 
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once only, it was clearly higher than in other aquatic habitats in Peninsular Malaysia 

where DOC values ranging from 300 – 390 µM have been obtained (Lee et al., 2009).  

In this study, HNP grazing rates were similar to previously reported rates (Bong & 

Lee, 2011), and HNP grazing rates correlated significantly with bacterial production 

(R=0.736, p<0.01) (Figure 5.11). Our observations suggested top-down control 

regulating bacterial production in the mangrove waters of MMFR. HNP production and 

microzooplankton grazing on HNP were also measured in this study. However, we were 

not able to consistently obtain useable rates. As HNP growth rates measured in MMFR 

ranged from 0.04 to 0.25 d–1, and averaged 0.13 ± 0.08 d−1 over a generation time of >7 

d, we were not always able to observe significant changes in HNP counts within the 12-

h incubation time. HNP growth rates measured in MMFR were in the lower range 

reported by Wallberg et al. (1999) for tropical coastal systems i.e. from 0.3 to 1.2 d−1.  

 

Figure 5.11: Temporal variations of bacterial production and bacterivory activity of HNP 
and microzooplankton (MZP). Note that on some occasions (no reading), there was no 
significant grazing (p>0.05). 
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5.4.5 Microbial Foodweb in MMFR 

Previously, Tarutani et al. (2007) investigated the relationship between the metazoan 

zooplankton and primary production in MMFR. However, the primary production was 

not measured but rather estimated from Chl a concentration. Only 5.7% of the primary 

production was transferred to zooplankton, suggesting that the energy flow from 

phytoplankton to metazoan zooplanktonis inefficient (Tarutani et al. 2007). The lack of 

information regarding the role of  microzooplankton as an energy-transfer intermediary  

is obvious from their conclusion, although they suggested that phytoplankton could be 

consumed by sessile filter feeders on mangrove trees, degraded in the water column, or 

exported offshore. From the present study, we estimated that >60% of primary production 

may be transferred to higher trophic levels via microzooplankton production. 

In the present study, we showed that the estuarine water of MMFR had very high 

primary productivity despite its high turbidity. Primary production was especially high in 

the drier SWM season, and we were able to attribute this to the higher water temperature 

(29.88 ± 0.3 °C) compared to the NEM season (28.83 ± 0.2°C). Microzooplankton 

grazing activity recorded in this study is comparable to a study in the Zuari estuary, a 

tropical monsoon estuary in India (Gauns et al. 2015), and in the western Arabian Sea 

(Landry et al., 1998). With rapid growth and high ingestion rate (Calbet & Landry, 2004), 

microzooplankton easily dominated grazing activity over mesozooplankton (Putland & 

Iverson, 2007). Here, we summarized the data obtained from our study into a schematic 

flow chart that presents the carbon flow in the estuary (Figure 5.12). 

The grazing activity of microzooplankton was different between two monsoons (t-test, 

p<0.001); about 94% of primary production was grazed by microzooplankton during the 

drier monsoon whereas 64% was grazed during the wetter monsoon (Fig 5.7). Rainfall 

and nutrient enrichment during the wet monsoon, reduced the grazing pressure of 
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microzooplankton; hence, primary production was mainly exported. Rainfall also brought 

in more prey options that might have reduced the grazing pressure of microzooplankton 

on primary production. During the wetter NEM, the estuary was dominated by 

bacterivorous aloricate ciliates rather than the herbivorous tintinnids (Yong et al., 2016). 

There was also reduced primary production concurrent with lower herbivory activity 

during the wetter NEM. In addition, the herbivorous copepod species in the estuary, 

Pseudodiaptomus annandalei peaked in abundance throughout the NEM during this 

study (Kong et al., 2015). Since P. annandalei was the only estuarine copepod species 

found in abundance during the wetter season, it presumably served as a perfect competitor 

to the herbivorous tintinnids in the estuary. Despite, the view held by others that 

microzooplankton diversity is more closely related with resources rather than competitive 

interaction or predation (Dolan et al., 2002; Löder, 2011), we contend that with abundant 

food resource, dominant competitors in abundance may supress tintinnid abundance. 

Thus, our study shows that microzooplankton are functionally both prey and competitor 

to mesozooplankton. 

The higher primary production and higher temperature during the drier SWM thus 

provides ample food supply that appears to promote the growth of loricate ciliates or 

tintinnids during this season (Yong et al., 2016). Herbivory activity is thus significantly 

higher in the SWM season since the larger, herbivorous loricate ciliates were reported to 

outnumber the small, bacterivorous aloricate ciliates (Yong et al., 2016).  Hence, the 

higher population of herbivorous species amongst the microzooplankton leads to higher 

grazing rate during SWM. As suggested by Schmoker et al. (2013), higher grazing by 

microzooplankton in the estuary was due to the lower biomass of mesozooplankton in 

warmer waters (Chew & Chong, 2010). 
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Our incubation to measure grazing rate of microzooplankton on HNP generated a 

rather low success rate. This might be due to the community structure of the 

microzooplankton. Predatory ciliates, such as Favella sp. and Tintinnopsis lobioncoi that 

were found in this study (Yong et al., 2016) are known to ingest flagellates (Stoecker & 

Capuzzo, 1990) of the HNP. As flagellates -consuming species were not dominant in the 

estuary, only 3.5% of HNF production were grazed by microzooplankton with no 

significant difference between the monsoon (Fig 5.12). This shows that HNP is not a 

major supporter of microzooplankton production in the Matang mangrove estuary. 

Although the main pelagic food chain of ‘phytoplankton – microzooplankton – 

mesozoplankton’ is found to be substantially different between monsoons, we did not 

observe any significant monsoonal difference in the microbial loop. Bacterial production 

was more than two order lower than primary production; and was consistent throughout 

the year. Around 84% (SWM) and 65% (NEM) of the bacterial production were 

consumed within the loop; this showed that there is some other minor channel that took 

up the bacterial production in the estuary. The amount of carbon recycled through the 

microbial loop was minimal relative to the classical food chain. The minor role played by 

bacteria might be a reflection of the highly productive nature of MMFR as phytoplankton 

– bacteria decoupling was observed.  

In future studies, more investigations on zooplankton growth and grazing processes 

including microzooplankton to mesozooplankton predation in highly variable meteo-

hydrological settings, will greatly benefit the understanding of pelagic carbon flow 

processes and dynamics in tropical estuaries.   
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Figure 5.12: Relationships between primary production, bacterial production, 
heterotrophic nanoplankton production, microzooplankton production and 
mesozooplankton production during the southwest monsoon (upper panel) and northeast 
monsoon (lower panel) seasons. 
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CHAPTER 6: GENERAL DISCUSSION AND CONCLUSION 

6.1 Microzooplankton of Matang Mangrove Forest Reserve 

Microzooplankton were diverse and numerically very abundant in the Matang estuary 

as compared with similar studies in tropical estuary (Sarkar, 2015; Jyothibabu et al., 

2008a,b; Godhantaraman, 2002). Shifts in microzooplankton community structure 

between monsoons, are apparently associated with rainfall, salinity, temperature, DIN 

and microbial food concentrations. Lower rainfall and higher chlorophyll a concentration 

during the SW monsoon, favoured the loricate ciliates. With the increase in rainfall and 

dissolved inorganic nutrients during the NE monsoon, aloricate ciliates then dominate.  

Except for a few taxa, lunar phase which affects the strength of tidal current (neap and 

spring tide) has no effect microzooplankton abundance. Given their high abundance, it is 

likely that Matang’s microzooplankton channel substantial trophic energy to higher 

trophic levels.  

6.2  Microbial loop of Matang Mangrove Forest Reserve 

In this study, we ascertained that MMFR is characterised by high primary production 

but low bacteria production; primary production contributed to the main productivity of 

the mangrove water. This high or excess primary production driven by monsoon showed 

no correlation with bacterial production suggesting the importance of phototrophy 

relative to heterotrophy. With the uncoupling between primary production and bacterial 

production, the ecological significance of microzooplankton grazing on phytoplankton to 

channel carbon (energy) to higher trophic levels became more obvious. From the 

production and biomass of each component of the microbial loop measured in both 

monsoons, this study shows the importance of microzooplankton grazing in the microbial 

food web in MMFR, and how they differed between NEM and SEM. 
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6.3  Future Studies 

a) As microzooplankton shown to have prominent role as trophic intermediaires but 

related study is close to nothing in Malaysia, further studies in different ecosystem in 

Malaysia will be interesting to shed more light on our understanding in 

microzooplankton. Dependency / choice on bacterial production or primary production 

will be a key to further understand the carbon flow of the ecosystem.  

b) This study, however, did not identified microzooplankton with molecular technique. 

Cultures and sequencing of microzooplankton in elsewhere (Saccà & Giuffrè, 2013; 

Wallin, 2019) showed variation and hence redefining species of microzooplankton. 

Certain species in this study showed slight variation of morphological characteristic 

might spark interesting new finding. 

c) Microzooplankton showed food selectivity in the current study. Further study with 

culture to examine food selectivity on microzooplankton will better exhibit these trophic 

intermediaries behave in different environment, ie, when the preferred food is scarce and 

will the herbivory microzooplankton shift to bacterivory.  

d) Impact of climate change on microzooplankton community structure, or even 

morphological change through cultures of microzooplankton should be included in future 

studies. Impact of climate changes was shown to depend heavily on responses of 

microorganisms – production, consumption of green house gasses (Cavicchioli et al., 

2019). 
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