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A TWO-WAREHOUSE INVENTORY MODEL WITH REWORK PROCESS

AND TIME-VARYING DEMAND

ABSTRACT

It is commonly assumed that in a classical inventory model, all items produced during

a production cycle are of perfect items. However, contradictory to reality, production

processes are not perfect at all times, hence resulting in the production of defectives. In

order to minimise the cost incurred and reduce wastage in a production process, we might

consider a rework process to be implemented on the defective items. Besides that, most

classical inventory models also consider the assumption that the available storage facility

has an unlimited capacity. Conversely, in reality an additional storage space commonly

known as a rented warehouse (RW) is needed to store excessive inventory. Another

common assumption is that the demand rate is constant. However, contrary to reality

the demand rate is known to fluctuate due to several factors such as trends and seasons.

Therefore, in order to take into consideration all of the aforementioned common assump-

tions, we proposed a two-warehouse inventory model with deteriorating items and rework

process with time varying demand rate. We also considered the Last-In-First-Out (LIFO)

and the First-In-First Out (FIFO) policies with the assumption that the holding cost is

higher in the rented warehouse as compared to the owned warehouse. The objective of the

proposed model is to determine the optimum values of the time period in a cycle of stage

i that will minimise the total relevant cost, T RC of a production cycle. This dissertation is

divided into several sections, where we will discuss the mathematical formulation of the

model followed by numerical example and a sensitivity analysis to illustrate the derived

results.

Keywords: Two-warehouse, Rework Process, LIFO Policy, Time-varying Demand, De-

terioration.
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MODEL INVENTORI DUA GUDANG BERSAMA PROSES KERJA SEMULA

DENGAN KADAR PERMINTAAN BERUBAH

ABSTRAK

Adalah suatu andaian am di mana dalam sebuah model inventori klasik, semua item yang

dihasilkan dalam suatu kitaran pengeluaran adalah sempurna. Walau bagaimanapun,

bertentangan dengan realiti, proses pengeluaran adalah tidak sempurna pada setiap masa,

justeru menyebabkan penghasilan barangan rosak. Bagi meminimumkan kos tanggungan

dan mengurangkan pembaziran dalam suatu proses pengeluaran, kita boleh mengambil

kira satu proses kerja semula untuk dilaksanakan ke atas barangan yang rosak. Selain

itu, kebanyakan model inventori klasik juga mengambil kira andaian di mana gudang

yang sedia ada mempunyai kapasiti tanpa had. Sebaliknya, secara realiti suatu ruang

penyimpanan tambahan secara umum dikenali sebagai gudang yang disewa (RW), adalah

diperlukan bagi menyimpan inventori berlebihan. Suatu andaian umum lagi ialah kadar

permintaan adalah malar. Walau bagaimanapun, secara realitinya, kadar permintaan dike-

tahui tidak sekata atas beberapa faktor seperti trend dan musim. Oleh itu, bagi mengambil

kira kesemua andaian am yang disebut, kami mencadangkan suatu inventori model dua

gudang bersama barangan yang merosot dan proses kerja semula dengan kadar permintaan

berubah dengan masa. Kami juga mengambil kira polisi Last-In-First-Out (LIFO) dan

polisi First-In-First-Out (FIFO) atas andaian di mana kos pemegangan di gudang yang

disewa adalah lebih tinggi berbanding dengan di gudang yang dimiliki. Objektif model

cadangan ini adalah untuk mengenal pasti nilai optimum masa dalam suatu kitaran pada

peringkat i yang dapat meminimumkan jumlah kos relevan, T RC dalam satu kitaran

proses pengeluaran. Disertasi ini dibahagikan kepada beberapa bahagian, di mana kami

akan membincangkan formulasi matematik model ini diikuti oleh contoh berangka dan

analisis sensitiviti untuk mengilustrasikan keputusan-keputusan yang diperoleh.
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Kata kunci: Dua-gudang; Proses Kerja Semula, Polisi LIFO, Permintaan Berubah Den-

gan Masa: Kemerosotan.
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CHAPTER 1: INTRODUCTION

1.1 Background of Study

Producers or manufacturers involved in a production line pay close attention in pro-

duction planning as it is an important key to minimising their costs and maximising their

profits. There are several factors to be considered in a production process.

For instance, the number of optimal items to be produced, the storage space to store

the products, managing demand and supply, handling defectives and unrepairable items

and many other factors which lead to the profit gain or loss in a business.

Let?s begin by looking at one of the essential parts in a production line, which is storage

space. Prior to being distributed to the market, produced items need to be stored in a

storage facility known as a warehouse. In most cases, it is more economical for producers

or manufacturers to possess their own warehouses, hence the name owned warehouse.

However due to certain circumstances, the storage space in an existing warehouse may

be insu�cient due to limited capacity. In this case, a separate warehouse can be rented,

which can be referred as a rented warehouse. The di�erence in the quality or the facilities

o�ered by the two types of warehouses results in the di�erence of the costs in storing

items in those spaces. This cost is known as the holding cost.

The main objective of a business is to always minimise cost and maximise profit. Hence,

it is vital to determine the right policy in which items are being stored and distributed. In

terms of ensuring the cost is minimised while keeping products in a storage, a manufacturer

would choose to store items longer in the warehouse which holds a lower holding cost.

This phenomenon can be determined by utilising policies known as the Last-In-First-

Out (LIFO) policy and First-In-First-Out (FIFO) policy. As its name would suggest, in a

LIFO policy, items which are stored last would be exhausted or utilised first. Conversely,

items which are stored first, would be exhausted first in a FIFO policy.
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The decision-making process in choosing the best policy that suits a manufacturer’s

business strategy would be contributed by several factors such as storage cost, the type

of produced items and the perishability rate of items. We can see that this approach has

been considered by several researches such as Yadav & Swami (2013) whom exercised

the FIFO policy in their model and Lee (2006) whom considered both LIFO and FIFO

policies in their model.

Another important aspect of this study would be the presence of defective items.

Realistically, produced items are not always 100% perfect. Producing items which are

imperfect or defective is inevitable due to several reasons such as machine and human

errors. Hence in order to reduce costs, some manufacturers may consider to repair or put

the defectives under a rework process instead of disposing or discarding the items as it is

more cost-e�ective.

Lastly, it is also vital to understand that most items deteriorate with time. Products

such as blood and consumable items like food and medicine, have an estimated shelf life,

which means that the quality will reduce over time and will eventually expire. This is

commonly labelled on the products in the market as expiry date.

1.2 Problem Statement

In most existing inventory models, a two-warehouse model and the incorporation of

LIFO and FIFO policies were usually considered separately. In addition, a rework process

is also commonly considered in a single warehouse model.

Considering the gaps within the area of studying the aforementioned factors simultane-

ously and in reference to the model developed by Lee (2006), the objective of this study is

to develop a similar two-warehouse model by incorporating the LIFO and FIFO policies

while considering a rework process in our study.

The first approach to our study is to consider an increasing demand rate instead of the
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commonly used constant demand rate. This approach would allow inventory operators to

plan their production accordingly when launching new items into the market. Following

the current trend, it is common that a newly launched product such as cosmetics, fashion

items and mobile phones will experience a linearly increasing demand rate at the beginning

of the launching period to a certain extent.

The second dilemma we have encountered is that some of the researches have only

considered a perfect production process. In other words, the presence of defective items

is neglected. Hence, we have attempted to include a more realistic condition in which the

production process is imperfect, hence producing defective items. In order to reduce the

total relevant cost of the inventory model, a rework process is introduced in this study.

In addition, we have also proposed to separate perfect items from the defectives and

assumed that the items undergo rework process only in the rented warehouse, once the

production period has ended. This would be beneficial and convenient to manufacturers

who have limited number of machines as they are able to focus on the production process

first and the rework process later.

The final problem that motivated this study would be the assumption that a storage

facility or warehouse has an unlimited capacity. This is unrealistic as a storage space would

be quickly filled up during an ongoing production process. Hence, we have included a

more realistic approach in which the first warehouse labelled as the owned warehouse

would have a limited capacity. This will allow excess items to be stored in a second

warehouse known as the rented warehouse, once the owned warehouse has reached its

maximum capacity.

1.3 Objective of Study

In view of the aforementioned factors above, this study aims to achieve the following

objectives:

3
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1. To develop a two-warehouse inventory model with deteriorating items and rework

process with time varying demand rate.

2. To incorporate the Last-In-First-Out (LIFO) and the First-In-First Out (FIFO)

policies with the assumption that the holding cost is higher in the rented warehouse

as compared to the owned warehouse.

3. To determine the optimum values of the time period in a cycle of stage i that will

minimise the total relevant cost, T RC of a production cycle and to compare the

values of T RC between LIFO and FIFO policies.

1.4 Limitation of Study

There are limitations in our study. The e�ectiveness of our proposed model has yet to

be tested and confirmed in real production processes.

The demand function is limited to a linearly increasing demand rate on the basis that it

would be appropriate for items which are newly launched into the market. Changing the

demand function to a quadratic, exponential or other functions would mean that changes

need to be made to the derivation of the total relevant cost.

In addition, limiting the rented warehouse to only storing the reworked items may

dampen the optimisation of the storage space. More items can be produced if the rented

warehouse were assumed to store non-defective items until it reaches its maximum capac-

ity.

The limitations aforementioned may be the motivating factor for further research in

developing models incorporating these factors.

1.5 Significance of Study

The following are the significance of the study to the producers or manufacturers in the

production industry:
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1. The research provides comparison between the Last-In-First-Out and First-In-

First-Out policies which can be implemented in a production line depending on the

specific type of items produced.

2. The research incorporated the rework process which is one of the approach that

can be undertaken to minimise the total cost in a production process.

1.6 Thesis Organisation

This thesis consists of five chapters where Chapter 1 provides the introduction and

overview of the study. Problem statements, research objectives and the significance of the

study are also discussed in this chapter.

Following the introduction, Chapter 2 provides a comprehensive overview of the liter-

ature review, listing the past research papers related to the study. The papers are relevant

to the study in which they incorporate the LIFO or FIFO policy, a rework process and

two-warehouse inventory models.

Chapter 3 presents the model which incorporates the LIFO policy. An introduction

of the model is discussed followed by the mathematical formulations section. Notations

and assumptions for this model is listed under this section accordingly. Next, a detailed

mathematical formulation derived from the equations governing each curve in the graph

are presented. Finally, the equation of the total relevant cost, T RC is obtained and

presented.

The next section discusses the numerical examples, solution procedure and the sensi-

tivity analysis of the model. The derived results and the e�ect of changes in parameters

are studied and illustrated in table and graph forms. The derived total relevant cost of

the production cycle, T RC is further supported using the Microsoft Excel Solver and

Mathematica by achieving an optimal unique solution for the T RC equation.

In this research, we have chosen the generalized reduced gradient search as the solving
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method. Conclusion of the research of the model is presented at the end of this chapter.

In chapter 4, the FIFO policy is introduced where the sequence in this chapter follows

the layout of chapter 3. The comparison between both LIFO and FIFO policies is presented

in this chapter as well.

Finally, Chapter 5 presents the conclusion of the study and provides recommendations

of future research relevant to this study.
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CHAPTER 2: LITERATURE REVIEW

Many researches have been carried out, where two warehouses inventory models and

rework process were considered separately. Only a few researchers had incorporated both

factors simultaneously in the same model.

We will now discuss some of the proposed models by other researches relative to our

research. Lee (2006) modified Pakkala & Achary’s (1992) two-warehouse LIFO model

and proposed a FIFO dispatching two-warehouse model with deterioration and a constant

demand rate. Inventory items that were stored first in the OW will be consumed before

those in the RW. They proved that when deterioration rates in both OW and RW are the

same, FIFO would be less expensive than LIFO provided that the holding cost in the RW

is lower than in the OW. The modified model is also proven to have a lower cost than

the aforementioned model when the deteriorating rate in OW is significantly less than the

rate in the RW provided that the holding cost in the OW is less than that in the RW. They

concluded that the deterioration rates and holding costs are the main keys in choosing

between the LIFO or FIFO policy.

Wee & Widyadana (2012) developed an Economic Production Quantity (EPQ) model

for deteriorating items with rework and stochastic preventive maintenance time. They

considered the Last-In-First-Out (LIFO) policy, hence serviceable items during the rework

up time are consumed first followed by the serviceable items during the production up

time. The rework process is carried out in RW and they also considered lost sales in their

paper. They also considered two distributions of the probability of machine preventive

maintenance time namely, uniform and exponential distribution.

Wee & Widyadana (2013) developed a production model using the First-In-First-Out

(FIFO) rule for deteriorating items with stochastic preventive maintenance time and re-

work. They assumed that the deterioration rates for both serviceable and recoverable items
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to be the same. They also showed two di�erent cases of maintenance time, namely uni-

form distribution and exponential distribution. Due to the fact that machine unavailability

time is stochastic, analytical solution is complicated to be used. Hence they approached

the problem using a simple search procedure to solve their model. The aforementioned

papers discussed LIFO and/or FIFO policy in their papers.

The LIFO and FIFO policy could be applied by manufacturers depending on the type

of items they produce. For instance, manufacturers who deal with perishable items would

rather opt for the FIFO policy than LIFO as it is a common practice to ensure that items

are dispatched while they are at its optimum condition or freshness.

Alamri & Syntetos (2018) proposed a new policy entitled Allocation-In-Fraction-

Out (AIFO). Unlike LIFO and FIFO, AIFO implies simultaneous consumption fractions

associated with RW and OW. The goods at both warehouses experience simultaneous

consumption fractions, which indicate that the goods are depleted by the end of the same

cycle. They developed and compared three general two-warehouse inventory models for

items that are subject to inspection for imperfect quality. They demonstrated that the LIFO

and FIFO policy might not be suitable for perishable products. They also illustrated the

impact of considering di�erent transportation costs associated with the two warehouses

and the incorporation of varying demand, deterioration, defective and screening rates on

the optimal order quantity.

Panda et el. (2012) proposed a two-warehouse inventory model for deteriorating items

where the demand rate is assumed to be an exponential function of time. Items are

transferred from RW to OW in a continuous release pattern. They assumed that both

OW and RW have di�erent deterioration rates, in which RW is assumed to have a better

preserving facility.

Yadav & Swami (2013) developed a two-warehouse inventory model for decaying
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items. The demand is assumed to be exponentially increasing with time. They also

considered di�erent time varying holding costs for both warehouses. Shortages are

allowed in this model, where the backlogging rate of unfulfilled demand is assumed

to be a decreasing function of the waiting time. Through numerical example, they

concluded that the "with-shortage" case has a higher optimum average profit compared

to the "without-shortage" case. Therefore, the "with-shortage" model is considered to be

better economically. The time horizon of this inventory model is assumed to be infinite.

Pakkala & Achary (1991) developed a two-warehouse inventory model for deteriorating

items with the assumption that the demand follows a probabilistic function. The production

rate is assumed to be infinite. The authors also considered a single-warehouse system with

deteriorating items and a two-warehouse system without deteriorating items. Shortages

are allowed and backlogged in this model. They concluded that the single-warehouse

model with finite storage capacity is appropriate for lower shortage costs. However, for

the two-warehouse model, higher shortage costs results in a lower expected total cost.

Benkherouf (1997) worked on relaxing the assumptions made by Sarma (1987) where

Sarma assumed that their model is a two warehouse inventory model with fixed cycle

length and the quantity to be stocked in OW is known. It is assumed that RW o�ers

better preserving facilities than the OW, hence resulting in a lower rate of deterioration

and higher holding cost in RW. Benkherouf suggested an arbitrary demand rate function

where the cycles are assumed to form a regenerative process. The author then provided

the numerical example of three di�erent types of demand rates namely constant demand,

linear demand and exponential demand rates. The four aforementioned papers, permits

shortages where the shortages are backlogged.

Agrawal & Banerjee (2011) were the first to propose a two-warehouse inventory model

where the demand is assumed to follow a general ramp-type function of time. Aside from
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the two-warehouse system, the authors also considered the single warehouse system and

an alternative system where they assumed that OW is filled to its maximum capacity. They

concluded that the decision on whether to use a single warehouse, a single warehouse

filled to its maximum capacity or the usage of two warehouses is dependent on the relative

values of shortage costs.

Agrawal et el. (2013) developed a two-warehouse inventory model by extending the

work of Agrawal & Banerjee (2011). They considered the existence of deteriorating items

and provided options in choosing a single or two-warehouse system. The demand rate

is assumed to be a general ramp-type function of time. They concluded that the optimal

solution for single warehouse system is independent of the form of demand function, while

the two-warehouses is dependent. The authors also concluded that the cost acquired at

OW due to high deterioration rate could be balanced out by purchasing more items to be

stored in RW, hence reducing the shortage cost.

Bhunia et el. (2014) developed a two-warehouse inventory model for a single deteri-

orating item. They assumed that the demand is constant and shortages are allowed and

partially backlogged with a rate dependent on the duration of waiting time up to the arrival

of next lot. They also considered delay payment and lost of sales in their paper. They

concluded that an increment in the average profit would result from an increment in the

OW capacity as well as in the order quantity. It is assumed that the planning horizon is

infinite in this model. The three models aforementioned allow shortages and are partially

backlogged.

Rong et el. (2008) were the first to introduce fuzzy lead time in a two-warehouse

inventory model for a single deteriorating item with infinite time horizon. Shortages are

allowed in this paper where two models were considered, namely, Model 1 (Model for

partially backlogged shortages) and Model 2 (Model for fully backlogged shortages). The
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demand rate is assumed to be price dependent. Inventories are transferred from RW to

OW in a bulk release pattern and the holding cost at RW is assumed to be dependent on

the distance between both the warehouses.

The approach of the aforementioned papers which consider shortage in their models

is more realistic. Shortages occur when the demand for a certain item is greater than the

supply in the market. This may occur due to an increase in demand or a decrease in supply

or production.

Lee & Ma (2000) developed an optimal inventory policy for a two-warehouse inventory

model. They considered a constant planning horizon in a continuous release pattern along

with free form time-dependent demand function and deteriorating items to improve models

before theirs. They reconsidered the assumption of regenerated cycles of identical cycle

length being treated as a decision variable. They assumed that both warehouses hold

di�erent deterioration rates. It is also assumed that all items are to be distributed directly

from each warehouse where they are stored. From their numerical analysis, they found

that the ordering cost is a critical factor in deciding whether, when and how much RW is

needed during the planning horizon.

Lee & Hsu (2009) extended the model of Lee & Ma (2000) to the finite replenishment

rate condition. They suggested a two-warehouse inventory model for deteriorating items

with a free form time-dependent demand over a finite planning horizon. They also

developed an algorithm with an approach that allows variation in production cycle times

to determine the number of production cycles and the times for replenishment. The

results indicated that the performance of their model is greater than the heuristic approach

proposed by Lee & Ma (2000). The proposed model results in a lower total system cost

than the heuristic approach of equal cycle times, especially when the production rate is

high.
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Sett et el. (2012) developed a two-warehouse inventory model where they considered

a quadratically increasing demand rate. The model is formulated by incorporating time-

dependent deterioration rate for di�erent warehouses and unequal length of the cycle time.

The authors derived the minimised total cost of the whole system by proposing solution

algorithm since the cost function is highly nonlinear and cannot be solved analytically.

Xu et el. (2017) developed a two-warehouse inventory problem for deteriorating items

with a constant demand rate over a finite time horizon. They compared their model with

the LIFO, MLIFO and FIFO inventory models and derived the critical conditions of the

production cycle number, inventory holding and deterioration costs in the two warehouses.

They have concluded that when the deterioration rates are the same in the two warehouses,

the di�erence in the holding costs plays an important role in the comparison of the four

inventory models. Whereas, when the deterioration rates are di�erent, the di�erence in

the total inventory, holding and deterioration costs plays the key role in comparing the four

models. We observe that shortages are not permitted in the four aforementioned papers.

Wee et el. (2005) developed a two-warehouse inventory model where the demand rate

is assumed to be constant while the deterioration rate follows a two-parameter Weibull

distribution. The authors derived the optimal replenishment policy using the Discounted

Cash Flow (DCF) and classical optimisation technique. They also concluded that the total

present values of the total relevant cost per unit time are lower for the two-warehouse

model as compared to the model for a single rented or owned warehouse.

Singh et el. (2013) proposed a two-warehouse inventory model with imperfect pro-

duction process. Two cases were considered namely, (i) model that begins with shortages

and (ii) model that ends with shortages. They assumed that the demand rate is time

dependent, while the production rate is dependent on the demand rate. The deterioration

rate is assumed to follow a Weibull distribution. The authors also considered the e�ect of
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learning on production cost.

Kumar et el. (2013) developed a two-warehouse inventory model with deteriorating

items where the demand rate is assumed to follow a combination of linearly time varying

function and on-hand inventory level dependent demand namely a multivariate demand.

They assumed that the transferring of items from RW to OW follows a bulk release (K-

release) rule. Deterioration rate in OW is assumed to be a time dependent function, while

the rate in RW follows a Weibull distribution.

Dey et el. (2008) developed a two-warehouse inventory model for deteriorating items

under the influence of inflation and time value of money. The model is assumed to have

an interval valued lead-time over finite time horizon. The demand is time dependent and

assumed to be increasing with time at a decreasing rate. They considered three cases

namely; (i) a model where shortages are allowed at the end of each cycle, (ii) a model

where shortages are allowed in each cycle with the exception of the last cycle and (iii) a

model where shortages are allowed at the end of each cycle but not backlogged at the end

of the last cycle.

Jaggi et el. (2011) presented a two-warehouse inventory model for deteriorating items

and also included the single-warehouse model in their paper. They assumed that the

demand rate is a linearly increasing function of time. Both OW and RW are assumed to

have di�erent deterioration rates. Items are transferred from RW to OW in a continuous

release pattern.

Singh et el. (2009) developed a two-warehouse inventory model for deteriorating items

under the influence of inflation and time-value of money with infinite replenishment rate.

The demand rate is assumed to be a linearly increasing function of time. The deterioration

rate for both OW and RW are di�erent, where in OW the rate is time dependent while in

RW the rate follows a two-parameter Weibull distribution. Items are transferred from RW
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to OW in a continuous release pattern with a k-release rule.

Yang (2004) proposed a two-warehouse inventory model under the influence of inflation

by introducing a non-traditional shortage model. Unlike the traditional model (Model 1)

where each replenishment cycle starts with an instant order and ends with shortages, the

alternative model, known as Model 2 begins with shortages and ends without shortages.

The author assumed that the deterioration rate is constant and permits shortages. It is

observed that the proposed model, Model 2 is more economical to operate compared to

Model 1, provided that the inflation rate is greater than zero.

Yang (2006) extended their own paper, Yang (2004) by incorporating partial backlog-

ging to the existing model. The backlogging rate is assumed to be a decreasing function of

waiting time. Yang also compared the two models introduced in the latter work, namely

Model 1 and 2 based on the minimum cost approach. They revealed that Model 2 is still

less expensive to operate compared to Model 1, where Model 2 begins with shortage and

ends without shortages.

Yang (2012) extended their model, Yang (2006) by incorporating the assumption

that the deterioration rate follows a three-parameter Weibull distribution. Shortages are

allowed in this model and partially backlogged, where the rate of backlogging is time

varying. It is observed that the operation cost is still cheaper for Model 2 compared to

Model 1.

Researchers of the nine aforementioned models considered the influence of inflation in

their respective models. Shortages are also allowed and partially backlogged in papers by

Wee et el. (2005), Singh et el. (2013), Kumar et el. (2013), Dey et el. (2008) and Jaggi

et el. (2011). While in the model by Singh et el. (2009), it is completely backlogged.

Inflation relates to the increase in the prices of goods or services such as food, clothing

and housing, to name a few. It occurs when the prices rise however the purchasing power
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decreases for a certain period of time. This is an important field of study as the demand,

supply and expectations of goods in a market has an e�ect towards inflation rates.

The following papers considered transportation cost in their models. This is a more

realistic approach when dealing with models with two warehouses. In reality, there would

be a di�erence in distance between two storage facilities or the two warehouses. This shall

mean that a transportation cost is payable to move inventory items from one warehouse to

the other.

Bhunia & Maiti (1998) developed a deterministic two-warehouse inventory model

where the demand rate is assumed to be a linearly increasing function of time. Both

warehouses are also assumed to have di�erent deterioration rates. Inventory items are

transferred from RW to OW in a continuous release pattern and the associated transporta-

tion cost is taken into consideration. Shortages are allowed in OW and excess demand is

backlogged. They developed the two models namely single warehouse and two-warehouse

models and found the optimal solution for both models.

Goswami & Chaudhuri (1992) made significant changes to the model developed by

Sarma (1983) by introducing more realistic assumptions. The authors developed a de-

terministic two-warehouse inventory model with a linearly increasing demand. They

considered two cases namely a model with shortage and a model without shortage. Unlike

Sarma, they assumed that the transportation cost of items from RW to OW is dependent

on the quantity being transported.

Zhou & Yang (2005) developed a deterministic model with inventory-dependent de-

mand rate and two separate warehouses; OW and RW. The demand rate is assumed to be

a polynomial form of current inventory level. A bulk release pattern is utilized to transfer

stock from the RW to the OW and the transportation cost is assumed to be dependent on

the amount transported. Shortages are not permitted in this model.
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Kar et el. (2001) developed a deterministic model with two levels of storage facilities

and fixed time horizon where they assumed that the demand rate follows a linearly

increasing function. Shortages are allowed in this model and completely backlogged.

Items are transferred from RW to OW in a continuous release pattern and the transportation

cost is considered. The authors assumed that the model has an infinite replenishment rate.

A case without shortages was also discussed in this paper.

The following papers incorporated trade credit policy in their models where they

permit delay in payment. Chung & Huang (2007) modified Huang’s (2003) model by

developing a two-warehouse inventory model for deteriorating items under permissible

delay in payments with infinite time horizon. They assumed that the supplier would

provide the retailer a delay period while the retailer would also adopt the trade credit

policy to increase their demand. The demand rate is assumed to be constant and shortages

are not allowed in this model. Items are transported from RW to OW in a continuous

release pattern however the transportation cost is neglected.

Liang & Zhou (2011) developed a two-warehouse model where they incorporated the

existence of deteriorating items with the condition delay in payment permitted and the

demand rate is assumed to be constant. They assumed that the RW has a higher holding

cost compared to the OW as the RW is assumed to possess better conserving facility.

Hence, in order to minimise the total cost, the best decision is to use all items from RW

first followed by items in OW.

Liao et el. (2012) developed a deterministic two-warehouse inventory model for dete-

riorating items. They considered and incorporated two mathematical models developed

by Chung & Huang (2006) and Chung & Liao (2004). The authors took delay in payments

into consideration, where the delay in payment is dependent on the order quantity. It is
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assumed that if the order quantity is less than that at which delayed payment is allowed,

payment has to be made instantly. On the contrary, if the order quantity is more than that

at which delayed payment is allowed, then the fixed trade credit period is allowed.

Yang & Chang (2013) extended a paper by Yang (2006) where Yang considered a

two-warehouse inventory model for deteriorating items with partial backlogging under

inflation. They extended Yang’s paper by considering Model 2 in which that the model

is less expensive to be operated compared to Model 1. Hence, they incorporated a

permissible delay in payment into the model of Yang and considered only Model 2, where

the inventory model begins with shortages and ends without shortages. They derived the

retailer’s optimal replenishment policy that maximises the net present value of the profit

per unit time.

Liao et el. (2013) developed a two-warehouse inventory model for deteriorating items

by extending the work of Chung & Huang (2007). The authors made the assumption

that the deterioration rate in RW is higher than the rate in OW. Contradictory to the

assumption made by Chung & Huang (2007) where they assumed that both warehouses

have identical deterioration rates. They made an assumption that the supplier o�ers the

retailer a permissible delay period while in return the retailer provides a trade credit

period to their customers. They assumed that items from RW are transported from OW

in a continuous release pattern.

The assumption that the deterioration rate in RW is higher than the rate in OW is not

commonly used in previous studies. This is due to the assumption that the RW o�ers a

better preserving facility and services, hence resulted in the higher holding cost in RW as

compared to the OW.

Singh & Pattnayak (2014) discussed a two-warehouse inventory model for a single

deteriorating item under conditionally permissible delay in payment. They considered a
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non-traditional approach by assuming a linearly increasing demand. Since it is assumed

that RW o�ers better preserving storage facilities, higher holding costs will be charged for

items in the RW. However, the deterioration rate will be lower in the RW compared to the

OW. Hence, the authors concluded that it would be more economical to consume items

from RW first rather than in OW.

The following are some papers that incorporated the assumption of imperfect pro-

duction process in their models. This is a realistic approach in real life situations as a

production process is imperfect due to factors such as human errors, machine failure and

many other unpredictable situations.

Chung et el. (2009) suggested an inventory model that incorporates the idea of the two-

warehouse system and the existence of defectives due to an imperfect quality production

process. Their paper generalises the model of Salameh & Jaber (2000). The authors

attempted the relaxation of two basic assumptions in a traditional EOQ model; (i) all units

produced are of perfect quality, and (ii) the inventories are stored by a single warehouse

with unlimited capacity. They assumed that the defectives are sold as a single batch at a

discounted price.

Lin & Chin (2011) modified the model of Chung et. al. (2009) by correcting the

expression for the optimal order quantity and expected profit per unit time. The authors

further extended the model by introducing a 100% inspection process with screening

errors and penalty costs. The demand is assumed to be constant and shortages are not

allowed in this model. It is shown in the results that the order lot size and expected total

profit is less than that in the model of Chung et. al. (2009).

Pal & Mahaptra (2017) developed and EOQ model with imperfect quality and shortage

backordering under inspection errors and deterioration. They have considered price

discounts and return cost in their model. They developed a three layer model involving
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the supplier, manufacturer and retailer where their objective is to minimise the total joint

annual costs incurred at each layer as well as the integrated three layer. They made an

assumption that the production process is imperfect, hence producing defective items. In

addition, they also assumed that there is an inspection error at the retailerú layer due to

imperfect screening process.

Al-Salamah (2019) developed EPQ models for imperfect manufacturing process and a

flexible rework process. The shortages are backordered and defective items are reworked

at the same cycle. The rework process is assumed to be perfect, hence producing only

perfect reworked items. The author also proposed two kinds of configurations for the

rework process, namely the asynchronous and synchronous rework configurations. The

asynchronous rework configuration works by letting the defective items to be reworked

only after the lot has been completed. While the latter, permits the rework of the defective

items as soon as they are produced.

Sarkar (2019) developed a model where a multi-stage production model with work-in-

process items and finished products were considered to reduce defective items through

two di�erent rework approaches. The rework process was considered to take place within

each cycle avoiding any shortages, or at the end of each stage cycle. The aim of the

model is to diminish wastes by considering the rework strategies to minimise the total

cost. Two-stage inspection is also considered to detect faulty products and ensure zero

faulty items.

Rework process is an essential initiative to manufacturers as it is one of the approaches

in reducing production cost and maintaining the standards and quality of a product. The

items that are defective or does not meet the quality standards can be reprocessed and be

as good as new. In return, this will reduce wastage and indirectly reduces a manufacturer’s

cost.
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In this study, we propose a two warehouse inventory model with deteriorating items

and a rework process. The production process is conducted in OW only during the first

interval, where a portion of the produced items is assumed to be defective. All defective

items are separated and sent to RW to be reworked. Both OW and RW share the same

deterioration rate, ↵.

A Last-In-First-Out (LIFO) policy is considered where the reworked items in RW will

be consumed and fully depleted first, followed by items in OW. Next, a First-In-First-Out

(FIFO) policy is also considered where items stored in OW will be consumed and fully

depleted first, followed by the reworked items in RW. Shortages are not allowed in the

proposed model.
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CHAPTER 3: LAST-IN-FIRST-OUT (LIFO)

3.1 Introduction

In this chapter, we will look at a two-warehouse inventory model while considering the

Last-In-First-Out (LIFO) policy. The first warehouse is known as the owned warehouse.

When the owned warehouse has reached its maximum capacity, an alternative warehouse

also known as the rented warehouse is required to store the excess items.

Assuming that a rented warehouse provides a better service and facility in storing in-

ventory, the cost of the rented warehouse may be higher than that of the owned warehouse.

Hence, it is more economical that items are stored longer in the owned warehouse instead

of the rented warehouse.

We have incorporated the LIFO policy in the model, where inventories that are produced

last are the ones to be exhausted first. In other words, all items that are produced the latest

will be used or distributed first, to fulfil demand. We have also assumed that the production

process is imperfect, hence resulting in the production of defective items.

In order to ensure the smoothness of the production process, the defective items are

kept aside and sent to the rented warehouse to undergo the rework process once the pro-

duction process has ended. Since we have made the assumption that the rented warehouse

holds a higher holding cost than the owned warehouse, hence the reworked items in the

rented warehouse will be exhausted first followed by items in the owned warehouse. This

phenomenon is known as the Last-In-First-Out (LIFO) policy.
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3.2 Mathematical Formulations

3.2.1 Notations

Listed below are the notations used in the LIFO policy model.

a : the initial rate of demand, where f (t) = a + bt

b : the rate at which the demand rate increases, where f (t) = a + bt

f (t) : linearly increasing demand rate f (t) = a + bt

D : total demand, where D =
R T

t0
f (t) dt, units

P : constant production rate, units per unit time where P > f (t) for all t

R : rework process rate, units per unit time where R > f (t) for all t

x : product defect rate, units per unit time

↵ : deteriorating rate in OW and RW, units per unit time where 0  ↵  1

W : maximum inventory of OW, units

Q : maximum inventory of RW, units

ti : time period in a cycle of stage i, where 0  i  3

T : batch cycle time period

Ii (t) : inventory level at time ti, where 0  i  5

Ai : area under the curve Ii (t), where 0  i  5

S : production setup cost, $ per setup

cP : processing cost per unit item, $

cR : rework processing cost per unit item, $

cD : deterioration cost per unit item, $

h1, h2 : holding costs per unit item in OW and RW respectively

T RC : total relevant costs per unit time, $
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3.2.2 Abbreviations

Listed below are the abbreviations used in the LIFO policy model.

OW : owned warehouse

RW : rented warehouse

LIFO : last-in-first-out

GRG : generalized reduced gradient

3.2.3 Assumptions

The assumptions adopted in this study includes:

1. Lead time is zero and the replenishment rate is finite.

2. The production rate, P is larger than the demand rate, f (t).

3. The rented warehouse, RW has an unlimited capacity.

4. Only perfect items are stored in OW, while all defective items are sent to RW to be

reworked.

5. The rework process is assumed to be perfect since special care is given to the

process, hence all reworked items are perfect. The total reworked items is equal to

the total defective items.

6. The production and rework rates, P and R respectively, are assumed to be di�erent.

7. The RW is located near the OW, hence the transportation cost between the ware-

houses is negligible.
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3.3 Modelling LIFO

Figure 3.1: Inventory level of items with LIFO policy.

The level of inventory items in both warehouses, OW and RW is as illustrated in Figure

3.1. The interval t0  t  t1 represents the production uptime period in OW, where items

produced in this interval are a mixture of perfect and defective items. All defectives are

separated to be sent to RW to undergo rework process. While all perfect items produced

are subjected to deterioration and used in satisfying demands. The inventory level in this

interval is represented by I1(t).

The following interval, t1  t  t2 represents the rework uptime period in RW. At

t1, all defectives from OW are sent to RW to be reworked. Since the rework process is

assumed to be free of flaws, all reworked items are assumed to be perfect and as good as

new. Hence, the total defective items is assumed to be equal to the total items reworked.

The inventory level of items in this interval is represented by I3(t). Note that, all items in

this interval are subjected to deterioration and fulfilment of demand.
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Rework uptime is then followed by rework downtime in the interval t2  t  t3. The

inventory level in this interval decreases due to deterioration and satisfying of demand

which is represented by the equation I4(t). At t3, the inventory level in RW is equal to

zero since we assume that all items have been consumed completely.

On the other hand, in the interval t1  t  t3, the inventory level of items stored in

OW decreases due to deterioration only. The inventory level of items in this interval is

represented by I2(t). The following interval, t3  t  T represents the production down

time period in OW. In this interval, items are depleted completely due to deterioration and

satisfying of demand. The inventory level of items in this interval is represented by I5(t).

Note that, items are said to enter the owned warehouse first since they are produced

in the OW up to t1. After which, all collected defective items are then sent to RW to

be reworked. At the end of the production cycle, items are fully depleted in the rented

warehouse first, before all items are cleared in the owned warehouse. This phenomenon

is known as the Last-In-First-Out, LIFO policy.

Subsections are divided based on the intervals t0  t  t1, t1  t  t3, t1  t  t2,

t2  t  t3 and t3  t  T .

3.3.1 Production up time in the interval t0  t  t1

The production process begins in this interval, where some items produced are defec-

tive. All perfect items are stored in OW, while all defectives are separated and sent to

RW to be reworked at t1. Non-defective items are utilised to satisfy demands and are also

subjected to deterioration. The maximum inventory level of OW is reached at t1, where

it is represented by W . Hence, the net replenishment rate can be formulated as

dI1(t)
dt = P � x � f (t) � ↵I1(t), where I1(0) = 0 and I1(t1) = W

25

Univ
ers

iti 
Mala

ya



dI1(t)
dt

= P � x � a � bt � ↵I1(t)

e↵t I1(t) =
Z

e↵t (P � x � a � bt)dt

=
1
↵

(P � x � a)e↵t � bte↵t

↵
+

be↵t

↵2 + C

Given that the initial condition, I1(t0) = 0, we have

C = � (P � x � a)
↵

� b
↵2

Then,

e↵t I1(t) =
(P � x � a)e↵t

↵
� bte↵t

↵
+

be↵t

↵2 �
(P � x � a)

↵
� b
↵2

I1(t) =
"

(P � x � a)
↵

+
b
↵2

# ⇣
1 � e�↵t

⌘
� bt
↵

I1(t) represents the inventory level at time t, within the interval t0  t  t1, in which

the inventory level is equivalent to the number of produced items excluding the defective

and deteriorated items as well as the demand which has been fulfilled, at time t.

A1 represents the area under the curve I1(t) in the interval t0  t  t1, during the

production uptime period in OW, which is given as

A1 =

Z t1

0
I1(t) dt

=

 
P � x � a
↵

+
b
↵2

!
t1 +

e�↵t1

↵

 
P � x � a
↵

+
b
↵2

!
� bt1

2

2↵

� 1
↵

 
P � x � a
↵

+
b
↵2

!

=

 
P � x � a
↵

+
b
↵2

!
t1 �

bt1
2

2↵
+

 
P � x � a
↵2 +

b
↵3

!
(e�↵t1 � 1)

=
(P � x)t1
↵

� 1
↵

 
at1 +

b
2

t1
2
!
+

bt1

↵2 +

 
P � x � a
↵2 +

b
↵3

!
(e�↵t1 � 1)

26

Univ
ers

iti 
Mala

ya



We also note that the maximum inventory level of OW which is represented by W is

governed by the equation W = I1(t1). Hence, we have

W =
f

(P�x�a)
↵ + b

↵2

g �
1 � e�↵t1

� � bt1
↵

3.3.2 Interval t1  t  t3

The interval t1  t  t2 represents the rework uptime period in RW, while the interval

t2  t  t3 represents the rework downtime period in RW. Produced items in OW from

the previous interval, t0  t  t1 are kept in storage during rework up time and down

time periods in RW. Hence, the inventory level of the items in OW decreases solely due to

deterioration within the interval t1  t  t3, while demands are fulfilled by items in RW.

The net replenishment rate in OW can be formulated as

dI2(t)
dt = �↵I2(t), where I2(t1) = W

dI2(t)
dt

= �↵I2(t)

dI2(t)
dt
+ ↵I2(t) = 0

e↵t I2(t) = C

I2(t) represents the inventory level at time t within the interval t1  t  t3, in which

the inventory level is equivalent to the number of items stored in OW after the interval

t0  t  t1 minus the deteriorated items at time t.

Given the boundary condition, I2(t1) = W , we have

e↵t1W = C

I2(t) = We↵(t1�t)
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A2 represents the area under the curve I2(t) in the interval t1  t  t3 which is given

as

A2 =

Z t3

t1

I2(t) dt

= � 1
↵

We↵(t1�t3) +
1
↵

W

=
W
↵

f
1 � e↵(t1�t3)

g

3.3.3 Rework up time in the interval t1  t  t2

All defective items sent to RW will undergo rework process during this interval with

the rework rate, R. Since the rework process is assumed to be perfect, all items reworked

are also assumed to be non-defective and as good as new. The inventory net replenishment

rate in this interval can be formulated as

dI3(t)
dt = R � f (t) � ↵I3(t), where I3(t1) = 0

dI3(t)
dt

= R � a � bt � ↵I3(t)

dI3(t)
dt
+ ↵I3(t) = R � a � bt

e↵t I3(t) =
Z

(R � a � bt)e↵t dt

=
1
↵

(R � a)e↵t � bt
↵

e↵t +
b
↵2 e↵t + C

Given the boundary condition, I3(t1) = 0, we have

C = �
"
1
↵

(R � a � bt1) +
b
↵2

#
e↵t1

I3(t) =
1
↵

(R � a � bt) +
b
↵2 �

"
1
↵

(R � a � bt1) +
b
↵2

#
e↵(t1�t)
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I3(t) represents the inventory level at time t within the interval t1  t  t2, in which

the inventory level is equivalent to the number of items in RW which have been reworked

excluding deteriorated items and demand which has been fulfilled, at time t.

A3 represents the area under the curve I3(t) in the interval t1  t  t2, during the

rework up time period in RW which is given as

A3 =

Z t2

t1

I3(t) dt

=
1
↵

"
(R � a)t � b

2
t2 +

1
↵

(R � a � bt1)e↵(t1�t)
#
+

b
↵2

"
t +

1
↵

e↵(t1�t)
#

=
1
↵

"
(R � a)(t2 � t1) � b

2
⇣
t2

2 � t1
2
⌘
+

1
↵

(R � a � bt1)
f
e↵(t1�t2) � 1

g #

+
b
↵2

"
(t2 � t1) +

1
↵

f
e↵(t1�t2) � 1

g #

=
1
↵

(R � a)(t2 � t1) � b
2↵

⇣
t2

2 � t1
2
⌘
+

1
↵2 (R � a � bt1)

f
e↵(t1�t2) � 1

g

+
b
↵2 (t2 � t1) +

b
↵3

f
e↵(t1�t2) � 1

g

=
1
↵

R(t2 � t1) � 1
↵

 
at2 +

b
2

t2
2
!
+

1
↵

 
at1 +

b
2

t1
2
!
+

b
↵2 (t2 � t1)

+

"
1
↵2 (R � a � bt1) +

b
↵3

# f
e↵(t1�t2) � 1

g

3.3.4 Rework down time in the interval t2  t  t3

All perfectly reworked items in RW are depleted in this interval due to the occurrence

of deterioration and fulfilment of demand where the items will be completely depleted at

t3. The inventory net replenishment rate can be formulated as

dI4(t)
dt = � f (t) � ↵I4(t), where I4(t3) = 0
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dI4(t)
dt

= � f (t) � ↵I4(t)

dI4(t)
dt
+ ↵I4(t) = �a � bt

e↵t I4(t) =
Z

(�a � bt)e↵t dt

=

"
� a
↵
� bt
↵
+

b
↵2

#
e↵t + C

Given the boundary condition, I4(t3) = 0, we have

C = �
"
� a
↵
� bt3
↵
+

b
↵2

#
e↵t3

I4(t) =
"
1
↵

(a + bt3) � b
↵2

#
e↵(t3�t) � (a + bt)

↵
+

b
↵2

I4(t) represents the inventory level at time t within the interval t2  t  t3, in which the

inventory level is equivalent to the remaining number of reworked items after t2 excluding

deteriorated items and demand which has been fulfilled, at time t.

A4 represents the area under the curve I4(t) in the interval t2  t  t3, during the

rework down time period in RW which is given as

A4 =

Z t3

t2

I4(t) dt

= � 1
↵

(
1
↵

(a + bt3)
f
1 � e↵(t3�t2)

g
+ a(t3 � t2) +

b
2

(t3
2 � t2

2)
)

+
b
↵2

(
(t3 � t2) +

1
↵

f
1 � e↵(t3�t2)

g)

=
1
↵

 
at2 +

b
2

t2
2
!
� 1
↵

 
at3 +

b
2

t3
2
!
+

b
↵2 (t3 � t2)

+

"
1
↵2 (a + bt3) � b

↵3

# f
e↵(t3�t2) � 1

g

3.3.5 Production down time in the interval t3  t  T

Once all items in RW have been depleted and consumed completely at t3, inventory

items stored in OW will decrease due to deterioration and fulfilment of demands in the
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interval t3  t  T . The production cycle ends at T where all items in OW are also

consumed completely. The inventory net replenishment rate can be formulated as

dI5(t)
dt = � f (t) � ↵I5(t), where I5(T ) = 0

dI5(t)
dt
+ ↵I5(t) = �a � bt

e↵t I5(t) =
Z

(�a � bt)e↵t dt

=

"
� (a + bt)

↵
+

b
↵2

#
e↵t + C

Given the boundary condition, I5(T ) = 0, we have

C =

"
(a + bT )
↵

� b
↵2

#
e↵T

I5(t) =
"

(a + bT )
↵

� b
↵2

#
e↵(T�t) � (a + bt)

↵
+

b
↵2

I5(t) represents the inventory level at time t within the interval t3  t  T , in which the

inventory level is equivalent to the remaining number of items in OW after t3 excluding

deteriorated items and demand which has been fulfilled, at time t.

A5 represents the area under the curve I5(t) in the interval t3  t  T , during a

production down time period in OW which is given as

A5 =

Z T

t3

I5(t) dt

=
f
1 � e↵(T�t3)

g " b
↵3 �

1
↵2 (a + bT )

#
� 1
↵

"
a(T � t3) +

b
2
⇣
T2 � t3

2
⌘#

+
b(T � t3)
↵2

=
1
↵

 
at3 +

b
2

t3
2
!
� 1
↵

 
aT +

b
2

T2
!
+

b
↵2 (T � t3)

+

"
1
↵2 (a + bT ) � b

↵3

# f
e↵(T�t3) � 1

g
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Hence, the governing di�erential equations stating the inventory levels within the

production cycle are given as follows:

dI1(t)
dt

= P � x � f (t) � ↵I1(t) ; t0  t  t1 (1)

dI2(t)
dt

= �↵I2(t) ; t1  t  t3 (2)

dI3(t)
dt

= R � f (t) � ↵I3(t) ; t1  t  t2 (3)

dI4(t)
dt

= � f (t) � ↵I4(t) ; t2  t  t3 (4)

dI5(t)
dt

= � f (t) � ↵I5(t) ; t3  t  T (5)

where f (t) = a + bt.

Solving the di�erential equations (1) to (5) above, we have

I1(t) =
"

(P � x � a)
↵

+
b
↵2

# ⇣
1 � e�↵t

⌘
� bt
↵

(6)

I2(t) = We↵(t1�t) (7)

I3(t) =
1
↵

(R � a � bt) +
b
↵2 �

"
1
↵

(R � a � bt1) +
b
↵2

#
e↵(t1�t) (8)

I4(t) =
"
1
↵

(a + bt3) � b
↵2

#
e↵(t3�t) � (a + bt)

↵
+

b
↵2 (9)

I5(t) =
"

(a + bT )
↵

� b
↵2

#
e↵(T�t) � (a + bt)

↵
+

b
↵2 (10)

where the boundary conditions are given as follows;

I1(t0) = 0, I1(t1) = W = I2(t1), I3(t1) = 0, I3(t2) = I4(t2), I4(t3) = 0, I2(t3) = I5(t3) and

I5(T ) = 0.
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Area under the curve Ii (t), Ai in each interval where i = 1, 2, 3, 4 and 5 are given as

follows:

In the interval t0  t  t1,

A1 =
(P�x)t1
↵ � 1

↵

⇣
at1 +

b
2 t1

2
⌘
+ bt1
↵2 +

⇣
P�x�a
↵2 + b

↵3

⌘
(e�↵t1 � 1) (11)

In the interval t1  t  t3,

A2 =
W
↵

f
1 � e↵(t1�t3)

g
(12)

In the interval t1  t  t2,

A3 =
R
↵

(t2 � t1) � 1
↵

 
at2 +

b
2

t2
2
!
+

1
↵

 
at1 +

b
2

t1
2
!
+

b
↵2 (t2 � t1)

+

"
1
↵2 (R � a � bt1) +

b
↵3

# f
e↵(t1�t2) � 1

g
(13)

In the interval t2  t  t3,

A4 =
1
↵

 
at2 +

b
2

t2
2
!
� 1
↵

 
at3 +

b
2

t3
2
!
+

b
↵2 (t3 � t2)

+

"
1
↵2 (a + bt3) � b

↵3

# f
e↵(t3�t2) � 1

g
(14)

In the interval t3  t  T ,

A5 =
1
↵

 
at3 +

b
2

t3
2
!
� 1
↵

 
aT +

b
2

T2
!
+

b
↵2 (T � t3)

+

"
1
↵2 (a + bT ) � b

↵3

# f
e↵(T�t3) � 1

g
(15)
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3.3.6 Finding t2

Next, assuming that all defective items are sent to RW to be reworked and the rework

process is perfect, we may use the following equality to solve for t2;

Total Defective Items = Total Reworked Items

Hence, we have the following equation

xt1 = R(t2 � t1)

xt1 + Rt1 = Rt2

t2 =
(R + x)t1

R

3.3.7 Costs Involved

3.3.7.1 Setup Production, Processing and Rework Processing Costs

The setup production, processing and rework processing costs per unit time are com-

puted as below respectively.

Setup Production Cost =
S
T

Processing Cost =
cPP(t1 � t0)

T
=

cPPt1
T

Rework Processing Cost =
cRx(t1 � t0)

T
=

cRxt1
T

3.3.7.2 Inventory Carrying Costs

Next, the total inventory carrying cost is given as the sum of the holding costs in OW

and RW, where we have

1. The total holding cost in OW per unit time = h1
T (A1 + A2 + A5)
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The total holding cost in OW per unit time

=
h1
T

⇢ 1
↵

"
(P � x)t1 �

 
at1 +

b
2

t1
2
!
+

 
at3 +

b
2

t3
2
!
�

 
aT +

b
2

T2
!#

� 1
↵2 (a + bt3) +

b
↵3 �

W
↵

e↵(t1�t3) +

"
1
↵2 (a + bT ) � b

↵3

#
e↵(T�t3)

�

2. The total holding cost in RW per unit time = h2
T (A3 + A4)

The total holding cost in RW per unit time

=
h2
T

⇢ 1
↵

"
R(t2 � t1) +

 
at1 +

b
2

t1
2
!
�

 
at3 +

b
2

t3
2
!#
� R
↵2

+

"
1
↵2 (R � a � bt1) +

b
↵3

#
e↵(t1�t2) +

"
1
↵2 (a + bt3) � b

↵3

#
e↵(t3�t2)

�

Therefore, the total holding costs for both OW and RW per unit time, HC is given as

HC =
h1
T

⇢ 1
↵

"
(P � x)t1 �

 
at1 +

b
2

t1
2
!
+

 
at3 +

b
2

t3
2
!
�

 
aT +

b
2

T2
!#

� 1
↵2 (a + bt3) +

b
↵3 �

W
↵

e↵(t1�t3) +

"
1
↵2 (a + bT ) � b

↵3

#
e↵(T�t3)

�

+
h2
T

⇢ 1
↵

"
R(t2 � t1) +

 
at1 +

b
2

t1
2
!
�

 
at3 +

b
2

t3
2
!#
� R
↵2

+

"
1
↵2 (R � a � bt1) +

b
↵3

#
e↵(t1�t2) +

"
1
↵2 (a + bt3) � b

↵3

#
e↵(t3�t2)

�

3.3.7.3 Deteriorating Cost

The total number of deteriorated items is equal to the product of deterioration rate

and the total area under the curves I1(t), I2(t), I3(t), I4(t), and I5(t). Hence, we have the

equality

The total number of deteriorated items, G = ↵(The total area under the curves)
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G = ↵(A1 + A2 + A3 + A4 + A5)

=

"
(P � x)t1 + R(t2 � t1) +W [1 � e↵(t1�t3)] �

 
aT +

b
2

T2
!#

� 1
↵

[P + R � x � b(t1 � t3)] +
 

P � x � a
↵

+
b
↵2

!
e�↵t1

+

"
1
↵

(R � a � bt1) +
b
↵2

#
e↵(t1�t2) +

"
1
↵

(a + bt3) � b
↵2

#
e↵(t3�t2)

+

"
1
↵

(a + bT ) � b
↵2

#
e↵(T�t3)

Hence, the deteriorating cost per unit time, DC is given as

DC =
cDG

T

=
cD

T

⇢ "
(P � x)t1 + R(t2 � t1) +W [1 � e↵(t1�t3)] �

 
aT +

b
2

T2
!#

� 1
↵

[P + R � x � b(t1 � t3)] +
 

P � x � a
↵

+
b
↵2

!
e�↵t1

+

"
1
↵

(R � a � bt1) +
b
↵2

#
e↵(t1�t2) +

"
1
↵

(a + bt3) � b
↵2

#
e↵(t3�t2)

+

"
1
↵

(a + bT ) � b
↵2

#
e↵(T�t3)

�
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3.3.8 The Total Relevant Cost, T RC

The total relevant cost per unit time for the LIFO policy is given as

T RC = Setup Production Cost + Processing Cost + Rework Processing Cost

+ Holding Cost in OW + Holding Cost in RW + Deteriorating Cost

=
S
T
+

cPPt1
T
+

cRxt1
T

+
h1
T

⇢ 1
↵

"
(P � x)t1 �

 
at1 +

b
2

t1
2
!
+

 
at3 +

b
2

t3
2
!
�

 
aT +

b
2

T2
!#

� 1
↵2 (a + bt3) +

b
↵3 �

W
↵

e↵(t1�t3) +

"
1
↵2 (a + bT ) � b

↵3

#
e↵(T�t3)

�

+
h2
T

⇢ 1
↵

"
R(t2 � t1) +

 
at1 +

b
2

t1
2
!
�

 
at3 +

b
2

t3
2
!#
� R
↵2

+

"
1
↵2 (R � a � bt1) +

b
↵3

#
e↵(t1�t2) +

"
1
↵2 (a + bt3) � b

↵3

#
e↵(t3�t2)

�

+
cD

T

⇢ "
(P � x)t1 + R(t2 � t1) +W [1 � e↵(t1�t3)] �

 
aT +

b
2

T2
!#

� 1
↵

[P + R � x � b(t1 � t3)] +
 

P � x � a
↵

+
b
↵2

!
e�↵t1

+

"
1
↵

(R � a � bt1) +
b
↵2

#
e↵(t1�t2) +

"
1
↵

(a + bt3) � b
↵2

#
e↵(t3�t2)

+

"
1
↵

(a + bT ) � b
↵2

#
e↵(T�t3)

�
(16)

3.4 Numerical Examples, Solution Procedure and Sensitivity Analysis

3.4.1 Numerical Examples

The following parameters are considered to show a clear illustration of the LIFO policy

model. The production rate per unit time, P is 3000, rework rate per unit time, R is 1000,

defective rate per unit time, x is 500, deterioration rate per unit time, ↵ is 0.04, the initial

rate of demand, a is 550 and the rate with which the demand rate increases, b is 200,

where f (t) = a + bt is the demand rate per unit time.

The costs involved in this model are given as follows, where the setup production cost

per setup, S is $1000, the processing cost per unit item, cP is $2, rework processing cost
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per unit item, cR is $3, deterioration cost per unit item, d is $2.50, holding cost per unit

item in OW, h1 is $1.50 and holding cost per unit item in RW, h2 is $2.50.

We will now discuss on the equations involved in OW in the following subsections.

3.4.1.1 Total Items Produced

The total items produced is equal to the sum of the total demand and deteriorated items.

Hence, we have the equality

P(t1 � t0) =
Z T

t0

f (t) dt + ↵(A1 + A2 + A3 + A4 + A5), where

↵A1 = (P � x)t1 �
Z t1

t0

f (t) dt �W

↵A2 = W � I2(t3)

↵A3 = R(t2 � t1) �
Z t2

t1

f (t) dt � I3(t2)

↵A4 = I4(t2) �
Z t3

t2

f (t) dt

↵A5 = I5(t3) �
Z T

t3

f (t) dt
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Focusing on the RHS of the equation, we have the following

RHS =

Z T

t0

f (t) dt + ↵(A1 + A2 + A3 + A4 + A5)

=

Z T

t0

f (t) dt +
"
(P � x)t1 �

Z t1

t0

f (t) dt �W
#
+ [W � I2(t3)]

+

"
R(t2 � t1) �

Z t2

t1

f (t) dt � I3(t2)
#
+

"
I4(t2) �

Z t3

t2

f (t) dt
#

+

"
I5(t3) �

Z T

t3

f (t) dt
#

=

Z T

t0

f (t) dt + (P � x)t1 �W +W � I2(t3) + R(t2 � t1) � I3(t2) + I4(t2) + I5(t3)

�
Z t1

t0

f (t) dt �
Z t2

t1

f (t) dt �
Z t3

t2

f (t) dt �
Z T

t3

f (t) dt

=

Z T

t0

f (t) dt + (P � x)t1 + R(t2 � t1) �
Z T

t0

f (t) dt

= (P � x)t1 + xt1

= Pt1

= LHS

Hence, the equality is true given that, R(t2 � t1) = xt1, I3(t2) = I4(t2) and I2(t3) =

I5(t3). Numerically, the equality has a value of 766.82 (correct to 2 decimal places).

We also have the equality where the total items produced is equal to the sum of the

total defective items, the total demand in OW and the total deteriorated items in OW.

P(t1 � t0) = x(t1 � t0) +
"Z t1

t0

f (t) dt +
Z T

t3

f (t) dt
#
+ ↵(A1 + A2 + A5)
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Focusing on the RHS of the equation, we have

RHS = x(t1 � t0) +
"Z t1

t0

f (t) dt +
Z T

t3

f (t) dt
#
+ ↵(A1 + A2 + A5)

= xt1 +

"Z t1

t0

f (t) dt +
Z T

t3

f (t) dt
#
+

"
(P � x)t1 �

Z t1

t0

f (t) dt �W
#

+ [W � I2(t3)] +
"
I5(t3) �

Z T

t3

f (t) dt
#

= xt1 + (P � x)t1

= Pt1

= LHS

The equality holds given that I2(t3) = I5(t3), where the value is 766.82 (correct to 2

decimal places).

3.4.1.2 Maximum Inventory of OW, W

The maximum inventory of OW, W is equal to sum of the total deteriorated items in

the interval t1 to T and the total demand in the interval t3 to T .

W = ↵A2 + ↵A5 +

Z T

t3

f (t)dt

Focusing on the RHS of the equation, we have

RHS = [W � I2(t3)] +
"
I5(t3) �

Z T

t3

f (t) dt
#
+

Z T

t3

f (t) dt

= W

= LHS

Hence, the equality holds given that I2(t3) = I5(t3), where W = 489.38 (correct to 2

decimal places).
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Besides that, we also have the equality where the maximum inventory of OW, W is

equal to the total items produced subtract the sum of the total defective items, total demand

from t0 to t1 and total deteriorated items from t0 to t1.

W = P(t1 � t0) � x(t1 � t0) �
Z t1

t0

f (t)dt � ↵A1

The RHS of the equality is given as

RHS = P(t1 � t0) � x(t1 � t0) �
Z t1

t0

f (t)dt �
"
(P � x)t1 �

Z t1

t0

f (t) dt �W
#

= (P � x)t1 �
Z t1

t0

f (t)dt � (P � x)t1 +

Z t1

t0

f (t) dt +W

= W

= LHS

Hence, the equality holds where W = 489.38 (correct to 2 decimal places). Numer-

ically, we obtained the value of W where W = I1(t1) = I2(t1) = 489.38 (correct to 2

decimal places).

3.4.1.3 Total Deteriorated Items from t1 to t3 in OW

The total deteriorated items from t1 to t3 in OW is governed by the equality

↵A2 = I2(t1) � I2(t3)

= I1(t1) � I5(t3)
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Substituting t1 and t3 into ↵A2 = I2(t1) � I2(t3), the RHS of the equality is

RHS = We↵(t1�t1) �We↵(t1�t3)

= W �We↵(t1�t3)

= W
f
1 � e↵(t1�t3)

g

= ↵A2

= LHS

Similarly, substituting I1(t1) = W and t3 into ↵A2 = I1(t1) � I5(t3), we have

RHS = W �We↵(t1�t3)

= W
f
1 � e↵(t1�t3)

g

= ↵A2

= LHS

Numerically, the total deteriorated items from t1 to t3 in OW is 4.00 (correct to 2

decimal places).

We will now discuss on the equations involved in RW in the following subsections.

3.4.1.4 Total Reworked Items

In this model, we assumed that the rework process is perfect, hence the total reworked

items is equal to the total deteriorated items. Numerically, the total reworked items and

the total defective items are given as follows

R(t2 � t1) = x(t1 � t0) = 127.80 (correct to 2 decimal places)
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Therefore, the following equality holds,

R(t2 � t1) = x(t1 � t0)

We also have the equality where the total reworked items is equal to the sum of the

total demand in RW and the total deteriorated items in RW.

R(t2 � t1) =
Z t3

t1

f (t) dt + ↵(A3 + A4)

Focusing on the RHS of the equation, we have

RHS =

Z t3

t1

f (t) dt + ↵A3 + ↵A4

=

Z t3

t1

f (t) dt +
"
R(t2 � t1) �

Z t2

t1

f (t) dt � I3(t2)
#
+

"
I4(t2) �

Z t3

t2

f (t) dt
#

= R(t2 � t1) +
Z t3

t1

f (t) dt �
"Z t2

t1

f (t) dt �
Z t3

t2

f (t) dt
#
� I3(t2) + I4(t2)

= R(t2 � t1) +
Z t3

t1

f (t) dt �
Z t3

t1

f (t) dt � I3(t2) + I4(t2)

= R(t2 � t1)

= LHS

Hence, the following equality holds where
R t3

t1
f (t) dt =

R t2
t1

f (t) dt +
R t3

t2
f (t) dt and

I3(t2) = I4(t2). Numerically, the equality has a value of 127.80 (correct to 2 decimal

places).

Next, we can also see that the total reworked items is equal to the total items produced

subtract the sum of the total demand in OW and the total deteriorated items in OW. The

equality is given as

R(t2 � t1) = P(t1 � t0) �
" Z t1

t0

f (t) dt +
Z T

t3

f (t)
!

dt + ↵(A1 + A2 + A5)
#
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Focusing on the RHS of the equation, we have

RHS = P(t1 � t0) �
" Z t1

t0

f (t) dt +
Z T

t3

f (t) dt
!
+ ↵A1 + ↵A2 + ↵A5

#

= P(t1 � t0) �
 Z t1

t0

f (t) dt +
Z T

t3

f (t) dt
!
�
"
(P � x)t1 �

Z t1

t0

f (t) dt �W
#

� [W � I2(t3)] �
"
I5(t3) �

Z T

t3

f (t) dt
#

= P(t1 � t0) �
Z t1

t0

f (t) dt �
Z T

t3

f (t) dt � (P � x)t1 +

Z t1

t0

f (t) dt +W

� W + I2(t3) � I5(t3) +
Z T

t3

f (t) dt

= xt1 + I2(t3) � I5(t3)

= xt1

= R(t2 � t1)

= LHS

Hence, the equality holds given that I2(t3) = I5(t3) and xt1 = R(t2 � t1). Numerically,

the equality has a value of 127.80 (correct to 2 decimal places).

3.4.1.5 Inventory Level at ti

By formulation, we observed that the inventory level of RW at t2, I3(t2) is equal to the

di�erence between the total reworked items and the sum of the demand from t1 to t2 and

the deteriorated items from t1 to t2 in RW. Hence, the equality is

I3(t2) = R(t2 � t1) �
R t2

t1
f (t) dt � ↵A3
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Substituting (13) into the equality, we have

RHS = R(t2 � t1) �
Z t2

t1

f (t) dt �
"
R(t2 � t1) �

Z t2

t1

f (t) dt � I3(t2)
#

= R(t2 � t1) �
Z t2

t1

f (t) dt � R(t2 � t1) +
Z t2

t1

f (t) dt + I3(t2)

= I3(t2)

= LHS

Similarly, at t2 another equality can be obtained. The inventory level of RW at t2, I4(t2)

is equal to the sum of the demand from t2 to t3 and the total deteriorated items from t2 to

t3 in RW. Hence, we have

I4(t2) =
R t3

t2
f (t) dt + ↵A4

Focusing on the RHS of the equality, we have

RHS =

Z t3

t2

f (t) dt +
"
I4(t2) �

Z t3

t2

f (t) dt
#

= I4(t2)

= LHS

Therefore, both equality holds where I3(t2) = I4(t2) and the numerical value is given

as 49.22 (correct to 2 decimal places).

Next, we also have the equality where the inventory level a t3 is equal to di�erence

between the maximum inventory of OW and the deteriorated items from t1 to t3. The

equality is given as

I2(t3) = W � ↵A2
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Focusing on the RHS of the equation, we have

RHS = W � [W � I2(t3)]

= W �W + I2(t3)

= I2(t3)

= LHS

Similarly, the inventory level at t3 is equal to the sum of the demand from t3 to T and

the deteriorated items from t3 to T in OW. The equality is given as

I5(t3) =
R T

t3
f (t) dt + ↵A5

Substituting (15) into the equality, we have

RHS =

Z T

t3

f (t) dt + I5(t3) �
Z T

t3

f (t) dt

= I5(t3)

= LHS

Hence, both equality holds where I2(t3) = I5(t3) and the numerical value is given as

485.38 (correct to 2 decimal places).
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3.4.2 Solution Procedure

Numerical algorithms for constrained nonlinear optimization can be broadly cate-

gorized into gradient-based methods and direct search methods. Gradient search methods

use first derivatives (gradients) or second derivatives (Hessians) information, while direct

search methods do not use derivative information.

In this research, generalized reduced gradient (GRG) has been chosen as the solving

method. Hence, the Microsoft Excel Solver is used as a solution tool. GRG converts the

constrained problem into and unconstrained problem. The GRG method is an extension

of the reduced gradient method to accommodate nonlinear inequality constraints. In

this method, a search direction is found such that for any small move, the current active

constraints remain precisely active.

The following algorithm is used

1. Set t0 = 0.

2. Determine the values of t1, t3 and T which satisfy the following constraints:

I1(t0) = 0, I1(t1) = I2(t1), I3(t1) = 0, I3(t2) = I4(t2), I4(t3) = 0, I2(t3) = I5(t3)

and I5(T ) = 0

3. Compute t2 =
(R+x)t1

R .

4. Compute T RC using the equation (16).

Aside from the GRG method, we have utilized the Wolfram Language function which

solves for numeric local constrained optimization which is known as the FindMinimum

function. Hence, we have used this built-in function in Mathematica software to verify

our results and note that both the Microsoft Excel Solver and Mathematica, provide the

same results. The coding has been included in the appendix section of this research.
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3.4.3 Sensitivity Analysis

We will now look at the sensitivity analysis of the parameters incorporated in this

model. We observed that the total relevant cost, T RC⇤ changes significantly with the

changes in the values of the selective parameters by ±25% of the optimal values in these

models.

As the production rate, P increases, items are produced at a faster rate in a shorter

period of time. Hence, fewer items are produced resulting in the fewer number of defective

items. The decrement of the processing cost, rework processing cost and holding cost in

RW, results in the decrement of T RC⇤.

As the rework rate, R increases, the rework process requires a shorter duration to

complete. The significant increment in the setup production cost and holding cost in RW

results in the increment of T RC⇤.

As the defective rate, x increases, the amount of total defective items increases. Hence,

resulting in a significant increment of the rework processing cost and holding cost in RW

and a slight increment in the setup production cost. Hence, resulting in the increment of

T RC⇤.

As the deterioration rate ↵ increases, the total number of deteriorated items increases.

In return, resulting in the increment of the deterioration cost. All other costs involved also

increases except the holding costs in OW and RW. Hence, resulting in the increment of

T RC⇤.

As the initial rate of demand, a increases, we observed that the total items produced,

total demand and total deteriorated items increase as well. As a result, all costs involved

in the system showed increment except for the holding costs in OW and RW. Hence, as a

increases, T RC⇤ increases as well.

As the rate at which the demand rate b increases, we observed that all costs involved
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in this model increases, except for the holding costs in OW and RW as well as the

deteriorating cost. Hence, resulting in the increment of T RC⇤.

The graphical representation for the LIFO system of T RC⇤ against the discussed pa-

rameters above is shown in Figure 3.2.

Figure 3.2: The optimal value of T RC⇤ with varying parameters.
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Table 3.1 shows the changes in T RC⇤ as parameters are reduced and increased by 25%

of the optimal values in the LIFO system.

Table 3.1: Analysis of change in various parameters on the total relevant cost, T RC⇤.

-25%, T RC⇤ Total Total Total Total
Parameters Optimal, (2 d.p) t1 t3 T Items Defective Demand Deteriorated

25% Produced Items Items
2250 3083.67 0.3590 0.6349 1.1889 807.8162 179.5147 795.2416 12.5746

P 3000 3047.39 0.2556 0.4609 1.1354 766.8200 127.8033 753.3743 13.4457
3750 3020.29 0.1994 0.3636 1.1103 747.8007 99.7068 733.9174 13.8830
750 3040.90 0.2572 0.4638 1.1415 771.6592 128.6099 758.1646 13.4946

R 1000 3047.39 0.2556 0.4609 1.1354 766.8200 127.8033 753.3743 13.4457
1250 3051.26 0.2548 0.4594 1.1323 764.3777 127.3963 750.9474 13.4303
375 2972.45 0.2561 0.4116 1.1367 768.1875 96.0234 754.4014 13.7861

x 500 3047.39 0.2556 0.4609 1.1354 766.8200 127.8033 753.3743 13.4457
625 3121.25 0.2554 0.5097 1.1351 766.2228 159.6298 753.1308 13.0920
0.03 3031.63 0.2575 0.4642 1.1468 772.5589 128.7598 762.2700 10.2889

↵ 0.04 3047.39 0.2556 0.4609 1.1354 766.8200 127.8033 753.3743 13.4457
0.05 3063.01 0.2536 0.4573 1.1237 760.7275 126.7879 744.2683 16.4592
412.5 2637.03 0.2099 0.4297 1.1666 629.7372 104.9562 617.3395 12.3977

a 550.0 3047.39 0.2556 0.4609 1.1354 766.8200 127.8033 753.3743 13.4457
687.5 3440.62 0.3016 0.4979 1.1146 904.7851 150.7975 890.5478 14.2373
150 2951.18 0.2630 0.4797 1.2086 788.9703 131.4950 774.2570 14.7133

b 200 3047.39 0.2556 0.4609 1.1354 766.8200 127.8033 753.3743 13.4457
250 3136.46 0.2497 0.4454 1.0760 748.9665 124.8277 736.5201 12.4456

50

Univ
ers

iti 
Mala

ya



3.5 Conclusion

The total relevant cost, T RC is a nonlinear equation where its second derivative with

respect to t1, t3 and T is complicated. In this research, a generalized reduced gradient

(GRG) method has been chosen as the solving method in which it converts the constrained

problem into and unconstrained problem. The GRG method is an extension of the reduced

gradient method to accommodate nonlinear inequality constraints.

In this method, a search direction is found such that for any small move, the current

active constraints remain precisely active. By using Microsoft Excel Solver as a solution

tool, we are able to obtain and justify the optimal solution numerically and observed

that the equation of T RC is convex and has optimal unique solution at t1
⇤ = 0.2556,

t3
⇤ = 0.4609 and T⇤ = 1.1354 (correct to 4 decimal places).

Alternatively, we have also utilized the Wolfram Language function which solves for

numeric local constrained optimization, also known as the FindMinimum function. This

built in function in Mathematica software is used to verify the results obtained above,

in which both the Microsoft Excel Solver and Mathematica software, provides the same

results.

We further note that several past researches by Sett et el. (2012) and Lee & Hsu (2009)

to name a few, exhibit similar results as obtained in this study. They have achieved a

unique optimal solution for their proposed model. Similarly, for this particular set of

parameters, we have obtained the optimal unique solution for T RC⇤ at the optimal times,

where T RC⇤ is equal to $3047.39.

51

Univ
ers

iti 
Mala

ya



CHAPTER 4: FIRST-IN-FIRST-OUT (FIFO)

4.1 Introduction

In this chapter, we will look at a two-warehouse inventory model while considering

the First-In-First-Out (FIFO) policy. The mechanism of this policy is the opposite of the

LIFO policy that have been discussed in Chapter 3.

Similar to the model introduced in the previous chapter, the first warehouse is known as

the owned warehouse. When the owned warehouse has reached its maximum capacity, an

alternative warehouse also known as the rented warehouse is required to store the excess

items.

We have assumed that the production process is imperfect, hence resulting in the

production of defective items. In order to ensure the smoothness of the production

process, the defective items are kept aside and sent to the rented warehouse to undergo

the rework process once the production process has ended.

We have incorporated the FIFO policy in the model, where inventories that are produced

first are the ones to be exhausted first. The FIFO policy may be preferred by manufacturers

who deal with inventories with high deterioration rate.

Items that deteriorate at a faster rate should be consumed or sold the soonest. Hence,

in this case, assuming that the rented warehouse o�ers better facilities, items stored in the

rented warehouse may last longer. The number of deteriorated items may also be lower.

Hence, it is more cost e�cient if the items that are stored in the owned warehouse first,

are the items to be exhausted first. This phenomenon is known as the First-In-First-Out

(FIFO) policy.
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4.2 Mathematical Formulations

4.2.1 Notations

Listed below are the notations used in the FIFO policy model.

a : the initial rate of demand, where f (t) = a + bt

b : the rate at which the demand rate increases, where f (t) = a + bt

f (t) : linearly increasing demand rate f (t) = a + bt

D : total demand, where D =
R T

t0
f (t) dt, units

P : constant production rate, units per unit time where P > f (t) for all t

R : rework process rate, units per unit time where R > f (t) for all t

x : product defect rate, units per unit time

↵ : deteriorating rate in OW and RW, units per unit time where 0  ↵  1

W : maximum inventory of OW, units

Q : maximum inventory of RW, units

ti : time period in a cycle of stage i, where 0  i  3

T : batch cycle time period

Ii (t) : inventory level at time ti, where 0  i  6

Ai : area under the curve Ii (t), where 0  i  6

S : production setup cost, $ per setup

cP : processing cost per unit item, $

cR : rework processing cost per unit item, $

cD : deterioration cost per unit item, $

h1, h2 : holding costs per unit item in OW and RW respectively

T RC : total relevant costs per unit time, $
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4.2.2 Abbreviations

Listed below are the abbreviations used in the FIFO policy model.

OW : owned warehouse

RW : rented warehouse

FIFO : first-in-first-out

GRG : generalized reduced gradient

4.2.3 Assumptions

The assumptions adopted in this study includes:

1. Lead time is zero and the replenishment rate is finite.

2. The production rate, P is larger than the demand rate, f (t).

3. The rented warehouse, RW has an unlimited capacity.

4. Only perfect items are stored in OW, while all defective items are sent to RW to be

reworked.

5. The rework process is assumed to be perfect since special care is given to the

process, hence all reworked items are perfect. The total reworked items is equal to

the total defective items.

6. The production and rework rates, P and R respectively, are assumed to be di�erent.

7. The RW is located near the OW, hence the transportation cost between the ware-

houses is negligible.
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4.3 Modelling FIFO

Figure 4.1: Inventory level of items with FIFO policy.

The level of inventory items in both warehouses, OW and RW is as illustrated in Figure

4.1. The interval t0  t  t1 represents the production uptime period in OW, where some

items produced in this interval are assumed to be non-defective or perfect and some are

defective.

All defectives are separated to be sent to RW to undergo rework process. On the other

hand, all perfect items produced are subjected to deterioration and used in satisfying

demands. The inventory level in this interval is represented by I1(t).

The following interval, t1  t  t2 represents the rework uptime period in RW. At

t1, all defectives from OW are sent to RW to be reworked. Since the rework process is

assumed to be free of flaws, all reworked items are assumed to be perfect and as good as

new. Hence, the total defective items is assumed to be equal to the total items reworked.

The inventory level of items in this interval is represented by I3(t).

55

Univ
ers

iti 
Mala

ya



Note that, all item in this interval is subjected to deterioration and fulfilment of demand.

On the other hand, items held in OW during the interval t1  t  t2 will be subjected to

deterioration only. The inventory level in this interval is represented by I2(t).

Since the FIFO policy is considered in this model, items in OW will be utilised

completely before demands are satisfied by items in RW. Hence, in the interval t2  t  t3

items in OW are used to satisfy demand and also subjected to deterioration until they are

completely utilised.

The inventory level during the production down time period in OW is represented by

I5(t). All items are assumed to be depleted completely at t3. While in RW, items are

subjected to deterioration only where the inventory level is represented by I4(t).

The final interval, t3  t  T represents the rework down time period in RW. Items in

this interval are depleted due to the satisfying of demand and deterioration. The inventory

level in this interval is given as I6(t). All items will be fully depleted at T .

Note that, items are said to enter the owned warehouse first since they are produced

in the OW up to t1. After which, all collected defective items are then sent to RW to

be reworked. At the end of the production cycle, items are fully depleted in the owned

warehouse first, before all items are cleared in the rented warehouse. This phenomenon

is known as the First-In-First-Out, FIFO policy.

The following subsections are divided based on the intervals t0  t  t1, t1  t  t2,

t2  t  t3, and t3  t  T .

4.3.1 Production up time in the interval t0  t  t1

The production process begins in this interval, where some items produced are defec-

tive. All perfect items are stored in OW, while all defectives are separated and sent to

RW to be reworked at t1. Non-defective items are utilised to satisfy demands and are also

subjected to deterioration. The maximum inventory level of OW is reached at t1, where
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it is represented by W . Hence, the net replenishment rate can be formulated as

dI1(t)
dt = P � x � f (t) � ↵I1(t), where I1(0) = 0 and I1(t1) = W

dI1(t)
dt

= P � x � a � bt � ↵I1(t)

e↵t I1(t) =
Z

e↵t (P � x � a � bt)dt

=
1
↵

(P � x � a)e↵t � bte↵t

↵
+

Z
b
↵

e↵t dt + c1

=
1
↵

(P � x � a)e↵t � bte↵t

↵
+

be↵t

↵2 + C

Given that the initial condition, I1(t0) = 0, we have

0 =
(P � x � a)

↵
+

b
↵2 + C

C = � (P � x � a)
↵

� b
↵2

e↵t I1(t) =
(P � x � a)e↵t

↵
� bte↵t

↵
+

be↵t

↵2 �
(P � x � a)

↵
� b
↵2

I1(t) =
(P � x � a)

↵
� bt
↵
+

b
↵2 �

(P � x � a)
↵

e�↵t � b
↵2 e�↵t

I1(t) =
"

(P � x � a)
↵

+
b
↵2

# ⇣
1 � e�↵t

⌘
� bt
↵

I1(t) represents the inventory level at time t, within the interval t0  t  t1, in which

the inventory level is equivalent to the number of produced items excluding the defective

and deteriorated items as well as the demand which has been fulfilled, at time t.
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A1 represents the area under the curve I1(t) in the interval t0  t  t1, during the

production uptime period in OW which is given as

Z t1

0
I1(t) dt =

 
P � x � a
↵

+
b
↵2

!
t1 +

e�↵t1

↵

 
P � x � a
↵

+
b
↵2

!
� bt1

2

2↵

� 1
↵

 
P � x � a
↵

+
b
↵2

!

=

 
P � x � a
↵

+
b
↵2

!
t1 �

bt1
2

2↵
+

 
P � x � a
↵2 +

b
↵3

!
(e�↵t1 � 1)

A1 =
(P � x)t1
↵

� 1
↵

 
at1 +

b
2

t1
2
!
+

bt1

↵2 +

 
P � x � a
↵2 +

b
↵3

!
(e�↵t1 � 1)

We also note that the maximum inventory level of OW which is represented by W is

governed by the equation W = I1(t1). Hence, we have

W =

"
(P � x � a)

↵
+

b
↵2

# ⇣
1 � e�↵t1

⌘
� bt1
↵

We can see that the formulations in the production uptime period for this model is the

same as the formulations in the LIFO policy model.

4.3.2 Interval t1  t  t2 in OW

Produced items in OW from the previous interval, t0  t  t1 are kept in storage during

rework up time period in RW. The inventory level of the items in OW within the interval

t1  t  t2 decreases solely due to deterioration, while demands are fulfilled by items in

RW. The net replenishment rate can be formulated as

dI2(t)
dt = �↵I2(t), where I2(t1) = W
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dI2(t)
dt

= �↵I2(t)

dI2(t)
dt
+ ↵I2(t) = 0

e↵t I2(t) = C

Given the boundary condition, I2(t1) = W , we have

e↵t1W = C

e↵t I2(t) = e↵t1W

I2(t) = We↵(t1�t)

I2(t) represents the inventory level at time t within the interval t1  t  t2, in which

the inventory level is equivalent to the number of items stored in OW after the interval

t0  t  t1 minus the deteriorated items at time t.

A2 represents the area under the curve I2(t) in the interval t1  t  t2, which is given

as

Z t2

t1

I2(t) dt = � 1
↵

We↵(t1�t2) +
1
↵

W

A2 =
W
↵

f
1 � e↵(t1�t2)

g

4.3.3 Rework up time in the interval t1  t  t2

All defective items sent to RW will undergo rework process during this interval with

the rework rate, R. Since the rework process is assumed to be perfect, all items reworked

are also assumed to be non-defective and as good as new. The inventory net replenishment

rate in this interval can be formulated as

dI3(t)
dt = R � f (t) � ↵I3(t), where I3(t1) = 0
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dI3(t)
dt

= R � a � bt � ↵I3(t)

dI3(t)
dt
+ ↵I3(t) = R � a � bt

e↵t I3(t) =
Z

(R � a � bt)e↵t dt

=
1
↵

(R � a)e↵t �
Z

bte↵t dt + c1

=
1
↵

(R � a)e↵t � bt
↵

e↵t +

Z
b
↵

e↵t dt + c2

=
1
↵

(R � a)e↵t � bt
↵

e↵t +
b
↵2 e↵t + C

Given the boundary condition, I3(t1) = 0, we have

C = �
"
1
↵

(R � a � bt1) +
b
↵2

#
e↵t1

I3(t) =
1
↵

(R � a � bt) +
b
↵2 �

"
1
↵

(R � a � bt1) +
b
↵2

#
e↵(t1�t)

I3(t) represents the inventory level at time t, within the interval t1  t  t2, in which

the inventory level is equivalent to the number of reworked items excluding the defective

and deteriorated items as well as the demand which has been fulfilled, at time t.
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A3 represents the area under the curve I3(t) in the interval t1  t  t2, during the

rework up time period in RW which is given as

Z t2

t1

I3(t) dt =
1
↵

"
(R � a)t � b

2
t2 +

1
↵

(R � a � bt1)e↵(t1�t)
#
+

b
↵2

"
t +

1
↵

e↵(t1�t)
#

A3 =
1
↵

"
(R � a)(t2 � t1) � b

2
⇣
t2

2 � t1
2
⌘
+

1
↵

(R � a � bt1)
f
e↵(t1�t2) � 1

g #

+
b
↵2

"
(t2 � t1) +

1
↵

f
e↵(t1�t2) � 1

g #

=
1
↵

(R � a)(t2 � t1) � b
2↵

⇣
t2

2 � t1
2
⌘
+

1
↵2 (R � a � bt1)

f
e↵(t1�t2) � 1

g

+
b
↵2 (t2 � t1) +

b
↵3

f
e↵(t1�t2) � 1

g

=
1
↵

R(t2 � t1) � 1
↵

 
at2 +

b
2

t2
2
!
+

1
↵

 
at1 +

b
2

t1
2
!
+

b
↵2 (t2 � t1)

+

"
1
↵2 (R � a � bt1) +

b
↵3

# f
e↵(t1�t2) � 1

g

We can see that the formulation in the production uptime period for the FIFO policy

model is the same as the formulation in the LIFO policy model.

4.3.4 Interval t2  t  t3 in RW

Reworked items in RW from the previous interval, t1  t  t2 are kept in storage

during the production down time period in OW. Hence, the inventory level of the items

in RW decreases solely due to deterioration only, while demands are fulfilled by items in

OW. The net replenishment rate can be formulated as

dI4(t)
dt = �↵I4(t), where I4(t2) = Q

dI4(t)
dt

= �↵I4(t)

dI4(t)
dt
+ ↵I4(t) = 0

e↵t I4(t) = C
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Given the boundary condition, I4(t2) = Q, we have

e↵t2Q = C

e↵t I4(t) = e↵t2Q

I4(t) = Qe↵(t2�t)

I4(t) represents the inventory level at time t, within the interval t2  t  t3, in which

the inventory level is equivalent to the number of reworked items stored in RW after the

interval t1  t  t2 excluding the deteriorated items at time t.

A4 represents the area under the curve I4(t) in the interval t2  t  t3, which is given

as

Z t3

t2

I4(t) dt = � 1
↵

Qe↵(t2�t3) +
1
↵

Q

A4 =
Q
↵

f
1 � e↵(t2�t3)

g

We also note that the maximum inventory level of RW, which is represented by Q is

governed by the equation Q = I3(t2). Hence, we have

Q =
1
↵

(R � a � bt2) +
b
↵2 �

"
1
↵

(R � a � bt1) +
b
↵2

#
e↵(t1�t2)

4.3.5 Production down time in the interval t2  t  t3

All items in OW are now depleted completely in this interval due to the occurrence of

deterioration and fulfilment of demand. While the reworked items are kept in RW until

all items in OW has been completely consumed at t3. The inventory net replenishment

rate can be formulated as
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dI5(t)
dt = � f (t) � ↵I5(t), where I5(t3) = 0

dI5(t)
dt

= � f (t) � ↵I5(t)

dI5(t)
dt
+ ↵I5(t) = �a � bt

e↵t I5(t) =
Z

(�a � bt)e↵t dt

= � a
↵

e↵t � bt
↵

e↵t +

Z
b
↵

e↵t dt + c1

= � a
↵

e↵t � bt
↵

e↵t +
b
↵2 e↵t + C

=

"
� a
↵
� bt
↵
+

b
↵2

#
e↵t + C

Given the boundary condition, I5(t3) = 0, we have

C = �
"
� a
↵
� bt3
↵
+

b
↵2

#
e↵t3

=

"
(a + bt3)
↵

� b
↵2

#
e↵t3

I5(t) =
"
� (a + bt)

↵
+

b
↵2

#
+

"
(a + bt3)
↵

� b
↵2

#
e↵(t3�t)

I5(t) =
"
1
↵

(a + bt3) � b
↵2

#
e↵(t3�t) � (a + bt)

↵
+

b
↵2

I5(t) represents the inventory level at time t, within the interval t2  t  t3, in which

the inventory level is equivalent to the number of remaining items stored in OW after the

interval t1  t  t2 excluding the deteriorated items and demand which has been fulfilled,

at time t.
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A5 represents the area under the curve I5(t) in the interval t2  t  t3, during the

production down time period in OW which is given as

Z t3

t2

I5(t) dt = � 1
↵

(
1
↵

(a + bt3)
f
1 � e↵(t3�t2)

g
+ a(t3 � t2) +

b
2

(t3
2 � t2

2)
)

+
b
↵2

(
(t3 � t2) +

1
↵

f
1 � e↵(t3�t2)

g)

A5 = �
1
↵2 (a + bt3)

f
1 � e↵(t3�t2)

g
� a(t3 � t2)

↵
� b

2↵
(t3

2 � t2
2)

+
b
↵2 (t3 � t2) +

b
↵3

f
1 � e↵(t3�t2)

g

=
1
↵

 
at2 +

b
2

t2
2
!
� 1
↵

 
at3 +

b
2

t3
2
!
+

b
↵2 (t3 � t2)

+

"
1
↵2 (a + bt3) � b

↵3

# f
e↵(t3�t2) � 1

g

4.3.6 Rework down time in the interval t3  t  T

Once all items in OW have been depleted and consumed completely at t3, inventory

items stored in RW will decrease due to deterioration and fulfilment of demands. The

production cycle ends at T where all items in RW are also consumed completely. The

inventory net replenishment rate can be formulated as

dI6(t)
dt = � f (t) � ↵I6(t), where I6(T ) = 0

dI6(t)
dt
+ ↵I6(t) = �a � bt

e↵t I6(t) =
Z

(�a � bt)e↵t dt

= � a
↵

e↵t �
Z

bte↵t dt + c1

= � a
↵

e↵t � bt
↵

e↵t +

Z
b
↵

e↵t dt + c2

= � a
↵

e↵t � bt
↵

e↵t +
b
↵2 e↵t + C

=

"
� (a + bt)

↵
+

b
↵2

#
e↵t + C
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Given the boundary condition, I6(T ) = 0, we have

C =

"
(a + bT )
↵

� b
↵2

#
e↵T

I6(t) =
"
� (a + bt)

↵
+

b
↵2

#
+

"
(a + bT )
↵

� b
↵2

#
e↵(T�t)

I6(t) =
"

(a + bT )
↵

� b
↵2

#
e↵(T�t) � (a + bt)

↵
+

b
↵2

I6(t) represents the inventory level at time t, within the interval t3  t  T , in which

the inventory level is equivalent to the number of remaining items stored in RW after the

interval t2  t  t3 excluding the deteriorated items and demand which has been fulfilled,

at time t.

A6 represents the area under the curve I6(t) in the interval t3  t  T , during the

rework down time period in RW which is given as

Z T

t3

I6(t) dt =
f
1 � e↵(T�t3)

g " b
↵3 �

1
↵2 (a + bT )

#
� 1
↵

"
a(T � t3) +

b
2
⇣
T2 � t3

2
⌘#

+
b(T � t3)
↵2

A6 =
1
↵

 
at3 +

b
2

t3
2
!
� 1
↵

 
aT +

b
2

T2
!
+

b
↵2 (T � t3)

+

"
1
↵2 (a + bT ) � b

↵3

# f
e↵(T�t3) � 1

g
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Hence, the governing di�erential equations stating the inventory levels within the

production cycle are given as follows:

dI1(t)
dt

= P � x � f (t) � ↵I1(t) ; t0  t  t1 (1)

dI2(t)
dt

= �↵I2(t) ; t1  t  t2 (2)

dI3(t)
dt

= R � f (t) � ↵I3(t) ; t1  t  t2 (3)

dI4(t)
dt

= �↵I4(t) ; t2  t  t3 (4)

dI5(t)
dt

= � f (t) � ↵I5(t) ; t2  t  t3 (5)

dI6(t)
dt

= � f (t) � ↵I6(t) ; t3  t  T (6)

where f (t) = a + bt.

Solving the di�erential equations (1) to (6) above, we have

I1(t) =
"

(P � x � a)
↵

+
b
↵2

# ⇣
1 � e�↵t

⌘
� bt
↵

(7)

I2(t) = We↵(t1�t) (8)

I3(t) =
1
↵

(R � a � bt) +
b
↵2 �

"
1
↵

(R � a � bt1) +
b
↵2

#
e↵(t1�t) (9)

I4(t) = Qe↵(t2�t) (10)

I5(t) =
"
1
↵

(a + bt3) � b
↵2

#
e↵(t3�t) � (a + bt)

↵
+

b
↵2 (11)

I6(t) =
"

(a + bT )
↵

� b
↵2

#
e↵(T�t) � (a + bt)

↵
+

b
↵2 (12)

where the boundary conditions are given as follows;

I1(t0) = 0, I1(t1) = W = I2(t1), I3(t1) = 0, I3(t2) = Q = I4(t2),

I4(t3) = I6(t3), I2(t2) = I5(t2), I5(t3) = 0 and I6(T ) = 0.

The amount of inventory Ai under the curve Ii (t) in each interval where i = 1, 2, 3, 4, 5

and 6 are given as follows:
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In the interval t0  t  t1,

A1 =
f

(P�x)
↵ + b

↵2

g
t1 � 1

↵

⇣
at1 +

b
2 t1

2
⌘
+

⇣
P�x�a
↵2 + b

↵3

⌘
(e�↵t1 � 1) (13)

In the interval t1  t  t2,

A2 =
W
↵

f
1 � e↵(t1�t2)

g
(14)

In the interval t1  t  t2,

A3 =

"
R
↵
+

b
↵2

#
(t2 � t1) +

1
↵

" 
at1 +

b
2

t1
2
!
�

 
at2 +

b
2

t2
2
!#

+

"
1
↵2 (R � a � bt1) +

b
↵3

# f
e↵(t1�t2) � 1

g
(15)

In the interval t2  t  t3,

A4 =
Q
↵

f
1 � e↵(t2�t3)

g
(16)

In the interval t2  t  t3,

A5 =
b
↵2 (t3 � t2) +

1
↵

" 
at2 +

b
2

t2
2
!
�

 
at3 +

b
2

t3
2
!#

+

"
1
↵2 (a + bt3) � b

↵3

# f
e↵(t3�t2) � 1

g
(17)

In the interval t3  t  T ,

A6 =
b
↵2 (T � t3) +

1
↵

" 
at3 +

b
2

t3
2
!
�

 
aT +

b
2

T2
!#

+

"
1
↵2 (a + bT ) � b

↵3

# f
e↵(T�t3) � 1

g
(18)

67

Univ
ers

iti 
Mala

ya



4.3.7 Finding t2

Next, assuming that all defective items are sent to RW to be reworked and the rework

process is perfect, we may use the following equality to solve for t2;

Total Defective Items = Total Reworked Items

Hence, we have the following equation

xt1 = R(t2 � t1)

xt1 + Rt1 = Rt2

t2 =
(R + x)t1

R

Note that, the formula for t2 is also the same in the LIFO policy model.

4.3.8 Costs Involved in This Model

4.3.8.1 Setup Production, Processing and Rework Processing Costs

The setup production, processing and rework processing costs per unit time are com-

puted as below respectively.

Setup Production Cost = S
T

Processing Cost = cPP(t1 � t0)
T

=
cPPt1

T

Rework Processing Cost =
cRx(t1 � t0)

T
=

cRxt1
T
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4.3.8.2 Inventory Carrying Cost

Next, the total inventory carrying cost is given as the sum of the holding costs in OW

and RW, where we have

1. The total holding cost in OW per unit time = h1
T (A1 + A2 + A5)

The total holding cost in OW per unit time

=
h1
T

⇢ 1
↵

"
(P � x)t1 �

 
at1 +

b
2

t1
2
!
+

 
at2 +

b
2

t2
2
!
�

 
at3 +

b
2

t3
2
!#

� 1
↵2 (a + bt2) +

b
↵3 �

W
↵

e↵(t1�t2) +

"
1
↵2 (a + bt3) � b

↵3

#
e↵(t3�t2)

�

2. The total holding cost in RW per unit time = h2
T (A3 + A4 + A6)

The total holding cost in RW per unit time

=
h2
T

⇢ 1
↵

"
R(t2 � t1) +

 
at1 +

b
2

t1
2
!
�

 
at2 +

b
2

t2
2
!
+

 
at3 +

b
2

t3
2
!
�

 
aT +

b
2

T2
!#

� 1
↵2 (a + bt3) +

b
↵3 �

Q
↵

e↵(t2�t3) +

"
1
↵2 (a + bT ) � b

↵3

#
e↵(T�t3)

�

Therefore, the total holding costs for both OW and RW per unit time, HC is given as

HC =
h1
T

⇢ 1
↵

"
(P � x)t1 �

 
at1 +

b
2

t1
2
!
�

 
at3 +

b
2

t3
2
!
+

 
at2 +

b
2

t2
2
!#
� 1
↵2 (a + bt2)

+
b
↵3 �

W
↵

e↵(t1�t2) +

"
1
↵2 (a + bt3) � b

↵3

#
e↵(t3�t2)

�

+
h2
T

⇢ 1
↵

"
R(t2 � t1) +

 
at1 +

b
2

t1
2
!
�

 
at2 +

b
2

t2
2
!
+

 
at3 +

b
2

t3
2
!
�

 
aT +

b
2

T2
!#

� 1
↵2 (a + bt3) +

b
↵3 �

Q
↵

e↵(t2�t3) +

"
1
↵2 (a + bT ) � b

↵3

#
e↵(T�t3)

�
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4.3.8.3 Deteriorating Cost

The total number of deteriorated items is equal to the product of deterioration rate and

the total area under the curves I1(t), I2(t), I3(t), I4(t), I5(t) and I6(t). Hence, we have the

equality

The total number of deteriorated items, G = ↵(The total area under the curves)

G = ↵(A1 + A2 + A3 + A4 + A5 + A6)

= Pt1 �
 
aT +

b
2

T2
!
� 1
↵

(a + bt2) � 1
↵

(a + bt3) +
2b
↵2 �We↵(t1�t2) �Qe↵(t2�t3)

+

"
1
↵

(a + bt3) � b
↵2

#
e↵(t3�t2) +

"
1
↵

(a + bT ) � b
↵2

#
e↵(T�t3)

Hence, the deteriorating cost per unit time, DC is given by

DC =
cDG

T

=
cD

T

⇢
Pt1 �

 
aT +

b
2

T2
!
� 1
↵

(a + bt2) � 1
↵

(a + bt3) +
2b
↵2 �We↵(t1�t2) �Qe↵(t2�t3)

+

"
1
↵

(a + bt3) � b
↵2

#
e↵(t3�t2) +

"
1
↵

(a + bT ) � b
↵2

#
e↵(T�t3)

�
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4.3.9 The Total Relevant Cost, T RC

The total relevant cost per unit time for the FIFO policy is given as

T RC = Setup Production Cost + Processing Cost + Rework Processing Cost

+ Holding Cost in OW + Holding Cost in RW + Deteriorating Cost

=
S
T
+

cPPt1
T
+

cRxt1
T

+
h1
T

⇢ 1
↵

"
(P � x)t1 �

 
at1 +

b
2

t1
2
!
+

 
at2 +

b
2

t2
2
!
�

 
at3 +

b
2

t3
2
!#
� 1
↵2 (a + bt2)

+
b
↵3 �

W
↵

e↵(t1�t2) +

"
1
↵2 (a + bt3) � b

↵3

#
e↵(t3�t2)

�

+
h2
T

⇢ 1
↵

"
R(t2 � t1) +

 
at1 +

b
2

t1
2
!
�

 
at2 +

b
2

t2
2
!
+

 
at3 +

b
2

t3
2
!
�

 
aT +

b
2

T2
!#

� 1
↵2 (a + bt3) +

b
↵3 �

Q
↵

e↵(t2�t3) +

"
1
↵2 (a + bT ) � b

↵3

#
e↵(T�t3)

�

+
cD

T

⇢
Pt1 �

 
aT +

b
2

T2
!
� 1
↵

(a + bt2) � 1
↵

(a + bt3) +
2b
↵2 �We↵(t1�t2) �Qe↵(t2�t3)

+

"
1
↵

(a + bt3) � b
↵2

#
e↵(t3�t2) +

"
1
↵

(a + bT ) � b
↵2

#
e↵(T�t3)

�
(19)

4.4 Numerical Examples, Solution Procedure and Sensitivity Analysis

4.4.1 Numerical Examples

The following parameters are considered to show a clear illustration of the FIFO policy

model. The production rate per unit time, P is 3000, rework rate per unit time, R is 1000,

defective rate per unit time, x is 500, deterioration rate per unit time, ↵ is 0.04, the initial

rate of demand, a is 550 and the rate with which the demand rate increases, b is 200,

where f (t) = a + bt is the demand rate per unit time.

The costs involved in this model are given as follows, where the setup production cost

per setup, S is $1000, the processing cost per unit item, cP is $2, rework processing cost

per unit item, cR is $3, deterioration cost per unit item, d is $2.50, holding cost per unit

item in OW, h1 is $1.50 and holding cost per unit item in RW, h2 is $2.50.
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We will now discuss on the equations involved in OW in the following subsections.

4.4.1.1 Total Items Produced

The total items produced is equal to the sum of the total demand and deteriorated items.

Hence, we have the equality

P(t1 � t0) =
Z T

t0

f (t) dt + ↵(A1 + A2 + A3 + A4 + A5 + A6)

where,

↵A1 = (P � x)t1 �
Z t1

t0

f (t) dt �W

↵A2 = W � I2(t2)

↵A3 = R(t2 � t1) �
Z t2

t1

f (t) dt � I3(t2)

↵A4 = Q � I4(t3)

↵A5 = I5(t2) �
Z t3

t2

f (t) dt

↵A6 = I6(t3) �
Z T

t3

f (t) dt
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Focusing on the RHS of the equation, we have the following

RHS =

Z T

t0

f (t) dt + ↵(A1 + A2 + A3 + A4 + A5)

=

Z T

t0

f (t) dt +
"
(P � x)t1 �

Z t1

t0

f (t) dt �W
#
+ [W � I2(t2)]

+

"
R(t2 � t1) �

Z t2

t1

f (t) dt � I3(t2)
#
+ [Q � I4(t3)]

+

"
I5(t2) �

Z t3

t2

f (t) dt
#
+

"
I6(t3) �

Z T

t3

f (t) dt
#

= Pt1 �W +W + R(t2 � t1) � xt1 +Q � I3(t2)

+I5(t2) � I2(t2) + I6(t3) � I4(t3)

+

Z T

t0

f (t) dt �
"Z t1

t0

f (t) dt +
Z t2

t1

f (t) dt +
Z t3

t2

f (t) dt +
Z T

t3

f (t) dt
#

= Pt1

Hence, the equality is true given that, R(t2 � t1) = xt1, Q = I3(t2), I2(t2) = I5(t2)

and I4(t3) = I6(t3). Numerically, the equality has a value of 754.71 (correct to 2 decimal

places).

We also have the equality where the total items produced is equal to the sum of the

total defective items, the total demand in OW and the total deteriorated items in OW.

P(t1 � t0) = x(t1 � t0) +
"Z t1

t0

f (t) dt +
Z t3

t2

f (t) dt
#
+ ↵(A1 + A2 + A5)
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Focusing on the RHS of the equation, we have

RHS = x(t1 � t0) +
"Z t1

t0

f (t) dt +
Z t3

t2

f (t) dt
#
+ ↵(A1 + A2 + A5)

= xt1 +

"Z t1

t0

f (t) dt +
Z t3

t2

f (t) dt
#
+

"
(P � x)t1 �

Z t1

t0

f (t) dt �W
#

+ [W � I2(t2)] +
"
I5(t2) �

Z t3

t2

f (t) dt
#

= Pt1

= LHS

The equality holds given that I2(t2) = I5(t2), where the value is 754.71 (correct to 2

decimal places).

4.4.1.2 Maximum Inventory of OW, W

The maximum inventory of OW, W is equal to sum of the total deteriorated items in

the interval t1 to t3 and the total demand in the interval t2 to t3.

W = ↵A2 + ↵A5 +

Z t3

t2

f (t)dt

Substituting equations (20) and (23) into the RHS of the equation, we have

RHS = [W � I2(t2)] +
"
I5(t2) �

Z t3

t2

f (t) dt
#
+

Z t3

t2

f (t) dt

= W

= LHS

Hence, the equality holds given that I2(t2) = I5(t2), where W = 481.79 (correct to 2

decimal places).
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Besides that, we also have the equality where the maximum inventory of OW, W is

equal to the total items produced subtract the sum of the total defective items, total demand

from t0 to t1 and total deteriorated items from t0 to t1.

W = P(t1 � t0) � x(t1 � t0) �
Z t1

t0

f (t)dt � ↵A1

Focusing on the RHS of the equality, we have

RHS = P(t1 � t0) � x(t1 � t0) �
Z t1

t0

f (t)dt �
"
(P � x)t1 �

Z t1

t0

f (t) dt �W
#

= (P � x)t1 �
Z t1

t0

f (t)dt � (P � x)t1 +

Z t1

t0

f (t) dt +W

= W

= LHS

Hence, the equality holds where W = 481.79 (correct to 2 decimal places).

Numerically, we obtained the value of W where W = I1(t1) = I2(t1) = 481.79 (correct

to 2 decimal places).

4.4.1.3 Total Deteriorated Items from t1 to t2 in OW

The total deteriorated items from t1 to t2 in OW is governed by the equality

↵A2 = I2(t1) � I2(t2) (20)
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Substituting t1 and t2 into (8), the RHS of the equality (25) is

RHS = We↵(t1�t1) �We↵(t1�t2)

= W �We↵(t1�t2)

= W
f
1 � e↵(t1�t2)

g

= ↵A2

= LHS

Numerically, the total deteriorated items from t1 to t2 in OW is 2.42 (correct to 2

decimal places).

We will now discuss on the equations involved in RW in the following subsections.

4.4.1.4 Total Reworked Items

In this model, we assumed that the rework process is perfect, hence the total reworked

items is equal to the total deteriorated items where we have the equality

R(t2 � t1) = x(t1 � t0) (correct to 2 decimal places)

Therefore, the following equality holds,

R(t2 � t1) = x(t1 � t0)

We also have the equality where the total reworked items is equal to the sum of the

total demand in RW and the total deteriorated items in RW.

R(t2 � t1) =
Z t2

t1

f (t) dt +
Z T

t3

f (t) dt + ↵(A3 + A4 + A6)
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Focusing on the RHS of the equation, we have

RHS =
Z t2

t1

f (t) dt +
Z T

t3

f (t) dt + ↵(A3 + A4 + A6)

=

Z t2

t1

f (t) dt +
Z T

t3

f (t) dt +
"
R(t2 � t1) �

Z t2

t1

f (t) dt � I3(t2)
#

+ [Q � I4(t3)] +
"
I6(t3) �

Z T

t3

f (t) dt
#

=

Z t2

t1

f (t) dt �
Z t2

t1

f (t) dt +
Z T

t3

f (t) dt �
Z T

t3

f (t) dt + R(t2 � t1)

� I3(t2) +Q � I4(t3) + I6(t3)

= R(t2 � t1)

= LHS

Hence, the following equality holds where I3(t2) = Q and I4(t3) = I6(t3).

Next, we can also see that the total reworked items is equal to the total items produced

subtract the sum of the total demand in and deteriorated items in OW. The equality is

given as

R(t2 � t1) = P(t1 � t0) �
" Z t1

t0

f (t) dt +
Z t3

t2

f (t)
!

dt + ↵(A1 + A2 + A5)
#
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Focusing on the RHS of the equality, we have

RHS = P(t1 � t0) �
" Z t1

t0

f (t) dt +
Z t3

t2

f (t)
!

dt + ↵(A1 + A2 + A5)
#

= P(t1 � t0) �
 Z t1

t0

f (t) dt +
Z t3

t2

f (t) dt
!
�
"
(P � x)t1 �

Z t1

t0

f (t) dt �W
#

� [W � I2(t2)] �
"
I5(t2) �

Z t3

t2

f (t) dt
#

= Pt1 � (P � x)t1 �
Z t1

t0

f (t) dt +
Z t1

t0

f (t) dt �
Z t3

t2

f (t) dt +
Z t3

t2

f (t) dt

+ W �W + I2(t2) � I5(t2)

= xt1

= R(t2 � t1)

= LHS

Hence, the equality holds given that I2(t2) = I5(t2) and xt1 = R(t2 � t1). Numerically,

the equalities above have a value of 125.78 (correct to 2 decimal places).

4.4.1.5 Inventory Level at ti

By formulation, we observed that the inventory level of RW at t2, I3(t2) is equal to the

di�erence between the total reworked items and the sum of the demand from t1 to t2 and

the deteriorated items from t1 to t2 in RW. Hence, the equality is

I3(t2) = R(t2 � t1) �
R t2

t1
f (t) dt � ↵A3

Focusing on the RHS of the equality, we have

RHS = R(t2 � t1) �
Z t2

t1

f (t) dt �
"
R(t2 � t1) �

Z t2

t1

f (t) dt � I3(t2)
#

= R(t2 � t1) �
Z t2

t1

f (t) dt � R(t2 � t1) +
Z t2

t1

f (t) dt + I3(t2)

= I3(t2)

= LHS
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Similarly, at t2 another equality can be obtained. The inventory level of RW at t2, I4(t2)

is equal to the total deteriorated items from t2 to T and the sum of the demand from t3 to

T in RW. Hence, we have

I4(t2) = ↵A4 + ↵A6 +
R T

t3
f (t) dt

Focusing on the RHS of the equality, we have

RHS = Q � I4(t3) + I6(t3) �
Z T

t3

f (t) dt +
Z T

t3

f (t) dt

= Q

= I4(t2)

= LHS

Therefore, both equality holds where I4(t3) = I6(t3) and the numerical value is given

as 48.57 (correct to 2 decimal places).

Next, we also have the equality where the inventory level a t3 is equal to di�erence

between the maximum inventory of OW and the deteriorated items from t1 to t2. The

equality is given as

I2(t2) = W � ↵A2

Focusing on the RHS of the equality, we have

RHS = W � [W � I2(t2)]

= W �W + I2(t2)

= I2(t2)

= LHS
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Similarly, the inventory level at t2, I5(t2) is equal to the sum of the demand from t2 to

t3 and the deteriorated items from t2 to t3 in OW. The equality is given as

I5(t2) =
R t3

t2
f (t) dt + ↵A5

Substituting (23) into the equality, we have

RHS =

Z t3

t2

f (t) dt + I5(t2) �
Z t3

t2

f (t) dt

= I5(t2)

= LHS

Hence, both equality holds where I2(t2) = I5(t2) and the numerical value is given as

479.37 (correct to 2 decimal places).

4.4.2 Solution Procedure

Numerical algorithms for constrained nonlinear optimization can be broadly cate-

gorized into gradient-based methods and direct search methods. Gradient search methods

use first derivatives (gradients) or second derivatives (Hessians) information, while direct

search methods do not use derivative information.

In this research, generalized reduced gradient (GRG) has been chosen as the solving

method. Hence, the Microsoft Excel Solver is used as a solution tool. GRG converts the

constrained problem into and unconstrained problem. The GRG method is an extension

of the reduced gradient method to accommodate nonlinear inequality constraints. In

this method, a search direction is found such that for any small move, the current active

constraints remain precisely active.
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The following algorithm is used

1. Set t0 = 0.

2. Determine the values of t1, t3 and T which satisfy the following constraints:

I1(t0) = 0, I1(t1) = I2(t1), I3(t1) = 0, I3(t2) = I4(t2), I4(t3) = I6(t3), I2(t2) =

I5(t2), I5(t3) = 0 and I6(T ) = 0

3. Compute t2 =
(R+x)t1

R .

4. Compute T RC using the equation (19).

Besides than the GRG method, we have utilized the Wolfram Language function which

solves for numeric local constrained optimization which is known as the FindMinimum

function. Hence, we have used this built-in function in Mathematica software to verify our

results and note that both the Microsoft Excel Solver and Mathematica software, provide

the same results. The coding has been included in the appendix section of this research.

4.4.3 Sensitivity Analysis

We will now look at the sensitivity analysis of the parameters incorporated in this

model. We observed that the total relevant cost, T RC⇤ changes significantly with the

changes in the values of the selective parameters by ±25% of the optimal values in these

models.

As the production rate, P increases, items are produced at a faster rate in a shorter

period of time. Hence, fewer items are produced resulting in the fewer number of defective

items. The decrement of the processing cost, rework processing cost and holding cost in

RW, results in the decrement of T RC⇤.

As the rework rate, R increases, the rework process requires a shorter duration to

complete. The significant increment in the setup production cost and holding cost in RW

results in the increment of T RC⇤.
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As the defective rate, x increases, the amount of total defective items increases. Hence,

resulting in a significant increment of the rework processing cost and holding cost in RW

and a slight increment in the setup production cost. Hence, resulting in the increment of

T RC⇤.

As the deterioration rate ↵ increases, the total number of deteriorated items increases.

In return, resulting in the increment of the deterioration cost. All other costs involved also

increases except the holding costs in OW and RW. Hence, resulting in the increment of

T RC⇤.

As the initial rate of demand, a increases, we observed that the total items produced,

total demand and total deteriorated items increase as well. As a result all costs involved

in the system showed increment except for the holding cost in RW. Hence, as a increases,

T RC⇤ increases as well.

As the rate at which the demand rate b increases, we observed that all costs involved

in this model increases, except for the holding costs in OW and RW as well as the

deteriorating cost. Hence, resulting in the increment of T RC⇤.

4.5 Comparison between LIFO and FIFO

In general, the T RC⇤ of the LIFO system is lower than the T RC⇤ of the FIFO system

where T RC⇤LIFO = $3047.39 < T RC⇤FIFO = $3076.34. Based on the sensitivity

analysis of both models, the following are the features that we have identified.

We observed that the value of t1 in the FIFO system is slightly lower than the value of

t1 in the LIFO system. As a result, the total produced and defective items are also lower

in the FIFO system.

Since T is also slightly lower in the FIFO system, we can see that the total demand

is slightly lower in the FIFO system as well. Besides, the lower value of T in the FIFO

system resulted in the higher setup production cost in the system as compared to the LIFO
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system.

In addition, the total produced and the defective items in the FIFO system is lower than

the LIFO system. Hence, we can see that the processing cost and rework processing cost

are also lower in the FIFO system as compared to the LIFO system.

The items are stored in RW longer in the FIFO system compared to the LIFO system.

Hence, resulting in the higher holding cost in RW in the FIFO system compared to the

LIFO system.

Taking every cost involved into account for both systems, the significant higher holding

cost in RW for the FIFO system contributed to the higher T RC⇤ in the FIFO system.

Hence, we can conclude that given the same value of parameters, the LIFO system has

a lower total relevant cost, T RC⇤ when making the assumption that RW holds a higher

holding cost compared to the OW.

We also note that Lee (2006) has proven that when the deterioration rate in both the

owned and rented warehouses is the same, FIFO is less expensive than LIFO, provided

that the holding cost in RW is lower than OW. This is similar to the result that we have

obtained, in which the total relevant cost, T RC in the FIFO policy model is more expensive

than LIFO, assuming that the holding cost in RW is higher compared to OW.
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The graphical representation for the FIFO system of T RC⇤ against the discussed pa-

rameters above is shown in Figure 4.2.

Figure 4.2: The optimal value of T RC⇤ with varying parameters.
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Table 4.1 shows the changes in T RC⇤ as parameters is reduced and increased by 25%

of the optimal values in the FIFO system.

Table 4.1: Analysis of change in various parameters on the total relevant cost, T RC⇤.

-25%, Total Total Total Total
Parameters Optimal, T RC⇤ (2 d.p.) t1 t3 T Items Defective Demand Deteriorated

25% Produced Items Items
2250 3113.57 0.3537 1.0939 1.1740 795.7450 176.8322 783.5066 12.2384

P 3000 3076.34 0.2516 1.0588 1.1203 754.7062 125.7844 741.6470 13.0592
3750 3046.72 0.1963 1.0459 1.0958 736.2182 98.1624 722.7293 13.4889
750 3054.10 0.2560 1.1089 1.1370 768.0176 128.0029 754.6393 13.3783

R 1000 3076.34 0.2516 1.0588 1.1203 754.7062 125.7844 741.6470 13.0592
1250 3089.49 0.2490 1.0297 1.1107 747.1043 124.5174 734.2252 12.8791
375 2995.95 0.2527 1.0777 1.1242 758.1528 94.7691 744.6952 13.4576

x 500 3076.34 0.2516 1.0588 1.1203 754.7062 125.7844 741.6470 13.0592
625 3154.57 0.2508 1.0417 1.1180 752.5220 156.7754 739.8549 12.6671
0.03 3060.93 0.2534 1.0700 1.1312 760.0954 126.6826 750.1093 9.9862

↵ 0.04 3076.34 0.2516 1.0588 1.1203 754.7062 125.7844 741.6470 13.0592
0.05 3091.63 0.2498 1.0488 1.1097 749.4750 124.9125 733.4581 16.0169
412.5 2672.17 0.2051 1.0611 1.1451 615.3688 102.5615 603.4772 11.8916

a 550.0 3076.34 0.2516 1.0588 1.1203 754.7062 125.7844 741.6470 13.0592
687.5 3460.15 0.2992 1.0688 1.1070 897.5913 149.5986 883.5625 14.0288
150 2982.44 0.2581 1.1199 1.1892 774.3726 129.0621 760.1604 14.2123

b 200 3076.34 0.2516 1.0588 1.1203 754.7062 125.7844 741.6470 13.0592
250 3163.42 0.2463 1.0090 1.0642 739.0036 123.1673 726.8563 12.1473
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4.6 Conclusion

Similar to the LIFO policy, the total relevant cost, T RC is a nonlinear equation where its

second derivative with respect to t1, t3 and T is complicated. In this research, a generalized

reduced gradient (GRG) method has been chosen as the solving method in which it converts

the constrained problem into and unconstrained problem. The GRG method is an extension

of the reduced gradient method to accommodate nonlinear inequality constraints.

In this method, a search direction is found such that for any small move, the current

active constraints remain precisely active. By using Microsoft Excel Solver as a solution

tool, we are able to obtain and justify the optimal solution numerically and observed

that the equation of T RC is convex and has optimal unique solution at t1
⇤ = 0.2516,

t3
⇤ = 1.0588 and T⇤ = 1.1203 (correct to 4 decimal places).

Alternatively, we have also utilized the Wolfram Language function which solves for

numeric local contsrained optimization, also known as the FindMinimum function. This

built-in function in Mathematica software is used to verify the results obtained above,

in which both the Microsoft Excel Solver and Mathematica software, provides the same

results.

We further note that several past researches by Sett et el. (2012) and Lee & Hsu (2009)

to name a few, exhibit similar results as obtained in this study. They have achieved a

unique optimal solution for their proposed model. Similarly, for this particular set of

parameters, we have obtained the optimal unique solution for T RC⇤ at the optimal times,

where T RC⇤ is equal to $3076.34.

86

Univ
ers

iti 
Mala

ya



CHAPTER 5: CONCLUSION AND FURTHER RESEARCH

Most literatures on two-warehouse inventory model have assumed that all items pro-

duced during the production process are of perfect items. Hence, rework process was

not considered in most models. Moreover, most researchers have also assumed that the

replenishment rate is infinite in their models.

In this research, a two-warehouse inventory model with time varying demand rate

and rework process is considered. Both LIFO and FIFO policies are also incorporated,

where we assume that the holding cost in RW is higher than the holding cost in OW.

This assumption is made on the basis that the RW provides better storage facilities while

special care is given to the processes done in RW.

We have utilised Microsoft Excel Solver as a solution tool, where the generalized

reduced gradient (GRG Nonlinear) has been chosen as the solving method. The optimum

values of t1, t3 and T which resulted in the minimum value of T RC were obtained

numerically using this method for both LIFO and FIFO systems. A sensitivity analysis

was also conducted respectively for both systems to provide illustration on the derived

results.

It has been proven that by varying the selected parameters, we observed that given the

same changes are made to the parameters in both the LIFO and FIFO systems, a lower

total relevant cost, T RC⇤ is obtained in the LIFO system. This shall mean that the LIFO

system is less expensive than the FIFO system, provided that the holding cost in RW is

higher than the holding cost in OW.

The LIFO flow of inventory suggests that items which have been stored the latest in

the owned warehouse will be dispatched first. Realistically this is an important factor

for producers or manufacturers as they are able to ensure that items are dispatched or

distributed while they are at the optimal state of freshness. Besides that, this will also
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allow su�cient time for consumers to consume the items prior to the expiry date of the

items.

5.1 Further Research

There are many other aspects that can be further explored and studied. Di�erent

types of demand rate such as multivariate demand rate, exponential demand rate, and

linearly decreasing demand rate can be considered for future study to suit the type of

items produced in an inventory system.

In addition, the presence of shortages and backlogged can also be incorporated to

produce a more realistic model. Shortages and backlogged are commonly present in the

market when the demand is higher than the supply. Incorporating this factor in the model

would be beneficial in planning the right amount of items to be produced to meet the

demand.

The deterioration rates in OW and RW can be further explored in which each warehouse

holds a di�erent deterioration rate. This is more realistic as di�erent storage space may

have di�erent facilities, which may result in the di�erence in the rate items deteriorate.
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