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PRODUCTION OF ALPHA HUMULENE AND ZERUMBONE IN ADVENTITIOUS 

ROOT CULTURES OF Zingiber zerumbet (L.) SMITH THROUGH SYNERGISTIC 

EFFECT OF ELICITORS AND PLANT GROWTH REGULATORS 

 

ABSTRACT  

 

Plant secondary metabolites are gaining huge interest from their phytomedical potential 

viz. antimicrobial, anticancer, anti-inflammatory, drug and pesticides. There are many 

active researches being carried out to isolate and commercialize these valuable bio-

products. Plant cell culture is a feasible alternative route to produce the bioactive 

compounds as its offers good quality materials less affected by uncertainties in 

environmental, ecological or climatic conditions. Zingiber zerumbet Smith widely known 

as shampoo ginger or common to Malay as ‘Lempoyang’ is a small perennial medicinal 

herb plant belonging to the Zingiberaceae family. Zerumbone presents dominantly in the 

rhizome of Zingiber zerumbet with α-humulene as its intermediate, and exhibits important 

phytomedicinal properties such as anticancer, antimicrobial, anti-inflammatory, 

antinociceptive, chemopreventive and antioxidant. Efficient production of zerumbone 

through the establishment of adventitious root culture has been investigated previously. 

However, the production of α-humulene and the synergistic effects of elicitors on the 

production of α-humulene and zerumbone in vitro are yet to be investigated. The 

combination of auxin-auxin and auxin-cytokinin causes a significant decrease in 

adventitious root growth at high IBA and BAP concentrations. The highest specific 

growth rate for root biomass production is obtained on media supplemented with 5 mg L-

1 IBA and 1 mg L-1 NAA with maximum fresh weight of 6.90 ± 0.08 g and dry weight of 

2.10 ± 0.01 g was not significant with 3 mg L-1 BAP and 1 mg L-1 NAA. Meanwhile, 

maximum productions of α-humulene (3759 ± 798 µg/g)  and zerumbone (3440 ± 168 

µg/g) are observed in the media containing 3 mg L-1 BAP and 1 mg L-1 NAA under 16:08 
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photoperiod along with abundant root biomass (1.90 ± 0.05 g DW). Elicitation studies 

shows that root growth and compounds production are negatively correlated events, 

which a significance decline in biomass growth is observed with the increase in elicitor 

concentration. The yields of zerumbone and α-humulene at 43 mg/g DW and 15.8 mg/g 

DW, respectively are obtained at low concentration range of elicitors i.e. 400µM to 

600µM methyl jasmonate and salicyclic acid and represent better production compared 

to control. In conclusion, synergistic effects from application of elicitor combination to 

induce excess secondary metabolites in plant culture could be a practical route for larger 

scale production. 

 

Keywords: Lempoyang; zerumbone; α-humulene; synergistic effect; elicitors. 
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PRODUCTION OF ALPHA HUMULENE AND ZERUMBONE IN ADVENTITIOUS 

ROOT CULTURES OF Zingiber zerumbet (L.) SMITH THROUGH SYNERGISTIC 

EFFECT OF ELICITORS AND PLANT GROWTH REGULATORS 

 

ABSTRAK 

 

Metabolit sekunder tumbuhan semakin mendapat perhatian kerana potensi 

fitomedikalnya seperti antimikrob, antikanser, anti-radang, ubat-ubatan dan racun 

perosak. Terdapat banyak penyelidikan yang giat dilakukan untuk mengasingkan dan 

mengkomersialkan bio-produk berharga ini. Kultur sel tumbuhan adalah alternatif yang 

baik untuk menghasilkan sebatian bioaktif ini kerana ia menawarkan bahan yang 

berkualiti baik yang kurang dipengaruhi oleh keadaan persekitaran, ekologi atau iklim. 

Zingiber zerumbet Smith dikenali sebagai syampoo halia atau biasanya bagi orang 

Melayu sebagai 'Lempoyang' adalah tanaman herba tahunan kecil yang tergolong dalam 

keluarga Zingiberaceae. Zerumbon yang terdapat secara dominan dalam rizom Zingiber 

zerumbet dengan α-humulene sebagai perantaraannya mempunyai pelbagai sifat 

fitomedikal penting seperti antikanser, antimikrob, anti-keradangan, antinociceptif, 

kemopreventif dan antoksidan. Penghasilan zerumbon yang cekap melalui penghasilan 

sistem ampaian akar adventitius telah disiasat sebelum ini. Walau bagaimanapun, 

penghasilan α-humulene dan kesan sinergistik elisitor terhadap pengeluaran α-humulene 

dan zerumbon secara in vitro masih belum disiasat. Kesan dari gabungan auksin-auksin 

dan auksin-sitokinin menyebabkan penurunan yang ketara dalam pertumbuhan akar 

adventitius pada kepekatan IBA dan BAP yang tinggi. Kadar pertumbuhan spesifik 

tertinggi untuk pengeluaran biojisim akar diperoleh pada media yang ditambah dengan 5 

mgL-1 IBA dan 1 mgL-1 NAA dengan berat segar maksimum 6.90 ± 0.08 g dan berat 

kering 2.10 ± 0.01 g. Sementara itu, penghasilan maksimum α-humulen (3759 ± 798 

µg/g)  and zerumbone (3440 ± 168 µg/g) dapat diperhatikan dalam media yang 
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mengandungi 3 mgL-1 BAP dan 1 mgL-1 NAA pada dengan pengkalaan cahaya 16 : 8 jam 

(cahaya : gelap) yang menghasilkan biojisim akar yang banyak (1.90 ± 0.05 g berat 

kering). Kajian elisitasi menunjukkan bahawa pertumbuhan akar dan pengeluaran 

sebatian adalah berkorelasi negatif dan juga diperhatikan bahawa pengeluaran biojisim 

menunjukkan penurunan yang signifikan ketika kepekatan elisitor meningkat. Hasil 

zerumbone dan α-humulene adalah 43 mg / g DW dan 15.8 mg / g DW, masing-masing 

diperoleh pada julat kepekatan elisitor yang rendah iaitu 400 µM hingga 600 µM metil 

jasmonat dan asid salisilik dan mewakili pengeluaran yang lebih baik berbanding dengan  

kawalan. Sebagai kesimpulan, kesan sinergi dari penggunaan kombinasi elisitor untuk 

mendorong metabolit sekunder yang berlebihan dalam kultur tumbuhan dapat menjadi 

jalan praktikal untuk pengeluaran skala yang lebih besar. 

 

 

Kata kunci: Lempoyang; zerumbon; α-humulen; kesan sinergistik; elisitor. 
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1 

 

CHAPTER 1:  INTRODUCTION 

 

1.1 Background study 

 

Many modern drugs have been isolated naturally from plant following the observation 

of their therapeutic efficacies in traditional medicine (Veeresham, 2012). There are many 

native plant families considered as medicinal plants in Malaysia such as Zingiberaceae, 

Amaranthaceae, Orchidaceae, Verbenaceae, Caricaceae, Rutaceae, Lamiaceae, 

Myrtaceae and Clusiaceae. The family of Zingiberaceae are prominent in phytomedicine 

industry as many species in this family had been shown to exhibit medicinal properties 

such as Kaempferia galangal (Umar et al., 2011), Curcuma longa (Labban, 2014), 

Zingiber striolatum (Tian et al., 2020), Zingiber officinale (Archana et al., 2013) and 

Zingiber zerumbet (Jalil et al., 2015).  

 

Zingiber zerumbet Smith is a small perennial medicinal herb plant were known as 

shampoo ginger or called as ‘Lempoyang’ among native Malay. Z. zerumbet consisted of 

zerumbone (37 %) followed by α-humulene (14 %) and camphene (13.8 %) in the 

rhizome extract. These compounds have been associated with antioxidant, antiallergic, 

antihyperglycemic, anti-inflammatory, antimicrobial, antiulcer and anticancer activities. 

Due to its numerous phytomedicinal values, Z. zerumbet rhizome has been extensively 

cultivated and investigated. The plant is cultivated mainly in Asia and sub-tropical region 

(Yob et al., 2011). Nonetheless, Nalawade et al. (2003) reported that the rhizome can 

only be stored for a short period due to fungal disease that caused its deterioration.  

 

Furthermore, Gerth et al. (2007) indicated that infestation, diseases, application of 

pesticides and environmental conditions affect the quality and quantity of the secondary 
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metabolites collected from wild and field grown plants. However, these problems can be 

circumvented by adopting biotechnological approach known as plant tissue culture. 

 

Over the years, research in plant tissue culture helped to produce phytochemical drugs 

such as morphine, codeine, reserpine and L-DOPA. There are many successful industrial 

production of plant metabolites using cell cultures have been reported such as Nicotiana 

tabacum (Zhao et al., 2013), Atropa belladonna (Yang et al., 2011), Panax ginseng (Paek 

et al., 2009) and Boerhaavia diffusa (Jenifer et al., 2012). Many compounds are known 

to accumulate in in vitro plant cell culture systems, and their concentrations are equal to 

or higher than that of the in vivo systems (Imaneh et al., 2011). However, the development 

of targeted compounds by cell suspension culture can be very difficult due to high cell 

water content, persistent foaming in the bioreactor and poor metabolite processing (Baque 

et al., 2011).   

 

Studies by Ahmad et al. (2008) and Abdullah et al. (1998) showed continuous foaming 

in Morinda citrifolia cell suspension cultures using large-scale bioreactor, and this 

resulted in low yield of anthraquinones. The problem was partially avoided by replacing 

the explants with root cultures (Baque et al., 2013). In some cases, the metabolites were 

absence in the cell biomass of root culture, or if present is secreted into the spent liquid 

media as reported by Jalil et al. (2015). Nevertheless, adventitious roots culture could 

serve as natural “bioactive substance factories” that grow vigorously in formulated 

medium, and possesses great potential to produce plant derived compounds.  

 

The cultivation of adventitious root is a complex process influenced by many genetic 

and enviromental factors (Sorin et al., 2005). Bienaime et al. (2015) stated that plant 

growth regulator (PGR) are essential in biomass growth and secondary metabolites 
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production. There are many examples of medicinally important species that using plant 

growth hormones to induce the adventitious roots for efficient development of secondary 

metabolites such as Morinda citrifolia (Baque et al., 2013) and Artemisia vulgaris 

(Sujatha & Kumari, 2012). Normally, high auxin to cytokinin ratio favours root formation 

whereas high cytokinin to auxin ratio favours shoot formation (George et al., 2008). 

However, applying combination of PGR with synergistic effects on the production of root 

biomass and secondary metabolites is scarcely explored. 

 

So far, in vitro production of α-humulene, and simultaneous activity of elicitors on the 

development of secondary metabolites in root cultures of Z. zerumbet is yet to be reported. 

Thus, the aim of this study is to enhance growth of adventitious root cultures of Z. 

zerumbet Smith, and its production of α-humulene and zerumbone through synergistic 

effects of plant growth regulators and elicitors. 
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1.2 OBJECTIVES 

 

a) To enhance the growth of adventitious root cultures of  Zingiber zerumbet Smith 

through combined effects of plant growth regulators; 

 

b) To optimize the production of α-humulene and zerumbone in adventitious root 

cultures of  Z. zerumbet Smith by synergistic application of elicitors; 

 
 

c) To improve adventitious root cultures, α-humulene and zerumbone production 

using balloon-type bubble column bioreactor (BTBCB).
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CHAPTER 2:  LITERATURE REVIEW 

 

2.1 Plant description  

 

2.1.1 Zingiber zerumbet Smith 

 

Genus Zingiber is a large herbaceous genus comprised of 141 species that belongs to 

the family Zingiberaceae. Zingiber zerumbet Smith is known to be among popular species 

in this genus and usually used as traditional remedies and food additive either as a spice 

or flavour in Asia, India, China, and Saudi Arabia. Z. zerumbet is a tuberous herb plant 

that scattered naturally in damp or hill slopes like thickets. It is called by many name 

depends on the region, for instance, “Lempoyang” (Malaysia and Indonesia), “Awapuhi” 

(Hawai),”Ghatian and Yaimu” (India) and also known as shampoo ginger due to the 

presence of mucilaginous substance in the infloresence used by the hawaiians as natural 

hair shampoo and conditioner.  

 

Approximately 1-2 meter tall, this plant can be categorized by the presence of pulvinus 

between the base of the petiole and ligule. The leaves are thin with 25-35 cm long and 

leaflets are arranged alternately along an arching pseudostem as shown in Figure 2.1. The 

most crucial part of this plant is the rhizome that is perennial, aromatic, thick and scaly 

which had been used traditionally as herbal medicine, food flavoring and appetizer. This 

plant has been established and widely distributed mainly in Asia and sub-tropical region 

(Yob et. al., 2011).  
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Figure 2.1: Zingiber zerumbet plants, A: whole plant of Z. zerumbet, B: inflorescence, 
C: rhizomes, D: pale yellow rhizome discoloration. (Jalil, 2018) 
 

2.1.2 The importance of Z. zerumbet Smith 

 

The rhizome of Z. zerumbet had become the center of investigation of all parts due to 

its medicinal properties. Since ancient times, the rhizome had been used to reduce 

inflammation, headache, toothache, stomach pain, digestive problems, diarrhea, and 

asthma (Yob et. al., 2011). Over the years, scientists have revealed many pharmacological 

potentials of the rhizome such as anti-inflammatory (Akhtar et al., 2019), anticancer, 

antibacterial, antipyretic (Girisa et al., 2019), antioxidant and antimicrobial (Othman et. 

al., 2019).  

 

Interestingly, the ethanol extract of the rhizome  play important role as immune 

suppressive agent that could significantly inhibit the migration of neutrophils, phagocytic 
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activity and production of reactive oxygen species in Winstar rats (Ghazalee et al., 2019). 

Since 1944, there are many reports on the phytochemical content of Z. zerumbet rhizome 

started with the identification of humulene (Varier, 1944, Dash et al., 2020), 

monoterpenes (Balakrishnan et. al., 1956, Dash et al., 2020) and zerumbone (Dev, 1960, 

Utaka et al., 2020). Girisa et al. (2019) also stated that many phytochemicals possess 

valuable medicinal properties towards human diseases can be found from natural 

resources. Such compounds can be retrieved from conventional method and plant tissue 

culture method. 

 

2.1.3 Tissue culture of Zingiber zerumbet 

 

Plant tissue culture in Zingiberaceae spp. commenced in 1970 and later been done for 

micropropagation especially for commercial and endangered species  such as Alpinia 

galangal (Borthakur et. al.,1998), Etlingera elatior (Faridah et. al., 2011), Kaempferia 

galangal (Umar et al., 2011), Alpinia officinarum (Kayalvizhi et. al.,2013), Curcuma 

aeruginosa (Theanphong et. al., 2010), Boesenbergia rotunda (Yusuf et. al., 2011), 

Zingiber montanum (Hamirah et. al., 2010), Costus speciosus (Punyarani & Sharma, 

2010), Curcuma zedoaria and Zingiber zerumbet (Stanly & Kang, 2007, Jalil et. al., 

2015). Study had shown that plant cell technology can be a powerful tool in producing 

the potential bioactive compound such as Zingiberaceae cells suspension (Yusuf et al., 

2013; Jalil et al., 2015) and roots culture (Raju et al., 2015). Recently, chemical 

constituents from the flowers, leaves and stems of Zingiber striolatum Diels had been 

extracted and their cytotoxic activities had been discovered (Tian et al., 2020). 

 

In vitro propagation and regeneration of embryogenic cell suspension of Z. zerumbet 

started with the study done by (Idris et al. 2009) and Faridah et al. (2011) where the 
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rhizome buds were used as explants. Further study were done by Jalil et al., 2015 on the 

suspension culture and adventitious root culture ( Jalil, 2018) of Z. zerumbet that can be 

exploited to produce the important compound known as zerumbone. 

 

2.2 Plant tissue culture 

 

Tissue culture is an in vitro method used to proliferate cells. Tissue cultures involve 

plant and animal cells and produce clones in which all genotypic cells produce the same 

genotype as the explants used. However, genotypic changes can be observed if mutations 

occur throughout the cultivation process. Plant Tissue Culture started since 1756 where 

the formation of callus on wounded plant discovered by Henri-Louis Duhumel du 

Monceau. A German-scientist, Gottlieb Heberlandt later found totipotency in plant during 

his work in isolating the mesophyll cells of Lamium. Plant Tissue Culture can be defined 

as a collection of method to grow plant tissues, cells and organs under aseptic condition 

on a media of known composition. The commercial use of tissue culture cloning was done 

on orchids in the 1920s. Subsequently, the tissue culture was rapidly expanding in the 

field of research after the introduction of the MS (Murashige & Skoog) media in 1962.  

 

There are many advantages of using tissue culture such as multiplying and cloning 

from single tree to thousands of trees in a single year. It can be seen that this technique is 

capable of generating new cultivars widely and rapidly without affecting the existing 

plant. Therefore, plants threatened with extinction can be safely cloned. This plant tissue 

culture technique can also produce virus-free plants or other plant diseases because the 

explants used are of new meristem tissue that had been sterilized. Later to this day, plant 

tissue culture had been used for rapid mass propagation (Dash et al., 2020) conservation 

of endangered plant species , production of disease-free plants (Popova et. al., 2020) and 
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duplication of exact plant species (Arigundam et al., 2020) and compound extraction 

(Tian et al., 2020). There are many types of tissue culture that have been discovered and 

commonly used. Among the types are meristematic culture, cell suspension culture, 

protoplast culture and adventitious root culture. 

 

2.2.1 Meristem culture  

 

In the culture of the meristem, the apex meristem of the shoot can be cultured to 

produce disease-free explants. This is because on the meristem side were sterilized. 

However, techniques using meristem cultures are better suited for herb plants than for 

woody plants. Generally, the buds contain an active meristem located on the leaf surface 

that is more capable of growing into shoots. This technique can easily applied for mass 

propagation and the most recent work were done on five different strawberry cultivars 

(Naing et al., 2019). 

 

There are two types of meristematic bud cultures that can be used in propagation which 

are stem or single node and axilliary bud culture. For stem bud culture, the bud that 

attached to the stem were sterilized and cultured. These buds are cultured on nutrient 

media with appropriate antibiotics supplemented with low dose of cytokinins to produce 

shoots. Meanwhile, in axillary bud culture method, buds found at the axil of the leaf were 

sterilized. The buds were inoculated in media with high concentration of cytokinin to 

stops the apical dominance resulting in shoot growth. However, this is influenced by the 

types of the plant and the stage of the explants used. Generally, young explants need less 

cytokinin as compared to mature explants in shoots propagation. Shoot regeneration from 

axillary buds of field-grown papaya (Carica papaya L.) were done on  MS medium 
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containing 2.0 mgL-1 BAP and 0.1 mgL-1 NAA later produced highest number of shoots 

(70.0) per explant (Veena et al., 2015). 

 

2.2.2 Protoplast culture 

 

Protoplasts could be obtained by enzymatic digestion from plant tissues or cultured 

cells to eliminate the cell walls. The effectiveness of protoplast isolation depends in 

particular on the tissue conditions and the mixture of the enzymes to be used. Usually two 

or more protoplasts were combined to form a complete new organism in which it is able 

to survive and grow into mature new plants. The main purpose of protoplasmic culture is 

to produce hybrid plants. The advantage of using this culture technique is the production 

of plants with the desired characteristics of different plant species and to enable plants to 

become sexually hybrid. There are many studies on protoplast culture such as protoplast 

isolation for gene expression and protein interaction in pineapple (Ananas comosus L.) 

experiments recently done by Priyadarshini et al. (2018). 

 

2.2.3 Cell suspension culture 

 

When organogenesis happens by the development of a callus or a suspension in cell 

culture, it is called indirect organogenesis. Callus is a cell that has not been organized into 

a more specific cell. Callus development can be formed for subsequent organogenesis 

from several explants (leaves, roots, cotyledons, stems, floral petals). Due to the nature 

of the callus, the growth usually depends on several factors including the type of explants, 

the type of hormone applied, the concentration of the hormone and the environmental 

conditions such as humidity, temperature and etc. Callus culture are often used in 
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producing embryogenic cultures in plants such as Phyllostachys heterocycla var. 

pubescens (Moso bamboo) done by Yuan et al., 2013. 

 

Embryonic culture is a technique that uses two types of embryos: mature embryos and 

immature embryos. In some plant seeds, the maturation of the seeds may be due to 

chemical inhibitors or even to the structure of the embryo itself, for example the layers 

that protect the embryo. This problem can be avoided by using embryos as an explant and 

placed on nutrient media containing growth hormones to help the embryo grow into seed. 

This type of culture had been manipulated over the years for various species due to several 

biological and scientific advantages i.e. the development of commercially valuable plants, 

as well as the study of physiological and biochemical changes linked to the nature of a 

plant. To date, studies had been done to explore the process of somatic embryogenic 

induction in plant species such as carrot, rice (Garcia et al., 2019) alfalfa (Sangra et al., 

2019) and corn (Salvo et al., 2014).  

 

Cell suspension cultures is a type of culture in which single cells or small aggregates 

of cells enlarge by transferring the callus / tissue to the liquid media and placing it on a 

'gravitory shaker'. This is to allow for ventilation and diffusion of cells thus multiplying 

the cell. To obtain a perfect cell suspension, a friable callus is most typically inoculated 

into an agitated liquid medium in which it breaks up and disperses. Only single and small 

cells were maintained after eliminating the large callus and transferred to fresh medium. 

The suspension can then be propagated from an aliquot to fresh medium by regular 

subculture. This method will provide several valuable knowledge on cell biology, 

biochemistry, biochemical activities at the individual cell level and small cell aggregates.  
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Suspension culture established from important medicinal plants can be analysed for 

the development of secondary metabolites such as alkaloids, and significant industrial 

effort were done in exploiting and expanding this field. Yue et al. (2014) had compiled 

the usage of medicinal plant cell suspension cultures, the pharmaceutical applications and 

high-yielding strategies for the desired secondary metabolites. However, adventitious root 

cultures are more stable in the production of highly active compounds with mass 

propagation as compared to cell culture (Sivakumar, 2005; Jalil, 2018). 

 

2.2.4 Adventitious root culture (AdRC) 

 

There are two types of root culture that are commonly used in plant tissue culture 

which are hairy root culture and adventitious root cultures (AdRC). Hairy roots are 

developed from original roots while adventitious roots are those that developed from 

other plant organs. Adventitious roots do not require genetic modification compared to 

hairy root cultures and extraction is relatively reliable because no opine-like substrates 

are generated. Adventitious root cultivation techniques can also be conveniently utilized 

instead of hairy root methods since they are easier and healthier (Gaosheng and Jingming, 

2012). AdRC can be generated via direct pathway (from cambium cell) or indirectly (from 

callus tissue).  

 

AdRC are the best plant parts that suited for as natural “bioactive substance factories” 

and conversation of plant genetic resources since it can grow vigorously in 

phytohormone-free media, ease of excision and the ability to undergo morphogenesis 

(Popova et al., 2020). Besides, Sivakumar et al. (2005), reported that adventitious root 

cultures can give a stable secondary metabolite production and grow well in 

physicochemical conditions as compared to cell suspension culture. Many researches had 
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been done on in-vitro adventitious root as it can serve as an alternative source to various 

phytochemicals that contribute to pharmaceutical, cosmetic and natural health product 

industries. For instances, the production of anthraquinones and phenolic compounds in 

adventitious root culture of Morinda coreia (Kannan et al., 2020), accretion of phenolics 

and flavonoids content in AdRC of Eurycoma longifolia (Cui et al., 2020), hypericin 

biosynthesis in AdRC of Hypericum perforatum (Tavakoli et al., 2020), glycosides 

production in AdRC of Stevia rebaudiana (Ahmad et al., 2020) and ginsenosides 

synthesis in AdRC of Panax ginseng (Hao et al., 2020). Adventitious roots are induced 

by plant growth regulators (PGRs) that responded to mechanical damage in explant 

during tissue culture process.  

 

Studies on plant growth regulators (PGRs) as an inducer for adventitious root cultures 

in many species has been reported including Rumex crispus (Mahdieh et al., 2015), 

Plumbago rosea (Silja & Satheeshkumar, 2015), Passiflora pohlii (Simão et al., 2016), 

Couroupita guianensis (Manokari & Shekhawat, 2016), Ophiorrhiza mungos L. (Deepthi 

& Satheeshkumar, 2017), Stevia rebaudiana (Radic et al., 2016, Ahmad et al., 2020) and 

Morinda coreia (Kannan et al., 2020). Recently, shoot buds micropropagation of Zingiber 

zerumbet had been investigated by Gandhi & Saravanan (2019) meanwhile metabolite 

profiling, antioxidant activities and chromatographic determination of bioactive 

molecules in in-vitro cultures had been reported by Chavan et al. (2018). 

 

2.3 Plant growth regulators (PGRs) 

 

Plant growth regulators (PGRs) can be defined as any substance or mixtures of 

substances that produced naturally by plants used to regulating their own growth. They 

can be referred as phytohormones or plant hormones (Patel et al., 2018). Ethylene was 
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the first plant growth regulator to be found in United States and used to enhance flowering 

in pineapple during 1930 (Bartholomew, 2014). These PGRs can be categorized as plant 

growth promoters such as auxins, gibberellins, cytokinins that important in controlling or 

modifying plant growth processes, formation of leaves and flowers, elongation of stems, 

development and ripening of fruits and plant growth inhibitors such as ethylene and 

abscisic acid that responsible in dormancy, abscission and senescence in plants 

(Rademacher, 2015).  Arabidopsis thaliana and Gossypium hirsutum were used by Zhou 

et al. (2016) in order to discover the signalling mechanisms between the PGR and the 

development of plant cells. 

 

2.3.1 Gibberellins 

 

Gibberellins were developed in 19th century during the studies on rice disease that 

cause excessive elongation of stems and leaves due to fungal infection. This disease then 

led to the secretion of fungus Gibberella fujikuroi as the gibberellins was derived as the 

active component. All known gibberellins are diterpenoid acids which are synthesized in 

plastids through the terpenoid pathway and modified in the endoplasmic reticulum and 

cytosol before they form their biologically active form. Gibberellins (GAs) regulate 

several different aspects of plant growth and growth throughout the plant's life cycle i.e 

fostering cell division and elongation, seed germination, stem and hypocotyl elongation, 

root growth and flowering induction (Sun, 2011, Vera-Sirera et al., 2016). 

 

2.3.2 Cytokinins 

 

Gottlieb Haberlandt was first to discovered that a compound (cytokinin) found in the 

phloem was capable of inducing cell division in 1913 (Kieber, 2002). Cytokinins are 
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Compounds with an adenine-like structure that facilitate cell division and have similar 

functions to kinetin. Kinetin was the first cytokinin discovered which isolated from 

herring sperm (Miller et al., 1955) and this compound was named kinetin because of its 

ability to promote cytokinesis.  

 

In 1961 Miller isolated the first naturally occurring cytokinin from corn called zeatin 

(Amasino, 2005). Since then, many cytokinins were detected in almost all higher plants 

as well as in mosses, mushrooms, bacteria, and also in tRNA of many prokaryotes and 

eukaryotes. The concentrations of cytokinin are highest in meristematic regions and areas 

with continuous growth potential such as roots, young leaves, fruit production, and seeds 

(Osugi & Sakakibara, 2015; Zürcher & Müller, 2016). Cytokinin is synthesized through 

the biochemical modification of adenine in the root and translocated via xylem to shoot 

(Sasaki et al., 2014).  

 

6-Benzylaminopurine, benzyl adenine, BAP or BA is a first-generation 

synthetic cytokinin usually used as a supplement in plant growth media such as Murashige 

and Skoog medium. Despite activating cell divisions, cytokinin can stimulates 

morphogenesis in tissue culture (shoot initiation/bud formation), the growth of lateral 

buds-release of apical dominance, improves the opening of the stomata in certain species 

and facilitates the transfer of etioplasts to chloroplasts by stimulation of chlorophyll 

synthesis (Kieber & Schaller, 2014). 

 

2.3.3 Ethylene 

 

Since ancient times, farmers would lighting kerosene lamps or burn things to ripen 

their crops. Frank E. Denny discovered in 1924 that it was ethylene molecule released by 
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kerosene lamps that contributed to the ripening. However, Crocker suggested in 1935 that 

ethylene was the plant hormone responsible for both fruit maturation and vegetative tissue 

senescence (Chamovitz, 2020). Ethylene is known as multifunction plant hormone that 

controls both cell development and cell death depending on its concentration, the plant 

species and timing of application that later promote or inhibit growth and senescence 

process. 

 

 For instance, application of ethephon, a compound releasing ethylene facilitated the 

evolution of ethylene and enhanced region of the mustard leaf at a lower dose while 

inhibiting it at a higher dose (Khan et al., 2008; Iqbal et al., 2017). Ethylene also controls 

the growth of leaves, flowers and fruits that encourage, supress or cause cell death, 

depending on the optimal or semi-optimal amounts of ethylene (Pierik et al., 2006; Iqbal 

et al., 2017).  

 

The role of ethylene in the transition from vegetative to reproductive growth in 

Arabidopsis was identified through the comparison of ethylene-related mutants with the 

wild-type (WT) (Ogawara et al., 2003). Exogenous application of ethylene or its 

biosynthetic analogue can accelerates the senescence of flowers in China. On the other 

hand, ethylene biosynthesis inhibitors such as amino oxyacetic acid can delayed the petal 

fall of flowers during senescence (Trivellini et al., 2011; Iqbal et al., 2017). 

 

2.3.4 Abscisic acid  

 

Abscisic acid (ABA) is an isoprenoid phytohormone discovered at least 50 years ago 

that controls various biological processes ranging from stomatal regulation to protein 

concentration and provides adaptation to different environmental stress conditions 
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including drought, soil salinity, cold tolerance, freezing tolerance, heat stress and heavy 

metal ion tolerance (Ruth Finkelstein, 2013). ABA is produced via plastidal 2-C-methyl-

D-erythritol-4-phosphate (MEP) pathway formed by the mevalonic acid-derived 

precursor farnesyl diphosphate (FDP). After the cleavage of C40 carotenoids in MEP, the 

C15 backbone of ABA is produced.  

 

The first precursor to ABA is zeaxanthin which resulted from the process of enzyme-

catalyzed epoxidations and isomerizations. The second precursor, xanthoxin is produced 

by the dioxygenation reaction cleavage of the C40 carotenoid were further oxidized 

through abscisic aldehyde to ABA (Sah et al., 2016). ABA signalling results in significant 

improvements in gene expression including changes in MrNA, transcription regulation 

and stabilization according to Cutler et al. (2010). ABA plays multiple roles in plants and 

also needed under stress-free conditions for plant growth and development. ABA 

supported root meristem maintenance as reported by Zhang et al. (2010) that ABA can 

promote the maintenance of stem cell by promoting of QC quiescence and the suppression 

of stem cell differentiation.  

 

Several research have suggested that mutants with defects in ABA biosynthesis or 

signaling show altered or delayed senescence in Arabidopsis i.e. an identified a receptor 

kinase (RPK1) that mediates age-and ABA-induced senescence in old leaves (Lee et al., 

2011). 

 

2.3.5 Auxins 

 

Plant synthesizing hormone such as auxin usually found in shoot and root tips that 

responsible in promoting cell division, stem and root growth in response to gravity and 
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light. Many studies had been done extensively for this plant group hormone due to its 

biological functions (Zhao, 2010). In shoot elongation, auxin influence the existing 

gibberellins to promote the cell growth and increase the spacing between the nodes and 

branch.  

 

For seed germination, the shoot grows depends on the abundance of auxin in that area 

of cell and their interactions within the plants whether to grow into the soil or laterally, 

towards the light. Auxins also can be applied to cut stem in order to initiate roots. 

Meanwhile, auxin in the flower helps to promote the development of the fruit by causing 

maturity of the ovary wall. In addition, the efficacy of auxins may be affected by cuttings 

physiological status as regards carbohydrates and/or other nutrients (Costa et al., 2017). 

 

Charles Darwin and his son, Francis were the first to discover auxin by performing 

experiments in coleoptiles that exposed the sheaths to the light in 1881 (Hohm et al., 

2013). This experiments contributed to the discovery of indole-3-acetic acid (IAA) as the 

major naturally occurring auxin in plants. Several compounds with notable auxin activity 

were synthesized i.e. 2, 4-Dichlorophenoxyacetic acid (2,4-D), Naphthaleneacetic acid 

(NAA), Indole-3-butyric acid (IBA), Dicamba and Picloram (Enders et al., 2015) 

 

The most popular synthetic auxins are NAA and IBA that usually used to induce root 

growth. The root formation, however, mainly results from a balance between auxins and 

other hormones such as cytokinins and gibberellins. This balance not only influences root 

initiation but also root elongation, axillary shoot growth, and ultimately, the future shoot-

to-root ratio of the new rooted plant and secondary metabolites secretion. Lately, there 

are many studies on various medicinal plant had been done where adventitious roots have 

been developed by optimizing the plant growth regulators as shown in Table 2.1. 
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Table 2.1: List of medicinal plant with targeted secondary metabolites wherein 
adventitious roots have been developed by using PGRs. 
 

No. Plant Species Secondary Metabolites Optimized Conditions 
(Media & PGRs) 

References 

1 Aloe vera Aloe-emodin & 
Chrysophanol 

B5 +0.5 mgL-1 NAA+ 
0.2 mgL-1 BA 

Lee et al. 
2011; 2013 

2 Boesenbergia 
rotunda 

Pinostrobin MS+0.5 mgL-1 NAA Azhar et al. 
2018; Yusuf et 
al. 2018 

3 Camellia sinensis Catechin & Caffeine ½ MS Kim et al. 2013 

4 Chlorophytum 
borivilianum 

Stigmasterol & 
Hecogenin 

MS+3 mgL-1 IBA Bathoju & Giri 
2012 

5 Costus igneus Resinoid MS+0.5 mgL-1 IBA Nagarajan et al. 
2011 

6 Couroupita 
guianensis 

Eugenol & Farnesol ½ MS+2 mgL-1 IBA Manokari & 
Shekhawat 2016 

7 Fagonia indica Apigenin, Gallic acid, 
Rutin 

MS+1 mgL-1 NAA Khan et al. 2017 

8 Gynura 
procumbens 

Kaempfrerol & 
Myricetin 

MS+3 mgL-1 NAA+1 
mgL-1 IBA 

Faizah et al. 
2018 

9 Hypericum 
perforatum 

Hypericin, Quercetin, 
Hyperoside 

MS+1 mgL-1 IBA Cui et al. 2010 

10 Labisia pumila Flavonoids & Phenolics MS+5 mgL-1 IBA Hasan et al. 
2014 

11 Prunella vulgaris Prunellin MS+0.5 mgL-1 NAA Fazal et al. 2014 

12 Luffa acutangula Luffin MS+1 mgL-1 IBA+1 
mgL-1 NAA 

Umamaheswari 
et al. 2014 

13 Perovskia 
abrotanoides 

Tanshinone MS+2 mgL-1 NAA Zaker et al. 2015 

14 Podophyllum 
hexandrum 

Podophyllotoxin MS+1.5 mgL-1 IBA Rajesh et al. 
2012 

15 Polygonum 
multiforum 

Antrhaquinones, 
Phenolic, Flavonoid 

MS+9.4 µM IBA Ho et al.  2018 

16 Panax 
quinquefolium 

Ginsenoside MS+3 mgL-1 IBA+1 
mgL-1 NAA 

Wang et al. 2016 

17 Psammosilene 
tunicoides 

Triterpenoid Saponin B5+0.05 mgL-1 
IBA+0.1 mgL-1 NAA 

Zhang et al. 
2017 

18 Rumex crispus Antrhaquinones, 
Flavonoids 

MS+5 µM NAA Mahdieh et al. 
2015 

19 Talinum 
paniculatum 

Saponin MS+2 mgL-1 IBA Solim et al. 2017 

20 Withania somnifora Whitanolide ½ MS+ 0.5 mgL-1 
IBA+0.25 mgL-1 IAA 

Thilip et al. 2015 

 

 

2.4 Plant secondary metabolites 

 

Natural products are substances derived from various organisms and microorganisms 

including plants, animals, bacteria and fungi. Such products that produced were identified 

as primary metabolites and secondary metabolites. Primary metabolites are the essential 
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compounds that used for growth such as carbohydrate, lipids, amino acids, enzymes, 

nucleic acid, ascorbic acid and protein while secondary metabolites are the compounds 

produced due to some enzymatic process of primary metabolites and some of them 

derived from the defences mechanism such as of alkaloids, phenolics, sterol, steroids, 

essential oil, tannin, terpenoid, flavonoids and many others (Hussein and El-Anssary, 

2019). There have been huge interest in the use of plants in medication and plant-based 

drugs since the awareness of the health hazards and toxicity of the synthetic drugs 

(Ahmad et al., 2015). 

 

These secondary metabolites production could give a great contribution to the 

economic importance of plants due to its phytomedicine potential even though the 

accumulation usually lower than the primary compounds. Secondary metabolites are of 

low molecular weight and not essential for normal plant growth and development but it 

is served as a protector for the plant to survive in its environment (Tiwari & Rana, 2015). 

There are four main classes that can be classified for this plant metabolites which are 

phenolic compounds, terpenoids, alkaloids and sulphur-containing compounds. 

 

2.4.1 Terpenes 

 

Terpenes is the main group of this metabolites which consist of five units of carbon 

isoprene and are attached in thousands of ways with several isoprene units. Terpenes are 

basic hydrocarbons, whereas terpenoids are the altered terpenes that has distinct methyl 

groups and functional groups that shift or detach at different positions. There are three 

main categories for terpenoids depending on its carbon units which are monoterpenes, 

sesquiterpenes, diterpenes and triterpenes as shown in Figure 2.2. These compounds and 
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their derivatives are used as medicinal products i.e.  artemisinin from Artemisia 

annua that used to treat malaria and other associated compounds (Badshah et al., 2018).  

 

A lot of flavourings and good fragrances are made of terpenes because of the pleasant 

scent. On the other hand, terpenoids with their structural variations are biologically active 

and are used widely to treat many illnesses and play a major role in food, drugs, cosmetics, 

hormones and vitamins. Besides, some terpenoids have suppressed certain human cancer 

cells and are used as prescription drugs in cancer treatments like taxol and its derivatives 

from Taxus baccata (Malik et al., 2011). 

 

 

Figure 2.2: Classification of terpenes. Source: Gao et al. (2012) 

 

Monoterpenes constructed from 10 carbon atoms conjugated with two isoprene units 

and their molecular formula is C10H16. This compound can be categorized into 

monocyclic, acyclic and bicyclic based on its structure and can be extract from essential 

and fixed oils. These compounds exhibit strong smell and taste that had been used by 

many cosmetic companies. In fact, mixture of various monoterpenes that found in oils 
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were used as fragrances in making perfumes. Monoterpenes are the major components in 

the essential oil of Perilla frutescens var. crispa with diverse biological effects including 

antifungal, neuroprotective, anticancer, angiogenesis inhibitory, anti-inflammatory, and 

antioxidant activities (Nam et. al., 2017).  

 

Sesquiterpenes are the secondary metabolite class composed of three units of isoprene 

(C15H24) and can be found in cyclic, bicyclic and tricyclic and also linear forms. Many of 

the latex containing sesquiterpene in plants are potent antimicrobial and anti-insecticide 

agents (Chadwick et al., 2013). Artemisia annua shoots and roots possess a sesquiterpene 

known as Artemisinin that has a great potential in treating malaria and other chronic 

diseases (Weathers et. al., 2011). Cyclic sesquiterpene like zerumbone exerts antimitotic 

activity in human cancer cell, Hela cells line (Ashraf et al., 2019). 

 

Belong to a diverse group of chemical components, diterpenoids presents in different 

natural sources and possess four isoprene units with molecular formula of C20H32. 

Compounds of this class mostly used as anti-inflammatory, antimicrobial, anticancer, and 

antifungal and cardiovascular activity, such as eleganolone, grayanotoxin, marrubenol, 

forskolin, and 14-deoxyandrographolide (Zhang et al., 2017). 

 

Triterpenes contains of 30 carbon atoms consist of 6 isoprene units and considered as 

a major class of secondary metabolites.  It has several methyl groups which can be 

oxidised to carboxylic acids aldehydes and alcohols that make it more stable and 

biologically distinct. Xuedanencins is a triterpenes that can be found in Tubers of 

Hemsleya penxianensis possess cytotoxic activity against the Hela human cancer cell line 

(Li et. al., 2017). 
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2.4.2 Phenols 

 

Being the main class of secondary metabolites in plants, this organic compounds are 

distinguished by a carbon atom with a hydroxyl (―OH) group as a part of its ring. Phenol 

also known as monohydroxybenzene (C6H5OH) as well as benzenol, or carbolic acid. It 

can be divided into phenolic acids and polyphenols when combined with mono‐ and 

polysaccharides, linked to one or more phenolic group, or can occur as derivatives, such 

as ester or methyl esters. 

 

Most phenols present in nature such as tyrosine as amino acid found in proteins 

(Parthasarathy et al., 2018), epinephrine as stimulant hormone produced in adrenal 

medulla) and urushiol as compounds secreted by poison ivy to prevent animals from 

eating the leaves( Lott et al., 2019). Some of complex phenols that found in essential oils 

of plants are being used in food flavourings i.e vanillin that isolated from vanilla beans 

(Zhang et al., 2014) and salicylate (minty taste) isolated from wintergreen (Michel et al., 

2019). Among the different groups of phenolic compounds, the primary dietary phenolic 

compounds are phenolic acids, flavonoids and tannins.  

 

Many studies have shown a strong and significant connection between the phenolic 

compound content and the fruit and vegetable antioxidant potential (Reddy et al., 2010). 

The antioxidant feature, found in plants, plays an important role in reducing lipid 

degradation in (plant and animal) tissues as it not only maintains the consistency of the 

food taste when integrated in the human diet, it also decreases the risk of developing many 

diseases. Research have shown that a diet high in fruit and vegetables helps to slow the 

ageing cycle and that the risk of inflammation and oxidative stress associated with chronic 
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diseases  i.e. coronary conditions, arteriosclerosis, obesity, diabetes, cataracts, cognitive 

control disorders, and neurological diseases (Tanaka et al., 2012; Pojer et al., 2013).  

 

2.4.3 Alkaloids 

 

Alkaloid is a nitrogen-containing organic bases family that exists naturally. Alkaloids 

have significant and complex biochemical effects on living organisms such as nicotine, 

morphine, strychnine, ephedrine, and quinine. Alkaloids are mainly present in plants, and 

abundant in some flowering plant families. In general, there are only a few classes of 

alkaloids in a given genus, but both ergot fungus (Claviceps sp.) and opium poppy 

(Papaver somniferum) that produce more than 50 different varieties. The Amaryllidaceae 

(amaryllis), Ranunculaceae (buttercups) and Solanaceae (nightshades) are other popular 

families that contain alkaloids. 

 

The alkaloids roles in the lifecycle of plants were recently discovered and research 

indicates that they can represent different biological functions. In certain plants, alkaloid 

concentration rises just before seed forming and then falls off when the seed is mature, 

showing that alkaloids may play a role in this process (Schramm et al., 2019). Many 

alkaloids in their pure form are colourless, non-volatile, crystalline solids and appear to 

have a bitter flavour. Morphine is the potent active constituent of the Principium 

somniferum and was the first alkaloid to be extracted (Krishnamurti & Rao, 2016). 

 

Alkaloids possess many medicinal properties such as morphine which is powerful drug 

used for the relief of pain despite of the addictive effects, Quinidine obtained from plants 

of the genus Cinchona were used to treat arrhythmias, ergonovine (ergot alkaloids) is used 

to reduce uterine hemorrhage after childbirth and ephedrine is used to relieve the 
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discomfort of common colds, sinusitis, hay fever, and bronchial asthma (Dash et al., 

2020). Many alkaloids have local anaesthetic properties although they are rarely used for 

this purpose clinically. Cocaine (from Erythroxylon coca) is a very potent local anesthetic 

(Tsuchiya, 2017), quinine (from Cinchona) is a powerful antimalarial agent that was 

formerly the drug of choice for treating that disease (Achan et al., 2011), curare (from 

Chondrodendron tomentosum) is used as a muscle relaxant in surgery (Raghavendra, 

2002) meanwhile vincristine and vinblastine (from Vinca rosea) are widely used as 

chemotherapeutic agents in the treatment of many types of cancer (Lu et al., 2012).  

 

However, some alkaloids are illicit drugs and poisons i.e. nicotine obtained from the 

tobacco plant (Nicotiana tabacum) is the main addictive ingredient of the tobacco smoked 

in cigarettes, cigars, and pipes, hallucinogenic drugs mescaline (from Anhalonium spp.) 

and psilocybin (from Psilocybe mexicana) and synthetic derivatives of the alkaloids 

morphine and lysergic acid (from Claviceps purpurea) produce heroin.  

 

2.4.4 Sulphur containing compound 

 

Organosulfur compounds are chemical compounds comprising sulphur.  They are also 

correlated with foul-smelling contaminants, and many of the sweet substances are 

identified as organo-sulphur derivatives. Nevertheless, not all organo-sulphur is life-

threatening. Gliotoxin is a sulphur-containing mycotoxin produced by several species of 

fungi under investigation as an antiviral agent (Smith & Calvo, 2014). Compounds such 

as allicin and ajoene are responsible for the scent of garlic, and lenthionine corresponds 

to the flavour of shiitake mushrooms.  
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  Many of these natural products also have important medicinal properties such as 

preventing platelet aggregation or fighting cancer. Besides, fossil fuels, iron, gasoline, 

and natural gas from ancient organisms naturally produce compounds of organosulphur, 

the degradation of which is a major focus of oil refineries. In fact, the specific antibiotics, 

penicillin and sulfa, also comprised of sulphur. Although several lives are protected by 

sulphur-containing antibiotics, sulphur mustard can be a lethal chemical warfare weapon 

(Etemad et al., 2019). 

 

2.5 Secondary metabolites in Zingiber zerumbet 

 

Many high-value secondary metabolites with various applications are extracted from 

plants. Some compounds can be obtained from naturally produced plants, but often there 

are geographical and environmental constraints that may hinder industrial development 

and the conventional cultivation of certain plant species is difficult or may take many 

years. Besides, based on the research that had been conducted by Ramakrishna and 

Ravishankar (2011), environmental conditions other than infestation, diseases and 

application of pesticides affects the quality and quantity of the secondary metabolite 

collected from wild and field grown plants. Thus, plant cell and tissue culture methods 

tend to be environmentally sustainable approaches to the development of secondary 

metabolites where natural sources are minimal or where chemical synthesis is not 

feasible.  

 

Plant tissue culture techniques offers mass propagation of plants in aseptic and 

environmental regulated environments and the large-scale development of secondary 

metabolites throughout the year without seasonal restrictions. Besides, the cultivation of 

in vitro adventitious roots had been introduced as an alternative for natural compounds 
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production (Zhang et. al., 2012). Adventitious roots cultures is the perfect tools to be 

adopt in producing large quantity of natural bioactive compounds because of its 

characteristic that are easy-to-grow in phytohormone-free media and possess great 

potential to produce plant derived compounds. By these techniques, secondary 

metabolites are isolated and produced in large quantities, as well as of good quality and 

are stable and produced rapidly in an adapted culture medium (Ahmad et al., 2015). 

 

Moreover, many compounds are known to accumulate in in vitro plant cell culture 

systems, and their concentrations were equal to or higher than that of the in vivo plant 

(Imaneh et. al., 2011).  Adventitious roots have been successfully induced in many plant 

species and cultured for the production of high value secondary metabolites of 

pharmaceutical, nutraceutical and industrial importance such as Panax ginseng. Besides, 

Wilson et al. (2012), reported that plant cell culture can give a stable secondary metabolite 

production and grow well in physicochemical conditions as compared to conventional 

method. 

 

To date, there are few valuable metabolites that had been produced on a large scale 

such as ginsenosides from Panax ginseng (Baque et al., 2012). Eleuthrosides B & E, 

chlorogenic acid phenolic, flavonoid from Eleutherococcus koreanum (Lee et al., 2015), 

sphaeralcic acid (anti‐inflammatory compounds) from Sphaeralcea angustifolia (Pérez‐

Hernández et al., 2019).  

 

Secondary metabolite of Z. zerumbet had been reported to possess biological activities 

such as antimicrobial, anticancer, anti-inflammatory, antinociceptive, antiulcer, 

antoxidant, antihyperglycemic and antiallergic properties. From previous investigations, 

zerumbone has been found as one of the main compound in the rhizome Z. zerumbet 
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(Akhtar et al., 2019). Zerumbone isolated from the rhizome can be used as an 

immunosuppressive agent by down regulated the engulfment of Escherichia coli (Jantan 

et al., 2019) and promotes cytotoxicity in human tumor glioblastoma cells via reactive 

oxygen species generation (Jalili-Nik et al., 2020). This compound also can act as 

antifungal agents by inhibits Candida albicans biofilm formation and hyphal growth 

(Shin et al., 2019).  

 

Zerumbone that predominant compound in this plant is believed to reduce HIV activity 

(Dai et. al., 1997), act as antiangiogenic agent in the treatment of hepatocellular 

carcinoma (Samad et al., 2019) anti-inflamatory agent (Ghazalee et. al., 2019) and is also 

known to prevents cancer cell proliferation (Girisa et. al., 2019). Besides zerumbone, 

Tian et al. (2020) found other 36 compounds in the essential oil of dry Z. zerumbet 

rhizome such as α-humulene (29.4%), humulene oxide I (6.0%), humulene oxide II 

(3.9%), camphene (3.9%), β-caryophyllene (2.5%), camphor (2.4%), caryophyllene oxide 

(2.1%), and 1, 8-cineole (1.6%). As the second highest constituent in the rhizome, α-

humulene could be the next interesting compound to discover. Recent study revealed that 

α-humulene extracted from plant can be used as antibacterial by inhibit the growth of 

Bacteroides fragilis cells and biofilm (Jang et al., 2020). 

 

 2.5.1 Zerumbone 

 

Zerumbone is a sesquiterpene exist in the form of rich milky exudates in the the 

rhizome. Zerumbone can be identified by three double bonds, two conjugated and one 

independent, and a double conjugated carbonyl group inside the 11-membrane ring 

structure or one ring with fifteen carbons and 220 hydrogen (C15H220). This chemical 

structure of zerumbone possess powerful latent reactivity that can generate a library of 
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six natural product-like skeletons by transannulation (Utaka et al., 2020). Several IUPAC 

name were identified for zerumbone which are such as (E,E,E)-2,6,9,9-Tetramethyl-

2,6,10-cycloundecatrein-1-one, 2,6,10-Cycloundecatrein-1-one, 2,6,9,9-tetramethyl-, and 

(E,E,E)-471-05-6. Zerumbone can be categorized as polar and non-polar compound with 

molecular weight of 218.3 gmol-1.  Zerumbone can be melt at 65.3°C and can be isolated 

from fresh rhizomes by hydrodistillation (steam distillation) and recrystallization 

methods (Rahman et al., 2014). Application of zerumbone is believed to treat chronic 

disease such as osteoarthritis, obesity, diabetes, diabetic nephropathy, diabetic 

retinopathy, chronic gastritis, neuropathic pain, atherosclerosis, inflammation and cancer 

(Singh et al., 2019) and could be prophylactic alternative to prevent acute and chronic 

liver injury (Kim et al., 2019). 

 

 

Figure 2.3: Chemical structure of zerumbone. Source: Singh et al. (2019) 

 

2.5.2 α-Humulene 

 

Humulene which also known as α-humulene or α-caryophyllene is a naturally 

occurring monocyclic sesquiterpene (C15H24) which contains an 11-membered ring and 

consists of 3 isoprene units containing three non-conjugated C = C double bonds, two of 
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which are triple substituted and one of which is duplicated. The IUPAC name for this 

compound is 2,6,6,9-Tetramethyl-1,4-8-cycloundecatriene and it is also called as α-

caryophyllene; 3,7,10-Humulatriene. Humulene is an isomer of β-caryophyllene, and it 

is usually present together as a mixture in many aromatic plants. 

 

Figure 2.4: Chemical structure of α-humulene. 

 

2.5.3 Biosynthesis pathway of zerumbone and α-humulene 

 

The biosynthetic pathway of these compounds begins with the cyclization of (2E,6E)-

farnesyl diphosphate. In the pathway, the terpene synthase catalyze the synthesis of α-

humulene. Thereafter, the α-humulene is converted to 8-hydroxy-α-humulene by α-

humulene-10-hydroxylase followed by conversion to zerumbone by zerumbone synthase. 

Since α-humulene is the intermediate to zerumbone, this study is focusing on presence of 

α-humulene and stress that related to the conversion of zerumbone. However, many 

improvement and studies has to be made to boost the production of these compounds by 

using elicitors and precursor as well as biosynthesis of the compound in order to attain 

commercial demand. 
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Figure 2.5: Biosynthesis pathway of zerumbone and α-humulene. Source: Yu et al. 

(2008) 
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 2.6 Elicitation 

 

Plants usually activate their defensive mechanisms via induction of secondary 

metabolites biosynthesis as hypersensitive responses and defensive barriers when react to 

pathogens, biotic and abiotic stresses (Vasconsuelo & Boland, 2007; Jeandet et al., 2016). 

The use of elicitors stimulates plant defense mechanisms which have resulted in 

significant development of bioactive secondary metabolites (Jeandet et al., 2016). For 

instance, four major boswellic acid isomers were found in Boswellia serrata callus 

cultures stimulated by the biotic and abiotic elicitors (Ghorpade et al., 2011). Thus, 

elicitor can be defined as any chemicals that trigger mechanism in living organisms to 

produce secondary metabolites. Elicitors can be categorized into two types which are 

biotic elicitors including polysaccharides, bacteria, viruses, fungi and abiotic elicitors 

such as metal ions and inorganic compounds (chemical elicitors). 

 

Generally, the exogenous supply of signal compounds (chemical elicitors) such as as 

jasmonic acid (JA), methyl jasmonate (MeJA), 2-hydroxyl ethyl jasmonate, salicylic acid 

(SA), acetyl salicylic acid (ASA), trifluro ethyl salicylic acid, ethylene (ET), nitric oxide 

(NO), sodium nitropruside (SNP), ethrel or ethephon (Ethe) could create a stress-like 

environment to a culture system of plants that trigger the secondary metabolites 

production and usually used for elicitation studies. Elicitors not only offer quantitative 

improvement (yield enhancement of existing compound) but also discovered to 

qualitatively synthesize new secondary metabolites by genetic and biochemical activities 

in the cellular background (Murthy et al. 2014; Ramirez-Estrada et al. 2016). 

 

There are many factors that have to be taken care of to ensure the effectiveness of 

elicitor. The main factors are elicitor specificity, culture condition (growth stage, medium 
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composition and light), elicitor concentration and treatment interval. Besides, the 

physiological responses of adventitious root in relation to enzyme activity and stress level 

should also take into consideration More studies are then needed to understand this plant 

elicitor interaction and thereby the elicitation response.  

 

Zhao et al. (2005) reported that this method has been the best approach in enhancing 

significant metabolite production (Jeandet et al., 2016) of various plants so far. For 

instance, elicitation with salicylic acid to multiple shoot cultures of Andrographis 

paniculata increased accumulation of accumulated andrographolide content (Zaheer and 

Giri, 2015) and acetyl salicylic acid increased daidzin content by 2.3-fold (1.44 % DW) 

compared to untreated control (0.62 % DW) roots of Psoralea corylifolia when treated at 

25 µM (Zaheer et al. 2016).   MeJA elicitation at 100 µM increased taxane production in 

n hairy root cultures of Taxus x media var. Hicksii (Sykłowska-Baranek et al. 2015). 

Gadzovska et al. (2013) observed that salicylic acid induced double production both 

hypericin and pseudohypericin in cell suspension cultures but not in callus and shoot 

culture of Hypericum perforatum.  

 

Synergistic effect of elicitors on compounds accumulation was also reported. Previous 

results suggest that combination of elicitors and media enhancement treatment had a 

beneficial impact on the enhancement of secondary metabolite development in vitro (Giri 

and Zaheer, 2016). The mixture of MeJA and L-tyrosine increased the baine yield to 84.62 

mg l-1 6 days after treatment in Papaver bracteatum in cell suspension cultures (Zare et 

al. 2014) and combined treatment of JA and gibberellic acid promoted the development 

of improved secondary antioxidant metabolites in Artemesia absinthium L. cell 

suspension cultures (Ali et al. 2015). Among the combination treatment studies, methyl 

jasmonate (MeJA) and salicylic acid were frequently used. MeJA and SA promoted 
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sanguinarine production in Argemone mexicana cell cultures (Trujillo-Villanueva et al. 

2012) and onfuranocoumarin production up to 4.7 and 5.9-fold shoot cultures of Ruta 

graveolens (Diwan and Malpathak, 2011). Recently, Largia et al. (2015) reported on the 

enhancement of bacoside A in shoot cultures of Bacopa monnieri through synegistic 

effect of MeJA and SA. 

 

Addition of elicitors to plant cell cultures can impede biomass accumulation since 

elicitation shifts primary metabolism to secondary cell metabolism as seen in the root 

suspension culture of Zingiber zerumbet (Jalil, 2018) and Talinum paniculatum (Faizal 

and Sari, 2019). To overcome this issue the optimization on the growth medium, type of 

elicitor, supplementation time of elicitor need to be optimized and applied in the 

bioreactor system to attain commercial demand. 

 

2.6.1 Methyl jasmonate 

 

Methyl jasmonate (MeJA) is a volatile organic compound used for plant defence and 

a series of developmental processes such as seed germination, root production, flowering, 

fruit ripening and senescence. The IUPAC name for MeJA is cyclopentaneaceticacid, 3-

oxo-2-(2-penten-1-yl)-, methyl ester derived from jasmonic acid and the reaction is 

catalyzed by S-adenosyl-L-methionine: jasmonic acid carboxyl methyltransferase.  

 

MeJA is an exclusive molecule with the proclivity to permeate interplant connection 

through airborne defence response signals (Dar et al. 2015). MeJA and its derivatives 

plays important roles as major signalling compounds in producing the secondary 

metabolites through elicitation process (Ramirez-Estrada et al., 2016). However, MeJA 

is reported to interfere the transmembrane auxin flux pathway which cause inhibition to 

the root growth (Yan and Xie, 2015). Nevertheless, when MeJA were supplied at 
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optimized concentration, time and suitable incubation period with culture, minimal effect 

on the root growth and improvement on secondary metabolite could be achieved 

(Ramirez-Estrada et al., 2016). Zhu et al. (2014) reported that adding MeJA increases 

celastrol content in hairy root cultures of Tripterygium wilfordii. Besides, elicitation with 

methyl jasmonate increases the accumulation of selected centellosides and phenolics in 

Centella asiatica (L.) Urban shoot culture (Skrzypczak‐Pietraszek et al., 2019). 

 

 

Figure 2.6: Chemical structure of methyl jasmonate. 

 

2.6.2 Salicyclic acid 

 

Salicyclic acid (SA) consist of carboxyl (−COOH) and hydroxyl (−OH) groups 

directly attached to an aromatic benzene ring, unlike a true β-hydroxy acid, which 

contains an aliphatic carbon atom chain. The IUPAC name for SA is 2-hydroxybenzoic 

acid or orthohydrobenzoic acid. It can be chemically synthesized or biologically found in 

most unicellular and multicellular organisms including plants such as willow bark, sweet 

birch, and wintergreen leaves (Arif, 2015). Several reports have recently given a 

comprehensive overview on SA biosynthesis (Dempsey et al., 2011; Dempsey and 

Klessig, 2017; Klessig et al., 2018). Genetic and biochemical data has demonstrated that 

SA can be derived from two different and compartmentalized pathways: the 
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isochorismate (IC) pathway discovered in the plastids and the phenylalanine ammonia-

lyase (PAL) pathway in the cytosol that starts with the accumulation of chorismic acid 

resulted from shikimic acid biosynthesis (Maruri-López et al., 2019). 

 

In in-vivo plants, salicylic acid is a phenolic phytohormone and is found in plants with 

roles in plant growth and development, photosynthesis, transpiration, ion uptake and 

transport which involved endogenous signaling, mediating in plant defense against 

pathogens. Meanwhile, through in-vitro method, salicylic acid were used as an elicitor 

that is commonly known as a stressed molecular signal in plants to respond to the 

pathogens (Bernal‐Vicente et al., 2020). Scientist also noticed the potential of SA as plant 

growth regulator in the past two decades which contribute to the growth and development 

in plant including seed germination, vegetative growth, flowering, fruit yield, senescence, 

stomatal closure, thermogenesis, photosynthesis, respiration, changes in the alternative 

respiratory pathway, glycolysis and the Krebs cycle (Klessig et al., 2018). This has been 

demonstrated in Solanum tuberosum L. which SA significantly increased the shoot 

number, leaf number, leaf area, root length and number as well as microtuber weight and 

number (Alutbi et al., 2017).  

 

The most recent research conducted by Pasternak et al. (2019) revealed that SA affects 

the biosynthesis of auxin and transport and alter the root meristem in Arabidopsis thaliana 

in which low-concentration SA facilitated adventitious roots whereas high-concentration 

SA cause inhibition in root growth. Besides, SA is also essential in the regulation of plant 

reactions to a number of abiotic stresses (climate change, salinity and drought). For 

example, SA mitigated the detrimental effects of salt stress in Ethiopian mustard, 

Brassica carinata (Husen et al., 2018). SA act as signal molecule that activate genes and 

induces diseases resistance in most plants including tomato, Lycopersicon esculentum 
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(Jendoubi et al. (2017), pepper, Capsicum annuum (Chandrasekhar et al.,2017) and rice 

Oryza sativa (Stella de Freitas et al., 2019). Besides, SA is also essential in the regulation 

of plant reactions to a number of abiotic stresses (climate change, salinity and drought). 

Salicylic acid were usually exploited to produce secondary metabolites in the plant 

defences mechanism. SA was discovered to enhance phytoalexin production in cell 

culture and root culture of several medicinal plants such as Withania somnifera, Anisodus 

luridus and Lepechinia caulescens (Sivanandhan et al., 2013; Qin et al., 2014; Vergara 

Martínez et al., 2017). However, SA not stimulate the double production both hypericin 

and pseudohypericin in callus and shoot culture of Hypericum perforatum but only in 

suspension cultures (Gadzovska et al., 2013).  

 

Since MeJA could give a detrimental effect in plant growth in the process of producing 

secondary metabolites in Panax ginseng (Kim et al., 2004) and SA plays a significant 

role in modulating the cell redox status and defending plants against oxidative damage, 

the synergism of these elicitor were recently used in most plants. Recently, the 

enhancement of phenolic compounds in plant cell suspension cultures of Thevetia 

peruviana through synegistic effect of methyl jasmonate and salicylic acid were 

conducted by (Mendoza et al., 2018). Synergistic effect of other elicitors on compounds 

accumulation was also reported by Gadzovska et al. (2013).  
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 Figure 2.7: Chemical structure of salicyclic acid. 

 

2.7 High Scale Production 

 

2.7.1 Bioreactor  

 

Bioreactors refers to the vessels/tank which provide the optimum condition that enable 

the fermentation and biochemical reactions of microorganisms to produce the desired 

products in a large scale.  Appropriate bioreactors usually capable of sustaining the 

required biological functions by regulating temperature, pH, fluid velocity, shear stress, 

weight and heat transfer, O2, CO2 and nutrient supply, reaction rate and cell production 

(Zhong, 2011). This technology has led to remarkable achievements in the biotechnology 

field and have been used in many sectors such as wastewater treatment in the 

environmental protection industry, cell culture and tissue engineering in the healthcare 

sector, the manufacture of high-value pharmaceuticals and high-scale chemicals 

production industrial biotechnology (Li et al., 2016; Pirasaci et al., 2017; Zhuo et al., 

2018; Christoffersson & Mandenius, 2019). Besides, this system can be applied to all 

types of bio-catalysis including enzymes, cellular organelles, animals and plant cells.  
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In this modern days, scientist had been interested in exploiting plant cells as the source 

for plant-based drug production (Veeresham, 2012) and adventitious root culture had 

been widely used to serve the purpose because of their rapid growth as well as stable for 

bioactive compound production as demonstrated by Jalil et al. (2015).  In addition, 

Pinostrobin extracted from the adventitious root cultures of Boesenbergia rotunda has 

anti-HIV, anti-ulcer, anti-leukaemia and anti-inflammatory activity (Yusuf et al., 2018).  

 

Extensive studies had been done on plant bioreactor since bioreactors offers a low-cost 

and automated system for commercial in vitro plant propagation and low cost secondary 

metabolite production. Several factors, as well as optimization techniques to improve 

their bio-catalysis efficiency, such as modification of inoculum density, bioreactor 

modification (size, agitation, and aeration), temperature and light exposure, have to be 

effectively addressed before using bioreactors. Table 2.2 depicted small-scale production 

of secondary metabolites with their optimized condition while using bioreactors.  
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Table 2.2: Production of secondary metabolites with their optimized bioreactors 
requirements. 
 

Plant Species  
 

Culture 
Type 

Bioreact
or 
Volume 
and 
Type 

Operational 
Conditions 

Metabolite 
Production, 
mgL-1 

References 

Vitis vinifera cv. 
Chasselas and 

Vitis 

berlandieri 

Suspension  
 

Stirred  
(2-L) 

Temperature :23  C 
Light regime: dark 
Agitation:50 rpm 
Flow rate: 0.025 vvm 

Resveratrol  
209 
 

Donnez et 
al., 2011 

Bupleurum 

falcatum L. 

Adventitiou
s roots 

Bubble 
Column 
Airlift 
(20-L) 
 

Temperature :23  C 
Light regime: 12:12 
light:dark 
Agitation:50 rpm 
Flow rate: 0.15 vvm   
 

Saikosaponin-
a, 
Saikosaponin-
d, 500-600. 

Kusakari et 
al., 2012 

Salvia ocinalis L  

  

 

Hairy roots 
Shoots 

Nutrient 
Sprinkler 
(5-L) 
 

Temperature :26 C 
Light regime: dark  
Pump:40s/50s breaks 
 

Rosmarinic 
acid 477.13 
 

Grzegorczyk 
et al., 2010. 

Dracocephalum 

Forrestii W.W. 

Smith 

Shoots  
 
 

Nutrient 
Sprinkler 
(10-L) 
 

Temperature :26 C 
Light regime: 16:8 
light:dark 
Pump:25s/2.5s 
breaks 

Rosmarinic 
acid 38.26 
 

Weremczuk-
Je˙ zyna et 
al., 2019 

Leunorus 

sibiricus L. 
Hairy roots Nutrient 

Sprinkler 
(5-L) 
 
 
 

Temperature :26 C 
Pump:40s/1.5s 
breaks  
 

Rosmarinic 
acid 448  

Sitarek et al., 
2018 

Eleutherococcus 

koreanum Nakai 

 

Adventitiou
s 
roots 

Bubble 
Column 
Airlift 
(3-L) 

Temperature :22  C 
Light regime: dark  
Flow rate: 0.1 vvm 
22  

Rosmarinic 
acid 78.22  

Lee et al., 
2015 

Dracocephalum 

Forrestii W.W. 

Smith 

Shoots Nutrient 
sprinkler 
(10-L) 
 

Temperature :26 C 
Light regime: 16:8 
light:dark 
Pump:25s/2.5s 
breaks  

Caffeic acid 
0.07 

Weremczuk-
Je˙ zyna et 
al., 2019 

Leunorus 

sibiricus L. 
Hairy roots Nutrient 

Sprinkler 
(5-L) 
 

Temperature :26 C 
Pump:40s/1.5s 
breaks  

Caffeic acid 
302 

Sitarek et al., 
2018 

Harpagophytum 

procumbens 

Suspension Stirred 
 (3-L) 

Temperature :26  C 
Light regime: dark 
Agitation:100 rpm 
Flow rate: 1L-1 min 

Verbascoside 
445.44 

Georgiev et 
al., 2011 

Bubble 
Column 
Airlift 
(1-L) 
 

Temperature :26  C 
Light regime: dark 
Agitation:100 rpm 
Flow rate: 1L-1 min 
every 2 s 

Verbascoside 
496.30 
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Comprehensive bioreactor operating system ensures optimum development of 

biomass and metabolites by maintaining low stress for cultivated plant cells, tissues or 

organs by adequate supply of oxygen and nutrients and uniform distribution of cultured 

biomass (Steingroewer et al. 2013). Recently, a large scale propagation on sugarcane, 

Saccharum officinarum L. were conducted by using bioreactors (Da silva et al., 2020), 

Vaccinium vitis (Arigundam et al., 2020) and Myrtus communis L. (Aka kacar et al., 

2020). Meanwhile, a large scale production of coumestrol (soybean isoflavonoids) from 

Glycine max (Lee et al., 2019), galanthamine and amaryllidaceae alkaloids from 

Leucojum aestivum L. using various type of bioreactors (Ivanov et al., 2020; Ptak et al., 

2020). There are many types of bioreactors using plant cell and tissue cultures with their 

advantages and disadvantages such as stirred bioreactor, bubble column reactor, airlift 

reactor, wave reactor, spray bioreactor, mist bioreactor and undertow bioreactor slug 

bubble bioreactor (Table 2.3). 

 

Table 2.3: Several types of bioreactors with their advantages and disadvantages. 

Types Aeration Advantages Disadvantages Uses 

Stirred 
bioreactor 

Bubbles/ 
airlift 

Easy scale up 
Simple 
Well known 
 

Shear stress 
Mechanic stress 
Foam 
 

Suspensions 
 

Bubble 
Column 
Airlift 

Bubbles/ 
airlift 

Low cost 
High efficient 
mass transfer 

Viscosity 
Foam 
Shear stress 

Immobilized 
Suspensions 

Temporary 
immersion 
system 
(RITA) 

Bubbles 
 

Simple, reduction 
in asphyxiation 
Well known. 
 

Low culture 
Volume 

Somatic 
embryogenic 
cell 

Wave Bubbles 
 

Bubble free 
surface aeration. 
Well investigated 
Uniformity of 
energy negligible 
foaming. 

Rheological 
Issues of plant culture 

Suspension 
and 
Immobilized 
cells 
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However, there are few limitations on using bioreactors despite optimizing the 

physical and chemicals requirements for the cells optimum growth including high 

concentrations of sugar in the medium, excessive foaming resulting from extracellular 

polysaccharides, fatty acids, contamination and sheer stress (Su et al., 2019). 

Nevertheless, only a few cell culture-induced secondary metabolites were successfully 

commercialized by industries namely shikonin and barberine from Lithospermum 

erythrorhizon and Camellia japonica respectively by Mitsui Petrochemical Industry 

(Japan), paclitaxel from Taxus spp. by Phyton Biotech Inc. (Germany) and ginsenosides 

from Panax ginseng by Nitto Denko Corp. (Japan) and CBN Biotech Company in South 

Korea (Zhao & Verpoorte, 2007; Baque et al., 2012). 

 

For adventitious root cultures, there are several reports on the enhancement of 

bioactive compounds using balloon type bubble column bioreactor (BTBCB) i.e. 

production of gingsenosides from adventitious roots of Panax ginseng (Sivakumar et al., 

2005; Cao et al., 2020), biomass and bioactive compounds in adventitious roots of 

Morinda citrifolia (Baque et. al, 2014), Eleutherococcus koreanum (Lee et al., 2015) and 

Polygonum multiflorum (Lee et al., 2015) using balloon type airlift bioreactor. 
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CHAPTER 3: MATERIALS AND METHODS 

 

3.1 Plant materials 

 

Mature rhizomes of Zingiber zerumbet L. Smith were collected from nursery at Pusat 

Asasi Sains, University of Malaya and were cleaned thoroughly by washing repeatedly 

with tap water and maintained in the laboratory for shoot buds sprouting as in Figure 3.1 

    

Figure 3.1: Shoot buds sprouting from the rhizome. Bar: 2 cm  

 

3.2  Plant tissue culture 

 

3.2.1  Explant sterilization 

 

Young buds at 1.5-2.0 cm in length were used as explants and were surfaced sterilized 

with 70 % (v/v) Clorox (5.25% of sodium hypochlorite) solution with a few drops of 

Tween 20 to enhance the ability of the bleach to penetrate the plant to fully sterilize the 

sample. After 30 minutes, the roots and outer layer of shoot buds were removed and 

transferred aseptically into 30% (v/v) Clorox for 10 minutes. Subsequently, the shoot 

buds were rinsed with sterile distilled water and air-dried in the laminar air flow chamber.  
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3.2.2  Induction of adventitious roots of Z. zerumbet 

 

The sterilized shoot buds were then excised to 1.0 cm in length and inoculated into 

Murashige and Skoog (1962) (MS) medium supplemented with different combination 

concentration of Napthalene-acetic-acid (NAA) and Indole-3-butryic acid (IBA)  in the 

range of 0.5, 1 and 2 mg L-1, 3% sucrose and solidified with 2 gL-1 gelrite. Roots grown 

in a medium without hormone served as control. The media pH was adjusted to 5.7 prior 

to autoclaving. The root cultures were maintained at 25 ± 1C under light regime 16:8h 

(light: dark) and dark condition. For each treatment, percentage of root response, root 

length and number of root per explant were measured. All experiments were carried out 

in triplicate cultures with 5 explants in each replicate.  

 

3.2.3  Combined effect of auxin and cytokinin on adventitious root growth and 
secondary metabolite production of Z. zerumbet adventitious root culture  

 

After one month of induction, the induced roots were transferred into shake flask 

containing different media formulation. The roots were cultured in MS media with 

different combination of auxin-auxin and auxin-cytokinin supplemented with 3% sucrose. 

The PGR involved were 6-Benzylaminopurine (BAP) and Indole-3-butyric acid (IBA) in 

the range of 1, 3, 5 and 7 mg L-1. Roots grown in a medium containing 1mgL-1 NAA 

served as control. The media pH was adjusted to 5.7 prior to autoclaving. The root 

cultures were maintained at 25 ± 1C under light regime 16:8h (light: dark) and dark 

condition. For each treatment, fresh weight (FW) and dry weight (DW) were measured. 

Measurement of fresh and dry biomass was made at 6 intervals during 30 days of culture.  

The growth parameters namely the specific growth rate (µ) and doubling time (td) were 

calculated for the adventitious root liquid culture according to the following equation 
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(Loyola-Vargas and V á zquez-Flota, 2006). All experiments were carried out in triplicate 

cultures and each treatment was repeated twice.  

 

Equation 1: 

 

 

Where; 
 
µ= Specific growth rate 
X0= Initial fresh weight 
X= Final fresh weight after incubation 
t= Days of incubation 
 
 
Equation 2: 
 
 

 
Where; 
 
td= Doubling time 

µ= Specific growth rate 
 

3.2.4 Determination of root biomass 

 

Roots were collected after 30 days of incubation for each treatment and washed with 

distilled water. The fresh roots were pressed gently on filter paper (Whatman Ltd., 

England) to remove excess water and weighed for the fresh weight (g). The roots were 

dried at 60°C until a consistent weight were obtained to get the dry weight (Baque et al., 

2013). The data were presented as FW (g) and DW (g). 
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3.3 Compound Extraction and Identification  

 

3.3.1 Soxhlet extraction 

 

The dried root were pulverized to powder and was weight about 0.1 g. The grounded 

sample were inserted into the cellulose extraction thimble. Soxhlet extraction includes the 

condenser, water bath, cellulose extraction thimble and round flask was set as Figure 3.2. 

The boiling point of water bath was set to 39°C similar to the boiling point of 

Dichloromethane (Merck, USA) and the condenser was set to 13-14°C for a period of 6  

hours (Jalil et al., 2018). 

 

Figure 3.2: Soxhlet extraction 
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3.3.2 HPLC setup and solvent gradient configuration 

 

The Shimadzu HPLC system comprises of a SIL-20A HT auto sampler, LC-20 AT 

multi-solvent delivery system, DGU-20A degasser, CTO-20 AC cooler and SPD-M20A 

uv/visible detector (Figure 3.3). The device was operated by using LC Solution software. 

The reverse column and guard (Chromolith RP-18 encapped, 100-4.6 mm) used were from 

Merck, US. The solvent used were methanol grade HPLC (Merck Ltd.), acetonitrile grade 

HPLC (Fisher Ltd.), phosphoric acid grade HPLC (BDH Ltd.) and ultrapure water with 

0.1% phosphoric acid. The column and guard column were cleaned with pure HPLC 

grade acetonitrile before and after usage. 

 

 

Figure 3.3: Shimadzu HPLC system  
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3.3.3 Identification of zerumbone and α--humulene  

 

The zerumbone and α-humulene compounds were classified by comparing the 

retention times from sample to a standards purchased from Sigma (USA). The extract was 

spiked with a combination of standards when there was ambiguity. The compound were 

classified by comparing the retention times, spectral features and intensities of the peaks 

of the chromatograms obtained with and without spiking of the samples. The amounts of 

the compounds were calculated as follows:  

 

Equation 2: 

 

Compound =   Peak area of sample    x Standard concentration x Extract volume (ml)   
(µg/g)             Peak area of standard               (µg/ml)                     Dry weight (g) 
 

                                 

3.3.4 Standard calibration curve for α--humulene and zerumbone 

 

The standard α-humulene and zerumbone from Sigma (USA) was used as standards. 

The retention time of the standards was determined from HPLC chromatogram. The 

solvent used to prepare all the solutions was acetonitrile (ACN) with concentration 0.05, 

0.1, 0.2, 0.5 and 1 mg/ml, flow rate of 1 µL/min, temperature of 27°C and running time 

of 15 minutes. Three replicates were prepared for each concentration and the injection 

was also done in triplicate. The peak area of each dilution for each standard compound 

was calculated from the HPLC chromatograms and a standard calibration was obtained. 
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3.4 Elicitation of adventitious root cultures 

 

3.4.1 Synergistic effect of methyl jasmonate and salicyclic acid on cell growth and 
bioactive compounds production 

 

Elicitation was done by combining methyl jasmonate (MeJA) and salicyclic acid (SA) 

at different concentrations. The combination treatments are as shown in Table 3.1 were 

introduced at day 15 of cultivation for 26 days (Jalil et al., 2018). Adventitious root 

culture without elicitation was used as control harvested after 26 days. A stock solution 

of MeJA and SA was prepared separately by each substance dissolution in distilled water 

and then filter-sterilized by using 0.22 μm filters (Sartorius) before its addition into root 

suspension cultures. Meanwhile, for untreated sample, equivalent volume of sterilized 

distilled water was added to the cultures as blank treatment control for the different 

elicitor concentrations studied. All experiments was done in triplicate cultures and each 

treatment was repeated three times.  

 

Table 3.1: Combination concentration of elicitors (Methyl Jasmonate and Salicyclic 
Acid). 

Treatment Concentration 
MeJA (µM) 

 

Concentration 
SA (µM) 

1 400 400 
2 400 600 
3 400 800 
4 400 1200 
5 600 400 
6 600 600 
7 600 800 
8 600 1200 
9 800 400 
10 800 600 
11 800 800 
12 800 1200 
13 1200 400 
14 1200 600 
15 1200 800 
16 1200 1200 
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3.5 Scale up of adventitious root cultures using bioreactor 

 

3.5.1 Bioreactor system establishment for adventitious root cultures 

 

Up scaling of adventitious root cultures was done in bioreactor as shown in Figure 3.4. 

Root cultures aged one month old with initial inoculum density of 10g FW was cultured 

in a five-liters (5 L) balloon type bubble column bioreactor (BTBCB) at 1.0 L/min air 

flow at 25 ± 1°C. The pH of the medium was kept constant at pH 5.7 and automatically 

controlled using an automated controller fabricated by Fermentec Resources Sdn. Bhd. 

The working volume was one-liter and the roots was cultivated in an optimized media 

obtained from shake flask system (media supplemented with 1 mgL-1 NAA and 3 mgL-1 

BAP at 16:08 light regime). The roots was collected after 30 days of cultivation for 

bioactive compounds determination. The FW and final dry weight (DW) was recorded. 

All experiments were carried out in triplicate cultures and were repeated twice. 

 

 

Figure 3.4: Configuration of 5-L balloon type bubble column bioreactor (BTBCB), 
(a) Balloon glass tank (b) pH meter, (c) air filter, (d) silicon cap, (e) filtered air inlet 
(f) gas flow rate float meter and (g) peristaltic pump for acid/base addition. Source: 
Chin et al., 2014
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CHAPTER 4: RESULTS 

 

4.1 Establishment of adventitious root culture of Z. zerumbet 

 

4.1.1 Initiation of adventitious root culture 

 

Root induction time was varied with concentration and different combinations of PGR. 

The first adventitious root formation was observed after seven days of inoculation in MS 

media supplemented with 1.0 mgL-1 NAA and 2.0 mgL-1 IBA and incubated in dark 

condition. Even though media supplemented with 1.0 mgL-1 NAA and 1.0 mgL-1 IBA 

produced significantly highest number of root per explant (18.0 ± 1.0) with rooting 

percentage of 93 %, media supplemented with 1.0 mgL-1 NAA and 2.0 mgL-1 IBA 

produced the highest number of root responses with full percentage (100 %), and the 

numerous roots formed was highly branched with significantly maximum length of 7.3 ± 

1.3 cm as shown in Table 4.1. In order  to obtain the maximum number of adventitious 

roots with high potential for biomass and secondary metabolites production, media 

supplemented with 1.0 mgL-1 NAA and 2.0 mgL-1 IBA was selected for further root 

suspension experiments. 

 

The lowest percentage of root response was 13 % with root length 0.4 ± 0.1 cm 

observed in control (untreated media) without supplementation of PGRs besides delayed 

formation at 14 days. Lower percentage of root response (20%) was also observed in the 

media with lowest concentration of NAA and IBA albeit longer root length (0.8 ± 0.4 cm) 

as compared to control (Table 4.1). Meanwhile, higher concentration of both NAA and 

IBA in the media resulted in the root response of 87 % whilst comparable root length at 

1.0 ± 0.6 cm. 
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Table 4.1: Initiation of adventitious roots of Z. zerumbet in MS media supplemented 
with different combination and concentration of plant growth regulator after four 
weeks induction in dark condition. 
 
Plant growth regulators 

(mgL-1) 

Percentage 

(%) 

Root length 

(cm) 

Root per explant 

 

Control 13 0.4±0.1e 2.0±0.6e 

0.5 NAA + 0.5 IBA 20 0.8±0.4ed 1.6±1.2ef 

0.5 NAA + 1.0 IBA 60 0.3±0.1e 4.7±1.5cde 

0.5 NAA + 2.0 IBA 67 2.1±0.5bcde 6.7±2.1c 

1.0 NAA + 0.5 IBA 47 1.7±0.3bcde 4.7±3.1cde 

1.0 NAA + 1.0 IBA 93 3.3±0.7b 18.0±1.0a 

1.0 NAA + 2.0 IBA 100 7.3±1.3a 11.7±1.5b 

2.0 NAA + 0.5 IBA 40 2.6±0.8bc 5.7±2.1cd 

2.0 NAA + 1.0 IBA 73 2.2±0.3bcd 6.3±1.5c 

2.0 NAA + 2.0 IBA 87 1.0±0.6cde 5.3±2.1cd 

Means with different letters in the same column are significantly different at p < 0.05 
according to ANOVA and Tukey’s multiple range test 
 

 

4.1.2 Multiplication of adventitious root culture in shake-flask system 

 

Establishment of adventitious root culture (AdRC) from Z. zerumbet (Figure 4.1) was 

done in MS media with different concentrations of IBA and BAP supplemented with 1 

mgL-1 NAA in shake flask.  
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Figure 4.1: Establishment of adventitious root culture of Z. zerumbet A: Root 
induction in control treatment after 14 days of inoculation B: Root induction in MS 
media supplemented with 1 mgL-1 NAA and 2 mgL-1 IBA after 7 days of inoculation 
C: Multiplication of adventitious root culture in MS media supplemented with 1 
mgL-1 NAA and 3 mgL-1 BAP after five days in shake flask D: Multiplication of 
adventitious root culture in MS media supplemented with 1 mgL-1 NAA and 3 mgL-

1 BAP after 15 days in shake flask. Bar: 0.5 cm 

 

The maximum fresh weight (6.9 ± 0.1 g FW) and dry weight (2.1 g DW) with highest 

specific growth rate and doubling time were obtained at 1 mgL-1 NAA supplemented with 

5 mgL-1 IBA in 16:08 photoperiod (Table 4.2). However, this treatment showed 

insignificant difference with media 1 mgL-1 NAA supplemented with 3 mgL-1 BAP. 

Meanwhile, treatment with 1 mgL-1 NAA supplemented with 5 mg/ L BAP also showed 

insignificant difference with treatment 1 mgL-1 NAA supplemented with 7 mgL-1 BAP in 

16:08 photoperiod with specific growth rate ranging around 0.5 ± 0.02 day-1 to 0.7 ± 0.04 

day-1. Treatment with lower concentration of IBA (1 mgL-1) showed significant difference 

in 16:08 photoperiod with lower specific growth rate 0.8 ± 0.02 day-1 compared to control. 

No significant difference was observed for incubation in dark condition. In contrast, 

treatment with lower concentration of BAP (1 mgL-1) showed significant increase in FW 

(5.9 ± 0.08 g and 6.2 ± 0.04 g) and specific growth rate (1.9 ± 0.02 day-1 and 1.9 ± 0.03 
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day-1) in both light regimes. The lowest multiplication of adventitious roots was observed 

at the highest concentration of IBA and BAP (7 mgL-1) with lowest specific growth rate 

and doubling time for both 16:08 photoperiod and dark condition (Table 4.2). Figure 4.2- 

4.5 shows pattern of root growth incubated in combined auxin-auxin (NAA + IBA) media 

and auxin-cytokinin (NAA + BAP) media (dark and16:08 photoperiod). 

 
Table 4.2: Combined effects of auxin-auxin and auxin-cytokinin on 
adventitious root growth of Z. zerumbet in 16:08 photoperiod and dark 
condition after 30 days of cultivation. 
 

Light 
regime PGR Treatment Concentration 

(mgL-1) 

Fresh 
weight 

(g) 

Dry weight 
(g) 

Specific growth 
rate(µ) 

16:08 

Control 
(NAA) 

Control 
16:08 1 3.90± 0.03e 1.20 ± 0.03b 1.40±0.03c 

Control 
 + 

 IBA 

A 1 2.00 ±0.07h 0.60±0.03c 0.80±0.02d 

B 3 3.00±0.06g 0.90±0.02bc 1.20±0.02cd 

C 5 6.90±0.08a 2.10±0.01a 2.10±0.01a 

D 7 1.90±0.06i 0.60±0.03c 0.70±0.03d 

Control  
+  

BAP 

E 1 5.90±0.08c 1.80±0.02ab 1.90±0.02a 

F 3 6.80±0.05a 1.90±0.05a 2.00±0.05a 

G 5 1.80±0.13i 0.50±0.04c 0.70±0.04d 

H 7 1.60±0.07i 0.40±0.02c 0.50±0.02e 

Dark 

Control 
(NAA) 

Control 
dark 1 3.60 ±0.05f 1.10±0.02b 1.40±0.01c 

Control 
 +  

IBA 

I 1 3.60± 0.13f 1.10±0.04b 1.40±0.03c 

J 3 6.30±0.06bc 1.90±0.03a 1.90±0.03a 

K 5 6.70±0.07a 2.00±0.04a 2.00±0.03a 

L 7 3.40±0.07fg 1.00±0.02b 1.30±0.01c 

Control 
 + 

 BAP 

M 1 6.20±0.04bc 1.90±0.04a 1.90±0.03a 

N 3 6.40±0.08b 1.90±0.03a 1.90±0.02a 

O 5 4.40±0.10d 1.30±0.03b 1.60±0.02b 

P 7 2.40±0.05h 0.80±0.03c 1.00±0.03cd 

Means with different letters in the same column are significantly different at p < 
0.05 according to ANOVA and Tukey’s multiple range test 
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Figure 4.2: Root growth in combined auxin-auxin (NAA + IBA) media in 16:08 
photoperiod. A: MS media supplemented with 1 mgL-1 NAA and 1 mgL-1 IBA; B: 
MS media supplemented with 1 mgL-1 NAA and 3 mgL-1 IBA; C: MS media 
supplemented with 1 mgL-1 NAA and 5 mgL-1 IBA; D: MS media supplemented with 
1 mgL-1 NAA and 7 mgL-1 BAP. Error bar indicates standard deviation of the mean 
value. 
 
 

 
Figure 4.3: Root growth in combined auxin-cytokinin (NAA + BAP) media in 
16:08 photoperiod. E: MS media supplemented with 1 mgL-1 NAA and 1 mgL-

1 BAP; F: MS media supplemented with 1 mgL-1 NAA and 3 mgL-1 BAP; G: 
MS media supplemented with 1 mgL-1 NAA and 5 mgL-1 BAP; H: MS media 
supplemented with 1 mgL-1 NAA and 7 mgL-1 BAP. Error bar indicates 
standard deviation of the mean value. 
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Figure 4.4: Root growth in combined auxin-auxin (NAA + IBA) media in dark 
condition. I: MS media supplemented with 1 mgL-1 NAA and 1 mgL-1 IBA; J: 
MS media supplemented with 1 mgL-1 NAA and 3 mgL-1 IBA; K: MS media 
supplemented with 1 mgL-1 NAA and 5 mgL-1 IBA; L: MS media 
supplemented with 1 mgL-1 NAA and 7 mgL-1 BAP. Error bar indicates 
standard deviation of the mean value. 
 
 

 

Figure 4.5: Root growth in combined auxin-cytokinin (NAA + BAP) media in 
dark condition. M: MS media supplemented with 1 mgL-1 NAA and 1 mgL-1 
BAP; N: MS media supplemented with 1 mgL-1 NAA and 3 mgL-1 BAP; O: 
MS media supplemented with 1 mgL-1 NAA and 5 mgL-1 BAP; P: MS media 
supplemented with 1 mgL-1 NAA and 7 mgL-1 BAP. Error bar indicates 
standard deviation of the mean value. 
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4.2 Establishment of standard calibration for α-humulene and zerumbone 

  

Investigation to determine suitable solvent system, elution gradient and resolution 

efficiency to elute α-humulene and zerumbone was carried out for HPLC analysis. α-

humulene is strongly detected at λ= 200 nm and low signal of detection at λ= 254 nm. 

Conversely, zerumbone shows strong signal at λ= 254 nm and weaker at λ= 200 nm. 

Nevertheless, both compounds showed optimum absorption at λ =243 nm, which was 

applied as detection wavelength for both compounds. 

 

The representative chromatograms for standards are shown in Figures 4.6 - 4.8. The 

retention times for α-humulene and zerumbone are at 5.7 - 6.7 and 9.5 - 11.1 minutes 

respectively.  
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Figure 4.6: Chromatogram for standard α-humulene (Sigma, USA) at 200 nm. 
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Figure 4.7: Chromatogram for standard zerumbone (Sigma, USA) at 254 nm.  
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Figure 4.8: Chromatogram for a mixture of standard α-humulene (Sigma,USA) and 
zerumbone (Sigma,USA)  at 243 nm. 
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Standard calibration for both compounds were carried out at λ = 243 nm. Figure 4.9 

shows the α-humulene standard calibration with linear correlation coefficient, R2 = 0.999; 

while Figure 4.10 shows zerumbone standard calibration with linear correlation 

coefficient, R2 = 0.999. 

 

 

Figure 4.9: Standard calibration for α-humulene. (Sigma, USA) 
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Figure 4.10: Standard calibration for zerumbone. (Sigma, USA) 

 

 

4.3 Synergistic effects of plant growth regulators (PGR) on root biomass growth 
and secondary metabolite production 

 

4.3.1 Combined effects of auxin-auxin (NAA and IBA) 

 

Optimization of root using different concentrations and types of PGR was carried out 

in liquid media to produce a sustainable amount of root biomass and compounds for 

potential large-scale production. The amount of α-humulene and zerumbone were 

significantly higher at 16:08 photoperiod compared to dark condition in Figure 4.11. 
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Figure 4.11: Zerumbone, α-humulene and root produced in combined auxin-auxin 
media at 16:08 photoperiod and dark condition. A: MS media supplemented with 1 
mg/L NAA and 1 mg/L IBA B: MS media supplemented with 1 mg/L NAA and 3 
mg/L IBA; C: MS media supplemented with 1 mg/L NAA and 5 mg/L IBA; D: MS 
media supplemented with 1 mg/L NAA and 7 mg/L BAP; I: MS media supplemented 
with 1 mg/L NAA and 1 mg/L IBA; J: MS media supplemented with 1 mg/L NAA 
and 3 mg/L IBA; K: MS media supplemented with 1 mg/L NAA and 5 mg/L IBA; L: 
MS media supplemented with 1 mg/L NAA and 7 mg/L BAP. Error bar indicates 
standard deviation of the mean value. Means with different letters in the same 
column are significantly different at p < 0.05 according to ANOVA and Tukey’s 
multiple range test. 
 

The highest amount of zerumbone (2984 ± 61 µg/g) was obtained in MS supplemented 

with 1 mgL-1 NAA and 1 mgL-1 IBA (Table 4.3) as shown in treatment A and the highest 

α-humulene (3547 ± 356 µg/g) was produced in MS supplemented with 1 mgL-1 NAA 

and 5 mgL-1 IBA (Table 4.3) as shown in treatment C propagated at 16:08 photoperiod. 

The highest root biomass (2.1 ± 0.1 g) were observed in media MS supplemented with 1 

mgL-1 NAA and 5 mgL-1 IBA at dark condition but producing lower amount of 

zerumbone (325 ± 34 µg/g) and α-humulene (2576 ± 387 µg/g) (Table 4.3) as shown in 

treatment K (Figure 4.11). 

 

 

 

0

0.5

1

1.5

2

2.5

0

500

1000

1500

2000

2500

3000

3500

4000

4500

control A B C D control I J K L

16:08  Photoperiod Dark

D
ry

 w
ei

gh
t 

(g
)

C
o

n
ce

n
tr

at
io

n
 (

µ
g/

g)

Zerumbone α-humulene Root Biomass

ab a 
a 

c 
c 

b

c 

d 

a 

c

d 

b 

a

b 

b 

b 

b

c 

c

d c

d cd d 
c

d d 

Univ
ers

iti 
Mala

ya



 

64 

 

Table 4.3: Synergistic effects of auxin-auxin on zerumbone, α-humulene and root 
biomass of Z. zerumbet in 16:08 photoperiod and dark condition after 30 days of 
culture. 

Light regime 

Concentration PGR 
(mg/L) 

Control + IBA 
Zerumbone 

(µg/g) 
α-humulene 

(µg/g) 
Root Biomass 

(g) 

Control (NAA) 1.0 2803 ± 216ab 3046 ± 30a 1.1 ± 0.02e 

16:08 

1.0 2984 ± 61a 989 ± 708c 1.1 ± 0.04e 

3.0 1204 ± 170c 2888 ± 1958b 1.9 ± 0.03c 

5.0 338 ± 34d 3547 ± 356a 2.0 ± 0.04a 

7.0 463 ± 183c 1998 ± 1661b 1.0 ± 0.02f 

Control (NAA) 1.0 1023 ± 368a 1929 ± 227b 1.2 ± 0.03e 

Dark 

1.0 737 ± 115c 840±39cd 0.6±0.03e 

3.0 463 ± 98cd 1825±186bc 0.9±0.02d 

5.0 325±34c 2576±387b 2.1±0.01a 

7.0 137±30d 384±205d 1.6±0.03e 

 

 

4.3.2 Combined effects of auxin-cytokinin (NAA and BAP) 

 

Significant decrease in root biomass growth and compound production with increased 

concentration of BAP in both light regimes was observed (Figure 4.12).  However, the 

amounts of zerumbone (3440 ± 168 µg/g) and α-humulene (3759 ± 798 µg/g) were 

highest in MS media supplemented with 1 mgL-1 NAA and 3 mgL-1 BAP at 16:08 

photoperiod (Table 4.4) as shown in treatment F with 1.90 ± 0.1 g of root biomass (Figure 

4.12). The lowest amounts of zerumbone (137 ± 7µg/g) and α-humulene (60 ± 22 µg/g) 

were observed in media containing  highest BAP amount (7 mgL-1) with dark condition; 

lowest root biomass amount 0.4 ± 0.02 g was also produced (Table 4.4)  as shown in 

treatment P (Figure 4.12). 
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Figure 4.12: Zerumbone, α-humulene and root producedin combined auxin-
cytokinin media at 16:08 photoperiod and dark condition. E: MS media 
supplemented with 1 mg/L NAA and 1 mg/L BAP; F: MS media supplemented with 
1 mg/L NAA and 3 mg/L BAP; G: MS media supplemented with 1 mg/L NAA and 
5 mg/L BAP; H: MS media supplemented with 1 mg/L NAA and 7 mg/L BAP; M: 
MS media supplemented with 1 mg/L NAA and 1 mg/L BAP; N: MS media 
supplemented with 1 mg/L NAA and 3 mg/L BAP; O:MS media supplemented with 
1 mg/L NAA and 5 mg/L BAP; P:MS media supplemented with 1 mg/L NAA and 7 
mg/L BAP. Error bar indicates standard deviation of the mean value. Means with 
different letters in the same column are significantly different at p < 0.05 according 
to ANOVA and Tukey’s multiple range test. 
 

 

Even though the amount of zerumbone was significantly lower at dark condition as 

compared to 16:08 photoperiod, the amount of α-humulene was less affected in both light 

regimes (Figure 4.12). Thus, to obtain significant increase in both secondary metabolites 

of interest and biomass production relative to control, root cultures were maintained in 

the optimized media (MS media supplemented with 1 mgL-1 NAA and 3 mgL-1 BAP) at 

16:08 light regime for further elicitation experiments and larger volume production. 
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Table 4.4: Synergistic effects of auxin-cytokinin on zerumbone, α-humulene and 
root biomass of Z. zerumbet in 16:08 photoperiod and dark condition after 30 days 
of culture. 

Light regime 

Concentration  

PGR (mg/L) 

Control + BAP 
Zerumbone 

(µg/g) 
α-humulene 

(µg/g) 
Root Biomass 

(g) 

Control (NAA) 1.0 2803 ± 216cd 3046 ± 30b 1.1 ± 0.02d 

16:08 

1.0 276±14d 3964±3283ab 1.8±0.02b 

3.0 3440±168a 3759±798a 1.9±0.1a 

5.0 2629±183b 1416±1402cd 0.5±0.04f 

7.0 962±64cd 60±22de 0.4±0.02g 

Control (NAA) 1.0 1023 ± 368bc 1929 ± 227bc 1.2 ± 0.03c 

Dark 

1.0 274 ±151d 3403±1031b 1.9±0.04a 

3.0 651±150cd 2272±849c 1.9±0.03a 

5.0 701±120e 395±213d 1.3±0.03c 

7.0 137±70e 60±22e 0.8±0.03e 

 

 

4.4 Synergistic effects of elicitors on root growth and secondary metabolite 
production 

 

Z. zerumbet root cultures that had been established in the shake flask system was 

treated with different concentration and combination of methyl jasmonate (MeJA) and 

salicyclic acid (SA). It is hypothesized that applying the combination of the two elicitors 

will enhance the targeted compound production without affecting the root biomass 

growth. Figure 4.13 shows quantity of root biomass, zerumbone and α-humulene 

produced in the MeJA + SA elicited root cultures after 26 days of cultivation following 

elicitation. Root biomass decreased with increasing concentration of MeJA and SA as 

shown in Figure 4.13. When the roots were treated with MeJA and SA, root biomass 

production decreased by 36 % relative to control at T5 (600 µM MeJA + 400 µM SA), 
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whereas T15 (1200 µM MeJA + 800 µM SA) decreased root biomass production by 66 

% compared to control (Table 4.5). The observed effects following treatments are 

probably due to stress response to the elicitors at aforementioned concentrations. 

Treatment with highest concentration of elicitors (1200 µM MeJA + 1200 µM SA) give 

lowest amount of root biomass production at 0.69 g i.e. relatively 76 % less after 

elicitation compared to control.  

 

The combination of MeJA and SA exhibited less stress effect to the culture at lower 

concentrations since root biomass growth and compound production were not 

significantly affected. Although root biomass production decreased following treatment 

with elicitor, there is no significant difference determined when treated with combination 

of elicitors from 400 µM to 800 µM ranges. In this study, the amount of zerumbone was 

higher than α-humulene in all treated root cultures of Z. zerumbet as shown in Figure 

4.13. It is suggested that combination of MeJA and SA encouraged the conversion of α-

humulene thus assisted in the synthesis of zerumbone. 

 

The combined application of MeJA and SA resulted in the highest production of 

zerumbone and α-humulene in adventitious root cultures of Z. zerumbet (Figure 4.13). 

Among the treatments, 400 µM MeJA + 400 µM SA yielded the highest improvement of 

zerumbone production (43.0 ± 0.2 x 103 µg/g) viz. 13-fold increase; treatment with 400 

µM MeJA + 600 µM SA yielded highest α-humulene production (15.8 ± 5.1 x 103 µg/g) 

viz. 4.3-fold increase after 26 days of cultivation following elicitation compared to 

control. The synergism effect of MeJA and SA at 400 µM concentration with elicitation 

point at day 15 is concluded to be the most favourable treatment to produce significant 

amount of target compound in vitro (Table 4.5). 
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Figure 4.13: Synergistic effects of MeJA and SA on zerumbone, α-humulene and 
root biomass of Z. zerumbet after 26 days of culture prior elicitation. T1: MS media 
supplemented with 400 µM MeJA + 400 µM SA; T2: MS media supplemented with 
400 µM MeJA + 600 µM SA; T3: MS media supplemented with 400 µM MeJA +  
800 µM SA; T4: MS media supplemented with 400 µM MeJA +  1200 µM SA; T5: 
MS media supplemented with 600 µM MeJA +  400 µM SA; T6: MS media 
supplemented with 600 µM MeJA +  600 µM SA; T7: MS media supplemented with 
600 µM MeJA + 800 µM SA; T8: MS media supplemented with 600 µM MeJA + 
1200 µM SA; T9: MS media supplemented with 800 µM MeJA + 400 µM SA; T10: 
MS media supplemented with 800 µM MeJA + 600 µM SA; T11: MS media 
supplemented with 800 µM MeJA + 800 µM SA; T12: MS media supplemented with 
800 µM MeJA and 1200 µM SA; T13: MS media supplemented with 1200 µM MeJA 
+ 400 µM SA; T14: MS media supplemented with 1200 µM MeJA + 600 µM SA; 
T15: MS media supplemented with 1200 µM MeJA + 800 µM SA; T16: MS media 
supplemented with 1200 µM MeJA + 1200 µM SA. Error bar indicates standard 
deviation of the mean value. Means with different letters in the same column are 
significantly different at p < 0.05 according to ANOVA and Tukey’s multiple range 
test. 
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Table 4.5: Synergistic effects of different concentration combinations of Methyl 
Jasmonate and Salicyclic Acid on zerumbone, α-humulene and root biomass 
production of Z. zerumbet with elicitation point at day 15 after 26 days of cultivation 
following elicitation. 

 Methyl 
Jasmonate 

(µM) 

Salicylic 
Acid  
(µM) 

Zerumbone 
(× 103 µg/g) 

α-humulene 
(× 103 µg/g) 

Root Biomass 
(g) 

control 3.4 ± 0.3d 3.7 ± 1.1cd 2.8 ± 0.1a 

400 400 43.0 ± 0.2a 11.7 ± 3.1abcd 2.4 ± 0.1b 
400 600 39.3 ± 4.8bcd 15.8 ± 5.1a 2.3 ± 0.1bc 
400 800 31.1 ± 0.2cd 3.6 ± 0.5cd 2.2 ± 0.1bcd 
400 1200 36.6 ± 6.6bc 2.9 ± 0.8d 2.0 ± 0.1cd 
600 400 36.7 ± 0.7bcd 13.3 ± 0.6ab 1.4 ± 0.1hg 
600 600 28.2 ± 1.0c 11.8 ± 0.6abcd 1.8 ± 0.1e 
600 800 29.3 ± 0.1cd 12.2 ± 2.3abc 2.1 ± 0.1bc 
600 1200 31.2 ± 0.6cd 5.5 ± 3.2bcd 1.8 ± 0.1de 
800 400 30.0 ± 0.5cd 6.4 ± 4.7cd 1.3 ± 0.1f 
800 600 8.4 ± 0.5d 7.9 ± 4.1cd 1.5 ± 0.1f 
800 800 30.3 ± 0.4cd 5.5 ± 4.8cd 1.5 ± 0.1hg 
800 1200 31.0 ± 0.2cd 6.9 ± 1.0cd 2.2± 0.1bcd 
1200 400 19.1 ± 9.9d 8.7 ± 7.7cd 1.0 ± 0.1g 
1200 600 3.8 ±1.1d 11.8 ± 1.4abcd 1.2 ± 0.1f 
1200 800 7.6 ± 3.9d 17.1 ± 7.0a 1.3 ± 0.1f 
1200 1200 7.5 ± 0.5d 8.6 ± 1.0cd 0.7 ±0.1h 

Means with different letters in the same column are significantly different at p < 0.05 
according to ANOVA and Tukey’s multiple range test 

 

4.5 Larger volume production in bioreactor and determination of root biomass 

growth and secondary metabolite production in adventitious root cultures of 

Z. zerumbet  

   

Larger volume cultivation of adventitious root cultures was carried out in a bioreactor 

(Figure 4.17). Root cultures aged one month old with initial inoculum density of 10 g FW 

were cultured in a 5-L balloon type bubble column bioreactor (BTBCB) supplied with 

1.0 L/min filtered air at 25 ± 1 °C. The working volume of the cultivation was at 1-L 
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using optimized media obtained from shake flask system (media supplemented with 1 

mgL-1 NAA and 3 mgL-1 BAP at 16:08 light regime); pH of the liquid medium was kept 

constant at pH 5. Based on Figure 4.16, root biomass harvested after 30 days of culture 

generated 44.3 ± 4.0 g FW and 8.5 ± 1.0 g DW. The zerumbone and α-humulene produced 

were at 3.7 ± 1.3 x (103 µg/g) and 11.3 ± 2.2 x (103 µg/g), respectively. 

 

 

Figure 4.14: Target compounds and root biomass produced in BTBCB A: Fresh and 
dry biomass of root harvested; B: Zerumbone and α-humulene accumulation in 
harvested root. 
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Figure 4.15: Larger volume cultivation of adventitious root culture of Z. zerumbet 

in BTBCB A: Roots cultivated in BTBCB at day 1 B: Root growth at day 15 with 1.0 
L/min air flow rate C: Adventitious root culture after 30 days cultivation D: Roots 
harvested from BTBCB and washed with distilled water. 
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CHAPTER 5: DISCUSSION 

 

5.1 Establishment of adventitious root culture of Z. zerumbet 

 

5.1.1 Initiation of adventitious root cultures 

 

Adventitious root is seen as a viable route for secondary metabolite production due to 

its high proliferation rate, fast growth and high potential for stable production of valuable 

secondary metabolites (Murthy et al., 2008, Murthy et al., 2016). The primary induction 

conditions such as pH, light regime and induction media are crucial to produce and 

maintain the highest yield of proliferated roots during in-vitro propagation. In this study, 

evaluation of optimum induction medium is based on the number of primary roots that 

are numerous, healthy along with fastest induction.  

 

The adventitious roots induced in the investigation emerged as early as seven days 

after inoculation, and this varied with concentration and combinations of PGR supplied.  

Saiman et al. (2012) showed similar root emergence of Gynura procumbens, which 

appeared after seven days of inoculation. The other studies showed a delayed induction 

time such as the adventitious roots of Aloe vera L. viz. observed during six weeks of 

induction (Lee et al., 2011), Plumbago zeylanica L. root cultures were induced in auxins 

supplemented medium within two weeks of incubation (Sivanesan & Jeong, 2009) and a 

transformed hairy roots were also induced in Boerhavia difussa, Datura innoxia and 

Solanum xanthocarpum at between 12th-15th day after infection with Agrobacterium 

rhizogenesis (Kathodia & Biswas, 2012).  
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Zhang et al. (2014) found that the formation of adventitious roots is strongly 

influenced by the type and concentration of auxins and IBA as inducers, which is in 

agreement with the finding in this study. Media supplemented with 1.0 mgL-1 NAA and 

1.0 mgL-1 IBA produced maximum number of roots after 10 days of culture (18.0 ± 1.0) 

with rooting percentage of 93 %. The results agree with the observation of Saiman et al. 

(2012) where direct root induction was observed in the presence of IBA, and grew into 

fine, thin and long roots.  

 

Even though media supplemented with 1.0 mgL-1 NAA and 1.0 mgL-1 IBA produced 

highest number of root initials (18.0 ± 1.0), the optimum medium with highest root 

responses (100 %), fastest root growth (seven days) and longest root length with high 

degree of branching was obtained in media supplemented with 1.0 mgL-1 NAA and 2.0 

mgL-1 IBA under dark condition (Table 4.1). This is in contrast to the study by Zhang et 

al. (2013) that found the ratio of PGR for other species is different e.g. the highest root 

production of Psammosilene tunicoides was obtained in low ratio of IBA to NAA. 

 

Exogenous supplementation of certain auxins can stimulate the differentiation and 

induction processes in rooting. High cytokinin-to-auxin usually trigger shoot 

regeneration while a high ratio of auxin-to-cytokinin will induces root regeneration, 

respectively. The rhizogenic action of auxins also has been deemed most crucial for the 

initiation and development of adventitious roots, and the physiological stages of rooting 

coincide with variations in endogenous and exogenous auxin concentrations. From the 

results, the frequency of root response, number of roots per explant, root length, 

zerumbone and α-humulene production were affected by the concentration and types and 

concentrations of auxins used for adventitious regeneration and multiplication. 
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There are several other reports on optimized adventitious root induction using 

different combination and concentration of PGR such as Plumbago rosea in 1.5 mgL-1 

IAA and 1 mgL-1 IBA (Silja & Satheeshkumar, 2015), and roots of Aloe vera in 0.5 mgL-

1 NAA and 0.2 mgL-1 BAP (Lee et al., 2011), maximum root numbers of Artemisia 

vulgaris in MS media supplemented with 2 mgL-1 IAA and 1 mgL-1 IBA (Sujatha & 

Kumari, 2012), and highest root biomass of Hypericum perforatum L. in MS media with 

0.1 mgL-1 kinetin and 1 mgL-1 IBA (Cui et al., 2011). 

 

5.1.2 Root multiplication in shake-flask system 

 

Establishment of adventitious root culture (AdRC) in liquid medium, and establishing 

its growth conditions such as obtaining optimum medium components and cultivation 

parameters for  biomass and metabolite accumulation is one of key stages as mentioned 

by Murthy et al. (2016). In this respect, the establishment of culture was done in MS 

media with 1 mg L-1 NAA supplementation and different concentrations of IBA and 

BAP. For treatment with auxin-auxin (NAA + IBA), there was a significant increase in 

adventitious root growth with increasing concentration of IBA up to 5mgL-1 in both light 

regimes. The observation is similar to Ling et al. (2009), where an increase in rooting 

efficiency of Orthosiphon stamineus was observed with increasing IBA and NAA 

concentrations from 1 mgL-1 to 5 mgL-1, with favorable concentration for both hormones 

at 5 mgL-1.  

 

In this study, the maximum fresh weight (6.9 ± 0.1 g FW) and dry weight (2.1 ± 0.0 g 

DW) were obtained in 1 mgL-1 NAA supplemented with 5 mgL-1 IBA and 16:08 

photoperiod. The results are supported by Amer et al. (2016) and Mona et al. (2019) 

where they found that combination of 0.5 mgL-1 NAA and 1.0 mgL-1 IBA enhanced the 
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root growth of Cichorium endivia but in dark condition. Meanwhile, Hadizadeh et al. 

(2016) also reported that Cichorium intybus L. roots growth is increased when 

subcultured into half-strength MS liquid medium supplemented with 0.2 mgL-1 NAA and 

0.5 mgL-1 IBA, under continuous agitation at 110 rpm in total dark condition. Zhang et 

al. (2013) also indicated that the combination of NAA and IBA significantly affect the 

adventitious roots formation in Psammosilene tunicoides culture. 

 

In this study, auxin-cytokinin (NAA + BAP) treatment was also investigated in order 

to enhance the root growth. Naseem et al. (2015) suggested that new hormonal control 

should be introduced after the root establishment in which auxin should be at lower 

concentration for root meristem maintenance and cytokinin supplied for root tissue 

differentiation. This was corroborated by a good yield of roots produced (6.8 ± 0.1 g FW) 

at 1 mgL-1 NAA supplemented with 3 mgL-1 BAP in 16:08 photoperiod compared to 

auxin-auxin treatment. Moreover, Lee et al. (2011) also observed a gradual increase in 

root dry weight of Aloe vera in MS media supplemented with NAA (0.5 mgL-1) along 

with BAP (0.2 mgL-1). 

 

However, in this study poor multiplication of adventitious roots was observed at the 

highest concentration of IBA (7 mg L-1) as high concentration of auxin and cytokinin 

could be stressful to the cell and inhibit root growth. Jalil et al. (2018) stated that 

inhibition of adventitious roots in Z. zerumbet culture could due to herbicidal properties 

of auxins at high concentration with regards to direct and indirect pathway of root 

formation. In addition, excess auxin in medium will force the plant to produce other 

hormones to balance it thus slowing down cell elongation and root growth leading to root 

apical dormancy (Chao et al., 2006, Ling et al., 2009).  
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Ling et al. (2009) demonstrated that further increase of auxin to 7 mgL-1 of IBA and 

NAA caused a decrease in rooting ability of Orthosiphon stamineus, similar to 

observations by Syros et al. (2004) and Rout et al. (2000) for inhibition in rooting of 

Psoralea corylifolia and Ebenus cretica, respectively, when the concentration of auxins 

are higher than the optimum. Contrary to the study by Lulu et al. (2015), Eurycoma 

longifolia root culture was not inhibited in medium supplemented with 7.0 or 9.0 mgL-1 

NAA. This could be due to other factors such as species variation that gives separate 

response to the same type of plant growth regulator (Wei et al., 2006) and the 

concentration of auxin resulting in either stimulated or inhibited root production 

(Overvoorde et al., 2010). 

 

Adventitious root production is a complex process that involves numerous 

endogenous plant growth regulators as well as environmental stimuli such as light and 

wounding. However, there was no significant difference was observed in both light 

regime (16:08 photoperiod and dark) in root multiplication process. Nevertheless, the 

experiment on the effect of light regime were suitable to be done in the root induction 

process. 

 

5.2 Establishment of HPLC detection parameters for zerumbone and α-humulene 

  

The establishment of solvent system and elution gradient to elute zerumbone and α-

humulene compound was carried out to optimize resolution and accomplish good peak 

profiles. Adjustment to concentration for every standard compound was also made to 

improve resolution results. Standard calibration consisted of both compounds were 

developed at λ= 200 nm, 243 nm and 254 nm. The three wavelengths were chosen from 
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earlier literature showing maximum absorption of α-humulene  at 200 to 210 nm 

(Musenga et al., 2006) while zerumbone at 254 nm (Jalil et al., 2015).  

 

Many compounds are UV-detectable at above 240 nm wavelength (Komae & 

Hayashi, 1975, Baser et al., 2015) such as monoterpenes, diterpenes and sesquisterpernes 

(Strack et al., 1980, Nour et al., 2013). This study showed that α-humulene could be 

strongly detected at λ= 200 nm but giving weak signal at λ= 254 nm. Conversely, 

zerumbone gave strong detection signal at λ= 254 nm but weaker at λ= 200 nm. 

Nonetheless, both compounds showed best absorption at λ =243 nm. It is also shown in 

this study the retention times for α-humulene and zerumbone are at 5.7-7.5 and 9.5- 12.1 

minutes respectively.  

 

5.3 Synergistic effects of plant growth regulator (PGR) on root biomass growth 

and targeted secondary metabolite production 

 

5.3.1 Combined effects of auxin-auxin (NAA and IBA) 

  

Improvement of root growth was carried out to produce a sustainable amount of root 

biomass and compounds for a larger volume production. Since auxins are required in 

promoting growth, rooting and callus proliferation, the effects of combination of auxins 

towards biomass growth and compound accumulation were investigated. The highest 

amount of zerumbone (2984 ± 61 µg/g) was obtained in MS supplemented with 1mgL-1 

NAA and 1 mgL-1 IBA; the highest α-humulene titre (3659 ± 356 µg/g) was obtained in 

MS supplemented 1 mgL-1 NAA and 5 mgL-1 IBA propagated at 16:08 photoperiod 

(Figure 4.11). The highest root biomass amount (2.1 ± 0.01 g) was observed in media 

MS supplemented with 1 mgL-1 NAA and 5 mgL-1 IBA at 16:08 photoperiod but 
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producing signifficantly lower amount of zerumbone (325 ± 34 µg/g) and a relatively 

higher accumulation of α-humulene (3576 ± 388 µg/g). Jalil et al. (2018) also found that 

root biomass of Z. zerumbet was produced at highest rate although low in zerumbone 

production when cultivated in MS supplemented with 1 mgL-1 NAA under dark 

condition. Lulu et al. (2015) found higher concentrations of IBA and NAA ranging from 

5 mgL-1 to 9 mgL-1 enhanced the accumulation of total phenolics and flavonoids in 

Eurycoma longifolia contrary to the current study where low zerumbone (137 ± 30 ug/g) 

and α-humulene (384 ± 205 µg/g) productions were observed in MS supplemented with 

1 mgL-1 NAA and 7 mgL-1 IBA at 16:08 photoperiod with low root biomass i.e. 0.6 ± 

0.03 g DW. 

 

Light is known to influence growth organogenesis, formation of plant products and 

enzyme induction (Zhu et al., 2015). In the auxin-auxin treatment, the amounts of α-

humulene and zerumbone were significantly higher at 16:08 photoperiod than dark 

condition. Similar observation was made by Zhu et al. (2015) where vindoline and 

sepertine biosynthesis in cultured cells, leaves, seedlings and plants of Catharanthus 

roseus increased significantly following light exposure treatment. Total anthraquinone, 

flavonoids and phenolic contents were found to be significantly higher in Morinda 

citrifolia root cultures when grown in MS media supplemented with 1 mgL-1 IBA under 

far-red light exposure (Baque et al., 2010).  

 

5.3.2 Combined effects of auxin-cytokinin (NAA and BAP) 

 

Molecular mechanism regulated by auxin and cytokinin occurs during root elongation 

process. The effects of the two PGR on root production and secondary metabolite 

accumulation were studied. The amounts of zerumbone (3440 ± 168 µg/g) and α-
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humulene (3759 ± 798 µg/g)  were highest in MS media supplemented with 1 mgL-1 

NAA and 3 mgL-1 BAP at 16:08 photoperiod with 1.90 ± 0.05 g (DW) of root biomass 

(Figure 4.13) compared to auxin-auxin treatment. Similar to Zhu et al. (2015), they 

reported that in Catharanthus roseus root culture, auxins down-regulate the expression 

of genes associated with terpenoid indole alkaloid biosynthesis while cytokinin acts as 

accelerant that enhances the accumulation of alkaloids. In addition, investigation by Tank 

and Thaker (2014) showed that BAP yielded a positive response in re-initiation of 

vegetative growth of roots that undergo endo-reduplication. Maximum plumbagin 

production was observed in Plumbago rosea when cultivated in media containing auxin 

and cytokinin (Silja and Satheeshkumar, 2015).  

 

Although plant growth regulators could be applied to enhance growth of adventitious 

root, it could inhibit the accumulation of compounds. In this study, significant decrease 

in root biomass growth and compound production was observed with increased 

concentration of BAP. The lowest amounts of zerumbone (137 ± 7 µg/g) and α-humulene 

(60 ± 22 µg/g) were obtained in media containing highest BAP treatment (7 mgL-1), 

which also produced lowest root biomass 0.4 ± 0.02 g (DW). Previous study of Z. 

zerumbet by Jalil et al. (2018) showed higher zerumbone production was obtained with 

increased auxin concentration in single treatment of PGR while highly suppressed the 

biomass accumulation. This could due to the herbicidal property of PGR at high 

concentration that inhibit the root formation and consequently lowered compound 

accumulation. Thus, to ensure sustainable growth and compound yield, roots were 

maintained in the optimum medium (MS medium supplemented with 1 mgL-1 NAA and 

3 mgL-1 BAP) for further elicitation experiments and larger volume metabolite 

production. 
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5.4 Synergistic effects of Methyl Jasmonate (MeJA) and Salicylic acid (SA) as 

elicitors on root growth and secondary metabolite production 

 

To enhance the production of zerumbone and α-humulene with minimal adverse effect 

on the root growth in the adventitious root cultures of Z. zerumbet, roots were grown in 

the combination of MeJA + SA concentrations. Figure 4.15 shows quantity of root 

biomass, zerumbone and α-humulene produced in the MeJA + SA elicited root cultures 

after 26 days following elicitation. Root biomass growth decreased with the increase in 

MeJA and SA concentration. Generally, when the roots were treated with MeJA and SA, 

root biomass growth decreased by 35.6 % under treatment T5 (600 µM MeJA + 400 µM 

SA) relative to control; treatment T15 (1200 µM MeJA + 800 µM SA) showed decrease 

in root biomass by 66.0 % relative to control.  

 

Reduction in root biomass in following these treatments could be due to inhibitory 

effects by the elicitors. The inhibitory effect of MeJA on plant growth was reported by 

Cosio et al. (1990) and Jalil et al. (2018), where the accumulation of biomass may be 

hindered by the addition of elicitors when primary metabolism responsible for the growth 

of cells switches to the secondary metabolism following elicitation. Lois et al. (1989) 

and Sukito & Tachibana (2016) reported that concentrations above 0.01 mM SA inhibit 

root growth in some species meanwhile treatment with 5 mM SA showed 25 % reduction 

in Vicia faba L. root growth. Zhang et al. (2000) also observed similar effect of inhibition 

in Taxus sp. cell cultures.  

 

Treatment with highest concentration of elicitors (1200 µM MeJA + 1200 µM SA) 

yielded lowest amount of root biomass (0.69 g) which is 75.7 % decrease compared to 
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control after 26 days following elicitation. The results corroborated with the single 

treatment of MeJA and SA undertaken by Jalil et al. (2018). 

 

The combination of MeJA and SA showed less inhibition on root and compound 

production when treated at lower combination. Although root biomass decreased after 

treatment with elicitors, no significant difference was observed for combined elicitors 

with concentration ranging from 400 µM to 800 µM compared to control. Xu et al. (2015) 

suggested that combined treatment of UV-C with MeJA or SA can be used as an efficient 

technique to enhance stilbene production as well as total phenolics and total flavonoids 

content in Vitis vinifera cell suspension cultures. In this study, the amount of zerumbone 

was higher than α-humulene in all treated root cultures of Z. zerumbet as shown in Figure 

4.15. It is suggested that combination of MeJA and SA stimulated the conversion of α-

humulene thus assisted in the synthesis of zerumbone. 

 

The combined effects of MeJA and SA resulted in the highest production of 

zerumbone and α-humulene in adventitious root cultures of Z. zerumbet. Similar to 

Sukito and Tachibana (2016) whom found that synergism effects of MeJA and SA at 0.1 

mM increased bilobalide and ginkgolide production in Ginkgo biloba cultures. From this 

study, treatment with 400 µM MeJA + 400 µM SA resulted in highest improvement of 

zerumbone production (43,000 ± 200 µg/g) representing 13-fold increase, whereas 

treatment with 400 µM MeJA + 600 µM SA produced highest α-humulene (15,800 ± 

5100 µg/g) representing 4.3-fold increase after elicitation compared to control. This can 

be explained by the changes in metabolomics pathways thus increased production of 

some metabolites (Zhu et al., 2015).  
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MeJA is a biotic elicitor that induces signal transduction pathway involved in the 

biosynthesis of various secondary metabolites (Almagro et al., 2009). On the other hand, 

SA is a compound that initiates fast defence responses against some stress factors by 

producing specific compounds and proteins (Li et al., 2004). The synergistic effects of 

elicitors were found to be an ideal strategy for increasing in vitro metabolite production. 

While adding elicitor caused strong inhibition of root growth according to Murthy et al. 

(2008) and Paek et al. (2009), the root biomass growth in the current study was not 

significantly inhibited at lower concentrations of combined elicitors. Therefore, the 

synergism of MeJA and SA at 400 µM concentration with elicitation point of day 15 

constitutes optimal condition for sustainable in vitro production of targeted secondary 

metabolites. 

 

5.5 Root biomass growth and secondary metabolite production of adventitious 

roots in larger volume controlled bioreactor  

  

Controlled bioreactor application can offer many advantages in increasing plant 

secondary metabolites production, and most likely to be more efficient compared to the 

conventional shaken culture system. It allows for stimulation of the growth rate of the 

culture with active aeration and controlled temperature, pH, concentration of oxygen, 

carbon dioxide and nutrient in the liquid medium.  

 

There are various studies of adventitious root cultures in large volume bioreactor (500-

1000 L) for plant species such as Morinda citrifolia, Echinacea purpura, Echinacea 

augustifolia and Hypericum perforatum (Baque et al., 2012). Paek et al. (2009) reported 

the establishment of adventitious root culture system for the production of gingneosides 

from Panax ginseng in controlled bioreactor. Recent work by Lulu et al. (2015) enhanced 
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root biomass growth and bioactive compounds production in adventitious root culture of 

Eurycoma longifolia using larger volume controlled bioreactor system. 

 

In this study, balloon type bubble column bioreactor (BTBCB) as designed by Paek 

et al. (2005) was used instead of column bioreactor to prevent excessive foaming 

problem as mentioned by Baque et al. (2012) and Wendy et al. (2014). Root cultures 

aged one month-old with initial inoculum density of 10 g FW were cultivated in a 5-L 

BTBCB at 25 ± 1°C.   

 

Adequate aeration is necessary inside the bioreactor so as to favour good 

cell growth and accumulation of secondary metabolites. Relatively high aeration rate at 

1.0 L/min improved the supply of filtered air to cells in the bioreactor culture, enabling 

cells at the center of their roots to receive adequate diffused oxygen. Jalil et al. (2018) 

also found that highest specific growth rate was achieved at 10 g inoculum density while 

no significant difference was observed in zerumbone accumulation in Z. zerumbet 

adventitious root culture compared to other inoculum densities. On the other hand, 

Shohael et al. (2014) suggested that higher inoculum densities (7 and 9 gL-1) caused 

reduction in accumulated biomass of Eleutherococcus senticosus cultures and its 

eleutherosides production. 

 

The pH of the liquid medium was kept constant at pH 5.7 within a working volume 

of 1 liter. The roots were cultivated in optimized medium formulation obtained from 

shake flask system. Root biomass was harvested after 30 days of culture with three-fold 

biomass increment from initial,  and 3.7 ± 1.3 (× 103 µg/g) and 11.3 ± 2.2 (× 103 µg/g) 

of zerumbone and α-humulene were obtained, respectively. 
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Thus, improvements in implementing key factors e.g. air flow rate, inoculum density, 

pH, culture medium are important in enhancing root growth and compound production 

for bioreactor cultivation. The improved cultivation conditions for root growth as shown 

in this study, applied in conjunction with the elicitation strategy could be implemented 

to achieve high zerumbone and α-humulene production in a controlled bioreactor system.
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CHAPTER 6: CONCLUSION  

 

In this study, enhancement of α-humulene and zerumbone production in adventitious 

root cultures of Z. zerumbet Smith through synergistic application of elicitors are 

investigated. Improved biomass production via two-stage culture system is achieved by 

first cultivating the cells in induction medium supplemented with 1.0 mgL-1 NAA and 2.0 

mgL-1 IBA under dark condition, whereby highest root responses (100 %), fastest root 

growth (seven days) and longest root length with high degree of branching are obtained. 

Subsequently, successful establishment of adventitious root culture (AdRC) is obtained 

in MS media supplemented with 1 mg L-1 NAA and different concentrations of IBA and 

BAP.  

 

Despite  the maximum yield of fresh weight (6.9 ± 0.1 g FW) and dry weight (2.1 ± 

0.0 g DW) obtained in MS media supplemented with 1 mgL-1 NAA and 5 mgL-1 IBA 

under 16:08 photoperiod, zerumbone accumulation is significantly low (325 ± 34 µg/g). 

On the other hand, production of zerumbone (3440 ± 168 µg/g) and α-humulene (3759 ± 

798 µg/g) are highest in MS media supplemented with 1 mgL-1 NAA and 3 mgL-1 BAP 

under 16:08 photoperiod from 1.90 ± 0.05 g (DW) of root biomass. Thus, adventitious 

root culture in this formulation is selected for further elicitation study. 

 

Adventitious root cultures of Z. zerumbet are elicited using the combination of Methyl 

jasmonate (MeJA) and Salicylic acid (SA) to enhance the production of zerumbone and 

α-humulene with minimal adverse effects on the root growth. The combination of 

elicitors show relatively less inhibition of root and good compound enhancement effects 

when tested at a concentration between range of 400 µM to 800 µM. The amount of 

zerumbone is consistently higher than α-humulene in all treated root cultures of Z. 

zerumbet. It is proposed that the mixture of MeJA and SA induces significant intracellular 
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conversion of α -humulene, thereby leading to enhanced biosynthesis of zerumbone. 

Treatment at day 15 of cultivation with 400 μM MeJA + 400 μM SA results in 13-fold 

increase in zerumbone yield (43,000 ± 200 µg/g), while treatment with 400 μM MeJA + 

600 μM SA give highest increase at 4.3-fold in α-humulene yield (15,800 ± 5100 µg/g) 

compared to control.  

 

Scaling up of adventitious root cultures of Z. zerumbet in 5-L Balloon Type Bubble 

Column Bioreactor (BTBCB) is also investigated. By applying the improved medium 

formulation obtained earlier and under cultivation parameters of 25 ± 1 ° C, controlled 

pH 5.7, aeration rate of 1.0 vvm, root culture aged one month inoculum of 10 g FW, a 

three-fold increase in biomass after 30 days of cultivation, and 3,700 ± 1300 µg/g and 

11,300 ± 2200 µg/g of zerumbone and α-humulene are achieved, respectively. 

 

For future studies, it is recommended to investigate the nature of elicitation by these 

compounds through metabolomics analysis where the information obtained may be 

applied to further improve the yields of α-humulene and zerumbone. 
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