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ESTIMATION OF PARAMETERS AND OUTLIER DETECTION IN 

REPLICATED LINEAR FUNCTIONAL RELATIONSHIP MODEL 

ABSTRACT 

 

The thesis focuses on parameter estimation especially in the presence of outliers, 

outlier detection and grouping procedures in a linear functional relationship model 

(LFRM). There are two categories of LFRM: the unreplicated and replicated model. The 

study starts by modifying the maximum likelihood estimation method in unreplicated 

LFRM when the ratio of error variances is equal to one. A robust slope estimator namely 

the modified maximum likelihood estimation method is proposed. Results from 

simulation studies show that the modified maximum likelihood estimation method is 

outlier resistant and performs well than the traditional maximum likelihood estimation 

method. Then, an improvement on the estimation of the parameters by introducing 

balanced replicated observations in the LFRM when there is no information about the 

ratio of error variances is proposed. The estimation of parameters using maximum 

likelihood estimation method along with the variance-covariance matrix using the Fisher 

Information matrix is derived. Based on the simulation studies, the estimated values of 

the parameters are found to be unbiased and consistent. Next is the construction of the 

robust slope estimator using a 20% trimmed mean based on the nonparametric method. 

The robustness of this method is compared with the maximum likelihood method for 

replicated LFRM. Simulation results show that the 20% trimmed mean performs well 

even the datasets have a high number of outliers. The second part of the study focuses on 

outlier detection in replicated LFRM using COVRATIO statistic. The cut-off points and 

the performance of the method are obtained from the simulation study. From simulation 

results, the cut-off points obtained and power of performance is suggested that the 

COVRATIO statistic can be used to detect a single outlier in replicated LFRM. The last 
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part of the study concentrates on proposing a practical group method in clustering 

analysis. The motivation is to transform observation that are of unreplicated data to 

replicated data. Three clustering methods are considered and simulation studies are used 

to assess the performance of the parameter estimate of replicated LFRM. The benefits of 

these approach is that it can be done without making an assumption on the ratio of error 

variances. The applicability of all proposed methods is illustrated in published datasets. 

Keywords: clustering, errors-in-variables model, mean square error, slope parameter 
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ABSTRAK 

 

Kajian ini memfokuskan kepada penganggaran parameter terutama ketika kehadiran 

data terpencil, pengesanan data terpencil dan pengelompokan data dalam model linear 

hubungan fungsian. Terdapat dua kategori bagi model ini iaitu model tanpa replikasi dan 

model bereplikasi. Kajian ini dimulakan dengan pengubahsuaian kepada kebolehjadian 

maksimum untuk model linear hubungan fungsian tanpa replikasi apabila tiada maklumat 

mengenai nisbah ralat varians.  Penganggar cerun teguh yang dinamakan kaedah 

kebolehjadian maksimum terubahsuai dicadangkan. Keputusan simulasi menunjukkan 

kaedah yang disyorkan adalah tidak dipengaruhi oleh data terpencil dan memberikan 

keputusan yang lebih baik daripada kaedah kebolehjadian maksimum. Kemudian, 

penambahbaikan penganggaran parameter dicadangkan dengan memperkenalkan data 

replikasi seimbang dalam model linear hubungan fungsian apabila tiada maklumat 

mengenai nisbah ralat varians. Anggaran parameter menggunakan kaedah kebolehjadian 

maksimum bersama dengan matriks asimptotik varians-kovarians menggunakan matriks 

maklumat Fisher diterbitkan. Keputusan daripada kajian simulasi menunjukkan nilai 

penganggar adalah saksama dan konsisten. Seterusnya, kaedah teguh tak berparameter 

dibangunkan menggunakan 20% min terpangkas. Perbandingan dilakukan di antara 

keteguhan kaedah ini dengan kaedah kebolehjadian maksimum bagi model linear 

hubungan fungsian bereplikasi. Keputusan menunjukkan kaedah 20% min terpangkas 

adalah baik walaupun terdapat banyak data terpencil. Bahagian kedua kajian 

memfokuskan kepada pengesanan data terpencil dalam model linear hubungan fungsian 

bereplikasi menggunakan statistik COVRATIO. Titik potongan dan kuasa pretasi 

diperolehi daripada kajian simulasi. Berdasarkan keputusan simulasi, titik potongan 

diperolehi dan dicadangkan bahawa kuasa prestasi statistik COVRATIO dapat mengesan 

satu nilai data terpencil dalam model linear hubungan fungsian bereplikasi. Bahagian 
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terakhir kajian memberi tumpuan kepada pembahagian data secara praktikal 

menggunakan analisis berkelompok. Tujuannya adalah untuk menukarkan data tanpa 

replikasi kepada data bereplikasi. Tiga kaedah berkelompok dipertimbangkan dan kajian 

simulasi dijalankan untuk menilai kuasa prestasi bagi anggaran parameter model linear 

hubungan fungsian bereplikasi.  Kelebihan pendekatan ini ialah kaedah ini boleh 

dilakukan tanpa membuat sebarang andaian mengenai nisbah ralat varians. Penggunaan 

kesemua kaedah yang dicadangkan ditunjukkan dengan menggunakan contoh data set 

yang telah diterbitkan. 
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CHAPTER 1: RESEARCH FRAMEWORK 

 

1.1 Background of the Study 

 

A study of the relationship between variables is a well-researched topic. One simple 

example is the relationship between two variables can be described as the fitting of 

straight lines. The most common method to model the relationship between two variables, 

namely the dependent variable and independent variable, is the linear regression model. 

The standard linear regression model assumes that the independent variables involved are 

measured without error. In contrast, the errors-in-variables model (EIVM) is a regression 

model that takes into account the measurement errors in the independent variables (Koul 

& Song, 2008). Errors could appear in experimental or in individual variability when the 

goal is to estimate the relationships between groups or population. Also, if errors in the 

dependent variables are ignored, the estimators obtained by classical regression are biased 

and inconsistent (Buonaccorsi, 2010).  

Errors-in-variables model (EIVM) or measurement error model (MEM) was first 

introduces by Adcock in 1878 when he wanted to fit a straight line to bivariate data when 

both variables are measured with error. He proposed fitting a straight line can be done by 

minimizing the sum of the squares of the perpendicular distances of the points from fitted 

lines when both variables are subjected with errors and had equal variances. Over the 

years, the study of errors-in-variables model has gained importance and drawn a lot of 

attention among statisticians (Lindley, 1947; Madansky, 1959; Kendall & Stuart, 1979; 

Anderson, 1984; Fuller, 1987; Gillard, 2007). 
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Practical applications of errors-in-variables model are observed in almost every 

discipline such as in biology, ecology, economics, environmental sciences, 

manufacturing and others; for example, in environmental sciences, measuring the level 

of household lead is an error-prone process, not only because of device error but also the 

lead levels are exposed to many other factors such as air, dust, and soil with possibly 

correlated errors (Carroll, 1998). In manufacturing, for example, where sorting the 

manufactured goods to achieve certain standard or tolerance could be quite expensive. 

Thus, the most faster and cheaper test are also subjected to inspection errors (Buonaccorsi, 

2010). An example in epidemiological studies is on diagnostic procedure in a blood test 

or an imaging technique where measurement error will lead to false result in a disease 

status (Buonaccorsi, 2010). Another example is in measuring nutrient intake, 

measurement error could occur in food frequency questionnaires and also in nutrient 

instruments used such as the food records (Carroll, 1998). The cause of coronary heart 

disease due to systolic blood pressure is another example in measurement error that occur 

on observed variability (Carroll, 1998). Most of the variables in these disciplines cannot 

be recorded correctly as mentioned in the examples above. Consequently, ignorance of 

measurement errors directly affects the desirable criteria of an estimator.  

Over the past fifty years, many researchers have been working on the problem of 

estimating the parameters in the linear functional relationship model (LFRM), a subtopic 

in the errors-in-variables model. This model evaluates the relationship between the 

variables, both measured with error. From this point of view, the linear functional 

relationship model is more appropriate than the common linear regression model. Linear 

functional relationship model can be divided to unreplicated and replicated linear 

functional relationship model with certain recommendations (Dorff & Gurland, 1961a). 

The focus of this study is to examine methods of estimating the parameters of these two 

types of models. This includes obtaining estimations when outliers are present. Outliers 
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are observations that lies abnormal distance with the remainder of other observations. 

When estimating parameters for most models, it is worthwhile to note that most of the 

methods in the literature are heavily reliant on the normality assumption. However, when 

outliers are present in the data set, these can lead to errors in parameter estimation. To 

overcome the situation when the outliers exist in the dataset, a robust method is needed 

to estimate the parameter in linear functional relationship model. A robust method is 

referring to the ability of the parameter estimates to remain unaffected even in the 

presence of a single outlier. Thus, in this study, a robust method using the modified 

maximum likelihood method is proposed to estimate the slope parameter in unreplicated 

linear functional relationship model.  

When estimating parameters in the unreplicated linear functional relationship model, 

the ratio of the error variances must be known to obtain the parameter estimate (Lindley, 

1947). However, this is not necessary for a replicated model. The error variances may be 

easily estimated without having the assumption on the ratio of the error variances 

parameters if the replication of the observations is available (Barnett, 1970). The focus of 

this study is the parameter estimation and the covariance matrix of the replicated linear 

functional relationship model for the case balanced observations.  

As mentioned before, the methods available in estimating the parameters are based on 

the normality assumption including for replicated linear functional relationship model. 

To overcome the presence of outliers in the dataset, the robust approach that is considered 

is the nonparametric method. The proposed method is an extension of the idea from Al-

Nasser and Ebrahem (2005) and Ghapor et al. (2015) where the estimate of the slope 

parameter for replicated linear functional relationship model is obtained.  

Another area of the research is a handling the presence of outliers in the datasets. An 

outlier is a point or some points of observation that not follow the pattern of the rest of 
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the observations. Past studies have considered different diagnostic tools to detect outliers 

in the linear functional relationship model; for example, Abdullah (1995) applied 

diagnostic methods in regression analysis to the functional model while Nurunnabi et al. 

(2011) proposed group deleted version to identify outliers. Moreover, Ghapor et al. (2014) 

proposed COVRATIO procedure in detecting a single outlier in unreplicated linear 

functional relationship model. In this study, the idea of COVRATIO statistic, which has 

been used in unreplicated model is extended to replicated linear functional relationship 

model. 

The third area in this study is on grouping the data from unreplicated linear functional 

relationship model into a replicated linear functional relationship model using clustering 

method. This approach may provide a solution when information about ratio of error 

variances from the unreplicated linear functional relationship model is not available.  In 

other words, the idea of clustering can be extended to create groupings and thus can be 

used to estimate the parameters using the replicated linear functional relationship model.  

 

1.2 Problem Statement 

 

Generally, this study addresses three problems in linear functional relationship model 

(LFRM). The first problem is related to unidentifiability problem in estimating the 

parameters of linear functional relationship model. The parameters in linear functional 

relationship model are the intercept 𝛼, the slope 𝛽, two error variances, 𝜎2 and 𝜏2 and 

also the incidental parameters, 𝑋𝑖. Unidentifiability occurs when the number of 

parameters increase in proportion to the number of observations, i. This will lead 

inconsistencies in linear functional relationship model due to the presence of the 
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incidental parameter. Although numerous studies in parameter estimation have been done 

in the past (Lindley, 1947; Kendall, 1952; Villegas, 1961; Moran, 1971; Wong, 1989), 

little attention has been paid to obtain robust slope parameter estimator in linear functional 

relationship model. To overcome this problem, a robust estimator for the slope parameter 

of the unreplicated linear functional relationship model is needed especially in the 

presence of outliers. The replicated model is known to avoid the unidentifiability 

problem. This is because, in the replicated model, as the number of sample sizes increases, 

the number of parameters remains unchanged. As a result, it is necessary to improve the 

method of parameter estimation for replicated linear functional relationship model so that 

all the parameters can be estimated. Here, a robust nonparametric method to estimate the 

slope parameter in replicated linear functional relationship model is considered in the 

presence of the outliers.  

The second part of this study is related to the presence of outliers that are often 

unavoidable. Before making an analysis, it is important to detect outliers as their presence 

in the datasets give an adverse impact on the statistical analysis. Outliers problems in a 

linear regression model and circular regression model have been widely addressed 

(Belsley et al., 1980; Rousseeuw & Leroy, 1987; Maronna et al., 2006; Ibrahim et al., 

2013). In contrast, methods for detecting outliers in replicated linear functional 

relationship model have never been investigated. Finding an appropriate method for 

detecting outliers in a balanced replicated linear functional relationship model has become 

an inevitable requirement.  

The third area in this study is addressing the unidentifiability problem in the linear 

functional relationship model. It needs an assumption or information on the ratio of error 

variances to estimate the parameters. However, this information is not available (Klepper 

& Leamer, 1984). It is worthy to explore if this problem is present in the replicated linear 
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functional relationship model. It is important to overcome this problem so that one can 

find the estimation of all parameters, in particular, the slope parameter. 

 

1.3 Objectives of Research 

 

The main objective of this study is to propose methods of parameter estimation and a 

method to detect and identify outliers in linear functional relationship models. The 

specific objectives are given as follows:  

1. to propose a modified maximum likelihood estimation for the slope parameter 

in unreplicated linear functional relationship model. 

2. to derive the parameter estimator as well as variance-covariance matrix for 

balanced replicated linear functional relationship model. 

3. to develop a new technique using nonparametric method to estimate the slope 

parameter in balanced replicated linear functional relationship model. 

4. to identify the outliers by using the COVRATIO statistic in balanced replicated 

linear functional relationship model. 

5. to propose a new grouping approach using clustering analysis in linear 

functional relationship model. 

 

1.4 Methodology and Flow Chart of Study 

 

In the first part of this study, a detailed literature review is done on the historical 

background, current issues and problems arising on errors-in-variable model, linear 
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functional relationship model, nonparametric methods, outliers, and clustering analysis 

topics. 

From the literature review, a robust method is proposed by modifying the maximum 

likelihood estimation method by assuming the ratio of error variances is equal to estimate 

the slope parameter in unreplicated linear functional relationship model. The performance 

of this method is compared with the existing maximum likelihood estimation method 

through the simulation study with performance measures of estimated bias and mean 

square error are used. Additionally, two data sets are used to illustrate the practical 

application of this method.  

Next, is the parameter estimation for replicated linear functional relationship model. 

The maximum likelihood estimation is considered to estimate the parameters of replicated 

linear functional relationship model for data with balanced observations in each group. 

The estimation of parameters as well as the covariance matrix for the estimated 

parameters are obtained using the Fisher information matrix. A general guideline to group 

the observations is proposed and presented. The performance of the estimated parameters 

is obtained via simulation study using measures of the estimated bias, the mean square 

error and the standard deviation respectively. The applicability of this model is illustrated 

using two data sets. 

Then, a robust nonparametric estimation is developed to estimate the slope parameter 

for the replicated linear functional relationship model which is based on balanced 

observations in every group. Through the simulation study, the robustness of this method 

is compared with the existing maximum likelihood estimation method using measures of 

estimated bias and mean square error. A simulation study is performed and two data sets 

are used to illustrate the application of this method.  
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This is followed by an outlier detection method for the model considered. For outlier 

detection in replicated linear functional relationship model which is based on balanced 

observations in every group, the COVRATIO statistic is considered. A simulation study 

is performed to find the cut-off point. After finding the cut-off point, the power of the 

performance is investigated also through the simulation study. The applicability of the 

proposed method is illustrated using two data sets namely a simulated data set and a real 

data set. 

Finally, the clustering technique is considered to group the observations from 

unreplicated data and then an estimation of the slope parameter is obtained using 

replicated linear functional relationship model. Through a simulation study, the 

estimation of the slope using three different clustering techniques is compared with the 

baseline slope estimation from unreplicated linear functional relationship model by mean 

square error. Also, the applications using a simulated data set and a real dataset are 

illustrated. 

All methods of estimation and outlier detection mentioned above are developed and 

conducted using R programming. R is a free software and open-source. As mentioned 

above, all proposed methods will be validated using simulation study and will be 

illustrated using data sets. Figure 1.1 shows the flow chart of this study.  
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Figure 1.1: Flow chart of the study 

 

 

Literature Review

Development of a robust technique called modified maximum 
likelihood estimation to estimate the slope parameter of 

unreplicated LFRM

Derivation of the parameter estimates as well as variance-
covariance matrix for balanced replicated LFRM

Development of a robust technique using nonparametric 
method to estimate slope parameter of balanced replicated 

LFRM

Propose COVRATIO statistic in detecting outliers for balanced 
replicated LFRM

Propose a new technique for grouping observations from 
unreplicated data using clustering technique Univ
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1.5 Source of Data 

 

In this study, the following data for illustration and application are used. Full data sets 

are given in APPENDICES (APPENDIX A - APPENDIX D). The following are the 

background of the data sets used in this study.  

1) Fat Measurement Data from Goran et al. (1996)   

 
 

The purpose of this study was to examine the accuracy of some widely used body-

composition techniques for children through the use of the dual-energy X-ray 

absorptiometry (DXA) technique. Subjects were children between the ages of 4 and 10 

years. The fat mass measurements taken on the children are by using two techniques; 

skinfold thickness (ST) and bioelectrical resistance (BR). This data set is used in Chapter 

4 and Chapter 7. 

2) Frosted Flakes data from Maindonald and Braun (2010) 
 
 

The purpose of this study was to measure the sugar concentrations (in percentage) 

for approximately 25 g of cereal samples measured by two techniques, namely the high-

performance liquid chromatography (a slow and accurate laboratory method) and a quick 

method using the infra-analyser 400 (IA400). This data set is used in Chapter 3. 

3) Systolic Blood Pressure from Bland and Altman (1999) 

 

 
The purpose of this study was to measure the systolic blood pressure which 

simultaneous measurements were made by two experienced observers denoted as J 

(𝑥𝑖𝑗) and R (𝑦𝑖𝑗). The data set is taken from Bland and Altman (1999). This data set is 

used in Chapter 4 and Chapter 6. 
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4) Iron in Slag Data from Hand et al. (1994) 

The purpose of this study is to measure the iron content of crushed blast-furnace 

slag measured by two different techniques, which are chemical test and magnetic test. 

The data set has 50 observations results of iron content which taken from Hand et al. 

(1994).  This data set is used in Chapter 5. 

 

1.6 Thesis Organization 

 

This thesis is divided into seven chapters. Chapter One briefly introduces the research 

framework which includes the background of errors-in-variables model, followed by 

problem statement, objectives of the study, methodology and the flowchart of the study, 

the source of data and the thesis organization. Chapter Two reviews the literature and 

historical background of the errors-in-variables model. These includes the parameter 

estimation of unreplicated linear functional relationship model and replicated linear 

functional relationship model. Furthermore, discussions on outliers, robust statistics and 

clustering analysis are given. Chapter Three presents the modification of maximum 

likelihood method for unreplicated linear functional relationship model assuming the 

error variance ratio equal one. Chapter Four discusses on maximum likelihood estimation 

to estimate the parameters of replicated linear functional relationship model which is 

based on balanced observations in every group. Chapter Five proposes a robust 

nonparametric method to estimate the slope parameter in balanced replicated linear 

functional relationship model which is based on non-normality assumptions. Chapter Six 

proposes a COVRATIO statistic to detect outliers in the balanced replicated linear 
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functional relationship model. Chapter Seven presents a new technique to estimate the 

slope parameter of replicated linear functional relationship model assuming the 

observations can be grouped from unreplicated linear functional relationship model using 

clustering method. Chapter Eight presents the summary of the study, contribution and 

suggestions for future works. Also, the list of references used in this study is given along 

with the list of publications and oral presentations. Finally, the list of appendices to 

support this work is given at the end of thesis. 
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CHAPTER 2: LITERATURE REVIEWS 

 

2.1 Introduction 

 

This chapter presents literature review that leads to this study. Some fundamental 

concepts are presented related to the development of this study. A brief review on errors-

in-variable model (EIVM) is given in Section 2.2 followed by linear functional 

relationship model (LFRM) in Section 2.3 including the unreplicated model and 

replicated model. Section 2.4 reviews the background information on the topics of outliers 

and robust statistics. Lastly, Section 2.5 review on clustering analysis including the 

similarity measures and agglomerative hierarchical clustering. 

 

2.2 Errors-in-variables Model 

 

Errors-in-variables model has been introduced by Adcock (1878) and become an 

important topic since a century ago. Adcock used the least squares method for the 

estimation of the slope parameter by assuming both variables have equal error variance 

when he investigated the estimation properties in ordinary linear regression models when 

both variables namely independent variable, 𝑥 and dependent variable, 𝑦 are measured 

with errors. However, the study was quite restricted and only focused on equal error 

variances and the method has been known as orthogonal regression. Orthogonal 

regression minimizes the orthogonal distances from the data points to the regression line.    
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A year later, in 1879, Kummel extended Adcock’s study by assuming the ratio of error 

variance is known, but not necessarily equal to one. However, Kummel argued that the 

knowledge of the ratio of error variances is hardly known and the practitioners should 

have sufficient knowledge about the ratio. Extending the work of Adcock, Pearson (1901) 

showed that the slope parameter of orthogonal regression lies between the regression line 

of y on x and x on y. Not until a few years later, the idea of orthogonal regression was 

introduced by Deming's (1931) and this method is often referred to as Deming’s (1931) 

regression. He showed that his method has considered unequal error variances. 

 A different method was proposed by  Wald and Wolfowitz (1940), in estimating the 

slope parameter by dividing the order of explanatory variables into two groups without 

taking any assumption about the error structure. He obtained the slope estimator by 

dividing the observations into two equal groups and finding the group means. Later on, 

Bartlett (1949) extended Wald’s idea by distributing the order of explanatory variables 

into three groups to get a more efficient estimator for the slope. Another grouping method 

of the explanatory variables based on some specific assumptions was suggested by 

Neyman and Scott (1951). Review on grouping methods has been discussed by Madansky 

(1959). Furthermore, Dorff and Gurland (1961b) compared different consistent slope 

estimators on the basis of asymptotic variances in which they obtained from the method 

of grouping.  

Another method in estimating the parameters errors-in-variables model is the 

geometric mean method. This method gives the minimum sum of products of the 

horizontal and vertical distances of the observations from the lines in estimating the slope 

parameter (Teissier, 1948). Geometric mean method had been used extensively in 

fisheries. Further studies on geometric mean method can be found in Jolicoeur (1975) 

(1975) and Barker, Soh, and Evans (1988). 

Univ
ers

iti 
Mala

ya



15 

Numerous studies have used the method of moments to estimate parameters in errors-

in-variables model. Method of moments is one of the superior method if the estimation 

of parameters comes from a known family of probability distribution. In certain cases, 

the estimators from method of moments can be calculated easily compared with the other 

methods. In 1949, Geary introduced the method of moments in errors-in-variables model 

but using cumulants. He also discussed the method of moments for large sample sizes 

from his earlier work (Geary, 1942). Then, in 1951, Drion computed the variance of the 

sample moments and showed that his slope estimate is consistent. Later on, Pal (1980) 

and Montfort (1989) have considered this method in order to achieve the optimal 

estimators using estimators based on higher moment. Recently, Dunn (2004) derived the 

formulas for the slope estimators using a method of moments based on the first and second 

moments. Later, Gillard (2014) described in details that the higher moments have larger 

variance and give some recommendations in estimating the slope parameters. 

The use of maximum likelihood estimation methods in estimating parameters of 

errors-in-variable model was first introduced by Lindley (1947). The maximum 

likelihood estimation is a method that determines values for the parameters of a model by 

maximizing the likelihood of the model. Lindley (1947) showed that the likelihood 

equations are inconsistent and need some prior information on the parameters to solve 

this problem. He also mentioned that the most common assumption is the value of the 

ratio of error variances is known. Later, Bayesian approach in estimating the parameters 

in errors-in-variables model has been suggested by Lindley and El-Sayyad (1968) based 

on prior information. They concluded that the likelihood approach may be misleading in 

some ways. It is worthwhile to note others authors like Birch (1964), Barnett (1970) and 

Wong (1989) have considered the likelihood method to estimate the parameters in order 

to get the consistent estimation.  
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A different approach namely total least square method has been investigated. Total 

least square method minimizes the sum of the squared orthogonal distances from the data. 

Many authors have been explored total least-squares method in estimating the parameters 

of errors-in-variables model (Golub & Van Loan, 1980; Van Huffel & Vandewalle, 1991; 

Van Huffel & Lemmerling, 2002). More least square problems, solutions and applications 

have been discussed by Markovsky and Van Huffel (2007).  

Applications involving errors-in-variables model can be seen in many fields. The 

method of least squares has been commonly used in computational mathematics and 

engineering optimization problem. Another application can be seen in wavelet filtering 

by Gençay and Gradojevic (2011). They indicated that this approach does not require 

instruments and yields unbiased estimates for the intercept and slope parameters although 

this approach still requires a lot more research. Also, O’Driscoll and Ramirez (2011) 

considered the geometric form of errors-in-variables model. They analysed the 

performance of various slope estimators including an adjusted fourth moment estimator 

proposed by Gillard (2014) to remove the jump discontinuity in the estimator of  Copas 

(1972). Other authors, for instance, Doganaksoy and Van Meer (2015) had been used 

errors-in-variable model for assessing performance of the semiconductor devices. 

Nowadays, new technologies have vastly improved data collection resulting in an 

avalanche of data from various discipline such as the financial sectors. In the financial 

sector, data-driven decisions that accelerate innovation, improve customer experience and 

reduce costs are becoming increasingly popular and these would become variables where 

errors-in-variables problems would arise (Mirmozaffari et al. 2021; Sharif, et al. 2019). 

As mentioned by Mirmozaffari et al., (2020), using the errors-in-variable models is 

critical because errors can occur due to datasheet manipulation or the availability of some 

missing values in the data collection.   
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The errors-in-variables model is described as follows: 

 

𝑌 = 𝛼 + 𝛽𝑋 

 

 

where the observations of  𝑋 and 𝑌 are linearly related and the parameter 𝛼 and 𝛽 is the 

intercept and slope parameter respectively. If both observations on 𝑋 and 𝑌 can be 

observed exactly, the value of 𝛼 and 𝛽 can be solved using simultaneous linear equation. 

If only the variable 𝑌 is observed with error, the parameters 𝛼 and 𝛽 can be solved using 

ordinary linear regression. However, if observations on both 𝑋 and 𝑌 are measured with 

error, then the parameters of 𝛼 and 𝛽 need to be solved using errors-in-variables model. 

There are some differences between linear regression model and errors-in-variables 

model. For example, the variables 𝑋 and 𝑌 are symmetric in errors-in-variables model; 

unlike in linear regression model, the variable 𝑋 and 𝑌 is called the independent and 

dependent variables respectively. Another difference is that in errors-in-variables model, 

it allows sampling variability or errors of both variables 𝑋 and 𝑌. Furthermore, errors-in-

variables model can also be considered as an extension of the linear regression model. In 

addition, in errors-in-variables model, there is no distinction between independent and 

dependent variable for 𝑋 and 𝑌. In reality, these two variables 𝑋 and 𝑌 cannot be observed 

directly as their measurements are subject to error.  

As mentioned by Kendall and Stuart (1979), there are three models under the errors-

in-variables model by considering the values of 𝑋𝑖 as follows: 

i) Functional relationship model where 𝑋𝑖 is a mathematical variable or fixed 

constant 𝜇. 
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ii) Structural relationship model where 𝑋𝑖 is a random variable with mean 𝜇 and 

variance 𝜎𝑋2. 

iii) Ultrastructural relationship model where there is a combination of the 

functional and structural relationship as introduced by Dolby (1976). 

However, in practice, applications using data do not differentiate the functional or 

structural model (Sprent, 1990). This study will focus on the functional relationship 

model (LFRM) where the variable 𝑋 is a mathematical variable and the data sets are 

linear. The linear functional relationship model will be discussed in detail in the following 

section. 

 
2.3 Linear Functional Relationship Model 

 

In this section, the focus is on linear functional relationship model which the 

underlying variable 𝑋 is a fixed or deterministic. The variable 𝑋 can be defined as a 

constant and mathematical variable without specific distributional properties (Kendall, 

1952; Fah, Hussin, & Rijal, 2007).  Over the past few decades, numerous authors have 

been working on functional model, a subtopic in errors-in-variables model (Lindley, 

1947; Kendall & Stuart, 1979; Wong, 1989; Gillard & Iles, 2006). Many authors used the 

maximum likelihood estimation method for parameter estimation with the assumption 

that the dependent and independent variables are joint normally and identically 

distributed.  

Let 𝑋𝑖 and 𝑌𝑖 are two mathematical variables that are linearly related as follows: 
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𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 (2.1)  

 

where 𝛼 is the intercept and 𝛽 is the slope parameters. Assume that for each 𝑥𝑖 and 𝑦𝑖 are 

measured with errors 𝛿𝑖 and 𝜀𝑖 instead of 𝑋𝑖 and 𝑌𝑖 respectively and 𝑖 = 1,2, … , 𝑛. Then 

it can be modelled as, 

 

𝑥𝑖 = 𝑋𝑖 + 𝛿𝑖 and 𝑦𝑖 = 𝑌𝑖 + 𝜀𝑖 (2.2)  

 

where the error terms 𝛿𝑖 and 𝜀𝑖 are assumed to be mutually independent and normally 

distributed random variables,  

 

𝛿𝑖~𝑁(0, 𝜎
2) and 𝜀𝑖~𝑁(0, 𝜏2) (2.3)  

 

The above equation (2.3) show that the variances of the error term are not dependent 

on 𝑖 and thus independent of the level of 𝑋 and 𝑌. This implies that 

i) both errors have mean 0, that is 𝐸(𝛿𝑖) = 0 and 𝐸(𝜀𝑖) = 0 where 𝑖 = 1,2, … , 𝑛  

ii) both errors have constant but different variance, that is 𝑉𝑎𝑟(𝛿𝑖) = 𝜎2 and 

𝑉𝑎𝑟(𝜀𝑖) = 𝜏2 where 𝑖 = 1,2, … , 𝑛. 

iii) the errors are uncorrelated, that is 𝐶𝑜𝑣(𝛿𝑖 , 𝛿𝑗) = 0 and 𝐶𝑜𝑣(𝜀𝑖,𝜀𝑗) = 0, where 

𝑖 ≠ 𝑗; 𝑖, 𝑗 = 1,2, … , 𝑛 and 𝐶𝑜𝑣(𝛿𝑖, 𝜀𝑖,) = 0 where 𝑖, 𝑗 = 1,2, … , 𝑛. 
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As given in equation (2.1), (2.2) and (2.3),  there are (𝑛 + 4) parameters which are the 

intercept, 𝛼, the slope, 𝛽, the error variances namely, 𝜎2 and 𝜏2 and also the incidental 

parameters,  𝑋1, 𝑋2, … , 𝑋𝑛 (a vector of nuisance parameters which its dimensions may 

increase depends on the sample size) although those of the primary interest is 𝛽. For this 

type of model, one of the problem arise when the number of observations increase, it 

makes the number of parameters will also increase. In this case, the likelihood function 

is unbounded when there is only a single observation at each point. In order to solve this 

problem, some constraint or condition must be introduced or replicated data needs to be 

acquired.  

Lindley (1947) first used the maximum likelihood estimation to estimate the 

parameter, he proposed that the ratio of two error variances need to be known in order to 

overcome the inconsistencies in the equation. Later, Moberg and Sundberg (1978) 

suggested that certain constraints by making assumptions on the variances and 

covariances of the errors to find the maximum likelihood estimation of parameters in a 

linear functional relationship model with normally distributed errors. The constraints 

include: 

i) 𝑉𝑎𝑟(𝛿𝑖), 𝑉𝑎𝑟(𝜀𝑖) and 𝐶𝑜𝑣(𝛿𝑖, 𝜀𝑖) are all known. 

ii) 𝑉𝑎𝑟(𝜀𝑖)

𝑉𝑎𝑟(𝛿𝑖)
= λ is known and 𝐶𝑜𝑣(𝛿𝑖 , 𝜀𝑖) = 0. 

Another possible solution to overcome the inconsistencies is to obtain replication of 

observations to acquire consistent estimate of parameters in particular for the slope 

estimate 𝛽 (Klepper & Leamer, 1984). The scope of this research is on the estimation of 

the slope parameter, 𝛽, although other parameters may also have important role in linear 

functional relationship model. It is worthwhile to note that as mentioned by Tony Cai and 

Hall (2006), the majority attention usually focuses in estimating the slope parameter, 𝛽 
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compared to the intercept parameter, 𝛼 as from a theoretical point of view, the role of 𝛼 

is minor. For this study,  two situations will be considered, namely, when the ratio of two 

error variances namely λ is known and also when replicated observations are available. 

Dorff and Gurland (1961a) extended the linear functional relationship model into two 

categories which are the unreplicated linear functional relationship model and replicated 

linear functional relationship model. Thus, by considering two situations mentioned 

before, the unreplicated linear functional relationship model is when the ratio of two error 

variances namely λ is known and replicated linear functional relationship model is when 

replicated observations are available. A detailed explanation for both unreplicated and 

replicated are given in subsequent section. 

 

2.3.1 Unreplicated Linear Functional Relationship Model 

 

Maximum likelihood estimation method is the most common method used for 

parameter estimation in linear functional relationship model. The maximum likelihood 

estimation method has certain optimal properties and it is possible to work out the 

asymptotic variance-covariance matrix of the estimators. Consider the log likelihood 

function of the linear functional relationship model below: 

 

log 𝐿(𝛼, 𝛽, 𝜎2, 𝜏2, 𝑋1, … , 𝑋𝑛; 𝑥1, … , 𝑥𝑛,, 𝑦, … , 𝑦𝑛,) = −𝑛 𝑙𝑜𝑔(2𝜋)   

−
𝑛

2
𝑙𝑜𝑔(𝜎2) −

𝑛

2
𝑙𝑜𝑔(𝜏2) −

∑ (𝑥𝑖 − 𝑋𝑖)
2𝑛

𝑖=1

2𝜎2
−
∑ (𝑦𝑖 − 𝛼 − 𝛽𝑋𝑖)

2𝑛
𝑖=1

2𝜏2
 

(2.4) 
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The likelihood function in (2.4) is unbounded by putting 𝑋̂𝑖 = 𝑥𝑖 and will approach 

infinity by considering 𝜎2 approaches to 0, irrespective of the values 𝛼, 𝛽 and 𝜏2. 

Therefore, as mentioned by Lindley (1947), additional constraint is assumed which is 

𝜏2 = λ𝜎2, where λ is known to avoid an unbounded problem in above equation. Thus, 

the log likelihood function becomes 

 

log 𝐿(𝛼, 𝛽, 𝜎2, 𝑋1, … , 𝑋𝑛; λ, 𝑥1, … , 𝑥𝑛,, 𝑦, … , 𝑦𝑛,) = −𝑛 𝑙𝑜𝑔(2𝜋)   

−
𝑛

2
log λ − 𝑛 log(𝜎2) −

∑ (𝑥𝑖 − 𝑋𝑖)
2𝑛

𝑖=1

2𝜎2
−
∑ (𝑦𝑖 − 𝛼 − 𝛽𝑋𝑖)

2𝑛
𝑖=1

2λ𝜎2
 

(2.5) 

 

 

From (2.5) above, there are (𝑛 + 3) parameters to be estimated, which are the intercept 

𝛼, the slope 𝛽, the error variance 𝜎2 and also the incidental parameters 𝑋1, 𝑋2, … , 𝑋𝑛.  The 

parameters 𝛼̂, 𝛽̂, 𝜎̂2 and  𝑋̂𝑖 can be obtained by differentiating log 𝐿 with respect to 

parameters 𝛼, 𝛽, 𝜎2 and  𝑋𝑖. By setting the derivative to zero, the parameters are given 

by 

𝛼̂ = 𝑦̅ − 𝛽̂𝑥̅, (2.6)  

  

𝛽̂ =
(𝑆𝑦

2 − 𝜆𝑆𝑥
2) + √(𝑆𝑦2 − 𝜆𝑆𝑥2)

2
+ 4𝜆𝑆𝑥𝑦2

2𝑆𝑥𝑦
, 

(2.7)  

  

𝜎̂2 =
1

𝑛−2
{∑ (𝑥𝑖 − 𝑋𝑖)

2𝑛
𝑖=1 +

1

𝜆
∑ (𝑦𝑖 − 𝛼̂ − 𝛽̂𝑋𝑖)

2𝑛
𝑖=1 }, (2.8)  
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and 𝑋̂𝑖 =
𝜆𝑥𝑖 + 𝛽 ̂ (𝑦𝑖 − 𝛼̂)

𝜆 + 𝛽̂2
. 

(2.9)  

 

where 𝑦̅ = ∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
 and 𝑥̅ = ∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
  are the sample means of data 𝑥 and 𝑦 respectively,  𝑆𝑥2 

and 𝑆𝑦2  are the sample variances with the equation  𝑆𝑥2 =
∑ (𝑥𝑖−𝑥̅)

2𝑛
𝑖=1

𝑛
, 𝑆𝑦2 =

∑ (𝑦𝑖−𝑦̅)
2𝑛

𝑖=1

𝑛
  and  

𝑆𝑥𝑦 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)
𝑛
𝑖=1

𝑛
  is the sample covariance. 

As mentioned earlier, the interest in this study is getting the estimation of the slope 

parameter, 𝛽. Several methods have been considered in estimating the slope parameters 

in previous studies. Dent (1935) proposed the slope estimator called geometric mean 

functional relationship estimation which has been widely used in fisheries research as 

follows: 

 

𝛽̂ = 𝑆𝑖𝑔𝑛(𝐶𝑜𝑣(𝑥, 𝑦)) {
∑(𝑦𝑖 − 𝑦̅)

2

∑(𝑥𝑖 − 𝑥̅)2
}

1
2

 
(2.10)  

 

Later on,  Sprent (1970) stated the estimator in (2.10) is not usually consistent. He 

suggested that although the underlying symmetry of 𝑥 and 𝑦 from the functional 

relationship model is still maintained, the estimator ignores the unidentifiability problem 

and also assumes normality without knowing the error variance. 

Earlier Wald and Wolfowitz (1940) suggested a computation of arithmetic means by 

arranging the order of the value of 𝑥𝑖 to find consistent estimator of 𝛽 . These values are 

divided into two equal sub-groups namely the lower group of observations called (𝑥̅1, 𝑦̅1) 
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and  upper group of observations called (𝑥̅2, 𝑦̅2). This two-group method has the slope 

parameter estimated by  

 

𝛽̂ =
(𝑦̅2 − 𝑦̅1)

(𝑥̅2 − 𝑥̅1)
 

(2.11)  

 

In addition, Bartlett (1949) extended Wald and Wolfowitz (1940) method by dividing 

the ranked 𝑥𝑖 into three equal groups. If the number of observations has a remainder when 

divided by three, then he will make it approximately equal. Only the lower (𝑥̅1, 𝑦̅1) and 

upper (𝑥̅3, 𝑦̅3) groups are taken to calculate the arithmetic mean while ignoring the middle 

group, and the slope estimated using three-group method as follows, 

 

𝛽̂ =
(𝑦̅3 − 𝑦̅1)

(𝑥̅3 − 𝑥̅1)
 

(2.12)  

 

However, as the upper and lower groups are not necessarily the same when ranked on 𝑦𝑖, 

both methods are not symmetric in 𝑥 and 𝑦. Compared with the two-group method, the 

three-group method is more efficient as its variance does have the smallest possible values 

(Dorff & Gurland, 1961b). Nevertheless, both methods give the consistent estimate of 𝛽 

(Hussin, 2004). To overcome the asymmetrical problem, the arithmetic means also need 

to be calculated based on ranking on 𝑦𝑖. 

Also, Housner and Brennan (1948) arranged 𝑥𝑖 values in ascending order and the 

associated values of 𝑦𝑖 which are not be in ascending order are taken. Although this 
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method gives a consistent estimate of 𝛽, the slope is not symmetric in 𝑥 and 𝑦 (Dorff & 

Gurland, 1961b; Hussin, 2004). The estimate of 𝛽 for this method as follows: 

 

𝛽̂ =
∑ 𝑖(𝑦(𝑖) − 𝑦̅)

∑ 𝑖(𝑥(𝑖) − 𝑥̅)
 

(2.13)  

 

Later, Durbin (1954) proposed his ranking method by first ranking 𝑥’s and 𝑦’s in 

ascending order, on the basis of 𝑥 values. Then, he ranked the 𝑥’s and 𝑦’s in ascending 

order, on the basis of 𝑦 values. This method also gives a consistent estimate of 𝛽 (Hussin, 

2004). The slope estimates using Durbin’s ranking method is given by 

 

𝛽̂ =
∑(𝑥(𝑖) − 𝑥̅)

2
(𝑦(𝑖) − 𝑦̅)

∑(𝑥(𝑖) − 𝑥̅)
3  

(2.14)  

 

Later, the modified least squares method proposed by Cheng and Ness (1994) has the 

assumption that the variance ratio λ = 𝜎2

𝜏2
 is known. The estimation using the proposed 

method is the same as the same estimates in the maximum likelihood estimation method, 

but does not require the normality assumption. The slope estimate is given by 

 

𝛽̂ =
(𝑆𝑦𝑦 − λ𝑆𝑥𝑥) + √((𝑆𝑦𝑦 − λ𝑆𝑥𝑥)

2
+ 4λ𝑆𝑥𝑦2 )

2𝑆𝑥𝑦
 

(2.15)  
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where 𝑆𝑥𝑥 =
1

𝑛
∑ (𝑥𝑖 − 𝑥̅)

2𝑛
𝑖=1 , 𝑆𝑦𝑦 =

1

𝑛
∑ (𝑦𝑖 − 𝑦̅)

2𝑛
𝑖=1  and 𝑆𝑥𝑦 =

1

𝑛
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)
𝑛
𝑖=1  

respectively. 

Also, Al-Nasser and Ebrahem (2005) introduced a nonparametric method which also 

does not require a normality assumption. According to Sprent and Smeeton (2016), there 

are several advantages by using the nonparametric method such as no prior knowledge 

needed on the distribution of the model and also the method is robust in the presence of 

outliers in the dataset. In Al-Nasser and Ebrahem (2005) method, they suggested by 

arranging 𝑥𝑖 values in ascending order and the related values of 𝑦𝑖 which are not be in 

ascending order are taken. In getting the slope parameter, he then finds the median of all 

slopes after listing down all the possible paired of slopes.  

Later, Ghapor et al. (2015) extended Al-Nasser and Ebrahem (2005) method by adding 

one step which is also arranging 𝑦𝑖 values in ascending order and the related values of 𝑥𝑖 

which are not be in ascending order are taken. The same procedure with the additional 

step for getting a slope parameter is applied as the Al-Nasser and Ebrahem method which 

is also using the median.  

 

2.3.2 Replicated Linear Functional Relationship Model 

 

In unreplicated linear functional relationship model, all the parameters cannot be 

estimated consistently. This is due to the fact that when the number of observations 

increases, the number of parameters will also increase. Unless some additional 

information is available such as the ratio of the error variances is known. However, as 

mentioned by Klepper and Leamer (1984) the additional information is either not 
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available or is not widely shared by researchers in the field and such problem can be 

avoided if this information can be derived from the sample itself.  Replicated observations 

can be used to get the estimate error variances of the linear functional relationship model 

on the true values of the study and the explanatory variables are available. Furthermore, 

replication of observations allows consistent estimation when the ratio of error variances 

is unknown. This is due to the fact that when the number of observations increase, the 

number of parameters is still fixed and not increase. 

Works on the topic of replication for different model have been discussed in the 

literature.  The most detailed study by Dorff and Gurland (1961a) who compared various 

consistent slope estimators in terms of their asymptotic variances for both unreplicated 

and replicated model. The estimators are derived from the method of grouping and share 

properties with other estimators used in the unreplicated case. As mentioned by Kendall 

and Stuart (1979), the unidentifiability problem of the unreplicated model can be 

overcome by using some properties of replicated errors. Dolby (1976) derived the 

maximum likelihood estimators of the slope parameter by synthesizing linear functional 

and linear structural model called the ultrastructural model. Further development on the 

ultrastructural relationship model can be seen in Shalabh, Paudel, and Kumar (2009) 

where they proposed consistent estimation of parameters in replicated ultrastructural 

relationship model. They also derived the asymptotic efficiency properties of the 

estimators. Singh, Jain, and Sharma (2012) proposed replicated ultrastructural consistent 

estimators by assuming some prior information available regarding regression 

coefficients in the form of stochastic linear restriction and in 2014, in other form called 

exact linear restrictions (Singh, Jain, & Sharma, 2014). 

In linear structural relationship model, Chan and Mak (1979) derived the maximum 

likelihood estimators of the slope parameter and showed that the estimator is consistent 
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when the number of replicates increase. Isogawa (1985b) has discussed on the replicated 

case in multivariate linear structural relationship model and derived the asymptotic 

covariance matrix. In the same year, she also investigated and concluded that the 

generalized least-squares method is asymptotically efficient with replicated observations 

(Isogawa, 1985a). She then continued her works on linear structural relationship model 

for unpaired and unequally replicated observation by considering five models with 

different types of the error variances (Isogawa, 1992). 

The early work on replicated linear functional relationship model can be found on 

Barnett (1970). The maximum likelihood estimation in replicated linear functional 

relationship model was derived when considering the alternate models for different error 

structures that might be applicable in biological and medical field of research. However, 

he mentioned that there was no closed form can be found and iterative solution might be 

needed. Although he gave few ideas to start the iteration process, he also mentioned that 

the replicated linear functional relationship model can be explored in terms of iterative 

procedure and initial point estimate. Further works can be found for nonlinear replicated 

linear functional relationship model (Dolby and Lipton 1972) and for unpaired and 

unequally replicated data in linear functional relationship model by giving some 

recommendations on five different models depending on the error variances (Dolby et al. 

1987). Hussin (2005) and Mokhtar et al. (2017) have discussed the parameter estimation 

for the replicated linear functional relationship model on circular variables. 

Assume that 𝑋𝑖 and 𝑌𝑖 are two random variables, there may be replicated observations 

of 𝑋𝑖 and 𝑌𝑖  occurring in p groups. A linear relationship between 𝑋𝑖  and 𝑌𝑖  are given by 

 

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 (2.16) 

Univ
ers

iti 
Mala

ya



29 

  

where 𝑥𝑖𝑗 = 𝑋𝑖 + 𝛿𝑖𝑗  and 𝑦𝑖𝑘 = 𝑌𝑖 + 𝜀𝑖𝑘 (2.17)  

 

for 𝑖 = 1,2,⋯ , 𝑝 , 𝑗 = 1,2,⋯ ,𝑚𝑖 and 𝑘 = 1,2,⋯ , 𝑛𝑖. The errors terms are  𝛿𝑖𝑗 and 𝜀𝑖𝑘 

follow normal distribution with mean zero and variance 𝜎2 and  𝜏2 respectively i.e. 

𝛿𝑖𝑗~𝑁(0, 𝜎
2) and 𝜀𝑖𝑘~𝑁(0, 𝜏2).  This implies that 

i) both errors have mean 0, that is 𝐸(𝛿𝑖𝑗) = 0 and 𝐸(𝜀𝑖𝑘) = 0 where                      

𝑖 = 1,2, … , 𝑝 and  𝑗 = 1,2,⋯ ,𝑚𝑖 and 𝑘 = 1,2,⋯ , 𝑛𝑖. 

ii) both errors have constant but different variance, that is 𝑉𝑎𝑟(𝛿𝑖𝑗) = 𝜎2 and 

𝑉𝑎𝑟(𝜀𝑖𝑘) = 𝜏
2 where  𝑖 = 1,2, … , 𝑝 and 𝑗 = 1,2,⋯ ,𝑚𝑖 and 𝑘 = 1,2,⋯ , 𝑛𝑖. 

 

The estimation of parameter may be obtained by maximum likelihood estimation 

which involves some iterative procedures. In this case, the log likelihood function can be 

expressed as 

 

log 𝐿 (𝛼, 𝛽, 𝜎2, 𝜏2, 𝑋1, … , 𝑋𝑝; 𝑥𝑖𝑗 , 𝑦𝑖𝑘) = −
1

2
(∑ 𝑚𝑖

𝑝

𝑖=1
+∑ 𝑛𝑖

𝑝

𝑖=1
) log 2𝜋 

(2.18) 

 

−
1

2
(∑ 𝑚𝑖

𝑝

𝑖=1
log 𝜎2 +∑ 𝑛𝑖

𝑝

𝑖=1
log 𝜏2) 

 

−
1

2
{∑ ∑

(𝑥𝑖𝑗 − 𝑋𝑖)
2

𝜎2

𝑚𝑖

𝑗=1

𝑝

𝑖=1
+∑ ∑

(𝑦𝑖𝑘 − 𝛼 − 𝛽𝑋𝑖)
2

𝜏2

𝑛𝑖

𝑘=1

𝑝

𝑖=1
} 
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There are (𝑝 + 4) parameters to be estimated which are the intercept 𝛼, the slope 𝛽, 

the error variances 𝜎2 and 𝜏2 and also the incidental parameters 𝑋1, 𝑋2, … , 𝑋𝑝. These 

parameters may be obtained by differentiating the log likelihood function as given in 

(2.18) with respect to 𝛼̂, 𝛽̂, 𝜎̂2, 𝜏̂2 and 𝑋̂𝑖  respectively and equating to zero. As mentioned 

by Barnett (1970), the closed form solution for these parameters are not available. Thus, 

to overcome this, the iterative method is used instead. Thus, the parameters can be 

obtained in order given by 

 

𝑋̂𝑖 =
1

∆̂
{
𝑚𝑖𝑥̅𝑖.
𝜎̂2

+
𝑛𝑖𝛽̂

𝜏̂2
(𝑦̅𝑖. − 𝛼̂)}, 

(2.19)  

  

𝜎̂2 =
∑ ∑ (𝑥𝑖𝑗 − 𝑋̂𝑖)

2𝑚𝑖
𝑗=1

𝑝
𝑖=1

∑ 𝑚𝑖
𝑝
𝑖=1

, 
(2.20) 

  

𝜏̂2 =
∑ ∑ (𝑦𝑖𝑘 − 𝛼̂ − 𝛽̂𝑋̂𝑖)

2𝑛𝑖
𝑘=1

𝑝
𝑖=1

∑ 𝑛𝑖
𝑝
𝑖=1

, 
(2.21) 

  

𝛼̂ =
∑ 𝑛𝑖(𝑦̅𝑖. − 𝛽̂𝑋̂𝑖)
𝑝
𝑖=1

∑ 𝑛𝑖
𝑝
𝑖=1

, 
(2.22) 

  

and  

𝛽̂ =
∑ 𝑛𝑖𝑋̂𝑖(𝑦̅𝑖. − 𝛼̂)
𝑝
𝑖=1

∑ 𝑛𝑖𝑋̂𝑖
2𝑝

𝑖=1

 
(2.23) 

 

  

where 𝑥̅𝑖. =
∑ 𝑥𝑖𝑗
𝑚𝑖
𝑗=1

𝑚𝑖
 , 𝑦̅𝑖. =

∑ 𝑦𝑖𝑘
𝑛𝑖
𝑘=1

𝑛𝑖
  and  ∆̂𝑖=

𝑚𝑖

𝜎̂2
+
𝑛𝑖𝛽̂

2

𝜏̂2
 .   
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Note that 𝑥̅𝑖. and 𝑦̅𝑖. are the sample means in each group. However, the iteration procedures 

that have been described by Barnett (1970) are not very ideal. Thus, an improvement to 

this model is needed to find the values of the estimated parameters. 

 

2.4 Outliers and Robust Statistics 

 

In this section, a briefly explanation about two situations in the data set which give a 

major impact in the analysis. The first situation is the existence of outliers and the second 

is the procedure or method called robust statistics that cater the outliers in the data set. 

 

2.4.1 Outliers 

 

The observation is considered as an outlier if it does not follow any pattern with the 

remainder of the other observations. The possibility of these observations become outliers 

need to be checked thoroughly. Outliers become a common problem and may occur as 

the results of misplaced decimal points, mistakes in keypunch and mistakes in sampling 

the population. Outlier can happen when the observations in an experiment is incorrectly 

observed or recorded or data set is mistakenly entered in the computer (Cateni et al., 

2008). The issue of outliers has received considerable critical attention among 

researchers. Outliers should be identified on the basis of their potential effect on the 

estimation of the parameters, the precision of the estimated parameters and also the 

overall predictive capacity of the model. As quoted by Hampel et al., (2011), “A routine 
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data set typically contains about 1-10% outliers and even the highest quality data set 

cannot be guaranteed free of outliers”.   

Numerous authors have considered outliers in linear model such as Montgomery, 

Peck, and Vinning (2012), Hussin et al. (2013) and Satman (2013). In linear regression 

model, there are different types of outliers which depends on the location of one 

observation or a few observations that give an impact on the model. First, the 𝑦-outlier or 

widely known as influential observation happen if the parameter estimates change 

significantly when a point is removed from the calculation. Next, is the 𝑥-outlier or the 

leverage point which occur if the point has a greater ability to move the regression line. 

Residual outlier on the other hand happens when a point has a large standardized 

(deletion) residual. These outliers may result in substantial changes to the parameter 

estimates and prediction of the model. As mentioned by Chatterjee and Hadi (1988), there 

is interrelationship among influential observation with high leverage points and residual 

outliers.  

Several outlier diagnostics are available in the literature for linear regression including 

Cook’s distance, Difference in fits (DIFFITS), Difference in Beta (DFBETA), 

Covariance Ratio (COVRATIO) and others. Most of the ideas of finding influential 

observations in regression are developed on the basis of deleting the observations one 

after another and measuring their effects on various aspects of the model. One example, 

Cook (1979)  introduced the Cook’s Distance, 𝐶𝐷𝑖. The Cook’s distance measure how 

much the parameter estimates change when a point is remove from the calculation. It is 

given by 

𝐶𝐷𝑖 =
(𝛽̂(−𝑖) − 𝛽̂)

𝑇
(𝑋𝑇𝑋)(𝛽̂(−𝑖) − 𝛽̂)

𝑘𝜎̂2
 

(2.24) 
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where 𝛽̂(−𝑖) is the estimated parameter of 𝛽 when the 𝑖th observation is deleted, and 𝑘 are 

independent variables in the model. 

  DFFITS is usually used in regression model to show the influential point. A low 

leverage point can be detected from a small value of DIFFITS. This measure is defined 

as:  

 

𝐷𝐹𝐹𝐼𝑇𝑆𝑖 =
𝑦̂𝑖 − 𝑦̂𝑖

(−𝑖)

𝜎̂(𝑖)√ℎ𝑖𝑖
 for 𝑖 = 1,2, … , 𝑛 

(2.25) 

 

where 𝑦̂𝑖
(−𝑖) are fitted responds, 𝜎̂(𝑖) are the estimated standard error when the 𝑖th 

observation is deleted and ℎ𝑖𝑖 is the leverage.  

 Meanwhile, DFBETA is used to measure the change in each parameter estimate. It is 

given by 

 

𝐷𝐹𝐵𝐸𝑇𝐴𝑆𝑗 =
𝑏𝑗 − 𝑏(𝑖)𝑗

𝑠(𝑖)√(𝑋′𝑋)𝑗𝑗
 

(2.26) 

 

where (𝑋′𝑋)𝑗𝑗 is the (𝑗, 𝑗)𝑡ℎ elements of (𝑋′𝑋)−1. The DFBETAS is calculated by 

deleting the 𝑖th observation and the large value of DFBETAS showed that the 

observations are influential. 

On the other hand, another diagnostic outlier that is usually used in regression 

modelling is the COVRATIO which has been introduced by Belsley et al. (1980). 
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COVRATIO statistic identify the change in the determinant of the covariance matrix of 

the estimates by deleting the 𝑖𝑡ℎ observation and is defined by  

 

𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) =
|𝐶𝑂𝑉|

|𝐶𝑂𝑉(−𝑖)|
 

(2.27) 

 

where |𝐶𝑂𝑉| is the determinant of covariance matrix of full data set and |𝐶𝑂𝑉(−𝑖)| is that 

of the reduced data set by excluding the 𝑖𝑡ℎ row. If the ratio is close to the one, this means 

that there is no significant difference between the covariance matrices. This means, the 

observation is consistent with the other observations (Ghapor et al., 2014).  

 Ibrahim et al. (2013) and Rambli et al.  (2016) used COVRATIO procedure in 

identifying outliers in circular regression model namely JS circular regression model and 

DM circular regression model respectively. Moreover, several authors have been used 

COVRATIO statistic in errors-in-variables model focusing on circular data. For example, 

Hussin et al. (2010) proposed COVRATIO statistic in circular functional relationship 

model. Later, Hussin and Abuzaid (2012)  used COVRATIO statistic in circular functional 

relationship model by transforming the circular data using complex form and Mamun et 

al. (2019) in unreplicated linear structural relationship model. Recently, Mokhtar et al. 

(2022) and Mokhtar et al. (2019) have been applied COVRATIO statistic for circular 

linear functional relationship model for data in United Kingdom and Malaysia 

respectively. However, in linear functional relationship model, methods of identifying 

outliers are somewhat limited. Ghapor et al. (2014) has been used the COVRATIO statistic 

in detecting the outliers for unreplicated linear functional relationship model. Noting the 

wide applicability of COVRATIO statistic, it will be considered in replicated linear 
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functional relationship model in detecting outliers. Furthermore, its popularity may be 

due to its simplicity. A detailed discussion is given in Chapter 6. 

 

2.4.2 Robust Statistics 

 

Robust statistics is needed to address the outlier problems in data set. In the traditional 

procedures, one has to follow the assumptions in order to perform well with no departures. 

However, with the presence of outliers, this is not possible as it results in spuria estimates. 

On the other hand, the robust procedures can work more efficiently compared to the 

traditional procedures when there is a small departure from them. The term robustness 

refers to the lack of sensitivity relating to small deviations from the assumptions. This 

means the use of robust statistics is to manage with outliers by keeping the effects of their 

presence minimal. 

 There is a large amount of literature available for robust statistics. However, much of 

the current literature on robust statistics pays particular attention on linear regression 

(Rousseeuw & Leroy, 1987; Maronna et al., 2006; Hampel et al., 2011). The main 

application of robust techniques in a regression problem is to develop estimators that are 

not strongly affected by the presence of the outliers. There a few authors have been 

discussed the robust statistics in errors-in-variable model; for example, Zamar (1989) 

proposed orthogonal M-estimators for the no-equation error model and found that the M-

estimators is robust when the measurement errors are elliptically distributed. In structural 

errors-in-variable model; Fekri and Ruiz-Gazen (2004) proposed robust weighted 

orthogonal regression and K. M. Jung (2007) proposed an orthogonal least trimmed 

squares (OLTS) estimator and showed that the proposed estimates are robust and 
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efficient. Recently, Mamun et al., (2020) proposed a modified maximum likelihood 

estimators in linear structural relationship model. In this study, the works of Mamun et 

al., (2020) will be considered in the unreplicated linear functional relationship model to 

find the robust estimator in the presence of outliers. A detailed explanation is given in 

Chapter 3. 

As mentioned earlier, there is a relatively small body of literature that is concerned 

with robust statistics in linear functional relationship model. Abdullah (1989) proposed 

some median-based estimators in linear functional model and showed Theil-type 

estimators and the modified L1-norm estimators are found to robust. In 2005, Al-Nasser 

and Ebrahem established a nonparametric method using median to estimate slope 

parameter and showed that his proposed method is more robust than modified least 

squares, repeated median, geometric mean and Housner and Brennan's (1948) estimator. 

Also, Ghapor et al. (2015) added another step in Al-Nasser and Ebrahem (2005) method 

to estimate the slope parameters and showed that the proposed method is more robust 

than that of Al-Nasser and Ebrahem method. Thus, in this study, the robust technique 

using the nonparametric method will be explored in replicated linear functional 

relationship model in estimating the slope parameter and will be discussed in detail in 

Chapter 5. 

 

2.5 Cluster Analysis 

 

Clustering is a mathematical technique to create or classify groups of similar 

observations into subsets or cluster based upon a specific algorithm. The algorithms’ 

objective is to make the observations under the same group or cluster are similar to each 
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other while the observations in different group or cluster are dissimilar from entities in 

another. Clustering analysis dates back in the 1960s in the field of biology by endorsing 

the idea of biological taxonomy and also by considering different aspects of cluster 

analysis techniques (Sokal, 1963). Since then, many authors have been used clustering 

analysis by different name such as numerical taxonomy in biology, Q analysis in 

psychology, unsupervised pattern recognition in artificial intelligence and also 

segmentation in marketing (Everitt et al. 2011). The discussion on clustering analysis 

namely the meaning of clustering, the clustering methods and the used of software can be 

found in Blashfield and Aldenderfer (1978). They also commented on future development 

in cluster analysis by mentioning that consolidation between diverse fields of study is 

possible, although it is unlikely to occur for a variety of reasons. More on the fundamental 

concepts and techniques can be found in Jain, Murty, and Flynn

 Johnson and Wichern (2015) mentioned that the objective of clustering is to discover 

the natural groupings of the variables or the observations. In other words, there is no 

assumption about the number of groups and the groups are established based on 

similarities or dissimilarities of the observations. It is necessary to cluster the data when 

there is no other information or labelled available on the data (Warren Liao, 2005). 

Clustering is a subjective process in grouping observations based on their similarity 

measure (Jain et al., 1999). Cluster analysis has been applied to understand data from 

diverse fields such as in biology, astronomy, social sciences, marketing, geography and 

many more (Blashfield & Albenderfer, 1978; Everitt et al., 2011; Hartigan, 1975). As 

mentioned by Kaufman and Rousseeuw (1990), clustering have been used in different 

fields of studies such as in marketing by identifying market segments, in geography by 

grouping the regions, in history by grouping the archeology findings to name a few. Jain 

et al. (1999) have discussed cluster analysis in the form of the pattern representation, 

similarity computation, grouping process and cluster representation. The application of 
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cluster analysis can be seen in many disciplines such as in astronomy, biomedical, data 

science and many other disciplines (Hartigan, 1975). For example, in biomedical study, 

clustering can be used in microarray gene expression, MRI data analysis, genomic 

sequence analysis and many others (Xu & Wunsch, 2010). Warren Liao (2005) had listed 

all datasets used in his survey with several applications in business, engineering, 

medicine, entertainment and others. 

Clustering methods can be divided into two categories namely the hierarchical and 

non-hierarchical methods. Agglomerative and divisive are the two different classes under 

hierarchical methods while partitioning, density-based and grid-based are different types 

under non-hierarchical methods. Each of these methods offers different perspectives on 

the discovering natural groups in data and the results obtained can be very different when 

different methods are applied on the same data (Everitt et al., 2011).   

Another application can be seen in the formed of data reduction, data summarization, 

prediction based on groups, finding the nearest neighbours and also in outlier detection 

(Y. Jung et al., 2003; Van Aelst et al., 2006; Partovi Nia & Davison, 2015; Mokhtar et 

al., 2017). As mentioned earlier, several authors have been used clustering analysis in 

their model. Van Aelst et al. (2006) proposed a method called linear grouping algorithm 

using orthogonal regression to determine the number of groups in data in which can be 

used in linear functional relationship model. Y. Jung et al. (2003) proposed a method to 

measure clustering optimality quantitatively with a purpose to use it to determine an 

optimal number of clusters in various clustering algorithms. Mokhtar et al. (2017) used 

clustering in identifying the multiple outliers in functional relationship model for circular 

data. Partovi Nia and Davison (2015) proposed a method based on a mixture model using 

hierarchical clustering to cluster the replicated and unreplicated data. 
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2.5.1 Similarity Measure 

 

As defined by Sebert et al., (1998), cluster analysis begins by taking a set of n 

observations on p variables where a similarity measure between observations is obtained 

based on their inter-observation similarities. There are two primary decisions before 

applying the clustering algorithms namely the measure of similarity to use and also which 

the clustering algorithm to use. There are four types of similarity measure to group the 

variables or observations into their own groups namely correlation coefficient, distances 

measures, association coefficients and probabilistic similarity coefficients (Blashfield & 

Aldenderfer, 1978). 

The most commonly used to compute the distances measures is based on metric 

function. The purpose of the metric function is to give some ways to measure the 

observations and their distance in order to decide which elements belong to a group. There 

are several ways to compute the distance between any pair of points or observations such 

as the Euclidean distance, the Manhattan distance, the Minkowski distance, Mahalanobis 

distance and many other distances (Di & Satari, 2017; Murtagh & Contreras, 2012). The 

Euclidean distance is the most popular common distances measures and also referred 

straight-line distance which can be defined as  

 

𝑑𝑖𝑗 = √∑(𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2

𝑝

𝑘=1

 

(2.28)  
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where 𝑑𝑖𝑗 is the distance between 𝑖 and 𝑗, and 𝑥𝑖𝑘 is the value of the 𝑘th variable for the 

𝑖th observation and 𝑥𝑗𝑘 is the value of the 𝑘th variable for the 𝑗th observation where        

𝑖 = 1,2, … , 𝑑 and 𝑗 = 1,2, … , 𝑑. 

Another type of measurement distance is the Manhattan distance, or known as a city-

block metric. It represents the distance between points in a city road grid, which is defined 

as  

 

𝑑𝑖𝑗 =∑|𝑥𝑖𝑘 − 𝑥𝑗𝑘|
𝑟

𝑝

𝑘=1

 
(2.29)  

 

where 𝑑𝑖𝑗 is the distance between 𝑖 and 𝑗, and 𝑥𝑖𝑘 is the value of the 𝑘th variable for the 

𝑖th observation and 𝑥𝑗𝑘 is the value of the 𝑘th variable for the 𝑗th observation where        

𝑖 = 1,2, … , 𝑑 and 𝑗 = 1,2, … , 𝑑. 

The Minkowski distance is a special class of metric distance because it is a 

generalisation of the Euclidean and Manhattan distance with different values of 𝑟. The 

Minkowski distance can be defined as 

 

𝑑𝑖𝑗 = (∑|𝑥𝑖𝑘 − 𝑥𝑗𝑘|
𝑟

𝑝

𝑘=1

)

1
𝑟

 

(2.30)  

 

where 𝑑𝑖𝑗 is the distance between 𝑖 and 𝑗, and 𝑥𝑖𝑘 is the value of the 𝑘th variable for the 

𝑖th observation and 𝑥𝑗𝑘 is the value of the 𝑘th variable for the 𝑗th observation where 𝑖 =
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1,2, … , 𝑑 and 𝑗 = 1,2, … , 𝑑. If 𝑟 = 1, this distance becomes the Manhattan distance and 

if 𝑟 = 2, the distance becomes the Euclidean distance. 

Alternatively, the other distance is called Mahalanobis distance or known as 

generalized distance that accounts for the correlations among variables in a way that 

weights each variable equally which is defined as  

 

𝑑𝑖𝑗 = (𝑋𝑖 − 𝑋𝑗)∑ (𝑋𝑖 − 𝑋𝑗)
−1

 (2.31)  

 

where ∑ −1 is the pooled within-groups variance-covariance matrix, and 𝑋𝑖 and 𝑋𝑗 are 

vectors of the values of the variables for observation i and j.  

In this study, the Euclidean distance will be used as the similarity measure as defined 

in (2.28) because not only it is frequently used but simple to apply and widely recognized 

when grouping multivariate observations (Everitt et al., 2011; Johnson & Wichern, 2015).  

The characteristic in Euclidean distance is that the relatively small distance should 

separate similar observations, whereas a relatively larger distance should separate 

dissimilar observations. 

 

2.5.2 Agglomerative Hierarchical Clustering  

 

Hierarchical clustering is the most popular used algorithm as it is simple and easy to 

use (Dasgupta & Long, 2005). In hierarchical clustering, there is no prior specification of 

the number of clusters as it does not require to pre-specify the number of clusters to be 
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generated. The hierarchical cluster works on similarity matrix to construct a tree 

representing specified relationship between observations by dividing the observations 

into two groups, that is the agglomerative and the divisive.  

The agglomerative methods build tree from branches to root, while the divisive 

methods begin at the root and work toward the branches. The agglomerative hierarchical 

method starts with a series of successive merging between individual observations as 

clusters. First, the most similar objects are grouped initially based on their similarity 

measure. As the similarity decreases, in the end, all the subgroups are fused into a single 

cluster. These clusters are permanently merged together or nested. As for the divisive 

hierarchical methods, the initial group consist of all the objects. Then, the group are 

divided into two subgroups in a such the observations in one group are distant from the 

observations in the other. The process of division will continue until there are many 

subgroups of the observations. The results from both the agglomerative and divisive 

hierarchical clustering may be displayed in the form of a dendogram or usually define as 

the tree diagram. Figure 2.1 shows an example of the dendogram that illustrates the root 

and branches in a hierarchical clustering.  

 

 

Figure 2.1 Illustration of branches and root in hierarchical clustering 

BRANCHES 

ROOT 
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From Figure 2.1, each connected observations forms a cluster by cutting the 

dendogram at the desired level or by setting the termination condition. The termination 

conditions and stopping rule had been reviewed by Milligan and Cooper (1985) and Y. 

Jung et al. (2003). Murtagh and Contreras (2012) reviewed the hierarchical clustering and 

gave some recommendations on algorithmic aspects and computational properties. 

According to Kaufman and Rousseeuw (1990), there are several major clustering 

techniques in agglomerative hierarchical clustering and are summarized as follows: 

1. Single linkage method defines as the similarity between clusters as the shortest 

distance from any object in one cluster to any object in the second cluster. 

2. Complete linkage method defines as the similarity between clusters as the largest 

distance from any object in one cluster to any object in the second cluster. 

3. Average linkage method defines as the similarity between clusters as the average 

distance from any object in one cluster to any object in the second cluster. 

4. Centroid method used the similarity between two clusters is the distance between 

the cluster centroids.  

5. Ward’s method used the similarity between two clusters is the sum of squares 

within the clusters summed over all variables. 

In this study, the agglomerative hierarchical clustering namely the single linkage, the 

average linkage and the complete linkage will be considered as the method of grouping 

the data from unreplicated data to the replicated data. The number of group or cluster will 

be used as the termination condition. A detail discussion on this topic is given in Chapter 

7. 
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2.6 Table of Summary 

 

Table 2.1 and Table 2.2 showed some of the main authors and their findings that have 

been frequently used in this research including the parameter estimation in linear 

functional relationship model and outlier detection using COVRATIO statistic. 

 

Table 2.1 Literature Review on Linear Functional Relationship Model 

Author 

(Year) 

Title Main Findings 

Lindley 

(1947) 

Regression Lines and the Linear 

Functional Relationship 

Proposed the ratio of error 

variances need to be known in 

order to overcome the 

inconsistencies in linear 

functional relationship model.  

Dorff and 

Gurland 

(1961) 

Estimation of the Parameters of a 

Linear Functional Relation 

Compared various consistent 

slope estimators for both 

unreplicated and replicated 

linear functional relationship 

model.  

Barnett 

(1970) 

Fitting Straight Lines – The Linear 

Functional Relationship with 

Replicated Observations 

Derived maximum likelihood 

estimation method in replicated 

linear functional relationship 

model but the model can be 

improved by choosing another 
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suitable initial value and 

iteration process. 

Dolby et al. 

(1987) 

On Fitting Bivariate Functional 

Relationships to Unpaired and 

Unequally Replicated Data  

Proposed unpaired and 

unequally replicated linear 

functional relationship model 

based on error variances. 

Hussin et al. 

(2005) 

Pseudo-replicates in the Linear 

Circular Functional Relationship 

Model 

Derived the parameter 

estimation using maximum 

likelihood estimation method 

for replicated circular 

functional relationship model. 

Mokhtar et al. 

(2017) 

On Parameter Estimation of a 

Replicated Linear Functional 

Relationship Model for Circular 

Variables. 

Proposed estimation of the 

rotation parameter in replicated 

linear functional relationship 

model on circular variables. 
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Table 2.2 Literature Review on Outlier Detection using COVRATIO statistic 

Author 

(Year) 

Title Findings 

Belsley et al. 

(1980) 

Identifying Influential Data and 

Sources of Collinearity 

Introduced COVRATIO statistic 

in regression modelling. 

Hussin et al. 

(2010) 

Asymptotic Covariance and 

Detection of Influential Observations 

in Linear Functional Relationship 

Model for Circular Data with 

Application to the Measurements of 

Wind Directions. 

Proposed outlier detection 

method using COVRATIO 

statistic in a linear functional 

relationship model for circular 

data. 

Abuzaid et al. 

(2011) 

COVRATIO Statistic for Simple 

Circular Regression Model 

Proposed outlier detection 

method using COVRATIO 

statistic in simple circular 

regression model. 

Ibrahim et al. 

(2013) 

Outlier Detection in a Circular 

Regression Model using COVRATIO 

Statistic 

Proposed outlier detection 

method using COVRATIO 

statistic in JS circular 

regression model. 

Ghapor et al. 

(2014) 

On Detecting Outlier in Simple 

Linear Functional Relationship 

Model using COVRATIO Statistic 

Proposed outlier detection 

using COVRATIO statistic in 

unreplicated linear functional 

relationship model. 

Rambli et al. 

(2016) 

Outlier Detection in a Circular 

Regression Model 

Proposed outlier detection 

using COVRATIO statistic in 

DM circular regression model. 
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Mamun et al. 

(2019)  

Identification of Influential 

Observation in Linear Structural 

Relationship Model with Known 

Slope 

Proposed outlier detection 

method using COVRATIO 

statistic in unreplicated linear 

structural relationship model. 

Mokhtar et al. 

(2019) 

An Outlier Detection Method for 

Circular Linear Functional 

Relationship Model using 

COVRATIO Statistic 

Proposed outlier detection 

method using COVRATIO 

statistic in a linear functional 

relationship model for circular 

data with equal error 

concentration parameters. 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

iti 
Mala

ya



48 

CHAPTER 3: MODIFIED MAXIMUM LIKELIHOOD ESTIMATION FOR 

THE SLOPE PARAMETERS OF UNREPLICATED LINEAR FUNCTIONAL 

RELATIONSHIP MODEL 

 

3.1 Introduction 

 

In this chapter, a modified maximum likelihood estimation method for the unreplicated 

linear functional relationship model (LFRM) is proposed. In this case, the ratio of error 

variances is assumed known and equal to one (λ = 𝜏2

𝜎2
= 1). The motivation of this 

proposed method is to introduce a robust method in the estimation of the slope parameter 

in the presence of outliers. This chapter aims to address the first objective of the study 

namely to develop a modified maximum likelihood estimation for the slope parameter in 

unreplicated linear functional relationship model particularly in the presence of outliers. 

The organization of the chapter is as follows. In Section 3.2, the parameter estimation 

using the traditional method namely the maximum likelihood estimation method is 

discussed. The modified maximum likelihood estimation method is proposed and 

described in detail in the Section 3.3. In order to measure the robustness of the maximum 

likelihood method and modified maximum likelihood method, simulation studies are 

carried out in Section 3.4. The results and discussion are presented in Section 3.5. In 

Section 3.6, practical examples using real datasets are also presented. Summary and 

conclusions are given in Section 3.7. 
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3.2 Maximum Likelihood Estimation Method 

 

As mentioned earlier, this section describes the maximum likelihood method to 

estimate parameters in linear functional relationship model in the case of known error 

variance ratio, namely 𝜏2 = 𝜆𝜎2 and the value of the ratio, 𝜆 is equal to one (Lindley, 

1947).  

Suppose 𝑋𝑖 and 𝑌𝑖 are linearly related but observed with error with the equation 

 

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 (3.1) 

 

where 𝛼 is the intercept parameter and 𝛽 is the slope parameter. Assume that for each 𝑥𝑖 

and 𝑦𝑖 are subjected to errors 𝛿𝑖 and 𝜀𝑖 instead of 𝑋𝑖 and 𝑌𝑖 respectively and 𝑖 = 1,2, … , 𝑛. 

Then it can be modelled as, 

 

𝑥𝑖 = 𝑋𝑖 + 𝛿𝑖 and 𝑦𝑖 = 𝑌𝑖 + 𝜀𝑖 (3.2) 

 

The error terms 𝛿𝑖 and 𝜀𝑖 are assumed to be mutually independent and normally 

distributed random variables, that is,  𝛿𝑖~𝑁(0, 𝜎2) and 𝜀𝑖~𝑁(0, 𝜏2). This model is also 

known as unreplicated linear functional relationship model since there is only a single 

observation for each level 𝑖 with the assumption the ratio of error variances is equal to 

one, that is 𝜆 = 1 . 
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The log-likelihood function for the parameters of unreplicated linear functional 

relationship model can be written as 

 

log 𝐿(𝛼, 𝛽, 𝜎2, 𝑋1, … , 𝑋𝑛; λ, 𝑥1, … , 𝑥𝑛,, 𝑦, … , 𝑦𝑛,) =   

−𝑛 𝑙𝑜𝑔(2𝜋) −
𝑛

2
log λ − 𝑛 log(𝜎2) −

∑(𝑥𝑖 − 𝑋𝑖)
2

2𝜎2
−
∑(𝑦𝑖 − 𝛼 − 𝛽𝑋𝑖)

2

2λ𝜎2
 

(3.3) 

 

 

There are (𝑛 +3) parameters to be estimated which are the intercept, 𝛼, the slope, 𝛽, 

the error variance, 𝜎2, and the incidental parameters, 𝑋1,⋯ , 𝑋𝑛, as in (3.3). However, in 

this study, our primary interest is on the slope parameter, 𝛽, and thus is the scope of the 

study. These parameters in unreplicated linear functional relationship model may be 

obtained by differentiating the log likelihood function with respect to 𝛼, 𝛽, 𝜎2 

and 𝑋𝑖  respectively and equating to zero. Thus, the estimates 𝛼̂, 𝛽̂, 𝜎̂2 and 𝑋̂𝑖   can be 

obtained given by 

 

𝛼̂ = 𝑦̅ − 𝛽̂𝑥̅, (3.4) 

  

𝛽̂ =
(𝑆𝑦

2 − 𝜆𝑆𝑥
2) + √(𝑆𝑦2 − 𝜆𝑆𝑥2)

2
+ 4𝜆𝑆𝑥𝑦2

2𝑆𝑥𝑦
, 

(3.5) 

 

  

𝜎̂2 =
1

𝑛−2
{∑ (𝑥𝑖 − 𝑋𝑖)

2𝑛
𝑖=1 +

1

𝜆
∑ (𝑦𝑖 − 𝛼̂ − 𝛽̂𝑋𝑖)

2𝑛
𝑖=1 }, and (3.6) 
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𝑋̂𝑖 =
𝜆𝑥𝑖 + 𝛽 ̂ (𝑦𝑖 − 𝛼̂)

𝜆 + 𝛽̂2
 

(3.7) 

  

where 𝑆𝑥2 =
∑ (𝑥𝑖−𝑥̅)

2𝑛
𝑖=1

𝑛
, 𝑆𝑦2 =

∑ (𝑦𝑖−𝑦̅)
2𝑛

𝑖=1

𝑛
  and  𝑆𝑥𝑦 =

∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)
𝑛
𝑖=1

𝑛
  respectively. 

 

However, the presence of outliers will affect the parameter estimation of unreplicated 

linear functional relationship model especially the slope parameter (Al-Nasser & 

Ebrahem, 2005; Ghapor et al., 2015). From (3.5), the equation of the slope parameter are 

depending on the sample mean, the sample variance and the sample covariance which are 

sensitive to the outliers even a single outlier (Maronna et al., 2006).  Thus, a robust 

method is needed to overcome this problem. 

 

3.3 Modified Maximum Likelihood Estimation Method 

 

As mentioned earlier, it is important to modify parameter estimation using maximum 

likelihood estimation method when outliers are present in dataset. In this section, a 

modification to the estimation of the slope parameter of the unreplicated linear functional 

relationship model is proposed. For this model, the ratio of error variances is known and 

is equal to one, λ = 𝜏2

𝜎2
= 1, to overcome the unidentifiability problem in linear functional 

relationship model.  

It is well established that standard statistics such as sample mean, sample variance and 

sample covariance in the original parameter estimation are not robust to outliers, thus the 

modification is deemed necessary. Several authors modified the classical estimators by 
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modifying the traditional method with robust estimators (Koláček, 2008; Liu, 2012). The 

proposed method namely the modified maximum likelihood estimation method should be 

able to produce a reasonable estimate even in the presence of outliers. Although the 

proposed method has been used in linear structural relationship model (LSRM) in 

estimating the intercept and the slope parameters (Mamun et al., 2020), the differences 

between both linear structural relationship model (LSRM) and linear functional 

relationship model (LFRM) is the incidental parameter where in linear structural 

relationship model, 𝑋𝑖  is random but in linear functional relationship model, the 𝑋𝑖  is 

fixed. Thus, by getting the robust estimator of the slope, 𝛽, the other parameters also can 

be estimated such as the intercept, 𝛼, the error variance, 𝜎̂2, and the incidental parameter, 

𝑋𝑖 in the presence of outliers although our primary interest is the slope parameter, 𝛽, of 

unreplicated linear functional relationship model. The aim of robust methods is to ensure 

high stability of statistical inference under the deviations from the assumed distribution 

model (Shevlyakov & Smirnov, 2011).  In short, in order to overcome the outlier problem, 

a modified maximum likelihood estimation (MMLE) method by replacing the usual 

estimators with robust estimator is proposed.  

The following are the estimates. For measure of central tendency, it is well established 

that median is more robust measure than mean. Thus, in this study, it is proposed that the 

sample mean is replaced by the sample median instead and denoted as follows:  

 

𝑥̅𝑅𝑜𝑏 = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑥), 𝑦̅𝑅𝑜𝑏 = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑦) (3.8) 

 

and the sample variances are replaced by a robust estimator,𝑄𝑛 .  
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{𝑄𝑛(𝑥)}
2 = 𝑆𝑥

2(𝑅𝑜𝑏), {𝑄𝑛(𝑦)}
2 = 𝑆𝑦

2(𝑅𝑜𝑏) (3.9) 

where, 

𝑄𝑛(𝑥) = 1.0483{|𝑥𝑖 − 𝑥𝑗; 𝑖 < 𝑗|}
(𝑘)
, 𝑄𝑛(𝑦) = 1.0483{|𝑦𝑖 − 𝑦𝑗; 𝑖 < 𝑗|}

(𝑘)
  

  

and 𝑘 = (
ℎ
2
) ≈ (

𝑛
2
) 4⁄   where  ℎ = (𝑛 2⁄ )+1 is a roughly half the number of observations.  

The robust estimator, 𝑄𝑛 is suitable for asymmetric distribution and with a 50% 

breakdown point (Rousseeuw and Croux, 1993).  

The sample covariance 𝑆𝑥𝑦 is denoted by 𝑆𝑥𝑦(𝑅𝑜𝑏), in which,   

 

𝑆𝑥𝑦(𝑅𝑜𝑏) = 𝑟𝑄𝑛 × 𝑆𝑥(𝑅𝑜𝑏) × 𝑆𝑦(𝑅𝑜𝑏) (3.10) 

 

where  𝑟𝑄𝑛 is the robust correlation coefficient proposed by Shevlyakov and Smirnov  

(2011) and  defined as 

 

𝑟𝑄𝑛 =
{𝑄𝑛(𝑢)}

2 − {𝑄𝑛(𝑣)}
2

{𝑄𝑛(𝑢)}2 + {𝑄𝑛(𝑣)}2
 

(3.11) 

 

where u and v are the robust principle defined as  

𝑢 =
𝑥−𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)

√2 𝑄𝑛(𝑥)
+
𝑦−𝑚𝑒𝑑𝑖𝑎𝑛(𝑦)

√2 𝑄𝑛(𝑦)
  and 𝑣 = 𝑥−𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)

√2 𝑄𝑛(𝑥)
−
𝑦−𝑚𝑒𝑑𝑖𝑎𝑛(𝑦)

√2 𝑄𝑛(𝑦)
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In order to obtain the modified maximum likelihood estimation for the slope of 

unreplicated linear functional relationship model, the original estimators in maximum 

likelihood estimation is replaced by the robust estimators as mentioned above. Thus, the 

new slope, 𝛽̂𝑀𝑀𝐿𝐸, is as follows: 

 

𝛽̂𝑀𝑀𝐿𝐸

=
(𝑆𝑦

2(𝑅𝑜𝑏) − 𝜆𝑆𝑥
2(𝑅𝑜𝑏)) + √(𝑆𝑦

2(𝑅𝑜𝑏) − 𝜆𝑆𝑥
2(𝑅𝑜𝑏))

2
+ 4𝜆𝑆𝑥𝑦

2 (𝑅𝑜𝑏)

2𝑆𝑥𝑦(𝑅𝑜𝑏)
 

(3.12) 

 

 

As a reference, Mamun et al. (2020) proposed a modified maximum likelihood 

estimation method but for a LSRM instead. 

 

3.4 Simulation Studies 

 

Simulation studies was carried out using the R software in order to evaluate the 

performance of the proposed method namely the modified maximum likelihood 

estimation method, together with the existing method, namely the maximum likelihood 

estimation method, for unreplicated linear functional relationship model in the presence 

of the outliers. The study begins by simulating the data from unreplicated linear functional 

relationship model given by: 

 

𝑥𝑖 = 𝑋𝑖 + 𝛿𝑖   ,    𝑦𝑖 = 𝑌𝑖 + 𝜀𝑖 (3.13)  
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and 𝑌𝑖 = 1 + 𝑋𝑖 (3.14) 

 

where  𝑋𝑖 = 10
𝑖

𝑛
  , 𝑖 = 1,⋯ , 𝑛 and 𝑋𝑖 is a fixed constant. The error terms 𝛿𝑖 and 𝜀𝑖 , both 

are taken from Normal distribution with mean 0 and variances 0.1; 𝛿𝑖~𝑁(0,0.1) and 

𝜀𝑖~𝑁(0,0.1).   

As mentioned by Hampel et al. (2011), the data set could contain about 1% to 10% 

outliers although in some literature, authors consider outliers up to 50% to obtain robust 

parameters. However, this study considered data with no outlier, a single outlier, 10%, 

20% and 30% outliers respectively. The rationale is, if the data set consists of more than 

50% outliers, then it will be hard to differentiate between the actual observations and the 

outliers. According to Al-Nasser and Ebrahem (2005), to contaminate data points, for 

example at point c for variable y can be done by using the relationship, 

 

𝑦𝑐 = 1 + 𝑋𝑐 + 𝜀𝑐 where 𝜀𝑐~𝑁(𝜇, 𝜎2). (3.15)  

 

In this study, the error term 𝜀𝑐 is taken from Normal distribution with mean 0 and variance 

25; 𝜀𝑐~𝑁(0,25) and has replaced the original observations, y with contaminated 

observations, 𝑦𝑐.  

In each trials, sample size of 20,50,80 and 100 are generated using relationship in 

equation (3.13) and (3.14). In order to investigate the robustness of proposed method, the 

error terms 𝛿𝑖 and 𝜀𝑖 are generated from non-normal distribution namely beta distribution. 

The probability density function of the beta distribution as follows: 
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𝑓(𝑥) =
1

𝐵(𝑎, 𝑏)
𝑥(𝑎−1)(1 − 𝑥)(𝑏−1), 0 ≤ 𝑥 ≤ 1 

(3.16)  

 

where a and b are two positive shape parameters, and 𝐵(𝑎, 𝑏) can be defined as the beta 

function. In this study, three different beta distributions are considered namely beta 

distribution with parameters (2,9) for right-skewed case, beta distribution with parameters 

(9,2) for left-skewed case and beta distribution with parameters (3,3) for non-normal 

symmetric case. The graph of probability density function for the parameters mentioned 

above can be shown in the Figure 3.1 below. 

 

 

Figure 3.1 The Probability Density Function for Beta Distribution 

 

The performance used in the simulation study is based on estimated bias (EB) and 

mean square error (MSE) using 10000 trials. The estimated bias and the mean square 

error are defined by 

Beta(2,9) 

Beta(3,3) 

Beta(9,2) 
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Estimated Bias, EB= |𝑤̂ − 𝑤| and  (3.17)  

  

Mean Square Error, MSE= 1

𝑠
∑(𝑤̂𝑗 − 𝑤)

2
 (3.18) 

  

where 𝑤 be a generic term for the parameters and 𝑠 is a number of simulation. 

 

3.5 Results and Discussion 

 

  Results of the performance based on estimated bias of the proposed method namely 

modified maximum likelihood estimation method and the traditional method, maximum 

likelihood estimation method in estimating the slope parameter are shown in Table 3.1-

Table 3.4 respectively. From the simulation results in Table 3.1, when the error terms are 

from the Normal distribution i.e. for the normal case,  there is no much difference between 

the maximum likelihood estimation method and the modified maximum likelihood 

estimation method in estimating the slope parameter when the data free from outlier. The 

estimated bias (EB) of the proposed method, modified maximum likelihood estimation 

method and the traditional method, maximum likelihood estimation method is somewhat 

similar to each other. However, when a single outlier or multiple outliers present, the 

estimated bias for modified maximum likelihood estimation method is less than the 

maximum likelihood estimation method in estimating the slope parameter as the sample 

size increases from 20 to 100. Similar results can be observed for non-normal distribution 

which in this case is from beta distribution namely the right skewed case, the left skewed 

case and the non-normal symmetric case with parameter (2,9), (9,2) and (3,3) as shown 

in Table 3.2, Table 3.3 and Table 3.4 respectively. This shows that the modified maximum 

likelihood estimation method is a superior method in estimating the slope parameter 
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compared to the maximum likelihood estimation method in the presence of outliers even 

though there is a single outlier presence in the dataset. 

 

Table 3.1 Estimated Bias of the Slope: Normal Case: Normal (0,0.1) 

Outliers Method 𝑛 = 20 𝑛 = 50 𝑛 = 80 𝑛 = 100 

No 

outlier 

MLE 1.9350E-04 9.7890E-06 2.9262E-05 2.3213E-05 

MMLE 1.5991E-03 1.8946E-04 5.6520E-05 7.5797E-06 

Single MLE 6.6469E+00 8.0430E-01 3.9753E-01 2.9533E-01 

 MMLE 6.5918E-02 2.2669E-02 1.4304E-02 1.1466E-02 

10% MLE 1.2604E+01 1.2657E+01 1.2658E+01 1.2662E+01 

 MMLE 1.0215E-01 9.0805E-02 8.7843E-02 8.6883E-02 

20% MLE 6.3234E+00 6.3293E+00 6.3301E+00 6.3306E+00 

 MMLE 1.3382E-01 1.1291E-01 1.0572E-01 1.0373E-01 

30% MLE 5.6076E+00 5.6116E+00 5.6118E+00 5.6120E+00 

 MMLE 1.3367E-01 1.1297E-01 1.0577E-01 1.0372E-01 
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Table 3.2 Estimated Bias of the Slope: Right Skewed Case: Beta (2,9) 

Outliers Method 𝑛 = 20 𝑛 = 50 𝑛 = 80 𝑛 = 100 

No 

outlier 

MLE 2.8112E-04 3.9492E-05 9.8312E-05 4.9143E-05 

MMLE 8.8786E-05 9.5760E-05 2.7095E-04 3.2893E-05 

Single MLE 6.6657E+00 8.0454E-01 3.9744E-01 2.9536E-01 

 MMLE 6.5428E-02 2.2729E-02 1.4505E-02 1.1401E-02 

10% MLE 1.2610E+01 1.2658E+01 1.2668E+01 1.2664E+01 

 MMLE 1.0296E-01 9.0423E-02 8.8167E-02 8.6928E-02 

20% MLE 6.3216E+00 6.3287E+00 6.3301E+00 6.3300E+00 

 MMLE 1.3496E-01 1.1297E-01 1.0626E-01 1.0379E-01 

30% MLE 5.6072E+00 5.6113E+00 5.6118E+00 5.6121E+00 

 MMLE 1.3478E-01 1.1307E-01 1.0647E-01 1.0398E-01 

 

Table 3.3 Estimated Bias of the Slope: Left Skewed Case: Beta (9,2) 

Outliers Method 𝑛 = 20 𝑛 = 50 𝑛 = 80 𝑛 = 100 

No 

outlier 

MLE 2.0058E-04 6.4640E-05 9.5621E-05 6.4618E-05 

MMLE 7.3848E-04 1.2247E-04 3.1907E-04 1.2004E-05 

Single MLE 6.6626E+00 8.0419E-01 3.9744E-01 2.9536E-01 

 MMLE 6.6007E-02 2.2718E-02 1.3905E-02 1.1440E-02 

10% MLE 1.2609E+01 1.2663E+01 1.2658E+01 1.2663E+01 

 MMLE 1.0346E-01 9.0591E-02 8.7590E-02 8.6925E-02 

20% MLE 6.3220E+00 6.3306E+00 6.3304E+00 6.3313E+00 

 MMLE 1.3562E-01 1.1315E-01 1.0602E-01 1.0396E-01 

30% MLE 5.6076E+00 5.6122E+00 5.6122E+00 5.6124E+00 

 MMLE 1.3574E-01 1.1339E-01 1.0591E-01 1.0383E-01 
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Table 3.4 Estimated Bias of the Slope: Non-normal Symmetric Case: Beta(3,3) 

Outliers Method 𝑛 = 20 𝑛 = 50 𝑛 = 80 𝑛 = 100 

No outlier 

MLE 2.9325E-04 3.1923E-04 3.2210E-05 8.1810E-05 

MMLE 4.7079E-04 3.7636E-04 1.8625E-04 2.0192E-04 

Single MLE 6.7192E+00 8.0589E-01 3.9743E-01 2.9541E-01 

 MMLE 5.6750E-02 2.3240E-02 1.4433E-02 1.1609E-02 

10% MLE 1.2694E+01 1.2702E+01 1.2683E+01 1.2688E+01 

 MMLE 1.0164E-01 9.1176E-02 8.8394E-02 8.7403E-02 

20% MLE 6.3266E+00 6.3312E+00 6.3315E+00 6.3326E+00 

 MMLE 1.4725E-01 1.1567E-01 1.0918E-01 1.0699E-01 

30% MLE 5.6094E+00 5.6128E+00 5.6128E+00 5.6127E+00 

 MMLE 1.4865E-01 1.1648E-01 1.0933E-01 1.0701E-01 

 

As mentioned earlier, another performance measure of mean square error is also used. 

Looking at Table 3.5 when the error terms are taken from normal distribution, the mean 

square error (MSE) of traditional method and the proposed method give similar result 

when no outlier exists in the dataset. However, when contamination level increase, the 

mean square error of the slope estimator using maximum likelihood estimation method 

becomes larger. The modified maximum likelihood estimation method, on the other hand, 

the mean square error is consistently small even when the presence of the outliers 

increase. This is true for all sample size considered. The values of the mean square error 

for the proposed modified maximum likelihood estimation method, gave smaller values 

than the maximum likelihood estimation method as sample size increase from 20 to 100. 

From Table 3.6, Table 3.7 and Table 3.8, the same can be said for other cases in which 

Univ
ers

iti 
Mala

ya



61 

when the error terms are taken from beta distribution namely the right-skewed case, beta 

(2,9), the left-skewed case, beta (9,2) and the non-normal symmetric case, beta (3,3) 

respectively. 

 

Table 3.5 Mean Square Error of the Slope: Normal Case: Normal (0,0.1) 

Outliers Method 𝑛 = 20 𝑛 = 50 𝑛 = 80 𝑛 = 100 

No outlier 

MLE 1.1826E-04 4.7859E-05 3.0419E-05 2.4422E-05 

MMLE 1.3623E-03 2.0496E-04 1.0386E-04 7.4214E-05 

Single MLE 4.4369E+01 6.4742E-01 1.5815E-01 8.7298E-02 

 MMLE 5.6066E-03 7.2873E-04 3.1114E-04 2.0728E-04 

10% MLE 1.5929E+02 1.6038E+02 1.6035E+02 1.6043E+02 

 MMLE 1.1688E-02 8.4999E-03 7.8489E-03 7.6427E-03 

20% MLE 3.9998E+01 4.0067E+01 4.0076E+01 4.0083E+01 

 MMLE 1.9302E-02 1.3047E-02 1.1331E-02 1.0874E-02 

30% MLE 3.1452E+01 3.1495E+01 3.1496E+01 3.1498E+01 

 MMLE 1.9355E-02 1.3104E-02 1.1367E-02 1.0893E-02 
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Table 3.6 Mean Square Error of the Slope: Right Skewed Case: Beta (2,9) 

Outliers Method 𝑛 = 20 𝑛 = 50 𝑛 = 80 𝑛 = 100 

No outlier 

MLE 1.5092E-04 6.0035E-05 3.6931E-05 2.9451E-05 

MMLE 1.4451E-03 2.3408E-04 1.1825E-04 8.3231E-05 

Single MLE 4.4655E+01 6.4791E-01 1.5811E-01 8.7330E-02 

 MMLE 5.6643E-03 7.5974E-04 3.3243E-04 2.1643E-04 

10% MLE 1.5954E+02 1.6046E+02 1.6063E+02 1.6049E+02 

 MMLE 1.1955E-02 8.4699E-03 7.9225E-03 7.6647E-03 

20% MLE 3.9977E+01 4.0061E+01 4.0077E+01 4.0075E+01 

 MMLE 1.9705E-02 1.3110E-02 1.1468E-02 1.0901E-02 

30% MLE 3.1447E+01 3.1491E+01 3.1496E+01 3.1500E+01 

 MMLE 1.9745E-02 1.3185E-02 1.1545E-02 1.0967E-02 

 

Table 3.7 Mean Square Error of the Slope: Left Skewed Case: Beta (9,2) 

Outliers Method 𝑛 = 20 𝑛 = 50 𝑛 = 80 𝑛 = 100 

No outlier 

MLE 1.4864E-04 6.0281E-05 3.7803E-05 2.9657E-05 

MMLE 1.4429E-03 2.2892E-04 1.1736E-04 8.3353E-05 

Single MLE 4.4632E+01 6.4736E-01 1.5812E-01 8.7332E-02 

 MMLE 5.7167E-03 7.5616E-04 3.1524E-04 2.1725E-04 

10% MLE 1.5950E+02 1.6055E+02 1.6038E+02 1.6046E+02 

 MMLE 1.2020E-02 8.4988E-03 7.8198E-03 7.6656E-03 

20% MLE 3.9981E+01 4.0085E+01 4.0081E+01 4.0092E+01 

 MMLE 1.9864E-02 1.3149E-02 1.1418E-02 1.0934E-02 

30% MLE 3.1452E+01 3.1502E+01 3.1501E+01 3.1503E+01 

 MMLE 1.9989E-02 1.3256E-02 1.1425E-02 1.0934E-02 
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Table 3.8 Mean Square Error of the Slope: Non-normal Symmetric Case: Beta (3,3) 

Outliers Method 𝑛 = 20 𝑛 = 50 𝑛 = 80 𝑛 = 100 

No outlier 

MLE 4.2920E-04 1.6923E-04 1.0738E-04 8.5749E-05 

MMLE 1.8457E-03 4.9125E-04 2.6520E-04 1.9990E-04 

Single MLE 4.5832E+01 6.5115E-01 1.5838E-01 8.7519E-02 

 MMLE 5.2842E-03 1.0558E-03 4.8380E-04 3.4056E-04 

10% MLE 1.6268E+02 1.6196E+02 1.6123E+02 1.6128E+02 

 MMLE 1.2622E-02 8.9414E-03 8.1435E-03 7.8925E-03 

20% MLE 4.0058E+01 4.0100E+01 4.0099E+01 4.0112E+01 

 MMLE 2.4455E-02 1.4130E-02 1.2325E-02 1.1748E-02 

30% MLE 3.1480E+01 3.1511E+01 3.1509E+01 3.1508E+01 

 MMLE 2.5161E-02 1.4451E-02 1.2453E-02 1.1822E-02 

 

To summarize, based on the simulation studies, the proposed method is a robust 

estimator in the presence of outliers, unlike the maximum likelihood estimation method. 

It can be concluded that reasonable and satisfactory results obtained from simulation 

studies where smaller estimated bias and mean square error for all of the cases when the 

error terms are taken from the normal as well as the non-normal distributions. This shows 

that the proposed method, modified maximum likelihood estimation method is a better 

method in estimating the slope parameter compared to maximum likelihood estimation 

method in the presence of outliers.  
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3.6 Examples 

 

In this section, two datasets are considered to examine the performance of the modified 

maximum likelihood estimation method. The measurement error is assumed to occur in 

either or both variables of this experiment from two datasets in order to apply the 

relationship as in model (3.1).  

 

3.6.1 Fat Mass Measurements Data 

 

The Fat Mass Measurements Data taken from Goran et al. (1996) is considered. The 

data consists of 96 fat mass measurements taken on the children by using two techniques 

namely the skinfold thickness (ST), 𝑋𝑖 and bioelectrical resistance (BR), 𝑌𝑖. The 

measurement error is assumed to occur in both variables. In unreplicated linear functional 

relationship model, the assumption on ratio of error variances, 𝜆 = 1 is made to estimate 

the parameters namely the intercept, 𝛼, the slope, 𝛽  and the error variance, 𝜎2. A detailed 

description of the data is given in APPENDIX A. The scatter plot of the skinfold thickness 

(ST) and the bioelectrical resistance (BR) given in Figure 3.2. 
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Figure 3.2 The scatter plot of skinfold thickness (ST) and bioelectrical resistance 
(BR) 

 

As illustrated in Figure 3.2, there exists a linear relationship between these variables 

and it appears no outliers in the dataset. The data can be modelled by    

 

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖  

 

for 𝑖 = 1,2,⋯ ,96 where 𝛼 is the intercept parameter and 𝛽 is the slope parameter. 

For the unreplicated linear functional relationship model, when the error variance ratio 

is equal to one, λ = 𝜏2

𝜎2
= 1, the estimated value of the parameters, 𝛼̂, 𝛽̂ and  

𝜎̂2  using the maximum likelihood method as in (3.4), (3.5) and (3.6) respectively are 

given in Table 3.9. 
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Table 3.9 Estimated value of parameters of unreplicated LFRM for Fat Mass 
Measurements data 

Parameters of unreplicated LFRM Estimated value 

𝛼̂ 0.0787 

𝛽̂    1.0997 

𝜎̂2    1.0817 

 

Since the original data do not contain any outlier, the original data is modified 

following Kim (2000) and Imon and Hadi (2008) by inserting a few outliers to create 

different cases namely a single outlier, 10%, 20% and 30% outliers. Both the maximum 

likelihood estimation method and modified maximum likelihood estimation method are 

applied to estimate the parameters of unreplicated linear functional relationship model on 

Fat Mass Measurements data and also on modified data. The results are shown in Table 

3.10. 

 

Table 3.10 Estimated parameters and standard deviations using two different 
techniques in Fat Mass Measurements data 

Method MLE MMLE 
 Estimator/ 
Contamination Slope 

Standard 
deviation Slope 

Standard 
deviation 

No outlier 
 1.0997 0.0578 1.2013 0.0635 
Single outlier 
 1.5145 0.2884 1.2358 0.2282 
10% 
 12.2850 13.9307 1.4881 0.7053 
20% 
 81.1245 360.9368 2.0876 1.6520 
30% 
 72.0512 193.7029 2.8885 1.6452 
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The estimated value of the slope parameter and standard deviation using maximum 

likelihood estimation method and modified maximum likelihood estimation method is 

given in Table 3.10. When the data do not have any outliers, the slope parameter for 

modified maximum likelihood estimation method is slightly difference but comparable 

to the maximum likelihood estimation method. When the outliers are introduced in the 

data, the slope parameter in maximum likelihood estimation method breaks down quickly 

with the increase in the percentage of outliers while the modified maximum likelihood 

estimation method is not much affected by the existence of outliers.  

 

3.6.2 Frosted Flakes Data 

 

The second example is the frosted flakes data taken from Maindonald and Braun  

(2010). The data set consisted 100 observations of sugar concentrations (in percentage) 

for approximately 25 g of cereal samples measured by two techniques, namely the high-

performance liquid chromatography (a slow and accurate laboratory method), 𝑋𝑖 and a 

quick method using the infra-analyser 400 (IA400), 𝑌𝑖. A detailed description of the data 

can be found in APPENDIX B. The data can be modelled by   

 

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖  
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for 𝑖 = 1,2,⋯ ,100 where 𝛼 is the intercept parameter and 𝛽 is the slope parameter. The 

relationship between the two methods (when the data contains no outlier) used to measure 

the sugar content in the cereal samples is illustrated in the scatter plot shown below. 

 

Figure 3.3 The scatter plot for laboratory method (Lab) and a method using the 
infra-analyser 400 (IA400) 

 

As illustrated in Figure 3.3, there exists a linear relationship between these variables 

and it appears no outliers in the dataset. For the unreplicated linear functional relationship 

model, when the error variance ratio is equal to one,  λ = 1, the estimated value of the 

intercept, the slope and the error variance parameters using the maximum likelihood 

method is given in Table 3.11. 
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Table 3.11 Estimated value of parameters of unreplicated LFRM for Frosted Flakes 
data 

Parameters of unreplicated LFRM Estimated value 

𝛼̂ 0.0787 

𝛽̂    1.0997 

𝜎̂2    1.0817 

 

Similar to the previous example, the original data do not contain any outlier. The 

original data is modified following Kim (2000) and Imon and Hadi (2008) by inserting a 

few outliers to create different cases namely single outlier, 10%, 20% and 30% outliers. 

Both the maximum likelihood estimation method and modified maximum likelihood 

estimation method are applied to estimate the parameters of unreplicated linear functional 

relationship model on these data and the results are shown in Table 3.12. 

 

Table 3.12 Estimated parameters and standard deviations using two different 
methods from frosted flakes data 

Method MLE MMLE 
 Estimator/ 
Contamination Slope 

Standard 
deviation Slope 

Standard 
deviation 

No outlier       1.1857 0.1602 1.0838 0.1456 

Single outlier 1.3603 0.2662 1.0837 0.2075 

10% 8.2811 6.0860 1.4204 0.5249 

20% 18.1940 14.0503 1.7692 0.4887 

30% 79.2880 184.0266 2.5095 1.1153 
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Table 3.12 shows the advantage of using modified maximum likelihood estimation 

method. When the data has no outlier, the slope estimate using modified maximum 

likelihood estimation method is quite similar to the maximum likelihood estimation 

method. However, when the data has outlier from a single outlier to 30% outliers, the 

slope estimate and standard deviations using maximum likelihood estimation method 

becomes huge and break down completely. The proposed modified maximum likelihood 

estimation method is not affected by the increasing in the percentage of outliers. 

 

3.7 Summary and Conclusions 

 

This chapter proposes a modified maximum likelihood method based on the normality 

assumption for estimating the slope parameters of the unreplicated linear functional 

relationship model in the presence of outliers. In this model, the assumption is made on 

the ratio of error variances. The value of the ratio of error variances is equal to one, λ = 1 

to overcome the unidentifiability problem. As the slope parameter in unreplicated linear 

functional relationship model is depending on the value of sample variances and the 

sample covariance which are known sensitive to outliers, the robust method is needed to 

overcome this problem. In the simulation study, several distributions for the error terms 

are considered, namely the symmetric and non-symmetric distributions. Different 

situations regarding the percentages of outliers in dataset also considered. The 

performance of the proposed method is evaluated using the estimated bias and the mean 

square error. In all the cases considered, the results of the simulation study provide 

numerical evidence of the advantages of the modified maximum likelihood estimation 

method when outliers are present in the data. For practical illustrations, two datasets are 

used using the two methods. From both simulation studies and examples, it can be 
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summarized that the maximum likelihood estimation method performs better when the 

data has no outlier. However, when there is an outlier present from as low as a single 

outlier to 30% outliers in the data, the maximum likelihood estimation method breaks 

down completely. On the other hand, the modified maximum likelihood estimation 

method performs very well in every cases. These results indicate that the proposed 

method is superior if there is a single outlier presence in the dataset. In conclusion, the 

proposed modified maximum likelihood estimation method is able to produce satisfactory 

results and provides a good alternative to the standard maximum likelihood estimator. 

Thus, the robust method called the modified maximum likelihood estimation method can 

be used to estimate the slope parameters of unreplicated linear functional relationship 

model in the presence of outliers. In general, the study has contributed to the body of 

knowledge on studies of parameter estimation of unreplicated linear functional 

relationship model. The implication of the finding is that a robust estimate of the 

parameter can be obtained without much mathematical complexity. 
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CHAPTER 4: PARAMETER ESTIMATION FOR REPLICATED LINEAR 

FUNCTIONAL RELATIONSHIP MODEL 

 

4.1 Introduction 

 

Unlike the previous chapter, this chapter discusses on another model namely the 

replicated linear functional relationship model where derivation of the estimation of 

parameters as well as the variance-covariance matrix is obtained. The replicated linear 

functional relationship model in this chapter is focused on balanced observations in each 

group and thus the scope of the study. The motivation of this study is that, the replicated 

linear functional relationship model can be used to overcome the unidentifiability 

problem in linear functional relationship model. Furthermore, the replicated linear 

functional relationship model can estimate all the parameters namely the intercept, the 

slope, the incidental parameters and also two error variances unlike unreplicated linear 

functional relationship model. The sections of the chapter are as follows. Derivation of 

maximum likelihood estimation of the replicated linear functional relationship model is 

described in Section 4.2. This is followed by the covariance matrix of the parameters for 

the replicated linear functional relationship model where the derivation is given in Section 

4.3. Section 4.4 describes the simulation study for balanced replicated linear functional 

relationship model where the accuracy of the estimated parameters is investigated. 

Section 4.5 discusses on the result obtained from the simulation study. The applicability 

of the proposed method is illustrated by real data set in Section 4.6. Finally, summary and 

conclusion are provided in Section 4.7.  
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4.2 Maximum Likelihood Estimation Method 

 

In Chapter 2, the parameters of linear functional relationship model have been 

discussed in general in terms of unreplicated and replicated linear functional relationship 

model. The parameters to be estimated in linear functional relationship model are the 

intercept, 𝛼̂, the slope, 𝛽̂, the incidental parameter, 𝑋̂𝑖, and two error variances, 𝜎̂2 and 𝜏̂2 

respectively. The maximum likelihood estimation (MLE) is often used in estimating the 

parameters because of the properties of maximum likelihood estimation method namely 

consistency, efficiency and normally distributed. Nevertheless, the unidentifiability 

problem become a major setback in estimating all the parameters in the linear functional 

relationship model.  

In unreplicated linear functional relationship model, the unindentifibility problem can 

be avoided if there is a knowledge on ratio of error variances, namely λ = 𝜏2

𝜎2
 is known in 

order to estimate the parameters (Lindley, 1947). However, this knowledge i.e. the value 

of  λ is often unknown in most practical situations due to fact that the information is either 

not available or is not shared by the researchers in the field (Klepper & Leamer, 1984). 

In order to overcome this problem, one of practical approach is by obtaining this 

information from the sample itself. This can be done by considering the approach where 

the groups of observations can be identified from the unreplicated linear data where all 

parameters are identifiable and consistently estimated (Hussin, et al., 2005). Thus, in this 

chapter, it is discussed further the replicated linear functional relationship model by 

replicating observations either from unreplicated data or making replication when it is 

available. As mentioned earlier, the replicated linear functional relationship model can be 

used to overcome the unidentifiability problem in linear functional relationship model. 

Furthermore, by using replicated linear functional relationship model, the assumption or 
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the knowledge on the ratio of the error variances is no longer needed when one can 

estimate the error variances 𝜎̂2 and 𝜏̂2 independently and then estimate other parameters 

by maximum likelihood estimation. 

In this section, it is assumed the size of every group are the same which means that the 

observations or elements in each group are the same. This is called the equal and balanced 

replicates where measurements 𝑥𝑖𝑗 , (𝑗 = 1,2, … ,𝑚) are made on 𝑋𝑖 and measurements 

𝑦𝑖𝑘, (𝑘 = 1,2, … ,𝑚) are made on 𝑌𝑖 are equal respectively i.e. 𝑗 = 𝑘 = 1,2,⋯ ,𝑚. Given 

a particular pair (𝑋𝑖, 𝑌𝑖) , there may be replicated observations of 𝑋𝑖 and 𝑌𝑖 occurring in  

𝑝 groups. For this model, the linear relationship between 𝑋𝑖  and 𝑌𝑖  are given by  

 

𝑥𝑖𝑗 = 𝑋𝑖 + 𝛿𝑖𝑗  and 𝑦𝑖𝑗 = 𝑌𝑖 + 𝜀𝑖𝑗 (4.1)  

 

where 𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 for 𝑖 = 1,2,⋯ , 𝑝 and 𝑗 = 1,2,⋯ ,𝑚  and 𝑛 = 𝑝 × 𝑚.                                                           

The errors terms  𝛿𝑖𝑗 and 𝜀𝑖𝑗 follow normal distribution with mean zero and variance       

𝜎2 and  𝜏2 respectively. This implies that 

i) both errors have mean 0, that is 𝐸(𝛿𝑖𝑗) = 0 and 𝐸(𝜀𝑖𝑗) = 0,  𝑖 = 1,2, … , 𝑝 and  

𝑗 = 1,2,⋯ ,𝑚. 

ii) both errors have constant but different variance, that is 𝑉𝑎𝑟(𝛿𝑖𝑗) = 𝜎2 and 

𝑉𝑎𝑟(𝜀𝑖𝑗) = 𝜏2,  𝑖 = 1,2, … , 𝑝 and 𝑗 = 1,2,⋯ ,𝑚. 
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The estimation of parameter for balanced replicated linear functional relationship 

model can be obtained by maximum likelihood estimation method which involves an 

iterative technique as the closed-form solution is not available. In this case, the log 

likelihood function of balanced replicated linear functional relationship model can be 

expressed as 

 

log 𝐿 (𝛼, 𝛽, 𝜎2, 𝜏2, 𝑋1, … , 𝑋𝑝; 𝑥𝑖𝑗 , 𝑦𝑖𝑗) = −𝑛 log 2𝜋 −
𝑛

2
(log 𝜎2 + log 𝜏2) 

−
1

2
{∑∑

(𝑥𝑖𝑗 − 𝑋𝑖)
2

𝜎2

𝑚

𝑗=1

𝑝

𝑖=1

+ ∑∑
(𝑦𝑖𝑗 − 𝛼 − 𝛽𝑋𝑖)

2

𝜏2

𝑚

𝑗=1

𝑝

𝑖=1

} 

(4.2) 

 

 

There are (𝑝 + 4) parameters to be estimated as given in (4.2) namely the intercept, 

𝛼, the slope, 𝛽, the error variances 𝜎2 and 𝜏2and also the incidental parameters, 𝑋𝑖. Thus, 

to estimate 𝛼̂, 𝛽̂, 𝜎̂2, 𝜏̂2 and 𝑋̂𝑖,  the first partial derivative of the log likelihood function 

with respect to 𝛼, 𝛽, 𝜎2, 𝜏2 and 𝑋𝑖 is obtained. The subsequent sections described the 

maximum likelihood estimation method for all parameters e 𝛼̂, 𝛽̂, 𝜎̂2, 𝜏̂2 and 𝑋̂𝑖. 

 

4.2.1 Maximum Likelihood for 𝜶 

 

The first partial derivative of the log likelihood function with respect to 𝛼 is,  

𝜕𝑙𝑜𝑔𝐿

𝜕𝛼
=
1

𝜏2
∑∑(𝑦𝑖𝑗 − 𝛼 − 𝛽𝑋𝑖)

𝑚

𝑗=1

𝑝

𝑖=1

 
(4.3) 
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By setting  𝜕𝑙𝑜𝑔𝐿
𝜕𝛼

= 0 of the log likelihood function, then, 

1

𝜏2
∑∑(𝑦𝑖𝑗 − 𝛼 − 𝛽𝑋𝑖)

𝑚

𝑗=1

𝑝

𝑖=1

= 0 
 

Hence, expanding the equation above, 

∑∑𝑦𝑖𝑗

𝑚

𝑗=1

𝑝

𝑖=1

−∑∑𝛼

𝑚

𝑗=1

𝑝

𝑖=1

−∑∑𝛽𝑋𝑖

𝑚

𝑗=1

𝑝

𝑖=1

= 0 
 

∑∑𝛼

𝑚

𝑗=1

𝑝

𝑖=1

=∑∑𝑦𝑖𝑗 −∑∑𝛽𝑋𝑖

𝑚

𝑗=1

𝑝

𝑖=1

𝑚

𝑗=1

𝑝

𝑖=1

 
 

 

Upon simplifying, it is then given by, 

𝛼̂ =
∑ 𝑚(𝑦̅𝑖. − 𝛽̂𝑋̂𝑖)
𝑝
𝑖=1

∑ 𝑚𝑝
𝑖=1

 
(4.4) 

where 𝑦̅𝑖∙ =
∑ 𝑦𝑖𝑗
𝑚
𝑗=1

𝑚
. 

 

4.2.2 Maximum Likelihood for 𝜷 

 

The first partial derivative of the log likelihood function with respect to 𝛽 is 

𝜕𝑙𝑜𝑔𝐿

𝜕𝛽
=
𝑋𝑖
𝜏2
∑∑(𝑦𝑖𝑗 − 𝛼 − 𝛽𝑋𝑖)

𝑚

𝑗=1

𝑝

𝑖=1

 
(4.5) 

By setting  𝜕𝑙𝑜𝑔𝐿
𝜕𝛽

= 0, 
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𝑋𝑖
𝜏2
∑∑(𝑦𝑖𝑗 − 𝛼 − 𝛽𝑋𝑖)

𝑚

𝑗=1

𝑝

𝑖=1

= 0 
 

Hence, expanding the equation above, 

∑∑𝑋𝑖𝑦𝑖𝑗

𝑚

𝑗=1

𝑝

𝑖=1

−∑∑𝑋𝑖𝛼

𝑚

𝑗=1

𝑝

𝑖=1

−∑∑𝛽𝑋𝑖
2

𝑚

𝑗=1

𝑝

𝑖=1

= 0 
 

∑∑𝛽𝑋𝑖
2

𝑚

𝑗=1

𝑝

𝑖=1

=∑∑𝑋𝑖𝑦𝑖𝑗

𝑚

𝑗=1

𝑝

𝑖=1

−∑∑𝑋𝑖𝛼

𝑚

𝑗=1

𝑝

𝑖=1

 
 

 

    Simplify to get, 

𝛽̂ =
∑ 𝑚𝑋̂𝑖(𝑦̅𝑖. − 𝛼̂)
𝑝
𝑖=1

∑ 𝑚𝑋̂𝑖
2𝑝

𝑖=1

 
(4.6) 

where 𝑦̅𝑖. =
∑ 𝑦𝑖𝑗
𝑚
𝑗=1

𝑚
. 

 

4.2.3 Maximum Likelihood for 𝝈𝟐 

 

The first partial derivative of the log likelihood function with respect to 𝜎2 is  

𝜕𝑙𝑜𝑔𝐿

𝜕𝜎2
= −

𝑛

2𝜎2
+
∑ ∑ (𝑥𝑖𝑗 − 𝑋𝑖)

2𝑚
𝑗=1

𝑝
𝑖=1

2𝜎4
 

(4.7) 

where 𝑛 = ∑ 𝑚𝑝
𝑖=1 = 𝑚 × 𝑝. 

By setting 𝜕𝑙𝑜𝑔𝐿
𝜕𝜎2

= 0, the equation can be written as, 
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−
𝑛

2𝜎2
+
∑ ∑ (𝑥𝑖𝑗 − 𝑋𝑖)

2𝑚
𝑗=1

𝑝
𝑖=1

2𝜎4
= 0 

 

𝑛

2𝜎2
=
∑ ∑ (𝑥𝑖𝑗 − 𝑋𝑖)

2𝑚
𝑗=1

𝑝
𝑖=1

2𝜎4
 

 

2𝜎4

2𝜎2
=
∑ ∑ (𝑥𝑖𝑗 − 𝑋𝑖)

2𝑚
𝑗=1

𝑝
𝑖=1

𝑛
 

 

 

Simplify to get, 

𝜎̂2 =
∑ ∑ (𝑥𝑖𝑗 − 𝑋̂𝑖)

2𝑚
𝑗=1

𝑝
𝑖=1

∑ 𝑚𝑝
𝑖=1

 
(4.8) 

 where 𝑥̅𝑖. =
∑ 𝑥𝑖𝑗
𝑚
𝑗=1

𝑚
 and 𝑛 = ∑ 𝑚𝑝

𝑖=1 = 𝑝 ×𝑚. 

 

4.2.4 Maximum Likelihood for 𝝉𝟐 

 

The first partial derivative of the log likelihood function with respect 𝜏2 is 

𝜕𝑙𝑜𝑔𝐿

𝜕𝜏2
= −

𝑛

2𝜏2
+
∑ ∑ (𝑦𝑖𝑗 − 𝛼 − 𝛽𝑋𝑖)

2𝑚
𝑗=1

𝑝
𝑖=1

2𝜏4
 

(4.9) 

 

By setting 𝜕𝑙𝑜𝑔𝐿
𝜕𝜏2

= 0, the equation can be written as, 

−
𝑛

2𝜏2
+
∑ ∑ (𝑦𝑖𝑗 − 𝛼 − 𝛽𝑋𝑖)

2𝑚
𝑗=1

𝑝
𝑖=1

2𝜏4
= 0 

 

𝑛

2𝜏2
=
∑ ∑ (𝑦𝑖𝑗 − 𝛼 − 𝛽𝑋𝑖)

2𝑚
𝑗=1

𝑝
𝑖=1

2𝜏4
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2𝜏4

2𝜏2
=
∑ ∑ (𝑦𝑖𝑗 − 𝛼 − 𝛽𝑋𝑖)

2𝑚
𝑗=1

𝑝
𝑖=1

𝑛
 

 

 

Simplify to get 

𝜏̂2 =
∑ ∑ (𝑦𝑖𝑗 − 𝛼̂ − 𝛽̂𝑋̂𝑖)

2𝑚
𝑗=1

𝑝
𝑖=1

∑ 𝑚𝑝
𝑖=1

 
(4.10) 

where 𝑦̅𝑖. =
∑ 𝑦𝑖𝑗
𝑚
𝑗=1

𝑚
 and 𝑛 = ∑ 𝑚𝑝

𝑖=1 = 𝑝 ×𝑚. 

 

4.2.5 Maximum Likelihood for 𝑿𝒊 

 

The first partial derivative of the log likelihood function with respect 𝑋𝑖 is  

𝜕𝑙𝑜𝑔𝐿

𝜕𝑋𝑖
=
1

𝜎2
∑∑(𝑥𝑖𝑗 − 𝑋𝑖)

𝑚

𝑗=1

𝑝

𝑖=1

+
𝛽

𝜏2
∑∑(𝑦𝑖𝑗 − 𝛼 − 𝛽𝑋𝑖)

𝑚

𝑗=1

𝑝

𝑖=1

 
(4.11) 

 

By setting 𝜕𝑙𝑜𝑔𝐿
𝜕𝑋𝑖

= 0, the equation can be written as, 

1

𝜎2
∑∑(𝑥𝑖𝑗 − 𝑋𝑖)

𝑚

𝑗=1

𝑝

𝑖=1

+
𝛽

𝜏2
∑∑(𝑦𝑖𝑗 − 𝛼 − 𝛽𝑋𝑖)

𝑚

𝑗=1

𝑝

𝑖=1

= 0 
 

 

Upon simplifying, it is then given by,  

𝑋̂𝑖 =
1

∆̂
{
𝑚𝑥̅𝑖.
𝜎̂2

+
𝑚𝛽̂

𝜏̂2
(𝑦̅𝑖. − 𝛼̂)} 

(4.12) 
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where 𝑥̅𝑖. =
∑𝑥𝑖𝑗

𝑚
, 𝑦̅𝑖. =

∑𝑦𝑖𝑗

𝑚
,  and  ∆̂𝑖=

𝑚

𝜎̂2
+
𝑚𝛽̂2

𝜏̂2
  

 

From equations (4.4), (4.6), (4.8) and (4.10) , the parameter intercept, 𝛼, the slope, 𝛽, 

the error variances 𝜎2 and 𝜏2 are depending on the value of 𝑋̂𝑖 as given in (4.12) which 

clearly shows there is no closed form available. Hence, to get the solution for parameter 

𝛼, 𝛽, 𝜎2 and 𝜏2, an iteration procedure is needed and initial value for each parameters are 

required. As for the estimation 𝑋̂𝑖 , the initial value 𝛼0, 𝛽0, 𝜎02 and 𝜏02 can be obtained from 

unreplicated linear functional relationship model with the assumption ratio of error 

variances are equal one, λ = 𝜏0
2

𝜎0
2 = 1 or  𝜎02 = 𝜏02 to start the iteration process.  This will 

become, 

𝑋̂𝑖 =
1

∆̂
{
𝑚𝑥̅𝑖.

𝜎̂0
2 +

𝑚𝛽̂0

𝜏̂0
2
(𝑦̅𝑖. − 𝛼̂0)} 

(4.13) 

                                                  

4.3 Fisher Information Matrix -Variance Covariance Matrix 

 

In this section, the asymptotic variances of the estimators are derived by inverting the 

estimated Fisher information matrix for equal and balanced replicated linear functional 

relationship model. From previous section, the first partial derivatives of log likelihood 

function of L with respect to 𝛼̂, 𝛽̂, 𝜎̂2, 𝜏̂2 and 𝑋̂𝑖 have been derived from (4.3), (4.5), (4.7), 

(4.9) and (4.11) respectively. The second partial derivatives for log likelihood function 

and their negative expected values are given by equations (4.14) up to (4.24): 
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𝜕2𝑙𝑜𝑔𝐿

𝜕𝛼2
= −

1

𝜏2
∑∑(1)

𝑚

𝑗=1

𝑝

𝑖=1

, hence 𝐸 [−
𝜕2𝑙𝑜𝑔𝐿

𝜕𝛼2
] =

𝑚𝑝

𝜏2
 

(4.14)  

  

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2
= −

1

𝜏2
∑∑𝑋𝑖

2

𝑚

𝑗=1

𝑝

𝑖=1

, hence 𝐸 [−
𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2
] =

𝑚∑ 𝑋𝑖
2𝑝

𝑖=1

𝜏2
  

(4.15) 

  

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛼𝜕𝛽
= −

1

𝜏2
∑∑𝑋𝑖

𝑚

𝑗=1

𝑝

𝑖=1

, hence 𝐸 [−
𝜕2𝑙𝑜𝑔𝐿

𝜕𝛼𝜕𝛽
] =

𝑚∑ 𝑋𝑖
𝑝
𝑖=1

𝜏2
 

(4.16) 

  

𝜕2𝑙𝑜𝑔𝐿

𝜕(𝜎2)2
=
∑ 𝑚𝑝
𝑖=1

2𝜎4
−
∑ ∑ (𝑥𝑖𝑗 − 𝑋𝑖)

2𝑚
𝑗=1

𝑝
𝑖=1

𝜎6
 

(4.17) 

where 𝑛 = ∑ 𝑚𝑝
𝑖=1 = 𝑚 × 𝑝 and hence,  

𝐸 [−
𝜕2𝑙𝑜𝑔𝐿

𝜕(𝜎2)2
] = 𝐸 [−

∑ 𝑚𝑝
𝑖=1

2𝜎4
+
∑ ∑ (𝑥𝑖𝑗 − 𝑋𝑖)

2𝑚
𝑗=1

𝑝
𝑖=1

𝜎6
] 

= −
∑ 𝑚𝑝
𝑖=1

2𝜎4
+
∑ 𝑚𝑝
𝑖=1

𝜎4
=
𝑚𝑝

2𝜎4
=

𝑛

2𝜎4
 

 

 

  

𝜕2𝑙𝑜𝑔𝐿

𝜕(𝜏2)2
=
∑ 𝑚𝑝
𝑖=1

2𝜏4
−
∑ ∑ (𝑦𝑖𝑗 − 𝛼 − 𝛽𝑋𝑖)

2𝑚
𝑗=1

𝑝
𝑖=1

2𝜏6
,  

where 𝑛 = ∑ 𝑚𝑝
𝑖=1 = 𝑚 × 𝑝 and hence, 

(4.18) 

𝐸 [−
𝜕2𝑙𝑜𝑔𝐿

𝜕(𝜏2)2
] = [−

∑ 𝑚𝑝
𝑖=1

2𝜏4
+
∑ ∑ (𝑦𝑖𝑗 − 𝛼 − 𝛽𝑋𝑖)

2𝑚
𝑗=1

𝑝
𝑖=1

2𝜏6
] 

= −
∑ 𝑚𝑝
𝑖=1

2𝜏4
+
∑ 𝑚𝑝
𝑖=1

𝜏4
=
𝑚𝑝

2𝜏4
=

𝑛

2𝜏4
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𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖
2 = −

1

𝜎2
∑∑(1)

𝑚

𝑗=1

𝑝

𝑖=1

−
𝛽2

𝜏2
∑∑(1)

𝑚

𝑗=1

𝑝

𝑖=1

, hence 
(4.19) 

 

𝐸 [−
𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖
2 ] =

𝑚

𝜎2
+
𝑚𝛽2

𝜏2
 

 

 

 

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖𝑋𝑗
= 0, hence 𝐸 [−

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖𝑋𝑗
] = 0 

(4.20) 

  

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖𝜕𝜎2
= −

1

𝜎4
∑∑(𝑥𝑖𝑗 − 𝑋𝑖)

𝑚

𝑗=1

𝑝

𝑖=1

, hence 𝐸 [−
𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖𝜕𝜎2
] = 0 

(4.21) 

  

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖𝜕𝜏2
= −

1

𝜏4
∑∑(𝑦𝑖𝑗 − 𝛼 − 𝛽𝑋𝑖)

𝑚

𝑗=1

𝑝

𝑖=1

, hence 𝐸 [−
𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖𝜕𝜏2
] = 0  

(4.22) 

  

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖𝜕𝛼
= −

𝑚𝛽

𝜏2
, hence 𝐸 [−

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖𝜕𝛼
] =

𝑚𝛽

𝜏2
  

(4.23) 

  

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖𝜕𝛽
= −

𝑚𝛽∑ 𝑋𝑖
𝑝
𝑖=1

𝜏2
 , hence 𝐸 [−

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖𝜕𝛽
] =

𝑚𝛽∑ 𝑋𝑖
𝑝
𝑖=1

𝜏2
 

(4.24) 

 

 Next, the estimated Fisher information matrix, F, for 𝑋̂𝑖, ⋯ , 𝑋̂𝑖, 𝜎̂2, 𝜏̂2, 𝛼̂ and 𝛽̂ can be 

obtained and this is given by 

𝐹 = [
𝐵 0 𝐸
0 𝐶 0
𝐸𝑇 0 𝐷

] 
(4.25)  
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where 𝐵 is a 𝑝 × 𝑝 matrix given by 

𝐵 =

[
 
 
 
 
𝑚

𝜎2
+
𝑚𝛽2

𝜏2
0

⋱

0
𝑚

𝜎2
+
𝑚𝛽2

𝜏2 ]
 
 
 
 

 

 

 

𝐸 is a 𝑝 × 2 matrix given by 

𝐸 =

[
 
 
 
 
𝑚𝛽

𝜏2
𝑚𝑋1𝛽

𝜏2

⋮ ⋮
𝑚𝛽

𝜏2
𝑚𝑋𝑝𝛽

𝜏2 ]
 
 
 
 

 

 

 

𝐶 is a 2 × 2 matrix given by 

𝐶 = [

𝑛

2𝜎4
0

0
𝑛

2𝜏4

] 

 

 

𝐷 is a 2 × 2 matrix given by 

𝐷 =

[
 
 
 

𝑚𝑝

𝜏2
𝑚∑ 𝑋𝑖

𝑝
𝑖=1

𝜏2

𝑚∑ 𝑋𝑖
𝑝
𝑖=1

𝜏2
𝑚∑ 𝑋𝑖

2𝑝
𝑖=1

𝜏2 ]
 
 
 

=
𝑚

𝜏2

[
 
 
 
 
 
𝑝 ∑𝑋𝑖

𝑝

𝑖=1

∑𝑋𝑖

𝑝

𝑖=1

∑𝑋𝑖
2

𝑝

𝑖=1 ]
 
 
 
 
 

 

 

 

The primary interest is the bottom right minor of order 4 × 𝑝 of the inverse of matrix 

F as in (4.25) where the value of the of 𝛼̂, 𝛽̂ ,𝜎̂2 and 𝜏̂2 is positioned. Thus, the asymptotic 

Univ
ers

iti 
Mala

ya



84 

covariance matrix of 𝜎̂2, 𝜏̂2, 𝛼̂ and 𝛽̂ can be obtained using the theory of partitioned 

matrices (Graybill, 1961). Details on the asymptotic covariance matrix is given in 

APPENDIX E. The covariance matrix is given by:  

 

𝑉𝑎𝑟̂ [

𝜎̂2

𝜏̂2

𝛼̂ 
𝛽̂

] = [
𝐶−1 0
0 (𝐷 − 𝐸𝑇𝐵−1𝐸)−1

] 

 

 

where 𝐶−1 = [
2𝜎4 𝑛⁄ 0

0 2𝜏4 𝑛⁄
]   and 

(𝐷 − 𝐸𝑇𝐵−1𝐸)−1 =
𝑚𝜏2 +𝑚𝛽2𝜎2

𝑚2 {𝑝 ∑ 𝑋𝑖
2𝑝

𝑖=1 − (∑ 𝑋𝑖
𝑝
𝑖=1 )

2
}

[
 
 
 
 
 
∑𝑋𝑖

2

𝑝

𝑖=1

−∑𝑋𝑖

𝑝

𝑖=1

−∑𝑋𝑖

𝑝

𝑖=1

𝑝
]
 
 
 
 
 

 

 

Therefore, the asymptotic covariance matrix for 𝜎̂2, 𝜏̂2, 𝛼̂  and 𝛽̂ are given by 

 𝐺 =

[
 
 
 
 
2𝜎4 𝑛⁄              0        

0          2𝜏4 𝑛⁄  
                

   0                  0
0               0

        0                 0
        0                 0

           
   𝑄 ∑ 𝑋𝑖

2𝑝
𝑖=1 −𝑄∑ 𝑋𝑖

𝑝
𝑖=1

−𝑄∑ 𝑋𝑖
𝑝
𝑖=1 𝑄𝑝 ]

 
 
 
 

                           

(4.26) 

 

where  

𝑄 =
𝑚𝜏2 +𝑚𝛽2𝜎2

𝑚2 {𝑝 ∑ 𝑋𝑖
2 − (∑ 𝑋𝑖

𝑝
𝑖=1 )

2𝑝
𝑖=1 }
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By using Fisher Information matrix, the estimated covariance of parameters is derived. 

In particular, the following results are given as follows: 

 

𝑉𝑎𝑟̂ (𝜎̂2) = 2𝜎4 𝑛⁄  (4.27)  

  

𝑉𝑎𝑟̂ (𝜏̂2) = 2𝜏4 𝑛⁄  (4.28) 

  

𝑉𝑎𝑟̂ (𝛼̂) =
(𝑚𝜏2 +𝑚𝛽2𝜎2)∑ 𝑋𝑖

2𝑝
𝑖=1

𝑚2 {𝑝 ∑ 𝑋𝑖
2 − (∑ 𝑋𝑖

𝑝
𝑖=1 )

2𝑝
𝑖=1 }

 
(4.29) 

  

𝑉𝑎𝑟̂ (𝛽̂) =
(𝑚𝜏2 +𝑚𝛽2𝜎2)𝑝

𝑚2 {𝑝 ∑ 𝑋𝑖
2 − (∑ 𝑋𝑖

𝑝
𝑖=1 )

2𝑝
𝑖=1 }

 
(4.30) 

  

𝐶𝑜𝑣̂ (𝛼̂, 𝛽̂) = −
(𝑚𝜏2 +𝑚𝛽2𝜎2)∑ 𝑋𝑖

𝑝
𝑖=1

𝑚2 {𝑝 ∑ 𝑋𝑖
2 − (∑ 𝑋𝑖

𝑝
𝑖=1 )

2𝑝
𝑖=1 }

 
(4.31) 

 

4.4 Simulation Studies 

 

A simulation study is carried out to support the algebraic results presented earlier by 

assessing the accuracy and measuring the biasness of the parameters of the proposed 

model. The computer program (APPENDIX  F)  is written in R to carry out the simulation 

study. The value of error variances and the sample sizes are the two aspects to be 

considered for performance. Without loss of generality, the study considers the parameter 
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settings 𝛼 = 0 and different estimated values of  𝛽 = 0.8, 1, 1.2, 𝜎2 = 0.8, 1 and          

𝜏2 = 0.8,1. For each specified set of parameter values, 10000 simulated data sets are 

obtained for each of sample sizes 𝑛 = 20, 50, 100, 180 and 300 respectively. These 

sample sizes are chosen to represent both small and large datasets.  

The simulation is considered for balanced replicates of the data in which data of 𝑥𝑖𝑗 

and 𝑦𝑖𝑗 variables are of equal sample size. Furthermore, the method of grouping the 

observations in general is proposed. The procedure in arranging and grouping the data for 

the simulation study can be described in the following steps: 

Step 1: Generate 𝑋𝑖 = 10 (
𝑖

𝑝
) of size 𝑝, with 𝑖 = 1,2, … , 𝑝 where 𝑝 is the number of 

group and two error terms 𝛿𝑖𝑗 and 𝜀𝑖𝑗 from Normal distribution with mean 0 

and variances 𝜎2 and 𝜏2 respectively;  𝑁(0, 𝜎2) and 𝑁(0, 𝜏2) with                

𝑗 = 1,2, … ,𝑚 where 𝑚 is the number of elements in each subgroups and 𝑚 

is not necessarily less than 𝑝.  

Step 2: Calculate the observed values of 𝑥𝑖𝑗 and 𝑦𝑖𝑗 as in (4.1). 

Step 3: The values of 𝑥𝑖𝑗 and 𝑦𝑖𝑗 are divided into 𝑝-subgroups with 𝑚 elements such   

that 𝑝 × 𝑚 = 𝑛 to obtain the groups of the data as given in Table 4.1. 

Step 4: In this case, all parameters namely 𝛼̂, 𝛽̂, 𝜎̂2, 𝜏̂2 and 𝑋̂𝑖 can be solved 

iteratively given some suitable initial values at the estimate. The parameter 

𝑋𝑖 as in (4.12) need to be estimated first due to fact that other parameters 

𝛼, 𝛽, 𝜎2, 𝜏2 as in (4.4), (4.6), (4.8), (4.10) respectively are dependent on the 

value of 𝑋𝑖. The possible initial estimates for 𝛼̂, 𝛽̂, 𝜎̂2 and 𝜏̂2 can be obtained 

from unreplicated linear functional relationship model (𝛼0, 𝛽0, 𝜎02 and 𝜏02) 

with the assumption ratio of error variances are equal to one (λ = 1 ) to start 
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the iteration process. The final estimation for all parameters, 𝛼̂, 𝛽̂, 𝜎̂2, 𝜏̂2 and 

𝑋̂𝑖 will be obtained after one or all the values have been converged. 

Step 5: Step 1- Step 4 are repeated for 10000 simulations. 

 

Table 4.1 The division of the sample size into their subgroup 

Sample size, 𝑛 Subgroups, 𝑝 Number of elements, 𝑚 

20 4 5 

50 5 10 

100 10 10 

180 12 15 

300 15 20 

 

Table 4.1 shows some examples of how many the observations are grouped together 

to obtain the group of data. The number of observations or the elements are equal in each 

group. The performance of the estimated parameters is calculated using the estimated bias 

(EB), the mean square error (MSE) and the standard deviation (SD). The estimated bias 

and the mean square error are defined by: 

Estimated Bias, EB= |𝑤̂ − 𝑤| and (4.32) 

  

Mean Square Error, MSE= 1

𝑠
∑(𝑤̂𝑗 − 𝑤)

2
 (4.33) 

 

with w be a generic term for the parameters and s is the number of simulation. The 

standard deviation (SD) for each parameter are computed by taking square root from the 

diagonal element of the asymptotic variance-covariance matrix (4.26) or from equation 

(4.27)  to (4.30). 
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4.5 Results and Discussion 

 

The results from simulation study are tabulated in Table 4.2, Table 4.3, Table 4.4 and 

Table 4.5 respectively with different values of error variances and the sample sizes.  

Table 4.2 Parameter Estimates when 𝛼 = 0, 𝛽 = 1, 𝜎2 = 1 and 𝜏2 = 1 

Statistic Sample size 
Parameter Estimates 

𝛼̂ 𝛽̂ 𝜎̂2 𝜏̂2 

Estimated 

Bias 

20      0.0321 0.0060 0.1397 0.1495 

50 0.0100 0.0018 0.0655 0.0689 

100 0.0101 0.0019 0.0590 0.0567 

180 0.0015 0.0004 0.0364 0.0393 

300 0.0015 0.0002 0.0278 0.0275 

Mean 

Square 

Error 

20      0.6565 0.0140 0.1168 0.1160 

50 0.2325 0.0053 0.0434 0.0429 

100 0.0976 0.0025 0.0234 0.0233 

180 0.0525 0.0014 0.0123 0.0127 

300 0.0303 0.0008 0.0075 0.0073 

Standard 

Deviation 

20      0.7147 0.1044 0.2721 0.2689 

50 0.4523 0.0682 0.1869 0.1862 

100 0.2962 0.0477 0.1331 0.1334 

180 0.2201 0.0359 0.1016 0.1013 

300 0.1693 0.0279 0.0794 0.0794 
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For each specified set of parameters in Table 4.2, for the error variances 𝜎2 = 𝜏2, the 

estimated bias of parameters 𝛼̂, 𝛽̂, 𝜎̂2 and 𝜏̂2 are consistently small when the sample size 

increase from 20 to 300. The value of the estimated bias approximately close to 0 shows 

the unbiasedness of the estimated parameters. The mean square error also shows similar 

trends such as these values tends to decrease with the increase in sample sizes. This shows 

that the estimated values of parameters are consistent. Moreover, the standard deviation 

is generally small for all parameter estimates.  

 

Table 4.3 Parameter Estimates when 𝛼 = 0, 𝛽 = 0.8, 𝜎2 = 1 and 𝜏2 = 0.8  

Statistic Sample size 
Parameter Estimates 

𝛼̂ 𝛽̂ 𝜎̂2 𝜏̂2 

Estimated 

Bias 

20 0.0335 0.0060 0.1448 0.1145 

50 0.0105 0.0022 0.0687 0.0527 

100 0.0072 0.0012 0.0624 0.0423 

180 0.0002 0.0002 0.0394 0.0280 

300 0.0001 0.0001 0.0311 0.0193 

Mean 

Square 

Error 

20 0.4618 0.0099 0.1175 0.0722 

50 0.1599 0.0036 0.0435 0.0270 

100 0.0706 0.0018 0.0238 0.0145 

180 0.0373 0.0010 0.0126 0.0079 

300 0.0209 0.0006 0.0077 0.0046 

Standard 

Deviation 

20 0.6110 0.0893 0.2704 0.2168 

50 0.3847 0.0580 0.1863 0.1495 

100 0.2515 0.0405 0.1326 0.1072 

180 0.1869 0.0305 0.1013 0.0814 

300 0.1436 0.0237 0.0791 0.0637 

 

By looking at Table 4.3 when 𝛽 = 0.8 and 𝜎2 > 𝜏2, it is observed the value of 

estimated bias is approximately close to 0 which means the value of the estimated 
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parameters is approximately close to the true mean. The mean square error for the 

estimated parameters are also observed to decrease with the increasing of sample sizes 

from 20 to 300. This shows the estimated parameters are consistent. The same trend can 

be said for the standard deviation. 

 

Table 4.4 Parameter Estimates when 𝛼 = 0, 𝛽 = 0.8, 𝜎2 = 0.8 and 𝜏2 = 1  

Statistic Sample size 
Parameter Estimates 

𝛼̂ 𝛽̂ 𝜎̂2 𝜏̂2 

Estimated 

Bias 

20 0.0321 0.0060 0.1397 0.1495 

50 0.0100 0.0018 0.0655 0.0689 

100 0.0101 0.0019 0.0590 0.0567 

180 0.0015 0.0004 0.0364 0.0393 

300 0.0015 0.0002 0.0278 0.0275 

Mean 

Square 

Error 

20 0.6565 0.0140 0.1168 0.1160 

50 0.2325 0.0053 0.0434 0.0429 

100 0.0976 0.0025 0.0234 0.0233 

180 0.0525 0.0014 0.0123 0.0127 

300 0.0303 0.0008 0.0075 0.0073 

Standard 

Deviation 

20 0.7147 0.1044 0.2721 0.2689 

50 0.4523 0.0682 0.1869 0.1862 

100 0.2962 0.0477 0.1331 0.1334 

180 0.2201 0.0359 0.1016 0.1013 

300 0.1693 0.0279 0.0794 0.0794 
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Table 4.5 Parameter Estimates when 𝛼 = 0, 𝛽 = 1.2, 𝜎2 = 0.8 and 𝜏2 = 1 

Statistic Sample size 
Parameter Estimates 

𝛼̂ 𝛽̂ 𝜎̂2 𝜏̂2 

Estimated 

Bias 

20 0.0405 0.0072 0.1088 0.1524 

50 0.0146 0.0029 0.0504 0.0715 

100 0.0104 0.0017 0.0436 0.0608 

180 0.0018 0.0006 0.0272 0.0403 

300 0.0017 0.0004 0.0216 0.0282 

Mean 

Square 

Error 

20 0.6849 0.0147 0.0739 0.1149 

50 0.2383 0.0054 0.0276 0.0428 

100 0.1049 0.0027 0.0148 0.0234 

180 0.0556 0.0015 0.0078 0.0126 

300 0.0312 0.0009 0.0048 0.0073 

Standard 

Deviation 

20 0.7461 0.1091 0.2186 0.2680 

50 0.4704 0.0709 0.1499 0.1857 

100 0.3076 0.0496 0.1070 0.1328 

180 0.2286 0.0373 0.0815 0.1012 

300 0.1757 0.0290 0.0636 0.0793 

 

Table 4.4 and Table 4.5 show the results for difference value of slope, 𝛽 when         

𝜎2 < 𝜏2. Similar results can be obtained for estimated bias, mean square error and 

standard deviation for the estimated parameters. As the sample size increase from 20 to 

300, the values of estimated bias, the mean square error and the standard deviation also 

decrease. 
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Figure 4.1 Standard Deviations for parameter 𝛼 = 0, 𝛽 = 1, 𝜎2 = 1 and 𝜏2 = 1  

 

 

Figure 4.2 Standard Deviations for parameters 𝛼 = 0, 𝛽 = 0.8, 𝜎2 = 1 and 𝜏2 = 0.8 
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Figure 4.3 Standard Deviations for parameters 𝛼 = 0, 𝛽 = 0.8, 𝜎2 = 0.8 and 𝜏2 = 1 

 

 

Figure 4.4 Standard Deviations for parameters 𝛼 = 0, 𝛽 = 1.2, 𝜎2 = 0.8 and 𝜏2 = 1 
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To illustrate the results obtained, plots of the standard deviations of different sets of 

estimated parameters for different sample sizes are given in Figure 4.1 to Figure 4.4. From 

these plots, the standard deviations of the estimators tend to decrease with the increase in 

sample sizes and number of replication and which also suggest that all the estimated 

parameters are consistent. 

 

4.6 Examples 

 

In this section, the applicability of the replicated linear functional relationship model 

when the observations are equal and balanced in each group is illustrated using two 

examples. The fat mass measurements data taken from Goran et al. (1996) and also 

systolic blood data taken from Altman and Bland (1999). It is assumed the measurement 

error can occur on these two examples in order to apply the relationship as in model (4.1). 

 

4.6.1 Fat Mass Measurements Data 

 

The dataset from Goran et. al (1996) consists of 96 observations taken on the children 

by using two techniques namely the skinfold thickness (ST), 𝑥𝑖 and bioelectrical 

resistance (BR), 𝑦𝑖. This dataset can be considered as unreplicated data because there is 

only a single 𝑥 and 𝑦 observation for each level of 𝑖 (Hussin et al., 2005). In unreplicated 

linear functional relationship model, one need an assumption on ratio of error variances, 

λ, to estimate the parameters namely the intercept, 𝛼, the slope, 𝛽 and the error 

variance, 𝜎2. However, in the absence of knowledge on ratio of error variances, it is 
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important to transform the data into several groups and use maximum likelihood 

estimation method for balanced replicated linear functional relationship model to estimate 

all parameters namely the intercept, 𝛼, the slope, 𝛽 and two error variances, 𝜎2 and also 

𝜏2respectively.  

Since there are 96 observations in this data, the group of the data is obtained by 

dividing the data into 8 groups and each groups have 12 observations that are balanced 

and equal in each group.  The measurement 𝑋𝑖 and 𝑌𝑖 are referring to skinfold thickness 

and bioelectrical resistance techniques respectively which are observed with errors. The 

data can be modelled by   

 

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖  

 

for 𝑖 = 1,2,⋯ ,8 and 𝑗 = 1,2,⋯ ,12  and 𝑛 = 𝑝 ×𝑚 = 8 × 12 = 96. Figure 4.5 shows 

the scatterplot for the data. From this plot, there exists a linear relationship between two 

techniques i.e., the skinfold thickness (ST) and bioelectrical resistance (BR).  
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Figure 4.5 The scatterplot of Fat Mass Measurements Data  

 

In order to investigate the relationship between two techniques, the data is fitted with 

balanced replicated linear functional relationship model. This is given by 

 

𝑌𝑖 = 0.91 + 0.93 𝑋𝑖    for 𝑖 = 1,2,⋯ ,8 and 𝑗 = 1,2,⋯ ,12. 

 

The estimated parameters and the standard deviations can be seen from Table 4.6. From 

this table, the value of the error variances of 𝑥𝑖𝑗 and 𝑦𝑖𝑗 are 8.58 and 10.53 respectively. 

It shows that the ratio of error variance is approximately 1.2. Furthermore, the estimated 

standard deviation for error variance parameter of measurement error by skinfold 
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thickness is less than the estimated standard deviation for error variance parameters by 

bioelectrical thickness which suggests the measurement error by skinfold thickness 

technique seems to be more precise. 

 

Table 4.6 Estimated Parameters and Standard Deviations for fat mass measurements 
data 

Parameter Balanced Replicated Standard Deviation 

𝛼̂ 0.91  2.22 

𝛽̂ 0.93  0.44 

𝜎̂2 8.58 1.24 

𝜏̂2 10.53 1.52 

 
 
 
 
 
4.6.2 Systolic Blood Pressure Data 

 

Next, another dataset taken from Altman and Bland (1999) is considered. Details on 

the dataset is given in APPENDIX C. Subsample of the original data containing 30 

observations is used. The dataset measures the systolic blood pressure which 

simultaneous measurements were made by two experienced observers denoted as J 

(𝑥𝑖𝑗) and R (𝑦𝑖𝑗) . This data set can be considered as replicated data as there have 10 

groups (or subjects) and each groups have three sets of readings that were made in quick 

succession. It is assumed that measurement error can occur in both the variables 𝑌𝑖 and 

𝑋𝑖. The data can be modelled by   
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𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖  

 

for 𝑖 = 1,2,⋯ ,10 and 𝑗 = 1,2,3 and 𝑛 = 𝑝 × 𝑚 = 10 × 3 = 30.The scatterplot of the 

data can be seen in Figure 4.6. 

 

 

Figure 4.6 The scatterplot of Systolic Blood Pressure Data  

 

In order to investigate the relationship between two experienced observers, the data is 

fitted with balanced replicated linear functional relationship model and is given by:  
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𝑌̂𝑖 = −0.81 + 1.01  𝑋̂𝑖   for 𝑖 = 1,2,⋯ ,10 and 𝑗 = 1,2,3. 

 

The values of the parameter estimate and their standard deviation are given in Table 4.7. 

The ratio of error variances is 1.2 with the value of error variance is 22.94 and 27.68 

respectively. Moreover, the estimated standard deviation for error variance parameter of 

measurement error by observer J is less than the estimated standard deviation for error 

variance parameters by observer R which suggest the measurement error by observer J 

seems to be more precise.  

 

Table 4.7 Estimated Parameters and Standard Deviations for systolic blood pressure 
data 

Parameter Balanced Replicated Standard Deviation 

𝛼̂ -0.81 12.24 

𝛽̂ 1.01 0.11 

𝜎̂2 22.94 5.92 

𝜏̂2 27.68 7.15 

 

 

4.7 Summary and Conclusions 

 

In this chapter, a balanced replicated linear functional relationship model for balanced 

and equal observations is proposed. The motivation of the model is that using replicated 

Univ
ers

iti 
Mala

ya



100 

linear functional relationship model, one can estimate all the parameters namely the 

intercept, the slope, the incidental parameters and also two error variances which cannot 

be done for unreplicated linear functional relationship model. In this chapter, the 

maximum likelihood estimation of parameters and the covariance matrix are derived. 

Although the closed form solution is not available in estimating the parameters, the 

estimated parameters can be obtained using iteration procedures and by choosing the 

suitable initial values. Nevertheless, the variance-covariance matrix can be obtained using 

the Fisher information matrix and partitioned matrix. Unlike the unreplicated linear 

functional relationship model, the replicated linear functional relationship model can 

estimate all the parameters using the maximum likelihood estimation method without 

having to make any assumptions on the error of variances ratio, λ. Through simulation 

study, it is shown that the estimated values of the parameters are unbiased and consistent 

that indicated the adequacy of the proposed model. In addition, data examples also show 

the robustness aspects of the parameter estimates as it gives small values of standard 

deviation. In conclusion, the balanced replicated linear functional relationship model can 

be used in estimating the parameters where one can transform the unreplicated data to 

replicated data using general grouping or when replicated observations are available and 

their relationship can be described in a functional form. The novelty of the proposed 

model is one can overcome the unidentifiability problem in linear functional relationship 

model by grouping the observations to the unreplicated data and the assumption on the 

ratio of the error variances are no longer needed unlike in unreplicated linear functional 

relationship model. 
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CHAPTER 5: NONPARAMETRIC ESTIMATION FOR SLOPE OF 

BALANCED REPLICATED LINEAR FUNCTIONAL RELATIONSHIP 

MODEL 

 

5.1 Introduction 

 

In this chapter, a nonparametric method to estimate the slope parameter of balanced 

replicated linear functional relationship model is proposed where it addresses the third 

objective of the study. The motivation of this proposed method is to develop a robust 

estimator in estimating the slope parameter in the presence of outliers. The organization 

of the chapter is follows. Section 5.2 describes the general approach of nonparametric 

method in estimating a parameter while in Section 5.3 describes the propose new 

estimation method for a slope parameter of the balanced replicated linear functional 

relationship model using the nonparametric method. Description of simulation studies 

carried out to measure the performance of the proposed method is given in Section 5.4. 

This is followed by Section 5.5 that discusses the results of the simulation study. The 

proposed method is illustrated using real datasets namely Fat Mass Measurement data 

and Iron in Slag data in Section 5.6. Finally, summary and conclusion are given in Section 

5.7. 
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5.2 Nonparametric Estimation Method of Linear Functional Relationship 

Model 

 

Most of the methods in estimating the parameters of linear functional relationship 

model depends on the normality assumption (Fuller, 1987; Kendall & Stuart, 1979). In 

particular, for balanced replicated linear functional relationship model, the maximum 

likelihood estimation is a common method in estimating the parameters in which it has 

been shown on the need of a normality assumption as in Chapter 4. This means there will 

be problems if this assumption is not met. In other words, the parameter estimation of the 

slope parameter, for example, can lead to erroneous problems if the outliers present in the 

dataset. To overcome this problem, a robust method is deemed necessary and in this study, 

the nonparametric method is proposed to address the effect of outliers’ presence. On that 

note, the interest of the study is on the balanced replicated linear functional relationship 

model where estimation of the slope parameter and thus is the scope of the study. This is 

because in most applications, the relationship between two linear variables can be 

described by the estimates of the slope. 

Nonparametric estimation method is very popular due to its simplicity as it does not 

depend on a specific probability distribution. This method is widely used, easy to perform 

and also robust to outliers (Hajek, 1969). The nonparametric method is more efficient and 

it does depend on the normality assumption. Numerous studies have been carried out on 

the nonparametric estimation method; some examples include Dent (1935), Housner and 

Brennan (1948), Theil (1950) and Cheng and Ness (1999). However, not many consider 

the presence outlying observations in the datasets. From the literature review, Al-Nasser 

and Ebrahem (2005) and Ghapor et al. (2015) both have considered this situation where 

they incorporated the presence of outliers and have shown that the proposed methods are 
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robust to outliers, unlike all the other traditional methods. They also considered the 

varying the percentages of outliers present in the dataset from a single outlier up to 20% 

outliers.  It is worthwhile to note that Al-Nasser and Ebrahem (2005) and Ghapor et al. 

(2015) methods are limited to unreplicated linear functional relationship model only. 

Therefore, it is worthwhile to explore if this approach can be improved and extended to 

accommodate a balanced replicated linear functional relationship model. In short, a new 

robust nonparametric method to estimate the slope parameter in balanced replicated linear 

functional relationship model is proposed by making some improvements to the 

nonparametric method as proposed by Al-Nasser and Ebrahem (2005) and Ghapor et al. 

(2015). The novelty of the proposed method is that the assumption of normality is not 

required and to estimate the slope parameter, the nonparametric approach is proposed. As 

usual, the proposed method is compared with the standard maximum likelihood 

estimation method. 

 

5.3 A New Robust Nonparametric Estimation Method 

 

In this section, the method of Al-Nasser and Ebrahem (2005) and Ghapor et al. (2015) 

is extended to balanced replicated linear functional relationship model. Instead of using 

median as in Al-Nasser and Ebrahem (2005) and Ghapor et al. (2015), the new proposed 

method uses the trimmed mean instead. The justification is that although the median is a 

robust indicator, particularly when the data has outliers, it only uses the 50th percentiles 

of the observations and thus ignoring all values. Moreover, the trimmed mean is superior 

to median as it possesses a smaller asymptotic variance (Oosterhoff, 1994). Also, the 

standard error of the median is not very efficient as it contains a breakdown point of 50% 

(Hampel et al., 2011). 
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Trimmed mean is computed by averaging the values of the remaining data set after 

removing a certain percentage of the dataset (Wilcox, 2005). The unique feature of 

trimmed mean is that it calculates by discarding the lowest and highest 𝑝% of the values, 

then computing the mean of the remaining data.  Based on the definition, trimmed mean 

is also considered as a robust estimates of location as a median. The trimmed mean is 

easy to compute and more efficient as it contains a small standard error.  

Different authors used different percentage of trimming depending on their purposes 

of their research. For example, 10% trimming is used by Stigler (1973) and Ruppert and 

Carroll (1980) and they argued that the 10% trimming can be served as the best estimator. 

Hill and Dixon (1982) used several percentage of trimming namely 10%,15% and 20% 

trimming and found out that 15% is the best choice when the underlying distribution is 

unknown. The 20% trimming has been extensively investigated, and it frequently 

provides an appropriate balance between the mean and the median (Wilcox, 2005). In this 

study, the trimming used is 20% because numerous studies have shown that the effect of 

outliers present in the data will be diminished, thereby providing a reasonable estimate of 

the slope (Welsh, 1987; Wilcox, 2005). Hence, for the proposed method the trimmed 

mean, as opposed to the median, is used to calculate the slope parameter of the balanced 

replicated linear functional relationship model. As mentioned earlier, the proposed 

method is compared with the maximum likelihood method. The following are the 

description of the method proposed with six simple steps. 

Firstly, the observed pairs (𝑥𝑖𝑗 , 𝑦𝑖𝑗)’s, 𝑖 = 1,2, … , 𝑝 ; 𝑗 = 1,2, … ,𝑚 are ordered  

according to the magnitude of 𝑥 value, assuming that all the 𝑥 values are distinct. Next, 

sort these observations into several groups to obtain all the possible paired of slopes. The 

following step is to determine another possible paired of slopes by arranging the observed 

pairs according to the magnitude of 𝑦 value. The steps involved are as follows: 
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Step 1: The observations are first arranged in ascending order, based on 𝑥  value 

namely   𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑛). The associated values of 𝑦 which may not 

be in ascending order are taken namely, 𝑦[1] ≤ 𝑦[2] ≤ ⋯ ≤ 𝑦[𝑛] and obtain 

the new pairs (𝑥(𝑖), 𝑦[𝑗]). 

Step 2: All the data are divided into 𝑝-subsamples that contains 𝑚 elements such 

that 𝑝 × 𝑚 = 𝑛. These subsamples can be rearranged in the form: 

(𝑥(1), 𝑦[1])        (𝑥(2), 𝑦[2]) ⋯             (𝑥(𝑚), 𝑦[𝑚]) 

(𝑥(𝑚+1), 𝑦[𝑚+1])        (𝑥(𝑚+2), 𝑦[𝑚+2]) ⋯              (𝑥(2𝑚), 𝑦[2𝑚]) 

        ⋮                                      ⋮ ⋯                                    ⋮  

(𝑥(𝑝−1)∗(𝑚+1), 𝑦[𝑝−1}∗{𝑚+1])        ⋯ ⋯               (𝑥(𝑝𝑚), 𝑦[𝑝𝑚]) 

 

where 𝑝 is the maximum divisor of 𝑛 such that 𝑝 ≤ 𝑚. As an example, when 

𝑛 = 40,  then 𝑝 = 5 and 𝑚 = 8. If the sample size is a prime number, then 

one can assume 𝑝 = 1 and 𝑚 = 𝑛 respectively. 

Step 3: Find the number of all possible combination of paired slopes.          

 {𝑏𝑥(𝑘)𝑖𝑗 =
𝑦[𝑗]−𝑦[𝑖]

𝑥(𝑗)−𝑥(𝑖)
;  𝑖 = 1,2, … , 𝑗 − 1; 𝑗 = 2,3, … ,𝑚} ; 𝑘 = 1,2, … , 𝑝   

Step 4: Repeat Steps 1 to 3 by interchanging 𝑦 and 𝑥 to get possible paired of 𝑏𝑦(𝑘)𝑖𝑗           

 {𝑏𝑦(𝑘)𝑖𝑗 =
𝑦(𝑗)−𝑦(𝑖)

𝑥[𝑗]−𝑥[𝑖]
;  𝑖 = 1,2, … , 𝑗 − 1; 𝑗 = 2,3, … ,𝑚} ; 𝑘 = 1,2, … , 𝑝 

Step 5: Combine all the slopes from Step 4. 

Step 6: Find the trimmed mean of the slopes                                                                     

𝛽̂𝑡𝑟𝑖𝑚 = 𝑚𝑒𝑎𝑛{(𝑏𝑥(𝑘)𝑖𝑗, 𝑏𝑦(𝑘)𝑖𝑗), 𝑡𝑟𝑖𝑚 = 20%}. 
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     Step 1 until Step 3 for estimating the slope parameter is based on the nonparametric 

estimation method as introduced by Al-Nasser and Ebrahem (2005) and Ghapor et al. 

(2015). Step 4 and Step 5 proposed by Ghapor et al. (2015) also incorporated in this 

method. However, in Step 6, the trimmed mean is used to calculate the slope parameter 

instead of median in Ghapor et al. (2015). This can be performed by removing the bottom 

and top 20% of the slopes and then calculating the mean of the remaining slopes values. 

This gives us a new slope parameter, 𝛽̂𝑡𝑟𝑖𝑚. 

 

5.4 Simulation Studies 

 

A simulation study is conducted in this section to compare the performance of the 

proposed nonparametric method with the maximum likelihood estimation method in the 

presence of outliers. First, simulated observations are obtained from the balanced 

replicated linear functional relationship model given by 

 

𝑌 = 𝛼 + 𝛽𝑋𝑖, 𝑥𝑖𝑗 = 𝑋𝑖 + 𝛿𝑖𝑗 and 𝑦𝑖𝑗 = 𝑌𝑖 + 𝜀𝑖𝑗 (5.1)  

 

where  𝑋𝑖 = 10
𝑖

𝑝
  and  the error terms 𝛿𝑖𝑗, 𝜀𝑖𝑗~𝑁(0,0.1).   
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Without any loss of generality, the values of 𝛼 = 1, 𝛽 = 1 and sample sizes,            

𝑛 = 40, 80, 180, and 300 respectively are set.  The cases comprised observations with no 

outlier, a single outlier, 5%, 10%, 15% and 20% outliers respectively. For each case, the 

simulation process was repeated 10000 times. The contaminated data points were 

generated as described by Al-Nasser and Ebrahem (2005) using this relationship 

 

𝑦𝐶 = 1 + 𝑋𝐶 + 𝜀𝐶  with 𝜀𝐶~𝑁(0,25) 

 

(5.2)   

Additionally, the robustness of the proposed method was also evaluated by generating 

the error terms from three different cases which included the non-normal symmetric case, 

the right-skewed case, and the left-skewed case. These cases were generated from the 

beta distribution with parameters (3,3), (2,9) and (9,2) respectively using the same 

relationship described earlier. The probability density function of the beta distribution as 

follows: 

𝑓(𝑥) =
1

𝐵𝑒𝑡𝑎(𝑎, 𝑏)
𝑥(𝑎−1)(1 − 𝑥)(𝑏−1), 0 ≤ 𝑥 ≤ 1 

 

 

where a and b are two positive shape parameters, and 𝐵𝑒𝑡𝑎(𝑎, 𝑏) can be defined as the 

beta function.  

The performance of both methods was examined by observing the estimated bias (EB) 

and the mean square error (MSE) of the slope parameter. The estimated bias and the mean 

square error are defined by 
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Estimated Bias, EB= |𝑤̂ − 𝑤| and  (5.3)   

  

Mean Square Error, MSE= 1

𝑠
∑(𝑤̂𝑗 − 𝑤)

2
 (5.4)   

 

where 𝑤 be a generic term for the parameters. Table 5.1 represents the required values of 

𝑝 and 𝑚 for the proposed estimator for this model.  

 

Table 5.1 Values of p and m 

Sample size, 𝑛 Subgroups, 𝑝 Number of elements, 𝑚 

40 5 8 

80 8 10 

180 12 15 

300 15 20 

 

 

5.5 Results and Discussion 

 

 Results of the simulation studies are presented where performance based on the 

estimated bias and the mean square error are summarized in Table 5.2 to Table 5.5 and 

Table 5.6 to Table 5.9 respectively. Table 5.2 to Table 5.5 show the estimated bias for the 

slope of the replicated linear functional relationship model when the errors 𝛿𝑖𝑗 and 𝜀𝑖𝑗 are 

from normal distribution, beta distribution with parameter (2,9), beta distribution with 

parameter (9,2) and beta distribution with parameter (3,3).   
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Table 5.2 Estimated Bias of the Slope: Normal Case: Normal (0,0.1) 

Contamination Method 
Sample Size 

40 80 180 300 

No outlier 

MLE 3.088E-04 2.570E-04 1.717E-05 1.012E-05 

Proposed 1.182E-02 2.602E-03 2.868E-03 4.463E-03 

Single outlier 

MLE 2.928E-01 1.484E-01 5.940E-02 2.935E-02 

Proposed 2.592E-02 9.250E-03 6.006E-03 6.400E-03 

5% 

MLE 4.496E-01 3.633E-01 1.725E-01 1.584E-02 

Proposed 3.641E-02 2.081E-02 1.143E-02 3.468E-03 

10% 

MLE 2.846E-01 1.714E-02 2.355E-01 1.579E-02 

Proposed 3.070E-02 1.353E-03 1.594E-02 1.941E-03 

15% 

MLE 3.412E+00 6.060E+00 1.726E-01 1.578E-02 

Proposed 4.427E-02 2.700E-02 1.306E-02 8.107E-04 

20% 

MLE 2.025E+01 1.712E-02 1.607E-02 1.577E-02 

Proposed 1.539E-01 7.564E-03 9.270E-03 6.706E-03 

 

From Table 5.2 for normal case, the estimated bias for the slope shows the maximum 

likelihood estimation method is superior when the data has no outliers. However, when a 

single outlier to 20% outliers are introduced in the data set, the maximum likelihood 

estimation tends to break down quickly and become huge. The proposed method however, 

consistently shows a small bias measure with the increasing percentage of outliers as well 

as the increasing of sample sizes. 
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Table 5.3 Estimated Bias of the Slope: Right Skewed Case: Beta (2,9) 

Contamination Method 
Sample Size 

40 80 180 300 

No outlier 

MLE 1.766E-05 4.770E-05 5.919E-05 1.764E-06 

Proposed 4.997E-03 1.827E-03 9.317E-04 8.804E-04 

Single outlier 

MLE 2.918E-01 1.482E-01 5.911E-02 2.918E-02 

Proposed 1.021E-02 4.208E-03 2.019E-03 1.536E-03 

5% 

MLE 4.481E-01 3.625E-01 1.713E-01 1.674E-02 

Proposed 1.429E-02 8.576E-03 4.291E-03 7.501E-04 

10% 

MLE 2.919E-01 1.837E-02 2.343E-01 1.682E-02 

Proposed 1.292E-02 1.353E-03 6.127E-03 6.739E-04 

15% 

MLE 1.054E+00 7.693E+00 1.714E-01 1.699E-02 

Proposed 2.741E-02 1.246E-02 5.809E-03 4.324E-04 

20% 

MLE 2.000E+01 1.836E-02 1.744E-02 1.700E-02 

Proposed 1.444E-01 2.046E-03 1.765E-04 9.158E-04 
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Table 5.4 Estimated Bias of the Slope: Left Skewed Case: Beta (9,2) 

Contamination Method 
Sample Size 

40 80 180 300 

No outlier 

MLE 6.406E-05 5.297E-05 5.010E-05 3.911E-05 

Proposed 4.970E-03 1.745E-03 1.058E-03 8.541E-04 

Single outlier 

MLE 2.890E-01 1.454E-01 5.666E-02 2.635E-02 

Proposed 1.023E-02 4.149E-03 2.154E-03 1.507E-03 

5% 

MLE 4.453E-01 3.598E-01 1.687E-01 1.989E-02 

Proposed 1.425E-02 8.510E-03 4.443E-03 7.020E-04 

10% 

MLE 2.890E-01 2.117E-02 2.317E-01 1.971E-02 

Proposed 1.293E-02 1.233E-03 6.287E-03 6.297E-04 

15% 

MLE 4.801E+00 1.034E+01 1.688E-01 1.971E-02 

Proposed 2.758E-02 1.225E-02 5.922E-03 3.961E-04 

20% 

MLE 2.040E+01 2.118E-02 2.001E-02 1.972E-02 

Proposed 1.452E-01 1.858E-03 2.928E-04 9.295E-04 
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Table 5.5 Estimated Bias of the Slope: Non-normal Symmetric Case: Beta (3,3) 

Contamination Method 
Sample Sizes 

40 80 180 300 

No outlier 

MLE 9.630E-05 2.467E-04 7.845E-06 4.652E-05 

Proposed 7.877E-03 2.186E-03 1.084E-03 1.004E-03 

Single outlier 

MLE 2.903E-01 1.464E-01 5.803E-02 2.779E-02 

Proposed 1.671E-02 6.307E-03 2.951E-03 2.168E-03 

5% 

MLE 4.467E-01 3.610E-01 1.702E-01 1.820E-02 

Proposed 2.336E-02 1.370E-02 6.668E-03 5.133E-04 

10% 

MLE 2.906E-01 1.983E-02 2.331E-01 1.818E-02 

Proposed 2.044E-02 7.474E-04 9.461E-03 8.216E-05 

15% 

MLE 3.825E+00 8.835E+00 1.702E-01 1.818E-02 

Proposed 3.468E-02 1.890E-02 8.027E-03 1.077E-03 

20% 

MLE 2.031E+01 1.982E-02 1.857E-02 1.816E-02 

Proposed 1.494E-01 1.475E-04 3.116E-03 4.973E-03 

 

Similar results can be found in Table 5.3, Table 5.4 and Table 5.5. In general, from 

all four cases, as the sample size increase from 40 to 300, the estimated bias is decreasing 

for both maximum likelihood estimation method and the proposed nonparametric 

method. The same can be with the introduction  of outliers in the data from single outlier 

to 20% outliers, the estimated bias decreases as the number of observations increase. On 

the other hand, the proposed method gives smaller estimated bias value compared to the 

maximum likelihood estimation method when the observations have outliers. 
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Table 5.6 Mean Square Error of the Slope: Normal Case: Normal (0,0.1) 

Contamination Method 
Sample Size 

40 80 180 300 

No outlier 

MLE 6.348E-04 3.058E-04 1.365E-04 8.018E-05 

Proposed 8.087E-04 3.252E-04 1.482E-04 1.017E-04 

Single outlier 

MLE 8.623E-02 2.229E-02 3.661E-03 9.416E-04 

Proposed 1.362E-03 4.092E-04 1.768E-04 1.230E-04 

5% 

MLE 2.026E-01 1.323E-01 2.987E-02 3.344E-04 

Proposed 2.032E-03 7.589E-04 2.736E-04 9.850E-05 

10% 

MLE 1.410E-01 6.100E-04 5.558E-02 3.325E-04 

Proposed 1.711E-03 3.749E-04 4.064E-04 9.443E-05 

15% 

MLE 3.744E+01 6.439E+01 2.991E-02 3.323E-04 

Proposed 3.240E-03 1.099E-03 3.355E-04 9.974E-05 

20% 

MLE 4.230E+02 6.094E-04 3.997E-04 3.321E-04 

Proposed 2.942E-02 5.125E-04 2.808E-04 1.616E-04 

 

From Table 5.6 where the error of variances is normally distributed, the mean square 

error (MSE) for maximum likelihood estimation method gives better result than the 

proposed method for each sample size when the data has no outlier. However, when a 

single outlier to 20% outliers are introduced in the data, the proposed method shows 

consistently smaller values of mean square error compared to the maximum likelihood 

estimation method for each sample size. 
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Table 5.7 Mean Square Error of the Slope: Right Skewed Case: Beta (2,9) 

Contamination Method 
Sample Size 

40 80 180 300 

No outlier 

MLE 7.748E-05 3.833E-05 1.699E-05 1.011E-05 

Proposed 1.071E-04 4.225E-05 1.777E-05 1.078E-05 

Single outlier 

MLE 8.521E-02 2.199E-02 3.512E-03 8.623E-04 

Proposed 1.922E-04 5.761E-05 2.120E-05 1.245E-05 

5% 

MLE 2.008E-01 1.314E-01 2.938E-02 2.903E-04 

Proposed 2.973E-04 1.149E-04 3.603E-05 1.119E-05 

10% 

MLE 8.525E-02 3.777E-04 5.492E-02 2.941E-04 

Proposed 2.702E-04 4.688E-05 5.649E-05 1.158E-05 

15% 

MLE 9.002E+00 7.007E+01 2.938E-02 2.995E-04 

Proposed 1.229E-03 2.030E-04 5.391E-05 1.207E-05 

20% 

MLE 4.019E+02 3.775E-04 3.221E-04 2.999E-04 

Proposed 2.585E-02 5.604E-05 2.161E-05 1.351E-05 

 

Looking at the Table 5.7, where the error variances, 𝛿𝑖𝑗 and 𝜀𝑖𝑗 are skewed to the right 

with beta distribution (2,9), again the maximum likelihood estimation method performs 

well when no outlier exist in the data. However, the maximum likelihood estimation 

method breaks down when a single outlier until 20% outliers are present in the data set.  

The proposed method gives better result in estimating the slope parameter. 
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Table 5.8 Mean Square Error of the Slope: Left Skewed Case: Beta (9,2) 

Contamination Method 
Sample Size 

40 80 180 300 

No outlier 

MLE 7.741E-05 3.817E-05 1.675E-05 1.019E-05 

Proposed 1.072E-04 4.202E-05 1.781E-05 1.082E-05 

Single outlier 

MLE 8.357E-02 2.118E-02 3.226E-03 7.041E-04 

Proposed 1.917E-04 5.718E-05 2.159E-05 1.241E-05 

5% 

MLE 1.983E-01 1.295E-01 2.847E-02 4.059E-04 

Proposed 2.942E-04 1.136E-04 3.726E-05 1.122E-05 

10% 

MLE 8.360E-02 4.886E-04 5.371E-02 4.001E-04 

Proposed 2.674E-04 4.773E-05 5.836E-05 1.171E-05 

15% 

MLE 4.111E+01 1.077E+02 2.850E-02 3.995E-04 

Proposed 1.235E-03 1.987E-04 5.549E-05 1.207E-05 

20% 

MLE 4.179E+02 4.889E-04 4.185E-04 3.998E-04 

Proposed 2.608E-02 5.745E-05 2.164E-05 1.377E-05 
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Table 5.9 Mean Square Error of the Slope: Non-normal Symmetric Case: Beta (3,3) 

Contamination Method 
Sample Size 

40 80 180 300 

No outlier 

MLE 2.252E-04 1.083E-04 4.771E-05 2.877E-05 

Proposed 3.106E-04 1.216E-04 5.167E-05 3.116E-05 

Single outlier 

MLE 8.448E-02 2.153E-02 3.415E-03 8.012E-04 

Proposed 5.403E-04 1.594E-04 5.983E-05 3.513E-05 

5% 

MLE 1.997E-01 1.304E-01 2.900E-02 3.607E-04 

Proposed 8.147E-04 3.094E-04 9.657E-05 3.206E-05 

10% 

MLE 8.461E-02 5.068E-04 5.438E-02 3.606E-04 

Proposed 7.091E-04 1.367E-04 1.446E-04 3.312E-05 

15% 

MLE 3.641E+01 8.952E+01 2.902E-02 3.609E-04 

Proposed 1.907E-03 4.931E-04 1.229E-04 3.630E-05 

20% 

MLE 4.170E+02 5.060E-04 3.949E-04 3.602E-04 

Proposed 2.749E-02 1.540E-04 7.304E-05 6.305E-05 

 

The same can be said when looking at Table 5.8 where the error variances, 𝛿𝑖𝑗 and 

𝜀𝑖𝑗 are skewed to the left with beta distribution (9,2) and Table 5.9 where the error 

variances, 𝛿𝑖𝑗 and 𝜀𝑖𝑗 are non-normal with beta distribution (3,3). Thus, it can be 

concluded that the nonparametric method is superior than the maximum likelihood 

estimation method for estimating the slope parameter in the presence of outliers. 

Based on the simulation results, it is clearly shows the advantages of using the 

proposed robust nonparametric method namely the 20% trimmed mean in estimating the 

slope parameter. The value of the estimated bias and the mean square errors of the 20% 

trimmed mean are generally less than the maximum likelihood estimation method when 
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the datasets have a single outlier and a certain percentage of outliers. By comparing with 

the maximum likelihood estimation method in which it is sensitive to the outliers, the 

20% trimmed mean is the best estimator as it is the compromise between the mean and 

median under both symmetric and non-symmetric distribution. 

 

5.6 Examples 

 

In this section, the proposed nonparametric method is applied to published dataset and 

compared with the traditional maximum likelihood estimation method in estimating the 

slope parameter. Two data sets are used namely the Fat Mass Measurement data and 

Frosted Flakes data. Measurement error are assumed to occur in both variables to make 

the relationship as given in (4.1). 

 

5.6.1 Fat Mass Measurements Data 

 

By considering a data set from Goran et. al (1996), the data set consists of 96 

observations that are free from outliers. As measurement error can occur in both variables 

for this experiment, it is noted the relationship between two variables can be described by 

balanced replicated linear functional relationship model as given in (4.1). Here, it is 

assumed that the error terms follow a normal distribution. Since there are 96 observations 

in this data, the group of the data is obtained by dividing the data into 8 groups and each 

groups have 12 observations that are balanced and equal in each group in order to estimate 

the slope parameter by the proposed method. The data can be modelled by   
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𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖  

 

for 𝑖 = 1,2,⋯ ,8 and 𝑗 = 1,2,⋯ ,12  and 𝑛 = 𝑝 ×𝑚 = 8 × 12 = 96. To create different 

situations in investigating the slope effect by two different methods, some original y 

values are substituted by outliers namely a single outlier, 5%, 10% and 15% outliers by 

following Kim (2000) and Imon & Hadi (2008). The estimated slopes (and standard 

deviation) by using two different methods are shown in Table 5.10. 

 

Table 5.10 Slopes Estimates Using Fat Mass Measurements Data  

Contamination MLE, 𝛽̂𝑀𝐿𝐸                  

(Standard Deviation) 

Proposed Method, 𝛽̂𝑡𝑟𝑖𝑚 

(Standard Deviation) 

No outlier 1.097 (0.512) 0.974 (0.452) 

Single outlier 1.483 (0.993) 1.001 (0.603) 

5% outliers 4.041 (6.660) 1.014 (0.861) 

10% outliers 6.561(25.790) 1.023 (1.013) 

15% outliers 9.527(26.872) 1.002 (1.052) 

 

From Table 5.10, both methods showed a somewhat similar value of the slope 

estimates which approximately equal to one when the dataset has no outlier. However, 

when outliers increased from a single outlier to 15%, the estimates of the slope using the 

maximum likelihood method becomes huge compared to the proposed nonparametric 

method. By comparing the standard deviation for both methods, the slope estimate using 

the proposed method has a smaller standard deviation when the data has no outlier up to 
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15% outliers. This clearly shows the proposed method works well in estimating the slope 

parameter when the dataset contains outliers.  

 

5.6.2 Iron in Slag Data 

 

To demonstrate the practicality of the proposed method, another dataset called the iron 

in slag data was utilized. Details on the dataset is given in APPENDIX D. The data set 

consists of 50 observations that are free from outliers. As measurement error can occur in 

both variables for this experiment, it is assumed that the error terms follow a normal 

distribution and the relationship can be described by replicated linear functional 

relationship model as given in (4.1). To apply the proposed method, the data set are 

divided into 5 groups with 10 observations in each group. The data can be modelled by   

 

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖  

 

for 𝑖 = 1,2,⋯ ,5 and 𝑗 = 1,2,⋯ ,10  and 𝑛 = 𝑝 ×𝑚 = 5 × 10 = 50. To create different 

conditions in investigating the slope effect by two different methods, some original y 

values are substituted by outliers namely a single outlier, 5%, 10% and 15% outliers by 

following Kim (2000) and Imon & Hadi (2008). The estimated slopes (and standard 

deviation) by using two different methods are shown in Table 5.11. 
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Table 5.11 Slope estimates using the iron in slag dataset 

Contamination MLE, 𝛽̂𝑀𝐿𝐸                  

(Standard Deviation) 

Proposed Method, 𝛽̂𝑡𝑟𝑖𝑚 

(Standard Deviation) 

No outlier 0.922 (0.947) 0.835 (0.864) 

Single outlier 1.223 (1.513) 0.876 (1.108) 

5% outliers 2.435 (2.932) 0.901 (1.214) 

10% outliers 5.449 (16.293) 1.038 (1.707) 

15% outliers 9.534 (29.428) 1.268 (2.458) 

 

As shown in Table 5.11, in the absence of outliers, the slope estimates obtained using 

the proposed method are almost identical to the maximum likelihood estimation method. 

However, in the presence of a single outlier, 5%, 10%, and 15% outliers, the slope 

estimates for maximum likelihood estimation method are shown to increase, although the 

proposed estimator is not considerably affected by the outliers. The standard deviations 

for the slope estimate using the proposed method are smaller compared to the slope 

estimates using the maximum likelihood estimation method. This clearly demonstrates 

that the proposed method performs well in estimating the slope parameter when the 

dataset contains outliers. 

 

5.7 Summary and Conclusions 

 

In this chapter, a 20% trimmed mean as the robust nonparametric method in 

estimating the slope parameter of balanced replicated linear functional relationship model 

is proposed.  By looking at the estimated bias and the mean square, it is concluded that 
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the proposed nonparametric method is superior to the maximum likelihood estimation in 

the presence of outliers. This can be seen from the simulation studies when the percentage 

of outliers increases, the estimated bias and the mean square error of the maximum 

likelihood estimation becomes huge and breaks down easily as compared to the proposed 

nonparametric method. The estimated bias and the mean square error of the 20% trimmed 

mean are not affected by outliers regardless of the percentage of the contamination or the 

sample sizes. The same results also can be seen in real data examples. 

Although the maximum likelihood estimation method is a common method used in 

estimating the slope of a balanced replicated linear functional relationship model, the 

assumption of normality in data sets that contain outliers leads to errors in estimating the 

parameters of the model particularly the slope parameter. In summary, the new 

nonparametric approach proposed by using the 20% trimmed mean can be viewed as the 

robust estimator in estimating the slope parameters in balanced replicated linear 

functional relationship model even when the datasets have very large percentages of 

outliers. This method also can be utilized as an alternative method to estimate the slope 

parameter of the balanced replicated linear functional relationship model in the presence 

of outliers. The novelty of this nonparametric method is that it does not require any 

assumption on the probability distribution of the data and also is easy to apply. Unlike 

median, the trimmed mean takes into account of the 80% of the observations.  
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CHAPTER 6: SINGLE OUTLIER DETECTION FOR BALANCED 

REPLICATED LINEAR FUNCTIONAL RELATIONSHIP MODEL 

 

6.1 Introduction 

 

This chapter addresses the fourth objective of the study that is the outlier detection in 

a balanced replicated linear functional relationship model. Identifying potential outliers 

is important as their presence leads to skewed or bias results. The motivation of this study 

is to provide a technique that can be used in a data quality evaluation process for data that 

fits linear functional relationship model. Outlier detection procedure for balanced 

replicated linear functional relationship model has not been explored before. Here, 

COVRATIO statistics as an outlier detection method is considered in which this method 

is modified to accommodate for a balanced replicated linear functional relationship 

model. In Section 6.2, the formulation of COVRATIO statistic for balanced replicated 

linear functional relationship model is described. Next, the procedure for determining the 

cut-off points for detecting an outlier is given in Section 6.3. In Section 6.4, the power of 

performance is discussed. Section 6.5 illustrates some practical applications of the 

COVRATIO statistic using simulated and real data. Finally, summary and conclusion are 

given in Section 6.6. 
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6.2 COVRATIO Statistic for Balanced Replicated Linear Functional 

Relationship Model 

 

Outliers are any observations that do not follow any pattern in the dataset. The 

existence of outliers may affect the parameter estimation of the models and also the 

prediction of the analysis (Satari & Khalif, 2020). Identification of outliers becomes a 

vital area in which many outlier detection methods have been proposed including the 

COVRATIO statistic. COVRATIO statistic has been used for different models such as in 

a linear and circular regression model (Belsley et al., 1980; Abuzaid et al., 2011; Ibrahim 

et al., 2013). Moreover, in errors-in-variable model, the COVRATIO statistic has been 

utilized in a structural relationship model and also in a functional relationship model 

(Hussin et al., 2010; Ghapor et al., 2014; Mamun et al., 2019; Mokhtar et al., 2019).  

The COVRATIO statistic has been first introduced by Belsley et al. (1980) in 

identifying influential observations or outliers in a linear regression model. The idea of 

the COVRATIO statistic is based on the determinantal ratio of covariance matrix for a full 

data set and a reduced data set by excluding one observation in turn. In other words, 𝑖𝑡ℎ 

is deleted from the full data set. It is given by following: 

 

|𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| =
|𝐶𝑂𝑉|

|𝐶𝑂𝑉(−𝑖)|
 

(6.1)  

 

where |𝐶𝑂𝑉| is the determinant of covariance matrix for full data set and |𝐶𝑂𝑉(−𝑖)| is for 

determinant of covariance matrix for the reduced data set by excluding the 𝑖𝑡ℎ row. If the 

ratio is close to 1, then there is no significant difference between the covariance matrices. 
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Otherwise, the 𝑖𝑡ℎ observation is consistent with other observations. Moreover, they also 

developed a test statistic of the form |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| and identified the cut-off point 

for examining the presence of the outliers.  

For balanced replicated linear functional relationship model, the ratio of statistic is 

based on the determinant of the asymptotic variance and covariance for the parameters 

that has been discussed in Chapter 4 (4.31). It is motivated by the fact that the balanced 

replicated linear functional relationship model has a closed form covariance matrix of the 

parameters. Algebraically the COVRATIO statistic for balanced replicated linear 

functional relationship model is given by  

 

|𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| =
|𝐶𝑂𝑉|

|𝐶𝑂𝑉(−𝑖)
∗ |

 
(6.2)  

 

where |𝐶𝑂𝑉| is the determinant of covariance matrix for full data set and |𝐶𝑂𝑉(−𝑖)
∗ | is the 

determinant of covariance matrix by deleting ith observation of every group.  

The deleted ith observation is replaced with mean samples to make balanced 

replication of all sample groups. The use of mean substitution may be based on the fact 

that the mean is a reasonable guess of a value for a randomly selected observation from a 

normal distribution (Acock, 2005). Any observation with |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| exceeds 

the cut-off points will be considered as an outlier. The cut-off points are obtained through 

the simulation studies in the following section.  
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6.3 Determination of Cut-off Points by COVRATIO Statistic 

 

A simulation study is conducted to obtain the cut-off points of COVRATIO statistic for 

balanced replicated linear functional relationship model. Eight different sample sizes                                                        

𝑛 = 20, 40, 60 ,80 ,100 ,132 , 180  and 300 are used according to the division of sample 

size as in Table 6.1. 

 

Table 6.1 Values of groups and elements 

Sample size, 𝑛 Subgroups, 𝑝 Number of elements, 𝑚 

20 4 5 

40 5 8 

60 6 10 

80 8 10 

100 10 10 

132 11 12 

180 12 15 

300 15 20 

  

Furthermore, different values of 𝜏2 = 0.2,0.4, 0.6,0.8 and 1.0 are chosen. For each 

sample of size 𝑛 and 𝜏2, a set of normal random errors are generated from the normal 

distribution with mean 0 and 𝜏2 respectively. Thus, to obtain the cut-off points of 

COVRATIO statistic, the following steps are proposed: 
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Step 1: Generate a fixed variable 𝑋𝑖 = 10(𝑖/𝑝) of size 𝑝, with 𝑖 = 1,2, … , 𝑝 where 

𝑝 is the number of group. Without loss of generality, the intercept, slope and 

error variance parameters of replicated linear functional relationship model 

are fixed at 𝛼 = 0, 𝛽 = 1 and 𝜎2 = 1 respectively. 

Step 2: Generate two random error terms 𝛿𝑖𝑗 and 𝜀𝑖𝑗 from 𝑁(0, 𝜎2) and 𝑁(0, 𝜏2) 

respectively. 

Step 3: Calculate the observed values of 𝑥𝑖𝑗 and 𝑦𝑖𝑗 using equation (4.1). 

Step 4: Fit the generated data to balanced replicated linear functional relationship 

model and estimate the parameters of balanced replicated linear functional 

relationship model. 

Step 5: Find the variance-covariance matrix and calculate the |𝐶𝑂𝑉| for all data. 

Step 6: Delete the 𝑖𝑡ℎ observation of every group and replicate with mean for 

observation in every group from the generated sample of both 𝑥𝑖𝑗 and 𝑦𝑖𝑗 

where 𝑖 = 1,2, … , 𝑝 and 𝑗 = 1,2, … ,𝑚. Repeat steps 4 till steps 6 to obtain 

|𝐶𝑂𝑉(−𝑖)|. 

Step 7: Calculate 𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) and find the value of |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| for all 

𝑖. 

Step 8: Specify the maximum value of |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1|. 

 

The procedures are simulated 5000 times for each combination of sample size 𝑛 and 

𝜏2. Then, the 1%, 5% and 10% upper percentiles of the maximum values of 

|𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| are calculated. These upper percentiles are used as the cut-off points 

in identifying the outliers for the balanced replicated linear functional relationship model.  

The cut-off points for various sample sizes of 𝑛 are tabulated at 1%, 5 % and 10% 

levels of significant as given in Table 6.2, Table 6.3 and Table 6.4 respectively. The 1%, 
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5% and 10% upper percentile values of |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| are independent of 𝜏2 for 

all 𝑛. From all the tables, the cut-off points show a decreasing function of sample size 𝑛.  

 

Table 6.2 The 1% upper percentile points of |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1|  

Sample size, n 𝜏2 = 0.2 𝜏2 = 0.4 𝜏2 = 0.6 𝜏2 = 0.8 𝜏2 = 1.0 

20 2.9727 4.2716 5.1172 6.0847 6.4157 

40 2.1920 2.1136 1.9942 2.0638 2.1304 

60 0.9880 1.0325 1.0345 1.0792 1.1230 

80 0.9710 0.9312 0.9060 0.8770 0.8567 

100 0.9493 0.9008 0.8542 0.8213 0.7930 

132 0.9111 0.8256 0.7724 0.7280 0.6974 

180 0.8410 0.7335 0.6624 0.6189 0.5826 

300 0.6893 0.5563 0.4876 0.4448 0.4116 

 

Table 6.3 The 5% upper percentile points of |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| 

Sample size, n 𝜏2 = 0.2 𝜏2 = 0.4 𝜏2 = 0.6 𝜏2 = 0.8 𝜏2 = 1.0 

20 1.1321 1.9974 2.5915 2.8700 3.0111 

40 1.3591 1.2633 1.3131 1.3179 1.3985 

60 0.9804 0.9529 0.9281 0.9078 0.8913 

80 0.9625 0.9158 0.8807 0.8498 0.8227 

100 0.9401 0.8797 0.8322 0.7931 0.7632 

132 0.8967 0.8086 0.7491 0.7049 0.6705 

180 0.8245 0.7139 0.6431 0.5977 0.5613 

300 0.6741 0.5412 0.4719 0.4288 0.3969 
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Table 6.4 The 10% upper percentile points of |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1|  

Sample size, n 𝜏2 = 0.2 𝜏2 = 0.4 𝜏2 = 0.6 𝜏2 = 0.8 𝜏2 = 1.0 

20 0.9998 1.3477 1.7647 1.9923 2.1651 

40 1.0873 1.0473 1.0578 1.0783 1.1078 

60 0.9770 0.9453 0.9171 0.8924 0.8717 

80 0.9581 0.9084 0.8690 0.8372 0.8083 

100 0.9347 0.8700 0.8195 0.7797 0.7492 

132 0.8898 0.7987 0.7369 0.6915 0.6565 

180 0.8173 0.7026 0.6309 0.5855 0.5501 

300 0.6668 0.5330 0.4636 0.4199 0.3891 

 

In order to obtain the cut-off points for balanced replicated linear functional 

relationship model, the arithmetic mean of the values |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| for each 𝜏2 at 

1%, 5% and 10% significance level is calculated. Then, the curve is plotted as shown in 

Figure 6.1, Figure 6.2 and Figure 6.3 respectively. The equation of the series trend line is 

obtained by fitting the curve with the power series equation; for example, in Figure 6.2, 

at 5% significance level, the equation for cut-off point is  𝑦 = 9.6293𝑛−0.526 where n is 

the sample size. Similar formulations of the trend lines are obtained for 1% and 10% 

significant level as in Figure 6.1 and Figure 6.3. At 5% and 10% significance level, the 

curve have  a good fit of 𝑅2 which is approximately equal to 1.  At 1% significance level, 

the 𝑅2 shows approximately equal to 0.9 which is still considered a good fit. 
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Figure 6.1 Graph of the Power Series in Finding the General Formula for the Cut-off 
Point at 1% Significant Level 

 

 

Figure 6.2 Graph of the Power Series in Finding the General Formula for the Cut-off 
Point at 5% Significant Level 
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Figure 6.3 Graph of the Power Series in Finding the General Formula for the Cut-off 
Point at 10% Significant Level 

 

 

Table 6.5 General formula for cut-off points at 1%, 5% and 10% upper percentile, 
where n is the sample size 

Upper Percentile General Formula for Cut-off Points 

10% 𝑦 = 5.2418𝑛−0.407 

5% 𝑦 = 9.6293𝑛−0.526 

1% 𝑦 = 39.159𝑛−0.801 

 

Table 6.5 shows the general formula for cut-off point in detecting the outliers at 1%, 

5% and 10% upper percentile where 𝑛 is the sample size. Based on these formulas, any 

point that exceeds the cut-off points will be considered as an outlier. 
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6.4 Power of Performance for COVRATIO Statistic 

 

The next step of the analysis is to measure the power of performance of       

|𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| using Monte Carlo simulation method. Different sample of sizes           

𝑛 = 40, 80, 100 and 180  according to division of sample size as given in Table 6.1 in 

sub-chapter 6.3 are considered for this study. The procedure to generate data set as 

described in Section 6.3 is applied here. In addition, the contamination is randomly 

applied at randomly chosen an observation, for example at position 𝑐. Then, 𝑦𝐶 is 

contaminated as follows: 

 

𝑦𝐶 = 𝛼 + 𝛽𝑋𝐶 + 𝜑𝐶, (6.3)  

 

where 𝑦𝐶 and 𝑋𝐶 are the value of the 𝑐𝑡ℎ position of both variables  𝑦 and 𝑋 respectively 

after contamination. In addition, 𝜑𝐶 is error taken from normal distribution with mean 

zero and different variances of 6,8,10,12,14 and 16 respectively. The data generated is 

fitted by using the model in (4.1) and then |𝐶𝑂𝑉| is calculated. Then, the 𝑖𝑡ℎ observation 

is deleted for every group and replaced with the mean of the remaining data. This to 

ensure the elements in each group still balanced and under replicated model. The data is 

refitted and  𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) is calculated. The maximum value of |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| 

is specified and compared with the specified cut-off point. As mentioned in the previous 

section, the 5% significance level as the cut-off point is used to detect the presence of the 

outlier with 95% confidence interval. This procedure has correctly identified the outlier 

in the data set if the values of |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| is maximum and exceeds the stated 

cut-off point. The process is repeated 5000 times. The power of performance is then 

Univ
ers

iti 
Mala

ya



132 

examined by calculating the percentage of the correct detection of the contaminated 

observation at 𝑐𝑡ℎ position.  

Figure 6.4 to Figure 6.7 show the graph of power of performance of  

|𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| statistic for 𝑛 = 40,80, 100 and 180 respectively with different 

level of 𝜏2 = 0.2,0.4, 0.6,0.8 and 1.0. From these plots, it can be concluded that as 𝜏2 

decreases, the power of performance in detecting the correct outlier increases for all 𝑛. 

 

Figure 6.4 Power of performance for |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| when 𝑛 = 40 
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Figure 6.5 Power of performance for |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| when 𝑛 = 80 

 

 

Figure 6.6 Power of performance for |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| when 𝑛 = 100 
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Figure 6.7 Power of performance for|𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1|  when 𝑛 = 180  

 

Also Figure 6.8 shows the power of performance of |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| statistic for 

𝜏2 = 0.2 for different sample sizes namely when 𝑛 = 40,80,100 and 180. From this 

figure, the power of performance increases as the variance of contamination increases. 

By looking at this figure, one can see that the power of performance is independent of 

sample size. Similar trends can be obtained  in Figure 6.9 to Figure 6.12 when                 

𝜏2 = 0.4,0.6,0.8 and 1.0 respectively. These figures also give consistent results whereby 

the power of performance is independent for all sample sizes.  
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Figure 6.8 Power of performance for |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| when 𝜏2 = 0.2. 

 

 

Figure 6.9 Power of performance for |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| when 𝜏2 = 0.4. 
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Figure 6.10 Power of performance for |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| when 𝜏2 = 0.6 

 

 

 

Figure 6.11 Power of performance for |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| when 𝜏2 = 0.8 
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Figure 6.12 Power of performance for |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1|  when 𝜏2 = 1.0. 

 

 

6.5 Examples 
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6.5.1 Simulated Data 

 

For illustration, the data set of size 𝑛 = 60 is considered with six groups, 𝑝 = 6 and 

each group has 10 observations, 𝑚 = 10. The data is generated from balanced replicated 

linear functional relationship model given by  

 

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖, 𝑥𝑖𝑗 = 𝑋𝑖 + 𝛿𝑖𝑗  and 𝑦𝑖𝑗 = 𝑌𝑖 + 𝜀𝑖𝑗  

 

for 𝑖 = 1,2,3,4,5,6 and 𝑗 = 1,2,⋯ ,10 and 𝑛 = 𝑝 ×𝑚 = 6 × 10 = 60. Without loss of 

generality, the parameters, 𝛼 = 0, 𝛽 = 1, 𝜎2 = 1 and 𝜏2 = 0.4 is set. Then, the scatterplot 

of the simulated data is shown in Figure 6.13.  

 

 

Figure 6.13 The scatter plot for the simulated data 
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Next, a randomly contamination for the observation, namely at the 11th observation 

where the contamination is taken from 𝑁(0,12) is done. This changed the original point 

(4.91,3.96) to (4.91, 10.72). The scatterplot of the simulated data sets which includes the 

contaminated observation are presented in Figure 6.14.  

 

Figure 6.14 The scatter plot for the modified simulated data 

 

From Figure 6.14, it can be seen the 11th observation is slightly far from other 

observations but still cannot be ascertained as an outlier. The next step is to calculate the 

COVRATIO statistic to the data to determine if there is any outlier. The COVRATIO 

statistic for each value is calculated and the results are given in Table 6.6. Based on the 

formulation as given in Table 6.5, the cut-off point for 𝑛 = 60 is calculated at 5% 

significant level and the value 1.118 is obtained. From Table 6.6 and Figure 6.15, it 

clearly shows that the COVRATIO value for 11th observation is 17.9076 which exceeds 

11th 

Univ
ers

iti 
Mala

ya



140 

the cut-off points of 1.1176. Hence, it can be concluded that the cut-off points correctly 

identify the 11th observation as an outlier.  

 

Table 6.6 The values for |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| for the simulated data, 𝑛 = 60. 

Index |𝑪𝑶𝑽𝑹𝑨𝑻𝑰𝑶(−𝒊) − 𝟏| Index |𝑪𝑶𝑽𝑹𝑨𝑻𝑰𝑶(−𝒊) − 𝟏| Index |𝑪𝑶𝑽𝑹𝑨𝑻𝑰𝑶(−𝒊) − 𝟏| 

1    0.7917 21    0.0227 41    0.3154 

2 0.8072 22 0.0653 42 0.4368 

3 0.7991 23 0.0689 43 0.3719 

4 0.8043 24 0.0658 44 0.3968 

5 0.7994 25 0.0667 45 0.4445 

6 0.8013 26 0.0552 46 0.4250 

7 0.8066 27 0.0199 47 0.3866 

8 0.8022 28 0.0658 48 0.4261 

9 0.7847 29 0.0721 49 0.4324 

10 0.7849 30 0.0442 50 0.4446 

11 17.9076 31 0.0203 51 0.8019 

12 0.2375 32 0.0125 52 0.7912 

13 0.3865 33 0.0298 53 0.8069 

14 0.3822 34 0.3682 54 0.7985 

15 0.4023 35 0.0102 55 0.8063 

16 0.2039 36 0.0068 56 0.8065 

17 0.3544 37 0.0055 57 0.7954 

18 0.2468 38 0.0017 58 0.8057 

19 0.3928 39 0.0482 59 0.7570 

20 0.3214 40 0.0227 60 0.7977 
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Figure 6.15 Graph of |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| for simulation data, 𝑛 = 60 

 

Table 6.7 shows the value of parameter estimates and the standard deviation of the 

modified data in comparison of the original data. As expected, the standard deviation is 

much higher when the data has a single outlier. This illustrates that when a single outlier 

presents in the data set, the parameter estimates is affected. Thus, detecting an outlier in 

the data is important, otherwise the value of the parameter estimates becomes unreliable.  

 

Table 6.7 Parameter estimation and standard deviation for simulated data 

Parameter Original Data (No Outlier) Modified Data (Single Outlier) 

Estimates Standard Deviation Estimates Standard Deviation 

𝛼̂ 0.0281 0.3387 0.0507 0.4664 

𝛽̂ 1.0169 0.0526 1.0310 0.0727 

𝜎̂2 1.0276 0.1876 0.9934 0.1814 

𝜏̂2 0.3465 0.0633 1.4585 0.2663 

 

- - - -cut-off line 
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6.5.2 Systolic Blood Pressure Data 

 

As another illustration, the subsample of the original dataset containing 30 

observations from Bland and Altman (1999) is considered. The data set measures the 

systolic blood pressure which simultaneous measurements were made by two experienced 

observers denoted as J and R.  It is assumed that measurement error can occur in both the 

variables 𝑌𝑖 and 𝑋𝑖. In this case, there are 10 groups (or subjects) and each groups have 

three sets of readings that were made in quick succession. The data can be modelled by   

 

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖  

 

for 𝑖 = 1,2,⋯ ,10 and 𝑗 = 1,2,3 and 𝑛 = 𝑝 × 𝑚 = 10 × 3 = 30. Since there is no outlier 

in the original data, a random outlier is inserted, i.e. at 14th observation, by following Kim 

(2000) and Imon and Hadi (2008).  
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Figure 6.16 The scatter plot for the modified real data 

 

Again, the COVRATIO statistic for each value is calculated and the results are given 

in Table 6.8. Based on the formulation in Table 6.5, the cut-off point for 𝑛 = 30 is 

calculated, in particular the general formula  𝑦 = 9.6293𝑛−0.526 = 1.609 is obtained at 

5% significant level.  
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Table 6.8 The values for |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| for the real data, 𝑛 = 30 

Index |𝑪𝑶𝑽𝑹𝑨𝑻𝑰𝑶(−𝒊) − 𝟏| Index |𝑪𝑶𝑽𝑹𝑨𝑻𝑰𝑶(−𝒊) − 𝟏| Index |𝑪𝑶𝑽𝑹𝑨𝑻𝑰𝑶(−𝒊) − 𝟏| 

1 0.1705 11 0.1109 21 0.4654 

2 0.0687 12 0.0174 22 0.0112 

3 0.0478 13 0.3156 23 0.0427 

4 0.0003 14 6.3228 24 0.0604 

5 0.0179 15 0.4537 25 0.4483 

6 0.0093 16 0.8611 26 0.0132 

7 0.9085 17 0.4227 27 0.2504 

8 0.9466 18 0.8655 28 0.0333 

9 0.9409 19 0.6611 29 0.3529 

10 0.0379 20 0.0093 30 0.1852 

 

 

Figure 6.17 Graph of |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| for real data, 𝑛 = 30 

 

Table 6.8 and Figure 6.17, it is observed that the value of |𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) − 1| for the 

14th observation is 6.3328, which exceeds the cut-off point value of 1.609 at 5% 

- - - -cut-off line 
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significant level. To conclude, based on the calculated cut-off point and the COVRATIO 

statistic used, the method has successfully identified observation 14 as the outlier. 

Table 6.9 shows the value of parameter estimates and the standard deviation of the 

modified data in comparison of the original data. Similar to previous example, the 

standard deviation of the parameter estimates is much higher when the data has a single 

outlier. Again, this shows that the value of the parameter estimates is affected when a 

single outlier presence in the data set. This example illustrates the importance of detecting 

an outlier in the data. It is crucial since it has an impact on the parameter estimates, thus 

making them unreliable. 

 

Table 6.9 Parameter estimation and standard deviation for Systolic Blood Pressure 
data 

Parameter Original Data (No Outlier) Modified Data (Single Outlier) 

Estimates Standard 

Deviation 

Estimates Standard 

Deviation 

𝛼̂ -1.7265 12.3323 -19.4640 16.3882 

𝛽̂ 1.0210 0.1145 1.1982 0.1522 

𝜎̂2 22.9484 5.9253 25.01363 6.4585 

𝜏̂2 27.6816 7.1474 51.1897 13.2171 
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6.6 Summary and Conclusion 

 

In a balanced replicated linear functional relationship model, an outlier detection 

method has been proposed since the method outlier identification for replicated linear 

functional relationship model has not been done. A test statistic based on the COVRATIO 

statistic is developed for balanced replicated linear functional relationship model by 

modifying the covariance function used in the formulation. From simulation studies, the 

cut-off functions are determined for various significant levels namely 1%, 5% and 10% 

respectively. Once the cut-off equations are determined, it is important to run the power 

of performance where it is examined through the simulation studies by looking at the 

behavior at different level of significant levels, sample size and 𝜏2 values.   

The simulation results suggest that the determined cut-off functions perform well 

based on the power performance tests.  One can use COVRATIO statistic to identify 

outlier in balanced replicated linear functional relationship model with the cut-off 

functions. To illustrate, two data sets namely simulated and real data set are used. It can 

be seen from a simulated data and a real dataset where the proposed method can detect 

the outlier that has been placed randomly in the dataset. It can be concluded that the 

modified COVRATIO statistic can be used in balanced replicated linear functional 

relationship model. The novelty of the study is that the proposed method is easy to use 

and can be applied to balanced replicated linear functional relationship model. In 

summary, it provides a solution for researchers working on a balanced replicated linear 

functional relationship model not only as a data cleaning and outlier detection tool but 

also as an important step in all data analysis. 
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CHAPTER 7: REPLICATING DATA IN LINEAR FUNCTIONAL 

RELATIONSHIP MODEL USING CLUSTERING ANALYSIS  

 

7.1 Introduction 

 

In this chapter, an effective grouping approach based on clustering is proposed to 

address the fifth objective of the study. The motivation of this to find a solution to address 

the problem of unidentifiability in linear functional relationship model. One possible 

solution is to identify groups from unreplicated data. By grouping the data, the groups 

formed can be used to estimate the parameters using replicated linear functional 

relationship model. The replicated linear functional relationship model in this chapter is 

based on unbalanced observations in each group. In this way, one can overcome the 

unidentifiability problem in linear functional relationship model. This means, one can 

estimate the errors variances independently without making any assumption on the ratio 

of the error variances.  Section 7.2 describes in detail the analysis of the agglomerative 

hierarchical clustering by using the Euclidean distance as the similarity measure. Section 

7.3 described the replicated linear functional relationship model by considering different 

elements or observations in each groups. This is followed by a simulation study in Section 

7.4 to test the performance of this clustering algorithm in the linear functional relationship 

model. Section 7.5 discusses on the result of the simulation study. Simulated data and real 

data examples are given in Section 7.6. Finally, conclusion and summary of the whole 

chapter are given in Section 7.7. 

 

Univ
ers

iti 
Mala

ya



148 

7.2 Clustering Methods 

 

In Chapter 4, all the parameters in replicated linear functional relationship model 

namely the intercept 𝛼, the slope 𝛽, the error variances 𝜎2 and 𝜏2 and the incidental 

parameters 𝑋𝑖, can be estimated without making any assumption on the ratio of error 

variances 𝜆 = 𝜏2

𝜎2
. By using replicated linear functional relationship model, the 

unidentifiability problem can be avoided and thus can estimate all the parameters 

independently. The basic procedures to group the unreplicated data have been discussed 

in Section 4.4. Nevertheless, the basic grouping techniques in Chapter 4 is too general 

and need to be explored further. Without having any knowledge how to transform the 

unreplicated data to replicated data, this chapter proposes some guidelines as to how to 

group the data using the methods of clustering. Therefore, by transforming the data into 

replicated data, it can aid the process to estimate all the parameters in linear functional 

relationship model.  

Cluster analysis groups individuals or objects into clusters such that objects in the same 

cluster are more similar to one another than objects in other clusters. Using the basic idea 

of cluster analysis, the aim of grouping unreplicated data is to classify different subsets 

of observations that are almost replicates or almost similar to one another. According to 

Sebert et al. (1998), similarity measure is needed in order to group the variables or items 

into their own group. There are four types of similarity measure but the most common 

used as similarity measure is the distance measure (Blashfield & Aldenderfer, 1978). 

Euclidean Distance is one type under distance measure and commonly used because it 

can easily be applied. It can be defined as 
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𝑑𝑖𝑗 = √∑(𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2

𝑝

𝑘=1

 

(7.1) 

 

  

where 𝑑𝑖𝑗 is the distance between i and j, and 𝑥𝑖𝑘 is the value of the 𝑘𝑡ℎ variable for the 

𝑖𝑡ℎ observation and 𝑥𝑗𝑘 is the value of the 𝑘𝑡ℎ variable for the 𝑗𝑡ℎ observation (Wang et 

al., 2005). As an illustration, consider the data in Table 7.1 below: 

 

Table 7.1 Datasets to illustrates Euclidean as a similarity distance  

Observations 𝑥 𝑦 

1 0.2642 2.0477 

2 1.0035 2.4319 

3 4.9371 2.9593 

4 3.2046 1.3954 

5 3.4962 1.9336 

6 3.0475 0.7628 

7 1.7571 0.8564 

 

As an example, the calculation of Euclidean distance between observation 1 and 2 is given 

in the following: 

 

𝑑12 = √(0.2642 − 1.0035)2 + (2.0477 − 2.4319)2 = 0.8332 
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For the set of data, Euclidean distances are calculated for all the data points using equation 

in (7.1). Since there are seven observations in this example, the distances obtained are 

placed in a square matrix with seven rows and seven columns. The distance values,    

𝑑𝑖𝑗 = 𝑑𝑗𝑖 is written in a similarity matrix in a lower triangular matrix. as shown in Table 

7.2. 

 

Table 7.2 The similarity matrix for seven observations 

Observation 1 2 3 4 5 6 7 

1 0       

2 0.8332                                                 0      

3 4.7609 3.9688 0     

4 3.0119 2.4329 2.3339                               0    

5 3.2340 2.5420 1.7687 0.6121                   0   

6 3.0656 2.6389 2.8974 0.6518 1.2538         0  

7 1.9099 1.7465 3.8124 1.5446 2.0457 1.2938 0 

 

In this study, three different clustering methods from hierarchical cluster analysis 

(HCA) to cluster the data are considered. The methods are called single-linkage, 

complete-linkage and average-linkage. Every method has its own procedures and gives 

different results on grouping. Single linkage method uses the smallest dissimilarity 

between a point in the first cluster and a point in a second cluster. It is also known as 

nearest neighbour clustering and one of the most famous of the hierarchical techniques. 

Complete-linkage method acts in which the similarity of the inter-object is based on the 

maximum distance between objects in two clusters. The complete linkage also known as 

furthest neighbour. While for average-linkage method, it represents similarity as the 
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average distance from all objects in one cluster to all objects in another and also known 

as the weighted pair-group method. The illustration of the single-linkage, complete-

linkage and average linkage can be seen in Figure 7.1.  

 

 

 

 

  

Single-linkage Complete-linkage Average-linkage 

Figure 7.1 Illustration of three selected linkage methods 

 

As an illustration for single-linkage algorithm, in Table 7.2 , there are seven clusters 

or groups, with one element in each cluster. Then, the similarity measure i.e. the distance 

matrix using Euclidean distance as in (7.1) is calculated between all possible pairs of 

cluster. By using single-linkage algorithm, the pair of clusters with the smallest distance 

is merged. From Table 7.2, the smallest distance is seen in the observation 5 and the 

observation 4 which is 0.6121. In this step, the observation 5 and the observation 4 is 

merged, then the row 5 and the column 4 in the similarity matrix are deleted. This process 

will be repeated until all clusters are merged together where all the observations are 

combined together in one cluster or the termination condition, for example, the number 

of groups is set. 

The general steps for agglomerative hierarchical clustering algorithm is proposed and 

explained below:  

Average 
distance Max 

distance 
Min 

distance 
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Step 1: Start with N cluster each containing a single observations, 𝐷 = {𝑑𝑖𝑘}. 

Step 2: Obtain the distance matrix for the most similar or nearest pairs of clusters. Let    

the distance between “most similar” clusters U and W  be 𝑑𝑈𝑊. 

Step 3: Merge clusters U and W together. Label the newly formed cluster as UW.   

Step 4: Update the entries in the distance matrix by deleting the rows and columns 

corresponding to clusters U and W. Add a row and column giving the distances 

between cluster U and W and the remaining clusters. 

Step 5: Repeat step 2-4 until only a single cluster remains in the end. 

 
 
 

“The most similar” in step 2 is referring to a distance using different agglomerative 

clustering algorithm namely the single-linkage, complete-linkage and average-linkage. 

The results of hierarchical clustering methods can be displayed in a form of a dendogram 

or cluster tree diagram. The height of the dendogram is the distance between clusters. As 

an illustration, the dendogram based on single-linkage method as described before is 

shown in Figure 7.2. The dendogram or the cluster tree can be cut depends on how many 

groups that one intends to have. In this case, it is proposed that the rule or the termination 

condition will be based on the size of group. Here, the size of the grouped are same but 

each group will have different elements or observations. This is called as an equal and 

unbalanced replicated. As mentioned earlier, different linkage methods will result to 

different clusters or different elements in each group.  
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Figure 7.2 Illustration of dendogram based on single-linkage method 

 

The R programming is used to formulate the single-linkage, complete-linkage and 

average-linkage algorithm as in Figure 7.3. The command line d0=dist(dt_sc, 

method=’euclidean’), h1=hclust(d0,method='average') and cut_avg <- cutree(h1,k=5), are used 

where they refer to the similarity measure used is the Euclidean distance, the linkage 

method used is the average linkage method and the number of cluster groups is 5. The 

cutree() function is used for the desired number of group or cluster or it can be used as 

the termination condition.  

dt_sc <- as.data.frame(scale(dta))      #scale the data 
d0=dist(dt_sc, method=’euclidean’)   #calculate the distance using Euclidean Distance 
h1=hclust(d0, method='average')        #hierarchical clustering using average-linkage     
                                                                    method 
cut_avg <- cutree (h1,k=5)                  #the number of cluster/group is 5 (termination             
                                                                   condition) 
 

Figure 7.3 The command in R programming for agglomerative hierarchical 
clustering 
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7.3 The Replicated Linear Functional Relationship Model 

 

From previous section, each of observation is grouped according to the similarity 

measures. The size of group is used as the termination condition. Although the number 

of group is fixed for each clustering methods, the number of observations in each group 

will not be balanced. In other words, the sizes of group are equal but the observations or 

elements in each group are not the same. The estimated parameters of linear functional 

relationship model using the maximum likelihood estimation is obtained for each 

clustering methods namely the complete-linkage, the average-linkage and the single-

linkage algorithm. Recall from Chapter 2, there may be replicated observations of  𝑋𝑖 and 

𝑌𝑖  occurring in p group. A linear relationship between 𝑋𝑖  and 𝑌𝑖 is given by 

 

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 (7.2) 

  

and 𝑥𝑖𝑗 = 𝑋𝑖 + 𝛿𝑖𝑗  and 𝑦𝑖𝑘 = 𝑌𝑖 + 𝜀𝑖𝑘 (7.3)  

 

for 𝑖 = 1,2,⋯ , 𝑝 , 𝑗 = 1,2,⋯ ,𝑚𝑖 and 𝑘 = 1,2,⋯ , 𝑛𝑖 and the errors terms are  𝛿𝑖𝑗 and 𝜀𝑖𝑘 

follow normal distribution with mean zero and variance 𝜎2 and  𝜏2 respectively 

namely 𝛿𝑖𝑗~𝑁(0, 𝜎2) and 𝜀𝑖𝑘~𝑁(0, 𝜏2). This implies that 

i) both errors have mean 0, that is 𝐸(𝛿𝑖𝑗) = 0 and 𝐸(𝜀𝑖𝑘) = 0, where                    

𝑖 = 1,2, … , 𝑝 and  𝑗 = 1,2,⋯ ,𝑚𝑖 and 𝑘 = 1,2,⋯ , 𝑛𝑖. 

ii) both errors have constant but different variance, that is 𝑉𝑎𝑟(𝛿𝑖𝑗) = 𝜎2 and 

𝑉𝑎𝑟(𝜀𝑖𝑘) = 𝜏
2, where 𝑖 = 1,2, … , 𝑝 and 𝑗 = 1,2,⋯ ,𝑚𝑖 and 𝑘 = 1,2,⋯ , 𝑛𝑖. 

Univ
ers

iti 
Mala

ya



155 

 

 In this case, the elements in each groups may not be equal or in other words, the 

replicated linear functional relationship model has 𝑝 groups but different elements or 

observations, 𝑚𝑖, and 𝑛𝑖 in each groups. This is called equal and unbalanced replicates. 

The log likelihood function for this model can be expressed as 

 

log 𝐿 (𝛼, 𝛽, 𝜎2, 𝜏2, 𝑋1, … , 𝑋𝑝; 𝑥𝑖𝑗 , 𝑦𝑖𝑘)              

= −
1

2
(∑ 𝑚𝑖

𝑝

𝑖=1
+∑ 𝑛𝑖

𝑝

𝑖=1
) log 2𝜋 

(7.4) 

 

−
1

2
(∑ 𝑚𝑖

𝑝

𝑖=1
log 𝜎2 +∑ 𝑛𝑖

𝑝

𝑖=1
log 𝜏2) 

 

−
1

2
{∑ ∑

(𝑥𝑖𝑗 − 𝑋𝑖)
2

𝜎2

𝑚𝑖

𝑗=1

𝑝

𝑖=1
+∑ ∑

(𝑦𝑖𝑘 − 𝛼 − 𝛽𝑋𝑖)
2

𝜏2

𝑛𝑖

𝑘=1

𝑝

𝑖=1
} 

 

 

There are (𝑝 + 4) parameters to be estimated and may be obtained by differentiating 

the log likelihood function as given in (7.4) with respect to 𝛼̂, 𝛽̂, 𝜎̂2, 𝜏̂2 and 𝑋̂𝑖  

respectively and equating to zero (Barnett, 1970). Thus, the parameters are obtained in 

this order given by 

 

𝑋̂𝑖 =
1

∆̂
{
𝑚𝑖𝑥̅𝑖.
𝜎̂2

+
𝑛𝑖𝛽̂

𝜏̂2
(𝑦̅𝑖. − 𝛼̂)}, 

(7.5)  

  

𝜎̂2 =
∑ ∑ (𝑥𝑖𝑗 − 𝑋̂𝑖)

2𝑚𝑖
𝑗=1

𝑝
𝑖=1

∑ 𝑚𝑖
𝑝
𝑖=1

, 
(7.6) 
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𝜏̂2 =
∑ ∑ (𝑦𝑖𝑘 − 𝛼̂ − 𝛽̂𝑋̂𝑖)

2𝑛𝑖
𝑘=1

𝑝
𝑖=1

∑ 𝑛𝑖
𝑝
𝑖=1

, 
(7.7) 

  

𝛼̂ =
∑ 𝑛𝑖(𝑦̅𝑖. − 𝛽̂𝑋̂𝑖)
𝑝
𝑖=1

∑ 𝑛𝑖
𝑝
𝑖=1

, 
(7.8) 

and  

𝛽̂ =
∑ 𝑚𝑖𝑋̂𝑖(𝑦̅𝑖. − 𝛼̂)
𝑝
𝑖=1

∑ 𝑚𝑖𝑋̂𝑖
2𝑝

𝑖=1

 
(7.9) 

  

where 𝑥̅𝑖. =
∑ 𝑥𝑖𝑗
𝑚𝑖
𝑗=1

𝑚𝑖
 and  𝑦̅𝑖. =

∑ 𝑦𝑖𝑘
𝑛𝑖
𝑘=1

𝑛𝑖
 are the sample means for each group and                

∆̂𝑖=
𝑚𝑖

𝜎̂2
+
𝑛𝑖𝛽̂

2

𝜏̂2
 .   

From (7.6) to (7.9), there are no closed form available as these equations are dependent 

on 𝑋̂𝑖 as given in equation (7.5). Therefore, these estimates can be obtained iteratively by 

using parameters from unreplicated linear functional relationship as starting values. The 

iteration will continue until one or all parameters converge. 

 

7.4 Simulation Studies 

 

A simulation studies is performed to determine which clustering algorithm gives the 

best estimates for the slope parameter. The idea is to group the data using different 

clustering method and then find the slope estimates using the maximum likelihood 

estimation method for replicated linear functional relationship model. The data are 
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generated from unreplicated linear functional relationship model. Recall from Chapter 2, 

the model is given by: 

 

𝑌𝑖 = 1 + 𝑋𝑖,    𝑥𝑖 = 𝑋𝑖 + 𝛿𝑖,    𝑦𝑖 = 𝑌𝑖 + 𝜀𝑖 (7.10) 

 
  

where  𝑋𝑖 = 10
𝑖

𝑛
   and the error terms 𝛿𝑖 and 𝜀𝑖 are assumed to be mutually independent 

and normally distributed random variables, 𝛿𝑖~𝑁(0,0.1) and 𝜀𝑖~𝑁(0,0.1). Different 

sample size 𝑛 = 50,80,100,132 and 180 are chosen to create different situations. 

Without loss of generality, the value 𝛼 = 0, 𝛽 = 1, 𝜏2 = 4 are set and use different 

values of 𝜆 = 𝜏2

𝜎2
  whereby the value of  𝜆 = 0.8, 1 and 1.3 respectively. This will create 

three different situations namely 𝜎2 < 𝜏2, 𝜎2 = 𝜏2 and 𝜎2 > 𝜏2. 

 From unreplicated data, three clustering methods namely average-linkage, complete-

linkage and simple-linkage are used to divide the observations into different group or 

cluster based on their similarity measure. After the observations are grouped together, the 

replicated linear functional relationship model is used to estimate the value of the slope 

parameter by using the maximum likelihood estimation method. As the baseline for 

comparisons, the slope parameter from unreplicated linear functional relationship model 

when 𝜆 is assumed to be known and is equal to 1 is used, that is  𝜆 = 1. For each estimate, 

the observed mean square error over 5000 simulations is calculated. The performance of 

clustering methods in grouping the observations are examined by observing the mean 

square error (MSE) of the slope parameter and is given by: 

MSE= 1

𝑠
∑(𝑤̂𝑗 − 𝑤)

2
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where 𝑤 be a generic term for the slope parameter and s is the number of simulation. 

 

7.5 Results and Discussions 

 

The simulation results based on three different situations are shown in Table 7.3, Table 

7.4 and Table 7.5 respectively. Table 7.3 to Table 7.5 shows the mean square error of the 

slopes estimates using three different clustering method with the baseline unreplicated 

linear functional relationship model. In unreplicated linear functional relationship model, 

the assumption for the ratio of error variances must be known and usually is equal to 1 in 

order to estimate the parameters, in this case the slope parameter. However, this is not the 

case for replicated linear functional relationship model.  

 

Table 7.3 Mean square error for slope parameter when 𝜎2 = 𝜏2  

Estimates 
Sample Sizes 

50 80 100 132 180 

𝛽𝐴𝑣𝑒𝑟𝑎𝑔𝑒 0.02371 0.01464 0.00914 0.01235 0.00642 

𝛽𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 0.02477 0.01481 0.00920 0.01242 0.00644 

𝛽𝑆𝑖𝑛𝑔𝑙𝑒 0.04318 0.02428 0.01459 0.02036 0.00920 

𝛽𝑈𝑛𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒 0.02634 0.01520 0.00937 0.01266 0.00657 

 

From Table 7.3, when the error variances are the same, 𝜎2 = 𝜏2, or when the ratio of 

the error variances 𝜆 = 1, the mean square error for the slope parameter when using 
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average-linkage and complete-linkage methods are much smaller compared to unreplicate 

linear functional relationship model. Clearly, it is observed that the mean square error 

using single-linkage method is much higher than the other estimates. It is also observed 

that the mean square errors are getting smaller when the sample sizes increase from 50 to 

180 for each slope estimates. 

 

Table 7.4 Mean square error for slope parameter when 𝜎2 < 𝜏2  

Estimates 
Sample Sizes 

50 80 100 132 180 

𝛽𝐴𝑣𝑒𝑟𝑎𝑔𝑒 0.02641 0.01754 0.01524 0.01223 0.00937 

𝛽𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 0.02667 0.01754 0.01534 0.01230 0.00945 

𝛽𝑆𝑖𝑛𝑔𝑙𝑒 0.05270 0.03254 0.02752 0.02164 0.01441 

𝛽𝑈𝑛𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒 0.02894 0.01822 0.01572 0.01261 0.00967 

 

Table 7.5 Mean square error for slope parameter when 𝜎2 > 𝜏2  

Estimates 
Sample Sizes 

50 80 100 132 180 

𝛽𝐴𝑣𝑒𝑟𝑎𝑔𝑒 0.02611 0.01736 0.01506 0.01194 0.00948 

𝛽𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 0.02668 0.01749 0.01513 0.01196 0.00951 

𝛽𝑆𝑖𝑛𝑔𝑙𝑒 0.03921 0.02283 0.01907 0.01483 0.01099 

𝛽𝑈𝑛𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒 0.02876 0.01785 0.01538 0.01216 0.00966 
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From Table 7.4 and Table 7.5, different values of  𝜆 i.e. when 𝜆 > 1 and also when 

𝜆 < 1 are used to see the consistency of the slope parameter estimate. From Table 7.4, 

when 𝜆 = 0.8 in which is less than 1 or when the value 𝜎2 < 𝜏2, the mean square error 

for each slopes estimates are decreasing when the sample sizes are increasing. In general, 

the mean square errors for slope estimates using average-linkage and complete-linkage 

are quite similar and much smaller than the mean square error for slope parameter using 

unreplicated model. However, the mean square error for single-linkage is much bigger 

compared to other three estimates. It is also observed the same pattern when 𝜆 > 1 which 

in this case equal to 1.3 by looking at Table 7.5.  

The simulation results suggest that the slope parameter can be estimated using 

clustering method. By considering different clustering methods, different elements are 

grouped together depending on their similarity measures. Although the elements in each 

group are not equal and unbalanced, the slope parameter using replicated linear functional 

relationship model can be estimated. By comparing to the unreplicated linear functional 

relationship model, one can infer that using the average-linkage and the complete-linkage 

yields a reasonable estimates of the slope parameter. The mean square errors for three 

different situations namely when  𝜆 = 1,  𝜆 < 1 and  𝜆 > 1 give consistent estimates of 

the value of the slope parameter. The simulation studies suggest a solution to form 

groupings so that issues of unidentifiability can be addressed. The average-linkage and 

complete-linkage both show promising potential to do this grouping. 
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7.6 Examples 

 

In this section, two data sets to investigate the performance of grouping approach using 

clustering analysis are considered. The first data set is a simulated data set generated from 

true values of parameter and the second data set is a data set known as Fat Mass 

Measurement Data. It is assumed that measurement error can occur in both the variables 

of these two examples. 

 

7.6.1 Simulated Data 

 

Simulated data is used to illustrate the use of clustering method in grouping the 

observations from unreplicated data to replicated data. For illustration, data set of size 

𝑛 = 50 is considered where it is generated from unreplicated linear functional 

relationship model by setting the parameters, 𝛼 = 0, 𝛽 = 1, 𝜏2 = 4 and 𝜆 = 𝜏2

𝜎2
= 0.8. 

Then, the model is given by: 

 

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖,    𝑥𝑖 = 𝑋𝑖 + 𝛿𝑖,    𝑦𝑖 = 𝑌𝑖 + 𝜀𝑖 (7.11) 

 
  

where  𝑋𝑖 = 10
𝑖

𝑛
  and the error terms are  𝛿𝑖 and 𝜀𝑖 follow normal distribution with mean 

zero and variance 𝜎2 and  𝜏2 respectively namely 𝛿𝑖~𝑁(0, 𝜎2) and 𝜀𝑖~𝑁(0, 𝜏2). 

Each observation is defined according to their similarity (dissimilarity) based on 

clustering methods namely the complete-linkage, average-linkage and single-linkage in 
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order to cluster the observations into 5 groups. Thus, every clustering method have 5 

groups, Group 1 until Group 5 and each group have different observations or elements. 

As mentioned earlier, this is called balanced and unequal replicates as shown in Table 

7.6. 

 

Table 7.6 Number of elements using different clustering method for simulated data 

Clustering 

Method 

Group 

1 2 3 4 5 

Complete 14 16 15 3 2 

Average 16 13 16 3 2 

Single 45 1 1 2 1 

 

Table 7.6 shows the data set and which group the observations belong to. The 

termination condition is set to five groups, 𝑝 = 5. The number of elements or 

observations in each groups are different using different clustering methods. The 

observations in each group can be seen clearly in cluster dendogram and cluster plot for 

complete-linkage, average-linkage and single linkage method as shown in Figure 7.4, 

Figure 7.5 and Figure 7.6 respectively. From Figure 7.4 and Figure 7.5, the elements or 

observations in each group for complete-linkage and the average-linkage are almost the 

same except the 4th, the 21st and the 32nd observations, unlike single-linkage method. 

Details on the observations for each can be found in APPENDIX J. Hence, the same 

estimates for the slope parameter using complete-linkage and average-linkage is expected 

when using replicated linear functional relationship model. 
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Figure 7.4 Dendogram and cluster plot using complete-linkage method for simulated 
data 
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Figure 7.5 Dendogram and cluster plot using average-linkage method for simulated 
data 
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Figure 7.6 Dendogram and cluster plot using single-linkage method for simulated 
data 
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From Figure 7.4 to Figure 7.6, the observation is grouped together according to their 

similarity measures. By setting the termination condition, in this case the size of group, 

𝑝 = 5, the observations are grouped into 5 clusters. Although the number of groups is 

fixed for each clustering methods, the number of observations or elements in each group 

are not the same in each group. After each observation are grouped to their cluster by the 

methods described, the estimated parameters of linear functional relationship model using 

maximum likelihood estimation method are obtained. The result for the parameter 

estimates are given in Table 7.7.  

 

Table 7.7 Parameter Estimates for simulated data 

Clustering 

Method 

Parameter Estimates 

𝛼̂ 𝛽̂ 𝜎̂2 𝜏̂2 𝜆 

Complete 
 

0.035 1.037 2.876 2.545 0.88 

Average 0.035 1.035 2.558 2.504 0.98 

Single 0.035 1.034 8.825 9.289 1.05 

Unreplicated 
 

0.035 1.035 3.993 - 1.00 

 

From Table 7.7, by using three different clustering method, it is obvious that one can 

estimate all the parameters using replicated linear functional relationship model. In order 

to measure how well they perform, it is necessary to compare the value of the estimates 

with unreplicated linear functional relationship model as the baseline. It can be seen that 

the estimated value of the intercept parameter using three clustering methods are the same 

with the baseline, unreplicated model. The estimated slope parameter using the complete-

linkage method and single-linkage method are 1.037 and 1.034 respectively. The 

estimated slope parameter using the average-linkage has the same value as the 
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unreplicated model which is 1.035. while the slope parameter using the clustering method 

are not much different than slope parameter estimate using unreplicated model.  

Recall that in unreplicated linear functional relationship model, the assumption about 

the ratio of error variance is set which usually equal to one. However, in this simulated 

data set, the ratio of error variance is set at 0.8,  𝜆 = 0.8. By looking at Table 7.7, it can 

be seen that the ratio of error variance, 𝜆, the complete linkage gives values 0.88 which 

is near to the true value. The ratio of error variance from the average linkage and single-

linkage are approximately equal to one. Furthermore, both error variances, 𝜎2 and 𝜏2 can 

be estimated as compared to the unreplicated linear functional relationship model without 

making any assumption about the ratio of error variances. Thus, using clustering method 

to group the data, one can estimate all the parameters including both error variances using 

replicated linear functional relationship model. By comparing to the unreplicated linear 

functional relationship model, it can be inferred that using the complete-linkage provide 

reasonable estimates of the parameters in linear functional relationship model. Thus, the 

simulated data suggest that the complete-linkage can be used for groupings to obtain 

estimate of parameters in linear functional relationship model.  

 

7.6.2 Fat Mass Measurement Data 

 

The dataset is taken from Goran et. al (1996) that consists of 96 observations. This 

dataset can be considered as unreplicated data because there is only single 𝑥 and 𝑦 

observation for each level of 𝑖 as suggested by Hussin et al. (2005) namely the skinfold 

thickness (ST), 𝑥𝑖 and bioelectrical resistance (BR), 𝑦𝑖. In unreplicated linear functional 

relationship model, one needs an assumption on ratio of error variances, λ, to estimate the 
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parameters namely the intercept, 𝛼, the slope, 𝛽 and the error variance, 𝜎2. However, in 

the absence of knowledge on ratio of error variances, it is necessary to group the data into 

8 groups or clusters and use maximum likelihood estimation method for balanced 

replicated linear functional relationship model to estimate all parameters, in this case, the 

intercept, 𝛼, the slope, 𝛽 and two error variances, 𝜎2 and also 𝜏2. Thus, every clustering 

method have 8 groups whereas each group have different observations or elements. This 

is called balanced and unequal replicates as shown in Table 7.8. 

Table 7.8 Number of elements using different clustering method for Fat Mass 
Measurements data 

Clustering 

Method 

Group 

1 2 3 4 5 6 7 8 

Complete 57 9 2 20 2 1 3 2 

Average 78 2 2 1 3 6 2 2 

Single 88 2 1 1 1 1 1 1 

 

Table 7.8 shows the data set and which group the observations belong to. The 

termination condition is set to five groups, 𝑝 = 8. From Table 7.8, the number of elements 

or observations in each groups are different using different clustering methods. The 

observations in each group can be seen clearly in cluster dendogram and cluster plot for 

complete-linkage, average-linkage and single linkage method as displayed in Figure 7.7, 

Figure 7.8 and Figure 7.9 respectively. From Figure 7.7, Figure 7.8 and Figure 7.9 the 

elements or observations in each group for complete-linkage, the average-linkage and the 

single-linkage are different. Interesting to note that 31𝑠𝑡 observation is outside the group 

for all three clustering methods. The 31𝑠𝑡  observation could be considered a potential 

outlier. However, this needs to further investigation and could be investigated in future 

works.  
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Figure 7.7 Dendogram and cluster plot using complete linkage method for Fat Mass 
Measurements data 
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Figure 7.8 Dendogram and cluster plot using average linkage method for Fat Mass 
Measurements data 
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Figure 7.9 Dendogram and cluster plot using single linkage method for Fat Mass 
Measurements data 
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From Figure 7.7 to Figure 7.9, it can be seen that each observation is grouped 

according to the similarity measures. Although the number of groups is fixed, the number 

of observations or elements are not balanced in each group. After each observation are 

grouped to their cluster by the method described earlier, the next step is to estimate the 

parameters of linear functional relationship model using maximum likelihood estimation 

method for replicated linear functional relationship model. The results for the parameter 

estimates are given in Table 7.9.  

 

Table 7.9 Parameter Estimates for Fat Mass Measurement Data 

Clustering 

Method 

Parameter Estimates 

𝛼̂ 𝛽̂ 𝜎̂2 𝜏̂2 𝜆 

Complete 
 

0.079 1.099 0.966 1.013 1.05 

Average 0.079 1.095 1.198 1.941 1.62 

Single 0.079 1.096 2.319 3.087 1.33 

Unreplicated 
 

0.079 1.099 1.082 - 1.00 

 

Table 7.9 display the estimates of all the parameters using three clustering methods. 

Also displayed in the table are the estimates of the unreplicated linear functional 

relationship model which serve as a baseline and for comparison. It can be seen that the 

value of the intercept parameter, 𝛼̂, is the same for all three clustering method while the 

values of the slope, 𝛽̂, is not much different when comparing with the parameters in 

unreplicated linear functional relationship model. The assumption on the ratio of error 

variance which usually is equal to one is a must in the unreplicated linear functional 

relationship model to avoid the unidentifiability problem. From the three clustering 

methods considered, the ratio of error variance using the complete linkage is 
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approximately equal to one. For the average-linkage and single-linkage, the ratio of error 

variances is more than one. Furthermore, the estimate for both error variances, 𝜎2 and 𝜏2 

are compared with unreplicated linear functional relationship model without making any 

assumption about the ratio of error variances. In other words, using clustering method to 

group the data, one can estimate all the parameters including both error variances using 

replicated linear functional relationship model. Based on the error variance, complete-

linkage has the smallest value, indicating the superiority of the method as opposed to 

average-linkage and single-linkage. In short, it can be concluded that using the complete-

linkage yield a reasonable estimates of the parameters as opposed to unreplicated linear 

functional relationship model. 

 

7.7 Summary and Conclusions 

 

In this chapter, the motivation is to propose a solution in forming groupings to the 

observations to estimate the parameters when only unreplicated data is available. Using 

this technique, the beauty is that one does not have to make any assumptions about the 

ratio of error variances to enable us to estimate the slope parameter. Three grouping 

techniques using clustering analysis are proposed from unreplicated data. The three 

different hierarchical clustering methods considered are the single-linkage, the complete-

linkage and average-linkage method. Each clustering method has their own strength in 

calculating the distance for each observation.   

Based on the simulation study, this new approach gives us a smaller value of the mean 

square error as compared with the unreplicated linear functional relationship model with 

the assumption of the equal variances, or in other words, the ratio of error variances is 
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equal to one, 𝜆 = 1. By comparing to the unreplicated linear functional relationship 

model, one could say that using the average-linkage or the complete-linkage yield a 

reasonable estimates of the slope parameter. Results from data examples also show that 

one can obtain relatively good estimates of the parameters in particular the slope 

parameter and also the estimates of ratio of error variance, 𝜆. Based on the datasets, it can 

be concluded that using the complete-linkage, it can provide a reasonable estimates of the 

parameters. When comparing the estimates obtained based on this grouping method and 

by assuming the true value of the ratio of error variance parameters is known, it is found 

that the value is very close to each other. The novelty of the proposed techniques is that 

it allows us to overcome the unidentifiability problem in linear functional relationship 

model and thus, the assumption on the ratio of the error variances are no longer needed 

unlike in unreplicated linear functional relationship model. By using this technique, it 

allows us to identify groups of observations and estimate the ratio of error variances 

separately. Findings from this study will have implications where it not only leads to new 

knowledge discovery but a scientific progress to providing solutions to the problems 

faced when modelling linear functional relationship model. 
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CHAPTER 8: CONCLUSION AND FUTHER WORKS 

 

8.1 Conclusion and summary 

 

This chapter summaries all the findings that have been obtained from this study. This 

study addresses some problems in linear functional relationship model in particular the 

parameter estimation, outlier detection and grouping techniques. The linear functional 

relationship model is chosen due its close resemblance to the linear regression model. The 

unidentifiability problem in linear functional relationship model makes it difficult to 

estimate all the parameters and hence warrants further investigations to solve the problem. 

In order to address this, the linear functional relationship model can be categorized as 

unreplicated linear functional relationship model where the assumption of ratio of error 

variance is needed and replicated linear functional relationship model where the 

observations can be grouped together or made available.  

The first problem regarding the parameter estimation can be solved using the first 

objective. The initial analysis is on the slope parameter in unreplicated linear functional 

relationship model with an assumption that the error variance is equal 𝜎2 = 𝜏2 or in other 

words, the ratio of error variance is equal to one, λ = 1. The purpose is to propose a 

robust estimate of the slope parameter and compare with the traditional method namely 

the maximum likelihood estimation method. The novel approach of modified maximum 

likelihood estimation estimators by substituting the non-robust elements with robust 

components is driven by the problem of maximum likelihood estimation estimators which 

are very sensitive to the outliers. Several cases are considered regarding the distribution 

namely the symmetric and non-symmetric distribution and also the percentages of outliers 
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in the dataset. The performance of the proposed method is evaluated and compared with 

the traditional method, the maximum likelihood estimation method using the estimated 

bias and the mean square error Empirical evidence from simulation study shows that the 

proposed method performs well even when 20% outliers are present in the data set. This 

finding is further illustrated with real data sets.  

Still on parameter estimation problem, the parameter estimates of replicated linear 

functional relationship model is also studied. In a replicated linear functional relationship 

model, one does not need to make any assumption about the ratio of error variance and 

can estimate all the parameters independently. To enhance the estimates, the parameters 

of the balanced replicated model are derived by ensuring the elements in each group are 

balanced and equal. Estimation are obtained iteratively by taking unreplicated value of 

parameters as a starting point. Although the closed form of the estimates cannot be 

obtained, the proposed method is able to obtain the closed form of the variance-

covariance matrix using Fisher Information Matrix and partitioned matrix. Based on the 

empirical results of the simulation study, it is shown that the parameters of balanced 

replicated linear functional relationship model are unbiased and consistent indicate the 

adequacy of the proposed model. A practical example is illustrated using real data sets 

which show the robustness aspects of the parameter estimates as it gives small values of 

standard deviation. 

The third objective focuses on the parameter estimation of the balanced replicated 

linear functional relationship model in the presence of outlier. Using the traditional 

method, the parameters in the balanced replicated linear functional relationship model are 

estimated using the maximum likelihood estimation method which are sensitive to the 

outliers. To overcome this problem, a robust nonparametric method to estimate the slope 

parameter is proposed using 20% trimmed mean. Several cases are considered regarding 
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the distribution namely the symmetric and non-symmetric distribution and also the 

percentages of outliers in the dataset. The performance of the proposed method is 

evaluated and compared with the traditional method, the maximum likelihood estimation 

method using the estimated bias and the mean square error. The estimated bias and the 

mean square error of the 20% trimmed mean are not affected by outliers regardless of the 

percentage of outliers present in the dataset. The same results also can be seen in real data 

examples. Results show that the proposed method provides good estimates in the presence 

of outliers and the performance measures confirm the superiority of the proposed method. 

The fourth objective concentrates on the outlier detection in balanced replicated linear 

functional relationship model. The COVRATIO statistic in detecting the outlier is 

proposed. In doing so, the cut-off point for 1%, 5% and 10% percentiles are determined. 

From simulation studies, the general formulation at 1% significant level, 5% significant 

level and 10% significant level are given by 𝑦 = 39.159𝑛−0.801 , 𝑦 = 9.6293𝑛−0.526 and 

𝑦 = 5.2418𝑛−0.407 respectively. Any observation that exceeds the cut-off points will be 

viewed as an outlier. Also, through the simulation study, the power of performance of 

COVRATIO statistic is examined by looking at the behavior at different level of 

significant levels, sample size and 𝜏2 values.  Based on the results from simulation study, 

the conclusion can be drawn where the proposed method can detect outlier in a balanced 

replicated linear functional relationship model.   

The final part of the study proposes a grouping approach using hierarchical clustering 

analysis that convert the unreplicated data to replicated data. Using three different 

hierarchical clustering methods namely the single-linkage, the complete linkage and the 

average-linkage, the proposed technique allows us to replicating the observations into 

group and then use the maximum likelihood estimation to estimate all the parameters 

without making any assumption on the ratio of error variances. From three clustering 
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methods, it can be concluded that the average-linkage or the complete linkage can be used 

in grouping the observations based on the results from simulation study. Again, the 

method is illustrated using real data for practical applications. Results from simulated 

data and data example show that one can obtain relatively good estimates of the 

parameters in particular the slope parameter and also the estimates of ratio of error 

variance, 𝜆. 

 

8.2 Contributions 

 

This study has contributed to the body of knowledge when working with a linear 

functional relationship model. In general terms, findings of the study have contributed 

towards the advancement of statistical analysis. The need for statistical understanding of 

the linear functional relationship model is really indispensable. In real life, the precision 

and calibration of the instruments used are hard to obtain. Sometimes, there are some 

situations where the true variable of interest cannot be obtained directly. These variables 

involved are subjected to errors. These are some of the vital reasons for studying the 

errors-in-variables model. In addition, misinterpretation between the linear regression 

model and the errors-in-variables model particularly in linear functional could be 

prevented. 

The study as a whole addresses pertinent issues in inferential statistics where presence 

of outliers affects parameter estimation. The study provides solutions to overcome this 

problem where it contributes to the existing knowledge in ways that brings solution to the 

problem. The contributions are explained by works done in each chapter. First, when there 

are outliers in unreplicated linear functional relationship model, the proposed modified 
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maximum likelihood estimation method provides a robust estimator for the slope 

parameter. This proposed method remains resistant even when 20% outliers exist in the 

data. The implication of this findings is that the solution provided contributes to scientific 

progress in handling outliers in datasets. These outliers could be important because 

deleting the “good” observations (outliers) may results in underestimating data variability 

(Maronna et al., 2006). 

In replicated linear functional relationship model, an improved estimation using 

maximum likelihood estimation method called the balanced replicated linear functional 

relationship model is proposed. The balanced replicated linear functional relationship 

model can overcome the unidentifiability problem in linear functional relationship model 

instead of making an assumption on the ratio of error variances. Although the closed form 

solution is not available, the estimation values of parameters can be done using iteration 

process and by using suitable initial values. By improving the model, one can derive a 

step by step asymptotic variance covariance matrix using Fisher Information Matrix and 

partitioned matrix. Empirical evidence from the simulation study support the proposed 

method where the parameters obtained are unbiased and consistent.  

The study also provided solution when the outliers are present in balanced replicated 

linear functional relationship model. The proposed nonparametric method can be 

considered as a new method and uses 20% trimmed mean to estimate the slope parameter 

in replicated linear functional relationship model. This new method in balanced replicated 

linear functional relationship model is found to be robust to outliers. In other words, this 

method is performed well in the existence of the outliers. The beauty of this method is 

that the nonparametric method does not require the assumption of normality, gives a 

robust estimate and thus, making it easy to apply.  
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Another important topic that is addressed in the study is the identification of outlier 

namely a single outlier in a balanced replicated linear functional relationship model which 

is a relatively new topic and has not been explored fully. A single outlier will have adverse 

influence in the dataset and hence will affect the estimation of parameters. The proposed 

method will provide a technique that can be used in a data quality evaluation process. By 

deriving the cut-off point using the COVRATIO statistic, the proposed method is able to 

identify a single outlier in a straightforward and a simple way. 

The last part of the study is to propose grouping techniques using hierarchical 

clustering method in obtaining the group of the observations from unreplicated data. This 

allows us to overcome the unidentifiability problem in linear functional relationship 

model and thus, the assumption on the ratio of the error variances are no longer needed 

unlike in unreplicated linear functional relationship model. The hierarchical clustering 

methods can be used to find the possible group of the observations and estimate the ratio 

of error variances separately and thus can estimate all the parameters. The novelty of this 

approach is a scientific progress by providing solutions to problems encountered i.e. the 

unidentifiability problem in modelling linear functional relationship model. 

 

8.3 Limitation of the Study and Further Works 

 

Despite the contributions that have been discussed in previous section, there are still 

many areas that can be developed for future works. The scope of the study results in some 

limitations. One limitation in this study is that the focus is on estimating the slope 

parameter. This is because the slope parameter could be considered as one of the 

important parameters to be estimated in order to find a relationship between variables in 
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many practical applications.  In Chapter 3, this research could be extended to estimate 

other parameters namely the intercept and the error variances and study the performance 

on these parameters instead. In other words, further research could investigate more on 

the robust component such as using the trimmed mean and also study the effect of the 

trimming for the modified maximum likelihood estimation method in unreplicated linear 

functional relationship model. The same can be said for the nonparametric approach in 

Chapter 5, where in this study, the scope is on the slope parameter only. In addition, future 

research on non-zero intercept values and negative slope values can be conducted to 

investigate the behavior of the estimator. 

 Moreover, the error term could be investigated further using different distributions 

such as the heavy-tailed distribution and the extreme distribution, though beta distribution 

is particularly flexible in modelling different curves including symmetrical, left and right 

skewed curves. Some researchers used the heavy-tailed distribution on the unreplicated 

linear functional relationship model instead of replicated model (Tomaya & de Castro, 

2018; Duwarahan & Nawarathna, 2022). The study can also look into the extreme 

distributions for example the Weibull and Gumbel distributions, which are widely used 

in reliability modeling. Further works can be done on other parameters such as the 

intercept or the error variances in replicated linear functional relationship model. This 

work also can be extended to the multiple linear functional relationship model in 

estimating the parameters. 

The study also focuses on estimating the parameters for replicated linear functional 

relationship model with balanced observations in each group as in Chapter 4. This work 

can be extended to a general situation where there could be unbalanced observations in 

each group. Another point is selecting the initial value to start the iteration process which 
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could be from regression model. Further works also can be done using a nonparametric 

approach where the observations in each group are unbalanced. 

In the identification of outliers in a linear functional relationship model in Chapter 6, 

this study only examined situations when there is a single outlier at the response variable, 

y. Further works can be extended by putting outliers in the x variables or outliers in both 

x and y variables. The diagnostic tools in detecting outlier also can be explored by using 

other methods such as Cook’s distance, Difference in fits (DIFFITS), Difference in beta 

(DFBETA) which have been discussed in the literatures. Furthermore, the outlier 

detection also can be extended into identifying the multiple outliers in the dataset. 

For the grouping approach in the last chapter, one can consider using another clustering 

method. Some possible methods may include the partitioned clustering method such as 

PAM and K-Means for grouping the observation. It is also worthy to consider using 

another distance measure such as Mahalanobis and Manhattan distance in calculating the 

similarity measure of the data. The termination condition under cluster analysis can also 

be studied to group the dataset. Furthermore, clustering analysis can be utilized to identify 

single or multiple outliers in replicated linear functional relationship model. As an 

illustration, the 31𝑠𝑡 observation in Fat Mass Measurement data could become as a 

potential outlier and need to be investigated more. 

Additional work could include a wide range of applications in variety of fields. This 

includes applications based on supervised and unsupervised machine learning. The 

integration between the errors-in-variables model with the concept of uncertainty 

quantification in deep learning has been discussed in details by Martin and Elster (2021). 

As mentioned by Pividori et al., (2022), by using machine learning, one could identify 

pattern that can be used to group data into their similarity measures. Statistical process 

control is another application that can be used which includes the EWMA control chart 
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and the CUSUM control chart,  (Golosnoy et al., 2022; Song et al., 2022). The impact of 

measurement error to detect a process shift is very important key in control chart. 
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