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GENETIC VARIATION ANALYSIS OF A PRIMARY IMMUNODEFICIENCY 
PATIENT VIA WHOLE-EXOME SEQUENCING APPROACH 

 

ABSTRACT 

 

Primary Immunodeficiency (PID) refers to a collection of diseases whereby the production 

of antibodies is negatively affected, or the cellular defenses of the immune system do not 

operate appropriately. A Malaysian patient (P1) was initially suspected with a PID type 

known as Hyper IgM syndrome. However, the immunological workup was not compatible 

with Hyper IgM syndrome. Hence, a Whole-exome sequencing (WES) analysis was 

conducted to look for mutations in PID-related genes. P1’s raw data were mapped to four 

different versions of the human reference genome to compare the results and determine which 

one is the best for this analysis. Once the variants were called from P1’s data they were 

annotated to search for mutations. As a result, a novel mutation was detected in the Nuclear 

factor-kappa-B-inhibitor alpha (NFKBIA) gene, which is responsible for regulating the 

Nuclear factor-kappa-B (NFKB) gene. It is a single nucleotide polymorphism (SNP) 

(NFKBIA:NM_020529:exon1:c.A94T:p.S32C)  at codon 94 (c.A94T) of P1’s NFKBIA gene 

which resulted in the mutation of the serine residue (Ser32) to a cysteine residue (Cys32). 

This SNP lies in the destruction motif of the NFKBIA protein, which may have led to the 

impairment of NFKB activation in P1, which could explain the symptoms of the patient. 

Since this is a novel mutation, it warrants future investigation to find out what such mutation 

exactly does to the NFKBIA protein structure and how it affects its interaction with NFKB. 

 

Keywords: P1, Primary Immunodeficiency, Hyper IgM Syndrome, Whole-Exome 

Sequencing, Nuclear factor-kappa-B-inhibitor alpha. 
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GENETIC VARIATION ANALYSIS OF A PRIMARY IMMUNODEFICIENCY 
PATIENT VIA WHOLE-EXOME SEQUENCING APPROACH 

 

ABSTRAK 
 

Keimunodefisienan primer (PID) merujuk kepada penyakit yang mampu menjejaskan 

pengeluaran antibodi atau merencatkan operasi tindak balas imun dalam tubuh badan. 

Seorang pesakit Malaysia (P1) pada mulanya disyaki mempunyai PID yang dikenali sebagai 

sindrom Hyper IgM. Walau bagaimanapun, pemeriksaan imunologi menunjukkan bahawa ia 

tidak sesuai dengan sindrom Hyper IgM. Oleh itu, analisis penjujukan keseluruhan exome 

(WES) dijalankan bagi mencari mutasi pada gen yang berkaitan dengan PID. Data mentah 

P1 dipetakan ke empat versi yang berbeza genom rujukan manusia untuk membandingkan 

keputusannya dan bagi menentukan apa yang terbaik untuk analisis ini. Setelah varian 

dipanggil dari data P1, mereka diberi anotasi untuk mencari mutasi.Penyelidikan ini telah 

mengenal pasti satu mutasi novel pada gen Nuclear factor-kappa-B-inhibitor alpha 

(NFKBIA) yang berfungsi untuk mengawal gen Nuclear factor-kappa-B (NFKB). Ia 

merupakan polimorfisme nukleotida tunggal (SNP) (NFKBIA:NM_020529: exon1: c.A94T: 

p.S32C)  di kodon 94 (c.A94T) gen NFKBIA yang menyebabkan residu serin (Ser32) 

termutasi kepada residu sisteina (Cys32). SNP ini terletak di motif pemusnah pada protein 

NFKBIA yang berpontensi untuk mengakibatkan kemerosotan aktivasi NFKB dalam P1, dan 

ini menjelaskan simptom yang terdapat pada pesakit. Oleh sebab ia merupakan mutasi yang 

novel, penyelidikan masa depan diperlukan untuk mengenalpasti kesan mutasi ke atas 

struktur protein NFKBIA dengan lebih terperinci dan bagaimana mutasi tersebut 

mempengaruhi interaksinya dengan NFKB. 

 

Kata kunci: P1, Keimunodefisienan primer (PID), sindrom Hyper IgM, penjujukan 

keseluruhan exome (WES), Nuclear factor-kappa-B-inhibitor alpha.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Overview of the Research 

Primary immunodeficiency (PID) is a class of diseases whereby the immune system is 

damaged either by not being able to produce enough antibodies to fight off infections or the 

cellular defenses do not work appropriately (Sheikhbahaei et al., 2016). The word “Primary” 

in PID indicates the fact that it is caused intrinsically by DNA damage since birth in contrast 

to Secondary immunodeficiency whereby the word “Secondary” denotes the fact that it is 

caused by extrinsic factors such as the Human Immunodeficiency Virus (HIV). 

PID consists of nine groups and each group has many types which add up to approximately 

400 types of PIDs in total (Tangye et al., 2020). 

The groups of PIDs include: 

A) Immunodeficiencies affecting cellular and humoral immunity. 

B) Combined Immunodeficiencies with associated or syndromic features. 

C) Predominantly Antibody deficiencies. 

D) Diseases of immune dysregulation. 

E) Congenital defects of phagocyte number, function, or both. 

F) Defects in Intrinsic and Innate immunity. 

G) Auto-inflammatory disorders. 

H) Complement deficiencies. 

I) Phenocopies of PIDs. 
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PIDs are rare and they remain elusive. Diagnosis of such rare diseases is advancing 

throughout time but there are still more to be uncovered. Next-generation sequencing (NGS) 

is a newer sequencing technology that is non-Sanger-based. It has a significantly higher speed 

than its counterpart, Sanger-sequencing. NGS had to tackle the obstacle of the difficulty to 

switch from a Sanger-based approach to a faster and cheaper non-Sanger-based approach, as 

biology depended on Sanger-sequencing for 30 years (Schuster, 2008). NGS is cost and time-

efficient as it requires much less time to sequence an entire genome at a much lower price. 

NGS has proven itself to be useful in clinical uses. It has enabled us to identify genetic 

variants easily. An NGS test in the clinical sense can be devised to capture a handful of 

selected genes by NGS gene panel, the exome by whole-exome sequencing (WES), or the 

genome by whole-genome sequencing (WGS). WES is the technique whereby the coding 

region of the DNA (1-2% of the entire genome) is targeted for sequencing while the rest is 

disregarded. WES has been a major player in clinical diagnosis in terms of identifying genetic 

variants that could be linked to causes of diseases (Retterer et al., 2016). This can be 

advantageous over WGS in terms of saving time and money. WGS is the technique whereby 

the entire genome is sequenced. This could be useful if we are looking for mutations that 

could be outside of the exome in non-coding regions. WES, when compared to WGS, is cost 

and time-efficient as the DNA-coding sequences are targeted for capturing and sequencing 

(1-2% of the human genome). Around 85% of mutations related to genetic diseases are found 

in the exome (Rabbani et al., 2014). WES can be applied to identify harmful genetic 

mutations that are PID-related. Figure 1.1 presents the types of NGS done in the clinical field. 
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Figure 1.1: A diagram that illustrates the NGS types that are applied in the clinical field. The 
top shows an example DNA sequence. Sanger sequencing is typically used nowadays to confirm 
mutations that have been detected by NGS techniques. NGS gene panel refers to the technique 
where only a few genes are selected for sequencing. Exome sequencing refers to the technique 
that targets the exonic regions for sequencing. Genome sequencing refers to the technique 
whereby the entire DNA is sequenced. (Reproduced with permission from (Adams & Eng, 
2018), Copyright Massachusetts Medical Society.).  
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1.2 The Case and the Objectives 

The patient (P1) of this case study is a male who was initially suspected with a PID type 

known as Hyper IgM syndrome. However, the immunological workup was not compatible 

with Hyper IgM syndrome according to the observation. The patient was presenting 

symptoms that include fever, infections, septicemic shock, hepatosplenomegaly, and 

dysmorphic features. Hence, a WES analysis has been performed to locate and uncover 

harmful mutations that are PID-related and that may lead to a diagnosis. The patient’s raw 

data were processed and mapped to four different versions of the human reference genome 

to select the best version for this study.  

There lies a knowledge gap in the field of PIDs. Diagnosis is still lagging in developed 

and undeveloped countries alike (El-Sayed & Radwan, 2020). This has to do with the fact 

that PIDs are extremely rare and our understanding of PIDs remains elusive. WES has been 

effective in diagnosing many cases of PID and has always led us to discover novel variants 

that are PID-related. Hence, the objectives and activities of this project are: 

1. To map and improve the quality of the raw data by carrying out trimming, alignment 

of reads to a reference genome, file processing, filtering, and quality control for the 

WES raw data of the patient. 

2. To determine gene variations or mutations that could give rise to a decisive diagnosis 

of PID in the patient by carrying out variant calling, annotation of the called variants, 

and interpretation of the annotation. 

3. To determine the best possible reference genome for this analysis by mapping to four 

different versions of the human reference genome and comparing the results. 

 

Univ
ers

iti 
Mala

ya



 

5 
 

1.3 Thesis Organization 

 

Chapter 2 is the Literature Review whereby the history of PID is discussed followed by 

the prevalence of PID which shows how rare PIDs are. The patient was initially suspected 

with Hyper IgM syndrome. Hence, Hyper IgM was discussed. Furthermore, treatment 

options of PID were described. As technology advanced, a new form of sequencing technique 

known as NGS has emerged and its history was included in the chapter. The application of 

an NGS technique known as WES was discussed on how it tackles PID with some of its 

limitations. 

Chapter 3 is the Methodology whereby the machines which were used to conduct the 

WES for P1’s DNA were mentioned followed by the mentioning of the institution that 

provided the raw data for this research project. Next, the Bioinformatics analysis pipeline 

was described and illustrated. Then, four different versions of the human reference genome 

were mentioned. This was followed by the commands and scripts that were used to run the 

Bioinformatics analysis pipeline. The last step of the bioinformatics analysis pipeline was the 

annotation of the called variants. The interpretation of the annotation is the next step and it 

was described. 

Chapter 4 is the Results and it illustrates the findings of the Bioinformatics analysis 

pipeline, the comparison of the results of mapping the raw data to 4 different versions of the 

human reference genome, the interpretation of the annotated variant calls, and the Sanger 

sequencing validation of the detected mutation. The detected mutation is a single nucleotide 

polymorphism (SNP) in P1’s Nuclear factor-kappa-B-inhibitor alpha (NFKBIA) gene. 
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Chapter 5 is the Discussion and it supports the results with previously done literature. 

First, it describes the importance of the study. This is followed by discussing the significance 

of the results. It discussed the best version out of the 4 versions of the human reference 

genome that is suitable for this Bioinformatics analysis pipeline. Next, it discussed the role 

of the gene (NFKBIA) in which the mutation was detected and genes that are relevant to it. 

Then, the mutation of the NFKBIA gene was discussed along with a possible scenario that 

may most probably occur based on literature. 

Chapter 6 is the Conclusion and it is the final chapter that summarizes the thesis by briefly 

discussing the reason why this research is conducted. This was followed by a summary of 

the methods and the results and their discussion. Finally, this concluded that the findings 

warrant further investigation of the said mutation.     
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CHAPTER 2: LITERATURE REVIEW 

 

2.1      History of PID 

The history of PIDs began in 1952 when Agammaglobulinemia was discovered by Bruton 

(Bruton, 1952). However, some patients were observed in 1922 with symptoms in their 

pharynxes (Schultz, 1922) that were later categorized as PID. Disorders affecting the immune 

system like ataxia-telangiectasia (Syllaba, 1926) and Wiskott Aldrich syndrome (Familiärer, 

1937) were discovered in 1926 and 1937 respectively. It was difficult to detect, categorize, 

and tackle such diseases. With the advancement of technology and cracking the code of DNA, 

the image of PID was beginning to become clearer as scientists can look for variants in the 

DNA that may be linked to PIDs. To this day, more and more PIDs are being discovered and 

categorized (Ochs and Hitzig, 2012). Over the years, technology advanced and scientists 

discovered approximately 400 types of PIDs which are spread out into nine groups (Tangye 

et al., 2020). 
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2.2      Prevalence of PID 

PIDs are very rare as there are around 6 million people who may have a PID globally, 

though only 30 – 60 thousand people are registered with a PID (Bousfiha et al., 2013) and 

there are yet many secrets to unravel about them. 

In Malaysia, according to a study, the prevalence of PID is 0.37 per 100,000 population. 

This prevalence rate is lower compared to other countries. This may have to do with the fact 

that Malaysia lacks a national registry for PID and detection strategies. 119 PID patients were 

included and studied in Malaysia. Figure 2.1 illustrates the prevalence of different PID types 

in Malaysian patients. 

 

Figure 2.1: PID diagnosis distribution from the systematic review of Malaysian PID patients 
(Abd Hamid et al., 2020). 
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2.3       Hyper IgM Syndrome 

Hyper IgM Syndrome is a rare PID that is X-linked and occurs due to a mutation in the 

CD40 Ligand gene (Levy et al., 1997). Levels of IgM will be normal or increased while 

levels of IgG and IgA will be decreased. Other forms of IgM Syndromes are not X-linked, 

but rather Autosomal Recessive and they are linked to mutations in the following genes: 

AICDA, UNG, INO80, and MSH6 (Tangye et al., 2020). Figure 2.2 illustrates an analysis of 

Hyper IgM patients’ HEP-2 cells. 

 

Figure 2.2: Immunofluorescence analysis of Hyper IgM patients’ sera in HEP-2 cells. (a) 
Typical rim staining pattern. (b) Nuclear dot staining pattern. (c) Rim- and dot-staining 
pattern. (Reprinted by permission from Springer Nature Customer Service Centre GmbH: 
[Springer Nature] (Barbouche et al., 2018), copyright(2018)). 
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2.4      Treatment of PID 

PID is very rare and is comprised of many different types. Due to that, treating PID 

patients comes with many difficulties (Yong et al., 2010). One of the main treatments of PID 

include immunoglobulin replacement therapy, the procedure depends on the nature of the 

mutation in the gene (McCusker & Warrington, 2011). 

 

2.4.1   Immunoglobulin Replacement Therapy 

Above 50% of the types of PIDs include antibody deficiency (Kobrynski, 2012) which is 

why Immunoglobulin replacement therapy has been one of the standard treatments for PID 

patients. 

Immunoglobulin replacement therapy has been administered in three different injection 

methods that include intramuscular, intravenous, and subcutaneous. 

Intramuscular injection involves the procedure whereby the injection delivery goes widely 

rooted within a muscle that allows the substance to be absorbed faster by blood vessels. 

Intravenous injection is the injection whereby the needle is inserted straight into the vein 

and the delivery goes directly into the bloodstream. 

Subcutaneous injection involves the strategy whereby the substance is transferred into the 

tissues that lie between the skin and muscle. 
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In the initial stage of discovering the immunoglobulin replacement therapy (around the 

1950s), the injection method was intramuscular, whereby a weekly dose of immunoglobulin 

is administered to treat the PID patients. This remained the standard method until the 

intravenous method of immunoglobulin injection was adopted around the 1980s due to the 

observed improvement of results when the intravenous method was adopted. Although this 

method had negative side effects, certain agents were added to reduce the effects (Skoda-

Smith et al., 2010). 

The intravenous method was used since the 1980s, the subcutaneous method was 

considered a second choice when the effects of the intravenous method were intolerable. 

However, scientists have been experimenting with the subcutaneous method and found it to 

be a more feasible method than the intravenous one. However certain PID patients may suffer 

from negative side effects from the subcutaneous method that they do not in the intravenous 

method (Skoda-Smith et al., 2010). 

 

 

 

 

 

 

 

 

 

Univ
ers

iti 
Mala

ya



 

12 
 

2.5       History of NGS 

DNA sequencing technologies have been developed to tackle many diseases including 

PID. It started in 1977 when Fredric Sanger and Walter Gilbert developed the Sanger 

sequencing technology. Sanger sequencing, ever since, has been the major standard for 

sequencing DNA (Sanger et al., 1977). In recent years, NGS has started and it was proven a 

useful technique to sequence the DNA and look for mutations that may be the reasons behind 

certain diseases. NGS is cheaper and faster than Sanger sequencing. One of the main 

drawbacks of NGS is that it is less accurate than Sanger sequencing. However, it still 

produces significant results, and the NGS findings such as genetic variants are often 

confirmed by the Sanger sequencing of the genetic variation site. The prominent applications 

of NGS include WGS, WES, and RNA-Seq. Figure 2.3 illustrates a general pipeline used for 

NGS. 

 

Figure 2.3: A typical NGS pipeline (Berglund et al., 2011). 
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2.6       Application of WES in Tackling PID 

WES has been a cutting edge technology that enabled us to detect genetic variations that 

could be related to PIDs. Thanks to WES, there has been an outburst in the discovery of novel 

gene defects that are related to PID (Conley & Casanova, 2014). Figure 2.4 demonstrates the 

skyrocketing of the discovery of PID-related genetic mutations. 

 

 

Figure 2.4: The skyrocketing of the discovery of genetic mutations related to PIDs (especially 
when WES has been applied) (Meyts et al., 2016). 

 

The raw data which is generated by WES undergo mapping, post-processing, variant 

calling, and annotation of variants will be one of the final steps to detect the cause of PID 

(Rudilla et al., 2019). 
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2.7      WES Limitations 

Despite the cost and time efficiency of WES, it still comes with limitations. Theoretically 

speaking, the WES procedure should capture 100% of the exome. However, this is not the 

case, as the WES technology is still not advanced enough to capture 100% of the exonic 

regions. Research has demonstrated that WGS is more reliable than WES in terms of looking 

for variants, as WGS identified more variants and came with fewer errors than WES (Belkadi 

et al., 2015). 

Another limitation emerges from the fact that not every time causative variants can be 

detected from the WES analysis. This may be caused by the fact that WGS offers more 

accurate detections of variants as it does not have a bias caused by probe sequences from 

WES. As a result, WES will miss some variants (Warr et al., 2015). Sometimes, the causative 

variants may be located in non-coding regions of the DNA. 

After a WES procedure is complete, a Bioinformatics analysis pipeline would take place 

and that would require strong computational power. Assembling a computer with a powerful 

processor and memory capacity is quite expensive (Schmidt & Hildebrandt, 2017). This may 

hinder labs that do not have sufficient funds from performing analyses.  
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CHAPTER 3: METHODOLOGY 

 

3.1      Whole-Exome Sequencing 

The DNA was seized from the peripheral blood mononuclear cells (PBMC) of the patient 

via the QIamp DNA Blood Mini Kit (Qiagen, Germany). Agilent SureSelect Human All 

Exon V5 was the exome capture kit that was used to attain the coding sequences from the 

DNA. After that, the DNA was sequenced using the Illumina Hiseq 4000 machine. 

 

3.2      Acquisition of Data 

The raw data of the P1 patient was acquired, in FASTQ (Appendix B) format, from IMR 

for research. The patient was suspected of PID. PID symptoms include (but are not limited 

to): Inflammation, recurrent infections, blood disorders, and delayed growth and 

development. P1 presented symptoms that include dysmorphic features and more as 

mentioned above in the introduction.  

The raw data were subjected to the bioinformatics analysis pipeline, which will be 

explained further in detail, to look for harmful mutations that are the likely cause of the 

patient’s symptoms. 
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3.3      Computer Specifications 

Bioinformatics analyses usually require strong specifications in the computer that will be 

used. These strong computers are referred to as supercomputers. Table 3.1 presents the 

specifications of the computer that was used for this project. 

 

Table 3.1: The specifications of the computer that was used for this research. 

Hardware and Software Specifications 

Memory 94.4 GiB 

Processor Intel® Xeon(R) CPU X5550 @ 2.67GHz x 4 

Graphics Quadro FX 3800/PCIe/SSE2 

OS type 64-bit 

Disk 882.9 GB 

Operating System Ubuntu 16.04 LTS 
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3.4      Bioinformatics Analysis Pipeline 

Trimmomatic (Bolger et al., 2014) was used to trim off 10 bases from the reads to improve 

their quality as that removes unnecessary overlaps that include low qualities. Burrows-

Wheeler Aligner (BWA) (Li & Durbin, 2009) was utilized to align the reads to the human 

reference genome. File processing via Picard (http://broadinstitute.github.io/picard) and 

Genome Analysis Toolkit (GATK) 4.0 (McKenna et al., 2010) was done to reduce errors and 

increase the confidence score in the data. Next, the Mapping percentage, and reads genomic 

origin have been viewed using Qualimap (García-Alcalde et al., 2012). Then, variant calling 

was done also via GATK 4.0 to call the SNPs and insertion-deletions (INDEL) and list them 

in a variant call file (VCF) file (Appendix B). After that, wANNOVAR (the web version of 

ANNOVAR) (Chang & Wang, 2012) was used for the annotation of the VCF file to retrieve 

the names of genes with either SNPs or INDELs and get the specifications of each. Figure 

3.1 illustrates the pipeline of the Bioinformatics analysis. 

 

Figure 3.1: The flow of the Bioinformatics analysis pipeline. 
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3.5      The Reference Genomes Used for Mapping 

A reference genome is an assembled database of nucleic acid sequences. It is a digital 

representation of the genome of a certain organism. In this project, we are dealing with the 

human genome. When NGS analysis is applied, mostly, one of the initial steps is mapping 

the raw reads generated by the sequencer to a reference genome. Four different versions of 

the human reference genome have been used in the bioinformatics analysis pipeline. The 

patient’s data have been mapped to hg19, hs37d5 (hg19 plus decoy sequences) codenamed 

hg19D, hg38, and GCA_000001405.15_GRCh38_no_alt_plus_hs38d1_analysis_set (hg38 

without alternate sequences, plus decoy sequences) codenamed hg38NAD.  
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3.6      Commands and Scripts that are Used to Run the Software Packages 

The script for trimming the raw reads via Trimmomatic was written as: 

{java -jar /Path/to/trimmomatic-0.39.jar PE -phred33  

/Path/to/WES_1.fastq.gz  

/Path/to/WES_2.fastq.gz  

/Path/to/WES_1_paired.fq.gz  

/Path/to/WES_1_unpaired.fq.gz  

/Path/to/WES_2_paired.fq.gz  

/Path/to/WES_2_unpaired.fq.gz  

HEADCROP:10} 

whereby, 

 java -jar /Path/to/trimmomatic-0.39.jar denotes the directory in which 

Trimmomatic software was located; 

 

 PE indicates that Trimmomatic will work with paired strands; 

 

 phred33 (Appendix B) specifies the base quality encoding; 

 

 /Path/to/WES_1.fastq.gz    denotes the path to the forward pair input; 

 

 /Path/to/WES_2.fastq.gz    denotes the path to the reverse pair input; 
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 /Path/to/WES_1_paired.fq.gz    denotes the directory of the output of the 

trimmed forward pair; 

 

 /Path/to/WES_1_unpaired.fq.gz    denotes the directory of the output of the 

unpaired reads of the forward pair; 

 

 /Path/to/WES_2_paired.fq.gz    denotes the directory of the output of the 

trimmed reverse pair; 

 

 /Path/to/WES_2_unpaired.fq.gz    denotes the directory of the output of the 

unpaired reads of the reverse pair; 

 

 HEADCROP:10 indicated that 10 bases were removed from the beginning 

regardless of the quality; 
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The script for indexing the reference genome via SAMtools was written as: 

{/Path/To/samtools faidx /Path/To/hg.fa} 

whereby, 

 /Path/To/samtools denotes the directory in which SAMtools is located; 

 

 faidx is the command which will perform the indexing of a reference 

sequence (the human genome in this case); 

 

 /Path/To/hg.fa denotes the path to the human reference genome file. 
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The script for creating sequence dictionary for the reference genome via Picard was written 

as: 

{java -jar /Path/To/picard.jar CreateSequenceDictionary R=/Path/To/hg.fa 

O=/Path/To/hg.dict} 

whereby, 

 java -jar /Path/To/picard.jar denotes the directory in which Picard is located; 

 

 CreateSequenceDictionary is the command that creates a dictionary for a 

reference sequence (the human reference genome in this case), which may 

be required for other tools; 

 

 R=/Path/To/hg.fa denotes the directory of the human reference genome; 

 

 O=/Path/To/hg.dict denotes the directory of the output file. 
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The script for mapping via BWA was written as: 

{/Path/to/bwa mem -M -t 4 /Path/to/hg.fa /Path/to/WES_1_paired.fq.gz 

/Path/to/WES_2_paired.fq.gz > /Path/to/WES_Mapped.sam} 

whereby, 

 /Path/To/bwa denotes the directory in which BWA is located; 

 

 mem refers to an algorithm for local alignment; 

 

 -M mark shorter split hits as secondary (for Picard compatibility); 

 

 -t 4 indicated that the number of threads used is 4; 

 

 /Path/To/hg.fa denotes the directory in which the human reference genome 

is located; 

 

 /Path/To/WES_1_paired.fq.gz and /Path/To/WES_2_paired.fq.gz denotes 

the path to the forward and reverse pair respectively; 

 

 /Path/to/WES_Mapped.sam denotes the directory for the output file. 
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The script for converting the SAM (Appendix B) mapping output to a BAM (Appendix B) 

output via SAMtools was written as: 

{/Path/To/samtools     view -h -b -S  

/Path/To/WES_Mapped.sam > 

/Path/To/WES_Mapped.bam} 

whereby, 

 /Path/To/samtools denotes the directory in which SAMtools is located; 

 

 view is a command to convert the mapping file to a different format 

according to the chosen options; 

 

 -h includes the header in the output; 

 

 -b indicates that the output will be in BAM format; 

 

 -S indicates that the input is a SAM file; 

 

 /Path/To/WES_Mapped.sam denotes the directory of the SAM output file 

that will be converted to BAM; 

 

 /Path/To/WES_Mapped.bam denotes the directory of the BAM output file. 

 

 

Univ
ers

iti 
Mala

ya



 

25 
 

The script for replacing read groups via Picard was written as: 

{java -jar /Path/To/picard.jar AddOrReplaceReadGroups 

I=/Path/To/WES_Mapped.bam o=/Path/To/RG_WES_Mapped.bam RGID=1   

RGLB=library1   RGPL=illumina   RGPU=K00171   RGSM=human } 

whereby, 

 java -jar /Path/To/picard.jar denotes the directory in which Picard is located; 

 

 AddOrReplaceReadGroups is the command for replacing read groups in the 

input file with a one whole new read group in the output file which contains 

the read groups from the input; 

 

 I=/Path/To/WES_Mapped.bam denotes the directory of the input file; 

 

 o=/Path/To/RG_WES_Mapped.bam denotes the directory of the output file; 

 

 RGID=1 indicates the read group ID; 

 RGLB=library1 indicates the choice of the required library; 

 RGPL=illumina indicates the required platform; 

 RGPU=K00171 indicates the platform unit; 

 RGSM=human indicates the group sample name. 
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The script for sorting the mapping file by coordinates via Picard was written as: 

 
{ java -jar /Path/To/picard.jar SortSam  

I=/Path/To/RG_WES_Mapped.bam  

O=/Path/To/SS_RG_WES_Mapped.bam  

SORT_ORDER=coordinate} 

 
whereby, 

 java -jar /Path/To/picard.jar denotes the directory in which Picard is located; 

 

 SortSam is a command used for sorting SAM or BAM files; 

 

 I=/Path/To/RG_WES_Mapped.bam denotes the directory of the input file; 

 

 O=/Path/To/SS_RG_WES_Mapped.bam denotes the directory of where the 

output file will be saved; 

 

 SORT_ORDER=coordinate indicates that the input will be sorted by 

coordinates; 
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The script for marking duplicates via Picard was written as: 

 
{ java -jar /Path/To/picard.jar   MarkDuplicates 

I=/Path/To/SS_RG_WES_Mapped.bam 

O=/Path/To/MD_SS_RG_WES_Mapped.bam 

M=/Path/To/WES_Mapped_Marked.txt} 

 
whereby, 

 java -jar /Path/To/picard.jar denotes the directory in which Picard is located; 

 

 MarkDuplicates is the command which is used for the identification of 

duplicate reads. The duplicate reads are errors that may arise from 

polymerase chain reaction (PCR) library construction; 

 

 I=/Path/To/SS_RG_WES_Mapped.bam denotes the directory of the input 

file; 

 

 O=/Path/To/MD_SS_RG_WES_Mapped.bam denotes the directory of the 

output file; 

 

 M=/Path/To/WES_Mapped_Marked.txt denotes the directory of the output 

where the duplication metrics will be written. 
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The script for base recalibration via GATK 4.0 was written as: 

 
{/Path/To/gatk BaseRecalibrator  

-I /Path/To/MD_SS_RG_WES_Mapped.bam  

-R /Path/To/hg.fa  

--known-sites /Path/To/00-All.vcf  

-O /Path/To/WES_Mapped_Marked.bam.table} 

 
whereby, 

 /Path/To/gatk denotes the directory in which GATK 4.0 is located; 

 

 BaseRecalibrator is the command which is used for generating recalibration 

tables for Base Quality Score Recalibration (BQSR), which is the next 

script; 

 

 -I /Path/To/MD_SS_RG_WES_Mapped.bam denotes the directory of the 

input file; 

 
 -R /Path/To/hg.fa denotes the directory in which the human reference 

genome is located; 

 
 --known-sites /Path/To/00-All.vcf denotes the directory of the file that 

contains all known polymorphic sites according to the reference genome; 

 
  -O /Path/To/WES_Mapped_Marked.bam.table denotes the directory of the 

output file. 
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The script for applying BQSR via GATK 4.0 was written as: 

 
{/Path/To/gatk ApplyBQSR  

-R /Path/To/hg.fa  

-I /Path/To/MD_SS_RG_WES_Mapped.bam  

--bqsr-recal-file /Path/To/WES_Mapped_Marked.bam.table  

-O /Path/To/WES_BQSR.bam} 

 
whereby, 

 /Path/To/gatk denotes the directory in which GATK 4.0 is located; 

 

 ApplyBQSR is the command which used for applying base quality score 

recalibration whose aim is to amend systemic bias of the sequencer which 

affects the appointment of quality scores for the bases; 

 
 -R /Path/To/hg.fa denotes the directory in which the human reference 

genome is located; 

 
 -I /Path/To/MD_SS_RG_WES_Mapped.bam denotes the directory of the 

input file; 

 
 --bqsr-recal-file /Path/To/WES_Mapped_Marked.bam.table  denotes the 

directory of the input table; 

 
 -O /Path/To/WES_BQSR.bam denotes the directory of the output file. 
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The script for gene counting via the Python htseq-count (Anders et al., 2015) command was 

written as: 

 
{htseq-count    -f bam    -r pos    -s no    -m union  

/Path/To/WES_BQSR.bam  

/Path/To/hg.knownGene.gtf    >>    /Path/To/GeneCounting_WES.txt} 

 
whereby, 

 htseq-count denotes the command which is used for counting reads in 

features; 

 

 -f bam  denotes that the format of the input file was BAM. 

 

 -r pos   denotes that the data was sorted by position of alignment. 

 

 -s no  denotes that it was not strand-specific. 

 

 -m union  denotes that the mode used was union. 

 

 /Path/To/WES_BQSR.bam  denotes the directory of the input file. 

 

 /Path/To/hg.knownGene.gtf    denotes the directory of the GTF file 

(Appendix B). 

 

 >>    /Path/To/GeneCounting_WES.txt   denotes the directory of the output 

file. 
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The script for calling germline variants via GATK 4.0 was written as: 

 
{/Path/To/gatk   --java-options "-Xmx4g"   HaplotypeCaller  

-R /Path/To/hg.fa  

-I /Path/To/WES_BQSR.bam  

-O /Path/To/HaplotypeCaller_WES_BQSR.bam.vcf} 

 
whereby, 

 /Path/To/gatk denotes the directory in which GATK 4.0 is located; 

 

 --java-options "-Xmx4g" denotes that the amount of utilized RAM was 

4GB; 

 

 HaplotypeCaller is the command that is used to call germline variants (SNPs 

and INDELs) from the mapped and processed BAM file; 

 

 -R /Path/To/hg.fa denotes the directory in which the human reference 

genome is located; 

 

 -I /Path/To/WES_BQSR.bam denotes the input file directory; 

 

 -O /Path/To/HaplotypeCaller_WES_BQSR.bam.vcf denotes the output file 

directory. 
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The script for generating a variant recalibration model via GATK 4.0 was written as: 

 
{/Path/To/gatk   --java-options "-Xmx40g"   VariantRecalibrator  

--use-jdk-deflater true   --use-jdk-inflater true  

-R /Path/To/hg.fa   -V /Path/To/HaplotypeCaller_WES_BQSR.bam.vcf  

--resource:hapmap,known=false,training=true,truth=true,prior=15.0 

ResourseFiles/hapmap_3.3.hg.vcf  

--resource:omni,known=false,training=true,truth=false,prior=12.0 

ResourseFiles/1000G_omni2.5.hg.vcf  

--resource:1000G,known=false,training=true,truth=false,prior=10.0 

ResourseFiles/1000G_phase1.snps.high_confidence.hg.vcf  

--resource:dbsnp,known=true,training=false,truth=false,prior=2.0 

ResourseFiles/dbsnp.hg.vcf  

-an QD   -an MQ   -an MQRankSum   -an ReadPosRankSum   -an FS   -an SOR  

-mode SNP  

-O /Path/To/HC_WES_BQSR.bam.vcf.recal  

--tranches-file /Path/To/HC_WES_BQSR.bam.vcf.tranches} 

 
whereby, 

 /Path/To/gatk denotes the directory in which GATK 4.0 is located; 

 

 --java-options "-Xmx40g" denotes that the amount of utilized RAM was 

40GB; 
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 VariantRecalibrator is the command that is used for the goal of appointing a 

calibrated probability to each variant call in a call set for the purpose of 

filtering the variants with higher accuracy; 

 

 --use-jdk-deflater true denotes the use of a Java class; 

 
 --use-jdk-inflater true denotes the use of a Java class; 

 
 -R /Path/To/hg.fa denotes the directory in which the human reference 

genome is located; 

 
 -V /Path/To/HaplotypeCaller_WES_BQSR.bam.vcf denotes the input 

directory of the VCF file; 

 
 --resource:hapmap,known=false,training=true,truth=true,prior=15.0 

ResourseFiles/hapmap_3.3.hg.vcf denotes a VCF sites file for probability 

calculation purposes and the input directory of the file; 

 
 --resource:omni,known=false,training=true,truth=false,prior=12.0 

ResourseFiles/1000G_omni2.5.hg.vcf denotes a VCF sites file for 

probability calculation purposes and the input directory of the file; 

 
 --resource:1000G,known=false,training=true,truth=false,prior=10.0 

ResourseFiles/1000G_phase1.snps.high_confidence.hg.vcf denotes a VCF 

sites file for probability calculation purposes and the input directory of the 

file; 
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 --resource:dbsnp,known=true,training=false,truth=false,prior=2.0 

ResourseFiles/dbsnp.hg.vcf denotes a VCF sites file for probability 

calculation purposes and the input directory of the file; 

 
 -an QD denotes a respective name of annotation in the recalibration model; 

 
 -an MQ denotes a respective name of annotation in the recalibration model; 

 
 -an MQRankSum denotes a respective name of annotation in the 

recalibration model; 

 
 -an ReadPosRankSum denotes a respective name of annotation in the 

recalibration model; 

 
 -an FS denotes a respective name of annotation in the recalibration model; 

 
 -an SOR denotes a respective name of annotation in the recalibration model; 

 
 -mode SNP denotes the mode of recalibration; 

 
 -O /Path/To/HC_WES_BQSR.bam.vcf.recal denotes the output of the 

recalibration model file; 

 
 --tranches-file /Path/To/HC_WES_BQSR.bam.vcf.tranches denotes the 

directory of the tranches output file. 
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The script for applying the VQSR based on the recalibration and tranches files via GATK 

4.0 was written as: 

 
{/Path/To/gatk --java-options "-Xmx40g" ApplyVQSR -R /Path/To/hg.fa  

-V /Path/To/HaplotypeCaller_WES_BQSR.bam.vcf  

-O /Path/To/WES_VQSR.vcf     -ts-filter-level 99.0  

--tranches-file /Path/To/HC_WES_BQSR.bam.vcf.tranches  

--recal-file /Path/To/HC_WES_BQSR.bam.vcf.recal  

--mode SNP} 

 
whereby, 

 /Path/To/gatk denotes the directory in which GATK 4.0 is located; 

 

 --java-options "-Xmx40g" denotes that the amount of utilized RAM was 

40GB; 

 

 ApplyVQSR is the command that is used for applying filtering of called 

variants in accordance with the recalibration model; 

 
 -R /Path/To/hg.fa denotes the directory in which the human reference 

genome is located; 

 
 -V /Path/To/HaplotypeCaller_WES_BQSR.bam.vcf denotes the input VCF 

file directory; 

 
 -O /Path/To/WES_VQSR.vcf denotes the output file directory; 
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 -ts-filter-level 99.0 denotes the truth sensitivity level; 

 
 --tranches-file /Path/To/HC_WES_BQSR.bam.vcf.tranches denotes the 

directory of the input tranches file; 

 
 --recal-file /Path/To/HC_WES_BQSR.bam.vcf.recal denotes the directory of 

the input recalibration model file; 

 
 --mode SNP denotes the mode of recalibration. 
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3.7      Annotation of the Called and Recalibrated Variants 

The recalibrated VCF file (WES_VQSR.vcf) has been annotated via the web tool 

wANNOVAR. Figure 3.2 illustrates a part of the webpage whereby the email is inputted to 

receive the results, the sample identifier would be the name of the output file, and the input 

file would be inserted in the third slot. 

 

 

Figure 3.2: Illustration of the input setup of wANNOVAR. 
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The parameter settings illustrated in Figure 3.3 determine the filtering of annotation. The 

result duration denotes how many days the result would last on the website before it is 

deleted. The reference genome was selected according to the reference genome the data was 

mapped to. The input format was set to VCF. The gene definition would determine the 

database of which the annotation will be based on. The individual analysis determines that 

only the variants that are present in the VCF file would be considered for annotation. The 

disease model would do filtering to find variants that are only related to a certain disease, 

however, none was selected so that it allows the selection of all variants for annotation. 

 

 

Figure 3.3: The parameter settings of wANNOVAR. 
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3.8      Interpretation of the Variants’ Annotation 

After the result generation from wANNOVAR, a file in CSV format can be downloaded 

or viewed on the website itself. The downloaded file shows 139 columns, each portraying a 

different kind of annotation, and approximately 23,000 rows each representing an annotated 

variant in a particular gene. Figure 3.4 illustrates how the CSV file looks like once opened. 

 

139 columns 

 

 

 

 

 

Many of the columns that included irrelevant information were disregarded. Only the 

columns with the imperative information were regarded. This included the annotation of 

variants in all the known genes. In other words, the rows included variations in all the known 

genes. The PID-related genes were listed on the side. Using the VLOOKUP function in excel, 

the rows were reduced to the point of showing only the variants in PID-related genes. Further 

filtering was done to determine which of the variants could be the harmful and causative ones 

for the symptoms in the patient. 

 

~23K 

rows 

Figure 3.4: The raw annotation file in CSV format. 
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CHAPTER 4: RESULTS 

 

4.1      Trimming Results 

FastQC (Andrews, 2010) was utilized to check the quality scores of the reads. In the 

figures below (4.1a, 4.1b, 4.1c, and 4.1d), the y-axis represents the quality scores. The higher 

the better quality. There are three colors in the background of the graph. Green for very good 

quality, yellow for reasonable quality, and red for poor quality.  

 

Figure 4.1a: Forward pair before trimming. 
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Figure 4.1b: Reverse pair before trimming. 
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Figure 4.1c: Forward pair after trimming. 
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Figure 4.1d: Reverse pair after trimming. 

 

Figures 4.1a and 4.1b illustrate the forward and reverse pairs before trimming 10 bases 

off the head, the first 10 bases of the reads with a slightly lower quality were still present (at 

the top left of the graphs). Figures 4.1c and 4.1d, on the other hand, show the forward and 

reverse pairs after trimming 10 bases off the head, the first 10 bases of the reads with a slightly 

lower quality were removed. 
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4.2      General Statistics 

The results of the bioinformatics analysis pipeline have been compared when the patient’s 

data were mapped to four different versions of reference genomes based on four categories: 

mapping percentage, reads genomic origin, gene counting, and the number of annotated 

variants. Green-labeled cells indicate the highest number, yellow-labeled cells indicate mid-

range numbers, and red-labeled cells indicate the lowest number.  

 

4.2.1      Mapping Percentage 

Tables 4.1, 4.2, 4.3, and 4.4 describe the percentage of reads that mapped to the respective 

reference genome. As shown in the tables, when the raw data were mapped to the 4 different 

versions of the human reference genome, it is shown that all of them have a high mapping 

percentage, meaning that the utmost majority of the reads have mapped to the respective 

reference genome version. However, hg38NAD had the highest percentage. 

Table 4.1: Mapping statistics of P1’s data when mapped to hg19. 

Number of reads 66,476,469    100% 

Mapped reads 66,391,615    99.87% 

Unmapped reads 84,854    0.13% 

 

Table 4.2: Mapping statistics of P1’s data when mapped to hg19D. 

Number of reads 66,473,788    100% 

Mapped reads 66,399,287    99.89% 

Unmapped reads 74,501    0.11% 
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Table 4.3: Mapping statistics of P1’s data when mapped to hg38. 

Number of reads 66,475,603    100% 

Mapped reads 66,398,985    99.88% 

Unmapped reads 76,618    0.12% 

 

Table 4.4: Mapping statistics of P1’s data when mapped to hg38NAD. 

Number of reads 66,474,294    100% 

Mapped reads 66,399,030    99.89% 

Unmapped reads 75,264    0.11% 

 

 

4.2.2      Reads Genomic Origins 

Tables 4.5, 4.6, 4.7, and 4.8 describe the percentage of reads that mapped to the exonic 

regions of the respective reference genome. The exonic row represents the percentage of 

reads that were mapped to exonic regions. When the raw data were mapped to hg38NAD, 

they had the biggest percentage of reads mapped to exonic regions.  

 

Table 4.5: Reads genomic origins of P1’s data when mapped to hg19. 

Exonic 22.5% 

Intronic 66.3% 

Intergenic 11.2% 

Intronic/Intergenic overlapping exon 24.84% 
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Table 4.6: Reads genomic origins of P1’s data when mapped to hg19D. 

Exonic 24.34% 

Intronic 64.77% 

Intergenic 10.88% 

Intronic/Intergenic overlapping exon 24.69% 

 

Table 4.7: Reads genomic origins of P1’s data when mapped to hg38. 

Exonic 30.3% 

Intronic 60.87% 

Intergenic 8.82% 

Intronic/Intergenic overlapping exon 24.16% 

 

Table 4.8: Reads genomic origins of P1’s data when mapped to hg38NAD. 

Exonic 30.36% 

Intronic 60.96% 

Intergenic 8.68% 

Intronic/Intergenic overlapping exon 24.2% 
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4.2.3      Gene Counting 

Tables 4.9, 4.10, 4.11, and 4.12 describe the number of reads that are mapped to the 

respective reference genome. Reads aligned to features (genes) denotes the total reads that 

have been mapped to genes. No feature denotes reads that could not be mapped to genes. 

Ambiguous denotes reads that have been mapped to more than one feature and hence were 

not counted. Too low aQual denotes reads that had been skipped due to the default quality 

parameter. Not aligned denotes the reads that have not been aligned in the BAM file. The 

most reads aligned to features were found in hg38NAD. 

 

Table 4.9: Gene counting results for P1 when mapped to hg19. 

Reads aligned to features (genes) 24,181,342 

No feature 7,367,541 

Ambiguous 637,823 

Too low aQual 1,031,006 

Not aligned 7,757 

 

Table 4.10: Gene counting results for P1 when mapped to hg19D. 

Reads aligned to features (genes) 24,574,409 

No feature 7,108,943 

Ambiguous 745,238 

Too low aQual 793,316 

Not aligned 3,563 
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Table 4.11: Gene counting results for P1 when mapped to hg38. 

Reads aligned to features (genes) 24,293,915 

No feature 5,411,241 

Ambiguous 1,656,135 

Too low aQual 1,859,829 

Not aligned 4,349 

 

 

Table 4.12: Gene counting results for P1 when mapped to hg38NAD. 

Reads aligned to features (genes) 25,077,795 

No feature 5,562,397 

Ambiguous 1,725,631 

Too low aQual 855,785 

Not aligned 3,861 

 

 

 

 

 

 

 

 

Univ
ers

iti 
Mala

ya



 

49 
 

4.2.4      Number of Annotated Exonic Variants 

Table 4.13 describes the number of annotated exonic variants when the data of P1 was 

mapped to the respective reference genome. When the raw data were mapped to hg19, it was 

found that it had the biggest number of annotated exonic variants. 

 

Table 4.13: Number of annotated exonic variants of P1’s data when mapped to the four 
different versions of the human reference genome. 

When mapped to hg19 24,141 

When mapped to hg19D 23,524 

When mapped to hg38 22,382 

When mapped to hg38NAD 23,790 
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4.3      Variants Annotation 

Table 4.14 shows the annotation of the variants which are the candidates for the causation 

of the symptom in P1. The Gene column represents the gene in which the mutation occurred. 

The Chr column represents the chromosome in which the mutation occurred. The Nucleotide 

change column shows the location of the SNP in the gene. The Inheritance column represents 

the known inheritance of the mutation in the gene. The Genotype column shows whether the 

mutation is heterozygous (het) or homozygous (hom). The Variant impact column shows 

whether it is a synonymous single nucleotide variant (SNV) or a nonsynonymous SNV. The 

AA change column represents the location of the mutation in the amino acid chain. SIFT, 

Polyphen, and Mutation Taster are the predictor tools that show whether the mutation is 

Damaging/Disease-causing (D) or not. The Frequency in gnomAD column represents the 

frequency of occurrence of the said mutation in the database. The coverage column portrays 

how many times the mutation has been covered during the sequencing. 

 

Table 4.14: Annotation data presenting the SNPs in the three genes and the three prediction 
tools’ scores for each SNP. 

Gene Chr Nucleotide 
change Inheritance Genotype Variant impact AA change SIFT Polyphen Mutation 

Taster 
Frequency 
in gnomAD Coverage 

NFKBIA 14 c.A94T AD het nonsynonymous 
SNV p.Ser32Cys D D D . 66,56:122 

TLR3 4 c.C2384T AD or AR het nonsynonymous 
SNV p.A795V D D D 0.00005692 36,26:62 

SAMD9L 7 c.T866C AD het nonsynonymous 
SNV p.F289S D D D 0.018 102,93:195 
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4.4      Sanger Sequencing Results and Confirmation 

 

Figure 4.2 illustrates the Sanger sequencing results and Figure 4.3 presents the PCR result 

which confirms the Sanger sequencing.  

 

Figure 4.2: Sanger sequencing validation confirms the mutation of the Adenine base to a 
Thymine base (c.A94T) in the patient’s NFKBIA gene that was detected by WES analysis. The 
mutation point is indicated by red rectangles. The control and both of the parents have the 
wildtype allele at the same point. 
 

 

Figure 4.3: PCR result confirms the Sanger sequencing. Lane 1 is the BenchTop DNA ladder 
(100bp). Lane 2 is the negative control. Lane 3 is the control. Lane 4 is the patient’s DNA. Lane 
5 is the patient’s mother's DNA. Lane 6 is the patient’s father's DNA.  
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CHAPTER 5: DISCUSSION 

 

5.1      Importance of the Study 

The main objective of this study is to detect genetic variants that could be linked to the 

patient’s symptoms. The significance of WES analysis is that it often leads to the discovery 

of novel mutations that have not been reported before. This allows for detailed inspection to 

further our understanding of PIDs. 

 

5.2      Trimming 

To achieve the objective of detecting genetic variants, the raw reads must be mapped to 

align them to a reference genome. However, before mapping the reads, quality control was 

conducted to ensure a high quality of the reads. The results in figures (4.1a, 4.1b, 4.1c, and 

4.1d) showed that the quality of the raw reads is high before and after the trimming since 

most of them lie in the green region in FastQC. 
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5.3      The Best Reference Genome for this Study 

The mapping percentage appeared to be the highest when the samples were mapped to 

hg38NAD; reads genomic origins showed the highest percentage of exonic regions when 

mapped to hg38NAD; gene counting showed the highest number of reads mapped to features 

when the samples were mapped to hg38NAD; the number of annotated variants were the 

highest when the samples mapped to hg19. After the comparison of the four different versions 

of the human reference genome, it was found that hg38NAD had won in three categories out 

of the four. Thus, making it the most suitable human reference version for this Bioinformatics 

analysis pipeline. 
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5.4      Candidate Genes 

After going through and filtering the data of the annotated variant calls, three variants in 

the NFKBIA, TLR3, and SAMD9L genes were detected as shown in Table 4.14. The 

NFKBIA variant has damaging scores from SIFT and Polyphen, and it was predicted to be 

disease-causing by MutationTaster. The NFKBIA variant was not reported in the gnomAD 

database, hence the nil frequency is shown in the annotation. Which tells us that this is a 

novel mutation. It is a heterozygous autosomal dominant mutation.  The annotation shows 

that Adenine changed to Thymine at the location of the variant (A>T), which made the codon 

code for Cysteine instead of Serine (p.Ser32Cys). The WES coverage of this mutation was 

122. This mutation was validated via Sanger sequencing and the results were visualized using 

Unipro UGENE (Okonechnikov et al., 2012). This confirms the mutation to be the most 

possible and the biggest candidate behind the patient’s symptoms. The SNPs in the TLR3 

and SAMD9L genes were considered improbable candidates as none of the associated 

features with the mutations were found in the patient. 
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5.5      Role of NFKB 

Nuclear factor-kB (NFKB) is a transcription factor that is pervasive in terms of regulating 

genes that encode cytokines, chemokines, growth factors, cell adhesion molecules, and more 

(Chen et al., 1999). NFKB is comprised of a family of associated transcription factors that 

includes five genes NFKB1, NFKB2, RelA, c-Rel, and RelB. 

One of NFKB’s functions is regulating the immune response to infections. If the NFKB 

complex is damaged (due to a harmful mutation), a severe form of PID would be caused in 

the patient (Klemann et al., 2019). 

The regulation of NFKB is highly important as faulty regulation can cause cancer or 

immune deficiency. One of the main regulators of NFKB is an inhibitor known as NFKBIA. 

 

 

5.6    Role of NFKBIA 

The NFKBIA gene codes for an inhibitor that regulates the expression of the NFKB gene. 

While inactive, NFKB is bound to NFKBIA and is in the cytoplasm. The NFKBIA Inhibits 

the NFKB complex by cornering the REL dimers in the cytoplasm. As a result, this will 

conceal the nuclear localization signals. When it is activated; due to certain triggers such as 

cytokines, chemokines, immune responses, and more; the NFKBIA is unbound by becoming 

phosphorylated which results in its ubiquitination and degradation. The RelA, in turn, is 

translocated into the nucleus to activate the transcription and perform the NFKB’s function 

(Scherer et al., 1995; Barnes & Karin, 1997).  
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5.7    Hyper IgM 

The patient was initially suspected of Hyper IgM syndrome. Hyper IgM syndrome is a 

PID in which the patient will have elevated IgM levels and reduced IgA and IgG levels. It is 

associated with a harmful mutation in the CD40 gene. NFKBIA mutations are also associated 

with elevated IgM levels and reduced IgA and IgG levels (Tangye et al., 2020). However, 

the immunological workup of the patient was observed and was found not to be compatible 

with Hyper IgM syndrome because the clinicians observed normal levels of CD40 

expressions in the patient. Hence, the WES analysis was conducted to look for mutations in 

all of the known PID-related genes. As a result, a mutation (SNP) in the NFKBIA gene of 

the patient was detected and will be discussed further. No harmful mutation was found in any 

of Hyper IgM syndrome-related genes. 

 

5.8     Novel Mutation in the NFKBIA Gene 

In the case of P1, the NFKB complex is not damaged. However, the NFKBIA, one of the 

inhibitors of NFKB was damaged by an SNP (NFKBIA: NM_020529: exon1: c.A94T: 

p.S32C). The determined SNP in the NFKBIA gene is a non-synonymous, heterozygous 

mutation. No SNP has been detected before in that particular site (c.A94T) in the gnomAD 

database.  

Since NFKBIA is an inhibitor for NFKB, if NFKBIA is mutated in a damaging manner, 

two possible scenarios will be present. Either the inhibitor is mutated in a way that prevents 

it from binding to NFKB to a point that NFKB loses control and overexpresses itself, or the 

inhibitor is mutated in a way the keeps it overly bound to NFKB to a point that NFKB 

activation is impaired and it will not be expressed when required. This raises the following 
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question: which one of the previously mentioned scenarios occurred in the patient? The 

answer to that question is most probably the second scenario. According to research, the 

abnormal constitutive activation of NFKB is usually associated with specific cancers 

depending on the site of mutation (White et al., 2009; Bredel et al., 2011; Zhao et al., 2014). 

However, when it is a gain-of-function (GOF) mutation (as it is apparent in the P1), it is 

usually associated with anhidrotic ectodermal dysplasia (EDA) and PID (also as it appears in 

P1) (Lopez‐Granados et al., 2008; Yoshioka et al., 2013; Sogkas et al., 2020). 

 

 

5.9      Destruction Motif in NFKBIA 

The novel mutation (NFKBIA:NM_020529:exon1:c.A94T:p.S32C) in the NFKBIA is 

located in the destruction motif of NFKBIA (Specifically the Serine 32 residue). The 

destruction motif is important for the phosphorylation in regulatory proteins (Wu et al., 

2003). However, this Serine 32 residue mutated to a Cysteine in the patient. 

 

5.10      Function of Serine32 in NFKBIA 

As mentioned previously in the results, the Serine 32 mutated into a Cysteine in the 

patient. This prompts us to discuss some of the functions of Serine and cysteine in general, 

the function of Serine 32 in the inhibitor (NFKBIA), and what a Cysteine 32 mutation could 

do (since it was not reported before), to give more confirmation for the second scenario in 

the patient. 
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One of the Serine's important functions is that it gets phosphorylated to facilitate cell 

signaling. On the other hand, Cysteine is involved in the formation of disulfide bridges for 

crosslinking proteins. 

In a normal NFKBIA protein, Serine 32 is imperative for the protein’s stability and the 

activation of NFKB (Traenckner et al., 1995). As the inhibitor is removed from the NFKB 

gene to activate it, the Serine 32 is phosphorylated for the ubiquitination of the NFKBIA 

protein which urges its degradation and results in the nuclear translocation of the NFKB 

protein to do its following function in the nucleus (Kawai et al., 2012). 

In the case of the P1’s NFKBIA protein. The Serine 32 is mutated to a Cysteine. This 

means there will be no phosphorylation of that residue in the patient, which may lead to the 

difficulty of the inhibitor to get removed from the NFKB and get it activated, which confirms 

the second scenario in the patient instead of the first scenario. 

Since this mutation (p.Ser32Cys) is not reported before, we cannot predict what Cysteine 

32 is exactly going to do in the patient’s inhibitor protein and how it would cause the inhibitor 

(NFKBIA) to react with NFKB. This requires protein modeling and simulation to be done to 

investigate and predict how a Cysteine 32 in NFKBIA would function. 
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CHAPTER 6: CONCLUSION 

 

Our knowledge in the field of PID diseases is ambiguous. Hence, this study was conducted 

to investigate the case of a PID patient in Malaysia. The patient was initially suspected of 

Hyper IgM Syndrome. The immunological workup was not compatible with Hyper IgM 

according to the observation. Hence, the WES analysis was conducted to look for mutations 

in the PID-related genes. The patient’s data were mapped to four different versions of the 

human reference genome (hg19, hg19D, hg38, and hg38NAD). Each time when the data is 

mapped to the respective version of the human reference genome, the data underwent file 

processing, BQSR, gene counting, variant calling, VQSR, and annotation. hg38NAD won in 

three out of four categories in comparison. Hence, it was concluded to be the best reference 

genome to use in this Bioinformatics analysis pipeline. After interpreting the annotation 

results, a novel harmful mutation (SNP) has been detected in the NFKBIA gene of the patient 

(NFKBIA:NM_020529:exon1:c.A94T:p.S32C), an important regulator (inhibitor) of the 

NFKB gene. This mutation has not been detected before as it was never reported in databases 

that concern genetic mutations. The Serine32 residue, which lies in the destruction motif of 

NFKBIA, has mutated to a Cysteine residue. This could have led to the inability of NFKBIA 

to detach itself from the NFKB gene when required, which resulted in the impairment of the 

NFKB gene’s activation, which could have also lead to the symptoms of the patient. This 

warrants further investigation to determine what this particular mutation exactly does. 
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