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A STUDY ON POSTURAL CONTROL AND LOWER LIMB MUSCLE 

ACTIVATION AMONG INDIVIDUALS WITH AND WITHOUT ANKLE 

SPRAIN 

ABSTRACT 

Damaged joint mechanoreceptors may necessitate the individuals with ankle sprain to 

develop coping strategies to maintain balance. This study investigated whether visual 

input contributes significantly to the balancing ability of individuals who had unilateral 

ankle sprains (AI). The specific objectives were to i) compare the time in balance (TIB) 

and Peroneus Longus (PL) activity with eyes-open (EO) and eyes-closed (EC) when 

performing balancing tasks, ii) compare the changes observed in AI with healthy 

individuals (HI), and iii) investigate whether the correlation between the Foot and Ankle 

Ability Measure (FAAM), a self-reported balance measure, with the observed 

performance (i.e. TIB and PL activity) is the same between AI and HI. Participants 

performed single leg (SL) and double leg (DL) tasks on a Lafayette stability platform. As 

this platform is frequently used for DL tasks, a reliability study for the SL stance on the 

Lafayette stability platform was first conducted with 36 healthy volunteers. After which, 

another 48 individuals (AI: n=24; age=23.5 ± 2.3 years; HI: n=24; age=23.5 ± 1.7 years) 

were recruited for the assessment. The participants performed three 20s trials of DL and 

SL stance in EO and EC conditions. The order of testing was randomized between 

conditions (i.e. EO, EC) and tasks (i.e. DL, SL). Bilateral activity of PL was recorded 

only during DL stance and was normalized to the peak maximum voluntary contraction 

(MVC). It was expressed as the side-to-side comparison, in percentage difference 

(%MVC). The duration the participants maintained the platform within ±1° deviation was 

considered as TIB. The TIB, PL activity, and FAAM scores were compared between 

groups and conditions. The relationship between FAAM scores and TIB and PL activity 

was analyzed using Spearman’s correlation coefficient (ρ). The results obtained suggest 
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SL stance is reliable on the Lafayette stability platform. The TIB was statistically longer 

during EO in AI (DL_EO: 19.69 ± 0.80s; DL_EC: 18.12 ± 3.69s, p < 0.05; SL_EO: 18.59 

± 3.59s; SL_EC; 17.39 ± 2.66s, p < 0.05) and in HI (DL_EO: 19.68 ± 1.28s; DL_EC: 

18.08 ± 3.60s, p< 0.05; SL_EO: 18.44 ± 2.59s; SL_EC: 17.01 ± 3.02s, p < 0.05). During 

DL stance, AI individuals showed a consistently lower side-to-side comparison PL 

activity in both EO (AI: 25.17 ± 12.53%MVC; HI: 29.82 ± 18.85%MVC, p = 0.163) and 

EC (AI: 24.48 ± 11.40%MVC; HI: 30.47 ± 19.03%MVC, p = 0.060) compared to HI. 

However, no significant difference in the TIB and side-to-side comparison PL activity 

was observed between groups. Additionally, a significant positive correlation was 

observed between FAAM and TIB during EO in AI (DL: ρ = 0.43, p = 0.04; SL: ρ = 0.59, 

p = 0.00), but not in HI (DL: ρ = -0.06, p = 0.77; SL: ρ = -0.11, p = 0.62). PL activity on 

the other hand had no significant correlation with FAAM scores in both groups 

irrespective of EO or EC. Overall, findings in this study suggested that AI does not rely 

on visual input entirely compared to HI in maintaining postural control.  

Keywords: Peroneus Longus, Reliability, Stability Performance, Unilateral Ankle  

  Sprain, Vision. 
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KAJIAN KAWALAN POSTUR DAN PENGAKTIFAN OTOT BAHAGIAN 

BAWAH DALAM KALANGAN INDIVIDU YANG TERSELIUH BUKU LALI 

DAN INDIVIDU SIHAT 

ABSTRAK 

Kerosakan mekanoreseptor sendi boleh menyebabkan individu yang terseliuh di 

pergelangan kaki mengadaptasi strategi penyesuaian untuk mengekalkan keseimbangan. 

Kajian ini menyiasat sama ada input visual menyumbang dengan signifikasi kepada 

keupayaan keseimbangan individu yang mengalami terseliuh pergelangan kaki unilateral 

(AI). Objektif kajian khususnya ialah i) membandingkan masa dalam keseimbangan 

(TIB) dan aktiviti Peroneus Longus (PL) dengan mata terbuka (EO) dan mata tertutup 

(EC) semasa melaksanakan aktiviti keseimbangan, ii) membandingkan perubahan yang 

diperhatikan dalam AI dengan individu sihat (HI), dan iii) menyiasat sama ada korelasi 

antara Ukuran Keupayaan Kaki dan Pergelangan Kaki (FAAM), iaitu soal selidik ukuran 

keseimbangan yang dilaporkan sendiri, dengan prestasi yang diperhatikan (iaitu TIB dan 

aktiviti PL) adalah sama di antara AI dan HI. Peserta menjalankan tugas kaki tunggal 

(SL) dan kaki berganda (DL) pada platform kestabilan Lafayette. Oleh kerana platform 

ini sering digunakan untuk tugas DL, kajian awal untuk menentukan kebolehpercayaan 

ujian pendirian SL pada platform kestabilan Lafayette telah dijalankan dengan 36 

sukarelawan sihat. Kemudian, 48 individu lain (AI: n = 24; umur = 23.5 ± 2.3 tahun; HI: 

n=24; umur = 23.5 ± 1.7 tahun) direkrut untuk penilaian keseimbangan. Peserta 

melakukan tiga percubaan 20s DL dan SL dalam keadaan EO dan EC. Susunan ujian 

adalah rawak antara keadaan (iaitu EO, EC) dan tugas (iaitu DL, SL). Aktiviti bilateral 

PL direkodkan hanya semasa DL dan dinormalisasi kepada kekuatan maksimum sukarela 

puncak (MVC). Ia dinyatakan sebagai perbandingan sisi-ke-sisi, dalam peratus perbezaan 

(%MVC). Tempoh peserta mengekalkan platform dalam ± 1° sisihan dianggap sebagai 

TIB. Data TIB, aktiviti PL, dan skor FAAM dibandingkan antara kumpulan dan keadaan. 
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Hubungan antara skor FAAM dan TIB dan aktiviti PL dianalisis menggunakan pekali 

korelasi Spearman (ρ). Hasil kajian menunjukkan SL boleh dipercayai pada platform 

kestabilan Lafayette. Durasi TIB adalah lebih panjang secara statistik dalam kumpulan 

AI (DL_EO: 19.69 ± 0.80s; DL_EC: 18.12 ± 3.69s, p < 0.05; SL_EO: 18.59 ± 3.59s; 

SL_EC; 17.39 ± 2.66s, p < 0.05) dan HI (DL_EO: 19.68 ± 1.28s; DL_EC: 18.08 ± 3.60s, 

p < 0.05; SL_EO: 18.44 ± 2.59s; SL_EC: 17.01 ± 3.02s, p < 0.05) semasa EO. Ketika 

tugas DL, individu AI menunjukkan perbandingan sisi aktiviti PL yang lebih rendah 

dalam kedua-dua keadaan EO (AI: 25.17 ± 12.53%MVC; HI: 29.82 ± 18.85%MVC, p = 

0.163) dan EC (AI: 24.48 ± 11.40%MVC; HI: 30.47 ± 19.03%MVC, p = 0.060) secara 

konsisten berbanding dengan individu HI. Walau bagaimanapun, tiada perbezaan yang 

signifikan dalam TIB dan perbandingan sisi aktiviti PL diperhatikan antara kedua-dua 

kumpulan. Selain itu, korelasi antara skor FAAM dengan TIB semasa EO adalah positif 

dan signifikan dalam AI (DL: ρ = 0.43, p = 0.04; SL: ρ = 0.59, p = 0.00), tetapi tidak 

dalam HI (DL: ρ = -0.06, p = 0.77; SL: ρ = -0.11, p = 0.62). Sebaliknya, tiada korelasi 

yang signifikan antara aktiviti PL dengan skor FAAM dalam kedua-dua kumpulan, sama 

ada dalam EO atau EC. Keseluruhannya, dapatan kajian ini menunjukkan bahawa 

individu AI tidak bergantung sepenuhnya pada input visual untuk mengekalkan 

keseimbangan jika dibandingkan dengan HI.  

Keywords: Peroneus Longus, Penglihatan, Kebolehpercayaan, Prestasi Kestabilan,  

  Terseliuh Pergelangan Kaki Unilateral. 
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CHAPTER 1: INTRODUCTION 

1.1 Research Background 

1.1.1 Introduction 

Ankle sprain is among one of the most common injuries sustained within 

physically active populations and is one of the most frequent sports-related injuries (Ahn 

et al., 2020). Sprain itself is defined as an injury to the ligament. The degree of severity 

can range from the involvement of one or more ligaments to injury of surrounding 

tendons, bones, and other tissues (Lampell, 2007). Approximately 14% of all sports-

related orthopedic emergency visits were diagnosed as lateral ankle sprain (LAS) 

(McGovern & Martin, 2016). As ankle sprain is associated with physical activity, athletes 

are highly prone to ankle sprains (Gan et al., 2020). 

Individuals with LAS generally complained of restricted movement functions 

during sports post-injury (Miklovic et al., 2017), decreased strength (Kobayashi et al., 

2017), and long-lasting subjective feelings of the ankle ‘giving way’ (Simpson et al., 

2020). The most common mechanism of ankle sprain involves sudden ankle inversion 

and plantarflexion, leading to injuries and tears of the stabilizing ligaments, with the 

majority (up to 85%) of cases involving the anterior talofibular ligament (ATFL) 

(Kobayashi and Gamada, 2014). A high proportion (as much as 70%) of these injured 

individuals experienced repetitive LAS, and in worst case scenario, it may lead to 

longstanding ankle dysfunction; chronic ankle instability (CAI) (Terada et al., 2020). This 

reoccurrence has been associated with the damaged mechanoreceptors in the injured ankle 

ligament following sprains (Rosen et al., 2019; Kwon, 2018), with disorganized collagen 

formation in the healing ligament. Other than that, the weakness of the peroneal muscle 

after immobilization of the muscle or due to overstretching of the peroneal nerves at the 

time of inversion trauma might contribute to recurrent injuries (Louwerens et al., 1995). 
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Sports performance post-injury may differ for each individual. Some reported 

being able to return to pre-injury status without residual symptoms (i.e. coper) while 

others sustained recurrent injuries, and developed CAI (Pozzi et al., 2015; Kwon, 2018; 

Jaber et al., 2018). These variations in data proposed that not all injured individuals 

develop long-term sequelae. In this sense, coping strategies may be adopted to 

compensate for the deterioration of postural control after injury among these individuals. 

Generally, good postural control relies on the integrity of the somatosensory and 

neuromotor systems, which include visual, vestibular, and proprioceptive signals. Injury 

to any one of these neural signal pathways will impair postural control, such as that found 

in individuals with ankle sprains (Kazemi et al., 2017; Gan et al., 2020).  

A recent study reported visual adaptation among individuals with chronic ankle 

instability (CAI) and anterior cruciate ligaments (ACL) impairment (Kim, 2020). 

However, it remains unclear whether individuals with LAS, who had seemingly restored 

their ankle function, used a similar adaptation in the balance after ankle sprains. Only a 

small number of studies had directly compared both eyes-open (EO) and eyes-closed (EC) 

conditions (Deun et al., 2007; Deun et al., 2011; Feger et al., 2014; Kwon, 2018) and the 

finding of these studies is inconsistent. 

Therefore, the purpose of this study is to investigate whether visual input has 

significant contribution in restoring postural control in individuals with unilateral ankle 

sprains. This knowledge could be useful to design effective rehabilitation programs. The 

research objectives were: 

1.1.2 Research objectives 

i. To investigate the time in balance (TIB) between unilateral ankle sprains 

individuals (AI) and healthy (HI) during eyes-open (EO) and eyes-closed (EC).  
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ii. To compare the side-to-side comparison Peroneus Longus (PL) activity 

between groups (AI vs HI) and conditions (EO vs EC).  

iii. To correlate the Foot and Ankle Ability Measure (FAAM) questionnaire with 

TIB and side-to-side comparison PL activity.  

Concurrently, a few research questions were highlighted throughout the study period 

to ensure the direction of the study was always clear. The research questions and 

hypotheses of the study were:  

1.1.3 Research Questions 

The research questions of this study: 

i. Was there any difference in the balancing ability between people with and without 

ankle sprain? 

ii. Did the participant with ankle sprain adapt coping strategy after the sprain during 

balancing task?  

iii. Did the perceptions on postural control tally with the objective lab-based stability 

tests? 

We hypothesized the following in our study. 

1.1.4 Hypothesis 

i. The TIB during EC is significantly shorter compared to EO in AI individuals.  

ii. The AI group will display a significantly greater side-to-side comparison PL 

activity during EC compared to EO.  

iii. FAAM scores will have a positive relationship with TIB and side-to-side 

comparison PL activity. 
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CHAPTER 2: LITERATURE REVIEW 

Postural control and lower limb muscle activity is interrelated (Lyytinen et al., 

2010). Wolburg et al. (2016) highlighted that postural control strategies are characterized 

primarily by muscle activation pattern and body kinematics. Perturbation-based balance 

training is purposely to produce body sway and trigger a reactive motor response, which 

may improve postural control and muscle activity of the ankle (Thais et al., 2021).  

2.1  Postural control  

Postural control plays a crucial role in maintaining daily functions as well as in 

sports (Ku et al., 2014). Chaari et al. (2021) defined postural control as the process of 

maintaining the body’s gravity centre position vertically over the base of support. With 

the integration of sensory inputs (visual, vestibular, and somatosensory information), 

muscle activations, and cognitive function, proper postural control enables safe functional 

activities (Hung & Miller, 2016). 

Besides the elements aforementioned, several researchers determined 

proprioception, particularly ankle proprioception contributes a part in the postural control 

(Ku et al., 2014; Han et al., 2015). Generally, proprioception is one’s ability to integrate 

the sensory signals from various mechanoreceptors to thereby determine body position 

and movements in space (Han et al., 2015). The proprioception is demanded in a quiet 

standing task, complemented with the integration of visuals and vestibular (Ku et al., 

2014).  

Feletti et al. (2019) reported athletes often rely on their vestibular system and 

sensory integration to excel in a game. Furthermore, concept of greater postural control 

may lead to a better performance has been acknowledged (Feletti et al., 2019). Andreeva 
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et al. (2021) added that an effective postural control reduces the risk of sport injuries, 

which is a critical issue to be addressed among the sports athletes. 

2.1.1  Double leg vs single leg tasks 

Various protocols were used in assessing postural control between healthy and 

individuals with AI, which include gait (Low et al., 2023) the double leg (DL) (Mora et 

al., 2003; Deun et al., 2007; Deun et al., 2011) and single leg (SL) (Feger et al., 2014; 

Pozzi et al., 2015; Kwon, 2018) tasks. SL tasks were commonly used in determining the 

physical function status compared to DL, nonetheless, both tasks were essential (Song et 

al., 2018). Additionally, SL stance is common in reliability study (Choi et al., 2014; 

Ponce-Gonzalez et al., 2014; Arifin et al., 2014; Laessoe et al., 2019). 

Several DL tasks documented in literature were DL stance using force plates 

(Mora et al., 2003; Groters et al., 2013), transition of DL to SL stance (Deun et al., 2007; 

Deun et al., 2011), multiple hop test (Groters et al., 2013), and DL stop-jump (Ma et al., 

2022). Whereas common SL tasks were SL stance on floor (Kwon, 2018; Mineta et al., 

2017), Star Excursion Balance Test (SEBT) (Pozzi et al., 2015; Jaber et al., 2018), SL 

jump landing (Simpson et al., 2020), and SL hops (Mineta et al., 2017). 

One of the common devices used to examine both static and dynamic postural 

control is the Biodex Balance System (Hung & Miller, 2018). Most studies evaluated 

center of pressure (CoP) using force plate technology (Schelldorfer et al., 2015) whereas 

some studies measured postural control using computerized dynamic posturography 

(CDP) (Feletti et al., 2019) (Kolarova et al., 2021). A few examples of stability devices 

were presented in Figure 2.1. In terms of data collection, Biodex Balance System 

computed the anterior posterior stability index (APSI), medial-lateral stability index 

(MLSI), and overall stability index (OSI). Several researchers used Biodex Balance 
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System in balance training and intervention programs in assessing the improvement of 

balance post-training (Clark & Burden, 2005; Akhbari et al. 2007).  

Apart from that, the Lafayette stability platform is one of the stability devices that 

has been utilized widely for balance training, particularly in the double leg (DL) stance 

investigation. Zech et al. (2018) investigated the effect of barefooted or in shod whereas 

Schedler et al. (2020) studied the influence of dynamic training between genders. 

Additionally, Vagaja and Bizovska (2019) performed balancing assessment on the 

saccadic eye movements on postural stability on unstable platform. All these research 

protocols implemented DL stance exclusively.  

Balance performance on the Lafayette stability platform is usually measured as 

time in balance (TIB), which defined as the duration during which the platform is 

stabilized before it eventually deviates beyond a pre-determined degree. The majority of 

the researchers used root-mean-square error (RMSE) with the cutoff of ±3° (3° above or 

below the horizontal plane) to indicate the participants as ‘in balance’ (Kiss et al., 2018, 

Brueckner et al., 2019; Schedler et al., 2020). A decreased RMSE was observed from 

measurements of two acquisition days and during the testing day, indicating there was an 

improvement in the dynamic balance in primary school-aged children (Schedler et al., 

2020). 

Univ
ers

iti 
Mala

ya



7 

Figure 2.1: Example of instruments used in assessing postural control 

 

2.1.2  Static vs dynamic tasks 

Human’s static and dynamic postural control are used to understand the 

equilibrium conditions of human body (Rajasekaran et al., 2015). Thais et al. (2021) 

stated that static and dynamic elements are main components of postural control. 

Kasahara and Saito (2021) added both static and dynamic elements have to function 

Biodex Balance System (Adapted from 
Balance System™ SD - Balance -
Physical Medicine | Biodex, 2022)

Force plate (Adapted from Force 
Plates: Bertec, 2022)

Computerized Dynamic Posturography 
(Adapted from ENT Care, Rockville, 
MD - Siegel, Bosworth and Sorensen 

Division, 2022 (ent-md.com))

Lafayette stability platform (Adapted 
from NexGen Medical Systems, 2022 

(nexgenergo.com))
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instantaneously to control the equilibrium, whether in real time or in response to the 

changes to the body and environment (homeostasis). 

Various tasks were performed in both conditions, whether static, dynamic or the 

combination of both. Some researchers argued static postural control serves as an 

indicator of dynamic postural control (Ku et al., 2014) whereas some of them contended 

that dynamic balance is more relevant aspects to be assessed (Groters et al., 2013). Liu et 

al. (2013) demonstrated that dynamic measures have been used extensively to classify 

ankle instability status. Bansbach et al. (2017) added dynamic measures are preferred for 

military and athletic groups as they are more challenging than static tasks and may better 

differentiate between risk factors in healthy, physically active individuals compared to 

people with deformities. 

If a single balance measure is being assessed, dynamic tests might be 

advantageous, as they are more sport specific and seem to be more sensitive in detecting 

persisting sensorimotor deficits in an athletic population (Steib et al., 2013). SL landing 

task has been identified as the most representative mechanism for an ankle sprain because 

it replicates sports activity and the requirement of strength, proprioception, and 

neuromuscular control in this task (Brown et al., 2010) leading the researchers to 

frequently applied this protocol to measure dynamic postural stability (Liu et al., 2013). 

2.2  Ankle sprains  

Ankle joint (Figure 2.2) is the most commonly injured part of the body during 

sports (Nozu et al., 2021). Approximately 23 000 ankle sprains occur daily in the United 

States (McKeon & Hoch, 2019), particularly those involving the lateral ligament 

complex, are one of the most prevalent injuries occurring during sports and physical 

activities (Abassi et al., 2019). Nearly 3000 emergency department visits per year in the 
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United States involve dancers with ankle sprains (Miller et al., 2018). Some estimate with 

an approximate cost of $1000 per injury (Rosen et al., 2017). Chen et al. (2019) stated 

that ankle sprains are common injuries sustained in both general and athletic populations, 

but it is more prevalent in military personnel (Kazemi et al., 2017).  

 

 

 

 

 

 

 

Figure 2.2: The ankle joint (Adapted from Lateral ankle ligament sprain - 

Ultrasound Guided Injections (ultrasound-guided-injections.co.uk), 2022) 

 

Foot inversion is the common case where ankle ligaments are susceptible to 

injury, which involves the anterior talofibular ligaments (ATFL) primarily or the only 

ligament to sustain injury, with 66% of cases reported (Golanó et al., 2010), followed 

with calcaneofibular ligament (CFL), and lastly posterior talofibular ligament (PTFL) 

(Golanó et al., 2010). ATFL contributes mainly in limiting anterior displacement of the 

talus and plantar flexion of the ankle (Golanó et al., 2010) whereas CFL restricts 

excessive supination of both the talocrural and subtalar joints. The PTFL provides 

restraint to both inversion and internal rotation of the loaded talocrural joint, which 
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requires extra force or strength in order to cause it to be sprained. This is probably the 

reason it is the lateral ankle ligaments that is least commonly sprained (Hertel, 2002). 

2.2.1  Grades, terminologies, and symptoms associated in individuals with ankle  

 sprains 

 

The severity classification of ankle sprains was published by Chen at al. (2019). 

Generally, three grades were established; Grade 1: mild injury defined as stretching of 

the lateral ligament, without tear, Grade 2: partial tearing of one or more ligaments, Grade 

3: the most severe sprain injuries with complete disruption of all ligaments of the lateral 

ligamentous complex.   

Several terminologies of ankle sprains were documented in literature, a few of 

them that were commonly reported were chronic ankle instability (CAI), which is defined 

as a condition in which the recurrent sprains occurred with lasting residual symptoms at 

the ankle joint, such as pain or weakness (Kobayashi et al., 2017) (De Jong et al., 2020). 

Individuals with CAI also associated with decreased self-reported function, feelings of 

instability or episodes of “giving way”, decreased physical activity, and higher risk of 

earlier onset of ankle osteoarthritis (De Jong et al., 2020). Another terminology of sprains 

is lateral ankle sprains (LAS), which is often viewed to be innocuous injuries. 

Inappropriate management of it after the initial injury may lead to recurrent sprains (De 

Jong et al., 2020).  

Several researchers used the term functional ankle instability (FAI) in defining 

the ankle sprains of their participants’ cohort (Shih et al., 2018; Huang et al., 2021). 

Rahnama et al. (2010) described FAI as repeated ankle sprains and “giving way” feelings 

that occur in some individuals after the first sprains. Lin et al. (2015), on the other hand, 
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defined FAI as the self-reported subjective perception of symptoms and instability. It is 

reported as a common lower extremity dysfunction following LAS (Shih et al., 2018).  

Another term for ankle sprains is mechanical ankle instability (MAI) (Kobayashi 

& Gamada, 2014), although this term is rarely reported in the literature. MAI is described 

as insufficiencies in ankle tissues and structures, such as pathologic laxity, impaired 

arthrokinematics, synovial, and degenerative changes (Lin et al., 2015). MAI is more 

related to a deficit in ligament laxity (Kobayashi & Gamada, 2014). Cho et al. (2019) 

reported that many authors agreed CAI is a multifaceted condition caused by a 

combination of MAI and FAI. The findings should be interpreted with caution as the 

grades and terminologies of ankle sprain being used are vary. 

2.2.2  Mechanism of ankle sprains 

In ankle sprain, injury to the stabilizing ligaments around the ankle joint often lead 

to mechanical instability while damage to proprioceptive fibres (that are responsible for 

transmitting and regulating neuromuscular signals) then lead to functional instability 

(Bonnel et al., 2010). The mechanical and functional instability resultant from the injury 

is predisposing factors for recurrence or chronic instability, impairing physical function 

and predisposing the joint to osteoarthritis. Rate of recurrence varies but may occur in as 

high as one third of the people after the first injury (van Rijn et al., 2008).  

Despite the presence of ligament laxity, it is possible for some patients to remain 

asymptomatic and recover sufficiently well to achieve functional level equivalent to non-

injured individuals (Croy et al., 2012). The findings from Croy et al. are consistent with 

the lab-based assessment by Wikstrom et al. (2010) that mechanical stability did not differ 

between injured individuals who eventually cope (copers) and those who continue to 

experience instability (non-copers). The difference in functional outcome is instead 

Univ
ers

iti 
Mala

ya



12 

attributed to better dynamic postural control in the copers. As such, it may be inferred 

that restoration of functional stability, in lieu of the mechanical stability, plays more 

important role in rehabilitation for ankle sprains.   

Ankle sprains often occur as the result of trauma (e.g., landing on uneven surface 

from a jump), compromising the physical structural and functional integrity of the tissues 

surrounding the joint (Hung & Miller, 2016). As mentioned in the above section, LAS is 

the common injury. Recent injury surveillance data from the National Collegiate Athletic 

Association (NCAA) demonstrated LAS to be the most common type of ankle sprain 

(Chen et al., 2019). Researchers agreed that LAS are usually caused by excessive plantar 

flexion and inversion (Herb & Hertel, 2014; Kobayashi et al., 2017; Chen et al., 2019). 

Other than that, Kobayashi et al. (2017) added that this injury might integrate with 

excessive ankle supination. In another study, LAS involved the talocrural plantarflexion 

and subtalar inversion (Chen et al., 2019). Nevertheless, the mechanism of LAS is still 

unclear. 

2.3  Electromyography (EMG) 

2.3.1  Background of EMG 

Biosignal means a collective electrical signal acquired from any organ that 

represents a physical variable of interest. This signal is normally a function of time and 

is describable from the aspect of amplitude, frequency and phase. The electromyography 

(EMG) signal is a biomedical signal that measures electrical currents generated in 

muscles during its contraction, which representing neuromuscular activities (Reaz et al., 

2006). It is the study of muscle electrical signals. EMG is sometimes referred to as 

myoelectric activity. Surface EMG is a method of recording the information present in 

Univ
ers

iti 
Mala

ya



13 

these muscle action potentials (Reaz et al., 2006). The development of EMG based on 

Reaz et al. (2006) were illustrated in Figure 2.3. 

 

 

 

• 1666: Francesco Redi demonstrated highly specialized muscle of the electric ray 

fish generates electricity 

• 1773: Walsh proved eel fish’s muscle tissue could generate a spark of electricity 

• 1792: Galvani proposed that electricity could initiate muscle contraction 

• 1849: Dubios-Raymond discovered muscle activity during voluntary contraction 

could be recorded 

• 1890: Marey introduced the term electromyography 

• 1922: Gasser and Erlanger used an oscilloscope to show electrical signals from 

muscles 

• 1930-1950: The capability of detecting EMG signals steadily improved 

• 1966: Hardyck and his researchers were the first practitioners who used the EMG 

• 1980: Cram and Steger introduced a clinical method for scanning a variety of 

muscles using an EMG sensing device 

Figure 2.3: Timeline of the development of EMG (summarized from Reaz et al., 

2006). 

 

Surface electromyography (surface EMG: sEMG) is a common research tool used 

to observe muscle physiology during human movements. Recently, technology of sEMG 

is used in understanding the neuromuscular system behaviours (Vigotsky et al., 2018). In 

1666 
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1792 

1849 

1890 

1922 
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addition, sEMG is able to interpret the intensity of muscle recruitment and describe 

muscle characteristics (Thais et al., 2021).  The study of biomechanics on ankle sprain 

can be explored via the process of recording electric activities of muscles, which is also 

known as EMG. The signal generated from the contraction of muscle fibres produce a 

small electric current, called electromyogram (Amrutha and Arul, 2017). In addition, 

electromyogram is the summation of the motor unit action potentials (MUAP) during 

contraction, which is measured at a given electrode location. EMG can be further 

categorized into two; non-invasive and invasive. Surface EMG (sEMG) is a non-invasive 

technique to measure the muscle activity by placing the surface electrodes on the skin 

(Drost et al., 2006). Intramuscular EMG is an invasive technique which requires the 

needle electrodes being directly inserted into muscle tissue to evaluate muscle activity 

when at rest and when contracted (Morrison, 2018). 

Previous study demonstrated that the magnitude of muscle activity depends on the 

stability of the device (Ridder et al., 2014). Approximately twice of the muscle activity 

would be required to control standing posture on an unstable platform compared to the 

stable platform (Hirono et al., 2020). Additionally, maximally stimulating muscle activity 

level is expected to accelerate the re-habilitation process to pre-injury functional level 

(Wolburg et al., 2016). 

2.3.2  Peroneus longus (PL) muscle 

Peroneus longus (PL) is one of the ankle’s stabilizers muscles (Slevin et al., 2020). 

It plays an essential role in preventing ankle inversion (Delahunt et al., 2007). Bavdek et 

al. (2018) reported that PL is active during dynamic movement, particularly during 

walking. The PL contributes to ankle stability, particularly to frontal plane ankle stability 

during SL tasks, by preventing the ankle from inverting excessively (Mineta et al., 2017). 

It has been reported that individuals with AI demonstrated PL impairment after sprain 
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(Mineta et al., 2017; Fereydounnia et al., 2018). The PL has been the most assessed 

muscle in individuals with ankle instability. 

 

 

 

 

 

 

 

 

Figure 2.4: Peroneus Longus (PL) muscle  

(Adapted from McGrawHill textbook, Muscles Part 9 flashcards - Easy Notecards, 
2022) 

 

Huang et al. (2021) reported that PL activates first followed by tibialis anterior 

(TA) and lateral gastrocnemius in healthy individuals during a landing task. Moreover, it 

was reported that individuals with FAI demonstrated a longer time to stabilization 

compared to healthy ankle when performing a jump with SL standing (Huang et al., 

2021). According to Slevin et al. (2020), in a normal reaction to a sudden ankle inversion, 

the PL reacts first followed by the TA. However, it was demonstrated that in those with 

LAS, the sequence is lost, with the TA contracting almost instantaneously with the PL 

(Slevin et al., 2020). It was reported that basketball players with FAI displayed reduced 

(also known as Peroneus longus) 
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postural control and longer reaction time of the PL compared to basketball players without 

FAI and to healthy controls (Lubetzky et al., 2016). Since function of PL is very important 

and already being reported to be impaired after sprain, there is a need to target PL during 

rehabilitation. 

2.4  Relationship between postural control and ankle sprains  

Ankle sprain may modify the physiology and structure of the ankle, which might 

cause ankle instability. As a result, individual afflicted with ankle sprain might display 

altered postural control. This has been demonstrated in individuals with MAI, which were 

associated with the degenerative changes in joint laxity (Lin et al., 2015). Therefore, it is 

crucial to understand the relationship between postural control and ankle instability. 

2.5  Balance performance with Electromyography (EMG) 

Literature showed that the fundamental of balance in biomechanics tasks had been 

intensively studied when the stability was being assessed alone (Wikstrom et al., 2010; 

Doherty et al., 2016). Recently, EMG was used exclusively in combination with the 

balance performance particularly in interpreting the muscle activation during the tasks 

performed (Fereydounnia et al., 2018; Feger et al., 2018). For instance, Bavdek et al. 

(2018) determined muscle activity during walking gait. The main objective was to 

determine the greatest EMG record for Peroneus Longus (PL) on different walking 

platform. The greatest evertor strength was the best strategy in preventing sudden 

imbalance that causes sprained ankle. This is in line with the fact that PL plays an 

important role in stability during walking (Che et al., 2015). Other than that, Chen et al. 

(2015) proposed that PL strength, muscle activation and proprioception should be 

improved in enabling PL to evert when sudden inversion occurs. Incorporating EMG in 

creating or modifying rehabilitation strategy might be beneficial for primary healthcare 
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and clinicians. In this regard, a study on the balance performance of healthy individuals 

using wavelet-based time-frequency analysis extracted from the EMG signal was reported 

using Lafayette stability platform (Figure 3.2) (Brueckner et al., 2019). The reduction in 

integrated EMG (iEMG) and EMG intensity demonstrated improvement in balance 

performance on the stability platform.   

2.6  Relationship between ankle sprains and EMG 

Literature demonstrated poor postural control in people with ankle instability 

compared to the healthy population with no history of ankle injury. Laessoe et al. (2019) 

determined lower performance during unilateral stance stabilization on wobble board in 

injured individuals. Findings revealed that higher variations of tilt angle recorded from 

the wobble board indicates less stabilization ability among the injured individuals. 

Nevertheless, the pain, residual symptoms and aftereffect following ankle sprain might 

be different for different individual. Concerning the aforementioned problems, balance 

training was provided to reduce and prevent the ankle sprain risks. Jung et al. (2017) 

agreed that sensorimotor function and stability of ankle joints can be improved through 

rehabilitation. Better understanding of the relationship between muscle activity and 

balance tasks would aid the primary healthcare and clinicians to justify a specific 

rehabilitation strategy. The latest review on rehabilitation recovery demonstrated one year 

recovery post injury (Bleakley et al., 2019). Early management by joining rehabilitation 

sessions is able to improve recovery by a week faster. It can be said that functional 

treatment is able to reduce the reinjury rate and promote earlier return to normal ankle 

function.  

From the perspective of EMG, lower muscle activity was identified from majority 

of the past studies. Ridder et al. (2015) assessed single leg balance task with eyes open 
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on different surfaces and concluded that people with ankle injury demonstrated low 

amplitude during balancing comparing to healthy participants without injury. 

2.7 Visual input in ankle sprain study 

The central nervous system (CNS) integrates visual, vestibular, and 

proprioceptive information to control balance (Han et al., 2015). Previously, balance 

assessment using eyes-open (EO) was widely performed among individuals with ankle 

sprains in most studies. These included SL test (Ridder et al., 2015), Star Excursion 

Balance Test (SEBT) (Ahn et al., 2011; Feger et al., 2014; Pozzi et al., 2015; Jaber et al., 

2018), forward lunges (Feger et al., 2014), and lateral hops (Delahunt et al., 2007; Feger 

et al., 2014). The deprivation of visual information increases the difficulty of the task 

(Muelas et al., 2014). Higher visual reliance, demonstrated by greater than normal 

disruption of balance when visual input was removed, may be an adaptive postural control 

mechanism to compensate for sensorimotor deficits of injured ankle (Kim, 2020).  

Sensorimotor deficit has been associated with CAI, which was referred to damage 

to the afferent receptors (carry information from sensory receptors of the skin to the CNS) 

within injured ligaments and joint capsule (Hertel, 2008). In general, sensorimotor is a 

combination of senses and motor movements, which includes the works of afferent 

neurons, efferent neurons (carry motor information away from CNS to the muscle and 

glands of body), and interneurons (connect the afferent and efferent neurons) 

(Akinrodoye and Lui, 2022). Damage to receptors due to ankle sprain may justify the 

delayed reaction of PL during SL test (Ahn et al., 2011; Deun et al., 2011) and the 

inconsistencies of PL amplitudes (Labanca et al., 2021). On top of that, due to the limited 

studies that compare both visual presence (EO) and absence of the visual aspect (EC), it 

is difficult to deduce whether the individuals with ankle sprains could adapt the visual 

strategy to compromise with the ankle deficit due to post injury.  
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CHAPTER 3: METHODOLOGY 

Postural control can be assessed by using the double leg (DL) and single leg (SL) 

stances. Majority of the studies used both tasks in the postural control assessment. 

However, based on our knowledge, no SL task has been executed and no known 

reliability study pertaining to the SL stance has been investigated using the Lafayette 

stability platform (Zaghlul et al., 2023). Thus, a pilot study on the reliability of the SL 

stance among healthy individuals was conducted prior to the assessment of postural 

control of the participants with and without history of unilateral ankle sprains. As such, 

the methodology section in this study is divided into two parts; 1) the evaluation of test-

retest reliability of the SL stance on the Lafayette stability platform and 2) the postural 

control assessment in individuals with and without unilateral ankle sprains. The flow of 

the study is illustrated in Figure 3.1.  
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Figure 3.1. Flowchart of the study 

 

Recruitment of participants

Subject screening as patient and control

Scheduling appointment for assessments and 
tests

Briefing, giving consent form and 
questionnaires to candidates 

Data collection  

1. Collecting anthropometric data

2. Attaching EMG sensors on Peroneus Longus

3. Performing tasks and recording of muscle 
activities using EMG Work Acquisition software

4. Extracting data using EMG Analysis software

Statistical analysis (SPSS software)

Data interpretation

Summary of research findings

Thesis write up
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3.1 Instrument: Lafayette stability platform 

A Lafayette stability platform Model 16030 (Lafayette Instrument, Indiana, USA; 

see Figure 3.2) was used to assess the participants’ postural control. The platform 

provides tilt angle which represents the participant’s error score, reflecting deviation 

(medio-lateral) from the target horizontal platform position (0°). The stability platform 

consisted of a 65 x 107 cm wooden platform, allowing a maximum deviation of 15° from 

the horizontal to either side of the platform. A safety rail was mounted on the stability 

platform to prevent participants from falling if losing stability (Muelas et al., 2014). Using 

Psymlab software, the time in balance (TIB) (in second) was measured, the duration over 

which the participants maintained the platform within the permitted range of deviation 

(cutoff).  
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Figure 3.2: A participant performed double leg stance on the Lafayette stability 
platform 

 

3.2  Evaluation of the test-retest reliability of the SL stance on the Lafayette  

 stability platform 

 

3.2.1 Sample size 

An a priori sample size calculation was performed using G*Power statistical 

software, whereby a minimum of 19 participants were required to achieve an effect size 

of 0.80 and power of 90%. Thereafter, thirty-six (36) healthy and physically active 

university students (17 males, 19 females; age 23.2 ± 3.2 years; height 1.7 ± 0.1 m; weight 

59.8 ± 11 kg; BMI 21.1 ± 3.1 kg/m2) were recruited. 

A line marked for the foot 
positioning during single 
leg stance 

EMG sensor on 
Peroneus Longus  
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3.2.2 Experimental Procedure 

3.2.2.1 Recruitment of subjects 

The participants were recruited via flyers shared in the students’ community email 

and using words of mouth. Inclusion criteria were both male and female aged between 18 

and 25 years old, physically active with no musculoskeletal pain that may affect the 

testing. Physically active was defined as having regular exercises of at least 30 min per 

day or at least 3 days a week (Zech et al., 2018). To avoid bias, participants with prior 

experience with the stability platform were excluded from the study. In addition, 

participants with any lower extremity injury (acute or overuse) that has prevented them 

from participating in sports activities for at least one day in the previous 6 months were 

also exempted (Zech et al., 2018).  This study was approved by the Medical Research 

Ethics Committee (MREC) of University of Malaya Medical Centre (201984-7710). All 

subjects signed a consent form prior to testing. 

3.2.2.2 Testing procedures 

Participants were requested to position their dominant leg on the line marker in 

the middle of the platform (Ridder et al., 2014). Participants were required to do simple 

stretches and plyometrics of the lower limb (Patel, 2014) to prepare the muscles and avoid 

muscle cramps due to sudden movements, which include 10 seconds (s) of standing 

quadriceps and hamstring stretch, ankle plantar and dorsiflexion active stretches, ankle 

eversion, and inversion movements and ending with 20 double leg hops. Participants were 

tested only with their dominant leg with no assessment on the non-dominant leg. The 

dominant leg was defined as the leg used to kick a ball (Dingenen et. al, 2016). The 

participants stood barefooted on their dominant leg while the contralateral leg was lifted 

up approximately 10 cm above the platform. The arms were allowed to hang at the side 
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(Arifin et al., 2014). The participants were required to balance under two testing 

conditions, eyes-open (EO) and eyes-closed (EC), at random order. Participants were 

allowed to make multiple attempts until they achieved three successful trials. The 

successful trials were considered if they are able to keep their balance for minimum 20s 

(Becker & Hung, 2020). In a balance assessment, protocol comprising of three trials for 

at least 20s is considered sufficient as the participants were not tested for an improvement 

(by familiarizing the task). This was to negate the potential of learning effect and avoid 

fatigue (Arifin et al., 2014). The trials were repeated if the non-dominant leg touched the 

platform or the participants fell off the platform before the time limit of 20s was reached. 

Similar protocol was applied a week later. Participants were advised to refrain from 

intense physical activity and to report any injuries during the week of experimental trials. 

Using the Psymlab software (Lafayette Instrument, Indiana, USA), time in 

balance (TIB) in the two testing sessions were recorded. TIB (in seconds) was defined as 

the duration in which the platform was maintained within the range of 0° from horizontal 

plane. Longer TIB indicated better achievement of the postural control. 

3.2.3 Statistical analysis 

Comparison of the data from thirty-six participants between two different time 

points (Week 1, W1 and Week 2, W2) and between trials for each testing conditions (EO 

and EC) were computed using MedCalc statistical software version 20.009 (Medcalc 

Software Ltd, Ostend, Belgium). Along with 95% limits of agreement (LoA), Bland-

Altman analysis was performed to assess the agreement between data sets obtained at W1 

and W2. A scatterplot was constructed, whereby the differences between two 

measurements (W1-W2) was plotted against the mean of two measurements 

((W1+W2)/2). The 95% LoA is defined as ±1.96 standard deviation (SD) (Giavarina, 

2014). 95% of data that lie within the LoA indicated there was acceptable agreement 
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between both measurements (Ionan et al., 2014). No significant difference between the 

measurements was reflected if the line of equality were within the interval (Barbado et 

al., 2020). Subsequently, intraclass correlation coefficient (ICC) for a two-way model, 

average measures and absolute agreement were computed to quantify the reliability of 

the measurement. To interpret the ICC values, ICC classification of Barbado et al. (2020) 

(less than 0.5, low; between 0.5 and 0.69, moderate; between 0.70 and 0.89, high; 

between 0.9 and 1.00, excellent) was applied. Level of significance was set at 0.05. 

Absolute reliability was calculated using the following formula, in which the precision of 

the instrument, the standard error of measurement (SEM) and SD is the mean SD of W1 

and W2 (Arifin et al., 2014). 

𝑺𝑬𝑴 = 𝐒𝐃√𝟏 − 𝑰𝑪𝑪 (eq. 3.1) 

 

Additionally, the reproducibility of the SL stance was determined using coefficient of 

variation (CV); between (interCV) and within (intraCV) trials (Fauth et al., 2010). 

3.3  The postural control assessment in individuals with and without unilateral 

ankle sprains 

3.3.1 Sample size 

A priori sample size was calculated using G*Power version 3.1.9.7. With 0.80 

effect size and 81% power, a total of 48 participants were recruited to fulfill the minimum 

requirement of 21 participants per group. Table 3.1 presents the participants’ 

demographic data. 
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Table 3.1: Participants demographic data 

 

 

 

 

 

 

 

 

 

 

Results were presented as mean ± SD 

AI: ankle sprains group; HI: healthy individual group 

 

3.3.2 Experimental Protocol 

3.3.2.1 Recruitment of participants 

The recruitment of participants was performed through the advertisements and 

flyers shared among students’ community via student mails and words of mouth. The 

participants were grouped into two; individuals with unilateral ankle sprains (AI) and 

healthy individuals (HI). General inclusion criteria for both groups were physically 

active, with regularly exercises of at least three times in a week (Zech et al., 2018). The 

participants in the AI group consist of individuals who had at least one unilateral ankle 

sprain previously and had returned to normal daily activities within 3 months without the 

use of assistive devices. Additional criteria for the participants in AI group were no 

concurrent joint or neuromuscular disorders, pain, injuries or deformities in the lower 

limb that could pose as confounding factors to the biomechanical analysis outcomes, and 

 AI HI 

No of participants, n 24 24 

Gender, n         Male 15 12 

                         Female 9 12 

Age, year 23.5 ± 2.3 23.5 ± 1.7 

Height, m 1.68 ± 0.07 1.64 ± 0.09 

Weight, kg 60.9 ± 7.3 58.1 ± 10.2 

BMI, kg/ m2 21.7 ± 1.9 21.5 ± 4.2 

Time of last injury, year 2 ± 2.4 - 
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able to perform activities without significant difficulties. Participants with surgery or 

fracture in the lower limb were excluded to avoid any excessive variation in results. 

Meanwhile, the individuals in the HI group had to be physically active and no history of 

ankle sprain.  

3.3.2.2 Testing protocol 

Participants were briefed about the protocol and the flow of the experiment, and 

a written consent was obtained prior to testing. A self-reported questionnaire reporting 

the symptoms and functional status of the ankle (see 3.3.4) was collected and physical 

examination (anthropometric data such as height and weight) was performed on each 

participant.  

The participants stood barefooted on the Lafayette stability platform, using double 

leg (DL) and single leg (SL) stances in eyes-open (EO) and eyes-closed (EC) conditions, 

with their hands on the side (Arifin et al., 2014; Laessoe et al., 2019). The width of the 

leg during DL stance was based on their shoulder width. This was to avoid the effect of 

size of the base. During SL stance, the participants positioned their leg in the middle of 

the line marked on the platform (see Figure 3.2). Both legs were tested for the SL stance 

and the order of testing of DL and SL was randomly selected among participants.  

During EO condition, the participants looked ahead at a target placed on the wall 

about 2.5 m away whereas during EC condition, the participants closed both of their eyes. 

The participants were not allowed to speak, and there was no distracting noise or 

conversation throughout the testing session. Additionally, the participants kept their 

contralateral hip and knee slightly flexed with the foot approximately at least 10 cm above 

the platform in the SL stance (Silva et al., 2016).  
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The participants were allowed to have only one practice trial on the platform, to 

familiarize themselves with the protocol but not for the learning effect. Three successful 

trials of the 20s each were recorded for both the DL and SL stances in each condition. 

The trials were repeated if the participants fell off of the platform, touch the rail or the 

contralateral leg (during SL) touch the platform. The duration of TIB, which the 

participants maintained on the platform within ±1° were considered as ‘in balance’. TIB 

data were collected during both DL and SL stances. To avoid limb dominance effect in 

the SL stance, the left and right TIB values were averaged for each condition.  

3.3.3 Electromyography (EMG) 

A 16-channel of Delsys Trigno wireless EMG system (Delsys, MA, USA) was 

used to record muscle activity in both left and right Peroneus Longus (PL) of the 

participants only during DL stance. The skin was cleaned with isopropyl alcohol to 

diminish the resistance (Jung et al., 2017). The PL electrode was placed on the line 

between the head of the fibula and the lateral malleolus, approximately 4 cm distal to the 

fibular head (Jaber et al., 2018). The PL electrodes were further secured with adhesive 

tapes to prevent slippage during testing and to minimize movement artifacts (Jaber et al., 

2018). Prior to testing, participants were required to record maximum voluntary 

contraction (MVC) of the muscle. According to Surface Electromyography for Non-

Invasive Assessment of Muscles (SENIAM) guidelines, eversion was performed for three 

trials of five seconds to record the peak amplitude (Merletti et al., 2001).  

Data processing: EMG signals were recorded at a sampling rate of 2000 Hz. All 

EMG data were digitized, stored and analyzed using EMG Works Acquisition and 

Analysis software. EMG signals were filtered using a second order Butterworth filter, 

with a low pass filter at 350 Hz. The mean PL activity was normalized to the peak MVC 

and expressed as the percentage of MVC (%MVC) (Jung et al., 2017).   
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Again, to avoid the effect of limb dominance, the activity of PL was expressed as 

the side-to-side comparison by calculating the absolute values of the subtracted left and 

right PL in the DL stance.  

3.3.4 Foot and Ankle Ability Measure (FAAM) Questionnaire 

Foot and Ankle Ability Measure (FAAM) questionnaire was used to evaluate the 

perception of individual’s ability balance (Martin et al., 2005). Two sections were 

assessed; activity of daily living (ADL) with 21 questions and sports subscale with 8 

questions. The highest score of both sections (ADL: 84 marks; sports: 32 marks), which 

reflects 4 marks for each question carry the score of the stability perceptions. The total 

score of the items was divided by the highest potential score and then multiplied with 100 

to get the percentage. A higher score represents a higher level of physical function. The 

FAAM scores were assessed simultaneously with the TIB and side-to-side comparison 

PL activity to determine the relationship between those two. The complete FAAM 

questionnaire adopted for this study can be seen in Appendix C. 

3.3.5 Statistical analysis 

The statistical analyses were conducted with Statistical Package for the Social 

Sciences (SPSS) version 23 (SPSS Inc., Chicago, IL., USA). The mean of TIB data (s), 

side-to-side comparison PL activity (%MVC), and FAAM scores were established in the 

SPSS. The normal distribution of the data of TIB, %MVC, and FAAM was checked using 

Shapiro-Wilk test. Due to the non-normally distributed data, the Kruskal-Wallis H test 

was performed to compare the TIB and MVC between groups (AI and HI) and conditions 

(EO and EC). Further, using Mann-Whitney U test, the self-reported FAAM scores were 

compared between groups. 
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Furthermore, the degree of association between self-reported FAAM scores and 

TIB measurement and MVC was determined using Spearman’s correlation coefficient 

(ρ). The analysis results were interpreted according to the degree of association as strong 

(0.5-1.0), moderate (0.3-0.5), and weak (0-0.3) (Kim et al., 2016). The significance level 

was set at p ≤ 0.05. 
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CHAPTER 4: RESULTS 

4.1 The evaluation of the test-retest reliability of the SL stance on a Lafayette 

stability platform 

Data of the test-retest reliability of the Lafayette stability platform using SL stance 

collected from healthy and physically active university students, was determined over 

two different sessions one week apart. The mean TIB calculated from three 20s-trials 

each during EO and EC were summarized in Table 4.1.  

Table 4.1: The evaluation of the test-retest reliability of the single leg stance on 

a Lafayette stability platform  

ICC: intraclass correlation coefficient; s: second; SEM: standard error of measurement; W1: Week 1; 

W2: Week 2 

The differences between trials and LoA for two testing conditions (i.e EO and 

EC) were illustrated in Figure 4.1 and 4.2. The mean difference (bias) between EOW1 and 

EOW2 was -0.30s (95% confidence interval (CI) -0.211 to 1.51). Upper and lower LoA 

for EO were 10.19s (95% CI 7.07 to 13.31) and -10.79s (95% CI -2.73 to -1.72). On the 

other hand, the ECW1 and ECW2 had a mean difference of -1.53s (95% CI -3.09 to 0.02). 

Upper and lower LoA for EC were 7.48s (95% CI 4.81 to 10.16) and -10.54s (95% CI -

13.22 to -7.86).  

 

 

Mean time in balance, s 

Task conditions W1 W2 SEM ICC 

Eyes-open  17.02 ± 1.04 17.32 ± 1.03 0.53 0.74 

Eyes-closed  11.55 ± 1.73 13.08 ± 1.82 0.87 0.76 
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Figure 4.1: Bland-Altman plot for the time in balance of the single leg stance task in eyes-
open condition. W1: Week 1, W2: Week 2. The differences between W1 and W2 were plotted 
against the mean of W1 and W2. The blue line indicated the mean difference (bias). The interval 
between upper and lower limits represented 95% Limit of Agreement. 

 

 

Figure 4.2: Bland-Altman plot for the time in balance of the single leg stance task in eyes-closed 
condition. W1: Week 1, W2: Week 2. The differences between W1 and W2 were plotted against the mean 
of W1 and W2. The blue line indicated the mean difference (bias). The interval between upper and lower 
limits represented 95% Limit of Agreement. 
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Based on the Bland-Altman plot, the scatterplot graph showed most of the points 

were evenly distributed within the interval in both EO and EC. There were few outliers 

detected beyond the interval, however, majority of the points were within LoA. 

Furthermore, the lines of equality for both EO and EC were within the LoA and close to 

the mean difference. This showed that no trend existed between the two measurements, 

which indicated the absence of systematic bias. The p-value reported from the Bland-

Altman analysis indicated no significant difference between the two data sets (W1 vs W2) 

in both conditions (EO, p = 0.736; EC, p = 0.054). 

The computed ICC between weeks demonstrated “high” ICC values during EO 

(ICC = 0.74, 95% CI = from 0.58 to 0.85) and EC (ICC = 0.76, 95% CI = from 0.61 to 

0.86). Moreover, the calculated ICC for three consecutive trials in each condition over 

the two sessions revealed “high” ICC values for all the trials (EOW1, ICC = 0.79; EOW2, 

ICC = 0.86; ECW1, ICC = 0.71; ECW2, ICC = 0.71). 

As indicated in Table 4.1, lower SEM during EO condition indicated more precise 

score compared during EC condition. Intersubject CVs were calculated to determine 

between-subject variability and ranged from 0% to 26.89% during EO and 1.21% to 

28.49% during EC. Intrasubject CVs were calculated to assess within-subjects variability 

between repeated tests, and values ranged from 0% to 26.61% during EOW1 and 0% to 

27.17% during EOW2, whereas 1.05% to 27.78% during ECW1 and 1.37% to 29.2% during 

ECW2.  

4.2  Postural control assessment in individuals with and without unilateral ankle 

sprains 

Data for forty-eight participants with and without unilateral ankle sprains using 

the DL and SL stance were computed via SPSS version 23.0. The time in balance (TIB) 
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and side-to-side comparison PL activity (MVC) were analyzed to determine the postural 

control and muscle activity generated on the Lafayette stability platform.  

4.2.1 Time in balance 

A significantly shorter TIB during EC as compared to EO was recorded for both 

AI (EC: 18.12 ± 3.69s; EO: 19.69 ± 0.80s, p < 0.05) and HI (EC: 18.08 ± 3.60s; EO: 

19.68 ± 1.28s, p < 0.05) individuals during DL stance. However, there is no difference in 

the TIB of the DL stance between groups. 

Similar finding was observed during the SL stance. Both AI and HI groups 

demonstrated a statistically shorter TIB during EC (AI: 17.39 ± 2.66s; HI: 17.01 ± 3.02s, 

p = 0.94) compared to EO (AI: 18.59 ± 3.59s; HI: 18.44 ± 2.59s, p = 0.22). However, no 

significant difference was observed between the two groups. The results of TIB were 

tabulated in Table 4.2. 

Table 4.2: Time in Balance during double leg and single leg stances on the 

Lafayette stability platform 

Results were presented as mean ± SD. 

AI: ankle sprains group; EC: eyes-closed; EO: eyes-open; HI: healthy individual group; s: second; SD: 
standard deviation 

 

 

 

 Double leg stance  Single leg stance 
Groups/Conditions EO EC  EO EC 

AI 19.69 ± 0.80 18.12 ± 3.69  18.59 ± 3.59 17.39 ± 2.66 

HI 19.68 ± 1.28 18.08 ± 3.60  18.44 ± 2.59 17.01 ± 3.02 
p-value 

(between groups) 0.61 0.42  0.22 0.94 Univ
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4.2.2 The side-to-side comparison PL activity 

 AI individuals had a lower side-to-side comparison PL activity compared to HI 

in both EO (AI: 25.17 ± 12.53%; HI: 29.82 ± 18.85%, p = 0.16) and EC (AI: 24.48 ± 

11.40%; HI: 30.47 ± 19.03%, p = 0.06) conditions. No significant difference between EO 

and EC was observed between AI (p = 0.98) and HI (p = 0.74) groups. The results were 

summarized in Table 4.3.  

Table 4.3: The side-to-side comparison Peroneus Longus (PL) activity during 

double leg stance 

 

 

 

 

 

Results were presented as mean ± SD. AI: ankle sprains group; EC: eyes-closed; EO: eyes-open; HI: 
healthy individual group; SD: standard deviation 

 

4.2.3 Foot and Ankle Ability Measure (FAAM) scores 

AI group had a significantly lower sports score compared to HI (AI: 92.99 ± 

9.86%; HI: 99.87 ± 0.64%; p = 0.001). No difference in the ADL scores (AI: 97.42 ± 

4.57%; HI: 99.26 ± 1.98%, p = 0.077) between the groups. Table 4.4 summarizes the 

FAAM scores.  

 

 

 

Side-to-side comparisons of PL activity (%MVC) 

Groups/conditions EO EC 

AI 25.17 ± 12.53 24.48 ± 11.40 

HI 29.82 ± 18.85 30.47 ± 19.03 

p-value 0.16 0.06 
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Table 4.4: Foot and Ankle Ability Measure (FAAM) scores 

Results were presented as mean ± SD. ADL: activity of daily living scores; AI: ankle sprains group; 
HI: healthy individual group; SD: standard deviation 

4.2.4 Spearman’s correlation coefficient 

Overall, a significant correlation was observed between FAAM scores and TIB, 

but not in the correlation between FAAM scores and the side-to-side comparison PL 

activity. 

4.2.4.1 Correlation between FAAM and TIB 

A significant moderate to strong correlation between sports scores and DL (ρ = 

0.43; p = 0.04) and SL (ρ = 0.59; p = 0.003) during EO was demonstrated in AI group. 

Whereas in HI group, a consistent negative correlation between sports scores and TIB 

was observed during EO (DL: -0.06, p = 0.77; SL: -0.11, p = 0.62) compared to EC (DL: 

-0.17, p = 0.43; SL: ρ = 0.19, p = 0.34).  

In the correlation between ADL scores and TIB, a positive association were 

observed in the DL and SL stances during EO (DL: ρ = 0.13, p = 0.53; SL: ρ = 0.27, p = 

0.20) and EC (DL: 0.07, p = 0.76; SL: ρ = 0.05, p = 0.83) conditions in AI group. In 

contrast, HI group showed a moderate correlation between ADL scores and TIB in SL 

during EO (EO: ρ = -0.32, p = 0.13; EC: ρ = 0.20, p = 0.34) but not with the DL (EO: ρ 

= 0.18, p = 0.41; EC: ρ = -0.14, p = 0.50). 

 

 

Groups AI HI p-value 

ADL (%) 97.42 ± 4.57 99.26 ± 1.98 0.077 

Sports (%) 92.99 ± 9.86 99.87 ± 0.64 0.001 
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4.2.4.2 Correlation between FAAM and side-to-side comparison PL activity 

Based on Table 4.5, the correlation between sports scores and side-to-side 

comparison PL activity was stronger in the EO for both AI (ρ = -0.13; p = 0.56) and HI 

(ρ = -0.19; p = 0.34) groups.  

In contrast, weak correlations were observed between ADL scores and side-to-

side comparison PL activity in both EO (AI:  ρ = 0.03, p = 0.88; HI: ρ = -0.002, p = 0.99) 

and EC (AI: ρ = -0.02, p = 0.93; HI: ρ = 0.09, p = 0.68) in both groups. 

The summary of the correlation between FAAM scores and TIB and the side-to-

side comparison PL activity were tabulated in Table 4.5. 
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Table 4.5: Spearman’s correlation coefficient between individuals with and 
without ankle sprains. 

 

Group FAAM 
Outcome 

measures 

Spearman’s correlation 

(ρ) 
p-value 

With 

ankle 

sprain 

ADL 

%MVC_EO 0.03 0.88 

%MVC_EC -0.02 0.93 

TIB_DL_EO 0.13 0.53 

TIB_DL_EC 0.07 0.76 

TIB_SL_EO 0.27 0.20 

TIB_SL_EC 0.05 0.83 

Sports 

%MVC_EO -0.13 0.56 

%MVC_EC -0.12 0.57 

TIB_DL_EO 0.43* 0.04 

TIB_DL_EC 0.26 0.23 

TIB_SL_EO 0.59** 0.003 

TIB_SL_EC 0.37 0.08 

Without 

ankle 

sprain 

ADL 

%MVC_EO -0.00 0.99 

%MVC_EC 0.09 0.68 

TIB_DL_EO 0.18 0.41 

TIB_DL_EC -0.14 0.50 

TIB_SL_EO -0.32 0.13 

TIB_SL_EC 0.20 0.34 

Sports 

%MVC_EO -0.19 0.34 

%MVC_EC -0.05 0.83 

TIB_DL_EO -0.06 0.77 

TIB_DL_EC -0.17 0.43 

TIB_SL_EO -0.11 0.62 

TIB_SL_EC 0.19 0.34 

*indicate significant at p < 0.05; **indicate significant at p < 0.01 

ADL: activity of daily living subscale; DL: double leg stance; EC: eyes-closed; EO: eyes-open, 
FAAM: foot and ankle ability measure questionnaire; %MVC: side-to-side comparison PL activity; SL: 

single leg stance; TIB: time in balance 
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CHAPTER 5: DISCUSSION 

5.1 The evaluation of the test-retest reliability of the SL stance on a Lafayette 

stability platform 

SL testing has been widely assessed on force plates and Biodex stability system, 

but usually not assessed using the Lafayette stability platform. Considering that SL testing 

is sensitive and able to distinguish postural impairment between injured and healthy 

individuals, thus, this study performed the test-retest reliability of the SL stance on a 

Lafayette stability platform among physically active university students. Results obtained 

from this group of participants showed low SEM values, high ICC values, and lower 

subject variability, which suggest acceptable degree of reliability.  

The reliability of the SL stance on a Lafayette stability platform was analyzed 

using a combination of reliability measures, unlike previous studies. According to a 

systematic review of the evaluation of the test-retest reliability studies, Park et al. (2018) 

found that majority of the studies used only two types of statistical analyses in quantifying 

the instruments’ reliability, which included ICC and SEM (Choi et al., 2014; Arifin et al., 

2014; Barbado et al., 2020), Bland-Altman and ICC (Ponce-González et al., 2014), and 

ICC with correlation coefficient (Howell et al., 2019). Hänninen et al. (2021) applied an 

additional Wilcoxon ranked test to assess the mean difference between testing sessions. 

On the other hand, a more rigorous method was adopted in this study by using a 

combination of analyses (i.e. ICC, CV, SEM) including a graphical analysis of the Bland-

Altman plot to enhance the confidence in deducing the conclusion.    

High ICC values in both conditions portrayed a reliable SL stance on the platform. 

No clear consensus has been reported on the applicable standard values for acceptable 

reliability using ICC. In an earlier study, Fleiss (1986) classified ICC generally as ≥0.75 
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to be excellent, however, the findings should be interpreted with caution in regard to the 

study’s field. Conversely, the ICC cutoff (i.e. threshold) adopted in this study was more 

relevant and had been used in previous reliability studies that assessed force platform’s 

postural sway measures (Meshkati et al., 2011) and gait using tri-axial accelerometer 

(Fujiwara et al., 2020). When compared with ICC values in the previous test-retest 

reliability studies of SL stance, Laessoe et al. (2019) reported an ICC value of 0.87 on an 

instrumented wobble board, whereby a study of a dynamic SL stance using Biodex 

stability system elicited to an ICC value of 0.65 (Arifin et al., 2014) during EO condition. 

With an ICC of 0.74, finding in this study supported that the Lafayette stability platform 

is considered a reliable tool for SL stance.  

Lower SEM values in both conditions indicated higher precision of the TIB 

measurements between the trials (Arifin et al., 2014; Laessoe et al., 2019), which implies 

the platform is able to produce consistent output at different time points. The reliability 

assessment of the SL stance on a Lafayette stability platform was further strengthened 

with the coefficient of variation (CV). Findings in this study showed a CV of <30%, in 

inter-and intrasubject variabilities in both conditions, which were in the acceptable range 

for the field experiments. A similar CV threshold was reported in previous reliability 

studies, including the validation of devices (Squara et al., 2009; Nagymaté et al., 2019) 

to the fitness measurements (Lubans et al., 2011), suggesting CV ranges of <30% were 

common in reliability studies. Hence, CV values in this study may be considered 

acceptable. Lower subject variability during EO suggested a homogeneity in the TIB 

measurements between weeks and repeated trials. These findings were common in the 

assessment with one type of population (Fauth et al., 2010), in which this study engaged 

only physically active university students. Referring to Park et al. (2018) and Atkinson 

and Nevill (1998), the statistical analyses performed in this study were considered to be 

comprehensive and exhaustive.   
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5.2  Postural control assessment in individuals with and without unilateral ankle 

sprains  

This study aimed to investigate the contribution of visual input in the restoration 

of postural control among individuals with unilateral ankle sprains while balancing on 

the Lafayette stability platform. The Lafayette stability platform showed good reliability 

in evaluating TIB and PL activity in both EO and EC conditions. Both groups 

demonstrated a significantly shorter TIB during EC in the DL and SL stances. AI 

individuals had a consistently lower side-to-side comparison PL activity compared to the 

healthy ones. However, no significant difference in the TIB and the side-to-side 

comparison PL activity was demonstrated between the groups. Furthermore, a significant 

correlation was observed between sports scores and TIB in AI group during EO. Overall, 

the injured and healthy individuals demonstrated approximately equal TIB and the side-

to-side comparison PL activity during postural control assessment on the Lafayette 

stability platform. This indicates that the injured individuals may return to their normal 

ankle pre-injury function, suggesting two years of recovery of postural control seems to 

be sufficient.  

During postural control assessment, both AI and HI groups demonstrated 

significantly shorter TIB in EC than in EO. Lower TIB during the DL and SL stances 

may have resulted when the vision is blocked. The availability of visual input during EO 

complements the functionality of the vestibular and ankle proprioception. As previously 

reported in the literature, the absence of visual information may cause postural control 

disruption (Kim, 2020). Findings in this study were consistent with Kim et al. (2019), 

whereby a large difference in postural control was observed during EC between acute 

LAS and healthy individuals. As such, when one of the elements of the postural control 

is suppressed (i.e. visual input), the central nervous system may possibly utilize the 
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reweighting strategy (Kwon et al., 2021), shifting the visuals approach to the ankle 

proprioception strategy to maintain postural control, when the ankle-foot complex is 

contacted directly with the ground (Han et al., 2015). Consequently, side-to-side 

comparison PL activity during EC is greater than EO in this study. This finding may 

answer the second research question, which is to determine whether the participants with 

AI adopt a visual coping strategy after sprain. As there is no significant difference 

between groups, there is no profound evidence to claim that these injured individuals 

adopt visual coping strategy entirely during balancing. By adopting side-to-side 

comparison calculation, this study was able to minimize bias relating to limb dominance 

and between injured and non-injured limbs. This method had been commonly adopted in 

a few studies that investigated the joint position sense, peroneal strength, postural control 

ability (Cho and Park, 2019), isokinetic strength (Cho et al., 2019), and ankle kinematics 

during gait (Drewes et al., 2008). 

No significant difference in the observed performance (i.e. TIB, side-to-side 

comparison PL activity) between AI and HI groups in this study may suggest that 

individuals with unilateral ankle sprains and healthy had approximately equal postural 

control performance and side-to-side comparison PL activity during DL and SL stances 

on the Lafayette stability platform. This finding answered the first research question 

regarding the differences in the balancing ability between injured and non-injured groups. 

This finding indicated that individuals with unilateral ankle sprains may not fully rely on 

visual input to maintain postural control. Other alternative mechanisms might be adopted 

in this circumstance, which warrants further investigations. Additionally, with the 

average injury onset of more than two years, these individuals were assumed to have 

successfully returned to their pre-injury status with the likelihood of the postural control 

being restored after two years. A systematic review discovered that a significant 

improvement of stability would likely occur at the earliest 6 weeks to 3 months for the 
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ligament to heal (Hubbard & Hicks-Little, 2009). Dubin et al. (2011) narrated the phases 

of the healing process of a completely ruptured ligament; inflammatory (initial response: 

lasting from 24-72 hours), reparative (granulation of connective tissue: approximately 3-

5 days post-injury), remodeling (newly formed collagen fibers: 15-28 days post-injury). 

Despite this evidence, the exact amount of time needed for the ligament to heal may vary 

among individuals. The severity of the ankle sprain may influence the process, such that 

mild ankle ligament injury might take a shorter time to heal compared to severe injury. 

Nevertheless, extensive experimental trials are needed to evidence the possible factors 

that have been mentioned previously. 

Furthermore, this study investigated the correlation between subjective measures 

(FAAM scores) and observed performance. A significant moderate to strong association 

between sports scores and TIB during EO was observed in AI group.  This can be 

interpreted as a higher confidence level in sports performance will exhibit a better ability 

to balance, especially during visible presence. The sports subscale assesses the difficulty 

of performing a specific task during sports, thus, the significant association between 

sports scores and TIB among the AI individuals was anticipated. Compared to the ADL 

scores that evaluate the ankle function during normal daily tasks, which may not require 

a specific skill and technique, no significant correlation was observed between the ADL 

scores and observed performance in both groups. Lower sports score did not reflect the 

poor balancing ability in the injured group. This shows that their perception did not tally 

with the biomechanics test, which indirectly answered the third research question. 

Finding in this study may offer insight and meaningful understanding for the clinician, 

who needs to consider a comprehensive understanding, initiating from the injury cause 

till the ability of the patient to recover. By considering the patient’s perception of their 

ankle function, the rehabilitation technique can be strategized to ensure a suitable 

treatment and may speed up the recovery phase. Previous ankle sprain studies used 
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subjective measures such as Ankle Instability Instrument (AII), FAAM (Jung et al., 

2017), and Functional Ankle Instability Index (FADI) (Pozzi et al., 2015) only to measure 

the scores in categorizing the participants into groups of healthy and ankle sprain without 

correlating them with the outcomes. Therefore, by providing significant correlation 

outcomes, this study suggests incorporating both the subjective and objective measures 

in the postural control assessment in ankle sprains studies.  

Increased sample size would be advantageous in this study. As this study only 

investigated the postural control between individuals with unilateral ankle sprains and 

healthy, the outcomes might be different for chronic ankle sprain individuals. 

Implementing FAAM with biomechanics tests able to provide a better understanding of 

the functional performance among individuals with unilateral ankle sprains. Therefore, it 

is recommended to integrate both qualitative and quantitative measures in ankle sprain 

research for the advancement of rehabilitation. 
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CHAPTER 6: CONCLUSION 

Lafayette stability platform is reliable for use in testing the double leg and single 

leg stances. Individuals with unilateral ankle sprains and healthy individuals 

demonstrated approximately equal postural control and Peroneus Longus activity during 

postural control assessment on the Lafayette stability platform, which can be reflected as 

no difference in the balancing activity between individuals with and without ankle 

sprains. Findings in this study also demonstrated that individuals with ankle sprain did 

not adopt visual coping strategy after the sprain during balancing tasks. The individuals’ 

perceptions towards their sports performance, particularly injured individuals are not tally 

with the balancing tests; the participants performed better compared to their self-scoring 

of FAAM.  It can be deduced that individuals with unilateral ankle sprains successfully 

resume normal ankle pre-injury function, suggesting two years of recovery of postural 

control seems to be sufficient.   

6.1 Recommendation for future studies 

From the reliable data of SL and DL in this study, it is suggested to incorporate 

the Lafayette stability platform widely in ankle sprain studies in the future. TIB data and 

the side-to-side calculation PL activity in this study may be considered to measure balance 

performance. Since this study only evaluates postural control between injured and healthy 

participant cohorts, research exploring strategies between genders might present 

interesting findings. Generally, males and females have different strength criteria and the 

ability to concentrate during balancing (Schedler et al., 2020). Additionally, the effect of 

footwear during balance training among individuals with unilateral ankle sprains on the 

platform may provide valuable insights in the rehabilitation treatment. It is also 

recommended to investigate the effect of fatigue on postural control assessment using the 

Lafayette stability platform.  
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6.2 Clinical implications of the study 

As this study incorporated both subjective (self-reported questionnaire) and 

objective (TIB, PL activity) measures in interpreting the results, a meaningful 

understanding of the status and functionality of the ankle can be discovered. This might 

benefit the clinician and therapists to strategize the rehabilitation treatment follows the 

individuals’ condition, capability, and their limit. Exploring the athletes’ perception 

particularly in the rehabilitation may assist in speeding up the return to play time. By 

constantly measuring their perception (pre and post balance training) and made them 

aware of this, it might boost their confidence level by lessening the effect of trauma of 

the pain and injury. Thus, improving the sports performance. 

Other than that, findings in this study revealed that various methods can be 

adopted to analyze biomechanics data. Whilst previous studies frequently adopt kinetic 

and kinematics parameters, emphasizing the center of mass, and center of gravity in ankle 

sprain research, findings of TIB and the side-to-side comparison PL activity in this study 

may show that it is noteworthy to consider various measurements in interpreting balance 

performance. Furthermore, the side-to-side comparison calculation, which should be 

further implemented in future analysis, allows the minimization of bias and may provide 

clarity to the findings (by reducing the effect of limb dominance and between the injured 

and non-injured limbs). 

Moreover, data from this study may support the idea of rehabilitating both injured 

and non-injured limbs involving individuals with unilateral ankle sprains. This may also 

offer additional data in the rehabilitation studies; in the development of a model to mimic 

the capability of the non-injured limbs among individuals with lower limb comorbidity 

(e.g. stroke patients). Incorporating artificial intelligence technology by using algorithms 

and programming features may allow a comprehensive data analysis of PL activity to be 
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performed, not only in extracting the data in time domain or frequency domain 

individually, but also in time-frequency domain. This will provide meaningful findings 

for the advancement of rehabilitation.   
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