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NOVEL CONTRIBUTIONS TO FRACTIONAL CALCULUS:

COMPUTATIONAL METHODS AND ANALYSIS

ABSTRACT

Various computational methods are proposed and employed for solving various

classes of fractional differential equations. In addition to the computational part, an

analysis part is provided for some interesting research problems. First, novel exact

soliton solutions of the (3 + 1)-dimensional conformable Wazwaz-Benjamin-Bona-

Mahony equation are investigated via the generalized Kudryashov and exp(−𝜙(ℵ))

Then, a modified nonlinear Schrödinger equation with spatio-temporal dispersion

is constructed in the contexts of both Caputo fractional derivative and conformable

derivative. This proposed equation is solved via a new generalized double Laplace

transform coupled with Adomian decomposition method. Second, the multivariable

calculus is investigated in the sense of conformable derivative. The conformable

derivative of a real-valued function of several variables and all related properties

are also investigated. An extension to vector valued functions of several real

variables is studied. The conformable chain rule for functions of several variables

is also introduced. The conformable implicit function theorem for several variables

is established. In addition, a new definition of generalized fractional derivative,

named Abu-Shady–Kaabar fractional derivative, is also proposed. Third, the

solutions’ existence and stability analysis of a newly proposed fractional boundary

value problem are investigated for an implicit nonlinear variable order fractional

differential equation with the help of both Krasnoselskii’s fixed point theorem and

the criterion of Ulam–Hyers–Rassias stability. Fourth, a generalized version of the

Mittag–Leffler–Hyers–Ulam stability of quadratic fractional integral equation is

investigated. Fifth, the existence of extremal solutions for a novel class of ψ-Caputo
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fractional differential equation with nonlinear boundary conditions is studied by

employing the monotone iterative technique together with the method of upper and

lower solutions. Sixth, the oscillation of even-order nonlinear differential equations

with mixed nonlinear neutral terms is investigated, and new oscillation criteria are

established.

Keywords: Fractional Calculus, Fractional Differential Equations, Mathematical

Methods, Mathematical Analysis, Stability Analysis.
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SUMBANGAN NOVEL KEPADA KALKULUS PECAHAN: KAEDAH DAN

ANALISIS PENGIRAAN

ABSTRAK

Pelbagai kaedah perhitungan dicadangkan dan digunakan dalam menyelesaikan

pelbagai kelas persamaan pembezaan pecahan. Sebagai tambahan kepada bahagian

perhitungan, bahagian analisis disediakan untuk beberapa masalah penyelidikan

yang menarik. Pada permulaan soliton tepat baharu bagi persamaan Wazwaz-

Benjamin-Bona-Mahony dimensi-(3 + 1) boleh laras diselidiki melalui persamaan

Kudryashov dan exp(−𝜙(ℵ)) yang digeneralisasikan. Kemudian, persamaan

Schrödinger tak linear yang diubah suai dengan serakan ruang-masa dibina dalam

konteks kedua-dua terbitan pecahan Caputo dan terbitan boleh laras. Persamaan

yang dicadangkan ini diselesaikan melalui penjelmaan Laplace berganda umum

yang baharu ditambah dengan kaedah penguraian Adomian. Kedua, kalkulus

berbilang pemboleh ubah disiasat dalam erti kata terbitan boleh laras. Terbitan

boleh selaras bagi fungsi nilai sebenar bagi beberapa pemboleh ubah dan semua sifat

berkaitan juga disiasat. Sambungan kepada fungsi bernilai vektor bagi beberapa

pemboleh ubah nyata dikaji. Petua rantai boleh selaras untuk fungsi beberapa

pemboleh ubah juga diperkenalkan. Teorem fungsi tersirat boleh laras untuk bebe-

rapa pemboleh ubah ditubuhkan. Di samping itu, takrifan baharu terbitan pecahan

umum, dinamakan terbitan pecahan Abu-Shady–Kaabar, juga dicadangkan. Ketiga,

kewujudan dan analisis kestabilan penyelesaian masalah nilai sempadan pecahan

baharu dicadangkan kaji untuk persamaan pembezaan pecahan tertib pemboleh

ubah tak linear tersirat dengan bantuan kedua-dua teorem titik tetap Krasnoselskii

dan kriteria kestabilan Ulam–Hyers–Rassias. Keempat, versi umum bagi kestabilan

Mittag–Leffler–Hyers–Ulam bagi persamaan kamiran pecahan kuadratik disiasat.
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Kelima, kewujudan penyelesaian ekstrem untuk kelas novel persamaan pembezaan

pecahan ψ-Caputo dengan keadaan sempadan tak linear dikaji dengan menggu-

nakan teknik lelaran monoton bersama-sama kaedah penyelesaian atas dan bawah.

Keenam, ayunan bagi persamaan pembezaan tak linear tertib genap dengan sebutan

neutral tak linear bercampur disiasat, dan kriteria ayunan baru diwujudkan.

Kata kunci: Kalkulus Pecahan, Persamaan Pembezaan Pecahan, Kaedah Mate-

matik, Analisis Matematik, Analisis Kestabilan.
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CHAPTER 1: INTRODUCTION

1.1 Introduction

Fractional calculus was theoretically initiated in the seventeenth century during

a mathematical conversation between two well-known mathematicians: L’Hôpital

and Leibniz concerning the possibility of extending the derivative of integer order

to the derivative of order 0.5. After this proposed discussion, other mathematicians

investigated the fractional order derivative via the 𝑛th derivative of the power

function expression (Almeida et al., 2019). The definitions of fractional derivative

are categorized into two parts: global (classical) nature and local nature. The

global fractional derivative is nonlocal with a memory and expressed as integral

transformations. The most common examples of this category are Riemann-

Liouville and Caputo. However, the local fractional derivative is locally defined

through certain incremental ratios such as conformable derivative. Fractional

calculus has shown a high capability in the applications of various research topics

related to physics, electromagnetics, mechanics, signal processing, biology, and

economics. The standard derivatives’ properties cannot be satisfied by many

classical fractional derivatives. The property that has been satisfied in almost all

derivatives are the linear property.

In many definitions of fractional derivatives, the non-locality property is essential

for studying many scientific phenomena. However, all fractional definitions have

both advantages and disadvantages. Therefore, there is no single suitable definition

that can work perfectly for all models. This makes fractional calculus to be

considered as an open research problem. One of the most employed definitions in

studying real-world processes is Riemann-Liouville (RL) which is expressed as:

(Atangana & Secer, 2013):
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Definition 1. For Z ∈ [𝑛 − 1, 𝑛) where 𝑛 ∈ N, the Z-derivative of Ψ(𝑡) is:

𝔇𝑅𝐿Ψ(𝑡) = 1
Γ(𝑛 − Z)

𝑑𝑛

𝑑𝑥𝑛

∫ 𝑡

𝑎

Ψ(𝑥)
(𝑡 − 𝑥)Z−𝑛+1 𝑑𝑥. (1.1)

The second commonly used definition in engineering is Caputo (Cp) definition

which is expressed as:

Definition 2. For Z ∈ [𝑛 − 1, 𝑛) where 𝑛 ∈ N, the Z-derivative of Ψ(𝑡) is:

𝔇𝐶Ψ(𝑡) = 1
Γ(𝑛 − Z)

∫ 𝑡

𝑎

𝑑𝑛Ψ(𝑥)
𝑑𝑥𝑛

(𝑡 − 𝑥)Z−𝑛+1 𝑑𝑥. (1.2)

While RL and Cp derivatives share the linear property of derivatives and have

been employed in various applications, they are not suitable for all applications.

The RL derivative of constant is not zero, but the Cp derivative of constant is zero.

In RL type, if there is a constant arbitrary function at the origin, its RL derivative

has singularity at the origin like Mittag-Leffler and exponential functions. However,

in Cp type, the differentiability needs higher regularity conditions. To find the

Cp derivative of a function, its derivative is needed to be found at first where Cp

derivative is defined only for differentiable functions.

In (Khalil et al., 2014), a recent initiated locally-defined fractional derivative,

simply called conformable derivative (ComD), relied on limit-based derivative’s

definition. ComD is written as:

Definition 3. For a function Ψ : [0,∞) → ℜ such that (∋) ∀ 𝑡 > 0, the ComD of

order Z ∈ (0, 1] of Ψ can be expressed as:

𝔇
Z
𝑡 (Ψ(𝑡)) = lim

Ω→0

Ψ(𝑡 +Ω𝑡1−Z ) − Ψ(𝑡)
Ω

. (1.3)
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Suppose that Ψ is Z-differentiable function (Z−DF) in some (0, 𝜚), where 𝜚 > 0,

and the limit of 𝐷Z
𝑡 (Ψ(𝑡)) exists as 𝑡 −→ 0+, then from Eq. (1.3), we get:

𝔇
Z
𝑡 (Ψ(0)) = lim

𝑡→0+
𝐷
Z
𝑡 (Ψ(𝑡)). (1.4)

Note that by substituting Z = 1, the usual limit-based derivative is obtained. One

of the advantages of ComD is that many properties of derivatives are satisfied by

employing this definition in comparison to other definitions. Therefore, ComD

has been actively employed in many applications in physics, natural sciences, and

engineering. ComD has also been applied in studying partial differential equations

to provide exact soliton solutions to many nonlinear models in mathematical physics.

Guzman et al. (2018) another local definition proposed, named non-conformable

derivative (NComD), which is similar to ComD, and the only difference is that

the functional kernel in NComD is 𝑒𝑡−Z instead of the root function 𝑡1−Z in ComD.

Many NComD results have been provided in (Guzmán et al., 2020; Valdés et al.,

2018).

Recently, some new studies have discussed a possible extension of the theory

of the fractional calculus of constant order, known as the fractional calculus of

variable order. In this recent topic, the studied system’s order, which is represented

as a function of either independent or dependent variables, is varied continuously

to describe the memory’s changes with respect to either time or space (Baleanu

et al., 2011). Initially, the variable-order fractional operators have been proposed

by (Lorenzo & Hartley, 2000) to interpret the diffusion process’s behaviors. More

applications about this interesting topic have been discussed in (Sheng et al., 2011;

Sun et al., 2009). Bouazza et al. (2021) proposed a multi-term variable order

fractional boundary value problem and showed that under some conditions, there
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exists exactly one solution to the investigated system. Recently, limited research

works on investigating the fractional constant order boundary value problems

(BVPs). However, the solutions’ existence to fractional BVPs of variable order have

been rarely studied (see (Sousa & de Oliveira, 2018; Tavares et al., 2016; Yang et

al., 2018)).

Integral equations can be encountered in modeling scenarios arising in natural

sciences, physics, and engineering. One of the most useful types of such equations is

the quadratic integral equation due to the variety of its applications in traffic, neutron

transport, and queuing theories (Argyros, 1985; Busbridge, 1960). Therefore, this

equation can be well-investigated in the context of fractional calculus to provide a

suitable modeling tool for many real-world applications.

1.2 Research Questions (Statements of Research Problems)

Our research work has been conducted based on the following important research

questions:

* What is the physical meaning and importance of the obtained exact and

approximate-analytical solutions?

* Which properties should be provided to investigate the proposed fractional

differential equations’ solutions?

* What are the applications of the investigated fractional differential equations’

solutions in physics, engineering, or in any related area?

* What are the theoretical frameworks for investigating the obtained solutions’

uniqueness, existence, and stability?

* Can we propose a new technique or generalized definition of fractional

derivative that can provide more efficient solutions than the other studied

methods?
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* Will the proposed methods or definitions be effective in solving fractional

differential equations in comparison to other existing methods?

* Is it possible to propose a new technique to investigate the oscillation of

nonlinear differential equations?

Various classes of differential equations have been studied in this research work to

provide a new path to investigate many interesting phenomena arising from physics

and engineering.

1.3 Research Objectives

The following are the research objectives to be accomplished in this research

work:

* To formulate several fractional differential equations’ classes in the context

of fractional derivatives/integrals or a combination of different fractional

definitions.

* To construct novel exact and approximate-analytical solutions for the proposed

fractional differential equations.

* To provide theoretical and numerical investigations of several fractional

formulations for various phenomena from physics and engineering.

* To develop and propose new methods and generalized definitions of fractional

derivatives for studying and solving fractional differential equations.

* To compare various analytical and approximate analytical techniques for

various types of fractional derivatives for certain interesting models.

* To construct a comprehensive investigation of the obtained solutions to

various classes of fractional differential equations via fractional calculus

properties, fixed point theorems, and other related essential approaches.
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* To study the oscillation of nonlinear differential equations via a newly

proposed technique.

1.4 Scopes of Research

The following is a list of our research scopes in this research study:

* Two nonlinear partial differential equations: (3 + 1)-dimensional Wazwaz–

Benjamin–Bona–Mahony equation formulated in the context of ComD, and

modified nonlinear Schrödinger equation with spatio-temporal dispersion

formulated in the contexts of both Cp fractional derivative and ComD.

* A detailed investigation of multivariable calculus formulated in the context

of ComD.

* The new generalized fractional derivative definition, named as Abu-Shady-

Kaabar fractional derivative, to solve fractional differential equations.

* The existence and Ulam–Hyers–Rassias stability of fractional BVP’s solutions

for an implicit nonlinear variable-order fractional differential equation.

* An investigation of the quadratic fractional integral equation using a general-

ized Mittag-Leffler function.

* An investigation of the ψ-Caputo fractional differential equation with nonlin-

ear boundary conditions by studying the extremal solutions’ existence.

* A unique study of the oscillation of even-order nonlinear differential equations

with mixed nonlinear neutral terms.

1.5 Novelty of Our Proposed Research Work

The novelty of our proposed research work is listed as follows:

* Investigating nonlinear partial differential equations can physically interpret

various models and the dynamics of their solutions arising in mathematical
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physics. Therefore, investigating the Wazwaz–Benjamin–Bona–Mahony and

modified nonlinear Schrödinger equation with spatio-temporal dispersion

is very helpful in understanding many scientific phenomena arising in

oceanography, optics, electromagnetism, and optical communication.

* A detailed investigation of multivariable conformable calculus provides a

novel tool for modeling phenomena in physics and engineering due to the

need for mathematical analysis in many modeling scenarios.

* ComD satisfies some important properties that cannot be satisfied in RL and

Cp definitions. Therefore, there is always a great need to propose a new

generalized fractional derivative.

* Abu-Shady-Kaabar fractional derivative is proposed in a purpose to overcome

all issues of other derivatives to obtain efficiently fractional differential

equations’ solutions.

* Diverse applications of variable-order spaces of fractional type require a

series of systematic approaches to investigate fractional differential equation’s

solutions such as existence, uniqueness, and stability.

* Studying quadratic fractional integral equations provides a significant tool

in modeling scientific scenarios due to the essential properties of fractional

calculus in investigating systems’ dynamics and behavior.

* A rare technique, known as monotone iterative technique, has been employed

along with upper and lower solutions’ technique to investigate the ψ-Caputo

fractional differential equation with nonlinear boundary conditions.

* The investigation of differential equations’ oscillation with nonlinear neutral

terms which has been rarely mentioned in other research works.

Motivated by all recent research studies, this research work provides novel contribu-

tions to fractional calculus by proposing new computational methods or developing
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techniques for solving various types of fractional differential equations. In addition,

the investigation of solutions to various classes of fractional differential equations

are fully studied in this research. While there are some research studies that have

attempted to investigate the computational method and mathematical analysis of

fractional calculus, there are still many open research problems that have not been

investigated in any research works. Therefore, there is a great need to investigate

such problems due to their important role in various applications in natural sciences

and engineering.

1.6 Importance and relevance of the study

All our expected results will provide a major contribution to the field of fractional

calculus and its applications due to the importance of the fractional differential

equations in various natural sciences and engineering phenomena. The degree

of novelty of our expected research works will be very high, and our work will

be highly appreciated and accepted in top-quality scientific journals due to the

expected original and novel results that will be supported by many simulation results

and application problems from all aspects of science and engineering. In addition,

our results which will be obtained in this work will be useful for physicists and

engineers who use nonlinear partial differential equations formulated in the sense

of fractional derivatives to propose new mathematical models that explain various

natural phenomena. According to the best of our knowledge, none of our expected

results have been obtained in any other previous works concerning the computational

methods and analysis of fractional calculus because we will propose new problems

formulated in the sense of fractional calculus. The existence, uniqueness, and

stability of obtained solutions will be investigated in detail with many illustrative

numerical examples that will be also provided in our work to validate our results’
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applicability. Our focus in our research on the importance of proposed problems

and their wide applications in natural sciences and engineering. We always make

sure that our proposed problems have never been introduced in any other previous

works. If they are found to be proposed previously in some related works, our

goal is to extend these problems to something more interesting by formulating it

into new or generalized derivatives and applying new techniques to solve them.

Comparisons will be provided to show the validity of all proposed techniques in

solving fractional differential equations. Tables and graphical representations will

be provided to support our results. All in all, we are very sure that our excellent

expected results will attract a global research interest in reading our works and

citing all of them in other possible future works based on our results.

1.7 Description of Conceptual Framework and Research Methodology

In this research work, various fractional calculus formulations such as ComD,

RL, Cp, Abu-Shady-Kaabar, and many other related fractional definitions will

be investigated to study many interesting problems and scientific phenomena.

Various properties of these fractional definitions will be studied and extended in our

work. New propositions related to these definitions will be presented to obtain our

results. Symbolic computational computer programs such as MAPLE, Wolfram

Mathematica, and MATLAB will be utilized in our work to obtain various types

of solutions to our proposed fractional differential equations. In addition, the 3D

and 2D graphical representations will be drawn with the aid of these software

programs for showing the dynamics and physical behavior of our obtained solutions.

Our main goal in this work is to provide novel contributions to the computational

methods and mathematical analysis of fractional calculus, and to shed light on

the importance of this field of research in modeling many important scientific
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phenomena by investigating the proposed problems theoretically and numerically.

The dynamics and physical behavior of the proposed systems will be also presented

through numerical experiments and illustrative examples. The following are the

steps of our conceptual framework:

* Formulate various fractional differential equations’ classes.

* Choose appropriate analytical or approximate-analytical techniques to the

proposed problems in order to formulate novel exact and approximate-

analytical solutions for the proposed fractional differential equations.

* Develop and propose new techniques and generalized definitions of fractional

derivatives for studying and solving fractional differential equations.

* Compare various analytical and approximate analytical techniques for various

types of fractional derivatives for certain interesting models.

* Investigate the obtained solutions to various fractional differential equations’

classes via fractional calculus properties, fixed point theorems, and other

related essential approaches.

* Perform numerical experiments of the obtained results.

To perform the proposed study, the following steps of methodology are needed:

1.7.1 Problem Formulation

We formulate our research problems in the context of fractional derivatives or

integrals.

1.7.2 Theoretical Investigation

We perform an investigation on the proposed research problems by studying the

obtained solutions to various classes of fractional differential equations via fractional

calculus properties, fixed point theorems, and other related essential approaches.
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For new proposed fractional definitions, we prove all proposed theorems related to

our definitions.

1.7.3 Computation

We select appropriate analytical or approximate-analytical techniques to the

proposed problems. In addition, we develop and propose new techniques and

generalized definitions of fractional derivatives for studying and solving fractional

differential equations. Graphical representations of the obtained solutions are

provided in our study. MAPLE, Wolfram Mathematica, and MATLAB software

programs are used to obtain symbolic computational results and represent solutions

graphically.

1.7.4 Comparative Study

Various methods are compared with each other to show the accuracy of the

proposed methods in obtaining solutions to fractional differential equations.

1.7.5 Numerical Validation

We validate our results using numerical experiments by providing many illustra-

tive examples in our research study.

1.7.6 Discussion of Results

All results are discussed in detail, and each proposed problem has been accepted

by strong journals for publications.

1.8 Research Outline

This thesis is consists of 10 chapters. Chapter 1 introduces and gives an overview

of fractional calculus with some interesting topics of research in this field. The
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novelty of this research work is mentioned with a detailed description of motivation,

scope, conceptual framework, objectives, and research methodology. Literature

review on all previous research works related to fractional calculus is discussed

in Chapter 2. Two nonlinear partial differential equations are formulated and

solved vis three methods in the context of ComD and Cp fractional derivatives in

Chapter 3. The multivariable calculus is investigated in the context of conformable

derivative in Chapter 4. A new generalized fractional derivative definition, named

as Abu-Shady-Kaabar fractional derivative, is proposed and employed for some

functions in Chapter 5. With the help of Krasnoselskii’s fixed point theorem,

the implicit nonlinear variable order fractional differential equation is studied in

Chapter 6. The generalized Mittag-Leffler function is employed to study the stability

of quadratic integral equation in the context of fractional calculus is discussed

in Chapter 7. In Chapter 8, the ψ-Caputo fractional differential equation with

nonlinear boundary conditions is investigated via a novel and rare technique. The

even-order nonlinear differential equations’ oscillation with mixed nonlinear neutral

terms is studied via a newly proposed method in Chapter 9. In Chapter 10, some

conclusions are given, and suggestions for future research works are also given

based on the results in this thesis
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CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

Fractional differential equations (FDfEqs) are considered as an extended version

of fractional calculus (FrCL) that was first defined in the 17th century during

a mathematical discussion between two mathematicians to define the 1
2-order

derivative by extending the integerâĂŹs definition. The 𝑛th derivative of the power

function expression was one of the first expressions of fractional derivatives that was

studied and proposed by Euler and Lacroix (Almeida et al., 2019). The introduced

definitions of fractional derivative are categorized into two parts: global (classical)

nature and local nature. The fractional derivative in the global category, which has

a non-local property with a memory, is expressed as transformations in terms of

integral, Mellin, or Fourier. However, the fractional derivative in the local category

is basically based on a local-type definition involving incremental ratios.

The FDfEqs’ qualitative analysis including the solution’s existence and unique-

ness of FDfEqs is considered as the most interesting research problems in fractional

calculus analysis. The theories of fixed points are considered as important tools in

investigating these problems (see (Abbas & Ragusa, 2020; Akdemir et al., 2021)).

Due to this global category, FrCL has been existed in the history of mathematics

since Laplace’s, Euler’s, and Fourier’s time, until RL and Cp fractional definitions

have been proposed in the modern era. FrCL has shown a high ability to be

applied in studying various research topics’ applications related to electromagnet-

ics, mechanics, fluid dynamics, signal processing, electric circuits, heat transfer,

epidemiology, nonlinear optics, theoretical physics, biology, and control theory

(Miller & Ross, 1993).

While the traditional FrCL definitions attempt to satisfy the usual derivatives’
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properties, none of them have been successful in satisfying most of them. However,

there is only the property of linearity that has been shared commonly between

all of them (Hammad & Khalil, 2014). Many physical and engineering systems

have been studied in (Almeida et al., 2019) via some techniques to obtain the

fractional equations’ solutions analytically or approximate analytically in the context

of fractional derivatives and integrals (Amoupour et al., 2018).

Many systems’ behavior can be discussed in better way using FrCL than the

integer-order ones because fractional definitions’ nonlocality and memory effects

can be seen in some systems that give this topic a special importance in modeling.

Due to the variety of modeling scenarios in science and engineering that can

benefit greatly from FrCL where many physical systems have naturally some FrCL

characteristics. Therefore, a particular interest has been paid to study the FDfEqs

because of their applicabilities in the fractional-order modeling (Afshari et al.,

2015; Boutiara et al., 2020). . FDfEqs are regarded as a distinguished tool in

many modeling scenarios, but this tool is associated with many challenges such as

obtaining analytical solutions of FDfEqs and finding efficient techniques to solve

such equations analytically. Some of the attempts to solve these challenges have

started with the ComD definition to provide such analytical solutions (Khalil et al.,

2014).

The physical interpretation for ComD is a directional derivative, based on usual

derivative with some modifications in both magnitude and direction (Silva et al.,

2018). Khalil et al. (2019) presented the fractional cords’ example to show the

interpretation of ComD geometrically.

From the ComD’s definition, with the help of mathematical tools in analysis, some

notable studies concerning the functions of a real variable have been investigated,

and some other related works concerning the complex-valued functions of a real
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variable, Green’s function, Rolle’s Theorem, Mean Value Theorem, integration by

parts, power series expansion, Sturm’s theorems, and the definitions of single and

double Laplace transforms have been studied in (Kaabar, 2020; Khalil et al., 2014;

Martínez et al., 2020).

In FrCL, the arbitrary order integrals and derivatives are considered. Fractional

derivatives have a unique behavior which inspires new research works concerning

the developments of their theoretical frameworks. However, this research field has

recently been considered as an essential interdisciplinary subject in natural and

engineering sciences.

To provide a better understanding the scientific phenomena’ mechanisms, it is

essential to propose new models constructed in the FrCL context involving their

obtained solutions and properties. In addition, the mathematical analysis of some

interesting FDfEqs are needed to be studied in order to answer many of the open

research questions such as the solutions’ existence, uniqueness, and stability of our

proposed systems.

This chapter provides a survey of all previous research studies that have been

done on FrCL including computational methods and analysis. This chapter consists

of six sections. Some previous interesting research works on studying the nonlinear

FDfEqs are discussed in Section 2.2. Multivariable conformable calculus is

presented in Section 2.3. The FDfEqs of variable order are discussed in Section

2.4. In Section 2.5, the ψ-Caputo FDfEq is mentioned. Some previous works on

differential equations’ oscillation are discussed in Section 2.6. A brief conclusion

about all investigated studies is provided in Section 2.7.
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2.2 Nonlinear Fractional Partial Differential Equations

Partial differential equations (PrDfEqs) have motivated many researchers of

natural sciences and engineering to investigate them due to their essential role in

modeling various scientific phenomena in chemistry, physics, and signal processing.

Due to the nonlinearity of many systems, nonlinear PrDfEqs have motivated

scientists to prove the existence of exact solutions. Finding novel exact solutions

for nonlinear PrDfEqs can help significantly understand systems physically and

dynamically. Therefore, new techniques have been recently developed for obtaining

the nonlinear PrDfEqs’ solutions exactly such as the technique of generalized

Kudryashov in solving some interesting nonlinear PrDfEqs (Kaplan et al., 2016),

and the techniques of extended simplest equation and modified simple equation

to solve the nonlinear Fokas equation (Al-Amr & El-Ganaini, 2017). To solve

nonlinear integrable equations, the Hirota bilinear technique, was first introduced in

(Ma, 2020; Ma et al., 2021) to find new lump solutions, which are considered as an

alternative kind of exact solutions that are rationally and spatially localized, for the

investigated equations (Ma, 2022). Soliton solutions are basically analytic functions

that are exponentially localized, which represent multifarious wave phenomena.

The motivation is that nonlinear PrDfEqs can be constructed in the context of

fractional derivatives which will provide new and novel results to the soliton theory

and mathematical physics by investigating the exact solutions and their dynamics

via new techniques.

One of the most notable examples of these equations is the Schrödinger equation

which is commonly seen in studying nonlinear optics due to its ability to interpret the

optical soliton propagation’s dynamics in optical fibers. Some studies concerning the

complex Ginzburg-Landau equation’s optical solutions with Kerr Law nonlinearity

constructed via the truncated M-fractional and beta derivatives were obtained in
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(Yusuf et al., 2019). Moreover, the Kundu-Eckhaus equation’s optical solutions

were investigated with the help of the techniques of extended Jacobi elliptic function

expansion and modified tanh coth (Baleanu et al., 2017), and the technique of

first integral (Wazwaz, 2017), respectively. Different other related models’ optical

solutions were studied in (Al-Amr & El-Ganaini, 2017; Inc et al., 2018). As a result,

finding nonlinear fractional PrDfEqs’ novel solutions, especially for Schrödinger

equation’s modified forms, has attracted the interests of all concerned researchers

due to the applicability of these equations in electromagnetism, nonlinear optics,

and fluid dynamics (Ghanbari & Gómez-Aguilar, 2019). There are also many other

interesting nonlinear partial differential equations that are needed to be investigated

to understand the dynamics of their obtained solutions.

Another interesting nonlinear PrDfEqs is the Benjamin-Bona-Mahony equation

(BeBoMaEq), which is basically an extended formulation of the Korteweg-de-Vries

equation. In a shallow water channel, the unidirectional propagation of long waves

with small amplitude is represented by this equation (Bekir et al., 2021, 2020).

Wazwaz (2017) initiated the idea of three-dimensional BeBoMaEq, named as the

Wazwaz-Benjamin-Bona-Mahony equation (WaBeBoMaEq), by the procedures of

coupling or generalized formulations. WaBeBoMaEq can describe many research

problems with a variety of applications that involve higher dimensional systems

(Bekir et al., 2021, 2020). The WaBeBoMaEq’s exact solutions are highly needed

to be further investigated to understand the behavior and dynamics of many systems.

Some recent research works on WaBeBoMaEq include the study of the conformable

version of WaBeBoMaEq such as (Seadawy et al., 2019) using the procedure of

simple ansatz and (Bilal et al., 2021) using the procedure of generalized exponential

rational function. In addition, the conformable WaBeBoMaEq has been investigated

using other different techniques such as the techniques of modified simple equation
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(Bekir et al., 2021), Riccati-Bernolli Sub-ODE (Bekir et al., 2021), and (𝐺′/𝐺)-

expansion (Bekir et al., 2020).

2.3 Multivariable Conformable Calculus

Several studies have been recently conducted on studying conformable derivatives

and integrals. A two-dimensional wave equation, constructed in the context of

ComD, representing a circular membrane undergoing axisymmetric vibrations

was investigated in (Kaabar, 2020). This equation was solved via three novel

methods: Separation of Variables Method, Differential Transform Method, and

Double Laplace Transform Method. Novel results on Laplacian, constructed in

the conformable context, was investigated in (Martínez et al., 2021b) where the

results were discussed with Dirichlet and Neumann conditions. The generalized

mean value theorems were studied in the context of ComD (Martínez et al., 2021a).

Some new results on complex fractional integration are investigated in (Martínez et

al., 2020) via the establishment of sufficient conditions for a continuous function in

order to get a conformable antiderivative.

ComD has been employed in many scientific applications, particularly theoretical

physics. The conformable version of analytic functions has been discussed in

(Khalil et al., 2018). The contour conformable version of integral has been studied

in (Martínez et al., 2020; Uçar et al., 2019). In 2018, the idea of the conformable

version of multivariable calculus has been initiated in (N. Y. Gözütok & Gözütok,

2017). In 2019, the differential geometry of curves has been studied in the contexts

of ComDs and integrals (U. Gözütok et al., 2019). In 2020, the behavior of the

linear differential systems’ stability has been investigated in the context of ComD.

In 2021, the behavior of the ComDs of functions has been investigated in arbitrary

Banach spaces (Kiskinov et al., 2021).
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2.4 Variable Order Fractional Differential Equation

Fractional models of variable and constant orders have been investigated by (Sun

et al., 2011) to study the proposed systems’ memory. A nonlinear alcoholism model,

constructed in the context of variable-order fractional operator, has been proposed

and solved by (Gómez-Aguilar, 2018). A multi-term variable-order fractional BVP

has been studied in detail by (Bouazza et al., 2021). Then, the variable-order

fractional BVPs in the context of Atangana-Baleanu fractional operator has been

proposed by defining a kernal function with the help of polynomial form (X. Li et

al., 2020). A linear variable-order FDfEq, constructed in the context of Cp, has

been investigated in (Derakhshan, 2021). In a very recent study, a variable-order

fractional BVP, constructed in the context of Hadamard, has been studied by (Refice

et al., 2021) via the technique of the Kuratowski measure of noncompactness.

In (Benchohra & Lazreg, 2014), the implicit nonlinear FDfEq has been investi-

gated concerning its existence-uniqueness in the framework of constant order as

follows:


𝑐𝔇𝑢

0+𝑥(𝑡) = 𝑚(𝑡, 𝑥(𝑡),𝑐𝔇𝑢
0+𝑥(𝑡)), 𝑡 ∈ 𝔍 := [0,Ω], 0 < Ω < +∞, 1 < 𝑢 ≤ 2

𝑥(0) = 𝑥0, 𝑥(Ω) = 𝑥1

where 𝑚 : 𝔍 × R × R → R is a given function that belongs to 𝐶 (𝔍 × R2,R),

𝑥0, 𝑥1 ∈ R, and the Cp fractional derivative is represented by 𝑐𝔇𝑢
0+ .

2.5 ψ-Caputo Fractional Differential Equation with Nonlinear Boundary
Conditions

In FrCL, there are many interesting fractional operators such as Cp, RL, and

Hadamard that can be applicable for many modeling scenarios. However, none
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of these definitions can be universally applied for all models. To overcome this

issue in FrCL, new definitions have been initiated to provide a one universal

definition that can contain some of the above definitions (Caputo & Fabrizio, 2015).

One of the successful attempts in formulating such universal definition is the

ψ-fractional operator which has been proposed in (Almeida, 2017; Almeida et al.,

2018) as a universal platform by including other definitions in its integral kernel’s

function by substituting it with certain functions. Another advantage is that this

universal definition preserves its nonlocality and the property of semigroup. Some

applications have been conducted using this definition in (Abdo et al., 2019; Jarad

et al., 2020).

2.6 The Oscillatory Behavior of Differential Equations

Differential equations’ oscillatory behavior (DEqsOB) with a linear neutral

term has been recently investigated in various research works. Some of the most

interesting works that have been conducted on studying DEqsOB are the even-

order quasilinear neutral functional DEqsOB (Baculikova et al., 2011), 2nd-order

superlinear Emden-Fowler neutral DEqsOB (T. Li & Rogovchenko, 2017), and 2nd-

order nonlinear neutral delay differential equations solutions’ asymptotic behavior

(Graef et al., 1991). For the higher-order systems, the neutral delay DEqsOB

has been investigated in (W. N. Li, 2000). However, both of the even-order and

nonlinear neutral DEqsOBs with variable coefficients have been discussed in (Zafer,

1998) and (Q. Zhang et al., 2010), respectively.

2.7 Conclusion

Motivated by all previous research works, all our results in this thesis provide

a major contribution to the field of fractional calculus and its applications due

to the importance of the FDfEqs in various natural sciences and engineering
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phenomena. According to our comprehension of all previous other research studies,

none of our results have been obtained in any other previous research works

concerning the computational methods and mathematical analysis of FrCL because

new problems are proposed and formulated in the context of FrCL. The existence,

uniqueness, and stability of obtained solutions are investigated in detail with many

illustrative numerical examples that will be also provided in our work to validate

the applicability of our theoretical results. Our focus in our work on the importance

of proposed problems and their wide applications. We always make sure that our

proposed problems have never been introduced in any other previous works. If

they are found to be proposed previously in some related works, these problems

are extended to something more interesting by formulating it into new derivatives

and applying new techniques to solve them. Comparisons are provided to validate

all proposed techniques in obtaining FDfEqs’ solutions. Tables and graphical

representations are provided to support our results. All in all, we are very sure that

our results will attract a global research interest in reading our works and citing

them in other possible future works based on our results. In addition, our work will

open new insights to develop new mathematical models and will motivate all other

researchers to investigate this interesting field of research.
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CHAPTER 3: NOVEL TECHNIQUES FOR SOLVING CONFORMABLE
AND FRACTIONAL NONLINEAR PARTIAL DIFFERENTIAL

EQUATIONS

3.1 Introduction

In this chapter, three novel techniques are discussed for obtaining solutions of

nonlinear partial differential equations (NLPrDfEqs) in the context of ComD and Cp

derivative. In the first part of this chapter, the (3 + 1)-dimensional WaBeBoMaEq

is formulated via ComD. The introduced equation is solved via the generalized

Kudryashov method (GeKM) and exp(−𝜙(ℵ)) method (ExM). MAPLE software

has been employed to perform all algebraic computations. 3D and 2D graphical

profiles are presented to show all obtained solutions’ behavior and dynamics at

various parameters’ values and orders via Wolfram Mathematica. In the second

part of this chapter, a modified version of the nonlinear Schrödinger equation with

spatio-temporal dispersion is formulated in the contexts of both Cp derivative and

ComD. The proposed equation is solved via a new generalized double Laplace

transform coupled with Adomian decomposition method. The 3D plots of the

real and imaginary parts with their corresponding contour plots of the obtained

approximate analytical solutions are also provided.

3.2 Fundamental Preliminaries and Methodology

Consider the following (3 + 1)-dimensional modified form of BeBoMaEq:

Ψ𝑡 + Ψ𝑥 + Ψ2Ψ𝑦 − Ψ𝑥𝑧𝑡 = 0. (3.1)

Eq. (3.1) was first proposed by (Wazwaz, 2017) via the formulation of 3-dimensional

modified version of BeBoMaEqs, named as WaBeBoMaEq, via coupling or various

generalized contexts or as their combination. Higher dimensional problems with a
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variety of applications can be mentioned via the WaBeBoMaEq (Bekir et al., 2021,

2020). To interpret WaBeBoMaEq physically and understand its dynamics, finding

exact solutions for WaBeBoMaEq is very essential. Various soliton solutions for

conformable WaBeBoMaEq have been obtained by (Seadawy et al., 2019) and

(Bilal et al., 2021) via the procedures of simple ansatz and generalized exponential

rational function, respectively.

Therefore, we are motivated to obtain new exact solitary solutions for WaBeBo-

MaEq in the context of ComD via two novel procedures: GeKM and ExM. The

general fractional formulation of WaBeBoMaEq can be expressed as:

𝔇
Z
𝑡 Ψ +𝔇Z

𝑥Ψ +𝔇Z
𝑦Ψ −𝔇3Z

𝑥𝑧𝑡Ψ = 0, (3.2)

where 𝔇Z is the conformable operator of order: Z ∈ (0, 1]. The exact solutions

of Eq. (3.2) have been previously studied via the (𝐺′/𝐺)-expansion method (Bekir

et al., 2020), modified simple equation method (Bekir et al., 2021), and Riccati-

Bernolli Sub-ODE method (Bekir et al., 2021). However, no previous research

works has studied Eq. (3.2) in the context of ComD via GeKM and ExM. Therefore,

all our results are original and novel.

Let us now introduce some essential notions about ComD.

The theorem (Khalil et al., 2014) below shows that 𝔇Z
𝑡 is a ComD in Eq. 1.3

satisfies the known limit-based derivative’s properties as follows:

Theorem 1. For Z ∈ (0, 1], let functions: Ψ and Φ be Z−DF at a point 𝑡, then we

get:

(a) 𝔇Z
𝑡 (Ψ(𝑡)Φ(𝑡)) = Ψ(𝑡)𝔇Z

𝑡 (Φ(𝑡)) +Φ(𝑡)𝔇Z
𝑡 (Ψ(𝑡)).

(b) 𝔇Z
𝑡 (𝑚Ψ(𝑡) + 𝑤Φ(𝑡)) = 𝑚𝔇Z

𝑡 Ψ(𝑡) + 𝑤𝔇Z
𝑡 Φ(𝑡), ∀𝑚, 𝑤 ∈ ℜ.

(c) 𝔇Z
𝑡

(
Ψ(𝑡)
Φ(𝑡)

)
=
Φ(𝑡)𝔇Z𝑡 (Ψ(𝑡))−Ψ(𝑡)𝔇Z𝑡 (Φ(𝑡))

Φ2 (𝑡) .
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(d) 𝔇Z
𝑡 (𝑡𝑘 ) = 𝑘𝑡𝑘−Z , ∀ 𝑘 ∈ ℜ.

(e) If Ψ(𝑡) is supposed to be a differentiable function, then 𝔇Z
𝑡 (Ψ(𝑡)) = 𝑡1−Z 𝑑Ψ

𝑑𝑡
.

(f) 𝔇Z
𝑡 (a) = 0, ∀ constant functions Ψ(𝑡) = a.

Then, the methodology of GeKM and ExM are mentioned as follows:

Consider the nonlinear evolution equation (NLEEq), with 4 independent variables:

𝑥, 𝑦, 𝑧, and 𝑡, formulated generally in the context of ComD as follows:

𝑇 (Ψ,𝔇Z
𝑡 Ψ,𝔇

Z
𝑥Ψ,𝔇

Z
𝑦Ψ,𝔇

Z
𝑧Ψ,𝔇

2Z
𝑡 Ψ,𝔇

2Z
𝑥 Ψ,𝔇

2Z
𝑦 Ψ,𝔇

2Z
𝑧 Ψ, , ...) = 0; 0 < Z ≤ 1,

(3.3)

where Ψ = Ψ(𝑥, 𝑦, 𝑧, 𝑡) is an unknown function, and 𝑇 is a polynomial of Ψ

and its partial derivatives in which all of the nonlinear terms and highest-order

derivatives are included in Eq. (3.3). First, to solve Eq. (3.3), we use traveling

wave transformations for ComD as follows:

For ComD:

Ψ(𝑥, 𝑦, 𝑧, 𝑡) = Ψ(ℵ); ℵ = 𝑝𝑥
Z

Z
+ 𝑞 𝑦

Z

Z
+ 𝛾 𝑧

Z

Z
− 𝛿 𝑡

Z

Z
, (3.4)

where 𝑝, 𝑞, 𝛾, and 𝛿 are all constants with the condition: 𝑝, 𝑞, 𝛾, 𝛿 ≠ 0, and 𝛿 is the

wave speed.

From the above, Eq. (3.3) is reduced to the ordinary differential equation

(ODEq) as:

𝐿 (Ψ,Ψ′,Ψ′′,Ψ′′′, ...) = 0. (3.5)

The derivative with respect to (w.r.t.) ℵ is represented by a prime. Eq. (3.5) should

be integrated term by term one or more times.

Schrödinger equation is another important NLPrDfEq that has been applied in
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various applications in physics and engineering due to its essential role nonlinear

optics which can successfully explain the dynamics of optical soliton propagation

in optical fibers.

Various fractional formulations have been introduced in (Ghanbari & Gómez-

Aguilar, 2019; Yaşar & Yaşar, 2018) to obtain exact optical soliton solutions

for modified nonlinear Schrödinger equation (MoNLSEq) with spatio-temporal

dispersion. Finding analytical and approximate analytical solutions for the modi-

fied forms of nonlinear fractional Schrödinger equation have become a common

research interest for physicists and applied mathematicians in the field of optical

soliton propagation because of the applications of this equation in plasma, op-

tics, electromagnetism, fluid dynamics, and optical communication (Ghanbari &

Gómez-Aguilar, 2019; Yaşar & Yaşar, 2018). The dynamics of optical soliton prop-

agation in optical fiber can be interpreted from the MoNLSEq with second-order

spatio-temporal dispersion and group velocity dispersion coefficients (Ghanbari

& Gómez-Aguilar, 2019). Given Ψ(𝑥, 𝑡) as a complex-valued wave function that

represents the macroscopic property of wave profile of the spatial and temporal

variables which are expressed as 𝑥 and 𝑡, respectively. Then, MoNLSEq can be

written as (Ghanbari & Gómez-Aguilar, 2019):

𝑖

(
𝜕Ψ

𝜕𝑥
+ 𝜔1

𝜕Ψ

𝜕𝑡

)
+ 𝜔2

𝜕2Ψ

𝜕𝑡2
+ 𝜔3

𝜕2Ψ

𝜕𝑥2 + |Ψ|2 Ψ = 0,

where𝜔1 is proportional to the ratio of group speed;

𝜔2 is a group velocity dispersion coefficient;

𝜔3 is a spatial dispersion coefficient;

(3.6)

To formulate Eq. (3.6) in the sense of fractional derivatives, let us first define
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Caputo fractional derivative as follows:

Definition 4. For b, 𝛾 > 0, given two functions: ℎ(𝑥) and ℎ(𝑡) such that for 𝑥, 𝑡 > 0,

the Caputo fractional derivative (CpFD) of ℎ of order b and 𝛾, denoted by𝔇b
𝑥 (ℎ) (𝑥)

and 𝔇𝛾
𝑡 (ℎ) (𝑡), respectively where 𝔇b

𝑥 and 𝔇𝛾
𝑡 are Cp derivative operators which

can be simply expressed as (Hamed et al., 2014):

𝔇
b
𝑥ℎ(𝑥) =

1
Γ(Ω − b)

∫ 𝑥

0
(𝑥 − [)Ω−b−1ℎ(Ω) ([)d[; Ω − 1 < b ≤ Ω for Ω ∈ N,

(3.7)

𝔇
𝛾
𝑡 ℎ(𝑡) =

1
Γ(𝑤 − 𝛾)

∫ 𝑡

0
(𝑡 − `)𝑤−𝛾−1ℎ(𝑤) (`)d`; 𝑤 − 1 < 𝛾 ≤ 𝑤 for 𝑤 ∈ N.

(3.8)

If b = Ω and 𝛾 = 𝑤 where Ω, 𝑤 ∈ N, then 𝔇b
𝑥ℎ(𝑥) = 𝑑Ω

𝑑𝑥Ω
ℎ(𝑥) and 𝔇𝛾

𝑡 ℎ(𝑡) =
𝑑𝑤

𝑑𝑡𝑤
ℎ(𝑡). CpFD is very useful in science and engineering due to their important

properties such as the inclusion of initial and boundary conditions in its formulation

(Almeida et al., 2019; Odibat et al., 2008). Let us now define the Mittag-Leffler

function:

Definition 5. The Mittag-Leffler function, denoted by 𝐸b,Z (𝑡), can be expressed as

follows (Dhunde & Waghmare, 2016):

𝐸b,Z (𝑡) =
∞∑︁
𝑚=0

𝑡𝑚

Γ(b𝑚 + Z) ,where 𝑡, Z ∈ C and ℜ(b) > 0. (3.9)

From Definition (5), the Mittag-Leffler function, denoted by 𝐸 (𝑡, ℎ, 𝑐), can

be written (Hamed et al., 2014) as: 𝐸 (𝑡, ℎ, 𝑐) = 𝑡ℎ𝐸1,ℎ+1(𝑐𝑡), and the fractional

derivative of Mittag-Leffler function can also be expressed (Hamed et al., 2014) as:
𝜕 𝛿

𝜕𝑡 𝛿
(𝑡Z−1𝐸b,Z (𝑐𝑡b)) = 𝑡Z−𝛿−1𝐸b,Z−𝛿 (𝑐𝑡b) where 𝛿 ≥ 0.

The approximate-analytical solutions for Eq. (3.6) are obtained using double

Laplace transform method in the sense of CpFD and ComD.
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From Definition (4), Eq. (3.6) can be formulated in the sense of CpFD as

follows:

𝑖

(
𝜕𝛾Ψ(𝑥, 𝑡)
𝜕𝑥𝛾

+ 𝜔1
𝜕𝛿Ψ(𝑥, 𝑡)
𝜕𝑡𝛿

)
+ 𝜔2

𝜕2𝛿Ψ(𝑥, 𝑡)
𝜕𝑡2𝛿

+ 𝜔3
𝜕2𝛾Ψ(𝑥, 𝑡)
𝜕𝑥2𝛾 + |Ψ|2 Ψ = 0;

𝑖
𝜕𝛾Ψ(𝑥, 𝑡)
𝜕𝑥𝛾

+ 𝜔1𝑖
𝜕𝛿Ψ(𝑥, 𝑡)
𝜕𝑡𝛿

+ 𝜔2
𝜕2𝛿Ψ(𝑥, 𝑡)
𝜕𝑡2𝛿

+ 𝜔3
𝜕2𝛾Ψ(𝑥, 𝑡)
𝜕𝑥2𝛾 + |Ψ|2 Ψ = 0;

where 𝑖 =
√
−1, 0 < 𝛾, 𝛿 ≤ 1, 𝑡, 𝑥 > 0.

(3.10)

From Eq. 1.3, Let us formulate Eq. (3.6) in the sense of ComD as follows:

𝑖

(
𝔇
𝛾
𝑥Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
+ 𝜔1𝔇

𝛿
𝑡 Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

))
+ 𝜔2𝔇

2𝛿
𝑡 Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
+ 𝜔3𝔇

2𝛾
𝑥 Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
+ |Ψ|2 Ψ = 0;

𝑖𝔇
𝛾
𝑥Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
+ 𝜔1𝑖𝔇

𝛿
𝑡 Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
+ 𝜔2𝔇

2𝛿
𝑡 Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
+ 𝜔3𝔇

2𝛾
𝑥 Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
+ |Ψ|2 Ψ = 0;

where 𝑖 =
√
−1, 0 < 𝛾, 𝛿 ≤ 1, 𝑡, 𝑥 > 0.

(3.11)

3.2.1 The GeKM

The obtained solution for the reduced equation using GeKM is formulated via a

polynomial in ℏ(ℵ) as (Kaplan et al., 2016; Kudryashov, 2012):

Ψ(ℵ) =

𝐽∑
𝑘=0

𝑝𝑘ℏ𝑘 (ℵ)

𝑊∑
𝑙=0
𝑞𝑙ℏ𝑙 (ℵ)

, (3.12)

where 𝑝𝑘 (𝑘 = 0, 1, ..., 𝐽), 𝑞𝑙 (𝑙 = 0, 1, ...,𝑊) are constants which are needed to

be determined ∋ 𝑝𝐽 ≠ 0, 𝑞𝑊 ≠ 0, and 𝐿 = 𝐿 (ℵ) is the solution of the following
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equation:

𝑑ℏ
𝑑ℵ = ℏ2(ℵ) − ℏ(ℵ). (3.13)

The solution of Eq. (3.13) can be expressed as:

ℏ(ℵ) = 1
1 + 𝐼1𝑒ℵ

, 𝐼1 is integration constant. (3.14)

From the homogeneous balance principle (HBPrp), the positive integers: 𝐽 and𝑊

in Eq. (3.12) can be obtained using Eq. (3.5). In addition, a polynomial, ℏ, can be

determined by the substitution of Eq. (3.12) into Eq. (3.5) along with Eq. (3.13).

Now, by equating all the coefficients of polynomial ℏ to 0 in order to build a system

of algebraic equations. This system is solved using MAPLE to find the values of

𝑝𝑘 (𝑘 = 0, 1, ..., 𝐽), 𝑞𝑙 (𝑙 = 0, 1, ...,𝑊). All soliton-type solutions of the reduced Eq.

(3.5) can be obtained by the substitution of these obtained values and Eq. (3.13)

into Eq. (3.12).

3.2.2 The ExM

From ExM (Roshid et al., 2014), the obtained solution for the reduced equation

is formulated via a polynomial in exp(−Φ(ℵ)) as follows:

Ψ (ℵ) =
𝑤∑︁
𝑗=0

𝑝 𝑗 (exp(−𝜙(ℵ))) 𝑗 , (3.15)

where 𝑝𝐽 (𝑝𝑊 ≠ 0) are constants which are needed to be found, and 𝜙(ℵ) satisfies

the following auxiliary ODEq:

𝜙′(ℵ) = exp(−𝜙(ℵ)) + 𝜗 exp(𝜙(ℵ)) + 𝜒. (3.16)
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Note that Eq. (3.16) has distinct solutions which are expressed as:

CASE I: When 𝜒2 − 4𝜗 > 0 and 𝜗 ≠ 0, the hyperbolic function solutions are

expressed as:

𝜙1(ℵ) = ln
©«
−
√︁
𝜒2 − 4𝜗 tanh(

√
𝜒2−4𝜗

2 (ℵ + 𝐼)) − 𝜒
2𝜗

ª®®¬ . (3.17)

CASE II: When 𝜒2 − 4𝜗 < 0 and 𝜗 ≠ 0, the trigonometric function solutions

are expressed as:

𝜙2(ℵ) = ln
©«
√︁

4𝜗 − 𝜒2 tan(
√

4𝜗−𝜒2

2 (ℵ + 𝐶)) − 𝜒
2𝜗

ª®®¬ . (3.18)

CASE III: When 𝜒2 − 4𝜗 > 0, 𝜗 = 0 and 𝜒 ≠ 0, the hyperbolic function

solutions are expressed as:

𝜙3(ℵ) = − ln
(

𝜒

cosh(𝜒(ℵ + 𝐼)) + sinh(𝜒(ℵ + 𝐼)) − 1

)
. (3.19)

CASE IV: When 𝜒2 − 4𝜗 = 0, 𝜗 ≠ 0 and 𝜒 ≠ 0, the rational function solutions

are expressed as:

𝜙4(ℵ) = ln(−2(𝜒(ℵ + 𝐼) + 2)
𝜒2(ℵ + 𝐼)

). (3.20)

CASE V: When 𝜒2 − 4𝜗 = 0, 𝜗 = 0 and 𝜒 = 0, we have:

𝜙5(ℵ) = ln(ℵ + 𝐼). (3.21)

From the above cases, the integration constant is represented by 𝐼. By the substitution

of Eq. (3.15) into the reduced Eq. (3.5) and collecting all terms together that

are in the same order of exp(−𝜙(ℵ)) 𝑗 ( 𝑗 = 0, 1, 2, ...), the polynomial in terms of
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exp(−𝜙(ℵ)) is verified. Then, by equating all coefficients to 0, a set of algebraic

equations is constructed for 𝑝 𝑗 ( 𝑗 = 0, 1, ..𝑚), 𝜒, 𝛿, and 𝜗 . With the help of

MAPLE, the system can be solved to obtain diverse exact solutions for Eq. (3.4).

3.2.3 The Double Laplace Transform method

Kaabar (2020) defined the conformable double Laplace transform (CmDLTr) as

follows:

Definition 6. Given a function, Ψ
(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
: [0,∞) → ℜ such that for all 𝑥, 𝑡 > 0,

the CmDLTr of order 𝛾, 𝛿 ∈ (0, 1] of Ψ
(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
, denoted by ℓ𝑥𝑡

𝛾𝛿

[
Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)]
,

starting from 0 can be expressed as follows:

ℓ𝑥𝑡𝛾𝛿

[
Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)]
= ℓ𝑥𝛾ℓ

𝑡
𝛿

[
Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)]
= Ψ̃𝑥𝑡𝛾𝛿 (𝑠1, 𝑠2)

=

∫ ∞

0

∫ ∞

0
𝑒
−(𝑠1

𝑥𝛾

𝛾
+𝑠2

𝑡 𝛿

𝛿
)
Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
𝑥𝛾−1𝑡𝛿−1 𝑑𝑥 𝑑𝑡.

(3.22)

where 𝑠1, 𝑠1 ∈ C. If the integral in the above definition exists, then this definition

holds true.

To define the double Laplace transform in the sense of Caputo partial fractional

derivatives, let us assume that Ψ̃𝑥𝑡 (𝑠1, 𝑠2) =
∫ ∞

0

∫ ∞
0 𝑒−(𝑠1𝑥+𝑠2𝑡)Ψ(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡. From

(Dhunde & Waghmare, 2016), Theorems 3.1 and 3.3 in (Anwar et al., 2013), and

Theorem 2 in (Khan et al., 2019), the Caputo double Laplace transform (CpDLTr)

can be defined as follows:

Definition 7. Given a function, Ψ(𝑥, 𝑡) : [0,∞) → ℜ such that for all 𝑥, 𝑡 > 0, the

double Laplace transform of the Caputo partial fractional derivatives of Ψ(𝑥, 𝑡)

of orders b and 𝛾 where b ∈ ( 𝑗 − 1, 𝑗] and 𝛾 ∈ (𝑏 − 1, 𝑏] such that b, 𝛾 > 0 and
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𝑗 , 𝑏 ∈ N, denoted by 𝜕 b

𝜕𝑥 b
Ψ(𝑥, 𝑡) and 𝜕𝛾

𝜕𝑡𝛾
Ψ(𝑥, 𝑡), respectively can be expressed as:

ℓ𝑥𝑡b

[
𝜕b

𝜕𝑥b
Ψ(𝑥, 𝑡)

]
= 𝑠

b

1Ψ̃
𝑥𝑡
b (𝑠1, 𝑠2) −

𝑗−1∑︁
𝑖=0

𝑠
b−1−𝑖
1 ℓ𝑡

[
𝜕𝑖Ψ(0, 𝑡)
𝜕𝑥𝑖

]
. (3.23)

ℓ𝑥𝑡𝛾

[
𝜕𝛾

𝜕𝑡𝛾
Ψ(𝑥, 𝑡)

]
= 𝑠

𝛾

2 Ψ̃
𝑥𝑡
𝛾 (𝑠1, 𝑠2) −

𝑏−1∑︁
𝑎=0

𝑠
𝛾−1−𝑎
1 ℓ𝑥

[
𝜕𝑎Ψ(𝑥, 0)

𝜕𝑡𝑎

]
. (3.24)

The double Laplace transform in the sense of conformable partial fractional

derivatives can be similarly defined (Kaabar, 2020) as follows:

Definition 8. Given a function, Ψ
(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
: [0,∞) → ℜ such that for all 𝑥, 𝑡 > 0,

the double Laplace transform of the conformable partial fractional derivatives of

Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
of orders 𝛾 and 𝛿 where 𝛾, 𝛿 ∈ (0, 1], denoted by 𝜕𝛾

𝜕𝑥𝛾
Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
and

𝜕 𝛿

𝜕𝑡 𝛿
Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
, respectively can be written as:

ℓ𝑥𝑡𝛾

[
𝜕𝛾

𝜕𝑥𝛾
Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)]
= 𝑠

𝛾

1 Ψ̃
𝑥𝑡
𝛾 (𝑠1, 𝑠2) −

𝑗−1∑︁
𝑖=0

𝑠
𝛾−1−𝑖
1 ℓ𝑡

[
𝜕𝑖Ψ(0, 𝑡)
𝜕𝑥𝑖

]
. (3.25)

ℓ𝑥𝑡𝛿

[
𝜕𝛿

𝜕𝑡𝛿
Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)]
= 𝑠𝛿2Ψ̃

𝑥𝑡
𝛿 (𝑠1, 𝑠2) −

𝑏−1∑︁
𝑎=0

𝑠𝛿−1−𝑎
1 ℓ𝑥

[
𝜕𝑎Ψ(𝑥, 0)

𝜕𝑡𝑎

]
. (3.26)

The existence and uniqueness of CmDLTr have been proven in (Kaabar, 2020),

while the existence and uniqueness of CpDLTr have been discussed in (Anwar

et al., 2013). It is obvious that the formulas of the double Laplace transform in

Definition (7) and Definition (8) are the same when 𝑗 , 𝑏 = 1. However, for CpDLTr

definition, 𝑗 and 𝑏 can be any natural number without any restrictions, while in

CmDLTr definition, the 𝛾 and 𝛿 are restricted to the maximum order’s value of 1.

Therefore, the general definition of CpDLTr coincides with the general definition

of CmDLTr when 𝑗 , 𝑏 = 1. The properties of CmDLTr and CpDLTr have been
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discussed in (Özkan & Kurt, 2018) and (Omran & Kiliçman, 2017), respectively.

For 𝛾, 𝛿 ∈ (0, 1], let us now define the formula of the inverse fractional double

Laplace transform (Dhunde & Waghmare, 2016) for both ComD and CpFD, denoted

by (ℓ𝑥𝑡
𝛾𝛿
)−1 [Ψ̃𝑥𝑡

𝛾𝛿
(𝑠1, 𝑠1)], as follows:

Definition 9. Given an analytic function: Ψ̃𝑥𝑡
𝛾𝛿
(𝑠1, 𝑠2), for all 𝑠1, 𝑠2 ∈ C and for

𝛾, 𝛿 ∈ (0, 1] such that 𝑅𝑒{𝑠1 ≥ [} and 𝑅𝑒{𝑠2 ≥ 𝜎}, where [, 𝜎 ∈ ℜ, then, the

inverse fractional double Laplace transform (IFDLT) can be expressed (Kaabar,

2020) as follows:

(ℓ𝑥𝑡𝛾𝛿)
−1 [Ψ̃𝑥𝑡𝛾𝛿 (𝑠1, 𝑠2)] = (ℓ𝑥𝛾)−1(ℓ𝑡𝛿)

−1 [Ψ̃𝑥𝑡𝛾 (𝑠1, 𝑠2)]

=
−1
4𝜋2

∫ 𝜚+𝑖∞

𝜚−𝑖∞

∫ 𝜍+𝑖∞

𝜍−𝑖∞
𝑒𝑠1𝑥𝑒𝑠2𝑡Ψ̃𝑥𝑡𝛾𝛿 (𝑠1, 𝑠2) 𝑑𝑠1 𝑑𝑠2

(3.27)

To solve the Eq. (3.6) in the senses of CpFD and ComD via CpDLTr and

CmDLTr. respectively, let us first re-write both Eq. (3.10) and Eq. (3.11) as

follows:

𝜕2𝛾Ψ(𝑥, 𝑡)
𝜕𝑥2𝛾 = −𝜔2

𝜔3

𝜕2𝛿Ψ(𝑥, 𝑡)
𝜕𝑡2𝛿

− 𝑖

𝜔3

𝜕𝛾Ψ(𝑥, 𝑡)
𝜕𝑥𝛾

− 𝜔1
𝜔3
𝑖
𝜕𝛿Ψ(𝑥, 𝑡)
𝜕𝑡𝛿

− 1
𝜔3

|Ψ|2 Ψ.

subject to the following initial and boundary conditions:

Ψ(𝑥, 0) = 𝑎0(𝑥) and
𝜕Ψ(𝑥, 0)

𝜕𝑡
= 𝑎1(𝑥).

Ψ(0, 𝑡) = 𝑏0(𝑡) and
𝜕Ψ(0, 𝑡)
𝜕𝑥

= 𝑏1(𝑡).

where 𝑖 =
√
−1, 0 < 𝛾, 𝛿 ≤ 1, 𝑡, 𝑥 > 0; 𝑥, 𝑡 ∈ ℜ+, and 𝑎0, 𝑎1, 𝑏0, 𝑏1 ∈ C(ℜ+,ℜ+).

(3.28)
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𝔇
2𝛾
𝑥 Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
= −𝜔2

𝜔3
𝔇2𝛿
𝑡 Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
− 𝑖

𝜔3
𝔇
𝛾
𝑥Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
− 𝜔1
𝜔3
𝑖𝔇𝛿

𝑡 Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
− 1
𝜔3

|Ψ|2 Ψ.

subject to the following initial and boundary conditions:

Ψ

(
𝑥𝛾

𝛾
, 0

)
= 𝑛0

(
𝑥𝛾

𝛾

)
and 𝔇𝑡Ψ

(
𝑥𝛾

𝛾
, 0

)
= 𝑛1

(
𝑥𝛾

𝛾

)
.

Ψ

(
0,
𝑡𝛿

𝛿

)
= 𝑚0

(
𝑡𝛿

𝛿

)
and 𝔇𝑥Ψ

(
0,
𝑡𝛿

𝛿

)
= 𝑚1

(
𝑡𝛿

𝛿

)
.

where 𝑖 =
√
−1, 0 < 𝛾, 𝛿 ≤ 1, 𝑡, 𝑥 > 0; 𝑥, 𝑡 ∈ ℜ+, and 𝑛0, 𝑛1, 𝑚0, 𝑚1 ∈ C(ℜ+,ℜ+).

(3.29)

By applying the single Laplace transform to initial and boundary conditions in

Eq. (3.28) and Eq. (3.29), respectively, we obtain the following:

ℓ[Ψ(𝑥, 0)] = ℓ[𝑎0(𝑥)] = 𝑎0(𝑠1); ℓ
[
𝜕Ψ(𝑥, 0)

𝜕𝑡

]
= 𝑎1(𝑠1).

ℓ[Ψ(0, 𝑡)] = ℓ[𝑏0(𝑡)] = 𝑏0(𝑠2); ℓ
[
𝜕Ψ(0, 𝑡)
𝜕𝑥

]
= 𝑏1(𝑠2).

(3.30)

ℓ[Ψ(𝑥, 0)] = ℓ[𝑛0(𝑥)] = 𝑛0(𝑠1); ℓ
[
𝔇𝑡Ψ

(
𝑥𝛾

𝛾
, 0

)]
= ℓ

[
𝑛1

(
𝑥𝛾

𝛾

)]
= 𝑛1(𝑠1).

ℓ[Ψ(0, 𝑡)] = ℓ[𝑚0(𝑡)] = 𝑚0(𝑠2); ℓ
[
𝔇𝑥Ψ

(
0,
𝑡𝛿

𝛿

)]
= ℓ

[
𝑚1

(
𝑡𝛿

𝛿

)]
= 𝑚1(𝑠2).

(3.31)

Let us now apply the CpDLTr to both left-hand and right-hand sides of Eq.

(3.28), we obtain:
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ℓ𝑥ℓ𝑡
[
𝜕2𝛾Ψ(𝑥, 𝑡)
𝜕𝑥2𝛾

]
= Ψ̃(𝑠1, 𝑠2) =

𝑠
2𝛾−1
1

𝑠
2𝛾
1

ℓ𝑥ℓ𝑡 [𝑏0(𝑡)] +
𝑠
𝑠𝛾−2
1

𝑠
2𝛾
1

ℓ𝑥ℓ𝑡 [𝑏1(𝑡)]

− 1
𝑠

2𝛾
1

[
ℓ𝑥ℓ𝑡

[
𝜔2
𝜔3

𝜕2𝛿Ψ(𝑥, 𝑡)
𝜕𝑡2𝛿

+ 𝑖

𝜔3

𝜕𝛾Ψ(𝑥, 𝑡)
𝜕𝑥𝛾

+ 𝑖𝜔1
𝜔3

𝜕𝛿Ψ(𝑥, 𝑡)
𝜕𝑡𝛿

]
+ ℓ𝑥ℓ𝑡

[
1
𝜔3

|Ψ|2 Ψ
] ]
.

By simplifying the above, we obtain:

ℓ𝑥ℓ𝑡
[
𝜕2𝛾Ψ(𝑥, 𝑡)
𝜕𝑥2𝛾

]
= Ψ̃(𝑠1, 𝑠2) =

1
𝑠1
ℓ𝑥ℓ𝑡 [𝑏0(𝑡)] +

1
𝑠2

1
ℓ𝑥ℓ𝑡 [𝑏1(𝑡)]

− 1
𝑠

2𝛾
1

[
ℓ𝑥ℓ𝑡

[
𝜔2
𝜔3

𝜕2𝛿Ψ(𝑥, 𝑡)
𝜕𝑡2𝛿

+ 𝑖

𝜔3

𝜕𝛾Ψ(𝑥, 𝑡)
𝜕𝑥𝛾

+ 𝑖𝜔1
𝜔3

𝜕𝛿Ψ(𝑥, 𝑡)
𝜕𝑡𝛿

]
+ ℓ𝑥ℓ𝑡

[
1
𝜔3

[
Ψ2Ψ∗] ] ] .

where |Ψ|2 Ψ = Ψ2Ψ∗ such that Ψ∗ is the conjugate of Ψ.

(3.32)

According to the Adomian decomposition method (ADcM), Eq. (3.32) is written

according to the following standard operator form for NLPrDfEqs: 𝐿Ψ(𝑥, 𝑡) +

𝑅Ψ(𝑥, 𝑡)+𝑁Ψ(𝑥, 𝑡) = 𝑆(𝑥, 𝑡) where 𝑁 represents the nonlinear differential operator,

𝐿 represents the 2nd-order partial differential operator, 𝑅 represents the remaining

linear operator, and 𝑆(𝑥, 𝑡) represents a source term. Therefore, by applying the

method of CpDLTr coupled with ADcM, the decomposition infinite series can be

expressed for both linear and nonlinear terms as follows:

Ψ(𝑥, 𝑡) =
∞∑︁
𝑖=0
Ψ𝑖 (𝑥, 𝑡)

𝑁 (Ψ(𝑥, 𝑡)) =
∞∑︁
𝑖=0

𝜙𝑖 (Ψ(𝑥, 𝑡)).
(3.33)
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where the above nonlinear term, denoted by 𝑁 (Ψ(𝑥, 𝑡)), is represented by infinite

series of the Adomian polynomials, donated by 𝜙𝑖, which can be expressed

(Nuruddeen et al., 2018) as follows:

𝜙𝑖 =
1
𝑖!
𝑑𝑖

𝑑Ω𝑖

𝑁 ©«
∞∑︁
𝑗=0
Ω 𝑗𝜙 𝑗

ª®¬
Ω=0

, 𝑖 = 0, 1, 2, 3, ...

so, we can write some of those terms as follows:

𝜙0 = 𝑁 (Ψ0); 𝜙1 = Ψ1𝑁
′(Ψ0); 𝜙2 = Ψ2𝑁

′(Ψ0) +
1
2!
Ψ2

1𝑁
′′(Ψ0).

(3.34)

By applying the standard NLPrDfEqs operator form, and Eq. (3.33) to Eq.

(3.32), we obtain:

ℓ𝑥ℓ𝑡

[ ∞∑︁
𝑖=0
Ψ𝑖 (𝑥, 𝑡)

]
=

1
𝑠1
ℓ𝑥ℓ𝑡 [𝑏0(𝑡)] +

1
𝑠2

1
ℓ𝑥ℓ𝑡 [𝑏1(𝑡)]

− 1
𝑠

2𝛾
1

[
ℓ𝑥ℓ𝑡

[
𝑅

[ ∞∑︁
𝑖=0
Ψ𝑖 (𝑥, 𝑡)

] ]
+ ℓ𝑥ℓ𝑡

[ ∞∑︁
𝑖=0

𝜙𝑖

] ]
.

where 𝑅[Ψ(𝑥, 𝑡)] = 𝜔2
𝜔3

𝜕2𝛿Ψ(𝑥, 𝑡)
𝜕𝑡2𝛿

+ 𝑖

𝜔3

𝜕𝛾Ψ(𝑥, 𝑡)
𝜕𝑥𝛾

+ 𝑖𝜔1
𝜔3

𝜕𝛿Ψ(𝑥, 𝑡)
𝜕𝑡𝛿

and 𝜙𝑖 [Ψ(𝑥, 𝑡)] = 1
𝜔3
Ψ2Ψ∗.

(3.35)

Let us now write some of the Adomian polynomials, 𝜙′
𝑖
𝑠 using the formula in Eq.

(3.34) as follows:

𝜙0 =
1
𝜔3
Ψ2

0Ψ
∗
0,

𝜙1 =
2
𝜔3
Ψ0Ψ1Ψ

∗
0 +

1
𝜔3
Ψ2

0Ψ
∗
1,

𝜙2 =
2
𝜔3
Ψ0Ψ2Ψ

∗
0 +

1
𝜔3
Ψ2

1Ψ
∗
0 +

2
𝜔3
Ψ0Ψ1Ψ

∗
1 +

1
𝜔3
Ψ2

0Ψ
∗
2.

By applying the inverse double Laplace transform to the left-hand and right-hand

sides of Eq. (3.35), we obtain the following general solution to Eq. (3.28),
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recursively:

Ψ0(𝑥, 𝑡) = 𝑏0(𝑡) + 𝑥𝑏1(𝑡),

Ψ1(𝑥, 𝑡) =−(ℓ𝑥)−1 (ℓ𝑡 )−1

[
1
𝑠
2𝛾
1

[
ℓ𝑥ℓ𝑡

[
𝜔2
𝜔3

𝜕2𝛿Ψ0 (𝑥,𝑡 )
𝜕𝑡2𝛿

+ 𝑖
𝜔3

𝜕𝛾Ψ0 (𝑥,𝑡 )
𝜕𝑥𝛾

+𝑖 𝜔1
𝜔3

𝜕𝛿Ψ0 (𝑥,𝑡 )
𝜕𝑡 𝛿

]
+ℓ𝑥ℓ𝑡 [𝜙0 (Ψ(𝑥,𝑡))]

] ]
,

Ψ2(𝑥, 𝑡) =−(ℓ𝑥)−1 (ℓ𝑡 )−1

[
1
𝑠
2𝛾
1

[
ℓ𝑥ℓ𝑡

[
𝜔2
𝜔3

𝜕2𝛿Ψ1 (𝑥,𝑡 )
𝜕𝑡2𝛿

+ 𝑖
𝜔3

𝜕𝛾Ψ1 (𝑥,𝑡 )
𝜕𝑥𝛾

+𝑖 𝜔1
𝜔3

𝜕𝛿Ψ1 (𝑥,𝑡 )
𝜕𝑡 𝛿

]
+ℓ𝑥ℓ𝑡 [𝜙1 (Ψ(𝑥,𝑡))]

] ]
,

.

.

.

Ψ𝑖+1(𝑥, 𝑡) = −(ℓ𝑥)−1(ℓ𝑡)−1

[
1
𝑠

2𝛾
1

ℓ𝑥ℓ𝑡 [𝑅[Ψ𝑖 (𝑥, 𝑡)]] + ℓ𝑥ℓ𝑡 [𝜙𝑖 (Ψ(𝑥, 𝑡))]
]
, for 𝑖 ≥ 0.

(3.36)

Similarly, we can apply the CmDLTr to both sides of Eq. (3.29), we have:

ℓ𝑥ℓ𝑡
[
𝔇

2𝛾
𝑥 Ψ

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)]
=Ψ̃(𝑠1,𝑠2)=

𝑠
2𝛾−1
1
𝑠
2𝛾
1

ℓ𝑥ℓ𝑡 [𝑚0 (𝑡)]+
𝑠
𝑠𝛾−2
1
𝑠
2𝛾
1

ℓ𝑥ℓ𝑡
[
𝑚1

(
𝑡 𝛿

𝛿

)]
− 1
𝑠

2𝛾
1

[
ℓ𝑥ℓ𝑡

[
𝜔2
𝜔3
𝐷2𝛿
𝑡 Ψ

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)
+ 𝑖
𝜔3
𝐷
𝛾
𝑥Ψ

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)
+𝑖 𝜔1
𝜔3
𝐷 𝛿𝑡 Ψ

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)]
+ℓ𝑥ℓ𝑡

[
1
𝜔3

|Ψ|2Ψ
] ]
.

After simplifications, we have:

ℓ𝑥ℓ𝑡
[
𝔇

2𝛾
𝑥 Ψ

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)]
=Ψ̃(𝑠1,𝑠2)= 1

𝑠1
ℓ𝑥ℓ𝑡 [𝑚0 (𝑡)]+ 1

𝑠21
ℓ𝑥ℓ𝑡

𝑚1

(
𝑡𝛿

𝛿

) 
− 1
𝑠

2𝛾
1

[
ℓ𝑥ℓ𝑡

[
𝜔2
𝜔3
𝐷2𝛿
𝑡 Ψ

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)
+ 𝑖
𝜔3
𝐷
𝛾
𝑥Ψ

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)
+𝑖 𝜔1
𝜔3
𝐷 𝛿𝑡 Ψ

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)]
+ℓ𝑥ℓ𝑡

[
1
𝜔3 [Ψ2Ψ∗]

] ]
.

where |Ψ|2Ψ=Ψ2Ψ∗ such that Ψ∗ is the conjugate of Ψ.

(3.37)

Let us now apply the standard NLPrDfEqs operator form and Eq. (3.33) to Eq.
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(3.37), we have:

ℓ𝑥ℓ𝑡

[ ∞∑︁
𝑖=0
Ψ𝑖 (𝑥, 𝑡)

]
=

1
𝑠1
ℓ𝑥ℓ𝑡 [𝑚0(𝑡)] +

1
𝑠2

1
ℓ𝑥ℓ𝑡

[
𝑚1

(
𝑡𝛿

𝛿

)]
− 1
𝑠

2𝛾
1

[
ℓ𝑥ℓ𝑡

[
𝑅

[ ∞∑︁
𝑖=0
Ψ𝑖 (𝑥, 𝑡)

] ]
+ ℓ𝑥ℓ𝑡

[ ∞∑︁
𝑖=0

𝜙𝑖

] ]
.

where 𝑅[Ψ(𝑥, 𝑡)] =
[
𝜔2
𝜔3
𝔇2𝛿
𝑡 Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
+ 𝑖

𝜔3
𝔇
𝛾
𝑥Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
+ 𝑖𝜔1
𝜔3
𝔇𝛿
𝑡 Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)]
and 𝜙𝑖 [Ψ(𝑥, 𝑡)] = 1

𝜔3
Ψ2Ψ∗.

(3.38)

We apply the inverse double Laplace transform to both sides of Eq. (3.38) to obtain

the general solution to Eq. (3.29), recursively as follows:

Ψ0(𝑥, 𝑡) = 𝑚0

(
𝑡𝛿

𝛿

)
+ 𝑥

𝛾

𝛾
𝑚1

(
𝑡𝛿

𝛿

)
,

Ψ1(𝑥, 𝑡) =

−(ℓ𝑥)−1 (ℓ𝑡 )−1

[
1
𝑠
2𝛾
1

[
ℓ𝑥ℓ𝑡

[
𝜔2
𝜔3
𝔇2𝛿
𝑡 Ψ0

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)
+ 𝑖
𝜔3
𝔇
𝛾
𝑥Ψ0

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)
+𝑖 𝜔1
𝜔3
𝐷 𝛿𝑡 Ψ0

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)]
+ℓ𝑥ℓ𝑡 [𝜙0 (Ψ(𝑥,𝑡))]

] ]
,

Ψ2(𝑥, 𝑡) =

−(ℓ𝑥)−1 (ℓ𝑡 )−1

[
1
𝑠
2𝛾
1

[
ℓ𝑥ℓ𝑡

[
𝜔2
𝜔3
𝔇2𝛿
𝑡 Ψ1

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)
+ 𝑖
𝜔3
𝔇
𝛾
𝑥Ψ1

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)
+𝑖 𝜔1
𝜔3
𝐷 𝛿𝑡 Ψ1

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)]
+ℓ𝑥ℓ𝑡 [𝜙1 (Ψ(𝑥,𝑡))]

] ]
,

...

Ψ𝑖+1(𝑥, 𝑡) = −(ℓ𝑥)−1(ℓ𝑡)−1

[
1
𝑠

2𝛾
1

ℓ𝑥ℓ𝑡 [𝑅[Ψ𝑖 (𝑥, 𝑡)]] + ℓ𝑥ℓ𝑡 [𝜙𝑖 (Ψ(𝑥, 𝑡))]
]
, for 𝑖 ≥ 0.

(3.39)
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3.3 Solutions of the (3 + 1)-Dimensional Conformable WaBeBoMaEq

Exact soliton solutions of the proposed Eq. (3.2) are obtained in this section via

GeKM and ExM.

𝑝𝛾𝛿Ψ′′′ + 𝑞(Ψ3)′ + (−𝛾 + 𝑝)Ψ′ = 0. (3.40)

By integrating Eq. (3.40) once with respect to ℵ, we obtain:

𝑝𝛾𝛿Ψ′′ + 𝑞Ψ3 + (−𝛿 + 𝑝)Ψ = 0. (3.41)

3.3.1 Exact Solutions via the GeKM

According to the HBPrp, the highest-order derivative and nonlinear terms in Eq.

(3.41) are balanced. Thus, we get: 𝐽 = 𝑊 + 1. Let us set𝑊 = 1, we obtain: 𝐽 = 2.

Thus, the solution can be written as:

Ψ(ℵ) = 𝑝0 + 𝑝1ℏ + 𝑝2ℏ2

𝑞0 + 𝑞1ℏ
, (3.42)

where ℏ = ℏ(ℵ) is the solution of the Eq. (3.13). As a result, by substituting

Eq. (3.42) into Eq. (3.41) and using Eq. (3.13), we obtain system of algebraic

equations by equating all coefficients of the functions ℏ0, ℏ1, ℏ2, ℏ3, ℏ4, ℏ5, ℏ6 to 0.

Now, 𝑝0, 𝑝1, 𝑝2, 𝑞0, and 𝑞1 are all parameters.
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ℏ6 : 𝑞𝑝3
2+2𝑝𝛾𝛿𝑝2𝑞

2
1=0,

ℏ5 : 3𝑞𝑝1𝑝
2
2−3𝑝𝛾𝛿𝑝2𝑞

2
1+6𝑝𝛾𝛿𝑝2𝑞0𝑞1=0,

ℏ4 : −9𝑝𝛾𝛿𝑝2𝑞0𝑞1−𝛿𝑝2𝑞
2
1+𝑝𝑝2𝑞

2
1+6𝑝𝛾𝛿𝑝2𝑞

2
0+𝑝𝛾𝛿𝑝2𝑞

2
1+3𝑞𝑝0𝑝

2
2+3𝑞𝑝2

1𝑝2=0,

ℏ3 : −𝛿𝑝1𝑞
2
1+2𝑝𝛾𝛿𝑝1𝑞

2
0+𝑞𝑝

3
1−10𝑝𝛾𝛿𝑝2𝑞

2
0+𝑝𝛾𝛿ℏ1𝑞0𝑞1−𝑝𝛾𝛿𝑞2

1𝑝0+𝑝𝑝1𝑞
2
1

−2𝛿𝑝2𝑞0𝑞1+3𝑝𝛾𝛿𝑝2𝑞0𝑞1+6𝑞𝑝0𝑝1𝑝2+2𝑝𝑝2𝑞0𝑞1−2𝑝𝛾𝛿𝑞1𝑝0𝑞0=0,

ℏ2 : −2𝛿𝑝1𝑞0𝑞1−𝑝𝛾𝛿𝑝1𝑞0𝑞1+𝑝𝑝0𝑞
2
1+3𝑞𝑝2

0𝑝2−𝛿𝑝0𝑞
2
1+3𝑞𝑝0𝑝

2
1−3𝑝𝛾𝛿𝑝1𝑞

2
0

+2𝑝𝑝1𝑞0𝑞1+𝑝𝑝2𝑞
2
0−𝛿𝑝2𝑞

2
0+4𝑝𝛾𝛿𝑝2𝑞

2
0+𝑝𝛾𝛿𝑞

2
1𝑝0+3𝑝𝛾𝛿𝑞1𝑝0𝑞0=0,

ℏ1 : −𝑝𝛾𝛿𝑞1𝑝0𝑞0+2𝑝𝑝0𝑞0𝑞1+𝑝𝛾𝛿𝑝1𝑞
2
0−𝛿𝑝1𝑞

2
0+3𝑞𝑝2

0𝑝1−2𝛿𝑝0𝑞0𝑞1+𝑝𝑝1𝑞
2
0=0,

ℏ0 : 𝑝𝑝0𝑞
2
0+𝑞𝑝

3
0=0

From the above set of algebraic equations, various cases are presented as follows:

CASE I:

𝑝0=0,𝑝1=±𝑝𝑞1
√︃
− 𝛾

2𝑞+𝑝𝑞𝛾 ,𝑝2=±
2𝑝𝛾𝑞1

(𝑝𝛾+2)𝑞
√︂
− 𝛾

2𝑞+𝑝𝑞𝛾
,𝑞0=0,𝑞1=𝑞1,𝛿=

2𝑝
𝑝𝛾+2

Then, by the substitution of the obtained values into Eq. (3.42) with Eq. (3.14), the

soliton-type solutions of the following WaBeBoMaEq in the context of ComD:

Ψ1(𝑥, 𝑦, 𝑧, 𝑡) = ± (1 − 𝐼1 (cosh (ℵ) + sinh (ℵ))) 𝑝𝛾√︃
− 𝛾

𝑞(𝑝𝛾+2) 𝑞 (𝑝𝛾 + 2) (1 + 𝐼1 cosh (ℵ) + 𝐼1 sinh (ℵ))
, (3.43)
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where ℵ = 𝑝 𝑥Z
Z
+ 𝑞 𝑦

Z

Z
+ 𝛾 𝑧Z

Z
− 2𝑝

𝑝𝛾+2
𝑡Z

Z
for ComD. 𝐼1 is an arbitrary constant.

CASE II:

𝑝0=0,𝑝1=±2𝑞0𝑝
√︃

2𝛾
−𝑞+𝑝𝑞𝛾 ,𝑝2=∓2𝑞0𝑝

√︃
2𝛾

−𝑞+𝑝𝑞𝛾 ,𝑞0=𝑞0,𝑞1=−2𝑞0,𝛿=
𝑝

1−𝑝𝛾

Then, by the substitution of the obtained values into Eq. (3.42) with Eq. (3.14), the

soliton-type solutions of the following WaBeBoMaEq in the context of ComD:

Ψ2(𝑥, 𝑦, 𝑧, 𝑡) = ±
2𝑝𝐼1

√︃
2𝛾

𝑞(−1+𝑝𝛾) (cosh (ℵ) + sinh (ℵ))

−1 + 𝐼2
1

(
2 cosh (ℵ) sinh (ℵ) + 2 cosh2 (ℵ) − 1

) , (3.44)

where ℵ = 𝑝 𝑥Z
Z
+ 𝑞 𝑦

Z

Z
+ 𝛾 𝑧Z

Z
− 𝑝

1−𝑝𝛾
𝑡Z

Z
for ComD. 𝐼1 is a constant.

3.3.2 Exact Solutions via the ExM

The ExM is a very helpful technique to construct the solution of Eq. (3.5) in the

following form:

Ψ(b) = 𝑝0 + 𝑝1 exp(−𝜙(ℵ)). (3.45)

Let us substitute Eq. (3.41) into Eq. (3.5) and collect the coefficient of each power

of exp(−Φ(ℵ)) 𝑗 . Now, a set of algebraic equations of 𝑝, 𝑞, 𝛾, 𝛿, 𝑝0, 𝑝1, 𝜒 and 𝜗 is

obtained by equating all coefficients to 0.
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exp(3ℵ) : 𝑞𝑝3
0 − 𝛿𝑝0 + 𝑝𝛾𝛿𝑝1𝜗𝜒 + 𝑝𝑝0 = 0,

exp(2ℵ) : 3𝑞𝑝2
0𝑝1 − 𝛿𝑝1 + 2𝑝𝛾𝛿𝑝1𝜗 + 𝑝𝛾𝛿𝑝1𝜒

2 + 𝑝𝑝1 = 0,

exp(ℵ) : 3𝑝𝛾𝛿𝑝1𝜒 + 3𝑞𝑝0𝑝
2
1 = 0,

exp(0ℵ) : 2𝑝𝛾𝛿𝑝1 + 𝑞𝑝3
1 = 0.

(3.46)

By using MAPLE software, we obtain the following solution:

𝑝0=±𝜒𝑝
√︃

𝛾

−𝑝𝑞𝛾𝜒2−2𝑞+4𝑝𝑞𝛾𝜗
,𝑝1=±2𝑝

√︃
𝛾

−𝑝𝑞𝛾𝜒2−2𝑞+4𝑝𝑞𝛾𝜗
,𝛿=

2𝑝
𝑝𝛾𝜒2+2−4𝑝𝛾𝜗

(3.47)

From all the above obtained values, the technique’s algorithm, and its auxiliary

equations, different cases for the conformable WaBeBoMaEq are given as follows:

CASE I:

When 𝜒2 − 4𝜗 > 0 and 𝜗 ≠ 0, the hyperbolic function solutions are expressed

as:

Ψ1(𝑥, 𝑦, 𝑧, 𝑡) =±
𝑝

√︄
𝛾

𝑞(−𝑝𝛾𝜒2−2+4𝑝𝛾𝜗)
(
𝜒2+𝜒 tanh

(√
𝜒2−4𝜗

2 (ℵ+𝐼 )
)√
𝜒2−4𝜗−4𝜗

)
𝜒+tanh

(√
𝜒2−4𝜗

2 (ℵ+𝐼 )
)√
𝜒2−4𝜗

, (3.48)

where ℵ = 𝑝 𝑥Z
Z
+ 𝑞 𝑦

Z

Z
+ 𝛾 𝑧Z

Z
− 2𝑝

𝑝𝛾𝜒2+2−4𝑝𝛾𝜗
𝑡Z

Z
for ComD. 𝐼 is a constant.

CASE II:

When 𝜒2 −4𝜗 < 0 and 𝜗 ≠ 0, the trigonometric function solutions are expressed

as:
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Ψ2(𝑥, 𝑦, 𝑧, 𝑡) =±
𝑝

√︄
𝛾

𝑞(−𝑝𝛾𝜒2−2+4𝑝𝛾𝜗)
(
−𝜒2+𝜒 tan

(√
4𝜗−𝜒2

2 (ℵ+𝐼 )
)√

4𝜗−𝜒2+4𝜗

)
−𝜒+tan

(√
4𝜗−𝜒2

2 (ℵ+𝐼 )
)√

4𝜗−𝜒2
, (3.49)

where ℵ = 𝑝 𝑥Z
Z
+ 𝑞 𝑦

Z

Z
+ 𝛾 𝑧Z

Z
− 2𝑝

𝑝𝛾𝜒2+2−4𝑝𝛾𝜗
𝑡Z

Z
for ComD. 𝐼 is a constant.

CASE III:

When 𝜒2 − 4𝜗 > 0, 𝜗 = 0 and 𝜒 ≠ 0, the hyperbolic function solutions are

expressed as:

Ψ3(𝑥, 𝑦, 𝑧, 𝑡) = ±
𝜒𝑝

√︃
𝛾

𝑞(−𝑝𝛾𝜒2−2+4𝑝𝛾𝜗) (cosh (𝜒 (ℵ + 𝐼)) + sinh (𝜒 (ℵ + 𝐼)) + 1)

cosh (𝜒 (ℵ + 𝐼)) + sinh (𝜒 (ℵ + 𝐼)) − 1
,

(3.50)

where ℵ = 𝑝 𝑥Z
Z
+ 𝑞 𝑦

Z

Z
+ 𝛾 𝑧Z

Z
− 2𝑝

𝑝𝛾𝜒2+2−4𝑝𝛾𝜗
𝑡Z

Z
for ComD. 𝐼 is a constant.

CASE IV:

When 𝜒2 − 4𝜗 = 0, 𝜗 ≠ 0 and 𝜒 ≠ 0, the rational function solutions are

expressed as:

Ψ4(𝑥, 𝑦, 𝑧, 𝑡) = ±
2𝜒𝑝

√︃
𝛾

𝑞(−𝑝𝛾𝜒2−2+4𝑝𝛾𝜗)
𝜒 (ℵ + 𝐼) + 2

, (3.51)

where ℵ = 𝑝 𝑥Z
Z
+ 𝑞 𝑦

Z

Z
+ 𝛾 𝑧Z

Z
− 2𝑝

𝑝𝛾𝜒2+2−4𝑝𝛾𝜗
𝑡Z

Z
for ComD. 𝐼 is a constant.

CASE V:

Finally, when 𝜒2 − 4𝜗 = 0, 𝜗 = 0 and 𝜒 = 0, we have:

Ψ5(𝑥, 𝑦, 𝑧, 𝑡) = ±

√︃
𝛾

𝑞(−𝑝𝛾𝜒2−2+4𝑝𝛾𝜗) 𝑝 (𝜒 (ℵ + 𝐼) + 2)

ℵ + 𝐼 , (3.52)
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where ℵ = 𝑝 𝑥Z
Z
+ 𝑞 𝑦

Z

Z
+ 𝛾 𝑧Z

Z
− 2𝑝

𝑝𝛾𝜒2+2−4𝑝𝛾𝜗
𝑡Z

Z
for ComD. 𝐼 is a constant.

3.4 Solutions of the Nonlinear Fractional Schrödinger Equation

Let us start this section by introducing two numerical experiments to find the

solutions of proposed NLPrDfEq.

Numerical Experiment 1:

By applying definitions and properties of CpFD and double Laplace transform,

the following numerical experiment will solve Eq. (3.28) analytically: Let

𝜔1 = 𝜔2 = 𝜔3 = 1, and 𝑏0(𝑡) = 𝑒𝑖𝑡 ; 𝑏1(𝑡) = 0; 𝑎0(𝑥) = 𝑎1(𝑥) = 0 in (16), we have:

𝜕2𝛾Ψ(𝑥, 𝑡)
𝜕𝑥2𝛾 = −𝜕

2𝛿Ψ(𝑥, 𝑡)
𝜕𝑡2𝛿

− 𝑖 𝜕
𝛾Ψ(𝑥, 𝑡)
𝜕𝑥𝛾

− 𝑖 𝜕
𝛿Ψ(𝑥, 𝑡)
𝜕𝑡𝛿

− |Ψ|2 Ψ.

subject to the following initial and boundary conditions:

Ψ(𝑥, 0) = 0 and
𝜕Ψ(𝑥, 0)

𝜕𝑡
= 0.

Ψ(0, 𝑡) = 𝑒𝑖𝑡 and
𝜕Ψ(0, 𝑡)
𝜕𝑥

= 0.

where 𝑖 =
√
−1, 0 < 𝛾, 𝛿 ≤ 1, 𝑡, 𝑥 > 0; 𝑥, 𝑡 ∈ ℜ+.

(3.53)

To solve Eq. (3.53), we use our result in Eq. (3.36) as follows:

Ψ0(𝑥, 𝑡) = 𝑒𝑖𝑡 ,

Ψ1(𝑥, 𝑡) =−(ℓ𝑥)−1 (ℓ𝑡 )−1

[
1
𝑠
2𝛾
1

[
ℓ𝑥ℓ𝑡

[
𝜕2𝛿Ψ0 (𝑥,𝑡 )

𝜕𝑡2𝛿
+𝑖 𝜕

𝛾Ψ0 (𝑥,𝑡 )
𝜕𝑥𝛾

+𝑖 𝜕
𝛿Ψ0 (𝑥,𝑡 )
𝜕𝑡 𝛿

]
+ℓ𝑥ℓ𝑡 [𝜙0 (Ψ(𝑥,𝑡))]

] ]
=−(ℓ𝑥)−1 (ℓ𝑡 )−1

[
1
𝑠
2𝛾
1

[
ℓ𝑥ℓ𝑡

[
𝜕2𝛿Ψ0 (𝑥,𝑡 )

𝜕𝑡2𝛿
+𝑖 𝜕

𝛾Ψ0 (𝑥,𝑡 )
𝜕𝑥𝛾

+𝑖 𝜕
𝛿Ψ0 (𝑥,𝑡 )
𝜕𝑡 𝛿

]
+ℓ𝑥ℓ𝑡 [Ψ2

0Ψ
∗
0]

] ]
= − 𝑥2𝛾

Γ(2𝛾 + 1)
[ [
𝑖𝑡1−2𝛿𝐸1,2−2𝛿 (𝑖𝑡) − 𝑡1−𝛿𝐸1,2−𝛿 (𝑖𝑡)

]
+ 𝑒𝑖𝑡

]
= − 𝑥2𝛾

Γ(2𝛾 + 1)
[
[𝑖𝐸 (𝑡, 1 − 2𝛿, 𝑖) − 𝐸 (𝑡, 1 − 𝛿, 𝑖)] + 𝑒𝑖𝑡

]
,
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Ψ2(𝑥, 𝑡) =−(ℓ𝑥)−1 (ℓ𝑡 )−1

[
1
𝑠
2𝛾
1

[
ℓ𝑥ℓ𝑡

[
𝜕2𝛿Ψ1 (𝑥,𝑡 )

𝜕𝑡2𝛿
+𝑖 𝜕

𝛾Ψ1 (𝑥,𝑡 )
𝜕𝑥𝛾

+𝑖 𝜕
𝛿Ψ1 (𝑥,𝑡 )
𝜕𝑡 𝛿

]
+ℓ𝑥ℓ𝑡 [𝜙1 (Ψ(𝑥,𝑡))]

] ]
=−(ℓ𝑥)−1 (ℓ𝑡 )−1

[
1
𝑠
2𝛾
1

[
ℓ𝑥ℓ𝑡

[
𝜕2𝛿Ψ1 (𝑥,𝑡 )

𝜕𝑡2𝛿
+𝑖 𝜕

𝛾Ψ1 (𝑥,𝑡 )
𝜕𝑥𝛾

+𝑖 𝜕
𝛿Ψ1 (𝑥,𝑡 )
𝜕𝑡 𝛿

]
+ℓ𝑥ℓ𝑡 [2Ψ0Ψ1Ψ

∗
0+Ψ

2
0Ψ

∗
1]

] ]
= − 𝑥2𝛾

Γ(2𝛾 + 1)

[
− 𝑥2𝛾

Γ(2𝛾 + 1)
𝜕2𝛿

𝜕𝑡2𝛿
(
[𝑖𝐸 (𝑡, 1 − 2𝛿, 𝑖) − 𝐸 (𝑡, 1 − 𝛿, 𝑖)] + 𝑒𝑖𝑡

) ]
− 𝑖 𝑥2𝛾

Γ(2𝛾 + 1)

[ [ (
[𝑖𝐸 (𝑡, 1 − 2𝛿, 𝑖) − 𝐸 (𝑡, 1 − 𝛿, 𝑖)] + 𝑒𝑖𝑡

) ] 𝜕𝛾

𝜕𝑥𝛾

(
− 𝑥2𝛾

Γ(2𝛾 + 1)

)]
− 𝑖 𝑥2𝛾

Γ(2𝛾 + 1)

[
− 𝑥2𝛾

Γ(2𝛾 + 1)
𝜕𝛿

𝜕𝑡𝛿

(
[𝑖𝐸 (𝑡, 1 − 2𝛿, 𝑖) − 𝐸 (𝑡, 1 − 𝛿, 𝑖)] + 𝑒𝑖𝑡

) ]
− 𝑥2𝛾

Γ(2𝛾 + 1)

[
(2𝑒𝑖𝑡)

(
− 𝑥2𝛾

Γ(2𝛾 + 1)

) (
[𝑖𝐸 (𝑡, 1 − 2𝛿, 𝑖) − 𝐸 (𝑡, 1 − 𝛿, 𝑖)] + 𝑒𝑖𝑡

)
(𝑒−𝑖𝑡)

]
− 𝑥2𝛾

Γ(2𝛾 + 1)

[
(𝑒2𝑖𝑡)

(
− 𝑥2𝛾

Γ(2𝛾 + 1)

) (
[−𝑖𝐸 (𝑡, 1 − 2𝛿, 𝑖) − 𝐸 (𝑡, 1 − 𝛿, 𝑖)] + 𝑒−𝑖𝑡

)
(𝑒−𝑖𝑡)

]
=

𝑥4𝛾

Γ(4𝛾 + 1) [𝑖𝐸 (𝑡, 1 − 4𝛿, 𝑖) − 𝐸 (𝑡, 1 − 3𝛿, 𝑖) + 𝑖𝐸 (𝑡, 1 − 2𝛿, 𝑖)]

+ 𝑥3𝛾

Γ(3𝛾 + 1)
[
𝐸 (𝑡, 1 − 2𝛿, 𝑖) − 𝑖𝐸 (𝑡, 1 − 𝛿, 𝑖) + 𝑖𝑒𝑖𝑡

]
+ 𝑥4𝛾

Γ(4𝛾 + 1) [−𝐸 (𝑡, 1 − 3𝛿, 𝑖) − 𝑖𝐸 (𝑡, 1 − 2𝛿, 𝑖) − 𝐸 (𝑡, 1 − 𝛿, 𝑖)]

+ 𝑥4𝛾

Γ(4𝛾 + 1)
[
−2𝑖𝐸 (𝑡, 1 − 2𝛿, 𝑖) − 𝐸 (𝑡, 1 − 𝛿, 𝑖) + 𝑒𝑖𝑡

]
+ 𝑥4𝛾

Γ(4𝛾 + 1)
[
−𝑖𝑒2𝑖𝑡𝐸 (𝑡, 1 − 2𝛿, 𝑖) − 𝑒2𝑖𝑡𝐸 (𝑡, 1 − 𝛿, 𝑖) + 𝑒𝑖𝑡

]
=

𝑥3𝛾

Γ(3𝛾 + 1)
[
𝐸 (𝑡, 1 − 2𝛿, 𝑖) − 𝑖𝐸 (𝑡, 1 − 𝛿, 𝑖) + 𝑖𝑒𝑖𝑡

]
+ 𝑥4𝛾

Γ(4𝛾 + 1) {𝑖𝐸 (𝑡, 1 − 4𝛿, 𝑖) − 𝐸 (𝑡, 1 − 3𝛿, 𝑖) + 𝑖𝐸 (𝑡, 1 − 2𝛿, 𝑖) − 𝐸 (𝑡, 1 − 3𝛿, 𝑖)

− 𝑖𝐸 (𝑡, 1 − 2𝛿, 𝑖) − 𝐸 (𝑡, 1 − 𝛿, 𝑖) − 2𝑖𝐸 (𝑡, 1 − 2𝛿, 𝑖) − 𝐸 (𝑡, 1 − 𝛿, 𝑖) + 𝑒𝑖𝑡

− 𝑖𝑒2𝑖𝑡𝐸 (𝑡, 1 − 2𝛿, 𝑖) − 𝑒2𝑖𝑡𝐸 (𝑡, 1 − 𝛿, 𝑖) + 𝑒𝑖𝑡}.

...

and so on.
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By using all above obtained results, the general approximate-analytical solution to

Eq. (3.53) can be written as follows:

Ψ(𝑥, 𝑡) = 𝑒𝑖𝑡 − 𝑥2𝛾

Γ(2𝛾 + 1)
[
[𝑖𝐸 (𝑡, 1 − 2𝛿, 𝑖) − 𝐸 (𝑡, 1 − 𝛿, 𝑖)] + 𝑒𝑖𝑡

]
+ 𝑥3𝛾

Γ(3𝛾 + 1)
[
𝐸 (𝑡, 1 − 2𝛿, 𝑖) − 𝑖𝐸 (𝑡, 1 − 𝛿, 𝑖) + 𝑖𝑒𝑖𝑡

]
+ 𝑥4𝛾

Γ(4𝛾 + 1) {𝑖𝐸 (𝑡, 1 − 4𝛿, 𝑖)

− 𝐸 (𝑡, 1 − 3𝛿, 𝑖) + 𝑖𝐸 (𝑡, 1 − 2𝛿, 𝑖) − 𝐸 (𝑡, 1 − 3𝛿, 𝑖) − 𝑖𝐸 (𝑡, 1 − 2𝛿, 𝑖) − 𝐸 (𝑡, 1 − 𝛿, 𝑖)

− 2𝑖𝐸 (𝑡, 1 − 2𝛿, 𝑖) − 𝐸 (𝑡, 1 − 𝛿, 𝑖) + 𝑒𝑖𝑡 − 𝑖𝑒2𝑖𝑡𝐸 (𝑡, 1 − 2𝛿, 𝑖) − 𝑒2𝑖𝑡𝐸 (𝑡, 1 − 𝛿, 𝑖) + 𝑒𝑖𝑡}.

+ . . .

(3.54)

Hence, the approximate-analytical solution for the Eq. (3.6) in the sense of CpFD

has been easily obtained via the double Laplace transform coupled with the ADcM.

Numerical Experiment 2:

By applying the definitions and properties of ComD and double Laplace

transform, the following numerical experiment solves Eq. (3.29) analytically:

Let 𝜔1 = 𝜔2 = 𝜔3 = 1, and 𝑚0(𝑡) = 𝑒𝑖
𝑡 𝛿

𝛿 ;𝑚1(𝑡) = 0; 𝑛0(𝑥) = 𝑛1(𝑥) = 0 in Eq.

3.29, we have:

𝔇
2𝛾
𝑥 Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
= −𝔇2𝛿

𝑡 Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
− 𝑖𝔇𝛾

𝑥Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
− 𝑖𝔇𝛿

𝑡 Ψ

(
𝑥𝛾

𝛾
,
𝑡𝛿

𝛿

)
− |Ψ|2 Ψ.

subject to the following initial and boundary conditions:

Ψ

(
𝑥𝛾

𝛾
, 0

)
= 0 and 𝔇𝑡Ψ

(
𝑥𝛾

𝛾
, 0

)
= 0.

Ψ

(
0,
𝑡𝛿

𝛿

)
= 𝑒𝑖

𝑡 𝛿

𝛿 and 𝔇𝑥Ψ

(
0,
𝑡𝛿

𝛿

)
= 0.

where 𝑖 =
√
−1, 0 < 𝛾, 𝛿 ≤ 1, 𝑡, 𝑥 > 0; 𝑥, 𝑡 ∈ ℜ+.

(3.55)
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To solve Eq. (3.55), we use our result in Eq. 3.39 as follows:

Ψ0(𝑥, 𝑡) = 𝑒𝑖
𝑡 𝛿

𝛿 ,

Ψ1(𝑥, 𝑡) = −(ℓ𝑥)−1(ℓ𝑡)−1×[
1
𝑠
2𝛾
1

[
ℓ𝑥ℓ𝑡

[
𝔇2𝛿
𝑡 Ψ0

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)
+𝑖𝔇𝛾𝑥Ψ0

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)
+𝑖𝔇𝛿

𝑡 Ψ0

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)]
+ℓ𝑥ℓ𝑡 [𝜙0 (Ψ(𝑥,𝑡))]

] ]
=−(ℓ𝑥)−1 (ℓ𝑡 )−1

[
1
𝑠
2𝛾
1

[
ℓ𝑥ℓ𝑡

[
𝔇2𝛿
𝑡 Ψ0

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)
+𝑖𝔇𝛾𝑥Ψ0

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)
+𝑖𝔇𝛿

𝑡 Ψ0

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)]
+ℓ𝑥ℓ𝑡 [Ψ2

0Ψ
∗
0]

] ]
= − 𝑥2𝛾−1

𝛾2𝛾−1Γ(2𝛾)

[ [
−𝑒𝑖 𝑡

𝛿

𝛿 − 𝑒𝑖 𝑡
𝛿

𝛿

]
+ 𝑒𝑖 𝑡

𝛿

𝛿

]
= − 𝑥2𝛾−1

𝛾2𝛾−1Γ(2𝛾)

[
−𝑒𝑖 𝑡

𝛿

𝛿

]
Ψ2(𝑥, 𝑡) = −(ℓ𝑥)−1(ℓ𝑡)−1×[

1
𝑠
2𝛾
1

[
ℓ𝑥ℓ𝑡

[
𝔇2𝛿
𝑡 Ψ1

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)
+𝑖𝔇𝛾𝑥Ψ1

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)
+𝑖𝔇𝛿

𝑡 Ψ1

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)]
+ℓ𝑥ℓ𝑡 [𝜙1 (Ψ(𝑥,𝑡))]

] ]
= −(ℓ𝑥)−1(ℓ𝑡)−1×[

1
𝑠
2𝛾
1

[
ℓ𝑥ℓ𝑡

[
𝔇2𝛿
𝑡 Ψ1

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)
+𝑖𝔇𝛾𝑥Ψ1

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)
+𝑖𝔇𝛿

𝑡 Ψ1

(
𝑥𝛾

𝛾
, 𝑡
𝛿

𝛿

)]
+ℓ𝑥ℓ𝑡 [2Ψ0Ψ1Ψ

∗
0+Ψ

2
0Ψ

∗
1]

] ]
=− 𝑥2𝛾−1

𝛾2𝛾−1Γ (2𝛾)
{
(
− 𝑥2𝛾−1
𝛾2𝛾−1Γ (2𝛾)

)
𝑒
𝑖 𝑡
𝛿

𝛿 +(2𝛾−1)𝑥𝛾−1

(
𝑖 𝑒

𝑖 𝑡
𝛿

𝛿

𝛾2𝛾−1Γ (2𝛾)

)
−
(

𝑥2𝛾−1
𝛾2𝛾−1Γ (2𝛾)

)
𝑒
𝑖 𝑡
𝛿

𝛿

−
(

2𝑥2𝛾−1
𝛾2𝛾−1Γ (2𝛾)

)
𝑒
−𝑖 𝑡

𝛿

𝛿 +
(

𝑥2𝛾−1
𝛾2𝛾−1Γ (2𝛾)

)
𝑒
𝑖 𝑡
𝛿

𝛿 }

= 𝑥4𝛾−2
𝛾4𝛾−2Γ (4𝛾)

𝑒
𝑖 𝑡
𝛿

𝛿 −𝑖 (2𝛾−1)𝑥3𝛾−2

𝛾4𝛾−2Γ (4𝛾)
𝑒
𝑖 𝑡
𝛿

𝛿 + 𝑥4𝛾−2
𝛾4𝛾−2Γ (4𝛾)

𝑒
𝑖 𝑡
𝛿

𝛿 + 2𝑥4𝛾−2
𝛾4𝛾−2Γ (4𝛾)

𝑒
−𝑖 𝑡

𝛿

𝛿 − 𝑥4𝛾−2
𝛾4𝛾−2Γ (4𝛾)

𝑒
𝑖 𝑡
𝛿

𝛿

= −𝑖 (2𝛾 − 1)𝑥3𝛾−2

𝛾4𝛾−2Γ(4𝛾)
𝑒𝑖
𝑡 𝛿

𝛿 + 𝑥4𝛾−2

𝛾4𝛾−2Γ(4𝛾)

[
𝑒𝑖
𝑡 𝛿

𝛿 + 𝑒𝑖 𝑡
𝛿

𝛿 + 2𝑒−𝑖
𝑡 𝛿

𝛿 − 𝑒𝑖 𝑡
𝛿

𝛿

]
= −𝑖 (2𝛾 − 1)𝑥3𝛾−2

𝛾4𝛾−2Γ(4𝛾)
𝑒𝑖
𝑡 𝛿

𝛿 + 𝑥4𝛾−2

𝛾4𝛾−2Γ(4𝛾)

[
𝑒𝑖
𝑡 𝛿

𝛿 + 2𝑒−𝑖
𝑡 𝛿

𝛿

]
.

...

and so on.
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By using the above obtained results, the general approximate-analytical solution to

Eq. (3.55) can be written as follows:

Ψ(𝑥, 𝑡) =𝑒𝑖 𝑡
𝛿

𝛿 − 𝑥2𝛾−1
𝛾2𝛾−1Γ (2𝛾)

[
−𝑒𝑖

𝑡 𝛿

𝛿

]
−𝑖 (2𝛾−1)𝑥3𝛾−2

𝛾4𝛾−2Γ (4𝛾)
𝑒
𝑖 𝑡
𝛿

𝛿 + 𝑥4𝛾−2
𝛾4𝛾−2Γ (4𝛾)

[
𝑒
𝑖 𝑡
𝛿

𝛿 +2𝑒−𝑖
𝑡 𝛿

𝛿

]
+... (3.56)

Hence, the approximate-analytical solution for the Eq. (3.6) in the sense of ComD

has also been easily obtained via the double Laplace transform coupled with the

ADcM.

3.5 The Graphical Comparisons of Solutions

A variety of soliton solutions in Eqs. (3.43),(3.44),(3.48),(3.49),(3.50),(3.51),

(3.52) are graphically represented using Wolfram Mathematica and compared

in both 3D and 2D plots in Figs. (3.1),(3.2),(3.3),(3.4),(3.5),(3.6),(3.7) for

various parameters’ values and Z to show the WaBeBoMaEq solutions’ dynamics

and behavior. The obtained approximate solutions in both Eq. (3.54) and Eq.

(3.56) have been graphically compared for various values of 𝛾 and 𝛿 (see Figs.

(3.8)−(3.17),) where each graph shows both real and imaginary parts of solution.

From our results, solving NLPrDfEqs in the sense of CpFD and ComD are highly

recommended. Exploring the definition of other fractional derivatives are also

essential, and any new mathematical definition has to be investigated further.

3.6 Conclusion

In the first part of this chapter, GeKM and ExM have been employed to investigate

exact soliton solutions of the (3 + 1)-dimensional conformable WaBeBoMaEq in

the context of ComD. The obtained solutions are new which indicate that GeKM

and ExM provide efficient and reliable results. 2D and 3D graphical profiles have

been represented for all obtained solutions at various parameters’ values and orders.
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The GeKM and ExM can be further employed to solve various NLPrDfEqs arising

in several nonlinear scientific phenomena. A possible extension of our obtained

results into higher dimensional NLPrDfEqs is a new direction of study in the future,

which will provide a novel contributions to mathematical physics. In the second

part, a powerful mathematical tool have been successfully proposed to solve the

nonlinear Schrödinger equation in the context of CpFD and ComD. The generalized

double Laplace transform method can be efficiently applied in solving MoNLSEq

and all other fractional-order NLPrDfEqs.
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a b

c d

e f

Figure 3.1: The plots of Eq. (3.43) are represented in 3D in (a), (c), (e) and
in 2D in (b), (d), (f) for 𝛾 = −1; 𝑞 = 𝑝 = 𝐼1 = 1; 𝑡 = 15; 𝑦 = 𝑧 = 0; Z = 0.50; Z =
0.8; Z = 0.90 for ComD, respectively.
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e f

Figure 3.2: The plots of Eq. (3.44) are represented in 3D in (a), (c), (e) and
in 2D in (b), (d), (f) for 𝛾 = −1; 𝑞 = 𝑝 = 𝐼1 = 1; 𝑡 = 15; 𝑦 = 𝑧 = 0; Z = 0.50; Z =
0.80; Z = 0.90 for ComD, respectively.
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Figure 3.3: The plots of Eq. (3.48) are represented in 3D in (a), (c), (e) and
in 2D in (b), (d), (f) for 𝛾 = 1; 𝜗 = −1; 𝑞 = 𝑝 = 𝜒 = 𝐼 = 1; 𝑡 = 15; 𝑦 = 𝑧 = 0; Z =
0.50; Z = 0.75; Z = 0.90 for ComD, respectively.
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Figure 3.4: The plots of Eq. (3.49) are represented in 3D in (a), (c), (e) and
in 2D in (b), (d), (f) for 𝛾 = 1; 𝜗 = 1; 𝑞 = 𝑝 = 𝜒 = 𝐼 = 1; 𝑡 = 15; 𝑦 = 𝑧 = 0; Z =
0.50; Z = 0.75; Z = 0.90 for ComD, respectively.
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Figure 3.5: The plots of Eq. (3.50) are represented in 3D in (a), (c), (e) and
in 2D in (b), (d), (f) for 𝛾 = −1; 𝜗 = 0; 𝑞 = 𝑝 = 𝜒 = 𝐼 = 1; 𝑡 = 15; 𝑦 = 𝑧 = 0; Z =
0.50; Z = 0.75; Z = 0.90 for ComD, respectively.
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Figure 3.6: The plots of Eq. (3.51) are represented in 3D in (a), (c), (e) and
in 2D in (b), (d), (f) for 𝛾 = 1; 𝜗 = 0; 𝑞 = 𝑝 = 𝜒 = 𝐼 = 1; 𝑡 = 15; 𝑦 = 𝑧 = 0; Z =
0.50; Z = 0.75; Z = 0.90 for ComD, respectively.
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Figure 3.7: The plots of Eq. (3.52) are represented in 3D in (a), (c), (e) and in
2D in (b), (d), (f) for 𝛾 = −1; 𝜗 = 0; 𝑞 = 𝑝 = 𝐼 = 1; 𝜒 = 0; 𝑡 = 15; 𝑦 = 𝑧 = 0; Z =
0.50; Z = 0.75; Z = 0.90 for ComD, respectively.
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Figure 3.8: 3D Plot of the real part (a) with its contour plot (b) and imaginary
part (c) with its contour plot (d) of the Approximate Analytical Solution in Eq.
(3.54) for 𝛾 = 𝛿 = 0.25

Figure 3.9: 3D Plot of the real part (a) with its contour plot (b) and imaginary
part (c) with its contour plot (d) of the Approximate Analytical Solution in Eq.
(3.54) for 𝛾 = 𝛿 = 0.75
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Figure 3.10: 3D Plot of the real part (a) with its contour plot (b) and imaginary
part (c) with its contour plot (d) of the Approximate Analytical Solution in Eq.
(3.54) for 𝛾 = 0.50; 𝛿 = 0.85

Figure 3.11: 3D Plot of the real part (a) with its contour plot (b) and imaginary
part (c) with its contour plot (d) of the Approximate Analytical Solution in Eq.
(3.54) for 𝛾 = 0.75; 𝛿 = 0.85
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Figure 3.12: 3D Plot of the real part (a) with its contour plot (b) and imaginary
part (c) with its contour plot (d) of the Approximate Analytical Solution in Eq.
(3.54) for 𝛾 = 𝛿 = 1

Figure 3.13: 3D Plot of the real part (a) with its contour plot (b) and imaginary
part (c) with its contour plot (d) of the Approximate Analytical Solution in Eq.
(3.56) for 𝛾 = 𝛿 = 0.25
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Figure 3.14: 3D Plot of the real part (a) with its contour plot (b) and imaginary
part (c) with its contour plot (d) of the Approximate Analytical Solution in Eq.
(3.56) for 𝛾 = 𝛿 = 0.75

Figure 3.15: 3D Plot of the real part (a) with its contour plot (b) and imaginary
part (c) with its contour plot (d) of the Approximate Analytical Solution in Eq.
(3.56) for 𝛾 = 0.50; 𝛿 = 0.85
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Figure 3.16: 3D Plot of the real part (a) with its contour plot (b) and imaginary
part (c) with its contour plot (d) of the Approximate Analytical Solution in Eq.
(3.56) for 𝛾 = 0.75; 𝛿 = 0.85

Figure 3.17: 3D Plot of the real part (a) with its contour plot (b) and imaginary
part (c) with its contour plot (d) of the Approximate Analytical Solution in Eq.
(3.56) for 𝛾 = 𝛿 = 1
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CHAPTER 4: NOVEL INVESTIGATION OF MULTIVARIABLE
CONFORMABLE CALCULUS FOR MODELING SCIENTIFIC

PHENOMENA

4.1 Introduction

The conformable version (ComV) of multivariable calculus (MuCL) are proposed

and investigated in this chapter. A real-valued function (ReVaF) of several variables

(SeVs) is studied in the context of ComD with all associated properties. We extend

it to investigate the vector valued functions (VeVaFs) of several real variables

(SeReVs). The ComV of chain rule (ChR) for functions of SeVs is also proposed.

The ComV of implicit function theorem (ImFThm) for SeVs is proposed. All our

results can be employed in several modeling scenarios arising in oceanography as a

computational tool to investigate such models. The ComV of analytic functions’

theory has been studied in (Khalil et al., 2018). In addition, new results on the

contour conformable integral are mentioned in (Martínez et al., 2020; Uçar et al.,

2019). Studying ComD and integral is essential in modeling natural sciences and

engineering phenomena. While there are some recent research works that have

dealt with the conformable calculus in terms of analysis such as the multivariable

conformable calculus (N. Y. Gözütok & Gözütok, 2017), the ComD’s behavior

of functions in arbitrary Banach spaces (Kiskinov et al., 2021), the differential

geometry of curves (U. Gözütok et al., 2019), and the behavioral framework for the

ComV of linear differential systems’ stability (Mayo-Maldonado et al., 2020) to

utilize the importance of ComD in modeling scenarios of control theory and power

electronics, our results provide a comprehensive investigation of Z−derivative of a

function of SeVs and all related properties, the ComV of ChR for functions of SeVs,

and the ComV of ImFThm with many associated numerical examples to validate

our outcomes.
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4.2 Fundamental Notions

From Eq. 1.3, the ComD of some functions are expressed as:

1. 𝔇Z (1) = 0,

2. 𝔇Z (𝑠𝑖𝑛 (𝑎𝑡) ) = 𝑎𝑡1−Z𝑐𝑜𝑠 (𝑎𝑡),

3. 𝔇Z (𝑐𝑜𝑠 (𝑎𝑡) ) = −𝑎𝑡1−Z 𝑠𝑖𝑛 (𝑎𝑡),

4. 𝔇Z
(
𝑒𝑎𝑡

)
= 𝑎𝑡1−Z𝑒

𝑎𝑡 , 𝑎 ∈ 𝑅.

Definition 10. (Khalil et al., 2019). The left ComD beginning from 𝑎,

of function Ψ(𝑡) : [𝑎,∞) → 𝑅 of order Z ∈ (0, 1]is expressed as:

(
𝑎𝔇

ZΨ

)
(𝑡) = lim

Ω→0

Ψ

(
𝑡 +Ω(𝑡 − 𝑎)1−Z

)
− Ψ(𝑡)

Ω
; 𝑡 > 𝑎. (4.1)

For 𝑎 = 0, it is written as:
(
𝔇ZΨ

)
(𝑡) . If Ψ is Z − DF in some (𝑎, 𝑏) , we get:

(
𝑎𝔇

ZΨ

)
(𝑎) = lim

𝑡→𝑎+

(
𝑎𝔇

ZΨ

)
(𝑡) . (4.2)

Theorem 2. (Abdeljawad, 2015). (ChR). Suppose that Ψ,Φ : (𝑎,∞) → 𝑅

are left Z − DFs, where Z ∈ (0, 1] .

Let us assume that ℎ (𝑡) = Ψ(Φ (𝑡)), ℎ (𝑡) is Z−𝐷𝐹 ∀ 𝑡 ≠ 𝑎 and Φ(𝑡) ≠ 0, we get:

(
𝑎𝔇

Zℎ

)
(𝑡) =

(
𝑎𝔇

ZΨ

)
(Φ (𝑡)) ·

(
𝑎𝔇

ZΦ

)
(𝑡) · (Φ(𝑡))Z−1. (4.3)

If 𝑡 = 𝑎, then we obtain:

(
𝑎𝔇

Zℎ

)
(𝑎) = lim

𝑡→𝑎+

(
𝑎𝔇

ZΨ

)
(Φ (𝑡)) ·

(
𝑎𝔇

ZΦ

)
(𝑡) · (Φ(𝑡))Z−1 . (4.4)

Theorem 3. (Khalil et al., 2014). (Rolle’s Theorem (RoThm)). Suppose that 𝑎 >

0, Z ∈ (0, 1] , and function Ψ : [𝑎, 𝑏] → 𝑅 satisfies:
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1. Ψ is continuous function (CF) on [𝑎, 𝑏].

2. Ψ is Z − DF on (𝑎, 𝑏).

3. Ψ (𝑎) = Ψ(𝑏).

Then, ∃ 𝑐 ∈ (𝑎, 𝑏) , ∋
(
𝔇ZΨ

)
(𝑐) = 0.

Theorem 4. (Khalil et al., 2014). (Mean Value Theorem (MeVaThm)). Suppose that

𝑎 > 0, Z ∈ (0, 1] , and function Ψ : [𝑎, 𝑏] → 𝑅 satisfies:

1. Ψ is CF on [𝑎, 𝑏].

2. Ψ is Z − 𝐷𝐹 on (𝑎, 𝑏).

Then, ∃ 𝑐 ∈ (𝑎, 𝑏) , ∋ we have:

(
𝔇ZΨ

)
(𝑐) = Ψ (𝑏) − Ψ (𝑎)

𝑏Z

Z
− 𝑎Z

Z

. (4.5)

Theorem 5. (Al Horani & Khalil, 2018).

(Modified Mean Value Theorem (MoMeVaThm)).

Assume that 𝑎 > 0, Z ∈ (0, 1] , and function Ψ : [𝑎, 𝑏] → 𝑅 satisfies:

1. Ψ is CF on [𝑎, 𝑏].

2. Ψ is Z − DF on (𝑎, 𝑏).

Then ∃ 𝑐 ∈ (𝑎, 𝑏) , ∋ we have:(
𝔇ZΨ

)
(𝑐)

𝑐1−Z
Z

=
Ψ (𝑏) − Ψ (𝑎)

𝑏
Z
− 𝑎

Z

. (4.6)

Theorem 6. (Iyiola & Nwaeze, 2016).Assume that 𝑎 > 0, Z ∈ (0, 1] ,

and function Ψ : [𝑎, 𝑏] → 𝑅 satisfies:

63

Univ
ers

iti 
Mala

ya



1. Ψ is CF on [𝑎, 𝑏].

2. Ψ is Z − 𝐷𝐹 on (𝑎, 𝑏).

Then, we get:

1. If
(
𝔇ZΨ

)
(𝑡) > 0 ∀ 𝑡 ∈ (𝑎, 𝑏), then Ψ is increasing on[𝑎, 𝑏].

2. If
(
𝔇ZΨ

)
(𝑡) < 0 ∀𝑡 ∈ (𝑎, 𝑏), then Ψ is decreasing on[𝑎, 𝑏].

The ComV of partial derivative (PaDr) of a ReVaF with SeVs can be expressed

as follows:

Definition 11. (Atangana et al., 2015; N. Y. Gözütok & Gözütok, 2017). Suppose that

Ψ is a ReVaF with 𝑛 variables, and there is a point: 𝒂 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝑅𝑛 where its

𝑖𝑡ℎ component is positive. Then, the limit is written as:

lim
Ω→0

Ψ
(
𝑎1, .., 𝑎𝑖 +Ω𝑎𝑖1−Z , . . . , 𝑎𝑛

)
− Ψ(𝑎1, . . . , 𝑎𝑛)

Ω
. (4.7)

If the above limit exists, the 𝑖𝑡ℎ ComV of PaDr of Ψ of the order Z ∈ (0, 1] at 𝒂,

, represented by 𝜕Z

𝜕𝑥
Z

𝑖

Ψ (𝒂) .

4.3 The Z-Derivative of a ReVaF of SeVs

Definition 12. Let Ψ be a ReVaF with 𝑛 variables 𝑥1, . . . , 𝑥𝑛, and

Z ∈ (0, 1] . Then, we say that Ψ is Z − DF at 𝒂 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝑅𝑛,

each 𝑎𝑖 > 0, if any of the three conditions which are equivalent to each other

is verified:

1. There is a linear transformation 𝐿 : 𝑅𝑛 → 𝑅 such that

lim
𝒉→0

Ψ
(
𝑎1 + ℎ1𝑎1

1−Z , .., 𝑎𝑛 + ℎ𝑛𝑎𝑛1−Z ) − Ψ (𝑎1, . . . , 𝑎𝑛) − 𝐿 (ℎ)
∥𝒉∥ = 0. (4.8)

where 𝒉 = (ℎ1, . . . , ℎ𝑛) , ∥𝒉∥ =
√︃
ℎ2

1 + · · · + ℎ2
𝑛 and Z ∈ (0, 1] .

64

Univ
ers

iti 
Mala

ya



2. There is a linear transformation 𝐿 : 𝑅𝑛 → 𝑅 and a function 𝛀 : 𝒉 → 𝛀 (𝒉)

such that

Ψ

(
𝑎1 + ℎ1𝑎1

1−Z , .., 𝑎𝑛 + ℎ𝑛𝑎𝑛1−Z
)
− Ψ (𝑎1, . . . , 𝑎𝑛) = 𝐿 (𝒉) +𝛀 (𝒉) ∥𝒉∥ , (4.9)

and 𝑙𝑖𝑚ℎ→0 𝛀 (𝒉) = 0.

3. There is a linear transformation 𝐿 : 𝑅𝑛 → 𝑅 and 𝑛 functionsΩ𝑖 : 𝒉 → Ω𝑖 (𝒉)

∀𝑖 = 1, 2, . . . 𝑛, ∋

Ψ

(
𝑎1 + ℎ1𝑎1

1−Z , .., 𝑎𝑛 + ℎ𝑛𝑎𝑛1−Z
)
− Ψ (𝑎1, . . . , 𝑎𝑛) = 𝐿 (𝒉) +

𝑛∑︁
𝑖=1
Ω𝑖 (𝒉)ℎ𝑖,

(4.10)

and limℎ→0Ω𝑖 (ℎ) = 0 for𝑖 = 1, 2, . . . 𝑛.

The linear transformation 𝐿 : 𝑅𝑛 → 𝑅 is defined by 𝐿 (𝒉) = ∑𝑛
𝑖=1 Z𝑖ℎ𝑖, with

𝒉 = (ℎ1, . . . , ℎ𝑛) and Z1, . . . , Z𝑛 ∈ 𝑅. This linear transformation is denoted by

𝔇Z 𝑓 (𝒂) which is called the ComD of Ψ of the order Z ∈ (0, 1] at 𝒂.

Remark 1. The equivalence of conditions (1) and (2) is immediate, since

𝑙𝑖𝑚
𝒉→0

𝛀 (𝒉) = 0 ↔ Ω (𝒉) ∥𝒉∥ = 𝑜 (∥𝒉∥) .

To see the equivalence between conditions (2) and (3), we take: Ω𝑖 = Ω(𝒉) ℎ𝑖
∥𝒉∥ and

𝛀 (𝒉) = 1
∥𝒉∥

∑𝑛
𝑖=1Ω𝑖 (𝒉) ℎ𝑖, As

��� ℎ𝑖∥𝒉∥

��� ≤ 1, then we have the following:

1. If 𝑙𝑖𝑚𝒉→0 Ω (𝒉) = 0, then 𝑙𝑖𝑚𝒉→0Ω𝑖 (𝒉) = 0.

2. If 𝑙𝑖𝑚𝒉→0Ω𝑖 (ℎ) = 0 for 𝑖 = 1, . . . , 𝑛, then we obtain:

𝑙𝑖𝑚
𝒉→0

∥𝛀 (𝒉)∥ ≤ 𝑙𝑖𝑚
𝒉→0

1
∥𝒉∥

𝑛∑︁
𝑖=1

∥Ω𝑖 (𝒉)∥ ≤ 𝑙𝑖𝑚
𝒉→0

𝑛∑︁
𝑖=1

∥Ω𝑖 (𝒉)∥ = 0,
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i.e., 𝑙𝑖𝑚𝒉→0 𝛀 (𝒉) = 0. Hence, the conditions (2) and (3) are equivalent.

Example 4.3.1. Consider a function Ψ defined by Ψ (𝑥, 𝑦) = 𝑒𝑥 − 2cosy and a

point (𝑎, 𝑏)∈ 𝑅2, with 𝑎 > 0 and 𝑏 > 0, then

𝔇ZΨ (𝑎, 𝑏) (ℎ1, ℎ2) = ℎ1𝑎
1−Z𝑒𝑎 + 2ℎ2𝑏

1−Zsin𝑏.

Solution: To show this, it is noticeable that

lim
(ℎ1,ℎ2)→(0,0)

Ψ
(
𝑎 + 𝑎1−Zℎ1, 𝑏 + 𝑏1−Zℎ2

)
− Ψ (𝑎, 𝑏) − 𝐿 (ℎ1, ℎ2)

∥(ℎ1, ℎ2)∥

= lim
(ℎ1,ℎ2)→(0,0)

𝑒𝑎+𝑎
1−Z ℎ1 −2cos(𝑏+𝑏1−Z ℎ2) −(𝑒𝑎−2𝑐𝑜𝑠𝑏)−(ℎ1𝑎

1−Z 𝑒𝑎+2ℎ2𝑏
1−Z sin𝑏 )√

ℎ2
1+ℎ

2
2

≤ lim
ℎ1→0

𝑒𝑎+𝑎
1−Z ℎ1 − 𝑒𝑎 − ℎ1𝑎

1−Z𝑒𝑎

ℎ1
− 2 lim

ℎ2→0

cos
(
𝑏 + 𝑏1−Zℎ2

)
− 𝑐𝑜𝑠𝑏 + 𝑏1−Zsin𝑏
ℎ2

= lim
ℎ1→0

(
𝑒𝑎+𝑎

1−Z ℎ1 − 𝑒𝑎
ℎ1

− 𝑎1−Z𝑒𝑎
)
− 2 lim

ℎ2→0

(
cos

(
𝑏 + 𝑏1−Zℎ2

)
− 𝑐𝑜𝑠𝑏

ℎ2
+ 𝑏1−Zsin𝑏

)
=

(
𝑎1−Z𝑒𝑎 − 𝑎1−Z𝑒𝑎

)
− 2

(
−𝑏1−Zsin𝑏 + 𝑏1−Zsin𝑏

)
= 0.

Theorem 7. If a ReVaF Ψ with 𝑛 variables Z − DF at 𝒂 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝑅𝑛,

each 𝑎𝑖 > 0, then Ψ is CF at 𝒂 ∈ 𝑅𝑛.

Proof. Since Ψ is Z−DF at 𝑎, we can write the following:

Ψ

(
𝑎1 + ℎ1𝑎1

1−Z , .., 𝑎𝑛 + ℎ𝑛𝑎𝑛1−Z
)
− Ψ (𝑎1, . . . , 𝑎𝑛) =

𝑛∑︁
𝑖=1

Z𝑖ℎ𝑖 + 𝑜 (∥𝒉∥) .

By taking the limits of both sides of the equality as 𝒉 → 0, we get:

lim
𝒉→0

Ψ

(
𝑎1 + ℎ1𝑎1

1−Z , .., 𝑎𝑛 + ℎ𝑛𝑎𝑛1−Z
)
= Ψ (𝑎1, . . . , 𝑎𝑛) .
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Hence, Ψ is CF at 𝒂 ∈ 𝑅𝑛.

Theorem 8. If a ReVaF Ψ with 𝑛 variables is Z − DF at 𝒂 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝑅𝑛,

each 𝑎𝑖 > 0, then 𝜕Z

𝜕𝑥
Z

𝑖

Ψ (𝒂) exists for 1 ≤ 𝑖 ≤ 𝑛 and the ComD of Ψ

of the order Z ∈ (0, 1] is written as:

𝔇ZΨ (𝒂) (𝒉) =
𝑛∑︁
𝑖=1

𝜕Z

𝜕𝑥
Z

𝑖

Ψ (𝒂) ℎ𝑖 . (4.11)

where 𝒉 = (ℎ1, . . . , ℎ𝑛) .

Proof. By setting ℎ 𝑗 = 0,∀ 𝑗 ≠ 𝑖 in the formula (4.10), we get:

Ψ

(
𝑎1, .., 𝑎𝑖 + ℎ𝑖𝑎𝑖1−Z + · · · + 𝑎𝑛

)
− Ψ (𝑎1, . . . , 𝑎𝑛) = Z𝑖ℎ𝑖 +Ω𝑖 (𝒉) ℎ𝑖 .

By multiplying by 1
ℎ𝑖

, we can write:

Ψ
(
𝑎1, .., 𝑎𝑖 + ℎ𝑖𝑎𝑖1−Z + · · · + 𝑎𝑛

)
− Ψ (𝑎1, . . . , 𝑎𝑛)

ℎ𝑖
= Z𝑖 +Ω𝑖 (𝒉).

By taking the limits of both sides of the equality as ℎ𝑖 → 0, we have:

Z𝑖 =
𝜕Z

𝜕𝑥
Z

𝑖

Ψ (𝒂) , ∀𝑖 = 1, 2, . . . , 𝑛.

Finally, by substituting the values above ℎ𝑖 in the formula𝔇ZΨ (𝒂) (𝒉) = ∑𝑛
𝑖=1 Z𝑖ℎ𝑖,

the result is followed.

Corollary 1. If a ReVaF Ψ with 𝑛 variables is Z−DF at 𝒂 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝑅𝑛,

each 𝑎𝑖 > 0, then 𝐷ZΨ (𝒂) is unique.

Remark 2. If a ReVaF Ψ with 𝑛 variables is Z−DF at 𝒂 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝑅𝑛, each
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𝑎𝑖 > 0, then the ComV of gradient of Ψ of the order Z ∈ (0, 1] at 𝑎 is:

∇ZΨ (𝒂) =
(
𝜕Z

𝜕𝑥
Z

1

Ψ (𝒂) , . . . , 𝜕
Z

𝜕𝑥
Z
𝑛

Ψ (𝒂)
)
. (4.12)

In addition, the matrix form (MF) of Eq. (4.11) is expressed as:

𝔇ZΨ (𝒂) (𝒉) = ∇ZΨ (𝒂) · 𝒉 =
(
𝜕Z

𝜕𝑥
Z

1

Ψ (𝑎) , . . . , 𝜕
Z

𝜕𝑥
Z
𝑛

Ψ (𝑎)
)
·
©«
ℎ1
...

ℎ𝑛

ª®®®®®¬
. (4.13)

Theorem 9. Let Z ∈ (0, 1] , Ψ,Φ : 𝑋 → 𝑅 be a ReVaF defined in an open set (OS):

𝑋 ⊂ 𝑅𝑛, ∋ ∀ 𝒙 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝑋 , each 𝑥𝑖 > 0, and a point 𝒂 = (𝑎1, . . . , 𝑎𝑛) ∈

𝑋 . If Ψ,Φ are Z − DF at 𝒂, then we get:

1. 𝔇Z (_Ψ + `Φ) (𝒂) = _𝔇Z (Ψ) (𝒂) + `𝔇Z (Φ) (𝒂), ∀ _, ` ∈ 𝑅.

2. 𝔇Z (ΨΦ) (𝒂) = 𝔇Z (Ψ) (𝒂) · Φ (𝒂) + Ψ (𝒂)𝔇Z (Φ) (𝒂) .

Proof. (1) follows from definition (12), thus it follows the proof of (1). For (2), let

𝑨 =
(
𝑎1 + ℎ1𝑎1

1−Z , .., 𝑎𝑛 + ℎ𝑛𝑎𝑛1−Z ) , then we have:

lim
𝒉→0

((ΨΦ) (𝑨) − (ΨΦ) (𝒂)) −
(
𝔇ZΨ (𝒂) · Φ (𝒂) + Ψ (𝒂) ·𝔇ZΦ (𝒂)

)
(𝒉)

∥𝒉∥

= lim
𝒉→0

(
(Ψ(𝑨)−Ψ(𝒂) )−𝔇Z Ψ(𝒂) (𝒉)

∥𝒉∥ ·Φ(𝒂)+Ψ(𝒂)· (Φ(𝑨)−Φ(𝒂) )−𝔇Z Φ(𝒂) (𝒉)
∥𝒉∥

)
+ lim

𝒉→0

(Ψ (𝑨) − Ψ (𝒂)) · (Φ (𝑨) −Φ (𝒂))
∥𝒉∥
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= 0 + 0 + lim
𝒉→0

(
𝔇ZΨ (𝒂) (𝒉)

)
·
(
𝔇ZΦ (𝒂) (𝒉)

)
∥𝒉∥

= lim
𝒉→0

(
𝔇ZΨ (𝒂)

(
𝒉

∥𝒉∥

))
·
(
𝔇ZΦ (𝒂)

(
𝒉

∥𝒉∥

))
· ∥𝒉∥ = 0.

Theorem 10. Let Z ∈ (0, 1] , Ψ : 𝑋 → 𝑅 be a ReVaF defined in an OS: 𝑋 ⊂

𝑅𝑛, ∋ ∀ 𝒙 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝑋 , each 𝑥𝑖 > 0, and a point 𝒂 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝑋.

If the function Ψ has all ComV of PaDrs of the order Z

at each point of a neighborhood of the point 𝒂,𝑈 (𝒂), with𝑈 (𝒂) ⊂ 𝑋,

and they are continuous at 𝒂, then Ψ is Z − DF at 𝑎.

Proof. The proof of Theorem (10) is mentioned in (Al Horani & Khalil, 2018).

Remark 3. Theorem 10 allows defining the space of ReVaFs with 𝑛 variables by

having continuous ComV of PaDrs of order Z ∈ (0, 1] in a domain 𝑋 ⊂ 𝑅𝑛, which

can be denoted by 𝐶Z (𝑋, 𝑅).

Thus, we can easily extend all of the above results to the VeVaFs of SeReVs.

Theorem 11. Suppose that Z ∈ (0, 1] , 𝚿 : 𝑋 → 𝑅𝑚 be a VeVaF defined in an OS:

𝑋 ⊂ 𝑅𝑛, ∋ ∀𝒙 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝑋 , each 𝑥𝑖 > 0,

and the point 𝒂 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝑋 . The function 𝚿 is Z − DF at 𝒂

iff its components are Z −DF at 𝒂 and if these components are Ψ1, Ψ2, . . . , Ψ𝑚,

then the components of 𝔇Z𝚿 (𝒂) are the Z − derivatives denoted by

𝔇ZΨ 𝑗 (𝒂) , for 𝑗 = 1, 2, . . . , 𝑚, i.e.,

Ψ = (Ψ1, Ψ2, . . . , Ψ𝑚) ⇒ 𝔇Z𝚿(𝒂)=(𝔇ZΨ1 (𝒂), 𝔇ZΨ2 (𝒂), ..., 𝔇ZΨ𝑚 (𝒂)) . (4.14)

Proof. This can be proven similarly by applying 𝔇Z instead of derivative.

Remark 4. Suppose that Z ∈ (0, 1], 𝚿 : 𝑋 → 𝑅𝑚 is a VeVaF defined in an OS:

𝑋 ⊂ 𝑅𝑛, ∋ ∀ 𝒙 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝑋 , each 𝑥𝑖 > 0, and a point 𝒂 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝑋 .
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If function 𝚿 is Z − differentiable at 𝒂, then 𝜕Z

𝜕𝑥
Z

𝑖

Ψ 𝑗 (𝒂) exists for 𝑖 = 1, 2, . . . , 𝑛,

𝑗 = 1, 2, . . . , 𝑚, and the ComV of Z− Jacobian of Ψ of order Z ∈ (0, 1] at 𝒂 is

written as:

𝐽Z𝚿 (𝒂) =

©«
𝜕Z

𝜕𝑥
Z

1
Ψ1 (𝒂) . . . 𝜕Z

𝜕𝑥
Z
𝑛

Ψ1 (𝒂)
... . . .

...

𝜕Z

𝜕𝑥
Z

1
Ψ𝑚 (𝒂) . . . 𝜕Z

𝜕𝑥
Z
𝑛

Ψ𝑚 (𝒂)

ª®®®®®®¬
. (4.15)

4.4 The Chain Rule

The ChR will be shown for the functions of SeVs in two cases. For the proof’s aim,

the continuity’s hypothesis of PaDrs is mentioned in (Marsden & Hoffman, 1996).

Theorem 12. (ChR). Assume that 𝑡 ∈ 𝑅 and 𝒙 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝑅𝑛. If 𝚿 (𝑡) =

(Ψ1(𝑡), . . . ,Ψ𝑛 (𝑡)) is Z − DF at 𝑎 > 0 ∋ Z ∈ (0, 1]

and a RVF Φ with 𝑛 variables 𝑥1, . . . , 𝑥𝑛, is Z − DF at Ψ(𝑎) ∈ 𝑅𝑛, all Ψ𝑖 (𝑎) >

0 ∋ Z ∈ (0, 1] . Then, the composition Φ ◦ Ψ is Z − DF at 𝑎 and

𝔇Z (Φ ◦ 𝚿) (𝑎) =
𝑛∑︁
𝑖=1

𝜕Z

𝜕𝑥
Z

𝑖

Φ(Ψ (𝑎)) · (Ψ𝑖 (𝑎))Z−1 · (𝔇ZΨ𝑖) (𝑎) . (4.16)

Proof. Assume Φ ∈ 𝐶1(𝑈 (𝚿 (𝑎)), 𝑅), ∋ 𝑈 (𝚿 (𝑎)) is the point Ψ(𝑎) neighbor-

hood. Suppose that ℎ (𝑡) = (Φ ◦ 𝚿) (𝑡) = Φ(𝚿 (𝑡)). By setting 𝑢 = 𝑎 + Ω𝑎1−Z in

Eq. 1.3, we see that

𝔇Z (ℎ) (𝑎) = lim
𝑡→𝑎

ℎ (𝑡) − ℎ (𝑎)
𝑡 − 𝑎 𝑎1−Z = lim

𝑡→𝑎

Φ(𝚿 (𝑡)) −Φ(𝚿 (𝑎))
𝑡 − 𝑎 𝑎1−Z . (4.17)

70

Univ
ers

iti 
Mala

ya



Without loss of generality (WLOG), let𝑈 (𝚿(𝑎)) be an open ball (OB), denoted

by 𝐵(𝚿(𝑎), 𝑟). Since Ψ is a CF, then along with points: (Ψ1 (𝑎) , . . . ,Ψ𝑛 (𝑎)) and

(Ψ1(𝑡), . . . ,Ψ𝑛 (𝑡)),

the points (Ψ1 (𝑎) ,Ψ2(𝑡), . . . ,Ψ𝑛 (𝑡)),. . . , (Ψ1(𝑎),Ψ2(𝑎), . . . ,Ψ𝑛 (𝑡))

and lines connecting them must also be the ball 𝐵(Ψ(𝑎), 𝑟).

From the known MeVaThm for differentiable functions (DFs), there is one variable

(Marsden & Hoffman, 1996) as follows:

ℎ (𝑡) − ℎ (𝑎)
𝑡 − 𝑎 𝑎1−Z =

Φ(𝚿 (𝑡)) −Φ(𝚿 (𝑎))
𝑡 − 𝑎 𝑎1−Z

=
Φ(Ψ1 (𝑡) , . . .Ψ𝑛 (𝑡)) −Φ(Ψ1 (𝑎) ,Ψ2(𝑡) . . . ,Ψ𝑛 (𝑡))

𝑡 − 𝑎 𝑎1−Z

+Φ (Ψ1 (𝑎) ,Ψ2 (𝑡) . . . ,Ψ𝑛 (𝑡)) −Φ(Ψ1 (𝑎) ,Ψ2 (𝑎) ,Ψ3 (𝑡) , . . . ,Ψ𝑛 (𝑡))
𝑡 − 𝑎 𝑎1−Z+. . .

+Φ (Ψ1 (𝑎) ,Ψ2 (𝑎) , . . . ,Ψ𝑛 (𝑡)) −Φ (Ψ1 (𝑎) , . . . ,Ψ𝑛 (𝑎))
𝑡 − 𝑎 𝑎1−Z

=
𝜕

𝜕𝑥1
Φ (𝑐1,Ψ2 (𝑡) . . . ,Ψ𝑛 (𝑡))

Ψ1 (𝑡) − Ψ1 (𝑎)
𝑡 − 𝑎 𝑎1−Z

+ 𝜕

𝜕𝑥2
Φ (Ψ1 (𝑎) , 𝑐2 . . . ,Ψ𝑛 (𝑡))

Ψ2 (𝑡) − Ψ2 (𝑎)
𝑡 − 𝑎 𝑎1−Z + . . .

+ 𝜕

𝜕𝑥𝑛
Φ (Ψ1 (𝑎) ,Ψ2(𝑎), . . . , 𝑐𝑛)

Ψ𝑛 (𝑡) − Ψ𝑛 (𝑎)
𝑡 − 𝑎 𝑎1−Z ,

where 𝑐𝑖 is between Ψ𝑖 (𝑎) and Ψ𝑖 (𝑡) ∀ 𝑖 = 1, 2, . . . , 𝑛.

By taking limits as 𝑡 → 𝑎 and using the continuity of PaDrs of Φ in addition to

taking into our account that 𝑐𝑖 → Ψ𝑖 (𝑎) ∀ 𝑖 = 1, 2, . . . , 𝑛, Eq. (4.17) is written as:

𝔇Zℎ) (𝑎) = lim
𝑡→𝑎

ℎ (𝑡) − ℎ (𝑎)
𝑡 − 𝑎 𝑎1−Z = lim

𝑡→𝑎

Φ(𝚿 (𝑡)) −Φ(𝚿 (𝑎))
𝑡 − 𝑎 𝑎1−Z

= lim
𝑡→𝑎

(
𝜕

𝜕𝑥1
Φ (𝑐1,Ψ2 (𝑡) . . . ,Ψ𝑛 (𝑡))

Ψ1 (𝑡) − Ψ1 (𝑎)
𝑡 − 𝑎 𝑎1−Z

)
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+ lim
𝑡→𝑎

(
𝜕
𝜕𝑥2

Φ(Ψ1 (𝑎),𝑐2...,Ψ𝑛 (𝑡))
Ψ2 (𝑡 )−Ψ2 (𝑎)

𝑡−𝑎 𝑎1−Z +...+ 𝜕
𝜕𝑥𝑛

Φ(Ψ1 (𝑎),Ψ2 (𝑎),...,𝑐𝑛) Ψ𝑛 (𝑡 )−Ψ𝑛 (𝑎)𝑡−𝑎 𝑎1−Z
)

=
𝜕

𝜕𝑥1
Φ (Ψ(𝑎)) · Ψ(1)

1 (𝑎) · 𝑎1−Z + 𝜕

𝜕𝑥2
Φ (Ψ (𝑎)) · Ψ(1)

2 (𝑎) · 𝑎1−Z + . . .

+ 𝜕

𝜕𝑥𝑛
Φ (Ψ (𝑎)) · Ψ(1)

𝑛 (𝑎) · 𝑎1−Z

=
𝜕

𝜕𝑥1
Φ (Ψ (𝑎)) · Ψ1 (𝑎)1−Z · Ψ1 (𝑎)Z−1 · Ψ(1)

1 (𝑎) · 𝑎1−Z

+ 𝜕

𝜕𝑥2
Φ (Ψ (𝑎)) · Ψ2 (𝑎)1−Z · Ψ2 (𝑎)Z−1·Ψ(1)

2 (𝑎) · 𝑎1−Z + . . .

+ 𝜕

𝜕𝑥𝑛
Φ (Ψ (𝑎)) · Ψ2 (𝑎)1−Z · Ψ2 (𝑎)Z−1 · Ψ(1)

𝑛 (𝑎) · 𝑎1−Z

=
𝜕Z

𝜕𝑥
Z

1

Φ (𝚿 (𝑎))·Ψ1 (𝑎)Z−1·𝔇ZΨ1) (𝑎)+
𝜕Z

𝜕𝑥
Z

2

Φ (𝚿 (𝑎))·Ψ2 (𝑎)Z−1·𝔇ZΨ2) (𝑎)+. . .

+ 𝜕
Z

𝜕𝑥
Z
𝑛

Φ (𝚽 (𝑎)) · Ψ𝑛 (𝑎)Z−1 ·𝔇ZΨ𝑛) (𝑎) .

Thus, our proof is complete.

Remark 5. The MF of Eq. (4.16) is written as:

𝔇Z (Φ ◦ 𝚿) (𝑎) (ℎ)

=©« 𝜕
Z

𝜕𝑥
Z

1
Φ(𝚿(𝑎) ) ,..., 𝜕

Z

𝜕𝑥
Z
𝑛

Φ(𝚿(𝑎) )ª®¬·
©«

Ψ1 (𝑎)Z −1 0 0

0 . . . 0

0 0 Ψ𝑛 (𝑎)Z −1

ª®®®®®®®®®®®®®¬
·

©«

𝔇Z Ψ1 (𝑎)

...

𝔇Z Ψ𝑛 (𝑎)

ª®®®®®®®®®®®®®¬
·ℎ. (4.18)

The following is a generalized ChR Theorem for RVF with several variables:

Theorem 13. (ChR). Let 𝒙 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝑅𝑛 and 𝒚 = (𝑦1, . . . , 𝑦𝑚) ∈ 𝑅𝑚 .

If 𝚿 (𝑥1, . . . , 𝑥𝑛) = (Ψ1(𝑥1, . . . , 𝑥𝑛), . . . ,Ψ𝑚 (𝑥1, . . . , 𝑥𝑛)) is a Z − 𝐷𝐹

at 𝒂 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝑅𝑛, each 𝑎𝑖 > 0 ∋ Z ∈ (0, 1] , and a RVF Φ with variables

𝑦1, . . . , 𝑦𝑚 is Z − 𝐷𝐹 at 𝚿(𝒂) ∈ 𝑅𝑛, where all Ψ𝑖 (𝑎) > 0 ∋ Z ∈ (0, 1] .
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Then, the composition Φ ◦ 𝚿 is Z − DF at 𝑎, and we have:

𝜕Z

𝜕𝑥
Z

𝑖

(Φ ◦ 𝚿) (𝒂) =
𝑚∑︁
𝑗=1

𝜕Z

𝜕𝑦
Z

𝑗

Φ(𝚿 (𝒂)) · Ψ 𝑗 (𝒂)Z−1 · 𝜕
Z

𝜕𝑥
Z

𝑖

Ψ 𝑗 (𝒂). (4.19)

∀ 𝑖 = 1, 2, . . . , 𝑛.

Proof. From the PaDr’s definition and Theorem (13), we indicate the following:

Remark 6. The MF of Eq. (4.19) is expressed as:

𝔇Z (Φ ◦ 𝚿) (𝒂) (𝒉)

=©« 𝜕
Z

𝜕𝑦
Z

1
Φ(𝚿(𝒂) ) ,..., 𝜕

Z

𝜕𝑦
Z
𝑚

Φ(𝚿(𝒂) )ª®¬·
©«

Ψ1 (𝒂)Z −1 0 0

0 . . . 0

0 0 Ψ𝑚 (𝒂)Z −1

ª®®®®®®®®®®®®®¬
·

©«

𝜕Z

𝜕𝑥
Z

1
Ψ1 (𝒂) . . . 𝜕Z

𝜕𝑥
Z
𝑛

Ψ1 (𝒂)

. . . · · · · · ·

𝜕Z

𝜕𝑥
Z

1
Ψ𝑛 (𝒂) . . . 𝜕Z

𝜕𝑥
Z
𝑛

Ψ𝑛 (𝒂)

ª®®®®®®®®®®®®®®¬
·

©«

ℎ1

...

ℎ𝑛

ª®®®®®®®®®®®®®¬
.

(4.20)

4.5 The ComV of ImFThm

The ComV of ImFThm for SeVs is discussed by formulating the ComV of the

implicit function for a single equation and investigating its existence and regularity.

Theorem 14. (Conformable ImFThm for the Case of a Single Equation).

Assume that Z ∈ (0, 1] , 𝐹 : 𝑋 → 𝑅 is a ReVaF defined in an OS: 𝑋 ⊂ 𝑅𝑛+1, ∋

∀ (𝑥1, . . . , 𝑥𝑛, 𝑦) ∈ 𝑋 , each 𝑥𝑖, 𝑦 > 0, and point (𝑎1, . . . , 𝑎𝑛, 𝑏) ∈ 𝑋 . Suppose that

1. 𝐹 (𝑎1, . . . , 𝑎𝑛, 𝑏) = 0,

2. 𝐹 ∈ 𝐶Z (𝑋, 𝑅),

3. 𝜕Z

𝜕𝑦Z
𝐹 (𝑎1, . . . , 𝑎𝑛, 𝑏) ≠ 0.
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Then, there is a neighbourhood, 𝑈 ⊂ 𝑅𝑛, of (𝑎1, . . . , 𝑎𝑛) ∋ there is a unique

function (UF) 𝑦 = Φ (𝑥1, . . . , 𝑥𝑛) that satisfies: Φ (𝑎1, . . . , 𝑎𝑛) = 𝑏 and

𝐹 (𝑥1, . . . , 𝑥𝑛,Φ (𝑥1, . . . , 𝑥𝑛)) = 0, ∀ (𝑥1, . . . , 𝑥𝑛) ∈ 𝑈.

Finally, 𝑦 = Φ (𝑥1, . . . , 𝑥𝑛) is 𝐶Z in𝑈, and for every 𝑖 = 1, 2, . . . , 𝑛, we have:

𝜕Z

𝜕𝑥
Z

𝑖

Φ (𝑥1, . . . , 𝑥𝑛) = −
𝜕Z

𝜕𝑥
Z

𝑖

𝐹 ((𝑥1, . . . , 𝑥𝑛) ,Φ ((𝑥1, . . . , 𝑥𝑛)))

𝜕Z

𝜕𝑦Z
𝐹 ((𝑥1, . . . , 𝑥𝑛) ,Φ ((𝑥1, . . . , 𝑥𝑛))) · Φ ((𝑥1, . . . , 𝑥𝑛))Z−1 .

(4.21)

Proof. WLOG, let 𝑋 be an OB, denoted by 𝐵((𝑎1, . . . , 𝑎𝑛, 𝑏) ,Ω0). Assume

that 𝜌 ∈ (0,Ω0). If we say: 𝛿 =
√︃
Ω2

0 − 𝜌2, we get:

[∥(𝑥1,...,𝑥𝑛)− (𝑎1,...,𝑎𝑛)∥<𝛿 𝑎𝑛𝑑 |𝑦−𝑏 |< 𝜌]⇒(𝑥1,...,𝑥𝑛,𝑦)∈𝐵((𝑎1,...,𝑎𝑛,𝑏),Ω0).

Note that in particular if |𝑦 − 𝑏 | < 𝜌, then (𝑎1, . . . , 𝑎𝑛, 𝑦) ∈ 𝐵((𝑎1, . . . , 𝑎𝑛, 𝑏) ,Ω0).

Since 𝜕Z

𝜕𝑦Z
𝐹 (𝑎1, . . . , 𝑎𝑛, 𝑏) ≠ 0, it is assumed to be positive (otherwise, −𝐹 is

considered instead of 𝐹). From fact that 𝐹 (𝑎1, . . . , 𝑎𝑛, 𝑏) = 0, it implies that

𝐹 (𝑎1, . . . , 𝑎𝑛, 𝑏 − 𝜌) > 0 and 𝐹 (𝑎1, . . . , 𝑎𝑛, 𝑏 − 𝜌) < 0.

By the continuity of 𝐹 at (𝑎1, . . . , 𝑎𝑛, 𝑏 − 𝜌) and (𝑎1, . . . , 𝑎𝑛, 𝑏 + 𝜌), there exists

𝛿’ ∈ (0, 𝛿) ∋

∥(𝑥1,...,𝑥𝑛)− (𝑎1,...,𝑎𝑛)∥<𝛿’⇒[𝐹 (𝑥1,...,𝑥𝑛,𝑏−𝜌)>0 and 𝐹 (𝑥1,...,𝑥𝑛,𝑏+𝜌)<0] .

Since the function 𝑦 ↦→ 𝐹 (𝑥1, . . . , 𝑥𝑛, 𝑦) is CF on the interval [𝑏 − 𝜌, 𝑏 + 𝜌 ],

∀ (𝑥1, . . . , 𝑥𝑛) ∈ 𝐵((𝑎1, . . . , 𝑎𝑛) , 𝛿’), and from the known Bolzano’s Theorem,

it indicates that ∃ 𝑦𝑥 ∈ ( 𝑏 − 𝜌, 𝑏 + 𝜌) ∋ 𝐹 (𝑥1, . . . , 𝑥𝑛, 𝑦𝑥) = 0, for each 𝑥 =

(𝑥1, . . . , 𝑥𝑛). Then, 𝑦’s value is unique since a function whose derivative is positive

have more than a zero. On the contrary, from: 𝑈 = 𝐵((𝑎1, . . . , 𝑎𝑛) , 𝛿’), for
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each (𝑥1, . . . , 𝑥𝑛) ∈ 𝑈, ∃ a unique 𝑦 ∋ 𝐹 (𝑥1, . . . , 𝑥𝑛, 𝑦) = 0, we can write 𝑦 =

Φ (𝑥1, . . . , 𝑥𝑛), and then this function will be shown to be CF on 𝐵((𝑎1, . . . , 𝑎𝑛) , 𝛿’).

The continuity of the function Φ at the point (𝑎1, . . . , 𝑎𝑛) is obvious since for each

𝜌 > 0, ∃ a value 𝛿’ > 0 ∋

∥(𝑥1, . . . , 𝑥𝑛) − (𝑎1, . . . , 𝑎𝑛)∥ < 𝛿’ ⇒ |𝑏 − 𝑦𝑥 | < 𝜌 ⇔ |𝑏 − 𝑔 (𝑥1, . . . , 𝑥𝑛) | < 𝜌.

The function Φ continuity will be shown at any point

(𝑥1, . . . , 𝑥𝑛) ∈ 𝐵((𝑎1, . . . , 𝑎𝑛) , 𝛿’)

by simply substituting 𝐵((𝑎1, . . . , 𝑎𝑛) , 𝛿’) for an OB: 𝐵((𝑥1, . . . , 𝑥)) contained in

𝐵((𝑎1, . . . , 𝑎𝑛) , 𝛿’).

At the end, the formula (4.21) will now be shown. From using Theorem (13) in

equation:

𝐹 (𝑥1, . . . , 𝑥𝑛, 𝑦) = 0, we have:

𝜕Z

𝜕𝑥
Z

𝑖

𝐹 (𝒙,Φ (𝒙)) + 𝜕Z

𝜕𝑦Z
𝐹 (𝒙,Φ (𝒙)) · Φ (𝒙)Z−1 · 𝜕

Z

𝜕𝑥
Z

𝑖

Φ (𝒙) = 0,

∀ 𝑖 = 1, 2, . . . , 𝑛, ∋ 𝒙 = (𝑥1, . . . , 𝑥𝑛). Solving 𝜕Z

𝜕𝑥
Z

𝑖

Φ (𝒙), we get: formula (4.21).

In addition, the formula (4.21) right side is continuous, so the continuity of the

ComV of PaDrs: 𝜕Z

𝜕𝑥
Z

𝑖

Φ (𝒙) ∀ 𝑖 = 1, 2, . . . , 𝑛, follows.

Theorem (14) will help us compute the ComV of PaDrs of implicit function of SeVs.

Example 4.5.1. Consider:

𝐹 (𝑥, 𝑦, 𝑧) = 𝑥3 + 3𝑦2 + 4𝑥𝑧2 − 3𝑦𝑧2 − 5 = 0.

This equation’s one solution is (1, 1, 1). 𝐹 is obviously in 𝐶Z which is an OB,
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denoted by 𝐵((1, 1, 1) ,Ω0), with 𝑥, 𝑦, 𝑧 > 0, for some Z ∈ (0, 1] since

𝜕Z

𝜕𝑧Z
𝐹 (1, 1, 1) =

(
8𝑥𝑧2−Z − 6𝑦𝑧2−Z

)]
(1,1,1)

= 2 ≠ 0,

Theorem (14) implies that there is a neighbourhood, 𝑈 ⊂ 𝑅2, of (1, 1) ∋ ∃ a UF:

𝑧 = Φ (𝑥, 𝑦) that satisfies the following:

Φ (1, 1) = 1 and 𝐹 (𝑥, 𝑦,Φ (𝑥, 𝑦)) = 0, ∀ (𝑥, 𝑦) ∈ 𝑈.

Moreover, 𝑧 = Φ (𝑥, 𝑦) is 𝐶Z in𝑈, and we have:

𝜕Z

𝜕𝑥Z
Φ (𝑥, 𝑦) = −

(
3𝑥 + 4𝑧2) 𝑥1−Z

(8𝑥 − 6𝑦) 𝑧 ,

𝜕Z

𝜕𝑦Z
Φ (𝑥, 𝑦) = −

(
6𝑦 − 3𝑧2) 𝑦1−Z

(8𝑥 − 6𝑦) 𝑧 .

Finally, we obtain: 𝜕Z

𝜕𝑥Z
Φ (1, 1) = −7

2 and 𝜕Z

𝜕𝑦Z
Φ (1, 1) = −3

2 .

At the end, the ComV of ImFThm for a system of several equations and SeReVs is

found.

Theorem 15. (The Conformable General ImFThm). Let Z ∈ (0, 1] , 𝑭 : 𝑋 →

𝑅𝑚 be a VeVaF defined in an OS: 𝑋 ⊂ 𝑅𝑛+𝑚, ∋ ∀ (𝒙; 𝒚) = (𝑥1, . . . , 𝑥𝑛; 𝑦1, . . . , 𝑦𝑚)

∈ 𝑋, each 𝑥𝑖, 𝑦 𝑗 > 0, and point (𝒂; 𝒃) = (𝑎1, . . . , 𝑎𝑛; 𝑏1, . . . , 𝑏𝑚) ∈ 𝑋 . Assume that

1. 𝑭 (𝒂; 𝒃) = 0,

2. 𝑭 ∈ 𝐶Z (𝑋, 𝑅𝑚 ),

3. 𝑑𝑒𝑡

[
𝐽
Z
𝑦 𝑭 (𝒂; 𝒃)

]
≠ 0.

Then, there is a neighbourhood, 𝑈 ⊂ 𝑅𝑛, of 𝒂 ∋ ∃ a UF: 𝚿 : 𝑈 → 𝑅𝑚 , 𝒙 →

𝒚 = 𝚿 (𝒙) that satisfies:

𝚿 (𝒂) = 𝒃 and 𝑭 (𝒙;𝚿 (𝒙) ) = 0 , ∀𝒙 ∈ 𝑈,

Finally, 𝒚 = 𝚿 (𝒙) is class 𝐶Z in𝑈, and for every 𝑖 = 1, 2, . . . , 𝑛, we have:
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[
𝜕Z𝚿

𝜕𝑥
Z

𝑖

] 𝑡
= −

(
𝚿Z−1

)−1
·
(
𝐽
Z
𝑦 𝑭

)−1
·
[
𝜕Z𝑭

𝜕𝑥
Z

𝑖

] 𝑡
, (4.22)

where[
𝜕Z𝚿
𝜕𝑥
Z

𝑖

]
=

(
𝜕ZΨ1
𝜕𝑥
Z

𝑖

, . . . ,
𝜕ZΨ𝑚

𝜕𝑥
Z

𝑖

)
, 𝚿Z−1 =

©«
Ψ
Z−1
1 . . . 0
... . . .

...

0 . . . Ψ
Z−1
𝑚

ª®®®®®¬
,

𝐽
Z
𝑦 𝑭 =

©«

𝜕Z 𝐹1
𝜕𝑦
Z

1
. . .

𝜕Z 𝐹1
𝜕𝑦
Z
𝑚

. . . . . . . . .

𝜕Z 𝐹𝑚

𝜕𝑦
Z

1
. . .

𝜕Z 𝐹𝑚

𝜕𝑦
Z
𝑚

ª®®®®®®¬
and

[
𝜕Z 𝑭

𝜕𝑥
Z

𝑖

]
=

(
𝜕Z 𝐹1
𝜕𝑥
Z

𝑖

, . . . ,
𝜕Z 𝐹𝑚

𝜕𝑥
Z

𝑖

)
.

Proof. The existence and uniqueness of the implicit function can be proven

same as the known MuCL via the mathematical induction on 𝑞 and using the ComV

oF ImFThm for several variables (Marsden & Hoffman, 1996).

To prove formula(4.22), we suppose that a system with several equations and

SeReVs is expressed as:

𝐹 (𝒙; 𝒚) = 0 𝑜𝑟


𝐹1 (𝑥1, . . . , 𝑥𝑛; 𝑦1, . . . , 𝑦𝑚) = 0

...

𝐹𝑚 (𝑥1, . . . , 𝑥𝑛; 𝑦1, . . . , 𝑦𝑚) = 0

, (4.23)

satisfies hypotheses (1)-(3) of the theorem, then this system is defined in a

neighbourhood, 𝑈 ⊂ 𝑅𝑛, of 𝒂 the implicit function 𝒚 = 𝚿 (𝒙) class 𝐶Z in𝑈, such

that 𝚿 (𝒂) = 𝒃 which satisfies Eq. 1.3, i.e.,

𝐹 (𝒙;𝚿(𝒙)) = 0 𝑜𝑟


𝐹1 (𝒙;Ψ1(𝒙), . . . ,Ψ𝑚 (𝒙)) = 0

. . .

𝐹𝑚 (𝒙;Ψ1(𝒙), . . . ,Ψ𝑚 (𝒙)) = 0

. (4.24)

By employing the ComV of ChR to the above equation, we get:
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𝜕Z 𝐹1
𝜕𝑥
Z

𝑖

+ 𝜕Z 𝐹1
𝜕𝑦
Z

1
·ΨZ−1

1 · 𝜕
ZΨ1
𝜕𝑥
Z

𝑖

+ · · · + 𝜕Z 𝐹1
𝜕𝑦
Z
𝑚

· ΨZ−1
𝑚 · 𝜕

ZΨ𝑚

𝜕𝑥
Z

𝑖

= 0
...

𝜕Z 𝐹𝑚

𝜕𝑥
Z

𝑖

+ 𝜕Z 𝐹𝑚

𝜕𝑦
Z

1
·ΨZ−1

1 · 𝜕
ZΨ1
𝜕𝑥
Z

𝑖

+ · · · + 𝜕Z 𝐹𝑚

𝜕𝑦
Z
𝑚

· ΨZ−1
𝑚 · 𝜕

ZΨ𝑚

𝜕𝑥
Z

𝑖

= 0


𝑜𝑟

𝜕Z𝑭

𝜕𝑥
Z

𝑖

+
𝑚∑︁
𝑗=1

𝜕Z𝑭

𝜕𝑦
Z

𝑗

· ΨZ−1
𝑗

·
𝜕ZΨ 𝑗

𝜕𝑥
Z

𝑖

= 0, (4.25)

∀𝑖 = 1, 2, . . . , 𝑛.

Additionally, the MF of Eq. (4.25) is provided as follows:

©«

𝜕Z 𝐹1
𝜕𝑥
Z

𝑖

...

𝜕Z 𝐹𝑚

𝜕𝑥
Z

𝑖

ª®®®®®®¬
= −

©«

𝜕Z 𝐹1
𝜕𝑦
Z

1
. . .

𝜕Z 𝐹1
𝜕𝑦
Z
𝑚

. . . . . . . . .

𝜕Z 𝐹𝑚

𝜕𝑦
Z

1
. . .

𝜕Z 𝐹𝑚

𝜕𝑦
Z
𝑚

ª®®®®®®¬
·

©«
Ψ
Z−1
1 . . . 0
... . . .

...

0 . . . Ψ
Z−1
𝑚

ª®®®®®¬
·

©«

𝜕ZΨ1
𝜕𝑥
Z

𝑖

...

𝜕ZΨ𝑚

𝜕𝑥
Z

𝑖

ª®®®®®®¬
𝑜𝑟[

𝜕Z𝑭

𝜕𝑥
Z

𝑖

] 𝑡
= −𝐽Z𝑦 𝑭 · 𝚿𝜻−1 ·

[
𝜕Z𝚿

𝜕𝑥
Z

𝑖

] 𝑡
. (4.26)

Since 𝐽Z𝑦 𝑭 and 𝚿𝜻−1 are regular matrices by hypothesis, we have:

©«

𝜕ZΨ1
𝜕𝑥
Z

𝑖

...

𝜕Z 𝐹𝑚

𝜕𝑥
Z

𝑖

ª®®®®®®¬
= −

©«
Ψ
Z−1
1 . . . 0
... . . .

...

0 . . . Ψ
Z−1
𝑚

ª®®®®®¬

−1

·

©«

𝜕Z 𝐹1
𝜕𝑦
Z

1
. . .

𝜕Z 𝐹1
𝜕𝑦
Z
𝑚

. . . . . . . . .

𝜕Z 𝐹𝑚

𝜕𝑦
Z

1
. . .

𝜕Z 𝐹𝑚

𝜕𝑦
Z
𝑚

ª®®®®®®¬

−1

·

©«

𝜕Z 𝐹1
𝜕𝑥
Z

𝑖

...

𝜕Z 𝐹𝑚

𝜕𝑥
Z

𝑖

ª®®®®®®¬
𝑜𝑟[

𝜕Z𝚿

𝜕𝑥
Z

𝑖

] 𝑡
= −

(
𝚿𝜻−1

)−1
·
(
𝐽
Z
𝑦 𝑭

)−1
·
[
𝜕Z𝑭

𝜕𝑥
Z

𝑖

] 𝑡
,

which finalizes the proof.
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Theorem (15) will be shown to compute the ComV of PaDrs of systems with several

equations and SeReVs.

Example 4.5.2. Consider a system of 2 equations and 2 real variables:


𝐹1 (𝑥, 𝑦, 𝑧, 𝑤) = 𝑥2 + 𝑦2 + 𝑧2 + 𝑤2 − 6 = 0

𝐹2 (𝑥, 𝑦, 𝑧, 𝑤) = 𝑥2 − 𝑦2 + 𝑧2 − 𝑤2 = 0
.

One solution of this equation is (𝑥, 𝑦, 𝑧, 𝑤) = (1, 1,
√

2,
√

2). Clearly, 𝑭 = (𝐹1, 𝐹2)

is in 𝐶Z which is an OB: 𝐵(
(
1, 1,

√
2,
√

2
)
,Ω0), with 𝑥, 𝑦, 𝑧, 𝑤 > 0, for some

Z ∈ (0, 1] since

𝑑𝑒𝑡

[
𝐽
Z
𝑧,𝑤𝑭

((√
2,
√

2, 1, 1
))]

= 𝑑𝑒𝑡


©«

2𝑧2−Z 2𝑤2−Z

2𝑧2−Z −2𝑤2−Z

ª®®¬
 (

1,1,
√

2,
√

2
) = −32

2∝
≠ 0,

Theorem (15) indicates that there is a neighbourhood, 𝑈 ⊂ 𝑅2, of
(√

2,
√

2
)
∋ ∃ a

UF: 𝚿 = (Ψ1,Ψ2) given by


𝑧 = Ψ1 (𝑥, 𝑦)

𝑤 = Ψ2 (𝑥, 𝑦)
,

that satisfies: 
Ψ1 (1, 1) =

√
2

Ψ2 (1, 1) =
√

2
,

and 
𝐹1 (𝑥, 𝑦,Ψ1 (𝑥, 𝑦) ,Ψ2 (𝑥, 𝑦)) = 0

𝐹2 (𝑥, 𝑦,Ψ1 (𝑥, 𝑦) ,Ψ2 (𝑥, 𝑦)) = 0
,∀ (𝑥, 𝑦) ∈ 𝑈.

Moreover, 𝚿 = (Ψ1,Ψ2) is class 𝐶Z in𝑈, and we have:
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©«
𝜕ZΨ1
𝜕𝑥Z

𝜕ZΨ2
𝜕𝑥Z

ª®®¬ = −
©«
𝑧Z−1 0

0 𝑤Z−1

ª®®¬
−1

·
©«

2𝑧2−Z 2𝑤2−Z

2𝑧2−Z −2𝑤2−Z

ª®®¬
−1

·
©«

2𝑥2−Z

2𝑥2−Z

ª®®¬
= −1

4
·
©«
𝑧1−Z 0

0 𝑤1−Z

ª®®¬ ·
©«
𝑧Z−2 𝑧Z−2

𝑤Z−2 −𝑤Z−2

ª®®¬ ·
©«

2𝑥2−Z

2𝑥2−Z

ª®®¬
= −1

4
·
©«
𝑧−1 𝑧−1

𝑤−1 −𝑤−1

ª®®¬ ·
©«

2𝑥2−Z

2𝑥2−Z

ª®®¬ =
©«
− 𝑥2−Z

𝑧

0

ª®®¬
©«

𝜕ZΨ1
𝜕𝑦Z

𝜕ZΨ2
𝜕𝑦Z

ª®®¬ = −
©«
𝑧Z−1 0

0 𝑤Z−1

ª®®¬
−1

·
©«

2𝑧2−Z 2𝑤2−Z

2𝑧2−Z −2𝑤2−Z

ª®®¬
−1

·
©«

2𝑦2−Z

−2𝑦2−Z

ª®®¬
= −1

4
·
©«
𝑧1−Z 0

0 𝑤1−Z

ª®®¬ ·
©«
𝑧Z−2 𝑧Z−2

𝑤Z−2 −𝑤Z−2

ª®®¬ ·
©«

2𝑦2−Z

−2𝑦2−Z

ª®®¬
= −1

4
·
©«
𝑧−1 𝑧−1

𝑤−1 −𝑤−1

ª®®¬ ·
©«

2𝑦2−Z

−2𝑦2−Z

ª®®¬ =
©«

0

− 𝑦2−Z

𝑤

ª®®¬ .
Finally, we have:

©«
𝜕ZΨ1
𝜕𝑥Z

𝜕ZΨ2
𝜕𝑥Z

ª®®¬(
1,1,

√
2,
√

2
) =

©«
− 1√

2

0

ª®®¬ 𝑎𝑛𝑑
©«

𝜕ZΨ1
𝜕𝑦Z

𝜕ZΨ2
𝜕𝑦Z

ª®®¬(
1,1,

√
2,
√

2
) =

©«
0

− 1√
2

ª®®¬ .

4.6 Conclusion

The ComV of MuCL have been studied in detail. The Z−derivative of a function

of SeVs and all related properties have been discussed. The ComV of ChR for

functions of SeVs has also been investigated. The ComV of ImFThm has been

proposed, and numerical examples have been provided to validate our theoretical
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analysis. All our results in the context of ComD are compatible with the integer

order ones. Various scientific systems can be modelled by using our results. Further

extensions or generalizations can be considered as a new direction in our future

works.
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CHAPTER 5: ON ABU-SHADY–KAABAR FRACTIONAL DERIVATIVE
WITH APPLICATIONS

5.1 Introduction

The ComD satisfies some important properties that cannot be satisfied in RL and

Cp definitions. In (Abdelhakim, 2019), the author proved that the ComD in (Khalil

et al., 2014) cannot provide good results in comparison with the Cp definition

for some functions. Therefore, to overcome all such issues, we have proposed

in this chapter a new generalized definition of fractional derivative, known as

Abu-Shady–Kaabar (ASK) fractional derivative, that has advantages in comparison

with other previous definitions to obtain simple solutions of fractional differential

equations.

5.2 Basic Definitions and Tools

This ASK definition is written as follows:

Definition 13. For a function: Ψ : [0,∞) → 𝑅, the ASK fractional derivative of

order 0 < Z ≤ 1 of Ψ(𝑡) at 𝑡 > 0 is defined as:

𝔇𝐴𝑆𝐾Ψ(𝑡) = lim
Ω→0

Ψ(𝑡 + Γ(𝛽)
Γ(𝛽−Z+1)Ω𝑡

1−Z ) − Ψ(𝑡)
Ω

; 𝛽 > −1, 𝛽 ∈ 𝑅+, (5.1)

and the fractional derivative at 0 is defined as: 𝔇𝐴𝑆𝐾Ψ(0) = limΩ→0+ 𝔇
𝐴𝑆𝐾Ψ(𝑡).

Theorem 16. If Ψ(𝑡) is a Z−DF, then𝔇𝐴𝑆𝐾Ψ(𝑡) = Γ(𝛽)
Γ(𝛽−Z+1) 𝑡

1−Z 𝑑Ψ(𝑡)
𝑑𝑡

; 𝛽 > −1, 𝛽 ∈

𝑅+.

We formulate the ASK fractional derivative for some functions to prove that our

new proposed definition is powerful in obtaining analytical solutions for solving

various types of fractional differential equations, and ASK definition in Eq. 5.1
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coincides with the results from the well-known classical fractional derivatives such

as Caputo and Riemann-Liouville fractional derivatives.

5.3 Theoretical Investigation

Let us first prove our proposed Theorem 16 as follows:

Proof: From Eq. 5.1, we have:

𝔇𝐴𝑆𝐾Ψ(𝑡) = lim
Ω→0

Ψ(𝑡 + Γ(𝛽)
Γ(𝛽−Z+1)Ω𝑡

1−Z ) − Ψ(𝑡)
Ω

; 𝛽 > −1, 𝛽 ∈ 𝑅+, (5.2)

where at Z = 𝛽 = 1, the classical limit-based derivative of a function is obtained.

Now, let

ℎ =
Γ(𝛽)

Γ(𝛽 − Z + 1)Ω𝑡
1−Z , (5.3)

Ω =
Γ(𝛽 − Z + 1)

Γ(𝛽) ℎ𝑡Z−1. (5.4)

By substituting from Eq. 5.4 into Eq. 5.2, we get:

𝔇𝐴𝑆𝐾Ψ(𝑡) = Γ(𝛽)
Γ(𝛽 − Z + 1) 𝑡

1−Z lim
ℎ→0

Ψ(𝑡 + ℎ) − Ψ(𝑡)
ℎ

, (5.5)

thus

𝔇𝐴𝑆𝐾Ψ(𝑡) = Γ(𝛽)
Γ(𝛽 − Z + 1) 𝑡

1−Z 𝑑Ψ(𝑡)
𝑑𝑡

. (5.6)

For a function: Ψ(𝑡) = 𝑡𝑘 , 𝑘 > −1, 𝑘 ∈ 𝑅+, we prove that

𝔇𝐴𝑆𝐾Ψ(𝑡) = Γ(𝛽 + 1)
Γ(𝛽 − Z + 1) 𝑡

𝛽−Z . (5.7)

By using Eq. 5.6, we obtain:

𝔇𝐴𝑆𝐾Ψ(𝑡) = Γ(𝛽)
Γ(𝛽 − Z + 1) 𝑡

1−Z 𝑘𝑡𝑘−1. (5.8)
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𝔇𝐴𝑆𝐾Ψ(𝑡) = 𝑘Γ(𝛽)
Γ(𝛽 − Z + 1) 𝑡

𝑘−Z . (5.9)

By taking 𝑘 = 𝛽, we get:

𝔇𝐴𝑆𝐾 𝑡𝛽 =
𝛽Γ(𝛽)

Γ(𝛽 − Z + 1) 𝑡
𝛽−Z , (5.10)

then

𝔇𝐴𝑆𝐾 𝑡𝛽 =
Γ(𝛽 + 1)

Γ(𝛽 − Z + 1) 𝑡
𝛽−Z . (5.11)

Eq. 5.11 is compatible with the results of Cp and RL derivatives (Podlubny, 1998).

Theorem 17. For a function derivative ofΨ(𝑡) = 𝑡𝑘 , 𝑘 ∈ 𝑅+, we obtain:𝔇Z𝔇𝛽𝑡𝑘 =

𝔇Z+𝛽𝑡𝑘 .

Proof: By using Eq. 5.11, we get:

𝔇𝛽𝑡𝑘 =
Γ(𝑘 + 1)

Γ(𝑘 − 𝛽 + 1) 𝑡
𝑘−𝛽. (5.12)

𝔇Z𝔇𝛽𝑡𝑘 =
Γ(𝑘 + 1)

Γ(𝑘 − 𝛽 + 1)𝔇
Z 𝑡𝑘−𝛽. (5.13)

𝔇Z𝔇𝛽𝑡𝑘 =
Γ(𝑘 + 1)

Γ(𝑘 − 𝛽 + 1)
Γ(𝑘 − 𝛽 + 1)

Γ(𝑘 − 𝛽 − Z + 1) 𝑡
𝑘−𝛽−Z . (5.14)

𝐿.𝐻.𝑆 = 𝔇Z𝔇𝛽𝑡𝑘 =
Γ(𝑘 + 1)

Γ(𝑘 − 𝛽 − Z + 1) 𝑡
𝑘−𝛽−Z . (5.15)

Also, we have:

𝑅.𝐻.𝑆 = 𝔇Z+𝛽𝑡𝑘 =
Γ(𝑘 + 1)

Γ(𝑘 − 𝛽 − Z + 1) 𝑡
𝑘−𝛽−Z . (5.16)
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thus by Eq. 5.15 and Eq. 5.16, we get:

𝔇Z𝔇𝛽𝑡𝑘 = 𝔇Z+𝛽𝑡𝑘 . (5.17)

This property is not satisfied in the ComD (Khalil et al., 2014).

Theorem 18. For a differentiable function: Ψ(𝑡) that expands about a point such

as Ψ(𝑡) = ∑∞
𝑘=0

Ψ𝑘 (0)
𝑘! 𝑡𝑘 , we have: 𝔇Z𝔇𝛽Ψ(𝑡) = 𝔇Z+𝛽Ψ(𝑡).

Proof: The expanded function by Taylor theory is given by: Ψ(𝑡) = ∑∞
𝑘=0

Ψ𝑘 (0)
𝑘! 𝑡𝑘 ,

𝔇𝛽Ψ(𝑡) =
∞∑︁
𝑘=0

Ψ𝑘 (0)
𝑘!

𝔇𝛽𝑡𝑘 , (5.18)

𝔇𝛽Ψ(𝑡) =
∞∑︁
𝑘=0

Ψ𝑘 (0)
𝑘!

Γ(𝑘 + 1)
Γ(𝑘 − 𝛽 + 1) 𝑡

𝑘−𝛽, (5.19)

𝔇Z𝔇𝛽Ψ(𝑡) =
∞∑︁
𝑘=0

Ψ𝑘 (0)
𝑘!

Γ(𝑘 + 1)
Γ(𝑘 − 𝛽 + 1)𝔇

Z 𝑡𝑘−𝛽, (5.20)

𝔇Z𝔇𝛽Ψ(𝑡) =
∞∑︁
𝑘=0

Ψ𝑘 (0)
𝑘!

Γ(𝑘 + 1)
Γ(𝑘 − 𝛽 + 1)

Γ(𝑘 − 𝛽 + 1)
Γ(𝑘 − 𝛽 − Z + 1) 𝑡

𝑘−𝛽−Z , (5.21)

𝐿.𝐻.𝑆 = 𝔇Z𝔇𝛽Ψ(𝑡) =
∞∑︁
𝑘=0

Ψ𝑘 (0)
𝑘!

Γ(𝑘 + 1)
Γ(𝑘 − 𝛽 − Z + 1) 𝑡

𝑘−𝛽−Z , (5.22)

𝑅.𝐻.𝑆 = 𝔇Z+𝛽Ψ(𝑡) =
∞∑︁
𝑘=0

Ψ𝑘 (0)
𝑘!

𝔇Z+𝛽𝑡𝑘 , (5.23)

𝑅.𝐻.𝑆 = 𝔇Z+𝛽Ψ(𝑡) =
∞∑︁
𝑘=0

Ψ𝑘 (0)
𝑘!

Γ(𝑘 + 1)
Γ(𝑘 − 𝛽 − Z + 1) 𝑡

𝑘−𝛽−Z . (5.24)
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Thus by 5.22 and 5.24, we have:

𝔇Z𝔇𝛽Ψ(𝑡) = 𝔇Z+𝛽Ψ(𝑡). (5.25)

This property is not satisfied in the ComD (Khalil et al., 2014).

Theorem 19. Let Z ∈ (0, 1] and Ψ,Φ be Z−DFs, then

(𝑖)𝔇𝐴𝑆𝐾 (ΨΦ) = Ψ𝔇𝐴𝑆𝐾 (Φ) +Φ𝔇𝐴𝑆𝐾 (Ψ) , (5.26)

(𝑖𝑖)𝔇𝐴𝑆𝐾

(
Ψ

Φ

)
=
Φ𝔇𝐴𝑆𝐾 (Ψ) − Ψ𝔇𝐴𝑆𝐾 (Φ)

Φ2 . (5.27)

Proof: By using Eq. 5.6, we have:

𝐿.𝐻.𝑆 = 𝔇𝐴𝑆𝐾 (ΨΦ) , (5.28)

=
Γ(𝛽)

Γ(𝛽 − Z + 1) 𝑡
1−Z 𝑑 (ΨΦ)

𝑑𝑡
, (5.29)

=
Γ(𝛽)

Γ(𝛽 − Z + 1) 𝑡
1−Z

[
Ψ
𝑑Φ

𝑑𝑡
+Φ𝑑Ψ

𝑑𝑡

]
, (5.30)

= Ψ
Γ(𝛽)

Γ(𝛽 − Z + 1) 𝑡
1−Z 𝑑Φ

𝑑𝑡
+Φ Γ(𝛽)

Γ(𝛽 − Z + 1) 𝑡
1−Z 𝑑Ψ

𝑑𝑡
, (5.31)

= Ψ𝔇𝐴𝑆𝐾 (Φ) +Φ𝔇𝐴𝑆𝐾 (Ψ) = 𝑅.𝐻.𝑆. (5.32)

This proves (𝑖)
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Now, to prove (𝑖𝑖), we use Eq. 5.6 as follows:

𝐿.𝐻.𝑆 = 𝔇𝐴𝑆𝐾

(
Ψ

Φ

)
, (5.33)

=
Γ(𝛽)

Γ(𝛽 − Z + 1) 𝑡
1−Z 𝑑

𝑑𝑡

(
Ψ

Φ

)
, (5.34)

=
Γ(𝛽)

Γ(𝛽 − Z + 1) 𝑡
1−Z

[
Φ
𝑑𝑓

𝑑𝑡
− Ψ 𝑑Φ

𝑑𝑡

Φ2

]
, (5.35)

=

Φ

[
Γ(𝛽)

Γ(𝛽−Z+1) 𝑡
1−Z 𝑑Ψ

𝑑𝑡

]
− Ψ

[
Γ(𝛽)

Γ(𝛽−Z+1) 𝑡
1−Z 𝑑Φ

𝑑𝑡

]
Φ2 , (5.36)

=
Φ𝔇𝐴𝑆𝐾 (Ψ) − Ψ𝔇𝐴𝑆𝐾 (Φ)

Φ2 = 𝑅.𝐻.𝑆. (5.37)

The rules (𝑖) and (𝑖𝑖) are not satisfied in the Cp and RL definitions.

Theorem 20. (Rolle’s Theorem for the Generalized Fractional Differential Function).

Let 𝑎 > 0 and Ψ : [𝑎, 𝑏] → 𝑅 be a given function that satisfies the following:

i) Ψ is continuous on [a, b].

ii)Ψ is Z−DF for some Z ∈ (0, 1] .

iii)Ψ (𝑎) = Ψ (𝑏) .

then, there exists 𝑐 ∈ [𝑎, 𝑏] , such that Ψ(Z) (𝑐) = 0.

Proof: Since Ψ is continuous on [𝑎, 𝑏] ,and Ψ (𝑎) = Ψ (𝑏), there is a 𝑐 ∈ (𝑎, 𝑏) ,

which is a point of local extrema, and 𝑐 is assumed to be a point of local minimum.

So, we have:

𝔇𝐴𝑆𝐾Ψ(𝑐+) = lim
Ω→0+

Ψ(𝑐 + Γ(𝛽)
Γ(𝛽−Z+1)Ω𝑐

1−Z ) − Ψ(𝑐)
Ω

; 𝛽 > −1, 𝛽 ∈ 𝑅+, (5.38)
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𝔇𝐴𝑆𝐾Ψ(𝑐−) = lim
Ω→0−

Ψ(𝑐 + Γ(𝛽)
Γ(𝛽−Z+1)Ω𝑐

1−Z ) − Ψ(𝑐)
Ω

; 𝛽 > −1, 𝛽 ∈ 𝑅+, (5.39)

But, 𝔇𝐴𝑆𝐾Ψ(𝑐+) and 𝔇𝐴𝑆𝐾Ψ(𝑐−) have opposite signs. Hence, 𝔇𝐴𝑆𝐾Ψ(𝑐) = 0.

Theorem 21. (Mean Value Theorem for the Generalized Fractional Differential

Function) Let 𝑎 > 0 and Ψ : [𝑎, 𝑏] → 𝑅 be a given function that satisfies the

following:

i) Ψ is continuous on [a, b]

ii) Ψ is Z−DF for some Z ∈ (0, 1) .

then, there exists 𝑐 ∈ [𝑎, 𝑏] , such that

𝔇𝐴𝑆𝐾Ψ (𝑐) =
[
Ψ (𝑏) − Ψ (𝑎)
ℎ

(
𝑏Z − 𝑎Z

) ]
, (5.40)

where ℎ = 1
Γ(Z)

Proof: Consider a function such as in (Khalil et al., 2014)

Φ (𝑡) = Ψ (𝑡) − Ψ (𝑎) −
[
Ψ (𝑏) − Ψ (𝑎)
ℎ

(
𝑏Z − 𝑎Z

) ] (
ℎ𝑡Z − ℎ𝑎Z

)
, (5.41)

where ℎ = 1
Γ(Z) .

𝔇𝐴𝑆𝐾Φ (𝑡) = 𝔇𝐴𝑆𝐾Ψ (𝑡) −𝔇𝐴𝑆𝐾Ψ (𝑎) −
[
Ψ (𝑏) − Ψ (𝑎)
ℎ

(
𝑏Z − 𝑎Z

) ] (
ℎ𝔇𝐴𝑆𝐾 𝑡Z − ℎ𝔇𝐴𝑆𝐾𝑎Z

)
,

(5.42)

By using Eq. 5.6, we get:

𝔇𝐴𝑆𝐾Φ (𝑡) = 𝔇𝐴𝑆𝐾Ψ (𝑡) −
[
Ψ (𝑏) − Ψ (𝑎)
ℎ

(
𝑏Z − 𝑎Z

) ]
, (5.43)
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at 𝑐 ∈ [𝑎, 𝑏]

𝔇𝐴𝑆𝐾Φ (𝑐) = 𝔇𝐴𝑆𝐾Ψ (𝑐) −
[
Ψ (𝑏) − Ψ (𝑎)
ℎ

(
𝑏Z − 𝑎Z

) ]
, (5.44)

the auxiliary function: Φ (𝑐) satisfies all conditions of the Rolle’s theorem. There-

fore, there exists a 𝑐 ∈ [𝑎, 𝑏] such that 𝔇𝐴𝑆𝐾Φ (𝑐) = 0. Then, we have:

𝔇𝐴𝑆𝐾Ψ (𝑐) =
[
Ψ (𝑏) − Ψ (𝑎)
ℎ

(
𝑏Z − 𝑎Z

) ]
, (5.45)

Definition 14. 𝐼𝑎
Z
(Ψ) (𝑡) = 𝐼0

1
(
𝑡Z−1Ψ (𝑥)

)
=
Γ(𝛽−Z+1)
Γ(𝛽)

∫ 𝑡

0
Ψ(𝑥)
𝑥1−Z 𝑑𝑥 and Z ∈ (0, 1)

Theorem 22. 𝔇Z 𝐼Z (Ψ) (𝑡) = Ψ (𝑡) for 𝑡 ≥ 0 where Ψ is any continuous function

in the domain.

Proof: Since Ψ is continuous, then 𝐼𝑎
Z
(Ψ) (𝑡) 𝑖𝑠 differentiable. Hence,

𝔇Z 𝐼Z (Ψ) (𝑡) =
Γ(𝛽)

Γ(𝛽 − Z + 1) 𝑡
1−Z 𝑑

𝑑𝑡
𝐼Z (Ψ) (𝑡) , (5.46)

𝔇Z 𝐼Z (Ψ) (𝑡) =
Γ(𝛽)

Γ(𝛽 − Z + 1) 𝑡
1−Z 𝑑

𝑑𝑡

Γ(𝛽 − Z + 1)
Γ(𝛽)

∫ ∞

0

Ψ (𝑥)
𝑥1−Z 𝑑𝑥, (5.47)

𝔇Z 𝐼Z (Ψ) (𝑡) = 𝑡1−Z
𝑑

𝑑𝑡

∫ 𝑡

0

Ψ (𝑥)
𝑥1−Z 𝑑𝑥, (5.48)

𝔇Z 𝐼Z (Ψ) (𝑡) = 𝑡1−Z
Ψ (𝑡)
𝑡1−Z

, (5.49)

𝔇Z 𝐼Z (Ψ) (𝑡) = Ψ (𝑡) . (5.50)

89

Univ
ers

iti 
Mala

ya



5.4 Computation

The fractional derivative of the exponential function: Ψ(𝑡) = 𝑒_𝑡 , _ ∈ 𝑐

𝑒_𝑡 =

∞∑︁
𝑘=0

_𝑘

𝑘!
𝑡𝑘 , (5.51)

𝔇𝐴𝑆𝐾𝑒_𝑡 =

∞∑︁
𝑘=0

_𝑘

𝑘!
𝔇𝐴𝑆𝐾 𝑡𝑘 . (5.52)

From Eq. 5.11, we get:

𝔇𝐴𝑆𝐾 𝑡𝑘 = 𝔇𝐶𝑡𝑘 . (5.53)

Let us now write Eq. 5.52 as:

𝔇𝐴𝑆𝐾𝑒_𝑡 =

∞∑︁
𝑘=0

_𝑘

𝑘!
𝔇𝐶𝑡𝑘 , (5.54)

𝔇𝐴𝑆𝐾𝑒_𝑡 = 𝔇𝐶𝑒_𝑡 . (5.55)

Fractional Derivative of Sine and Cosine Functions: For sine function, we define:

Ψ(𝑡) = sin𝜔𝑡 as:

sin𝜔𝑡 =
1
2𝑖

(
𝑒𝑖𝜔𝑡 − 𝑒−𝑖𝜔𝑡

)
, (5.56)

𝔇𝐴𝑆𝐾 sin𝜔𝑡 =
1
2𝑖

(
𝔇𝐴𝑆𝐾𝑒𝑖𝜔𝑡 −𝔇𝐴𝑆𝐾𝑒−𝑖𝜔𝑡

)
. (5.57)

From Eq. 5.57, we obtain:

𝔇𝐴𝑆𝐾 sin𝜔𝑡 =
1
2𝑖

(
𝔇𝐶𝑒𝑖

𝑖𝜔𝑡 − 𝔇𝐶𝑒−𝑖
𝑖𝜔𝑡

)
, (5.58)
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𝐴𝑆𝐾𝔇Z sin𝜔𝑡 =𝐶 𝔇Z 1
2𝑖

(
𝑒𝑖𝜔𝑡 − 𝑒−𝑖𝜔𝑡

)
, (5.59)

𝐴𝑆𝐾𝔇Z sin𝜔𝑡 =𝐶 𝔇Z sin𝜔𝑡. (5.60)

Similarly, we can prove the following for Ψ(𝑡) = cos𝜔𝑡:

𝐴𝑆𝐾𝔇Z cos𝜔𝑡 =𝐶 𝔇Z cos𝜔𝑡. (5.61)

5.5 Numerical Validation

To validate our obtained results, we provide the following illustrative example:

Example 5.5.1. Consider the following Riccati fractional differential equation

(Yüzbaşı, 2013):

𝔇Z 𝑦 (𝑥) + 𝑦2(𝑥) = 1, 𝑦 (0) = 0, 0 < Z ≤ 1. (5.62)

Solution: By applying Eq. 5.6, we obtain:

Γ(𝛽)
Γ(𝛽 − Z + 1) 𝑥

1−Z 𝑑𝑦

𝑑𝑥
+ 𝑦2(𝑥) = 1, 𝑦 (0) = 0, 0 < Z ≤ 1. (5.63)

To solve this equation at Z = 3
4 and Z = 9

10 , the package of Wolfram Mathematica

has been used to obtain the following:

𝑦(𝑥) = −1 + 𝑒 8𝑥
3
4

3𝐴

1 + 𝑒 8𝑥
3
4

3𝐴

, (5.64)

where 𝐴 = Γ(𝛽)
Γ(𝛽+ 1

4 )
and 𝛽 = Z = 3

4 as in (Krishnasamy et al., 2017).
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Table 5.1: Comparison of the results of the ASK with other works at Z = 3
4

t ASK BPM EHPM IABMM ComD
0 0 0 0 0 0
0.2 0.31439 0.30996891 0.3214 0.3117 0.37889
0.4 0.49848 0.48162749 0.5077 0.4855 0.58539
0.6 0.63022 0.59777979 0.6259 0.6045 0.72064
0.8 0.72609 0.67884745 0.7028 0.6880 0.81029
1.0 0.79618 0.73684181 0.7542 0.7478 0.87006

𝑦(𝑥) = −1 + 𝑒 20𝑥
9
10

9𝐴

1 + 𝑒 20𝑥
9
10

9𝐴

, (5.65)

where 𝐴 = Γ(𝛽)
Γ(𝛽+ 1

4 )
and 𝛽 = Z = 9

10 as in (Krishnasamy et al., 2017).

5.6 Comparative Study

Some results for Riccati fractional differential equation are provided in Table

(5.1) and Table (5.2) for different values of Z, where parameters are taken as 𝛽 = Z

(Krishnasamy et al., 2017). In Table 1, our results are compared with previous results

using other methods and approaches such as Bernstein Polynomials Method (BPM)

(Yüzbaşı, 2013), Enhanced Homotopy Perturbation Method (EHPM) (HosseinNia

et al., 2008), Improved Adams-Bashforth-Moulton Method (IABMM) (Yüzbaşı,

2013), and ComD (Khalil et al., 2014) at Z = 3
4 .

In Table (5.2), our results are compared with previous results using other

methods and approaches such as Bernstein Polynomials Method (BPM) (Yüzbaşı,

2013), Modified Homotopy Perturbation Method (MHPM) (HosseinNia et al.,

2008), Improved Adams-Bashforth-Moulton Method (IABMM) (Yüzbaşı, 2013),

and ComD (Khalil et al., 2014) at Z = 9
10 .
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Table 5.2: Comparison of the results of the ASK with other works at Z = 9
10

t ASK BPM MHPM IABMM ComD
0 0 0 0 0 0
0.2 0.23952 0.23878798 0.2391 0.2393 0.25526
0.4 0.42667 0.42258214 0.4229 0.4234 0.45191
0.6 0.57607 0.56617082 0.5653 0.5679 0.60539
0.8 0.69138 0.67462642 0.6740 0.6774 0.72063
1.0 0.77780 0.75460256 0.7569 0.7584 0.80445

5.7 Discussion of Results

It is noticeable from the above Table (5.1) and Table (5.2) that our results are in

a good agreement with BPM, MHPM, EHPM, and IABMM results. In addition,

the ComD (Khalil et al., 2014) has been used to solve fractional Riccati differential

equation. However, the results of conformable derivative do not coincide with

other works and our present results. Therefore, the obtained results that have

been calculated analytically via ASK are in good agreement with other methods.

However, in comparison with ComD, the present results are better than ComD’s

results as suggested in (Khalil et al., 2014). In Fig. (5.1), the absolute relative

error shows that the present result of Riccati fractional differential equation is

exactly obtained at 𝛼 = 1 in (Yüzbaşı, 2013), by comparing it with 𝛼 = 3
4 using the

proposed definition and the conformable one. The figure shows a good accuracy

for the results of the proposed definition in comparison with the conformable one.

A similar situation is provided in Fig. (5.2) at 𝛼 = 9
10 .

5.8 Conclusion

In this chapter, ASK derivative has been suggested to provide more advantages

than other classical Cp and RL definitions such as the derivative of two functions,
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Figure 5.1: The absolute relative error is plotted for Riccati fractional differ-
ential equation for the conformable derivative and ASK derivative at Z = 0.75

the derivative of the quotient of two functions, the Rolle’s theorem, and the mean

value theorem which have been satisfied in ASK. The present definition satisfies:

𝔇Z𝔇𝛽Ψ(𝑡) = 𝔇Z+𝛽Ψ(𝑡) for a differentiable function: Ψ(𝑡) expanded by Taylor

series. The fractional integral is introduced. Compatible results with Cp and RL

results have been obtained for functions that are given in sections 5.3 and 5.4. Also,

a comparison with ComD is studied. We conclude that our proposed ASK definition

gives a new direction for solving fractional differential equations in a simple manner

in which the results of the Cp and RL definitions are exactly deduced. In future
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Figure 5.2: The absolute relative error is plotted for Riccati fractional differ-
ential equation for the conformable derivative and ASK derivative at Z = 0.90

study, a full application example of the Chebyshev differential equation of first kind

will be studied in the context of ASK definition by establishing the drivability and

integrability results of the sum function of functional power series, introducing

the generalized fractional power series technique, studying solution’s existence

around an ordinary point of a homogeneous sequential linear generalized fractional

differential equation of order 2Z , and applying the proposed technique to study the

series solutions including the properties of the generalized fractional Chebyshev

polynomials.
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CHAPTER 6: INVESTIGATION OF THE EXISTENCE AND
ULAM–HYERS–RASSIAS STABILITY OF SOLUTIONS TO THE

IMPLICIT NONLINEAR FBVP IN THE VARIABLE ORDER SETTINGS

6.1 Introduction

In this chapter, the solutions’ existence and its stability to the fractional boundary

value problem (FBVP) are studied for an implicit nonlinear variable order fractional

differential equation (VOFDfEq). The FrCL of variable order extends the theory of

the constant order one. The order of a system varies continuously to describe the

changes of memory property with space or time (Baleanu et al., 2011). Bouazza et

al. (2021) studied the multi-term variable order fractional boundary value problem

(VOFBVP) by showing that there exists exactly one solution to such a system under

some conditions. In (X. Li et al., 2020), by proposing a novel kernel function via

polynomial form, a general structure of Atangana-Baleanu VOFBVPs was studied.

Derakhshan (2021) solved a Cp linear time-fractional VOFDfEq arising in fluid

mechanics and displayed the existence-uniqueness-stability. Refice et al. (2021)

carefully studied the Hadamard VOFBVP and derived solutions via the Kuratowski

measure of noncompactness (KMNC) technique. Recently, a few contributions

to the solutions of fractional constant order BVPs have been previously provided.

However, the solutions’ existence to FBVPs of variable order have been rarely

studied (see (Sousa & de Oliveira, 2018; Tavares et al., 2016; Yang et al., 2018)).

Inspired by all mentioned works along with the paper (Benchohra & Lazreg,

2014), we investigate the solutions to the following FBVP for implicit nonlinear

VOFDfEq: 
𝔇
𝑢(𝑡)
0+ 𝑥(𝑡) = 𝑚(𝑡, 𝑥(𝑡),𝔇𝑢(𝑡)

0+ 𝑥(𝑡)),

𝑥(0) = 0, 𝑥(Ω) = 0, 𝑡 ∈ 𝔍 := [0,Ω],
(6.1)
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where 0 < Ω < +∞, 𝑢(𝑡) : 𝔍 → (1, 2], 𝑚 : 𝔍 × R × R → R is a CF, and ℑ𝑢(𝑡)0+ ,

𝔇
𝑢(𝑡)
0+ are the Riemann-Liouville fractional (RLFr) integral and derivative in the

context of variable order 𝑢(𝑡).

All existence criteria in our investigation are derived via Krasnoselskii’s fixed

point theorem (KFPThm), and then its Ulam–Hyers–Rassias (U-H-R) stability is

also verified.

6.2 Essential Notions

Some important notions are presented to be used later in our results.

By ℭ(𝔍,R), we illustrate the Banach space (BS) of CF from 𝔍 into R via

∥𝑥∥ = sup{|𝑥(𝑡) | : 𝑡 ∈ 𝔍}.

Definition 15. (Samko, 1995; Samko & Ross, 1993; Valério & Da Costa, 2011)

Let −∞ < 𝑐 < 𝑑 < +∞, and 𝑢(𝑡) : [𝑐, 𝑑] → (0, +∞), the left RLFr integral in the

context of variable order 𝑢(𝑡) for ℎ(𝑡) is expressed as:

ℑ
𝑢(𝑡)
𝑐+ ℎ(𝑡) =

∫ 𝑡

𝑐

(𝑡 − 𝑤)𝑢(𝑡)−1

Γ(𝑢(𝑡)) ℎ(𝑤)𝑑𝑤, 𝑡 > 𝑐, (6.2)

where the gamma function is denoted by Γ(.).

Definition 16. (Samko, 1995; Samko & Ross, 1993; Valério & Da Costa, 2011) Let

−∞ < 𝑐 < 𝑑 < +∞, 𝑟 ∈ N and 𝑢(𝑡) : [𝑐, 𝑑] → (𝑟 − 1, 𝑟); the left RLFr derivative

in the context of variable order 𝑢(𝑡) for ℎ(𝑡) is expressed as:

𝔇
𝑢(𝑡)
𝑐+ ℎ(𝑡) =

( 𝑑
𝑑𝑡

)𝑟
ℑ
𝑟−𝑢(𝑡)
𝑐+ ℎ(𝑡) =

( 𝑑
𝑑𝑡

)𝑟 ∫ 𝑡

𝑐

(𝑡 − 𝑤)𝑟−𝑢(𝑡)−1

Γ(𝑟 − 𝑢(𝑡)) ℎ(𝑤)𝑑𝑤, 𝑡 > 𝑐. (6.3)
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Obviously, if 𝑢(𝑡) is a constant function 𝑢 ∈ R, then the variable order Riemann-

Liouville fractional (VORLFr) derivative (6.3) and integral (6.2) are the usual RLFr

derivative and integral, respectively (see (Kilbas et al., 2006; Samko, 1995; Samko

& Ross, 1993)). Some essential properties are provided as follows:

Lemma 1. (Kilbas et al., 2006) Assume that 𝛿 > 0, then

𝔇𝛿
𝑐+ℎ = 0

has a unique solution

ℎ(𝑡) = 𝜔1(𝑡 − 𝑐)𝛿−1 + 𝜔2(𝑡 − 𝑐)𝛿−2 + ... + 𝜔𝑟 (𝑡 − 𝑐)𝛿−𝑟

𝜔 𝑗 ∈ R, 𝑗 = 1, 2, ..., 𝑟 , here 𝑟 − 1 < 𝛿 ≤ 𝑟.

Lemma 2. (Kilbas et al., 2006) Let 𝑐 > 0, ℎ ∈ 𝐿 (𝑐, 𝑑), 𝔇𝛿
𝑐+ℎ ∈ 𝐿 (𝑐, 𝑑), then

ℑ𝛿𝑐+𝔇
𝛿
𝑐+ℎ(𝑡) = ℎ(𝑡) + 𝜔1(𝑡 − 𝑐)𝛿−1 + 𝜔2(𝑡 − 𝑐)𝛿−2 + ... + 𝜔𝑟 (𝑡 − 𝑐)𝛿−𝑟

𝜔 𝑗 ∈ R, 𝑗 = 1, 2, ..., 𝑟 , here 𝑟 − 1 < 𝛿 ≤ 𝑟.

Lemma 3. (Kilbas et al., 2006) Let 𝛿 > 0, then we get:

𝔇𝛿
𝑐+ℑ

𝛿
𝑐+ℎ(𝑡) = ℎ(𝑡).

Lemma 4. (Kilbas et al., 2006) Let 𝛿, 𝛽 > 0, then we get:

ℑ𝛿𝑐+ℑ
𝛽

𝑐+ℎ(𝑡) = ℑ
𝛽

𝑐+ℑ
𝛿
𝑐+ℎ(𝑡) = ℑ

𝛿+𝛽
𝑐+ ℎ(𝑡).

Remark 7. (S. Zhang, 2013; S. Zhang & Hu, 2019; S. Zhang et al., 2019) For
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general functions 𝑢(𝑡), 𝑣(𝑡), it is noticeable that the semigroup property is invalid,

i.e:

ℑ
𝑢(𝑡)
𝑐+ ℑ

𝑣(𝑡)
𝑐+ ℎ(𝑡) ≠ ℑ𝑢(𝑡)+𝑣(𝑡)

𝑐+ ℎ(𝑡).

Example 6.2.1. Let

𝑢(𝑡) = 𝑡
2

3
, 𝑡 ∈ [0, 4], 𝑣(𝑡) =


3, 𝑡 ∈ [0, 1]

2, 𝑡 ∈ ]1, 4] .
ℎ(𝑡) = 2, 𝑡 ∈ [0, 4] .

Then

ℑ
𝑢(𝑡)
0+ ℑ

𝑣(𝑡)
0+ ℎ(𝑡) =

∫ 𝑡

0

(𝑡 − 𝑤)𝑢(𝑡)−1

Γ(𝑢(𝑡))

∫ 𝑤

0

(𝑤 − 𝜏)𝑣(𝑤)−1

Γ(𝑣(𝑤)) ℎ(𝜏)𝑑𝜏𝑑𝑤

=

∫ 𝑡

0

(𝑡 − 𝑤)𝑢(𝑡)−1

Γ(𝑢(𝑡)) [
∫ 1

0

(𝑤 − 𝜏)2

Γ(3) 2𝑑𝜏 +
∫ 𝑤

1

(𝑤 − 𝜏)
Γ(2) 2𝑑𝜏]𝑑𝑤

=

∫ 𝑡

0

(𝑡 − 𝑤)𝑢(𝑡)−1

Γ(𝑢(𝑡)) [ (𝑤 − 1)3

3
+ 2𝑤 − 1]𝑑𝑤,

and

ℑ
𝑢(𝑡)+𝑣(𝑡)
0+ ℎ(𝑡) =

∫ 𝑡

0

(𝑡 − 𝑤)𝑢(𝑡)+𝑣(𝑡)−1

Γ(𝑢(𝑡) + 𝑣(𝑡)) ℎ(𝑤)𝑑𝑤.

It is clear that

ℑ
𝑢(𝑡)
0+ ℑ

𝑣(𝑡)
0+ ℎ(𝑡) |𝑡=3 =

∫ 3

0

(3 − 𝑤)2

Γ(3) [ (𝑤 − 1)3

3
+ 2𝑤 − 1]𝑑𝑤

=
1
2

∫ 3

0
(𝑤

5

3
− 3𝑤4 + 12𝑤3 − 85

3
𝑤2 + 35𝑤 − 12)𝑑𝑤

=
21
10
,
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and

ℑ
𝑢(𝑡)+𝑣(𝑡)
0+ ℎ(𝑡) |𝑡=3 =

∫ 3

0

(3 − 𝑤)𝑢(𝑡)+𝑣(𝑡)−1

Γ(𝑢(𝑡) + 𝑣(𝑡)) ℎ(𝑤)𝑑𝑤

=

∫ 1

0

(3 − 𝑤)5

Γ(6) 2𝑑𝑤 +
∫ 3

1

(3 − 𝑤)4

Γ(5) 2𝑑𝑤

=
1
60

∫ 1

0
(−𝑤5 + 15𝑤4 − 90𝑤3 + 270𝑤2 − 405𝑤 + 243)𝑑𝑤

+ 1
12

∫ 3

1
(𝑤4 − 12𝑤3 + 54𝑤2 − 108𝑤 + 81)𝑑𝑤

=
665
360

+ 32
60
=

857
360

.

Therefore, we obtain

ℑ
𝑢(𝑡)
0+ ℑ

𝑣(𝑡)
0+ ℎ(𝑡) |𝑡=3 ≠ 𝐼

𝑢(𝑡)+𝑣(𝑡)
0+ ℎ(𝑡) |𝑡=3.

Lemma 5. (S. Zhang et al., 2018) Let 𝑢 : 𝔍→ (1, 2] be a CF. Then for

𝑦 ∈ ℭZ (𝔍,R) = {𝑦(𝑡) ∈ ℭ(𝔍,R), 𝑡Z 𝑦(𝑡) ∈ ℭ(𝔍,R)}, (0 ≤ Z ≤ min
𝑡∈𝔍

|𝑢(𝑡) |)

the variable order (VO) fractional integral ℑ𝑢(𝑡)0+ 𝑦(𝑡) exists for any points on 𝔍.

Lemma 6. (S. Zhang et al., 2018) Assume that 𝑢 : 𝔍 → (1, 2] be a CF, then

ℑ
𝑢(𝑡)
0+ 𝑦(𝑡) ∈ ℭ(𝔍,R) for any 𝑦 ∈ ℭ(𝔍,R).

Definition 17. (An & Chen, 2019; S. Zhang, 2018; S. Zhang & Hu, 2020) The set

ℑ in R is named as a generalized interval (G-interval)if either it is an standard

interval, a point {𝑐1}, or the empty set ∅.

Definition 18. (An & Chen, 2019; S. Zhang, 2018; S. Zhang & Hu, 2020) If ℑ is a
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G-interval, then the finite set P of G-intervals belonging to ℑ is a partition of ℑ

whenever each 𝑥 contained in ℑ lies in exactly one of the G-intervals.

Let 𝐸 be a BS as follows:

Definition 19. (An & Chen, 2019; S. Zhang, 2018; S. Zhang & Hu, 2020) Assume

that ℑ is a G-interval, 𝑔 : ℑ→ R a mapping, P a partition of ℑ. In this case, 𝑔 is

a piecewise constant by terms of P if for every 𝐸 ∈ P, 𝑔 is constant on 𝐸 .

Theorem 23. (Kilbas et al., 2006) (KFPThm) Suppose that 𝑆 is a closed, convex,

bounded subset of 𝐸 and suppose that𝑊1 and𝑊2 are operators on 𝑆 satisfy:

(i)𝑊1(𝑆) +𝑊2(𝑆) ⊂ 𝑆,

(ii)𝑊1 is continuous on 𝑆 and𝑊1(𝑆) is relatively compact in 𝐸 ,

(iii)𝑊2 is a strict contraction on 𝑆, that is; ∃ 𝑘 ∈ [0, 1) s.t.

∥𝑊2(𝑥) −𝑊2(𝑦)∥ ≤ 𝑘 ∥𝑥 − 𝑦∥

for every 𝑥, 𝑦 ∈ 𝑆.

Then, ∃ 𝑥 ∈ 𝑆 s.t. 𝑊1(𝑥) +𝑊2(𝑥) = 𝑥.

Definition 20. (Rus, 2010) (U-H-R stability) The equation of (6.1) is U-H-R stable

w.r.t 𝜑 ∈ ℭ(𝔍,R+) if ∃ 𝑎𝑚 > 0 s.t. ∀ 𝜖 > 0 and ∀ 𝑧 ∈ ℭ(𝔍,R) satisfying

|𝔇𝑢(𝑡)
0+ 𝑧(𝑡) − 𝑚(𝑡, 𝑧(𝑡),ℑ𝑢(𝑡)0+ 𝑧(𝑡)) | ≤ 𝜖𝜑(𝑡), 𝑡 ∈ 𝔍,

∃ 𝑥 ∈ ℭ(𝔍,R) as a solution of equation (6.1) with

|𝑧(𝑡) − 𝑥(𝑡) | ≤ 𝑎𝑚𝜖𝜑(𝑡), 𝑡 ∈ 𝔍.
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6.3 Existence of Solutions

Some assumptions are presented as follows:

(H1) Let 𝑟 ∈ N, P = {𝔍1 := [0,Ω1],𝔍2 := (Ω1,Ω2],𝔍3 := (Ω2,Ω3], ...𝔍𝑟 :=

(Ω𝑟−1,Ω𝑟]} be a partition of𝔍, and 𝑢(𝑡) : 𝔍→ (1, 2] be a piecewise constant

mapping by terms of P, i.e.,

𝑢(𝑡) =
𝑟∑︁
𝑗=1
𝑢 𝑗ℑ 𝑗 (𝑡) =



𝑢1, 𝑖 𝑓 𝑡 ∈ 𝔍1,

𝑢2, 𝑖 𝑓 𝑡 ∈ 𝔍2,

.

.

.

𝑢𝑟 , 𝑖 𝑓 𝑡 ∈ 𝔍𝑟 ,

in which 1 < 𝑢 𝑗 ≤ 2 belong to R, and ℑ 𝑗 is the indicator of 𝔍 𝑗 := (Ω 𝑗−1,Ω 𝑗 ], 𝑗 =

1, 2, ..., 𝑟 , (Ω0 = 0, Ω𝑟 = 𝑇) s.t.

ℑ 𝑗 (𝑡) =


1, 𝑓 𝑜𝑟 𝑡 ∈ 𝔍 𝑗 ,

0, 𝑓 𝑜𝑟 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.

(H2) Assume that 𝑡Z𝑚 : 𝔍×R×R→ R be a CF: (0 ≤ Z ≤ min𝑡∈𝔍 | (𝑢(𝑡)) |), there

exist constants, 𝐾, 𝐿 > 0, s.t. 𝑡Z |𝑚(𝑡, 𝑦1, 𝑧1) − 𝑚(𝑡, 𝑦2, 𝑧2) | ≤ 𝐾 |𝑦1 − 𝑦2 | +

𝐿 |𝑧1 − 𝑧2 |, for any 𝑦 𝑗 , 𝑧 𝑗 ∈ R and 𝑡 ∈ 𝔍.

By 𝐸 𝑗 = ℭ(𝔍 𝑗 ,R), we denote the BS of CFs from 𝔍 𝑗 into R with the norm

∥𝑥∥𝐸 𝑗 = sup
𝑡∈𝔍 𝑗

|𝑥(𝑡) |,

where 𝑗 ∈ {1, 2, ..., 𝑟}.
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We firstly do the analysis of the FBVP (6.1) to obtain novel results.

By (6.3), FDfEq of FBVP (6.1) can be written as:

𝑑2

𝑑𝑡2

∫ 𝑡

0

(𝑡 − 𝑤)1−𝑢(𝑡)

Γ(2 − 𝑢(𝑡)) 𝑥(𝑤)𝑑𝑤 = 𝑚(𝑡, 𝑥(𝑡),𝔇𝑢(𝑡)
0+ 𝑥(𝑡)), 𝑡 ∈ 𝔍. (6.4)

According to (𝐻1), the equation(6.4) on 𝔍 𝑗 can be represented by

𝑑2
𝑑𝑡2

( ∫ Ω1
0

(𝑡−𝑤)1−𝑢1
Γ (2−𝑢1 )

𝑥(𝑤)𝑑𝑤+...+
∫ 𝑡
Ω 𝑗−1

(𝑡−𝑤)1−𝑢 𝑗
Γ (2−𝑢 𝑗 )

𝑥(𝑤)𝑑𝑤
)
=𝑚(𝑡,𝑥(𝑡),𝔇

𝑢 𝑗

0+ 𝑥(𝑡)), 𝑡∈𝔍 𝑗 , (6.5)

for , 𝑗 = 1, 2, ..., 𝑟 . The solution of the supposed FBVP (6.1) is presented due to its

essential role in our results as follows:

Definition 21. The FBVP (6.1) is said to have a solution, if ∃ 𝑥 𝑗 ∈ ℭ( [0,Ω 𝑗 ],R)

satisfying equation (6.5) and 𝑥 𝑗 (0) = 0 = 𝑥 𝑗 (Ω 𝑗 ).

From the above, the FDfEq of FBVP (6.1) can be indicated as the FDfEq (6.4),

which can be formulated on 𝔍 𝑗 , 𝑗 ∈ {1, 2, ..., 𝑟} as (6.5). For 0 ≤ 𝑡 ≤ Ω 𝑗−1, we set

𝑥(𝑡) ≡ 0, then (6.5) is illustrated as follows:

𝔇
𝑢 𝑗

Ω+
𝑗−1
𝑥(𝑡) = 𝑚(𝑡, 𝑥(𝑡),𝔇𝑢 𝑗

Ω+
𝑗−1
𝑥(𝑡)), 𝑡 ∈ 𝔍 𝑗 .

Let us now regard the following equivalent standard FBVP:


𝔇
𝑢 𝑗

Ω+
𝑗−1
𝑥(𝑡) = 𝑚(𝑡, 𝑥(𝑡),𝔇𝑢 𝑗

Ω+
𝑗−1
𝑥(𝑡)),

𝑥(Ω 𝑗−1) = 0, 𝑥(Ω 𝑗 ) = 0, 𝑡 ∈ 𝔍 𝑗 .
(6.6)

For the existence of solutions to the equivalent standard FBVP (6.6), an auxiliary

lemma is indicated by follows:
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Lemma 7. 𝑥 ∈ 𝐸𝑖 is the solution to the equivalent standard FBVP (6.6) iff it satisfies

𝑥(𝑡) = −(Ω 𝑗 −Ω 𝑗−1)1−𝑢 𝑗 (𝑡 −Ω 𝑗−1)𝑢 𝑗−1ℑ
𝑢 𝑗

Ω+
𝑗−1
𝑦(Ω 𝑗 )) + ℑ

𝑢 𝑗

Ω+
𝑗−1
𝑦(𝑡), 𝑡 ∈ 𝔍 𝑗 . (6.7)

where

𝑦(𝑡) = 𝑚

(
𝑡,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑡−Ω 𝑗−1)𝑢 𝑗−1

ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦(Ω 𝑗 ))+ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦(𝑡),𝑦(𝑡)
)
, 𝑡∈𝔍 𝑗 .

Proof. Let 𝑥 ∈ 𝐸𝑖 be a solution to the equivalent standard FBVP (6.6). Now, we

take𝔇𝑢 𝑗

Ω+
𝑗−1
𝑥(𝑡) = 𝑦(𝑡) and apply ℑ𝑢 𝑗

Ω+
𝑗−1

to both sides of the FDfEq of the equivalent

standard FBVP (6.6). By Lemma (2), we have:

𝑥(𝑡) = 𝜔1(𝑡 −Ω 𝑗−1)𝑢 𝑗−1 + 𝜔2(𝑡 −Ω 𝑗−1)𝑢 𝑗−2 + ℑ𝑢 𝑗
Ω+
𝑗−1
𝑦(𝑡), 𝑡 ∈ 𝔍 𝑗 .

By 𝑥(Ω 𝑗−1) = 0 and the given assumption for the mapping 𝑚, we obtain 𝜔2 = 0.

Assume that 𝑥(𝑡) satisfy 𝑥(Ω 𝑗 ) = 0, thus we get: 𝜔1 = −(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗ℑ
𝑢 𝑗

Ω+
𝑗−1
𝑦(Ω 𝑗 ).

Then, we have:

𝑥(𝑡) = −(Ω 𝑗 −Ω 𝑗−1)1−𝑢 𝑗 (𝑡 −Ω 𝑗−1)𝑢 𝑗−1ℑ
𝑢 𝑗

Ω+
𝑗−1
𝑦(Ω 𝑗 ) + ℑ

𝑢 𝑗

Ω+
𝑗−1
𝑦(𝑡), 𝑡 ∈ 𝔍 𝑗 ,

where

𝑦(𝑡) = 𝑚

(
𝑡,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑡−Ω 𝑗−1)𝑢 𝑗−1

ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦(Ω 𝑗 )+ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦(𝑡),𝑦(𝑡)
)
, 𝑡∈𝔍 𝑗 .

Conversely, assume that 𝑥 ∈ 𝐸 𝑗 satisfies the integral Eq. (6.7) as its solution.

Then, according to the continuity of 𝑡Z𝑚 and Lemma (3), 𝑥 is a solution to the

equivalent standard FBVP (6.6).
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Our existence result is derived with the help of Theorem 23.

Theorem 24. Suppose that (𝐻1) and (𝐻2) are fulfilled and by assuming

(Ω 𝑗 −Ω 𝑗−1)𝑢 𝑗−1(Ω 𝑗
1−Z −Ω 𝑗−1

1−Z )
(1 − Z)Γ(𝑢 𝑗 )

(𝐾 (Ω 𝑗 −Ω 𝑗−1)𝑢 𝑗
Γ(𝑢 𝑗 + 1) + 𝐿

2

)
<

1
4
, (6.8)

the FBVP (6.1) admits a solution on 𝐸 .

Proof. In the first place, convert the equivalent standard FBVP (6.6) to a fixed point

problem. Consider the operators:

𝑊1,𝑊2 : 𝐸 𝑗 → 𝐸 𝑗

defined by:

𝑊1𝑦(𝑡) = −(Ω 𝑗 −Ω 𝑗−1)1−𝑢 𝑗 (𝑡 −Ω 𝑗−1)𝑢 𝑗−1ℑ
𝑢 𝑗

Ω+
𝑗−1
𝑦(Ω 𝑗 ), 𝑊2𝑦(𝑡) = ℑ

𝑢 𝑗

Ω+
𝑗−1
𝑦(𝑡),

(6.9)

in which

𝑦(𝑡) = 𝑚(𝑡, 𝑥(𝑡), 𝑦(𝑡)).

It is followed, from the specifications of fractional operators and in view of the

continuity of 𝑡Z𝑚, that the operators 𝑊1,𝑊2 : 𝐸 𝑗 → 𝐸 𝑗 illustrated in (6.9) are

well–defined. Let

𝑅 𝑗 ≥
2𝑚∗ (Ω 𝑗−Ω 𝑗−1)𝑢 𝑗

Γ(𝑢 𝑗 )

1 − 2(Ω 𝑗−Ω 𝑗−1)𝑢 𝑗−1 (Ω 𝑗1−Z−Ω 𝑗−1
1−Z )

(1−Z)Γ(𝑢 𝑗 )

(
2𝐾 (Ω 𝑗−Ω 𝑗−1)𝑢 𝑗

Γ(𝑢 𝑗+1) + 𝐿
) ,

105

Univ
ers

iti 
Mala

ya



where

𝑚∗ = sup
𝑡∈𝔍 𝑗

|𝑚(𝑡, 0, 0) |.

We consider the set:

𝐵𝑅 𝑗 = {𝑥 ∈ 𝐸 𝑗 , ∥𝑥∥𝐸 𝑗 ≤ 𝑅 𝑗 }.

Obviously, 𝐵𝑅 𝑗 is nonempty, bounded, convex and closed.

Let us prove that 𝑊1,𝑊2 satisfy Theorem’s (23) assumption. The proof is

divided into 4 steps.

Step 1: 𝑊1(𝐵𝑅 𝑗 ) +𝑊2(𝐵𝑅 𝑗 ) ⊆ (𝐵𝑅 𝑗 ).

Let 𝑦 ∈ 𝐵𝑅 𝑗 , we show that𝑊1(𝑦) +𝑊2(𝑦) ∈ 𝐵𝑅 𝑗 .
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For 𝑡 ∈ 𝔍 𝑗 , we have:

| (𝑊1𝑦) (𝑡)+(𝑊2𝑦) (𝑡) |≤
(Ω 𝑗−Ω 𝑗−1 )

1−𝑢 𝑗 (𝑡−Ω 𝑗−1 )
𝑢 𝑗−1

Γ (𝑢 𝑗 )

∫ Ω 𝑗
Ω 𝑗−1

(Ω 𝑗−𝑤)𝑢 𝑗−1
���𝑚 (

𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1
ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦𝑟 (Ω 𝑗 ))+ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦(𝑤),𝑦(𝑤)
)���𝑑𝑤

+ 1
Γ (𝑢 𝑗 )

∫ 𝑡
Ω 𝑗−1

(𝑡−𝑤)𝑢 𝑗−1
���𝑚 (

𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1
ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦(Ω 𝑗 ))+ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦(𝑤),𝑦(𝑤)
)���𝑑𝑤

≤ 2
Γ (𝑢 𝑗 )

∫ Ω 𝑗
Ω 𝑗−1

(Ω 𝑗−𝑤)𝑢 𝑗−1
���𝑚 (

𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1
ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦(Ω 𝑗 ))+ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦(𝑤),𝑦(𝑤)
)���𝑑𝑤

≤ 2
Γ (𝑢 𝑗 )

∫ Ω 𝑗
Ω 𝑗−1

(Ω 𝑗−𝑤)𝑢 𝑗−1
���𝑚 (

𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1
ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦(Ω 𝑗 ))+ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦(𝑤),𝑦(𝑤)
)

− 𝑚(𝑤,0,0)
���𝑑𝑤+ 2

Γ (𝑢 𝑗 )
∫ Ω 𝑗
Ω 𝑗−1

(Ω 𝑗−𝑤)𝑢 𝑗−1 |𝑚(𝑤,0,0) |𝑑𝑤

≤ 2(Ω 𝑗−Ω 𝑗−1 )
𝑢 𝑗−1

Γ (𝑢 𝑗 )
∫ Ω 𝑗
Ω 𝑗−1

𝑤−Z (𝐾 |−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1
ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦(Ω 𝑗 ))+ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦(𝑤) |

+ 𝐿 |𝑦(𝑤) |)𝑑𝑤+
2𝑚∗ (Ω 𝑗−Ω 𝑗−1 )

𝑢 𝑗

Γ (𝑢 𝑗 )

≤ 2(Ω 𝑗−Ω 𝑗−1 )
𝑢 𝑗−1

Γ (𝑢 𝑗 )
∫ Ω 𝑗
Ω 𝑗−1

𝑤−Z
(
𝐾 ( |ℑ

𝑢 𝑗

Ω+
𝑗−1

𝑦(Ω 𝑗 )) |+|ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦(𝑤) |)+𝐿 |𝑦(𝑤) |
)
𝑑𝑤+

2𝑚∗ (Ω 𝑗−Ω 𝑗−1 )
𝑢 𝑗

Γ (𝑢 𝑗 )

≤ 2(Ω 𝑗−Ω 𝑗−1 )
𝑢 𝑗−1 (Ω 𝑗1−Z −Ω 𝑗−1

1−Z )
(1−Z )Γ (𝑢 𝑗 )

(
2𝐾 ∥ℑ

𝑢 𝑗

Ω+
𝑗−1

𝑦∥𝐸𝑗+𝐿∥𝑦∥𝐸𝑗

)
+

2𝑚∗ (Ω 𝑗−Ω 𝑗−1 )
𝑢 𝑗

Γ (𝑢 𝑗 )

≤ 2(Ω 𝑗−Ω 𝑗−1 )
𝑢 𝑗−1 (Ω 𝑗1−Z −Ω 𝑗−1

1−Z )
(1−Z )Γ (𝑢 𝑗 )

(
2𝐾 (Ω 𝑗−Ω 𝑗−1 )

𝑢 𝑗

Γ (𝑢 𝑗+1) +𝐿
)
𝑅 𝑗+

2𝑚∗ (Ω 𝑗−Ω 𝑗−1 )
𝑢 𝑗

Γ (𝑢 𝑗 )

≤ 𝑅 𝑗 ,

which means that𝑊1(𝐵𝑅 𝑗 ) +𝑊2(𝐵𝑅 𝑗 ) ⊆ 𝐵𝑅 𝑗 .

Step 2: 𝑊1 is continuous
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Let (𝑦𝑟) be a sequence s.t. 𝑦𝑟 → 𝑦 in 𝐸 𝑗 . Then, ∀ 𝑡 ∈ 𝔍 𝑗 , we obtain:

| (𝑊1𝑦𝑟 ) (𝑡)−(𝑊1𝑦) (𝑡) |≤
(Ω 𝑗−Ω 𝑗−1 )

1−𝑢 𝑗 (𝑡−Ω 𝑗−1 )
𝑢 𝑗−1

Γ (𝑢 𝑗 )

∫ 𝑡
Ω 𝑗−1

(𝑡−𝑤)𝑢 𝑗−1
���𝑚 (

𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1
ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦𝑟 (Ω 𝑗 ))+ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦𝑟 (𝑤),𝑦𝑟 (𝑤)
)

− 𝑚

(
𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1

ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦(Ω 𝑗 ))+ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦(𝑤),𝑦(𝑤)
)���𝑑𝑤

≤ (Ω 𝑗−Ω 𝑗−1 )
1−𝑢 𝑗 (𝑡−Ω 𝑗−1 )

𝑢 𝑗−1

Γ (𝑢 𝑗 )
∫ 𝑡
Ω 𝑗−1

(𝑡−𝑤)𝑢 𝑗−1
𝑤−Z

×
(
𝐾 (Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1

ℑ
𝑢 𝑗

Ω+
𝑗−1

|𝑦𝑟 (Ω 𝑗 )−𝑦(Ω 𝑗 ) |+𝐾ℑ
𝑢 𝑗

Ω+
𝑗−1

|𝑦𝑟 (𝑤)−𝑦(𝑤) |+𝐿 |𝑦𝑟 (𝑤)−𝑦(𝑤) |
)
𝑑𝑤

≤ 1
Γ (𝑢 𝑗 )

∫ 𝑡
Ω 𝑗−1

(𝑡−𝑤)𝑢 𝑗−1
𝑤−Z

(
2𝐾ℑ

𝑢 𝑗

Ω+
𝑗−1

∥𝑦𝑟−𝑦∥𝐸𝑗+𝐿∥𝑦𝑟−𝑦∥𝐸𝑗

)
𝑑𝑤

≤ (Ω 𝑗1−Z −Ω
1−Z
𝑗−1 ) (Ω 𝑗−Ω 𝑗−1 )

𝑢 𝑗−1

(1−Z )Γ (𝑢 𝑗 )

(
2𝐾 (Ω 𝑗−Ω 𝑗−1 )

𝑢 𝑗

Γ (𝑢 𝑗+1) ∥𝑦𝑟−𝑦∥𝐸𝑗+𝐿∥𝑦𝑟−𝑦∥𝐸𝑗

)
≤ (Ω 𝑗1−Z −Ω

1−Z
𝑗−1 ) (Ω 𝑗−Ω 𝑗−1 )

𝑢 𝑗−1

(1−Z )Γ (𝑢 𝑗 )

(
2𝐾 (Ω 𝑗−Ω 𝑗−1 )

𝑢 𝑗

Γ (𝑢 𝑗+1) +𝐿
)
∥𝑦𝑟−𝑦∥𝐸𝑗 .

Thus

∥(𝑊1𝑦𝑟) − (𝑊1𝑦)∥𝐸 𝑗 → 0 𝑎𝑠 𝑟 → ∞.

As a result,𝑊1 is continuous on 𝐸 𝑗 .

Step 3: 𝑊1(𝐵𝑅 𝑗 ) is relatively compact

Let us now prove that 𝑊1(𝐵𝑅 𝑗 ) is relatively compact. Obviously, 𝑊1(𝐵𝑅 𝑗 ) has

the uniform boundedness, since by Step 2, 𝑊1(𝐵𝑅 𝑗 ) = {𝑊1(𝑥) : 𝑥 ∈ 𝐵𝑅 𝑗 } ⊂

𝑊1(𝐵𝑅 𝑗 ) +𝑊2(𝐵𝑅 𝑗 ) ⊆ 𝐵𝑅 𝑗 . Thus, for each 𝑥 ∈ 𝐵𝑅 𝑗 , we have: ∥𝑊1(𝑥)∥𝐸 𝑗 ≤ 𝑅 𝑗

which means that 𝑊1(𝐵𝑅 𝑗 )is uniformly bounded. Lastly, it is necessary that we

verify that 𝑊1(𝐵𝑅 𝑗 ) is equicontinuous. For 𝑡1, 𝑡2 ∈ 𝔍 𝑗 and 𝑦 ∈ 𝐵𝑅 𝑗 , we estimate
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(𝑡1 < 𝑡2):

| (𝑊1𝑦) (𝑡2)−(𝑊1𝑦) (𝑡1) |≤
(Ω 𝑗−Ω 𝑗−1 )

1−𝑢 𝑗

Γ (𝑢 𝑗 )

(
(𝑡2−Ω 𝑗−1)𝑢 𝑗−1−(𝑡1−𝑇 𝑗−1)𝑢 𝑗−1

)
∫ Ω 𝑗
Ω 𝑗−1

(Ω 𝑗−𝑤)𝑢 𝑗−1
���𝑚 (

𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1
ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦(Ω 𝑗 ))+ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦(𝑤),𝑦(𝑤)
)���𝑑𝑤

≤ (Ω 𝑗−Ω 𝑗−1 )
1−𝑢 𝑗

Γ (𝑢 𝑗 )

(
(𝑡2−Ω 𝑗−1)𝑢 𝑗−1−(𝑡1−Ω 𝑗−1)𝑢 𝑗−1

)
∫ Ω 𝑗
Ω 𝑗−1

(Ω 𝑗−𝑤)𝑢 𝑗−1
���𝑚 (

𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1
ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦(Ω 𝑗 ))+ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦(𝑤),𝑦(𝑤)
)
−𝑚(𝑤,0,0)

���𝑑𝑤
+ (Ω 𝑗−Ω 𝑗−1 )

1−𝑢 𝑗

Γ (𝑢 𝑗 )

(
(𝑡2−Ω 𝑗−1)𝑢 𝑗−1−(𝑡1−Ω 𝑗−1)𝑢 𝑗−1

) ∫ Ω 𝑗
Ω 𝑗−1

(Ω 𝑗−𝑤)𝑢 𝑗−1 |𝑚(𝑤,0,0) |𝑑𝑤

≤ (Ω 𝑗−Ω 𝑗−1 )
1−𝑢 𝑗

Γ (𝑢 𝑗 )

(
(𝑡2−Ω 𝑗−1)𝑢 𝑗−1−(𝑡1−Ω 𝑗−1)𝑢 𝑗−1

)
∫ Ω 𝑗
Ω 𝑗−1

(Ω 𝑗−𝑤)𝑢 𝑗−1
𝑤−Z

(
𝐾 (Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1 |ℑ

𝑢 𝑗

Ω+
𝑗−1

𝑦(Ω 𝑗 ))+ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦(𝑤) |+𝐿 |𝑦(𝑤) |
)
𝑑𝑤

+ (Ω 𝑗−Ω 𝑗−1 )
1−𝑢 𝑗 𝑚∗

Γ (𝑢 𝑗 )

(
(𝑡2−Ω 𝑗−1)𝑢 𝑗−1−(𝑡1−Ω 𝑗−1)𝑢 𝑗−1

) ∫ Ω 𝑗
Ω 𝑗−1

(Ω 𝑗−𝑤)𝑢 𝑗−1
𝑤−Z 𝑑𝑤

≤ (Ω 𝑗−Ω 𝑗−1 )
1−𝑢 𝑗

Γ (𝑢 𝑗 )

(
(𝑡2−Ω 𝑗−1)𝑢 𝑗−1−(𝑡1−Ω 𝑗−1)𝑢 𝑗−1

)
∫ Ω 𝑗
Ω 𝑗−1

(Ω 𝑗−𝑤)𝑢 𝑗−1
𝑤−Z

(
2𝐾ℑ

𝑢 𝑗

Ω+
𝑗−1

∥𝑦∥𝐸𝑗+𝐿∥𝑦∥𝐸𝑗

)
𝑑𝑤

+ (Ω 𝑗−Ω 𝑗−1 )
1−𝑢 𝑗 𝑚∗

Γ (𝑢 𝑗 )

(
(𝑡2−Ω 𝑗−1)𝑢 𝑗−1−(𝑡1−Ω 𝑗−1)𝑢 𝑗−1

) ∫ Ω 𝑗
Ω 𝑗−1

(Ω 𝑗−𝑤)𝑢 𝑗−1
𝑤−Z 𝑑𝑤

≤ (Ω 𝑗1−Z −Ω 𝑗−1
1−Z )

(1−Z )Γ (𝑢 𝑗 )

(
(𝑡2−Ω 𝑗−1)𝑢 𝑗−1−(𝑡1−Ω 𝑗−1)𝑢 𝑗−1

) (
2𝐾ℑ

𝑢 𝑗

Ω+
𝑗−1

∥𝑦∥𝐸𝑗+𝐿∥𝑦∥𝐸𝑗

)
+ (Ω 𝑗1−Z −Ω 𝑗−1

1−Z )𝑚∗

(1−Z )Γ (𝑢 𝑗 )

(
(𝑡2−Ω 𝑗−1)𝑢 𝑗−1−(𝑡1−Ω 𝑗−1)𝑢 𝑗−1

)
≤ (Ω 𝑗1−Z −Ω 𝑗−1

1−Z )
(1−Z )Γ (𝑢 𝑗 )

(
2𝐾ℑ

𝑢 𝑗

Ω+
𝑗−1

∥𝑦∥𝐸𝑗+𝐿∥𝑦∥𝐸𝑗+𝑚
∗
) (

(𝑡2−Ω 𝑗−1)𝑢 𝑗−1−(𝑡1−Ω 𝑗−1)𝑢 𝑗−1
)
.

Hence, | (𝑊1𝑦) (𝑡2) − (𝑊1𝑦) (𝑡1) | → 0 as |𝑡2 − 𝑡1 | → 0. It implies that𝑊1(𝐵𝑅 𝑗 ) is

equicontinuous.
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Step 4: 𝑊2 is a strict contraction on 𝐵𝑅 𝑗

For 𝑦1(𝑡), 𝑦2(𝑡) ∈ 𝐵𝑅𝑖 , we obtain that

| (𝑊2𝑦2) (𝑡)−(𝑊2𝑦1) (𝑡) |

≤ 1
Γ (𝑢 𝑗 )

∫ 𝑡
Ω 𝑗−1

(𝑡−𝑤)𝑢 𝑗−1
���𝑚 (

𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1
ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦2 (Ω 𝑗 ))+ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦2 (𝑤),𝑦2 (𝑤)
)

− 𝑚

(
𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1

ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦1 (Ω 𝑗 ))+ℑ
𝑢 𝑗

Ω+
𝑗−1

𝑦1 (𝑤),𝑦1 (𝑤)
)���𝑑𝑤

≤ 1
Γ (𝑢 𝑗 )

∫ 𝑡
Ω 𝑗−1

(𝑡−𝑤)𝑢 𝑗−1
𝑤−Z

(
𝐾 (Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1

ℑ
𝑢 𝑗

Ω+
𝑗−1

|𝑦2 (Ω 𝑗 )−𝑦1 (Ω 𝑗 ) |

+ 𝐾ℑ
𝑢 𝑗

Ω+
𝑗−1

|𝑦2 (𝑤)−𝑦1 (𝑤) |+𝐿 |𝑦2 (𝑤)−𝑦1 (𝑤) |
)
𝑑𝑤

≤ 1
Γ (𝑢 𝑗 )

∫ 𝑡
Ω 𝑗−1

(𝑡−𝑤)𝑢 𝑗−1
𝑤−Z

(
2𝐾ℑ

𝑢 𝑗

Ω+
𝑗−1

∥𝑦2−𝑦1∥𝐸𝑗+𝐿∥𝑦2−𝑦1∥𝐸𝑗

)
𝑑𝑤

≤ (Ω 𝑗1−Z −Ω
1−Z
𝑗−1 ) (Ω 𝑗−Ω 𝑗−1 )

𝑢 𝑗−1

(1−Z )Γ (𝑢 𝑗 )

(
2𝐾 (Ω 𝑗−Ω 𝑗−1 )

𝑢 𝑗

Γ (𝑢 𝑗+1) ∥𝑦2−𝑦1∥𝐸𝑗+𝐿∥𝑦2−𝑦1∥𝐸𝑗

)
≤ (Ω 𝑗1−Z −Ω

1−Z
𝑗−1 ) (Ω 𝑗−Ω 𝑗−1 )

𝑢 𝑗−1

(1−Z )Γ (𝑢 𝑗 )

(
2𝐾 (Ω 𝑗−Ω 𝑗−1 )

𝑢 𝑗

Γ (𝑢 𝑗+1) +𝐿
)
∥𝑦2−𝑦1∥𝐸𝑗 .

Consequently, by (6.8), 𝑊2 is a strict contraction. Hence, by KFPThm, ∃

𝑥 𝑗 ∈ 𝐵𝑅 𝑗 s.t. 𝑊1(𝑥) +𝑊2(𝑥) = 𝑥, which is the equivalent standard problem’s (6.6)

solution.

We let

𝑥 𝑗 =


0, 𝑡 ∈ [0,Ω 𝑗−1],

�̃� 𝑗 , 𝑡 ∈ 𝔍 𝑗 .
(6.10)

On the other side, it is known that 𝑥 𝑗 ∈ ℭ( [0,Ω 𝑗 ],R) given by (6.10) fulfills

𝑑2
𝑑𝑡2

( ∫ Ω1
0

(𝑡−𝑤)1−𝑢1
Γ (2−𝑢1 )

𝑥 𝑗 (𝑤)𝑑𝑤+···+
∫ 𝑡
Ω 𝑗−1

(𝑡−𝑤)1−𝑢 𝑗
Γ (2−𝑢 𝑗 )

𝑥 𝑗 (𝑤)𝑑𝑤
)
=𝑚(𝑤,𝑥 𝑗 (𝑤),𝔇

𝑢 𝑗

0+ 𝑥 𝑗 (𝑤)),
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for 𝑡 ∈ 𝔍 𝑗 , which indicates that 𝑥 𝑗 will be a solution to equation (6.5) furnished

with 𝑥 𝑗 (0) = 0, 𝑥 𝑗 (Ω 𝑗 ) = �̃� 𝑗 (Ω 𝑗 ) = 0.

Then,

𝑥(𝑡) =



𝑥1(𝑡), 𝑡 ∈ 𝔍1,

𝑥2(𝑡) =


0, 𝑡 ∈ 𝔍1,

�̃�2, 𝑡 ∈ 𝔍2

.

.

.

.

𝑥𝑟 (𝑡) =


0, 𝑡 ∈ [0,Ω 𝑗−1],

�̃� 𝑗 , 𝑡 ∈ 𝔍 𝑗

is the solution for the main variable order FBVP (6.1).

6.4 U-H-R Stability

We study a general form of such a notion in sense of U-H-R.

Theorem 25. Consider (H1), (H2), (6.8) and assume:

(H3) 𝜑 ∈ ℭ(𝔍 𝑗 ,R+) is increasing and ∃ _𝜑 > 0 s.t. ∀ 𝑡 ∈ 𝔍 𝑗 , we get:

ℑ
𝑢 𝑗

Ω 𝑗−1
+𝜑(𝑡) ≤ _𝜑(𝑡)𝜑(𝑡).

then, the given implicit nonlinear VOFBVP (6.1) is U-H-R stable w.r.t 𝜑.

Proof. Assume that 𝑧 ∈ ℭ(𝔍 𝑗 ,R) is an inequality’s solution as follows:

|𝔇𝑢 𝑗

Ω 𝑗−1
+𝑧(𝑡) − 𝑚(𝑡, 𝑧(𝑡),𝔇𝑢 𝑗

Ω 𝑗−1
+𝑧(𝑡)) | ≤ 𝜖𝜑(𝑡), 𝑡 ∈ 𝔍 𝑗 . (6.11)
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For any 𝑗 ∈ {1, 2, ..., 𝑛} we define the functions 𝑧1(𝑡) ≡ 𝑧(𝑡), 𝑡 ∈ [1,Ω1] and for

𝑗 = 2, 3, ..., 𝑛 :

𝑧 𝑗 (𝑡) =


0, 𝑡 ∈ [0,Ω 𝑗−1],

𝑧(𝑡), 𝑡 ∈ 𝔍 𝑗 .

By considering ℑ𝑢 𝑗
Ω 𝑗−1

+ on both sides of the inequality (6.11), we obtain for 𝑡 ∈ 𝔍 𝑗

���𝑧 𝑗 (𝑡) + (Ω 𝑗−Ω 𝑗−1 )
1−𝑢 𝑗 (𝑡−Ω 𝑗−1 )

𝑢 𝑗−1

Γ (𝑢 𝑗 )

∫ Ω 𝑗
Ω 𝑗−1

(Ω𝑖−𝑤)𝑢 𝑗−1
𝑚

(
𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1

ℑ
𝑢 𝑗

Ω+
𝑗−1
𝑧 𝑗 (Ω 𝑗 ))+ℑ

𝑢 𝑗

Ω+
𝑗−1
𝑧 𝑗 (𝑤),𝑧 𝑗 (𝑤)

)
𝑑𝑤

− 1
Γ (𝑢 𝑗 )

∫ 𝑡
Ω 𝑗−1

(𝑡−𝑤)𝑢 𝑗−1
𝑚

(
𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1

ℑ
𝑢 𝑗

Ω+
𝑗−1
𝑧 𝑗 (Ω 𝑗 ))+ℑ

𝑢 𝑗

Ω+
𝑗−1
𝑧 𝑗 (𝑤),𝑧 𝑗 (𝑤)

)
𝑑𝑤

���
≤ 𝜖

∫ 𝑡
Ω 𝑗−1

(𝑡−𝑤)𝑢( 𝑗 )−1
Γ (𝑢( 𝑗 ) ) 𝜑(𝑤)𝑑𝑤

≤ _𝜑 (𝑡 ) 𝜖𝜑(𝑡).

In accordance with above argument, VOFBVP (6.1) involves a solution y which is

defined by y(𝑡) = 𝑦 𝑗 (𝑡) for 𝑡 ∈ 𝔍 𝑗 , 𝑗 = 1, 2, ..., 𝑛, where

𝑦 𝑗 (𝑡) =


0, 𝑡 ∈ [0,Ω 𝑗−1],

𝑦 𝑗 , 𝑡 ∈ 𝔍 𝑗 ,
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and 𝑦 𝑗 ∈ 𝐸𝑖 is a solution of FBVP (6.6). By Lemma (7) the integral equation

( �̃� 𝑗 ) (𝑡)=−
(Ω 𝑗−Ω 𝑗−1 )

1−𝑢 𝑗 (𝑡−Ω 𝑗−1 )
𝑢 𝑗−1

Γ (𝑢 𝑗 )

∫ Ω 𝑗
Ω 𝑗−1

(Ω 𝑗−𝑤)𝑢 𝑗−1
𝑚

(
𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1

ℑ
𝑢𝐽

Ω+
𝐽−1

�̃� 𝑗 (Ω𝐽 ))+ℑ
𝑢 𝑗

Ω+
𝑗−1

�̃� 𝑗 (𝑤),�̃� 𝑗 (𝑤)
)
𝑑𝑤

+ 1
Γ (𝑢 𝑗 )

∫ 𝑡
Ω 𝑗−1

(𝑡−𝑤)𝑢 𝑗−1
𝑚

(
𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1

ℑ
𝑢 𝑗

Ω+
𝑗−1

�̃� 𝑗 (Ω 𝑗 ))+ℑ
𝑢 𝑗

Ω+
𝑗−1

�̃� 𝑗 (𝑤),�̃� 𝑗 (𝑤)
)
𝑑𝑤

holds. Then, we arrive at, for each 𝑡 ∈ 𝔍 𝑗

|𝑧(𝑡)−𝑦(𝑡) |=|𝑧(𝑡)−𝑦𝑖 (𝑡) |=|𝑧𝑖 (𝑡)−�̃�𝑖 (𝑡) |

=

���(𝑧 𝑗 ) (𝑡)+ (Ω 𝑗−Ω 𝑗−1 )
1−𝑢 𝑗 (𝑡−Ω 𝑗−1 )

𝑢 𝑗−1

Γ (𝑢 𝑗 )

∫ Ω 𝑗
Ω 𝑗−1

(Ω 𝑗−𝑤)𝑢 𝑗−1
𝑚

(
𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1

ℑ
𝑢 𝑗

Ω+
𝑗−1

�̃�𝑖 (Ω 𝑗 ))+ℑ
𝑢 𝑗

Ω+
𝑗−1

�̃�𝑖 (𝑤),�̃�𝑖 (𝑤)
)
𝑑𝑤

− 1
Γ (𝑢 𝑗 )

∫ 𝑡
Ω 𝑗−1

(𝑡−𝑤)𝑢 𝑗−1
𝑚

(
𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1

ℑ
𝑢 𝑗

Ω+
𝑗−1

�̃�𝑖 (Ω 𝑗 ))+ℑ
𝑢 𝑗

Ω+
𝑗−1

�̃�𝑖 (𝑤),�̃�𝑖 (𝑤)
)
𝑑𝑤

���
≤

���(𝑧 𝑗 ) (𝑡)+ (Ω 𝑗−Ω 𝑗−1 )
1−𝑢 𝑗 (𝑡−Ω 𝑗−1 )

𝑢 𝑗−1

Γ (𝑢 𝑗 )

∫ Ω 𝑗
Ω 𝑗−1

(Ω 𝑗−𝑤)𝑢 𝑗−1
𝑚

(
𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1

ℑ
𝑢 𝑗

Ω+
𝑗−1
𝑧 𝑗 (Ω 𝑗 ))+ℑ

𝑢 𝑗

Ω+
𝑗−1
𝑧 𝑗 (𝑤),𝑧 𝑗 (𝑤)

)
𝑑𝑤

− 1
Γ (𝑢 𝑗 )

∫ 𝑡
Ω 𝑗−1

(𝑡−𝑤)𝑢 𝑗−1
𝑚

(
𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1

ℑ
𝑢 𝑗

Ω+
𝑗−1
𝑧 𝑗 (Ω 𝑗 ))+ℑ

𝑢 𝑗

Ω+
𝑗−1
𝑧 𝑗 (𝑤),𝑧 𝑗 (𝑤)

)
𝑑𝑤

���
+ (Ω 𝑗−Ω 𝑗−1 )

1−𝑢 𝑗 (𝑡−Ω 𝑗−1 )
𝑢 𝑗−1

Γ (𝑢 𝑗 )

∫ Ω 𝑗
Ω 𝑗−1

(Ω 𝑗−𝑤)𝑢 𝑗−1
���𝑚 (

𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1
ℑ
𝑢 𝑗

Ω+
𝑗−1
𝑧 𝑗 (Ω 𝑗 )+ℑ

𝑢 𝑗

Ω+
𝑗−1
𝑧 𝑗 (𝑤),𝑧 𝑗 (𝑤)

)
𝑑𝑤

− 𝑚

(
𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1

ℑ
𝑢 𝑗

Ω+
𝑗−1

�̃�𝑖 (Ω 𝑗 )+ℑ
𝑢 𝑗

Ω+
𝑗−1

�̃�𝑖 (𝑤),�̃�𝑖 (𝑤)
)
𝑑𝑤

���
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+ 1
Γ (𝑢 𝑗 )

∫ 𝑡
Ω 𝑗−1

(𝑡−𝑤)𝑢 𝑗−1
���𝑚 (

𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1
ℑ
𝑢 𝑗

Ω+
𝑗−1
𝑧 𝑗 (Ω 𝑗 )+ℑ

𝑢 𝑗

Ω+
𝑗−1
𝑧 𝑗 (𝑤),𝑧 𝑗 (𝑤)

)
𝑑𝑤

− 𝑚

(
𝑤,−(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1

ℑ
𝑢 𝑗

Ω+
𝑗−1

�̃�𝑖 (Ω 𝑗 )+ℑ
𝑢 𝑗

Ω+
𝑗−1

�̃�𝑖 (𝑤),�̃�𝑖 (𝑤)
)
𝑑𝑤

���
≤ _𝜑 (𝑡 ) 𝜖𝜑(𝑡)+

(Ω 𝑗−Ω 𝑗−1 )
1−𝑢 𝑗 (𝑡−Ω 𝑗−1 )

𝑢 𝑗−1

Γ (𝑢 𝑗 )

∫ Ω 𝑗
Ω 𝑗−1

(Ω 𝑗−𝑤)𝑢 𝑗−1
𝑤−Z

(
𝐾

[
(Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1

ℑ
𝑢 𝑗

Ω+
𝑗−1

| (𝑧 𝑗 (Ω 𝑗 )−�̃�𝑖 (Ω 𝑗 ) |

+ ℑ
𝑢 𝑗

Ω+
𝑗−1

|𝑧 𝑗 (𝑤)−�̃�𝑖 (𝑤) |
]
+𝐿 |𝑧 𝑗 (𝑤)−�̃�𝑖 (𝑤) |

)
𝑑𝑤

+ 1
Γ (𝑢 𝑗 )

∫ 𝑡
Ω 𝑗−1

(𝑡−𝑤)𝑢 𝑗−1
𝑤−Z

(
𝐾 (Ω 𝑗−Ω 𝑗−1)1−𝑢 𝑗 (𝑤−Ω 𝑗−1)𝑢 𝑗−1

ℑ
𝑢 𝑗

Ω+
𝑗−1

|𝑧 𝑗 (Ω 𝑗 )−�̃�𝑖 (Ω 𝑗 ) |

+ ℑ
𝑢 𝑗

𝑇+
𝑗−1

|𝑧 𝑗 (𝑤)−�̃�𝑖 (𝑤) |+𝐿 |𝑧 𝑗 (𝑤)−�̃�𝑖 (𝑤) |
)
𝑑𝑤

≤ _𝜑 (𝑡 ) 𝜖𝜑(𝑡)+ 1
Γ (𝑢 𝑗 )

∫ Ω 𝑗
Ω 𝑗−1

(Ω 𝑗−𝑤)𝑢 𝑗−1
𝑤−Z

(
𝐾ℑ

𝑢 𝑗

Ω+
𝑗−1

|𝑧 𝑗 (Ω 𝑗 )−�̃�𝑖 (Ω 𝑗 ) |+𝐾ℑ
𝑢 𝑗

Ω+
𝑗−1

|𝑧 𝑗 (𝑤)−�̃�𝑖 (𝑤) |

+ 𝐿 |𝑧 𝑗 (𝑤)−�̃�𝑖 (𝑤) |
)
𝑑𝑤+ 1

Γ (𝑢 𝑗 )
∫ 𝑡
Ω 𝑗−1

(𝑡−𝑤)𝑢 𝑗−1
𝑤−Z

(
𝐾ℑ

𝑢 𝑗

Ω+
𝑗−1

|𝑧 𝑗 (Ω 𝑗 )−�̃�𝑖 (Ω 𝑗 ) |

+ 𝐾ℑ
𝑢 𝑗

Ω+
𝑗−1

|𝑧 𝑗 (𝑤)−�̃�𝑖 (𝑤) |+𝐿 |𝑧 𝑗 (𝑤)−�̃�𝑖 (𝑤) |
)
𝑑𝑤+ 𝑚∗

Γ (𝑢 𝑗 )
∫ 𝑡
Ω 𝑗−1

(𝑡−𝑤)𝑢 𝑗−1
𝑑𝑤

≤ _𝜑 (𝑡 ) 𝜖𝜑(𝑡)+
(Ω 𝑗−Ω 𝑗−1 )

𝑢 𝑗−1

Γ (𝑢 𝑗 )

(
2𝐾ℑ

𝑢 𝑗

Ω+
𝑗−1

∥𝑧 𝑗−�̃�𝑖 ∥𝐸𝑗+𝐿∥𝑧 𝑗−�̃�𝑖 ∥𝐸𝑗

) ∫ Ω 𝑗
Ω 𝑗−1

𝑤−Z 𝑑𝑤

+ (𝑡−Ω 𝑗−1 )
𝑢 𝑗−1

Γ (𝑢 𝑗 )

(
2𝐾ℑ

𝑢 𝑗

Ω+
𝑗−1

∥𝑧 𝑗−�̃�𝑖 ∥𝐸𝑗+𝐿∥𝑧 𝑗−�̃�𝑖 ∥𝐸𝑗

) ∫ 𝑡
Ω 𝑗−1

𝑤−Z 𝑑𝑤

≤ _𝜑 (𝑡 ) 𝜖𝜑(𝑡)+
(Ω 𝑗1−Z −Ω 𝑗−1

1−Z ) (Ω 𝑗−Ω 𝑗−1 )
𝑢 𝑗−1

(1−Z )Γ (𝑢 𝑗 )

(
2𝐾

(Ω 𝑗−Ω 𝑗−1 )
𝑢 𝑗

Γ (𝑢 𝑗+1) ∥𝑧 𝑗−�̃�𝑖 ∥𝐸𝑗+𝐿∥𝑧 𝑗−�̃�𝑖 ∥𝐸𝑗

)
+ (𝑡−Ω 𝑗−1 )

𝑢 𝑗−1

Γ (𝑢 𝑗 )

(
2𝐾

(𝑡1−Z −Ω 𝑗−1
1−Z ) (Ω 𝑗−Ω 𝑗−1 )

𝑢 𝑗

(1−Z )Γ (𝑢 𝑗+1) ∥𝑧 𝑗−�̃�𝑖 ∥𝐸𝑗+𝐿∥𝑧 𝑗−�̃�𝑖 ∥𝐸𝑗

)
≤ _𝜑 (𝑡 ) 𝜖𝜑(𝑡)+

2(Ω 𝑗1−Z −Ω 𝑗−1
1−Z ) (Ω 𝑗−Ω 𝑗−1 )

𝑢 𝑗−1

(1−Z )Γ (𝑢 𝑗 )

(
2𝐾

(Ω 𝑗−Ω 𝑗−1 )
𝑢 𝑗

Γ (𝑢 𝑗+1) +𝐿
)
∥𝑧 𝑗−�̃�𝑖 ∥𝐸𝑗 .

≤ _𝜑 (𝑡 ) 𝜖𝜑(𝑡)+`∥𝑧−𝑦∥.
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where

` = max
𝑖=1,2,...,𝑛

2(Ω 𝑗
1−Z −Ω 𝑗−1

1−Z ) (Ω 𝑗 −Ω 𝑗−1)𝑢 𝑗−1

(1 − Z)Γ(𝑢 𝑗 )

(
2𝐾

(Ω 𝑗 −Ω 𝑗−1)𝑢 𝑗
Γ(𝑢 𝑗 + 1) + 𝐿

)
.

Then

∥𝑧 − 𝑦∥(1 − `) ≤ _𝜑(𝑡)𝜖𝜑(𝑡).

It gives, for each 𝑡 ∈ 𝔍, that

|𝑧(𝑡) − 𝑦(𝑡) | ≤ ∥𝑧 − 𝑦∥ ≤
_𝜑(𝑡)
1 − `𝜖𝜑(𝑡) := 𝑎𝑚𝜖𝜑(𝑡).

Then, the given implicit nonlinear VOFBVP (6.1) is U-H-R stable w.r.t 𝜑.

6.5 Numerical Example

Example 6.5.1. Let us consider the implicit nonlinear VOFBVP by assumingΩ = 2,

as follows:


𝔇
𝑢(𝑡)
0+ 𝑥(𝑡) =

( |𝑥 1
2 (𝑡) |
10

+ 2
15

|𝔇𝑢(𝑡)
0+ 𝑥(𝑡) | +

1
3

)
𝑡
−1

4 , 𝑡 ∈ 𝔍 := [0, 2],

𝑥(0) = 0, 𝑥(2) = 0.

(6.12)

Let

𝑚(𝑡, 𝑦, 𝑧) = ( 1
10
𝑦

1
2 + 2

15
𝑧 + 1

3
)𝑡−

1
4 , (𝑡, 𝑦, 𝑧) ∈ [0, 2] × [1, +∞) × [1, +∞),
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and

𝑢(𝑡) =


8
5
, 𝑡 ∈ 𝔍1 := [0, 1],

9
5
, 𝑡 ∈ 𝔍2 :=]1, 2] .

(6.13)

Thus, we obtain:

𝑡
1
4 |𝑚(𝑡, 𝑦1, 𝑧1) − 𝑚(𝑡, 𝑦2, 𝑧2) | = | 1

10
(𝑦

1
2
1 − 𝑦

1
2
2 ) +

2
15

(𝑧1 − 𝑧2) |

≤ 1
10

|𝑦1 − 𝑦2 | +
2
15

|𝑧1 − 𝑧2 |.

Therefore, (H2) holds with Z =
1
4

and 𝐾 =
1
10

, 𝐿 =
2
15

.

By (6.13), the implicit nonlinear VOFBVP (6.12) is divided into two expressions as

follows:


𝔇

8
5
0+𝑥(𝑡) = ( 1

10
|𝑥

1
2 (𝑡) | + 2

15
|𝔇

8
5
0+𝑥(𝑡) | +

1
3
)𝑡−

1
4 , 𝑡 ∈ 𝔍1,

𝔇

9
5
1+𝑥(𝑡) = ( 1

10
|𝑥

1
2 (𝑡) | + 2

15
|𝔇

9
5
1+𝑥(𝑡) | +

1
3
)𝑡−

1
4 , 𝑡 ∈ 𝔍2.

For 𝑡 ∈ 𝔍1, the implicit nonlinear VOFBVP (6.12) is corresponding to the following

FBVP:


𝔇

8
5
0+𝑥(𝑡) = ( 1

10
|𝑥

1
2 (𝑡) | + 2

15
|𝔇

8
5
0+𝑥(𝑡) | +

1
3
)𝑡−

1
4 , 𝑡 ∈ 𝔍1,

𝑥(0) = 0, 𝑥(1) = 0.

(6.14)

We can immediately check that (6.8) holds

(Ω1
1−Z −Ω1−Z

0 ) (Ω1−Ω0 )
𝑢1−1

(1−Z )Γ (𝑢1 )

(
2𝐾 (Ω1−Ω0 )

𝑢1
Γ (𝑢1+1) +𝐿

)
= 1

3Γ ( 8
5 )

4

(
1
5

Γ ( 13
5 )

+ 2
15 )≃0.4076<1.
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Let 𝜑(𝑡) = 𝑡
1
2 . Then

𝐼
𝑢1
0+𝜑(𝑡) =

1
Γ( 8

5)

∫ 𝑡

0
(𝑡 − 𝑤)

3
5𝑤

1
2 𝑑𝑤

≤ 1
Γ( 8

5)

∫ 𝑡

0
(𝑡 − 𝑤)

3
5 𝑑𝑤

≤ 5
8Γ( 8

5)
𝜑(𝑡) := _𝜑(𝑡)𝜑(𝑡).

Hence, (H3) holds with 𝜑(𝑡) = 𝑡
1
2 and _𝜑(𝑡) =

5
8Γ( 8

5)
.

By Theorem (24), the equivalent standard implicit nonlinear FBVP (6.14) has a

solution 𝑥1 ∈ 𝐸1, and from Theorem (25), the same FBVP (6.14) is U-H-R stable.

For 𝑡 ∈ 𝔍2, the implicit nonlinear VOFBVP (6.12) can be converted to the equivalent

standard implicit nonlinear FBVP as follows:


𝔇

9
5
1+𝑥(𝑡) = ( 1

10
|𝑥

1
2 (𝑡) | + 2

15
|𝔇

9
5
1+𝑥(𝑡) | +

1
3
)𝑡−

1
4 , 𝑡 ∈ 𝔍2,

𝑥(1) = 0, 𝑥(2) = 0.

(6.15)

We simply see that

(Ω2
1−Z −Ω1−Z

1 ) (Ω2−Ω1 )
𝑢2−1

(1−Z )Γ (𝑢2 )

(
2𝐾 (Ω2−Ω1 )

𝑢2
Γ (𝑢2+1) +𝐿

)
= 2

3
4 −1

3Γ ( 9
5 )

4

(
1
5

Γ (2.8) +
2
15 )≃0.2465<1.
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Thus, the condition (6.8) is satisfied. Also

ℑ
𝑢2
1+𝜑(𝑡) =

1
Γ( 9

5)

∫ 𝑡

1
(𝑡 − 𝑤)

4
5𝑤

1
2 𝑑𝑤

≤ 1
Γ( 9

5)

∫ 𝑡

1
(𝑡 − 𝑤)

4
5 𝑑𝑤

≤ 5
9Γ( 9

5)
𝜑(𝑡) := _𝜑(𝑡)𝜑(𝑡).

Hence, (H3) fulfills with 𝜑(𝑡) = 𝑡
1
2 and _𝜑(𝑡) =

5
9Γ( 9

5)
.

By Theorem (24), the equivalent standard implicit nonlinear FBVP (6.15) has a

solution �̃�2 ∈ 𝐸2, and from Theorem (25), the same implicit nonlinear FBVP (6.15)

is U-H-R stable.

Clearly, we have:

𝑥2(𝑡) =


0, 𝑡 ∈ 𝔍1

�̃�2(𝑡), 𝑡 ∈ 𝔍2.

Accordingly, by Definition 21, the solution of the implicit nonlinear VOFBVP (6.12)

admits a form as

𝑥(𝑡) =


𝑥1(𝑡), 𝑡 ∈ 𝔍1,

𝑥2(𝑡) =


0, 𝑡 ∈ 𝔍1,

�̃�2(𝑡), 𝑡 ∈ 𝔍2,

and, by Theorem (25), the implicit nonlinear VOFBVP (6.12) is U-H-R stable w.r.t

𝜑.

6.6 Conclusion

New results concerning the solutions’ existence and stability of our proposed

FBVP as an implicit nonlinear FDfEq in the variable order settings have been
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carefully studied in this work. With the aid of both KFPThm and the criterion of

U-H-R stability, our results have been successfully obtained. A numerical example

has been presented to show the applicability of our theoretical analysis. In future

work, our results can be extended or generalized include various classes of implicit

nonlinear FDfEq in the variable order settings.
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CHAPTER 7: A GENERALIZED MITTAG–LEFFLER–HYERS–
ULAM STABILITY OF QUADRATIC FRACTIONAL INTEGRAL

EQUATION

7.1 Introduction

Various integral equations (IEs) types are essential in functional analysis because

of their diverse applications in science and engineering. Many real-life applications

can be well modelled via quadratic fractional IEs. Quadratic integral equations

(QIEs) are encountered in kinetic molecular, radiative, neutron transport, traffic, and

queuing theories (Argyros, 1985; Busbridge, 1960). While QIEs have several appli-

cations, studying QIEs in the context of FrCL offers a powerful computational tool in

many modelling scenarios, particularly queuing theory and biology (Darwish, 2005).

This work investigates the following quadratic fractional integral equation’s

(FIE) stability:

𝑦(𝑡) = V(𝑡, 𝑦(𝑡))
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1Q𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
((𝑡 − b)𝑞)W (b, 𝑦(b)) db

]
, (7.1)

where V, W : 𝐽 × R → R are CFs, 𝑞 ∈ [1, 2), Γ represents Gamma function(GF),

and Q𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
is the generalized Mittag–Leffler (ML) function. The quadratic operator

equations’ existence can be proven under the conditions of mixed Lipschitz and

compactness along with a certain growth condition on the nonlinearities included

in the quadratic operator.

In this chapter, a proposed quadratic fractional IE is studied via a generalized

ML function. The generalized ML–Hyers–Ulam (ML-H-U) stability is obtained.

Hyers–Ulam (H-U) stability and ML–Hyers–Ulam–Rassias (ML-H-U-R) stability
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are investigated.

7.2 Essential Concepts

For a nonempty set Y, the generalized metric on Y is initiated in this section.

Given a function: ρ̂ : Y ×Y → [0, +∞], known as a generalized metric on Y iff

the given assumptions are satisfied as follows:

(A1) ρ̂(𝑦1, 𝑦2) = 0 iff 𝑦1 = 𝑦2.

(A2) ρ̂(𝑦1, 𝑦2) = ρ̂(𝑦2, 𝑦1) ∀ 𝑦1, 𝑦2 ∈ Y.

(A3) ρ̂(𝑦1, 𝑦2) ≤ ρ̂(𝑦1, 𝑦3) + ρ̂(𝑦3, 𝑦2) ∀ 𝑦𝑖 ∈ Y with 𝑖 = 1, 2, 3.

Obviously, the above definition differs from the known complete metric space where

not every 2 points in Y have necessarily a finite distance. Therefore, this space can

be called as a generalized complete metric space (GCMSp).

Banach’s fixed point theorem (BFPThm) in a GCMSp is expressed as:

Theorem 26. Assume that (Y, ρ̂) is a GCMSp. Let O : Y → Y be a strictly

contractive operator with the Lipschitz constant ℓ < 1. If ∃ a nonnegative integer 𝑘

∋

ρ̂

(
O𝑘+1(𝑦),O𝑘 (𝑦)

)
< ∞,

for some 𝑦 ∈ Y, then the following are true:

(I) The sequence O𝑛 (𝑦) converges to a fixed point 𝑦∗ of O.

(II) 𝑦∗ is the unique fixed point of O in

Y∗ =
{
𝑦 ∈ Y

��� ρ̂ (
O𝑘 (𝑦∗) , 𝑦

)
< ∞

}
.
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(III) If 𝑦 ∈ Y∗, then we have:

ρ̂ (𝑦, 𝑦∗) ≤ 1
1 − ℓ ρ̂ (O(𝑦), 𝑦) .

Definition 22. (Mittag-Leffler, 1903) (ML function) The one-parameter ML function,

represented by 𝔈𝛼 (𝑧), is expressed as:

E𝛼 (𝑧) =
∞∑︁
𝑘=0

1
Γ(1 + 𝛼𝑘) 𝑧

𝑘 , (7.2)

where 𝑧, 𝛼 ∈ C, 𝑅𝑒(𝛼) > 0. If we substitute 𝛼 = 1 in the above equation, then we

get:

E1(𝑧) =
∞∑︁
𝑘=0

𝑧𝑘

Γ(1 + 𝑘) =
∞∑︁
𝑘=0

𝑧𝑘

𝑘!
= 𝑒𝑧 .

In 1905, the generalized form of E𝛼 (𝑧) was proposed by (Wiman, 1905). Then,

both Agarwal (1953), and Humbert and Agarwal (1953) introduced a function as

follows:

Definition 23.

E𝛼,𝛽 (𝑧) =
∞∑︁
𝑘=0

1
Γ(𝛽 + 𝛼𝑘) 𝑧

𝑘 , (7.3)

where 𝑧, 𝛼, 𝛽 ∈ C, 𝑅𝑒(𝛼) > 0, 𝑅𝑒(𝛽) > 0.

Prabhakar generalized in 1971 this function in the following form:

E𝛾
𝛼,𝛽

(𝑧) =
∞∑︁
𝑘=0

(𝛾)𝑘
Γ(𝛽 + 𝛼𝑘) 𝑧

𝑘 .

where 𝑧, 𝛼, 𝛽, 𝛾 ∈ C, 𝑅𝑒(𝛼) > 0, 𝑅𝑒(𝛽) > 0, 𝑅𝑒(𝛾) > 0, such that 𝛾 ≠ 0,

(𝛾)𝑘 =
𝑘−1∏
𝑖=0

(𝛾 + 𝑖), (7.4)
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which is named as the Pochhammer symbol (A. Shukla & Prajapati, 2007) ∋

(𝛾)𝑘 = Γ(𝛾+𝑘)
Γ(𝛾) . Further generalization of this function was initiated by (A. Shukla

& Prajapati, 2007) as:

E𝛾,𝑞
𝛼,𝛽

(𝑧) =
∞∑︁
𝑘=0

(𝛾)𝑞𝑘
𝑘! Γ(𝛽 + 𝛼𝑘) 𝑧

𝑘 . (7.5)

where 𝑧, 𝛼, 𝛽, 𝛾 ∈ C,

min
{
𝑅𝑒(𝛼), 𝑅𝑒(𝛽), 𝑅𝑒(𝛾)

}
> 0, (7.6)

and 𝑞 ∈ (0, 1) ∪ N. In 2009, again A. K. Shukla and Prajapati (2009) introduced a

generalized ML function. In 2012, a novel generalized form of ML function was

proposed by both (Salim & Faraj, 2012) and (Chouhan & Saraswat, 2011) as:

E𝛾,𝑞
𝛼,𝛽,𝛿

(𝑧) =
∞∑︁
𝑘=0

(𝛾)𝑞𝑘
(𝛿)𝑞𝑘 Γ(𝛽 + 𝛼𝑘)

𝑧𝑘 . (7.7)

where 𝑧, 𝛼, 𝛽, 𝛾 ∈ C, Eq. (7.6) holds, 𝑞 ∈ (0, 1) ∪ N and

(𝛾)𝑞𝑘 =
Γ(𝛾 + 𝑞𝑘)
Γ(𝛾) , (𝛿)𝑞𝑘 =

Γ(𝛿 + 𝑞𝑘)
Γ(𝛿) , (7.8)

denote the generalized Pochhammer symbol (A. Shukla & Prajapati, 2007). After

them, Desai et al. (2016) proposed another definition of generalized ML function.

Definition 24. (Mazhar-ul Haque & Holambe, 2015). The generalized ML function,
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denoted by Q𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑦), can be expressed as:

Q𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑧) = Q𝛾,𝑞,𝑟

𝛼,𝛽,𝛿

(
𝑎1, 𝑎2, . . . , 𝑎𝑟 , 𝑏1, 𝑏2, . . . , 𝑏𝑟 , 𝑧

)
=

∞∑︁
𝑠=0

∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑠) (𝛾)𝑞𝑠∏𝑟

𝑛=1 𝛽(𝑏𝑛, 𝑠) (𝛿)𝑞𝑠 Γ(𝛽 + 𝛼𝑠)
𝑧𝑠, (7.9)

where 𝑦, 𝛼, 𝛽, 𝛾, 𝛿, 𝑎𝑖, 𝑏𝑖 ∈ C, Equation (7.6) holds, 𝑞 ∈ (0, 1) ∪ N, (𝛾)𝑞𝑘 and

(𝛿)𝑞𝑘 are defined in (7.8).

7.3 H-U-R Stability

The H-U-R stability and H-U stability of equation (7.1) are studied on a compact

interval [0, 𝑎].

Definition 25. If for each given function 𝑦 satisfies����𝑦(𝑡)−V (𝑡, 𝑦(𝑡))
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1 Q𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
((𝑡 − b)𝑞)W (b, 𝑦(b)) db

] ���� ≤ Y𝜑(𝑡),
∃ an equation’s (7.1) solution 𝑢0 and a constant, 𝑐 > 0, which is independent of

both 𝑦 and 𝑢0 ∋

|𝑦(𝑡) − 𝑢0(𝑡) | ≤ 𝑐Yφ(𝑡),

for 𝑡 ∈ [𝑎, 𝑏], then equation (7.1) is named as H-U-R stable. On the other hand,

when φ is formed as a constant function, equation (7.1) is known as H-U stable.

Theorem 27. For a closed and bounded interval 𝐽 = [0, 𝑎] of the real line R for

some 𝑎 > 0, suppose that V and W : 𝐽 × R → R are CFs, 𝑞 ∈ [1, 2) and a

gamma function, denoted by Γ, the following are satisfied:

|V(𝑡, 𝑦(𝑡)) − V(𝑡, 𝑢(𝑡)) | ≤ 𝑀𝑣 |𝑦(𝑡) − 𝑢(𝑡) | (7.10)
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and

|W(𝑡, 𝑦(𝑡)) −W(𝑡, 𝑢(𝑡)) | ≤ 𝑀𝑤 |𝑦(𝑡) − 𝑢(𝑡) |, (7.11)

for each 𝑡 ∈ 𝐽, 𝑦, 𝑢 ∈ R, and suppose that����𝑦(𝑡) − V (𝑡, 𝑦(𝑡))
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1Q𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
((𝑡 − b)𝑞) 𝑔 (b, 𝑦(b)) db

] ���� ≤ Y,
(7.12)

and we also assume that

0 <
(
𝑀𝑣𝑀𝑤𝐾Y + 𝑀𝑣 ∥W∥ + 𝑀𝑤 ∥V∥

)
×

[
1

Γ(𝑞)

∞∑︁
𝑚=0

∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)
.

(
𝑡𝑞(𝑚+1)

𝑞(𝑚 + 1)

) ]
= 𝐾′ < 1.

Then, the quadratic FIE is H-U stable.

Proof. Let us consider the CFs’ space: Y = 𝐶 ( [0, 𝑎],R) with a generalized metric

(GMr), expressed as:

ρ̂(𝑔, ℎ) = inf
{
𝐾 ∈ [0,∞] : |𝑔(𝑥) − ℎ(𝑥) | ≤ 𝐾Y, ∀ 𝑡 ∈ 𝐽

}
.

From Sec. 8.2, (Y, ρ̂) is a GCMSp (see Theorem 26). Let us now formulate an

operator: O : Y → Y as:

O(𝑦(𝑡)) = V(𝑡, 𝑦(𝑡))
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞W (b, 𝑦(b)) db

]
.
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From the definition of O and equations (7.10) and (7.11), we get:

|O(𝑦(𝑡))−O(𝑢(𝑡)) | =

����V(𝑡, 𝑦(𝑡))
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞W (b, 𝑦(b)) db

]
−V(𝑡, 𝑢(𝑡))

[
1

Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞W (b, 𝑢(b)) db

] ����
≤ |V(𝑡, 𝑦(𝑡)) − V(𝑡, 𝑢(𝑡)) |

×
[

1
Γ (𝑞)

∫ 𝑡
0 (𝑡−b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽, 𝛿
(𝑡−b)𝑞 |W(b,𝑦(b))−W(b,𝑢(b)) | db

]
+ |V(𝑡, 𝑦(𝑡)) − V(𝑡, 𝑢(𝑡)) |

×
[

1
Γ (𝑞)

∫ 𝑡
0 (𝑡−b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽, 𝛿
(𝑡−b)𝑞 |W(b,𝑢(b)) | db

]
+ |V(𝑡, 𝑢(𝑡)) |

×
[

1
Γ (𝑞)

∫ 𝑡
0 (𝑡−b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽, 𝛿
(𝑡−b)𝑞 |W(b,𝑦(b))−W(b,𝑢(b)) | db

]
≤ 𝑀𝑣 |𝑦(𝑡) − 𝑢(𝑡) |

×
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞𝑀𝑤 |𝑦(b) − 𝑢(b) | db

]
+ 𝑀𝑣 |𝑦(𝑡) − 𝑢(𝑡) |

×
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞 ∥W∥ db

]
+ ∥V∥

[
1

Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞𝑀𝑤 |𝑦(b) − 𝑢(b) | db

]
≤

(
𝑀𝑣𝑀𝑤𝐾

2Y2 + 𝑀𝑣𝐾Y∥W∥ + 𝑀𝑣𝐾Y∥V∥
)

×
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞 db

]
≤

(
𝑀𝑣𝑀𝑤𝐾

2Y2 + 𝑀𝑣𝐾Y∥W∥ + 𝑀𝑤𝐾Y∥V∥
)

×
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1
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×
∞∑︁
𝑚=0

∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)
(𝑡 − b)𝑚𝑞 db

]
=

(
𝑀𝑣𝑀𝑤𝐾

2Y2 + 𝑀𝑣𝐾Y∥W∥ + 𝑀𝑤𝐾Y∥V∥
)

×
[

1
Γ(𝑞)

∞∑︁
𝑚=0

∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)

×
∫ 𝑡

0
(𝑡 − b)𝑞−1(𝑡 − b)𝑚𝑞 db

]
≤ 𝐾Y (𝑀𝑣𝑀𝑤 + 𝑀𝑣 ∥W∥ + 𝑀𝑤 ∥V∥)

×
[

1
Γ(𝑞)

∞∑︁
𝑚=0

∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)
.

(
𝑡𝑞(𝑚+1)

𝑞(𝑚 + 1)

) ]
.

Because 0 < 𝐾′ < 1, we conclude that O is contraction mapping. Let us take

𝑦′0 ∈ Y, from the continuous property of 𝑦′0 ∈ Y and O(𝑦′0) ∈ Y, ∃ a constant

0 < 𝐶1 < ∞ with

| (O𝑦′0) (𝑡)−𝑦′0 (𝑡) |
����V(𝑡,𝑦(𝑡))

[
1

Γ (𝑞)
∫ 𝑡

0 (𝑡−b)𝑞−1𝑄
𝛾,𝑞,𝑟

𝛼,𝛽, 𝛿
(𝑡−b)𝑞W(b,𝑦(b)) db

]
−𝑦′0 (𝑡)

����≤𝐶1Y, (7.13)

∀ 𝑡 ∈ [0, 𝑎]. so ρ̂
(
O(𝑦′0), 𝑦

′
0
)
< ∞. Therefore, Theorem 26(I) indicates that ∃ a

CF: 𝑦′0 : [0, 𝑎] → R such that O𝑛𝑦′0 → 𝑦′0 in (Y, ρ̂) as 𝑛→ ∞, 𝑦′0 = O(𝑦′0) where

𝑦′0 satisfies equation (7.1) for any 𝑡 ∈ 𝐽. If 𝑦 ∈ Y, then 𝑦′0 and 𝑦 are CFs defined on

a compact interval [0, 𝑎]. Thus, ∃ a constant 𝐶𝑦 > 0 with

|𝑦′0(𝑡) − 𝑦(𝑡) | ≤ 𝐶𝑥Y,

∀ 𝑡 ∈ [0, 𝑎]. This indicates that ρ̂(𝑦′0, 𝑦) < ∞ for every 𝑦 ∈ Y or equivalently

{
𝑦 ∈ Y : ρ̂(𝑦′0, 𝑦) < ∞

}
= Y.

Hence, from Theorem 26(II) 𝑦′0 is a unique continuous function (UqCF) with
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property (7.1). Also, it implies from (7.10)

ρ̂ (O(𝑦(𝑡)), 𝑦(𝑡)) ≤ Y,

∀ 𝑡 ∈ [0, 𝑎]. At last,

ρ̂
(
𝑦, 𝑦′0

)
≤ 1

1 − 𝐾′ ρ̂ (O𝑦, 𝑦) ≤
1

1 − 𝐾′Y.

Thus, the quadratic FIE is H-U stable.

The H-U-R stability of equation (7.1) is studied as follows:

Theorem 28. For a closed and bounded interval 𝐽 = [0, 𝑎] of the real line R for

some 𝑎 > 0, suppose that V,W : 𝐽 × R→ R are CFs, 𝑞 ∈ [1, 2) and a gamma

function, represented by Γ, the following are satisfied:

|V(𝑡, 𝑦(𝑡)) − V(𝑡, 𝑢(𝑡)) | ≤ 𝑀𝑣 |𝑦(𝑡) − 𝑢(𝑡) | (7.14)

and

|W(𝑡, 𝑦(𝑡)) −W(𝑡, 𝑢(𝑡)) | ≤ 𝑀𝑤 |𝑦(𝑡) − 𝑢(𝑡) | (7.15)

and [ ∫ 𝑡

0
(φ(b))1/𝑝 db

] 𝑝
≤ 𝐶φ(𝑡),

for any 𝑡 ∈ 𝐽, 𝑦, 𝑢 ∈ R and suppose that����𝑦(𝑡) − V(𝑡, 𝑦(𝑡))
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞W(b, 𝑦(b)) db

] ���� ≤ Yφ(𝑡),
(7.16)
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and we also suppose that

0 <
(
𝑀𝑣𝑀𝑤𝐾𝐶Yφ(𝑡) + 𝑀𝑤𝐶∥V∥

)
× 1
Γ(𝑞)

∞∑︁
𝑚=0

[ ∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)

]1/𝑤 (
𝑤𝑡

𝑚𝑞+𝑞+𝑤−1
𝑤

𝑚𝑞 + 𝑞 + 𝑤 − 1

)
+ 𝑀𝑣 ∥W∥ 1

Γ(𝑞)

∞∑︁
𝑚=0

∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)
.

(
𝑡𝑞(𝑚+1)

𝑞(𝑚 + 1)

)
= 𝐾′ < 1.

Then, the quadratic FIE is H-U stable.

Proof. Consider the CFs’ space: Y = 𝐶 ( [0, 𝑎],R) and 𝑔 ∈ Y, with a GMr, written

as:

ρ̂(𝑔, ℎ) = inf
{
𝐾 ∈ [0,∞] : |𝑔(𝑡) − ℎ(𝑡) | ≤ 𝐾Yφ(𝑡), ∀ 𝑡 ∈ 𝐽

}
.

Clearly, (Y, ρ̂) is a GCMSp. Let us now formulate an operator: O : Y → Y as:

O(𝑦(𝑡)) = V(𝑡, 𝑦(𝑡))
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞W(b, 𝑦(b)) db

]
. (7.17)
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From the definition O and equations (7.14) and (7.15), we get:

|O(𝑦(𝑡))−O(𝑢(𝑡)) | =

����V(𝑡, 𝑦(𝑡))
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞W(b, 𝑦(b)) db

]
−V(𝑡, 𝑢(𝑡))

[
1

Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞W(b, 𝑢(b)) db

] ����
≤ |V(𝑡, 𝑦(𝑡)) − V(𝑡, 𝑢(𝑡)) |

×
[

1
Γ (𝑞)

∫ 𝑡
0 (𝑡−b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽, 𝛿
(𝑡−b)𝑞 |W(b,𝑦(b))−W(b,𝑢(b)) | db

]
+ |V(𝑡, 𝑦(𝑡)) − V(𝑡, 𝑢(𝑡)) |

×
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞 |W(b, 𝑢(b)) | db

]
+ |V(𝑡, 𝑢(𝑡)) |

×
[

1
Γ (𝑞)

∫ 𝑡
0 (𝑡−b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽, 𝛿
(𝑡−b)𝑞 |W(b,𝑦(b))−W(b,𝑢(b)) | db

]
≤ 𝑀𝑣 |𝑦(𝑡) − 𝑢(𝑡) |

×
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞𝑀𝑤 |𝑦(b) − 𝑢(b) | db

]
+ 𝑀𝑣 |𝑦(𝑡) − 𝑢(𝑡) |

×
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞 ∥W∥ db

]
+ ∥V∥

[
1

Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞𝑀𝑣 |𝑦(b) − 𝑢(b) | db

]
≤ 𝑀𝑣𝑀𝑤𝐾

2Y2φ(𝑡)

×
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞φ(b) db

]
+ 𝑀𝑣𝐾Y ∥W∥ φ(𝑡)

[
1

Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞 db

]
+ 𝑀𝑣𝐾Y ∥V∥

[
1

Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞φ(b) db

]
≤

(
𝑀𝑣𝑀𝑤𝐾

2Y2φ(𝑡) + 𝑀𝑣𝐾Y ∥V∥
)

×
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞φ(b) db

]
+ 𝑀𝑣𝐾Y ∥W∥ φ(𝑡)

[
1

Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞 db

]
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≤
(
𝑀𝑣𝑀𝑤𝐾

2Y2φ(𝑡) + 𝑀𝑣𝐾Y ∥V∥
)

× 1
Γ(𝑞)

[ ∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
((𝑡 − b)𝑞)1/𝑤 db

]𝑤
×

[ ∫ 𝑡

0
(φ(b))1/𝑝 db

] 𝑝
+ 𝑀𝑣𝐾Y ∥W∥

[
1

Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞 db

]
≤

(
𝑀𝑣𝑀𝑤𝐾

2Y2φ(𝑡) + 𝑀𝑣𝐾Y ∥V∥
)
𝐶φ(𝑡)

× 1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b) (𝑞−1)/𝑤

×
∞∑︁
𝑚=0

[ ∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)

]1/𝑤
((𝑡 − b)𝑞)𝑚𝑞/𝑤 db

+ 𝑀𝑣𝐾Y ∥W∥ φ(𝑡) 1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1

×
∞∑︁
𝑚=0

[ ∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)

]1/𝑤
(𝑡 − b)𝑚𝑞 db

≤
(
𝑀𝑣𝑀𝑤𝐾

2Y2φ(𝑡) + 𝑀𝑣𝐾Y ∥V∥
)
𝐶φ(𝑡)

× 1
Γ(𝑞)

∞∑︁
𝑚=0

[ ∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)

]1/𝑤

×
∫ 𝑡

0
(𝑡 − b) (𝑚𝑞+𝑞−1)/𝑤 db

+ 𝑀𝑣𝐾Y ∥W∥ φ(𝑡) 1
Γ(𝑞)

×
∞∑︁
𝑚=0

∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)

∫ 𝑡

0
(𝑡 − b)𝑚𝑞+𝑞−1 db

≤
(
𝑀𝑣𝑀𝑤𝐾

2Y2φ(𝑡) + 𝑀𝑣𝐾Y ∥V∥
)
𝐶φ(𝑡)

× 1
Γ(𝑞)

∞∑︁
𝑚=0

[ ∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)

]1/𝑤

× 𝑤

𝑚𝑞 + 𝑞 + 𝑞 − 1
𝑡 (𝑚𝑞+𝑞+𝑤−1)/𝑤

+ 𝑀𝑣𝐾Y ∥W∥ φ(𝑡) 1
Γ(𝑞)

×
∞∑︁
𝑚=0

∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)
𝑡 (𝑚+1)𝑞

(𝑚 + 1)𝑞

≤ 𝐾Yφ(𝑡)𝐾′. 131
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Note that 0 < 𝐾′ < 1. We conclude that O is contraction mapping (CoMp). Let us

take 𝑦′0 ∈ Y, from the continuous property of 𝑦′0 ∈ Y and O(𝑦′0) ∈ Y ∃ a constant

0 < 𝐶1 < ∞ with

|O(𝑦′0) (𝑡)−𝑦
′
0 (𝑡) | =

����V(𝑡,𝑦(𝑡))

[
1

Γ (𝑞)
∫ 𝑡

0 (𝑡−b)𝑞−1𝑄
𝛾,𝑞,𝑟

𝛼,𝛽, 𝛿
(𝑡−b)𝑞W(b,𝑦(b)) db

]
−𝑦′0 (𝑡)

����
≤ 𝐶1Yφ(𝑡),

∀ 𝑡 ∈ [0, 𝑎]. So, ρ̂(O(𝑦0), 𝑦′0) < ∞. Thus, Theorem 26(I) indicates that ∃ a

CF: 𝑢′0 : [0, 𝑎] → R such that O𝑛 (𝑦0) → 𝑢′0 in (Y, ρ̂) as 𝑛 → ∞, 𝑢′0 = O(𝑢′0);

therefore, 𝑢′0 satisfies equation (7.1) for any 𝑡 ∈ 𝐽. If 𝑦 ∈ Y, then 𝑦′0 and 𝑦 are CFs

defined on a compact interval [0, 𝑎]. Thus, ∃ a constant 𝐶𝑥 > 0 with

|𝑦′0(𝑡) − 𝑦(𝑡) | ≤ 𝐶𝑦Yφ(𝑡), ∀𝑡 ∈ [0, 𝑎] .

This indicates that ρ̂(𝑦′0, 𝑦) < ∞ for every 𝑦 ∈ Y or equivalently {𝑦 ∈ Y :

ρ̂(𝑦′0, 𝑦) < ∞} = Y. Hence, from Theorem (26)(II)𝑢′0 is a UqCF with property (7.1).

As a result, from (7.16), it implies that

ρ̂ (O(𝑢(𝑡)), 𝑢(𝑡)) ≤ Yφ(𝑡),

∀ 𝑡 ∈ [0, 𝑎]. At last,

ρ̂(𝑢, 𝑢′0) ≤
1

1 − 𝐾′ ρ̂(O(𝑢), 𝑢) ≤ 1
1 − 𝐾′Yφ(𝑡).

Thus, the quadratic FIE is H-U-R stable.
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7.4 ML-H-U Stability

The ML-H-U stability of equation (7.1) is investigated.

Definition 26. If for each function 𝑦 satisfies

|𝑦(𝑡) − V(𝑡, 𝑦(𝑡))
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞W(b, 𝑦(b)) db

]
| ≤ Y𝐸𝑞 (𝑡𝑞),

∃ an equation’s (7.1) solution 𝑦0, and a constant, 𝑐 > 0, which is an independent

of both 𝑦 and 𝑦0 such that

|𝑦(𝑡) − 𝑦0(𝑡) | ≤ 𝑐Y𝐸𝑞 (𝑡𝑞),

for each 𝑡 ∈ [0, 𝑎], then equation (7.1) is named as ML-H-U stable.

Theorem 29. For a closed and bounded interval 𝐽 = [0, 𝑎] of the real line R for

some 𝑎 > 0, suppose that V,W : 𝐽 × R → R are CFs, 𝑞 ∈ [1, 2) and a gamma

function, represented by Γ, the following are satisfied:

|V(𝑡, 𝑦(𝑡)) −W(𝑡, 𝑢(𝑡)) | ≤ 𝑀𝑣 |𝑦(𝑡) − 𝑢(𝑡) | (7.18)

and

|W(𝑡, 𝑦(𝑡)) −W(𝑡, 𝑢(𝑡)) | ≤ 𝑀𝑤 |𝑦(𝑡) − 𝑢(𝑡) |, (7.19)

for any 𝑡 ∈ 𝐽, 𝑦, 𝑢 ∈ R, and suppose that����𝑦(𝑡) −V(𝑡, 𝑦(𝑡))
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞W(b, 𝑦(b)) db)

] ���� ≤ Y𝐸𝑞 (𝑡𝑞).
(7.20)

133

Univ
ers

iti 
Mala

ya



Also, suppose that

0 <
(
𝑀𝑣𝑀𝑤𝐾Y𝐸𝑞 (𝑡𝑞) + 𝑀𝑤𝐾Y∥V∥

)
× 1
Γ(𝑞)

∞∑︁
𝑚=0

∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)
Γ((𝑚 + 1)𝑞)

+ 𝑀𝑣 ∥W∥ 1
Γ(𝑞)

∞∑︁
𝑚=0

∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)

(
𝑡𝑞(𝑚+1)

𝑞(𝑚 + 1)

)
= 𝐾′ < 1,

then quadratic FIE is H-U stable.

Proof. Consider CFs’ space: Y = 𝐶 ( [0, 𝑎],R) and 𝑔 ∈ Y, with a GMr, expressed

as:

ρ̂(𝑔, ℎ) = inf
{
𝐾 ∈ [0,∞] : |𝑔(𝑥) − ℎ(𝑥) | ≤ 𝐾Y𝐸𝑞 (𝑡𝑞), ∀ 𝑡 ∈ 𝐽

}
.

Clearly, (Y, ρ̂) is a GCMSp. Let us formulate an operator: O : Y → Y by

O(𝑦(𝑡)) = V(𝑡, 𝑦(𝑡))
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞W(b, 𝑦(b)) db

]
. (7.21)

134

Univ
ers

iti 
Mala

ya



From the definition O and equations (7.18) and (7.19), we get:

|O(𝑦(𝑡))−O(𝑢(𝑡)) | =

����V(𝑡, 𝑦(𝑡))
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞W(b, 𝑦(b)) db

]
−V(𝑡, 𝑢(𝑡))

[
1

Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞W(b, 𝑢(b)) db

] ����
≤ |V(𝑡, 𝑦(𝑡)) − V(𝑡, 𝑢(𝑡)) |

×
[

1
Γ (𝑞)

∫ 𝑡
0 (𝑡−b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽, 𝛿
(𝑡−b)𝑞 |W(b,𝑦(b))−W(b,𝑢(b)) | db

]
+ |V(𝑡, 𝑦(𝑡)) − V(𝑡, 𝑢(𝑡)) |

×
[

1
Γ (𝑞)

∫ 𝑡
0 (𝑡−b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽, 𝛿
(𝑡−b)𝑞 |W(b,𝑢(b)) | db

]
+ |V(𝑡, 𝑢(𝑡)) |

×
[

1
Γ (𝑞)

∫ 𝑡
0 (𝑡−b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽, 𝛿
(𝑡−b)𝑞 |W(b,𝑦(b))−W(b,𝑢(b)) | db

]
≤ 𝑀𝑣 |𝑦(𝑡) − 𝑢(𝑡) |

×
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞𝑀𝑤 |𝑦(b) − 𝑢(b) | db

]
+ 𝑀𝑣 |𝑦(𝑡) − 𝑢(𝑡) |

×
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞 ∥W∥ db

]
+ ∥V∥

[
1

Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞𝑀𝑣 |𝑦(b) − 𝑢(b) | db

]
≤ 𝑀𝑣𝑀𝑤𝐾

2Y2𝐸𝑞 (𝑡𝑞)

×
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞𝐸𝑞 (b𝑞) db

]
+ 𝑀𝑣𝐾Y ∥W∥ 𝐸𝑞 (𝑡𝑞)

[
1

Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞 db

]
+ 𝑀𝑣𝐾Y ∥V∥

[
1

Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞𝐸𝑞 (b𝑞) db

]
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≤
(
𝑀𝑣𝑀𝑤𝐾

2Y2𝐸𝑞 (𝑡𝑞) + 𝑀𝑣𝐾Y ∥V∥
)

×
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞𝐸𝑞 (b𝑞) db

]
+ 𝑀𝑣𝐾Y ∥W∥ 𝐸𝑞 (𝑡𝑞)

[
1

Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽,𝛿
(𝑡 − b)𝑞 db

]
≤

(
𝑀𝑣𝑀𝑤𝐾

2Y2𝐸𝑞 (𝑡𝑞) + 𝑀𝑣𝐾Y ∥V∥
)

× 1
Γ(𝑞)

[ ∫ 𝑡

0
(𝑡 − b)𝑞−1

∞∑︁
𝑚=0

∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)

× (𝑡 − b)𝑚𝑞
∞∑︁
𝑛=0

𝑠𝑛𝑞

Γ(𝑞𝑛 + 1) db

+ 𝑀𝑣𝐾Y ∥W∥ 𝐸𝑞 (𝑡𝑞)
[

1
Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1

×
∞∑︁
𝑚=0

∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)
db

≤
(
𝑀𝑣𝑀𝑤𝐾

2Y2𝐸𝑞 (𝑡𝑞) + 𝑀𝑣𝐾Y ∥V∥
)

× 1
Γ(𝑞)

∞∑︁
𝑚=0

∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)

×
∞∑︁
𝑛=0

𝑠𝑛𝑞

Γ(𝑞𝑛 + 1)

∫ 𝑡

0
(𝑡 − b)𝑞−1(𝑡 − b)𝑚𝑞b𝑛𝑞 db

+ 𝑀𝑣𝐾Y ∥W∥ 𝐸𝑞 (𝑡𝑞)
1

Γ(𝑞)

∫ 𝑡

0
(𝑡 − b)𝑞−1

×
∞∑︁
𝑚=0

∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)
(𝑡 − b)𝑚𝑞 db

≤
(
𝑀𝑣𝑀𝑤𝐾

2Y2𝐸𝑞 (𝑡𝑞) + 𝑀𝑣𝐾Y ∥V∥
)
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× 1
Γ(𝑞)

∞∑︁
𝑚=0

∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)

×
∞∑︁
𝑛=0

𝑠𝑛𝑞

Γ(𝑞𝑛 + 1)

∫ 𝑡

0
(𝑡 − b)𝑚𝑞+𝑞−1𝑠𝑛𝑞 db

+ 𝑀𝑣𝐾Y ∥W∥ 𝐸𝑞 (𝑡𝑞)
1

Γ(𝑞)

×
∞∑︁
𝑚=0

∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)

×
∫ 𝑡

0
(𝑡 − b)𝑚𝑞+𝑞−1 db

≤
(
𝑀𝑣𝑀𝑤𝐾

2Y2𝐸𝑞 (𝑡𝑞) + 𝑀𝑤𝐾Y ∥V∥
)

× 1
Γ(𝑞)

∞∑︁
𝑚=0

∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)

× Γ((𝑚 + 1)𝑞)
∞∑︁
𝑠=0

1
Γ(𝑞𝑠 + 1) 𝑡

𝑠𝑞

)
+ 𝑀𝑣𝐾Y ∥W∥ 𝐸𝑞 (𝑡𝑞)

× 1
Γ(𝑞)

∞∑︁
𝑚=0

∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)

(
𝑡 (𝑚+1)𝑞

(𝑚 + 1)𝑞

)

≤
(
𝑀𝑣𝑀𝑤𝐾

2Y2𝐸𝑞 (𝑡𝑞) + 𝑀𝑤𝐾Y ∥V∥
)

× 1
Γ(𝑞)

∞∑︁
𝑚=0

∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)
Γ((𝑚 + 1)𝑞)𝐸𝑞 (𝑡𝑞)

+ 𝑀𝑣𝐾Y ∥W∥ 𝐸𝑞 (𝑡𝑞)

× 1
Γ(𝑞)

∞∑︁
𝑚=0

∏𝑟
𝑛=1 𝛽(𝑏𝑛, 𝑚) (𝛾)𝑞𝑚∏𝑟

𝑛=1 𝛽(𝑎𝑛, 𝑚) (𝛿)𝑞𝑚 Γ(𝛽 + 𝛼𝑚)

(
𝑡 (𝑚+1)𝑞

(𝑚 + 1)𝑞

)
≤ 𝐾Y𝐸𝑞 (𝑡𝑞)𝐾′.

We note that 0 < 𝐾′ < 1. We conclude that O is contraction mapping. Let us take

𝑦′0 ∈ Y, from the continuous property of 𝑦′0 ∈ Y and O(𝑦′0) ∈ Y, ∃ a constant
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0 < 𝐶1 < ∞ with

|O(𝑦′0) (𝑡)−𝑦
′
0 (𝑡) | =

����V(𝑡, 𝑦(𝑡))
[

1
Γ (𝑞)

∫ 𝑡
0 (𝑡−b)𝑞−1𝑄

𝛾,𝑞,𝑟

𝛼,𝛽, 𝛿
(𝑡−b)𝑞W(b,𝑦(b)) db

]
−𝑦′0 (𝑡)

����
≤ 𝐶1Y𝐸𝑞 (𝑡𝑞),

∀ 𝑡 ∈ [0, 𝑎]. So, ρ̂(O(𝑦′0), 𝑦
′
0) < ∞. Thus, Theorem 26(I) indicates that ∃ a CF:

𝑢′0 : [0, 𝑎] → R ∋ O𝑛𝑦′0 → 𝑢′0 in (Y, ρ̂) as 𝑛 → ∞, 𝑢′0 = O(𝑢′0); therefore, 𝑢′0
satisfies equation (7.1) for any 𝑡 ∈ 𝐽. If 𝑦 ∈ Y, then 𝑦′0 and 𝑦 are CFs defined on a

compact interval [0, 𝑎]. Thus, ∃ a constant 𝐶𝑦 > 0 with

|𝑦′0(𝑡) − 𝑦(𝑡) | ≤ 𝐶𝑦YE𝑞 (𝑡
𝑞),

∀ 𝑡 ∈ [0, 𝑎]. This indicates that ρ̂(𝑦′0, 𝑦) < ∞ for every 𝑦 ∈ Y or equivalently

{
𝑦 ∈ Y : ρ̂(𝑦′0, 𝑦) < ∞

}
= Y.

Hence, from Theorem (26)(II) 𝑢′0 is a UqCF with property (7.1). From (7.20), it

implies that

ρ̂ (O(𝑢(𝑡)), 𝑢(𝑡)) ≤ YE𝑞 (𝑡𝑞),

∀ 𝑡 ∈ [0, 𝑎]. At last,

ρ̂(𝑢, 𝑢′0) ≤
1

1 − 𝐾′ ρ̂(O(𝑢), 𝑢) ≤ 1
1 − 𝐾′YE𝑞 (𝑡

𝑞).

Thus, the quadratic FIE is ML-H-U stable.
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7.5 Conclusion

Quadratic fractional IEs have been employed in inner product spaces’ characteri-

zation.

∥𝑦 + 𝑧∥2 + ∥𝑦 + 𝑧∥2 = 2
(
∥𝑦∥2 + ∥𝑧∥2

)
,

which is a parallelogram equality that is satisfied by a square norm on an inner

product space. H-U stability and ML-H-U-R stability have been studied in this

chapter. ML is an essential tool in showing differential equation’s stability. Various

differential equations’ classes can been unified via our new proposed procedure

which can inspire interested engineers and scientists to work on future research

studies.
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CHAPTER 8: MONOTONE ITERATIVE METHOD FOR 𝛙-CAPUTO
FRACTIONAL DIFFERENTIAL EQUATION WITH NONLINEAR

BOUNDARY CONDITIONS

8.1 Introduction

In this chapter, the extremal solutions’ existence is proven for a novel class of

fractional differential equation (FDfEq) in the context of ψ-Caputo formulation

with nonlinear boundary conditions (NLBCs). The monotone iterative technique

is employed along with the technique of upper solution (USo) and lower solution

(LSo). We investigate the ψ-Caputo fractional differential equation (CpFDfEq)

with NLBCs as follows:


𝑐D

𝜏;ψ
𝑎+

(
𝑐D

_;ψ
𝑎+ − 𝜎

)
𝔷(𝜗) = F

(
𝜗, 𝔷(𝜗), 𝑐D_;ψ

𝑎+ (𝜗)
)
,

H
(
𝑐D

_;ψ
𝑎+ 𝔷(𝑎),

𝑐D
_;ψ
𝑎+ 𝔷(𝑏)

)
= 0, G(𝔷(𝑎), 𝔷(𝑏)) = 0,

(8.1)

for 𝜗 ∈ Ω := [𝑎, 𝑏], where 𝑐D
𝜏;ψ
𝑎+ and 𝑐D

_;ψ
𝑎+ represent the ψ-Caputo fractional

derivatives of order 𝜏 and _, respectively, ∋ 𝜏, _ ∈ (0, 1], 𝜎 > 0, F ∈ 𝐶 (Ω×R2,R),

G, H ∈ 𝐶 (R2,R). The CpFDfEq (8.1) is subject to NLBCs. Equation (8.1) is

the deterministic FDfEq where the FDfEq with its deterministic solution is only

investigated in this chapter without including any random processes.

8.2 Preliminaries

Some fundamental definitions and tools of FrCL that will be used later in this

chapter. Assume thatΩ = [𝑎, 𝑏], 0 ≤ 𝑎 < 𝑏 < ∞ is a finite interval and ψ : Ω→ R

is an increasing differentiable function ∋ ψ′(𝜗) ≠ 0, ∀ 𝜗 ∈ Ω.

Definition 27. (Almeida, 2017) The Riemann–Lebesgue (RLb) fractional integral
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of order 𝜏 > 0 for an integrable function 𝔷 : Ω→ R w.r.t. ψ is expressed as:

I
𝜏;ψ
𝑎+ 𝔷(𝜗) =

1
Γ(𝜏)

∫ 𝜗

𝑎

ψ′([) (ψ (𝜗) − ψ ([))𝜏−1 𝔷([) d[, (8.2)

where Γ(𝜏) =
∫ +∞

0 𝜗𝜏−1𝑒−𝜗 d𝜗, 𝜏 > 0 is the Gamma function.

Definition 28. (Almeida, 2017) Let ψ, 𝔷 ∈ 𝐶𝑛 (Ω,R). The RLb fractional derivative

of a function 𝔷 of order 𝑛 − 1 < 𝜏 < 𝑛 w.r.t. ψ is given as follows:

D
𝜏;ψ
𝑎+ 𝔷(𝜗) =

(
𝐷𝜗

ψ′(𝜗)

)𝑛
I
𝑛−𝜏;ψ
𝑎+ 𝔷(𝜗)

=
1

Γ(𝑛 − 𝜏)

(
𝐷𝜗

ψ′(𝜗)

)𝑛 ∫ 𝜗

𝑎

ψ′([) (ψ (𝜗) − ψ ([))𝑛−𝜏−1 𝔷([) d[,

where 𝑛 = [𝜏] + 1, 𝑛 ∈ N and 𝐷𝜗 =
d

d𝜗 .

Definition 29. (Almeida, 2017) Let ψ, 𝔷 ∈ 𝐶𝑛 (Ω,R). The Cp fractional derivative

of 𝔷 of order 𝑛 − 1 < 𝜏 < 𝑛 w.r.t. ψ is defined as:

𝑐D
𝜏;ψ
𝑎+ 𝔷(𝜗) = I

𝑛−𝜏;ψ
𝑎+ 𝔷

[𝑛]
ψ (𝜗),

where 𝑛 = [𝜏] +1 for 𝜏 ∉ N, 𝑛 = 𝜏 for 𝜏 ∈ N and 𝔷[𝑛]ψ (𝜗) =
(
𝐷𝜗
ψ′ (𝜗)

)𝑛
𝔷(𝜗). From the

definition, we get:

𝑐D
𝜏;ψ
𝑎+ 𝔷(𝜗) =


∫ 𝜗

𝑎

ψ′([) (ψ (𝜗) − ψ ([))𝑛−𝜏−1

Γ(𝑛 − 𝜏) 𝔷
[𝑛]
ψ ([) d[, 𝜏 ∉ N,

𝔷
[𝑛]
ψ (𝜗), 𝜏 ∈ N.

(8.3)

The following Lemma lists some essential properties of the ψ-fractional opera-

tors:
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Lemma 8 ( (Almeida, 2017)). Let 𝜏, _ > 0, and 𝔷 ∈ 𝐶 (Ω,R). Then, for each

𝜗 ∈ Ω, we have:

1. 𝑐D
𝜏;ψ
𝑎+ I

𝜏;ψ
𝑎+ 𝔷(𝜗) = 𝔷(𝜗),

2. I𝜏;ψ
𝑎+

𝑐D
𝜏;ψ
𝑎+ 𝔷(𝜗) = 𝔷(𝜗) − 𝔷(𝑎) for 0 < 𝜏 ≤ 1,

3. I𝜏;ψ
𝑎+ (ψ (𝜗) − ψ (𝑎))_−1 = Γ(_)

Γ(_+𝜏) (ψ (𝜗) − ψ (𝑎))_+𝜏−1,

4. 𝑐D
𝜏;ψ
𝑎+ (ψ (𝜗) − ψ (𝑎))_−1 = Γ(_)

Γ(_−𝜏) (ψ (𝜗) − ψ (𝑎))_−𝜏−1,

5. 𝑐D
𝜏;ψ
𝑎+ (ψ (𝜗) − ψ (𝑎))𝑘 = 0, for all 𝑘 ∈ {0, . . . , 𝑛 − 1}, 𝑛 ≥ 1.

Definition 30. (Gorenflo et al., 2014) The Mittag–Leffler functions (MLFs) of 1

and 2 parameters are written as:

Ea (𝜛) =
∞∑︁
𝑘=0

𝜛𝑘

Γ(a𝑘 + 1) , (𝜛 ∈ R, a > 0), (8.4)

and

Ea,_ (𝜛) =
∞∑︁
𝑘=0

𝜛𝑘

Γ(a𝑘 + _) , (a, _ > 0, 𝜛 ∈ R), (8.5)

respectively. It is obvious that E1,1(𝜛) = E1(𝜛) = 𝑒𝜛.

We represent the set X by:

X = 𝐶_ (Ω) =
{
𝑥 : 𝑐D_;ψ

𝑎+ 𝑥(b) ∈ 𝐶 (Ω)
}
.

Equipped with the norm, we get:

∥𝑥∥X = ∥𝑥∥∞ +
𝑐D_;ψ

𝑎+ 𝑥


∞
,
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where ∥𝑥∥∞ = maxb∈Ω |𝑥(b) | and one can conclude that (X, ∥ · ∥X) is a BS.

Lemma 9. For a given ℓ ∈ 𝐶 (Ω,R), _, 𝜏 ∈ (0, 1] and 𝜎 > 0, the linear fractional

initial value problem is as follows:


𝑐D

𝜏;ψ
𝑎+

(
𝑐D

_;ψ
𝑎+ − 𝜎

)
𝔷(𝜗) = ℓ(𝜗),

𝑐D
_;ψ
𝑎+ 𝔷(𝑎) = 𝔷_, 𝔷(𝑎) = 𝔷𝑎,

(8.6)

for 𝜗 ∈ Ω is equivalent to the following Volterra integral equation.

𝔷(𝜗) = 𝔷𝑎 +
𝔷_ − 𝜎𝔷𝑎
Γ(_ + 1) (ψ (𝜗) − ψ (𝑎))_ + 𝜎I_;ψ

𝑎+ 𝔷(𝜗) + I
𝜏+_;ψ
𝑎+ ℓ(𝜗). (8.7)

In addition, the Volterra integral Equation’s (8.7) explicit solution can be

expressed as:

𝔷(𝜗) =𝔷𝑎 + 𝔷_ (ψ (𝜗) − ψ (𝑎))_ E_,_+1

(
𝜎 (ψ (𝜗) − ψ (𝑎))_

)
+

∫ 𝜗

𝑎

ψ′([) (ψ (𝜗) − ψ ([))_+𝜏−1

× E_,_+𝜏
(
𝜎 (ψ (𝜗) − ψ ([))_

)
ℓ([) d[.

(8.8)

Proof. Employing the ψ-RL fractional integral of order 𝜏 to both sides of (8.6)

and using Lemma 8, we get:

𝑐D
_;ψ
𝑎+ 𝔷(𝜗) = 𝔷_ + 𝜎(𝔷(𝜗) − 𝔷𝑎) + I

𝜏;ψ
𝑎+ ℓ(𝜗). (8.9)

Hence, we have:

𝔷(𝜗) = 𝔷𝑎 +
𝔷_ − 𝜎𝔷𝑎
Γ(_ + 1) (ψ (𝜗) − ψ (𝑎))_ + 𝜎I_;ψ

𝑎+ 𝔷(𝜗) + I
𝜏+_;ψ
𝑎+ ℓ(𝜗). (8.10)
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The converse can be proven by direct computation. The technique of successive

approximations is now applied to show that the Equation (8.7) can be expressed as:

𝔷(𝜗) =𝔷𝑎 + 𝔷_ (ψ (𝜗) − ψ (𝑎))_E_,_+1

(
𝜎(ψ (𝜗) − ψ (𝑎))_

)
+

∫ 𝜗

𝑎

ψ′([) (ψ (𝜗) − ψ ([))_+𝜏−1

× E_,_+𝜏
(
𝜎(ψ (𝜗) − ψ ([))_

)
ℓ([) d[.

For this, we set the following:


𝔷0(𝜗) = 𝔷𝑎 +

𝔷_ − 𝜎𝔷𝑎
Γ(_ + 1) (ψ (𝜗) − ψ (𝑎))_,

𝔷𝑚 (𝜗) = 𝔷0(𝜗) + 𝜎I_;ψ
𝑎+ 𝔷𝑚−1(𝜗) + I𝜏+_;ψ

𝑎+ ℓ(𝜗).
(8.11)

It implied from Equation (8.11) and Lemma 8 that we get the following case:

𝔷1(𝜗) = 𝔷0(𝜗) + 𝜎I_;ψ
𝑎+ 𝔷0(𝜗) + I_+𝜏;ψ

𝑎+ ℓ(𝜗)

= 𝔷𝑎 +
𝔷_ − 𝜎𝔷𝑎
Γ(_ + 1) (ψ (𝜗) − ψ (𝑎))_ + 𝜎 𝔷𝑎

Γ(_ + 1) [ψ (𝜗) − ψ (𝑎)]_

+ 𝜎 𝔷_ − 𝜎𝔷𝑎
Γ(2_ + 1) (ψ (𝜗) − ψ (𝑎))2_ + I_+𝜏;ψ

𝑎+ ℓ(𝜗).

(8.12)
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Similarly, Equations (8.11) and (8.12) and Lemma 8 yield the following:

𝔷2(𝜗) = 𝔷0(𝜗) + 𝜎I_;ψ
𝑎+ 𝔷1(𝜗) + I_+𝜏;ψ

𝑎+ ℓ(𝜗)

= 𝔷𝑎 +
𝔷_ − 𝜎𝔷𝑎
Γ(_ + 1) (ψ (𝜗) − ψ (𝑎))_

+ 𝜎I_;ψ
𝑎+

(
𝔷𝑎 +

𝔷_ − 𝜎𝔷𝑎
Γ(_ + 1) (ψ (𝜗) − ψ (𝑎))_

+ 𝜎 𝔷𝑎

Γ(_ + 1) (ψ (𝜗) − ψ (𝑎))_ + 𝜎 𝔷_ − 𝜎𝔷𝑎
Γ(2_ + 1) (ψ (𝜗)

− ψ (𝑎))2_ + I_+𝜏;ψ
𝑎+ ℓ(𝜗)

)
+ I_+𝜏;ψ

𝑎+ ℓ(𝜗)

= 𝔷𝑎 +
2∑︁
𝑘=0

𝜎𝑘

Γ(𝑘_ + 1) (ψ (𝜗) − ψ (𝑎))𝑘_

+ (𝔷_ − 𝜎𝔷𝑎)
2∑︁
𝑘=0

𝜎𝑘

Γ(𝑘_ + _ + 1) (ψ (𝜗) − ψψ (𝑎))𝑘_+_

+ 𝜎I2_+𝜏;ψ
𝑎+ ℓ(𝜗) + 𝐼_+𝜏;ψ

𝑎+ ℓ(𝜗)

= 𝔷𝑎 +
2∑︁
𝑘=0

𝜎𝑘

Γ(𝑘_ + 1) (ψ (𝜗) − ψ (𝑎))𝑘_

+ (𝔷_ − 𝜎𝔷𝑎)
2∑︁
𝑘=0

𝜎𝑘

Γ(𝑘_ + _ + 1) (ψ (𝜗) − ψ (𝑎))𝑘_+_

+
∫ 𝜗

𝑎

ψ′([)
2∑︁
𝑘=1

𝜎𝑘−1 (ψ (𝜗) − ψ ([))𝑘_+𝜏−1

Γ(𝑘_ + 𝜏) ℓ([) d[.
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Similarity, we derive the following:

𝔷𝑚 (𝜗) = 𝔷𝑎 +
𝑚∑︁
𝑘=0

𝜎𝑘

Γ(𝑘_ + 1) (ψ (𝜗) − ψ (𝑎))𝑘_

+ (𝔷_ − 𝜎𝔷𝑎)
𝑚∑︁
𝑘=0

𝜎𝑘

Γ(𝑘_ + _ + 1) (ψ (𝜗) − ψ (𝑎))𝑘_+_

+
∫ 𝜗

𝑎

ψ′([)
𝑚∑︁
𝑘=1

𝜎𝑘−1(ψ (𝜗) − ψ ([))𝑘_+𝜏−1

Γ(𝑘_ + 𝜏) ℓ([)d[

= 𝔷𝑎 +
𝑚∑︁
𝑘=0

𝜎𝑘

Γ(𝑘_ + 1) (ψ (𝜗) − ψ (𝑎))𝑘_

+ (𝔷_ − 𝜎𝔷𝑎)
𝜎

𝑚∑︁
𝑘=1

𝜎𝑘

Γ(𝑘_ + 1) (ψ (𝜗) − ψ (𝑎))𝑘_

+
∫ 𝜗

𝑎

ψ′([) (ψ (𝜗) − ψ ([))_+𝜏−1
𝑚∑︁
𝑘=1

𝜎𝑘−1 (ψ (𝜗) − ψ ([))𝑘_−_

Γ(𝑘_ + 𝜏) ℓ([) d[.

Taking the limit as𝑚 → ∞, we get the explicit solution 𝔷(𝜗) of the Equation (8.7)

as follows:

𝔷(𝜗) = 𝔷𝑎 +
∞∑︁
𝑘=0

𝜎𝑘

Γ(𝑘_ + 1) (ψ (𝜗) − ψ (𝑎))𝑘_

+ (𝔷_ − 𝜎𝔷𝑎)
𝜎

∞∑︁
𝑘=1

𝜎𝑘

Γ(𝑘_ + 1) (ψ (𝜗) − ψ (𝑎))𝑘_

+
∫ 𝜗

𝑎

ψ′([) (ψ (𝜗) − ψ ([))_+𝜏−1
∞∑︁
𝑘=0

𝜎𝑘 (ψ (𝜗) − ψ ([))𝑘_
Γ(𝑘_ + _ + 𝜏) ℓ([) d[

= 𝔷𝑎 +
𝔷_

𝜎

∞∑︁
𝑘=1

𝜎𝑘

Γ(𝑘_ + 1) (ψ (𝜗) − ψ (𝑎))𝑘_

+
∫ 𝜗

𝑎

ψ′([) (ψ (𝜗) − ψ ([))_+𝜏−1E_,_+𝜏
(
𝜎(ψ (𝜗) − ψ ([))_

)
ℓ([) d[

= 𝔷𝑎 + 𝔷_ (ψ (𝜗) − ψ (𝑎))_E_,_+1

(
𝜎(ψ (𝜗) − ψ (𝑎))_

)
+

∫ 𝜗

𝑎

ψ′([) (ψ (𝜗) − ψ ([))_+𝜏−1E_,_+𝜏
(
𝜎(ψ (𝜗) − ψ ([))_

)
ℓ([) d[.
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Thus, this finalizes this proof.

Lemma 10 (Comparison Result). Let _, 𝜏 ∈ (0, 1], and 𝜎 > 0. If Δ ∈ 𝐶 (Ω,R)

satisfies: 
𝑐D

𝜏;ψ
𝑎+

(
𝑐D

_;ψ
𝑎+ − 𝜎

)
Δ(𝜗) ≥ 0, 𝜗 ∈ (𝑎, 𝑏],

Δ(𝑎) ≥ 0, 𝑐D
_;ψ
𝑎+ Δ(𝑎) ≥ 0,

then Δ(𝜗) ≥ 0 and 𝑐D
_;ψ
𝑎+ Δ(𝜗) ≥ 0 for all 𝜗 ∈ Ω.

Proof. Since E𝜌1,𝜌2 (𝑥) ≥ 0 for 𝜌1 ∈ (0, 1], 𝜌2 ≥ 𝜌1, 𝑥 ∈ R, we allow the following:

ℓ(𝜗) = 𝑐D
𝜏;ψ
𝑎+

(
𝑐D

_;ψ
𝑎+ − 𝜎

)
Δ(𝜗) ≥ 0,

Δ(𝑎) = 𝔷𝑎 ≥ 0 and 𝑐D
_;ψ
𝑎+ Δ(𝑎) = 𝔷_ ≥ 0 in Lemma 9. Then, it implies by

Equations (8.8) and (8.9) that Lemma 10 holds.

Let (X,T) be a topological Hausdorff space and 𝑔1, 𝑔2 : X → R be a lower

semi-CF and an upper semi-CF, respectively. Thus, for every 𝑟 ∈ R, the subsets of

the following:

{
𝑔1 > 𝑟

}
:=

{
𝑥 ∈ X : 𝑔1(𝑥) > 𝑟

}
,

{
𝑔2 < 𝑟

}
:=

{
𝑥 ∈ X : 𝑔2(𝑥) < 𝑟

}
,

are open in X. Suppose that 𝑔1(𝑥) ≤ 𝑔2(𝑥) for all 𝑥 ∈ X, and we allow the interval

[𝑔1, 𝑔2] that contains those upper or lower semi-CFs ℎ : X → R ∋ 𝑔1(𝑥) ≤ ℎ(𝑥) ≤

𝑔2(𝑥) for all 𝑥 ∈ X. Let Ω : [𝑔1, 𝑔2] → [𝑔1, 𝑔2] be a monotone mapping in the

sense that 𝑔1 ≤ ℎ1 ≤ ℎ2 ≤ 𝑔2 implies 𝑔1 ≤ Ω(ℎ1) ≤ Ω(ℎ2) ≤ 𝑔2. Additionally,

we assume that the sequence {Ω(ℎ𝑛)}𝑛∈N ⊂ [𝑔1, 𝑔2] contains lower semi-CFs that

increase pointwise to Ω(ℎ) whenever the sequence {ℎ𝑛}𝑛∈N ⊂ [𝑔1, 𝑔2] contains

lower semi-CFs that increase pointwise to ℎ. A similar assumption is done when the
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sequence {ℎ𝑛}𝑛∈N ⊂ [𝑔1, 𝑔2] contains upper semi-CFs, which decreases pointwise

to ℎ ∈ [𝑔1, 𝑔2]. In particular, we suppose that Ω(ℎ) is lower semi-CF whenever

ℎ is lower semi-CF and that Ω(ℎ) is upper semi-CF whenever ℎ is so. Then, for

every 𝑛 ∈ N, we get:

𝑔1 ≤ Ω𝑛 (𝑔1) ≤ Ω𝑛+1(𝑔1) ≤ Ω𝑛+1(𝑔2) ≤ Ω𝑛 (𝑔2) ≤ 𝑔2.

Substitute 𝜔1 = sup𝑛∈NΩ𝑛 (𝑔1) and 𝜔2 = sup𝑛∈NΩ𝑛 (𝑔2). Then, 𝜔1 and 𝜔2

belong to the interval [𝑔1, 𝑔2], the function 𝜔1 is lower semi-CF, the function 𝜔2 is

upper semi-CF, and the equalities Ω(𝜔1) = 𝜔1 and Ω(𝜔2) = 𝜔2 are valid. If the

monotone mapping Ω has at most one fixed point, then 𝜔1 = 𝜔2 = Ω(𝜔1) = Ω(𝜔2)

is a CF. When the mapping Ω : [𝑔1, 𝑔2] → [𝑔1, 𝑔2] does not posses this sequential

continuity property, then one needs a more subtle version of the Tarski–Knaster fixed

point theorem. We carefully define the functions ℎ𝑝𝑟𝑒 𝑓 𝑖𝑥 and ℎ𝑝𝑜𝑠𝑡 𝑓 𝑖𝑥 , respectively,

by the following:

ℎprefix = inf
{
ℎ ∈ [𝑔1, 𝑔2] Ω(ℎ) ≤ ℎ, ℎ is upper semi-CF

}
,

and the following:

ℎpostfix = sup
{
ℎ ∈ [𝑔1, 𝑔2] Ω(ℎ) ≥ ℎ, ℎ is lower semi-CF

}
.

Then, we get:

Ω(ℎprefix) = ℎprefix ≤ inf
𝑛∈N

Ω𝑛 (𝑔2), Ω(ℎpostfix) = ℎpostfix ≥ sup
𝑛∈N

Ω𝑛 (𝑔1).

Moreover, the function ℎprefix is upper semi-CF and the function ℎpostfix is lower
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semi-CF. Consequently, if Ω has at most one fixed point, then

Ω(ℎprefix) = ℎprefix = Ω(ℎpostfix) = ℎpostfix,

and, therefore, this unique fixed point is a CF.

8.3 Main Results

The extremal solutions’ existence for problem (8.1) is shown in this section.

First, the definitions of LSo and USo of the problem (8.1) are provided.

Definition 31. A function 𝔷0 ∈ X is named as a LSo of Equation (8.1), if it satisfies:


𝑐D

𝜏;ψ
𝑎+

(
𝑐D

_;ψ
𝑎+ − 𝜎

)
𝔷0(𝜗) ≤ F

(
𝜗, 𝔷0(𝜗), 𝑐D_;ψ

𝑎+ 𝔷0(𝜗)
)
,

H
(
𝑐D

_;ψ
𝑎+ 𝔷0(𝑎), 𝑐D_;ψ

𝑎+ 𝔷0(𝑏)
)
≤ 0, G (𝔷0(𝑎), 𝔷0(𝑏)) ≤ 0,

for 𝜗 ∈ Ω.

Definition 32. A function �̃�0 ∈ X is named as an USo of Equation (8.1), if it

satisfies:


𝑐D

𝜏;ψ
𝑎+

(
𝑐D

_;ψ
𝑎+ − 𝜎

)
�̃�0(𝜗) ≥ F

(
𝜗, �̃�0(𝜗), 𝑐D_;ψ

𝑎+ �̃�0(𝜗)
)
,

H
(
𝑐D

_;ψ
𝑎+ �̃�0(𝑎), 𝑐D_;ψ

𝑎+ �̃�0(𝑏)
)
≥ 0, G (�̃�0(𝑎), �̃�0(𝑏)) ≥ 0,

for each 𝜗 ∈ Ω.

Theorem 30. Assume that F : Ω×R2 → R is a CF ∋ the following assumptions hold:

(H1) ∃ 𝔷0 and �̃�0 as LSo and USo of (8.1) in X, respectively, with 𝔷0(𝜗) ≤
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�̃�0(𝜗) and;

𝑐D
_;ψ
𝑎+ 𝔷0(𝜗) ≤ 𝑐D

_;ψ
𝑎+ �̃�0(𝜗), 𝜗 ∈ Ω.

(H2) F satisfies the following condition:

F(𝜗, 𝑦(𝜗), 𝑐D_;ψ
𝑎+ 𝑦(𝜗)) ≤ F(𝜗, 𝔷(𝜗),

𝑐D
_;ψ
𝑎+ 𝔷(𝜗)),

for 𝑦0(𝜗) ≤ 𝑦(𝜗) ≤ 𝔷(𝜗) ≤ 𝔷0(𝜗) and the following:

𝑐D
_;ψ
𝑎+ 𝑦0(𝜗) ≤ 𝑐D

_;ψ
𝑎+ 𝑦(𝜗) ≤

𝑐D
_;ψ
𝑎+ 𝔷(𝜗) ≤

𝑐D
_;ψ
𝑎+ 𝔷0(𝜗),

for each 𝜗 ∈ Ω.

(H3) ∃ constants 𝑐 > 0 and 𝑑 ≥ 0, ∋ for 𝔷0(𝑎) ≤ b1 ≤ b2 ≤ �̃�0(𝑎) and

𝔷0(𝑏) ≤ Z1 ≤ Z2 ≤ �̃�0(𝑏),

G(b2, Z2) − G(b1, Z1) ≤ 𝑐(b2 − b1) − 𝑑 (Z2 − Z1).

(H4) ∃ constants 𝑒 > 0 and 𝑓 ≥ 0, ∋ for the following:

𝑐D
_;ψ
𝑎+ 𝔷0(𝑎) ≤ b1 ≤ b2 ≤ 𝑐D

_;ψ
𝑎+ �̃�0(𝑎),

𝑐D
_;ψ
𝑎+ 𝔷0(𝑏) ≤ Z1 ≤ Z2 ≤ 𝑐D

_;ψ
𝑎+ �̃�0(𝑏),

and the following is obtained:

H(b2, Z2) − H(b1, Z1) ≤ 𝑒(b2 − b1) − 𝑓 (Z2 − Z1).

Hence, ∃ monotone iterative sequences {𝔷𝑛} and {�̃�𝑛}, which converge uniformly
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on Ω to the extremal solutions of (8.1) in the sector [𝔷0, �̃�0], where

[𝔷0, �̃�0] =
{
𝔷 ∈ X : 𝔷0(𝜗) ≤ 𝔷(𝜗) ≤ �̃�0(𝜗), 𝜗 ∈ Ω

}
.

Proof. For any 𝔷0, �̃�0 ∈ X, we define:



𝑐D
𝜏;ψ
𝑎+

(
𝑐D

_;ψ
𝑎+ − 𝜎

)
𝔷𝑛+1(𝜗) = F

(
𝜗, 𝔷𝑛 (𝜗), 𝑐D_;ψ

𝑎+ 𝔷𝑛 (𝜗)
)
, 𝜗 ∈ Ω,

𝑐D
_;ψ
𝑎+ 𝔷𝑛+1(𝑎) = 𝑐D

_;ψ
𝑎+ 𝔷𝑛 (𝑎) −

1
𝑒
H

(
𝑐D

_;ψ
𝑎+ 𝔷𝑛 (𝑎),

𝑐D
_;ψ
𝑎+ 𝔷𝑛 (𝑏)

)
,

𝔷𝑛+1(𝑎) = 𝔷𝑛 (𝑎) − 1
𝑐
G (𝔷𝑛 (𝑎), 𝔷𝑛 (𝑏)) ,

(8.13)

and the following as well.



𝑐D
𝜏;ψ
𝑎+

(
𝑐D

_;ψ
𝑎+ − 𝜎

)
�̃�𝑛+1(𝜗) = F

(
𝜗, �̃�𝑛 (𝜗), 𝑐D_;ψ

𝑎+ �̃�𝑛 (𝜗)
)
, 𝜗 ∈ Ω,

𝑐D
_;ψ
𝑎+ �̃�𝑛+1(𝑎) = 𝑐D

_;ψ
𝑎+ �̃�𝑛 (𝑎) −

1
𝑒
H

(
𝑐D

_;ψ
𝑎+ �̃�𝑛 (𝑎),

𝑐D
_;ψ
𝑎+ �̃�𝑛 (𝑏)

)
,

�̃�𝑛+1(𝑎) = �̃�𝑛 (𝑎) − 1
𝑐
G (�̃�𝑛 (𝑎), �̃�𝑛 (𝑏)) .

(8.14)

By Lemma 9, we know that (8.13) and (8.14) have unique solutions in X that are
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the following:

𝔷𝑛+1(𝜗) = 𝔷𝑛 (𝑎) −
1
𝑐
G (𝔷𝑛 (𝑎), 𝔷𝑛 (𝑏))

+
(
𝑐D

_;ψ
𝑎+ 𝔷𝑛 (𝑎) −

1
𝑒
H

(
𝑐D

_;ψ
𝑎+ 𝔷𝑛 (𝑎),

𝑐D
_;ψ
𝑎+ 𝔷𝑛 (𝑏)

))
× (ψ (𝜗) − ψ (𝑎))_E_,_+1

(
𝜎(ψ (𝜗) − ψ (𝑎))_

)
+

∫ 𝜗

𝑎

ψ′([) (ψ (𝜗) − ψ ([))_+𝜏−1

× E_,_+𝜏
(
𝜎 (ψ (𝜗) − ψ ([))_

)
F

(
[, 𝔷𝑛 ([), 𝑐D_;ψ

𝑎+ 𝔷𝑛 ([)
)

d[,

�̃�𝑛+1(𝜗) = �̃�𝑛 (𝑎) −
1
𝑐
G (�̃�𝑛 (𝑎), �̃�𝑛 (𝑏))

+
(
𝑐D

_;ψ
𝑎+ �̃�𝑛 (𝑎) −

1
𝑒
H(𝑐D_;ψ

𝑎+ �̃�𝑛 (𝑎),
𝑐D

_;ψ
𝑎+ �̃�𝑛 (𝑏))

)
× (ψ (𝜗) − ψ (𝑎))_E_,_+1

(
𝜎(ψ (𝜗) − ψ (𝑎))_

)
+

∫ 𝜗

𝑎

ψ′([) (ψ (𝜗) − ψ ([))_+𝜏−1

× E_,_+𝜏
(
𝜎(ψ (𝜗) − ψ ([))_

)
F

(
[, �̃�𝑛 ([), 𝑐D_;ψ

𝑎+ �̃�𝑛 ([)
)

d[.

First, we show that the sequences 𝔷𝑛 (𝜗) and �̃�𝑛 (𝜗) (𝑛 ≥ 1) are LSo and USo

of Equation (8.1), respectively, and 𝔷𝑛 (𝜗) and �̃�𝑛 (𝜗) (𝑛 ≥ 1) satisfy the following

relations:

𝔷0(𝜗) ≤ 𝔷1(𝜗) ≤ · · · ≤ 𝔷𝑛 (𝜗) ≤ · · · ≤ �̃�𝑛 (𝜗) ≤ · · · ≤ �̃�1(𝜗) ≤ �̃�0(𝜗), (8.15)

for 𝜗 ∈ Ω, and we get:

𝑐D
_;ψ
𝑎+ 𝔷0(𝜗) ≤ 𝑐D

_;ψ
𝑎+ 𝔷1(𝜗) ≤ · · · ≤ 𝑐D

_;ψ
𝑎+ 𝔷𝑛 (𝜗) ≤ · · · ≤ 𝑐D

_;ψ
𝑎+ �̃�𝑛 (𝜗) ≤ · · ·

≤ 𝑐D
_;ψ
𝑎+ �̃�1(𝜗) ≤ 𝑐D

_;ψ
𝑎+ �̃�0(𝜗), (8.16)
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for 𝜗 ∈ Ω, respectively. Now, we show that 𝔷0(𝜗) ≤ 𝔷1(𝜗) ≤ �̃�1(𝜗) ≤ �̃�0(𝜗), for

𝜗 ∈ Ω and

𝑐D
_;ψ
𝑎+ 𝔷0(𝜗) ≤ 𝑐D

_;ψ
𝑎+ 𝔷1(𝜗) ≤ 𝑐D

_;ψ
𝑎+ �̃�1(𝜗) ≤ 𝑐D

_;ψ
𝑎+ �̃�0(𝜗),

for each 𝜗 ∈ Ω. For this end, set Δ(𝜗) = 𝔷1(𝜗) − 𝔷0(𝜗). From (8.13) and

Definition 31, we get:

𝑐D
𝜏;ψ
𝑎+

(
𝑐D

_;ψ
𝑎+ − 𝜎

)
Δ(𝜗) = 𝑐D

𝜏;ψ
𝑎+

(
𝑐D

_;ψ
𝑎+ − 𝜎

)
𝔷1(𝜗) − 𝑐D

𝜏;ψ
𝑎+

(
𝑐D

_;ψ
𝑎+ − 𝜎

)
𝔷0(𝜗)

= F
(
𝜗, 𝔷0(𝜗), 𝑐D_;ψ

𝑎+ 𝔷0(𝜗)
)
− 𝑐D

𝜏;ψ
𝑎+

(
𝑐D

_;ψ
𝑎+ − 𝜎

)
𝔷0(𝜗) ≥ 0.

Again, we have:


Δ(𝑎) = −1

𝑐
G(𝔷0(𝑎), 𝔷0(𝑏)) ≥ 0,

𝑐D
_;ψ
𝑎+ Δ(𝑎) = −1

𝑒
H(𝑐D_;ψ

𝑎+ 𝔷0(𝑎), 𝑐D_;ψ
𝑎+ 𝔷0(𝑏)) ≥ 0.

Invoking Lemma 10, we obtain Δ(𝜗) ≥ 0 and 𝑐D
_;ψ
𝑎+ Δ(𝜗) ≥ 0 for 𝜗 ∈ Ω. Thus,

𝔷0(𝜗) ≤ 𝔷1(𝜗) and the following is the case:

𝑐D
_;ψ
𝑎+ 𝔷0(𝜗) ≤ 𝑐D

_;ψ
𝑎+ 𝔷1(𝜗),

𝜗 ∈ Ω. Similarity, �̃�1(𝜗) ≤ �̃�0(𝜗) and the following:

𝑐D
_;ψ
𝑎+ �̃�1(𝜗) ≤ 𝑐D

_;ψ
𝑎+ �̃�0(𝜗),

𝜗 ∈ Ω. Now, let Δ(𝜗) = �̃�1(𝜗) − 𝔷1(𝜗). Using (8.13) and (8.14) together with
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assumptions (H1)–(H3) we obtain the following.

𝑐D
𝜏;ψ
𝑎+

(
𝑐D

_;ψ
𝑎+ − 𝜎

)
Δ(𝜗) = F

(
𝜗, �̃�0(𝜗), 𝑐D_;ψ

𝑎+ �̃�0(𝜗)
)
−F

(
𝜗, 𝔷0(𝜗), 𝑐D_;ψ

𝑎+ 𝔷0(𝜗)
)
≥ 0.

Notice the following inequalities:

Δ(𝑎) = �̃�0(𝑎) − 𝔷0(𝑎) −
1
𝑐
[G (�̃�0(𝑎), �̃�0(𝑏)) − G (𝔷0(𝑎), 𝔷0(𝑏))]

≥ 𝑑

𝑐
(�̃�0(𝑏) − 𝔷0(𝑏)) ≥ 0,

and the following is the case.

𝑐D
_;ψ
𝑎+ Δ(𝑎) =

𝑐D
_;ψ
𝑎+ �̃�0(𝑎) − 𝑐D

_;ψ
𝑎+ 𝔷0(𝑎)

− 1
𝑒

[
H

(
𝑐D

_;ψ
𝑎+ �̃�0(𝑎), 𝑐D_;ψ

𝑎+ �̃�0(𝑏)
)
− H

(
𝑐D

_;ψ
𝑎+ 𝔷0(𝑎), 𝑐D_;ψ

𝑎+ 𝔷0(𝑏)
)]

≥ 𝑓

𝑒

(
𝑐D

_;ψ
𝑎+ �̃�0(𝑏) − 𝑐D

_;ψ
𝑎+ 𝔷0(𝑏)

)
≥ 0.

According to Lemma 10, we obtain𝔷1(𝜗) ≤ �̃�1(𝜗) and

𝑐D
_;ψ
𝑎+ 𝔷1(𝜗) ≤ 𝑐D

_;ψ
𝑎+ �̃�1(𝜗),

𝜗 ∈ Ω. Next, we show that the functions 𝔷1(𝜗), �̃�1(𝜗) are a LSo and an USo of the

Equation (8.1), respectively. Since 𝔷0 and �̃�0 are lower and upper solutions of (8.1),

by (H2) and (H3), it implies that the following:

𝑐D
𝜏;ψ
𝑎+

(
𝑐D

_;ψ
𝑎+ − 𝜎

)
𝔷1(𝜗) = F

(
𝜗, 𝔷0(𝜗), 𝑐D_;ψ

𝑎+ 𝔷0(𝜗)
)
≤ F

(
𝜗, 𝔷1(𝜗), 𝑐D_;ψ

𝑎+ 𝔷1(𝜗)
)

G(𝔷1(𝑎), 𝔷1(𝑏)) ≤ G(𝔷0(𝑎), 𝔷0(𝑏)) + 𝑐 (𝔷1(𝑎) − 𝔷0(𝑎)) − 𝑑 (𝔷1(𝑏) − 𝔷0(𝑏))

= −𝑑 (𝔷1(𝑏) − 𝔷0(𝑏)) ≤ 0,
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and the following is obtained:

H
(
𝑐D

_;ψ
𝑎+ 𝔷1(𝑎), 𝑐D_;ψ

𝑎+ 𝔷1(𝑏)
)
≤ H

(
𝑐D

_;ψ
𝑎+ 𝔷0(𝑎), 𝑐D_;ψ

𝑎+ 𝔷0(𝑏)
)

+ 𝑒
(
𝑐D

_;ψ
𝑎+ 𝔷1(𝑎) − 𝑐D

_;ψ
𝑎+ 𝔷0(𝑎)

)
− 𝑓 (𝑐D_;ψ

𝑎+ 𝔷1(𝑏) − 𝑐D
_;ψ
𝑎+ 𝔷0(𝑏))

= − 𝑓 (𝑐D_;ψ
𝑎+ 𝔷1(𝑏) − 𝑐D

_;ψ
𝑎+ 𝔷0(𝑏)) ≤ 0.

Therefore, 𝔷1(𝜗) is a LSo of Equation (8.1). Analogously, it can be obtained

that �̃�1(𝜗) is an USo of Equation (8.1). By the above arguments and mathematical

induction, we can show that the sequences 𝔷𝑛 (𝜗), �̃�𝑛 (𝜗), (𝑛 ≥ 1) are LSo and

USo of Equation (8.1), respectively, and the relations (8.15) and (8.16) are true.

On the contrary, by employing the earlier arguments, together with Ascoli–Arzela’s

Theorem, we can show:

∥𝔷𝑛 − 𝔷∗∥X → 0, ∥�̃�𝑛 − �̃�∗∥X → 0,

when 𝑛 → ∞. Finally, it remains to show that 𝔷∗ and �̃�∗ are extremal solutions

of (8.1) in [𝔷0, �̃�0]. To conduct this, let 𝔷 ∈ [𝔷0, �̃�0] be any solution of (8.1). Suppose

for some 𝑛 ∈ N∗ that the following is the case:

𝔷𝑛 (𝜗) ≤ 𝔷(𝜗) ≤ �̃�𝑛 (𝜗), 𝑐D
_;ψ
𝑎+ 𝔷𝑛 (𝜗) ≤

𝑐D
_;ψ
𝑎+ 𝔷(𝜗) ≤

𝑐D
_;ψ
𝑎+ �̃�𝑛 (𝜗), (8.17)

for 𝜗 ∈ Ω. Setting Δ(𝜗) = 𝔷(𝜗) − 𝔷𝑛+1(𝜗). It implies that the following is obtained:

𝑐D
𝜏;ψ
𝑎+

(
𝑐D

_;ψ
𝑎+ − 𝜎

)
Δ(𝜗) = F

(
𝜗, 𝔷(𝜗), 𝑐D_;ψ

𝑎+ 𝔷(𝜗)
)
− F

(
𝜗, 𝔷𝑛 (𝜗), 𝑐D_;ψ

𝑎+ 𝔷𝑛 (𝜗)
)
≥ 0.
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Notice the inequalities in the following:

𝔷𝑛+1(𝑎) = 𝔷𝑛 (𝑎) +
1
𝑐

[
G(𝔷(𝑎), 𝔷(𝑏)) − G(𝔷𝑛 (𝑎), 𝔷𝑛 (𝑏))

]
≤ 𝔷(𝑎) − 𝑑

𝑐

(
𝔷(𝑏) − 𝔷𝑛 (𝑏)

)
≤ 𝔷(𝑎),

and the following is obtained:

𝑐D
_;ψ
𝑎+ 𝔷𝑛+1(𝑎) = 𝑐D

_;ψ
𝑎+ 𝔷𝑛 (𝑎) +

1
𝑒
[H (𝔷(𝑎), 𝔷𝔷(𝑏)) − H (𝔷𝑛 (𝑎), 𝔷𝔷𝑛 (𝑏))]

≤ 𝑐D
_;ψ
𝑎+ 𝔷(𝑎) −

𝑓

𝑒

(
𝑐D

_;ψ
𝑎+ 𝔷(𝑏) −

𝑐D
_;ψ
𝑎+ 𝔷𝑛 (𝑏)

)
≤ 𝑐D

_;ψ
𝑎+ 𝔷(𝑎).

By Lemma 10, we obtain Δ(𝜗) ≥ 0, 𝜗 ∈ Ω, which implies 𝔷𝑛+1(𝜗) ≤ 𝔷(𝜗) and

the following:
𝑐D

_;ψ
𝑎+ 𝔷𝑛+1(𝜗) ≤ 𝑐D

_;ψ
𝑎+ 𝔷(𝜗),

for almost all 𝜗 ∈ Ω.

By using the same method, we can show that 𝔷(𝜗) ≤ �̃�𝑛+1(𝜗) and

𝑐D
_;ψ
𝑎+ 𝔷(𝜗) ≤

𝑐D
_;ψ
𝑎+ 𝔷𝑛+1(𝜗),

for each 𝜗 ∈ Ω. Hence, 𝔷𝑛+1(𝜗) ≤ 𝔷(𝜗) ≤ �̃�𝑛+1(𝜗), for 𝜗 ∈ Ω, and the following is

the case:
𝑐D

_;ψ
𝑎+ 𝔷𝑛+1(𝜗) ≤ 𝑐D

_;ψ
𝑎+ 𝔷(𝜗) ≤

𝑐D
_;ψ
𝑎+ �̃�𝑛+1(𝜗),

for 𝜗 ∈ Ω. Therefore, (8.17) holds on Ω for all 𝑛 ∈ N. Taking the limit as 𝑛→ ∞
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on both sides of (8.17), we get: 𝔷∗(𝜗) ≤ 𝔷(𝜗) ≤ �̃�∗(𝜗) and the following:

𝑐D
_;ψ
𝑎+ 𝔷

∗(𝜗) ≤ 𝑐D
_;ψ
𝑎+ 𝔷(𝜗) ≤

𝑐D
_;ψ
𝑎+ �̃�

∗(𝜗),

for each 𝜗 ∈ Ω. Then, 𝔷∗, �̃�∗ are the extremal solutions of (8.1) in [𝔷0, �̃�0]. Thus,

the proof of Theorem 30 is finalized.

8.4 Numerical Experiments

Our numerical experiments have been done with the help of MATLAB.

Example 8.4.1. Consider Problem (8.1) with:

𝜏 = _ = 0.5, 𝜎 =
√
𝜋

2
, 𝑎 = 0, 𝑏 = 1, ψ (𝜗) = 𝜗. (8.18)

In order to validate Theorem 30, we set:

F
(
𝜗, 𝔷(𝜗), 𝑐D_;ψ

0+ 𝔷(𝜗)
)
= (1 −

√
𝜗)

× exp
(
𝔷(𝜗) + 𝑐D

_;ψ
0+ 𝔷(𝜗) −

2
√
𝜋
− 2

)
, (8.19)

for 𝜗 ∈ [0, 1], and we get:

H
(
𝑐D

_;ψ
0+ 𝔷(0),

𝑐D
_;ψ
0+ 𝔷(1)

)
= 𝑐D

_;ψ
0+ 𝔷(0),

G (𝔷(0), 𝔷(1)) = 𝔷(0) − 1.
(8.20)

Clearly, F, G and H are CFs. In addition, we can easily verify that 𝔷0(𝜗) = 1

and �̃�0(𝜗) = 1 + 𝜗 are LOs and USo of Equation (8.1), respectively. In addition,
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we get: 𝔷0(𝜗) ≤ �̃�0(𝜗) and the following:

𝑐D
_;ψ
0+ 𝔷0(𝜗) ≤ 𝑐D

_;ψ
0+ �̃�0(𝜗),

for all 𝜗 ∈ [0, 1]. On the contrary,the assumptions (H2)–(H4) of Theorem 30 are

satisfied. So, An application of Theorem 30 shows that the problem (8.1) with the

data (8.18) and (8.19) has extremal solutions in [𝔷0, �̃�0], which can be approximated

by the following iterative sequences:

𝔷𝑛+1(𝜗) = 1 +
∫ 𝜗

0
E0.5

(√︁
𝜋(𝜗 − [)

2

)
(1 − √

[)

× exp
(
𝔷𝑛 ([) + 𝑐D

_;ψ
0+ 𝔷𝑛 ([) −

2
√
𝜋
− 2

)
d[, (8.21)

with 𝔷0(𝜗) = 1 and the following:

�̃�𝑛+1(𝜗) = 1 +
∫ 𝜗

0
E0.5

(√︁
𝜋(𝜗 − [)

2

)
(1 − √

[)

× exp
(
�̃�𝑛 ([) + 𝑐D

_;ψ
0+ �̃�𝑛 ([) −

2
√
𝜋
− 2

)
d[, (8.22)

with �̃�0(𝜗) = 1 + 𝜗. Tables 8.1 and 8.2 show the numerical results of the

iterative sequences of 𝔷𝑛+1(𝜗) for 𝜗 = 0, 0.1, 0.2, 0.3, 0.4 and 0.5, 0.6, 0.7, 0.8, 0.9,

respectively. Our results are graphically represented in Figure 8.1.
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[𝜗 = 0, 0.1, 0.2, 0.3, 0.4 ]

n

0 2 4 6 8 10 12 14 16 18 20

z n
+
1(
ϑ
)

0

0.2

0.4

0.6

0.8

1

1.2

ϑ=0

ϑ=0.1

ϑ=0.2

ϑ=0.3

ϑ=0.4

[𝜗 = 0.5, 0.6, 0.7, 0.8, 0.9]

n

0 2 4 6 8 10 12 14 16 18 20

z n
+
1(
ϑ
)

1

1.02

1.04

1.06

1.08

1.1

1.12

ϑ=0.5

ϑ=0.6

ϑ=0.7

ϑ=0.8

ϑ=0.9

Figure 8.1: Graphical representation of 𝔷𝑛+1(𝜗) in Example 8.4.1.

Tables 8.3 and 8.4 show the numerical results of the iterative sequences of

�̃�𝑛+1(𝜗) for 𝜗 = 0, 0.1, 0.2, 0.3, 0.4 and 0.5, 0.6, 0.7, 0.8, 0.9, respectively. We plot

these results in Figure 8.2a,b.

8.5 Conclusion

A new type of ψ-CpFDfEq has been studied in this chapter. The addressed

problem is considered in the framework of nonlinear boundary value conditions.

159

Univ
ers

iti 
Mala

ya



[𝜗 = 0, 0.1, 0.2, 0.3, 0.4 ]

n

0 2 4 6 8 10 12 14 16 18 20

z̃ n
+
1(
ϑ
)

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

ϑ=0

ϑ=0.1

ϑ=0.2

ϑ=0.3

ϑ=0.4

[𝜗 = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

n

0 2 4 6 8 10 12 14 16 18 20

z̃ n
+
1(
ϑ
)

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2 ϑ=0.5

ϑ=0.6

ϑ=0.7

ϑ=0.8

ϑ=0.9

ϑ=1.0

Figure 8.2: Graphical representation of �̃�𝑛+1(𝜗) in Example 8.4.1.
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Table 8.1: Numerical Experiment of 𝔷𝑛+1(𝜗) for 𝑛 = 1, 2, . . . , 20 and 𝜗 = 0, 0.1,
0.2, 0.3, 0.4 by using (8.21) in Example 8.4.1.

𝒏 𝝑

0 0.1 0.2 0.3 0.4

1 1.000000 1.000000 1.000000 1.000000 1.000000
2 1.000000 1.011901 1.023786 1.035626 1.047386
3 1.000000 1.012044 1.024359 1.036918 1.049685
4 1.000000 1.012045 1.024373 1.036966 1.049799
5 1.000000 1.012045 1.024373 1.036968 1.049805
6 1.000000 1.012045 1.024373 1.036968 1.049805
7 1.000000 1.012045 1.024373 1.036968 1.049805
8 1.000000 1.012045 1.024373 1.036968 1.049805
9 1.000000 1.012045 1.024373 1.036968 1.049805
10 1.000000 1.012045 1.024373 1.036968 1.049805
11 1.000000 1.012045 1.024373 1.036968 1.049805
12 1.000000 1.012045 1.024373 1.036968 1.049805
13 1.000000 1.012045 1.024373 1.036968 1.049805
14 1.000000 1.012045 1.024373 1.036968 1.049805
15 1.000000 1.012045 1.024373 1.036968 1.049805
16 1.000000 1.012045 1.024373 1.036968 1.049805
17 1.000000 1.012045 1.024373 1.036968 1.049805
18 1.000000 1.012045 1.024373 1.036968 1.049805
19 1.000000 1.012045 1.024373 1.036968 1.049805
20 1.000000 1.012045 1.024373 1.036968 1.049805

Our results are unique and novel due to the employment of monotone iterative

technique along with the technqiue of USo and LSo in comparison to the previous

works which were based on fixed point techniques. The applied techniques are

closely similar to the Tarski–Knaster theorem which also gets fixed point results.

Our results have been illustrated through numerical experiments using explicit

numerical values.
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Table 8.2: Numerical Experiment of 𝔷𝑛+1(𝜗) for 𝑛 = 1, 2, . . . , 20 and 𝜗 = 0.5,
0.6, 0.7, 0.8, 0.9 by using (8.21) in Example 8.4.1.

𝒏 𝝑

0.5 0.6 0.7 0.8 0.9

1 1.000000 1.000000 1.000000 1.000000 1.000000
2 1.059021 1.070482 1.081716 1.092662 1.103258
3 1.062609 1.075629 1.088674 1.101659 1.114490
4 1.062834 1.076019 1.089293 1.102578 1.115784
5 1.062848 1.076049 1.089348 1.102672 1.115933
6 1.062849 1.076051 1.089353 1.102682 1.115951
7 1.062849 1.076051 1.089353 1.102683 1.115953
8 1.062849 1.076051 1.089353 1.102683 1.115953
9 1.062849 1.076051 1.089353 1.102683 1.115953
10 1.062849 1.076051 1.089353 1.102683 1.115953
11 1.062849 1.076051 1.089353 1.102683 1.115953
12 1.062849 1.076051 1.089353 1.102683 1.115953
13 1.062849 1.076051 1.089353 1.102683 1.115953
14 1.062849 1.076051 1.089353 1.102683 1.115953
15 1.062849 1.076051 1.089353 1.102683 1.115953
16 1.062849 1.076051 1.089353 1.102683 1.115953
17 1.062849 1.076051 1.089353 1.102683 1.115953
18 1.062849 1.076051 1.089353 1.102683 1.115953
19 1.062849 1.076051 1.089353 1.102683 1.115953
20 1.062849 1.076051 1.089353 1.102683 1.115953
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Table 8.3: Numerical results of �̃�𝑛+1(𝜗) for 𝑛 = 1, 2, . . . , 20 and 𝜗 = 0, 0.1, 0.2,
0.3, 0.4 by using (8.22) in Example 8.4.1.

𝒏 𝝑

0 0.1 0.2 0.3 0.4

1 1.000000 1.100000 1.200000 1.300000 1.400000
2 1.000000 1.018793 1.048121 1.089222 1.144311
3 1.000000 1.017327 1.041341 1.072265 1.111752
4 1.000000 1.017302 1.041061 1.071050 1.108172
5 1.000000 1.017301 1.041050 1.070964 1.107785
6 1.000000 1.017301 1.041049 1.070958 1.107743
7 1.000000 1.017301 1.041049 1.070957 1.107739
8 1.000000 1.017301 1.041049 1.070957 1.107738
9 1.000000 1.017301 1.041049 1.070957 1.107738
10 1.000000 1.017301 1.041049 1.070957 1.107738
11 1.000000 1.017301 1.041049 1.070957 1.107738
12 1.000000 1.017301 1.041049 1.070957 1.107738
13 1.000000 1.017301 1.041049 1.070957 1.107738
14 1.000000 1.017301 1.041049 1.070957 1.107738
15 1.000000 1.017301 1.041049 1.070957 1.107738
16 1.000000 1.017301 1.041049 1.070957 1.107738
17 1.000000 1.017301 1.041049 1.070957 1.107738
18 1.000000 1.017301 1.041049 1.070957 1.107738
19 1.000000 1.017301 1.041049 1.070957 1.107738
20 1.000000 1.017301 1.041049 1.070957 1.107738
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Table 8.4: Numerical Experiment of �̃�𝑛+1(𝜗) for 𝑛 = 1, 2, . . . , 20 and 𝜗 = 0.5,
0.6, 0.7, 0.8, 0.9, 1 by using (8.22) in Example 8.4.1.

𝒏 𝝑

0.5 0.6 0.7 0.8 0.9 1.0

1 1.500000 1.600000 1.700000 1.800000 1.900000 2.000000
2 1.216106 1.307784 1.422976 1.565785 1.740782 1.953002
3 1.162695 1.229793 1.320631 1.447644 1.631747 1.909249
4 1.154233 1.212553 1.289440 1.397764 1.566487 1.870324
5 1.152934 1.208920 1.280551 1.378410 1.530698 1.837098
6 1.152735 1.208162 1.278068 1.371156 1.512041 1.809741
7 1.152705 1.208004 1.277379 1.368474 1.502577 1.787890
8 1.152700 1.207972 1.277187 1.367487 1.497842 1.770860
9 1.152699 1.207965 1.277134 1.367124 1.495491 1.757843
10 1.152699 1.207963 1.277120 1.366991 1.494327 1.748043
11 1.152699 1.207963 1.277116 1.366942 1.493752 1.740747
12 1.152699 1.207963 1.277115 1.366925 1.493469 1.735363
13 1.152699 1.207963 1.277114 1.366918 1.493329 1.731414
14 1.152699 1.207963 1.277114 1.366916 1.493260 1.728532
15 1.152699 1.207963 1.277114 1.366915 1.493225 1.726435
16 1.152699 1.207963 1.277114 1.366914 1.493209 1.724913
17 1.152699 1.207963 1.277114 1.366914 1.493200 1.723811
18 1.152699 1.207963 1.277114 1.366914 1.493196 1.723013
19 1.152699 1.207963 1.277114 1.366914 1.493194 1.722437
20 1.152699 1.207963 1.277114 1.366914 1.493193 1.722021
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CHAPTER 9: ON THE OSCILLATION OF EVEN-ORDER NONLINEAR
DIFFERENTIAL EQUATIONS WITH MIXED NEUTRAL TERMS

9.1 Introduction

In this chapter, the even-order nonlinear differential equations’ (NLDfEq)

oscillation with mixed nonlinear neutral terms (MNLNTs) is studied. Novel

oscillation criteria are also proposed.

Differential equations with a sub-linear neutral term have been studied in

(Agarwal et al., 2014). Grace et al. (2019) initiated differential equations consisting

of both sub-linear and super-linear neutral terms, where a 2nd-order half-linear

differential equation has been studied as:

(
𝑟 (𝑡)

[
𝑦 (𝑛−1) (𝑡)

]𝛼)′ + 𝑞(𝑡)𝑥𝛾 (𝜏1(𝑡)) = 0, (9.1)

where 𝑛 > 0 is an even integer, and

𝑦(𝑡) = 𝑥(𝑡) + 𝑝1(𝑡)𝑥𝛽 (𝜏2(𝑡)) − 𝑝2(𝑡)𝑥𝛿 (𝜏2(𝑡)). (9.2)

From Eq. (9.1) and Eq. (9.2), some assumptions are:

(i) 𝛼, 𝛽, 𝛾 and 𝛿 are the two positive odd integers’ ratios with 𝛼 ≥ 1;

(ii) 𝑝1, 𝑝2, 𝑞 : [𝑡0,∞) → R+ are CFs;

(iii) 𝜏𝑘 : [𝑡0,∞) → R are CFs; 𝜏𝑘 (𝑡) ≤ 𝑡 and 𝜏𝑘 (𝑡) → ∞ as 𝑡 → ∞ for 𝑘 = 1, 2;

(iv) ℎ(𝑡) = 𝜏−1
2 (𝜏1(𝑡)) ≤ 𝑡 and ℎ(𝑡) → ∞ as 𝑡 → ∞.

Let us suppose that

𝐴∗(𝑡, 𝑡0) :=
∫ 𝑡

𝑡0

(𝑡 − 𝑠) (𝑛−2)𝐴(𝑠, 𝑡0)𝑑𝑠 → ∞ as 𝑡 → ∞ (9.3)
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for which

𝐴(𝑡, 𝑡0) :=
∫ 𝑡

𝑡0

𝑟−1/𝛼 (𝑠)𝑑𝑠 → ∞ as 𝑡 → ∞.

A CF 𝑥 satisfying Eq. (9.1) on [𝑡∗,∞), 𝑡∗ ≥ 𝑡0, is supposed to be a solution of

Eq. (9.1) on [𝑡∗,∞) where 𝑦(𝑡) is defined in Eq. (9.2). We only consider those

solutions 𝑥 of Eq. (9.1) which satisfy

sup{|𝑥(𝑡) | : 𝑡 ≥ 𝑡∗} > 0 for all 𝑡∗ ≥ 𝑡∗.

On one hand, a solution 𝑥 of Eq. (9.1) is said to be oscillatory if ∃ a sequence {b𝑛}

∋ 𝑥(b𝑛) = 0 and

lim
𝑛→∞

b𝑛 = ∞.

On the other hand, it is non-oscillatory. Eq. (9.1) is oscillatory (or non-oscillatory)

equation if all its solutions are oscillatory (or non-oscillatory).

The higher-order differential equations with nonlinear neutral terms have not

been investigated yet in other research works. As a result, the proposed differential

equation’s oscillation in Equation (9.1) is studied in detail. Novel oscillation results

for Equation (9.1) are established via the comparison with the 1𝑠𝑡-order delay

differential equations whose oscillatory characters are known via an the integral

criterion.

9.2 Main Results

Equation’s (9.1) oscillation criteria are investigated when 𝛽 < 1 and 𝛿 > 1.

The following lemma is essential for our results:

Lemma 11. (Grace et al., 2012) Assume that X and Y are two non-negative real
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numbers. Then, we get:

X_ + (_ − 1)Y_ − _XY_−1


≥ 0 for _ > 1,

≤ 0 for 0 < _ < 1,
(9.4)

where equality holds iff X = Y.

As a result, we assume:

𝑔1(𝑡) := (1 − 𝛽)𝛽𝛽/(1−𝛽) 𝑝𝛽/(𝛽−1) (𝑡)𝑝1/(1−𝛽)
1 (𝑡),

𝑔2(𝑡) := (𝛿 − 1)𝛿𝛿/(1−𝛿) 𝑝𝛿/(𝛿−1) (𝑡)𝑝1/(1−𝛿)
2 (𝑡),

and

𝑄(𝑡) := 𝑞(𝑡) [𝑝2(ℎ(𝑡))]−𝛾/𝛿

for 𝑡 ≥ 𝑡1 for some 𝑡1 ≥ 𝑡0, where 𝑝 : [𝑡0,∞) → (0,∞) is a CF.

Theorem 31. Assume that 𝛽 < 1 and 𝛿 > 1, conditions (i)-(iv) and (9.3) hold, and

suppose that 𝑝 ∈ 𝐶 ( [𝑡0,∞), (0,∞)) ∋

𝑝2(𝑡) ≠ 0 is bounded and lim
𝑡→∞

[𝑔1(𝑡) + 𝑔2(𝑡)] = 0, (9.5)

and the equation:

𝑧′(𝑡) + 𝐶𝑞(𝑡)𝐴𝛾 (𝜏1(𝑡))𝑧𝛾/𝛼 (𝜏1(𝑡)) = 0 (9.6)

is oscillatory for all constant 𝐶 > 0. Assume that ∃ constants `𝑖, 𝑖 = 1, 2, 3, and

𝜑 ∈ (0, 1) ∋

1 ≤ `1 ≤ `2 ≤ `3 and `3ℎ(𝑡) ≤ 𝑡, (9.7)

167

Univ
ers

iti 
Mala

ya



and the equations:

𝑍′(𝑡) +𝑄(𝑡)
{
(`2 − `1)𝑛−2

(𝑛 − 2)! ℎ𝑛−2(𝑡)𝐴
(
`3ℎ(𝑡), `2ℎ(𝑡)

)}𝛾/𝛿
𝑍𝛾/(𝛼𝛿) (`3ℎ(𝑡)) = 0,

(9.8)

and

𝑋′(𝑡) +𝑄(𝑡)
{
𝜑(`2 − `1)
(𝑛 − 2)! ℎ𝑛−1(𝑡)

}𝛾/𝛿
𝑋𝛾/(𝛼𝛿) (`2ℎ(𝑡)) = 0 (9.9)

are oscillatory and

∫ ∞

𝑡0

𝑄(𝑠) [𝐴∗(ℎ(𝑠), 𝑡0)]𝛾/𝛿𝑑𝑠 = ∞, (9.10)

then every solution 𝑥(𝑡) of Eq. (9.1) is oscillatory, or

lim
𝑡→∞

𝑥(𝑡) = ∞.

Proof. WLOG, the solution 𝑥(𝑡) of Equation (9.1) is supposed to be positive and

𝑥(𝜏1(𝑡)) > 0 for 𝑡 ≥ 𝑡1 for some 𝑡1 ≥ 𝑡0 (i.e. a non-oscillatory solution). From Eq.

(9.1), we have: 𝑥(𝜏2(𝑡)) > 0 and

(
𝑟 (𝑡)

[
𝑦 (𝑛−1) (𝑡)

]𝛼)′
= −𝑞(𝑡)𝑥𝛾 (𝜏1(𝑡)) ≤ 0. (9.11)

Hence, 𝑟 (𝑡)
[
𝑦 (𝑛−1) (𝑡)

]𝛼 is non-increasing with a constant sign. Namely, 𝑦 (𝑛−1) (𝑡) >

0 or 𝑦 (𝑛−1) (𝑡) < 0 for 𝑡 ≥ 𝑡2 for some 𝑡2 ≥ 𝑡1, so the following 4 cases are examined

separately:

(a) 𝑦(𝑡) > 0 and 𝑦 (𝑛−1) (𝑡) < 0;

(b) 𝑦(𝑡) > 0 and 𝑦 (𝑛−1) (𝑡) > 0;

(c) 𝑦(𝑡) < 0 and 𝑦 (𝑛−1) (𝑡) > 0;

(d) 𝑦(𝑡) < 0 and 𝑦 (𝑛−1) (𝑡) < 0.

168

Univ
ers

iti 
Mala

ya



Let us first consider the case (a). Since 𝑦 (𝑛−1) (𝑡) < 0 for 𝑡 ≥ 𝑡2, we obtain:

𝑟 (𝑡)
[
𝑦 (𝑛−1) (𝑡)

]𝛼 ≤ −𝑐,

for some positive constant 𝑐, i.e.,

𝑦 (𝑛−1) (𝑡) ≤
(
− 𝑐

𝑟 (𝑡)

)1/𝛼
,

for 𝑡 ≥ 𝑡2. Integrating the last inequality (𝑛1)-times and by condition (9.3), we

conclude that

lim
𝑡→∞

𝑦 (𝑛−1) (𝑡) = −∞,

which is a contradiction.

From the case (b), we obviously note that

𝑦(𝑡) = 𝑥(𝑡) +
[
𝑝(𝑡)𝑥(𝜏2(𝑡)) − 𝑝2(𝑡)𝑥𝛿 (𝜏2(𝑡))

]
+

[
𝑝1(𝑡)𝑥𝛽 (𝜏2(𝑡)) − 𝑝(𝑡)𝑥(𝜏2(𝑡))

]
.

From Definition 9.2 of 𝑦(𝑡), i.e., we obtain:

𝑥(𝑡) = 𝑦(𝑡) −
[
𝑝(𝑡)𝑥(𝜏2(𝑡)) − 𝑝2(𝑡)𝑥𝛿 (𝜏2(𝑡))

]
−

[
𝑝1(𝑡)𝑥𝛽 (𝜏2(𝑡)) − 𝑝(𝑡)𝑥(𝜏2(𝑡))

]
. (9.12)

If we apply the first inequality in (9.4) with _ = 𝛿 > 1, X = 𝑝
1/𝛿
2 (𝑡)𝑥(𝜏2(𝑡)) and

Y =

[
1
𝛿
𝑝(𝑡)𝑝−1/𝛿

2 (𝑡)
]1/(𝛿−1)

,
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then we have:

𝑝(𝑡)𝑥(𝜏2(𝑡)) − 𝑝2(𝑡)𝑥𝛿 (𝜏2(𝑡))

≤ (𝛿 − 1)𝛿𝛿/(1−𝛿) 𝑝𝛿/(𝛿−1) (𝑡)𝑝1/(1−𝛿)
2 (𝑡) =: 𝑔2(𝑡). (9.13)

Similarity, by employing the 2nd inequality in (9.4) with _ = 𝛽 < 1, X =

𝑝
1/𝛽
1 (𝑡)𝑥(𝜏2(𝑡)), and

Y =

[
1
𝛽
𝑝(𝑡)𝑝−1/𝛽

1 (𝑡)
]1/(𝛽−1)

,

we obtain:

𝑝1(𝑡)𝑥𝛽 (𝜏2(𝑡)) − 𝑝(𝑡)𝑥(𝜏2(𝑡))

≤ (1 − 𝛽)𝛽𝛽/(1−𝛽) 𝑝𝛽/(𝛽−1) (𝑡)𝑝1/(1−𝛽)
1 (𝑡) =: 𝑔1(𝑡). (9.14)

By using (9.12) and (9.13), (9.14) turns out that

𝑥(𝑡) ≥ 𝑦(𝑡) − 𝑔1(𝑡) − 𝑔2(𝑡) =
{
1 − 𝑔1(𝑡) + 𝑔2(𝑡)

𝑦(𝑡)

}
𝑦(𝑡). (9.15)

Since 𝑦(𝑡) in non-decreasing, we have: 𝑦(𝑡) ≥ 𝑐0 for some 𝑐0 > 0. Hence, (9.15)

turns that

𝑥(𝑡) ≥
{
1 − 𝑔1(𝑡) + 𝑔2(𝑡)

𝑐0

}
𝑦(𝑡). (9.16)

Now, we see

𝑥(𝑡) ≥ 𝑐1𝑦(𝑡), (9.17)

from (9.5) and (9.16) for some 𝑐1 ∈ (0, 1). (9.17) implies that Eq. (5.9) turns to be

(
𝑟 (𝑡)

[
𝑦 (𝑛−1) (𝑡)

]𝛼)′ + 𝑐𝛾1𝑞(𝑡)𝑦𝛾 (𝜏1(𝑡)) ≤ 0. (9.18)
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∃ a constant \0 ∈ (0, 1) ∋

𝑦(𝜏1(𝑡)) ≥
\0

(𝑛 − 1)!𝜏
𝑛−1
1 (𝑡)𝑦 (𝑛−1) (𝜏1(𝑡)),

for 𝑡 ≥ 𝑡1 (see (Agarwal et al., 2000)). By setting 𝑤(𝑡) = 𝑟 (𝑡)
[
𝑦 (𝑛−1) (𝑡)

]𝛼, we

obtain:

𝑦(𝜏1(𝑡)) ≥
\0

(𝑛 − 1)!𝜏
𝑛−1
1 (𝑡)𝑟−1/𝛼 (𝜏1(𝑡))𝑤1/𝛼 (𝜏1(𝑡)). (9.19)

By using (9.19), (9.18) turns that

𝑤′(𝑡) ≤ −𝐾
(
𝜏𝑛−1

1 (𝑡)𝑟−1/𝛼 (𝜏1(𝑡))
)𝛾
𝑞(𝑡)𝑤𝛾/𝛼 (𝜏1(𝑡)),

where

𝐾 =

(
𝑐1\0

(𝑛 − 1)!

)𝛾
.

From Corollary 2 in (Philos, 1981), we conclude that ∃ a positive solution 𝑤(𝑡)

of Eq. (9.6) with lim𝑡→∞ 𝑤(𝑡) = 0, which contradicts the fact that Eq. (9.6) is

oscillatory.

From the cases when 𝑦(𝑡) < 0 for 𝑡 ≥ 𝑡2, we assume that

𝑣(𝑡) = −𝑦(𝑡) = −𝑥(𝑡) − 𝑝1(𝑡)𝑥𝛽 (𝜏2(𝑡)) + 𝑝2(𝑡)𝑥𝛿 (𝜏2(𝑡))

≤ 𝑝2(𝑡)𝑥𝛿 (𝜏2(𝑡)),

which implies

𝑥(𝜏2(𝑡)) ≥
[
𝑣(𝑡)
𝑝2(𝑡)

]1/𝛿
,

or

𝑥(𝑡) ≥
[
𝑣(𝜏−1

2 (𝑡))
𝑝2(𝜏−1

2 (𝑡))

]1/𝛿

.
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On the other hand, we obtain:

(
𝑟 (𝑡)

[
𝑣 (𝑛−1) (𝑡)

]𝛼)′
= 𝑞(𝑡)𝑥𝛾 (𝜏1(𝑡))

≥ 𝑞(𝑡)
[
𝑣(𝜏−1

2 (𝜏1(𝑡)))
𝑝2(𝜏−1

2 (𝜏1(𝑡)))

]𝛾/𝛿
= 𝑄(𝑡)𝑣𝛾/𝛿 (ℎ(𝑡)). (9.20)

From case (c), it is obvious that 𝑣 (𝑛−1) (𝑡) ≤ 0, and either 𝑣′(𝑡) < 0 or 𝑣′(𝑡) > 0 for

𝑡 ≥ 𝑡1. First, we suppose that 𝑣′(𝑡) < 0 for 𝑡 ≥ 𝑡1. We get:

𝑣(`3ℎ(𝑡)) ≥
(`2 − `1)𝑛−2

(𝑛 − 2)! ℎ𝑛−2(𝑡)𝑣 (𝑛−2) (`2ℎ(𝑡)), (9.21)

(refer to (Agarwal et al., 2000)). Now, we may express

𝑣 (𝑛−2) (𝑢1) − 𝑣 (𝑛−2) (𝑢2) = −
∫ 𝑢2

𝑢1

𝑟−1/𝛼 (𝑠)
[
𝑟 (𝑠)

[
𝑧(𝑛−1) (𝑠)

]𝛼]1/𝛼
𝑑𝑠

≥ 𝐴(𝑢2, 𝑢1)
[
−𝑟−1/𝛼 (𝑢2)𝑣 (𝑛−1) (𝑢2)

]
, (9.22)

for 𝑡1 ≤ 𝑢1 ≤ 𝑢2. By taking 𝑢1 = `2ℎ(𝑡) and 𝑢2 = `3ℎ(𝑡) for 𝑡 ≥ 𝑡1 in inequality

(9.22), we see that

𝑣 (𝑛−2) (`2ℎ(𝑡)) ≥ 𝐴
(
`3ℎ(𝑡), `2ℎ(𝑡)

) [
−𝑟−1/𝛼 (`3ℎ(𝑡))𝑣 (𝑛−1) (`3ℎ(𝑡))

]
. (9.23)

By using Eq. (9.23), (9.21) turns out to be

𝑣(`3ℎ(𝑡)) ≥
(`2 − `1)𝑛−2

(𝑛 − 2)! ℎ𝑛−2(𝑡)𝐴
(
`3ℎ(𝑡), `2ℎ(𝑡)

)
×

[
−𝑟−1/𝛼 (`3ℎ(𝑡))𝑣 (𝑛−1) (`3ℎ(𝑡))

]
. (9.24)
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By setting 𝑉 (𝑡) := −𝑟 (𝑡)
[
𝑣 (𝑛−1) (𝑡)

]𝛼 for 𝑡 ≥ 𝑡1, (9.24) turns that

𝑣(ℎ(𝑡)) ≥ 𝑣(`3ℎ(𝑡))

≥ (`2 − `1)𝑛−2

(𝑛 − 2)! ℎ𝑛−2(𝑡)𝐴
(
`3ℎ(𝑡), `2ℎ(𝑡)

)
×

[
−𝑉1/𝛼 (`3ℎ(𝑡))

]
. (9.25)

From (9.25) and (9.19), we obtain:

−𝑉 ′(𝑡) ≥ 𝑄(𝑡)𝑣𝛾/𝛿 (ℎ(𝑡))

≥ 𝑄(𝑡)
{
(`2 − `1)𝑛−2

(𝑛 − 2)! ℎ𝑛−2(𝑡)𝐴
(
`3ℎ(𝑡), `2ℎ(𝑡)

)}𝛾/𝛿
×

[
𝑉𝛾/(𝛼𝛿) (`3ℎ(𝑡))

]
,

which implies

𝑉 ′(𝑡) +𝑄(𝑡)
{
(`2 − `1)𝑛−2

(𝑛 − 2)! ℎ𝑛−2(𝑡)𝐴
(
`3ℎ(𝑡), `2ℎ(𝑡)

)}𝛾/𝛿 [
𝑉𝛾/(𝛼𝛿) (`3ℎ(𝑡))

]
≤ 0.

The proof can be similarity done same as the one in case (a).

Let 𝑣′(𝑡) > 0 for 𝑡 ≥ 𝑡1. We clearly get:

𝑣 (𝑛−2) (`3ℎ(𝑡)) ≥ −(`2 − `1)ℎ(𝑡)𝑣 (𝑛−1) (`2ℎ(𝑡)).

∃ a constant \1 ∈ (0, 1) such that

𝑣(ℎ(𝑡)) ≥ \1
(𝑛 − 2)!ℎ

𝑛−2(𝑡)𝑣 (𝑛−2) (ℎ(𝑡))

≥ \1
(𝑛 − 2)!ℎ

𝑛−2(𝑡)𝑣 (𝑛−2) (`1ℎ(𝑡)),
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for 𝑡 ≥ 𝑡1. Now, we see that

𝑣(ℎ(𝑡)) ≥ \1
(𝑛 − 2)!ℎ

𝑛−2(𝑡)𝑣 (𝑛−2) (`1ℎ(𝑡))

≥ \1
(𝑛 − 2)!ℎ

𝑛−2(𝑡) (`2 − `1)ℎ(𝑡) [−𝑣 (𝑛−1) (`2ℎ(𝑡))] .

The remaining part of the proof is similar to the above case.

Finally, from case (d). we clearly get: 𝑟 (𝑡)
[
𝑣′(𝑡)

]𝛼
> 0 and so

𝑟 (𝑡)
[
𝑣 (𝑛−1) (𝑡)

]𝛼 ≥ 𝑐2,

or that

𝑣 (𝑛−1) (𝑡) ≥
(
𝑐2
𝑟 (𝑡)

)1/𝛼
,

for some 𝑐2 > 0. Thus, we obtain:

𝑣(𝑡) ≥ 𝑐1/𝛼
2 𝐴∗(𝑡, 𝑡2) (9.26)

for 𝑡 ≥ 𝑡3 ≥ 𝑡2. By using (9.26), (9.20) turns out

(
𝑟 (𝑡)

[
𝑣 (𝑛−1) (𝑡)

]𝛼)′ ≥ 𝑄(𝑡)𝑣𝛾/𝛿 (ℎ(𝑡))

≥ 𝑄(𝑡)
[
𝑐

1/𝛼
2 𝐴∗(ℎ(𝑡), 𝑡2)

]𝛾/𝛿
.

The remaining part of the proof is trivial. This finalizes the proof.

Corollary 2. Assume that 𝛽 < 1 and 𝛿 > 1, conditions (i)-(iv) and (9.3) hold and

let 𝑝 ∈ 𝐶 ( [𝑡0,∞), (0,∞)) ∋ (9.5) holds. Suppose that ∃ real numbers `𝑖, 𝑖 = 1, 2, 3
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∋ (9.7) is satisfied. If we have condition (9.10), then

lim
𝑡→∞

∫ 𝑡

𝜏1 (𝑡)
𝑞(𝑠)𝐴𝛾 (𝜏1(𝑠))𝑑𝑠 = ∞ when 𝛾 ≤ 𝛼,

lim inf
𝑡→∞

∫ 𝑡

`3ℎ(𝑡)
𝑄(𝑠)

{
ℎ𝑛−2(𝑠)𝐴

(
`3ℎ(𝑠), `2ℎ(𝑠)

)}𝛾/𝛿
𝑑𝑠

>
1
𝑒

(
(𝑛 − 2)!

(`2 − `1)𝑛−2

)𝛾/𝛿
when 𝛾 = 𝛼𝛿,

lim
𝑡→∞

∫ 𝑡

`3ℎ(𝑡)
𝑄(𝑠)

{
ℎ𝑛−2(𝑠)𝐴

(
`3ℎ(𝑠), `2ℎ(𝑠)

)}𝛾/𝛿
𝑑𝑠 = ∞ when 𝛾 < 𝛼𝛿,

and

lim
𝑡→∞

∫ 𝑡

`2ℎ(𝑡)

[
ℎ𝑛−1(𝑠) (`2 − `1)

]𝛾/𝛿
𝑄(𝑠)𝑑𝑠 = ∞ when 𝛾 ≤ 𝛼,

then Eq. (9.1) is oscillatory.

9.3 Illustrative Examples

Two numerical examples are illustrated as follows:

Example 9.3.1. Consider the following 2nd-order equation:

(
𝑒−𝑡

(
𝑥(𝑡) + 1

𝑡
𝑥1/3(𝑡/2) − 𝑥3(𝑡/2)

)′)′
+

(
3
4
−

(
5

36𝑡
+ 1

2𝑡2
+ 2
𝑡3

)
𝑒−4𝑡/3

)
𝑥(𝑡/2) = 0. (9.27)

Clearly, 𝑟 (𝑡) = 𝑒−𝑡 , 𝑝1(𝑡) = 𝑝(𝑡) = 𝑡−1 and 𝑝2(𝑡) = 1, and hence there exists a

175

Univ
ers

iti 
Mala

ya



𝑡∗ ≥ 3 such that
3
4
−

(
5

36𝑡
+ 1

2𝑡2
+ 2
𝑡3

)
𝑒−4𝑡/3 > 0,

for 𝑡 ≥ 𝑡∗. Verifying all conditions of the Theorem 31 indicates that every solution

𝑥 of Eq. (9.27) is oscillatory, otherwise lim𝑡→∞ 𝑥(𝑡) = ∞. It is worth mentioning

that 𝑥1(𝑡) = 𝑒𝑡 is such a solution of Eq. (9.27).

Example 9.3.2. Consider the following even-order equation:(
𝑒−𝑡

(
𝑥(𝑡) + 1

𝑡
𝑥1/3(𝑡/2) − 𝑥3(𝑡/2)

) (𝑛−1)
)′
+

(
1
𝑡
𝑒−𝑡/2

)
𝑥(𝑡/2) = 0. (9.28)

By noting that 𝑟 (𝑡) = 𝑒−𝑡 , 𝑝1(𝑡) = 𝑝(𝑡) = 𝑡−1, 𝑝2(𝑡) = 1 and 𝑞(𝑡) = 𝑒−𝑡/2/𝑡 and

letting `1 = 1/8, `2 = 1/4 and `3 = 3/8, it can be easily seen that all the conditions

of Corollary 2 hold, and hence Eq. (9.28) is oscillatory.

9.4 Conclusion

The NLDfEq’s oscillation with MNLNTs have been studied via the basic

inequality and some comparison results to show our main theorem. Two numerical

examples have been provided to validate our theoretical analysis. The oscillation of

Equations (9.27) and (9.28) has never been previously studied.
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CHAPTER 10: SUMMARY AND CONCLUSION

10.1 Summary

Fractional calculus is an essential field of research for modeling many scientific

phenomena arising in physics and engineering. Various definitions, generalizations,

or extensions have been proposed to formulate various classes of differential

equations in the context of fractional calculus. This field of research is considered

as an open research problem due to the fact that many research works are still under

study, and investigations are needed for many arising research problems in this field

of research. One of the most challenges that face the researchers in this research field

is that the difficulty of proposing one universal definition that can be employed for

all systems and cases. Each definition has both advantages and disadvantages when

it is applied for various models. In Physics and engineering, analytical solutions are

very important and highly needed. Another challenging part of this research field is

to find analytical solutions for the fractional-order differential equations, especially

partial differential equations. Some definitions can not be employed for finding

solutions analytically; therefore, new definitions, techniques, or numerical solutions

via generalized numerical methods are needed to overcome this challenge. Due to

all these challenges, it is nearly impossible to find a university/college curriculum

that teaches this field of research although this research field is very powerful for

many applications in science and engineering. As a result, this thesis provides

a comprehensive research work on fractional calculus in terms of computational

methods and analysis. Various definitions, techniques, theorems, generalizations,

extensions, and numerical experiments are investigated in detail in this thesis. Three

interesting techniques have been successfully employed in solving two essential

nonlinear partial differential equations, constructed in the context of conformable
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and fractional calculus, in Chapter 3. A full investigation of the conformable version

of multivariable calculus is studied in Chapter 4. While each definition in this

research field has a limited applicability, a newly proposed definition, named as

Abu-Shady–Kaabar fractional derivative, is presented in Chapter 5, to provide a new

possible direction for analytical solutions for various differential equations in the

context of fractional calculus. Then, the implicit nonlinear variable order fractional

differential equation is discussed via the Krasnoselskii’s fixed point theorem in

Chapter 6. The fractional formulated quadratic integral equation is investigated by

employing the generalized Mittag-Leffler function to provide a detailed study on the

stability of this equation in Chapter 7. A novel technique is presented in Chapter 8

to investigate the ψ-Caputo fractional differential equation with nonlinear boundary

conditions. In the last chapter of our main results, a unique investigation of the

oscillation of even-order nonlinear differential equations with mixed nonlinear

neutral terms is discussed in Chapter 9 to provide a new direction for further

research works and extensions related to the presented equation. The unique

research results of the problems presented in Chapter 3 are published in Q1, Science

Citation Index Expanded (SCIE), journals, namely: Journal of Function Spaces

and Mathematical Methods in the Applied Sciences. Chapter 4 research results

are published in Q2, SCIE, journal, namely: Journal of Mathematics. Chapter

5 research results are published in Q3, SCIE, journal, namely: Mathematical

Problems in Engineering. Chapter 6 research results are published in Q1, SCIE,

journal, namely: Mathematics. The results of the research problems presented in

Chapter 7 are published in Q1 Scopus/Web of Science journal, namely: Nonlinear

Engineering. Chapter 8 research results are published in Q1, SCIE, journal, namely:

Fractal and Fractional. Chapter 9 research results are published in Q1, SCIE,

journal, namely: Journal of Function Spaces. All results of our research problems

178

Univ
ers

iti 
Mala

ya



have been cited in many recent published research works in prestigious journals.

10.2 Conclusion

Various classes of differential equations have been constructed in the context of

fractional calculus. All obtained results have been investigated theoretically and

numerically via several techniques. The following is a list of conclusions based on

our findings in this thesis:

1. The study of the Wazwaz–Benjamin–Bona–Mahony and modified nonlin-

ear Schrödinger equation with spatio-temporal dispersion in the context

of fractional calculus provides a good understanding to many scientific

phenomena arising in oceanography, optics, electromagnetism, and optical

communication.

2. The investigation of multivariable conformable calculus offers a unique

mathematical tool for modeling phenomena in physics and engineering.

3. The newly proposed definition, Abu-Shady–Kaabar fractional derivative,

solves many issues associated with other previously proposed definitions

and offers a simple direction to obtain analytical solutions efficiently for

many classes of differential equations, formulated in the context of fractional

calculus.

4. The applicability of variable-order spaces of fractional type needs a series

of systematic approaches to investigate fractional differential equation’s

solutions such as existence-uniqueness-stability.

5. The investigation of quadratic fractional integral equations provides a signifi-

cant tool in modeling scientific scenarios due to the essential properties of

fractional calculus in investigating systems’ dynamics and behavior.

6. The monotone iterative technique, along with upper and lower solutions’
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technique provides a full investigation of the ψ-Caputo fractional differential

equation with nonlinear boundary conditions.

7. The investigation of differential equations’ oscillation with nonlinear neutral

terms which has been rarely mentioned in other research works can provide a

new path for more related future works in the context of fractional calculus.

10.3 Future Work

This thesis has provided several novel contributions to the field of fractional

calculus. Various definitions have been proposed and investigated theoretically

and numerically. Several illustrative examples have been provided to validate the

applicability of all theoretical results. One of the limitation of the ASK definition is

that ASK is a local definition, therefore, a nonlocal version of ASK will have more

advantages than the local version of ASK due to the helpful nonlocality property

in modeling some complex scientific phenomena. This thesis provides many new

directions for many related future research works. Some examples of possible

future research works that can be done based on the results of this thesis are listed

as follows:

1. The Abu-Shady–Kaabar fractional definition can be extended further to

include chain rule and special functions.

2. The multivariable version of the Abu-Shady–Kaabar fractional definition can

be investigated.

3. The Abu-Shady–Kaabar fractional definition’s version of vector-valued

function of several real variables can also be studied.

4. A nonlocal version of Abu-Shady-Kaabar fractional definition can be proposed

in the near future.
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5. Many applications in science and engineering can be studied in the context

of the Abu-Shady-Kaabar fractional definition.

6. A universal definition can be defined based on the ASK, NComD, and

ψ-Caputo fractional definitions by proposing a suitable functional kernel.

7. The results in Chapter 3 about wave transformation and double Laplace

transform can be studied in the context of ASK. The same applied to Chapters

6,7,8, and 9.

8. The nonlinear variable order differential equation can be formulated in the

context of ASK to model various phenomena in vscoelasticity, mechanics,

and fluid dynamics.

9. The NComD results in (Lugo et al., 2022; Valdés, 2022; Valdés et al., 2020)

can be extended further to be studied in the context of ASK.

10. The mixed Morrey spaces results in (Guliyev, 2009; Ragusa & Scapellato,

2017) can be generalized further to be investigated in the context of ASK for

fractional partial differential equations.
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