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QUANTITATIVE AND QUALITATIVE ASSESSMENT OF PETROLEUM 

PRODUCTS BY SPECTROSCOPIC AND CHEMICAL DATA ANALYTICS 

ABSTRACT 

This research study describes the use of Fourier Transform Near Infra-Red (FT-NIR) 

technology with various chemometric methods in petroleum products. Current practice in 

the refinery’s quality assurance and quality control laboratories relies on the use of 

conventional method measurements in the quantitative and qualitative assessment of their 

petroleum products. These conventional methods consume high workforce, longer 

analysis time and high operating expenditure. A new innovative way of qualitative and 

quantitative measurement and application were explored to improve and address the pain 

points and provide a total solution. This study aims to evaluate and assess the quality of 

petroleum products through spectroscopic and chemical data analytics, both qualitative 

and quantitative assessments. In this work, coupled near infra-red spectroscopy and 

chemometrics techniques for calibration models development, i.e. Partial Least Square 

(PLS) and Principal Component Regression (PCR) and Near Infra-red (NIR) spectra pre-

treatment or re-processing, i.e. Multiplicative Scatter Correction (MSC) and Savitzky 

Golay Second Derivative (SGSD) were employed accordingly for rapid and simultaneous 

determination of chemical and physical properties of petroleum hydrocarbons. The 

coupled NIR and chemometrics methods are an alternative to the existing laboratory 

reference methods to address the refinery pain points. FT-NIR spectroscopy has been 

successfully utilized to rapidly identify and discriminate three types of petroleum 

products (gasoline, diesel, and kerosene) using Principal Component Analysis (PCA). 

More than 95% of each product was accurately identified and differentiated. This 

qualitative multivariate measurement is important when fast results are required at the 

operation site, such as during product transfer cross-contamination and adulteration or 

Univ
ers

iti 
Mala

ya



 

v 

illegal product blending. In addition, qualitative measurement by PCA was used to 

differentiate gasoline and diesel fuels directly sourced from refineries without additive. 

In contrast, additives were added to the gasoline and diesel fuels, such as corrosion 

inhibitors, detergency, and lubricity improvers, to enhance the engine's performance and 

protection of the engine components. Diesel with and without palm methyl ester (PME) 

blend were also determined qualitatively using PCA based on significant the presence of 

fatty acid methyl ester (FAME) in diesel. This work demonstrates the multivariate 

calibration strategy for the simultaneous near-infrared spectrometric determination of the 

physical and chemical properties of the petroleum products, namely the boiling point at 

95% recovery (T95%), flash point (FP), cloud point (CP) and cetane index (CI) which 

include the spectral region selection, calibration/validation set partition, data pre-

processing, and regression. Based on the results, the calibration constructed on the 

combination region of 4800-4000 cm-1 using the randomly selected calibration set 

managed to deliver excellent predictive performance in terms of coefficient of 

determination, root mean square error of cross-validation, root mean square error of 

prediction and the ratio of performance deviation. Moreover, all the developed models 

satisfied the reproducibility requirement of respective American Society for Testing and 

Materials (ASTM) standard methods regardless of the employment of multiplicative 

scattering correction/Savitzky-Golay second-derivatization and principal component 

regression/partial least square regression. This revealed that the fitness of the model relies 

upon every single calibration component. It was also realized that data pre-treatment is 

crucial in delivering predictive-performing predictions. 

Keywords: qualitative, quantitative, chemometrics, petroleum products 

 

 

 

Univ
ers

iti 
Mala

ya



 

vi 

 

QUANTITATIVE AND QUALITATIVE ASSESSMENT OF PETROLEUM 

PRODUCTS BY SPECTROSCOPIC AND CHEMICAL DATA ANALYTICS 

ABSTRAK 

Penyelidikan ini membincangkan penggunaan teknologi Fourier Transform Near 

Infra-Red (FT-NIR) menggunakan pelbagai kaedah kimometrik dalam produk petrolium. 

Amalan di makmal jaminan kualiti dan kawalan kualiti kilang masa kini, bergantung pada 

penggunaan pengukuran kaedah konvensional dalam menilai tahap kuantitatif dan 

kualitatif produk petrolium mereka. Kaedah konvensional ini menggunakan tenaga kerja 

yang tinggi, masa analisa yang lebih lama dan perbelanjaan operasi yang tinggi. Kaedah 

inovatif mengukur aplikasi kualitatif dan kuantitatif baru diterokai untuk memperbaiki 

dan mengatasi masalah ini dan memberikan penyelesaian secara menyeluruh. Kajian ini 

dijalankan bertujuan untuk mentaksir dan menilai kualiti produk petrolium melalui 

spektroskopi dan analisis data kimia bagi penilaian kualitatif dan kuantitatif. Dalam hasil 

kerja ini, teknik spektroskopi infra-merah dan kimometrik untuk pembangunan model 

penentukuran, seperti sebahagian kecil daripada persegi (PLS) dan regresi komponen 

utama (PCR) dan pra-rawatan spektrum NIR atau pemprosesan semula, seperti contoh 

pembetulan penyebaran berbilang (MSC) dan Savitzky Golay Kedua Derivatif (SGSD) 

telah digunapakai untuk penentuan pesat dan serentak, sifat kimia dan fizikal bagi 

hidrokarbon petrolium. Kaedah NIR dan kimometrik yang digabungkan adalah alternatif 

kepada kaedah rujukan makmal yang sedia ada untuk mengatasi masalah kilang 

penapisan. Spektroskopi FT-NIR telah berjaya digunakan untuk mengenal pasti tiga jenis 

produk petroleum, iaitu petrol, diesel, dan minyak tanah menggunakan analisa komponen 

utama (PCA). Lebih 95% daripada setiap produk telah dikenalpasti dan dibezakan dengan 

tepat. Hal ini amat penting apabila keputusan segera diperlukan di tapak operasi, seperti 

semasa pemindahan produk pencemaran silang dan pengadukan atau pengadunan produk 
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secara haram. Tambahan pula, pengukuran kualitatif oleh PCA digunakan untuk 

membezakan bahan bahan api petrol dan diesel secara langsung yang diperoleh dari 

kilang penapis di mana bebas bahan tambahan dicampur dalam bahan api tersebut. 

Sebaliknya, bahan tambahan telah ditambah dalam bahan api, seperti perencat kakisan, 

pencuci, dan penambahbaikan pelinciran, untuk meningkatkan prestasi enjin dan 

perlindungan komponen enjin. Diesel bercampuran dan tiada campuran metil ester dari 

minyak sawit juga ditentukan secara kualitatif menggunakan PCA berdasarkan kehadiran 

metil ester asid lemak yang signifikan di dalam diesel. Kajian ini mendemonstrasi strategi 

penentukuran pelbagai variasi untuk penentuan spektrometri infra-merah serentak dari 

sifat fizikal dan kimia produk petroleum, iaitu, suhu mendidih pada takat 95% perolehan 

semula (T95%), takat kilat (FP), titik awan (CP) dan indeks setana (CI) yang merangkumi 

pemilihan rantau spektrum, penentukuran/pengesahan set pecahan, pra-pemprosesan 

data, dan regresi. Berdasarkan hasil ujikaji, penentukuran yang dibina di rantau gabungan 

4800-4000 cm-1 menggunakan set penentukuran yang dipilih secara rawak, berjaya 

menyampaikan prestasi ramalan yang sangat baik dari segi pekali penentuan, punca min 

kesilapan persegi silang, punca min persegi kesalahan ramalan dan nisbah sisihan 

prestasi. Selain itu, kesemua model yang dihasilkan memenuhi keperluan reproduktif 

kaedah standard ASTM tanpa mengira pengambilan pembetulan penyebaran 

berbilang/Savitzky-Golay derivatisasi kedua dan regresi komponen utama/regresi. Ini 

menunjukkan bahawa kesesuaian model bergantung kepada setiap komponen 

penentukuran tunggal. Hasil kajian ini juga mendapati bahawa pra-rawatan data penting 

dalam menghasilkan ramalan-pelaksanaan ramalan. 

Kata kunci: kualitatif, kuantitatif, kimometrik, produk petrolium 
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CHAPTER 1: INTRODUCTION 

The development of an economy is significantly supported and accelerated by energy. 

Since 2010, Malaysia's overall energy usage has been rising annually, with an exceptional 

reduction in 2015. The demand for energy in Malaysia is anticipated to increase annually, 

even as energy consumption for the upcoming years continues to rise. Suruhanjaya 

Tenaga (2019) estimates that Malaysia's energy consumption has grown at a pace of 

50.7% over the eight years from 2010 to 2017 (Dzulkefli & Saad, 2020).  

The three types of primary energy production in Malaysia are coal, natural gas and 

petroleum. Figure 1.1 shows the production of energy sources in Malaysia from 1980 

until 2009. In 2004, petroleum reached its peak production with 861.8 thousand barrels 

daily however slowly declining in the following years. Contradicting to natural gas which 

inclines in production (Shafie et al., 2011). It is anticipated that oil imports would begin 

in 2013 and is expected to reach a total of 45 Mtoe by 2030 (Gan & Li, 2008).  

 

Figure 1.1: Production of primary energy sources in Malaysia; a) Coal production, 
b) Natural gas production and c) Petroleum production (Shafie et al., 2011) 

a) b)
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Energy demand in Malaysia on 2009 since 1999 increases at about 66.5% from 9690 

MW to 16,132 MW. The fast rate of economic development in Malaysia is the cause of 

this sudden rise in demand. Malaysia has a population of 25.4 million people as of 2009, 

and by 2020, about 75 percent of the country's population would reside in urban areas, 

more than doubling since 1980. This shows the significance of energy sources in Malaysia 

for both production and consumption as seen in Figure 1.2.  

 

Figure 1.2: Malaysia's Petroleum Production and Consumption (Shafie et al., 2011) 

Malaysia is popular for its abundance of oil reservoirs with one of the leading 

companies in oil and gas being Petroliam Nasional Berhad (Petronas). Based on Chong 

et al.’s (2015) study, six refineries in Malaysia where three being from Petronas has a 

total estimated volume processing approximately 500,000 bbl/d of crude oil. The most 

significant oil products in Malaysia's energy consumption, particularly in the 

transportation sector, were gasoline and diesel as seen in Figure 1.3.  
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Figure 1.3: Oil production in Malaysia (Adapted from Chong et al., 2015) 

 

1.1 Oil Refining 

Refining is the process of separating crude oil into various ranges and hydrocarbon 

products based on their differences in boiling point. The processing needs the utilisation, 

for instance of heat exchangers, variation of pressure, temperature, and injection of 

chemicals where the large molecules from crude oil are separated into groups of similar 

molecules. The process additionally organizes their configurations and integration into 

diverse hydrocarbon substances and compounds into three major hydrocarbon groups: 

paraffinic, naphthenic, and aromatic (Altgelt, 1993). 

Refineries produce various products such as jet fuel, gasoline and diesel, including 

many required feedstocks for the petrochemical industry (Gary et al., 2007). Complex 

and integrated refineries incorporate treatment, fractionation, conversion and blending 

operations, including petrochemical processing. Further conversion processes convert the 

light distillates into more value-added products by changing the hydrocarbon molecules' 

structure and size via cracking, reforming, and other conversion processes. A typical 
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refinery process capacity is in the range of 100,00 barrels daily to 400,000 barrels daily 

depending on the capacity and complexity of the processing unit (Verma et al., 2017). 

Various separation methods, such as hydrotreating, extraction and sweetening, are used 

on different process streams to eliminate unwanted components and enhance the quality 

of the end product. In general, petroleum refining operations can be grouped into 

fractionation (distillation), light gas oil processing, heavy oil processing, and treatment 

and environmental protection processes (Rana et al., 2007). 

Prior to the crude oils being fed at the Crude Distillation Unit (CDU) tower, the crude 

treatment, i.e., desalting process using electrostatic or chemical separation, is essential to 

remove undesirable constituents such as inorganic water salts, water, water-soluble trace 

metal contaminants and suspended solids. 

As illustrated in Figure 1.4, the desalted crude is processed at pressures slightly above 

atmospheric and temperatures ranging from 345 to 370 oC via distillation column tower. 

To avoid thermal cracking, the residue obtained from atmospheric distillation will be 

processed via a vacuum distillation tower at reduced pressure and elevated temperatures. 

(Aitani, 2004). 

Crude oil distillation onto straight-run cuts occurs in both vacuum and atmospheric 

towers. The different types of crudes have various characteristics directly related to the 

composition of the products and their production yield. The main fractions obtained have 

specific boiling point ranges and can be categorized based on the decreasing of boiling 

point and increasing of the molecular weight into light distillates (naphtha), gases, middle 

distillates (kerosene and diesel/gas oils) and heavy distillates (heavy gas oils and residue) 

(Mochida et al., 2014). 
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Figure 1.4: Crude distillation unit and cut points for each intermediate product 
(Adapted from Balaji, 2017). 

 

1.2 Crude Oil Products 

The elemental composition of crude oil depends on the source and type of the crude; 

nonetheless, these elements exhibit slight variations within a narrow range. (Riazi, 2005). 

A specific crude oil is not easily identifiable or a quantifiable compound. Paraffin, 

aromatics and napthenes plus a tiny number of organic compounds such as oxygen, sulfur 

nitrogen, and traces of metallic compounds such as nickel, vanadium and sodium, are 

typical crude oil mixtures of hydrocarbon compounds. Typically, these compounds with 

less than 16 carbon numbers are made up of a relatively high proportion of crude oil, 

comprising 84.5% carbon, 1-3% sulfur, 13% hydrogen and less than 1% each of oxygen, 

nitrogen and metal salts (Aitani, 2004). 

Crude oils can be categorised in many ways, either by their physical or chemical 

properties, commonly based on their density, American Petroleum Institute (API), sulfur 
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content, and hydrocarbon composition, typically in the range of 50o API to 10o API (Ilyin 

et al., 2016). In terms of its physical properties, crude oil can be distinguished by API 

gravity; the greater the API gravity, the lighter the crude. Crude oils with high hydrogen, 

low carbon and high API gravity are usually rich in paraffin and tend to yield more 

significant proportion of light petroleum products and gasoline. In contrast, those with 

low hydrogen, high carbon and low API gravity are usually rich in aromatics (Demirbas 

et al., 2015). Crude oils with a low sulfur content of less than 0.5 wt% and high sulfur 

content of more than 0.5 wt% are defined as sweet crude and sour crude, respectively 

(Ghulam et al., 2013). 

1.3 Diesel Fuel 

The primary oil products consist mainly of transportation fuels, which account for 

around 52% of global oil usage. Hence, the sustainability and availability of gasoline and 

diesel petroleum-based products as transportation fuels are the main concerns in the 

global market for the future. 

Besides gasoline, many petroleum products derived from is diesel. For the non-

complex refinery, diesel is derived as a single component (straight run product). However, 

for complex refineries, it is derived from blending operations. The diesel blended source 

is typically obtained from atmospheric distillation, hydrocracking, distillate hydro-treater, 

Fluid Catalyst Cracker (FCC) light cycle oil, and several products from vacuum 

distillation and delayed coker unit (Jones, 2008). Different crude oil will produce different 

quality of diesel rundown. The challenges are to blend different quality of diesel rundown, 

to meet final product diesel specification which require rapid online assessment. (time 

consuming, high reblend rate, high product giveaway, high demurrage cost). 

The sustainability of fuels globally at present is a concern. Most oil companies and 

refineries have started blending the crudes with bio-renewable resources such as algae, 
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recycled waste, and palm oil. Similar to other petroleum products, diesel and jet fuels are 

also blended with bio-based components with an acceptable percentage without 

jeopardising the final products' quality of meeting the fuel specifications and engine 

performance. In Malaysia, biodiesel was gazetted by the government as being of five per 

cent fatty acid methyl ester (derived from palm oil) blended with diesel petroleum. 

The key characteristic of diesel fuel used in automotive engine combustion is its cetane 

number, which indicates the ease of engine ignition and combustion (Barabas et. al., 

2010). The essential properties of diesel fuels in process control and meeting product 

specifications are boiling point at flash point, 95% recovery, cetane index, cloud point  

and total sulfur. Diesel fuel and domestic heating oil have an approximately 200 to 375o 

C boiling point range. Total sulphur reduction and cetane improvement are required for 

ultralow-sulphur diesel (ULSD) product grade production. Substantial investment in 

hydrotreating will be necessary to meet upcoming ULSD specifications, which demand 

sulfur content is between 10-15 ppm. (Stuntz & Plantenga, 2002). 

 

1.3.1 Diesel compositions 

Diesel fuels are intricate mixture of hydrocarbon molecules, generally boiling within 

the temperature range from 150o C to 380o C. They are typically blended from several 

refinery streams, mainly from the primary distillation unit. However, components from 

other units often increase diesel fuel production in a conversion refinery. The proportion 

of cracked gas oil components in blended diesel is typically low since the high aromatic 

content of the cracked gas oil lowers the cetane value of the blended diesel fuel (Gary et 

al., 2007; Parkash, 2003). 

Diesel fuel, with the carbon number ranging from about C8 to C24, comprises 

approximately saturated hydrocarbon derivatives (75% v/v, primarily paraffin 
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hydrocarbons including iso-paraffins, n-paraffins,  and cycloparaffins), and aromatic 

hydrocarbon derivatives (25% v/v, including alkylbenzenes and naphthalene derivatives). 

Diesel fuels primarily contain a mixture of C10 to C19 (Retnam et al., 2015).  

Diesel fuel's general appearance, or colour, is a valuable indicator to identify 

contamination by residual (higher boiling point) constituents, fine solid particles or water. 

Therefore, it is prudent to check that visual inspection delivers clear fuel. Since the color 

of diesel fuels is utilized for manufacturing control objectives, it is crucial to determine it 

as part of the fuel's appearance. Typically, the methods require a visual determination of 

colour using coloured glass discs or reference materials. The colour may indicate the 

degree of refinement of the material. Similarly, odour is vital when it comes to 

acceptance. It is usually required that diesel fuel is reasonably free of contaminations, 

such as mercaptan derivatives (RSH, also called thiol derivatives), which impart 

unpleasant odours to the fuel.  

Table 1.1 shows the Malaysia Standard Diesel fuel specification for Euro 5 which 

shows the maximum boiling point at 95%, minimum flash point, maximum cloud point 

and minimum cetane index. 

Table 1.1: Malaysia Standard High PME Diesel Fuel Specification Euro 5 

Properties Minimum Maximum Referee Test Method 

Boiling point at 95% 

recovered volume, oC 
- 360 (ASTM D86, 2020) 

Flash point, oC 60 - (ASTM D93, 2020) 

Cloud point, oC - 19 
(ASTM D2500, 2017) / 

ASTM D 5772 

Cetane index 49 - 
(ASTM D976, 2016) / 

ASTM D4737 
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1.3.1.1 Volatility / Boiling point 

The volatility properties of a diesel fuel can be described by its boiling temperature. A 

standardized device is used to heat a fuel sample and distill successive fractions of diesel 

fuel under controlled conditions.  

The most standard test method used for the distillation is ASTM D86 (Leonardo et al., 

2020). During the distillation analysis, initial boiling point (IBP), endpoint (EP) or final 

boiling point (FBP), per cent of condensate recovered and per cent residue of non-volatile 

matter data information will be recorded (Zvirin et al., 1998).  

The diesel fuel's volatility or boiling range impacts many other properties, including 

flash point, density, viscosity and cold properties (cloud point, pour point) (Bahadur et 

al., 1995), which must meet the diesel fuel specification. High volatility or low boiling 

point could cause vapour lock and lower flashpoint, which are not desirable qualities. 

Vapour lock can cause engine performance to deteriorate, where misfiring or failure to 

restart can occur after a brief shutdown in hot conditions (Thomas, 1988; Chang et al., 

2020). However, in the combustion chamber, greater volatility allows for more complete 

vaporization of the fuel. 

As a result, components with high boiling points may not combust fully, resulting in 

the formation of engine deposits and elevated levels of certain substances. Within the 

range of 350oC to 400oC, however, the effect on the exhaust emission is considered 

relatively low at low volatility or high boiling. The effect on the tendency to smoke via 

influence on the injection and mixing the fuel at mid-volatility, boiling point at 50% 

recovery of diesel fuel also has a marked effect. There is also an interest in the 50% 

distillate recovery temperature for the calculation of the cetane index (CI) by ASTM D976 

(2020). 
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It is emphasised that in practice, the mix of volatilities is very important. High 

volatility components at a lower boiling point improve cold starting and warm-up, while 

low-volatility components at a higher boiling point tend to increase wear, smoke and 

deposits. 

ASTM D975-2020 is the international standard method specified in the diesel fuels 

specification. The most critical volatility of diesel fuel specification is boiling point at 95 

% recovery (T95). For Malaysia Standard High PME Diesel Fuel Specification Euro 5 

(MS 123-5, 2020), the T95 is 360 oC maximum. A typical diesel fuel distillation curve is 

illustrated in Figure 1.5. 

 

Figure 1.5: Distillation curve for diesel fuels. (Adapted from Santos et al., 2021) 

 

1.3.1.2 Flash point 

Flash point is one of the vital properties in diesel fuels that concerns safety while 

handling, transporting and storing. The flash point test will measure the lowest 

temperature when the diesel fuel produces enough vapour to cause ignition leading to 
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flame generation. The flash point average for diesel fuel ranges from 55°C to 66°C. Fossil 

diesel is composed of low molecular weight molecules and a branched compound that 

reduces the flashpoint (Knothe, 2010). 

The standard test method ASTM D93 (2020) for flash points by Pensky-Martens 

Closed Cup Tester for diesel fuels is commonly used to determine flash point quality. 

ASTM D975-2020 is the international standard method specified in the diesel fuels 

specification. The flash point specification is in the range of a minimum of 30oC to 55oC 

depending on the grades of diesel fuels. For Malaysia Standard High PME Diesel Fuel 

Specification Euro 5 (MS 123-5, 2020), the flashpoint specification is 60.0 oC at the 

minimum limit. 

Flash point provides an excellent indication of diesel fuel contamination with more 

volatile products such as contaminated with gasoline or fuel oil and adulteration of diesel 

blended with other blending components illegally. The significance of the flash point test 

is for the safety requirements during storing and handling. (Kaisan et al., 2017). 

1.3.1.3 Cloud point 

Cloud point is the temperature at which a surfactant solution starts to molecularly 

agglomerate generating a cloudy physical appearance (Swarup and Schoff, 1993). About 

20% of the diesel fuel composition causes solubility limitation due to the relatively high 

heavy paraffinic hydrocarbons (Mohammadi et al., 2022). The paraffins are most likely 

to deposit out as wax in adequate cool condition. The wax formation is undesirable 

because they contribute to high cetane numbers. The wax formation in a vehicle fuel 

system is a potential source of operation problems (Dwivedi & Sharma, 2014). Wax-

related tests are used to determine the low-temperature properties of fuel, including the 

pour point (PP), cloud point (CP) and cold filter plugging point (CFPP) (Das et al., 2022). 

The standard method used for CP analysis is ASTM D2500 (2020) which is the test 
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method that describes the temperature at which the cloud becomes visible when the fuel 

is cooled. 

ASTM D975-2020 is the international standard method specified in the diesel fuels 

specification. However, there is no specific or standardized CP specification for all grades 

of diesel fuels. It is unrealistic to specify low-temperature properties to ensure satisfactory 

operation under all ambient conditions, especially in cold countries. For Malaysia 

Standard High PME Diesel Fuel Specification Euro 5 (MS 123-5, 2020) specified, the CP 

specification limit is a maximum of 19.0 oC. 

 

1.3.1.4 Cetane number/ Cetane index 

The accepted international standard method used to measure the ignition quality of 

diesel fuel is the Cetane Number (CN), which measures the delay of ignition of the diesel 

fuel. It is based upon the ignition characteristics of two hydrocarbons, 2,3,4,5,6,7,8-

heptamethylnonane and n-hexadecane (Cetane). It measures the ignition quality of diesel 

fuels and the reference to the blended fuel percentage of cetane blended with 

heptamethylnonane, which matches the ignition quality of the test fuel (ASTM D613, 

2019). A cetane number of 100 is assigned to cetane, which has a brief ignition delay 

period. On the other hand, heptamethylnonane has a long delay period and is given a 

cetane number of 15. The engine used in cetane number determination is a standardised 

single-cylinder, variable compression ratio. The engine, the operating condition, and the 

test procedure are specified by ASTM D 613 test method (Barabas et al., 2010). 

Due to the high cost of the cetane number determination, an alternative method often 

used for cetane determination is based on the CI formula. This method estimates the 

cetane number of diesel fuels from API gravity and mid-boiling point. As computed from 
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the formula, the index value is designated as a calculated cetane index (ASTM D976, 

2020). The CI usually gives values slightly above the CN. However, it provides a good 

indication of ignition quality in many cases but the CI will be less accurate when the 

cetane improver additive is added to diesel fuels (ASTM D976, 2020). A high cetane 

number indicates that the fuel ignites more readily when sprayed into hot compressed air. 

ASTM D975-2020 is the international standard method specified in the diesel fuels 

specification. The CN and CI range of 40 to 47 is usual for all grades of diesel fuels. For 

Malaysia Standard High PME Diesel Fuel Specification Euro 5 (MS 123-5, 2020) 

specified, the CN and CI specification limit is a minimum of 49.0. 

The significance of the cetane number or calculated cetane index is that they indicate 

engine fuel performance. Increasing the cetane number of diesel fuel can result in 

improved cold-starting performance, reduced smoke emission during warm-up, reduced 

noise, lower fuel consumption and reduce exhaust emissions. As a result, certain countries 

strive to raise the cetane number of their diesel fuel. 

1.4 FT-NIR Spectroscopy Applications in Refineries 

The current practice in the oil industry, i.e., in refinery’s quality assurance and quality 

control laboratories relies on the use of conventional and univariate method 

measurements in the quantitative and qualitative assessment of their feedstock, process 

samples, intermediate products, and final products blending control and optimisation. 

This conventional quality measurement methodology consumes a high workforce, 

longer analysis time, high operating expenditure, and capital expenditure cost, leading to 

low productivity, low operational efficiency, and low profitability. 
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In refinery processing plants, fast and immediate process control and optimisation are 

critical in achieving high production volume and high-quality products that meet sales 

specifications and increase profitability, productivity, and operational excellence. 

A new innovative way of qualitative and quantitative measurement and application 

needs to be explored to improve and address the pain points and provide a total solution 

aligned within current trends and practices, i.e., the application of chemical analytical 

strategies with data analytics is imperative.   

The new method involves using data analytic methodologies, i.e., Chemometrics 

Multivariate methodology, and a spectroscopic technology, i.e., Fourier Transform Near 

Infra-Red (FT-NIR) Spectroscopy. This transforms the conventional method of process 

control and petroleum product blending derived from complex multiple blending 

components with various compositions, ratios, and formulations to predict the qualitative 

and quantitative product quality, including chemical and physical properties. 

The physical and chemical data derived from the various reference analytical methods 

and FT-NIR spectra will then be analysed using various data analytic techniques to 

determine the quality of the blended petroleum products. The capability of FT-NIR for 

fast, non-destructive, simultaneous multi-compositional and online analyses allows for 

more repeatable measurements and faster compared to conventional laboratory and online 

process analysers. It also enables the measurement of several properties simultaneously 

with only one FT-NIR analyser on an almost real-time basis (less than 1 minute). 

This research study describes the use of FT-NIR technology with various chemometric 

methods in petroleum products i.e., gasoline, diesel, and kerosene. This study covers the 

FT-NIR spectra pre-treatment Multiplicative Scatter Correction (MSC) and Savitzky 

Golay Second Derivative (SGSD), qualitative Principal Component Analysis -  Soft 

Univ
ers

iti 
Mala

ya



 

15 

Independent Modeling of Class Analogy (PCA - SIMCA), and quantitative regression 

techniques namely Principal Component Regression (PCR) and Partial Least Square 

Regression (PLSR) for petroleum products (gasoline, kerosene, and diesel). 

The statistical diagnostic tools, i.e., Root Mean Square Standard Error Cross 

Calibration (RMSECV) and Root Mean Square Error Prediction (RMSEP) are used for 

calibration and validation model performance. A comparison with the standard univariate 

conventional reference method reproducibility is also made.  

For refiners, the FT-NIR technology is the most selective spectroscopy technology 

deployed for qualitative and quantitative measurement of petroleum hydrocarbon 

application. The FT-NIR wavelength region is located between the electromagnetic 

spectrum's visible and mid-infrared (MID-IR) regions, ranging from 800 to 2500 nm 

(12,500 to 4000 cm-1). NIR absorption bands region is related to the overtone and 

combination bands of the fundamental vibrations of -CH, -NH, -SH, and -OH groups in 

the MID-IR (Start et al., 1986; Weyer, 1985; Bunasiu et al., 2015) 

NIR region analysis is especially advantageous in situations where chemical analysis 

is limited by light penetration. Compared to MID-IR, NIR radiation can penetrate deeper. 

Generally, the entire NIR region exhibits clear spectral differences among paraffinic, 

naphthenic, and aromatic hydrocarbons. However, the 5000-4000 cm-1 (combination 

bands region) provides the most informative spectral features regardless of the colour of 

the hydrocarbon samples.  

The selection of the overtone region is vital for the chemometrics multivariate 

calibration model's development. This is to ensure excellent signal-to-noise ratio spectra, 

higher quality NIR spectra with good reproducibility and eliminate loss of information 

from the spectra data. From the literature review, the combination overtone region in the 

Univ
ers

iti 
Mala

ya



 

16 

range of wavenumber 4800 to 4000 cm-1 with the cell path length 0.5 mm is the most 

suitable to cover any refineries’ petroleum hydrocarbon physical appearance ranging 

from clear liquid to dark in colour. With this combination, the overtone region will 

eliminate interference such as excessive water presence and fluorescence or scattering 

effect due to coloured and dark petroleum products. 

Refineries’ petroleum hydrocarbon is a highly complex mixture of hydrocarbon and 

heteroatomic organic compounds of varying molecular weights and polarities. The 

refineries' petroleum products’ physical appearance range from clear liquid to dark in 

colour, corresponding to the increment of carbon atoms (molecular weight) and 

complexity of the composition. This research study covers four properties of diesel for 

quantitative measurement, which are boiling point at flash point (FP), 95% recovery 

(T95), cetane index (CI) and the cloud point (CP).  

 

1.5 Chemometrics 

Chemometrics is a chemical field that employs mathematical, statistical, and other 

methodologies to apply formal logic in designing or selecting optimal measurement 

procedures and experiments, as well as to extract the most pertinent chemical information 

by analyzing chemical data (Burgard & Kuznicki, 2018). 

It is an application-driven discipline that addresses both predictive and descriptive 

problems related to chemical data. Descriptive analyses involve the examination of the 

latent structures present in the data, whereas predictive analyses model the data to 

estimate the desired properties of the targeted system. 

The food and agriculture industries have been among the earliest application areas and 

driving forces behind the development of chemometrics. Many of the earliest 
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chemometricians were from food and agricultural research institutes (Brereton, 2003). 

The early applications mostly involved multivariate classifications. However, the 

applications have diversified substantially over the years. It was due to research interests 

and partly to economic driving forces. Most of their applications reported in the academic 

literature are often related to experimental design and multivariate data interpretation 

(Loh, 2016). 

Several spectroscopic and chromatographic methods can provide analytical data on 

many components of a single specimen. Multivariate data needs several variables to be 

measured for each specimen. One of such example data in analytical chemistry is 

discrimination; such as the investigation of an oil spill to determine the particular source 

of the pollution by analysing the fluorescence spectrum (Miller & Miller, 2018). While it 

is feasible to compare specimens by examining each variable, modern computers enable 

more advanced processing techniques where all variables can be simultaneously taken 

into account. 

Variables can be divided into two groups: predictor variables and response variables. 

The situation in which we have a response variable y, depending on several predictor 

variables, 𝑥1, 𝑥2, 𝑥3,…., can be studied as a multiple regression. A simple example would 

be when 𝑦 is an absorbance value from the mixture of compounds with concentrations  

𝑥1, 𝑥2, 𝑥3,… The technique of linear regression can be extended to find a regression 

equation in the form: 

𝑦 =  𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + ⋯ 𝑏𝑛𝑥𝑛      (1.1) 

The prediction performance can be validated in a way similar to the validation of linear 

discriminant analysis (LDA), i.e. either by dividing the data into two randomly chosen 

groups, making the model with one group and then testing it with the other or by using a 
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'leave-one-out' method. A graph of the predicted values against the measured values gives 

a point close to a straight line if the model is satisfactory (Miller & Miller, 2018). 

 
1.5.1 Qualitative multivariate measurement 

Qualitative data refers to data which could be observed and not measured. Multivariate 

analysis is a complex from of statistical analytical technique used when there are more 

than two variables in the data set (Mertler et al., 2021). In this section, one type of 

qualitative multivariate measurements will be explained and explored which is the 

principal component analysis. 

 

1.5.1.1 Principal component analysis (PCA) 

The challenge with multivariate data is that the large amount of data may make it 

challenging to identify patterns and relationships. For instance, a spectrum is typically 

described by numerous intensity or absorbance measurements, rather than just a few 

variables, resulting in a correlation matrix that contains hundreds of values. 

Consequently, many multivariate analysis methods aim for data reduction. 

Large datasets are increasingly common and are often difficult to interpret. Principal 

component analysis (PCA) reduces the dimensionality of such datasets, increasing 

interpretability while minimising information loss. It creates new uncorrelated variables 

that successively maximise variance (Jolliffe & Cadima, 2016). 

The idea behind PCA is to find the principal components 𝑍1, 𝑍2, … , 𝑍𝑛, which are 

linear combinations of the original variables describing each specimen, 𝑋1, 𝑋2, … , 𝑋𝑛, i.e.: 

𝑍1 = 𝑎11𝑋1 + 𝑎12𝑋2 + 𝑎13𝑋3 + ⋯ + 𝑎1𝑛𝑋𝑛     (1.2) 

Univ
ers

iti 
Mala

ya



 

19 

𝑍2 = 𝑎21𝑋1 + 𝑎22𝑋2 + 𝑎23𝑋3 + ⋯ + 𝑎2𝑛𝑋𝑛     (1.3) 

and so on. The coefficients 𝑎11, 𝑎12, …, are chosen so that the new variables are not 

correlated, unlike the original variables. The principal components are also chosen. The 

first principal component (1 PC), 𝑍1, explains most of the variation in the data set, the 

second (2 PCs), 𝑍2, explains for the next largest variation and so on. Hence, useful PCs 

are much less than the number of original variables (Miller & Miller, 2018). 

A different approach is needed to avoid an unknown object being incorrectly classed. 

It is possible that the unknown object may not fit into any of the classes being considered. 

Hence, it requires a rule which allows discrimination between membership and non-

membership of a given class. This problem can be solved by making a separate model for 

each class and using the model to test whether the unknown object could be a class 

member. As such, the Soft Independent Modeling of Class Analogy (SIMCA) method 

makes a model of each class in terms of the first few principal components for data 

reduction with more variables like spectroscopic data (Miller & Miller, 2018). 

1.5.2 Quantitative multivariate measurement 

The term "quantitative data" refers to data that may be measured numerically with the 

intention of doing statistical analysis on the resulting data. This section covers a few 

quantitative multivariate measurements used in this study which are partial least squares 

regression (PLSR) and principal component regression (PCR). 

1.5.2.1 Principal component regression (PCR) 

One problem in multiple regression is that correlation between the predictor variables 

can lead to mathematical complications, resulting in an unreliable prediction of 𝑦 (Slinker 

& Glantz, 1985). A solution is to carry out a PCA on the 𝑥 variables and then regress 𝑦 
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on the principal component. Since the principal components are not correlated, the 

correlation between the predictor variable is overcome. This method is known as PCR. 

PCR is the reduction of predictor variables by using the first few PCs rather than the 

original variables. This method will give satisfactory results provided that the PCs used 

account for most of the variation in the predictor variables. PCR is also a valuable 

technique when the number of original predictor variables exceeds the number of 

calibration specimens available (Miller & Miller, 2018). 

1.5.2.2 Partial least squares regression (PLSR) 

PLSR starts by finding a linear combination of the predictor variables. However, how 

these linear combinations are chosen is different from PCR. In the PCR, PCs are chosen 

to explain the largest variation in predictors without considering the intensity of the 

relationships between the predictor and response variables. However, in PLS, extra 

weight is given to the predictor variables that correlate with the response variables; hence 

the prediction is more effective.  

By doing this, the linear combinations of the predictor variables that are strongly 

correlated with the response variables and account for the variability in the predictor 

variables are selected. A distinction is usually made between the situation when the 

response consists of a single variable and when the response is multivariate.(Miller & 

Miller, 2018) 

1.5.3 Advantages of multivariate analysis combined with FT-NIR spectroscopy 

applications for the refinery 

The implementation of FT-NIR spectroscopy in petroleum industries has dramatically 

increased over the past 15 years (Chung, 2007). FT-NIR has fast, non-destructive, online, 

and simultaneous multi-compositional analyses. It grants for a faster and more repeatable 

Univ
ers

iti 
Mala

ya



 

21 

measurements than conventional offline and online analysers, such as flash point 

analysers. It also enables the measurement of several properties simultaneously using 

only one NIR analyser on an almost real-time basis of less than 1 minute. Online 

measurements using NIR are particularly relevant since the improved harmonisation of 

real-time analysis and process control can gain significant economic benefits (Chung, 

2007) 

1.6 Research Objective 

This research proposes to conduct; Firstly, qualitative measurement, to differentiate a) 

petroleum products between gasoline, diesel and kerosene, b) gasoline without additive, 

and gasoline with additive. c) diesel without palm methyl ester (PME) and diesel blended 

with PME. Secondly, quantitative measurement, to measure the physical and chemical 

properties of the diesel petroleum product obtained from various local refinery plants. 

The analytical reference methods include physical distillation, flash point, cloud point, 

cetane index, and FT-NIR analyser. The physical and chemical data derived from the 

various reference analytical methods and FT-NIR spectra were analysed using multiple 

data analytic techniques to determine the quality of the diesel petroleum products. The 

FT-NIR spectra are essential to assess the quality of petroleum products. The detailed 

objectives of this research are as follows:  

1. To perform FT-NIR spectra pre-treatment or pre-processing using different 

pre-treatment algorithms, such as Multiplicative Scatter Correction (MSC) and 

Savitksky-Golay Second Derivative (SGSD). 

2. To develop a qualitative model to discriminate between the following based on 

the FT-NIR measurement using Principal Component Analysis (PCA). 

a. Gasoline, kerosene and diesel 

b. Gasoline with and without additives 
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c. Diesel with and without palm methyl ester (PME) 

3. To develop quantitative calibration models for the boiling point at 95% 

recovery (T95), Flash Point (FP), Cloud Point (CP), and Cetane Index (CI) 

using different FT-NIR spectra pre-treatment algorithm types, i.e., MSC and 

SGSD and multivariate regression methods, i.e., PCR and PLSR. 

4. To evaluate the accuracy and precision of quantitative calibration models' PCR 

and PLSR performance using MSC and SGSD in comparison with 

conventional univariate laboratory test methods. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Application of FT-NIR spectroscopy in refineries. 

Current practices in the oil industry, i.e., refinery quality assurance and quality control 

laboratory, are using conventional and univariate method measurements in the 

quantitative and qualitative assessment of their feedstock, process samples, intermediate 

products and final products blending control and optimisation. 

This conventional quality measurement methodology consumes a large number of 

workforce, longer analysis time, high operating expenditure and capital expenditure cost, 

leading to low productivity, operational efficiency and profitability. 

In the refineries processing plant, fast and immediate process control and optimisation 

are critical in achieving high production volume and high-quality products that meet sales 

specifications and increase profitability, productivity and operational excellence. 

A new innovative way of qualitative and quantitative measurement and application 

needs to be explored to improve and address the pain points and provide a total solution 

aligned with current trends and practices, i.e., applying chemical analytical strategies with 

data analytics is imperative.   

The new method involves using data analytic methodologies, i.e., Chemometrics 

Multivariate methodology and a spectroscopic technology, i.e., Fourier Transform Near 

Infra-Red (FT-NIR) Spectroscopy. This method transforms the conventional method of 

controlling process control and petroleum product blending derived from complex 

multiple blending components with various compositions, ratios and formulations to 

predict the qualitative and quantitative product quality, including chemical and physical 

properties. 
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The physical and chemical data derived from the various reference analytical methods 

and FT-NIR spectra will then be analysed using various data analytic techniques to 

determine the quality of blended petroleum products. The FT-NIR spectra are essential to 

assess the quality of the petroleum products either qualitatively or quantitatively, or both. 

FT-NIR is a non-destructive and fast measurement tool which can read within less than 

a minute. It can measure several multi-parameters or properties (chemical or physical) 

simultaneously with acceptable accuracy and precision compared to conventional 

laboratory univariate and online process conventional analysers (Chung, 2007).  

This research study describes the FT-NIR technology used in conjunction with several 

chemometrics methods covering FT-NIR spectra pre-treatment (MSC and SGSD), 

qualitative (PCA - SIMCA) and quantitative regression technique inclusive of PCR and 

PLSR for petroleum products (gasoline, kerosene, and diesel). 

Root Mean Square Standard Error Cross Calibration (RMSECV) and Root Mean 

Square Error Prediction (RMSEP) are regularly used statistics. The calibration and 

validation model performance evaluation is based on statistical diagnostic tools. It was 

assessed comparatively with laboratory univariate conventional reference method for 

reproducibility. 

2.2 FT-NIR technology 

For refiners, the FT-NIR technology is the most selective spectroscopy technology that 

has been deployed for qualitative and quantitative measurement for petroleum 

hydrocarbon application. The FT-NIR wavelength region is located in the Infra-Red 

electromagnetic spectrum, covering the Near, Middle, and Far infra-red regions. The NIR 

absorptions consisted of overtone (first and second) and combination bands, 

corresponding to the vibrational of components functional groups  -CH, Ar-H, -NH, -OH, 
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and -SH groups. The FT-NIR wavenumber is between 12,500 cm-1 to 4000 cm-1 (Stark et 

al., 1986; Weyer, 1985). 

The NIR region (combination bands, first and second overtones) provides distinct 

spectral variations of hydrocarbon groups between paraffin, olefins, naphthene, and 

aromatics. The higher penetration depth for MID-IR as compared to NIR radiation, 

provides more advantages and benefits in analysis. However, the NIR combination bands 

region (4800-4000 cm-1) provides the most information about spectral variations and 

features regardless of the colour of the hydrocarbon samples (Pasquini, 2018).  

The selection of cell path length, cell measurement temperature, overtone bands 

region, and others are vital to acquiring excellent signal-to-noise ratio spectra, higher 

quality NIR spectra with good reproducibility, and eliminating loss of information from 

the spectra data. 

The FT-NIR technology is a highly reliable spectroscopic analyser, which is widely 

used for various applications, specifically for refineries' petroleum hydrocarbons. FT-NIR 

spectroscopy can characterise and categorise the groups or types of petroleum products 

such as Gasoline, Diesel, Kerosene, and Fuel Oil. The fundamental measurement in 

obtaining information from the FT-NIR spectrum for the different types of chemical 

bonds of interest such as -CH, -C2H2, Ar-H, -SH, -OH, and others forms the basis in 

predicting petroleum products' quality properties.  

Petroleum hydrocarbon composition is a highly complex mixture comprising of 

hydrocarbon and heteroatomic organic compounds that contributes to the variation of 

molecular weights and polarities. The refinery's petroleum products physical appearance 

ranging from clear liquid to dark in colour, corresponds to the increment of carbon chain 

which represents its molecular weight and the complexity of the composition. This 
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research study covers four properties of diesel for quantitative measurement, which are 

boiling point at 95% recovery (T95), flash point (FP), cloud point (CP), and cetane index 

(CI). FT-NIR are able to detect the chemical properties such as total sulphur, aromatics, 

benzene etc. and the physical properties of such component for example density, 

distillation and flash point. for refineries related application.  

Selection of the overtone region is vital for the chemometrics multivariate calibration 

model's development to obtain the most accurate and precise measurement results. From 

the literature review, the combination overtone region in the range of wavenumber 4800 

cm-1 to 4000 cm-1 with the cell path length 0.5 mm are the most suitable to cover any 

refineries petroleum hydrocarbon physical appearance ranging from the clear liquid until 

dark in colour (Pontes et al., 2011). In this combination, the overtone region will eliminate 

interference such as excessive water presence and fluorescence or scattering effect due to 

coloured and dark petroleum products. 

2.3 FT-NIR spectra pre-treatment or pre-processing 

From the research studies literature review, the application of chemometrics 

multivariate data analysis for many applications is based on the FT-NIR spectroscopy 

measurements in which acquired high-quality spectra data and signal-to-noise ratio. 

During the FT-NIR spectra acquisition, there is an occasion it contains out-of-range 

values, very low or high absorbance values, missing absorbance values, and others 

(Ulmschneider & Roggo, 2008). These are probably caused by scattering or fluorescence 

effects, chemical interferences, or instrument drift (Broeke & Koster, 2019). Before 

analysing the data, FT-NIR spectra pre-treatment shall be performed to eliminate the 

complicated data analysis, and interpretation which will lead to misleading results.  
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The spectra pre-treatment reduces or eliminates the non-relevant spectral data 

information, which is vital to obtaining accurate and robust regression models. Hence, 

mathematical spectra pre-treatment shall be applied. There are various FT-NIR spectra 

pre-treatment techniques and methods typically used, such as Smoothing (Savitzky-

Golay), first and second derivatives and normalisation such as Multiplicative Scatter 

Correction (MSC), Standard Normalized Variate (SNV), and others. On certain 

occasions, the spectra pre-treatment combination is also applied. However, two types of 

spectra pre-treatment were used for this research study: MSC and SGSD. 

2.3.1 Savitzky-Golay – Smoothing and Derivatives 

In 1964, Abraham Savitzky and Marcel J.E. Golay first described the Savitzky-Golay 

(SG) smoothing filter (Savitzky & Golay, 1964). By performing a local polynomial 

regression (of degree k) on a set of values (of at least k+1 points) that are used to smooth 

the data, the algorithm basically calculates the smoothed value for each point in the 

spectrum.  

The window size and polynomial order selection are required for the algorithm 

application. If the polynomial order is low and the large window size, it contributes to 

high smoothing. SG method, in general, is averaging the data (including a subrange of 

data), which corresponds to using SG with zero polynomial order. 

Smoothing is the simplest method to eliminate the signal-to-noise from the samples. 

The smoothing method considers the independent variables (FT-NIR spectra with 1.0   

cm-1 interval) of the data matrix which contains similar information that can be averaged 

together, reducing the noise without significant loss of the signal of interest. The diesel 

spectrum uses 17 smoothing points to minimise and eliminate the signal noise for this 

research study. 
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In addition to the SG smoothing filter, most chemometricians will perform the FT-NIR 

spectra pre-treatment or pre-processing simultaneously with either the first or second 

derivative SG. This derivative method is commonly used to remove background signals 

and enhance the spectra features and visual resolution (Williams et al., 1992). 

Baseline shifts and drifts of the numerical differentiation of digitised signals can be 

corrected depending on the order of the derivation. Derivative profiles are exhibited 

frequently with the increment of the resolution of the overlapping peaks and minor 

structural differences between nearly similar signals (Taavitsainen, 2009). 

The first derivative is the most straightforward technique of a derivative. The spectral 

signal y = f(x) represents the response variable y, rate of change with independent 

variables x, where 𝑦′ =
ⅆ𝑦

ⅆ𝑥
  represents the line tangent slope to the signal. Therefore, the 

first derivative, SG, can apply the baseline shifts correction. Further derivation, the 

second derivative, is given by 𝑦′′ =
ⅆ2𝑦

ⅆ𝑥2
. There is a disadvantage in using derivative 

spectra pre-treatment, whereby the random noise will be increased, characterised by high-

frequency slope variation; it represents the rate of slope change where the original signal 

curvature has been measured. Hence, this spectra pre-treatment will correct both baseline 

shift and drifts. 

In this research study, the NIR spectra were smoothed first, followed by the second 

derivative with the third-order polynomial order using the Savitzky-Golay algorithm to 

correct baseline shift, drifts and random noise (Savitzky & Golay, 1964). There is no 

specific protocol for selecting how many smoothing points, either first or second 

derivative, and the polynomial order to be applied. Hence, it is entirely dependent on the 

chemometrician to evaluate further and decide which selection is the most appropriate to 

be applied accordingly. For this research study, both smoothing and derivative have been 
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used for FT-NIR spectra pre-treatment with SG second derivative, 17 smoothing points 

and polynomial order of three. 

2.3.2 Multiplicative Scatter Correction (MSC) 

MSC is another FT-NIR spectra pre-treatment technique which is commonly used. 

Initially, the MSC technique was developed for data normalisation for FT-NIR spectra 

amplification and baseline offset removal. Both amplification and baseline offset 

correction can be done via regression of the FT-NIR measured spectrum versus the 

reference spectrum. Subsequently corrected the FT-NIR measured spectrum using the 

slope of this fit (Martin et al., 1983; Geladi et al., 1985). 

The algorithm equation of the MSC model for each spectrum is represented below in 

equation 2.1; 

𝑋𝑖𝑘 =  𝑎𝑖  + 𝑏𝑖 𝑋𝑖  +  𝑒𝑖𝑘 (𝑖 =  1 … . 𝑁;  𝑘 = 1 … . 𝑘)    (2.1) 

where i is the sample number and k is the wavelength or wavenumber. The constant ai 

is the 'common shift' related to the proportional additive effect, while bi represents the 

'common amplification' and is related to the multiplicative effect for sample i. 

The selection of FT-NIR spectra pre-treatment technique depends on the individual 

chemometrician to select the suitable technique to eliminate the spectra noise and drift 

prior to qualitative and quantitative modelling to be performed accordingly. Table 2.1 

shows the types of NIR spectra pre-treatment and their purposes. 
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Table 2.1: Types of NIR Spectra Pre-Treatment 

No. Types of NIR 
Spectra  Pre-

Treatment 

Purpose Remarks 

1 Savitzky-
Golay 

Smoothing 

Smooths the digital data points, increasing 
the data's precision without distorting the 
signal. 

This technique is also known as convolution. 
Using the linear least-squares method, the 
technique will fit successive subsets of close 
data points with a low polynomial order. 

2 First and 
second 

derivative 

A baseline correction method. The constant 
background signals will be removed. 

The first derivative removes the constant 
offset.The second derivative removes the 
offset plus a linear term. 

The particle size can change the offset and 
spectra slope, requiring a second derivative 
technique. 

Calculating the differences between absorbance 
levels at successive wavelengths is the primary 
method for derivatisation. 

The first and second SG derivative algorithm 
includes smoothing to limit the spectra noise 
increment with the identified polynomial order. 

3 Multiplicative 
Scatter 

Correction 
(MSC) 

MSC is a technique to correct the spectral 
signal noise and background effects. 

The light scattering or the change of cell path 
length contributes to spectral baseline 
shifting and tilting. 

MSC uses the linear least-squares method to 
fit a linear model between a reference spectrum 

and other spectra of the dataset. 

30 
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2.4 Chemometrics multivariate methodology 

Chemometrics is used to solve problems involving a large amount of data. The 

extensive data are obtained from process control and blending operation with the 

chemical and physical univariate laboratory reference method analysis and FT-NIR 

spectroscopy spectra measurement. The extensive data obtained must be analyzed and 

visualized to evaluate the insight of the data gathered adequately for qualitative and 

quantitative measurements. 

 Chemometrics is a multidiscipline combination of chemistry, mathematics, statistics 

and common sense. It uses designing and selecting the optimal experimental procedures 

and providing applicable chemical information by analyzing chemical data and obtaining 

knowledge about the chemical system (Vandeginste et al., 1998). 

 Exploring the data will provide insight for qualitative measurement where the 

classification or clustering model can be developed by using different techniques such as 

Principal Component Analysis (PCA), Discrimination Analysis (DA), Hierarchical 

Cluster Analysis (HCA) and others.  

 For quantitative calibration models development, there are a few regression 

techniques that can be used such as Principal Component Regression (PCR), Partial Least 

Square Regression (PLSR) and Multiple Linear Regression (MLR). PLSR, PCR and 

MLR are multivariate analyses that allow extracting the chemical information by 

analyzing the full FT-NIR spectrum (Martens & Stark, 1991; Vandeginste et al., 1998). 

Multivariate regression techniques involve more than one independent variable (X 

variables) and may correspond to multiple response variables (Y variables) for calibration 

models regression. 
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The application of multivariate analysis in various technical fields or industries 

extensively covers chemical, pharmaceutical, petrochemical, foods, forensic and other 

industries. Hence the multivariate calibration models play an essential role (Faber & 

Rajko, 2007). Multivariate techniques explore big data sets by decomposing the complex 

data into simpler structures, improving the interpretation and extraction of the available 

information. The selected technique can be used to construct the qualitative and 

quantitative analysis after the FT-NIR spectra pre-treatment. 

2.4.1 Qualitative measurement – Pattern Recognition / Clustering 

Pattern Recognition in chemometrics is one of the most common techniques used in 

the analysis of petroleum hydrocarbon to determine the patterns and clustering, i.e., 

qualitative measurement whereby characterization of different petroleum hydrocarbon 

products can be determined. There are many methods commonly used for chemical 

pattern recognition. 

Pattern recognition methods assign some output value or label (eg. types of petroleum 

hydrocarbon) based on the input values (independent variables, i.e., FT-NIR spectra 

absorbance for each 1.0 cm-1 wavenumber interval) according to some specific algorithm. 

Supervised and unsupervised learning procedures are required to categorize the pattern 

recognition by generating the output value for this research work, the type of petroleum 

hydrocarbon. 

The supervised learning procedure generates a model from the calibration or training 

set, in which the sample sets are appropriately labelled with the correct output, eg. types 

of petroleum hydrocarbons (gasoline, diesel and kerosene).  

In contrast, the unsupervised learning procedure involves the calibration of training set 

in which the samples are not labelled accordingly. It will attempt to identify the 
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characteristic pattern in the data that can determine the correct output value, i.e., types of 

petroleum product cluster or group from the new data inputs, FT-NIR spectra independent 

variables. 

There are various techniques for pattern recognition to determine classification or 

clustering. These techniques include Principal Component Analysis (PCA), 

discrimination analyses such as partial least square discrimination analysis (PLS-DA) and 

others. PCA is the most common chemometrics tool addressing discriminant 

classification and class modelling techniques in this literature review.  

A fundamental chemometric algorithm extensively used is PCA. When the 

transformed new set of uncorrelated (orthogonal) components is used as the independent 

variables for a least-square method, the methodology is called the Principal Components 

Regression (PCR) (Næs et al., 2002). The new independent variable (the PC) is a linear 

combination of the original variables that lie along the direction of maximum variance in 

the data set. To obtain other PCs, the data projection is continued until all the significant 

structures of the data are described by composing additional (orthogonal) PCs.  

A set of FT-NIR spectra (for this research it is 801 data sets of X variables) and 300 

samples (for this research study) can be expressed as a data matrix X (n x p), which is 801 

x 300. The data matrix comprises two low-dimensional matrices: the score matrix (T) and 

transposed loading matrix (P). The data matrix X contains n values of absorbance at each 

p wavelength or wavenumbers (André et al., 1997). 

𝑋 = 𝑇𝑃 + 𝐸         (2.2) 

From Equation 2.2, E is the residual matrix that contains the unsystematic variation or 

noises. The scores are the new values of the FT-NIR spectra in the coordinate system 

defined by PCs. The loadings or eigenvectors are the links between the wavelength or 
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wavenumber of the X matrix and the principal component. An important feature of PCA 

is the graphic interface, i.e., a plot of score and loadings. A two-dimensional or three-

dimensional scatter plot of the scores depicts the covariance between samples, providing 

a data overview. Clusters or groups of the objects (e.g., types of petroleum hydrocarbon) 

and outliers and hence the pattern and cluster are easily identified in the score plots. The 

score from a two-dimensional or three-dimensional scatter plot illustrates the variance 

between samples, providing a data overview. Patterns and clusters make clusters or 

groups of objects (eg. types of petroleum hydrocarbon) and outliers can be easily 

identified. These will reveal the expected and unexpected trend in the FT-NIR spectra 

data and insight concerning the variation of the composition and process or batch 

petroleum product blending. 

2.4.2 Quantitative measurement 

Multivariate regression analysis technique selection is vital before the FT-NIR can be 

used to perform the multivariate measurement and quantitatively predict the desired 

qualities for each petroleum product hydrocarbon. This is to assure that the prediction 

measurement of each chemical and physical properties of petroleum hydrocarbon by FT-

NIR is comparative with the laboratory reference methods with the acceptable confidence 

level. 

Quantitative analysis refers to an analysis in which the concentration or amount of an 

analyte may be expressed and estimated as a numerical value in proper units (Currie, 

1995). Quantitative analysis requires the identification or qualification of the analyte for 

which numerical estimates are given. The quantitative analysis develops regression 

models which attempt to predict a quantity based on measurement of responses 

independent X variables (NIR spectra) and corresponding quantities dependent Y 

variables (laboratory reference data) on known petroleum product hydrocarbon. For this 
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study, 801 independent X variables were used from the NIR wavenumber from 4800 to 

4000 cm-1. 

The chemometrics multivariate regression analysis typically consists of three essential 

steps which are are: 

2.4.2.1 Calibration models development 

The development of quantitative relation of multivariate calibration required the 

digitized spectra as a matrix X and the laboratory reference values as a matrix Y (Martens 

& Næs, 1989). 

Multivariate calibration models can be developed by different regression techniques 

available. Multiple Linear Regression (MLR), Partial Least Square Regression (PLSR) 

and Principal Component Regression (PCR) are the most used techniques for linear 

regression methods. Other regression techniques which can be applied for non-linear 

information extraction from FT-NIR spectroscopic data, are Support Vector Machine 

Regression (SVMR), Locally Weighted Regression (LWR) and Artificial Neural 

Networks (ANNs). The PCR and PLSR techniques were used for calibration model 

development for this research study. 

When contiguous variables are highly correlated, a covariance problem must be 

solved. PCR provides a simple solution. A traditional least-squares method is used to 

create the model, which relies on a smaller number of significant main components 

calculated from the original variables as the predictors. (Jolliffe, 1982). The PCs are 

uncorrelated since they are orthogonal by definition. According to PCR, the lowest order 

PCs, or those with the biggest variance, are considered to be the most crucial in predicting 

a response variable. A methodical selection of the PC to be included in the model based 

on their modelling efficiency is an important step. 
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The most popular multivariate regression method is undoubtedly partial least squares 

(PLS), which offers a superior answer for situations involving variable number and inter-

correlation (Wold et al., 2001). PLS can also refer to projections onto latent structures. 

The latent structures are directions in the space of the predictors, also known as latent 

variables (LVs) or PLS components. The direction with the highest correlation with the 

chosen response variable is particularly indicative of the first latent variable. 

The first latent variable's information is then eliminated from the response as well as 

the initial predictors. The direction of highest covariance between the residuals of the 

predictors and the responses is the second latent variable, which is orthogonal to the first. 

Same strategy is applied for subsequent LV.  Evaluation of the prediction error 

corresponding to models with increasing complexity using an acceptable validation 

approach yields the optimal complexity of the PLS model, or the most suitable number 

of latent variables. 

In summary, the advantages and disadvantages types of quantitative multivariate 

regression techniques (PLSR and PCR) are as follows: 

• Experience in NIR data has shown that PLSR can give good prediction results 

with fewer components than PCR. 

• A consequence of this is that the number of components needed for 

interpretation of the information in X which is related to y is smaller for PLSR 

than PCR which leads to simpler interpretation. 

• From a computational point of view, PLSR is usually faster than PCR. For large 

data sets this aspect may be of some value. 

• From a theoretical point of view, PCR is better understood than PLSR. 
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Table 2.2 summarizes the types of quantitative multivariate regression techniques. 

There is no specific or standard protocol for developing the multivariate calibration 

model and model performance validation. For ‘simple’ calibration, 35 to 40 samples are 

the optimum size for calibration data sets (Williams, 1987). However, several hundreds 

of samples are required for ‘complex’ calibration, such as in forge calibration sets. 

There are various ways used by chemometricians in developing the calibration models, 

covering the following but not limited to: 

• Identify and select the calibration sets and validation sets, respectively, such as 

minimum numbers for each set, by date or batch, and others. 

• Identify the outliers of the data, either independent variables (FT-NIR Spectra) 

or dependent variables (reference laboratory test data). 

• Identify the outliers, leverage and residual of the data, independent and 

dependent variables. 

• Identify or selection of the optimum principal components or latent variables  

• Evaluate regression coefficient and determine the optimum principal 

components or latent variables comparative with Root Mean Square of 

Calibration Error. 

• Avoid under-fitting or overfitting in multivariate calibration model 

development. 

• Evaluate the calibration model's performance comparable with reference 

laboratory test methods. 
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Table 2.2: Types of Quantitative Multivariate Regression Techniques 

No Types  Algorithm Method Remarks 

1 Multiple 

Linear 

Regression 

(MLR) 

Linear A method for linking the 

variations in a response 

variable (Y-variable) to the 

variations of several 

predictors (X-variables)a 

 

Collinearity can lead to misinterpretation 

when using the MLR method. It is often the 

case for the sets of variables employed.  

The assumption is that the X-variables are 

linearly independent, meaning no linear 

relationship exists between X variables. 

The number of samples shall be higher than 

the X-variables at all times. 

2 Principal 

Component 

Regression 

(PCR) 

Linear A two-stage operation in 

which the X-variables are 

first subjected to a standard 

principal components' 

decomposition exactly. 

Then the Y– variables 

regressed onto this 

decomposed X – matrix.b 

PCR eliminates the collinearity and 

significant X- variables error, i.e., spectral. 

Not the best fit if modelling more than one Y-

variable simultaneously caused PCR well 

decomposed for X – matrix but not optimal 

for Y- variables prediction. 

38 

 

Univ
ers

iti 
Mala

ya



 

39 

No Types  Algorithm Method Remarks 

3 Partial Least 

Square 

Regression 

(PLSR) 

Linear Designed to cope fully 

multivariate regression case 

for both X- and Y- spaces 

for multivariate.c 

PLS can handle one or 

more of several co-varying 

Y-variables equally well. 

They were used as a 

supervised calibration tool 

that simultaneously 

classifies the new X-vectors 

submitted for prediction. 

Handle the weaknesses of MLR and is an 

improvement over PCR in terms of prediction 

ability. 

Most generalised multivariate regression 

techniques, with complete control over both 

collinearity and X-errors.  

4 Artificial 

Neural 

Network 

(ANN) 

Non-Linear An artificial neural network 

(ANN) is a computing 

system designed to simulate 

how the human brain 

Artificial Intelligence (AI) is based on the 

ability to solve problems that would be 

impossible or difficult to solve using human 

or statistical methods. As more data becomes 

39 
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a (Dongare et al., 2012; Pirhadi et al., 2015; Rosenfeld et al., 1998; Wold et al., 2001) b (Rosenfeld et al., 1998) c (Wold et al., 2001) d (Agatonovic-
Kustrin & Beresford, 2000) 

 

No Types  Algorithm Method Remarks 

analyses and processes 

information.d 

ANNs are made up of 

processing units, which 

have inputs and outputs. In 

order to produce the 

required output, the ANN 

learns from the inputs. 

The set of learning 

principles that artificial 

neural networks follow is 

called backpropagation. 

available, ANNs has self-learning capabilities 

to deliver better outcomes. 
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2.4.2.2 Calibration model validation and prediction. 

The validation set is employed if the data collected or gathered is sufficiently large to be 

divided into calibration sets and validation sets, respectively. The validation set used for 

prediction ability, i.e., to estimate the prediction error between FT-NIR calibration models 

prediction, is comparable with laboratory reference test data or results. 

Depending on the number of samples used for the validation, prediction ability values 

should be reported together with their respective confidence intervals. In every modeling 

procedure, estimating the predictive power on fresh samples that were not utilized to create the 

models is a crucial stage. For this, a number of procedures have been used. 

A single validation set is the most uncomplicated and most rapid validation scheme. It has 

been divided typically approximately 1/3 of the total number from the calibration set. The 

subdivision could be random, arbitrary, or carried out using a uniform design, such as the 

Kennard and Stone and the duplex algorithm which enables the acquisition of two uniformly 

distributed subsets that are representative of the overall sample variability. 

The most common validation protocol is the cross-validation procedure. The N available 

samples are distributed into G cancellation groups following a pre-determined scheme. The 

model is computed G times where each time, one of the cancellation groups is used as the 

validation set. At the end of the procedure, each sample has been used G – 1 time for building 

a model and once for an evaluation.  

The leave-one-out procedure is a form of cross-validation with N cancellation groups. It is 

unique for a given data set and is generally known for its advantage, whereas different 

subdivision schemes and orders of the samples generally yield different outcomes when G < 

N. 
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2.4.2.3 Calibration model and validation performance evaluation 

It is essential to evaluate the calibration model and validation performance prior to the 

multivariate measurement prediction by FT-NIR being technically valid, i.e., accurate and 

precise for real applications. 

Several measures of determining the calibration model and validation performance are good. 

How successfully the A-dimensional model has been fitted to the calibration data set can be 

determined by either the model's fit or lack thereof. The prediction error expresses the error 

anticipated when using a calibration model to future predictions. The correlation between 

predicted and measured (reference laboratory method data) values is another way to evaluate 

the calibration model performance. The residuals reveal how well each object is modelled and 

predicted. 

The quality of calibration and prediction equations is described using a variety of statistics. 

These are listed, with calculation methods, by (William, 1987) and summarized in Table 2.3 

below. 

Table 2.3: Statistic to describe the FT-NIR spectroscopy calibration and prediction 
equation quality. 

Statistic Definition 

Standard Error of 

Calibration (SEC) 

Derived from the equation developed from the calibration 

data set resulting in the difference values between the 

predicted value (FT-NIR) and the laboratory reference 

method. 

Standard Error of 

Prediction (SEP)a 

Derived from the equation applied to the validation data 

set, resulting in the difference between predicted values.  
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Statistic Definition 

Standard Error of 

Cross-Validation 

(SECV) 

Derived from the equation applied from a subset of the 

calibration data set resulting in the difference values 

between the predicted value (FT-NIR) and the laboratory 

reference method. 

Coefficient of 

determination (R2) 

A statistical measure in a regression model determines the 

proportion of variance in the dependent variable that the 

independent variables can explain.  

Correlation 

coefficient (r) 

A statistical measure of the degree to which changes to one 

variable's value predict change to another's value.  

Bias (D) The average values of the difference between the predicted 

(FT-NIR) and laboratory reference test method. 

a SEP is also can be defined as "standard deviation of performance", "standard error of 
estimate", standard error of analysis and standard error selection (Brown, 1990; Smith et al., 
1991; Williams, 1987)  

 

The derivation of the SEC by (Smith et al., 1991) is shown in equation 2.3; 

𝑆𝐸𝐶 = Σ(𝑋𝑖 − 𝑌𝑖)
2/(𝑁 − 𝑝 − 1)0.5                (2.3) 

where Xi represents the predicted value of the ith item in the validation set, Yi is the reference 

value of ith item in the validation set, N is the number of items in the validation set and p is the 

number of independent variables in the prediction equation. Referring to Adesogan et al.’s 

research, the equation that should be selected needs to involve the largest R2, smaller SEC and 

lowest number of spectral terms to avoid overfitting (Adesogan et al., 1998). 

Table 2.3, continued. 
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The validation of the calibration model is tested or validated against another data set which 

has not been used in the calibration data set with reference values (laboratory reference data). 

The predicted values will typically differ from the reference values. This is because of random 

error. However, there are two types of systematic errors. 

If the regression coefficient is different from 1.0, (Williams, 1987) noted that this would 

introduce a systematic bias at either end of the range of predicted values. It also may be 

contributed from the reference values. Hence, the standard error of prediction corrected for bias 

(SEP(C)) can be calculated as follows (Smith et al., 1991): 

𝑆𝐸𝑃(𝐶)Σ(𝑋𝑖 − 𝑌𝑖)
2 − 𝑁(𝑏𝑖𝑎𝑠)2/(𝑁 − 1)0.5              (2.4) 

From equation 2.4, Xi is the predicted value of the ith item in the validation set, Yi refers to 

the reference value of ith item in the validation set, Bias is the difference between overall means 

and N is the number of items in the validation set. Williams, (1987) has provided rules for 

interpreting values from bias, SEP and correlation between predicted and reference values. He 

recommended that the SEP should not be more than 3% of the mean reference value for that 

analyte.  

Shenk et al. (1985) recommended that the SEP should not be greater than twice the SEL 

(Standard Error of Laboratory) (Shenk et al., 1985). The size of the bias2: SEP2 ratio in 

proportion to the mean of the reference values can be used to measure bias (Park et al., 1998). 

This ratio should be small. By changing the regression intercept, a uniform bias can be 

eliminated. Predicted values can be replaced at either end of the reference range as described 

by Williams, (1987). 
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CHAPTER 3: RESEARCH METHODOLOGY 

3.1 Petroleum Products Sampling 

Table 3.1 shows the number of samples that were collected for qualitative and quantitative 

measurements. 

Table 3.1: Number of qualitative and quantitative sample 

Type of 

measurement 
Type of samples 

Number of 

samples 
Parameters Test Method 

Qualitative 

measurements 

Gasoline 100 

N/A N/A 

Kerosene  100 

Diesel 100 

Diesel without PME 

blend 
40 

Diesel with PME 

blend 
36 

Gasoline without 

additive 
40 

Gasoline with additive 44 

Quantitative 

measurements  
Diesel 266 

Boiling point 

at T95 

recovery 

ASTM D86-20 

(2020) 

Flash point ASTM DD93-20 

(2020) 

Could point  ASTM D2500-17 

(2017) 

Calculated 

cetane index 

ASTM D976-06 

(2016) 
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3.1.1 Qualitative measurement samples 

One hundred (100) of each gasoline, kerosene and diesel samples, including directly from 

process streams, during blending and final product tanks were collected from different 

processing units and blending systems (different times, dates and batches) between December 

2019 and August 2020. Collected samples were from oil and gas process plants locally which 

was in Malaysia. During sample collection, the product must be kept idle for a minimum of 2 

hours to ensure the separation of oil and water in the tank. Water which has a higher density 

will settle down and drain from the tank leaving pure oil content. The sample were then stirred 

homogenously for 1 hour before sample was collected.  

Forty (40) of diesel without PME blend and thirty-six (36) diesel with PME blend samples 

were collected from refinery and petrol station, respectively. The same location of sampling 

station was used to ensure consistency of results and minimize error. These samples were 

pumped and placed in a high density poly-eutherene (HDPE) container for safety purposes.  

Forty (40) of gasoline without additive and forty-four (44) gasoline with additive samples 

were collected from the refinery and petrol station. The same method of collection was applied 

to all samples. Safety gloves were also used in the process to minimize contamination of 

samples. 

All the samples were stored in an amber glass bottles pending FT-NIR spectra measurement. 

The samples were stored in a chiller for gasoline and kerosene to avoid vaporising lighter 

components, leading to sample integrity. For diesel, samples were stored and kept in the 

darkroom at room temperature to avoid any chemical reaction when exposed to light. 
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3.1.2 Quantitative measurement sample 

Two hundred sixty-six (266) diesel samples (including single and blended components) 

were collected from three different processing units (different times, dates and batches) in 

Malaysia between December 2019 and August 2020. The samples were stored in amber glass 

bottles and kept in the darkroom while pending laboratory analyses. 

3.2 Determination of Boiling Point at 95% Recovery 

Based on samples composition, vapour pressure, and the expected initial boiling point (IBP) 

and final boiling point (FBP) or expected endpoint (EP), they belong to Group 4 diesel fuel as 

stipulated in the test method ASTM D86-20 (2020). The apparatus arrangement, condenser 

temperature, and other operational variables are configured in the equipment operating system 

as described in Table 3.2. 

Table 3.2: Operating settings for the measurement of boiling point 

Parameters Settings 

Flask, mL 125 

ASTM distillation thermometer 8oC (8F) 

IP distillation thermometer range High 

Flask support board Type C 

Diameter of the hole, mm 50 

Temperature flask at start of the test oC Ambient 

Receiving sample and sample, oC Ambient 

 

A 100 mL diesel sample was distilled under prescribed conditions for group 4. The 

distillation was performed in a laboratory automated distillation unit at ambient pressure. The 

design of the distillation unit is approximately one theoretical plate fractionation (Figure 3.1). 

Systematic observations of temperature readings and condensate volumes were made until it 
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reached the final boiling point volume % recovery. At the end of the analysis, the volume of 

the residue and the losses were recorded. 

At the end of the distillation analysis, the observed vapour temperatures at ambient pressure 

were corrected to atmospheric pressure by the built-in barometric pressure and software 

conversion. The final test results were expressed as per cent recovered versus the corresponding 

temperature, i.e., boiling point temperature at 95% recovery (T95).  

 

Figure 3.1: Automated distillation unit 

3.3 Determination of Flash Point 

Test method ASTM DD93-20 (2020) by automated Pensky-Martens Closed Cup (PMCC) 

was used to determine the flash point of diesel samples (typical diesel flash points is in the 

range 50 oC to 80 oC). Procedure A was used for diesel fuel samples. The PMCC tester is 

illustrated in Figure 3.2. 
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The automated apparatus was designed and capable of performing the procedure described 

in the test method, with the proper heating rate control, the diesel samples' stirring, applying 

the ignition source, detecting the flash point, and recording the final flash point result. At 

least 75 mL of diesel sample was filled into the brass test cup and tested according to the 

settings shown in Table 3.3. 

Table 3.3: Operating condition of automated Pensky-Martens closed cup flash point 
tester 

Parameters Requirements 

Temperature of test cup and diesel 

sample, oC 
At least 18 oC below the expected flash point. 

Flame diameter, mm 2.2 to 4.8 

Heating rate, oC/min 5 to 6 

Stirring rate, rpm 90 to 120 

Ignition source application 

23 oC (± 5 oC) below the expected flash point 

and each time after that at a temperature 

reading that is a multiple of 1 oC. 

 

The ignition source was directed into the test cup at regular intervals with simultaneous 

interruption of the stirring until a flash was detected. The observed flash point was reported to 

the integer number and corrected to atmospheric pressure. 
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Figure 3.2: Automated PMCC flash point tester 

3.4 Determination of Cloud Point 

The cloud points of diesel samples were measured according to the procedures described in 

ASTM D2500-17 (2017). This test method was designed to determine diesel fuels cloud points 

below 49 oC by using a manual cooling bath, as illustrated in Figure 3.3. 

The diesel samples were cooled for at least 14oC above the expected cloud point. Diesel 

samples were then filtered to remove any moisture present using dry lint less filter paper until 

oil appears on the filter paper. The diesel samples were poured into the test jar to the level mark 

and using a high cloud point ASTM thermometer to monitor the temperature. The test jar was 

closed tightly by the cork inserted together with the test thermometer. The thermometer bulb 
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or probe was rested on the bottom of the jar. The cork and the thermometer were adjusted to 

ensure the thermometric device and the jar were coaxial.  

 

Figure 3.3: Manual cloud point apparatus and cooling bath 

 
The disk was then cleaned and dried. It was placed on the bottom of the jacket in the cooling 

medium for at least 10 minutes prior to inserting it into the test jar. The gasket was then placed 

around the test jar about 25 mm from the bottom, and the test jar was inserted into the jacket.  

Inspection of diesel samples cloud point was conducted at a multiple of 1 °C thermometer 

readings by removing the test jar from the jacket quickly but without disturbing the diesel 

samples and replacing it in the jacket, not more than 3 seconds. The cooling bath temperature 

was maintained at 0 °C ± 1.5 °C. If the diesel samples do not show a cloud when it has been 

cooled to 9 °C, transfer the test jar to a jacket in a second bath maintained at a temperature of 

−18°C ± 1.5°C (see Table 3.4). 
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 If the diesel sample does not show a cloud when it has been cooled to −6 °C, transfer the 

test jar to a jacket in a third bath maintained at a temperature of −33°C ± 1.5 °C as described 

in Table 3.4 until the diesel sample exhibited a cloud point. 

 
Table 3.4: Bath and sample temperature ranges 

Bath Bath temperature setting, oC Sample temperature range, oC 

1 0 ±1.5 Start to 9 

2 -18 ±1.5 9 to -6 

3 -33 ±1.5 -6 to -24 

4 -51 ±1.5 -24 to -42 

5 -69 ±1.5 -42 to -60 

 

The cloud observed at the bottom of the test jar was reported to the nearest 1 °C, as the cloud 

point of the diesel samples tested. 

3.5 Calculated Cetane Index 

The cetane index of each diesel sample was calculated according to ASTM D976-06 (2016). 

This method covers the Calculated Cetane Index (CCI) formula, representing a means for 

directly estimating the ASTM cetane number of diesel fuels. The CCI is derived from American 

Petroleum Institute (API) gravity or density at 15 oC and the boiling point temperature at 50 % 

recovery. The index value is termed the CCI and computed from the formula given in Equation 

3.1. 

𝐶𝐼 = 454.74 − 1641.461𝐷 + 774.74𝐷2 − 0.554𝐵 + 97.803(log 𝐵)2            (3.1) 

where D is the fuel density at 15 ºC (ASTM D1298-12b, 2017) and B is the boiling 

temperature at 50 % recovery derived from the distillation curve (ASTM D86-20, 2020). Figure 

3.4 displays the analysers used for physical distillation and densitometer. 
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Figure 3.4: a) Physical distillation and b) densitometer analysers. 

3.6 Fourier Transform-Near Infrared Spectrometry 

FT-NIR spectra were obtained under the condition specified in Table 3.5 using an ABB MB 

3600 Series Laboratory FT-NIR spectrometer and Horizon MB software. Horizon MB is for 

FT-NIR spectra measurement whereas Horizon QA is used for sample measurement or 

analysis. Immersion probe with an optical path of 0.5 mm and a transmittance sample cell of 

CaF2 beam splitter were used in combination with Indium Arsenide (InAs) detector as 

illustrated in Figure 3.5. Before each measurement, the immersion probe was cleaned with 

spectroscopic grade n-pentane and flushed with the samples to be measured. The volume of 

each sample was approximately 10 mL. 

 

a) b)
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Figure 3.5: (a) ABB MB 3600 Series Laboratory FT-NIR spectrometer (b) Harrick cell 
CaF2 complete with optical and thermostat probes. 

Table 3.5: ABB MB 3600 FT-NIR operating condition 

Parameters Settings 

Cell pathlength, mm 0.5 

Cell measurement temperature, oC 25.0 ±1.0 

Wavenumber, cm-1 3,700-14,700 

Number of scans 32 

Resolution interval, cm-1 1.0 

Detector InAs 

 

3.7 Multivariate Data Analysis 

Two independent datasets were organised and sorted into spreadsheet for qualitative and 

quantitative analyses.  

The experimental data for qualitative evaluation was organized into a 300×801 matrix (100 

gasoline, 100 kerosene and 100 diesel samples, with 801 spectral variables). The data were 

randomly divided into calibration (80 samples for each gasoline, kerosene and diesel) for PCA 

(b)(a)
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model development and validation sets (20 samples for each gasoline, kerosene and diesel) for 

model validation purposes, respectively. 

For eighty-four (84) gasoline with and without additive and seventy-six (76) diesel with and 

without PME blend, the data were organized into an 84×801 and 76×801 matrix respectively. 

For quantitative study, the data was organized into a 266×806 matrix (266 diesel samples, 

five physio-chemical variables, 801 spectral variables). The dataset was randomly sectioned 

into a calibration set (177×806) and a validation set (89×806) for model calibration and 

validation purposes.  

Subsequent spectral pre-processing and data analyses were performed with the 

Unscrambler® 9.8 by Camo Software. 

 

3.7.1 Multiplicative scattering correction  

MSC is a transformation method that can be used to compensate for both additive and 

multiplicative effects. In MSC, the corrected response of FT-NIR is given by the expression 

shown in equation 3.2. 

𝑥𝑖𝑗
∗ =

𝑥𝑖𝑗−𝑏1

𝑏0
                    (3.2) 

Where 𝑥𝑖𝑗 is the original response of i-th diesel sample at j-th wavenumber; b1 and b0 are 

the intercepts and slope coefficients estimated by regression of the sample spectrum against 

the mean spectrum derived from the training set.  

Univ
ers

iti 
Mala

ya



 

56 

3.7.2 Savitzky-Golay derivatisation 

SG-SD spectrum was obtained from a sequential local fitting and numerical derivatization 

(Savitzky & Golay, 1964). In this study, the FT-NIR response at a window size of eleven points 

was fitted onto a third-order polynomial, and the second derivative of the centre point was 

extracted. This process was propagated to subsequent windows to cover the remaining range 

of wavenumber. 

3.7.3 Principal component analysis  

PCA models were constructed by transforming the original data of correlated variables 

(independent variables X and samples N) to a new reduced set of orthogonal variables, the 

principal components (PCs), each containing unique information (Jolliffe & Cadima, 2016). 

The true distances are only exact in the plot if the PCs shown explain 100% of X variance.  

 
3.7.4 Soft independent modelling of class analogy 

Soft Independent Modelling of Class Analogy (SIMCA) was adopted to assign future 

samples based their residual distances from each class modelled with PCA using independent 

training set (Maesschalck et al., 1999). 

3.7.5 Principal component regression 

The PCR models were constructed by stepwise regression of each physio-chemical variable 

on a set of uncorrelated PCs (Frank & Friedman, 1993). These components were extracted 

using the Non-Linear Iterative Partial Least Squares (NIPALS) algorithm such that they 

explained maximal variance observed in the spectral variables (Jolliffe, 1982). 
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3.7.6 Partial least squares regression 

Similarly, the PLSR models were also computed using the NIPALS algorithm. In this case, 

the resulting components described maximal covariance between the physio-chemical 

variables and the spectral variables (Frank & Friedman, 1993; Wold et al., 2001).  

 
3.7.7 Model optimisation and validation 

The optimum number of latent variables (LVs) in each model was estimated by considering 

together the root mean square error from leave-one-out cross-validation (RMSECV) with mean 

center and also the noise modelled by respective regression coefficient (ASTM E1655-00, 

2000) via the Unscrambler 9.8 ® by Camo Software. The performance of the regression models 

was evaluated with the coefficient of determination (R2), Residual Predictive Deviation (RPD), 

and root means square error of prediction (RMSEP) derived from the validation set and 

compared against the ASTM specification using the following equations: 

𝑅2 = 1 −
Σ(𝑌𝑖 −𝑌̂𝑖)2

Σ(𝑌𝑖 −𝑌̅)2
                   (3.3) 

Where 𝑌𝑖 is the actual 𝑌 value, 𝑌̂ is the predicted 𝑌 value and 𝑌̅ =
Σ 𝑌

𝑁
.  

𝑅𝑀𝑆𝐸𝑃 = √∑ (𝑌̂𝑖−𝑌𝑖)2𝑛

𝑖=1

𝑛
                  (3.4) 

𝑆𝐸𝑃(𝐶) = Σ(𝑋𝑖 − 𝑌𝑖)2 −
𝑁(𝑏𝑖𝑎𝑠)2

(𝑁−1)0.5
                  (3.5) 

𝑅𝑃𝐷 =

√Σ(𝑋𝑖−𝑋̅)
2

𝑁−1

𝑅𝑀𝑆𝐸𝑃
                   (3.6) 

 

Univ
ers

iti 
Mala

ya



 

58 

3.8 The conceptual framework 

Figure 3.6 and 3.7 summarizes the overall flow used for qualitative and quantitative analysis 

respectively.  

 

Figure 3.6: Conceptual framework for quantitative measurement. 

SAMPLE SELECTION

•Representative dataset 
•Various source of samples
•Different time and batches

REFERENCE DATA
• Lab conventional method analysis

• Physical Distillation
• Flash Point
• Cloud Point

• Cetane Index

FT-NIR SPECTRA AQUISITION
• Spectra measurement

• Whole wavenumber region (3700 cm-1 to 
14,000 cm-1)

CALIBRATION MODEL DEVELOPMENT
• Full cross validation (leave one out)

• PLS and PCR techniques

CAL and VAL SELECTION STRATEGY
• Use PCA method randomly select into Cal 

and Val sets at PC1 and PC2 scores plot.
• 2/3 Cal and 1/3 Val sets

• Val set shall inside Cal set model space

FT-NIR SPECTRA PRE-TREATMENT
• Define region 4000 to 4800 cm-1 

(combination bands)
• Multiplicative Scatter Correction
• Savitzky-Golay Second Derivative.

REAL APPLICATION
• Upload model into FT-NIR analyzers 

(off-line and online)
• Real measurement prediction

• Compare FT-NIR prediction versus 
laboratory reference method

CALIBRATION MODEL PERFORMANCE
• RMSEC

• RMSECV (Internal validation)
• Bias

• Regression coefficient
• Relative Standard Deviation

STATISTICAL OVERALL MODEL 
PERFORMANCE EVALUATION

• RMSEPcal ≤ R method
• RMSEPval ≤ R method

• Regression coefficient ≥ 70%
• Tcalc ≤ Ttable

• RSD ≤ 5%
• RPD ≥ 2.0

VALIDATION MODEL PEROFRMANCE
• RMSEP

• Bias
• Regression coefficient

• Relative Standard Deviation
• Ratio Performance Deviation

EXTERNAL VALIDATION
• New set of samples not used in the 

calibration model development
• Prediction used the final model with 

identifed optimum PCs or LVs.

Abbreviation:
CAL :Calibration
VAL: Validation 
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Figure 3.7:  Conceptual framework for qualitative measurement 

SAMPLE SELECTION

•Representative dataset 
•Various source of samples
•Different time and batches

FT-NIR SPECTRA AQUISITION
• Spectra measurement

• Whole wavenumber region (3700 cm-1 to 
14,000 cm-1)

PCA CALIBRATION MODEL 
DEVELOPMENT

• Full cross validation
• PCA techniques

CAL and VAL SELECTION STRATEGY
• Use PCA method randomly select into Cal 

and Val sets at PC1 and PC2 scores plot.
• 2/3 Cal and 1/3 Val sets

FT-NIR SPECTRA PRE-TREATMENT
• Define region 4000 to 4800 cm-1 

(combination bands)
• Multiplicative Scatter Correction
• Savitzky-Golay Second Derivative.

REAL APPLICATION
• Upload model into FT-NIR analyzers

• Real measurement prediction 
(pattern / cluster recognition)

PCA MODEL VALIDATION
• Use SIMCA method

• Identify similarities clustering or 
grouping

Abbreviation:
CAL :Calibration
VAL: Validation 
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CHAPTER 4: RESULTS AND DISCUSSION 

The fitness of a NIR multivariate model to predict physico-chemical properties of diesel 

samples relies on several factors, for instance, spectral region selection, signal pre-processing 

algorithm, calibration/validation set partition, and multivariate calibration strategy. More 

importantly, the predictive model must account for the batch-to-batch variations associated 

with diverse sources to serve the routine quality control/monitoring purposes. Table 4.1 

summarizes the diesel samples variability observed in T95, FP, CP, and CI. 

Table 4.1: Statistics for the measured properties of diesel samples 

Properties Mean Sd 
Dev Min Max Method Reproducibility

, % 

T95 /°C 344.19 22.66 305.1
0 

376.3
3 

ASTM 
D86-20 
(2020) 

7.5 

FP /°C 76.65 6.38 59.00 94.99 
ASTM 
D93-20 
(2020) 

5.6 

CP /°C -6.31 7.06 -21.30 13.90 
ASTM 

D2500-17 
(2017) 

4 

CI 55.38 3.64 44.90 62.78 
ASTM 

D976-06 
(2006) 

2 

*As stated in the reference method 

4.1 FT-NIR Pre-Processing 

To a great extent, the physico-chemical characteristics of diesel reflect the degree 

of refinement, degradation, oxidation etc., where the refined products vary from a 

clear thin liquid to thick opaque attributed to their complex hydrocarbon 

composition (Santana et al., 2007). Hence, selecting descriptive spectral variables 

that project the intrinsic configuration of diesel blends would provide vital 
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information enabling simultaneous determination of fuel quality parameters via the 

means of chemometrics. Considering that diesel composes mostly of paraffins, 

cycloalkanes, and aromatic compounds, the NIR responses at combination overtone 

region around 4800-4000 cm-1 that originated from harmonic vibrations such as 

methylene C-H, methyl C-H, O-H stretching and aromatic C-H vibrations etc. not 

only informative for Distillation, Flash Point, Benzene, Aromatics, Cetane Index, 

Freezing Point and other properties for calibration purposes, but also have avoided 

the unwanted spectral variations due to water content, fluorescence and scattering 

effects associated with the diesel samples (Alves et al., 2012).  

Figure 4.1 displays the trimmed NIR spectra of the petroleum product samples 

before and after the signal pre-processing. It is expected that such pre-processing 

will improve the predictive performance of the calibration models by eliminating the 

artefacts introduced during the NIR measurement process (Mishra et al., 2020). 

Apparently, the multiplicative and scattering effects that dominated the variations 

observed in the raw spectra were managed by MSC, while SG-SD enhanced the 

spectral differences by addressing the random noise, baseline shift and drifts, which 

are either associated with the FT-NIR measurement method or the nature of diesel 

sample. 
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Figure 4.1: Near infrared spectra of the diesel samples: (a) raw spectra, (b) multiplicative-
scattering corrected spectra, and (c) Savitzky-Golay derivatised spectra. 
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4.2 Multivariate Calibration 

For robust modelling, the diesel samples were subdivided into calibration and validation 

sets based on a random sampling strategy to account for the batch-to-batch variances observed 

in routine samples. In this context, Figure 4.2 depicts the respective sample (spectral and 

physico-chemical) variabilities in a reduced space defined by the first two principal 

components. Looking at the dispersion of scores, it appears that such unbiased selection has 

yielded a good set of calibration points that covers the entire range of variation that typically 

encountered in routine quality control assessments and a comparable validation set that 

spanned over the calibration range. These score plots addressed the concern of 

representativeness of calibration and validation sets which has been voiced in previous 

calibration works (Liu et al., 2022; Palou et al., 2017). 
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Figure 4.2: Principal component analysis scores plots of the diesel samples: (a) 
multiplicative-scattering corrected spectra, (b) Savitzky-Golay derivatised spectra, and 
(c) physico-chemical properties; where •Cal denotes the calibration samples and •Val 
denotes the validation samples 
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4.3 Qualitative Measurement – Grouping and Clustering Recognition 

Principal Component Analysis (PCA) model was constructed from 80 samples from each 

petroleum products (Gasoline, Kerosene and Diesel) as a calibration set and 20 samples as a 

validation set, respectively. All the samples were measured by FT-NIR for spectrum data 

acquisition and pre-processed (MSC) prior to the model construction, as illustrated in Figure 

4.3.  

The hydrocarbon groups and compositions lead to differences in NIR spectra demonstrating 

the characteristic of each type of petroleum product. There are two main hydrocarbon groups 

namely Parffins (Aliphatic Hydrocarbons) and Aromatics will most differentiate the 

composition of gasoline, kerosene and diesel. 

The two strongest bonds near 4330 cm-1 and 4259 cm-1 have been assigned to the symmetric 

and asymmetric modes of the combination of CH stretch and CH2 bending motions respectively 

which represent aliphatic hydrocarbon groups. Gasoline has the highest concentration of 

aliphatic hydrocarbon groups compared to kerosene and diesel where diesel is the lowest. 

At region 4166 – 4125 cm-1 the combination of CH stretching modes also clearly 

differentiated each of the petroleum products. 

As compared with the benzene peak near 4058 - 4036 cm-1, two bands are observed in the 

mono-, di- and trisubstituted methyl benzenes. At this NIR absorption bands differentiated 

between diesel with kerosene and gasoline, where diesel has two bands whereas kerosene and 

gasoline only have one absorption band. This is due to the diesel compositions having mono- 

di- and tri-aromatics hydrocarbon groups.  
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Kerosene and gasoline have only a single band that could be observed in higher substituted 

methyl benzenes at 4058 cm-1 corresponding to the CH3 aromatic of symmetric bending 

vibrations. A linear relationship is found between the number of methyl groups substituted into 

the benzene ring and the intensity of characteristic absorption bands where diesel is the highest 

concentration and gasoline is the lowest. 

The aromatic CH stretch produces several bands at a shorter wavelength than the aliphatic 

CH absorptions. Figure 4.3 for benzene the major NIR absorption bands are at 4668 – 4581 

cm-1. It is a very clear differentiation between the petroleum products which diesel has the 

highest aromatics absorption bands followed by kerosene and gasoline is the lowest. 

 

Figure 4.3: FT-NIR spectrum at combination band region 4800-4000 cm-1 

Figure 4.4 clearly shows that three petroleum product groups (Gasoline, Kerosene and 

Diesel) were recognized and well separated at PC1 and PC2, with the total X variance explained 

about 98%. 
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Figure 4.4: PCA model scores plot at PC1 and PC2  Legend: Green – Gasoline, Red – 
Kerosene, Blue – Diesel 

Soft Independent Modeling of Class Analogy (SIMCA) classification was applied for 

qualitative validation steps. It focuses on modelling the similarities between members of the 

same class. A new sample will be recognised as a class member based on the similarities to the 

other class members; otherwise, it will be rejected. Twenty new samples for each petroleum 

product were validated based on the new FT-NIR spectra and predicted from the developed 

PCA model. 

Chung et al., (1999) used FT-NIR spectroscopy to discriminate six types of petroleum 

products. The combination between PCA and Mahalanobis distance, products with similar 

properties and compositions such as light gasoil and diesel were efficiently identified with the 

accuracy of 99% (Chung et al., 1999; Li et al., 2018). 

Figure 4.5 exhibits that all the new validation samples had been recognised and identified 

with the right group or cluster accordingly without the physical and chemical laboratory 

analysis, which is time-consuming and expensive. Note: where •C denotes the calibration 

samples, and •V denotes the new validation samples. 
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Figure 4.5: PCA qualitative model validation – SIMCA Clustering 

Multivariate qualitative measurement is an alternative method that is rapid analysis, non-

destructive, cheaper and able to reveal the insight information of the characteristic and 

fingerprinting types of the petroleum hydrocarbon products. It is beneficial for plant operators 

to pre-determine the cause of any contamination that occurred and product adulteration prior 

to delivery to the customers. 

Skrobot et al., (2007) Chemometric data analysis was applied to investigate the gasoline 

adulteration at the gas station. The chromatographic data were used to identify the presence of 

solvents in gasoline. Using PCA, sample distribution patterns were investigated, and 

classification models were created with linear discriminant analysis (LDA). The results 

indicated the presence of solvent in gasoline effectively (Skrobot et al., 2007). 

4.4 Qualitative Measurement for Gasoline with Additive and without Additive 

Generally, the final blended gasoline product produced by refineries is without additives. It 

will be transported via tanker, vessel or pipeline into the terminal tank as the final destination, 

where additives will be added and mixed to improve the gasoline engine performance and 

emission. The typical concentration of additives added into gasoline in the range of 100 to 5000 

ppm (wt) depends on the oil producers.  
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The main disadvantage of near-infrared is the low detection limit for the concentration of 

properties in ppm level. It is less accurate to determine these elements directly in gasoline using 

near-infrared spectroscopy. However, there is a study done to differentiate the gasoline with 

and without additives using near-infrared spectroscopy at the combination region, i.e. 4600 cm-

1 to 4000 cm-1 (Silva et al., 2013). 

From Figure 4.6, the spectra demonstrated slight differentiation within gasoline with and 

without additives in the region of 4100 cm-1 - 4000 cm-1 and 4700 cm-1 - 4500 cm-1. However, 

the other regions, it had overlapped each other. 

 

 

Figure 4.6: MSC treated spectra at 4800 cm-1 to 4000 cm-1 for gasoline with and without 
additives recorded by FT-NIR 

For qualitative measurement, PCA was constructed as an exploratory to obtain more insight 

into the information recorded using FTNIR. Figure 4.9 demonstrated that total 90% of X 

variables had been explained at PC1 and PC2 where at PC1 and PC2 explained 72% and 18%, 

respectively.  

Blue – gasoline without additives
Red – gasoline with additives
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Although at PC1 and PC2 score plots did not show clear separation or classification between 

gasoline with and without additives, it can observe some differentiation between them (see 

figure 4.7). This observation was expected since the additives added to the gasoline are in low 

concentration compared to the gasoline compositions, which are significant variations in 

concentration and compositions. There are two clusters or groups of gasoline without additives 

due to varying compositions from different petrol stations. A similar observation was observed 

at PC3 and PC4; with total X variables explained another 8%. Total X variables explained more 

than 95% from the sum of PC1, PC2 and PC3 as shown in Figure 4.8. 

From the PCA above, the outcomes of the results show that the separation of the classes is 

not so clearly differentiated. However, at least it has shown a tendency of separation and 

provides some information about gasoline with and without additives. 

 

 

Figure 4.7: Scores plot at PC1 and PC2 derived from Principal Component Analysis 

Gasoline without additives

Gasoline with additives
Gasoline without additives

BF in Blue – gasoline without 
additives
AF in Red – gasoline with 
additives
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Figure 4.8: Scores plot PC3 and PC4 derived from Principal Component Analysis 

 

 

Figure 4.9: Explained variance for X variables plot 

 

4.5 Qualitative Measurement for Diesel with and without blended with Palm Methyl 

Ester (PME) 

Biodiesel is a renewable energy source that is less polluting than petroleum diesel and often 

blended with petroleum diesel (Lira et al., 2010). In Malaysia, the PMEs derived from palm oil 

BF in Blue – gasoline without 
additives
AF in Red – gasoline with 
additives
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via the esterification process are a major component found in biodiesel. Malaysia's government 

has gazetted the biodiesel with the range of 7.1 to 20.0 volume/volume % concentration as 

specified in the Malaysia Standard High PME Diesel Fuel Specification – Euro 5 (MS 123-5, 

2020). It is a national government agenda to support a zero-carbon emission declaration.  

The main advantage of near infrared is a high detection limit for the concentration of PME 

in % volume level. It is accurate to determine and differentiate between diesel with and without 

blend with PME at the combination region, i.e. 4800 cm-1 to 4000 cm-1. 

FT-NIR spectroscopy combined with chemometrics multivariate methodology was used for 

this qualitative measurement study.  

From Figure 4.10, the spectra demonstrated significant differentiation within diesel with and 

without blended with PME in 4081.1 cm-1 - 4049.0 cm-1 and 4452.0 cm-1 to 4424.0 cm-1. As 

illustrated in Figures 4.11 and 4.12 (expansion from FT-NIR spectrum A and B), clear 

differentiation was observed. These combination regions the bands involving C=O and C–H. 

In diesel without PME, the C-H group concentration is higher than diesel with PME whereas 

the methyl ester group in diesel with PME is higher than in diesel without PME due to the 

diesel was blended with PME. However, the other regions, it had overlapped each other. 
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Figure 4.10: MSC treated spectra at 4800 cm-1 to 4000 cm-1 for diesel with and without 
blended with PME recorded by FT-NIR. 

 

 

Figure 4.11: Spectra of diesel with and without PME blends between 4081.1 cm-1 to 4049.0 
cm-1 (C-H group) combination overtone region 

A

B

Blue line – diesel without PME
Green line – diesel blended with PME.
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Figure 4.12: Spectra of diesel with and without PME blends between 4452.0 cm-1 to 4424.0 
cm-1 (C=O group) combination overtone region. 

 

PCA was constructed to explore and provide more insight and information on the 

classification between diesel with and without PME blend. In this study, further analysis was 

done by applying the chemometrics multivariate methodology using the spectra information 

measured by FT-NIR spectroscopy. PCA was performed on forty (40) Diesel without PME 

blend and thirty-six (36) diesel with PME blend from various sources. Full cross-validation 

was used for PCA construction. 

Figure 4.13 illustrates the PCA outcome at the total of 1 PCs and total of 2 PCs score plots. 

The first two PCs (total of 1 PC and total of 2 PCs) have a total X variance explained 90% and 

demonstrated significant differentiation and clusters between diesel with and without PME 

blend.  
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Figure 4.13: Score plot at PC1 and PC2 derived from Principal Component Analysis. 

 

In addition to the above clusters, more information was gathered from the individual cluster, 

i.e., diesel with and without PME blend. For diesel with PME blend, two clusters are observed 

at PC2 (positive and negative score values) due to the variation of the PME concentration 

blended with diesel which can vary from 7 vol/vol % up to 20 vol/vol% depending on the oil 

producers. For diesel without PME blend, two clusters are observed at PC2 (positive and 

negative score values), indicating a variation of the diesel compositions. The possibility of the 

composition variation due to different process unit sources of the diesel, i.e., straight run down 

from CDU and distillate hydrotreater. 

However, as illustrated in Figure 4.14, both samples exhibit overlapping clusters at PC3 and 

PC4, with the total X variance explained by another 8%. This result demonstrates that both 

samples, which were clustered, mainly contain similar chemical compositions. At PC1, PC2 

and PC3, the total explained variance for X variables reported more than 95%, as shown in 

Figure 4.15. 
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Figure 4.14: Score plot at PC3 and total PC4 derived from Principal Component 
Analysis. 

 

 

Figure 4.15: Explained variance for X variables plot 

The outcomes of the PCA results show that the differentiation of the classes is so clearly 

differentiated. Hence this method can be used as a rapid qualitative measurement to identify 

the sources and types of diesel fuels without testing using the reference laboratory method, 

which is time-consuming and costly. 

BF in blue– diesel 
without PME
BD in green– diesel 
blended with PME.
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4.6 Quantitative Measurement – Calibration and Prediction 

4.6.1 Optimal number of principal components in modelling 

An important problem for all the data compression methods in PLSR and PCR is selecting 

the optimal number of variables or components to use.  

If too many components are used, too much of the redundancy in the X variables are used, 

and the solution becomes overfitted, which include ‘noise’ since the ‘noise’ may be fitted as 

well (Loh, 2016). The equation will be very data-dependent and will give poor prediction 

results. 

In contrast, using too few components is called underfitting, which the important variability 

of the model may cause is not large enough to capture (Næs, 2002).  These two important 

phenomena are illustrated in Figure 4.16.  

 

Figure 4.16: Conceptual illustration of model error and estimation error tradeoff in 
predictive modelling 

There are two effects, i.e. estimation error and model error. The estimation error is the error 

associated with estimating the regression parameter (the statistical uncertainty error) which 

always increases as more components are added. The calibration model error is comparing the 

Number of PCs

Model Error 
 

Estimation Error 
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predicted and measured Ycal values (lab data) which give us an expression of the modelling 

error because we have only used A components in the model:  

𝑋𝑐𝑎𝑙  +  𝑌𝑐𝑎𝑙  =  𝑀𝑜𝑑𝑒𝑙                  (4.1) 

𝑇ℎ𝑒𝑛 𝑤𝑒 𝑓𝑒𝑒𝑑 𝑡ℎ𝑒 𝑋𝑐𝑎𝑙  +  𝑀𝑜𝑑𝑒𝑙 =  𝑌̂𝑐𝑎𝑙                (4.2) 

𝑀𝑜𝑑𝑒𝑙𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 =  𝑌̂𝑐𝑎𝑙 – 𝑌𝑐𝑎𝑙                  (4.3) 

This is calculated for each object. Summing the squared differences and taking their mean 

over all N objects gives the calibration residual Y variance. 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑐𝑎𝑙  =
∑(𝑌̂𝑐𝑎𝑙 – 𝑌𝑐𝑎𝑙)2

𝑁
                 (4.4) 

The square root of the above equation gives us RMSEC (Root Mean Square Error of 

Calibration), the modelling error, expressed in original measuring units. 

The sum curve of these two opposing trends will therefore generally display a more or less 

well-defined minimum which corresponds to the optimal number of components. 

As the number of variables or components increases, the model's ability to capture X-

variability increases, resulting in decreased model error. However, the estimation error 

increases due to the higher number of parameters that need to be estimated. The optimal number 

of variables or components lies between these two extremes.  

Selecting the optimal number of variables or components is a crucial problem for all data 

compression methods. If too many components are used, the model may become overfitted as 

it utilizes too much redundancy in the X variables, resulting in poor prediction results that are 
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highly dependent on the data. Using too few components, on the other hand, called underfitting 

means that the model is not large enough to capture the important variability in the data. 

The overfitting effect is strongly dependent on the number of samples used (Martens & 

Naes, 1984). The more samples used, the more precise the parameters estimates, and thus, the 

prediction is. Therefore, the more samples used, the less important the overfitting effects are.  

The optimal number of PCs or LVs can be appropriately selected by studying the validation 

residual variance plot. One should choose the number of PCs corresponding to the first clear 

V-minimum or a break from monotonically decreasing residual variance, i.e. where the 

prediction error is minimised. The Unscrambler software program suggests an optimal number 

of PCs based on the calculation to the following formula (Esbensen, 2002): 

𝑃𝐿𝑆 𝑜𝑟 𝑃𝐶𝑅: 𝑀𝑖𝑛[𝑉𝑦𝑡𝑜𝑡𝑣𝑎𝑙𝑃𝐶0 × 0.01 × 𝑎 + 𝑉𝑦𝑡𝑜𝑡𝑣𝑎𝑙𝑃𝐶𝑎]             (4.5) 

𝑃𝐶𝐴  ∶ 𝑀𝑖𝑛[𝑉𝑥𝑡𝑜𝑡𝑣𝑎𝑙𝑃𝐶0 × 0.01 × 𝑎 + 𝑉𝑥𝑡𝑜𝑡𝑣𝑎𝑙𝑃𝐶𝑎]              (4.6) 

Where:  

a = current dimesionality (PC number) 

 Vytot = Total residual Y-variance at validation 

 Vxtot = Total residual X-variance at validation 

 Index PC0 = at PC number zero 

 Index PCa = at PC number a 

In conclusion, choosing fewer PCs gives a more robust model, which is less sensitive to 

noise and errors, especially the unavoidable sampling errors.  
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Therefore, the approach taken to choose the appropriate number of principal components 

(PCs) or latent variables (LVs) involves selecting the model that includes the minimum number 

of PCs/LVs, leading to a negligible difference between the root mean square error of calibration 

(RMSEC) and root mean square error of prediction (RMSEP). 

The RMSEC and RMSEP can be referred to as the average modelling and predictive error 

(Hadad et al., 2008, Loh, 2016). The following equation gives the ratio RMSEC or RMSEP: 

RMSEC or RMSEP = √
∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
                (4.7) 

Where  𝑦̂𝑖 and 𝑦𝑖are the estimated NIR result, and the laboratory reference result of the ith 

sample for each parameter model and n is referred to the number of samples in the 

calibration/prediction set. 

4.6.1.1 Calibration of boiling point at 95 % recovery 

(a) MSC-PLSR (Total of 7 PCs) 

For the MSC-PLSR model, the RMSE plot indicates two possible total PCs, which are 4 

PCs and 7 PCs. The total 7 PCs indicates the optimum PC since no noise has been shown in 

the x-loading and regression coefficient plots (Figure 4.18). Total of 4 PCs explained about 

92% of Y variance, whereas total of 7 PCs explained about 96% of Y variance. Hence, total 4 

PCs might be under-fitting and cause a high prediction error (Figure 4.17), although there is no 

noise indicated in both X-loading and regression coefficient plots (Figure 4.21 and Figure 4.22). 

X-loading is loadings plot for the X-variables (NIR spectra) for a specified component versus 

the variable number which is wavenumber or wavelength. The importance and usefulness of 

the plots for detecting important variables. The plot illustrates the correlation between the 

designated component and the various X variables. A high positive or negative loading of a 
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variable indicates its significance for the respective component. For instance, a sample with a 

high score value for the component will have a large positive value for a variable with a large 

positive loading. The variables with high loadings in the initial components are the ones that 

exhibit maximum variation. Therefore, these variables are accountable for the most significant 

differences between the samples. If the PC components increased the X-loading plot line will 

show “noise” in which the correlation between X variables no longer provides information. X-

loading plots have a strong correlation with the scores plot not with the regression coefficient 

plot.  

Regression coefficient plots are the numerical coefficients of the model equation that 

express the link between variation in the predictors (X-variables i.e. NIR spectra wavelength 

or wavenumber) and variation in the response (Y-variables i.e. laboratory reference data). The 

response value from the X-measurements is calculated using the regression coefficients, which 

provide information on the variables that have a significant influence on the response variables 

based on their magnitudes. The regression coefficient plot line will demonstrate “noise” when 

the variation in the X variables and variation in the Y variables are no longer well correlated. 

 

Figure 4.17: RMSE versus PCs plot for MSC-PLSR, boiling point at 95% recovery 
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Figure 4.18: X-loading plot at total 4 PCs for MSC-PLSR, boiling point at 95% recovery 

 

Figure 4.19: X-loading plot at total 7 PCs for MSC-PLSR, boiling point at 95% recovery 

 

Figure 4.20: Regression coefficient plot at total 4 PCs for MSC-PLSR, boiling point at 
95% recovery 
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Figure 4.21: Regression coefficient plot at total 7 PCs for MSC-PLSR, boiling point at 
95% recovery 

(b) MSC-PCR (Total of 4 PCs) 

For the MSC-PCR model, the RMSE plot indicates two possible PCs, which are total of 4 

PCs and total of 7 PCs. The software diagnostic tool identified total of 7 PCs as the optimum 

PC rather than total of 4 PCs. Further evaluation on the x-loading and regression coefficient 

plots indicated slight noise at total of 7 PCs, which might lead to invalid prediction although it 

had explained about 95% of Y variance. (Figure 4.23 and 4.24).  

Hence, total of 4 PCs has selected as an optimum PC with Y variance was explained about 

92%. No noise was shown in x-loading and regression coefficient plots (Figure 4.25 and Figure 

4.26).  
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Figure 4.22: RMSE versus PCs plot for MSC-PCR, boiling point at 95% recovery 

 

Figure 4.23: X-loading plot at total 4 PCs for MSC-PCR, boiling point at 95% recovery 

 

Figure 4.24: X-loading plot at total 7 PCs for MSC-PCR, boiling point at 95% recovery 
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Figure 4.25: : Regression coefficient plot at total 4 PCs for MSC-PCR, boiling point at 
95% recovery 

 

Figure 4.26: Regression coefficient plot at total 7 PCs for MSC-PCR, boiling point at 95% 
recovery 

(c) SGSD-PLSR (Total of 4 PCs) 

For the SGSD-PLSR model, the RMSE plot indicates two possible PCs, which are total 

of 4 PCs and 7 PCs. The software diagnostic tool identified total of 7 PCs as the optimum 

PC rather than total of 4 PCs, where the RMSE value is much lower (Figure 4.27). However, 

at total of 7 PCs, the difference of RMSE for calibration and validation indicates a 

significant difference. Further evaluation on the x-loading and regression coefficient plots 

indicated much noise at total of 7 PCs, which might lead to invalid prediction, although it 

had explained about 97% of Y variance. (Figure 4.28 and 4.29).  
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Hence, total of 4 PCs has selected as an optimum PC with Y variance was explained about 

93%. There is no noise in x-loading and regression coefficient plots (Figure 4.30 and Figure 

4.31).  

 

Figure 4.27: RMSE versus PCs plot for SGSD-PLSR, boiling point at 95% recovery 

 

Figure 4.28: X-loading plot at total 4 PCs for SGSD-PLSR, boiling point at 95% recovery 
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Figure 4.29: X-loading plot at total 7 PCs for SGSD-PLSR, boiling point at 95% recovery 

 

Figure 4.30: Regression coefficient plot at total 4 PCs for SGSD-PLSR, boiling point at 
95%  recovery 
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Figure 4.31: Regression coefficient plot at total 7 PCs for SGSD-PLSR, boiling point at 
95% recovery 

(d) SGSD-PCR (Total of 5 PCs) 

For the SGSD-PCR model, the RMSE plot indicates two possible PCs, which are total of 

4 PCs and total of 5 PCs. The software diagnostic tool identified total of 5 PCs as the 

optimum PC rather than total of 4 PCs (first minimum curve), where the RMSE value is 

much higher (Figure 4.32). At total of 5 PCs, the difference of RMSE for calibration and 

validation indicates no significant difference. Further evaluation of the X-loading and 

regression coefficient plots indicated no noise at total of 5 PCs with the Y variance explained 

93% (Figure 4.33 and 4.34).  

Total of 4 PCs might be under-fitting and cause a high prediction error, although no noise 

is indicated in both X-loading and regression coefficient plots (Figure 4.35 and Figure 4.36). 
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Figure 4.32: RMSE versus PCs plot for SGSD-PCR, boiling point at 95% recovery 

 

Figure 4.33: X-loading plot at total 4 PCs for SGSD-PCR, boiling point at 95% recovery 

 

Figure 4.34: X-loading plot at total 5 PCs for SGSD-PCR, boiling point at 95% recovery 
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Figure 4.35: Regression coefficient plot at total 4 PCs for SGSD-PCR, boiling point at 
95% recovery 

 

Figure 4.36: Regression coefficient plot at total 5 PCs for SGSD-PCR, boiling point at 
95% recovery 

4.6.1.2 Calibration of Flash Point 

(a) MSC-PLSR (Total of 9 PCs) 

For the MSC-PLSR flash point model, the RMSE plot indicates two possible PCs, which 

are total of 4 PCs and total of 9 PCs. The software diagnostic tool identified total of 9 PCs 

as the optimum PC rather than total of 4 PCs (first minimum curve), where the RMSE value 

is much higher (Figure 4.37). At total of 5 PCs, the difference of RMSE for calibration and 

validation indicates a slight difference but is acceptable. Further evaluation of the X-loading 

and regression coefficient plots indicated no noise at 9 PCs. The Y variance explained about 
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92%, whereas total of total of 4 PCs reported about 80% explained on the Y variance (Figure 

4.38 and 4.39).  

Total of 4 PCs might be under-fitting and cause a high prediction error, although no noise 

is indicated in both X-loading and regression coefficient plots (Figure 4.40 and Figure 4.41). 

 

Figure 4.37: RMSE versus PCs plot for MSC-PLSR, flash point 

 

 

 

Figure 4.38: X-loading plot at total 4 PCs for MSC-PLSR, flash point 
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Figure 4.39: X-loading plot at total 9 PCs for MSC-PLSR, flash point 

 

Figure 4.40: Regression coefficient plot at total 4 PCs for MSC-PLSR, flash point 

 

Figure 4.41: Regression coefficient plot at total 9 PCs for MSC-PLSR, flash point 
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(b) MSC-PCR (Total of 5 PCs) 

The RMSE plot indicates a sharped minimum curve with total of 5 PCs as the optimum 

PC for the MSC-PCR flash point model. The software diagnostic tool also suggested total 

of 5 PCs as the local minimum as well.  

At total of 5 PCs, the difference of RMSE for calibration and validation indicates an 

insignificant difference. Further evaluation of the x-loading and regression coefficient plots 

indicated no noise at total of 5 PCs. The Y variance explained about 86% (Figure 4.42-4.44).  

 

 

Figure 4.42: RMSE versus PCs plot for MSC-PCR, flash point 

 

Figure 4.43: X-loading plot at total 5 PCs for MSC-PCR, flash point 
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Figure 4.44: Regression coefficient plot at total 5 PCs for MSC-PCR, flash point 

 

(c) SGSD-PLSR (Total of 5 PCs) 

The RMSE plot for the SGSD-PLSR flash point model indicates two possible PCs, which 

are total of 5 PCs and total of 9 PCs. The software diagnostic tool identified total of 9 PCs 

as the optimum PC rather than total of 5 PCs (first minimum curve), where the RMSE value 

is much lower (Figure 4.45). At total of 5 PCs, the difference of RMSE for calibration and 

validation indicates a slight difference but is acceptable compared with total of 9 PCs, which 

is a significant difference.  

Further evaluation of the x-loading and regression coefficient plots indicated no noise at 

total of 5 PCs. The Y variance explained about 91% (Figure 4.46 and 4.47).  

Total of 9 PCs, although the RMSE value is lower than total of 5 PCs and Y variance 

explained (94%) is higher than total of 5 PCs (91%), much noise is indicated at both x-

loading and regression coefficient plots (Figure 4.48 and Figure 4.49). It might lead to 

instability and inaccuracy of the model because the noise was embedded in the regression 

for future predictions. 
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Figure 4.45: RMSE versus PCs plot for SGSD-PLSR, flash point 

 

 

Figure 4.46: X-loading plot at total 5 PCs for SGSD-PLSR, flash point 
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Figure 4.47: X-loading plot at total 9 PCs for SGSD-PLSR, flash point 

 

Figure 4.48: Regression coefficient plot at total 5 PCs for SGSD-PLSR, flash point 

 

Figure 4.49: Regression coefficient plot at total 9 PCs for SGSD-PLSR, flash point 
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(d) SGSD-PCR (Total of 4 PCs) 

The RMSE plot for the SGSD-PLSR flash point model indicates two possible PCs, which 

are total of 4 PCs and total of 9 PCs. The software diagnostic tool identified total of 9 PCs 

as the optimum PC rather than total of 4 PCs (first minimum curve), where the RMSE value 

is much lower (Figure 4.50). At total of 4 PCs, the difference of RMSE for calibration and 

validation indicates no significant difference compared with total of 9 PCs, which is 

significant difference.  

Further evaluation of the x-loading and regression coefficient plots indicated no noise at 

total of PCs. The Y variance explained about 87% (Figure 4.51 and 4.52).  

Total of 9 PCs, although the RMSE value is lower than total of 5 PCs and Y variance 

explained (91%) is higher than total of 4 PCs (87%), noise is indicated at both x-loading 

and regression coefficient plots (Figure 4.53 and Figure 4.54). It might lead to instability 

and inaccuracy of the model because the noise was embedded in the regression for future 

predictions. 

 

 

 

Figure 4.50: RMSE versus PCs plot for SGSD-PCR, flash point 
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Figure 4.51: X-loading plot at total 4 PCs for SGSD-PCR, flash point 

 

Figure 4.52: X-loading plot at total 9 PCs for SGSD-PCR, flash point 

 

Figure 4.53: Regression coefficient plot at total 4 PCs for SGSD-PCR, flash point 
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Figure 4.54: Regression coefficient plot at total 9 PCs for SGSD-PCR, flash point 

 

4.6.1.3 Calibration of Cloud Point 

(a) MSC-PLSR (Total of 7 PCs) 

For the MSC-PLSR cloud point model, the RMSE plot indicates two possible PCs, which 

are total of 4 PCs and total of 7 PCs. The software diagnostic tool identified total of 7 PCs 

as the optimum PC rather than total of 4 PCs (first minimum curve), where the RMSE value 

is much lower (Figure 4.55). At total of 7 PCs, the difference of RMSE for calibration and 

validation indicates a slight difference but is acceptable. Further evaluation of the x-loading 

and regression coefficient plots indicated no noise at total of 7 PCs. The Y variance 

explained about 95%, whereas total of 4 PCs reported about 90% explained on the Y 

variance (Figure 4.56 and 4.57).  

Total of 4 PCs might be under-fitting and cause a high prediction error, although no noise 

is indicated in both X-loading and regression coefficient plots (Figure 4.58 and Figure 4.59). 

 

Univ
ers

iti 
Mala

ya



 

100 

 

Figure 4.55: RMSE versus PCs plot for MSC-PLSR, cloud point 

 

Figure 4.56: X-loading plot at total 4 PCs for MSC-PLSR, cloud point 

 

 

Figure 4.57: X-loading plot at total 7 PCs for MSC-PLSR, cloud point 

Univ
ers

iti 
Mala

ya



 

101 

 

Figure 4.58: Regression coefficient plot at total 4 PCs for MSC-PLSR, cloud point 

 

 

Figure 4.59: Regression coefficient plot at total 7 PCs for MSC-PLSR, cloud point 

 

(b) MSC-PCR (Total of 5 PCs) 

The RMSE plot indicates a minimum curve with total of 5 PCs as the optimum PC for 

the MSC-PCR flash point model. The software diagnostic tool also suggested total of 5 PCs 

is the local minimum as well.  

At total of 5 PCs, the difference of RMSE for calibration and validation indicates an 

insignificant difference. Further evaluation of the x-loading and regression coefficient plots 

indicated no noise at total of 5 PCs. The Y variance explained about 90% (Figure 4.61-4.63).  
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Figure 4.60: RMSE versus PCs plot for MSC-PCR, cloud point 

 

Figure 4.61:  X-loading plot at total 5 PCs for MSC-PCR, cloud point 

 

Figure 4.62: Regression coefficient plot at total 5 PCs for MSC-PCR, cloud point 
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(c) SGSD-PLSR (Total of 4 PCs) 

The RMSE plot for the SGSD-PLSR cloud point model indicates two possible PCs, 

which are total of 4 PCs and total of 8 PCs. The software diagnostic tool identified total of 

8 PCs as the optimum PC rather than total of 4 PCs (first minimum curve), where the RMSE 

value is much lower (Figure 4.63). At total of 4 PCs, the difference of RMSE for calibration 

and validation indicates no a significant difference compared with total of 8 PCs, which is 

significant difference.  

Further evaluation of the x-loading and regression coefficient plots indicated no noise at 

total of 4 PCs. The Y variance explained about 89% (Figure 4.64 and 4.65).  

Total of 8 PCs, although the RMSE value is lower than total of 4 PCs and Y variance 

explained (96%) is higher than total of 4 PCs (89%), much noise is indicated at both x-

loading and regression coefficient plots (Figure 4.66 and Figure 4.67). It might lead to 

instability and inaccuracy of the model because the noise was embedded in the regression 

for future predictions. 

 

 

Figure 4.63: RMSE versus PCs plot for SGSD-PLSR, cloud point 
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Figure 4.64: X-loading plot at total 4 PCs for SGSD-PLSR, cloud point 

 

 

Figure 4.65: X-loading plot at total 8 PCs for SGSD-PLSR, cloud point 

 

Figure 4.66: Regression coefficient plot at total 4 PCs for SGSD-PLSR, cloud point 
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Figure 4.67: Regression coefficient plot at total of 8 PCs for SGSD-PLSR, cloud point 

 

(d) SGSD-PCR (Total of 5 PCs) 

The RMSE plot indicates a minimum curve with total of 5 PCs as the optimum PC for 

the MSC-PCR flash point model. The software diagnostic tool also suggested total of 5 PCs 

is the local minimum as well.  

At total of 5 PCs, the difference of RMSE for calibration and validation indicates an 

insignificant difference. Further evaluation of the x-loading and regression coefficient plots 

indicated no noise at total of 5 PCs. The Y variance explained about 92% (Figure 4.68-4.70).  

 

 

Figure 4.68: RMSE versus PCs plot for SGSD-PCR, cloud point 
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Figure 4.69: X-loading plot at total 5 PCs for SGSD-PCR, cloud point 

 

Figure 4.70: Regression coefficient plot at total 5 PCs for SGSD-PCR, cloud point 

 

4.6.1.4 Calibration of Cetane Index 

(a) MSC-PLSR (Total of 4 PCs) 

The RMSE plot indicates a sharped minimum curve with total of 4 PCs as the optimum 

PC for the MSC-PLSR cetane index model. The software diagnostic tool also suggested 

total of 4 PCs is the local minimum as well.  

At total of 4 PCs, the difference of RMSE for calibration and validation indicates an 

insignificant difference. Further evaluation of the x-loading and regression coefficient plots 

indicated no noise at total of 4 PCs. The Y variance explained about 99% (Figure 4.71-4.73).  
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Figure 4.71: RMSE versus PCs plot for MSC-PLSR, cetane index 

 

Figure 4.72: X-loading plot at total 4 PCs for MSC-PLSR, cetane index 

 

Figure 4.73: Regression coefficient plot at total 4 PCs for MSC-PLSR, cetane index 
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(b) MSC-PCR (Total of 4 PCs) 

The RMSE plot indicates a sharped minimum curve with total of 4 PCs as the optimum 

PC for the MSC-PCR cetane index model. The software diagnostic tool also suggested total 

of 4 PCs is the local minimum as well.  

At total of 4 PCs, the difference of RMSE for calibration and validation indicates an 

insignificant difference. Further evaluation of the x-loading and regression coefficient plots 

indicated no noise at total of 4 PCs. The Y variance explained about 98% (Figure 4.74-4.76).  

 

 

 

Figure 4.74: RMSE versus PCs plot for MSC-PCR, cetane index 

 

Figure 4.75: X-loading plot at total 4 PCs for MSC-PCR, cetane index 
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Figure 4.76: Regression coefficient plot at total 4 PCs for MSC-PCR, cetane index 

 

(c) SGSD-PLSR (Total of 4 PCs) 

The RMSE plot indicates a sharped minimum curve with total of 4 PCs as the optimum 

PC for the SGSD-PLSR cetane index model. The software diagnostic tool also suggested 

total of 4 PCs is the local minimum as well.  

At total of 4 PCs, the difference of RMSE for calibration and validation indicates an 

insignificant difference. Further evaluation of the x-loading and regression coefficient plots 

indicated no noise at total of 4 PCs. The Y variance explained about 99% (Figure 4.77-4.79).  
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Figure 4.77: RMSE versus PCs plot for SGSD-PLSR, cetane index 

 

Figure 4.78: X-loading plot at total 4 PCs for SGSD-PLSR, cetane index 

 

Figure 4.79: Regression coefficient plot at total 4 PCs for SGSD-PLSR, cetane index 
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(d) SGSD-PCR (Total of 4 PCs) 

The RMSE plot indicates a sharped minimum curve with total of 4 PCs as the optimum 

PC for the SGSD-PLSR cetane index model. The software diagnostic tool also suggested 

total of 4 PCs is the local minimum as well.  

At total of 4 PCs, the difference of RMSE for calibration and validation indicates an 

insignificant difference. Further evaluation of the x-loading and regression coefficient plots 

indicated no noise at total of 4 PCs. The Y variance explained about 99% (Figure 4.80-4.82).  

 

 

Figure 4.80: RMSE versus PCs plot for SGSD-PCR, cetane index 

 

Figure 4.81: X-loading plot at total 4 PCs for SGSD-PCR, cetane index 
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Figure 4.82: Regression coefficient plot at total 4 PCs for SGSD-PCR, cetane index 

 

4.6.2 Diesel modelling 

4.6.2.1 Modelling the boiling point at 95% recovery 

Diesel fuel comprises hydrocarbon derivatives, including paraffin, naphthene, olefins, and 

aromatics. In general, paraffin has a lower boiling point than naphthenic and aromatic 

compounds of the same carbon number; together, they express the boiling range distribution 

(Coker, 2018). Hence, the NIR combination bands region (4800-4000 cm-1) that donated by 

the combinational of vibrational modes of the C-H bond of methyl, methylene, and aromatic 

rings are responsive to the compositional variations (i.e. the proportion of medium and heavy 

oil fractions in the diesel samples), and would facilitate the modelling of boiling point at 95% 

recovery temperature. 

The predictive performance of NIR-T95% models derived is listed in Table 4.2. Considering 

the calibration range of 305 oC to 372 oC, all the obtained models exhibit excellent RMSECV, 

RMSEP, R2, RPD and satisfy the reproducibility requirement (7.5 oC) of the reference method 

(ASTM D86-20, 2020). The comparable performance among the linear models (PCR and 

PLSR) reflected the fitness of the selected spectral range and partitioned calibration/validation 
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sets in the NIR-T95% modelling in addition to the spectral pre-processing methods. The slight 

difference observed between each RMSECV and RMSEP pair set aside the concern of false-

positive prediction (Hradecká et al., 2021); and the respective bias was also found statistically 

insignificant at a significance level of 0.05. In terms of precision, the RPD values were always 

greater than 3. According to Rossel et al. (2006), RPD values can be generally classified into 

six classes: excellent (>2.5), very good (2.5-2.0), good (2.0-1.8), fair (1.8-1.4), poor (1.4-1.0), 

and very poor (<1.0).  Based on the validation data, MSC-PLSR model was found to be the 

best for precise measurement of T95 of routine diesel samples. 

From Table 4.2, it is clearly demonstrated that the prediction capability of the developed 

models is comparable with those reported advances using two-stage sequential spectral pre-

processing strategy (Gonzaga & Pasquini, 2010; Palou et al., 2017). This acknowledged the 

dependency of model performance based upon the overall calibration strategy against targeted 

samples instead of solely the signal-processing and/or modelling algorithm. 
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Table 4.2: Comparison of the model performances in NIR determination of T95 

Pre-processing Model R2 LVs RMSECV RMSEP RPD References 

MSC PLSR 0.969 7 4.04 3.49 5.38 This study 
MSC PCR 0.935 4 5.43 5.19 3.73 

SG-SD PLSR 0.945 4 5.26 4.72 4.02 
SG-SD PCR 0.942 5 5.33 4.92 3.81 

SG-SD + 
SNV 

PLSR - 8 - 5.39 - (Palou et 
al., 2017) 

SD-GS + 
SNV 

PLSR - 8 - 5.30 - 

SG + MC PLSR 0.84 5 4.7 5.0 - (Gonzaga 
& 

Pasquini, 
2010) 

-Not reported; SNV (standard normal variate); SD-GS (second derivative-gap segment); MC (mean centering) 
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Figure 4.83: T95 Distillation MSC-PLSR Model at total of 7 LVs 

 

4.6.2.2 Modelling the Flash Point 

In-process control and optimisation, the flash point (FP) of diesel product is adjusted to meet 

the specification requirement by regulating the blending component ratio between the light and the 

heavy hydrocarbon fractions. This suggested that the combination bands region (4800-4000 cm-1) 

adopted in NIR-T95% modelling would also be appropriate for simultaneously determining FP 

(Alves et al., 2012). 

Table 4.3 summarises the performance characteristics established for the NIR models under 

current experimental settings compared to other reported models, including a model by support 

vector machine regression (SVMR). From the data, the developed models (that calibrated for FP 

between 62 and 92 oC) showed improved predictive performance in terms of RMSEP particularly; 

and satisfied the ASTM D93-20 (2020) specifications on test method producibility (5.44 oC) and 

repeatability (2.22 oC). At a significance level of 0.05, the measurement bias was negligible. When 

considering the FP at the Malaysian regulatory limit, i.e. a minimum value of 60.0 oC, a relative 
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prediction error of around 3.65% could be achieved with the SG-SD-PLSR model that had 

explained 97% of the FP variance with 5 LVs. These NIR models would be useful for the online 

control of crude distillation unit process via real-time FP monitoring so as to optimise the cut point 

between front-end diesel and back-end kerosene fractions. 
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Table 4.3: Comparison of the model performances in NIR determination of FP 

Pre-

processing 
Model R2 LVs RMSECV RMSEP RPD References 

MSC PLSR 0.950 9 1.71 1.50 4.29 

This study 
MSC PCR 0.892 5 2.25 2.02 3.01 

SG-SD PLSR 0.949 5 1.74 1.39 4.25 

SG-SD PCR 0.912 4 2.03 1.78 3.18 

SG-SD PLSR - 7 - 3.72 - (Palou et al., 

2017) SD-DS PLSR - 3 - 3.68 - 

SNV PLSR 0.698 - - 3.77 - (Alves, 

Henriques, & 

Poppi, 2012) 
SNV SVMR 0.936 - - 1.98 - 

-Not reported; SNV (standard normal variate); SVMR(support vector machine regression) 

117 

 

Univ
ers

iti 
Mala

ya



 

118 

 

Figure 4.84: Flash Point SG-SD-PLSR Model at total of 5 LVs 

 

4.6.2.3 Modelling the Cloud Point 

Cloud Point (CP) refers to the minimum temperature at which the diesel fuel undergoes phase 

separation. The tendency of becoming cloudy at low temperatures is controlled by the 

agglomeration of paraffinic hydrocarbon at the molecular level (Adebiyi, 2020). Thus, the 

aforementioned NIR absorption range adopted for spectrometric measurement of temperature 

properties of diesel could also be used for CP determination. 

The performance characteristics of the developed NIR-CP models are given in Table 4.4. 

Referring to the calibration and validation results between -21 oC and 14 oC, the developed models 

showed satisfactory performances in terms of prediction bias (p>0.05), precision (RPD>2.5), and 

met the ASTM D2500-17 (2017) requirement of reproducibility. Likewise, the linear models either 

PCR or PLS are sufficient for NIR-CP calibration and prediction where the noise and potential 

signal suppression had been addressed by the spectral region selection and pre-processing. 

60

65

70

75

80

85

90

95

60 70 80 90 100

N
IR

 P
re

di
ct

ed

Lab Method - ASTM D93

Calibration

60

65

70

75

80

85

90

95

60 70 80 90

N
IR

 P
re

di
ct

ed

Lab Method - ASTM D93

Validation 

Univ
ers

iti 
Mala

ya



 

119 

Table 4.4: Comparison of the model performances in the determination of CP 

Pre-

processing 
Model R2 LVs RMSECV RMSEP RPD References 

MSC PLSR 0.955 7 1.68 1.53 4.66 

This study 

MSC PCR 0.893 5 2.34 2.36 2.93 

SG-SD PLSR 0.915 4 2.19 2.14 3.28 

SG-SD PCR 0.919 5 2.02 2.12 3.29 

SG-SD PLSR - 5 - 1.22 - 
(Palou et al., 

2017) SD-DS PLSR - 5 - 1.39 - 

- PLSR - - - 1.80 - 

(Process 

Insight, 

2019) 

-Not reported; SD-GS (second derivative-gap segment) 
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Figure 4.85: Cloud Point MSC-PLSR Model at total of 7 LVs 

 

4.6.2.4 Modelling of Cetane Index 

Cetane number is a diesel combustion indicator related to the compositional variation in 

paraffinic and aromatic hydrocarbons (ASTM D613-03, 2003). Alternatively, it can be computed 

in terms of Cetane Index (CI) in the absence of a test engine by using the diesel density and the 

boiling temperature (ASTM D976-06, 2006). Based on such arguments, the CI is, therefore, ready 

to be estimated via a multivariate NIR calibration strategy. 

Table 4.5 lists the multivariate NIR models in CI estimation; for this study, the calibration range 

was from 45-63. Apparently, CI can be spectrometric determined using various calibration 

strategies, where an appropriate combination of data analytics could deliver promising results. For 

example, advanced machine learning tools, i.e. artificial neural networks (ANN) and support 

vector machine regression (SVMR), have been reported together with diverse signal pre-

processing algorithms. As shown in Table 4.5, the models obtained from this study fit online CI 
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measurement, with an excellent degree of precision and unbias compared to other reported models, 

including the ASTM reference method (ASTM D976-06 2006). Notably, the SG-SD-PLSR model 

that explained 98% of the CI variation with 4 LVs showed the best predictive performance. When 

considering CI measurement at the limit specified in the local requirement of diesel fuel, i.e. 47, 

the relative prediction error of the model was 0.77%. 
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Table 4.5: Comparison of the model performances in the determination of CI 

Pre-processing Model R2 LVs RMSECV RMSEP RPD References 

MSC PLSR 0.9877 4 0.39 0.30 12.02 

This study 
MSC PCR 0.9887 4 0.37 0.30 11.90 

SG-SD PLSR 0.9898 4 0.36 0.27 13.35 

SG-SD PCR 0.9887 4 0.38 0.31 11.40 

ISPXY+ IGWO SVMR 0.936 - - 1.57 - (Liu et al., 2022) 

SG-FD + CC SVMR 0.887 - - 1.43 - 
(Wang et al., 2020) 

SG-FD + SCARS SVMR 0.936 - - 0.20 - 

SG-SD PLSR - 2 - 1.02 - 
(Palou et al., 2017) 

SD-DS PLSR - 4 - 1.02 - 

MSC + LS-SVM + DOSC PLSR - - 0.56 0.24 - (Feng, Wu, & Zeng, 2015) 

SNV PLSR 0.894 - - 0.56 - (Alves et al., 2012) 

SG + MC PLSR 0.94 2 0.4 0.5 - (Gonzaga & Pasquini, 2010) 

FD + VN ANN 0.971 - 0.20 0.44 - (Santos Jr et al., 2005) 

-Not reported; ANN (artificial neural network); ISPXY (improved XY co-occurrence distance); IGWO (improved grey wolf optimization); 
SVMR( support vector machine regression); SG-FD (Savitzky-Golay first derivative); CC(correlation coefficient); SCARS (stability competitive 
adaptive reweighted sampling); SD-GS (second derivative-gap segment); LS-SVM (least square support vector machine); DOSC ( direct 
orthogonal signal correction); FD (first derivative); VN (vector normalization). 
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Figure 4.86: Cetane Index SG-SD-PLSR Model at total of 4 LVs 
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CHAPTER 5: CONCLUSION 

Three types of petroleum products (gasoline, diesel and kerosene) were well discriminated 

against using FT-NIR spectroscopy. With the combination of PCA, the unknown petroleum 

products will be identified based on the similarities of their spectral features and compositions. 

As a result, FT-NIR coupled with PCA, fast qualitative measurement of less than a minute, and 

cheaper cost can be applied without the laboratory reference method analysis. 

In the case study for differentiation between gasoline with and without additives, the PCA 

analysis outcomes provided not-so-clear discrimination and classification between them due to 

the concentration of additives being at a low concentration (in ppm(wt)) level compared with 

the compositions of the gasoline, which at the % volume level. However, the FT-NIR spectrum 

in the region of 4100-4000 cm-1 and 4700-4500 cm-1 indicates slight differentiation between 

gasoline and without additives. 

In diesel, the differentiation and classifications were clearly separated into two clusters, i.e., 

diesel with and without PME, with a high degree of accuracy from the PCA outcomes. The 

result is expected because the composition varies depending on the presence of methyl ester 

groups (C=O and C-O) and the concentrations of PME blended into diesel with the range of 7 

vol/vol % up to 21 vol/vol% compared with diesel without PME blended. 

Determination of fuel properties is vital for process control and optimisation of diesel 

blending, in addition to complying with quality specifications and emission standards. By 

appropriate spectral region selection, calibration/validation set partition, spectra pre-

processing, and regression algorithm, this study has delivered an FT-NIR alternative for 

simultaneous determination of T95, FP, CP and CI, where the prediction performance is 

comparable to the ASTM reference methods. Since the targeted properties strongly depend 
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upon hydrocarbon variability in the diesel sample, the NIR combination region (4000- 4800 

cm-1) granted vital information at the molecular level for mathematical modelling. At the same 

time, the calibration/validation set partition via random selection provided a strong 

representation throughout the working region, which was evaluated by the score plots in a 

reduced dimension. These two steps donated the fundamentals for NIR calibration; thus, 

comparable models were achieved by MSC/SG-SD and PCR/PLSR algorithms. This revealed 

that the model performance relies upon every component along the calibration process; 

appropriate pre-treatment is crucial to deliver to a model that fits its purpose. 
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