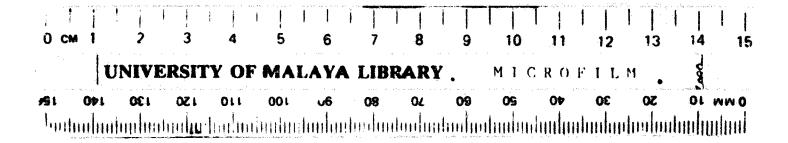



11	ĮЩI	Ŋ	1111	nju	1111	lijin	tjU	Jim		Kiji	Mph	1111	нн	lijti	iifii	11]11	11741	HIII	hjff	liµi	ηm	ЩЛ	IIIIII	ihi	m		Imp	[]]]
01	M M	ĩ <u>o</u>		20		30		40	6	0	00		70		80	_	90		100		110		1 20		130	14	0	150
			UN	VIV	EF	SI T	ГҮ	OF	M	NL/	AYA	L	IB	RA	RY	Υ.		Μ	1 (î R	()	f. I	L	Μ	٥	Ş		
91 	ł	7L 	I	13 	1	13 	ł	•	01 † †	1	6 		8	ł	2	ł	9	1	9	1	•	i	E	1	F	 	cre 1	0



STRUCTURES OF DIFFERENTIABLE MANIFOLDS

by

TU YONG ENG

A dissertation submitted to the Faculty of Science of the University of Malaya, Kuala Lumpur in fulfilment of the requirements for the degree of Master of Science

1990

ACKNOWLEDGEMENT

I would like to express my heartfelt thanks to my supervisor, Dr. Tan Sin Leng for his invaluable advice and guidance, without which this dissertation would never be completed.

My sincere thanks also to Dr. Kon Song How, for his kind assistance and Dr. Ng Boon Yian for being the acting supervisor while Dr. Tan Sin Leng was on sabbatical leave.

I would like to express my sincere thanks to Prof. Cheng, Head of Mathematics Department for allowing me to use the facilities needed.

I am also grateful to my parents and beloved wife for their love and support.

Lastly, my heartfelt appreciation to Miss Ng for her assistance in typing the dissertation.

CONTENTS

ACKNOWLEDGEMENTS									
INTRODUCTION									
CHAPTER	1.	DEFINITIONS AND PRELIMINARIES							
	1.1.	Differentiable manifolds	1						
	1.2.	Construction of manifolds	6						
	1.3.	Examples of manifolds	7						
CHAPTER	2.	G-STRUCTURES							
	2.1.	Basic definitions	14						
	2.2.	Examples of G-structures	20						
	2.3.	Transition functions of certain manifolds	25						
CHAPTER	3.	f-STRUCTURES AND RELATED STRUCTURES	45						
	3.1.	Definitions and preliminary results	47						
	3.2.	Riemannian metric on f-manifold	50						
	3.3.	Integrability condition of f-structure	53						
	3.4.	Globally framed f-structure	54						
	3.5.	(f,k) structures	55						
	3.6.	bi-f structure	59						
CHAPTER	4.	ALMOST COTANGENT STRUCTURES	64						
	4.1.	Almost cotangent manifold	65						
	4.2.	Almost tangent structure	76						

BIBLIOGRAPHY

80

INTRODUCTION

This dissertation consists of four chapters. Chapter 1 introduces the basic concept which will be used in the later part of the dissertation. Chapter 2 is devoted to the study of G-structures. Chapter 3 is on the f-structure and its related structures. Almost tangent structures and almost cotangent structures are discussed in Chapter 4.

In this dissertation, the manifolds are assumed to be real, paracompact and differentiable. It is well known that such a manifold admits a metric. Hence, it has an underlying Riemannian structure.

A result on the integrability of a G-structure is as follows: A G-structure is integrable if and only if there exists a permissible n-frame $\{v^1, \ldots, v^n\}$ on each open set U_{α} of a coordinate covering $\{(U_{\alpha}, x_1, \ldots, x_n)\}$ such that if c_{ij} , determined by $\frac{\partial}{\partial x_i} = \sum_{j=1}^n c_{ij} v^j$, then we have $\frac{\partial c_{ij}}{\partial x_k} = \frac{\partial c_{kj}}{\partial x_i}$ for all i, j and k.

We studied also an integrable almost complex structure on S^2 . Furthermore, based on a set of transition functions on \mathbb{RP}^{2n-1} , we conclude that \mathbb{RP}^{2n-1} is orientable.

In Chapter 3, we discussed the concept of f-structures, globally framed f-structures, (f,k) structures and bi-f structures. These structures are defined by certain (1,1) tensor fields. In this chapter, the relations among these structures and G-structures are discussed. It is shown that $S^{2p+1} \times S^{2q+1}$ admits a bi-f structure. Almost tangent structure and almost cotangent structures are discussed in Chapter 4. We studied the basic properties of these structures. Based on the G-structure, we showed that the almost tangent manifold admits an almost cotangent structure and an almost complex structure. Similarly, the almost cotangent structure gives rise to an almost tangent structure and an almost complex structure.