CHAPTER 1. DEFINITIONS AND PRELIMINARIES

Chapter 1 consists of basic concept in differential geometry that would be used in this dissertation.

1.1. Differentiable manifolds

Let \mathbb{R}^n be the n-dimensional usual Euclidean space. An n-dimensional (differentiable) manifold is a paracompact, second countable topological space M such that

(i) M is a Hausdorff space and each point of M has a neighborhood that is homeomorphic to an open set of \mathbb{R}^n. Thus, M is a locally Euclidean space.

(ii) There is a collection of coordinate systems $\{(U_\alpha, \varphi_\alpha)\}$ where φ_α is a homeomorphism of a connected set $U_\alpha \subset M$ onto an open subset of \mathbb{R}^n satisfying the following three properties:

(a) $\bigcup_\alpha U_\alpha = M$.

(b) $\varphi_\alpha \circ \varphi_\beta^{-1} : \varphi_\beta(U_\alpha \cap U_\beta) \subset \mathbb{R}^n \to \varphi_\alpha(U_\alpha \cap U_\beta) \subset \mathbb{R}^n$ are C^∞ for all α and β.

(c) The collection of coordinate system $\{(U_\alpha, \varphi_\alpha)\}$ is maximal with respect to (b). This collection defines the differentiable structure of the manifold M. The open set U_α is called a coordinate neighborhood for all $m \in U_\alpha$.
An n-dimensional manifold will be denoted by M^n or simply by M if the underlying dimension of the manifold is not under consideration. A collection of $(U_\alpha, \varphi_\alpha)$ which fulfills the conditions ii(a) and (b) in the above definition is called an atlas of M. Clearly, if an atlas of the manifold M is specified, the differentiable structure of M is defined.

Let M be a manifold with an atlas $\{(U_\alpha, \varphi_\alpha)\}$. If N is an open subset of M, then N is a manifold with an atlas $\left\{\left\{(U_\alpha \cap N, \varphi_\alpha|_{U_\alpha \cap N})\right\}\right\}$. Let $m \in M^n$. Functions f and g defined on an open set containing m are said to be equivalent if they agree on some neighborhood of m. The set of equivalence classes is denoted by \tilde{F}_m. \tilde{F}_m is an algebra. A tangent vector v at the point m is a linear derivation of \tilde{F}_m. The tangent space of M at m, M_m, is the set of tangent vectors at m. It can be shown that M_m is a vector space.

Since M_m is n-dimensional, it is isomorphic to R^n. Its dual space will be denoted by M^*_m. Let $TM = \bigcup_{m \in M} M_m$ and $TM^* = \bigcup_{m \in M} M^*_m$. Let U be a coordinate neighborhood of m with coordinate functions x_1, \ldots, x_n and coordinate map φ, namely, for each $m \in U$, $\varphi(m) = (x_1(m), x_2(m), \ldots, x_n(m))$. The coordinate function x_i maps U into R. The natural projection $\pi : TM \rightarrow M$ is defined as $\pi(v) = m$ if $v \in M_m$. For each coordinate x_i, the differential dx_i is given by $dx_i(v)f = v(f \circ x_i)$ where $v \in M_m$ and f is a function from R to R. Define $\tilde{\varphi} : \pi^{-1}(U) \rightarrow R^{2n}$ as
for all \(v \in \pi^{-1}(U) \). Observe that

(i) If \((U, \psi)\) and \((V, \varphi)\) are coordinate neighborhoods of \(m \in M \) with coordinate charts \(\psi \) and \(\varphi \) respectively, then \(\tilde{\psi} \cdot \tilde{\varphi}^{-1} \) is \(C^\infty \).

(ii) The collection \(\{ \tilde{\psi}^{-1}(W) : W \) open in \(\mathbb{R}^{2n} \) and \((U, \varphi)\) is a coordinate neighborhood of a point \(m \in M \) and coordinate chart \(\varphi \}\} forms a basis for a topology on \(TM \) which makes \(TM \) into a \(2n \)-dimensional, second countable, locally Euclidean space.

(iii) Let \(\tau \) be the maximal collection, with respect to ii(b) of definition for manifold, containing \(\{(\pi^{-1}(U), \tilde{\psi})\} \). Then \(\tau \) is a differentiable structure on \(TM \).

Hence, \(TM \) is a \(2n \)-dimensional manifold [18]. The space \(TM^* \) is also a \(2n \)-dimensional manifold. It's differentiable structure can be constructed similar to that of \(TM \).

Let \(\psi : M^n \to N^k \) be \(C^\infty \), then \(d\psi_m \) is a mapping of \(M_m \) to \(N_{\psi(m)} \) such that \(d\psi_m (v)f = v(f \cdot \psi)_m \) where \(v \in M_m \) and \(f \) is a function on \(N \). The map \(\psi \) is an immersion if \(d\psi_m \) is non-singular at each \(m \in M \), i.e. \(d\psi_m (M_m) \subset N_{\psi(m)} \) is of n-dimensional. The pair \((M, \psi) \) is a sub-manifold of \(N \) if \(\psi \) is a one-to-one immersion. The map \(\psi \) is an imbedding if \(\psi \) is a one-to-one immersion which is also a homeomorphism into; that is, \(\psi \) is a map into \(\varphi(M) \) with its relative topology. The map \(\psi \) is a diffeomorphism if \(\psi \) maps \(M \) one-to-one onto \(N \) and the inverse map \(\psi^{-1} \) is \(C^\infty \).
A **vector field** X is an assignment of a vector X_m to each point $m \in M$. A vector field X is smooth if whenever V is open in M and $f \in C^\infty(V)$ then $Xf \in C^\infty(V)$. In this dissertation, we will only consider smooth vector fields and the adjective 'smooth' will be dropped. The set of vector fields on M is denoted by $X(M)$.

A **distribution** D of rank k is an assignment of a k-dimensional subspace D_m of M_m to each point $m \in M$. D is smooth if for each $m \in M$, there is a neighborhood U of m and there are k vector fields X_1, \ldots, X_k of class C^∞ on U which span D at each point of U. A vector field X on M is said to belong to the distribution D if $X_m \in D_m$ for each $m \in M$.

Let U and V be vector spaces. The set $U \times V = \{(u,v) : u \in U \text{ and } v \in V\}$ is the *Cartesian product* of U and V. Let N be the vector subspace spanned by elements of the form

$$(u+u',v) - (u,v) - (u',v), \quad (u,v+v') - (u,v) - (u,v'),$$

$$(ru,v) - r(u,v), \quad (u,rv) - r(u,v)$$

where $u,u' \in U$, $v,v' \in V$ and $r \in \mathbb{R}$. The tensor product of U and V, denoted $U \otimes V$ is defined as $(U \times V)/N$.

The contravariant tensor space of degree r for a vector space V, $T^r(V)$ is defined as $V \otimes V \otimes \ldots \otimes V$ (r times tensor product). If $r = 1$, T^1 is equal to V. We set $T^0 = \mathbb{R}$. The covariant tensor space of degree s for a vector space V, $T^s_s(V)$ is defined as $V^* \otimes \ldots \otimes V^*$ (s times tensor product) where V^* is the dual vector space of V. Then $T^1 = V^*$ and $T^0 = \mathbb{R}$. The tensor space of type (r,s) of a vector space V, T^r_s is defined as $V \otimes \ldots \otimes V \otimes V^* \otimes \ldots \otimes V^*$ (r times tensor product of V and s times tensor product of V^*).
The tangent space at \(m \) of the manifold \(M, M_m \), is a vector space. A tensor field of type \((r, s)\) (or \((r, s)\) tensor) is an assignment of a tensor \(K_m \in T^r_s(M_m) \) to each point \(m \in M \). In a coordinate neighborhood \(U \) with coordinate charts \(x_1, \ldots, x_n \), a tensor field \(K \) of type \((r, s)\) can be expressed as

\[
K_x = \sum K_{j_1 \ldots j_s}^{i_1 \ldots i_r} \frac{\partial}{\partial x_{j_1}} \otimes \cdots \otimes \frac{\partial}{\partial x_{i_r}} \otimes dx_{j_1} \otimes \cdots \otimes dx_{j_s}
\]

A tensor field \(K_x \) is \(C^\infty \) if all \(K_{j_1 \ldots j_s}^{i_1 \ldots i_r} \) are smooth in each of the coordinate neighborhoods of all \(m \in M \). In this dissertation, only smooth tensor field will be considered and hence the adjective 'smooth' will be dropped.

A Lie group \(G \) is a manifold endowed with a group structure such that the map \(G \times G \to G \) defined by \((\sigma, \tau) \to \sigma \tau^{-1} \) is \(C^\infty \).

\((H, \varphi)\) is a Lie subgroup of the Lie group \(G \) if \(H \) is a Lie group, \((H, \varphi)\) is a submanifold of \(G \) and \(\varphi : H \to G \) is a group homeomorphism. \((H, \varphi)\) is called a closed Lie subgroup of \(G \) if in addition, \(\varphi(H) \) is a closed subset of \(G \).

From [18], we have the following result:

Let \(G \) be a Lie group, and let \(A \) be a closed abstract subgroup of \(G \). Then \(A \) has a unique manifold structure which makes \(A \) into a Lie subgroup of \(G \). The topology in this manifold structure of \(A \) is the relative topology.

Let \(X, Y \in X(M) \); the Lie bracket \([X, Y]\) is a vector field defined by \([X, Y]f = X(Yf) - Y(Xf)\) for any function \(f \). Let \(G \) be a Lie group with the identity \(e \), the left multiplication by \(a \in G \),
1. A vector field \(X \) is called a \textit{left invariant vector field} if \(\text{d}l_{a}(X_{e}) = X_{a} \) for all \(a \in G \). The \textit{Lie algebra} \(g \) of Lie group \(G \) is defined to be the set of all left invariant vector fields on \(G \) with the usual addition, scalar multiplication and bracket operation. As a vector space, \(g \) is isomorphic with the tangent space \(G_{e} \).

1.2. Construction of manifolds

There are some techniques of constructing new manifolds.

(i) \textit{Direct product}

Direct product \(M_{1} \times M_{2} \) of manifolds \(M_{1} \) and \(M_{2} \) is a manifold of dimension \(n_{1} + n_{2} \). The set \(\{(U_{\alpha}, \varphi_{\alpha} \times \varphi_{\beta}) : \alpha \in A, \beta \in B\} \) where \(\{(U_{\alpha}, \varphi_{\alpha}) : \alpha \in A\} \) and \(\{(U_{\beta}, \varphi_{\beta}) : \beta \in B\} \) are atlas of \(M_{1} \) and \(M_{2} \) respectively, forms an atlas of \(M_{1} \times M_{2} \). If \(M_{1} \) and \(M_{2} \) are compact, the product manifold is also compact. Similarly, if \(M_{1} \) and \(M_{2} \) are orientable (refer to Chapter 2), so is \(M_{1} \times M_{2} \). If \(M_{1} \) admits \(k_{1} \) nowhere vanishing independent vector fields, then \(M_{1} \times M_{2} \) admits \(k_{1} + k_{2} \) nowhere vanishing independent vector fields. Direct product of two Lie groups is a Lie group.

(ii) \textit{Quotient manifold}

The quotient manifold \(M/\rho \) of \(M \) is a manifold with which the natural map \(\mu : M/\rho \to M \) is a submersion, where \(\rho \) is an equivalence relation on \(M \). The following result ensures the existence of certain quotient manifolds.
Let G be a properly discontinuous group of differentiable transformations acting on a differentiable manifold M. Then the quotient manifold M/G has a differentiable structure such that the projection $\mu : M \to M/G$ is differentiable. The dimension of the quotient space M/G is the same as the ambient space M [12].

(iii) Homogeneous space

Let G be a Lie group and H a closed Lie subgroup. Then $G/H = \{cH : c \in G\}$ has a unique differentiable structure such that the natural projection is C^∞ and there exist local sections of G/H in G. G/H is called a homogeneous manifold. The dimension of a homogeneous manifold is the difference of the dimension of G and the dimension of H. If H is a normal closed subgroup of G, then G/H is a Lie group [12].

1.3. Examples of manifolds

(i) Let $M_n(\mathbb{R})$ be the set of $n \times n$ matrices. Clearly, $M_n(\mathbb{R})$ can be identified with \mathbb{R}^{n^2}. Let $\det : M_n(\mathbb{R}) \to \mathbb{R}$ be the determinant function. This is a continuous map from \mathbb{R}^{n^2} to \mathbb{R}. Therefore $\det^{-1}(0)$ is closed in \mathbb{R}^{n^2}. Let $GL(n;\mathbb{R})$ be a subset of \mathbb{R}^{n^2} where the determinant function is not zero. Clearly, $GL(n;\mathbb{R})$ is an open subset of \mathbb{R}^{n^2} and hence is a manifold with the relative topology and the induced differentiable structure.

The manifold $GL(n;\mathbb{R})$ with the usual group structure is a Lie group. It is called the general linear group. Since the tangent space of $GL(n;\mathbb{R})$ at identity is equal to the
tangent space of \mathbb{R}^{n^2} at this point, the Lie algebra of $\text{GL}(n;\mathbb{R})$, denoted by $\mathfrak{gl}(n;\mathbb{R})$, is isomorphic to \mathbb{R}^{n^2} as a vector space. Therefore, $\mathfrak{gl}(n;\mathbb{R})$ can be considered as the set of all $n \times n$ matrices $M_n(\mathbb{R})$. The general linear group $\text{GL}(n;\mathbb{R})$ has two components corresponding to the sets
\{x \in \text{GL}(n;\mathbb{R}) : \det x > 0\} and \{x \in \text{GL}(n;\mathbb{R}) : \det x < 0\}. The first component contains the identity element of the Lie group $\text{GL}(n;\mathbb{R})$ and thus is a Lie subgroup of $\text{GL}(n;\mathbb{R})$. This Lie subgroup is denoted by $\text{GL}^+(n;\mathbb{R})$.

The set \{x \in \text{GL}(n;\mathbb{R}) : \det x = 1\} is a closed subgroup of $\text{GL}(n;\mathbb{R})$. As discussed above, a closed subgroup of a Lie group is a Lie subgroup with a unique structure. This Lie subgroup is called special general linear group and is denoted by $\text{SL}(n;\mathbb{R})$.

The orthogonal group $O(n)$ is a subgroup of $\text{GL}(n;\mathbb{R})$ defined by $AA^t = I$ for all $A \in O(n)$. The group $O(n)$ is a closed subgroup of $\text{GL}(n;\mathbb{R})$, thus, it is a Lie subgroup of $\text{GL}(n;\mathbb{R})$. The group $O(n)$ has two components. The identity components (the component contains the identity) is a Lie subgroup of $O(n)$. This Lie group is called special orthogonal group, denoted by $\text{SO}(n)$. The Lie algebra $\mathfrak{o}(n)$ of Lie group $O(n)$ is the set of skew symmetric matrices, a subspace of $\mathfrak{gl}(n;\mathbb{R})$. Let E_{ij} be the matrix with the components 1 at position (i,j), -1 at position (j,i) and 0 otherwise. It is clear that the set \{E_{ij}, i < j\} is a set of basis of $\mathfrak{o}(n)$. Thus, the dimension of the $\mathfrak{o}(n)$ is $\frac{n(n-1)}{2}$. The dimension of a Lie group is equal to that of
its Lie algebra (as a vector space) and therefore equals to $\frac{n(n-1)}{2}$. The dimension of the Lie group $SO(n)$ is also equal to $\frac{n(n-1)}{2}$ since it is a maximal component of $O(n)$.

(ii) An n-dimensional sphere, S^n, is defined as a subset of \mathbb{R}^{n+1} such that $\sum_{i=1}^{n+1} x_i^2 = 1$, where x_i are coordinate charts of \mathbb{R}^{n+1}. Let $U = S^n\backslash\{(1,0,\ldots,0)\}$ and $V = S^n\backslash\{(-1,0,\ldots,0)\}$; we observed that $U \cup V = S^n$. Let ϕ_u be the stereographic projection of U onto \mathbb{R}^n defined by

$$\phi_u(x_1, \ldots, x_{n+1}) = \left(\frac{x_2}{1-x_1}, \frac{x_3}{1-x_1}, \ldots, \frac{x_n}{1-x_1} \right) = (u_1, \ldots, u_n)$$

and ϕ_v be the stereographic projection of V onto \mathbb{R}^n defined by

$$\phi_v(x_1, \ldots, x_{n+1}) = \left(\frac{x_2}{1+x_1}, \ldots, \frac{x_n}{1+x_1} \right) = (v_1, \ldots, v_n).$$

We have

$$\phi_u^{-1}(u_1, \ldots, u_n) = \left(\frac{1 - \sum_{i=1}^{n} u_i^2}{1 + \sum_{i=1}^{n} u_i^2}, \frac{2u_1}{1 + \sum_{i=1}^{n} u_i^2}, \ldots, \frac{2u_n}{1 + \sum_{i=1}^{n} u_i^2} \right)$$

and

$$\phi_v^{-1}(v_1, \ldots, v_n) = \left(\frac{1 - \sum_{i=1}^{n} v_i^2}{1 + \sum_{i=1}^{n} v_i^2}, \frac{2v_1}{1 + \sum_{i=1}^{n} v_i^2}, \ldots, \frac{2v_n}{1 + \sum_{i=1}^{n} v_i^2} \right).$$

The map $\phi_u \cdot \phi_v^{-1}$ is a mapping from $\mathbb{R}^n \to \mathbb{R}^n$ defined as follows:
\[\phi_u \cdot \phi_v^{-1}(v_1, \ldots, v_n) = \phi_u \left(\begin{array}{c} 1 - \sum_{i=1}^{n} \frac{v_i^2}{1 + \sum_{i=1}^{n} v_i^2} \\ \frac{2v_1}{1 + \sum_{i=1}^{n} v_i^2} \\ \cdots \\ \frac{2v_n}{1 + \sum_{i=1}^{n} v_i^2} \end{array} \right) \]

\[= \left(\begin{array}{c} \frac{2v_1}{1 + \sum_{i=1}^{n} v_i^2} \\ \frac{2v_n}{1 + \sum_{i=1}^{n} v_i^2} \\ \cdots \\ \frac{2v_1}{1 + \sum_{i=1}^{n} v_i^2} \end{array} \right) \]

Since \(U \cap V = S^n \setminus \{(1,0,\ldots,0), (-1,0,\ldots,0)\}, \) \(\sum_{i=1}^{n} v_i^2 \neq 0, \) thus, \(\phi_u \cdot \phi_v^{-1} \) is \(C^\infty. \) With the same argument, we can show that \(\phi_v \cdot \phi_u^{-1} \) is \(C^\infty \) on \(\phi_u(U \cap V). \) Therefore \(\{(U, \phi_u), (V, \phi_v)\} \) is an atlas on \(S^n. \) The differentiable structure on \(S^n \) is the maximal collection of coordinate charts (a mapping of a subset of \(S^n \) into \(\mathbb{R}^n \)) compatible with \(\phi_u \) and \(\phi_v. \) So, we conclude that \(S^n \) is an \(n \)-dimensional manifold.

Let \(U_{2i} = \{(x_1, \ldots, x_{n+1}) \in S^n : x_i > 0\} \) and \(U_{2i-1} = \{(x_1, \ldots, x_{n+1}) \in S^n : x_i < 0\}. \) We have \(\bigcup_{j=1}^{2n+2} U_j = M. \) Let \(f_j : U_j \rightarrow \mathbb{R}^n; f_j(x_1, \ldots, x_{n+1}) = (x_1, \ldots, \hat{x}_i, \ldots, x_m) \) where \(\hat{x}_i \) is an omission of \(x_i \) and \(j = 2i \) or \(2i-1. \) The following are functions \(f_j \cdot \phi_u^{-1} \) and \(\phi_u \cdot f_j^{-1} \) on appropriate domains.
\[f_j \cdot \phi_u^{-1}(u_1, \ldots, u_n) = \begin{pmatrix}
\frac{1 - \sum_{i=1}^{n} u_i^2}{1 + \sum_{i=1}^{n} u_i^2} & \frac{2u_1}{1 + \sum_{i=1}^{n} u_i^2} & \ldots & \frac{2u_{k-1}}{1 + \sum_{i=1}^{n} u_i^2} & \ldots & \frac{2u_n}{1 + \sum_{i=1}^{n} u_i^2}
\end{pmatrix}
\]

where \(j = 2k \) or \(2k-1 \).

\[\phi_u \cdot f_1^{-1}(y_1, \ldots, y_n) = \begin{pmatrix}
\frac{y_1}{\sqrt{1 - \sum_{i=1}^{n} y_i^2}} & \ldots & \frac{y_n}{\sqrt{1 - \sum_{i=1}^{n} y_i^2}}
\end{pmatrix}
\]

\[\phi_u \cdot f_2^{-1}(y_1, \ldots, y_n) = \begin{pmatrix}
\frac{y_1}{1 + \sum_{i=1}^{n} y_i^2} & \ldots & \frac{y_n}{1 + \sum_{i=1}^{n} y_i^2}
\end{pmatrix}
\]

and

\[\phi_u \cdot f_j^{-1}(y_1, \ldots, y_n) = \begin{pmatrix}
\frac{y_2}{1+y_1} & \ldots & \frac{x_k}{1+y_1} & \ldots & \frac{y_n}{1+y_1}
\end{pmatrix}
\]

for \(j > 2 \)

\[x_k = \begin{cases}
\sqrt{\frac{n}{1 - \sum_{i=1}^{n} y_i^2}} & \text{if } j = 2k \\
-\sqrt{\frac{n}{1 - \sum_{i=1}^{n} y_i^2}} & \text{if } j = 2k-1
\end{cases}
\]

and \(x_k \) is at the kth position.

Since all these functions are restricted to appropriate domains, they are \(C^\infty \) functions and thus all \(f_j \) are compatible to \(\phi_u \). The functions \(f_j \) are coordinate charts of \(S^n \).
The tangent space of \(S^n \) at \(x = (x_1, \ldots, x_{n+1}) \) is \(\{y = (y_1, \ldots, y_{n+1}) : \mathbb{R}^{n+1} : x \cdot y = 0\} \) (\(x \cdot y \) is the inner product of \(x \) and \(y \)). It is well-known that there exist \(\rho(n)-1 \) linearly independent vector fields on \(S^{n-1} \), where \(\rho(n) \) is defined as below:

\[
\rho(n) = 2^c + 8d \text{ with } n = (2a+1)2^b \text{ and } b = c + 4d, \quad 0 \leq c \leq 3.
\]

Clearly, \(n \) is odd (i.e. \(n-1 \) is even) implies \(b = 0 \), thus \(c = d = 0 \) and \(\rho(n) = 1 \). Therefore any vector field on even dimensional sphere has at least one zero. \(S^1, S^3 \) and \(S^7 \) are the only parallelizable spheres.

(iii) Let \(\mathbb{R}^n \) be \(\mathbb{R} - \{0\} \). The n-dimensional real projective space \(\mathbb{R}P^n \) is defined to be \((\mathbb{R}^{n+1} - \{0\})/\mathbb{R}^* \), namely, if \(x, y \in \mathbb{R}^{n+1} - \{0\} \), then they define the same point in \(\mathbb{R}P^n \) iff \(x = cy \) for some \(c \in \mathbb{R}^* \). Let \(U_1 = \{(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} - \{0\} : x_1 = 1\} \) and \(\phi_1 : U_1 \to \mathbb{R}^{n+1} ; \phi_1(x_1, \ldots, x_{n+1}) = (x_1, \ldots, \hat{x}_1, \ldots, x_{n+1}) \) where \(\hat{x}_1 \) is the omission of \(x_1 \). Each point of \(U_1 \) defines a unique point in \(\mathbb{R}P^n \) and hence \(U_1 \) can be considered as an open set in \(\mathbb{R}P^n \). Clearly, \(\bigcup_{i=1}^{n+1} U_i = \mathbb{R}P^n \). Now, we derive the function \(\phi_1 \cdot \phi_j ^{-1} \) on appropriate domains.

\[
\phi_1 \cdot \phi_j ^{-1}(x_1, \ldots, x_n) = \phi_1(x_1, \ldots, 1, \ldots, x_n)
\]

where 1 is at position \(j \)

\[
= (x_1, \ldots, \hat{x}_1, \ldots, 1, \ldots, x_n)
\]

Clearly, these functions are \(C^\infty \). Therefore \(\{(U_i, \phi_i) : i = 1, \ldots, n+1\} \) is an atlas on \(\mathbb{R}P^n \).
(iv) A complex manifold can be defined similar to the real manifolds. We substitute \mathbb{R}^n with \mathbb{C}^n and instead of C^∞, $\varphi^{-1}_\alpha \varphi^{-1}_\beta$ are required to be analytic for all α and β.

Clearly \mathbb{C}^n is an n-dimensional complex manifold. As in (i), we let $M_n(\mathbb{C})$ be the set of $n \times n$ matrices with complex components. Let $\det : M_n(\mathbb{C}) \to \mathbb{C}$ be the determinant function. This is a continuous map from \mathbb{C}^{n^2} into \mathbb{C}. $\det^{-1}(0)$ is closed in \mathbb{C}^{n^2}. Let $GL(n;\mathbb{C})$ be a subset of \mathbb{C}^{n^2} defined by $GL(n;\mathbb{C}) = \{ x \in M_n(\mathbb{C}) : \det x \neq 0 \}$. This is an open subset of \mathbb{C}^n and hence is an n-dimensional complex manifold.

$GL(n;\mathbb{C})$ with the usual group structure is a Lie group. In Chapter 2, we will show that $GL(n;\mathbb{C})$ can be considered as a Lie subgroup of $GL(n;\mathbb{R})$; namely, $GL(n;\mathbb{C})$ is a $2n^2$-dimensional real manifold.

The set $\{ x \in GL(n;\mathbb{C}) : \det x = 1 \}$ is a closed subgroup of $GL(n;\mathbb{C})$ and hence is a Lie subgroup of $GL(n;\mathbb{C})$ with relative topology. This is the special linear complex group and denoted by $SL(n;\mathbb{C})$.

Unitary group, $U(n)$, is a subgroup of $GL(n;\mathbb{C})$ such that $A^* A = I$ for all $A \in U(n)$. Unitary group is a Lie subgroup of $GL(n;\mathbb{C})$.