CHAPTER 2. G-STRUCTURES

In this chapter, we will discuss the basic definition of
G-structure of a manifold and its related concepts, examples on
G-structure and the construction of transition functions on the
spheres and real projective spaces. By observing the transition
functions on a manifold, we can draw positive conclusions about

the existence of certain structures on the manifold.

2.1. Basic definitions

Let P and M be manifolds and G a Lie group. A principal
fibre bundle P over M with structural group G consists of a right

action of G on P which fulfills the following conditions:*
(i) G acts freely on P,

(ii) There is a C° surjective map from P onto M denoted by

n : P =+ M

(iii) P is locally trivial, i.e. for every x € M there is a
neighborhood U such that 2 Y (U) is diffeomorphic to U x G.
The diffeomorphism is given by ¢ : n_l(U) + U x G such
that y(u) = (n(u),e(u)), where ¢ 1is a mapping of n~1(U)
into G satisfying ¢(ua) = ¢(u)a for all u e n-l(U) and a €

G.

From the definition of principal fibre bundle, we observed
that:

(i) The map ¢ : n-l(x) + G is bijective for all x € M.




(ii) The group G acts transitively on n-l(x) since if

- 1 ) ‘
u,,u, € t (x) and g = [@(ul)] ]w(u2) then U g = U,

1’72

(iii) For each open set V c U, n-l(V) is diffeomorphic to V x G.

A principal fibre bundle over M with projection m is denoted

as PM,G,n) or P(M,G) or simply P.

Example 1 (Bundle of Bases)

Let M" be a manifold and B(M) the set of (n+l1) tuples

(m,e.,...,e ) where (e ,,...,e ) |is a set of basis of M . The
1 n 1 n m
projection n is defined as n(m,el..,r,en) = m. The general linear
group GL(n;R) acts on B(M) on the right as (m.el,...,en)g = (m, ¥

Bi1€yr Y ginei) where g = (gij) € GL(n;R).
Let (xl,...,xn) be the coordinate maps on an open set U of M
and ~é-,...,—§— be the standard basis of TU. For each m € U and
axl axn
basis {el....,en} of Mm’ there is a unique element g € GL(n;R)
3 3 ,
such that (m,el,..,,en) = [m.ggz,...,ggg]g. Therefore there 1is a

1-1 onto correspondence F between n—l(U) and U x GL(n,R) given by
F((m,el,...,en)) = (m,g). Thus the local coordinate of B(M) can
be written as {(Ui x GL(n;R), X x Xij)} where xij is the standard
coordinate charts of GL(n;R). Hence B(M) is a manifold and it is
easy to see that the projection map is differentiable. The
manifold B(M) is called the bundle of bases for the manifold M.
The dimension of B(M) is n2 + n. From the construction of local

coordinates of B(M), 1t is clear that B(M) is a principal fibre

bundle over M with the structural group GL(n;R) and canonical

projection w.



Bundle of Bases B(M) plays an important role in the study

of G-structure of M.

Transition functions of the principal fibre bundle P(M,G,u)

with respect to a set of open covering {Ua} is a family of

mappings waB : Ua N UB + G defined by waB(n(u)) = @a(u)(wﬁ(u))_l,

-1
where u € n (Ua N UB) and 0, is the mapping defined in the

definition of principal fibre bundle.

The map waB is well defined for {if n(ul) = n(u,) = x, then

(x)

]

-1
wa(ul)(wﬁ(ul)) =

1 ‘ -1
wa(uz)I@B(uZ)] .

= u,8 for some g € G and

T % Vop
| -1 _ TS TR
@a(uzg)(¢8(u2g)) = wa(uz)g g [wB(uz)]

il

Furthermore, for x € Ua nU.n Uy, the transition functions

B

fulfill the following relations:

WaB(X) = way(X)wyB(X)

Therefore, waa(X) = e and wa (x) = wéi(x).

B

Kobayashi and Nomizu gave a construction of principal fibre
bundle based on a set of transition functions and an open

covering. Proposition 5.2 of [12] is as follows:

Let M be a manifold, {Ua} an open covering of M and G a Lie
group. Given a mapping waB : Ua ) UB +G for -every nonempty

Ua N UB such that waB(x) = war(X)wzﬁ(X) for each x € Ua N UB N UW’

then we can construct a principal fibre bundle P(M,G) with

transition functions waB.

Let {Ua) be an open covering of M and {waB} the transition

functions of P(M,G’,n) corresponding to the open covering {Ua}.



Let G be a subgroup of G'. If waB(X) € G for all x € Ua N UB for
the covering (Um}’ then the structural group G’ 1is said to be
reducible to G. The existence of an open covering {Ua} and the
transition functions is called a G-structure on M (with respect to

the given principal fibre bundle P(M,G" ,m)).

Kobayashi and Nomizu [12] used subbundle to define G-
structure. Chern fd] considered the reduction of the bundle of
bases only. In general, the reduction can be done on any
principal fibre bundle, but bundle of bases is commonly used.
From here onwards, the reduction is restricted to bundle of bases

unless specified otherwise.

Let (el,...,en} be a set of basis on Ua and {fl""’fn} a
set of basis of UB such that wa{(m,el....,en)} =1 and
wB{(m,fl,...,fn)} =1 for all me Ua n UB‘ If (m,fl,...,fn)g =
(m,el,...,en) where g = (gij) then wBa(m) = g. Therefore, G-

structure can be reformulated as follows:

There exists a G-structure on M if and only if there is an
open covering {Ua} and n-frames {ea} such that (m,eB)g = (m,ea)
with g € G for all m € Ua N U'3 and all «, B. These n-frames are

called adapted (permissible) n-frames.

A homomorphism f : P’ (M',G’) -~ P(M,G) 1s called an imbedding
if f : P° » P is an imbedding and if f : G’ » G is a monomorphism.
The induced mapping f : M’ » M is also an imbedding. By identi-
fying P’ with f(P’), G’ with £(G’) and M’ with f(M'), we say that

P' (M’ ,G’) is a subbundle of P(M,G).



Kobayashi and Nomizu [12] proved in Proposition 1.5.3 that
the existence of G-structure is equivalent to the exlstence of a

subbundle P(M,G) of B(M)(M,GL(n;R)).

Let P be the reduced bundle with structural group G. The
G-structure is integrable if every point of M has a coordinate

system (U,x,,...,x ) such that the cross section méw,.,,,wiﬁ of
1 n 6%, O

B(M) over U is a cross section of P over U.

Let {Ua} be an open covering of M corresponding to a
G-structure. The G-structure is integrable If the matrices of
change of coordinate systems on Ua a} U[3 belong to G for all

U ,u, e {U_ }.
(04 &

B
We can make use of the exlistence of solution for partial

differential system to determine the integrability of an G-

structure. The problem is "given a set of independent vector
fields (vl,...,vn) on an open set U, is there any coordinate
system {x,,...,x_} in which 2 . v1 for all 17?".
1 n Bxi
Let {y.,...,y_ } Dbe a local coordinate of U. Then 2.
1 n ayi
n .
z cijvJ. The existence of coordinate maps (xl,...,xn} on U is
J=1 B,
equivalent to the existence of solution for 3y = Cji' It is
J

well-known that the necessary and sufficlent condition for the

existence of the solution x.l is

AR

for all i,j,k=1,...,n .
3Yk ayj

*)




If ¢ fulfills condition (*), then for another set of

1]

coordinate charts {21,.._,2n) on U, the coefficient dij‘ where
. n . ad ad
_i 1
5%m = ¥y dijvJ also fulfills the condition 5 LN . 3 KJ for all 1,
i =1 i %y
j and k. In fact, the relation between §gw and 59— are given as
daz, y\j
follows:
LM (M)
0z J=1 zy ang k=1 =1 az1 Jjk Bxk
Therefore
n Jy
d,, = )} ==~ ¢
ik j=1 azi Jk
ad 1 62 n n 4 dc a
U AT : oy Yy %€ %
3
“Zr =1 dz azi Jk =1 1 az1 ay azr
and
ad n 62y n n Jdy, dc ay
rk _ v J FOT J Jk s
oz, j=1 9zy0z, Jk 32y o) gz, Byg 0%
n 62y dy ., dc ay
-7 'y ; ) J sk s
j=1 92097y Uk gy e 9z, dyy o7,
n 82 n n dy, dc ay ad
‘.z YJ o +z z J jk S= ik
j=1 azraz1 Jk j=1 s=1 azi ays 8zr azr

Therefore, a G-structure is integrable if and only if there

n
exists a permissible frame {vl,...,v } on each open set U of



coordinate covering {(U } and ¢ . determined by 2= Y c, vJ such
a 1 ax, 1]

acij 6ck.
that = J for all i, j and k where {(U ,x )} 1is a
8X. o' T

axk

coordinate atlas of M.

2.2. Examples of G-structures

Example 2 (G-structures)

o
(i) Let M be a mianifold and An(M) = U Tn(Mm).A manifold is
meM

*
orientable if An(M) - 0 has exactly two components, where

-
0 U {0 e An(Mm)), the O-section of the exterior n-bundle
meM

3
A (M).
n
If M is orientable, choose an orientation of M, that
*
is, choose one of the two components of An(M) - 0, call it
A. Then A n Tn(Mm) is precisely one of the two components
»
of A (M) - {0}). Let {(U ,x )} be an open covering of M
n m ' o
with coordinate charts X such that the map of Ua into
[ ]
An(Mm) defined by m » (dx;, A ... A dxn)(m) has ranges in A.

Let (U,x ,..‘,xn) and (V,yl,...,yn) be two coordinate

1

systems in the open covering {(Ua'xa)}’ then

ax,
: = 2
(dxy A ... A dxn)(m) = det 3 (dy, A ... A dyn)(m)
Jlm
axi
where me Un V., det|z=— > 0 since dx1 A ... A dxn and
Jlm

dy1 A ... A dyn pelong to A. Therefore, the structural

+
group of the orientable manifold is reducible to GL (n;R),

a subgroup of GL(n;R) with positive determinant.




(ii)

(1ii)

Conversely, if the structural group is reducible to

-+
GL (n;R), then there exists a nowhere vanishing global

n-form w on the manifold M. Let At = U {awlm) : a € R+)
meM
— — *
and A = U {aw(m) : a € R}, then An(M) - 0 is the
meM

disjoint union of two open subset !\+ and A . Hence M is
orientable.

A Riemannian manifold is a manifold M for which 1is
given at each meM a positive definite symmetric
bilinear form g( , ) on Mm, and this assignment is smooth.
Such an assignment is called a Riemannian metric g on M. A
manifold together with a Riemannian metric defined on M is
called a Riemannian structure on M. Therefore, if X and Y
are smooth vector fields on M, then gm(X,Y) is a smocth
function. It is well-known that an O(n) structure on the
manifold M is equivalent to a Riemannian structure. It can
be shown that any manifold admits a Riemannian structure.
Thus, it has an O(n)-structure.

An almost complex structure is a (1,1) tensor J such that
J2 = -] where 1 1is the identity (1,1) tensor. The complex
general linear group, GL(%,C) can be considered as a
subgroup of GL(n;R) (refer to Example 3(i)). It is well-
known that an almost complex structure on a manifold M is
equivalent to a GL(S,C) structure. A metric on an almost
complex manifold M such that g(JX,JY) = g(X,Y) is called a
hermitian metric. A hermitian structure on a manifold M is

-

equivalent to a U(g)—structure, where U(g) is the unitary
po £




(iv)

(vi)

(vii)

group. The group U(g) is equal to GL(%,E) n 0(n). There-
. n
fore, U(i) is a subgroup of GL(n;C) whose elements are of

the form Axt = 1,

Referring to Section 3.3, an f-structure is equivalent to
U(%) %« O(n-r) structure where r 1is the rank of the f-
structure and n is the dimension of the manifold. The
U(%) » T(n-r) structure is equivalent to a globally framed
f-structure. This will be proved in Section 3.5. There-
fore, an almost contact structure 1is equivalent to the
reduction of structural group to U(E%l) « 1 (An almost
contact structure is globally framed f-structure of rank

n-1).

A manifold M is said to be parallelizable if there evists n
independent vector fields which span the tangent bundle
TM globally. The structural group of a parallelizable

manifold is reducible to identity.

A reduction of structural group to a group consisting all
elements of the form [g i} where A € GL(n;R) is equivalent
to an almost tangent structure. A reduction of structure
group to a group consisting all elements of the form

B A

an almost cotangent structure. These will be discussed in

[A 0 ] where A € GL(n;R) and ABt = BAt is equivalent to

Chapter 4.

A necessary and sufficient condition for an n-dimensional
manifold to admit a tensor field ¢ # 0O of type (1,1) such

that @4+w2 = (0, rank ¢ = %(rank wz +n) =r 1is that the




group of the bundle of bases is reducible to the group
U(r-3) x O(n-r) x O(n-r) [21].

(viii) A reduction of the structural group to U(g) X U(;) X
O(n-r-s) is equivalent to a bi-f structure. This will be

proved in Chapter 3.

Example 3 (Observations on G-structures)

(1) GL(n;C) can be considered as a subgroup of GL(2n;R). Let ¢

be the mapping of GL(n;C) to GL(2n;R) defined as follows:

(2, +1b ) € GL(n:C) —2—> € GL(2n;R)

Jk -b

Jk %k
This is a group homomorphism since
(a; +iby ) (e +id ) = [Z (@ e e™®audes) * l(ajkdks+bjkcks)1]

and

L @plrs s’ T @5k ks’

- L (59 P yks) L (@ %% s ™ 5%’

that is G[(ajk+ibjk)(crs+idrs)] = o(ajk+1bji)o(crs+1drs).



Furthermore, every unitary matrix is unitary similar to

a diagonal matrix, i.e. there exists a unitary matrix A such that

*
A UA =D where U is the unitary matrix considered and D is a
diagonal matrix. The determinant of U is equal to the determinant

of the diagonal matrix D. Let [aj+ibj] be the diagonal components

of D, then D € GL(2n;R) is as follows:

a1 0 b1 0 )
0
n 0 bn
oy )
0 -b 0 a
\ n n 7
nooo 2
Hence, det D = Tl (ai+ bi) = 1. Therefore almost her-

i=1

mitian manifolds are orientable.
(1i) The G-structure of a product manifold is equal to the
product of the G-structures of the manifolds. This is

because if P,is the principal subbundle of bundle of bases

i
of Mi’ then Pl X P2 is the principal subbundle of bundle of
bases of Ml X M2 with structural group G1 X GZ' Therefore,

the product of two globally framed manifold is a globally
framed manifold since the product manifold has an U(g) X
U(;) %« I(n+m-r-s) structure and U(%) x U(;) x I(n+m-r-s) is
a subgroup of U(EEE] x I(n+m-r-s).

(iii) All orientable 2-dimensional manifold admits an almost

complex structure since so(2) = U(1) [12].




(iv) There exist a nowhere vanishing vector field on compact

odd-dimensional manifold [2]. Therefore, a compact orient-

able (2n+1)-dimensional manifold has an S0(2n) x 1
structure. Since S0(2) = U(1), a three dimensional compact

orientable manifold admits an U(1) x 1 structure which is

equivalent to an almost contact structure or globally
framed f-structure of rank 2. (Refer to Chapter 3 for

further discussion).

(v) From Example 2(v) on page 22, we see that any para-

llelizable manifold admits an arbitrary chosen G-structure
since the subgroup consisting of the identity is a subgroup

of all subgroups of GL(n;R).

(vi) If the dimension of M is even, then the structural group
of a globally framed f-structure is reducible to !J(g) x
1(n-r) which is a subgroup of U(g). Hence, it induces an

almost complex structure on M. (Refer to Chapter 3).

(vii) If the dimension of the manifold is odd, then the
structural group of globally framed f-manifold is reducible

-1
to U(%) x I(n-r-1) x 1 which is a subgroup of U[Ei—] x 1.

Therefore, it induces an almost contact structure on M.

(Refer to Chapter 3).

2.3. Transition functions of certain manifolds

Example 4 (Sphere)

. 3
Let S2 pe the unit sphere imbedded in R~ such that

+ xXo + x- = 1.

X 2 3

2 2 2 It can Dbe covered by 2 open sets,
1




U= 52\((—1,0.0)) and V = SZ\{(I.O.O)}. Let ¢u be the stereo-
graphic projection of U into RZ and ¢v the stereographic
projection of V into RZ, The set ((U,¢u), (V,¢v)} forms an atlas
of SZ‘ In this example, we will find the transition functions

corresponding to the open covering above. The stereographic

projections ¢ and ¢ can be represented as f.ilows:

X, X
¢U(X1,X2,X3) = .im;_.)_(m;, ,,14;;,1. - (ul’uz)
_ 1-(u )2-(u )2 2u 2u
¢ Y uy) = ! 2 1 2
u 12 2 2’ 2 2’ 2 2
1+(u1) +(u2) 1+(u1) +(u2) 1+(u1) +(u2)
X X
_ 2 31 2
¢, (X X0 %) = g T | T (vy.vy)
1 1
1-(v,)%-(v.)° 2v ov.,
o lv vy = |- 1 2 1 2
v 1' 2 2 2’ 2 2’ 2 2
1+(v1) +(v2) 1+(v1) +(v2) 1+(v1) +(v2)
Therefore
2 2
av1 _ X, _ u1(1+(u1) +(u2) )
ax. .. 2 2 2.2
1 (;-xl) 2((u1) +(u2) )

2 2
av1 1+(u1) +(u2)

8%, 2((u1)2+(u2)2)

LA
A




2
av,) u2(1+(u1)“+(u2)2)

2((u, )2+(U2)2)2

2 o
a é [
v 1+(u1) +(u2)

2 _
ax.. 2 2
2((u1) +(u2) )
au, 2 22
1 (1+(u1) +(u2) )
Ju 2 2.2
2 (1+(u1) +(u2) )

ox 2(1—(u1)2+(u2)2)

2 _
du. 2 2.2
(1+(u1) +(u2) )
ffg _ 4u1u2
du, (1+(u1)2+(u2)2)2
3X3 . 4u1u2
du, (1+(u1)2+(u2)2)2

ox,  201+(u)?-(u)?)

auz (I+(u1)2+(U2)2)2 .




Then

. + F— - ——
aul ax1 Ju dx. du * ax., du

2

( 2 . 2
UZ) ~-(u,)

- 1
2 2
(u1) +(u2)
Similarly
av
Mo Th%
Au 2 2.2
1 ((ull +(u2) )
2 2.2
6u2 ((ul) +(u2) )

av (uz)z-(ul)z

and 2 -
du (w2 ()%
1 2
We have
r \
Ex My Ml 8
dup | ou By
2 \ auz 6\12 J 2
( 2 2
(u,y) = (uy) o 2%
- 5 5 2 2.2
(ul) +(u2) ((“1) +(u2) )
= 2 2
2“1“2 (uz) (ul)
- 55 2 2
()% (u,)%) (u))7+(uy)
\




8 a
Let 5@; and Eﬁg be defined as

8. 3
Bwl ) 0 1 av;
9 1 0 3
Therefore
)
) 2u,u, (uz)z-(ul)2 ’
3 ((u )%+ (u)%)? (0, 1%+ (u,)® 5
du 1 2 1 2 =
1 aw
= 1
8 2 2 8
CTren (u,)"=(u,) 2
au; _ )y ) 24y, 5w
2 2 2 2.2
+
\ (ul) (u2) ((ul) *(uz) ) 4
9
_ awl
= 8
9.
awz
where g € GL(1;C). Thus S2 admits an almost complex structure
with
3 8 3 ) 38 8 3]
J(M_J = —, JL-J = - =, J[——J = -— and JL——J = -
6u1 auz 6u2 6u1 8w1 a 2 aw2 a»l

The structural group of s™ with {(Ui’¢i)} can be constructed

to ((Ui,¢i)} is

n
as above. The structural group of S with respect




- 2 3\

S Z(Ul) ) Zuluz Zulun

SZ S v » & s
B 2U1Un s~2(un)
s
s2 /
where s = (ui)2 + v (u)?.
n

txample S (Real projective space RP™)

Real projective space can be covered by (n+l) open sets.

s 2 _ 2 _
Consider RP . Let U1 = {(XI’XZ’X3) € RP™ : Xy + 0}, U2 =
2 . 2
I . ! h - .
\\“},xz.x3) € RP™ ! X, * 0} and U3 {(xl,xz,x3) evRP DXy ® 0}.
{Uw,UZ,U3) is an open covering of RPZ. If A'(l.ui,u?) and
A(u;,l,ug) as in the diagram below represent a point in U1 2} U2 of
> )
%P°. then there exists a k € R and k # 0 such that k(u;.l.uz) =
1 2
{ y
\l.bl,ul). .
x , 1 2
;\ A (l,ul,ul)
)
A(u,,1l,u,)
Ald, *
] Y X
6 |2
1L 2 1

e 2
Therefore ku, = 1, k = u, and kuz =Yy




Thus u1 = lﬂ
15, ) 1
)
u2
u2 = 2
1 ;T :
2
au) dul au® 2 2
e oo e 1 _ 1 1 Uy u, du
Iherefore, - = - = 0 = - q L -1
au’ (whH? au? " sl w2 an ggﬁ T 1
. 2 2 2 2 U Y
Thus . f
hus, for U1 fa U2
(aul 8w )
(8 ) _—-1- ___lfa
—_— 1 1 —
1 du du 1
6u2 } 2 2 aul
—éi aul Buz ~§—
du -—l ——l 8u2
\ 2/ 1 2 |V 1/
\ 6u2 6u2 )
( 2 \
1 % 8 )
1.2 1.2 1
i (uz) (u2) 6u]
a
1 L
0 1 | 6u§ )
\ uz;
. 1 2 1 2
Similarly for U1 v U3. we have k(u3,u3,1) = (1.u1,u1) and
, 2
(8\ U3 1 fa\
1 ST 12 1 1
6u3 _ (u3) (u3) aul
3
" oo |l
\BUBJ k U3 )\ 1 /

2

1 _ 1 2
Similarly for U, n Uy, we have k(ug,ug, 1) = (u,,1,u;) and



f 6 3\ M_«é O A ,
;“‘1’ U3 _Q_i_
e _ 3u2
1
a
342 - :?i_*_ o] 2
\ Od,, ) 2.2 272 du
3 (u3) (US) IR 2 )

The transition functions of RP" can be constructed as

3
<.

before. For U, n U, k(u?!l,u 1 n)

n _
1 2" 2 20Uy = lu, oo up) and the
matrix for coordinate transformation is as follows:
(
1 n
R o %
1.2 1.2 1.2
(UZ) UZ) (uz)
1 0
G = 1 0
12 u2
0
1
0 =
u
\ 2 /
1 1 2 n .
) = N . atr
For Ul o) U3, k(l,ul.....ul) (u3.u3,1, ,ug) The matrix
of the coordinate transformation is as follows:
i 2 3 O i
U3 1 Y3 3
T 1.2 2.2 1.2 = I
(u3) (u3) (u3) 3
1
1 0 0
s
G = 1
13 1
0 0 o 0
3
0 i
Ul
3 b




If n is odd, then n = 2k-1 for some natural number k. Let
Gi; be the matrix of the coordinate transformation on
J
From the calculation abeve,

, 1 , 1
det G DT bt ez t L ——
% Clz (ul)ZK and det G13 TR
2 (u3)

It can be proved that det Gij
and det Gij < 0 if either i1 or j is even.

ui n UJ'

> 0 if both I and j are even or odd

1 _ 1 b < 1< o
On Uzi‘ let Vai u21 and Yoy U5y for all 2 = 2k-1

o . 1 2k-1) . .
The collection of the maps \121,....v,)i is a coordinate chart

R

for U, .
YOY2d

1
i vZ 2k-1]
- 4 - 1 _ 2 - 2 "_1 1f
. - - 1.2
! (v;)2 (v))? (v,) 0
U, = 1
= 1 0
vl
4 2 1 0 0
SR 5
_Gup } 0 Vl - )
r 2k-1
V1 VZ _ -
1 _ i a
1.2 12 2|l =1
(v2) (v ,
(VZ ) 2 2 av 1
= 1 0
1
Y2 R -
T av2k‘~1
0 D LA




Theretfore, determinant of the matrix of  the coordinate

transformation is given ag

With the same argument, it can be shown that for Uoon Uj,

the determinant of the matrix of the coordinate transtormation is

. : ' 1
itive for each Ui and Uj in the open covering {H u

RS R
k-1, 1 2k~1 . L2k=1)
L } [Ug"v’:{w-*'v;‘g ]’ [UL{k"’iik“”'vﬁk ]}



