CHAPTER 4. ALHOS% COTANGENT STRUCTURE

AND ALMOST TANGENT STRUCTURE

The notion of an almost cotangent structure was first

defined by Yano and Muto [22}. It is a natural structure on the

cotangent bundle of a manifold. Clark and Goel [7] gave an
alternative definition of cotangent structure. In this chapter,

the definition of Clark and Goel [7] will be adopted.

We can see that an almost cotangent manifold (see definition
in 4.1) admits an almost complex structure. In fact, it is well-
known that the cotangent bundle is an almost complex manifold.
Here, the almost complex structure will be constructed explicitly.
We also gave a necessary and sufficient condition for the
existence of a 2-form w that characterizes the almost cotangent
structure. The relation between an almost cotangent structure and

an almost sympletic structure will also be discussed.

Clark and Goel [6) also defined an almost tangent structure.
This is a natural structure on tangent bundle of a manifold. The
existence of an almost tangent structure is equivalent to the
existence of a particular (1,1) tensor. Similarly, an almost
tangent manifold admits an almost complex structure. Finally, the

relation between an almost complex structure, an almost tangent

structure and an almost cotangent structure will be discussed.



4.1. Almost cotangent manifold

Let G be the Lie subgroup of GL(2n;R) whose elements are of
A O
) t t
the form o A_t where A € GL(n;R) and A'B = B'A. The structure
defined by the Lie group G 1is called an almost cotangent
structure. A manifold with an almost cotangent structure is

called an almost cotangent manifold. An almost cotangent manifold

is even dimensional.

Clark and Goel (7] showed that the cotangent bundle admits

an almost cotangent structure.

Clearly, an almost cotangent manifold is orientable since
the determinant of any element of the group G 1s positive. In

[7], Clark and Goel asserted that there 1is a 2-form w with
0 -I
1 0

cotangent manifold. Here, we illustrate explicitly the 2-form w.

components [ ] relative to any adapted frame of an almost

Proposition 4.1.

T iere exists a 2-form w on an almost cotangent manifold with
0 -1
components [I O] relative to any adapted frame.

Proof:

For any adapted frame {Yl,...,YZn), the 2-form w is defined

as follows:
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0 otherwise .
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Thus w is a well defined 2-form with components [I O} with

respect to any adapted frames on an almost cotangent manifold.

Q.E.D.



A necessary and sufficient condition for the existence of a

0 -1
2-form w with com i
ponents [I O] with respect to a family of

2n-frames that covered the manifold is given below

Proposition 4.2.

0 -1
I 0
a family of local 2n-frames that covered M if and only if the

There exists a 2-form w with components { } relative to

structural group is reducible to a Lie group consists of elements
A C |

of the form [B D} where A, B, C and D are n x n matrices

satisfying the following conditions:

CAt = ACt

D" = pe'
Proof:
Assume that the 2-form w exists. Let {Xl,...,XZH} and
{Yl,,A..YZn} be two 2n-frames from the family define on Ua and UB

respectively such that on Ua s} UB' they are related by

Xl Yl
X, | [ A C ] Y,
Xn+1 B D Yne1
X2n i Y2n

where A = (aij)’" B = (biJ

functions on Ua n UB. Thus
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All elements of GL(2n;R) that satisfied these conditions

form a group (in fact, it is a Lie subgroup of GL(2n;R})) since
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The 1inverse of any element belongs to this set since

{xl,...,x }  and (Yl""'YZn} play a similar role in

deriving these equations.
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also belongs to this set. It can be verified as follows:
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Similarly, we have BDt = DBt. Thus, the structural group of M

is reducible to the above mentioned Lie group.

Conversely, Lif the structural group is reducible to a Lie
A C

group consisting all elements of the form [B D] which fulfill the
0 1
conditions given, then the 2-form o with components - with

respect to any adapted frames can be defined. It ls easy to show

that the 2-form w is well defined.
Q.E.D.



Clark and Goel [7] proved that if M is an almost cotangent
manifold, then there is an open covering of M such that the first
n vector fields of the adapated frame for the 2-form w span a
global n-dimensional distribution. In the opposite direction, we

can obtain the following result.

Proposition 4.3.

0 -1
I 0
family of 2n-frames that covered the manifold M. If the first n

Let w be a 2-form with components [ } relative to a

local vector flelds of this set of frames span a global

n-dimensional distributicn, then M is an almost cotangent

manifold.
Proof:
Again, le:® (xl""'XZn} and (Yl""’YZn) be two frames of w
reiated by
Xl ; A C Yl
X2n 50 QZn

The existence of a n-dimensional distribution as stated

implies C = 0. Then by Proposition 2,

and A "B = BA

Therefore

Hence M is an almost cotangent manifold.

Q.E.D.



Clark and Goel [7] also proved that an almost cotangent
manifold admits an almost sympletic structure. Conversely, for a
2n-dimensional almost sympletic manifold, if the first n vector
fields of the adapted frames of the almost sympletic structure
span a global n-dimensional distribution, then it admits an almost
cotangent structure [7]. This is a consequence of the following

argument: A 2n-dimensional almost sympletic manifold has a

A C

reduction to a group with elements [B D} where A, B, C and D are

n x n matrices such that

and DC=CTD.

If C=0, then D = A% and B'A = A'B.

An almost cotangent metric is a metric with components
I O
[O I] relative to a set of adapted frames of the almost cotangent

structure that covered M.

In [7), Clark and Goel proved that every Riemannian metric
on an almost cotangent manifold determines an almost cotangent

metric. Thus the structural group of an almost cotangent manifold

A O
is reducible to a group with elements of the form [O A} where
A € O0(n). It is a subgroup of GL(n;C). Thus, any almost
cotangent manifold admits an almost complex structure. In

particular, the cotangent bundle is an almost complex manifold.



Conversely, an almost complex manifold with a global n-dimensional
distribution that is spanned by the first n vector fields of the

adapted frames admits an almost cotangent structure.

The following is an easy consequence of the reduction of the

structural group.

Proposition 4.4.

An almost cotangent manifold admits a metric with signature

(n,n).

Example 1

‘Let M be an n-dimensional manifold with an atlas {(Ua’¢a)}'

* ]
Let Mm be the dual vector space of Mm’ ™ = U Mm be the
meM

&®
cotangent bundle of M. Let m be the natural projection

»* *

n : M - M .

.
Let éa : (m) l(Ua) - RZn such that

~ o * a’ * a *® a _{j‘w
wa(t) = [xl(n (t)), x5 (1 (t)),...,xn(n (r)),r[;;f],.‘.,r[axa

* * 7Y% A a7 ), the
where ¢a(m) = {xl(m)....,xn(m) . On (m) A g

Jacobian matrix of the change of coordinate is

o !
ax :
o 0
ax’, ;
J !
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2 B o a axB
8 xk axr T[ P ] ; j
a . a . B B i o
ax.l 3xr axj axk : ax1 |




Let A = _ and B =

T{ 9 }}, by the virtue of
a

inverse function theoren, = A . Hence, the cotangent

bundle admits a natural almost cotangent structure.

Proposition 4.5.

Let g be the almost cotangent metric on an almost cotangent
manifold M with the 2-form w. A (1,1) tensor ¢ defined by
w(X,¢Y) = g(X,Y) is an almost hermitian structure with respect to

the metric g on M.

Proof:

n
k, .e. where {el,...,e2n} is an adapted

p 1)

W~ o

Suppose ¢ei =
J
0 -I
frame such that w has components I 0 and g has components

I O
[ } (g is an almost cotangent metric). Then

0 1
- 3>
8j-—ni J n
kij =
aj+n1 J=n
Now, for r = n,
2
= k
¢ (er) ¢[Z rj J]
= ¢l-e )
= ~e



and for r > n,

2
¢ (er) = ¢[Z krjej]
= ple )
= -e
r
Thus ¢2 = -1,
Furthermore g(¢X,dY) = -g(8°X,Y¥) = -g(-X,¥) = g(X,Y)

Therefore, ¢ is an almost hermitian structure.

Q.E.D.
4.2. Almost tangent structure
Let M be a 2n-dimensional manifold. An G-structure on M
A O
whose group G consists of all matrices of the form [B A} where
A € GL(n;R) is called an almost tangent structure. A manifold

with an almost tangent structure is called an almost tangent

manifold.

Clark and Goel [6] defined a (1,1) tensor J on an almost
0O O

cotangent manifold M with components [I O] relative to any

adapted {rame. This 1is a well defined tensor. Clark and
Bruckheimer [S] also proved that the existence of such a (1,1)
tensor J determines an almost tangent structure.

0.

i

The tensor J has rank n and satisfies the condition J

Clearly, an almost tangent manifold is orientable. There is an

n-dimensional distribution on an almost tangent manifold.

The following proposition gives a sufficient condition for

the existence of an almost tangent structure.



Proposition 4.6.

0 1
If there is a (1,1) tensor R on M with components [I 0}

relative to a family of 2n-frames that covered M, then the
A B

B A

an n-dimensional distribution that is spanned by the first n

structural group is reducible to { ]. Furthermore, if there is
vector fields of the frames mentioned above, then M admits an
almost tangent structure. The existence of the n-dimensional
distribution above is equivalent to the existence of a projection

1 0O
tensor ¢ with components {O O]' The composition RE is equal to

J.

The proof of Proposition 4.6 is obvious.

I O
0 I

a set of adapted frames of an almost tangent structure that

The Riemannian metric that has components [ ] relative to

covered M is called an almost tangent metric.

Clark and Goel [6] showed that any Riemannian metric
determines an almost tangent metric. Thus, the structural group
is reducible to the group G consisting all matrices of the form
[g :} where A € O(n). This is a subgroup of U(n). Therefore, an

almost tangent manifold admits an almost complex structure. In

particular, the tangent bundle has an almost complex structure.

Let M be an almost cotangent manifold with a 2-form w suc
0 -I
that its components are {I 0] with respect to adapted frames

{e e, }. Consider a (1,1) tensor J defined by
1 Son

J(X) =
i

e o

w(X,e.l)ei

1



This is a well defined tensor. Therefore

This proves the following:

Proposition 4.7.

An almost cotangent manifold admits an almost tangent

structure.

Proposition 4.8.

There exist two (1,1) tensors R and ¢ as defined 1in
Proposition 6 on an almost tangent manifold M. The manifold M

also admits a metric with signature (n,n).

Proposition 4.8 is a direct consequence of the reduction of
the structural group to a group consisting of elements of the form

A O
o Al where A € 0(n).

let ¢ = J-fR. Proposition 4.8 ensures the existence of R

and ¢ and ihus ¢ is well defined. The (1,1) tensor ¢ has
0 -1

components [I O} which is an almost complex structure.

Therefore we have the following proposition:

Proposition 4.9.

An almost tangent manifold admits an almost complex

structure.

We can now show that an almost tangent manifold always

admits an almost cotangent structure.



Proposition 4.10.

Let M be an almost tangent manifold with a (1,1) tensor J

and {e_,..

1 "eZn} be a set of orthonormal basis with respect to an

almost tangent metric g. There is a 2-form w on M defined by

w(X,Y) = g(JX,Y) - g(X,JY). This 2-form w and the n-dimensional

distribution generated by {el,...,en} define an almost cotangent
structure.
Proof:
Let kij = w(ei,ej). then
—sij—n J>n
K =
i) aij+n j=n

and w is the required 2-form.

Q.E.D.



