Appendix A
Dynamics of Kelvin Wave and
Mixed Rossby-Gravity Wave

The dynamics of Kelvin wave and mixed Rossby-gravity wave can easily be
deduced theoretically by applying the linear perturbation technique in the log-pressure

system as given by Holton (1979).

A.1  The Log-Pressure System

In the log-pressure system, the vertical coordinate is defined as

z's-mn[pi] (A1)

where p, is a standard reference usually taken to be 100 kPa and H is a standard scale
height, H=RT, /g , with T, a global average temperature. For an isothermal atmosphere
at temperature 7,, z* is exactly equal to height. For an atmosphere with variable

temperature, z" will be only approximately equivalent to the actual height. The vertical

velocity is then defined as
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W= (A2)

The horizontal momentum equation in the log-pressure system is the same as that
in the isobaric system:

B s TKxV=-v0 a3

However, the operator d/dt is now defined as

i52+ V~V+w‘i_-
dt ot oz

The hydrostatic equation

x®__,
op

can be transformed to the log-pressure system by eliminating @ with the ideal gas law to
get

o =-RT
dlnp

and then manipulated with the aid of equation (A.1) to get

0z H

The continuity equation

u, v oo _,
ox oy Oop
can also be conveniently transformed to the log-p! e di form. Sub ing

equation (A.1) into equation (A.2) gets

N H dp Ho
a2t __ 0
p dt P

from which further manipulation and differentiation gives
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Thus, in log-pressure coordinates the continuity equation becomes simply

du B W W (A5)
o oy o H
Finally, the first law of thermodynamics
a_
Pt dt

can be rewritten in the following log-pressure coordinate form with the aid of equation

(A.4):

( Oivy | iN=M (A6)
o o H
where

L
H\ oz H

and x = R/ ¢, . Inthe stratosphere the buoyancy frequency squared, N, is approximately

constant with a value N> = 4x107s™.

A.2  The Kelvin Wave

It is convenient to use the governing equations in log-pressure coordinates (A.3),

(A.5) and (A.6) referred to an equatorial # plane in which the Coriolis parameter is

approximated as
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where y is the distance from the equator. Thus, 4 is the rate at which f changes with
latitude at the equator. Assuming as a basic state an atmosphere at rest with no diabatic
heating. If the perturbations are assumed to be zonally propagating waves, then

u= u'(,v,z‘ )e““‘""]

y= v'()z,z')ei(h'"J

w = w" (y, z° )ei(""')

@ ='(y,z" et
From equations (A.3), (A.5) and (A.6), the following set of linearized perturbation

equations can be obtained:

—ivu' = v’ = —ik®' (A7)
o’
—iw' + ' = —— (A.8)
o
o (o 1)
iku' + —+| ——— W =0 A9
iku o [62 H]W (A9)
—iv2 N =0 (A10)
oz

For Kelvin wave, this set of equations can be considerably simplified. Setting

V=0 and eliminating w” between equations (A.9) and (A.10), this set of equations

become
w' = k®' (A.11)
o0’
pu' =—— (A.12)
o
(2 L) ko )
&z H)ez v

Using equation (A.11) to eliminate @' in equations (A.12) and (A.13), the field of «’ must
satisfy the following two independent equations:
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ﬁyu':—;g (A.14)
0 2

[a—a,-%]%ﬂ‘—z)vz =0 (A15)
4 v

Equation (A.14) has the solution

' =u, (2" Jexpl- Bk /2v} (A.16)
Assuming that & >0 then v >0 corresponds to an eastward-moving wave. In that case
' will have a Gaussian distribution about the equator. For a westward-moving wave
(v <0) the solution (A.16) increases in amplitude exponentially away from the equator.
This solution cannot satisfy reasonable boundary conditions at the poles and must,
therefore, be rejected. Hence, there exists only an eastward-propagating atmospheric
Kelvin wave.

Solutions for equation (A.15) can be written in the form

u, (2 %) = exp(z */2H)[C, explizz *)+ C, exp(~ iAz *)] (A17)
with
D NE_ 1
VAl

Here the constants C, and C, are to be determined by appropriate boundary conditions. For
2% >0 the solution (A.17) is in the form of a vertically propagating wave. For waves in
the equatorial stratosphere that are forced by disturbances in the troposphere, the
propagation of energy must have an upward component, implying that the phase velocity
of the wave must have a downward component. Hence, the constant C, =0 in the

solution (A.17), and the Kelvin wave has a structure in the x, z plane shown in Figure A.1.
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A.3  The Mixed Rossby-Gravity Wave

A similar analysis is possible for the mixed Rossby-gravity wave. In this case, the
full perturbation equations (A.7)-(A.10) must be used. After some considerable algebraic

manipulation, it can be shown that the mixed Rossby-gravity wave has the solution

1

u' +iy(L+kv/B)lv
v exp|:
@' +iwy

_ 2.2
——(Hk;‘//f?)p 4 } (A.18)
where the vertical structure ‘l’(z') is given by

'*‘(z. ) = exp(z'/ZH)[C, exp(iz,z*)+ C, exp(-id,z *)] (A.19)

with

2 2
PRIV L
v vk 4H

Again, the constants C, and C, are to be determined by appropriate boundary conditions.
Solution (A.18) indicates that v' has a Gaussian distribution about the equator.
This solution is valid for westward-propagating waves (v < 0) provided that

kv
1e—>0 (A.20)
B

For frequencies that do not satisfy equation (A.20), the wave amplitude will not decay
away from the equator and so the boundary conditions at the pole will not be satisfied.

Just like the Kelvin waves, the mixed Rossby-gravity waves must have downward
phase velocity in order for upward energy propagation. Thus C, =0 is required in
equation (A.19). The resulting wave structure in the x, z plane at latitude north of the

equator is shown in Figure A.2.
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Figure A.1 Longitude-height section
along the equator showing pressure,

temperature and wind perturbations for a
thermally damped Kelvin wave. Heavy
wavy lines indicate material lines; short
blunt arrows show phase propagation.
Areas of high pressure are shaded. Length
of the small thin arrows is proportional to the
wave amplitude, which decreases with
height due to damping. The large shaded
arrow indicates the net mean flow
acceleration due to the wave stress
divergence. (After Holton, 1979.)
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Figure A.2 Longitude-height section

along a latitude circle north of the equator
showing pressure, temperature and wind
perturbations for a thermally damped mixed
Rossby-gravity wave.  Areas of high
pressure are shaded. Small arrows indicate
zonal and vertical wind perturbations with
length proportional to the wave amplitude.
Arrows pointed into the page (northward)
and out of the page (southward) show
meridional wind perturbations. The large
shaded arrow indicates the net mean flow
acceleration due to the wave stress
divergence. (After Holton, 1979.)



Appendix B

The following tables are extracted from Hald (1952).

Probability Tables

Table B.1 Probability Points of Gaussian Normal Distribution (t,)
Degrees of Probability in per cent
freedom 95% 97.5* 99 99.5
(Infinite) 1.645 1.960 2.326 2.576

* Probability equivalent to 95 per cent significance point for one-tailed test.
* Probability equivalent to 95 per cent significance point for two-tailed test.
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Table B.2 Probability Points of * /v Distribution

Degrees of Probability in per cent
freedom 1 5 90 95* 99
2 .010 .052 2.305 3.000 4.605
3 .038 117 2.083 2.605 3.782
4 .074 178 1.945 2372 3.319
5 111 229 1.848 2214 3.017
6 145 272 1.767 2.099 2.802
8 .206 342 1.675 1.938 2.511
10 .256 394 1.600 1.831 2.321
15 .349 484 1.487 1.666 2.038
20 413 .543 1.420 1.570 1.878
30 498 616 1.343 1.459 1.696
40 554 .663 1.295 1.394 1.592
50 594 .695 1.264 1.350 1.523
60 .625 720 - 1.318 1.473
80 669 755 - 1.274 1.404
100 .701 779 1.185 1.243 1.358
200 782 .841 - 1.170 1.247
400 .843 .887 - 1.119 1.172
1000 .899 928 - 1.075 1.107

* Probability equivalent to 95 per cent significance point for one-tailed test of spectral
gap.

* Probability equivalent to 95 per cent significance point for one-tailed test of spectral
peak. :
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